1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 #include <sys/sunldi.h> 61 62 #include <sys/errno.h> 63 #include <sys/signal.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/isa_defs.h> 67 #include <sys/md5.h> 68 #include <sys/random.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/mi.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 #include <inet/tcp_trace.h> 94 95 #include <inet/ipclassifier.h> 96 #include <inet/ip_ire.h> 97 #include <inet/ip_ftable.h> 98 #include <inet/ip_if.h> 99 #include <inet/ipp_common.h> 100 #include <inet/ip_netinfo.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 129 * squeue_fill). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: squeue_enter_nodrain 239 * 2: squeue_enter 240 * 3: squeue_fill 241 */ 242 int tcp_squeue_close = 2; /* Setable in /etc/system */ 243 int tcp_squeue_wput = 2; 244 245 squeue_func_t tcp_squeue_close_proc; 246 squeue_func_t tcp_squeue_wput_proc; 247 248 /* 249 * This controls how tiny a write must be before we try to copy it 250 * into the the mblk on the tail of the transmit queue. Not much 251 * speedup is observed for values larger than sixteen. Zero will 252 * disable the optimisation. 253 */ 254 int tcp_tx_pull_len = 16; 255 256 /* 257 * TCP Statistics. 258 * 259 * How TCP statistics work. 260 * 261 * There are two types of statistics invoked by two macros. 262 * 263 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 264 * supposed to be used in non MT-hot paths of the code. 265 * 266 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 267 * supposed to be used for DEBUG purposes and may be used on a hot path. 268 * 269 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 270 * (use "kstat tcp" to get them). 271 * 272 * There is also additional debugging facility that marks tcp_clean_death() 273 * instances and saves them in tcp_t structure. It is triggered by 274 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 275 * tcp_clean_death() calls that counts the number of times each tag was hit. It 276 * is triggered by TCP_CLD_COUNTERS define. 277 * 278 * How to add new counters. 279 * 280 * 1) Add a field in the tcp_stat structure describing your counter. 281 * 2) Add a line in the template in tcp_kstat2_init() with the name 282 * of the counter. 283 * 284 * IMPORTANT!! - make sure that both are in sync !! 285 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 286 * 287 * Please avoid using private counters which are not kstat-exported. 288 * 289 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 290 * in tcp_t structure. 291 * 292 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 293 */ 294 295 #ifndef TCP_DEBUG_COUNTER 296 #ifdef DEBUG 297 #define TCP_DEBUG_COUNTER 1 298 #else 299 #define TCP_DEBUG_COUNTER 0 300 #endif 301 #endif 302 303 #define TCP_CLD_COUNTERS 0 304 305 #define TCP_TAG_CLEAN_DEATH 1 306 #define TCP_MAX_CLEAN_DEATH_TAG 32 307 308 #ifdef lint 309 static int _lint_dummy_; 310 #endif 311 312 #if TCP_CLD_COUNTERS 313 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 314 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 315 #elif defined(lint) 316 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 317 #else 318 #define TCP_CLD_STAT(x) 319 #endif 320 321 #if TCP_DEBUG_COUNTER 322 #define TCP_DBGSTAT(tcps, x) \ 323 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 324 #define TCP_G_DBGSTAT(x) \ 325 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 326 #elif defined(lint) 327 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 328 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 329 #else 330 #define TCP_DBGSTAT(tcps, x) 331 #define TCP_G_DBGSTAT(x) 332 #endif 333 334 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 335 336 tcp_g_stat_t tcp_g_statistics; 337 kstat_t *tcp_g_kstat; 338 339 /* 340 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 341 * tcp write side. 342 */ 343 #define CALL_IP_WPUT(connp, q, mp) { \ 344 tcp_stack_t *tcps; \ 345 \ 346 tcps = connp->conn_netstack->netstack_tcp; \ 347 ASSERT(((q)->q_flag & QREADR) == 0); \ 348 TCP_DBGSTAT(tcps, tcp_ip_output); \ 349 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 350 } 351 352 /* Macros for timestamp comparisons */ 353 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 354 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 355 356 /* 357 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 358 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 359 * by adding three components: a time component which grows by 1 every 4096 360 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 361 * a per-connection component which grows by 125000 for every new connection; 362 * and an "extra" component that grows by a random amount centered 363 * approximately on 64000. This causes the the ISS generator to cycle every 364 * 4.89 hours if no TCP connections are made, and faster if connections are 365 * made. 366 * 367 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 368 * components: a time component which grows by 250000 every second; and 369 * a per-connection component which grows by 125000 for every new connections. 370 * 371 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 372 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 373 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 374 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 375 * password. 376 */ 377 #define ISS_INCR 250000 378 #define ISS_NSEC_SHT 12 379 380 static sin_t sin_null; /* Zero address for quick clears */ 381 static sin6_t sin6_null; /* Zero address for quick clears */ 382 383 /* 384 * This implementation follows the 4.3BSD interpretation of the urgent 385 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 386 * incompatible changes in protocols like telnet and rlogin. 387 */ 388 #define TCP_OLD_URP_INTERPRETATION 1 389 390 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 391 (TCP_IS_DETACHED(tcp) && \ 392 (!(tcp)->tcp_hard_binding)) 393 394 /* 395 * TCP reassembly macros. We hide starting and ending sequence numbers in 396 * b_next and b_prev of messages on the reassembly queue. The messages are 397 * chained using b_cont. These macros are used in tcp_reass() so we don't 398 * have to see the ugly casts and assignments. 399 */ 400 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 401 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 402 (mblk_t *)(uintptr_t)(u)) 403 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 404 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 405 (mblk_t *)(uintptr_t)(u)) 406 407 /* 408 * Implementation of TCP Timers. 409 * ============================= 410 * 411 * INTERFACE: 412 * 413 * There are two basic functions dealing with tcp timers: 414 * 415 * timeout_id_t tcp_timeout(connp, func, time) 416 * clock_t tcp_timeout_cancel(connp, timeout_id) 417 * TCP_TIMER_RESTART(tcp, intvl) 418 * 419 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 420 * after 'time' ticks passed. The function called by timeout() must adhere to 421 * the same restrictions as a driver soft interrupt handler - it must not sleep 422 * or call other functions that might sleep. The value returned is the opaque 423 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 424 * cancel the request. The call to tcp_timeout() may fail in which case it 425 * returns zero. This is different from the timeout(9F) function which never 426 * fails. 427 * 428 * The call-back function 'func' always receives 'connp' as its single 429 * argument. It is always executed in the squeue corresponding to the tcp 430 * structure. The tcp structure is guaranteed to be present at the time the 431 * call-back is called. 432 * 433 * NOTE: The call-back function 'func' is never called if tcp is in 434 * the TCPS_CLOSED state. 435 * 436 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 437 * request. locks acquired by the call-back routine should not be held across 438 * the call to tcp_timeout_cancel() or a deadlock may result. 439 * 440 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 441 * Otherwise, it returns an integer value greater than or equal to 0. In 442 * particular, if the call-back function is already placed on the squeue, it can 443 * not be canceled. 444 * 445 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 446 * within squeue context corresponding to the tcp instance. Since the 447 * call-back is also called via the same squeue, there are no race 448 * conditions described in untimeout(9F) manual page since all calls are 449 * strictly serialized. 450 * 451 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 452 * stored in tcp_timer_tid and starts a new one using 453 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 454 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 455 * field. 456 * 457 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 458 * call-back may still be called, so it is possible tcp_timer() will be 459 * called several times. This should not be a problem since tcp_timer() 460 * should always check the tcp instance state. 461 * 462 * 463 * IMPLEMENTATION: 464 * 465 * TCP timers are implemented using three-stage process. The call to 466 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 467 * when the timer expires. The tcp_timer_callback() arranges the call of the 468 * tcp_timer_handler() function via squeue corresponding to the tcp 469 * instance. The tcp_timer_handler() calls actual requested timeout call-back 470 * and passes tcp instance as an argument to it. Information is passed between 471 * stages using the tcp_timer_t structure which contains the connp pointer, the 472 * tcp call-back to call and the timeout id returned by the timeout(9F). 473 * 474 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 475 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 476 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 477 * returns the pointer to this mblk. 478 * 479 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 480 * looks like a normal mblk without actual dblk attached to it. 481 * 482 * To optimize performance each tcp instance holds a small cache of timer 483 * mblocks. In the current implementation it caches up to two timer mblocks per 484 * tcp instance. The cache is preserved over tcp frees and is only freed when 485 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 486 * timer processing happens on a corresponding squeue, the cache manipulation 487 * does not require any locks. Experiments show that majority of timer mblocks 488 * allocations are satisfied from the tcp cache and do not involve kmem calls. 489 * 490 * The tcp_timeout() places a refhold on the connp instance which guarantees 491 * that it will be present at the time the call-back function fires. The 492 * tcp_timer_handler() drops the reference after calling the call-back, so the 493 * call-back function does not need to manipulate the references explicitly. 494 */ 495 496 typedef struct tcp_timer_s { 497 conn_t *connp; 498 void (*tcpt_proc)(void *); 499 timeout_id_t tcpt_tid; 500 } tcp_timer_t; 501 502 static kmem_cache_t *tcp_timercache; 503 kmem_cache_t *tcp_sack_info_cache; 504 kmem_cache_t *tcp_iphc_cache; 505 506 /* 507 * For scalability, we must not run a timer for every TCP connection 508 * in TIME_WAIT state. To see why, consider (for time wait interval of 509 * 4 minutes): 510 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 511 * 512 * This list is ordered by time, so you need only delete from the head 513 * until you get to entries which aren't old enough to delete yet. 514 * The list consists of only the detached TIME_WAIT connections. 515 * 516 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 517 * becomes detached TIME_WAIT (either by changing the state and already 518 * being detached or the other way around). This means that the TIME_WAIT 519 * state can be extended (up to doubled) if the connection doesn't become 520 * detached for a long time. 521 * 522 * The list manipulations (including tcp_time_wait_next/prev) 523 * are protected by the tcp_time_wait_lock. The content of the 524 * detached TIME_WAIT connections is protected by the normal perimeters. 525 * 526 * This list is per squeue and squeues are shared across the tcp_stack_t's. 527 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 528 * and conn_netstack. 529 * The tcp_t's that are added to tcp_free_list are disassociated and 530 * have NULL tcp_tcps and conn_netstack pointers. 531 */ 532 typedef struct tcp_squeue_priv_s { 533 kmutex_t tcp_time_wait_lock; 534 timeout_id_t tcp_time_wait_tid; 535 tcp_t *tcp_time_wait_head; 536 tcp_t *tcp_time_wait_tail; 537 tcp_t *tcp_free_list; 538 uint_t tcp_free_list_cnt; 539 } tcp_squeue_priv_t; 540 541 /* 542 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 543 * Running it every 5 seconds seems to give the best results. 544 */ 545 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 546 547 /* 548 * To prevent memory hog, limit the number of entries in tcp_free_list 549 * to 1% of available memory / number of cpus 550 */ 551 uint_t tcp_free_list_max_cnt = 0; 552 553 #define TCP_XMIT_LOWATER 4096 554 #define TCP_XMIT_HIWATER 49152 555 #define TCP_RECV_LOWATER 2048 556 #define TCP_RECV_HIWATER 49152 557 558 /* 559 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 560 */ 561 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 562 563 #define TIDUSZ 4096 /* transport interface data unit size */ 564 565 /* 566 * Bind hash list size and has function. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_BIND_FANOUT_SIZE 512 570 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 571 /* 572 * Size of listen and acceptor hash list. It has to be a power of 2 for 573 * hashing. 574 */ 575 #define TCP_FANOUT_SIZE 256 576 577 #ifdef _ILP32 578 #define TCP_ACCEPTOR_HASH(accid) \ 579 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 580 #else 581 #define TCP_ACCEPTOR_HASH(accid) \ 582 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 583 #endif /* _ILP32 */ 584 585 #define IP_ADDR_CACHE_SIZE 2048 586 #define IP_ADDR_CACHE_HASH(faddr) \ 587 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 588 589 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 590 #define TCP_HSP_HASH_SIZE 256 591 592 #define TCP_HSP_HASH(addr) \ 593 (((addr>>24) ^ (addr >>16) ^ \ 594 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 595 596 /* 597 * TCP options struct returned from tcp_parse_options. 598 */ 599 typedef struct tcp_opt_s { 600 uint32_t tcp_opt_mss; 601 uint32_t tcp_opt_wscale; 602 uint32_t tcp_opt_ts_val; 603 uint32_t tcp_opt_ts_ecr; 604 tcp_t *tcp; 605 } tcp_opt_t; 606 607 /* 608 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 609 */ 610 611 #ifdef _BIG_ENDIAN 612 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 613 (TCPOPT_TSTAMP << 8) | 10) 614 #else 615 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 616 (TCPOPT_NOP << 8) | TCPOPT_NOP) 617 #endif 618 619 /* 620 * Flags returned from tcp_parse_options. 621 */ 622 #define TCP_OPT_MSS_PRESENT 1 623 #define TCP_OPT_WSCALE_PRESENT 2 624 #define TCP_OPT_TSTAMP_PRESENT 4 625 #define TCP_OPT_SACK_OK_PRESENT 8 626 #define TCP_OPT_SACK_PRESENT 16 627 628 /* TCP option length */ 629 #define TCPOPT_NOP_LEN 1 630 #define TCPOPT_MAXSEG_LEN 4 631 #define TCPOPT_WS_LEN 3 632 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 633 #define TCPOPT_TSTAMP_LEN 10 634 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 635 #define TCPOPT_SACK_OK_LEN 2 636 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 637 #define TCPOPT_REAL_SACK_LEN 4 638 #define TCPOPT_MAX_SACK_LEN 36 639 #define TCPOPT_HEADER_LEN 2 640 641 /* TCP cwnd burst factor. */ 642 #define TCP_CWND_INFINITE 65535 643 #define TCP_CWND_SS 3 644 #define TCP_CWND_NORMAL 5 645 646 /* Maximum TCP initial cwin (start/restart). */ 647 #define TCP_MAX_INIT_CWND 8 648 649 /* 650 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 651 * either tcp_slow_start_initial or tcp_slow_start_after idle 652 * depending on the caller. If the upper layer has not used the 653 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 654 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 655 * If the upper layer has changed set the tcp_init_cwnd, just use 656 * it to calculate the tcp_cwnd. 657 */ 658 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 659 { \ 660 if ((tcp)->tcp_init_cwnd == 0) { \ 661 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 662 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 663 } else { \ 664 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 665 } \ 666 tcp->tcp_cwnd_cnt = 0; \ 667 } 668 669 /* TCP Timer control structure */ 670 typedef struct tcpt_s { 671 pfv_t tcpt_pfv; /* The routine we are to call */ 672 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 673 } tcpt_t; 674 675 /* Host Specific Parameter structure */ 676 typedef struct tcp_hsp { 677 struct tcp_hsp *tcp_hsp_next; 678 in6_addr_t tcp_hsp_addr_v6; 679 in6_addr_t tcp_hsp_subnet_v6; 680 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 681 int32_t tcp_hsp_sendspace; 682 int32_t tcp_hsp_recvspace; 683 int32_t tcp_hsp_tstamp; 684 } tcp_hsp_t; 685 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 686 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 687 688 /* 689 * Functions called directly via squeue having a prototype of edesc_t. 690 */ 691 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 692 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 693 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 694 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 695 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 696 void tcp_input(void *arg, mblk_t *mp, void *arg2); 697 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 698 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 699 void tcp_output(void *arg, mblk_t *mp, void *arg2); 700 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 701 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 702 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 703 704 705 /* Prototype for TCP functions */ 706 static void tcp_random_init(void); 707 int tcp_random(void); 708 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 709 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 710 tcp_t *eager); 711 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 712 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 713 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 714 boolean_t user_specified); 715 static void tcp_closei_local(tcp_t *tcp); 716 static void tcp_close_detached(tcp_t *tcp); 717 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 718 mblk_t *idmp, mblk_t **defermp); 719 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 720 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 721 in_port_t dstport, uint_t srcid); 722 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 723 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 724 uint32_t scope_id); 725 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 726 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 727 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 728 static char *tcp_display(tcp_t *tcp, char *, char); 729 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 730 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 731 static void tcp_eager_unlink(tcp_t *tcp); 732 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 733 int unixerr); 734 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 735 int tlierr, int unixerr); 736 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 737 cred_t *cr); 738 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 739 char *value, caddr_t cp, cred_t *cr); 740 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 741 char *value, caddr_t cp, cred_t *cr); 742 static int tcp_tpistate(tcp_t *tcp); 743 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 744 int caller_holds_lock); 745 static void tcp_bind_hash_remove(tcp_t *tcp); 746 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 747 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 748 static void tcp_acceptor_hash_remove(tcp_t *tcp); 749 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 750 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 751 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 752 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 753 void tcp_g_q_setup(tcp_stack_t *); 754 void tcp_g_q_create(tcp_stack_t *); 755 void tcp_g_q_destroy(tcp_stack_t *); 756 static int tcp_header_init_ipv4(tcp_t *tcp); 757 static int tcp_header_init_ipv6(tcp_t *tcp); 758 int tcp_init(tcp_t *tcp, queue_t *q); 759 static int tcp_init_values(tcp_t *tcp); 760 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 761 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 762 t_scalar_t addr_length); 763 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 764 static void tcp_ip_notify(tcp_t *tcp); 765 static mblk_t *tcp_ire_mp(mblk_t *mp); 766 static void tcp_iss_init(tcp_t *tcp); 767 static void tcp_keepalive_killer(void *arg); 768 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 769 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 770 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 771 int *do_disconnectp, int *t_errorp, int *sys_errorp); 772 static boolean_t tcp_allow_connopt_set(int level, int name); 773 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 774 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 775 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 776 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 777 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 778 mblk_t *mblk); 779 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 780 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 781 uchar_t *ptr, uint_t len); 782 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 783 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 784 tcp_stack_t *); 785 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 786 caddr_t cp, cred_t *cr); 787 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 788 caddr_t cp, cred_t *cr); 789 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 790 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 791 caddr_t cp, cred_t *cr); 792 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 793 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 794 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 795 static void tcp_reinit(tcp_t *tcp); 796 static void tcp_reinit_values(tcp_t *tcp); 797 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 798 tcp_t *thisstream, cred_t *cr); 799 800 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 801 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 802 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 803 static void tcp_ss_rexmit(tcp_t *tcp); 804 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 805 static void tcp_process_options(tcp_t *, tcph_t *); 806 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 807 static void tcp_rsrv(queue_t *q); 808 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 809 static int tcp_snmp_state(tcp_t *tcp); 810 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 811 cred_t *cr); 812 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 813 cred_t *cr); 814 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 815 cred_t *cr); 816 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 817 cred_t *cr); 818 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 819 cred_t *cr); 820 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 821 caddr_t cp, cred_t *cr); 822 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 823 caddr_t cp, cred_t *cr); 824 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 825 cred_t *cr); 826 static void tcp_timer(void *arg); 827 static void tcp_timer_callback(void *); 828 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 829 boolean_t random); 830 static in_port_t tcp_get_next_priv_port(const tcp_t *); 831 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 832 void tcp_wput_accept(queue_t *q, mblk_t *mp); 833 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 834 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 835 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 836 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 837 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 838 const int num_sack_blk, int *usable, uint_t *snxt, 839 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 840 const int mdt_thres); 841 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 842 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 843 const int num_sack_blk, int *usable, uint_t *snxt, 844 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 845 const int mdt_thres); 846 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 847 int num_sack_blk); 848 static void tcp_wsrv(queue_t *q); 849 static int tcp_xmit_end(tcp_t *tcp); 850 static void tcp_ack_timer(void *arg); 851 static mblk_t *tcp_ack_mp(tcp_t *tcp); 852 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 853 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 854 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 855 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 856 uint32_t ack, int ctl); 857 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 858 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 859 static int setmaxps(queue_t *q, int maxpsz); 860 static void tcp_set_rto(tcp_t *, time_t); 861 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 862 boolean_t, boolean_t); 863 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 864 boolean_t ipsec_mctl); 865 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 866 char *opt, int optlen); 867 static int tcp_build_hdrs(queue_t *, tcp_t *); 868 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 869 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 870 tcph_t *tcph); 871 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 872 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 873 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 874 boolean_t tcp_reserved_port_check(in_port_t, tcp_stack_t *); 875 static tcp_t *tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *); 876 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 877 static mblk_t *tcp_mdt_info_mp(mblk_t *); 878 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 879 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 880 const boolean_t, const uint32_t, const uint32_t, 881 const uint32_t, const uint32_t, tcp_stack_t *); 882 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 883 const uint_t, const uint_t, boolean_t *); 884 static mblk_t *tcp_lso_info_mp(mblk_t *); 885 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 886 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 887 extern mblk_t *tcp_timermp_alloc(int); 888 extern void tcp_timermp_free(tcp_t *); 889 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 890 static void tcp_stop_lingering(tcp_t *tcp); 891 static void tcp_close_linger_timeout(void *arg); 892 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 893 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 894 static void tcp_stack_fini(netstackid_t stackid, void *arg); 895 static void *tcp_g_kstat_init(tcp_g_stat_t *); 896 static void tcp_g_kstat_fini(kstat_t *); 897 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 898 static void tcp_kstat_fini(netstackid_t, kstat_t *); 899 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 900 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 901 static int tcp_kstat_update(kstat_t *kp, int rw); 902 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 903 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 904 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 905 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 906 tcph_t *tcph, mblk_t *idmp); 907 static squeue_func_t tcp_squeue_switch(int); 908 909 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 910 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 911 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 912 static int tcp_close(queue_t *, int); 913 static int tcpclose_accept(queue_t *); 914 915 static void tcp_squeue_add(squeue_t *); 916 static boolean_t tcp_zcopy_check(tcp_t *); 917 static void tcp_zcopy_notify(tcp_t *); 918 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 919 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 920 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 921 922 extern void tcp_kssl_input(tcp_t *, mblk_t *); 923 924 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 925 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 926 927 /* 928 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 929 * 930 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 931 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 932 * (defined in tcp.h) needs to be filled in and passed into the kernel 933 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 934 * structure contains the four-tuple of a TCP connection and a range of TCP 935 * states (specified by ac_start and ac_end). The use of wildcard addresses 936 * and ports is allowed. Connections with a matching four tuple and a state 937 * within the specified range will be aborted. The valid states for the 938 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 939 * inclusive. 940 * 941 * An application which has its connection aborted by this ioctl will receive 942 * an error that is dependent on the connection state at the time of the abort. 943 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 944 * though a RST packet has been received. If the connection state is equal to 945 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 946 * and all resources associated with the connection will be freed. 947 */ 948 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 949 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 950 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 951 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 952 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 953 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 954 boolean_t, tcp_stack_t *); 955 956 static struct module_info tcp_rinfo = { 957 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 958 }; 959 960 static struct module_info tcp_winfo = { 961 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 962 }; 963 964 /* 965 * Entry points for TCP as a device. The normal case which supports 966 * the TCP functionality. 967 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 968 */ 969 struct qinit tcp_rinitv4 = { 970 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo 971 }; 972 973 struct qinit tcp_rinitv6 = { 974 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo 975 }; 976 977 struct qinit tcp_winit = { 978 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 979 }; 980 981 /* Initial entry point for TCP in socket mode. */ 982 struct qinit tcp_sock_winit = { 983 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 984 }; 985 986 /* 987 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 988 * an accept. Avoid allocating data structures since eager has already 989 * been created. 990 */ 991 struct qinit tcp_acceptor_rinit = { 992 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 993 }; 994 995 struct qinit tcp_acceptor_winit = { 996 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 997 }; 998 999 /* 1000 * Entry points for TCP loopback (read side only) 1001 * The open routine is only used for reopens, thus no need to 1002 * have a separate one for tcp_openv6. 1003 */ 1004 struct qinit tcp_loopback_rinit = { 1005 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0, 1006 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1007 }; 1008 1009 /* For AF_INET aka /dev/tcp */ 1010 struct streamtab tcpinfov4 = { 1011 &tcp_rinitv4, &tcp_winit 1012 }; 1013 1014 /* For AF_INET6 aka /dev/tcp6 */ 1015 struct streamtab tcpinfov6 = { 1016 &tcp_rinitv6, &tcp_winit 1017 }; 1018 1019 /* 1020 * Have to ensure that tcp_g_q_close is not done by an 1021 * interrupt thread. 1022 */ 1023 static taskq_t *tcp_taskq; 1024 1025 /* 1026 * TCP has a private interface for other kernel modules to reserve a 1027 * port range for them to use. Once reserved, TCP will not use any ports 1028 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1029 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1030 * has to be verified. 1031 * 1032 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1033 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1034 * range is [port a, port b] inclusive. And each port range is between 1035 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1036 * 1037 * Note that the default anonymous port range starts from 32768. There is 1038 * no port "collision" between that and the reserved port range. If there 1039 * is port collision (because the default smallest anonymous port is lowered 1040 * or some apps specifically bind to ports in the reserved port range), the 1041 * system may not be able to reserve a port range even there are enough 1042 * unbound ports as a reserved port range contains consecutive ports . 1043 */ 1044 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1045 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1046 #define TCP_SMALLEST_RESERVED_PORT 10240 1047 #define TCP_LARGEST_RESERVED_PORT 20480 1048 1049 /* Structure to represent those reserved port ranges. */ 1050 typedef struct tcp_rport_s { 1051 in_port_t lo_port; 1052 in_port_t hi_port; 1053 tcp_t **temp_tcp_array; 1054 } tcp_rport_t; 1055 1056 /* Setable only in /etc/system. Move to ndd? */ 1057 boolean_t tcp_icmp_source_quench = B_FALSE; 1058 1059 /* 1060 * Following assumes TPI alignment requirements stay along 32 bit 1061 * boundaries 1062 */ 1063 #define ROUNDUP32(x) \ 1064 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1065 1066 /* Template for response to info request. */ 1067 static struct T_info_ack tcp_g_t_info_ack = { 1068 T_INFO_ACK, /* PRIM_type */ 1069 0, /* TSDU_size */ 1070 T_INFINITE, /* ETSDU_size */ 1071 T_INVALID, /* CDATA_size */ 1072 T_INVALID, /* DDATA_size */ 1073 sizeof (sin_t), /* ADDR_size */ 1074 0, /* OPT_size - not initialized here */ 1075 TIDUSZ, /* TIDU_size */ 1076 T_COTS_ORD, /* SERV_type */ 1077 TCPS_IDLE, /* CURRENT_state */ 1078 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1079 }; 1080 1081 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1082 T_INFO_ACK, /* PRIM_type */ 1083 0, /* TSDU_size */ 1084 T_INFINITE, /* ETSDU_size */ 1085 T_INVALID, /* CDATA_size */ 1086 T_INVALID, /* DDATA_size */ 1087 sizeof (sin6_t), /* ADDR_size */ 1088 0, /* OPT_size - not initialized here */ 1089 TIDUSZ, /* TIDU_size */ 1090 T_COTS_ORD, /* SERV_type */ 1091 TCPS_IDLE, /* CURRENT_state */ 1092 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1093 }; 1094 1095 #define MS 1L 1096 #define SECONDS (1000 * MS) 1097 #define MINUTES (60 * SECONDS) 1098 #define HOURS (60 * MINUTES) 1099 #define DAYS (24 * HOURS) 1100 1101 #define PARAM_MAX (~(uint32_t)0) 1102 1103 /* Max size IP datagram is 64k - 1 */ 1104 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1105 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1106 /* Max of the above */ 1107 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1108 1109 /* Largest TCP port number */ 1110 #define TCP_MAX_PORT (64 * 1024 - 1) 1111 1112 /* 1113 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1114 * layer header. It has to be a multiple of 4. 1115 */ 1116 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1117 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1118 1119 /* 1120 * All of these are alterable, within the min/max values given, at run time. 1121 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1122 * per the TCP spec. 1123 */ 1124 /* BEGIN CSTYLED */ 1125 static tcpparam_t lcl_tcp_param_arr[] = { 1126 /*min max value name */ 1127 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1128 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1129 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1130 { 1, 1024, 1, "tcp_conn_req_min" }, 1131 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1132 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1133 { 0, 10, 0, "tcp_debug" }, 1134 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1135 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1136 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1137 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1138 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1139 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1140 { 1, 255, 64, "tcp_ipv4_ttl"}, 1141 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1142 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1143 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1144 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1145 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1146 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1147 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1148 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1149 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1150 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1151 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1152 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1153 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1154 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1155 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1156 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1157 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1158 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1159 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1160 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1161 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1162 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1163 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1164 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1165 /* 1166 * Question: What default value should I set for tcp_strong_iss? 1167 */ 1168 { 0, 2, 1, "tcp_strong_iss"}, 1169 { 0, 65536, 20, "tcp_rtt_updates"}, 1170 { 0, 1, 1, "tcp_wscale_always"}, 1171 { 0, 1, 0, "tcp_tstamp_always"}, 1172 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1173 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1174 { 0, 16, 2, "tcp_deferred_acks_max"}, 1175 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1176 { 1, 4, 4, "tcp_slow_start_initial"}, 1177 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1178 { 0, 2, 2, "tcp_sack_permitted"}, 1179 { 0, 1, 0, "tcp_trace"}, 1180 { 0, 1, 1, "tcp_compression_enabled"}, 1181 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1182 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1183 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1184 { 0, 1, 0, "tcp_rev_src_routes"}, 1185 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1186 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1187 { 0, 16, 8, "tcp_local_dacks_max"}, 1188 { 0, 2, 1, "tcp_ecn_permitted"}, 1189 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1190 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1191 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1192 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1193 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1194 }; 1195 /* END CSTYLED */ 1196 1197 /* 1198 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1199 * each header fragment in the header buffer. Each parameter value has 1200 * to be a multiple of 4 (32-bit aligned). 1201 */ 1202 static tcpparam_t lcl_tcp_mdt_head_param = 1203 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1204 static tcpparam_t lcl_tcp_mdt_tail_param = 1205 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1206 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1207 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1208 1209 /* 1210 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1211 * the maximum number of payload buffers associated per Multidata. 1212 */ 1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1214 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1215 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1216 1217 /* Round up the value to the nearest mss. */ 1218 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1219 1220 /* 1221 * Set ECN capable transport (ECT) code point in IP header. 1222 * 1223 * Note that there are 2 ECT code points '01' and '10', which are called 1224 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1225 * point ECT(0) for TCP as described in RFC 2481. 1226 */ 1227 #define SET_ECT(tcp, iph) \ 1228 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1229 /* We need to clear the code point first. */ \ 1230 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1231 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1232 } else { \ 1233 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1234 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1235 } 1236 1237 /* 1238 * The format argument to pass to tcp_display(). 1239 * DISP_PORT_ONLY means that the returned string has only port info. 1240 * DISP_ADDR_AND_PORT means that the returned string also contains the 1241 * remote and local IP address. 1242 */ 1243 #define DISP_PORT_ONLY 1 1244 #define DISP_ADDR_AND_PORT 2 1245 1246 #define NDD_TOO_QUICK_MSG \ 1247 "ndd get info rate too high for non-privileged users, try again " \ 1248 "later.\n" 1249 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1250 1251 #define IS_VMLOANED_MBLK(mp) \ 1252 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1253 1254 1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1256 boolean_t tcp_mdt_chain = B_TRUE; 1257 1258 /* 1259 * MDT threshold in the form of effective send MSS multiplier; we take 1260 * the MDT path if the amount of unsent data exceeds the threshold value 1261 * (default threshold is 1*SMSS). 1262 */ 1263 uint_t tcp_mdt_smss_threshold = 1; 1264 1265 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1266 1267 /* 1268 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1269 * tunable settable via NDD. Otherwise, the per-connection behavior is 1270 * determined dynamically during tcp_adapt_ire(), which is the default. 1271 */ 1272 boolean_t tcp_static_maxpsz = B_FALSE; 1273 1274 /* Setable in /etc/system */ 1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1276 uint32_t tcp_random_anon_port = 1; 1277 1278 /* 1279 * To reach to an eager in Q0 which can be dropped due to an incoming 1280 * new SYN request when Q0 is full, a new doubly linked list is 1281 * introduced. This list allows to select an eager from Q0 in O(1) time. 1282 * This is needed to avoid spending too much time walking through the 1283 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1284 * this new list has to be a member of Q0. 1285 * This list is headed by listener's tcp_t. When the list is empty, 1286 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1287 * of listener's tcp_t point to listener's tcp_t itself. 1288 * 1289 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1290 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1291 * These macros do not affect the eager's membership to Q0. 1292 */ 1293 1294 1295 #define MAKE_DROPPABLE(listener, eager) \ 1296 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1297 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1298 = (eager); \ 1299 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1300 (eager)->tcp_eager_next_drop_q0 = \ 1301 (listener)->tcp_eager_next_drop_q0; \ 1302 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1303 } 1304 1305 #define MAKE_UNDROPPABLE(eager) \ 1306 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1307 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1308 = (eager)->tcp_eager_prev_drop_q0; \ 1309 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1310 = (eager)->tcp_eager_next_drop_q0; \ 1311 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1312 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1313 } 1314 1315 /* 1316 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1317 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1318 * data, TCP will not respond with an ACK. RFC 793 requires that 1319 * TCP responds with an ACK for such a bogus ACK. By not following 1320 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1321 * an attacker successfully spoofs an acceptable segment to our 1322 * peer; or when our peer is "confused." 1323 */ 1324 uint32_t tcp_drop_ack_unsent_cnt = 10; 1325 1326 /* 1327 * Hook functions to enable cluster networking 1328 * On non-clustered systems these vectors must always be NULL. 1329 */ 1330 1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1332 uint8_t *laddrp, in_port_t lport) = NULL; 1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1334 uint8_t *laddrp, in_port_t lport) = NULL; 1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1336 uint8_t *laddrp, in_port_t lport, 1337 uint8_t *faddrp, in_port_t fport) = NULL; 1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1339 uint8_t *laddrp, in_port_t lport, 1340 uint8_t *faddrp, in_port_t fport) = NULL; 1341 1342 /* 1343 * The following are defined in ip.c 1344 */ 1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1346 uint8_t *laddrp); 1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1348 uint8_t *laddrp, uint8_t *faddrp); 1349 1350 #define CL_INET_CONNECT(tcp) { \ 1351 if (cl_inet_connect != NULL) { \ 1352 /* \ 1353 * Running in cluster mode - register active connection \ 1354 * information \ 1355 */ \ 1356 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1357 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1358 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1359 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1360 (in_port_t)(tcp)->tcp_lport, \ 1361 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1362 (in_port_t)(tcp)->tcp_fport); \ 1363 } \ 1364 } else { \ 1365 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1366 &(tcp)->tcp_ip6h->ip6_src)) {\ 1367 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1368 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1369 (in_port_t)(tcp)->tcp_lport, \ 1370 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1371 (in_port_t)(tcp)->tcp_fport); \ 1372 } \ 1373 } \ 1374 } \ 1375 } 1376 1377 #define CL_INET_DISCONNECT(tcp) { \ 1378 if (cl_inet_disconnect != NULL) { \ 1379 /* \ 1380 * Running in cluster mode - deregister active \ 1381 * connection information \ 1382 */ \ 1383 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1384 if ((tcp)->tcp_ip_src != 0) { \ 1385 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1386 AF_INET, \ 1387 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1388 (in_port_t)(tcp)->tcp_lport, \ 1389 (uint8_t *) \ 1390 (&((tcp)->tcp_ipha->ipha_dst)),\ 1391 (in_port_t)(tcp)->tcp_fport); \ 1392 } \ 1393 } else { \ 1394 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1395 &(tcp)->tcp_ip_src_v6)) { \ 1396 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1397 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1398 (in_port_t)(tcp)->tcp_lport, \ 1399 (uint8_t *) \ 1400 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1401 (in_port_t)(tcp)->tcp_fport); \ 1402 } \ 1403 } \ 1404 } \ 1405 } 1406 1407 /* 1408 * Cluster networking hook for traversing current connection list. 1409 * This routine is used to extract the current list of live connections 1410 * which must continue to to be dispatched to this node. 1411 */ 1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1413 1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1415 void *arg, tcp_stack_t *tcps); 1416 1417 /* 1418 * Figure out the value of window scale opton. Note that the rwnd is 1419 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1420 * We cannot find the scale value and then do a round up of tcp_rwnd 1421 * because the scale value may not be correct after that. 1422 * 1423 * Set the compiler flag to make this function inline. 1424 */ 1425 static void 1426 tcp_set_ws_value(tcp_t *tcp) 1427 { 1428 int i; 1429 uint32_t rwnd = tcp->tcp_rwnd; 1430 1431 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1432 i++, rwnd >>= 1) 1433 ; 1434 tcp->tcp_rcv_ws = i; 1435 } 1436 1437 /* 1438 * Remove a connection from the list of detached TIME_WAIT connections. 1439 * It returns B_FALSE if it can't remove the connection from the list 1440 * as the connection has already been removed from the list due to an 1441 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1442 */ 1443 static boolean_t 1444 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1445 { 1446 boolean_t locked = B_FALSE; 1447 1448 if (tcp_time_wait == NULL) { 1449 tcp_time_wait = *((tcp_squeue_priv_t **) 1450 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1451 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1452 locked = B_TRUE; 1453 } else { 1454 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1455 } 1456 1457 if (tcp->tcp_time_wait_expire == 0) { 1458 ASSERT(tcp->tcp_time_wait_next == NULL); 1459 ASSERT(tcp->tcp_time_wait_prev == NULL); 1460 if (locked) 1461 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1462 return (B_FALSE); 1463 } 1464 ASSERT(TCP_IS_DETACHED(tcp)); 1465 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1466 1467 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1468 ASSERT(tcp->tcp_time_wait_prev == NULL); 1469 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1470 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1471 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1472 NULL; 1473 } else { 1474 tcp_time_wait->tcp_time_wait_tail = NULL; 1475 } 1476 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1477 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1478 ASSERT(tcp->tcp_time_wait_next == NULL); 1479 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1480 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1481 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1482 } else { 1483 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1484 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1485 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1486 tcp->tcp_time_wait_next; 1487 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1488 tcp->tcp_time_wait_prev; 1489 } 1490 tcp->tcp_time_wait_next = NULL; 1491 tcp->tcp_time_wait_prev = NULL; 1492 tcp->tcp_time_wait_expire = 0; 1493 1494 if (locked) 1495 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1496 return (B_TRUE); 1497 } 1498 1499 /* 1500 * Add a connection to the list of detached TIME_WAIT connections 1501 * and set its time to expire. 1502 */ 1503 static void 1504 tcp_time_wait_append(tcp_t *tcp) 1505 { 1506 tcp_stack_t *tcps = tcp->tcp_tcps; 1507 tcp_squeue_priv_t *tcp_time_wait = 1508 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1509 SQPRIVATE_TCP)); 1510 1511 tcp_timers_stop(tcp); 1512 1513 /* Freed above */ 1514 ASSERT(tcp->tcp_timer_tid == 0); 1515 ASSERT(tcp->tcp_ack_tid == 0); 1516 1517 /* must have happened at the time of detaching the tcp */ 1518 ASSERT(tcp->tcp_ptpahn == NULL); 1519 ASSERT(tcp->tcp_flow_stopped == 0); 1520 ASSERT(tcp->tcp_time_wait_next == NULL); 1521 ASSERT(tcp->tcp_time_wait_prev == NULL); 1522 ASSERT(tcp->tcp_time_wait_expire == NULL); 1523 ASSERT(tcp->tcp_listener == NULL); 1524 1525 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1526 /* 1527 * The value computed below in tcp->tcp_time_wait_expire may 1528 * appear negative or wrap around. That is ok since our 1529 * interest is only in the difference between the current lbolt 1530 * value and tcp->tcp_time_wait_expire. But the value should not 1531 * be zero, since it means the tcp is not in the TIME_WAIT list. 1532 * The corresponding comparison in tcp_time_wait_collector() uses 1533 * modular arithmetic. 1534 */ 1535 tcp->tcp_time_wait_expire += 1536 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1537 if (tcp->tcp_time_wait_expire == 0) 1538 tcp->tcp_time_wait_expire = 1; 1539 1540 ASSERT(TCP_IS_DETACHED(tcp)); 1541 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1542 ASSERT(tcp->tcp_time_wait_next == NULL); 1543 ASSERT(tcp->tcp_time_wait_prev == NULL); 1544 TCP_DBGSTAT(tcps, tcp_time_wait); 1545 1546 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1547 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1548 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1549 tcp_time_wait->tcp_time_wait_head = tcp; 1550 } else { 1551 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1552 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1553 TCPS_TIME_WAIT); 1554 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1555 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1556 } 1557 tcp_time_wait->tcp_time_wait_tail = tcp; 1558 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1559 } 1560 1561 /* ARGSUSED */ 1562 void 1563 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1564 { 1565 conn_t *connp = (conn_t *)arg; 1566 tcp_t *tcp = connp->conn_tcp; 1567 tcp_stack_t *tcps = tcp->tcp_tcps; 1568 1569 ASSERT(tcp != NULL); 1570 if (tcp->tcp_state == TCPS_CLOSED) { 1571 return; 1572 } 1573 1574 ASSERT((tcp->tcp_family == AF_INET && 1575 tcp->tcp_ipversion == IPV4_VERSION) || 1576 (tcp->tcp_family == AF_INET6 && 1577 (tcp->tcp_ipversion == IPV4_VERSION || 1578 tcp->tcp_ipversion == IPV6_VERSION))); 1579 ASSERT(!tcp->tcp_listener); 1580 1581 TCP_STAT(tcps, tcp_time_wait_reap); 1582 ASSERT(TCP_IS_DETACHED(tcp)); 1583 1584 /* 1585 * Because they have no upstream client to rebind or tcp_close() 1586 * them later, we axe the connection here and now. 1587 */ 1588 tcp_close_detached(tcp); 1589 } 1590 1591 /* 1592 * Remove cached/latched IPsec references. 1593 */ 1594 void 1595 tcp_ipsec_cleanup(tcp_t *tcp) 1596 { 1597 conn_t *connp = tcp->tcp_connp; 1598 1599 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1600 1601 if (connp->conn_latch != NULL) { 1602 IPLATCH_REFRELE(connp->conn_latch, 1603 connp->conn_netstack); 1604 connp->conn_latch = NULL; 1605 } 1606 if (connp->conn_policy != NULL) { 1607 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1608 connp->conn_policy = NULL; 1609 } 1610 } 1611 1612 /* 1613 * Cleaup before placing on free list. 1614 * Disassociate from the netstack/tcp_stack_t since the freelist 1615 * is per squeue and not per netstack. 1616 */ 1617 void 1618 tcp_cleanup(tcp_t *tcp) 1619 { 1620 mblk_t *mp; 1621 char *tcp_iphc; 1622 int tcp_iphc_len; 1623 int tcp_hdr_grown; 1624 tcp_sack_info_t *tcp_sack_info; 1625 conn_t *connp = tcp->tcp_connp; 1626 tcp_stack_t *tcps = tcp->tcp_tcps; 1627 netstack_t *ns = tcps->tcps_netstack; 1628 1629 tcp_bind_hash_remove(tcp); 1630 1631 /* Cleanup that which needs the netstack first */ 1632 tcp_ipsec_cleanup(tcp); 1633 1634 tcp_free(tcp); 1635 1636 /* Release any SSL context */ 1637 if (tcp->tcp_kssl_ent != NULL) { 1638 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1639 tcp->tcp_kssl_ent = NULL; 1640 } 1641 1642 if (tcp->tcp_kssl_ctx != NULL) { 1643 kssl_release_ctx(tcp->tcp_kssl_ctx); 1644 tcp->tcp_kssl_ctx = NULL; 1645 } 1646 tcp->tcp_kssl_pending = B_FALSE; 1647 1648 conn_delete_ire(connp, NULL); 1649 1650 /* 1651 * Since we will bzero the entire structure, we need to 1652 * remove it and reinsert it in global hash list. We 1653 * know the walkers can't get to this conn because we 1654 * had set CONDEMNED flag earlier and checked reference 1655 * under conn_lock so walker won't pick it and when we 1656 * go the ipcl_globalhash_remove() below, no walker 1657 * can get to it. 1658 */ 1659 ipcl_globalhash_remove(connp); 1660 1661 /* 1662 * Now it is safe to decrement the reference counts. 1663 * This might be the last reference on the netstack and TCPS 1664 * in which case it will cause the tcp_g_q_close and 1665 * the freeing of the IP Instance. 1666 */ 1667 connp->conn_netstack = NULL; 1668 netstack_rele(ns); 1669 ASSERT(tcps != NULL); 1670 tcp->tcp_tcps = NULL; 1671 TCPS_REFRELE(tcps); 1672 1673 /* Save some state */ 1674 mp = tcp->tcp_timercache; 1675 1676 tcp_sack_info = tcp->tcp_sack_info; 1677 tcp_iphc = tcp->tcp_iphc; 1678 tcp_iphc_len = tcp->tcp_iphc_len; 1679 tcp_hdr_grown = tcp->tcp_hdr_grown; 1680 1681 if (connp->conn_cred != NULL) { 1682 crfree(connp->conn_cred); 1683 connp->conn_cred = NULL; 1684 } 1685 if (connp->conn_peercred != NULL) { 1686 crfree(connp->conn_peercred); 1687 connp->conn_peercred = NULL; 1688 } 1689 ipcl_conn_cleanup(connp); 1690 connp->conn_flags = IPCL_TCPCONN; 1691 bzero(tcp, sizeof (tcp_t)); 1692 1693 /* restore the state */ 1694 tcp->tcp_timercache = mp; 1695 1696 tcp->tcp_sack_info = tcp_sack_info; 1697 tcp->tcp_iphc = tcp_iphc; 1698 tcp->tcp_iphc_len = tcp_iphc_len; 1699 tcp->tcp_hdr_grown = tcp_hdr_grown; 1700 1701 tcp->tcp_connp = connp; 1702 1703 ASSERT(connp->conn_tcp == tcp); 1704 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1705 connp->conn_state_flags = CONN_INCIPIENT; 1706 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1707 ASSERT(connp->conn_ref == 1); 1708 } 1709 1710 /* 1711 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1712 * is done forwards from the head. 1713 * This walks all stack instances since 1714 * tcp_time_wait remains global across all stacks. 1715 */ 1716 /* ARGSUSED */ 1717 void 1718 tcp_time_wait_collector(void *arg) 1719 { 1720 tcp_t *tcp; 1721 clock_t now; 1722 mblk_t *mp; 1723 conn_t *connp; 1724 kmutex_t *lock; 1725 boolean_t removed; 1726 1727 squeue_t *sqp = (squeue_t *)arg; 1728 tcp_squeue_priv_t *tcp_time_wait = 1729 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1730 1731 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1732 tcp_time_wait->tcp_time_wait_tid = 0; 1733 1734 if (tcp_time_wait->tcp_free_list != NULL && 1735 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1736 TCP_G_STAT(tcp_freelist_cleanup); 1737 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1738 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1739 tcp->tcp_time_wait_next = NULL; 1740 tcp_time_wait->tcp_free_list_cnt--; 1741 ASSERT(tcp->tcp_tcps == NULL); 1742 CONN_DEC_REF(tcp->tcp_connp); 1743 } 1744 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1745 } 1746 1747 /* 1748 * In order to reap time waits reliably, we should use a 1749 * source of time that is not adjustable by the user -- hence 1750 * the call to ddi_get_lbolt(). 1751 */ 1752 now = ddi_get_lbolt(); 1753 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1754 /* 1755 * Compare times using modular arithmetic, since 1756 * lbolt can wrapover. 1757 */ 1758 if ((now - tcp->tcp_time_wait_expire) < 0) { 1759 break; 1760 } 1761 1762 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1763 ASSERT(removed); 1764 1765 connp = tcp->tcp_connp; 1766 ASSERT(connp->conn_fanout != NULL); 1767 lock = &connp->conn_fanout->connf_lock; 1768 /* 1769 * This is essentially a TW reclaim fast path optimization for 1770 * performance where the timewait collector checks under the 1771 * fanout lock (so that no one else can get access to the 1772 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1773 * the classifier hash list. If ref count is indeed 2, we can 1774 * just remove the conn under the fanout lock and avoid 1775 * cleaning up the conn under the squeue, provided that 1776 * clustering callbacks are not enabled. If clustering is 1777 * enabled, we need to make the clustering callback before 1778 * setting the CONDEMNED flag and after dropping all locks and 1779 * so we forego this optimization and fall back to the slow 1780 * path. Also please see the comments in tcp_closei_local 1781 * regarding the refcnt logic. 1782 * 1783 * Since we are holding the tcp_time_wait_lock, its better 1784 * not to block on the fanout_lock because other connections 1785 * can't add themselves to time_wait list. So we do a 1786 * tryenter instead of mutex_enter. 1787 */ 1788 if (mutex_tryenter(lock)) { 1789 mutex_enter(&connp->conn_lock); 1790 if ((connp->conn_ref == 2) && 1791 (cl_inet_disconnect == NULL)) { 1792 ipcl_hash_remove_locked(connp, 1793 connp->conn_fanout); 1794 /* 1795 * Set the CONDEMNED flag now itself so that 1796 * the refcnt cannot increase due to any 1797 * walker. But we have still not cleaned up 1798 * conn_ire_cache. This is still ok since 1799 * we are going to clean it up in tcp_cleanup 1800 * immediately and any interface unplumb 1801 * thread will wait till the ire is blown away 1802 */ 1803 connp->conn_state_flags |= CONN_CONDEMNED; 1804 mutex_exit(lock); 1805 mutex_exit(&connp->conn_lock); 1806 if (tcp_time_wait->tcp_free_list_cnt < 1807 tcp_free_list_max_cnt) { 1808 /* Add to head of tcp_free_list */ 1809 mutex_exit( 1810 &tcp_time_wait->tcp_time_wait_lock); 1811 tcp_cleanup(tcp); 1812 ASSERT(connp->conn_latch == NULL); 1813 ASSERT(connp->conn_policy == NULL); 1814 ASSERT(tcp->tcp_tcps == NULL); 1815 ASSERT(connp->conn_netstack == NULL); 1816 1817 mutex_enter( 1818 &tcp_time_wait->tcp_time_wait_lock); 1819 tcp->tcp_time_wait_next = 1820 tcp_time_wait->tcp_free_list; 1821 tcp_time_wait->tcp_free_list = tcp; 1822 tcp_time_wait->tcp_free_list_cnt++; 1823 continue; 1824 } else { 1825 /* Do not add to tcp_free_list */ 1826 mutex_exit( 1827 &tcp_time_wait->tcp_time_wait_lock); 1828 tcp_bind_hash_remove(tcp); 1829 conn_delete_ire(tcp->tcp_connp, NULL); 1830 tcp_ipsec_cleanup(tcp); 1831 CONN_DEC_REF(tcp->tcp_connp); 1832 } 1833 } else { 1834 CONN_INC_REF_LOCKED(connp); 1835 mutex_exit(lock); 1836 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1837 mutex_exit(&connp->conn_lock); 1838 /* 1839 * We can reuse the closemp here since conn has 1840 * detached (otherwise we wouldn't even be in 1841 * time_wait list). tcp_closemp_used can safely 1842 * be changed without taking a lock as no other 1843 * thread can concurrently access it at this 1844 * point in the connection lifecycle. 1845 */ 1846 1847 if (tcp->tcp_closemp.b_prev == NULL) 1848 tcp->tcp_closemp_used = B_TRUE; 1849 else 1850 cmn_err(CE_PANIC, 1851 "tcp_timewait_collector: " 1852 "concurrent use of tcp_closemp: " 1853 "connp %p tcp %p\n", (void *)connp, 1854 (void *)tcp); 1855 1856 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1857 mp = &tcp->tcp_closemp; 1858 squeue_fill(connp->conn_sqp, mp, 1859 tcp_timewait_output, connp, 1860 SQTAG_TCP_TIMEWAIT); 1861 } 1862 } else { 1863 mutex_enter(&connp->conn_lock); 1864 CONN_INC_REF_LOCKED(connp); 1865 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1866 mutex_exit(&connp->conn_lock); 1867 /* 1868 * We can reuse the closemp here since conn has 1869 * detached (otherwise we wouldn't even be in 1870 * time_wait list). tcp_closemp_used can safely 1871 * be changed without taking a lock as no other 1872 * thread can concurrently access it at this 1873 * point in the connection lifecycle. 1874 */ 1875 1876 if (tcp->tcp_closemp.b_prev == NULL) 1877 tcp->tcp_closemp_used = B_TRUE; 1878 else 1879 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1880 "concurrent use of tcp_closemp: " 1881 "connp %p tcp %p\n", (void *)connp, 1882 (void *)tcp); 1883 1884 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1885 mp = &tcp->tcp_closemp; 1886 squeue_fill(connp->conn_sqp, mp, 1887 tcp_timewait_output, connp, 0); 1888 } 1889 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1890 } 1891 1892 if (tcp_time_wait->tcp_free_list != NULL) 1893 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1894 1895 tcp_time_wait->tcp_time_wait_tid = 1896 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1897 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1898 } 1899 /* 1900 * Reply to a clients T_CONN_RES TPI message. This function 1901 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1902 * on the acceptor STREAM and processed in tcp_wput_accept(). 1903 * Read the block comment on top of tcp_conn_request(). 1904 */ 1905 static void 1906 tcp_accept(tcp_t *listener, mblk_t *mp) 1907 { 1908 tcp_t *acceptor; 1909 tcp_t *eager; 1910 tcp_t *tcp; 1911 struct T_conn_res *tcr; 1912 t_uscalar_t acceptor_id; 1913 t_scalar_t seqnum; 1914 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1915 mblk_t *ok_mp; 1916 mblk_t *mp1; 1917 tcp_stack_t *tcps = listener->tcp_tcps; 1918 1919 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1920 tcp_err_ack(listener, mp, TPROTO, 0); 1921 return; 1922 } 1923 tcr = (struct T_conn_res *)mp->b_rptr; 1924 1925 /* 1926 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1927 * read side queue of the streams device underneath us i.e. the 1928 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1929 * look it up in the queue_hash. Under LP64 it sends down the 1930 * minor_t of the accepting endpoint. 1931 * 1932 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1933 * fanout hash lock is held. 1934 * This prevents any thread from entering the acceptor queue from 1935 * below (since it has not been hard bound yet i.e. any inbound 1936 * packets will arrive on the listener or default tcp queue and 1937 * go through tcp_lookup). 1938 * The CONN_INC_REF will prevent the acceptor from closing. 1939 * 1940 * XXX It is still possible for a tli application to send down data 1941 * on the accepting stream while another thread calls t_accept. 1942 * This should not be a problem for well-behaved applications since 1943 * the T_OK_ACK is sent after the queue swapping is completed. 1944 * 1945 * If the accepting fd is the same as the listening fd, avoid 1946 * queue hash lookup since that will return an eager listener in a 1947 * already established state. 1948 */ 1949 acceptor_id = tcr->ACCEPTOR_id; 1950 mutex_enter(&listener->tcp_eager_lock); 1951 if (listener->tcp_acceptor_id == acceptor_id) { 1952 eager = listener->tcp_eager_next_q; 1953 /* only count how many T_CONN_INDs so don't count q0 */ 1954 if ((listener->tcp_conn_req_cnt_q != 1) || 1955 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1956 mutex_exit(&listener->tcp_eager_lock); 1957 tcp_err_ack(listener, mp, TBADF, 0); 1958 return; 1959 } 1960 if (listener->tcp_conn_req_cnt_q0 != 0) { 1961 /* Throw away all the eagers on q0. */ 1962 tcp_eager_cleanup(listener, 1); 1963 } 1964 if (listener->tcp_syn_defense) { 1965 listener->tcp_syn_defense = B_FALSE; 1966 if (listener->tcp_ip_addr_cache != NULL) { 1967 kmem_free(listener->tcp_ip_addr_cache, 1968 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1969 listener->tcp_ip_addr_cache = NULL; 1970 } 1971 } 1972 /* 1973 * Transfer tcp_conn_req_max to the eager so that when 1974 * a disconnect occurs we can revert the endpoint to the 1975 * listen state. 1976 */ 1977 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1978 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1979 /* 1980 * Get a reference on the acceptor just like the 1981 * tcp_acceptor_hash_lookup below. 1982 */ 1983 acceptor = listener; 1984 CONN_INC_REF(acceptor->tcp_connp); 1985 } else { 1986 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1987 if (acceptor == NULL) { 1988 if (listener->tcp_debug) { 1989 (void) strlog(TCP_MOD_ID, 0, 1, 1990 SL_ERROR|SL_TRACE, 1991 "tcp_accept: did not find acceptor 0x%x\n", 1992 acceptor_id); 1993 } 1994 mutex_exit(&listener->tcp_eager_lock); 1995 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1996 return; 1997 } 1998 /* 1999 * Verify acceptor state. The acceptable states for an acceptor 2000 * include TCPS_IDLE and TCPS_BOUND. 2001 */ 2002 switch (acceptor->tcp_state) { 2003 case TCPS_IDLE: 2004 /* FALLTHRU */ 2005 case TCPS_BOUND: 2006 break; 2007 default: 2008 CONN_DEC_REF(acceptor->tcp_connp); 2009 mutex_exit(&listener->tcp_eager_lock); 2010 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2011 return; 2012 } 2013 } 2014 2015 /* The listener must be in TCPS_LISTEN */ 2016 if (listener->tcp_state != TCPS_LISTEN) { 2017 CONN_DEC_REF(acceptor->tcp_connp); 2018 mutex_exit(&listener->tcp_eager_lock); 2019 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2020 return; 2021 } 2022 2023 /* 2024 * Rendezvous with an eager connection request packet hanging off 2025 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2026 * tcp structure when the connection packet arrived in 2027 * tcp_conn_request(). 2028 */ 2029 seqnum = tcr->SEQ_number; 2030 eager = listener; 2031 do { 2032 eager = eager->tcp_eager_next_q; 2033 if (eager == NULL) { 2034 CONN_DEC_REF(acceptor->tcp_connp); 2035 mutex_exit(&listener->tcp_eager_lock); 2036 tcp_err_ack(listener, mp, TBADSEQ, 0); 2037 return; 2038 } 2039 } while (eager->tcp_conn_req_seqnum != seqnum); 2040 mutex_exit(&listener->tcp_eager_lock); 2041 2042 /* 2043 * At this point, both acceptor and listener have 2 ref 2044 * that they begin with. Acceptor has one additional ref 2045 * we placed in lookup while listener has 3 additional 2046 * ref for being behind the squeue (tcp_accept() is 2047 * done on listener's squeue); being in classifier hash; 2048 * and eager's ref on listener. 2049 */ 2050 ASSERT(listener->tcp_connp->conn_ref >= 5); 2051 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2052 2053 /* 2054 * The eager at this point is set in its own squeue and 2055 * could easily have been killed (tcp_accept_finish will 2056 * deal with that) because of a TH_RST so we can only 2057 * ASSERT for a single ref. 2058 */ 2059 ASSERT(eager->tcp_connp->conn_ref >= 1); 2060 2061 /* Pre allocate the stroptions mblk also */ 2062 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2063 if (opt_mp == NULL) { 2064 CONN_DEC_REF(acceptor->tcp_connp); 2065 CONN_DEC_REF(eager->tcp_connp); 2066 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2067 return; 2068 } 2069 DB_TYPE(opt_mp) = M_SETOPTS; 2070 opt_mp->b_wptr += sizeof (struct stroptions); 2071 2072 /* 2073 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2074 * from listener to acceptor. The message is chained on opt_mp 2075 * which will be sent onto eager's squeue. 2076 */ 2077 if (listener->tcp_bound_if != 0) { 2078 /* allocate optmgmt req */ 2079 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2080 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2081 sizeof (int)); 2082 if (mp1 != NULL) 2083 linkb(opt_mp, mp1); 2084 } 2085 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2086 uint_t on = 1; 2087 2088 /* allocate optmgmt req */ 2089 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2090 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2091 if (mp1 != NULL) 2092 linkb(opt_mp, mp1); 2093 } 2094 2095 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2096 if ((mp1 = copymsg(mp)) == NULL) { 2097 CONN_DEC_REF(acceptor->tcp_connp); 2098 CONN_DEC_REF(eager->tcp_connp); 2099 freemsg(opt_mp); 2100 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2101 return; 2102 } 2103 2104 tcr = (struct T_conn_res *)mp1->b_rptr; 2105 2106 /* 2107 * This is an expanded version of mi_tpi_ok_ack_alloc() 2108 * which allocates a larger mblk and appends the new 2109 * local address to the ok_ack. The address is copied by 2110 * soaccept() for getsockname(). 2111 */ 2112 { 2113 int extra; 2114 2115 extra = (eager->tcp_family == AF_INET) ? 2116 sizeof (sin_t) : sizeof (sin6_t); 2117 2118 /* 2119 * Try to re-use mp, if possible. Otherwise, allocate 2120 * an mblk and return it as ok_mp. In any case, mp 2121 * is no longer usable upon return. 2122 */ 2123 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2124 CONN_DEC_REF(acceptor->tcp_connp); 2125 CONN_DEC_REF(eager->tcp_connp); 2126 freemsg(opt_mp); 2127 /* Original mp has been freed by now, so use mp1 */ 2128 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2129 return; 2130 } 2131 2132 mp = NULL; /* We should never use mp after this point */ 2133 2134 switch (extra) { 2135 case sizeof (sin_t): { 2136 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2137 2138 ok_mp->b_wptr += extra; 2139 sin->sin_family = AF_INET; 2140 sin->sin_port = eager->tcp_lport; 2141 sin->sin_addr.s_addr = 2142 eager->tcp_ipha->ipha_src; 2143 break; 2144 } 2145 case sizeof (sin6_t): { 2146 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2147 2148 ok_mp->b_wptr += extra; 2149 sin6->sin6_family = AF_INET6; 2150 sin6->sin6_port = eager->tcp_lport; 2151 if (eager->tcp_ipversion == IPV4_VERSION) { 2152 sin6->sin6_flowinfo = 0; 2153 IN6_IPADDR_TO_V4MAPPED( 2154 eager->tcp_ipha->ipha_src, 2155 &sin6->sin6_addr); 2156 } else { 2157 ASSERT(eager->tcp_ip6h != NULL); 2158 sin6->sin6_flowinfo = 2159 eager->tcp_ip6h->ip6_vcf & 2160 ~IPV6_VERS_AND_FLOW_MASK; 2161 sin6->sin6_addr = 2162 eager->tcp_ip6h->ip6_src; 2163 } 2164 sin6->sin6_scope_id = 0; 2165 sin6->__sin6_src_id = 0; 2166 break; 2167 } 2168 default: 2169 break; 2170 } 2171 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2172 } 2173 2174 /* 2175 * If there are no options we know that the T_CONN_RES will 2176 * succeed. However, we can't send the T_OK_ACK upstream until 2177 * the tcp_accept_swap is done since it would be dangerous to 2178 * let the application start using the new fd prior to the swap. 2179 */ 2180 tcp_accept_swap(listener, acceptor, eager); 2181 2182 /* 2183 * tcp_accept_swap unlinks eager from listener but does not drop 2184 * the eager's reference on the listener. 2185 */ 2186 ASSERT(eager->tcp_listener == NULL); 2187 ASSERT(listener->tcp_connp->conn_ref >= 5); 2188 2189 /* 2190 * The eager is now associated with its own queue. Insert in 2191 * the hash so that the connection can be reused for a future 2192 * T_CONN_RES. 2193 */ 2194 tcp_acceptor_hash_insert(acceptor_id, eager); 2195 2196 /* 2197 * We now do the processing of options with T_CONN_RES. 2198 * We delay till now since we wanted to have queue to pass to 2199 * option processing routines that points back to the right 2200 * instance structure which does not happen until after 2201 * tcp_accept_swap(). 2202 * 2203 * Note: 2204 * The sanity of the logic here assumes that whatever options 2205 * are appropriate to inherit from listner=>eager are done 2206 * before this point, and whatever were to be overridden (or not) 2207 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2208 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2209 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2210 * This may not be true at this point in time but can be fixed 2211 * independently. This option processing code starts with 2212 * the instantiated acceptor instance and the final queue at 2213 * this point. 2214 */ 2215 2216 if (tcr->OPT_length != 0) { 2217 /* Options to process */ 2218 int t_error = 0; 2219 int sys_error = 0; 2220 int do_disconnect = 0; 2221 2222 if (tcp_conprim_opt_process(eager, mp1, 2223 &do_disconnect, &t_error, &sys_error) < 0) { 2224 eager->tcp_accept_error = 1; 2225 if (do_disconnect) { 2226 /* 2227 * An option failed which does not allow 2228 * connection to be accepted. 2229 * 2230 * We allow T_CONN_RES to succeed and 2231 * put a T_DISCON_IND on the eager queue. 2232 */ 2233 ASSERT(t_error == 0 && sys_error == 0); 2234 eager->tcp_send_discon_ind = 1; 2235 } else { 2236 ASSERT(t_error != 0); 2237 freemsg(ok_mp); 2238 /* 2239 * Original mp was either freed or set 2240 * to ok_mp above, so use mp1 instead. 2241 */ 2242 tcp_err_ack(listener, mp1, t_error, sys_error); 2243 goto finish; 2244 } 2245 } 2246 /* 2247 * Most likely success in setting options (except if 2248 * eager->tcp_send_discon_ind set). 2249 * mp1 option buffer represented by OPT_length/offset 2250 * potentially modified and contains results of setting 2251 * options at this point 2252 */ 2253 } 2254 2255 /* We no longer need mp1, since all options processing has passed */ 2256 freemsg(mp1); 2257 2258 putnext(listener->tcp_rq, ok_mp); 2259 2260 mutex_enter(&listener->tcp_eager_lock); 2261 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2262 tcp_t *tail; 2263 mblk_t *conn_ind; 2264 2265 /* 2266 * This path should not be executed if listener and 2267 * acceptor streams are the same. 2268 */ 2269 ASSERT(listener != acceptor); 2270 2271 tcp = listener->tcp_eager_prev_q0; 2272 /* 2273 * listener->tcp_eager_prev_q0 points to the TAIL of the 2274 * deferred T_conn_ind queue. We need to get to the head of 2275 * the queue in order to send up T_conn_ind the same order as 2276 * how the 3WHS is completed. 2277 */ 2278 while (tcp != listener) { 2279 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2280 break; 2281 else 2282 tcp = tcp->tcp_eager_prev_q0; 2283 } 2284 ASSERT(tcp != listener); 2285 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2286 ASSERT(conn_ind != NULL); 2287 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2288 2289 /* Move from q0 to q */ 2290 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2291 listener->tcp_conn_req_cnt_q0--; 2292 listener->tcp_conn_req_cnt_q++; 2293 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2294 tcp->tcp_eager_prev_q0; 2295 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2296 tcp->tcp_eager_next_q0; 2297 tcp->tcp_eager_prev_q0 = NULL; 2298 tcp->tcp_eager_next_q0 = NULL; 2299 tcp->tcp_conn_def_q0 = B_FALSE; 2300 2301 /* Make sure the tcp isn't in the list of droppables */ 2302 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2303 tcp->tcp_eager_prev_drop_q0 == NULL); 2304 2305 /* 2306 * Insert at end of the queue because sockfs sends 2307 * down T_CONN_RES in chronological order. Leaving 2308 * the older conn indications at front of the queue 2309 * helps reducing search time. 2310 */ 2311 tail = listener->tcp_eager_last_q; 2312 if (tail != NULL) 2313 tail->tcp_eager_next_q = tcp; 2314 else 2315 listener->tcp_eager_next_q = tcp; 2316 listener->tcp_eager_last_q = tcp; 2317 tcp->tcp_eager_next_q = NULL; 2318 mutex_exit(&listener->tcp_eager_lock); 2319 putnext(tcp->tcp_rq, conn_ind); 2320 } else { 2321 mutex_exit(&listener->tcp_eager_lock); 2322 } 2323 2324 /* 2325 * Done with the acceptor - free it 2326 * 2327 * Note: from this point on, no access to listener should be made 2328 * as listener can be equal to acceptor. 2329 */ 2330 finish: 2331 ASSERT(acceptor->tcp_detached); 2332 ASSERT(tcps->tcps_g_q != NULL); 2333 acceptor->tcp_rq = tcps->tcps_g_q; 2334 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2335 (void) tcp_clean_death(acceptor, 0, 2); 2336 CONN_DEC_REF(acceptor->tcp_connp); 2337 2338 /* 2339 * In case we already received a FIN we have to make tcp_rput send 2340 * the ordrel_ind. This will also send up a window update if the window 2341 * has opened up. 2342 * 2343 * In the normal case of a successful connection acceptance 2344 * we give the O_T_BIND_REQ to the read side put procedure as an 2345 * indication that this was just accepted. This tells tcp_rput to 2346 * pass up any data queued in tcp_rcv_list. 2347 * 2348 * In the fringe case where options sent with T_CONN_RES failed and 2349 * we required, we would be indicating a T_DISCON_IND to blow 2350 * away this connection. 2351 */ 2352 2353 /* 2354 * XXX: we currently have a problem if XTI application closes the 2355 * acceptor stream in between. This problem exists in on10-gate also 2356 * and is well know but nothing can be done short of major rewrite 2357 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2358 * eager same squeue as listener (we can distinguish non socket 2359 * listeners at the time of handling a SYN in tcp_conn_request) 2360 * and do most of the work that tcp_accept_finish does here itself 2361 * and then get behind the acceptor squeue to access the acceptor 2362 * queue. 2363 */ 2364 /* 2365 * We already have a ref on tcp so no need to do one before squeue_fill 2366 */ 2367 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2368 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2369 } 2370 2371 /* 2372 * Swap information between the eager and acceptor for a TLI/XTI client. 2373 * The sockfs accept is done on the acceptor stream and control goes 2374 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2375 * called. In either case, both the eager and listener are in their own 2376 * perimeter (squeue) and the code has to deal with potential race. 2377 * 2378 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2379 */ 2380 static void 2381 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2382 { 2383 conn_t *econnp, *aconnp; 2384 2385 ASSERT(eager->tcp_rq == listener->tcp_rq); 2386 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2387 ASSERT(!eager->tcp_hard_bound); 2388 ASSERT(!TCP_IS_SOCKET(acceptor)); 2389 ASSERT(!TCP_IS_SOCKET(eager)); 2390 ASSERT(!TCP_IS_SOCKET(listener)); 2391 2392 acceptor->tcp_detached = B_TRUE; 2393 /* 2394 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2395 * the acceptor id. 2396 */ 2397 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2398 2399 /* remove eager from listen list... */ 2400 mutex_enter(&listener->tcp_eager_lock); 2401 tcp_eager_unlink(eager); 2402 ASSERT(eager->tcp_eager_next_q == NULL && 2403 eager->tcp_eager_last_q == NULL); 2404 ASSERT(eager->tcp_eager_next_q0 == NULL && 2405 eager->tcp_eager_prev_q0 == NULL); 2406 mutex_exit(&listener->tcp_eager_lock); 2407 eager->tcp_rq = acceptor->tcp_rq; 2408 eager->tcp_wq = acceptor->tcp_wq; 2409 2410 econnp = eager->tcp_connp; 2411 aconnp = acceptor->tcp_connp; 2412 2413 eager->tcp_rq->q_ptr = econnp; 2414 eager->tcp_wq->q_ptr = econnp; 2415 2416 /* 2417 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2418 * which might be a different squeue from our peer TCP instance. 2419 * For TCP Fusion, the peer expects that whenever tcp_detached is 2420 * clear, our TCP queues point to the acceptor's queues. Thus, use 2421 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2422 * above reach global visibility prior to the clearing of tcp_detached. 2423 */ 2424 membar_producer(); 2425 eager->tcp_detached = B_FALSE; 2426 2427 ASSERT(eager->tcp_ack_tid == 0); 2428 2429 econnp->conn_dev = aconnp->conn_dev; 2430 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2431 ASSERT(econnp->conn_minor_arena != NULL); 2432 if (eager->tcp_cred != NULL) 2433 crfree(eager->tcp_cred); 2434 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2435 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2436 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2437 2438 aconnp->conn_cred = NULL; 2439 2440 econnp->conn_zoneid = aconnp->conn_zoneid; 2441 econnp->conn_allzones = aconnp->conn_allzones; 2442 2443 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2444 aconnp->conn_mac_exempt = B_FALSE; 2445 2446 ASSERT(aconnp->conn_peercred == NULL); 2447 2448 /* Do the IPC initialization */ 2449 CONN_INC_REF(econnp); 2450 2451 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2452 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2453 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2454 2455 /* Done with old IPC. Drop its ref on its connp */ 2456 CONN_DEC_REF(aconnp); 2457 } 2458 2459 2460 /* 2461 * Adapt to the information, such as rtt and rtt_sd, provided from the 2462 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2463 * 2464 * Checks for multicast and broadcast destination address. 2465 * Returns zero on failure; non-zero if ok. 2466 * 2467 * Note that the MSS calculation here is based on the info given in 2468 * the IRE. We do not do any calculation based on TCP options. They 2469 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2470 * knows which options to use. 2471 * 2472 * Note on how TCP gets its parameters for a connection. 2473 * 2474 * When a tcp_t structure is allocated, it gets all the default parameters. 2475 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2476 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2477 * default. But if there is an associated tcp_host_param, it will override 2478 * the metrics. 2479 * 2480 * An incoming SYN with a multicast or broadcast destination address, is dropped 2481 * in 1 of 2 places. 2482 * 2483 * 1. If the packet was received over the wire it is dropped in 2484 * ip_rput_process_broadcast() 2485 * 2486 * 2. If the packet was received through internal IP loopback, i.e. the packet 2487 * was generated and received on the same machine, it is dropped in 2488 * ip_wput_local() 2489 * 2490 * An incoming SYN with a multicast or broadcast source address is always 2491 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2492 * reject an attempt to connect to a broadcast or multicast (destination) 2493 * address. 2494 */ 2495 static int 2496 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2497 { 2498 tcp_hsp_t *hsp; 2499 ire_t *ire; 2500 ire_t *sire = NULL; 2501 iulp_t *ire_uinfo = NULL; 2502 uint32_t mss_max; 2503 uint32_t mss; 2504 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2505 conn_t *connp = tcp->tcp_connp; 2506 boolean_t ire_cacheable = B_FALSE; 2507 zoneid_t zoneid = connp->conn_zoneid; 2508 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2509 MATCH_IRE_SECATTR; 2510 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2511 ill_t *ill = NULL; 2512 boolean_t incoming = (ire_mp == NULL); 2513 tcp_stack_t *tcps = tcp->tcp_tcps; 2514 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2515 2516 ASSERT(connp->conn_ire_cache == NULL); 2517 2518 if (tcp->tcp_ipversion == IPV4_VERSION) { 2519 2520 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2521 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2522 return (0); 2523 } 2524 /* 2525 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2526 * for the destination with the nexthop as gateway. 2527 * ire_ctable_lookup() is used because this particular 2528 * ire, if it exists, will be marked private. 2529 * If that is not available, use the interface ire 2530 * for the nexthop. 2531 * 2532 * TSol: tcp_update_label will detect label mismatches based 2533 * only on the destination's label, but that would not 2534 * detect label mismatches based on the security attributes 2535 * of routes or next hop gateway. Hence we need to pass the 2536 * label to ire_ftable_lookup below in order to locate the 2537 * right prefix (and/or) ire cache. Similarly we also need 2538 * pass the label to the ire_cache_lookup below to locate 2539 * the right ire that also matches on the label. 2540 */ 2541 if (tcp->tcp_connp->conn_nexthop_set) { 2542 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2543 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2544 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2545 ipst); 2546 if (ire == NULL) { 2547 ire = ire_ftable_lookup( 2548 tcp->tcp_connp->conn_nexthop_v4, 2549 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2550 tsl, match_flags, ipst); 2551 if (ire == NULL) 2552 return (0); 2553 } else { 2554 ire_uinfo = &ire->ire_uinfo; 2555 } 2556 } else { 2557 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2558 zoneid, tsl, ipst); 2559 if (ire != NULL) { 2560 ire_cacheable = B_TRUE; 2561 ire_uinfo = (ire_mp != NULL) ? 2562 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2563 &ire->ire_uinfo; 2564 2565 } else { 2566 if (ire_mp == NULL) { 2567 ire = ire_ftable_lookup( 2568 tcp->tcp_connp->conn_rem, 2569 0, 0, 0, NULL, &sire, zoneid, 0, 2570 tsl, (MATCH_IRE_RECURSIVE | 2571 MATCH_IRE_DEFAULT), ipst); 2572 if (ire == NULL) 2573 return (0); 2574 ire_uinfo = (sire != NULL) ? 2575 &sire->ire_uinfo : 2576 &ire->ire_uinfo; 2577 } else { 2578 ire = (ire_t *)ire_mp->b_rptr; 2579 ire_uinfo = 2580 &((ire_t *) 2581 ire_mp->b_rptr)->ire_uinfo; 2582 } 2583 } 2584 } 2585 ASSERT(ire != NULL); 2586 2587 if ((ire->ire_src_addr == INADDR_ANY) || 2588 (ire->ire_type & IRE_BROADCAST)) { 2589 /* 2590 * ire->ire_mp is non null when ire_mp passed in is used 2591 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2592 */ 2593 if (ire->ire_mp == NULL) 2594 ire_refrele(ire); 2595 if (sire != NULL) 2596 ire_refrele(sire); 2597 return (0); 2598 } 2599 2600 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2601 ipaddr_t src_addr; 2602 2603 /* 2604 * ip_bind_connected() has stored the correct source 2605 * address in conn_src. 2606 */ 2607 src_addr = tcp->tcp_connp->conn_src; 2608 tcp->tcp_ipha->ipha_src = src_addr; 2609 /* 2610 * Copy of the src addr. in tcp_t is needed 2611 * for the lookup funcs. 2612 */ 2613 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2614 } 2615 /* 2616 * Set the fragment bit so that IP will tell us if the MTU 2617 * should change. IP tells us the latest setting of 2618 * ip_path_mtu_discovery through ire_frag_flag. 2619 */ 2620 if (ipst->ips_ip_path_mtu_discovery) { 2621 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2622 htons(IPH_DF); 2623 } 2624 /* 2625 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2626 * for IP_NEXTHOP. No cache ire has been found for the 2627 * destination and we are working with the nexthop's 2628 * interface ire. Since we need to forward all packets 2629 * to the nexthop first, we "blindly" set tcp_localnet 2630 * to false, eventhough the destination may also be 2631 * onlink. 2632 */ 2633 if (ire_uinfo == NULL) 2634 tcp->tcp_localnet = 0; 2635 else 2636 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2637 } else { 2638 /* 2639 * For incoming connection ire_mp = NULL 2640 * For outgoing connection ire_mp != NULL 2641 * Technically we should check conn_incoming_ill 2642 * when ire_mp is NULL and conn_outgoing_ill when 2643 * ire_mp is non-NULL. But this is performance 2644 * critical path and for IPV*_BOUND_IF, outgoing 2645 * and incoming ill are always set to the same value. 2646 */ 2647 ill_t *dst_ill = NULL; 2648 ipif_t *dst_ipif = NULL; 2649 2650 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2651 2652 if (connp->conn_outgoing_ill != NULL) { 2653 /* Outgoing or incoming path */ 2654 int err; 2655 2656 dst_ill = conn_get_held_ill(connp, 2657 &connp->conn_outgoing_ill, &err); 2658 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2659 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2660 return (0); 2661 } 2662 match_flags |= MATCH_IRE_ILL; 2663 dst_ipif = dst_ill->ill_ipif; 2664 } 2665 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2666 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2667 2668 if (ire != NULL) { 2669 ire_cacheable = B_TRUE; 2670 ire_uinfo = (ire_mp != NULL) ? 2671 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2672 &ire->ire_uinfo; 2673 } else { 2674 if (ire_mp == NULL) { 2675 ire = ire_ftable_lookup_v6( 2676 &tcp->tcp_connp->conn_remv6, 2677 0, 0, 0, dst_ipif, &sire, zoneid, 2678 0, tsl, match_flags, ipst); 2679 if (ire == NULL) { 2680 if (dst_ill != NULL) 2681 ill_refrele(dst_ill); 2682 return (0); 2683 } 2684 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2685 &ire->ire_uinfo; 2686 } else { 2687 ire = (ire_t *)ire_mp->b_rptr; 2688 ire_uinfo = 2689 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2690 } 2691 } 2692 if (dst_ill != NULL) 2693 ill_refrele(dst_ill); 2694 2695 ASSERT(ire != NULL); 2696 ASSERT(ire_uinfo != NULL); 2697 2698 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2699 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2700 /* 2701 * ire->ire_mp is non null when ire_mp passed in is used 2702 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2703 */ 2704 if (ire->ire_mp == NULL) 2705 ire_refrele(ire); 2706 if (sire != NULL) 2707 ire_refrele(sire); 2708 return (0); 2709 } 2710 2711 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2712 in6_addr_t src_addr; 2713 2714 /* 2715 * ip_bind_connected_v6() has stored the correct source 2716 * address per IPv6 addr. selection policy in 2717 * conn_src_v6. 2718 */ 2719 src_addr = tcp->tcp_connp->conn_srcv6; 2720 2721 tcp->tcp_ip6h->ip6_src = src_addr; 2722 /* 2723 * Copy of the src addr. in tcp_t is needed 2724 * for the lookup funcs. 2725 */ 2726 tcp->tcp_ip_src_v6 = src_addr; 2727 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2728 &connp->conn_srcv6)); 2729 } 2730 tcp->tcp_localnet = 2731 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2732 } 2733 2734 /* 2735 * This allows applications to fail quickly when connections are made 2736 * to dead hosts. Hosts can be labeled dead by adding a reject route 2737 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2738 */ 2739 if ((ire->ire_flags & RTF_REJECT) && 2740 (ire->ire_flags & RTF_PRIVATE)) 2741 goto error; 2742 2743 /* 2744 * Make use of the cached rtt and rtt_sd values to calculate the 2745 * initial RTO. Note that they are already initialized in 2746 * tcp_init_values(). 2747 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2748 * IP_NEXTHOP, but instead are using the interface ire for the 2749 * nexthop, then we do not use the ire_uinfo from that ire to 2750 * do any initializations. 2751 */ 2752 if (ire_uinfo != NULL) { 2753 if (ire_uinfo->iulp_rtt != 0) { 2754 clock_t rto; 2755 2756 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2757 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2758 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2759 tcps->tcps_rexmit_interval_extra + 2760 (tcp->tcp_rtt_sa >> 5); 2761 2762 if (rto > tcps->tcps_rexmit_interval_max) { 2763 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2764 } else if (rto < tcps->tcps_rexmit_interval_min) { 2765 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2766 } else { 2767 tcp->tcp_rto = rto; 2768 } 2769 } 2770 if (ire_uinfo->iulp_ssthresh != 0) 2771 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2772 else 2773 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2774 if (ire_uinfo->iulp_spipe > 0) { 2775 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2776 tcps->tcps_max_buf); 2777 if (tcps->tcps_snd_lowat_fraction != 0) 2778 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2779 tcps->tcps_snd_lowat_fraction; 2780 (void) tcp_maxpsz_set(tcp, B_TRUE); 2781 } 2782 /* 2783 * Note that up till now, acceptor always inherits receive 2784 * window from the listener. But if there is a metrics 2785 * associated with a host, we should use that instead of 2786 * inheriting it from listener. Thus we need to pass this 2787 * info back to the caller. 2788 */ 2789 if (ire_uinfo->iulp_rpipe > 0) { 2790 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2791 tcps->tcps_max_buf); 2792 } 2793 2794 if (ire_uinfo->iulp_rtomax > 0) { 2795 tcp->tcp_second_timer_threshold = 2796 ire_uinfo->iulp_rtomax; 2797 } 2798 2799 /* 2800 * Use the metric option settings, iulp_tstamp_ok and 2801 * iulp_wscale_ok, only for active open. What this means 2802 * is that if the other side uses timestamp or window 2803 * scale option, TCP will also use those options. That 2804 * is for passive open. If the application sets a 2805 * large window, window scale is enabled regardless of 2806 * the value in iulp_wscale_ok. This is the behavior 2807 * since 2.6. So we keep it. 2808 * The only case left in passive open processing is the 2809 * check for SACK. 2810 * For ECN, it should probably be like SACK. But the 2811 * current value is binary, so we treat it like the other 2812 * cases. The metric only controls active open.For passive 2813 * open, the ndd param, tcp_ecn_permitted, controls the 2814 * behavior. 2815 */ 2816 if (!tcp_detached) { 2817 /* 2818 * The if check means that the following can only 2819 * be turned on by the metrics only IRE, but not off. 2820 */ 2821 if (ire_uinfo->iulp_tstamp_ok) 2822 tcp->tcp_snd_ts_ok = B_TRUE; 2823 if (ire_uinfo->iulp_wscale_ok) 2824 tcp->tcp_snd_ws_ok = B_TRUE; 2825 if (ire_uinfo->iulp_sack == 2) 2826 tcp->tcp_snd_sack_ok = B_TRUE; 2827 if (ire_uinfo->iulp_ecn_ok) 2828 tcp->tcp_ecn_ok = B_TRUE; 2829 } else { 2830 /* 2831 * Passive open. 2832 * 2833 * As above, the if check means that SACK can only be 2834 * turned on by the metric only IRE. 2835 */ 2836 if (ire_uinfo->iulp_sack > 0) { 2837 tcp->tcp_snd_sack_ok = B_TRUE; 2838 } 2839 } 2840 } 2841 2842 2843 /* 2844 * XXX: Note that currently, ire_max_frag can be as small as 68 2845 * because of PMTUd. So tcp_mss may go to negative if combined 2846 * length of all those options exceeds 28 bytes. But because 2847 * of the tcp_mss_min check below, we may not have a problem if 2848 * tcp_mss_min is of a reasonable value. The default is 1 so 2849 * the negative problem still exists. And the check defeats PMTUd. 2850 * In fact, if PMTUd finds that the MSS should be smaller than 2851 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2852 * value. 2853 * 2854 * We do not deal with that now. All those problems related to 2855 * PMTUd will be fixed later. 2856 */ 2857 ASSERT(ire->ire_max_frag != 0); 2858 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2859 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2860 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2861 mss = MIN(mss, IPV6_MIN_MTU); 2862 } 2863 } 2864 2865 /* Sanity check for MSS value. */ 2866 if (tcp->tcp_ipversion == IPV4_VERSION) 2867 mss_max = tcps->tcps_mss_max_ipv4; 2868 else 2869 mss_max = tcps->tcps_mss_max_ipv6; 2870 2871 if (tcp->tcp_ipversion == IPV6_VERSION && 2872 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2873 /* 2874 * After receiving an ICMPv6 "packet too big" message with a 2875 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2876 * will insert a 8-byte fragment header in every packet; we 2877 * reduce the MSS by that amount here. 2878 */ 2879 mss -= sizeof (ip6_frag_t); 2880 } 2881 2882 if (tcp->tcp_ipsec_overhead == 0) 2883 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2884 2885 mss -= tcp->tcp_ipsec_overhead; 2886 2887 if (mss < tcps->tcps_mss_min) 2888 mss = tcps->tcps_mss_min; 2889 if (mss > mss_max) 2890 mss = mss_max; 2891 2892 /* Note that this is the maximum MSS, excluding all options. */ 2893 tcp->tcp_mss = mss; 2894 2895 /* 2896 * Initialize the ISS here now that we have the full connection ID. 2897 * The RFC 1948 method of initial sequence number generation requires 2898 * knowledge of the full connection ID before setting the ISS. 2899 */ 2900 2901 tcp_iss_init(tcp); 2902 2903 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2904 tcp->tcp_loopback = B_TRUE; 2905 2906 if (tcp->tcp_ipversion == IPV4_VERSION) { 2907 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2908 } else { 2909 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2910 } 2911 2912 if (hsp != NULL) { 2913 /* Only modify if we're going to make them bigger */ 2914 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2915 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2916 if (tcps->tcps_snd_lowat_fraction != 0) 2917 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2918 tcps->tcps_snd_lowat_fraction; 2919 } 2920 2921 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2922 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2923 } 2924 2925 /* Copy timestamp flag only for active open */ 2926 if (!tcp_detached) 2927 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2928 } 2929 2930 if (sire != NULL) 2931 IRE_REFRELE(sire); 2932 2933 /* 2934 * If we got an IRE_CACHE and an ILL, go through their properties; 2935 * otherwise, this is deferred until later when we have an IRE_CACHE. 2936 */ 2937 if (tcp->tcp_loopback || 2938 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2939 /* 2940 * For incoming, see if this tcp may be MDT-capable. For 2941 * outgoing, this process has been taken care of through 2942 * tcp_rput_other. 2943 */ 2944 tcp_ire_ill_check(tcp, ire, ill, incoming); 2945 tcp->tcp_ire_ill_check_done = B_TRUE; 2946 } 2947 2948 mutex_enter(&connp->conn_lock); 2949 /* 2950 * Make sure that conn is not marked incipient 2951 * for incoming connections. A blind 2952 * removal of incipient flag is cheaper than 2953 * check and removal. 2954 */ 2955 connp->conn_state_flags &= ~CONN_INCIPIENT; 2956 2957 /* 2958 * Must not cache forwarding table routes 2959 * or recache an IRE after the conn_t has 2960 * had conn_ire_cache cleared and is flagged 2961 * unusable, (see the CONN_CACHE_IRE() macro). 2962 */ 2963 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2964 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2965 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2966 connp->conn_ire_cache = ire; 2967 IRE_UNTRACE_REF(ire); 2968 rw_exit(&ire->ire_bucket->irb_lock); 2969 mutex_exit(&connp->conn_lock); 2970 return (1); 2971 } 2972 rw_exit(&ire->ire_bucket->irb_lock); 2973 } 2974 mutex_exit(&connp->conn_lock); 2975 2976 if (ire->ire_mp == NULL) 2977 ire_refrele(ire); 2978 return (1); 2979 2980 error: 2981 if (ire->ire_mp == NULL) 2982 ire_refrele(ire); 2983 if (sire != NULL) 2984 ire_refrele(sire); 2985 return (0); 2986 } 2987 2988 /* 2989 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2990 * O_T_BIND_REQ/T_BIND_REQ message. 2991 */ 2992 static void 2993 tcp_bind(tcp_t *tcp, mblk_t *mp) 2994 { 2995 sin_t *sin; 2996 sin6_t *sin6; 2997 mblk_t *mp1; 2998 in_port_t requested_port; 2999 in_port_t allocated_port; 3000 struct T_bind_req *tbr; 3001 boolean_t bind_to_req_port_only; 3002 boolean_t backlog_update = B_FALSE; 3003 boolean_t user_specified; 3004 in6_addr_t v6addr; 3005 ipaddr_t v4addr; 3006 uint_t origipversion; 3007 int err; 3008 queue_t *q = tcp->tcp_wq; 3009 conn_t *connp = tcp->tcp_connp; 3010 mlp_type_t addrtype, mlptype; 3011 zone_t *zone; 3012 cred_t *cr; 3013 in_port_t mlp_port; 3014 tcp_stack_t *tcps = tcp->tcp_tcps; 3015 3016 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3017 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3018 if (tcp->tcp_debug) { 3019 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3020 "tcp_bind: bad req, len %u", 3021 (uint_t)(mp->b_wptr - mp->b_rptr)); 3022 } 3023 tcp_err_ack(tcp, mp, TPROTO, 0); 3024 return; 3025 } 3026 /* Make sure the largest address fits */ 3027 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3028 if (mp1 == NULL) { 3029 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3030 return; 3031 } 3032 mp = mp1; 3033 tbr = (struct T_bind_req *)mp->b_rptr; 3034 if (tcp->tcp_state >= TCPS_BOUND) { 3035 if ((tcp->tcp_state == TCPS_BOUND || 3036 tcp->tcp_state == TCPS_LISTEN) && 3037 tcp->tcp_conn_req_max != tbr->CONIND_number && 3038 tbr->CONIND_number > 0) { 3039 /* 3040 * Handle listen() increasing CONIND_number. 3041 * This is more "liberal" then what the TPI spec 3042 * requires but is needed to avoid a t_unbind 3043 * when handling listen() since the port number 3044 * might be "stolen" between the unbind and bind. 3045 */ 3046 backlog_update = B_TRUE; 3047 goto do_bind; 3048 } 3049 if (tcp->tcp_debug) { 3050 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3051 "tcp_bind: bad state, %d", tcp->tcp_state); 3052 } 3053 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3054 return; 3055 } 3056 origipversion = tcp->tcp_ipversion; 3057 3058 switch (tbr->ADDR_length) { 3059 case 0: /* request for a generic port */ 3060 tbr->ADDR_offset = sizeof (struct T_bind_req); 3061 if (tcp->tcp_family == AF_INET) { 3062 tbr->ADDR_length = sizeof (sin_t); 3063 sin = (sin_t *)&tbr[1]; 3064 *sin = sin_null; 3065 sin->sin_family = AF_INET; 3066 mp->b_wptr = (uchar_t *)&sin[1]; 3067 tcp->tcp_ipversion = IPV4_VERSION; 3068 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3069 } else { 3070 ASSERT(tcp->tcp_family == AF_INET6); 3071 tbr->ADDR_length = sizeof (sin6_t); 3072 sin6 = (sin6_t *)&tbr[1]; 3073 *sin6 = sin6_null; 3074 sin6->sin6_family = AF_INET6; 3075 mp->b_wptr = (uchar_t *)&sin6[1]; 3076 tcp->tcp_ipversion = IPV6_VERSION; 3077 V6_SET_ZERO(v6addr); 3078 } 3079 requested_port = 0; 3080 break; 3081 3082 case sizeof (sin_t): /* Complete IPv4 address */ 3083 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3084 sizeof (sin_t)); 3085 if (sin == NULL || !OK_32PTR((char *)sin)) { 3086 if (tcp->tcp_debug) { 3087 (void) strlog(TCP_MOD_ID, 0, 1, 3088 SL_ERROR|SL_TRACE, 3089 "tcp_bind: bad address parameter, " 3090 "offset %d, len %d", 3091 tbr->ADDR_offset, tbr->ADDR_length); 3092 } 3093 tcp_err_ack(tcp, mp, TPROTO, 0); 3094 return; 3095 } 3096 /* 3097 * With sockets sockfs will accept bogus sin_family in 3098 * bind() and replace it with the family used in the socket 3099 * call. 3100 */ 3101 if (sin->sin_family != AF_INET || 3102 tcp->tcp_family != AF_INET) { 3103 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3104 return; 3105 } 3106 requested_port = ntohs(sin->sin_port); 3107 tcp->tcp_ipversion = IPV4_VERSION; 3108 v4addr = sin->sin_addr.s_addr; 3109 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3110 break; 3111 3112 case sizeof (sin6_t): /* Complete IPv6 address */ 3113 sin6 = (sin6_t *)mi_offset_param(mp, 3114 tbr->ADDR_offset, sizeof (sin6_t)); 3115 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3116 if (tcp->tcp_debug) { 3117 (void) strlog(TCP_MOD_ID, 0, 1, 3118 SL_ERROR|SL_TRACE, 3119 "tcp_bind: bad IPv6 address parameter, " 3120 "offset %d, len %d", tbr->ADDR_offset, 3121 tbr->ADDR_length); 3122 } 3123 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3124 return; 3125 } 3126 if (sin6->sin6_family != AF_INET6 || 3127 tcp->tcp_family != AF_INET6) { 3128 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3129 return; 3130 } 3131 requested_port = ntohs(sin6->sin6_port); 3132 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3133 IPV4_VERSION : IPV6_VERSION; 3134 v6addr = sin6->sin6_addr; 3135 break; 3136 3137 default: 3138 if (tcp->tcp_debug) { 3139 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3140 "tcp_bind: bad address length, %d", 3141 tbr->ADDR_length); 3142 } 3143 tcp_err_ack(tcp, mp, TBADADDR, 0); 3144 return; 3145 } 3146 tcp->tcp_bound_source_v6 = v6addr; 3147 3148 /* Check for change in ipversion */ 3149 if (origipversion != tcp->tcp_ipversion) { 3150 ASSERT(tcp->tcp_family == AF_INET6); 3151 err = tcp->tcp_ipversion == IPV6_VERSION ? 3152 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3153 if (err) { 3154 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3155 return; 3156 } 3157 } 3158 3159 /* 3160 * Initialize family specific fields. Copy of the src addr. 3161 * in tcp_t is needed for the lookup funcs. 3162 */ 3163 if (tcp->tcp_ipversion == IPV6_VERSION) { 3164 tcp->tcp_ip6h->ip6_src = v6addr; 3165 } else { 3166 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3167 } 3168 tcp->tcp_ip_src_v6 = v6addr; 3169 3170 /* 3171 * For O_T_BIND_REQ: 3172 * Verify that the target port/addr is available, or choose 3173 * another. 3174 * For T_BIND_REQ: 3175 * Verify that the target port/addr is available or fail. 3176 * In both cases when it succeeds the tcp is inserted in the 3177 * bind hash table. This ensures that the operation is atomic 3178 * under the lock on the hash bucket. 3179 */ 3180 bind_to_req_port_only = requested_port != 0 && 3181 tbr->PRIM_type != O_T_BIND_REQ; 3182 /* 3183 * Get a valid port (within the anonymous range and should not 3184 * be a privileged one) to use if the user has not given a port. 3185 * If multiple threads are here, they may all start with 3186 * with the same initial port. But, it should be fine as long as 3187 * tcp_bindi will ensure that no two threads will be assigned 3188 * the same port. 3189 * 3190 * NOTE: XXX If a privileged process asks for an anonymous port, we 3191 * still check for ports only in the range > tcp_smallest_non_priv_port, 3192 * unless TCP_ANONPRIVBIND option is set. 3193 */ 3194 mlptype = mlptSingle; 3195 mlp_port = requested_port; 3196 if (requested_port == 0) { 3197 requested_port = tcp->tcp_anon_priv_bind ? 3198 tcp_get_next_priv_port(tcp) : 3199 tcp_update_next_port(tcps->tcps_next_port_to_try, 3200 tcp, B_TRUE); 3201 if (requested_port == 0) { 3202 tcp_err_ack(tcp, mp, TNOADDR, 0); 3203 return; 3204 } 3205 user_specified = B_FALSE; 3206 3207 /* 3208 * If the user went through one of the RPC interfaces to create 3209 * this socket and RPC is MLP in this zone, then give him an 3210 * anonymous MLP. 3211 */ 3212 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3213 if (connp->conn_anon_mlp && is_system_labeled()) { 3214 zone = crgetzone(cr); 3215 addrtype = tsol_mlp_addr_type(zone->zone_id, 3216 IPV6_VERSION, &v6addr, 3217 tcps->tcps_netstack->netstack_ip); 3218 if (addrtype == mlptSingle) { 3219 tcp_err_ack(tcp, mp, TNOADDR, 0); 3220 return; 3221 } 3222 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3223 PMAPPORT, addrtype); 3224 mlp_port = PMAPPORT; 3225 } 3226 } else { 3227 int i; 3228 boolean_t priv = B_FALSE; 3229 3230 /* 3231 * If the requested_port is in the well-known privileged range, 3232 * verify that the stream was opened by a privileged user. 3233 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3234 * but instead the code relies on: 3235 * - the fact that the address of the array and its size never 3236 * changes 3237 * - the atomic assignment of the elements of the array 3238 */ 3239 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3240 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3241 priv = B_TRUE; 3242 } else { 3243 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3244 if (requested_port == 3245 tcps->tcps_g_epriv_ports[i]) { 3246 priv = B_TRUE; 3247 break; 3248 } 3249 } 3250 } 3251 if (priv) { 3252 if (secpolicy_net_privaddr(cr, requested_port, 3253 IPPROTO_TCP) != 0) { 3254 if (tcp->tcp_debug) { 3255 (void) strlog(TCP_MOD_ID, 0, 1, 3256 SL_ERROR|SL_TRACE, 3257 "tcp_bind: no priv for port %d", 3258 requested_port); 3259 } 3260 tcp_err_ack(tcp, mp, TACCES, 0); 3261 return; 3262 } 3263 } 3264 user_specified = B_TRUE; 3265 3266 if (is_system_labeled()) { 3267 zone = crgetzone(cr); 3268 addrtype = tsol_mlp_addr_type(zone->zone_id, 3269 IPV6_VERSION, &v6addr, 3270 tcps->tcps_netstack->netstack_ip); 3271 if (addrtype == mlptSingle) { 3272 tcp_err_ack(tcp, mp, TNOADDR, 0); 3273 return; 3274 } 3275 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3276 requested_port, addrtype); 3277 } 3278 } 3279 3280 if (mlptype != mlptSingle) { 3281 if (secpolicy_net_bindmlp(cr) != 0) { 3282 if (tcp->tcp_debug) { 3283 (void) strlog(TCP_MOD_ID, 0, 1, 3284 SL_ERROR|SL_TRACE, 3285 "tcp_bind: no priv for multilevel port %d", 3286 requested_port); 3287 } 3288 tcp_err_ack(tcp, mp, TACCES, 0); 3289 return; 3290 } 3291 3292 /* 3293 * If we're specifically binding a shared IP address and the 3294 * port is MLP on shared addresses, then check to see if this 3295 * zone actually owns the MLP. Reject if not. 3296 */ 3297 if (mlptype == mlptShared && addrtype == mlptShared) { 3298 /* 3299 * No need to handle exclusive-stack zones since 3300 * ALL_ZONES only applies to the shared stack. 3301 */ 3302 zoneid_t mlpzone; 3303 3304 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3305 htons(mlp_port)); 3306 if (connp->conn_zoneid != mlpzone) { 3307 if (tcp->tcp_debug) { 3308 (void) strlog(TCP_MOD_ID, 0, 1, 3309 SL_ERROR|SL_TRACE, 3310 "tcp_bind: attempt to bind port " 3311 "%d on shared addr in zone %d " 3312 "(should be %d)", 3313 mlp_port, connp->conn_zoneid, 3314 mlpzone); 3315 } 3316 tcp_err_ack(tcp, mp, TACCES, 0); 3317 return; 3318 } 3319 } 3320 3321 if (!user_specified) { 3322 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3323 requested_port, B_TRUE); 3324 if (err != 0) { 3325 if (tcp->tcp_debug) { 3326 (void) strlog(TCP_MOD_ID, 0, 1, 3327 SL_ERROR|SL_TRACE, 3328 "tcp_bind: cannot establish anon " 3329 "MLP for port %d", 3330 requested_port); 3331 } 3332 tcp_err_ack(tcp, mp, TSYSERR, err); 3333 return; 3334 } 3335 connp->conn_anon_port = B_TRUE; 3336 } 3337 connp->conn_mlp_type = mlptype; 3338 } 3339 3340 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3341 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3342 3343 if (allocated_port == 0) { 3344 connp->conn_mlp_type = mlptSingle; 3345 if (connp->conn_anon_port) { 3346 connp->conn_anon_port = B_FALSE; 3347 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3348 requested_port, B_FALSE); 3349 } 3350 if (bind_to_req_port_only) { 3351 if (tcp->tcp_debug) { 3352 (void) strlog(TCP_MOD_ID, 0, 1, 3353 SL_ERROR|SL_TRACE, 3354 "tcp_bind: requested addr busy"); 3355 } 3356 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3357 } else { 3358 /* If we are out of ports, fail the bind. */ 3359 if (tcp->tcp_debug) { 3360 (void) strlog(TCP_MOD_ID, 0, 1, 3361 SL_ERROR|SL_TRACE, 3362 "tcp_bind: out of ports?"); 3363 } 3364 tcp_err_ack(tcp, mp, TNOADDR, 0); 3365 } 3366 return; 3367 } 3368 ASSERT(tcp->tcp_state == TCPS_BOUND); 3369 do_bind: 3370 if (!backlog_update) { 3371 if (tcp->tcp_family == AF_INET) 3372 sin->sin_port = htons(allocated_port); 3373 else 3374 sin6->sin6_port = htons(allocated_port); 3375 } 3376 if (tcp->tcp_family == AF_INET) { 3377 if (tbr->CONIND_number != 0) { 3378 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3379 sizeof (sin_t)); 3380 } else { 3381 /* Just verify the local IP address */ 3382 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3383 } 3384 } else { 3385 if (tbr->CONIND_number != 0) { 3386 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3387 sizeof (sin6_t)); 3388 } else { 3389 /* Just verify the local IP address */ 3390 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3391 IPV6_ADDR_LEN); 3392 } 3393 } 3394 if (mp1 == NULL) { 3395 if (connp->conn_anon_port) { 3396 connp->conn_anon_port = B_FALSE; 3397 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3398 requested_port, B_FALSE); 3399 } 3400 connp->conn_mlp_type = mlptSingle; 3401 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3402 return; 3403 } 3404 3405 tbr->PRIM_type = T_BIND_ACK; 3406 mp->b_datap->db_type = M_PCPROTO; 3407 3408 /* Chain in the reply mp for tcp_rput() */ 3409 mp1->b_cont = mp; 3410 mp = mp1; 3411 3412 tcp->tcp_conn_req_max = tbr->CONIND_number; 3413 if (tcp->tcp_conn_req_max) { 3414 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3415 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3416 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3417 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3418 /* 3419 * If this is a listener, do not reset the eager list 3420 * and other stuffs. Note that we don't check if the 3421 * existing eager list meets the new tcp_conn_req_max 3422 * requirement. 3423 */ 3424 if (tcp->tcp_state != TCPS_LISTEN) { 3425 tcp->tcp_state = TCPS_LISTEN; 3426 /* Initialize the chain. Don't need the eager_lock */ 3427 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3428 tcp->tcp_eager_next_drop_q0 = tcp; 3429 tcp->tcp_eager_prev_drop_q0 = tcp; 3430 tcp->tcp_second_ctimer_threshold = 3431 tcps->tcps_ip_abort_linterval; 3432 } 3433 } 3434 3435 /* 3436 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3437 * processing continues in tcp_rput_other(). 3438 * 3439 * We need to make sure that the conn_recv is set to a non-null 3440 * value before we insert the conn into the classifier table. 3441 * This is to avoid a race with an incoming packet which does an 3442 * ipcl_classify(). 3443 */ 3444 connp->conn_recv = tcp_conn_request; 3445 if (tcp->tcp_family == AF_INET6) { 3446 ASSERT(tcp->tcp_connp->conn_af_isv6); 3447 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3448 } else { 3449 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3450 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3451 } 3452 /* 3453 * If the bind cannot complete immediately 3454 * IP will arrange to call tcp_rput_other 3455 * when the bind completes. 3456 */ 3457 if (mp != NULL) { 3458 tcp_rput_other(tcp, mp); 3459 } else { 3460 /* 3461 * Bind will be resumed later. Need to ensure 3462 * that conn doesn't disappear when that happens. 3463 * This will be decremented in ip_resume_tcp_bind(). 3464 */ 3465 CONN_INC_REF(tcp->tcp_connp); 3466 } 3467 } 3468 3469 3470 /* 3471 * If the "bind_to_req_port_only" parameter is set, if the requested port 3472 * number is available, return it, If not return 0 3473 * 3474 * If "bind_to_req_port_only" parameter is not set and 3475 * If the requested port number is available, return it. If not, return 3476 * the first anonymous port we happen across. If no anonymous ports are 3477 * available, return 0. addr is the requested local address, if any. 3478 * 3479 * In either case, when succeeding update the tcp_t to record the port number 3480 * and insert it in the bind hash table. 3481 * 3482 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3483 * without setting SO_REUSEADDR. This is needed so that they 3484 * can be viewed as two independent transport protocols. 3485 */ 3486 static in_port_t 3487 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3488 int reuseaddr, boolean_t quick_connect, 3489 boolean_t bind_to_req_port_only, boolean_t user_specified) 3490 { 3491 /* number of times we have run around the loop */ 3492 int count = 0; 3493 /* maximum number of times to run around the loop */ 3494 int loopmax; 3495 conn_t *connp = tcp->tcp_connp; 3496 zoneid_t zoneid = connp->conn_zoneid; 3497 tcp_stack_t *tcps = tcp->tcp_tcps; 3498 3499 /* 3500 * Lookup for free addresses is done in a loop and "loopmax" 3501 * influences how long we spin in the loop 3502 */ 3503 if (bind_to_req_port_only) { 3504 /* 3505 * If the requested port is busy, don't bother to look 3506 * for a new one. Setting loop maximum count to 1 has 3507 * that effect. 3508 */ 3509 loopmax = 1; 3510 } else { 3511 /* 3512 * If the requested port is busy, look for a free one 3513 * in the anonymous port range. 3514 * Set loopmax appropriately so that one does not look 3515 * forever in the case all of the anonymous ports are in use. 3516 */ 3517 if (tcp->tcp_anon_priv_bind) { 3518 /* 3519 * loopmax = 3520 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3521 */ 3522 loopmax = IPPORT_RESERVED - 3523 tcps->tcps_min_anonpriv_port; 3524 } else { 3525 loopmax = (tcps->tcps_largest_anon_port - 3526 tcps->tcps_smallest_anon_port + 1); 3527 } 3528 } 3529 do { 3530 uint16_t lport; 3531 tf_t *tbf; 3532 tcp_t *ltcp; 3533 conn_t *lconnp; 3534 3535 lport = htons(port); 3536 3537 /* 3538 * Ensure that the tcp_t is not currently in the bind hash. 3539 * Hold the lock on the hash bucket to ensure that 3540 * the duplicate check plus the insertion is an atomic 3541 * operation. 3542 * 3543 * This function does an inline lookup on the bind hash list 3544 * Make sure that we access only members of tcp_t 3545 * and that we don't look at tcp_tcp, since we are not 3546 * doing a CONN_INC_REF. 3547 */ 3548 tcp_bind_hash_remove(tcp); 3549 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3550 mutex_enter(&tbf->tf_lock); 3551 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3552 ltcp = ltcp->tcp_bind_hash) { 3553 boolean_t not_socket; 3554 boolean_t exclbind; 3555 3556 if (lport != ltcp->tcp_lport) 3557 continue; 3558 3559 lconnp = ltcp->tcp_connp; 3560 3561 /* 3562 * On a labeled system, we must treat bindings to ports 3563 * on shared IP addresses by sockets with MAC exemption 3564 * privilege as being in all zones, as there's 3565 * otherwise no way to identify the right receiver. 3566 */ 3567 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3568 IPCL_ZONE_MATCH(connp, 3569 ltcp->tcp_connp->conn_zoneid)) && 3570 !lconnp->conn_mac_exempt && 3571 !connp->conn_mac_exempt) 3572 continue; 3573 3574 /* 3575 * If TCP_EXCLBIND is set for either the bound or 3576 * binding endpoint, the semantics of bind 3577 * is changed according to the following. 3578 * 3579 * spec = specified address (v4 or v6) 3580 * unspec = unspecified address (v4 or v6) 3581 * A = specified addresses are different for endpoints 3582 * 3583 * bound bind to allowed 3584 * ------------------------------------- 3585 * unspec unspec no 3586 * unspec spec no 3587 * spec unspec no 3588 * spec spec yes if A 3589 * 3590 * For labeled systems, SO_MAC_EXEMPT behaves the same 3591 * as TCP_EXCLBIND, except that zoneid is ignored. 3592 * 3593 * Note: 3594 * 3595 * 1. Because of TLI semantics, an endpoint can go 3596 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3597 * TCPS_BOUND, depending on whether it is originally 3598 * a listener or not. That is why we need to check 3599 * for states greater than or equal to TCPS_BOUND 3600 * here. 3601 * 3602 * 2. Ideally, we should only check for state equals 3603 * to TCPS_LISTEN. And the following check should be 3604 * added. 3605 * 3606 * if (ltcp->tcp_state == TCPS_LISTEN || 3607 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3608 * ... 3609 * } 3610 * 3611 * The semantics will be changed to this. If the 3612 * endpoint on the list is in state not equal to 3613 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3614 * set, let the bind succeed. 3615 * 3616 * Because of (1), we cannot do that for TLI 3617 * endpoints. But we can do that for socket endpoints. 3618 * If in future, we can change this going back 3619 * semantics, we can use the above check for TLI also. 3620 */ 3621 not_socket = !(TCP_IS_SOCKET(ltcp) && 3622 TCP_IS_SOCKET(tcp)); 3623 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3624 3625 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3626 (exclbind && (not_socket || 3627 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3628 if (V6_OR_V4_INADDR_ANY( 3629 ltcp->tcp_bound_source_v6) || 3630 V6_OR_V4_INADDR_ANY(*laddr) || 3631 IN6_ARE_ADDR_EQUAL(laddr, 3632 <cp->tcp_bound_source_v6)) { 3633 break; 3634 } 3635 continue; 3636 } 3637 3638 /* 3639 * Check ipversion to allow IPv4 and IPv6 sockets to 3640 * have disjoint port number spaces, if *_EXCLBIND 3641 * is not set and only if the application binds to a 3642 * specific port. We use the same autoassigned port 3643 * number space for IPv4 and IPv6 sockets. 3644 */ 3645 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3646 bind_to_req_port_only) 3647 continue; 3648 3649 /* 3650 * Ideally, we should make sure that the source 3651 * address, remote address, and remote port in the 3652 * four tuple for this tcp-connection is unique. 3653 * However, trying to find out the local source 3654 * address would require too much code duplication 3655 * with IP, since IP needs needs to have that code 3656 * to support userland TCP implementations. 3657 */ 3658 if (quick_connect && 3659 (ltcp->tcp_state > TCPS_LISTEN) && 3660 ((tcp->tcp_fport != ltcp->tcp_fport) || 3661 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3662 <cp->tcp_remote_v6))) 3663 continue; 3664 3665 if (!reuseaddr) { 3666 /* 3667 * No socket option SO_REUSEADDR. 3668 * If existing port is bound to 3669 * a non-wildcard IP address 3670 * and the requesting stream is 3671 * bound to a distinct 3672 * different IP addresses 3673 * (non-wildcard, also), keep 3674 * going. 3675 */ 3676 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3677 !V6_OR_V4_INADDR_ANY( 3678 ltcp->tcp_bound_source_v6) && 3679 !IN6_ARE_ADDR_EQUAL(laddr, 3680 <cp->tcp_bound_source_v6)) 3681 continue; 3682 if (ltcp->tcp_state >= TCPS_BOUND) { 3683 /* 3684 * This port is being used and 3685 * its state is >= TCPS_BOUND, 3686 * so we can't bind to it. 3687 */ 3688 break; 3689 } 3690 } else { 3691 /* 3692 * socket option SO_REUSEADDR is set on the 3693 * binding tcp_t. 3694 * 3695 * If two streams are bound to 3696 * same IP address or both addr 3697 * and bound source are wildcards 3698 * (INADDR_ANY), we want to stop 3699 * searching. 3700 * We have found a match of IP source 3701 * address and source port, which is 3702 * refused regardless of the 3703 * SO_REUSEADDR setting, so we break. 3704 */ 3705 if (IN6_ARE_ADDR_EQUAL(laddr, 3706 <cp->tcp_bound_source_v6) && 3707 (ltcp->tcp_state == TCPS_LISTEN || 3708 ltcp->tcp_state == TCPS_BOUND)) 3709 break; 3710 } 3711 } 3712 if (ltcp != NULL) { 3713 /* The port number is busy */ 3714 mutex_exit(&tbf->tf_lock); 3715 } else { 3716 /* 3717 * This port is ours. Insert in fanout and mark as 3718 * bound to prevent others from getting the port 3719 * number. 3720 */ 3721 tcp->tcp_state = TCPS_BOUND; 3722 tcp->tcp_lport = htons(port); 3723 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3724 3725 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3726 tcp->tcp_lport)] == tbf); 3727 tcp_bind_hash_insert(tbf, tcp, 1); 3728 3729 mutex_exit(&tbf->tf_lock); 3730 3731 /* 3732 * We don't want tcp_next_port_to_try to "inherit" 3733 * a port number supplied by the user in a bind. 3734 */ 3735 if (user_specified) 3736 return (port); 3737 3738 /* 3739 * This is the only place where tcp_next_port_to_try 3740 * is updated. After the update, it may or may not 3741 * be in the valid range. 3742 */ 3743 if (!tcp->tcp_anon_priv_bind) 3744 tcps->tcps_next_port_to_try = port + 1; 3745 return (port); 3746 } 3747 3748 if (tcp->tcp_anon_priv_bind) { 3749 port = tcp_get_next_priv_port(tcp); 3750 } else { 3751 if (count == 0 && user_specified) { 3752 /* 3753 * We may have to return an anonymous port. So 3754 * get one to start with. 3755 */ 3756 port = 3757 tcp_update_next_port( 3758 tcps->tcps_next_port_to_try, 3759 tcp, B_TRUE); 3760 user_specified = B_FALSE; 3761 } else { 3762 port = tcp_update_next_port(port + 1, tcp, 3763 B_FALSE); 3764 } 3765 } 3766 if (port == 0) 3767 break; 3768 3769 /* 3770 * Don't let this loop run forever in the case where 3771 * all of the anonymous ports are in use. 3772 */ 3773 } while (++count < loopmax); 3774 return (0); 3775 } 3776 3777 /* 3778 * tcp_clean_death / tcp_close_detached must not be called more than once 3779 * on a tcp. Thus every function that potentially calls tcp_clean_death 3780 * must check for the tcp state before calling tcp_clean_death. 3781 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3782 * tcp_timer_handler, all check for the tcp state. 3783 */ 3784 /* ARGSUSED */ 3785 void 3786 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3787 { 3788 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3789 3790 freemsg(mp); 3791 if (tcp->tcp_state > TCPS_BOUND) 3792 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3793 ETIMEDOUT, 5); 3794 } 3795 3796 /* 3797 * We are dying for some reason. Try to do it gracefully. (May be called 3798 * as writer.) 3799 * 3800 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3801 * done by a service procedure). 3802 * TBD - Should the return value distinguish between the tcp_t being 3803 * freed and it being reinitialized? 3804 */ 3805 static int 3806 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3807 { 3808 mblk_t *mp; 3809 queue_t *q; 3810 tcp_stack_t *tcps = tcp->tcp_tcps; 3811 3812 TCP_CLD_STAT(tag); 3813 3814 #if TCP_TAG_CLEAN_DEATH 3815 tcp->tcp_cleandeathtag = tag; 3816 #endif 3817 3818 if (tcp->tcp_fused) 3819 tcp_unfuse(tcp); 3820 3821 if (tcp->tcp_linger_tid != 0 && 3822 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3823 tcp_stop_lingering(tcp); 3824 } 3825 3826 ASSERT(tcp != NULL); 3827 ASSERT((tcp->tcp_family == AF_INET && 3828 tcp->tcp_ipversion == IPV4_VERSION) || 3829 (tcp->tcp_family == AF_INET6 && 3830 (tcp->tcp_ipversion == IPV4_VERSION || 3831 tcp->tcp_ipversion == IPV6_VERSION))); 3832 3833 if (TCP_IS_DETACHED(tcp)) { 3834 if (tcp->tcp_hard_binding) { 3835 /* 3836 * Its an eager that we are dealing with. We close the 3837 * eager but in case a conn_ind has already gone to the 3838 * listener, let tcp_accept_finish() send a discon_ind 3839 * to the listener and drop the last reference. If the 3840 * listener doesn't even know about the eager i.e. the 3841 * conn_ind hasn't gone up, blow away the eager and drop 3842 * the last reference as well. If the conn_ind has gone 3843 * up, state should be BOUND. tcp_accept_finish 3844 * will figure out that the connection has received a 3845 * RST and will send a DISCON_IND to the application. 3846 */ 3847 tcp_closei_local(tcp); 3848 if (!tcp->tcp_tconnind_started) { 3849 CONN_DEC_REF(tcp->tcp_connp); 3850 } else { 3851 tcp->tcp_state = TCPS_BOUND; 3852 } 3853 } else { 3854 tcp_close_detached(tcp); 3855 } 3856 return (0); 3857 } 3858 3859 TCP_STAT(tcps, tcp_clean_death_nondetached); 3860 3861 /* 3862 * If T_ORDREL_IND has not been sent yet (done when service routine 3863 * is run) postpone cleaning up the endpoint until service routine 3864 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3865 * client_errno since tcp_close uses the client_errno field. 3866 */ 3867 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3868 if (err != 0) 3869 tcp->tcp_client_errno = err; 3870 3871 tcp->tcp_deferred_clean_death = B_TRUE; 3872 return (-1); 3873 } 3874 3875 q = tcp->tcp_rq; 3876 3877 /* Trash all inbound data */ 3878 flushq(q, FLUSHALL); 3879 3880 /* 3881 * If we are at least part way open and there is error 3882 * (err==0 implies no error) 3883 * notify our client by a T_DISCON_IND. 3884 */ 3885 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3886 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3887 !TCP_IS_SOCKET(tcp)) { 3888 /* 3889 * Send M_FLUSH according to TPI. Because sockets will 3890 * (and must) ignore FLUSHR we do that only for TPI 3891 * endpoints and sockets in STREAMS mode. 3892 */ 3893 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3894 } 3895 if (tcp->tcp_debug) { 3896 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3897 "tcp_clean_death: discon err %d", err); 3898 } 3899 mp = mi_tpi_discon_ind(NULL, err, 0); 3900 if (mp != NULL) { 3901 putnext(q, mp); 3902 } else { 3903 if (tcp->tcp_debug) { 3904 (void) strlog(TCP_MOD_ID, 0, 1, 3905 SL_ERROR|SL_TRACE, 3906 "tcp_clean_death, sending M_ERROR"); 3907 } 3908 (void) putnextctl1(q, M_ERROR, EPROTO); 3909 } 3910 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3911 /* SYN_SENT or SYN_RCVD */ 3912 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3913 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3914 /* ESTABLISHED or CLOSE_WAIT */ 3915 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3916 } 3917 } 3918 3919 tcp_reinit(tcp); 3920 return (-1); 3921 } 3922 3923 /* 3924 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3925 * to expire, stop the wait and finish the close. 3926 */ 3927 static void 3928 tcp_stop_lingering(tcp_t *tcp) 3929 { 3930 clock_t delta = 0; 3931 tcp_stack_t *tcps = tcp->tcp_tcps; 3932 3933 tcp->tcp_linger_tid = 0; 3934 if (tcp->tcp_state > TCPS_LISTEN) { 3935 tcp_acceptor_hash_remove(tcp); 3936 mutex_enter(&tcp->tcp_non_sq_lock); 3937 if (tcp->tcp_flow_stopped) { 3938 tcp_clrqfull(tcp); 3939 } 3940 mutex_exit(&tcp->tcp_non_sq_lock); 3941 3942 if (tcp->tcp_timer_tid != 0) { 3943 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3944 tcp->tcp_timer_tid = 0; 3945 } 3946 /* 3947 * Need to cancel those timers which will not be used when 3948 * TCP is detached. This has to be done before the tcp_wq 3949 * is set to the global queue. 3950 */ 3951 tcp_timers_stop(tcp); 3952 3953 3954 tcp->tcp_detached = B_TRUE; 3955 ASSERT(tcps->tcps_g_q != NULL); 3956 tcp->tcp_rq = tcps->tcps_g_q; 3957 tcp->tcp_wq = WR(tcps->tcps_g_q); 3958 3959 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3960 tcp_time_wait_append(tcp); 3961 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3962 goto finish; 3963 } 3964 3965 /* 3966 * If delta is zero the timer event wasn't executed and was 3967 * successfully canceled. In this case we need to restart it 3968 * with the minimal delta possible. 3969 */ 3970 if (delta >= 0) { 3971 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3972 delta ? delta : 1); 3973 } 3974 } else { 3975 tcp_closei_local(tcp); 3976 CONN_DEC_REF(tcp->tcp_connp); 3977 } 3978 finish: 3979 /* Signal closing thread that it can complete close */ 3980 mutex_enter(&tcp->tcp_closelock); 3981 tcp->tcp_detached = B_TRUE; 3982 ASSERT(tcps->tcps_g_q != NULL); 3983 tcp->tcp_rq = tcps->tcps_g_q; 3984 tcp->tcp_wq = WR(tcps->tcps_g_q); 3985 tcp->tcp_closed = 1; 3986 cv_signal(&tcp->tcp_closecv); 3987 mutex_exit(&tcp->tcp_closelock); 3988 } 3989 3990 /* 3991 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3992 * expires. 3993 */ 3994 static void 3995 tcp_close_linger_timeout(void *arg) 3996 { 3997 conn_t *connp = (conn_t *)arg; 3998 tcp_t *tcp = connp->conn_tcp; 3999 4000 tcp->tcp_client_errno = ETIMEDOUT; 4001 tcp_stop_lingering(tcp); 4002 } 4003 4004 static int 4005 tcp_close(queue_t *q, int flags) 4006 { 4007 conn_t *connp = Q_TO_CONN(q); 4008 tcp_t *tcp = connp->conn_tcp; 4009 mblk_t *mp = &tcp->tcp_closemp; 4010 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4011 mblk_t *bp; 4012 4013 ASSERT(WR(q)->q_next == NULL); 4014 ASSERT(connp->conn_ref >= 2); 4015 4016 /* 4017 * We are being closed as /dev/tcp or /dev/tcp6. 4018 * 4019 * Mark the conn as closing. ill_pending_mp_add will not 4020 * add any mp to the pending mp list, after this conn has 4021 * started closing. Same for sq_pending_mp_add 4022 */ 4023 mutex_enter(&connp->conn_lock); 4024 connp->conn_state_flags |= CONN_CLOSING; 4025 if (connp->conn_oper_pending_ill != NULL) 4026 conn_ioctl_cleanup_reqd = B_TRUE; 4027 CONN_INC_REF_LOCKED(connp); 4028 mutex_exit(&connp->conn_lock); 4029 tcp->tcp_closeflags = (uint8_t)flags; 4030 ASSERT(connp->conn_ref >= 3); 4031 4032 /* 4033 * tcp_closemp_used is used below without any protection of a lock 4034 * as we don't expect any one else to use it concurrently at this 4035 * point otherwise it would be a major defect. 4036 */ 4037 4038 if (mp->b_prev == NULL) 4039 tcp->tcp_closemp_used = B_TRUE; 4040 else 4041 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4042 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4043 4044 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4045 4046 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4047 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4048 4049 mutex_enter(&tcp->tcp_closelock); 4050 while (!tcp->tcp_closed) { 4051 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4052 /* 4053 * The cv_wait_sig() was interrupted. We now do the 4054 * following: 4055 * 4056 * 1) If the endpoint was lingering, we allow this 4057 * to be interrupted by cancelling the linger timeout 4058 * and closing normally. 4059 * 4060 * 2) Revert to calling cv_wait() 4061 * 4062 * We revert to using cv_wait() to avoid an 4063 * infinite loop which can occur if the calling 4064 * thread is higher priority than the squeue worker 4065 * thread and is bound to the same cpu. 4066 */ 4067 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 4068 mutex_exit(&tcp->tcp_closelock); 4069 /* Entering squeue, bump ref count. */ 4070 CONN_INC_REF(connp); 4071 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4072 squeue_enter(connp->conn_sqp, bp, 4073 tcp_linger_interrupted, connp, 4074 SQTAG_IP_TCP_CLOSE); 4075 mutex_enter(&tcp->tcp_closelock); 4076 } 4077 break; 4078 } 4079 } 4080 while (!tcp->tcp_closed) 4081 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4082 mutex_exit(&tcp->tcp_closelock); 4083 4084 /* 4085 * In the case of listener streams that have eagers in the q or q0 4086 * we wait for the eagers to drop their reference to us. tcp_rq and 4087 * tcp_wq of the eagers point to our queues. By waiting for the 4088 * refcnt to drop to 1, we are sure that the eagers have cleaned 4089 * up their queue pointers and also dropped their references to us. 4090 */ 4091 if (tcp->tcp_wait_for_eagers) { 4092 mutex_enter(&connp->conn_lock); 4093 while (connp->conn_ref != 1) { 4094 cv_wait(&connp->conn_cv, &connp->conn_lock); 4095 } 4096 mutex_exit(&connp->conn_lock); 4097 } 4098 /* 4099 * ioctl cleanup. The mp is queued in the 4100 * ill_pending_mp or in the sq_pending_mp. 4101 */ 4102 if (conn_ioctl_cleanup_reqd) 4103 conn_ioctl_cleanup(connp); 4104 4105 qprocsoff(q); 4106 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4107 4108 tcp->tcp_cpid = -1; 4109 4110 /* 4111 * Drop IP's reference on the conn. This is the last reference 4112 * on the connp if the state was less than established. If the 4113 * connection has gone into timewait state, then we will have 4114 * one ref for the TCP and one more ref (total of two) for the 4115 * classifier connected hash list (a timewait connections stays 4116 * in connected hash till closed). 4117 * 4118 * We can't assert the references because there might be other 4119 * transient reference places because of some walkers or queued 4120 * packets in squeue for the timewait state. 4121 */ 4122 CONN_DEC_REF(connp); 4123 q->q_ptr = WR(q)->q_ptr = NULL; 4124 return (0); 4125 } 4126 4127 static int 4128 tcpclose_accept(queue_t *q) 4129 { 4130 vmem_t *minor_arena; 4131 dev_t conn_dev; 4132 4133 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4134 4135 /* 4136 * We had opened an acceptor STREAM for sockfs which is 4137 * now being closed due to some error. 4138 */ 4139 qprocsoff(q); 4140 4141 minor_arena = (vmem_t *)WR(q)->q_ptr; 4142 conn_dev = (dev_t)RD(q)->q_ptr; 4143 ASSERT(minor_arena != NULL); 4144 ASSERT(conn_dev != 0); 4145 inet_minor_free(minor_arena, conn_dev); 4146 q->q_ptr = WR(q)->q_ptr = NULL; 4147 return (0); 4148 } 4149 4150 /* 4151 * Called by tcp_close() routine via squeue when lingering is 4152 * interrupted by a signal. 4153 */ 4154 4155 /* ARGSUSED */ 4156 static void 4157 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4158 { 4159 conn_t *connp = (conn_t *)arg; 4160 tcp_t *tcp = connp->conn_tcp; 4161 4162 freeb(mp); 4163 if (tcp->tcp_linger_tid != 0 && 4164 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4165 tcp_stop_lingering(tcp); 4166 tcp->tcp_client_errno = EINTR; 4167 } 4168 } 4169 4170 /* 4171 * Called by streams close routine via squeues when our client blows off her 4172 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4173 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4174 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4175 * acked. 4176 * 4177 * NOTE: tcp_close potentially returns error when lingering. 4178 * However, the stream head currently does not pass these errors 4179 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4180 * errors to the application (from tsleep()) and not errors 4181 * like ECONNRESET caused by receiving a reset packet. 4182 */ 4183 4184 /* ARGSUSED */ 4185 static void 4186 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4187 { 4188 char *msg; 4189 conn_t *connp = (conn_t *)arg; 4190 tcp_t *tcp = connp->conn_tcp; 4191 clock_t delta = 0; 4192 tcp_stack_t *tcps = tcp->tcp_tcps; 4193 4194 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4195 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4196 4197 /* Cancel any pending timeout */ 4198 if (tcp->tcp_ordrelid != 0) { 4199 if (tcp->tcp_timeout) { 4200 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4201 } 4202 tcp->tcp_ordrelid = 0; 4203 tcp->tcp_timeout = B_FALSE; 4204 } 4205 4206 mutex_enter(&tcp->tcp_eager_lock); 4207 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4208 /* Cleanup for listener */ 4209 tcp_eager_cleanup(tcp, 0); 4210 tcp->tcp_wait_for_eagers = 1; 4211 } 4212 mutex_exit(&tcp->tcp_eager_lock); 4213 4214 connp->conn_mdt_ok = B_FALSE; 4215 tcp->tcp_mdt = B_FALSE; 4216 4217 connp->conn_lso_ok = B_FALSE; 4218 tcp->tcp_lso = B_FALSE; 4219 4220 msg = NULL; 4221 switch (tcp->tcp_state) { 4222 case TCPS_CLOSED: 4223 case TCPS_IDLE: 4224 case TCPS_BOUND: 4225 case TCPS_LISTEN: 4226 break; 4227 case TCPS_SYN_SENT: 4228 msg = "tcp_close, during connect"; 4229 break; 4230 case TCPS_SYN_RCVD: 4231 /* 4232 * Close during the connect 3-way handshake 4233 * but here there may or may not be pending data 4234 * already on queue. Process almost same as in 4235 * the ESTABLISHED state. 4236 */ 4237 /* FALLTHRU */ 4238 default: 4239 if (tcp->tcp_fused) 4240 tcp_unfuse(tcp); 4241 4242 /* 4243 * If SO_LINGER has set a zero linger time, abort the 4244 * connection with a reset. 4245 */ 4246 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4247 msg = "tcp_close, zero lingertime"; 4248 break; 4249 } 4250 4251 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4252 /* 4253 * Abort connection if there is unread data queued. 4254 */ 4255 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4256 msg = "tcp_close, unread data"; 4257 break; 4258 } 4259 /* 4260 * tcp_hard_bound is now cleared thus all packets go through 4261 * tcp_lookup. This fact is used by tcp_detach below. 4262 * 4263 * We have done a qwait() above which could have possibly 4264 * drained more messages in turn causing transition to a 4265 * different state. Check whether we have to do the rest 4266 * of the processing or not. 4267 */ 4268 if (tcp->tcp_state <= TCPS_LISTEN) 4269 break; 4270 4271 /* 4272 * Transmit the FIN before detaching the tcp_t. 4273 * After tcp_detach returns this queue/perimeter 4274 * no longer owns the tcp_t thus others can modify it. 4275 */ 4276 (void) tcp_xmit_end(tcp); 4277 4278 /* 4279 * If lingering on close then wait until the fin is acked, 4280 * the SO_LINGER time passes, or a reset is sent/received. 4281 */ 4282 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4283 !(tcp->tcp_fin_acked) && 4284 tcp->tcp_state >= TCPS_ESTABLISHED) { 4285 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4286 tcp->tcp_client_errno = EWOULDBLOCK; 4287 } else if (tcp->tcp_client_errno == 0) { 4288 4289 ASSERT(tcp->tcp_linger_tid == 0); 4290 4291 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4292 tcp_close_linger_timeout, 4293 tcp->tcp_lingertime * hz); 4294 4295 /* tcp_close_linger_timeout will finish close */ 4296 if (tcp->tcp_linger_tid == 0) 4297 tcp->tcp_client_errno = ENOSR; 4298 else 4299 return; 4300 } 4301 4302 /* 4303 * Check if we need to detach or just close 4304 * the instance. 4305 */ 4306 if (tcp->tcp_state <= TCPS_LISTEN) 4307 break; 4308 } 4309 4310 /* 4311 * Make sure that no other thread will access the tcp_rq of 4312 * this instance (through lookups etc.) as tcp_rq will go 4313 * away shortly. 4314 */ 4315 tcp_acceptor_hash_remove(tcp); 4316 4317 mutex_enter(&tcp->tcp_non_sq_lock); 4318 if (tcp->tcp_flow_stopped) { 4319 tcp_clrqfull(tcp); 4320 } 4321 mutex_exit(&tcp->tcp_non_sq_lock); 4322 4323 if (tcp->tcp_timer_tid != 0) { 4324 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4325 tcp->tcp_timer_tid = 0; 4326 } 4327 /* 4328 * Need to cancel those timers which will not be used when 4329 * TCP is detached. This has to be done before the tcp_wq 4330 * is set to the global queue. 4331 */ 4332 tcp_timers_stop(tcp); 4333 4334 tcp->tcp_detached = B_TRUE; 4335 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4336 tcp_time_wait_append(tcp); 4337 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4338 ASSERT(connp->conn_ref >= 3); 4339 goto finish; 4340 } 4341 4342 /* 4343 * If delta is zero the timer event wasn't executed and was 4344 * successfully canceled. In this case we need to restart it 4345 * with the minimal delta possible. 4346 */ 4347 if (delta >= 0) 4348 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4349 delta ? delta : 1); 4350 4351 ASSERT(connp->conn_ref >= 3); 4352 goto finish; 4353 } 4354 4355 /* Detach did not complete. Still need to remove q from stream. */ 4356 if (msg) { 4357 if (tcp->tcp_state == TCPS_ESTABLISHED || 4358 tcp->tcp_state == TCPS_CLOSE_WAIT) 4359 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4360 if (tcp->tcp_state == TCPS_SYN_SENT || 4361 tcp->tcp_state == TCPS_SYN_RCVD) 4362 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4363 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4364 } 4365 4366 tcp_closei_local(tcp); 4367 CONN_DEC_REF(connp); 4368 ASSERT(connp->conn_ref >= 2); 4369 4370 finish: 4371 /* 4372 * Although packets are always processed on the correct 4373 * tcp's perimeter and access is serialized via squeue's, 4374 * IP still needs a queue when sending packets in time_wait 4375 * state so use WR(tcps_g_q) till ip_output() can be 4376 * changed to deal with just connp. For read side, we 4377 * could have set tcp_rq to NULL but there are some cases 4378 * in tcp_rput_data() from early days of this code which 4379 * do a putnext without checking if tcp is closed. Those 4380 * need to be identified before both tcp_rq and tcp_wq 4381 * can be set to NULL and tcps_g_q can disappear forever. 4382 */ 4383 mutex_enter(&tcp->tcp_closelock); 4384 /* 4385 * Don't change the queues in the case of a listener that has 4386 * eagers in its q or q0. It could surprise the eagers. 4387 * Instead wait for the eagers outside the squeue. 4388 */ 4389 if (!tcp->tcp_wait_for_eagers) { 4390 tcp->tcp_detached = B_TRUE; 4391 /* 4392 * When default queue is closing we set tcps_g_q to NULL 4393 * after the close is done. 4394 */ 4395 ASSERT(tcps->tcps_g_q != NULL); 4396 tcp->tcp_rq = tcps->tcps_g_q; 4397 tcp->tcp_wq = WR(tcps->tcps_g_q); 4398 } 4399 4400 /* Signal tcp_close() to finish closing. */ 4401 tcp->tcp_closed = 1; 4402 cv_signal(&tcp->tcp_closecv); 4403 mutex_exit(&tcp->tcp_closelock); 4404 } 4405 4406 4407 /* 4408 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4409 * Some stream heads get upset if they see these later on as anything but NULL. 4410 */ 4411 static void 4412 tcp_close_mpp(mblk_t **mpp) 4413 { 4414 mblk_t *mp; 4415 4416 if ((mp = *mpp) != NULL) { 4417 do { 4418 mp->b_next = NULL; 4419 mp->b_prev = NULL; 4420 } while ((mp = mp->b_cont) != NULL); 4421 4422 mp = *mpp; 4423 *mpp = NULL; 4424 freemsg(mp); 4425 } 4426 } 4427 4428 /* Do detached close. */ 4429 static void 4430 tcp_close_detached(tcp_t *tcp) 4431 { 4432 if (tcp->tcp_fused) 4433 tcp_unfuse(tcp); 4434 4435 /* 4436 * Clustering code serializes TCP disconnect callbacks and 4437 * cluster tcp list walks by blocking a TCP disconnect callback 4438 * if a cluster tcp list walk is in progress. This ensures 4439 * accurate accounting of TCPs in the cluster code even though 4440 * the TCP list walk itself is not atomic. 4441 */ 4442 tcp_closei_local(tcp); 4443 CONN_DEC_REF(tcp->tcp_connp); 4444 } 4445 4446 /* 4447 * Stop all TCP timers, and free the timer mblks if requested. 4448 */ 4449 void 4450 tcp_timers_stop(tcp_t *tcp) 4451 { 4452 if (tcp->tcp_timer_tid != 0) { 4453 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4454 tcp->tcp_timer_tid = 0; 4455 } 4456 if (tcp->tcp_ka_tid != 0) { 4457 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4458 tcp->tcp_ka_tid = 0; 4459 } 4460 if (tcp->tcp_ack_tid != 0) { 4461 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4462 tcp->tcp_ack_tid = 0; 4463 } 4464 if (tcp->tcp_push_tid != 0) { 4465 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4466 tcp->tcp_push_tid = 0; 4467 } 4468 } 4469 4470 /* 4471 * The tcp_t is going away. Remove it from all lists and set it 4472 * to TCPS_CLOSED. The freeing up of memory is deferred until 4473 * tcp_inactive. This is needed since a thread in tcp_rput might have 4474 * done a CONN_INC_REF on this structure before it was removed from the 4475 * hashes. 4476 */ 4477 static void 4478 tcp_closei_local(tcp_t *tcp) 4479 { 4480 ire_t *ire; 4481 conn_t *connp = tcp->tcp_connp; 4482 tcp_stack_t *tcps = tcp->tcp_tcps; 4483 4484 if (!TCP_IS_SOCKET(tcp)) 4485 tcp_acceptor_hash_remove(tcp); 4486 4487 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4488 tcp->tcp_ibsegs = 0; 4489 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4490 tcp->tcp_obsegs = 0; 4491 4492 /* 4493 * If we are an eager connection hanging off a listener that 4494 * hasn't formally accepted the connection yet, get off his 4495 * list and blow off any data that we have accumulated. 4496 */ 4497 if (tcp->tcp_listener != NULL) { 4498 tcp_t *listener = tcp->tcp_listener; 4499 mutex_enter(&listener->tcp_eager_lock); 4500 /* 4501 * tcp_tconnind_started == B_TRUE means that the 4502 * conn_ind has already gone to listener. At 4503 * this point, eager will be closed but we 4504 * leave it in listeners eager list so that 4505 * if listener decides to close without doing 4506 * accept, we can clean this up. In tcp_wput_accept 4507 * we take care of the case of accept on closed 4508 * eager. 4509 */ 4510 if (!tcp->tcp_tconnind_started) { 4511 tcp_eager_unlink(tcp); 4512 mutex_exit(&listener->tcp_eager_lock); 4513 /* 4514 * We don't want to have any pointers to the 4515 * listener queue, after we have released our 4516 * reference on the listener 4517 */ 4518 ASSERT(tcps->tcps_g_q != NULL); 4519 tcp->tcp_rq = tcps->tcps_g_q; 4520 tcp->tcp_wq = WR(tcps->tcps_g_q); 4521 CONN_DEC_REF(listener->tcp_connp); 4522 } else { 4523 mutex_exit(&listener->tcp_eager_lock); 4524 } 4525 } 4526 4527 /* Stop all the timers */ 4528 tcp_timers_stop(tcp); 4529 4530 if (tcp->tcp_state == TCPS_LISTEN) { 4531 if (tcp->tcp_ip_addr_cache) { 4532 kmem_free((void *)tcp->tcp_ip_addr_cache, 4533 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4534 tcp->tcp_ip_addr_cache = NULL; 4535 } 4536 } 4537 mutex_enter(&tcp->tcp_non_sq_lock); 4538 if (tcp->tcp_flow_stopped) 4539 tcp_clrqfull(tcp); 4540 mutex_exit(&tcp->tcp_non_sq_lock); 4541 4542 tcp_bind_hash_remove(tcp); 4543 /* 4544 * If the tcp_time_wait_collector (which runs outside the squeue) 4545 * is trying to remove this tcp from the time wait list, we will 4546 * block in tcp_time_wait_remove while trying to acquire the 4547 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4548 * requires the ipcl_hash_remove to be ordered after the 4549 * tcp_time_wait_remove for the refcnt checks to work correctly. 4550 */ 4551 if (tcp->tcp_state == TCPS_TIME_WAIT) 4552 (void) tcp_time_wait_remove(tcp, NULL); 4553 CL_INET_DISCONNECT(tcp); 4554 ipcl_hash_remove(connp); 4555 4556 /* 4557 * Delete the cached ire in conn_ire_cache and also mark 4558 * the conn as CONDEMNED 4559 */ 4560 mutex_enter(&connp->conn_lock); 4561 connp->conn_state_flags |= CONN_CONDEMNED; 4562 ire = connp->conn_ire_cache; 4563 connp->conn_ire_cache = NULL; 4564 mutex_exit(&connp->conn_lock); 4565 if (ire != NULL) 4566 IRE_REFRELE_NOTR(ire); 4567 4568 /* Need to cleanup any pending ioctls */ 4569 ASSERT(tcp->tcp_time_wait_next == NULL); 4570 ASSERT(tcp->tcp_time_wait_prev == NULL); 4571 ASSERT(tcp->tcp_time_wait_expire == 0); 4572 tcp->tcp_state = TCPS_CLOSED; 4573 4574 /* Release any SSL context */ 4575 if (tcp->tcp_kssl_ent != NULL) { 4576 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4577 tcp->tcp_kssl_ent = NULL; 4578 } 4579 if (tcp->tcp_kssl_ctx != NULL) { 4580 kssl_release_ctx(tcp->tcp_kssl_ctx); 4581 tcp->tcp_kssl_ctx = NULL; 4582 } 4583 tcp->tcp_kssl_pending = B_FALSE; 4584 4585 tcp_ipsec_cleanup(tcp); 4586 } 4587 4588 /* 4589 * tcp is dying (called from ipcl_conn_destroy and error cases). 4590 * Free the tcp_t in either case. 4591 */ 4592 void 4593 tcp_free(tcp_t *tcp) 4594 { 4595 mblk_t *mp; 4596 ip6_pkt_t *ipp; 4597 4598 ASSERT(tcp != NULL); 4599 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4600 4601 tcp->tcp_rq = NULL; 4602 tcp->tcp_wq = NULL; 4603 4604 tcp_close_mpp(&tcp->tcp_xmit_head); 4605 tcp_close_mpp(&tcp->tcp_reass_head); 4606 if (tcp->tcp_rcv_list != NULL) { 4607 /* Free b_next chain */ 4608 tcp_close_mpp(&tcp->tcp_rcv_list); 4609 } 4610 if ((mp = tcp->tcp_urp_mp) != NULL) { 4611 freemsg(mp); 4612 } 4613 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4614 freemsg(mp); 4615 } 4616 4617 if (tcp->tcp_fused_sigurg_mp != NULL) { 4618 freeb(tcp->tcp_fused_sigurg_mp); 4619 tcp->tcp_fused_sigurg_mp = NULL; 4620 } 4621 4622 if (tcp->tcp_sack_info != NULL) { 4623 if (tcp->tcp_notsack_list != NULL) { 4624 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4625 } 4626 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4627 } 4628 4629 if (tcp->tcp_hopopts != NULL) { 4630 mi_free(tcp->tcp_hopopts); 4631 tcp->tcp_hopopts = NULL; 4632 tcp->tcp_hopoptslen = 0; 4633 } 4634 ASSERT(tcp->tcp_hopoptslen == 0); 4635 if (tcp->tcp_dstopts != NULL) { 4636 mi_free(tcp->tcp_dstopts); 4637 tcp->tcp_dstopts = NULL; 4638 tcp->tcp_dstoptslen = 0; 4639 } 4640 ASSERT(tcp->tcp_dstoptslen == 0); 4641 if (tcp->tcp_rtdstopts != NULL) { 4642 mi_free(tcp->tcp_rtdstopts); 4643 tcp->tcp_rtdstopts = NULL; 4644 tcp->tcp_rtdstoptslen = 0; 4645 } 4646 ASSERT(tcp->tcp_rtdstoptslen == 0); 4647 if (tcp->tcp_rthdr != NULL) { 4648 mi_free(tcp->tcp_rthdr); 4649 tcp->tcp_rthdr = NULL; 4650 tcp->tcp_rthdrlen = 0; 4651 } 4652 ASSERT(tcp->tcp_rthdrlen == 0); 4653 4654 ipp = &tcp->tcp_sticky_ipp; 4655 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4656 IPPF_RTHDR)) 4657 ip6_pkt_free(ipp); 4658 4659 /* 4660 * Free memory associated with the tcp/ip header template. 4661 */ 4662 4663 if (tcp->tcp_iphc != NULL) 4664 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4665 4666 /* 4667 * Following is really a blowing away a union. 4668 * It happens to have exactly two members of identical size 4669 * the following code is enough. 4670 */ 4671 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4672 4673 if (tcp->tcp_tracebuf != NULL) { 4674 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4675 tcp->tcp_tracebuf = NULL; 4676 } 4677 } 4678 4679 4680 /* 4681 * Put a connection confirmation message upstream built from the 4682 * address information within 'iph' and 'tcph'. Report our success or failure. 4683 */ 4684 static boolean_t 4685 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4686 mblk_t **defermp) 4687 { 4688 sin_t sin; 4689 sin6_t sin6; 4690 mblk_t *mp; 4691 char *optp = NULL; 4692 int optlen = 0; 4693 cred_t *cr; 4694 4695 if (defermp != NULL) 4696 *defermp = NULL; 4697 4698 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4699 /* 4700 * Return in T_CONN_CON results of option negotiation through 4701 * the T_CONN_REQ. Note: If there is an real end-to-end option 4702 * negotiation, then what is received from remote end needs 4703 * to be taken into account but there is no such thing (yet?) 4704 * in our TCP/IP. 4705 * Note: We do not use mi_offset_param() here as 4706 * tcp_opts_conn_req contents do not directly come from 4707 * an application and are either generated in kernel or 4708 * from user input that was already verified. 4709 */ 4710 mp = tcp->tcp_conn.tcp_opts_conn_req; 4711 optp = (char *)(mp->b_rptr + 4712 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4713 optlen = (int) 4714 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4715 } 4716 4717 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4718 ipha_t *ipha = (ipha_t *)iphdr; 4719 4720 /* packet is IPv4 */ 4721 if (tcp->tcp_family == AF_INET) { 4722 sin = sin_null; 4723 sin.sin_addr.s_addr = ipha->ipha_src; 4724 sin.sin_port = *(uint16_t *)tcph->th_lport; 4725 sin.sin_family = AF_INET; 4726 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4727 (int)sizeof (sin_t), optp, optlen); 4728 } else { 4729 sin6 = sin6_null; 4730 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4731 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4732 sin6.sin6_family = AF_INET6; 4733 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4734 (int)sizeof (sin6_t), optp, optlen); 4735 4736 } 4737 } else { 4738 ip6_t *ip6h = (ip6_t *)iphdr; 4739 4740 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4741 ASSERT(tcp->tcp_family == AF_INET6); 4742 sin6 = sin6_null; 4743 sin6.sin6_addr = ip6h->ip6_src; 4744 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4745 sin6.sin6_family = AF_INET6; 4746 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4747 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4748 (int)sizeof (sin6_t), optp, optlen); 4749 } 4750 4751 if (!mp) 4752 return (B_FALSE); 4753 4754 if ((cr = DB_CRED(idmp)) != NULL) { 4755 mblk_setcred(mp, cr); 4756 DB_CPID(mp) = DB_CPID(idmp); 4757 } 4758 4759 if (defermp == NULL) 4760 putnext(tcp->tcp_rq, mp); 4761 else 4762 *defermp = mp; 4763 4764 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4765 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4766 return (B_TRUE); 4767 } 4768 4769 /* 4770 * Defense for the SYN attack - 4771 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4772 * one from the list of droppable eagers. This list is a subset of q0. 4773 * see comments before the definition of MAKE_DROPPABLE(). 4774 * 2. Don't drop a SYN request before its first timeout. This gives every 4775 * request at least til the first timeout to complete its 3-way handshake. 4776 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4777 * requests currently on the queue that has timed out. This will be used 4778 * as an indicator of whether an attack is under way, so that appropriate 4779 * actions can be taken. (It's incremented in tcp_timer() and decremented 4780 * either when eager goes into ESTABLISHED, or gets freed up.) 4781 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4782 * # of timeout drops back to <= q0len/32 => SYN alert off 4783 */ 4784 static boolean_t 4785 tcp_drop_q0(tcp_t *tcp) 4786 { 4787 tcp_t *eager; 4788 mblk_t *mp; 4789 tcp_stack_t *tcps = tcp->tcp_tcps; 4790 4791 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4792 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4793 4794 /* Pick oldest eager from the list of droppable eagers */ 4795 eager = tcp->tcp_eager_prev_drop_q0; 4796 4797 /* If list is empty. return B_FALSE */ 4798 if (eager == tcp) { 4799 return (B_FALSE); 4800 } 4801 4802 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4803 if ((mp = allocb(0, BPRI_HI)) == NULL) 4804 return (B_FALSE); 4805 4806 /* 4807 * Take this eager out from the list of droppable eagers since we are 4808 * going to drop it. 4809 */ 4810 MAKE_UNDROPPABLE(eager); 4811 4812 if (tcp->tcp_debug) { 4813 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4814 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4815 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4816 tcp->tcp_conn_req_cnt_q0, 4817 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4818 } 4819 4820 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4821 4822 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4823 CONN_INC_REF(eager->tcp_connp); 4824 4825 /* Mark the IRE created for this SYN request temporary */ 4826 tcp_ip_ire_mark_advice(eager); 4827 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4828 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4829 4830 return (B_TRUE); 4831 } 4832 4833 int 4834 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4835 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4836 { 4837 tcp_t *ltcp = lconnp->conn_tcp; 4838 tcp_t *tcp = connp->conn_tcp; 4839 mblk_t *tpi_mp; 4840 ipha_t *ipha; 4841 ip6_t *ip6h; 4842 sin6_t sin6; 4843 in6_addr_t v6dst; 4844 int err; 4845 int ifindex = 0; 4846 cred_t *cr; 4847 tcp_stack_t *tcps = tcp->tcp_tcps; 4848 4849 if (ipvers == IPV4_VERSION) { 4850 ipha = (ipha_t *)mp->b_rptr; 4851 4852 connp->conn_send = ip_output; 4853 connp->conn_recv = tcp_input; 4854 4855 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4856 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4857 4858 sin6 = sin6_null; 4859 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4860 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4861 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4862 sin6.sin6_family = AF_INET6; 4863 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4864 lconnp->conn_zoneid, tcps->tcps_netstack); 4865 if (tcp->tcp_recvdstaddr) { 4866 sin6_t sin6d; 4867 4868 sin6d = sin6_null; 4869 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4870 &sin6d.sin6_addr); 4871 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4872 sin6d.sin6_family = AF_INET; 4873 tpi_mp = mi_tpi_extconn_ind(NULL, 4874 (char *)&sin6d, sizeof (sin6_t), 4875 (char *)&tcp, 4876 (t_scalar_t)sizeof (intptr_t), 4877 (char *)&sin6d, sizeof (sin6_t), 4878 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4879 } else { 4880 tpi_mp = mi_tpi_conn_ind(NULL, 4881 (char *)&sin6, sizeof (sin6_t), 4882 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4883 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4884 } 4885 } else { 4886 ip6h = (ip6_t *)mp->b_rptr; 4887 4888 connp->conn_send = ip_output_v6; 4889 connp->conn_recv = tcp_input; 4890 4891 connp->conn_srcv6 = ip6h->ip6_dst; 4892 connp->conn_remv6 = ip6h->ip6_src; 4893 4894 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4895 ifindex = (int)DB_CKSUMSTUFF(mp); 4896 DB_CKSUMSTUFF(mp) = 0; 4897 4898 sin6 = sin6_null; 4899 sin6.sin6_addr = ip6h->ip6_src; 4900 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4901 sin6.sin6_family = AF_INET6; 4902 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4903 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4904 lconnp->conn_zoneid, tcps->tcps_netstack); 4905 4906 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4907 /* Pass up the scope_id of remote addr */ 4908 sin6.sin6_scope_id = ifindex; 4909 } else { 4910 sin6.sin6_scope_id = 0; 4911 } 4912 if (tcp->tcp_recvdstaddr) { 4913 sin6_t sin6d; 4914 4915 sin6d = sin6_null; 4916 sin6.sin6_addr = ip6h->ip6_dst; 4917 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4918 sin6d.sin6_family = AF_INET; 4919 tpi_mp = mi_tpi_extconn_ind(NULL, 4920 (char *)&sin6d, sizeof (sin6_t), 4921 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4922 (char *)&sin6d, sizeof (sin6_t), 4923 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4924 } else { 4925 tpi_mp = mi_tpi_conn_ind(NULL, 4926 (char *)&sin6, sizeof (sin6_t), 4927 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4928 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4929 } 4930 } 4931 4932 if (tpi_mp == NULL) 4933 return (ENOMEM); 4934 4935 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4936 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4937 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4938 connp->conn_fully_bound = B_FALSE; 4939 4940 if (tcps->tcps_trace) 4941 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4942 4943 /* Inherit information from the "parent" */ 4944 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4945 tcp->tcp_family = ltcp->tcp_family; 4946 tcp->tcp_wq = ltcp->tcp_wq; 4947 tcp->tcp_rq = ltcp->tcp_rq; 4948 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4949 tcp->tcp_detached = B_TRUE; 4950 if ((err = tcp_init_values(tcp)) != 0) { 4951 freemsg(tpi_mp); 4952 return (err); 4953 } 4954 4955 if (ipvers == IPV4_VERSION) { 4956 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4957 freemsg(tpi_mp); 4958 return (err); 4959 } 4960 ASSERT(tcp->tcp_ipha != NULL); 4961 } else { 4962 /* ifindex must be already set */ 4963 ASSERT(ifindex != 0); 4964 4965 if (ltcp->tcp_bound_if != 0) { 4966 /* 4967 * Set newtcp's bound_if equal to 4968 * listener's value. If ifindex is 4969 * not the same as ltcp->tcp_bound_if, 4970 * it must be a packet for the ipmp group 4971 * of interfaces 4972 */ 4973 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4974 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4975 tcp->tcp_bound_if = ifindex; 4976 } 4977 4978 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4979 tcp->tcp_recvifindex = 0; 4980 tcp->tcp_recvhops = 0xffffffffU; 4981 ASSERT(tcp->tcp_ip6h != NULL); 4982 } 4983 4984 tcp->tcp_lport = ltcp->tcp_lport; 4985 4986 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4987 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4988 /* 4989 * Listener had options of some sort; eager inherits. 4990 * Free up the eager template and allocate one 4991 * of the right size. 4992 */ 4993 if (tcp->tcp_hdr_grown) { 4994 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4995 } else { 4996 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4997 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4998 } 4999 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5000 KM_NOSLEEP); 5001 if (tcp->tcp_iphc == NULL) { 5002 tcp->tcp_iphc_len = 0; 5003 freemsg(tpi_mp); 5004 return (ENOMEM); 5005 } 5006 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5007 tcp->tcp_hdr_grown = B_TRUE; 5008 } 5009 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5010 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5011 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5012 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5013 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5014 5015 /* 5016 * Copy the IP+TCP header template from listener to eager 5017 */ 5018 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5019 if (tcp->tcp_ipversion == IPV6_VERSION) { 5020 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5021 IPPROTO_RAW) { 5022 tcp->tcp_ip6h = 5023 (ip6_t *)(tcp->tcp_iphc + 5024 sizeof (ip6i_t)); 5025 } else { 5026 tcp->tcp_ip6h = 5027 (ip6_t *)(tcp->tcp_iphc); 5028 } 5029 tcp->tcp_ipha = NULL; 5030 } else { 5031 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5032 tcp->tcp_ip6h = NULL; 5033 } 5034 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5035 tcp->tcp_ip_hdr_len); 5036 } else { 5037 /* 5038 * only valid case when ipversion of listener and 5039 * eager differ is when listener is IPv6 and 5040 * eager is IPv4. 5041 * Eager header template has been initialized to the 5042 * maximum v4 header sizes, which includes space for 5043 * TCP and IP options. 5044 */ 5045 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5046 (tcp->tcp_ipversion == IPV4_VERSION)); 5047 ASSERT(tcp->tcp_iphc_len >= 5048 TCP_MAX_COMBINED_HEADER_LENGTH); 5049 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5050 /* copy IP header fields individually */ 5051 tcp->tcp_ipha->ipha_ttl = 5052 ltcp->tcp_ip6h->ip6_hops; 5053 bcopy(ltcp->tcp_tcph->th_lport, 5054 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5055 } 5056 5057 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5058 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5059 sizeof (in_port_t)); 5060 5061 if (ltcp->tcp_lport == 0) { 5062 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5063 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5064 sizeof (in_port_t)); 5065 } 5066 5067 if (tcp->tcp_ipversion == IPV4_VERSION) { 5068 ASSERT(ipha != NULL); 5069 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5070 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5071 5072 /* Source routing option copyover (reverse it) */ 5073 if (tcps->tcps_rev_src_routes) 5074 tcp_opt_reverse(tcp, ipha); 5075 } else { 5076 ASSERT(ip6h != NULL); 5077 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5078 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5079 } 5080 5081 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5082 ASSERT(!tcp->tcp_tconnind_started); 5083 /* 5084 * If the SYN contains a credential, it's a loopback packet; attach 5085 * the credential to the TPI message. 5086 */ 5087 if ((cr = DB_CRED(idmp)) != NULL) { 5088 mblk_setcred(tpi_mp, cr); 5089 DB_CPID(tpi_mp) = DB_CPID(idmp); 5090 } 5091 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5092 5093 /* Inherit the listener's SSL protection state */ 5094 5095 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5096 kssl_hold_ent(tcp->tcp_kssl_ent); 5097 tcp->tcp_kssl_pending = B_TRUE; 5098 } 5099 5100 return (0); 5101 } 5102 5103 5104 int 5105 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5106 tcph_t *tcph, mblk_t *idmp) 5107 { 5108 tcp_t *ltcp = lconnp->conn_tcp; 5109 tcp_t *tcp = connp->conn_tcp; 5110 sin_t sin; 5111 mblk_t *tpi_mp = NULL; 5112 int err; 5113 cred_t *cr; 5114 tcp_stack_t *tcps = tcp->tcp_tcps; 5115 5116 sin = sin_null; 5117 sin.sin_addr.s_addr = ipha->ipha_src; 5118 sin.sin_port = *(uint16_t *)tcph->th_lport; 5119 sin.sin_family = AF_INET; 5120 if (ltcp->tcp_recvdstaddr) { 5121 sin_t sind; 5122 5123 sind = sin_null; 5124 sind.sin_addr.s_addr = ipha->ipha_dst; 5125 sind.sin_port = *(uint16_t *)tcph->th_fport; 5126 sind.sin_family = AF_INET; 5127 tpi_mp = mi_tpi_extconn_ind(NULL, 5128 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5129 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5130 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5131 } else { 5132 tpi_mp = mi_tpi_conn_ind(NULL, 5133 (char *)&sin, sizeof (sin_t), 5134 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5135 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5136 } 5137 5138 if (tpi_mp == NULL) { 5139 return (ENOMEM); 5140 } 5141 5142 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5143 connp->conn_send = ip_output; 5144 connp->conn_recv = tcp_input; 5145 connp->conn_fully_bound = B_FALSE; 5146 5147 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5148 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5149 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5150 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5151 5152 if (tcps->tcps_trace) { 5153 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5154 } 5155 5156 /* Inherit information from the "parent" */ 5157 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5158 tcp->tcp_family = ltcp->tcp_family; 5159 tcp->tcp_wq = ltcp->tcp_wq; 5160 tcp->tcp_rq = ltcp->tcp_rq; 5161 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5162 tcp->tcp_detached = B_TRUE; 5163 if ((err = tcp_init_values(tcp)) != 0) { 5164 freemsg(tpi_mp); 5165 return (err); 5166 } 5167 5168 /* 5169 * Let's make sure that eager tcp template has enough space to 5170 * copy IPv4 listener's tcp template. Since the conn_t structure is 5171 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5172 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5173 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5174 * extension headers or with ip6i_t struct). Note that bcopy() below 5175 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5176 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5177 */ 5178 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5179 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5180 5181 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5182 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5183 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5184 tcp->tcp_ttl = ltcp->tcp_ttl; 5185 tcp->tcp_tos = ltcp->tcp_tos; 5186 5187 /* Copy the IP+TCP header template from listener to eager */ 5188 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5189 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5190 tcp->tcp_ip6h = NULL; 5191 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5192 tcp->tcp_ip_hdr_len); 5193 5194 /* Initialize the IP addresses and Ports */ 5195 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5196 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5197 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5198 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5199 5200 /* Source routing option copyover (reverse it) */ 5201 if (tcps->tcps_rev_src_routes) 5202 tcp_opt_reverse(tcp, ipha); 5203 5204 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5205 ASSERT(!tcp->tcp_tconnind_started); 5206 5207 /* 5208 * If the SYN contains a credential, it's a loopback packet; attach 5209 * the credential to the TPI message. 5210 */ 5211 if ((cr = DB_CRED(idmp)) != NULL) { 5212 mblk_setcred(tpi_mp, cr); 5213 DB_CPID(tpi_mp) = DB_CPID(idmp); 5214 } 5215 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5216 5217 /* Inherit the listener's SSL protection state */ 5218 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5219 kssl_hold_ent(tcp->tcp_kssl_ent); 5220 tcp->tcp_kssl_pending = B_TRUE; 5221 } 5222 5223 return (0); 5224 } 5225 5226 /* 5227 * sets up conn for ipsec. 5228 * if the first mblk is M_CTL it is consumed and mpp is updated. 5229 * in case of error mpp is freed. 5230 */ 5231 conn_t * 5232 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5233 { 5234 conn_t *connp = tcp->tcp_connp; 5235 conn_t *econnp; 5236 squeue_t *new_sqp; 5237 mblk_t *first_mp = *mpp; 5238 mblk_t *mp = *mpp; 5239 boolean_t mctl_present = B_FALSE; 5240 uint_t ipvers; 5241 5242 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5243 if (econnp == NULL) { 5244 freemsg(first_mp); 5245 return (NULL); 5246 } 5247 if (DB_TYPE(mp) == M_CTL) { 5248 if (mp->b_cont == NULL || 5249 mp->b_cont->b_datap->db_type != M_DATA) { 5250 freemsg(first_mp); 5251 return (NULL); 5252 } 5253 mp = mp->b_cont; 5254 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5255 freemsg(first_mp); 5256 return (NULL); 5257 } 5258 5259 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5260 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5261 mctl_present = B_TRUE; 5262 } else { 5263 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5264 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5265 } 5266 5267 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5268 DB_CKSUMSTART(mp) = 0; 5269 5270 ASSERT(OK_32PTR(mp->b_rptr)); 5271 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5272 if (ipvers == IPV4_VERSION) { 5273 uint16_t *up; 5274 uint32_t ports; 5275 ipha_t *ipha; 5276 5277 ipha = (ipha_t *)mp->b_rptr; 5278 up = (uint16_t *)((uchar_t *)ipha + 5279 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5280 ports = *(uint32_t *)up; 5281 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5282 ipha->ipha_dst, ipha->ipha_src, ports); 5283 } else { 5284 uint16_t *up; 5285 uint32_t ports; 5286 uint16_t ip_hdr_len; 5287 uint8_t *nexthdrp; 5288 ip6_t *ip6h; 5289 tcph_t *tcph; 5290 5291 ip6h = (ip6_t *)mp->b_rptr; 5292 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5293 ip_hdr_len = IPV6_HDR_LEN; 5294 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5295 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5296 CONN_DEC_REF(econnp); 5297 freemsg(first_mp); 5298 return (NULL); 5299 } 5300 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5301 up = (uint16_t *)tcph->th_lport; 5302 ports = *(uint32_t *)up; 5303 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5304 ip6h->ip6_dst, ip6h->ip6_src, ports); 5305 } 5306 5307 /* 5308 * The caller already ensured that there is a sqp present. 5309 */ 5310 econnp->conn_sqp = new_sqp; 5311 5312 if (connp->conn_policy != NULL) { 5313 ipsec_in_t *ii; 5314 ii = (ipsec_in_t *)(first_mp->b_rptr); 5315 ASSERT(ii->ipsec_in_policy == NULL); 5316 IPPH_REFHOLD(connp->conn_policy); 5317 ii->ipsec_in_policy = connp->conn_policy; 5318 5319 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5320 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5321 CONN_DEC_REF(econnp); 5322 freemsg(first_mp); 5323 return (NULL); 5324 } 5325 } 5326 5327 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5328 CONN_DEC_REF(econnp); 5329 freemsg(first_mp); 5330 return (NULL); 5331 } 5332 5333 /* 5334 * If we know we have some policy, pass the "IPSEC" 5335 * options size TCP uses this adjust the MSS. 5336 */ 5337 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5338 if (mctl_present) { 5339 freeb(first_mp); 5340 *mpp = mp; 5341 } 5342 5343 return (econnp); 5344 } 5345 5346 /* 5347 * tcp_get_conn/tcp_free_conn 5348 * 5349 * tcp_get_conn is used to get a clean tcp connection structure. 5350 * It tries to reuse the connections put on the freelist by the 5351 * time_wait_collector failing which it goes to kmem_cache. This 5352 * way has two benefits compared to just allocating from and 5353 * freeing to kmem_cache. 5354 * 1) The time_wait_collector can free (which includes the cleanup) 5355 * outside the squeue. So when the interrupt comes, we have a clean 5356 * connection sitting in the freelist. Obviously, this buys us 5357 * performance. 5358 * 5359 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5360 * has multiple disadvantages - tying up the squeue during alloc, and the 5361 * fact that IPSec policy initialization has to happen here which 5362 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5363 * But allocating the conn/tcp in IP land is also not the best since 5364 * we can't check the 'q' and 'q0' which are protected by squeue and 5365 * blindly allocate memory which might have to be freed here if we are 5366 * not allowed to accept the connection. By using the freelist and 5367 * putting the conn/tcp back in freelist, we don't pay a penalty for 5368 * allocating memory without checking 'q/q0' and freeing it if we can't 5369 * accept the connection. 5370 * 5371 * Care should be taken to put the conn back in the same squeue's freelist 5372 * from which it was allocated. Best results are obtained if conn is 5373 * allocated from listener's squeue and freed to the same. Time wait 5374 * collector will free up the freelist is the connection ends up sitting 5375 * there for too long. 5376 */ 5377 void * 5378 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5379 { 5380 tcp_t *tcp = NULL; 5381 conn_t *connp = NULL; 5382 squeue_t *sqp = (squeue_t *)arg; 5383 tcp_squeue_priv_t *tcp_time_wait; 5384 netstack_t *ns; 5385 5386 tcp_time_wait = 5387 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5388 5389 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5390 tcp = tcp_time_wait->tcp_free_list; 5391 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5392 if (tcp != NULL) { 5393 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5394 tcp_time_wait->tcp_free_list_cnt--; 5395 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5396 tcp->tcp_time_wait_next = NULL; 5397 connp = tcp->tcp_connp; 5398 connp->conn_flags |= IPCL_REUSED; 5399 5400 ASSERT(tcp->tcp_tcps == NULL); 5401 ASSERT(connp->conn_netstack == NULL); 5402 ns = tcps->tcps_netstack; 5403 netstack_hold(ns); 5404 connp->conn_netstack = ns; 5405 tcp->tcp_tcps = tcps; 5406 TCPS_REFHOLD(tcps); 5407 ipcl_globalhash_insert(connp); 5408 return ((void *)connp); 5409 } 5410 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5411 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5412 tcps->tcps_netstack)) == NULL) 5413 return (NULL); 5414 tcp = connp->conn_tcp; 5415 tcp->tcp_tcps = tcps; 5416 TCPS_REFHOLD(tcps); 5417 return ((void *)connp); 5418 } 5419 5420 /* 5421 * Update the cached label for the given tcp_t. This should be called once per 5422 * connection, and before any packets are sent or tcp_process_options is 5423 * invoked. Returns B_FALSE if the correct label could not be constructed. 5424 */ 5425 static boolean_t 5426 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5427 { 5428 conn_t *connp = tcp->tcp_connp; 5429 5430 if (tcp->tcp_ipversion == IPV4_VERSION) { 5431 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5432 int added; 5433 5434 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5435 connp->conn_mac_exempt, 5436 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5437 return (B_FALSE); 5438 5439 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5440 if (added == -1) 5441 return (B_FALSE); 5442 tcp->tcp_hdr_len += added; 5443 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5444 tcp->tcp_ip_hdr_len += added; 5445 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5446 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5447 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5448 tcp->tcp_hdr_len); 5449 if (added == -1) 5450 return (B_FALSE); 5451 tcp->tcp_hdr_len += added; 5452 tcp->tcp_tcph = (tcph_t *) 5453 ((uchar_t *)tcp->tcp_tcph + added); 5454 tcp->tcp_ip_hdr_len += added; 5455 } 5456 } else { 5457 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5458 5459 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5460 connp->conn_mac_exempt, 5461 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5462 return (B_FALSE); 5463 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5464 &tcp->tcp_label_len, optbuf) != 0) 5465 return (B_FALSE); 5466 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5467 return (B_FALSE); 5468 } 5469 5470 connp->conn_ulp_labeled = 1; 5471 5472 return (B_TRUE); 5473 } 5474 5475 /* BEGIN CSTYLED */ 5476 /* 5477 * 5478 * The sockfs ACCEPT path: 5479 * ======================= 5480 * 5481 * The eager is now established in its own perimeter as soon as SYN is 5482 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5483 * completes the accept processing on the acceptor STREAM. The sending 5484 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5485 * listener but a TLI/XTI listener completes the accept processing 5486 * on the listener perimeter. 5487 * 5488 * Common control flow for 3 way handshake: 5489 * ---------------------------------------- 5490 * 5491 * incoming SYN (listener perimeter) -> tcp_rput_data() 5492 * -> tcp_conn_request() 5493 * 5494 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5495 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5496 * 5497 * Sockfs ACCEPT Path: 5498 * ------------------- 5499 * 5500 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5501 * as STREAM entry point) 5502 * 5503 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5504 * 5505 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5506 * association (we are not behind eager's squeue but sockfs is protecting us 5507 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5508 * is changed to point at tcp_wput(). 5509 * 5510 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5511 * listener (done on listener's perimeter). 5512 * 5513 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5514 * accept. 5515 * 5516 * TLI/XTI client ACCEPT path: 5517 * --------------------------- 5518 * 5519 * soaccept() sends T_CONN_RES on the listener STREAM. 5520 * 5521 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5522 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5523 * 5524 * Locks: 5525 * ====== 5526 * 5527 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5528 * and listeners->tcp_eager_next_q. 5529 * 5530 * Referencing: 5531 * ============ 5532 * 5533 * 1) We start out in tcp_conn_request by eager placing a ref on 5534 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5535 * 5536 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5537 * doing so we place a ref on the eager. This ref is finally dropped at the 5538 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5539 * reference is dropped by the squeue framework. 5540 * 5541 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5542 * 5543 * The reference must be released by the same entity that added the reference 5544 * In the above scheme, the eager is the entity that adds and releases the 5545 * references. Note that tcp_accept_finish executes in the squeue of the eager 5546 * (albeit after it is attached to the acceptor stream). Though 1. executes 5547 * in the listener's squeue, the eager is nascent at this point and the 5548 * reference can be considered to have been added on behalf of the eager. 5549 * 5550 * Eager getting a Reset or listener closing: 5551 * ========================================== 5552 * 5553 * Once the listener and eager are linked, the listener never does the unlink. 5554 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5555 * a message on all eager perimeter. The eager then does the unlink, clears 5556 * any pointers to the listener's queue and drops the reference to the 5557 * listener. The listener waits in tcp_close outside the squeue until its 5558 * refcount has dropped to 1. This ensures that the listener has waited for 5559 * all eagers to clear their association with the listener. 5560 * 5561 * Similarly, if eager decides to go away, it can unlink itself and close. 5562 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5563 * the reference to eager is still valid because of the extra ref we put 5564 * in tcp_send_conn_ind. 5565 * 5566 * Listener can always locate the eager under the protection 5567 * of the listener->tcp_eager_lock, and then do a refhold 5568 * on the eager during the accept processing. 5569 * 5570 * The acceptor stream accesses the eager in the accept processing 5571 * based on the ref placed on eager before sending T_conn_ind. 5572 * The only entity that can negate this refhold is a listener close 5573 * which is mutually exclusive with an active acceptor stream. 5574 * 5575 * Eager's reference on the listener 5576 * =================================== 5577 * 5578 * If the accept happens (even on a closed eager) the eager drops its 5579 * reference on the listener at the start of tcp_accept_finish. If the 5580 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5581 * the reference is dropped in tcp_closei_local. If the listener closes, 5582 * the reference is dropped in tcp_eager_kill. In all cases the reference 5583 * is dropped while executing in the eager's context (squeue). 5584 */ 5585 /* END CSTYLED */ 5586 5587 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5588 5589 /* 5590 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5591 * tcp_rput_data will not see any SYN packets. 5592 */ 5593 /* ARGSUSED */ 5594 void 5595 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5596 { 5597 tcph_t *tcph; 5598 uint32_t seg_seq; 5599 tcp_t *eager; 5600 uint_t ipvers; 5601 ipha_t *ipha; 5602 ip6_t *ip6h; 5603 int err; 5604 conn_t *econnp = NULL; 5605 squeue_t *new_sqp; 5606 mblk_t *mp1; 5607 uint_t ip_hdr_len; 5608 conn_t *connp = (conn_t *)arg; 5609 tcp_t *tcp = connp->conn_tcp; 5610 cred_t *credp; 5611 tcp_stack_t *tcps = tcp->tcp_tcps; 5612 ip_stack_t *ipst; 5613 5614 if (tcp->tcp_state != TCPS_LISTEN) 5615 goto error2; 5616 5617 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5618 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5621 mutex_exit(&tcp->tcp_eager_lock); 5622 TCP_STAT(tcps, tcp_listendrop); 5623 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5624 if (tcp->tcp_debug) { 5625 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5626 "tcp_conn_request: listen backlog (max=%d) " 5627 "overflow (%d pending) on %s", 5628 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 5634 if (tcp->tcp_conn_req_cnt_q0 >= 5635 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5636 /* 5637 * Q0 is full. Drop a pending half-open req from the queue 5638 * to make room for the new SYN req. Also mark the time we 5639 * drop a SYN. 5640 * 5641 * A more aggressive defense against SYN attack will 5642 * be to set the "tcp_syn_defense" flag now. 5643 */ 5644 TCP_STAT(tcps, tcp_listendropq0); 5645 tcp->tcp_last_rcv_lbolt = lbolt64; 5646 if (!tcp_drop_q0(tcp)) { 5647 mutex_exit(&tcp->tcp_eager_lock); 5648 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5649 if (tcp->tcp_debug) { 5650 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5651 "tcp_conn_request: listen half-open queue " 5652 "(max=%d) full (%d pending) on %s", 5653 tcps->tcps_conn_req_max_q0, 5654 tcp->tcp_conn_req_cnt_q0, 5655 tcp_display(tcp, NULL, 5656 DISP_PORT_ONLY)); 5657 } 5658 goto error2; 5659 } 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 /* 5664 * IP adds STRUIO_EAGER and ensures that the received packet is 5665 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5666 * link local address. If IPSec is enabled, db_struioflag has 5667 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5668 * otherwise an error case if neither of them is set. 5669 */ 5670 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5671 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5672 DB_CKSUMSTART(mp) = 0; 5673 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5674 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5675 if (econnp == NULL) 5676 goto error2; 5677 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5678 econnp->conn_sqp = new_sqp; 5679 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5680 /* 5681 * mp is updated in tcp_get_ipsec_conn(). 5682 */ 5683 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5684 if (econnp == NULL) { 5685 /* 5686 * mp freed by tcp_get_ipsec_conn. 5687 */ 5688 return; 5689 } 5690 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5691 } else { 5692 goto error2; 5693 } 5694 5695 ASSERT(DB_TYPE(mp) == M_DATA); 5696 5697 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5698 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5699 ASSERT(OK_32PTR(mp->b_rptr)); 5700 if (ipvers == IPV4_VERSION) { 5701 ipha = (ipha_t *)mp->b_rptr; 5702 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5703 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5704 } else { 5705 ip6h = (ip6_t *)mp->b_rptr; 5706 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5707 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5708 } 5709 5710 if (tcp->tcp_family == AF_INET) { 5711 ASSERT(ipvers == IPV4_VERSION); 5712 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5713 } else { 5714 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5715 } 5716 5717 if (err) 5718 goto error3; 5719 5720 eager = econnp->conn_tcp; 5721 5722 /* Inherit various TCP parameters from the listener */ 5723 eager->tcp_naglim = tcp->tcp_naglim; 5724 eager->tcp_first_timer_threshold = 5725 tcp->tcp_first_timer_threshold; 5726 eager->tcp_second_timer_threshold = 5727 tcp->tcp_second_timer_threshold; 5728 5729 eager->tcp_first_ctimer_threshold = 5730 tcp->tcp_first_ctimer_threshold; 5731 eager->tcp_second_ctimer_threshold = 5732 tcp->tcp_second_ctimer_threshold; 5733 5734 /* 5735 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5736 * If it does not, the eager's receive window will be set to the 5737 * listener's receive window later in this function. 5738 */ 5739 eager->tcp_rwnd = 0; 5740 5741 /* 5742 * Inherit listener's tcp_init_cwnd. Need to do this before 5743 * calling tcp_process_options() where tcp_mss_set() is called 5744 * to set the initial cwnd. 5745 */ 5746 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5747 5748 /* 5749 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5750 * zone id before the accept is completed in tcp_wput_accept(). 5751 */ 5752 econnp->conn_zoneid = connp->conn_zoneid; 5753 econnp->conn_allzones = connp->conn_allzones; 5754 5755 /* Copy nexthop information from listener to eager */ 5756 if (connp->conn_nexthop_set) { 5757 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5758 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5759 } 5760 5761 /* 5762 * TSOL: tsol_input_proc() needs the eager's cred before the 5763 * eager is accepted 5764 */ 5765 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5766 crhold(credp); 5767 5768 /* 5769 * If the caller has the process-wide flag set, then default to MAC 5770 * exempt mode. This allows read-down to unlabeled hosts. 5771 */ 5772 if (getpflags(NET_MAC_AWARE, credp) != 0) 5773 econnp->conn_mac_exempt = B_TRUE; 5774 5775 if (is_system_labeled()) { 5776 cred_t *cr; 5777 5778 if (connp->conn_mlp_type != mlptSingle) { 5779 cr = econnp->conn_peercred = DB_CRED(mp); 5780 if (cr != NULL) 5781 crhold(cr); 5782 else 5783 cr = econnp->conn_cred; 5784 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5785 econnp, cred_t *, cr) 5786 } else { 5787 cr = econnp->conn_cred; 5788 DTRACE_PROBE2(syn_accept, conn_t *, 5789 econnp, cred_t *, cr) 5790 } 5791 5792 if (!tcp_update_label(eager, cr)) { 5793 DTRACE_PROBE3( 5794 tx__ip__log__error__connrequest__tcp, 5795 char *, "eager connp(1) label on SYN mp(2) failed", 5796 conn_t *, econnp, mblk_t *, mp); 5797 goto error3; 5798 } 5799 } 5800 5801 eager->tcp_hard_binding = B_TRUE; 5802 5803 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5804 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5805 5806 CL_INET_CONNECT(eager); 5807 5808 /* 5809 * No need to check for multicast destination since ip will only pass 5810 * up multicasts to those that have expressed interest 5811 * TODO: what about rejecting broadcasts? 5812 * Also check that source is not a multicast or broadcast address. 5813 */ 5814 eager->tcp_state = TCPS_SYN_RCVD; 5815 5816 5817 /* 5818 * There should be no ire in the mp as we are being called after 5819 * receiving the SYN. 5820 */ 5821 ASSERT(tcp_ire_mp(mp) == NULL); 5822 5823 /* 5824 * Adapt our mss, ttl, ... according to information provided in IRE. 5825 */ 5826 5827 if (tcp_adapt_ire(eager, NULL) == 0) { 5828 /* Undo the bind_hash_insert */ 5829 tcp_bind_hash_remove(eager); 5830 goto error3; 5831 } 5832 5833 /* Process all TCP options. */ 5834 tcp_process_options(eager, tcph); 5835 5836 /* Is the other end ECN capable? */ 5837 if (tcps->tcps_ecn_permitted >= 1 && 5838 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5839 eager->tcp_ecn_ok = B_TRUE; 5840 } 5841 5842 /* 5843 * listener->tcp_rq->q_hiwat should be the default window size or a 5844 * window size changed via SO_RCVBUF option. First round up the 5845 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5846 * scale option value if needed. Call tcp_rwnd_set() to finish the 5847 * setting. 5848 * 5849 * Note if there is a rpipe metric associated with the remote host, 5850 * we should not inherit receive window size from listener. 5851 */ 5852 eager->tcp_rwnd = MSS_ROUNDUP( 5853 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5854 eager->tcp_rwnd), eager->tcp_mss); 5855 if (eager->tcp_snd_ws_ok) 5856 tcp_set_ws_value(eager); 5857 /* 5858 * Note that this is the only place tcp_rwnd_set() is called for 5859 * accepting a connection. We need to call it here instead of 5860 * after the 3-way handshake because we need to tell the other 5861 * side our rwnd in the SYN-ACK segment. 5862 */ 5863 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5864 5865 /* 5866 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5867 * via soaccept()->soinheritoptions() which essentially applies 5868 * all the listener options to the new STREAM. The options that we 5869 * need to take care of are: 5870 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5871 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5872 * SO_SNDBUF, SO_RCVBUF. 5873 * 5874 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5875 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5876 * tcp_maxpsz_set() gets called later from 5877 * tcp_accept_finish(), the option takes effect. 5878 * 5879 */ 5880 /* Set the TCP options */ 5881 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5882 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5883 eager->tcp_oobinline = tcp->tcp_oobinline; 5884 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5885 eager->tcp_broadcast = tcp->tcp_broadcast; 5886 eager->tcp_useloopback = tcp->tcp_useloopback; 5887 eager->tcp_dontroute = tcp->tcp_dontroute; 5888 eager->tcp_linger = tcp->tcp_linger; 5889 eager->tcp_lingertime = tcp->tcp_lingertime; 5890 if (tcp->tcp_ka_enabled) 5891 eager->tcp_ka_enabled = 1; 5892 5893 /* Set the IP options */ 5894 econnp->conn_broadcast = connp->conn_broadcast; 5895 econnp->conn_loopback = connp->conn_loopback; 5896 econnp->conn_dontroute = connp->conn_dontroute; 5897 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5898 5899 /* Put a ref on the listener for the eager. */ 5900 CONN_INC_REF(connp); 5901 mutex_enter(&tcp->tcp_eager_lock); 5902 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5903 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5904 tcp->tcp_eager_next_q0 = eager; 5905 eager->tcp_eager_prev_q0 = tcp; 5906 5907 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5908 eager->tcp_listener = tcp; 5909 eager->tcp_saved_listener = tcp; 5910 5911 /* 5912 * Tag this detached tcp vector for later retrieval 5913 * by our listener client in tcp_accept(). 5914 */ 5915 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5916 tcp->tcp_conn_req_cnt_q0++; 5917 if (++tcp->tcp_conn_req_seqnum == -1) { 5918 /* 5919 * -1 is "special" and defined in TPI as something 5920 * that should never be used in T_CONN_IND 5921 */ 5922 ++tcp->tcp_conn_req_seqnum; 5923 } 5924 mutex_exit(&tcp->tcp_eager_lock); 5925 5926 if (tcp->tcp_syn_defense) { 5927 /* Don't drop the SYN that comes from a good IP source */ 5928 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5929 if (addr_cache != NULL && eager->tcp_remote == 5930 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5931 eager->tcp_dontdrop = B_TRUE; 5932 } 5933 } 5934 5935 /* 5936 * We need to insert the eager in its own perimeter but as soon 5937 * as we do that, we expose the eager to the classifier and 5938 * should not touch any field outside the eager's perimeter. 5939 * So do all the work necessary before inserting the eager 5940 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5941 * will succeed but undo everything if it fails. 5942 */ 5943 seg_seq = ABE32_TO_U32(tcph->th_seq); 5944 eager->tcp_irs = seg_seq; 5945 eager->tcp_rack = seg_seq; 5946 eager->tcp_rnxt = seg_seq + 1; 5947 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5948 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5949 eager->tcp_state = TCPS_SYN_RCVD; 5950 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5951 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5952 if (mp1 == NULL) { 5953 /* 5954 * Increment the ref count as we are going to 5955 * enqueueing an mp in squeue 5956 */ 5957 CONN_INC_REF(econnp); 5958 goto error; 5959 } 5960 DB_CPID(mp1) = tcp->tcp_cpid; 5961 eager->tcp_cpid = tcp->tcp_cpid; 5962 eager->tcp_open_time = lbolt64; 5963 5964 /* 5965 * We need to start the rto timer. In normal case, we start 5966 * the timer after sending the packet on the wire (or at 5967 * least believing that packet was sent by waiting for 5968 * CALL_IP_WPUT() to return). Since this is the first packet 5969 * being sent on the wire for the eager, our initial tcp_rto 5970 * is at least tcp_rexmit_interval_min which is a fairly 5971 * large value to allow the algorithm to adjust slowly to large 5972 * fluctuations of RTT during first few transmissions. 5973 * 5974 * Starting the timer first and then sending the packet in this 5975 * case shouldn't make much difference since tcp_rexmit_interval_min 5976 * is of the order of several 100ms and starting the timer 5977 * first and then sending the packet will result in difference 5978 * of few micro seconds. 5979 * 5980 * Without this optimization, we are forced to hold the fanout 5981 * lock across the ipcl_bind_insert() and sending the packet 5982 * so that we don't race against an incoming packet (maybe RST) 5983 * for this eager. 5984 * 5985 * It is necessary to acquire an extra reference on the eager 5986 * at this point and hold it until after tcp_send_data() to 5987 * ensure against an eager close race. 5988 */ 5989 5990 CONN_INC_REF(eager->tcp_connp); 5991 5992 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5993 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5994 5995 5996 /* 5997 * Insert the eager in its own perimeter now. We are ready to deal 5998 * with any packets on eager. 5999 */ 6000 if (eager->tcp_ipversion == IPV4_VERSION) { 6001 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6002 goto error; 6003 } 6004 } else { 6005 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6006 goto error; 6007 } 6008 } 6009 6010 /* mark conn as fully-bound */ 6011 econnp->conn_fully_bound = B_TRUE; 6012 6013 /* Send the SYN-ACK */ 6014 tcp_send_data(eager, eager->tcp_wq, mp1); 6015 CONN_DEC_REF(eager->tcp_connp); 6016 freemsg(mp); 6017 6018 return; 6019 error: 6020 freemsg(mp1); 6021 eager->tcp_closemp_used = B_TRUE; 6022 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6023 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 6024 econnp, SQTAG_TCP_CONN_REQ_2); 6025 6026 /* 6027 * If a connection already exists, send the mp to that connections so 6028 * that it can be appropriately dealt with. 6029 */ 6030 ipst = tcps->tcps_netstack->netstack_ip; 6031 6032 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6033 if (!IPCL_IS_CONNECTED(econnp)) { 6034 /* 6035 * Something bad happened. ipcl_conn_insert() 6036 * failed because a connection already existed 6037 * in connected hash but we can't find it 6038 * anymore (someone blew it away). Just 6039 * free this message and hopefully remote 6040 * will retransmit at which time the SYN can be 6041 * treated as a new connection or dealth with 6042 * a TH_RST if a connection already exists. 6043 */ 6044 CONN_DEC_REF(econnp); 6045 freemsg(mp); 6046 } else { 6047 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6048 econnp, SQTAG_TCP_CONN_REQ_1); 6049 } 6050 } else { 6051 /* Nobody wants this packet */ 6052 freemsg(mp); 6053 } 6054 return; 6055 error3: 6056 CONN_DEC_REF(econnp); 6057 error2: 6058 freemsg(mp); 6059 } 6060 6061 /* 6062 * In an ideal case of vertical partition in NUMA architecture, its 6063 * beneficial to have the listener and all the incoming connections 6064 * tied to the same squeue. The other constraint is that incoming 6065 * connections should be tied to the squeue attached to interrupted 6066 * CPU for obvious locality reason so this leaves the listener to 6067 * be tied to the same squeue. Our only problem is that when listener 6068 * is binding, the CPU that will get interrupted by the NIC whose 6069 * IP address the listener is binding to is not even known. So 6070 * the code below allows us to change that binding at the time the 6071 * CPU is interrupted by virtue of incoming connection's squeue. 6072 * 6073 * This is usefull only in case of a listener bound to a specific IP 6074 * address. For other kind of listeners, they get bound the 6075 * very first time and there is no attempt to rebind them. 6076 */ 6077 void 6078 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6079 { 6080 conn_t *connp = (conn_t *)arg; 6081 squeue_t *sqp = (squeue_t *)arg2; 6082 squeue_t *new_sqp; 6083 uint32_t conn_flags; 6084 6085 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6086 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6087 } else { 6088 goto done; 6089 } 6090 6091 if (connp->conn_fanout == NULL) 6092 goto done; 6093 6094 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6095 mutex_enter(&connp->conn_fanout->connf_lock); 6096 mutex_enter(&connp->conn_lock); 6097 /* 6098 * No one from read or write side can access us now 6099 * except for already queued packets on this squeue. 6100 * But since we haven't changed the squeue yet, they 6101 * can't execute. If they are processed after we have 6102 * changed the squeue, they are sent back to the 6103 * correct squeue down below. 6104 * But a listner close can race with processing of 6105 * incoming SYN. If incoming SYN processing changes 6106 * the squeue then the listener close which is waiting 6107 * to enter the squeue would operate on the wrong 6108 * squeue. Hence we don't change the squeue here unless 6109 * the refcount is exactly the minimum refcount. The 6110 * minimum refcount of 4 is counted as - 1 each for 6111 * TCP and IP, 1 for being in the classifier hash, and 6112 * 1 for the mblk being processed. 6113 */ 6114 6115 if (connp->conn_ref != 4 || 6116 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6117 mutex_exit(&connp->conn_lock); 6118 mutex_exit(&connp->conn_fanout->connf_lock); 6119 goto done; 6120 } 6121 if (connp->conn_sqp != new_sqp) { 6122 while (connp->conn_sqp != new_sqp) 6123 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6124 } 6125 6126 do { 6127 conn_flags = connp->conn_flags; 6128 conn_flags |= IPCL_FULLY_BOUND; 6129 (void) cas32(&connp->conn_flags, connp->conn_flags, 6130 conn_flags); 6131 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6132 6133 mutex_exit(&connp->conn_fanout->connf_lock); 6134 mutex_exit(&connp->conn_lock); 6135 } 6136 6137 done: 6138 if (connp->conn_sqp != sqp) { 6139 CONN_INC_REF(connp); 6140 squeue_fill(connp->conn_sqp, mp, 6141 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6142 } else { 6143 tcp_conn_request(connp, mp, sqp); 6144 } 6145 } 6146 6147 /* 6148 * Successful connect request processing begins when our client passes 6149 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6150 * our T_OK_ACK reply message upstream. The control flow looks like this: 6151 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6152 * upstream <- tcp_rput() <- IP 6153 * After various error checks are completed, tcp_connect() lays 6154 * the target address and port into the composite header template, 6155 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6156 * request followed by an IRE request, and passes the three mblk message 6157 * down to IP looking like this: 6158 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6159 * Processing continues in tcp_rput() when we receive the following message: 6160 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6161 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6162 * to fire off the connection request, and then passes the T_OK_ACK mblk 6163 * upstream that we filled in below. There are, of course, numerous 6164 * error conditions along the way which truncate the processing described 6165 * above. 6166 */ 6167 static void 6168 tcp_connect(tcp_t *tcp, mblk_t *mp) 6169 { 6170 sin_t *sin; 6171 sin6_t *sin6; 6172 queue_t *q = tcp->tcp_wq; 6173 struct T_conn_req *tcr; 6174 ipaddr_t *dstaddrp; 6175 in_port_t dstport; 6176 uint_t srcid; 6177 6178 tcr = (struct T_conn_req *)mp->b_rptr; 6179 6180 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6181 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6182 tcp_err_ack(tcp, mp, TPROTO, 0); 6183 return; 6184 } 6185 6186 /* 6187 * Determine packet type based on type of address passed in 6188 * the request should contain an IPv4 or IPv6 address. 6189 * Make sure that address family matches the type of 6190 * family of the the address passed down 6191 */ 6192 switch (tcr->DEST_length) { 6193 default: 6194 tcp_err_ack(tcp, mp, TBADADDR, 0); 6195 return; 6196 6197 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6198 /* 6199 * XXX: The check for valid DEST_length was not there 6200 * in earlier releases and some buggy 6201 * TLI apps (e.g Sybase) got away with not feeding 6202 * in sin_zero part of address. 6203 * We allow that bug to keep those buggy apps humming. 6204 * Test suites require the check on DEST_length. 6205 * We construct a new mblk with valid DEST_length 6206 * free the original so the rest of the code does 6207 * not have to keep track of this special shorter 6208 * length address case. 6209 */ 6210 mblk_t *nmp; 6211 struct T_conn_req *ntcr; 6212 sin_t *nsin; 6213 6214 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6215 tcr->OPT_length, BPRI_HI); 6216 if (nmp == NULL) { 6217 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6218 return; 6219 } 6220 ntcr = (struct T_conn_req *)nmp->b_rptr; 6221 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6222 ntcr->PRIM_type = T_CONN_REQ; 6223 ntcr->DEST_length = sizeof (sin_t); 6224 ntcr->DEST_offset = sizeof (struct T_conn_req); 6225 6226 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6227 *nsin = sin_null; 6228 /* Get pointer to shorter address to copy from original mp */ 6229 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6230 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6231 if (sin == NULL || !OK_32PTR((char *)sin)) { 6232 freemsg(nmp); 6233 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6234 return; 6235 } 6236 nsin->sin_family = sin->sin_family; 6237 nsin->sin_port = sin->sin_port; 6238 nsin->sin_addr = sin->sin_addr; 6239 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6240 nmp->b_wptr = (uchar_t *)&nsin[1]; 6241 if (tcr->OPT_length != 0) { 6242 ntcr->OPT_length = tcr->OPT_length; 6243 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6244 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6245 (uchar_t *)ntcr + ntcr->OPT_offset, 6246 tcr->OPT_length); 6247 nmp->b_wptr += tcr->OPT_length; 6248 } 6249 freemsg(mp); /* original mp freed */ 6250 mp = nmp; /* re-initialize original variables */ 6251 tcr = ntcr; 6252 } 6253 /* FALLTHRU */ 6254 6255 case sizeof (sin_t): 6256 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6257 sizeof (sin_t)); 6258 if (sin == NULL || !OK_32PTR((char *)sin)) { 6259 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6260 return; 6261 } 6262 if (tcp->tcp_family != AF_INET || 6263 sin->sin_family != AF_INET) { 6264 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6265 return; 6266 } 6267 if (sin->sin_port == 0) { 6268 tcp_err_ack(tcp, mp, TBADADDR, 0); 6269 return; 6270 } 6271 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6272 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6273 return; 6274 } 6275 6276 break; 6277 6278 case sizeof (sin6_t): 6279 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6280 sizeof (sin6_t)); 6281 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6282 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6283 return; 6284 } 6285 if (tcp->tcp_family != AF_INET6 || 6286 sin6->sin6_family != AF_INET6) { 6287 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6288 return; 6289 } 6290 if (sin6->sin6_port == 0) { 6291 tcp_err_ack(tcp, mp, TBADADDR, 0); 6292 return; 6293 } 6294 break; 6295 } 6296 /* 6297 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6298 * should key on their sequence number and cut them loose. 6299 */ 6300 6301 /* 6302 * If options passed in, feed it for verification and handling 6303 */ 6304 if (tcr->OPT_length != 0) { 6305 mblk_t *ok_mp; 6306 mblk_t *discon_mp; 6307 mblk_t *conn_opts_mp; 6308 int t_error, sys_error, do_disconnect; 6309 6310 conn_opts_mp = NULL; 6311 6312 if (tcp_conprim_opt_process(tcp, mp, 6313 &do_disconnect, &t_error, &sys_error) < 0) { 6314 if (do_disconnect) { 6315 ASSERT(t_error == 0 && sys_error == 0); 6316 discon_mp = mi_tpi_discon_ind(NULL, 6317 ECONNREFUSED, 0); 6318 if (!discon_mp) { 6319 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6320 TSYSERR, ENOMEM); 6321 return; 6322 } 6323 ok_mp = mi_tpi_ok_ack_alloc(mp); 6324 if (!ok_mp) { 6325 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6326 TSYSERR, ENOMEM); 6327 return; 6328 } 6329 qreply(q, ok_mp); 6330 qreply(q, discon_mp); /* no flush! */ 6331 } else { 6332 ASSERT(t_error != 0); 6333 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6334 sys_error); 6335 } 6336 return; 6337 } 6338 /* 6339 * Success in setting options, the mp option buffer represented 6340 * by OPT_length/offset has been potentially modified and 6341 * contains results of option processing. We copy it in 6342 * another mp to save it for potentially influencing returning 6343 * it in T_CONN_CONN. 6344 */ 6345 if (tcr->OPT_length != 0) { /* there are resulting options */ 6346 conn_opts_mp = copyb(mp); 6347 if (!conn_opts_mp) { 6348 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6349 TSYSERR, ENOMEM); 6350 return; 6351 } 6352 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6353 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6354 /* 6355 * Note: 6356 * These resulting option negotiation can include any 6357 * end-to-end negotiation options but there no such 6358 * thing (yet?) in our TCP/IP. 6359 */ 6360 } 6361 } 6362 6363 /* 6364 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6365 * make sure that the template IP header in the tcp structure is an 6366 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6367 * need to this before we call tcp_bindi() so that the port lookup 6368 * code will look for ports in the correct port space (IPv4 and 6369 * IPv6 have separate port spaces). 6370 */ 6371 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6372 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6373 int err = 0; 6374 6375 err = tcp_header_init_ipv4(tcp); 6376 if (err != 0) { 6377 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6378 goto connect_failed; 6379 } 6380 if (tcp->tcp_lport != 0) 6381 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6382 } 6383 6384 switch (tcp->tcp_state) { 6385 case TCPS_IDLE: 6386 /* 6387 * We support quick connect, refer to comments in 6388 * tcp_connect_*() 6389 */ 6390 /* FALLTHRU */ 6391 case TCPS_BOUND: 6392 case TCPS_LISTEN: 6393 if (tcp->tcp_family == AF_INET6) { 6394 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6395 tcp_connect_ipv6(tcp, mp, 6396 &sin6->sin6_addr, 6397 sin6->sin6_port, sin6->sin6_flowinfo, 6398 sin6->__sin6_src_id, sin6->sin6_scope_id); 6399 return; 6400 } 6401 /* 6402 * Destination adress is mapped IPv6 address. 6403 * Source bound address should be unspecified or 6404 * IPv6 mapped address as well. 6405 */ 6406 if (!IN6_IS_ADDR_UNSPECIFIED( 6407 &tcp->tcp_bound_source_v6) && 6408 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6409 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6410 EADDRNOTAVAIL); 6411 break; 6412 } 6413 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6414 dstport = sin6->sin6_port; 6415 srcid = sin6->__sin6_src_id; 6416 } else { 6417 dstaddrp = &sin->sin_addr.s_addr; 6418 dstport = sin->sin_port; 6419 srcid = 0; 6420 } 6421 6422 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6423 return; 6424 default: 6425 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6426 break; 6427 } 6428 /* 6429 * Note: Code below is the "failure" case 6430 */ 6431 /* return error ack and blow away saved option results if any */ 6432 connect_failed: 6433 if (mp != NULL) 6434 putnext(tcp->tcp_rq, mp); 6435 else { 6436 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6437 TSYSERR, ENOMEM); 6438 } 6439 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6440 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6441 } 6442 6443 /* 6444 * Handle connect to IPv4 destinations, including connections for AF_INET6 6445 * sockets connecting to IPv4 mapped IPv6 destinations. 6446 */ 6447 static void 6448 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6449 uint_t srcid) 6450 { 6451 tcph_t *tcph; 6452 mblk_t *mp1; 6453 ipaddr_t dstaddr = *dstaddrp; 6454 int32_t oldstate; 6455 uint16_t lport; 6456 tcp_stack_t *tcps = tcp->tcp_tcps; 6457 6458 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6459 6460 /* Check for attempt to connect to INADDR_ANY */ 6461 if (dstaddr == INADDR_ANY) { 6462 /* 6463 * SunOS 4.x and 4.3 BSD allow an application 6464 * to connect a TCP socket to INADDR_ANY. 6465 * When they do this, the kernel picks the 6466 * address of one interface and uses it 6467 * instead. The kernel usually ends up 6468 * picking the address of the loopback 6469 * interface. This is an undocumented feature. 6470 * However, we provide the same thing here 6471 * in order to have source and binary 6472 * compatibility with SunOS 4.x. 6473 * Update the T_CONN_REQ (sin/sin6) since it is used to 6474 * generate the T_CONN_CON. 6475 */ 6476 dstaddr = htonl(INADDR_LOOPBACK); 6477 *dstaddrp = dstaddr; 6478 } 6479 6480 /* Handle __sin6_src_id if socket not bound to an IP address */ 6481 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6482 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6483 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6484 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6485 tcp->tcp_ipha->ipha_src); 6486 } 6487 6488 /* 6489 * Don't let an endpoint connect to itself. Note that 6490 * the test here does not catch the case where the 6491 * source IP addr was left unspecified by the user. In 6492 * this case, the source addr is set in tcp_adapt_ire() 6493 * using the reply to the T_BIND message that we send 6494 * down to IP here and the check is repeated in tcp_rput_other. 6495 */ 6496 if (dstaddr == tcp->tcp_ipha->ipha_src && 6497 dstport == tcp->tcp_lport) { 6498 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6499 goto failed; 6500 } 6501 6502 tcp->tcp_ipha->ipha_dst = dstaddr; 6503 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6504 6505 /* 6506 * Massage a source route if any putting the first hop 6507 * in iph_dst. Compute a starting value for the checksum which 6508 * takes into account that the original iph_dst should be 6509 * included in the checksum but that ip will include the 6510 * first hop in the source route in the tcp checksum. 6511 */ 6512 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6513 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6514 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6515 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6516 if ((int)tcp->tcp_sum < 0) 6517 tcp->tcp_sum--; 6518 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6519 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6520 (tcp->tcp_sum >> 16)); 6521 tcph = tcp->tcp_tcph; 6522 *(uint16_t *)tcph->th_fport = dstport; 6523 tcp->tcp_fport = dstport; 6524 6525 oldstate = tcp->tcp_state; 6526 /* 6527 * At this point the remote destination address and remote port fields 6528 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6529 * have to see which state tcp was in so we can take apropriate action. 6530 */ 6531 if (oldstate == TCPS_IDLE) { 6532 /* 6533 * We support a quick connect capability here, allowing 6534 * clients to transition directly from IDLE to SYN_SENT 6535 * tcp_bindi will pick an unused port, insert the connection 6536 * in the bind hash and transition to BOUND state. 6537 */ 6538 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6539 tcp, B_TRUE); 6540 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6541 B_FALSE, B_FALSE); 6542 if (lport == 0) { 6543 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6544 goto failed; 6545 } 6546 } 6547 tcp->tcp_state = TCPS_SYN_SENT; 6548 6549 /* 6550 * TODO: allow data with connect requests 6551 * by unlinking M_DATA trailers here and 6552 * linking them in behind the T_OK_ACK mblk. 6553 * The tcp_rput() bind ack handler would then 6554 * feed them to tcp_wput_data() rather than call 6555 * tcp_timer(). 6556 */ 6557 mp = mi_tpi_ok_ack_alloc(mp); 6558 if (!mp) { 6559 tcp->tcp_state = oldstate; 6560 goto failed; 6561 } 6562 if (tcp->tcp_family == AF_INET) { 6563 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6564 sizeof (ipa_conn_t)); 6565 } else { 6566 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6567 sizeof (ipa6_conn_t)); 6568 } 6569 if (mp1) { 6570 /* 6571 * We need to make sure that the conn_recv is set to a non-null 6572 * value before we insert the conn_t into the classifier table. 6573 * This is to avoid a race with an incoming packet which does 6574 * an ipcl_classify(). 6575 */ 6576 tcp->tcp_connp->conn_recv = tcp_input; 6577 6578 /* Hang onto the T_OK_ACK for later. */ 6579 linkb(mp1, mp); 6580 mblk_setcred(mp1, tcp->tcp_cred); 6581 if (tcp->tcp_family == AF_INET) 6582 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6583 else { 6584 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6585 &tcp->tcp_sticky_ipp); 6586 } 6587 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6588 tcp->tcp_active_open = 1; 6589 /* 6590 * If the bind cannot complete immediately 6591 * IP will arrange to call tcp_rput_other 6592 * when the bind completes. 6593 */ 6594 if (mp1 != NULL) 6595 tcp_rput_other(tcp, mp1); 6596 return; 6597 } 6598 /* Error case */ 6599 tcp->tcp_state = oldstate; 6600 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6601 6602 failed: 6603 /* return error ack and blow away saved option results if any */ 6604 if (mp != NULL) 6605 putnext(tcp->tcp_rq, mp); 6606 else { 6607 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6608 TSYSERR, ENOMEM); 6609 } 6610 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6611 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6612 6613 } 6614 6615 /* 6616 * Handle connect to IPv6 destinations. 6617 */ 6618 static void 6619 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6620 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6621 { 6622 tcph_t *tcph; 6623 mblk_t *mp1; 6624 ip6_rthdr_t *rth; 6625 int32_t oldstate; 6626 uint16_t lport; 6627 tcp_stack_t *tcps = tcp->tcp_tcps; 6628 6629 ASSERT(tcp->tcp_family == AF_INET6); 6630 6631 /* 6632 * If we're here, it means that the destination address is a native 6633 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6634 * reason why it might not be IPv6 is if the socket was bound to an 6635 * IPv4-mapped IPv6 address. 6636 */ 6637 if (tcp->tcp_ipversion != IPV6_VERSION) { 6638 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6639 goto failed; 6640 } 6641 6642 /* 6643 * Interpret a zero destination to mean loopback. 6644 * Update the T_CONN_REQ (sin/sin6) since it is used to 6645 * generate the T_CONN_CON. 6646 */ 6647 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6648 *dstaddrp = ipv6_loopback; 6649 } 6650 6651 /* Handle __sin6_src_id if socket not bound to an IP address */ 6652 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6653 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6654 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6655 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6656 } 6657 6658 /* 6659 * Take care of the scope_id now and add ip6i_t 6660 * if ip6i_t is not already allocated through TCP 6661 * sticky options. At this point tcp_ip6h does not 6662 * have dst info, thus use dstaddrp. 6663 */ 6664 if (scope_id != 0 && 6665 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6666 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6667 ip6i_t *ip6i; 6668 6669 ipp->ipp_ifindex = scope_id; 6670 ip6i = (ip6i_t *)tcp->tcp_iphc; 6671 6672 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6673 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6674 /* Already allocated */ 6675 ip6i->ip6i_flags |= IP6I_IFINDEX; 6676 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6677 ipp->ipp_fields |= IPPF_SCOPE_ID; 6678 } else { 6679 int reterr; 6680 6681 ipp->ipp_fields |= IPPF_SCOPE_ID; 6682 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6683 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6684 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6685 if (reterr != 0) 6686 goto failed; 6687 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6688 } 6689 } 6690 6691 /* 6692 * Don't let an endpoint connect to itself. Note that 6693 * the test here does not catch the case where the 6694 * source IP addr was left unspecified by the user. In 6695 * this case, the source addr is set in tcp_adapt_ire() 6696 * using the reply to the T_BIND message that we send 6697 * down to IP here and the check is repeated in tcp_rput_other. 6698 */ 6699 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6700 (dstport == tcp->tcp_lport)) { 6701 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6702 goto failed; 6703 } 6704 6705 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6706 tcp->tcp_remote_v6 = *dstaddrp; 6707 tcp->tcp_ip6h->ip6_vcf = 6708 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6709 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6710 6711 6712 /* 6713 * Massage a routing header (if present) putting the first hop 6714 * in ip6_dst. Compute a starting value for the checksum which 6715 * takes into account that the original ip6_dst should be 6716 * included in the checksum but that ip will include the 6717 * first hop in the source route in the tcp checksum. 6718 */ 6719 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6720 if (rth != NULL) { 6721 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6722 tcps->tcps_netstack); 6723 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6724 (tcp->tcp_sum >> 16)); 6725 } else { 6726 tcp->tcp_sum = 0; 6727 } 6728 6729 tcph = tcp->tcp_tcph; 6730 *(uint16_t *)tcph->th_fport = dstport; 6731 tcp->tcp_fport = dstport; 6732 6733 oldstate = tcp->tcp_state; 6734 /* 6735 * At this point the remote destination address and remote port fields 6736 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6737 * have to see which state tcp was in so we can take apropriate action. 6738 */ 6739 if (oldstate == TCPS_IDLE) { 6740 /* 6741 * We support a quick connect capability here, allowing 6742 * clients to transition directly from IDLE to SYN_SENT 6743 * tcp_bindi will pick an unused port, insert the connection 6744 * in the bind hash and transition to BOUND state. 6745 */ 6746 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6747 tcp, B_TRUE); 6748 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6749 B_FALSE, B_FALSE); 6750 if (lport == 0) { 6751 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6752 goto failed; 6753 } 6754 } 6755 tcp->tcp_state = TCPS_SYN_SENT; 6756 /* 6757 * TODO: allow data with connect requests 6758 * by unlinking M_DATA trailers here and 6759 * linking them in behind the T_OK_ACK mblk. 6760 * The tcp_rput() bind ack handler would then 6761 * feed them to tcp_wput_data() rather than call 6762 * tcp_timer(). 6763 */ 6764 mp = mi_tpi_ok_ack_alloc(mp); 6765 if (!mp) { 6766 tcp->tcp_state = oldstate; 6767 goto failed; 6768 } 6769 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6770 if (mp1) { 6771 /* 6772 * We need to make sure that the conn_recv is set to a non-null 6773 * value before we insert the conn_t into the classifier table. 6774 * This is to avoid a race with an incoming packet which does 6775 * an ipcl_classify(). 6776 */ 6777 tcp->tcp_connp->conn_recv = tcp_input; 6778 6779 /* Hang onto the T_OK_ACK for later. */ 6780 linkb(mp1, mp); 6781 mblk_setcred(mp1, tcp->tcp_cred); 6782 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6783 &tcp->tcp_sticky_ipp); 6784 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6785 tcp->tcp_active_open = 1; 6786 /* ip_bind_v6() may return ACK or ERROR */ 6787 if (mp1 != NULL) 6788 tcp_rput_other(tcp, mp1); 6789 return; 6790 } 6791 /* Error case */ 6792 tcp->tcp_state = oldstate; 6793 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6794 6795 failed: 6796 /* return error ack and blow away saved option results if any */ 6797 if (mp != NULL) 6798 putnext(tcp->tcp_rq, mp); 6799 else { 6800 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6801 TSYSERR, ENOMEM); 6802 } 6803 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6804 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6805 } 6806 6807 /* 6808 * We need a stream q for detached closing tcp connections 6809 * to use. Our client hereby indicates that this q is the 6810 * one to use. 6811 */ 6812 static void 6813 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6814 { 6815 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6816 queue_t *q = tcp->tcp_wq; 6817 tcp_stack_t *tcps = tcp->tcp_tcps; 6818 6819 #ifdef NS_DEBUG 6820 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6821 tcps->tcps_netstack->netstack_stackid); 6822 #endif 6823 mp->b_datap->db_type = M_IOCACK; 6824 iocp->ioc_count = 0; 6825 mutex_enter(&tcps->tcps_g_q_lock); 6826 if (tcps->tcps_g_q != NULL) { 6827 mutex_exit(&tcps->tcps_g_q_lock); 6828 iocp->ioc_error = EALREADY; 6829 } else { 6830 mblk_t *mp1; 6831 6832 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6833 if (mp1 == NULL) { 6834 mutex_exit(&tcps->tcps_g_q_lock); 6835 iocp->ioc_error = ENOMEM; 6836 } else { 6837 tcps->tcps_g_q = tcp->tcp_rq; 6838 mutex_exit(&tcps->tcps_g_q_lock); 6839 iocp->ioc_error = 0; 6840 iocp->ioc_rval = 0; 6841 /* 6842 * We are passing tcp_sticky_ipp as NULL 6843 * as it is not useful for tcp_default queue 6844 * 6845 * Set conn_recv just in case. 6846 */ 6847 tcp->tcp_connp->conn_recv = tcp_conn_request; 6848 6849 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6850 if (mp1 != NULL) 6851 tcp_rput_other(tcp, mp1); 6852 } 6853 } 6854 qreply(q, mp); 6855 } 6856 6857 /* 6858 * Our client hereby directs us to reject the connection request 6859 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6860 * of sending the appropriate RST, not an ICMP error. 6861 */ 6862 static void 6863 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6864 { 6865 tcp_t *ltcp = NULL; 6866 t_scalar_t seqnum; 6867 conn_t *connp; 6868 tcp_stack_t *tcps = tcp->tcp_tcps; 6869 6870 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6871 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6872 tcp_err_ack(tcp, mp, TPROTO, 0); 6873 return; 6874 } 6875 6876 /* 6877 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6878 * when the stream is in BOUND state. Do not send a reset, 6879 * since the destination IP address is not valid, and it can 6880 * be the initialized value of all zeros (broadcast address). 6881 * 6882 * If TCP has sent down a bind request to IP and has not 6883 * received the reply, reject the request. Otherwise, TCP 6884 * will be confused. 6885 */ 6886 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6887 if (tcp->tcp_debug) { 6888 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6889 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6890 } 6891 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6892 return; 6893 } 6894 6895 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6896 6897 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6898 6899 /* 6900 * According to TPI, for non-listeners, ignore seqnum 6901 * and disconnect. 6902 * Following interpretation of -1 seqnum is historical 6903 * and implied TPI ? (TPI only states that for T_CONN_IND, 6904 * a valid seqnum should not be -1). 6905 * 6906 * -1 means disconnect everything 6907 * regardless even on a listener. 6908 */ 6909 6910 int old_state = tcp->tcp_state; 6911 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6912 6913 /* 6914 * The connection can't be on the tcp_time_wait_head list 6915 * since it is not detached. 6916 */ 6917 ASSERT(tcp->tcp_time_wait_next == NULL); 6918 ASSERT(tcp->tcp_time_wait_prev == NULL); 6919 ASSERT(tcp->tcp_time_wait_expire == 0); 6920 ltcp = NULL; 6921 /* 6922 * If it used to be a listener, check to make sure no one else 6923 * has taken the port before switching back to LISTEN state. 6924 */ 6925 if (tcp->tcp_ipversion == IPV4_VERSION) { 6926 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6927 tcp->tcp_ipha->ipha_src, 6928 tcp->tcp_connp->conn_zoneid, ipst); 6929 if (connp != NULL) 6930 ltcp = connp->conn_tcp; 6931 } else { 6932 /* Allow tcp_bound_if listeners? */ 6933 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6934 &tcp->tcp_ip6h->ip6_src, 0, 6935 tcp->tcp_connp->conn_zoneid, ipst); 6936 if (connp != NULL) 6937 ltcp = connp->conn_tcp; 6938 } 6939 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6940 tcp->tcp_state = TCPS_LISTEN; 6941 } else if (old_state > TCPS_BOUND) { 6942 tcp->tcp_conn_req_max = 0; 6943 tcp->tcp_state = TCPS_BOUND; 6944 } 6945 if (ltcp != NULL) 6946 CONN_DEC_REF(ltcp->tcp_connp); 6947 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6948 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6949 } else if (old_state == TCPS_ESTABLISHED || 6950 old_state == TCPS_CLOSE_WAIT) { 6951 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6952 } 6953 6954 if (tcp->tcp_fused) 6955 tcp_unfuse(tcp); 6956 6957 mutex_enter(&tcp->tcp_eager_lock); 6958 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6959 (tcp->tcp_conn_req_cnt_q != 0)) { 6960 tcp_eager_cleanup(tcp, 0); 6961 } 6962 mutex_exit(&tcp->tcp_eager_lock); 6963 6964 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6965 tcp->tcp_rnxt, TH_RST | TH_ACK); 6966 6967 tcp_reinit(tcp); 6968 6969 if (old_state >= TCPS_ESTABLISHED) { 6970 /* Send M_FLUSH according to TPI */ 6971 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6972 } 6973 mp = mi_tpi_ok_ack_alloc(mp); 6974 if (mp) 6975 putnext(tcp->tcp_rq, mp); 6976 return; 6977 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6978 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6979 return; 6980 } 6981 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6982 /* Send M_FLUSH according to TPI */ 6983 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6984 } 6985 mp = mi_tpi_ok_ack_alloc(mp); 6986 if (mp) 6987 putnext(tcp->tcp_rq, mp); 6988 } 6989 6990 /* 6991 * Diagnostic routine used to return a string associated with the tcp state. 6992 * Note that if the caller does not supply a buffer, it will use an internal 6993 * static string. This means that if multiple threads call this function at 6994 * the same time, output can be corrupted... Note also that this function 6995 * does not check the size of the supplied buffer. The caller has to make 6996 * sure that it is big enough. 6997 */ 6998 static char * 6999 tcp_display(tcp_t *tcp, char *sup_buf, char format) 7000 { 7001 char buf1[30]; 7002 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7003 char *buf; 7004 char *cp; 7005 in6_addr_t local, remote; 7006 char local_addrbuf[INET6_ADDRSTRLEN]; 7007 char remote_addrbuf[INET6_ADDRSTRLEN]; 7008 7009 if (sup_buf != NULL) 7010 buf = sup_buf; 7011 else 7012 buf = priv_buf; 7013 7014 if (tcp == NULL) 7015 return ("NULL_TCP"); 7016 switch (tcp->tcp_state) { 7017 case TCPS_CLOSED: 7018 cp = "TCP_CLOSED"; 7019 break; 7020 case TCPS_IDLE: 7021 cp = "TCP_IDLE"; 7022 break; 7023 case TCPS_BOUND: 7024 cp = "TCP_BOUND"; 7025 break; 7026 case TCPS_LISTEN: 7027 cp = "TCP_LISTEN"; 7028 break; 7029 case TCPS_SYN_SENT: 7030 cp = "TCP_SYN_SENT"; 7031 break; 7032 case TCPS_SYN_RCVD: 7033 cp = "TCP_SYN_RCVD"; 7034 break; 7035 case TCPS_ESTABLISHED: 7036 cp = "TCP_ESTABLISHED"; 7037 break; 7038 case TCPS_CLOSE_WAIT: 7039 cp = "TCP_CLOSE_WAIT"; 7040 break; 7041 case TCPS_FIN_WAIT_1: 7042 cp = "TCP_FIN_WAIT_1"; 7043 break; 7044 case TCPS_CLOSING: 7045 cp = "TCP_CLOSING"; 7046 break; 7047 case TCPS_LAST_ACK: 7048 cp = "TCP_LAST_ACK"; 7049 break; 7050 case TCPS_FIN_WAIT_2: 7051 cp = "TCP_FIN_WAIT_2"; 7052 break; 7053 case TCPS_TIME_WAIT: 7054 cp = "TCP_TIME_WAIT"; 7055 break; 7056 default: 7057 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7058 cp = buf1; 7059 break; 7060 } 7061 switch (format) { 7062 case DISP_ADDR_AND_PORT: 7063 if (tcp->tcp_ipversion == IPV4_VERSION) { 7064 /* 7065 * Note that we use the remote address in the tcp_b 7066 * structure. This means that it will print out 7067 * the real destination address, not the next hop's 7068 * address if source routing is used. 7069 */ 7070 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7071 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7072 7073 } else { 7074 local = tcp->tcp_ip_src_v6; 7075 remote = tcp->tcp_remote_v6; 7076 } 7077 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7078 sizeof (local_addrbuf)); 7079 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7080 sizeof (remote_addrbuf)); 7081 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7082 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7083 ntohs(tcp->tcp_fport), cp); 7084 break; 7085 case DISP_PORT_ONLY: 7086 default: 7087 (void) mi_sprintf(buf, "[%u, %u] %s", 7088 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7089 break; 7090 } 7091 7092 return (buf); 7093 } 7094 7095 /* 7096 * Called via squeue to get on to eager's perimeter. It sends a 7097 * TH_RST if eager is in the fanout table. The listener wants the 7098 * eager to disappear either by means of tcp_eager_blowoff() or 7099 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7100 * called (via squeue) if the eager cannot be inserted in the 7101 * fanout table in tcp_conn_request(). 7102 */ 7103 /* ARGSUSED */ 7104 void 7105 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7106 { 7107 conn_t *econnp = (conn_t *)arg; 7108 tcp_t *eager = econnp->conn_tcp; 7109 tcp_t *listener = eager->tcp_listener; 7110 tcp_stack_t *tcps = eager->tcp_tcps; 7111 7112 /* 7113 * We could be called because listener is closing. Since 7114 * the eager is using listener's queue's, its not safe. 7115 * Better use the default queue just to send the TH_RST 7116 * out. 7117 */ 7118 ASSERT(tcps->tcps_g_q != NULL); 7119 eager->tcp_rq = tcps->tcps_g_q; 7120 eager->tcp_wq = WR(tcps->tcps_g_q); 7121 7122 /* 7123 * An eager's conn_fanout will be NULL if it's a duplicate 7124 * for an existing 4-tuples in the conn fanout table. 7125 * We don't want to send an RST out in such case. 7126 */ 7127 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7128 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7129 eager, eager->tcp_snxt, 0, TH_RST); 7130 } 7131 7132 /* We are here because listener wants this eager gone */ 7133 if (listener != NULL) { 7134 mutex_enter(&listener->tcp_eager_lock); 7135 tcp_eager_unlink(eager); 7136 if (eager->tcp_tconnind_started) { 7137 /* 7138 * The eager has sent a conn_ind up to the 7139 * listener but listener decides to close 7140 * instead. We need to drop the extra ref 7141 * placed on eager in tcp_rput_data() before 7142 * sending the conn_ind to listener. 7143 */ 7144 CONN_DEC_REF(econnp); 7145 } 7146 mutex_exit(&listener->tcp_eager_lock); 7147 CONN_DEC_REF(listener->tcp_connp); 7148 } 7149 7150 if (eager->tcp_state > TCPS_BOUND) 7151 tcp_close_detached(eager); 7152 } 7153 7154 /* 7155 * Reset any eager connection hanging off this listener marked 7156 * with 'seqnum' and then reclaim it's resources. 7157 */ 7158 static boolean_t 7159 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7160 { 7161 tcp_t *eager; 7162 mblk_t *mp; 7163 tcp_stack_t *tcps = listener->tcp_tcps; 7164 7165 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7166 eager = listener; 7167 mutex_enter(&listener->tcp_eager_lock); 7168 do { 7169 eager = eager->tcp_eager_next_q; 7170 if (eager == NULL) { 7171 mutex_exit(&listener->tcp_eager_lock); 7172 return (B_FALSE); 7173 } 7174 } while (eager->tcp_conn_req_seqnum != seqnum); 7175 7176 if (eager->tcp_closemp_used) { 7177 mutex_exit(&listener->tcp_eager_lock); 7178 return (B_TRUE); 7179 } 7180 eager->tcp_closemp_used = B_TRUE; 7181 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7182 CONN_INC_REF(eager->tcp_connp); 7183 mutex_exit(&listener->tcp_eager_lock); 7184 mp = &eager->tcp_closemp; 7185 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7186 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7187 return (B_TRUE); 7188 } 7189 7190 /* 7191 * Reset any eager connection hanging off this listener 7192 * and then reclaim it's resources. 7193 */ 7194 static void 7195 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7196 { 7197 tcp_t *eager; 7198 mblk_t *mp; 7199 tcp_stack_t *tcps = listener->tcp_tcps; 7200 7201 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7202 7203 if (!q0_only) { 7204 /* First cleanup q */ 7205 TCP_STAT(tcps, tcp_eager_blowoff_q); 7206 eager = listener->tcp_eager_next_q; 7207 while (eager != NULL) { 7208 if (!eager->tcp_closemp_used) { 7209 eager->tcp_closemp_used = B_TRUE; 7210 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7211 CONN_INC_REF(eager->tcp_connp); 7212 mp = &eager->tcp_closemp; 7213 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7214 tcp_eager_kill, eager->tcp_connp, 7215 SQTAG_TCP_EAGER_CLEANUP); 7216 } 7217 eager = eager->tcp_eager_next_q; 7218 } 7219 } 7220 /* Then cleanup q0 */ 7221 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7222 eager = listener->tcp_eager_next_q0; 7223 while (eager != listener) { 7224 if (!eager->tcp_closemp_used) { 7225 eager->tcp_closemp_used = B_TRUE; 7226 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7227 CONN_INC_REF(eager->tcp_connp); 7228 mp = &eager->tcp_closemp; 7229 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7230 tcp_eager_kill, eager->tcp_connp, 7231 SQTAG_TCP_EAGER_CLEANUP_Q0); 7232 } 7233 eager = eager->tcp_eager_next_q0; 7234 } 7235 } 7236 7237 /* 7238 * If we are an eager connection hanging off a listener that hasn't 7239 * formally accepted the connection yet, get off his list and blow off 7240 * any data that we have accumulated. 7241 */ 7242 static void 7243 tcp_eager_unlink(tcp_t *tcp) 7244 { 7245 tcp_t *listener = tcp->tcp_listener; 7246 7247 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7248 ASSERT(listener != NULL); 7249 if (tcp->tcp_eager_next_q0 != NULL) { 7250 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7251 7252 /* Remove the eager tcp from q0 */ 7253 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7254 tcp->tcp_eager_prev_q0; 7255 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7256 tcp->tcp_eager_next_q0; 7257 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7258 listener->tcp_conn_req_cnt_q0--; 7259 7260 tcp->tcp_eager_next_q0 = NULL; 7261 tcp->tcp_eager_prev_q0 = NULL; 7262 7263 /* 7264 * Take the eager out, if it is in the list of droppable 7265 * eagers. 7266 */ 7267 MAKE_UNDROPPABLE(tcp); 7268 7269 if (tcp->tcp_syn_rcvd_timeout != 0) { 7270 /* we have timed out before */ 7271 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7272 listener->tcp_syn_rcvd_timeout--; 7273 } 7274 } else { 7275 tcp_t **tcpp = &listener->tcp_eager_next_q; 7276 tcp_t *prev = NULL; 7277 7278 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7279 if (tcpp[0] == tcp) { 7280 if (listener->tcp_eager_last_q == tcp) { 7281 /* 7282 * If we are unlinking the last 7283 * element on the list, adjust 7284 * tail pointer. Set tail pointer 7285 * to nil when list is empty. 7286 */ 7287 ASSERT(tcp->tcp_eager_next_q == NULL); 7288 if (listener->tcp_eager_last_q == 7289 listener->tcp_eager_next_q) { 7290 listener->tcp_eager_last_q = 7291 NULL; 7292 } else { 7293 /* 7294 * We won't get here if there 7295 * is only one eager in the 7296 * list. 7297 */ 7298 ASSERT(prev != NULL); 7299 listener->tcp_eager_last_q = 7300 prev; 7301 } 7302 } 7303 tcpp[0] = tcp->tcp_eager_next_q; 7304 tcp->tcp_eager_next_q = NULL; 7305 tcp->tcp_eager_last_q = NULL; 7306 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7307 listener->tcp_conn_req_cnt_q--; 7308 break; 7309 } 7310 prev = tcpp[0]; 7311 } 7312 } 7313 tcp->tcp_listener = NULL; 7314 } 7315 7316 /* Shorthand to generate and send TPI error acks to our client */ 7317 static void 7318 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7319 { 7320 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7321 putnext(tcp->tcp_rq, mp); 7322 } 7323 7324 /* Shorthand to generate and send TPI error acks to our client */ 7325 static void 7326 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7327 int t_error, int sys_error) 7328 { 7329 struct T_error_ack *teackp; 7330 7331 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7332 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7333 teackp = (struct T_error_ack *)mp->b_rptr; 7334 teackp->ERROR_prim = primitive; 7335 teackp->TLI_error = t_error; 7336 teackp->UNIX_error = sys_error; 7337 putnext(tcp->tcp_rq, mp); 7338 } 7339 } 7340 7341 /* 7342 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7343 * but instead the code relies on: 7344 * - the fact that the address of the array and its size never changes 7345 * - the atomic assignment of the elements of the array 7346 */ 7347 /* ARGSUSED */ 7348 static int 7349 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7350 { 7351 int i; 7352 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7353 7354 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7355 if (tcps->tcps_g_epriv_ports[i] != 0) 7356 (void) mi_mpprintf(mp, "%d ", 7357 tcps->tcps_g_epriv_ports[i]); 7358 } 7359 return (0); 7360 } 7361 7362 /* 7363 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7364 * threads from changing it at the same time. 7365 */ 7366 /* ARGSUSED */ 7367 static int 7368 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7369 cred_t *cr) 7370 { 7371 long new_value; 7372 int i; 7373 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7374 7375 /* 7376 * Fail the request if the new value does not lie within the 7377 * port number limits. 7378 */ 7379 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7380 new_value <= 0 || new_value >= 65536) { 7381 return (EINVAL); 7382 } 7383 7384 mutex_enter(&tcps->tcps_epriv_port_lock); 7385 /* Check if the value is already in the list */ 7386 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7387 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7388 mutex_exit(&tcps->tcps_epriv_port_lock); 7389 return (EEXIST); 7390 } 7391 } 7392 /* Find an empty slot */ 7393 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7394 if (tcps->tcps_g_epriv_ports[i] == 0) 7395 break; 7396 } 7397 if (i == tcps->tcps_g_num_epriv_ports) { 7398 mutex_exit(&tcps->tcps_epriv_port_lock); 7399 return (EOVERFLOW); 7400 } 7401 /* Set the new value */ 7402 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7403 mutex_exit(&tcps->tcps_epriv_port_lock); 7404 return (0); 7405 } 7406 7407 /* 7408 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7409 * threads from changing it at the same time. 7410 */ 7411 /* ARGSUSED */ 7412 static int 7413 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7414 cred_t *cr) 7415 { 7416 long new_value; 7417 int i; 7418 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7419 7420 /* 7421 * Fail the request if the new value does not lie within the 7422 * port number limits. 7423 */ 7424 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7425 new_value >= 65536) { 7426 return (EINVAL); 7427 } 7428 7429 mutex_enter(&tcps->tcps_epriv_port_lock); 7430 /* Check that the value is already in the list */ 7431 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7432 if (tcps->tcps_g_epriv_ports[i] == new_value) 7433 break; 7434 } 7435 if (i == tcps->tcps_g_num_epriv_ports) { 7436 mutex_exit(&tcps->tcps_epriv_port_lock); 7437 return (ESRCH); 7438 } 7439 /* Clear the value */ 7440 tcps->tcps_g_epriv_ports[i] = 0; 7441 mutex_exit(&tcps->tcps_epriv_port_lock); 7442 return (0); 7443 } 7444 7445 /* Return the TPI/TLI equivalent of our current tcp_state */ 7446 static int 7447 tcp_tpistate(tcp_t *tcp) 7448 { 7449 switch (tcp->tcp_state) { 7450 case TCPS_IDLE: 7451 return (TS_UNBND); 7452 case TCPS_LISTEN: 7453 /* 7454 * Return whether there are outstanding T_CONN_IND waiting 7455 * for the matching T_CONN_RES. Therefore don't count q0. 7456 */ 7457 if (tcp->tcp_conn_req_cnt_q > 0) 7458 return (TS_WRES_CIND); 7459 else 7460 return (TS_IDLE); 7461 case TCPS_BOUND: 7462 return (TS_IDLE); 7463 case TCPS_SYN_SENT: 7464 return (TS_WCON_CREQ); 7465 case TCPS_SYN_RCVD: 7466 /* 7467 * Note: assumption: this has to the active open SYN_RCVD. 7468 * The passive instance is detached in SYN_RCVD stage of 7469 * incoming connection processing so we cannot get request 7470 * for T_info_ack on it. 7471 */ 7472 return (TS_WACK_CRES); 7473 case TCPS_ESTABLISHED: 7474 return (TS_DATA_XFER); 7475 case TCPS_CLOSE_WAIT: 7476 return (TS_WREQ_ORDREL); 7477 case TCPS_FIN_WAIT_1: 7478 return (TS_WIND_ORDREL); 7479 case TCPS_FIN_WAIT_2: 7480 return (TS_WIND_ORDREL); 7481 7482 case TCPS_CLOSING: 7483 case TCPS_LAST_ACK: 7484 case TCPS_TIME_WAIT: 7485 case TCPS_CLOSED: 7486 /* 7487 * Following TS_WACK_DREQ7 is a rendition of "not 7488 * yet TS_IDLE" TPI state. There is no best match to any 7489 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7490 * choose a value chosen that will map to TLI/XTI level 7491 * state of TSTATECHNG (state is process of changing) which 7492 * captures what this dummy state represents. 7493 */ 7494 return (TS_WACK_DREQ7); 7495 default: 7496 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7497 tcp->tcp_state, tcp_display(tcp, NULL, 7498 DISP_PORT_ONLY)); 7499 return (TS_UNBND); 7500 } 7501 } 7502 7503 static void 7504 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7505 { 7506 tcp_stack_t *tcps = tcp->tcp_tcps; 7507 7508 if (tcp->tcp_family == AF_INET6) 7509 *tia = tcp_g_t_info_ack_v6; 7510 else 7511 *tia = tcp_g_t_info_ack; 7512 tia->CURRENT_state = tcp_tpistate(tcp); 7513 tia->OPT_size = tcp_max_optsize; 7514 if (tcp->tcp_mss == 0) { 7515 /* Not yet set - tcp_open does not set mss */ 7516 if (tcp->tcp_ipversion == IPV4_VERSION) 7517 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7518 else 7519 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7520 } else { 7521 tia->TIDU_size = tcp->tcp_mss; 7522 } 7523 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7524 } 7525 7526 /* 7527 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7528 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7529 * tcp_g_t_info_ack. The current state of the stream is copied from 7530 * tcp_state. 7531 */ 7532 static void 7533 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7534 { 7535 t_uscalar_t cap_bits1; 7536 struct T_capability_ack *tcap; 7537 7538 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7539 freemsg(mp); 7540 return; 7541 } 7542 7543 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7544 7545 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7546 mp->b_datap->db_type, T_CAPABILITY_ACK); 7547 if (mp == NULL) 7548 return; 7549 7550 tcap = (struct T_capability_ack *)mp->b_rptr; 7551 tcap->CAP_bits1 = 0; 7552 7553 if (cap_bits1 & TC1_INFO) { 7554 tcp_copy_info(&tcap->INFO_ack, tcp); 7555 tcap->CAP_bits1 |= TC1_INFO; 7556 } 7557 7558 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7559 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7560 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7561 } 7562 7563 putnext(tcp->tcp_rq, mp); 7564 } 7565 7566 /* 7567 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7568 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7569 * The current state of the stream is copied from tcp_state. 7570 */ 7571 static void 7572 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7573 { 7574 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7575 T_INFO_ACK); 7576 if (!mp) { 7577 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7578 return; 7579 } 7580 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7581 putnext(tcp->tcp_rq, mp); 7582 } 7583 7584 /* Respond to the TPI addr request */ 7585 static void 7586 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7587 { 7588 sin_t *sin; 7589 mblk_t *ackmp; 7590 struct T_addr_ack *taa; 7591 7592 /* Make it large enough for worst case */ 7593 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7594 2 * sizeof (sin6_t), 1); 7595 if (ackmp == NULL) { 7596 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7597 return; 7598 } 7599 7600 if (tcp->tcp_ipversion == IPV6_VERSION) { 7601 tcp_addr_req_ipv6(tcp, ackmp); 7602 return; 7603 } 7604 taa = (struct T_addr_ack *)ackmp->b_rptr; 7605 7606 bzero(taa, sizeof (struct T_addr_ack)); 7607 ackmp->b_wptr = (uchar_t *)&taa[1]; 7608 7609 taa->PRIM_type = T_ADDR_ACK; 7610 ackmp->b_datap->db_type = M_PCPROTO; 7611 7612 /* 7613 * Note: Following code assumes 32 bit alignment of basic 7614 * data structures like sin_t and struct T_addr_ack. 7615 */ 7616 if (tcp->tcp_state >= TCPS_BOUND) { 7617 /* 7618 * Fill in local address 7619 */ 7620 taa->LOCADDR_length = sizeof (sin_t); 7621 taa->LOCADDR_offset = sizeof (*taa); 7622 7623 sin = (sin_t *)&taa[1]; 7624 7625 /* Fill zeroes and then intialize non-zero fields */ 7626 *sin = sin_null; 7627 7628 sin->sin_family = AF_INET; 7629 7630 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7631 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7632 7633 ackmp->b_wptr = (uchar_t *)&sin[1]; 7634 7635 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7636 /* 7637 * Fill in Remote address 7638 */ 7639 taa->REMADDR_length = sizeof (sin_t); 7640 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7641 taa->LOCADDR_length); 7642 7643 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7644 *sin = sin_null; 7645 sin->sin_family = AF_INET; 7646 sin->sin_addr.s_addr = tcp->tcp_remote; 7647 sin->sin_port = tcp->tcp_fport; 7648 7649 ackmp->b_wptr = (uchar_t *)&sin[1]; 7650 } 7651 } 7652 putnext(tcp->tcp_rq, ackmp); 7653 } 7654 7655 /* Assumes that tcp_addr_req gets enough space and alignment */ 7656 static void 7657 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7658 { 7659 sin6_t *sin6; 7660 struct T_addr_ack *taa; 7661 7662 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7663 ASSERT(OK_32PTR(ackmp->b_rptr)); 7664 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7665 2 * sizeof (sin6_t)); 7666 7667 taa = (struct T_addr_ack *)ackmp->b_rptr; 7668 7669 bzero(taa, sizeof (struct T_addr_ack)); 7670 ackmp->b_wptr = (uchar_t *)&taa[1]; 7671 7672 taa->PRIM_type = T_ADDR_ACK; 7673 ackmp->b_datap->db_type = M_PCPROTO; 7674 7675 /* 7676 * Note: Following code assumes 32 bit alignment of basic 7677 * data structures like sin6_t and struct T_addr_ack. 7678 */ 7679 if (tcp->tcp_state >= TCPS_BOUND) { 7680 /* 7681 * Fill in local address 7682 */ 7683 taa->LOCADDR_length = sizeof (sin6_t); 7684 taa->LOCADDR_offset = sizeof (*taa); 7685 7686 sin6 = (sin6_t *)&taa[1]; 7687 *sin6 = sin6_null; 7688 7689 sin6->sin6_family = AF_INET6; 7690 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7691 sin6->sin6_port = tcp->tcp_lport; 7692 7693 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7694 7695 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7696 /* 7697 * Fill in Remote address 7698 */ 7699 taa->REMADDR_length = sizeof (sin6_t); 7700 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7701 taa->LOCADDR_length); 7702 7703 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7704 *sin6 = sin6_null; 7705 sin6->sin6_family = AF_INET6; 7706 sin6->sin6_flowinfo = 7707 tcp->tcp_ip6h->ip6_vcf & 7708 ~IPV6_VERS_AND_FLOW_MASK; 7709 sin6->sin6_addr = tcp->tcp_remote_v6; 7710 sin6->sin6_port = tcp->tcp_fport; 7711 7712 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7713 } 7714 } 7715 putnext(tcp->tcp_rq, ackmp); 7716 } 7717 7718 /* 7719 * Handle reinitialization of a tcp structure. 7720 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7721 */ 7722 static void 7723 tcp_reinit(tcp_t *tcp) 7724 { 7725 mblk_t *mp; 7726 int err; 7727 tcp_stack_t *tcps = tcp->tcp_tcps; 7728 7729 TCP_STAT(tcps, tcp_reinit_calls); 7730 7731 /* tcp_reinit should never be called for detached tcp_t's */ 7732 ASSERT(tcp->tcp_listener == NULL); 7733 ASSERT((tcp->tcp_family == AF_INET && 7734 tcp->tcp_ipversion == IPV4_VERSION) || 7735 (tcp->tcp_family == AF_INET6 && 7736 (tcp->tcp_ipversion == IPV4_VERSION || 7737 tcp->tcp_ipversion == IPV6_VERSION))); 7738 7739 /* Cancel outstanding timers */ 7740 tcp_timers_stop(tcp); 7741 7742 /* 7743 * Reset everything in the state vector, after updating global 7744 * MIB data from instance counters. 7745 */ 7746 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7747 tcp->tcp_ibsegs = 0; 7748 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7749 tcp->tcp_obsegs = 0; 7750 7751 tcp_close_mpp(&tcp->tcp_xmit_head); 7752 if (tcp->tcp_snd_zcopy_aware) 7753 tcp_zcopy_notify(tcp); 7754 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7755 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7756 mutex_enter(&tcp->tcp_non_sq_lock); 7757 if (tcp->tcp_flow_stopped && 7758 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7759 tcp_clrqfull(tcp); 7760 } 7761 mutex_exit(&tcp->tcp_non_sq_lock); 7762 tcp_close_mpp(&tcp->tcp_reass_head); 7763 tcp->tcp_reass_tail = NULL; 7764 if (tcp->tcp_rcv_list != NULL) { 7765 /* Free b_next chain */ 7766 tcp_close_mpp(&tcp->tcp_rcv_list); 7767 tcp->tcp_rcv_last_head = NULL; 7768 tcp->tcp_rcv_last_tail = NULL; 7769 tcp->tcp_rcv_cnt = 0; 7770 } 7771 tcp->tcp_rcv_last_tail = NULL; 7772 7773 if ((mp = tcp->tcp_urp_mp) != NULL) { 7774 freemsg(mp); 7775 tcp->tcp_urp_mp = NULL; 7776 } 7777 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7778 freemsg(mp); 7779 tcp->tcp_urp_mark_mp = NULL; 7780 } 7781 if (tcp->tcp_fused_sigurg_mp != NULL) { 7782 freeb(tcp->tcp_fused_sigurg_mp); 7783 tcp->tcp_fused_sigurg_mp = NULL; 7784 } 7785 7786 /* 7787 * Following is a union with two members which are 7788 * identical types and size so the following cleanup 7789 * is enough. 7790 */ 7791 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7792 7793 CL_INET_DISCONNECT(tcp); 7794 7795 /* 7796 * The connection can't be on the tcp_time_wait_head list 7797 * since it is not detached. 7798 */ 7799 ASSERT(tcp->tcp_time_wait_next == NULL); 7800 ASSERT(tcp->tcp_time_wait_prev == NULL); 7801 ASSERT(tcp->tcp_time_wait_expire == 0); 7802 7803 if (tcp->tcp_kssl_pending) { 7804 tcp->tcp_kssl_pending = B_FALSE; 7805 7806 /* Don't reset if the initialized by bind. */ 7807 if (tcp->tcp_kssl_ent != NULL) { 7808 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7809 KSSL_NO_PROXY); 7810 } 7811 } 7812 if (tcp->tcp_kssl_ctx != NULL) { 7813 kssl_release_ctx(tcp->tcp_kssl_ctx); 7814 tcp->tcp_kssl_ctx = NULL; 7815 } 7816 7817 /* 7818 * Reset/preserve other values 7819 */ 7820 tcp_reinit_values(tcp); 7821 ipcl_hash_remove(tcp->tcp_connp); 7822 conn_delete_ire(tcp->tcp_connp, NULL); 7823 tcp_ipsec_cleanup(tcp); 7824 7825 if (tcp->tcp_conn_req_max != 0) { 7826 /* 7827 * This is the case when a TLI program uses the same 7828 * transport end point to accept a connection. This 7829 * makes the TCP both a listener and acceptor. When 7830 * this connection is closed, we need to set the state 7831 * back to TCPS_LISTEN. Make sure that the eager list 7832 * is reinitialized. 7833 * 7834 * Note that this stream is still bound to the four 7835 * tuples of the previous connection in IP. If a new 7836 * SYN with different foreign address comes in, IP will 7837 * not find it and will send it to the global queue. In 7838 * the global queue, TCP will do a tcp_lookup_listener() 7839 * to find this stream. This works because this stream 7840 * is only removed from connected hash. 7841 * 7842 */ 7843 tcp->tcp_state = TCPS_LISTEN; 7844 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7845 tcp->tcp_eager_next_drop_q0 = tcp; 7846 tcp->tcp_eager_prev_drop_q0 = tcp; 7847 tcp->tcp_connp->conn_recv = tcp_conn_request; 7848 if (tcp->tcp_family == AF_INET6) { 7849 ASSERT(tcp->tcp_connp->conn_af_isv6); 7850 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7851 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7852 } else { 7853 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7854 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7855 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7856 } 7857 } else { 7858 tcp->tcp_state = TCPS_BOUND; 7859 } 7860 7861 /* 7862 * Initialize to default values 7863 * Can't fail since enough header template space already allocated 7864 * at open(). 7865 */ 7866 err = tcp_init_values(tcp); 7867 ASSERT(err == 0); 7868 /* Restore state in tcp_tcph */ 7869 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7870 if (tcp->tcp_ipversion == IPV4_VERSION) 7871 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7872 else 7873 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7874 /* 7875 * Copy of the src addr. in tcp_t is needed in tcp_t 7876 * since the lookup funcs can only lookup on tcp_t 7877 */ 7878 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7879 7880 ASSERT(tcp->tcp_ptpbhn != NULL); 7881 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7882 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7883 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7884 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7885 } 7886 7887 /* 7888 * Force values to zero that need be zero. 7889 * Do not touch values asociated with the BOUND or LISTEN state 7890 * since the connection will end up in that state after the reinit. 7891 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7892 * structure! 7893 */ 7894 static void 7895 tcp_reinit_values(tcp) 7896 tcp_t *tcp; 7897 { 7898 tcp_stack_t *tcps = tcp->tcp_tcps; 7899 7900 #ifndef lint 7901 #define DONTCARE(x) 7902 #define PRESERVE(x) 7903 #else 7904 #define DONTCARE(x) ((x) = (x)) 7905 #define PRESERVE(x) ((x) = (x)) 7906 #endif /* lint */ 7907 7908 PRESERVE(tcp->tcp_bind_hash); 7909 PRESERVE(tcp->tcp_ptpbhn); 7910 PRESERVE(tcp->tcp_acceptor_hash); 7911 PRESERVE(tcp->tcp_ptpahn); 7912 7913 /* Should be ASSERT NULL on these with new code! */ 7914 ASSERT(tcp->tcp_time_wait_next == NULL); 7915 ASSERT(tcp->tcp_time_wait_prev == NULL); 7916 ASSERT(tcp->tcp_time_wait_expire == 0); 7917 PRESERVE(tcp->tcp_state); 7918 PRESERVE(tcp->tcp_rq); 7919 PRESERVE(tcp->tcp_wq); 7920 7921 ASSERT(tcp->tcp_xmit_head == NULL); 7922 ASSERT(tcp->tcp_xmit_last == NULL); 7923 ASSERT(tcp->tcp_unsent == 0); 7924 ASSERT(tcp->tcp_xmit_tail == NULL); 7925 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7926 7927 tcp->tcp_snxt = 0; /* Displayed in mib */ 7928 tcp->tcp_suna = 0; /* Displayed in mib */ 7929 tcp->tcp_swnd = 0; 7930 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7931 7932 ASSERT(tcp->tcp_ibsegs == 0); 7933 ASSERT(tcp->tcp_obsegs == 0); 7934 7935 if (tcp->tcp_iphc != NULL) { 7936 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7937 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7938 } 7939 7940 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7941 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7942 DONTCARE(tcp->tcp_ipha); 7943 DONTCARE(tcp->tcp_ip6h); 7944 DONTCARE(tcp->tcp_ip_hdr_len); 7945 DONTCARE(tcp->tcp_tcph); 7946 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7947 tcp->tcp_valid_bits = 0; 7948 7949 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7950 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7951 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7952 tcp->tcp_last_rcv_lbolt = 0; 7953 7954 tcp->tcp_init_cwnd = 0; 7955 7956 tcp->tcp_urp_last_valid = 0; 7957 tcp->tcp_hard_binding = 0; 7958 tcp->tcp_hard_bound = 0; 7959 PRESERVE(tcp->tcp_cred); 7960 PRESERVE(tcp->tcp_cpid); 7961 PRESERVE(tcp->tcp_open_time); 7962 PRESERVE(tcp->tcp_exclbind); 7963 7964 tcp->tcp_fin_acked = 0; 7965 tcp->tcp_fin_rcvd = 0; 7966 tcp->tcp_fin_sent = 0; 7967 tcp->tcp_ordrel_done = 0; 7968 7969 tcp->tcp_debug = 0; 7970 tcp->tcp_dontroute = 0; 7971 tcp->tcp_broadcast = 0; 7972 7973 tcp->tcp_useloopback = 0; 7974 tcp->tcp_reuseaddr = 0; 7975 tcp->tcp_oobinline = 0; 7976 tcp->tcp_dgram_errind = 0; 7977 7978 tcp->tcp_detached = 0; 7979 tcp->tcp_bind_pending = 0; 7980 tcp->tcp_unbind_pending = 0; 7981 tcp->tcp_deferred_clean_death = 0; 7982 7983 tcp->tcp_snd_ws_ok = B_FALSE; 7984 tcp->tcp_snd_ts_ok = B_FALSE; 7985 tcp->tcp_linger = 0; 7986 tcp->tcp_ka_enabled = 0; 7987 tcp->tcp_zero_win_probe = 0; 7988 7989 tcp->tcp_loopback = 0; 7990 tcp->tcp_localnet = 0; 7991 tcp->tcp_syn_defense = 0; 7992 tcp->tcp_set_timer = 0; 7993 7994 tcp->tcp_active_open = 0; 7995 ASSERT(tcp->tcp_timeout == B_FALSE); 7996 tcp->tcp_rexmit = B_FALSE; 7997 tcp->tcp_xmit_zc_clean = B_FALSE; 7998 7999 tcp->tcp_snd_sack_ok = B_FALSE; 8000 PRESERVE(tcp->tcp_recvdstaddr); 8001 tcp->tcp_hwcksum = B_FALSE; 8002 8003 tcp->tcp_ire_ill_check_done = B_FALSE; 8004 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8005 8006 tcp->tcp_mdt = B_FALSE; 8007 tcp->tcp_mdt_hdr_head = 0; 8008 tcp->tcp_mdt_hdr_tail = 0; 8009 8010 tcp->tcp_conn_def_q0 = 0; 8011 tcp->tcp_ip_forward_progress = B_FALSE; 8012 tcp->tcp_anon_priv_bind = 0; 8013 tcp->tcp_ecn_ok = B_FALSE; 8014 8015 tcp->tcp_cwr = B_FALSE; 8016 tcp->tcp_ecn_echo_on = B_FALSE; 8017 8018 if (tcp->tcp_sack_info != NULL) { 8019 if (tcp->tcp_notsack_list != NULL) { 8020 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8021 } 8022 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8023 tcp->tcp_sack_info = NULL; 8024 } 8025 8026 tcp->tcp_rcv_ws = 0; 8027 tcp->tcp_snd_ws = 0; 8028 tcp->tcp_ts_recent = 0; 8029 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8030 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8031 tcp->tcp_if_mtu = 0; 8032 8033 ASSERT(tcp->tcp_reass_head == NULL); 8034 ASSERT(tcp->tcp_reass_tail == NULL); 8035 8036 tcp->tcp_cwnd_cnt = 0; 8037 8038 ASSERT(tcp->tcp_rcv_list == NULL); 8039 ASSERT(tcp->tcp_rcv_last_head == NULL); 8040 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8041 ASSERT(tcp->tcp_rcv_cnt == 0); 8042 8043 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8044 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8045 tcp->tcp_csuna = 0; 8046 8047 tcp->tcp_rto = 0; /* Displayed in MIB */ 8048 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8049 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8050 tcp->tcp_rtt_update = 0; 8051 8052 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8053 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8054 8055 tcp->tcp_rack = 0; /* Displayed in mib */ 8056 tcp->tcp_rack_cnt = 0; 8057 tcp->tcp_rack_cur_max = 0; 8058 tcp->tcp_rack_abs_max = 0; 8059 8060 tcp->tcp_max_swnd = 0; 8061 8062 ASSERT(tcp->tcp_listener == NULL); 8063 8064 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8065 8066 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8067 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8068 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8069 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8070 8071 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8072 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8073 PRESERVE(tcp->tcp_conn_req_max); 8074 PRESERVE(tcp->tcp_conn_req_seqnum); 8075 8076 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8077 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8078 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8079 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8080 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8081 8082 tcp->tcp_lingertime = 0; 8083 8084 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8085 ASSERT(tcp->tcp_urp_mp == NULL); 8086 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8087 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8088 8089 ASSERT(tcp->tcp_eager_next_q == NULL); 8090 ASSERT(tcp->tcp_eager_last_q == NULL); 8091 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8092 tcp->tcp_eager_prev_q0 == NULL) || 8093 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8094 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8095 8096 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8097 tcp->tcp_eager_prev_drop_q0 == NULL) || 8098 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8099 8100 tcp->tcp_client_errno = 0; 8101 8102 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8103 8104 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8105 8106 PRESERVE(tcp->tcp_bound_source_v6); 8107 tcp->tcp_last_sent_len = 0; 8108 tcp->tcp_dupack_cnt = 0; 8109 8110 tcp->tcp_fport = 0; /* Displayed in MIB */ 8111 PRESERVE(tcp->tcp_lport); 8112 8113 PRESERVE(tcp->tcp_acceptor_lockp); 8114 8115 ASSERT(tcp->tcp_ordrelid == 0); 8116 PRESERVE(tcp->tcp_acceptor_id); 8117 DONTCARE(tcp->tcp_ipsec_overhead); 8118 8119 /* 8120 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8121 * in tcp structure and now tracing), Re-initialize all 8122 * members of tcp_traceinfo. 8123 */ 8124 if (tcp->tcp_tracebuf != NULL) { 8125 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8126 } 8127 8128 PRESERVE(tcp->tcp_family); 8129 if (tcp->tcp_family == AF_INET6) { 8130 tcp->tcp_ipversion = IPV6_VERSION; 8131 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8132 } else { 8133 tcp->tcp_ipversion = IPV4_VERSION; 8134 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8135 } 8136 8137 tcp->tcp_bound_if = 0; 8138 tcp->tcp_ipv6_recvancillary = 0; 8139 tcp->tcp_recvifindex = 0; 8140 tcp->tcp_recvhops = 0; 8141 tcp->tcp_closed = 0; 8142 tcp->tcp_cleandeathtag = 0; 8143 if (tcp->tcp_hopopts != NULL) { 8144 mi_free(tcp->tcp_hopopts); 8145 tcp->tcp_hopopts = NULL; 8146 tcp->tcp_hopoptslen = 0; 8147 } 8148 ASSERT(tcp->tcp_hopoptslen == 0); 8149 if (tcp->tcp_dstopts != NULL) { 8150 mi_free(tcp->tcp_dstopts); 8151 tcp->tcp_dstopts = NULL; 8152 tcp->tcp_dstoptslen = 0; 8153 } 8154 ASSERT(tcp->tcp_dstoptslen == 0); 8155 if (tcp->tcp_rtdstopts != NULL) { 8156 mi_free(tcp->tcp_rtdstopts); 8157 tcp->tcp_rtdstopts = NULL; 8158 tcp->tcp_rtdstoptslen = 0; 8159 } 8160 ASSERT(tcp->tcp_rtdstoptslen == 0); 8161 if (tcp->tcp_rthdr != NULL) { 8162 mi_free(tcp->tcp_rthdr); 8163 tcp->tcp_rthdr = NULL; 8164 tcp->tcp_rthdrlen = 0; 8165 } 8166 ASSERT(tcp->tcp_rthdrlen == 0); 8167 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8168 8169 /* Reset fusion-related fields */ 8170 tcp->tcp_fused = B_FALSE; 8171 tcp->tcp_unfusable = B_FALSE; 8172 tcp->tcp_fused_sigurg = B_FALSE; 8173 tcp->tcp_direct_sockfs = B_FALSE; 8174 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8175 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8176 tcp->tcp_loopback_peer = NULL; 8177 tcp->tcp_fuse_rcv_hiwater = 0; 8178 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8179 tcp->tcp_fuse_rcv_unread_cnt = 0; 8180 8181 tcp->tcp_lso = B_FALSE; 8182 8183 tcp->tcp_in_ack_unsent = 0; 8184 tcp->tcp_cork = B_FALSE; 8185 tcp->tcp_tconnind_started = B_FALSE; 8186 8187 PRESERVE(tcp->tcp_squeue_bytes); 8188 8189 ASSERT(tcp->tcp_kssl_ctx == NULL); 8190 ASSERT(!tcp->tcp_kssl_pending); 8191 PRESERVE(tcp->tcp_kssl_ent); 8192 8193 tcp->tcp_closemp_used = B_FALSE; 8194 8195 #ifdef DEBUG 8196 DONTCARE(tcp->tcmp_stk[0]); 8197 #endif 8198 8199 8200 #undef DONTCARE 8201 #undef PRESERVE 8202 } 8203 8204 /* 8205 * Allocate necessary resources and initialize state vector. 8206 * Guaranteed not to fail so that when an error is returned, 8207 * the caller doesn't need to do any additional cleanup. 8208 */ 8209 int 8210 tcp_init(tcp_t *tcp, queue_t *q) 8211 { 8212 int err; 8213 8214 tcp->tcp_rq = q; 8215 tcp->tcp_wq = WR(q); 8216 tcp->tcp_state = TCPS_IDLE; 8217 if ((err = tcp_init_values(tcp)) != 0) 8218 tcp_timers_stop(tcp); 8219 return (err); 8220 } 8221 8222 static int 8223 tcp_init_values(tcp_t *tcp) 8224 { 8225 int err; 8226 tcp_stack_t *tcps = tcp->tcp_tcps; 8227 8228 ASSERT((tcp->tcp_family == AF_INET && 8229 tcp->tcp_ipversion == IPV4_VERSION) || 8230 (tcp->tcp_family == AF_INET6 && 8231 (tcp->tcp_ipversion == IPV4_VERSION || 8232 tcp->tcp_ipversion == IPV6_VERSION))); 8233 8234 /* 8235 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8236 * will be close to tcp_rexmit_interval_initial. By doing this, we 8237 * allow the algorithm to adjust slowly to large fluctuations of RTT 8238 * during first few transmissions of a connection as seen in slow 8239 * links. 8240 */ 8241 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8242 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8243 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8244 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8245 tcps->tcps_conn_grace_period; 8246 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8247 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8248 tcp->tcp_timer_backoff = 0; 8249 tcp->tcp_ms_we_have_waited = 0; 8250 tcp->tcp_last_recv_time = lbolt; 8251 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8252 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8253 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8254 8255 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8256 8257 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8258 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8259 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8260 /* 8261 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8262 * passive open. 8263 */ 8264 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8265 8266 tcp->tcp_naglim = tcps->tcps_naglim_def; 8267 8268 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8269 8270 tcp->tcp_mdt_hdr_head = 0; 8271 tcp->tcp_mdt_hdr_tail = 0; 8272 8273 /* Reset fusion-related fields */ 8274 tcp->tcp_fused = B_FALSE; 8275 tcp->tcp_unfusable = B_FALSE; 8276 tcp->tcp_fused_sigurg = B_FALSE; 8277 tcp->tcp_direct_sockfs = B_FALSE; 8278 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8279 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8280 tcp->tcp_loopback_peer = NULL; 8281 tcp->tcp_fuse_rcv_hiwater = 0; 8282 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8283 tcp->tcp_fuse_rcv_unread_cnt = 0; 8284 8285 /* Initialize the header template */ 8286 if (tcp->tcp_ipversion == IPV4_VERSION) { 8287 err = tcp_header_init_ipv4(tcp); 8288 } else { 8289 err = tcp_header_init_ipv6(tcp); 8290 } 8291 if (err) 8292 return (err); 8293 8294 /* 8295 * Init the window scale to the max so tcp_rwnd_set() won't pare 8296 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8297 */ 8298 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8299 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8300 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8301 8302 tcp->tcp_cork = B_FALSE; 8303 /* 8304 * Init the tcp_debug option. This value determines whether TCP 8305 * calls strlog() to print out debug messages. Doing this 8306 * initialization here means that this value is not inherited thru 8307 * tcp_reinit(). 8308 */ 8309 tcp->tcp_debug = tcps->tcps_dbg; 8310 8311 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8312 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8313 8314 return (0); 8315 } 8316 8317 /* 8318 * Initialize the IPv4 header. Loses any record of any IP options. 8319 */ 8320 static int 8321 tcp_header_init_ipv4(tcp_t *tcp) 8322 { 8323 tcph_t *tcph; 8324 uint32_t sum; 8325 conn_t *connp; 8326 tcp_stack_t *tcps = tcp->tcp_tcps; 8327 8328 /* 8329 * This is a simple initialization. If there's 8330 * already a template, it should never be too small, 8331 * so reuse it. Otherwise, allocate space for the new one. 8332 */ 8333 if (tcp->tcp_iphc == NULL) { 8334 ASSERT(tcp->tcp_iphc_len == 0); 8335 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8336 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8337 if (tcp->tcp_iphc == NULL) { 8338 tcp->tcp_iphc_len = 0; 8339 return (ENOMEM); 8340 } 8341 } 8342 8343 /* options are gone; may need a new label */ 8344 connp = tcp->tcp_connp; 8345 connp->conn_mlp_type = mlptSingle; 8346 connp->conn_ulp_labeled = !is_system_labeled(); 8347 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8348 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8349 tcp->tcp_ip6h = NULL; 8350 tcp->tcp_ipversion = IPV4_VERSION; 8351 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8352 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8353 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8354 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8355 tcp->tcp_ipha->ipha_version_and_hdr_length 8356 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8357 tcp->tcp_ipha->ipha_ident = 0; 8358 8359 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8360 tcp->tcp_tos = 0; 8361 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8362 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8363 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8364 8365 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8366 tcp->tcp_tcph = tcph; 8367 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8368 /* 8369 * IP wants our header length in the checksum field to 8370 * allow it to perform a single pseudo-header+checksum 8371 * calculation on behalf of TCP. 8372 * Include the adjustment for a source route once IP_OPTIONS is set. 8373 */ 8374 sum = sizeof (tcph_t) + tcp->tcp_sum; 8375 sum = (sum >> 16) + (sum & 0xFFFF); 8376 U16_TO_ABE16(sum, tcph->th_sum); 8377 return (0); 8378 } 8379 8380 /* 8381 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8382 */ 8383 static int 8384 tcp_header_init_ipv6(tcp_t *tcp) 8385 { 8386 tcph_t *tcph; 8387 uint32_t sum; 8388 conn_t *connp; 8389 tcp_stack_t *tcps = tcp->tcp_tcps; 8390 8391 /* 8392 * This is a simple initialization. If there's 8393 * already a template, it should never be too small, 8394 * so reuse it. Otherwise, allocate space for the new one. 8395 * Ensure that there is enough space to "downgrade" the tcp_t 8396 * to an IPv4 tcp_t. This requires having space for a full load 8397 * of IPv4 options, as well as a full load of TCP options 8398 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8399 * than a v6 header and a TCP header with a full load of TCP options 8400 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8401 * We want to avoid reallocation in the "downgraded" case when 8402 * processing outbound IPv4 options. 8403 */ 8404 if (tcp->tcp_iphc == NULL) { 8405 ASSERT(tcp->tcp_iphc_len == 0); 8406 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8407 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8408 if (tcp->tcp_iphc == NULL) { 8409 tcp->tcp_iphc_len = 0; 8410 return (ENOMEM); 8411 } 8412 } 8413 8414 /* options are gone; may need a new label */ 8415 connp = tcp->tcp_connp; 8416 connp->conn_mlp_type = mlptSingle; 8417 connp->conn_ulp_labeled = !is_system_labeled(); 8418 8419 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8420 tcp->tcp_ipversion = IPV6_VERSION; 8421 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8422 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8423 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8424 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8425 tcp->tcp_ipha = NULL; 8426 8427 /* Initialize the header template */ 8428 8429 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8430 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8431 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8432 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8433 8434 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8435 tcp->tcp_tcph = tcph; 8436 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8437 /* 8438 * IP wants our header length in the checksum field to 8439 * allow it to perform a single psuedo-header+checksum 8440 * calculation on behalf of TCP. 8441 * Include the adjustment for a source route when IPV6_RTHDR is set. 8442 */ 8443 sum = sizeof (tcph_t) + tcp->tcp_sum; 8444 sum = (sum >> 16) + (sum & 0xFFFF); 8445 U16_TO_ABE16(sum, tcph->th_sum); 8446 return (0); 8447 } 8448 8449 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8450 #define ICMP_MIN_TCP_HDR 8 8451 8452 /* 8453 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8454 * passed up by IP. The message is always received on the correct tcp_t. 8455 * Assumes that IP has pulled up everything up to and including the ICMP header. 8456 */ 8457 void 8458 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8459 { 8460 icmph_t *icmph; 8461 ipha_t *ipha; 8462 int iph_hdr_length; 8463 tcph_t *tcph; 8464 boolean_t ipsec_mctl = B_FALSE; 8465 boolean_t secure; 8466 mblk_t *first_mp = mp; 8467 uint32_t new_mss; 8468 uint32_t ratio; 8469 size_t mp_size = MBLKL(mp); 8470 uint32_t seg_seq; 8471 tcp_stack_t *tcps = tcp->tcp_tcps; 8472 8473 /* Assume IP provides aligned packets - otherwise toss */ 8474 if (!OK_32PTR(mp->b_rptr)) { 8475 freemsg(mp); 8476 return; 8477 } 8478 8479 /* 8480 * Since ICMP errors are normal data marked with M_CTL when sent 8481 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8482 * packets starting with an ipsec_info_t, see ipsec_info.h. 8483 */ 8484 if ((mp_size == sizeof (ipsec_info_t)) && 8485 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8486 ASSERT(mp->b_cont != NULL); 8487 mp = mp->b_cont; 8488 /* IP should have done this */ 8489 ASSERT(OK_32PTR(mp->b_rptr)); 8490 mp_size = MBLKL(mp); 8491 ipsec_mctl = B_TRUE; 8492 } 8493 8494 /* 8495 * Verify that we have a complete outer IP header. If not, drop it. 8496 */ 8497 if (mp_size < sizeof (ipha_t)) { 8498 noticmpv4: 8499 freemsg(first_mp); 8500 return; 8501 } 8502 8503 ipha = (ipha_t *)mp->b_rptr; 8504 /* 8505 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8506 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8507 */ 8508 switch (IPH_HDR_VERSION(ipha)) { 8509 case IPV6_VERSION: 8510 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8511 return; 8512 case IPV4_VERSION: 8513 break; 8514 default: 8515 goto noticmpv4; 8516 } 8517 8518 /* Skip past the outer IP and ICMP headers */ 8519 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8520 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8521 /* 8522 * If we don't have the correct outer IP header length or if the ULP 8523 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8524 * send it upstream. 8525 */ 8526 if (iph_hdr_length < sizeof (ipha_t) || 8527 ipha->ipha_protocol != IPPROTO_ICMP || 8528 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8529 goto noticmpv4; 8530 } 8531 ipha = (ipha_t *)&icmph[1]; 8532 8533 /* Skip past the inner IP and find the ULP header */ 8534 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8535 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8536 /* 8537 * If we don't have the correct inner IP header length or if the ULP 8538 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8539 * bytes of TCP header, drop it. 8540 */ 8541 if (iph_hdr_length < sizeof (ipha_t) || 8542 ipha->ipha_protocol != IPPROTO_TCP || 8543 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8544 goto noticmpv4; 8545 } 8546 8547 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8548 if (ipsec_mctl) { 8549 secure = ipsec_in_is_secure(first_mp); 8550 } else { 8551 secure = B_FALSE; 8552 } 8553 if (secure) { 8554 /* 8555 * If we are willing to accept this in clear 8556 * we don't have to verify policy. 8557 */ 8558 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8559 if (!tcp_check_policy(tcp, first_mp, 8560 ipha, NULL, secure, ipsec_mctl)) { 8561 /* 8562 * tcp_check_policy called 8563 * ip_drop_packet() on failure. 8564 */ 8565 return; 8566 } 8567 } 8568 } 8569 } else if (ipsec_mctl) { 8570 /* 8571 * This is a hard_bound connection. IP has already 8572 * verified policy. We don't have to do it again. 8573 */ 8574 freeb(first_mp); 8575 first_mp = mp; 8576 ipsec_mctl = B_FALSE; 8577 } 8578 8579 seg_seq = ABE32_TO_U32(tcph->th_seq); 8580 /* 8581 * TCP SHOULD check that the TCP sequence number contained in 8582 * payload of the ICMP error message is within the range 8583 * SND.UNA <= SEG.SEQ < SND.NXT. 8584 */ 8585 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8586 /* 8587 * If the ICMP message is bogus, should we kill the 8588 * connection, or should we just drop the bogus ICMP 8589 * message? It would probably make more sense to just 8590 * drop the message so that if this one managed to get 8591 * in, the real connection should not suffer. 8592 */ 8593 goto noticmpv4; 8594 } 8595 8596 switch (icmph->icmph_type) { 8597 case ICMP_DEST_UNREACHABLE: 8598 switch (icmph->icmph_code) { 8599 case ICMP_FRAGMENTATION_NEEDED: 8600 /* 8601 * Reduce the MSS based on the new MTU. This will 8602 * eliminate any fragmentation locally. 8603 * N.B. There may well be some funny side-effects on 8604 * the local send policy and the remote receive policy. 8605 * Pending further research, we provide 8606 * tcp_ignore_path_mtu just in case this proves 8607 * disastrous somewhere. 8608 * 8609 * After updating the MSS, retransmit part of the 8610 * dropped segment using the new mss by calling 8611 * tcp_wput_data(). Need to adjust all those 8612 * params to make sure tcp_wput_data() work properly. 8613 */ 8614 if (tcps->tcps_ignore_path_mtu) 8615 break; 8616 8617 /* 8618 * Decrease the MSS by time stamp options 8619 * IP options and IPSEC options. tcp_hdr_len 8620 * includes time stamp option and IP option 8621 * length. 8622 */ 8623 8624 new_mss = ntohs(icmph->icmph_du_mtu) - 8625 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8626 8627 /* 8628 * Only update the MSS if the new one is 8629 * smaller than the previous one. This is 8630 * to avoid problems when getting multiple 8631 * ICMP errors for the same MTU. 8632 */ 8633 if (new_mss >= tcp->tcp_mss) 8634 break; 8635 8636 /* 8637 * Stop doing PMTU if new_mss is less than 68 8638 * or less than tcp_mss_min. 8639 * The value 68 comes from rfc 1191. 8640 */ 8641 if (new_mss < MAX(68, tcps->tcps_mss_min)) 8642 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8643 0; 8644 8645 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8646 ASSERT(ratio >= 1); 8647 tcp_mss_set(tcp, new_mss, B_TRUE); 8648 8649 /* 8650 * Make sure we have something to 8651 * send. 8652 */ 8653 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8654 (tcp->tcp_xmit_head != NULL)) { 8655 /* 8656 * Shrink tcp_cwnd in 8657 * proportion to the old MSS/new MSS. 8658 */ 8659 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8660 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8661 (tcp->tcp_unsent == 0)) { 8662 tcp->tcp_rexmit_max = tcp->tcp_fss; 8663 } else { 8664 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8665 } 8666 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8667 tcp->tcp_rexmit = B_TRUE; 8668 tcp->tcp_dupack_cnt = 0; 8669 tcp->tcp_snd_burst = TCP_CWND_SS; 8670 tcp_ss_rexmit(tcp); 8671 } 8672 break; 8673 case ICMP_PORT_UNREACHABLE: 8674 case ICMP_PROTOCOL_UNREACHABLE: 8675 switch (tcp->tcp_state) { 8676 case TCPS_SYN_SENT: 8677 case TCPS_SYN_RCVD: 8678 /* 8679 * ICMP can snipe away incipient 8680 * TCP connections as long as 8681 * seq number is same as initial 8682 * send seq number. 8683 */ 8684 if (seg_seq == tcp->tcp_iss) { 8685 (void) tcp_clean_death(tcp, 8686 ECONNREFUSED, 6); 8687 } 8688 break; 8689 } 8690 break; 8691 case ICMP_HOST_UNREACHABLE: 8692 case ICMP_NET_UNREACHABLE: 8693 /* Record the error in case we finally time out. */ 8694 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8695 tcp->tcp_client_errno = EHOSTUNREACH; 8696 else 8697 tcp->tcp_client_errno = ENETUNREACH; 8698 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8699 if (tcp->tcp_listener != NULL && 8700 tcp->tcp_listener->tcp_syn_defense) { 8701 /* 8702 * Ditch the half-open connection if we 8703 * suspect a SYN attack is under way. 8704 */ 8705 tcp_ip_ire_mark_advice(tcp); 8706 (void) tcp_clean_death(tcp, 8707 tcp->tcp_client_errno, 7); 8708 } 8709 } 8710 break; 8711 default: 8712 break; 8713 } 8714 break; 8715 case ICMP_SOURCE_QUENCH: { 8716 /* 8717 * use a global boolean to control 8718 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8719 * The default is false. 8720 */ 8721 if (tcp_icmp_source_quench) { 8722 /* 8723 * Reduce the sending rate as if we got a 8724 * retransmit timeout 8725 */ 8726 uint32_t npkt; 8727 8728 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8729 tcp->tcp_mss; 8730 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8731 tcp->tcp_cwnd = tcp->tcp_mss; 8732 tcp->tcp_cwnd_cnt = 0; 8733 } 8734 break; 8735 } 8736 } 8737 freemsg(first_mp); 8738 } 8739 8740 /* 8741 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8742 * error messages passed up by IP. 8743 * Assumes that IP has pulled up all the extension headers as well 8744 * as the ICMPv6 header. 8745 */ 8746 static void 8747 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8748 { 8749 icmp6_t *icmp6; 8750 ip6_t *ip6h; 8751 uint16_t iph_hdr_length; 8752 tcpha_t *tcpha; 8753 uint8_t *nexthdrp; 8754 uint32_t new_mss; 8755 uint32_t ratio; 8756 boolean_t secure; 8757 mblk_t *first_mp = mp; 8758 size_t mp_size; 8759 uint32_t seg_seq; 8760 tcp_stack_t *tcps = tcp->tcp_tcps; 8761 8762 /* 8763 * The caller has determined if this is an IPSEC_IN packet and 8764 * set ipsec_mctl appropriately (see tcp_icmp_error). 8765 */ 8766 if (ipsec_mctl) 8767 mp = mp->b_cont; 8768 8769 mp_size = MBLKL(mp); 8770 8771 /* 8772 * Verify that we have a complete IP header. If not, send it upstream. 8773 */ 8774 if (mp_size < sizeof (ip6_t)) { 8775 noticmpv6: 8776 freemsg(first_mp); 8777 return; 8778 } 8779 8780 /* 8781 * Verify this is an ICMPV6 packet, else send it upstream. 8782 */ 8783 ip6h = (ip6_t *)mp->b_rptr; 8784 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8785 iph_hdr_length = IPV6_HDR_LEN; 8786 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8787 &nexthdrp) || 8788 *nexthdrp != IPPROTO_ICMPV6) { 8789 goto noticmpv6; 8790 } 8791 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8792 ip6h = (ip6_t *)&icmp6[1]; 8793 /* 8794 * Verify if we have a complete ICMP and inner IP header. 8795 */ 8796 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8797 goto noticmpv6; 8798 8799 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8800 goto noticmpv6; 8801 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8802 /* 8803 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8804 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8805 * packet. 8806 */ 8807 if ((*nexthdrp != IPPROTO_TCP) || 8808 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8809 goto noticmpv6; 8810 } 8811 8812 /* 8813 * ICMP errors come on the right queue or come on 8814 * listener/global queue for detached connections and 8815 * get switched to the right queue. If it comes on the 8816 * right queue, policy check has already been done by IP 8817 * and thus free the first_mp without verifying the policy. 8818 * If it has come for a non-hard bound connection, we need 8819 * to verify policy as IP may not have done it. 8820 */ 8821 if (!tcp->tcp_hard_bound) { 8822 if (ipsec_mctl) { 8823 secure = ipsec_in_is_secure(first_mp); 8824 } else { 8825 secure = B_FALSE; 8826 } 8827 if (secure) { 8828 /* 8829 * If we are willing to accept this in clear 8830 * we don't have to verify policy. 8831 */ 8832 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8833 if (!tcp_check_policy(tcp, first_mp, 8834 NULL, ip6h, secure, ipsec_mctl)) { 8835 /* 8836 * tcp_check_policy called 8837 * ip_drop_packet() on failure. 8838 */ 8839 return; 8840 } 8841 } 8842 } 8843 } else if (ipsec_mctl) { 8844 /* 8845 * This is a hard_bound connection. IP has already 8846 * verified policy. We don't have to do it again. 8847 */ 8848 freeb(first_mp); 8849 first_mp = mp; 8850 ipsec_mctl = B_FALSE; 8851 } 8852 8853 seg_seq = ntohl(tcpha->tha_seq); 8854 /* 8855 * TCP SHOULD check that the TCP sequence number contained in 8856 * payload of the ICMP error message is within the range 8857 * SND.UNA <= SEG.SEQ < SND.NXT. 8858 */ 8859 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8860 /* 8861 * If the ICMP message is bogus, should we kill the 8862 * connection, or should we just drop the bogus ICMP 8863 * message? It would probably make more sense to just 8864 * drop the message so that if this one managed to get 8865 * in, the real connection should not suffer. 8866 */ 8867 goto noticmpv6; 8868 } 8869 8870 switch (icmp6->icmp6_type) { 8871 case ICMP6_PACKET_TOO_BIG: 8872 /* 8873 * Reduce the MSS based on the new MTU. This will 8874 * eliminate any fragmentation locally. 8875 * N.B. There may well be some funny side-effects on 8876 * the local send policy and the remote receive policy. 8877 * Pending further research, we provide 8878 * tcp_ignore_path_mtu just in case this proves 8879 * disastrous somewhere. 8880 * 8881 * After updating the MSS, retransmit part of the 8882 * dropped segment using the new mss by calling 8883 * tcp_wput_data(). Need to adjust all those 8884 * params to make sure tcp_wput_data() work properly. 8885 */ 8886 if (tcps->tcps_ignore_path_mtu) 8887 break; 8888 8889 /* 8890 * Decrease the MSS by time stamp options 8891 * IP options and IPSEC options. tcp_hdr_len 8892 * includes time stamp option and IP option 8893 * length. 8894 */ 8895 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8896 tcp->tcp_ipsec_overhead; 8897 8898 /* 8899 * Only update the MSS if the new one is 8900 * smaller than the previous one. This is 8901 * to avoid problems when getting multiple 8902 * ICMP errors for the same MTU. 8903 */ 8904 if (new_mss >= tcp->tcp_mss) 8905 break; 8906 8907 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8908 ASSERT(ratio >= 1); 8909 tcp_mss_set(tcp, new_mss, B_TRUE); 8910 8911 /* 8912 * Make sure we have something to 8913 * send. 8914 */ 8915 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8916 (tcp->tcp_xmit_head != NULL)) { 8917 /* 8918 * Shrink tcp_cwnd in 8919 * proportion to the old MSS/new MSS. 8920 */ 8921 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8922 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8923 (tcp->tcp_unsent == 0)) { 8924 tcp->tcp_rexmit_max = tcp->tcp_fss; 8925 } else { 8926 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8927 } 8928 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8929 tcp->tcp_rexmit = B_TRUE; 8930 tcp->tcp_dupack_cnt = 0; 8931 tcp->tcp_snd_burst = TCP_CWND_SS; 8932 tcp_ss_rexmit(tcp); 8933 } 8934 break; 8935 8936 case ICMP6_DST_UNREACH: 8937 switch (icmp6->icmp6_code) { 8938 case ICMP6_DST_UNREACH_NOPORT: 8939 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8940 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8941 (seg_seq == tcp->tcp_iss)) { 8942 (void) tcp_clean_death(tcp, 8943 ECONNREFUSED, 8); 8944 } 8945 break; 8946 8947 case ICMP6_DST_UNREACH_ADMIN: 8948 case ICMP6_DST_UNREACH_NOROUTE: 8949 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8950 case ICMP6_DST_UNREACH_ADDR: 8951 /* Record the error in case we finally time out. */ 8952 tcp->tcp_client_errno = EHOSTUNREACH; 8953 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8954 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8955 (seg_seq == tcp->tcp_iss)) { 8956 if (tcp->tcp_listener != NULL && 8957 tcp->tcp_listener->tcp_syn_defense) { 8958 /* 8959 * Ditch the half-open connection if we 8960 * suspect a SYN attack is under way. 8961 */ 8962 tcp_ip_ire_mark_advice(tcp); 8963 (void) tcp_clean_death(tcp, 8964 tcp->tcp_client_errno, 9); 8965 } 8966 } 8967 8968 8969 break; 8970 default: 8971 break; 8972 } 8973 break; 8974 8975 case ICMP6_PARAM_PROB: 8976 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8977 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8978 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8979 (uchar_t *)nexthdrp) { 8980 if (tcp->tcp_state == TCPS_SYN_SENT || 8981 tcp->tcp_state == TCPS_SYN_RCVD) { 8982 (void) tcp_clean_death(tcp, 8983 ECONNREFUSED, 10); 8984 } 8985 break; 8986 } 8987 break; 8988 8989 case ICMP6_TIME_EXCEEDED: 8990 default: 8991 break; 8992 } 8993 freemsg(first_mp); 8994 } 8995 8996 /* 8997 * IP recognizes seven kinds of bind requests: 8998 * 8999 * - A zero-length address binds only to the protocol number. 9000 * 9001 * - A 4-byte address is treated as a request to 9002 * validate that the address is a valid local IPv4 9003 * address, appropriate for an application to bind to. 9004 * IP does the verification, but does not make any note 9005 * of the address at this time. 9006 * 9007 * - A 16-byte address contains is treated as a request 9008 * to validate a local IPv6 address, as the 4-byte 9009 * address case above. 9010 * 9011 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9012 * use it for the inbound fanout of packets. 9013 * 9014 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9015 * use it for the inbound fanout of packets. 9016 * 9017 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9018 * information consisting of local and remote addresses 9019 * and ports. In this case, the addresses are both 9020 * validated as appropriate for this operation, and, if 9021 * so, the information is retained for use in the 9022 * inbound fanout. 9023 * 9024 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9025 * fanout information, like the 12-byte case above. 9026 * 9027 * IP will also fill in the IRE request mblk with information 9028 * regarding our peer. In all cases, we notify IP of our protocol 9029 * type by appending a single protocol byte to the bind request. 9030 */ 9031 static mblk_t * 9032 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9033 { 9034 char *cp; 9035 mblk_t *mp; 9036 struct T_bind_req *tbr; 9037 ipa_conn_t *ac; 9038 ipa6_conn_t *ac6; 9039 sin_t *sin; 9040 sin6_t *sin6; 9041 9042 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9043 ASSERT((tcp->tcp_family == AF_INET && 9044 tcp->tcp_ipversion == IPV4_VERSION) || 9045 (tcp->tcp_family == AF_INET6 && 9046 (tcp->tcp_ipversion == IPV4_VERSION || 9047 tcp->tcp_ipversion == IPV6_VERSION))); 9048 9049 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9050 if (!mp) 9051 return (mp); 9052 mp->b_datap->db_type = M_PROTO; 9053 tbr = (struct T_bind_req *)mp->b_rptr; 9054 tbr->PRIM_type = bind_prim; 9055 tbr->ADDR_offset = sizeof (*tbr); 9056 tbr->CONIND_number = 0; 9057 tbr->ADDR_length = addr_length; 9058 cp = (char *)&tbr[1]; 9059 switch (addr_length) { 9060 case sizeof (ipa_conn_t): 9061 ASSERT(tcp->tcp_family == AF_INET); 9062 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9063 9064 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9065 if (mp->b_cont == NULL) { 9066 freemsg(mp); 9067 return (NULL); 9068 } 9069 mp->b_cont->b_wptr += sizeof (ire_t); 9070 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9071 9072 /* cp known to be 32 bit aligned */ 9073 ac = (ipa_conn_t *)cp; 9074 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9075 ac->ac_faddr = tcp->tcp_remote; 9076 ac->ac_fport = tcp->tcp_fport; 9077 ac->ac_lport = tcp->tcp_lport; 9078 tcp->tcp_hard_binding = 1; 9079 break; 9080 9081 case sizeof (ipa6_conn_t): 9082 ASSERT(tcp->tcp_family == AF_INET6); 9083 9084 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9085 if (mp->b_cont == NULL) { 9086 freemsg(mp); 9087 return (NULL); 9088 } 9089 mp->b_cont->b_wptr += sizeof (ire_t); 9090 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9091 9092 /* cp known to be 32 bit aligned */ 9093 ac6 = (ipa6_conn_t *)cp; 9094 if (tcp->tcp_ipversion == IPV4_VERSION) { 9095 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9096 &ac6->ac6_laddr); 9097 } else { 9098 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9099 } 9100 ac6->ac6_faddr = tcp->tcp_remote_v6; 9101 ac6->ac6_fport = tcp->tcp_fport; 9102 ac6->ac6_lport = tcp->tcp_lport; 9103 tcp->tcp_hard_binding = 1; 9104 break; 9105 9106 case sizeof (sin_t): 9107 /* 9108 * NOTE: IPV6_ADDR_LEN also has same size. 9109 * Use family to discriminate. 9110 */ 9111 if (tcp->tcp_family == AF_INET) { 9112 sin = (sin_t *)cp; 9113 9114 *sin = sin_null; 9115 sin->sin_family = AF_INET; 9116 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9117 sin->sin_port = tcp->tcp_lport; 9118 break; 9119 } else { 9120 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9121 } 9122 break; 9123 9124 case sizeof (sin6_t): 9125 ASSERT(tcp->tcp_family == AF_INET6); 9126 sin6 = (sin6_t *)cp; 9127 9128 *sin6 = sin6_null; 9129 sin6->sin6_family = AF_INET6; 9130 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9131 sin6->sin6_port = tcp->tcp_lport; 9132 break; 9133 9134 case IP_ADDR_LEN: 9135 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9136 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9137 break; 9138 9139 } 9140 /* Add protocol number to end */ 9141 cp[addr_length] = (char)IPPROTO_TCP; 9142 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9143 return (mp); 9144 } 9145 9146 /* 9147 * Notify IP that we are having trouble with this connection. IP should 9148 * blow the IRE away and start over. 9149 */ 9150 static void 9151 tcp_ip_notify(tcp_t *tcp) 9152 { 9153 struct iocblk *iocp; 9154 ipid_t *ipid; 9155 mblk_t *mp; 9156 9157 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9158 if (tcp->tcp_ipversion == IPV6_VERSION) 9159 return; 9160 9161 mp = mkiocb(IP_IOCTL); 9162 if (mp == NULL) 9163 return; 9164 9165 iocp = (struct iocblk *)mp->b_rptr; 9166 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9167 9168 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9169 if (!mp->b_cont) { 9170 freeb(mp); 9171 return; 9172 } 9173 9174 ipid = (ipid_t *)mp->b_cont->b_rptr; 9175 mp->b_cont->b_wptr += iocp->ioc_count; 9176 bzero(ipid, sizeof (*ipid)); 9177 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9178 ipid->ipid_ire_type = IRE_CACHE; 9179 ipid->ipid_addr_offset = sizeof (ipid_t); 9180 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9181 /* 9182 * Note: in the case of source routing we want to blow away the 9183 * route to the first source route hop. 9184 */ 9185 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9186 sizeof (tcp->tcp_ipha->ipha_dst)); 9187 9188 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9189 } 9190 9191 /* Unlink and return any mblk that looks like it contains an ire */ 9192 static mblk_t * 9193 tcp_ire_mp(mblk_t *mp) 9194 { 9195 mblk_t *prev_mp; 9196 9197 for (;;) { 9198 prev_mp = mp; 9199 mp = mp->b_cont; 9200 if (mp == NULL) 9201 break; 9202 switch (DB_TYPE(mp)) { 9203 case IRE_DB_TYPE: 9204 case IRE_DB_REQ_TYPE: 9205 if (prev_mp != NULL) 9206 prev_mp->b_cont = mp->b_cont; 9207 mp->b_cont = NULL; 9208 return (mp); 9209 default: 9210 break; 9211 } 9212 } 9213 return (mp); 9214 } 9215 9216 /* 9217 * Timer callback routine for keepalive probe. We do a fake resend of 9218 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9219 * check to see if we have heard anything from the other end for the last 9220 * RTO period. If we have, set the timer to expire for another 9221 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9222 * RTO << 1 and check again when it expires. Keep exponentially increasing 9223 * the timeout if we have not heard from the other side. If for more than 9224 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9225 * kill the connection unless the keepalive abort threshold is 0. In 9226 * that case, we will probe "forever." 9227 */ 9228 static void 9229 tcp_keepalive_killer(void *arg) 9230 { 9231 mblk_t *mp; 9232 conn_t *connp = (conn_t *)arg; 9233 tcp_t *tcp = connp->conn_tcp; 9234 int32_t firetime; 9235 int32_t idletime; 9236 int32_t ka_intrvl; 9237 tcp_stack_t *tcps = tcp->tcp_tcps; 9238 9239 tcp->tcp_ka_tid = 0; 9240 9241 if (tcp->tcp_fused) 9242 return; 9243 9244 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9245 ka_intrvl = tcp->tcp_ka_interval; 9246 9247 /* 9248 * Keepalive probe should only be sent if the application has not 9249 * done a close on the connection. 9250 */ 9251 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9252 return; 9253 } 9254 /* Timer fired too early, restart it. */ 9255 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9256 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9257 MSEC_TO_TICK(ka_intrvl)); 9258 return; 9259 } 9260 9261 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9262 /* 9263 * If we have not heard from the other side for a long 9264 * time, kill the connection unless the keepalive abort 9265 * threshold is 0. In that case, we will probe "forever." 9266 */ 9267 if (tcp->tcp_ka_abort_thres != 0 && 9268 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9269 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9270 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9271 tcp->tcp_client_errno : ETIMEDOUT, 11); 9272 return; 9273 } 9274 9275 if (tcp->tcp_snxt == tcp->tcp_suna && 9276 idletime >= ka_intrvl) { 9277 /* Fake resend of last ACKed byte. */ 9278 mblk_t *mp1 = allocb(1, BPRI_LO); 9279 9280 if (mp1 != NULL) { 9281 *mp1->b_wptr++ = '\0'; 9282 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9283 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9284 freeb(mp1); 9285 /* 9286 * if allocation failed, fall through to start the 9287 * timer back. 9288 */ 9289 if (mp != NULL) { 9290 TCP_RECORD_TRACE(tcp, mp, 9291 TCP_TRACE_SEND_PKT); 9292 tcp_send_data(tcp, tcp->tcp_wq, mp); 9293 BUMP_MIB(&tcps->tcps_mib, 9294 tcpTimKeepaliveProbe); 9295 if (tcp->tcp_ka_last_intrvl != 0) { 9296 int max; 9297 /* 9298 * We should probe again at least 9299 * in ka_intrvl, but not more than 9300 * tcp_rexmit_interval_max. 9301 */ 9302 max = tcps->tcps_rexmit_interval_max; 9303 firetime = MIN(ka_intrvl - 1, 9304 tcp->tcp_ka_last_intrvl << 1); 9305 if (firetime > max) 9306 firetime = max; 9307 } else { 9308 firetime = tcp->tcp_rto; 9309 } 9310 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9311 tcp_keepalive_killer, 9312 MSEC_TO_TICK(firetime)); 9313 tcp->tcp_ka_last_intrvl = firetime; 9314 return; 9315 } 9316 } 9317 } else { 9318 tcp->tcp_ka_last_intrvl = 0; 9319 } 9320 9321 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9322 if ((firetime = ka_intrvl - idletime) < 0) { 9323 firetime = ka_intrvl; 9324 } 9325 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9326 MSEC_TO_TICK(firetime)); 9327 } 9328 9329 int 9330 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9331 { 9332 queue_t *q = tcp->tcp_rq; 9333 int32_t mss = tcp->tcp_mss; 9334 int maxpsz; 9335 9336 if (TCP_IS_DETACHED(tcp)) 9337 return (mss); 9338 9339 if (tcp->tcp_fused) { 9340 maxpsz = tcp_fuse_maxpsz_set(tcp); 9341 mss = INFPSZ; 9342 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9343 /* 9344 * Set the sd_qn_maxpsz according to the socket send buffer 9345 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9346 * instruct the stream head to copyin user data into contiguous 9347 * kernel-allocated buffers without breaking it up into smaller 9348 * chunks. We round up the buffer size to the nearest SMSS. 9349 */ 9350 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9351 if (tcp->tcp_kssl_ctx == NULL) 9352 mss = INFPSZ; 9353 else 9354 mss = SSL3_MAX_RECORD_LEN; 9355 } else { 9356 /* 9357 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9358 * (and a multiple of the mss). This instructs the stream 9359 * head to break down larger than SMSS writes into SMSS- 9360 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9361 */ 9362 maxpsz = tcp->tcp_maxpsz * mss; 9363 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9364 maxpsz = tcp->tcp_xmit_hiwater/2; 9365 /* Round up to nearest mss */ 9366 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9367 } 9368 } 9369 (void) setmaxps(q, maxpsz); 9370 tcp->tcp_wq->q_maxpsz = maxpsz; 9371 9372 if (set_maxblk) 9373 (void) mi_set_sth_maxblk(q, mss); 9374 9375 return (mss); 9376 } 9377 9378 /* 9379 * Extract option values from a tcp header. We put any found values into the 9380 * tcpopt struct and return a bitmask saying which options were found. 9381 */ 9382 static int 9383 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9384 { 9385 uchar_t *endp; 9386 int len; 9387 uint32_t mss; 9388 uchar_t *up = (uchar_t *)tcph; 9389 int found = 0; 9390 int32_t sack_len; 9391 tcp_seq sack_begin, sack_end; 9392 tcp_t *tcp; 9393 9394 endp = up + TCP_HDR_LENGTH(tcph); 9395 up += TCP_MIN_HEADER_LENGTH; 9396 while (up < endp) { 9397 len = endp - up; 9398 switch (*up) { 9399 case TCPOPT_EOL: 9400 break; 9401 9402 case TCPOPT_NOP: 9403 up++; 9404 continue; 9405 9406 case TCPOPT_MAXSEG: 9407 if (len < TCPOPT_MAXSEG_LEN || 9408 up[1] != TCPOPT_MAXSEG_LEN) 9409 break; 9410 9411 mss = BE16_TO_U16(up+2); 9412 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9413 tcpopt->tcp_opt_mss = mss; 9414 found |= TCP_OPT_MSS_PRESENT; 9415 9416 up += TCPOPT_MAXSEG_LEN; 9417 continue; 9418 9419 case TCPOPT_WSCALE: 9420 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9421 break; 9422 9423 if (up[2] > TCP_MAX_WINSHIFT) 9424 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9425 else 9426 tcpopt->tcp_opt_wscale = up[2]; 9427 found |= TCP_OPT_WSCALE_PRESENT; 9428 9429 up += TCPOPT_WS_LEN; 9430 continue; 9431 9432 case TCPOPT_SACK_PERMITTED: 9433 if (len < TCPOPT_SACK_OK_LEN || 9434 up[1] != TCPOPT_SACK_OK_LEN) 9435 break; 9436 found |= TCP_OPT_SACK_OK_PRESENT; 9437 up += TCPOPT_SACK_OK_LEN; 9438 continue; 9439 9440 case TCPOPT_SACK: 9441 if (len <= 2 || up[1] <= 2 || len < up[1]) 9442 break; 9443 9444 /* If TCP is not interested in SACK blks... */ 9445 if ((tcp = tcpopt->tcp) == NULL) { 9446 up += up[1]; 9447 continue; 9448 } 9449 sack_len = up[1] - TCPOPT_HEADER_LEN; 9450 up += TCPOPT_HEADER_LEN; 9451 9452 /* 9453 * If the list is empty, allocate one and assume 9454 * nothing is sack'ed. 9455 */ 9456 ASSERT(tcp->tcp_sack_info != NULL); 9457 if (tcp->tcp_notsack_list == NULL) { 9458 tcp_notsack_update(&(tcp->tcp_notsack_list), 9459 tcp->tcp_suna, tcp->tcp_snxt, 9460 &(tcp->tcp_num_notsack_blk), 9461 &(tcp->tcp_cnt_notsack_list)); 9462 9463 /* 9464 * Make sure tcp_notsack_list is not NULL. 9465 * This happens when kmem_alloc(KM_NOSLEEP) 9466 * returns NULL. 9467 */ 9468 if (tcp->tcp_notsack_list == NULL) { 9469 up += sack_len; 9470 continue; 9471 } 9472 tcp->tcp_fack = tcp->tcp_suna; 9473 } 9474 9475 while (sack_len > 0) { 9476 if (up + 8 > endp) { 9477 up = endp; 9478 break; 9479 } 9480 sack_begin = BE32_TO_U32(up); 9481 up += 4; 9482 sack_end = BE32_TO_U32(up); 9483 up += 4; 9484 sack_len -= 8; 9485 /* 9486 * Bounds checking. Make sure the SACK 9487 * info is within tcp_suna and tcp_snxt. 9488 * If this SACK blk is out of bound, ignore 9489 * it but continue to parse the following 9490 * blks. 9491 */ 9492 if (SEQ_LEQ(sack_end, sack_begin) || 9493 SEQ_LT(sack_begin, tcp->tcp_suna) || 9494 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9495 continue; 9496 } 9497 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9498 sack_begin, sack_end, 9499 &(tcp->tcp_num_notsack_blk), 9500 &(tcp->tcp_cnt_notsack_list)); 9501 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9502 tcp->tcp_fack = sack_end; 9503 } 9504 } 9505 found |= TCP_OPT_SACK_PRESENT; 9506 continue; 9507 9508 case TCPOPT_TSTAMP: 9509 if (len < TCPOPT_TSTAMP_LEN || 9510 up[1] != TCPOPT_TSTAMP_LEN) 9511 break; 9512 9513 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9514 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9515 9516 found |= TCP_OPT_TSTAMP_PRESENT; 9517 9518 up += TCPOPT_TSTAMP_LEN; 9519 continue; 9520 9521 default: 9522 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9523 break; 9524 up += up[1]; 9525 continue; 9526 } 9527 break; 9528 } 9529 return (found); 9530 } 9531 9532 /* 9533 * Set the mss associated with a particular tcp based on its current value, 9534 * and a new one passed in. Observe minimums and maximums, and reset 9535 * other state variables that we want to view as multiples of mss. 9536 * 9537 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9538 * highwater marks etc. need to be initialized or adjusted. 9539 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9540 * packet arrives. 9541 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9542 * ICMP6_PACKET_TOO_BIG arrives. 9543 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9544 * to increase the MSS to use the extra bytes available. 9545 * 9546 * Callers except tcp_paws_check() ensure that they only reduce mss. 9547 */ 9548 static void 9549 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9550 { 9551 uint32_t mss_max; 9552 tcp_stack_t *tcps = tcp->tcp_tcps; 9553 9554 if (tcp->tcp_ipversion == IPV4_VERSION) 9555 mss_max = tcps->tcps_mss_max_ipv4; 9556 else 9557 mss_max = tcps->tcps_mss_max_ipv6; 9558 9559 if (mss < tcps->tcps_mss_min) 9560 mss = tcps->tcps_mss_min; 9561 if (mss > mss_max) 9562 mss = mss_max; 9563 /* 9564 * Unless naglim has been set by our client to 9565 * a non-mss value, force naglim to track mss. 9566 * This can help to aggregate small writes. 9567 */ 9568 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9569 tcp->tcp_naglim = mss; 9570 /* 9571 * TCP should be able to buffer at least 4 MSS data for obvious 9572 * performance reason. 9573 */ 9574 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9575 tcp->tcp_xmit_hiwater = mss << 2; 9576 9577 if (do_ss) { 9578 /* 9579 * Either the tcp_cwnd is as yet uninitialized, or mss is 9580 * changing due to a reduction in MTU, presumably as a 9581 * result of a new path component, reset cwnd to its 9582 * "initial" value, as a multiple of the new mss. 9583 */ 9584 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9585 } else { 9586 /* 9587 * Called by tcp_paws_check(), the mss increased 9588 * marginally to allow use of space previously taken 9589 * by the timestamp option. It would be inappropriate 9590 * to apply slow start or tcp_init_cwnd values to 9591 * tcp_cwnd, simply adjust to a multiple of the new mss. 9592 */ 9593 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9594 tcp->tcp_cwnd_cnt = 0; 9595 } 9596 tcp->tcp_mss = mss; 9597 (void) tcp_maxpsz_set(tcp, B_TRUE); 9598 } 9599 9600 /* For /dev/tcp aka AF_INET open */ 9601 static int 9602 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9603 { 9604 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9605 } 9606 9607 /* For /dev/tcp6 aka AF_INET6 open */ 9608 static int 9609 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9610 { 9611 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9612 } 9613 9614 static int 9615 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9616 boolean_t isv6) 9617 { 9618 tcp_t *tcp = NULL; 9619 conn_t *connp; 9620 int err; 9621 vmem_t *minor_arena = NULL; 9622 dev_t conn_dev; 9623 zoneid_t zoneid; 9624 tcp_stack_t *tcps = NULL; 9625 9626 if (q->q_ptr != NULL) 9627 return (0); 9628 9629 if (sflag == MODOPEN) 9630 return (EINVAL); 9631 9632 if (!(flag & SO_ACCEPTOR)) { 9633 /* 9634 * Special case for install: miniroot needs to be able to 9635 * access files via NFS as though it were always in the 9636 * global zone. 9637 */ 9638 if (credp == kcred && nfs_global_client_only != 0) { 9639 zoneid = GLOBAL_ZONEID; 9640 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9641 netstack_tcp; 9642 ASSERT(tcps != NULL); 9643 } else { 9644 netstack_t *ns; 9645 9646 ns = netstack_find_by_cred(credp); 9647 ASSERT(ns != NULL); 9648 tcps = ns->netstack_tcp; 9649 ASSERT(tcps != NULL); 9650 9651 /* 9652 * For exclusive stacks we set the zoneid to zero 9653 * to make TCP operate as if in the global zone. 9654 */ 9655 if (tcps->tcps_netstack->netstack_stackid != 9656 GLOBAL_NETSTACKID) 9657 zoneid = GLOBAL_ZONEID; 9658 else 9659 zoneid = crgetzoneid(credp); 9660 } 9661 /* 9662 * For stackid zero this is done from strplumb.c, but 9663 * non-zero stackids are handled here. 9664 */ 9665 if (tcps->tcps_g_q == NULL && 9666 tcps->tcps_netstack->netstack_stackid != 9667 GLOBAL_NETSTACKID) { 9668 tcp_g_q_setup(tcps); 9669 } 9670 } 9671 9672 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9673 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9674 minor_arena = ip_minor_arena_la; 9675 } else { 9676 /* 9677 * Either minor numbers in the large arena were exhausted 9678 * or a non socket application is doing the open. 9679 * Try to allocate from the small arena. 9680 */ 9681 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9682 if (tcps != NULL) 9683 netstack_rele(tcps->tcps_netstack); 9684 return (EBUSY); 9685 } 9686 minor_arena = ip_minor_arena_sa; 9687 } 9688 ASSERT(minor_arena != NULL); 9689 9690 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9691 9692 if (flag & SO_ACCEPTOR) { 9693 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9694 ASSERT(tcps == NULL); 9695 q->q_qinfo = &tcp_acceptor_rinit; 9696 /* 9697 * the conn_dev and minor_arena will be subsequently used by 9698 * tcp_wput_accept() and tcpclose_accept() to figure out the 9699 * minor device number for this connection from the q_ptr. 9700 */ 9701 RD(q)->q_ptr = (void *)conn_dev; 9702 WR(q)->q_qinfo = &tcp_acceptor_winit; 9703 WR(q)->q_ptr = (void *)minor_arena; 9704 qprocson(q); 9705 return (0); 9706 } 9707 9708 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9709 /* 9710 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9711 * so we drop it by one. 9712 */ 9713 netstack_rele(tcps->tcps_netstack); 9714 if (connp == NULL) { 9715 inet_minor_free(minor_arena, conn_dev); 9716 q->q_ptr = NULL; 9717 return (ENOSR); 9718 } 9719 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9720 tcp = connp->conn_tcp; 9721 9722 q->q_ptr = WR(q)->q_ptr = connp; 9723 if (isv6) { 9724 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9725 connp->conn_send = ip_output_v6; 9726 connp->conn_af_isv6 = B_TRUE; 9727 connp->conn_pkt_isv6 = B_TRUE; 9728 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9729 tcp->tcp_ipversion = IPV6_VERSION; 9730 tcp->tcp_family = AF_INET6; 9731 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9732 } else { 9733 connp->conn_flags |= IPCL_TCP4; 9734 connp->conn_send = ip_output; 9735 connp->conn_af_isv6 = B_FALSE; 9736 connp->conn_pkt_isv6 = B_FALSE; 9737 tcp->tcp_ipversion = IPV4_VERSION; 9738 tcp->tcp_family = AF_INET; 9739 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9740 } 9741 9742 /* 9743 * TCP keeps a copy of cred for cache locality reasons but 9744 * we put a reference only once. If connp->conn_cred 9745 * becomes invalid, tcp_cred should also be set to NULL. 9746 */ 9747 tcp->tcp_cred = connp->conn_cred = credp; 9748 crhold(connp->conn_cred); 9749 tcp->tcp_cpid = curproc->p_pid; 9750 tcp->tcp_open_time = lbolt64; 9751 connp->conn_zoneid = zoneid; 9752 connp->conn_mlp_type = mlptSingle; 9753 connp->conn_ulp_labeled = !is_system_labeled(); 9754 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9755 ASSERT(tcp->tcp_tcps == tcps); 9756 9757 /* 9758 * If the caller has the process-wide flag set, then default to MAC 9759 * exempt mode. This allows read-down to unlabeled hosts. 9760 */ 9761 if (getpflags(NET_MAC_AWARE, credp) != 0) 9762 connp->conn_mac_exempt = B_TRUE; 9763 9764 connp->conn_dev = conn_dev; 9765 connp->conn_minor_arena = minor_arena; 9766 9767 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9768 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9769 9770 if (flag & SO_SOCKSTR) { 9771 /* 9772 * No need to insert a socket in tcp acceptor hash. 9773 * If it was a socket acceptor stream, we dealt with 9774 * it above. A socket listener can never accept a 9775 * connection and doesn't need acceptor_id. 9776 */ 9777 connp->conn_flags |= IPCL_SOCKET; 9778 tcp->tcp_issocket = 1; 9779 WR(q)->q_qinfo = &tcp_sock_winit; 9780 } else { 9781 #ifdef _ILP32 9782 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9783 #else 9784 tcp->tcp_acceptor_id = conn_dev; 9785 #endif /* _ILP32 */ 9786 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9787 } 9788 9789 if (tcps->tcps_trace) 9790 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9791 9792 err = tcp_init(tcp, q); 9793 if (err != 0) { 9794 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 9795 tcp_acceptor_hash_remove(tcp); 9796 CONN_DEC_REF(connp); 9797 q->q_ptr = WR(q)->q_ptr = NULL; 9798 return (err); 9799 } 9800 9801 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9802 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9803 9804 /* Non-zero default values */ 9805 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9806 /* 9807 * Put the ref for TCP. Ref for IP was already put 9808 * by ipcl_conn_create. Also Make the conn_t globally 9809 * visible to walkers 9810 */ 9811 mutex_enter(&connp->conn_lock); 9812 CONN_INC_REF_LOCKED(connp); 9813 ASSERT(connp->conn_ref == 2); 9814 connp->conn_state_flags &= ~CONN_INCIPIENT; 9815 mutex_exit(&connp->conn_lock); 9816 9817 qprocson(q); 9818 return (0); 9819 } 9820 9821 /* 9822 * Some TCP options can be "set" by requesting them in the option 9823 * buffer. This is needed for XTI feature test though we do not 9824 * allow it in general. We interpret that this mechanism is more 9825 * applicable to OSI protocols and need not be allowed in general. 9826 * This routine filters out options for which it is not allowed (most) 9827 * and lets through those (few) for which it is. [ The XTI interface 9828 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9829 * ever implemented will have to be allowed here ]. 9830 */ 9831 static boolean_t 9832 tcp_allow_connopt_set(int level, int name) 9833 { 9834 9835 switch (level) { 9836 case IPPROTO_TCP: 9837 switch (name) { 9838 case TCP_NODELAY: 9839 return (B_TRUE); 9840 default: 9841 return (B_FALSE); 9842 } 9843 /*NOTREACHED*/ 9844 default: 9845 return (B_FALSE); 9846 } 9847 /*NOTREACHED*/ 9848 } 9849 9850 /* 9851 * This routine gets default values of certain options whose default 9852 * values are maintained by protocol specific code 9853 */ 9854 /* ARGSUSED */ 9855 int 9856 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9857 { 9858 int32_t *i1 = (int32_t *)ptr; 9859 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9860 9861 switch (level) { 9862 case IPPROTO_TCP: 9863 switch (name) { 9864 case TCP_NOTIFY_THRESHOLD: 9865 *i1 = tcps->tcps_ip_notify_interval; 9866 break; 9867 case TCP_ABORT_THRESHOLD: 9868 *i1 = tcps->tcps_ip_abort_interval; 9869 break; 9870 case TCP_CONN_NOTIFY_THRESHOLD: 9871 *i1 = tcps->tcps_ip_notify_cinterval; 9872 break; 9873 case TCP_CONN_ABORT_THRESHOLD: 9874 *i1 = tcps->tcps_ip_abort_cinterval; 9875 break; 9876 default: 9877 return (-1); 9878 } 9879 break; 9880 case IPPROTO_IP: 9881 switch (name) { 9882 case IP_TTL: 9883 *i1 = tcps->tcps_ipv4_ttl; 9884 break; 9885 default: 9886 return (-1); 9887 } 9888 break; 9889 case IPPROTO_IPV6: 9890 switch (name) { 9891 case IPV6_UNICAST_HOPS: 9892 *i1 = tcps->tcps_ipv6_hoplimit; 9893 break; 9894 default: 9895 return (-1); 9896 } 9897 break; 9898 default: 9899 return (-1); 9900 } 9901 return (sizeof (int)); 9902 } 9903 9904 9905 /* 9906 * TCP routine to get the values of options. 9907 */ 9908 int 9909 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9910 { 9911 int *i1 = (int *)ptr; 9912 conn_t *connp = Q_TO_CONN(q); 9913 tcp_t *tcp = connp->conn_tcp; 9914 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9915 9916 switch (level) { 9917 case SOL_SOCKET: 9918 switch (name) { 9919 case SO_LINGER: { 9920 struct linger *lgr = (struct linger *)ptr; 9921 9922 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9923 lgr->l_linger = tcp->tcp_lingertime; 9924 } 9925 return (sizeof (struct linger)); 9926 case SO_DEBUG: 9927 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9928 break; 9929 case SO_KEEPALIVE: 9930 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9931 break; 9932 case SO_DONTROUTE: 9933 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9934 break; 9935 case SO_USELOOPBACK: 9936 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9937 break; 9938 case SO_BROADCAST: 9939 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9940 break; 9941 case SO_REUSEADDR: 9942 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9943 break; 9944 case SO_OOBINLINE: 9945 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9946 break; 9947 case SO_DGRAM_ERRIND: 9948 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9949 break; 9950 case SO_TYPE: 9951 *i1 = SOCK_STREAM; 9952 break; 9953 case SO_SNDBUF: 9954 *i1 = tcp->tcp_xmit_hiwater; 9955 break; 9956 case SO_RCVBUF: 9957 *i1 = RD(q)->q_hiwat; 9958 break; 9959 case SO_SND_COPYAVOID: 9960 *i1 = tcp->tcp_snd_zcopy_on ? 9961 SO_SND_COPYAVOID : 0; 9962 break; 9963 case SO_ALLZONES: 9964 *i1 = connp->conn_allzones ? 1 : 0; 9965 break; 9966 case SO_ANON_MLP: 9967 *i1 = connp->conn_anon_mlp; 9968 break; 9969 case SO_MAC_EXEMPT: 9970 *i1 = connp->conn_mac_exempt; 9971 break; 9972 case SO_EXCLBIND: 9973 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9974 break; 9975 case SO_PROTOTYPE: 9976 *i1 = IPPROTO_TCP; 9977 break; 9978 case SO_DOMAIN: 9979 *i1 = tcp->tcp_family; 9980 break; 9981 default: 9982 return (-1); 9983 } 9984 break; 9985 case IPPROTO_TCP: 9986 switch (name) { 9987 case TCP_NODELAY: 9988 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9989 break; 9990 case TCP_MAXSEG: 9991 *i1 = tcp->tcp_mss; 9992 break; 9993 case TCP_NOTIFY_THRESHOLD: 9994 *i1 = (int)tcp->tcp_first_timer_threshold; 9995 break; 9996 case TCP_ABORT_THRESHOLD: 9997 *i1 = tcp->tcp_second_timer_threshold; 9998 break; 9999 case TCP_CONN_NOTIFY_THRESHOLD: 10000 *i1 = tcp->tcp_first_ctimer_threshold; 10001 break; 10002 case TCP_CONN_ABORT_THRESHOLD: 10003 *i1 = tcp->tcp_second_ctimer_threshold; 10004 break; 10005 case TCP_RECVDSTADDR: 10006 *i1 = tcp->tcp_recvdstaddr; 10007 break; 10008 case TCP_ANONPRIVBIND: 10009 *i1 = tcp->tcp_anon_priv_bind; 10010 break; 10011 case TCP_EXCLBIND: 10012 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10013 break; 10014 case TCP_INIT_CWND: 10015 *i1 = tcp->tcp_init_cwnd; 10016 break; 10017 case TCP_KEEPALIVE_THRESHOLD: 10018 *i1 = tcp->tcp_ka_interval; 10019 break; 10020 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10021 *i1 = tcp->tcp_ka_abort_thres; 10022 break; 10023 case TCP_CORK: 10024 *i1 = tcp->tcp_cork; 10025 break; 10026 default: 10027 return (-1); 10028 } 10029 break; 10030 case IPPROTO_IP: 10031 if (tcp->tcp_family != AF_INET) 10032 return (-1); 10033 switch (name) { 10034 case IP_OPTIONS: 10035 case T_IP_OPTIONS: { 10036 /* 10037 * This is compatible with BSD in that in only return 10038 * the reverse source route with the final destination 10039 * as the last entry. The first 4 bytes of the option 10040 * will contain the final destination. 10041 */ 10042 int opt_len; 10043 10044 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 10045 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 10046 ASSERT(opt_len >= 0); 10047 /* Caller ensures enough space */ 10048 if (opt_len > 0) { 10049 /* 10050 * TODO: Do we have to handle getsockopt on an 10051 * initiator as well? 10052 */ 10053 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10054 } 10055 return (0); 10056 } 10057 case IP_TOS: 10058 case T_IP_TOS: 10059 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10060 break; 10061 case IP_TTL: 10062 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10063 break; 10064 case IP_NEXTHOP: 10065 /* Handled at IP level */ 10066 return (-EINVAL); 10067 default: 10068 return (-1); 10069 } 10070 break; 10071 case IPPROTO_IPV6: 10072 /* 10073 * IPPROTO_IPV6 options are only supported for sockets 10074 * that are using IPv6 on the wire. 10075 */ 10076 if (tcp->tcp_ipversion != IPV6_VERSION) { 10077 return (-1); 10078 } 10079 switch (name) { 10080 case IPV6_UNICAST_HOPS: 10081 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10082 break; /* goto sizeof (int) option return */ 10083 case IPV6_BOUND_IF: 10084 /* Zero if not set */ 10085 *i1 = tcp->tcp_bound_if; 10086 break; /* goto sizeof (int) option return */ 10087 case IPV6_RECVPKTINFO: 10088 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10089 *i1 = 1; 10090 else 10091 *i1 = 0; 10092 break; /* goto sizeof (int) option return */ 10093 case IPV6_RECVTCLASS: 10094 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10095 *i1 = 1; 10096 else 10097 *i1 = 0; 10098 break; /* goto sizeof (int) option return */ 10099 case IPV6_RECVHOPLIMIT: 10100 if (tcp->tcp_ipv6_recvancillary & 10101 TCP_IPV6_RECVHOPLIMIT) 10102 *i1 = 1; 10103 else 10104 *i1 = 0; 10105 break; /* goto sizeof (int) option return */ 10106 case IPV6_RECVHOPOPTS: 10107 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10108 *i1 = 1; 10109 else 10110 *i1 = 0; 10111 break; /* goto sizeof (int) option return */ 10112 case IPV6_RECVDSTOPTS: 10113 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10114 *i1 = 1; 10115 else 10116 *i1 = 0; 10117 break; /* goto sizeof (int) option return */ 10118 case _OLD_IPV6_RECVDSTOPTS: 10119 if (tcp->tcp_ipv6_recvancillary & 10120 TCP_OLD_IPV6_RECVDSTOPTS) 10121 *i1 = 1; 10122 else 10123 *i1 = 0; 10124 break; /* goto sizeof (int) option return */ 10125 case IPV6_RECVRTHDR: 10126 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10127 *i1 = 1; 10128 else 10129 *i1 = 0; 10130 break; /* goto sizeof (int) option return */ 10131 case IPV6_RECVRTHDRDSTOPTS: 10132 if (tcp->tcp_ipv6_recvancillary & 10133 TCP_IPV6_RECVRTDSTOPTS) 10134 *i1 = 1; 10135 else 10136 *i1 = 0; 10137 break; /* goto sizeof (int) option return */ 10138 case IPV6_PKTINFO: { 10139 /* XXX assumes that caller has room for max size! */ 10140 struct in6_pktinfo *pkti; 10141 10142 pkti = (struct in6_pktinfo *)ptr; 10143 if (ipp->ipp_fields & IPPF_IFINDEX) 10144 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10145 else 10146 pkti->ipi6_ifindex = 0; 10147 if (ipp->ipp_fields & IPPF_ADDR) 10148 pkti->ipi6_addr = ipp->ipp_addr; 10149 else 10150 pkti->ipi6_addr = ipv6_all_zeros; 10151 return (sizeof (struct in6_pktinfo)); 10152 } 10153 case IPV6_TCLASS: 10154 if (ipp->ipp_fields & IPPF_TCLASS) 10155 *i1 = ipp->ipp_tclass; 10156 else 10157 *i1 = IPV6_FLOW_TCLASS( 10158 IPV6_DEFAULT_VERS_AND_FLOW); 10159 break; /* goto sizeof (int) option return */ 10160 case IPV6_NEXTHOP: { 10161 sin6_t *sin6 = (sin6_t *)ptr; 10162 10163 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10164 return (0); 10165 *sin6 = sin6_null; 10166 sin6->sin6_family = AF_INET6; 10167 sin6->sin6_addr = ipp->ipp_nexthop; 10168 return (sizeof (sin6_t)); 10169 } 10170 case IPV6_HOPOPTS: 10171 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10172 return (0); 10173 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10174 return (0); 10175 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10176 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10177 if (tcp->tcp_label_len > 0) { 10178 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10179 ptr[1] = (ipp->ipp_hopoptslen - 10180 tcp->tcp_label_len + 7) / 8 - 1; 10181 } 10182 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10183 case IPV6_RTHDRDSTOPTS: 10184 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10185 return (0); 10186 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10187 return (ipp->ipp_rtdstoptslen); 10188 case IPV6_RTHDR: 10189 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10190 return (0); 10191 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10192 return (ipp->ipp_rthdrlen); 10193 case IPV6_DSTOPTS: 10194 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10195 return (0); 10196 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10197 return (ipp->ipp_dstoptslen); 10198 case IPV6_SRC_PREFERENCES: 10199 return (ip6_get_src_preferences(connp, 10200 (uint32_t *)ptr)); 10201 case IPV6_PATHMTU: { 10202 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10203 10204 if (tcp->tcp_state < TCPS_ESTABLISHED) 10205 return (-1); 10206 10207 return (ip_fill_mtuinfo(&connp->conn_remv6, 10208 connp->conn_fport, mtuinfo, 10209 connp->conn_netstack)); 10210 } 10211 default: 10212 return (-1); 10213 } 10214 break; 10215 default: 10216 return (-1); 10217 } 10218 return (sizeof (int)); 10219 } 10220 10221 /* 10222 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10223 * Parameters are assumed to be verified by the caller. 10224 */ 10225 /* ARGSUSED */ 10226 int 10227 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10228 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10229 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10230 { 10231 conn_t *connp = Q_TO_CONN(q); 10232 tcp_t *tcp = connp->conn_tcp; 10233 int *i1 = (int *)invalp; 10234 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10235 boolean_t checkonly; 10236 int reterr; 10237 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10238 10239 switch (optset_context) { 10240 case SETFN_OPTCOM_CHECKONLY: 10241 checkonly = B_TRUE; 10242 /* 10243 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10244 * inlen != 0 implies value supplied and 10245 * we have to "pretend" to set it. 10246 * inlen == 0 implies that there is no 10247 * value part in T_CHECK request and just validation 10248 * done elsewhere should be enough, we just return here. 10249 */ 10250 if (inlen == 0) { 10251 *outlenp = 0; 10252 return (0); 10253 } 10254 break; 10255 case SETFN_OPTCOM_NEGOTIATE: 10256 checkonly = B_FALSE; 10257 break; 10258 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10259 case SETFN_CONN_NEGOTIATE: 10260 checkonly = B_FALSE; 10261 /* 10262 * Negotiating local and "association-related" options 10263 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10264 * primitives is allowed by XTI, but we choose 10265 * to not implement this style negotiation for Internet 10266 * protocols (We interpret it is a must for OSI world but 10267 * optional for Internet protocols) for all options. 10268 * [ Will do only for the few options that enable test 10269 * suites that our XTI implementation of this feature 10270 * works for transports that do allow it ] 10271 */ 10272 if (!tcp_allow_connopt_set(level, name)) { 10273 *outlenp = 0; 10274 return (EINVAL); 10275 } 10276 break; 10277 default: 10278 /* 10279 * We should never get here 10280 */ 10281 *outlenp = 0; 10282 return (EINVAL); 10283 } 10284 10285 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10286 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10287 10288 /* 10289 * For TCP, we should have no ancillary data sent down 10290 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10291 * has to be zero. 10292 */ 10293 ASSERT(thisdg_attrs == NULL); 10294 10295 /* 10296 * For fixed length options, no sanity check 10297 * of passed in length is done. It is assumed *_optcom_req() 10298 * routines do the right thing. 10299 */ 10300 10301 switch (level) { 10302 case SOL_SOCKET: 10303 switch (name) { 10304 case SO_LINGER: { 10305 struct linger *lgr = (struct linger *)invalp; 10306 10307 if (!checkonly) { 10308 if (lgr->l_onoff) { 10309 tcp->tcp_linger = 1; 10310 tcp->tcp_lingertime = lgr->l_linger; 10311 } else { 10312 tcp->tcp_linger = 0; 10313 tcp->tcp_lingertime = 0; 10314 } 10315 /* struct copy */ 10316 *(struct linger *)outvalp = *lgr; 10317 } else { 10318 if (!lgr->l_onoff) { 10319 ((struct linger *) 10320 outvalp)->l_onoff = 0; 10321 ((struct linger *) 10322 outvalp)->l_linger = 0; 10323 } else { 10324 /* struct copy */ 10325 *(struct linger *)outvalp = *lgr; 10326 } 10327 } 10328 *outlenp = sizeof (struct linger); 10329 return (0); 10330 } 10331 case SO_DEBUG: 10332 if (!checkonly) 10333 tcp->tcp_debug = onoff; 10334 break; 10335 case SO_KEEPALIVE: 10336 if (checkonly) { 10337 /* T_CHECK case */ 10338 break; 10339 } 10340 10341 if (!onoff) { 10342 if (tcp->tcp_ka_enabled) { 10343 if (tcp->tcp_ka_tid != 0) { 10344 (void) TCP_TIMER_CANCEL(tcp, 10345 tcp->tcp_ka_tid); 10346 tcp->tcp_ka_tid = 0; 10347 } 10348 tcp->tcp_ka_enabled = 0; 10349 } 10350 break; 10351 } 10352 if (!tcp->tcp_ka_enabled) { 10353 /* Crank up the keepalive timer */ 10354 tcp->tcp_ka_last_intrvl = 0; 10355 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10356 tcp_keepalive_killer, 10357 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10358 tcp->tcp_ka_enabled = 1; 10359 } 10360 break; 10361 case SO_DONTROUTE: 10362 /* 10363 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10364 * only of interest to IP. We track them here only so 10365 * that we can report their current value. 10366 */ 10367 if (!checkonly) { 10368 tcp->tcp_dontroute = onoff; 10369 tcp->tcp_connp->conn_dontroute = onoff; 10370 } 10371 break; 10372 case SO_USELOOPBACK: 10373 if (!checkonly) { 10374 tcp->tcp_useloopback = onoff; 10375 tcp->tcp_connp->conn_loopback = onoff; 10376 } 10377 break; 10378 case SO_BROADCAST: 10379 if (!checkonly) { 10380 tcp->tcp_broadcast = onoff; 10381 tcp->tcp_connp->conn_broadcast = onoff; 10382 } 10383 break; 10384 case SO_REUSEADDR: 10385 if (!checkonly) { 10386 tcp->tcp_reuseaddr = onoff; 10387 tcp->tcp_connp->conn_reuseaddr = onoff; 10388 } 10389 break; 10390 case SO_OOBINLINE: 10391 if (!checkonly) 10392 tcp->tcp_oobinline = onoff; 10393 break; 10394 case SO_DGRAM_ERRIND: 10395 if (!checkonly) 10396 tcp->tcp_dgram_errind = onoff; 10397 break; 10398 case SO_SNDBUF: { 10399 if (*i1 > tcps->tcps_max_buf) { 10400 *outlenp = 0; 10401 return (ENOBUFS); 10402 } 10403 if (checkonly) 10404 break; 10405 10406 tcp->tcp_xmit_hiwater = *i1; 10407 if (tcps->tcps_snd_lowat_fraction != 0) 10408 tcp->tcp_xmit_lowater = 10409 tcp->tcp_xmit_hiwater / 10410 tcps->tcps_snd_lowat_fraction; 10411 (void) tcp_maxpsz_set(tcp, B_TRUE); 10412 /* 10413 * If we are flow-controlled, recheck the condition. 10414 * There are apps that increase SO_SNDBUF size when 10415 * flow-controlled (EWOULDBLOCK), and expect the flow 10416 * control condition to be lifted right away. 10417 */ 10418 mutex_enter(&tcp->tcp_non_sq_lock); 10419 if (tcp->tcp_flow_stopped && 10420 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10421 tcp_clrqfull(tcp); 10422 } 10423 mutex_exit(&tcp->tcp_non_sq_lock); 10424 break; 10425 } 10426 case SO_RCVBUF: 10427 if (*i1 > tcps->tcps_max_buf) { 10428 *outlenp = 0; 10429 return (ENOBUFS); 10430 } 10431 /* Silently ignore zero */ 10432 if (!checkonly && *i1 != 0) { 10433 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10434 (void) tcp_rwnd_set(tcp, *i1); 10435 } 10436 /* 10437 * XXX should we return the rwnd here 10438 * and tcp_opt_get ? 10439 */ 10440 break; 10441 case SO_SND_COPYAVOID: 10442 if (!checkonly) { 10443 /* we only allow enable at most once for now */ 10444 if (tcp->tcp_loopback || 10445 (tcp->tcp_kssl_ctx != NULL) || 10446 (!tcp->tcp_snd_zcopy_aware && 10447 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10448 *outlenp = 0; 10449 return (EOPNOTSUPP); 10450 } 10451 tcp->tcp_snd_zcopy_aware = 1; 10452 } 10453 break; 10454 case SO_ALLZONES: 10455 /* Pass option along to IP level for handling */ 10456 return (-EINVAL); 10457 case SO_ANON_MLP: 10458 /* Pass option along to IP level for handling */ 10459 return (-EINVAL); 10460 case SO_MAC_EXEMPT: 10461 /* Pass option along to IP level for handling */ 10462 return (-EINVAL); 10463 case SO_EXCLBIND: 10464 if (!checkonly) 10465 tcp->tcp_exclbind = onoff; 10466 break; 10467 default: 10468 *outlenp = 0; 10469 return (EINVAL); 10470 } 10471 break; 10472 case IPPROTO_TCP: 10473 switch (name) { 10474 case TCP_NODELAY: 10475 if (!checkonly) 10476 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10477 break; 10478 case TCP_NOTIFY_THRESHOLD: 10479 if (!checkonly) 10480 tcp->tcp_first_timer_threshold = *i1; 10481 break; 10482 case TCP_ABORT_THRESHOLD: 10483 if (!checkonly) 10484 tcp->tcp_second_timer_threshold = *i1; 10485 break; 10486 case TCP_CONN_NOTIFY_THRESHOLD: 10487 if (!checkonly) 10488 tcp->tcp_first_ctimer_threshold = *i1; 10489 break; 10490 case TCP_CONN_ABORT_THRESHOLD: 10491 if (!checkonly) 10492 tcp->tcp_second_ctimer_threshold = *i1; 10493 break; 10494 case TCP_RECVDSTADDR: 10495 if (tcp->tcp_state > TCPS_LISTEN) 10496 return (EOPNOTSUPP); 10497 if (!checkonly) 10498 tcp->tcp_recvdstaddr = onoff; 10499 break; 10500 case TCP_ANONPRIVBIND: 10501 if ((reterr = secpolicy_net_privaddr(cr, 0, 10502 IPPROTO_TCP)) != 0) { 10503 *outlenp = 0; 10504 return (reterr); 10505 } 10506 if (!checkonly) { 10507 tcp->tcp_anon_priv_bind = onoff; 10508 } 10509 break; 10510 case TCP_EXCLBIND: 10511 if (!checkonly) 10512 tcp->tcp_exclbind = onoff; 10513 break; /* goto sizeof (int) option return */ 10514 case TCP_INIT_CWND: { 10515 uint32_t init_cwnd = *((uint32_t *)invalp); 10516 10517 if (checkonly) 10518 break; 10519 10520 /* 10521 * Only allow socket with network configuration 10522 * privilege to set the initial cwnd to be larger 10523 * than allowed by RFC 3390. 10524 */ 10525 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10526 tcp->tcp_init_cwnd = init_cwnd; 10527 break; 10528 } 10529 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10530 *outlenp = 0; 10531 return (reterr); 10532 } 10533 if (init_cwnd > TCP_MAX_INIT_CWND) { 10534 *outlenp = 0; 10535 return (EINVAL); 10536 } 10537 tcp->tcp_init_cwnd = init_cwnd; 10538 break; 10539 } 10540 case TCP_KEEPALIVE_THRESHOLD: 10541 if (checkonly) 10542 break; 10543 10544 if (*i1 < tcps->tcps_keepalive_interval_low || 10545 *i1 > tcps->tcps_keepalive_interval_high) { 10546 *outlenp = 0; 10547 return (EINVAL); 10548 } 10549 if (*i1 != tcp->tcp_ka_interval) { 10550 tcp->tcp_ka_interval = *i1; 10551 /* 10552 * Check if we need to restart the 10553 * keepalive timer. 10554 */ 10555 if (tcp->tcp_ka_tid != 0) { 10556 ASSERT(tcp->tcp_ka_enabled); 10557 (void) TCP_TIMER_CANCEL(tcp, 10558 tcp->tcp_ka_tid); 10559 tcp->tcp_ka_last_intrvl = 0; 10560 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10561 tcp_keepalive_killer, 10562 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10563 } 10564 } 10565 break; 10566 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10567 if (!checkonly) { 10568 if (*i1 < 10569 tcps->tcps_keepalive_abort_interval_low || 10570 *i1 > 10571 tcps->tcps_keepalive_abort_interval_high) { 10572 *outlenp = 0; 10573 return (EINVAL); 10574 } 10575 tcp->tcp_ka_abort_thres = *i1; 10576 } 10577 break; 10578 case TCP_CORK: 10579 if (!checkonly) { 10580 /* 10581 * if tcp->tcp_cork was set and is now 10582 * being unset, we have to make sure that 10583 * the remaining data gets sent out. Also 10584 * unset tcp->tcp_cork so that tcp_wput_data() 10585 * can send data even if it is less than mss 10586 */ 10587 if (tcp->tcp_cork && onoff == 0 && 10588 tcp->tcp_unsent > 0) { 10589 tcp->tcp_cork = B_FALSE; 10590 tcp_wput_data(tcp, NULL, B_FALSE); 10591 } 10592 tcp->tcp_cork = onoff; 10593 } 10594 break; 10595 default: 10596 *outlenp = 0; 10597 return (EINVAL); 10598 } 10599 break; 10600 case IPPROTO_IP: 10601 if (tcp->tcp_family != AF_INET) { 10602 *outlenp = 0; 10603 return (ENOPROTOOPT); 10604 } 10605 switch (name) { 10606 case IP_OPTIONS: 10607 case T_IP_OPTIONS: 10608 reterr = tcp_opt_set_header(tcp, checkonly, 10609 invalp, inlen); 10610 if (reterr) { 10611 *outlenp = 0; 10612 return (reterr); 10613 } 10614 /* OK return - copy input buffer into output buffer */ 10615 if (invalp != outvalp) { 10616 /* don't trust bcopy for identical src/dst */ 10617 bcopy(invalp, outvalp, inlen); 10618 } 10619 *outlenp = inlen; 10620 return (0); 10621 case IP_TOS: 10622 case T_IP_TOS: 10623 if (!checkonly) { 10624 tcp->tcp_ipha->ipha_type_of_service = 10625 (uchar_t)*i1; 10626 tcp->tcp_tos = (uchar_t)*i1; 10627 } 10628 break; 10629 case IP_TTL: 10630 if (!checkonly) { 10631 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10632 tcp->tcp_ttl = (uchar_t)*i1; 10633 } 10634 break; 10635 case IP_BOUND_IF: 10636 case IP_NEXTHOP: 10637 /* Handled at the IP level */ 10638 return (-EINVAL); 10639 case IP_SEC_OPT: 10640 /* 10641 * We should not allow policy setting after 10642 * we start listening for connections. 10643 */ 10644 if (tcp->tcp_state == TCPS_LISTEN) { 10645 return (EINVAL); 10646 } else { 10647 /* Handled at the IP level */ 10648 return (-EINVAL); 10649 } 10650 default: 10651 *outlenp = 0; 10652 return (EINVAL); 10653 } 10654 break; 10655 case IPPROTO_IPV6: { 10656 ip6_pkt_t *ipp; 10657 10658 /* 10659 * IPPROTO_IPV6 options are only supported for sockets 10660 * that are using IPv6 on the wire. 10661 */ 10662 if (tcp->tcp_ipversion != IPV6_VERSION) { 10663 *outlenp = 0; 10664 return (ENOPROTOOPT); 10665 } 10666 /* 10667 * Only sticky options; no ancillary data 10668 */ 10669 ASSERT(thisdg_attrs == NULL); 10670 ipp = &tcp->tcp_sticky_ipp; 10671 10672 switch (name) { 10673 case IPV6_UNICAST_HOPS: 10674 /* -1 means use default */ 10675 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10676 *outlenp = 0; 10677 return (EINVAL); 10678 } 10679 if (!checkonly) { 10680 if (*i1 == -1) { 10681 tcp->tcp_ip6h->ip6_hops = 10682 ipp->ipp_unicast_hops = 10683 (uint8_t)tcps->tcps_ipv6_hoplimit; 10684 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10685 /* Pass modified value to IP. */ 10686 *i1 = tcp->tcp_ip6h->ip6_hops; 10687 } else { 10688 tcp->tcp_ip6h->ip6_hops = 10689 ipp->ipp_unicast_hops = 10690 (uint8_t)*i1; 10691 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10692 } 10693 reterr = tcp_build_hdrs(q, tcp); 10694 if (reterr != 0) 10695 return (reterr); 10696 } 10697 break; 10698 case IPV6_BOUND_IF: 10699 if (!checkonly) { 10700 int error = 0; 10701 10702 tcp->tcp_bound_if = *i1; 10703 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10704 B_TRUE, checkonly, level, name, mblk); 10705 if (error != 0) { 10706 *outlenp = 0; 10707 return (error); 10708 } 10709 } 10710 break; 10711 /* 10712 * Set boolean switches for ancillary data delivery 10713 */ 10714 case IPV6_RECVPKTINFO: 10715 if (!checkonly) { 10716 if (onoff) 10717 tcp->tcp_ipv6_recvancillary |= 10718 TCP_IPV6_RECVPKTINFO; 10719 else 10720 tcp->tcp_ipv6_recvancillary &= 10721 ~TCP_IPV6_RECVPKTINFO; 10722 /* Force it to be sent up with the next msg */ 10723 tcp->tcp_recvifindex = 0; 10724 } 10725 break; 10726 case IPV6_RECVTCLASS: 10727 if (!checkonly) { 10728 if (onoff) 10729 tcp->tcp_ipv6_recvancillary |= 10730 TCP_IPV6_RECVTCLASS; 10731 else 10732 tcp->tcp_ipv6_recvancillary &= 10733 ~TCP_IPV6_RECVTCLASS; 10734 } 10735 break; 10736 case IPV6_RECVHOPLIMIT: 10737 if (!checkonly) { 10738 if (onoff) 10739 tcp->tcp_ipv6_recvancillary |= 10740 TCP_IPV6_RECVHOPLIMIT; 10741 else 10742 tcp->tcp_ipv6_recvancillary &= 10743 ~TCP_IPV6_RECVHOPLIMIT; 10744 /* Force it to be sent up with the next msg */ 10745 tcp->tcp_recvhops = 0xffffffffU; 10746 } 10747 break; 10748 case IPV6_RECVHOPOPTS: 10749 if (!checkonly) { 10750 if (onoff) 10751 tcp->tcp_ipv6_recvancillary |= 10752 TCP_IPV6_RECVHOPOPTS; 10753 else 10754 tcp->tcp_ipv6_recvancillary &= 10755 ~TCP_IPV6_RECVHOPOPTS; 10756 } 10757 break; 10758 case IPV6_RECVDSTOPTS: 10759 if (!checkonly) { 10760 if (onoff) 10761 tcp->tcp_ipv6_recvancillary |= 10762 TCP_IPV6_RECVDSTOPTS; 10763 else 10764 tcp->tcp_ipv6_recvancillary &= 10765 ~TCP_IPV6_RECVDSTOPTS; 10766 } 10767 break; 10768 case _OLD_IPV6_RECVDSTOPTS: 10769 if (!checkonly) { 10770 if (onoff) 10771 tcp->tcp_ipv6_recvancillary |= 10772 TCP_OLD_IPV6_RECVDSTOPTS; 10773 else 10774 tcp->tcp_ipv6_recvancillary &= 10775 ~TCP_OLD_IPV6_RECVDSTOPTS; 10776 } 10777 break; 10778 case IPV6_RECVRTHDR: 10779 if (!checkonly) { 10780 if (onoff) 10781 tcp->tcp_ipv6_recvancillary |= 10782 TCP_IPV6_RECVRTHDR; 10783 else 10784 tcp->tcp_ipv6_recvancillary &= 10785 ~TCP_IPV6_RECVRTHDR; 10786 } 10787 break; 10788 case IPV6_RECVRTHDRDSTOPTS: 10789 if (!checkonly) { 10790 if (onoff) 10791 tcp->tcp_ipv6_recvancillary |= 10792 TCP_IPV6_RECVRTDSTOPTS; 10793 else 10794 tcp->tcp_ipv6_recvancillary &= 10795 ~TCP_IPV6_RECVRTDSTOPTS; 10796 } 10797 break; 10798 case IPV6_PKTINFO: 10799 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10800 return (EINVAL); 10801 if (checkonly) 10802 break; 10803 10804 if (inlen == 0) { 10805 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10806 } else { 10807 struct in6_pktinfo *pkti; 10808 10809 pkti = (struct in6_pktinfo *)invalp; 10810 /* 10811 * RFC 3542 states that ipi6_addr must be 10812 * the unspecified address when setting the 10813 * IPV6_PKTINFO sticky socket option on a 10814 * TCP socket. 10815 */ 10816 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10817 return (EINVAL); 10818 /* 10819 * ip6_set_pktinfo() validates the source 10820 * address and interface index. 10821 */ 10822 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10823 pkti, mblk); 10824 if (reterr != 0) 10825 return (reterr); 10826 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10827 ipp->ipp_addr = pkti->ipi6_addr; 10828 if (ipp->ipp_ifindex != 0) 10829 ipp->ipp_fields |= IPPF_IFINDEX; 10830 else 10831 ipp->ipp_fields &= ~IPPF_IFINDEX; 10832 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10833 ipp->ipp_fields |= IPPF_ADDR; 10834 else 10835 ipp->ipp_fields &= ~IPPF_ADDR; 10836 } 10837 reterr = tcp_build_hdrs(q, tcp); 10838 if (reterr != 0) 10839 return (reterr); 10840 break; 10841 case IPV6_TCLASS: 10842 if (inlen != 0 && inlen != sizeof (int)) 10843 return (EINVAL); 10844 if (checkonly) 10845 break; 10846 10847 if (inlen == 0) { 10848 ipp->ipp_fields &= ~IPPF_TCLASS; 10849 } else { 10850 if (*i1 > 255 || *i1 < -1) 10851 return (EINVAL); 10852 if (*i1 == -1) { 10853 ipp->ipp_tclass = 0; 10854 *i1 = 0; 10855 } else { 10856 ipp->ipp_tclass = *i1; 10857 } 10858 ipp->ipp_fields |= IPPF_TCLASS; 10859 } 10860 reterr = tcp_build_hdrs(q, tcp); 10861 if (reterr != 0) 10862 return (reterr); 10863 break; 10864 case IPV6_NEXTHOP: 10865 /* 10866 * IP will verify that the nexthop is reachable 10867 * and fail for sticky options. 10868 */ 10869 if (inlen != 0 && inlen != sizeof (sin6_t)) 10870 return (EINVAL); 10871 if (checkonly) 10872 break; 10873 10874 if (inlen == 0) { 10875 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10876 } else { 10877 sin6_t *sin6 = (sin6_t *)invalp; 10878 10879 if (sin6->sin6_family != AF_INET6) 10880 return (EAFNOSUPPORT); 10881 if (IN6_IS_ADDR_V4MAPPED( 10882 &sin6->sin6_addr)) 10883 return (EADDRNOTAVAIL); 10884 ipp->ipp_nexthop = sin6->sin6_addr; 10885 if (!IN6_IS_ADDR_UNSPECIFIED( 10886 &ipp->ipp_nexthop)) 10887 ipp->ipp_fields |= IPPF_NEXTHOP; 10888 else 10889 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10890 } 10891 reterr = tcp_build_hdrs(q, tcp); 10892 if (reterr != 0) 10893 return (reterr); 10894 break; 10895 case IPV6_HOPOPTS: { 10896 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10897 10898 /* 10899 * Sanity checks - minimum size, size a multiple of 10900 * eight bytes, and matching size passed in. 10901 */ 10902 if (inlen != 0 && 10903 inlen != (8 * (hopts->ip6h_len + 1))) 10904 return (EINVAL); 10905 10906 if (checkonly) 10907 break; 10908 10909 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10910 (uchar_t **)&ipp->ipp_hopopts, 10911 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10912 if (reterr != 0) 10913 return (reterr); 10914 if (ipp->ipp_hopoptslen == 0) 10915 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10916 else 10917 ipp->ipp_fields |= IPPF_HOPOPTS; 10918 reterr = tcp_build_hdrs(q, tcp); 10919 if (reterr != 0) 10920 return (reterr); 10921 break; 10922 } 10923 case IPV6_RTHDRDSTOPTS: { 10924 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10925 10926 /* 10927 * Sanity checks - minimum size, size a multiple of 10928 * eight bytes, and matching size passed in. 10929 */ 10930 if (inlen != 0 && 10931 inlen != (8 * (dopts->ip6d_len + 1))) 10932 return (EINVAL); 10933 10934 if (checkonly) 10935 break; 10936 10937 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10938 (uchar_t **)&ipp->ipp_rtdstopts, 10939 &ipp->ipp_rtdstoptslen, 0); 10940 if (reterr != 0) 10941 return (reterr); 10942 if (ipp->ipp_rtdstoptslen == 0) 10943 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10944 else 10945 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10946 reterr = tcp_build_hdrs(q, tcp); 10947 if (reterr != 0) 10948 return (reterr); 10949 break; 10950 } 10951 case IPV6_DSTOPTS: { 10952 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10953 10954 /* 10955 * Sanity checks - minimum size, size a multiple of 10956 * eight bytes, and matching size passed in. 10957 */ 10958 if (inlen != 0 && 10959 inlen != (8 * (dopts->ip6d_len + 1))) 10960 return (EINVAL); 10961 10962 if (checkonly) 10963 break; 10964 10965 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10966 (uchar_t **)&ipp->ipp_dstopts, 10967 &ipp->ipp_dstoptslen, 0); 10968 if (reterr != 0) 10969 return (reterr); 10970 if (ipp->ipp_dstoptslen == 0) 10971 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10972 else 10973 ipp->ipp_fields |= IPPF_DSTOPTS; 10974 reterr = tcp_build_hdrs(q, tcp); 10975 if (reterr != 0) 10976 return (reterr); 10977 break; 10978 } 10979 case IPV6_RTHDR: { 10980 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10981 10982 /* 10983 * Sanity checks - minimum size, size a multiple of 10984 * eight bytes, and matching size passed in. 10985 */ 10986 if (inlen != 0 && 10987 inlen != (8 * (rt->ip6r_len + 1))) 10988 return (EINVAL); 10989 10990 if (checkonly) 10991 break; 10992 10993 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10994 (uchar_t **)&ipp->ipp_rthdr, 10995 &ipp->ipp_rthdrlen, 0); 10996 if (reterr != 0) 10997 return (reterr); 10998 if (ipp->ipp_rthdrlen == 0) 10999 ipp->ipp_fields &= ~IPPF_RTHDR; 11000 else 11001 ipp->ipp_fields |= IPPF_RTHDR; 11002 reterr = tcp_build_hdrs(q, tcp); 11003 if (reterr != 0) 11004 return (reterr); 11005 break; 11006 } 11007 case IPV6_V6ONLY: 11008 if (!checkonly) 11009 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11010 break; 11011 case IPV6_USE_MIN_MTU: 11012 if (inlen != sizeof (int)) 11013 return (EINVAL); 11014 11015 if (*i1 < -1 || *i1 > 1) 11016 return (EINVAL); 11017 11018 if (checkonly) 11019 break; 11020 11021 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11022 ipp->ipp_use_min_mtu = *i1; 11023 break; 11024 case IPV6_BOUND_PIF: 11025 /* Handled at the IP level */ 11026 return (-EINVAL); 11027 case IPV6_SEC_OPT: 11028 /* 11029 * We should not allow policy setting after 11030 * we start listening for connections. 11031 */ 11032 if (tcp->tcp_state == TCPS_LISTEN) { 11033 return (EINVAL); 11034 } else { 11035 /* Handled at the IP level */ 11036 return (-EINVAL); 11037 } 11038 case IPV6_SRC_PREFERENCES: 11039 if (inlen != sizeof (uint32_t)) 11040 return (EINVAL); 11041 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11042 *(uint32_t *)invalp); 11043 if (reterr != 0) { 11044 *outlenp = 0; 11045 return (reterr); 11046 } 11047 break; 11048 default: 11049 *outlenp = 0; 11050 return (EINVAL); 11051 } 11052 break; 11053 } /* end IPPROTO_IPV6 */ 11054 default: 11055 *outlenp = 0; 11056 return (EINVAL); 11057 } 11058 /* 11059 * Common case of OK return with outval same as inval 11060 */ 11061 if (invalp != outvalp) { 11062 /* don't trust bcopy for identical src/dst */ 11063 (void) bcopy(invalp, outvalp, inlen); 11064 } 11065 *outlenp = inlen; 11066 return (0); 11067 } 11068 11069 /* 11070 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11071 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11072 * headers, and the maximum size tcp header (to avoid reallocation 11073 * on the fly for additional tcp options). 11074 * Returns failure if can't allocate memory. 11075 */ 11076 static int 11077 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11078 { 11079 char *hdrs; 11080 uint_t hdrs_len; 11081 ip6i_t *ip6i; 11082 char buf[TCP_MAX_HDR_LENGTH]; 11083 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11084 in6_addr_t src, dst; 11085 tcp_stack_t *tcps = tcp->tcp_tcps; 11086 11087 /* 11088 * save the existing tcp header and source/dest IP addresses 11089 */ 11090 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11091 src = tcp->tcp_ip6h->ip6_src; 11092 dst = tcp->tcp_ip6h->ip6_dst; 11093 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11094 ASSERT(hdrs_len != 0); 11095 if (hdrs_len > tcp->tcp_iphc_len) { 11096 /* Need to reallocate */ 11097 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11098 if (hdrs == NULL) 11099 return (ENOMEM); 11100 if (tcp->tcp_iphc != NULL) { 11101 if (tcp->tcp_hdr_grown) { 11102 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11103 } else { 11104 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11105 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11106 } 11107 tcp->tcp_iphc_len = 0; 11108 } 11109 ASSERT(tcp->tcp_iphc_len == 0); 11110 tcp->tcp_iphc = hdrs; 11111 tcp->tcp_iphc_len = hdrs_len; 11112 tcp->tcp_hdr_grown = B_TRUE; 11113 } 11114 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11115 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11116 11117 /* Set header fields not in ipp */ 11118 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11119 ip6i = (ip6i_t *)tcp->tcp_iphc; 11120 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11121 } else { 11122 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11123 } 11124 /* 11125 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11126 * 11127 * tcp->tcp_tcp_hdr_len doesn't change here. 11128 */ 11129 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11130 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11131 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11132 11133 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11134 11135 tcp->tcp_ip6h->ip6_src = src; 11136 tcp->tcp_ip6h->ip6_dst = dst; 11137 11138 /* 11139 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11140 * the default value for TCP. 11141 */ 11142 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11143 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11144 11145 /* 11146 * If we're setting extension headers after a connection 11147 * has been established, and if we have a routing header 11148 * among the extension headers, call ip_massage_options_v6 to 11149 * manipulate the routing header/ip6_dst set the checksum 11150 * difference in the tcp header template. 11151 * (This happens in tcp_connect_ipv6 if the routing header 11152 * is set prior to the connect.) 11153 * Set the tcp_sum to zero first in case we've cleared a 11154 * routing header or don't have one at all. 11155 */ 11156 tcp->tcp_sum = 0; 11157 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11158 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11159 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11160 (uint8_t *)tcp->tcp_tcph); 11161 if (rth != NULL) { 11162 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11163 rth, tcps->tcps_netstack); 11164 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11165 (tcp->tcp_sum >> 16)); 11166 } 11167 } 11168 11169 /* Try to get everything in a single mblk */ 11170 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11171 return (0); 11172 } 11173 11174 /* 11175 * Transfer any source route option from ipha to buf/dst in reversed form. 11176 */ 11177 static int 11178 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11179 { 11180 ipoptp_t opts; 11181 uchar_t *opt; 11182 uint8_t optval; 11183 uint8_t optlen; 11184 uint32_t len = 0; 11185 11186 for (optval = ipoptp_first(&opts, ipha); 11187 optval != IPOPT_EOL; 11188 optval = ipoptp_next(&opts)) { 11189 opt = opts.ipoptp_cur; 11190 optlen = opts.ipoptp_len; 11191 switch (optval) { 11192 int off1, off2; 11193 case IPOPT_SSRR: 11194 case IPOPT_LSRR: 11195 11196 /* Reverse source route */ 11197 /* 11198 * First entry should be the next to last one in the 11199 * current source route (the last entry is our 11200 * address.) 11201 * The last entry should be the final destination. 11202 */ 11203 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11204 buf[IPOPT_OLEN] = (uint8_t)optlen; 11205 off1 = IPOPT_MINOFF_SR - 1; 11206 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11207 if (off2 < 0) { 11208 /* No entries in source route */ 11209 break; 11210 } 11211 bcopy(opt + off2, dst, IP_ADDR_LEN); 11212 /* 11213 * Note: use src since ipha has not had its src 11214 * and dst reversed (it is in the state it was 11215 * received. 11216 */ 11217 bcopy(&ipha->ipha_src, buf + off2, 11218 IP_ADDR_LEN); 11219 off2 -= IP_ADDR_LEN; 11220 11221 while (off2 > 0) { 11222 bcopy(opt + off2, buf + off1, 11223 IP_ADDR_LEN); 11224 off1 += IP_ADDR_LEN; 11225 off2 -= IP_ADDR_LEN; 11226 } 11227 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11228 buf += optlen; 11229 len += optlen; 11230 break; 11231 } 11232 } 11233 done: 11234 /* Pad the resulting options */ 11235 while (len & 0x3) { 11236 *buf++ = IPOPT_EOL; 11237 len++; 11238 } 11239 return (len); 11240 } 11241 11242 11243 /* 11244 * Extract and revert a source route from ipha (if any) 11245 * and then update the relevant fields in both tcp_t and the standard header. 11246 */ 11247 static void 11248 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11249 { 11250 char buf[TCP_MAX_HDR_LENGTH]; 11251 uint_t tcph_len; 11252 int len; 11253 11254 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11255 len = IPH_HDR_LENGTH(ipha); 11256 if (len == IP_SIMPLE_HDR_LENGTH) 11257 /* Nothing to do */ 11258 return; 11259 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11260 (len & 0x3)) 11261 return; 11262 11263 tcph_len = tcp->tcp_tcp_hdr_len; 11264 bcopy(tcp->tcp_tcph, buf, tcph_len); 11265 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11266 (tcp->tcp_ipha->ipha_dst & 0xffff); 11267 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11268 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11269 len += IP_SIMPLE_HDR_LENGTH; 11270 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11271 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11272 if ((int)tcp->tcp_sum < 0) 11273 tcp->tcp_sum--; 11274 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11275 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11276 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11277 bcopy(buf, tcp->tcp_tcph, tcph_len); 11278 tcp->tcp_ip_hdr_len = len; 11279 tcp->tcp_ipha->ipha_version_and_hdr_length = 11280 (IP_VERSION << 4) | (len >> 2); 11281 len += tcph_len; 11282 tcp->tcp_hdr_len = len; 11283 } 11284 11285 /* 11286 * Copy the standard header into its new location, 11287 * lay in the new options and then update the relevant 11288 * fields in both tcp_t and the standard header. 11289 */ 11290 static int 11291 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11292 { 11293 uint_t tcph_len; 11294 uint8_t *ip_optp; 11295 tcph_t *new_tcph; 11296 tcp_stack_t *tcps = tcp->tcp_tcps; 11297 11298 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11299 return (EINVAL); 11300 11301 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11302 return (EINVAL); 11303 11304 if (checkonly) { 11305 /* 11306 * do not really set, just pretend to - T_CHECK 11307 */ 11308 return (0); 11309 } 11310 11311 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11312 if (tcp->tcp_label_len > 0) { 11313 int padlen; 11314 uint8_t opt; 11315 11316 /* convert list termination to no-ops */ 11317 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11318 ip_optp += ip_optp[IPOPT_OLEN]; 11319 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11320 while (--padlen >= 0) 11321 *ip_optp++ = opt; 11322 } 11323 tcph_len = tcp->tcp_tcp_hdr_len; 11324 new_tcph = (tcph_t *)(ip_optp + len); 11325 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11326 tcp->tcp_tcph = new_tcph; 11327 bcopy(ptr, ip_optp, len); 11328 11329 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11330 11331 tcp->tcp_ip_hdr_len = len; 11332 tcp->tcp_ipha->ipha_version_and_hdr_length = 11333 (IP_VERSION << 4) | (len >> 2); 11334 tcp->tcp_hdr_len = len + tcph_len; 11335 if (!TCP_IS_DETACHED(tcp)) { 11336 /* Always allocate room for all options. */ 11337 (void) mi_set_sth_wroff(tcp->tcp_rq, 11338 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11339 } 11340 return (0); 11341 } 11342 11343 /* Get callback routine passed to nd_load by tcp_param_register */ 11344 /* ARGSUSED */ 11345 static int 11346 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11347 { 11348 tcpparam_t *tcppa = (tcpparam_t *)cp; 11349 11350 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11351 return (0); 11352 } 11353 11354 /* 11355 * Walk through the param array specified registering each element with the 11356 * named dispatch handler. 11357 */ 11358 static boolean_t 11359 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11360 { 11361 for (; cnt-- > 0; tcppa++) { 11362 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11363 if (!nd_load(ndp, tcppa->tcp_param_name, 11364 tcp_param_get, tcp_param_set, 11365 (caddr_t)tcppa)) { 11366 nd_free(ndp); 11367 return (B_FALSE); 11368 } 11369 } 11370 } 11371 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11372 KM_SLEEP); 11373 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11374 sizeof (tcpparam_t)); 11375 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11376 tcp_param_get, tcp_param_set_aligned, 11377 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11378 nd_free(ndp); 11379 return (B_FALSE); 11380 } 11381 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11382 KM_SLEEP); 11383 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11384 sizeof (tcpparam_t)); 11385 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11386 tcp_param_get, tcp_param_set_aligned, 11387 (caddr_t)tcps->tcps_mdt_head_param)) { 11388 nd_free(ndp); 11389 return (B_FALSE); 11390 } 11391 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11392 KM_SLEEP); 11393 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11394 sizeof (tcpparam_t)); 11395 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11396 tcp_param_get, tcp_param_set_aligned, 11397 (caddr_t)tcps->tcps_mdt_tail_param)) { 11398 nd_free(ndp); 11399 return (B_FALSE); 11400 } 11401 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11402 KM_SLEEP); 11403 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11404 sizeof (tcpparam_t)); 11405 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11406 tcp_param_get, tcp_param_set_aligned, 11407 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11408 nd_free(ndp); 11409 return (B_FALSE); 11410 } 11411 if (!nd_load(ndp, "tcp_extra_priv_ports", 11412 tcp_extra_priv_ports_get, NULL, NULL)) { 11413 nd_free(ndp); 11414 return (B_FALSE); 11415 } 11416 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11417 NULL, tcp_extra_priv_ports_add, NULL)) { 11418 nd_free(ndp); 11419 return (B_FALSE); 11420 } 11421 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11422 NULL, tcp_extra_priv_ports_del, NULL)) { 11423 nd_free(ndp); 11424 return (B_FALSE); 11425 } 11426 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11427 NULL)) { 11428 nd_free(ndp); 11429 return (B_FALSE); 11430 } 11431 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11432 NULL, NULL)) { 11433 nd_free(ndp); 11434 return (B_FALSE); 11435 } 11436 if (!nd_load(ndp, "tcp_listen_hash", 11437 tcp_listen_hash_report, NULL, NULL)) { 11438 nd_free(ndp); 11439 return (B_FALSE); 11440 } 11441 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11442 NULL, NULL)) { 11443 nd_free(ndp); 11444 return (B_FALSE); 11445 } 11446 if (!nd_load(ndp, "tcp_acceptor_hash", 11447 tcp_acceptor_hash_report, NULL, NULL)) { 11448 nd_free(ndp); 11449 return (B_FALSE); 11450 } 11451 if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report, 11452 tcp_host_param_set, NULL)) { 11453 nd_free(ndp); 11454 return (B_FALSE); 11455 } 11456 if (!nd_load(ndp, "tcp_host_param_ipv6", 11457 tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) { 11458 nd_free(ndp); 11459 return (B_FALSE); 11460 } 11461 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11462 tcp_1948_phrase_set, NULL)) { 11463 nd_free(ndp); 11464 return (B_FALSE); 11465 } 11466 if (!nd_load(ndp, "tcp_reserved_port_list", 11467 tcp_reserved_port_list, NULL, NULL)) { 11468 nd_free(ndp); 11469 return (B_FALSE); 11470 } 11471 /* 11472 * Dummy ndd variables - only to convey obsolescence information 11473 * through printing of their name (no get or set routines) 11474 * XXX Remove in future releases ? 11475 */ 11476 if (!nd_load(ndp, 11477 "tcp_close_wait_interval(obsoleted - " 11478 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11479 nd_free(ndp); 11480 return (B_FALSE); 11481 } 11482 return (B_TRUE); 11483 } 11484 11485 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11486 /* ARGSUSED */ 11487 static int 11488 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11489 cred_t *cr) 11490 { 11491 long new_value; 11492 tcpparam_t *tcppa = (tcpparam_t *)cp; 11493 11494 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11495 new_value < tcppa->tcp_param_min || 11496 new_value > tcppa->tcp_param_max) { 11497 return (EINVAL); 11498 } 11499 /* 11500 * Need to make sure new_value is a multiple of 4. If it is not, 11501 * round it up. For future 64 bit requirement, we actually make it 11502 * a multiple of 8. 11503 */ 11504 if (new_value & 0x7) { 11505 new_value = (new_value & ~0x7) + 0x8; 11506 } 11507 tcppa->tcp_param_val = new_value; 11508 return (0); 11509 } 11510 11511 /* Set callback routine passed to nd_load by tcp_param_register */ 11512 /* ARGSUSED */ 11513 static int 11514 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11515 { 11516 long new_value; 11517 tcpparam_t *tcppa = (tcpparam_t *)cp; 11518 11519 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11520 new_value < tcppa->tcp_param_min || 11521 new_value > tcppa->tcp_param_max) { 11522 return (EINVAL); 11523 } 11524 tcppa->tcp_param_val = new_value; 11525 return (0); 11526 } 11527 11528 /* 11529 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11530 * is filled, return as much as we can. The message passed in may be 11531 * multi-part, chained using b_cont. "start" is the starting sequence 11532 * number for this piece. 11533 */ 11534 static mblk_t * 11535 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11536 { 11537 uint32_t end; 11538 mblk_t *mp1; 11539 mblk_t *mp2; 11540 mblk_t *next_mp; 11541 uint32_t u1; 11542 tcp_stack_t *tcps = tcp->tcp_tcps; 11543 11544 /* Walk through all the new pieces. */ 11545 do { 11546 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11547 (uintptr_t)INT_MAX); 11548 end = start + (int)(mp->b_wptr - mp->b_rptr); 11549 next_mp = mp->b_cont; 11550 if (start == end) { 11551 /* Empty. Blast it. */ 11552 freeb(mp); 11553 continue; 11554 } 11555 mp->b_cont = NULL; 11556 TCP_REASS_SET_SEQ(mp, start); 11557 TCP_REASS_SET_END(mp, end); 11558 mp1 = tcp->tcp_reass_tail; 11559 if (!mp1) { 11560 tcp->tcp_reass_tail = mp; 11561 tcp->tcp_reass_head = mp; 11562 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11563 UPDATE_MIB(&tcps->tcps_mib, 11564 tcpInDataUnorderBytes, end - start); 11565 continue; 11566 } 11567 /* New stuff completely beyond tail? */ 11568 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11569 /* Link it on end. */ 11570 mp1->b_cont = mp; 11571 tcp->tcp_reass_tail = mp; 11572 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11573 UPDATE_MIB(&tcps->tcps_mib, 11574 tcpInDataUnorderBytes, end - start); 11575 continue; 11576 } 11577 mp1 = tcp->tcp_reass_head; 11578 u1 = TCP_REASS_SEQ(mp1); 11579 /* New stuff at the front? */ 11580 if (SEQ_LT(start, u1)) { 11581 /* Yes... Check for overlap. */ 11582 mp->b_cont = mp1; 11583 tcp->tcp_reass_head = mp; 11584 tcp_reass_elim_overlap(tcp, mp); 11585 continue; 11586 } 11587 /* 11588 * The new piece fits somewhere between the head and tail. 11589 * We find our slot, where mp1 precedes us and mp2 trails. 11590 */ 11591 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11592 u1 = TCP_REASS_SEQ(mp2); 11593 if (SEQ_LEQ(start, u1)) 11594 break; 11595 } 11596 /* Link ourselves in */ 11597 mp->b_cont = mp2; 11598 mp1->b_cont = mp; 11599 11600 /* Trim overlap with following mblk(s) first */ 11601 tcp_reass_elim_overlap(tcp, mp); 11602 11603 /* Trim overlap with preceding mblk */ 11604 tcp_reass_elim_overlap(tcp, mp1); 11605 11606 } while (start = end, mp = next_mp); 11607 mp1 = tcp->tcp_reass_head; 11608 /* Anything ready to go? */ 11609 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11610 return (NULL); 11611 /* Eat what we can off the queue */ 11612 for (;;) { 11613 mp = mp1->b_cont; 11614 end = TCP_REASS_END(mp1); 11615 TCP_REASS_SET_SEQ(mp1, 0); 11616 TCP_REASS_SET_END(mp1, 0); 11617 if (!mp) { 11618 tcp->tcp_reass_tail = NULL; 11619 break; 11620 } 11621 if (end != TCP_REASS_SEQ(mp)) { 11622 mp1->b_cont = NULL; 11623 break; 11624 } 11625 mp1 = mp; 11626 } 11627 mp1 = tcp->tcp_reass_head; 11628 tcp->tcp_reass_head = mp; 11629 return (mp1); 11630 } 11631 11632 /* Eliminate any overlap that mp may have over later mblks */ 11633 static void 11634 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11635 { 11636 uint32_t end; 11637 mblk_t *mp1; 11638 uint32_t u1; 11639 tcp_stack_t *tcps = tcp->tcp_tcps; 11640 11641 end = TCP_REASS_END(mp); 11642 while ((mp1 = mp->b_cont) != NULL) { 11643 u1 = TCP_REASS_SEQ(mp1); 11644 if (!SEQ_GT(end, u1)) 11645 break; 11646 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11647 mp->b_wptr -= end - u1; 11648 TCP_REASS_SET_END(mp, u1); 11649 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11650 UPDATE_MIB(&tcps->tcps_mib, 11651 tcpInDataPartDupBytes, end - u1); 11652 break; 11653 } 11654 mp->b_cont = mp1->b_cont; 11655 TCP_REASS_SET_SEQ(mp1, 0); 11656 TCP_REASS_SET_END(mp1, 0); 11657 freeb(mp1); 11658 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11659 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11660 } 11661 if (!mp1) 11662 tcp->tcp_reass_tail = mp; 11663 } 11664 11665 /* 11666 * Send up all messages queued on tcp_rcv_list. 11667 */ 11668 static uint_t 11669 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11670 { 11671 mblk_t *mp; 11672 uint_t ret = 0; 11673 uint_t thwin; 11674 #ifdef DEBUG 11675 uint_t cnt = 0; 11676 #endif 11677 tcp_stack_t *tcps = tcp->tcp_tcps; 11678 11679 /* Can't drain on an eager connection */ 11680 if (tcp->tcp_listener != NULL) 11681 return (ret); 11682 11683 /* 11684 * Handle two cases here: we are currently fused or we were 11685 * previously fused and have some urgent data to be delivered 11686 * upstream. The latter happens because we either ran out of 11687 * memory or were detached and therefore sending the SIGURG was 11688 * deferred until this point. In either case we pass control 11689 * over to tcp_fuse_rcv_drain() since it may need to complete 11690 * some work. 11691 */ 11692 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11693 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11694 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11695 &tcp->tcp_fused_sigurg_mp)) 11696 return (ret); 11697 } 11698 11699 while ((mp = tcp->tcp_rcv_list) != NULL) { 11700 tcp->tcp_rcv_list = mp->b_next; 11701 mp->b_next = NULL; 11702 #ifdef DEBUG 11703 cnt += msgdsize(mp); 11704 #endif 11705 /* Does this need SSL processing first? */ 11706 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11707 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11708 mblk_t *, mp); 11709 tcp_kssl_input(tcp, mp); 11710 continue; 11711 } 11712 putnext(q, mp); 11713 } 11714 ASSERT(cnt == tcp->tcp_rcv_cnt); 11715 tcp->tcp_rcv_last_head = NULL; 11716 tcp->tcp_rcv_last_tail = NULL; 11717 tcp->tcp_rcv_cnt = 0; 11718 11719 /* Learn the latest rwnd information that we sent to the other side. */ 11720 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11721 << tcp->tcp_rcv_ws; 11722 /* This is peer's calculated send window (our receive window). */ 11723 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11724 /* 11725 * Increase the receive window to max. But we need to do receiver 11726 * SWS avoidance. This means that we need to check the increase of 11727 * of receive window is at least 1 MSS. 11728 */ 11729 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11730 /* 11731 * If the window that the other side knows is less than max 11732 * deferred acks segments, send an update immediately. 11733 */ 11734 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11735 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11736 ret = TH_ACK_NEEDED; 11737 } 11738 tcp->tcp_rwnd = q->q_hiwat; 11739 } 11740 /* No need for the push timer now. */ 11741 if (tcp->tcp_push_tid != 0) { 11742 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11743 tcp->tcp_push_tid = 0; 11744 } 11745 return (ret); 11746 } 11747 11748 /* 11749 * Queue data on tcp_rcv_list which is a b_next chain. 11750 * tcp_rcv_last_head/tail is the last element of this chain. 11751 * Each element of the chain is a b_cont chain. 11752 * 11753 * M_DATA messages are added to the current element. 11754 * Other messages are added as new (b_next) elements. 11755 */ 11756 void 11757 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11758 { 11759 ASSERT(seg_len == msgdsize(mp)); 11760 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11761 11762 if (tcp->tcp_rcv_list == NULL) { 11763 ASSERT(tcp->tcp_rcv_last_head == NULL); 11764 tcp->tcp_rcv_list = mp; 11765 tcp->tcp_rcv_last_head = mp; 11766 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11767 tcp->tcp_rcv_last_tail->b_cont = mp; 11768 } else { 11769 tcp->tcp_rcv_last_head->b_next = mp; 11770 tcp->tcp_rcv_last_head = mp; 11771 } 11772 11773 while (mp->b_cont) 11774 mp = mp->b_cont; 11775 11776 tcp->tcp_rcv_last_tail = mp; 11777 tcp->tcp_rcv_cnt += seg_len; 11778 tcp->tcp_rwnd -= seg_len; 11779 } 11780 11781 /* 11782 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11783 * 11784 * This is the default entry function into TCP on the read side. TCP is 11785 * always entered via squeue i.e. using squeue's for mutual exclusion. 11786 * When classifier does a lookup to find the tcp, it also puts a reference 11787 * on the conn structure associated so the tcp is guaranteed to exist 11788 * when we come here. We still need to check the state because it might 11789 * as well has been closed. The squeue processing function i.e. squeue_enter, 11790 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11791 * CONN_DEC_REF. 11792 * 11793 * Apart from the default entry point, IP also sends packets directly to 11794 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11795 * connections. 11796 */ 11797 void 11798 tcp_input(void *arg, mblk_t *mp, void *arg2) 11799 { 11800 conn_t *connp = (conn_t *)arg; 11801 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11802 11803 /* arg2 is the sqp */ 11804 ASSERT(arg2 != NULL); 11805 ASSERT(mp != NULL); 11806 11807 /* 11808 * Don't accept any input on a closed tcp as this TCP logically does 11809 * not exist on the system. Don't proceed further with this TCP. 11810 * For eg. this packet could trigger another close of this tcp 11811 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11812 * tcp_clean_death / tcp_closei_local must be called at most once 11813 * on a TCP. In this case we need to refeed the packet into the 11814 * classifier and figure out where the packet should go. Need to 11815 * preserve the recv_ill somehow. Until we figure that out, for 11816 * now just drop the packet if we can't classify the packet. 11817 */ 11818 if (tcp->tcp_state == TCPS_CLOSED || 11819 tcp->tcp_state == TCPS_BOUND) { 11820 conn_t *new_connp; 11821 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11822 11823 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11824 if (new_connp != NULL) { 11825 tcp_reinput(new_connp, mp, arg2); 11826 return; 11827 } 11828 /* We failed to classify. For now just drop the packet */ 11829 freemsg(mp); 11830 return; 11831 } 11832 11833 if (DB_TYPE(mp) == M_DATA) 11834 tcp_rput_data(connp, mp, arg2); 11835 else 11836 tcp_rput_common(tcp, mp); 11837 } 11838 11839 /* 11840 * The read side put procedure. 11841 * The packets passed up by ip are assume to be aligned according to 11842 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11843 */ 11844 static void 11845 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11846 { 11847 /* 11848 * tcp_rput_data() does not expect M_CTL except for the case 11849 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11850 * type. Need to make sure that any other M_CTLs don't make 11851 * it to tcp_rput_data since it is not expecting any and doesn't 11852 * check for it. 11853 */ 11854 if (DB_TYPE(mp) == M_CTL) { 11855 switch (*(uint32_t *)(mp->b_rptr)) { 11856 case TCP_IOC_ABORT_CONN: 11857 /* 11858 * Handle connection abort request. 11859 */ 11860 tcp_ioctl_abort_handler(tcp, mp); 11861 return; 11862 case IPSEC_IN: 11863 /* 11864 * Only secure icmp arrive in TCP and they 11865 * don't go through data path. 11866 */ 11867 tcp_icmp_error(tcp, mp); 11868 return; 11869 case IN_PKTINFO: 11870 /* 11871 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11872 * sockets that are receiving IPv4 traffic. tcp 11873 */ 11874 ASSERT(tcp->tcp_family == AF_INET6); 11875 ASSERT(tcp->tcp_ipv6_recvancillary & 11876 TCP_IPV6_RECVPKTINFO); 11877 tcp_rput_data(tcp->tcp_connp, mp, 11878 tcp->tcp_connp->conn_sqp); 11879 return; 11880 case MDT_IOC_INFO_UPDATE: 11881 /* 11882 * Handle Multidata information update; the 11883 * following routine will free the message. 11884 */ 11885 if (tcp->tcp_connp->conn_mdt_ok) { 11886 tcp_mdt_update(tcp, 11887 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11888 B_FALSE); 11889 } 11890 freemsg(mp); 11891 return; 11892 case LSO_IOC_INFO_UPDATE: 11893 /* 11894 * Handle LSO information update; the following 11895 * routine will free the message. 11896 */ 11897 if (tcp->tcp_connp->conn_lso_ok) { 11898 tcp_lso_update(tcp, 11899 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11900 } 11901 freemsg(mp); 11902 return; 11903 default: 11904 /* 11905 * tcp_icmp_err() will process the M_CTL packets. 11906 * Non-ICMP packets, if any, will be discarded in 11907 * tcp_icmp_err(). We will process the ICMP packet 11908 * even if we are TCP_IS_DETACHED_NONEAGER as the 11909 * incoming ICMP packet may result in changing 11910 * the tcp_mss, which we would need if we have 11911 * packets to retransmit. 11912 */ 11913 tcp_icmp_error(tcp, mp); 11914 return; 11915 } 11916 } 11917 11918 /* No point processing the message if tcp is already closed */ 11919 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11920 freemsg(mp); 11921 return; 11922 } 11923 11924 tcp_rput_other(tcp, mp); 11925 } 11926 11927 11928 /* The minimum of smoothed mean deviation in RTO calculation. */ 11929 #define TCP_SD_MIN 400 11930 11931 /* 11932 * Set RTO for this connection. The formula is from Jacobson and Karels' 11933 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11934 * are the same as those in Appendix A.2 of that paper. 11935 * 11936 * m = new measurement 11937 * sa = smoothed RTT average (8 * average estimates). 11938 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11939 */ 11940 static void 11941 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11942 { 11943 long m = TICK_TO_MSEC(rtt); 11944 clock_t sa = tcp->tcp_rtt_sa; 11945 clock_t sv = tcp->tcp_rtt_sd; 11946 clock_t rto; 11947 tcp_stack_t *tcps = tcp->tcp_tcps; 11948 11949 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11950 tcp->tcp_rtt_update++; 11951 11952 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11953 if (sa != 0) { 11954 /* 11955 * Update average estimator: 11956 * new rtt = 7/8 old rtt + 1/8 Error 11957 */ 11958 11959 /* m is now Error in estimate. */ 11960 m -= sa >> 3; 11961 if ((sa += m) <= 0) { 11962 /* 11963 * Don't allow the smoothed average to be negative. 11964 * We use 0 to denote reinitialization of the 11965 * variables. 11966 */ 11967 sa = 1; 11968 } 11969 11970 /* 11971 * Update deviation estimator: 11972 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11973 */ 11974 if (m < 0) 11975 m = -m; 11976 m -= sv >> 2; 11977 sv += m; 11978 } else { 11979 /* 11980 * This follows BSD's implementation. So the reinitialized 11981 * RTO is 3 * m. We cannot go less than 2 because if the 11982 * link is bandwidth dominated, doubling the window size 11983 * during slow start means doubling the RTT. We want to be 11984 * more conservative when we reinitialize our estimates. 3 11985 * is just a convenient number. 11986 */ 11987 sa = m << 3; 11988 sv = m << 1; 11989 } 11990 if (sv < TCP_SD_MIN) { 11991 /* 11992 * We do not know that if sa captures the delay ACK 11993 * effect as in a long train of segments, a receiver 11994 * does not delay its ACKs. So set the minimum of sv 11995 * to be TCP_SD_MIN, which is default to 400 ms, twice 11996 * of BSD DATO. That means the minimum of mean 11997 * deviation is 100 ms. 11998 * 11999 */ 12000 sv = TCP_SD_MIN; 12001 } 12002 tcp->tcp_rtt_sa = sa; 12003 tcp->tcp_rtt_sd = sv; 12004 /* 12005 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12006 * 12007 * Add tcp_rexmit_interval extra in case of extreme environment 12008 * where the algorithm fails to work. The default value of 12009 * tcp_rexmit_interval_extra should be 0. 12010 * 12011 * As we use a finer grained clock than BSD and update 12012 * RTO for every ACKs, add in another .25 of RTT to the 12013 * deviation of RTO to accomodate burstiness of 1/4 of 12014 * window size. 12015 */ 12016 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12017 12018 if (rto > tcps->tcps_rexmit_interval_max) { 12019 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12020 } else if (rto < tcps->tcps_rexmit_interval_min) { 12021 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12022 } else { 12023 tcp->tcp_rto = rto; 12024 } 12025 12026 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12027 tcp->tcp_timer_backoff = 0; 12028 } 12029 12030 /* 12031 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12032 * send queue which starts at the given seq. no. 12033 * 12034 * Parameters: 12035 * tcp_t *tcp: the tcp instance pointer. 12036 * uint32_t seq: the starting seq. no of the requested segment. 12037 * int32_t *off: after the execution, *off will be the offset to 12038 * the returned mblk which points to the requested seq no. 12039 * It is the caller's responsibility to send in a non-null off. 12040 * 12041 * Return: 12042 * A mblk_t pointer pointing to the requested segment in send queue. 12043 */ 12044 static mblk_t * 12045 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12046 { 12047 int32_t cnt; 12048 mblk_t *mp; 12049 12050 /* Defensive coding. Make sure we don't send incorrect data. */ 12051 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12052 return (NULL); 12053 12054 cnt = seq - tcp->tcp_suna; 12055 mp = tcp->tcp_xmit_head; 12056 while (cnt > 0 && mp != NULL) { 12057 cnt -= mp->b_wptr - mp->b_rptr; 12058 if (cnt < 0) { 12059 cnt += mp->b_wptr - mp->b_rptr; 12060 break; 12061 } 12062 mp = mp->b_cont; 12063 } 12064 ASSERT(mp != NULL); 12065 *off = cnt; 12066 return (mp); 12067 } 12068 12069 /* 12070 * This function handles all retransmissions if SACK is enabled for this 12071 * connection. First it calculates how many segments can be retransmitted 12072 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12073 * segments. A segment is eligible if sack_cnt for that segment is greater 12074 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12075 * all eligible segments, it checks to see if TCP can send some new segments 12076 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12077 * 12078 * Parameters: 12079 * tcp_t *tcp: the tcp structure of the connection. 12080 * uint_t *flags: in return, appropriate value will be set for 12081 * tcp_rput_data(). 12082 */ 12083 static void 12084 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12085 { 12086 notsack_blk_t *notsack_blk; 12087 int32_t usable_swnd; 12088 int32_t mss; 12089 uint32_t seg_len; 12090 mblk_t *xmit_mp; 12091 tcp_stack_t *tcps = tcp->tcp_tcps; 12092 12093 ASSERT(tcp->tcp_sack_info != NULL); 12094 ASSERT(tcp->tcp_notsack_list != NULL); 12095 ASSERT(tcp->tcp_rexmit == B_FALSE); 12096 12097 /* Defensive coding in case there is a bug... */ 12098 if (tcp->tcp_notsack_list == NULL) { 12099 return; 12100 } 12101 notsack_blk = tcp->tcp_notsack_list; 12102 mss = tcp->tcp_mss; 12103 12104 /* 12105 * Limit the num of outstanding data in the network to be 12106 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12107 */ 12108 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12109 12110 /* At least retransmit 1 MSS of data. */ 12111 if (usable_swnd <= 0) { 12112 usable_swnd = mss; 12113 } 12114 12115 /* Make sure no new RTT samples will be taken. */ 12116 tcp->tcp_csuna = tcp->tcp_snxt; 12117 12118 notsack_blk = tcp->tcp_notsack_list; 12119 while (usable_swnd > 0) { 12120 mblk_t *snxt_mp, *tmp_mp; 12121 tcp_seq begin = tcp->tcp_sack_snxt; 12122 tcp_seq end; 12123 int32_t off; 12124 12125 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12126 if (SEQ_GT(notsack_blk->end, begin) && 12127 (notsack_blk->sack_cnt >= 12128 tcps->tcps_dupack_fast_retransmit)) { 12129 end = notsack_blk->end; 12130 if (SEQ_LT(begin, notsack_blk->begin)) { 12131 begin = notsack_blk->begin; 12132 } 12133 break; 12134 } 12135 } 12136 /* 12137 * All holes are filled. Manipulate tcp_cwnd to send more 12138 * if we can. Note that after the SACK recovery, tcp_cwnd is 12139 * set to tcp_cwnd_ssthresh. 12140 */ 12141 if (notsack_blk == NULL) { 12142 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12143 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12144 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12145 ASSERT(tcp->tcp_cwnd > 0); 12146 return; 12147 } else { 12148 usable_swnd = usable_swnd / mss; 12149 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12150 MAX(usable_swnd * mss, mss); 12151 *flags |= TH_XMIT_NEEDED; 12152 return; 12153 } 12154 } 12155 12156 /* 12157 * Note that we may send more than usable_swnd allows here 12158 * because of round off, but no more than 1 MSS of data. 12159 */ 12160 seg_len = end - begin; 12161 if (seg_len > mss) 12162 seg_len = mss; 12163 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12164 ASSERT(snxt_mp != NULL); 12165 /* This should not happen. Defensive coding again... */ 12166 if (snxt_mp == NULL) { 12167 return; 12168 } 12169 12170 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12171 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12172 if (xmit_mp == NULL) 12173 return; 12174 12175 usable_swnd -= seg_len; 12176 tcp->tcp_pipe += seg_len; 12177 tcp->tcp_sack_snxt = begin + seg_len; 12178 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12179 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12180 12181 /* 12182 * Update the send timestamp to avoid false retransmission. 12183 */ 12184 snxt_mp->b_prev = (mblk_t *)lbolt; 12185 12186 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12187 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12188 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12189 /* 12190 * Update tcp_rexmit_max to extend this SACK recovery phase. 12191 * This happens when new data sent during fast recovery is 12192 * also lost. If TCP retransmits those new data, it needs 12193 * to extend SACK recover phase to avoid starting another 12194 * fast retransmit/recovery unnecessarily. 12195 */ 12196 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12197 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12198 } 12199 } 12200 } 12201 12202 /* 12203 * This function handles policy checking at TCP level for non-hard_bound/ 12204 * detached connections. 12205 */ 12206 static boolean_t 12207 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12208 boolean_t secure, boolean_t mctl_present) 12209 { 12210 ipsec_latch_t *ipl = NULL; 12211 ipsec_action_t *act = NULL; 12212 mblk_t *data_mp; 12213 ipsec_in_t *ii; 12214 const char *reason; 12215 kstat_named_t *counter; 12216 tcp_stack_t *tcps = tcp->tcp_tcps; 12217 ipsec_stack_t *ipss; 12218 ip_stack_t *ipst; 12219 12220 ASSERT(mctl_present || !secure); 12221 12222 ASSERT((ipha == NULL && ip6h != NULL) || 12223 (ip6h == NULL && ipha != NULL)); 12224 12225 /* 12226 * We don't necessarily have an ipsec_in_act action to verify 12227 * policy because of assymetrical policy where we have only 12228 * outbound policy and no inbound policy (possible with global 12229 * policy). 12230 */ 12231 if (!secure) { 12232 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12233 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12234 return (B_TRUE); 12235 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12236 "tcp_check_policy", ipha, ip6h, secure, 12237 tcps->tcps_netstack); 12238 ipss = tcps->tcps_netstack->netstack_ipsec; 12239 12240 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12241 DROPPER(ipss, ipds_tcp_clear), 12242 &tcps->tcps_dropper); 12243 return (B_FALSE); 12244 } 12245 12246 /* 12247 * We have a secure packet. 12248 */ 12249 if (act == NULL) { 12250 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12251 "tcp_check_policy", ipha, ip6h, secure, 12252 tcps->tcps_netstack); 12253 ipss = tcps->tcps_netstack->netstack_ipsec; 12254 12255 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12256 DROPPER(ipss, ipds_tcp_secure), 12257 &tcps->tcps_dropper); 12258 return (B_FALSE); 12259 } 12260 12261 /* 12262 * XXX This whole routine is currently incorrect. ipl should 12263 * be set to the latch pointer, but is currently not set, so 12264 * we initialize it to NULL to avoid picking up random garbage. 12265 */ 12266 if (ipl == NULL) 12267 return (B_TRUE); 12268 12269 data_mp = first_mp->b_cont; 12270 12271 ii = (ipsec_in_t *)first_mp->b_rptr; 12272 12273 ipst = tcps->tcps_netstack->netstack_ip; 12274 12275 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12276 &counter, tcp->tcp_connp)) { 12277 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12278 return (B_TRUE); 12279 } 12280 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12281 "tcp inbound policy mismatch: %s, packet dropped\n", 12282 reason); 12283 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12284 12285 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12286 &tcps->tcps_dropper); 12287 return (B_FALSE); 12288 } 12289 12290 /* 12291 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12292 * retransmission after a timeout. 12293 * 12294 * To limit the number of duplicate segments, we limit the number of segment 12295 * to be sent in one time to tcp_snd_burst, the burst variable. 12296 */ 12297 static void 12298 tcp_ss_rexmit(tcp_t *tcp) 12299 { 12300 uint32_t snxt; 12301 uint32_t smax; 12302 int32_t win; 12303 int32_t mss; 12304 int32_t off; 12305 int32_t burst = tcp->tcp_snd_burst; 12306 mblk_t *snxt_mp; 12307 tcp_stack_t *tcps = tcp->tcp_tcps; 12308 12309 /* 12310 * Note that tcp_rexmit can be set even though TCP has retransmitted 12311 * all unack'ed segments. 12312 */ 12313 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12314 smax = tcp->tcp_rexmit_max; 12315 snxt = tcp->tcp_rexmit_nxt; 12316 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12317 snxt = tcp->tcp_suna; 12318 } 12319 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12320 win -= snxt - tcp->tcp_suna; 12321 mss = tcp->tcp_mss; 12322 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12323 12324 while (SEQ_LT(snxt, smax) && (win > 0) && 12325 (burst > 0) && (snxt_mp != NULL)) { 12326 mblk_t *xmit_mp; 12327 mblk_t *old_snxt_mp = snxt_mp; 12328 uint32_t cnt = mss; 12329 12330 if (win < cnt) { 12331 cnt = win; 12332 } 12333 if (SEQ_GT(snxt + cnt, smax)) { 12334 cnt = smax - snxt; 12335 } 12336 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12337 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12338 if (xmit_mp == NULL) 12339 return; 12340 12341 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12342 12343 snxt += cnt; 12344 win -= cnt; 12345 /* 12346 * Update the send timestamp to avoid false 12347 * retransmission. 12348 */ 12349 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12350 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12351 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12352 12353 tcp->tcp_rexmit_nxt = snxt; 12354 burst--; 12355 } 12356 /* 12357 * If we have transmitted all we have at the time 12358 * we started the retranmission, we can leave 12359 * the rest of the job to tcp_wput_data(). But we 12360 * need to check the send window first. If the 12361 * win is not 0, go on with tcp_wput_data(). 12362 */ 12363 if (SEQ_LT(snxt, smax) || win == 0) { 12364 return; 12365 } 12366 } 12367 /* Only call tcp_wput_data() if there is data to be sent. */ 12368 if (tcp->tcp_unsent) { 12369 tcp_wput_data(tcp, NULL, B_FALSE); 12370 } 12371 } 12372 12373 /* 12374 * Process all TCP option in SYN segment. Note that this function should 12375 * be called after tcp_adapt_ire() is called so that the necessary info 12376 * from IRE is already set in the tcp structure. 12377 * 12378 * This function sets up the correct tcp_mss value according to the 12379 * MSS option value and our header size. It also sets up the window scale 12380 * and timestamp values, and initialize SACK info blocks. But it does not 12381 * change receive window size after setting the tcp_mss value. The caller 12382 * should do the appropriate change. 12383 */ 12384 void 12385 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12386 { 12387 int options; 12388 tcp_opt_t tcpopt; 12389 uint32_t mss_max; 12390 char *tmp_tcph; 12391 tcp_stack_t *tcps = tcp->tcp_tcps; 12392 12393 tcpopt.tcp = NULL; 12394 options = tcp_parse_options(tcph, &tcpopt); 12395 12396 /* 12397 * Process MSS option. Note that MSS option value does not account 12398 * for IP or TCP options. This means that it is equal to MTU - minimum 12399 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12400 * IPv6. 12401 */ 12402 if (!(options & TCP_OPT_MSS_PRESENT)) { 12403 if (tcp->tcp_ipversion == IPV4_VERSION) 12404 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12405 else 12406 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12407 } else { 12408 if (tcp->tcp_ipversion == IPV4_VERSION) 12409 mss_max = tcps->tcps_mss_max_ipv4; 12410 else 12411 mss_max = tcps->tcps_mss_max_ipv6; 12412 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12413 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12414 else if (tcpopt.tcp_opt_mss > mss_max) 12415 tcpopt.tcp_opt_mss = mss_max; 12416 } 12417 12418 /* Process Window Scale option. */ 12419 if (options & TCP_OPT_WSCALE_PRESENT) { 12420 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12421 tcp->tcp_snd_ws_ok = B_TRUE; 12422 } else { 12423 tcp->tcp_snd_ws = B_FALSE; 12424 tcp->tcp_snd_ws_ok = B_FALSE; 12425 tcp->tcp_rcv_ws = B_FALSE; 12426 } 12427 12428 /* Process Timestamp option. */ 12429 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12430 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12431 tmp_tcph = (char *)tcp->tcp_tcph; 12432 12433 tcp->tcp_snd_ts_ok = B_TRUE; 12434 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12435 tcp->tcp_last_rcv_lbolt = lbolt64; 12436 ASSERT(OK_32PTR(tmp_tcph)); 12437 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12438 12439 /* Fill in our template header with basic timestamp option. */ 12440 tmp_tcph += tcp->tcp_tcp_hdr_len; 12441 tmp_tcph[0] = TCPOPT_NOP; 12442 tmp_tcph[1] = TCPOPT_NOP; 12443 tmp_tcph[2] = TCPOPT_TSTAMP; 12444 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12445 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12446 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12447 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12448 } else { 12449 tcp->tcp_snd_ts_ok = B_FALSE; 12450 } 12451 12452 /* 12453 * Process SACK options. If SACK is enabled for this connection, 12454 * then allocate the SACK info structure. Note the following ways 12455 * when tcp_snd_sack_ok is set to true. 12456 * 12457 * For active connection: in tcp_adapt_ire() called in 12458 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12459 * is checked. 12460 * 12461 * For passive connection: in tcp_adapt_ire() called in 12462 * tcp_accept_comm(). 12463 * 12464 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12465 * That check makes sure that if we did not send a SACK OK option, 12466 * we will not enable SACK for this connection even though the other 12467 * side sends us SACK OK option. For active connection, the SACK 12468 * info structure has already been allocated. So we need to free 12469 * it if SACK is disabled. 12470 */ 12471 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12472 (tcp->tcp_snd_sack_ok || 12473 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12474 /* This should be true only in the passive case. */ 12475 if (tcp->tcp_sack_info == NULL) { 12476 ASSERT(TCP_IS_DETACHED(tcp)); 12477 tcp->tcp_sack_info = 12478 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12479 } 12480 if (tcp->tcp_sack_info == NULL) { 12481 tcp->tcp_snd_sack_ok = B_FALSE; 12482 } else { 12483 tcp->tcp_snd_sack_ok = B_TRUE; 12484 if (tcp->tcp_snd_ts_ok) { 12485 tcp->tcp_max_sack_blk = 3; 12486 } else { 12487 tcp->tcp_max_sack_blk = 4; 12488 } 12489 } 12490 } else { 12491 /* 12492 * Resetting tcp_snd_sack_ok to B_FALSE so that 12493 * no SACK info will be used for this 12494 * connection. This assumes that SACK usage 12495 * permission is negotiated. This may need 12496 * to be changed once this is clarified. 12497 */ 12498 if (tcp->tcp_sack_info != NULL) { 12499 ASSERT(tcp->tcp_notsack_list == NULL); 12500 kmem_cache_free(tcp_sack_info_cache, 12501 tcp->tcp_sack_info); 12502 tcp->tcp_sack_info = NULL; 12503 } 12504 tcp->tcp_snd_sack_ok = B_FALSE; 12505 } 12506 12507 /* 12508 * Now we know the exact TCP/IP header length, subtract 12509 * that from tcp_mss to get our side's MSS. 12510 */ 12511 tcp->tcp_mss -= tcp->tcp_hdr_len; 12512 /* 12513 * Here we assume that the other side's header size will be equal to 12514 * our header size. We calculate the real MSS accordingly. Need to 12515 * take into additional stuffs IPsec puts in. 12516 * 12517 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12518 */ 12519 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12520 ((tcp->tcp_ipversion == IPV4_VERSION ? 12521 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12522 12523 /* 12524 * Set MSS to the smaller one of both ends of the connection. 12525 * We should not have called tcp_mss_set() before, but our 12526 * side of the MSS should have been set to a proper value 12527 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12528 * STREAM head parameters properly. 12529 * 12530 * If we have a larger-than-16-bit window but the other side 12531 * didn't want to do window scale, tcp_rwnd_set() will take 12532 * care of that. 12533 */ 12534 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12535 } 12536 12537 /* 12538 * Sends the T_CONN_IND to the listener. The caller calls this 12539 * functions via squeue to get inside the listener's perimeter 12540 * once the 3 way hand shake is done a T_CONN_IND needs to be 12541 * sent. As an optimization, the caller can call this directly 12542 * if listener's perimeter is same as eager's. 12543 */ 12544 /* ARGSUSED */ 12545 void 12546 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12547 { 12548 conn_t *lconnp = (conn_t *)arg; 12549 tcp_t *listener = lconnp->conn_tcp; 12550 tcp_t *tcp; 12551 struct T_conn_ind *conn_ind; 12552 ipaddr_t *addr_cache; 12553 boolean_t need_send_conn_ind = B_FALSE; 12554 tcp_stack_t *tcps = listener->tcp_tcps; 12555 12556 /* retrieve the eager */ 12557 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12558 ASSERT(conn_ind->OPT_offset != 0 && 12559 conn_ind->OPT_length == sizeof (intptr_t)); 12560 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12561 conn_ind->OPT_length); 12562 12563 /* 12564 * TLI/XTI applications will get confused by 12565 * sending eager as an option since it violates 12566 * the option semantics. So remove the eager as 12567 * option since TLI/XTI app doesn't need it anyway. 12568 */ 12569 if (!TCP_IS_SOCKET(listener)) { 12570 conn_ind->OPT_length = 0; 12571 conn_ind->OPT_offset = 0; 12572 } 12573 if (listener->tcp_state == TCPS_CLOSED || 12574 TCP_IS_DETACHED(listener)) { 12575 /* 12576 * If listener has closed, it would have caused a 12577 * a cleanup/blowoff to happen for the eager. We 12578 * just need to return. 12579 */ 12580 freemsg(mp); 12581 return; 12582 } 12583 12584 12585 /* 12586 * if the conn_req_q is full defer passing up the 12587 * T_CONN_IND until space is availabe after t_accept() 12588 * processing 12589 */ 12590 mutex_enter(&listener->tcp_eager_lock); 12591 12592 /* 12593 * Take the eager out, if it is in the list of droppable eagers 12594 * as we are here because the 3W handshake is over. 12595 */ 12596 MAKE_UNDROPPABLE(tcp); 12597 12598 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12599 tcp_t *tail; 12600 12601 /* 12602 * The eager already has an extra ref put in tcp_rput_data 12603 * so that it stays till accept comes back even though it 12604 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12605 */ 12606 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12607 listener->tcp_conn_req_cnt_q0--; 12608 listener->tcp_conn_req_cnt_q++; 12609 12610 /* Move from SYN_RCVD to ESTABLISHED list */ 12611 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12612 tcp->tcp_eager_prev_q0; 12613 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12614 tcp->tcp_eager_next_q0; 12615 tcp->tcp_eager_prev_q0 = NULL; 12616 tcp->tcp_eager_next_q0 = NULL; 12617 12618 /* 12619 * Insert at end of the queue because sockfs 12620 * sends down T_CONN_RES in chronological 12621 * order. Leaving the older conn indications 12622 * at front of the queue helps reducing search 12623 * time. 12624 */ 12625 tail = listener->tcp_eager_last_q; 12626 if (tail != NULL) 12627 tail->tcp_eager_next_q = tcp; 12628 else 12629 listener->tcp_eager_next_q = tcp; 12630 listener->tcp_eager_last_q = tcp; 12631 tcp->tcp_eager_next_q = NULL; 12632 /* 12633 * Delay sending up the T_conn_ind until we are 12634 * done with the eager. Once we have have sent up 12635 * the T_conn_ind, the accept can potentially complete 12636 * any time and release the refhold we have on the eager. 12637 */ 12638 need_send_conn_ind = B_TRUE; 12639 } else { 12640 /* 12641 * Defer connection on q0 and set deferred 12642 * connection bit true 12643 */ 12644 tcp->tcp_conn_def_q0 = B_TRUE; 12645 12646 /* take tcp out of q0 ... */ 12647 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12648 tcp->tcp_eager_next_q0; 12649 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12650 tcp->tcp_eager_prev_q0; 12651 12652 /* ... and place it at the end of q0 */ 12653 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12654 tcp->tcp_eager_next_q0 = listener; 12655 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12656 listener->tcp_eager_prev_q0 = tcp; 12657 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12658 } 12659 12660 /* we have timed out before */ 12661 if (tcp->tcp_syn_rcvd_timeout != 0) { 12662 tcp->tcp_syn_rcvd_timeout = 0; 12663 listener->tcp_syn_rcvd_timeout--; 12664 if (listener->tcp_syn_defense && 12665 listener->tcp_syn_rcvd_timeout <= 12666 (tcps->tcps_conn_req_max_q0 >> 5) && 12667 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12668 listener->tcp_last_rcv_lbolt)) { 12669 /* 12670 * Turn off the defense mode if we 12671 * believe the SYN attack is over. 12672 */ 12673 listener->tcp_syn_defense = B_FALSE; 12674 if (listener->tcp_ip_addr_cache) { 12675 kmem_free((void *)listener->tcp_ip_addr_cache, 12676 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12677 listener->tcp_ip_addr_cache = NULL; 12678 } 12679 } 12680 } 12681 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12682 if (addr_cache != NULL) { 12683 /* 12684 * We have finished a 3-way handshake with this 12685 * remote host. This proves the IP addr is good. 12686 * Cache it! 12687 */ 12688 addr_cache[IP_ADDR_CACHE_HASH( 12689 tcp->tcp_remote)] = tcp->tcp_remote; 12690 } 12691 mutex_exit(&listener->tcp_eager_lock); 12692 if (need_send_conn_ind) 12693 putnext(listener->tcp_rq, mp); 12694 } 12695 12696 mblk_t * 12697 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12698 uint_t *ifindexp, ip6_pkt_t *ippp) 12699 { 12700 ip_pktinfo_t *pinfo; 12701 ip6_t *ip6h; 12702 uchar_t *rptr; 12703 mblk_t *first_mp = mp; 12704 boolean_t mctl_present = B_FALSE; 12705 uint_t ifindex = 0; 12706 ip6_pkt_t ipp; 12707 uint_t ipvers; 12708 uint_t ip_hdr_len; 12709 tcp_stack_t *tcps = tcp->tcp_tcps; 12710 12711 rptr = mp->b_rptr; 12712 ASSERT(OK_32PTR(rptr)); 12713 ASSERT(tcp != NULL); 12714 ipp.ipp_fields = 0; 12715 12716 switch DB_TYPE(mp) { 12717 case M_CTL: 12718 mp = mp->b_cont; 12719 if (mp == NULL) { 12720 freemsg(first_mp); 12721 return (NULL); 12722 } 12723 if (DB_TYPE(mp) != M_DATA) { 12724 freemsg(first_mp); 12725 return (NULL); 12726 } 12727 mctl_present = B_TRUE; 12728 break; 12729 case M_DATA: 12730 break; 12731 default: 12732 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12733 freemsg(mp); 12734 return (NULL); 12735 } 12736 ipvers = IPH_HDR_VERSION(rptr); 12737 if (ipvers == IPV4_VERSION) { 12738 if (tcp == NULL) { 12739 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12740 goto done; 12741 } 12742 12743 ipp.ipp_fields |= IPPF_HOPLIMIT; 12744 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12745 12746 /* 12747 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12748 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12749 */ 12750 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12751 mctl_present) { 12752 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12753 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12754 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12755 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12756 ipp.ipp_fields |= IPPF_IFINDEX; 12757 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12758 ifindex = pinfo->ip_pkt_ifindex; 12759 } 12760 freeb(first_mp); 12761 mctl_present = B_FALSE; 12762 } 12763 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12764 } else { 12765 ip6h = (ip6_t *)rptr; 12766 12767 ASSERT(ipvers == IPV6_VERSION); 12768 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12769 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12770 ipp.ipp_hoplimit = ip6h->ip6_hops; 12771 12772 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12773 uint8_t nexthdrp; 12774 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12775 12776 /* Look for ifindex information */ 12777 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12778 ip6i_t *ip6i = (ip6i_t *)ip6h; 12779 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12780 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12781 freemsg(first_mp); 12782 return (NULL); 12783 } 12784 12785 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12786 ASSERT(ip6i->ip6i_ifindex != 0); 12787 ipp.ipp_fields |= IPPF_IFINDEX; 12788 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12789 ifindex = ip6i->ip6i_ifindex; 12790 } 12791 rptr = (uchar_t *)&ip6i[1]; 12792 mp->b_rptr = rptr; 12793 if (rptr == mp->b_wptr) { 12794 mblk_t *mp1; 12795 mp1 = mp->b_cont; 12796 freeb(mp); 12797 mp = mp1; 12798 rptr = mp->b_rptr; 12799 } 12800 if (MBLKL(mp) < IPV6_HDR_LEN + 12801 sizeof (tcph_t)) { 12802 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12803 freemsg(first_mp); 12804 return (NULL); 12805 } 12806 ip6h = (ip6_t *)rptr; 12807 } 12808 12809 /* 12810 * Find any potentially interesting extension headers 12811 * as well as the length of the IPv6 + extension 12812 * headers. 12813 */ 12814 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12815 /* Verify if this is a TCP packet */ 12816 if (nexthdrp != IPPROTO_TCP) { 12817 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12818 freemsg(first_mp); 12819 return (NULL); 12820 } 12821 } else { 12822 ip_hdr_len = IPV6_HDR_LEN; 12823 } 12824 } 12825 12826 done: 12827 if (ipversp != NULL) 12828 *ipversp = ipvers; 12829 if (ip_hdr_lenp != NULL) 12830 *ip_hdr_lenp = ip_hdr_len; 12831 if (ippp != NULL) 12832 *ippp = ipp; 12833 if (ifindexp != NULL) 12834 *ifindexp = ifindex; 12835 if (mctl_present) { 12836 freeb(first_mp); 12837 } 12838 return (mp); 12839 } 12840 12841 /* 12842 * Handle M_DATA messages from IP. Its called directly from IP via 12843 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12844 * in this path. 12845 * 12846 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12847 * v4 and v6), we are called through tcp_input() and a M_CTL can 12848 * be present for options but tcp_find_pktinfo() deals with it. We 12849 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12850 * 12851 * The first argument is always the connp/tcp to which the mp belongs. 12852 * There are no exceptions to this rule. The caller has already put 12853 * a reference on this connp/tcp and once tcp_rput_data() returns, 12854 * the squeue will do the refrele. 12855 * 12856 * The TH_SYN for the listener directly go to tcp_conn_request via 12857 * squeue. 12858 * 12859 * sqp: NULL = recursive, sqp != NULL means called from squeue 12860 */ 12861 void 12862 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12863 { 12864 int32_t bytes_acked; 12865 int32_t gap; 12866 mblk_t *mp1; 12867 uint_t flags; 12868 uint32_t new_swnd = 0; 12869 uchar_t *iphdr; 12870 uchar_t *rptr; 12871 int32_t rgap; 12872 uint32_t seg_ack; 12873 int seg_len; 12874 uint_t ip_hdr_len; 12875 uint32_t seg_seq; 12876 tcph_t *tcph; 12877 int urp; 12878 tcp_opt_t tcpopt; 12879 uint_t ipvers; 12880 ip6_pkt_t ipp; 12881 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12882 uint32_t cwnd; 12883 uint32_t add; 12884 int npkt; 12885 int mss; 12886 conn_t *connp = (conn_t *)arg; 12887 squeue_t *sqp = (squeue_t *)arg2; 12888 tcp_t *tcp = connp->conn_tcp; 12889 tcp_stack_t *tcps = tcp->tcp_tcps; 12890 12891 /* 12892 * RST from fused tcp loopback peer should trigger an unfuse. 12893 */ 12894 if (tcp->tcp_fused) { 12895 TCP_STAT(tcps, tcp_fusion_aborted); 12896 tcp_unfuse(tcp); 12897 } 12898 12899 iphdr = mp->b_rptr; 12900 rptr = mp->b_rptr; 12901 ASSERT(OK_32PTR(rptr)); 12902 12903 /* 12904 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12905 * processing here. For rest call tcp_find_pktinfo to fill up the 12906 * necessary information. 12907 */ 12908 if (IPCL_IS_TCP4(connp)) { 12909 ipvers = IPV4_VERSION; 12910 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12911 } else { 12912 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12913 NULL, &ipp); 12914 if (mp == NULL) { 12915 TCP_STAT(tcps, tcp_rput_v6_error); 12916 return; 12917 } 12918 iphdr = mp->b_rptr; 12919 rptr = mp->b_rptr; 12920 } 12921 ASSERT(DB_TYPE(mp) == M_DATA); 12922 12923 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12924 seg_seq = ABE32_TO_U32(tcph->th_seq); 12925 seg_ack = ABE32_TO_U32(tcph->th_ack); 12926 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12927 seg_len = (int)(mp->b_wptr - rptr) - 12928 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12929 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12930 do { 12931 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12932 (uintptr_t)INT_MAX); 12933 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12934 } while ((mp1 = mp1->b_cont) != NULL && 12935 mp1->b_datap->db_type == M_DATA); 12936 } 12937 12938 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12939 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12940 seg_len, tcph); 12941 return; 12942 } 12943 12944 if (sqp != NULL) { 12945 /* 12946 * This is the correct place to update tcp_last_recv_time. Note 12947 * that it is also updated for tcp structure that belongs to 12948 * global and listener queues which do not really need updating. 12949 * But that should not cause any harm. And it is updated for 12950 * all kinds of incoming segments, not only for data segments. 12951 */ 12952 tcp->tcp_last_recv_time = lbolt; 12953 } 12954 12955 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12956 12957 BUMP_LOCAL(tcp->tcp_ibsegs); 12958 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12959 12960 if ((flags & TH_URG) && sqp != NULL) { 12961 /* 12962 * TCP can't handle urgent pointers that arrive before 12963 * the connection has been accept()ed since it can't 12964 * buffer OOB data. Discard segment if this happens. 12965 * 12966 * We can't just rely on a non-null tcp_listener to indicate 12967 * that the accept() has completed since unlinking of the 12968 * eager and completion of the accept are not atomic. 12969 * tcp_detached, when it is not set (B_FALSE) indicates 12970 * that the accept() has completed. 12971 * 12972 * Nor can it reassemble urgent pointers, so discard 12973 * if it's not the next segment expected. 12974 * 12975 * Otherwise, collapse chain into one mblk (discard if 12976 * that fails). This makes sure the headers, retransmitted 12977 * data, and new data all are in the same mblk. 12978 */ 12979 ASSERT(mp != NULL); 12980 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12981 freemsg(mp); 12982 return; 12983 } 12984 /* Update pointers into message */ 12985 iphdr = rptr = mp->b_rptr; 12986 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12987 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12988 /* 12989 * Since we can't handle any data with this urgent 12990 * pointer that is out of sequence, we expunge 12991 * the data. This allows us to still register 12992 * the urgent mark and generate the M_PCSIG, 12993 * which we can do. 12994 */ 12995 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12996 seg_len = 0; 12997 } 12998 } 12999 13000 switch (tcp->tcp_state) { 13001 case TCPS_SYN_SENT: 13002 if (flags & TH_ACK) { 13003 /* 13004 * Note that our stack cannot send data before a 13005 * connection is established, therefore the 13006 * following check is valid. Otherwise, it has 13007 * to be changed. 13008 */ 13009 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13010 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13011 freemsg(mp); 13012 if (flags & TH_RST) 13013 return; 13014 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13015 tcp, seg_ack, 0, TH_RST); 13016 return; 13017 } 13018 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13019 } 13020 if (flags & TH_RST) { 13021 freemsg(mp); 13022 if (flags & TH_ACK) 13023 (void) tcp_clean_death(tcp, 13024 ECONNREFUSED, 13); 13025 return; 13026 } 13027 if (!(flags & TH_SYN)) { 13028 freemsg(mp); 13029 return; 13030 } 13031 13032 /* Process all TCP options. */ 13033 tcp_process_options(tcp, tcph); 13034 /* 13035 * The following changes our rwnd to be a multiple of the 13036 * MIN(peer MSS, our MSS) for performance reason. 13037 */ 13038 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13039 tcp->tcp_mss)); 13040 13041 /* Is the other end ECN capable? */ 13042 if (tcp->tcp_ecn_ok) { 13043 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13044 tcp->tcp_ecn_ok = B_FALSE; 13045 } 13046 } 13047 /* 13048 * Clear ECN flags because it may interfere with later 13049 * processing. 13050 */ 13051 flags &= ~(TH_ECE|TH_CWR); 13052 13053 tcp->tcp_irs = seg_seq; 13054 tcp->tcp_rack = seg_seq; 13055 tcp->tcp_rnxt = seg_seq + 1; 13056 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13057 if (!TCP_IS_DETACHED(tcp)) { 13058 /* Allocate room for SACK options if needed. */ 13059 if (tcp->tcp_snd_sack_ok) { 13060 (void) mi_set_sth_wroff(tcp->tcp_rq, 13061 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13062 (tcp->tcp_loopback ? 0 : 13063 tcps->tcps_wroff_xtra)); 13064 } else { 13065 (void) mi_set_sth_wroff(tcp->tcp_rq, 13066 tcp->tcp_hdr_len + 13067 (tcp->tcp_loopback ? 0 : 13068 tcps->tcps_wroff_xtra)); 13069 } 13070 } 13071 if (flags & TH_ACK) { 13072 /* 13073 * If we can't get the confirmation upstream, pretend 13074 * we didn't even see this one. 13075 * 13076 * XXX: how can we pretend we didn't see it if we 13077 * have updated rnxt et. al. 13078 * 13079 * For loopback we defer sending up the T_CONN_CON 13080 * until after some checks below. 13081 */ 13082 mp1 = NULL; 13083 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13084 tcp->tcp_loopback ? &mp1 : NULL)) { 13085 freemsg(mp); 13086 return; 13087 } 13088 /* SYN was acked - making progress */ 13089 if (tcp->tcp_ipversion == IPV6_VERSION) 13090 tcp->tcp_ip_forward_progress = B_TRUE; 13091 13092 /* One for the SYN */ 13093 tcp->tcp_suna = tcp->tcp_iss + 1; 13094 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13095 tcp->tcp_state = TCPS_ESTABLISHED; 13096 13097 /* 13098 * If SYN was retransmitted, need to reset all 13099 * retransmission info. This is because this 13100 * segment will be treated as a dup ACK. 13101 */ 13102 if (tcp->tcp_rexmit) { 13103 tcp->tcp_rexmit = B_FALSE; 13104 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13105 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13106 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13107 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13108 tcp->tcp_ms_we_have_waited = 0; 13109 13110 /* 13111 * Set tcp_cwnd back to 1 MSS, per 13112 * recommendation from 13113 * draft-floyd-incr-init-win-01.txt, 13114 * Increasing TCP's Initial Window. 13115 */ 13116 tcp->tcp_cwnd = tcp->tcp_mss; 13117 } 13118 13119 tcp->tcp_swl1 = seg_seq; 13120 tcp->tcp_swl2 = seg_ack; 13121 13122 new_swnd = BE16_TO_U16(tcph->th_win); 13123 tcp->tcp_swnd = new_swnd; 13124 if (new_swnd > tcp->tcp_max_swnd) 13125 tcp->tcp_max_swnd = new_swnd; 13126 13127 /* 13128 * Always send the three-way handshake ack immediately 13129 * in order to make the connection complete as soon as 13130 * possible on the accepting host. 13131 */ 13132 flags |= TH_ACK_NEEDED; 13133 13134 /* 13135 * Special case for loopback. At this point we have 13136 * received SYN-ACK from the remote endpoint. In 13137 * order to ensure that both endpoints reach the 13138 * fused state prior to any data exchange, the final 13139 * ACK needs to be sent before we indicate T_CONN_CON 13140 * to the module upstream. 13141 */ 13142 if (tcp->tcp_loopback) { 13143 mblk_t *ack_mp; 13144 13145 ASSERT(!tcp->tcp_unfusable); 13146 ASSERT(mp1 != NULL); 13147 /* 13148 * For loopback, we always get a pure SYN-ACK 13149 * and only need to send back the final ACK 13150 * with no data (this is because the other 13151 * tcp is ours and we don't do T/TCP). This 13152 * final ACK triggers the passive side to 13153 * perform fusion in ESTABLISHED state. 13154 */ 13155 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13156 if (tcp->tcp_ack_tid != 0) { 13157 (void) TCP_TIMER_CANCEL(tcp, 13158 tcp->tcp_ack_tid); 13159 tcp->tcp_ack_tid = 0; 13160 } 13161 TCP_RECORD_TRACE(tcp, ack_mp, 13162 TCP_TRACE_SEND_PKT); 13163 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13164 BUMP_LOCAL(tcp->tcp_obsegs); 13165 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13166 13167 /* Send up T_CONN_CON */ 13168 putnext(tcp->tcp_rq, mp1); 13169 13170 freemsg(mp); 13171 return; 13172 } 13173 /* 13174 * Forget fusion; we need to handle more 13175 * complex cases below. Send the deferred 13176 * T_CONN_CON message upstream and proceed 13177 * as usual. Mark this tcp as not capable 13178 * of fusion. 13179 */ 13180 TCP_STAT(tcps, tcp_fusion_unfusable); 13181 tcp->tcp_unfusable = B_TRUE; 13182 putnext(tcp->tcp_rq, mp1); 13183 } 13184 13185 /* 13186 * Check to see if there is data to be sent. If 13187 * yes, set the transmit flag. Then check to see 13188 * if received data processing needs to be done. 13189 * If not, go straight to xmit_check. This short 13190 * cut is OK as we don't support T/TCP. 13191 */ 13192 if (tcp->tcp_unsent) 13193 flags |= TH_XMIT_NEEDED; 13194 13195 if (seg_len == 0 && !(flags & TH_URG)) { 13196 freemsg(mp); 13197 goto xmit_check; 13198 } 13199 13200 flags &= ~TH_SYN; 13201 seg_seq++; 13202 break; 13203 } 13204 tcp->tcp_state = TCPS_SYN_RCVD; 13205 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13206 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13207 if (mp1) { 13208 DB_CPID(mp1) = tcp->tcp_cpid; 13209 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13210 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13211 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13212 } 13213 freemsg(mp); 13214 return; 13215 case TCPS_SYN_RCVD: 13216 if (flags & TH_ACK) { 13217 /* 13218 * In this state, a SYN|ACK packet is either bogus 13219 * because the other side must be ACKing our SYN which 13220 * indicates it has seen the ACK for their SYN and 13221 * shouldn't retransmit it or we're crossing SYNs 13222 * on active open. 13223 */ 13224 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13225 freemsg(mp); 13226 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13227 tcp, seg_ack, 0, TH_RST); 13228 return; 13229 } 13230 /* 13231 * NOTE: RFC 793 pg. 72 says this should be 13232 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13233 * but that would mean we have an ack that ignored 13234 * our SYN. 13235 */ 13236 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13237 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13238 freemsg(mp); 13239 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13240 tcp, seg_ack, 0, TH_RST); 13241 return; 13242 } 13243 } 13244 break; 13245 case TCPS_LISTEN: 13246 /* 13247 * Only a TLI listener can come through this path when a 13248 * acceptor is going back to be a listener and a packet 13249 * for the acceptor hits the classifier. For a socket 13250 * listener, this can never happen because a listener 13251 * can never accept connection on itself and hence a 13252 * socket acceptor can not go back to being a listener. 13253 */ 13254 ASSERT(!TCP_IS_SOCKET(tcp)); 13255 /*FALLTHRU*/ 13256 case TCPS_CLOSED: 13257 case TCPS_BOUND: { 13258 conn_t *new_connp; 13259 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13260 13261 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13262 if (new_connp != NULL) { 13263 tcp_reinput(new_connp, mp, connp->conn_sqp); 13264 return; 13265 } 13266 /* We failed to classify. For now just drop the packet */ 13267 freemsg(mp); 13268 return; 13269 } 13270 case TCPS_IDLE: 13271 /* 13272 * Handle the case where the tcp_clean_death() has happened 13273 * on a connection (application hasn't closed yet) but a packet 13274 * was already queued on squeue before tcp_clean_death() 13275 * was processed. Calling tcp_clean_death() twice on same 13276 * connection can result in weird behaviour. 13277 */ 13278 freemsg(mp); 13279 return; 13280 default: 13281 break; 13282 } 13283 13284 /* 13285 * Already on the correct queue/perimeter. 13286 * If this is a detached connection and not an eager 13287 * connection hanging off a listener then new data 13288 * (past the FIN) will cause a reset. 13289 * We do a special check here where it 13290 * is out of the main line, rather than check 13291 * if we are detached every time we see new 13292 * data down below. 13293 */ 13294 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13295 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13296 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13297 TCP_RECORD_TRACE(tcp, 13298 mp, TCP_TRACE_RECV_PKT); 13299 13300 freemsg(mp); 13301 /* 13302 * This could be an SSL closure alert. We're detached so just 13303 * acknowledge it this last time. 13304 */ 13305 if (tcp->tcp_kssl_ctx != NULL) { 13306 kssl_release_ctx(tcp->tcp_kssl_ctx); 13307 tcp->tcp_kssl_ctx = NULL; 13308 13309 tcp->tcp_rnxt += seg_len; 13310 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13311 flags |= TH_ACK_NEEDED; 13312 goto ack_check; 13313 } 13314 13315 tcp_xmit_ctl("new data when detached", tcp, 13316 tcp->tcp_snxt, 0, TH_RST); 13317 (void) tcp_clean_death(tcp, EPROTO, 12); 13318 return; 13319 } 13320 13321 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13322 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13323 new_swnd = BE16_TO_U16(tcph->th_win) << 13324 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13325 13326 if (tcp->tcp_snd_ts_ok) { 13327 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13328 /* 13329 * This segment is not acceptable. 13330 * Drop it and send back an ACK. 13331 */ 13332 freemsg(mp); 13333 flags |= TH_ACK_NEEDED; 13334 goto ack_check; 13335 } 13336 } else if (tcp->tcp_snd_sack_ok) { 13337 ASSERT(tcp->tcp_sack_info != NULL); 13338 tcpopt.tcp = tcp; 13339 /* 13340 * SACK info in already updated in tcp_parse_options. Ignore 13341 * all other TCP options... 13342 */ 13343 (void) tcp_parse_options(tcph, &tcpopt); 13344 } 13345 try_again:; 13346 mss = tcp->tcp_mss; 13347 gap = seg_seq - tcp->tcp_rnxt; 13348 rgap = tcp->tcp_rwnd - (gap + seg_len); 13349 /* 13350 * gap is the amount of sequence space between what we expect to see 13351 * and what we got for seg_seq. A positive value for gap means 13352 * something got lost. A negative value means we got some old stuff. 13353 */ 13354 if (gap < 0) { 13355 /* Old stuff present. Is the SYN in there? */ 13356 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13357 (seg_len != 0)) { 13358 flags &= ~TH_SYN; 13359 seg_seq++; 13360 urp--; 13361 /* Recompute the gaps after noting the SYN. */ 13362 goto try_again; 13363 } 13364 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13365 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13366 (seg_len > -gap ? -gap : seg_len)); 13367 /* Remove the old stuff from seg_len. */ 13368 seg_len += gap; 13369 /* 13370 * Anything left? 13371 * Make sure to check for unack'd FIN when rest of data 13372 * has been previously ack'd. 13373 */ 13374 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13375 /* 13376 * Resets are only valid if they lie within our offered 13377 * window. If the RST bit is set, we just ignore this 13378 * segment. 13379 */ 13380 if (flags & TH_RST) { 13381 freemsg(mp); 13382 return; 13383 } 13384 13385 /* 13386 * The arriving of dup data packets indicate that we 13387 * may have postponed an ack for too long, or the other 13388 * side's RTT estimate is out of shape. Start acking 13389 * more often. 13390 */ 13391 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13392 tcp->tcp_rack_cnt >= 1 && 13393 tcp->tcp_rack_abs_max > 2) { 13394 tcp->tcp_rack_abs_max--; 13395 } 13396 tcp->tcp_rack_cur_max = 1; 13397 13398 /* 13399 * This segment is "unacceptable". None of its 13400 * sequence space lies within our advertized window. 13401 * 13402 * Adjust seg_len to the original value for tracing. 13403 */ 13404 seg_len -= gap; 13405 if (tcp->tcp_debug) { 13406 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13407 "tcp_rput: unacceptable, gap %d, rgap %d, " 13408 "flags 0x%x, seg_seq %u, seg_ack %u, " 13409 "seg_len %d, rnxt %u, snxt %u, %s", 13410 gap, rgap, flags, seg_seq, seg_ack, 13411 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13412 tcp_display(tcp, NULL, 13413 DISP_ADDR_AND_PORT)); 13414 } 13415 13416 /* 13417 * Arrange to send an ACK in response to the 13418 * unacceptable segment per RFC 793 page 69. There 13419 * is only one small difference between ours and the 13420 * acceptability test in the RFC - we accept ACK-only 13421 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13422 * will be generated. 13423 * 13424 * Note that we have to ACK an ACK-only packet at least 13425 * for stacks that send 0-length keep-alives with 13426 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13427 * section 4.2.3.6. As long as we don't ever generate 13428 * an unacceptable packet in response to an incoming 13429 * packet that is unacceptable, it should not cause 13430 * "ACK wars". 13431 */ 13432 flags |= TH_ACK_NEEDED; 13433 13434 /* 13435 * Continue processing this segment in order to use the 13436 * ACK information it contains, but skip all other 13437 * sequence-number processing. Processing the ACK 13438 * information is necessary in order to 13439 * re-synchronize connections that may have lost 13440 * synchronization. 13441 * 13442 * We clear seg_len and flag fields related to 13443 * sequence number processing as they are not 13444 * to be trusted for an unacceptable segment. 13445 */ 13446 seg_len = 0; 13447 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13448 goto process_ack; 13449 } 13450 13451 /* Fix seg_seq, and chew the gap off the front. */ 13452 seg_seq = tcp->tcp_rnxt; 13453 urp += gap; 13454 do { 13455 mblk_t *mp2; 13456 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13457 (uintptr_t)UINT_MAX); 13458 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13459 if (gap > 0) { 13460 mp->b_rptr = mp->b_wptr - gap; 13461 break; 13462 } 13463 mp2 = mp; 13464 mp = mp->b_cont; 13465 freeb(mp2); 13466 } while (gap < 0); 13467 /* 13468 * If the urgent data has already been acknowledged, we 13469 * should ignore TH_URG below 13470 */ 13471 if (urp < 0) 13472 flags &= ~TH_URG; 13473 } 13474 /* 13475 * rgap is the amount of stuff received out of window. A negative 13476 * value is the amount out of window. 13477 */ 13478 if (rgap < 0) { 13479 mblk_t *mp2; 13480 13481 if (tcp->tcp_rwnd == 0) { 13482 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13483 } else { 13484 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13485 UPDATE_MIB(&tcps->tcps_mib, 13486 tcpInDataPastWinBytes, -rgap); 13487 } 13488 13489 /* 13490 * seg_len does not include the FIN, so if more than 13491 * just the FIN is out of window, we act like we don't 13492 * see it. (If just the FIN is out of window, rgap 13493 * will be zero and we will go ahead and acknowledge 13494 * the FIN.) 13495 */ 13496 flags &= ~TH_FIN; 13497 13498 /* Fix seg_len and make sure there is something left. */ 13499 seg_len += rgap; 13500 if (seg_len <= 0) { 13501 /* 13502 * Resets are only valid if they lie within our offered 13503 * window. If the RST bit is set, we just ignore this 13504 * segment. 13505 */ 13506 if (flags & TH_RST) { 13507 freemsg(mp); 13508 return; 13509 } 13510 13511 /* Per RFC 793, we need to send back an ACK. */ 13512 flags |= TH_ACK_NEEDED; 13513 13514 /* 13515 * Send SIGURG as soon as possible i.e. even 13516 * if the TH_URG was delivered in a window probe 13517 * packet (which will be unacceptable). 13518 * 13519 * We generate a signal if none has been generated 13520 * for this connection or if this is a new urgent 13521 * byte. Also send a zero-length "unmarked" message 13522 * to inform SIOCATMARK that this is not the mark. 13523 * 13524 * tcp_urp_last_valid is cleared when the T_exdata_ind 13525 * is sent up. This plus the check for old data 13526 * (gap >= 0) handles the wraparound of the sequence 13527 * number space without having to always track the 13528 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13529 * this max in its rcv_up variable). 13530 * 13531 * This prevents duplicate SIGURGS due to a "late" 13532 * zero-window probe when the T_EXDATA_IND has already 13533 * been sent up. 13534 */ 13535 if ((flags & TH_URG) && 13536 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13537 tcp->tcp_urp_last))) { 13538 mp1 = allocb(0, BPRI_MED); 13539 if (mp1 == NULL) { 13540 freemsg(mp); 13541 return; 13542 } 13543 if (!TCP_IS_DETACHED(tcp) && 13544 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13545 SIGURG)) { 13546 /* Try again on the rexmit. */ 13547 freemsg(mp1); 13548 freemsg(mp); 13549 return; 13550 } 13551 /* 13552 * If the next byte would be the mark 13553 * then mark with MARKNEXT else mark 13554 * with NOTMARKNEXT. 13555 */ 13556 if (gap == 0 && urp == 0) 13557 mp1->b_flag |= MSGMARKNEXT; 13558 else 13559 mp1->b_flag |= MSGNOTMARKNEXT; 13560 freemsg(tcp->tcp_urp_mark_mp); 13561 tcp->tcp_urp_mark_mp = mp1; 13562 flags |= TH_SEND_URP_MARK; 13563 tcp->tcp_urp_last_valid = B_TRUE; 13564 tcp->tcp_urp_last = urp + seg_seq; 13565 } 13566 /* 13567 * If this is a zero window probe, continue to 13568 * process the ACK part. But we need to set seg_len 13569 * to 0 to avoid data processing. Otherwise just 13570 * drop the segment and send back an ACK. 13571 */ 13572 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13573 flags &= ~(TH_SYN | TH_URG); 13574 seg_len = 0; 13575 goto process_ack; 13576 } else { 13577 freemsg(mp); 13578 goto ack_check; 13579 } 13580 } 13581 /* Pitch out of window stuff off the end. */ 13582 rgap = seg_len; 13583 mp2 = mp; 13584 do { 13585 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13586 (uintptr_t)INT_MAX); 13587 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13588 if (rgap < 0) { 13589 mp2->b_wptr += rgap; 13590 if ((mp1 = mp2->b_cont) != NULL) { 13591 mp2->b_cont = NULL; 13592 freemsg(mp1); 13593 } 13594 break; 13595 } 13596 } while ((mp2 = mp2->b_cont) != NULL); 13597 } 13598 ok:; 13599 /* 13600 * TCP should check ECN info for segments inside the window only. 13601 * Therefore the check should be done here. 13602 */ 13603 if (tcp->tcp_ecn_ok) { 13604 if (flags & TH_CWR) { 13605 tcp->tcp_ecn_echo_on = B_FALSE; 13606 } 13607 /* 13608 * Note that both ECN_CE and CWR can be set in the 13609 * same segment. In this case, we once again turn 13610 * on ECN_ECHO. 13611 */ 13612 if (tcp->tcp_ipversion == IPV4_VERSION) { 13613 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13614 13615 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13616 tcp->tcp_ecn_echo_on = B_TRUE; 13617 } 13618 } else { 13619 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13620 13621 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13622 htonl(IPH_ECN_CE << 20)) { 13623 tcp->tcp_ecn_echo_on = B_TRUE; 13624 } 13625 } 13626 } 13627 13628 /* 13629 * Check whether we can update tcp_ts_recent. This test is 13630 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13631 * Extensions for High Performance: An Update", Internet Draft. 13632 */ 13633 if (tcp->tcp_snd_ts_ok && 13634 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13635 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13636 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13637 tcp->tcp_last_rcv_lbolt = lbolt64; 13638 } 13639 13640 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13641 /* 13642 * FIN in an out of order segment. We record this in 13643 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13644 * Clear the FIN so that any check on FIN flag will fail. 13645 * Remember that FIN also counts in the sequence number 13646 * space. So we need to ack out of order FIN only segments. 13647 */ 13648 if (flags & TH_FIN) { 13649 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13650 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13651 flags &= ~TH_FIN; 13652 flags |= TH_ACK_NEEDED; 13653 } 13654 if (seg_len > 0) { 13655 /* Fill in the SACK blk list. */ 13656 if (tcp->tcp_snd_sack_ok) { 13657 ASSERT(tcp->tcp_sack_info != NULL); 13658 tcp_sack_insert(tcp->tcp_sack_list, 13659 seg_seq, seg_seq + seg_len, 13660 &(tcp->tcp_num_sack_blk)); 13661 } 13662 13663 /* 13664 * Attempt reassembly and see if we have something 13665 * ready to go. 13666 */ 13667 mp = tcp_reass(tcp, mp, seg_seq); 13668 /* Always ack out of order packets */ 13669 flags |= TH_ACK_NEEDED | TH_PUSH; 13670 if (mp) { 13671 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13672 (uintptr_t)INT_MAX); 13673 seg_len = mp->b_cont ? msgdsize(mp) : 13674 (int)(mp->b_wptr - mp->b_rptr); 13675 seg_seq = tcp->tcp_rnxt; 13676 /* 13677 * A gap is filled and the seq num and len 13678 * of the gap match that of a previously 13679 * received FIN, put the FIN flag back in. 13680 */ 13681 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13682 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13683 flags |= TH_FIN; 13684 tcp->tcp_valid_bits &= 13685 ~TCP_OFO_FIN_VALID; 13686 } 13687 } else { 13688 /* 13689 * Keep going even with NULL mp. 13690 * There may be a useful ACK or something else 13691 * we don't want to miss. 13692 * 13693 * But TCP should not perform fast retransmit 13694 * because of the ack number. TCP uses 13695 * seg_len == 0 to determine if it is a pure 13696 * ACK. And this is not a pure ACK. 13697 */ 13698 seg_len = 0; 13699 ofo_seg = B_TRUE; 13700 } 13701 } 13702 } else if (seg_len > 0) { 13703 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13704 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13705 /* 13706 * If an out of order FIN was received before, and the seq 13707 * num and len of the new segment match that of the FIN, 13708 * put the FIN flag back in. 13709 */ 13710 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13711 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13712 flags |= TH_FIN; 13713 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13714 } 13715 } 13716 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13717 if (flags & TH_RST) { 13718 freemsg(mp); 13719 switch (tcp->tcp_state) { 13720 case TCPS_SYN_RCVD: 13721 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13722 break; 13723 case TCPS_ESTABLISHED: 13724 case TCPS_FIN_WAIT_1: 13725 case TCPS_FIN_WAIT_2: 13726 case TCPS_CLOSE_WAIT: 13727 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13728 break; 13729 case TCPS_CLOSING: 13730 case TCPS_LAST_ACK: 13731 (void) tcp_clean_death(tcp, 0, 16); 13732 break; 13733 default: 13734 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13735 (void) tcp_clean_death(tcp, ENXIO, 17); 13736 break; 13737 } 13738 return; 13739 } 13740 if (flags & TH_SYN) { 13741 /* 13742 * See RFC 793, Page 71 13743 * 13744 * The seq number must be in the window as it should 13745 * be "fixed" above. If it is outside window, it should 13746 * be already rejected. Note that we allow seg_seq to be 13747 * rnxt + rwnd because we want to accept 0 window probe. 13748 */ 13749 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13750 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13751 freemsg(mp); 13752 /* 13753 * If the ACK flag is not set, just use our snxt as the 13754 * seq number of the RST segment. 13755 */ 13756 if (!(flags & TH_ACK)) { 13757 seg_ack = tcp->tcp_snxt; 13758 } 13759 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13760 TH_RST|TH_ACK); 13761 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13762 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13763 return; 13764 } 13765 /* 13766 * urp could be -1 when the urp field in the packet is 0 13767 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13768 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13769 */ 13770 if (flags & TH_URG && urp >= 0) { 13771 if (!tcp->tcp_urp_last_valid || 13772 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13773 /* 13774 * If we haven't generated the signal yet for this 13775 * urgent pointer value, do it now. Also, send up a 13776 * zero-length M_DATA indicating whether or not this is 13777 * the mark. The latter is not needed when a 13778 * T_EXDATA_IND is sent up. However, if there are 13779 * allocation failures this code relies on the sender 13780 * retransmitting and the socket code for determining 13781 * the mark should not block waiting for the peer to 13782 * transmit. Thus, for simplicity we always send up the 13783 * mark indication. 13784 */ 13785 mp1 = allocb(0, BPRI_MED); 13786 if (mp1 == NULL) { 13787 freemsg(mp); 13788 return; 13789 } 13790 if (!TCP_IS_DETACHED(tcp) && 13791 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13792 /* Try again on the rexmit. */ 13793 freemsg(mp1); 13794 freemsg(mp); 13795 return; 13796 } 13797 /* 13798 * Mark with NOTMARKNEXT for now. 13799 * The code below will change this to MARKNEXT 13800 * if we are at the mark. 13801 * 13802 * If there are allocation failures (e.g. in dupmsg 13803 * below) the next time tcp_rput_data sees the urgent 13804 * segment it will send up the MSG*MARKNEXT message. 13805 */ 13806 mp1->b_flag |= MSGNOTMARKNEXT; 13807 freemsg(tcp->tcp_urp_mark_mp); 13808 tcp->tcp_urp_mark_mp = mp1; 13809 flags |= TH_SEND_URP_MARK; 13810 #ifdef DEBUG 13811 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13812 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13813 "last %x, %s", 13814 seg_seq, urp, tcp->tcp_urp_last, 13815 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13816 #endif /* DEBUG */ 13817 tcp->tcp_urp_last_valid = B_TRUE; 13818 tcp->tcp_urp_last = urp + seg_seq; 13819 } else if (tcp->tcp_urp_mark_mp != NULL) { 13820 /* 13821 * An allocation failure prevented the previous 13822 * tcp_rput_data from sending up the allocated 13823 * MSG*MARKNEXT message - send it up this time 13824 * around. 13825 */ 13826 flags |= TH_SEND_URP_MARK; 13827 } 13828 13829 /* 13830 * If the urgent byte is in this segment, make sure that it is 13831 * all by itself. This makes it much easier to deal with the 13832 * possibility of an allocation failure on the T_exdata_ind. 13833 * Note that seg_len is the number of bytes in the segment, and 13834 * urp is the offset into the segment of the urgent byte. 13835 * urp < seg_len means that the urgent byte is in this segment. 13836 */ 13837 if (urp < seg_len) { 13838 if (seg_len != 1) { 13839 uint32_t tmp_rnxt; 13840 /* 13841 * Break it up and feed it back in. 13842 * Re-attach the IP header. 13843 */ 13844 mp->b_rptr = iphdr; 13845 if (urp > 0) { 13846 /* 13847 * There is stuff before the urgent 13848 * byte. 13849 */ 13850 mp1 = dupmsg(mp); 13851 if (!mp1) { 13852 /* 13853 * Trim from urgent byte on. 13854 * The rest will come back. 13855 */ 13856 (void) adjmsg(mp, 13857 urp - seg_len); 13858 tcp_rput_data(connp, 13859 mp, NULL); 13860 return; 13861 } 13862 (void) adjmsg(mp1, urp - seg_len); 13863 /* Feed this piece back in. */ 13864 tmp_rnxt = tcp->tcp_rnxt; 13865 tcp_rput_data(connp, mp1, NULL); 13866 /* 13867 * If the data passed back in was not 13868 * processed (ie: bad ACK) sending 13869 * the remainder back in will cause a 13870 * loop. In this case, drop the 13871 * packet and let the sender try 13872 * sending a good packet. 13873 */ 13874 if (tmp_rnxt == tcp->tcp_rnxt) { 13875 freemsg(mp); 13876 return; 13877 } 13878 } 13879 if (urp != seg_len - 1) { 13880 uint32_t tmp_rnxt; 13881 /* 13882 * There is stuff after the urgent 13883 * byte. 13884 */ 13885 mp1 = dupmsg(mp); 13886 if (!mp1) { 13887 /* 13888 * Trim everything beyond the 13889 * urgent byte. The rest will 13890 * come back. 13891 */ 13892 (void) adjmsg(mp, 13893 urp + 1 - seg_len); 13894 tcp_rput_data(connp, 13895 mp, NULL); 13896 return; 13897 } 13898 (void) adjmsg(mp1, urp + 1 - seg_len); 13899 tmp_rnxt = tcp->tcp_rnxt; 13900 tcp_rput_data(connp, mp1, NULL); 13901 /* 13902 * If the data passed back in was not 13903 * processed (ie: bad ACK) sending 13904 * the remainder back in will cause a 13905 * loop. In this case, drop the 13906 * packet and let the sender try 13907 * sending a good packet. 13908 */ 13909 if (tmp_rnxt == tcp->tcp_rnxt) { 13910 freemsg(mp); 13911 return; 13912 } 13913 } 13914 tcp_rput_data(connp, mp, NULL); 13915 return; 13916 } 13917 /* 13918 * This segment contains only the urgent byte. We 13919 * have to allocate the T_exdata_ind, if we can. 13920 */ 13921 if (!tcp->tcp_urp_mp) { 13922 struct T_exdata_ind *tei; 13923 mp1 = allocb(sizeof (struct T_exdata_ind), 13924 BPRI_MED); 13925 if (!mp1) { 13926 /* 13927 * Sigh... It'll be back. 13928 * Generate any MSG*MARK message now. 13929 */ 13930 freemsg(mp); 13931 seg_len = 0; 13932 if (flags & TH_SEND_URP_MARK) { 13933 13934 13935 ASSERT(tcp->tcp_urp_mark_mp); 13936 tcp->tcp_urp_mark_mp->b_flag &= 13937 ~MSGNOTMARKNEXT; 13938 tcp->tcp_urp_mark_mp->b_flag |= 13939 MSGMARKNEXT; 13940 } 13941 goto ack_check; 13942 } 13943 mp1->b_datap->db_type = M_PROTO; 13944 tei = (struct T_exdata_ind *)mp1->b_rptr; 13945 tei->PRIM_type = T_EXDATA_IND; 13946 tei->MORE_flag = 0; 13947 mp1->b_wptr = (uchar_t *)&tei[1]; 13948 tcp->tcp_urp_mp = mp1; 13949 #ifdef DEBUG 13950 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13951 "tcp_rput: allocated exdata_ind %s", 13952 tcp_display(tcp, NULL, 13953 DISP_PORT_ONLY)); 13954 #endif /* DEBUG */ 13955 /* 13956 * There is no need to send a separate MSG*MARK 13957 * message since the T_EXDATA_IND will be sent 13958 * now. 13959 */ 13960 flags &= ~TH_SEND_URP_MARK; 13961 freemsg(tcp->tcp_urp_mark_mp); 13962 tcp->tcp_urp_mark_mp = NULL; 13963 } 13964 /* 13965 * Now we are all set. On the next putnext upstream, 13966 * tcp_urp_mp will be non-NULL and will get prepended 13967 * to what has to be this piece containing the urgent 13968 * byte. If for any reason we abort this segment below, 13969 * if it comes back, we will have this ready, or it 13970 * will get blown off in close. 13971 */ 13972 } else if (urp == seg_len) { 13973 /* 13974 * The urgent byte is the next byte after this sequence 13975 * number. If there is data it is marked with 13976 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13977 * since it is not needed. Otherwise, if the code 13978 * above just allocated a zero-length tcp_urp_mark_mp 13979 * message, that message is tagged with MSGMARKNEXT. 13980 * Sending up these MSGMARKNEXT messages makes 13981 * SIOCATMARK work correctly even though 13982 * the T_EXDATA_IND will not be sent up until the 13983 * urgent byte arrives. 13984 */ 13985 if (seg_len != 0) { 13986 flags |= TH_MARKNEXT_NEEDED; 13987 freemsg(tcp->tcp_urp_mark_mp); 13988 tcp->tcp_urp_mark_mp = NULL; 13989 flags &= ~TH_SEND_URP_MARK; 13990 } else if (tcp->tcp_urp_mark_mp != NULL) { 13991 flags |= TH_SEND_URP_MARK; 13992 tcp->tcp_urp_mark_mp->b_flag &= 13993 ~MSGNOTMARKNEXT; 13994 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13995 } 13996 #ifdef DEBUG 13997 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13998 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13999 seg_len, flags, 14000 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14001 #endif /* DEBUG */ 14002 } else { 14003 /* Data left until we hit mark */ 14004 #ifdef DEBUG 14005 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14006 "tcp_rput: URP %d bytes left, %s", 14007 urp - seg_len, tcp_display(tcp, NULL, 14008 DISP_PORT_ONLY)); 14009 #endif /* DEBUG */ 14010 } 14011 } 14012 14013 process_ack: 14014 if (!(flags & TH_ACK)) { 14015 freemsg(mp); 14016 goto xmit_check; 14017 } 14018 } 14019 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14020 14021 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14022 tcp->tcp_ip_forward_progress = B_TRUE; 14023 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14024 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14025 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14026 /* 3-way handshake complete - pass up the T_CONN_IND */ 14027 tcp_t *listener = tcp->tcp_listener; 14028 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14029 14030 tcp->tcp_tconnind_started = B_TRUE; 14031 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14032 /* 14033 * We are here means eager is fine but it can 14034 * get a TH_RST at any point between now and till 14035 * accept completes and disappear. We need to 14036 * ensure that reference to eager is valid after 14037 * we get out of eager's perimeter. So we do 14038 * an extra refhold. 14039 */ 14040 CONN_INC_REF(connp); 14041 14042 /* 14043 * The listener also exists because of the refhold 14044 * done in tcp_conn_request. Its possible that it 14045 * might have closed. We will check that once we 14046 * get inside listeners context. 14047 */ 14048 CONN_INC_REF(listener->tcp_connp); 14049 if (listener->tcp_connp->conn_sqp == 14050 connp->conn_sqp) { 14051 tcp_send_conn_ind(listener->tcp_connp, mp, 14052 listener->tcp_connp->conn_sqp); 14053 CONN_DEC_REF(listener->tcp_connp); 14054 } else if (!tcp->tcp_loopback) { 14055 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14056 tcp_send_conn_ind, 14057 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14058 } else { 14059 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14060 tcp_send_conn_ind, listener->tcp_connp, 14061 SQTAG_TCP_CONN_IND); 14062 } 14063 } 14064 14065 if (tcp->tcp_active_open) { 14066 /* 14067 * We are seeing the final ack in the three way 14068 * hand shake of a active open'ed connection 14069 * so we must send up a T_CONN_CON 14070 */ 14071 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14072 freemsg(mp); 14073 return; 14074 } 14075 /* 14076 * Don't fuse the loopback endpoints for 14077 * simultaneous active opens. 14078 */ 14079 if (tcp->tcp_loopback) { 14080 TCP_STAT(tcps, tcp_fusion_unfusable); 14081 tcp->tcp_unfusable = B_TRUE; 14082 } 14083 } 14084 14085 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14086 bytes_acked--; 14087 /* SYN was acked - making progress */ 14088 if (tcp->tcp_ipversion == IPV6_VERSION) 14089 tcp->tcp_ip_forward_progress = B_TRUE; 14090 14091 /* 14092 * If SYN was retransmitted, need to reset all 14093 * retransmission info as this segment will be 14094 * treated as a dup ACK. 14095 */ 14096 if (tcp->tcp_rexmit) { 14097 tcp->tcp_rexmit = B_FALSE; 14098 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14099 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14100 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14101 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14102 tcp->tcp_ms_we_have_waited = 0; 14103 tcp->tcp_cwnd = mss; 14104 } 14105 14106 /* 14107 * We set the send window to zero here. 14108 * This is needed if there is data to be 14109 * processed already on the queue. 14110 * Later (at swnd_update label), the 14111 * "new_swnd > tcp_swnd" condition is satisfied 14112 * the XMIT_NEEDED flag is set in the current 14113 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14114 * called if there is already data on queue in 14115 * this state. 14116 */ 14117 tcp->tcp_swnd = 0; 14118 14119 if (new_swnd > tcp->tcp_max_swnd) 14120 tcp->tcp_max_swnd = new_swnd; 14121 tcp->tcp_swl1 = seg_seq; 14122 tcp->tcp_swl2 = seg_ack; 14123 tcp->tcp_state = TCPS_ESTABLISHED; 14124 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14125 14126 /* Fuse when both sides are in ESTABLISHED state */ 14127 if (tcp->tcp_loopback && do_tcp_fusion) 14128 tcp_fuse(tcp, iphdr, tcph); 14129 14130 } 14131 /* This code follows 4.4BSD-Lite2 mostly. */ 14132 if (bytes_acked < 0) 14133 goto est; 14134 14135 /* 14136 * If TCP is ECN capable and the congestion experience bit is 14137 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14138 * done once per window (or more loosely, per RTT). 14139 */ 14140 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14141 tcp->tcp_cwr = B_FALSE; 14142 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14143 if (!tcp->tcp_cwr) { 14144 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14145 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14146 tcp->tcp_cwnd = npkt * mss; 14147 /* 14148 * If the cwnd is 0, use the timer to clock out 14149 * new segments. This is required by the ECN spec. 14150 */ 14151 if (npkt == 0) { 14152 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14153 /* 14154 * This makes sure that when the ACK comes 14155 * back, we will increase tcp_cwnd by 1 MSS. 14156 */ 14157 tcp->tcp_cwnd_cnt = 0; 14158 } 14159 tcp->tcp_cwr = B_TRUE; 14160 /* 14161 * This marks the end of the current window of in 14162 * flight data. That is why we don't use 14163 * tcp_suna + tcp_swnd. Only data in flight can 14164 * provide ECN info. 14165 */ 14166 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14167 tcp->tcp_ecn_cwr_sent = B_FALSE; 14168 } 14169 } 14170 14171 mp1 = tcp->tcp_xmit_head; 14172 if (bytes_acked == 0) { 14173 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14174 int dupack_cnt; 14175 14176 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14177 /* 14178 * Fast retransmit. When we have seen exactly three 14179 * identical ACKs while we have unacked data 14180 * outstanding we take it as a hint that our peer 14181 * dropped something. 14182 * 14183 * If TCP is retransmitting, don't do fast retransmit. 14184 */ 14185 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14186 ! tcp->tcp_rexmit) { 14187 /* Do Limited Transmit */ 14188 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14189 tcps->tcps_dupack_fast_retransmit) { 14190 /* 14191 * RFC 3042 14192 * 14193 * What we need to do is temporarily 14194 * increase tcp_cwnd so that new 14195 * data can be sent if it is allowed 14196 * by the receive window (tcp_rwnd). 14197 * tcp_wput_data() will take care of 14198 * the rest. 14199 * 14200 * If the connection is SACK capable, 14201 * only do limited xmit when there 14202 * is SACK info. 14203 * 14204 * Note how tcp_cwnd is incremented. 14205 * The first dup ACK will increase 14206 * it by 1 MSS. The second dup ACK 14207 * will increase it by 2 MSS. This 14208 * means that only 1 new segment will 14209 * be sent for each dup ACK. 14210 */ 14211 if (tcp->tcp_unsent > 0 && 14212 (!tcp->tcp_snd_sack_ok || 14213 (tcp->tcp_snd_sack_ok && 14214 tcp->tcp_notsack_list != NULL))) { 14215 tcp->tcp_cwnd += mss << 14216 (tcp->tcp_dupack_cnt - 1); 14217 flags |= TH_LIMIT_XMIT; 14218 } 14219 } else if (dupack_cnt == 14220 tcps->tcps_dupack_fast_retransmit) { 14221 14222 /* 14223 * If we have reduced tcp_ssthresh 14224 * because of ECN, do not reduce it again 14225 * unless it is already one window of data 14226 * away. After one window of data, tcp_cwr 14227 * should then be cleared. Note that 14228 * for non ECN capable connection, tcp_cwr 14229 * should always be false. 14230 * 14231 * Adjust cwnd since the duplicate 14232 * ack indicates that a packet was 14233 * dropped (due to congestion.) 14234 */ 14235 if (!tcp->tcp_cwr) { 14236 npkt = ((tcp->tcp_snxt - 14237 tcp->tcp_suna) >> 1) / mss; 14238 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14239 mss; 14240 tcp->tcp_cwnd = (npkt + 14241 tcp->tcp_dupack_cnt) * mss; 14242 } 14243 if (tcp->tcp_ecn_ok) { 14244 tcp->tcp_cwr = B_TRUE; 14245 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14246 tcp->tcp_ecn_cwr_sent = B_FALSE; 14247 } 14248 14249 /* 14250 * We do Hoe's algorithm. Refer to her 14251 * paper "Improving the Start-up Behavior 14252 * of a Congestion Control Scheme for TCP," 14253 * appeared in SIGCOMM'96. 14254 * 14255 * Save highest seq no we have sent so far. 14256 * Be careful about the invisible FIN byte. 14257 */ 14258 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14259 (tcp->tcp_unsent == 0)) { 14260 tcp->tcp_rexmit_max = tcp->tcp_fss; 14261 } else { 14262 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14263 } 14264 14265 /* 14266 * Do not allow bursty traffic during. 14267 * fast recovery. Refer to Fall and Floyd's 14268 * paper "Simulation-based Comparisons of 14269 * Tahoe, Reno and SACK TCP" (in CCR?) 14270 * This is a best current practise. 14271 */ 14272 tcp->tcp_snd_burst = TCP_CWND_SS; 14273 14274 /* 14275 * For SACK: 14276 * Calculate tcp_pipe, which is the 14277 * estimated number of bytes in 14278 * network. 14279 * 14280 * tcp_fack is the highest sack'ed seq num 14281 * TCP has received. 14282 * 14283 * tcp_pipe is explained in the above quoted 14284 * Fall and Floyd's paper. tcp_fack is 14285 * explained in Mathis and Mahdavi's 14286 * "Forward Acknowledgment: Refining TCP 14287 * Congestion Control" in SIGCOMM '96. 14288 */ 14289 if (tcp->tcp_snd_sack_ok) { 14290 ASSERT(tcp->tcp_sack_info != NULL); 14291 if (tcp->tcp_notsack_list != NULL) { 14292 tcp->tcp_pipe = tcp->tcp_snxt - 14293 tcp->tcp_fack; 14294 tcp->tcp_sack_snxt = seg_ack; 14295 flags |= TH_NEED_SACK_REXMIT; 14296 } else { 14297 /* 14298 * Always initialize tcp_pipe 14299 * even though we don't have 14300 * any SACK info. If later 14301 * we get SACK info and 14302 * tcp_pipe is not initialized, 14303 * funny things will happen. 14304 */ 14305 tcp->tcp_pipe = 14306 tcp->tcp_cwnd_ssthresh; 14307 } 14308 } else { 14309 flags |= TH_REXMIT_NEEDED; 14310 } /* tcp_snd_sack_ok */ 14311 14312 } else { 14313 /* 14314 * Here we perform congestion 14315 * avoidance, but NOT slow start. 14316 * This is known as the Fast 14317 * Recovery Algorithm. 14318 */ 14319 if (tcp->tcp_snd_sack_ok && 14320 tcp->tcp_notsack_list != NULL) { 14321 flags |= TH_NEED_SACK_REXMIT; 14322 tcp->tcp_pipe -= mss; 14323 if (tcp->tcp_pipe < 0) 14324 tcp->tcp_pipe = 0; 14325 } else { 14326 /* 14327 * We know that one more packet has 14328 * left the pipe thus we can update 14329 * cwnd. 14330 */ 14331 cwnd = tcp->tcp_cwnd + mss; 14332 if (cwnd > tcp->tcp_cwnd_max) 14333 cwnd = tcp->tcp_cwnd_max; 14334 tcp->tcp_cwnd = cwnd; 14335 if (tcp->tcp_unsent > 0) 14336 flags |= TH_XMIT_NEEDED; 14337 } 14338 } 14339 } 14340 } else if (tcp->tcp_zero_win_probe) { 14341 /* 14342 * If the window has opened, need to arrange 14343 * to send additional data. 14344 */ 14345 if (new_swnd != 0) { 14346 /* tcp_suna != tcp_snxt */ 14347 /* Packet contains a window update */ 14348 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14349 tcp->tcp_zero_win_probe = 0; 14350 tcp->tcp_timer_backoff = 0; 14351 tcp->tcp_ms_we_have_waited = 0; 14352 14353 /* 14354 * Transmit starting with tcp_suna since 14355 * the one byte probe is not ack'ed. 14356 * If TCP has sent more than one identical 14357 * probe, tcp_rexmit will be set. That means 14358 * tcp_ss_rexmit() will send out the one 14359 * byte along with new data. Otherwise, 14360 * fake the retransmission. 14361 */ 14362 flags |= TH_XMIT_NEEDED; 14363 if (!tcp->tcp_rexmit) { 14364 tcp->tcp_rexmit = B_TRUE; 14365 tcp->tcp_dupack_cnt = 0; 14366 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14367 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14368 } 14369 } 14370 } 14371 goto swnd_update; 14372 } 14373 14374 /* 14375 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14376 * If the ACK value acks something that we have not yet sent, it might 14377 * be an old duplicate segment. Send an ACK to re-synchronize the 14378 * other side. 14379 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14380 * state is handled above, so we can always just drop the segment and 14381 * send an ACK here. 14382 * 14383 * Should we send ACKs in response to ACK only segments? 14384 */ 14385 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14386 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14387 /* drop the received segment */ 14388 freemsg(mp); 14389 14390 /* 14391 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14392 * greater than 0, check if the number of such 14393 * bogus ACks is greater than that count. If yes, 14394 * don't send back any ACK. This prevents TCP from 14395 * getting into an ACK storm if somehow an attacker 14396 * successfully spoofs an acceptable segment to our 14397 * peer. 14398 */ 14399 if (tcp_drop_ack_unsent_cnt > 0 && 14400 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14401 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14402 return; 14403 } 14404 mp = tcp_ack_mp(tcp); 14405 if (mp != NULL) { 14406 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14407 BUMP_LOCAL(tcp->tcp_obsegs); 14408 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14409 tcp_send_data(tcp, tcp->tcp_wq, mp); 14410 } 14411 return; 14412 } 14413 14414 /* 14415 * TCP gets a new ACK, update the notsack'ed list to delete those 14416 * blocks that are covered by this ACK. 14417 */ 14418 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14419 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14420 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14421 } 14422 14423 /* 14424 * If we got an ACK after fast retransmit, check to see 14425 * if it is a partial ACK. If it is not and the congestion 14426 * window was inflated to account for the other side's 14427 * cached packets, retract it. If it is, do Hoe's algorithm. 14428 */ 14429 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14430 ASSERT(tcp->tcp_rexmit == B_FALSE); 14431 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14432 tcp->tcp_dupack_cnt = 0; 14433 /* 14434 * Restore the orig tcp_cwnd_ssthresh after 14435 * fast retransmit phase. 14436 */ 14437 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14438 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14439 } 14440 tcp->tcp_rexmit_max = seg_ack; 14441 tcp->tcp_cwnd_cnt = 0; 14442 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14443 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14444 14445 /* 14446 * Remove all notsack info to avoid confusion with 14447 * the next fast retrasnmit/recovery phase. 14448 */ 14449 if (tcp->tcp_snd_sack_ok && 14450 tcp->tcp_notsack_list != NULL) { 14451 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14452 } 14453 } else { 14454 if (tcp->tcp_snd_sack_ok && 14455 tcp->tcp_notsack_list != NULL) { 14456 flags |= TH_NEED_SACK_REXMIT; 14457 tcp->tcp_pipe -= mss; 14458 if (tcp->tcp_pipe < 0) 14459 tcp->tcp_pipe = 0; 14460 } else { 14461 /* 14462 * Hoe's algorithm: 14463 * 14464 * Retransmit the unack'ed segment and 14465 * restart fast recovery. Note that we 14466 * need to scale back tcp_cwnd to the 14467 * original value when we started fast 14468 * recovery. This is to prevent overly 14469 * aggressive behaviour in sending new 14470 * segments. 14471 */ 14472 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14473 tcps->tcps_dupack_fast_retransmit * mss; 14474 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14475 flags |= TH_REXMIT_NEEDED; 14476 } 14477 } 14478 } else { 14479 tcp->tcp_dupack_cnt = 0; 14480 if (tcp->tcp_rexmit) { 14481 /* 14482 * TCP is retranmitting. If the ACK ack's all 14483 * outstanding data, update tcp_rexmit_max and 14484 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14485 * to the correct value. 14486 * 14487 * Note that SEQ_LEQ() is used. This is to avoid 14488 * unnecessary fast retransmit caused by dup ACKs 14489 * received when TCP does slow start retransmission 14490 * after a time out. During this phase, TCP may 14491 * send out segments which are already received. 14492 * This causes dup ACKs to be sent back. 14493 */ 14494 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14495 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14496 tcp->tcp_rexmit_nxt = seg_ack; 14497 } 14498 if (seg_ack != tcp->tcp_rexmit_max) { 14499 flags |= TH_XMIT_NEEDED; 14500 } 14501 } else { 14502 tcp->tcp_rexmit = B_FALSE; 14503 tcp->tcp_xmit_zc_clean = B_FALSE; 14504 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14505 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14506 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14507 } 14508 tcp->tcp_ms_we_have_waited = 0; 14509 } 14510 } 14511 14512 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14513 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14514 tcp->tcp_suna = seg_ack; 14515 if (tcp->tcp_zero_win_probe != 0) { 14516 tcp->tcp_zero_win_probe = 0; 14517 tcp->tcp_timer_backoff = 0; 14518 } 14519 14520 /* 14521 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14522 * Note that it cannot be the SYN being ack'ed. The code flow 14523 * will not reach here. 14524 */ 14525 if (mp1 == NULL) { 14526 goto fin_acked; 14527 } 14528 14529 /* 14530 * Update the congestion window. 14531 * 14532 * If TCP is not ECN capable or TCP is ECN capable but the 14533 * congestion experience bit is not set, increase the tcp_cwnd as 14534 * usual. 14535 */ 14536 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14537 cwnd = tcp->tcp_cwnd; 14538 add = mss; 14539 14540 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14541 /* 14542 * This is to prevent an increase of less than 1 MSS of 14543 * tcp_cwnd. With partial increase, tcp_wput_data() 14544 * may send out tinygrams in order to preserve mblk 14545 * boundaries. 14546 * 14547 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14548 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14549 * increased by 1 MSS for every RTTs. 14550 */ 14551 if (tcp->tcp_cwnd_cnt <= 0) { 14552 tcp->tcp_cwnd_cnt = cwnd + add; 14553 } else { 14554 tcp->tcp_cwnd_cnt -= add; 14555 add = 0; 14556 } 14557 } 14558 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14559 } 14560 14561 /* See if the latest urgent data has been acknowledged */ 14562 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14563 SEQ_GT(seg_ack, tcp->tcp_urg)) 14564 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14565 14566 /* Can we update the RTT estimates? */ 14567 if (tcp->tcp_snd_ts_ok) { 14568 /* Ignore zero timestamp echo-reply. */ 14569 if (tcpopt.tcp_opt_ts_ecr != 0) { 14570 tcp_set_rto(tcp, (int32_t)lbolt - 14571 (int32_t)tcpopt.tcp_opt_ts_ecr); 14572 } 14573 14574 /* If needed, restart the timer. */ 14575 if (tcp->tcp_set_timer == 1) { 14576 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14577 tcp->tcp_set_timer = 0; 14578 } 14579 /* 14580 * Update tcp_csuna in case the other side stops sending 14581 * us timestamps. 14582 */ 14583 tcp->tcp_csuna = tcp->tcp_snxt; 14584 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14585 /* 14586 * An ACK sequence we haven't seen before, so get the RTT 14587 * and update the RTO. But first check if the timestamp is 14588 * valid to use. 14589 */ 14590 if ((mp1->b_next != NULL) && 14591 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14592 tcp_set_rto(tcp, (int32_t)lbolt - 14593 (int32_t)(intptr_t)mp1->b_prev); 14594 else 14595 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14596 14597 /* Remeber the last sequence to be ACKed */ 14598 tcp->tcp_csuna = seg_ack; 14599 if (tcp->tcp_set_timer == 1) { 14600 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14601 tcp->tcp_set_timer = 0; 14602 } 14603 } else { 14604 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14605 } 14606 14607 /* Eat acknowledged bytes off the xmit queue. */ 14608 for (;;) { 14609 mblk_t *mp2; 14610 uchar_t *wptr; 14611 14612 wptr = mp1->b_wptr; 14613 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14614 bytes_acked -= (int)(wptr - mp1->b_rptr); 14615 if (bytes_acked < 0) { 14616 mp1->b_rptr = wptr + bytes_acked; 14617 /* 14618 * Set a new timestamp if all the bytes timed by the 14619 * old timestamp have been ack'ed. 14620 */ 14621 if (SEQ_GT(seg_ack, 14622 (uint32_t)(uintptr_t)(mp1->b_next))) { 14623 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14624 mp1->b_next = NULL; 14625 } 14626 break; 14627 } 14628 mp1->b_next = NULL; 14629 mp1->b_prev = NULL; 14630 mp2 = mp1; 14631 mp1 = mp1->b_cont; 14632 14633 /* 14634 * This notification is required for some zero-copy 14635 * clients to maintain a copy semantic. After the data 14636 * is ack'ed, client is safe to modify or reuse the buffer. 14637 */ 14638 if (tcp->tcp_snd_zcopy_aware && 14639 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14640 tcp_zcopy_notify(tcp); 14641 freeb(mp2); 14642 if (bytes_acked == 0) { 14643 if (mp1 == NULL) { 14644 /* Everything is ack'ed, clear the tail. */ 14645 tcp->tcp_xmit_tail = NULL; 14646 /* 14647 * Cancel the timer unless we are still 14648 * waiting for an ACK for the FIN packet. 14649 */ 14650 if (tcp->tcp_timer_tid != 0 && 14651 tcp->tcp_snxt == tcp->tcp_suna) { 14652 (void) TCP_TIMER_CANCEL(tcp, 14653 tcp->tcp_timer_tid); 14654 tcp->tcp_timer_tid = 0; 14655 } 14656 goto pre_swnd_update; 14657 } 14658 if (mp2 != tcp->tcp_xmit_tail) 14659 break; 14660 tcp->tcp_xmit_tail = mp1; 14661 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14662 (uintptr_t)INT_MAX); 14663 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14664 mp1->b_rptr); 14665 break; 14666 } 14667 if (mp1 == NULL) { 14668 /* 14669 * More was acked but there is nothing more 14670 * outstanding. This means that the FIN was 14671 * just acked or that we're talking to a clown. 14672 */ 14673 fin_acked: 14674 ASSERT(tcp->tcp_fin_sent); 14675 tcp->tcp_xmit_tail = NULL; 14676 if (tcp->tcp_fin_sent) { 14677 /* FIN was acked - making progress */ 14678 if (tcp->tcp_ipversion == IPV6_VERSION && 14679 !tcp->tcp_fin_acked) 14680 tcp->tcp_ip_forward_progress = B_TRUE; 14681 tcp->tcp_fin_acked = B_TRUE; 14682 if (tcp->tcp_linger_tid != 0 && 14683 TCP_TIMER_CANCEL(tcp, 14684 tcp->tcp_linger_tid) >= 0) { 14685 tcp_stop_lingering(tcp); 14686 freemsg(mp); 14687 mp = NULL; 14688 } 14689 } else { 14690 /* 14691 * We should never get here because 14692 * we have already checked that the 14693 * number of bytes ack'ed should be 14694 * smaller than or equal to what we 14695 * have sent so far (it is the 14696 * acceptability check of the ACK). 14697 * We can only get here if the send 14698 * queue is corrupted. 14699 * 14700 * Terminate the connection and 14701 * panic the system. It is better 14702 * for us to panic instead of 14703 * continuing to avoid other disaster. 14704 */ 14705 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14706 tcp->tcp_rnxt, TH_RST|TH_ACK); 14707 panic("Memory corruption " 14708 "detected for connection %s.", 14709 tcp_display(tcp, NULL, 14710 DISP_ADDR_AND_PORT)); 14711 /*NOTREACHED*/ 14712 } 14713 goto pre_swnd_update; 14714 } 14715 ASSERT(mp2 != tcp->tcp_xmit_tail); 14716 } 14717 if (tcp->tcp_unsent) { 14718 flags |= TH_XMIT_NEEDED; 14719 } 14720 pre_swnd_update: 14721 tcp->tcp_xmit_head = mp1; 14722 swnd_update: 14723 /* 14724 * The following check is different from most other implementations. 14725 * For bi-directional transfer, when segments are dropped, the 14726 * "normal" check will not accept a window update in those 14727 * retransmitted segemnts. Failing to do that, TCP may send out 14728 * segments which are outside receiver's window. As TCP accepts 14729 * the ack in those retransmitted segments, if the window update in 14730 * the same segment is not accepted, TCP will incorrectly calculates 14731 * that it can send more segments. This can create a deadlock 14732 * with the receiver if its window becomes zero. 14733 */ 14734 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14735 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14736 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14737 /* 14738 * The criteria for update is: 14739 * 14740 * 1. the segment acknowledges some data. Or 14741 * 2. the segment is new, i.e. it has a higher seq num. Or 14742 * 3. the segment is not old and the advertised window is 14743 * larger than the previous advertised window. 14744 */ 14745 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14746 flags |= TH_XMIT_NEEDED; 14747 tcp->tcp_swnd = new_swnd; 14748 if (new_swnd > tcp->tcp_max_swnd) 14749 tcp->tcp_max_swnd = new_swnd; 14750 tcp->tcp_swl1 = seg_seq; 14751 tcp->tcp_swl2 = seg_ack; 14752 } 14753 est: 14754 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14755 14756 switch (tcp->tcp_state) { 14757 case TCPS_FIN_WAIT_1: 14758 if (tcp->tcp_fin_acked) { 14759 tcp->tcp_state = TCPS_FIN_WAIT_2; 14760 /* 14761 * We implement the non-standard BSD/SunOS 14762 * FIN_WAIT_2 flushing algorithm. 14763 * If there is no user attached to this 14764 * TCP endpoint, then this TCP struct 14765 * could hang around forever in FIN_WAIT_2 14766 * state if the peer forgets to send us 14767 * a FIN. To prevent this, we wait only 14768 * 2*MSL (a convenient time value) for 14769 * the FIN to arrive. If it doesn't show up, 14770 * we flush the TCP endpoint. This algorithm, 14771 * though a violation of RFC-793, has worked 14772 * for over 10 years in BSD systems. 14773 * Note: SunOS 4.x waits 675 seconds before 14774 * flushing the FIN_WAIT_2 connection. 14775 */ 14776 TCP_TIMER_RESTART(tcp, 14777 tcps->tcps_fin_wait_2_flush_interval); 14778 } 14779 break; 14780 case TCPS_FIN_WAIT_2: 14781 break; /* Shutdown hook? */ 14782 case TCPS_LAST_ACK: 14783 freemsg(mp); 14784 if (tcp->tcp_fin_acked) { 14785 (void) tcp_clean_death(tcp, 0, 19); 14786 return; 14787 } 14788 goto xmit_check; 14789 case TCPS_CLOSING: 14790 if (tcp->tcp_fin_acked) { 14791 tcp->tcp_state = TCPS_TIME_WAIT; 14792 /* 14793 * Unconditionally clear the exclusive binding 14794 * bit so this TIME-WAIT connection won't 14795 * interfere with new ones. 14796 */ 14797 tcp->tcp_exclbind = 0; 14798 if (!TCP_IS_DETACHED(tcp)) { 14799 TCP_TIMER_RESTART(tcp, 14800 tcps->tcps_time_wait_interval); 14801 } else { 14802 tcp_time_wait_append(tcp); 14803 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14804 } 14805 } 14806 /*FALLTHRU*/ 14807 case TCPS_CLOSE_WAIT: 14808 freemsg(mp); 14809 goto xmit_check; 14810 default: 14811 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14812 break; 14813 } 14814 } 14815 if (flags & TH_FIN) { 14816 /* Make sure we ack the fin */ 14817 flags |= TH_ACK_NEEDED; 14818 if (!tcp->tcp_fin_rcvd) { 14819 tcp->tcp_fin_rcvd = B_TRUE; 14820 tcp->tcp_rnxt++; 14821 tcph = tcp->tcp_tcph; 14822 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14823 14824 /* 14825 * Generate the ordrel_ind at the end unless we 14826 * are an eager guy. 14827 * In the eager case tcp_rsrv will do this when run 14828 * after tcp_accept is done. 14829 */ 14830 if (tcp->tcp_listener == NULL && 14831 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14832 flags |= TH_ORDREL_NEEDED; 14833 switch (tcp->tcp_state) { 14834 case TCPS_SYN_RCVD: 14835 case TCPS_ESTABLISHED: 14836 tcp->tcp_state = TCPS_CLOSE_WAIT; 14837 /* Keepalive? */ 14838 break; 14839 case TCPS_FIN_WAIT_1: 14840 if (!tcp->tcp_fin_acked) { 14841 tcp->tcp_state = TCPS_CLOSING; 14842 break; 14843 } 14844 /* FALLTHRU */ 14845 case TCPS_FIN_WAIT_2: 14846 tcp->tcp_state = TCPS_TIME_WAIT; 14847 /* 14848 * Unconditionally clear the exclusive binding 14849 * bit so this TIME-WAIT connection won't 14850 * interfere with new ones. 14851 */ 14852 tcp->tcp_exclbind = 0; 14853 if (!TCP_IS_DETACHED(tcp)) { 14854 TCP_TIMER_RESTART(tcp, 14855 tcps->tcps_time_wait_interval); 14856 } else { 14857 tcp_time_wait_append(tcp); 14858 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14859 } 14860 if (seg_len) { 14861 /* 14862 * implies data piggybacked on FIN. 14863 * break to handle data. 14864 */ 14865 break; 14866 } 14867 freemsg(mp); 14868 goto ack_check; 14869 } 14870 } 14871 } 14872 if (mp == NULL) 14873 goto xmit_check; 14874 if (seg_len == 0) { 14875 freemsg(mp); 14876 goto xmit_check; 14877 } 14878 if (mp->b_rptr == mp->b_wptr) { 14879 /* 14880 * The header has been consumed, so we remove the 14881 * zero-length mblk here. 14882 */ 14883 mp1 = mp; 14884 mp = mp->b_cont; 14885 freeb(mp1); 14886 } 14887 tcph = tcp->tcp_tcph; 14888 tcp->tcp_rack_cnt++; 14889 { 14890 uint32_t cur_max; 14891 14892 cur_max = tcp->tcp_rack_cur_max; 14893 if (tcp->tcp_rack_cnt >= cur_max) { 14894 /* 14895 * We have more unacked data than we should - send 14896 * an ACK now. 14897 */ 14898 flags |= TH_ACK_NEEDED; 14899 cur_max++; 14900 if (cur_max > tcp->tcp_rack_abs_max) 14901 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14902 else 14903 tcp->tcp_rack_cur_max = cur_max; 14904 } else if (TCP_IS_DETACHED(tcp)) { 14905 /* We don't have an ACK timer for detached TCP. */ 14906 flags |= TH_ACK_NEEDED; 14907 } else if (seg_len < mss) { 14908 /* 14909 * If we get a segment that is less than an mss, and we 14910 * already have unacknowledged data, and the amount 14911 * unacknowledged is not a multiple of mss, then we 14912 * better generate an ACK now. Otherwise, this may be 14913 * the tail piece of a transaction, and we would rather 14914 * wait for the response. 14915 */ 14916 uint32_t udif; 14917 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14918 (uintptr_t)INT_MAX); 14919 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14920 if (udif && (udif % mss)) 14921 flags |= TH_ACK_NEEDED; 14922 else 14923 flags |= TH_ACK_TIMER_NEEDED; 14924 } else { 14925 /* Start delayed ack timer */ 14926 flags |= TH_ACK_TIMER_NEEDED; 14927 } 14928 } 14929 tcp->tcp_rnxt += seg_len; 14930 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14931 14932 /* Update SACK list */ 14933 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14934 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14935 &(tcp->tcp_num_sack_blk)); 14936 } 14937 14938 if (tcp->tcp_urp_mp) { 14939 tcp->tcp_urp_mp->b_cont = mp; 14940 mp = tcp->tcp_urp_mp; 14941 tcp->tcp_urp_mp = NULL; 14942 /* Ready for a new signal. */ 14943 tcp->tcp_urp_last_valid = B_FALSE; 14944 #ifdef DEBUG 14945 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14946 "tcp_rput: sending exdata_ind %s", 14947 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14948 #endif /* DEBUG */ 14949 } 14950 14951 /* 14952 * Check for ancillary data changes compared to last segment. 14953 */ 14954 if (tcp->tcp_ipv6_recvancillary != 0) { 14955 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14956 if (mp == NULL) 14957 return; 14958 } 14959 14960 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14961 /* 14962 * Side queue inbound data until the accept happens. 14963 * tcp_accept/tcp_rput drains this when the accept happens. 14964 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14965 * T_EXDATA_IND) it is queued on b_next. 14966 * XXX Make urgent data use this. Requires: 14967 * Removing tcp_listener check for TH_URG 14968 * Making M_PCPROTO and MARK messages skip the eager case 14969 */ 14970 14971 if (tcp->tcp_kssl_pending) { 14972 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14973 mblk_t *, mp); 14974 tcp_kssl_input(tcp, mp); 14975 } else { 14976 tcp_rcv_enqueue(tcp, mp, seg_len); 14977 } 14978 } else { 14979 if (mp->b_datap->db_type != M_DATA || 14980 (flags & TH_MARKNEXT_NEEDED)) { 14981 if (tcp->tcp_rcv_list != NULL) { 14982 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14983 } 14984 ASSERT(tcp->tcp_rcv_list == NULL || 14985 tcp->tcp_fused_sigurg); 14986 if (flags & TH_MARKNEXT_NEEDED) { 14987 #ifdef DEBUG 14988 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14989 "tcp_rput: sending MSGMARKNEXT %s", 14990 tcp_display(tcp, NULL, 14991 DISP_PORT_ONLY)); 14992 #endif /* DEBUG */ 14993 mp->b_flag |= MSGMARKNEXT; 14994 flags &= ~TH_MARKNEXT_NEEDED; 14995 } 14996 14997 /* Does this need SSL processing first? */ 14998 if ((tcp->tcp_kssl_ctx != NULL) && 14999 (DB_TYPE(mp) == M_DATA)) { 15000 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15001 mblk_t *, mp); 15002 tcp_kssl_input(tcp, mp); 15003 } else { 15004 putnext(tcp->tcp_rq, mp); 15005 if (!canputnext(tcp->tcp_rq)) 15006 tcp->tcp_rwnd -= seg_len; 15007 } 15008 } else if ((flags & (TH_PUSH|TH_FIN)) || 15009 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 15010 if (tcp->tcp_rcv_list != NULL) { 15011 /* 15012 * Enqueue the new segment first and then 15013 * call tcp_rcv_drain() to send all data 15014 * up. The other way to do this is to 15015 * send all queued data up and then call 15016 * putnext() to send the new segment up. 15017 * This way can remove the else part later 15018 * on. 15019 * 15020 * We don't this to avoid one more call to 15021 * canputnext() as tcp_rcv_drain() needs to 15022 * call canputnext(). 15023 */ 15024 tcp_rcv_enqueue(tcp, mp, seg_len); 15025 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15026 } else { 15027 /* Does this need SSL processing first? */ 15028 if ((tcp->tcp_kssl_ctx != NULL) && 15029 (DB_TYPE(mp) == M_DATA)) { 15030 DTRACE_PROBE1( 15031 kssl_mblk__ksslinput_data2, 15032 mblk_t *, mp); 15033 tcp_kssl_input(tcp, mp); 15034 } else { 15035 putnext(tcp->tcp_rq, mp); 15036 if (!canputnext(tcp->tcp_rq)) 15037 tcp->tcp_rwnd -= seg_len; 15038 } 15039 } 15040 } else { 15041 /* 15042 * Enqueue all packets when processing an mblk 15043 * from the co queue and also enqueue normal packets. 15044 * For packets which belong to SSL stream do SSL 15045 * processing first. 15046 */ 15047 if ((tcp->tcp_kssl_ctx != NULL) && 15048 (DB_TYPE(mp) == M_DATA)) { 15049 DTRACE_PROBE1(kssl_mblk__tcpksslin3, 15050 mblk_t *, mp); 15051 tcp_kssl_input(tcp, mp); 15052 } else { 15053 tcp_rcv_enqueue(tcp, mp, seg_len); 15054 } 15055 } 15056 /* 15057 * Make sure the timer is running if we have data waiting 15058 * for a push bit. This provides resiliency against 15059 * implementations that do not correctly generate push bits. 15060 */ 15061 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15062 /* 15063 * The connection may be closed at this point, so don't 15064 * do anything for a detached tcp. 15065 */ 15066 if (!TCP_IS_DETACHED(tcp)) 15067 tcp->tcp_push_tid = TCP_TIMER(tcp, 15068 tcp_push_timer, 15069 MSEC_TO_TICK( 15070 tcps->tcps_push_timer_interval)); 15071 } 15072 } 15073 xmit_check: 15074 /* Is there anything left to do? */ 15075 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15076 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15077 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15078 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15079 goto done; 15080 15081 /* Any transmit work to do and a non-zero window? */ 15082 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15083 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15084 if (flags & TH_REXMIT_NEEDED) { 15085 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15086 15087 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15088 if (snd_size > mss) 15089 snd_size = mss; 15090 if (snd_size > tcp->tcp_swnd) 15091 snd_size = tcp->tcp_swnd; 15092 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15093 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15094 B_TRUE); 15095 15096 if (mp1 != NULL) { 15097 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15098 tcp->tcp_csuna = tcp->tcp_snxt; 15099 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15100 UPDATE_MIB(&tcps->tcps_mib, 15101 tcpRetransBytes, snd_size); 15102 TCP_RECORD_TRACE(tcp, mp1, 15103 TCP_TRACE_SEND_PKT); 15104 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15105 } 15106 } 15107 if (flags & TH_NEED_SACK_REXMIT) { 15108 tcp_sack_rxmit(tcp, &flags); 15109 } 15110 /* 15111 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15112 * out new segment. Note that tcp_rexmit should not be 15113 * set, otherwise TH_LIMIT_XMIT should not be set. 15114 */ 15115 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15116 if (!tcp->tcp_rexmit) { 15117 tcp_wput_data(tcp, NULL, B_FALSE); 15118 } else { 15119 tcp_ss_rexmit(tcp); 15120 } 15121 } 15122 /* 15123 * Adjust tcp_cwnd back to normal value after sending 15124 * new data segments. 15125 */ 15126 if (flags & TH_LIMIT_XMIT) { 15127 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15128 /* 15129 * This will restart the timer. Restarting the 15130 * timer is used to avoid a timeout before the 15131 * limited transmitted segment's ACK gets back. 15132 */ 15133 if (tcp->tcp_xmit_head != NULL) 15134 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15135 } 15136 15137 /* Anything more to do? */ 15138 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15139 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15140 goto done; 15141 } 15142 ack_check: 15143 if (flags & TH_SEND_URP_MARK) { 15144 ASSERT(tcp->tcp_urp_mark_mp); 15145 /* 15146 * Send up any queued data and then send the mark message 15147 */ 15148 if (tcp->tcp_rcv_list != NULL) { 15149 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15150 } 15151 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15152 15153 mp1 = tcp->tcp_urp_mark_mp; 15154 tcp->tcp_urp_mark_mp = NULL; 15155 #ifdef DEBUG 15156 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15157 "tcp_rput: sending zero-length %s %s", 15158 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15159 "MSGNOTMARKNEXT"), 15160 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15161 #endif /* DEBUG */ 15162 putnext(tcp->tcp_rq, mp1); 15163 flags &= ~TH_SEND_URP_MARK; 15164 } 15165 if (flags & TH_ACK_NEEDED) { 15166 /* 15167 * Time to send an ack for some reason. 15168 */ 15169 mp1 = tcp_ack_mp(tcp); 15170 15171 if (mp1 != NULL) { 15172 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15173 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15174 BUMP_LOCAL(tcp->tcp_obsegs); 15175 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15176 } 15177 if (tcp->tcp_ack_tid != 0) { 15178 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15179 tcp->tcp_ack_tid = 0; 15180 } 15181 } 15182 if (flags & TH_ACK_TIMER_NEEDED) { 15183 /* 15184 * Arrange for deferred ACK or push wait timeout. 15185 * Start timer if it is not already running. 15186 */ 15187 if (tcp->tcp_ack_tid == 0) { 15188 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15189 MSEC_TO_TICK(tcp->tcp_localnet ? 15190 (clock_t)tcps->tcps_local_dack_interval : 15191 (clock_t)tcps->tcps_deferred_ack_interval)); 15192 } 15193 } 15194 if (flags & TH_ORDREL_NEEDED) { 15195 /* 15196 * Send up the ordrel_ind unless we are an eager guy. 15197 * In the eager case tcp_rsrv will do this when run 15198 * after tcp_accept is done. 15199 */ 15200 ASSERT(tcp->tcp_listener == NULL); 15201 if (tcp->tcp_rcv_list != NULL) { 15202 /* 15203 * Push any mblk(s) enqueued from co processing. 15204 */ 15205 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15206 } 15207 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15208 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15209 tcp->tcp_ordrel_done = B_TRUE; 15210 putnext(tcp->tcp_rq, mp1); 15211 if (tcp->tcp_deferred_clean_death) { 15212 /* 15213 * tcp_clean_death was deferred 15214 * for T_ORDREL_IND - do it now 15215 */ 15216 (void) tcp_clean_death(tcp, 15217 tcp->tcp_client_errno, 20); 15218 tcp->tcp_deferred_clean_death = B_FALSE; 15219 } 15220 } else { 15221 /* 15222 * Run the orderly release in the 15223 * service routine. 15224 */ 15225 qenable(tcp->tcp_rq); 15226 /* 15227 * Caveat(XXX): The machine may be so 15228 * overloaded that tcp_rsrv() is not scheduled 15229 * until after the endpoint has transitioned 15230 * to TCPS_TIME_WAIT 15231 * and tcp_time_wait_interval expires. Then 15232 * tcp_timer() will blow away state in tcp_t 15233 * and T_ORDREL_IND will never be delivered 15234 * upstream. Unlikely but potentially 15235 * a problem. 15236 */ 15237 } 15238 } 15239 done: 15240 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15241 } 15242 15243 /* 15244 * This function does PAWS protection check. Returns B_TRUE if the 15245 * segment passes the PAWS test, else returns B_FALSE. 15246 */ 15247 boolean_t 15248 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15249 { 15250 uint8_t flags; 15251 int options; 15252 uint8_t *up; 15253 15254 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15255 /* 15256 * If timestamp option is aligned nicely, get values inline, 15257 * otherwise call general routine to parse. Only do that 15258 * if timestamp is the only option. 15259 */ 15260 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15261 TCPOPT_REAL_TS_LEN && 15262 OK_32PTR((up = ((uint8_t *)tcph) + 15263 TCP_MIN_HEADER_LENGTH)) && 15264 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15265 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15266 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15267 15268 options = TCP_OPT_TSTAMP_PRESENT; 15269 } else { 15270 if (tcp->tcp_snd_sack_ok) { 15271 tcpoptp->tcp = tcp; 15272 } else { 15273 tcpoptp->tcp = NULL; 15274 } 15275 options = tcp_parse_options(tcph, tcpoptp); 15276 } 15277 15278 if (options & TCP_OPT_TSTAMP_PRESENT) { 15279 /* 15280 * Do PAWS per RFC 1323 section 4.2. Accept RST 15281 * regardless of the timestamp, page 18 RFC 1323.bis. 15282 */ 15283 if ((flags & TH_RST) == 0 && 15284 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15285 tcp->tcp_ts_recent)) { 15286 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15287 PAWS_TIMEOUT)) { 15288 /* This segment is not acceptable. */ 15289 return (B_FALSE); 15290 } else { 15291 /* 15292 * Connection has been idle for 15293 * too long. Reset the timestamp 15294 * and assume the segment is valid. 15295 */ 15296 tcp->tcp_ts_recent = 15297 tcpoptp->tcp_opt_ts_val; 15298 } 15299 } 15300 } else { 15301 /* 15302 * If we don't get a timestamp on every packet, we 15303 * figure we can't really trust 'em, so we stop sending 15304 * and parsing them. 15305 */ 15306 tcp->tcp_snd_ts_ok = B_FALSE; 15307 15308 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15309 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15310 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15311 /* 15312 * Adjust the tcp_mss accordingly. We also need to 15313 * adjust tcp_cwnd here in accordance with the new mss. 15314 * But we avoid doing a slow start here so as to not 15315 * to lose on the transfer rate built up so far. 15316 */ 15317 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15318 if (tcp->tcp_snd_sack_ok) { 15319 ASSERT(tcp->tcp_sack_info != NULL); 15320 tcp->tcp_max_sack_blk = 4; 15321 } 15322 } 15323 return (B_TRUE); 15324 } 15325 15326 /* 15327 * Attach ancillary data to a received TCP segments for the 15328 * ancillary pieces requested by the application that are 15329 * different than they were in the previous data segment. 15330 * 15331 * Save the "current" values once memory allocation is ok so that 15332 * when memory allocation fails we can just wait for the next data segment. 15333 */ 15334 static mblk_t * 15335 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15336 { 15337 struct T_optdata_ind *todi; 15338 int optlen; 15339 uchar_t *optptr; 15340 struct T_opthdr *toh; 15341 uint_t addflag; /* Which pieces to add */ 15342 mblk_t *mp1; 15343 15344 optlen = 0; 15345 addflag = 0; 15346 /* If app asked for pktinfo and the index has changed ... */ 15347 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15348 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15349 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15350 optlen += sizeof (struct T_opthdr) + 15351 sizeof (struct in6_pktinfo); 15352 addflag |= TCP_IPV6_RECVPKTINFO; 15353 } 15354 /* If app asked for hoplimit and it has changed ... */ 15355 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15356 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15357 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15358 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15359 addflag |= TCP_IPV6_RECVHOPLIMIT; 15360 } 15361 /* If app asked for tclass and it has changed ... */ 15362 if ((ipp->ipp_fields & IPPF_TCLASS) && 15363 ipp->ipp_tclass != tcp->tcp_recvtclass && 15364 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15365 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15366 addflag |= TCP_IPV6_RECVTCLASS; 15367 } 15368 /* 15369 * If app asked for hopbyhop headers and it has changed ... 15370 * For security labels, note that (1) security labels can't change on 15371 * a connected socket at all, (2) we're connected to at most one peer, 15372 * (3) if anything changes, then it must be some other extra option. 15373 */ 15374 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15375 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15376 (ipp->ipp_fields & IPPF_HOPOPTS), 15377 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15378 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15379 tcp->tcp_label_len; 15380 addflag |= TCP_IPV6_RECVHOPOPTS; 15381 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15382 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15383 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15384 return (mp); 15385 } 15386 /* If app asked for dst headers before routing headers ... */ 15387 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15388 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15389 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15390 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15391 optlen += sizeof (struct T_opthdr) + 15392 ipp->ipp_rtdstoptslen; 15393 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15394 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15395 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15396 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15397 return (mp); 15398 } 15399 /* If app asked for routing headers and it has changed ... */ 15400 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15401 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15402 (ipp->ipp_fields & IPPF_RTHDR), 15403 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15404 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15405 addflag |= TCP_IPV6_RECVRTHDR; 15406 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15407 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15408 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15409 return (mp); 15410 } 15411 /* If app asked for dest headers and it has changed ... */ 15412 if ((tcp->tcp_ipv6_recvancillary & 15413 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15414 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15415 (ipp->ipp_fields & IPPF_DSTOPTS), 15416 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15417 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15418 addflag |= TCP_IPV6_RECVDSTOPTS; 15419 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15420 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15421 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15422 return (mp); 15423 } 15424 15425 if (optlen == 0) { 15426 /* Nothing to add */ 15427 return (mp); 15428 } 15429 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15430 if (mp1 == NULL) { 15431 /* 15432 * Defer sending ancillary data until the next TCP segment 15433 * arrives. 15434 */ 15435 return (mp); 15436 } 15437 mp1->b_cont = mp; 15438 mp = mp1; 15439 mp->b_wptr += sizeof (*todi) + optlen; 15440 mp->b_datap->db_type = M_PROTO; 15441 todi = (struct T_optdata_ind *)mp->b_rptr; 15442 todi->PRIM_type = T_OPTDATA_IND; 15443 todi->DATA_flag = 1; /* MORE data */ 15444 todi->OPT_length = optlen; 15445 todi->OPT_offset = sizeof (*todi); 15446 optptr = (uchar_t *)&todi[1]; 15447 /* 15448 * If app asked for pktinfo and the index has changed ... 15449 * Note that the local address never changes for the connection. 15450 */ 15451 if (addflag & TCP_IPV6_RECVPKTINFO) { 15452 struct in6_pktinfo *pkti; 15453 15454 toh = (struct T_opthdr *)optptr; 15455 toh->level = IPPROTO_IPV6; 15456 toh->name = IPV6_PKTINFO; 15457 toh->len = sizeof (*toh) + sizeof (*pkti); 15458 toh->status = 0; 15459 optptr += sizeof (*toh); 15460 pkti = (struct in6_pktinfo *)optptr; 15461 if (tcp->tcp_ipversion == IPV6_VERSION) 15462 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15463 else 15464 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15465 &pkti->ipi6_addr); 15466 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15467 optptr += sizeof (*pkti); 15468 ASSERT(OK_32PTR(optptr)); 15469 /* Save as "last" value */ 15470 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15471 } 15472 /* If app asked for hoplimit and it has changed ... */ 15473 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15474 toh = (struct T_opthdr *)optptr; 15475 toh->level = IPPROTO_IPV6; 15476 toh->name = IPV6_HOPLIMIT; 15477 toh->len = sizeof (*toh) + sizeof (uint_t); 15478 toh->status = 0; 15479 optptr += sizeof (*toh); 15480 *(uint_t *)optptr = ipp->ipp_hoplimit; 15481 optptr += sizeof (uint_t); 15482 ASSERT(OK_32PTR(optptr)); 15483 /* Save as "last" value */ 15484 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15485 } 15486 /* If app asked for tclass and it has changed ... */ 15487 if (addflag & TCP_IPV6_RECVTCLASS) { 15488 toh = (struct T_opthdr *)optptr; 15489 toh->level = IPPROTO_IPV6; 15490 toh->name = IPV6_TCLASS; 15491 toh->len = sizeof (*toh) + sizeof (uint_t); 15492 toh->status = 0; 15493 optptr += sizeof (*toh); 15494 *(uint_t *)optptr = ipp->ipp_tclass; 15495 optptr += sizeof (uint_t); 15496 ASSERT(OK_32PTR(optptr)); 15497 /* Save as "last" value */ 15498 tcp->tcp_recvtclass = ipp->ipp_tclass; 15499 } 15500 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15501 toh = (struct T_opthdr *)optptr; 15502 toh->level = IPPROTO_IPV6; 15503 toh->name = IPV6_HOPOPTS; 15504 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15505 tcp->tcp_label_len; 15506 toh->status = 0; 15507 optptr += sizeof (*toh); 15508 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15509 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15510 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15511 ASSERT(OK_32PTR(optptr)); 15512 /* Save as last value */ 15513 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15514 (ipp->ipp_fields & IPPF_HOPOPTS), 15515 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15516 } 15517 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15518 toh = (struct T_opthdr *)optptr; 15519 toh->level = IPPROTO_IPV6; 15520 toh->name = IPV6_RTHDRDSTOPTS; 15521 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15522 toh->status = 0; 15523 optptr += sizeof (*toh); 15524 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15525 optptr += ipp->ipp_rtdstoptslen; 15526 ASSERT(OK_32PTR(optptr)); 15527 /* Save as last value */ 15528 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15529 &tcp->tcp_rtdstoptslen, 15530 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15531 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15532 } 15533 if (addflag & TCP_IPV6_RECVRTHDR) { 15534 toh = (struct T_opthdr *)optptr; 15535 toh->level = IPPROTO_IPV6; 15536 toh->name = IPV6_RTHDR; 15537 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15538 toh->status = 0; 15539 optptr += sizeof (*toh); 15540 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15541 optptr += ipp->ipp_rthdrlen; 15542 ASSERT(OK_32PTR(optptr)); 15543 /* Save as last value */ 15544 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15545 (ipp->ipp_fields & IPPF_RTHDR), 15546 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15547 } 15548 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15549 toh = (struct T_opthdr *)optptr; 15550 toh->level = IPPROTO_IPV6; 15551 toh->name = IPV6_DSTOPTS; 15552 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15553 toh->status = 0; 15554 optptr += sizeof (*toh); 15555 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15556 optptr += ipp->ipp_dstoptslen; 15557 ASSERT(OK_32PTR(optptr)); 15558 /* Save as last value */ 15559 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15560 (ipp->ipp_fields & IPPF_DSTOPTS), 15561 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15562 } 15563 ASSERT(optptr == mp->b_wptr); 15564 return (mp); 15565 } 15566 15567 15568 /* 15569 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15570 * or a "bad" IRE detected by tcp_adapt_ire. 15571 * We can't tell if the failure was due to the laddr or the faddr 15572 * thus we clear out all addresses and ports. 15573 */ 15574 static void 15575 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15576 { 15577 queue_t *q = tcp->tcp_rq; 15578 tcph_t *tcph; 15579 struct T_error_ack *tea; 15580 conn_t *connp = tcp->tcp_connp; 15581 15582 15583 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15584 15585 if (mp->b_cont) { 15586 freemsg(mp->b_cont); 15587 mp->b_cont = NULL; 15588 } 15589 tea = (struct T_error_ack *)mp->b_rptr; 15590 switch (tea->PRIM_type) { 15591 case T_BIND_ACK: 15592 /* 15593 * Need to unbind with classifier since we were just told that 15594 * our bind succeeded. 15595 */ 15596 tcp->tcp_hard_bound = B_FALSE; 15597 tcp->tcp_hard_binding = B_FALSE; 15598 15599 ipcl_hash_remove(connp); 15600 /* Reuse the mblk if possible */ 15601 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15602 sizeof (*tea)); 15603 mp->b_rptr = mp->b_datap->db_base; 15604 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15605 tea = (struct T_error_ack *)mp->b_rptr; 15606 tea->PRIM_type = T_ERROR_ACK; 15607 tea->TLI_error = TSYSERR; 15608 tea->UNIX_error = error; 15609 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15610 tea->ERROR_prim = T_CONN_REQ; 15611 } else { 15612 tea->ERROR_prim = O_T_BIND_REQ; 15613 } 15614 break; 15615 15616 case T_ERROR_ACK: 15617 if (tcp->tcp_state >= TCPS_SYN_SENT) 15618 tea->ERROR_prim = T_CONN_REQ; 15619 break; 15620 default: 15621 panic("tcp_bind_failed: unexpected TPI type"); 15622 /*NOTREACHED*/ 15623 } 15624 15625 tcp->tcp_state = TCPS_IDLE; 15626 if (tcp->tcp_ipversion == IPV4_VERSION) 15627 tcp->tcp_ipha->ipha_src = 0; 15628 else 15629 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15630 /* 15631 * Copy of the src addr. in tcp_t is needed since 15632 * the lookup funcs. can only look at tcp_t 15633 */ 15634 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15635 15636 tcph = tcp->tcp_tcph; 15637 tcph->th_lport[0] = 0; 15638 tcph->th_lport[1] = 0; 15639 tcp_bind_hash_remove(tcp); 15640 bzero(&connp->u_port, sizeof (connp->u_port)); 15641 /* blow away saved option results if any */ 15642 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15643 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15644 15645 conn_delete_ire(tcp->tcp_connp, NULL); 15646 putnext(q, mp); 15647 } 15648 15649 /* 15650 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15651 * messages. 15652 */ 15653 void 15654 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15655 { 15656 mblk_t *mp1; 15657 uchar_t *rptr = mp->b_rptr; 15658 queue_t *q = tcp->tcp_rq; 15659 struct T_error_ack *tea; 15660 uint32_t mss; 15661 mblk_t *syn_mp; 15662 mblk_t *mdti; 15663 mblk_t *lsoi; 15664 int retval; 15665 mblk_t *ire_mp; 15666 tcp_stack_t *tcps = tcp->tcp_tcps; 15667 15668 switch (mp->b_datap->db_type) { 15669 case M_PROTO: 15670 case M_PCPROTO: 15671 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15672 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15673 break; 15674 tea = (struct T_error_ack *)rptr; 15675 switch (tea->PRIM_type) { 15676 case T_BIND_ACK: 15677 /* 15678 * Adapt Multidata information, if any. The 15679 * following tcp_mdt_update routine will free 15680 * the message. 15681 */ 15682 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15683 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15684 b_rptr)->mdt_capab, B_TRUE); 15685 freemsg(mdti); 15686 } 15687 15688 /* 15689 * Check to update LSO information with tcp, and 15690 * tcp_lso_update routine will free the message. 15691 */ 15692 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15693 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15694 b_rptr)->lso_capab); 15695 freemsg(lsoi); 15696 } 15697 15698 /* Get the IRE, if we had requested for it */ 15699 ire_mp = tcp_ire_mp(mp); 15700 15701 if (tcp->tcp_hard_binding) { 15702 tcp->tcp_hard_binding = B_FALSE; 15703 tcp->tcp_hard_bound = B_TRUE; 15704 CL_INET_CONNECT(tcp); 15705 } else { 15706 if (ire_mp != NULL) 15707 freeb(ire_mp); 15708 goto after_syn_sent; 15709 } 15710 15711 retval = tcp_adapt_ire(tcp, ire_mp); 15712 if (ire_mp != NULL) 15713 freeb(ire_mp); 15714 if (retval == 0) { 15715 tcp_bind_failed(tcp, mp, 15716 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15717 ENETUNREACH : EADDRNOTAVAIL)); 15718 return; 15719 } 15720 /* 15721 * Don't let an endpoint connect to itself. 15722 * Also checked in tcp_connect() but that 15723 * check can't handle the case when the 15724 * local IP address is INADDR_ANY. 15725 */ 15726 if (tcp->tcp_ipversion == IPV4_VERSION) { 15727 if ((tcp->tcp_ipha->ipha_dst == 15728 tcp->tcp_ipha->ipha_src) && 15729 (BE16_EQL(tcp->tcp_tcph->th_lport, 15730 tcp->tcp_tcph->th_fport))) { 15731 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15732 return; 15733 } 15734 } else { 15735 if (IN6_ARE_ADDR_EQUAL( 15736 &tcp->tcp_ip6h->ip6_dst, 15737 &tcp->tcp_ip6h->ip6_src) && 15738 (BE16_EQL(tcp->tcp_tcph->th_lport, 15739 tcp->tcp_tcph->th_fport))) { 15740 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15741 return; 15742 } 15743 } 15744 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15745 /* 15746 * This should not be possible! Just for 15747 * defensive coding... 15748 */ 15749 if (tcp->tcp_state != TCPS_SYN_SENT) 15750 goto after_syn_sent; 15751 15752 if (is_system_labeled() && 15753 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15754 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15755 return; 15756 } 15757 15758 ASSERT(q == tcp->tcp_rq); 15759 /* 15760 * tcp_adapt_ire() does not adjust 15761 * for TCP/IP header length. 15762 */ 15763 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15764 15765 /* 15766 * Just make sure our rwnd is at 15767 * least tcp_recv_hiwat_mss * MSS 15768 * large, and round up to the nearest 15769 * MSS. 15770 * 15771 * We do the round up here because 15772 * we need to get the interface 15773 * MTU first before we can do the 15774 * round up. 15775 */ 15776 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15777 tcps->tcps_recv_hiwat_minmss * mss); 15778 q->q_hiwat = tcp->tcp_rwnd; 15779 tcp_set_ws_value(tcp); 15780 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15781 tcp->tcp_tcph->th_win); 15782 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 15783 tcp->tcp_snd_ws_ok = B_TRUE; 15784 15785 /* 15786 * Set tcp_snd_ts_ok to true 15787 * so that tcp_xmit_mp will 15788 * include the timestamp 15789 * option in the SYN segment. 15790 */ 15791 if (tcps->tcps_tstamp_always || 15792 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 15793 tcp->tcp_snd_ts_ok = B_TRUE; 15794 } 15795 15796 /* 15797 * tcp_snd_sack_ok can be set in 15798 * tcp_adapt_ire() if the sack metric 15799 * is set. So check it here also. 15800 */ 15801 if (tcps->tcps_sack_permitted == 2 || 15802 tcp->tcp_snd_sack_ok) { 15803 if (tcp->tcp_sack_info == NULL) { 15804 tcp->tcp_sack_info = 15805 kmem_cache_alloc( 15806 tcp_sack_info_cache, 15807 KM_SLEEP); 15808 } 15809 tcp->tcp_snd_sack_ok = B_TRUE; 15810 } 15811 15812 /* 15813 * Should we use ECN? Note that the current 15814 * default value (SunOS 5.9) of tcp_ecn_permitted 15815 * is 1. The reason for doing this is that there 15816 * are equipments out there that will drop ECN 15817 * enabled IP packets. Setting it to 1 avoids 15818 * compatibility problems. 15819 */ 15820 if (tcps->tcps_ecn_permitted == 2) 15821 tcp->tcp_ecn_ok = B_TRUE; 15822 15823 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15824 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15825 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15826 if (syn_mp) { 15827 cred_t *cr; 15828 pid_t pid; 15829 15830 /* 15831 * Obtain the credential from the 15832 * thread calling connect(); the credential 15833 * lives on in the second mblk which 15834 * originated from T_CONN_REQ and is echoed 15835 * with the T_BIND_ACK from ip. If none 15836 * can be found, default to the creator 15837 * of the socket. 15838 */ 15839 if (mp->b_cont == NULL || 15840 (cr = DB_CRED(mp->b_cont)) == NULL) { 15841 cr = tcp->tcp_cred; 15842 pid = tcp->tcp_cpid; 15843 } else { 15844 pid = DB_CPID(mp->b_cont); 15845 } 15846 15847 TCP_RECORD_TRACE(tcp, syn_mp, 15848 TCP_TRACE_SEND_PKT); 15849 mblk_setcred(syn_mp, cr); 15850 DB_CPID(syn_mp) = pid; 15851 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15852 } 15853 after_syn_sent: 15854 /* 15855 * A trailer mblk indicates a waiting client upstream. 15856 * We complete here the processing begun in 15857 * either tcp_bind() or tcp_connect() by passing 15858 * upstream the reply message they supplied. 15859 */ 15860 mp1 = mp; 15861 mp = mp->b_cont; 15862 freeb(mp1); 15863 if (mp) 15864 break; 15865 return; 15866 case T_ERROR_ACK: 15867 if (tcp->tcp_debug) { 15868 (void) strlog(TCP_MOD_ID, 0, 1, 15869 SL_TRACE|SL_ERROR, 15870 "tcp_rput_other: case T_ERROR_ACK, " 15871 "ERROR_prim == %d", 15872 tea->ERROR_prim); 15873 } 15874 switch (tea->ERROR_prim) { 15875 case O_T_BIND_REQ: 15876 case T_BIND_REQ: 15877 tcp_bind_failed(tcp, mp, 15878 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15879 ENETUNREACH : EADDRNOTAVAIL)); 15880 return; 15881 case T_UNBIND_REQ: 15882 tcp->tcp_hard_binding = B_FALSE; 15883 tcp->tcp_hard_bound = B_FALSE; 15884 if (mp->b_cont) { 15885 freemsg(mp->b_cont); 15886 mp->b_cont = NULL; 15887 } 15888 if (tcp->tcp_unbind_pending) 15889 tcp->tcp_unbind_pending = 0; 15890 else { 15891 /* From tcp_ip_unbind() - free */ 15892 freemsg(mp); 15893 return; 15894 } 15895 break; 15896 case T_SVR4_OPTMGMT_REQ: 15897 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15898 /* T_OPTMGMT_REQ generated by TCP */ 15899 printf("T_SVR4_OPTMGMT_REQ failed " 15900 "%d/%d - dropped (cnt %d)\n", 15901 tea->TLI_error, tea->UNIX_error, 15902 tcp->tcp_drop_opt_ack_cnt); 15903 freemsg(mp); 15904 tcp->tcp_drop_opt_ack_cnt--; 15905 return; 15906 } 15907 break; 15908 } 15909 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15910 tcp->tcp_drop_opt_ack_cnt > 0) { 15911 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15912 "- dropped (cnt %d)\n", 15913 tea->TLI_error, tea->UNIX_error, 15914 tcp->tcp_drop_opt_ack_cnt); 15915 freemsg(mp); 15916 tcp->tcp_drop_opt_ack_cnt--; 15917 return; 15918 } 15919 break; 15920 case T_OPTMGMT_ACK: 15921 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15922 /* T_OPTMGMT_REQ generated by TCP */ 15923 freemsg(mp); 15924 tcp->tcp_drop_opt_ack_cnt--; 15925 return; 15926 } 15927 break; 15928 default: 15929 break; 15930 } 15931 break; 15932 case M_FLUSH: 15933 if (*rptr & FLUSHR) 15934 flushq(q, FLUSHDATA); 15935 break; 15936 default: 15937 /* M_CTL will be directly sent to tcp_icmp_error() */ 15938 ASSERT(DB_TYPE(mp) != M_CTL); 15939 break; 15940 } 15941 /* 15942 * Make sure we set this bit before sending the ACK for 15943 * bind. Otherwise accept could possibly run and free 15944 * this tcp struct. 15945 */ 15946 putnext(q, mp); 15947 } 15948 15949 /* 15950 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15951 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15952 * tcp_rsrv() try again. 15953 */ 15954 static void 15955 tcp_ordrel_kick(void *arg) 15956 { 15957 conn_t *connp = (conn_t *)arg; 15958 tcp_t *tcp = connp->conn_tcp; 15959 15960 tcp->tcp_ordrelid = 0; 15961 tcp->tcp_timeout = B_FALSE; 15962 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15963 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15964 qenable(tcp->tcp_rq); 15965 } 15966 } 15967 15968 /* ARGSUSED */ 15969 static void 15970 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15971 { 15972 conn_t *connp = (conn_t *)arg; 15973 tcp_t *tcp = connp->conn_tcp; 15974 queue_t *q = tcp->tcp_rq; 15975 uint_t thwin; 15976 tcp_stack_t *tcps = tcp->tcp_tcps; 15977 15978 freeb(mp); 15979 15980 TCP_STAT(tcps, tcp_rsrv_calls); 15981 15982 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15983 return; 15984 } 15985 15986 if (tcp->tcp_fused) { 15987 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15988 15989 ASSERT(tcp->tcp_fused); 15990 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15991 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15992 ASSERT(!TCP_IS_DETACHED(tcp)); 15993 ASSERT(tcp->tcp_connp->conn_sqp == 15994 peer_tcp->tcp_connp->conn_sqp); 15995 15996 /* 15997 * Normally we would not get backenabled in synchronous 15998 * streams mode, but in case this happens, we need to plug 15999 * synchronous streams during our drain to prevent a race 16000 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 16001 */ 16002 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 16003 if (tcp->tcp_rcv_list != NULL) 16004 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16005 16006 if (peer_tcp > tcp) { 16007 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16008 mutex_enter(&tcp->tcp_non_sq_lock); 16009 } else { 16010 mutex_enter(&tcp->tcp_non_sq_lock); 16011 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16012 } 16013 16014 if (peer_tcp->tcp_flow_stopped && 16015 (TCP_UNSENT_BYTES(peer_tcp) <= 16016 peer_tcp->tcp_xmit_lowater)) { 16017 tcp_clrqfull(peer_tcp); 16018 } 16019 mutex_exit(&peer_tcp->tcp_non_sq_lock); 16020 mutex_exit(&tcp->tcp_non_sq_lock); 16021 16022 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 16023 TCP_STAT(tcps, tcp_fusion_backenabled); 16024 return; 16025 } 16026 16027 if (canputnext(q)) { 16028 tcp->tcp_rwnd = q->q_hiwat; 16029 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16030 << tcp->tcp_rcv_ws; 16031 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16032 /* 16033 * Send back a window update immediately if TCP is above 16034 * ESTABLISHED state and the increase of the rcv window 16035 * that the other side knows is at least 1 MSS after flow 16036 * control is lifted. 16037 */ 16038 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16039 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16040 tcp_xmit_ctl(NULL, tcp, 16041 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16042 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16043 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16044 } 16045 } 16046 /* Handle a failure to allocate a T_ORDREL_IND here */ 16047 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 16048 ASSERT(tcp->tcp_listener == NULL); 16049 if (tcp->tcp_rcv_list != NULL) { 16050 (void) tcp_rcv_drain(q, tcp); 16051 } 16052 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 16053 mp = mi_tpi_ordrel_ind(); 16054 if (mp) { 16055 tcp->tcp_ordrel_done = B_TRUE; 16056 putnext(q, mp); 16057 if (tcp->tcp_deferred_clean_death) { 16058 /* 16059 * tcp_clean_death was deferred for 16060 * T_ORDREL_IND - do it now 16061 */ 16062 tcp->tcp_deferred_clean_death = B_FALSE; 16063 (void) tcp_clean_death(tcp, 16064 tcp->tcp_client_errno, 22); 16065 } 16066 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16067 /* 16068 * If there isn't already a timer running 16069 * start one. Use a 4 second 16070 * timer as a fallback since it can't fail. 16071 */ 16072 tcp->tcp_timeout = B_TRUE; 16073 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16074 MSEC_TO_TICK(4000)); 16075 } 16076 } 16077 } 16078 16079 /* 16080 * The read side service routine is called mostly when we get back-enabled as a 16081 * result of flow control relief. Since we don't actually queue anything in 16082 * TCP, we have no data to send out of here. What we do is clear the receive 16083 * window, and send out a window update. 16084 * This routine is also called to drive an orderly release message upstream 16085 * if the attempt in tcp_rput failed. 16086 */ 16087 static void 16088 tcp_rsrv(queue_t *q) 16089 { 16090 conn_t *connp = Q_TO_CONN(q); 16091 tcp_t *tcp = connp->conn_tcp; 16092 mblk_t *mp; 16093 tcp_stack_t *tcps = tcp->tcp_tcps; 16094 16095 /* No code does a putq on the read side */ 16096 ASSERT(q->q_first == NULL); 16097 16098 /* Nothing to do for the default queue */ 16099 if (q == tcps->tcps_g_q) { 16100 return; 16101 } 16102 16103 mp = allocb(0, BPRI_HI); 16104 if (mp == NULL) { 16105 /* 16106 * We are under memory pressure. Return for now and we 16107 * we will be called again later. 16108 */ 16109 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16110 /* 16111 * If there isn't already a timer running 16112 * start one. Use a 4 second 16113 * timer as a fallback since it can't fail. 16114 */ 16115 tcp->tcp_timeout = B_TRUE; 16116 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16117 MSEC_TO_TICK(4000)); 16118 } 16119 return; 16120 } 16121 CONN_INC_REF(connp); 16122 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16123 SQTAG_TCP_RSRV); 16124 } 16125 16126 /* 16127 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16128 * We do not allow the receive window to shrink. After setting rwnd, 16129 * set the flow control hiwat of the stream. 16130 * 16131 * This function is called in 2 cases: 16132 * 16133 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16134 * connection (passive open) and in tcp_rput_data() for active connect. 16135 * This is called after tcp_mss_set() when the desired MSS value is known. 16136 * This makes sure that our window size is a mutiple of the other side's 16137 * MSS. 16138 * 2) Handling SO_RCVBUF option. 16139 * 16140 * It is ASSUMED that the requested size is a multiple of the current MSS. 16141 * 16142 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16143 * user requests so. 16144 */ 16145 static int 16146 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16147 { 16148 uint32_t mss = tcp->tcp_mss; 16149 uint32_t old_max_rwnd; 16150 uint32_t max_transmittable_rwnd; 16151 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16152 tcp_stack_t *tcps = tcp->tcp_tcps; 16153 16154 if (tcp->tcp_fused) { 16155 size_t sth_hiwat; 16156 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16157 16158 ASSERT(peer_tcp != NULL); 16159 /* 16160 * Record the stream head's high water mark for 16161 * this endpoint; this is used for flow-control 16162 * purposes in tcp_fuse_output(). 16163 */ 16164 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16165 if (!tcp_detached) 16166 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16167 16168 /* 16169 * In the fusion case, the maxpsz stream head value of 16170 * our peer is set according to its send buffer size 16171 * and our receive buffer size; since the latter may 16172 * have changed we need to update the peer's maxpsz. 16173 */ 16174 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16175 return (rwnd); 16176 } 16177 16178 if (tcp_detached) 16179 old_max_rwnd = tcp->tcp_rwnd; 16180 else 16181 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16182 16183 /* 16184 * Insist on a receive window that is at least 16185 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16186 * funny TCP interactions of Nagle algorithm, SWS avoidance 16187 * and delayed acknowledgement. 16188 */ 16189 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16190 16191 /* 16192 * If window size info has already been exchanged, TCP should not 16193 * shrink the window. Shrinking window is doable if done carefully. 16194 * We may add that support later. But so far there is not a real 16195 * need to do that. 16196 */ 16197 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16198 /* MSS may have changed, do a round up again. */ 16199 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16200 } 16201 16202 /* 16203 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16204 * can be applied even before the window scale option is decided. 16205 */ 16206 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16207 if (rwnd > max_transmittable_rwnd) { 16208 rwnd = max_transmittable_rwnd - 16209 (max_transmittable_rwnd % mss); 16210 if (rwnd < mss) 16211 rwnd = max_transmittable_rwnd; 16212 /* 16213 * If we're over the limit we may have to back down tcp_rwnd. 16214 * The increment below won't work for us. So we set all three 16215 * here and the increment below will have no effect. 16216 */ 16217 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16218 } 16219 if (tcp->tcp_localnet) { 16220 tcp->tcp_rack_abs_max = 16221 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16222 } else { 16223 /* 16224 * For a remote host on a different subnet (through a router), 16225 * we ack every other packet to be conforming to RFC1122. 16226 * tcp_deferred_acks_max is default to 2. 16227 */ 16228 tcp->tcp_rack_abs_max = 16229 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16230 } 16231 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16232 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16233 else 16234 tcp->tcp_rack_cur_max = 0; 16235 /* 16236 * Increment the current rwnd by the amount the maximum grew (we 16237 * can not overwrite it since we might be in the middle of a 16238 * connection.) 16239 */ 16240 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16241 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16242 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16243 tcp->tcp_cwnd_max = rwnd; 16244 16245 if (tcp_detached) 16246 return (rwnd); 16247 /* 16248 * We set the maximum receive window into rq->q_hiwat. 16249 * This is not actually used for flow control. 16250 */ 16251 tcp->tcp_rq->q_hiwat = rwnd; 16252 /* 16253 * Set the Stream head high water mark. This doesn't have to be 16254 * here, since we are simply using default values, but we would 16255 * prefer to choose these values algorithmically, with a likely 16256 * relationship to rwnd. 16257 */ 16258 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16259 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16260 return (rwnd); 16261 } 16262 16263 /* 16264 * Return SNMP stuff in buffer in mpdata. 16265 */ 16266 mblk_t * 16267 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16268 { 16269 mblk_t *mpdata; 16270 mblk_t *mp_conn_ctl = NULL; 16271 mblk_t *mp_conn_tail; 16272 mblk_t *mp_attr_ctl = NULL; 16273 mblk_t *mp_attr_tail; 16274 mblk_t *mp6_conn_ctl = NULL; 16275 mblk_t *mp6_conn_tail; 16276 mblk_t *mp6_attr_ctl = NULL; 16277 mblk_t *mp6_attr_tail; 16278 struct opthdr *optp; 16279 mib2_tcpConnEntry_t tce; 16280 mib2_tcp6ConnEntry_t tce6; 16281 mib2_transportMLPEntry_t mlp; 16282 connf_t *connfp; 16283 int i; 16284 boolean_t ispriv; 16285 zoneid_t zoneid; 16286 int v4_conn_idx; 16287 int v6_conn_idx; 16288 conn_t *connp = Q_TO_CONN(q); 16289 tcp_stack_t *tcps; 16290 ip_stack_t *ipst; 16291 mblk_t *mp2ctl; 16292 16293 /* 16294 * make a copy of the original message 16295 */ 16296 mp2ctl = copymsg(mpctl); 16297 16298 if (mpctl == NULL || 16299 (mpdata = mpctl->b_cont) == NULL || 16300 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16301 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16302 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16303 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16304 freemsg(mp_conn_ctl); 16305 freemsg(mp_attr_ctl); 16306 freemsg(mp6_conn_ctl); 16307 freemsg(mp6_attr_ctl); 16308 freemsg(mpctl); 16309 freemsg(mp2ctl); 16310 return (NULL); 16311 } 16312 16313 ipst = connp->conn_netstack->netstack_ip; 16314 tcps = connp->conn_netstack->netstack_tcp; 16315 16316 /* build table of connections -- need count in fixed part */ 16317 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16318 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16319 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16320 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16321 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16322 16323 ispriv = 16324 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16325 zoneid = Q_TO_CONN(q)->conn_zoneid; 16326 16327 v4_conn_idx = v6_conn_idx = 0; 16328 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16329 16330 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16331 ipst = tcps->tcps_netstack->netstack_ip; 16332 16333 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16334 16335 connp = NULL; 16336 16337 while ((connp = 16338 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16339 tcp_t *tcp; 16340 boolean_t needattr; 16341 16342 if (connp->conn_zoneid != zoneid) 16343 continue; /* not in this zone */ 16344 16345 tcp = connp->conn_tcp; 16346 UPDATE_MIB(&tcps->tcps_mib, 16347 tcpHCInSegs, tcp->tcp_ibsegs); 16348 tcp->tcp_ibsegs = 0; 16349 UPDATE_MIB(&tcps->tcps_mib, 16350 tcpHCOutSegs, tcp->tcp_obsegs); 16351 tcp->tcp_obsegs = 0; 16352 16353 tce6.tcp6ConnState = tce.tcpConnState = 16354 tcp_snmp_state(tcp); 16355 if (tce.tcpConnState == MIB2_TCP_established || 16356 tce.tcpConnState == MIB2_TCP_closeWait) 16357 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16358 16359 needattr = B_FALSE; 16360 bzero(&mlp, sizeof (mlp)); 16361 if (connp->conn_mlp_type != mlptSingle) { 16362 if (connp->conn_mlp_type == mlptShared || 16363 connp->conn_mlp_type == mlptBoth) 16364 mlp.tme_flags |= MIB2_TMEF_SHARED; 16365 if (connp->conn_mlp_type == mlptPrivate || 16366 connp->conn_mlp_type == mlptBoth) 16367 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16368 needattr = B_TRUE; 16369 } 16370 if (connp->conn_peercred != NULL) { 16371 ts_label_t *tsl; 16372 16373 tsl = crgetlabel(connp->conn_peercred); 16374 mlp.tme_doi = label2doi(tsl); 16375 mlp.tme_label = *label2bslabel(tsl); 16376 needattr = B_TRUE; 16377 } 16378 16379 /* Create a message to report on IPv6 entries */ 16380 if (tcp->tcp_ipversion == IPV6_VERSION) { 16381 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16382 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16383 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16384 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16385 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16386 /* Don't want just anybody seeing these... */ 16387 if (ispriv) { 16388 tce6.tcp6ConnEntryInfo.ce_snxt = 16389 tcp->tcp_snxt; 16390 tce6.tcp6ConnEntryInfo.ce_suna = 16391 tcp->tcp_suna; 16392 tce6.tcp6ConnEntryInfo.ce_rnxt = 16393 tcp->tcp_rnxt; 16394 tce6.tcp6ConnEntryInfo.ce_rack = 16395 tcp->tcp_rack; 16396 } else { 16397 /* 16398 * Netstat, unfortunately, uses this to 16399 * get send/receive queue sizes. How to fix? 16400 * Why not compute the difference only? 16401 */ 16402 tce6.tcp6ConnEntryInfo.ce_snxt = 16403 tcp->tcp_snxt - tcp->tcp_suna; 16404 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16405 tce6.tcp6ConnEntryInfo.ce_rnxt = 16406 tcp->tcp_rnxt - tcp->tcp_rack; 16407 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16408 } 16409 16410 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16411 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16412 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16413 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16414 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16415 16416 tce6.tcp6ConnCreationProcess = 16417 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16418 tcp->tcp_cpid; 16419 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16420 16421 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16422 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16423 16424 mlp.tme_connidx = v6_conn_idx++; 16425 if (needattr) 16426 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16427 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16428 } 16429 /* 16430 * Create an IPv4 table entry for IPv4 entries and also 16431 * for IPv6 entries which are bound to in6addr_any 16432 * but don't have IPV6_V6ONLY set. 16433 * (i.e. anything an IPv4 peer could connect to) 16434 */ 16435 if (tcp->tcp_ipversion == IPV4_VERSION || 16436 (tcp->tcp_state <= TCPS_LISTEN && 16437 !tcp->tcp_connp->conn_ipv6_v6only && 16438 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16439 if (tcp->tcp_ipversion == IPV6_VERSION) { 16440 tce.tcpConnRemAddress = INADDR_ANY; 16441 tce.tcpConnLocalAddress = INADDR_ANY; 16442 } else { 16443 tce.tcpConnRemAddress = 16444 tcp->tcp_remote; 16445 tce.tcpConnLocalAddress = 16446 tcp->tcp_ip_src; 16447 } 16448 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16449 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16450 /* Don't want just anybody seeing these... */ 16451 if (ispriv) { 16452 tce.tcpConnEntryInfo.ce_snxt = 16453 tcp->tcp_snxt; 16454 tce.tcpConnEntryInfo.ce_suna = 16455 tcp->tcp_suna; 16456 tce.tcpConnEntryInfo.ce_rnxt = 16457 tcp->tcp_rnxt; 16458 tce.tcpConnEntryInfo.ce_rack = 16459 tcp->tcp_rack; 16460 } else { 16461 /* 16462 * Netstat, unfortunately, uses this to 16463 * get send/receive queue sizes. How 16464 * to fix? 16465 * Why not compute the difference only? 16466 */ 16467 tce.tcpConnEntryInfo.ce_snxt = 16468 tcp->tcp_snxt - tcp->tcp_suna; 16469 tce.tcpConnEntryInfo.ce_suna = 0; 16470 tce.tcpConnEntryInfo.ce_rnxt = 16471 tcp->tcp_rnxt - tcp->tcp_rack; 16472 tce.tcpConnEntryInfo.ce_rack = 0; 16473 } 16474 16475 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16476 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16477 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16478 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16479 tce.tcpConnEntryInfo.ce_state = 16480 tcp->tcp_state; 16481 16482 tce.tcpConnCreationProcess = 16483 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16484 tcp->tcp_cpid; 16485 tce.tcpConnCreationTime = tcp->tcp_open_time; 16486 16487 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16488 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16489 16490 mlp.tme_connidx = v4_conn_idx++; 16491 if (needattr) 16492 (void) snmp_append_data2( 16493 mp_attr_ctl->b_cont, 16494 &mp_attr_tail, (char *)&mlp, 16495 sizeof (mlp)); 16496 } 16497 } 16498 } 16499 16500 /* fixed length structure for IPv4 and IPv6 counters */ 16501 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16502 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16503 sizeof (mib2_tcp6ConnEntry_t)); 16504 /* synchronize 32- and 64-bit counters */ 16505 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16506 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16507 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16508 optp->level = MIB2_TCP; 16509 optp->name = 0; 16510 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16511 sizeof (tcps->tcps_mib)); 16512 optp->len = msgdsize(mpdata); 16513 qreply(q, mpctl); 16514 16515 /* table of connections... */ 16516 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16517 sizeof (struct T_optmgmt_ack)]; 16518 optp->level = MIB2_TCP; 16519 optp->name = MIB2_TCP_CONN; 16520 optp->len = msgdsize(mp_conn_ctl->b_cont); 16521 qreply(q, mp_conn_ctl); 16522 16523 /* table of MLP attributes... */ 16524 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16525 sizeof (struct T_optmgmt_ack)]; 16526 optp->level = MIB2_TCP; 16527 optp->name = EXPER_XPORT_MLP; 16528 optp->len = msgdsize(mp_attr_ctl->b_cont); 16529 if (optp->len == 0) 16530 freemsg(mp_attr_ctl); 16531 else 16532 qreply(q, mp_attr_ctl); 16533 16534 /* table of IPv6 connections... */ 16535 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16536 sizeof (struct T_optmgmt_ack)]; 16537 optp->level = MIB2_TCP6; 16538 optp->name = MIB2_TCP6_CONN; 16539 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16540 qreply(q, mp6_conn_ctl); 16541 16542 /* table of IPv6 MLP attributes... */ 16543 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16544 sizeof (struct T_optmgmt_ack)]; 16545 optp->level = MIB2_TCP6; 16546 optp->name = EXPER_XPORT_MLP; 16547 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16548 if (optp->len == 0) 16549 freemsg(mp6_attr_ctl); 16550 else 16551 qreply(q, mp6_attr_ctl); 16552 return (mp2ctl); 16553 } 16554 16555 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16556 /* ARGSUSED */ 16557 int 16558 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16559 { 16560 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16561 16562 switch (level) { 16563 case MIB2_TCP: 16564 switch (name) { 16565 case 13: 16566 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16567 return (0); 16568 /* TODO: delete entry defined by tce */ 16569 return (1); 16570 default: 16571 return (0); 16572 } 16573 default: 16574 return (1); 16575 } 16576 } 16577 16578 /* Translate TCP state to MIB2 TCP state. */ 16579 static int 16580 tcp_snmp_state(tcp_t *tcp) 16581 { 16582 if (tcp == NULL) 16583 return (0); 16584 16585 switch (tcp->tcp_state) { 16586 case TCPS_CLOSED: 16587 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16588 case TCPS_BOUND: 16589 return (MIB2_TCP_closed); 16590 case TCPS_LISTEN: 16591 return (MIB2_TCP_listen); 16592 case TCPS_SYN_SENT: 16593 return (MIB2_TCP_synSent); 16594 case TCPS_SYN_RCVD: 16595 return (MIB2_TCP_synReceived); 16596 case TCPS_ESTABLISHED: 16597 return (MIB2_TCP_established); 16598 case TCPS_CLOSE_WAIT: 16599 return (MIB2_TCP_closeWait); 16600 case TCPS_FIN_WAIT_1: 16601 return (MIB2_TCP_finWait1); 16602 case TCPS_CLOSING: 16603 return (MIB2_TCP_closing); 16604 case TCPS_LAST_ACK: 16605 return (MIB2_TCP_lastAck); 16606 case TCPS_FIN_WAIT_2: 16607 return (MIB2_TCP_finWait2); 16608 case TCPS_TIME_WAIT: 16609 return (MIB2_TCP_timeWait); 16610 default: 16611 return (0); 16612 } 16613 } 16614 16615 static char tcp_report_header[] = 16616 "TCP " MI_COL_HDRPAD_STR 16617 "zone dest snxt suna " 16618 "swnd rnxt rack rwnd rto mss w sw rw t " 16619 "recent [lport,fport] state"; 16620 16621 /* 16622 * TCP status report triggered via the Named Dispatch mechanism. 16623 */ 16624 /* ARGSUSED */ 16625 static void 16626 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16627 cred_t *cr) 16628 { 16629 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16630 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16631 char cflag; 16632 in6_addr_t v6dst; 16633 char buf[80]; 16634 uint_t print_len, buf_len; 16635 16636 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16637 if (buf_len <= 0) 16638 return; 16639 16640 if (hashval >= 0) 16641 (void) sprintf(hash, "%03d ", hashval); 16642 else 16643 hash[0] = '\0'; 16644 16645 /* 16646 * Note that we use the remote address in the tcp_b structure. 16647 * This means that it will print out the real destination address, 16648 * not the next hop's address if source routing is used. This 16649 * avoid the confusion on the output because user may not 16650 * know that source routing is used for a connection. 16651 */ 16652 if (tcp->tcp_ipversion == IPV4_VERSION) { 16653 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16654 } else { 16655 v6dst = tcp->tcp_remote_v6; 16656 } 16657 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16658 /* 16659 * the ispriv checks are so that normal users cannot determine 16660 * sequence number information using NDD. 16661 */ 16662 16663 if (TCP_IS_DETACHED(tcp)) 16664 cflag = '*'; 16665 else 16666 cflag = ' '; 16667 print_len = snprintf((char *)mp->b_wptr, buf_len, 16668 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16669 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16670 hash, 16671 (void *)tcp, 16672 tcp->tcp_connp->conn_zoneid, 16673 addrbuf, 16674 (ispriv) ? tcp->tcp_snxt : 0, 16675 (ispriv) ? tcp->tcp_suna : 0, 16676 tcp->tcp_swnd, 16677 (ispriv) ? tcp->tcp_rnxt : 0, 16678 (ispriv) ? tcp->tcp_rack : 0, 16679 tcp->tcp_rwnd, 16680 tcp->tcp_rto, 16681 tcp->tcp_mss, 16682 tcp->tcp_snd_ws_ok, 16683 tcp->tcp_snd_ws, 16684 tcp->tcp_rcv_ws, 16685 tcp->tcp_snd_ts_ok, 16686 tcp->tcp_ts_recent, 16687 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16688 if (print_len < buf_len) { 16689 ((mblk_t *)mp)->b_wptr += print_len; 16690 } else { 16691 ((mblk_t *)mp)->b_wptr += buf_len; 16692 } 16693 } 16694 16695 /* 16696 * TCP status report (for listeners only) triggered via the Named Dispatch 16697 * mechanism. 16698 */ 16699 /* ARGSUSED */ 16700 static void 16701 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16702 { 16703 char addrbuf[INET6_ADDRSTRLEN]; 16704 in6_addr_t v6dst; 16705 uint_t print_len, buf_len; 16706 16707 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16708 if (buf_len <= 0) 16709 return; 16710 16711 if (tcp->tcp_ipversion == IPV4_VERSION) { 16712 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16713 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16714 } else { 16715 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16716 addrbuf, sizeof (addrbuf)); 16717 } 16718 print_len = snprintf((char *)mp->b_wptr, buf_len, 16719 "%03d " 16720 MI_COL_PTRFMT_STR 16721 "%d %s %05u %08u %d/%d/%d%c\n", 16722 hashval, (void *)tcp, 16723 tcp->tcp_connp->conn_zoneid, 16724 addrbuf, 16725 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16726 tcp->tcp_conn_req_seqnum, 16727 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16728 tcp->tcp_conn_req_max, 16729 tcp->tcp_syn_defense ? '*' : ' '); 16730 if (print_len < buf_len) { 16731 ((mblk_t *)mp)->b_wptr += print_len; 16732 } else { 16733 ((mblk_t *)mp)->b_wptr += buf_len; 16734 } 16735 } 16736 16737 /* TCP status report triggered via the Named Dispatch mechanism. */ 16738 /* ARGSUSED */ 16739 static int 16740 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16741 { 16742 tcp_t *tcp; 16743 int i; 16744 conn_t *connp; 16745 connf_t *connfp; 16746 zoneid_t zoneid; 16747 tcp_stack_t *tcps; 16748 ip_stack_t *ipst; 16749 16750 zoneid = Q_TO_CONN(q)->conn_zoneid; 16751 tcps = Q_TO_TCP(q)->tcp_tcps; 16752 16753 /* 16754 * Because of the ndd constraint, at most we can have 64K buffer 16755 * to put in all TCP info. So to be more efficient, just 16756 * allocate a 64K buffer here, assuming we need that large buffer. 16757 * This may be a problem as any user can read tcp_status. Therefore 16758 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16759 * This should be OK as normal users should not do this too often. 16760 */ 16761 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16762 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16763 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16764 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16765 return (0); 16766 } 16767 } 16768 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16769 /* The following may work even if we cannot get a large buf. */ 16770 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16771 return (0); 16772 } 16773 16774 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16775 16776 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16777 16778 ipst = tcps->tcps_netstack->netstack_ip; 16779 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16780 16781 connp = NULL; 16782 16783 while ((connp = 16784 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16785 tcp = connp->conn_tcp; 16786 if (zoneid != GLOBAL_ZONEID && 16787 zoneid != connp->conn_zoneid) 16788 continue; 16789 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16790 cr); 16791 } 16792 16793 } 16794 16795 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16796 return (0); 16797 } 16798 16799 /* TCP status report triggered via the Named Dispatch mechanism. */ 16800 /* ARGSUSED */ 16801 static int 16802 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16803 { 16804 tf_t *tbf; 16805 tcp_t *tcp; 16806 int i; 16807 zoneid_t zoneid; 16808 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16809 16810 zoneid = Q_TO_CONN(q)->conn_zoneid; 16811 16812 /* Refer to comments in tcp_status_report(). */ 16813 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16814 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16815 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16816 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16817 return (0); 16818 } 16819 } 16820 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16821 /* The following may work even if we cannot get a large buf. */ 16822 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16823 return (0); 16824 } 16825 16826 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16827 16828 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16829 tbf = &tcps->tcps_bind_fanout[i]; 16830 mutex_enter(&tbf->tf_lock); 16831 for (tcp = tbf->tf_tcp; tcp != NULL; 16832 tcp = tcp->tcp_bind_hash) { 16833 if (zoneid != GLOBAL_ZONEID && 16834 zoneid != tcp->tcp_connp->conn_zoneid) 16835 continue; 16836 CONN_INC_REF(tcp->tcp_connp); 16837 tcp_report_item(mp->b_cont, tcp, i, 16838 Q_TO_TCP(q), cr); 16839 CONN_DEC_REF(tcp->tcp_connp); 16840 } 16841 mutex_exit(&tbf->tf_lock); 16842 } 16843 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16844 return (0); 16845 } 16846 16847 /* TCP status report triggered via the Named Dispatch mechanism. */ 16848 /* ARGSUSED */ 16849 static int 16850 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16851 { 16852 connf_t *connfp; 16853 conn_t *connp; 16854 tcp_t *tcp; 16855 int i; 16856 zoneid_t zoneid; 16857 tcp_stack_t *tcps; 16858 ip_stack_t *ipst; 16859 16860 zoneid = Q_TO_CONN(q)->conn_zoneid; 16861 tcps = Q_TO_TCP(q)->tcp_tcps; 16862 16863 /* Refer to comments in tcp_status_report(). */ 16864 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16865 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16866 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16867 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16868 return (0); 16869 } 16870 } 16871 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16872 /* The following may work even if we cannot get a large buf. */ 16873 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16874 return (0); 16875 } 16876 16877 (void) mi_mpprintf(mp, 16878 " TCP " MI_COL_HDRPAD_STR 16879 "zone IP addr port seqnum backlog (q0/q/max)"); 16880 16881 ipst = tcps->tcps_netstack->netstack_ip; 16882 16883 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16884 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16885 connp = NULL; 16886 while ((connp = 16887 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16888 tcp = connp->conn_tcp; 16889 if (zoneid != GLOBAL_ZONEID && 16890 zoneid != connp->conn_zoneid) 16891 continue; 16892 tcp_report_listener(mp->b_cont, tcp, i); 16893 } 16894 } 16895 16896 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16897 return (0); 16898 } 16899 16900 /* TCP status report triggered via the Named Dispatch mechanism. */ 16901 /* ARGSUSED */ 16902 static int 16903 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16904 { 16905 connf_t *connfp; 16906 conn_t *connp; 16907 tcp_t *tcp; 16908 int i; 16909 zoneid_t zoneid; 16910 tcp_stack_t *tcps; 16911 ip_stack_t *ipst; 16912 16913 zoneid = Q_TO_CONN(q)->conn_zoneid; 16914 tcps = Q_TO_TCP(q)->tcp_tcps; 16915 ipst = tcps->tcps_netstack->netstack_ip; 16916 16917 /* Refer to comments in tcp_status_report(). */ 16918 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16919 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16920 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16921 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16922 return (0); 16923 } 16924 } 16925 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16926 /* The following may work even if we cannot get a large buf. */ 16927 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16928 return (0); 16929 } 16930 16931 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16932 ipst->ips_ipcl_conn_fanout_size); 16933 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16934 16935 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16936 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16937 connp = NULL; 16938 while ((connp = 16939 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16940 tcp = connp->conn_tcp; 16941 if (zoneid != GLOBAL_ZONEID && 16942 zoneid != connp->conn_zoneid) 16943 continue; 16944 tcp_report_item(mp->b_cont, tcp, i, 16945 Q_TO_TCP(q), cr); 16946 } 16947 } 16948 16949 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16950 return (0); 16951 } 16952 16953 /* TCP status report triggered via the Named Dispatch mechanism. */ 16954 /* ARGSUSED */ 16955 static int 16956 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16957 { 16958 tf_t *tf; 16959 tcp_t *tcp; 16960 int i; 16961 zoneid_t zoneid; 16962 tcp_stack_t *tcps; 16963 16964 zoneid = Q_TO_CONN(q)->conn_zoneid; 16965 tcps = Q_TO_TCP(q)->tcp_tcps; 16966 16967 /* Refer to comments in tcp_status_report(). */ 16968 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16969 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16970 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16971 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16972 return (0); 16973 } 16974 } 16975 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16976 /* The following may work even if we cannot get a large buf. */ 16977 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16978 return (0); 16979 } 16980 16981 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16982 16983 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16984 tf = &tcps->tcps_acceptor_fanout[i]; 16985 mutex_enter(&tf->tf_lock); 16986 for (tcp = tf->tf_tcp; tcp != NULL; 16987 tcp = tcp->tcp_acceptor_hash) { 16988 if (zoneid != GLOBAL_ZONEID && 16989 zoneid != tcp->tcp_connp->conn_zoneid) 16990 continue; 16991 tcp_report_item(mp->b_cont, tcp, i, 16992 Q_TO_TCP(q), cr); 16993 } 16994 mutex_exit(&tf->tf_lock); 16995 } 16996 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16997 return (0); 16998 } 16999 17000 /* 17001 * tcp_timer is the timer service routine. It handles the retransmission, 17002 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 17003 * from the state of the tcp instance what kind of action needs to be done 17004 * at the time it is called. 17005 */ 17006 static void 17007 tcp_timer(void *arg) 17008 { 17009 mblk_t *mp; 17010 clock_t first_threshold; 17011 clock_t second_threshold; 17012 clock_t ms; 17013 uint32_t mss; 17014 conn_t *connp = (conn_t *)arg; 17015 tcp_t *tcp = connp->conn_tcp; 17016 tcp_stack_t *tcps = tcp->tcp_tcps; 17017 17018 tcp->tcp_timer_tid = 0; 17019 17020 if (tcp->tcp_fused) 17021 return; 17022 17023 first_threshold = tcp->tcp_first_timer_threshold; 17024 second_threshold = tcp->tcp_second_timer_threshold; 17025 switch (tcp->tcp_state) { 17026 case TCPS_IDLE: 17027 case TCPS_BOUND: 17028 case TCPS_LISTEN: 17029 return; 17030 case TCPS_SYN_RCVD: { 17031 tcp_t *listener = tcp->tcp_listener; 17032 17033 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17034 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17035 /* it's our first timeout */ 17036 tcp->tcp_syn_rcvd_timeout = 1; 17037 mutex_enter(&listener->tcp_eager_lock); 17038 listener->tcp_syn_rcvd_timeout++; 17039 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17040 /* 17041 * Make this eager available for drop if we 17042 * need to drop one to accomodate a new 17043 * incoming SYN request. 17044 */ 17045 MAKE_DROPPABLE(listener, tcp); 17046 } 17047 if (!listener->tcp_syn_defense && 17048 (listener->tcp_syn_rcvd_timeout > 17049 (tcps->tcps_conn_req_max_q0 >> 2)) && 17050 (tcps->tcps_conn_req_max_q0 > 200)) { 17051 /* We may be under attack. Put on a defense. */ 17052 listener->tcp_syn_defense = B_TRUE; 17053 cmn_err(CE_WARN, "High TCP connect timeout " 17054 "rate! System (port %d) may be under a " 17055 "SYN flood attack!", 17056 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17057 17058 listener->tcp_ip_addr_cache = kmem_zalloc( 17059 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17060 KM_NOSLEEP); 17061 } 17062 mutex_exit(&listener->tcp_eager_lock); 17063 } else if (listener != NULL) { 17064 mutex_enter(&listener->tcp_eager_lock); 17065 tcp->tcp_syn_rcvd_timeout++; 17066 if (tcp->tcp_syn_rcvd_timeout > 1 && 17067 !tcp->tcp_closemp_used) { 17068 /* 17069 * This is our second timeout. Put the tcp in 17070 * the list of droppable eagers to allow it to 17071 * be dropped, if needed. We don't check 17072 * whether tcp_dontdrop is set or not to 17073 * protect ourselve from a SYN attack where a 17074 * remote host can spoof itself as one of the 17075 * good IP source and continue to hold 17076 * resources too long. 17077 */ 17078 MAKE_DROPPABLE(listener, tcp); 17079 } 17080 mutex_exit(&listener->tcp_eager_lock); 17081 } 17082 } 17083 /* FALLTHRU */ 17084 case TCPS_SYN_SENT: 17085 first_threshold = tcp->tcp_first_ctimer_threshold; 17086 second_threshold = tcp->tcp_second_ctimer_threshold; 17087 break; 17088 case TCPS_ESTABLISHED: 17089 case TCPS_FIN_WAIT_1: 17090 case TCPS_CLOSING: 17091 case TCPS_CLOSE_WAIT: 17092 case TCPS_LAST_ACK: 17093 /* If we have data to rexmit */ 17094 if (tcp->tcp_suna != tcp->tcp_snxt) { 17095 clock_t time_to_wait; 17096 17097 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17098 if (!tcp->tcp_xmit_head) 17099 break; 17100 time_to_wait = lbolt - 17101 (clock_t)tcp->tcp_xmit_head->b_prev; 17102 time_to_wait = tcp->tcp_rto - 17103 TICK_TO_MSEC(time_to_wait); 17104 /* 17105 * If the timer fires too early, 1 clock tick earlier, 17106 * restart the timer. 17107 */ 17108 if (time_to_wait > msec_per_tick) { 17109 TCP_STAT(tcps, tcp_timer_fire_early); 17110 TCP_TIMER_RESTART(tcp, time_to_wait); 17111 return; 17112 } 17113 /* 17114 * When we probe zero windows, we force the swnd open. 17115 * If our peer acks with a closed window swnd will be 17116 * set to zero by tcp_rput(). As long as we are 17117 * receiving acks tcp_rput will 17118 * reset 'tcp_ms_we_have_waited' so as not to trip the 17119 * first and second interval actions. NOTE: the timer 17120 * interval is allowed to continue its exponential 17121 * backoff. 17122 */ 17123 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17124 if (tcp->tcp_debug) { 17125 (void) strlog(TCP_MOD_ID, 0, 1, 17126 SL_TRACE, "tcp_timer: zero win"); 17127 } 17128 } else { 17129 /* 17130 * After retransmission, we need to do 17131 * slow start. Set the ssthresh to one 17132 * half of current effective window and 17133 * cwnd to one MSS. Also reset 17134 * tcp_cwnd_cnt. 17135 * 17136 * Note that if tcp_ssthresh is reduced because 17137 * of ECN, do not reduce it again unless it is 17138 * already one window of data away (tcp_cwr 17139 * should then be cleared) or this is a 17140 * timeout for a retransmitted segment. 17141 */ 17142 uint32_t npkt; 17143 17144 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17145 npkt = ((tcp->tcp_timer_backoff ? 17146 tcp->tcp_cwnd_ssthresh : 17147 tcp->tcp_snxt - 17148 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17149 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17150 tcp->tcp_mss; 17151 } 17152 tcp->tcp_cwnd = tcp->tcp_mss; 17153 tcp->tcp_cwnd_cnt = 0; 17154 if (tcp->tcp_ecn_ok) { 17155 tcp->tcp_cwr = B_TRUE; 17156 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17157 tcp->tcp_ecn_cwr_sent = B_FALSE; 17158 } 17159 } 17160 break; 17161 } 17162 /* 17163 * We have something to send yet we cannot send. The 17164 * reason can be: 17165 * 17166 * 1. Zero send window: we need to do zero window probe. 17167 * 2. Zero cwnd: because of ECN, we need to "clock out 17168 * segments. 17169 * 3. SWS avoidance: receiver may have shrunk window, 17170 * reset our knowledge. 17171 * 17172 * Note that condition 2 can happen with either 1 or 17173 * 3. But 1 and 3 are exclusive. 17174 */ 17175 if (tcp->tcp_unsent != 0) { 17176 if (tcp->tcp_cwnd == 0) { 17177 /* 17178 * Set tcp_cwnd to 1 MSS so that a 17179 * new segment can be sent out. We 17180 * are "clocking out" new data when 17181 * the network is really congested. 17182 */ 17183 ASSERT(tcp->tcp_ecn_ok); 17184 tcp->tcp_cwnd = tcp->tcp_mss; 17185 } 17186 if (tcp->tcp_swnd == 0) { 17187 /* Extend window for zero window probe */ 17188 tcp->tcp_swnd++; 17189 tcp->tcp_zero_win_probe = B_TRUE; 17190 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17191 } else { 17192 /* 17193 * Handle timeout from sender SWS avoidance. 17194 * Reset our knowledge of the max send window 17195 * since the receiver might have reduced its 17196 * receive buffer. Avoid setting tcp_max_swnd 17197 * to one since that will essentially disable 17198 * the SWS checks. 17199 * 17200 * Note that since we don't have a SWS 17201 * state variable, if the timeout is set 17202 * for ECN but not for SWS, this 17203 * code will also be executed. This is 17204 * fine as tcp_max_swnd is updated 17205 * constantly and it will not affect 17206 * anything. 17207 */ 17208 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17209 } 17210 tcp_wput_data(tcp, NULL, B_FALSE); 17211 return; 17212 } 17213 /* Is there a FIN that needs to be to re retransmitted? */ 17214 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17215 !tcp->tcp_fin_acked) 17216 break; 17217 /* Nothing to do, return without restarting timer. */ 17218 TCP_STAT(tcps, tcp_timer_fire_miss); 17219 return; 17220 case TCPS_FIN_WAIT_2: 17221 /* 17222 * User closed the TCP endpoint and peer ACK'ed our FIN. 17223 * We waited some time for for peer's FIN, but it hasn't 17224 * arrived. We flush the connection now to avoid 17225 * case where the peer has rebooted. 17226 */ 17227 if (TCP_IS_DETACHED(tcp)) { 17228 (void) tcp_clean_death(tcp, 0, 23); 17229 } else { 17230 TCP_TIMER_RESTART(tcp, 17231 tcps->tcps_fin_wait_2_flush_interval); 17232 } 17233 return; 17234 case TCPS_TIME_WAIT: 17235 (void) tcp_clean_death(tcp, 0, 24); 17236 return; 17237 default: 17238 if (tcp->tcp_debug) { 17239 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17240 "tcp_timer: strange state (%d) %s", 17241 tcp->tcp_state, tcp_display(tcp, NULL, 17242 DISP_PORT_ONLY)); 17243 } 17244 return; 17245 } 17246 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17247 /* 17248 * For zero window probe, we need to send indefinitely, 17249 * unless we have not heard from the other side for some 17250 * time... 17251 */ 17252 if ((tcp->tcp_zero_win_probe == 0) || 17253 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17254 second_threshold)) { 17255 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17256 /* 17257 * If TCP is in SYN_RCVD state, send back a 17258 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17259 * should be zero in TCPS_SYN_RCVD state. 17260 */ 17261 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17262 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17263 "in SYN_RCVD", 17264 tcp, tcp->tcp_snxt, 17265 tcp->tcp_rnxt, TH_RST | TH_ACK); 17266 } 17267 (void) tcp_clean_death(tcp, 17268 tcp->tcp_client_errno ? 17269 tcp->tcp_client_errno : ETIMEDOUT, 25); 17270 return; 17271 } else { 17272 /* 17273 * Set tcp_ms_we_have_waited to second_threshold 17274 * so that in next timeout, we will do the above 17275 * check (lbolt - tcp_last_recv_time). This is 17276 * also to avoid overflow. 17277 * 17278 * We don't need to decrement tcp_timer_backoff 17279 * to avoid overflow because it will be decremented 17280 * later if new timeout value is greater than 17281 * tcp_rexmit_interval_max. In the case when 17282 * tcp_rexmit_interval_max is greater than 17283 * second_threshold, it means that we will wait 17284 * longer than second_threshold to send the next 17285 * window probe. 17286 */ 17287 tcp->tcp_ms_we_have_waited = second_threshold; 17288 } 17289 } else if (ms > first_threshold) { 17290 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17291 tcp->tcp_xmit_head != NULL) { 17292 tcp->tcp_xmit_head = 17293 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17294 } 17295 /* 17296 * We have been retransmitting for too long... The RTT 17297 * we calculated is probably incorrect. Reinitialize it. 17298 * Need to compensate for 0 tcp_rtt_sa. Reset 17299 * tcp_rtt_update so that we won't accidentally cache a 17300 * bad value. But only do this if this is not a zero 17301 * window probe. 17302 */ 17303 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17304 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17305 (tcp->tcp_rtt_sa >> 5); 17306 tcp->tcp_rtt_sa = 0; 17307 tcp_ip_notify(tcp); 17308 tcp->tcp_rtt_update = 0; 17309 } 17310 } 17311 tcp->tcp_timer_backoff++; 17312 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17313 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17314 tcps->tcps_rexmit_interval_min) { 17315 /* 17316 * This means the original RTO is tcp_rexmit_interval_min. 17317 * So we will use tcp_rexmit_interval_min as the RTO value 17318 * and do the backoff. 17319 */ 17320 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17321 } else { 17322 ms <<= tcp->tcp_timer_backoff; 17323 } 17324 if (ms > tcps->tcps_rexmit_interval_max) { 17325 ms = tcps->tcps_rexmit_interval_max; 17326 /* 17327 * ms is at max, decrement tcp_timer_backoff to avoid 17328 * overflow. 17329 */ 17330 tcp->tcp_timer_backoff--; 17331 } 17332 tcp->tcp_ms_we_have_waited += ms; 17333 if (tcp->tcp_zero_win_probe == 0) { 17334 tcp->tcp_rto = ms; 17335 } 17336 TCP_TIMER_RESTART(tcp, ms); 17337 /* 17338 * This is after a timeout and tcp_rto is backed off. Set 17339 * tcp_set_timer to 1 so that next time RTO is updated, we will 17340 * restart the timer with a correct value. 17341 */ 17342 tcp->tcp_set_timer = 1; 17343 mss = tcp->tcp_snxt - tcp->tcp_suna; 17344 if (mss > tcp->tcp_mss) 17345 mss = tcp->tcp_mss; 17346 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17347 mss = tcp->tcp_swnd; 17348 17349 if ((mp = tcp->tcp_xmit_head) != NULL) 17350 mp->b_prev = (mblk_t *)lbolt; 17351 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17352 B_TRUE); 17353 17354 /* 17355 * When slow start after retransmission begins, start with 17356 * this seq no. tcp_rexmit_max marks the end of special slow 17357 * start phase. tcp_snd_burst controls how many segments 17358 * can be sent because of an ack. 17359 */ 17360 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17361 tcp->tcp_snd_burst = TCP_CWND_SS; 17362 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17363 (tcp->tcp_unsent == 0)) { 17364 tcp->tcp_rexmit_max = tcp->tcp_fss; 17365 } else { 17366 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17367 } 17368 tcp->tcp_rexmit = B_TRUE; 17369 tcp->tcp_dupack_cnt = 0; 17370 17371 /* 17372 * Remove all rexmit SACK blk to start from fresh. 17373 */ 17374 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17375 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17376 tcp->tcp_num_notsack_blk = 0; 17377 tcp->tcp_cnt_notsack_list = 0; 17378 } 17379 if (mp == NULL) { 17380 return; 17381 } 17382 /* Attach credentials to retransmitted initial SYNs. */ 17383 if (tcp->tcp_state == TCPS_SYN_SENT) { 17384 mblk_setcred(mp, tcp->tcp_cred); 17385 DB_CPID(mp) = tcp->tcp_cpid; 17386 } 17387 17388 tcp->tcp_csuna = tcp->tcp_snxt; 17389 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17390 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17391 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17392 tcp_send_data(tcp, tcp->tcp_wq, mp); 17393 17394 } 17395 17396 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17397 static void 17398 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17399 { 17400 conn_t *connp; 17401 17402 switch (tcp->tcp_state) { 17403 case TCPS_BOUND: 17404 case TCPS_LISTEN: 17405 break; 17406 default: 17407 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17408 return; 17409 } 17410 17411 /* 17412 * Need to clean up all the eagers since after the unbind, segments 17413 * will no longer be delivered to this listener stream. 17414 */ 17415 mutex_enter(&tcp->tcp_eager_lock); 17416 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17417 tcp_eager_cleanup(tcp, 0); 17418 } 17419 mutex_exit(&tcp->tcp_eager_lock); 17420 17421 if (tcp->tcp_ipversion == IPV4_VERSION) { 17422 tcp->tcp_ipha->ipha_src = 0; 17423 } else { 17424 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17425 } 17426 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17427 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17428 tcp_bind_hash_remove(tcp); 17429 tcp->tcp_state = TCPS_IDLE; 17430 tcp->tcp_mdt = B_FALSE; 17431 /* Send M_FLUSH according to TPI */ 17432 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17433 connp = tcp->tcp_connp; 17434 connp->conn_mdt_ok = B_FALSE; 17435 ipcl_hash_remove(connp); 17436 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17437 mp = mi_tpi_ok_ack_alloc(mp); 17438 putnext(tcp->tcp_rq, mp); 17439 } 17440 17441 /* 17442 * Don't let port fall into the privileged range. 17443 * Since the extra privileged ports can be arbitrary we also 17444 * ensure that we exclude those from consideration. 17445 * tcp_g_epriv_ports is not sorted thus we loop over it until 17446 * there are no changes. 17447 * 17448 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17449 * but instead the code relies on: 17450 * - the fact that the address of the array and its size never changes 17451 * - the atomic assignment of the elements of the array 17452 * 17453 * Returns 0 if there are no more ports available. 17454 * 17455 * TS note: skip multilevel ports. 17456 */ 17457 static in_port_t 17458 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17459 { 17460 int i; 17461 boolean_t restart = B_FALSE; 17462 tcp_stack_t *tcps = tcp->tcp_tcps; 17463 17464 if (random && tcp_random_anon_port != 0) { 17465 (void) random_get_pseudo_bytes((uint8_t *)&port, 17466 sizeof (in_port_t)); 17467 /* 17468 * Unless changed by a sys admin, the smallest anon port 17469 * is 32768 and the largest anon port is 65535. It is 17470 * very likely (50%) for the random port to be smaller 17471 * than the smallest anon port. When that happens, 17472 * add port % (anon port range) to the smallest anon 17473 * port to get the random port. It should fall into the 17474 * valid anon port range. 17475 */ 17476 if (port < tcps->tcps_smallest_anon_port) { 17477 port = tcps->tcps_smallest_anon_port + 17478 port % (tcps->tcps_largest_anon_port - 17479 tcps->tcps_smallest_anon_port); 17480 } 17481 } 17482 17483 retry: 17484 if (port < tcps->tcps_smallest_anon_port) 17485 port = (in_port_t)tcps->tcps_smallest_anon_port; 17486 17487 if (port > tcps->tcps_largest_anon_port) { 17488 if (restart) 17489 return (0); 17490 restart = B_TRUE; 17491 port = (in_port_t)tcps->tcps_smallest_anon_port; 17492 } 17493 17494 if (port < tcps->tcps_smallest_nonpriv_port) 17495 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17496 17497 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17498 if (port == tcps->tcps_g_epriv_ports[i]) { 17499 port++; 17500 /* 17501 * Make sure whether the port is in the 17502 * valid range. 17503 */ 17504 goto retry; 17505 } 17506 } 17507 if (is_system_labeled() && 17508 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17509 IPPROTO_TCP, B_TRUE)) != 0) { 17510 port = i; 17511 goto retry; 17512 } 17513 return (port); 17514 } 17515 17516 /* 17517 * Return the next anonymous port in the privileged port range for 17518 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17519 * downwards. This is the same behavior as documented in the userland 17520 * library call rresvport(3N). 17521 * 17522 * TS note: skip multilevel ports. 17523 */ 17524 static in_port_t 17525 tcp_get_next_priv_port(const tcp_t *tcp) 17526 { 17527 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17528 in_port_t nextport; 17529 boolean_t restart = B_FALSE; 17530 tcp_stack_t *tcps = tcp->tcp_tcps; 17531 retry: 17532 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17533 next_priv_port >= IPPORT_RESERVED) { 17534 next_priv_port = IPPORT_RESERVED - 1; 17535 if (restart) 17536 return (0); 17537 restart = B_TRUE; 17538 } 17539 if (is_system_labeled() && 17540 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17541 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17542 next_priv_port = nextport; 17543 goto retry; 17544 } 17545 return (next_priv_port--); 17546 } 17547 17548 /* The write side r/w procedure. */ 17549 17550 #if CCS_STATS 17551 struct { 17552 struct { 17553 int64_t count, bytes; 17554 } tot, hit; 17555 } wrw_stats; 17556 #endif 17557 17558 /* 17559 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17560 * messages. 17561 */ 17562 /* ARGSUSED */ 17563 static void 17564 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17565 { 17566 conn_t *connp = (conn_t *)arg; 17567 tcp_t *tcp = connp->conn_tcp; 17568 queue_t *q = tcp->tcp_wq; 17569 17570 ASSERT(DB_TYPE(mp) != M_IOCTL); 17571 /* 17572 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17573 * Once the close starts, streamhead and sockfs will not let any data 17574 * packets come down (close ensures that there are no threads using the 17575 * queue and no new threads will come down) but since qprocsoff() 17576 * hasn't happened yet, a M_FLUSH or some non data message might 17577 * get reflected back (in response to our own FLUSHRW) and get 17578 * processed after tcp_close() is done. The conn would still be valid 17579 * because a ref would have added but we need to check the state 17580 * before actually processing the packet. 17581 */ 17582 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17583 freemsg(mp); 17584 return; 17585 } 17586 17587 switch (DB_TYPE(mp)) { 17588 case M_IOCDATA: 17589 tcp_wput_iocdata(tcp, mp); 17590 break; 17591 case M_FLUSH: 17592 tcp_wput_flush(tcp, mp); 17593 break; 17594 default: 17595 CALL_IP_WPUT(connp, q, mp); 17596 break; 17597 } 17598 } 17599 17600 /* 17601 * The TCP fast path write put procedure. 17602 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17603 */ 17604 /* ARGSUSED */ 17605 void 17606 tcp_output(void *arg, mblk_t *mp, void *arg2) 17607 { 17608 int len; 17609 int hdrlen; 17610 int plen; 17611 mblk_t *mp1; 17612 uchar_t *rptr; 17613 uint32_t snxt; 17614 tcph_t *tcph; 17615 struct datab *db; 17616 uint32_t suna; 17617 uint32_t mss; 17618 ipaddr_t *dst; 17619 ipaddr_t *src; 17620 uint32_t sum; 17621 int usable; 17622 conn_t *connp = (conn_t *)arg; 17623 tcp_t *tcp = connp->conn_tcp; 17624 uint32_t msize; 17625 tcp_stack_t *tcps = tcp->tcp_tcps; 17626 17627 /* 17628 * Try and ASSERT the minimum possible references on the 17629 * conn early enough. Since we are executing on write side, 17630 * the connection is obviously not detached and that means 17631 * there is a ref each for TCP and IP. Since we are behind 17632 * the squeue, the minimum references needed are 3. If the 17633 * conn is in classifier hash list, there should be an 17634 * extra ref for that (we check both the possibilities). 17635 */ 17636 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17637 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17638 17639 ASSERT(DB_TYPE(mp) == M_DATA); 17640 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17641 17642 mutex_enter(&tcp->tcp_non_sq_lock); 17643 tcp->tcp_squeue_bytes -= msize; 17644 mutex_exit(&tcp->tcp_non_sq_lock); 17645 17646 /* Bypass tcp protocol for fused tcp loopback */ 17647 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17648 return; 17649 17650 mss = tcp->tcp_mss; 17651 if (tcp->tcp_xmit_zc_clean) 17652 mp = tcp_zcopy_backoff(tcp, mp, 0); 17653 17654 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17655 len = (int)(mp->b_wptr - mp->b_rptr); 17656 17657 /* 17658 * Criteria for fast path: 17659 * 17660 * 1. no unsent data 17661 * 2. single mblk in request 17662 * 3. connection established 17663 * 4. data in mblk 17664 * 5. len <= mss 17665 * 6. no tcp_valid bits 17666 */ 17667 if ((tcp->tcp_unsent != 0) || 17668 (tcp->tcp_cork) || 17669 (mp->b_cont != NULL) || 17670 (tcp->tcp_state != TCPS_ESTABLISHED) || 17671 (len == 0) || 17672 (len > mss) || 17673 (tcp->tcp_valid_bits != 0)) { 17674 tcp_wput_data(tcp, mp, B_FALSE); 17675 return; 17676 } 17677 17678 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17679 ASSERT(tcp->tcp_fin_sent == 0); 17680 17681 /* queue new packet onto retransmission queue */ 17682 if (tcp->tcp_xmit_head == NULL) { 17683 tcp->tcp_xmit_head = mp; 17684 } else { 17685 tcp->tcp_xmit_last->b_cont = mp; 17686 } 17687 tcp->tcp_xmit_last = mp; 17688 tcp->tcp_xmit_tail = mp; 17689 17690 /* find out how much we can send */ 17691 /* BEGIN CSTYLED */ 17692 /* 17693 * un-acked usable 17694 * |--------------|-----------------| 17695 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17696 */ 17697 /* END CSTYLED */ 17698 17699 /* start sending from tcp_snxt */ 17700 snxt = tcp->tcp_snxt; 17701 17702 /* 17703 * Check to see if this connection has been idled for some 17704 * time and no ACK is expected. If it is, we need to slow 17705 * start again to get back the connection's "self-clock" as 17706 * described in VJ's paper. 17707 * 17708 * Refer to the comment in tcp_mss_set() for the calculation 17709 * of tcp_cwnd after idle. 17710 */ 17711 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17712 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17713 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17714 } 17715 17716 usable = tcp->tcp_swnd; /* tcp window size */ 17717 if (usable > tcp->tcp_cwnd) 17718 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17719 usable -= snxt; /* subtract stuff already sent */ 17720 suna = tcp->tcp_suna; 17721 usable += suna; 17722 /* usable can be < 0 if the congestion window is smaller */ 17723 if (len > usable) { 17724 /* Can't send complete M_DATA in one shot */ 17725 goto slow; 17726 } 17727 17728 mutex_enter(&tcp->tcp_non_sq_lock); 17729 if (tcp->tcp_flow_stopped && 17730 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17731 tcp_clrqfull(tcp); 17732 } 17733 mutex_exit(&tcp->tcp_non_sq_lock); 17734 17735 /* 17736 * determine if anything to send (Nagle). 17737 * 17738 * 1. len < tcp_mss (i.e. small) 17739 * 2. unacknowledged data present 17740 * 3. len < nagle limit 17741 * 4. last packet sent < nagle limit (previous packet sent) 17742 */ 17743 if ((len < mss) && (snxt != suna) && 17744 (len < (int)tcp->tcp_naglim) && 17745 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17746 /* 17747 * This was the first unsent packet and normally 17748 * mss < xmit_hiwater so there is no need to worry 17749 * about flow control. The next packet will go 17750 * through the flow control check in tcp_wput_data(). 17751 */ 17752 /* leftover work from above */ 17753 tcp->tcp_unsent = len; 17754 tcp->tcp_xmit_tail_unsent = len; 17755 17756 return; 17757 } 17758 17759 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17760 17761 if (snxt == suna) { 17762 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17763 } 17764 17765 /* we have always sent something */ 17766 tcp->tcp_rack_cnt = 0; 17767 17768 tcp->tcp_snxt = snxt + len; 17769 tcp->tcp_rack = tcp->tcp_rnxt; 17770 17771 if ((mp1 = dupb(mp)) == 0) 17772 goto no_memory; 17773 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17774 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17775 17776 /* adjust tcp header information */ 17777 tcph = tcp->tcp_tcph; 17778 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17779 17780 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17781 sum = (sum >> 16) + (sum & 0xFFFF); 17782 U16_TO_ABE16(sum, tcph->th_sum); 17783 17784 U32_TO_ABE32(snxt, tcph->th_seq); 17785 17786 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17787 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17788 BUMP_LOCAL(tcp->tcp_obsegs); 17789 17790 /* Update the latest receive window size in TCP header. */ 17791 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17792 tcph->th_win); 17793 17794 tcp->tcp_last_sent_len = (ushort_t)len; 17795 17796 plen = len + tcp->tcp_hdr_len; 17797 17798 if (tcp->tcp_ipversion == IPV4_VERSION) { 17799 tcp->tcp_ipha->ipha_length = htons(plen); 17800 } else { 17801 tcp->tcp_ip6h->ip6_plen = htons(plen - 17802 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17803 } 17804 17805 /* see if we need to allocate a mblk for the headers */ 17806 hdrlen = tcp->tcp_hdr_len; 17807 rptr = mp1->b_rptr - hdrlen; 17808 db = mp1->b_datap; 17809 if ((db->db_ref != 2) || rptr < db->db_base || 17810 (!OK_32PTR(rptr))) { 17811 /* NOTE: we assume allocb returns an OK_32PTR */ 17812 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17813 tcps->tcps_wroff_xtra, BPRI_MED); 17814 if (!mp) { 17815 freemsg(mp1); 17816 goto no_memory; 17817 } 17818 mp->b_cont = mp1; 17819 mp1 = mp; 17820 /* Leave room for Link Level header */ 17821 /* hdrlen = tcp->tcp_hdr_len; */ 17822 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17823 mp1->b_wptr = &rptr[hdrlen]; 17824 } 17825 mp1->b_rptr = rptr; 17826 17827 /* Fill in the timestamp option. */ 17828 if (tcp->tcp_snd_ts_ok) { 17829 U32_TO_BE32((uint32_t)lbolt, 17830 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17831 U32_TO_BE32(tcp->tcp_ts_recent, 17832 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17833 } else { 17834 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17835 } 17836 17837 /* copy header into outgoing packet */ 17838 dst = (ipaddr_t *)rptr; 17839 src = (ipaddr_t *)tcp->tcp_iphc; 17840 dst[0] = src[0]; 17841 dst[1] = src[1]; 17842 dst[2] = src[2]; 17843 dst[3] = src[3]; 17844 dst[4] = src[4]; 17845 dst[5] = src[5]; 17846 dst[6] = src[6]; 17847 dst[7] = src[7]; 17848 dst[8] = src[8]; 17849 dst[9] = src[9]; 17850 if (hdrlen -= 40) { 17851 hdrlen >>= 2; 17852 dst += 10; 17853 src += 10; 17854 do { 17855 *dst++ = *src++; 17856 } while (--hdrlen); 17857 } 17858 17859 /* 17860 * Set the ECN info in the TCP header. Note that this 17861 * is not the template header. 17862 */ 17863 if (tcp->tcp_ecn_ok) { 17864 SET_ECT(tcp, rptr); 17865 17866 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17867 if (tcp->tcp_ecn_echo_on) 17868 tcph->th_flags[0] |= TH_ECE; 17869 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17870 tcph->th_flags[0] |= TH_CWR; 17871 tcp->tcp_ecn_cwr_sent = B_TRUE; 17872 } 17873 } 17874 17875 if (tcp->tcp_ip_forward_progress) { 17876 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17877 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17878 tcp->tcp_ip_forward_progress = B_FALSE; 17879 } 17880 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17881 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17882 return; 17883 17884 /* 17885 * If we ran out of memory, we pretend to have sent the packet 17886 * and that it was lost on the wire. 17887 */ 17888 no_memory: 17889 return; 17890 17891 slow: 17892 /* leftover work from above */ 17893 tcp->tcp_unsent = len; 17894 tcp->tcp_xmit_tail_unsent = len; 17895 tcp_wput_data(tcp, NULL, B_FALSE); 17896 } 17897 17898 /* 17899 * The function called through squeue to get behind eager's perimeter to 17900 * finish the accept processing. 17901 */ 17902 /* ARGSUSED */ 17903 void 17904 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17905 { 17906 conn_t *connp = (conn_t *)arg; 17907 tcp_t *tcp = connp->conn_tcp; 17908 queue_t *q = tcp->tcp_rq; 17909 mblk_t *mp1; 17910 mblk_t *stropt_mp = mp; 17911 struct stroptions *stropt; 17912 uint_t thwin; 17913 tcp_stack_t *tcps = tcp->tcp_tcps; 17914 17915 /* 17916 * Drop the eager's ref on the listener, that was placed when 17917 * this eager began life in tcp_conn_request. 17918 */ 17919 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17920 17921 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17922 /* 17923 * Someone blewoff the eager before we could finish 17924 * the accept. 17925 * 17926 * The only reason eager exists it because we put in 17927 * a ref on it when conn ind went up. We need to send 17928 * a disconnect indication up while the last reference 17929 * on the eager will be dropped by the squeue when we 17930 * return. 17931 */ 17932 ASSERT(tcp->tcp_listener == NULL); 17933 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17934 struct T_discon_ind *tdi; 17935 17936 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17937 /* 17938 * Let us reuse the incoming mblk to avoid memory 17939 * allocation failure problems. We know that the 17940 * size of the incoming mblk i.e. stroptions is greater 17941 * than sizeof T_discon_ind. So the reallocb below 17942 * can't fail. 17943 */ 17944 freemsg(mp->b_cont); 17945 mp->b_cont = NULL; 17946 ASSERT(DB_REF(mp) == 1); 17947 mp = reallocb(mp, sizeof (struct T_discon_ind), 17948 B_FALSE); 17949 ASSERT(mp != NULL); 17950 DB_TYPE(mp) = M_PROTO; 17951 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17952 tdi = (struct T_discon_ind *)mp->b_rptr; 17953 if (tcp->tcp_issocket) { 17954 tdi->DISCON_reason = ECONNREFUSED; 17955 tdi->SEQ_number = 0; 17956 } else { 17957 tdi->DISCON_reason = ENOPROTOOPT; 17958 tdi->SEQ_number = 17959 tcp->tcp_conn_req_seqnum; 17960 } 17961 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17962 putnext(q, mp); 17963 } else { 17964 freemsg(mp); 17965 } 17966 if (tcp->tcp_hard_binding) { 17967 tcp->tcp_hard_binding = B_FALSE; 17968 tcp->tcp_hard_bound = B_TRUE; 17969 } 17970 tcp->tcp_detached = B_FALSE; 17971 return; 17972 } 17973 17974 mp1 = stropt_mp->b_cont; 17975 stropt_mp->b_cont = NULL; 17976 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17977 stropt = (struct stroptions *)stropt_mp->b_rptr; 17978 17979 while (mp1 != NULL) { 17980 mp = mp1; 17981 mp1 = mp1->b_cont; 17982 mp->b_cont = NULL; 17983 tcp->tcp_drop_opt_ack_cnt++; 17984 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17985 } 17986 mp = NULL; 17987 17988 /* 17989 * For a loopback connection with tcp_direct_sockfs on, note that 17990 * we don't have to protect tcp_rcv_list yet because synchronous 17991 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17992 * possibly race with us. 17993 */ 17994 17995 /* 17996 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17997 * properly. This is the first time we know of the acceptor' 17998 * queue. So we do it here. 17999 */ 18000 if (tcp->tcp_rcv_list == NULL) { 18001 /* 18002 * Recv queue is empty, tcp_rwnd should not have changed. 18003 * That means it should be equal to the listener's tcp_rwnd. 18004 */ 18005 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18006 } else { 18007 #ifdef DEBUG 18008 uint_t cnt = 0; 18009 18010 mp1 = tcp->tcp_rcv_list; 18011 while ((mp = mp1) != NULL) { 18012 mp1 = mp->b_next; 18013 cnt += msgdsize(mp); 18014 } 18015 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18016 #endif 18017 /* There is some data, add them back to get the max. */ 18018 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18019 } 18020 18021 stropt->so_flags = SO_HIWAT; 18022 stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 18023 18024 stropt->so_flags |= SO_MAXBLK; 18025 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18026 18027 /* 18028 * This is the first time we run on the correct 18029 * queue after tcp_accept. So fix all the q parameters 18030 * here. 18031 */ 18032 /* Allocate room for SACK options if needed. */ 18033 stropt->so_flags |= SO_WROFF; 18034 if (tcp->tcp_fused) { 18035 ASSERT(tcp->tcp_loopback); 18036 ASSERT(tcp->tcp_loopback_peer != NULL); 18037 /* 18038 * For fused tcp loopback, set the stream head's write 18039 * offset value to zero since we won't be needing any room 18040 * for TCP/IP headers. This would also improve performance 18041 * since it would reduce the amount of work done by kmem. 18042 * Non-fused tcp loopback case is handled separately below. 18043 */ 18044 stropt->so_wroff = 0; 18045 /* 18046 * Record the stream head's high water mark for this endpoint; 18047 * this is used for flow-control purposes in tcp_fuse_output(). 18048 */ 18049 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 18050 /* 18051 * Update the peer's transmit parameters according to 18052 * our recently calculated high water mark value. 18053 */ 18054 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18055 } else if (tcp->tcp_snd_sack_ok) { 18056 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18057 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18058 } else { 18059 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18060 tcps->tcps_wroff_xtra); 18061 } 18062 18063 /* 18064 * If this is endpoint is handling SSL, then reserve extra 18065 * offset and space at the end. 18066 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18067 * overriding the previous setting. The extra cost of signing and 18068 * encrypting multiple MSS-size records (12 of them with Ethernet), 18069 * instead of a single contiguous one by the stream head 18070 * largely outweighs the statistical reduction of ACKs, when 18071 * applicable. The peer will also save on decryption and verification 18072 * costs. 18073 */ 18074 if (tcp->tcp_kssl_ctx != NULL) { 18075 stropt->so_wroff += SSL3_WROFFSET; 18076 18077 stropt->so_flags |= SO_TAIL; 18078 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18079 18080 stropt->so_flags |= SO_COPYOPT; 18081 stropt->so_copyopt = ZCVMUNSAFE; 18082 18083 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18084 } 18085 18086 /* Send the options up */ 18087 putnext(q, stropt_mp); 18088 18089 /* 18090 * Pass up any data and/or a fin that has been received. 18091 * 18092 * Adjust receive window in case it had decreased 18093 * (because there is data <=> tcp_rcv_list != NULL) 18094 * while the connection was detached. Note that 18095 * in case the eager was flow-controlled, w/o this 18096 * code, the rwnd may never open up again! 18097 */ 18098 if (tcp->tcp_rcv_list != NULL) { 18099 /* We drain directly in case of fused tcp loopback */ 18100 if (!tcp->tcp_fused && canputnext(q)) { 18101 tcp->tcp_rwnd = q->q_hiwat; 18102 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18103 << tcp->tcp_rcv_ws; 18104 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18105 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18106 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18107 tcp_xmit_ctl(NULL, 18108 tcp, (tcp->tcp_swnd == 0) ? 18109 tcp->tcp_suna : tcp->tcp_snxt, 18110 tcp->tcp_rnxt, TH_ACK); 18111 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18112 } 18113 18114 } 18115 (void) tcp_rcv_drain(q, tcp); 18116 18117 /* 18118 * For fused tcp loopback, back-enable peer endpoint 18119 * if it's currently flow-controlled. 18120 */ 18121 if (tcp->tcp_fused) { 18122 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18123 18124 ASSERT(peer_tcp != NULL); 18125 ASSERT(peer_tcp->tcp_fused); 18126 /* 18127 * In order to change the peer's tcp_flow_stopped, 18128 * we need to take locks for both end points. The 18129 * highest address is taken first. 18130 */ 18131 if (peer_tcp > tcp) { 18132 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18133 mutex_enter(&tcp->tcp_non_sq_lock); 18134 } else { 18135 mutex_enter(&tcp->tcp_non_sq_lock); 18136 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18137 } 18138 if (peer_tcp->tcp_flow_stopped) { 18139 tcp_clrqfull(peer_tcp); 18140 TCP_STAT(tcps, tcp_fusion_backenabled); 18141 } 18142 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18143 mutex_exit(&tcp->tcp_non_sq_lock); 18144 } 18145 } 18146 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18147 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18148 mp = mi_tpi_ordrel_ind(); 18149 if (mp) { 18150 tcp->tcp_ordrel_done = B_TRUE; 18151 putnext(q, mp); 18152 if (tcp->tcp_deferred_clean_death) { 18153 /* 18154 * tcp_clean_death was deferred 18155 * for T_ORDREL_IND - do it now 18156 */ 18157 (void) tcp_clean_death(tcp, 18158 tcp->tcp_client_errno, 21); 18159 tcp->tcp_deferred_clean_death = B_FALSE; 18160 } 18161 } else { 18162 /* 18163 * Run the orderly release in the 18164 * service routine. 18165 */ 18166 qenable(q); 18167 } 18168 } 18169 if (tcp->tcp_hard_binding) { 18170 tcp->tcp_hard_binding = B_FALSE; 18171 tcp->tcp_hard_bound = B_TRUE; 18172 } 18173 18174 tcp->tcp_detached = B_FALSE; 18175 18176 /* We can enable synchronous streams now */ 18177 if (tcp->tcp_fused) { 18178 tcp_fuse_syncstr_enable_pair(tcp); 18179 } 18180 18181 if (tcp->tcp_ka_enabled) { 18182 tcp->tcp_ka_last_intrvl = 0; 18183 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18184 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18185 } 18186 18187 /* 18188 * At this point, eager is fully established and will 18189 * have the following references - 18190 * 18191 * 2 references for connection to exist (1 for TCP and 1 for IP). 18192 * 1 reference for the squeue which will be dropped by the squeue as 18193 * soon as this function returns. 18194 * There will be 1 additonal reference for being in classifier 18195 * hash list provided something bad hasn't happened. 18196 */ 18197 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18198 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18199 } 18200 18201 /* 18202 * The function called through squeue to get behind listener's perimeter to 18203 * send a deffered conn_ind. 18204 */ 18205 /* ARGSUSED */ 18206 void 18207 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18208 { 18209 conn_t *connp = (conn_t *)arg; 18210 tcp_t *listener = connp->conn_tcp; 18211 18212 if (listener->tcp_state == TCPS_CLOSED || 18213 TCP_IS_DETACHED(listener)) { 18214 /* 18215 * If listener has closed, it would have caused a 18216 * a cleanup/blowoff to happen for the eager. 18217 */ 18218 tcp_t *tcp; 18219 struct T_conn_ind *conn_ind; 18220 18221 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18222 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18223 conn_ind->OPT_length); 18224 /* 18225 * We need to drop the ref on eager that was put 18226 * tcp_rput_data() before trying to send the conn_ind 18227 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18228 * and tcp_wput_accept() is sending this deferred conn_ind but 18229 * listener is closed so we drop the ref. 18230 */ 18231 CONN_DEC_REF(tcp->tcp_connp); 18232 freemsg(mp); 18233 return; 18234 } 18235 putnext(listener->tcp_rq, mp); 18236 } 18237 18238 18239 /* 18240 * This is the STREAMS entry point for T_CONN_RES coming down on 18241 * Acceptor STREAM when sockfs listener does accept processing. 18242 * Read the block comment on top of tcp_conn_request(). 18243 */ 18244 void 18245 tcp_wput_accept(queue_t *q, mblk_t *mp) 18246 { 18247 queue_t *rq = RD(q); 18248 struct T_conn_res *conn_res; 18249 tcp_t *eager; 18250 tcp_t *listener; 18251 struct T_ok_ack *ok; 18252 t_scalar_t PRIM_type; 18253 mblk_t *opt_mp; 18254 conn_t *econnp; 18255 18256 ASSERT(DB_TYPE(mp) == M_PROTO); 18257 18258 conn_res = (struct T_conn_res *)mp->b_rptr; 18259 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18260 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18261 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18262 if (mp != NULL) 18263 putnext(rq, mp); 18264 return; 18265 } 18266 switch (conn_res->PRIM_type) { 18267 case O_T_CONN_RES: 18268 case T_CONN_RES: 18269 /* 18270 * We pass up an err ack if allocb fails. This will 18271 * cause sockfs to issue a T_DISCON_REQ which will cause 18272 * tcp_eager_blowoff to be called. sockfs will then call 18273 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18274 * we need to do the allocb up here because we have to 18275 * make sure rq->q_qinfo->qi_qclose still points to the 18276 * correct function (tcpclose_accept) in case allocb 18277 * fails. 18278 */ 18279 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18280 if (opt_mp == NULL) { 18281 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18282 if (mp != NULL) 18283 putnext(rq, mp); 18284 return; 18285 } 18286 18287 bcopy(mp->b_rptr + conn_res->OPT_offset, 18288 &eager, conn_res->OPT_length); 18289 PRIM_type = conn_res->PRIM_type; 18290 mp->b_datap->db_type = M_PCPROTO; 18291 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18292 ok = (struct T_ok_ack *)mp->b_rptr; 18293 ok->PRIM_type = T_OK_ACK; 18294 ok->CORRECT_prim = PRIM_type; 18295 econnp = eager->tcp_connp; 18296 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18297 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18298 eager->tcp_rq = rq; 18299 eager->tcp_wq = q; 18300 rq->q_ptr = econnp; 18301 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18302 q->q_ptr = econnp; 18303 q->q_qinfo = &tcp_winit; 18304 listener = eager->tcp_listener; 18305 eager->tcp_issocket = B_TRUE; 18306 18307 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18308 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18309 ASSERT(econnp->conn_netstack == 18310 listener->tcp_connp->conn_netstack); 18311 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18312 18313 /* Put the ref for IP */ 18314 CONN_INC_REF(econnp); 18315 18316 /* 18317 * We should have minimum of 3 references on the conn 18318 * at this point. One each for TCP and IP and one for 18319 * the T_conn_ind that was sent up when the 3-way handshake 18320 * completed. In the normal case we would also have another 18321 * reference (making a total of 4) for the conn being in the 18322 * classifier hash list. However the eager could have received 18323 * an RST subsequently and tcp_closei_local could have removed 18324 * the eager from the classifier hash list, hence we can't 18325 * assert that reference. 18326 */ 18327 ASSERT(econnp->conn_ref >= 3); 18328 18329 /* 18330 * Send the new local address also up to sockfs. There 18331 * should already be enough space in the mp that came 18332 * down from soaccept(). 18333 */ 18334 if (eager->tcp_family == AF_INET) { 18335 sin_t *sin; 18336 18337 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18338 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18339 sin = (sin_t *)mp->b_wptr; 18340 mp->b_wptr += sizeof (sin_t); 18341 sin->sin_family = AF_INET; 18342 sin->sin_port = eager->tcp_lport; 18343 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18344 } else { 18345 sin6_t *sin6; 18346 18347 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18348 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18349 sin6 = (sin6_t *)mp->b_wptr; 18350 mp->b_wptr += sizeof (sin6_t); 18351 sin6->sin6_family = AF_INET6; 18352 sin6->sin6_port = eager->tcp_lport; 18353 if (eager->tcp_ipversion == IPV4_VERSION) { 18354 sin6->sin6_flowinfo = 0; 18355 IN6_IPADDR_TO_V4MAPPED( 18356 eager->tcp_ipha->ipha_src, 18357 &sin6->sin6_addr); 18358 } else { 18359 ASSERT(eager->tcp_ip6h != NULL); 18360 sin6->sin6_flowinfo = 18361 eager->tcp_ip6h->ip6_vcf & 18362 ~IPV6_VERS_AND_FLOW_MASK; 18363 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18364 } 18365 sin6->sin6_scope_id = 0; 18366 sin6->__sin6_src_id = 0; 18367 } 18368 18369 putnext(rq, mp); 18370 18371 opt_mp->b_datap->db_type = M_SETOPTS; 18372 opt_mp->b_wptr += sizeof (struct stroptions); 18373 18374 /* 18375 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18376 * from listener to acceptor. The message is chained on the 18377 * bind_mp which tcp_rput_other will send down to IP. 18378 */ 18379 if (listener->tcp_bound_if != 0) { 18380 /* allocate optmgmt req */ 18381 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18382 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18383 sizeof (int)); 18384 if (mp != NULL) 18385 linkb(opt_mp, mp); 18386 } 18387 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18388 uint_t on = 1; 18389 18390 /* allocate optmgmt req */ 18391 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18392 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18393 if (mp != NULL) 18394 linkb(opt_mp, mp); 18395 } 18396 18397 18398 mutex_enter(&listener->tcp_eager_lock); 18399 18400 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18401 18402 tcp_t *tail; 18403 tcp_t *tcp; 18404 mblk_t *mp1; 18405 18406 tcp = listener->tcp_eager_prev_q0; 18407 /* 18408 * listener->tcp_eager_prev_q0 points to the TAIL of the 18409 * deferred T_conn_ind queue. We need to get to the head 18410 * of the queue in order to send up T_conn_ind the same 18411 * order as how the 3WHS is completed. 18412 */ 18413 while (tcp != listener) { 18414 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18415 !tcp->tcp_kssl_pending) 18416 break; 18417 else 18418 tcp = tcp->tcp_eager_prev_q0; 18419 } 18420 /* None of the pending eagers can be sent up now */ 18421 if (tcp == listener) 18422 goto no_more_eagers; 18423 18424 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18425 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18426 /* Move from q0 to q */ 18427 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18428 listener->tcp_conn_req_cnt_q0--; 18429 listener->tcp_conn_req_cnt_q++; 18430 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18431 tcp->tcp_eager_prev_q0; 18432 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18433 tcp->tcp_eager_next_q0; 18434 tcp->tcp_eager_prev_q0 = NULL; 18435 tcp->tcp_eager_next_q0 = NULL; 18436 tcp->tcp_conn_def_q0 = B_FALSE; 18437 18438 /* Make sure the tcp isn't in the list of droppables */ 18439 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18440 tcp->tcp_eager_prev_drop_q0 == NULL); 18441 18442 /* 18443 * Insert at end of the queue because sockfs sends 18444 * down T_CONN_RES in chronological order. Leaving 18445 * the older conn indications at front of the queue 18446 * helps reducing search time. 18447 */ 18448 tail = listener->tcp_eager_last_q; 18449 if (tail != NULL) { 18450 tail->tcp_eager_next_q = tcp; 18451 } else { 18452 listener->tcp_eager_next_q = tcp; 18453 } 18454 listener->tcp_eager_last_q = tcp; 18455 tcp->tcp_eager_next_q = NULL; 18456 18457 /* Need to get inside the listener perimeter */ 18458 CONN_INC_REF(listener->tcp_connp); 18459 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18460 tcp_send_pending, listener->tcp_connp, 18461 SQTAG_TCP_SEND_PENDING); 18462 } 18463 no_more_eagers: 18464 tcp_eager_unlink(eager); 18465 mutex_exit(&listener->tcp_eager_lock); 18466 18467 /* 18468 * At this point, the eager is detached from the listener 18469 * but we still have an extra refs on eager (apart from the 18470 * usual tcp references). The ref was placed in tcp_rput_data 18471 * before sending the conn_ind in tcp_send_conn_ind. 18472 * The ref will be dropped in tcp_accept_finish(). 18473 */ 18474 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18475 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18476 return; 18477 default: 18478 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18479 if (mp != NULL) 18480 putnext(rq, mp); 18481 return; 18482 } 18483 } 18484 18485 static int 18486 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18487 { 18488 sin_t *sin = (sin_t *)sa; 18489 sin6_t *sin6 = (sin6_t *)sa; 18490 18491 switch (tcp->tcp_family) { 18492 case AF_INET: 18493 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18494 18495 if (*salenp < sizeof (sin_t)) 18496 return (EINVAL); 18497 18498 *sin = sin_null; 18499 sin->sin_family = AF_INET; 18500 sin->sin_port = tcp->tcp_lport; 18501 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18502 break; 18503 18504 case AF_INET6: 18505 if (*salenp < sizeof (sin6_t)) 18506 return (EINVAL); 18507 18508 *sin6 = sin6_null; 18509 sin6->sin6_family = AF_INET6; 18510 sin6->sin6_port = tcp->tcp_lport; 18511 if (tcp->tcp_ipversion == IPV4_VERSION) { 18512 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18513 &sin6->sin6_addr); 18514 } else { 18515 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18516 } 18517 break; 18518 } 18519 18520 return (0); 18521 } 18522 18523 static int 18524 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18525 { 18526 sin_t *sin = (sin_t *)sa; 18527 sin6_t *sin6 = (sin6_t *)sa; 18528 18529 if (tcp->tcp_state < TCPS_SYN_RCVD) 18530 return (ENOTCONN); 18531 18532 switch (tcp->tcp_family) { 18533 case AF_INET: 18534 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18535 18536 if (*salenp < sizeof (sin_t)) 18537 return (EINVAL); 18538 18539 *sin = sin_null; 18540 sin->sin_family = AF_INET; 18541 sin->sin_port = tcp->tcp_fport; 18542 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18543 sin->sin_addr.s_addr); 18544 break; 18545 18546 case AF_INET6: 18547 if (*salenp < sizeof (sin6_t)) 18548 return (EINVAL); 18549 18550 *sin6 = sin6_null; 18551 sin6->sin6_family = AF_INET6; 18552 sin6->sin6_port = tcp->tcp_fport; 18553 sin6->sin6_addr = tcp->tcp_remote_v6; 18554 if (tcp->tcp_ipversion == IPV6_VERSION) { 18555 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18556 ~IPV6_VERS_AND_FLOW_MASK; 18557 } 18558 break; 18559 } 18560 18561 return (0); 18562 } 18563 18564 /* 18565 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18566 */ 18567 static void 18568 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18569 { 18570 void *data; 18571 mblk_t *datamp = mp->b_cont; 18572 tcp_t *tcp = Q_TO_TCP(q); 18573 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18574 18575 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18576 cmdp->cb_error = EPROTO; 18577 qreply(q, mp); 18578 return; 18579 } 18580 18581 data = datamp->b_rptr; 18582 18583 switch (cmdp->cb_cmd) { 18584 case TI_GETPEERNAME: 18585 cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len); 18586 break; 18587 case TI_GETMYNAME: 18588 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 18589 break; 18590 default: 18591 cmdp->cb_error = EINVAL; 18592 break; 18593 } 18594 18595 qreply(q, mp); 18596 } 18597 18598 void 18599 tcp_wput(queue_t *q, mblk_t *mp) 18600 { 18601 conn_t *connp = Q_TO_CONN(q); 18602 tcp_t *tcp; 18603 void (*output_proc)(); 18604 t_scalar_t type; 18605 uchar_t *rptr; 18606 struct iocblk *iocp; 18607 uint32_t msize; 18608 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18609 18610 ASSERT(connp->conn_ref >= 2); 18611 18612 switch (DB_TYPE(mp)) { 18613 case M_DATA: 18614 tcp = connp->conn_tcp; 18615 ASSERT(tcp != NULL); 18616 18617 msize = msgdsize(mp); 18618 18619 mutex_enter(&tcp->tcp_non_sq_lock); 18620 tcp->tcp_squeue_bytes += msize; 18621 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18622 tcp_setqfull(tcp); 18623 } 18624 mutex_exit(&tcp->tcp_non_sq_lock); 18625 18626 CONN_INC_REF(connp); 18627 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18628 tcp_output, connp, SQTAG_TCP_OUTPUT); 18629 return; 18630 18631 case M_CMD: 18632 tcp_wput_cmdblk(q, mp); 18633 return; 18634 18635 case M_PROTO: 18636 case M_PCPROTO: 18637 /* 18638 * if it is a snmp message, don't get behind the squeue 18639 */ 18640 tcp = connp->conn_tcp; 18641 rptr = mp->b_rptr; 18642 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18643 type = ((union T_primitives *)rptr)->type; 18644 } else { 18645 if (tcp->tcp_debug) { 18646 (void) strlog(TCP_MOD_ID, 0, 1, 18647 SL_ERROR|SL_TRACE, 18648 "tcp_wput_proto, dropping one..."); 18649 } 18650 freemsg(mp); 18651 return; 18652 } 18653 if (type == T_SVR4_OPTMGMT_REQ) { 18654 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18655 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18656 cr)) { 18657 /* 18658 * This was a SNMP request 18659 */ 18660 return; 18661 } else { 18662 output_proc = tcp_wput_proto; 18663 } 18664 } else { 18665 output_proc = tcp_wput_proto; 18666 } 18667 break; 18668 case M_IOCTL: 18669 /* 18670 * Most ioctls can be processed right away without going via 18671 * squeues - process them right here. Those that do require 18672 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18673 * are processed by tcp_wput_ioctl(). 18674 */ 18675 iocp = (struct iocblk *)mp->b_rptr; 18676 tcp = connp->conn_tcp; 18677 18678 switch (iocp->ioc_cmd) { 18679 case TCP_IOC_ABORT_CONN: 18680 tcp_ioctl_abort_conn(q, mp); 18681 return; 18682 case TI_GETPEERNAME: 18683 case TI_GETMYNAME: 18684 mi_copyin(q, mp, NULL, 18685 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18686 return; 18687 case ND_SET: 18688 /* nd_getset does the necessary checks */ 18689 case ND_GET: 18690 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18691 CALL_IP_WPUT(connp, q, mp); 18692 return; 18693 } 18694 qreply(q, mp); 18695 return; 18696 case TCP_IOC_DEFAULT_Q: 18697 /* 18698 * Wants to be the default wq. Check the credentials 18699 * first, the rest is executed via squeue. 18700 */ 18701 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18702 iocp->ioc_error = EPERM; 18703 iocp->ioc_count = 0; 18704 mp->b_datap->db_type = M_IOCACK; 18705 qreply(q, mp); 18706 return; 18707 } 18708 output_proc = tcp_wput_ioctl; 18709 break; 18710 default: 18711 output_proc = tcp_wput_ioctl; 18712 break; 18713 } 18714 break; 18715 default: 18716 output_proc = tcp_wput_nondata; 18717 break; 18718 } 18719 18720 CONN_INC_REF(connp); 18721 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18722 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18723 } 18724 18725 /* 18726 * Initial STREAMS write side put() procedure for sockets. It tries to 18727 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18728 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18729 * are handled by tcp_wput() as usual. 18730 * 18731 * All further messages will also be handled by tcp_wput() because we cannot 18732 * be sure that the above short cut is safe later. 18733 */ 18734 static void 18735 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18736 { 18737 conn_t *connp = Q_TO_CONN(wq); 18738 tcp_t *tcp = connp->conn_tcp; 18739 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18740 18741 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18742 wq->q_qinfo = &tcp_winit; 18743 18744 ASSERT(IPCL_IS_TCP(connp)); 18745 ASSERT(TCP_IS_SOCKET(tcp)); 18746 18747 if (DB_TYPE(mp) == M_PCPROTO && 18748 MBLKL(mp) == sizeof (struct T_capability_req) && 18749 car->PRIM_type == T_CAPABILITY_REQ) { 18750 tcp_capability_req(tcp, mp); 18751 return; 18752 } 18753 18754 tcp_wput(wq, mp); 18755 } 18756 18757 static boolean_t 18758 tcp_zcopy_check(tcp_t *tcp) 18759 { 18760 conn_t *connp = tcp->tcp_connp; 18761 ire_t *ire; 18762 boolean_t zc_enabled = B_FALSE; 18763 tcp_stack_t *tcps = tcp->tcp_tcps; 18764 18765 if (do_tcpzcopy == 2) 18766 zc_enabled = B_TRUE; 18767 else if (tcp->tcp_ipversion == IPV4_VERSION && 18768 IPCL_IS_CONNECTED(connp) && 18769 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18770 connp->conn_dontroute == 0 && 18771 !connp->conn_nexthop_set && 18772 connp->conn_outgoing_ill == NULL && 18773 connp->conn_nofailover_ill == NULL && 18774 do_tcpzcopy == 1) { 18775 /* 18776 * the checks above closely resemble the fast path checks 18777 * in tcp_send_data(). 18778 */ 18779 mutex_enter(&connp->conn_lock); 18780 ire = connp->conn_ire_cache; 18781 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18782 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18783 IRE_REFHOLD(ire); 18784 if (ire->ire_stq != NULL) { 18785 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18786 18787 zc_enabled = ill && (ill->ill_capabilities & 18788 ILL_CAPAB_ZEROCOPY) && 18789 (ill->ill_zerocopy_capab-> 18790 ill_zerocopy_flags != 0); 18791 } 18792 IRE_REFRELE(ire); 18793 } 18794 mutex_exit(&connp->conn_lock); 18795 } 18796 tcp->tcp_snd_zcopy_on = zc_enabled; 18797 if (!TCP_IS_DETACHED(tcp)) { 18798 if (zc_enabled) { 18799 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18800 TCP_STAT(tcps, tcp_zcopy_on); 18801 } else { 18802 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18803 TCP_STAT(tcps, tcp_zcopy_off); 18804 } 18805 } 18806 return (zc_enabled); 18807 } 18808 18809 static mblk_t * 18810 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18811 { 18812 tcp_stack_t *tcps = tcp->tcp_tcps; 18813 18814 if (do_tcpzcopy == 2) 18815 return (bp); 18816 else if (tcp->tcp_snd_zcopy_on) { 18817 tcp->tcp_snd_zcopy_on = B_FALSE; 18818 if (!TCP_IS_DETACHED(tcp)) { 18819 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18820 TCP_STAT(tcps, tcp_zcopy_disable); 18821 } 18822 } 18823 return (tcp_zcopy_backoff(tcp, bp, 0)); 18824 } 18825 18826 /* 18827 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18828 * the original desballoca'ed segmapped mblk. 18829 */ 18830 static mblk_t * 18831 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18832 { 18833 mblk_t *head, *tail, *nbp; 18834 tcp_stack_t *tcps = tcp->tcp_tcps; 18835 18836 if (IS_VMLOANED_MBLK(bp)) { 18837 TCP_STAT(tcps, tcp_zcopy_backoff); 18838 if ((head = copyb(bp)) == NULL) { 18839 /* fail to backoff; leave it for the next backoff */ 18840 tcp->tcp_xmit_zc_clean = B_FALSE; 18841 return (bp); 18842 } 18843 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18844 if (fix_xmitlist) 18845 tcp_zcopy_notify(tcp); 18846 else 18847 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18848 } 18849 nbp = bp->b_cont; 18850 if (fix_xmitlist) { 18851 head->b_prev = bp->b_prev; 18852 head->b_next = bp->b_next; 18853 if (tcp->tcp_xmit_tail == bp) 18854 tcp->tcp_xmit_tail = head; 18855 } 18856 bp->b_next = NULL; 18857 bp->b_prev = NULL; 18858 freeb(bp); 18859 } else { 18860 head = bp; 18861 nbp = bp->b_cont; 18862 } 18863 tail = head; 18864 while (nbp) { 18865 if (IS_VMLOANED_MBLK(nbp)) { 18866 TCP_STAT(tcps, tcp_zcopy_backoff); 18867 if ((tail->b_cont = copyb(nbp)) == NULL) { 18868 tcp->tcp_xmit_zc_clean = B_FALSE; 18869 tail->b_cont = nbp; 18870 return (head); 18871 } 18872 tail = tail->b_cont; 18873 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18874 if (fix_xmitlist) 18875 tcp_zcopy_notify(tcp); 18876 else 18877 tail->b_datap->db_struioflag |= 18878 STRUIO_ZCNOTIFY; 18879 } 18880 bp = nbp; 18881 nbp = nbp->b_cont; 18882 if (fix_xmitlist) { 18883 tail->b_prev = bp->b_prev; 18884 tail->b_next = bp->b_next; 18885 if (tcp->tcp_xmit_tail == bp) 18886 tcp->tcp_xmit_tail = tail; 18887 } 18888 bp->b_next = NULL; 18889 bp->b_prev = NULL; 18890 freeb(bp); 18891 } else { 18892 tail->b_cont = nbp; 18893 tail = nbp; 18894 nbp = nbp->b_cont; 18895 } 18896 } 18897 if (fix_xmitlist) { 18898 tcp->tcp_xmit_last = tail; 18899 tcp->tcp_xmit_zc_clean = B_TRUE; 18900 } 18901 return (head); 18902 } 18903 18904 static void 18905 tcp_zcopy_notify(tcp_t *tcp) 18906 { 18907 struct stdata *stp; 18908 18909 if (tcp->tcp_detached) 18910 return; 18911 stp = STREAM(tcp->tcp_rq); 18912 mutex_enter(&stp->sd_lock); 18913 stp->sd_flag |= STZCNOTIFY; 18914 cv_broadcast(&stp->sd_zcopy_wait); 18915 mutex_exit(&stp->sd_lock); 18916 } 18917 18918 static boolean_t 18919 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18920 { 18921 ire_t *ire; 18922 conn_t *connp = tcp->tcp_connp; 18923 tcp_stack_t *tcps = tcp->tcp_tcps; 18924 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18925 18926 mutex_enter(&connp->conn_lock); 18927 ire = connp->conn_ire_cache; 18928 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18929 18930 if ((ire != NULL) && 18931 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18932 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18933 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18934 IRE_REFHOLD(ire); 18935 mutex_exit(&connp->conn_lock); 18936 } else { 18937 boolean_t cached = B_FALSE; 18938 ts_label_t *tsl; 18939 18940 /* force a recheck later on */ 18941 tcp->tcp_ire_ill_check_done = B_FALSE; 18942 18943 TCP_DBGSTAT(tcps, tcp_ire_null1); 18944 connp->conn_ire_cache = NULL; 18945 mutex_exit(&connp->conn_lock); 18946 18947 if (ire != NULL) 18948 IRE_REFRELE_NOTR(ire); 18949 18950 tsl = crgetlabel(CONN_CRED(connp)); 18951 ire = (dst ? 18952 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18953 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18954 connp->conn_zoneid, tsl, ipst)); 18955 18956 if (ire == NULL) { 18957 TCP_STAT(tcps, tcp_ire_null); 18958 return (B_FALSE); 18959 } 18960 18961 IRE_REFHOLD_NOTR(ire); 18962 /* 18963 * Since we are inside the squeue, there cannot be another 18964 * thread in TCP trying to set the conn_ire_cache now. The 18965 * check for IRE_MARK_CONDEMNED ensures that an interface 18966 * unplumb thread has not yet started cleaning up the conns. 18967 * Hence we don't need to grab the conn lock. 18968 */ 18969 if (CONN_CACHE_IRE(connp)) { 18970 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18971 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18972 TCP_CHECK_IREINFO(tcp, ire); 18973 connp->conn_ire_cache = ire; 18974 cached = B_TRUE; 18975 } 18976 rw_exit(&ire->ire_bucket->irb_lock); 18977 } 18978 18979 /* 18980 * We can continue to use the ire but since it was 18981 * not cached, we should drop the extra reference. 18982 */ 18983 if (!cached) 18984 IRE_REFRELE_NOTR(ire); 18985 18986 /* 18987 * Rampart note: no need to select a new label here, since 18988 * labels are not allowed to change during the life of a TCP 18989 * connection. 18990 */ 18991 } 18992 18993 *irep = ire; 18994 18995 return (B_TRUE); 18996 } 18997 18998 /* 18999 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19000 * 19001 * 0 = success; 19002 * 1 = failed to find ire and ill. 19003 */ 19004 static boolean_t 19005 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19006 { 19007 ipha_t *ipha; 19008 ipaddr_t dst; 19009 ire_t *ire; 19010 ill_t *ill; 19011 conn_t *connp = tcp->tcp_connp; 19012 mblk_t *ire_fp_mp; 19013 tcp_stack_t *tcps = tcp->tcp_tcps; 19014 19015 if (mp != NULL) 19016 ipha = (ipha_t *)mp->b_rptr; 19017 else 19018 ipha = tcp->tcp_ipha; 19019 dst = ipha->ipha_dst; 19020 19021 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19022 return (B_FALSE); 19023 19024 if ((ire->ire_flags & RTF_MULTIRT) || 19025 (ire->ire_stq == NULL) || 19026 (ire->ire_nce == NULL) || 19027 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19028 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19029 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19030 TCP_STAT(tcps, tcp_ip_ire_send); 19031 IRE_REFRELE(ire); 19032 return (B_FALSE); 19033 } 19034 19035 ill = ire_to_ill(ire); 19036 if (connp->conn_outgoing_ill != NULL) { 19037 ill_t *conn_outgoing_ill = NULL; 19038 /* 19039 * Choose a good ill in the group to send the packets on. 19040 */ 19041 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 19042 ill = ire_to_ill(ire); 19043 } 19044 ASSERT(ill != NULL); 19045 19046 if (!tcp->tcp_ire_ill_check_done) { 19047 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19048 tcp->tcp_ire_ill_check_done = B_TRUE; 19049 } 19050 19051 *irep = ire; 19052 *illp = ill; 19053 19054 return (B_TRUE); 19055 } 19056 19057 static void 19058 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19059 { 19060 ipha_t *ipha; 19061 ipaddr_t src; 19062 ipaddr_t dst; 19063 uint32_t cksum; 19064 ire_t *ire; 19065 uint16_t *up; 19066 ill_t *ill; 19067 conn_t *connp = tcp->tcp_connp; 19068 uint32_t hcksum_txflags = 0; 19069 mblk_t *ire_fp_mp; 19070 uint_t ire_fp_mp_len; 19071 tcp_stack_t *tcps = tcp->tcp_tcps; 19072 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19073 19074 ASSERT(DB_TYPE(mp) == M_DATA); 19075 19076 if (DB_CRED(mp) == NULL) 19077 mblk_setcred(mp, CONN_CRED(connp)); 19078 19079 ipha = (ipha_t *)mp->b_rptr; 19080 src = ipha->ipha_src; 19081 dst = ipha->ipha_dst; 19082 19083 /* 19084 * Drop off fast path for IPv6 and also if options are present or 19085 * we need to resolve a TS label. 19086 */ 19087 if (tcp->tcp_ipversion != IPV4_VERSION || 19088 !IPCL_IS_CONNECTED(connp) || 19089 !CONN_IS_LSO_MD_FASTPATH(connp) || 19090 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19091 !connp->conn_ulp_labeled || 19092 ipha->ipha_ident == IP_HDR_INCLUDED || 19093 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19094 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19095 if (tcp->tcp_snd_zcopy_aware) 19096 mp = tcp_zcopy_disable(tcp, mp); 19097 TCP_STAT(tcps, tcp_ip_send); 19098 CALL_IP_WPUT(connp, q, mp); 19099 return; 19100 } 19101 19102 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19103 if (tcp->tcp_snd_zcopy_aware) 19104 mp = tcp_zcopy_backoff(tcp, mp, 0); 19105 CALL_IP_WPUT(connp, q, mp); 19106 return; 19107 } 19108 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19109 ire_fp_mp_len = MBLKL(ire_fp_mp); 19110 19111 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19112 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19113 #ifndef _BIG_ENDIAN 19114 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19115 #endif 19116 19117 /* 19118 * Check to see if we need to re-enable LSO/MDT for this connection 19119 * because it was previously disabled due to changes in the ill; 19120 * note that by doing it here, this re-enabling only applies when 19121 * the packet is not dispatched through CALL_IP_WPUT(). 19122 * 19123 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19124 * case, since that's how we ended up here. For IPv6, we do the 19125 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19126 */ 19127 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19128 /* 19129 * Restore LSO for this connection, so that next time around 19130 * it is eligible to go through tcp_lsosend() path again. 19131 */ 19132 TCP_STAT(tcps, tcp_lso_enabled); 19133 tcp->tcp_lso = B_TRUE; 19134 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19135 "interface %s\n", (void *)connp, ill->ill_name)); 19136 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19137 /* 19138 * Restore MDT for this connection, so that next time around 19139 * it is eligible to go through tcp_multisend() path again. 19140 */ 19141 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19142 tcp->tcp_mdt = B_TRUE; 19143 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19144 "interface %s\n", (void *)connp, ill->ill_name)); 19145 } 19146 19147 if (tcp->tcp_snd_zcopy_aware) { 19148 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19149 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19150 mp = tcp_zcopy_disable(tcp, mp); 19151 /* 19152 * we shouldn't need to reset ipha as the mp containing 19153 * ipha should never be a zero-copy mp. 19154 */ 19155 } 19156 19157 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19158 ASSERT(ill->ill_hcksum_capab != NULL); 19159 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19160 } 19161 19162 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19163 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19164 19165 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19166 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19167 19168 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19169 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19170 19171 /* Software checksum? */ 19172 if (DB_CKSUMFLAGS(mp) == 0) { 19173 TCP_STAT(tcps, tcp_out_sw_cksum); 19174 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19175 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19176 } 19177 19178 ipha->ipha_fragment_offset_and_flags |= 19179 (uint32_t)htons(ire->ire_frag_flag); 19180 19181 /* Calculate IP header checksum if hardware isn't capable */ 19182 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19183 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19184 ((uint16_t *)ipha)[4]); 19185 } 19186 19187 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19188 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19189 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19190 19191 UPDATE_OB_PKT_COUNT(ire); 19192 ire->ire_last_used_time = lbolt; 19193 19194 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19196 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19197 ntohs(ipha->ipha_length)); 19198 19199 if (ILL_DLS_CAPABLE(ill)) { 19200 /* 19201 * Send the packet directly to DLD, where it may be queued 19202 * depending on the availability of transmit resources at 19203 * the media layer. 19204 */ 19205 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 19206 } else { 19207 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19208 DTRACE_PROBE4(ip4__physical__out__start, 19209 ill_t *, NULL, ill_t *, out_ill, 19210 ipha_t *, ipha, mblk_t *, mp); 19211 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19212 ipst->ips_ipv4firewall_physical_out, 19213 NULL, out_ill, ipha, mp, mp, 0, ipst); 19214 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19215 if (mp != NULL) 19216 putnext(ire->ire_stq, mp); 19217 } 19218 IRE_REFRELE(ire); 19219 } 19220 19221 /* 19222 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19223 * if the receiver shrinks the window, i.e. moves the right window to the 19224 * left, the we should not send new data, but should retransmit normally the 19225 * old unacked data between suna and suna + swnd. We might has sent data 19226 * that is now outside the new window, pretend that we didn't send it. 19227 */ 19228 static void 19229 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19230 { 19231 uint32_t snxt = tcp->tcp_snxt; 19232 mblk_t *xmit_tail; 19233 int32_t offset; 19234 19235 ASSERT(shrunk_count > 0); 19236 19237 /* Pretend we didn't send the data outside the window */ 19238 snxt -= shrunk_count; 19239 19240 /* Get the mblk and the offset in it per the shrunk window */ 19241 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19242 19243 ASSERT(xmit_tail != NULL); 19244 19245 /* Reset all the values per the now shrunk window */ 19246 tcp->tcp_snxt = snxt; 19247 tcp->tcp_xmit_tail = xmit_tail; 19248 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19249 offset; 19250 tcp->tcp_unsent += shrunk_count; 19251 19252 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19253 /* 19254 * Make sure the timer is running so that we will probe a zero 19255 * window. 19256 */ 19257 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19258 } 19259 19260 19261 /* 19262 * The TCP normal data output path. 19263 * NOTE: the logic of the fast path is duplicated from this function. 19264 */ 19265 static void 19266 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19267 { 19268 int len; 19269 mblk_t *local_time; 19270 mblk_t *mp1; 19271 uint32_t snxt; 19272 int tail_unsent; 19273 int tcpstate; 19274 int usable = 0; 19275 mblk_t *xmit_tail; 19276 queue_t *q = tcp->tcp_wq; 19277 int32_t mss; 19278 int32_t num_sack_blk = 0; 19279 int32_t tcp_hdr_len; 19280 int32_t tcp_tcp_hdr_len; 19281 int mdt_thres; 19282 int rc; 19283 tcp_stack_t *tcps = tcp->tcp_tcps; 19284 ip_stack_t *ipst; 19285 19286 tcpstate = tcp->tcp_state; 19287 if (mp == NULL) { 19288 /* 19289 * tcp_wput_data() with NULL mp should only be called when 19290 * there is unsent data. 19291 */ 19292 ASSERT(tcp->tcp_unsent > 0); 19293 /* Really tacky... but we need this for detached closes. */ 19294 len = tcp->tcp_unsent; 19295 goto data_null; 19296 } 19297 19298 #if CCS_STATS 19299 wrw_stats.tot.count++; 19300 wrw_stats.tot.bytes += msgdsize(mp); 19301 #endif 19302 ASSERT(mp->b_datap->db_type == M_DATA); 19303 /* 19304 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19305 * or before a connection attempt has begun. 19306 */ 19307 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19308 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19309 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19310 #ifdef DEBUG 19311 cmn_err(CE_WARN, 19312 "tcp_wput_data: data after ordrel, %s", 19313 tcp_display(tcp, NULL, 19314 DISP_ADDR_AND_PORT)); 19315 #else 19316 if (tcp->tcp_debug) { 19317 (void) strlog(TCP_MOD_ID, 0, 1, 19318 SL_TRACE|SL_ERROR, 19319 "tcp_wput_data: data after ordrel, %s\n", 19320 tcp_display(tcp, NULL, 19321 DISP_ADDR_AND_PORT)); 19322 } 19323 #endif /* DEBUG */ 19324 } 19325 if (tcp->tcp_snd_zcopy_aware && 19326 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19327 tcp_zcopy_notify(tcp); 19328 freemsg(mp); 19329 mutex_enter(&tcp->tcp_non_sq_lock); 19330 if (tcp->tcp_flow_stopped && 19331 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19332 tcp_clrqfull(tcp); 19333 } 19334 mutex_exit(&tcp->tcp_non_sq_lock); 19335 return; 19336 } 19337 19338 /* Strip empties */ 19339 for (;;) { 19340 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19341 (uintptr_t)INT_MAX); 19342 len = (int)(mp->b_wptr - mp->b_rptr); 19343 if (len > 0) 19344 break; 19345 mp1 = mp; 19346 mp = mp->b_cont; 19347 freeb(mp1); 19348 if (!mp) { 19349 return; 19350 } 19351 } 19352 19353 /* If we are the first on the list ... */ 19354 if (tcp->tcp_xmit_head == NULL) { 19355 tcp->tcp_xmit_head = mp; 19356 tcp->tcp_xmit_tail = mp; 19357 tcp->tcp_xmit_tail_unsent = len; 19358 } else { 19359 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19360 struct datab *dp; 19361 19362 mp1 = tcp->tcp_xmit_last; 19363 if (len < tcp_tx_pull_len && 19364 (dp = mp1->b_datap)->db_ref == 1 && 19365 dp->db_lim - mp1->b_wptr >= len) { 19366 ASSERT(len > 0); 19367 ASSERT(!mp1->b_cont); 19368 if (len == 1) { 19369 *mp1->b_wptr++ = *mp->b_rptr; 19370 } else { 19371 bcopy(mp->b_rptr, mp1->b_wptr, len); 19372 mp1->b_wptr += len; 19373 } 19374 if (mp1 == tcp->tcp_xmit_tail) 19375 tcp->tcp_xmit_tail_unsent += len; 19376 mp1->b_cont = mp->b_cont; 19377 if (tcp->tcp_snd_zcopy_aware && 19378 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19379 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19380 freeb(mp); 19381 mp = mp1; 19382 } else { 19383 tcp->tcp_xmit_last->b_cont = mp; 19384 } 19385 len += tcp->tcp_unsent; 19386 } 19387 19388 /* Tack on however many more positive length mblks we have */ 19389 if ((mp1 = mp->b_cont) != NULL) { 19390 do { 19391 int tlen; 19392 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19393 (uintptr_t)INT_MAX); 19394 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19395 if (tlen <= 0) { 19396 mp->b_cont = mp1->b_cont; 19397 freeb(mp1); 19398 } else { 19399 len += tlen; 19400 mp = mp1; 19401 } 19402 } while ((mp1 = mp->b_cont) != NULL); 19403 } 19404 tcp->tcp_xmit_last = mp; 19405 tcp->tcp_unsent = len; 19406 19407 if (urgent) 19408 usable = 1; 19409 19410 data_null: 19411 snxt = tcp->tcp_snxt; 19412 xmit_tail = tcp->tcp_xmit_tail; 19413 tail_unsent = tcp->tcp_xmit_tail_unsent; 19414 19415 /* 19416 * Note that tcp_mss has been adjusted to take into account the 19417 * timestamp option if applicable. Because SACK options do not 19418 * appear in every TCP segments and they are of variable lengths, 19419 * they cannot be included in tcp_mss. Thus we need to calculate 19420 * the actual segment length when we need to send a segment which 19421 * includes SACK options. 19422 */ 19423 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19424 int32_t opt_len; 19425 19426 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19427 tcp->tcp_num_sack_blk); 19428 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19429 2 + TCPOPT_HEADER_LEN; 19430 mss = tcp->tcp_mss - opt_len; 19431 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19432 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19433 } else { 19434 mss = tcp->tcp_mss; 19435 tcp_hdr_len = tcp->tcp_hdr_len; 19436 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19437 } 19438 19439 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19440 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19441 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19442 } 19443 if (tcpstate == TCPS_SYN_RCVD) { 19444 /* 19445 * The three-way connection establishment handshake is not 19446 * complete yet. We want to queue the data for transmission 19447 * after entering ESTABLISHED state (RFC793). A jump to 19448 * "done" label effectively leaves data on the queue. 19449 */ 19450 goto done; 19451 } else { 19452 int usable_r; 19453 19454 /* 19455 * In the special case when cwnd is zero, which can only 19456 * happen if the connection is ECN capable, return now. 19457 * New segments is sent using tcp_timer(). The timer 19458 * is set in tcp_rput_data(). 19459 */ 19460 if (tcp->tcp_cwnd == 0) { 19461 /* 19462 * Note that tcp_cwnd is 0 before 3-way handshake is 19463 * finished. 19464 */ 19465 ASSERT(tcp->tcp_ecn_ok || 19466 tcp->tcp_state < TCPS_ESTABLISHED); 19467 return; 19468 } 19469 19470 /* NOTE: trouble if xmitting while SYN not acked? */ 19471 usable_r = snxt - tcp->tcp_suna; 19472 usable_r = tcp->tcp_swnd - usable_r; 19473 19474 /* 19475 * Check if the receiver has shrunk the window. If 19476 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19477 * cannot be set as there is unsent data, so FIN cannot 19478 * be sent out. Otherwise, we need to take into account 19479 * of FIN as it consumes an "invisible" sequence number. 19480 */ 19481 ASSERT(tcp->tcp_fin_sent == 0); 19482 if (usable_r < 0) { 19483 /* 19484 * The receiver has shrunk the window and we have sent 19485 * -usable_r date beyond the window, re-adjust. 19486 * 19487 * If TCP window scaling is enabled, there can be 19488 * round down error as the advertised receive window 19489 * is actually right shifted n bits. This means that 19490 * the lower n bits info is wiped out. It will look 19491 * like the window is shrunk. Do a check here to 19492 * see if the shrunk amount is actually within the 19493 * error in window calculation. If it is, just 19494 * return. Note that this check is inside the 19495 * shrunk window check. This makes sure that even 19496 * though tcp_process_shrunk_swnd() is not called, 19497 * we will stop further processing. 19498 */ 19499 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19500 tcp_process_shrunk_swnd(tcp, -usable_r); 19501 } 19502 return; 19503 } 19504 19505 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19506 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19507 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19508 19509 /* usable = MIN(usable, unsent) */ 19510 if (usable_r > len) 19511 usable_r = len; 19512 19513 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19514 if (usable_r > 0) { 19515 usable = usable_r; 19516 } else { 19517 /* Bypass all other unnecessary processing. */ 19518 goto done; 19519 } 19520 } 19521 19522 local_time = (mblk_t *)lbolt; 19523 19524 /* 19525 * "Our" Nagle Algorithm. This is not the same as in the old 19526 * BSD. This is more in line with the true intent of Nagle. 19527 * 19528 * The conditions are: 19529 * 1. The amount of unsent data (or amount of data which can be 19530 * sent, whichever is smaller) is less than Nagle limit. 19531 * 2. The last sent size is also less than Nagle limit. 19532 * 3. There is unack'ed data. 19533 * 4. Urgent pointer is not set. Send urgent data ignoring the 19534 * Nagle algorithm. This reduces the probability that urgent 19535 * bytes get "merged" together. 19536 * 5. The app has not closed the connection. This eliminates the 19537 * wait time of the receiving side waiting for the last piece of 19538 * (small) data. 19539 * 19540 * If all are satisified, exit without sending anything. Note 19541 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19542 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19543 * 4095). 19544 */ 19545 if (usable < (int)tcp->tcp_naglim && 19546 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19547 snxt != tcp->tcp_suna && 19548 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19549 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19550 goto done; 19551 } 19552 19553 if (tcp->tcp_cork) { 19554 /* 19555 * if the tcp->tcp_cork option is set, then we have to force 19556 * TCP not to send partial segment (smaller than MSS bytes). 19557 * We are calculating the usable now based on full mss and 19558 * will save the rest of remaining data for later. 19559 */ 19560 if (usable < mss) 19561 goto done; 19562 usable = (usable / mss) * mss; 19563 } 19564 19565 /* Update the latest receive window size in TCP header. */ 19566 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19567 tcp->tcp_tcph->th_win); 19568 19569 /* 19570 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19571 * 19572 * 1. Simple TCP/IP{v4,v6} (no options). 19573 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19574 * 3. If the TCP connection is in ESTABLISHED state. 19575 * 4. The TCP is not detached. 19576 * 19577 * If any of the above conditions have changed during the 19578 * connection, stop using LSO/MDT and restore the stream head 19579 * parameters accordingly. 19580 */ 19581 ipst = tcps->tcps_netstack->netstack_ip; 19582 19583 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19584 ((tcp->tcp_ipversion == IPV4_VERSION && 19585 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19586 (tcp->tcp_ipversion == IPV6_VERSION && 19587 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19588 tcp->tcp_state != TCPS_ESTABLISHED || 19589 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19590 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19591 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19592 if (tcp->tcp_lso) { 19593 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19594 tcp->tcp_lso = B_FALSE; 19595 } else { 19596 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19597 tcp->tcp_mdt = B_FALSE; 19598 } 19599 19600 /* Anything other than detached is considered pathological */ 19601 if (!TCP_IS_DETACHED(tcp)) { 19602 if (tcp->tcp_lso) 19603 TCP_STAT(tcps, tcp_lso_disabled); 19604 else 19605 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19606 (void) tcp_maxpsz_set(tcp, B_TRUE); 19607 } 19608 } 19609 19610 /* Use MDT if sendable amount is greater than the threshold */ 19611 if (tcp->tcp_mdt && 19612 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19613 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19614 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19615 (tcp->tcp_valid_bits == 0 || 19616 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19617 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19618 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19619 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19620 local_time, mdt_thres); 19621 } else { 19622 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19623 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19624 local_time, INT_MAX); 19625 } 19626 19627 /* Pretend that all we were trying to send really got sent */ 19628 if (rc < 0 && tail_unsent < 0) { 19629 do { 19630 xmit_tail = xmit_tail->b_cont; 19631 xmit_tail->b_prev = local_time; 19632 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19633 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19634 tail_unsent += (int)(xmit_tail->b_wptr - 19635 xmit_tail->b_rptr); 19636 } while (tail_unsent < 0); 19637 } 19638 done:; 19639 tcp->tcp_xmit_tail = xmit_tail; 19640 tcp->tcp_xmit_tail_unsent = tail_unsent; 19641 len = tcp->tcp_snxt - snxt; 19642 if (len) { 19643 /* 19644 * If new data was sent, need to update the notsack 19645 * list, which is, afterall, data blocks that have 19646 * not been sack'ed by the receiver. New data is 19647 * not sack'ed. 19648 */ 19649 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19650 /* len is a negative value. */ 19651 tcp->tcp_pipe -= len; 19652 tcp_notsack_update(&(tcp->tcp_notsack_list), 19653 tcp->tcp_snxt, snxt, 19654 &(tcp->tcp_num_notsack_blk), 19655 &(tcp->tcp_cnt_notsack_list)); 19656 } 19657 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19658 tcp->tcp_rack = tcp->tcp_rnxt; 19659 tcp->tcp_rack_cnt = 0; 19660 if ((snxt + len) == tcp->tcp_suna) { 19661 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19662 } 19663 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19664 /* 19665 * Didn't send anything. Make sure the timer is running 19666 * so that we will probe a zero window. 19667 */ 19668 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19669 } 19670 /* Note that len is the amount we just sent but with a negative sign */ 19671 tcp->tcp_unsent += len; 19672 mutex_enter(&tcp->tcp_non_sq_lock); 19673 if (tcp->tcp_flow_stopped) { 19674 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19675 tcp_clrqfull(tcp); 19676 } 19677 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19678 tcp_setqfull(tcp); 19679 } 19680 mutex_exit(&tcp->tcp_non_sq_lock); 19681 } 19682 19683 /* 19684 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19685 * outgoing TCP header with the template header, as well as other 19686 * options such as time-stamp, ECN and/or SACK. 19687 */ 19688 static void 19689 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19690 { 19691 tcph_t *tcp_tmpl, *tcp_h; 19692 uint32_t *dst, *src; 19693 int hdrlen; 19694 19695 ASSERT(OK_32PTR(rptr)); 19696 19697 /* Template header */ 19698 tcp_tmpl = tcp->tcp_tcph; 19699 19700 /* Header of outgoing packet */ 19701 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19702 19703 /* dst and src are opaque 32-bit fields, used for copying */ 19704 dst = (uint32_t *)rptr; 19705 src = (uint32_t *)tcp->tcp_iphc; 19706 hdrlen = tcp->tcp_hdr_len; 19707 19708 /* Fill time-stamp option if needed */ 19709 if (tcp->tcp_snd_ts_ok) { 19710 U32_TO_BE32((uint32_t)now, 19711 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19712 U32_TO_BE32(tcp->tcp_ts_recent, 19713 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19714 } else { 19715 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19716 } 19717 19718 /* 19719 * Copy the template header; is this really more efficient than 19720 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19721 * but perhaps not for other scenarios. 19722 */ 19723 dst[0] = src[0]; 19724 dst[1] = src[1]; 19725 dst[2] = src[2]; 19726 dst[3] = src[3]; 19727 dst[4] = src[4]; 19728 dst[5] = src[5]; 19729 dst[6] = src[6]; 19730 dst[7] = src[7]; 19731 dst[8] = src[8]; 19732 dst[9] = src[9]; 19733 if (hdrlen -= 40) { 19734 hdrlen >>= 2; 19735 dst += 10; 19736 src += 10; 19737 do { 19738 *dst++ = *src++; 19739 } while (--hdrlen); 19740 } 19741 19742 /* 19743 * Set the ECN info in the TCP header if it is not a zero 19744 * window probe. Zero window probe is only sent in 19745 * tcp_wput_data() and tcp_timer(). 19746 */ 19747 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19748 SET_ECT(tcp, rptr); 19749 19750 if (tcp->tcp_ecn_echo_on) 19751 tcp_h->th_flags[0] |= TH_ECE; 19752 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19753 tcp_h->th_flags[0] |= TH_CWR; 19754 tcp->tcp_ecn_cwr_sent = B_TRUE; 19755 } 19756 } 19757 19758 /* Fill in SACK options */ 19759 if (num_sack_blk > 0) { 19760 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19761 sack_blk_t *tmp; 19762 int32_t i; 19763 19764 wptr[0] = TCPOPT_NOP; 19765 wptr[1] = TCPOPT_NOP; 19766 wptr[2] = TCPOPT_SACK; 19767 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19768 sizeof (sack_blk_t); 19769 wptr += TCPOPT_REAL_SACK_LEN; 19770 19771 tmp = tcp->tcp_sack_list; 19772 for (i = 0; i < num_sack_blk; i++) { 19773 U32_TO_BE32(tmp[i].begin, wptr); 19774 wptr += sizeof (tcp_seq); 19775 U32_TO_BE32(tmp[i].end, wptr); 19776 wptr += sizeof (tcp_seq); 19777 } 19778 tcp_h->th_offset_and_rsrvd[0] += 19779 ((num_sack_blk * 2 + 1) << 4); 19780 } 19781 } 19782 19783 /* 19784 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19785 * the destination address and SAP attribute, and if necessary, the 19786 * hardware checksum offload attribute to a Multidata message. 19787 */ 19788 static int 19789 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19790 const uint32_t start, const uint32_t stuff, const uint32_t end, 19791 const uint32_t flags, tcp_stack_t *tcps) 19792 { 19793 /* Add global destination address & SAP attribute */ 19794 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19795 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19796 "destination address+SAP\n")); 19797 19798 if (dlmp != NULL) 19799 TCP_STAT(tcps, tcp_mdt_allocfail); 19800 return (-1); 19801 } 19802 19803 /* Add global hwcksum attribute */ 19804 if (hwcksum && 19805 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19806 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19807 "checksum attribute\n")); 19808 19809 TCP_STAT(tcps, tcp_mdt_allocfail); 19810 return (-1); 19811 } 19812 19813 return (0); 19814 } 19815 19816 /* 19817 * Smaller and private version of pdescinfo_t used specifically for TCP, 19818 * which allows for only two payload spans per packet. 19819 */ 19820 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19821 19822 /* 19823 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19824 * scheme, and returns one the following: 19825 * 19826 * -1 = failed allocation. 19827 * 0 = success; burst count reached, or usable send window is too small, 19828 * and that we'd rather wait until later before sending again. 19829 */ 19830 static int 19831 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19832 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19833 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19834 const int mdt_thres) 19835 { 19836 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19837 multidata_t *mmd; 19838 uint_t obsegs, obbytes, hdr_frag_sz; 19839 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19840 int num_burst_seg, max_pld; 19841 pdesc_t *pkt; 19842 tcp_pdescinfo_t tcp_pkt_info; 19843 pdescinfo_t *pkt_info; 19844 int pbuf_idx, pbuf_idx_nxt; 19845 int seg_len, len, spill, af; 19846 boolean_t add_buffer, zcopy, clusterwide; 19847 boolean_t buf_trunked = B_FALSE; 19848 boolean_t rconfirm = B_FALSE; 19849 boolean_t done = B_FALSE; 19850 uint32_t cksum; 19851 uint32_t hwcksum_flags; 19852 ire_t *ire = NULL; 19853 ill_t *ill; 19854 ipha_t *ipha; 19855 ip6_t *ip6h; 19856 ipaddr_t src, dst; 19857 ill_zerocopy_capab_t *zc_cap = NULL; 19858 uint16_t *up; 19859 int err; 19860 conn_t *connp; 19861 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19862 uchar_t *pld_start; 19863 tcp_stack_t *tcps = tcp->tcp_tcps; 19864 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19865 19866 #ifdef _BIG_ENDIAN 19867 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19868 #else 19869 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19870 #endif 19871 19872 #define PREP_NEW_MULTIDATA() { \ 19873 mmd = NULL; \ 19874 md_mp = md_hbuf = NULL; \ 19875 cur_hdr_off = 0; \ 19876 max_pld = tcp->tcp_mdt_max_pld; \ 19877 pbuf_idx = pbuf_idx_nxt = -1; \ 19878 add_buffer = B_TRUE; \ 19879 zcopy = B_FALSE; \ 19880 } 19881 19882 #define PREP_NEW_PBUF() { \ 19883 md_pbuf = md_pbuf_nxt = NULL; \ 19884 pbuf_idx = pbuf_idx_nxt = -1; \ 19885 cur_pld_off = 0; \ 19886 first_snxt = *snxt; \ 19887 ASSERT(*tail_unsent > 0); \ 19888 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19889 } 19890 19891 ASSERT(mdt_thres >= mss); 19892 ASSERT(*usable > 0 && *usable > mdt_thres); 19893 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19894 ASSERT(!TCP_IS_DETACHED(tcp)); 19895 ASSERT(tcp->tcp_valid_bits == 0 || 19896 tcp->tcp_valid_bits == TCP_FSS_VALID); 19897 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19898 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19899 (tcp->tcp_ipversion == IPV6_VERSION && 19900 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19901 19902 connp = tcp->tcp_connp; 19903 ASSERT(connp != NULL); 19904 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19905 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19906 19907 /* 19908 * Note that tcp will only declare at most 2 payload spans per 19909 * packet, which is much lower than the maximum allowable number 19910 * of packet spans per Multidata. For this reason, we use the 19911 * privately declared and smaller descriptor info structure, in 19912 * order to save some stack space. 19913 */ 19914 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19915 19916 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19917 if (af == AF_INET) { 19918 dst = tcp->tcp_ipha->ipha_dst; 19919 src = tcp->tcp_ipha->ipha_src; 19920 ASSERT(!CLASSD(dst)); 19921 } 19922 ASSERT(af == AF_INET || 19923 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19924 19925 obsegs = obbytes = 0; 19926 num_burst_seg = tcp->tcp_snd_burst; 19927 md_mp_head = NULL; 19928 PREP_NEW_MULTIDATA(); 19929 19930 /* 19931 * Before we go on further, make sure there is an IRE that we can 19932 * use, and that the ILL supports MDT. Otherwise, there's no point 19933 * in proceeding any further, and we should just hand everything 19934 * off to the legacy path. 19935 */ 19936 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19937 goto legacy_send_no_md; 19938 19939 ASSERT(ire != NULL); 19940 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19941 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19942 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19943 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19944 /* 19945 * If we do support loopback for MDT (which requires modifications 19946 * to the receiving paths), the following assertions should go away, 19947 * and we would be sending the Multidata to loopback conn later on. 19948 */ 19949 ASSERT(!IRE_IS_LOCAL(ire)); 19950 ASSERT(ire->ire_stq != NULL); 19951 19952 ill = ire_to_ill(ire); 19953 ASSERT(ill != NULL); 19954 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19955 19956 if (!tcp->tcp_ire_ill_check_done) { 19957 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19958 tcp->tcp_ire_ill_check_done = B_TRUE; 19959 } 19960 19961 /* 19962 * If the underlying interface conditions have changed, or if the 19963 * new interface does not support MDT, go back to legacy path. 19964 */ 19965 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19966 /* don't go through this path anymore for this connection */ 19967 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19968 tcp->tcp_mdt = B_FALSE; 19969 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19970 "interface %s\n", (void *)connp, ill->ill_name)); 19971 /* IRE will be released prior to returning */ 19972 goto legacy_send_no_md; 19973 } 19974 19975 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19976 zc_cap = ill->ill_zerocopy_capab; 19977 19978 /* 19979 * Check if we can take tcp fast-path. Note that "incomplete" 19980 * ire's (where the link-layer for next hop is not resolved 19981 * or where the fast-path header in nce_fp_mp is not available 19982 * yet) are sent down the legacy (slow) path. 19983 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19984 */ 19985 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19986 /* IRE will be released prior to returning */ 19987 goto legacy_send_no_md; 19988 } 19989 19990 /* go to legacy path if interface doesn't support zerocopy */ 19991 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19992 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19993 /* IRE will be released prior to returning */ 19994 goto legacy_send_no_md; 19995 } 19996 19997 /* does the interface support hardware checksum offload? */ 19998 hwcksum_flags = 0; 19999 if (ILL_HCKSUM_CAPABLE(ill) && 20000 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20001 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20002 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20003 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20004 HCKSUM_IPHDRCKSUM) 20005 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20006 20007 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20008 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20009 hwcksum_flags |= HCK_FULLCKSUM; 20010 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20011 HCKSUM_INET_PARTIAL) 20012 hwcksum_flags |= HCK_PARTIALCKSUM; 20013 } 20014 20015 /* 20016 * Each header fragment consists of the leading extra space, 20017 * followed by the TCP/IP header, and the trailing extra space. 20018 * We make sure that each header fragment begins on a 32-bit 20019 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20020 * aligned in tcp_mdt_update). 20021 */ 20022 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20023 tcp->tcp_mdt_hdr_tail), 4); 20024 20025 /* are we starting from the beginning of data block? */ 20026 if (*tail_unsent == 0) { 20027 *xmit_tail = (*xmit_tail)->b_cont; 20028 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20029 *tail_unsent = (int)MBLKL(*xmit_tail); 20030 } 20031 20032 /* 20033 * Here we create one or more Multidata messages, each made up of 20034 * one header buffer and up to N payload buffers. This entire 20035 * operation is done within two loops: 20036 * 20037 * The outer loop mostly deals with creating the Multidata message, 20038 * as well as the header buffer that gets added to it. It also 20039 * links the Multidata messages together such that all of them can 20040 * be sent down to the lower layer in a single putnext call; this 20041 * linking behavior depends on the tcp_mdt_chain tunable. 20042 * 20043 * The inner loop takes an existing Multidata message, and adds 20044 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20045 * packetizes those buffers by filling up the corresponding header 20046 * buffer fragments with the proper IP and TCP headers, and by 20047 * describing the layout of each packet in the packet descriptors 20048 * that get added to the Multidata. 20049 */ 20050 do { 20051 /* 20052 * If usable send window is too small, or data blocks in 20053 * transmit list are smaller than our threshold (i.e. app 20054 * performs large writes followed by small ones), we hand 20055 * off the control over to the legacy path. Note that we'll 20056 * get back the control once it encounters a large block. 20057 */ 20058 if (*usable < mss || (*tail_unsent <= mdt_thres && 20059 (*xmit_tail)->b_cont != NULL && 20060 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20061 /* send down what we've got so far */ 20062 if (md_mp_head != NULL) { 20063 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20064 obsegs, obbytes, &rconfirm); 20065 } 20066 /* 20067 * Pass control over to tcp_send(), but tell it to 20068 * return to us once a large-size transmission is 20069 * possible. 20070 */ 20071 TCP_STAT(tcps, tcp_mdt_legacy_small); 20072 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20073 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20074 tail_unsent, xmit_tail, local_time, 20075 mdt_thres)) <= 0) { 20076 /* burst count reached, or alloc failed */ 20077 IRE_REFRELE(ire); 20078 return (err); 20079 } 20080 20081 /* tcp_send() may have sent everything, so check */ 20082 if (*usable <= 0) { 20083 IRE_REFRELE(ire); 20084 return (0); 20085 } 20086 20087 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20088 /* 20089 * We may have delivered the Multidata, so make sure 20090 * to re-initialize before the next round. 20091 */ 20092 md_mp_head = NULL; 20093 obsegs = obbytes = 0; 20094 num_burst_seg = tcp->tcp_snd_burst; 20095 PREP_NEW_MULTIDATA(); 20096 20097 /* are we starting from the beginning of data block? */ 20098 if (*tail_unsent == 0) { 20099 *xmit_tail = (*xmit_tail)->b_cont; 20100 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20101 (uintptr_t)INT_MAX); 20102 *tail_unsent = (int)MBLKL(*xmit_tail); 20103 } 20104 } 20105 20106 /* 20107 * max_pld limits the number of mblks in tcp's transmit 20108 * queue that can be added to a Multidata message. Once 20109 * this counter reaches zero, no more additional mblks 20110 * can be added to it. What happens afterwards depends 20111 * on whether or not we are set to chain the Multidata 20112 * messages. If we are to link them together, reset 20113 * max_pld to its original value (tcp_mdt_max_pld) and 20114 * prepare to create a new Multidata message which will 20115 * get linked to md_mp_head. Else, leave it alone and 20116 * let the inner loop break on its own. 20117 */ 20118 if (tcp_mdt_chain && max_pld == 0) 20119 PREP_NEW_MULTIDATA(); 20120 20121 /* adding a payload buffer; re-initialize values */ 20122 if (add_buffer) 20123 PREP_NEW_PBUF(); 20124 20125 /* 20126 * If we don't have a Multidata, either because we just 20127 * (re)entered this outer loop, or after we branched off 20128 * to tcp_send above, setup the Multidata and header 20129 * buffer to be used. 20130 */ 20131 if (md_mp == NULL) { 20132 int md_hbuflen; 20133 uint32_t start, stuff; 20134 20135 /* 20136 * Calculate Multidata header buffer size large enough 20137 * to hold all of the headers that can possibly be 20138 * sent at this moment. We'd rather over-estimate 20139 * the size than running out of space; this is okay 20140 * since this buffer is small anyway. 20141 */ 20142 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20143 20144 /* 20145 * Start and stuff offset for partial hardware 20146 * checksum offload; these are currently for IPv4. 20147 * For full checksum offload, they are set to zero. 20148 */ 20149 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20150 if (af == AF_INET) { 20151 start = IP_SIMPLE_HDR_LENGTH; 20152 stuff = IP_SIMPLE_HDR_LENGTH + 20153 TCP_CHECKSUM_OFFSET; 20154 } else { 20155 start = IPV6_HDR_LEN; 20156 stuff = IPV6_HDR_LEN + 20157 TCP_CHECKSUM_OFFSET; 20158 } 20159 } else { 20160 start = stuff = 0; 20161 } 20162 20163 /* 20164 * Create the header buffer, Multidata, as well as 20165 * any necessary attributes (destination address, 20166 * SAP and hardware checksum offload) that should 20167 * be associated with the Multidata message. 20168 */ 20169 ASSERT(cur_hdr_off == 0); 20170 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20171 ((md_hbuf->b_wptr += md_hbuflen), 20172 (mmd = mmd_alloc(md_hbuf, &md_mp, 20173 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20174 /* fastpath mblk */ 20175 ire->ire_nce->nce_res_mp, 20176 /* hardware checksum enabled */ 20177 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20178 /* hardware checksum offsets */ 20179 start, stuff, 0, 20180 /* hardware checksum flag */ 20181 hwcksum_flags, tcps) != 0)) { 20182 legacy_send: 20183 if (md_mp != NULL) { 20184 /* Unlink message from the chain */ 20185 if (md_mp_head != NULL) { 20186 err = (intptr_t)rmvb(md_mp_head, 20187 md_mp); 20188 /* 20189 * We can't assert that rmvb 20190 * did not return -1, since we 20191 * may get here before linkb 20192 * happens. We do, however, 20193 * check if we just removed the 20194 * only element in the list. 20195 */ 20196 if (err == 0) 20197 md_mp_head = NULL; 20198 } 20199 /* md_hbuf gets freed automatically */ 20200 TCP_STAT(tcps, tcp_mdt_discarded); 20201 freeb(md_mp); 20202 } else { 20203 /* Either allocb or mmd_alloc failed */ 20204 TCP_STAT(tcps, tcp_mdt_allocfail); 20205 if (md_hbuf != NULL) 20206 freeb(md_hbuf); 20207 } 20208 20209 /* send down what we've got so far */ 20210 if (md_mp_head != NULL) { 20211 tcp_multisend_data(tcp, ire, ill, 20212 md_mp_head, obsegs, obbytes, 20213 &rconfirm); 20214 } 20215 legacy_send_no_md: 20216 if (ire != NULL) 20217 IRE_REFRELE(ire); 20218 /* 20219 * Too bad; let the legacy path handle this. 20220 * We specify INT_MAX for the threshold, since 20221 * we gave up with the Multidata processings 20222 * and let the old path have it all. 20223 */ 20224 TCP_STAT(tcps, tcp_mdt_legacy_all); 20225 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20226 tcp_tcp_hdr_len, num_sack_blk, usable, 20227 snxt, tail_unsent, xmit_tail, local_time, 20228 INT_MAX)); 20229 } 20230 20231 /* link to any existing ones, if applicable */ 20232 TCP_STAT(tcps, tcp_mdt_allocd); 20233 if (md_mp_head == NULL) { 20234 md_mp_head = md_mp; 20235 } else if (tcp_mdt_chain) { 20236 TCP_STAT(tcps, tcp_mdt_linked); 20237 linkb(md_mp_head, md_mp); 20238 } 20239 } 20240 20241 ASSERT(md_mp_head != NULL); 20242 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20243 ASSERT(md_mp != NULL && mmd != NULL); 20244 ASSERT(md_hbuf != NULL); 20245 20246 /* 20247 * Packetize the transmittable portion of the data block; 20248 * each data block is essentially added to the Multidata 20249 * as a payload buffer. We also deal with adding more 20250 * than one payload buffers, which happens when the remaining 20251 * packetized portion of the current payload buffer is less 20252 * than MSS, while the next data block in transmit queue 20253 * has enough data to make up for one. This "spillover" 20254 * case essentially creates a split-packet, where portions 20255 * of the packet's payload fragments may span across two 20256 * virtually discontiguous address blocks. 20257 */ 20258 seg_len = mss; 20259 do { 20260 len = seg_len; 20261 20262 ASSERT(len > 0); 20263 ASSERT(max_pld >= 0); 20264 ASSERT(!add_buffer || cur_pld_off == 0); 20265 20266 /* 20267 * First time around for this payload buffer; note 20268 * in the case of a spillover, the following has 20269 * been done prior to adding the split-packet 20270 * descriptor to Multidata, and we don't want to 20271 * repeat the process. 20272 */ 20273 if (add_buffer) { 20274 ASSERT(mmd != NULL); 20275 ASSERT(md_pbuf == NULL); 20276 ASSERT(md_pbuf_nxt == NULL); 20277 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20278 20279 /* 20280 * Have we reached the limit? We'd get to 20281 * this case when we're not chaining the 20282 * Multidata messages together, and since 20283 * we're done, terminate this loop. 20284 */ 20285 if (max_pld == 0) 20286 break; /* done */ 20287 20288 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20289 TCP_STAT(tcps, tcp_mdt_allocfail); 20290 goto legacy_send; /* out_of_mem */ 20291 } 20292 20293 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20294 zc_cap != NULL) { 20295 if (!ip_md_zcopy_attr(mmd, NULL, 20296 zc_cap->ill_zerocopy_flags)) { 20297 freeb(md_pbuf); 20298 TCP_STAT(tcps, 20299 tcp_mdt_allocfail); 20300 /* out_of_mem */ 20301 goto legacy_send; 20302 } 20303 zcopy = B_TRUE; 20304 } 20305 20306 md_pbuf->b_rptr += base_pld_off; 20307 20308 /* 20309 * Add a payload buffer to the Multidata; this 20310 * operation must not fail, or otherwise our 20311 * logic in this routine is broken. There 20312 * is no memory allocation done by the 20313 * routine, so any returned failure simply 20314 * tells us that we've done something wrong. 20315 * 20316 * A failure tells us that either we're adding 20317 * the same payload buffer more than once, or 20318 * we're trying to add more buffers than 20319 * allowed (max_pld calculation is wrong). 20320 * None of the above cases should happen, and 20321 * we panic because either there's horrible 20322 * heap corruption, and/or programming mistake. 20323 */ 20324 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20325 if (pbuf_idx < 0) { 20326 cmn_err(CE_PANIC, "tcp_multisend: " 20327 "payload buffer logic error " 20328 "detected for tcp %p mmd %p " 20329 "pbuf %p (%d)\n", 20330 (void *)tcp, (void *)mmd, 20331 (void *)md_pbuf, pbuf_idx); 20332 } 20333 20334 ASSERT(max_pld > 0); 20335 --max_pld; 20336 add_buffer = B_FALSE; 20337 } 20338 20339 ASSERT(md_mp_head != NULL); 20340 ASSERT(md_pbuf != NULL); 20341 ASSERT(md_pbuf_nxt == NULL); 20342 ASSERT(pbuf_idx != -1); 20343 ASSERT(pbuf_idx_nxt == -1); 20344 ASSERT(*usable > 0); 20345 20346 /* 20347 * We spillover to the next payload buffer only 20348 * if all of the following is true: 20349 * 20350 * 1. There is not enough data on the current 20351 * payload buffer to make up `len', 20352 * 2. We are allowed to send `len', 20353 * 3. The next payload buffer length is large 20354 * enough to accomodate `spill'. 20355 */ 20356 if ((spill = len - *tail_unsent) > 0 && 20357 *usable >= len && 20358 MBLKL((*xmit_tail)->b_cont) >= spill && 20359 max_pld > 0) { 20360 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20361 if (md_pbuf_nxt == NULL) { 20362 TCP_STAT(tcps, tcp_mdt_allocfail); 20363 goto legacy_send; /* out_of_mem */ 20364 } 20365 20366 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20367 zc_cap != NULL) { 20368 if (!ip_md_zcopy_attr(mmd, NULL, 20369 zc_cap->ill_zerocopy_flags)) { 20370 freeb(md_pbuf_nxt); 20371 TCP_STAT(tcps, 20372 tcp_mdt_allocfail); 20373 /* out_of_mem */ 20374 goto legacy_send; 20375 } 20376 zcopy = B_TRUE; 20377 } 20378 20379 /* 20380 * See comments above on the first call to 20381 * mmd_addpldbuf for explanation on the panic. 20382 */ 20383 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20384 if (pbuf_idx_nxt < 0) { 20385 panic("tcp_multisend: " 20386 "next payload buffer logic error " 20387 "detected for tcp %p mmd %p " 20388 "pbuf %p (%d)\n", 20389 (void *)tcp, (void *)mmd, 20390 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20391 } 20392 20393 ASSERT(max_pld > 0); 20394 --max_pld; 20395 } else if (spill > 0) { 20396 /* 20397 * If there's a spillover, but the following 20398 * xmit_tail couldn't give us enough octets 20399 * to reach "len", then stop the current 20400 * Multidata creation and let the legacy 20401 * tcp_send() path take over. We don't want 20402 * to send the tiny segment as part of this 20403 * Multidata for performance reasons; instead, 20404 * we let the legacy path deal with grouping 20405 * it with the subsequent small mblks. 20406 */ 20407 if (*usable >= len && 20408 MBLKL((*xmit_tail)->b_cont) < spill) { 20409 max_pld = 0; 20410 break; /* done */ 20411 } 20412 20413 /* 20414 * We can't spillover, and we are near 20415 * the end of the current payload buffer, 20416 * so send what's left. 20417 */ 20418 ASSERT(*tail_unsent > 0); 20419 len = *tail_unsent; 20420 } 20421 20422 /* tail_unsent is negated if there is a spillover */ 20423 *tail_unsent -= len; 20424 *usable -= len; 20425 ASSERT(*usable >= 0); 20426 20427 if (*usable < mss) 20428 seg_len = *usable; 20429 /* 20430 * Sender SWS avoidance; see comments in tcp_send(); 20431 * everything else is the same, except that we only 20432 * do this here if there is no more data to be sent 20433 * following the current xmit_tail. We don't check 20434 * for 1-byte urgent data because we shouldn't get 20435 * here if TCP_URG_VALID is set. 20436 */ 20437 if (*usable > 0 && *usable < mss && 20438 ((md_pbuf_nxt == NULL && 20439 (*xmit_tail)->b_cont == NULL) || 20440 (md_pbuf_nxt != NULL && 20441 (*xmit_tail)->b_cont->b_cont == NULL)) && 20442 seg_len < (tcp->tcp_max_swnd >> 1) && 20443 (tcp->tcp_unsent - 20444 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20445 !tcp->tcp_zero_win_probe) { 20446 if ((*snxt + len) == tcp->tcp_snxt && 20447 (*snxt + len) == tcp->tcp_suna) { 20448 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20449 } 20450 done = B_TRUE; 20451 } 20452 20453 /* 20454 * Prime pump for IP's checksumming on our behalf; 20455 * include the adjustment for a source route if any. 20456 * Do this only for software/partial hardware checksum 20457 * offload, as this field gets zeroed out later for 20458 * the full hardware checksum offload case. 20459 */ 20460 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20461 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20462 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20463 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20464 } 20465 20466 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20467 *snxt += len; 20468 20469 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20470 /* 20471 * We set the PUSH bit only if TCP has no more buffered 20472 * data to be transmitted (or if sender SWS avoidance 20473 * takes place), as opposed to setting it for every 20474 * last packet in the burst. 20475 */ 20476 if (done || 20477 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20478 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20479 20480 /* 20481 * Set FIN bit if this is our last segment; snxt 20482 * already includes its length, and it will not 20483 * be adjusted after this point. 20484 */ 20485 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20486 *snxt == tcp->tcp_fss) { 20487 if (!tcp->tcp_fin_acked) { 20488 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20489 BUMP_MIB(&tcps->tcps_mib, 20490 tcpOutControl); 20491 } 20492 if (!tcp->tcp_fin_sent) { 20493 tcp->tcp_fin_sent = B_TRUE; 20494 /* 20495 * tcp state must be ESTABLISHED 20496 * in order for us to get here in 20497 * the first place. 20498 */ 20499 tcp->tcp_state = TCPS_FIN_WAIT_1; 20500 20501 /* 20502 * Upon returning from this routine, 20503 * tcp_wput_data() will set tcp_snxt 20504 * to be equal to snxt + tcp_fin_sent. 20505 * This is essentially the same as 20506 * setting it to tcp_fss + 1. 20507 */ 20508 } 20509 } 20510 20511 tcp->tcp_last_sent_len = (ushort_t)len; 20512 20513 len += tcp_hdr_len; 20514 if (tcp->tcp_ipversion == IPV4_VERSION) 20515 tcp->tcp_ipha->ipha_length = htons(len); 20516 else 20517 tcp->tcp_ip6h->ip6_plen = htons(len - 20518 ((char *)&tcp->tcp_ip6h[1] - 20519 tcp->tcp_iphc)); 20520 20521 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20522 20523 /* setup header fragment */ 20524 PDESC_HDR_ADD(pkt_info, 20525 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20526 tcp->tcp_mdt_hdr_head, /* head room */ 20527 tcp_hdr_len, /* len */ 20528 tcp->tcp_mdt_hdr_tail); /* tail room */ 20529 20530 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20531 hdr_frag_sz); 20532 ASSERT(MBLKIN(md_hbuf, 20533 (pkt_info->hdr_base - md_hbuf->b_rptr), 20534 PDESC_HDRSIZE(pkt_info))); 20535 20536 /* setup first payload fragment */ 20537 PDESC_PLD_INIT(pkt_info); 20538 PDESC_PLD_SPAN_ADD(pkt_info, 20539 pbuf_idx, /* index */ 20540 md_pbuf->b_rptr + cur_pld_off, /* start */ 20541 tcp->tcp_last_sent_len); /* len */ 20542 20543 /* create a split-packet in case of a spillover */ 20544 if (md_pbuf_nxt != NULL) { 20545 ASSERT(spill > 0); 20546 ASSERT(pbuf_idx_nxt > pbuf_idx); 20547 ASSERT(!add_buffer); 20548 20549 md_pbuf = md_pbuf_nxt; 20550 md_pbuf_nxt = NULL; 20551 pbuf_idx = pbuf_idx_nxt; 20552 pbuf_idx_nxt = -1; 20553 cur_pld_off = spill; 20554 20555 /* trim out first payload fragment */ 20556 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20557 20558 /* setup second payload fragment */ 20559 PDESC_PLD_SPAN_ADD(pkt_info, 20560 pbuf_idx, /* index */ 20561 md_pbuf->b_rptr, /* start */ 20562 spill); /* len */ 20563 20564 if ((*xmit_tail)->b_next == NULL) { 20565 /* 20566 * Store the lbolt used for RTT 20567 * estimation. We can only record one 20568 * timestamp per mblk so we do it when 20569 * we reach the end of the payload 20570 * buffer. Also we only take a new 20571 * timestamp sample when the previous 20572 * timed data from the same mblk has 20573 * been ack'ed. 20574 */ 20575 (*xmit_tail)->b_prev = local_time; 20576 (*xmit_tail)->b_next = 20577 (mblk_t *)(uintptr_t)first_snxt; 20578 } 20579 20580 first_snxt = *snxt - spill; 20581 20582 /* 20583 * Advance xmit_tail; usable could be 0 by 20584 * the time we got here, but we made sure 20585 * above that we would only spillover to 20586 * the next data block if usable includes 20587 * the spilled-over amount prior to the 20588 * subtraction. Therefore, we are sure 20589 * that xmit_tail->b_cont can't be NULL. 20590 */ 20591 ASSERT((*xmit_tail)->b_cont != NULL); 20592 *xmit_tail = (*xmit_tail)->b_cont; 20593 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20594 (uintptr_t)INT_MAX); 20595 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20596 } else { 20597 cur_pld_off += tcp->tcp_last_sent_len; 20598 } 20599 20600 /* 20601 * Fill in the header using the template header, and 20602 * add options such as time-stamp, ECN and/or SACK, 20603 * as needed. 20604 */ 20605 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20606 (clock_t)local_time, num_sack_blk); 20607 20608 /* take care of some IP header businesses */ 20609 if (af == AF_INET) { 20610 ipha = (ipha_t *)pkt_info->hdr_rptr; 20611 20612 ASSERT(OK_32PTR((uchar_t *)ipha)); 20613 ASSERT(PDESC_HDRL(pkt_info) >= 20614 IP_SIMPLE_HDR_LENGTH); 20615 ASSERT(ipha->ipha_version_and_hdr_length == 20616 IP_SIMPLE_HDR_VERSION); 20617 20618 /* 20619 * Assign ident value for current packet; see 20620 * related comments in ip_wput_ire() about the 20621 * contract private interface with clustering 20622 * group. 20623 */ 20624 clusterwide = B_FALSE; 20625 if (cl_inet_ipident != NULL) { 20626 ASSERT(cl_inet_isclusterwide != NULL); 20627 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20628 AF_INET, 20629 (uint8_t *)(uintptr_t)src)) { 20630 ipha->ipha_ident = 20631 (*cl_inet_ipident) 20632 (IPPROTO_IP, AF_INET, 20633 (uint8_t *)(uintptr_t)src, 20634 (uint8_t *)(uintptr_t)dst); 20635 clusterwide = B_TRUE; 20636 } 20637 } 20638 20639 if (!clusterwide) { 20640 ipha->ipha_ident = (uint16_t) 20641 atomic_add_32_nv( 20642 &ire->ire_ident, 1); 20643 } 20644 #ifndef _BIG_ENDIAN 20645 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20646 (ipha->ipha_ident >> 8); 20647 #endif 20648 } else { 20649 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20650 20651 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20652 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20653 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20654 ASSERT(PDESC_HDRL(pkt_info) >= 20655 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20656 TCP_CHECKSUM_SIZE)); 20657 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20658 20659 if (tcp->tcp_ip_forward_progress) { 20660 rconfirm = B_TRUE; 20661 tcp->tcp_ip_forward_progress = B_FALSE; 20662 } 20663 } 20664 20665 /* at least one payload span, and at most two */ 20666 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20667 20668 /* add the packet descriptor to Multidata */ 20669 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20670 KM_NOSLEEP)) == NULL) { 20671 /* 20672 * Any failure other than ENOMEM indicates 20673 * that we have passed in invalid pkt_info 20674 * or parameters to mmd_addpdesc, which must 20675 * not happen. 20676 * 20677 * EINVAL is a result of failure on boundary 20678 * checks against the pkt_info contents. It 20679 * should not happen, and we panic because 20680 * either there's horrible heap corruption, 20681 * and/or programming mistake. 20682 */ 20683 if (err != ENOMEM) { 20684 cmn_err(CE_PANIC, "tcp_multisend: " 20685 "pdesc logic error detected for " 20686 "tcp %p mmd %p pinfo %p (%d)\n", 20687 (void *)tcp, (void *)mmd, 20688 (void *)pkt_info, err); 20689 } 20690 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20691 goto legacy_send; /* out_of_mem */ 20692 } 20693 ASSERT(pkt != NULL); 20694 20695 /* calculate IP header and TCP checksums */ 20696 if (af == AF_INET) { 20697 /* calculate pseudo-header checksum */ 20698 cksum = (dst >> 16) + (dst & 0xFFFF) + 20699 (src >> 16) + (src & 0xFFFF); 20700 20701 /* offset for TCP header checksum */ 20702 up = IPH_TCPH_CHECKSUMP(ipha, 20703 IP_SIMPLE_HDR_LENGTH); 20704 } else { 20705 up = (uint16_t *)&ip6h->ip6_src; 20706 20707 /* calculate pseudo-header checksum */ 20708 cksum = up[0] + up[1] + up[2] + up[3] + 20709 up[4] + up[5] + up[6] + up[7] + 20710 up[8] + up[9] + up[10] + up[11] + 20711 up[12] + up[13] + up[14] + up[15]; 20712 20713 /* Fold the initial sum */ 20714 cksum = (cksum & 0xffff) + (cksum >> 16); 20715 20716 up = (uint16_t *)(((uchar_t *)ip6h) + 20717 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20718 } 20719 20720 if (hwcksum_flags & HCK_FULLCKSUM) { 20721 /* clear checksum field for hardware */ 20722 *up = 0; 20723 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20724 uint32_t sum; 20725 20726 /* pseudo-header checksumming */ 20727 sum = *up + cksum + IP_TCP_CSUM_COMP; 20728 sum = (sum & 0xFFFF) + (sum >> 16); 20729 *up = (sum & 0xFFFF) + (sum >> 16); 20730 } else { 20731 /* software checksumming */ 20732 TCP_STAT(tcps, tcp_out_sw_cksum); 20733 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20734 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20735 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20736 cksum + IP_TCP_CSUM_COMP); 20737 if (*up == 0) 20738 *up = 0xFFFF; 20739 } 20740 20741 /* IPv4 header checksum */ 20742 if (af == AF_INET) { 20743 ipha->ipha_fragment_offset_and_flags |= 20744 (uint32_t)htons(ire->ire_frag_flag); 20745 20746 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20747 ipha->ipha_hdr_checksum = 0; 20748 } else { 20749 IP_HDR_CKSUM(ipha, cksum, 20750 ((uint32_t *)ipha)[0], 20751 ((uint16_t *)ipha)[4]); 20752 } 20753 } 20754 20755 if (af == AF_INET && 20756 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20757 af == AF_INET6 && 20758 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20759 /* build header(IP/TCP) mblk for this segment */ 20760 if ((mp = dupb(md_hbuf)) == NULL) 20761 goto legacy_send; 20762 20763 mp->b_rptr = pkt_info->hdr_rptr; 20764 mp->b_wptr = pkt_info->hdr_wptr; 20765 20766 /* build payload mblk for this segment */ 20767 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20768 freemsg(mp); 20769 goto legacy_send; 20770 } 20771 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20772 mp1->b_rptr = mp1->b_wptr - 20773 tcp->tcp_last_sent_len; 20774 linkb(mp, mp1); 20775 20776 pld_start = mp1->b_rptr; 20777 20778 if (af == AF_INET) { 20779 DTRACE_PROBE4( 20780 ip4__physical__out__start, 20781 ill_t *, NULL, 20782 ill_t *, ill, 20783 ipha_t *, ipha, 20784 mblk_t *, mp); 20785 FW_HOOKS( 20786 ipst->ips_ip4_physical_out_event, 20787 ipst->ips_ipv4firewall_physical_out, 20788 NULL, ill, ipha, mp, mp, 0, ipst); 20789 DTRACE_PROBE1( 20790 ip4__physical__out__end, 20791 mblk_t *, mp); 20792 } else { 20793 DTRACE_PROBE4( 20794 ip6__physical__out_start, 20795 ill_t *, NULL, 20796 ill_t *, ill, 20797 ip6_t *, ip6h, 20798 mblk_t *, mp); 20799 FW_HOOKS6( 20800 ipst->ips_ip6_physical_out_event, 20801 ipst->ips_ipv6firewall_physical_out, 20802 NULL, ill, ip6h, mp, mp, 0, ipst); 20803 DTRACE_PROBE1( 20804 ip6__physical__out__end, 20805 mblk_t *, mp); 20806 } 20807 20808 if (buf_trunked && mp != NULL) { 20809 /* 20810 * Need to pass it to normal path. 20811 */ 20812 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20813 } else if (mp == NULL || 20814 mp->b_rptr != pkt_info->hdr_rptr || 20815 mp->b_wptr != pkt_info->hdr_wptr || 20816 (mp1 = mp->b_cont) == NULL || 20817 mp1->b_rptr != pld_start || 20818 mp1->b_wptr != pld_start + 20819 tcp->tcp_last_sent_len || 20820 mp1->b_cont != NULL) { 20821 /* 20822 * Need to pass all packets of this 20823 * buffer to normal path, either when 20824 * packet is blocked, or when boundary 20825 * of header buffer or payload buffer 20826 * has been changed by FW_HOOKS[6]. 20827 */ 20828 buf_trunked = B_TRUE; 20829 if (md_mp_head != NULL) { 20830 err = (intptr_t)rmvb(md_mp_head, 20831 md_mp); 20832 if (err == 0) 20833 md_mp_head = NULL; 20834 } 20835 20836 /* send down what we've got so far */ 20837 if (md_mp_head != NULL) { 20838 tcp_multisend_data(tcp, ire, 20839 ill, md_mp_head, obsegs, 20840 obbytes, &rconfirm); 20841 } 20842 md_mp_head = NULL; 20843 20844 if (mp != NULL) 20845 CALL_IP_WPUT(tcp->tcp_connp, 20846 q, mp); 20847 20848 mp1 = fw_mp_head; 20849 do { 20850 mp = mp1; 20851 mp1 = mp1->b_next; 20852 mp->b_next = NULL; 20853 mp->b_prev = NULL; 20854 CALL_IP_WPUT(tcp->tcp_connp, 20855 q, mp); 20856 } while (mp1 != NULL); 20857 20858 fw_mp_head = NULL; 20859 } else { 20860 if (fw_mp_head == NULL) 20861 fw_mp_head = mp; 20862 else 20863 fw_mp_head->b_prev->b_next = mp; 20864 fw_mp_head->b_prev = mp; 20865 } 20866 } 20867 20868 /* advance header offset */ 20869 cur_hdr_off += hdr_frag_sz; 20870 20871 obbytes += tcp->tcp_last_sent_len; 20872 ++obsegs; 20873 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20874 *tail_unsent > 0); 20875 20876 if ((*xmit_tail)->b_next == NULL) { 20877 /* 20878 * Store the lbolt used for RTT estimation. We can only 20879 * record one timestamp per mblk so we do it when we 20880 * reach the end of the payload buffer. Also we only 20881 * take a new timestamp sample when the previous timed 20882 * data from the same mblk has been ack'ed. 20883 */ 20884 (*xmit_tail)->b_prev = local_time; 20885 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20886 } 20887 20888 ASSERT(*tail_unsent >= 0); 20889 if (*tail_unsent > 0) { 20890 /* 20891 * We got here because we broke out of the above 20892 * loop due to of one of the following cases: 20893 * 20894 * 1. len < adjusted MSS (i.e. small), 20895 * 2. Sender SWS avoidance, 20896 * 3. max_pld is zero. 20897 * 20898 * We are done for this Multidata, so trim our 20899 * last payload buffer (if any) accordingly. 20900 */ 20901 if (md_pbuf != NULL) 20902 md_pbuf->b_wptr -= *tail_unsent; 20903 } else if (*usable > 0) { 20904 *xmit_tail = (*xmit_tail)->b_cont; 20905 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20906 (uintptr_t)INT_MAX); 20907 *tail_unsent = (int)MBLKL(*xmit_tail); 20908 add_buffer = B_TRUE; 20909 } 20910 20911 while (fw_mp_head) { 20912 mp = fw_mp_head; 20913 fw_mp_head = fw_mp_head->b_next; 20914 mp->b_prev = mp->b_next = NULL; 20915 freemsg(mp); 20916 } 20917 if (buf_trunked) { 20918 TCP_STAT(tcps, tcp_mdt_discarded); 20919 freeb(md_mp); 20920 buf_trunked = B_FALSE; 20921 } 20922 } while (!done && *usable > 0 && num_burst_seg > 0 && 20923 (tcp_mdt_chain || max_pld > 0)); 20924 20925 if (md_mp_head != NULL) { 20926 /* send everything down */ 20927 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20928 &rconfirm); 20929 } 20930 20931 #undef PREP_NEW_MULTIDATA 20932 #undef PREP_NEW_PBUF 20933 #undef IPVER 20934 20935 IRE_REFRELE(ire); 20936 return (0); 20937 } 20938 20939 /* 20940 * A wrapper function for sending one or more Multidata messages down to 20941 * the module below ip; this routine does not release the reference of the 20942 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20943 */ 20944 static void 20945 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20946 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20947 { 20948 uint64_t delta; 20949 nce_t *nce; 20950 tcp_stack_t *tcps = tcp->tcp_tcps; 20951 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20952 20953 ASSERT(ire != NULL && ill != NULL); 20954 ASSERT(ire->ire_stq != NULL); 20955 ASSERT(md_mp_head != NULL); 20956 ASSERT(rconfirm != NULL); 20957 20958 /* adjust MIBs and IRE timestamp */ 20959 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20960 tcp->tcp_obsegs += obsegs; 20961 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20962 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20963 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20964 20965 if (tcp->tcp_ipversion == IPV4_VERSION) { 20966 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20967 } else { 20968 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20969 } 20970 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20971 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20972 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20973 20974 ire->ire_ob_pkt_count += obsegs; 20975 if (ire->ire_ipif != NULL) 20976 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20977 ire->ire_last_used_time = lbolt; 20978 20979 /* send it down */ 20980 if (ILL_DLS_CAPABLE(ill)) { 20981 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 20982 ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head); 20983 } else { 20984 putnext(ire->ire_stq, md_mp_head); 20985 } 20986 20987 /* we're done for TCP/IPv4 */ 20988 if (tcp->tcp_ipversion == IPV4_VERSION) 20989 return; 20990 20991 nce = ire->ire_nce; 20992 20993 ASSERT(nce != NULL); 20994 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20995 ASSERT(nce->nce_state != ND_INCOMPLETE); 20996 20997 /* reachability confirmation? */ 20998 if (*rconfirm) { 20999 nce->nce_last = TICK_TO_MSEC(lbolt64); 21000 if (nce->nce_state != ND_REACHABLE) { 21001 mutex_enter(&nce->nce_lock); 21002 nce->nce_state = ND_REACHABLE; 21003 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21004 mutex_exit(&nce->nce_lock); 21005 (void) untimeout(nce->nce_timeout_id); 21006 if (ip_debug > 2) { 21007 /* ip1dbg */ 21008 pr_addr_dbg("tcp_multisend_data: state " 21009 "for %s changed to REACHABLE\n", 21010 AF_INET6, &ire->ire_addr_v6); 21011 } 21012 } 21013 /* reset transport reachability confirmation */ 21014 *rconfirm = B_FALSE; 21015 } 21016 21017 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21018 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21019 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21020 21021 if (delta > (uint64_t)ill->ill_reachable_time) { 21022 mutex_enter(&nce->nce_lock); 21023 switch (nce->nce_state) { 21024 case ND_REACHABLE: 21025 case ND_STALE: 21026 /* 21027 * ND_REACHABLE is identical to ND_STALE in this 21028 * specific case. If reachable time has expired for 21029 * this neighbor (delta is greater than reachable 21030 * time), conceptually, the neighbor cache is no 21031 * longer in REACHABLE state, but already in STALE 21032 * state. So the correct transition here is to 21033 * ND_DELAY. 21034 */ 21035 nce->nce_state = ND_DELAY; 21036 mutex_exit(&nce->nce_lock); 21037 NDP_RESTART_TIMER(nce, 21038 ipst->ips_delay_first_probe_time); 21039 if (ip_debug > 3) { 21040 /* ip2dbg */ 21041 pr_addr_dbg("tcp_multisend_data: state " 21042 "for %s changed to DELAY\n", 21043 AF_INET6, &ire->ire_addr_v6); 21044 } 21045 break; 21046 case ND_DELAY: 21047 case ND_PROBE: 21048 mutex_exit(&nce->nce_lock); 21049 /* Timers have already started */ 21050 break; 21051 case ND_UNREACHABLE: 21052 /* 21053 * ndp timer has detected that this nce is 21054 * unreachable and initiated deleting this nce 21055 * and all its associated IREs. This is a race 21056 * where we found the ire before it was deleted 21057 * and have just sent out a packet using this 21058 * unreachable nce. 21059 */ 21060 mutex_exit(&nce->nce_lock); 21061 break; 21062 default: 21063 ASSERT(0); 21064 } 21065 } 21066 } 21067 21068 /* 21069 * Derived from tcp_send_data(). 21070 */ 21071 static void 21072 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21073 int num_lso_seg) 21074 { 21075 ipha_t *ipha; 21076 mblk_t *ire_fp_mp; 21077 uint_t ire_fp_mp_len; 21078 uint32_t hcksum_txflags = 0; 21079 ipaddr_t src; 21080 ipaddr_t dst; 21081 uint32_t cksum; 21082 uint16_t *up; 21083 tcp_stack_t *tcps = tcp->tcp_tcps; 21084 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21085 21086 ASSERT(DB_TYPE(mp) == M_DATA); 21087 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21088 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21089 ASSERT(tcp->tcp_connp != NULL); 21090 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21091 21092 ipha = (ipha_t *)mp->b_rptr; 21093 src = ipha->ipha_src; 21094 dst = ipha->ipha_dst; 21095 21096 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21097 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21098 num_lso_seg); 21099 #ifndef _BIG_ENDIAN 21100 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21101 #endif 21102 if (tcp->tcp_snd_zcopy_aware) { 21103 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21104 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21105 mp = tcp_zcopy_disable(tcp, mp); 21106 } 21107 21108 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21109 ASSERT(ill->ill_hcksum_capab != NULL); 21110 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21111 } 21112 21113 /* 21114 * Since the TCP checksum should be recalculated by h/w, we can just 21115 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21116 * pseudo-header checksum for HCK_PARTIALCKSUM. 21117 * The partial pseudo-header excludes TCP length, that was calculated 21118 * in tcp_send(), so to zero *up before further processing. 21119 */ 21120 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21121 21122 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21123 *up = 0; 21124 21125 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21126 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21127 21128 /* 21129 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 21130 */ 21131 DB_LSOFLAGS(mp) |= HW_LSO; 21132 DB_LSOMSS(mp) = mss; 21133 21134 ipha->ipha_fragment_offset_and_flags |= 21135 (uint32_t)htons(ire->ire_frag_flag); 21136 21137 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21138 ire_fp_mp_len = MBLKL(ire_fp_mp); 21139 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21140 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21141 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21142 21143 UPDATE_OB_PKT_COUNT(ire); 21144 ire->ire_last_used_time = lbolt; 21145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21146 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21147 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21148 ntohs(ipha->ipha_length)); 21149 21150 if (ILL_DLS_CAPABLE(ill)) { 21151 /* 21152 * Send the packet directly to DLD, where it may be queued 21153 * depending on the availability of transmit resources at 21154 * the media layer. 21155 */ 21156 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 21157 } else { 21158 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 21159 DTRACE_PROBE4(ip4__physical__out__start, 21160 ill_t *, NULL, ill_t *, out_ill, 21161 ipha_t *, ipha, mblk_t *, mp); 21162 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21163 ipst->ips_ipv4firewall_physical_out, 21164 NULL, out_ill, ipha, mp, mp, 0, ipst); 21165 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21166 if (mp != NULL) 21167 putnext(ire->ire_stq, mp); 21168 } 21169 } 21170 21171 /* 21172 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21173 * scheme, and returns one of the following: 21174 * 21175 * -1 = failed allocation. 21176 * 0 = success; burst count reached, or usable send window is too small, 21177 * and that we'd rather wait until later before sending again. 21178 * 1 = success; we are called from tcp_multisend(), and both usable send 21179 * window and tail_unsent are greater than the MDT threshold, and thus 21180 * Multidata Transmit should be used instead. 21181 */ 21182 static int 21183 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21184 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21185 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21186 const int mdt_thres) 21187 { 21188 int num_burst_seg = tcp->tcp_snd_burst; 21189 ire_t *ire = NULL; 21190 ill_t *ill = NULL; 21191 mblk_t *ire_fp_mp = NULL; 21192 uint_t ire_fp_mp_len = 0; 21193 int num_lso_seg = 1; 21194 uint_t lso_usable; 21195 boolean_t do_lso_send = B_FALSE; 21196 tcp_stack_t *tcps = tcp->tcp_tcps; 21197 21198 /* 21199 * Check LSO capability before any further work. And the similar check 21200 * need to be done in for(;;) loop. 21201 * LSO will be deployed when therer is more than one mss of available 21202 * data and a burst transmission is allowed. 21203 */ 21204 if (tcp->tcp_lso && 21205 (tcp->tcp_valid_bits == 0 || 21206 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21207 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21208 /* 21209 * Try to find usable IRE/ILL and do basic check to the ILL. 21210 */ 21211 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21212 /* 21213 * Enable LSO with this transmission. 21214 * Since IRE has been hold in 21215 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21216 * should be called before return. 21217 */ 21218 do_lso_send = B_TRUE; 21219 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21220 ire_fp_mp_len = MBLKL(ire_fp_mp); 21221 /* Round up to multiple of 4 */ 21222 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21223 } else { 21224 do_lso_send = B_FALSE; 21225 ill = NULL; 21226 } 21227 } 21228 21229 for (;;) { 21230 struct datab *db; 21231 tcph_t *tcph; 21232 uint32_t sum; 21233 mblk_t *mp, *mp1; 21234 uchar_t *rptr; 21235 int len; 21236 21237 /* 21238 * If we're called by tcp_multisend(), and the amount of 21239 * sendable data as well as the size of current xmit_tail 21240 * is beyond the MDT threshold, return to the caller and 21241 * let the large data transmit be done using MDT. 21242 */ 21243 if (*usable > 0 && *usable > mdt_thres && 21244 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21245 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21246 ASSERT(tcp->tcp_mdt); 21247 return (1); /* success; do large send */ 21248 } 21249 21250 if (num_burst_seg == 0) 21251 break; /* success; burst count reached */ 21252 21253 /* 21254 * Calculate the maximum payload length we can send in *one* 21255 * time. 21256 */ 21257 if (do_lso_send) { 21258 /* 21259 * Check whether need to do LSO any more. 21260 */ 21261 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21262 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21263 lso_usable = MIN(lso_usable, 21264 num_burst_seg * mss); 21265 21266 num_lso_seg = lso_usable / mss; 21267 if (lso_usable % mss) { 21268 num_lso_seg++; 21269 tcp->tcp_last_sent_len = (ushort_t) 21270 (lso_usable % mss); 21271 } else { 21272 tcp->tcp_last_sent_len = (ushort_t)mss; 21273 } 21274 } else { 21275 do_lso_send = B_FALSE; 21276 num_lso_seg = 1; 21277 lso_usable = mss; 21278 } 21279 } 21280 21281 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21282 21283 /* 21284 * Adjust num_burst_seg here. 21285 */ 21286 num_burst_seg -= num_lso_seg; 21287 21288 len = mss; 21289 if (len > *usable) { 21290 ASSERT(do_lso_send == B_FALSE); 21291 21292 len = *usable; 21293 if (len <= 0) { 21294 /* Terminate the loop */ 21295 break; /* success; too small */ 21296 } 21297 /* 21298 * Sender silly-window avoidance. 21299 * Ignore this if we are going to send a 21300 * zero window probe out. 21301 * 21302 * TODO: force data into microscopic window? 21303 * ==> (!pushed || (unsent > usable)) 21304 */ 21305 if (len < (tcp->tcp_max_swnd >> 1) && 21306 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21307 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21308 len == 1) && (! tcp->tcp_zero_win_probe)) { 21309 /* 21310 * If the retransmit timer is not running 21311 * we start it so that we will retransmit 21312 * in the case when the the receiver has 21313 * decremented the window. 21314 */ 21315 if (*snxt == tcp->tcp_snxt && 21316 *snxt == tcp->tcp_suna) { 21317 /* 21318 * We are not supposed to send 21319 * anything. So let's wait a little 21320 * bit longer before breaking SWS 21321 * avoidance. 21322 * 21323 * What should the value be? 21324 * Suggestion: MAX(init rexmit time, 21325 * tcp->tcp_rto) 21326 */ 21327 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21328 } 21329 break; /* success; too small */ 21330 } 21331 } 21332 21333 tcph = tcp->tcp_tcph; 21334 21335 /* 21336 * The reason to adjust len here is that we need to set flags 21337 * and calculate checksum. 21338 */ 21339 if (do_lso_send) 21340 len = lso_usable; 21341 21342 *usable -= len; /* Approximate - can be adjusted later */ 21343 if (*usable > 0) 21344 tcph->th_flags[0] = TH_ACK; 21345 else 21346 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21347 21348 /* 21349 * Prime pump for IP's checksumming on our behalf 21350 * Include the adjustment for a source route if any. 21351 */ 21352 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21353 sum = (sum >> 16) + (sum & 0xFFFF); 21354 U16_TO_ABE16(sum, tcph->th_sum); 21355 21356 U32_TO_ABE32(*snxt, tcph->th_seq); 21357 21358 /* 21359 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21360 * set. For the case when TCP_FSS_VALID is the only valid 21361 * bit (normal active close), branch off only when we think 21362 * that the FIN flag needs to be set. Note for this case, 21363 * that (snxt + len) may not reflect the actual seg_len, 21364 * as len may be further reduced in tcp_xmit_mp(). If len 21365 * gets modified, we will end up here again. 21366 */ 21367 if (tcp->tcp_valid_bits != 0 && 21368 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21369 ((*snxt + len) == tcp->tcp_fss))) { 21370 uchar_t *prev_rptr; 21371 uint32_t prev_snxt = tcp->tcp_snxt; 21372 21373 if (*tail_unsent == 0) { 21374 ASSERT((*xmit_tail)->b_cont != NULL); 21375 *xmit_tail = (*xmit_tail)->b_cont; 21376 prev_rptr = (*xmit_tail)->b_rptr; 21377 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21378 (*xmit_tail)->b_rptr); 21379 } else { 21380 prev_rptr = (*xmit_tail)->b_rptr; 21381 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21382 *tail_unsent; 21383 } 21384 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21385 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21386 /* Restore tcp_snxt so we get amount sent right. */ 21387 tcp->tcp_snxt = prev_snxt; 21388 if (prev_rptr == (*xmit_tail)->b_rptr) { 21389 /* 21390 * If the previous timestamp is still in use, 21391 * don't stomp on it. 21392 */ 21393 if ((*xmit_tail)->b_next == NULL) { 21394 (*xmit_tail)->b_prev = local_time; 21395 (*xmit_tail)->b_next = 21396 (mblk_t *)(uintptr_t)(*snxt); 21397 } 21398 } else 21399 (*xmit_tail)->b_rptr = prev_rptr; 21400 21401 if (mp == NULL) { 21402 if (ire != NULL) 21403 IRE_REFRELE(ire); 21404 return (-1); 21405 } 21406 mp1 = mp->b_cont; 21407 21408 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21409 tcp->tcp_last_sent_len = (ushort_t)len; 21410 while (mp1->b_cont) { 21411 *xmit_tail = (*xmit_tail)->b_cont; 21412 (*xmit_tail)->b_prev = local_time; 21413 (*xmit_tail)->b_next = 21414 (mblk_t *)(uintptr_t)(*snxt); 21415 mp1 = mp1->b_cont; 21416 } 21417 *snxt += len; 21418 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21419 BUMP_LOCAL(tcp->tcp_obsegs); 21420 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21421 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21422 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21423 tcp_send_data(tcp, q, mp); 21424 continue; 21425 } 21426 21427 *snxt += len; /* Adjust later if we don't send all of len */ 21428 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21429 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21430 21431 if (*tail_unsent) { 21432 /* Are the bytes above us in flight? */ 21433 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21434 if (rptr != (*xmit_tail)->b_rptr) { 21435 *tail_unsent -= len; 21436 if (len <= mss) /* LSO is unusable */ 21437 tcp->tcp_last_sent_len = (ushort_t)len; 21438 len += tcp_hdr_len; 21439 if (tcp->tcp_ipversion == IPV4_VERSION) 21440 tcp->tcp_ipha->ipha_length = htons(len); 21441 else 21442 tcp->tcp_ip6h->ip6_plen = 21443 htons(len - 21444 ((char *)&tcp->tcp_ip6h[1] - 21445 tcp->tcp_iphc)); 21446 mp = dupb(*xmit_tail); 21447 if (mp == NULL) { 21448 if (ire != NULL) 21449 IRE_REFRELE(ire); 21450 return (-1); /* out_of_mem */ 21451 } 21452 mp->b_rptr = rptr; 21453 /* 21454 * If the old timestamp is no longer in use, 21455 * sample a new timestamp now. 21456 */ 21457 if ((*xmit_tail)->b_next == NULL) { 21458 (*xmit_tail)->b_prev = local_time; 21459 (*xmit_tail)->b_next = 21460 (mblk_t *)(uintptr_t)(*snxt-len); 21461 } 21462 goto must_alloc; 21463 } 21464 } else { 21465 *xmit_tail = (*xmit_tail)->b_cont; 21466 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21467 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21468 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21469 (*xmit_tail)->b_rptr); 21470 } 21471 21472 (*xmit_tail)->b_prev = local_time; 21473 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21474 21475 *tail_unsent -= len; 21476 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21477 tcp->tcp_last_sent_len = (ushort_t)len; 21478 21479 len += tcp_hdr_len; 21480 if (tcp->tcp_ipversion == IPV4_VERSION) 21481 tcp->tcp_ipha->ipha_length = htons(len); 21482 else 21483 tcp->tcp_ip6h->ip6_plen = htons(len - 21484 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21485 21486 mp = dupb(*xmit_tail); 21487 if (mp == NULL) { 21488 if (ire != NULL) 21489 IRE_REFRELE(ire); 21490 return (-1); /* out_of_mem */ 21491 } 21492 21493 len = tcp_hdr_len; 21494 /* 21495 * There are four reasons to allocate a new hdr mblk: 21496 * 1) The bytes above us are in use by another packet 21497 * 2) We don't have good alignment 21498 * 3) The mblk is being shared 21499 * 4) We don't have enough room for a header 21500 */ 21501 rptr = mp->b_rptr - len; 21502 if (!OK_32PTR(rptr) || 21503 ((db = mp->b_datap), db->db_ref != 2) || 21504 rptr < db->db_base + ire_fp_mp_len) { 21505 /* NOTE: we assume allocb returns an OK_32PTR */ 21506 21507 must_alloc:; 21508 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21509 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21510 if (mp1 == NULL) { 21511 freemsg(mp); 21512 if (ire != NULL) 21513 IRE_REFRELE(ire); 21514 return (-1); /* out_of_mem */ 21515 } 21516 mp1->b_cont = mp; 21517 mp = mp1; 21518 /* Leave room for Link Level header */ 21519 len = tcp_hdr_len; 21520 rptr = 21521 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21522 mp->b_wptr = &rptr[len]; 21523 } 21524 21525 /* 21526 * Fill in the header using the template header, and add 21527 * options such as time-stamp, ECN and/or SACK, as needed. 21528 */ 21529 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21530 21531 mp->b_rptr = rptr; 21532 21533 if (*tail_unsent) { 21534 int spill = *tail_unsent; 21535 21536 mp1 = mp->b_cont; 21537 if (mp1 == NULL) 21538 mp1 = mp; 21539 21540 /* 21541 * If we're a little short, tack on more mblks until 21542 * there is no more spillover. 21543 */ 21544 while (spill < 0) { 21545 mblk_t *nmp; 21546 int nmpsz; 21547 21548 nmp = (*xmit_tail)->b_cont; 21549 nmpsz = MBLKL(nmp); 21550 21551 /* 21552 * Excess data in mblk; can we split it? 21553 * If MDT is enabled for the connection, 21554 * keep on splitting as this is a transient 21555 * send path. 21556 */ 21557 if (!do_lso_send && !tcp->tcp_mdt && 21558 (spill + nmpsz > 0)) { 21559 /* 21560 * Don't split if stream head was 21561 * told to break up larger writes 21562 * into smaller ones. 21563 */ 21564 if (tcp->tcp_maxpsz > 0) 21565 break; 21566 21567 /* 21568 * Next mblk is less than SMSS/2 21569 * rounded up to nearest 64-byte; 21570 * let it get sent as part of the 21571 * next segment. 21572 */ 21573 if (tcp->tcp_localnet && 21574 !tcp->tcp_cork && 21575 (nmpsz < roundup((mss >> 1), 64))) 21576 break; 21577 } 21578 21579 *xmit_tail = nmp; 21580 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21581 /* Stash for rtt use later */ 21582 (*xmit_tail)->b_prev = local_time; 21583 (*xmit_tail)->b_next = 21584 (mblk_t *)(uintptr_t)(*snxt - len); 21585 mp1->b_cont = dupb(*xmit_tail); 21586 mp1 = mp1->b_cont; 21587 21588 spill += nmpsz; 21589 if (mp1 == NULL) { 21590 *tail_unsent = spill; 21591 freemsg(mp); 21592 if (ire != NULL) 21593 IRE_REFRELE(ire); 21594 return (-1); /* out_of_mem */ 21595 } 21596 } 21597 21598 /* Trim back any surplus on the last mblk */ 21599 if (spill >= 0) { 21600 mp1->b_wptr -= spill; 21601 *tail_unsent = spill; 21602 } else { 21603 /* 21604 * We did not send everything we could in 21605 * order to remain within the b_cont limit. 21606 */ 21607 *usable -= spill; 21608 *snxt += spill; 21609 tcp->tcp_last_sent_len += spill; 21610 UPDATE_MIB(&tcps->tcps_mib, 21611 tcpOutDataBytes, spill); 21612 /* 21613 * Adjust the checksum 21614 */ 21615 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21616 sum += spill; 21617 sum = (sum >> 16) + (sum & 0xFFFF); 21618 U16_TO_ABE16(sum, tcph->th_sum); 21619 if (tcp->tcp_ipversion == IPV4_VERSION) { 21620 sum = ntohs( 21621 ((ipha_t *)rptr)->ipha_length) + 21622 spill; 21623 ((ipha_t *)rptr)->ipha_length = 21624 htons(sum); 21625 } else { 21626 sum = ntohs( 21627 ((ip6_t *)rptr)->ip6_plen) + 21628 spill; 21629 ((ip6_t *)rptr)->ip6_plen = 21630 htons(sum); 21631 } 21632 *tail_unsent = 0; 21633 } 21634 } 21635 if (tcp->tcp_ip_forward_progress) { 21636 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21637 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21638 tcp->tcp_ip_forward_progress = B_FALSE; 21639 } 21640 21641 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21642 if (do_lso_send) { 21643 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21644 num_lso_seg); 21645 tcp->tcp_obsegs += num_lso_seg; 21646 21647 TCP_STAT(tcps, tcp_lso_times); 21648 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21649 } else { 21650 tcp_send_data(tcp, q, mp); 21651 BUMP_LOCAL(tcp->tcp_obsegs); 21652 } 21653 } 21654 21655 if (ire != NULL) 21656 IRE_REFRELE(ire); 21657 return (0); 21658 } 21659 21660 /* Unlink and return any mblk that looks like it contains a MDT info */ 21661 static mblk_t * 21662 tcp_mdt_info_mp(mblk_t *mp) 21663 { 21664 mblk_t *prev_mp; 21665 21666 for (;;) { 21667 prev_mp = mp; 21668 /* no more to process? */ 21669 if ((mp = mp->b_cont) == NULL) 21670 break; 21671 21672 switch (DB_TYPE(mp)) { 21673 case M_CTL: 21674 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21675 continue; 21676 ASSERT(prev_mp != NULL); 21677 prev_mp->b_cont = mp->b_cont; 21678 mp->b_cont = NULL; 21679 return (mp); 21680 default: 21681 break; 21682 } 21683 } 21684 return (mp); 21685 } 21686 21687 /* MDT info update routine, called when IP notifies us about MDT */ 21688 static void 21689 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21690 { 21691 boolean_t prev_state; 21692 tcp_stack_t *tcps = tcp->tcp_tcps; 21693 21694 /* 21695 * IP is telling us to abort MDT on this connection? We know 21696 * this because the capability is only turned off when IP 21697 * encounters some pathological cases, e.g. link-layer change 21698 * where the new driver doesn't support MDT, or in situation 21699 * where MDT usage on the link-layer has been switched off. 21700 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21701 * if the link-layer doesn't support MDT, and if it does, it 21702 * will indicate that the feature is to be turned on. 21703 */ 21704 prev_state = tcp->tcp_mdt; 21705 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21706 if (!tcp->tcp_mdt && !first) { 21707 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21708 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21709 (void *)tcp->tcp_connp)); 21710 } 21711 21712 /* 21713 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21714 * so disable MDT otherwise. The checks are done here 21715 * and in tcp_wput_data(). 21716 */ 21717 if (tcp->tcp_mdt && 21718 (tcp->tcp_ipversion == IPV4_VERSION && 21719 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21720 (tcp->tcp_ipversion == IPV6_VERSION && 21721 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21722 tcp->tcp_mdt = B_FALSE; 21723 21724 if (tcp->tcp_mdt) { 21725 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21726 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21727 "version (%d), expected version is %d", 21728 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21729 tcp->tcp_mdt = B_FALSE; 21730 return; 21731 } 21732 21733 /* 21734 * We need the driver to be able to handle at least three 21735 * spans per packet in order for tcp MDT to be utilized. 21736 * The first is for the header portion, while the rest are 21737 * needed to handle a packet that straddles across two 21738 * virtually non-contiguous buffers; a typical tcp packet 21739 * therefore consists of only two spans. Note that we take 21740 * a zero as "don't care". 21741 */ 21742 if (mdt_capab->ill_mdt_span_limit > 0 && 21743 mdt_capab->ill_mdt_span_limit < 3) { 21744 tcp->tcp_mdt = B_FALSE; 21745 return; 21746 } 21747 21748 /* a zero means driver wants default value */ 21749 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21750 tcps->tcps_mdt_max_pbufs); 21751 if (tcp->tcp_mdt_max_pld == 0) 21752 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21753 21754 /* ensure 32-bit alignment */ 21755 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21756 mdt_capab->ill_mdt_hdr_head), 4); 21757 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21758 mdt_capab->ill_mdt_hdr_tail), 4); 21759 21760 if (!first && !prev_state) { 21761 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21762 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21763 (void *)tcp->tcp_connp)); 21764 } 21765 } 21766 } 21767 21768 /* Unlink and return any mblk that looks like it contains a LSO info */ 21769 static mblk_t * 21770 tcp_lso_info_mp(mblk_t *mp) 21771 { 21772 mblk_t *prev_mp; 21773 21774 for (;;) { 21775 prev_mp = mp; 21776 /* no more to process? */ 21777 if ((mp = mp->b_cont) == NULL) 21778 break; 21779 21780 switch (DB_TYPE(mp)) { 21781 case M_CTL: 21782 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21783 continue; 21784 ASSERT(prev_mp != NULL); 21785 prev_mp->b_cont = mp->b_cont; 21786 mp->b_cont = NULL; 21787 return (mp); 21788 default: 21789 break; 21790 } 21791 } 21792 21793 return (mp); 21794 } 21795 21796 /* LSO info update routine, called when IP notifies us about LSO */ 21797 static void 21798 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21799 { 21800 tcp_stack_t *tcps = tcp->tcp_tcps; 21801 21802 /* 21803 * IP is telling us to abort LSO on this connection? We know 21804 * this because the capability is only turned off when IP 21805 * encounters some pathological cases, e.g. link-layer change 21806 * where the new NIC/driver doesn't support LSO, or in situation 21807 * where LSO usage on the link-layer has been switched off. 21808 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21809 * if the link-layer doesn't support LSO, and if it does, it 21810 * will indicate that the feature is to be turned on. 21811 */ 21812 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21813 TCP_STAT(tcps, tcp_lso_enabled); 21814 21815 /* 21816 * We currently only support LSO on simple TCP/IPv4, 21817 * so disable LSO otherwise. The checks are done here 21818 * and in tcp_wput_data(). 21819 */ 21820 if (tcp->tcp_lso && 21821 (tcp->tcp_ipversion == IPV4_VERSION && 21822 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21823 (tcp->tcp_ipversion == IPV6_VERSION)) { 21824 tcp->tcp_lso = B_FALSE; 21825 TCP_STAT(tcps, tcp_lso_disabled); 21826 } else { 21827 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21828 lso_capab->ill_lso_max); 21829 } 21830 } 21831 21832 static void 21833 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21834 { 21835 conn_t *connp = tcp->tcp_connp; 21836 tcp_stack_t *tcps = tcp->tcp_tcps; 21837 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21838 21839 ASSERT(ire != NULL); 21840 21841 /* 21842 * We may be in the fastpath here, and although we essentially do 21843 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21844 * we try to keep things as brief as possible. After all, these 21845 * are only best-effort checks, and we do more thorough ones prior 21846 * to calling tcp_send()/tcp_multisend(). 21847 */ 21848 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21849 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21850 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21851 !(ire->ire_flags & RTF_MULTIRT) && 21852 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21853 CONN_IS_LSO_MD_FASTPATH(connp)) { 21854 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21855 /* Cache the result */ 21856 connp->conn_lso_ok = B_TRUE; 21857 21858 ASSERT(ill->ill_lso_capab != NULL); 21859 if (!ill->ill_lso_capab->ill_lso_on) { 21860 ill->ill_lso_capab->ill_lso_on = 1; 21861 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21862 "LSO for interface %s\n", (void *)connp, 21863 ill->ill_name)); 21864 } 21865 tcp_lso_update(tcp, ill->ill_lso_capab); 21866 } else if (ipst->ips_ip_multidata_outbound && 21867 ILL_MDT_CAPABLE(ill)) { 21868 /* Cache the result */ 21869 connp->conn_mdt_ok = B_TRUE; 21870 21871 ASSERT(ill->ill_mdt_capab != NULL); 21872 if (!ill->ill_mdt_capab->ill_mdt_on) { 21873 ill->ill_mdt_capab->ill_mdt_on = 1; 21874 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21875 "MDT for interface %s\n", (void *)connp, 21876 ill->ill_name)); 21877 } 21878 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21879 } 21880 } 21881 21882 /* 21883 * The goal is to reduce the number of generated tcp segments by 21884 * setting the maxpsz multiplier to 0; this will have an affect on 21885 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21886 * into each packet, up to SMSS bytes. Doing this reduces the number 21887 * of outbound segments and incoming ACKs, thus allowing for better 21888 * network and system performance. In contrast the legacy behavior 21889 * may result in sending less than SMSS size, because the last mblk 21890 * for some packets may have more data than needed to make up SMSS, 21891 * and the legacy code refused to "split" it. 21892 * 21893 * We apply the new behavior on following situations: 21894 * 21895 * 1) Loopback connections, 21896 * 2) Connections in which the remote peer is not on local subnet, 21897 * 3) Local subnet connections over the bge interface (see below). 21898 * 21899 * Ideally, we would like this behavior to apply for interfaces other 21900 * than bge. However, doing so would negatively impact drivers which 21901 * perform dynamic mapping and unmapping of DMA resources, which are 21902 * increased by setting the maxpsz multiplier to 0 (more mblks per 21903 * packet will be generated by tcp). The bge driver does not suffer 21904 * from this, as it copies the mblks into pre-mapped buffers, and 21905 * therefore does not require more I/O resources than before. 21906 * 21907 * Otherwise, this behavior is present on all network interfaces when 21908 * the destination endpoint is non-local, since reducing the number 21909 * of packets in general is good for the network. 21910 * 21911 * TODO We need to remove this hard-coded conditional for bge once 21912 * a better "self-tuning" mechanism, or a way to comprehend 21913 * the driver transmit strategy is devised. Until the solution 21914 * is found and well understood, we live with this hack. 21915 */ 21916 if (!tcp_static_maxpsz && 21917 (tcp->tcp_loopback || !tcp->tcp_localnet || 21918 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21919 /* override the default value */ 21920 tcp->tcp_maxpsz = 0; 21921 21922 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21923 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21924 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21925 } 21926 21927 /* set the stream head parameters accordingly */ 21928 (void) tcp_maxpsz_set(tcp, B_TRUE); 21929 } 21930 21931 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21932 static void 21933 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21934 { 21935 uchar_t fval = *mp->b_rptr; 21936 mblk_t *tail; 21937 queue_t *q = tcp->tcp_wq; 21938 21939 /* TODO: How should flush interact with urgent data? */ 21940 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21941 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21942 /* 21943 * Flush only data that has not yet been put on the wire. If 21944 * we flush data that we have already transmitted, life, as we 21945 * know it, may come to an end. 21946 */ 21947 tail = tcp->tcp_xmit_tail; 21948 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21949 tcp->tcp_xmit_tail_unsent = 0; 21950 tcp->tcp_unsent = 0; 21951 if (tail->b_wptr != tail->b_rptr) 21952 tail = tail->b_cont; 21953 if (tail) { 21954 mblk_t **excess = &tcp->tcp_xmit_head; 21955 for (;;) { 21956 mblk_t *mp1 = *excess; 21957 if (mp1 == tail) 21958 break; 21959 tcp->tcp_xmit_tail = mp1; 21960 tcp->tcp_xmit_last = mp1; 21961 excess = &mp1->b_cont; 21962 } 21963 *excess = NULL; 21964 tcp_close_mpp(&tail); 21965 if (tcp->tcp_snd_zcopy_aware) 21966 tcp_zcopy_notify(tcp); 21967 } 21968 /* 21969 * We have no unsent data, so unsent must be less than 21970 * tcp_xmit_lowater, so re-enable flow. 21971 */ 21972 mutex_enter(&tcp->tcp_non_sq_lock); 21973 if (tcp->tcp_flow_stopped) { 21974 tcp_clrqfull(tcp); 21975 } 21976 mutex_exit(&tcp->tcp_non_sq_lock); 21977 } 21978 /* 21979 * TODO: you can't just flush these, you have to increase rwnd for one 21980 * thing. For another, how should urgent data interact? 21981 */ 21982 if (fval & FLUSHR) { 21983 *mp->b_rptr = fval & ~FLUSHW; 21984 /* XXX */ 21985 qreply(q, mp); 21986 return; 21987 } 21988 freemsg(mp); 21989 } 21990 21991 /* 21992 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21993 * messages. 21994 */ 21995 static void 21996 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21997 { 21998 mblk_t *mp1; 21999 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22000 STRUCT_HANDLE(strbuf, sb); 22001 queue_t *q = tcp->tcp_wq; 22002 int error; 22003 uint_t addrlen; 22004 22005 /* Make sure it is one of ours. */ 22006 switch (iocp->ioc_cmd) { 22007 case TI_GETMYNAME: 22008 case TI_GETPEERNAME: 22009 break; 22010 default: 22011 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22012 return; 22013 } 22014 switch (mi_copy_state(q, mp, &mp1)) { 22015 case -1: 22016 return; 22017 case MI_COPY_CASE(MI_COPY_IN, 1): 22018 break; 22019 case MI_COPY_CASE(MI_COPY_OUT, 1): 22020 /* Copy out the strbuf. */ 22021 mi_copyout(q, mp); 22022 return; 22023 case MI_COPY_CASE(MI_COPY_OUT, 2): 22024 /* All done. */ 22025 mi_copy_done(q, mp, 0); 22026 return; 22027 default: 22028 mi_copy_done(q, mp, EPROTO); 22029 return; 22030 } 22031 /* Check alignment of the strbuf */ 22032 if (!OK_32PTR(mp1->b_rptr)) { 22033 mi_copy_done(q, mp, EINVAL); 22034 return; 22035 } 22036 22037 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22038 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22039 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22040 mi_copy_done(q, mp, EINVAL); 22041 return; 22042 } 22043 22044 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22045 if (mp1 == NULL) 22046 return; 22047 22048 switch (iocp->ioc_cmd) { 22049 case TI_GETMYNAME: 22050 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22051 break; 22052 case TI_GETPEERNAME: 22053 error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22054 break; 22055 } 22056 22057 if (error != 0) { 22058 mi_copy_done(q, mp, error); 22059 } else { 22060 mp1->b_wptr += addrlen; 22061 STRUCT_FSET(sb, len, addrlen); 22062 22063 /* Copy out the address */ 22064 mi_copyout(q, mp); 22065 } 22066 } 22067 22068 /* 22069 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22070 * messages. 22071 */ 22072 /* ARGSUSED */ 22073 static void 22074 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22075 { 22076 conn_t *connp = (conn_t *)arg; 22077 tcp_t *tcp = connp->conn_tcp; 22078 queue_t *q = tcp->tcp_wq; 22079 struct iocblk *iocp; 22080 tcp_stack_t *tcps = tcp->tcp_tcps; 22081 22082 ASSERT(DB_TYPE(mp) == M_IOCTL); 22083 /* 22084 * Try and ASSERT the minimum possible references on the 22085 * conn early enough. Since we are executing on write side, 22086 * the connection is obviously not detached and that means 22087 * there is a ref each for TCP and IP. Since we are behind 22088 * the squeue, the minimum references needed are 3. If the 22089 * conn is in classifier hash list, there should be an 22090 * extra ref for that (we check both the possibilities). 22091 */ 22092 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22093 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22094 22095 iocp = (struct iocblk *)mp->b_rptr; 22096 switch (iocp->ioc_cmd) { 22097 case TCP_IOC_DEFAULT_Q: 22098 /* Wants to be the default wq. */ 22099 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22100 iocp->ioc_error = EPERM; 22101 iocp->ioc_count = 0; 22102 mp->b_datap->db_type = M_IOCACK; 22103 qreply(q, mp); 22104 return; 22105 } 22106 tcp_def_q_set(tcp, mp); 22107 return; 22108 case _SIOCSOCKFALLBACK: 22109 /* 22110 * Either sockmod is about to be popped and the socket 22111 * would now be treated as a plain stream, or a module 22112 * is about to be pushed so we could no longer use read- 22113 * side synchronous streams for fused loopback tcp. 22114 * Drain any queued data and disable direct sockfs 22115 * interface from now on. 22116 */ 22117 if (!tcp->tcp_issocket) { 22118 DB_TYPE(mp) = M_IOCNAK; 22119 iocp->ioc_error = EINVAL; 22120 } else { 22121 #ifdef _ILP32 22122 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 22123 #else 22124 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22125 #endif 22126 /* 22127 * Insert this socket into the acceptor hash. 22128 * We might need it for T_CONN_RES message 22129 */ 22130 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22131 22132 if (tcp->tcp_fused) { 22133 /* 22134 * This is a fused loopback tcp; disable 22135 * read-side synchronous streams interface 22136 * and drain any queued data. It is okay 22137 * to do this for non-synchronous streams 22138 * fused tcp as well. 22139 */ 22140 tcp_fuse_disable_pair(tcp, B_FALSE); 22141 } 22142 tcp->tcp_issocket = B_FALSE; 22143 TCP_STAT(tcps, tcp_sock_fallback); 22144 22145 DB_TYPE(mp) = M_IOCACK; 22146 iocp->ioc_error = 0; 22147 } 22148 iocp->ioc_count = 0; 22149 iocp->ioc_rval = 0; 22150 qreply(q, mp); 22151 return; 22152 } 22153 CALL_IP_WPUT(connp, q, mp); 22154 } 22155 22156 /* 22157 * This routine is called by tcp_wput() to handle all TPI requests. 22158 */ 22159 /* ARGSUSED */ 22160 static void 22161 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22162 { 22163 conn_t *connp = (conn_t *)arg; 22164 tcp_t *tcp = connp->conn_tcp; 22165 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22166 uchar_t *rptr; 22167 t_scalar_t type; 22168 int len; 22169 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22170 22171 /* 22172 * Try and ASSERT the minimum possible references on the 22173 * conn early enough. Since we are executing on write side, 22174 * the connection is obviously not detached and that means 22175 * there is a ref each for TCP and IP. Since we are behind 22176 * the squeue, the minimum references needed are 3. If the 22177 * conn is in classifier hash list, there should be an 22178 * extra ref for that (we check both the possibilities). 22179 */ 22180 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22181 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22182 22183 rptr = mp->b_rptr; 22184 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22185 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22186 type = ((union T_primitives *)rptr)->type; 22187 if (type == T_EXDATA_REQ) { 22188 uint32_t msize = msgdsize(mp->b_cont); 22189 22190 len = msize - 1; 22191 if (len < 0) { 22192 freemsg(mp); 22193 return; 22194 } 22195 /* 22196 * Try to force urgent data out on the wire. 22197 * Even if we have unsent data this will 22198 * at least send the urgent flag. 22199 * XXX does not handle more flag correctly. 22200 */ 22201 len += tcp->tcp_unsent; 22202 len += tcp->tcp_snxt; 22203 tcp->tcp_urg = len; 22204 tcp->tcp_valid_bits |= TCP_URG_VALID; 22205 22206 /* Bypass tcp protocol for fused tcp loopback */ 22207 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22208 return; 22209 } else if (type != T_DATA_REQ) { 22210 goto non_urgent_data; 22211 } 22212 /* TODO: options, flags, ... from user */ 22213 /* Set length to zero for reclamation below */ 22214 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22215 freeb(mp); 22216 return; 22217 } else { 22218 if (tcp->tcp_debug) { 22219 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22220 "tcp_wput_proto, dropping one..."); 22221 } 22222 freemsg(mp); 22223 return; 22224 } 22225 22226 non_urgent_data: 22227 22228 switch ((int)tprim->type) { 22229 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22230 /* 22231 * save the kssl_ent_t from the next block, and convert this 22232 * back to a normal bind_req. 22233 */ 22234 if (mp->b_cont != NULL) { 22235 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22236 22237 if (tcp->tcp_kssl_ent != NULL) { 22238 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22239 KSSL_NO_PROXY); 22240 tcp->tcp_kssl_ent = NULL; 22241 } 22242 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22243 sizeof (kssl_ent_t)); 22244 kssl_hold_ent(tcp->tcp_kssl_ent); 22245 freemsg(mp->b_cont); 22246 mp->b_cont = NULL; 22247 } 22248 tprim->type = T_BIND_REQ; 22249 22250 /* FALLTHROUGH */ 22251 case O_T_BIND_REQ: /* bind request */ 22252 case T_BIND_REQ: /* new semantics bind request */ 22253 tcp_bind(tcp, mp); 22254 break; 22255 case T_UNBIND_REQ: /* unbind request */ 22256 tcp_unbind(tcp, mp); 22257 break; 22258 case O_T_CONN_RES: /* old connection response XXX */ 22259 case T_CONN_RES: /* connection response */ 22260 tcp_accept(tcp, mp); 22261 break; 22262 case T_CONN_REQ: /* connection request */ 22263 tcp_connect(tcp, mp); 22264 break; 22265 case T_DISCON_REQ: /* disconnect request */ 22266 tcp_disconnect(tcp, mp); 22267 break; 22268 case T_CAPABILITY_REQ: 22269 tcp_capability_req(tcp, mp); /* capability request */ 22270 break; 22271 case T_INFO_REQ: /* information request */ 22272 tcp_info_req(tcp, mp); 22273 break; 22274 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22275 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22276 &tcp_opt_obj, B_TRUE); 22277 break; 22278 case T_OPTMGMT_REQ: 22279 /* 22280 * Note: no support for snmpcom_req() through new 22281 * T_OPTMGMT_REQ. See comments in ip.c 22282 */ 22283 /* Only IP is allowed to return meaningful value */ 22284 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22285 B_TRUE); 22286 break; 22287 22288 case T_UNITDATA_REQ: /* unitdata request */ 22289 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22290 break; 22291 case T_ORDREL_REQ: /* orderly release req */ 22292 freemsg(mp); 22293 22294 if (tcp->tcp_fused) 22295 tcp_unfuse(tcp); 22296 22297 if (tcp_xmit_end(tcp) != 0) { 22298 /* 22299 * We were crossing FINs and got a reset from 22300 * the other side. Just ignore it. 22301 */ 22302 if (tcp->tcp_debug) { 22303 (void) strlog(TCP_MOD_ID, 0, 1, 22304 SL_ERROR|SL_TRACE, 22305 "tcp_wput_proto, T_ORDREL_REQ out of " 22306 "state %s", 22307 tcp_display(tcp, NULL, 22308 DISP_ADDR_AND_PORT)); 22309 } 22310 } 22311 break; 22312 case T_ADDR_REQ: 22313 tcp_addr_req(tcp, mp); 22314 break; 22315 default: 22316 if (tcp->tcp_debug) { 22317 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22318 "tcp_wput_proto, bogus TPI msg, type %d", 22319 tprim->type); 22320 } 22321 /* 22322 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22323 * to recover. 22324 */ 22325 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22326 break; 22327 } 22328 } 22329 22330 /* 22331 * The TCP write service routine should never be called... 22332 */ 22333 /* ARGSUSED */ 22334 static void 22335 tcp_wsrv(queue_t *q) 22336 { 22337 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22338 22339 TCP_STAT(tcps, tcp_wsrv_called); 22340 } 22341 22342 /* Non overlapping byte exchanger */ 22343 static void 22344 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22345 { 22346 uchar_t uch; 22347 22348 while (len-- > 0) { 22349 uch = a[len]; 22350 a[len] = b[len]; 22351 b[len] = uch; 22352 } 22353 } 22354 22355 /* 22356 * Send out a control packet on the tcp connection specified. This routine 22357 * is typically called where we need a simple ACK or RST generated. 22358 */ 22359 static void 22360 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22361 { 22362 uchar_t *rptr; 22363 tcph_t *tcph; 22364 ipha_t *ipha = NULL; 22365 ip6_t *ip6h = NULL; 22366 uint32_t sum; 22367 int tcp_hdr_len; 22368 int tcp_ip_hdr_len; 22369 mblk_t *mp; 22370 tcp_stack_t *tcps = tcp->tcp_tcps; 22371 22372 /* 22373 * Save sum for use in source route later. 22374 */ 22375 ASSERT(tcp != NULL); 22376 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22377 tcp_hdr_len = tcp->tcp_hdr_len; 22378 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22379 22380 /* If a text string is passed in with the request, pass it to strlog. */ 22381 if (str != NULL && tcp->tcp_debug) { 22382 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22383 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22384 str, seq, ack, ctl); 22385 } 22386 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22387 BPRI_MED); 22388 if (mp == NULL) { 22389 return; 22390 } 22391 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22392 mp->b_rptr = rptr; 22393 mp->b_wptr = &rptr[tcp_hdr_len]; 22394 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22395 22396 if (tcp->tcp_ipversion == IPV4_VERSION) { 22397 ipha = (ipha_t *)rptr; 22398 ipha->ipha_length = htons(tcp_hdr_len); 22399 } else { 22400 ip6h = (ip6_t *)rptr; 22401 ASSERT(tcp != NULL); 22402 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22403 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22404 } 22405 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22406 tcph->th_flags[0] = (uint8_t)ctl; 22407 if (ctl & TH_RST) { 22408 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22409 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22410 /* 22411 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22412 */ 22413 if (tcp->tcp_snd_ts_ok && 22414 tcp->tcp_state > TCPS_SYN_SENT) { 22415 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22416 *(mp->b_wptr) = TCPOPT_EOL; 22417 if (tcp->tcp_ipversion == IPV4_VERSION) { 22418 ipha->ipha_length = htons(tcp_hdr_len - 22419 TCPOPT_REAL_TS_LEN); 22420 } else { 22421 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22422 TCPOPT_REAL_TS_LEN); 22423 } 22424 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22425 sum -= TCPOPT_REAL_TS_LEN; 22426 } 22427 } 22428 if (ctl & TH_ACK) { 22429 if (tcp->tcp_snd_ts_ok) { 22430 U32_TO_BE32(lbolt, 22431 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22432 U32_TO_BE32(tcp->tcp_ts_recent, 22433 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22434 } 22435 22436 /* Update the latest receive window size in TCP header. */ 22437 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22438 tcph->th_win); 22439 tcp->tcp_rack = ack; 22440 tcp->tcp_rack_cnt = 0; 22441 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22442 } 22443 BUMP_LOCAL(tcp->tcp_obsegs); 22444 U32_TO_BE32(seq, tcph->th_seq); 22445 U32_TO_BE32(ack, tcph->th_ack); 22446 /* 22447 * Include the adjustment for a source route if any. 22448 */ 22449 sum = (sum >> 16) + (sum & 0xFFFF); 22450 U16_TO_BE16(sum, tcph->th_sum); 22451 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22452 tcp_send_data(tcp, tcp->tcp_wq, mp); 22453 } 22454 22455 /* 22456 * If this routine returns B_TRUE, TCP can generate a RST in response 22457 * to a segment. If it returns B_FALSE, TCP should not respond. 22458 */ 22459 static boolean_t 22460 tcp_send_rst_chk(tcp_stack_t *tcps) 22461 { 22462 clock_t now; 22463 22464 /* 22465 * TCP needs to protect itself from generating too many RSTs. 22466 * This can be a DoS attack by sending us random segments 22467 * soliciting RSTs. 22468 * 22469 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22470 * in each 1 second interval. In this way, TCP still generate 22471 * RSTs in normal cases but when under attack, the impact is 22472 * limited. 22473 */ 22474 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22475 now = lbolt; 22476 /* lbolt can wrap around. */ 22477 if ((tcps->tcps_last_rst_intrvl > now) || 22478 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22479 1*SECONDS)) { 22480 tcps->tcps_last_rst_intrvl = now; 22481 tcps->tcps_rst_cnt = 1; 22482 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22483 return (B_FALSE); 22484 } 22485 } 22486 return (B_TRUE); 22487 } 22488 22489 /* 22490 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22491 */ 22492 static void 22493 tcp_ip_ire_mark_advice(tcp_t *tcp) 22494 { 22495 mblk_t *mp; 22496 ipic_t *ipic; 22497 22498 if (tcp->tcp_ipversion == IPV4_VERSION) { 22499 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22500 &ipic); 22501 } else { 22502 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22503 &ipic); 22504 } 22505 if (mp == NULL) 22506 return; 22507 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22508 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22509 } 22510 22511 /* 22512 * Return an IP advice ioctl mblk and set ipic to be the pointer 22513 * to the advice structure. 22514 */ 22515 static mblk_t * 22516 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22517 { 22518 struct iocblk *ioc; 22519 mblk_t *mp, *mp1; 22520 22521 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22522 if (mp == NULL) 22523 return (NULL); 22524 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22525 *ipic = (ipic_t *)mp->b_rptr; 22526 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22527 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22528 22529 bcopy(addr, *ipic + 1, addr_len); 22530 22531 (*ipic)->ipic_addr_length = addr_len; 22532 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22533 22534 mp1 = mkiocb(IP_IOCTL); 22535 if (mp1 == NULL) { 22536 freemsg(mp); 22537 return (NULL); 22538 } 22539 mp1->b_cont = mp; 22540 ioc = (struct iocblk *)mp1->b_rptr; 22541 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22542 22543 return (mp1); 22544 } 22545 22546 /* 22547 * Generate a reset based on an inbound packet, connp is set by caller 22548 * when RST is in response to an unexpected inbound packet for which 22549 * there is active tcp state in the system. 22550 * 22551 * IPSEC NOTE : Try to send the reply with the same protection as it came 22552 * in. We still have the ipsec_mp that the packet was attached to. Thus 22553 * the packet will go out at the same level of protection as it came in by 22554 * converting the IPSEC_IN to IPSEC_OUT. 22555 */ 22556 static void 22557 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22558 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22559 tcp_stack_t *tcps, conn_t *connp) 22560 { 22561 ipha_t *ipha = NULL; 22562 ip6_t *ip6h = NULL; 22563 ushort_t len; 22564 tcph_t *tcph; 22565 int i; 22566 mblk_t *ipsec_mp; 22567 boolean_t mctl_present; 22568 ipic_t *ipic; 22569 ipaddr_t v4addr; 22570 in6_addr_t v6addr; 22571 int addr_len; 22572 void *addr; 22573 queue_t *q = tcps->tcps_g_q; 22574 tcp_t *tcp; 22575 cred_t *cr; 22576 mblk_t *nmp; 22577 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22578 22579 if (tcps->tcps_g_q == NULL) { 22580 /* 22581 * For non-zero stackids the default queue isn't created 22582 * until the first open, thus there can be a need to send 22583 * a reset before then. But we can't do that, hence we just 22584 * drop the packet. Later during boot, when the default queue 22585 * has been setup, a retransmitted packet from the peer 22586 * will result in a reset. 22587 */ 22588 ASSERT(tcps->tcps_netstack->netstack_stackid != 22589 GLOBAL_NETSTACKID); 22590 freemsg(mp); 22591 return; 22592 } 22593 22594 if (connp != NULL) 22595 tcp = connp->conn_tcp; 22596 else 22597 tcp = Q_TO_TCP(q); 22598 22599 if (!tcp_send_rst_chk(tcps)) { 22600 tcps->tcps_rst_unsent++; 22601 freemsg(mp); 22602 return; 22603 } 22604 22605 if (mp->b_datap->db_type == M_CTL) { 22606 ipsec_mp = mp; 22607 mp = mp->b_cont; 22608 mctl_present = B_TRUE; 22609 } else { 22610 ipsec_mp = mp; 22611 mctl_present = B_FALSE; 22612 } 22613 22614 if (str && q && tcps->tcps_dbg) { 22615 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22616 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22617 "flags 0x%x", 22618 str, seq, ack, ctl); 22619 } 22620 if (mp->b_datap->db_ref != 1) { 22621 mblk_t *mp1 = copyb(mp); 22622 freemsg(mp); 22623 mp = mp1; 22624 if (!mp) { 22625 if (mctl_present) 22626 freeb(ipsec_mp); 22627 return; 22628 } else { 22629 if (mctl_present) { 22630 ipsec_mp->b_cont = mp; 22631 } else { 22632 ipsec_mp = mp; 22633 } 22634 } 22635 } else if (mp->b_cont) { 22636 freemsg(mp->b_cont); 22637 mp->b_cont = NULL; 22638 } 22639 /* 22640 * We skip reversing source route here. 22641 * (for now we replace all IP options with EOL) 22642 */ 22643 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22644 ipha = (ipha_t *)mp->b_rptr; 22645 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22646 mp->b_rptr[i] = IPOPT_EOL; 22647 /* 22648 * Make sure that src address isn't flagrantly invalid. 22649 * Not all broadcast address checking for the src address 22650 * is possible, since we don't know the netmask of the src 22651 * addr. No check for destination address is done, since 22652 * IP will not pass up a packet with a broadcast dest 22653 * address to TCP. Similar checks are done below for IPv6. 22654 */ 22655 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22656 CLASSD(ipha->ipha_src)) { 22657 freemsg(ipsec_mp); 22658 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22659 return; 22660 } 22661 } else { 22662 ip6h = (ip6_t *)mp->b_rptr; 22663 22664 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22665 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22666 freemsg(ipsec_mp); 22667 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22668 return; 22669 } 22670 22671 /* Remove any extension headers assuming partial overlay */ 22672 if (ip_hdr_len > IPV6_HDR_LEN) { 22673 uint8_t *to; 22674 22675 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22676 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22677 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22678 ip_hdr_len = IPV6_HDR_LEN; 22679 ip6h = (ip6_t *)mp->b_rptr; 22680 ip6h->ip6_nxt = IPPROTO_TCP; 22681 } 22682 } 22683 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22684 if (tcph->th_flags[0] & TH_RST) { 22685 freemsg(ipsec_mp); 22686 return; 22687 } 22688 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22689 len = ip_hdr_len + sizeof (tcph_t); 22690 mp->b_wptr = &mp->b_rptr[len]; 22691 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22692 ipha->ipha_length = htons(len); 22693 /* Swap addresses */ 22694 v4addr = ipha->ipha_src; 22695 ipha->ipha_src = ipha->ipha_dst; 22696 ipha->ipha_dst = v4addr; 22697 ipha->ipha_ident = 0; 22698 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22699 addr_len = IP_ADDR_LEN; 22700 addr = &v4addr; 22701 } else { 22702 /* No ip6i_t in this case */ 22703 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22704 /* Swap addresses */ 22705 v6addr = ip6h->ip6_src; 22706 ip6h->ip6_src = ip6h->ip6_dst; 22707 ip6h->ip6_dst = v6addr; 22708 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22709 addr_len = IPV6_ADDR_LEN; 22710 addr = &v6addr; 22711 } 22712 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22713 U32_TO_BE32(ack, tcph->th_ack); 22714 U32_TO_BE32(seq, tcph->th_seq); 22715 U16_TO_BE16(0, tcph->th_win); 22716 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22717 tcph->th_flags[0] = (uint8_t)ctl; 22718 if (ctl & TH_RST) { 22719 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22720 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22721 } 22722 22723 /* IP trusts us to set up labels when required. */ 22724 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22725 crgetlabel(cr) != NULL) { 22726 int err; 22727 22728 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22729 err = tsol_check_label(cr, &mp, 22730 tcp->tcp_connp->conn_mac_exempt, 22731 tcps->tcps_netstack->netstack_ip); 22732 else 22733 err = tsol_check_label_v6(cr, &mp, 22734 tcp->tcp_connp->conn_mac_exempt, 22735 tcps->tcps_netstack->netstack_ip); 22736 if (mctl_present) 22737 ipsec_mp->b_cont = mp; 22738 else 22739 ipsec_mp = mp; 22740 if (err != 0) { 22741 freemsg(ipsec_mp); 22742 return; 22743 } 22744 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22745 ipha = (ipha_t *)mp->b_rptr; 22746 } else { 22747 ip6h = (ip6_t *)mp->b_rptr; 22748 } 22749 } 22750 22751 if (mctl_present) { 22752 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22753 22754 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22755 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22756 return; 22757 } 22758 } 22759 if (zoneid == ALL_ZONES) 22760 zoneid = GLOBAL_ZONEID; 22761 22762 /* Add the zoneid so ip_output routes it properly */ 22763 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22764 freemsg(ipsec_mp); 22765 return; 22766 } 22767 ipsec_mp = nmp; 22768 22769 /* 22770 * NOTE: one might consider tracing a TCP packet here, but 22771 * this function has no active TCP state and no tcp structure 22772 * that has a trace buffer. If we traced here, we would have 22773 * to keep a local trace buffer in tcp_record_trace(). 22774 * 22775 * TSol note: The mblk that contains the incoming packet was 22776 * reused by tcp_xmit_listener_reset, so it already contains 22777 * the right credentials and we don't need to call mblk_setcred. 22778 * Also the conn's cred is not right since it is associated 22779 * with tcps_g_q. 22780 */ 22781 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22782 22783 /* 22784 * Tell IP to mark the IRE used for this destination temporary. 22785 * This way, we can limit our exposure to DoS attack because IP 22786 * creates an IRE for each destination. If there are too many, 22787 * the time to do any routing lookup will be extremely long. And 22788 * the lookup can be in interrupt context. 22789 * 22790 * Note that in normal circumstances, this marking should not 22791 * affect anything. It would be nice if only 1 message is 22792 * needed to inform IP that the IRE created for this RST should 22793 * not be added to the cache table. But there is currently 22794 * not such communication mechanism between TCP and IP. So 22795 * the best we can do now is to send the advice ioctl to IP 22796 * to mark the IRE temporary. 22797 */ 22798 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22799 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22800 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22801 } 22802 } 22803 22804 /* 22805 * Initiate closedown sequence on an active connection. (May be called as 22806 * writer.) Return value zero for OK return, non-zero for error return. 22807 */ 22808 static int 22809 tcp_xmit_end(tcp_t *tcp) 22810 { 22811 ipic_t *ipic; 22812 mblk_t *mp; 22813 tcp_stack_t *tcps = tcp->tcp_tcps; 22814 22815 if (tcp->tcp_state < TCPS_SYN_RCVD || 22816 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22817 /* 22818 * Invalid state, only states TCPS_SYN_RCVD, 22819 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22820 */ 22821 return (-1); 22822 } 22823 22824 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22825 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22826 /* 22827 * If there is nothing more unsent, send the FIN now. 22828 * Otherwise, it will go out with the last segment. 22829 */ 22830 if (tcp->tcp_unsent == 0) { 22831 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22832 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22833 22834 if (mp) { 22835 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22836 tcp_send_data(tcp, tcp->tcp_wq, mp); 22837 } else { 22838 /* 22839 * Couldn't allocate msg. Pretend we got it out. 22840 * Wait for rexmit timeout. 22841 */ 22842 tcp->tcp_snxt = tcp->tcp_fss + 1; 22843 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22844 } 22845 22846 /* 22847 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22848 * changed. 22849 */ 22850 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22851 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22852 } 22853 } else { 22854 /* 22855 * If tcp->tcp_cork is set, then the data will not get sent, 22856 * so we have to check that and unset it first. 22857 */ 22858 if (tcp->tcp_cork) 22859 tcp->tcp_cork = B_FALSE; 22860 tcp_wput_data(tcp, NULL, B_FALSE); 22861 } 22862 22863 /* 22864 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22865 * is 0, don't update the cache. 22866 */ 22867 if (tcps->tcps_rtt_updates == 0 || 22868 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22869 return (0); 22870 22871 /* 22872 * NOTE: should not update if source routes i.e. if tcp_remote if 22873 * different from the destination. 22874 */ 22875 if (tcp->tcp_ipversion == IPV4_VERSION) { 22876 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22877 return (0); 22878 } 22879 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22880 &ipic); 22881 } else { 22882 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22883 &tcp->tcp_ip6h->ip6_dst))) { 22884 return (0); 22885 } 22886 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22887 &ipic); 22888 } 22889 22890 /* Record route attributes in the IRE for use by future connections. */ 22891 if (mp == NULL) 22892 return (0); 22893 22894 /* 22895 * We do not have a good algorithm to update ssthresh at this time. 22896 * So don't do any update. 22897 */ 22898 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22899 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22900 22901 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22902 return (0); 22903 } 22904 22905 /* 22906 * Generate a "no listener here" RST in response to an "unknown" segment. 22907 * connp is set by caller when RST is in response to an unexpected 22908 * inbound packet for which there is active tcp state in the system. 22909 * Note that we are reusing the incoming mp to construct the outgoing RST. 22910 */ 22911 void 22912 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22913 tcp_stack_t *tcps, conn_t *connp) 22914 { 22915 uchar_t *rptr; 22916 uint32_t seg_len; 22917 tcph_t *tcph; 22918 uint32_t seg_seq; 22919 uint32_t seg_ack; 22920 uint_t flags; 22921 mblk_t *ipsec_mp; 22922 ipha_t *ipha; 22923 ip6_t *ip6h; 22924 boolean_t mctl_present = B_FALSE; 22925 boolean_t check = B_TRUE; 22926 boolean_t policy_present; 22927 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22928 22929 TCP_STAT(tcps, tcp_no_listener); 22930 22931 ipsec_mp = mp; 22932 22933 if (mp->b_datap->db_type == M_CTL) { 22934 ipsec_in_t *ii; 22935 22936 mctl_present = B_TRUE; 22937 mp = mp->b_cont; 22938 22939 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22940 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22941 if (ii->ipsec_in_dont_check) { 22942 check = B_FALSE; 22943 if (!ii->ipsec_in_secure) { 22944 freeb(ipsec_mp); 22945 mctl_present = B_FALSE; 22946 ipsec_mp = mp; 22947 } 22948 } 22949 } 22950 22951 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22952 policy_present = ipss->ipsec_inbound_v4_policy_present; 22953 ipha = (ipha_t *)mp->b_rptr; 22954 ip6h = NULL; 22955 } else { 22956 policy_present = ipss->ipsec_inbound_v6_policy_present; 22957 ipha = NULL; 22958 ip6h = (ip6_t *)mp->b_rptr; 22959 } 22960 22961 if (check && policy_present) { 22962 /* 22963 * The conn_t parameter is NULL because we already know 22964 * nobody's home. 22965 */ 22966 ipsec_mp = ipsec_check_global_policy( 22967 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22968 tcps->tcps_netstack); 22969 if (ipsec_mp == NULL) 22970 return; 22971 } 22972 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22973 DTRACE_PROBE2( 22974 tx__ip__log__error__nolistener__tcp, 22975 char *, "Could not reply with RST to mp(1)", 22976 mblk_t *, mp); 22977 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22978 freemsg(ipsec_mp); 22979 return; 22980 } 22981 22982 rptr = mp->b_rptr; 22983 22984 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22985 seg_seq = BE32_TO_U32(tcph->th_seq); 22986 seg_ack = BE32_TO_U32(tcph->th_ack); 22987 flags = tcph->th_flags[0]; 22988 22989 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22990 if (flags & TH_RST) { 22991 freemsg(ipsec_mp); 22992 } else if (flags & TH_ACK) { 22993 tcp_xmit_early_reset("no tcp, reset", 22994 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22995 connp); 22996 } else { 22997 if (flags & TH_SYN) { 22998 seg_len++; 22999 } else { 23000 /* 23001 * Here we violate the RFC. Note that a normal 23002 * TCP will never send a segment without the ACK 23003 * flag, except for RST or SYN segment. This 23004 * segment is neither. Just drop it on the 23005 * floor. 23006 */ 23007 freemsg(ipsec_mp); 23008 tcps->tcps_rst_unsent++; 23009 return; 23010 } 23011 23012 tcp_xmit_early_reset("no tcp, reset/ack", 23013 ipsec_mp, 0, seg_seq + seg_len, 23014 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23015 } 23016 } 23017 23018 /* 23019 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23020 * ip and tcp header ready to pass down to IP. If the mp passed in is 23021 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23022 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23023 * otherwise it will dup partial mblks.) 23024 * Otherwise, an appropriate ACK packet will be generated. This 23025 * routine is not usually called to send new data for the first time. It 23026 * is mostly called out of the timer for retransmits, and to generate ACKs. 23027 * 23028 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23029 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23030 * of the original mblk chain will be returned in *offset and *end_mp. 23031 */ 23032 mblk_t * 23033 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23034 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23035 boolean_t rexmit) 23036 { 23037 int data_length; 23038 int32_t off = 0; 23039 uint_t flags; 23040 mblk_t *mp1; 23041 mblk_t *mp2; 23042 uchar_t *rptr; 23043 tcph_t *tcph; 23044 int32_t num_sack_blk = 0; 23045 int32_t sack_opt_len = 0; 23046 tcp_stack_t *tcps = tcp->tcp_tcps; 23047 23048 /* Allocate for our maximum TCP header + link-level */ 23049 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23050 tcps->tcps_wroff_xtra, BPRI_MED); 23051 if (!mp1) 23052 return (NULL); 23053 data_length = 0; 23054 23055 /* 23056 * Note that tcp_mss has been adjusted to take into account the 23057 * timestamp option if applicable. Because SACK options do not 23058 * appear in every TCP segments and they are of variable lengths, 23059 * they cannot be included in tcp_mss. Thus we need to calculate 23060 * the actual segment length when we need to send a segment which 23061 * includes SACK options. 23062 */ 23063 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23064 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23065 tcp->tcp_num_sack_blk); 23066 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23067 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23068 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23069 max_to_send -= sack_opt_len; 23070 } 23071 23072 if (offset != NULL) { 23073 off = *offset; 23074 /* We use offset as an indicator that end_mp is not NULL. */ 23075 *end_mp = NULL; 23076 } 23077 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23078 /* This could be faster with cooperation from downstream */ 23079 if (mp2 != mp1 && !sendall && 23080 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23081 max_to_send) 23082 /* 23083 * Don't send the next mblk since the whole mblk 23084 * does not fit. 23085 */ 23086 break; 23087 mp2->b_cont = dupb(mp); 23088 mp2 = mp2->b_cont; 23089 if (!mp2) { 23090 freemsg(mp1); 23091 return (NULL); 23092 } 23093 mp2->b_rptr += off; 23094 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23095 (uintptr_t)INT_MAX); 23096 23097 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23098 if (data_length > max_to_send) { 23099 mp2->b_wptr -= data_length - max_to_send; 23100 data_length = max_to_send; 23101 off = mp2->b_wptr - mp->b_rptr; 23102 break; 23103 } else { 23104 off = 0; 23105 } 23106 } 23107 if (offset != NULL) { 23108 *offset = off; 23109 *end_mp = mp; 23110 } 23111 if (seg_len != NULL) { 23112 *seg_len = data_length; 23113 } 23114 23115 /* Update the latest receive window size in TCP header. */ 23116 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23117 tcp->tcp_tcph->th_win); 23118 23119 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23120 mp1->b_rptr = rptr; 23121 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23122 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23123 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23124 U32_TO_ABE32(seq, tcph->th_seq); 23125 23126 /* 23127 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23128 * that this function was called from tcp_wput_data. Thus, when called 23129 * to retransmit data the setting of the PUSH bit may appear some 23130 * what random in that it might get set when it should not. This 23131 * should not pose any performance issues. 23132 */ 23133 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23134 tcp->tcp_unsent == data_length)) { 23135 flags = TH_ACK | TH_PUSH; 23136 } else { 23137 flags = TH_ACK; 23138 } 23139 23140 if (tcp->tcp_ecn_ok) { 23141 if (tcp->tcp_ecn_echo_on) 23142 flags |= TH_ECE; 23143 23144 /* 23145 * Only set ECT bit and ECN_CWR if a segment contains new data. 23146 * There is no TCP flow control for non-data segments, and 23147 * only data segment is transmitted reliably. 23148 */ 23149 if (data_length > 0 && !rexmit) { 23150 SET_ECT(tcp, rptr); 23151 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23152 flags |= TH_CWR; 23153 tcp->tcp_ecn_cwr_sent = B_TRUE; 23154 } 23155 } 23156 } 23157 23158 if (tcp->tcp_valid_bits) { 23159 uint32_t u1; 23160 23161 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23162 seq == tcp->tcp_iss) { 23163 uchar_t *wptr; 23164 23165 /* 23166 * If TCP_ISS_VALID and the seq number is tcp_iss, 23167 * TCP can only be in SYN-SENT, SYN-RCVD or 23168 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23169 * our SYN is not ack'ed but the app closes this 23170 * TCP connection. 23171 */ 23172 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23173 tcp->tcp_state == TCPS_SYN_RCVD || 23174 tcp->tcp_state == TCPS_FIN_WAIT_1); 23175 23176 /* 23177 * Tack on the MSS option. It is always needed 23178 * for both active and passive open. 23179 * 23180 * MSS option value should be interface MTU - MIN 23181 * TCP/IP header according to RFC 793 as it means 23182 * the maximum segment size TCP can receive. But 23183 * to get around some broken middle boxes/end hosts 23184 * out there, we allow the option value to be the 23185 * same as the MSS option size on the peer side. 23186 * In this way, the other side will not send 23187 * anything larger than they can receive. 23188 * 23189 * Note that for SYN_SENT state, the ndd param 23190 * tcp_use_smss_as_mss_opt has no effect as we 23191 * don't know the peer's MSS option value. So 23192 * the only case we need to take care of is in 23193 * SYN_RCVD state, which is done later. 23194 */ 23195 wptr = mp1->b_wptr; 23196 wptr[0] = TCPOPT_MAXSEG; 23197 wptr[1] = TCPOPT_MAXSEG_LEN; 23198 wptr += 2; 23199 u1 = tcp->tcp_if_mtu - 23200 (tcp->tcp_ipversion == IPV4_VERSION ? 23201 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23202 TCP_MIN_HEADER_LENGTH; 23203 U16_TO_BE16(u1, wptr); 23204 mp1->b_wptr = wptr + 2; 23205 /* Update the offset to cover the additional word */ 23206 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23207 23208 /* 23209 * Note that the following way of filling in 23210 * TCP options are not optimal. Some NOPs can 23211 * be saved. But there is no need at this time 23212 * to optimize it. When it is needed, we will 23213 * do it. 23214 */ 23215 switch (tcp->tcp_state) { 23216 case TCPS_SYN_SENT: 23217 flags = TH_SYN; 23218 23219 if (tcp->tcp_snd_ts_ok) { 23220 uint32_t llbolt = (uint32_t)lbolt; 23221 23222 wptr = mp1->b_wptr; 23223 wptr[0] = TCPOPT_NOP; 23224 wptr[1] = TCPOPT_NOP; 23225 wptr[2] = TCPOPT_TSTAMP; 23226 wptr[3] = TCPOPT_TSTAMP_LEN; 23227 wptr += 4; 23228 U32_TO_BE32(llbolt, wptr); 23229 wptr += 4; 23230 ASSERT(tcp->tcp_ts_recent == 0); 23231 U32_TO_BE32(0L, wptr); 23232 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23233 tcph->th_offset_and_rsrvd[0] += 23234 (3 << 4); 23235 } 23236 23237 /* 23238 * Set up all the bits to tell other side 23239 * we are ECN capable. 23240 */ 23241 if (tcp->tcp_ecn_ok) { 23242 flags |= (TH_ECE | TH_CWR); 23243 } 23244 break; 23245 case TCPS_SYN_RCVD: 23246 flags |= TH_SYN; 23247 23248 /* 23249 * Reset the MSS option value to be SMSS 23250 * We should probably add back the bytes 23251 * for timestamp option and IPsec. We 23252 * don't do that as this is a workaround 23253 * for broken middle boxes/end hosts, it 23254 * is better for us to be more cautious. 23255 * They may not take these things into 23256 * account in their SMSS calculation. Thus 23257 * the peer's calculated SMSS may be smaller 23258 * than what it can be. This should be OK. 23259 */ 23260 if (tcps->tcps_use_smss_as_mss_opt) { 23261 u1 = tcp->tcp_mss; 23262 U16_TO_BE16(u1, wptr); 23263 } 23264 23265 /* 23266 * If the other side is ECN capable, reply 23267 * that we are also ECN capable. 23268 */ 23269 if (tcp->tcp_ecn_ok) 23270 flags |= TH_ECE; 23271 break; 23272 default: 23273 /* 23274 * The above ASSERT() makes sure that this 23275 * must be FIN-WAIT-1 state. Our SYN has 23276 * not been ack'ed so retransmit it. 23277 */ 23278 flags |= TH_SYN; 23279 break; 23280 } 23281 23282 if (tcp->tcp_snd_ws_ok) { 23283 wptr = mp1->b_wptr; 23284 wptr[0] = TCPOPT_NOP; 23285 wptr[1] = TCPOPT_WSCALE; 23286 wptr[2] = TCPOPT_WS_LEN; 23287 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23288 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23289 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23290 } 23291 23292 if (tcp->tcp_snd_sack_ok) { 23293 wptr = mp1->b_wptr; 23294 wptr[0] = TCPOPT_NOP; 23295 wptr[1] = TCPOPT_NOP; 23296 wptr[2] = TCPOPT_SACK_PERMITTED; 23297 wptr[3] = TCPOPT_SACK_OK_LEN; 23298 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23299 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23300 } 23301 23302 /* allocb() of adequate mblk assures space */ 23303 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23304 (uintptr_t)INT_MAX); 23305 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23306 /* 23307 * Get IP set to checksum on our behalf 23308 * Include the adjustment for a source route if any. 23309 */ 23310 u1 += tcp->tcp_sum; 23311 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23312 U16_TO_BE16(u1, tcph->th_sum); 23313 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23314 } 23315 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23316 (seq + data_length) == tcp->tcp_fss) { 23317 if (!tcp->tcp_fin_acked) { 23318 flags |= TH_FIN; 23319 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23320 } 23321 if (!tcp->tcp_fin_sent) { 23322 tcp->tcp_fin_sent = B_TRUE; 23323 switch (tcp->tcp_state) { 23324 case TCPS_SYN_RCVD: 23325 case TCPS_ESTABLISHED: 23326 tcp->tcp_state = TCPS_FIN_WAIT_1; 23327 break; 23328 case TCPS_CLOSE_WAIT: 23329 tcp->tcp_state = TCPS_LAST_ACK; 23330 break; 23331 } 23332 if (tcp->tcp_suna == tcp->tcp_snxt) 23333 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23334 tcp->tcp_snxt = tcp->tcp_fss + 1; 23335 } 23336 } 23337 /* 23338 * Note the trick here. u1 is unsigned. When tcp_urg 23339 * is smaller than seq, u1 will become a very huge value. 23340 * So the comparison will fail. Also note that tcp_urp 23341 * should be positive, see RFC 793 page 17. 23342 */ 23343 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23344 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23345 u1 < (uint32_t)(64 * 1024)) { 23346 flags |= TH_URG; 23347 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23348 U32_TO_ABE16(u1, tcph->th_urp); 23349 } 23350 } 23351 tcph->th_flags[0] = (uchar_t)flags; 23352 tcp->tcp_rack = tcp->tcp_rnxt; 23353 tcp->tcp_rack_cnt = 0; 23354 23355 if (tcp->tcp_snd_ts_ok) { 23356 if (tcp->tcp_state != TCPS_SYN_SENT) { 23357 uint32_t llbolt = (uint32_t)lbolt; 23358 23359 U32_TO_BE32(llbolt, 23360 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23361 U32_TO_BE32(tcp->tcp_ts_recent, 23362 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23363 } 23364 } 23365 23366 if (num_sack_blk > 0) { 23367 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23368 sack_blk_t *tmp; 23369 int32_t i; 23370 23371 wptr[0] = TCPOPT_NOP; 23372 wptr[1] = TCPOPT_NOP; 23373 wptr[2] = TCPOPT_SACK; 23374 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23375 sizeof (sack_blk_t); 23376 wptr += TCPOPT_REAL_SACK_LEN; 23377 23378 tmp = tcp->tcp_sack_list; 23379 for (i = 0; i < num_sack_blk; i++) { 23380 U32_TO_BE32(tmp[i].begin, wptr); 23381 wptr += sizeof (tcp_seq); 23382 U32_TO_BE32(tmp[i].end, wptr); 23383 wptr += sizeof (tcp_seq); 23384 } 23385 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23386 } 23387 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23388 data_length += (int)(mp1->b_wptr - rptr); 23389 if (tcp->tcp_ipversion == IPV4_VERSION) { 23390 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23391 } else { 23392 ip6_t *ip6 = (ip6_t *)(rptr + 23393 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23394 sizeof (ip6i_t) : 0)); 23395 23396 ip6->ip6_plen = htons(data_length - 23397 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23398 } 23399 23400 /* 23401 * Prime pump for IP 23402 * Include the adjustment for a source route if any. 23403 */ 23404 data_length -= tcp->tcp_ip_hdr_len; 23405 data_length += tcp->tcp_sum; 23406 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23407 U16_TO_ABE16(data_length, tcph->th_sum); 23408 if (tcp->tcp_ip_forward_progress) { 23409 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23410 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23411 tcp->tcp_ip_forward_progress = B_FALSE; 23412 } 23413 return (mp1); 23414 } 23415 23416 /* This function handles the push timeout. */ 23417 void 23418 tcp_push_timer(void *arg) 23419 { 23420 conn_t *connp = (conn_t *)arg; 23421 tcp_t *tcp = connp->conn_tcp; 23422 tcp_stack_t *tcps = tcp->tcp_tcps; 23423 23424 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23425 23426 ASSERT(tcp->tcp_listener == NULL); 23427 23428 /* 23429 * We need to plug synchronous streams during our drain to prevent 23430 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23431 */ 23432 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23433 tcp->tcp_push_tid = 0; 23434 if ((tcp->tcp_rcv_list != NULL) && 23435 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23436 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23437 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23438 } 23439 23440 /* 23441 * This function handles delayed ACK timeout. 23442 */ 23443 static void 23444 tcp_ack_timer(void *arg) 23445 { 23446 conn_t *connp = (conn_t *)arg; 23447 tcp_t *tcp = connp->conn_tcp; 23448 mblk_t *mp; 23449 tcp_stack_t *tcps = tcp->tcp_tcps; 23450 23451 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23452 23453 tcp->tcp_ack_tid = 0; 23454 23455 if (tcp->tcp_fused) 23456 return; 23457 23458 /* 23459 * Do not send ACK if there is no outstanding unack'ed data. 23460 */ 23461 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23462 return; 23463 } 23464 23465 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23466 /* 23467 * Make sure we don't allow deferred ACKs to result in 23468 * timer-based ACKing. If we have held off an ACK 23469 * when there was more than an mss here, and the timer 23470 * goes off, we have to worry about the possibility 23471 * that the sender isn't doing slow-start, or is out 23472 * of step with us for some other reason. We fall 23473 * permanently back in the direction of 23474 * ACK-every-other-packet as suggested in RFC 1122. 23475 */ 23476 if (tcp->tcp_rack_abs_max > 2) 23477 tcp->tcp_rack_abs_max--; 23478 tcp->tcp_rack_cur_max = 2; 23479 } 23480 mp = tcp_ack_mp(tcp); 23481 23482 if (mp != NULL) { 23483 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23484 BUMP_LOCAL(tcp->tcp_obsegs); 23485 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23486 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23487 tcp_send_data(tcp, tcp->tcp_wq, mp); 23488 } 23489 } 23490 23491 23492 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23493 static mblk_t * 23494 tcp_ack_mp(tcp_t *tcp) 23495 { 23496 uint32_t seq_no; 23497 tcp_stack_t *tcps = tcp->tcp_tcps; 23498 23499 /* 23500 * There are a few cases to be considered while setting the sequence no. 23501 * Essentially, we can come here while processing an unacceptable pkt 23502 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23503 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23504 * If we are here for a zero window probe, stick with suna. In all 23505 * other cases, we check if suna + swnd encompasses snxt and set 23506 * the sequence number to snxt, if so. If snxt falls outside the 23507 * window (the receiver probably shrunk its window), we will go with 23508 * suna + swnd, otherwise the sequence no will be unacceptable to the 23509 * receiver. 23510 */ 23511 if (tcp->tcp_zero_win_probe) { 23512 seq_no = tcp->tcp_suna; 23513 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23514 ASSERT(tcp->tcp_swnd == 0); 23515 seq_no = tcp->tcp_snxt; 23516 } else { 23517 seq_no = SEQ_GT(tcp->tcp_snxt, 23518 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23519 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23520 } 23521 23522 if (tcp->tcp_valid_bits) { 23523 /* 23524 * For the complex case where we have to send some 23525 * controls (FIN or SYN), let tcp_xmit_mp do it. 23526 */ 23527 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23528 NULL, B_FALSE)); 23529 } else { 23530 /* Generate a simple ACK */ 23531 int data_length; 23532 uchar_t *rptr; 23533 tcph_t *tcph; 23534 mblk_t *mp1; 23535 int32_t tcp_hdr_len; 23536 int32_t tcp_tcp_hdr_len; 23537 int32_t num_sack_blk = 0; 23538 int32_t sack_opt_len; 23539 23540 /* 23541 * Allocate space for TCP + IP headers 23542 * and link-level header 23543 */ 23544 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23545 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23546 tcp->tcp_num_sack_blk); 23547 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23548 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23549 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23550 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23551 } else { 23552 tcp_hdr_len = tcp->tcp_hdr_len; 23553 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23554 } 23555 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23556 if (!mp1) 23557 return (NULL); 23558 23559 /* Update the latest receive window size in TCP header. */ 23560 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23561 tcp->tcp_tcph->th_win); 23562 /* copy in prototype TCP + IP header */ 23563 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23564 mp1->b_rptr = rptr; 23565 mp1->b_wptr = rptr + tcp_hdr_len; 23566 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23567 23568 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23569 23570 /* Set the TCP sequence number. */ 23571 U32_TO_ABE32(seq_no, tcph->th_seq); 23572 23573 /* Set up the TCP flag field. */ 23574 tcph->th_flags[0] = (uchar_t)TH_ACK; 23575 if (tcp->tcp_ecn_echo_on) 23576 tcph->th_flags[0] |= TH_ECE; 23577 23578 tcp->tcp_rack = tcp->tcp_rnxt; 23579 tcp->tcp_rack_cnt = 0; 23580 23581 /* fill in timestamp option if in use */ 23582 if (tcp->tcp_snd_ts_ok) { 23583 uint32_t llbolt = (uint32_t)lbolt; 23584 23585 U32_TO_BE32(llbolt, 23586 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23587 U32_TO_BE32(tcp->tcp_ts_recent, 23588 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23589 } 23590 23591 /* Fill in SACK options */ 23592 if (num_sack_blk > 0) { 23593 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23594 sack_blk_t *tmp; 23595 int32_t i; 23596 23597 wptr[0] = TCPOPT_NOP; 23598 wptr[1] = TCPOPT_NOP; 23599 wptr[2] = TCPOPT_SACK; 23600 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23601 sizeof (sack_blk_t); 23602 wptr += TCPOPT_REAL_SACK_LEN; 23603 23604 tmp = tcp->tcp_sack_list; 23605 for (i = 0; i < num_sack_blk; i++) { 23606 U32_TO_BE32(tmp[i].begin, wptr); 23607 wptr += sizeof (tcp_seq); 23608 U32_TO_BE32(tmp[i].end, wptr); 23609 wptr += sizeof (tcp_seq); 23610 } 23611 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23612 << 4); 23613 } 23614 23615 if (tcp->tcp_ipversion == IPV4_VERSION) { 23616 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23617 } else { 23618 /* Check for ip6i_t header in sticky hdrs */ 23619 ip6_t *ip6 = (ip6_t *)(rptr + 23620 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23621 sizeof (ip6i_t) : 0)); 23622 23623 ip6->ip6_plen = htons(tcp_hdr_len - 23624 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23625 } 23626 23627 /* 23628 * Prime pump for checksum calculation in IP. Include the 23629 * adjustment for a source route if any. 23630 */ 23631 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23632 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23633 U16_TO_ABE16(data_length, tcph->th_sum); 23634 23635 if (tcp->tcp_ip_forward_progress) { 23636 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23637 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23638 tcp->tcp_ip_forward_progress = B_FALSE; 23639 } 23640 return (mp1); 23641 } 23642 } 23643 23644 /* 23645 * To create a temporary tcp structure for inserting into bind hash list. 23646 * The parameter is assumed to be in network byte order, ready for use. 23647 */ 23648 /* ARGSUSED */ 23649 static tcp_t * 23650 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps) 23651 { 23652 conn_t *connp; 23653 tcp_t *tcp; 23654 23655 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack); 23656 if (connp == NULL) 23657 return (NULL); 23658 23659 tcp = connp->conn_tcp; 23660 tcp->tcp_tcps = tcps; 23661 TCPS_REFHOLD(tcps); 23662 23663 /* 23664 * Only initialize the necessary info in those structures. Note 23665 * that since INADDR_ANY is all 0, we do not need to set 23666 * tcp_bound_source to INADDR_ANY here. 23667 */ 23668 tcp->tcp_state = TCPS_BOUND; 23669 tcp->tcp_lport = port; 23670 tcp->tcp_exclbind = 1; 23671 tcp->tcp_reserved_port = 1; 23672 23673 /* Just for place holding... */ 23674 tcp->tcp_ipversion = IPV4_VERSION; 23675 23676 return (tcp); 23677 } 23678 23679 /* 23680 * To remove a port range specified by lo_port and hi_port from the 23681 * reserved port ranges. This is one of the three public functions of 23682 * the reserved port interface. Note that a port range has to be removed 23683 * as a whole. Ports in a range cannot be removed individually. 23684 * 23685 * Params: 23686 * in_port_t lo_port: the beginning port of the reserved port range to 23687 * be deleted. 23688 * in_port_t hi_port: the ending port of the reserved port range to 23689 * be deleted. 23690 * 23691 * Return: 23692 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23693 * 23694 * Assumes that nca is only for zoneid=0 23695 */ 23696 boolean_t 23697 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23698 { 23699 int i, j; 23700 int size; 23701 tcp_t **temp_tcp_array; 23702 tcp_t *tcp; 23703 tcp_stack_t *tcps; 23704 23705 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23706 ASSERT(tcps != NULL); 23707 23708 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23709 23710 /* First make sure that the port ranage is indeed reserved. */ 23711 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23712 if (tcps->tcps_reserved_port[i].lo_port == lo_port) { 23713 hi_port = tcps->tcps_reserved_port[i].hi_port; 23714 temp_tcp_array = 23715 tcps->tcps_reserved_port[i].temp_tcp_array; 23716 break; 23717 } 23718 } 23719 if (i == tcps->tcps_reserved_port_array_size) { 23720 rw_exit(&tcps->tcps_reserved_port_lock); 23721 netstack_rele(tcps->tcps_netstack); 23722 return (B_FALSE); 23723 } 23724 23725 /* 23726 * Remove the range from the array. This simple loop is possible 23727 * because port ranges are inserted in ascending order. 23728 */ 23729 for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) { 23730 tcps->tcps_reserved_port[j].lo_port = 23731 tcps->tcps_reserved_port[j+1].lo_port; 23732 tcps->tcps_reserved_port[j].hi_port = 23733 tcps->tcps_reserved_port[j+1].hi_port; 23734 tcps->tcps_reserved_port[j].temp_tcp_array = 23735 tcps->tcps_reserved_port[j+1].temp_tcp_array; 23736 } 23737 23738 /* Remove all the temporary tcp structures. */ 23739 size = hi_port - lo_port + 1; 23740 while (size > 0) { 23741 tcp = temp_tcp_array[size - 1]; 23742 ASSERT(tcp != NULL); 23743 tcp_bind_hash_remove(tcp); 23744 CONN_DEC_REF(tcp->tcp_connp); 23745 size--; 23746 } 23747 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23748 tcps->tcps_reserved_port_array_size--; 23749 rw_exit(&tcps->tcps_reserved_port_lock); 23750 netstack_rele(tcps->tcps_netstack); 23751 return (B_TRUE); 23752 } 23753 23754 /* 23755 * Macro to remove temporary tcp structure from the bind hash list. The 23756 * first parameter is the list of tcp to be removed. The second parameter 23757 * is the number of tcps in the array. 23758 */ 23759 #define TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \ 23760 { \ 23761 while ((num) > 0) { \ 23762 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23763 tf_t *tbf; \ 23764 tcp_t *tcpnext; \ 23765 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23766 mutex_enter(&tbf->tf_lock); \ 23767 tcpnext = tcp->tcp_bind_hash; \ 23768 if (tcpnext) { \ 23769 tcpnext->tcp_ptpbhn = \ 23770 tcp->tcp_ptpbhn; \ 23771 } \ 23772 *tcp->tcp_ptpbhn = tcpnext; \ 23773 mutex_exit(&tbf->tf_lock); \ 23774 kmem_free(tcp, sizeof (tcp_t)); \ 23775 (tcp_array)[(num) - 1] = NULL; \ 23776 (num)--; \ 23777 } \ 23778 } 23779 23780 /* 23781 * The public interface for other modules to call to reserve a port range 23782 * in TCP. The caller passes in how large a port range it wants. TCP 23783 * will try to find a range and return it via lo_port and hi_port. This is 23784 * used by NCA's nca_conn_init. 23785 * NCA can only be used in the global zone so this only affects the global 23786 * zone's ports. 23787 * 23788 * Params: 23789 * int size: the size of the port range to be reserved. 23790 * in_port_t *lo_port (referenced): returns the beginning port of the 23791 * reserved port range added. 23792 * in_port_t *hi_port (referenced): returns the ending port of the 23793 * reserved port range added. 23794 * 23795 * Return: 23796 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23797 * 23798 * Assumes that nca is only for zoneid=0 23799 */ 23800 boolean_t 23801 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23802 { 23803 tcp_t *tcp; 23804 tcp_t *tmp_tcp; 23805 tcp_t **temp_tcp_array; 23806 tf_t *tbf; 23807 in_port_t net_port; 23808 in_port_t port; 23809 int32_t cur_size; 23810 int i, j; 23811 boolean_t used; 23812 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23813 zoneid_t zoneid = GLOBAL_ZONEID; 23814 tcp_stack_t *tcps; 23815 23816 /* Sanity check. */ 23817 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23818 return (B_FALSE); 23819 } 23820 23821 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23822 ASSERT(tcps != NULL); 23823 23824 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23825 if (tcps->tcps_reserved_port_array_size == 23826 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23827 rw_exit(&tcps->tcps_reserved_port_lock); 23828 netstack_rele(tcps->tcps_netstack); 23829 return (B_FALSE); 23830 } 23831 23832 /* 23833 * Find the starting port to try. Since the port ranges are ordered 23834 * in the reserved port array, we can do a simple search here. 23835 */ 23836 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23837 *hi_port = TCP_LARGEST_RESERVED_PORT; 23838 for (i = 0; i < tcps->tcps_reserved_port_array_size; 23839 *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) { 23840 if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) { 23841 *hi_port = tcps->tcps_reserved_port[i].lo_port - 1; 23842 break; 23843 } 23844 } 23845 /* No available port range. */ 23846 if (i == tcps->tcps_reserved_port_array_size && 23847 *hi_port - *lo_port < size) { 23848 rw_exit(&tcps->tcps_reserved_port_lock); 23849 netstack_rele(tcps->tcps_netstack); 23850 return (B_FALSE); 23851 } 23852 23853 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23854 if (temp_tcp_array == NULL) { 23855 rw_exit(&tcps->tcps_reserved_port_lock); 23856 netstack_rele(tcps->tcps_netstack); 23857 return (B_FALSE); 23858 } 23859 23860 /* Go thru the port range to see if some ports are already bound. */ 23861 for (port = *lo_port, cur_size = 0; 23862 cur_size < size && port <= *hi_port; 23863 cur_size++, port++) { 23864 used = B_FALSE; 23865 net_port = htons(port); 23866 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)]; 23867 mutex_enter(&tbf->tf_lock); 23868 for (tcp = tbf->tf_tcp; tcp != NULL; 23869 tcp = tcp->tcp_bind_hash) { 23870 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23871 net_port == tcp->tcp_lport) { 23872 /* 23873 * A port is already bound. Search again 23874 * starting from port + 1. Release all 23875 * temporary tcps. 23876 */ 23877 mutex_exit(&tbf->tf_lock); 23878 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23879 tcps); 23880 *lo_port = port + 1; 23881 cur_size = -1; 23882 used = B_TRUE; 23883 break; 23884 } 23885 } 23886 if (!used) { 23887 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) == 23888 NULL) { 23889 /* 23890 * Allocation failure. Just fail the request. 23891 * Need to remove all those temporary tcp 23892 * structures. 23893 */ 23894 mutex_exit(&tbf->tf_lock); 23895 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23896 tcps); 23897 rw_exit(&tcps->tcps_reserved_port_lock); 23898 kmem_free(temp_tcp_array, 23899 (hi_port - lo_port + 1) * 23900 sizeof (tcp_t *)); 23901 netstack_rele(tcps->tcps_netstack); 23902 return (B_FALSE); 23903 } 23904 temp_tcp_array[cur_size] = tmp_tcp; 23905 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23906 mutex_exit(&tbf->tf_lock); 23907 } 23908 } 23909 23910 /* 23911 * The current range is not large enough. We can actually do another 23912 * search if this search is done between 2 reserved port ranges. But 23913 * for first release, we just stop here and return saying that no port 23914 * range is available. 23915 */ 23916 if (cur_size < size) { 23917 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps); 23918 rw_exit(&tcps->tcps_reserved_port_lock); 23919 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23920 netstack_rele(tcps->tcps_netstack); 23921 return (B_FALSE); 23922 } 23923 *hi_port = port - 1; 23924 23925 /* 23926 * Insert range into array in ascending order. Since this function 23927 * must not be called often, we choose to use the simplest method. 23928 * The above array should not consume excessive stack space as 23929 * the size must be very small. If in future releases, we find 23930 * that we should provide more reserved port ranges, this function 23931 * has to be modified to be more efficient. 23932 */ 23933 if (tcps->tcps_reserved_port_array_size == 0) { 23934 tcps->tcps_reserved_port[0].lo_port = *lo_port; 23935 tcps->tcps_reserved_port[0].hi_port = *hi_port; 23936 tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array; 23937 } else { 23938 for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size; 23939 i++, j++) { 23940 if (*lo_port < tcps->tcps_reserved_port[i].lo_port && 23941 i == j) { 23942 tmp_ports[j].lo_port = *lo_port; 23943 tmp_ports[j].hi_port = *hi_port; 23944 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23945 j++; 23946 } 23947 tmp_ports[j].lo_port = 23948 tcps->tcps_reserved_port[i].lo_port; 23949 tmp_ports[j].hi_port = 23950 tcps->tcps_reserved_port[i].hi_port; 23951 tmp_ports[j].temp_tcp_array = 23952 tcps->tcps_reserved_port[i].temp_tcp_array; 23953 } 23954 if (j == i) { 23955 tmp_ports[j].lo_port = *lo_port; 23956 tmp_ports[j].hi_port = *hi_port; 23957 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23958 } 23959 bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports)); 23960 } 23961 tcps->tcps_reserved_port_array_size++; 23962 rw_exit(&tcps->tcps_reserved_port_lock); 23963 netstack_rele(tcps->tcps_netstack); 23964 return (B_TRUE); 23965 } 23966 23967 /* 23968 * Check to see if a port is in any reserved port range. 23969 * 23970 * Params: 23971 * in_port_t port: the port to be verified. 23972 * 23973 * Return: 23974 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23975 */ 23976 boolean_t 23977 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps) 23978 { 23979 int i; 23980 23981 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23982 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23983 if (port >= tcps->tcps_reserved_port[i].lo_port || 23984 port <= tcps->tcps_reserved_port[i].hi_port) { 23985 rw_exit(&tcps->tcps_reserved_port_lock); 23986 return (B_TRUE); 23987 } 23988 } 23989 rw_exit(&tcps->tcps_reserved_port_lock); 23990 return (B_FALSE); 23991 } 23992 23993 /* 23994 * To list all reserved port ranges. This is the function to handle 23995 * ndd tcp_reserved_port_list. 23996 */ 23997 /* ARGSUSED */ 23998 static int 23999 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24000 { 24001 int i; 24002 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24003 24004 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 24005 if (tcps->tcps_reserved_port_array_size > 0) 24006 (void) mi_mpprintf(mp, "The following ports are reserved:"); 24007 else 24008 (void) mi_mpprintf(mp, "No port is reserved."); 24009 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 24010 (void) mi_mpprintf(mp, "%d-%d", 24011 tcps->tcps_reserved_port[i].lo_port, 24012 tcps->tcps_reserved_port[i].hi_port); 24013 } 24014 rw_exit(&tcps->tcps_reserved_port_lock); 24015 return (0); 24016 } 24017 24018 /* 24019 * Hash list insertion routine for tcp_t structures. 24020 * Inserts entries with the ones bound to a specific IP address first 24021 * followed by those bound to INADDR_ANY. 24022 */ 24023 static void 24024 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 24025 { 24026 tcp_t **tcpp; 24027 tcp_t *tcpnext; 24028 24029 if (tcp->tcp_ptpbhn != NULL) { 24030 ASSERT(!caller_holds_lock); 24031 tcp_bind_hash_remove(tcp); 24032 } 24033 tcpp = &tbf->tf_tcp; 24034 if (!caller_holds_lock) { 24035 mutex_enter(&tbf->tf_lock); 24036 } else { 24037 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 24038 } 24039 tcpnext = tcpp[0]; 24040 if (tcpnext) { 24041 /* 24042 * If the new tcp bound to the INADDR_ANY address 24043 * and the first one in the list is not bound to 24044 * INADDR_ANY we skip all entries until we find the 24045 * first one bound to INADDR_ANY. 24046 * This makes sure that applications binding to a 24047 * specific address get preference over those binding to 24048 * INADDR_ANY. 24049 */ 24050 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 24051 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 24052 while ((tcpnext = tcpp[0]) != NULL && 24053 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 24054 tcpp = &(tcpnext->tcp_bind_hash); 24055 if (tcpnext) 24056 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24057 } else 24058 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24059 } 24060 tcp->tcp_bind_hash = tcpnext; 24061 tcp->tcp_ptpbhn = tcpp; 24062 tcpp[0] = tcp; 24063 if (!caller_holds_lock) 24064 mutex_exit(&tbf->tf_lock); 24065 } 24066 24067 /* 24068 * Hash list removal routine for tcp_t structures. 24069 */ 24070 static void 24071 tcp_bind_hash_remove(tcp_t *tcp) 24072 { 24073 tcp_t *tcpnext; 24074 kmutex_t *lockp; 24075 tcp_stack_t *tcps = tcp->tcp_tcps; 24076 24077 if (tcp->tcp_ptpbhn == NULL) 24078 return; 24079 24080 /* 24081 * Extract the lock pointer in case there are concurrent 24082 * hash_remove's for this instance. 24083 */ 24084 ASSERT(tcp->tcp_lport != 0); 24085 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 24086 24087 ASSERT(lockp != NULL); 24088 mutex_enter(lockp); 24089 if (tcp->tcp_ptpbhn) { 24090 tcpnext = tcp->tcp_bind_hash; 24091 if (tcpnext) { 24092 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24093 tcp->tcp_bind_hash = NULL; 24094 } 24095 *tcp->tcp_ptpbhn = tcpnext; 24096 tcp->tcp_ptpbhn = NULL; 24097 } 24098 mutex_exit(lockp); 24099 } 24100 24101 24102 /* 24103 * Hash list lookup routine for tcp_t structures. 24104 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24105 */ 24106 static tcp_t * 24107 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24108 { 24109 tf_t *tf; 24110 tcp_t *tcp; 24111 24112 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24113 mutex_enter(&tf->tf_lock); 24114 for (tcp = tf->tf_tcp; tcp != NULL; 24115 tcp = tcp->tcp_acceptor_hash) { 24116 if (tcp->tcp_acceptor_id == id) { 24117 CONN_INC_REF(tcp->tcp_connp); 24118 mutex_exit(&tf->tf_lock); 24119 return (tcp); 24120 } 24121 } 24122 mutex_exit(&tf->tf_lock); 24123 return (NULL); 24124 } 24125 24126 24127 /* 24128 * Hash list insertion routine for tcp_t structures. 24129 */ 24130 void 24131 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24132 { 24133 tf_t *tf; 24134 tcp_t **tcpp; 24135 tcp_t *tcpnext; 24136 tcp_stack_t *tcps = tcp->tcp_tcps; 24137 24138 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24139 24140 if (tcp->tcp_ptpahn != NULL) 24141 tcp_acceptor_hash_remove(tcp); 24142 tcpp = &tf->tf_tcp; 24143 mutex_enter(&tf->tf_lock); 24144 tcpnext = tcpp[0]; 24145 if (tcpnext) 24146 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24147 tcp->tcp_acceptor_hash = tcpnext; 24148 tcp->tcp_ptpahn = tcpp; 24149 tcpp[0] = tcp; 24150 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24151 mutex_exit(&tf->tf_lock); 24152 } 24153 24154 /* 24155 * Hash list removal routine for tcp_t structures. 24156 */ 24157 static void 24158 tcp_acceptor_hash_remove(tcp_t *tcp) 24159 { 24160 tcp_t *tcpnext; 24161 kmutex_t *lockp; 24162 24163 /* 24164 * Extract the lock pointer in case there are concurrent 24165 * hash_remove's for this instance. 24166 */ 24167 lockp = tcp->tcp_acceptor_lockp; 24168 24169 if (tcp->tcp_ptpahn == NULL) 24170 return; 24171 24172 ASSERT(lockp != NULL); 24173 mutex_enter(lockp); 24174 if (tcp->tcp_ptpahn) { 24175 tcpnext = tcp->tcp_acceptor_hash; 24176 if (tcpnext) { 24177 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24178 tcp->tcp_acceptor_hash = NULL; 24179 } 24180 *tcp->tcp_ptpahn = tcpnext; 24181 tcp->tcp_ptpahn = NULL; 24182 } 24183 mutex_exit(lockp); 24184 tcp->tcp_acceptor_lockp = NULL; 24185 } 24186 24187 /* ARGSUSED */ 24188 static int 24189 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 24190 { 24191 int error = 0; 24192 int retval; 24193 char *end; 24194 tcp_hsp_t *hsp; 24195 tcp_hsp_t *hspprev; 24196 ipaddr_t addr = 0; /* Address we're looking for */ 24197 in6_addr_t v6addr; /* Address we're looking for */ 24198 uint32_t hash; /* Hash of that address */ 24199 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24200 24201 /* 24202 * If the following variables are still zero after parsing the input 24203 * string, the user didn't specify them and we don't change them in 24204 * the HSP. 24205 */ 24206 24207 ipaddr_t mask = 0; /* Subnet mask */ 24208 in6_addr_t v6mask; 24209 long sendspace = 0; /* Send buffer size */ 24210 long recvspace = 0; /* Receive buffer size */ 24211 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 24212 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 24213 24214 rw_enter(&tcps->tcps_hsp_lock, RW_WRITER); 24215 24216 /* Parse and validate address */ 24217 if (af == AF_INET) { 24218 retval = inet_pton(af, value, &addr); 24219 if (retval == 1) 24220 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 24221 } else if (af == AF_INET6) { 24222 retval = inet_pton(af, value, &v6addr); 24223 } else { 24224 error = EINVAL; 24225 goto done; 24226 } 24227 if (retval == 0) { 24228 error = EINVAL; 24229 goto done; 24230 } 24231 24232 while ((*value) && *value != ' ') 24233 value++; 24234 24235 /* Parse individual keywords, set variables if found */ 24236 while (*value) { 24237 /* Skip leading blanks */ 24238 24239 while (*value == ' ' || *value == '\t') 24240 value++; 24241 24242 /* If at end of string, we're done */ 24243 24244 if (!*value) 24245 break; 24246 24247 /* We have a word, figure out what it is */ 24248 24249 if (strncmp("mask", value, 4) == 0) { 24250 value += 4; 24251 while (*value == ' ' || *value == '\t') 24252 value++; 24253 /* Parse subnet mask */ 24254 if (af == AF_INET) { 24255 retval = inet_pton(af, value, &mask); 24256 if (retval == 1) { 24257 V4MASK_TO_V6(mask, v6mask); 24258 } 24259 } else if (af == AF_INET6) { 24260 retval = inet_pton(af, value, &v6mask); 24261 } 24262 if (retval != 1) { 24263 error = EINVAL; 24264 goto done; 24265 } 24266 while ((*value) && *value != ' ') 24267 value++; 24268 } else if (strncmp("sendspace", value, 9) == 0) { 24269 value += 9; 24270 24271 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 24272 sendspace < TCP_XMIT_HIWATER || 24273 sendspace >= (1L<<30)) { 24274 error = EINVAL; 24275 goto done; 24276 } 24277 value = end; 24278 } else if (strncmp("recvspace", value, 9) == 0) { 24279 value += 9; 24280 24281 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 24282 recvspace < TCP_RECV_HIWATER || 24283 recvspace >= (1L<<30)) { 24284 error = EINVAL; 24285 goto done; 24286 } 24287 value = end; 24288 } else if (strncmp("timestamp", value, 9) == 0) { 24289 value += 9; 24290 24291 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 24292 timestamp < 0 || timestamp > 1) { 24293 error = EINVAL; 24294 goto done; 24295 } 24296 24297 /* 24298 * We increment timestamp so we know it's been set; 24299 * this is undone when we put it in the HSP 24300 */ 24301 timestamp++; 24302 value = end; 24303 } else if (strncmp("delete", value, 6) == 0) { 24304 value += 6; 24305 delete = B_TRUE; 24306 } else { 24307 error = EINVAL; 24308 goto done; 24309 } 24310 } 24311 24312 /* Hash address for lookup */ 24313 24314 hash = TCP_HSP_HASH(addr); 24315 24316 if (delete) { 24317 /* 24318 * Note that deletes don't return an error if the thing 24319 * we're trying to delete isn't there. 24320 */ 24321 if (tcps->tcps_hsp_hash == NULL) 24322 goto done; 24323 hsp = tcps->tcps_hsp_hash[hash]; 24324 24325 if (hsp) { 24326 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24327 &v6addr)) { 24328 tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next; 24329 mi_free((char *)hsp); 24330 } else { 24331 hspprev = hsp; 24332 while ((hsp = hsp->tcp_hsp_next) != NULL) { 24333 if (IN6_ARE_ADDR_EQUAL( 24334 &hsp->tcp_hsp_addr_v6, &v6addr)) { 24335 hspprev->tcp_hsp_next = 24336 hsp->tcp_hsp_next; 24337 mi_free((char *)hsp); 24338 break; 24339 } 24340 hspprev = hsp; 24341 } 24342 } 24343 } 24344 } else { 24345 /* 24346 * We're adding/modifying an HSP. If we haven't already done 24347 * so, allocate the hash table. 24348 */ 24349 24350 if (!tcps->tcps_hsp_hash) { 24351 tcps->tcps_hsp_hash = (tcp_hsp_t **) 24352 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 24353 if (!tcps->tcps_hsp_hash) { 24354 error = EINVAL; 24355 goto done; 24356 } 24357 } 24358 24359 /* Get head of hash chain */ 24360 24361 hsp = tcps->tcps_hsp_hash[hash]; 24362 24363 /* Try to find pre-existing hsp on hash chain */ 24364 /* Doesn't handle CIDR prefixes. */ 24365 while (hsp) { 24366 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 24367 break; 24368 hsp = hsp->tcp_hsp_next; 24369 } 24370 24371 /* 24372 * If we didn't, create one with default values and put it 24373 * at head of hash chain 24374 */ 24375 24376 if (!hsp) { 24377 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 24378 if (!hsp) { 24379 error = EINVAL; 24380 goto done; 24381 } 24382 hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash]; 24383 tcps->tcps_hsp_hash[hash] = hsp; 24384 } 24385 24386 /* Set values that the user asked us to change */ 24387 24388 hsp->tcp_hsp_addr_v6 = v6addr; 24389 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 24390 hsp->tcp_hsp_vers = IPV4_VERSION; 24391 else 24392 hsp->tcp_hsp_vers = IPV6_VERSION; 24393 hsp->tcp_hsp_subnet_v6 = v6mask; 24394 if (sendspace > 0) 24395 hsp->tcp_hsp_sendspace = sendspace; 24396 if (recvspace > 0) 24397 hsp->tcp_hsp_recvspace = recvspace; 24398 if (timestamp > 0) 24399 hsp->tcp_hsp_tstamp = timestamp - 1; 24400 } 24401 24402 done: 24403 rw_exit(&tcps->tcps_hsp_lock); 24404 return (error); 24405 } 24406 24407 /* Set callback routine passed to nd_load by tcp_param_register. */ 24408 /* ARGSUSED */ 24409 static int 24410 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 24411 { 24412 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 24413 } 24414 /* ARGSUSED */ 24415 static int 24416 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24417 cred_t *cr) 24418 { 24419 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 24420 } 24421 24422 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 24423 /* ARGSUSED */ 24424 static int 24425 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24426 { 24427 tcp_hsp_t *hsp; 24428 int i; 24429 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 24430 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24431 24432 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24433 (void) mi_mpprintf(mp, 24434 "Hash HSP " MI_COL_HDRPAD_STR 24435 "Address Subnet Mask Send Receive TStamp"); 24436 if (tcps->tcps_hsp_hash) { 24437 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 24438 hsp = tcps->tcps_hsp_hash[i]; 24439 while (hsp) { 24440 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 24441 (void) inet_ntop(AF_INET, 24442 &hsp->tcp_hsp_addr, 24443 addrbuf, sizeof (addrbuf)); 24444 (void) inet_ntop(AF_INET, 24445 &hsp->tcp_hsp_subnet, 24446 subnetbuf, sizeof (subnetbuf)); 24447 } else { 24448 (void) inet_ntop(AF_INET6, 24449 &hsp->tcp_hsp_addr_v6, 24450 addrbuf, sizeof (addrbuf)); 24451 (void) inet_ntop(AF_INET6, 24452 &hsp->tcp_hsp_subnet_v6, 24453 subnetbuf, sizeof (subnetbuf)); 24454 } 24455 (void) mi_mpprintf(mp, 24456 " %03d " MI_COL_PTRFMT_STR 24457 "%s %s %010d %010d %d", 24458 i, 24459 (void *)hsp, 24460 addrbuf, 24461 subnetbuf, 24462 hsp->tcp_hsp_sendspace, 24463 hsp->tcp_hsp_recvspace, 24464 hsp->tcp_hsp_tstamp); 24465 24466 hsp = hsp->tcp_hsp_next; 24467 } 24468 } 24469 } 24470 rw_exit(&tcps->tcps_hsp_lock); 24471 return (0); 24472 } 24473 24474 24475 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24476 24477 static ipaddr_t netmasks[] = { 24478 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24479 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24480 }; 24481 24482 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24483 24484 /* 24485 * XXX This routine should go away and instead we should use the metrics 24486 * associated with the routes to determine the default sndspace and rcvspace. 24487 */ 24488 static tcp_hsp_t * 24489 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24490 { 24491 tcp_hsp_t *hsp = NULL; 24492 24493 /* Quick check without acquiring the lock. */ 24494 if (tcps->tcps_hsp_hash == NULL) 24495 return (NULL); 24496 24497 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24498 24499 /* This routine finds the best-matching HSP for address addr. */ 24500 24501 if (tcps->tcps_hsp_hash) { 24502 int i; 24503 ipaddr_t srchaddr; 24504 tcp_hsp_t *hsp_net; 24505 24506 /* We do three passes: host, network, and subnet. */ 24507 24508 srchaddr = addr; 24509 24510 for (i = 1; i <= 3; i++) { 24511 /* Look for exact match on srchaddr */ 24512 24513 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24514 while (hsp) { 24515 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24516 hsp->tcp_hsp_addr == srchaddr) 24517 break; 24518 hsp = hsp->tcp_hsp_next; 24519 } 24520 ASSERT(hsp == NULL || 24521 hsp->tcp_hsp_vers == IPV4_VERSION); 24522 24523 /* 24524 * If this is the first pass: 24525 * If we found a match, great, return it. 24526 * If not, search for the network on the second pass. 24527 */ 24528 24529 if (i == 1) 24530 if (hsp) 24531 break; 24532 else 24533 { 24534 srchaddr = addr & netmask(addr); 24535 continue; 24536 } 24537 24538 /* 24539 * If this is the second pass: 24540 * If we found a match, but there's a subnet mask, 24541 * save the match but try again using the subnet 24542 * mask on the third pass. 24543 * Otherwise, return whatever we found. 24544 */ 24545 24546 if (i == 2) { 24547 if (hsp && hsp->tcp_hsp_subnet) { 24548 hsp_net = hsp; 24549 srchaddr = addr & hsp->tcp_hsp_subnet; 24550 continue; 24551 } else { 24552 break; 24553 } 24554 } 24555 24556 /* 24557 * This must be the third pass. If we didn't find 24558 * anything, return the saved network HSP instead. 24559 */ 24560 24561 if (!hsp) 24562 hsp = hsp_net; 24563 } 24564 } 24565 24566 rw_exit(&tcps->tcps_hsp_lock); 24567 return (hsp); 24568 } 24569 24570 /* 24571 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24572 * match lookup. 24573 */ 24574 static tcp_hsp_t * 24575 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24576 { 24577 tcp_hsp_t *hsp = NULL; 24578 24579 /* Quick check without acquiring the lock. */ 24580 if (tcps->tcps_hsp_hash == NULL) 24581 return (NULL); 24582 24583 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24584 24585 /* This routine finds the best-matching HSP for address addr. */ 24586 24587 if (tcps->tcps_hsp_hash) { 24588 int i; 24589 in6_addr_t v6srchaddr; 24590 tcp_hsp_t *hsp_net; 24591 24592 /* We do three passes: host, network, and subnet. */ 24593 24594 v6srchaddr = *v6addr; 24595 24596 for (i = 1; i <= 3; i++) { 24597 /* Look for exact match on srchaddr */ 24598 24599 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24600 V4_PART_OF_V6(v6srchaddr))]; 24601 while (hsp) { 24602 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24603 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24604 &v6srchaddr)) 24605 break; 24606 hsp = hsp->tcp_hsp_next; 24607 } 24608 24609 /* 24610 * If this is the first pass: 24611 * If we found a match, great, return it. 24612 * If not, search for the network on the second pass. 24613 */ 24614 24615 if (i == 1) 24616 if (hsp) 24617 break; 24618 else { 24619 /* Assume a 64 bit mask */ 24620 v6srchaddr.s6_addr32[0] = 24621 v6addr->s6_addr32[0]; 24622 v6srchaddr.s6_addr32[1] = 24623 v6addr->s6_addr32[1]; 24624 v6srchaddr.s6_addr32[2] = 0; 24625 v6srchaddr.s6_addr32[3] = 0; 24626 continue; 24627 } 24628 24629 /* 24630 * If this is the second pass: 24631 * If we found a match, but there's a subnet mask, 24632 * save the match but try again using the subnet 24633 * mask on the third pass. 24634 * Otherwise, return whatever we found. 24635 */ 24636 24637 if (i == 2) { 24638 ASSERT(hsp == NULL || 24639 hsp->tcp_hsp_vers == IPV6_VERSION); 24640 if (hsp && 24641 !IN6_IS_ADDR_UNSPECIFIED( 24642 &hsp->tcp_hsp_subnet_v6)) { 24643 hsp_net = hsp; 24644 V6_MASK_COPY(*v6addr, 24645 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24646 continue; 24647 } else { 24648 break; 24649 } 24650 } 24651 24652 /* 24653 * This must be the third pass. If we didn't find 24654 * anything, return the saved network HSP instead. 24655 */ 24656 24657 if (!hsp) 24658 hsp = hsp_net; 24659 } 24660 } 24661 24662 rw_exit(&tcps->tcps_hsp_lock); 24663 return (hsp); 24664 } 24665 24666 /* 24667 * Type three generator adapted from the random() function in 4.4 BSD: 24668 */ 24669 24670 /* 24671 * Copyright (c) 1983, 1993 24672 * The Regents of the University of California. All rights reserved. 24673 * 24674 * Redistribution and use in source and binary forms, with or without 24675 * modification, are permitted provided that the following conditions 24676 * are met: 24677 * 1. Redistributions of source code must retain the above copyright 24678 * notice, this list of conditions and the following disclaimer. 24679 * 2. Redistributions in binary form must reproduce the above copyright 24680 * notice, this list of conditions and the following disclaimer in the 24681 * documentation and/or other materials provided with the distribution. 24682 * 3. All advertising materials mentioning features or use of this software 24683 * must display the following acknowledgement: 24684 * This product includes software developed by the University of 24685 * California, Berkeley and its contributors. 24686 * 4. Neither the name of the University nor the names of its contributors 24687 * may be used to endorse or promote products derived from this software 24688 * without specific prior written permission. 24689 * 24690 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24691 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24692 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24693 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24694 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24695 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24696 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24697 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24698 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24699 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24700 * SUCH DAMAGE. 24701 */ 24702 24703 /* Type 3 -- x**31 + x**3 + 1 */ 24704 #define DEG_3 31 24705 #define SEP_3 3 24706 24707 24708 /* Protected by tcp_random_lock */ 24709 static int tcp_randtbl[DEG_3 + 1]; 24710 24711 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24712 static int *tcp_random_rptr = &tcp_randtbl[1]; 24713 24714 static int *tcp_random_state = &tcp_randtbl[1]; 24715 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24716 24717 kmutex_t tcp_random_lock; 24718 24719 void 24720 tcp_random_init(void) 24721 { 24722 int i; 24723 hrtime_t hrt; 24724 time_t wallclock; 24725 uint64_t result; 24726 24727 /* 24728 * Use high-res timer and current time for seed. Gethrtime() returns 24729 * a longlong, which may contain resolution down to nanoseconds. 24730 * The current time will either be a 32-bit or a 64-bit quantity. 24731 * XOR the two together in a 64-bit result variable. 24732 * Convert the result to a 32-bit value by multiplying the high-order 24733 * 32-bits by the low-order 32-bits. 24734 */ 24735 24736 hrt = gethrtime(); 24737 (void) drv_getparm(TIME, &wallclock); 24738 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24739 mutex_enter(&tcp_random_lock); 24740 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24741 (result & 0xffffffff); 24742 24743 for (i = 1; i < DEG_3; i++) 24744 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24745 + 12345; 24746 tcp_random_fptr = &tcp_random_state[SEP_3]; 24747 tcp_random_rptr = &tcp_random_state[0]; 24748 mutex_exit(&tcp_random_lock); 24749 for (i = 0; i < 10 * DEG_3; i++) 24750 (void) tcp_random(); 24751 } 24752 24753 /* 24754 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24755 * This range is selected to be approximately centered on TCP_ISS / 2, 24756 * and easy to compute. We get this value by generating a 32-bit random 24757 * number, selecting out the high-order 17 bits, and then adding one so 24758 * that we never return zero. 24759 */ 24760 int 24761 tcp_random(void) 24762 { 24763 int i; 24764 24765 mutex_enter(&tcp_random_lock); 24766 *tcp_random_fptr += *tcp_random_rptr; 24767 24768 /* 24769 * The high-order bits are more random than the low-order bits, 24770 * so we select out the high-order 17 bits and add one so that 24771 * we never return zero. 24772 */ 24773 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24774 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24775 tcp_random_fptr = tcp_random_state; 24776 ++tcp_random_rptr; 24777 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24778 tcp_random_rptr = tcp_random_state; 24779 24780 mutex_exit(&tcp_random_lock); 24781 return (i); 24782 } 24783 24784 /* 24785 * XXX This will go away when TPI is extended to send 24786 * info reqs to sockfs/timod ..... 24787 * Given a queue, set the max packet size for the write 24788 * side of the queue below stream head. This value is 24789 * cached on the stream head. 24790 * Returns 1 on success, 0 otherwise. 24791 */ 24792 static int 24793 setmaxps(queue_t *q, int maxpsz) 24794 { 24795 struct stdata *stp; 24796 queue_t *wq; 24797 stp = STREAM(q); 24798 24799 /* 24800 * At this point change of a queue parameter is not allowed 24801 * when a multiplexor is sitting on top. 24802 */ 24803 if (stp->sd_flag & STPLEX) 24804 return (0); 24805 24806 claimstr(stp->sd_wrq); 24807 wq = stp->sd_wrq->q_next; 24808 ASSERT(wq != NULL); 24809 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24810 releasestr(stp->sd_wrq); 24811 return (1); 24812 } 24813 24814 static int 24815 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24816 int *t_errorp, int *sys_errorp) 24817 { 24818 int error; 24819 int is_absreq_failure; 24820 t_scalar_t *opt_lenp; 24821 t_scalar_t opt_offset; 24822 int prim_type; 24823 struct T_conn_req *tcreqp; 24824 struct T_conn_res *tcresp; 24825 cred_t *cr; 24826 24827 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24828 24829 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24830 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24831 prim_type == T_CONN_RES); 24832 24833 switch (prim_type) { 24834 case T_CONN_REQ: 24835 tcreqp = (struct T_conn_req *)mp->b_rptr; 24836 opt_offset = tcreqp->OPT_offset; 24837 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24838 break; 24839 case O_T_CONN_RES: 24840 case T_CONN_RES: 24841 tcresp = (struct T_conn_res *)mp->b_rptr; 24842 opt_offset = tcresp->OPT_offset; 24843 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24844 break; 24845 } 24846 24847 *t_errorp = 0; 24848 *sys_errorp = 0; 24849 *do_disconnectp = 0; 24850 24851 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24852 opt_offset, cr, &tcp_opt_obj, 24853 NULL, &is_absreq_failure); 24854 24855 switch (error) { 24856 case 0: /* no error */ 24857 ASSERT(is_absreq_failure == 0); 24858 return (0); 24859 case ENOPROTOOPT: 24860 *t_errorp = TBADOPT; 24861 break; 24862 case EACCES: 24863 *t_errorp = TACCES; 24864 break; 24865 default: 24866 *t_errorp = TSYSERR; *sys_errorp = error; 24867 break; 24868 } 24869 if (is_absreq_failure != 0) { 24870 /* 24871 * The connection request should get the local ack 24872 * T_OK_ACK and then a T_DISCON_IND. 24873 */ 24874 *do_disconnectp = 1; 24875 } 24876 return (-1); 24877 } 24878 24879 /* 24880 * Split this function out so that if the secret changes, I'm okay. 24881 * 24882 * Initialize the tcp_iss_cookie and tcp_iss_key. 24883 */ 24884 24885 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24886 24887 static void 24888 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24889 { 24890 struct { 24891 int32_t current_time; 24892 uint32_t randnum; 24893 uint16_t pad; 24894 uint8_t ether[6]; 24895 uint8_t passwd[PASSWD_SIZE]; 24896 } tcp_iss_cookie; 24897 time_t t; 24898 24899 /* 24900 * Start with the current absolute time. 24901 */ 24902 (void) drv_getparm(TIME, &t); 24903 tcp_iss_cookie.current_time = t; 24904 24905 /* 24906 * XXX - Need a more random number per RFC 1750, not this crap. 24907 * OTOH, if what follows is pretty random, then I'm in better shape. 24908 */ 24909 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24910 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24911 24912 /* 24913 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24914 * as a good template. 24915 */ 24916 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24917 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24918 24919 /* 24920 * The pass-phrase. Normally this is supplied by user-called NDD. 24921 */ 24922 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24923 24924 /* 24925 * See 4010593 if this section becomes a problem again, 24926 * but the local ethernet address is useful here. 24927 */ 24928 (void) localetheraddr(NULL, 24929 (struct ether_addr *)&tcp_iss_cookie.ether); 24930 24931 /* 24932 * Hash 'em all together. The MD5Final is called per-connection. 24933 */ 24934 mutex_enter(&tcps->tcps_iss_key_lock); 24935 MD5Init(&tcps->tcps_iss_key); 24936 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24937 sizeof (tcp_iss_cookie)); 24938 mutex_exit(&tcps->tcps_iss_key_lock); 24939 } 24940 24941 /* 24942 * Set the RFC 1948 pass phrase 24943 */ 24944 /* ARGSUSED */ 24945 static int 24946 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24947 cred_t *cr) 24948 { 24949 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24950 24951 /* 24952 * Basically, value contains a new pass phrase. Pass it along! 24953 */ 24954 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24955 return (0); 24956 } 24957 24958 /* ARGSUSED */ 24959 static int 24960 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24961 { 24962 bzero(buf, sizeof (tcp_sack_info_t)); 24963 return (0); 24964 } 24965 24966 /* ARGSUSED */ 24967 static int 24968 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24969 { 24970 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24971 return (0); 24972 } 24973 24974 /* 24975 * Make sure we wait until the default queue is setup, yet allow 24976 * tcp_g_q_create() to open a TCP stream. 24977 * We need to allow tcp_g_q_create() do do an open 24978 * of tcp, hence we compare curhread. 24979 * All others have to wait until the tcps_g_q has been 24980 * setup. 24981 */ 24982 void 24983 tcp_g_q_setup(tcp_stack_t *tcps) 24984 { 24985 mutex_enter(&tcps->tcps_g_q_lock); 24986 if (tcps->tcps_g_q != NULL) { 24987 mutex_exit(&tcps->tcps_g_q_lock); 24988 return; 24989 } 24990 if (tcps->tcps_g_q_creator == NULL) { 24991 /* This thread will set it up */ 24992 tcps->tcps_g_q_creator = curthread; 24993 mutex_exit(&tcps->tcps_g_q_lock); 24994 tcp_g_q_create(tcps); 24995 mutex_enter(&tcps->tcps_g_q_lock); 24996 ASSERT(tcps->tcps_g_q_creator == curthread); 24997 tcps->tcps_g_q_creator = NULL; 24998 cv_signal(&tcps->tcps_g_q_cv); 24999 ASSERT(tcps->tcps_g_q != NULL); 25000 mutex_exit(&tcps->tcps_g_q_lock); 25001 return; 25002 } 25003 /* Everybody but the creator has to wait */ 25004 if (tcps->tcps_g_q_creator != curthread) { 25005 while (tcps->tcps_g_q == NULL) 25006 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 25007 } 25008 mutex_exit(&tcps->tcps_g_q_lock); 25009 } 25010 25011 #define IP "ip" 25012 25013 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 25014 25015 /* 25016 * Create a default tcp queue here instead of in strplumb 25017 */ 25018 void 25019 tcp_g_q_create(tcp_stack_t *tcps) 25020 { 25021 int error; 25022 ldi_handle_t lh = NULL; 25023 ldi_ident_t li = NULL; 25024 int rval; 25025 cred_t *cr; 25026 major_t IP_MAJ; 25027 25028 #ifdef NS_DEBUG 25029 (void) printf("tcp_g_q_create()\n"); 25030 #endif 25031 25032 IP_MAJ = ddi_name_to_major(IP); 25033 25034 ASSERT(tcps->tcps_g_q_creator == curthread); 25035 25036 error = ldi_ident_from_major(IP_MAJ, &li); 25037 if (error) { 25038 #ifdef DEBUG 25039 printf("tcp_g_q_create: lyr ident get failed error %d\n", 25040 error); 25041 #endif 25042 return; 25043 } 25044 25045 cr = zone_get_kcred(netstackid_to_zoneid( 25046 tcps->tcps_netstack->netstack_stackid)); 25047 ASSERT(cr != NULL); 25048 /* 25049 * We set the tcp default queue to IPv6 because IPv4 falls 25050 * back to IPv6 when it can't find a client, but 25051 * IPv6 does not fall back to IPv4. 25052 */ 25053 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 25054 if (error) { 25055 #ifdef DEBUG 25056 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 25057 error); 25058 #endif 25059 goto out; 25060 } 25061 25062 /* 25063 * This ioctl causes the tcp framework to cache a pointer to 25064 * this stream, so we don't want to close the stream after 25065 * this operation. 25066 * Use the kernel credentials that are for the zone we're in. 25067 */ 25068 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 25069 (intptr_t)0, FKIOCTL, cr, &rval); 25070 if (error) { 25071 #ifdef DEBUG 25072 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 25073 "error %d\n", error); 25074 #endif 25075 goto out; 25076 } 25077 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 25078 lh = NULL; 25079 out: 25080 /* Close layered handles */ 25081 if (li) 25082 ldi_ident_release(li); 25083 /* Keep cred around until _inactive needs it */ 25084 tcps->tcps_g_q_cr = cr; 25085 } 25086 25087 /* 25088 * We keep tcp_g_q set until all other tcp_t's in the zone 25089 * has gone away, and then when tcp_g_q_inactive() is called 25090 * we clear it. 25091 */ 25092 void 25093 tcp_g_q_destroy(tcp_stack_t *tcps) 25094 { 25095 #ifdef NS_DEBUG 25096 (void) printf("tcp_g_q_destroy()for stack %d\n", 25097 tcps->tcps_netstack->netstack_stackid); 25098 #endif 25099 25100 if (tcps->tcps_g_q == NULL) { 25101 return; /* Nothing to cleanup */ 25102 } 25103 /* 25104 * Drop reference corresponding to the default queue. 25105 * This reference was added from tcp_open when the default queue 25106 * was created, hence we compensate for this extra drop in 25107 * tcp_g_q_close. If the refcnt drops to zero here it means 25108 * the default queue was the last one to be open, in which 25109 * case, then tcp_g_q_inactive will be 25110 * called as a result of the refrele. 25111 */ 25112 TCPS_REFRELE(tcps); 25113 } 25114 25115 /* 25116 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25117 * Run by tcp_q_q_inactive using a taskq. 25118 */ 25119 static void 25120 tcp_g_q_close(void *arg) 25121 { 25122 tcp_stack_t *tcps = arg; 25123 int error; 25124 ldi_handle_t lh = NULL; 25125 ldi_ident_t li = NULL; 25126 cred_t *cr; 25127 major_t IP_MAJ; 25128 25129 IP_MAJ = ddi_name_to_major(IP); 25130 25131 #ifdef NS_DEBUG 25132 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 25133 tcps->tcps_netstack->netstack_stackid, 25134 tcps->tcps_netstack->netstack_refcnt); 25135 #endif 25136 lh = tcps->tcps_g_q_lh; 25137 if (lh == NULL) 25138 return; /* Nothing to cleanup */ 25139 25140 ASSERT(tcps->tcps_refcnt == 1); 25141 ASSERT(tcps->tcps_g_q != NULL); 25142 25143 error = ldi_ident_from_major(IP_MAJ, &li); 25144 if (error) { 25145 #ifdef DEBUG 25146 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 25147 error); 25148 #endif 25149 return; 25150 } 25151 25152 cr = tcps->tcps_g_q_cr; 25153 tcps->tcps_g_q_cr = NULL; 25154 ASSERT(cr != NULL); 25155 25156 /* 25157 * Make sure we can break the recursion when tcp_close decrements 25158 * the reference count causing g_q_inactive to be called again. 25159 */ 25160 tcps->tcps_g_q_lh = NULL; 25161 25162 /* close the default queue */ 25163 (void) ldi_close(lh, FREAD|FWRITE, cr); 25164 /* 25165 * At this point in time tcps and the rest of netstack_t might 25166 * have been deleted. 25167 */ 25168 tcps = NULL; 25169 25170 /* Close layered handles */ 25171 ldi_ident_release(li); 25172 crfree(cr); 25173 } 25174 25175 /* 25176 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25177 * 25178 * Have to ensure that the ldi routines are not used by an 25179 * interrupt thread by using a taskq. 25180 */ 25181 void 25182 tcp_g_q_inactive(tcp_stack_t *tcps) 25183 { 25184 if (tcps->tcps_g_q_lh == NULL) 25185 return; /* Nothing to cleanup */ 25186 25187 ASSERT(tcps->tcps_refcnt == 0); 25188 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 25189 25190 if (servicing_interrupt()) { 25191 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 25192 (void *) tcps, TQ_SLEEP); 25193 } else { 25194 tcp_g_q_close(tcps); 25195 } 25196 } 25197 25198 /* 25199 * Called by IP when IP is loaded into the kernel 25200 */ 25201 void 25202 tcp_ddi_g_init(void) 25203 { 25204 tcp_timercache = kmem_cache_create("tcp_timercache", 25205 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 25206 NULL, NULL, NULL, NULL, NULL, 0); 25207 25208 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 25209 sizeof (tcp_sack_info_t), 0, 25210 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 25211 25212 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 25213 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 25214 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 25215 25216 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 25217 25218 /* Initialize the random number generator */ 25219 tcp_random_init(); 25220 25221 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 25222 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 25223 25224 /* A single callback independently of how many netstacks we have */ 25225 ip_squeue_init(tcp_squeue_add); 25226 25227 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 25228 25229 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 25230 TASKQ_PREPOPULATE); 25231 25232 /* 25233 * We want to be informed each time a stack is created or 25234 * destroyed in the kernel, so we can maintain the 25235 * set of tcp_stack_t's. 25236 */ 25237 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 25238 tcp_stack_fini); 25239 } 25240 25241 25242 /* 25243 * Initialize the TCP stack instance. 25244 */ 25245 static void * 25246 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 25247 { 25248 tcp_stack_t *tcps; 25249 tcpparam_t *pa; 25250 int i; 25251 25252 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 25253 tcps->tcps_netstack = ns; 25254 25255 /* Initialize locks */ 25256 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 25257 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 25258 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 25259 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 25260 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 25261 rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL); 25262 25263 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 25264 tcps->tcps_g_epriv_ports[0] = 2049; 25265 tcps->tcps_g_epriv_ports[1] = 4045; 25266 tcps->tcps_min_anonpriv_port = 512; 25267 25268 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 25269 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 25270 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 25271 TCP_FANOUT_SIZE, KM_SLEEP); 25272 tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) * 25273 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP); 25274 25275 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25276 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 25277 MUTEX_DEFAULT, NULL); 25278 } 25279 25280 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25281 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 25282 MUTEX_DEFAULT, NULL); 25283 } 25284 25285 /* TCP's IPsec code calls the packet dropper. */ 25286 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 25287 25288 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 25289 tcps->tcps_params = pa; 25290 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25291 25292 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 25293 A_CNT(lcl_tcp_param_arr), tcps); 25294 25295 /* 25296 * Note: To really walk the device tree you need the devinfo 25297 * pointer to your device which is only available after probe/attach. 25298 * The following is safe only because it uses ddi_root_node() 25299 */ 25300 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 25301 tcp_opt_obj.odb_opt_arr_cnt); 25302 25303 /* 25304 * Initialize RFC 1948 secret values. This will probably be reset once 25305 * by the boot scripts. 25306 * 25307 * Use NULL name, as the name is caught by the new lockstats. 25308 * 25309 * Initialize with some random, non-guessable string, like the global 25310 * T_INFO_ACK. 25311 */ 25312 25313 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25314 sizeof (tcp_g_t_info_ack), tcps); 25315 25316 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25317 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25318 25319 return (tcps); 25320 } 25321 25322 /* 25323 * Called when the IP module is about to be unloaded. 25324 */ 25325 void 25326 tcp_ddi_g_destroy(void) 25327 { 25328 tcp_g_kstat_fini(tcp_g_kstat); 25329 tcp_g_kstat = NULL; 25330 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25331 25332 mutex_destroy(&tcp_random_lock); 25333 25334 kmem_cache_destroy(tcp_timercache); 25335 kmem_cache_destroy(tcp_sack_info_cache); 25336 kmem_cache_destroy(tcp_iphc_cache); 25337 25338 netstack_unregister(NS_TCP); 25339 taskq_destroy(tcp_taskq); 25340 } 25341 25342 /* 25343 * Shut down the TCP stack instance. 25344 */ 25345 /* ARGSUSED */ 25346 static void 25347 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25348 { 25349 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25350 25351 tcp_g_q_destroy(tcps); 25352 } 25353 25354 /* 25355 * Free the TCP stack instance. 25356 */ 25357 static void 25358 tcp_stack_fini(netstackid_t stackid, void *arg) 25359 { 25360 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25361 int i; 25362 25363 nd_free(&tcps->tcps_g_nd); 25364 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25365 tcps->tcps_params = NULL; 25366 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25367 tcps->tcps_wroff_xtra_param = NULL; 25368 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25369 tcps->tcps_mdt_head_param = NULL; 25370 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25371 tcps->tcps_mdt_tail_param = NULL; 25372 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25373 tcps->tcps_mdt_max_pbufs_param = NULL; 25374 25375 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25376 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25377 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25378 } 25379 25380 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25381 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25382 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25383 } 25384 25385 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25386 tcps->tcps_bind_fanout = NULL; 25387 25388 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25389 tcps->tcps_acceptor_fanout = NULL; 25390 25391 kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) * 25392 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE); 25393 tcps->tcps_reserved_port = NULL; 25394 25395 mutex_destroy(&tcps->tcps_iss_key_lock); 25396 rw_destroy(&tcps->tcps_hsp_lock); 25397 mutex_destroy(&tcps->tcps_g_q_lock); 25398 cv_destroy(&tcps->tcps_g_q_cv); 25399 mutex_destroy(&tcps->tcps_epriv_port_lock); 25400 rw_destroy(&tcps->tcps_reserved_port_lock); 25401 25402 ip_drop_unregister(&tcps->tcps_dropper); 25403 25404 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25405 tcps->tcps_kstat = NULL; 25406 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25407 25408 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25409 tcps->tcps_mibkp = NULL; 25410 25411 kmem_free(tcps, sizeof (*tcps)); 25412 } 25413 25414 /* 25415 * Generate ISS, taking into account NDD changes may happen halfway through. 25416 * (If the iss is not zero, set it.) 25417 */ 25418 25419 static void 25420 tcp_iss_init(tcp_t *tcp) 25421 { 25422 MD5_CTX context; 25423 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25424 uint32_t answer[4]; 25425 tcp_stack_t *tcps = tcp->tcp_tcps; 25426 25427 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25428 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25429 switch (tcps->tcps_strong_iss) { 25430 case 2: 25431 mutex_enter(&tcps->tcps_iss_key_lock); 25432 context = tcps->tcps_iss_key; 25433 mutex_exit(&tcps->tcps_iss_key_lock); 25434 arg.ports = tcp->tcp_ports; 25435 if (tcp->tcp_ipversion == IPV4_VERSION) { 25436 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25437 &arg.src); 25438 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25439 &arg.dst); 25440 } else { 25441 arg.src = tcp->tcp_ip6h->ip6_src; 25442 arg.dst = tcp->tcp_ip6h->ip6_dst; 25443 } 25444 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25445 MD5Final((uchar_t *)answer, &context); 25446 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25447 /* 25448 * Now that we've hashed into a unique per-connection sequence 25449 * space, add a random increment per strong_iss == 1. So I 25450 * guess we'll have to... 25451 */ 25452 /* FALLTHRU */ 25453 case 1: 25454 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25455 break; 25456 default: 25457 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25458 break; 25459 } 25460 tcp->tcp_valid_bits = TCP_ISS_VALID; 25461 tcp->tcp_fss = tcp->tcp_iss - 1; 25462 tcp->tcp_suna = tcp->tcp_iss; 25463 tcp->tcp_snxt = tcp->tcp_iss + 1; 25464 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25465 tcp->tcp_csuna = tcp->tcp_snxt; 25466 } 25467 25468 /* 25469 * Exported routine for extracting active tcp connection status. 25470 * 25471 * This is used by the Solaris Cluster Networking software to 25472 * gather a list of connections that need to be forwarded to 25473 * specific nodes in the cluster when configuration changes occur. 25474 * 25475 * The callback is invoked for each tcp_t structure. Returning 25476 * non-zero from the callback routine terminates the search. 25477 */ 25478 int 25479 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25480 void *arg) 25481 { 25482 netstack_handle_t nh; 25483 netstack_t *ns; 25484 int ret = 0; 25485 25486 netstack_next_init(&nh); 25487 while ((ns = netstack_next(&nh)) != NULL) { 25488 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25489 ns->netstack_tcp); 25490 netstack_rele(ns); 25491 } 25492 netstack_next_fini(&nh); 25493 return (ret); 25494 } 25495 25496 static int 25497 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25498 tcp_stack_t *tcps) 25499 { 25500 tcp_t *tcp; 25501 cl_tcp_info_t cl_tcpi; 25502 connf_t *connfp; 25503 conn_t *connp; 25504 int i; 25505 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25506 25507 ASSERT(callback != NULL); 25508 25509 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25510 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25511 connp = NULL; 25512 25513 while ((connp = 25514 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25515 25516 tcp = connp->conn_tcp; 25517 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25518 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25519 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25520 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25521 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25522 /* 25523 * The macros tcp_laddr and tcp_faddr give the IPv4 25524 * addresses. They are copied implicitly below as 25525 * mapped addresses. 25526 */ 25527 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25528 if (tcp->tcp_ipversion == IPV4_VERSION) { 25529 cl_tcpi.cl_tcpi_faddr = 25530 tcp->tcp_ipha->ipha_dst; 25531 } else { 25532 cl_tcpi.cl_tcpi_faddr_v6 = 25533 tcp->tcp_ip6h->ip6_dst; 25534 } 25535 25536 /* 25537 * If the callback returns non-zero 25538 * we terminate the traversal. 25539 */ 25540 if ((*callback)(&cl_tcpi, arg) != 0) { 25541 CONN_DEC_REF(tcp->tcp_connp); 25542 return (1); 25543 } 25544 } 25545 } 25546 25547 return (0); 25548 } 25549 25550 /* 25551 * Macros used for accessing the different types of sockaddr 25552 * structures inside a tcp_ioc_abort_conn_t. 25553 */ 25554 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25555 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25556 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25557 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25558 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25559 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25560 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25561 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25562 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25563 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25564 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25565 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25566 25567 /* 25568 * Return the correct error code to mimic the behavior 25569 * of a connection reset. 25570 */ 25571 #define TCP_AC_GET_ERRCODE(state, err) { \ 25572 switch ((state)) { \ 25573 case TCPS_SYN_SENT: \ 25574 case TCPS_SYN_RCVD: \ 25575 (err) = ECONNREFUSED; \ 25576 break; \ 25577 case TCPS_ESTABLISHED: \ 25578 case TCPS_FIN_WAIT_1: \ 25579 case TCPS_FIN_WAIT_2: \ 25580 case TCPS_CLOSE_WAIT: \ 25581 (err) = ECONNRESET; \ 25582 break; \ 25583 case TCPS_CLOSING: \ 25584 case TCPS_LAST_ACK: \ 25585 case TCPS_TIME_WAIT: \ 25586 (err) = 0; \ 25587 break; \ 25588 default: \ 25589 (err) = ENXIO; \ 25590 } \ 25591 } 25592 25593 /* 25594 * Check if a tcp structure matches the info in acp. 25595 */ 25596 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25597 (((acp)->ac_local.ss_family == AF_INET) ? \ 25598 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25599 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25600 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25601 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25602 (TCP_AC_V4LPORT((acp)) == 0 || \ 25603 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25604 (TCP_AC_V4RPORT((acp)) == 0 || \ 25605 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25606 (acp)->ac_start <= (tcp)->tcp_state && \ 25607 (acp)->ac_end >= (tcp)->tcp_state) : \ 25608 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25609 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25610 &(tcp)->tcp_ip_src_v6)) && \ 25611 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25612 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25613 &(tcp)->tcp_remote_v6)) && \ 25614 (TCP_AC_V6LPORT((acp)) == 0 || \ 25615 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25616 (TCP_AC_V6RPORT((acp)) == 0 || \ 25617 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25618 (acp)->ac_start <= (tcp)->tcp_state && \ 25619 (acp)->ac_end >= (tcp)->tcp_state)) 25620 25621 #define TCP_AC_MATCH(acp, tcp) \ 25622 (((acp)->ac_zoneid == ALL_ZONES || \ 25623 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25624 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25625 25626 /* 25627 * Build a message containing a tcp_ioc_abort_conn_t structure 25628 * which is filled in with information from acp and tp. 25629 */ 25630 static mblk_t * 25631 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25632 { 25633 mblk_t *mp; 25634 tcp_ioc_abort_conn_t *tacp; 25635 25636 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25637 if (mp == NULL) 25638 return (NULL); 25639 25640 mp->b_datap->db_type = M_CTL; 25641 25642 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25643 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25644 sizeof (uint32_t)); 25645 25646 tacp->ac_start = acp->ac_start; 25647 tacp->ac_end = acp->ac_end; 25648 tacp->ac_zoneid = acp->ac_zoneid; 25649 25650 if (acp->ac_local.ss_family == AF_INET) { 25651 tacp->ac_local.ss_family = AF_INET; 25652 tacp->ac_remote.ss_family = AF_INET; 25653 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25654 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25655 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25656 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25657 } else { 25658 tacp->ac_local.ss_family = AF_INET6; 25659 tacp->ac_remote.ss_family = AF_INET6; 25660 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25661 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25662 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25663 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25664 } 25665 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25666 return (mp); 25667 } 25668 25669 /* 25670 * Print a tcp_ioc_abort_conn_t structure. 25671 */ 25672 static void 25673 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25674 { 25675 char lbuf[128]; 25676 char rbuf[128]; 25677 sa_family_t af; 25678 in_port_t lport, rport; 25679 ushort_t logflags; 25680 25681 af = acp->ac_local.ss_family; 25682 25683 if (af == AF_INET) { 25684 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25685 lbuf, 128); 25686 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25687 rbuf, 128); 25688 lport = ntohs(TCP_AC_V4LPORT(acp)); 25689 rport = ntohs(TCP_AC_V4RPORT(acp)); 25690 } else { 25691 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25692 lbuf, 128); 25693 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25694 rbuf, 128); 25695 lport = ntohs(TCP_AC_V6LPORT(acp)); 25696 rport = ntohs(TCP_AC_V6RPORT(acp)); 25697 } 25698 25699 logflags = SL_TRACE | SL_NOTE; 25700 /* 25701 * Don't print this message to the console if the operation was done 25702 * to a non-global zone. 25703 */ 25704 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25705 logflags |= SL_CONSOLE; 25706 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25707 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25708 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25709 acp->ac_start, acp->ac_end); 25710 } 25711 25712 /* 25713 * Called inside tcp_rput when a message built using 25714 * tcp_ioctl_abort_build_msg is put into a queue. 25715 * Note that when we get here there is no wildcard in acp any more. 25716 */ 25717 static void 25718 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25719 { 25720 tcp_ioc_abort_conn_t *acp; 25721 25722 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25723 if (tcp->tcp_state <= acp->ac_end) { 25724 /* 25725 * If we get here, we are already on the correct 25726 * squeue. This ioctl follows the following path 25727 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25728 * ->tcp_ioctl_abort->squeue_fill (if on a 25729 * different squeue) 25730 */ 25731 int errcode; 25732 25733 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25734 (void) tcp_clean_death(tcp, errcode, 26); 25735 } 25736 freemsg(mp); 25737 } 25738 25739 /* 25740 * Abort all matching connections on a hash chain. 25741 */ 25742 static int 25743 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25744 boolean_t exact, tcp_stack_t *tcps) 25745 { 25746 int nmatch, err = 0; 25747 tcp_t *tcp; 25748 MBLKP mp, last, listhead = NULL; 25749 conn_t *tconnp; 25750 connf_t *connfp; 25751 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25752 25753 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25754 25755 startover: 25756 nmatch = 0; 25757 25758 mutex_enter(&connfp->connf_lock); 25759 for (tconnp = connfp->connf_head; tconnp != NULL; 25760 tconnp = tconnp->conn_next) { 25761 tcp = tconnp->conn_tcp; 25762 if (TCP_AC_MATCH(acp, tcp)) { 25763 CONN_INC_REF(tcp->tcp_connp); 25764 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25765 if (mp == NULL) { 25766 err = ENOMEM; 25767 CONN_DEC_REF(tcp->tcp_connp); 25768 break; 25769 } 25770 mp->b_prev = (mblk_t *)tcp; 25771 25772 if (listhead == NULL) { 25773 listhead = mp; 25774 last = mp; 25775 } else { 25776 last->b_next = mp; 25777 last = mp; 25778 } 25779 nmatch++; 25780 if (exact) 25781 break; 25782 } 25783 25784 /* Avoid holding lock for too long. */ 25785 if (nmatch >= 500) 25786 break; 25787 } 25788 mutex_exit(&connfp->connf_lock); 25789 25790 /* Pass mp into the correct tcp */ 25791 while ((mp = listhead) != NULL) { 25792 listhead = listhead->b_next; 25793 tcp = (tcp_t *)mp->b_prev; 25794 mp->b_next = mp->b_prev = NULL; 25795 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25796 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25797 } 25798 25799 *count += nmatch; 25800 if (nmatch >= 500 && err == 0) 25801 goto startover; 25802 return (err); 25803 } 25804 25805 /* 25806 * Abort all connections that matches the attributes specified in acp. 25807 */ 25808 static int 25809 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25810 { 25811 sa_family_t af; 25812 uint32_t ports; 25813 uint16_t *pports; 25814 int err = 0, count = 0; 25815 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25816 int index = -1; 25817 ushort_t logflags; 25818 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25819 25820 af = acp->ac_local.ss_family; 25821 25822 if (af == AF_INET) { 25823 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25824 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25825 pports = (uint16_t *)&ports; 25826 pports[1] = TCP_AC_V4LPORT(acp); 25827 pports[0] = TCP_AC_V4RPORT(acp); 25828 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25829 } 25830 } else { 25831 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25832 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25833 pports = (uint16_t *)&ports; 25834 pports[1] = TCP_AC_V6LPORT(acp); 25835 pports[0] = TCP_AC_V6RPORT(acp); 25836 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25837 } 25838 } 25839 25840 /* 25841 * For cases where remote addr, local port, and remote port are non- 25842 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25843 */ 25844 if (index != -1) { 25845 err = tcp_ioctl_abort_bucket(acp, index, 25846 &count, exact, tcps); 25847 } else { 25848 /* 25849 * loop through all entries for wildcard case 25850 */ 25851 for (index = 0; 25852 index < ipst->ips_ipcl_conn_fanout_size; 25853 index++) { 25854 err = tcp_ioctl_abort_bucket(acp, index, 25855 &count, exact, tcps); 25856 if (err != 0) 25857 break; 25858 } 25859 } 25860 25861 logflags = SL_TRACE | SL_NOTE; 25862 /* 25863 * Don't print this message to the console if the operation was done 25864 * to a non-global zone. 25865 */ 25866 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25867 logflags |= SL_CONSOLE; 25868 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25869 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25870 if (err == 0 && count == 0) 25871 err = ENOENT; 25872 return (err); 25873 } 25874 25875 /* 25876 * Process the TCP_IOC_ABORT_CONN ioctl request. 25877 */ 25878 static void 25879 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25880 { 25881 int err; 25882 IOCP iocp; 25883 MBLKP mp1; 25884 sa_family_t laf, raf; 25885 tcp_ioc_abort_conn_t *acp; 25886 zone_t *zptr; 25887 conn_t *connp = Q_TO_CONN(q); 25888 zoneid_t zoneid = connp->conn_zoneid; 25889 tcp_t *tcp = connp->conn_tcp; 25890 tcp_stack_t *tcps = tcp->tcp_tcps; 25891 25892 iocp = (IOCP)mp->b_rptr; 25893 25894 if ((mp1 = mp->b_cont) == NULL || 25895 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25896 err = EINVAL; 25897 goto out; 25898 } 25899 25900 /* check permissions */ 25901 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25902 err = EPERM; 25903 goto out; 25904 } 25905 25906 if (mp1->b_cont != NULL) { 25907 freemsg(mp1->b_cont); 25908 mp1->b_cont = NULL; 25909 } 25910 25911 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25912 laf = acp->ac_local.ss_family; 25913 raf = acp->ac_remote.ss_family; 25914 25915 /* check that a zone with the supplied zoneid exists */ 25916 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25917 zptr = zone_find_by_id(zoneid); 25918 if (zptr != NULL) { 25919 zone_rele(zptr); 25920 } else { 25921 err = EINVAL; 25922 goto out; 25923 } 25924 } 25925 25926 /* 25927 * For exclusive stacks we set the zoneid to zero 25928 * to make TCP operate as if in the global zone. 25929 */ 25930 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25931 acp->ac_zoneid = GLOBAL_ZONEID; 25932 25933 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25934 acp->ac_start > acp->ac_end || laf != raf || 25935 (laf != AF_INET && laf != AF_INET6)) { 25936 err = EINVAL; 25937 goto out; 25938 } 25939 25940 tcp_ioctl_abort_dump(acp); 25941 err = tcp_ioctl_abort(acp, tcps); 25942 25943 out: 25944 if (mp1 != NULL) { 25945 freemsg(mp1); 25946 mp->b_cont = NULL; 25947 } 25948 25949 if (err != 0) 25950 miocnak(q, mp, 0, err); 25951 else 25952 miocack(q, mp, 0, 0); 25953 } 25954 25955 /* 25956 * tcp_time_wait_processing() handles processing of incoming packets when 25957 * the tcp is in the TIME_WAIT state. 25958 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25959 * on the time wait list. 25960 */ 25961 void 25962 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25963 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25964 { 25965 int32_t bytes_acked; 25966 int32_t gap; 25967 int32_t rgap; 25968 tcp_opt_t tcpopt; 25969 uint_t flags; 25970 uint32_t new_swnd = 0; 25971 conn_t *connp; 25972 tcp_stack_t *tcps = tcp->tcp_tcps; 25973 25974 BUMP_LOCAL(tcp->tcp_ibsegs); 25975 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25976 25977 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25978 new_swnd = BE16_TO_U16(tcph->th_win) << 25979 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25980 if (tcp->tcp_snd_ts_ok) { 25981 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25982 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25983 tcp->tcp_rnxt, TH_ACK); 25984 goto done; 25985 } 25986 } 25987 gap = seg_seq - tcp->tcp_rnxt; 25988 rgap = tcp->tcp_rwnd - (gap + seg_len); 25989 if (gap < 0) { 25990 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25991 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25992 (seg_len > -gap ? -gap : seg_len)); 25993 seg_len += gap; 25994 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25995 if (flags & TH_RST) { 25996 goto done; 25997 } 25998 if ((flags & TH_FIN) && seg_len == -1) { 25999 /* 26000 * When TCP receives a duplicate FIN in 26001 * TIME_WAIT state, restart the 2 MSL timer. 26002 * See page 73 in RFC 793. Make sure this TCP 26003 * is already on the TIME_WAIT list. If not, 26004 * just restart the timer. 26005 */ 26006 if (TCP_IS_DETACHED(tcp)) { 26007 if (tcp_time_wait_remove(tcp, NULL) == 26008 B_TRUE) { 26009 tcp_time_wait_append(tcp); 26010 TCP_DBGSTAT(tcps, 26011 tcp_rput_time_wait); 26012 } 26013 } else { 26014 ASSERT(tcp != NULL); 26015 TCP_TIMER_RESTART(tcp, 26016 tcps->tcps_time_wait_interval); 26017 } 26018 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26019 tcp->tcp_rnxt, TH_ACK); 26020 goto done; 26021 } 26022 flags |= TH_ACK_NEEDED; 26023 seg_len = 0; 26024 goto process_ack; 26025 } 26026 26027 /* Fix seg_seq, and chew the gap off the front. */ 26028 seg_seq = tcp->tcp_rnxt; 26029 } 26030 26031 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 26032 /* 26033 * Make sure that when we accept the connection, pick 26034 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 26035 * old connection. 26036 * 26037 * The next ISS generated is equal to tcp_iss_incr_extra 26038 * + ISS_INCR/2 + other components depending on the 26039 * value of tcp_strong_iss. We pre-calculate the new 26040 * ISS here and compare with tcp_snxt to determine if 26041 * we need to make adjustment to tcp_iss_incr_extra. 26042 * 26043 * The above calculation is ugly and is a 26044 * waste of CPU cycles... 26045 */ 26046 uint32_t new_iss = tcps->tcps_iss_incr_extra; 26047 int32_t adj; 26048 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 26049 26050 switch (tcps->tcps_strong_iss) { 26051 case 2: { 26052 /* Add time and MD5 components. */ 26053 uint32_t answer[4]; 26054 struct { 26055 uint32_t ports; 26056 in6_addr_t src; 26057 in6_addr_t dst; 26058 } arg; 26059 MD5_CTX context; 26060 26061 mutex_enter(&tcps->tcps_iss_key_lock); 26062 context = tcps->tcps_iss_key; 26063 mutex_exit(&tcps->tcps_iss_key_lock); 26064 arg.ports = tcp->tcp_ports; 26065 /* We use MAPPED addresses in tcp_iss_init */ 26066 arg.src = tcp->tcp_ip_src_v6; 26067 if (tcp->tcp_ipversion == IPV4_VERSION) { 26068 IN6_IPADDR_TO_V4MAPPED( 26069 tcp->tcp_ipha->ipha_dst, 26070 &arg.dst); 26071 } else { 26072 arg.dst = 26073 tcp->tcp_ip6h->ip6_dst; 26074 } 26075 MD5Update(&context, (uchar_t *)&arg, 26076 sizeof (arg)); 26077 MD5Final((uchar_t *)answer, &context); 26078 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 26079 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 26080 break; 26081 } 26082 case 1: 26083 /* Add time component and min random (i.e. 1). */ 26084 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 26085 break; 26086 default: 26087 /* Add only time component. */ 26088 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 26089 break; 26090 } 26091 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 26092 /* 26093 * New ISS not guaranteed to be ISS_INCR/2 26094 * ahead of the current tcp_snxt, so add the 26095 * difference to tcp_iss_incr_extra. 26096 */ 26097 tcps->tcps_iss_incr_extra += adj; 26098 } 26099 /* 26100 * If tcp_clean_death() can not perform the task now, 26101 * drop the SYN packet and let the other side re-xmit. 26102 * Otherwise pass the SYN packet back in, since the 26103 * old tcp state has been cleaned up or freed. 26104 */ 26105 if (tcp_clean_death(tcp, 0, 27) == -1) 26106 goto done; 26107 /* 26108 * We will come back to tcp_rput_data 26109 * on the global queue. Packets destined 26110 * for the global queue will be checked 26111 * with global policy. But the policy for 26112 * this packet has already been checked as 26113 * this was destined for the detached 26114 * connection. We need to bypass policy 26115 * check this time by attaching a dummy 26116 * ipsec_in with ipsec_in_dont_check set. 26117 */ 26118 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 26119 if (connp != NULL) { 26120 TCP_STAT(tcps, tcp_time_wait_syn_success); 26121 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 26122 return; 26123 } 26124 goto done; 26125 } 26126 26127 /* 26128 * rgap is the amount of stuff received out of window. A negative 26129 * value is the amount out of window. 26130 */ 26131 if (rgap < 0) { 26132 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 26133 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 26134 /* Fix seg_len and make sure there is something left. */ 26135 seg_len += rgap; 26136 if (seg_len <= 0) { 26137 if (flags & TH_RST) { 26138 goto done; 26139 } 26140 flags |= TH_ACK_NEEDED; 26141 seg_len = 0; 26142 goto process_ack; 26143 } 26144 } 26145 /* 26146 * Check whether we can update tcp_ts_recent. This test is 26147 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 26148 * Extensions for High Performance: An Update", Internet Draft. 26149 */ 26150 if (tcp->tcp_snd_ts_ok && 26151 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 26152 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 26153 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 26154 tcp->tcp_last_rcv_lbolt = lbolt64; 26155 } 26156 26157 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 26158 /* Always ack out of order packets */ 26159 flags |= TH_ACK_NEEDED; 26160 seg_len = 0; 26161 } else if (seg_len > 0) { 26162 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 26163 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 26164 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 26165 } 26166 if (flags & TH_RST) { 26167 (void) tcp_clean_death(tcp, 0, 28); 26168 goto done; 26169 } 26170 if (flags & TH_SYN) { 26171 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 26172 TH_RST|TH_ACK); 26173 /* 26174 * Do not delete the TCP structure if it is in 26175 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 26176 */ 26177 goto done; 26178 } 26179 process_ack: 26180 if (flags & TH_ACK) { 26181 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 26182 if (bytes_acked <= 0) { 26183 if (bytes_acked == 0 && seg_len == 0 && 26184 new_swnd == tcp->tcp_swnd) 26185 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 26186 } else { 26187 /* Acks something not sent */ 26188 flags |= TH_ACK_NEEDED; 26189 } 26190 } 26191 if (flags & TH_ACK_NEEDED) { 26192 /* 26193 * Time to send an ack for some reason. 26194 */ 26195 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26196 tcp->tcp_rnxt, TH_ACK); 26197 } 26198 done: 26199 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26200 DB_CKSUMSTART(mp) = 0; 26201 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 26202 TCP_STAT(tcps, tcp_time_wait_syn_fail); 26203 } 26204 freemsg(mp); 26205 } 26206 26207 /* 26208 * Allocate a T_SVR4_OPTMGMT_REQ. 26209 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 26210 * that tcp_rput_other can drop the acks. 26211 */ 26212 static mblk_t * 26213 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 26214 { 26215 mblk_t *mp; 26216 struct T_optmgmt_req *tor; 26217 struct opthdr *oh; 26218 uint_t size; 26219 char *optptr; 26220 26221 size = sizeof (*tor) + sizeof (*oh) + optlen; 26222 mp = allocb(size, BPRI_MED); 26223 if (mp == NULL) 26224 return (NULL); 26225 26226 mp->b_wptr += size; 26227 mp->b_datap->db_type = M_PROTO; 26228 tor = (struct T_optmgmt_req *)mp->b_rptr; 26229 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 26230 tor->MGMT_flags = T_NEGOTIATE; 26231 tor->OPT_length = sizeof (*oh) + optlen; 26232 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 26233 26234 oh = (struct opthdr *)&tor[1]; 26235 oh->level = level; 26236 oh->name = cmd; 26237 oh->len = optlen; 26238 if (optlen != 0) { 26239 optptr = (char *)&oh[1]; 26240 bcopy(opt, optptr, optlen); 26241 } 26242 return (mp); 26243 } 26244 26245 /* 26246 * TCP Timers Implementation. 26247 */ 26248 timeout_id_t 26249 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 26250 { 26251 mblk_t *mp; 26252 tcp_timer_t *tcpt; 26253 tcp_t *tcp = connp->conn_tcp; 26254 tcp_stack_t *tcps = tcp->tcp_tcps; 26255 26256 ASSERT(connp->conn_sqp != NULL); 26257 26258 TCP_DBGSTAT(tcps, tcp_timeout_calls); 26259 26260 if (tcp->tcp_timercache == NULL) { 26261 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 26262 } else { 26263 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 26264 mp = tcp->tcp_timercache; 26265 tcp->tcp_timercache = mp->b_next; 26266 mp->b_next = NULL; 26267 ASSERT(mp->b_wptr == NULL); 26268 } 26269 26270 CONN_INC_REF(connp); 26271 tcpt = (tcp_timer_t *)mp->b_rptr; 26272 tcpt->connp = connp; 26273 tcpt->tcpt_proc = f; 26274 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 26275 return ((timeout_id_t)mp); 26276 } 26277 26278 static void 26279 tcp_timer_callback(void *arg) 26280 { 26281 mblk_t *mp = (mblk_t *)arg; 26282 tcp_timer_t *tcpt; 26283 conn_t *connp; 26284 26285 tcpt = (tcp_timer_t *)mp->b_rptr; 26286 connp = tcpt->connp; 26287 squeue_fill(connp->conn_sqp, mp, 26288 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 26289 } 26290 26291 static void 26292 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 26293 { 26294 tcp_timer_t *tcpt; 26295 conn_t *connp = (conn_t *)arg; 26296 tcp_t *tcp = connp->conn_tcp; 26297 26298 tcpt = (tcp_timer_t *)mp->b_rptr; 26299 ASSERT(connp == tcpt->connp); 26300 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 26301 26302 /* 26303 * If the TCP has reached the closed state, don't proceed any 26304 * further. This TCP logically does not exist on the system. 26305 * tcpt_proc could for example access queues, that have already 26306 * been qprocoff'ed off. Also see comments at the start of tcp_input 26307 */ 26308 if (tcp->tcp_state != TCPS_CLOSED) { 26309 (*tcpt->tcpt_proc)(connp); 26310 } else { 26311 tcp->tcp_timer_tid = 0; 26312 } 26313 tcp_timer_free(connp->conn_tcp, mp); 26314 } 26315 26316 /* 26317 * There is potential race with untimeout and the handler firing at the same 26318 * time. The mblock may be freed by the handler while we are trying to use 26319 * it. But since both should execute on the same squeue, this race should not 26320 * occur. 26321 */ 26322 clock_t 26323 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26324 { 26325 mblk_t *mp = (mblk_t *)id; 26326 tcp_timer_t *tcpt; 26327 clock_t delta; 26328 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26329 26330 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26331 26332 if (mp == NULL) 26333 return (-1); 26334 26335 tcpt = (tcp_timer_t *)mp->b_rptr; 26336 ASSERT(tcpt->connp == connp); 26337 26338 delta = untimeout(tcpt->tcpt_tid); 26339 26340 if (delta >= 0) { 26341 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26342 tcp_timer_free(connp->conn_tcp, mp); 26343 CONN_DEC_REF(connp); 26344 } 26345 26346 return (delta); 26347 } 26348 26349 /* 26350 * Allocate space for the timer event. The allocation looks like mblk, but it is 26351 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26352 * 26353 * Dealing with failures: If we can't allocate from the timer cache we try 26354 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26355 * points to b_rptr. 26356 * If we can't allocate anything using allocb_tryhard(), we perform a last 26357 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26358 * save the actual allocation size in b_datap. 26359 */ 26360 mblk_t * 26361 tcp_timermp_alloc(int kmflags) 26362 { 26363 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26364 kmflags & ~KM_PANIC); 26365 26366 if (mp != NULL) { 26367 mp->b_next = mp->b_prev = NULL; 26368 mp->b_rptr = (uchar_t *)(&mp[1]); 26369 mp->b_wptr = NULL; 26370 mp->b_datap = NULL; 26371 mp->b_queue = NULL; 26372 mp->b_cont = NULL; 26373 } else if (kmflags & KM_PANIC) { 26374 /* 26375 * Failed to allocate memory for the timer. Try allocating from 26376 * dblock caches. 26377 */ 26378 /* ipclassifier calls this from a constructor - hence no tcps */ 26379 TCP_G_STAT(tcp_timermp_allocfail); 26380 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26381 if (mp == NULL) { 26382 size_t size = 0; 26383 /* 26384 * Memory is really low. Try tryhard allocation. 26385 * 26386 * ipclassifier calls this from a constructor - 26387 * hence no tcps 26388 */ 26389 TCP_G_STAT(tcp_timermp_allocdblfail); 26390 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26391 sizeof (tcp_timer_t), &size, kmflags); 26392 mp->b_rptr = (uchar_t *)(&mp[1]); 26393 mp->b_next = mp->b_prev = NULL; 26394 mp->b_wptr = (uchar_t *)-1; 26395 mp->b_datap = (dblk_t *)size; 26396 mp->b_queue = NULL; 26397 mp->b_cont = NULL; 26398 } 26399 ASSERT(mp->b_wptr != NULL); 26400 } 26401 /* ipclassifier calls this from a constructor - hence no tcps */ 26402 TCP_G_DBGSTAT(tcp_timermp_alloced); 26403 26404 return (mp); 26405 } 26406 26407 /* 26408 * Free per-tcp timer cache. 26409 * It can only contain entries from tcp_timercache. 26410 */ 26411 void 26412 tcp_timermp_free(tcp_t *tcp) 26413 { 26414 mblk_t *mp; 26415 26416 while ((mp = tcp->tcp_timercache) != NULL) { 26417 ASSERT(mp->b_wptr == NULL); 26418 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26419 kmem_cache_free(tcp_timercache, mp); 26420 } 26421 } 26422 26423 /* 26424 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26425 * events there already (currently at most two events are cached). 26426 * If the event is not allocated from the timer cache, free it right away. 26427 */ 26428 static void 26429 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26430 { 26431 mblk_t *mp1 = tcp->tcp_timercache; 26432 tcp_stack_t *tcps = tcp->tcp_tcps; 26433 26434 if (mp->b_wptr != NULL) { 26435 /* 26436 * This allocation is not from a timer cache, free it right 26437 * away. 26438 */ 26439 if (mp->b_wptr != (uchar_t *)-1) 26440 freeb(mp); 26441 else 26442 kmem_free(mp, (size_t)mp->b_datap); 26443 } else if (mp1 == NULL || mp1->b_next == NULL) { 26444 /* Cache this timer block for future allocations */ 26445 mp->b_rptr = (uchar_t *)(&mp[1]); 26446 mp->b_next = mp1; 26447 tcp->tcp_timercache = mp; 26448 } else { 26449 kmem_cache_free(tcp_timercache, mp); 26450 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26451 } 26452 } 26453 26454 /* 26455 * End of TCP Timers implementation. 26456 */ 26457 26458 /* 26459 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26460 * on the specified backing STREAMS q. Note, the caller may make the 26461 * decision to call based on the tcp_t.tcp_flow_stopped value which 26462 * when check outside the q's lock is only an advisory check ... 26463 */ 26464 26465 void 26466 tcp_setqfull(tcp_t *tcp) 26467 { 26468 queue_t *q = tcp->tcp_wq; 26469 tcp_stack_t *tcps = tcp->tcp_tcps; 26470 26471 if (!(q->q_flag & QFULL)) { 26472 mutex_enter(QLOCK(q)); 26473 if (!(q->q_flag & QFULL)) { 26474 /* still need to set QFULL */ 26475 q->q_flag |= QFULL; 26476 tcp->tcp_flow_stopped = B_TRUE; 26477 mutex_exit(QLOCK(q)); 26478 TCP_STAT(tcps, tcp_flwctl_on); 26479 } else { 26480 mutex_exit(QLOCK(q)); 26481 } 26482 } 26483 } 26484 26485 void 26486 tcp_clrqfull(tcp_t *tcp) 26487 { 26488 queue_t *q = tcp->tcp_wq; 26489 26490 if (q->q_flag & QFULL) { 26491 mutex_enter(QLOCK(q)); 26492 if (q->q_flag & QFULL) { 26493 q->q_flag &= ~QFULL; 26494 tcp->tcp_flow_stopped = B_FALSE; 26495 mutex_exit(QLOCK(q)); 26496 if (q->q_flag & QWANTW) 26497 qbackenable(q, 0); 26498 } else { 26499 mutex_exit(QLOCK(q)); 26500 } 26501 } 26502 } 26503 26504 26505 /* 26506 * kstats related to squeues i.e. not per IP instance 26507 */ 26508 static void * 26509 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26510 { 26511 kstat_t *ksp; 26512 26513 tcp_g_stat_t template = { 26514 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26515 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26516 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26517 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26518 }; 26519 26520 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26521 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26522 KSTAT_FLAG_VIRTUAL); 26523 26524 if (ksp == NULL) 26525 return (NULL); 26526 26527 bcopy(&template, tcp_g_statp, sizeof (template)); 26528 ksp->ks_data = (void *)tcp_g_statp; 26529 26530 kstat_install(ksp); 26531 return (ksp); 26532 } 26533 26534 static void 26535 tcp_g_kstat_fini(kstat_t *ksp) 26536 { 26537 if (ksp != NULL) { 26538 kstat_delete(ksp); 26539 } 26540 } 26541 26542 26543 static void * 26544 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26545 { 26546 kstat_t *ksp; 26547 26548 tcp_stat_t template = { 26549 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26550 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26551 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26552 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26553 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26554 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26555 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26556 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26557 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26558 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26559 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26560 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26561 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26562 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26563 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26564 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26565 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26566 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26567 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26568 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26569 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26570 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26571 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26572 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26573 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26574 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26575 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26576 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26577 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26578 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26579 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26580 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26581 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26582 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26583 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26584 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26585 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26586 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26587 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26588 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26589 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26590 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26591 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26592 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26593 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26594 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26595 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26596 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26597 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26598 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26599 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26600 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26601 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26602 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26603 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26604 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26605 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26606 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26607 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26608 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26609 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26610 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26611 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26612 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26613 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26614 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26615 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26616 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26617 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26618 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26619 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26620 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26621 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26622 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26623 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26624 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26625 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26626 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26627 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26628 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26629 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26630 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26631 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26632 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26633 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26634 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26635 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26636 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26637 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26638 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26639 }; 26640 26641 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26642 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26643 KSTAT_FLAG_VIRTUAL, stackid); 26644 26645 if (ksp == NULL) 26646 return (NULL); 26647 26648 bcopy(&template, tcps_statisticsp, sizeof (template)); 26649 ksp->ks_data = (void *)tcps_statisticsp; 26650 ksp->ks_private = (void *)(uintptr_t)stackid; 26651 26652 kstat_install(ksp); 26653 return (ksp); 26654 } 26655 26656 static void 26657 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26658 { 26659 if (ksp != NULL) { 26660 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26661 kstat_delete_netstack(ksp, stackid); 26662 } 26663 } 26664 26665 /* 26666 * TCP Kstats implementation 26667 */ 26668 static void * 26669 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26670 { 26671 kstat_t *ksp; 26672 26673 tcp_named_kstat_t template = { 26674 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26675 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26676 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26677 { "maxConn", KSTAT_DATA_INT32, 0 }, 26678 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26679 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26680 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26681 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26682 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26683 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26684 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26685 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26686 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26687 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26688 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26689 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26690 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26691 { "outAck", KSTAT_DATA_UINT32, 0 }, 26692 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26693 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26694 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26695 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26696 { "outControl", KSTAT_DATA_UINT32, 0 }, 26697 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26698 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26699 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26700 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26701 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26702 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26703 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26704 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26705 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26706 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26707 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26708 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26709 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26710 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26711 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26712 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26713 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26714 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26715 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26716 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26717 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26718 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26719 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26720 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26721 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26722 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26723 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26724 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26725 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26726 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26727 }; 26728 26729 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26730 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26731 26732 if (ksp == NULL) 26733 return (NULL); 26734 26735 template.rtoAlgorithm.value.ui32 = 4; 26736 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26737 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26738 template.maxConn.value.i32 = -1; 26739 26740 bcopy(&template, ksp->ks_data, sizeof (template)); 26741 ksp->ks_update = tcp_kstat_update; 26742 ksp->ks_private = (void *)(uintptr_t)stackid; 26743 26744 kstat_install(ksp); 26745 return (ksp); 26746 } 26747 26748 static void 26749 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26750 { 26751 if (ksp != NULL) { 26752 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26753 kstat_delete_netstack(ksp, stackid); 26754 } 26755 } 26756 26757 static int 26758 tcp_kstat_update(kstat_t *kp, int rw) 26759 { 26760 tcp_named_kstat_t *tcpkp; 26761 tcp_t *tcp; 26762 connf_t *connfp; 26763 conn_t *connp; 26764 int i; 26765 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26766 netstack_t *ns; 26767 tcp_stack_t *tcps; 26768 ip_stack_t *ipst; 26769 26770 if ((kp == NULL) || (kp->ks_data == NULL)) 26771 return (EIO); 26772 26773 if (rw == KSTAT_WRITE) 26774 return (EACCES); 26775 26776 ns = netstack_find_by_stackid(stackid); 26777 if (ns == NULL) 26778 return (-1); 26779 tcps = ns->netstack_tcp; 26780 if (tcps == NULL) { 26781 netstack_rele(ns); 26782 return (-1); 26783 } 26784 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26785 26786 tcpkp->currEstab.value.ui32 = 0; 26787 26788 ipst = ns->netstack_ip; 26789 26790 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26791 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26792 connp = NULL; 26793 while ((connp = 26794 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26795 tcp = connp->conn_tcp; 26796 switch (tcp_snmp_state(tcp)) { 26797 case MIB2_TCP_established: 26798 case MIB2_TCP_closeWait: 26799 tcpkp->currEstab.value.ui32++; 26800 break; 26801 } 26802 } 26803 } 26804 26805 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26806 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26807 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26808 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26809 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26810 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26811 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26812 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26813 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26814 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26815 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26816 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26817 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26818 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26819 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26820 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26821 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26822 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26823 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26824 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26825 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26826 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26827 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26828 tcpkp->inDataInorderSegs.value.ui32 = 26829 tcps->tcps_mib.tcpInDataInorderSegs; 26830 tcpkp->inDataInorderBytes.value.ui32 = 26831 tcps->tcps_mib.tcpInDataInorderBytes; 26832 tcpkp->inDataUnorderSegs.value.ui32 = 26833 tcps->tcps_mib.tcpInDataUnorderSegs; 26834 tcpkp->inDataUnorderBytes.value.ui32 = 26835 tcps->tcps_mib.tcpInDataUnorderBytes; 26836 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26837 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26838 tcpkp->inDataPartDupSegs.value.ui32 = 26839 tcps->tcps_mib.tcpInDataPartDupSegs; 26840 tcpkp->inDataPartDupBytes.value.ui32 = 26841 tcps->tcps_mib.tcpInDataPartDupBytes; 26842 tcpkp->inDataPastWinSegs.value.ui32 = 26843 tcps->tcps_mib.tcpInDataPastWinSegs; 26844 tcpkp->inDataPastWinBytes.value.ui32 = 26845 tcps->tcps_mib.tcpInDataPastWinBytes; 26846 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26847 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26848 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26849 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26850 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26851 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26852 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26853 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26854 tcpkp->timKeepaliveProbe.value.ui32 = 26855 tcps->tcps_mib.tcpTimKeepaliveProbe; 26856 tcpkp->timKeepaliveDrop.value.ui32 = 26857 tcps->tcps_mib.tcpTimKeepaliveDrop; 26858 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26859 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26860 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26861 tcpkp->outSackRetransSegs.value.ui32 = 26862 tcps->tcps_mib.tcpOutSackRetransSegs; 26863 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26864 26865 netstack_rele(ns); 26866 return (0); 26867 } 26868 26869 void 26870 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26871 { 26872 uint16_t hdr_len; 26873 ipha_t *ipha; 26874 uint8_t *nexthdrp; 26875 tcph_t *tcph; 26876 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26877 26878 /* Already has an eager */ 26879 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26880 TCP_STAT(tcps, tcp_reinput_syn); 26881 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 26882 connp, SQTAG_TCP_REINPUT_EAGER); 26883 return; 26884 } 26885 26886 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26887 case IPV4_VERSION: 26888 ipha = (ipha_t *)mp->b_rptr; 26889 hdr_len = IPH_HDR_LENGTH(ipha); 26890 break; 26891 case IPV6_VERSION: 26892 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26893 &hdr_len, &nexthdrp)) { 26894 CONN_DEC_REF(connp); 26895 freemsg(mp); 26896 return; 26897 } 26898 break; 26899 } 26900 26901 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26902 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26903 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26904 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26905 } 26906 26907 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 26908 SQTAG_TCP_REINPUT); 26909 } 26910 26911 static squeue_func_t 26912 tcp_squeue_switch(int val) 26913 { 26914 squeue_func_t rval = squeue_fill; 26915 26916 switch (val) { 26917 case 1: 26918 rval = squeue_enter_nodrain; 26919 break; 26920 case 2: 26921 rval = squeue_enter; 26922 break; 26923 default: 26924 break; 26925 } 26926 return (rval); 26927 } 26928 26929 /* 26930 * This is called once for each squeue - globally for all stack 26931 * instances. 26932 */ 26933 static void 26934 tcp_squeue_add(squeue_t *sqp) 26935 { 26936 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26937 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26938 26939 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26940 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 26941 sqp, TCP_TIME_WAIT_DELAY); 26942 if (tcp_free_list_max_cnt == 0) { 26943 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26944 max_ncpus : boot_max_ncpus); 26945 26946 /* 26947 * Limit number of entries to 1% of availble memory / tcp_ncpus 26948 */ 26949 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26950 (tcp_ncpus * sizeof (tcp_t) * 100); 26951 } 26952 tcp_time_wait->tcp_free_list_cnt = 0; 26953 } 26954