xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision 9da57d7b0ddd8d73b676ce12c040362132cdd538)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <rpc/pmap_prot.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
129  * squeue_fill). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 /*
237  * Values for squeue switch:
238  * 1: squeue_enter_nodrain
239  * 2: squeue_enter
240  * 3: squeue_fill
241  */
242 int tcp_squeue_close = 2;	/* Setable in /etc/system */
243 int tcp_squeue_wput = 2;
244 
245 squeue_func_t tcp_squeue_close_proc;
246 squeue_func_t tcp_squeue_wput_proc;
247 
248 /*
249  * This controls how tiny a write must be before we try to copy it
250  * into the the mblk on the tail of the transmit queue.  Not much
251  * speedup is observed for values larger than sixteen.  Zero will
252  * disable the optimisation.
253  */
254 int tcp_tx_pull_len = 16;
255 
256 /*
257  * TCP Statistics.
258  *
259  * How TCP statistics work.
260  *
261  * There are two types of statistics invoked by two macros.
262  *
263  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
264  * supposed to be used in non MT-hot paths of the code.
265  *
266  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
267  * supposed to be used for DEBUG purposes and may be used on a hot path.
268  *
269  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
270  * (use "kstat tcp" to get them).
271  *
272  * There is also additional debugging facility that marks tcp_clean_death()
273  * instances and saves them in tcp_t structure. It is triggered by
274  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
275  * tcp_clean_death() calls that counts the number of times each tag was hit. It
276  * is triggered by TCP_CLD_COUNTERS define.
277  *
278  * How to add new counters.
279  *
280  * 1) Add a field in the tcp_stat structure describing your counter.
281  * 2) Add a line in the template in tcp_kstat2_init() with the name
282  *    of the counter.
283  *
284  *    IMPORTANT!! - make sure that both are in sync !!
285  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
286  *
287  * Please avoid using private counters which are not kstat-exported.
288  *
289  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
290  * in tcp_t structure.
291  *
292  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
293  */
294 
295 #ifndef TCP_DEBUG_COUNTER
296 #ifdef DEBUG
297 #define	TCP_DEBUG_COUNTER 1
298 #else
299 #define	TCP_DEBUG_COUNTER 0
300 #endif
301 #endif
302 
303 #define	TCP_CLD_COUNTERS 0
304 
305 #define	TCP_TAG_CLEAN_DEATH 1
306 #define	TCP_MAX_CLEAN_DEATH_TAG 32
307 
308 #ifdef lint
309 static int _lint_dummy_;
310 #endif
311 
312 #if TCP_CLD_COUNTERS
313 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
314 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
315 #elif defined(lint)
316 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
317 #else
318 #define	TCP_CLD_STAT(x)
319 #endif
320 
321 #if TCP_DEBUG_COUNTER
322 #define	TCP_DBGSTAT(tcps, x)	\
323 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
324 #define	TCP_G_DBGSTAT(x)	\
325 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
326 #elif defined(lint)
327 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
328 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
329 #else
330 #define	TCP_DBGSTAT(tcps, x)
331 #define	TCP_G_DBGSTAT(x)
332 #endif
333 
334 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
335 
336 tcp_g_stat_t	tcp_g_statistics;
337 kstat_t		*tcp_g_kstat;
338 
339 /*
340  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
341  * tcp write side.
342  */
343 #define	CALL_IP_WPUT(connp, q, mp) {					\
344 	tcp_stack_t	*tcps;						\
345 									\
346 	tcps = connp->conn_netstack->netstack_tcp;			\
347 	ASSERT(((q)->q_flag & QREADR) == 0);				\
348 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
349 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
350 }
351 
352 /* Macros for timestamp comparisons */
353 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
354 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
355 
356 /*
357  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
358  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
359  * by adding three components: a time component which grows by 1 every 4096
360  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
361  * a per-connection component which grows by 125000 for every new connection;
362  * and an "extra" component that grows by a random amount centered
363  * approximately on 64000.  This causes the the ISS generator to cycle every
364  * 4.89 hours if no TCP connections are made, and faster if connections are
365  * made.
366  *
367  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
368  * components: a time component which grows by 250000 every second; and
369  * a per-connection component which grows by 125000 for every new connections.
370  *
371  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
372  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
373  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
374  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
375  * password.
376  */
377 #define	ISS_INCR	250000
378 #define	ISS_NSEC_SHT	12
379 
380 static sin_t	sin_null;	/* Zero address for quick clears */
381 static sin6_t	sin6_null;	/* Zero address for quick clears */
382 
383 /*
384  * This implementation follows the 4.3BSD interpretation of the urgent
385  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
386  * incompatible changes in protocols like telnet and rlogin.
387  */
388 #define	TCP_OLD_URP_INTERPRETATION	1
389 
390 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
391 	(TCP_IS_DETACHED(tcp) && \
392 	    (!(tcp)->tcp_hard_binding))
393 
394 /*
395  * TCP reassembly macros.  We hide starting and ending sequence numbers in
396  * b_next and b_prev of messages on the reassembly queue.  The messages are
397  * chained using b_cont.  These macros are used in tcp_reass() so we don't
398  * have to see the ugly casts and assignments.
399  */
400 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
401 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
402 					(mblk_t *)(uintptr_t)(u))
403 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
404 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
405 					(mblk_t *)(uintptr_t)(u))
406 
407 /*
408  * Implementation of TCP Timers.
409  * =============================
410  *
411  * INTERFACE:
412  *
413  * There are two basic functions dealing with tcp timers:
414  *
415  *	timeout_id_t	tcp_timeout(connp, func, time)
416  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
417  *	TCP_TIMER_RESTART(tcp, intvl)
418  *
419  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
420  * after 'time' ticks passed. The function called by timeout() must adhere to
421  * the same restrictions as a driver soft interrupt handler - it must not sleep
422  * or call other functions that might sleep. The value returned is the opaque
423  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
424  * cancel the request. The call to tcp_timeout() may fail in which case it
425  * returns zero. This is different from the timeout(9F) function which never
426  * fails.
427  *
428  * The call-back function 'func' always receives 'connp' as its single
429  * argument. It is always executed in the squeue corresponding to the tcp
430  * structure. The tcp structure is guaranteed to be present at the time the
431  * call-back is called.
432  *
433  * NOTE: The call-back function 'func' is never called if tcp is in
434  * 	the TCPS_CLOSED state.
435  *
436  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
437  * request. locks acquired by the call-back routine should not be held across
438  * the call to tcp_timeout_cancel() or a deadlock may result.
439  *
440  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
441  * Otherwise, it returns an integer value greater than or equal to 0. In
442  * particular, if the call-back function is already placed on the squeue, it can
443  * not be canceled.
444  *
445  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
446  * 	within squeue context corresponding to the tcp instance. Since the
447  *	call-back is also called via the same squeue, there are no race
448  *	conditions described in untimeout(9F) manual page since all calls are
449  *	strictly serialized.
450  *
451  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
452  *	stored in tcp_timer_tid and starts a new one using
453  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
454  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
455  *	field.
456  *
457  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
458  *	call-back may still be called, so it is possible tcp_timer() will be
459  *	called several times. This should not be a problem since tcp_timer()
460  *	should always check the tcp instance state.
461  *
462  *
463  * IMPLEMENTATION:
464  *
465  * TCP timers are implemented using three-stage process. The call to
466  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
467  * when the timer expires. The tcp_timer_callback() arranges the call of the
468  * tcp_timer_handler() function via squeue corresponding to the tcp
469  * instance. The tcp_timer_handler() calls actual requested timeout call-back
470  * and passes tcp instance as an argument to it. Information is passed between
471  * stages using the tcp_timer_t structure which contains the connp pointer, the
472  * tcp call-back to call and the timeout id returned by the timeout(9F).
473  *
474  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
475  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
476  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
477  * returns the pointer to this mblk.
478  *
479  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
480  * looks like a normal mblk without actual dblk attached to it.
481  *
482  * To optimize performance each tcp instance holds a small cache of timer
483  * mblocks. In the current implementation it caches up to two timer mblocks per
484  * tcp instance. The cache is preserved over tcp frees and is only freed when
485  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
486  * timer processing happens on a corresponding squeue, the cache manipulation
487  * does not require any locks. Experiments show that majority of timer mblocks
488  * allocations are satisfied from the tcp cache and do not involve kmem calls.
489  *
490  * The tcp_timeout() places a refhold on the connp instance which guarantees
491  * that it will be present at the time the call-back function fires. The
492  * tcp_timer_handler() drops the reference after calling the call-back, so the
493  * call-back function does not need to manipulate the references explicitly.
494  */
495 
496 typedef struct tcp_timer_s {
497 	conn_t	*connp;
498 	void 	(*tcpt_proc)(void *);
499 	timeout_id_t   tcpt_tid;
500 } tcp_timer_t;
501 
502 static kmem_cache_t *tcp_timercache;
503 kmem_cache_t	*tcp_sack_info_cache;
504 kmem_cache_t	*tcp_iphc_cache;
505 
506 /*
507  * For scalability, we must not run a timer for every TCP connection
508  * in TIME_WAIT state.  To see why, consider (for time wait interval of
509  * 4 minutes):
510  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
511  *
512  * This list is ordered by time, so you need only delete from the head
513  * until you get to entries which aren't old enough to delete yet.
514  * The list consists of only the detached TIME_WAIT connections.
515  *
516  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
517  * becomes detached TIME_WAIT (either by changing the state and already
518  * being detached or the other way around). This means that the TIME_WAIT
519  * state can be extended (up to doubled) if the connection doesn't become
520  * detached for a long time.
521  *
522  * The list manipulations (including tcp_time_wait_next/prev)
523  * are protected by the tcp_time_wait_lock. The content of the
524  * detached TIME_WAIT connections is protected by the normal perimeters.
525  *
526  * This list is per squeue and squeues are shared across the tcp_stack_t's.
527  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
528  * and conn_netstack.
529  * The tcp_t's that are added to tcp_free_list are disassociated and
530  * have NULL tcp_tcps and conn_netstack pointers.
531  */
532 typedef struct tcp_squeue_priv_s {
533 	kmutex_t	tcp_time_wait_lock;
534 	timeout_id_t	tcp_time_wait_tid;
535 	tcp_t		*tcp_time_wait_head;
536 	tcp_t		*tcp_time_wait_tail;
537 	tcp_t		*tcp_free_list;
538 	uint_t		tcp_free_list_cnt;
539 } tcp_squeue_priv_t;
540 
541 /*
542  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
543  * Running it every 5 seconds seems to give the best results.
544  */
545 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
546 
547 /*
548  * To prevent memory hog, limit the number of entries in tcp_free_list
549  * to 1% of available memory / number of cpus
550  */
551 uint_t tcp_free_list_max_cnt = 0;
552 
553 #define	TCP_XMIT_LOWATER	4096
554 #define	TCP_XMIT_HIWATER	49152
555 #define	TCP_RECV_LOWATER	2048
556 #define	TCP_RECV_HIWATER	49152
557 
558 /*
559  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
560  */
561 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
562 
563 #define	TIDUSZ	4096	/* transport interface data unit size */
564 
565 /*
566  * Bind hash list size and has function.  It has to be a power of 2 for
567  * hashing.
568  */
569 #define	TCP_BIND_FANOUT_SIZE	512
570 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
571 /*
572  * Size of listen and acceptor hash list.  It has to be a power of 2 for
573  * hashing.
574  */
575 #define	TCP_FANOUT_SIZE		256
576 
577 #ifdef	_ILP32
578 #define	TCP_ACCEPTOR_HASH(accid)					\
579 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
580 #else
581 #define	TCP_ACCEPTOR_HASH(accid)					\
582 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
583 #endif	/* _ILP32 */
584 
585 #define	IP_ADDR_CACHE_SIZE	2048
586 #define	IP_ADDR_CACHE_HASH(faddr)					\
587 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
588 
589 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
590 #define	TCP_HSP_HASH_SIZE 256
591 
592 #define	TCP_HSP_HASH(addr)					\
593 	(((addr>>24) ^ (addr >>16) ^			\
594 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
595 
596 /*
597  * TCP options struct returned from tcp_parse_options.
598  */
599 typedef struct tcp_opt_s {
600 	uint32_t	tcp_opt_mss;
601 	uint32_t	tcp_opt_wscale;
602 	uint32_t	tcp_opt_ts_val;
603 	uint32_t	tcp_opt_ts_ecr;
604 	tcp_t		*tcp;
605 } tcp_opt_t;
606 
607 /*
608  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
609  */
610 
611 #ifdef _BIG_ENDIAN
612 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
613 	(TCPOPT_TSTAMP << 8) | 10)
614 #else
615 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
616 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
617 #endif
618 
619 /*
620  * Flags returned from tcp_parse_options.
621  */
622 #define	TCP_OPT_MSS_PRESENT	1
623 #define	TCP_OPT_WSCALE_PRESENT	2
624 #define	TCP_OPT_TSTAMP_PRESENT	4
625 #define	TCP_OPT_SACK_OK_PRESENT	8
626 #define	TCP_OPT_SACK_PRESENT	16
627 
628 /* TCP option length */
629 #define	TCPOPT_NOP_LEN		1
630 #define	TCPOPT_MAXSEG_LEN	4
631 #define	TCPOPT_WS_LEN		3
632 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
633 #define	TCPOPT_TSTAMP_LEN	10
634 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
635 #define	TCPOPT_SACK_OK_LEN	2
636 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
637 #define	TCPOPT_REAL_SACK_LEN	4
638 #define	TCPOPT_MAX_SACK_LEN	36
639 #define	TCPOPT_HEADER_LEN	2
640 
641 /* TCP cwnd burst factor. */
642 #define	TCP_CWND_INFINITE	65535
643 #define	TCP_CWND_SS		3
644 #define	TCP_CWND_NORMAL		5
645 
646 /* Maximum TCP initial cwin (start/restart). */
647 #define	TCP_MAX_INIT_CWND	8
648 
649 /*
650  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
651  * either tcp_slow_start_initial or tcp_slow_start_after idle
652  * depending on the caller.  If the upper layer has not used the
653  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
654  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
655  * If the upper layer has changed set the tcp_init_cwnd, just use
656  * it to calculate the tcp_cwnd.
657  */
658 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
659 {									\
660 	if ((tcp)->tcp_init_cwnd == 0) {				\
661 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
662 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
663 	} else {							\
664 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
665 	}								\
666 	tcp->tcp_cwnd_cnt = 0;						\
667 }
668 
669 /* TCP Timer control structure */
670 typedef struct tcpt_s {
671 	pfv_t	tcpt_pfv;	/* The routine we are to call */
672 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
673 } tcpt_t;
674 
675 /* Host Specific Parameter structure */
676 typedef struct tcp_hsp {
677 	struct tcp_hsp	*tcp_hsp_next;
678 	in6_addr_t	tcp_hsp_addr_v6;
679 	in6_addr_t	tcp_hsp_subnet_v6;
680 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
681 	int32_t		tcp_hsp_sendspace;
682 	int32_t		tcp_hsp_recvspace;
683 	int32_t		tcp_hsp_tstamp;
684 } tcp_hsp_t;
685 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
686 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
687 
688 /*
689  * Functions called directly via squeue having a prototype of edesc_t.
690  */
691 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
692 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
693 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
694 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
696 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
697 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
698 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
699 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
700 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
702 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
703 
704 
705 /* Prototype for TCP functions */
706 static void	tcp_random_init(void);
707 int		tcp_random(void);
708 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
709 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
710 		    tcp_t *eager);
711 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
712 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
713     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
714     boolean_t user_specified);
715 static void	tcp_closei_local(tcp_t *tcp);
716 static void	tcp_close_detached(tcp_t *tcp);
717 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
718 			mblk_t *idmp, mblk_t **defermp);
719 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
720 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
721 		    in_port_t dstport, uint_t srcid);
722 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
723 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
724 		    uint32_t scope_id);
725 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
726 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
727 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
728 static char	*tcp_display(tcp_t *tcp, char *, char);
729 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
730 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
731 static void	tcp_eager_unlink(tcp_t *tcp);
732 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
733 		    int unixerr);
734 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
735 		    int tlierr, int unixerr);
736 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
737 		    cred_t *cr);
738 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
739 		    char *value, caddr_t cp, cred_t *cr);
740 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
741 		    char *value, caddr_t cp, cred_t *cr);
742 static int	tcp_tpistate(tcp_t *tcp);
743 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
744     int caller_holds_lock);
745 static void	tcp_bind_hash_remove(tcp_t *tcp);
746 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
747 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
748 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
749 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
750 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
751 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
752 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
753 void		tcp_g_q_setup(tcp_stack_t *);
754 void		tcp_g_q_create(tcp_stack_t *);
755 void		tcp_g_q_destroy(tcp_stack_t *);
756 static int	tcp_header_init_ipv4(tcp_t *tcp);
757 static int	tcp_header_init_ipv6(tcp_t *tcp);
758 int		tcp_init(tcp_t *tcp, queue_t *q);
759 static int	tcp_init_values(tcp_t *tcp);
760 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
761 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
762 		    t_scalar_t addr_length);
763 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
764 static void	tcp_ip_notify(tcp_t *tcp);
765 static mblk_t	*tcp_ire_mp(mblk_t *mp);
766 static void	tcp_iss_init(tcp_t *tcp);
767 static void	tcp_keepalive_killer(void *arg);
768 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
769 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
770 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
771 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
772 static boolean_t tcp_allow_connopt_set(int level, int name);
773 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
774 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
775 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
776 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
777 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
778 		    mblk_t *mblk);
779 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
780 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
781 		    uchar_t *ptr, uint_t len);
782 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
783 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
784     tcp_stack_t *);
785 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
786 		    caddr_t cp, cred_t *cr);
787 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
788 		    caddr_t cp, cred_t *cr);
789 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
790 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
791 		    caddr_t cp, cred_t *cr);
792 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
793 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
794 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_reinit(tcp_t *tcp);
796 static void	tcp_reinit_values(tcp_t *tcp);
797 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
798 		    tcp_t *thisstream, cred_t *cr);
799 
800 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
801 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
802 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
803 static void	tcp_ss_rexmit(tcp_t *tcp);
804 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
805 static void	tcp_process_options(tcp_t *, tcph_t *);
806 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
807 static void	tcp_rsrv(queue_t *q);
808 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
809 static int	tcp_snmp_state(tcp_t *tcp);
810 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
811 		    cred_t *cr);
812 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
813 		    cred_t *cr);
814 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
815 		    cred_t *cr);
816 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
817 		    cred_t *cr);
818 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
819 		    cred_t *cr);
820 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
821 		    caddr_t cp, cred_t *cr);
822 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
823 		    caddr_t cp, cred_t *cr);
824 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
825 		    cred_t *cr);
826 static void	tcp_timer(void *arg);
827 static void	tcp_timer_callback(void *);
828 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
829     boolean_t random);
830 static in_port_t tcp_get_next_priv_port(const tcp_t *);
831 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
832 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
833 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
834 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
835 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
836 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
837 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
838 		    const int num_sack_blk, int *usable, uint_t *snxt,
839 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
840 		    const int mdt_thres);
841 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
842 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
843 		    const int num_sack_blk, int *usable, uint_t *snxt,
844 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
845 		    const int mdt_thres);
846 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
847 		    int num_sack_blk);
848 static void	tcp_wsrv(queue_t *q);
849 static int	tcp_xmit_end(tcp_t *tcp);
850 static void	tcp_ack_timer(void *arg);
851 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
852 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
853 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
854 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
855 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
856 		    uint32_t ack, int ctl);
857 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
858 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
859 static int	setmaxps(queue_t *q, int maxpsz);
860 static void	tcp_set_rto(tcp_t *, time_t);
861 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
862 		    boolean_t, boolean_t);
863 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
864 		    boolean_t ipsec_mctl);
865 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
866 		    char *opt, int optlen);
867 static int	tcp_build_hdrs(queue_t *, tcp_t *);
868 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
869 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
870 		    tcph_t *tcph);
871 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
872 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
873 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
874 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
875 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
876 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
877 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
878 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
879 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
880 		    const boolean_t, const uint32_t, const uint32_t,
881 		    const uint32_t, const uint32_t, tcp_stack_t *);
882 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
883 		    const uint_t, const uint_t, boolean_t *);
884 static mblk_t	*tcp_lso_info_mp(mblk_t *);
885 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
886 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
887 extern mblk_t	*tcp_timermp_alloc(int);
888 extern void	tcp_timermp_free(tcp_t *);
889 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
890 static void	tcp_stop_lingering(tcp_t *tcp);
891 static void	tcp_close_linger_timeout(void *arg);
892 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
893 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
894 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
895 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
896 static void	tcp_g_kstat_fini(kstat_t *);
897 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
898 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
899 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
900 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
901 static int	tcp_kstat_update(kstat_t *kp, int rw);
902 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
903 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
904 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
905 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
906 			tcph_t *tcph, mblk_t *idmp);
907 static squeue_func_t tcp_squeue_switch(int);
908 
909 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
910 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
911 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
912 static int	tcp_close(queue_t *, int);
913 static int	tcpclose_accept(queue_t *);
914 
915 static void	tcp_squeue_add(squeue_t *);
916 static boolean_t tcp_zcopy_check(tcp_t *);
917 static void	tcp_zcopy_notify(tcp_t *);
918 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
919 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
920 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
921 
922 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
923 
924 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
925 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
926 
927 /*
928  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
929  *
930  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
931  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
932  * (defined in tcp.h) needs to be filled in and passed into the kernel
933  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
934  * structure contains the four-tuple of a TCP connection and a range of TCP
935  * states (specified by ac_start and ac_end). The use of wildcard addresses
936  * and ports is allowed. Connections with a matching four tuple and a state
937  * within the specified range will be aborted. The valid states for the
938  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
939  * inclusive.
940  *
941  * An application which has its connection aborted by this ioctl will receive
942  * an error that is dependent on the connection state at the time of the abort.
943  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
944  * though a RST packet has been received.  If the connection state is equal to
945  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
946  * and all resources associated with the connection will be freed.
947  */
948 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
949 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
950 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
951 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
952 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
953 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
954     boolean_t, tcp_stack_t *);
955 
956 static struct module_info tcp_rinfo =  {
957 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
958 };
959 
960 static struct module_info tcp_winfo =  {
961 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
962 };
963 
964 /*
965  * Entry points for TCP as a device. The normal case which supports
966  * the TCP functionality.
967  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
968  */
969 struct qinit tcp_rinitv4 = {
970 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
971 };
972 
973 struct qinit tcp_rinitv6 = {
974 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
975 };
976 
977 struct qinit tcp_winit = {
978 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
979 };
980 
981 /* Initial entry point for TCP in socket mode. */
982 struct qinit tcp_sock_winit = {
983 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
984 };
985 
986 /*
987  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
988  * an accept. Avoid allocating data structures since eager has already
989  * been created.
990  */
991 struct qinit tcp_acceptor_rinit = {
992 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
993 };
994 
995 struct qinit tcp_acceptor_winit = {
996 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
997 };
998 
999 /*
1000  * Entry points for TCP loopback (read side only)
1001  * The open routine is only used for reopens, thus no need to
1002  * have a separate one for tcp_openv6.
1003  */
1004 struct qinit tcp_loopback_rinit = {
1005 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1006 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1007 };
1008 
1009 /* For AF_INET aka /dev/tcp */
1010 struct streamtab tcpinfov4 = {
1011 	&tcp_rinitv4, &tcp_winit
1012 };
1013 
1014 /* For AF_INET6 aka /dev/tcp6 */
1015 struct streamtab tcpinfov6 = {
1016 	&tcp_rinitv6, &tcp_winit
1017 };
1018 
1019 /*
1020  * Have to ensure that tcp_g_q_close is not done by an
1021  * interrupt thread.
1022  */
1023 static taskq_t *tcp_taskq;
1024 
1025 /*
1026  * TCP has a private interface for other kernel modules to reserve a
1027  * port range for them to use.  Once reserved, TCP will not use any ports
1028  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1029  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1030  * has to be verified.
1031  *
1032  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1033  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1034  * range is [port a, port b] inclusive.  And each port range is between
1035  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1036  *
1037  * Note that the default anonymous port range starts from 32768.  There is
1038  * no port "collision" between that and the reserved port range.  If there
1039  * is port collision (because the default smallest anonymous port is lowered
1040  * or some apps specifically bind to ports in the reserved port range), the
1041  * system may not be able to reserve a port range even there are enough
1042  * unbound ports as a reserved port range contains consecutive ports .
1043  */
1044 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1045 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1046 #define	TCP_SMALLEST_RESERVED_PORT		10240
1047 #define	TCP_LARGEST_RESERVED_PORT		20480
1048 
1049 /* Structure to represent those reserved port ranges. */
1050 typedef struct tcp_rport_s {
1051 	in_port_t	lo_port;
1052 	in_port_t	hi_port;
1053 	tcp_t		**temp_tcp_array;
1054 } tcp_rport_t;
1055 
1056 /* Setable only in /etc/system. Move to ndd? */
1057 boolean_t tcp_icmp_source_quench = B_FALSE;
1058 
1059 /*
1060  * Following assumes TPI alignment requirements stay along 32 bit
1061  * boundaries
1062  */
1063 #define	ROUNDUP32(x) \
1064 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1065 
1066 /* Template for response to info request. */
1067 static struct T_info_ack tcp_g_t_info_ack = {
1068 	T_INFO_ACK,		/* PRIM_type */
1069 	0,			/* TSDU_size */
1070 	T_INFINITE,		/* ETSDU_size */
1071 	T_INVALID,		/* CDATA_size */
1072 	T_INVALID,		/* DDATA_size */
1073 	sizeof (sin_t),		/* ADDR_size */
1074 	0,			/* OPT_size - not initialized here */
1075 	TIDUSZ,			/* TIDU_size */
1076 	T_COTS_ORD,		/* SERV_type */
1077 	TCPS_IDLE,		/* CURRENT_state */
1078 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1079 };
1080 
1081 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1082 	T_INFO_ACK,		/* PRIM_type */
1083 	0,			/* TSDU_size */
1084 	T_INFINITE,		/* ETSDU_size */
1085 	T_INVALID,		/* CDATA_size */
1086 	T_INVALID,		/* DDATA_size */
1087 	sizeof (sin6_t),	/* ADDR_size */
1088 	0,			/* OPT_size - not initialized here */
1089 	TIDUSZ,		/* TIDU_size */
1090 	T_COTS_ORD,		/* SERV_type */
1091 	TCPS_IDLE,		/* CURRENT_state */
1092 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1093 };
1094 
1095 #define	MS	1L
1096 #define	SECONDS	(1000 * MS)
1097 #define	MINUTES	(60 * SECONDS)
1098 #define	HOURS	(60 * MINUTES)
1099 #define	DAYS	(24 * HOURS)
1100 
1101 #define	PARAM_MAX (~(uint32_t)0)
1102 
1103 /* Max size IP datagram is 64k - 1 */
1104 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1105 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1106 /* Max of the above */
1107 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1108 
1109 /* Largest TCP port number */
1110 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1111 
1112 /*
1113  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1114  * layer header.  It has to be a multiple of 4.
1115  */
1116 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1117 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1118 
1119 /*
1120  * All of these are alterable, within the min/max values given, at run time.
1121  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1122  * per the TCP spec.
1123  */
1124 /* BEGIN CSTYLED */
1125 static tcpparam_t	lcl_tcp_param_arr[] = {
1126  /*min		max		value		name */
1127  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1128  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1129  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1130  { 1,		1024,		1,		"tcp_conn_req_min" },
1131  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1132  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1133  { 0,		10,		0,		"tcp_debug" },
1134  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1135  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1136  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1137  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1138  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1139  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1140  { 1,		255,		64,		"tcp_ipv4_ttl"},
1141  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1142  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1143  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1144  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1145  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1146  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1147  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1148  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1149  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1150  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1151  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1152  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1153  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1154  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1155  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1156  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1157  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1158  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1159  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1160  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1161  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1162  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1163  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1164  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1165 /*
1166  * Question:  What default value should I set for tcp_strong_iss?
1167  */
1168  { 0,		2,		1,		"tcp_strong_iss"},
1169  { 0,		65536,		20,		"tcp_rtt_updates"},
1170  { 0,		1,		1,		"tcp_wscale_always"},
1171  { 0,		1,		0,		"tcp_tstamp_always"},
1172  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1173  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1174  { 0,		16,		2,		"tcp_deferred_acks_max"},
1175  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1176  { 1,		4,		4,		"tcp_slow_start_initial"},
1177  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1178  { 0,		2,		2,		"tcp_sack_permitted"},
1179  { 0,		1,		0,		"tcp_trace"},
1180  { 0,		1,		1,		"tcp_compression_enabled"},
1181  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1182  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1183  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1184  { 0,		1,		0,		"tcp_rev_src_routes"},
1185  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1186  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1187  { 0,		16,		8,		"tcp_local_dacks_max"},
1188  { 0,		2,		1,		"tcp_ecn_permitted"},
1189  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1190  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1191  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1192  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1193  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1194 };
1195 /* END CSTYLED */
1196 
1197 /*
1198  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1199  * each header fragment in the header buffer.  Each parameter value has
1200  * to be a multiple of 4 (32-bit aligned).
1201  */
1202 static tcpparam_t lcl_tcp_mdt_head_param =
1203 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1204 static tcpparam_t lcl_tcp_mdt_tail_param =
1205 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1206 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1207 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1208 
1209 /*
1210  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1211  * the maximum number of payload buffers associated per Multidata.
1212  */
1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1214 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1215 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1216 
1217 /* Round up the value to the nearest mss. */
1218 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1219 
1220 /*
1221  * Set ECN capable transport (ECT) code point in IP header.
1222  *
1223  * Note that there are 2 ECT code points '01' and '10', which are called
1224  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1225  * point ECT(0) for TCP as described in RFC 2481.
1226  */
1227 #define	SET_ECT(tcp, iph) \
1228 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1229 		/* We need to clear the code point first. */ \
1230 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1231 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1232 	} else { \
1233 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1234 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1235 	}
1236 
1237 /*
1238  * The format argument to pass to tcp_display().
1239  * DISP_PORT_ONLY means that the returned string has only port info.
1240  * DISP_ADDR_AND_PORT means that the returned string also contains the
1241  * remote and local IP address.
1242  */
1243 #define	DISP_PORT_ONLY		1
1244 #define	DISP_ADDR_AND_PORT	2
1245 
1246 #define	NDD_TOO_QUICK_MSG \
1247 	"ndd get info rate too high for non-privileged users, try again " \
1248 	"later.\n"
1249 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1250 
1251 #define	IS_VMLOANED_MBLK(mp) \
1252 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1253 
1254 
1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1256 boolean_t tcp_mdt_chain = B_TRUE;
1257 
1258 /*
1259  * MDT threshold in the form of effective send MSS multiplier; we take
1260  * the MDT path if the amount of unsent data exceeds the threshold value
1261  * (default threshold is 1*SMSS).
1262  */
1263 uint_t tcp_mdt_smss_threshold = 1;
1264 
1265 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1266 
1267 /*
1268  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1269  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1270  * determined dynamically during tcp_adapt_ire(), which is the default.
1271  */
1272 boolean_t tcp_static_maxpsz = B_FALSE;
1273 
1274 /* Setable in /etc/system */
1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1276 uint32_t tcp_random_anon_port = 1;
1277 
1278 /*
1279  * To reach to an eager in Q0 which can be dropped due to an incoming
1280  * new SYN request when Q0 is full, a new doubly linked list is
1281  * introduced. This list allows to select an eager from Q0 in O(1) time.
1282  * This is needed to avoid spending too much time walking through the
1283  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1284  * this new list has to be a member of Q0.
1285  * This list is headed by listener's tcp_t. When the list is empty,
1286  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1287  * of listener's tcp_t point to listener's tcp_t itself.
1288  *
1289  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1290  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1291  * These macros do not affect the eager's membership to Q0.
1292  */
1293 
1294 
1295 #define	MAKE_DROPPABLE(listener, eager)					\
1296 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1297 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1298 		    = (eager);						\
1299 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1300 		(eager)->tcp_eager_next_drop_q0 =			\
1301 		    (listener)->tcp_eager_next_drop_q0;			\
1302 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1303 	}
1304 
1305 #define	MAKE_UNDROPPABLE(eager)						\
1306 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1307 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1308 		    = (eager)->tcp_eager_prev_drop_q0;			\
1309 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1310 		    = (eager)->tcp_eager_next_drop_q0;			\
1311 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1312 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1313 	}
1314 
1315 /*
1316  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1317  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1318  * data, TCP will not respond with an ACK.  RFC 793 requires that
1319  * TCP responds with an ACK for such a bogus ACK.  By not following
1320  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1321  * an attacker successfully spoofs an acceptable segment to our
1322  * peer; or when our peer is "confused."
1323  */
1324 uint32_t tcp_drop_ack_unsent_cnt = 10;
1325 
1326 /*
1327  * Hook functions to enable cluster networking
1328  * On non-clustered systems these vectors must always be NULL.
1329  */
1330 
1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1332 			    uint8_t *laddrp, in_port_t lport) = NULL;
1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1334 			    uint8_t *laddrp, in_port_t lport) = NULL;
1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1336 			    uint8_t *laddrp, in_port_t lport,
1337 			    uint8_t *faddrp, in_port_t fport) = NULL;
1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 
1342 /*
1343  * The following are defined in ip.c
1344  */
1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1346 				uint8_t *laddrp);
1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1348 				uint8_t *laddrp, uint8_t *faddrp);
1349 
1350 #define	CL_INET_CONNECT(tcp)		{			\
1351 	if (cl_inet_connect != NULL) {				\
1352 		/*						\
1353 		 * Running in cluster mode - register active connection	\
1354 		 * information						\
1355 		 */							\
1356 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1357 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1358 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1359 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1360 				    (in_port_t)(tcp)->tcp_lport,	\
1361 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1362 				    (in_port_t)(tcp)->tcp_fport);	\
1363 			}						\
1364 		} else {						\
1365 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1366 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1367 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1368 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1369 				    (in_port_t)(tcp)->tcp_lport,	\
1370 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1371 				    (in_port_t)(tcp)->tcp_fport);	\
1372 			}						\
1373 		}							\
1374 	}								\
1375 }
1376 
1377 #define	CL_INET_DISCONNECT(tcp)	{				\
1378 	if (cl_inet_disconnect != NULL) {				\
1379 		/*							\
1380 		 * Running in cluster mode - deregister active		\
1381 		 * connection information				\
1382 		 */							\
1383 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1384 			if ((tcp)->tcp_ip_src != 0) {			\
1385 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1386 				    AF_INET,				\
1387 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1388 				    (in_port_t)(tcp)->tcp_lport,	\
1389 				    (uint8_t *)				\
1390 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1391 				    (in_port_t)(tcp)->tcp_fport);	\
1392 			}						\
1393 		} else {						\
1394 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1395 			    &(tcp)->tcp_ip_src_v6)) {			\
1396 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1397 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1398 				    (in_port_t)(tcp)->tcp_lport,	\
1399 				    (uint8_t *)				\
1400 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1401 				    (in_port_t)(tcp)->tcp_fport);	\
1402 			}						\
1403 		}							\
1404 	}								\
1405 }
1406 
1407 /*
1408  * Cluster networking hook for traversing current connection list.
1409  * This routine is used to extract the current list of live connections
1410  * which must continue to to be dispatched to this node.
1411  */
1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1413 
1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1415     void *arg, tcp_stack_t *tcps);
1416 
1417 /*
1418  * Figure out the value of window scale opton.  Note that the rwnd is
1419  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1420  * We cannot find the scale value and then do a round up of tcp_rwnd
1421  * because the scale value may not be correct after that.
1422  *
1423  * Set the compiler flag to make this function inline.
1424  */
1425 static void
1426 tcp_set_ws_value(tcp_t *tcp)
1427 {
1428 	int i;
1429 	uint32_t rwnd = tcp->tcp_rwnd;
1430 
1431 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1432 	    i++, rwnd >>= 1)
1433 		;
1434 	tcp->tcp_rcv_ws = i;
1435 }
1436 
1437 /*
1438  * Remove a connection from the list of detached TIME_WAIT connections.
1439  * It returns B_FALSE if it can't remove the connection from the list
1440  * as the connection has already been removed from the list due to an
1441  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1442  */
1443 static boolean_t
1444 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1445 {
1446 	boolean_t	locked = B_FALSE;
1447 
1448 	if (tcp_time_wait == NULL) {
1449 		tcp_time_wait = *((tcp_squeue_priv_t **)
1450 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1451 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1452 		locked = B_TRUE;
1453 	} else {
1454 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1455 	}
1456 
1457 	if (tcp->tcp_time_wait_expire == 0) {
1458 		ASSERT(tcp->tcp_time_wait_next == NULL);
1459 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1460 		if (locked)
1461 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1462 		return (B_FALSE);
1463 	}
1464 	ASSERT(TCP_IS_DETACHED(tcp));
1465 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1466 
1467 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1468 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1469 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1470 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1471 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1472 			    NULL;
1473 		} else {
1474 			tcp_time_wait->tcp_time_wait_tail = NULL;
1475 		}
1476 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1477 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1478 		ASSERT(tcp->tcp_time_wait_next == NULL);
1479 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1480 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1481 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1482 	} else {
1483 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1484 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1485 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1486 		    tcp->tcp_time_wait_next;
1487 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1488 		    tcp->tcp_time_wait_prev;
1489 	}
1490 	tcp->tcp_time_wait_next = NULL;
1491 	tcp->tcp_time_wait_prev = NULL;
1492 	tcp->tcp_time_wait_expire = 0;
1493 
1494 	if (locked)
1495 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1496 	return (B_TRUE);
1497 }
1498 
1499 /*
1500  * Add a connection to the list of detached TIME_WAIT connections
1501  * and set its time to expire.
1502  */
1503 static void
1504 tcp_time_wait_append(tcp_t *tcp)
1505 {
1506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1507 	tcp_squeue_priv_t *tcp_time_wait =
1508 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1509 	    SQPRIVATE_TCP));
1510 
1511 	tcp_timers_stop(tcp);
1512 
1513 	/* Freed above */
1514 	ASSERT(tcp->tcp_timer_tid == 0);
1515 	ASSERT(tcp->tcp_ack_tid == 0);
1516 
1517 	/* must have happened at the time of detaching the tcp */
1518 	ASSERT(tcp->tcp_ptpahn == NULL);
1519 	ASSERT(tcp->tcp_flow_stopped == 0);
1520 	ASSERT(tcp->tcp_time_wait_next == NULL);
1521 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1522 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1523 	ASSERT(tcp->tcp_listener == NULL);
1524 
1525 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1526 	/*
1527 	 * The value computed below in tcp->tcp_time_wait_expire may
1528 	 * appear negative or wrap around. That is ok since our
1529 	 * interest is only in the difference between the current lbolt
1530 	 * value and tcp->tcp_time_wait_expire. But the value should not
1531 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1532 	 * The corresponding comparison in tcp_time_wait_collector() uses
1533 	 * modular arithmetic.
1534 	 */
1535 	tcp->tcp_time_wait_expire +=
1536 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1537 	if (tcp->tcp_time_wait_expire == 0)
1538 		tcp->tcp_time_wait_expire = 1;
1539 
1540 	ASSERT(TCP_IS_DETACHED(tcp));
1541 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1542 	ASSERT(tcp->tcp_time_wait_next == NULL);
1543 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1544 	TCP_DBGSTAT(tcps, tcp_time_wait);
1545 
1546 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1547 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1548 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1549 		tcp_time_wait->tcp_time_wait_head = tcp;
1550 	} else {
1551 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1552 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1553 		    TCPS_TIME_WAIT);
1554 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1555 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1556 	}
1557 	tcp_time_wait->tcp_time_wait_tail = tcp;
1558 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1559 }
1560 
1561 /* ARGSUSED */
1562 void
1563 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1564 {
1565 	conn_t	*connp = (conn_t *)arg;
1566 	tcp_t	*tcp = connp->conn_tcp;
1567 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1568 
1569 	ASSERT(tcp != NULL);
1570 	if (tcp->tcp_state == TCPS_CLOSED) {
1571 		return;
1572 	}
1573 
1574 	ASSERT((tcp->tcp_family == AF_INET &&
1575 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1576 	    (tcp->tcp_family == AF_INET6 &&
1577 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1578 	    tcp->tcp_ipversion == IPV6_VERSION)));
1579 	ASSERT(!tcp->tcp_listener);
1580 
1581 	TCP_STAT(tcps, tcp_time_wait_reap);
1582 	ASSERT(TCP_IS_DETACHED(tcp));
1583 
1584 	/*
1585 	 * Because they have no upstream client to rebind or tcp_close()
1586 	 * them later, we axe the connection here and now.
1587 	 */
1588 	tcp_close_detached(tcp);
1589 }
1590 
1591 /*
1592  * Remove cached/latched IPsec references.
1593  */
1594 void
1595 tcp_ipsec_cleanup(tcp_t *tcp)
1596 {
1597 	conn_t		*connp = tcp->tcp_connp;
1598 
1599 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1600 
1601 	if (connp->conn_latch != NULL) {
1602 		IPLATCH_REFRELE(connp->conn_latch,
1603 		    connp->conn_netstack);
1604 		connp->conn_latch = NULL;
1605 	}
1606 	if (connp->conn_policy != NULL) {
1607 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1608 		connp->conn_policy = NULL;
1609 	}
1610 }
1611 
1612 /*
1613  * Cleaup before placing on free list.
1614  * Disassociate from the netstack/tcp_stack_t since the freelist
1615  * is per squeue and not per netstack.
1616  */
1617 void
1618 tcp_cleanup(tcp_t *tcp)
1619 {
1620 	mblk_t		*mp;
1621 	char		*tcp_iphc;
1622 	int		tcp_iphc_len;
1623 	int		tcp_hdr_grown;
1624 	tcp_sack_info_t	*tcp_sack_info;
1625 	conn_t		*connp = tcp->tcp_connp;
1626 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1627 	netstack_t	*ns = tcps->tcps_netstack;
1628 
1629 	tcp_bind_hash_remove(tcp);
1630 
1631 	/* Cleanup that which needs the netstack first */
1632 	tcp_ipsec_cleanup(tcp);
1633 
1634 	tcp_free(tcp);
1635 
1636 	/* Release any SSL context */
1637 	if (tcp->tcp_kssl_ent != NULL) {
1638 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1639 		tcp->tcp_kssl_ent = NULL;
1640 	}
1641 
1642 	if (tcp->tcp_kssl_ctx != NULL) {
1643 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1644 		tcp->tcp_kssl_ctx = NULL;
1645 	}
1646 	tcp->tcp_kssl_pending = B_FALSE;
1647 
1648 	conn_delete_ire(connp, NULL);
1649 
1650 	/*
1651 	 * Since we will bzero the entire structure, we need to
1652 	 * remove it and reinsert it in global hash list. We
1653 	 * know the walkers can't get to this conn because we
1654 	 * had set CONDEMNED flag earlier and checked reference
1655 	 * under conn_lock so walker won't pick it and when we
1656 	 * go the ipcl_globalhash_remove() below, no walker
1657 	 * can get to it.
1658 	 */
1659 	ipcl_globalhash_remove(connp);
1660 
1661 	/*
1662 	 * Now it is safe to decrement the reference counts.
1663 	 * This might be the last reference on the netstack and TCPS
1664 	 * in which case it will cause the tcp_g_q_close and
1665 	 * the freeing of the IP Instance.
1666 	 */
1667 	connp->conn_netstack = NULL;
1668 	netstack_rele(ns);
1669 	ASSERT(tcps != NULL);
1670 	tcp->tcp_tcps = NULL;
1671 	TCPS_REFRELE(tcps);
1672 
1673 	/* Save some state */
1674 	mp = tcp->tcp_timercache;
1675 
1676 	tcp_sack_info = tcp->tcp_sack_info;
1677 	tcp_iphc = tcp->tcp_iphc;
1678 	tcp_iphc_len = tcp->tcp_iphc_len;
1679 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1680 
1681 	if (connp->conn_cred != NULL) {
1682 		crfree(connp->conn_cred);
1683 		connp->conn_cred = NULL;
1684 	}
1685 	if (connp->conn_peercred != NULL) {
1686 		crfree(connp->conn_peercred);
1687 		connp->conn_peercred = NULL;
1688 	}
1689 	ipcl_conn_cleanup(connp);
1690 	connp->conn_flags = IPCL_TCPCONN;
1691 	bzero(tcp, sizeof (tcp_t));
1692 
1693 	/* restore the state */
1694 	tcp->tcp_timercache = mp;
1695 
1696 	tcp->tcp_sack_info = tcp_sack_info;
1697 	tcp->tcp_iphc = tcp_iphc;
1698 	tcp->tcp_iphc_len = tcp_iphc_len;
1699 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1700 
1701 	tcp->tcp_connp = connp;
1702 
1703 	ASSERT(connp->conn_tcp == tcp);
1704 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1705 	connp->conn_state_flags = CONN_INCIPIENT;
1706 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1707 	ASSERT(connp->conn_ref == 1);
1708 }
1709 
1710 /*
1711  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1712  * is done forwards from the head.
1713  * This walks all stack instances since
1714  * tcp_time_wait remains global across all stacks.
1715  */
1716 /* ARGSUSED */
1717 void
1718 tcp_time_wait_collector(void *arg)
1719 {
1720 	tcp_t *tcp;
1721 	clock_t now;
1722 	mblk_t *mp;
1723 	conn_t *connp;
1724 	kmutex_t *lock;
1725 	boolean_t removed;
1726 
1727 	squeue_t *sqp = (squeue_t *)arg;
1728 	tcp_squeue_priv_t *tcp_time_wait =
1729 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1730 
1731 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1732 	tcp_time_wait->tcp_time_wait_tid = 0;
1733 
1734 	if (tcp_time_wait->tcp_free_list != NULL &&
1735 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1736 		TCP_G_STAT(tcp_freelist_cleanup);
1737 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1738 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1739 			tcp->tcp_time_wait_next = NULL;
1740 			tcp_time_wait->tcp_free_list_cnt--;
1741 			ASSERT(tcp->tcp_tcps == NULL);
1742 			CONN_DEC_REF(tcp->tcp_connp);
1743 		}
1744 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1745 	}
1746 
1747 	/*
1748 	 * In order to reap time waits reliably, we should use a
1749 	 * source of time that is not adjustable by the user -- hence
1750 	 * the call to ddi_get_lbolt().
1751 	 */
1752 	now = ddi_get_lbolt();
1753 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1754 		/*
1755 		 * Compare times using modular arithmetic, since
1756 		 * lbolt can wrapover.
1757 		 */
1758 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1759 			break;
1760 		}
1761 
1762 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1763 		ASSERT(removed);
1764 
1765 		connp = tcp->tcp_connp;
1766 		ASSERT(connp->conn_fanout != NULL);
1767 		lock = &connp->conn_fanout->connf_lock;
1768 		/*
1769 		 * This is essentially a TW reclaim fast path optimization for
1770 		 * performance where the timewait collector checks under the
1771 		 * fanout lock (so that no one else can get access to the
1772 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1773 		 * the classifier hash list. If ref count is indeed 2, we can
1774 		 * just remove the conn under the fanout lock and avoid
1775 		 * cleaning up the conn under the squeue, provided that
1776 		 * clustering callbacks are not enabled. If clustering is
1777 		 * enabled, we need to make the clustering callback before
1778 		 * setting the CONDEMNED flag and after dropping all locks and
1779 		 * so we forego this optimization and fall back to the slow
1780 		 * path. Also please see the comments in tcp_closei_local
1781 		 * regarding the refcnt logic.
1782 		 *
1783 		 * Since we are holding the tcp_time_wait_lock, its better
1784 		 * not to block on the fanout_lock because other connections
1785 		 * can't add themselves to time_wait list. So we do a
1786 		 * tryenter instead of mutex_enter.
1787 		 */
1788 		if (mutex_tryenter(lock)) {
1789 			mutex_enter(&connp->conn_lock);
1790 			if ((connp->conn_ref == 2) &&
1791 			    (cl_inet_disconnect == NULL)) {
1792 				ipcl_hash_remove_locked(connp,
1793 				    connp->conn_fanout);
1794 				/*
1795 				 * Set the CONDEMNED flag now itself so that
1796 				 * the refcnt cannot increase due to any
1797 				 * walker. But we have still not cleaned up
1798 				 * conn_ire_cache. This is still ok since
1799 				 * we are going to clean it up in tcp_cleanup
1800 				 * immediately and any interface unplumb
1801 				 * thread will wait till the ire is blown away
1802 				 */
1803 				connp->conn_state_flags |= CONN_CONDEMNED;
1804 				mutex_exit(lock);
1805 				mutex_exit(&connp->conn_lock);
1806 				if (tcp_time_wait->tcp_free_list_cnt <
1807 				    tcp_free_list_max_cnt) {
1808 					/* Add to head of tcp_free_list */
1809 					mutex_exit(
1810 					    &tcp_time_wait->tcp_time_wait_lock);
1811 					tcp_cleanup(tcp);
1812 					ASSERT(connp->conn_latch == NULL);
1813 					ASSERT(connp->conn_policy == NULL);
1814 					ASSERT(tcp->tcp_tcps == NULL);
1815 					ASSERT(connp->conn_netstack == NULL);
1816 
1817 					mutex_enter(
1818 					    &tcp_time_wait->tcp_time_wait_lock);
1819 					tcp->tcp_time_wait_next =
1820 					    tcp_time_wait->tcp_free_list;
1821 					tcp_time_wait->tcp_free_list = tcp;
1822 					tcp_time_wait->tcp_free_list_cnt++;
1823 					continue;
1824 				} else {
1825 					/* Do not add to tcp_free_list */
1826 					mutex_exit(
1827 					    &tcp_time_wait->tcp_time_wait_lock);
1828 					tcp_bind_hash_remove(tcp);
1829 					conn_delete_ire(tcp->tcp_connp, NULL);
1830 					tcp_ipsec_cleanup(tcp);
1831 					CONN_DEC_REF(tcp->tcp_connp);
1832 				}
1833 			} else {
1834 				CONN_INC_REF_LOCKED(connp);
1835 				mutex_exit(lock);
1836 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1837 				mutex_exit(&connp->conn_lock);
1838 				/*
1839 				 * We can reuse the closemp here since conn has
1840 				 * detached (otherwise we wouldn't even be in
1841 				 * time_wait list). tcp_closemp_used can safely
1842 				 * be changed without taking a lock as no other
1843 				 * thread can concurrently access it at this
1844 				 * point in the connection lifecycle.
1845 				 */
1846 
1847 				if (tcp->tcp_closemp.b_prev == NULL)
1848 					tcp->tcp_closemp_used = B_TRUE;
1849 				else
1850 					cmn_err(CE_PANIC,
1851 					    "tcp_timewait_collector: "
1852 					    "concurrent use of tcp_closemp: "
1853 					    "connp %p tcp %p\n", (void *)connp,
1854 					    (void *)tcp);
1855 
1856 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1857 				mp = &tcp->tcp_closemp;
1858 				squeue_fill(connp->conn_sqp, mp,
1859 				    tcp_timewait_output, connp,
1860 				    SQTAG_TCP_TIMEWAIT);
1861 			}
1862 		} else {
1863 			mutex_enter(&connp->conn_lock);
1864 			CONN_INC_REF_LOCKED(connp);
1865 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1866 			mutex_exit(&connp->conn_lock);
1867 			/*
1868 			 * We can reuse the closemp here since conn has
1869 			 * detached (otherwise we wouldn't even be in
1870 			 * time_wait list). tcp_closemp_used can safely
1871 			 * be changed without taking a lock as no other
1872 			 * thread can concurrently access it at this
1873 			 * point in the connection lifecycle.
1874 			 */
1875 
1876 			if (tcp->tcp_closemp.b_prev == NULL)
1877 				tcp->tcp_closemp_used = B_TRUE;
1878 			else
1879 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1880 				    "concurrent use of tcp_closemp: "
1881 				    "connp %p tcp %p\n", (void *)connp,
1882 				    (void *)tcp);
1883 
1884 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1885 			mp = &tcp->tcp_closemp;
1886 			squeue_fill(connp->conn_sqp, mp,
1887 			    tcp_timewait_output, connp, 0);
1888 		}
1889 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1890 	}
1891 
1892 	if (tcp_time_wait->tcp_free_list != NULL)
1893 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1894 
1895 	tcp_time_wait->tcp_time_wait_tid =
1896 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1897 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1898 }
1899 /*
1900  * Reply to a clients T_CONN_RES TPI message. This function
1901  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1902  * on the acceptor STREAM and processed in tcp_wput_accept().
1903  * Read the block comment on top of tcp_conn_request().
1904  */
1905 static void
1906 tcp_accept(tcp_t *listener, mblk_t *mp)
1907 {
1908 	tcp_t	*acceptor;
1909 	tcp_t	*eager;
1910 	tcp_t   *tcp;
1911 	struct T_conn_res	*tcr;
1912 	t_uscalar_t	acceptor_id;
1913 	t_scalar_t	seqnum;
1914 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1915 	mblk_t	*ok_mp;
1916 	mblk_t	*mp1;
1917 	tcp_stack_t	*tcps = listener->tcp_tcps;
1918 
1919 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1920 		tcp_err_ack(listener, mp, TPROTO, 0);
1921 		return;
1922 	}
1923 	tcr = (struct T_conn_res *)mp->b_rptr;
1924 
1925 	/*
1926 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1927 	 * read side queue of the streams device underneath us i.e. the
1928 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1929 	 * look it up in the queue_hash.  Under LP64 it sends down the
1930 	 * minor_t of the accepting endpoint.
1931 	 *
1932 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1933 	 * fanout hash lock is held.
1934 	 * This prevents any thread from entering the acceptor queue from
1935 	 * below (since it has not been hard bound yet i.e. any inbound
1936 	 * packets will arrive on the listener or default tcp queue and
1937 	 * go through tcp_lookup).
1938 	 * The CONN_INC_REF will prevent the acceptor from closing.
1939 	 *
1940 	 * XXX It is still possible for a tli application to send down data
1941 	 * on the accepting stream while another thread calls t_accept.
1942 	 * This should not be a problem for well-behaved applications since
1943 	 * the T_OK_ACK is sent after the queue swapping is completed.
1944 	 *
1945 	 * If the accepting fd is the same as the listening fd, avoid
1946 	 * queue hash lookup since that will return an eager listener in a
1947 	 * already established state.
1948 	 */
1949 	acceptor_id = tcr->ACCEPTOR_id;
1950 	mutex_enter(&listener->tcp_eager_lock);
1951 	if (listener->tcp_acceptor_id == acceptor_id) {
1952 		eager = listener->tcp_eager_next_q;
1953 		/* only count how many T_CONN_INDs so don't count q0 */
1954 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1955 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1956 			mutex_exit(&listener->tcp_eager_lock);
1957 			tcp_err_ack(listener, mp, TBADF, 0);
1958 			return;
1959 		}
1960 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1961 			/* Throw away all the eagers on q0. */
1962 			tcp_eager_cleanup(listener, 1);
1963 		}
1964 		if (listener->tcp_syn_defense) {
1965 			listener->tcp_syn_defense = B_FALSE;
1966 			if (listener->tcp_ip_addr_cache != NULL) {
1967 				kmem_free(listener->tcp_ip_addr_cache,
1968 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1969 				listener->tcp_ip_addr_cache = NULL;
1970 			}
1971 		}
1972 		/*
1973 		 * Transfer tcp_conn_req_max to the eager so that when
1974 		 * a disconnect occurs we can revert the endpoint to the
1975 		 * listen state.
1976 		 */
1977 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1978 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1979 		/*
1980 		 * Get a reference on the acceptor just like the
1981 		 * tcp_acceptor_hash_lookup below.
1982 		 */
1983 		acceptor = listener;
1984 		CONN_INC_REF(acceptor->tcp_connp);
1985 	} else {
1986 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1987 		if (acceptor == NULL) {
1988 			if (listener->tcp_debug) {
1989 				(void) strlog(TCP_MOD_ID, 0, 1,
1990 				    SL_ERROR|SL_TRACE,
1991 				    "tcp_accept: did not find acceptor 0x%x\n",
1992 				    acceptor_id);
1993 			}
1994 			mutex_exit(&listener->tcp_eager_lock);
1995 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1996 			return;
1997 		}
1998 		/*
1999 		 * Verify acceptor state. The acceptable states for an acceptor
2000 		 * include TCPS_IDLE and TCPS_BOUND.
2001 		 */
2002 		switch (acceptor->tcp_state) {
2003 		case TCPS_IDLE:
2004 			/* FALLTHRU */
2005 		case TCPS_BOUND:
2006 			break;
2007 		default:
2008 			CONN_DEC_REF(acceptor->tcp_connp);
2009 			mutex_exit(&listener->tcp_eager_lock);
2010 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2011 			return;
2012 		}
2013 	}
2014 
2015 	/* The listener must be in TCPS_LISTEN */
2016 	if (listener->tcp_state != TCPS_LISTEN) {
2017 		CONN_DEC_REF(acceptor->tcp_connp);
2018 		mutex_exit(&listener->tcp_eager_lock);
2019 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2020 		return;
2021 	}
2022 
2023 	/*
2024 	 * Rendezvous with an eager connection request packet hanging off
2025 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2026 	 * tcp structure when the connection packet arrived in
2027 	 * tcp_conn_request().
2028 	 */
2029 	seqnum = tcr->SEQ_number;
2030 	eager = listener;
2031 	do {
2032 		eager = eager->tcp_eager_next_q;
2033 		if (eager == NULL) {
2034 			CONN_DEC_REF(acceptor->tcp_connp);
2035 			mutex_exit(&listener->tcp_eager_lock);
2036 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2037 			return;
2038 		}
2039 	} while (eager->tcp_conn_req_seqnum != seqnum);
2040 	mutex_exit(&listener->tcp_eager_lock);
2041 
2042 	/*
2043 	 * At this point, both acceptor and listener have 2 ref
2044 	 * that they begin with. Acceptor has one additional ref
2045 	 * we placed in lookup while listener has 3 additional
2046 	 * ref for being behind the squeue (tcp_accept() is
2047 	 * done on listener's squeue); being in classifier hash;
2048 	 * and eager's ref on listener.
2049 	 */
2050 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2051 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2052 
2053 	/*
2054 	 * The eager at this point is set in its own squeue and
2055 	 * could easily have been killed (tcp_accept_finish will
2056 	 * deal with that) because of a TH_RST so we can only
2057 	 * ASSERT for a single ref.
2058 	 */
2059 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2060 
2061 	/* Pre allocate the stroptions mblk also */
2062 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2063 	if (opt_mp == NULL) {
2064 		CONN_DEC_REF(acceptor->tcp_connp);
2065 		CONN_DEC_REF(eager->tcp_connp);
2066 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2067 		return;
2068 	}
2069 	DB_TYPE(opt_mp) = M_SETOPTS;
2070 	opt_mp->b_wptr += sizeof (struct stroptions);
2071 
2072 	/*
2073 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2074 	 * from listener to acceptor. The message is chained on opt_mp
2075 	 * which will be sent onto eager's squeue.
2076 	 */
2077 	if (listener->tcp_bound_if != 0) {
2078 		/* allocate optmgmt req */
2079 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2080 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2081 		    sizeof (int));
2082 		if (mp1 != NULL)
2083 			linkb(opt_mp, mp1);
2084 	}
2085 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2086 		uint_t on = 1;
2087 
2088 		/* allocate optmgmt req */
2089 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2090 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2091 		if (mp1 != NULL)
2092 			linkb(opt_mp, mp1);
2093 	}
2094 
2095 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2096 	if ((mp1 = copymsg(mp)) == NULL) {
2097 		CONN_DEC_REF(acceptor->tcp_connp);
2098 		CONN_DEC_REF(eager->tcp_connp);
2099 		freemsg(opt_mp);
2100 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2101 		return;
2102 	}
2103 
2104 	tcr = (struct T_conn_res *)mp1->b_rptr;
2105 
2106 	/*
2107 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2108 	 * which allocates a larger mblk and appends the new
2109 	 * local address to the ok_ack.  The address is copied by
2110 	 * soaccept() for getsockname().
2111 	 */
2112 	{
2113 		int extra;
2114 
2115 		extra = (eager->tcp_family == AF_INET) ?
2116 		    sizeof (sin_t) : sizeof (sin6_t);
2117 
2118 		/*
2119 		 * Try to re-use mp, if possible.  Otherwise, allocate
2120 		 * an mblk and return it as ok_mp.  In any case, mp
2121 		 * is no longer usable upon return.
2122 		 */
2123 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2124 			CONN_DEC_REF(acceptor->tcp_connp);
2125 			CONN_DEC_REF(eager->tcp_connp);
2126 			freemsg(opt_mp);
2127 			/* Original mp has been freed by now, so use mp1 */
2128 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2129 			return;
2130 		}
2131 
2132 		mp = NULL;	/* We should never use mp after this point */
2133 
2134 		switch (extra) {
2135 		case sizeof (sin_t): {
2136 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2137 
2138 				ok_mp->b_wptr += extra;
2139 				sin->sin_family = AF_INET;
2140 				sin->sin_port = eager->tcp_lport;
2141 				sin->sin_addr.s_addr =
2142 				    eager->tcp_ipha->ipha_src;
2143 				break;
2144 			}
2145 		case sizeof (sin6_t): {
2146 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2147 
2148 				ok_mp->b_wptr += extra;
2149 				sin6->sin6_family = AF_INET6;
2150 				sin6->sin6_port = eager->tcp_lport;
2151 				if (eager->tcp_ipversion == IPV4_VERSION) {
2152 					sin6->sin6_flowinfo = 0;
2153 					IN6_IPADDR_TO_V4MAPPED(
2154 					    eager->tcp_ipha->ipha_src,
2155 					    &sin6->sin6_addr);
2156 				} else {
2157 					ASSERT(eager->tcp_ip6h != NULL);
2158 					sin6->sin6_flowinfo =
2159 					    eager->tcp_ip6h->ip6_vcf &
2160 					    ~IPV6_VERS_AND_FLOW_MASK;
2161 					sin6->sin6_addr =
2162 					    eager->tcp_ip6h->ip6_src;
2163 				}
2164 				sin6->sin6_scope_id = 0;
2165 				sin6->__sin6_src_id = 0;
2166 				break;
2167 			}
2168 		default:
2169 			break;
2170 		}
2171 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2172 	}
2173 
2174 	/*
2175 	 * If there are no options we know that the T_CONN_RES will
2176 	 * succeed. However, we can't send the T_OK_ACK upstream until
2177 	 * the tcp_accept_swap is done since it would be dangerous to
2178 	 * let the application start using the new fd prior to the swap.
2179 	 */
2180 	tcp_accept_swap(listener, acceptor, eager);
2181 
2182 	/*
2183 	 * tcp_accept_swap unlinks eager from listener but does not drop
2184 	 * the eager's reference on the listener.
2185 	 */
2186 	ASSERT(eager->tcp_listener == NULL);
2187 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2188 
2189 	/*
2190 	 * The eager is now associated with its own queue. Insert in
2191 	 * the hash so that the connection can be reused for a future
2192 	 * T_CONN_RES.
2193 	 */
2194 	tcp_acceptor_hash_insert(acceptor_id, eager);
2195 
2196 	/*
2197 	 * We now do the processing of options with T_CONN_RES.
2198 	 * We delay till now since we wanted to have queue to pass to
2199 	 * option processing routines that points back to the right
2200 	 * instance structure which does not happen until after
2201 	 * tcp_accept_swap().
2202 	 *
2203 	 * Note:
2204 	 * The sanity of the logic here assumes that whatever options
2205 	 * are appropriate to inherit from listner=>eager are done
2206 	 * before this point, and whatever were to be overridden (or not)
2207 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2208 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2209 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2210 	 * This may not be true at this point in time but can be fixed
2211 	 * independently. This option processing code starts with
2212 	 * the instantiated acceptor instance and the final queue at
2213 	 * this point.
2214 	 */
2215 
2216 	if (tcr->OPT_length != 0) {
2217 		/* Options to process */
2218 		int t_error = 0;
2219 		int sys_error = 0;
2220 		int do_disconnect = 0;
2221 
2222 		if (tcp_conprim_opt_process(eager, mp1,
2223 		    &do_disconnect, &t_error, &sys_error) < 0) {
2224 			eager->tcp_accept_error = 1;
2225 			if (do_disconnect) {
2226 				/*
2227 				 * An option failed which does not allow
2228 				 * connection to be accepted.
2229 				 *
2230 				 * We allow T_CONN_RES to succeed and
2231 				 * put a T_DISCON_IND on the eager queue.
2232 				 */
2233 				ASSERT(t_error == 0 && sys_error == 0);
2234 				eager->tcp_send_discon_ind = 1;
2235 			} else {
2236 				ASSERT(t_error != 0);
2237 				freemsg(ok_mp);
2238 				/*
2239 				 * Original mp was either freed or set
2240 				 * to ok_mp above, so use mp1 instead.
2241 				 */
2242 				tcp_err_ack(listener, mp1, t_error, sys_error);
2243 				goto finish;
2244 			}
2245 		}
2246 		/*
2247 		 * Most likely success in setting options (except if
2248 		 * eager->tcp_send_discon_ind set).
2249 		 * mp1 option buffer represented by OPT_length/offset
2250 		 * potentially modified and contains results of setting
2251 		 * options at this point
2252 		 */
2253 	}
2254 
2255 	/* We no longer need mp1, since all options processing has passed */
2256 	freemsg(mp1);
2257 
2258 	putnext(listener->tcp_rq, ok_mp);
2259 
2260 	mutex_enter(&listener->tcp_eager_lock);
2261 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2262 		tcp_t	*tail;
2263 		mblk_t	*conn_ind;
2264 
2265 		/*
2266 		 * This path should not be executed if listener and
2267 		 * acceptor streams are the same.
2268 		 */
2269 		ASSERT(listener != acceptor);
2270 
2271 		tcp = listener->tcp_eager_prev_q0;
2272 		/*
2273 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2274 		 * deferred T_conn_ind queue. We need to get to the head of
2275 		 * the queue in order to send up T_conn_ind the same order as
2276 		 * how the 3WHS is completed.
2277 		 */
2278 		while (tcp != listener) {
2279 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2280 				break;
2281 			else
2282 				tcp = tcp->tcp_eager_prev_q0;
2283 		}
2284 		ASSERT(tcp != listener);
2285 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2286 		ASSERT(conn_ind != NULL);
2287 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2288 
2289 		/* Move from q0 to q */
2290 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2291 		listener->tcp_conn_req_cnt_q0--;
2292 		listener->tcp_conn_req_cnt_q++;
2293 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2294 		    tcp->tcp_eager_prev_q0;
2295 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2296 		    tcp->tcp_eager_next_q0;
2297 		tcp->tcp_eager_prev_q0 = NULL;
2298 		tcp->tcp_eager_next_q0 = NULL;
2299 		tcp->tcp_conn_def_q0 = B_FALSE;
2300 
2301 		/* Make sure the tcp isn't in the list of droppables */
2302 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2303 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2304 
2305 		/*
2306 		 * Insert at end of the queue because sockfs sends
2307 		 * down T_CONN_RES in chronological order. Leaving
2308 		 * the older conn indications at front of the queue
2309 		 * helps reducing search time.
2310 		 */
2311 		tail = listener->tcp_eager_last_q;
2312 		if (tail != NULL)
2313 			tail->tcp_eager_next_q = tcp;
2314 		else
2315 			listener->tcp_eager_next_q = tcp;
2316 		listener->tcp_eager_last_q = tcp;
2317 		tcp->tcp_eager_next_q = NULL;
2318 		mutex_exit(&listener->tcp_eager_lock);
2319 		putnext(tcp->tcp_rq, conn_ind);
2320 	} else {
2321 		mutex_exit(&listener->tcp_eager_lock);
2322 	}
2323 
2324 	/*
2325 	 * Done with the acceptor - free it
2326 	 *
2327 	 * Note: from this point on, no access to listener should be made
2328 	 * as listener can be equal to acceptor.
2329 	 */
2330 finish:
2331 	ASSERT(acceptor->tcp_detached);
2332 	ASSERT(tcps->tcps_g_q != NULL);
2333 	acceptor->tcp_rq = tcps->tcps_g_q;
2334 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2335 	(void) tcp_clean_death(acceptor, 0, 2);
2336 	CONN_DEC_REF(acceptor->tcp_connp);
2337 
2338 	/*
2339 	 * In case we already received a FIN we have to make tcp_rput send
2340 	 * the ordrel_ind. This will also send up a window update if the window
2341 	 * has opened up.
2342 	 *
2343 	 * In the normal case of a successful connection acceptance
2344 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2345 	 * indication that this was just accepted. This tells tcp_rput to
2346 	 * pass up any data queued in tcp_rcv_list.
2347 	 *
2348 	 * In the fringe case where options sent with T_CONN_RES failed and
2349 	 * we required, we would be indicating a T_DISCON_IND to blow
2350 	 * away this connection.
2351 	 */
2352 
2353 	/*
2354 	 * XXX: we currently have a problem if XTI application closes the
2355 	 * acceptor stream in between. This problem exists in on10-gate also
2356 	 * and is well know but nothing can be done short of major rewrite
2357 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2358 	 * eager same squeue as listener (we can distinguish non socket
2359 	 * listeners at the time of handling a SYN in tcp_conn_request)
2360 	 * and do most of the work that tcp_accept_finish does here itself
2361 	 * and then get behind the acceptor squeue to access the acceptor
2362 	 * queue.
2363 	 */
2364 	/*
2365 	 * We already have a ref on tcp so no need to do one before squeue_fill
2366 	 */
2367 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2368 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2369 }
2370 
2371 /*
2372  * Swap information between the eager and acceptor for a TLI/XTI client.
2373  * The sockfs accept is done on the acceptor stream and control goes
2374  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2375  * called. In either case, both the eager and listener are in their own
2376  * perimeter (squeue) and the code has to deal with potential race.
2377  *
2378  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2379  */
2380 static void
2381 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2382 {
2383 	conn_t	*econnp, *aconnp;
2384 
2385 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2386 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2387 	ASSERT(!eager->tcp_hard_bound);
2388 	ASSERT(!TCP_IS_SOCKET(acceptor));
2389 	ASSERT(!TCP_IS_SOCKET(eager));
2390 	ASSERT(!TCP_IS_SOCKET(listener));
2391 
2392 	acceptor->tcp_detached = B_TRUE;
2393 	/*
2394 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2395 	 * the acceptor id.
2396 	 */
2397 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2398 
2399 	/* remove eager from listen list... */
2400 	mutex_enter(&listener->tcp_eager_lock);
2401 	tcp_eager_unlink(eager);
2402 	ASSERT(eager->tcp_eager_next_q == NULL &&
2403 	    eager->tcp_eager_last_q == NULL);
2404 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2405 	    eager->tcp_eager_prev_q0 == NULL);
2406 	mutex_exit(&listener->tcp_eager_lock);
2407 	eager->tcp_rq = acceptor->tcp_rq;
2408 	eager->tcp_wq = acceptor->tcp_wq;
2409 
2410 	econnp = eager->tcp_connp;
2411 	aconnp = acceptor->tcp_connp;
2412 
2413 	eager->tcp_rq->q_ptr = econnp;
2414 	eager->tcp_wq->q_ptr = econnp;
2415 
2416 	/*
2417 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2418 	 * which might be a different squeue from our peer TCP instance.
2419 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2420 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2421 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2422 	 * above reach global visibility prior to the clearing of tcp_detached.
2423 	 */
2424 	membar_producer();
2425 	eager->tcp_detached = B_FALSE;
2426 
2427 	ASSERT(eager->tcp_ack_tid == 0);
2428 
2429 	econnp->conn_dev = aconnp->conn_dev;
2430 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2431 	ASSERT(econnp->conn_minor_arena != NULL);
2432 	if (eager->tcp_cred != NULL)
2433 		crfree(eager->tcp_cred);
2434 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2435 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2436 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2437 
2438 	aconnp->conn_cred = NULL;
2439 
2440 	econnp->conn_zoneid = aconnp->conn_zoneid;
2441 	econnp->conn_allzones = aconnp->conn_allzones;
2442 
2443 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2444 	aconnp->conn_mac_exempt = B_FALSE;
2445 
2446 	ASSERT(aconnp->conn_peercred == NULL);
2447 
2448 	/* Do the IPC initialization */
2449 	CONN_INC_REF(econnp);
2450 
2451 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2452 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2453 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2454 
2455 	/* Done with old IPC. Drop its ref on its connp */
2456 	CONN_DEC_REF(aconnp);
2457 }
2458 
2459 
2460 /*
2461  * Adapt to the information, such as rtt and rtt_sd, provided from the
2462  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2463  *
2464  * Checks for multicast and broadcast destination address.
2465  * Returns zero on failure; non-zero if ok.
2466  *
2467  * Note that the MSS calculation here is based on the info given in
2468  * the IRE.  We do not do any calculation based on TCP options.  They
2469  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2470  * knows which options to use.
2471  *
2472  * Note on how TCP gets its parameters for a connection.
2473  *
2474  * When a tcp_t structure is allocated, it gets all the default parameters.
2475  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2476  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2477  * default.  But if there is an associated tcp_host_param, it will override
2478  * the metrics.
2479  *
2480  * An incoming SYN with a multicast or broadcast destination address, is dropped
2481  * in 1 of 2 places.
2482  *
2483  * 1. If the packet was received over the wire it is dropped in
2484  * ip_rput_process_broadcast()
2485  *
2486  * 2. If the packet was received through internal IP loopback, i.e. the packet
2487  * was generated and received on the same machine, it is dropped in
2488  * ip_wput_local()
2489  *
2490  * An incoming SYN with a multicast or broadcast source address is always
2491  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2492  * reject an attempt to connect to a broadcast or multicast (destination)
2493  * address.
2494  */
2495 static int
2496 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2497 {
2498 	tcp_hsp_t	*hsp;
2499 	ire_t		*ire;
2500 	ire_t		*sire = NULL;
2501 	iulp_t		*ire_uinfo = NULL;
2502 	uint32_t	mss_max;
2503 	uint32_t	mss;
2504 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2505 	conn_t		*connp = tcp->tcp_connp;
2506 	boolean_t	ire_cacheable = B_FALSE;
2507 	zoneid_t	zoneid = connp->conn_zoneid;
2508 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2509 	    MATCH_IRE_SECATTR;
2510 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2511 	ill_t		*ill = NULL;
2512 	boolean_t	incoming = (ire_mp == NULL);
2513 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2514 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2515 
2516 	ASSERT(connp->conn_ire_cache == NULL);
2517 
2518 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2519 
2520 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2521 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2522 			return (0);
2523 		}
2524 		/*
2525 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2526 		 * for the destination with the nexthop as gateway.
2527 		 * ire_ctable_lookup() is used because this particular
2528 		 * ire, if it exists, will be marked private.
2529 		 * If that is not available, use the interface ire
2530 		 * for the nexthop.
2531 		 *
2532 		 * TSol: tcp_update_label will detect label mismatches based
2533 		 * only on the destination's label, but that would not
2534 		 * detect label mismatches based on the security attributes
2535 		 * of routes or next hop gateway. Hence we need to pass the
2536 		 * label to ire_ftable_lookup below in order to locate the
2537 		 * right prefix (and/or) ire cache. Similarly we also need
2538 		 * pass the label to the ire_cache_lookup below to locate
2539 		 * the right ire that also matches on the label.
2540 		 */
2541 		if (tcp->tcp_connp->conn_nexthop_set) {
2542 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2543 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2544 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2545 			    ipst);
2546 			if (ire == NULL) {
2547 				ire = ire_ftable_lookup(
2548 				    tcp->tcp_connp->conn_nexthop_v4,
2549 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2550 				    tsl, match_flags, ipst);
2551 				if (ire == NULL)
2552 					return (0);
2553 			} else {
2554 				ire_uinfo = &ire->ire_uinfo;
2555 			}
2556 		} else {
2557 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2558 			    zoneid, tsl, ipst);
2559 			if (ire != NULL) {
2560 				ire_cacheable = B_TRUE;
2561 				ire_uinfo = (ire_mp != NULL) ?
2562 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2563 				    &ire->ire_uinfo;
2564 
2565 			} else {
2566 				if (ire_mp == NULL) {
2567 					ire = ire_ftable_lookup(
2568 					    tcp->tcp_connp->conn_rem,
2569 					    0, 0, 0, NULL, &sire, zoneid, 0,
2570 					    tsl, (MATCH_IRE_RECURSIVE |
2571 					    MATCH_IRE_DEFAULT), ipst);
2572 					if (ire == NULL)
2573 						return (0);
2574 					ire_uinfo = (sire != NULL) ?
2575 					    &sire->ire_uinfo :
2576 					    &ire->ire_uinfo;
2577 				} else {
2578 					ire = (ire_t *)ire_mp->b_rptr;
2579 					ire_uinfo =
2580 					    &((ire_t *)
2581 					    ire_mp->b_rptr)->ire_uinfo;
2582 				}
2583 			}
2584 		}
2585 		ASSERT(ire != NULL);
2586 
2587 		if ((ire->ire_src_addr == INADDR_ANY) ||
2588 		    (ire->ire_type & IRE_BROADCAST)) {
2589 			/*
2590 			 * ire->ire_mp is non null when ire_mp passed in is used
2591 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2592 			 */
2593 			if (ire->ire_mp == NULL)
2594 				ire_refrele(ire);
2595 			if (sire != NULL)
2596 				ire_refrele(sire);
2597 			return (0);
2598 		}
2599 
2600 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2601 			ipaddr_t src_addr;
2602 
2603 			/*
2604 			 * ip_bind_connected() has stored the correct source
2605 			 * address in conn_src.
2606 			 */
2607 			src_addr = tcp->tcp_connp->conn_src;
2608 			tcp->tcp_ipha->ipha_src = src_addr;
2609 			/*
2610 			 * Copy of the src addr. in tcp_t is needed
2611 			 * for the lookup funcs.
2612 			 */
2613 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2614 		}
2615 		/*
2616 		 * Set the fragment bit so that IP will tell us if the MTU
2617 		 * should change. IP tells us the latest setting of
2618 		 * ip_path_mtu_discovery through ire_frag_flag.
2619 		 */
2620 		if (ipst->ips_ip_path_mtu_discovery) {
2621 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2622 			    htons(IPH_DF);
2623 		}
2624 		/*
2625 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2626 		 * for IP_NEXTHOP. No cache ire has been found for the
2627 		 * destination and we are working with the nexthop's
2628 		 * interface ire. Since we need to forward all packets
2629 		 * to the nexthop first, we "blindly" set tcp_localnet
2630 		 * to false, eventhough the destination may also be
2631 		 * onlink.
2632 		 */
2633 		if (ire_uinfo == NULL)
2634 			tcp->tcp_localnet = 0;
2635 		else
2636 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2637 	} else {
2638 		/*
2639 		 * For incoming connection ire_mp = NULL
2640 		 * For outgoing connection ire_mp != NULL
2641 		 * Technically we should check conn_incoming_ill
2642 		 * when ire_mp is NULL and conn_outgoing_ill when
2643 		 * ire_mp is non-NULL. But this is performance
2644 		 * critical path and for IPV*_BOUND_IF, outgoing
2645 		 * and incoming ill are always set to the same value.
2646 		 */
2647 		ill_t	*dst_ill = NULL;
2648 		ipif_t  *dst_ipif = NULL;
2649 
2650 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2651 
2652 		if (connp->conn_outgoing_ill != NULL) {
2653 			/* Outgoing or incoming path */
2654 			int   err;
2655 
2656 			dst_ill = conn_get_held_ill(connp,
2657 			    &connp->conn_outgoing_ill, &err);
2658 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2659 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2660 				return (0);
2661 			}
2662 			match_flags |= MATCH_IRE_ILL;
2663 			dst_ipif = dst_ill->ill_ipif;
2664 		}
2665 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2666 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2667 
2668 		if (ire != NULL) {
2669 			ire_cacheable = B_TRUE;
2670 			ire_uinfo = (ire_mp != NULL) ?
2671 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2672 			    &ire->ire_uinfo;
2673 		} else {
2674 			if (ire_mp == NULL) {
2675 				ire = ire_ftable_lookup_v6(
2676 				    &tcp->tcp_connp->conn_remv6,
2677 				    0, 0, 0, dst_ipif, &sire, zoneid,
2678 				    0, tsl, match_flags, ipst);
2679 				if (ire == NULL) {
2680 					if (dst_ill != NULL)
2681 						ill_refrele(dst_ill);
2682 					return (0);
2683 				}
2684 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2685 				    &ire->ire_uinfo;
2686 			} else {
2687 				ire = (ire_t *)ire_mp->b_rptr;
2688 				ire_uinfo =
2689 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2690 			}
2691 		}
2692 		if (dst_ill != NULL)
2693 			ill_refrele(dst_ill);
2694 
2695 		ASSERT(ire != NULL);
2696 		ASSERT(ire_uinfo != NULL);
2697 
2698 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2699 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2700 			/*
2701 			 * ire->ire_mp is non null when ire_mp passed in is used
2702 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2703 			 */
2704 			if (ire->ire_mp == NULL)
2705 				ire_refrele(ire);
2706 			if (sire != NULL)
2707 				ire_refrele(sire);
2708 			return (0);
2709 		}
2710 
2711 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2712 			in6_addr_t	src_addr;
2713 
2714 			/*
2715 			 * ip_bind_connected_v6() has stored the correct source
2716 			 * address per IPv6 addr. selection policy in
2717 			 * conn_src_v6.
2718 			 */
2719 			src_addr = tcp->tcp_connp->conn_srcv6;
2720 
2721 			tcp->tcp_ip6h->ip6_src = src_addr;
2722 			/*
2723 			 * Copy of the src addr. in tcp_t is needed
2724 			 * for the lookup funcs.
2725 			 */
2726 			tcp->tcp_ip_src_v6 = src_addr;
2727 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2728 			    &connp->conn_srcv6));
2729 		}
2730 		tcp->tcp_localnet =
2731 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2732 	}
2733 
2734 	/*
2735 	 * This allows applications to fail quickly when connections are made
2736 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2737 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2738 	 */
2739 	if ((ire->ire_flags & RTF_REJECT) &&
2740 	    (ire->ire_flags & RTF_PRIVATE))
2741 		goto error;
2742 
2743 	/*
2744 	 * Make use of the cached rtt and rtt_sd values to calculate the
2745 	 * initial RTO.  Note that they are already initialized in
2746 	 * tcp_init_values().
2747 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2748 	 * IP_NEXTHOP, but instead are using the interface ire for the
2749 	 * nexthop, then we do not use the ire_uinfo from that ire to
2750 	 * do any initializations.
2751 	 */
2752 	if (ire_uinfo != NULL) {
2753 		if (ire_uinfo->iulp_rtt != 0) {
2754 			clock_t	rto;
2755 
2756 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2757 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2758 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2759 			    tcps->tcps_rexmit_interval_extra +
2760 			    (tcp->tcp_rtt_sa >> 5);
2761 
2762 			if (rto > tcps->tcps_rexmit_interval_max) {
2763 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2764 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2765 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2766 			} else {
2767 				tcp->tcp_rto = rto;
2768 			}
2769 		}
2770 		if (ire_uinfo->iulp_ssthresh != 0)
2771 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2772 		else
2773 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2774 		if (ire_uinfo->iulp_spipe > 0) {
2775 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2776 			    tcps->tcps_max_buf);
2777 			if (tcps->tcps_snd_lowat_fraction != 0)
2778 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2779 				    tcps->tcps_snd_lowat_fraction;
2780 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2781 		}
2782 		/*
2783 		 * Note that up till now, acceptor always inherits receive
2784 		 * window from the listener.  But if there is a metrics
2785 		 * associated with a host, we should use that instead of
2786 		 * inheriting it from listener. Thus we need to pass this
2787 		 * info back to the caller.
2788 		 */
2789 		if (ire_uinfo->iulp_rpipe > 0) {
2790 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2791 			    tcps->tcps_max_buf);
2792 		}
2793 
2794 		if (ire_uinfo->iulp_rtomax > 0) {
2795 			tcp->tcp_second_timer_threshold =
2796 			    ire_uinfo->iulp_rtomax;
2797 		}
2798 
2799 		/*
2800 		 * Use the metric option settings, iulp_tstamp_ok and
2801 		 * iulp_wscale_ok, only for active open. What this means
2802 		 * is that if the other side uses timestamp or window
2803 		 * scale option, TCP will also use those options. That
2804 		 * is for passive open.  If the application sets a
2805 		 * large window, window scale is enabled regardless of
2806 		 * the value in iulp_wscale_ok.  This is the behavior
2807 		 * since 2.6.  So we keep it.
2808 		 * The only case left in passive open processing is the
2809 		 * check for SACK.
2810 		 * For ECN, it should probably be like SACK.  But the
2811 		 * current value is binary, so we treat it like the other
2812 		 * cases.  The metric only controls active open.For passive
2813 		 * open, the ndd param, tcp_ecn_permitted, controls the
2814 		 * behavior.
2815 		 */
2816 		if (!tcp_detached) {
2817 			/*
2818 			 * The if check means that the following can only
2819 			 * be turned on by the metrics only IRE, but not off.
2820 			 */
2821 			if (ire_uinfo->iulp_tstamp_ok)
2822 				tcp->tcp_snd_ts_ok = B_TRUE;
2823 			if (ire_uinfo->iulp_wscale_ok)
2824 				tcp->tcp_snd_ws_ok = B_TRUE;
2825 			if (ire_uinfo->iulp_sack == 2)
2826 				tcp->tcp_snd_sack_ok = B_TRUE;
2827 			if (ire_uinfo->iulp_ecn_ok)
2828 				tcp->tcp_ecn_ok = B_TRUE;
2829 		} else {
2830 			/*
2831 			 * Passive open.
2832 			 *
2833 			 * As above, the if check means that SACK can only be
2834 			 * turned on by the metric only IRE.
2835 			 */
2836 			if (ire_uinfo->iulp_sack > 0) {
2837 				tcp->tcp_snd_sack_ok = B_TRUE;
2838 			}
2839 		}
2840 	}
2841 
2842 
2843 	/*
2844 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2845 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2846 	 * length of all those options exceeds 28 bytes.  But because
2847 	 * of the tcp_mss_min check below, we may not have a problem if
2848 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2849 	 * the negative problem still exists.  And the check defeats PMTUd.
2850 	 * In fact, if PMTUd finds that the MSS should be smaller than
2851 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2852 	 * value.
2853 	 *
2854 	 * We do not deal with that now.  All those problems related to
2855 	 * PMTUd will be fixed later.
2856 	 */
2857 	ASSERT(ire->ire_max_frag != 0);
2858 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2859 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2860 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2861 			mss = MIN(mss, IPV6_MIN_MTU);
2862 		}
2863 	}
2864 
2865 	/* Sanity check for MSS value. */
2866 	if (tcp->tcp_ipversion == IPV4_VERSION)
2867 		mss_max = tcps->tcps_mss_max_ipv4;
2868 	else
2869 		mss_max = tcps->tcps_mss_max_ipv6;
2870 
2871 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2872 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2873 		/*
2874 		 * After receiving an ICMPv6 "packet too big" message with a
2875 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2876 		 * will insert a 8-byte fragment header in every packet; we
2877 		 * reduce the MSS by that amount here.
2878 		 */
2879 		mss -= sizeof (ip6_frag_t);
2880 	}
2881 
2882 	if (tcp->tcp_ipsec_overhead == 0)
2883 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2884 
2885 	mss -= tcp->tcp_ipsec_overhead;
2886 
2887 	if (mss < tcps->tcps_mss_min)
2888 		mss = tcps->tcps_mss_min;
2889 	if (mss > mss_max)
2890 		mss = mss_max;
2891 
2892 	/* Note that this is the maximum MSS, excluding all options. */
2893 	tcp->tcp_mss = mss;
2894 
2895 	/*
2896 	 * Initialize the ISS here now that we have the full connection ID.
2897 	 * The RFC 1948 method of initial sequence number generation requires
2898 	 * knowledge of the full connection ID before setting the ISS.
2899 	 */
2900 
2901 	tcp_iss_init(tcp);
2902 
2903 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2904 		tcp->tcp_loopback = B_TRUE;
2905 
2906 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2907 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2908 	} else {
2909 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2910 	}
2911 
2912 	if (hsp != NULL) {
2913 		/* Only modify if we're going to make them bigger */
2914 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2915 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2916 			if (tcps->tcps_snd_lowat_fraction != 0)
2917 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2918 				    tcps->tcps_snd_lowat_fraction;
2919 		}
2920 
2921 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2922 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2923 		}
2924 
2925 		/* Copy timestamp flag only for active open */
2926 		if (!tcp_detached)
2927 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2928 	}
2929 
2930 	if (sire != NULL)
2931 		IRE_REFRELE(sire);
2932 
2933 	/*
2934 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2935 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2936 	 */
2937 	if (tcp->tcp_loopback ||
2938 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2939 		/*
2940 		 * For incoming, see if this tcp may be MDT-capable.  For
2941 		 * outgoing, this process has been taken care of through
2942 		 * tcp_rput_other.
2943 		 */
2944 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2945 		tcp->tcp_ire_ill_check_done = B_TRUE;
2946 	}
2947 
2948 	mutex_enter(&connp->conn_lock);
2949 	/*
2950 	 * Make sure that conn is not marked incipient
2951 	 * for incoming connections. A blind
2952 	 * removal of incipient flag is cheaper than
2953 	 * check and removal.
2954 	 */
2955 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2956 
2957 	/*
2958 	 * Must not cache forwarding table routes
2959 	 * or recache an IRE after the conn_t has
2960 	 * had conn_ire_cache cleared and is flagged
2961 	 * unusable, (see the CONN_CACHE_IRE() macro).
2962 	 */
2963 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2964 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2965 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2966 			connp->conn_ire_cache = ire;
2967 			IRE_UNTRACE_REF(ire);
2968 			rw_exit(&ire->ire_bucket->irb_lock);
2969 			mutex_exit(&connp->conn_lock);
2970 			return (1);
2971 		}
2972 		rw_exit(&ire->ire_bucket->irb_lock);
2973 	}
2974 	mutex_exit(&connp->conn_lock);
2975 
2976 	if (ire->ire_mp == NULL)
2977 		ire_refrele(ire);
2978 	return (1);
2979 
2980 error:
2981 	if (ire->ire_mp == NULL)
2982 		ire_refrele(ire);
2983 	if (sire != NULL)
2984 		ire_refrele(sire);
2985 	return (0);
2986 }
2987 
2988 /*
2989  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2990  * O_T_BIND_REQ/T_BIND_REQ message.
2991  */
2992 static void
2993 tcp_bind(tcp_t *tcp, mblk_t *mp)
2994 {
2995 	sin_t	*sin;
2996 	sin6_t	*sin6;
2997 	mblk_t	*mp1;
2998 	in_port_t requested_port;
2999 	in_port_t allocated_port;
3000 	struct T_bind_req *tbr;
3001 	boolean_t	bind_to_req_port_only;
3002 	boolean_t	backlog_update = B_FALSE;
3003 	boolean_t	user_specified;
3004 	in6_addr_t	v6addr;
3005 	ipaddr_t	v4addr;
3006 	uint_t	origipversion;
3007 	int	err;
3008 	queue_t *q = tcp->tcp_wq;
3009 	conn_t	*connp = tcp->tcp_connp;
3010 	mlp_type_t addrtype, mlptype;
3011 	zone_t	*zone;
3012 	cred_t	*cr;
3013 	in_port_t mlp_port;
3014 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3015 
3016 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3017 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3018 		if (tcp->tcp_debug) {
3019 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3020 			    "tcp_bind: bad req, len %u",
3021 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3022 		}
3023 		tcp_err_ack(tcp, mp, TPROTO, 0);
3024 		return;
3025 	}
3026 	/* Make sure the largest address fits */
3027 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3028 	if (mp1 == NULL) {
3029 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3030 		return;
3031 	}
3032 	mp = mp1;
3033 	tbr = (struct T_bind_req *)mp->b_rptr;
3034 	if (tcp->tcp_state >= TCPS_BOUND) {
3035 		if ((tcp->tcp_state == TCPS_BOUND ||
3036 		    tcp->tcp_state == TCPS_LISTEN) &&
3037 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3038 		    tbr->CONIND_number > 0) {
3039 			/*
3040 			 * Handle listen() increasing CONIND_number.
3041 			 * This is more "liberal" then what the TPI spec
3042 			 * requires but is needed to avoid a t_unbind
3043 			 * when handling listen() since the port number
3044 			 * might be "stolen" between the unbind and bind.
3045 			 */
3046 			backlog_update = B_TRUE;
3047 			goto do_bind;
3048 		}
3049 		if (tcp->tcp_debug) {
3050 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3051 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3052 		}
3053 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3054 		return;
3055 	}
3056 	origipversion = tcp->tcp_ipversion;
3057 
3058 	switch (tbr->ADDR_length) {
3059 	case 0:			/* request for a generic port */
3060 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3061 		if (tcp->tcp_family == AF_INET) {
3062 			tbr->ADDR_length = sizeof (sin_t);
3063 			sin = (sin_t *)&tbr[1];
3064 			*sin = sin_null;
3065 			sin->sin_family = AF_INET;
3066 			mp->b_wptr = (uchar_t *)&sin[1];
3067 			tcp->tcp_ipversion = IPV4_VERSION;
3068 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3069 		} else {
3070 			ASSERT(tcp->tcp_family == AF_INET6);
3071 			tbr->ADDR_length = sizeof (sin6_t);
3072 			sin6 = (sin6_t *)&tbr[1];
3073 			*sin6 = sin6_null;
3074 			sin6->sin6_family = AF_INET6;
3075 			mp->b_wptr = (uchar_t *)&sin6[1];
3076 			tcp->tcp_ipversion = IPV6_VERSION;
3077 			V6_SET_ZERO(v6addr);
3078 		}
3079 		requested_port = 0;
3080 		break;
3081 
3082 	case sizeof (sin_t):	/* Complete IPv4 address */
3083 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3084 		    sizeof (sin_t));
3085 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3086 			if (tcp->tcp_debug) {
3087 				(void) strlog(TCP_MOD_ID, 0, 1,
3088 				    SL_ERROR|SL_TRACE,
3089 				    "tcp_bind: bad address parameter, "
3090 				    "offset %d, len %d",
3091 				    tbr->ADDR_offset, tbr->ADDR_length);
3092 			}
3093 			tcp_err_ack(tcp, mp, TPROTO, 0);
3094 			return;
3095 		}
3096 		/*
3097 		 * With sockets sockfs will accept bogus sin_family in
3098 		 * bind() and replace it with the family used in the socket
3099 		 * call.
3100 		 */
3101 		if (sin->sin_family != AF_INET ||
3102 		    tcp->tcp_family != AF_INET) {
3103 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3104 			return;
3105 		}
3106 		requested_port = ntohs(sin->sin_port);
3107 		tcp->tcp_ipversion = IPV4_VERSION;
3108 		v4addr = sin->sin_addr.s_addr;
3109 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3110 		break;
3111 
3112 	case sizeof (sin6_t): /* Complete IPv6 address */
3113 		sin6 = (sin6_t *)mi_offset_param(mp,
3114 		    tbr->ADDR_offset, sizeof (sin6_t));
3115 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3116 			if (tcp->tcp_debug) {
3117 				(void) strlog(TCP_MOD_ID, 0, 1,
3118 				    SL_ERROR|SL_TRACE,
3119 				    "tcp_bind: bad IPv6 address parameter, "
3120 				    "offset %d, len %d", tbr->ADDR_offset,
3121 				    tbr->ADDR_length);
3122 			}
3123 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3124 			return;
3125 		}
3126 		if (sin6->sin6_family != AF_INET6 ||
3127 		    tcp->tcp_family != AF_INET6) {
3128 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3129 			return;
3130 		}
3131 		requested_port = ntohs(sin6->sin6_port);
3132 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3133 		    IPV4_VERSION : IPV6_VERSION;
3134 		v6addr = sin6->sin6_addr;
3135 		break;
3136 
3137 	default:
3138 		if (tcp->tcp_debug) {
3139 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3140 			    "tcp_bind: bad address length, %d",
3141 			    tbr->ADDR_length);
3142 		}
3143 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3144 		return;
3145 	}
3146 	tcp->tcp_bound_source_v6 = v6addr;
3147 
3148 	/* Check for change in ipversion */
3149 	if (origipversion != tcp->tcp_ipversion) {
3150 		ASSERT(tcp->tcp_family == AF_INET6);
3151 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3152 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3153 		if (err) {
3154 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3155 			return;
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * Initialize family specific fields. Copy of the src addr.
3161 	 * in tcp_t is needed for the lookup funcs.
3162 	 */
3163 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3164 		tcp->tcp_ip6h->ip6_src = v6addr;
3165 	} else {
3166 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3167 	}
3168 	tcp->tcp_ip_src_v6 = v6addr;
3169 
3170 	/*
3171 	 * For O_T_BIND_REQ:
3172 	 * Verify that the target port/addr is available, or choose
3173 	 * another.
3174 	 * For  T_BIND_REQ:
3175 	 * Verify that the target port/addr is available or fail.
3176 	 * In both cases when it succeeds the tcp is inserted in the
3177 	 * bind hash table. This ensures that the operation is atomic
3178 	 * under the lock on the hash bucket.
3179 	 */
3180 	bind_to_req_port_only = requested_port != 0 &&
3181 	    tbr->PRIM_type != O_T_BIND_REQ;
3182 	/*
3183 	 * Get a valid port (within the anonymous range and should not
3184 	 * be a privileged one) to use if the user has not given a port.
3185 	 * If multiple threads are here, they may all start with
3186 	 * with the same initial port. But, it should be fine as long as
3187 	 * tcp_bindi will ensure that no two threads will be assigned
3188 	 * the same port.
3189 	 *
3190 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3191 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3192 	 * unless TCP_ANONPRIVBIND option is set.
3193 	 */
3194 	mlptype = mlptSingle;
3195 	mlp_port = requested_port;
3196 	if (requested_port == 0) {
3197 		requested_port = tcp->tcp_anon_priv_bind ?
3198 		    tcp_get_next_priv_port(tcp) :
3199 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3200 		    tcp, B_TRUE);
3201 		if (requested_port == 0) {
3202 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3203 			return;
3204 		}
3205 		user_specified = B_FALSE;
3206 
3207 		/*
3208 		 * If the user went through one of the RPC interfaces to create
3209 		 * this socket and RPC is MLP in this zone, then give him an
3210 		 * anonymous MLP.
3211 		 */
3212 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3213 		if (connp->conn_anon_mlp && is_system_labeled()) {
3214 			zone = crgetzone(cr);
3215 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3216 			    IPV6_VERSION, &v6addr,
3217 			    tcps->tcps_netstack->netstack_ip);
3218 			if (addrtype == mlptSingle) {
3219 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3220 				return;
3221 			}
3222 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3223 			    PMAPPORT, addrtype);
3224 			mlp_port = PMAPPORT;
3225 		}
3226 	} else {
3227 		int i;
3228 		boolean_t priv = B_FALSE;
3229 
3230 		/*
3231 		 * If the requested_port is in the well-known privileged range,
3232 		 * verify that the stream was opened by a privileged user.
3233 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3234 		 * but instead the code relies on:
3235 		 * - the fact that the address of the array and its size never
3236 		 *   changes
3237 		 * - the atomic assignment of the elements of the array
3238 		 */
3239 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3240 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3241 			priv = B_TRUE;
3242 		} else {
3243 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3244 				if (requested_port ==
3245 				    tcps->tcps_g_epriv_ports[i]) {
3246 					priv = B_TRUE;
3247 					break;
3248 				}
3249 			}
3250 		}
3251 		if (priv) {
3252 			if (secpolicy_net_privaddr(cr, requested_port,
3253 			    IPPROTO_TCP) != 0) {
3254 				if (tcp->tcp_debug) {
3255 					(void) strlog(TCP_MOD_ID, 0, 1,
3256 					    SL_ERROR|SL_TRACE,
3257 					    "tcp_bind: no priv for port %d",
3258 					    requested_port);
3259 				}
3260 				tcp_err_ack(tcp, mp, TACCES, 0);
3261 				return;
3262 			}
3263 		}
3264 		user_specified = B_TRUE;
3265 
3266 		if (is_system_labeled()) {
3267 			zone = crgetzone(cr);
3268 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3269 			    IPV6_VERSION, &v6addr,
3270 			    tcps->tcps_netstack->netstack_ip);
3271 			if (addrtype == mlptSingle) {
3272 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3273 				return;
3274 			}
3275 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3276 			    requested_port, addrtype);
3277 		}
3278 	}
3279 
3280 	if (mlptype != mlptSingle) {
3281 		if (secpolicy_net_bindmlp(cr) != 0) {
3282 			if (tcp->tcp_debug) {
3283 				(void) strlog(TCP_MOD_ID, 0, 1,
3284 				    SL_ERROR|SL_TRACE,
3285 				    "tcp_bind: no priv for multilevel port %d",
3286 				    requested_port);
3287 			}
3288 			tcp_err_ack(tcp, mp, TACCES, 0);
3289 			return;
3290 		}
3291 
3292 		/*
3293 		 * If we're specifically binding a shared IP address and the
3294 		 * port is MLP on shared addresses, then check to see if this
3295 		 * zone actually owns the MLP.  Reject if not.
3296 		 */
3297 		if (mlptype == mlptShared && addrtype == mlptShared) {
3298 			/*
3299 			 * No need to handle exclusive-stack zones since
3300 			 * ALL_ZONES only applies to the shared stack.
3301 			 */
3302 			zoneid_t mlpzone;
3303 
3304 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3305 			    htons(mlp_port));
3306 			if (connp->conn_zoneid != mlpzone) {
3307 				if (tcp->tcp_debug) {
3308 					(void) strlog(TCP_MOD_ID, 0, 1,
3309 					    SL_ERROR|SL_TRACE,
3310 					    "tcp_bind: attempt to bind port "
3311 					    "%d on shared addr in zone %d "
3312 					    "(should be %d)",
3313 					    mlp_port, connp->conn_zoneid,
3314 					    mlpzone);
3315 				}
3316 				tcp_err_ack(tcp, mp, TACCES, 0);
3317 				return;
3318 			}
3319 		}
3320 
3321 		if (!user_specified) {
3322 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3323 			    requested_port, B_TRUE);
3324 			if (err != 0) {
3325 				if (tcp->tcp_debug) {
3326 					(void) strlog(TCP_MOD_ID, 0, 1,
3327 					    SL_ERROR|SL_TRACE,
3328 					    "tcp_bind: cannot establish anon "
3329 					    "MLP for port %d",
3330 					    requested_port);
3331 				}
3332 				tcp_err_ack(tcp, mp, TSYSERR, err);
3333 				return;
3334 			}
3335 			connp->conn_anon_port = B_TRUE;
3336 		}
3337 		connp->conn_mlp_type = mlptype;
3338 	}
3339 
3340 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3341 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3342 
3343 	if (allocated_port == 0) {
3344 		connp->conn_mlp_type = mlptSingle;
3345 		if (connp->conn_anon_port) {
3346 			connp->conn_anon_port = B_FALSE;
3347 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3348 			    requested_port, B_FALSE);
3349 		}
3350 		if (bind_to_req_port_only) {
3351 			if (tcp->tcp_debug) {
3352 				(void) strlog(TCP_MOD_ID, 0, 1,
3353 				    SL_ERROR|SL_TRACE,
3354 				    "tcp_bind: requested addr busy");
3355 			}
3356 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3357 		} else {
3358 			/* If we are out of ports, fail the bind. */
3359 			if (tcp->tcp_debug) {
3360 				(void) strlog(TCP_MOD_ID, 0, 1,
3361 				    SL_ERROR|SL_TRACE,
3362 				    "tcp_bind: out of ports?");
3363 			}
3364 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3365 		}
3366 		return;
3367 	}
3368 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3369 do_bind:
3370 	if (!backlog_update) {
3371 		if (tcp->tcp_family == AF_INET)
3372 			sin->sin_port = htons(allocated_port);
3373 		else
3374 			sin6->sin6_port = htons(allocated_port);
3375 	}
3376 	if (tcp->tcp_family == AF_INET) {
3377 		if (tbr->CONIND_number != 0) {
3378 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3379 			    sizeof (sin_t));
3380 		} else {
3381 			/* Just verify the local IP address */
3382 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3383 		}
3384 	} else {
3385 		if (tbr->CONIND_number != 0) {
3386 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3387 			    sizeof (sin6_t));
3388 		} else {
3389 			/* Just verify the local IP address */
3390 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3391 			    IPV6_ADDR_LEN);
3392 		}
3393 	}
3394 	if (mp1 == NULL) {
3395 		if (connp->conn_anon_port) {
3396 			connp->conn_anon_port = B_FALSE;
3397 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3398 			    requested_port, B_FALSE);
3399 		}
3400 		connp->conn_mlp_type = mlptSingle;
3401 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3402 		return;
3403 	}
3404 
3405 	tbr->PRIM_type = T_BIND_ACK;
3406 	mp->b_datap->db_type = M_PCPROTO;
3407 
3408 	/* Chain in the reply mp for tcp_rput() */
3409 	mp1->b_cont = mp;
3410 	mp = mp1;
3411 
3412 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3413 	if (tcp->tcp_conn_req_max) {
3414 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3415 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3416 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3417 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3418 		/*
3419 		 * If this is a listener, do not reset the eager list
3420 		 * and other stuffs.  Note that we don't check if the
3421 		 * existing eager list meets the new tcp_conn_req_max
3422 		 * requirement.
3423 		 */
3424 		if (tcp->tcp_state != TCPS_LISTEN) {
3425 			tcp->tcp_state = TCPS_LISTEN;
3426 			/* Initialize the chain. Don't need the eager_lock */
3427 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3428 			tcp->tcp_eager_next_drop_q0 = tcp;
3429 			tcp->tcp_eager_prev_drop_q0 = tcp;
3430 			tcp->tcp_second_ctimer_threshold =
3431 			    tcps->tcps_ip_abort_linterval;
3432 		}
3433 	}
3434 
3435 	/*
3436 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3437 	 * processing continues in tcp_rput_other().
3438 	 *
3439 	 * We need to make sure that the conn_recv is set to a non-null
3440 	 * value before we insert the conn into the classifier table.
3441 	 * This is to avoid a race with an incoming packet which does an
3442 	 * ipcl_classify().
3443 	 */
3444 	connp->conn_recv = tcp_conn_request;
3445 	if (tcp->tcp_family == AF_INET6) {
3446 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3447 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3448 	} else {
3449 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3450 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3451 	}
3452 	/*
3453 	 * If the bind cannot complete immediately
3454 	 * IP will arrange to call tcp_rput_other
3455 	 * when the bind completes.
3456 	 */
3457 	if (mp != NULL) {
3458 		tcp_rput_other(tcp, mp);
3459 	} else {
3460 		/*
3461 		 * Bind will be resumed later. Need to ensure
3462 		 * that conn doesn't disappear when that happens.
3463 		 * This will be decremented in ip_resume_tcp_bind().
3464 		 */
3465 		CONN_INC_REF(tcp->tcp_connp);
3466 	}
3467 }
3468 
3469 
3470 /*
3471  * If the "bind_to_req_port_only" parameter is set, if the requested port
3472  * number is available, return it, If not return 0
3473  *
3474  * If "bind_to_req_port_only" parameter is not set and
3475  * If the requested port number is available, return it.  If not, return
3476  * the first anonymous port we happen across.  If no anonymous ports are
3477  * available, return 0. addr is the requested local address, if any.
3478  *
3479  * In either case, when succeeding update the tcp_t to record the port number
3480  * and insert it in the bind hash table.
3481  *
3482  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3483  * without setting SO_REUSEADDR. This is needed so that they
3484  * can be viewed as two independent transport protocols.
3485  */
3486 static in_port_t
3487 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3488     int reuseaddr, boolean_t quick_connect,
3489     boolean_t bind_to_req_port_only, boolean_t user_specified)
3490 {
3491 	/* number of times we have run around the loop */
3492 	int count = 0;
3493 	/* maximum number of times to run around the loop */
3494 	int loopmax;
3495 	conn_t *connp = tcp->tcp_connp;
3496 	zoneid_t zoneid = connp->conn_zoneid;
3497 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3498 
3499 	/*
3500 	 * Lookup for free addresses is done in a loop and "loopmax"
3501 	 * influences how long we spin in the loop
3502 	 */
3503 	if (bind_to_req_port_only) {
3504 		/*
3505 		 * If the requested port is busy, don't bother to look
3506 		 * for a new one. Setting loop maximum count to 1 has
3507 		 * that effect.
3508 		 */
3509 		loopmax = 1;
3510 	} else {
3511 		/*
3512 		 * If the requested port is busy, look for a free one
3513 		 * in the anonymous port range.
3514 		 * Set loopmax appropriately so that one does not look
3515 		 * forever in the case all of the anonymous ports are in use.
3516 		 */
3517 		if (tcp->tcp_anon_priv_bind) {
3518 			/*
3519 			 * loopmax =
3520 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3521 			 */
3522 			loopmax = IPPORT_RESERVED -
3523 			    tcps->tcps_min_anonpriv_port;
3524 		} else {
3525 			loopmax = (tcps->tcps_largest_anon_port -
3526 			    tcps->tcps_smallest_anon_port + 1);
3527 		}
3528 	}
3529 	do {
3530 		uint16_t	lport;
3531 		tf_t		*tbf;
3532 		tcp_t		*ltcp;
3533 		conn_t		*lconnp;
3534 
3535 		lport = htons(port);
3536 
3537 		/*
3538 		 * Ensure that the tcp_t is not currently in the bind hash.
3539 		 * Hold the lock on the hash bucket to ensure that
3540 		 * the duplicate check plus the insertion is an atomic
3541 		 * operation.
3542 		 *
3543 		 * This function does an inline lookup on the bind hash list
3544 		 * Make sure that we access only members of tcp_t
3545 		 * and that we don't look at tcp_tcp, since we are not
3546 		 * doing a CONN_INC_REF.
3547 		 */
3548 		tcp_bind_hash_remove(tcp);
3549 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3550 		mutex_enter(&tbf->tf_lock);
3551 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3552 		    ltcp = ltcp->tcp_bind_hash) {
3553 			boolean_t not_socket;
3554 			boolean_t exclbind;
3555 
3556 			if (lport != ltcp->tcp_lport)
3557 				continue;
3558 
3559 			lconnp = ltcp->tcp_connp;
3560 
3561 			/*
3562 			 * On a labeled system, we must treat bindings to ports
3563 			 * on shared IP addresses by sockets with MAC exemption
3564 			 * privilege as being in all zones, as there's
3565 			 * otherwise no way to identify the right receiver.
3566 			 */
3567 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3568 			    IPCL_ZONE_MATCH(connp,
3569 			    ltcp->tcp_connp->conn_zoneid)) &&
3570 			    !lconnp->conn_mac_exempt &&
3571 			    !connp->conn_mac_exempt)
3572 				continue;
3573 
3574 			/*
3575 			 * If TCP_EXCLBIND is set for either the bound or
3576 			 * binding endpoint, the semantics of bind
3577 			 * is changed according to the following.
3578 			 *
3579 			 * spec = specified address (v4 or v6)
3580 			 * unspec = unspecified address (v4 or v6)
3581 			 * A = specified addresses are different for endpoints
3582 			 *
3583 			 * bound	bind to		allowed
3584 			 * -------------------------------------
3585 			 * unspec	unspec		no
3586 			 * unspec	spec		no
3587 			 * spec		unspec		no
3588 			 * spec		spec		yes if A
3589 			 *
3590 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3591 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3592 			 *
3593 			 * Note:
3594 			 *
3595 			 * 1. Because of TLI semantics, an endpoint can go
3596 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3597 			 * TCPS_BOUND, depending on whether it is originally
3598 			 * a listener or not.  That is why we need to check
3599 			 * for states greater than or equal to TCPS_BOUND
3600 			 * here.
3601 			 *
3602 			 * 2. Ideally, we should only check for state equals
3603 			 * to TCPS_LISTEN. And the following check should be
3604 			 * added.
3605 			 *
3606 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3607 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3608 			 *		...
3609 			 * }
3610 			 *
3611 			 * The semantics will be changed to this.  If the
3612 			 * endpoint on the list is in state not equal to
3613 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3614 			 * set, let the bind succeed.
3615 			 *
3616 			 * Because of (1), we cannot do that for TLI
3617 			 * endpoints.  But we can do that for socket endpoints.
3618 			 * If in future, we can change this going back
3619 			 * semantics, we can use the above check for TLI also.
3620 			 */
3621 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3622 			    TCP_IS_SOCKET(tcp));
3623 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3624 
3625 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3626 			    (exclbind && (not_socket ||
3627 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3628 				if (V6_OR_V4_INADDR_ANY(
3629 				    ltcp->tcp_bound_source_v6) ||
3630 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3631 				    IN6_ARE_ADDR_EQUAL(laddr,
3632 				    &ltcp->tcp_bound_source_v6)) {
3633 					break;
3634 				}
3635 				continue;
3636 			}
3637 
3638 			/*
3639 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3640 			 * have disjoint port number spaces, if *_EXCLBIND
3641 			 * is not set and only if the application binds to a
3642 			 * specific port. We use the same autoassigned port
3643 			 * number space for IPv4 and IPv6 sockets.
3644 			 */
3645 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3646 			    bind_to_req_port_only)
3647 				continue;
3648 
3649 			/*
3650 			 * Ideally, we should make sure that the source
3651 			 * address, remote address, and remote port in the
3652 			 * four tuple for this tcp-connection is unique.
3653 			 * However, trying to find out the local source
3654 			 * address would require too much code duplication
3655 			 * with IP, since IP needs needs to have that code
3656 			 * to support userland TCP implementations.
3657 			 */
3658 			if (quick_connect &&
3659 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3660 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3661 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3662 			    &ltcp->tcp_remote_v6)))
3663 				continue;
3664 
3665 			if (!reuseaddr) {
3666 				/*
3667 				 * No socket option SO_REUSEADDR.
3668 				 * If existing port is bound to
3669 				 * a non-wildcard IP address
3670 				 * and the requesting stream is
3671 				 * bound to a distinct
3672 				 * different IP addresses
3673 				 * (non-wildcard, also), keep
3674 				 * going.
3675 				 */
3676 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3677 				    !V6_OR_V4_INADDR_ANY(
3678 				    ltcp->tcp_bound_source_v6) &&
3679 				    !IN6_ARE_ADDR_EQUAL(laddr,
3680 				    &ltcp->tcp_bound_source_v6))
3681 					continue;
3682 				if (ltcp->tcp_state >= TCPS_BOUND) {
3683 					/*
3684 					 * This port is being used and
3685 					 * its state is >= TCPS_BOUND,
3686 					 * so we can't bind to it.
3687 					 */
3688 					break;
3689 				}
3690 			} else {
3691 				/*
3692 				 * socket option SO_REUSEADDR is set on the
3693 				 * binding tcp_t.
3694 				 *
3695 				 * If two streams are bound to
3696 				 * same IP address or both addr
3697 				 * and bound source are wildcards
3698 				 * (INADDR_ANY), we want to stop
3699 				 * searching.
3700 				 * We have found a match of IP source
3701 				 * address and source port, which is
3702 				 * refused regardless of the
3703 				 * SO_REUSEADDR setting, so we break.
3704 				 */
3705 				if (IN6_ARE_ADDR_EQUAL(laddr,
3706 				    &ltcp->tcp_bound_source_v6) &&
3707 				    (ltcp->tcp_state == TCPS_LISTEN ||
3708 				    ltcp->tcp_state == TCPS_BOUND))
3709 					break;
3710 			}
3711 		}
3712 		if (ltcp != NULL) {
3713 			/* The port number is busy */
3714 			mutex_exit(&tbf->tf_lock);
3715 		} else {
3716 			/*
3717 			 * This port is ours. Insert in fanout and mark as
3718 			 * bound to prevent others from getting the port
3719 			 * number.
3720 			 */
3721 			tcp->tcp_state = TCPS_BOUND;
3722 			tcp->tcp_lport = htons(port);
3723 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3724 
3725 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3726 			    tcp->tcp_lport)] == tbf);
3727 			tcp_bind_hash_insert(tbf, tcp, 1);
3728 
3729 			mutex_exit(&tbf->tf_lock);
3730 
3731 			/*
3732 			 * We don't want tcp_next_port_to_try to "inherit"
3733 			 * a port number supplied by the user in a bind.
3734 			 */
3735 			if (user_specified)
3736 				return (port);
3737 
3738 			/*
3739 			 * This is the only place where tcp_next_port_to_try
3740 			 * is updated. After the update, it may or may not
3741 			 * be in the valid range.
3742 			 */
3743 			if (!tcp->tcp_anon_priv_bind)
3744 				tcps->tcps_next_port_to_try = port + 1;
3745 			return (port);
3746 		}
3747 
3748 		if (tcp->tcp_anon_priv_bind) {
3749 			port = tcp_get_next_priv_port(tcp);
3750 		} else {
3751 			if (count == 0 && user_specified) {
3752 				/*
3753 				 * We may have to return an anonymous port. So
3754 				 * get one to start with.
3755 				 */
3756 				port =
3757 				    tcp_update_next_port(
3758 				    tcps->tcps_next_port_to_try,
3759 				    tcp, B_TRUE);
3760 				user_specified = B_FALSE;
3761 			} else {
3762 				port = tcp_update_next_port(port + 1, tcp,
3763 				    B_FALSE);
3764 			}
3765 		}
3766 		if (port == 0)
3767 			break;
3768 
3769 		/*
3770 		 * Don't let this loop run forever in the case where
3771 		 * all of the anonymous ports are in use.
3772 		 */
3773 	} while (++count < loopmax);
3774 	return (0);
3775 }
3776 
3777 /*
3778  * tcp_clean_death / tcp_close_detached must not be called more than once
3779  * on a tcp. Thus every function that potentially calls tcp_clean_death
3780  * must check for the tcp state before calling tcp_clean_death.
3781  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3782  * tcp_timer_handler, all check for the tcp state.
3783  */
3784 /* ARGSUSED */
3785 void
3786 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3787 {
3788 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3789 
3790 	freemsg(mp);
3791 	if (tcp->tcp_state > TCPS_BOUND)
3792 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3793 		    ETIMEDOUT, 5);
3794 }
3795 
3796 /*
3797  * We are dying for some reason.  Try to do it gracefully.  (May be called
3798  * as writer.)
3799  *
3800  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3801  * done by a service procedure).
3802  * TBD - Should the return value distinguish between the tcp_t being
3803  * freed and it being reinitialized?
3804  */
3805 static int
3806 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3807 {
3808 	mblk_t	*mp;
3809 	queue_t	*q;
3810 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3811 
3812 	TCP_CLD_STAT(tag);
3813 
3814 #if TCP_TAG_CLEAN_DEATH
3815 	tcp->tcp_cleandeathtag = tag;
3816 #endif
3817 
3818 	if (tcp->tcp_fused)
3819 		tcp_unfuse(tcp);
3820 
3821 	if (tcp->tcp_linger_tid != 0 &&
3822 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3823 		tcp_stop_lingering(tcp);
3824 	}
3825 
3826 	ASSERT(tcp != NULL);
3827 	ASSERT((tcp->tcp_family == AF_INET &&
3828 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3829 	    (tcp->tcp_family == AF_INET6 &&
3830 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3831 	    tcp->tcp_ipversion == IPV6_VERSION)));
3832 
3833 	if (TCP_IS_DETACHED(tcp)) {
3834 		if (tcp->tcp_hard_binding) {
3835 			/*
3836 			 * Its an eager that we are dealing with. We close the
3837 			 * eager but in case a conn_ind has already gone to the
3838 			 * listener, let tcp_accept_finish() send a discon_ind
3839 			 * to the listener and drop the last reference. If the
3840 			 * listener doesn't even know about the eager i.e. the
3841 			 * conn_ind hasn't gone up, blow away the eager and drop
3842 			 * the last reference as well. If the conn_ind has gone
3843 			 * up, state should be BOUND. tcp_accept_finish
3844 			 * will figure out that the connection has received a
3845 			 * RST and will send a DISCON_IND to the application.
3846 			 */
3847 			tcp_closei_local(tcp);
3848 			if (!tcp->tcp_tconnind_started) {
3849 				CONN_DEC_REF(tcp->tcp_connp);
3850 			} else {
3851 				tcp->tcp_state = TCPS_BOUND;
3852 			}
3853 		} else {
3854 			tcp_close_detached(tcp);
3855 		}
3856 		return (0);
3857 	}
3858 
3859 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3860 
3861 	/*
3862 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3863 	 * is run) postpone cleaning up the endpoint until service routine
3864 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3865 	 * client_errno since tcp_close uses the client_errno field.
3866 	 */
3867 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3868 		if (err != 0)
3869 			tcp->tcp_client_errno = err;
3870 
3871 		tcp->tcp_deferred_clean_death = B_TRUE;
3872 		return (-1);
3873 	}
3874 
3875 	q = tcp->tcp_rq;
3876 
3877 	/* Trash all inbound data */
3878 	flushq(q, FLUSHALL);
3879 
3880 	/*
3881 	 * If we are at least part way open and there is error
3882 	 * (err==0 implies no error)
3883 	 * notify our client by a T_DISCON_IND.
3884 	 */
3885 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3886 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3887 		    !TCP_IS_SOCKET(tcp)) {
3888 			/*
3889 			 * Send M_FLUSH according to TPI. Because sockets will
3890 			 * (and must) ignore FLUSHR we do that only for TPI
3891 			 * endpoints and sockets in STREAMS mode.
3892 			 */
3893 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3894 		}
3895 		if (tcp->tcp_debug) {
3896 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3897 			    "tcp_clean_death: discon err %d", err);
3898 		}
3899 		mp = mi_tpi_discon_ind(NULL, err, 0);
3900 		if (mp != NULL) {
3901 			putnext(q, mp);
3902 		} else {
3903 			if (tcp->tcp_debug) {
3904 				(void) strlog(TCP_MOD_ID, 0, 1,
3905 				    SL_ERROR|SL_TRACE,
3906 				    "tcp_clean_death, sending M_ERROR");
3907 			}
3908 			(void) putnextctl1(q, M_ERROR, EPROTO);
3909 		}
3910 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3911 			/* SYN_SENT or SYN_RCVD */
3912 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3913 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3914 			/* ESTABLISHED or CLOSE_WAIT */
3915 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3916 		}
3917 	}
3918 
3919 	tcp_reinit(tcp);
3920 	return (-1);
3921 }
3922 
3923 /*
3924  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3925  * to expire, stop the wait and finish the close.
3926  */
3927 static void
3928 tcp_stop_lingering(tcp_t *tcp)
3929 {
3930 	clock_t	delta = 0;
3931 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3932 
3933 	tcp->tcp_linger_tid = 0;
3934 	if (tcp->tcp_state > TCPS_LISTEN) {
3935 		tcp_acceptor_hash_remove(tcp);
3936 		mutex_enter(&tcp->tcp_non_sq_lock);
3937 		if (tcp->tcp_flow_stopped) {
3938 			tcp_clrqfull(tcp);
3939 		}
3940 		mutex_exit(&tcp->tcp_non_sq_lock);
3941 
3942 		if (tcp->tcp_timer_tid != 0) {
3943 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3944 			tcp->tcp_timer_tid = 0;
3945 		}
3946 		/*
3947 		 * Need to cancel those timers which will not be used when
3948 		 * TCP is detached.  This has to be done before the tcp_wq
3949 		 * is set to the global queue.
3950 		 */
3951 		tcp_timers_stop(tcp);
3952 
3953 
3954 		tcp->tcp_detached = B_TRUE;
3955 		ASSERT(tcps->tcps_g_q != NULL);
3956 		tcp->tcp_rq = tcps->tcps_g_q;
3957 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3958 
3959 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3960 			tcp_time_wait_append(tcp);
3961 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3962 			goto finish;
3963 		}
3964 
3965 		/*
3966 		 * If delta is zero the timer event wasn't executed and was
3967 		 * successfully canceled. In this case we need to restart it
3968 		 * with the minimal delta possible.
3969 		 */
3970 		if (delta >= 0) {
3971 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3972 			    delta ? delta : 1);
3973 		}
3974 	} else {
3975 		tcp_closei_local(tcp);
3976 		CONN_DEC_REF(tcp->tcp_connp);
3977 	}
3978 finish:
3979 	/* Signal closing thread that it can complete close */
3980 	mutex_enter(&tcp->tcp_closelock);
3981 	tcp->tcp_detached = B_TRUE;
3982 	ASSERT(tcps->tcps_g_q != NULL);
3983 	tcp->tcp_rq = tcps->tcps_g_q;
3984 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3985 	tcp->tcp_closed = 1;
3986 	cv_signal(&tcp->tcp_closecv);
3987 	mutex_exit(&tcp->tcp_closelock);
3988 }
3989 
3990 /*
3991  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3992  * expires.
3993  */
3994 static void
3995 tcp_close_linger_timeout(void *arg)
3996 {
3997 	conn_t	*connp = (conn_t *)arg;
3998 	tcp_t 	*tcp = connp->conn_tcp;
3999 
4000 	tcp->tcp_client_errno = ETIMEDOUT;
4001 	tcp_stop_lingering(tcp);
4002 }
4003 
4004 static int
4005 tcp_close(queue_t *q, int flags)
4006 {
4007 	conn_t		*connp = Q_TO_CONN(q);
4008 	tcp_t		*tcp = connp->conn_tcp;
4009 	mblk_t 		*mp = &tcp->tcp_closemp;
4010 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4011 	mblk_t		*bp;
4012 
4013 	ASSERT(WR(q)->q_next == NULL);
4014 	ASSERT(connp->conn_ref >= 2);
4015 
4016 	/*
4017 	 * We are being closed as /dev/tcp or /dev/tcp6.
4018 	 *
4019 	 * Mark the conn as closing. ill_pending_mp_add will not
4020 	 * add any mp to the pending mp list, after this conn has
4021 	 * started closing. Same for sq_pending_mp_add
4022 	 */
4023 	mutex_enter(&connp->conn_lock);
4024 	connp->conn_state_flags |= CONN_CLOSING;
4025 	if (connp->conn_oper_pending_ill != NULL)
4026 		conn_ioctl_cleanup_reqd = B_TRUE;
4027 	CONN_INC_REF_LOCKED(connp);
4028 	mutex_exit(&connp->conn_lock);
4029 	tcp->tcp_closeflags = (uint8_t)flags;
4030 	ASSERT(connp->conn_ref >= 3);
4031 
4032 	/*
4033 	 * tcp_closemp_used is used below without any protection of a lock
4034 	 * as we don't expect any one else to use it concurrently at this
4035 	 * point otherwise it would be a major defect.
4036 	 */
4037 
4038 	if (mp->b_prev == NULL)
4039 		tcp->tcp_closemp_used = B_TRUE;
4040 	else
4041 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4042 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4043 
4044 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4045 
4046 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4047 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4048 
4049 	mutex_enter(&tcp->tcp_closelock);
4050 	while (!tcp->tcp_closed) {
4051 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4052 			/*
4053 			 * The cv_wait_sig() was interrupted. We now do the
4054 			 * following:
4055 			 *
4056 			 * 1) If the endpoint was lingering, we allow this
4057 			 * to be interrupted by cancelling the linger timeout
4058 			 * and closing normally.
4059 			 *
4060 			 * 2) Revert to calling cv_wait()
4061 			 *
4062 			 * We revert to using cv_wait() to avoid an
4063 			 * infinite loop which can occur if the calling
4064 			 * thread is higher priority than the squeue worker
4065 			 * thread and is bound to the same cpu.
4066 			 */
4067 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4068 				mutex_exit(&tcp->tcp_closelock);
4069 				/* Entering squeue, bump ref count. */
4070 				CONN_INC_REF(connp);
4071 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4072 				squeue_enter(connp->conn_sqp, bp,
4073 				    tcp_linger_interrupted, connp,
4074 				    SQTAG_IP_TCP_CLOSE);
4075 				mutex_enter(&tcp->tcp_closelock);
4076 			}
4077 			break;
4078 		}
4079 	}
4080 	while (!tcp->tcp_closed)
4081 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4082 	mutex_exit(&tcp->tcp_closelock);
4083 
4084 	/*
4085 	 * In the case of listener streams that have eagers in the q or q0
4086 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4087 	 * tcp_wq of the eagers point to our queues. By waiting for the
4088 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4089 	 * up their queue pointers and also dropped their references to us.
4090 	 */
4091 	if (tcp->tcp_wait_for_eagers) {
4092 		mutex_enter(&connp->conn_lock);
4093 		while (connp->conn_ref != 1) {
4094 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4095 		}
4096 		mutex_exit(&connp->conn_lock);
4097 	}
4098 	/*
4099 	 * ioctl cleanup. The mp is queued in the
4100 	 * ill_pending_mp or in the sq_pending_mp.
4101 	 */
4102 	if (conn_ioctl_cleanup_reqd)
4103 		conn_ioctl_cleanup(connp);
4104 
4105 	qprocsoff(q);
4106 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4107 
4108 	tcp->tcp_cpid = -1;
4109 
4110 	/*
4111 	 * Drop IP's reference on the conn. This is the last reference
4112 	 * on the connp if the state was less than established. If the
4113 	 * connection has gone into timewait state, then we will have
4114 	 * one ref for the TCP and one more ref (total of two) for the
4115 	 * classifier connected hash list (a timewait connections stays
4116 	 * in connected hash till closed).
4117 	 *
4118 	 * We can't assert the references because there might be other
4119 	 * transient reference places because of some walkers or queued
4120 	 * packets in squeue for the timewait state.
4121 	 */
4122 	CONN_DEC_REF(connp);
4123 	q->q_ptr = WR(q)->q_ptr = NULL;
4124 	return (0);
4125 }
4126 
4127 static int
4128 tcpclose_accept(queue_t *q)
4129 {
4130 	vmem_t	*minor_arena;
4131 	dev_t	conn_dev;
4132 
4133 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4134 
4135 	/*
4136 	 * We had opened an acceptor STREAM for sockfs which is
4137 	 * now being closed due to some error.
4138 	 */
4139 	qprocsoff(q);
4140 
4141 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4142 	conn_dev = (dev_t)RD(q)->q_ptr;
4143 	ASSERT(minor_arena != NULL);
4144 	ASSERT(conn_dev != 0);
4145 	inet_minor_free(minor_arena, conn_dev);
4146 	q->q_ptr = WR(q)->q_ptr = NULL;
4147 	return (0);
4148 }
4149 
4150 /*
4151  * Called by tcp_close() routine via squeue when lingering is
4152  * interrupted by a signal.
4153  */
4154 
4155 /* ARGSUSED */
4156 static void
4157 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4158 {
4159 	conn_t	*connp = (conn_t *)arg;
4160 	tcp_t	*tcp = connp->conn_tcp;
4161 
4162 	freeb(mp);
4163 	if (tcp->tcp_linger_tid != 0 &&
4164 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4165 		tcp_stop_lingering(tcp);
4166 		tcp->tcp_client_errno = EINTR;
4167 	}
4168 }
4169 
4170 /*
4171  * Called by streams close routine via squeues when our client blows off her
4172  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4173  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4174  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4175  * acked.
4176  *
4177  * NOTE: tcp_close potentially returns error when lingering.
4178  * However, the stream head currently does not pass these errors
4179  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4180  * errors to the application (from tsleep()) and not errors
4181  * like ECONNRESET caused by receiving a reset packet.
4182  */
4183 
4184 /* ARGSUSED */
4185 static void
4186 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4187 {
4188 	char	*msg;
4189 	conn_t	*connp = (conn_t *)arg;
4190 	tcp_t	*tcp = connp->conn_tcp;
4191 	clock_t	delta = 0;
4192 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4193 
4194 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4195 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4196 
4197 	/* Cancel any pending timeout */
4198 	if (tcp->tcp_ordrelid != 0) {
4199 		if (tcp->tcp_timeout) {
4200 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4201 		}
4202 		tcp->tcp_ordrelid = 0;
4203 		tcp->tcp_timeout = B_FALSE;
4204 	}
4205 
4206 	mutex_enter(&tcp->tcp_eager_lock);
4207 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4208 		/* Cleanup for listener */
4209 		tcp_eager_cleanup(tcp, 0);
4210 		tcp->tcp_wait_for_eagers = 1;
4211 	}
4212 	mutex_exit(&tcp->tcp_eager_lock);
4213 
4214 	connp->conn_mdt_ok = B_FALSE;
4215 	tcp->tcp_mdt = B_FALSE;
4216 
4217 	connp->conn_lso_ok = B_FALSE;
4218 	tcp->tcp_lso = B_FALSE;
4219 
4220 	msg = NULL;
4221 	switch (tcp->tcp_state) {
4222 	case TCPS_CLOSED:
4223 	case TCPS_IDLE:
4224 	case TCPS_BOUND:
4225 	case TCPS_LISTEN:
4226 		break;
4227 	case TCPS_SYN_SENT:
4228 		msg = "tcp_close, during connect";
4229 		break;
4230 	case TCPS_SYN_RCVD:
4231 		/*
4232 		 * Close during the connect 3-way handshake
4233 		 * but here there may or may not be pending data
4234 		 * already on queue. Process almost same as in
4235 		 * the ESTABLISHED state.
4236 		 */
4237 		/* FALLTHRU */
4238 	default:
4239 		if (tcp->tcp_fused)
4240 			tcp_unfuse(tcp);
4241 
4242 		/*
4243 		 * If SO_LINGER has set a zero linger time, abort the
4244 		 * connection with a reset.
4245 		 */
4246 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4247 			msg = "tcp_close, zero lingertime";
4248 			break;
4249 		}
4250 
4251 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4252 		/*
4253 		 * Abort connection if there is unread data queued.
4254 		 */
4255 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4256 			msg = "tcp_close, unread data";
4257 			break;
4258 		}
4259 		/*
4260 		 * tcp_hard_bound is now cleared thus all packets go through
4261 		 * tcp_lookup. This fact is used by tcp_detach below.
4262 		 *
4263 		 * We have done a qwait() above which could have possibly
4264 		 * drained more messages in turn causing transition to a
4265 		 * different state. Check whether we have to do the rest
4266 		 * of the processing or not.
4267 		 */
4268 		if (tcp->tcp_state <= TCPS_LISTEN)
4269 			break;
4270 
4271 		/*
4272 		 * Transmit the FIN before detaching the tcp_t.
4273 		 * After tcp_detach returns this queue/perimeter
4274 		 * no longer owns the tcp_t thus others can modify it.
4275 		 */
4276 		(void) tcp_xmit_end(tcp);
4277 
4278 		/*
4279 		 * If lingering on close then wait until the fin is acked,
4280 		 * the SO_LINGER time passes, or a reset is sent/received.
4281 		 */
4282 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4283 		    !(tcp->tcp_fin_acked) &&
4284 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4285 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4286 				tcp->tcp_client_errno = EWOULDBLOCK;
4287 			} else if (tcp->tcp_client_errno == 0) {
4288 
4289 				ASSERT(tcp->tcp_linger_tid == 0);
4290 
4291 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4292 				    tcp_close_linger_timeout,
4293 				    tcp->tcp_lingertime * hz);
4294 
4295 				/* tcp_close_linger_timeout will finish close */
4296 				if (tcp->tcp_linger_tid == 0)
4297 					tcp->tcp_client_errno = ENOSR;
4298 				else
4299 					return;
4300 			}
4301 
4302 			/*
4303 			 * Check if we need to detach or just close
4304 			 * the instance.
4305 			 */
4306 			if (tcp->tcp_state <= TCPS_LISTEN)
4307 				break;
4308 		}
4309 
4310 		/*
4311 		 * Make sure that no other thread will access the tcp_rq of
4312 		 * this instance (through lookups etc.) as tcp_rq will go
4313 		 * away shortly.
4314 		 */
4315 		tcp_acceptor_hash_remove(tcp);
4316 
4317 		mutex_enter(&tcp->tcp_non_sq_lock);
4318 		if (tcp->tcp_flow_stopped) {
4319 			tcp_clrqfull(tcp);
4320 		}
4321 		mutex_exit(&tcp->tcp_non_sq_lock);
4322 
4323 		if (tcp->tcp_timer_tid != 0) {
4324 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4325 			tcp->tcp_timer_tid = 0;
4326 		}
4327 		/*
4328 		 * Need to cancel those timers which will not be used when
4329 		 * TCP is detached.  This has to be done before the tcp_wq
4330 		 * is set to the global queue.
4331 		 */
4332 		tcp_timers_stop(tcp);
4333 
4334 		tcp->tcp_detached = B_TRUE;
4335 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4336 			tcp_time_wait_append(tcp);
4337 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4338 			ASSERT(connp->conn_ref >= 3);
4339 			goto finish;
4340 		}
4341 
4342 		/*
4343 		 * If delta is zero the timer event wasn't executed and was
4344 		 * successfully canceled. In this case we need to restart it
4345 		 * with the minimal delta possible.
4346 		 */
4347 		if (delta >= 0)
4348 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4349 			    delta ? delta : 1);
4350 
4351 		ASSERT(connp->conn_ref >= 3);
4352 		goto finish;
4353 	}
4354 
4355 	/* Detach did not complete. Still need to remove q from stream. */
4356 	if (msg) {
4357 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4358 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4359 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4360 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4361 		    tcp->tcp_state == TCPS_SYN_RCVD)
4362 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4363 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4364 	}
4365 
4366 	tcp_closei_local(tcp);
4367 	CONN_DEC_REF(connp);
4368 	ASSERT(connp->conn_ref >= 2);
4369 
4370 finish:
4371 	/*
4372 	 * Although packets are always processed on the correct
4373 	 * tcp's perimeter and access is serialized via squeue's,
4374 	 * IP still needs a queue when sending packets in time_wait
4375 	 * state so use WR(tcps_g_q) till ip_output() can be
4376 	 * changed to deal with just connp. For read side, we
4377 	 * could have set tcp_rq to NULL but there are some cases
4378 	 * in tcp_rput_data() from early days of this code which
4379 	 * do a putnext without checking if tcp is closed. Those
4380 	 * need to be identified before both tcp_rq and tcp_wq
4381 	 * can be set to NULL and tcps_g_q can disappear forever.
4382 	 */
4383 	mutex_enter(&tcp->tcp_closelock);
4384 	/*
4385 	 * Don't change the queues in the case of a listener that has
4386 	 * eagers in its q or q0. It could surprise the eagers.
4387 	 * Instead wait for the eagers outside the squeue.
4388 	 */
4389 	if (!tcp->tcp_wait_for_eagers) {
4390 		tcp->tcp_detached = B_TRUE;
4391 		/*
4392 		 * When default queue is closing we set tcps_g_q to NULL
4393 		 * after the close is done.
4394 		 */
4395 		ASSERT(tcps->tcps_g_q != NULL);
4396 		tcp->tcp_rq = tcps->tcps_g_q;
4397 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4398 	}
4399 
4400 	/* Signal tcp_close() to finish closing. */
4401 	tcp->tcp_closed = 1;
4402 	cv_signal(&tcp->tcp_closecv);
4403 	mutex_exit(&tcp->tcp_closelock);
4404 }
4405 
4406 
4407 /*
4408  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4409  * Some stream heads get upset if they see these later on as anything but NULL.
4410  */
4411 static void
4412 tcp_close_mpp(mblk_t **mpp)
4413 {
4414 	mblk_t	*mp;
4415 
4416 	if ((mp = *mpp) != NULL) {
4417 		do {
4418 			mp->b_next = NULL;
4419 			mp->b_prev = NULL;
4420 		} while ((mp = mp->b_cont) != NULL);
4421 
4422 		mp = *mpp;
4423 		*mpp = NULL;
4424 		freemsg(mp);
4425 	}
4426 }
4427 
4428 /* Do detached close. */
4429 static void
4430 tcp_close_detached(tcp_t *tcp)
4431 {
4432 	if (tcp->tcp_fused)
4433 		tcp_unfuse(tcp);
4434 
4435 	/*
4436 	 * Clustering code serializes TCP disconnect callbacks and
4437 	 * cluster tcp list walks by blocking a TCP disconnect callback
4438 	 * if a cluster tcp list walk is in progress. This ensures
4439 	 * accurate accounting of TCPs in the cluster code even though
4440 	 * the TCP list walk itself is not atomic.
4441 	 */
4442 	tcp_closei_local(tcp);
4443 	CONN_DEC_REF(tcp->tcp_connp);
4444 }
4445 
4446 /*
4447  * Stop all TCP timers, and free the timer mblks if requested.
4448  */
4449 void
4450 tcp_timers_stop(tcp_t *tcp)
4451 {
4452 	if (tcp->tcp_timer_tid != 0) {
4453 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4454 		tcp->tcp_timer_tid = 0;
4455 	}
4456 	if (tcp->tcp_ka_tid != 0) {
4457 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4458 		tcp->tcp_ka_tid = 0;
4459 	}
4460 	if (tcp->tcp_ack_tid != 0) {
4461 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4462 		tcp->tcp_ack_tid = 0;
4463 	}
4464 	if (tcp->tcp_push_tid != 0) {
4465 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4466 		tcp->tcp_push_tid = 0;
4467 	}
4468 }
4469 
4470 /*
4471  * The tcp_t is going away. Remove it from all lists and set it
4472  * to TCPS_CLOSED. The freeing up of memory is deferred until
4473  * tcp_inactive. This is needed since a thread in tcp_rput might have
4474  * done a CONN_INC_REF on this structure before it was removed from the
4475  * hashes.
4476  */
4477 static void
4478 tcp_closei_local(tcp_t *tcp)
4479 {
4480 	ire_t 	*ire;
4481 	conn_t	*connp = tcp->tcp_connp;
4482 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4483 
4484 	if (!TCP_IS_SOCKET(tcp))
4485 		tcp_acceptor_hash_remove(tcp);
4486 
4487 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4488 	tcp->tcp_ibsegs = 0;
4489 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4490 	tcp->tcp_obsegs = 0;
4491 
4492 	/*
4493 	 * If we are an eager connection hanging off a listener that
4494 	 * hasn't formally accepted the connection yet, get off his
4495 	 * list and blow off any data that we have accumulated.
4496 	 */
4497 	if (tcp->tcp_listener != NULL) {
4498 		tcp_t	*listener = tcp->tcp_listener;
4499 		mutex_enter(&listener->tcp_eager_lock);
4500 		/*
4501 		 * tcp_tconnind_started == B_TRUE means that the
4502 		 * conn_ind has already gone to listener. At
4503 		 * this point, eager will be closed but we
4504 		 * leave it in listeners eager list so that
4505 		 * if listener decides to close without doing
4506 		 * accept, we can clean this up. In tcp_wput_accept
4507 		 * we take care of the case of accept on closed
4508 		 * eager.
4509 		 */
4510 		if (!tcp->tcp_tconnind_started) {
4511 			tcp_eager_unlink(tcp);
4512 			mutex_exit(&listener->tcp_eager_lock);
4513 			/*
4514 			 * We don't want to have any pointers to the
4515 			 * listener queue, after we have released our
4516 			 * reference on the listener
4517 			 */
4518 			ASSERT(tcps->tcps_g_q != NULL);
4519 			tcp->tcp_rq = tcps->tcps_g_q;
4520 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4521 			CONN_DEC_REF(listener->tcp_connp);
4522 		} else {
4523 			mutex_exit(&listener->tcp_eager_lock);
4524 		}
4525 	}
4526 
4527 	/* Stop all the timers */
4528 	tcp_timers_stop(tcp);
4529 
4530 	if (tcp->tcp_state == TCPS_LISTEN) {
4531 		if (tcp->tcp_ip_addr_cache) {
4532 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4533 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4534 			tcp->tcp_ip_addr_cache = NULL;
4535 		}
4536 	}
4537 	mutex_enter(&tcp->tcp_non_sq_lock);
4538 	if (tcp->tcp_flow_stopped)
4539 		tcp_clrqfull(tcp);
4540 	mutex_exit(&tcp->tcp_non_sq_lock);
4541 
4542 	tcp_bind_hash_remove(tcp);
4543 	/*
4544 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4545 	 * is trying to remove this tcp from the time wait list, we will
4546 	 * block in tcp_time_wait_remove while trying to acquire the
4547 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4548 	 * requires the ipcl_hash_remove to be ordered after the
4549 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4550 	 */
4551 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4552 		(void) tcp_time_wait_remove(tcp, NULL);
4553 	CL_INET_DISCONNECT(tcp);
4554 	ipcl_hash_remove(connp);
4555 
4556 	/*
4557 	 * Delete the cached ire in conn_ire_cache and also mark
4558 	 * the conn as CONDEMNED
4559 	 */
4560 	mutex_enter(&connp->conn_lock);
4561 	connp->conn_state_flags |= CONN_CONDEMNED;
4562 	ire = connp->conn_ire_cache;
4563 	connp->conn_ire_cache = NULL;
4564 	mutex_exit(&connp->conn_lock);
4565 	if (ire != NULL)
4566 		IRE_REFRELE_NOTR(ire);
4567 
4568 	/* Need to cleanup any pending ioctls */
4569 	ASSERT(tcp->tcp_time_wait_next == NULL);
4570 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4571 	ASSERT(tcp->tcp_time_wait_expire == 0);
4572 	tcp->tcp_state = TCPS_CLOSED;
4573 
4574 	/* Release any SSL context */
4575 	if (tcp->tcp_kssl_ent != NULL) {
4576 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4577 		tcp->tcp_kssl_ent = NULL;
4578 	}
4579 	if (tcp->tcp_kssl_ctx != NULL) {
4580 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4581 		tcp->tcp_kssl_ctx = NULL;
4582 	}
4583 	tcp->tcp_kssl_pending = B_FALSE;
4584 
4585 	tcp_ipsec_cleanup(tcp);
4586 }
4587 
4588 /*
4589  * tcp is dying (called from ipcl_conn_destroy and error cases).
4590  * Free the tcp_t in either case.
4591  */
4592 void
4593 tcp_free(tcp_t *tcp)
4594 {
4595 	mblk_t	*mp;
4596 	ip6_pkt_t	*ipp;
4597 
4598 	ASSERT(tcp != NULL);
4599 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4600 
4601 	tcp->tcp_rq = NULL;
4602 	tcp->tcp_wq = NULL;
4603 
4604 	tcp_close_mpp(&tcp->tcp_xmit_head);
4605 	tcp_close_mpp(&tcp->tcp_reass_head);
4606 	if (tcp->tcp_rcv_list != NULL) {
4607 		/* Free b_next chain */
4608 		tcp_close_mpp(&tcp->tcp_rcv_list);
4609 	}
4610 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4611 		freemsg(mp);
4612 	}
4613 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4614 		freemsg(mp);
4615 	}
4616 
4617 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4618 		freeb(tcp->tcp_fused_sigurg_mp);
4619 		tcp->tcp_fused_sigurg_mp = NULL;
4620 	}
4621 
4622 	if (tcp->tcp_sack_info != NULL) {
4623 		if (tcp->tcp_notsack_list != NULL) {
4624 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4625 		}
4626 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4627 	}
4628 
4629 	if (tcp->tcp_hopopts != NULL) {
4630 		mi_free(tcp->tcp_hopopts);
4631 		tcp->tcp_hopopts = NULL;
4632 		tcp->tcp_hopoptslen = 0;
4633 	}
4634 	ASSERT(tcp->tcp_hopoptslen == 0);
4635 	if (tcp->tcp_dstopts != NULL) {
4636 		mi_free(tcp->tcp_dstopts);
4637 		tcp->tcp_dstopts = NULL;
4638 		tcp->tcp_dstoptslen = 0;
4639 	}
4640 	ASSERT(tcp->tcp_dstoptslen == 0);
4641 	if (tcp->tcp_rtdstopts != NULL) {
4642 		mi_free(tcp->tcp_rtdstopts);
4643 		tcp->tcp_rtdstopts = NULL;
4644 		tcp->tcp_rtdstoptslen = 0;
4645 	}
4646 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4647 	if (tcp->tcp_rthdr != NULL) {
4648 		mi_free(tcp->tcp_rthdr);
4649 		tcp->tcp_rthdr = NULL;
4650 		tcp->tcp_rthdrlen = 0;
4651 	}
4652 	ASSERT(tcp->tcp_rthdrlen == 0);
4653 
4654 	ipp = &tcp->tcp_sticky_ipp;
4655 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4656 	    IPPF_RTHDR))
4657 		ip6_pkt_free(ipp);
4658 
4659 	/*
4660 	 * Free memory associated with the tcp/ip header template.
4661 	 */
4662 
4663 	if (tcp->tcp_iphc != NULL)
4664 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4665 
4666 	/*
4667 	 * Following is really a blowing away a union.
4668 	 * It happens to have exactly two members of identical size
4669 	 * the following code is enough.
4670 	 */
4671 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4672 
4673 	if (tcp->tcp_tracebuf != NULL) {
4674 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4675 		tcp->tcp_tracebuf = NULL;
4676 	}
4677 }
4678 
4679 
4680 /*
4681  * Put a connection confirmation message upstream built from the
4682  * address information within 'iph' and 'tcph'.  Report our success or failure.
4683  */
4684 static boolean_t
4685 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4686     mblk_t **defermp)
4687 {
4688 	sin_t	sin;
4689 	sin6_t	sin6;
4690 	mblk_t	*mp;
4691 	char	*optp = NULL;
4692 	int	optlen = 0;
4693 	cred_t	*cr;
4694 
4695 	if (defermp != NULL)
4696 		*defermp = NULL;
4697 
4698 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4699 		/*
4700 		 * Return in T_CONN_CON results of option negotiation through
4701 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4702 		 * negotiation, then what is received from remote end needs
4703 		 * to be taken into account but there is no such thing (yet?)
4704 		 * in our TCP/IP.
4705 		 * Note: We do not use mi_offset_param() here as
4706 		 * tcp_opts_conn_req contents do not directly come from
4707 		 * an application and are either generated in kernel or
4708 		 * from user input that was already verified.
4709 		 */
4710 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4711 		optp = (char *)(mp->b_rptr +
4712 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4713 		optlen = (int)
4714 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4715 	}
4716 
4717 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4718 		ipha_t *ipha = (ipha_t *)iphdr;
4719 
4720 		/* packet is IPv4 */
4721 		if (tcp->tcp_family == AF_INET) {
4722 			sin = sin_null;
4723 			sin.sin_addr.s_addr = ipha->ipha_src;
4724 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4725 			sin.sin_family = AF_INET;
4726 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4727 			    (int)sizeof (sin_t), optp, optlen);
4728 		} else {
4729 			sin6 = sin6_null;
4730 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4731 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4732 			sin6.sin6_family = AF_INET6;
4733 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4734 			    (int)sizeof (sin6_t), optp, optlen);
4735 
4736 		}
4737 	} else {
4738 		ip6_t	*ip6h = (ip6_t *)iphdr;
4739 
4740 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4741 		ASSERT(tcp->tcp_family == AF_INET6);
4742 		sin6 = sin6_null;
4743 		sin6.sin6_addr = ip6h->ip6_src;
4744 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4745 		sin6.sin6_family = AF_INET6;
4746 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4747 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4748 		    (int)sizeof (sin6_t), optp, optlen);
4749 	}
4750 
4751 	if (!mp)
4752 		return (B_FALSE);
4753 
4754 	if ((cr = DB_CRED(idmp)) != NULL) {
4755 		mblk_setcred(mp, cr);
4756 		DB_CPID(mp) = DB_CPID(idmp);
4757 	}
4758 
4759 	if (defermp == NULL)
4760 		putnext(tcp->tcp_rq, mp);
4761 	else
4762 		*defermp = mp;
4763 
4764 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4765 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4766 	return (B_TRUE);
4767 }
4768 
4769 /*
4770  * Defense for the SYN attack -
4771  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4772  *    one from the list of droppable eagers. This list is a subset of q0.
4773  *    see comments before the definition of MAKE_DROPPABLE().
4774  * 2. Don't drop a SYN request before its first timeout. This gives every
4775  *    request at least til the first timeout to complete its 3-way handshake.
4776  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4777  *    requests currently on the queue that has timed out. This will be used
4778  *    as an indicator of whether an attack is under way, so that appropriate
4779  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4780  *    either when eager goes into ESTABLISHED, or gets freed up.)
4781  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4782  *    # of timeout drops back to <= q0len/32 => SYN alert off
4783  */
4784 static boolean_t
4785 tcp_drop_q0(tcp_t *tcp)
4786 {
4787 	tcp_t	*eager;
4788 	mblk_t	*mp;
4789 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4790 
4791 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4792 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4793 
4794 	/* Pick oldest eager from the list of droppable eagers */
4795 	eager = tcp->tcp_eager_prev_drop_q0;
4796 
4797 	/* If list is empty. return B_FALSE */
4798 	if (eager == tcp) {
4799 		return (B_FALSE);
4800 	}
4801 
4802 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4803 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4804 		return (B_FALSE);
4805 
4806 	/*
4807 	 * Take this eager out from the list of droppable eagers since we are
4808 	 * going to drop it.
4809 	 */
4810 	MAKE_UNDROPPABLE(eager);
4811 
4812 	if (tcp->tcp_debug) {
4813 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4814 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4815 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4816 		    tcp->tcp_conn_req_cnt_q0,
4817 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4818 	}
4819 
4820 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4821 
4822 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4823 	CONN_INC_REF(eager->tcp_connp);
4824 
4825 	/* Mark the IRE created for this SYN request temporary */
4826 	tcp_ip_ire_mark_advice(eager);
4827 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4828 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4829 
4830 	return (B_TRUE);
4831 }
4832 
4833 int
4834 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4835     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4836 {
4837 	tcp_t 		*ltcp = lconnp->conn_tcp;
4838 	tcp_t		*tcp = connp->conn_tcp;
4839 	mblk_t		*tpi_mp;
4840 	ipha_t		*ipha;
4841 	ip6_t		*ip6h;
4842 	sin6_t 		sin6;
4843 	in6_addr_t 	v6dst;
4844 	int		err;
4845 	int		ifindex = 0;
4846 	cred_t		*cr;
4847 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4848 
4849 	if (ipvers == IPV4_VERSION) {
4850 		ipha = (ipha_t *)mp->b_rptr;
4851 
4852 		connp->conn_send = ip_output;
4853 		connp->conn_recv = tcp_input;
4854 
4855 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4856 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4857 
4858 		sin6 = sin6_null;
4859 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4860 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4861 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4862 		sin6.sin6_family = AF_INET6;
4863 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4864 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4865 		if (tcp->tcp_recvdstaddr) {
4866 			sin6_t	sin6d;
4867 
4868 			sin6d = sin6_null;
4869 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4870 			    &sin6d.sin6_addr);
4871 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4872 			sin6d.sin6_family = AF_INET;
4873 			tpi_mp = mi_tpi_extconn_ind(NULL,
4874 			    (char *)&sin6d, sizeof (sin6_t),
4875 			    (char *)&tcp,
4876 			    (t_scalar_t)sizeof (intptr_t),
4877 			    (char *)&sin6d, sizeof (sin6_t),
4878 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4879 		} else {
4880 			tpi_mp = mi_tpi_conn_ind(NULL,
4881 			    (char *)&sin6, sizeof (sin6_t),
4882 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4883 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4884 		}
4885 	} else {
4886 		ip6h = (ip6_t *)mp->b_rptr;
4887 
4888 		connp->conn_send = ip_output_v6;
4889 		connp->conn_recv = tcp_input;
4890 
4891 		connp->conn_srcv6 = ip6h->ip6_dst;
4892 		connp->conn_remv6 = ip6h->ip6_src;
4893 
4894 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4895 		ifindex = (int)DB_CKSUMSTUFF(mp);
4896 		DB_CKSUMSTUFF(mp) = 0;
4897 
4898 		sin6 = sin6_null;
4899 		sin6.sin6_addr = ip6h->ip6_src;
4900 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4901 		sin6.sin6_family = AF_INET6;
4902 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4903 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4904 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4905 
4906 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4907 			/* Pass up the scope_id of remote addr */
4908 			sin6.sin6_scope_id = ifindex;
4909 		} else {
4910 			sin6.sin6_scope_id = 0;
4911 		}
4912 		if (tcp->tcp_recvdstaddr) {
4913 			sin6_t	sin6d;
4914 
4915 			sin6d = sin6_null;
4916 			sin6.sin6_addr = ip6h->ip6_dst;
4917 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4918 			sin6d.sin6_family = AF_INET;
4919 			tpi_mp = mi_tpi_extconn_ind(NULL,
4920 			    (char *)&sin6d, sizeof (sin6_t),
4921 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4922 			    (char *)&sin6d, sizeof (sin6_t),
4923 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4924 		} else {
4925 			tpi_mp = mi_tpi_conn_ind(NULL,
4926 			    (char *)&sin6, sizeof (sin6_t),
4927 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4928 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4929 		}
4930 	}
4931 
4932 	if (tpi_mp == NULL)
4933 		return (ENOMEM);
4934 
4935 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4936 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4937 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4938 	connp->conn_fully_bound = B_FALSE;
4939 
4940 	if (tcps->tcps_trace)
4941 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4942 
4943 	/* Inherit information from the "parent" */
4944 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4945 	tcp->tcp_family = ltcp->tcp_family;
4946 	tcp->tcp_wq = ltcp->tcp_wq;
4947 	tcp->tcp_rq = ltcp->tcp_rq;
4948 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4949 	tcp->tcp_detached = B_TRUE;
4950 	if ((err = tcp_init_values(tcp)) != 0) {
4951 		freemsg(tpi_mp);
4952 		return (err);
4953 	}
4954 
4955 	if (ipvers == IPV4_VERSION) {
4956 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4957 			freemsg(tpi_mp);
4958 			return (err);
4959 		}
4960 		ASSERT(tcp->tcp_ipha != NULL);
4961 	} else {
4962 		/* ifindex must be already set */
4963 		ASSERT(ifindex != 0);
4964 
4965 		if (ltcp->tcp_bound_if != 0) {
4966 			/*
4967 			 * Set newtcp's bound_if equal to
4968 			 * listener's value. If ifindex is
4969 			 * not the same as ltcp->tcp_bound_if,
4970 			 * it must be a packet for the ipmp group
4971 			 * of interfaces
4972 			 */
4973 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4974 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4975 			tcp->tcp_bound_if = ifindex;
4976 		}
4977 
4978 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4979 		tcp->tcp_recvifindex = 0;
4980 		tcp->tcp_recvhops = 0xffffffffU;
4981 		ASSERT(tcp->tcp_ip6h != NULL);
4982 	}
4983 
4984 	tcp->tcp_lport = ltcp->tcp_lport;
4985 
4986 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4987 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4988 			/*
4989 			 * Listener had options of some sort; eager inherits.
4990 			 * Free up the eager template and allocate one
4991 			 * of the right size.
4992 			 */
4993 			if (tcp->tcp_hdr_grown) {
4994 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4995 			} else {
4996 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4997 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4998 			}
4999 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5000 			    KM_NOSLEEP);
5001 			if (tcp->tcp_iphc == NULL) {
5002 				tcp->tcp_iphc_len = 0;
5003 				freemsg(tpi_mp);
5004 				return (ENOMEM);
5005 			}
5006 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5007 			tcp->tcp_hdr_grown = B_TRUE;
5008 		}
5009 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5010 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5011 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5012 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5013 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5014 
5015 		/*
5016 		 * Copy the IP+TCP header template from listener to eager
5017 		 */
5018 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5019 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5020 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5021 			    IPPROTO_RAW) {
5022 				tcp->tcp_ip6h =
5023 				    (ip6_t *)(tcp->tcp_iphc +
5024 				    sizeof (ip6i_t));
5025 			} else {
5026 				tcp->tcp_ip6h =
5027 				    (ip6_t *)(tcp->tcp_iphc);
5028 			}
5029 			tcp->tcp_ipha = NULL;
5030 		} else {
5031 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5032 			tcp->tcp_ip6h = NULL;
5033 		}
5034 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5035 		    tcp->tcp_ip_hdr_len);
5036 	} else {
5037 		/*
5038 		 * only valid case when ipversion of listener and
5039 		 * eager differ is when listener is IPv6 and
5040 		 * eager is IPv4.
5041 		 * Eager header template has been initialized to the
5042 		 * maximum v4 header sizes, which includes space for
5043 		 * TCP and IP options.
5044 		 */
5045 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5046 		    (tcp->tcp_ipversion == IPV4_VERSION));
5047 		ASSERT(tcp->tcp_iphc_len >=
5048 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5049 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5050 		/* copy IP header fields individually */
5051 		tcp->tcp_ipha->ipha_ttl =
5052 		    ltcp->tcp_ip6h->ip6_hops;
5053 		bcopy(ltcp->tcp_tcph->th_lport,
5054 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5055 	}
5056 
5057 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5058 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5059 	    sizeof (in_port_t));
5060 
5061 	if (ltcp->tcp_lport == 0) {
5062 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5063 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5064 		    sizeof (in_port_t));
5065 	}
5066 
5067 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5068 		ASSERT(ipha != NULL);
5069 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5070 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5071 
5072 		/* Source routing option copyover (reverse it) */
5073 		if (tcps->tcps_rev_src_routes)
5074 			tcp_opt_reverse(tcp, ipha);
5075 	} else {
5076 		ASSERT(ip6h != NULL);
5077 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5078 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5079 	}
5080 
5081 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5082 	ASSERT(!tcp->tcp_tconnind_started);
5083 	/*
5084 	 * If the SYN contains a credential, it's a loopback packet; attach
5085 	 * the credential to the TPI message.
5086 	 */
5087 	if ((cr = DB_CRED(idmp)) != NULL) {
5088 		mblk_setcred(tpi_mp, cr);
5089 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5090 	}
5091 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5092 
5093 	/* Inherit the listener's SSL protection state */
5094 
5095 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5096 		kssl_hold_ent(tcp->tcp_kssl_ent);
5097 		tcp->tcp_kssl_pending = B_TRUE;
5098 	}
5099 
5100 	return (0);
5101 }
5102 
5103 
5104 int
5105 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5106     tcph_t *tcph, mblk_t *idmp)
5107 {
5108 	tcp_t 		*ltcp = lconnp->conn_tcp;
5109 	tcp_t		*tcp = connp->conn_tcp;
5110 	sin_t		sin;
5111 	mblk_t		*tpi_mp = NULL;
5112 	int		err;
5113 	cred_t		*cr;
5114 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5115 
5116 	sin = sin_null;
5117 	sin.sin_addr.s_addr = ipha->ipha_src;
5118 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5119 	sin.sin_family = AF_INET;
5120 	if (ltcp->tcp_recvdstaddr) {
5121 		sin_t	sind;
5122 
5123 		sind = sin_null;
5124 		sind.sin_addr.s_addr = ipha->ipha_dst;
5125 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5126 		sind.sin_family = AF_INET;
5127 		tpi_mp = mi_tpi_extconn_ind(NULL,
5128 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5129 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5130 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5131 	} else {
5132 		tpi_mp = mi_tpi_conn_ind(NULL,
5133 		    (char *)&sin, sizeof (sin_t),
5134 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5135 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5136 	}
5137 
5138 	if (tpi_mp == NULL) {
5139 		return (ENOMEM);
5140 	}
5141 
5142 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5143 	connp->conn_send = ip_output;
5144 	connp->conn_recv = tcp_input;
5145 	connp->conn_fully_bound = B_FALSE;
5146 
5147 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5148 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5149 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5150 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5151 
5152 	if (tcps->tcps_trace) {
5153 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5154 	}
5155 
5156 	/* Inherit information from the "parent" */
5157 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5158 	tcp->tcp_family = ltcp->tcp_family;
5159 	tcp->tcp_wq = ltcp->tcp_wq;
5160 	tcp->tcp_rq = ltcp->tcp_rq;
5161 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5162 	tcp->tcp_detached = B_TRUE;
5163 	if ((err = tcp_init_values(tcp)) != 0) {
5164 		freemsg(tpi_mp);
5165 		return (err);
5166 	}
5167 
5168 	/*
5169 	 * Let's make sure that eager tcp template has enough space to
5170 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5171 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5172 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5173 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5174 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5175 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5176 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5177 	 */
5178 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5179 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5180 
5181 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5182 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5183 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5184 	tcp->tcp_ttl = ltcp->tcp_ttl;
5185 	tcp->tcp_tos = ltcp->tcp_tos;
5186 
5187 	/* Copy the IP+TCP header template from listener to eager */
5188 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5189 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5190 	tcp->tcp_ip6h = NULL;
5191 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5192 	    tcp->tcp_ip_hdr_len);
5193 
5194 	/* Initialize the IP addresses and Ports */
5195 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5196 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5197 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5198 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5199 
5200 	/* Source routing option copyover (reverse it) */
5201 	if (tcps->tcps_rev_src_routes)
5202 		tcp_opt_reverse(tcp, ipha);
5203 
5204 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5205 	ASSERT(!tcp->tcp_tconnind_started);
5206 
5207 	/*
5208 	 * If the SYN contains a credential, it's a loopback packet; attach
5209 	 * the credential to the TPI message.
5210 	 */
5211 	if ((cr = DB_CRED(idmp)) != NULL) {
5212 		mblk_setcred(tpi_mp, cr);
5213 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5214 	}
5215 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5216 
5217 	/* Inherit the listener's SSL protection state */
5218 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5219 		kssl_hold_ent(tcp->tcp_kssl_ent);
5220 		tcp->tcp_kssl_pending = B_TRUE;
5221 	}
5222 
5223 	return (0);
5224 }
5225 
5226 /*
5227  * sets up conn for ipsec.
5228  * if the first mblk is M_CTL it is consumed and mpp is updated.
5229  * in case of error mpp is freed.
5230  */
5231 conn_t *
5232 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5233 {
5234 	conn_t 		*connp = tcp->tcp_connp;
5235 	conn_t 		*econnp;
5236 	squeue_t 	*new_sqp;
5237 	mblk_t 		*first_mp = *mpp;
5238 	mblk_t		*mp = *mpp;
5239 	boolean_t	mctl_present = B_FALSE;
5240 	uint_t		ipvers;
5241 
5242 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5243 	if (econnp == NULL) {
5244 		freemsg(first_mp);
5245 		return (NULL);
5246 	}
5247 	if (DB_TYPE(mp) == M_CTL) {
5248 		if (mp->b_cont == NULL ||
5249 		    mp->b_cont->b_datap->db_type != M_DATA) {
5250 			freemsg(first_mp);
5251 			return (NULL);
5252 		}
5253 		mp = mp->b_cont;
5254 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5255 			freemsg(first_mp);
5256 			return (NULL);
5257 		}
5258 
5259 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5260 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5261 		mctl_present = B_TRUE;
5262 	} else {
5263 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5264 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5265 	}
5266 
5267 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5268 	DB_CKSUMSTART(mp) = 0;
5269 
5270 	ASSERT(OK_32PTR(mp->b_rptr));
5271 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5272 	if (ipvers == IPV4_VERSION) {
5273 		uint16_t  	*up;
5274 		uint32_t	ports;
5275 		ipha_t		*ipha;
5276 
5277 		ipha = (ipha_t *)mp->b_rptr;
5278 		up = (uint16_t *)((uchar_t *)ipha +
5279 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5280 		ports = *(uint32_t *)up;
5281 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5282 		    ipha->ipha_dst, ipha->ipha_src, ports);
5283 	} else {
5284 		uint16_t  	*up;
5285 		uint32_t	ports;
5286 		uint16_t	ip_hdr_len;
5287 		uint8_t		*nexthdrp;
5288 		ip6_t 		*ip6h;
5289 		tcph_t		*tcph;
5290 
5291 		ip6h = (ip6_t *)mp->b_rptr;
5292 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5293 			ip_hdr_len = IPV6_HDR_LEN;
5294 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5295 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5296 			CONN_DEC_REF(econnp);
5297 			freemsg(first_mp);
5298 			return (NULL);
5299 		}
5300 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5301 		up = (uint16_t *)tcph->th_lport;
5302 		ports = *(uint32_t *)up;
5303 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5304 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5305 	}
5306 
5307 	/*
5308 	 * The caller already ensured that there is a sqp present.
5309 	 */
5310 	econnp->conn_sqp = new_sqp;
5311 
5312 	if (connp->conn_policy != NULL) {
5313 		ipsec_in_t *ii;
5314 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5315 		ASSERT(ii->ipsec_in_policy == NULL);
5316 		IPPH_REFHOLD(connp->conn_policy);
5317 		ii->ipsec_in_policy = connp->conn_policy;
5318 
5319 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5320 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5321 			CONN_DEC_REF(econnp);
5322 			freemsg(first_mp);
5323 			return (NULL);
5324 		}
5325 	}
5326 
5327 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5328 		CONN_DEC_REF(econnp);
5329 		freemsg(first_mp);
5330 		return (NULL);
5331 	}
5332 
5333 	/*
5334 	 * If we know we have some policy, pass the "IPSEC"
5335 	 * options size TCP uses this adjust the MSS.
5336 	 */
5337 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5338 	if (mctl_present) {
5339 		freeb(first_mp);
5340 		*mpp = mp;
5341 	}
5342 
5343 	return (econnp);
5344 }
5345 
5346 /*
5347  * tcp_get_conn/tcp_free_conn
5348  *
5349  * tcp_get_conn is used to get a clean tcp connection structure.
5350  * It tries to reuse the connections put on the freelist by the
5351  * time_wait_collector failing which it goes to kmem_cache. This
5352  * way has two benefits compared to just allocating from and
5353  * freeing to kmem_cache.
5354  * 1) The time_wait_collector can free (which includes the cleanup)
5355  * outside the squeue. So when the interrupt comes, we have a clean
5356  * connection sitting in the freelist. Obviously, this buys us
5357  * performance.
5358  *
5359  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5360  * has multiple disadvantages - tying up the squeue during alloc, and the
5361  * fact that IPSec policy initialization has to happen here which
5362  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5363  * But allocating the conn/tcp in IP land is also not the best since
5364  * we can't check the 'q' and 'q0' which are protected by squeue and
5365  * blindly allocate memory which might have to be freed here if we are
5366  * not allowed to accept the connection. By using the freelist and
5367  * putting the conn/tcp back in freelist, we don't pay a penalty for
5368  * allocating memory without checking 'q/q0' and freeing it if we can't
5369  * accept the connection.
5370  *
5371  * Care should be taken to put the conn back in the same squeue's freelist
5372  * from which it was allocated. Best results are obtained if conn is
5373  * allocated from listener's squeue and freed to the same. Time wait
5374  * collector will free up the freelist is the connection ends up sitting
5375  * there for too long.
5376  */
5377 void *
5378 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5379 {
5380 	tcp_t			*tcp = NULL;
5381 	conn_t			*connp = NULL;
5382 	squeue_t		*sqp = (squeue_t *)arg;
5383 	tcp_squeue_priv_t 	*tcp_time_wait;
5384 	netstack_t		*ns;
5385 
5386 	tcp_time_wait =
5387 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5388 
5389 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5390 	tcp = tcp_time_wait->tcp_free_list;
5391 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5392 	if (tcp != NULL) {
5393 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5394 		tcp_time_wait->tcp_free_list_cnt--;
5395 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5396 		tcp->tcp_time_wait_next = NULL;
5397 		connp = tcp->tcp_connp;
5398 		connp->conn_flags |= IPCL_REUSED;
5399 
5400 		ASSERT(tcp->tcp_tcps == NULL);
5401 		ASSERT(connp->conn_netstack == NULL);
5402 		ns = tcps->tcps_netstack;
5403 		netstack_hold(ns);
5404 		connp->conn_netstack = ns;
5405 		tcp->tcp_tcps = tcps;
5406 		TCPS_REFHOLD(tcps);
5407 		ipcl_globalhash_insert(connp);
5408 		return ((void *)connp);
5409 	}
5410 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5411 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5412 	    tcps->tcps_netstack)) == NULL)
5413 		return (NULL);
5414 	tcp = connp->conn_tcp;
5415 	tcp->tcp_tcps = tcps;
5416 	TCPS_REFHOLD(tcps);
5417 	return ((void *)connp);
5418 }
5419 
5420 /*
5421  * Update the cached label for the given tcp_t.  This should be called once per
5422  * connection, and before any packets are sent or tcp_process_options is
5423  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5424  */
5425 static boolean_t
5426 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5427 {
5428 	conn_t *connp = tcp->tcp_connp;
5429 
5430 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5431 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5432 		int added;
5433 
5434 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5435 		    connp->conn_mac_exempt,
5436 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5437 			return (B_FALSE);
5438 
5439 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5440 		if (added == -1)
5441 			return (B_FALSE);
5442 		tcp->tcp_hdr_len += added;
5443 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5444 		tcp->tcp_ip_hdr_len += added;
5445 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5446 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5447 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5448 			    tcp->tcp_hdr_len);
5449 			if (added == -1)
5450 				return (B_FALSE);
5451 			tcp->tcp_hdr_len += added;
5452 			tcp->tcp_tcph = (tcph_t *)
5453 			    ((uchar_t *)tcp->tcp_tcph + added);
5454 			tcp->tcp_ip_hdr_len += added;
5455 		}
5456 	} else {
5457 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5458 
5459 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5460 		    connp->conn_mac_exempt,
5461 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5462 			return (B_FALSE);
5463 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5464 		    &tcp->tcp_label_len, optbuf) != 0)
5465 			return (B_FALSE);
5466 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5467 			return (B_FALSE);
5468 	}
5469 
5470 	connp->conn_ulp_labeled = 1;
5471 
5472 	return (B_TRUE);
5473 }
5474 
5475 /* BEGIN CSTYLED */
5476 /*
5477  *
5478  * The sockfs ACCEPT path:
5479  * =======================
5480  *
5481  * The eager is now established in its own perimeter as soon as SYN is
5482  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5483  * completes the accept processing on the acceptor STREAM. The sending
5484  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5485  * listener but a TLI/XTI listener completes the accept processing
5486  * on the listener perimeter.
5487  *
5488  * Common control flow for 3 way handshake:
5489  * ----------------------------------------
5490  *
5491  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5492  *					-> tcp_conn_request()
5493  *
5494  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5495  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5496  *
5497  * Sockfs ACCEPT Path:
5498  * -------------------
5499  *
5500  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5501  * as STREAM entry point)
5502  *
5503  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5504  *
5505  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5506  * association (we are not behind eager's squeue but sockfs is protecting us
5507  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5508  * is changed to point at tcp_wput().
5509  *
5510  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5511  * listener (done on listener's perimeter).
5512  *
5513  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5514  * accept.
5515  *
5516  * TLI/XTI client ACCEPT path:
5517  * ---------------------------
5518  *
5519  * soaccept() sends T_CONN_RES on the listener STREAM.
5520  *
5521  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5522  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5523  *
5524  * Locks:
5525  * ======
5526  *
5527  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5528  * and listeners->tcp_eager_next_q.
5529  *
5530  * Referencing:
5531  * ============
5532  *
5533  * 1) We start out in tcp_conn_request by eager placing a ref on
5534  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5535  *
5536  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5537  * doing so we place a ref on the eager. This ref is finally dropped at the
5538  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5539  * reference is dropped by the squeue framework.
5540  *
5541  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5542  *
5543  * The reference must be released by the same entity that added the reference
5544  * In the above scheme, the eager is the entity that adds and releases the
5545  * references. Note that tcp_accept_finish executes in the squeue of the eager
5546  * (albeit after it is attached to the acceptor stream). Though 1. executes
5547  * in the listener's squeue, the eager is nascent at this point and the
5548  * reference can be considered to have been added on behalf of the eager.
5549  *
5550  * Eager getting a Reset or listener closing:
5551  * ==========================================
5552  *
5553  * Once the listener and eager are linked, the listener never does the unlink.
5554  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5555  * a message on all eager perimeter. The eager then does the unlink, clears
5556  * any pointers to the listener's queue and drops the reference to the
5557  * listener. The listener waits in tcp_close outside the squeue until its
5558  * refcount has dropped to 1. This ensures that the listener has waited for
5559  * all eagers to clear their association with the listener.
5560  *
5561  * Similarly, if eager decides to go away, it can unlink itself and close.
5562  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5563  * the reference to eager is still valid because of the extra ref we put
5564  * in tcp_send_conn_ind.
5565  *
5566  * Listener can always locate the eager under the protection
5567  * of the listener->tcp_eager_lock, and then do a refhold
5568  * on the eager during the accept processing.
5569  *
5570  * The acceptor stream accesses the eager in the accept processing
5571  * based on the ref placed on eager before sending T_conn_ind.
5572  * The only entity that can negate this refhold is a listener close
5573  * which is mutually exclusive with an active acceptor stream.
5574  *
5575  * Eager's reference on the listener
5576  * ===================================
5577  *
5578  * If the accept happens (even on a closed eager) the eager drops its
5579  * reference on the listener at the start of tcp_accept_finish. If the
5580  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5581  * the reference is dropped in tcp_closei_local. If the listener closes,
5582  * the reference is dropped in tcp_eager_kill. In all cases the reference
5583  * is dropped while executing in the eager's context (squeue).
5584  */
5585 /* END CSTYLED */
5586 
5587 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5588 
5589 /*
5590  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5591  * tcp_rput_data will not see any SYN packets.
5592  */
5593 /* ARGSUSED */
5594 void
5595 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5596 {
5597 	tcph_t		*tcph;
5598 	uint32_t	seg_seq;
5599 	tcp_t		*eager;
5600 	uint_t		ipvers;
5601 	ipha_t		*ipha;
5602 	ip6_t		*ip6h;
5603 	int		err;
5604 	conn_t		*econnp = NULL;
5605 	squeue_t	*new_sqp;
5606 	mblk_t		*mp1;
5607 	uint_t 		ip_hdr_len;
5608 	conn_t		*connp = (conn_t *)arg;
5609 	tcp_t		*tcp = connp->conn_tcp;
5610 	cred_t		*credp;
5611 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5612 	ip_stack_t	*ipst;
5613 
5614 	if (tcp->tcp_state != TCPS_LISTEN)
5615 		goto error2;
5616 
5617 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5618 
5619 	mutex_enter(&tcp->tcp_eager_lock);
5620 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5621 		mutex_exit(&tcp->tcp_eager_lock);
5622 		TCP_STAT(tcps, tcp_listendrop);
5623 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5624 		if (tcp->tcp_debug) {
5625 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5626 			    "tcp_conn_request: listen backlog (max=%d) "
5627 			    "overflow (%d pending) on %s",
5628 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5629 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5630 		}
5631 		goto error2;
5632 	}
5633 
5634 	if (tcp->tcp_conn_req_cnt_q0 >=
5635 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5636 		/*
5637 		 * Q0 is full. Drop a pending half-open req from the queue
5638 		 * to make room for the new SYN req. Also mark the time we
5639 		 * drop a SYN.
5640 		 *
5641 		 * A more aggressive defense against SYN attack will
5642 		 * be to set the "tcp_syn_defense" flag now.
5643 		 */
5644 		TCP_STAT(tcps, tcp_listendropq0);
5645 		tcp->tcp_last_rcv_lbolt = lbolt64;
5646 		if (!tcp_drop_q0(tcp)) {
5647 			mutex_exit(&tcp->tcp_eager_lock);
5648 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5649 			if (tcp->tcp_debug) {
5650 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5651 				    "tcp_conn_request: listen half-open queue "
5652 				    "(max=%d) full (%d pending) on %s",
5653 				    tcps->tcps_conn_req_max_q0,
5654 				    tcp->tcp_conn_req_cnt_q0,
5655 				    tcp_display(tcp, NULL,
5656 				    DISP_PORT_ONLY));
5657 			}
5658 			goto error2;
5659 		}
5660 	}
5661 	mutex_exit(&tcp->tcp_eager_lock);
5662 
5663 	/*
5664 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5665 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5666 	 * link local address.  If IPSec is enabled, db_struioflag has
5667 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5668 	 * otherwise an error case if neither of them is set.
5669 	 */
5670 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5671 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5672 		DB_CKSUMSTART(mp) = 0;
5673 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5674 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5675 		if (econnp == NULL)
5676 			goto error2;
5677 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5678 		econnp->conn_sqp = new_sqp;
5679 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5680 		/*
5681 		 * mp is updated in tcp_get_ipsec_conn().
5682 		 */
5683 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5684 		if (econnp == NULL) {
5685 			/*
5686 			 * mp freed by tcp_get_ipsec_conn.
5687 			 */
5688 			return;
5689 		}
5690 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5691 	} else {
5692 		goto error2;
5693 	}
5694 
5695 	ASSERT(DB_TYPE(mp) == M_DATA);
5696 
5697 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5698 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5699 	ASSERT(OK_32PTR(mp->b_rptr));
5700 	if (ipvers == IPV4_VERSION) {
5701 		ipha = (ipha_t *)mp->b_rptr;
5702 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5703 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5704 	} else {
5705 		ip6h = (ip6_t *)mp->b_rptr;
5706 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5707 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5708 	}
5709 
5710 	if (tcp->tcp_family == AF_INET) {
5711 		ASSERT(ipvers == IPV4_VERSION);
5712 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5713 	} else {
5714 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5715 	}
5716 
5717 	if (err)
5718 		goto error3;
5719 
5720 	eager = econnp->conn_tcp;
5721 
5722 	/* Inherit various TCP parameters from the listener */
5723 	eager->tcp_naglim = tcp->tcp_naglim;
5724 	eager->tcp_first_timer_threshold =
5725 	    tcp->tcp_first_timer_threshold;
5726 	eager->tcp_second_timer_threshold =
5727 	    tcp->tcp_second_timer_threshold;
5728 
5729 	eager->tcp_first_ctimer_threshold =
5730 	    tcp->tcp_first_ctimer_threshold;
5731 	eager->tcp_second_ctimer_threshold =
5732 	    tcp->tcp_second_ctimer_threshold;
5733 
5734 	/*
5735 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5736 	 * If it does not, the eager's receive window will be set to the
5737 	 * listener's receive window later in this function.
5738 	 */
5739 	eager->tcp_rwnd = 0;
5740 
5741 	/*
5742 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5743 	 * calling tcp_process_options() where tcp_mss_set() is called
5744 	 * to set the initial cwnd.
5745 	 */
5746 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5747 
5748 	/*
5749 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5750 	 * zone id before the accept is completed in tcp_wput_accept().
5751 	 */
5752 	econnp->conn_zoneid = connp->conn_zoneid;
5753 	econnp->conn_allzones = connp->conn_allzones;
5754 
5755 	/* Copy nexthop information from listener to eager */
5756 	if (connp->conn_nexthop_set) {
5757 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5758 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5759 	}
5760 
5761 	/*
5762 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5763 	 * eager is accepted
5764 	 */
5765 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5766 	crhold(credp);
5767 
5768 	/*
5769 	 * If the caller has the process-wide flag set, then default to MAC
5770 	 * exempt mode.  This allows read-down to unlabeled hosts.
5771 	 */
5772 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5773 		econnp->conn_mac_exempt = B_TRUE;
5774 
5775 	if (is_system_labeled()) {
5776 		cred_t *cr;
5777 
5778 		if (connp->conn_mlp_type != mlptSingle) {
5779 			cr = econnp->conn_peercred = DB_CRED(mp);
5780 			if (cr != NULL)
5781 				crhold(cr);
5782 			else
5783 				cr = econnp->conn_cred;
5784 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5785 			    econnp, cred_t *, cr)
5786 		} else {
5787 			cr = econnp->conn_cred;
5788 			DTRACE_PROBE2(syn_accept, conn_t *,
5789 			    econnp, cred_t *, cr)
5790 		}
5791 
5792 		if (!tcp_update_label(eager, cr)) {
5793 			DTRACE_PROBE3(
5794 			    tx__ip__log__error__connrequest__tcp,
5795 			    char *, "eager connp(1) label on SYN mp(2) failed",
5796 			    conn_t *, econnp, mblk_t *, mp);
5797 			goto error3;
5798 		}
5799 	}
5800 
5801 	eager->tcp_hard_binding = B_TRUE;
5802 
5803 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5804 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5805 
5806 	CL_INET_CONNECT(eager);
5807 
5808 	/*
5809 	 * No need to check for multicast destination since ip will only pass
5810 	 * up multicasts to those that have expressed interest
5811 	 * TODO: what about rejecting broadcasts?
5812 	 * Also check that source is not a multicast or broadcast address.
5813 	 */
5814 	eager->tcp_state = TCPS_SYN_RCVD;
5815 
5816 
5817 	/*
5818 	 * There should be no ire in the mp as we are being called after
5819 	 * receiving the SYN.
5820 	 */
5821 	ASSERT(tcp_ire_mp(mp) == NULL);
5822 
5823 	/*
5824 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5825 	 */
5826 
5827 	if (tcp_adapt_ire(eager, NULL) == 0) {
5828 		/* Undo the bind_hash_insert */
5829 		tcp_bind_hash_remove(eager);
5830 		goto error3;
5831 	}
5832 
5833 	/* Process all TCP options. */
5834 	tcp_process_options(eager, tcph);
5835 
5836 	/* Is the other end ECN capable? */
5837 	if (tcps->tcps_ecn_permitted >= 1 &&
5838 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5839 		eager->tcp_ecn_ok = B_TRUE;
5840 	}
5841 
5842 	/*
5843 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5844 	 * window size changed via SO_RCVBUF option.  First round up the
5845 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5846 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5847 	 * setting.
5848 	 *
5849 	 * Note if there is a rpipe metric associated with the remote host,
5850 	 * we should not inherit receive window size from listener.
5851 	 */
5852 	eager->tcp_rwnd = MSS_ROUNDUP(
5853 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5854 	    eager->tcp_rwnd), eager->tcp_mss);
5855 	if (eager->tcp_snd_ws_ok)
5856 		tcp_set_ws_value(eager);
5857 	/*
5858 	 * Note that this is the only place tcp_rwnd_set() is called for
5859 	 * accepting a connection.  We need to call it here instead of
5860 	 * after the 3-way handshake because we need to tell the other
5861 	 * side our rwnd in the SYN-ACK segment.
5862 	 */
5863 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5864 
5865 	/*
5866 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5867 	 * via soaccept()->soinheritoptions() which essentially applies
5868 	 * all the listener options to the new STREAM. The options that we
5869 	 * need to take care of are:
5870 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5871 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5872 	 * SO_SNDBUF, SO_RCVBUF.
5873 	 *
5874 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5875 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5876 	 *		tcp_maxpsz_set() gets called later from
5877 	 *		tcp_accept_finish(), the option takes effect.
5878 	 *
5879 	 */
5880 	/* Set the TCP options */
5881 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5882 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5883 	eager->tcp_oobinline = tcp->tcp_oobinline;
5884 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5885 	eager->tcp_broadcast = tcp->tcp_broadcast;
5886 	eager->tcp_useloopback = tcp->tcp_useloopback;
5887 	eager->tcp_dontroute = tcp->tcp_dontroute;
5888 	eager->tcp_linger = tcp->tcp_linger;
5889 	eager->tcp_lingertime = tcp->tcp_lingertime;
5890 	if (tcp->tcp_ka_enabled)
5891 		eager->tcp_ka_enabled = 1;
5892 
5893 	/* Set the IP options */
5894 	econnp->conn_broadcast = connp->conn_broadcast;
5895 	econnp->conn_loopback = connp->conn_loopback;
5896 	econnp->conn_dontroute = connp->conn_dontroute;
5897 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5898 
5899 	/* Put a ref on the listener for the eager. */
5900 	CONN_INC_REF(connp);
5901 	mutex_enter(&tcp->tcp_eager_lock);
5902 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5903 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5904 	tcp->tcp_eager_next_q0 = eager;
5905 	eager->tcp_eager_prev_q0 = tcp;
5906 
5907 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5908 	eager->tcp_listener = tcp;
5909 	eager->tcp_saved_listener = tcp;
5910 
5911 	/*
5912 	 * Tag this detached tcp vector for later retrieval
5913 	 * by our listener client in tcp_accept().
5914 	 */
5915 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5916 	tcp->tcp_conn_req_cnt_q0++;
5917 	if (++tcp->tcp_conn_req_seqnum == -1) {
5918 		/*
5919 		 * -1 is "special" and defined in TPI as something
5920 		 * that should never be used in T_CONN_IND
5921 		 */
5922 		++tcp->tcp_conn_req_seqnum;
5923 	}
5924 	mutex_exit(&tcp->tcp_eager_lock);
5925 
5926 	if (tcp->tcp_syn_defense) {
5927 		/* Don't drop the SYN that comes from a good IP source */
5928 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5929 		if (addr_cache != NULL && eager->tcp_remote ==
5930 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5931 			eager->tcp_dontdrop = B_TRUE;
5932 		}
5933 	}
5934 
5935 	/*
5936 	 * We need to insert the eager in its own perimeter but as soon
5937 	 * as we do that, we expose the eager to the classifier and
5938 	 * should not touch any field outside the eager's perimeter.
5939 	 * So do all the work necessary before inserting the eager
5940 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5941 	 * will succeed but undo everything if it fails.
5942 	 */
5943 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5944 	eager->tcp_irs = seg_seq;
5945 	eager->tcp_rack = seg_seq;
5946 	eager->tcp_rnxt = seg_seq + 1;
5947 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5948 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5949 	eager->tcp_state = TCPS_SYN_RCVD;
5950 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5951 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5952 	if (mp1 == NULL) {
5953 		/*
5954 		 * Increment the ref count as we are going to
5955 		 * enqueueing an mp in squeue
5956 		 */
5957 		CONN_INC_REF(econnp);
5958 		goto error;
5959 	}
5960 	DB_CPID(mp1) = tcp->tcp_cpid;
5961 	eager->tcp_cpid = tcp->tcp_cpid;
5962 	eager->tcp_open_time = lbolt64;
5963 
5964 	/*
5965 	 * We need to start the rto timer. In normal case, we start
5966 	 * the timer after sending the packet on the wire (or at
5967 	 * least believing that packet was sent by waiting for
5968 	 * CALL_IP_WPUT() to return). Since this is the first packet
5969 	 * being sent on the wire for the eager, our initial tcp_rto
5970 	 * is at least tcp_rexmit_interval_min which is a fairly
5971 	 * large value to allow the algorithm to adjust slowly to large
5972 	 * fluctuations of RTT during first few transmissions.
5973 	 *
5974 	 * Starting the timer first and then sending the packet in this
5975 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5976 	 * is of the order of several 100ms and starting the timer
5977 	 * first and then sending the packet will result in difference
5978 	 * of few micro seconds.
5979 	 *
5980 	 * Without this optimization, we are forced to hold the fanout
5981 	 * lock across the ipcl_bind_insert() and sending the packet
5982 	 * so that we don't race against an incoming packet (maybe RST)
5983 	 * for this eager.
5984 	 *
5985 	 * It is necessary to acquire an extra reference on the eager
5986 	 * at this point and hold it until after tcp_send_data() to
5987 	 * ensure against an eager close race.
5988 	 */
5989 
5990 	CONN_INC_REF(eager->tcp_connp);
5991 
5992 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5993 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5994 
5995 
5996 	/*
5997 	 * Insert the eager in its own perimeter now. We are ready to deal
5998 	 * with any packets on eager.
5999 	 */
6000 	if (eager->tcp_ipversion == IPV4_VERSION) {
6001 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6002 			goto error;
6003 		}
6004 	} else {
6005 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6006 			goto error;
6007 		}
6008 	}
6009 
6010 	/* mark conn as fully-bound */
6011 	econnp->conn_fully_bound = B_TRUE;
6012 
6013 	/* Send the SYN-ACK */
6014 	tcp_send_data(eager, eager->tcp_wq, mp1);
6015 	CONN_DEC_REF(eager->tcp_connp);
6016 	freemsg(mp);
6017 
6018 	return;
6019 error:
6020 	freemsg(mp1);
6021 	eager->tcp_closemp_used = B_TRUE;
6022 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6023 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6024 	    econnp, SQTAG_TCP_CONN_REQ_2);
6025 
6026 	/*
6027 	 * If a connection already exists, send the mp to that connections so
6028 	 * that it can be appropriately dealt with.
6029 	 */
6030 	ipst = tcps->tcps_netstack->netstack_ip;
6031 
6032 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6033 		if (!IPCL_IS_CONNECTED(econnp)) {
6034 			/*
6035 			 * Something bad happened. ipcl_conn_insert()
6036 			 * failed because a connection already existed
6037 			 * in connected hash but we can't find it
6038 			 * anymore (someone blew it away). Just
6039 			 * free this message and hopefully remote
6040 			 * will retransmit at which time the SYN can be
6041 			 * treated as a new connection or dealth with
6042 			 * a TH_RST if a connection already exists.
6043 			 */
6044 			CONN_DEC_REF(econnp);
6045 			freemsg(mp);
6046 		} else {
6047 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6048 			    econnp, SQTAG_TCP_CONN_REQ_1);
6049 		}
6050 	} else {
6051 		/* Nobody wants this packet */
6052 		freemsg(mp);
6053 	}
6054 	return;
6055 error3:
6056 	CONN_DEC_REF(econnp);
6057 error2:
6058 	freemsg(mp);
6059 }
6060 
6061 /*
6062  * In an ideal case of vertical partition in NUMA architecture, its
6063  * beneficial to have the listener and all the incoming connections
6064  * tied to the same squeue. The other constraint is that incoming
6065  * connections should be tied to the squeue attached to interrupted
6066  * CPU for obvious locality reason so this leaves the listener to
6067  * be tied to the same squeue. Our only problem is that when listener
6068  * is binding, the CPU that will get interrupted by the NIC whose
6069  * IP address the listener is binding to is not even known. So
6070  * the code below allows us to change that binding at the time the
6071  * CPU is interrupted by virtue of incoming connection's squeue.
6072  *
6073  * This is usefull only in case of a listener bound to a specific IP
6074  * address. For other kind of listeners, they get bound the
6075  * very first time and there is no attempt to rebind them.
6076  */
6077 void
6078 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6079 {
6080 	conn_t		*connp = (conn_t *)arg;
6081 	squeue_t	*sqp = (squeue_t *)arg2;
6082 	squeue_t	*new_sqp;
6083 	uint32_t	conn_flags;
6084 
6085 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6086 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6087 	} else {
6088 		goto done;
6089 	}
6090 
6091 	if (connp->conn_fanout == NULL)
6092 		goto done;
6093 
6094 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6095 		mutex_enter(&connp->conn_fanout->connf_lock);
6096 		mutex_enter(&connp->conn_lock);
6097 		/*
6098 		 * No one from read or write side can access us now
6099 		 * except for already queued packets on this squeue.
6100 		 * But since we haven't changed the squeue yet, they
6101 		 * can't execute. If they are processed after we have
6102 		 * changed the squeue, they are sent back to the
6103 		 * correct squeue down below.
6104 		 * But a listner close can race with processing of
6105 		 * incoming SYN. If incoming SYN processing changes
6106 		 * the squeue then the listener close which is waiting
6107 		 * to enter the squeue would operate on the wrong
6108 		 * squeue. Hence we don't change the squeue here unless
6109 		 * the refcount is exactly the minimum refcount. The
6110 		 * minimum refcount of 4 is counted as - 1 each for
6111 		 * TCP and IP, 1 for being in the classifier hash, and
6112 		 * 1 for the mblk being processed.
6113 		 */
6114 
6115 		if (connp->conn_ref != 4 ||
6116 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6117 			mutex_exit(&connp->conn_lock);
6118 			mutex_exit(&connp->conn_fanout->connf_lock);
6119 			goto done;
6120 		}
6121 		if (connp->conn_sqp != new_sqp) {
6122 			while (connp->conn_sqp != new_sqp)
6123 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6124 		}
6125 
6126 		do {
6127 			conn_flags = connp->conn_flags;
6128 			conn_flags |= IPCL_FULLY_BOUND;
6129 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6130 			    conn_flags);
6131 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6132 
6133 		mutex_exit(&connp->conn_fanout->connf_lock);
6134 		mutex_exit(&connp->conn_lock);
6135 	}
6136 
6137 done:
6138 	if (connp->conn_sqp != sqp) {
6139 		CONN_INC_REF(connp);
6140 		squeue_fill(connp->conn_sqp, mp,
6141 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6142 	} else {
6143 		tcp_conn_request(connp, mp, sqp);
6144 	}
6145 }
6146 
6147 /*
6148  * Successful connect request processing begins when our client passes
6149  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6150  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6151  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6152  *   upstream <- tcp_rput()                <- IP
6153  * After various error checks are completed, tcp_connect() lays
6154  * the target address and port into the composite header template,
6155  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6156  * request followed by an IRE request, and passes the three mblk message
6157  * down to IP looking like this:
6158  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6159  * Processing continues in tcp_rput() when we receive the following message:
6160  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6161  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6162  * to fire off the connection request, and then passes the T_OK_ACK mblk
6163  * upstream that we filled in below.  There are, of course, numerous
6164  * error conditions along the way which truncate the processing described
6165  * above.
6166  */
6167 static void
6168 tcp_connect(tcp_t *tcp, mblk_t *mp)
6169 {
6170 	sin_t		*sin;
6171 	sin6_t		*sin6;
6172 	queue_t		*q = tcp->tcp_wq;
6173 	struct T_conn_req	*tcr;
6174 	ipaddr_t	*dstaddrp;
6175 	in_port_t	dstport;
6176 	uint_t		srcid;
6177 
6178 	tcr = (struct T_conn_req *)mp->b_rptr;
6179 
6180 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6181 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6182 		tcp_err_ack(tcp, mp, TPROTO, 0);
6183 		return;
6184 	}
6185 
6186 	/*
6187 	 * Determine packet type based on type of address passed in
6188 	 * the request should contain an IPv4 or IPv6 address.
6189 	 * Make sure that address family matches the type of
6190 	 * family of the the address passed down
6191 	 */
6192 	switch (tcr->DEST_length) {
6193 	default:
6194 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6195 		return;
6196 
6197 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6198 		/*
6199 		 * XXX: The check for valid DEST_length was not there
6200 		 * in earlier releases and some buggy
6201 		 * TLI apps (e.g Sybase) got away with not feeding
6202 		 * in sin_zero part of address.
6203 		 * We allow that bug to keep those buggy apps humming.
6204 		 * Test suites require the check on DEST_length.
6205 		 * We construct a new mblk with valid DEST_length
6206 		 * free the original so the rest of the code does
6207 		 * not have to keep track of this special shorter
6208 		 * length address case.
6209 		 */
6210 		mblk_t *nmp;
6211 		struct T_conn_req *ntcr;
6212 		sin_t *nsin;
6213 
6214 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6215 		    tcr->OPT_length, BPRI_HI);
6216 		if (nmp == NULL) {
6217 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6218 			return;
6219 		}
6220 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6221 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6222 		ntcr->PRIM_type = T_CONN_REQ;
6223 		ntcr->DEST_length = sizeof (sin_t);
6224 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6225 
6226 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6227 		*nsin = sin_null;
6228 		/* Get pointer to shorter address to copy from original mp */
6229 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6230 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6231 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6232 			freemsg(nmp);
6233 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6234 			return;
6235 		}
6236 		nsin->sin_family = sin->sin_family;
6237 		nsin->sin_port = sin->sin_port;
6238 		nsin->sin_addr = sin->sin_addr;
6239 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6240 		nmp->b_wptr = (uchar_t *)&nsin[1];
6241 		if (tcr->OPT_length != 0) {
6242 			ntcr->OPT_length = tcr->OPT_length;
6243 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6244 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6245 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6246 			    tcr->OPT_length);
6247 			nmp->b_wptr += tcr->OPT_length;
6248 		}
6249 		freemsg(mp);	/* original mp freed */
6250 		mp = nmp;	/* re-initialize original variables */
6251 		tcr = ntcr;
6252 	}
6253 	/* FALLTHRU */
6254 
6255 	case sizeof (sin_t):
6256 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6257 		    sizeof (sin_t));
6258 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6259 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6260 			return;
6261 		}
6262 		if (tcp->tcp_family != AF_INET ||
6263 		    sin->sin_family != AF_INET) {
6264 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6265 			return;
6266 		}
6267 		if (sin->sin_port == 0) {
6268 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6269 			return;
6270 		}
6271 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6272 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6273 			return;
6274 		}
6275 
6276 		break;
6277 
6278 	case sizeof (sin6_t):
6279 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6280 		    sizeof (sin6_t));
6281 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6282 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6283 			return;
6284 		}
6285 		if (tcp->tcp_family != AF_INET6 ||
6286 		    sin6->sin6_family != AF_INET6) {
6287 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6288 			return;
6289 		}
6290 		if (sin6->sin6_port == 0) {
6291 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6292 			return;
6293 		}
6294 		break;
6295 	}
6296 	/*
6297 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6298 	 * should key on their sequence number and cut them loose.
6299 	 */
6300 
6301 	/*
6302 	 * If options passed in, feed it for verification and handling
6303 	 */
6304 	if (tcr->OPT_length != 0) {
6305 		mblk_t	*ok_mp;
6306 		mblk_t	*discon_mp;
6307 		mblk_t  *conn_opts_mp;
6308 		int t_error, sys_error, do_disconnect;
6309 
6310 		conn_opts_mp = NULL;
6311 
6312 		if (tcp_conprim_opt_process(tcp, mp,
6313 		    &do_disconnect, &t_error, &sys_error) < 0) {
6314 			if (do_disconnect) {
6315 				ASSERT(t_error == 0 && sys_error == 0);
6316 				discon_mp = mi_tpi_discon_ind(NULL,
6317 				    ECONNREFUSED, 0);
6318 				if (!discon_mp) {
6319 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6320 					    TSYSERR, ENOMEM);
6321 					return;
6322 				}
6323 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6324 				if (!ok_mp) {
6325 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6326 					    TSYSERR, ENOMEM);
6327 					return;
6328 				}
6329 				qreply(q, ok_mp);
6330 				qreply(q, discon_mp); /* no flush! */
6331 			} else {
6332 				ASSERT(t_error != 0);
6333 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6334 				    sys_error);
6335 			}
6336 			return;
6337 		}
6338 		/*
6339 		 * Success in setting options, the mp option buffer represented
6340 		 * by OPT_length/offset has been potentially modified and
6341 		 * contains results of option processing. We copy it in
6342 		 * another mp to save it for potentially influencing returning
6343 		 * it in T_CONN_CONN.
6344 		 */
6345 		if (tcr->OPT_length != 0) { /* there are resulting options */
6346 			conn_opts_mp = copyb(mp);
6347 			if (!conn_opts_mp) {
6348 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6349 				    TSYSERR, ENOMEM);
6350 				return;
6351 			}
6352 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6353 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6354 			/*
6355 			 * Note:
6356 			 * These resulting option negotiation can include any
6357 			 * end-to-end negotiation options but there no such
6358 			 * thing (yet?) in our TCP/IP.
6359 			 */
6360 		}
6361 	}
6362 
6363 	/*
6364 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6365 	 * make sure that the template IP header in the tcp structure is an
6366 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6367 	 * need to this before we call tcp_bindi() so that the port lookup
6368 	 * code will look for ports in the correct port space (IPv4 and
6369 	 * IPv6 have separate port spaces).
6370 	 */
6371 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6372 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6373 		int err = 0;
6374 
6375 		err = tcp_header_init_ipv4(tcp);
6376 		if (err != 0) {
6377 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6378 			goto connect_failed;
6379 		}
6380 		if (tcp->tcp_lport != 0)
6381 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6382 	}
6383 
6384 	switch (tcp->tcp_state) {
6385 	case TCPS_IDLE:
6386 		/*
6387 		 * We support quick connect, refer to comments in
6388 		 * tcp_connect_*()
6389 		 */
6390 		/* FALLTHRU */
6391 	case TCPS_BOUND:
6392 	case TCPS_LISTEN:
6393 		if (tcp->tcp_family == AF_INET6) {
6394 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6395 				tcp_connect_ipv6(tcp, mp,
6396 				    &sin6->sin6_addr,
6397 				    sin6->sin6_port, sin6->sin6_flowinfo,
6398 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6399 				return;
6400 			}
6401 			/*
6402 			 * Destination adress is mapped IPv6 address.
6403 			 * Source bound address should be unspecified or
6404 			 * IPv6 mapped address as well.
6405 			 */
6406 			if (!IN6_IS_ADDR_UNSPECIFIED(
6407 			    &tcp->tcp_bound_source_v6) &&
6408 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6409 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6410 				    EADDRNOTAVAIL);
6411 				break;
6412 			}
6413 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6414 			dstport = sin6->sin6_port;
6415 			srcid = sin6->__sin6_src_id;
6416 		} else {
6417 			dstaddrp = &sin->sin_addr.s_addr;
6418 			dstport = sin->sin_port;
6419 			srcid = 0;
6420 		}
6421 
6422 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6423 		return;
6424 	default:
6425 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6426 		break;
6427 	}
6428 	/*
6429 	 * Note: Code below is the "failure" case
6430 	 */
6431 	/* return error ack and blow away saved option results if any */
6432 connect_failed:
6433 	if (mp != NULL)
6434 		putnext(tcp->tcp_rq, mp);
6435 	else {
6436 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6437 		    TSYSERR, ENOMEM);
6438 	}
6439 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6440 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6441 }
6442 
6443 /*
6444  * Handle connect to IPv4 destinations, including connections for AF_INET6
6445  * sockets connecting to IPv4 mapped IPv6 destinations.
6446  */
6447 static void
6448 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6449     uint_t srcid)
6450 {
6451 	tcph_t	*tcph;
6452 	mblk_t	*mp1;
6453 	ipaddr_t dstaddr = *dstaddrp;
6454 	int32_t	oldstate;
6455 	uint16_t lport;
6456 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6457 
6458 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6459 
6460 	/* Check for attempt to connect to INADDR_ANY */
6461 	if (dstaddr == INADDR_ANY)  {
6462 		/*
6463 		 * SunOS 4.x and 4.3 BSD allow an application
6464 		 * to connect a TCP socket to INADDR_ANY.
6465 		 * When they do this, the kernel picks the
6466 		 * address of one interface and uses it
6467 		 * instead.  The kernel usually ends up
6468 		 * picking the address of the loopback
6469 		 * interface.  This is an undocumented feature.
6470 		 * However, we provide the same thing here
6471 		 * in order to have source and binary
6472 		 * compatibility with SunOS 4.x.
6473 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6474 		 * generate the T_CONN_CON.
6475 		 */
6476 		dstaddr = htonl(INADDR_LOOPBACK);
6477 		*dstaddrp = dstaddr;
6478 	}
6479 
6480 	/* Handle __sin6_src_id if socket not bound to an IP address */
6481 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6482 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6483 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6484 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6485 		    tcp->tcp_ipha->ipha_src);
6486 	}
6487 
6488 	/*
6489 	 * Don't let an endpoint connect to itself.  Note that
6490 	 * the test here does not catch the case where the
6491 	 * source IP addr was left unspecified by the user. In
6492 	 * this case, the source addr is set in tcp_adapt_ire()
6493 	 * using the reply to the T_BIND message that we send
6494 	 * down to IP here and the check is repeated in tcp_rput_other.
6495 	 */
6496 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6497 	    dstport == tcp->tcp_lport) {
6498 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6499 		goto failed;
6500 	}
6501 
6502 	tcp->tcp_ipha->ipha_dst = dstaddr;
6503 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6504 
6505 	/*
6506 	 * Massage a source route if any putting the first hop
6507 	 * in iph_dst. Compute a starting value for the checksum which
6508 	 * takes into account that the original iph_dst should be
6509 	 * included in the checksum but that ip will include the
6510 	 * first hop in the source route in the tcp checksum.
6511 	 */
6512 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6513 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6514 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6515 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6516 	if ((int)tcp->tcp_sum < 0)
6517 		tcp->tcp_sum--;
6518 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6519 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6520 	    (tcp->tcp_sum >> 16));
6521 	tcph = tcp->tcp_tcph;
6522 	*(uint16_t *)tcph->th_fport = dstport;
6523 	tcp->tcp_fport = dstport;
6524 
6525 	oldstate = tcp->tcp_state;
6526 	/*
6527 	 * At this point the remote destination address and remote port fields
6528 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6529 	 * have to see which state tcp was in so we can take apropriate action.
6530 	 */
6531 	if (oldstate == TCPS_IDLE) {
6532 		/*
6533 		 * We support a quick connect capability here, allowing
6534 		 * clients to transition directly from IDLE to SYN_SENT
6535 		 * tcp_bindi will pick an unused port, insert the connection
6536 		 * in the bind hash and transition to BOUND state.
6537 		 */
6538 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6539 		    tcp, B_TRUE);
6540 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6541 		    B_FALSE, B_FALSE);
6542 		if (lport == 0) {
6543 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6544 			goto failed;
6545 		}
6546 	}
6547 	tcp->tcp_state = TCPS_SYN_SENT;
6548 
6549 	/*
6550 	 * TODO: allow data with connect requests
6551 	 * by unlinking M_DATA trailers here and
6552 	 * linking them in behind the T_OK_ACK mblk.
6553 	 * The tcp_rput() bind ack handler would then
6554 	 * feed them to tcp_wput_data() rather than call
6555 	 * tcp_timer().
6556 	 */
6557 	mp = mi_tpi_ok_ack_alloc(mp);
6558 	if (!mp) {
6559 		tcp->tcp_state = oldstate;
6560 		goto failed;
6561 	}
6562 	if (tcp->tcp_family == AF_INET) {
6563 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6564 		    sizeof (ipa_conn_t));
6565 	} else {
6566 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6567 		    sizeof (ipa6_conn_t));
6568 	}
6569 	if (mp1) {
6570 		/*
6571 		 * We need to make sure that the conn_recv is set to a non-null
6572 		 * value before we insert the conn_t into the classifier table.
6573 		 * This is to avoid a race with an incoming packet which does
6574 		 * an ipcl_classify().
6575 		 */
6576 		tcp->tcp_connp->conn_recv = tcp_input;
6577 
6578 		/* Hang onto the T_OK_ACK for later. */
6579 		linkb(mp1, mp);
6580 		mblk_setcred(mp1, tcp->tcp_cred);
6581 		if (tcp->tcp_family == AF_INET)
6582 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6583 		else {
6584 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6585 			    &tcp->tcp_sticky_ipp);
6586 		}
6587 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6588 		tcp->tcp_active_open = 1;
6589 		/*
6590 		 * If the bind cannot complete immediately
6591 		 * IP will arrange to call tcp_rput_other
6592 		 * when the bind completes.
6593 		 */
6594 		if (mp1 != NULL)
6595 			tcp_rput_other(tcp, mp1);
6596 		return;
6597 	}
6598 	/* Error case */
6599 	tcp->tcp_state = oldstate;
6600 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6601 
6602 failed:
6603 	/* return error ack and blow away saved option results if any */
6604 	if (mp != NULL)
6605 		putnext(tcp->tcp_rq, mp);
6606 	else {
6607 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6608 		    TSYSERR, ENOMEM);
6609 	}
6610 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6611 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6612 
6613 }
6614 
6615 /*
6616  * Handle connect to IPv6 destinations.
6617  */
6618 static void
6619 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6620     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6621 {
6622 	tcph_t	*tcph;
6623 	mblk_t	*mp1;
6624 	ip6_rthdr_t *rth;
6625 	int32_t  oldstate;
6626 	uint16_t lport;
6627 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6628 
6629 	ASSERT(tcp->tcp_family == AF_INET6);
6630 
6631 	/*
6632 	 * If we're here, it means that the destination address is a native
6633 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6634 	 * reason why it might not be IPv6 is if the socket was bound to an
6635 	 * IPv4-mapped IPv6 address.
6636 	 */
6637 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6638 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6639 		goto failed;
6640 	}
6641 
6642 	/*
6643 	 * Interpret a zero destination to mean loopback.
6644 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6645 	 * generate the T_CONN_CON.
6646 	 */
6647 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6648 		*dstaddrp = ipv6_loopback;
6649 	}
6650 
6651 	/* Handle __sin6_src_id if socket not bound to an IP address */
6652 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6653 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6654 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6655 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6656 	}
6657 
6658 	/*
6659 	 * Take care of the scope_id now and add ip6i_t
6660 	 * if ip6i_t is not already allocated through TCP
6661 	 * sticky options. At this point tcp_ip6h does not
6662 	 * have dst info, thus use dstaddrp.
6663 	 */
6664 	if (scope_id != 0 &&
6665 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6666 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6667 		ip6i_t  *ip6i;
6668 
6669 		ipp->ipp_ifindex = scope_id;
6670 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6671 
6672 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6673 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6674 			/* Already allocated */
6675 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6676 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6677 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6678 		} else {
6679 			int reterr;
6680 
6681 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6682 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6683 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6684 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6685 			if (reterr != 0)
6686 				goto failed;
6687 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6688 		}
6689 	}
6690 
6691 	/*
6692 	 * Don't let an endpoint connect to itself.  Note that
6693 	 * the test here does not catch the case where the
6694 	 * source IP addr was left unspecified by the user. In
6695 	 * this case, the source addr is set in tcp_adapt_ire()
6696 	 * using the reply to the T_BIND message that we send
6697 	 * down to IP here and the check is repeated in tcp_rput_other.
6698 	 */
6699 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6700 	    (dstport == tcp->tcp_lport)) {
6701 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6702 		goto failed;
6703 	}
6704 
6705 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6706 	tcp->tcp_remote_v6 = *dstaddrp;
6707 	tcp->tcp_ip6h->ip6_vcf =
6708 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6709 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6710 
6711 
6712 	/*
6713 	 * Massage a routing header (if present) putting the first hop
6714 	 * in ip6_dst. Compute a starting value for the checksum which
6715 	 * takes into account that the original ip6_dst should be
6716 	 * included in the checksum but that ip will include the
6717 	 * first hop in the source route in the tcp checksum.
6718 	 */
6719 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6720 	if (rth != NULL) {
6721 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6722 		    tcps->tcps_netstack);
6723 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6724 		    (tcp->tcp_sum >> 16));
6725 	} else {
6726 		tcp->tcp_sum = 0;
6727 	}
6728 
6729 	tcph = tcp->tcp_tcph;
6730 	*(uint16_t *)tcph->th_fport = dstport;
6731 	tcp->tcp_fport = dstport;
6732 
6733 	oldstate = tcp->tcp_state;
6734 	/*
6735 	 * At this point the remote destination address and remote port fields
6736 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6737 	 * have to see which state tcp was in so we can take apropriate action.
6738 	 */
6739 	if (oldstate == TCPS_IDLE) {
6740 		/*
6741 		 * We support a quick connect capability here, allowing
6742 		 * clients to transition directly from IDLE to SYN_SENT
6743 		 * tcp_bindi will pick an unused port, insert the connection
6744 		 * in the bind hash and transition to BOUND state.
6745 		 */
6746 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6747 		    tcp, B_TRUE);
6748 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6749 		    B_FALSE, B_FALSE);
6750 		if (lport == 0) {
6751 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6752 			goto failed;
6753 		}
6754 	}
6755 	tcp->tcp_state = TCPS_SYN_SENT;
6756 	/*
6757 	 * TODO: allow data with connect requests
6758 	 * by unlinking M_DATA trailers here and
6759 	 * linking them in behind the T_OK_ACK mblk.
6760 	 * The tcp_rput() bind ack handler would then
6761 	 * feed them to tcp_wput_data() rather than call
6762 	 * tcp_timer().
6763 	 */
6764 	mp = mi_tpi_ok_ack_alloc(mp);
6765 	if (!mp) {
6766 		tcp->tcp_state = oldstate;
6767 		goto failed;
6768 	}
6769 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6770 	if (mp1) {
6771 		/*
6772 		 * We need to make sure that the conn_recv is set to a non-null
6773 		 * value before we insert the conn_t into the classifier table.
6774 		 * This is to avoid a race with an incoming packet which does
6775 		 * an ipcl_classify().
6776 		 */
6777 		tcp->tcp_connp->conn_recv = tcp_input;
6778 
6779 		/* Hang onto the T_OK_ACK for later. */
6780 		linkb(mp1, mp);
6781 		mblk_setcred(mp1, tcp->tcp_cred);
6782 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6783 		    &tcp->tcp_sticky_ipp);
6784 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6785 		tcp->tcp_active_open = 1;
6786 		/* ip_bind_v6() may return ACK or ERROR */
6787 		if (mp1 != NULL)
6788 			tcp_rput_other(tcp, mp1);
6789 		return;
6790 	}
6791 	/* Error case */
6792 	tcp->tcp_state = oldstate;
6793 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6794 
6795 failed:
6796 	/* return error ack and blow away saved option results if any */
6797 	if (mp != NULL)
6798 		putnext(tcp->tcp_rq, mp);
6799 	else {
6800 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6801 		    TSYSERR, ENOMEM);
6802 	}
6803 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6804 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6805 }
6806 
6807 /*
6808  * We need a stream q for detached closing tcp connections
6809  * to use.  Our client hereby indicates that this q is the
6810  * one to use.
6811  */
6812 static void
6813 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6814 {
6815 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6816 	queue_t	*q = tcp->tcp_wq;
6817 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6818 
6819 #ifdef NS_DEBUG
6820 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6821 	    tcps->tcps_netstack->netstack_stackid);
6822 #endif
6823 	mp->b_datap->db_type = M_IOCACK;
6824 	iocp->ioc_count = 0;
6825 	mutex_enter(&tcps->tcps_g_q_lock);
6826 	if (tcps->tcps_g_q != NULL) {
6827 		mutex_exit(&tcps->tcps_g_q_lock);
6828 		iocp->ioc_error = EALREADY;
6829 	} else {
6830 		mblk_t *mp1;
6831 
6832 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6833 		if (mp1 == NULL) {
6834 			mutex_exit(&tcps->tcps_g_q_lock);
6835 			iocp->ioc_error = ENOMEM;
6836 		} else {
6837 			tcps->tcps_g_q = tcp->tcp_rq;
6838 			mutex_exit(&tcps->tcps_g_q_lock);
6839 			iocp->ioc_error = 0;
6840 			iocp->ioc_rval = 0;
6841 			/*
6842 			 * We are passing tcp_sticky_ipp as NULL
6843 			 * as it is not useful for tcp_default queue
6844 			 *
6845 			 * Set conn_recv just in case.
6846 			 */
6847 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6848 
6849 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6850 			if (mp1 != NULL)
6851 				tcp_rput_other(tcp, mp1);
6852 		}
6853 	}
6854 	qreply(q, mp);
6855 }
6856 
6857 /*
6858  * Our client hereby directs us to reject the connection request
6859  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6860  * of sending the appropriate RST, not an ICMP error.
6861  */
6862 static void
6863 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6864 {
6865 	tcp_t	*ltcp = NULL;
6866 	t_scalar_t seqnum;
6867 	conn_t	*connp;
6868 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6869 
6870 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6871 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6872 		tcp_err_ack(tcp, mp, TPROTO, 0);
6873 		return;
6874 	}
6875 
6876 	/*
6877 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6878 	 * when the stream is in BOUND state. Do not send a reset,
6879 	 * since the destination IP address is not valid, and it can
6880 	 * be the initialized value of all zeros (broadcast address).
6881 	 *
6882 	 * If TCP has sent down a bind request to IP and has not
6883 	 * received the reply, reject the request.  Otherwise, TCP
6884 	 * will be confused.
6885 	 */
6886 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6887 		if (tcp->tcp_debug) {
6888 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6889 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6890 		}
6891 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6892 		return;
6893 	}
6894 
6895 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6896 
6897 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6898 
6899 		/*
6900 		 * According to TPI, for non-listeners, ignore seqnum
6901 		 * and disconnect.
6902 		 * Following interpretation of -1 seqnum is historical
6903 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6904 		 * a valid seqnum should not be -1).
6905 		 *
6906 		 *	-1 means disconnect everything
6907 		 *	regardless even on a listener.
6908 		 */
6909 
6910 		int old_state = tcp->tcp_state;
6911 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6912 
6913 		/*
6914 		 * The connection can't be on the tcp_time_wait_head list
6915 		 * since it is not detached.
6916 		 */
6917 		ASSERT(tcp->tcp_time_wait_next == NULL);
6918 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6919 		ASSERT(tcp->tcp_time_wait_expire == 0);
6920 		ltcp = NULL;
6921 		/*
6922 		 * If it used to be a listener, check to make sure no one else
6923 		 * has taken the port before switching back to LISTEN state.
6924 		 */
6925 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6926 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6927 			    tcp->tcp_ipha->ipha_src,
6928 			    tcp->tcp_connp->conn_zoneid, ipst);
6929 			if (connp != NULL)
6930 				ltcp = connp->conn_tcp;
6931 		} else {
6932 			/* Allow tcp_bound_if listeners? */
6933 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6934 			    &tcp->tcp_ip6h->ip6_src, 0,
6935 			    tcp->tcp_connp->conn_zoneid, ipst);
6936 			if (connp != NULL)
6937 				ltcp = connp->conn_tcp;
6938 		}
6939 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6940 			tcp->tcp_state = TCPS_LISTEN;
6941 		} else if (old_state > TCPS_BOUND) {
6942 			tcp->tcp_conn_req_max = 0;
6943 			tcp->tcp_state = TCPS_BOUND;
6944 		}
6945 		if (ltcp != NULL)
6946 			CONN_DEC_REF(ltcp->tcp_connp);
6947 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6948 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6949 		} else if (old_state == TCPS_ESTABLISHED ||
6950 		    old_state == TCPS_CLOSE_WAIT) {
6951 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6952 		}
6953 
6954 		if (tcp->tcp_fused)
6955 			tcp_unfuse(tcp);
6956 
6957 		mutex_enter(&tcp->tcp_eager_lock);
6958 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6959 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6960 			tcp_eager_cleanup(tcp, 0);
6961 		}
6962 		mutex_exit(&tcp->tcp_eager_lock);
6963 
6964 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6965 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6966 
6967 		tcp_reinit(tcp);
6968 
6969 		if (old_state >= TCPS_ESTABLISHED) {
6970 			/* Send M_FLUSH according to TPI */
6971 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6972 		}
6973 		mp = mi_tpi_ok_ack_alloc(mp);
6974 		if (mp)
6975 			putnext(tcp->tcp_rq, mp);
6976 		return;
6977 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6978 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6979 		return;
6980 	}
6981 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6982 		/* Send M_FLUSH according to TPI */
6983 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6984 	}
6985 	mp = mi_tpi_ok_ack_alloc(mp);
6986 	if (mp)
6987 		putnext(tcp->tcp_rq, mp);
6988 }
6989 
6990 /*
6991  * Diagnostic routine used to return a string associated with the tcp state.
6992  * Note that if the caller does not supply a buffer, it will use an internal
6993  * static string.  This means that if multiple threads call this function at
6994  * the same time, output can be corrupted...  Note also that this function
6995  * does not check the size of the supplied buffer.  The caller has to make
6996  * sure that it is big enough.
6997  */
6998 static char *
6999 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7000 {
7001 	char		buf1[30];
7002 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7003 	char		*buf;
7004 	char		*cp;
7005 	in6_addr_t	local, remote;
7006 	char		local_addrbuf[INET6_ADDRSTRLEN];
7007 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7008 
7009 	if (sup_buf != NULL)
7010 		buf = sup_buf;
7011 	else
7012 		buf = priv_buf;
7013 
7014 	if (tcp == NULL)
7015 		return ("NULL_TCP");
7016 	switch (tcp->tcp_state) {
7017 	case TCPS_CLOSED:
7018 		cp = "TCP_CLOSED";
7019 		break;
7020 	case TCPS_IDLE:
7021 		cp = "TCP_IDLE";
7022 		break;
7023 	case TCPS_BOUND:
7024 		cp = "TCP_BOUND";
7025 		break;
7026 	case TCPS_LISTEN:
7027 		cp = "TCP_LISTEN";
7028 		break;
7029 	case TCPS_SYN_SENT:
7030 		cp = "TCP_SYN_SENT";
7031 		break;
7032 	case TCPS_SYN_RCVD:
7033 		cp = "TCP_SYN_RCVD";
7034 		break;
7035 	case TCPS_ESTABLISHED:
7036 		cp = "TCP_ESTABLISHED";
7037 		break;
7038 	case TCPS_CLOSE_WAIT:
7039 		cp = "TCP_CLOSE_WAIT";
7040 		break;
7041 	case TCPS_FIN_WAIT_1:
7042 		cp = "TCP_FIN_WAIT_1";
7043 		break;
7044 	case TCPS_CLOSING:
7045 		cp = "TCP_CLOSING";
7046 		break;
7047 	case TCPS_LAST_ACK:
7048 		cp = "TCP_LAST_ACK";
7049 		break;
7050 	case TCPS_FIN_WAIT_2:
7051 		cp = "TCP_FIN_WAIT_2";
7052 		break;
7053 	case TCPS_TIME_WAIT:
7054 		cp = "TCP_TIME_WAIT";
7055 		break;
7056 	default:
7057 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7058 		cp = buf1;
7059 		break;
7060 	}
7061 	switch (format) {
7062 	case DISP_ADDR_AND_PORT:
7063 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7064 			/*
7065 			 * Note that we use the remote address in the tcp_b
7066 			 * structure.  This means that it will print out
7067 			 * the real destination address, not the next hop's
7068 			 * address if source routing is used.
7069 			 */
7070 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7071 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7072 
7073 		} else {
7074 			local = tcp->tcp_ip_src_v6;
7075 			remote = tcp->tcp_remote_v6;
7076 		}
7077 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7078 		    sizeof (local_addrbuf));
7079 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7080 		    sizeof (remote_addrbuf));
7081 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7082 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7083 		    ntohs(tcp->tcp_fport), cp);
7084 		break;
7085 	case DISP_PORT_ONLY:
7086 	default:
7087 		(void) mi_sprintf(buf, "[%u, %u] %s",
7088 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7089 		break;
7090 	}
7091 
7092 	return (buf);
7093 }
7094 
7095 /*
7096  * Called via squeue to get on to eager's perimeter. It sends a
7097  * TH_RST if eager is in the fanout table. The listener wants the
7098  * eager to disappear either by means of tcp_eager_blowoff() or
7099  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7100  * called (via squeue) if the eager cannot be inserted in the
7101  * fanout table in tcp_conn_request().
7102  */
7103 /* ARGSUSED */
7104 void
7105 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7106 {
7107 	conn_t	*econnp = (conn_t *)arg;
7108 	tcp_t	*eager = econnp->conn_tcp;
7109 	tcp_t	*listener = eager->tcp_listener;
7110 	tcp_stack_t	*tcps = eager->tcp_tcps;
7111 
7112 	/*
7113 	 * We could be called because listener is closing. Since
7114 	 * the eager is using listener's queue's, its not safe.
7115 	 * Better use the default queue just to send the TH_RST
7116 	 * out.
7117 	 */
7118 	ASSERT(tcps->tcps_g_q != NULL);
7119 	eager->tcp_rq = tcps->tcps_g_q;
7120 	eager->tcp_wq = WR(tcps->tcps_g_q);
7121 
7122 	/*
7123 	 * An eager's conn_fanout will be NULL if it's a duplicate
7124 	 * for an existing 4-tuples in the conn fanout table.
7125 	 * We don't want to send an RST out in such case.
7126 	 */
7127 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7128 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7129 		    eager, eager->tcp_snxt, 0, TH_RST);
7130 	}
7131 
7132 	/* We are here because listener wants this eager gone */
7133 	if (listener != NULL) {
7134 		mutex_enter(&listener->tcp_eager_lock);
7135 		tcp_eager_unlink(eager);
7136 		if (eager->tcp_tconnind_started) {
7137 			/*
7138 			 * The eager has sent a conn_ind up to the
7139 			 * listener but listener decides to close
7140 			 * instead. We need to drop the extra ref
7141 			 * placed on eager in tcp_rput_data() before
7142 			 * sending the conn_ind to listener.
7143 			 */
7144 			CONN_DEC_REF(econnp);
7145 		}
7146 		mutex_exit(&listener->tcp_eager_lock);
7147 		CONN_DEC_REF(listener->tcp_connp);
7148 	}
7149 
7150 	if (eager->tcp_state > TCPS_BOUND)
7151 		tcp_close_detached(eager);
7152 }
7153 
7154 /*
7155  * Reset any eager connection hanging off this listener marked
7156  * with 'seqnum' and then reclaim it's resources.
7157  */
7158 static boolean_t
7159 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7160 {
7161 	tcp_t	*eager;
7162 	mblk_t 	*mp;
7163 	tcp_stack_t	*tcps = listener->tcp_tcps;
7164 
7165 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7166 	eager = listener;
7167 	mutex_enter(&listener->tcp_eager_lock);
7168 	do {
7169 		eager = eager->tcp_eager_next_q;
7170 		if (eager == NULL) {
7171 			mutex_exit(&listener->tcp_eager_lock);
7172 			return (B_FALSE);
7173 		}
7174 	} while (eager->tcp_conn_req_seqnum != seqnum);
7175 
7176 	if (eager->tcp_closemp_used) {
7177 		mutex_exit(&listener->tcp_eager_lock);
7178 		return (B_TRUE);
7179 	}
7180 	eager->tcp_closemp_used = B_TRUE;
7181 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7182 	CONN_INC_REF(eager->tcp_connp);
7183 	mutex_exit(&listener->tcp_eager_lock);
7184 	mp = &eager->tcp_closemp;
7185 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7186 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7187 	return (B_TRUE);
7188 }
7189 
7190 /*
7191  * Reset any eager connection hanging off this listener
7192  * and then reclaim it's resources.
7193  */
7194 static void
7195 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7196 {
7197 	tcp_t	*eager;
7198 	mblk_t	*mp;
7199 	tcp_stack_t	*tcps = listener->tcp_tcps;
7200 
7201 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7202 
7203 	if (!q0_only) {
7204 		/* First cleanup q */
7205 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7206 		eager = listener->tcp_eager_next_q;
7207 		while (eager != NULL) {
7208 			if (!eager->tcp_closemp_used) {
7209 				eager->tcp_closemp_used = B_TRUE;
7210 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7211 				CONN_INC_REF(eager->tcp_connp);
7212 				mp = &eager->tcp_closemp;
7213 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7214 				    tcp_eager_kill, eager->tcp_connp,
7215 				    SQTAG_TCP_EAGER_CLEANUP);
7216 			}
7217 			eager = eager->tcp_eager_next_q;
7218 		}
7219 	}
7220 	/* Then cleanup q0 */
7221 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7222 	eager = listener->tcp_eager_next_q0;
7223 	while (eager != listener) {
7224 		if (!eager->tcp_closemp_used) {
7225 			eager->tcp_closemp_used = B_TRUE;
7226 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7227 			CONN_INC_REF(eager->tcp_connp);
7228 			mp = &eager->tcp_closemp;
7229 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7230 			    tcp_eager_kill, eager->tcp_connp,
7231 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7232 		}
7233 		eager = eager->tcp_eager_next_q0;
7234 	}
7235 }
7236 
7237 /*
7238  * If we are an eager connection hanging off a listener that hasn't
7239  * formally accepted the connection yet, get off his list and blow off
7240  * any data that we have accumulated.
7241  */
7242 static void
7243 tcp_eager_unlink(tcp_t *tcp)
7244 {
7245 	tcp_t	*listener = tcp->tcp_listener;
7246 
7247 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7248 	ASSERT(listener != NULL);
7249 	if (tcp->tcp_eager_next_q0 != NULL) {
7250 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7251 
7252 		/* Remove the eager tcp from q0 */
7253 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7254 		    tcp->tcp_eager_prev_q0;
7255 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7256 		    tcp->tcp_eager_next_q0;
7257 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7258 		listener->tcp_conn_req_cnt_q0--;
7259 
7260 		tcp->tcp_eager_next_q0 = NULL;
7261 		tcp->tcp_eager_prev_q0 = NULL;
7262 
7263 		/*
7264 		 * Take the eager out, if it is in the list of droppable
7265 		 * eagers.
7266 		 */
7267 		MAKE_UNDROPPABLE(tcp);
7268 
7269 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7270 			/* we have timed out before */
7271 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7272 			listener->tcp_syn_rcvd_timeout--;
7273 		}
7274 	} else {
7275 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7276 		tcp_t	*prev = NULL;
7277 
7278 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7279 			if (tcpp[0] == tcp) {
7280 				if (listener->tcp_eager_last_q == tcp) {
7281 					/*
7282 					 * If we are unlinking the last
7283 					 * element on the list, adjust
7284 					 * tail pointer. Set tail pointer
7285 					 * to nil when list is empty.
7286 					 */
7287 					ASSERT(tcp->tcp_eager_next_q == NULL);
7288 					if (listener->tcp_eager_last_q ==
7289 					    listener->tcp_eager_next_q) {
7290 						listener->tcp_eager_last_q =
7291 						    NULL;
7292 					} else {
7293 						/*
7294 						 * We won't get here if there
7295 						 * is only one eager in the
7296 						 * list.
7297 						 */
7298 						ASSERT(prev != NULL);
7299 						listener->tcp_eager_last_q =
7300 						    prev;
7301 					}
7302 				}
7303 				tcpp[0] = tcp->tcp_eager_next_q;
7304 				tcp->tcp_eager_next_q = NULL;
7305 				tcp->tcp_eager_last_q = NULL;
7306 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7307 				listener->tcp_conn_req_cnt_q--;
7308 				break;
7309 			}
7310 			prev = tcpp[0];
7311 		}
7312 	}
7313 	tcp->tcp_listener = NULL;
7314 }
7315 
7316 /* Shorthand to generate and send TPI error acks to our client */
7317 static void
7318 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7319 {
7320 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7321 		putnext(tcp->tcp_rq, mp);
7322 }
7323 
7324 /* Shorthand to generate and send TPI error acks to our client */
7325 static void
7326 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7327     int t_error, int sys_error)
7328 {
7329 	struct T_error_ack	*teackp;
7330 
7331 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7332 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7333 		teackp = (struct T_error_ack *)mp->b_rptr;
7334 		teackp->ERROR_prim = primitive;
7335 		teackp->TLI_error = t_error;
7336 		teackp->UNIX_error = sys_error;
7337 		putnext(tcp->tcp_rq, mp);
7338 	}
7339 }
7340 
7341 /*
7342  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7343  * but instead the code relies on:
7344  * - the fact that the address of the array and its size never changes
7345  * - the atomic assignment of the elements of the array
7346  */
7347 /* ARGSUSED */
7348 static int
7349 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7350 {
7351 	int i;
7352 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7353 
7354 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7355 		if (tcps->tcps_g_epriv_ports[i] != 0)
7356 			(void) mi_mpprintf(mp, "%d ",
7357 			    tcps->tcps_g_epriv_ports[i]);
7358 	}
7359 	return (0);
7360 }
7361 
7362 /*
7363  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7364  * threads from changing it at the same time.
7365  */
7366 /* ARGSUSED */
7367 static int
7368 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7369     cred_t *cr)
7370 {
7371 	long	new_value;
7372 	int	i;
7373 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7374 
7375 	/*
7376 	 * Fail the request if the new value does not lie within the
7377 	 * port number limits.
7378 	 */
7379 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7380 	    new_value <= 0 || new_value >= 65536) {
7381 		return (EINVAL);
7382 	}
7383 
7384 	mutex_enter(&tcps->tcps_epriv_port_lock);
7385 	/* Check if the value is already in the list */
7386 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7387 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7388 			mutex_exit(&tcps->tcps_epriv_port_lock);
7389 			return (EEXIST);
7390 		}
7391 	}
7392 	/* Find an empty slot */
7393 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7394 		if (tcps->tcps_g_epriv_ports[i] == 0)
7395 			break;
7396 	}
7397 	if (i == tcps->tcps_g_num_epriv_ports) {
7398 		mutex_exit(&tcps->tcps_epriv_port_lock);
7399 		return (EOVERFLOW);
7400 	}
7401 	/* Set the new value */
7402 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7403 	mutex_exit(&tcps->tcps_epriv_port_lock);
7404 	return (0);
7405 }
7406 
7407 /*
7408  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7409  * threads from changing it at the same time.
7410  */
7411 /* ARGSUSED */
7412 static int
7413 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7414     cred_t *cr)
7415 {
7416 	long	new_value;
7417 	int	i;
7418 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7419 
7420 	/*
7421 	 * Fail the request if the new value does not lie within the
7422 	 * port number limits.
7423 	 */
7424 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7425 	    new_value >= 65536) {
7426 		return (EINVAL);
7427 	}
7428 
7429 	mutex_enter(&tcps->tcps_epriv_port_lock);
7430 	/* Check that the value is already in the list */
7431 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7432 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7433 			break;
7434 	}
7435 	if (i == tcps->tcps_g_num_epriv_ports) {
7436 		mutex_exit(&tcps->tcps_epriv_port_lock);
7437 		return (ESRCH);
7438 	}
7439 	/* Clear the value */
7440 	tcps->tcps_g_epriv_ports[i] = 0;
7441 	mutex_exit(&tcps->tcps_epriv_port_lock);
7442 	return (0);
7443 }
7444 
7445 /* Return the TPI/TLI equivalent of our current tcp_state */
7446 static int
7447 tcp_tpistate(tcp_t *tcp)
7448 {
7449 	switch (tcp->tcp_state) {
7450 	case TCPS_IDLE:
7451 		return (TS_UNBND);
7452 	case TCPS_LISTEN:
7453 		/*
7454 		 * Return whether there are outstanding T_CONN_IND waiting
7455 		 * for the matching T_CONN_RES. Therefore don't count q0.
7456 		 */
7457 		if (tcp->tcp_conn_req_cnt_q > 0)
7458 			return (TS_WRES_CIND);
7459 		else
7460 			return (TS_IDLE);
7461 	case TCPS_BOUND:
7462 		return (TS_IDLE);
7463 	case TCPS_SYN_SENT:
7464 		return (TS_WCON_CREQ);
7465 	case TCPS_SYN_RCVD:
7466 		/*
7467 		 * Note: assumption: this has to the active open SYN_RCVD.
7468 		 * The passive instance is detached in SYN_RCVD stage of
7469 		 * incoming connection processing so we cannot get request
7470 		 * for T_info_ack on it.
7471 		 */
7472 		return (TS_WACK_CRES);
7473 	case TCPS_ESTABLISHED:
7474 		return (TS_DATA_XFER);
7475 	case TCPS_CLOSE_WAIT:
7476 		return (TS_WREQ_ORDREL);
7477 	case TCPS_FIN_WAIT_1:
7478 		return (TS_WIND_ORDREL);
7479 	case TCPS_FIN_WAIT_2:
7480 		return (TS_WIND_ORDREL);
7481 
7482 	case TCPS_CLOSING:
7483 	case TCPS_LAST_ACK:
7484 	case TCPS_TIME_WAIT:
7485 	case TCPS_CLOSED:
7486 		/*
7487 		 * Following TS_WACK_DREQ7 is a rendition of "not
7488 		 * yet TS_IDLE" TPI state. There is no best match to any
7489 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7490 		 * choose a value chosen that will map to TLI/XTI level
7491 		 * state of TSTATECHNG (state is process of changing) which
7492 		 * captures what this dummy state represents.
7493 		 */
7494 		return (TS_WACK_DREQ7);
7495 	default:
7496 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7497 		    tcp->tcp_state, tcp_display(tcp, NULL,
7498 		    DISP_PORT_ONLY));
7499 		return (TS_UNBND);
7500 	}
7501 }
7502 
7503 static void
7504 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7505 {
7506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7507 
7508 	if (tcp->tcp_family == AF_INET6)
7509 		*tia = tcp_g_t_info_ack_v6;
7510 	else
7511 		*tia = tcp_g_t_info_ack;
7512 	tia->CURRENT_state = tcp_tpistate(tcp);
7513 	tia->OPT_size = tcp_max_optsize;
7514 	if (tcp->tcp_mss == 0) {
7515 		/* Not yet set - tcp_open does not set mss */
7516 		if (tcp->tcp_ipversion == IPV4_VERSION)
7517 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7518 		else
7519 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7520 	} else {
7521 		tia->TIDU_size = tcp->tcp_mss;
7522 	}
7523 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7524 }
7525 
7526 /*
7527  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7528  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7529  * tcp_g_t_info_ack.  The current state of the stream is copied from
7530  * tcp_state.
7531  */
7532 static void
7533 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7534 {
7535 	t_uscalar_t		cap_bits1;
7536 	struct T_capability_ack	*tcap;
7537 
7538 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7539 		freemsg(mp);
7540 		return;
7541 	}
7542 
7543 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7544 
7545 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7546 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7547 	if (mp == NULL)
7548 		return;
7549 
7550 	tcap = (struct T_capability_ack *)mp->b_rptr;
7551 	tcap->CAP_bits1 = 0;
7552 
7553 	if (cap_bits1 & TC1_INFO) {
7554 		tcp_copy_info(&tcap->INFO_ack, tcp);
7555 		tcap->CAP_bits1 |= TC1_INFO;
7556 	}
7557 
7558 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7559 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7560 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7561 	}
7562 
7563 	putnext(tcp->tcp_rq, mp);
7564 }
7565 
7566 /*
7567  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7568  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7569  * The current state of the stream is copied from tcp_state.
7570  */
7571 static void
7572 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7573 {
7574 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7575 	    T_INFO_ACK);
7576 	if (!mp) {
7577 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7578 		return;
7579 	}
7580 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7581 	putnext(tcp->tcp_rq, mp);
7582 }
7583 
7584 /* Respond to the TPI addr request */
7585 static void
7586 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7587 {
7588 	sin_t	*sin;
7589 	mblk_t	*ackmp;
7590 	struct T_addr_ack *taa;
7591 
7592 	/* Make it large enough for worst case */
7593 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7594 	    2 * sizeof (sin6_t), 1);
7595 	if (ackmp == NULL) {
7596 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7597 		return;
7598 	}
7599 
7600 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7601 		tcp_addr_req_ipv6(tcp, ackmp);
7602 		return;
7603 	}
7604 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7605 
7606 	bzero(taa, sizeof (struct T_addr_ack));
7607 	ackmp->b_wptr = (uchar_t *)&taa[1];
7608 
7609 	taa->PRIM_type = T_ADDR_ACK;
7610 	ackmp->b_datap->db_type = M_PCPROTO;
7611 
7612 	/*
7613 	 * Note: Following code assumes 32 bit alignment of basic
7614 	 * data structures like sin_t and struct T_addr_ack.
7615 	 */
7616 	if (tcp->tcp_state >= TCPS_BOUND) {
7617 		/*
7618 		 * Fill in local address
7619 		 */
7620 		taa->LOCADDR_length = sizeof (sin_t);
7621 		taa->LOCADDR_offset = sizeof (*taa);
7622 
7623 		sin = (sin_t *)&taa[1];
7624 
7625 		/* Fill zeroes and then intialize non-zero fields */
7626 		*sin = sin_null;
7627 
7628 		sin->sin_family = AF_INET;
7629 
7630 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7631 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7632 
7633 		ackmp->b_wptr = (uchar_t *)&sin[1];
7634 
7635 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7636 			/*
7637 			 * Fill in Remote address
7638 			 */
7639 			taa->REMADDR_length = sizeof (sin_t);
7640 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7641 			    taa->LOCADDR_length);
7642 
7643 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7644 			*sin = sin_null;
7645 			sin->sin_family = AF_INET;
7646 			sin->sin_addr.s_addr = tcp->tcp_remote;
7647 			sin->sin_port = tcp->tcp_fport;
7648 
7649 			ackmp->b_wptr = (uchar_t *)&sin[1];
7650 		}
7651 	}
7652 	putnext(tcp->tcp_rq, ackmp);
7653 }
7654 
7655 /* Assumes that tcp_addr_req gets enough space and alignment */
7656 static void
7657 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7658 {
7659 	sin6_t	*sin6;
7660 	struct T_addr_ack *taa;
7661 
7662 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7663 	ASSERT(OK_32PTR(ackmp->b_rptr));
7664 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7665 	    2 * sizeof (sin6_t));
7666 
7667 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7668 
7669 	bzero(taa, sizeof (struct T_addr_ack));
7670 	ackmp->b_wptr = (uchar_t *)&taa[1];
7671 
7672 	taa->PRIM_type = T_ADDR_ACK;
7673 	ackmp->b_datap->db_type = M_PCPROTO;
7674 
7675 	/*
7676 	 * Note: Following code assumes 32 bit alignment of basic
7677 	 * data structures like sin6_t and struct T_addr_ack.
7678 	 */
7679 	if (tcp->tcp_state >= TCPS_BOUND) {
7680 		/*
7681 		 * Fill in local address
7682 		 */
7683 		taa->LOCADDR_length = sizeof (sin6_t);
7684 		taa->LOCADDR_offset = sizeof (*taa);
7685 
7686 		sin6 = (sin6_t *)&taa[1];
7687 		*sin6 = sin6_null;
7688 
7689 		sin6->sin6_family = AF_INET6;
7690 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7691 		sin6->sin6_port = tcp->tcp_lport;
7692 
7693 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7694 
7695 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7696 			/*
7697 			 * Fill in Remote address
7698 			 */
7699 			taa->REMADDR_length = sizeof (sin6_t);
7700 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7701 			    taa->LOCADDR_length);
7702 
7703 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7704 			*sin6 = sin6_null;
7705 			sin6->sin6_family = AF_INET6;
7706 			sin6->sin6_flowinfo =
7707 			    tcp->tcp_ip6h->ip6_vcf &
7708 			    ~IPV6_VERS_AND_FLOW_MASK;
7709 			sin6->sin6_addr = tcp->tcp_remote_v6;
7710 			sin6->sin6_port = tcp->tcp_fport;
7711 
7712 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7713 		}
7714 	}
7715 	putnext(tcp->tcp_rq, ackmp);
7716 }
7717 
7718 /*
7719  * Handle reinitialization of a tcp structure.
7720  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7721  */
7722 static void
7723 tcp_reinit(tcp_t *tcp)
7724 {
7725 	mblk_t	*mp;
7726 	int 	err;
7727 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7728 
7729 	TCP_STAT(tcps, tcp_reinit_calls);
7730 
7731 	/* tcp_reinit should never be called for detached tcp_t's */
7732 	ASSERT(tcp->tcp_listener == NULL);
7733 	ASSERT((tcp->tcp_family == AF_INET &&
7734 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7735 	    (tcp->tcp_family == AF_INET6 &&
7736 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7737 	    tcp->tcp_ipversion == IPV6_VERSION)));
7738 
7739 	/* Cancel outstanding timers */
7740 	tcp_timers_stop(tcp);
7741 
7742 	/*
7743 	 * Reset everything in the state vector, after updating global
7744 	 * MIB data from instance counters.
7745 	 */
7746 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7747 	tcp->tcp_ibsegs = 0;
7748 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7749 	tcp->tcp_obsegs = 0;
7750 
7751 	tcp_close_mpp(&tcp->tcp_xmit_head);
7752 	if (tcp->tcp_snd_zcopy_aware)
7753 		tcp_zcopy_notify(tcp);
7754 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7755 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7756 	mutex_enter(&tcp->tcp_non_sq_lock);
7757 	if (tcp->tcp_flow_stopped &&
7758 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7759 		tcp_clrqfull(tcp);
7760 	}
7761 	mutex_exit(&tcp->tcp_non_sq_lock);
7762 	tcp_close_mpp(&tcp->tcp_reass_head);
7763 	tcp->tcp_reass_tail = NULL;
7764 	if (tcp->tcp_rcv_list != NULL) {
7765 		/* Free b_next chain */
7766 		tcp_close_mpp(&tcp->tcp_rcv_list);
7767 		tcp->tcp_rcv_last_head = NULL;
7768 		tcp->tcp_rcv_last_tail = NULL;
7769 		tcp->tcp_rcv_cnt = 0;
7770 	}
7771 	tcp->tcp_rcv_last_tail = NULL;
7772 
7773 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7774 		freemsg(mp);
7775 		tcp->tcp_urp_mp = NULL;
7776 	}
7777 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7778 		freemsg(mp);
7779 		tcp->tcp_urp_mark_mp = NULL;
7780 	}
7781 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7782 		freeb(tcp->tcp_fused_sigurg_mp);
7783 		tcp->tcp_fused_sigurg_mp = NULL;
7784 	}
7785 
7786 	/*
7787 	 * Following is a union with two members which are
7788 	 * identical types and size so the following cleanup
7789 	 * is enough.
7790 	 */
7791 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7792 
7793 	CL_INET_DISCONNECT(tcp);
7794 
7795 	/*
7796 	 * The connection can't be on the tcp_time_wait_head list
7797 	 * since it is not detached.
7798 	 */
7799 	ASSERT(tcp->tcp_time_wait_next == NULL);
7800 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7801 	ASSERT(tcp->tcp_time_wait_expire == 0);
7802 
7803 	if (tcp->tcp_kssl_pending) {
7804 		tcp->tcp_kssl_pending = B_FALSE;
7805 
7806 		/* Don't reset if the initialized by bind. */
7807 		if (tcp->tcp_kssl_ent != NULL) {
7808 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7809 			    KSSL_NO_PROXY);
7810 		}
7811 	}
7812 	if (tcp->tcp_kssl_ctx != NULL) {
7813 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7814 		tcp->tcp_kssl_ctx = NULL;
7815 	}
7816 
7817 	/*
7818 	 * Reset/preserve other values
7819 	 */
7820 	tcp_reinit_values(tcp);
7821 	ipcl_hash_remove(tcp->tcp_connp);
7822 	conn_delete_ire(tcp->tcp_connp, NULL);
7823 	tcp_ipsec_cleanup(tcp);
7824 
7825 	if (tcp->tcp_conn_req_max != 0) {
7826 		/*
7827 		 * This is the case when a TLI program uses the same
7828 		 * transport end point to accept a connection.  This
7829 		 * makes the TCP both a listener and acceptor.  When
7830 		 * this connection is closed, we need to set the state
7831 		 * back to TCPS_LISTEN.  Make sure that the eager list
7832 		 * is reinitialized.
7833 		 *
7834 		 * Note that this stream is still bound to the four
7835 		 * tuples of the previous connection in IP.  If a new
7836 		 * SYN with different foreign address comes in, IP will
7837 		 * not find it and will send it to the global queue.  In
7838 		 * the global queue, TCP will do a tcp_lookup_listener()
7839 		 * to find this stream.  This works because this stream
7840 		 * is only removed from connected hash.
7841 		 *
7842 		 */
7843 		tcp->tcp_state = TCPS_LISTEN;
7844 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7845 		tcp->tcp_eager_next_drop_q0 = tcp;
7846 		tcp->tcp_eager_prev_drop_q0 = tcp;
7847 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7848 		if (tcp->tcp_family == AF_INET6) {
7849 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7850 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7851 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7852 		} else {
7853 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7854 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7855 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7856 		}
7857 	} else {
7858 		tcp->tcp_state = TCPS_BOUND;
7859 	}
7860 
7861 	/*
7862 	 * Initialize to default values
7863 	 * Can't fail since enough header template space already allocated
7864 	 * at open().
7865 	 */
7866 	err = tcp_init_values(tcp);
7867 	ASSERT(err == 0);
7868 	/* Restore state in tcp_tcph */
7869 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7870 	if (tcp->tcp_ipversion == IPV4_VERSION)
7871 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7872 	else
7873 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7874 	/*
7875 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7876 	 * since the lookup funcs can only lookup on tcp_t
7877 	 */
7878 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7879 
7880 	ASSERT(tcp->tcp_ptpbhn != NULL);
7881 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7882 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7883 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7884 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7885 }
7886 
7887 /*
7888  * Force values to zero that need be zero.
7889  * Do not touch values asociated with the BOUND or LISTEN state
7890  * since the connection will end up in that state after the reinit.
7891  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7892  * structure!
7893  */
7894 static void
7895 tcp_reinit_values(tcp)
7896 	tcp_t *tcp;
7897 {
7898 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7899 
7900 #ifndef	lint
7901 #define	DONTCARE(x)
7902 #define	PRESERVE(x)
7903 #else
7904 #define	DONTCARE(x)	((x) = (x))
7905 #define	PRESERVE(x)	((x) = (x))
7906 #endif	/* lint */
7907 
7908 	PRESERVE(tcp->tcp_bind_hash);
7909 	PRESERVE(tcp->tcp_ptpbhn);
7910 	PRESERVE(tcp->tcp_acceptor_hash);
7911 	PRESERVE(tcp->tcp_ptpahn);
7912 
7913 	/* Should be ASSERT NULL on these with new code! */
7914 	ASSERT(tcp->tcp_time_wait_next == NULL);
7915 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7916 	ASSERT(tcp->tcp_time_wait_expire == 0);
7917 	PRESERVE(tcp->tcp_state);
7918 	PRESERVE(tcp->tcp_rq);
7919 	PRESERVE(tcp->tcp_wq);
7920 
7921 	ASSERT(tcp->tcp_xmit_head == NULL);
7922 	ASSERT(tcp->tcp_xmit_last == NULL);
7923 	ASSERT(tcp->tcp_unsent == 0);
7924 	ASSERT(tcp->tcp_xmit_tail == NULL);
7925 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7926 
7927 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7928 	tcp->tcp_suna = 0;			/* Displayed in mib */
7929 	tcp->tcp_swnd = 0;
7930 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7931 
7932 	ASSERT(tcp->tcp_ibsegs == 0);
7933 	ASSERT(tcp->tcp_obsegs == 0);
7934 
7935 	if (tcp->tcp_iphc != NULL) {
7936 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7937 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7938 	}
7939 
7940 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7941 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7942 	DONTCARE(tcp->tcp_ipha);
7943 	DONTCARE(tcp->tcp_ip6h);
7944 	DONTCARE(tcp->tcp_ip_hdr_len);
7945 	DONTCARE(tcp->tcp_tcph);
7946 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7947 	tcp->tcp_valid_bits = 0;
7948 
7949 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7950 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7951 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7952 	tcp->tcp_last_rcv_lbolt = 0;
7953 
7954 	tcp->tcp_init_cwnd = 0;
7955 
7956 	tcp->tcp_urp_last_valid = 0;
7957 	tcp->tcp_hard_binding = 0;
7958 	tcp->tcp_hard_bound = 0;
7959 	PRESERVE(tcp->tcp_cred);
7960 	PRESERVE(tcp->tcp_cpid);
7961 	PRESERVE(tcp->tcp_open_time);
7962 	PRESERVE(tcp->tcp_exclbind);
7963 
7964 	tcp->tcp_fin_acked = 0;
7965 	tcp->tcp_fin_rcvd = 0;
7966 	tcp->tcp_fin_sent = 0;
7967 	tcp->tcp_ordrel_done = 0;
7968 
7969 	tcp->tcp_debug = 0;
7970 	tcp->tcp_dontroute = 0;
7971 	tcp->tcp_broadcast = 0;
7972 
7973 	tcp->tcp_useloopback = 0;
7974 	tcp->tcp_reuseaddr = 0;
7975 	tcp->tcp_oobinline = 0;
7976 	tcp->tcp_dgram_errind = 0;
7977 
7978 	tcp->tcp_detached = 0;
7979 	tcp->tcp_bind_pending = 0;
7980 	tcp->tcp_unbind_pending = 0;
7981 	tcp->tcp_deferred_clean_death = 0;
7982 
7983 	tcp->tcp_snd_ws_ok = B_FALSE;
7984 	tcp->tcp_snd_ts_ok = B_FALSE;
7985 	tcp->tcp_linger = 0;
7986 	tcp->tcp_ka_enabled = 0;
7987 	tcp->tcp_zero_win_probe = 0;
7988 
7989 	tcp->tcp_loopback = 0;
7990 	tcp->tcp_localnet = 0;
7991 	tcp->tcp_syn_defense = 0;
7992 	tcp->tcp_set_timer = 0;
7993 
7994 	tcp->tcp_active_open = 0;
7995 	ASSERT(tcp->tcp_timeout == B_FALSE);
7996 	tcp->tcp_rexmit = B_FALSE;
7997 	tcp->tcp_xmit_zc_clean = B_FALSE;
7998 
7999 	tcp->tcp_snd_sack_ok = B_FALSE;
8000 	PRESERVE(tcp->tcp_recvdstaddr);
8001 	tcp->tcp_hwcksum = B_FALSE;
8002 
8003 	tcp->tcp_ire_ill_check_done = B_FALSE;
8004 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8005 
8006 	tcp->tcp_mdt = B_FALSE;
8007 	tcp->tcp_mdt_hdr_head = 0;
8008 	tcp->tcp_mdt_hdr_tail = 0;
8009 
8010 	tcp->tcp_conn_def_q0 = 0;
8011 	tcp->tcp_ip_forward_progress = B_FALSE;
8012 	tcp->tcp_anon_priv_bind = 0;
8013 	tcp->tcp_ecn_ok = B_FALSE;
8014 
8015 	tcp->tcp_cwr = B_FALSE;
8016 	tcp->tcp_ecn_echo_on = B_FALSE;
8017 
8018 	if (tcp->tcp_sack_info != NULL) {
8019 		if (tcp->tcp_notsack_list != NULL) {
8020 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8021 		}
8022 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8023 		tcp->tcp_sack_info = NULL;
8024 	}
8025 
8026 	tcp->tcp_rcv_ws = 0;
8027 	tcp->tcp_snd_ws = 0;
8028 	tcp->tcp_ts_recent = 0;
8029 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8030 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8031 	tcp->tcp_if_mtu = 0;
8032 
8033 	ASSERT(tcp->tcp_reass_head == NULL);
8034 	ASSERT(tcp->tcp_reass_tail == NULL);
8035 
8036 	tcp->tcp_cwnd_cnt = 0;
8037 
8038 	ASSERT(tcp->tcp_rcv_list == NULL);
8039 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8040 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8041 	ASSERT(tcp->tcp_rcv_cnt == 0);
8042 
8043 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8044 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8045 	tcp->tcp_csuna = 0;
8046 
8047 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8048 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8049 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8050 	tcp->tcp_rtt_update = 0;
8051 
8052 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8053 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8054 
8055 	tcp->tcp_rack = 0;			/* Displayed in mib */
8056 	tcp->tcp_rack_cnt = 0;
8057 	tcp->tcp_rack_cur_max = 0;
8058 	tcp->tcp_rack_abs_max = 0;
8059 
8060 	tcp->tcp_max_swnd = 0;
8061 
8062 	ASSERT(tcp->tcp_listener == NULL);
8063 
8064 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8065 
8066 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8067 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8068 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8069 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8070 
8071 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8072 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8073 	PRESERVE(tcp->tcp_conn_req_max);
8074 	PRESERVE(tcp->tcp_conn_req_seqnum);
8075 
8076 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8077 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8078 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8079 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8080 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8081 
8082 	tcp->tcp_lingertime = 0;
8083 
8084 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8085 	ASSERT(tcp->tcp_urp_mp == NULL);
8086 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8087 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8088 
8089 	ASSERT(tcp->tcp_eager_next_q == NULL);
8090 	ASSERT(tcp->tcp_eager_last_q == NULL);
8091 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8092 	    tcp->tcp_eager_prev_q0 == NULL) ||
8093 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8094 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8095 
8096 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8097 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8098 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8099 
8100 	tcp->tcp_client_errno = 0;
8101 
8102 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8103 
8104 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8105 
8106 	PRESERVE(tcp->tcp_bound_source_v6);
8107 	tcp->tcp_last_sent_len = 0;
8108 	tcp->tcp_dupack_cnt = 0;
8109 
8110 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8111 	PRESERVE(tcp->tcp_lport);
8112 
8113 	PRESERVE(tcp->tcp_acceptor_lockp);
8114 
8115 	ASSERT(tcp->tcp_ordrelid == 0);
8116 	PRESERVE(tcp->tcp_acceptor_id);
8117 	DONTCARE(tcp->tcp_ipsec_overhead);
8118 
8119 	/*
8120 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8121 	 * in tcp structure and now tracing), Re-initialize all
8122 	 * members of tcp_traceinfo.
8123 	 */
8124 	if (tcp->tcp_tracebuf != NULL) {
8125 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8126 	}
8127 
8128 	PRESERVE(tcp->tcp_family);
8129 	if (tcp->tcp_family == AF_INET6) {
8130 		tcp->tcp_ipversion = IPV6_VERSION;
8131 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8132 	} else {
8133 		tcp->tcp_ipversion = IPV4_VERSION;
8134 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8135 	}
8136 
8137 	tcp->tcp_bound_if = 0;
8138 	tcp->tcp_ipv6_recvancillary = 0;
8139 	tcp->tcp_recvifindex = 0;
8140 	tcp->tcp_recvhops = 0;
8141 	tcp->tcp_closed = 0;
8142 	tcp->tcp_cleandeathtag = 0;
8143 	if (tcp->tcp_hopopts != NULL) {
8144 		mi_free(tcp->tcp_hopopts);
8145 		tcp->tcp_hopopts = NULL;
8146 		tcp->tcp_hopoptslen = 0;
8147 	}
8148 	ASSERT(tcp->tcp_hopoptslen == 0);
8149 	if (tcp->tcp_dstopts != NULL) {
8150 		mi_free(tcp->tcp_dstopts);
8151 		tcp->tcp_dstopts = NULL;
8152 		tcp->tcp_dstoptslen = 0;
8153 	}
8154 	ASSERT(tcp->tcp_dstoptslen == 0);
8155 	if (tcp->tcp_rtdstopts != NULL) {
8156 		mi_free(tcp->tcp_rtdstopts);
8157 		tcp->tcp_rtdstopts = NULL;
8158 		tcp->tcp_rtdstoptslen = 0;
8159 	}
8160 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8161 	if (tcp->tcp_rthdr != NULL) {
8162 		mi_free(tcp->tcp_rthdr);
8163 		tcp->tcp_rthdr = NULL;
8164 		tcp->tcp_rthdrlen = 0;
8165 	}
8166 	ASSERT(tcp->tcp_rthdrlen == 0);
8167 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8168 
8169 	/* Reset fusion-related fields */
8170 	tcp->tcp_fused = B_FALSE;
8171 	tcp->tcp_unfusable = B_FALSE;
8172 	tcp->tcp_fused_sigurg = B_FALSE;
8173 	tcp->tcp_direct_sockfs = B_FALSE;
8174 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8175 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8176 	tcp->tcp_loopback_peer = NULL;
8177 	tcp->tcp_fuse_rcv_hiwater = 0;
8178 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8179 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8180 
8181 	tcp->tcp_lso = B_FALSE;
8182 
8183 	tcp->tcp_in_ack_unsent = 0;
8184 	tcp->tcp_cork = B_FALSE;
8185 	tcp->tcp_tconnind_started = B_FALSE;
8186 
8187 	PRESERVE(tcp->tcp_squeue_bytes);
8188 
8189 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8190 	ASSERT(!tcp->tcp_kssl_pending);
8191 	PRESERVE(tcp->tcp_kssl_ent);
8192 
8193 	tcp->tcp_closemp_used = B_FALSE;
8194 
8195 #ifdef DEBUG
8196 	DONTCARE(tcp->tcmp_stk[0]);
8197 #endif
8198 
8199 
8200 #undef	DONTCARE
8201 #undef	PRESERVE
8202 }
8203 
8204 /*
8205  * Allocate necessary resources and initialize state vector.
8206  * Guaranteed not to fail so that when an error is returned,
8207  * the caller doesn't need to do any additional cleanup.
8208  */
8209 int
8210 tcp_init(tcp_t *tcp, queue_t *q)
8211 {
8212 	int	err;
8213 
8214 	tcp->tcp_rq = q;
8215 	tcp->tcp_wq = WR(q);
8216 	tcp->tcp_state = TCPS_IDLE;
8217 	if ((err = tcp_init_values(tcp)) != 0)
8218 		tcp_timers_stop(tcp);
8219 	return (err);
8220 }
8221 
8222 static int
8223 tcp_init_values(tcp_t *tcp)
8224 {
8225 	int	err;
8226 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8227 
8228 	ASSERT((tcp->tcp_family == AF_INET &&
8229 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8230 	    (tcp->tcp_family == AF_INET6 &&
8231 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8232 	    tcp->tcp_ipversion == IPV6_VERSION)));
8233 
8234 	/*
8235 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8236 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8237 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8238 	 * during first few transmissions of a connection as seen in slow
8239 	 * links.
8240 	 */
8241 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8242 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8243 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8244 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8245 	    tcps->tcps_conn_grace_period;
8246 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8247 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8248 	tcp->tcp_timer_backoff = 0;
8249 	tcp->tcp_ms_we_have_waited = 0;
8250 	tcp->tcp_last_recv_time = lbolt;
8251 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8252 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8253 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8254 
8255 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8256 
8257 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8258 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8259 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8260 	/*
8261 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8262 	 * passive open.
8263 	 */
8264 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8265 
8266 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8267 
8268 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8269 
8270 	tcp->tcp_mdt_hdr_head = 0;
8271 	tcp->tcp_mdt_hdr_tail = 0;
8272 
8273 	/* Reset fusion-related fields */
8274 	tcp->tcp_fused = B_FALSE;
8275 	tcp->tcp_unfusable = B_FALSE;
8276 	tcp->tcp_fused_sigurg = B_FALSE;
8277 	tcp->tcp_direct_sockfs = B_FALSE;
8278 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8279 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8280 	tcp->tcp_loopback_peer = NULL;
8281 	tcp->tcp_fuse_rcv_hiwater = 0;
8282 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8283 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8284 
8285 	/* Initialize the header template */
8286 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8287 		err = tcp_header_init_ipv4(tcp);
8288 	} else {
8289 		err = tcp_header_init_ipv6(tcp);
8290 	}
8291 	if (err)
8292 		return (err);
8293 
8294 	/*
8295 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8296 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8297 	 */
8298 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8299 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8300 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8301 
8302 	tcp->tcp_cork = B_FALSE;
8303 	/*
8304 	 * Init the tcp_debug option.  This value determines whether TCP
8305 	 * calls strlog() to print out debug messages.  Doing this
8306 	 * initialization here means that this value is not inherited thru
8307 	 * tcp_reinit().
8308 	 */
8309 	tcp->tcp_debug = tcps->tcps_dbg;
8310 
8311 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8312 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8313 
8314 	return (0);
8315 }
8316 
8317 /*
8318  * Initialize the IPv4 header. Loses any record of any IP options.
8319  */
8320 static int
8321 tcp_header_init_ipv4(tcp_t *tcp)
8322 {
8323 	tcph_t		*tcph;
8324 	uint32_t	sum;
8325 	conn_t		*connp;
8326 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8327 
8328 	/*
8329 	 * This is a simple initialization. If there's
8330 	 * already a template, it should never be too small,
8331 	 * so reuse it.  Otherwise, allocate space for the new one.
8332 	 */
8333 	if (tcp->tcp_iphc == NULL) {
8334 		ASSERT(tcp->tcp_iphc_len == 0);
8335 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8336 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8337 		if (tcp->tcp_iphc == NULL) {
8338 			tcp->tcp_iphc_len = 0;
8339 			return (ENOMEM);
8340 		}
8341 	}
8342 
8343 	/* options are gone; may need a new label */
8344 	connp = tcp->tcp_connp;
8345 	connp->conn_mlp_type = mlptSingle;
8346 	connp->conn_ulp_labeled = !is_system_labeled();
8347 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8348 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8349 	tcp->tcp_ip6h = NULL;
8350 	tcp->tcp_ipversion = IPV4_VERSION;
8351 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8352 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8353 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8354 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8355 	tcp->tcp_ipha->ipha_version_and_hdr_length
8356 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8357 	tcp->tcp_ipha->ipha_ident = 0;
8358 
8359 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8360 	tcp->tcp_tos = 0;
8361 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8362 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8363 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8364 
8365 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8366 	tcp->tcp_tcph = tcph;
8367 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8368 	/*
8369 	 * IP wants our header length in the checksum field to
8370 	 * allow it to perform a single pseudo-header+checksum
8371 	 * calculation on behalf of TCP.
8372 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8373 	 */
8374 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8375 	sum = (sum >> 16) + (sum & 0xFFFF);
8376 	U16_TO_ABE16(sum, tcph->th_sum);
8377 	return (0);
8378 }
8379 
8380 /*
8381  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8382  */
8383 static int
8384 tcp_header_init_ipv6(tcp_t *tcp)
8385 {
8386 	tcph_t	*tcph;
8387 	uint32_t	sum;
8388 	conn_t	*connp;
8389 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8390 
8391 	/*
8392 	 * This is a simple initialization. If there's
8393 	 * already a template, it should never be too small,
8394 	 * so reuse it. Otherwise, allocate space for the new one.
8395 	 * Ensure that there is enough space to "downgrade" the tcp_t
8396 	 * to an IPv4 tcp_t. This requires having space for a full load
8397 	 * of IPv4 options, as well as a full load of TCP options
8398 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8399 	 * than a v6 header and a TCP header with a full load of TCP options
8400 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8401 	 * We want to avoid reallocation in the "downgraded" case when
8402 	 * processing outbound IPv4 options.
8403 	 */
8404 	if (tcp->tcp_iphc == NULL) {
8405 		ASSERT(tcp->tcp_iphc_len == 0);
8406 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8407 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8408 		if (tcp->tcp_iphc == NULL) {
8409 			tcp->tcp_iphc_len = 0;
8410 			return (ENOMEM);
8411 		}
8412 	}
8413 
8414 	/* options are gone; may need a new label */
8415 	connp = tcp->tcp_connp;
8416 	connp->conn_mlp_type = mlptSingle;
8417 	connp->conn_ulp_labeled = !is_system_labeled();
8418 
8419 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8420 	tcp->tcp_ipversion = IPV6_VERSION;
8421 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8422 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8423 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8424 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8425 	tcp->tcp_ipha = NULL;
8426 
8427 	/* Initialize the header template */
8428 
8429 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8430 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8431 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8432 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8433 
8434 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8435 	tcp->tcp_tcph = tcph;
8436 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8437 	/*
8438 	 * IP wants our header length in the checksum field to
8439 	 * allow it to perform a single psuedo-header+checksum
8440 	 * calculation on behalf of TCP.
8441 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8442 	 */
8443 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8444 	sum = (sum >> 16) + (sum & 0xFFFF);
8445 	U16_TO_ABE16(sum, tcph->th_sum);
8446 	return (0);
8447 }
8448 
8449 /* At minimum we need 8 bytes in the TCP header for the lookup */
8450 #define	ICMP_MIN_TCP_HDR	8
8451 
8452 /*
8453  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8454  * passed up by IP. The message is always received on the correct tcp_t.
8455  * Assumes that IP has pulled up everything up to and including the ICMP header.
8456  */
8457 void
8458 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8459 {
8460 	icmph_t *icmph;
8461 	ipha_t	*ipha;
8462 	int	iph_hdr_length;
8463 	tcph_t	*tcph;
8464 	boolean_t ipsec_mctl = B_FALSE;
8465 	boolean_t secure;
8466 	mblk_t *first_mp = mp;
8467 	uint32_t new_mss;
8468 	uint32_t ratio;
8469 	size_t mp_size = MBLKL(mp);
8470 	uint32_t seg_seq;
8471 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8472 
8473 	/* Assume IP provides aligned packets - otherwise toss */
8474 	if (!OK_32PTR(mp->b_rptr)) {
8475 		freemsg(mp);
8476 		return;
8477 	}
8478 
8479 	/*
8480 	 * Since ICMP errors are normal data marked with M_CTL when sent
8481 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8482 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8483 	 */
8484 	if ((mp_size == sizeof (ipsec_info_t)) &&
8485 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8486 		ASSERT(mp->b_cont != NULL);
8487 		mp = mp->b_cont;
8488 		/* IP should have done this */
8489 		ASSERT(OK_32PTR(mp->b_rptr));
8490 		mp_size = MBLKL(mp);
8491 		ipsec_mctl = B_TRUE;
8492 	}
8493 
8494 	/*
8495 	 * Verify that we have a complete outer IP header. If not, drop it.
8496 	 */
8497 	if (mp_size < sizeof (ipha_t)) {
8498 noticmpv4:
8499 		freemsg(first_mp);
8500 		return;
8501 	}
8502 
8503 	ipha = (ipha_t *)mp->b_rptr;
8504 	/*
8505 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8506 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8507 	 */
8508 	switch (IPH_HDR_VERSION(ipha)) {
8509 	case IPV6_VERSION:
8510 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8511 		return;
8512 	case IPV4_VERSION:
8513 		break;
8514 	default:
8515 		goto noticmpv4;
8516 	}
8517 
8518 	/* Skip past the outer IP and ICMP headers */
8519 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8520 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8521 	/*
8522 	 * If we don't have the correct outer IP header length or if the ULP
8523 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8524 	 * send it upstream.
8525 	 */
8526 	if (iph_hdr_length < sizeof (ipha_t) ||
8527 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8528 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8529 		goto noticmpv4;
8530 	}
8531 	ipha = (ipha_t *)&icmph[1];
8532 
8533 	/* Skip past the inner IP and find the ULP header */
8534 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8535 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8536 	/*
8537 	 * If we don't have the correct inner IP header length or if the ULP
8538 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8539 	 * bytes of TCP header, drop it.
8540 	 */
8541 	if (iph_hdr_length < sizeof (ipha_t) ||
8542 	    ipha->ipha_protocol != IPPROTO_TCP ||
8543 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8544 		goto noticmpv4;
8545 	}
8546 
8547 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8548 		if (ipsec_mctl) {
8549 			secure = ipsec_in_is_secure(first_mp);
8550 		} else {
8551 			secure = B_FALSE;
8552 		}
8553 		if (secure) {
8554 			/*
8555 			 * If we are willing to accept this in clear
8556 			 * we don't have to verify policy.
8557 			 */
8558 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8559 				if (!tcp_check_policy(tcp, first_mp,
8560 				    ipha, NULL, secure, ipsec_mctl)) {
8561 					/*
8562 					 * tcp_check_policy called
8563 					 * ip_drop_packet() on failure.
8564 					 */
8565 					return;
8566 				}
8567 			}
8568 		}
8569 	} else if (ipsec_mctl) {
8570 		/*
8571 		 * This is a hard_bound connection. IP has already
8572 		 * verified policy. We don't have to do it again.
8573 		 */
8574 		freeb(first_mp);
8575 		first_mp = mp;
8576 		ipsec_mctl = B_FALSE;
8577 	}
8578 
8579 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8580 	/*
8581 	 * TCP SHOULD check that the TCP sequence number contained in
8582 	 * payload of the ICMP error message is within the range
8583 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8584 	 */
8585 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8586 		/*
8587 		 * If the ICMP message is bogus, should we kill the
8588 		 * connection, or should we just drop the bogus ICMP
8589 		 * message? It would probably make more sense to just
8590 		 * drop the message so that if this one managed to get
8591 		 * in, the real connection should not suffer.
8592 		 */
8593 		goto noticmpv4;
8594 	}
8595 
8596 	switch (icmph->icmph_type) {
8597 	case ICMP_DEST_UNREACHABLE:
8598 		switch (icmph->icmph_code) {
8599 		case ICMP_FRAGMENTATION_NEEDED:
8600 			/*
8601 			 * Reduce the MSS based on the new MTU.  This will
8602 			 * eliminate any fragmentation locally.
8603 			 * N.B.  There may well be some funny side-effects on
8604 			 * the local send policy and the remote receive policy.
8605 			 * Pending further research, we provide
8606 			 * tcp_ignore_path_mtu just in case this proves
8607 			 * disastrous somewhere.
8608 			 *
8609 			 * After updating the MSS, retransmit part of the
8610 			 * dropped segment using the new mss by calling
8611 			 * tcp_wput_data().  Need to adjust all those
8612 			 * params to make sure tcp_wput_data() work properly.
8613 			 */
8614 			if (tcps->tcps_ignore_path_mtu)
8615 				break;
8616 
8617 			/*
8618 			 * Decrease the MSS by time stamp options
8619 			 * IP options and IPSEC options. tcp_hdr_len
8620 			 * includes time stamp option and IP option
8621 			 * length.
8622 			 */
8623 
8624 			new_mss = ntohs(icmph->icmph_du_mtu) -
8625 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8626 
8627 			/*
8628 			 * Only update the MSS if the new one is
8629 			 * smaller than the previous one.  This is
8630 			 * to avoid problems when getting multiple
8631 			 * ICMP errors for the same MTU.
8632 			 */
8633 			if (new_mss >= tcp->tcp_mss)
8634 				break;
8635 
8636 			/*
8637 			 * Stop doing PMTU if new_mss is less than 68
8638 			 * or less than tcp_mss_min.
8639 			 * The value 68 comes from rfc 1191.
8640 			 */
8641 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8642 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8643 				    0;
8644 
8645 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8646 			ASSERT(ratio >= 1);
8647 			tcp_mss_set(tcp, new_mss, B_TRUE);
8648 
8649 			/*
8650 			 * Make sure we have something to
8651 			 * send.
8652 			 */
8653 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8654 			    (tcp->tcp_xmit_head != NULL)) {
8655 				/*
8656 				 * Shrink tcp_cwnd in
8657 				 * proportion to the old MSS/new MSS.
8658 				 */
8659 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8660 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8661 				    (tcp->tcp_unsent == 0)) {
8662 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8663 				} else {
8664 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8665 				}
8666 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8667 				tcp->tcp_rexmit = B_TRUE;
8668 				tcp->tcp_dupack_cnt = 0;
8669 				tcp->tcp_snd_burst = TCP_CWND_SS;
8670 				tcp_ss_rexmit(tcp);
8671 			}
8672 			break;
8673 		case ICMP_PORT_UNREACHABLE:
8674 		case ICMP_PROTOCOL_UNREACHABLE:
8675 			switch (tcp->tcp_state) {
8676 			case TCPS_SYN_SENT:
8677 			case TCPS_SYN_RCVD:
8678 				/*
8679 				 * ICMP can snipe away incipient
8680 				 * TCP connections as long as
8681 				 * seq number is same as initial
8682 				 * send seq number.
8683 				 */
8684 				if (seg_seq == tcp->tcp_iss) {
8685 					(void) tcp_clean_death(tcp,
8686 					    ECONNREFUSED, 6);
8687 				}
8688 				break;
8689 			}
8690 			break;
8691 		case ICMP_HOST_UNREACHABLE:
8692 		case ICMP_NET_UNREACHABLE:
8693 			/* Record the error in case we finally time out. */
8694 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8695 				tcp->tcp_client_errno = EHOSTUNREACH;
8696 			else
8697 				tcp->tcp_client_errno = ENETUNREACH;
8698 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8699 				if (tcp->tcp_listener != NULL &&
8700 				    tcp->tcp_listener->tcp_syn_defense) {
8701 					/*
8702 					 * Ditch the half-open connection if we
8703 					 * suspect a SYN attack is under way.
8704 					 */
8705 					tcp_ip_ire_mark_advice(tcp);
8706 					(void) tcp_clean_death(tcp,
8707 					    tcp->tcp_client_errno, 7);
8708 				}
8709 			}
8710 			break;
8711 		default:
8712 			break;
8713 		}
8714 		break;
8715 	case ICMP_SOURCE_QUENCH: {
8716 		/*
8717 		 * use a global boolean to control
8718 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8719 		 * The default is false.
8720 		 */
8721 		if (tcp_icmp_source_quench) {
8722 			/*
8723 			 * Reduce the sending rate as if we got a
8724 			 * retransmit timeout
8725 			 */
8726 			uint32_t npkt;
8727 
8728 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8729 			    tcp->tcp_mss;
8730 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8731 			tcp->tcp_cwnd = tcp->tcp_mss;
8732 			tcp->tcp_cwnd_cnt = 0;
8733 		}
8734 		break;
8735 	}
8736 	}
8737 	freemsg(first_mp);
8738 }
8739 
8740 /*
8741  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8742  * error messages passed up by IP.
8743  * Assumes that IP has pulled up all the extension headers as well
8744  * as the ICMPv6 header.
8745  */
8746 static void
8747 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8748 {
8749 	icmp6_t *icmp6;
8750 	ip6_t	*ip6h;
8751 	uint16_t	iph_hdr_length;
8752 	tcpha_t	*tcpha;
8753 	uint8_t	*nexthdrp;
8754 	uint32_t new_mss;
8755 	uint32_t ratio;
8756 	boolean_t secure;
8757 	mblk_t *first_mp = mp;
8758 	size_t mp_size;
8759 	uint32_t seg_seq;
8760 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8761 
8762 	/*
8763 	 * The caller has determined if this is an IPSEC_IN packet and
8764 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8765 	 */
8766 	if (ipsec_mctl)
8767 		mp = mp->b_cont;
8768 
8769 	mp_size = MBLKL(mp);
8770 
8771 	/*
8772 	 * Verify that we have a complete IP header. If not, send it upstream.
8773 	 */
8774 	if (mp_size < sizeof (ip6_t)) {
8775 noticmpv6:
8776 		freemsg(first_mp);
8777 		return;
8778 	}
8779 
8780 	/*
8781 	 * Verify this is an ICMPV6 packet, else send it upstream.
8782 	 */
8783 	ip6h = (ip6_t *)mp->b_rptr;
8784 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8785 		iph_hdr_length = IPV6_HDR_LEN;
8786 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8787 	    &nexthdrp) ||
8788 	    *nexthdrp != IPPROTO_ICMPV6) {
8789 		goto noticmpv6;
8790 	}
8791 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8792 	ip6h = (ip6_t *)&icmp6[1];
8793 	/*
8794 	 * Verify if we have a complete ICMP and inner IP header.
8795 	 */
8796 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8797 		goto noticmpv6;
8798 
8799 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8800 		goto noticmpv6;
8801 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8802 	/*
8803 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8804 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8805 	 * packet.
8806 	 */
8807 	if ((*nexthdrp != IPPROTO_TCP) ||
8808 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8809 		goto noticmpv6;
8810 	}
8811 
8812 	/*
8813 	 * ICMP errors come on the right queue or come on
8814 	 * listener/global queue for detached connections and
8815 	 * get switched to the right queue. If it comes on the
8816 	 * right queue, policy check has already been done by IP
8817 	 * and thus free the first_mp without verifying the policy.
8818 	 * If it has come for a non-hard bound connection, we need
8819 	 * to verify policy as IP may not have done it.
8820 	 */
8821 	if (!tcp->tcp_hard_bound) {
8822 		if (ipsec_mctl) {
8823 			secure = ipsec_in_is_secure(first_mp);
8824 		} else {
8825 			secure = B_FALSE;
8826 		}
8827 		if (secure) {
8828 			/*
8829 			 * If we are willing to accept this in clear
8830 			 * we don't have to verify policy.
8831 			 */
8832 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8833 				if (!tcp_check_policy(tcp, first_mp,
8834 				    NULL, ip6h, secure, ipsec_mctl)) {
8835 					/*
8836 					 * tcp_check_policy called
8837 					 * ip_drop_packet() on failure.
8838 					 */
8839 					return;
8840 				}
8841 			}
8842 		}
8843 	} else if (ipsec_mctl) {
8844 		/*
8845 		 * This is a hard_bound connection. IP has already
8846 		 * verified policy. We don't have to do it again.
8847 		 */
8848 		freeb(first_mp);
8849 		first_mp = mp;
8850 		ipsec_mctl = B_FALSE;
8851 	}
8852 
8853 	seg_seq = ntohl(tcpha->tha_seq);
8854 	/*
8855 	 * TCP SHOULD check that the TCP sequence number contained in
8856 	 * payload of the ICMP error message is within the range
8857 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8858 	 */
8859 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8860 		/*
8861 		 * If the ICMP message is bogus, should we kill the
8862 		 * connection, or should we just drop the bogus ICMP
8863 		 * message? It would probably make more sense to just
8864 		 * drop the message so that if this one managed to get
8865 		 * in, the real connection should not suffer.
8866 		 */
8867 		goto noticmpv6;
8868 	}
8869 
8870 	switch (icmp6->icmp6_type) {
8871 	case ICMP6_PACKET_TOO_BIG:
8872 		/*
8873 		 * Reduce the MSS based on the new MTU.  This will
8874 		 * eliminate any fragmentation locally.
8875 		 * N.B.  There may well be some funny side-effects on
8876 		 * the local send policy and the remote receive policy.
8877 		 * Pending further research, we provide
8878 		 * tcp_ignore_path_mtu just in case this proves
8879 		 * disastrous somewhere.
8880 		 *
8881 		 * After updating the MSS, retransmit part of the
8882 		 * dropped segment using the new mss by calling
8883 		 * tcp_wput_data().  Need to adjust all those
8884 		 * params to make sure tcp_wput_data() work properly.
8885 		 */
8886 		if (tcps->tcps_ignore_path_mtu)
8887 			break;
8888 
8889 		/*
8890 		 * Decrease the MSS by time stamp options
8891 		 * IP options and IPSEC options. tcp_hdr_len
8892 		 * includes time stamp option and IP option
8893 		 * length.
8894 		 */
8895 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8896 		    tcp->tcp_ipsec_overhead;
8897 
8898 		/*
8899 		 * Only update the MSS if the new one is
8900 		 * smaller than the previous one.  This is
8901 		 * to avoid problems when getting multiple
8902 		 * ICMP errors for the same MTU.
8903 		 */
8904 		if (new_mss >= tcp->tcp_mss)
8905 			break;
8906 
8907 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8908 		ASSERT(ratio >= 1);
8909 		tcp_mss_set(tcp, new_mss, B_TRUE);
8910 
8911 		/*
8912 		 * Make sure we have something to
8913 		 * send.
8914 		 */
8915 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8916 		    (tcp->tcp_xmit_head != NULL)) {
8917 			/*
8918 			 * Shrink tcp_cwnd in
8919 			 * proportion to the old MSS/new MSS.
8920 			 */
8921 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8922 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8923 			    (tcp->tcp_unsent == 0)) {
8924 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8925 			} else {
8926 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8927 			}
8928 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8929 			tcp->tcp_rexmit = B_TRUE;
8930 			tcp->tcp_dupack_cnt = 0;
8931 			tcp->tcp_snd_burst = TCP_CWND_SS;
8932 			tcp_ss_rexmit(tcp);
8933 		}
8934 		break;
8935 
8936 	case ICMP6_DST_UNREACH:
8937 		switch (icmp6->icmp6_code) {
8938 		case ICMP6_DST_UNREACH_NOPORT:
8939 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8940 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8941 			    (seg_seq == tcp->tcp_iss)) {
8942 				(void) tcp_clean_death(tcp,
8943 				    ECONNREFUSED, 8);
8944 			}
8945 			break;
8946 
8947 		case ICMP6_DST_UNREACH_ADMIN:
8948 		case ICMP6_DST_UNREACH_NOROUTE:
8949 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8950 		case ICMP6_DST_UNREACH_ADDR:
8951 			/* Record the error in case we finally time out. */
8952 			tcp->tcp_client_errno = EHOSTUNREACH;
8953 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8954 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8955 			    (seg_seq == tcp->tcp_iss)) {
8956 				if (tcp->tcp_listener != NULL &&
8957 				    tcp->tcp_listener->tcp_syn_defense) {
8958 					/*
8959 					 * Ditch the half-open connection if we
8960 					 * suspect a SYN attack is under way.
8961 					 */
8962 					tcp_ip_ire_mark_advice(tcp);
8963 					(void) tcp_clean_death(tcp,
8964 					    tcp->tcp_client_errno, 9);
8965 				}
8966 			}
8967 
8968 
8969 			break;
8970 		default:
8971 			break;
8972 		}
8973 		break;
8974 
8975 	case ICMP6_PARAM_PROB:
8976 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8977 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8978 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8979 		    (uchar_t *)nexthdrp) {
8980 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8981 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8982 				(void) tcp_clean_death(tcp,
8983 				    ECONNREFUSED, 10);
8984 			}
8985 			break;
8986 		}
8987 		break;
8988 
8989 	case ICMP6_TIME_EXCEEDED:
8990 	default:
8991 		break;
8992 	}
8993 	freemsg(first_mp);
8994 }
8995 
8996 /*
8997  * IP recognizes seven kinds of bind requests:
8998  *
8999  * - A zero-length address binds only to the protocol number.
9000  *
9001  * - A 4-byte address is treated as a request to
9002  * validate that the address is a valid local IPv4
9003  * address, appropriate for an application to bind to.
9004  * IP does the verification, but does not make any note
9005  * of the address at this time.
9006  *
9007  * - A 16-byte address contains is treated as a request
9008  * to validate a local IPv6 address, as the 4-byte
9009  * address case above.
9010  *
9011  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9012  * use it for the inbound fanout of packets.
9013  *
9014  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9015  * use it for the inbound fanout of packets.
9016  *
9017  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9018  * information consisting of local and remote addresses
9019  * and ports.  In this case, the addresses are both
9020  * validated as appropriate for this operation, and, if
9021  * so, the information is retained for use in the
9022  * inbound fanout.
9023  *
9024  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9025  * fanout information, like the 12-byte case above.
9026  *
9027  * IP will also fill in the IRE request mblk with information
9028  * regarding our peer.  In all cases, we notify IP of our protocol
9029  * type by appending a single protocol byte to the bind request.
9030  */
9031 static mblk_t *
9032 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9033 {
9034 	char	*cp;
9035 	mblk_t	*mp;
9036 	struct T_bind_req *tbr;
9037 	ipa_conn_t	*ac;
9038 	ipa6_conn_t	*ac6;
9039 	sin_t		*sin;
9040 	sin6_t		*sin6;
9041 
9042 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9043 	ASSERT((tcp->tcp_family == AF_INET &&
9044 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9045 	    (tcp->tcp_family == AF_INET6 &&
9046 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9047 	    tcp->tcp_ipversion == IPV6_VERSION)));
9048 
9049 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9050 	if (!mp)
9051 		return (mp);
9052 	mp->b_datap->db_type = M_PROTO;
9053 	tbr = (struct T_bind_req *)mp->b_rptr;
9054 	tbr->PRIM_type = bind_prim;
9055 	tbr->ADDR_offset = sizeof (*tbr);
9056 	tbr->CONIND_number = 0;
9057 	tbr->ADDR_length = addr_length;
9058 	cp = (char *)&tbr[1];
9059 	switch (addr_length) {
9060 	case sizeof (ipa_conn_t):
9061 		ASSERT(tcp->tcp_family == AF_INET);
9062 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9063 
9064 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9065 		if (mp->b_cont == NULL) {
9066 			freemsg(mp);
9067 			return (NULL);
9068 		}
9069 		mp->b_cont->b_wptr += sizeof (ire_t);
9070 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9071 
9072 		/* cp known to be 32 bit aligned */
9073 		ac = (ipa_conn_t *)cp;
9074 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9075 		ac->ac_faddr = tcp->tcp_remote;
9076 		ac->ac_fport = tcp->tcp_fport;
9077 		ac->ac_lport = tcp->tcp_lport;
9078 		tcp->tcp_hard_binding = 1;
9079 		break;
9080 
9081 	case sizeof (ipa6_conn_t):
9082 		ASSERT(tcp->tcp_family == AF_INET6);
9083 
9084 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9085 		if (mp->b_cont == NULL) {
9086 			freemsg(mp);
9087 			return (NULL);
9088 		}
9089 		mp->b_cont->b_wptr += sizeof (ire_t);
9090 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9091 
9092 		/* cp known to be 32 bit aligned */
9093 		ac6 = (ipa6_conn_t *)cp;
9094 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9095 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9096 			    &ac6->ac6_laddr);
9097 		} else {
9098 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9099 		}
9100 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9101 		ac6->ac6_fport = tcp->tcp_fport;
9102 		ac6->ac6_lport = tcp->tcp_lport;
9103 		tcp->tcp_hard_binding = 1;
9104 		break;
9105 
9106 	case sizeof (sin_t):
9107 		/*
9108 		 * NOTE: IPV6_ADDR_LEN also has same size.
9109 		 * Use family to discriminate.
9110 		 */
9111 		if (tcp->tcp_family == AF_INET) {
9112 			sin = (sin_t *)cp;
9113 
9114 			*sin = sin_null;
9115 			sin->sin_family = AF_INET;
9116 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9117 			sin->sin_port = tcp->tcp_lport;
9118 			break;
9119 		} else {
9120 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9121 		}
9122 		break;
9123 
9124 	case sizeof (sin6_t):
9125 		ASSERT(tcp->tcp_family == AF_INET6);
9126 		sin6 = (sin6_t *)cp;
9127 
9128 		*sin6 = sin6_null;
9129 		sin6->sin6_family = AF_INET6;
9130 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9131 		sin6->sin6_port = tcp->tcp_lport;
9132 		break;
9133 
9134 	case IP_ADDR_LEN:
9135 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9136 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9137 		break;
9138 
9139 	}
9140 	/* Add protocol number to end */
9141 	cp[addr_length] = (char)IPPROTO_TCP;
9142 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9143 	return (mp);
9144 }
9145 
9146 /*
9147  * Notify IP that we are having trouble with this connection.  IP should
9148  * blow the IRE away and start over.
9149  */
9150 static void
9151 tcp_ip_notify(tcp_t *tcp)
9152 {
9153 	struct iocblk	*iocp;
9154 	ipid_t	*ipid;
9155 	mblk_t	*mp;
9156 
9157 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9158 	if (tcp->tcp_ipversion == IPV6_VERSION)
9159 		return;
9160 
9161 	mp = mkiocb(IP_IOCTL);
9162 	if (mp == NULL)
9163 		return;
9164 
9165 	iocp = (struct iocblk *)mp->b_rptr;
9166 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9167 
9168 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9169 	if (!mp->b_cont) {
9170 		freeb(mp);
9171 		return;
9172 	}
9173 
9174 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9175 	mp->b_cont->b_wptr += iocp->ioc_count;
9176 	bzero(ipid, sizeof (*ipid));
9177 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9178 	ipid->ipid_ire_type = IRE_CACHE;
9179 	ipid->ipid_addr_offset = sizeof (ipid_t);
9180 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9181 	/*
9182 	 * Note: in the case of source routing we want to blow away the
9183 	 * route to the first source route hop.
9184 	 */
9185 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9186 	    sizeof (tcp->tcp_ipha->ipha_dst));
9187 
9188 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9189 }
9190 
9191 /* Unlink and return any mblk that looks like it contains an ire */
9192 static mblk_t *
9193 tcp_ire_mp(mblk_t *mp)
9194 {
9195 	mblk_t	*prev_mp;
9196 
9197 	for (;;) {
9198 		prev_mp = mp;
9199 		mp = mp->b_cont;
9200 		if (mp == NULL)
9201 			break;
9202 		switch (DB_TYPE(mp)) {
9203 		case IRE_DB_TYPE:
9204 		case IRE_DB_REQ_TYPE:
9205 			if (prev_mp != NULL)
9206 				prev_mp->b_cont = mp->b_cont;
9207 			mp->b_cont = NULL;
9208 			return (mp);
9209 		default:
9210 			break;
9211 		}
9212 	}
9213 	return (mp);
9214 }
9215 
9216 /*
9217  * Timer callback routine for keepalive probe.  We do a fake resend of
9218  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9219  * check to see if we have heard anything from the other end for the last
9220  * RTO period.  If we have, set the timer to expire for another
9221  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9222  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9223  * the timeout if we have not heard from the other side.  If for more than
9224  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9225  * kill the connection unless the keepalive abort threshold is 0.  In
9226  * that case, we will probe "forever."
9227  */
9228 static void
9229 tcp_keepalive_killer(void *arg)
9230 {
9231 	mblk_t	*mp;
9232 	conn_t	*connp = (conn_t *)arg;
9233 	tcp_t  	*tcp = connp->conn_tcp;
9234 	int32_t	firetime;
9235 	int32_t	idletime;
9236 	int32_t	ka_intrvl;
9237 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9238 
9239 	tcp->tcp_ka_tid = 0;
9240 
9241 	if (tcp->tcp_fused)
9242 		return;
9243 
9244 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9245 	ka_intrvl = tcp->tcp_ka_interval;
9246 
9247 	/*
9248 	 * Keepalive probe should only be sent if the application has not
9249 	 * done a close on the connection.
9250 	 */
9251 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9252 		return;
9253 	}
9254 	/* Timer fired too early, restart it. */
9255 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9256 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9257 		    MSEC_TO_TICK(ka_intrvl));
9258 		return;
9259 	}
9260 
9261 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9262 	/*
9263 	 * If we have not heard from the other side for a long
9264 	 * time, kill the connection unless the keepalive abort
9265 	 * threshold is 0.  In that case, we will probe "forever."
9266 	 */
9267 	if (tcp->tcp_ka_abort_thres != 0 &&
9268 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9269 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9270 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9271 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9272 		return;
9273 	}
9274 
9275 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9276 	    idletime >= ka_intrvl) {
9277 		/* Fake resend of last ACKed byte. */
9278 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9279 
9280 		if (mp1 != NULL) {
9281 			*mp1->b_wptr++ = '\0';
9282 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9283 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9284 			freeb(mp1);
9285 			/*
9286 			 * if allocation failed, fall through to start the
9287 			 * timer back.
9288 			 */
9289 			if (mp != NULL) {
9290 				TCP_RECORD_TRACE(tcp, mp,
9291 				    TCP_TRACE_SEND_PKT);
9292 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9293 				BUMP_MIB(&tcps->tcps_mib,
9294 				    tcpTimKeepaliveProbe);
9295 				if (tcp->tcp_ka_last_intrvl != 0) {
9296 					int max;
9297 					/*
9298 					 * We should probe again at least
9299 					 * in ka_intrvl, but not more than
9300 					 * tcp_rexmit_interval_max.
9301 					 */
9302 					max = tcps->tcps_rexmit_interval_max;
9303 					firetime = MIN(ka_intrvl - 1,
9304 					    tcp->tcp_ka_last_intrvl << 1);
9305 					if (firetime > max)
9306 						firetime = max;
9307 				} else {
9308 					firetime = tcp->tcp_rto;
9309 				}
9310 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9311 				    tcp_keepalive_killer,
9312 				    MSEC_TO_TICK(firetime));
9313 				tcp->tcp_ka_last_intrvl = firetime;
9314 				return;
9315 			}
9316 		}
9317 	} else {
9318 		tcp->tcp_ka_last_intrvl = 0;
9319 	}
9320 
9321 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9322 	if ((firetime = ka_intrvl - idletime) < 0) {
9323 		firetime = ka_intrvl;
9324 	}
9325 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9326 	    MSEC_TO_TICK(firetime));
9327 }
9328 
9329 int
9330 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9331 {
9332 	queue_t	*q = tcp->tcp_rq;
9333 	int32_t	mss = tcp->tcp_mss;
9334 	int	maxpsz;
9335 
9336 	if (TCP_IS_DETACHED(tcp))
9337 		return (mss);
9338 
9339 	if (tcp->tcp_fused) {
9340 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9341 		mss = INFPSZ;
9342 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9343 		/*
9344 		 * Set the sd_qn_maxpsz according to the socket send buffer
9345 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9346 		 * instruct the stream head to copyin user data into contiguous
9347 		 * kernel-allocated buffers without breaking it up into smaller
9348 		 * chunks.  We round up the buffer size to the nearest SMSS.
9349 		 */
9350 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9351 		if (tcp->tcp_kssl_ctx == NULL)
9352 			mss = INFPSZ;
9353 		else
9354 			mss = SSL3_MAX_RECORD_LEN;
9355 	} else {
9356 		/*
9357 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9358 		 * (and a multiple of the mss).  This instructs the stream
9359 		 * head to break down larger than SMSS writes into SMSS-
9360 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9361 		 */
9362 		maxpsz = tcp->tcp_maxpsz * mss;
9363 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9364 			maxpsz = tcp->tcp_xmit_hiwater/2;
9365 			/* Round up to nearest mss */
9366 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9367 		}
9368 	}
9369 	(void) setmaxps(q, maxpsz);
9370 	tcp->tcp_wq->q_maxpsz = maxpsz;
9371 
9372 	if (set_maxblk)
9373 		(void) mi_set_sth_maxblk(q, mss);
9374 
9375 	return (mss);
9376 }
9377 
9378 /*
9379  * Extract option values from a tcp header.  We put any found values into the
9380  * tcpopt struct and return a bitmask saying which options were found.
9381  */
9382 static int
9383 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9384 {
9385 	uchar_t		*endp;
9386 	int		len;
9387 	uint32_t	mss;
9388 	uchar_t		*up = (uchar_t *)tcph;
9389 	int		found = 0;
9390 	int32_t		sack_len;
9391 	tcp_seq		sack_begin, sack_end;
9392 	tcp_t		*tcp;
9393 
9394 	endp = up + TCP_HDR_LENGTH(tcph);
9395 	up += TCP_MIN_HEADER_LENGTH;
9396 	while (up < endp) {
9397 		len = endp - up;
9398 		switch (*up) {
9399 		case TCPOPT_EOL:
9400 			break;
9401 
9402 		case TCPOPT_NOP:
9403 			up++;
9404 			continue;
9405 
9406 		case TCPOPT_MAXSEG:
9407 			if (len < TCPOPT_MAXSEG_LEN ||
9408 			    up[1] != TCPOPT_MAXSEG_LEN)
9409 				break;
9410 
9411 			mss = BE16_TO_U16(up+2);
9412 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9413 			tcpopt->tcp_opt_mss = mss;
9414 			found |= TCP_OPT_MSS_PRESENT;
9415 
9416 			up += TCPOPT_MAXSEG_LEN;
9417 			continue;
9418 
9419 		case TCPOPT_WSCALE:
9420 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9421 				break;
9422 
9423 			if (up[2] > TCP_MAX_WINSHIFT)
9424 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9425 			else
9426 				tcpopt->tcp_opt_wscale = up[2];
9427 			found |= TCP_OPT_WSCALE_PRESENT;
9428 
9429 			up += TCPOPT_WS_LEN;
9430 			continue;
9431 
9432 		case TCPOPT_SACK_PERMITTED:
9433 			if (len < TCPOPT_SACK_OK_LEN ||
9434 			    up[1] != TCPOPT_SACK_OK_LEN)
9435 				break;
9436 			found |= TCP_OPT_SACK_OK_PRESENT;
9437 			up += TCPOPT_SACK_OK_LEN;
9438 			continue;
9439 
9440 		case TCPOPT_SACK:
9441 			if (len <= 2 || up[1] <= 2 || len < up[1])
9442 				break;
9443 
9444 			/* If TCP is not interested in SACK blks... */
9445 			if ((tcp = tcpopt->tcp) == NULL) {
9446 				up += up[1];
9447 				continue;
9448 			}
9449 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9450 			up += TCPOPT_HEADER_LEN;
9451 
9452 			/*
9453 			 * If the list is empty, allocate one and assume
9454 			 * nothing is sack'ed.
9455 			 */
9456 			ASSERT(tcp->tcp_sack_info != NULL);
9457 			if (tcp->tcp_notsack_list == NULL) {
9458 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9459 				    tcp->tcp_suna, tcp->tcp_snxt,
9460 				    &(tcp->tcp_num_notsack_blk),
9461 				    &(tcp->tcp_cnt_notsack_list));
9462 
9463 				/*
9464 				 * Make sure tcp_notsack_list is not NULL.
9465 				 * This happens when kmem_alloc(KM_NOSLEEP)
9466 				 * returns NULL.
9467 				 */
9468 				if (tcp->tcp_notsack_list == NULL) {
9469 					up += sack_len;
9470 					continue;
9471 				}
9472 				tcp->tcp_fack = tcp->tcp_suna;
9473 			}
9474 
9475 			while (sack_len > 0) {
9476 				if (up + 8 > endp) {
9477 					up = endp;
9478 					break;
9479 				}
9480 				sack_begin = BE32_TO_U32(up);
9481 				up += 4;
9482 				sack_end = BE32_TO_U32(up);
9483 				up += 4;
9484 				sack_len -= 8;
9485 				/*
9486 				 * Bounds checking.  Make sure the SACK
9487 				 * info is within tcp_suna and tcp_snxt.
9488 				 * If this SACK blk is out of bound, ignore
9489 				 * it but continue to parse the following
9490 				 * blks.
9491 				 */
9492 				if (SEQ_LEQ(sack_end, sack_begin) ||
9493 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9494 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9495 					continue;
9496 				}
9497 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9498 				    sack_begin, sack_end,
9499 				    &(tcp->tcp_num_notsack_blk),
9500 				    &(tcp->tcp_cnt_notsack_list));
9501 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9502 					tcp->tcp_fack = sack_end;
9503 				}
9504 			}
9505 			found |= TCP_OPT_SACK_PRESENT;
9506 			continue;
9507 
9508 		case TCPOPT_TSTAMP:
9509 			if (len < TCPOPT_TSTAMP_LEN ||
9510 			    up[1] != TCPOPT_TSTAMP_LEN)
9511 				break;
9512 
9513 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9514 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9515 
9516 			found |= TCP_OPT_TSTAMP_PRESENT;
9517 
9518 			up += TCPOPT_TSTAMP_LEN;
9519 			continue;
9520 
9521 		default:
9522 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9523 				break;
9524 			up += up[1];
9525 			continue;
9526 		}
9527 		break;
9528 	}
9529 	return (found);
9530 }
9531 
9532 /*
9533  * Set the mss associated with a particular tcp based on its current value,
9534  * and a new one passed in. Observe minimums and maximums, and reset
9535  * other state variables that we want to view as multiples of mss.
9536  *
9537  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9538  * highwater marks etc. need to be initialized or adjusted.
9539  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9540  *    packet arrives.
9541  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9542  *    ICMP6_PACKET_TOO_BIG arrives.
9543  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9544  *    to increase the MSS to use the extra bytes available.
9545  *
9546  * Callers except tcp_paws_check() ensure that they only reduce mss.
9547  */
9548 static void
9549 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9550 {
9551 	uint32_t	mss_max;
9552 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9553 
9554 	if (tcp->tcp_ipversion == IPV4_VERSION)
9555 		mss_max = tcps->tcps_mss_max_ipv4;
9556 	else
9557 		mss_max = tcps->tcps_mss_max_ipv6;
9558 
9559 	if (mss < tcps->tcps_mss_min)
9560 		mss = tcps->tcps_mss_min;
9561 	if (mss > mss_max)
9562 		mss = mss_max;
9563 	/*
9564 	 * Unless naglim has been set by our client to
9565 	 * a non-mss value, force naglim to track mss.
9566 	 * This can help to aggregate small writes.
9567 	 */
9568 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9569 		tcp->tcp_naglim = mss;
9570 	/*
9571 	 * TCP should be able to buffer at least 4 MSS data for obvious
9572 	 * performance reason.
9573 	 */
9574 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9575 		tcp->tcp_xmit_hiwater = mss << 2;
9576 
9577 	if (do_ss) {
9578 		/*
9579 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9580 		 * changing due to a reduction in MTU, presumably as a
9581 		 * result of a new path component, reset cwnd to its
9582 		 * "initial" value, as a multiple of the new mss.
9583 		 */
9584 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9585 	} else {
9586 		/*
9587 		 * Called by tcp_paws_check(), the mss increased
9588 		 * marginally to allow use of space previously taken
9589 		 * by the timestamp option. It would be inappropriate
9590 		 * to apply slow start or tcp_init_cwnd values to
9591 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9592 		 */
9593 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9594 		tcp->tcp_cwnd_cnt = 0;
9595 	}
9596 	tcp->tcp_mss = mss;
9597 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9598 }
9599 
9600 /* For /dev/tcp aka AF_INET open */
9601 static int
9602 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9603 {
9604 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9605 }
9606 
9607 /* For /dev/tcp6 aka AF_INET6 open */
9608 static int
9609 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9610 {
9611 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9612 }
9613 
9614 static int
9615 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9616     boolean_t isv6)
9617 {
9618 	tcp_t		*tcp = NULL;
9619 	conn_t		*connp;
9620 	int		err;
9621 	vmem_t		*minor_arena = NULL;
9622 	dev_t		conn_dev;
9623 	zoneid_t	zoneid;
9624 	tcp_stack_t	*tcps = NULL;
9625 
9626 	if (q->q_ptr != NULL)
9627 		return (0);
9628 
9629 	if (sflag == MODOPEN)
9630 		return (EINVAL);
9631 
9632 	if (!(flag & SO_ACCEPTOR)) {
9633 		/*
9634 		 * Special case for install: miniroot needs to be able to
9635 		 * access files via NFS as though it were always in the
9636 		 * global zone.
9637 		 */
9638 		if (credp == kcred && nfs_global_client_only != 0) {
9639 			zoneid = GLOBAL_ZONEID;
9640 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9641 			    netstack_tcp;
9642 			ASSERT(tcps != NULL);
9643 		} else {
9644 			netstack_t *ns;
9645 
9646 			ns = netstack_find_by_cred(credp);
9647 			ASSERT(ns != NULL);
9648 			tcps = ns->netstack_tcp;
9649 			ASSERT(tcps != NULL);
9650 
9651 			/*
9652 			 * For exclusive stacks we set the zoneid to zero
9653 			 * to make TCP operate as if in the global zone.
9654 			 */
9655 			if (tcps->tcps_netstack->netstack_stackid !=
9656 			    GLOBAL_NETSTACKID)
9657 				zoneid = GLOBAL_ZONEID;
9658 			else
9659 				zoneid = crgetzoneid(credp);
9660 		}
9661 		/*
9662 		 * For stackid zero this is done from strplumb.c, but
9663 		 * non-zero stackids are handled here.
9664 		 */
9665 		if (tcps->tcps_g_q == NULL &&
9666 		    tcps->tcps_netstack->netstack_stackid !=
9667 		    GLOBAL_NETSTACKID) {
9668 			tcp_g_q_setup(tcps);
9669 		}
9670 	}
9671 
9672 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9673 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9674 		minor_arena = ip_minor_arena_la;
9675 	} else {
9676 		/*
9677 		 * Either minor numbers in the large arena were exhausted
9678 		 * or a non socket application is doing the open.
9679 		 * Try to allocate from the small arena.
9680 		 */
9681 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9682 			if (tcps != NULL)
9683 				netstack_rele(tcps->tcps_netstack);
9684 			return (EBUSY);
9685 		}
9686 		minor_arena = ip_minor_arena_sa;
9687 	}
9688 	ASSERT(minor_arena != NULL);
9689 
9690 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9691 
9692 	if (flag & SO_ACCEPTOR) {
9693 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9694 		ASSERT(tcps == NULL);
9695 		q->q_qinfo = &tcp_acceptor_rinit;
9696 		/*
9697 		 * the conn_dev and minor_arena will be subsequently used by
9698 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9699 		 * minor device number for this connection from the q_ptr.
9700 		 */
9701 		RD(q)->q_ptr = (void *)conn_dev;
9702 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9703 		WR(q)->q_ptr = (void *)minor_arena;
9704 		qprocson(q);
9705 		return (0);
9706 	}
9707 
9708 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9709 	/*
9710 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9711 	 * so we drop it by one.
9712 	 */
9713 	netstack_rele(tcps->tcps_netstack);
9714 	if (connp == NULL) {
9715 		inet_minor_free(minor_arena, conn_dev);
9716 		q->q_ptr = NULL;
9717 		return (ENOSR);
9718 	}
9719 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9720 	tcp = connp->conn_tcp;
9721 
9722 	q->q_ptr = WR(q)->q_ptr = connp;
9723 	if (isv6) {
9724 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9725 		connp->conn_send = ip_output_v6;
9726 		connp->conn_af_isv6 = B_TRUE;
9727 		connp->conn_pkt_isv6 = B_TRUE;
9728 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9729 		tcp->tcp_ipversion = IPV6_VERSION;
9730 		tcp->tcp_family = AF_INET6;
9731 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9732 	} else {
9733 		connp->conn_flags |= IPCL_TCP4;
9734 		connp->conn_send = ip_output;
9735 		connp->conn_af_isv6 = B_FALSE;
9736 		connp->conn_pkt_isv6 = B_FALSE;
9737 		tcp->tcp_ipversion = IPV4_VERSION;
9738 		tcp->tcp_family = AF_INET;
9739 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9740 	}
9741 
9742 	/*
9743 	 * TCP keeps a copy of cred for cache locality reasons but
9744 	 * we put a reference only once. If connp->conn_cred
9745 	 * becomes invalid, tcp_cred should also be set to NULL.
9746 	 */
9747 	tcp->tcp_cred = connp->conn_cred = credp;
9748 	crhold(connp->conn_cred);
9749 	tcp->tcp_cpid = curproc->p_pid;
9750 	tcp->tcp_open_time = lbolt64;
9751 	connp->conn_zoneid = zoneid;
9752 	connp->conn_mlp_type = mlptSingle;
9753 	connp->conn_ulp_labeled = !is_system_labeled();
9754 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9755 	ASSERT(tcp->tcp_tcps == tcps);
9756 
9757 	/*
9758 	 * If the caller has the process-wide flag set, then default to MAC
9759 	 * exempt mode.  This allows read-down to unlabeled hosts.
9760 	 */
9761 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9762 		connp->conn_mac_exempt = B_TRUE;
9763 
9764 	connp->conn_dev = conn_dev;
9765 	connp->conn_minor_arena = minor_arena;
9766 
9767 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9768 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9769 
9770 	if (flag & SO_SOCKSTR) {
9771 		/*
9772 		 * No need to insert a socket in tcp acceptor hash.
9773 		 * If it was a socket acceptor stream, we dealt with
9774 		 * it above. A socket listener can never accept a
9775 		 * connection and doesn't need acceptor_id.
9776 		 */
9777 		connp->conn_flags |= IPCL_SOCKET;
9778 		tcp->tcp_issocket = 1;
9779 		WR(q)->q_qinfo = &tcp_sock_winit;
9780 	} else {
9781 #ifdef	_ILP32
9782 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9783 #else
9784 		tcp->tcp_acceptor_id = conn_dev;
9785 #endif	/* _ILP32 */
9786 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9787 	}
9788 
9789 	if (tcps->tcps_trace)
9790 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9791 
9792 	err = tcp_init(tcp, q);
9793 	if (err != 0) {
9794 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9795 		tcp_acceptor_hash_remove(tcp);
9796 		CONN_DEC_REF(connp);
9797 		q->q_ptr = WR(q)->q_ptr = NULL;
9798 		return (err);
9799 	}
9800 
9801 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9802 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9803 
9804 	/* Non-zero default values */
9805 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9806 	/*
9807 	 * Put the ref for TCP. Ref for IP was already put
9808 	 * by ipcl_conn_create. Also Make the conn_t globally
9809 	 * visible to walkers
9810 	 */
9811 	mutex_enter(&connp->conn_lock);
9812 	CONN_INC_REF_LOCKED(connp);
9813 	ASSERT(connp->conn_ref == 2);
9814 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9815 	mutex_exit(&connp->conn_lock);
9816 
9817 	qprocson(q);
9818 	return (0);
9819 }
9820 
9821 /*
9822  * Some TCP options can be "set" by requesting them in the option
9823  * buffer. This is needed for XTI feature test though we do not
9824  * allow it in general. We interpret that this mechanism is more
9825  * applicable to OSI protocols and need not be allowed in general.
9826  * This routine filters out options for which it is not allowed (most)
9827  * and lets through those (few) for which it is. [ The XTI interface
9828  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9829  * ever implemented will have to be allowed here ].
9830  */
9831 static boolean_t
9832 tcp_allow_connopt_set(int level, int name)
9833 {
9834 
9835 	switch (level) {
9836 	case IPPROTO_TCP:
9837 		switch (name) {
9838 		case TCP_NODELAY:
9839 			return (B_TRUE);
9840 		default:
9841 			return (B_FALSE);
9842 		}
9843 		/*NOTREACHED*/
9844 	default:
9845 		return (B_FALSE);
9846 	}
9847 	/*NOTREACHED*/
9848 }
9849 
9850 /*
9851  * This routine gets default values of certain options whose default
9852  * values are maintained by protocol specific code
9853  */
9854 /* ARGSUSED */
9855 int
9856 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9857 {
9858 	int32_t	*i1 = (int32_t *)ptr;
9859 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9860 
9861 	switch (level) {
9862 	case IPPROTO_TCP:
9863 		switch (name) {
9864 		case TCP_NOTIFY_THRESHOLD:
9865 			*i1 = tcps->tcps_ip_notify_interval;
9866 			break;
9867 		case TCP_ABORT_THRESHOLD:
9868 			*i1 = tcps->tcps_ip_abort_interval;
9869 			break;
9870 		case TCP_CONN_NOTIFY_THRESHOLD:
9871 			*i1 = tcps->tcps_ip_notify_cinterval;
9872 			break;
9873 		case TCP_CONN_ABORT_THRESHOLD:
9874 			*i1 = tcps->tcps_ip_abort_cinterval;
9875 			break;
9876 		default:
9877 			return (-1);
9878 		}
9879 		break;
9880 	case IPPROTO_IP:
9881 		switch (name) {
9882 		case IP_TTL:
9883 			*i1 = tcps->tcps_ipv4_ttl;
9884 			break;
9885 		default:
9886 			return (-1);
9887 		}
9888 		break;
9889 	case IPPROTO_IPV6:
9890 		switch (name) {
9891 		case IPV6_UNICAST_HOPS:
9892 			*i1 = tcps->tcps_ipv6_hoplimit;
9893 			break;
9894 		default:
9895 			return (-1);
9896 		}
9897 		break;
9898 	default:
9899 		return (-1);
9900 	}
9901 	return (sizeof (int));
9902 }
9903 
9904 
9905 /*
9906  * TCP routine to get the values of options.
9907  */
9908 int
9909 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9910 {
9911 	int		*i1 = (int *)ptr;
9912 	conn_t		*connp = Q_TO_CONN(q);
9913 	tcp_t		*tcp = connp->conn_tcp;
9914 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9915 
9916 	switch (level) {
9917 	case SOL_SOCKET:
9918 		switch (name) {
9919 		case SO_LINGER:	{
9920 			struct linger *lgr = (struct linger *)ptr;
9921 
9922 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9923 			lgr->l_linger = tcp->tcp_lingertime;
9924 			}
9925 			return (sizeof (struct linger));
9926 		case SO_DEBUG:
9927 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9928 			break;
9929 		case SO_KEEPALIVE:
9930 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9931 			break;
9932 		case SO_DONTROUTE:
9933 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9934 			break;
9935 		case SO_USELOOPBACK:
9936 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9937 			break;
9938 		case SO_BROADCAST:
9939 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9940 			break;
9941 		case SO_REUSEADDR:
9942 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9943 			break;
9944 		case SO_OOBINLINE:
9945 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9946 			break;
9947 		case SO_DGRAM_ERRIND:
9948 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9949 			break;
9950 		case SO_TYPE:
9951 			*i1 = SOCK_STREAM;
9952 			break;
9953 		case SO_SNDBUF:
9954 			*i1 = tcp->tcp_xmit_hiwater;
9955 			break;
9956 		case SO_RCVBUF:
9957 			*i1 = RD(q)->q_hiwat;
9958 			break;
9959 		case SO_SND_COPYAVOID:
9960 			*i1 = tcp->tcp_snd_zcopy_on ?
9961 			    SO_SND_COPYAVOID : 0;
9962 			break;
9963 		case SO_ALLZONES:
9964 			*i1 = connp->conn_allzones ? 1 : 0;
9965 			break;
9966 		case SO_ANON_MLP:
9967 			*i1 = connp->conn_anon_mlp;
9968 			break;
9969 		case SO_MAC_EXEMPT:
9970 			*i1 = connp->conn_mac_exempt;
9971 			break;
9972 		case SO_EXCLBIND:
9973 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9974 			break;
9975 		case SO_PROTOTYPE:
9976 			*i1 = IPPROTO_TCP;
9977 			break;
9978 		case SO_DOMAIN:
9979 			*i1 = tcp->tcp_family;
9980 			break;
9981 		default:
9982 			return (-1);
9983 		}
9984 		break;
9985 	case IPPROTO_TCP:
9986 		switch (name) {
9987 		case TCP_NODELAY:
9988 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9989 			break;
9990 		case TCP_MAXSEG:
9991 			*i1 = tcp->tcp_mss;
9992 			break;
9993 		case TCP_NOTIFY_THRESHOLD:
9994 			*i1 = (int)tcp->tcp_first_timer_threshold;
9995 			break;
9996 		case TCP_ABORT_THRESHOLD:
9997 			*i1 = tcp->tcp_second_timer_threshold;
9998 			break;
9999 		case TCP_CONN_NOTIFY_THRESHOLD:
10000 			*i1 = tcp->tcp_first_ctimer_threshold;
10001 			break;
10002 		case TCP_CONN_ABORT_THRESHOLD:
10003 			*i1 = tcp->tcp_second_ctimer_threshold;
10004 			break;
10005 		case TCP_RECVDSTADDR:
10006 			*i1 = tcp->tcp_recvdstaddr;
10007 			break;
10008 		case TCP_ANONPRIVBIND:
10009 			*i1 = tcp->tcp_anon_priv_bind;
10010 			break;
10011 		case TCP_EXCLBIND:
10012 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10013 			break;
10014 		case TCP_INIT_CWND:
10015 			*i1 = tcp->tcp_init_cwnd;
10016 			break;
10017 		case TCP_KEEPALIVE_THRESHOLD:
10018 			*i1 = tcp->tcp_ka_interval;
10019 			break;
10020 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10021 			*i1 = tcp->tcp_ka_abort_thres;
10022 			break;
10023 		case TCP_CORK:
10024 			*i1 = tcp->tcp_cork;
10025 			break;
10026 		default:
10027 			return (-1);
10028 		}
10029 		break;
10030 	case IPPROTO_IP:
10031 		if (tcp->tcp_family != AF_INET)
10032 			return (-1);
10033 		switch (name) {
10034 		case IP_OPTIONS:
10035 		case T_IP_OPTIONS: {
10036 			/*
10037 			 * This is compatible with BSD in that in only return
10038 			 * the reverse source route with the final destination
10039 			 * as the last entry. The first 4 bytes of the option
10040 			 * will contain the final destination.
10041 			 */
10042 			int	opt_len;
10043 
10044 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10045 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10046 			ASSERT(opt_len >= 0);
10047 			/* Caller ensures enough space */
10048 			if (opt_len > 0) {
10049 				/*
10050 				 * TODO: Do we have to handle getsockopt on an
10051 				 * initiator as well?
10052 				 */
10053 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10054 			}
10055 			return (0);
10056 			}
10057 		case IP_TOS:
10058 		case T_IP_TOS:
10059 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10060 			break;
10061 		case IP_TTL:
10062 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10063 			break;
10064 		case IP_NEXTHOP:
10065 			/* Handled at IP level */
10066 			return (-EINVAL);
10067 		default:
10068 			return (-1);
10069 		}
10070 		break;
10071 	case IPPROTO_IPV6:
10072 		/*
10073 		 * IPPROTO_IPV6 options are only supported for sockets
10074 		 * that are using IPv6 on the wire.
10075 		 */
10076 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10077 			return (-1);
10078 		}
10079 		switch (name) {
10080 		case IPV6_UNICAST_HOPS:
10081 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10082 			break;	/* goto sizeof (int) option return */
10083 		case IPV6_BOUND_IF:
10084 			/* Zero if not set */
10085 			*i1 = tcp->tcp_bound_if;
10086 			break;	/* goto sizeof (int) option return */
10087 		case IPV6_RECVPKTINFO:
10088 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10089 				*i1 = 1;
10090 			else
10091 				*i1 = 0;
10092 			break;	/* goto sizeof (int) option return */
10093 		case IPV6_RECVTCLASS:
10094 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10095 				*i1 = 1;
10096 			else
10097 				*i1 = 0;
10098 			break;	/* goto sizeof (int) option return */
10099 		case IPV6_RECVHOPLIMIT:
10100 			if (tcp->tcp_ipv6_recvancillary &
10101 			    TCP_IPV6_RECVHOPLIMIT)
10102 				*i1 = 1;
10103 			else
10104 				*i1 = 0;
10105 			break;	/* goto sizeof (int) option return */
10106 		case IPV6_RECVHOPOPTS:
10107 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10108 				*i1 = 1;
10109 			else
10110 				*i1 = 0;
10111 			break;	/* goto sizeof (int) option return */
10112 		case IPV6_RECVDSTOPTS:
10113 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10114 				*i1 = 1;
10115 			else
10116 				*i1 = 0;
10117 			break;	/* goto sizeof (int) option return */
10118 		case _OLD_IPV6_RECVDSTOPTS:
10119 			if (tcp->tcp_ipv6_recvancillary &
10120 			    TCP_OLD_IPV6_RECVDSTOPTS)
10121 				*i1 = 1;
10122 			else
10123 				*i1 = 0;
10124 			break;	/* goto sizeof (int) option return */
10125 		case IPV6_RECVRTHDR:
10126 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10127 				*i1 = 1;
10128 			else
10129 				*i1 = 0;
10130 			break;	/* goto sizeof (int) option return */
10131 		case IPV6_RECVRTHDRDSTOPTS:
10132 			if (tcp->tcp_ipv6_recvancillary &
10133 			    TCP_IPV6_RECVRTDSTOPTS)
10134 				*i1 = 1;
10135 			else
10136 				*i1 = 0;
10137 			break;	/* goto sizeof (int) option return */
10138 		case IPV6_PKTINFO: {
10139 			/* XXX assumes that caller has room for max size! */
10140 			struct in6_pktinfo *pkti;
10141 
10142 			pkti = (struct in6_pktinfo *)ptr;
10143 			if (ipp->ipp_fields & IPPF_IFINDEX)
10144 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10145 			else
10146 				pkti->ipi6_ifindex = 0;
10147 			if (ipp->ipp_fields & IPPF_ADDR)
10148 				pkti->ipi6_addr = ipp->ipp_addr;
10149 			else
10150 				pkti->ipi6_addr = ipv6_all_zeros;
10151 			return (sizeof (struct in6_pktinfo));
10152 		}
10153 		case IPV6_TCLASS:
10154 			if (ipp->ipp_fields & IPPF_TCLASS)
10155 				*i1 = ipp->ipp_tclass;
10156 			else
10157 				*i1 = IPV6_FLOW_TCLASS(
10158 				    IPV6_DEFAULT_VERS_AND_FLOW);
10159 			break;	/* goto sizeof (int) option return */
10160 		case IPV6_NEXTHOP: {
10161 			sin6_t *sin6 = (sin6_t *)ptr;
10162 
10163 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10164 				return (0);
10165 			*sin6 = sin6_null;
10166 			sin6->sin6_family = AF_INET6;
10167 			sin6->sin6_addr = ipp->ipp_nexthop;
10168 			return (sizeof (sin6_t));
10169 		}
10170 		case IPV6_HOPOPTS:
10171 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10172 				return (0);
10173 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10174 				return (0);
10175 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10176 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10177 			if (tcp->tcp_label_len > 0) {
10178 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10179 				ptr[1] = (ipp->ipp_hopoptslen -
10180 				    tcp->tcp_label_len + 7) / 8 - 1;
10181 			}
10182 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10183 		case IPV6_RTHDRDSTOPTS:
10184 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10185 				return (0);
10186 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10187 			return (ipp->ipp_rtdstoptslen);
10188 		case IPV6_RTHDR:
10189 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10190 				return (0);
10191 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10192 			return (ipp->ipp_rthdrlen);
10193 		case IPV6_DSTOPTS:
10194 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10195 				return (0);
10196 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10197 			return (ipp->ipp_dstoptslen);
10198 		case IPV6_SRC_PREFERENCES:
10199 			return (ip6_get_src_preferences(connp,
10200 			    (uint32_t *)ptr));
10201 		case IPV6_PATHMTU: {
10202 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10203 
10204 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10205 				return (-1);
10206 
10207 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10208 			    connp->conn_fport, mtuinfo,
10209 			    connp->conn_netstack));
10210 		}
10211 		default:
10212 			return (-1);
10213 		}
10214 		break;
10215 	default:
10216 		return (-1);
10217 	}
10218 	return (sizeof (int));
10219 }
10220 
10221 /*
10222  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10223  * Parameters are assumed to be verified by the caller.
10224  */
10225 /* ARGSUSED */
10226 int
10227 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10228     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10229     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10230 {
10231 	conn_t	*connp = Q_TO_CONN(q);
10232 	tcp_t	*tcp = connp->conn_tcp;
10233 	int	*i1 = (int *)invalp;
10234 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10235 	boolean_t checkonly;
10236 	int	reterr;
10237 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10238 
10239 	switch (optset_context) {
10240 	case SETFN_OPTCOM_CHECKONLY:
10241 		checkonly = B_TRUE;
10242 		/*
10243 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10244 		 * inlen != 0 implies value supplied and
10245 		 * 	we have to "pretend" to set it.
10246 		 * inlen == 0 implies that there is no
10247 		 * 	value part in T_CHECK request and just validation
10248 		 * done elsewhere should be enough, we just return here.
10249 		 */
10250 		if (inlen == 0) {
10251 			*outlenp = 0;
10252 			return (0);
10253 		}
10254 		break;
10255 	case SETFN_OPTCOM_NEGOTIATE:
10256 		checkonly = B_FALSE;
10257 		break;
10258 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10259 	case SETFN_CONN_NEGOTIATE:
10260 		checkonly = B_FALSE;
10261 		/*
10262 		 * Negotiating local and "association-related" options
10263 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10264 		 * primitives is allowed by XTI, but we choose
10265 		 * to not implement this style negotiation for Internet
10266 		 * protocols (We interpret it is a must for OSI world but
10267 		 * optional for Internet protocols) for all options.
10268 		 * [ Will do only for the few options that enable test
10269 		 * suites that our XTI implementation of this feature
10270 		 * works for transports that do allow it ]
10271 		 */
10272 		if (!tcp_allow_connopt_set(level, name)) {
10273 			*outlenp = 0;
10274 			return (EINVAL);
10275 		}
10276 		break;
10277 	default:
10278 		/*
10279 		 * We should never get here
10280 		 */
10281 		*outlenp = 0;
10282 		return (EINVAL);
10283 	}
10284 
10285 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10286 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10287 
10288 	/*
10289 	 * For TCP, we should have no ancillary data sent down
10290 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10291 	 * has to be zero.
10292 	 */
10293 	ASSERT(thisdg_attrs == NULL);
10294 
10295 	/*
10296 	 * For fixed length options, no sanity check
10297 	 * of passed in length is done. It is assumed *_optcom_req()
10298 	 * routines do the right thing.
10299 	 */
10300 
10301 	switch (level) {
10302 	case SOL_SOCKET:
10303 		switch (name) {
10304 		case SO_LINGER: {
10305 			struct linger *lgr = (struct linger *)invalp;
10306 
10307 			if (!checkonly) {
10308 				if (lgr->l_onoff) {
10309 					tcp->tcp_linger = 1;
10310 					tcp->tcp_lingertime = lgr->l_linger;
10311 				} else {
10312 					tcp->tcp_linger = 0;
10313 					tcp->tcp_lingertime = 0;
10314 				}
10315 				/* struct copy */
10316 				*(struct linger *)outvalp = *lgr;
10317 			} else {
10318 				if (!lgr->l_onoff) {
10319 					((struct linger *)
10320 					    outvalp)->l_onoff = 0;
10321 					((struct linger *)
10322 					    outvalp)->l_linger = 0;
10323 				} else {
10324 					/* struct copy */
10325 					*(struct linger *)outvalp = *lgr;
10326 				}
10327 			}
10328 			*outlenp = sizeof (struct linger);
10329 			return (0);
10330 		}
10331 		case SO_DEBUG:
10332 			if (!checkonly)
10333 				tcp->tcp_debug = onoff;
10334 			break;
10335 		case SO_KEEPALIVE:
10336 			if (checkonly) {
10337 				/* T_CHECK case */
10338 				break;
10339 			}
10340 
10341 			if (!onoff) {
10342 				if (tcp->tcp_ka_enabled) {
10343 					if (tcp->tcp_ka_tid != 0) {
10344 						(void) TCP_TIMER_CANCEL(tcp,
10345 						    tcp->tcp_ka_tid);
10346 						tcp->tcp_ka_tid = 0;
10347 					}
10348 					tcp->tcp_ka_enabled = 0;
10349 				}
10350 				break;
10351 			}
10352 			if (!tcp->tcp_ka_enabled) {
10353 				/* Crank up the keepalive timer */
10354 				tcp->tcp_ka_last_intrvl = 0;
10355 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10356 				    tcp_keepalive_killer,
10357 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10358 				tcp->tcp_ka_enabled = 1;
10359 			}
10360 			break;
10361 		case SO_DONTROUTE:
10362 			/*
10363 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10364 			 * only of interest to IP.  We track them here only so
10365 			 * that we can report their current value.
10366 			 */
10367 			if (!checkonly) {
10368 				tcp->tcp_dontroute = onoff;
10369 				tcp->tcp_connp->conn_dontroute = onoff;
10370 			}
10371 			break;
10372 		case SO_USELOOPBACK:
10373 			if (!checkonly) {
10374 				tcp->tcp_useloopback = onoff;
10375 				tcp->tcp_connp->conn_loopback = onoff;
10376 			}
10377 			break;
10378 		case SO_BROADCAST:
10379 			if (!checkonly) {
10380 				tcp->tcp_broadcast = onoff;
10381 				tcp->tcp_connp->conn_broadcast = onoff;
10382 			}
10383 			break;
10384 		case SO_REUSEADDR:
10385 			if (!checkonly) {
10386 				tcp->tcp_reuseaddr = onoff;
10387 				tcp->tcp_connp->conn_reuseaddr = onoff;
10388 			}
10389 			break;
10390 		case SO_OOBINLINE:
10391 			if (!checkonly)
10392 				tcp->tcp_oobinline = onoff;
10393 			break;
10394 		case SO_DGRAM_ERRIND:
10395 			if (!checkonly)
10396 				tcp->tcp_dgram_errind = onoff;
10397 			break;
10398 		case SO_SNDBUF: {
10399 			if (*i1 > tcps->tcps_max_buf) {
10400 				*outlenp = 0;
10401 				return (ENOBUFS);
10402 			}
10403 			if (checkonly)
10404 				break;
10405 
10406 			tcp->tcp_xmit_hiwater = *i1;
10407 			if (tcps->tcps_snd_lowat_fraction != 0)
10408 				tcp->tcp_xmit_lowater =
10409 				    tcp->tcp_xmit_hiwater /
10410 				    tcps->tcps_snd_lowat_fraction;
10411 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10412 			/*
10413 			 * If we are flow-controlled, recheck the condition.
10414 			 * There are apps that increase SO_SNDBUF size when
10415 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10416 			 * control condition to be lifted right away.
10417 			 */
10418 			mutex_enter(&tcp->tcp_non_sq_lock);
10419 			if (tcp->tcp_flow_stopped &&
10420 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10421 				tcp_clrqfull(tcp);
10422 			}
10423 			mutex_exit(&tcp->tcp_non_sq_lock);
10424 			break;
10425 		}
10426 		case SO_RCVBUF:
10427 			if (*i1 > tcps->tcps_max_buf) {
10428 				*outlenp = 0;
10429 				return (ENOBUFS);
10430 			}
10431 			/* Silently ignore zero */
10432 			if (!checkonly && *i1 != 0) {
10433 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10434 				(void) tcp_rwnd_set(tcp, *i1);
10435 			}
10436 			/*
10437 			 * XXX should we return the rwnd here
10438 			 * and tcp_opt_get ?
10439 			 */
10440 			break;
10441 		case SO_SND_COPYAVOID:
10442 			if (!checkonly) {
10443 				/* we only allow enable at most once for now */
10444 				if (tcp->tcp_loopback ||
10445 				    (tcp->tcp_kssl_ctx != NULL) ||
10446 				    (!tcp->tcp_snd_zcopy_aware &&
10447 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10448 					*outlenp = 0;
10449 					return (EOPNOTSUPP);
10450 				}
10451 				tcp->tcp_snd_zcopy_aware = 1;
10452 			}
10453 			break;
10454 		case SO_ALLZONES:
10455 			/* Pass option along to IP level for handling */
10456 			return (-EINVAL);
10457 		case SO_ANON_MLP:
10458 			/* Pass option along to IP level for handling */
10459 			return (-EINVAL);
10460 		case SO_MAC_EXEMPT:
10461 			/* Pass option along to IP level for handling */
10462 			return (-EINVAL);
10463 		case SO_EXCLBIND:
10464 			if (!checkonly)
10465 				tcp->tcp_exclbind = onoff;
10466 			break;
10467 		default:
10468 			*outlenp = 0;
10469 			return (EINVAL);
10470 		}
10471 		break;
10472 	case IPPROTO_TCP:
10473 		switch (name) {
10474 		case TCP_NODELAY:
10475 			if (!checkonly)
10476 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10477 			break;
10478 		case TCP_NOTIFY_THRESHOLD:
10479 			if (!checkonly)
10480 				tcp->tcp_first_timer_threshold = *i1;
10481 			break;
10482 		case TCP_ABORT_THRESHOLD:
10483 			if (!checkonly)
10484 				tcp->tcp_second_timer_threshold = *i1;
10485 			break;
10486 		case TCP_CONN_NOTIFY_THRESHOLD:
10487 			if (!checkonly)
10488 				tcp->tcp_first_ctimer_threshold = *i1;
10489 			break;
10490 		case TCP_CONN_ABORT_THRESHOLD:
10491 			if (!checkonly)
10492 				tcp->tcp_second_ctimer_threshold = *i1;
10493 			break;
10494 		case TCP_RECVDSTADDR:
10495 			if (tcp->tcp_state > TCPS_LISTEN)
10496 				return (EOPNOTSUPP);
10497 			if (!checkonly)
10498 				tcp->tcp_recvdstaddr = onoff;
10499 			break;
10500 		case TCP_ANONPRIVBIND:
10501 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10502 			    IPPROTO_TCP)) != 0) {
10503 				*outlenp = 0;
10504 				return (reterr);
10505 			}
10506 			if (!checkonly) {
10507 				tcp->tcp_anon_priv_bind = onoff;
10508 			}
10509 			break;
10510 		case TCP_EXCLBIND:
10511 			if (!checkonly)
10512 				tcp->tcp_exclbind = onoff;
10513 			break;	/* goto sizeof (int) option return */
10514 		case TCP_INIT_CWND: {
10515 			uint32_t init_cwnd = *((uint32_t *)invalp);
10516 
10517 			if (checkonly)
10518 				break;
10519 
10520 			/*
10521 			 * Only allow socket with network configuration
10522 			 * privilege to set the initial cwnd to be larger
10523 			 * than allowed by RFC 3390.
10524 			 */
10525 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10526 				tcp->tcp_init_cwnd = init_cwnd;
10527 				break;
10528 			}
10529 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10530 				*outlenp = 0;
10531 				return (reterr);
10532 			}
10533 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10534 				*outlenp = 0;
10535 				return (EINVAL);
10536 			}
10537 			tcp->tcp_init_cwnd = init_cwnd;
10538 			break;
10539 		}
10540 		case TCP_KEEPALIVE_THRESHOLD:
10541 			if (checkonly)
10542 				break;
10543 
10544 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10545 			    *i1 > tcps->tcps_keepalive_interval_high) {
10546 				*outlenp = 0;
10547 				return (EINVAL);
10548 			}
10549 			if (*i1 != tcp->tcp_ka_interval) {
10550 				tcp->tcp_ka_interval = *i1;
10551 				/*
10552 				 * Check if we need to restart the
10553 				 * keepalive timer.
10554 				 */
10555 				if (tcp->tcp_ka_tid != 0) {
10556 					ASSERT(tcp->tcp_ka_enabled);
10557 					(void) TCP_TIMER_CANCEL(tcp,
10558 					    tcp->tcp_ka_tid);
10559 					tcp->tcp_ka_last_intrvl = 0;
10560 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10561 					    tcp_keepalive_killer,
10562 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10563 				}
10564 			}
10565 			break;
10566 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10567 			if (!checkonly) {
10568 				if (*i1 <
10569 				    tcps->tcps_keepalive_abort_interval_low ||
10570 				    *i1 >
10571 				    tcps->tcps_keepalive_abort_interval_high) {
10572 					*outlenp = 0;
10573 					return (EINVAL);
10574 				}
10575 				tcp->tcp_ka_abort_thres = *i1;
10576 			}
10577 			break;
10578 		case TCP_CORK:
10579 			if (!checkonly) {
10580 				/*
10581 				 * if tcp->tcp_cork was set and is now
10582 				 * being unset, we have to make sure that
10583 				 * the remaining data gets sent out. Also
10584 				 * unset tcp->tcp_cork so that tcp_wput_data()
10585 				 * can send data even if it is less than mss
10586 				 */
10587 				if (tcp->tcp_cork && onoff == 0 &&
10588 				    tcp->tcp_unsent > 0) {
10589 					tcp->tcp_cork = B_FALSE;
10590 					tcp_wput_data(tcp, NULL, B_FALSE);
10591 				}
10592 				tcp->tcp_cork = onoff;
10593 			}
10594 			break;
10595 		default:
10596 			*outlenp = 0;
10597 			return (EINVAL);
10598 		}
10599 		break;
10600 	case IPPROTO_IP:
10601 		if (tcp->tcp_family != AF_INET) {
10602 			*outlenp = 0;
10603 			return (ENOPROTOOPT);
10604 		}
10605 		switch (name) {
10606 		case IP_OPTIONS:
10607 		case T_IP_OPTIONS:
10608 			reterr = tcp_opt_set_header(tcp, checkonly,
10609 			    invalp, inlen);
10610 			if (reterr) {
10611 				*outlenp = 0;
10612 				return (reterr);
10613 			}
10614 			/* OK return - copy input buffer into output buffer */
10615 			if (invalp != outvalp) {
10616 				/* don't trust bcopy for identical src/dst */
10617 				bcopy(invalp, outvalp, inlen);
10618 			}
10619 			*outlenp = inlen;
10620 			return (0);
10621 		case IP_TOS:
10622 		case T_IP_TOS:
10623 			if (!checkonly) {
10624 				tcp->tcp_ipha->ipha_type_of_service =
10625 				    (uchar_t)*i1;
10626 				tcp->tcp_tos = (uchar_t)*i1;
10627 			}
10628 			break;
10629 		case IP_TTL:
10630 			if (!checkonly) {
10631 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10632 				tcp->tcp_ttl = (uchar_t)*i1;
10633 			}
10634 			break;
10635 		case IP_BOUND_IF:
10636 		case IP_NEXTHOP:
10637 			/* Handled at the IP level */
10638 			return (-EINVAL);
10639 		case IP_SEC_OPT:
10640 			/*
10641 			 * We should not allow policy setting after
10642 			 * we start listening for connections.
10643 			 */
10644 			if (tcp->tcp_state == TCPS_LISTEN) {
10645 				return (EINVAL);
10646 			} else {
10647 				/* Handled at the IP level */
10648 				return (-EINVAL);
10649 			}
10650 		default:
10651 			*outlenp = 0;
10652 			return (EINVAL);
10653 		}
10654 		break;
10655 	case IPPROTO_IPV6: {
10656 		ip6_pkt_t		*ipp;
10657 
10658 		/*
10659 		 * IPPROTO_IPV6 options are only supported for sockets
10660 		 * that are using IPv6 on the wire.
10661 		 */
10662 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10663 			*outlenp = 0;
10664 			return (ENOPROTOOPT);
10665 		}
10666 		/*
10667 		 * Only sticky options; no ancillary data
10668 		 */
10669 		ASSERT(thisdg_attrs == NULL);
10670 		ipp = &tcp->tcp_sticky_ipp;
10671 
10672 		switch (name) {
10673 		case IPV6_UNICAST_HOPS:
10674 			/* -1 means use default */
10675 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10676 				*outlenp = 0;
10677 				return (EINVAL);
10678 			}
10679 			if (!checkonly) {
10680 				if (*i1 == -1) {
10681 					tcp->tcp_ip6h->ip6_hops =
10682 					    ipp->ipp_unicast_hops =
10683 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10684 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10685 					/* Pass modified value to IP. */
10686 					*i1 = tcp->tcp_ip6h->ip6_hops;
10687 				} else {
10688 					tcp->tcp_ip6h->ip6_hops =
10689 					    ipp->ipp_unicast_hops =
10690 					    (uint8_t)*i1;
10691 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10692 				}
10693 				reterr = tcp_build_hdrs(q, tcp);
10694 				if (reterr != 0)
10695 					return (reterr);
10696 			}
10697 			break;
10698 		case IPV6_BOUND_IF:
10699 			if (!checkonly) {
10700 				int error = 0;
10701 
10702 				tcp->tcp_bound_if = *i1;
10703 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10704 				    B_TRUE, checkonly, level, name, mblk);
10705 				if (error != 0) {
10706 					*outlenp = 0;
10707 					return (error);
10708 				}
10709 			}
10710 			break;
10711 		/*
10712 		 * Set boolean switches for ancillary data delivery
10713 		 */
10714 		case IPV6_RECVPKTINFO:
10715 			if (!checkonly) {
10716 				if (onoff)
10717 					tcp->tcp_ipv6_recvancillary |=
10718 					    TCP_IPV6_RECVPKTINFO;
10719 				else
10720 					tcp->tcp_ipv6_recvancillary &=
10721 					    ~TCP_IPV6_RECVPKTINFO;
10722 				/* Force it to be sent up with the next msg */
10723 				tcp->tcp_recvifindex = 0;
10724 			}
10725 			break;
10726 		case IPV6_RECVTCLASS:
10727 			if (!checkonly) {
10728 				if (onoff)
10729 					tcp->tcp_ipv6_recvancillary |=
10730 					    TCP_IPV6_RECVTCLASS;
10731 				else
10732 					tcp->tcp_ipv6_recvancillary &=
10733 					    ~TCP_IPV6_RECVTCLASS;
10734 			}
10735 			break;
10736 		case IPV6_RECVHOPLIMIT:
10737 			if (!checkonly) {
10738 				if (onoff)
10739 					tcp->tcp_ipv6_recvancillary |=
10740 					    TCP_IPV6_RECVHOPLIMIT;
10741 				else
10742 					tcp->tcp_ipv6_recvancillary &=
10743 					    ~TCP_IPV6_RECVHOPLIMIT;
10744 				/* Force it to be sent up with the next msg */
10745 				tcp->tcp_recvhops = 0xffffffffU;
10746 			}
10747 			break;
10748 		case IPV6_RECVHOPOPTS:
10749 			if (!checkonly) {
10750 				if (onoff)
10751 					tcp->tcp_ipv6_recvancillary |=
10752 					    TCP_IPV6_RECVHOPOPTS;
10753 				else
10754 					tcp->tcp_ipv6_recvancillary &=
10755 					    ~TCP_IPV6_RECVHOPOPTS;
10756 			}
10757 			break;
10758 		case IPV6_RECVDSTOPTS:
10759 			if (!checkonly) {
10760 				if (onoff)
10761 					tcp->tcp_ipv6_recvancillary |=
10762 					    TCP_IPV6_RECVDSTOPTS;
10763 				else
10764 					tcp->tcp_ipv6_recvancillary &=
10765 					    ~TCP_IPV6_RECVDSTOPTS;
10766 			}
10767 			break;
10768 		case _OLD_IPV6_RECVDSTOPTS:
10769 			if (!checkonly) {
10770 				if (onoff)
10771 					tcp->tcp_ipv6_recvancillary |=
10772 					    TCP_OLD_IPV6_RECVDSTOPTS;
10773 				else
10774 					tcp->tcp_ipv6_recvancillary &=
10775 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10776 			}
10777 			break;
10778 		case IPV6_RECVRTHDR:
10779 			if (!checkonly) {
10780 				if (onoff)
10781 					tcp->tcp_ipv6_recvancillary |=
10782 					    TCP_IPV6_RECVRTHDR;
10783 				else
10784 					tcp->tcp_ipv6_recvancillary &=
10785 					    ~TCP_IPV6_RECVRTHDR;
10786 			}
10787 			break;
10788 		case IPV6_RECVRTHDRDSTOPTS:
10789 			if (!checkonly) {
10790 				if (onoff)
10791 					tcp->tcp_ipv6_recvancillary |=
10792 					    TCP_IPV6_RECVRTDSTOPTS;
10793 				else
10794 					tcp->tcp_ipv6_recvancillary &=
10795 					    ~TCP_IPV6_RECVRTDSTOPTS;
10796 			}
10797 			break;
10798 		case IPV6_PKTINFO:
10799 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10800 				return (EINVAL);
10801 			if (checkonly)
10802 				break;
10803 
10804 			if (inlen == 0) {
10805 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10806 			} else {
10807 				struct in6_pktinfo *pkti;
10808 
10809 				pkti = (struct in6_pktinfo *)invalp;
10810 				/*
10811 				 * RFC 3542 states that ipi6_addr must be
10812 				 * the unspecified address when setting the
10813 				 * IPV6_PKTINFO sticky socket option on a
10814 				 * TCP socket.
10815 				 */
10816 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10817 					return (EINVAL);
10818 				/*
10819 				 * ip6_set_pktinfo() validates the source
10820 				 * address and interface index.
10821 				 */
10822 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10823 				    pkti, mblk);
10824 				if (reterr != 0)
10825 					return (reterr);
10826 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10827 				ipp->ipp_addr = pkti->ipi6_addr;
10828 				if (ipp->ipp_ifindex != 0)
10829 					ipp->ipp_fields |= IPPF_IFINDEX;
10830 				else
10831 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10832 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10833 					ipp->ipp_fields |= IPPF_ADDR;
10834 				else
10835 					ipp->ipp_fields &= ~IPPF_ADDR;
10836 			}
10837 			reterr = tcp_build_hdrs(q, tcp);
10838 			if (reterr != 0)
10839 				return (reterr);
10840 			break;
10841 		case IPV6_TCLASS:
10842 			if (inlen != 0 && inlen != sizeof (int))
10843 				return (EINVAL);
10844 			if (checkonly)
10845 				break;
10846 
10847 			if (inlen == 0) {
10848 				ipp->ipp_fields &= ~IPPF_TCLASS;
10849 			} else {
10850 				if (*i1 > 255 || *i1 < -1)
10851 					return (EINVAL);
10852 				if (*i1 == -1) {
10853 					ipp->ipp_tclass = 0;
10854 					*i1 = 0;
10855 				} else {
10856 					ipp->ipp_tclass = *i1;
10857 				}
10858 				ipp->ipp_fields |= IPPF_TCLASS;
10859 			}
10860 			reterr = tcp_build_hdrs(q, tcp);
10861 			if (reterr != 0)
10862 				return (reterr);
10863 			break;
10864 		case IPV6_NEXTHOP:
10865 			/*
10866 			 * IP will verify that the nexthop is reachable
10867 			 * and fail for sticky options.
10868 			 */
10869 			if (inlen != 0 && inlen != sizeof (sin6_t))
10870 				return (EINVAL);
10871 			if (checkonly)
10872 				break;
10873 
10874 			if (inlen == 0) {
10875 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10876 			} else {
10877 				sin6_t *sin6 = (sin6_t *)invalp;
10878 
10879 				if (sin6->sin6_family != AF_INET6)
10880 					return (EAFNOSUPPORT);
10881 				if (IN6_IS_ADDR_V4MAPPED(
10882 				    &sin6->sin6_addr))
10883 					return (EADDRNOTAVAIL);
10884 				ipp->ipp_nexthop = sin6->sin6_addr;
10885 				if (!IN6_IS_ADDR_UNSPECIFIED(
10886 				    &ipp->ipp_nexthop))
10887 					ipp->ipp_fields |= IPPF_NEXTHOP;
10888 				else
10889 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10890 			}
10891 			reterr = tcp_build_hdrs(q, tcp);
10892 			if (reterr != 0)
10893 				return (reterr);
10894 			break;
10895 		case IPV6_HOPOPTS: {
10896 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10897 
10898 			/*
10899 			 * Sanity checks - minimum size, size a multiple of
10900 			 * eight bytes, and matching size passed in.
10901 			 */
10902 			if (inlen != 0 &&
10903 			    inlen != (8 * (hopts->ip6h_len + 1)))
10904 				return (EINVAL);
10905 
10906 			if (checkonly)
10907 				break;
10908 
10909 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10910 			    (uchar_t **)&ipp->ipp_hopopts,
10911 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10912 			if (reterr != 0)
10913 				return (reterr);
10914 			if (ipp->ipp_hopoptslen == 0)
10915 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10916 			else
10917 				ipp->ipp_fields |= IPPF_HOPOPTS;
10918 			reterr = tcp_build_hdrs(q, tcp);
10919 			if (reterr != 0)
10920 				return (reterr);
10921 			break;
10922 		}
10923 		case IPV6_RTHDRDSTOPTS: {
10924 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10925 
10926 			/*
10927 			 * Sanity checks - minimum size, size a multiple of
10928 			 * eight bytes, and matching size passed in.
10929 			 */
10930 			if (inlen != 0 &&
10931 			    inlen != (8 * (dopts->ip6d_len + 1)))
10932 				return (EINVAL);
10933 
10934 			if (checkonly)
10935 				break;
10936 
10937 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10938 			    (uchar_t **)&ipp->ipp_rtdstopts,
10939 			    &ipp->ipp_rtdstoptslen, 0);
10940 			if (reterr != 0)
10941 				return (reterr);
10942 			if (ipp->ipp_rtdstoptslen == 0)
10943 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10944 			else
10945 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10946 			reterr = tcp_build_hdrs(q, tcp);
10947 			if (reterr != 0)
10948 				return (reterr);
10949 			break;
10950 		}
10951 		case IPV6_DSTOPTS: {
10952 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10953 
10954 			/*
10955 			 * Sanity checks - minimum size, size a multiple of
10956 			 * eight bytes, and matching size passed in.
10957 			 */
10958 			if (inlen != 0 &&
10959 			    inlen != (8 * (dopts->ip6d_len + 1)))
10960 				return (EINVAL);
10961 
10962 			if (checkonly)
10963 				break;
10964 
10965 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10966 			    (uchar_t **)&ipp->ipp_dstopts,
10967 			    &ipp->ipp_dstoptslen, 0);
10968 			if (reterr != 0)
10969 				return (reterr);
10970 			if (ipp->ipp_dstoptslen == 0)
10971 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10972 			else
10973 				ipp->ipp_fields |= IPPF_DSTOPTS;
10974 			reterr = tcp_build_hdrs(q, tcp);
10975 			if (reterr != 0)
10976 				return (reterr);
10977 			break;
10978 		}
10979 		case IPV6_RTHDR: {
10980 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10981 
10982 			/*
10983 			 * Sanity checks - minimum size, size a multiple of
10984 			 * eight bytes, and matching size passed in.
10985 			 */
10986 			if (inlen != 0 &&
10987 			    inlen != (8 * (rt->ip6r_len + 1)))
10988 				return (EINVAL);
10989 
10990 			if (checkonly)
10991 				break;
10992 
10993 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10994 			    (uchar_t **)&ipp->ipp_rthdr,
10995 			    &ipp->ipp_rthdrlen, 0);
10996 			if (reterr != 0)
10997 				return (reterr);
10998 			if (ipp->ipp_rthdrlen == 0)
10999 				ipp->ipp_fields &= ~IPPF_RTHDR;
11000 			else
11001 				ipp->ipp_fields |= IPPF_RTHDR;
11002 			reterr = tcp_build_hdrs(q, tcp);
11003 			if (reterr != 0)
11004 				return (reterr);
11005 			break;
11006 		}
11007 		case IPV6_V6ONLY:
11008 			if (!checkonly)
11009 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11010 			break;
11011 		case IPV6_USE_MIN_MTU:
11012 			if (inlen != sizeof (int))
11013 				return (EINVAL);
11014 
11015 			if (*i1 < -1 || *i1 > 1)
11016 				return (EINVAL);
11017 
11018 			if (checkonly)
11019 				break;
11020 
11021 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11022 			ipp->ipp_use_min_mtu = *i1;
11023 			break;
11024 		case IPV6_BOUND_PIF:
11025 			/* Handled at the IP level */
11026 			return (-EINVAL);
11027 		case IPV6_SEC_OPT:
11028 			/*
11029 			 * We should not allow policy setting after
11030 			 * we start listening for connections.
11031 			 */
11032 			if (tcp->tcp_state == TCPS_LISTEN) {
11033 				return (EINVAL);
11034 			} else {
11035 				/* Handled at the IP level */
11036 				return (-EINVAL);
11037 			}
11038 		case IPV6_SRC_PREFERENCES:
11039 			if (inlen != sizeof (uint32_t))
11040 				return (EINVAL);
11041 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11042 			    *(uint32_t *)invalp);
11043 			if (reterr != 0) {
11044 				*outlenp = 0;
11045 				return (reterr);
11046 			}
11047 			break;
11048 		default:
11049 			*outlenp = 0;
11050 			return (EINVAL);
11051 		}
11052 		break;
11053 	}		/* end IPPROTO_IPV6 */
11054 	default:
11055 		*outlenp = 0;
11056 		return (EINVAL);
11057 	}
11058 	/*
11059 	 * Common case of OK return with outval same as inval
11060 	 */
11061 	if (invalp != outvalp) {
11062 		/* don't trust bcopy for identical src/dst */
11063 		(void) bcopy(invalp, outvalp, inlen);
11064 	}
11065 	*outlenp = inlen;
11066 	return (0);
11067 }
11068 
11069 /*
11070  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11071  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11072  * headers, and the maximum size tcp header (to avoid reallocation
11073  * on the fly for additional tcp options).
11074  * Returns failure if can't allocate memory.
11075  */
11076 static int
11077 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11078 {
11079 	char	*hdrs;
11080 	uint_t	hdrs_len;
11081 	ip6i_t	*ip6i;
11082 	char	buf[TCP_MAX_HDR_LENGTH];
11083 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11084 	in6_addr_t src, dst;
11085 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11086 
11087 	/*
11088 	 * save the existing tcp header and source/dest IP addresses
11089 	 */
11090 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11091 	src = tcp->tcp_ip6h->ip6_src;
11092 	dst = tcp->tcp_ip6h->ip6_dst;
11093 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11094 	ASSERT(hdrs_len != 0);
11095 	if (hdrs_len > tcp->tcp_iphc_len) {
11096 		/* Need to reallocate */
11097 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11098 		if (hdrs == NULL)
11099 			return (ENOMEM);
11100 		if (tcp->tcp_iphc != NULL) {
11101 			if (tcp->tcp_hdr_grown) {
11102 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11103 			} else {
11104 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11105 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11106 			}
11107 			tcp->tcp_iphc_len = 0;
11108 		}
11109 		ASSERT(tcp->tcp_iphc_len == 0);
11110 		tcp->tcp_iphc = hdrs;
11111 		tcp->tcp_iphc_len = hdrs_len;
11112 		tcp->tcp_hdr_grown = B_TRUE;
11113 	}
11114 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11115 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11116 
11117 	/* Set header fields not in ipp */
11118 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11119 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11120 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11121 	} else {
11122 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11123 	}
11124 	/*
11125 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11126 	 *
11127 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11128 	 */
11129 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11130 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11131 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11132 
11133 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11134 
11135 	tcp->tcp_ip6h->ip6_src = src;
11136 	tcp->tcp_ip6h->ip6_dst = dst;
11137 
11138 	/*
11139 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11140 	 * the default value for TCP.
11141 	 */
11142 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11143 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11144 
11145 	/*
11146 	 * If we're setting extension headers after a connection
11147 	 * has been established, and if we have a routing header
11148 	 * among the extension headers, call ip_massage_options_v6 to
11149 	 * manipulate the routing header/ip6_dst set the checksum
11150 	 * difference in the tcp header template.
11151 	 * (This happens in tcp_connect_ipv6 if the routing header
11152 	 * is set prior to the connect.)
11153 	 * Set the tcp_sum to zero first in case we've cleared a
11154 	 * routing header or don't have one at all.
11155 	 */
11156 	tcp->tcp_sum = 0;
11157 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11158 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11159 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11160 		    (uint8_t *)tcp->tcp_tcph);
11161 		if (rth != NULL) {
11162 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11163 			    rth, tcps->tcps_netstack);
11164 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11165 			    (tcp->tcp_sum >> 16));
11166 		}
11167 	}
11168 
11169 	/* Try to get everything in a single mblk */
11170 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11171 	return (0);
11172 }
11173 
11174 /*
11175  * Transfer any source route option from ipha to buf/dst in reversed form.
11176  */
11177 static int
11178 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11179 {
11180 	ipoptp_t	opts;
11181 	uchar_t		*opt;
11182 	uint8_t		optval;
11183 	uint8_t		optlen;
11184 	uint32_t	len = 0;
11185 
11186 	for (optval = ipoptp_first(&opts, ipha);
11187 	    optval != IPOPT_EOL;
11188 	    optval = ipoptp_next(&opts)) {
11189 		opt = opts.ipoptp_cur;
11190 		optlen = opts.ipoptp_len;
11191 		switch (optval) {
11192 			int	off1, off2;
11193 		case IPOPT_SSRR:
11194 		case IPOPT_LSRR:
11195 
11196 			/* Reverse source route */
11197 			/*
11198 			 * First entry should be the next to last one in the
11199 			 * current source route (the last entry is our
11200 			 * address.)
11201 			 * The last entry should be the final destination.
11202 			 */
11203 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11204 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11205 			off1 = IPOPT_MINOFF_SR - 1;
11206 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11207 			if (off2 < 0) {
11208 				/* No entries in source route */
11209 				break;
11210 			}
11211 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11212 			/*
11213 			 * Note: use src since ipha has not had its src
11214 			 * and dst reversed (it is in the state it was
11215 			 * received.
11216 			 */
11217 			bcopy(&ipha->ipha_src, buf + off2,
11218 			    IP_ADDR_LEN);
11219 			off2 -= IP_ADDR_LEN;
11220 
11221 			while (off2 > 0) {
11222 				bcopy(opt + off2, buf + off1,
11223 				    IP_ADDR_LEN);
11224 				off1 += IP_ADDR_LEN;
11225 				off2 -= IP_ADDR_LEN;
11226 			}
11227 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11228 			buf += optlen;
11229 			len += optlen;
11230 			break;
11231 		}
11232 	}
11233 done:
11234 	/* Pad the resulting options */
11235 	while (len & 0x3) {
11236 		*buf++ = IPOPT_EOL;
11237 		len++;
11238 	}
11239 	return (len);
11240 }
11241 
11242 
11243 /*
11244  * Extract and revert a source route from ipha (if any)
11245  * and then update the relevant fields in both tcp_t and the standard header.
11246  */
11247 static void
11248 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11249 {
11250 	char	buf[TCP_MAX_HDR_LENGTH];
11251 	uint_t	tcph_len;
11252 	int	len;
11253 
11254 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11255 	len = IPH_HDR_LENGTH(ipha);
11256 	if (len == IP_SIMPLE_HDR_LENGTH)
11257 		/* Nothing to do */
11258 		return;
11259 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11260 	    (len & 0x3))
11261 		return;
11262 
11263 	tcph_len = tcp->tcp_tcp_hdr_len;
11264 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11265 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11266 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11267 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11268 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11269 	len += IP_SIMPLE_HDR_LENGTH;
11270 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11271 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11272 	if ((int)tcp->tcp_sum < 0)
11273 		tcp->tcp_sum--;
11274 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11275 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11276 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11277 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11278 	tcp->tcp_ip_hdr_len = len;
11279 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11280 	    (IP_VERSION << 4) | (len >> 2);
11281 	len += tcph_len;
11282 	tcp->tcp_hdr_len = len;
11283 }
11284 
11285 /*
11286  * Copy the standard header into its new location,
11287  * lay in the new options and then update the relevant
11288  * fields in both tcp_t and the standard header.
11289  */
11290 static int
11291 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11292 {
11293 	uint_t	tcph_len;
11294 	uint8_t	*ip_optp;
11295 	tcph_t	*new_tcph;
11296 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11297 
11298 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11299 		return (EINVAL);
11300 
11301 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11302 		return (EINVAL);
11303 
11304 	if (checkonly) {
11305 		/*
11306 		 * do not really set, just pretend to - T_CHECK
11307 		 */
11308 		return (0);
11309 	}
11310 
11311 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11312 	if (tcp->tcp_label_len > 0) {
11313 		int padlen;
11314 		uint8_t opt;
11315 
11316 		/* convert list termination to no-ops */
11317 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11318 		ip_optp += ip_optp[IPOPT_OLEN];
11319 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11320 		while (--padlen >= 0)
11321 			*ip_optp++ = opt;
11322 	}
11323 	tcph_len = tcp->tcp_tcp_hdr_len;
11324 	new_tcph = (tcph_t *)(ip_optp + len);
11325 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11326 	tcp->tcp_tcph = new_tcph;
11327 	bcopy(ptr, ip_optp, len);
11328 
11329 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11330 
11331 	tcp->tcp_ip_hdr_len = len;
11332 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11333 	    (IP_VERSION << 4) | (len >> 2);
11334 	tcp->tcp_hdr_len = len + tcph_len;
11335 	if (!TCP_IS_DETACHED(tcp)) {
11336 		/* Always allocate room for all options. */
11337 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11338 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11339 	}
11340 	return (0);
11341 }
11342 
11343 /* Get callback routine passed to nd_load by tcp_param_register */
11344 /* ARGSUSED */
11345 static int
11346 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11347 {
11348 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11349 
11350 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11351 	return (0);
11352 }
11353 
11354 /*
11355  * Walk through the param array specified registering each element with the
11356  * named dispatch handler.
11357  */
11358 static boolean_t
11359 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11360 {
11361 	for (; cnt-- > 0; tcppa++) {
11362 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11363 			if (!nd_load(ndp, tcppa->tcp_param_name,
11364 			    tcp_param_get, tcp_param_set,
11365 			    (caddr_t)tcppa)) {
11366 				nd_free(ndp);
11367 				return (B_FALSE);
11368 			}
11369 		}
11370 	}
11371 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11372 	    KM_SLEEP);
11373 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11374 	    sizeof (tcpparam_t));
11375 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11376 	    tcp_param_get, tcp_param_set_aligned,
11377 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11378 		nd_free(ndp);
11379 		return (B_FALSE);
11380 	}
11381 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11382 	    KM_SLEEP);
11383 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11384 	    sizeof (tcpparam_t));
11385 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11386 	    tcp_param_get, tcp_param_set_aligned,
11387 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11388 		nd_free(ndp);
11389 		return (B_FALSE);
11390 	}
11391 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11392 	    KM_SLEEP);
11393 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11394 	    sizeof (tcpparam_t));
11395 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11396 	    tcp_param_get, tcp_param_set_aligned,
11397 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11398 		nd_free(ndp);
11399 		return (B_FALSE);
11400 	}
11401 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11402 	    KM_SLEEP);
11403 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11404 	    sizeof (tcpparam_t));
11405 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11406 	    tcp_param_get, tcp_param_set_aligned,
11407 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11408 		nd_free(ndp);
11409 		return (B_FALSE);
11410 	}
11411 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11412 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11413 		nd_free(ndp);
11414 		return (B_FALSE);
11415 	}
11416 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11417 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11418 		nd_free(ndp);
11419 		return (B_FALSE);
11420 	}
11421 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11422 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11423 		nd_free(ndp);
11424 		return (B_FALSE);
11425 	}
11426 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11427 	    NULL)) {
11428 		nd_free(ndp);
11429 		return (B_FALSE);
11430 	}
11431 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11432 	    NULL, NULL)) {
11433 		nd_free(ndp);
11434 		return (B_FALSE);
11435 	}
11436 	if (!nd_load(ndp, "tcp_listen_hash",
11437 	    tcp_listen_hash_report, NULL, NULL)) {
11438 		nd_free(ndp);
11439 		return (B_FALSE);
11440 	}
11441 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11442 	    NULL, NULL)) {
11443 		nd_free(ndp);
11444 		return (B_FALSE);
11445 	}
11446 	if (!nd_load(ndp, "tcp_acceptor_hash",
11447 	    tcp_acceptor_hash_report, NULL, NULL)) {
11448 		nd_free(ndp);
11449 		return (B_FALSE);
11450 	}
11451 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11452 	    tcp_host_param_set, NULL)) {
11453 		nd_free(ndp);
11454 		return (B_FALSE);
11455 	}
11456 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11457 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11458 		nd_free(ndp);
11459 		return (B_FALSE);
11460 	}
11461 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11462 	    tcp_1948_phrase_set, NULL)) {
11463 		nd_free(ndp);
11464 		return (B_FALSE);
11465 	}
11466 	if (!nd_load(ndp, "tcp_reserved_port_list",
11467 	    tcp_reserved_port_list, NULL, NULL)) {
11468 		nd_free(ndp);
11469 		return (B_FALSE);
11470 	}
11471 	/*
11472 	 * Dummy ndd variables - only to convey obsolescence information
11473 	 * through printing of their name (no get or set routines)
11474 	 * XXX Remove in future releases ?
11475 	 */
11476 	if (!nd_load(ndp,
11477 	    "tcp_close_wait_interval(obsoleted - "
11478 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11479 		nd_free(ndp);
11480 		return (B_FALSE);
11481 	}
11482 	return (B_TRUE);
11483 }
11484 
11485 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11486 /* ARGSUSED */
11487 static int
11488 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11489     cred_t *cr)
11490 {
11491 	long new_value;
11492 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11493 
11494 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11495 	    new_value < tcppa->tcp_param_min ||
11496 	    new_value > tcppa->tcp_param_max) {
11497 		return (EINVAL);
11498 	}
11499 	/*
11500 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11501 	 * round it up.  For future 64 bit requirement, we actually make it
11502 	 * a multiple of 8.
11503 	 */
11504 	if (new_value & 0x7) {
11505 		new_value = (new_value & ~0x7) + 0x8;
11506 	}
11507 	tcppa->tcp_param_val = new_value;
11508 	return (0);
11509 }
11510 
11511 /* Set callback routine passed to nd_load by tcp_param_register */
11512 /* ARGSUSED */
11513 static int
11514 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11515 {
11516 	long	new_value;
11517 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11518 
11519 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11520 	    new_value < tcppa->tcp_param_min ||
11521 	    new_value > tcppa->tcp_param_max) {
11522 		return (EINVAL);
11523 	}
11524 	tcppa->tcp_param_val = new_value;
11525 	return (0);
11526 }
11527 
11528 /*
11529  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11530  * is filled, return as much as we can.  The message passed in may be
11531  * multi-part, chained using b_cont.  "start" is the starting sequence
11532  * number for this piece.
11533  */
11534 static mblk_t *
11535 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11536 {
11537 	uint32_t	end;
11538 	mblk_t		*mp1;
11539 	mblk_t		*mp2;
11540 	mblk_t		*next_mp;
11541 	uint32_t	u1;
11542 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11543 
11544 	/* Walk through all the new pieces. */
11545 	do {
11546 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11547 		    (uintptr_t)INT_MAX);
11548 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11549 		next_mp = mp->b_cont;
11550 		if (start == end) {
11551 			/* Empty.  Blast it. */
11552 			freeb(mp);
11553 			continue;
11554 		}
11555 		mp->b_cont = NULL;
11556 		TCP_REASS_SET_SEQ(mp, start);
11557 		TCP_REASS_SET_END(mp, end);
11558 		mp1 = tcp->tcp_reass_tail;
11559 		if (!mp1) {
11560 			tcp->tcp_reass_tail = mp;
11561 			tcp->tcp_reass_head = mp;
11562 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11563 			UPDATE_MIB(&tcps->tcps_mib,
11564 			    tcpInDataUnorderBytes, end - start);
11565 			continue;
11566 		}
11567 		/* New stuff completely beyond tail? */
11568 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11569 			/* Link it on end. */
11570 			mp1->b_cont = mp;
11571 			tcp->tcp_reass_tail = mp;
11572 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11573 			UPDATE_MIB(&tcps->tcps_mib,
11574 			    tcpInDataUnorderBytes, end - start);
11575 			continue;
11576 		}
11577 		mp1 = tcp->tcp_reass_head;
11578 		u1 = TCP_REASS_SEQ(mp1);
11579 		/* New stuff at the front? */
11580 		if (SEQ_LT(start, u1)) {
11581 			/* Yes... Check for overlap. */
11582 			mp->b_cont = mp1;
11583 			tcp->tcp_reass_head = mp;
11584 			tcp_reass_elim_overlap(tcp, mp);
11585 			continue;
11586 		}
11587 		/*
11588 		 * The new piece fits somewhere between the head and tail.
11589 		 * We find our slot, where mp1 precedes us and mp2 trails.
11590 		 */
11591 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11592 			u1 = TCP_REASS_SEQ(mp2);
11593 			if (SEQ_LEQ(start, u1))
11594 				break;
11595 		}
11596 		/* Link ourselves in */
11597 		mp->b_cont = mp2;
11598 		mp1->b_cont = mp;
11599 
11600 		/* Trim overlap with following mblk(s) first */
11601 		tcp_reass_elim_overlap(tcp, mp);
11602 
11603 		/* Trim overlap with preceding mblk */
11604 		tcp_reass_elim_overlap(tcp, mp1);
11605 
11606 	} while (start = end, mp = next_mp);
11607 	mp1 = tcp->tcp_reass_head;
11608 	/* Anything ready to go? */
11609 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11610 		return (NULL);
11611 	/* Eat what we can off the queue */
11612 	for (;;) {
11613 		mp = mp1->b_cont;
11614 		end = TCP_REASS_END(mp1);
11615 		TCP_REASS_SET_SEQ(mp1, 0);
11616 		TCP_REASS_SET_END(mp1, 0);
11617 		if (!mp) {
11618 			tcp->tcp_reass_tail = NULL;
11619 			break;
11620 		}
11621 		if (end != TCP_REASS_SEQ(mp)) {
11622 			mp1->b_cont = NULL;
11623 			break;
11624 		}
11625 		mp1 = mp;
11626 	}
11627 	mp1 = tcp->tcp_reass_head;
11628 	tcp->tcp_reass_head = mp;
11629 	return (mp1);
11630 }
11631 
11632 /* Eliminate any overlap that mp may have over later mblks */
11633 static void
11634 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11635 {
11636 	uint32_t	end;
11637 	mblk_t		*mp1;
11638 	uint32_t	u1;
11639 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11640 
11641 	end = TCP_REASS_END(mp);
11642 	while ((mp1 = mp->b_cont) != NULL) {
11643 		u1 = TCP_REASS_SEQ(mp1);
11644 		if (!SEQ_GT(end, u1))
11645 			break;
11646 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11647 			mp->b_wptr -= end - u1;
11648 			TCP_REASS_SET_END(mp, u1);
11649 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11650 			UPDATE_MIB(&tcps->tcps_mib,
11651 			    tcpInDataPartDupBytes, end - u1);
11652 			break;
11653 		}
11654 		mp->b_cont = mp1->b_cont;
11655 		TCP_REASS_SET_SEQ(mp1, 0);
11656 		TCP_REASS_SET_END(mp1, 0);
11657 		freeb(mp1);
11658 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11659 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11660 	}
11661 	if (!mp1)
11662 		tcp->tcp_reass_tail = mp;
11663 }
11664 
11665 /*
11666  * Send up all messages queued on tcp_rcv_list.
11667  */
11668 static uint_t
11669 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11670 {
11671 	mblk_t *mp;
11672 	uint_t ret = 0;
11673 	uint_t thwin;
11674 #ifdef DEBUG
11675 	uint_t cnt = 0;
11676 #endif
11677 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11678 
11679 	/* Can't drain on an eager connection */
11680 	if (tcp->tcp_listener != NULL)
11681 		return (ret);
11682 
11683 	/*
11684 	 * Handle two cases here: we are currently fused or we were
11685 	 * previously fused and have some urgent data to be delivered
11686 	 * upstream.  The latter happens because we either ran out of
11687 	 * memory or were detached and therefore sending the SIGURG was
11688 	 * deferred until this point.  In either case we pass control
11689 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11690 	 * some work.
11691 	 */
11692 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11693 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11694 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11695 		    &tcp->tcp_fused_sigurg_mp))
11696 			return (ret);
11697 	}
11698 
11699 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11700 		tcp->tcp_rcv_list = mp->b_next;
11701 		mp->b_next = NULL;
11702 #ifdef DEBUG
11703 		cnt += msgdsize(mp);
11704 #endif
11705 		/* Does this need SSL processing first? */
11706 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11707 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11708 			    mblk_t *, mp);
11709 			tcp_kssl_input(tcp, mp);
11710 			continue;
11711 		}
11712 		putnext(q, mp);
11713 	}
11714 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11715 	tcp->tcp_rcv_last_head = NULL;
11716 	tcp->tcp_rcv_last_tail = NULL;
11717 	tcp->tcp_rcv_cnt = 0;
11718 
11719 	/* Learn the latest rwnd information that we sent to the other side. */
11720 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11721 	    << tcp->tcp_rcv_ws;
11722 	/* This is peer's calculated send window (our receive window). */
11723 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11724 	/*
11725 	 * Increase the receive window to max.  But we need to do receiver
11726 	 * SWS avoidance.  This means that we need to check the increase of
11727 	 * of receive window is at least 1 MSS.
11728 	 */
11729 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11730 		/*
11731 		 * If the window that the other side knows is less than max
11732 		 * deferred acks segments, send an update immediately.
11733 		 */
11734 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11735 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11736 			ret = TH_ACK_NEEDED;
11737 		}
11738 		tcp->tcp_rwnd = q->q_hiwat;
11739 	}
11740 	/* No need for the push timer now. */
11741 	if (tcp->tcp_push_tid != 0) {
11742 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11743 		tcp->tcp_push_tid = 0;
11744 	}
11745 	return (ret);
11746 }
11747 
11748 /*
11749  * Queue data on tcp_rcv_list which is a b_next chain.
11750  * tcp_rcv_last_head/tail is the last element of this chain.
11751  * Each element of the chain is a b_cont chain.
11752  *
11753  * M_DATA messages are added to the current element.
11754  * Other messages are added as new (b_next) elements.
11755  */
11756 void
11757 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11758 {
11759 	ASSERT(seg_len == msgdsize(mp));
11760 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11761 
11762 	if (tcp->tcp_rcv_list == NULL) {
11763 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11764 		tcp->tcp_rcv_list = mp;
11765 		tcp->tcp_rcv_last_head = mp;
11766 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11767 		tcp->tcp_rcv_last_tail->b_cont = mp;
11768 	} else {
11769 		tcp->tcp_rcv_last_head->b_next = mp;
11770 		tcp->tcp_rcv_last_head = mp;
11771 	}
11772 
11773 	while (mp->b_cont)
11774 		mp = mp->b_cont;
11775 
11776 	tcp->tcp_rcv_last_tail = mp;
11777 	tcp->tcp_rcv_cnt += seg_len;
11778 	tcp->tcp_rwnd -= seg_len;
11779 }
11780 
11781 /*
11782  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11783  *
11784  * This is the default entry function into TCP on the read side. TCP is
11785  * always entered via squeue i.e. using squeue's for mutual exclusion.
11786  * When classifier does a lookup to find the tcp, it also puts a reference
11787  * on the conn structure associated so the tcp is guaranteed to exist
11788  * when we come here. We still need to check the state because it might
11789  * as well has been closed. The squeue processing function i.e. squeue_enter,
11790  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11791  * CONN_DEC_REF.
11792  *
11793  * Apart from the default entry point, IP also sends packets directly to
11794  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11795  * connections.
11796  */
11797 void
11798 tcp_input(void *arg, mblk_t *mp, void *arg2)
11799 {
11800 	conn_t	*connp = (conn_t *)arg;
11801 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11802 
11803 	/* arg2 is the sqp */
11804 	ASSERT(arg2 != NULL);
11805 	ASSERT(mp != NULL);
11806 
11807 	/*
11808 	 * Don't accept any input on a closed tcp as this TCP logically does
11809 	 * not exist on the system. Don't proceed further with this TCP.
11810 	 * For eg. this packet could trigger another close of this tcp
11811 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11812 	 * tcp_clean_death / tcp_closei_local must be called at most once
11813 	 * on a TCP. In this case we need to refeed the packet into the
11814 	 * classifier and figure out where the packet should go. Need to
11815 	 * preserve the recv_ill somehow. Until we figure that out, for
11816 	 * now just drop the packet if we can't classify the packet.
11817 	 */
11818 	if (tcp->tcp_state == TCPS_CLOSED ||
11819 	    tcp->tcp_state == TCPS_BOUND) {
11820 		conn_t	*new_connp;
11821 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11822 
11823 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11824 		if (new_connp != NULL) {
11825 			tcp_reinput(new_connp, mp, arg2);
11826 			return;
11827 		}
11828 		/* We failed to classify. For now just drop the packet */
11829 		freemsg(mp);
11830 		return;
11831 	}
11832 
11833 	if (DB_TYPE(mp) == M_DATA)
11834 		tcp_rput_data(connp, mp, arg2);
11835 	else
11836 		tcp_rput_common(tcp, mp);
11837 }
11838 
11839 /*
11840  * The read side put procedure.
11841  * The packets passed up by ip are assume to be aligned according to
11842  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11843  */
11844 static void
11845 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11846 {
11847 	/*
11848 	 * tcp_rput_data() does not expect M_CTL except for the case
11849 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11850 	 * type. Need to make sure that any other M_CTLs don't make
11851 	 * it to tcp_rput_data since it is not expecting any and doesn't
11852 	 * check for it.
11853 	 */
11854 	if (DB_TYPE(mp) == M_CTL) {
11855 		switch (*(uint32_t *)(mp->b_rptr)) {
11856 		case TCP_IOC_ABORT_CONN:
11857 			/*
11858 			 * Handle connection abort request.
11859 			 */
11860 			tcp_ioctl_abort_handler(tcp, mp);
11861 			return;
11862 		case IPSEC_IN:
11863 			/*
11864 			 * Only secure icmp arrive in TCP and they
11865 			 * don't go through data path.
11866 			 */
11867 			tcp_icmp_error(tcp, mp);
11868 			return;
11869 		case IN_PKTINFO:
11870 			/*
11871 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11872 			 * sockets that are receiving IPv4 traffic. tcp
11873 			 */
11874 			ASSERT(tcp->tcp_family == AF_INET6);
11875 			ASSERT(tcp->tcp_ipv6_recvancillary &
11876 			    TCP_IPV6_RECVPKTINFO);
11877 			tcp_rput_data(tcp->tcp_connp, mp,
11878 			    tcp->tcp_connp->conn_sqp);
11879 			return;
11880 		case MDT_IOC_INFO_UPDATE:
11881 			/*
11882 			 * Handle Multidata information update; the
11883 			 * following routine will free the message.
11884 			 */
11885 			if (tcp->tcp_connp->conn_mdt_ok) {
11886 				tcp_mdt_update(tcp,
11887 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11888 				    B_FALSE);
11889 			}
11890 			freemsg(mp);
11891 			return;
11892 		case LSO_IOC_INFO_UPDATE:
11893 			/*
11894 			 * Handle LSO information update; the following
11895 			 * routine will free the message.
11896 			 */
11897 			if (tcp->tcp_connp->conn_lso_ok) {
11898 				tcp_lso_update(tcp,
11899 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11900 			}
11901 			freemsg(mp);
11902 			return;
11903 		default:
11904 			/*
11905 			 * tcp_icmp_err() will process the M_CTL packets.
11906 			 * Non-ICMP packets, if any, will be discarded in
11907 			 * tcp_icmp_err(). We will process the ICMP packet
11908 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11909 			 * incoming ICMP packet may result in changing
11910 			 * the tcp_mss, which we would need if we have
11911 			 * packets to retransmit.
11912 			 */
11913 			tcp_icmp_error(tcp, mp);
11914 			return;
11915 		}
11916 	}
11917 
11918 	/* No point processing the message if tcp is already closed */
11919 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11920 		freemsg(mp);
11921 		return;
11922 	}
11923 
11924 	tcp_rput_other(tcp, mp);
11925 }
11926 
11927 
11928 /* The minimum of smoothed mean deviation in RTO calculation. */
11929 #define	TCP_SD_MIN	400
11930 
11931 /*
11932  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11933  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11934  * are the same as those in Appendix A.2 of that paper.
11935  *
11936  * m = new measurement
11937  * sa = smoothed RTT average (8 * average estimates).
11938  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11939  */
11940 static void
11941 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11942 {
11943 	long m = TICK_TO_MSEC(rtt);
11944 	clock_t sa = tcp->tcp_rtt_sa;
11945 	clock_t sv = tcp->tcp_rtt_sd;
11946 	clock_t rto;
11947 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11948 
11949 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11950 	tcp->tcp_rtt_update++;
11951 
11952 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11953 	if (sa != 0) {
11954 		/*
11955 		 * Update average estimator:
11956 		 *	new rtt = 7/8 old rtt + 1/8 Error
11957 		 */
11958 
11959 		/* m is now Error in estimate. */
11960 		m -= sa >> 3;
11961 		if ((sa += m) <= 0) {
11962 			/*
11963 			 * Don't allow the smoothed average to be negative.
11964 			 * We use 0 to denote reinitialization of the
11965 			 * variables.
11966 			 */
11967 			sa = 1;
11968 		}
11969 
11970 		/*
11971 		 * Update deviation estimator:
11972 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11973 		 */
11974 		if (m < 0)
11975 			m = -m;
11976 		m -= sv >> 2;
11977 		sv += m;
11978 	} else {
11979 		/*
11980 		 * This follows BSD's implementation.  So the reinitialized
11981 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11982 		 * link is bandwidth dominated, doubling the window size
11983 		 * during slow start means doubling the RTT.  We want to be
11984 		 * more conservative when we reinitialize our estimates.  3
11985 		 * is just a convenient number.
11986 		 */
11987 		sa = m << 3;
11988 		sv = m << 1;
11989 	}
11990 	if (sv < TCP_SD_MIN) {
11991 		/*
11992 		 * We do not know that if sa captures the delay ACK
11993 		 * effect as in a long train of segments, a receiver
11994 		 * does not delay its ACKs.  So set the minimum of sv
11995 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11996 		 * of BSD DATO.  That means the minimum of mean
11997 		 * deviation is 100 ms.
11998 		 *
11999 		 */
12000 		sv = TCP_SD_MIN;
12001 	}
12002 	tcp->tcp_rtt_sa = sa;
12003 	tcp->tcp_rtt_sd = sv;
12004 	/*
12005 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12006 	 *
12007 	 * Add tcp_rexmit_interval extra in case of extreme environment
12008 	 * where the algorithm fails to work.  The default value of
12009 	 * tcp_rexmit_interval_extra should be 0.
12010 	 *
12011 	 * As we use a finer grained clock than BSD and update
12012 	 * RTO for every ACKs, add in another .25 of RTT to the
12013 	 * deviation of RTO to accomodate burstiness of 1/4 of
12014 	 * window size.
12015 	 */
12016 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12017 
12018 	if (rto > tcps->tcps_rexmit_interval_max) {
12019 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12020 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12021 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12022 	} else {
12023 		tcp->tcp_rto = rto;
12024 	}
12025 
12026 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12027 	tcp->tcp_timer_backoff = 0;
12028 }
12029 
12030 /*
12031  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12032  * send queue which starts at the given seq. no.
12033  *
12034  * Parameters:
12035  *	tcp_t *tcp: the tcp instance pointer.
12036  *	uint32_t seq: the starting seq. no of the requested segment.
12037  *	int32_t *off: after the execution, *off will be the offset to
12038  *		the returned mblk which points to the requested seq no.
12039  *		It is the caller's responsibility to send in a non-null off.
12040  *
12041  * Return:
12042  *	A mblk_t pointer pointing to the requested segment in send queue.
12043  */
12044 static mblk_t *
12045 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12046 {
12047 	int32_t	cnt;
12048 	mblk_t	*mp;
12049 
12050 	/* Defensive coding.  Make sure we don't send incorrect data. */
12051 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12052 		return (NULL);
12053 
12054 	cnt = seq - tcp->tcp_suna;
12055 	mp = tcp->tcp_xmit_head;
12056 	while (cnt > 0 && mp != NULL) {
12057 		cnt -= mp->b_wptr - mp->b_rptr;
12058 		if (cnt < 0) {
12059 			cnt += mp->b_wptr - mp->b_rptr;
12060 			break;
12061 		}
12062 		mp = mp->b_cont;
12063 	}
12064 	ASSERT(mp != NULL);
12065 	*off = cnt;
12066 	return (mp);
12067 }
12068 
12069 /*
12070  * This function handles all retransmissions if SACK is enabled for this
12071  * connection.  First it calculates how many segments can be retransmitted
12072  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12073  * segments.  A segment is eligible if sack_cnt for that segment is greater
12074  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12075  * all eligible segments, it checks to see if TCP can send some new segments
12076  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12077  *
12078  * Parameters:
12079  *	tcp_t *tcp: the tcp structure of the connection.
12080  *	uint_t *flags: in return, appropriate value will be set for
12081  *	tcp_rput_data().
12082  */
12083 static void
12084 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12085 {
12086 	notsack_blk_t	*notsack_blk;
12087 	int32_t		usable_swnd;
12088 	int32_t		mss;
12089 	uint32_t	seg_len;
12090 	mblk_t		*xmit_mp;
12091 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12092 
12093 	ASSERT(tcp->tcp_sack_info != NULL);
12094 	ASSERT(tcp->tcp_notsack_list != NULL);
12095 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12096 
12097 	/* Defensive coding in case there is a bug... */
12098 	if (tcp->tcp_notsack_list == NULL) {
12099 		return;
12100 	}
12101 	notsack_blk = tcp->tcp_notsack_list;
12102 	mss = tcp->tcp_mss;
12103 
12104 	/*
12105 	 * Limit the num of outstanding data in the network to be
12106 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12107 	 */
12108 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12109 
12110 	/* At least retransmit 1 MSS of data. */
12111 	if (usable_swnd <= 0) {
12112 		usable_swnd = mss;
12113 	}
12114 
12115 	/* Make sure no new RTT samples will be taken. */
12116 	tcp->tcp_csuna = tcp->tcp_snxt;
12117 
12118 	notsack_blk = tcp->tcp_notsack_list;
12119 	while (usable_swnd > 0) {
12120 		mblk_t		*snxt_mp, *tmp_mp;
12121 		tcp_seq		begin = tcp->tcp_sack_snxt;
12122 		tcp_seq		end;
12123 		int32_t		off;
12124 
12125 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12126 			if (SEQ_GT(notsack_blk->end, begin) &&
12127 			    (notsack_blk->sack_cnt >=
12128 			    tcps->tcps_dupack_fast_retransmit)) {
12129 				end = notsack_blk->end;
12130 				if (SEQ_LT(begin, notsack_blk->begin)) {
12131 					begin = notsack_blk->begin;
12132 				}
12133 				break;
12134 			}
12135 		}
12136 		/*
12137 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12138 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12139 		 * set to tcp_cwnd_ssthresh.
12140 		 */
12141 		if (notsack_blk == NULL) {
12142 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12143 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12144 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12145 				ASSERT(tcp->tcp_cwnd > 0);
12146 				return;
12147 			} else {
12148 				usable_swnd = usable_swnd / mss;
12149 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12150 				    MAX(usable_swnd * mss, mss);
12151 				*flags |= TH_XMIT_NEEDED;
12152 				return;
12153 			}
12154 		}
12155 
12156 		/*
12157 		 * Note that we may send more than usable_swnd allows here
12158 		 * because of round off, but no more than 1 MSS of data.
12159 		 */
12160 		seg_len = end - begin;
12161 		if (seg_len > mss)
12162 			seg_len = mss;
12163 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12164 		ASSERT(snxt_mp != NULL);
12165 		/* This should not happen.  Defensive coding again... */
12166 		if (snxt_mp == NULL) {
12167 			return;
12168 		}
12169 
12170 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12171 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12172 		if (xmit_mp == NULL)
12173 			return;
12174 
12175 		usable_swnd -= seg_len;
12176 		tcp->tcp_pipe += seg_len;
12177 		tcp->tcp_sack_snxt = begin + seg_len;
12178 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12179 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12180 
12181 		/*
12182 		 * Update the send timestamp to avoid false retransmission.
12183 		 */
12184 		snxt_mp->b_prev = (mblk_t *)lbolt;
12185 
12186 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12187 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12188 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12189 		/*
12190 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12191 		 * This happens when new data sent during fast recovery is
12192 		 * also lost.  If TCP retransmits those new data, it needs
12193 		 * to extend SACK recover phase to avoid starting another
12194 		 * fast retransmit/recovery unnecessarily.
12195 		 */
12196 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12197 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12198 		}
12199 	}
12200 }
12201 
12202 /*
12203  * This function handles policy checking at TCP level for non-hard_bound/
12204  * detached connections.
12205  */
12206 static boolean_t
12207 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12208     boolean_t secure, boolean_t mctl_present)
12209 {
12210 	ipsec_latch_t *ipl = NULL;
12211 	ipsec_action_t *act = NULL;
12212 	mblk_t *data_mp;
12213 	ipsec_in_t *ii;
12214 	const char *reason;
12215 	kstat_named_t *counter;
12216 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12217 	ipsec_stack_t	*ipss;
12218 	ip_stack_t	*ipst;
12219 
12220 	ASSERT(mctl_present || !secure);
12221 
12222 	ASSERT((ipha == NULL && ip6h != NULL) ||
12223 	    (ip6h == NULL && ipha != NULL));
12224 
12225 	/*
12226 	 * We don't necessarily have an ipsec_in_act action to verify
12227 	 * policy because of assymetrical policy where we have only
12228 	 * outbound policy and no inbound policy (possible with global
12229 	 * policy).
12230 	 */
12231 	if (!secure) {
12232 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12233 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12234 			return (B_TRUE);
12235 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12236 		    "tcp_check_policy", ipha, ip6h, secure,
12237 		    tcps->tcps_netstack);
12238 		ipss = tcps->tcps_netstack->netstack_ipsec;
12239 
12240 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12241 		    DROPPER(ipss, ipds_tcp_clear),
12242 		    &tcps->tcps_dropper);
12243 		return (B_FALSE);
12244 	}
12245 
12246 	/*
12247 	 * We have a secure packet.
12248 	 */
12249 	if (act == NULL) {
12250 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12251 		    "tcp_check_policy", ipha, ip6h, secure,
12252 		    tcps->tcps_netstack);
12253 		ipss = tcps->tcps_netstack->netstack_ipsec;
12254 
12255 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12256 		    DROPPER(ipss, ipds_tcp_secure),
12257 		    &tcps->tcps_dropper);
12258 		return (B_FALSE);
12259 	}
12260 
12261 	/*
12262 	 * XXX This whole routine is currently incorrect.  ipl should
12263 	 * be set to the latch pointer, but is currently not set, so
12264 	 * we initialize it to NULL to avoid picking up random garbage.
12265 	 */
12266 	if (ipl == NULL)
12267 		return (B_TRUE);
12268 
12269 	data_mp = first_mp->b_cont;
12270 
12271 	ii = (ipsec_in_t *)first_mp->b_rptr;
12272 
12273 	ipst = tcps->tcps_netstack->netstack_ip;
12274 
12275 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12276 	    &counter, tcp->tcp_connp)) {
12277 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12278 		return (B_TRUE);
12279 	}
12280 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12281 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12282 	    reason);
12283 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12284 
12285 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12286 	    &tcps->tcps_dropper);
12287 	return (B_FALSE);
12288 }
12289 
12290 /*
12291  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12292  * retransmission after a timeout.
12293  *
12294  * To limit the number of duplicate segments, we limit the number of segment
12295  * to be sent in one time to tcp_snd_burst, the burst variable.
12296  */
12297 static void
12298 tcp_ss_rexmit(tcp_t *tcp)
12299 {
12300 	uint32_t	snxt;
12301 	uint32_t	smax;
12302 	int32_t		win;
12303 	int32_t		mss;
12304 	int32_t		off;
12305 	int32_t		burst = tcp->tcp_snd_burst;
12306 	mblk_t		*snxt_mp;
12307 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12308 
12309 	/*
12310 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12311 	 * all unack'ed segments.
12312 	 */
12313 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12314 		smax = tcp->tcp_rexmit_max;
12315 		snxt = tcp->tcp_rexmit_nxt;
12316 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12317 			snxt = tcp->tcp_suna;
12318 		}
12319 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12320 		win -= snxt - tcp->tcp_suna;
12321 		mss = tcp->tcp_mss;
12322 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12323 
12324 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12325 		    (burst > 0) && (snxt_mp != NULL)) {
12326 			mblk_t	*xmit_mp;
12327 			mblk_t	*old_snxt_mp = snxt_mp;
12328 			uint32_t cnt = mss;
12329 
12330 			if (win < cnt) {
12331 				cnt = win;
12332 			}
12333 			if (SEQ_GT(snxt + cnt, smax)) {
12334 				cnt = smax - snxt;
12335 			}
12336 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12337 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12338 			if (xmit_mp == NULL)
12339 				return;
12340 
12341 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12342 
12343 			snxt += cnt;
12344 			win -= cnt;
12345 			/*
12346 			 * Update the send timestamp to avoid false
12347 			 * retransmission.
12348 			 */
12349 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12350 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12351 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12352 
12353 			tcp->tcp_rexmit_nxt = snxt;
12354 			burst--;
12355 		}
12356 		/*
12357 		 * If we have transmitted all we have at the time
12358 		 * we started the retranmission, we can leave
12359 		 * the rest of the job to tcp_wput_data().  But we
12360 		 * need to check the send window first.  If the
12361 		 * win is not 0, go on with tcp_wput_data().
12362 		 */
12363 		if (SEQ_LT(snxt, smax) || win == 0) {
12364 			return;
12365 		}
12366 	}
12367 	/* Only call tcp_wput_data() if there is data to be sent. */
12368 	if (tcp->tcp_unsent) {
12369 		tcp_wput_data(tcp, NULL, B_FALSE);
12370 	}
12371 }
12372 
12373 /*
12374  * Process all TCP option in SYN segment.  Note that this function should
12375  * be called after tcp_adapt_ire() is called so that the necessary info
12376  * from IRE is already set in the tcp structure.
12377  *
12378  * This function sets up the correct tcp_mss value according to the
12379  * MSS option value and our header size.  It also sets up the window scale
12380  * and timestamp values, and initialize SACK info blocks.  But it does not
12381  * change receive window size after setting the tcp_mss value.  The caller
12382  * should do the appropriate change.
12383  */
12384 void
12385 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12386 {
12387 	int options;
12388 	tcp_opt_t tcpopt;
12389 	uint32_t mss_max;
12390 	char *tmp_tcph;
12391 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12392 
12393 	tcpopt.tcp = NULL;
12394 	options = tcp_parse_options(tcph, &tcpopt);
12395 
12396 	/*
12397 	 * Process MSS option.  Note that MSS option value does not account
12398 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12399 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12400 	 * IPv6.
12401 	 */
12402 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12403 		if (tcp->tcp_ipversion == IPV4_VERSION)
12404 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12405 		else
12406 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12407 	} else {
12408 		if (tcp->tcp_ipversion == IPV4_VERSION)
12409 			mss_max = tcps->tcps_mss_max_ipv4;
12410 		else
12411 			mss_max = tcps->tcps_mss_max_ipv6;
12412 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12413 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12414 		else if (tcpopt.tcp_opt_mss > mss_max)
12415 			tcpopt.tcp_opt_mss = mss_max;
12416 	}
12417 
12418 	/* Process Window Scale option. */
12419 	if (options & TCP_OPT_WSCALE_PRESENT) {
12420 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12421 		tcp->tcp_snd_ws_ok = B_TRUE;
12422 	} else {
12423 		tcp->tcp_snd_ws = B_FALSE;
12424 		tcp->tcp_snd_ws_ok = B_FALSE;
12425 		tcp->tcp_rcv_ws = B_FALSE;
12426 	}
12427 
12428 	/* Process Timestamp option. */
12429 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12430 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12431 		tmp_tcph = (char *)tcp->tcp_tcph;
12432 
12433 		tcp->tcp_snd_ts_ok = B_TRUE;
12434 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12435 		tcp->tcp_last_rcv_lbolt = lbolt64;
12436 		ASSERT(OK_32PTR(tmp_tcph));
12437 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12438 
12439 		/* Fill in our template header with basic timestamp option. */
12440 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12441 		tmp_tcph[0] = TCPOPT_NOP;
12442 		tmp_tcph[1] = TCPOPT_NOP;
12443 		tmp_tcph[2] = TCPOPT_TSTAMP;
12444 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12445 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12446 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12447 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12448 	} else {
12449 		tcp->tcp_snd_ts_ok = B_FALSE;
12450 	}
12451 
12452 	/*
12453 	 * Process SACK options.  If SACK is enabled for this connection,
12454 	 * then allocate the SACK info structure.  Note the following ways
12455 	 * when tcp_snd_sack_ok is set to true.
12456 	 *
12457 	 * For active connection: in tcp_adapt_ire() called in
12458 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12459 	 * is checked.
12460 	 *
12461 	 * For passive connection: in tcp_adapt_ire() called in
12462 	 * tcp_accept_comm().
12463 	 *
12464 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12465 	 * That check makes sure that if we did not send a SACK OK option,
12466 	 * we will not enable SACK for this connection even though the other
12467 	 * side sends us SACK OK option.  For active connection, the SACK
12468 	 * info structure has already been allocated.  So we need to free
12469 	 * it if SACK is disabled.
12470 	 */
12471 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12472 	    (tcp->tcp_snd_sack_ok ||
12473 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12474 		/* This should be true only in the passive case. */
12475 		if (tcp->tcp_sack_info == NULL) {
12476 			ASSERT(TCP_IS_DETACHED(tcp));
12477 			tcp->tcp_sack_info =
12478 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12479 		}
12480 		if (tcp->tcp_sack_info == NULL) {
12481 			tcp->tcp_snd_sack_ok = B_FALSE;
12482 		} else {
12483 			tcp->tcp_snd_sack_ok = B_TRUE;
12484 			if (tcp->tcp_snd_ts_ok) {
12485 				tcp->tcp_max_sack_blk = 3;
12486 			} else {
12487 				tcp->tcp_max_sack_blk = 4;
12488 			}
12489 		}
12490 	} else {
12491 		/*
12492 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12493 		 * no SACK info will be used for this
12494 		 * connection.  This assumes that SACK usage
12495 		 * permission is negotiated.  This may need
12496 		 * to be changed once this is clarified.
12497 		 */
12498 		if (tcp->tcp_sack_info != NULL) {
12499 			ASSERT(tcp->tcp_notsack_list == NULL);
12500 			kmem_cache_free(tcp_sack_info_cache,
12501 			    tcp->tcp_sack_info);
12502 			tcp->tcp_sack_info = NULL;
12503 		}
12504 		tcp->tcp_snd_sack_ok = B_FALSE;
12505 	}
12506 
12507 	/*
12508 	 * Now we know the exact TCP/IP header length, subtract
12509 	 * that from tcp_mss to get our side's MSS.
12510 	 */
12511 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12512 	/*
12513 	 * Here we assume that the other side's header size will be equal to
12514 	 * our header size.  We calculate the real MSS accordingly.  Need to
12515 	 * take into additional stuffs IPsec puts in.
12516 	 *
12517 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12518 	 */
12519 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12520 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12521 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12522 
12523 	/*
12524 	 * Set MSS to the smaller one of both ends of the connection.
12525 	 * We should not have called tcp_mss_set() before, but our
12526 	 * side of the MSS should have been set to a proper value
12527 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12528 	 * STREAM head parameters properly.
12529 	 *
12530 	 * If we have a larger-than-16-bit window but the other side
12531 	 * didn't want to do window scale, tcp_rwnd_set() will take
12532 	 * care of that.
12533 	 */
12534 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12535 }
12536 
12537 /*
12538  * Sends the T_CONN_IND to the listener. The caller calls this
12539  * functions via squeue to get inside the listener's perimeter
12540  * once the 3 way hand shake is done a T_CONN_IND needs to be
12541  * sent. As an optimization, the caller can call this directly
12542  * if listener's perimeter is same as eager's.
12543  */
12544 /* ARGSUSED */
12545 void
12546 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12547 {
12548 	conn_t			*lconnp = (conn_t *)arg;
12549 	tcp_t			*listener = lconnp->conn_tcp;
12550 	tcp_t			*tcp;
12551 	struct T_conn_ind	*conn_ind;
12552 	ipaddr_t 		*addr_cache;
12553 	boolean_t		need_send_conn_ind = B_FALSE;
12554 	tcp_stack_t		*tcps = listener->tcp_tcps;
12555 
12556 	/* retrieve the eager */
12557 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12558 	ASSERT(conn_ind->OPT_offset != 0 &&
12559 	    conn_ind->OPT_length == sizeof (intptr_t));
12560 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12561 	    conn_ind->OPT_length);
12562 
12563 	/*
12564 	 * TLI/XTI applications will get confused by
12565 	 * sending eager as an option since it violates
12566 	 * the option semantics. So remove the eager as
12567 	 * option since TLI/XTI app doesn't need it anyway.
12568 	 */
12569 	if (!TCP_IS_SOCKET(listener)) {
12570 		conn_ind->OPT_length = 0;
12571 		conn_ind->OPT_offset = 0;
12572 	}
12573 	if (listener->tcp_state == TCPS_CLOSED ||
12574 	    TCP_IS_DETACHED(listener)) {
12575 		/*
12576 		 * If listener has closed, it would have caused a
12577 		 * a cleanup/blowoff to happen for the eager. We
12578 		 * just need to return.
12579 		 */
12580 		freemsg(mp);
12581 		return;
12582 	}
12583 
12584 
12585 	/*
12586 	 * if the conn_req_q is full defer passing up the
12587 	 * T_CONN_IND until space is availabe after t_accept()
12588 	 * processing
12589 	 */
12590 	mutex_enter(&listener->tcp_eager_lock);
12591 
12592 	/*
12593 	 * Take the eager out, if it is in the list of droppable eagers
12594 	 * as we are here because the 3W handshake is over.
12595 	 */
12596 	MAKE_UNDROPPABLE(tcp);
12597 
12598 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12599 		tcp_t *tail;
12600 
12601 		/*
12602 		 * The eager already has an extra ref put in tcp_rput_data
12603 		 * so that it stays till accept comes back even though it
12604 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12605 		 */
12606 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12607 		listener->tcp_conn_req_cnt_q0--;
12608 		listener->tcp_conn_req_cnt_q++;
12609 
12610 		/* Move from SYN_RCVD to ESTABLISHED list  */
12611 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12612 		    tcp->tcp_eager_prev_q0;
12613 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12614 		    tcp->tcp_eager_next_q0;
12615 		tcp->tcp_eager_prev_q0 = NULL;
12616 		tcp->tcp_eager_next_q0 = NULL;
12617 
12618 		/*
12619 		 * Insert at end of the queue because sockfs
12620 		 * sends down T_CONN_RES in chronological
12621 		 * order. Leaving the older conn indications
12622 		 * at front of the queue helps reducing search
12623 		 * time.
12624 		 */
12625 		tail = listener->tcp_eager_last_q;
12626 		if (tail != NULL)
12627 			tail->tcp_eager_next_q = tcp;
12628 		else
12629 			listener->tcp_eager_next_q = tcp;
12630 		listener->tcp_eager_last_q = tcp;
12631 		tcp->tcp_eager_next_q = NULL;
12632 		/*
12633 		 * Delay sending up the T_conn_ind until we are
12634 		 * done with the eager. Once we have have sent up
12635 		 * the T_conn_ind, the accept can potentially complete
12636 		 * any time and release the refhold we have on the eager.
12637 		 */
12638 		need_send_conn_ind = B_TRUE;
12639 	} else {
12640 		/*
12641 		 * Defer connection on q0 and set deferred
12642 		 * connection bit true
12643 		 */
12644 		tcp->tcp_conn_def_q0 = B_TRUE;
12645 
12646 		/* take tcp out of q0 ... */
12647 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12648 		    tcp->tcp_eager_next_q0;
12649 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12650 		    tcp->tcp_eager_prev_q0;
12651 
12652 		/* ... and place it at the end of q0 */
12653 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12654 		tcp->tcp_eager_next_q0 = listener;
12655 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12656 		listener->tcp_eager_prev_q0 = tcp;
12657 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12658 	}
12659 
12660 	/* we have timed out before */
12661 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12662 		tcp->tcp_syn_rcvd_timeout = 0;
12663 		listener->tcp_syn_rcvd_timeout--;
12664 		if (listener->tcp_syn_defense &&
12665 		    listener->tcp_syn_rcvd_timeout <=
12666 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12667 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12668 		    listener->tcp_last_rcv_lbolt)) {
12669 			/*
12670 			 * Turn off the defense mode if we
12671 			 * believe the SYN attack is over.
12672 			 */
12673 			listener->tcp_syn_defense = B_FALSE;
12674 			if (listener->tcp_ip_addr_cache) {
12675 				kmem_free((void *)listener->tcp_ip_addr_cache,
12676 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12677 				listener->tcp_ip_addr_cache = NULL;
12678 			}
12679 		}
12680 	}
12681 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12682 	if (addr_cache != NULL) {
12683 		/*
12684 		 * We have finished a 3-way handshake with this
12685 		 * remote host. This proves the IP addr is good.
12686 		 * Cache it!
12687 		 */
12688 		addr_cache[IP_ADDR_CACHE_HASH(
12689 		    tcp->tcp_remote)] = tcp->tcp_remote;
12690 	}
12691 	mutex_exit(&listener->tcp_eager_lock);
12692 	if (need_send_conn_ind)
12693 		putnext(listener->tcp_rq, mp);
12694 }
12695 
12696 mblk_t *
12697 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12698     uint_t *ifindexp, ip6_pkt_t *ippp)
12699 {
12700 	ip_pktinfo_t	*pinfo;
12701 	ip6_t		*ip6h;
12702 	uchar_t		*rptr;
12703 	mblk_t		*first_mp = mp;
12704 	boolean_t	mctl_present = B_FALSE;
12705 	uint_t 		ifindex = 0;
12706 	ip6_pkt_t	ipp;
12707 	uint_t		ipvers;
12708 	uint_t		ip_hdr_len;
12709 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12710 
12711 	rptr = mp->b_rptr;
12712 	ASSERT(OK_32PTR(rptr));
12713 	ASSERT(tcp != NULL);
12714 	ipp.ipp_fields = 0;
12715 
12716 	switch DB_TYPE(mp) {
12717 	case M_CTL:
12718 		mp = mp->b_cont;
12719 		if (mp == NULL) {
12720 			freemsg(first_mp);
12721 			return (NULL);
12722 		}
12723 		if (DB_TYPE(mp) != M_DATA) {
12724 			freemsg(first_mp);
12725 			return (NULL);
12726 		}
12727 		mctl_present = B_TRUE;
12728 		break;
12729 	case M_DATA:
12730 		break;
12731 	default:
12732 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12733 		freemsg(mp);
12734 		return (NULL);
12735 	}
12736 	ipvers = IPH_HDR_VERSION(rptr);
12737 	if (ipvers == IPV4_VERSION) {
12738 		if (tcp == NULL) {
12739 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12740 			goto done;
12741 		}
12742 
12743 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12744 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12745 
12746 		/*
12747 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12748 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12749 		 */
12750 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12751 		    mctl_present) {
12752 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12753 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12754 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12755 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12756 				ipp.ipp_fields |= IPPF_IFINDEX;
12757 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12758 				ifindex = pinfo->ip_pkt_ifindex;
12759 			}
12760 			freeb(first_mp);
12761 			mctl_present = B_FALSE;
12762 		}
12763 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12764 	} else {
12765 		ip6h = (ip6_t *)rptr;
12766 
12767 		ASSERT(ipvers == IPV6_VERSION);
12768 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12769 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12770 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12771 
12772 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12773 			uint8_t	nexthdrp;
12774 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12775 
12776 			/* Look for ifindex information */
12777 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12778 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12779 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12780 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12781 					freemsg(first_mp);
12782 					return (NULL);
12783 				}
12784 
12785 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12786 					ASSERT(ip6i->ip6i_ifindex != 0);
12787 					ipp.ipp_fields |= IPPF_IFINDEX;
12788 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12789 					ifindex = ip6i->ip6i_ifindex;
12790 				}
12791 				rptr = (uchar_t *)&ip6i[1];
12792 				mp->b_rptr = rptr;
12793 				if (rptr == mp->b_wptr) {
12794 					mblk_t *mp1;
12795 					mp1 = mp->b_cont;
12796 					freeb(mp);
12797 					mp = mp1;
12798 					rptr = mp->b_rptr;
12799 				}
12800 				if (MBLKL(mp) < IPV6_HDR_LEN +
12801 				    sizeof (tcph_t)) {
12802 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12803 					freemsg(first_mp);
12804 					return (NULL);
12805 				}
12806 				ip6h = (ip6_t *)rptr;
12807 			}
12808 
12809 			/*
12810 			 * Find any potentially interesting extension headers
12811 			 * as well as the length of the IPv6 + extension
12812 			 * headers.
12813 			 */
12814 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12815 			/* Verify if this is a TCP packet */
12816 			if (nexthdrp != IPPROTO_TCP) {
12817 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12818 				freemsg(first_mp);
12819 				return (NULL);
12820 			}
12821 		} else {
12822 			ip_hdr_len = IPV6_HDR_LEN;
12823 		}
12824 	}
12825 
12826 done:
12827 	if (ipversp != NULL)
12828 		*ipversp = ipvers;
12829 	if (ip_hdr_lenp != NULL)
12830 		*ip_hdr_lenp = ip_hdr_len;
12831 	if (ippp != NULL)
12832 		*ippp = ipp;
12833 	if (ifindexp != NULL)
12834 		*ifindexp = ifindex;
12835 	if (mctl_present) {
12836 		freeb(first_mp);
12837 	}
12838 	return (mp);
12839 }
12840 
12841 /*
12842  * Handle M_DATA messages from IP. Its called directly from IP via
12843  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12844  * in this path.
12845  *
12846  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12847  * v4 and v6), we are called through tcp_input() and a M_CTL can
12848  * be present for options but tcp_find_pktinfo() deals with it. We
12849  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12850  *
12851  * The first argument is always the connp/tcp to which the mp belongs.
12852  * There are no exceptions to this rule. The caller has already put
12853  * a reference on this connp/tcp and once tcp_rput_data() returns,
12854  * the squeue will do the refrele.
12855  *
12856  * The TH_SYN for the listener directly go to tcp_conn_request via
12857  * squeue.
12858  *
12859  * sqp: NULL = recursive, sqp != NULL means called from squeue
12860  */
12861 void
12862 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12863 {
12864 	int32_t		bytes_acked;
12865 	int32_t		gap;
12866 	mblk_t		*mp1;
12867 	uint_t		flags;
12868 	uint32_t	new_swnd = 0;
12869 	uchar_t		*iphdr;
12870 	uchar_t		*rptr;
12871 	int32_t		rgap;
12872 	uint32_t	seg_ack;
12873 	int		seg_len;
12874 	uint_t		ip_hdr_len;
12875 	uint32_t	seg_seq;
12876 	tcph_t		*tcph;
12877 	int		urp;
12878 	tcp_opt_t	tcpopt;
12879 	uint_t		ipvers;
12880 	ip6_pkt_t	ipp;
12881 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12882 	uint32_t	cwnd;
12883 	uint32_t	add;
12884 	int		npkt;
12885 	int		mss;
12886 	conn_t		*connp = (conn_t *)arg;
12887 	squeue_t	*sqp = (squeue_t *)arg2;
12888 	tcp_t		*tcp = connp->conn_tcp;
12889 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12890 
12891 	/*
12892 	 * RST from fused tcp loopback peer should trigger an unfuse.
12893 	 */
12894 	if (tcp->tcp_fused) {
12895 		TCP_STAT(tcps, tcp_fusion_aborted);
12896 		tcp_unfuse(tcp);
12897 	}
12898 
12899 	iphdr = mp->b_rptr;
12900 	rptr = mp->b_rptr;
12901 	ASSERT(OK_32PTR(rptr));
12902 
12903 	/*
12904 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12905 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12906 	 * necessary information.
12907 	 */
12908 	if (IPCL_IS_TCP4(connp)) {
12909 		ipvers = IPV4_VERSION;
12910 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12911 	} else {
12912 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12913 		    NULL, &ipp);
12914 		if (mp == NULL) {
12915 			TCP_STAT(tcps, tcp_rput_v6_error);
12916 			return;
12917 		}
12918 		iphdr = mp->b_rptr;
12919 		rptr = mp->b_rptr;
12920 	}
12921 	ASSERT(DB_TYPE(mp) == M_DATA);
12922 
12923 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12924 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12925 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12926 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12927 	seg_len = (int)(mp->b_wptr - rptr) -
12928 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12929 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12930 		do {
12931 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12932 			    (uintptr_t)INT_MAX);
12933 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12934 		} while ((mp1 = mp1->b_cont) != NULL &&
12935 		    mp1->b_datap->db_type == M_DATA);
12936 	}
12937 
12938 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12939 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12940 		    seg_len, tcph);
12941 		return;
12942 	}
12943 
12944 	if (sqp != NULL) {
12945 		/*
12946 		 * This is the correct place to update tcp_last_recv_time. Note
12947 		 * that it is also updated for tcp structure that belongs to
12948 		 * global and listener queues which do not really need updating.
12949 		 * But that should not cause any harm.  And it is updated for
12950 		 * all kinds of incoming segments, not only for data segments.
12951 		 */
12952 		tcp->tcp_last_recv_time = lbolt;
12953 	}
12954 
12955 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12956 
12957 	BUMP_LOCAL(tcp->tcp_ibsegs);
12958 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12959 
12960 	if ((flags & TH_URG) && sqp != NULL) {
12961 		/*
12962 		 * TCP can't handle urgent pointers that arrive before
12963 		 * the connection has been accept()ed since it can't
12964 		 * buffer OOB data.  Discard segment if this happens.
12965 		 *
12966 		 * We can't just rely on a non-null tcp_listener to indicate
12967 		 * that the accept() has completed since unlinking of the
12968 		 * eager and completion of the accept are not atomic.
12969 		 * tcp_detached, when it is not set (B_FALSE) indicates
12970 		 * that the accept() has completed.
12971 		 *
12972 		 * Nor can it reassemble urgent pointers, so discard
12973 		 * if it's not the next segment expected.
12974 		 *
12975 		 * Otherwise, collapse chain into one mblk (discard if
12976 		 * that fails).  This makes sure the headers, retransmitted
12977 		 * data, and new data all are in the same mblk.
12978 		 */
12979 		ASSERT(mp != NULL);
12980 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12981 			freemsg(mp);
12982 			return;
12983 		}
12984 		/* Update pointers into message */
12985 		iphdr = rptr = mp->b_rptr;
12986 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12987 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12988 			/*
12989 			 * Since we can't handle any data with this urgent
12990 			 * pointer that is out of sequence, we expunge
12991 			 * the data.  This allows us to still register
12992 			 * the urgent mark and generate the M_PCSIG,
12993 			 * which we can do.
12994 			 */
12995 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12996 			seg_len = 0;
12997 		}
12998 	}
12999 
13000 	switch (tcp->tcp_state) {
13001 	case TCPS_SYN_SENT:
13002 		if (flags & TH_ACK) {
13003 			/*
13004 			 * Note that our stack cannot send data before a
13005 			 * connection is established, therefore the
13006 			 * following check is valid.  Otherwise, it has
13007 			 * to be changed.
13008 			 */
13009 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13010 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13011 				freemsg(mp);
13012 				if (flags & TH_RST)
13013 					return;
13014 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13015 				    tcp, seg_ack, 0, TH_RST);
13016 				return;
13017 			}
13018 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13019 		}
13020 		if (flags & TH_RST) {
13021 			freemsg(mp);
13022 			if (flags & TH_ACK)
13023 				(void) tcp_clean_death(tcp,
13024 				    ECONNREFUSED, 13);
13025 			return;
13026 		}
13027 		if (!(flags & TH_SYN)) {
13028 			freemsg(mp);
13029 			return;
13030 		}
13031 
13032 		/* Process all TCP options. */
13033 		tcp_process_options(tcp, tcph);
13034 		/*
13035 		 * The following changes our rwnd to be a multiple of the
13036 		 * MIN(peer MSS, our MSS) for performance reason.
13037 		 */
13038 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13039 		    tcp->tcp_mss));
13040 
13041 		/* Is the other end ECN capable? */
13042 		if (tcp->tcp_ecn_ok) {
13043 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13044 				tcp->tcp_ecn_ok = B_FALSE;
13045 			}
13046 		}
13047 		/*
13048 		 * Clear ECN flags because it may interfere with later
13049 		 * processing.
13050 		 */
13051 		flags &= ~(TH_ECE|TH_CWR);
13052 
13053 		tcp->tcp_irs = seg_seq;
13054 		tcp->tcp_rack = seg_seq;
13055 		tcp->tcp_rnxt = seg_seq + 1;
13056 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13057 		if (!TCP_IS_DETACHED(tcp)) {
13058 			/* Allocate room for SACK options if needed. */
13059 			if (tcp->tcp_snd_sack_ok) {
13060 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13061 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13062 				    (tcp->tcp_loopback ? 0 :
13063 				    tcps->tcps_wroff_xtra));
13064 			} else {
13065 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13066 				    tcp->tcp_hdr_len +
13067 				    (tcp->tcp_loopback ? 0 :
13068 				    tcps->tcps_wroff_xtra));
13069 			}
13070 		}
13071 		if (flags & TH_ACK) {
13072 			/*
13073 			 * If we can't get the confirmation upstream, pretend
13074 			 * we didn't even see this one.
13075 			 *
13076 			 * XXX: how can we pretend we didn't see it if we
13077 			 * have updated rnxt et. al.
13078 			 *
13079 			 * For loopback we defer sending up the T_CONN_CON
13080 			 * until after some checks below.
13081 			 */
13082 			mp1 = NULL;
13083 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13084 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13085 				freemsg(mp);
13086 				return;
13087 			}
13088 			/* SYN was acked - making progress */
13089 			if (tcp->tcp_ipversion == IPV6_VERSION)
13090 				tcp->tcp_ip_forward_progress = B_TRUE;
13091 
13092 			/* One for the SYN */
13093 			tcp->tcp_suna = tcp->tcp_iss + 1;
13094 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13095 			tcp->tcp_state = TCPS_ESTABLISHED;
13096 
13097 			/*
13098 			 * If SYN was retransmitted, need to reset all
13099 			 * retransmission info.  This is because this
13100 			 * segment will be treated as a dup ACK.
13101 			 */
13102 			if (tcp->tcp_rexmit) {
13103 				tcp->tcp_rexmit = B_FALSE;
13104 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13105 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13106 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13107 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13108 				tcp->tcp_ms_we_have_waited = 0;
13109 
13110 				/*
13111 				 * Set tcp_cwnd back to 1 MSS, per
13112 				 * recommendation from
13113 				 * draft-floyd-incr-init-win-01.txt,
13114 				 * Increasing TCP's Initial Window.
13115 				 */
13116 				tcp->tcp_cwnd = tcp->tcp_mss;
13117 			}
13118 
13119 			tcp->tcp_swl1 = seg_seq;
13120 			tcp->tcp_swl2 = seg_ack;
13121 
13122 			new_swnd = BE16_TO_U16(tcph->th_win);
13123 			tcp->tcp_swnd = new_swnd;
13124 			if (new_swnd > tcp->tcp_max_swnd)
13125 				tcp->tcp_max_swnd = new_swnd;
13126 
13127 			/*
13128 			 * Always send the three-way handshake ack immediately
13129 			 * in order to make the connection complete as soon as
13130 			 * possible on the accepting host.
13131 			 */
13132 			flags |= TH_ACK_NEEDED;
13133 
13134 			/*
13135 			 * Special case for loopback.  At this point we have
13136 			 * received SYN-ACK from the remote endpoint.  In
13137 			 * order to ensure that both endpoints reach the
13138 			 * fused state prior to any data exchange, the final
13139 			 * ACK needs to be sent before we indicate T_CONN_CON
13140 			 * to the module upstream.
13141 			 */
13142 			if (tcp->tcp_loopback) {
13143 				mblk_t *ack_mp;
13144 
13145 				ASSERT(!tcp->tcp_unfusable);
13146 				ASSERT(mp1 != NULL);
13147 				/*
13148 				 * For loopback, we always get a pure SYN-ACK
13149 				 * and only need to send back the final ACK
13150 				 * with no data (this is because the other
13151 				 * tcp is ours and we don't do T/TCP).  This
13152 				 * final ACK triggers the passive side to
13153 				 * perform fusion in ESTABLISHED state.
13154 				 */
13155 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13156 					if (tcp->tcp_ack_tid != 0) {
13157 						(void) TCP_TIMER_CANCEL(tcp,
13158 						    tcp->tcp_ack_tid);
13159 						tcp->tcp_ack_tid = 0;
13160 					}
13161 					TCP_RECORD_TRACE(tcp, ack_mp,
13162 					    TCP_TRACE_SEND_PKT);
13163 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13164 					BUMP_LOCAL(tcp->tcp_obsegs);
13165 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13166 
13167 					/* Send up T_CONN_CON */
13168 					putnext(tcp->tcp_rq, mp1);
13169 
13170 					freemsg(mp);
13171 					return;
13172 				}
13173 				/*
13174 				 * Forget fusion; we need to handle more
13175 				 * complex cases below.  Send the deferred
13176 				 * T_CONN_CON message upstream and proceed
13177 				 * as usual.  Mark this tcp as not capable
13178 				 * of fusion.
13179 				 */
13180 				TCP_STAT(tcps, tcp_fusion_unfusable);
13181 				tcp->tcp_unfusable = B_TRUE;
13182 				putnext(tcp->tcp_rq, mp1);
13183 			}
13184 
13185 			/*
13186 			 * Check to see if there is data to be sent.  If
13187 			 * yes, set the transmit flag.  Then check to see
13188 			 * if received data processing needs to be done.
13189 			 * If not, go straight to xmit_check.  This short
13190 			 * cut is OK as we don't support T/TCP.
13191 			 */
13192 			if (tcp->tcp_unsent)
13193 				flags |= TH_XMIT_NEEDED;
13194 
13195 			if (seg_len == 0 && !(flags & TH_URG)) {
13196 				freemsg(mp);
13197 				goto xmit_check;
13198 			}
13199 
13200 			flags &= ~TH_SYN;
13201 			seg_seq++;
13202 			break;
13203 		}
13204 		tcp->tcp_state = TCPS_SYN_RCVD;
13205 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13206 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13207 		if (mp1) {
13208 			DB_CPID(mp1) = tcp->tcp_cpid;
13209 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13210 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13211 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13212 		}
13213 		freemsg(mp);
13214 		return;
13215 	case TCPS_SYN_RCVD:
13216 		if (flags & TH_ACK) {
13217 			/*
13218 			 * In this state, a SYN|ACK packet is either bogus
13219 			 * because the other side must be ACKing our SYN which
13220 			 * indicates it has seen the ACK for their SYN and
13221 			 * shouldn't retransmit it or we're crossing SYNs
13222 			 * on active open.
13223 			 */
13224 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13225 				freemsg(mp);
13226 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13227 				    tcp, seg_ack, 0, TH_RST);
13228 				return;
13229 			}
13230 			/*
13231 			 * NOTE: RFC 793 pg. 72 says this should be
13232 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13233 			 * but that would mean we have an ack that ignored
13234 			 * our SYN.
13235 			 */
13236 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13237 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13238 				freemsg(mp);
13239 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13240 				    tcp, seg_ack, 0, TH_RST);
13241 				return;
13242 			}
13243 		}
13244 		break;
13245 	case TCPS_LISTEN:
13246 		/*
13247 		 * Only a TLI listener can come through this path when a
13248 		 * acceptor is going back to be a listener and a packet
13249 		 * for the acceptor hits the classifier. For a socket
13250 		 * listener, this can never happen because a listener
13251 		 * can never accept connection on itself and hence a
13252 		 * socket acceptor can not go back to being a listener.
13253 		 */
13254 		ASSERT(!TCP_IS_SOCKET(tcp));
13255 		/*FALLTHRU*/
13256 	case TCPS_CLOSED:
13257 	case TCPS_BOUND: {
13258 		conn_t	*new_connp;
13259 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13260 
13261 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13262 		if (new_connp != NULL) {
13263 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13264 			return;
13265 		}
13266 		/* We failed to classify. For now just drop the packet */
13267 		freemsg(mp);
13268 		return;
13269 	}
13270 	case TCPS_IDLE:
13271 		/*
13272 		 * Handle the case where the tcp_clean_death() has happened
13273 		 * on a connection (application hasn't closed yet) but a packet
13274 		 * was already queued on squeue before tcp_clean_death()
13275 		 * was processed. Calling tcp_clean_death() twice on same
13276 		 * connection can result in weird behaviour.
13277 		 */
13278 		freemsg(mp);
13279 		return;
13280 	default:
13281 		break;
13282 	}
13283 
13284 	/*
13285 	 * Already on the correct queue/perimeter.
13286 	 * If this is a detached connection and not an eager
13287 	 * connection hanging off a listener then new data
13288 	 * (past the FIN) will cause a reset.
13289 	 * We do a special check here where it
13290 	 * is out of the main line, rather than check
13291 	 * if we are detached every time we see new
13292 	 * data down below.
13293 	 */
13294 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13295 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13296 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13297 		TCP_RECORD_TRACE(tcp,
13298 		    mp, TCP_TRACE_RECV_PKT);
13299 
13300 		freemsg(mp);
13301 		/*
13302 		 * This could be an SSL closure alert. We're detached so just
13303 		 * acknowledge it this last time.
13304 		 */
13305 		if (tcp->tcp_kssl_ctx != NULL) {
13306 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13307 			tcp->tcp_kssl_ctx = NULL;
13308 
13309 			tcp->tcp_rnxt += seg_len;
13310 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13311 			flags |= TH_ACK_NEEDED;
13312 			goto ack_check;
13313 		}
13314 
13315 		tcp_xmit_ctl("new data when detached", tcp,
13316 		    tcp->tcp_snxt, 0, TH_RST);
13317 		(void) tcp_clean_death(tcp, EPROTO, 12);
13318 		return;
13319 	}
13320 
13321 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13322 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13323 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13324 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13325 
13326 	if (tcp->tcp_snd_ts_ok) {
13327 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13328 			/*
13329 			 * This segment is not acceptable.
13330 			 * Drop it and send back an ACK.
13331 			 */
13332 			freemsg(mp);
13333 			flags |= TH_ACK_NEEDED;
13334 			goto ack_check;
13335 		}
13336 	} else if (tcp->tcp_snd_sack_ok) {
13337 		ASSERT(tcp->tcp_sack_info != NULL);
13338 		tcpopt.tcp = tcp;
13339 		/*
13340 		 * SACK info in already updated in tcp_parse_options.  Ignore
13341 		 * all other TCP options...
13342 		 */
13343 		(void) tcp_parse_options(tcph, &tcpopt);
13344 	}
13345 try_again:;
13346 	mss = tcp->tcp_mss;
13347 	gap = seg_seq - tcp->tcp_rnxt;
13348 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13349 	/*
13350 	 * gap is the amount of sequence space between what we expect to see
13351 	 * and what we got for seg_seq.  A positive value for gap means
13352 	 * something got lost.  A negative value means we got some old stuff.
13353 	 */
13354 	if (gap < 0) {
13355 		/* Old stuff present.  Is the SYN in there? */
13356 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13357 		    (seg_len != 0)) {
13358 			flags &= ~TH_SYN;
13359 			seg_seq++;
13360 			urp--;
13361 			/* Recompute the gaps after noting the SYN. */
13362 			goto try_again;
13363 		}
13364 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13365 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13366 		    (seg_len > -gap ? -gap : seg_len));
13367 		/* Remove the old stuff from seg_len. */
13368 		seg_len += gap;
13369 		/*
13370 		 * Anything left?
13371 		 * Make sure to check for unack'd FIN when rest of data
13372 		 * has been previously ack'd.
13373 		 */
13374 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13375 			/*
13376 			 * Resets are only valid if they lie within our offered
13377 			 * window.  If the RST bit is set, we just ignore this
13378 			 * segment.
13379 			 */
13380 			if (flags & TH_RST) {
13381 				freemsg(mp);
13382 				return;
13383 			}
13384 
13385 			/*
13386 			 * The arriving of dup data packets indicate that we
13387 			 * may have postponed an ack for too long, or the other
13388 			 * side's RTT estimate is out of shape. Start acking
13389 			 * more often.
13390 			 */
13391 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13392 			    tcp->tcp_rack_cnt >= 1 &&
13393 			    tcp->tcp_rack_abs_max > 2) {
13394 				tcp->tcp_rack_abs_max--;
13395 			}
13396 			tcp->tcp_rack_cur_max = 1;
13397 
13398 			/*
13399 			 * This segment is "unacceptable".  None of its
13400 			 * sequence space lies within our advertized window.
13401 			 *
13402 			 * Adjust seg_len to the original value for tracing.
13403 			 */
13404 			seg_len -= gap;
13405 			if (tcp->tcp_debug) {
13406 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13407 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13408 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13409 				    "seg_len %d, rnxt %u, snxt %u, %s",
13410 				    gap, rgap, flags, seg_seq, seg_ack,
13411 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13412 				    tcp_display(tcp, NULL,
13413 				    DISP_ADDR_AND_PORT));
13414 			}
13415 
13416 			/*
13417 			 * Arrange to send an ACK in response to the
13418 			 * unacceptable segment per RFC 793 page 69. There
13419 			 * is only one small difference between ours and the
13420 			 * acceptability test in the RFC - we accept ACK-only
13421 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13422 			 * will be generated.
13423 			 *
13424 			 * Note that we have to ACK an ACK-only packet at least
13425 			 * for stacks that send 0-length keep-alives with
13426 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13427 			 * section 4.2.3.6. As long as we don't ever generate
13428 			 * an unacceptable packet in response to an incoming
13429 			 * packet that is unacceptable, it should not cause
13430 			 * "ACK wars".
13431 			 */
13432 			flags |=  TH_ACK_NEEDED;
13433 
13434 			/*
13435 			 * Continue processing this segment in order to use the
13436 			 * ACK information it contains, but skip all other
13437 			 * sequence-number processing.	Processing the ACK
13438 			 * information is necessary in order to
13439 			 * re-synchronize connections that may have lost
13440 			 * synchronization.
13441 			 *
13442 			 * We clear seg_len and flag fields related to
13443 			 * sequence number processing as they are not
13444 			 * to be trusted for an unacceptable segment.
13445 			 */
13446 			seg_len = 0;
13447 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13448 			goto process_ack;
13449 		}
13450 
13451 		/* Fix seg_seq, and chew the gap off the front. */
13452 		seg_seq = tcp->tcp_rnxt;
13453 		urp += gap;
13454 		do {
13455 			mblk_t	*mp2;
13456 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13457 			    (uintptr_t)UINT_MAX);
13458 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13459 			if (gap > 0) {
13460 				mp->b_rptr = mp->b_wptr - gap;
13461 				break;
13462 			}
13463 			mp2 = mp;
13464 			mp = mp->b_cont;
13465 			freeb(mp2);
13466 		} while (gap < 0);
13467 		/*
13468 		 * If the urgent data has already been acknowledged, we
13469 		 * should ignore TH_URG below
13470 		 */
13471 		if (urp < 0)
13472 			flags &= ~TH_URG;
13473 	}
13474 	/*
13475 	 * rgap is the amount of stuff received out of window.  A negative
13476 	 * value is the amount out of window.
13477 	 */
13478 	if (rgap < 0) {
13479 		mblk_t	*mp2;
13480 
13481 		if (tcp->tcp_rwnd == 0) {
13482 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13483 		} else {
13484 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13485 			UPDATE_MIB(&tcps->tcps_mib,
13486 			    tcpInDataPastWinBytes, -rgap);
13487 		}
13488 
13489 		/*
13490 		 * seg_len does not include the FIN, so if more than
13491 		 * just the FIN is out of window, we act like we don't
13492 		 * see it.  (If just the FIN is out of window, rgap
13493 		 * will be zero and we will go ahead and acknowledge
13494 		 * the FIN.)
13495 		 */
13496 		flags &= ~TH_FIN;
13497 
13498 		/* Fix seg_len and make sure there is something left. */
13499 		seg_len += rgap;
13500 		if (seg_len <= 0) {
13501 			/*
13502 			 * Resets are only valid if they lie within our offered
13503 			 * window.  If the RST bit is set, we just ignore this
13504 			 * segment.
13505 			 */
13506 			if (flags & TH_RST) {
13507 				freemsg(mp);
13508 				return;
13509 			}
13510 
13511 			/* Per RFC 793, we need to send back an ACK. */
13512 			flags |= TH_ACK_NEEDED;
13513 
13514 			/*
13515 			 * Send SIGURG as soon as possible i.e. even
13516 			 * if the TH_URG was delivered in a window probe
13517 			 * packet (which will be unacceptable).
13518 			 *
13519 			 * We generate a signal if none has been generated
13520 			 * for this connection or if this is a new urgent
13521 			 * byte. Also send a zero-length "unmarked" message
13522 			 * to inform SIOCATMARK that this is not the mark.
13523 			 *
13524 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13525 			 * is sent up. This plus the check for old data
13526 			 * (gap >= 0) handles the wraparound of the sequence
13527 			 * number space without having to always track the
13528 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13529 			 * this max in its rcv_up variable).
13530 			 *
13531 			 * This prevents duplicate SIGURGS due to a "late"
13532 			 * zero-window probe when the T_EXDATA_IND has already
13533 			 * been sent up.
13534 			 */
13535 			if ((flags & TH_URG) &&
13536 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13537 			    tcp->tcp_urp_last))) {
13538 				mp1 = allocb(0, BPRI_MED);
13539 				if (mp1 == NULL) {
13540 					freemsg(mp);
13541 					return;
13542 				}
13543 				if (!TCP_IS_DETACHED(tcp) &&
13544 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13545 				    SIGURG)) {
13546 					/* Try again on the rexmit. */
13547 					freemsg(mp1);
13548 					freemsg(mp);
13549 					return;
13550 				}
13551 				/*
13552 				 * If the next byte would be the mark
13553 				 * then mark with MARKNEXT else mark
13554 				 * with NOTMARKNEXT.
13555 				 */
13556 				if (gap == 0 && urp == 0)
13557 					mp1->b_flag |= MSGMARKNEXT;
13558 				else
13559 					mp1->b_flag |= MSGNOTMARKNEXT;
13560 				freemsg(tcp->tcp_urp_mark_mp);
13561 				tcp->tcp_urp_mark_mp = mp1;
13562 				flags |= TH_SEND_URP_MARK;
13563 				tcp->tcp_urp_last_valid = B_TRUE;
13564 				tcp->tcp_urp_last = urp + seg_seq;
13565 			}
13566 			/*
13567 			 * If this is a zero window probe, continue to
13568 			 * process the ACK part.  But we need to set seg_len
13569 			 * to 0 to avoid data processing.  Otherwise just
13570 			 * drop the segment and send back an ACK.
13571 			 */
13572 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13573 				flags &= ~(TH_SYN | TH_URG);
13574 				seg_len = 0;
13575 				goto process_ack;
13576 			} else {
13577 				freemsg(mp);
13578 				goto ack_check;
13579 			}
13580 		}
13581 		/* Pitch out of window stuff off the end. */
13582 		rgap = seg_len;
13583 		mp2 = mp;
13584 		do {
13585 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13586 			    (uintptr_t)INT_MAX);
13587 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13588 			if (rgap < 0) {
13589 				mp2->b_wptr += rgap;
13590 				if ((mp1 = mp2->b_cont) != NULL) {
13591 					mp2->b_cont = NULL;
13592 					freemsg(mp1);
13593 				}
13594 				break;
13595 			}
13596 		} while ((mp2 = mp2->b_cont) != NULL);
13597 	}
13598 ok:;
13599 	/*
13600 	 * TCP should check ECN info for segments inside the window only.
13601 	 * Therefore the check should be done here.
13602 	 */
13603 	if (tcp->tcp_ecn_ok) {
13604 		if (flags & TH_CWR) {
13605 			tcp->tcp_ecn_echo_on = B_FALSE;
13606 		}
13607 		/*
13608 		 * Note that both ECN_CE and CWR can be set in the
13609 		 * same segment.  In this case, we once again turn
13610 		 * on ECN_ECHO.
13611 		 */
13612 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13613 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13614 
13615 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13616 				tcp->tcp_ecn_echo_on = B_TRUE;
13617 			}
13618 		} else {
13619 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13620 
13621 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13622 			    htonl(IPH_ECN_CE << 20)) {
13623 				tcp->tcp_ecn_echo_on = B_TRUE;
13624 			}
13625 		}
13626 	}
13627 
13628 	/*
13629 	 * Check whether we can update tcp_ts_recent.  This test is
13630 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13631 	 * Extensions for High Performance: An Update", Internet Draft.
13632 	 */
13633 	if (tcp->tcp_snd_ts_ok &&
13634 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13635 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13636 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13637 		tcp->tcp_last_rcv_lbolt = lbolt64;
13638 	}
13639 
13640 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13641 		/*
13642 		 * FIN in an out of order segment.  We record this in
13643 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13644 		 * Clear the FIN so that any check on FIN flag will fail.
13645 		 * Remember that FIN also counts in the sequence number
13646 		 * space.  So we need to ack out of order FIN only segments.
13647 		 */
13648 		if (flags & TH_FIN) {
13649 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13650 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13651 			flags &= ~TH_FIN;
13652 			flags |= TH_ACK_NEEDED;
13653 		}
13654 		if (seg_len > 0) {
13655 			/* Fill in the SACK blk list. */
13656 			if (tcp->tcp_snd_sack_ok) {
13657 				ASSERT(tcp->tcp_sack_info != NULL);
13658 				tcp_sack_insert(tcp->tcp_sack_list,
13659 				    seg_seq, seg_seq + seg_len,
13660 				    &(tcp->tcp_num_sack_blk));
13661 			}
13662 
13663 			/*
13664 			 * Attempt reassembly and see if we have something
13665 			 * ready to go.
13666 			 */
13667 			mp = tcp_reass(tcp, mp, seg_seq);
13668 			/* Always ack out of order packets */
13669 			flags |= TH_ACK_NEEDED | TH_PUSH;
13670 			if (mp) {
13671 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13672 				    (uintptr_t)INT_MAX);
13673 				seg_len = mp->b_cont ? msgdsize(mp) :
13674 				    (int)(mp->b_wptr - mp->b_rptr);
13675 				seg_seq = tcp->tcp_rnxt;
13676 				/*
13677 				 * A gap is filled and the seq num and len
13678 				 * of the gap match that of a previously
13679 				 * received FIN, put the FIN flag back in.
13680 				 */
13681 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13682 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13683 					flags |= TH_FIN;
13684 					tcp->tcp_valid_bits &=
13685 					    ~TCP_OFO_FIN_VALID;
13686 				}
13687 			} else {
13688 				/*
13689 				 * Keep going even with NULL mp.
13690 				 * There may be a useful ACK or something else
13691 				 * we don't want to miss.
13692 				 *
13693 				 * But TCP should not perform fast retransmit
13694 				 * because of the ack number.  TCP uses
13695 				 * seg_len == 0 to determine if it is a pure
13696 				 * ACK.  And this is not a pure ACK.
13697 				 */
13698 				seg_len = 0;
13699 				ofo_seg = B_TRUE;
13700 			}
13701 		}
13702 	} else if (seg_len > 0) {
13703 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13704 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13705 		/*
13706 		 * If an out of order FIN was received before, and the seq
13707 		 * num and len of the new segment match that of the FIN,
13708 		 * put the FIN flag back in.
13709 		 */
13710 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13711 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13712 			flags |= TH_FIN;
13713 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13714 		}
13715 	}
13716 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13717 	if (flags & TH_RST) {
13718 		freemsg(mp);
13719 		switch (tcp->tcp_state) {
13720 		case TCPS_SYN_RCVD:
13721 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13722 			break;
13723 		case TCPS_ESTABLISHED:
13724 		case TCPS_FIN_WAIT_1:
13725 		case TCPS_FIN_WAIT_2:
13726 		case TCPS_CLOSE_WAIT:
13727 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13728 			break;
13729 		case TCPS_CLOSING:
13730 		case TCPS_LAST_ACK:
13731 			(void) tcp_clean_death(tcp, 0, 16);
13732 			break;
13733 		default:
13734 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13735 			(void) tcp_clean_death(tcp, ENXIO, 17);
13736 			break;
13737 		}
13738 		return;
13739 	}
13740 	if (flags & TH_SYN) {
13741 		/*
13742 		 * See RFC 793, Page 71
13743 		 *
13744 		 * The seq number must be in the window as it should
13745 		 * be "fixed" above.  If it is outside window, it should
13746 		 * be already rejected.  Note that we allow seg_seq to be
13747 		 * rnxt + rwnd because we want to accept 0 window probe.
13748 		 */
13749 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13750 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13751 		freemsg(mp);
13752 		/*
13753 		 * If the ACK flag is not set, just use our snxt as the
13754 		 * seq number of the RST segment.
13755 		 */
13756 		if (!(flags & TH_ACK)) {
13757 			seg_ack = tcp->tcp_snxt;
13758 		}
13759 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13760 		    TH_RST|TH_ACK);
13761 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13762 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13763 		return;
13764 	}
13765 	/*
13766 	 * urp could be -1 when the urp field in the packet is 0
13767 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13768 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13769 	 */
13770 	if (flags & TH_URG && urp >= 0) {
13771 		if (!tcp->tcp_urp_last_valid ||
13772 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13773 			/*
13774 			 * If we haven't generated the signal yet for this
13775 			 * urgent pointer value, do it now.  Also, send up a
13776 			 * zero-length M_DATA indicating whether or not this is
13777 			 * the mark. The latter is not needed when a
13778 			 * T_EXDATA_IND is sent up. However, if there are
13779 			 * allocation failures this code relies on the sender
13780 			 * retransmitting and the socket code for determining
13781 			 * the mark should not block waiting for the peer to
13782 			 * transmit. Thus, for simplicity we always send up the
13783 			 * mark indication.
13784 			 */
13785 			mp1 = allocb(0, BPRI_MED);
13786 			if (mp1 == NULL) {
13787 				freemsg(mp);
13788 				return;
13789 			}
13790 			if (!TCP_IS_DETACHED(tcp) &&
13791 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13792 				/* Try again on the rexmit. */
13793 				freemsg(mp1);
13794 				freemsg(mp);
13795 				return;
13796 			}
13797 			/*
13798 			 * Mark with NOTMARKNEXT for now.
13799 			 * The code below will change this to MARKNEXT
13800 			 * if we are at the mark.
13801 			 *
13802 			 * If there are allocation failures (e.g. in dupmsg
13803 			 * below) the next time tcp_rput_data sees the urgent
13804 			 * segment it will send up the MSG*MARKNEXT message.
13805 			 */
13806 			mp1->b_flag |= MSGNOTMARKNEXT;
13807 			freemsg(tcp->tcp_urp_mark_mp);
13808 			tcp->tcp_urp_mark_mp = mp1;
13809 			flags |= TH_SEND_URP_MARK;
13810 #ifdef DEBUG
13811 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13812 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13813 			    "last %x, %s",
13814 			    seg_seq, urp, tcp->tcp_urp_last,
13815 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13816 #endif /* DEBUG */
13817 			tcp->tcp_urp_last_valid = B_TRUE;
13818 			tcp->tcp_urp_last = urp + seg_seq;
13819 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13820 			/*
13821 			 * An allocation failure prevented the previous
13822 			 * tcp_rput_data from sending up the allocated
13823 			 * MSG*MARKNEXT message - send it up this time
13824 			 * around.
13825 			 */
13826 			flags |= TH_SEND_URP_MARK;
13827 		}
13828 
13829 		/*
13830 		 * If the urgent byte is in this segment, make sure that it is
13831 		 * all by itself.  This makes it much easier to deal with the
13832 		 * possibility of an allocation failure on the T_exdata_ind.
13833 		 * Note that seg_len is the number of bytes in the segment, and
13834 		 * urp is the offset into the segment of the urgent byte.
13835 		 * urp < seg_len means that the urgent byte is in this segment.
13836 		 */
13837 		if (urp < seg_len) {
13838 			if (seg_len != 1) {
13839 				uint32_t  tmp_rnxt;
13840 				/*
13841 				 * Break it up and feed it back in.
13842 				 * Re-attach the IP header.
13843 				 */
13844 				mp->b_rptr = iphdr;
13845 				if (urp > 0) {
13846 					/*
13847 					 * There is stuff before the urgent
13848 					 * byte.
13849 					 */
13850 					mp1 = dupmsg(mp);
13851 					if (!mp1) {
13852 						/*
13853 						 * Trim from urgent byte on.
13854 						 * The rest will come back.
13855 						 */
13856 						(void) adjmsg(mp,
13857 						    urp - seg_len);
13858 						tcp_rput_data(connp,
13859 						    mp, NULL);
13860 						return;
13861 					}
13862 					(void) adjmsg(mp1, urp - seg_len);
13863 					/* Feed this piece back in. */
13864 					tmp_rnxt = tcp->tcp_rnxt;
13865 					tcp_rput_data(connp, mp1, NULL);
13866 					/*
13867 					 * If the data passed back in was not
13868 					 * processed (ie: bad ACK) sending
13869 					 * the remainder back in will cause a
13870 					 * loop. In this case, drop the
13871 					 * packet and let the sender try
13872 					 * sending a good packet.
13873 					 */
13874 					if (tmp_rnxt == tcp->tcp_rnxt) {
13875 						freemsg(mp);
13876 						return;
13877 					}
13878 				}
13879 				if (urp != seg_len - 1) {
13880 					uint32_t  tmp_rnxt;
13881 					/*
13882 					 * There is stuff after the urgent
13883 					 * byte.
13884 					 */
13885 					mp1 = dupmsg(mp);
13886 					if (!mp1) {
13887 						/*
13888 						 * Trim everything beyond the
13889 						 * urgent byte.  The rest will
13890 						 * come back.
13891 						 */
13892 						(void) adjmsg(mp,
13893 						    urp + 1 - seg_len);
13894 						tcp_rput_data(connp,
13895 						    mp, NULL);
13896 						return;
13897 					}
13898 					(void) adjmsg(mp1, urp + 1 - seg_len);
13899 					tmp_rnxt = tcp->tcp_rnxt;
13900 					tcp_rput_data(connp, mp1, NULL);
13901 					/*
13902 					 * If the data passed back in was not
13903 					 * processed (ie: bad ACK) sending
13904 					 * the remainder back in will cause a
13905 					 * loop. In this case, drop the
13906 					 * packet and let the sender try
13907 					 * sending a good packet.
13908 					 */
13909 					if (tmp_rnxt == tcp->tcp_rnxt) {
13910 						freemsg(mp);
13911 						return;
13912 					}
13913 				}
13914 				tcp_rput_data(connp, mp, NULL);
13915 				return;
13916 			}
13917 			/*
13918 			 * This segment contains only the urgent byte.  We
13919 			 * have to allocate the T_exdata_ind, if we can.
13920 			 */
13921 			if (!tcp->tcp_urp_mp) {
13922 				struct T_exdata_ind *tei;
13923 				mp1 = allocb(sizeof (struct T_exdata_ind),
13924 				    BPRI_MED);
13925 				if (!mp1) {
13926 					/*
13927 					 * Sigh... It'll be back.
13928 					 * Generate any MSG*MARK message now.
13929 					 */
13930 					freemsg(mp);
13931 					seg_len = 0;
13932 					if (flags & TH_SEND_URP_MARK) {
13933 
13934 
13935 						ASSERT(tcp->tcp_urp_mark_mp);
13936 						tcp->tcp_urp_mark_mp->b_flag &=
13937 						    ~MSGNOTMARKNEXT;
13938 						tcp->tcp_urp_mark_mp->b_flag |=
13939 						    MSGMARKNEXT;
13940 					}
13941 					goto ack_check;
13942 				}
13943 				mp1->b_datap->db_type = M_PROTO;
13944 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13945 				tei->PRIM_type = T_EXDATA_IND;
13946 				tei->MORE_flag = 0;
13947 				mp1->b_wptr = (uchar_t *)&tei[1];
13948 				tcp->tcp_urp_mp = mp1;
13949 #ifdef DEBUG
13950 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13951 				    "tcp_rput: allocated exdata_ind %s",
13952 				    tcp_display(tcp, NULL,
13953 				    DISP_PORT_ONLY));
13954 #endif /* DEBUG */
13955 				/*
13956 				 * There is no need to send a separate MSG*MARK
13957 				 * message since the T_EXDATA_IND will be sent
13958 				 * now.
13959 				 */
13960 				flags &= ~TH_SEND_URP_MARK;
13961 				freemsg(tcp->tcp_urp_mark_mp);
13962 				tcp->tcp_urp_mark_mp = NULL;
13963 			}
13964 			/*
13965 			 * Now we are all set.  On the next putnext upstream,
13966 			 * tcp_urp_mp will be non-NULL and will get prepended
13967 			 * to what has to be this piece containing the urgent
13968 			 * byte.  If for any reason we abort this segment below,
13969 			 * if it comes back, we will have this ready, or it
13970 			 * will get blown off in close.
13971 			 */
13972 		} else if (urp == seg_len) {
13973 			/*
13974 			 * The urgent byte is the next byte after this sequence
13975 			 * number. If there is data it is marked with
13976 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13977 			 * since it is not needed. Otherwise, if the code
13978 			 * above just allocated a zero-length tcp_urp_mark_mp
13979 			 * message, that message is tagged with MSGMARKNEXT.
13980 			 * Sending up these MSGMARKNEXT messages makes
13981 			 * SIOCATMARK work correctly even though
13982 			 * the T_EXDATA_IND will not be sent up until the
13983 			 * urgent byte arrives.
13984 			 */
13985 			if (seg_len != 0) {
13986 				flags |= TH_MARKNEXT_NEEDED;
13987 				freemsg(tcp->tcp_urp_mark_mp);
13988 				tcp->tcp_urp_mark_mp = NULL;
13989 				flags &= ~TH_SEND_URP_MARK;
13990 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13991 				flags |= TH_SEND_URP_MARK;
13992 				tcp->tcp_urp_mark_mp->b_flag &=
13993 				    ~MSGNOTMARKNEXT;
13994 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13995 			}
13996 #ifdef DEBUG
13997 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13998 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13999 			    seg_len, flags,
14000 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14001 #endif /* DEBUG */
14002 		} else {
14003 			/* Data left until we hit mark */
14004 #ifdef DEBUG
14005 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14006 			    "tcp_rput: URP %d bytes left, %s",
14007 			    urp - seg_len, tcp_display(tcp, NULL,
14008 			    DISP_PORT_ONLY));
14009 #endif /* DEBUG */
14010 		}
14011 	}
14012 
14013 process_ack:
14014 	if (!(flags & TH_ACK)) {
14015 		freemsg(mp);
14016 		goto xmit_check;
14017 	}
14018 	}
14019 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14020 
14021 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14022 		tcp->tcp_ip_forward_progress = B_TRUE;
14023 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14024 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14025 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14026 			/* 3-way handshake complete - pass up the T_CONN_IND */
14027 			tcp_t	*listener = tcp->tcp_listener;
14028 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14029 
14030 			tcp->tcp_tconnind_started = B_TRUE;
14031 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14032 			/*
14033 			 * We are here means eager is fine but it can
14034 			 * get a TH_RST at any point between now and till
14035 			 * accept completes and disappear. We need to
14036 			 * ensure that reference to eager is valid after
14037 			 * we get out of eager's perimeter. So we do
14038 			 * an extra refhold.
14039 			 */
14040 			CONN_INC_REF(connp);
14041 
14042 			/*
14043 			 * The listener also exists because of the refhold
14044 			 * done in tcp_conn_request. Its possible that it
14045 			 * might have closed. We will check that once we
14046 			 * get inside listeners context.
14047 			 */
14048 			CONN_INC_REF(listener->tcp_connp);
14049 			if (listener->tcp_connp->conn_sqp ==
14050 			    connp->conn_sqp) {
14051 				tcp_send_conn_ind(listener->tcp_connp, mp,
14052 				    listener->tcp_connp->conn_sqp);
14053 				CONN_DEC_REF(listener->tcp_connp);
14054 			} else if (!tcp->tcp_loopback) {
14055 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14056 				    tcp_send_conn_ind,
14057 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14058 			} else {
14059 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14060 				    tcp_send_conn_ind, listener->tcp_connp,
14061 				    SQTAG_TCP_CONN_IND);
14062 			}
14063 		}
14064 
14065 		if (tcp->tcp_active_open) {
14066 			/*
14067 			 * We are seeing the final ack in the three way
14068 			 * hand shake of a active open'ed connection
14069 			 * so we must send up a T_CONN_CON
14070 			 */
14071 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14072 				freemsg(mp);
14073 				return;
14074 			}
14075 			/*
14076 			 * Don't fuse the loopback endpoints for
14077 			 * simultaneous active opens.
14078 			 */
14079 			if (tcp->tcp_loopback) {
14080 				TCP_STAT(tcps, tcp_fusion_unfusable);
14081 				tcp->tcp_unfusable = B_TRUE;
14082 			}
14083 		}
14084 
14085 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14086 		bytes_acked--;
14087 		/* SYN was acked - making progress */
14088 		if (tcp->tcp_ipversion == IPV6_VERSION)
14089 			tcp->tcp_ip_forward_progress = B_TRUE;
14090 
14091 		/*
14092 		 * If SYN was retransmitted, need to reset all
14093 		 * retransmission info as this segment will be
14094 		 * treated as a dup ACK.
14095 		 */
14096 		if (tcp->tcp_rexmit) {
14097 			tcp->tcp_rexmit = B_FALSE;
14098 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14099 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14100 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14101 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14102 			tcp->tcp_ms_we_have_waited = 0;
14103 			tcp->tcp_cwnd = mss;
14104 		}
14105 
14106 		/*
14107 		 * We set the send window to zero here.
14108 		 * This is needed if there is data to be
14109 		 * processed already on the queue.
14110 		 * Later (at swnd_update label), the
14111 		 * "new_swnd > tcp_swnd" condition is satisfied
14112 		 * the XMIT_NEEDED flag is set in the current
14113 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14114 		 * called if there is already data on queue in
14115 		 * this state.
14116 		 */
14117 		tcp->tcp_swnd = 0;
14118 
14119 		if (new_swnd > tcp->tcp_max_swnd)
14120 			tcp->tcp_max_swnd = new_swnd;
14121 		tcp->tcp_swl1 = seg_seq;
14122 		tcp->tcp_swl2 = seg_ack;
14123 		tcp->tcp_state = TCPS_ESTABLISHED;
14124 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14125 
14126 		/* Fuse when both sides are in ESTABLISHED state */
14127 		if (tcp->tcp_loopback && do_tcp_fusion)
14128 			tcp_fuse(tcp, iphdr, tcph);
14129 
14130 	}
14131 	/* This code follows 4.4BSD-Lite2 mostly. */
14132 	if (bytes_acked < 0)
14133 		goto est;
14134 
14135 	/*
14136 	 * If TCP is ECN capable and the congestion experience bit is
14137 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14138 	 * done once per window (or more loosely, per RTT).
14139 	 */
14140 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14141 		tcp->tcp_cwr = B_FALSE;
14142 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14143 		if (!tcp->tcp_cwr) {
14144 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14145 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14146 			tcp->tcp_cwnd = npkt * mss;
14147 			/*
14148 			 * If the cwnd is 0, use the timer to clock out
14149 			 * new segments.  This is required by the ECN spec.
14150 			 */
14151 			if (npkt == 0) {
14152 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14153 				/*
14154 				 * This makes sure that when the ACK comes
14155 				 * back, we will increase tcp_cwnd by 1 MSS.
14156 				 */
14157 				tcp->tcp_cwnd_cnt = 0;
14158 			}
14159 			tcp->tcp_cwr = B_TRUE;
14160 			/*
14161 			 * This marks the end of the current window of in
14162 			 * flight data.  That is why we don't use
14163 			 * tcp_suna + tcp_swnd.  Only data in flight can
14164 			 * provide ECN info.
14165 			 */
14166 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14167 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14168 		}
14169 	}
14170 
14171 	mp1 = tcp->tcp_xmit_head;
14172 	if (bytes_acked == 0) {
14173 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14174 			int dupack_cnt;
14175 
14176 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14177 			/*
14178 			 * Fast retransmit.  When we have seen exactly three
14179 			 * identical ACKs while we have unacked data
14180 			 * outstanding we take it as a hint that our peer
14181 			 * dropped something.
14182 			 *
14183 			 * If TCP is retransmitting, don't do fast retransmit.
14184 			 */
14185 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14186 			    ! tcp->tcp_rexmit) {
14187 				/* Do Limited Transmit */
14188 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14189 				    tcps->tcps_dupack_fast_retransmit) {
14190 					/*
14191 					 * RFC 3042
14192 					 *
14193 					 * What we need to do is temporarily
14194 					 * increase tcp_cwnd so that new
14195 					 * data can be sent if it is allowed
14196 					 * by the receive window (tcp_rwnd).
14197 					 * tcp_wput_data() will take care of
14198 					 * the rest.
14199 					 *
14200 					 * If the connection is SACK capable,
14201 					 * only do limited xmit when there
14202 					 * is SACK info.
14203 					 *
14204 					 * Note how tcp_cwnd is incremented.
14205 					 * The first dup ACK will increase
14206 					 * it by 1 MSS.  The second dup ACK
14207 					 * will increase it by 2 MSS.  This
14208 					 * means that only 1 new segment will
14209 					 * be sent for each dup ACK.
14210 					 */
14211 					if (tcp->tcp_unsent > 0 &&
14212 					    (!tcp->tcp_snd_sack_ok ||
14213 					    (tcp->tcp_snd_sack_ok &&
14214 					    tcp->tcp_notsack_list != NULL))) {
14215 						tcp->tcp_cwnd += mss <<
14216 						    (tcp->tcp_dupack_cnt - 1);
14217 						flags |= TH_LIMIT_XMIT;
14218 					}
14219 				} else if (dupack_cnt ==
14220 				    tcps->tcps_dupack_fast_retransmit) {
14221 
14222 				/*
14223 				 * If we have reduced tcp_ssthresh
14224 				 * because of ECN, do not reduce it again
14225 				 * unless it is already one window of data
14226 				 * away.  After one window of data, tcp_cwr
14227 				 * should then be cleared.  Note that
14228 				 * for non ECN capable connection, tcp_cwr
14229 				 * should always be false.
14230 				 *
14231 				 * Adjust cwnd since the duplicate
14232 				 * ack indicates that a packet was
14233 				 * dropped (due to congestion.)
14234 				 */
14235 				if (!tcp->tcp_cwr) {
14236 					npkt = ((tcp->tcp_snxt -
14237 					    tcp->tcp_suna) >> 1) / mss;
14238 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14239 					    mss;
14240 					tcp->tcp_cwnd = (npkt +
14241 					    tcp->tcp_dupack_cnt) * mss;
14242 				}
14243 				if (tcp->tcp_ecn_ok) {
14244 					tcp->tcp_cwr = B_TRUE;
14245 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14246 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14247 				}
14248 
14249 				/*
14250 				 * We do Hoe's algorithm.  Refer to her
14251 				 * paper "Improving the Start-up Behavior
14252 				 * of a Congestion Control Scheme for TCP,"
14253 				 * appeared in SIGCOMM'96.
14254 				 *
14255 				 * Save highest seq no we have sent so far.
14256 				 * Be careful about the invisible FIN byte.
14257 				 */
14258 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14259 				    (tcp->tcp_unsent == 0)) {
14260 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14261 				} else {
14262 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14263 				}
14264 
14265 				/*
14266 				 * Do not allow bursty traffic during.
14267 				 * fast recovery.  Refer to Fall and Floyd's
14268 				 * paper "Simulation-based Comparisons of
14269 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14270 				 * This is a best current practise.
14271 				 */
14272 				tcp->tcp_snd_burst = TCP_CWND_SS;
14273 
14274 				/*
14275 				 * For SACK:
14276 				 * Calculate tcp_pipe, which is the
14277 				 * estimated number of bytes in
14278 				 * network.
14279 				 *
14280 				 * tcp_fack is the highest sack'ed seq num
14281 				 * TCP has received.
14282 				 *
14283 				 * tcp_pipe is explained in the above quoted
14284 				 * Fall and Floyd's paper.  tcp_fack is
14285 				 * explained in Mathis and Mahdavi's
14286 				 * "Forward Acknowledgment: Refining TCP
14287 				 * Congestion Control" in SIGCOMM '96.
14288 				 */
14289 				if (tcp->tcp_snd_sack_ok) {
14290 					ASSERT(tcp->tcp_sack_info != NULL);
14291 					if (tcp->tcp_notsack_list != NULL) {
14292 						tcp->tcp_pipe = tcp->tcp_snxt -
14293 						    tcp->tcp_fack;
14294 						tcp->tcp_sack_snxt = seg_ack;
14295 						flags |= TH_NEED_SACK_REXMIT;
14296 					} else {
14297 						/*
14298 						 * Always initialize tcp_pipe
14299 						 * even though we don't have
14300 						 * any SACK info.  If later
14301 						 * we get SACK info and
14302 						 * tcp_pipe is not initialized,
14303 						 * funny things will happen.
14304 						 */
14305 						tcp->tcp_pipe =
14306 						    tcp->tcp_cwnd_ssthresh;
14307 					}
14308 				} else {
14309 					flags |= TH_REXMIT_NEEDED;
14310 				} /* tcp_snd_sack_ok */
14311 
14312 				} else {
14313 					/*
14314 					 * Here we perform congestion
14315 					 * avoidance, but NOT slow start.
14316 					 * This is known as the Fast
14317 					 * Recovery Algorithm.
14318 					 */
14319 					if (tcp->tcp_snd_sack_ok &&
14320 					    tcp->tcp_notsack_list != NULL) {
14321 						flags |= TH_NEED_SACK_REXMIT;
14322 						tcp->tcp_pipe -= mss;
14323 						if (tcp->tcp_pipe < 0)
14324 							tcp->tcp_pipe = 0;
14325 					} else {
14326 					/*
14327 					 * We know that one more packet has
14328 					 * left the pipe thus we can update
14329 					 * cwnd.
14330 					 */
14331 					cwnd = tcp->tcp_cwnd + mss;
14332 					if (cwnd > tcp->tcp_cwnd_max)
14333 						cwnd = tcp->tcp_cwnd_max;
14334 					tcp->tcp_cwnd = cwnd;
14335 					if (tcp->tcp_unsent > 0)
14336 						flags |= TH_XMIT_NEEDED;
14337 					}
14338 				}
14339 			}
14340 		} else if (tcp->tcp_zero_win_probe) {
14341 			/*
14342 			 * If the window has opened, need to arrange
14343 			 * to send additional data.
14344 			 */
14345 			if (new_swnd != 0) {
14346 				/* tcp_suna != tcp_snxt */
14347 				/* Packet contains a window update */
14348 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14349 				tcp->tcp_zero_win_probe = 0;
14350 				tcp->tcp_timer_backoff = 0;
14351 				tcp->tcp_ms_we_have_waited = 0;
14352 
14353 				/*
14354 				 * Transmit starting with tcp_suna since
14355 				 * the one byte probe is not ack'ed.
14356 				 * If TCP has sent more than one identical
14357 				 * probe, tcp_rexmit will be set.  That means
14358 				 * tcp_ss_rexmit() will send out the one
14359 				 * byte along with new data.  Otherwise,
14360 				 * fake the retransmission.
14361 				 */
14362 				flags |= TH_XMIT_NEEDED;
14363 				if (!tcp->tcp_rexmit) {
14364 					tcp->tcp_rexmit = B_TRUE;
14365 					tcp->tcp_dupack_cnt = 0;
14366 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14367 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14368 				}
14369 			}
14370 		}
14371 		goto swnd_update;
14372 	}
14373 
14374 	/*
14375 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14376 	 * If the ACK value acks something that we have not yet sent, it might
14377 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14378 	 * other side.
14379 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14380 	 * state is handled above, so we can always just drop the segment and
14381 	 * send an ACK here.
14382 	 *
14383 	 * Should we send ACKs in response to ACK only segments?
14384 	 */
14385 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14386 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14387 		/* drop the received segment */
14388 		freemsg(mp);
14389 
14390 		/*
14391 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14392 		 * greater than 0, check if the number of such
14393 		 * bogus ACks is greater than that count.  If yes,
14394 		 * don't send back any ACK.  This prevents TCP from
14395 		 * getting into an ACK storm if somehow an attacker
14396 		 * successfully spoofs an acceptable segment to our
14397 		 * peer.
14398 		 */
14399 		if (tcp_drop_ack_unsent_cnt > 0 &&
14400 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14401 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14402 			return;
14403 		}
14404 		mp = tcp_ack_mp(tcp);
14405 		if (mp != NULL) {
14406 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14407 			BUMP_LOCAL(tcp->tcp_obsegs);
14408 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14409 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14410 		}
14411 		return;
14412 	}
14413 
14414 	/*
14415 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14416 	 * blocks that are covered by this ACK.
14417 	 */
14418 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14419 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14420 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14421 	}
14422 
14423 	/*
14424 	 * If we got an ACK after fast retransmit, check to see
14425 	 * if it is a partial ACK.  If it is not and the congestion
14426 	 * window was inflated to account for the other side's
14427 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14428 	 */
14429 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14430 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14431 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14432 			tcp->tcp_dupack_cnt = 0;
14433 			/*
14434 			 * Restore the orig tcp_cwnd_ssthresh after
14435 			 * fast retransmit phase.
14436 			 */
14437 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14438 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14439 			}
14440 			tcp->tcp_rexmit_max = seg_ack;
14441 			tcp->tcp_cwnd_cnt = 0;
14442 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14443 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14444 
14445 			/*
14446 			 * Remove all notsack info to avoid confusion with
14447 			 * the next fast retrasnmit/recovery phase.
14448 			 */
14449 			if (tcp->tcp_snd_sack_ok &&
14450 			    tcp->tcp_notsack_list != NULL) {
14451 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14452 			}
14453 		} else {
14454 			if (tcp->tcp_snd_sack_ok &&
14455 			    tcp->tcp_notsack_list != NULL) {
14456 				flags |= TH_NEED_SACK_REXMIT;
14457 				tcp->tcp_pipe -= mss;
14458 				if (tcp->tcp_pipe < 0)
14459 					tcp->tcp_pipe = 0;
14460 			} else {
14461 				/*
14462 				 * Hoe's algorithm:
14463 				 *
14464 				 * Retransmit the unack'ed segment and
14465 				 * restart fast recovery.  Note that we
14466 				 * need to scale back tcp_cwnd to the
14467 				 * original value when we started fast
14468 				 * recovery.  This is to prevent overly
14469 				 * aggressive behaviour in sending new
14470 				 * segments.
14471 				 */
14472 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14473 				    tcps->tcps_dupack_fast_retransmit * mss;
14474 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14475 				flags |= TH_REXMIT_NEEDED;
14476 			}
14477 		}
14478 	} else {
14479 		tcp->tcp_dupack_cnt = 0;
14480 		if (tcp->tcp_rexmit) {
14481 			/*
14482 			 * TCP is retranmitting.  If the ACK ack's all
14483 			 * outstanding data, update tcp_rexmit_max and
14484 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14485 			 * to the correct value.
14486 			 *
14487 			 * Note that SEQ_LEQ() is used.  This is to avoid
14488 			 * unnecessary fast retransmit caused by dup ACKs
14489 			 * received when TCP does slow start retransmission
14490 			 * after a time out.  During this phase, TCP may
14491 			 * send out segments which are already received.
14492 			 * This causes dup ACKs to be sent back.
14493 			 */
14494 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14495 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14496 					tcp->tcp_rexmit_nxt = seg_ack;
14497 				}
14498 				if (seg_ack != tcp->tcp_rexmit_max) {
14499 					flags |= TH_XMIT_NEEDED;
14500 				}
14501 			} else {
14502 				tcp->tcp_rexmit = B_FALSE;
14503 				tcp->tcp_xmit_zc_clean = B_FALSE;
14504 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14505 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14506 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14507 			}
14508 			tcp->tcp_ms_we_have_waited = 0;
14509 		}
14510 	}
14511 
14512 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14513 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14514 	tcp->tcp_suna = seg_ack;
14515 	if (tcp->tcp_zero_win_probe != 0) {
14516 		tcp->tcp_zero_win_probe = 0;
14517 		tcp->tcp_timer_backoff = 0;
14518 	}
14519 
14520 	/*
14521 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14522 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14523 	 * will not reach here.
14524 	 */
14525 	if (mp1 == NULL) {
14526 		goto fin_acked;
14527 	}
14528 
14529 	/*
14530 	 * Update the congestion window.
14531 	 *
14532 	 * If TCP is not ECN capable or TCP is ECN capable but the
14533 	 * congestion experience bit is not set, increase the tcp_cwnd as
14534 	 * usual.
14535 	 */
14536 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14537 		cwnd = tcp->tcp_cwnd;
14538 		add = mss;
14539 
14540 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14541 			/*
14542 			 * This is to prevent an increase of less than 1 MSS of
14543 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14544 			 * may send out tinygrams in order to preserve mblk
14545 			 * boundaries.
14546 			 *
14547 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14548 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14549 			 * increased by 1 MSS for every RTTs.
14550 			 */
14551 			if (tcp->tcp_cwnd_cnt <= 0) {
14552 				tcp->tcp_cwnd_cnt = cwnd + add;
14553 			} else {
14554 				tcp->tcp_cwnd_cnt -= add;
14555 				add = 0;
14556 			}
14557 		}
14558 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14559 	}
14560 
14561 	/* See if the latest urgent data has been acknowledged */
14562 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14563 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14564 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14565 
14566 	/* Can we update the RTT estimates? */
14567 	if (tcp->tcp_snd_ts_ok) {
14568 		/* Ignore zero timestamp echo-reply. */
14569 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14570 			tcp_set_rto(tcp, (int32_t)lbolt -
14571 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14572 		}
14573 
14574 		/* If needed, restart the timer. */
14575 		if (tcp->tcp_set_timer == 1) {
14576 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14577 			tcp->tcp_set_timer = 0;
14578 		}
14579 		/*
14580 		 * Update tcp_csuna in case the other side stops sending
14581 		 * us timestamps.
14582 		 */
14583 		tcp->tcp_csuna = tcp->tcp_snxt;
14584 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14585 		/*
14586 		 * An ACK sequence we haven't seen before, so get the RTT
14587 		 * and update the RTO. But first check if the timestamp is
14588 		 * valid to use.
14589 		 */
14590 		if ((mp1->b_next != NULL) &&
14591 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14592 			tcp_set_rto(tcp, (int32_t)lbolt -
14593 			    (int32_t)(intptr_t)mp1->b_prev);
14594 		else
14595 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14596 
14597 		/* Remeber the last sequence to be ACKed */
14598 		tcp->tcp_csuna = seg_ack;
14599 		if (tcp->tcp_set_timer == 1) {
14600 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14601 			tcp->tcp_set_timer = 0;
14602 		}
14603 	} else {
14604 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14605 	}
14606 
14607 	/* Eat acknowledged bytes off the xmit queue. */
14608 	for (;;) {
14609 		mblk_t	*mp2;
14610 		uchar_t	*wptr;
14611 
14612 		wptr = mp1->b_wptr;
14613 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14614 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14615 		if (bytes_acked < 0) {
14616 			mp1->b_rptr = wptr + bytes_acked;
14617 			/*
14618 			 * Set a new timestamp if all the bytes timed by the
14619 			 * old timestamp have been ack'ed.
14620 			 */
14621 			if (SEQ_GT(seg_ack,
14622 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14623 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14624 				mp1->b_next = NULL;
14625 			}
14626 			break;
14627 		}
14628 		mp1->b_next = NULL;
14629 		mp1->b_prev = NULL;
14630 		mp2 = mp1;
14631 		mp1 = mp1->b_cont;
14632 
14633 		/*
14634 		 * This notification is required for some zero-copy
14635 		 * clients to maintain a copy semantic. After the data
14636 		 * is ack'ed, client is safe to modify or reuse the buffer.
14637 		 */
14638 		if (tcp->tcp_snd_zcopy_aware &&
14639 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14640 			tcp_zcopy_notify(tcp);
14641 		freeb(mp2);
14642 		if (bytes_acked == 0) {
14643 			if (mp1 == NULL) {
14644 				/* Everything is ack'ed, clear the tail. */
14645 				tcp->tcp_xmit_tail = NULL;
14646 				/*
14647 				 * Cancel the timer unless we are still
14648 				 * waiting for an ACK for the FIN packet.
14649 				 */
14650 				if (tcp->tcp_timer_tid != 0 &&
14651 				    tcp->tcp_snxt == tcp->tcp_suna) {
14652 					(void) TCP_TIMER_CANCEL(tcp,
14653 					    tcp->tcp_timer_tid);
14654 					tcp->tcp_timer_tid = 0;
14655 				}
14656 				goto pre_swnd_update;
14657 			}
14658 			if (mp2 != tcp->tcp_xmit_tail)
14659 				break;
14660 			tcp->tcp_xmit_tail = mp1;
14661 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14662 			    (uintptr_t)INT_MAX);
14663 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14664 			    mp1->b_rptr);
14665 			break;
14666 		}
14667 		if (mp1 == NULL) {
14668 			/*
14669 			 * More was acked but there is nothing more
14670 			 * outstanding.  This means that the FIN was
14671 			 * just acked or that we're talking to a clown.
14672 			 */
14673 fin_acked:
14674 			ASSERT(tcp->tcp_fin_sent);
14675 			tcp->tcp_xmit_tail = NULL;
14676 			if (tcp->tcp_fin_sent) {
14677 				/* FIN was acked - making progress */
14678 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14679 				    !tcp->tcp_fin_acked)
14680 					tcp->tcp_ip_forward_progress = B_TRUE;
14681 				tcp->tcp_fin_acked = B_TRUE;
14682 				if (tcp->tcp_linger_tid != 0 &&
14683 				    TCP_TIMER_CANCEL(tcp,
14684 				    tcp->tcp_linger_tid) >= 0) {
14685 					tcp_stop_lingering(tcp);
14686 					freemsg(mp);
14687 					mp = NULL;
14688 				}
14689 			} else {
14690 				/*
14691 				 * We should never get here because
14692 				 * we have already checked that the
14693 				 * number of bytes ack'ed should be
14694 				 * smaller than or equal to what we
14695 				 * have sent so far (it is the
14696 				 * acceptability check of the ACK).
14697 				 * We can only get here if the send
14698 				 * queue is corrupted.
14699 				 *
14700 				 * Terminate the connection and
14701 				 * panic the system.  It is better
14702 				 * for us to panic instead of
14703 				 * continuing to avoid other disaster.
14704 				 */
14705 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14706 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14707 				panic("Memory corruption "
14708 				    "detected for connection %s.",
14709 				    tcp_display(tcp, NULL,
14710 				    DISP_ADDR_AND_PORT));
14711 				/*NOTREACHED*/
14712 			}
14713 			goto pre_swnd_update;
14714 		}
14715 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14716 	}
14717 	if (tcp->tcp_unsent) {
14718 		flags |= TH_XMIT_NEEDED;
14719 	}
14720 pre_swnd_update:
14721 	tcp->tcp_xmit_head = mp1;
14722 swnd_update:
14723 	/*
14724 	 * The following check is different from most other implementations.
14725 	 * For bi-directional transfer, when segments are dropped, the
14726 	 * "normal" check will not accept a window update in those
14727 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14728 	 * segments which are outside receiver's window.  As TCP accepts
14729 	 * the ack in those retransmitted segments, if the window update in
14730 	 * the same segment is not accepted, TCP will incorrectly calculates
14731 	 * that it can send more segments.  This can create a deadlock
14732 	 * with the receiver if its window becomes zero.
14733 	 */
14734 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14735 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14736 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14737 		/*
14738 		 * The criteria for update is:
14739 		 *
14740 		 * 1. the segment acknowledges some data.  Or
14741 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14742 		 * 3. the segment is not old and the advertised window is
14743 		 * larger than the previous advertised window.
14744 		 */
14745 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14746 			flags |= TH_XMIT_NEEDED;
14747 		tcp->tcp_swnd = new_swnd;
14748 		if (new_swnd > tcp->tcp_max_swnd)
14749 			tcp->tcp_max_swnd = new_swnd;
14750 		tcp->tcp_swl1 = seg_seq;
14751 		tcp->tcp_swl2 = seg_ack;
14752 	}
14753 est:
14754 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14755 
14756 		switch (tcp->tcp_state) {
14757 		case TCPS_FIN_WAIT_1:
14758 			if (tcp->tcp_fin_acked) {
14759 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14760 				/*
14761 				 * We implement the non-standard BSD/SunOS
14762 				 * FIN_WAIT_2 flushing algorithm.
14763 				 * If there is no user attached to this
14764 				 * TCP endpoint, then this TCP struct
14765 				 * could hang around forever in FIN_WAIT_2
14766 				 * state if the peer forgets to send us
14767 				 * a FIN.  To prevent this, we wait only
14768 				 * 2*MSL (a convenient time value) for
14769 				 * the FIN to arrive.  If it doesn't show up,
14770 				 * we flush the TCP endpoint.  This algorithm,
14771 				 * though a violation of RFC-793, has worked
14772 				 * for over 10 years in BSD systems.
14773 				 * Note: SunOS 4.x waits 675 seconds before
14774 				 * flushing the FIN_WAIT_2 connection.
14775 				 */
14776 				TCP_TIMER_RESTART(tcp,
14777 				    tcps->tcps_fin_wait_2_flush_interval);
14778 			}
14779 			break;
14780 		case TCPS_FIN_WAIT_2:
14781 			break;	/* Shutdown hook? */
14782 		case TCPS_LAST_ACK:
14783 			freemsg(mp);
14784 			if (tcp->tcp_fin_acked) {
14785 				(void) tcp_clean_death(tcp, 0, 19);
14786 				return;
14787 			}
14788 			goto xmit_check;
14789 		case TCPS_CLOSING:
14790 			if (tcp->tcp_fin_acked) {
14791 				tcp->tcp_state = TCPS_TIME_WAIT;
14792 				/*
14793 				 * Unconditionally clear the exclusive binding
14794 				 * bit so this TIME-WAIT connection won't
14795 				 * interfere with new ones.
14796 				 */
14797 				tcp->tcp_exclbind = 0;
14798 				if (!TCP_IS_DETACHED(tcp)) {
14799 					TCP_TIMER_RESTART(tcp,
14800 					    tcps->tcps_time_wait_interval);
14801 				} else {
14802 					tcp_time_wait_append(tcp);
14803 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14804 				}
14805 			}
14806 			/*FALLTHRU*/
14807 		case TCPS_CLOSE_WAIT:
14808 			freemsg(mp);
14809 			goto xmit_check;
14810 		default:
14811 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14812 			break;
14813 		}
14814 	}
14815 	if (flags & TH_FIN) {
14816 		/* Make sure we ack the fin */
14817 		flags |= TH_ACK_NEEDED;
14818 		if (!tcp->tcp_fin_rcvd) {
14819 			tcp->tcp_fin_rcvd = B_TRUE;
14820 			tcp->tcp_rnxt++;
14821 			tcph = tcp->tcp_tcph;
14822 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14823 
14824 			/*
14825 			 * Generate the ordrel_ind at the end unless we
14826 			 * are an eager guy.
14827 			 * In the eager case tcp_rsrv will do this when run
14828 			 * after tcp_accept is done.
14829 			 */
14830 			if (tcp->tcp_listener == NULL &&
14831 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14832 				flags |= TH_ORDREL_NEEDED;
14833 			switch (tcp->tcp_state) {
14834 			case TCPS_SYN_RCVD:
14835 			case TCPS_ESTABLISHED:
14836 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14837 				/* Keepalive? */
14838 				break;
14839 			case TCPS_FIN_WAIT_1:
14840 				if (!tcp->tcp_fin_acked) {
14841 					tcp->tcp_state = TCPS_CLOSING;
14842 					break;
14843 				}
14844 				/* FALLTHRU */
14845 			case TCPS_FIN_WAIT_2:
14846 				tcp->tcp_state = TCPS_TIME_WAIT;
14847 				/*
14848 				 * Unconditionally clear the exclusive binding
14849 				 * bit so this TIME-WAIT connection won't
14850 				 * interfere with new ones.
14851 				 */
14852 				tcp->tcp_exclbind = 0;
14853 				if (!TCP_IS_DETACHED(tcp)) {
14854 					TCP_TIMER_RESTART(tcp,
14855 					    tcps->tcps_time_wait_interval);
14856 				} else {
14857 					tcp_time_wait_append(tcp);
14858 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14859 				}
14860 				if (seg_len) {
14861 					/*
14862 					 * implies data piggybacked on FIN.
14863 					 * break to handle data.
14864 					 */
14865 					break;
14866 				}
14867 				freemsg(mp);
14868 				goto ack_check;
14869 			}
14870 		}
14871 	}
14872 	if (mp == NULL)
14873 		goto xmit_check;
14874 	if (seg_len == 0) {
14875 		freemsg(mp);
14876 		goto xmit_check;
14877 	}
14878 	if (mp->b_rptr == mp->b_wptr) {
14879 		/*
14880 		 * The header has been consumed, so we remove the
14881 		 * zero-length mblk here.
14882 		 */
14883 		mp1 = mp;
14884 		mp = mp->b_cont;
14885 		freeb(mp1);
14886 	}
14887 	tcph = tcp->tcp_tcph;
14888 	tcp->tcp_rack_cnt++;
14889 	{
14890 		uint32_t cur_max;
14891 
14892 		cur_max = tcp->tcp_rack_cur_max;
14893 		if (tcp->tcp_rack_cnt >= cur_max) {
14894 			/*
14895 			 * We have more unacked data than we should - send
14896 			 * an ACK now.
14897 			 */
14898 			flags |= TH_ACK_NEEDED;
14899 			cur_max++;
14900 			if (cur_max > tcp->tcp_rack_abs_max)
14901 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14902 			else
14903 				tcp->tcp_rack_cur_max = cur_max;
14904 		} else if (TCP_IS_DETACHED(tcp)) {
14905 			/* We don't have an ACK timer for detached TCP. */
14906 			flags |= TH_ACK_NEEDED;
14907 		} else if (seg_len < mss) {
14908 			/*
14909 			 * If we get a segment that is less than an mss, and we
14910 			 * already have unacknowledged data, and the amount
14911 			 * unacknowledged is not a multiple of mss, then we
14912 			 * better generate an ACK now.  Otherwise, this may be
14913 			 * the tail piece of a transaction, and we would rather
14914 			 * wait for the response.
14915 			 */
14916 			uint32_t udif;
14917 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14918 			    (uintptr_t)INT_MAX);
14919 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14920 			if (udif && (udif % mss))
14921 				flags |= TH_ACK_NEEDED;
14922 			else
14923 				flags |= TH_ACK_TIMER_NEEDED;
14924 		} else {
14925 			/* Start delayed ack timer */
14926 			flags |= TH_ACK_TIMER_NEEDED;
14927 		}
14928 	}
14929 	tcp->tcp_rnxt += seg_len;
14930 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14931 
14932 	/* Update SACK list */
14933 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14934 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14935 		    &(tcp->tcp_num_sack_blk));
14936 	}
14937 
14938 	if (tcp->tcp_urp_mp) {
14939 		tcp->tcp_urp_mp->b_cont = mp;
14940 		mp = tcp->tcp_urp_mp;
14941 		tcp->tcp_urp_mp = NULL;
14942 		/* Ready for a new signal. */
14943 		tcp->tcp_urp_last_valid = B_FALSE;
14944 #ifdef DEBUG
14945 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14946 		    "tcp_rput: sending exdata_ind %s",
14947 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14948 #endif /* DEBUG */
14949 	}
14950 
14951 	/*
14952 	 * Check for ancillary data changes compared to last segment.
14953 	 */
14954 	if (tcp->tcp_ipv6_recvancillary != 0) {
14955 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14956 		if (mp == NULL)
14957 			return;
14958 	}
14959 
14960 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14961 		/*
14962 		 * Side queue inbound data until the accept happens.
14963 		 * tcp_accept/tcp_rput drains this when the accept happens.
14964 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14965 		 * T_EXDATA_IND) it is queued on b_next.
14966 		 * XXX Make urgent data use this. Requires:
14967 		 *	Removing tcp_listener check for TH_URG
14968 		 *	Making M_PCPROTO and MARK messages skip the eager case
14969 		 */
14970 
14971 		if (tcp->tcp_kssl_pending) {
14972 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
14973 			    mblk_t *, mp);
14974 			tcp_kssl_input(tcp, mp);
14975 		} else {
14976 			tcp_rcv_enqueue(tcp, mp, seg_len);
14977 		}
14978 	} else {
14979 		if (mp->b_datap->db_type != M_DATA ||
14980 		    (flags & TH_MARKNEXT_NEEDED)) {
14981 			if (tcp->tcp_rcv_list != NULL) {
14982 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14983 			}
14984 			ASSERT(tcp->tcp_rcv_list == NULL ||
14985 			    tcp->tcp_fused_sigurg);
14986 			if (flags & TH_MARKNEXT_NEEDED) {
14987 #ifdef DEBUG
14988 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14989 				    "tcp_rput: sending MSGMARKNEXT %s",
14990 				    tcp_display(tcp, NULL,
14991 				    DISP_PORT_ONLY));
14992 #endif /* DEBUG */
14993 				mp->b_flag |= MSGMARKNEXT;
14994 				flags &= ~TH_MARKNEXT_NEEDED;
14995 			}
14996 
14997 			/* Does this need SSL processing first? */
14998 			if ((tcp->tcp_kssl_ctx != NULL) &&
14999 			    (DB_TYPE(mp) == M_DATA)) {
15000 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15001 				    mblk_t *, mp);
15002 				tcp_kssl_input(tcp, mp);
15003 			} else {
15004 				putnext(tcp->tcp_rq, mp);
15005 				if (!canputnext(tcp->tcp_rq))
15006 					tcp->tcp_rwnd -= seg_len;
15007 			}
15008 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15009 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15010 			if (tcp->tcp_rcv_list != NULL) {
15011 				/*
15012 				 * Enqueue the new segment first and then
15013 				 * call tcp_rcv_drain() to send all data
15014 				 * up.  The other way to do this is to
15015 				 * send all queued data up and then call
15016 				 * putnext() to send the new segment up.
15017 				 * This way can remove the else part later
15018 				 * on.
15019 				 *
15020 				 * We don't this to avoid one more call to
15021 				 * canputnext() as tcp_rcv_drain() needs to
15022 				 * call canputnext().
15023 				 */
15024 				tcp_rcv_enqueue(tcp, mp, seg_len);
15025 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15026 			} else {
15027 				/* Does this need SSL processing first? */
15028 				if ((tcp->tcp_kssl_ctx != NULL) &&
15029 				    (DB_TYPE(mp) == M_DATA)) {
15030 					DTRACE_PROBE1(
15031 					    kssl_mblk__ksslinput_data2,
15032 					    mblk_t *, mp);
15033 					tcp_kssl_input(tcp, mp);
15034 				} else {
15035 					putnext(tcp->tcp_rq, mp);
15036 					if (!canputnext(tcp->tcp_rq))
15037 						tcp->tcp_rwnd -= seg_len;
15038 				}
15039 			}
15040 		} else {
15041 			/*
15042 			 * Enqueue all packets when processing an mblk
15043 			 * from the co queue and also enqueue normal packets.
15044 			 * For packets which belong to SSL stream do SSL
15045 			 * processing first.
15046 			 */
15047 			if ((tcp->tcp_kssl_ctx != NULL) &&
15048 			    (DB_TYPE(mp) == M_DATA)) {
15049 				DTRACE_PROBE1(kssl_mblk__tcpksslin3,
15050 				    mblk_t *, mp);
15051 				tcp_kssl_input(tcp, mp);
15052 			} else {
15053 				tcp_rcv_enqueue(tcp, mp, seg_len);
15054 			}
15055 		}
15056 		/*
15057 		 * Make sure the timer is running if we have data waiting
15058 		 * for a push bit. This provides resiliency against
15059 		 * implementations that do not correctly generate push bits.
15060 		 */
15061 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
15062 			/*
15063 			 * The connection may be closed at this point, so don't
15064 			 * do anything for a detached tcp.
15065 			 */
15066 			if (!TCP_IS_DETACHED(tcp))
15067 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15068 				    tcp_push_timer,
15069 				    MSEC_TO_TICK(
15070 				    tcps->tcps_push_timer_interval));
15071 		}
15072 	}
15073 xmit_check:
15074 	/* Is there anything left to do? */
15075 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15076 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15077 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15078 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15079 		goto done;
15080 
15081 	/* Any transmit work to do and a non-zero window? */
15082 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15083 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15084 		if (flags & TH_REXMIT_NEEDED) {
15085 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15086 
15087 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15088 			if (snd_size > mss)
15089 				snd_size = mss;
15090 			if (snd_size > tcp->tcp_swnd)
15091 				snd_size = tcp->tcp_swnd;
15092 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15093 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15094 			    B_TRUE);
15095 
15096 			if (mp1 != NULL) {
15097 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15098 				tcp->tcp_csuna = tcp->tcp_snxt;
15099 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15100 				UPDATE_MIB(&tcps->tcps_mib,
15101 				    tcpRetransBytes, snd_size);
15102 				TCP_RECORD_TRACE(tcp, mp1,
15103 				    TCP_TRACE_SEND_PKT);
15104 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15105 			}
15106 		}
15107 		if (flags & TH_NEED_SACK_REXMIT) {
15108 			tcp_sack_rxmit(tcp, &flags);
15109 		}
15110 		/*
15111 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15112 		 * out new segment.  Note that tcp_rexmit should not be
15113 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15114 		 */
15115 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15116 			if (!tcp->tcp_rexmit) {
15117 				tcp_wput_data(tcp, NULL, B_FALSE);
15118 			} else {
15119 				tcp_ss_rexmit(tcp);
15120 			}
15121 		}
15122 		/*
15123 		 * Adjust tcp_cwnd back to normal value after sending
15124 		 * new data segments.
15125 		 */
15126 		if (flags & TH_LIMIT_XMIT) {
15127 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15128 			/*
15129 			 * This will restart the timer.  Restarting the
15130 			 * timer is used to avoid a timeout before the
15131 			 * limited transmitted segment's ACK gets back.
15132 			 */
15133 			if (tcp->tcp_xmit_head != NULL)
15134 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15135 		}
15136 
15137 		/* Anything more to do? */
15138 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15139 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15140 			goto done;
15141 	}
15142 ack_check:
15143 	if (flags & TH_SEND_URP_MARK) {
15144 		ASSERT(tcp->tcp_urp_mark_mp);
15145 		/*
15146 		 * Send up any queued data and then send the mark message
15147 		 */
15148 		if (tcp->tcp_rcv_list != NULL) {
15149 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15150 		}
15151 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15152 
15153 		mp1 = tcp->tcp_urp_mark_mp;
15154 		tcp->tcp_urp_mark_mp = NULL;
15155 #ifdef DEBUG
15156 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15157 		    "tcp_rput: sending zero-length %s %s",
15158 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15159 		    "MSGNOTMARKNEXT"),
15160 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15161 #endif /* DEBUG */
15162 		putnext(tcp->tcp_rq, mp1);
15163 		flags &= ~TH_SEND_URP_MARK;
15164 	}
15165 	if (flags & TH_ACK_NEEDED) {
15166 		/*
15167 		 * Time to send an ack for some reason.
15168 		 */
15169 		mp1 = tcp_ack_mp(tcp);
15170 
15171 		if (mp1 != NULL) {
15172 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15173 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15174 			BUMP_LOCAL(tcp->tcp_obsegs);
15175 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15176 		}
15177 		if (tcp->tcp_ack_tid != 0) {
15178 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15179 			tcp->tcp_ack_tid = 0;
15180 		}
15181 	}
15182 	if (flags & TH_ACK_TIMER_NEEDED) {
15183 		/*
15184 		 * Arrange for deferred ACK or push wait timeout.
15185 		 * Start timer if it is not already running.
15186 		 */
15187 		if (tcp->tcp_ack_tid == 0) {
15188 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15189 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15190 			    (clock_t)tcps->tcps_local_dack_interval :
15191 			    (clock_t)tcps->tcps_deferred_ack_interval));
15192 		}
15193 	}
15194 	if (flags & TH_ORDREL_NEEDED) {
15195 		/*
15196 		 * Send up the ordrel_ind unless we are an eager guy.
15197 		 * In the eager case tcp_rsrv will do this when run
15198 		 * after tcp_accept is done.
15199 		 */
15200 		ASSERT(tcp->tcp_listener == NULL);
15201 		if (tcp->tcp_rcv_list != NULL) {
15202 			/*
15203 			 * Push any mblk(s) enqueued from co processing.
15204 			 */
15205 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15206 		}
15207 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15208 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15209 			tcp->tcp_ordrel_done = B_TRUE;
15210 			putnext(tcp->tcp_rq, mp1);
15211 			if (tcp->tcp_deferred_clean_death) {
15212 				/*
15213 				 * tcp_clean_death was deferred
15214 				 * for T_ORDREL_IND - do it now
15215 				 */
15216 				(void) tcp_clean_death(tcp,
15217 				    tcp->tcp_client_errno, 20);
15218 				tcp->tcp_deferred_clean_death =	B_FALSE;
15219 			}
15220 		} else {
15221 			/*
15222 			 * Run the orderly release in the
15223 			 * service routine.
15224 			 */
15225 			qenable(tcp->tcp_rq);
15226 			/*
15227 			 * Caveat(XXX): The machine may be so
15228 			 * overloaded that tcp_rsrv() is not scheduled
15229 			 * until after the endpoint has transitioned
15230 			 * to TCPS_TIME_WAIT
15231 			 * and tcp_time_wait_interval expires. Then
15232 			 * tcp_timer() will blow away state in tcp_t
15233 			 * and T_ORDREL_IND will never be delivered
15234 			 * upstream. Unlikely but potentially
15235 			 * a problem.
15236 			 */
15237 		}
15238 	}
15239 done:
15240 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15241 }
15242 
15243 /*
15244  * This function does PAWS protection check. Returns B_TRUE if the
15245  * segment passes the PAWS test, else returns B_FALSE.
15246  */
15247 boolean_t
15248 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15249 {
15250 	uint8_t	flags;
15251 	int	options;
15252 	uint8_t *up;
15253 
15254 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15255 	/*
15256 	 * If timestamp option is aligned nicely, get values inline,
15257 	 * otherwise call general routine to parse.  Only do that
15258 	 * if timestamp is the only option.
15259 	 */
15260 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15261 	    TCPOPT_REAL_TS_LEN &&
15262 	    OK_32PTR((up = ((uint8_t *)tcph) +
15263 	    TCP_MIN_HEADER_LENGTH)) &&
15264 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15265 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15266 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15267 
15268 		options = TCP_OPT_TSTAMP_PRESENT;
15269 	} else {
15270 		if (tcp->tcp_snd_sack_ok) {
15271 			tcpoptp->tcp = tcp;
15272 		} else {
15273 			tcpoptp->tcp = NULL;
15274 		}
15275 		options = tcp_parse_options(tcph, tcpoptp);
15276 	}
15277 
15278 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15279 		/*
15280 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15281 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15282 		 */
15283 		if ((flags & TH_RST) == 0 &&
15284 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15285 		    tcp->tcp_ts_recent)) {
15286 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15287 			    PAWS_TIMEOUT)) {
15288 				/* This segment is not acceptable. */
15289 				return (B_FALSE);
15290 			} else {
15291 				/*
15292 				 * Connection has been idle for
15293 				 * too long.  Reset the timestamp
15294 				 * and assume the segment is valid.
15295 				 */
15296 				tcp->tcp_ts_recent =
15297 				    tcpoptp->tcp_opt_ts_val;
15298 			}
15299 		}
15300 	} else {
15301 		/*
15302 		 * If we don't get a timestamp on every packet, we
15303 		 * figure we can't really trust 'em, so we stop sending
15304 		 * and parsing them.
15305 		 */
15306 		tcp->tcp_snd_ts_ok = B_FALSE;
15307 
15308 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15309 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15310 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15311 		/*
15312 		 * Adjust the tcp_mss accordingly. We also need to
15313 		 * adjust tcp_cwnd here in accordance with the new mss.
15314 		 * But we avoid doing a slow start here so as to not
15315 		 * to lose on the transfer rate built up so far.
15316 		 */
15317 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15318 		if (tcp->tcp_snd_sack_ok) {
15319 			ASSERT(tcp->tcp_sack_info != NULL);
15320 			tcp->tcp_max_sack_blk = 4;
15321 		}
15322 	}
15323 	return (B_TRUE);
15324 }
15325 
15326 /*
15327  * Attach ancillary data to a received TCP segments for the
15328  * ancillary pieces requested by the application that are
15329  * different than they were in the previous data segment.
15330  *
15331  * Save the "current" values once memory allocation is ok so that
15332  * when memory allocation fails we can just wait for the next data segment.
15333  */
15334 static mblk_t *
15335 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15336 {
15337 	struct T_optdata_ind *todi;
15338 	int optlen;
15339 	uchar_t *optptr;
15340 	struct T_opthdr *toh;
15341 	uint_t addflag;	/* Which pieces to add */
15342 	mblk_t *mp1;
15343 
15344 	optlen = 0;
15345 	addflag = 0;
15346 	/* If app asked for pktinfo and the index has changed ... */
15347 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15348 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15349 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15350 		optlen += sizeof (struct T_opthdr) +
15351 		    sizeof (struct in6_pktinfo);
15352 		addflag |= TCP_IPV6_RECVPKTINFO;
15353 	}
15354 	/* If app asked for hoplimit and it has changed ... */
15355 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15356 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15357 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15358 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15359 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15360 	}
15361 	/* If app asked for tclass and it has changed ... */
15362 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15363 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15364 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15365 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15366 		addflag |= TCP_IPV6_RECVTCLASS;
15367 	}
15368 	/*
15369 	 * If app asked for hopbyhop headers and it has changed ...
15370 	 * For security labels, note that (1) security labels can't change on
15371 	 * a connected socket at all, (2) we're connected to at most one peer,
15372 	 * (3) if anything changes, then it must be some other extra option.
15373 	 */
15374 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15375 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15376 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15377 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15378 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15379 		    tcp->tcp_label_len;
15380 		addflag |= TCP_IPV6_RECVHOPOPTS;
15381 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15382 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15383 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15384 			return (mp);
15385 	}
15386 	/* If app asked for dst headers before routing headers ... */
15387 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15388 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15389 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15390 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15391 		optlen += sizeof (struct T_opthdr) +
15392 		    ipp->ipp_rtdstoptslen;
15393 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15394 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15395 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15396 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15397 			return (mp);
15398 	}
15399 	/* If app asked for routing headers and it has changed ... */
15400 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15401 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15402 	    (ipp->ipp_fields & IPPF_RTHDR),
15403 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15404 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15405 		addflag |= TCP_IPV6_RECVRTHDR;
15406 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15407 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15408 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15409 			return (mp);
15410 	}
15411 	/* If app asked for dest headers and it has changed ... */
15412 	if ((tcp->tcp_ipv6_recvancillary &
15413 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15414 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15415 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15416 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15417 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15418 		addflag |= TCP_IPV6_RECVDSTOPTS;
15419 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15420 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15421 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15422 			return (mp);
15423 	}
15424 
15425 	if (optlen == 0) {
15426 		/* Nothing to add */
15427 		return (mp);
15428 	}
15429 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15430 	if (mp1 == NULL) {
15431 		/*
15432 		 * Defer sending ancillary data until the next TCP segment
15433 		 * arrives.
15434 		 */
15435 		return (mp);
15436 	}
15437 	mp1->b_cont = mp;
15438 	mp = mp1;
15439 	mp->b_wptr += sizeof (*todi) + optlen;
15440 	mp->b_datap->db_type = M_PROTO;
15441 	todi = (struct T_optdata_ind *)mp->b_rptr;
15442 	todi->PRIM_type = T_OPTDATA_IND;
15443 	todi->DATA_flag = 1;	/* MORE data */
15444 	todi->OPT_length = optlen;
15445 	todi->OPT_offset = sizeof (*todi);
15446 	optptr = (uchar_t *)&todi[1];
15447 	/*
15448 	 * If app asked for pktinfo and the index has changed ...
15449 	 * Note that the local address never changes for the connection.
15450 	 */
15451 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15452 		struct in6_pktinfo *pkti;
15453 
15454 		toh = (struct T_opthdr *)optptr;
15455 		toh->level = IPPROTO_IPV6;
15456 		toh->name = IPV6_PKTINFO;
15457 		toh->len = sizeof (*toh) + sizeof (*pkti);
15458 		toh->status = 0;
15459 		optptr += sizeof (*toh);
15460 		pkti = (struct in6_pktinfo *)optptr;
15461 		if (tcp->tcp_ipversion == IPV6_VERSION)
15462 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15463 		else
15464 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15465 			    &pkti->ipi6_addr);
15466 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15467 		optptr += sizeof (*pkti);
15468 		ASSERT(OK_32PTR(optptr));
15469 		/* Save as "last" value */
15470 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15471 	}
15472 	/* If app asked for hoplimit and it has changed ... */
15473 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15474 		toh = (struct T_opthdr *)optptr;
15475 		toh->level = IPPROTO_IPV6;
15476 		toh->name = IPV6_HOPLIMIT;
15477 		toh->len = sizeof (*toh) + sizeof (uint_t);
15478 		toh->status = 0;
15479 		optptr += sizeof (*toh);
15480 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15481 		optptr += sizeof (uint_t);
15482 		ASSERT(OK_32PTR(optptr));
15483 		/* Save as "last" value */
15484 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15485 	}
15486 	/* If app asked for tclass and it has changed ... */
15487 	if (addflag & TCP_IPV6_RECVTCLASS) {
15488 		toh = (struct T_opthdr *)optptr;
15489 		toh->level = IPPROTO_IPV6;
15490 		toh->name = IPV6_TCLASS;
15491 		toh->len = sizeof (*toh) + sizeof (uint_t);
15492 		toh->status = 0;
15493 		optptr += sizeof (*toh);
15494 		*(uint_t *)optptr = ipp->ipp_tclass;
15495 		optptr += sizeof (uint_t);
15496 		ASSERT(OK_32PTR(optptr));
15497 		/* Save as "last" value */
15498 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15499 	}
15500 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15501 		toh = (struct T_opthdr *)optptr;
15502 		toh->level = IPPROTO_IPV6;
15503 		toh->name = IPV6_HOPOPTS;
15504 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15505 		    tcp->tcp_label_len;
15506 		toh->status = 0;
15507 		optptr += sizeof (*toh);
15508 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15509 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15510 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15511 		ASSERT(OK_32PTR(optptr));
15512 		/* Save as last value */
15513 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15514 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15515 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15516 	}
15517 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15518 		toh = (struct T_opthdr *)optptr;
15519 		toh->level = IPPROTO_IPV6;
15520 		toh->name = IPV6_RTHDRDSTOPTS;
15521 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15522 		toh->status = 0;
15523 		optptr += sizeof (*toh);
15524 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15525 		optptr += ipp->ipp_rtdstoptslen;
15526 		ASSERT(OK_32PTR(optptr));
15527 		/* Save as last value */
15528 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15529 		    &tcp->tcp_rtdstoptslen,
15530 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15531 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15532 	}
15533 	if (addflag & TCP_IPV6_RECVRTHDR) {
15534 		toh = (struct T_opthdr *)optptr;
15535 		toh->level = IPPROTO_IPV6;
15536 		toh->name = IPV6_RTHDR;
15537 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15538 		toh->status = 0;
15539 		optptr += sizeof (*toh);
15540 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15541 		optptr += ipp->ipp_rthdrlen;
15542 		ASSERT(OK_32PTR(optptr));
15543 		/* Save as last value */
15544 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15545 		    (ipp->ipp_fields & IPPF_RTHDR),
15546 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15547 	}
15548 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15549 		toh = (struct T_opthdr *)optptr;
15550 		toh->level = IPPROTO_IPV6;
15551 		toh->name = IPV6_DSTOPTS;
15552 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15553 		toh->status = 0;
15554 		optptr += sizeof (*toh);
15555 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15556 		optptr += ipp->ipp_dstoptslen;
15557 		ASSERT(OK_32PTR(optptr));
15558 		/* Save as last value */
15559 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15560 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15561 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15562 	}
15563 	ASSERT(optptr == mp->b_wptr);
15564 	return (mp);
15565 }
15566 
15567 
15568 /*
15569  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15570  * or a "bad" IRE detected by tcp_adapt_ire.
15571  * We can't tell if the failure was due to the laddr or the faddr
15572  * thus we clear out all addresses and ports.
15573  */
15574 static void
15575 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15576 {
15577 	queue_t	*q = tcp->tcp_rq;
15578 	tcph_t	*tcph;
15579 	struct T_error_ack *tea;
15580 	conn_t	*connp = tcp->tcp_connp;
15581 
15582 
15583 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15584 
15585 	if (mp->b_cont) {
15586 		freemsg(mp->b_cont);
15587 		mp->b_cont = NULL;
15588 	}
15589 	tea = (struct T_error_ack *)mp->b_rptr;
15590 	switch (tea->PRIM_type) {
15591 	case T_BIND_ACK:
15592 		/*
15593 		 * Need to unbind with classifier since we were just told that
15594 		 * our bind succeeded.
15595 		 */
15596 		tcp->tcp_hard_bound = B_FALSE;
15597 		tcp->tcp_hard_binding = B_FALSE;
15598 
15599 		ipcl_hash_remove(connp);
15600 		/* Reuse the mblk if possible */
15601 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15602 		    sizeof (*tea));
15603 		mp->b_rptr = mp->b_datap->db_base;
15604 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15605 		tea = (struct T_error_ack *)mp->b_rptr;
15606 		tea->PRIM_type = T_ERROR_ACK;
15607 		tea->TLI_error = TSYSERR;
15608 		tea->UNIX_error = error;
15609 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15610 			tea->ERROR_prim = T_CONN_REQ;
15611 		} else {
15612 			tea->ERROR_prim = O_T_BIND_REQ;
15613 		}
15614 		break;
15615 
15616 	case T_ERROR_ACK:
15617 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15618 			tea->ERROR_prim = T_CONN_REQ;
15619 		break;
15620 	default:
15621 		panic("tcp_bind_failed: unexpected TPI type");
15622 		/*NOTREACHED*/
15623 	}
15624 
15625 	tcp->tcp_state = TCPS_IDLE;
15626 	if (tcp->tcp_ipversion == IPV4_VERSION)
15627 		tcp->tcp_ipha->ipha_src = 0;
15628 	else
15629 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15630 	/*
15631 	 * Copy of the src addr. in tcp_t is needed since
15632 	 * the lookup funcs. can only look at tcp_t
15633 	 */
15634 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15635 
15636 	tcph = tcp->tcp_tcph;
15637 	tcph->th_lport[0] = 0;
15638 	tcph->th_lport[1] = 0;
15639 	tcp_bind_hash_remove(tcp);
15640 	bzero(&connp->u_port, sizeof (connp->u_port));
15641 	/* blow away saved option results if any */
15642 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15643 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15644 
15645 	conn_delete_ire(tcp->tcp_connp, NULL);
15646 	putnext(q, mp);
15647 }
15648 
15649 /*
15650  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15651  * messages.
15652  */
15653 void
15654 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15655 {
15656 	mblk_t	*mp1;
15657 	uchar_t	*rptr = mp->b_rptr;
15658 	queue_t	*q = tcp->tcp_rq;
15659 	struct T_error_ack *tea;
15660 	uint32_t mss;
15661 	mblk_t *syn_mp;
15662 	mblk_t *mdti;
15663 	mblk_t *lsoi;
15664 	int	retval;
15665 	mblk_t *ire_mp;
15666 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15667 
15668 	switch (mp->b_datap->db_type) {
15669 	case M_PROTO:
15670 	case M_PCPROTO:
15671 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15672 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15673 			break;
15674 		tea = (struct T_error_ack *)rptr;
15675 		switch (tea->PRIM_type) {
15676 		case T_BIND_ACK:
15677 			/*
15678 			 * Adapt Multidata information, if any.  The
15679 			 * following tcp_mdt_update routine will free
15680 			 * the message.
15681 			 */
15682 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15683 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15684 				    b_rptr)->mdt_capab, B_TRUE);
15685 				freemsg(mdti);
15686 			}
15687 
15688 			/*
15689 			 * Check to update LSO information with tcp, and
15690 			 * tcp_lso_update routine will free the message.
15691 			 */
15692 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15693 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15694 				    b_rptr)->lso_capab);
15695 				freemsg(lsoi);
15696 			}
15697 
15698 			/* Get the IRE, if we had requested for it */
15699 			ire_mp = tcp_ire_mp(mp);
15700 
15701 			if (tcp->tcp_hard_binding) {
15702 				tcp->tcp_hard_binding = B_FALSE;
15703 				tcp->tcp_hard_bound = B_TRUE;
15704 				CL_INET_CONNECT(tcp);
15705 			} else {
15706 				if (ire_mp != NULL)
15707 					freeb(ire_mp);
15708 				goto after_syn_sent;
15709 			}
15710 
15711 			retval = tcp_adapt_ire(tcp, ire_mp);
15712 			if (ire_mp != NULL)
15713 				freeb(ire_mp);
15714 			if (retval == 0) {
15715 				tcp_bind_failed(tcp, mp,
15716 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15717 				    ENETUNREACH : EADDRNOTAVAIL));
15718 				return;
15719 			}
15720 			/*
15721 			 * Don't let an endpoint connect to itself.
15722 			 * Also checked in tcp_connect() but that
15723 			 * check can't handle the case when the
15724 			 * local IP address is INADDR_ANY.
15725 			 */
15726 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15727 				if ((tcp->tcp_ipha->ipha_dst ==
15728 				    tcp->tcp_ipha->ipha_src) &&
15729 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15730 				    tcp->tcp_tcph->th_fport))) {
15731 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15732 					return;
15733 				}
15734 			} else {
15735 				if (IN6_ARE_ADDR_EQUAL(
15736 				    &tcp->tcp_ip6h->ip6_dst,
15737 				    &tcp->tcp_ip6h->ip6_src) &&
15738 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15739 				    tcp->tcp_tcph->th_fport))) {
15740 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15741 					return;
15742 				}
15743 			}
15744 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15745 			/*
15746 			 * This should not be possible!  Just for
15747 			 * defensive coding...
15748 			 */
15749 			if (tcp->tcp_state != TCPS_SYN_SENT)
15750 				goto after_syn_sent;
15751 
15752 			if (is_system_labeled() &&
15753 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15754 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15755 				return;
15756 			}
15757 
15758 			ASSERT(q == tcp->tcp_rq);
15759 			/*
15760 			 * tcp_adapt_ire() does not adjust
15761 			 * for TCP/IP header length.
15762 			 */
15763 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15764 
15765 			/*
15766 			 * Just make sure our rwnd is at
15767 			 * least tcp_recv_hiwat_mss * MSS
15768 			 * large, and round up to the nearest
15769 			 * MSS.
15770 			 *
15771 			 * We do the round up here because
15772 			 * we need to get the interface
15773 			 * MTU first before we can do the
15774 			 * round up.
15775 			 */
15776 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15777 			    tcps->tcps_recv_hiwat_minmss * mss);
15778 			q->q_hiwat = tcp->tcp_rwnd;
15779 			tcp_set_ws_value(tcp);
15780 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15781 			    tcp->tcp_tcph->th_win);
15782 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15783 				tcp->tcp_snd_ws_ok = B_TRUE;
15784 
15785 			/*
15786 			 * Set tcp_snd_ts_ok to true
15787 			 * so that tcp_xmit_mp will
15788 			 * include the timestamp
15789 			 * option in the SYN segment.
15790 			 */
15791 			if (tcps->tcps_tstamp_always ||
15792 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15793 				tcp->tcp_snd_ts_ok = B_TRUE;
15794 			}
15795 
15796 			/*
15797 			 * tcp_snd_sack_ok can be set in
15798 			 * tcp_adapt_ire() if the sack metric
15799 			 * is set.  So check it here also.
15800 			 */
15801 			if (tcps->tcps_sack_permitted == 2 ||
15802 			    tcp->tcp_snd_sack_ok) {
15803 				if (tcp->tcp_sack_info == NULL) {
15804 					tcp->tcp_sack_info =
15805 					    kmem_cache_alloc(
15806 					    tcp_sack_info_cache,
15807 					    KM_SLEEP);
15808 				}
15809 				tcp->tcp_snd_sack_ok = B_TRUE;
15810 			}
15811 
15812 			/*
15813 			 * Should we use ECN?  Note that the current
15814 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15815 			 * is 1.  The reason for doing this is that there
15816 			 * are equipments out there that will drop ECN
15817 			 * enabled IP packets.  Setting it to 1 avoids
15818 			 * compatibility problems.
15819 			 */
15820 			if (tcps->tcps_ecn_permitted == 2)
15821 				tcp->tcp_ecn_ok = B_TRUE;
15822 
15823 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15824 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15825 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15826 			if (syn_mp) {
15827 				cred_t *cr;
15828 				pid_t pid;
15829 
15830 				/*
15831 				 * Obtain the credential from the
15832 				 * thread calling connect(); the credential
15833 				 * lives on in the second mblk which
15834 				 * originated from T_CONN_REQ and is echoed
15835 				 * with the T_BIND_ACK from ip.  If none
15836 				 * can be found, default to the creator
15837 				 * of the socket.
15838 				 */
15839 				if (mp->b_cont == NULL ||
15840 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15841 					cr = tcp->tcp_cred;
15842 					pid = tcp->tcp_cpid;
15843 				} else {
15844 					pid = DB_CPID(mp->b_cont);
15845 				}
15846 
15847 				TCP_RECORD_TRACE(tcp, syn_mp,
15848 				    TCP_TRACE_SEND_PKT);
15849 				mblk_setcred(syn_mp, cr);
15850 				DB_CPID(syn_mp) = pid;
15851 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15852 			}
15853 		after_syn_sent:
15854 			/*
15855 			 * A trailer mblk indicates a waiting client upstream.
15856 			 * We complete here the processing begun in
15857 			 * either tcp_bind() or tcp_connect() by passing
15858 			 * upstream the reply message they supplied.
15859 			 */
15860 			mp1 = mp;
15861 			mp = mp->b_cont;
15862 			freeb(mp1);
15863 			if (mp)
15864 				break;
15865 			return;
15866 		case T_ERROR_ACK:
15867 			if (tcp->tcp_debug) {
15868 				(void) strlog(TCP_MOD_ID, 0, 1,
15869 				    SL_TRACE|SL_ERROR,
15870 				    "tcp_rput_other: case T_ERROR_ACK, "
15871 				    "ERROR_prim == %d",
15872 				    tea->ERROR_prim);
15873 			}
15874 			switch (tea->ERROR_prim) {
15875 			case O_T_BIND_REQ:
15876 			case T_BIND_REQ:
15877 				tcp_bind_failed(tcp, mp,
15878 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15879 				    ENETUNREACH : EADDRNOTAVAIL));
15880 				return;
15881 			case T_UNBIND_REQ:
15882 				tcp->tcp_hard_binding = B_FALSE;
15883 				tcp->tcp_hard_bound = B_FALSE;
15884 				if (mp->b_cont) {
15885 					freemsg(mp->b_cont);
15886 					mp->b_cont = NULL;
15887 				}
15888 				if (tcp->tcp_unbind_pending)
15889 					tcp->tcp_unbind_pending = 0;
15890 				else {
15891 					/* From tcp_ip_unbind() - free */
15892 					freemsg(mp);
15893 					return;
15894 				}
15895 				break;
15896 			case T_SVR4_OPTMGMT_REQ:
15897 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15898 					/* T_OPTMGMT_REQ generated by TCP */
15899 					printf("T_SVR4_OPTMGMT_REQ failed "
15900 					    "%d/%d - dropped (cnt %d)\n",
15901 					    tea->TLI_error, tea->UNIX_error,
15902 					    tcp->tcp_drop_opt_ack_cnt);
15903 					freemsg(mp);
15904 					tcp->tcp_drop_opt_ack_cnt--;
15905 					return;
15906 				}
15907 				break;
15908 			}
15909 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15910 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15911 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15912 				    "- dropped (cnt %d)\n",
15913 				    tea->TLI_error, tea->UNIX_error,
15914 				    tcp->tcp_drop_opt_ack_cnt);
15915 				freemsg(mp);
15916 				tcp->tcp_drop_opt_ack_cnt--;
15917 				return;
15918 			}
15919 			break;
15920 		case T_OPTMGMT_ACK:
15921 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15922 				/* T_OPTMGMT_REQ generated by TCP */
15923 				freemsg(mp);
15924 				tcp->tcp_drop_opt_ack_cnt--;
15925 				return;
15926 			}
15927 			break;
15928 		default:
15929 			break;
15930 		}
15931 		break;
15932 	case M_FLUSH:
15933 		if (*rptr & FLUSHR)
15934 			flushq(q, FLUSHDATA);
15935 		break;
15936 	default:
15937 		/* M_CTL will be directly sent to tcp_icmp_error() */
15938 		ASSERT(DB_TYPE(mp) != M_CTL);
15939 		break;
15940 	}
15941 	/*
15942 	 * Make sure we set this bit before sending the ACK for
15943 	 * bind. Otherwise accept could possibly run and free
15944 	 * this tcp struct.
15945 	 */
15946 	putnext(q, mp);
15947 }
15948 
15949 /*
15950  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15951  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15952  * tcp_rsrv() try again.
15953  */
15954 static void
15955 tcp_ordrel_kick(void *arg)
15956 {
15957 	conn_t 	*connp = (conn_t *)arg;
15958 	tcp_t	*tcp = connp->conn_tcp;
15959 
15960 	tcp->tcp_ordrelid = 0;
15961 	tcp->tcp_timeout = B_FALSE;
15962 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15963 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15964 		qenable(tcp->tcp_rq);
15965 	}
15966 }
15967 
15968 /* ARGSUSED */
15969 static void
15970 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15971 {
15972 	conn_t	*connp = (conn_t *)arg;
15973 	tcp_t	*tcp = connp->conn_tcp;
15974 	queue_t	*q = tcp->tcp_rq;
15975 	uint_t	thwin;
15976 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15977 
15978 	freeb(mp);
15979 
15980 	TCP_STAT(tcps, tcp_rsrv_calls);
15981 
15982 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15983 		return;
15984 	}
15985 
15986 	if (tcp->tcp_fused) {
15987 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15988 
15989 		ASSERT(tcp->tcp_fused);
15990 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15991 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15992 		ASSERT(!TCP_IS_DETACHED(tcp));
15993 		ASSERT(tcp->tcp_connp->conn_sqp ==
15994 		    peer_tcp->tcp_connp->conn_sqp);
15995 
15996 		/*
15997 		 * Normally we would not get backenabled in synchronous
15998 		 * streams mode, but in case this happens, we need to plug
15999 		 * synchronous streams during our drain to prevent a race
16000 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16001 		 */
16002 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16003 		if (tcp->tcp_rcv_list != NULL)
16004 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16005 
16006 		if (peer_tcp > tcp) {
16007 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16008 			mutex_enter(&tcp->tcp_non_sq_lock);
16009 		} else {
16010 			mutex_enter(&tcp->tcp_non_sq_lock);
16011 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16012 		}
16013 
16014 		if (peer_tcp->tcp_flow_stopped &&
16015 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16016 		    peer_tcp->tcp_xmit_lowater)) {
16017 			tcp_clrqfull(peer_tcp);
16018 		}
16019 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16020 		mutex_exit(&tcp->tcp_non_sq_lock);
16021 
16022 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16023 		TCP_STAT(tcps, tcp_fusion_backenabled);
16024 		return;
16025 	}
16026 
16027 	if (canputnext(q)) {
16028 		tcp->tcp_rwnd = q->q_hiwat;
16029 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16030 		    << tcp->tcp_rcv_ws;
16031 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16032 		/*
16033 		 * Send back a window update immediately if TCP is above
16034 		 * ESTABLISHED state and the increase of the rcv window
16035 		 * that the other side knows is at least 1 MSS after flow
16036 		 * control is lifted.
16037 		 */
16038 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16039 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16040 			tcp_xmit_ctl(NULL, tcp,
16041 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16042 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16043 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16044 		}
16045 	}
16046 	/* Handle a failure to allocate a T_ORDREL_IND here */
16047 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16048 		ASSERT(tcp->tcp_listener == NULL);
16049 		if (tcp->tcp_rcv_list != NULL) {
16050 			(void) tcp_rcv_drain(q, tcp);
16051 		}
16052 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
16053 		mp = mi_tpi_ordrel_ind();
16054 		if (mp) {
16055 			tcp->tcp_ordrel_done = B_TRUE;
16056 			putnext(q, mp);
16057 			if (tcp->tcp_deferred_clean_death) {
16058 				/*
16059 				 * tcp_clean_death was deferred for
16060 				 * T_ORDREL_IND - do it now
16061 				 */
16062 				tcp->tcp_deferred_clean_death = B_FALSE;
16063 				(void) tcp_clean_death(tcp,
16064 				    tcp->tcp_client_errno, 22);
16065 			}
16066 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16067 			/*
16068 			 * If there isn't already a timer running
16069 			 * start one.  Use a 4 second
16070 			 * timer as a fallback since it can't fail.
16071 			 */
16072 			tcp->tcp_timeout = B_TRUE;
16073 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16074 			    MSEC_TO_TICK(4000));
16075 		}
16076 	}
16077 }
16078 
16079 /*
16080  * The read side service routine is called mostly when we get back-enabled as a
16081  * result of flow control relief.  Since we don't actually queue anything in
16082  * TCP, we have no data to send out of here.  What we do is clear the receive
16083  * window, and send out a window update.
16084  * This routine is also called to drive an orderly release message upstream
16085  * if the attempt in tcp_rput failed.
16086  */
16087 static void
16088 tcp_rsrv(queue_t *q)
16089 {
16090 	conn_t *connp = Q_TO_CONN(q);
16091 	tcp_t	*tcp = connp->conn_tcp;
16092 	mblk_t	*mp;
16093 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16094 
16095 	/* No code does a putq on the read side */
16096 	ASSERT(q->q_first == NULL);
16097 
16098 	/* Nothing to do for the default queue */
16099 	if (q == tcps->tcps_g_q) {
16100 		return;
16101 	}
16102 
16103 	mp = allocb(0, BPRI_HI);
16104 	if (mp == NULL) {
16105 		/*
16106 		 * We are under memory pressure. Return for now and we
16107 		 * we will be called again later.
16108 		 */
16109 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16110 			/*
16111 			 * If there isn't already a timer running
16112 			 * start one.  Use a 4 second
16113 			 * timer as a fallback since it can't fail.
16114 			 */
16115 			tcp->tcp_timeout = B_TRUE;
16116 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16117 			    MSEC_TO_TICK(4000));
16118 		}
16119 		return;
16120 	}
16121 	CONN_INC_REF(connp);
16122 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16123 	    SQTAG_TCP_RSRV);
16124 }
16125 
16126 /*
16127  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16128  * We do not allow the receive window to shrink.  After setting rwnd,
16129  * set the flow control hiwat of the stream.
16130  *
16131  * This function is called in 2 cases:
16132  *
16133  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16134  *    connection (passive open) and in tcp_rput_data() for active connect.
16135  *    This is called after tcp_mss_set() when the desired MSS value is known.
16136  *    This makes sure that our window size is a mutiple of the other side's
16137  *    MSS.
16138  * 2) Handling SO_RCVBUF option.
16139  *
16140  * It is ASSUMED that the requested size is a multiple of the current MSS.
16141  *
16142  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16143  * user requests so.
16144  */
16145 static int
16146 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16147 {
16148 	uint32_t	mss = tcp->tcp_mss;
16149 	uint32_t	old_max_rwnd;
16150 	uint32_t	max_transmittable_rwnd;
16151 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16152 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16153 
16154 	if (tcp->tcp_fused) {
16155 		size_t sth_hiwat;
16156 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16157 
16158 		ASSERT(peer_tcp != NULL);
16159 		/*
16160 		 * Record the stream head's high water mark for
16161 		 * this endpoint; this is used for flow-control
16162 		 * purposes in tcp_fuse_output().
16163 		 */
16164 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16165 		if (!tcp_detached)
16166 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16167 
16168 		/*
16169 		 * In the fusion case, the maxpsz stream head value of
16170 		 * our peer is set according to its send buffer size
16171 		 * and our receive buffer size; since the latter may
16172 		 * have changed we need to update the peer's maxpsz.
16173 		 */
16174 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16175 		return (rwnd);
16176 	}
16177 
16178 	if (tcp_detached)
16179 		old_max_rwnd = tcp->tcp_rwnd;
16180 	else
16181 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16182 
16183 	/*
16184 	 * Insist on a receive window that is at least
16185 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16186 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16187 	 * and delayed acknowledgement.
16188 	 */
16189 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16190 
16191 	/*
16192 	 * If window size info has already been exchanged, TCP should not
16193 	 * shrink the window.  Shrinking window is doable if done carefully.
16194 	 * We may add that support later.  But so far there is not a real
16195 	 * need to do that.
16196 	 */
16197 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16198 		/* MSS may have changed, do a round up again. */
16199 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16200 	}
16201 
16202 	/*
16203 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16204 	 * can be applied even before the window scale option is decided.
16205 	 */
16206 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16207 	if (rwnd > max_transmittable_rwnd) {
16208 		rwnd = max_transmittable_rwnd -
16209 		    (max_transmittable_rwnd % mss);
16210 		if (rwnd < mss)
16211 			rwnd = max_transmittable_rwnd;
16212 		/*
16213 		 * If we're over the limit we may have to back down tcp_rwnd.
16214 		 * The increment below won't work for us. So we set all three
16215 		 * here and the increment below will have no effect.
16216 		 */
16217 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16218 	}
16219 	if (tcp->tcp_localnet) {
16220 		tcp->tcp_rack_abs_max =
16221 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16222 	} else {
16223 		/*
16224 		 * For a remote host on a different subnet (through a router),
16225 		 * we ack every other packet to be conforming to RFC1122.
16226 		 * tcp_deferred_acks_max is default to 2.
16227 		 */
16228 		tcp->tcp_rack_abs_max =
16229 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16230 	}
16231 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16232 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16233 	else
16234 		tcp->tcp_rack_cur_max = 0;
16235 	/*
16236 	 * Increment the current rwnd by the amount the maximum grew (we
16237 	 * can not overwrite it since we might be in the middle of a
16238 	 * connection.)
16239 	 */
16240 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16241 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16242 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16243 		tcp->tcp_cwnd_max = rwnd;
16244 
16245 	if (tcp_detached)
16246 		return (rwnd);
16247 	/*
16248 	 * We set the maximum receive window into rq->q_hiwat.
16249 	 * This is not actually used for flow control.
16250 	 */
16251 	tcp->tcp_rq->q_hiwat = rwnd;
16252 	/*
16253 	 * Set the Stream head high water mark. This doesn't have to be
16254 	 * here, since we are simply using default values, but we would
16255 	 * prefer to choose these values algorithmically, with a likely
16256 	 * relationship to rwnd.
16257 	 */
16258 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16259 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16260 	return (rwnd);
16261 }
16262 
16263 /*
16264  * Return SNMP stuff in buffer in mpdata.
16265  */
16266 mblk_t *
16267 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16268 {
16269 	mblk_t			*mpdata;
16270 	mblk_t			*mp_conn_ctl = NULL;
16271 	mblk_t			*mp_conn_tail;
16272 	mblk_t			*mp_attr_ctl = NULL;
16273 	mblk_t			*mp_attr_tail;
16274 	mblk_t			*mp6_conn_ctl = NULL;
16275 	mblk_t			*mp6_conn_tail;
16276 	mblk_t			*mp6_attr_ctl = NULL;
16277 	mblk_t			*mp6_attr_tail;
16278 	struct opthdr		*optp;
16279 	mib2_tcpConnEntry_t	tce;
16280 	mib2_tcp6ConnEntry_t	tce6;
16281 	mib2_transportMLPEntry_t mlp;
16282 	connf_t			*connfp;
16283 	int			i;
16284 	boolean_t 		ispriv;
16285 	zoneid_t 		zoneid;
16286 	int			v4_conn_idx;
16287 	int			v6_conn_idx;
16288 	conn_t			*connp = Q_TO_CONN(q);
16289 	tcp_stack_t		*tcps;
16290 	ip_stack_t		*ipst;
16291 	mblk_t			*mp2ctl;
16292 
16293 	/*
16294 	 * make a copy of the original message
16295 	 */
16296 	mp2ctl = copymsg(mpctl);
16297 
16298 	if (mpctl == NULL ||
16299 	    (mpdata = mpctl->b_cont) == NULL ||
16300 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16301 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16302 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16303 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16304 		freemsg(mp_conn_ctl);
16305 		freemsg(mp_attr_ctl);
16306 		freemsg(mp6_conn_ctl);
16307 		freemsg(mp6_attr_ctl);
16308 		freemsg(mpctl);
16309 		freemsg(mp2ctl);
16310 		return (NULL);
16311 	}
16312 
16313 	ipst = connp->conn_netstack->netstack_ip;
16314 	tcps = connp->conn_netstack->netstack_tcp;
16315 
16316 	/* build table of connections -- need count in fixed part */
16317 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16318 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16319 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16320 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16321 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16322 
16323 	ispriv =
16324 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16325 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16326 
16327 	v4_conn_idx = v6_conn_idx = 0;
16328 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16329 
16330 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16331 		ipst = tcps->tcps_netstack->netstack_ip;
16332 
16333 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16334 
16335 		connp = NULL;
16336 
16337 		while ((connp =
16338 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16339 			tcp_t *tcp;
16340 			boolean_t needattr;
16341 
16342 			if (connp->conn_zoneid != zoneid)
16343 				continue;	/* not in this zone */
16344 
16345 			tcp = connp->conn_tcp;
16346 			UPDATE_MIB(&tcps->tcps_mib,
16347 			    tcpHCInSegs, tcp->tcp_ibsegs);
16348 			tcp->tcp_ibsegs = 0;
16349 			UPDATE_MIB(&tcps->tcps_mib,
16350 			    tcpHCOutSegs, tcp->tcp_obsegs);
16351 			tcp->tcp_obsegs = 0;
16352 
16353 			tce6.tcp6ConnState = tce.tcpConnState =
16354 			    tcp_snmp_state(tcp);
16355 			if (tce.tcpConnState == MIB2_TCP_established ||
16356 			    tce.tcpConnState == MIB2_TCP_closeWait)
16357 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16358 
16359 			needattr = B_FALSE;
16360 			bzero(&mlp, sizeof (mlp));
16361 			if (connp->conn_mlp_type != mlptSingle) {
16362 				if (connp->conn_mlp_type == mlptShared ||
16363 				    connp->conn_mlp_type == mlptBoth)
16364 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16365 				if (connp->conn_mlp_type == mlptPrivate ||
16366 				    connp->conn_mlp_type == mlptBoth)
16367 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16368 				needattr = B_TRUE;
16369 			}
16370 			if (connp->conn_peercred != NULL) {
16371 				ts_label_t *tsl;
16372 
16373 				tsl = crgetlabel(connp->conn_peercred);
16374 				mlp.tme_doi = label2doi(tsl);
16375 				mlp.tme_label = *label2bslabel(tsl);
16376 				needattr = B_TRUE;
16377 			}
16378 
16379 			/* Create a message to report on IPv6 entries */
16380 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16381 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16382 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16383 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16384 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16385 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16386 			/* Don't want just anybody seeing these... */
16387 			if (ispriv) {
16388 				tce6.tcp6ConnEntryInfo.ce_snxt =
16389 				    tcp->tcp_snxt;
16390 				tce6.tcp6ConnEntryInfo.ce_suna =
16391 				    tcp->tcp_suna;
16392 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16393 				    tcp->tcp_rnxt;
16394 				tce6.tcp6ConnEntryInfo.ce_rack =
16395 				    tcp->tcp_rack;
16396 			} else {
16397 				/*
16398 				 * Netstat, unfortunately, uses this to
16399 				 * get send/receive queue sizes.  How to fix?
16400 				 * Why not compute the difference only?
16401 				 */
16402 				tce6.tcp6ConnEntryInfo.ce_snxt =
16403 				    tcp->tcp_snxt - tcp->tcp_suna;
16404 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16405 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16406 				    tcp->tcp_rnxt - tcp->tcp_rack;
16407 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16408 			}
16409 
16410 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16411 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16412 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16413 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16414 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16415 
16416 			tce6.tcp6ConnCreationProcess =
16417 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16418 			    tcp->tcp_cpid;
16419 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16420 
16421 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16422 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16423 
16424 			mlp.tme_connidx = v6_conn_idx++;
16425 			if (needattr)
16426 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16427 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16428 			}
16429 			/*
16430 			 * Create an IPv4 table entry for IPv4 entries and also
16431 			 * for IPv6 entries which are bound to in6addr_any
16432 			 * but don't have IPV6_V6ONLY set.
16433 			 * (i.e. anything an IPv4 peer could connect to)
16434 			 */
16435 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16436 			    (tcp->tcp_state <= TCPS_LISTEN &&
16437 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16438 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16439 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16440 					tce.tcpConnRemAddress = INADDR_ANY;
16441 					tce.tcpConnLocalAddress = INADDR_ANY;
16442 				} else {
16443 					tce.tcpConnRemAddress =
16444 					    tcp->tcp_remote;
16445 					tce.tcpConnLocalAddress =
16446 					    tcp->tcp_ip_src;
16447 				}
16448 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16449 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16450 				/* Don't want just anybody seeing these... */
16451 				if (ispriv) {
16452 					tce.tcpConnEntryInfo.ce_snxt =
16453 					    tcp->tcp_snxt;
16454 					tce.tcpConnEntryInfo.ce_suna =
16455 					    tcp->tcp_suna;
16456 					tce.tcpConnEntryInfo.ce_rnxt =
16457 					    tcp->tcp_rnxt;
16458 					tce.tcpConnEntryInfo.ce_rack =
16459 					    tcp->tcp_rack;
16460 				} else {
16461 					/*
16462 					 * Netstat, unfortunately, uses this to
16463 					 * get send/receive queue sizes.  How
16464 					 * to fix?
16465 					 * Why not compute the difference only?
16466 					 */
16467 					tce.tcpConnEntryInfo.ce_snxt =
16468 					    tcp->tcp_snxt - tcp->tcp_suna;
16469 					tce.tcpConnEntryInfo.ce_suna = 0;
16470 					tce.tcpConnEntryInfo.ce_rnxt =
16471 					    tcp->tcp_rnxt - tcp->tcp_rack;
16472 					tce.tcpConnEntryInfo.ce_rack = 0;
16473 				}
16474 
16475 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16476 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16477 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16478 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16479 				tce.tcpConnEntryInfo.ce_state =
16480 				    tcp->tcp_state;
16481 
16482 				tce.tcpConnCreationProcess =
16483 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16484 				    tcp->tcp_cpid;
16485 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16486 
16487 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16488 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16489 
16490 				mlp.tme_connidx = v4_conn_idx++;
16491 				if (needattr)
16492 					(void) snmp_append_data2(
16493 					    mp_attr_ctl->b_cont,
16494 					    &mp_attr_tail, (char *)&mlp,
16495 					    sizeof (mlp));
16496 			}
16497 		}
16498 	}
16499 
16500 	/* fixed length structure for IPv4 and IPv6 counters */
16501 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16502 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16503 	    sizeof (mib2_tcp6ConnEntry_t));
16504 	/* synchronize 32- and 64-bit counters */
16505 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16506 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16507 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16508 	optp->level = MIB2_TCP;
16509 	optp->name = 0;
16510 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16511 	    sizeof (tcps->tcps_mib));
16512 	optp->len = msgdsize(mpdata);
16513 	qreply(q, mpctl);
16514 
16515 	/* table of connections... */
16516 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16517 	    sizeof (struct T_optmgmt_ack)];
16518 	optp->level = MIB2_TCP;
16519 	optp->name = MIB2_TCP_CONN;
16520 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16521 	qreply(q, mp_conn_ctl);
16522 
16523 	/* table of MLP attributes... */
16524 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16525 	    sizeof (struct T_optmgmt_ack)];
16526 	optp->level = MIB2_TCP;
16527 	optp->name = EXPER_XPORT_MLP;
16528 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16529 	if (optp->len == 0)
16530 		freemsg(mp_attr_ctl);
16531 	else
16532 		qreply(q, mp_attr_ctl);
16533 
16534 	/* table of IPv6 connections... */
16535 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16536 	    sizeof (struct T_optmgmt_ack)];
16537 	optp->level = MIB2_TCP6;
16538 	optp->name = MIB2_TCP6_CONN;
16539 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16540 	qreply(q, mp6_conn_ctl);
16541 
16542 	/* table of IPv6 MLP attributes... */
16543 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16544 	    sizeof (struct T_optmgmt_ack)];
16545 	optp->level = MIB2_TCP6;
16546 	optp->name = EXPER_XPORT_MLP;
16547 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16548 	if (optp->len == 0)
16549 		freemsg(mp6_attr_ctl);
16550 	else
16551 		qreply(q, mp6_attr_ctl);
16552 	return (mp2ctl);
16553 }
16554 
16555 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16556 /* ARGSUSED */
16557 int
16558 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16559 {
16560 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16561 
16562 	switch (level) {
16563 	case MIB2_TCP:
16564 		switch (name) {
16565 		case 13:
16566 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16567 				return (0);
16568 			/* TODO: delete entry defined by tce */
16569 			return (1);
16570 		default:
16571 			return (0);
16572 		}
16573 	default:
16574 		return (1);
16575 	}
16576 }
16577 
16578 /* Translate TCP state to MIB2 TCP state. */
16579 static int
16580 tcp_snmp_state(tcp_t *tcp)
16581 {
16582 	if (tcp == NULL)
16583 		return (0);
16584 
16585 	switch (tcp->tcp_state) {
16586 	case TCPS_CLOSED:
16587 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16588 	case TCPS_BOUND:
16589 		return (MIB2_TCP_closed);
16590 	case TCPS_LISTEN:
16591 		return (MIB2_TCP_listen);
16592 	case TCPS_SYN_SENT:
16593 		return (MIB2_TCP_synSent);
16594 	case TCPS_SYN_RCVD:
16595 		return (MIB2_TCP_synReceived);
16596 	case TCPS_ESTABLISHED:
16597 		return (MIB2_TCP_established);
16598 	case TCPS_CLOSE_WAIT:
16599 		return (MIB2_TCP_closeWait);
16600 	case TCPS_FIN_WAIT_1:
16601 		return (MIB2_TCP_finWait1);
16602 	case TCPS_CLOSING:
16603 		return (MIB2_TCP_closing);
16604 	case TCPS_LAST_ACK:
16605 		return (MIB2_TCP_lastAck);
16606 	case TCPS_FIN_WAIT_2:
16607 		return (MIB2_TCP_finWait2);
16608 	case TCPS_TIME_WAIT:
16609 		return (MIB2_TCP_timeWait);
16610 	default:
16611 		return (0);
16612 	}
16613 }
16614 
16615 static char tcp_report_header[] =
16616 	"TCP     " MI_COL_HDRPAD_STR
16617 	"zone dest            snxt     suna     "
16618 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16619 	"recent   [lport,fport] state";
16620 
16621 /*
16622  * TCP status report triggered via the Named Dispatch mechanism.
16623  */
16624 /* ARGSUSED */
16625 static void
16626 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16627     cred_t *cr)
16628 {
16629 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16630 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16631 	char cflag;
16632 	in6_addr_t	v6dst;
16633 	char buf[80];
16634 	uint_t print_len, buf_len;
16635 
16636 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16637 	if (buf_len <= 0)
16638 		return;
16639 
16640 	if (hashval >= 0)
16641 		(void) sprintf(hash, "%03d ", hashval);
16642 	else
16643 		hash[0] = '\0';
16644 
16645 	/*
16646 	 * Note that we use the remote address in the tcp_b  structure.
16647 	 * This means that it will print out the real destination address,
16648 	 * not the next hop's address if source routing is used.  This
16649 	 * avoid the confusion on the output because user may not
16650 	 * know that source routing is used for a connection.
16651 	 */
16652 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16653 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16654 	} else {
16655 		v6dst = tcp->tcp_remote_v6;
16656 	}
16657 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16658 	/*
16659 	 * the ispriv checks are so that normal users cannot determine
16660 	 * sequence number information using NDD.
16661 	 */
16662 
16663 	if (TCP_IS_DETACHED(tcp))
16664 		cflag = '*';
16665 	else
16666 		cflag = ' ';
16667 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16668 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16669 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16670 	    hash,
16671 	    (void *)tcp,
16672 	    tcp->tcp_connp->conn_zoneid,
16673 	    addrbuf,
16674 	    (ispriv) ? tcp->tcp_snxt : 0,
16675 	    (ispriv) ? tcp->tcp_suna : 0,
16676 	    tcp->tcp_swnd,
16677 	    (ispriv) ? tcp->tcp_rnxt : 0,
16678 	    (ispriv) ? tcp->tcp_rack : 0,
16679 	    tcp->tcp_rwnd,
16680 	    tcp->tcp_rto,
16681 	    tcp->tcp_mss,
16682 	    tcp->tcp_snd_ws_ok,
16683 	    tcp->tcp_snd_ws,
16684 	    tcp->tcp_rcv_ws,
16685 	    tcp->tcp_snd_ts_ok,
16686 	    tcp->tcp_ts_recent,
16687 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16688 	if (print_len < buf_len) {
16689 		((mblk_t *)mp)->b_wptr += print_len;
16690 	} else {
16691 		((mblk_t *)mp)->b_wptr += buf_len;
16692 	}
16693 }
16694 
16695 /*
16696  * TCP status report (for listeners only) triggered via the Named Dispatch
16697  * mechanism.
16698  */
16699 /* ARGSUSED */
16700 static void
16701 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16702 {
16703 	char addrbuf[INET6_ADDRSTRLEN];
16704 	in6_addr_t	v6dst;
16705 	uint_t print_len, buf_len;
16706 
16707 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16708 	if (buf_len <= 0)
16709 		return;
16710 
16711 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16712 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16713 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16714 	} else {
16715 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16716 		    addrbuf, sizeof (addrbuf));
16717 	}
16718 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16719 	    "%03d "
16720 	    MI_COL_PTRFMT_STR
16721 	    "%d %s %05u %08u %d/%d/%d%c\n",
16722 	    hashval, (void *)tcp,
16723 	    tcp->tcp_connp->conn_zoneid,
16724 	    addrbuf,
16725 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16726 	    tcp->tcp_conn_req_seqnum,
16727 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16728 	    tcp->tcp_conn_req_max,
16729 	    tcp->tcp_syn_defense ? '*' : ' ');
16730 	if (print_len < buf_len) {
16731 		((mblk_t *)mp)->b_wptr += print_len;
16732 	} else {
16733 		((mblk_t *)mp)->b_wptr += buf_len;
16734 	}
16735 }
16736 
16737 /* TCP status report triggered via the Named Dispatch mechanism. */
16738 /* ARGSUSED */
16739 static int
16740 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16741 {
16742 	tcp_t	*tcp;
16743 	int	i;
16744 	conn_t	*connp;
16745 	connf_t	*connfp;
16746 	zoneid_t zoneid;
16747 	tcp_stack_t *tcps;
16748 	ip_stack_t *ipst;
16749 
16750 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16751 	tcps = Q_TO_TCP(q)->tcp_tcps;
16752 
16753 	/*
16754 	 * Because of the ndd constraint, at most we can have 64K buffer
16755 	 * to put in all TCP info.  So to be more efficient, just
16756 	 * allocate a 64K buffer here, assuming we need that large buffer.
16757 	 * This may be a problem as any user can read tcp_status.  Therefore
16758 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16759 	 * This should be OK as normal users should not do this too often.
16760 	 */
16761 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16762 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16763 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16764 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16765 			return (0);
16766 		}
16767 	}
16768 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16769 		/* The following may work even if we cannot get a large buf. */
16770 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16771 		return (0);
16772 	}
16773 
16774 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16775 
16776 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16777 
16778 		ipst = tcps->tcps_netstack->netstack_ip;
16779 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16780 
16781 		connp = NULL;
16782 
16783 		while ((connp =
16784 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16785 			tcp = connp->conn_tcp;
16786 			if (zoneid != GLOBAL_ZONEID &&
16787 			    zoneid != connp->conn_zoneid)
16788 				continue;
16789 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16790 			    cr);
16791 		}
16792 
16793 	}
16794 
16795 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16796 	return (0);
16797 }
16798 
16799 /* TCP status report triggered via the Named Dispatch mechanism. */
16800 /* ARGSUSED */
16801 static int
16802 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16803 {
16804 	tf_t	*tbf;
16805 	tcp_t	*tcp;
16806 	int	i;
16807 	zoneid_t zoneid;
16808 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16809 
16810 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16811 
16812 	/* Refer to comments in tcp_status_report(). */
16813 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16814 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16815 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16816 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16817 			return (0);
16818 		}
16819 	}
16820 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16821 		/* The following may work even if we cannot get a large buf. */
16822 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16823 		return (0);
16824 	}
16825 
16826 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16827 
16828 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16829 		tbf = &tcps->tcps_bind_fanout[i];
16830 		mutex_enter(&tbf->tf_lock);
16831 		for (tcp = tbf->tf_tcp; tcp != NULL;
16832 		    tcp = tcp->tcp_bind_hash) {
16833 			if (zoneid != GLOBAL_ZONEID &&
16834 			    zoneid != tcp->tcp_connp->conn_zoneid)
16835 				continue;
16836 			CONN_INC_REF(tcp->tcp_connp);
16837 			tcp_report_item(mp->b_cont, tcp, i,
16838 			    Q_TO_TCP(q), cr);
16839 			CONN_DEC_REF(tcp->tcp_connp);
16840 		}
16841 		mutex_exit(&tbf->tf_lock);
16842 	}
16843 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16844 	return (0);
16845 }
16846 
16847 /* TCP status report triggered via the Named Dispatch mechanism. */
16848 /* ARGSUSED */
16849 static int
16850 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16851 {
16852 	connf_t	*connfp;
16853 	conn_t	*connp;
16854 	tcp_t	*tcp;
16855 	int	i;
16856 	zoneid_t zoneid;
16857 	tcp_stack_t *tcps;
16858 	ip_stack_t	*ipst;
16859 
16860 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16861 	tcps = Q_TO_TCP(q)->tcp_tcps;
16862 
16863 	/* Refer to comments in tcp_status_report(). */
16864 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16865 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16866 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16867 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16868 			return (0);
16869 		}
16870 	}
16871 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16872 		/* The following may work even if we cannot get a large buf. */
16873 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16874 		return (0);
16875 	}
16876 
16877 	(void) mi_mpprintf(mp,
16878 	    "    TCP    " MI_COL_HDRPAD_STR
16879 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16880 
16881 	ipst = tcps->tcps_netstack->netstack_ip;
16882 
16883 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16884 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16885 		connp = NULL;
16886 		while ((connp =
16887 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16888 			tcp = connp->conn_tcp;
16889 			if (zoneid != GLOBAL_ZONEID &&
16890 			    zoneid != connp->conn_zoneid)
16891 				continue;
16892 			tcp_report_listener(mp->b_cont, tcp, i);
16893 		}
16894 	}
16895 
16896 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16897 	return (0);
16898 }
16899 
16900 /* TCP status report triggered via the Named Dispatch mechanism. */
16901 /* ARGSUSED */
16902 static int
16903 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16904 {
16905 	connf_t	*connfp;
16906 	conn_t	*connp;
16907 	tcp_t	*tcp;
16908 	int	i;
16909 	zoneid_t zoneid;
16910 	tcp_stack_t *tcps;
16911 	ip_stack_t *ipst;
16912 
16913 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16914 	tcps = Q_TO_TCP(q)->tcp_tcps;
16915 	ipst = tcps->tcps_netstack->netstack_ip;
16916 
16917 	/* Refer to comments in tcp_status_report(). */
16918 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16919 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16920 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16921 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16922 			return (0);
16923 		}
16924 	}
16925 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16926 		/* The following may work even if we cannot get a large buf. */
16927 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16928 		return (0);
16929 	}
16930 
16931 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16932 	    ipst->ips_ipcl_conn_fanout_size);
16933 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16934 
16935 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16936 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16937 		connp = NULL;
16938 		while ((connp =
16939 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16940 			tcp = connp->conn_tcp;
16941 			if (zoneid != GLOBAL_ZONEID &&
16942 			    zoneid != connp->conn_zoneid)
16943 				continue;
16944 			tcp_report_item(mp->b_cont, tcp, i,
16945 			    Q_TO_TCP(q), cr);
16946 		}
16947 	}
16948 
16949 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16950 	return (0);
16951 }
16952 
16953 /* TCP status report triggered via the Named Dispatch mechanism. */
16954 /* ARGSUSED */
16955 static int
16956 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16957 {
16958 	tf_t	*tf;
16959 	tcp_t	*tcp;
16960 	int	i;
16961 	zoneid_t zoneid;
16962 	tcp_stack_t	*tcps;
16963 
16964 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16965 	tcps = Q_TO_TCP(q)->tcp_tcps;
16966 
16967 	/* Refer to comments in tcp_status_report(). */
16968 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16969 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16970 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16971 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16972 			return (0);
16973 		}
16974 	}
16975 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16976 		/* The following may work even if we cannot get a large buf. */
16977 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16978 		return (0);
16979 	}
16980 
16981 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16982 
16983 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16984 		tf = &tcps->tcps_acceptor_fanout[i];
16985 		mutex_enter(&tf->tf_lock);
16986 		for (tcp = tf->tf_tcp; tcp != NULL;
16987 		    tcp = tcp->tcp_acceptor_hash) {
16988 			if (zoneid != GLOBAL_ZONEID &&
16989 			    zoneid != tcp->tcp_connp->conn_zoneid)
16990 				continue;
16991 			tcp_report_item(mp->b_cont, tcp, i,
16992 			    Q_TO_TCP(q), cr);
16993 		}
16994 		mutex_exit(&tf->tf_lock);
16995 	}
16996 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16997 	return (0);
16998 }
16999 
17000 /*
17001  * tcp_timer is the timer service routine.  It handles the retransmission,
17002  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17003  * from the state of the tcp instance what kind of action needs to be done
17004  * at the time it is called.
17005  */
17006 static void
17007 tcp_timer(void *arg)
17008 {
17009 	mblk_t		*mp;
17010 	clock_t		first_threshold;
17011 	clock_t		second_threshold;
17012 	clock_t		ms;
17013 	uint32_t	mss;
17014 	conn_t		*connp = (conn_t *)arg;
17015 	tcp_t		*tcp = connp->conn_tcp;
17016 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17017 
17018 	tcp->tcp_timer_tid = 0;
17019 
17020 	if (tcp->tcp_fused)
17021 		return;
17022 
17023 	first_threshold =  tcp->tcp_first_timer_threshold;
17024 	second_threshold = tcp->tcp_second_timer_threshold;
17025 	switch (tcp->tcp_state) {
17026 	case TCPS_IDLE:
17027 	case TCPS_BOUND:
17028 	case TCPS_LISTEN:
17029 		return;
17030 	case TCPS_SYN_RCVD: {
17031 		tcp_t	*listener = tcp->tcp_listener;
17032 
17033 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17034 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17035 			/* it's our first timeout */
17036 			tcp->tcp_syn_rcvd_timeout = 1;
17037 			mutex_enter(&listener->tcp_eager_lock);
17038 			listener->tcp_syn_rcvd_timeout++;
17039 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17040 				/*
17041 				 * Make this eager available for drop if we
17042 				 * need to drop one to accomodate a new
17043 				 * incoming SYN request.
17044 				 */
17045 				MAKE_DROPPABLE(listener, tcp);
17046 			}
17047 			if (!listener->tcp_syn_defense &&
17048 			    (listener->tcp_syn_rcvd_timeout >
17049 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17050 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17051 				/* We may be under attack. Put on a defense. */
17052 				listener->tcp_syn_defense = B_TRUE;
17053 				cmn_err(CE_WARN, "High TCP connect timeout "
17054 				    "rate! System (port %d) may be under a "
17055 				    "SYN flood attack!",
17056 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17057 
17058 				listener->tcp_ip_addr_cache = kmem_zalloc(
17059 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17060 				    KM_NOSLEEP);
17061 			}
17062 			mutex_exit(&listener->tcp_eager_lock);
17063 		} else if (listener != NULL) {
17064 			mutex_enter(&listener->tcp_eager_lock);
17065 			tcp->tcp_syn_rcvd_timeout++;
17066 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17067 			    !tcp->tcp_closemp_used) {
17068 				/*
17069 				 * This is our second timeout. Put the tcp in
17070 				 * the list of droppable eagers to allow it to
17071 				 * be dropped, if needed. We don't check
17072 				 * whether tcp_dontdrop is set or not to
17073 				 * protect ourselve from a SYN attack where a
17074 				 * remote host can spoof itself as one of the
17075 				 * good IP source and continue to hold
17076 				 * resources too long.
17077 				 */
17078 				MAKE_DROPPABLE(listener, tcp);
17079 			}
17080 			mutex_exit(&listener->tcp_eager_lock);
17081 		}
17082 	}
17083 		/* FALLTHRU */
17084 	case TCPS_SYN_SENT:
17085 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17086 		second_threshold = tcp->tcp_second_ctimer_threshold;
17087 		break;
17088 	case TCPS_ESTABLISHED:
17089 	case TCPS_FIN_WAIT_1:
17090 	case TCPS_CLOSING:
17091 	case TCPS_CLOSE_WAIT:
17092 	case TCPS_LAST_ACK:
17093 		/* If we have data to rexmit */
17094 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17095 			clock_t	time_to_wait;
17096 
17097 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17098 			if (!tcp->tcp_xmit_head)
17099 				break;
17100 			time_to_wait = lbolt -
17101 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17102 			time_to_wait = tcp->tcp_rto -
17103 			    TICK_TO_MSEC(time_to_wait);
17104 			/*
17105 			 * If the timer fires too early, 1 clock tick earlier,
17106 			 * restart the timer.
17107 			 */
17108 			if (time_to_wait > msec_per_tick) {
17109 				TCP_STAT(tcps, tcp_timer_fire_early);
17110 				TCP_TIMER_RESTART(tcp, time_to_wait);
17111 				return;
17112 			}
17113 			/*
17114 			 * When we probe zero windows, we force the swnd open.
17115 			 * If our peer acks with a closed window swnd will be
17116 			 * set to zero by tcp_rput(). As long as we are
17117 			 * receiving acks tcp_rput will
17118 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17119 			 * first and second interval actions.  NOTE: the timer
17120 			 * interval is allowed to continue its exponential
17121 			 * backoff.
17122 			 */
17123 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17124 				if (tcp->tcp_debug) {
17125 					(void) strlog(TCP_MOD_ID, 0, 1,
17126 					    SL_TRACE, "tcp_timer: zero win");
17127 				}
17128 			} else {
17129 				/*
17130 				 * After retransmission, we need to do
17131 				 * slow start.  Set the ssthresh to one
17132 				 * half of current effective window and
17133 				 * cwnd to one MSS.  Also reset
17134 				 * tcp_cwnd_cnt.
17135 				 *
17136 				 * Note that if tcp_ssthresh is reduced because
17137 				 * of ECN, do not reduce it again unless it is
17138 				 * already one window of data away (tcp_cwr
17139 				 * should then be cleared) or this is a
17140 				 * timeout for a retransmitted segment.
17141 				 */
17142 				uint32_t npkt;
17143 
17144 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17145 					npkt = ((tcp->tcp_timer_backoff ?
17146 					    tcp->tcp_cwnd_ssthresh :
17147 					    tcp->tcp_snxt -
17148 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17149 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17150 					    tcp->tcp_mss;
17151 				}
17152 				tcp->tcp_cwnd = tcp->tcp_mss;
17153 				tcp->tcp_cwnd_cnt = 0;
17154 				if (tcp->tcp_ecn_ok) {
17155 					tcp->tcp_cwr = B_TRUE;
17156 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17157 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17158 				}
17159 			}
17160 			break;
17161 		}
17162 		/*
17163 		 * We have something to send yet we cannot send.  The
17164 		 * reason can be:
17165 		 *
17166 		 * 1. Zero send window: we need to do zero window probe.
17167 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17168 		 * segments.
17169 		 * 3. SWS avoidance: receiver may have shrunk window,
17170 		 * reset our knowledge.
17171 		 *
17172 		 * Note that condition 2 can happen with either 1 or
17173 		 * 3.  But 1 and 3 are exclusive.
17174 		 */
17175 		if (tcp->tcp_unsent != 0) {
17176 			if (tcp->tcp_cwnd == 0) {
17177 				/*
17178 				 * Set tcp_cwnd to 1 MSS so that a
17179 				 * new segment can be sent out.  We
17180 				 * are "clocking out" new data when
17181 				 * the network is really congested.
17182 				 */
17183 				ASSERT(tcp->tcp_ecn_ok);
17184 				tcp->tcp_cwnd = tcp->tcp_mss;
17185 			}
17186 			if (tcp->tcp_swnd == 0) {
17187 				/* Extend window for zero window probe */
17188 				tcp->tcp_swnd++;
17189 				tcp->tcp_zero_win_probe = B_TRUE;
17190 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17191 			} else {
17192 				/*
17193 				 * Handle timeout from sender SWS avoidance.
17194 				 * Reset our knowledge of the max send window
17195 				 * since the receiver might have reduced its
17196 				 * receive buffer.  Avoid setting tcp_max_swnd
17197 				 * to one since that will essentially disable
17198 				 * the SWS checks.
17199 				 *
17200 				 * Note that since we don't have a SWS
17201 				 * state variable, if the timeout is set
17202 				 * for ECN but not for SWS, this
17203 				 * code will also be executed.  This is
17204 				 * fine as tcp_max_swnd is updated
17205 				 * constantly and it will not affect
17206 				 * anything.
17207 				 */
17208 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17209 			}
17210 			tcp_wput_data(tcp, NULL, B_FALSE);
17211 			return;
17212 		}
17213 		/* Is there a FIN that needs to be to re retransmitted? */
17214 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17215 		    !tcp->tcp_fin_acked)
17216 			break;
17217 		/* Nothing to do, return without restarting timer. */
17218 		TCP_STAT(tcps, tcp_timer_fire_miss);
17219 		return;
17220 	case TCPS_FIN_WAIT_2:
17221 		/*
17222 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17223 		 * We waited some time for for peer's FIN, but it hasn't
17224 		 * arrived.  We flush the connection now to avoid
17225 		 * case where the peer has rebooted.
17226 		 */
17227 		if (TCP_IS_DETACHED(tcp)) {
17228 			(void) tcp_clean_death(tcp, 0, 23);
17229 		} else {
17230 			TCP_TIMER_RESTART(tcp,
17231 			    tcps->tcps_fin_wait_2_flush_interval);
17232 		}
17233 		return;
17234 	case TCPS_TIME_WAIT:
17235 		(void) tcp_clean_death(tcp, 0, 24);
17236 		return;
17237 	default:
17238 		if (tcp->tcp_debug) {
17239 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17240 			    "tcp_timer: strange state (%d) %s",
17241 			    tcp->tcp_state, tcp_display(tcp, NULL,
17242 			    DISP_PORT_ONLY));
17243 		}
17244 		return;
17245 	}
17246 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17247 		/*
17248 		 * For zero window probe, we need to send indefinitely,
17249 		 * unless we have not heard from the other side for some
17250 		 * time...
17251 		 */
17252 		if ((tcp->tcp_zero_win_probe == 0) ||
17253 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17254 		    second_threshold)) {
17255 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17256 			/*
17257 			 * If TCP is in SYN_RCVD state, send back a
17258 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17259 			 * should be zero in TCPS_SYN_RCVD state.
17260 			 */
17261 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17262 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17263 				    "in SYN_RCVD",
17264 				    tcp, tcp->tcp_snxt,
17265 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17266 			}
17267 			(void) tcp_clean_death(tcp,
17268 			    tcp->tcp_client_errno ?
17269 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17270 			return;
17271 		} else {
17272 			/*
17273 			 * Set tcp_ms_we_have_waited to second_threshold
17274 			 * so that in next timeout, we will do the above
17275 			 * check (lbolt - tcp_last_recv_time).  This is
17276 			 * also to avoid overflow.
17277 			 *
17278 			 * We don't need to decrement tcp_timer_backoff
17279 			 * to avoid overflow because it will be decremented
17280 			 * later if new timeout value is greater than
17281 			 * tcp_rexmit_interval_max.  In the case when
17282 			 * tcp_rexmit_interval_max is greater than
17283 			 * second_threshold, it means that we will wait
17284 			 * longer than second_threshold to send the next
17285 			 * window probe.
17286 			 */
17287 			tcp->tcp_ms_we_have_waited = second_threshold;
17288 		}
17289 	} else if (ms > first_threshold) {
17290 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17291 		    tcp->tcp_xmit_head != NULL) {
17292 			tcp->tcp_xmit_head =
17293 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17294 		}
17295 		/*
17296 		 * We have been retransmitting for too long...  The RTT
17297 		 * we calculated is probably incorrect.  Reinitialize it.
17298 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17299 		 * tcp_rtt_update so that we won't accidentally cache a
17300 		 * bad value.  But only do this if this is not a zero
17301 		 * window probe.
17302 		 */
17303 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17304 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17305 			    (tcp->tcp_rtt_sa >> 5);
17306 			tcp->tcp_rtt_sa = 0;
17307 			tcp_ip_notify(tcp);
17308 			tcp->tcp_rtt_update = 0;
17309 		}
17310 	}
17311 	tcp->tcp_timer_backoff++;
17312 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17313 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17314 	    tcps->tcps_rexmit_interval_min) {
17315 		/*
17316 		 * This means the original RTO is tcp_rexmit_interval_min.
17317 		 * So we will use tcp_rexmit_interval_min as the RTO value
17318 		 * and do the backoff.
17319 		 */
17320 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17321 	} else {
17322 		ms <<= tcp->tcp_timer_backoff;
17323 	}
17324 	if (ms > tcps->tcps_rexmit_interval_max) {
17325 		ms = tcps->tcps_rexmit_interval_max;
17326 		/*
17327 		 * ms is at max, decrement tcp_timer_backoff to avoid
17328 		 * overflow.
17329 		 */
17330 		tcp->tcp_timer_backoff--;
17331 	}
17332 	tcp->tcp_ms_we_have_waited += ms;
17333 	if (tcp->tcp_zero_win_probe == 0) {
17334 		tcp->tcp_rto = ms;
17335 	}
17336 	TCP_TIMER_RESTART(tcp, ms);
17337 	/*
17338 	 * This is after a timeout and tcp_rto is backed off.  Set
17339 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17340 	 * restart the timer with a correct value.
17341 	 */
17342 	tcp->tcp_set_timer = 1;
17343 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17344 	if (mss > tcp->tcp_mss)
17345 		mss = tcp->tcp_mss;
17346 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17347 		mss = tcp->tcp_swnd;
17348 
17349 	if ((mp = tcp->tcp_xmit_head) != NULL)
17350 		mp->b_prev = (mblk_t *)lbolt;
17351 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17352 	    B_TRUE);
17353 
17354 	/*
17355 	 * When slow start after retransmission begins, start with
17356 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17357 	 * start phase.  tcp_snd_burst controls how many segments
17358 	 * can be sent because of an ack.
17359 	 */
17360 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17361 	tcp->tcp_snd_burst = TCP_CWND_SS;
17362 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17363 	    (tcp->tcp_unsent == 0)) {
17364 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17365 	} else {
17366 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17367 	}
17368 	tcp->tcp_rexmit = B_TRUE;
17369 	tcp->tcp_dupack_cnt = 0;
17370 
17371 	/*
17372 	 * Remove all rexmit SACK blk to start from fresh.
17373 	 */
17374 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17375 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17376 		tcp->tcp_num_notsack_blk = 0;
17377 		tcp->tcp_cnt_notsack_list = 0;
17378 	}
17379 	if (mp == NULL) {
17380 		return;
17381 	}
17382 	/* Attach credentials to retransmitted initial SYNs. */
17383 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17384 		mblk_setcred(mp, tcp->tcp_cred);
17385 		DB_CPID(mp) = tcp->tcp_cpid;
17386 	}
17387 
17388 	tcp->tcp_csuna = tcp->tcp_snxt;
17389 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17390 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17391 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17392 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17393 
17394 }
17395 
17396 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17397 static void
17398 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17399 {
17400 	conn_t	*connp;
17401 
17402 	switch (tcp->tcp_state) {
17403 	case TCPS_BOUND:
17404 	case TCPS_LISTEN:
17405 		break;
17406 	default:
17407 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17408 		return;
17409 	}
17410 
17411 	/*
17412 	 * Need to clean up all the eagers since after the unbind, segments
17413 	 * will no longer be delivered to this listener stream.
17414 	 */
17415 	mutex_enter(&tcp->tcp_eager_lock);
17416 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17417 		tcp_eager_cleanup(tcp, 0);
17418 	}
17419 	mutex_exit(&tcp->tcp_eager_lock);
17420 
17421 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17422 		tcp->tcp_ipha->ipha_src = 0;
17423 	} else {
17424 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17425 	}
17426 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17427 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17428 	tcp_bind_hash_remove(tcp);
17429 	tcp->tcp_state = TCPS_IDLE;
17430 	tcp->tcp_mdt = B_FALSE;
17431 	/* Send M_FLUSH according to TPI */
17432 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17433 	connp = tcp->tcp_connp;
17434 	connp->conn_mdt_ok = B_FALSE;
17435 	ipcl_hash_remove(connp);
17436 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17437 	mp = mi_tpi_ok_ack_alloc(mp);
17438 	putnext(tcp->tcp_rq, mp);
17439 }
17440 
17441 /*
17442  * Don't let port fall into the privileged range.
17443  * Since the extra privileged ports can be arbitrary we also
17444  * ensure that we exclude those from consideration.
17445  * tcp_g_epriv_ports is not sorted thus we loop over it until
17446  * there are no changes.
17447  *
17448  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17449  * but instead the code relies on:
17450  * - the fact that the address of the array and its size never changes
17451  * - the atomic assignment of the elements of the array
17452  *
17453  * Returns 0 if there are no more ports available.
17454  *
17455  * TS note: skip multilevel ports.
17456  */
17457 static in_port_t
17458 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17459 {
17460 	int i;
17461 	boolean_t restart = B_FALSE;
17462 	tcp_stack_t *tcps = tcp->tcp_tcps;
17463 
17464 	if (random && tcp_random_anon_port != 0) {
17465 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17466 		    sizeof (in_port_t));
17467 		/*
17468 		 * Unless changed by a sys admin, the smallest anon port
17469 		 * is 32768 and the largest anon port is 65535.  It is
17470 		 * very likely (50%) for the random port to be smaller
17471 		 * than the smallest anon port.  When that happens,
17472 		 * add port % (anon port range) to the smallest anon
17473 		 * port to get the random port.  It should fall into the
17474 		 * valid anon port range.
17475 		 */
17476 		if (port < tcps->tcps_smallest_anon_port) {
17477 			port = tcps->tcps_smallest_anon_port +
17478 			    port % (tcps->tcps_largest_anon_port -
17479 			    tcps->tcps_smallest_anon_port);
17480 		}
17481 	}
17482 
17483 retry:
17484 	if (port < tcps->tcps_smallest_anon_port)
17485 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17486 
17487 	if (port > tcps->tcps_largest_anon_port) {
17488 		if (restart)
17489 			return (0);
17490 		restart = B_TRUE;
17491 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17492 	}
17493 
17494 	if (port < tcps->tcps_smallest_nonpriv_port)
17495 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17496 
17497 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17498 		if (port == tcps->tcps_g_epriv_ports[i]) {
17499 			port++;
17500 			/*
17501 			 * Make sure whether the port is in the
17502 			 * valid range.
17503 			 */
17504 			goto retry;
17505 		}
17506 	}
17507 	if (is_system_labeled() &&
17508 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17509 	    IPPROTO_TCP, B_TRUE)) != 0) {
17510 		port = i;
17511 		goto retry;
17512 	}
17513 	return (port);
17514 }
17515 
17516 /*
17517  * Return the next anonymous port in the privileged port range for
17518  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17519  * downwards.  This is the same behavior as documented in the userland
17520  * library call rresvport(3N).
17521  *
17522  * TS note: skip multilevel ports.
17523  */
17524 static in_port_t
17525 tcp_get_next_priv_port(const tcp_t *tcp)
17526 {
17527 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17528 	in_port_t nextport;
17529 	boolean_t restart = B_FALSE;
17530 	tcp_stack_t *tcps = tcp->tcp_tcps;
17531 retry:
17532 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17533 	    next_priv_port >= IPPORT_RESERVED) {
17534 		next_priv_port = IPPORT_RESERVED - 1;
17535 		if (restart)
17536 			return (0);
17537 		restart = B_TRUE;
17538 	}
17539 	if (is_system_labeled() &&
17540 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17541 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17542 		next_priv_port = nextport;
17543 		goto retry;
17544 	}
17545 	return (next_priv_port--);
17546 }
17547 
17548 /* The write side r/w procedure. */
17549 
17550 #if CCS_STATS
17551 struct {
17552 	struct {
17553 		int64_t count, bytes;
17554 	} tot, hit;
17555 } wrw_stats;
17556 #endif
17557 
17558 /*
17559  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17560  * messages.
17561  */
17562 /* ARGSUSED */
17563 static void
17564 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17565 {
17566 	conn_t	*connp = (conn_t *)arg;
17567 	tcp_t	*tcp = connp->conn_tcp;
17568 	queue_t	*q = tcp->tcp_wq;
17569 
17570 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17571 	/*
17572 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17573 	 * Once the close starts, streamhead and sockfs will not let any data
17574 	 * packets come down (close ensures that there are no threads using the
17575 	 * queue and no new threads will come down) but since qprocsoff()
17576 	 * hasn't happened yet, a M_FLUSH or some non data message might
17577 	 * get reflected back (in response to our own FLUSHRW) and get
17578 	 * processed after tcp_close() is done. The conn would still be valid
17579 	 * because a ref would have added but we need to check the state
17580 	 * before actually processing the packet.
17581 	 */
17582 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17583 		freemsg(mp);
17584 		return;
17585 	}
17586 
17587 	switch (DB_TYPE(mp)) {
17588 	case M_IOCDATA:
17589 		tcp_wput_iocdata(tcp, mp);
17590 		break;
17591 	case M_FLUSH:
17592 		tcp_wput_flush(tcp, mp);
17593 		break;
17594 	default:
17595 		CALL_IP_WPUT(connp, q, mp);
17596 		break;
17597 	}
17598 }
17599 
17600 /*
17601  * The TCP fast path write put procedure.
17602  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17603  */
17604 /* ARGSUSED */
17605 void
17606 tcp_output(void *arg, mblk_t *mp, void *arg2)
17607 {
17608 	int		len;
17609 	int		hdrlen;
17610 	int		plen;
17611 	mblk_t		*mp1;
17612 	uchar_t		*rptr;
17613 	uint32_t	snxt;
17614 	tcph_t		*tcph;
17615 	struct datab	*db;
17616 	uint32_t	suna;
17617 	uint32_t	mss;
17618 	ipaddr_t	*dst;
17619 	ipaddr_t	*src;
17620 	uint32_t	sum;
17621 	int		usable;
17622 	conn_t		*connp = (conn_t *)arg;
17623 	tcp_t		*tcp = connp->conn_tcp;
17624 	uint32_t	msize;
17625 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17626 
17627 	/*
17628 	 * Try and ASSERT the minimum possible references on the
17629 	 * conn early enough. Since we are executing on write side,
17630 	 * the connection is obviously not detached and that means
17631 	 * there is a ref each for TCP and IP. Since we are behind
17632 	 * the squeue, the minimum references needed are 3. If the
17633 	 * conn is in classifier hash list, there should be an
17634 	 * extra ref for that (we check both the possibilities).
17635 	 */
17636 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17637 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17638 
17639 	ASSERT(DB_TYPE(mp) == M_DATA);
17640 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17641 
17642 	mutex_enter(&tcp->tcp_non_sq_lock);
17643 	tcp->tcp_squeue_bytes -= msize;
17644 	mutex_exit(&tcp->tcp_non_sq_lock);
17645 
17646 	/* Bypass tcp protocol for fused tcp loopback */
17647 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17648 		return;
17649 
17650 	mss = tcp->tcp_mss;
17651 	if (tcp->tcp_xmit_zc_clean)
17652 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17653 
17654 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17655 	len = (int)(mp->b_wptr - mp->b_rptr);
17656 
17657 	/*
17658 	 * Criteria for fast path:
17659 	 *
17660 	 *   1. no unsent data
17661 	 *   2. single mblk in request
17662 	 *   3. connection established
17663 	 *   4. data in mblk
17664 	 *   5. len <= mss
17665 	 *   6. no tcp_valid bits
17666 	 */
17667 	if ((tcp->tcp_unsent != 0) ||
17668 	    (tcp->tcp_cork) ||
17669 	    (mp->b_cont != NULL) ||
17670 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17671 	    (len == 0) ||
17672 	    (len > mss) ||
17673 	    (tcp->tcp_valid_bits != 0)) {
17674 		tcp_wput_data(tcp, mp, B_FALSE);
17675 		return;
17676 	}
17677 
17678 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17679 	ASSERT(tcp->tcp_fin_sent == 0);
17680 
17681 	/* queue new packet onto retransmission queue */
17682 	if (tcp->tcp_xmit_head == NULL) {
17683 		tcp->tcp_xmit_head = mp;
17684 	} else {
17685 		tcp->tcp_xmit_last->b_cont = mp;
17686 	}
17687 	tcp->tcp_xmit_last = mp;
17688 	tcp->tcp_xmit_tail = mp;
17689 
17690 	/* find out how much we can send */
17691 	/* BEGIN CSTYLED */
17692 	/*
17693 	 *    un-acked           usable
17694 	 *  |--------------|-----------------|
17695 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17696 	 */
17697 	/* END CSTYLED */
17698 
17699 	/* start sending from tcp_snxt */
17700 	snxt = tcp->tcp_snxt;
17701 
17702 	/*
17703 	 * Check to see if this connection has been idled for some
17704 	 * time and no ACK is expected.  If it is, we need to slow
17705 	 * start again to get back the connection's "self-clock" as
17706 	 * described in VJ's paper.
17707 	 *
17708 	 * Refer to the comment in tcp_mss_set() for the calculation
17709 	 * of tcp_cwnd after idle.
17710 	 */
17711 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17712 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17713 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17714 	}
17715 
17716 	usable = tcp->tcp_swnd;		/* tcp window size */
17717 	if (usable > tcp->tcp_cwnd)
17718 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17719 	usable -= snxt;		/* subtract stuff already sent */
17720 	suna = tcp->tcp_suna;
17721 	usable += suna;
17722 	/* usable can be < 0 if the congestion window is smaller */
17723 	if (len > usable) {
17724 		/* Can't send complete M_DATA in one shot */
17725 		goto slow;
17726 	}
17727 
17728 	mutex_enter(&tcp->tcp_non_sq_lock);
17729 	if (tcp->tcp_flow_stopped &&
17730 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17731 		tcp_clrqfull(tcp);
17732 	}
17733 	mutex_exit(&tcp->tcp_non_sq_lock);
17734 
17735 	/*
17736 	 * determine if anything to send (Nagle).
17737 	 *
17738 	 *   1. len < tcp_mss (i.e. small)
17739 	 *   2. unacknowledged data present
17740 	 *   3. len < nagle limit
17741 	 *   4. last packet sent < nagle limit (previous packet sent)
17742 	 */
17743 	if ((len < mss) && (snxt != suna) &&
17744 	    (len < (int)tcp->tcp_naglim) &&
17745 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17746 		/*
17747 		 * This was the first unsent packet and normally
17748 		 * mss < xmit_hiwater so there is no need to worry
17749 		 * about flow control. The next packet will go
17750 		 * through the flow control check in tcp_wput_data().
17751 		 */
17752 		/* leftover work from above */
17753 		tcp->tcp_unsent = len;
17754 		tcp->tcp_xmit_tail_unsent = len;
17755 
17756 		return;
17757 	}
17758 
17759 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17760 
17761 	if (snxt == suna) {
17762 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17763 	}
17764 
17765 	/* we have always sent something */
17766 	tcp->tcp_rack_cnt = 0;
17767 
17768 	tcp->tcp_snxt = snxt + len;
17769 	tcp->tcp_rack = tcp->tcp_rnxt;
17770 
17771 	if ((mp1 = dupb(mp)) == 0)
17772 		goto no_memory;
17773 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17774 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17775 
17776 	/* adjust tcp header information */
17777 	tcph = tcp->tcp_tcph;
17778 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17779 
17780 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17781 	sum = (sum >> 16) + (sum & 0xFFFF);
17782 	U16_TO_ABE16(sum, tcph->th_sum);
17783 
17784 	U32_TO_ABE32(snxt, tcph->th_seq);
17785 
17786 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17787 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17788 	BUMP_LOCAL(tcp->tcp_obsegs);
17789 
17790 	/* Update the latest receive window size in TCP header. */
17791 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17792 	    tcph->th_win);
17793 
17794 	tcp->tcp_last_sent_len = (ushort_t)len;
17795 
17796 	plen = len + tcp->tcp_hdr_len;
17797 
17798 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17799 		tcp->tcp_ipha->ipha_length = htons(plen);
17800 	} else {
17801 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17802 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17803 	}
17804 
17805 	/* see if we need to allocate a mblk for the headers */
17806 	hdrlen = tcp->tcp_hdr_len;
17807 	rptr = mp1->b_rptr - hdrlen;
17808 	db = mp1->b_datap;
17809 	if ((db->db_ref != 2) || rptr < db->db_base ||
17810 	    (!OK_32PTR(rptr))) {
17811 		/* NOTE: we assume allocb returns an OK_32PTR */
17812 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17813 		    tcps->tcps_wroff_xtra, BPRI_MED);
17814 		if (!mp) {
17815 			freemsg(mp1);
17816 			goto no_memory;
17817 		}
17818 		mp->b_cont = mp1;
17819 		mp1 = mp;
17820 		/* Leave room for Link Level header */
17821 		/* hdrlen = tcp->tcp_hdr_len; */
17822 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17823 		mp1->b_wptr = &rptr[hdrlen];
17824 	}
17825 	mp1->b_rptr = rptr;
17826 
17827 	/* Fill in the timestamp option. */
17828 	if (tcp->tcp_snd_ts_ok) {
17829 		U32_TO_BE32((uint32_t)lbolt,
17830 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17831 		U32_TO_BE32(tcp->tcp_ts_recent,
17832 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17833 	} else {
17834 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17835 	}
17836 
17837 	/* copy header into outgoing packet */
17838 	dst = (ipaddr_t *)rptr;
17839 	src = (ipaddr_t *)tcp->tcp_iphc;
17840 	dst[0] = src[0];
17841 	dst[1] = src[1];
17842 	dst[2] = src[2];
17843 	dst[3] = src[3];
17844 	dst[4] = src[4];
17845 	dst[5] = src[5];
17846 	dst[6] = src[6];
17847 	dst[7] = src[7];
17848 	dst[8] = src[8];
17849 	dst[9] = src[9];
17850 	if (hdrlen -= 40) {
17851 		hdrlen >>= 2;
17852 		dst += 10;
17853 		src += 10;
17854 		do {
17855 			*dst++ = *src++;
17856 		} while (--hdrlen);
17857 	}
17858 
17859 	/*
17860 	 * Set the ECN info in the TCP header.  Note that this
17861 	 * is not the template header.
17862 	 */
17863 	if (tcp->tcp_ecn_ok) {
17864 		SET_ECT(tcp, rptr);
17865 
17866 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17867 		if (tcp->tcp_ecn_echo_on)
17868 			tcph->th_flags[0] |= TH_ECE;
17869 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17870 			tcph->th_flags[0] |= TH_CWR;
17871 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17872 		}
17873 	}
17874 
17875 	if (tcp->tcp_ip_forward_progress) {
17876 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17877 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17878 		tcp->tcp_ip_forward_progress = B_FALSE;
17879 	}
17880 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17881 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17882 	return;
17883 
17884 	/*
17885 	 * If we ran out of memory, we pretend to have sent the packet
17886 	 * and that it was lost on the wire.
17887 	 */
17888 no_memory:
17889 	return;
17890 
17891 slow:
17892 	/* leftover work from above */
17893 	tcp->tcp_unsent = len;
17894 	tcp->tcp_xmit_tail_unsent = len;
17895 	tcp_wput_data(tcp, NULL, B_FALSE);
17896 }
17897 
17898 /*
17899  * The function called through squeue to get behind eager's perimeter to
17900  * finish the accept processing.
17901  */
17902 /* ARGSUSED */
17903 void
17904 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17905 {
17906 	conn_t			*connp = (conn_t *)arg;
17907 	tcp_t			*tcp = connp->conn_tcp;
17908 	queue_t			*q = tcp->tcp_rq;
17909 	mblk_t			*mp1;
17910 	mblk_t			*stropt_mp = mp;
17911 	struct  stroptions	*stropt;
17912 	uint_t			thwin;
17913 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17914 
17915 	/*
17916 	 * Drop the eager's ref on the listener, that was placed when
17917 	 * this eager began life in tcp_conn_request.
17918 	 */
17919 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17920 
17921 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17922 		/*
17923 		 * Someone blewoff the eager before we could finish
17924 		 * the accept.
17925 		 *
17926 		 * The only reason eager exists it because we put in
17927 		 * a ref on it when conn ind went up. We need to send
17928 		 * a disconnect indication up while the last reference
17929 		 * on the eager will be dropped by the squeue when we
17930 		 * return.
17931 		 */
17932 		ASSERT(tcp->tcp_listener == NULL);
17933 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17934 			struct	T_discon_ind	*tdi;
17935 
17936 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17937 			/*
17938 			 * Let us reuse the incoming mblk to avoid memory
17939 			 * allocation failure problems. We know that the
17940 			 * size of the incoming mblk i.e. stroptions is greater
17941 			 * than sizeof T_discon_ind. So the reallocb below
17942 			 * can't fail.
17943 			 */
17944 			freemsg(mp->b_cont);
17945 			mp->b_cont = NULL;
17946 			ASSERT(DB_REF(mp) == 1);
17947 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17948 			    B_FALSE);
17949 			ASSERT(mp != NULL);
17950 			DB_TYPE(mp) = M_PROTO;
17951 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17952 			tdi = (struct T_discon_ind *)mp->b_rptr;
17953 			if (tcp->tcp_issocket) {
17954 				tdi->DISCON_reason = ECONNREFUSED;
17955 				tdi->SEQ_number = 0;
17956 			} else {
17957 				tdi->DISCON_reason = ENOPROTOOPT;
17958 				tdi->SEQ_number =
17959 				    tcp->tcp_conn_req_seqnum;
17960 			}
17961 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17962 			putnext(q, mp);
17963 		} else {
17964 			freemsg(mp);
17965 		}
17966 		if (tcp->tcp_hard_binding) {
17967 			tcp->tcp_hard_binding = B_FALSE;
17968 			tcp->tcp_hard_bound = B_TRUE;
17969 		}
17970 		tcp->tcp_detached = B_FALSE;
17971 		return;
17972 	}
17973 
17974 	mp1 = stropt_mp->b_cont;
17975 	stropt_mp->b_cont = NULL;
17976 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17977 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17978 
17979 	while (mp1 != NULL) {
17980 		mp = mp1;
17981 		mp1 = mp1->b_cont;
17982 		mp->b_cont = NULL;
17983 		tcp->tcp_drop_opt_ack_cnt++;
17984 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17985 	}
17986 	mp = NULL;
17987 
17988 	/*
17989 	 * For a loopback connection with tcp_direct_sockfs on, note that
17990 	 * we don't have to protect tcp_rcv_list yet because synchronous
17991 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17992 	 * possibly race with us.
17993 	 */
17994 
17995 	/*
17996 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17997 	 * properly.  This is the first time we know of the acceptor'
17998 	 * queue.  So we do it here.
17999 	 */
18000 	if (tcp->tcp_rcv_list == NULL) {
18001 		/*
18002 		 * Recv queue is empty, tcp_rwnd should not have changed.
18003 		 * That means it should be equal to the listener's tcp_rwnd.
18004 		 */
18005 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18006 	} else {
18007 #ifdef DEBUG
18008 		uint_t cnt = 0;
18009 
18010 		mp1 = tcp->tcp_rcv_list;
18011 		while ((mp = mp1) != NULL) {
18012 			mp1 = mp->b_next;
18013 			cnt += msgdsize(mp);
18014 		}
18015 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18016 #endif
18017 		/* There is some data, add them back to get the max. */
18018 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18019 	}
18020 
18021 	stropt->so_flags = SO_HIWAT;
18022 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18023 
18024 	stropt->so_flags |= SO_MAXBLK;
18025 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18026 
18027 	/*
18028 	 * This is the first time we run on the correct
18029 	 * queue after tcp_accept. So fix all the q parameters
18030 	 * here.
18031 	 */
18032 	/* Allocate room for SACK options if needed. */
18033 	stropt->so_flags |= SO_WROFF;
18034 	if (tcp->tcp_fused) {
18035 		ASSERT(tcp->tcp_loopback);
18036 		ASSERT(tcp->tcp_loopback_peer != NULL);
18037 		/*
18038 		 * For fused tcp loopback, set the stream head's write
18039 		 * offset value to zero since we won't be needing any room
18040 		 * for TCP/IP headers.  This would also improve performance
18041 		 * since it would reduce the amount of work done by kmem.
18042 		 * Non-fused tcp loopback case is handled separately below.
18043 		 */
18044 		stropt->so_wroff = 0;
18045 		/*
18046 		 * Record the stream head's high water mark for this endpoint;
18047 		 * this is used for flow-control purposes in tcp_fuse_output().
18048 		 */
18049 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
18050 		/*
18051 		 * Update the peer's transmit parameters according to
18052 		 * our recently calculated high water mark value.
18053 		 */
18054 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18055 	} else if (tcp->tcp_snd_sack_ok) {
18056 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18057 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18058 	} else {
18059 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18060 		    tcps->tcps_wroff_xtra);
18061 	}
18062 
18063 	/*
18064 	 * If this is endpoint is handling SSL, then reserve extra
18065 	 * offset and space at the end.
18066 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18067 	 * overriding the previous setting. The extra cost of signing and
18068 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18069 	 * instead of a single contiguous one by the stream head
18070 	 * largely outweighs the statistical reduction of ACKs, when
18071 	 * applicable. The peer will also save on decryption and verification
18072 	 * costs.
18073 	 */
18074 	if (tcp->tcp_kssl_ctx != NULL) {
18075 		stropt->so_wroff += SSL3_WROFFSET;
18076 
18077 		stropt->so_flags |= SO_TAIL;
18078 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18079 
18080 		stropt->so_flags |= SO_COPYOPT;
18081 		stropt->so_copyopt = ZCVMUNSAFE;
18082 
18083 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18084 	}
18085 
18086 	/* Send the options up */
18087 	putnext(q, stropt_mp);
18088 
18089 	/*
18090 	 * Pass up any data and/or a fin that has been received.
18091 	 *
18092 	 * Adjust receive window in case it had decreased
18093 	 * (because there is data <=> tcp_rcv_list != NULL)
18094 	 * while the connection was detached. Note that
18095 	 * in case the eager was flow-controlled, w/o this
18096 	 * code, the rwnd may never open up again!
18097 	 */
18098 	if (tcp->tcp_rcv_list != NULL) {
18099 		/* We drain directly in case of fused tcp loopback */
18100 		if (!tcp->tcp_fused && canputnext(q)) {
18101 			tcp->tcp_rwnd = q->q_hiwat;
18102 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18103 			    << tcp->tcp_rcv_ws;
18104 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18105 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18106 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18107 				tcp_xmit_ctl(NULL,
18108 				    tcp, (tcp->tcp_swnd == 0) ?
18109 				    tcp->tcp_suna : tcp->tcp_snxt,
18110 				    tcp->tcp_rnxt, TH_ACK);
18111 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18112 			}
18113 
18114 		}
18115 		(void) tcp_rcv_drain(q, tcp);
18116 
18117 		/*
18118 		 * For fused tcp loopback, back-enable peer endpoint
18119 		 * if it's currently flow-controlled.
18120 		 */
18121 		if (tcp->tcp_fused) {
18122 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18123 
18124 			ASSERT(peer_tcp != NULL);
18125 			ASSERT(peer_tcp->tcp_fused);
18126 			/*
18127 			 * In order to change the peer's tcp_flow_stopped,
18128 			 * we need to take locks for both end points. The
18129 			 * highest address is taken first.
18130 			 */
18131 			if (peer_tcp > tcp) {
18132 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18133 				mutex_enter(&tcp->tcp_non_sq_lock);
18134 			} else {
18135 				mutex_enter(&tcp->tcp_non_sq_lock);
18136 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18137 			}
18138 			if (peer_tcp->tcp_flow_stopped) {
18139 				tcp_clrqfull(peer_tcp);
18140 				TCP_STAT(tcps, tcp_fusion_backenabled);
18141 			}
18142 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18143 			mutex_exit(&tcp->tcp_non_sq_lock);
18144 		}
18145 	}
18146 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18147 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18148 		mp = mi_tpi_ordrel_ind();
18149 		if (mp) {
18150 			tcp->tcp_ordrel_done = B_TRUE;
18151 			putnext(q, mp);
18152 			if (tcp->tcp_deferred_clean_death) {
18153 				/*
18154 				 * tcp_clean_death was deferred
18155 				 * for T_ORDREL_IND - do it now
18156 				 */
18157 				(void) tcp_clean_death(tcp,
18158 				    tcp->tcp_client_errno, 21);
18159 				tcp->tcp_deferred_clean_death = B_FALSE;
18160 			}
18161 		} else {
18162 			/*
18163 			 * Run the orderly release in the
18164 			 * service routine.
18165 			 */
18166 			qenable(q);
18167 		}
18168 	}
18169 	if (tcp->tcp_hard_binding) {
18170 		tcp->tcp_hard_binding = B_FALSE;
18171 		tcp->tcp_hard_bound = B_TRUE;
18172 	}
18173 
18174 	tcp->tcp_detached = B_FALSE;
18175 
18176 	/* We can enable synchronous streams now */
18177 	if (tcp->tcp_fused) {
18178 		tcp_fuse_syncstr_enable_pair(tcp);
18179 	}
18180 
18181 	if (tcp->tcp_ka_enabled) {
18182 		tcp->tcp_ka_last_intrvl = 0;
18183 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18184 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18185 	}
18186 
18187 	/*
18188 	 * At this point, eager is fully established and will
18189 	 * have the following references -
18190 	 *
18191 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18192 	 * 1 reference for the squeue which will be dropped by the squeue as
18193 	 *	soon as this function returns.
18194 	 * There will be 1 additonal reference for being in classifier
18195 	 *	hash list provided something bad hasn't happened.
18196 	 */
18197 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18198 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18199 }
18200 
18201 /*
18202  * The function called through squeue to get behind listener's perimeter to
18203  * send a deffered conn_ind.
18204  */
18205 /* ARGSUSED */
18206 void
18207 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18208 {
18209 	conn_t	*connp = (conn_t *)arg;
18210 	tcp_t *listener = connp->conn_tcp;
18211 
18212 	if (listener->tcp_state == TCPS_CLOSED ||
18213 	    TCP_IS_DETACHED(listener)) {
18214 		/*
18215 		 * If listener has closed, it would have caused a
18216 		 * a cleanup/blowoff to happen for the eager.
18217 		 */
18218 		tcp_t *tcp;
18219 		struct T_conn_ind	*conn_ind;
18220 
18221 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18222 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18223 		    conn_ind->OPT_length);
18224 		/*
18225 		 * We need to drop the ref on eager that was put
18226 		 * tcp_rput_data() before trying to send the conn_ind
18227 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18228 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18229 		 * listener is closed so we drop the ref.
18230 		 */
18231 		CONN_DEC_REF(tcp->tcp_connp);
18232 		freemsg(mp);
18233 		return;
18234 	}
18235 	putnext(listener->tcp_rq, mp);
18236 }
18237 
18238 
18239 /*
18240  * This is the STREAMS entry point for T_CONN_RES coming down on
18241  * Acceptor STREAM when  sockfs listener does accept processing.
18242  * Read the block comment on top of tcp_conn_request().
18243  */
18244 void
18245 tcp_wput_accept(queue_t *q, mblk_t *mp)
18246 {
18247 	queue_t *rq = RD(q);
18248 	struct T_conn_res *conn_res;
18249 	tcp_t *eager;
18250 	tcp_t *listener;
18251 	struct T_ok_ack *ok;
18252 	t_scalar_t PRIM_type;
18253 	mblk_t *opt_mp;
18254 	conn_t *econnp;
18255 
18256 	ASSERT(DB_TYPE(mp) == M_PROTO);
18257 
18258 	conn_res = (struct T_conn_res *)mp->b_rptr;
18259 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18260 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18261 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18262 		if (mp != NULL)
18263 			putnext(rq, mp);
18264 		return;
18265 	}
18266 	switch (conn_res->PRIM_type) {
18267 	case O_T_CONN_RES:
18268 	case T_CONN_RES:
18269 		/*
18270 		 * We pass up an err ack if allocb fails. This will
18271 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18272 		 * tcp_eager_blowoff to be called. sockfs will then call
18273 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18274 		 * we need to do the allocb up here because we have to
18275 		 * make sure rq->q_qinfo->qi_qclose still points to the
18276 		 * correct function (tcpclose_accept) in case allocb
18277 		 * fails.
18278 		 */
18279 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18280 		if (opt_mp == NULL) {
18281 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18282 			if (mp != NULL)
18283 				putnext(rq, mp);
18284 			return;
18285 		}
18286 
18287 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18288 		    &eager, conn_res->OPT_length);
18289 		PRIM_type = conn_res->PRIM_type;
18290 		mp->b_datap->db_type = M_PCPROTO;
18291 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18292 		ok = (struct T_ok_ack *)mp->b_rptr;
18293 		ok->PRIM_type = T_OK_ACK;
18294 		ok->CORRECT_prim = PRIM_type;
18295 		econnp = eager->tcp_connp;
18296 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18297 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18298 		eager->tcp_rq = rq;
18299 		eager->tcp_wq = q;
18300 		rq->q_ptr = econnp;
18301 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18302 		q->q_ptr = econnp;
18303 		q->q_qinfo = &tcp_winit;
18304 		listener = eager->tcp_listener;
18305 		eager->tcp_issocket = B_TRUE;
18306 
18307 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18308 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18309 		ASSERT(econnp->conn_netstack ==
18310 		    listener->tcp_connp->conn_netstack);
18311 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18312 
18313 		/* Put the ref for IP */
18314 		CONN_INC_REF(econnp);
18315 
18316 		/*
18317 		 * We should have minimum of 3 references on the conn
18318 		 * at this point. One each for TCP and IP and one for
18319 		 * the T_conn_ind that was sent up when the 3-way handshake
18320 		 * completed. In the normal case we would also have another
18321 		 * reference (making a total of 4) for the conn being in the
18322 		 * classifier hash list. However the eager could have received
18323 		 * an RST subsequently and tcp_closei_local could have removed
18324 		 * the eager from the classifier hash list, hence we can't
18325 		 * assert that reference.
18326 		 */
18327 		ASSERT(econnp->conn_ref >= 3);
18328 
18329 		/*
18330 		 * Send the new local address also up to sockfs. There
18331 		 * should already be enough space in the mp that came
18332 		 * down from soaccept().
18333 		 */
18334 		if (eager->tcp_family == AF_INET) {
18335 			sin_t *sin;
18336 
18337 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18338 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18339 			sin = (sin_t *)mp->b_wptr;
18340 			mp->b_wptr += sizeof (sin_t);
18341 			sin->sin_family = AF_INET;
18342 			sin->sin_port = eager->tcp_lport;
18343 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18344 		} else {
18345 			sin6_t *sin6;
18346 
18347 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18348 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18349 			sin6 = (sin6_t *)mp->b_wptr;
18350 			mp->b_wptr += sizeof (sin6_t);
18351 			sin6->sin6_family = AF_INET6;
18352 			sin6->sin6_port = eager->tcp_lport;
18353 			if (eager->tcp_ipversion == IPV4_VERSION) {
18354 				sin6->sin6_flowinfo = 0;
18355 				IN6_IPADDR_TO_V4MAPPED(
18356 				    eager->tcp_ipha->ipha_src,
18357 				    &sin6->sin6_addr);
18358 			} else {
18359 				ASSERT(eager->tcp_ip6h != NULL);
18360 				sin6->sin6_flowinfo =
18361 				    eager->tcp_ip6h->ip6_vcf &
18362 				    ~IPV6_VERS_AND_FLOW_MASK;
18363 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18364 			}
18365 			sin6->sin6_scope_id = 0;
18366 			sin6->__sin6_src_id = 0;
18367 		}
18368 
18369 		putnext(rq, mp);
18370 
18371 		opt_mp->b_datap->db_type = M_SETOPTS;
18372 		opt_mp->b_wptr += sizeof (struct stroptions);
18373 
18374 		/*
18375 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18376 		 * from listener to acceptor. The message is chained on the
18377 		 * bind_mp which tcp_rput_other will send down to IP.
18378 		 */
18379 		if (listener->tcp_bound_if != 0) {
18380 			/* allocate optmgmt req */
18381 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18382 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18383 			    sizeof (int));
18384 			if (mp != NULL)
18385 				linkb(opt_mp, mp);
18386 		}
18387 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18388 			uint_t on = 1;
18389 
18390 			/* allocate optmgmt req */
18391 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18392 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18393 			if (mp != NULL)
18394 				linkb(opt_mp, mp);
18395 		}
18396 
18397 
18398 		mutex_enter(&listener->tcp_eager_lock);
18399 
18400 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18401 
18402 			tcp_t *tail;
18403 			tcp_t *tcp;
18404 			mblk_t *mp1;
18405 
18406 			tcp = listener->tcp_eager_prev_q0;
18407 			/*
18408 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18409 			 * deferred T_conn_ind queue. We need to get to the head
18410 			 * of the queue in order to send up T_conn_ind the same
18411 			 * order as how the 3WHS is completed.
18412 			 */
18413 			while (tcp != listener) {
18414 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18415 				    !tcp->tcp_kssl_pending)
18416 					break;
18417 				else
18418 					tcp = tcp->tcp_eager_prev_q0;
18419 			}
18420 			/* None of the pending eagers can be sent up now */
18421 			if (tcp == listener)
18422 				goto no_more_eagers;
18423 
18424 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18425 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18426 			/* Move from q0 to q */
18427 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18428 			listener->tcp_conn_req_cnt_q0--;
18429 			listener->tcp_conn_req_cnt_q++;
18430 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18431 			    tcp->tcp_eager_prev_q0;
18432 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18433 			    tcp->tcp_eager_next_q0;
18434 			tcp->tcp_eager_prev_q0 = NULL;
18435 			tcp->tcp_eager_next_q0 = NULL;
18436 			tcp->tcp_conn_def_q0 = B_FALSE;
18437 
18438 			/* Make sure the tcp isn't in the list of droppables */
18439 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18440 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18441 
18442 			/*
18443 			 * Insert at end of the queue because sockfs sends
18444 			 * down T_CONN_RES in chronological order. Leaving
18445 			 * the older conn indications at front of the queue
18446 			 * helps reducing search time.
18447 			 */
18448 			tail = listener->tcp_eager_last_q;
18449 			if (tail != NULL) {
18450 				tail->tcp_eager_next_q = tcp;
18451 			} else {
18452 				listener->tcp_eager_next_q = tcp;
18453 			}
18454 			listener->tcp_eager_last_q = tcp;
18455 			tcp->tcp_eager_next_q = NULL;
18456 
18457 			/* Need to get inside the listener perimeter */
18458 			CONN_INC_REF(listener->tcp_connp);
18459 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18460 			    tcp_send_pending, listener->tcp_connp,
18461 			    SQTAG_TCP_SEND_PENDING);
18462 		}
18463 no_more_eagers:
18464 		tcp_eager_unlink(eager);
18465 		mutex_exit(&listener->tcp_eager_lock);
18466 
18467 		/*
18468 		 * At this point, the eager is detached from the listener
18469 		 * but we still have an extra refs on eager (apart from the
18470 		 * usual tcp references). The ref was placed in tcp_rput_data
18471 		 * before sending the conn_ind in tcp_send_conn_ind.
18472 		 * The ref will be dropped in tcp_accept_finish().
18473 		 */
18474 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18475 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18476 		return;
18477 	default:
18478 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18479 		if (mp != NULL)
18480 			putnext(rq, mp);
18481 		return;
18482 	}
18483 }
18484 
18485 static int
18486 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18487 {
18488 	sin_t *sin = (sin_t *)sa;
18489 	sin6_t *sin6 = (sin6_t *)sa;
18490 
18491 	switch (tcp->tcp_family) {
18492 	case AF_INET:
18493 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18494 
18495 		if (*salenp < sizeof (sin_t))
18496 			return (EINVAL);
18497 
18498 		*sin = sin_null;
18499 		sin->sin_family = AF_INET;
18500 		sin->sin_port = tcp->tcp_lport;
18501 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18502 		break;
18503 
18504 	case AF_INET6:
18505 		if (*salenp < sizeof (sin6_t))
18506 			return (EINVAL);
18507 
18508 		*sin6 = sin6_null;
18509 		sin6->sin6_family = AF_INET6;
18510 		sin6->sin6_port = tcp->tcp_lport;
18511 		if (tcp->tcp_ipversion == IPV4_VERSION) {
18512 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18513 			    &sin6->sin6_addr);
18514 		} else {
18515 			sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18516 		}
18517 		break;
18518 	}
18519 
18520 	return (0);
18521 }
18522 
18523 static int
18524 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18525 {
18526 	sin_t *sin = (sin_t *)sa;
18527 	sin6_t *sin6 = (sin6_t *)sa;
18528 
18529 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18530 		return (ENOTCONN);
18531 
18532 	switch (tcp->tcp_family) {
18533 	case AF_INET:
18534 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18535 
18536 		if (*salenp < sizeof (sin_t))
18537 			return (EINVAL);
18538 
18539 		*sin = sin_null;
18540 		sin->sin_family = AF_INET;
18541 		sin->sin_port = tcp->tcp_fport;
18542 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18543 		    sin->sin_addr.s_addr);
18544 		break;
18545 
18546 	case AF_INET6:
18547 		if (*salenp < sizeof (sin6_t))
18548 			return (EINVAL);
18549 
18550 		*sin6 = sin6_null;
18551 		sin6->sin6_family = AF_INET6;
18552 		sin6->sin6_port = tcp->tcp_fport;
18553 		sin6->sin6_addr = tcp->tcp_remote_v6;
18554 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18555 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18556 			    ~IPV6_VERS_AND_FLOW_MASK;
18557 		}
18558 		break;
18559 	}
18560 
18561 	return (0);
18562 }
18563 
18564 /*
18565  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18566  */
18567 static void
18568 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18569 {
18570 	void	*data;
18571 	mblk_t	*datamp = mp->b_cont;
18572 	tcp_t	*tcp = Q_TO_TCP(q);
18573 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18574 
18575 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18576 		cmdp->cb_error = EPROTO;
18577 		qreply(q, mp);
18578 		return;
18579 	}
18580 
18581 	data = datamp->b_rptr;
18582 
18583 	switch (cmdp->cb_cmd) {
18584 	case TI_GETPEERNAME:
18585 		cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len);
18586 		break;
18587 	case TI_GETMYNAME:
18588 		cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len);
18589 		break;
18590 	default:
18591 		cmdp->cb_error = EINVAL;
18592 		break;
18593 	}
18594 
18595 	qreply(q, mp);
18596 }
18597 
18598 void
18599 tcp_wput(queue_t *q, mblk_t *mp)
18600 {
18601 	conn_t	*connp = Q_TO_CONN(q);
18602 	tcp_t	*tcp;
18603 	void (*output_proc)();
18604 	t_scalar_t type;
18605 	uchar_t *rptr;
18606 	struct iocblk	*iocp;
18607 	uint32_t	msize;
18608 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18609 
18610 	ASSERT(connp->conn_ref >= 2);
18611 
18612 	switch (DB_TYPE(mp)) {
18613 	case M_DATA:
18614 		tcp = connp->conn_tcp;
18615 		ASSERT(tcp != NULL);
18616 
18617 		msize = msgdsize(mp);
18618 
18619 		mutex_enter(&tcp->tcp_non_sq_lock);
18620 		tcp->tcp_squeue_bytes += msize;
18621 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18622 			tcp_setqfull(tcp);
18623 		}
18624 		mutex_exit(&tcp->tcp_non_sq_lock);
18625 
18626 		CONN_INC_REF(connp);
18627 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18628 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18629 		return;
18630 
18631 	case M_CMD:
18632 		tcp_wput_cmdblk(q, mp);
18633 		return;
18634 
18635 	case M_PROTO:
18636 	case M_PCPROTO:
18637 		/*
18638 		 * if it is a snmp message, don't get behind the squeue
18639 		 */
18640 		tcp = connp->conn_tcp;
18641 		rptr = mp->b_rptr;
18642 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18643 			type = ((union T_primitives *)rptr)->type;
18644 		} else {
18645 			if (tcp->tcp_debug) {
18646 				(void) strlog(TCP_MOD_ID, 0, 1,
18647 				    SL_ERROR|SL_TRACE,
18648 				    "tcp_wput_proto, dropping one...");
18649 			}
18650 			freemsg(mp);
18651 			return;
18652 		}
18653 		if (type == T_SVR4_OPTMGMT_REQ) {
18654 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18655 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18656 			    cr)) {
18657 				/*
18658 				 * This was a SNMP request
18659 				 */
18660 				return;
18661 			} else {
18662 				output_proc = tcp_wput_proto;
18663 			}
18664 		} else {
18665 			output_proc = tcp_wput_proto;
18666 		}
18667 		break;
18668 	case M_IOCTL:
18669 		/*
18670 		 * Most ioctls can be processed right away without going via
18671 		 * squeues - process them right here. Those that do require
18672 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18673 		 * are processed by tcp_wput_ioctl().
18674 		 */
18675 		iocp = (struct iocblk *)mp->b_rptr;
18676 		tcp = connp->conn_tcp;
18677 
18678 		switch (iocp->ioc_cmd) {
18679 		case TCP_IOC_ABORT_CONN:
18680 			tcp_ioctl_abort_conn(q, mp);
18681 			return;
18682 		case TI_GETPEERNAME:
18683 		case TI_GETMYNAME:
18684 			mi_copyin(q, mp, NULL,
18685 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18686 			return;
18687 		case ND_SET:
18688 			/* nd_getset does the necessary checks */
18689 		case ND_GET:
18690 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18691 				CALL_IP_WPUT(connp, q, mp);
18692 				return;
18693 			}
18694 			qreply(q, mp);
18695 			return;
18696 		case TCP_IOC_DEFAULT_Q:
18697 			/*
18698 			 * Wants to be the default wq. Check the credentials
18699 			 * first, the rest is executed via squeue.
18700 			 */
18701 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18702 				iocp->ioc_error = EPERM;
18703 				iocp->ioc_count = 0;
18704 				mp->b_datap->db_type = M_IOCACK;
18705 				qreply(q, mp);
18706 				return;
18707 			}
18708 			output_proc = tcp_wput_ioctl;
18709 			break;
18710 		default:
18711 			output_proc = tcp_wput_ioctl;
18712 			break;
18713 		}
18714 		break;
18715 	default:
18716 		output_proc = tcp_wput_nondata;
18717 		break;
18718 	}
18719 
18720 	CONN_INC_REF(connp);
18721 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18722 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18723 }
18724 
18725 /*
18726  * Initial STREAMS write side put() procedure for sockets. It tries to
18727  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18728  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18729  * are handled by tcp_wput() as usual.
18730  *
18731  * All further messages will also be handled by tcp_wput() because we cannot
18732  * be sure that the above short cut is safe later.
18733  */
18734 static void
18735 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18736 {
18737 	conn_t			*connp = Q_TO_CONN(wq);
18738 	tcp_t			*tcp = connp->conn_tcp;
18739 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18740 
18741 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18742 	wq->q_qinfo = &tcp_winit;
18743 
18744 	ASSERT(IPCL_IS_TCP(connp));
18745 	ASSERT(TCP_IS_SOCKET(tcp));
18746 
18747 	if (DB_TYPE(mp) == M_PCPROTO &&
18748 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18749 	    car->PRIM_type == T_CAPABILITY_REQ) {
18750 		tcp_capability_req(tcp, mp);
18751 		return;
18752 	}
18753 
18754 	tcp_wput(wq, mp);
18755 }
18756 
18757 static boolean_t
18758 tcp_zcopy_check(tcp_t *tcp)
18759 {
18760 	conn_t	*connp = tcp->tcp_connp;
18761 	ire_t	*ire;
18762 	boolean_t	zc_enabled = B_FALSE;
18763 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18764 
18765 	if (do_tcpzcopy == 2)
18766 		zc_enabled = B_TRUE;
18767 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18768 	    IPCL_IS_CONNECTED(connp) &&
18769 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18770 	    connp->conn_dontroute == 0 &&
18771 	    !connp->conn_nexthop_set &&
18772 	    connp->conn_outgoing_ill == NULL &&
18773 	    connp->conn_nofailover_ill == NULL &&
18774 	    do_tcpzcopy == 1) {
18775 		/*
18776 		 * the checks above  closely resemble the fast path checks
18777 		 * in tcp_send_data().
18778 		 */
18779 		mutex_enter(&connp->conn_lock);
18780 		ire = connp->conn_ire_cache;
18781 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18782 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18783 			IRE_REFHOLD(ire);
18784 			if (ire->ire_stq != NULL) {
18785 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18786 
18787 				zc_enabled = ill && (ill->ill_capabilities &
18788 				    ILL_CAPAB_ZEROCOPY) &&
18789 				    (ill->ill_zerocopy_capab->
18790 				    ill_zerocopy_flags != 0);
18791 			}
18792 			IRE_REFRELE(ire);
18793 		}
18794 		mutex_exit(&connp->conn_lock);
18795 	}
18796 	tcp->tcp_snd_zcopy_on = zc_enabled;
18797 	if (!TCP_IS_DETACHED(tcp)) {
18798 		if (zc_enabled) {
18799 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18800 			TCP_STAT(tcps, tcp_zcopy_on);
18801 		} else {
18802 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18803 			TCP_STAT(tcps, tcp_zcopy_off);
18804 		}
18805 	}
18806 	return (zc_enabled);
18807 }
18808 
18809 static mblk_t *
18810 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18811 {
18812 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18813 
18814 	if (do_tcpzcopy == 2)
18815 		return (bp);
18816 	else if (tcp->tcp_snd_zcopy_on) {
18817 		tcp->tcp_snd_zcopy_on = B_FALSE;
18818 		if (!TCP_IS_DETACHED(tcp)) {
18819 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18820 			TCP_STAT(tcps, tcp_zcopy_disable);
18821 		}
18822 	}
18823 	return (tcp_zcopy_backoff(tcp, bp, 0));
18824 }
18825 
18826 /*
18827  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18828  * the original desballoca'ed segmapped mblk.
18829  */
18830 static mblk_t *
18831 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18832 {
18833 	mblk_t *head, *tail, *nbp;
18834 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18835 
18836 	if (IS_VMLOANED_MBLK(bp)) {
18837 		TCP_STAT(tcps, tcp_zcopy_backoff);
18838 		if ((head = copyb(bp)) == NULL) {
18839 			/* fail to backoff; leave it for the next backoff */
18840 			tcp->tcp_xmit_zc_clean = B_FALSE;
18841 			return (bp);
18842 		}
18843 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18844 			if (fix_xmitlist)
18845 				tcp_zcopy_notify(tcp);
18846 			else
18847 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18848 		}
18849 		nbp = bp->b_cont;
18850 		if (fix_xmitlist) {
18851 			head->b_prev = bp->b_prev;
18852 			head->b_next = bp->b_next;
18853 			if (tcp->tcp_xmit_tail == bp)
18854 				tcp->tcp_xmit_tail = head;
18855 		}
18856 		bp->b_next = NULL;
18857 		bp->b_prev = NULL;
18858 		freeb(bp);
18859 	} else {
18860 		head = bp;
18861 		nbp = bp->b_cont;
18862 	}
18863 	tail = head;
18864 	while (nbp) {
18865 		if (IS_VMLOANED_MBLK(nbp)) {
18866 			TCP_STAT(tcps, tcp_zcopy_backoff);
18867 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18868 				tcp->tcp_xmit_zc_clean = B_FALSE;
18869 				tail->b_cont = nbp;
18870 				return (head);
18871 			}
18872 			tail = tail->b_cont;
18873 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18874 				if (fix_xmitlist)
18875 					tcp_zcopy_notify(tcp);
18876 				else
18877 					tail->b_datap->db_struioflag |=
18878 					    STRUIO_ZCNOTIFY;
18879 			}
18880 			bp = nbp;
18881 			nbp = nbp->b_cont;
18882 			if (fix_xmitlist) {
18883 				tail->b_prev = bp->b_prev;
18884 				tail->b_next = bp->b_next;
18885 				if (tcp->tcp_xmit_tail == bp)
18886 					tcp->tcp_xmit_tail = tail;
18887 			}
18888 			bp->b_next = NULL;
18889 			bp->b_prev = NULL;
18890 			freeb(bp);
18891 		} else {
18892 			tail->b_cont = nbp;
18893 			tail = nbp;
18894 			nbp = nbp->b_cont;
18895 		}
18896 	}
18897 	if (fix_xmitlist) {
18898 		tcp->tcp_xmit_last = tail;
18899 		tcp->tcp_xmit_zc_clean = B_TRUE;
18900 	}
18901 	return (head);
18902 }
18903 
18904 static void
18905 tcp_zcopy_notify(tcp_t *tcp)
18906 {
18907 	struct stdata	*stp;
18908 
18909 	if (tcp->tcp_detached)
18910 		return;
18911 	stp = STREAM(tcp->tcp_rq);
18912 	mutex_enter(&stp->sd_lock);
18913 	stp->sd_flag |= STZCNOTIFY;
18914 	cv_broadcast(&stp->sd_zcopy_wait);
18915 	mutex_exit(&stp->sd_lock);
18916 }
18917 
18918 static boolean_t
18919 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18920 {
18921 	ire_t	*ire;
18922 	conn_t	*connp = tcp->tcp_connp;
18923 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18924 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18925 
18926 	mutex_enter(&connp->conn_lock);
18927 	ire = connp->conn_ire_cache;
18928 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18929 
18930 	if ((ire != NULL) &&
18931 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18932 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18933 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18934 		IRE_REFHOLD(ire);
18935 		mutex_exit(&connp->conn_lock);
18936 	} else {
18937 		boolean_t cached = B_FALSE;
18938 		ts_label_t *tsl;
18939 
18940 		/* force a recheck later on */
18941 		tcp->tcp_ire_ill_check_done = B_FALSE;
18942 
18943 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18944 		connp->conn_ire_cache = NULL;
18945 		mutex_exit(&connp->conn_lock);
18946 
18947 		if (ire != NULL)
18948 			IRE_REFRELE_NOTR(ire);
18949 
18950 		tsl = crgetlabel(CONN_CRED(connp));
18951 		ire = (dst ?
18952 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18953 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18954 		    connp->conn_zoneid, tsl, ipst));
18955 
18956 		if (ire == NULL) {
18957 			TCP_STAT(tcps, tcp_ire_null);
18958 			return (B_FALSE);
18959 		}
18960 
18961 		IRE_REFHOLD_NOTR(ire);
18962 		/*
18963 		 * Since we are inside the squeue, there cannot be another
18964 		 * thread in TCP trying to set the conn_ire_cache now.  The
18965 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18966 		 * unplumb thread has not yet started cleaning up the conns.
18967 		 * Hence we don't need to grab the conn lock.
18968 		 */
18969 		if (CONN_CACHE_IRE(connp)) {
18970 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18971 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18972 				TCP_CHECK_IREINFO(tcp, ire);
18973 				connp->conn_ire_cache = ire;
18974 				cached = B_TRUE;
18975 			}
18976 			rw_exit(&ire->ire_bucket->irb_lock);
18977 		}
18978 
18979 		/*
18980 		 * We can continue to use the ire but since it was
18981 		 * not cached, we should drop the extra reference.
18982 		 */
18983 		if (!cached)
18984 			IRE_REFRELE_NOTR(ire);
18985 
18986 		/*
18987 		 * Rampart note: no need to select a new label here, since
18988 		 * labels are not allowed to change during the life of a TCP
18989 		 * connection.
18990 		 */
18991 	}
18992 
18993 	*irep = ire;
18994 
18995 	return (B_TRUE);
18996 }
18997 
18998 /*
18999  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19000  *
19001  * 0 = success;
19002  * 1 = failed to find ire and ill.
19003  */
19004 static boolean_t
19005 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19006 {
19007 	ipha_t		*ipha;
19008 	ipaddr_t	dst;
19009 	ire_t		*ire;
19010 	ill_t		*ill;
19011 	conn_t		*connp = tcp->tcp_connp;
19012 	mblk_t		*ire_fp_mp;
19013 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19014 
19015 	if (mp != NULL)
19016 		ipha = (ipha_t *)mp->b_rptr;
19017 	else
19018 		ipha = tcp->tcp_ipha;
19019 	dst = ipha->ipha_dst;
19020 
19021 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19022 		return (B_FALSE);
19023 
19024 	if ((ire->ire_flags & RTF_MULTIRT) ||
19025 	    (ire->ire_stq == NULL) ||
19026 	    (ire->ire_nce == NULL) ||
19027 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19028 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19029 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19030 		TCP_STAT(tcps, tcp_ip_ire_send);
19031 		IRE_REFRELE(ire);
19032 		return (B_FALSE);
19033 	}
19034 
19035 	ill = ire_to_ill(ire);
19036 	if (connp->conn_outgoing_ill != NULL) {
19037 		ill_t *conn_outgoing_ill = NULL;
19038 		/*
19039 		 * Choose a good ill in the group to send the packets on.
19040 		 */
19041 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
19042 		ill = ire_to_ill(ire);
19043 	}
19044 	ASSERT(ill != NULL);
19045 
19046 	if (!tcp->tcp_ire_ill_check_done) {
19047 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19048 		tcp->tcp_ire_ill_check_done = B_TRUE;
19049 	}
19050 
19051 	*irep = ire;
19052 	*illp = ill;
19053 
19054 	return (B_TRUE);
19055 }
19056 
19057 static void
19058 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19059 {
19060 	ipha_t		*ipha;
19061 	ipaddr_t	src;
19062 	ipaddr_t	dst;
19063 	uint32_t	cksum;
19064 	ire_t		*ire;
19065 	uint16_t	*up;
19066 	ill_t		*ill;
19067 	conn_t		*connp = tcp->tcp_connp;
19068 	uint32_t	hcksum_txflags = 0;
19069 	mblk_t		*ire_fp_mp;
19070 	uint_t		ire_fp_mp_len;
19071 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19072 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19073 
19074 	ASSERT(DB_TYPE(mp) == M_DATA);
19075 
19076 	if (DB_CRED(mp) == NULL)
19077 		mblk_setcred(mp, CONN_CRED(connp));
19078 
19079 	ipha = (ipha_t *)mp->b_rptr;
19080 	src = ipha->ipha_src;
19081 	dst = ipha->ipha_dst;
19082 
19083 	/*
19084 	 * Drop off fast path for IPv6 and also if options are present or
19085 	 * we need to resolve a TS label.
19086 	 */
19087 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19088 	    !IPCL_IS_CONNECTED(connp) ||
19089 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19090 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19091 	    !connp->conn_ulp_labeled ||
19092 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19093 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19094 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19095 		if (tcp->tcp_snd_zcopy_aware)
19096 			mp = tcp_zcopy_disable(tcp, mp);
19097 		TCP_STAT(tcps, tcp_ip_send);
19098 		CALL_IP_WPUT(connp, q, mp);
19099 		return;
19100 	}
19101 
19102 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19103 		if (tcp->tcp_snd_zcopy_aware)
19104 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19105 		CALL_IP_WPUT(connp, q, mp);
19106 		return;
19107 	}
19108 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19109 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19110 
19111 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19112 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19113 #ifndef _BIG_ENDIAN
19114 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19115 #endif
19116 
19117 	/*
19118 	 * Check to see if we need to re-enable LSO/MDT for this connection
19119 	 * because it was previously disabled due to changes in the ill;
19120 	 * note that by doing it here, this re-enabling only applies when
19121 	 * the packet is not dispatched through CALL_IP_WPUT().
19122 	 *
19123 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19124 	 * case, since that's how we ended up here.  For IPv6, we do the
19125 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19126 	 */
19127 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19128 		/*
19129 		 * Restore LSO for this connection, so that next time around
19130 		 * it is eligible to go through tcp_lsosend() path again.
19131 		 */
19132 		TCP_STAT(tcps, tcp_lso_enabled);
19133 		tcp->tcp_lso = B_TRUE;
19134 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19135 		    "interface %s\n", (void *)connp, ill->ill_name));
19136 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19137 		/*
19138 		 * Restore MDT for this connection, so that next time around
19139 		 * it is eligible to go through tcp_multisend() path again.
19140 		 */
19141 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19142 		tcp->tcp_mdt = B_TRUE;
19143 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19144 		    "interface %s\n", (void *)connp, ill->ill_name));
19145 	}
19146 
19147 	if (tcp->tcp_snd_zcopy_aware) {
19148 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19149 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19150 			mp = tcp_zcopy_disable(tcp, mp);
19151 		/*
19152 		 * we shouldn't need to reset ipha as the mp containing
19153 		 * ipha should never be a zero-copy mp.
19154 		 */
19155 	}
19156 
19157 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19158 		ASSERT(ill->ill_hcksum_capab != NULL);
19159 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19160 	}
19161 
19162 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19163 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19164 
19165 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19166 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19167 
19168 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19169 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19170 
19171 	/* Software checksum? */
19172 	if (DB_CKSUMFLAGS(mp) == 0) {
19173 		TCP_STAT(tcps, tcp_out_sw_cksum);
19174 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19175 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19176 	}
19177 
19178 	ipha->ipha_fragment_offset_and_flags |=
19179 	    (uint32_t)htons(ire->ire_frag_flag);
19180 
19181 	/* Calculate IP header checksum if hardware isn't capable */
19182 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19183 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19184 		    ((uint16_t *)ipha)[4]);
19185 	}
19186 
19187 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19188 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19189 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19190 
19191 	UPDATE_OB_PKT_COUNT(ire);
19192 	ire->ire_last_used_time = lbolt;
19193 
19194 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19195 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19196 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19197 	    ntohs(ipha->ipha_length));
19198 
19199 	if (ILL_DLS_CAPABLE(ill)) {
19200 		/*
19201 		 * Send the packet directly to DLD, where it may be queued
19202 		 * depending on the availability of transmit resources at
19203 		 * the media layer.
19204 		 */
19205 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19206 	} else {
19207 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19208 		DTRACE_PROBE4(ip4__physical__out__start,
19209 		    ill_t *, NULL, ill_t *, out_ill,
19210 		    ipha_t *, ipha, mblk_t *, mp);
19211 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19212 		    ipst->ips_ipv4firewall_physical_out,
19213 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19214 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19215 		if (mp != NULL)
19216 			putnext(ire->ire_stq, mp);
19217 	}
19218 	IRE_REFRELE(ire);
19219 }
19220 
19221 /*
19222  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19223  * if the receiver shrinks the window, i.e. moves the right window to the
19224  * left, the we should not send new data, but should retransmit normally the
19225  * old unacked data between suna and suna + swnd. We might has sent data
19226  * that is now outside the new window, pretend that we didn't send  it.
19227  */
19228 static void
19229 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19230 {
19231 	uint32_t	snxt = tcp->tcp_snxt;
19232 	mblk_t		*xmit_tail;
19233 	int32_t		offset;
19234 
19235 	ASSERT(shrunk_count > 0);
19236 
19237 	/* Pretend we didn't send the data outside the window */
19238 	snxt -= shrunk_count;
19239 
19240 	/* Get the mblk and the offset in it per the shrunk window */
19241 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19242 
19243 	ASSERT(xmit_tail != NULL);
19244 
19245 	/* Reset all the values per the now shrunk window */
19246 	tcp->tcp_snxt = snxt;
19247 	tcp->tcp_xmit_tail = xmit_tail;
19248 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19249 	    offset;
19250 	tcp->tcp_unsent += shrunk_count;
19251 
19252 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19253 		/*
19254 		 * Make sure the timer is running so that we will probe a zero
19255 		 * window.
19256 		 */
19257 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19258 }
19259 
19260 
19261 /*
19262  * The TCP normal data output path.
19263  * NOTE: the logic of the fast path is duplicated from this function.
19264  */
19265 static void
19266 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19267 {
19268 	int		len;
19269 	mblk_t		*local_time;
19270 	mblk_t		*mp1;
19271 	uint32_t	snxt;
19272 	int		tail_unsent;
19273 	int		tcpstate;
19274 	int		usable = 0;
19275 	mblk_t		*xmit_tail;
19276 	queue_t		*q = tcp->tcp_wq;
19277 	int32_t		mss;
19278 	int32_t		num_sack_blk = 0;
19279 	int32_t		tcp_hdr_len;
19280 	int32_t		tcp_tcp_hdr_len;
19281 	int		mdt_thres;
19282 	int		rc;
19283 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19284 	ip_stack_t	*ipst;
19285 
19286 	tcpstate = tcp->tcp_state;
19287 	if (mp == NULL) {
19288 		/*
19289 		 * tcp_wput_data() with NULL mp should only be called when
19290 		 * there is unsent data.
19291 		 */
19292 		ASSERT(tcp->tcp_unsent > 0);
19293 		/* Really tacky... but we need this for detached closes. */
19294 		len = tcp->tcp_unsent;
19295 		goto data_null;
19296 	}
19297 
19298 #if CCS_STATS
19299 	wrw_stats.tot.count++;
19300 	wrw_stats.tot.bytes += msgdsize(mp);
19301 #endif
19302 	ASSERT(mp->b_datap->db_type == M_DATA);
19303 	/*
19304 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19305 	 * or before a connection attempt has begun.
19306 	 */
19307 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19308 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19309 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19310 #ifdef DEBUG
19311 			cmn_err(CE_WARN,
19312 			    "tcp_wput_data: data after ordrel, %s",
19313 			    tcp_display(tcp, NULL,
19314 			    DISP_ADDR_AND_PORT));
19315 #else
19316 			if (tcp->tcp_debug) {
19317 				(void) strlog(TCP_MOD_ID, 0, 1,
19318 				    SL_TRACE|SL_ERROR,
19319 				    "tcp_wput_data: data after ordrel, %s\n",
19320 				    tcp_display(tcp, NULL,
19321 				    DISP_ADDR_AND_PORT));
19322 			}
19323 #endif /* DEBUG */
19324 		}
19325 		if (tcp->tcp_snd_zcopy_aware &&
19326 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19327 			tcp_zcopy_notify(tcp);
19328 		freemsg(mp);
19329 		mutex_enter(&tcp->tcp_non_sq_lock);
19330 		if (tcp->tcp_flow_stopped &&
19331 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19332 			tcp_clrqfull(tcp);
19333 		}
19334 		mutex_exit(&tcp->tcp_non_sq_lock);
19335 		return;
19336 	}
19337 
19338 	/* Strip empties */
19339 	for (;;) {
19340 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19341 		    (uintptr_t)INT_MAX);
19342 		len = (int)(mp->b_wptr - mp->b_rptr);
19343 		if (len > 0)
19344 			break;
19345 		mp1 = mp;
19346 		mp = mp->b_cont;
19347 		freeb(mp1);
19348 		if (!mp) {
19349 			return;
19350 		}
19351 	}
19352 
19353 	/* If we are the first on the list ... */
19354 	if (tcp->tcp_xmit_head == NULL) {
19355 		tcp->tcp_xmit_head = mp;
19356 		tcp->tcp_xmit_tail = mp;
19357 		tcp->tcp_xmit_tail_unsent = len;
19358 	} else {
19359 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19360 		struct datab *dp;
19361 
19362 		mp1 = tcp->tcp_xmit_last;
19363 		if (len < tcp_tx_pull_len &&
19364 		    (dp = mp1->b_datap)->db_ref == 1 &&
19365 		    dp->db_lim - mp1->b_wptr >= len) {
19366 			ASSERT(len > 0);
19367 			ASSERT(!mp1->b_cont);
19368 			if (len == 1) {
19369 				*mp1->b_wptr++ = *mp->b_rptr;
19370 			} else {
19371 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19372 				mp1->b_wptr += len;
19373 			}
19374 			if (mp1 == tcp->tcp_xmit_tail)
19375 				tcp->tcp_xmit_tail_unsent += len;
19376 			mp1->b_cont = mp->b_cont;
19377 			if (tcp->tcp_snd_zcopy_aware &&
19378 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19379 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19380 			freeb(mp);
19381 			mp = mp1;
19382 		} else {
19383 			tcp->tcp_xmit_last->b_cont = mp;
19384 		}
19385 		len += tcp->tcp_unsent;
19386 	}
19387 
19388 	/* Tack on however many more positive length mblks we have */
19389 	if ((mp1 = mp->b_cont) != NULL) {
19390 		do {
19391 			int tlen;
19392 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19393 			    (uintptr_t)INT_MAX);
19394 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19395 			if (tlen <= 0) {
19396 				mp->b_cont = mp1->b_cont;
19397 				freeb(mp1);
19398 			} else {
19399 				len += tlen;
19400 				mp = mp1;
19401 			}
19402 		} while ((mp1 = mp->b_cont) != NULL);
19403 	}
19404 	tcp->tcp_xmit_last = mp;
19405 	tcp->tcp_unsent = len;
19406 
19407 	if (urgent)
19408 		usable = 1;
19409 
19410 data_null:
19411 	snxt = tcp->tcp_snxt;
19412 	xmit_tail = tcp->tcp_xmit_tail;
19413 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19414 
19415 	/*
19416 	 * Note that tcp_mss has been adjusted to take into account the
19417 	 * timestamp option if applicable.  Because SACK options do not
19418 	 * appear in every TCP segments and they are of variable lengths,
19419 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19420 	 * the actual segment length when we need to send a segment which
19421 	 * includes SACK options.
19422 	 */
19423 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19424 		int32_t	opt_len;
19425 
19426 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19427 		    tcp->tcp_num_sack_blk);
19428 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19429 		    2 + TCPOPT_HEADER_LEN;
19430 		mss = tcp->tcp_mss - opt_len;
19431 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19432 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19433 	} else {
19434 		mss = tcp->tcp_mss;
19435 		tcp_hdr_len = tcp->tcp_hdr_len;
19436 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19437 	}
19438 
19439 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19440 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19441 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19442 	}
19443 	if (tcpstate == TCPS_SYN_RCVD) {
19444 		/*
19445 		 * The three-way connection establishment handshake is not
19446 		 * complete yet. We want to queue the data for transmission
19447 		 * after entering ESTABLISHED state (RFC793). A jump to
19448 		 * "done" label effectively leaves data on the queue.
19449 		 */
19450 		goto done;
19451 	} else {
19452 		int usable_r;
19453 
19454 		/*
19455 		 * In the special case when cwnd is zero, which can only
19456 		 * happen if the connection is ECN capable, return now.
19457 		 * New segments is sent using tcp_timer().  The timer
19458 		 * is set in tcp_rput_data().
19459 		 */
19460 		if (tcp->tcp_cwnd == 0) {
19461 			/*
19462 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19463 			 * finished.
19464 			 */
19465 			ASSERT(tcp->tcp_ecn_ok ||
19466 			    tcp->tcp_state < TCPS_ESTABLISHED);
19467 			return;
19468 		}
19469 
19470 		/* NOTE: trouble if xmitting while SYN not acked? */
19471 		usable_r = snxt - tcp->tcp_suna;
19472 		usable_r = tcp->tcp_swnd - usable_r;
19473 
19474 		/*
19475 		 * Check if the receiver has shrunk the window.  If
19476 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19477 		 * cannot be set as there is unsent data, so FIN cannot
19478 		 * be sent out.  Otherwise, we need to take into account
19479 		 * of FIN as it consumes an "invisible" sequence number.
19480 		 */
19481 		ASSERT(tcp->tcp_fin_sent == 0);
19482 		if (usable_r < 0) {
19483 			/*
19484 			 * The receiver has shrunk the window and we have sent
19485 			 * -usable_r date beyond the window, re-adjust.
19486 			 *
19487 			 * If TCP window scaling is enabled, there can be
19488 			 * round down error as the advertised receive window
19489 			 * is actually right shifted n bits.  This means that
19490 			 * the lower n bits info is wiped out.  It will look
19491 			 * like the window is shrunk.  Do a check here to
19492 			 * see if the shrunk amount is actually within the
19493 			 * error in window calculation.  If it is, just
19494 			 * return.  Note that this check is inside the
19495 			 * shrunk window check.  This makes sure that even
19496 			 * though tcp_process_shrunk_swnd() is not called,
19497 			 * we will stop further processing.
19498 			 */
19499 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19500 				tcp_process_shrunk_swnd(tcp, -usable_r);
19501 			}
19502 			return;
19503 		}
19504 
19505 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19506 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19507 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19508 
19509 		/* usable = MIN(usable, unsent) */
19510 		if (usable_r > len)
19511 			usable_r = len;
19512 
19513 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19514 		if (usable_r > 0) {
19515 			usable = usable_r;
19516 		} else {
19517 			/* Bypass all other unnecessary processing. */
19518 			goto done;
19519 		}
19520 	}
19521 
19522 	local_time = (mblk_t *)lbolt;
19523 
19524 	/*
19525 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19526 	 * BSD.  This is more in line with the true intent of Nagle.
19527 	 *
19528 	 * The conditions are:
19529 	 * 1. The amount of unsent data (or amount of data which can be
19530 	 *    sent, whichever is smaller) is less than Nagle limit.
19531 	 * 2. The last sent size is also less than Nagle limit.
19532 	 * 3. There is unack'ed data.
19533 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19534 	 *    Nagle algorithm.  This reduces the probability that urgent
19535 	 *    bytes get "merged" together.
19536 	 * 5. The app has not closed the connection.  This eliminates the
19537 	 *    wait time of the receiving side waiting for the last piece of
19538 	 *    (small) data.
19539 	 *
19540 	 * If all are satisified, exit without sending anything.  Note
19541 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19542 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19543 	 * 4095).
19544 	 */
19545 	if (usable < (int)tcp->tcp_naglim &&
19546 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19547 	    snxt != tcp->tcp_suna &&
19548 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19549 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19550 		goto done;
19551 	}
19552 
19553 	if (tcp->tcp_cork) {
19554 		/*
19555 		 * if the tcp->tcp_cork option is set, then we have to force
19556 		 * TCP not to send partial segment (smaller than MSS bytes).
19557 		 * We are calculating the usable now based on full mss and
19558 		 * will save the rest of remaining data for later.
19559 		 */
19560 		if (usable < mss)
19561 			goto done;
19562 		usable = (usable / mss) * mss;
19563 	}
19564 
19565 	/* Update the latest receive window size in TCP header. */
19566 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19567 	    tcp->tcp_tcph->th_win);
19568 
19569 	/*
19570 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19571 	 *
19572 	 * 1. Simple TCP/IP{v4,v6} (no options).
19573 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19574 	 * 3. If the TCP connection is in ESTABLISHED state.
19575 	 * 4. The TCP is not detached.
19576 	 *
19577 	 * If any of the above conditions have changed during the
19578 	 * connection, stop using LSO/MDT and restore the stream head
19579 	 * parameters accordingly.
19580 	 */
19581 	ipst = tcps->tcps_netstack->netstack_ip;
19582 
19583 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19584 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19585 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19586 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19587 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19588 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19589 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19590 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19591 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19592 		if (tcp->tcp_lso) {
19593 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19594 			tcp->tcp_lso = B_FALSE;
19595 		} else {
19596 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19597 			tcp->tcp_mdt = B_FALSE;
19598 		}
19599 
19600 		/* Anything other than detached is considered pathological */
19601 		if (!TCP_IS_DETACHED(tcp)) {
19602 			if (tcp->tcp_lso)
19603 				TCP_STAT(tcps, tcp_lso_disabled);
19604 			else
19605 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19606 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19607 		}
19608 	}
19609 
19610 	/* Use MDT if sendable amount is greater than the threshold */
19611 	if (tcp->tcp_mdt &&
19612 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19613 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19614 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19615 	    (tcp->tcp_valid_bits == 0 ||
19616 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19617 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19618 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19619 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19620 		    local_time, mdt_thres);
19621 	} else {
19622 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19623 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19624 		    local_time, INT_MAX);
19625 	}
19626 
19627 	/* Pretend that all we were trying to send really got sent */
19628 	if (rc < 0 && tail_unsent < 0) {
19629 		do {
19630 			xmit_tail = xmit_tail->b_cont;
19631 			xmit_tail->b_prev = local_time;
19632 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19633 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19634 			tail_unsent += (int)(xmit_tail->b_wptr -
19635 			    xmit_tail->b_rptr);
19636 		} while (tail_unsent < 0);
19637 	}
19638 done:;
19639 	tcp->tcp_xmit_tail = xmit_tail;
19640 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19641 	len = tcp->tcp_snxt - snxt;
19642 	if (len) {
19643 		/*
19644 		 * If new data was sent, need to update the notsack
19645 		 * list, which is, afterall, data blocks that have
19646 		 * not been sack'ed by the receiver.  New data is
19647 		 * not sack'ed.
19648 		 */
19649 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19650 			/* len is a negative value. */
19651 			tcp->tcp_pipe -= len;
19652 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19653 			    tcp->tcp_snxt, snxt,
19654 			    &(tcp->tcp_num_notsack_blk),
19655 			    &(tcp->tcp_cnt_notsack_list));
19656 		}
19657 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19658 		tcp->tcp_rack = tcp->tcp_rnxt;
19659 		tcp->tcp_rack_cnt = 0;
19660 		if ((snxt + len) == tcp->tcp_suna) {
19661 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19662 		}
19663 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19664 		/*
19665 		 * Didn't send anything. Make sure the timer is running
19666 		 * so that we will probe a zero window.
19667 		 */
19668 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19669 	}
19670 	/* Note that len is the amount we just sent but with a negative sign */
19671 	tcp->tcp_unsent += len;
19672 	mutex_enter(&tcp->tcp_non_sq_lock);
19673 	if (tcp->tcp_flow_stopped) {
19674 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19675 			tcp_clrqfull(tcp);
19676 		}
19677 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19678 		tcp_setqfull(tcp);
19679 	}
19680 	mutex_exit(&tcp->tcp_non_sq_lock);
19681 }
19682 
19683 /*
19684  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19685  * outgoing TCP header with the template header, as well as other
19686  * options such as time-stamp, ECN and/or SACK.
19687  */
19688 static void
19689 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19690 {
19691 	tcph_t *tcp_tmpl, *tcp_h;
19692 	uint32_t *dst, *src;
19693 	int hdrlen;
19694 
19695 	ASSERT(OK_32PTR(rptr));
19696 
19697 	/* Template header */
19698 	tcp_tmpl = tcp->tcp_tcph;
19699 
19700 	/* Header of outgoing packet */
19701 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19702 
19703 	/* dst and src are opaque 32-bit fields, used for copying */
19704 	dst = (uint32_t *)rptr;
19705 	src = (uint32_t *)tcp->tcp_iphc;
19706 	hdrlen = tcp->tcp_hdr_len;
19707 
19708 	/* Fill time-stamp option if needed */
19709 	if (tcp->tcp_snd_ts_ok) {
19710 		U32_TO_BE32((uint32_t)now,
19711 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19712 		U32_TO_BE32(tcp->tcp_ts_recent,
19713 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19714 	} else {
19715 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19716 	}
19717 
19718 	/*
19719 	 * Copy the template header; is this really more efficient than
19720 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19721 	 * but perhaps not for other scenarios.
19722 	 */
19723 	dst[0] = src[0];
19724 	dst[1] = src[1];
19725 	dst[2] = src[2];
19726 	dst[3] = src[3];
19727 	dst[4] = src[4];
19728 	dst[5] = src[5];
19729 	dst[6] = src[6];
19730 	dst[7] = src[7];
19731 	dst[8] = src[8];
19732 	dst[9] = src[9];
19733 	if (hdrlen -= 40) {
19734 		hdrlen >>= 2;
19735 		dst += 10;
19736 		src += 10;
19737 		do {
19738 			*dst++ = *src++;
19739 		} while (--hdrlen);
19740 	}
19741 
19742 	/*
19743 	 * Set the ECN info in the TCP header if it is not a zero
19744 	 * window probe.  Zero window probe is only sent in
19745 	 * tcp_wput_data() and tcp_timer().
19746 	 */
19747 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19748 		SET_ECT(tcp, rptr);
19749 
19750 		if (tcp->tcp_ecn_echo_on)
19751 			tcp_h->th_flags[0] |= TH_ECE;
19752 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19753 			tcp_h->th_flags[0] |= TH_CWR;
19754 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19755 		}
19756 	}
19757 
19758 	/* Fill in SACK options */
19759 	if (num_sack_blk > 0) {
19760 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19761 		sack_blk_t *tmp;
19762 		int32_t	i;
19763 
19764 		wptr[0] = TCPOPT_NOP;
19765 		wptr[1] = TCPOPT_NOP;
19766 		wptr[2] = TCPOPT_SACK;
19767 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19768 		    sizeof (sack_blk_t);
19769 		wptr += TCPOPT_REAL_SACK_LEN;
19770 
19771 		tmp = tcp->tcp_sack_list;
19772 		for (i = 0; i < num_sack_blk; i++) {
19773 			U32_TO_BE32(tmp[i].begin, wptr);
19774 			wptr += sizeof (tcp_seq);
19775 			U32_TO_BE32(tmp[i].end, wptr);
19776 			wptr += sizeof (tcp_seq);
19777 		}
19778 		tcp_h->th_offset_and_rsrvd[0] +=
19779 		    ((num_sack_blk * 2 + 1) << 4);
19780 	}
19781 }
19782 
19783 /*
19784  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19785  * the destination address and SAP attribute, and if necessary, the
19786  * hardware checksum offload attribute to a Multidata message.
19787  */
19788 static int
19789 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19790     const uint32_t start, const uint32_t stuff, const uint32_t end,
19791     const uint32_t flags, tcp_stack_t *tcps)
19792 {
19793 	/* Add global destination address & SAP attribute */
19794 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19795 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19796 		    "destination address+SAP\n"));
19797 
19798 		if (dlmp != NULL)
19799 			TCP_STAT(tcps, tcp_mdt_allocfail);
19800 		return (-1);
19801 	}
19802 
19803 	/* Add global hwcksum attribute */
19804 	if (hwcksum &&
19805 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19806 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19807 		    "checksum attribute\n"));
19808 
19809 		TCP_STAT(tcps, tcp_mdt_allocfail);
19810 		return (-1);
19811 	}
19812 
19813 	return (0);
19814 }
19815 
19816 /*
19817  * Smaller and private version of pdescinfo_t used specifically for TCP,
19818  * which allows for only two payload spans per packet.
19819  */
19820 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19821 
19822 /*
19823  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19824  * scheme, and returns one the following:
19825  *
19826  * -1 = failed allocation.
19827  *  0 = success; burst count reached, or usable send window is too small,
19828  *      and that we'd rather wait until later before sending again.
19829  */
19830 static int
19831 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19832     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19833     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19834     const int mdt_thres)
19835 {
19836 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19837 	multidata_t	*mmd;
19838 	uint_t		obsegs, obbytes, hdr_frag_sz;
19839 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19840 	int		num_burst_seg, max_pld;
19841 	pdesc_t		*pkt;
19842 	tcp_pdescinfo_t	tcp_pkt_info;
19843 	pdescinfo_t	*pkt_info;
19844 	int		pbuf_idx, pbuf_idx_nxt;
19845 	int		seg_len, len, spill, af;
19846 	boolean_t	add_buffer, zcopy, clusterwide;
19847 	boolean_t	buf_trunked = B_FALSE;
19848 	boolean_t	rconfirm = B_FALSE;
19849 	boolean_t	done = B_FALSE;
19850 	uint32_t	cksum;
19851 	uint32_t	hwcksum_flags;
19852 	ire_t		*ire = NULL;
19853 	ill_t		*ill;
19854 	ipha_t		*ipha;
19855 	ip6_t		*ip6h;
19856 	ipaddr_t	src, dst;
19857 	ill_zerocopy_capab_t *zc_cap = NULL;
19858 	uint16_t	*up;
19859 	int		err;
19860 	conn_t		*connp;
19861 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19862 	uchar_t		*pld_start;
19863 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19864 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19865 
19866 #ifdef	_BIG_ENDIAN
19867 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19868 #else
19869 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19870 #endif
19871 
19872 #define	PREP_NEW_MULTIDATA() {			\
19873 	mmd = NULL;				\
19874 	md_mp = md_hbuf = NULL;			\
19875 	cur_hdr_off = 0;			\
19876 	max_pld = tcp->tcp_mdt_max_pld;		\
19877 	pbuf_idx = pbuf_idx_nxt = -1;		\
19878 	add_buffer = B_TRUE;			\
19879 	zcopy = B_FALSE;			\
19880 }
19881 
19882 #define	PREP_NEW_PBUF() {			\
19883 	md_pbuf = md_pbuf_nxt = NULL;		\
19884 	pbuf_idx = pbuf_idx_nxt = -1;		\
19885 	cur_pld_off = 0;			\
19886 	first_snxt = *snxt;			\
19887 	ASSERT(*tail_unsent > 0);		\
19888 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19889 }
19890 
19891 	ASSERT(mdt_thres >= mss);
19892 	ASSERT(*usable > 0 && *usable > mdt_thres);
19893 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19894 	ASSERT(!TCP_IS_DETACHED(tcp));
19895 	ASSERT(tcp->tcp_valid_bits == 0 ||
19896 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19897 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19898 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19899 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19900 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19901 
19902 	connp = tcp->tcp_connp;
19903 	ASSERT(connp != NULL);
19904 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19905 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19906 
19907 	/*
19908 	 * Note that tcp will only declare at most 2 payload spans per
19909 	 * packet, which is much lower than the maximum allowable number
19910 	 * of packet spans per Multidata.  For this reason, we use the
19911 	 * privately declared and smaller descriptor info structure, in
19912 	 * order to save some stack space.
19913 	 */
19914 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19915 
19916 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19917 	if (af == AF_INET) {
19918 		dst = tcp->tcp_ipha->ipha_dst;
19919 		src = tcp->tcp_ipha->ipha_src;
19920 		ASSERT(!CLASSD(dst));
19921 	}
19922 	ASSERT(af == AF_INET ||
19923 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19924 
19925 	obsegs = obbytes = 0;
19926 	num_burst_seg = tcp->tcp_snd_burst;
19927 	md_mp_head = NULL;
19928 	PREP_NEW_MULTIDATA();
19929 
19930 	/*
19931 	 * Before we go on further, make sure there is an IRE that we can
19932 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19933 	 * in proceeding any further, and we should just hand everything
19934 	 * off to the legacy path.
19935 	 */
19936 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19937 		goto legacy_send_no_md;
19938 
19939 	ASSERT(ire != NULL);
19940 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19941 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19942 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19943 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19944 	/*
19945 	 * If we do support loopback for MDT (which requires modifications
19946 	 * to the receiving paths), the following assertions should go away,
19947 	 * and we would be sending the Multidata to loopback conn later on.
19948 	 */
19949 	ASSERT(!IRE_IS_LOCAL(ire));
19950 	ASSERT(ire->ire_stq != NULL);
19951 
19952 	ill = ire_to_ill(ire);
19953 	ASSERT(ill != NULL);
19954 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19955 
19956 	if (!tcp->tcp_ire_ill_check_done) {
19957 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19958 		tcp->tcp_ire_ill_check_done = B_TRUE;
19959 	}
19960 
19961 	/*
19962 	 * If the underlying interface conditions have changed, or if the
19963 	 * new interface does not support MDT, go back to legacy path.
19964 	 */
19965 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19966 		/* don't go through this path anymore for this connection */
19967 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19968 		tcp->tcp_mdt = B_FALSE;
19969 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19970 		    "interface %s\n", (void *)connp, ill->ill_name));
19971 		/* IRE will be released prior to returning */
19972 		goto legacy_send_no_md;
19973 	}
19974 
19975 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19976 		zc_cap = ill->ill_zerocopy_capab;
19977 
19978 	/*
19979 	 * Check if we can take tcp fast-path. Note that "incomplete"
19980 	 * ire's (where the link-layer for next hop is not resolved
19981 	 * or where the fast-path header in nce_fp_mp is not available
19982 	 * yet) are sent down the legacy (slow) path.
19983 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19984 	 */
19985 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19986 		/* IRE will be released prior to returning */
19987 		goto legacy_send_no_md;
19988 	}
19989 
19990 	/* go to legacy path if interface doesn't support zerocopy */
19991 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19992 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19993 		/* IRE will be released prior to returning */
19994 		goto legacy_send_no_md;
19995 	}
19996 
19997 	/* does the interface support hardware checksum offload? */
19998 	hwcksum_flags = 0;
19999 	if (ILL_HCKSUM_CAPABLE(ill) &&
20000 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20001 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20002 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20003 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20004 		    HCKSUM_IPHDRCKSUM)
20005 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20006 
20007 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20008 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20009 			hwcksum_flags |= HCK_FULLCKSUM;
20010 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20011 		    HCKSUM_INET_PARTIAL)
20012 			hwcksum_flags |= HCK_PARTIALCKSUM;
20013 	}
20014 
20015 	/*
20016 	 * Each header fragment consists of the leading extra space,
20017 	 * followed by the TCP/IP header, and the trailing extra space.
20018 	 * We make sure that each header fragment begins on a 32-bit
20019 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20020 	 * aligned in tcp_mdt_update).
20021 	 */
20022 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20023 	    tcp->tcp_mdt_hdr_tail), 4);
20024 
20025 	/* are we starting from the beginning of data block? */
20026 	if (*tail_unsent == 0) {
20027 		*xmit_tail = (*xmit_tail)->b_cont;
20028 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20029 		*tail_unsent = (int)MBLKL(*xmit_tail);
20030 	}
20031 
20032 	/*
20033 	 * Here we create one or more Multidata messages, each made up of
20034 	 * one header buffer and up to N payload buffers.  This entire
20035 	 * operation is done within two loops:
20036 	 *
20037 	 * The outer loop mostly deals with creating the Multidata message,
20038 	 * as well as the header buffer that gets added to it.  It also
20039 	 * links the Multidata messages together such that all of them can
20040 	 * be sent down to the lower layer in a single putnext call; this
20041 	 * linking behavior depends on the tcp_mdt_chain tunable.
20042 	 *
20043 	 * The inner loop takes an existing Multidata message, and adds
20044 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20045 	 * packetizes those buffers by filling up the corresponding header
20046 	 * buffer fragments with the proper IP and TCP headers, and by
20047 	 * describing the layout of each packet in the packet descriptors
20048 	 * that get added to the Multidata.
20049 	 */
20050 	do {
20051 		/*
20052 		 * If usable send window is too small, or data blocks in
20053 		 * transmit list are smaller than our threshold (i.e. app
20054 		 * performs large writes followed by small ones), we hand
20055 		 * off the control over to the legacy path.  Note that we'll
20056 		 * get back the control once it encounters a large block.
20057 		 */
20058 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20059 		    (*xmit_tail)->b_cont != NULL &&
20060 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20061 			/* send down what we've got so far */
20062 			if (md_mp_head != NULL) {
20063 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20064 				    obsegs, obbytes, &rconfirm);
20065 			}
20066 			/*
20067 			 * Pass control over to tcp_send(), but tell it to
20068 			 * return to us once a large-size transmission is
20069 			 * possible.
20070 			 */
20071 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20072 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20073 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20074 			    tail_unsent, xmit_tail, local_time,
20075 			    mdt_thres)) <= 0) {
20076 				/* burst count reached, or alloc failed */
20077 				IRE_REFRELE(ire);
20078 				return (err);
20079 			}
20080 
20081 			/* tcp_send() may have sent everything, so check */
20082 			if (*usable <= 0) {
20083 				IRE_REFRELE(ire);
20084 				return (0);
20085 			}
20086 
20087 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20088 			/*
20089 			 * We may have delivered the Multidata, so make sure
20090 			 * to re-initialize before the next round.
20091 			 */
20092 			md_mp_head = NULL;
20093 			obsegs = obbytes = 0;
20094 			num_burst_seg = tcp->tcp_snd_burst;
20095 			PREP_NEW_MULTIDATA();
20096 
20097 			/* are we starting from the beginning of data block? */
20098 			if (*tail_unsent == 0) {
20099 				*xmit_tail = (*xmit_tail)->b_cont;
20100 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20101 				    (uintptr_t)INT_MAX);
20102 				*tail_unsent = (int)MBLKL(*xmit_tail);
20103 			}
20104 		}
20105 
20106 		/*
20107 		 * max_pld limits the number of mblks in tcp's transmit
20108 		 * queue that can be added to a Multidata message.  Once
20109 		 * this counter reaches zero, no more additional mblks
20110 		 * can be added to it.  What happens afterwards depends
20111 		 * on whether or not we are set to chain the Multidata
20112 		 * messages.  If we are to link them together, reset
20113 		 * max_pld to its original value (tcp_mdt_max_pld) and
20114 		 * prepare to create a new Multidata message which will
20115 		 * get linked to md_mp_head.  Else, leave it alone and
20116 		 * let the inner loop break on its own.
20117 		 */
20118 		if (tcp_mdt_chain && max_pld == 0)
20119 			PREP_NEW_MULTIDATA();
20120 
20121 		/* adding a payload buffer; re-initialize values */
20122 		if (add_buffer)
20123 			PREP_NEW_PBUF();
20124 
20125 		/*
20126 		 * If we don't have a Multidata, either because we just
20127 		 * (re)entered this outer loop, or after we branched off
20128 		 * to tcp_send above, setup the Multidata and header
20129 		 * buffer to be used.
20130 		 */
20131 		if (md_mp == NULL) {
20132 			int md_hbuflen;
20133 			uint32_t start, stuff;
20134 
20135 			/*
20136 			 * Calculate Multidata header buffer size large enough
20137 			 * to hold all of the headers that can possibly be
20138 			 * sent at this moment.  We'd rather over-estimate
20139 			 * the size than running out of space; this is okay
20140 			 * since this buffer is small anyway.
20141 			 */
20142 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20143 
20144 			/*
20145 			 * Start and stuff offset for partial hardware
20146 			 * checksum offload; these are currently for IPv4.
20147 			 * For full checksum offload, they are set to zero.
20148 			 */
20149 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20150 				if (af == AF_INET) {
20151 					start = IP_SIMPLE_HDR_LENGTH;
20152 					stuff = IP_SIMPLE_HDR_LENGTH +
20153 					    TCP_CHECKSUM_OFFSET;
20154 				} else {
20155 					start = IPV6_HDR_LEN;
20156 					stuff = IPV6_HDR_LEN +
20157 					    TCP_CHECKSUM_OFFSET;
20158 				}
20159 			} else {
20160 				start = stuff = 0;
20161 			}
20162 
20163 			/*
20164 			 * Create the header buffer, Multidata, as well as
20165 			 * any necessary attributes (destination address,
20166 			 * SAP and hardware checksum offload) that should
20167 			 * be associated with the Multidata message.
20168 			 */
20169 			ASSERT(cur_hdr_off == 0);
20170 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20171 			    ((md_hbuf->b_wptr += md_hbuflen),
20172 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20173 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20174 			    /* fastpath mblk */
20175 			    ire->ire_nce->nce_res_mp,
20176 			    /* hardware checksum enabled */
20177 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20178 			    /* hardware checksum offsets */
20179 			    start, stuff, 0,
20180 			    /* hardware checksum flag */
20181 			    hwcksum_flags, tcps) != 0)) {
20182 legacy_send:
20183 				if (md_mp != NULL) {
20184 					/* Unlink message from the chain */
20185 					if (md_mp_head != NULL) {
20186 						err = (intptr_t)rmvb(md_mp_head,
20187 						    md_mp);
20188 						/*
20189 						 * We can't assert that rmvb
20190 						 * did not return -1, since we
20191 						 * may get here before linkb
20192 						 * happens.  We do, however,
20193 						 * check if we just removed the
20194 						 * only element in the list.
20195 						 */
20196 						if (err == 0)
20197 							md_mp_head = NULL;
20198 					}
20199 					/* md_hbuf gets freed automatically */
20200 					TCP_STAT(tcps, tcp_mdt_discarded);
20201 					freeb(md_mp);
20202 				} else {
20203 					/* Either allocb or mmd_alloc failed */
20204 					TCP_STAT(tcps, tcp_mdt_allocfail);
20205 					if (md_hbuf != NULL)
20206 						freeb(md_hbuf);
20207 				}
20208 
20209 				/* send down what we've got so far */
20210 				if (md_mp_head != NULL) {
20211 					tcp_multisend_data(tcp, ire, ill,
20212 					    md_mp_head, obsegs, obbytes,
20213 					    &rconfirm);
20214 				}
20215 legacy_send_no_md:
20216 				if (ire != NULL)
20217 					IRE_REFRELE(ire);
20218 				/*
20219 				 * Too bad; let the legacy path handle this.
20220 				 * We specify INT_MAX for the threshold, since
20221 				 * we gave up with the Multidata processings
20222 				 * and let the old path have it all.
20223 				 */
20224 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20225 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20226 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20227 				    snxt, tail_unsent, xmit_tail, local_time,
20228 				    INT_MAX));
20229 			}
20230 
20231 			/* link to any existing ones, if applicable */
20232 			TCP_STAT(tcps, tcp_mdt_allocd);
20233 			if (md_mp_head == NULL) {
20234 				md_mp_head = md_mp;
20235 			} else if (tcp_mdt_chain) {
20236 				TCP_STAT(tcps, tcp_mdt_linked);
20237 				linkb(md_mp_head, md_mp);
20238 			}
20239 		}
20240 
20241 		ASSERT(md_mp_head != NULL);
20242 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20243 		ASSERT(md_mp != NULL && mmd != NULL);
20244 		ASSERT(md_hbuf != NULL);
20245 
20246 		/*
20247 		 * Packetize the transmittable portion of the data block;
20248 		 * each data block is essentially added to the Multidata
20249 		 * as a payload buffer.  We also deal with adding more
20250 		 * than one payload buffers, which happens when the remaining
20251 		 * packetized portion of the current payload buffer is less
20252 		 * than MSS, while the next data block in transmit queue
20253 		 * has enough data to make up for one.  This "spillover"
20254 		 * case essentially creates a split-packet, where portions
20255 		 * of the packet's payload fragments may span across two
20256 		 * virtually discontiguous address blocks.
20257 		 */
20258 		seg_len = mss;
20259 		do {
20260 			len = seg_len;
20261 
20262 			ASSERT(len > 0);
20263 			ASSERT(max_pld >= 0);
20264 			ASSERT(!add_buffer || cur_pld_off == 0);
20265 
20266 			/*
20267 			 * First time around for this payload buffer; note
20268 			 * in the case of a spillover, the following has
20269 			 * been done prior to adding the split-packet
20270 			 * descriptor to Multidata, and we don't want to
20271 			 * repeat the process.
20272 			 */
20273 			if (add_buffer) {
20274 				ASSERT(mmd != NULL);
20275 				ASSERT(md_pbuf == NULL);
20276 				ASSERT(md_pbuf_nxt == NULL);
20277 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20278 
20279 				/*
20280 				 * Have we reached the limit?  We'd get to
20281 				 * this case when we're not chaining the
20282 				 * Multidata messages together, and since
20283 				 * we're done, terminate this loop.
20284 				 */
20285 				if (max_pld == 0)
20286 					break; /* done */
20287 
20288 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20289 					TCP_STAT(tcps, tcp_mdt_allocfail);
20290 					goto legacy_send; /* out_of_mem */
20291 				}
20292 
20293 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20294 				    zc_cap != NULL) {
20295 					if (!ip_md_zcopy_attr(mmd, NULL,
20296 					    zc_cap->ill_zerocopy_flags)) {
20297 						freeb(md_pbuf);
20298 						TCP_STAT(tcps,
20299 						    tcp_mdt_allocfail);
20300 						/* out_of_mem */
20301 						goto legacy_send;
20302 					}
20303 					zcopy = B_TRUE;
20304 				}
20305 
20306 				md_pbuf->b_rptr += base_pld_off;
20307 
20308 				/*
20309 				 * Add a payload buffer to the Multidata; this
20310 				 * operation must not fail, or otherwise our
20311 				 * logic in this routine is broken.  There
20312 				 * is no memory allocation done by the
20313 				 * routine, so any returned failure simply
20314 				 * tells us that we've done something wrong.
20315 				 *
20316 				 * A failure tells us that either we're adding
20317 				 * the same payload buffer more than once, or
20318 				 * we're trying to add more buffers than
20319 				 * allowed (max_pld calculation is wrong).
20320 				 * None of the above cases should happen, and
20321 				 * we panic because either there's horrible
20322 				 * heap corruption, and/or programming mistake.
20323 				 */
20324 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20325 				if (pbuf_idx < 0) {
20326 					cmn_err(CE_PANIC, "tcp_multisend: "
20327 					    "payload buffer logic error "
20328 					    "detected for tcp %p mmd %p "
20329 					    "pbuf %p (%d)\n",
20330 					    (void *)tcp, (void *)mmd,
20331 					    (void *)md_pbuf, pbuf_idx);
20332 				}
20333 
20334 				ASSERT(max_pld > 0);
20335 				--max_pld;
20336 				add_buffer = B_FALSE;
20337 			}
20338 
20339 			ASSERT(md_mp_head != NULL);
20340 			ASSERT(md_pbuf != NULL);
20341 			ASSERT(md_pbuf_nxt == NULL);
20342 			ASSERT(pbuf_idx != -1);
20343 			ASSERT(pbuf_idx_nxt == -1);
20344 			ASSERT(*usable > 0);
20345 
20346 			/*
20347 			 * We spillover to the next payload buffer only
20348 			 * if all of the following is true:
20349 			 *
20350 			 *   1. There is not enough data on the current
20351 			 *	payload buffer to make up `len',
20352 			 *   2. We are allowed to send `len',
20353 			 *   3. The next payload buffer length is large
20354 			 *	enough to accomodate `spill'.
20355 			 */
20356 			if ((spill = len - *tail_unsent) > 0 &&
20357 			    *usable >= len &&
20358 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20359 			    max_pld > 0) {
20360 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20361 				if (md_pbuf_nxt == NULL) {
20362 					TCP_STAT(tcps, tcp_mdt_allocfail);
20363 					goto legacy_send; /* out_of_mem */
20364 				}
20365 
20366 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20367 				    zc_cap != NULL) {
20368 					if (!ip_md_zcopy_attr(mmd, NULL,
20369 					    zc_cap->ill_zerocopy_flags)) {
20370 						freeb(md_pbuf_nxt);
20371 						TCP_STAT(tcps,
20372 						    tcp_mdt_allocfail);
20373 						/* out_of_mem */
20374 						goto legacy_send;
20375 					}
20376 					zcopy = B_TRUE;
20377 				}
20378 
20379 				/*
20380 				 * See comments above on the first call to
20381 				 * mmd_addpldbuf for explanation on the panic.
20382 				 */
20383 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20384 				if (pbuf_idx_nxt < 0) {
20385 					panic("tcp_multisend: "
20386 					    "next payload buffer logic error "
20387 					    "detected for tcp %p mmd %p "
20388 					    "pbuf %p (%d)\n",
20389 					    (void *)tcp, (void *)mmd,
20390 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20391 				}
20392 
20393 				ASSERT(max_pld > 0);
20394 				--max_pld;
20395 			} else if (spill > 0) {
20396 				/*
20397 				 * If there's a spillover, but the following
20398 				 * xmit_tail couldn't give us enough octets
20399 				 * to reach "len", then stop the current
20400 				 * Multidata creation and let the legacy
20401 				 * tcp_send() path take over.  We don't want
20402 				 * to send the tiny segment as part of this
20403 				 * Multidata for performance reasons; instead,
20404 				 * we let the legacy path deal with grouping
20405 				 * it with the subsequent small mblks.
20406 				 */
20407 				if (*usable >= len &&
20408 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20409 					max_pld = 0;
20410 					break;	/* done */
20411 				}
20412 
20413 				/*
20414 				 * We can't spillover, and we are near
20415 				 * the end of the current payload buffer,
20416 				 * so send what's left.
20417 				 */
20418 				ASSERT(*tail_unsent > 0);
20419 				len = *tail_unsent;
20420 			}
20421 
20422 			/* tail_unsent is negated if there is a spillover */
20423 			*tail_unsent -= len;
20424 			*usable -= len;
20425 			ASSERT(*usable >= 0);
20426 
20427 			if (*usable < mss)
20428 				seg_len = *usable;
20429 			/*
20430 			 * Sender SWS avoidance; see comments in tcp_send();
20431 			 * everything else is the same, except that we only
20432 			 * do this here if there is no more data to be sent
20433 			 * following the current xmit_tail.  We don't check
20434 			 * for 1-byte urgent data because we shouldn't get
20435 			 * here if TCP_URG_VALID is set.
20436 			 */
20437 			if (*usable > 0 && *usable < mss &&
20438 			    ((md_pbuf_nxt == NULL &&
20439 			    (*xmit_tail)->b_cont == NULL) ||
20440 			    (md_pbuf_nxt != NULL &&
20441 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20442 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20443 			    (tcp->tcp_unsent -
20444 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20445 			    !tcp->tcp_zero_win_probe) {
20446 				if ((*snxt + len) == tcp->tcp_snxt &&
20447 				    (*snxt + len) == tcp->tcp_suna) {
20448 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20449 				}
20450 				done = B_TRUE;
20451 			}
20452 
20453 			/*
20454 			 * Prime pump for IP's checksumming on our behalf;
20455 			 * include the adjustment for a source route if any.
20456 			 * Do this only for software/partial hardware checksum
20457 			 * offload, as this field gets zeroed out later for
20458 			 * the full hardware checksum offload case.
20459 			 */
20460 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20461 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20462 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20463 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20464 			}
20465 
20466 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20467 			*snxt += len;
20468 
20469 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20470 			/*
20471 			 * We set the PUSH bit only if TCP has no more buffered
20472 			 * data to be transmitted (or if sender SWS avoidance
20473 			 * takes place), as opposed to setting it for every
20474 			 * last packet in the burst.
20475 			 */
20476 			if (done ||
20477 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20478 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20479 
20480 			/*
20481 			 * Set FIN bit if this is our last segment; snxt
20482 			 * already includes its length, and it will not
20483 			 * be adjusted after this point.
20484 			 */
20485 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20486 			    *snxt == tcp->tcp_fss) {
20487 				if (!tcp->tcp_fin_acked) {
20488 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20489 					BUMP_MIB(&tcps->tcps_mib,
20490 					    tcpOutControl);
20491 				}
20492 				if (!tcp->tcp_fin_sent) {
20493 					tcp->tcp_fin_sent = B_TRUE;
20494 					/*
20495 					 * tcp state must be ESTABLISHED
20496 					 * in order for us to get here in
20497 					 * the first place.
20498 					 */
20499 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20500 
20501 					/*
20502 					 * Upon returning from this routine,
20503 					 * tcp_wput_data() will set tcp_snxt
20504 					 * to be equal to snxt + tcp_fin_sent.
20505 					 * This is essentially the same as
20506 					 * setting it to tcp_fss + 1.
20507 					 */
20508 				}
20509 			}
20510 
20511 			tcp->tcp_last_sent_len = (ushort_t)len;
20512 
20513 			len += tcp_hdr_len;
20514 			if (tcp->tcp_ipversion == IPV4_VERSION)
20515 				tcp->tcp_ipha->ipha_length = htons(len);
20516 			else
20517 				tcp->tcp_ip6h->ip6_plen = htons(len -
20518 				    ((char *)&tcp->tcp_ip6h[1] -
20519 				    tcp->tcp_iphc));
20520 
20521 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20522 
20523 			/* setup header fragment */
20524 			PDESC_HDR_ADD(pkt_info,
20525 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20526 			    tcp->tcp_mdt_hdr_head,		/* head room */
20527 			    tcp_hdr_len,			/* len */
20528 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20529 
20530 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20531 			    hdr_frag_sz);
20532 			ASSERT(MBLKIN(md_hbuf,
20533 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20534 			    PDESC_HDRSIZE(pkt_info)));
20535 
20536 			/* setup first payload fragment */
20537 			PDESC_PLD_INIT(pkt_info);
20538 			PDESC_PLD_SPAN_ADD(pkt_info,
20539 			    pbuf_idx,				/* index */
20540 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20541 			    tcp->tcp_last_sent_len);		/* len */
20542 
20543 			/* create a split-packet in case of a spillover */
20544 			if (md_pbuf_nxt != NULL) {
20545 				ASSERT(spill > 0);
20546 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20547 				ASSERT(!add_buffer);
20548 
20549 				md_pbuf = md_pbuf_nxt;
20550 				md_pbuf_nxt = NULL;
20551 				pbuf_idx = pbuf_idx_nxt;
20552 				pbuf_idx_nxt = -1;
20553 				cur_pld_off = spill;
20554 
20555 				/* trim out first payload fragment */
20556 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20557 
20558 				/* setup second payload fragment */
20559 				PDESC_PLD_SPAN_ADD(pkt_info,
20560 				    pbuf_idx,			/* index */
20561 				    md_pbuf->b_rptr,		/* start */
20562 				    spill);			/* len */
20563 
20564 				if ((*xmit_tail)->b_next == NULL) {
20565 					/*
20566 					 * Store the lbolt used for RTT
20567 					 * estimation. We can only record one
20568 					 * timestamp per mblk so we do it when
20569 					 * we reach the end of the payload
20570 					 * buffer.  Also we only take a new
20571 					 * timestamp sample when the previous
20572 					 * timed data from the same mblk has
20573 					 * been ack'ed.
20574 					 */
20575 					(*xmit_tail)->b_prev = local_time;
20576 					(*xmit_tail)->b_next =
20577 					    (mblk_t *)(uintptr_t)first_snxt;
20578 				}
20579 
20580 				first_snxt = *snxt - spill;
20581 
20582 				/*
20583 				 * Advance xmit_tail; usable could be 0 by
20584 				 * the time we got here, but we made sure
20585 				 * above that we would only spillover to
20586 				 * the next data block if usable includes
20587 				 * the spilled-over amount prior to the
20588 				 * subtraction.  Therefore, we are sure
20589 				 * that xmit_tail->b_cont can't be NULL.
20590 				 */
20591 				ASSERT((*xmit_tail)->b_cont != NULL);
20592 				*xmit_tail = (*xmit_tail)->b_cont;
20593 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20594 				    (uintptr_t)INT_MAX);
20595 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20596 			} else {
20597 				cur_pld_off += tcp->tcp_last_sent_len;
20598 			}
20599 
20600 			/*
20601 			 * Fill in the header using the template header, and
20602 			 * add options such as time-stamp, ECN and/or SACK,
20603 			 * as needed.
20604 			 */
20605 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20606 			    (clock_t)local_time, num_sack_blk);
20607 
20608 			/* take care of some IP header businesses */
20609 			if (af == AF_INET) {
20610 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20611 
20612 				ASSERT(OK_32PTR((uchar_t *)ipha));
20613 				ASSERT(PDESC_HDRL(pkt_info) >=
20614 				    IP_SIMPLE_HDR_LENGTH);
20615 				ASSERT(ipha->ipha_version_and_hdr_length ==
20616 				    IP_SIMPLE_HDR_VERSION);
20617 
20618 				/*
20619 				 * Assign ident value for current packet; see
20620 				 * related comments in ip_wput_ire() about the
20621 				 * contract private interface with clustering
20622 				 * group.
20623 				 */
20624 				clusterwide = B_FALSE;
20625 				if (cl_inet_ipident != NULL) {
20626 					ASSERT(cl_inet_isclusterwide != NULL);
20627 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20628 					    AF_INET,
20629 					    (uint8_t *)(uintptr_t)src)) {
20630 						ipha->ipha_ident =
20631 						    (*cl_inet_ipident)
20632 						    (IPPROTO_IP, AF_INET,
20633 						    (uint8_t *)(uintptr_t)src,
20634 						    (uint8_t *)(uintptr_t)dst);
20635 						clusterwide = B_TRUE;
20636 					}
20637 				}
20638 
20639 				if (!clusterwide) {
20640 					ipha->ipha_ident = (uint16_t)
20641 					    atomic_add_32_nv(
20642 						&ire->ire_ident, 1);
20643 				}
20644 #ifndef _BIG_ENDIAN
20645 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20646 				    (ipha->ipha_ident >> 8);
20647 #endif
20648 			} else {
20649 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20650 
20651 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20652 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20653 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20654 				ASSERT(PDESC_HDRL(pkt_info) >=
20655 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20656 				    TCP_CHECKSUM_SIZE));
20657 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20658 
20659 				if (tcp->tcp_ip_forward_progress) {
20660 					rconfirm = B_TRUE;
20661 					tcp->tcp_ip_forward_progress = B_FALSE;
20662 				}
20663 			}
20664 
20665 			/* at least one payload span, and at most two */
20666 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20667 
20668 			/* add the packet descriptor to Multidata */
20669 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20670 			    KM_NOSLEEP)) == NULL) {
20671 				/*
20672 				 * Any failure other than ENOMEM indicates
20673 				 * that we have passed in invalid pkt_info
20674 				 * or parameters to mmd_addpdesc, which must
20675 				 * not happen.
20676 				 *
20677 				 * EINVAL is a result of failure on boundary
20678 				 * checks against the pkt_info contents.  It
20679 				 * should not happen, and we panic because
20680 				 * either there's horrible heap corruption,
20681 				 * and/or programming mistake.
20682 				 */
20683 				if (err != ENOMEM) {
20684 					cmn_err(CE_PANIC, "tcp_multisend: "
20685 					    "pdesc logic error detected for "
20686 					    "tcp %p mmd %p pinfo %p (%d)\n",
20687 					    (void *)tcp, (void *)mmd,
20688 					    (void *)pkt_info, err);
20689 				}
20690 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20691 				goto legacy_send; /* out_of_mem */
20692 			}
20693 			ASSERT(pkt != NULL);
20694 
20695 			/* calculate IP header and TCP checksums */
20696 			if (af == AF_INET) {
20697 				/* calculate pseudo-header checksum */
20698 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20699 				    (src >> 16) + (src & 0xFFFF);
20700 
20701 				/* offset for TCP header checksum */
20702 				up = IPH_TCPH_CHECKSUMP(ipha,
20703 				    IP_SIMPLE_HDR_LENGTH);
20704 			} else {
20705 				up = (uint16_t *)&ip6h->ip6_src;
20706 
20707 				/* calculate pseudo-header checksum */
20708 				cksum = up[0] + up[1] + up[2] + up[3] +
20709 				    up[4] + up[5] + up[6] + up[7] +
20710 				    up[8] + up[9] + up[10] + up[11] +
20711 				    up[12] + up[13] + up[14] + up[15];
20712 
20713 				/* Fold the initial sum */
20714 				cksum = (cksum & 0xffff) + (cksum >> 16);
20715 
20716 				up = (uint16_t *)(((uchar_t *)ip6h) +
20717 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20718 			}
20719 
20720 			if (hwcksum_flags & HCK_FULLCKSUM) {
20721 				/* clear checksum field for hardware */
20722 				*up = 0;
20723 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20724 				uint32_t sum;
20725 
20726 				/* pseudo-header checksumming */
20727 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20728 				sum = (sum & 0xFFFF) + (sum >> 16);
20729 				*up = (sum & 0xFFFF) + (sum >> 16);
20730 			} else {
20731 				/* software checksumming */
20732 				TCP_STAT(tcps, tcp_out_sw_cksum);
20733 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20734 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20735 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20736 				    cksum + IP_TCP_CSUM_COMP);
20737 				if (*up == 0)
20738 					*up = 0xFFFF;
20739 			}
20740 
20741 			/* IPv4 header checksum */
20742 			if (af == AF_INET) {
20743 				ipha->ipha_fragment_offset_and_flags |=
20744 				    (uint32_t)htons(ire->ire_frag_flag);
20745 
20746 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20747 					ipha->ipha_hdr_checksum = 0;
20748 				} else {
20749 					IP_HDR_CKSUM(ipha, cksum,
20750 					    ((uint32_t *)ipha)[0],
20751 					    ((uint16_t *)ipha)[4]);
20752 				}
20753 			}
20754 
20755 			if (af == AF_INET &&
20756 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20757 			    af == AF_INET6 &&
20758 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20759 				/* build header(IP/TCP) mblk for this segment */
20760 				if ((mp = dupb(md_hbuf)) == NULL)
20761 					goto legacy_send;
20762 
20763 				mp->b_rptr = pkt_info->hdr_rptr;
20764 				mp->b_wptr = pkt_info->hdr_wptr;
20765 
20766 				/* build payload mblk for this segment */
20767 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20768 					freemsg(mp);
20769 					goto legacy_send;
20770 				}
20771 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20772 				mp1->b_rptr = mp1->b_wptr -
20773 				    tcp->tcp_last_sent_len;
20774 				linkb(mp, mp1);
20775 
20776 				pld_start = mp1->b_rptr;
20777 
20778 				if (af == AF_INET) {
20779 					DTRACE_PROBE4(
20780 					    ip4__physical__out__start,
20781 					    ill_t *, NULL,
20782 					    ill_t *, ill,
20783 					    ipha_t *, ipha,
20784 					    mblk_t *, mp);
20785 					FW_HOOKS(
20786 					    ipst->ips_ip4_physical_out_event,
20787 					    ipst->ips_ipv4firewall_physical_out,
20788 					    NULL, ill, ipha, mp, mp, 0, ipst);
20789 					DTRACE_PROBE1(
20790 					    ip4__physical__out__end,
20791 					    mblk_t *, mp);
20792 				} else {
20793 					DTRACE_PROBE4(
20794 					    ip6__physical__out_start,
20795 					    ill_t *, NULL,
20796 					    ill_t *, ill,
20797 					    ip6_t *, ip6h,
20798 					    mblk_t *, mp);
20799 					FW_HOOKS6(
20800 					    ipst->ips_ip6_physical_out_event,
20801 					    ipst->ips_ipv6firewall_physical_out,
20802 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20803 					DTRACE_PROBE1(
20804 					    ip6__physical__out__end,
20805 					    mblk_t *, mp);
20806 				}
20807 
20808 				if (buf_trunked && mp != NULL) {
20809 					/*
20810 					 * Need to pass it to normal path.
20811 					 */
20812 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20813 				} else if (mp == NULL ||
20814 				    mp->b_rptr != pkt_info->hdr_rptr ||
20815 				    mp->b_wptr != pkt_info->hdr_wptr ||
20816 				    (mp1 = mp->b_cont) == NULL ||
20817 				    mp1->b_rptr != pld_start ||
20818 				    mp1->b_wptr != pld_start +
20819 				    tcp->tcp_last_sent_len ||
20820 				    mp1->b_cont != NULL) {
20821 					/*
20822 					 * Need to pass all packets of this
20823 					 * buffer to normal path, either when
20824 					 * packet is blocked, or when boundary
20825 					 * of header buffer or payload buffer
20826 					 * has been changed by FW_HOOKS[6].
20827 					 */
20828 					buf_trunked = B_TRUE;
20829 					if (md_mp_head != NULL) {
20830 						err = (intptr_t)rmvb(md_mp_head,
20831 						    md_mp);
20832 						if (err == 0)
20833 							md_mp_head = NULL;
20834 					}
20835 
20836 					/* send down what we've got so far */
20837 					if (md_mp_head != NULL) {
20838 						tcp_multisend_data(tcp, ire,
20839 						    ill, md_mp_head, obsegs,
20840 						    obbytes, &rconfirm);
20841 					}
20842 					md_mp_head = NULL;
20843 
20844 					if (mp != NULL)
20845 						CALL_IP_WPUT(tcp->tcp_connp,
20846 						    q, mp);
20847 
20848 					mp1 = fw_mp_head;
20849 					do {
20850 						mp = mp1;
20851 						mp1 = mp1->b_next;
20852 						mp->b_next = NULL;
20853 						mp->b_prev = NULL;
20854 						CALL_IP_WPUT(tcp->tcp_connp,
20855 						    q, mp);
20856 					} while (mp1 != NULL);
20857 
20858 					fw_mp_head = NULL;
20859 				} else {
20860 					if (fw_mp_head == NULL)
20861 						fw_mp_head = mp;
20862 					else
20863 						fw_mp_head->b_prev->b_next = mp;
20864 					fw_mp_head->b_prev = mp;
20865 				}
20866 			}
20867 
20868 			/* advance header offset */
20869 			cur_hdr_off += hdr_frag_sz;
20870 
20871 			obbytes += tcp->tcp_last_sent_len;
20872 			++obsegs;
20873 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20874 		    *tail_unsent > 0);
20875 
20876 		if ((*xmit_tail)->b_next == NULL) {
20877 			/*
20878 			 * Store the lbolt used for RTT estimation. We can only
20879 			 * record one timestamp per mblk so we do it when we
20880 			 * reach the end of the payload buffer. Also we only
20881 			 * take a new timestamp sample when the previous timed
20882 			 * data from the same mblk has been ack'ed.
20883 			 */
20884 			(*xmit_tail)->b_prev = local_time;
20885 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20886 		}
20887 
20888 		ASSERT(*tail_unsent >= 0);
20889 		if (*tail_unsent > 0) {
20890 			/*
20891 			 * We got here because we broke out of the above
20892 			 * loop due to of one of the following cases:
20893 			 *
20894 			 *   1. len < adjusted MSS (i.e. small),
20895 			 *   2. Sender SWS avoidance,
20896 			 *   3. max_pld is zero.
20897 			 *
20898 			 * We are done for this Multidata, so trim our
20899 			 * last payload buffer (if any) accordingly.
20900 			 */
20901 			if (md_pbuf != NULL)
20902 				md_pbuf->b_wptr -= *tail_unsent;
20903 		} else if (*usable > 0) {
20904 			*xmit_tail = (*xmit_tail)->b_cont;
20905 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20906 			    (uintptr_t)INT_MAX);
20907 			*tail_unsent = (int)MBLKL(*xmit_tail);
20908 			add_buffer = B_TRUE;
20909 		}
20910 
20911 		while (fw_mp_head) {
20912 			mp = fw_mp_head;
20913 			fw_mp_head = fw_mp_head->b_next;
20914 			mp->b_prev = mp->b_next = NULL;
20915 			freemsg(mp);
20916 		}
20917 		if (buf_trunked) {
20918 			TCP_STAT(tcps, tcp_mdt_discarded);
20919 			freeb(md_mp);
20920 			buf_trunked = B_FALSE;
20921 		}
20922 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20923 	    (tcp_mdt_chain || max_pld > 0));
20924 
20925 	if (md_mp_head != NULL) {
20926 		/* send everything down */
20927 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20928 		    &rconfirm);
20929 	}
20930 
20931 #undef PREP_NEW_MULTIDATA
20932 #undef PREP_NEW_PBUF
20933 #undef IPVER
20934 
20935 	IRE_REFRELE(ire);
20936 	return (0);
20937 }
20938 
20939 /*
20940  * A wrapper function for sending one or more Multidata messages down to
20941  * the module below ip; this routine does not release the reference of the
20942  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20943  */
20944 static void
20945 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20946     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20947 {
20948 	uint64_t delta;
20949 	nce_t *nce;
20950 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20951 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20952 
20953 	ASSERT(ire != NULL && ill != NULL);
20954 	ASSERT(ire->ire_stq != NULL);
20955 	ASSERT(md_mp_head != NULL);
20956 	ASSERT(rconfirm != NULL);
20957 
20958 	/* adjust MIBs and IRE timestamp */
20959 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20960 	tcp->tcp_obsegs += obsegs;
20961 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20962 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20963 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20964 
20965 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20966 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20967 	} else {
20968 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20969 	}
20970 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20971 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20972 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20973 
20974 	ire->ire_ob_pkt_count += obsegs;
20975 	if (ire->ire_ipif != NULL)
20976 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20977 	ire->ire_last_used_time = lbolt;
20978 
20979 	/* send it down */
20980 	if (ILL_DLS_CAPABLE(ill)) {
20981 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
20982 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
20983 	} else {
20984 		putnext(ire->ire_stq, md_mp_head);
20985 	}
20986 
20987 	/* we're done for TCP/IPv4 */
20988 	if (tcp->tcp_ipversion == IPV4_VERSION)
20989 		return;
20990 
20991 	nce = ire->ire_nce;
20992 
20993 	ASSERT(nce != NULL);
20994 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20995 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20996 
20997 	/* reachability confirmation? */
20998 	if (*rconfirm) {
20999 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21000 		if (nce->nce_state != ND_REACHABLE) {
21001 			mutex_enter(&nce->nce_lock);
21002 			nce->nce_state = ND_REACHABLE;
21003 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21004 			mutex_exit(&nce->nce_lock);
21005 			(void) untimeout(nce->nce_timeout_id);
21006 			if (ip_debug > 2) {
21007 				/* ip1dbg */
21008 				pr_addr_dbg("tcp_multisend_data: state "
21009 				    "for %s changed to REACHABLE\n",
21010 				    AF_INET6, &ire->ire_addr_v6);
21011 			}
21012 		}
21013 		/* reset transport reachability confirmation */
21014 		*rconfirm = B_FALSE;
21015 	}
21016 
21017 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21018 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21019 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21020 
21021 	if (delta > (uint64_t)ill->ill_reachable_time) {
21022 		mutex_enter(&nce->nce_lock);
21023 		switch (nce->nce_state) {
21024 		case ND_REACHABLE:
21025 		case ND_STALE:
21026 			/*
21027 			 * ND_REACHABLE is identical to ND_STALE in this
21028 			 * specific case. If reachable time has expired for
21029 			 * this neighbor (delta is greater than reachable
21030 			 * time), conceptually, the neighbor cache is no
21031 			 * longer in REACHABLE state, but already in STALE
21032 			 * state.  So the correct transition here is to
21033 			 * ND_DELAY.
21034 			 */
21035 			nce->nce_state = ND_DELAY;
21036 			mutex_exit(&nce->nce_lock);
21037 			NDP_RESTART_TIMER(nce,
21038 			    ipst->ips_delay_first_probe_time);
21039 			if (ip_debug > 3) {
21040 				/* ip2dbg */
21041 				pr_addr_dbg("tcp_multisend_data: state "
21042 				    "for %s changed to DELAY\n",
21043 				    AF_INET6, &ire->ire_addr_v6);
21044 			}
21045 			break;
21046 		case ND_DELAY:
21047 		case ND_PROBE:
21048 			mutex_exit(&nce->nce_lock);
21049 			/* Timers have already started */
21050 			break;
21051 		case ND_UNREACHABLE:
21052 			/*
21053 			 * ndp timer has detected that this nce is
21054 			 * unreachable and initiated deleting this nce
21055 			 * and all its associated IREs. This is a race
21056 			 * where we found the ire before it was deleted
21057 			 * and have just sent out a packet using this
21058 			 * unreachable nce.
21059 			 */
21060 			mutex_exit(&nce->nce_lock);
21061 			break;
21062 		default:
21063 			ASSERT(0);
21064 		}
21065 	}
21066 }
21067 
21068 /*
21069  * Derived from tcp_send_data().
21070  */
21071 static void
21072 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21073     int num_lso_seg)
21074 {
21075 	ipha_t		*ipha;
21076 	mblk_t		*ire_fp_mp;
21077 	uint_t		ire_fp_mp_len;
21078 	uint32_t	hcksum_txflags = 0;
21079 	ipaddr_t	src;
21080 	ipaddr_t	dst;
21081 	uint32_t	cksum;
21082 	uint16_t	*up;
21083 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21084 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21085 
21086 	ASSERT(DB_TYPE(mp) == M_DATA);
21087 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21088 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21089 	ASSERT(tcp->tcp_connp != NULL);
21090 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21091 
21092 	ipha = (ipha_t *)mp->b_rptr;
21093 	src = ipha->ipha_src;
21094 	dst = ipha->ipha_dst;
21095 
21096 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21097 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21098 	    num_lso_seg);
21099 #ifndef _BIG_ENDIAN
21100 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21101 #endif
21102 	if (tcp->tcp_snd_zcopy_aware) {
21103 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21104 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21105 			mp = tcp_zcopy_disable(tcp, mp);
21106 	}
21107 
21108 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21109 		ASSERT(ill->ill_hcksum_capab != NULL);
21110 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21111 	}
21112 
21113 	/*
21114 	 * Since the TCP checksum should be recalculated by h/w, we can just
21115 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21116 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21117 	 * The partial pseudo-header excludes TCP length, that was calculated
21118 	 * in tcp_send(), so to zero *up before further processing.
21119 	 */
21120 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21121 
21122 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21123 	*up = 0;
21124 
21125 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21126 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21127 
21128 	/*
21129 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21130 	 */
21131 	DB_LSOFLAGS(mp) |= HW_LSO;
21132 	DB_LSOMSS(mp) = mss;
21133 
21134 	ipha->ipha_fragment_offset_and_flags |=
21135 	    (uint32_t)htons(ire->ire_frag_flag);
21136 
21137 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21138 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21139 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21140 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21141 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21142 
21143 	UPDATE_OB_PKT_COUNT(ire);
21144 	ire->ire_last_used_time = lbolt;
21145 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21146 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21147 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21148 	    ntohs(ipha->ipha_length));
21149 
21150 	if (ILL_DLS_CAPABLE(ill)) {
21151 		/*
21152 		 * Send the packet directly to DLD, where it may be queued
21153 		 * depending on the availability of transmit resources at
21154 		 * the media layer.
21155 		 */
21156 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
21157 	} else {
21158 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21159 		DTRACE_PROBE4(ip4__physical__out__start,
21160 		    ill_t *, NULL, ill_t *, out_ill,
21161 		    ipha_t *, ipha, mblk_t *, mp);
21162 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21163 		    ipst->ips_ipv4firewall_physical_out,
21164 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21165 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21166 		if (mp != NULL)
21167 			putnext(ire->ire_stq, mp);
21168 	}
21169 }
21170 
21171 /*
21172  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21173  * scheme, and returns one of the following:
21174  *
21175  * -1 = failed allocation.
21176  *  0 = success; burst count reached, or usable send window is too small,
21177  *      and that we'd rather wait until later before sending again.
21178  *  1 = success; we are called from tcp_multisend(), and both usable send
21179  *      window and tail_unsent are greater than the MDT threshold, and thus
21180  *      Multidata Transmit should be used instead.
21181  */
21182 static int
21183 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21184     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21185     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21186     const int mdt_thres)
21187 {
21188 	int num_burst_seg = tcp->tcp_snd_burst;
21189 	ire_t		*ire = NULL;
21190 	ill_t		*ill = NULL;
21191 	mblk_t		*ire_fp_mp = NULL;
21192 	uint_t		ire_fp_mp_len = 0;
21193 	int		num_lso_seg = 1;
21194 	uint_t		lso_usable;
21195 	boolean_t	do_lso_send = B_FALSE;
21196 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21197 
21198 	/*
21199 	 * Check LSO capability before any further work. And the similar check
21200 	 * need to be done in for(;;) loop.
21201 	 * LSO will be deployed when therer is more than one mss of available
21202 	 * data and a burst transmission is allowed.
21203 	 */
21204 	if (tcp->tcp_lso &&
21205 	    (tcp->tcp_valid_bits == 0 ||
21206 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21207 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21208 		/*
21209 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21210 		 */
21211 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21212 			/*
21213 			 * Enable LSO with this transmission.
21214 			 * Since IRE has been hold in
21215 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21216 			 * should be called before return.
21217 			 */
21218 			do_lso_send = B_TRUE;
21219 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21220 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21221 			/* Round up to multiple of 4 */
21222 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21223 		} else {
21224 			do_lso_send = B_FALSE;
21225 			ill = NULL;
21226 		}
21227 	}
21228 
21229 	for (;;) {
21230 		struct datab	*db;
21231 		tcph_t		*tcph;
21232 		uint32_t	sum;
21233 		mblk_t		*mp, *mp1;
21234 		uchar_t		*rptr;
21235 		int		len;
21236 
21237 		/*
21238 		 * If we're called by tcp_multisend(), and the amount of
21239 		 * sendable data as well as the size of current xmit_tail
21240 		 * is beyond the MDT threshold, return to the caller and
21241 		 * let the large data transmit be done using MDT.
21242 		 */
21243 		if (*usable > 0 && *usable > mdt_thres &&
21244 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21245 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21246 			ASSERT(tcp->tcp_mdt);
21247 			return (1);	/* success; do large send */
21248 		}
21249 
21250 		if (num_burst_seg == 0)
21251 			break;		/* success; burst count reached */
21252 
21253 		/*
21254 		 * Calculate the maximum payload length we can send in *one*
21255 		 * time.
21256 		 */
21257 		if (do_lso_send) {
21258 			/*
21259 			 * Check whether need to do LSO any more.
21260 			 */
21261 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21262 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21263 				lso_usable = MIN(lso_usable,
21264 				    num_burst_seg * mss);
21265 
21266 				num_lso_seg = lso_usable / mss;
21267 				if (lso_usable % mss) {
21268 					num_lso_seg++;
21269 					tcp->tcp_last_sent_len = (ushort_t)
21270 					    (lso_usable % mss);
21271 				} else {
21272 					tcp->tcp_last_sent_len = (ushort_t)mss;
21273 				}
21274 			} else {
21275 				do_lso_send = B_FALSE;
21276 				num_lso_seg = 1;
21277 				lso_usable = mss;
21278 			}
21279 		}
21280 
21281 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21282 
21283 		/*
21284 		 * Adjust num_burst_seg here.
21285 		 */
21286 		num_burst_seg -= num_lso_seg;
21287 
21288 		len = mss;
21289 		if (len > *usable) {
21290 			ASSERT(do_lso_send == B_FALSE);
21291 
21292 			len = *usable;
21293 			if (len <= 0) {
21294 				/* Terminate the loop */
21295 				break;	/* success; too small */
21296 			}
21297 			/*
21298 			 * Sender silly-window avoidance.
21299 			 * Ignore this if we are going to send a
21300 			 * zero window probe out.
21301 			 *
21302 			 * TODO: force data into microscopic window?
21303 			 *	==> (!pushed || (unsent > usable))
21304 			 */
21305 			if (len < (tcp->tcp_max_swnd >> 1) &&
21306 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21307 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21308 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21309 				/*
21310 				 * If the retransmit timer is not running
21311 				 * we start it so that we will retransmit
21312 				 * in the case when the the receiver has
21313 				 * decremented the window.
21314 				 */
21315 				if (*snxt == tcp->tcp_snxt &&
21316 				    *snxt == tcp->tcp_suna) {
21317 					/*
21318 					 * We are not supposed to send
21319 					 * anything.  So let's wait a little
21320 					 * bit longer before breaking SWS
21321 					 * avoidance.
21322 					 *
21323 					 * What should the value be?
21324 					 * Suggestion: MAX(init rexmit time,
21325 					 * tcp->tcp_rto)
21326 					 */
21327 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21328 				}
21329 				break;	/* success; too small */
21330 			}
21331 		}
21332 
21333 		tcph = tcp->tcp_tcph;
21334 
21335 		/*
21336 		 * The reason to adjust len here is that we need to set flags
21337 		 * and calculate checksum.
21338 		 */
21339 		if (do_lso_send)
21340 			len = lso_usable;
21341 
21342 		*usable -= len; /* Approximate - can be adjusted later */
21343 		if (*usable > 0)
21344 			tcph->th_flags[0] = TH_ACK;
21345 		else
21346 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21347 
21348 		/*
21349 		 * Prime pump for IP's checksumming on our behalf
21350 		 * Include the adjustment for a source route if any.
21351 		 */
21352 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21353 		sum = (sum >> 16) + (sum & 0xFFFF);
21354 		U16_TO_ABE16(sum, tcph->th_sum);
21355 
21356 		U32_TO_ABE32(*snxt, tcph->th_seq);
21357 
21358 		/*
21359 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21360 		 * set.  For the case when TCP_FSS_VALID is the only valid
21361 		 * bit (normal active close), branch off only when we think
21362 		 * that the FIN flag needs to be set.  Note for this case,
21363 		 * that (snxt + len) may not reflect the actual seg_len,
21364 		 * as len may be further reduced in tcp_xmit_mp().  If len
21365 		 * gets modified, we will end up here again.
21366 		 */
21367 		if (tcp->tcp_valid_bits != 0 &&
21368 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21369 		    ((*snxt + len) == tcp->tcp_fss))) {
21370 			uchar_t		*prev_rptr;
21371 			uint32_t	prev_snxt = tcp->tcp_snxt;
21372 
21373 			if (*tail_unsent == 0) {
21374 				ASSERT((*xmit_tail)->b_cont != NULL);
21375 				*xmit_tail = (*xmit_tail)->b_cont;
21376 				prev_rptr = (*xmit_tail)->b_rptr;
21377 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21378 				    (*xmit_tail)->b_rptr);
21379 			} else {
21380 				prev_rptr = (*xmit_tail)->b_rptr;
21381 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21382 				    *tail_unsent;
21383 			}
21384 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21385 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21386 			/* Restore tcp_snxt so we get amount sent right. */
21387 			tcp->tcp_snxt = prev_snxt;
21388 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21389 				/*
21390 				 * If the previous timestamp is still in use,
21391 				 * don't stomp on it.
21392 				 */
21393 				if ((*xmit_tail)->b_next == NULL) {
21394 					(*xmit_tail)->b_prev = local_time;
21395 					(*xmit_tail)->b_next =
21396 					    (mblk_t *)(uintptr_t)(*snxt);
21397 				}
21398 			} else
21399 				(*xmit_tail)->b_rptr = prev_rptr;
21400 
21401 			if (mp == NULL) {
21402 				if (ire != NULL)
21403 					IRE_REFRELE(ire);
21404 				return (-1);
21405 			}
21406 			mp1 = mp->b_cont;
21407 
21408 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21409 				tcp->tcp_last_sent_len = (ushort_t)len;
21410 			while (mp1->b_cont) {
21411 				*xmit_tail = (*xmit_tail)->b_cont;
21412 				(*xmit_tail)->b_prev = local_time;
21413 				(*xmit_tail)->b_next =
21414 				    (mblk_t *)(uintptr_t)(*snxt);
21415 				mp1 = mp1->b_cont;
21416 			}
21417 			*snxt += len;
21418 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21419 			BUMP_LOCAL(tcp->tcp_obsegs);
21420 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21421 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21422 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21423 			tcp_send_data(tcp, q, mp);
21424 			continue;
21425 		}
21426 
21427 		*snxt += len;	/* Adjust later if we don't send all of len */
21428 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21429 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21430 
21431 		if (*tail_unsent) {
21432 			/* Are the bytes above us in flight? */
21433 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21434 			if (rptr != (*xmit_tail)->b_rptr) {
21435 				*tail_unsent -= len;
21436 				if (len <= mss) /* LSO is unusable */
21437 					tcp->tcp_last_sent_len = (ushort_t)len;
21438 				len += tcp_hdr_len;
21439 				if (tcp->tcp_ipversion == IPV4_VERSION)
21440 					tcp->tcp_ipha->ipha_length = htons(len);
21441 				else
21442 					tcp->tcp_ip6h->ip6_plen =
21443 					    htons(len -
21444 					    ((char *)&tcp->tcp_ip6h[1] -
21445 					    tcp->tcp_iphc));
21446 				mp = dupb(*xmit_tail);
21447 				if (mp == NULL) {
21448 					if (ire != NULL)
21449 						IRE_REFRELE(ire);
21450 					return (-1);	/* out_of_mem */
21451 				}
21452 				mp->b_rptr = rptr;
21453 				/*
21454 				 * If the old timestamp is no longer in use,
21455 				 * sample a new timestamp now.
21456 				 */
21457 				if ((*xmit_tail)->b_next == NULL) {
21458 					(*xmit_tail)->b_prev = local_time;
21459 					(*xmit_tail)->b_next =
21460 					    (mblk_t *)(uintptr_t)(*snxt-len);
21461 				}
21462 				goto must_alloc;
21463 			}
21464 		} else {
21465 			*xmit_tail = (*xmit_tail)->b_cont;
21466 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21467 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21468 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21469 			    (*xmit_tail)->b_rptr);
21470 		}
21471 
21472 		(*xmit_tail)->b_prev = local_time;
21473 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21474 
21475 		*tail_unsent -= len;
21476 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21477 			tcp->tcp_last_sent_len = (ushort_t)len;
21478 
21479 		len += tcp_hdr_len;
21480 		if (tcp->tcp_ipversion == IPV4_VERSION)
21481 			tcp->tcp_ipha->ipha_length = htons(len);
21482 		else
21483 			tcp->tcp_ip6h->ip6_plen = htons(len -
21484 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21485 
21486 		mp = dupb(*xmit_tail);
21487 		if (mp == NULL) {
21488 			if (ire != NULL)
21489 				IRE_REFRELE(ire);
21490 			return (-1);	/* out_of_mem */
21491 		}
21492 
21493 		len = tcp_hdr_len;
21494 		/*
21495 		 * There are four reasons to allocate a new hdr mblk:
21496 		 *  1) The bytes above us are in use by another packet
21497 		 *  2) We don't have good alignment
21498 		 *  3) The mblk is being shared
21499 		 *  4) We don't have enough room for a header
21500 		 */
21501 		rptr = mp->b_rptr - len;
21502 		if (!OK_32PTR(rptr) ||
21503 		    ((db = mp->b_datap), db->db_ref != 2) ||
21504 		    rptr < db->db_base + ire_fp_mp_len) {
21505 			/* NOTE: we assume allocb returns an OK_32PTR */
21506 
21507 		must_alloc:;
21508 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21509 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21510 			if (mp1 == NULL) {
21511 				freemsg(mp);
21512 				if (ire != NULL)
21513 					IRE_REFRELE(ire);
21514 				return (-1);	/* out_of_mem */
21515 			}
21516 			mp1->b_cont = mp;
21517 			mp = mp1;
21518 			/* Leave room for Link Level header */
21519 			len = tcp_hdr_len;
21520 			rptr =
21521 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21522 			mp->b_wptr = &rptr[len];
21523 		}
21524 
21525 		/*
21526 		 * Fill in the header using the template header, and add
21527 		 * options such as time-stamp, ECN and/or SACK, as needed.
21528 		 */
21529 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21530 
21531 		mp->b_rptr = rptr;
21532 
21533 		if (*tail_unsent) {
21534 			int spill = *tail_unsent;
21535 
21536 			mp1 = mp->b_cont;
21537 			if (mp1 == NULL)
21538 				mp1 = mp;
21539 
21540 			/*
21541 			 * If we're a little short, tack on more mblks until
21542 			 * there is no more spillover.
21543 			 */
21544 			while (spill < 0) {
21545 				mblk_t *nmp;
21546 				int nmpsz;
21547 
21548 				nmp = (*xmit_tail)->b_cont;
21549 				nmpsz = MBLKL(nmp);
21550 
21551 				/*
21552 				 * Excess data in mblk; can we split it?
21553 				 * If MDT is enabled for the connection,
21554 				 * keep on splitting as this is a transient
21555 				 * send path.
21556 				 */
21557 				if (!do_lso_send && !tcp->tcp_mdt &&
21558 				    (spill + nmpsz > 0)) {
21559 					/*
21560 					 * Don't split if stream head was
21561 					 * told to break up larger writes
21562 					 * into smaller ones.
21563 					 */
21564 					if (tcp->tcp_maxpsz > 0)
21565 						break;
21566 
21567 					/*
21568 					 * Next mblk is less than SMSS/2
21569 					 * rounded up to nearest 64-byte;
21570 					 * let it get sent as part of the
21571 					 * next segment.
21572 					 */
21573 					if (tcp->tcp_localnet &&
21574 					    !tcp->tcp_cork &&
21575 					    (nmpsz < roundup((mss >> 1), 64)))
21576 						break;
21577 				}
21578 
21579 				*xmit_tail = nmp;
21580 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21581 				/* Stash for rtt use later */
21582 				(*xmit_tail)->b_prev = local_time;
21583 				(*xmit_tail)->b_next =
21584 				    (mblk_t *)(uintptr_t)(*snxt - len);
21585 				mp1->b_cont = dupb(*xmit_tail);
21586 				mp1 = mp1->b_cont;
21587 
21588 				spill += nmpsz;
21589 				if (mp1 == NULL) {
21590 					*tail_unsent = spill;
21591 					freemsg(mp);
21592 					if (ire != NULL)
21593 						IRE_REFRELE(ire);
21594 					return (-1);	/* out_of_mem */
21595 				}
21596 			}
21597 
21598 			/* Trim back any surplus on the last mblk */
21599 			if (spill >= 0) {
21600 				mp1->b_wptr -= spill;
21601 				*tail_unsent = spill;
21602 			} else {
21603 				/*
21604 				 * We did not send everything we could in
21605 				 * order to remain within the b_cont limit.
21606 				 */
21607 				*usable -= spill;
21608 				*snxt += spill;
21609 				tcp->tcp_last_sent_len += spill;
21610 				UPDATE_MIB(&tcps->tcps_mib,
21611 				    tcpOutDataBytes, spill);
21612 				/*
21613 				 * Adjust the checksum
21614 				 */
21615 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21616 				sum += spill;
21617 				sum = (sum >> 16) + (sum & 0xFFFF);
21618 				U16_TO_ABE16(sum, tcph->th_sum);
21619 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21620 					sum = ntohs(
21621 					    ((ipha_t *)rptr)->ipha_length) +
21622 					    spill;
21623 					((ipha_t *)rptr)->ipha_length =
21624 					    htons(sum);
21625 				} else {
21626 					sum = ntohs(
21627 					    ((ip6_t *)rptr)->ip6_plen) +
21628 					    spill;
21629 					((ip6_t *)rptr)->ip6_plen =
21630 					    htons(sum);
21631 				}
21632 				*tail_unsent = 0;
21633 			}
21634 		}
21635 		if (tcp->tcp_ip_forward_progress) {
21636 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21637 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21638 			tcp->tcp_ip_forward_progress = B_FALSE;
21639 		}
21640 
21641 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21642 		if (do_lso_send) {
21643 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21644 			    num_lso_seg);
21645 			tcp->tcp_obsegs += num_lso_seg;
21646 
21647 			TCP_STAT(tcps, tcp_lso_times);
21648 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21649 		} else {
21650 			tcp_send_data(tcp, q, mp);
21651 			BUMP_LOCAL(tcp->tcp_obsegs);
21652 		}
21653 	}
21654 
21655 	if (ire != NULL)
21656 		IRE_REFRELE(ire);
21657 	return (0);
21658 }
21659 
21660 /* Unlink and return any mblk that looks like it contains a MDT info */
21661 static mblk_t *
21662 tcp_mdt_info_mp(mblk_t *mp)
21663 {
21664 	mblk_t	*prev_mp;
21665 
21666 	for (;;) {
21667 		prev_mp = mp;
21668 		/* no more to process? */
21669 		if ((mp = mp->b_cont) == NULL)
21670 			break;
21671 
21672 		switch (DB_TYPE(mp)) {
21673 		case M_CTL:
21674 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21675 				continue;
21676 			ASSERT(prev_mp != NULL);
21677 			prev_mp->b_cont = mp->b_cont;
21678 			mp->b_cont = NULL;
21679 			return (mp);
21680 		default:
21681 			break;
21682 		}
21683 	}
21684 	return (mp);
21685 }
21686 
21687 /* MDT info update routine, called when IP notifies us about MDT */
21688 static void
21689 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21690 {
21691 	boolean_t prev_state;
21692 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21693 
21694 	/*
21695 	 * IP is telling us to abort MDT on this connection?  We know
21696 	 * this because the capability is only turned off when IP
21697 	 * encounters some pathological cases, e.g. link-layer change
21698 	 * where the new driver doesn't support MDT, or in situation
21699 	 * where MDT usage on the link-layer has been switched off.
21700 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21701 	 * if the link-layer doesn't support MDT, and if it does, it
21702 	 * will indicate that the feature is to be turned on.
21703 	 */
21704 	prev_state = tcp->tcp_mdt;
21705 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21706 	if (!tcp->tcp_mdt && !first) {
21707 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21708 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21709 		    (void *)tcp->tcp_connp));
21710 	}
21711 
21712 	/*
21713 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21714 	 * so disable MDT otherwise.  The checks are done here
21715 	 * and in tcp_wput_data().
21716 	 */
21717 	if (tcp->tcp_mdt &&
21718 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21719 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21720 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21721 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21722 		tcp->tcp_mdt = B_FALSE;
21723 
21724 	if (tcp->tcp_mdt) {
21725 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21726 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21727 			    "version (%d), expected version is %d",
21728 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21729 			tcp->tcp_mdt = B_FALSE;
21730 			return;
21731 		}
21732 
21733 		/*
21734 		 * We need the driver to be able to handle at least three
21735 		 * spans per packet in order for tcp MDT to be utilized.
21736 		 * The first is for the header portion, while the rest are
21737 		 * needed to handle a packet that straddles across two
21738 		 * virtually non-contiguous buffers; a typical tcp packet
21739 		 * therefore consists of only two spans.  Note that we take
21740 		 * a zero as "don't care".
21741 		 */
21742 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21743 		    mdt_capab->ill_mdt_span_limit < 3) {
21744 			tcp->tcp_mdt = B_FALSE;
21745 			return;
21746 		}
21747 
21748 		/* a zero means driver wants default value */
21749 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21750 		    tcps->tcps_mdt_max_pbufs);
21751 		if (tcp->tcp_mdt_max_pld == 0)
21752 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21753 
21754 		/* ensure 32-bit alignment */
21755 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21756 		    mdt_capab->ill_mdt_hdr_head), 4);
21757 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21758 		    mdt_capab->ill_mdt_hdr_tail), 4);
21759 
21760 		if (!first && !prev_state) {
21761 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21762 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21763 			    (void *)tcp->tcp_connp));
21764 		}
21765 	}
21766 }
21767 
21768 /* Unlink and return any mblk that looks like it contains a LSO info */
21769 static mblk_t *
21770 tcp_lso_info_mp(mblk_t *mp)
21771 {
21772 	mblk_t	*prev_mp;
21773 
21774 	for (;;) {
21775 		prev_mp = mp;
21776 		/* no more to process? */
21777 		if ((mp = mp->b_cont) == NULL)
21778 			break;
21779 
21780 		switch (DB_TYPE(mp)) {
21781 		case M_CTL:
21782 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21783 				continue;
21784 			ASSERT(prev_mp != NULL);
21785 			prev_mp->b_cont = mp->b_cont;
21786 			mp->b_cont = NULL;
21787 			return (mp);
21788 		default:
21789 			break;
21790 		}
21791 	}
21792 
21793 	return (mp);
21794 }
21795 
21796 /* LSO info update routine, called when IP notifies us about LSO */
21797 static void
21798 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21799 {
21800 	tcp_stack_t *tcps = tcp->tcp_tcps;
21801 
21802 	/*
21803 	 * IP is telling us to abort LSO on this connection?  We know
21804 	 * this because the capability is only turned off when IP
21805 	 * encounters some pathological cases, e.g. link-layer change
21806 	 * where the new NIC/driver doesn't support LSO, or in situation
21807 	 * where LSO usage on the link-layer has been switched off.
21808 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21809 	 * if the link-layer doesn't support LSO, and if it does, it
21810 	 * will indicate that the feature is to be turned on.
21811 	 */
21812 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21813 	TCP_STAT(tcps, tcp_lso_enabled);
21814 
21815 	/*
21816 	 * We currently only support LSO on simple TCP/IPv4,
21817 	 * so disable LSO otherwise.  The checks are done here
21818 	 * and in tcp_wput_data().
21819 	 */
21820 	if (tcp->tcp_lso &&
21821 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21822 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21823 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21824 		tcp->tcp_lso = B_FALSE;
21825 		TCP_STAT(tcps, tcp_lso_disabled);
21826 	} else {
21827 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21828 		    lso_capab->ill_lso_max);
21829 	}
21830 }
21831 
21832 static void
21833 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21834 {
21835 	conn_t *connp = tcp->tcp_connp;
21836 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21837 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21838 
21839 	ASSERT(ire != NULL);
21840 
21841 	/*
21842 	 * We may be in the fastpath here, and although we essentially do
21843 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21844 	 * we try to keep things as brief as possible.  After all, these
21845 	 * are only best-effort checks, and we do more thorough ones prior
21846 	 * to calling tcp_send()/tcp_multisend().
21847 	 */
21848 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21849 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21850 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21851 	    !(ire->ire_flags & RTF_MULTIRT) &&
21852 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21853 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21854 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21855 			/* Cache the result */
21856 			connp->conn_lso_ok = B_TRUE;
21857 
21858 			ASSERT(ill->ill_lso_capab != NULL);
21859 			if (!ill->ill_lso_capab->ill_lso_on) {
21860 				ill->ill_lso_capab->ill_lso_on = 1;
21861 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21862 				    "LSO for interface %s\n", (void *)connp,
21863 				    ill->ill_name));
21864 			}
21865 			tcp_lso_update(tcp, ill->ill_lso_capab);
21866 		} else if (ipst->ips_ip_multidata_outbound &&
21867 		    ILL_MDT_CAPABLE(ill)) {
21868 			/* Cache the result */
21869 			connp->conn_mdt_ok = B_TRUE;
21870 
21871 			ASSERT(ill->ill_mdt_capab != NULL);
21872 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21873 				ill->ill_mdt_capab->ill_mdt_on = 1;
21874 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21875 				    "MDT for interface %s\n", (void *)connp,
21876 				    ill->ill_name));
21877 			}
21878 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21879 		}
21880 	}
21881 
21882 	/*
21883 	 * The goal is to reduce the number of generated tcp segments by
21884 	 * setting the maxpsz multiplier to 0; this will have an affect on
21885 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21886 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21887 	 * of outbound segments and incoming ACKs, thus allowing for better
21888 	 * network and system performance.  In contrast the legacy behavior
21889 	 * may result in sending less than SMSS size, because the last mblk
21890 	 * for some packets may have more data than needed to make up SMSS,
21891 	 * and the legacy code refused to "split" it.
21892 	 *
21893 	 * We apply the new behavior on following situations:
21894 	 *
21895 	 *   1) Loopback connections,
21896 	 *   2) Connections in which the remote peer is not on local subnet,
21897 	 *   3) Local subnet connections over the bge interface (see below).
21898 	 *
21899 	 * Ideally, we would like this behavior to apply for interfaces other
21900 	 * than bge.  However, doing so would negatively impact drivers which
21901 	 * perform dynamic mapping and unmapping of DMA resources, which are
21902 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21903 	 * packet will be generated by tcp).  The bge driver does not suffer
21904 	 * from this, as it copies the mblks into pre-mapped buffers, and
21905 	 * therefore does not require more I/O resources than before.
21906 	 *
21907 	 * Otherwise, this behavior is present on all network interfaces when
21908 	 * the destination endpoint is non-local, since reducing the number
21909 	 * of packets in general is good for the network.
21910 	 *
21911 	 * TODO We need to remove this hard-coded conditional for bge once
21912 	 *	a better "self-tuning" mechanism, or a way to comprehend
21913 	 *	the driver transmit strategy is devised.  Until the solution
21914 	 *	is found and well understood, we live with this hack.
21915 	 */
21916 	if (!tcp_static_maxpsz &&
21917 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21918 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21919 		/* override the default value */
21920 		tcp->tcp_maxpsz = 0;
21921 
21922 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21923 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21924 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21925 	}
21926 
21927 	/* set the stream head parameters accordingly */
21928 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21929 }
21930 
21931 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21932 static void
21933 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21934 {
21935 	uchar_t	fval = *mp->b_rptr;
21936 	mblk_t	*tail;
21937 	queue_t	*q = tcp->tcp_wq;
21938 
21939 	/* TODO: How should flush interact with urgent data? */
21940 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21941 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21942 		/*
21943 		 * Flush only data that has not yet been put on the wire.  If
21944 		 * we flush data that we have already transmitted, life, as we
21945 		 * know it, may come to an end.
21946 		 */
21947 		tail = tcp->tcp_xmit_tail;
21948 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21949 		tcp->tcp_xmit_tail_unsent = 0;
21950 		tcp->tcp_unsent = 0;
21951 		if (tail->b_wptr != tail->b_rptr)
21952 			tail = tail->b_cont;
21953 		if (tail) {
21954 			mblk_t **excess = &tcp->tcp_xmit_head;
21955 			for (;;) {
21956 				mblk_t *mp1 = *excess;
21957 				if (mp1 == tail)
21958 					break;
21959 				tcp->tcp_xmit_tail = mp1;
21960 				tcp->tcp_xmit_last = mp1;
21961 				excess = &mp1->b_cont;
21962 			}
21963 			*excess = NULL;
21964 			tcp_close_mpp(&tail);
21965 			if (tcp->tcp_snd_zcopy_aware)
21966 				tcp_zcopy_notify(tcp);
21967 		}
21968 		/*
21969 		 * We have no unsent data, so unsent must be less than
21970 		 * tcp_xmit_lowater, so re-enable flow.
21971 		 */
21972 		mutex_enter(&tcp->tcp_non_sq_lock);
21973 		if (tcp->tcp_flow_stopped) {
21974 			tcp_clrqfull(tcp);
21975 		}
21976 		mutex_exit(&tcp->tcp_non_sq_lock);
21977 	}
21978 	/*
21979 	 * TODO: you can't just flush these, you have to increase rwnd for one
21980 	 * thing.  For another, how should urgent data interact?
21981 	 */
21982 	if (fval & FLUSHR) {
21983 		*mp->b_rptr = fval & ~FLUSHW;
21984 		/* XXX */
21985 		qreply(q, mp);
21986 		return;
21987 	}
21988 	freemsg(mp);
21989 }
21990 
21991 /*
21992  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21993  * messages.
21994  */
21995 static void
21996 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21997 {
21998 	mblk_t	*mp1;
21999 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22000 	STRUCT_HANDLE(strbuf, sb);
22001 	queue_t *q = tcp->tcp_wq;
22002 	int	error;
22003 	uint_t	addrlen;
22004 
22005 	/* Make sure it is one of ours. */
22006 	switch (iocp->ioc_cmd) {
22007 	case TI_GETMYNAME:
22008 	case TI_GETPEERNAME:
22009 		break;
22010 	default:
22011 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22012 		return;
22013 	}
22014 	switch (mi_copy_state(q, mp, &mp1)) {
22015 	case -1:
22016 		return;
22017 	case MI_COPY_CASE(MI_COPY_IN, 1):
22018 		break;
22019 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22020 		/* Copy out the strbuf. */
22021 		mi_copyout(q, mp);
22022 		return;
22023 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22024 		/* All done. */
22025 		mi_copy_done(q, mp, 0);
22026 		return;
22027 	default:
22028 		mi_copy_done(q, mp, EPROTO);
22029 		return;
22030 	}
22031 	/* Check alignment of the strbuf */
22032 	if (!OK_32PTR(mp1->b_rptr)) {
22033 		mi_copy_done(q, mp, EINVAL);
22034 		return;
22035 	}
22036 
22037 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22038 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22039 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22040 		mi_copy_done(q, mp, EINVAL);
22041 		return;
22042 	}
22043 
22044 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22045 	if (mp1 == NULL)
22046 		return;
22047 
22048 	switch (iocp->ioc_cmd) {
22049 	case TI_GETMYNAME:
22050 		error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen);
22051 		break;
22052 	case TI_GETPEERNAME:
22053 		error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22054 		break;
22055 	}
22056 
22057 	if (error != 0) {
22058 		mi_copy_done(q, mp, error);
22059 	} else {
22060 		mp1->b_wptr += addrlen;
22061 		STRUCT_FSET(sb, len, addrlen);
22062 
22063 		/* Copy out the address */
22064 		mi_copyout(q, mp);
22065 	}
22066 }
22067 
22068 /*
22069  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22070  * messages.
22071  */
22072 /* ARGSUSED */
22073 static void
22074 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22075 {
22076 	conn_t 	*connp = (conn_t *)arg;
22077 	tcp_t	*tcp = connp->conn_tcp;
22078 	queue_t	*q = tcp->tcp_wq;
22079 	struct iocblk	*iocp;
22080 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22081 
22082 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22083 	/*
22084 	 * Try and ASSERT the minimum possible references on the
22085 	 * conn early enough. Since we are executing on write side,
22086 	 * the connection is obviously not detached and that means
22087 	 * there is a ref each for TCP and IP. Since we are behind
22088 	 * the squeue, the minimum references needed are 3. If the
22089 	 * conn is in classifier hash list, there should be an
22090 	 * extra ref for that (we check both the possibilities).
22091 	 */
22092 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22093 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22094 
22095 	iocp = (struct iocblk *)mp->b_rptr;
22096 	switch (iocp->ioc_cmd) {
22097 	case TCP_IOC_DEFAULT_Q:
22098 		/* Wants to be the default wq. */
22099 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22100 			iocp->ioc_error = EPERM;
22101 			iocp->ioc_count = 0;
22102 			mp->b_datap->db_type = M_IOCACK;
22103 			qreply(q, mp);
22104 			return;
22105 		}
22106 		tcp_def_q_set(tcp, mp);
22107 		return;
22108 	case _SIOCSOCKFALLBACK:
22109 		/*
22110 		 * Either sockmod is about to be popped and the socket
22111 		 * would now be treated as a plain stream, or a module
22112 		 * is about to be pushed so we could no longer use read-
22113 		 * side synchronous streams for fused loopback tcp.
22114 		 * Drain any queued data and disable direct sockfs
22115 		 * interface from now on.
22116 		 */
22117 		if (!tcp->tcp_issocket) {
22118 			DB_TYPE(mp) = M_IOCNAK;
22119 			iocp->ioc_error = EINVAL;
22120 		} else {
22121 #ifdef	_ILP32
22122 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22123 #else
22124 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22125 #endif
22126 			/*
22127 			 * Insert this socket into the acceptor hash.
22128 			 * We might need it for T_CONN_RES message
22129 			 */
22130 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22131 
22132 			if (tcp->tcp_fused) {
22133 				/*
22134 				 * This is a fused loopback tcp; disable
22135 				 * read-side synchronous streams interface
22136 				 * and drain any queued data.  It is okay
22137 				 * to do this for non-synchronous streams
22138 				 * fused tcp as well.
22139 				 */
22140 				tcp_fuse_disable_pair(tcp, B_FALSE);
22141 			}
22142 			tcp->tcp_issocket = B_FALSE;
22143 			TCP_STAT(tcps, tcp_sock_fallback);
22144 
22145 			DB_TYPE(mp) = M_IOCACK;
22146 			iocp->ioc_error = 0;
22147 		}
22148 		iocp->ioc_count = 0;
22149 		iocp->ioc_rval = 0;
22150 		qreply(q, mp);
22151 		return;
22152 	}
22153 	CALL_IP_WPUT(connp, q, mp);
22154 }
22155 
22156 /*
22157  * This routine is called by tcp_wput() to handle all TPI requests.
22158  */
22159 /* ARGSUSED */
22160 static void
22161 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22162 {
22163 	conn_t 	*connp = (conn_t *)arg;
22164 	tcp_t	*tcp = connp->conn_tcp;
22165 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22166 	uchar_t *rptr;
22167 	t_scalar_t type;
22168 	int len;
22169 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22170 
22171 	/*
22172 	 * Try and ASSERT the minimum possible references on the
22173 	 * conn early enough. Since we are executing on write side,
22174 	 * the connection is obviously not detached and that means
22175 	 * there is a ref each for TCP and IP. Since we are behind
22176 	 * the squeue, the minimum references needed are 3. If the
22177 	 * conn is in classifier hash list, there should be an
22178 	 * extra ref for that (we check both the possibilities).
22179 	 */
22180 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22181 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22182 
22183 	rptr = mp->b_rptr;
22184 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22185 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22186 		type = ((union T_primitives *)rptr)->type;
22187 		if (type == T_EXDATA_REQ) {
22188 			uint32_t msize = msgdsize(mp->b_cont);
22189 
22190 			len = msize - 1;
22191 			if (len < 0) {
22192 				freemsg(mp);
22193 				return;
22194 			}
22195 			/*
22196 			 * Try to force urgent data out on the wire.
22197 			 * Even if we have unsent data this will
22198 			 * at least send the urgent flag.
22199 			 * XXX does not handle more flag correctly.
22200 			 */
22201 			len += tcp->tcp_unsent;
22202 			len += tcp->tcp_snxt;
22203 			tcp->tcp_urg = len;
22204 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22205 
22206 			/* Bypass tcp protocol for fused tcp loopback */
22207 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22208 				return;
22209 		} else if (type != T_DATA_REQ) {
22210 			goto non_urgent_data;
22211 		}
22212 		/* TODO: options, flags, ... from user */
22213 		/* Set length to zero for reclamation below */
22214 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22215 		freeb(mp);
22216 		return;
22217 	} else {
22218 		if (tcp->tcp_debug) {
22219 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22220 			    "tcp_wput_proto, dropping one...");
22221 		}
22222 		freemsg(mp);
22223 		return;
22224 	}
22225 
22226 non_urgent_data:
22227 
22228 	switch ((int)tprim->type) {
22229 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22230 		/*
22231 		 * save the kssl_ent_t from the next block, and convert this
22232 		 * back to a normal bind_req.
22233 		 */
22234 		if (mp->b_cont != NULL) {
22235 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22236 
22237 			if (tcp->tcp_kssl_ent != NULL) {
22238 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22239 				    KSSL_NO_PROXY);
22240 				tcp->tcp_kssl_ent = NULL;
22241 			}
22242 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22243 			    sizeof (kssl_ent_t));
22244 			kssl_hold_ent(tcp->tcp_kssl_ent);
22245 			freemsg(mp->b_cont);
22246 			mp->b_cont = NULL;
22247 		}
22248 		tprim->type = T_BIND_REQ;
22249 
22250 	/* FALLTHROUGH */
22251 	case O_T_BIND_REQ:	/* bind request */
22252 	case T_BIND_REQ:	/* new semantics bind request */
22253 		tcp_bind(tcp, mp);
22254 		break;
22255 	case T_UNBIND_REQ:	/* unbind request */
22256 		tcp_unbind(tcp, mp);
22257 		break;
22258 	case O_T_CONN_RES:	/* old connection response XXX */
22259 	case T_CONN_RES:	/* connection response */
22260 		tcp_accept(tcp, mp);
22261 		break;
22262 	case T_CONN_REQ:	/* connection request */
22263 		tcp_connect(tcp, mp);
22264 		break;
22265 	case T_DISCON_REQ:	/* disconnect request */
22266 		tcp_disconnect(tcp, mp);
22267 		break;
22268 	case T_CAPABILITY_REQ:
22269 		tcp_capability_req(tcp, mp);	/* capability request */
22270 		break;
22271 	case T_INFO_REQ:	/* information request */
22272 		tcp_info_req(tcp, mp);
22273 		break;
22274 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22275 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22276 		    &tcp_opt_obj, B_TRUE);
22277 		break;
22278 	case T_OPTMGMT_REQ:
22279 		/*
22280 		 * Note:  no support for snmpcom_req() through new
22281 		 * T_OPTMGMT_REQ. See comments in ip.c
22282 		 */
22283 		/* Only IP is allowed to return meaningful value */
22284 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22285 		    B_TRUE);
22286 		break;
22287 
22288 	case T_UNITDATA_REQ:	/* unitdata request */
22289 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22290 		break;
22291 	case T_ORDREL_REQ:	/* orderly release req */
22292 		freemsg(mp);
22293 
22294 		if (tcp->tcp_fused)
22295 			tcp_unfuse(tcp);
22296 
22297 		if (tcp_xmit_end(tcp) != 0) {
22298 			/*
22299 			 * We were crossing FINs and got a reset from
22300 			 * the other side. Just ignore it.
22301 			 */
22302 			if (tcp->tcp_debug) {
22303 				(void) strlog(TCP_MOD_ID, 0, 1,
22304 				    SL_ERROR|SL_TRACE,
22305 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22306 				    "state %s",
22307 				    tcp_display(tcp, NULL,
22308 				    DISP_ADDR_AND_PORT));
22309 			}
22310 		}
22311 		break;
22312 	case T_ADDR_REQ:
22313 		tcp_addr_req(tcp, mp);
22314 		break;
22315 	default:
22316 		if (tcp->tcp_debug) {
22317 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22318 			    "tcp_wput_proto, bogus TPI msg, type %d",
22319 			    tprim->type);
22320 		}
22321 		/*
22322 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22323 		 * to recover.
22324 		 */
22325 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22326 		break;
22327 	}
22328 }
22329 
22330 /*
22331  * The TCP write service routine should never be called...
22332  */
22333 /* ARGSUSED */
22334 static void
22335 tcp_wsrv(queue_t *q)
22336 {
22337 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22338 
22339 	TCP_STAT(tcps, tcp_wsrv_called);
22340 }
22341 
22342 /* Non overlapping byte exchanger */
22343 static void
22344 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22345 {
22346 	uchar_t	uch;
22347 
22348 	while (len-- > 0) {
22349 		uch = a[len];
22350 		a[len] = b[len];
22351 		b[len] = uch;
22352 	}
22353 }
22354 
22355 /*
22356  * Send out a control packet on the tcp connection specified.  This routine
22357  * is typically called where we need a simple ACK or RST generated.
22358  */
22359 static void
22360 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22361 {
22362 	uchar_t		*rptr;
22363 	tcph_t		*tcph;
22364 	ipha_t		*ipha = NULL;
22365 	ip6_t		*ip6h = NULL;
22366 	uint32_t	sum;
22367 	int		tcp_hdr_len;
22368 	int		tcp_ip_hdr_len;
22369 	mblk_t		*mp;
22370 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22371 
22372 	/*
22373 	 * Save sum for use in source route later.
22374 	 */
22375 	ASSERT(tcp != NULL);
22376 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22377 	tcp_hdr_len = tcp->tcp_hdr_len;
22378 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22379 
22380 	/* If a text string is passed in with the request, pass it to strlog. */
22381 	if (str != NULL && tcp->tcp_debug) {
22382 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22383 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22384 		    str, seq, ack, ctl);
22385 	}
22386 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22387 	    BPRI_MED);
22388 	if (mp == NULL) {
22389 		return;
22390 	}
22391 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22392 	mp->b_rptr = rptr;
22393 	mp->b_wptr = &rptr[tcp_hdr_len];
22394 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22395 
22396 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22397 		ipha = (ipha_t *)rptr;
22398 		ipha->ipha_length = htons(tcp_hdr_len);
22399 	} else {
22400 		ip6h = (ip6_t *)rptr;
22401 		ASSERT(tcp != NULL);
22402 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22403 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22404 	}
22405 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22406 	tcph->th_flags[0] = (uint8_t)ctl;
22407 	if (ctl & TH_RST) {
22408 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22409 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22410 		/*
22411 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22412 		 */
22413 		if (tcp->tcp_snd_ts_ok &&
22414 		    tcp->tcp_state > TCPS_SYN_SENT) {
22415 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22416 			*(mp->b_wptr) = TCPOPT_EOL;
22417 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22418 				ipha->ipha_length = htons(tcp_hdr_len -
22419 				    TCPOPT_REAL_TS_LEN);
22420 			} else {
22421 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22422 				    TCPOPT_REAL_TS_LEN);
22423 			}
22424 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22425 			sum -= TCPOPT_REAL_TS_LEN;
22426 		}
22427 	}
22428 	if (ctl & TH_ACK) {
22429 		if (tcp->tcp_snd_ts_ok) {
22430 			U32_TO_BE32(lbolt,
22431 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22432 			U32_TO_BE32(tcp->tcp_ts_recent,
22433 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22434 		}
22435 
22436 		/* Update the latest receive window size in TCP header. */
22437 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22438 		    tcph->th_win);
22439 		tcp->tcp_rack = ack;
22440 		tcp->tcp_rack_cnt = 0;
22441 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22442 	}
22443 	BUMP_LOCAL(tcp->tcp_obsegs);
22444 	U32_TO_BE32(seq, tcph->th_seq);
22445 	U32_TO_BE32(ack, tcph->th_ack);
22446 	/*
22447 	 * Include the adjustment for a source route if any.
22448 	 */
22449 	sum = (sum >> 16) + (sum & 0xFFFF);
22450 	U16_TO_BE16(sum, tcph->th_sum);
22451 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22452 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22453 }
22454 
22455 /*
22456  * If this routine returns B_TRUE, TCP can generate a RST in response
22457  * to a segment.  If it returns B_FALSE, TCP should not respond.
22458  */
22459 static boolean_t
22460 tcp_send_rst_chk(tcp_stack_t *tcps)
22461 {
22462 	clock_t	now;
22463 
22464 	/*
22465 	 * TCP needs to protect itself from generating too many RSTs.
22466 	 * This can be a DoS attack by sending us random segments
22467 	 * soliciting RSTs.
22468 	 *
22469 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22470 	 * in each 1 second interval.  In this way, TCP still generate
22471 	 * RSTs in normal cases but when under attack, the impact is
22472 	 * limited.
22473 	 */
22474 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22475 		now = lbolt;
22476 		/* lbolt can wrap around. */
22477 		if ((tcps->tcps_last_rst_intrvl > now) ||
22478 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22479 		    1*SECONDS)) {
22480 			tcps->tcps_last_rst_intrvl = now;
22481 			tcps->tcps_rst_cnt = 1;
22482 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22483 			return (B_FALSE);
22484 		}
22485 	}
22486 	return (B_TRUE);
22487 }
22488 
22489 /*
22490  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22491  */
22492 static void
22493 tcp_ip_ire_mark_advice(tcp_t *tcp)
22494 {
22495 	mblk_t *mp;
22496 	ipic_t *ipic;
22497 
22498 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22499 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22500 		    &ipic);
22501 	} else {
22502 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22503 		    &ipic);
22504 	}
22505 	if (mp == NULL)
22506 		return;
22507 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22508 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22509 }
22510 
22511 /*
22512  * Return an IP advice ioctl mblk and set ipic to be the pointer
22513  * to the advice structure.
22514  */
22515 static mblk_t *
22516 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22517 {
22518 	struct iocblk *ioc;
22519 	mblk_t *mp, *mp1;
22520 
22521 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22522 	if (mp == NULL)
22523 		return (NULL);
22524 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22525 	*ipic = (ipic_t *)mp->b_rptr;
22526 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22527 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22528 
22529 	bcopy(addr, *ipic + 1, addr_len);
22530 
22531 	(*ipic)->ipic_addr_length = addr_len;
22532 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22533 
22534 	mp1 = mkiocb(IP_IOCTL);
22535 	if (mp1 == NULL) {
22536 		freemsg(mp);
22537 		return (NULL);
22538 	}
22539 	mp1->b_cont = mp;
22540 	ioc = (struct iocblk *)mp1->b_rptr;
22541 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22542 
22543 	return (mp1);
22544 }
22545 
22546 /*
22547  * Generate a reset based on an inbound packet, connp is set by caller
22548  * when RST is in response to an unexpected inbound packet for which
22549  * there is active tcp state in the system.
22550  *
22551  * IPSEC NOTE : Try to send the reply with the same protection as it came
22552  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22553  * the packet will go out at the same level of protection as it came in by
22554  * converting the IPSEC_IN to IPSEC_OUT.
22555  */
22556 static void
22557 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22558     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22559     tcp_stack_t *tcps, conn_t *connp)
22560 {
22561 	ipha_t		*ipha = NULL;
22562 	ip6_t		*ip6h = NULL;
22563 	ushort_t	len;
22564 	tcph_t		*tcph;
22565 	int		i;
22566 	mblk_t		*ipsec_mp;
22567 	boolean_t	mctl_present;
22568 	ipic_t		*ipic;
22569 	ipaddr_t	v4addr;
22570 	in6_addr_t	v6addr;
22571 	int		addr_len;
22572 	void		*addr;
22573 	queue_t		*q = tcps->tcps_g_q;
22574 	tcp_t		*tcp;
22575 	cred_t		*cr;
22576 	mblk_t		*nmp;
22577 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22578 
22579 	if (tcps->tcps_g_q == NULL) {
22580 		/*
22581 		 * For non-zero stackids the default queue isn't created
22582 		 * until the first open, thus there can be a need to send
22583 		 * a reset before then. But we can't do that, hence we just
22584 		 * drop the packet. Later during boot, when the default queue
22585 		 * has been setup, a retransmitted packet from the peer
22586 		 * will result in a reset.
22587 		 */
22588 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22589 		    GLOBAL_NETSTACKID);
22590 		freemsg(mp);
22591 		return;
22592 	}
22593 
22594 	if (connp != NULL)
22595 		tcp = connp->conn_tcp;
22596 	else
22597 		tcp = Q_TO_TCP(q);
22598 
22599 	if (!tcp_send_rst_chk(tcps)) {
22600 		tcps->tcps_rst_unsent++;
22601 		freemsg(mp);
22602 		return;
22603 	}
22604 
22605 	if (mp->b_datap->db_type == M_CTL) {
22606 		ipsec_mp = mp;
22607 		mp = mp->b_cont;
22608 		mctl_present = B_TRUE;
22609 	} else {
22610 		ipsec_mp = mp;
22611 		mctl_present = B_FALSE;
22612 	}
22613 
22614 	if (str && q && tcps->tcps_dbg) {
22615 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22616 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22617 		    "flags 0x%x",
22618 		    str, seq, ack, ctl);
22619 	}
22620 	if (mp->b_datap->db_ref != 1) {
22621 		mblk_t *mp1 = copyb(mp);
22622 		freemsg(mp);
22623 		mp = mp1;
22624 		if (!mp) {
22625 			if (mctl_present)
22626 				freeb(ipsec_mp);
22627 			return;
22628 		} else {
22629 			if (mctl_present) {
22630 				ipsec_mp->b_cont = mp;
22631 			} else {
22632 				ipsec_mp = mp;
22633 			}
22634 		}
22635 	} else if (mp->b_cont) {
22636 		freemsg(mp->b_cont);
22637 		mp->b_cont = NULL;
22638 	}
22639 	/*
22640 	 * We skip reversing source route here.
22641 	 * (for now we replace all IP options with EOL)
22642 	 */
22643 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22644 		ipha = (ipha_t *)mp->b_rptr;
22645 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22646 			mp->b_rptr[i] = IPOPT_EOL;
22647 		/*
22648 		 * Make sure that src address isn't flagrantly invalid.
22649 		 * Not all broadcast address checking for the src address
22650 		 * is possible, since we don't know the netmask of the src
22651 		 * addr.  No check for destination address is done, since
22652 		 * IP will not pass up a packet with a broadcast dest
22653 		 * address to TCP.  Similar checks are done below for IPv6.
22654 		 */
22655 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22656 		    CLASSD(ipha->ipha_src)) {
22657 			freemsg(ipsec_mp);
22658 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22659 			return;
22660 		}
22661 	} else {
22662 		ip6h = (ip6_t *)mp->b_rptr;
22663 
22664 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22665 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22666 			freemsg(ipsec_mp);
22667 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22668 			return;
22669 		}
22670 
22671 		/* Remove any extension headers assuming partial overlay */
22672 		if (ip_hdr_len > IPV6_HDR_LEN) {
22673 			uint8_t *to;
22674 
22675 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22676 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22677 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22678 			ip_hdr_len = IPV6_HDR_LEN;
22679 			ip6h = (ip6_t *)mp->b_rptr;
22680 			ip6h->ip6_nxt = IPPROTO_TCP;
22681 		}
22682 	}
22683 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22684 	if (tcph->th_flags[0] & TH_RST) {
22685 		freemsg(ipsec_mp);
22686 		return;
22687 	}
22688 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22689 	len = ip_hdr_len + sizeof (tcph_t);
22690 	mp->b_wptr = &mp->b_rptr[len];
22691 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22692 		ipha->ipha_length = htons(len);
22693 		/* Swap addresses */
22694 		v4addr = ipha->ipha_src;
22695 		ipha->ipha_src = ipha->ipha_dst;
22696 		ipha->ipha_dst = v4addr;
22697 		ipha->ipha_ident = 0;
22698 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22699 		addr_len = IP_ADDR_LEN;
22700 		addr = &v4addr;
22701 	} else {
22702 		/* No ip6i_t in this case */
22703 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22704 		/* Swap addresses */
22705 		v6addr = ip6h->ip6_src;
22706 		ip6h->ip6_src = ip6h->ip6_dst;
22707 		ip6h->ip6_dst = v6addr;
22708 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22709 		addr_len = IPV6_ADDR_LEN;
22710 		addr = &v6addr;
22711 	}
22712 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22713 	U32_TO_BE32(ack, tcph->th_ack);
22714 	U32_TO_BE32(seq, tcph->th_seq);
22715 	U16_TO_BE16(0, tcph->th_win);
22716 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22717 	tcph->th_flags[0] = (uint8_t)ctl;
22718 	if (ctl & TH_RST) {
22719 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22720 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22721 	}
22722 
22723 	/* IP trusts us to set up labels when required. */
22724 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22725 	    crgetlabel(cr) != NULL) {
22726 		int err;
22727 
22728 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22729 			err = tsol_check_label(cr, &mp,
22730 			    tcp->tcp_connp->conn_mac_exempt,
22731 			    tcps->tcps_netstack->netstack_ip);
22732 		else
22733 			err = tsol_check_label_v6(cr, &mp,
22734 			    tcp->tcp_connp->conn_mac_exempt,
22735 			    tcps->tcps_netstack->netstack_ip);
22736 		if (mctl_present)
22737 			ipsec_mp->b_cont = mp;
22738 		else
22739 			ipsec_mp = mp;
22740 		if (err != 0) {
22741 			freemsg(ipsec_mp);
22742 			return;
22743 		}
22744 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22745 			ipha = (ipha_t *)mp->b_rptr;
22746 		} else {
22747 			ip6h = (ip6_t *)mp->b_rptr;
22748 		}
22749 	}
22750 
22751 	if (mctl_present) {
22752 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22753 
22754 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22755 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22756 			return;
22757 		}
22758 	}
22759 	if (zoneid == ALL_ZONES)
22760 		zoneid = GLOBAL_ZONEID;
22761 
22762 	/* Add the zoneid so ip_output routes it properly */
22763 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22764 		freemsg(ipsec_mp);
22765 		return;
22766 	}
22767 	ipsec_mp = nmp;
22768 
22769 	/*
22770 	 * NOTE:  one might consider tracing a TCP packet here, but
22771 	 * this function has no active TCP state and no tcp structure
22772 	 * that has a trace buffer.  If we traced here, we would have
22773 	 * to keep a local trace buffer in tcp_record_trace().
22774 	 *
22775 	 * TSol note: The mblk that contains the incoming packet was
22776 	 * reused by tcp_xmit_listener_reset, so it already contains
22777 	 * the right credentials and we don't need to call mblk_setcred.
22778 	 * Also the conn's cred is not right since it is associated
22779 	 * with tcps_g_q.
22780 	 */
22781 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22782 
22783 	/*
22784 	 * Tell IP to mark the IRE used for this destination temporary.
22785 	 * This way, we can limit our exposure to DoS attack because IP
22786 	 * creates an IRE for each destination.  If there are too many,
22787 	 * the time to do any routing lookup will be extremely long.  And
22788 	 * the lookup can be in interrupt context.
22789 	 *
22790 	 * Note that in normal circumstances, this marking should not
22791 	 * affect anything.  It would be nice if only 1 message is
22792 	 * needed to inform IP that the IRE created for this RST should
22793 	 * not be added to the cache table.  But there is currently
22794 	 * not such communication mechanism between TCP and IP.  So
22795 	 * the best we can do now is to send the advice ioctl to IP
22796 	 * to mark the IRE temporary.
22797 	 */
22798 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22799 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22800 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22801 	}
22802 }
22803 
22804 /*
22805  * Initiate closedown sequence on an active connection.  (May be called as
22806  * writer.)  Return value zero for OK return, non-zero for error return.
22807  */
22808 static int
22809 tcp_xmit_end(tcp_t *tcp)
22810 {
22811 	ipic_t	*ipic;
22812 	mblk_t	*mp;
22813 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22814 
22815 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22816 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22817 		/*
22818 		 * Invalid state, only states TCPS_SYN_RCVD,
22819 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22820 		 */
22821 		return (-1);
22822 	}
22823 
22824 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22825 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22826 	/*
22827 	 * If there is nothing more unsent, send the FIN now.
22828 	 * Otherwise, it will go out with the last segment.
22829 	 */
22830 	if (tcp->tcp_unsent == 0) {
22831 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22832 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22833 
22834 		if (mp) {
22835 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22836 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22837 		} else {
22838 			/*
22839 			 * Couldn't allocate msg.  Pretend we got it out.
22840 			 * Wait for rexmit timeout.
22841 			 */
22842 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22843 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22844 		}
22845 
22846 		/*
22847 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22848 		 * changed.
22849 		 */
22850 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22851 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22852 		}
22853 	} else {
22854 		/*
22855 		 * If tcp->tcp_cork is set, then the data will not get sent,
22856 		 * so we have to check that and unset it first.
22857 		 */
22858 		if (tcp->tcp_cork)
22859 			tcp->tcp_cork = B_FALSE;
22860 		tcp_wput_data(tcp, NULL, B_FALSE);
22861 	}
22862 
22863 	/*
22864 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22865 	 * is 0, don't update the cache.
22866 	 */
22867 	if (tcps->tcps_rtt_updates == 0 ||
22868 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22869 		return (0);
22870 
22871 	/*
22872 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22873 	 * different from the destination.
22874 	 */
22875 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22876 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22877 			return (0);
22878 		}
22879 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22880 		    &ipic);
22881 	} else {
22882 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22883 		    &tcp->tcp_ip6h->ip6_dst))) {
22884 			return (0);
22885 		}
22886 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22887 		    &ipic);
22888 	}
22889 
22890 	/* Record route attributes in the IRE for use by future connections. */
22891 	if (mp == NULL)
22892 		return (0);
22893 
22894 	/*
22895 	 * We do not have a good algorithm to update ssthresh at this time.
22896 	 * So don't do any update.
22897 	 */
22898 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22899 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22900 
22901 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22902 	return (0);
22903 }
22904 
22905 /*
22906  * Generate a "no listener here" RST in response to an "unknown" segment.
22907  * connp is set by caller when RST is in response to an unexpected
22908  * inbound packet for which there is active tcp state in the system.
22909  * Note that we are reusing the incoming mp to construct the outgoing RST.
22910  */
22911 void
22912 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22913     tcp_stack_t *tcps, conn_t *connp)
22914 {
22915 	uchar_t		*rptr;
22916 	uint32_t	seg_len;
22917 	tcph_t		*tcph;
22918 	uint32_t	seg_seq;
22919 	uint32_t	seg_ack;
22920 	uint_t		flags;
22921 	mblk_t		*ipsec_mp;
22922 	ipha_t 		*ipha;
22923 	ip6_t 		*ip6h;
22924 	boolean_t	mctl_present = B_FALSE;
22925 	boolean_t	check = B_TRUE;
22926 	boolean_t	policy_present;
22927 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22928 
22929 	TCP_STAT(tcps, tcp_no_listener);
22930 
22931 	ipsec_mp = mp;
22932 
22933 	if (mp->b_datap->db_type == M_CTL) {
22934 		ipsec_in_t *ii;
22935 
22936 		mctl_present = B_TRUE;
22937 		mp = mp->b_cont;
22938 
22939 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22940 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22941 		if (ii->ipsec_in_dont_check) {
22942 			check = B_FALSE;
22943 			if (!ii->ipsec_in_secure) {
22944 				freeb(ipsec_mp);
22945 				mctl_present = B_FALSE;
22946 				ipsec_mp = mp;
22947 			}
22948 		}
22949 	}
22950 
22951 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22952 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22953 		ipha = (ipha_t *)mp->b_rptr;
22954 		ip6h = NULL;
22955 	} else {
22956 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22957 		ipha = NULL;
22958 		ip6h = (ip6_t *)mp->b_rptr;
22959 	}
22960 
22961 	if (check && policy_present) {
22962 		/*
22963 		 * The conn_t parameter is NULL because we already know
22964 		 * nobody's home.
22965 		 */
22966 		ipsec_mp = ipsec_check_global_policy(
22967 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22968 		    tcps->tcps_netstack);
22969 		if (ipsec_mp == NULL)
22970 			return;
22971 	}
22972 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22973 		DTRACE_PROBE2(
22974 		    tx__ip__log__error__nolistener__tcp,
22975 		    char *, "Could not reply with RST to mp(1)",
22976 		    mblk_t *, mp);
22977 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22978 		freemsg(ipsec_mp);
22979 		return;
22980 	}
22981 
22982 	rptr = mp->b_rptr;
22983 
22984 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22985 	seg_seq = BE32_TO_U32(tcph->th_seq);
22986 	seg_ack = BE32_TO_U32(tcph->th_ack);
22987 	flags = tcph->th_flags[0];
22988 
22989 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22990 	if (flags & TH_RST) {
22991 		freemsg(ipsec_mp);
22992 	} else if (flags & TH_ACK) {
22993 		tcp_xmit_early_reset("no tcp, reset",
22994 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22995 		    connp);
22996 	} else {
22997 		if (flags & TH_SYN) {
22998 			seg_len++;
22999 		} else {
23000 			/*
23001 			 * Here we violate the RFC.  Note that a normal
23002 			 * TCP will never send a segment without the ACK
23003 			 * flag, except for RST or SYN segment.  This
23004 			 * segment is neither.  Just drop it on the
23005 			 * floor.
23006 			 */
23007 			freemsg(ipsec_mp);
23008 			tcps->tcps_rst_unsent++;
23009 			return;
23010 		}
23011 
23012 		tcp_xmit_early_reset("no tcp, reset/ack",
23013 		    ipsec_mp, 0, seg_seq + seg_len,
23014 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23015 	}
23016 }
23017 
23018 /*
23019  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23020  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23021  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23022  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23023  * otherwise it will dup partial mblks.)
23024  * Otherwise, an appropriate ACK packet will be generated.  This
23025  * routine is not usually called to send new data for the first time.  It
23026  * is mostly called out of the timer for retransmits, and to generate ACKs.
23027  *
23028  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23029  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23030  * of the original mblk chain will be returned in *offset and *end_mp.
23031  */
23032 mblk_t *
23033 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23034     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23035     boolean_t rexmit)
23036 {
23037 	int	data_length;
23038 	int32_t	off = 0;
23039 	uint_t	flags;
23040 	mblk_t	*mp1;
23041 	mblk_t	*mp2;
23042 	uchar_t	*rptr;
23043 	tcph_t	*tcph;
23044 	int32_t	num_sack_blk = 0;
23045 	int32_t	sack_opt_len = 0;
23046 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23047 
23048 	/* Allocate for our maximum TCP header + link-level */
23049 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23050 	    tcps->tcps_wroff_xtra, BPRI_MED);
23051 	if (!mp1)
23052 		return (NULL);
23053 	data_length = 0;
23054 
23055 	/*
23056 	 * Note that tcp_mss has been adjusted to take into account the
23057 	 * timestamp option if applicable.  Because SACK options do not
23058 	 * appear in every TCP segments and they are of variable lengths,
23059 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23060 	 * the actual segment length when we need to send a segment which
23061 	 * includes SACK options.
23062 	 */
23063 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23064 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23065 		    tcp->tcp_num_sack_blk);
23066 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23067 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23068 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23069 			max_to_send -= sack_opt_len;
23070 	}
23071 
23072 	if (offset != NULL) {
23073 		off = *offset;
23074 		/* We use offset as an indicator that end_mp is not NULL. */
23075 		*end_mp = NULL;
23076 	}
23077 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23078 		/* This could be faster with cooperation from downstream */
23079 		if (mp2 != mp1 && !sendall &&
23080 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23081 		    max_to_send)
23082 			/*
23083 			 * Don't send the next mblk since the whole mblk
23084 			 * does not fit.
23085 			 */
23086 			break;
23087 		mp2->b_cont = dupb(mp);
23088 		mp2 = mp2->b_cont;
23089 		if (!mp2) {
23090 			freemsg(mp1);
23091 			return (NULL);
23092 		}
23093 		mp2->b_rptr += off;
23094 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23095 		    (uintptr_t)INT_MAX);
23096 
23097 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23098 		if (data_length > max_to_send) {
23099 			mp2->b_wptr -= data_length - max_to_send;
23100 			data_length = max_to_send;
23101 			off = mp2->b_wptr - mp->b_rptr;
23102 			break;
23103 		} else {
23104 			off = 0;
23105 		}
23106 	}
23107 	if (offset != NULL) {
23108 		*offset = off;
23109 		*end_mp = mp;
23110 	}
23111 	if (seg_len != NULL) {
23112 		*seg_len = data_length;
23113 	}
23114 
23115 	/* Update the latest receive window size in TCP header. */
23116 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23117 	    tcp->tcp_tcph->th_win);
23118 
23119 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23120 	mp1->b_rptr = rptr;
23121 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23122 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23123 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23124 	U32_TO_ABE32(seq, tcph->th_seq);
23125 
23126 	/*
23127 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23128 	 * that this function was called from tcp_wput_data. Thus, when called
23129 	 * to retransmit data the setting of the PUSH bit may appear some
23130 	 * what random in that it might get set when it should not. This
23131 	 * should not pose any performance issues.
23132 	 */
23133 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23134 	    tcp->tcp_unsent == data_length)) {
23135 		flags = TH_ACK | TH_PUSH;
23136 	} else {
23137 		flags = TH_ACK;
23138 	}
23139 
23140 	if (tcp->tcp_ecn_ok) {
23141 		if (tcp->tcp_ecn_echo_on)
23142 			flags |= TH_ECE;
23143 
23144 		/*
23145 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23146 		 * There is no TCP flow control for non-data segments, and
23147 		 * only data segment is transmitted reliably.
23148 		 */
23149 		if (data_length > 0 && !rexmit) {
23150 			SET_ECT(tcp, rptr);
23151 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23152 				flags |= TH_CWR;
23153 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23154 			}
23155 		}
23156 	}
23157 
23158 	if (tcp->tcp_valid_bits) {
23159 		uint32_t u1;
23160 
23161 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23162 		    seq == tcp->tcp_iss) {
23163 			uchar_t	*wptr;
23164 
23165 			/*
23166 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23167 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23168 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23169 			 * our SYN is not ack'ed but the app closes this
23170 			 * TCP connection.
23171 			 */
23172 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23173 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23174 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23175 
23176 			/*
23177 			 * Tack on the MSS option.  It is always needed
23178 			 * for both active and passive open.
23179 			 *
23180 			 * MSS option value should be interface MTU - MIN
23181 			 * TCP/IP header according to RFC 793 as it means
23182 			 * the maximum segment size TCP can receive.  But
23183 			 * to get around some broken middle boxes/end hosts
23184 			 * out there, we allow the option value to be the
23185 			 * same as the MSS option size on the peer side.
23186 			 * In this way, the other side will not send
23187 			 * anything larger than they can receive.
23188 			 *
23189 			 * Note that for SYN_SENT state, the ndd param
23190 			 * tcp_use_smss_as_mss_opt has no effect as we
23191 			 * don't know the peer's MSS option value. So
23192 			 * the only case we need to take care of is in
23193 			 * SYN_RCVD state, which is done later.
23194 			 */
23195 			wptr = mp1->b_wptr;
23196 			wptr[0] = TCPOPT_MAXSEG;
23197 			wptr[1] = TCPOPT_MAXSEG_LEN;
23198 			wptr += 2;
23199 			u1 = tcp->tcp_if_mtu -
23200 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23201 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23202 			    TCP_MIN_HEADER_LENGTH;
23203 			U16_TO_BE16(u1, wptr);
23204 			mp1->b_wptr = wptr + 2;
23205 			/* Update the offset to cover the additional word */
23206 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23207 
23208 			/*
23209 			 * Note that the following way of filling in
23210 			 * TCP options are not optimal.  Some NOPs can
23211 			 * be saved.  But there is no need at this time
23212 			 * to optimize it.  When it is needed, we will
23213 			 * do it.
23214 			 */
23215 			switch (tcp->tcp_state) {
23216 			case TCPS_SYN_SENT:
23217 				flags = TH_SYN;
23218 
23219 				if (tcp->tcp_snd_ts_ok) {
23220 					uint32_t llbolt = (uint32_t)lbolt;
23221 
23222 					wptr = mp1->b_wptr;
23223 					wptr[0] = TCPOPT_NOP;
23224 					wptr[1] = TCPOPT_NOP;
23225 					wptr[2] = TCPOPT_TSTAMP;
23226 					wptr[3] = TCPOPT_TSTAMP_LEN;
23227 					wptr += 4;
23228 					U32_TO_BE32(llbolt, wptr);
23229 					wptr += 4;
23230 					ASSERT(tcp->tcp_ts_recent == 0);
23231 					U32_TO_BE32(0L, wptr);
23232 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23233 					tcph->th_offset_and_rsrvd[0] +=
23234 					    (3 << 4);
23235 				}
23236 
23237 				/*
23238 				 * Set up all the bits to tell other side
23239 				 * we are ECN capable.
23240 				 */
23241 				if (tcp->tcp_ecn_ok) {
23242 					flags |= (TH_ECE | TH_CWR);
23243 				}
23244 				break;
23245 			case TCPS_SYN_RCVD:
23246 				flags |= TH_SYN;
23247 
23248 				/*
23249 				 * Reset the MSS option value to be SMSS
23250 				 * We should probably add back the bytes
23251 				 * for timestamp option and IPsec.  We
23252 				 * don't do that as this is a workaround
23253 				 * for broken middle boxes/end hosts, it
23254 				 * is better for us to be more cautious.
23255 				 * They may not take these things into
23256 				 * account in their SMSS calculation.  Thus
23257 				 * the peer's calculated SMSS may be smaller
23258 				 * than what it can be.  This should be OK.
23259 				 */
23260 				if (tcps->tcps_use_smss_as_mss_opt) {
23261 					u1 = tcp->tcp_mss;
23262 					U16_TO_BE16(u1, wptr);
23263 				}
23264 
23265 				/*
23266 				 * If the other side is ECN capable, reply
23267 				 * that we are also ECN capable.
23268 				 */
23269 				if (tcp->tcp_ecn_ok)
23270 					flags |= TH_ECE;
23271 				break;
23272 			default:
23273 				/*
23274 				 * The above ASSERT() makes sure that this
23275 				 * must be FIN-WAIT-1 state.  Our SYN has
23276 				 * not been ack'ed so retransmit it.
23277 				 */
23278 				flags |= TH_SYN;
23279 				break;
23280 			}
23281 
23282 			if (tcp->tcp_snd_ws_ok) {
23283 				wptr = mp1->b_wptr;
23284 				wptr[0] =  TCPOPT_NOP;
23285 				wptr[1] =  TCPOPT_WSCALE;
23286 				wptr[2] =  TCPOPT_WS_LEN;
23287 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23288 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23289 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23290 			}
23291 
23292 			if (tcp->tcp_snd_sack_ok) {
23293 				wptr = mp1->b_wptr;
23294 				wptr[0] = TCPOPT_NOP;
23295 				wptr[1] = TCPOPT_NOP;
23296 				wptr[2] = TCPOPT_SACK_PERMITTED;
23297 				wptr[3] = TCPOPT_SACK_OK_LEN;
23298 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23299 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23300 			}
23301 
23302 			/* allocb() of adequate mblk assures space */
23303 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23304 			    (uintptr_t)INT_MAX);
23305 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23306 			/*
23307 			 * Get IP set to checksum on our behalf
23308 			 * Include the adjustment for a source route if any.
23309 			 */
23310 			u1 += tcp->tcp_sum;
23311 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23312 			U16_TO_BE16(u1, tcph->th_sum);
23313 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23314 		}
23315 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23316 		    (seq + data_length) == tcp->tcp_fss) {
23317 			if (!tcp->tcp_fin_acked) {
23318 				flags |= TH_FIN;
23319 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23320 			}
23321 			if (!tcp->tcp_fin_sent) {
23322 				tcp->tcp_fin_sent = B_TRUE;
23323 				switch (tcp->tcp_state) {
23324 				case TCPS_SYN_RCVD:
23325 				case TCPS_ESTABLISHED:
23326 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23327 					break;
23328 				case TCPS_CLOSE_WAIT:
23329 					tcp->tcp_state = TCPS_LAST_ACK;
23330 					break;
23331 				}
23332 				if (tcp->tcp_suna == tcp->tcp_snxt)
23333 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23334 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23335 			}
23336 		}
23337 		/*
23338 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23339 		 * is smaller than seq, u1 will become a very huge value.
23340 		 * So the comparison will fail.  Also note that tcp_urp
23341 		 * should be positive, see RFC 793 page 17.
23342 		 */
23343 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23344 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23345 		    u1 < (uint32_t)(64 * 1024)) {
23346 			flags |= TH_URG;
23347 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23348 			U32_TO_ABE16(u1, tcph->th_urp);
23349 		}
23350 	}
23351 	tcph->th_flags[0] = (uchar_t)flags;
23352 	tcp->tcp_rack = tcp->tcp_rnxt;
23353 	tcp->tcp_rack_cnt = 0;
23354 
23355 	if (tcp->tcp_snd_ts_ok) {
23356 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23357 			uint32_t llbolt = (uint32_t)lbolt;
23358 
23359 			U32_TO_BE32(llbolt,
23360 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23361 			U32_TO_BE32(tcp->tcp_ts_recent,
23362 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23363 		}
23364 	}
23365 
23366 	if (num_sack_blk > 0) {
23367 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23368 		sack_blk_t *tmp;
23369 		int32_t	i;
23370 
23371 		wptr[0] = TCPOPT_NOP;
23372 		wptr[1] = TCPOPT_NOP;
23373 		wptr[2] = TCPOPT_SACK;
23374 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23375 		    sizeof (sack_blk_t);
23376 		wptr += TCPOPT_REAL_SACK_LEN;
23377 
23378 		tmp = tcp->tcp_sack_list;
23379 		for (i = 0; i < num_sack_blk; i++) {
23380 			U32_TO_BE32(tmp[i].begin, wptr);
23381 			wptr += sizeof (tcp_seq);
23382 			U32_TO_BE32(tmp[i].end, wptr);
23383 			wptr += sizeof (tcp_seq);
23384 		}
23385 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23386 	}
23387 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23388 	data_length += (int)(mp1->b_wptr - rptr);
23389 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23390 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23391 	} else {
23392 		ip6_t *ip6 = (ip6_t *)(rptr +
23393 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23394 		    sizeof (ip6i_t) : 0));
23395 
23396 		ip6->ip6_plen = htons(data_length -
23397 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23398 	}
23399 
23400 	/*
23401 	 * Prime pump for IP
23402 	 * Include the adjustment for a source route if any.
23403 	 */
23404 	data_length -= tcp->tcp_ip_hdr_len;
23405 	data_length += tcp->tcp_sum;
23406 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23407 	U16_TO_ABE16(data_length, tcph->th_sum);
23408 	if (tcp->tcp_ip_forward_progress) {
23409 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23410 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23411 		tcp->tcp_ip_forward_progress = B_FALSE;
23412 	}
23413 	return (mp1);
23414 }
23415 
23416 /* This function handles the push timeout. */
23417 void
23418 tcp_push_timer(void *arg)
23419 {
23420 	conn_t	*connp = (conn_t *)arg;
23421 	tcp_t *tcp = connp->conn_tcp;
23422 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23423 
23424 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23425 
23426 	ASSERT(tcp->tcp_listener == NULL);
23427 
23428 	/*
23429 	 * We need to plug synchronous streams during our drain to prevent
23430 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23431 	 */
23432 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23433 	tcp->tcp_push_tid = 0;
23434 	if ((tcp->tcp_rcv_list != NULL) &&
23435 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23436 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23437 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23438 }
23439 
23440 /*
23441  * This function handles delayed ACK timeout.
23442  */
23443 static void
23444 tcp_ack_timer(void *arg)
23445 {
23446 	conn_t	*connp = (conn_t *)arg;
23447 	tcp_t *tcp = connp->conn_tcp;
23448 	mblk_t *mp;
23449 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23450 
23451 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23452 
23453 	tcp->tcp_ack_tid = 0;
23454 
23455 	if (tcp->tcp_fused)
23456 		return;
23457 
23458 	/*
23459 	 * Do not send ACK if there is no outstanding unack'ed data.
23460 	 */
23461 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23462 		return;
23463 	}
23464 
23465 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23466 		/*
23467 		 * Make sure we don't allow deferred ACKs to result in
23468 		 * timer-based ACKing.  If we have held off an ACK
23469 		 * when there was more than an mss here, and the timer
23470 		 * goes off, we have to worry about the possibility
23471 		 * that the sender isn't doing slow-start, or is out
23472 		 * of step with us for some other reason.  We fall
23473 		 * permanently back in the direction of
23474 		 * ACK-every-other-packet as suggested in RFC 1122.
23475 		 */
23476 		if (tcp->tcp_rack_abs_max > 2)
23477 			tcp->tcp_rack_abs_max--;
23478 		tcp->tcp_rack_cur_max = 2;
23479 	}
23480 	mp = tcp_ack_mp(tcp);
23481 
23482 	if (mp != NULL) {
23483 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23484 		BUMP_LOCAL(tcp->tcp_obsegs);
23485 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23486 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23487 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23488 	}
23489 }
23490 
23491 
23492 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23493 static mblk_t *
23494 tcp_ack_mp(tcp_t *tcp)
23495 {
23496 	uint32_t	seq_no;
23497 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23498 
23499 	/*
23500 	 * There are a few cases to be considered while setting the sequence no.
23501 	 * Essentially, we can come here while processing an unacceptable pkt
23502 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23503 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23504 	 * If we are here for a zero window probe, stick with suna. In all
23505 	 * other cases, we check if suna + swnd encompasses snxt and set
23506 	 * the sequence number to snxt, if so. If snxt falls outside the
23507 	 * window (the receiver probably shrunk its window), we will go with
23508 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23509 	 * receiver.
23510 	 */
23511 	if (tcp->tcp_zero_win_probe) {
23512 		seq_no = tcp->tcp_suna;
23513 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23514 		ASSERT(tcp->tcp_swnd == 0);
23515 		seq_no = tcp->tcp_snxt;
23516 	} else {
23517 		seq_no = SEQ_GT(tcp->tcp_snxt,
23518 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23519 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23520 	}
23521 
23522 	if (tcp->tcp_valid_bits) {
23523 		/*
23524 		 * For the complex case where we have to send some
23525 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23526 		 */
23527 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23528 		    NULL, B_FALSE));
23529 	} else {
23530 		/* Generate a simple ACK */
23531 		int	data_length;
23532 		uchar_t	*rptr;
23533 		tcph_t	*tcph;
23534 		mblk_t	*mp1;
23535 		int32_t	tcp_hdr_len;
23536 		int32_t	tcp_tcp_hdr_len;
23537 		int32_t	num_sack_blk = 0;
23538 		int32_t sack_opt_len;
23539 
23540 		/*
23541 		 * Allocate space for TCP + IP headers
23542 		 * and link-level header
23543 		 */
23544 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23545 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23546 			    tcp->tcp_num_sack_blk);
23547 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23548 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23549 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23550 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23551 		} else {
23552 			tcp_hdr_len = tcp->tcp_hdr_len;
23553 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23554 		}
23555 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23556 		if (!mp1)
23557 			return (NULL);
23558 
23559 		/* Update the latest receive window size in TCP header. */
23560 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23561 		    tcp->tcp_tcph->th_win);
23562 		/* copy in prototype TCP + IP header */
23563 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23564 		mp1->b_rptr = rptr;
23565 		mp1->b_wptr = rptr + tcp_hdr_len;
23566 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23567 
23568 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23569 
23570 		/* Set the TCP sequence number. */
23571 		U32_TO_ABE32(seq_no, tcph->th_seq);
23572 
23573 		/* Set up the TCP flag field. */
23574 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23575 		if (tcp->tcp_ecn_echo_on)
23576 			tcph->th_flags[0] |= TH_ECE;
23577 
23578 		tcp->tcp_rack = tcp->tcp_rnxt;
23579 		tcp->tcp_rack_cnt = 0;
23580 
23581 		/* fill in timestamp option if in use */
23582 		if (tcp->tcp_snd_ts_ok) {
23583 			uint32_t llbolt = (uint32_t)lbolt;
23584 
23585 			U32_TO_BE32(llbolt,
23586 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23587 			U32_TO_BE32(tcp->tcp_ts_recent,
23588 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23589 		}
23590 
23591 		/* Fill in SACK options */
23592 		if (num_sack_blk > 0) {
23593 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23594 			sack_blk_t *tmp;
23595 			int32_t	i;
23596 
23597 			wptr[0] = TCPOPT_NOP;
23598 			wptr[1] = TCPOPT_NOP;
23599 			wptr[2] = TCPOPT_SACK;
23600 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23601 			    sizeof (sack_blk_t);
23602 			wptr += TCPOPT_REAL_SACK_LEN;
23603 
23604 			tmp = tcp->tcp_sack_list;
23605 			for (i = 0; i < num_sack_blk; i++) {
23606 				U32_TO_BE32(tmp[i].begin, wptr);
23607 				wptr += sizeof (tcp_seq);
23608 				U32_TO_BE32(tmp[i].end, wptr);
23609 				wptr += sizeof (tcp_seq);
23610 			}
23611 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23612 			    << 4);
23613 		}
23614 
23615 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23616 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23617 		} else {
23618 			/* Check for ip6i_t header in sticky hdrs */
23619 			ip6_t *ip6 = (ip6_t *)(rptr +
23620 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23621 			    sizeof (ip6i_t) : 0));
23622 
23623 			ip6->ip6_plen = htons(tcp_hdr_len -
23624 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23625 		}
23626 
23627 		/*
23628 		 * Prime pump for checksum calculation in IP.  Include the
23629 		 * adjustment for a source route if any.
23630 		 */
23631 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23632 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23633 		U16_TO_ABE16(data_length, tcph->th_sum);
23634 
23635 		if (tcp->tcp_ip_forward_progress) {
23636 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23637 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23638 			tcp->tcp_ip_forward_progress = B_FALSE;
23639 		}
23640 		return (mp1);
23641 	}
23642 }
23643 
23644 /*
23645  * To create a temporary tcp structure for inserting into bind hash list.
23646  * The parameter is assumed to be in network byte order, ready for use.
23647  */
23648 /* ARGSUSED */
23649 static tcp_t *
23650 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23651 {
23652 	conn_t	*connp;
23653 	tcp_t	*tcp;
23654 
23655 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23656 	if (connp == NULL)
23657 		return (NULL);
23658 
23659 	tcp = connp->conn_tcp;
23660 	tcp->tcp_tcps = tcps;
23661 	TCPS_REFHOLD(tcps);
23662 
23663 	/*
23664 	 * Only initialize the necessary info in those structures.  Note
23665 	 * that since INADDR_ANY is all 0, we do not need to set
23666 	 * tcp_bound_source to INADDR_ANY here.
23667 	 */
23668 	tcp->tcp_state = TCPS_BOUND;
23669 	tcp->tcp_lport = port;
23670 	tcp->tcp_exclbind = 1;
23671 	tcp->tcp_reserved_port = 1;
23672 
23673 	/* Just for place holding... */
23674 	tcp->tcp_ipversion = IPV4_VERSION;
23675 
23676 	return (tcp);
23677 }
23678 
23679 /*
23680  * To remove a port range specified by lo_port and hi_port from the
23681  * reserved port ranges.  This is one of the three public functions of
23682  * the reserved port interface.  Note that a port range has to be removed
23683  * as a whole.  Ports in a range cannot be removed individually.
23684  *
23685  * Params:
23686  *	in_port_t lo_port: the beginning port of the reserved port range to
23687  *		be deleted.
23688  *	in_port_t hi_port: the ending port of the reserved port range to
23689  *		be deleted.
23690  *
23691  * Return:
23692  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23693  *
23694  * Assumes that nca is only for zoneid=0
23695  */
23696 boolean_t
23697 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23698 {
23699 	int	i, j;
23700 	int	size;
23701 	tcp_t	**temp_tcp_array;
23702 	tcp_t	*tcp;
23703 	tcp_stack_t	*tcps;
23704 
23705 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23706 	ASSERT(tcps != NULL);
23707 
23708 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23709 
23710 	/* First make sure that the port ranage is indeed reserved. */
23711 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23712 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23713 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23714 			temp_tcp_array =
23715 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23716 			break;
23717 		}
23718 	}
23719 	if (i == tcps->tcps_reserved_port_array_size) {
23720 		rw_exit(&tcps->tcps_reserved_port_lock);
23721 		netstack_rele(tcps->tcps_netstack);
23722 		return (B_FALSE);
23723 	}
23724 
23725 	/*
23726 	 * Remove the range from the array.  This simple loop is possible
23727 	 * because port ranges are inserted in ascending order.
23728 	 */
23729 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23730 		tcps->tcps_reserved_port[j].lo_port =
23731 		    tcps->tcps_reserved_port[j+1].lo_port;
23732 		tcps->tcps_reserved_port[j].hi_port =
23733 		    tcps->tcps_reserved_port[j+1].hi_port;
23734 		tcps->tcps_reserved_port[j].temp_tcp_array =
23735 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23736 	}
23737 
23738 	/* Remove all the temporary tcp structures. */
23739 	size = hi_port - lo_port + 1;
23740 	while (size > 0) {
23741 		tcp = temp_tcp_array[size - 1];
23742 		ASSERT(tcp != NULL);
23743 		tcp_bind_hash_remove(tcp);
23744 		CONN_DEC_REF(tcp->tcp_connp);
23745 		size--;
23746 	}
23747 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23748 	tcps->tcps_reserved_port_array_size--;
23749 	rw_exit(&tcps->tcps_reserved_port_lock);
23750 	netstack_rele(tcps->tcps_netstack);
23751 	return (B_TRUE);
23752 }
23753 
23754 /*
23755  * Macro to remove temporary tcp structure from the bind hash list.  The
23756  * first parameter is the list of tcp to be removed.  The second parameter
23757  * is the number of tcps in the array.
23758  */
23759 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23760 { \
23761 	while ((num) > 0) { \
23762 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23763 		tf_t *tbf; \
23764 		tcp_t *tcpnext; \
23765 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23766 		mutex_enter(&tbf->tf_lock); \
23767 		tcpnext = tcp->tcp_bind_hash; \
23768 		if (tcpnext) { \
23769 			tcpnext->tcp_ptpbhn = \
23770 				tcp->tcp_ptpbhn; \
23771 		} \
23772 		*tcp->tcp_ptpbhn = tcpnext; \
23773 		mutex_exit(&tbf->tf_lock); \
23774 		kmem_free(tcp, sizeof (tcp_t)); \
23775 		(tcp_array)[(num) - 1] = NULL; \
23776 		(num)--; \
23777 	} \
23778 }
23779 
23780 /*
23781  * The public interface for other modules to call to reserve a port range
23782  * in TCP.  The caller passes in how large a port range it wants.  TCP
23783  * will try to find a range and return it via lo_port and hi_port.  This is
23784  * used by NCA's nca_conn_init.
23785  * NCA can only be used in the global zone so this only affects the global
23786  * zone's ports.
23787  *
23788  * Params:
23789  *	int size: the size of the port range to be reserved.
23790  *	in_port_t *lo_port (referenced): returns the beginning port of the
23791  *		reserved port range added.
23792  *	in_port_t *hi_port (referenced): returns the ending port of the
23793  *		reserved port range added.
23794  *
23795  * Return:
23796  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23797  *
23798  * Assumes that nca is only for zoneid=0
23799  */
23800 boolean_t
23801 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23802 {
23803 	tcp_t		*tcp;
23804 	tcp_t		*tmp_tcp;
23805 	tcp_t		**temp_tcp_array;
23806 	tf_t		*tbf;
23807 	in_port_t	net_port;
23808 	in_port_t	port;
23809 	int32_t		cur_size;
23810 	int		i, j;
23811 	boolean_t	used;
23812 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23813 	zoneid_t	zoneid = GLOBAL_ZONEID;
23814 	tcp_stack_t	*tcps;
23815 
23816 	/* Sanity check. */
23817 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23818 		return (B_FALSE);
23819 	}
23820 
23821 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23822 	ASSERT(tcps != NULL);
23823 
23824 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23825 	if (tcps->tcps_reserved_port_array_size ==
23826 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23827 		rw_exit(&tcps->tcps_reserved_port_lock);
23828 		netstack_rele(tcps->tcps_netstack);
23829 		return (B_FALSE);
23830 	}
23831 
23832 	/*
23833 	 * Find the starting port to try.  Since the port ranges are ordered
23834 	 * in the reserved port array, we can do a simple search here.
23835 	 */
23836 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23837 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23838 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23839 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23840 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23841 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23842 			break;
23843 		}
23844 	}
23845 	/* No available port range. */
23846 	if (i == tcps->tcps_reserved_port_array_size &&
23847 	    *hi_port - *lo_port < size) {
23848 		rw_exit(&tcps->tcps_reserved_port_lock);
23849 		netstack_rele(tcps->tcps_netstack);
23850 		return (B_FALSE);
23851 	}
23852 
23853 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23854 	if (temp_tcp_array == NULL) {
23855 		rw_exit(&tcps->tcps_reserved_port_lock);
23856 		netstack_rele(tcps->tcps_netstack);
23857 		return (B_FALSE);
23858 	}
23859 
23860 	/* Go thru the port range to see if some ports are already bound. */
23861 	for (port = *lo_port, cur_size = 0;
23862 	    cur_size < size && port <= *hi_port;
23863 	    cur_size++, port++) {
23864 		used = B_FALSE;
23865 		net_port = htons(port);
23866 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23867 		mutex_enter(&tbf->tf_lock);
23868 		for (tcp = tbf->tf_tcp; tcp != NULL;
23869 		    tcp = tcp->tcp_bind_hash) {
23870 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23871 			    net_port == tcp->tcp_lport) {
23872 				/*
23873 				 * A port is already bound.  Search again
23874 				 * starting from port + 1.  Release all
23875 				 * temporary tcps.
23876 				 */
23877 				mutex_exit(&tbf->tf_lock);
23878 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23879 				    tcps);
23880 				*lo_port = port + 1;
23881 				cur_size = -1;
23882 				used = B_TRUE;
23883 				break;
23884 			}
23885 		}
23886 		if (!used) {
23887 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23888 			    NULL) {
23889 				/*
23890 				 * Allocation failure.  Just fail the request.
23891 				 * Need to remove all those temporary tcp
23892 				 * structures.
23893 				 */
23894 				mutex_exit(&tbf->tf_lock);
23895 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23896 				    tcps);
23897 				rw_exit(&tcps->tcps_reserved_port_lock);
23898 				kmem_free(temp_tcp_array,
23899 				    (hi_port - lo_port + 1) *
23900 				    sizeof (tcp_t *));
23901 				netstack_rele(tcps->tcps_netstack);
23902 				return (B_FALSE);
23903 			}
23904 			temp_tcp_array[cur_size] = tmp_tcp;
23905 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23906 			mutex_exit(&tbf->tf_lock);
23907 		}
23908 	}
23909 
23910 	/*
23911 	 * The current range is not large enough.  We can actually do another
23912 	 * search if this search is done between 2 reserved port ranges.  But
23913 	 * for first release, we just stop here and return saying that no port
23914 	 * range is available.
23915 	 */
23916 	if (cur_size < size) {
23917 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23918 		rw_exit(&tcps->tcps_reserved_port_lock);
23919 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23920 		netstack_rele(tcps->tcps_netstack);
23921 		return (B_FALSE);
23922 	}
23923 	*hi_port = port - 1;
23924 
23925 	/*
23926 	 * Insert range into array in ascending order.  Since this function
23927 	 * must not be called often, we choose to use the simplest method.
23928 	 * The above array should not consume excessive stack space as
23929 	 * the size must be very small.  If in future releases, we find
23930 	 * that we should provide more reserved port ranges, this function
23931 	 * has to be modified to be more efficient.
23932 	 */
23933 	if (tcps->tcps_reserved_port_array_size == 0) {
23934 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23935 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23936 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23937 	} else {
23938 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23939 		    i++, j++) {
23940 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23941 			    i == j) {
23942 				tmp_ports[j].lo_port = *lo_port;
23943 				tmp_ports[j].hi_port = *hi_port;
23944 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23945 				j++;
23946 			}
23947 			tmp_ports[j].lo_port =
23948 			    tcps->tcps_reserved_port[i].lo_port;
23949 			tmp_ports[j].hi_port =
23950 			    tcps->tcps_reserved_port[i].hi_port;
23951 			tmp_ports[j].temp_tcp_array =
23952 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23953 		}
23954 		if (j == i) {
23955 			tmp_ports[j].lo_port = *lo_port;
23956 			tmp_ports[j].hi_port = *hi_port;
23957 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23958 		}
23959 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23960 	}
23961 	tcps->tcps_reserved_port_array_size++;
23962 	rw_exit(&tcps->tcps_reserved_port_lock);
23963 	netstack_rele(tcps->tcps_netstack);
23964 	return (B_TRUE);
23965 }
23966 
23967 /*
23968  * Check to see if a port is in any reserved port range.
23969  *
23970  * Params:
23971  *	in_port_t port: the port to be verified.
23972  *
23973  * Return:
23974  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23975  */
23976 boolean_t
23977 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23978 {
23979 	int i;
23980 
23981 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23982 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23983 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23984 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23985 			rw_exit(&tcps->tcps_reserved_port_lock);
23986 			return (B_TRUE);
23987 		}
23988 	}
23989 	rw_exit(&tcps->tcps_reserved_port_lock);
23990 	return (B_FALSE);
23991 }
23992 
23993 /*
23994  * To list all reserved port ranges.  This is the function to handle
23995  * ndd tcp_reserved_port_list.
23996  */
23997 /* ARGSUSED */
23998 static int
23999 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24000 {
24001 	int i;
24002 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24003 
24004 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
24005 	if (tcps->tcps_reserved_port_array_size > 0)
24006 		(void) mi_mpprintf(mp, "The following ports are reserved:");
24007 	else
24008 		(void) mi_mpprintf(mp, "No port is reserved.");
24009 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
24010 		(void) mi_mpprintf(mp, "%d-%d",
24011 		    tcps->tcps_reserved_port[i].lo_port,
24012 		    tcps->tcps_reserved_port[i].hi_port);
24013 	}
24014 	rw_exit(&tcps->tcps_reserved_port_lock);
24015 	return (0);
24016 }
24017 
24018 /*
24019  * Hash list insertion routine for tcp_t structures.
24020  * Inserts entries with the ones bound to a specific IP address first
24021  * followed by those bound to INADDR_ANY.
24022  */
24023 static void
24024 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
24025 {
24026 	tcp_t	**tcpp;
24027 	tcp_t	*tcpnext;
24028 
24029 	if (tcp->tcp_ptpbhn != NULL) {
24030 		ASSERT(!caller_holds_lock);
24031 		tcp_bind_hash_remove(tcp);
24032 	}
24033 	tcpp = &tbf->tf_tcp;
24034 	if (!caller_holds_lock) {
24035 		mutex_enter(&tbf->tf_lock);
24036 	} else {
24037 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
24038 	}
24039 	tcpnext = tcpp[0];
24040 	if (tcpnext) {
24041 		/*
24042 		 * If the new tcp bound to the INADDR_ANY address
24043 		 * and the first one in the list is not bound to
24044 		 * INADDR_ANY we skip all entries until we find the
24045 		 * first one bound to INADDR_ANY.
24046 		 * This makes sure that applications binding to a
24047 		 * specific address get preference over those binding to
24048 		 * INADDR_ANY.
24049 		 */
24050 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24051 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24052 			while ((tcpnext = tcpp[0]) != NULL &&
24053 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24054 				tcpp = &(tcpnext->tcp_bind_hash);
24055 			if (tcpnext)
24056 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24057 		} else
24058 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24059 	}
24060 	tcp->tcp_bind_hash = tcpnext;
24061 	tcp->tcp_ptpbhn = tcpp;
24062 	tcpp[0] = tcp;
24063 	if (!caller_holds_lock)
24064 		mutex_exit(&tbf->tf_lock);
24065 }
24066 
24067 /*
24068  * Hash list removal routine for tcp_t structures.
24069  */
24070 static void
24071 tcp_bind_hash_remove(tcp_t *tcp)
24072 {
24073 	tcp_t	*tcpnext;
24074 	kmutex_t *lockp;
24075 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24076 
24077 	if (tcp->tcp_ptpbhn == NULL)
24078 		return;
24079 
24080 	/*
24081 	 * Extract the lock pointer in case there are concurrent
24082 	 * hash_remove's for this instance.
24083 	 */
24084 	ASSERT(tcp->tcp_lport != 0);
24085 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24086 
24087 	ASSERT(lockp != NULL);
24088 	mutex_enter(lockp);
24089 	if (tcp->tcp_ptpbhn) {
24090 		tcpnext = tcp->tcp_bind_hash;
24091 		if (tcpnext) {
24092 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24093 			tcp->tcp_bind_hash = NULL;
24094 		}
24095 		*tcp->tcp_ptpbhn = tcpnext;
24096 		tcp->tcp_ptpbhn = NULL;
24097 	}
24098 	mutex_exit(lockp);
24099 }
24100 
24101 
24102 /*
24103  * Hash list lookup routine for tcp_t structures.
24104  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24105  */
24106 static tcp_t *
24107 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24108 {
24109 	tf_t	*tf;
24110 	tcp_t	*tcp;
24111 
24112 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24113 	mutex_enter(&tf->tf_lock);
24114 	for (tcp = tf->tf_tcp; tcp != NULL;
24115 	    tcp = tcp->tcp_acceptor_hash) {
24116 		if (tcp->tcp_acceptor_id == id) {
24117 			CONN_INC_REF(tcp->tcp_connp);
24118 			mutex_exit(&tf->tf_lock);
24119 			return (tcp);
24120 		}
24121 	}
24122 	mutex_exit(&tf->tf_lock);
24123 	return (NULL);
24124 }
24125 
24126 
24127 /*
24128  * Hash list insertion routine for tcp_t structures.
24129  */
24130 void
24131 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24132 {
24133 	tf_t	*tf;
24134 	tcp_t	**tcpp;
24135 	tcp_t	*tcpnext;
24136 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24137 
24138 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24139 
24140 	if (tcp->tcp_ptpahn != NULL)
24141 		tcp_acceptor_hash_remove(tcp);
24142 	tcpp = &tf->tf_tcp;
24143 	mutex_enter(&tf->tf_lock);
24144 	tcpnext = tcpp[0];
24145 	if (tcpnext)
24146 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24147 	tcp->tcp_acceptor_hash = tcpnext;
24148 	tcp->tcp_ptpahn = tcpp;
24149 	tcpp[0] = tcp;
24150 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24151 	mutex_exit(&tf->tf_lock);
24152 }
24153 
24154 /*
24155  * Hash list removal routine for tcp_t structures.
24156  */
24157 static void
24158 tcp_acceptor_hash_remove(tcp_t *tcp)
24159 {
24160 	tcp_t	*tcpnext;
24161 	kmutex_t *lockp;
24162 
24163 	/*
24164 	 * Extract the lock pointer in case there are concurrent
24165 	 * hash_remove's for this instance.
24166 	 */
24167 	lockp = tcp->tcp_acceptor_lockp;
24168 
24169 	if (tcp->tcp_ptpahn == NULL)
24170 		return;
24171 
24172 	ASSERT(lockp != NULL);
24173 	mutex_enter(lockp);
24174 	if (tcp->tcp_ptpahn) {
24175 		tcpnext = tcp->tcp_acceptor_hash;
24176 		if (tcpnext) {
24177 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24178 			tcp->tcp_acceptor_hash = NULL;
24179 		}
24180 		*tcp->tcp_ptpahn = tcpnext;
24181 		tcp->tcp_ptpahn = NULL;
24182 	}
24183 	mutex_exit(lockp);
24184 	tcp->tcp_acceptor_lockp = NULL;
24185 }
24186 
24187 /* ARGSUSED */
24188 static int
24189 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24190 {
24191 	int error = 0;
24192 	int retval;
24193 	char *end;
24194 	tcp_hsp_t *hsp;
24195 	tcp_hsp_t *hspprev;
24196 	ipaddr_t addr = 0;		/* Address we're looking for */
24197 	in6_addr_t v6addr;		/* Address we're looking for */
24198 	uint32_t hash;			/* Hash of that address */
24199 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24200 
24201 	/*
24202 	 * If the following variables are still zero after parsing the input
24203 	 * string, the user didn't specify them and we don't change them in
24204 	 * the HSP.
24205 	 */
24206 
24207 	ipaddr_t mask = 0;		/* Subnet mask */
24208 	in6_addr_t v6mask;
24209 	long sendspace = 0;		/* Send buffer size */
24210 	long recvspace = 0;		/* Receive buffer size */
24211 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24212 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24213 
24214 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24215 
24216 	/* Parse and validate address */
24217 	if (af == AF_INET) {
24218 		retval = inet_pton(af, value, &addr);
24219 		if (retval == 1)
24220 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24221 	} else if (af == AF_INET6) {
24222 		retval = inet_pton(af, value, &v6addr);
24223 	} else {
24224 		error = EINVAL;
24225 		goto done;
24226 	}
24227 	if (retval == 0) {
24228 		error = EINVAL;
24229 		goto done;
24230 	}
24231 
24232 	while ((*value) && *value != ' ')
24233 		value++;
24234 
24235 	/* Parse individual keywords, set variables if found */
24236 	while (*value) {
24237 		/* Skip leading blanks */
24238 
24239 		while (*value == ' ' || *value == '\t')
24240 			value++;
24241 
24242 		/* If at end of string, we're done */
24243 
24244 		if (!*value)
24245 			break;
24246 
24247 		/* We have a word, figure out what it is */
24248 
24249 		if (strncmp("mask", value, 4) == 0) {
24250 			value += 4;
24251 			while (*value == ' ' || *value == '\t')
24252 				value++;
24253 			/* Parse subnet mask */
24254 			if (af == AF_INET) {
24255 				retval = inet_pton(af, value, &mask);
24256 				if (retval == 1) {
24257 					V4MASK_TO_V6(mask, v6mask);
24258 				}
24259 			} else if (af == AF_INET6) {
24260 				retval = inet_pton(af, value, &v6mask);
24261 			}
24262 			if (retval != 1) {
24263 				error = EINVAL;
24264 				goto done;
24265 			}
24266 			while ((*value) && *value != ' ')
24267 				value++;
24268 		} else if (strncmp("sendspace", value, 9) == 0) {
24269 			value += 9;
24270 
24271 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24272 			    sendspace < TCP_XMIT_HIWATER ||
24273 			    sendspace >= (1L<<30)) {
24274 				error = EINVAL;
24275 				goto done;
24276 			}
24277 			value = end;
24278 		} else if (strncmp("recvspace", value, 9) == 0) {
24279 			value += 9;
24280 
24281 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24282 			    recvspace < TCP_RECV_HIWATER ||
24283 			    recvspace >= (1L<<30)) {
24284 				error = EINVAL;
24285 				goto done;
24286 			}
24287 			value = end;
24288 		} else if (strncmp("timestamp", value, 9) == 0) {
24289 			value += 9;
24290 
24291 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24292 			    timestamp < 0 || timestamp > 1) {
24293 				error = EINVAL;
24294 				goto done;
24295 			}
24296 
24297 			/*
24298 			 * We increment timestamp so we know it's been set;
24299 			 * this is undone when we put it in the HSP
24300 			 */
24301 			timestamp++;
24302 			value = end;
24303 		} else if (strncmp("delete", value, 6) == 0) {
24304 			value += 6;
24305 			delete = B_TRUE;
24306 		} else {
24307 			error = EINVAL;
24308 			goto done;
24309 		}
24310 	}
24311 
24312 	/* Hash address for lookup */
24313 
24314 	hash = TCP_HSP_HASH(addr);
24315 
24316 	if (delete) {
24317 		/*
24318 		 * Note that deletes don't return an error if the thing
24319 		 * we're trying to delete isn't there.
24320 		 */
24321 		if (tcps->tcps_hsp_hash == NULL)
24322 			goto done;
24323 		hsp = tcps->tcps_hsp_hash[hash];
24324 
24325 		if (hsp) {
24326 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24327 			    &v6addr)) {
24328 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24329 				mi_free((char *)hsp);
24330 			} else {
24331 				hspprev = hsp;
24332 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24333 					if (IN6_ARE_ADDR_EQUAL(
24334 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24335 						hspprev->tcp_hsp_next =
24336 						    hsp->tcp_hsp_next;
24337 						mi_free((char *)hsp);
24338 						break;
24339 					}
24340 					hspprev = hsp;
24341 				}
24342 			}
24343 		}
24344 	} else {
24345 		/*
24346 		 * We're adding/modifying an HSP.  If we haven't already done
24347 		 * so, allocate the hash table.
24348 		 */
24349 
24350 		if (!tcps->tcps_hsp_hash) {
24351 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24352 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24353 			if (!tcps->tcps_hsp_hash) {
24354 				error = EINVAL;
24355 				goto done;
24356 			}
24357 		}
24358 
24359 		/* Get head of hash chain */
24360 
24361 		hsp = tcps->tcps_hsp_hash[hash];
24362 
24363 		/* Try to find pre-existing hsp on hash chain */
24364 		/* Doesn't handle CIDR prefixes. */
24365 		while (hsp) {
24366 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24367 				break;
24368 			hsp = hsp->tcp_hsp_next;
24369 		}
24370 
24371 		/*
24372 		 * If we didn't, create one with default values and put it
24373 		 * at head of hash chain
24374 		 */
24375 
24376 		if (!hsp) {
24377 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24378 			if (!hsp) {
24379 				error = EINVAL;
24380 				goto done;
24381 			}
24382 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24383 			tcps->tcps_hsp_hash[hash] = hsp;
24384 		}
24385 
24386 		/* Set values that the user asked us to change */
24387 
24388 		hsp->tcp_hsp_addr_v6 = v6addr;
24389 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24390 			hsp->tcp_hsp_vers = IPV4_VERSION;
24391 		else
24392 			hsp->tcp_hsp_vers = IPV6_VERSION;
24393 		hsp->tcp_hsp_subnet_v6 = v6mask;
24394 		if (sendspace > 0)
24395 			hsp->tcp_hsp_sendspace = sendspace;
24396 		if (recvspace > 0)
24397 			hsp->tcp_hsp_recvspace = recvspace;
24398 		if (timestamp > 0)
24399 			hsp->tcp_hsp_tstamp = timestamp - 1;
24400 	}
24401 
24402 done:
24403 	rw_exit(&tcps->tcps_hsp_lock);
24404 	return (error);
24405 }
24406 
24407 /* Set callback routine passed to nd_load by tcp_param_register. */
24408 /* ARGSUSED */
24409 static int
24410 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24411 {
24412 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24413 }
24414 /* ARGSUSED */
24415 static int
24416 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24417     cred_t *cr)
24418 {
24419 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24420 }
24421 
24422 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24423 /* ARGSUSED */
24424 static int
24425 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24426 {
24427 	tcp_hsp_t *hsp;
24428 	int i;
24429 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24430 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24431 
24432 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24433 	(void) mi_mpprintf(mp,
24434 	    "Hash HSP     " MI_COL_HDRPAD_STR
24435 	    "Address         Subnet Mask     Send       Receive    TStamp");
24436 	if (tcps->tcps_hsp_hash) {
24437 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24438 			hsp = tcps->tcps_hsp_hash[i];
24439 			while (hsp) {
24440 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24441 					(void) inet_ntop(AF_INET,
24442 					    &hsp->tcp_hsp_addr,
24443 					    addrbuf, sizeof (addrbuf));
24444 					(void) inet_ntop(AF_INET,
24445 					    &hsp->tcp_hsp_subnet,
24446 					    subnetbuf, sizeof (subnetbuf));
24447 				} else {
24448 					(void) inet_ntop(AF_INET6,
24449 					    &hsp->tcp_hsp_addr_v6,
24450 					    addrbuf, sizeof (addrbuf));
24451 					(void) inet_ntop(AF_INET6,
24452 					    &hsp->tcp_hsp_subnet_v6,
24453 					    subnetbuf, sizeof (subnetbuf));
24454 				}
24455 				(void) mi_mpprintf(mp,
24456 				    " %03d " MI_COL_PTRFMT_STR
24457 				    "%s %s %010d %010d      %d",
24458 				    i,
24459 				    (void *)hsp,
24460 				    addrbuf,
24461 				    subnetbuf,
24462 				    hsp->tcp_hsp_sendspace,
24463 				    hsp->tcp_hsp_recvspace,
24464 				    hsp->tcp_hsp_tstamp);
24465 
24466 				hsp = hsp->tcp_hsp_next;
24467 			}
24468 		}
24469 	}
24470 	rw_exit(&tcps->tcps_hsp_lock);
24471 	return (0);
24472 }
24473 
24474 
24475 /* Data for fast netmask macro used by tcp_hsp_lookup */
24476 
24477 static ipaddr_t netmasks[] = {
24478 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24479 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24480 };
24481 
24482 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24483 
24484 /*
24485  * XXX This routine should go away and instead we should use the metrics
24486  * associated with the routes to determine the default sndspace and rcvspace.
24487  */
24488 static tcp_hsp_t *
24489 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24490 {
24491 	tcp_hsp_t *hsp = NULL;
24492 
24493 	/* Quick check without acquiring the lock. */
24494 	if (tcps->tcps_hsp_hash == NULL)
24495 		return (NULL);
24496 
24497 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24498 
24499 	/* This routine finds the best-matching HSP for address addr. */
24500 
24501 	if (tcps->tcps_hsp_hash) {
24502 		int i;
24503 		ipaddr_t srchaddr;
24504 		tcp_hsp_t *hsp_net;
24505 
24506 		/* We do three passes: host, network, and subnet. */
24507 
24508 		srchaddr = addr;
24509 
24510 		for (i = 1; i <= 3; i++) {
24511 			/* Look for exact match on srchaddr */
24512 
24513 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24514 			while (hsp) {
24515 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24516 				    hsp->tcp_hsp_addr == srchaddr)
24517 					break;
24518 				hsp = hsp->tcp_hsp_next;
24519 			}
24520 			ASSERT(hsp == NULL ||
24521 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24522 
24523 			/*
24524 			 * If this is the first pass:
24525 			 *   If we found a match, great, return it.
24526 			 *   If not, search for the network on the second pass.
24527 			 */
24528 
24529 			if (i == 1)
24530 				if (hsp)
24531 					break;
24532 				else
24533 				{
24534 					srchaddr = addr & netmask(addr);
24535 					continue;
24536 				}
24537 
24538 			/*
24539 			 * If this is the second pass:
24540 			 *   If we found a match, but there's a subnet mask,
24541 			 *    save the match but try again using the subnet
24542 			 *    mask on the third pass.
24543 			 *   Otherwise, return whatever we found.
24544 			 */
24545 
24546 			if (i == 2) {
24547 				if (hsp && hsp->tcp_hsp_subnet) {
24548 					hsp_net = hsp;
24549 					srchaddr = addr & hsp->tcp_hsp_subnet;
24550 					continue;
24551 				} else {
24552 					break;
24553 				}
24554 			}
24555 
24556 			/*
24557 			 * This must be the third pass.  If we didn't find
24558 			 * anything, return the saved network HSP instead.
24559 			 */
24560 
24561 			if (!hsp)
24562 				hsp = hsp_net;
24563 		}
24564 	}
24565 
24566 	rw_exit(&tcps->tcps_hsp_lock);
24567 	return (hsp);
24568 }
24569 
24570 /*
24571  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24572  * match lookup.
24573  */
24574 static tcp_hsp_t *
24575 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24576 {
24577 	tcp_hsp_t *hsp = NULL;
24578 
24579 	/* Quick check without acquiring the lock. */
24580 	if (tcps->tcps_hsp_hash == NULL)
24581 		return (NULL);
24582 
24583 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24584 
24585 	/* This routine finds the best-matching HSP for address addr. */
24586 
24587 	if (tcps->tcps_hsp_hash) {
24588 		int i;
24589 		in6_addr_t v6srchaddr;
24590 		tcp_hsp_t *hsp_net;
24591 
24592 		/* We do three passes: host, network, and subnet. */
24593 
24594 		v6srchaddr = *v6addr;
24595 
24596 		for (i = 1; i <= 3; i++) {
24597 			/* Look for exact match on srchaddr */
24598 
24599 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24600 			    V4_PART_OF_V6(v6srchaddr))];
24601 			while (hsp) {
24602 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24603 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24604 				    &v6srchaddr))
24605 					break;
24606 				hsp = hsp->tcp_hsp_next;
24607 			}
24608 
24609 			/*
24610 			 * If this is the first pass:
24611 			 *   If we found a match, great, return it.
24612 			 *   If not, search for the network on the second pass.
24613 			 */
24614 
24615 			if (i == 1)
24616 				if (hsp)
24617 					break;
24618 				else {
24619 					/* Assume a 64 bit mask */
24620 					v6srchaddr.s6_addr32[0] =
24621 					    v6addr->s6_addr32[0];
24622 					v6srchaddr.s6_addr32[1] =
24623 					    v6addr->s6_addr32[1];
24624 					v6srchaddr.s6_addr32[2] = 0;
24625 					v6srchaddr.s6_addr32[3] = 0;
24626 					continue;
24627 				}
24628 
24629 			/*
24630 			 * If this is the second pass:
24631 			 *   If we found a match, but there's a subnet mask,
24632 			 *    save the match but try again using the subnet
24633 			 *    mask on the third pass.
24634 			 *   Otherwise, return whatever we found.
24635 			 */
24636 
24637 			if (i == 2) {
24638 				ASSERT(hsp == NULL ||
24639 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24640 				if (hsp &&
24641 				    !IN6_IS_ADDR_UNSPECIFIED(
24642 				    &hsp->tcp_hsp_subnet_v6)) {
24643 					hsp_net = hsp;
24644 					V6_MASK_COPY(*v6addr,
24645 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24646 					continue;
24647 				} else {
24648 					break;
24649 				}
24650 			}
24651 
24652 			/*
24653 			 * This must be the third pass.  If we didn't find
24654 			 * anything, return the saved network HSP instead.
24655 			 */
24656 
24657 			if (!hsp)
24658 				hsp = hsp_net;
24659 		}
24660 	}
24661 
24662 	rw_exit(&tcps->tcps_hsp_lock);
24663 	return (hsp);
24664 }
24665 
24666 /*
24667  * Type three generator adapted from the random() function in 4.4 BSD:
24668  */
24669 
24670 /*
24671  * Copyright (c) 1983, 1993
24672  *	The Regents of the University of California.  All rights reserved.
24673  *
24674  * Redistribution and use in source and binary forms, with or without
24675  * modification, are permitted provided that the following conditions
24676  * are met:
24677  * 1. Redistributions of source code must retain the above copyright
24678  *    notice, this list of conditions and the following disclaimer.
24679  * 2. Redistributions in binary form must reproduce the above copyright
24680  *    notice, this list of conditions and the following disclaimer in the
24681  *    documentation and/or other materials provided with the distribution.
24682  * 3. All advertising materials mentioning features or use of this software
24683  *    must display the following acknowledgement:
24684  *	This product includes software developed by the University of
24685  *	California, Berkeley and its contributors.
24686  * 4. Neither the name of the University nor the names of its contributors
24687  *    may be used to endorse or promote products derived from this software
24688  *    without specific prior written permission.
24689  *
24690  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24691  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24692  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24693  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24694  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24695  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24696  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24697  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24698  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24699  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24700  * SUCH DAMAGE.
24701  */
24702 
24703 /* Type 3 -- x**31 + x**3 + 1 */
24704 #define	DEG_3		31
24705 #define	SEP_3		3
24706 
24707 
24708 /* Protected by tcp_random_lock */
24709 static int tcp_randtbl[DEG_3 + 1];
24710 
24711 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24712 static int *tcp_random_rptr = &tcp_randtbl[1];
24713 
24714 static int *tcp_random_state = &tcp_randtbl[1];
24715 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24716 
24717 kmutex_t tcp_random_lock;
24718 
24719 void
24720 tcp_random_init(void)
24721 {
24722 	int i;
24723 	hrtime_t hrt;
24724 	time_t wallclock;
24725 	uint64_t result;
24726 
24727 	/*
24728 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24729 	 * a longlong, which may contain resolution down to nanoseconds.
24730 	 * The current time will either be a 32-bit or a 64-bit quantity.
24731 	 * XOR the two together in a 64-bit result variable.
24732 	 * Convert the result to a 32-bit value by multiplying the high-order
24733 	 * 32-bits by the low-order 32-bits.
24734 	 */
24735 
24736 	hrt = gethrtime();
24737 	(void) drv_getparm(TIME, &wallclock);
24738 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24739 	mutex_enter(&tcp_random_lock);
24740 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24741 	    (result & 0xffffffff);
24742 
24743 	for (i = 1; i < DEG_3; i++)
24744 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24745 		    + 12345;
24746 	tcp_random_fptr = &tcp_random_state[SEP_3];
24747 	tcp_random_rptr = &tcp_random_state[0];
24748 	mutex_exit(&tcp_random_lock);
24749 	for (i = 0; i < 10 * DEG_3; i++)
24750 		(void) tcp_random();
24751 }
24752 
24753 /*
24754  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24755  * This range is selected to be approximately centered on TCP_ISS / 2,
24756  * and easy to compute. We get this value by generating a 32-bit random
24757  * number, selecting out the high-order 17 bits, and then adding one so
24758  * that we never return zero.
24759  */
24760 int
24761 tcp_random(void)
24762 {
24763 	int i;
24764 
24765 	mutex_enter(&tcp_random_lock);
24766 	*tcp_random_fptr += *tcp_random_rptr;
24767 
24768 	/*
24769 	 * The high-order bits are more random than the low-order bits,
24770 	 * so we select out the high-order 17 bits and add one so that
24771 	 * we never return zero.
24772 	 */
24773 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24774 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24775 		tcp_random_fptr = tcp_random_state;
24776 		++tcp_random_rptr;
24777 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24778 		tcp_random_rptr = tcp_random_state;
24779 
24780 	mutex_exit(&tcp_random_lock);
24781 	return (i);
24782 }
24783 
24784 /*
24785  * XXX This will go away when TPI is extended to send
24786  * info reqs to sockfs/timod .....
24787  * Given a queue, set the max packet size for the write
24788  * side of the queue below stream head.  This value is
24789  * cached on the stream head.
24790  * Returns 1 on success, 0 otherwise.
24791  */
24792 static int
24793 setmaxps(queue_t *q, int maxpsz)
24794 {
24795 	struct stdata	*stp;
24796 	queue_t		*wq;
24797 	stp = STREAM(q);
24798 
24799 	/*
24800 	 * At this point change of a queue parameter is not allowed
24801 	 * when a multiplexor is sitting on top.
24802 	 */
24803 	if (stp->sd_flag & STPLEX)
24804 		return (0);
24805 
24806 	claimstr(stp->sd_wrq);
24807 	wq = stp->sd_wrq->q_next;
24808 	ASSERT(wq != NULL);
24809 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24810 	releasestr(stp->sd_wrq);
24811 	return (1);
24812 }
24813 
24814 static int
24815 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24816     int *t_errorp, int *sys_errorp)
24817 {
24818 	int error;
24819 	int is_absreq_failure;
24820 	t_scalar_t *opt_lenp;
24821 	t_scalar_t opt_offset;
24822 	int prim_type;
24823 	struct T_conn_req *tcreqp;
24824 	struct T_conn_res *tcresp;
24825 	cred_t *cr;
24826 
24827 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24828 
24829 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24830 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24831 	    prim_type == T_CONN_RES);
24832 
24833 	switch (prim_type) {
24834 	case T_CONN_REQ:
24835 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24836 		opt_offset = tcreqp->OPT_offset;
24837 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24838 		break;
24839 	case O_T_CONN_RES:
24840 	case T_CONN_RES:
24841 		tcresp = (struct T_conn_res *)mp->b_rptr;
24842 		opt_offset = tcresp->OPT_offset;
24843 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24844 		break;
24845 	}
24846 
24847 	*t_errorp = 0;
24848 	*sys_errorp = 0;
24849 	*do_disconnectp = 0;
24850 
24851 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24852 	    opt_offset, cr, &tcp_opt_obj,
24853 	    NULL, &is_absreq_failure);
24854 
24855 	switch (error) {
24856 	case  0:		/* no error */
24857 		ASSERT(is_absreq_failure == 0);
24858 		return (0);
24859 	case ENOPROTOOPT:
24860 		*t_errorp = TBADOPT;
24861 		break;
24862 	case EACCES:
24863 		*t_errorp = TACCES;
24864 		break;
24865 	default:
24866 		*t_errorp = TSYSERR; *sys_errorp = error;
24867 		break;
24868 	}
24869 	if (is_absreq_failure != 0) {
24870 		/*
24871 		 * The connection request should get the local ack
24872 		 * T_OK_ACK and then a T_DISCON_IND.
24873 		 */
24874 		*do_disconnectp = 1;
24875 	}
24876 	return (-1);
24877 }
24878 
24879 /*
24880  * Split this function out so that if the secret changes, I'm okay.
24881  *
24882  * Initialize the tcp_iss_cookie and tcp_iss_key.
24883  */
24884 
24885 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24886 
24887 static void
24888 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24889 {
24890 	struct {
24891 		int32_t current_time;
24892 		uint32_t randnum;
24893 		uint16_t pad;
24894 		uint8_t ether[6];
24895 		uint8_t passwd[PASSWD_SIZE];
24896 	} tcp_iss_cookie;
24897 	time_t t;
24898 
24899 	/*
24900 	 * Start with the current absolute time.
24901 	 */
24902 	(void) drv_getparm(TIME, &t);
24903 	tcp_iss_cookie.current_time = t;
24904 
24905 	/*
24906 	 * XXX - Need a more random number per RFC 1750, not this crap.
24907 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24908 	 */
24909 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24910 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24911 
24912 	/*
24913 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24914 	 * as a good template.
24915 	 */
24916 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24917 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24918 
24919 	/*
24920 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24921 	 */
24922 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24923 
24924 	/*
24925 	 * See 4010593 if this section becomes a problem again,
24926 	 * but the local ethernet address is useful here.
24927 	 */
24928 	(void) localetheraddr(NULL,
24929 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24930 
24931 	/*
24932 	 * Hash 'em all together.  The MD5Final is called per-connection.
24933 	 */
24934 	mutex_enter(&tcps->tcps_iss_key_lock);
24935 	MD5Init(&tcps->tcps_iss_key);
24936 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24937 	    sizeof (tcp_iss_cookie));
24938 	mutex_exit(&tcps->tcps_iss_key_lock);
24939 }
24940 
24941 /*
24942  * Set the RFC 1948 pass phrase
24943  */
24944 /* ARGSUSED */
24945 static int
24946 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24947     cred_t *cr)
24948 {
24949 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24950 
24951 	/*
24952 	 * Basically, value contains a new pass phrase.  Pass it along!
24953 	 */
24954 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24955 	return (0);
24956 }
24957 
24958 /* ARGSUSED */
24959 static int
24960 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24961 {
24962 	bzero(buf, sizeof (tcp_sack_info_t));
24963 	return (0);
24964 }
24965 
24966 /* ARGSUSED */
24967 static int
24968 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24969 {
24970 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24971 	return (0);
24972 }
24973 
24974 /*
24975  * Make sure we wait until the default queue is setup, yet allow
24976  * tcp_g_q_create() to open a TCP stream.
24977  * We need to allow tcp_g_q_create() do do an open
24978  * of tcp, hence we compare curhread.
24979  * All others have to wait until the tcps_g_q has been
24980  * setup.
24981  */
24982 void
24983 tcp_g_q_setup(tcp_stack_t *tcps)
24984 {
24985 	mutex_enter(&tcps->tcps_g_q_lock);
24986 	if (tcps->tcps_g_q != NULL) {
24987 		mutex_exit(&tcps->tcps_g_q_lock);
24988 		return;
24989 	}
24990 	if (tcps->tcps_g_q_creator == NULL) {
24991 		/* This thread will set it up */
24992 		tcps->tcps_g_q_creator = curthread;
24993 		mutex_exit(&tcps->tcps_g_q_lock);
24994 		tcp_g_q_create(tcps);
24995 		mutex_enter(&tcps->tcps_g_q_lock);
24996 		ASSERT(tcps->tcps_g_q_creator == curthread);
24997 		tcps->tcps_g_q_creator = NULL;
24998 		cv_signal(&tcps->tcps_g_q_cv);
24999 		ASSERT(tcps->tcps_g_q != NULL);
25000 		mutex_exit(&tcps->tcps_g_q_lock);
25001 		return;
25002 	}
25003 	/* Everybody but the creator has to wait */
25004 	if (tcps->tcps_g_q_creator != curthread) {
25005 		while (tcps->tcps_g_q == NULL)
25006 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
25007 	}
25008 	mutex_exit(&tcps->tcps_g_q_lock);
25009 }
25010 
25011 #define	IP	"ip"
25012 
25013 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
25014 
25015 /*
25016  * Create a default tcp queue here instead of in strplumb
25017  */
25018 void
25019 tcp_g_q_create(tcp_stack_t *tcps)
25020 {
25021 	int error;
25022 	ldi_handle_t	lh = NULL;
25023 	ldi_ident_t	li = NULL;
25024 	int		rval;
25025 	cred_t		*cr;
25026 	major_t IP_MAJ;
25027 
25028 #ifdef NS_DEBUG
25029 	(void) printf("tcp_g_q_create()\n");
25030 #endif
25031 
25032 	IP_MAJ = ddi_name_to_major(IP);
25033 
25034 	ASSERT(tcps->tcps_g_q_creator == curthread);
25035 
25036 	error = ldi_ident_from_major(IP_MAJ, &li);
25037 	if (error) {
25038 #ifdef DEBUG
25039 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
25040 		    error);
25041 #endif
25042 		return;
25043 	}
25044 
25045 	cr = zone_get_kcred(netstackid_to_zoneid(
25046 	    tcps->tcps_netstack->netstack_stackid));
25047 	ASSERT(cr != NULL);
25048 	/*
25049 	 * We set the tcp default queue to IPv6 because IPv4 falls
25050 	 * back to IPv6 when it can't find a client, but
25051 	 * IPv6 does not fall back to IPv4.
25052 	 */
25053 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
25054 	if (error) {
25055 #ifdef DEBUG
25056 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
25057 		    error);
25058 #endif
25059 		goto out;
25060 	}
25061 
25062 	/*
25063 	 * This ioctl causes the tcp framework to cache a pointer to
25064 	 * this stream, so we don't want to close the stream after
25065 	 * this operation.
25066 	 * Use the kernel credentials that are for the zone we're in.
25067 	 */
25068 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
25069 	    (intptr_t)0, FKIOCTL, cr, &rval);
25070 	if (error) {
25071 #ifdef DEBUG
25072 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
25073 		    "error %d\n", error);
25074 #endif
25075 		goto out;
25076 	}
25077 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
25078 	lh = NULL;
25079 out:
25080 	/* Close layered handles */
25081 	if (li)
25082 		ldi_ident_release(li);
25083 	/* Keep cred around until _inactive needs it */
25084 	tcps->tcps_g_q_cr = cr;
25085 }
25086 
25087 /*
25088  * We keep tcp_g_q set until all other tcp_t's in the zone
25089  * has gone away, and then when tcp_g_q_inactive() is called
25090  * we clear it.
25091  */
25092 void
25093 tcp_g_q_destroy(tcp_stack_t *tcps)
25094 {
25095 #ifdef NS_DEBUG
25096 	(void) printf("tcp_g_q_destroy()for stack %d\n",
25097 	    tcps->tcps_netstack->netstack_stackid);
25098 #endif
25099 
25100 	if (tcps->tcps_g_q == NULL) {
25101 		return;	/* Nothing to cleanup */
25102 	}
25103 	/*
25104 	 * Drop reference corresponding to the default queue.
25105 	 * This reference was added from tcp_open when the default queue
25106 	 * was created, hence we compensate for this extra drop in
25107 	 * tcp_g_q_close. If the refcnt drops to zero here it means
25108 	 * the default queue was the last one to be open, in which
25109 	 * case, then tcp_g_q_inactive will be
25110 	 * called as a result of the refrele.
25111 	 */
25112 	TCPS_REFRELE(tcps);
25113 }
25114 
25115 /*
25116  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25117  * Run by tcp_q_q_inactive using a taskq.
25118  */
25119 static void
25120 tcp_g_q_close(void *arg)
25121 {
25122 	tcp_stack_t *tcps = arg;
25123 	int error;
25124 	ldi_handle_t	lh = NULL;
25125 	ldi_ident_t	li = NULL;
25126 	cred_t		*cr;
25127 	major_t IP_MAJ;
25128 
25129 	IP_MAJ = ddi_name_to_major(IP);
25130 
25131 #ifdef NS_DEBUG
25132 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
25133 	    tcps->tcps_netstack->netstack_stackid,
25134 	    tcps->tcps_netstack->netstack_refcnt);
25135 #endif
25136 	lh = tcps->tcps_g_q_lh;
25137 	if (lh == NULL)
25138 		return;	/* Nothing to cleanup */
25139 
25140 	ASSERT(tcps->tcps_refcnt == 1);
25141 	ASSERT(tcps->tcps_g_q != NULL);
25142 
25143 	error = ldi_ident_from_major(IP_MAJ, &li);
25144 	if (error) {
25145 #ifdef DEBUG
25146 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25147 		    error);
25148 #endif
25149 		return;
25150 	}
25151 
25152 	cr = tcps->tcps_g_q_cr;
25153 	tcps->tcps_g_q_cr = NULL;
25154 	ASSERT(cr != NULL);
25155 
25156 	/*
25157 	 * Make sure we can break the recursion when tcp_close decrements
25158 	 * the reference count causing g_q_inactive to be called again.
25159 	 */
25160 	tcps->tcps_g_q_lh = NULL;
25161 
25162 	/* close the default queue */
25163 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25164 	/*
25165 	 * At this point in time tcps and the rest of netstack_t might
25166 	 * have been deleted.
25167 	 */
25168 	tcps = NULL;
25169 
25170 	/* Close layered handles */
25171 	ldi_ident_release(li);
25172 	crfree(cr);
25173 }
25174 
25175 /*
25176  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25177  *
25178  * Have to ensure that the ldi routines are not used by an
25179  * interrupt thread by using a taskq.
25180  */
25181 void
25182 tcp_g_q_inactive(tcp_stack_t *tcps)
25183 {
25184 	if (tcps->tcps_g_q_lh == NULL)
25185 		return;	/* Nothing to cleanup */
25186 
25187 	ASSERT(tcps->tcps_refcnt == 0);
25188 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25189 
25190 	if (servicing_interrupt()) {
25191 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25192 		    (void *) tcps, TQ_SLEEP);
25193 	} else {
25194 		tcp_g_q_close(tcps);
25195 	}
25196 }
25197 
25198 /*
25199  * Called by IP when IP is loaded into the kernel
25200  */
25201 void
25202 tcp_ddi_g_init(void)
25203 {
25204 	tcp_timercache = kmem_cache_create("tcp_timercache",
25205 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25206 	    NULL, NULL, NULL, NULL, NULL, 0);
25207 
25208 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25209 	    sizeof (tcp_sack_info_t), 0,
25210 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25211 
25212 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25213 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25214 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25215 
25216 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25217 
25218 	/* Initialize the random number generator */
25219 	tcp_random_init();
25220 
25221 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25222 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25223 
25224 	/* A single callback independently of how many netstacks we have */
25225 	ip_squeue_init(tcp_squeue_add);
25226 
25227 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25228 
25229 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25230 	    TASKQ_PREPOPULATE);
25231 
25232 	/*
25233 	 * We want to be informed each time a stack is created or
25234 	 * destroyed in the kernel, so we can maintain the
25235 	 * set of tcp_stack_t's.
25236 	 */
25237 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25238 	    tcp_stack_fini);
25239 }
25240 
25241 
25242 /*
25243  * Initialize the TCP stack instance.
25244  */
25245 static void *
25246 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25247 {
25248 	tcp_stack_t	*tcps;
25249 	tcpparam_t	*pa;
25250 	int		i;
25251 
25252 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25253 	tcps->tcps_netstack = ns;
25254 
25255 	/* Initialize locks */
25256 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25257 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25258 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25259 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25260 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25261 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25262 
25263 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25264 	tcps->tcps_g_epriv_ports[0] = 2049;
25265 	tcps->tcps_g_epriv_ports[1] = 4045;
25266 	tcps->tcps_min_anonpriv_port = 512;
25267 
25268 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25269 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25270 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25271 	    TCP_FANOUT_SIZE, KM_SLEEP);
25272 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25273 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25274 
25275 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25276 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25277 		    MUTEX_DEFAULT, NULL);
25278 	}
25279 
25280 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25281 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25282 		    MUTEX_DEFAULT, NULL);
25283 	}
25284 
25285 	/* TCP's IPsec code calls the packet dropper. */
25286 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25287 
25288 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25289 	tcps->tcps_params = pa;
25290 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25291 
25292 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25293 	    A_CNT(lcl_tcp_param_arr), tcps);
25294 
25295 	/*
25296 	 * Note: To really walk the device tree you need the devinfo
25297 	 * pointer to your device which is only available after probe/attach.
25298 	 * The following is safe only because it uses ddi_root_node()
25299 	 */
25300 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25301 	    tcp_opt_obj.odb_opt_arr_cnt);
25302 
25303 	/*
25304 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25305 	 * by the boot scripts.
25306 	 *
25307 	 * Use NULL name, as the name is caught by the new lockstats.
25308 	 *
25309 	 * Initialize with some random, non-guessable string, like the global
25310 	 * T_INFO_ACK.
25311 	 */
25312 
25313 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25314 	    sizeof (tcp_g_t_info_ack), tcps);
25315 
25316 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25317 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25318 
25319 	return (tcps);
25320 }
25321 
25322 /*
25323  * Called when the IP module is about to be unloaded.
25324  */
25325 void
25326 tcp_ddi_g_destroy(void)
25327 {
25328 	tcp_g_kstat_fini(tcp_g_kstat);
25329 	tcp_g_kstat = NULL;
25330 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25331 
25332 	mutex_destroy(&tcp_random_lock);
25333 
25334 	kmem_cache_destroy(tcp_timercache);
25335 	kmem_cache_destroy(tcp_sack_info_cache);
25336 	kmem_cache_destroy(tcp_iphc_cache);
25337 
25338 	netstack_unregister(NS_TCP);
25339 	taskq_destroy(tcp_taskq);
25340 }
25341 
25342 /*
25343  * Shut down the TCP stack instance.
25344  */
25345 /* ARGSUSED */
25346 static void
25347 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25348 {
25349 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25350 
25351 	tcp_g_q_destroy(tcps);
25352 }
25353 
25354 /*
25355  * Free the TCP stack instance.
25356  */
25357 static void
25358 tcp_stack_fini(netstackid_t stackid, void *arg)
25359 {
25360 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25361 	int i;
25362 
25363 	nd_free(&tcps->tcps_g_nd);
25364 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25365 	tcps->tcps_params = NULL;
25366 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25367 	tcps->tcps_wroff_xtra_param = NULL;
25368 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25369 	tcps->tcps_mdt_head_param = NULL;
25370 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25371 	tcps->tcps_mdt_tail_param = NULL;
25372 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25373 	tcps->tcps_mdt_max_pbufs_param = NULL;
25374 
25375 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25376 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25377 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25378 	}
25379 
25380 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25381 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25382 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25383 	}
25384 
25385 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25386 	tcps->tcps_bind_fanout = NULL;
25387 
25388 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25389 	tcps->tcps_acceptor_fanout = NULL;
25390 
25391 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25392 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25393 	tcps->tcps_reserved_port = NULL;
25394 
25395 	mutex_destroy(&tcps->tcps_iss_key_lock);
25396 	rw_destroy(&tcps->tcps_hsp_lock);
25397 	mutex_destroy(&tcps->tcps_g_q_lock);
25398 	cv_destroy(&tcps->tcps_g_q_cv);
25399 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25400 	rw_destroy(&tcps->tcps_reserved_port_lock);
25401 
25402 	ip_drop_unregister(&tcps->tcps_dropper);
25403 
25404 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25405 	tcps->tcps_kstat = NULL;
25406 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25407 
25408 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25409 	tcps->tcps_mibkp = NULL;
25410 
25411 	kmem_free(tcps, sizeof (*tcps));
25412 }
25413 
25414 /*
25415  * Generate ISS, taking into account NDD changes may happen halfway through.
25416  * (If the iss is not zero, set it.)
25417  */
25418 
25419 static void
25420 tcp_iss_init(tcp_t *tcp)
25421 {
25422 	MD5_CTX context;
25423 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25424 	uint32_t answer[4];
25425 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25426 
25427 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25428 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25429 	switch (tcps->tcps_strong_iss) {
25430 	case 2:
25431 		mutex_enter(&tcps->tcps_iss_key_lock);
25432 		context = tcps->tcps_iss_key;
25433 		mutex_exit(&tcps->tcps_iss_key_lock);
25434 		arg.ports = tcp->tcp_ports;
25435 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25436 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25437 			    &arg.src);
25438 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25439 			    &arg.dst);
25440 		} else {
25441 			arg.src = tcp->tcp_ip6h->ip6_src;
25442 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25443 		}
25444 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25445 		MD5Final((uchar_t *)answer, &context);
25446 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25447 		/*
25448 		 * Now that we've hashed into a unique per-connection sequence
25449 		 * space, add a random increment per strong_iss == 1.  So I
25450 		 * guess we'll have to...
25451 		 */
25452 		/* FALLTHRU */
25453 	case 1:
25454 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25455 		break;
25456 	default:
25457 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25458 		break;
25459 	}
25460 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25461 	tcp->tcp_fss = tcp->tcp_iss - 1;
25462 	tcp->tcp_suna = tcp->tcp_iss;
25463 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25464 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25465 	tcp->tcp_csuna = tcp->tcp_snxt;
25466 }
25467 
25468 /*
25469  * Exported routine for extracting active tcp connection status.
25470  *
25471  * This is used by the Solaris Cluster Networking software to
25472  * gather a list of connections that need to be forwarded to
25473  * specific nodes in the cluster when configuration changes occur.
25474  *
25475  * The callback is invoked for each tcp_t structure. Returning
25476  * non-zero from the callback routine terminates the search.
25477  */
25478 int
25479 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25480     void *arg)
25481 {
25482 	netstack_handle_t nh;
25483 	netstack_t *ns;
25484 	int ret = 0;
25485 
25486 	netstack_next_init(&nh);
25487 	while ((ns = netstack_next(&nh)) != NULL) {
25488 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25489 		    ns->netstack_tcp);
25490 		netstack_rele(ns);
25491 	}
25492 	netstack_next_fini(&nh);
25493 	return (ret);
25494 }
25495 
25496 static int
25497 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25498     tcp_stack_t *tcps)
25499 {
25500 	tcp_t *tcp;
25501 	cl_tcp_info_t	cl_tcpi;
25502 	connf_t	*connfp;
25503 	conn_t	*connp;
25504 	int	i;
25505 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25506 
25507 	ASSERT(callback != NULL);
25508 
25509 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25510 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25511 		connp = NULL;
25512 
25513 		while ((connp =
25514 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25515 
25516 			tcp = connp->conn_tcp;
25517 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25518 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25519 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25520 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25521 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25522 			/*
25523 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25524 			 * addresses. They are copied implicitly below as
25525 			 * mapped addresses.
25526 			 */
25527 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25528 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25529 				cl_tcpi.cl_tcpi_faddr =
25530 				    tcp->tcp_ipha->ipha_dst;
25531 			} else {
25532 				cl_tcpi.cl_tcpi_faddr_v6 =
25533 				    tcp->tcp_ip6h->ip6_dst;
25534 			}
25535 
25536 			/*
25537 			 * If the callback returns non-zero
25538 			 * we terminate the traversal.
25539 			 */
25540 			if ((*callback)(&cl_tcpi, arg) != 0) {
25541 				CONN_DEC_REF(tcp->tcp_connp);
25542 				return (1);
25543 			}
25544 		}
25545 	}
25546 
25547 	return (0);
25548 }
25549 
25550 /*
25551  * Macros used for accessing the different types of sockaddr
25552  * structures inside a tcp_ioc_abort_conn_t.
25553  */
25554 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25555 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25556 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25557 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25558 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25559 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25560 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25561 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25562 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25563 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25564 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25565 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25566 
25567 /*
25568  * Return the correct error code to mimic the behavior
25569  * of a connection reset.
25570  */
25571 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25572 		switch ((state)) {		\
25573 		case TCPS_SYN_SENT:		\
25574 		case TCPS_SYN_RCVD:		\
25575 			(err) = ECONNREFUSED;	\
25576 			break;			\
25577 		case TCPS_ESTABLISHED:		\
25578 		case TCPS_FIN_WAIT_1:		\
25579 		case TCPS_FIN_WAIT_2:		\
25580 		case TCPS_CLOSE_WAIT:		\
25581 			(err) = ECONNRESET;	\
25582 			break;			\
25583 		case TCPS_CLOSING:		\
25584 		case TCPS_LAST_ACK:		\
25585 		case TCPS_TIME_WAIT:		\
25586 			(err) = 0;		\
25587 			break;			\
25588 		default:			\
25589 			(err) = ENXIO;		\
25590 		}				\
25591 	}
25592 
25593 /*
25594  * Check if a tcp structure matches the info in acp.
25595  */
25596 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25597 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25598 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25599 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25600 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25601 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25602 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25603 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25604 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25605 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25606 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25607 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25608 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25609 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25610 	&(tcp)->tcp_ip_src_v6)) &&				\
25611 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25612 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25613 	&(tcp)->tcp_remote_v6)) &&				\
25614 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25615 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25616 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25617 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25618 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25619 	(acp)->ac_end >= (tcp)->tcp_state))
25620 
25621 #define	TCP_AC_MATCH(acp, tcp)					\
25622 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25623 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25624 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25625 
25626 /*
25627  * Build a message containing a tcp_ioc_abort_conn_t structure
25628  * which is filled in with information from acp and tp.
25629  */
25630 static mblk_t *
25631 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25632 {
25633 	mblk_t *mp;
25634 	tcp_ioc_abort_conn_t *tacp;
25635 
25636 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25637 	if (mp == NULL)
25638 		return (NULL);
25639 
25640 	mp->b_datap->db_type = M_CTL;
25641 
25642 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25643 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25644 	    sizeof (uint32_t));
25645 
25646 	tacp->ac_start = acp->ac_start;
25647 	tacp->ac_end = acp->ac_end;
25648 	tacp->ac_zoneid = acp->ac_zoneid;
25649 
25650 	if (acp->ac_local.ss_family == AF_INET) {
25651 		tacp->ac_local.ss_family = AF_INET;
25652 		tacp->ac_remote.ss_family = AF_INET;
25653 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25654 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25655 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25656 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25657 	} else {
25658 		tacp->ac_local.ss_family = AF_INET6;
25659 		tacp->ac_remote.ss_family = AF_INET6;
25660 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25661 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25662 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25663 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25664 	}
25665 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25666 	return (mp);
25667 }
25668 
25669 /*
25670  * Print a tcp_ioc_abort_conn_t structure.
25671  */
25672 static void
25673 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25674 {
25675 	char lbuf[128];
25676 	char rbuf[128];
25677 	sa_family_t af;
25678 	in_port_t lport, rport;
25679 	ushort_t logflags;
25680 
25681 	af = acp->ac_local.ss_family;
25682 
25683 	if (af == AF_INET) {
25684 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25685 		    lbuf, 128);
25686 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25687 		    rbuf, 128);
25688 		lport = ntohs(TCP_AC_V4LPORT(acp));
25689 		rport = ntohs(TCP_AC_V4RPORT(acp));
25690 	} else {
25691 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25692 		    lbuf, 128);
25693 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25694 		    rbuf, 128);
25695 		lport = ntohs(TCP_AC_V6LPORT(acp));
25696 		rport = ntohs(TCP_AC_V6RPORT(acp));
25697 	}
25698 
25699 	logflags = SL_TRACE | SL_NOTE;
25700 	/*
25701 	 * Don't print this message to the console if the operation was done
25702 	 * to a non-global zone.
25703 	 */
25704 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25705 		logflags |= SL_CONSOLE;
25706 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25707 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25708 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25709 	    acp->ac_start, acp->ac_end);
25710 }
25711 
25712 /*
25713  * Called inside tcp_rput when a message built using
25714  * tcp_ioctl_abort_build_msg is put into a queue.
25715  * Note that when we get here there is no wildcard in acp any more.
25716  */
25717 static void
25718 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25719 {
25720 	tcp_ioc_abort_conn_t *acp;
25721 
25722 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25723 	if (tcp->tcp_state <= acp->ac_end) {
25724 		/*
25725 		 * If we get here, we are already on the correct
25726 		 * squeue. This ioctl follows the following path
25727 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25728 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25729 		 * different squeue)
25730 		 */
25731 		int errcode;
25732 
25733 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25734 		(void) tcp_clean_death(tcp, errcode, 26);
25735 	}
25736 	freemsg(mp);
25737 }
25738 
25739 /*
25740  * Abort all matching connections on a hash chain.
25741  */
25742 static int
25743 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25744     boolean_t exact, tcp_stack_t *tcps)
25745 {
25746 	int nmatch, err = 0;
25747 	tcp_t *tcp;
25748 	MBLKP mp, last, listhead = NULL;
25749 	conn_t	*tconnp;
25750 	connf_t	*connfp;
25751 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25752 
25753 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25754 
25755 startover:
25756 	nmatch = 0;
25757 
25758 	mutex_enter(&connfp->connf_lock);
25759 	for (tconnp = connfp->connf_head; tconnp != NULL;
25760 	    tconnp = tconnp->conn_next) {
25761 		tcp = tconnp->conn_tcp;
25762 		if (TCP_AC_MATCH(acp, tcp)) {
25763 			CONN_INC_REF(tcp->tcp_connp);
25764 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25765 			if (mp == NULL) {
25766 				err = ENOMEM;
25767 				CONN_DEC_REF(tcp->tcp_connp);
25768 				break;
25769 			}
25770 			mp->b_prev = (mblk_t *)tcp;
25771 
25772 			if (listhead == NULL) {
25773 				listhead = mp;
25774 				last = mp;
25775 			} else {
25776 				last->b_next = mp;
25777 				last = mp;
25778 			}
25779 			nmatch++;
25780 			if (exact)
25781 				break;
25782 		}
25783 
25784 		/* Avoid holding lock for too long. */
25785 		if (nmatch >= 500)
25786 			break;
25787 	}
25788 	mutex_exit(&connfp->connf_lock);
25789 
25790 	/* Pass mp into the correct tcp */
25791 	while ((mp = listhead) != NULL) {
25792 		listhead = listhead->b_next;
25793 		tcp = (tcp_t *)mp->b_prev;
25794 		mp->b_next = mp->b_prev = NULL;
25795 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25796 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25797 	}
25798 
25799 	*count += nmatch;
25800 	if (nmatch >= 500 && err == 0)
25801 		goto startover;
25802 	return (err);
25803 }
25804 
25805 /*
25806  * Abort all connections that matches the attributes specified in acp.
25807  */
25808 static int
25809 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25810 {
25811 	sa_family_t af;
25812 	uint32_t  ports;
25813 	uint16_t *pports;
25814 	int err = 0, count = 0;
25815 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25816 	int index = -1;
25817 	ushort_t logflags;
25818 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25819 
25820 	af = acp->ac_local.ss_family;
25821 
25822 	if (af == AF_INET) {
25823 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25824 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25825 			pports = (uint16_t *)&ports;
25826 			pports[1] = TCP_AC_V4LPORT(acp);
25827 			pports[0] = TCP_AC_V4RPORT(acp);
25828 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25829 		}
25830 	} else {
25831 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25832 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25833 			pports = (uint16_t *)&ports;
25834 			pports[1] = TCP_AC_V6LPORT(acp);
25835 			pports[0] = TCP_AC_V6RPORT(acp);
25836 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25837 		}
25838 	}
25839 
25840 	/*
25841 	 * For cases where remote addr, local port, and remote port are non-
25842 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25843 	 */
25844 	if (index != -1) {
25845 		err = tcp_ioctl_abort_bucket(acp, index,
25846 		    &count, exact, tcps);
25847 	} else {
25848 		/*
25849 		 * loop through all entries for wildcard case
25850 		 */
25851 		for (index = 0;
25852 		    index < ipst->ips_ipcl_conn_fanout_size;
25853 		    index++) {
25854 			err = tcp_ioctl_abort_bucket(acp, index,
25855 			    &count, exact, tcps);
25856 			if (err != 0)
25857 				break;
25858 		}
25859 	}
25860 
25861 	logflags = SL_TRACE | SL_NOTE;
25862 	/*
25863 	 * Don't print this message to the console if the operation was done
25864 	 * to a non-global zone.
25865 	 */
25866 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25867 		logflags |= SL_CONSOLE;
25868 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25869 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25870 	if (err == 0 && count == 0)
25871 		err = ENOENT;
25872 	return (err);
25873 }
25874 
25875 /*
25876  * Process the TCP_IOC_ABORT_CONN ioctl request.
25877  */
25878 static void
25879 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25880 {
25881 	int	err;
25882 	IOCP    iocp;
25883 	MBLKP   mp1;
25884 	sa_family_t laf, raf;
25885 	tcp_ioc_abort_conn_t *acp;
25886 	zone_t		*zptr;
25887 	conn_t		*connp = Q_TO_CONN(q);
25888 	zoneid_t	zoneid = connp->conn_zoneid;
25889 	tcp_t		*tcp = connp->conn_tcp;
25890 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25891 
25892 	iocp = (IOCP)mp->b_rptr;
25893 
25894 	if ((mp1 = mp->b_cont) == NULL ||
25895 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25896 		err = EINVAL;
25897 		goto out;
25898 	}
25899 
25900 	/* check permissions */
25901 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25902 		err = EPERM;
25903 		goto out;
25904 	}
25905 
25906 	if (mp1->b_cont != NULL) {
25907 		freemsg(mp1->b_cont);
25908 		mp1->b_cont = NULL;
25909 	}
25910 
25911 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25912 	laf = acp->ac_local.ss_family;
25913 	raf = acp->ac_remote.ss_family;
25914 
25915 	/* check that a zone with the supplied zoneid exists */
25916 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25917 		zptr = zone_find_by_id(zoneid);
25918 		if (zptr != NULL) {
25919 			zone_rele(zptr);
25920 		} else {
25921 			err = EINVAL;
25922 			goto out;
25923 		}
25924 	}
25925 
25926 	/*
25927 	 * For exclusive stacks we set the zoneid to zero
25928 	 * to make TCP operate as if in the global zone.
25929 	 */
25930 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25931 		acp->ac_zoneid = GLOBAL_ZONEID;
25932 
25933 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25934 	    acp->ac_start > acp->ac_end || laf != raf ||
25935 	    (laf != AF_INET && laf != AF_INET6)) {
25936 		err = EINVAL;
25937 		goto out;
25938 	}
25939 
25940 	tcp_ioctl_abort_dump(acp);
25941 	err = tcp_ioctl_abort(acp, tcps);
25942 
25943 out:
25944 	if (mp1 != NULL) {
25945 		freemsg(mp1);
25946 		mp->b_cont = NULL;
25947 	}
25948 
25949 	if (err != 0)
25950 		miocnak(q, mp, 0, err);
25951 	else
25952 		miocack(q, mp, 0, 0);
25953 }
25954 
25955 /*
25956  * tcp_time_wait_processing() handles processing of incoming packets when
25957  * the tcp is in the TIME_WAIT state.
25958  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25959  * on the time wait list.
25960  */
25961 void
25962 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25963     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25964 {
25965 	int32_t		bytes_acked;
25966 	int32_t		gap;
25967 	int32_t		rgap;
25968 	tcp_opt_t	tcpopt;
25969 	uint_t		flags;
25970 	uint32_t	new_swnd = 0;
25971 	conn_t		*connp;
25972 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25973 
25974 	BUMP_LOCAL(tcp->tcp_ibsegs);
25975 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25976 
25977 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25978 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25979 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25980 	if (tcp->tcp_snd_ts_ok) {
25981 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25982 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25983 			    tcp->tcp_rnxt, TH_ACK);
25984 			goto done;
25985 		}
25986 	}
25987 	gap = seg_seq - tcp->tcp_rnxt;
25988 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25989 	if (gap < 0) {
25990 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25991 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25992 		    (seg_len > -gap ? -gap : seg_len));
25993 		seg_len += gap;
25994 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25995 			if (flags & TH_RST) {
25996 				goto done;
25997 			}
25998 			if ((flags & TH_FIN) && seg_len == -1) {
25999 				/*
26000 				 * When TCP receives a duplicate FIN in
26001 				 * TIME_WAIT state, restart the 2 MSL timer.
26002 				 * See page 73 in RFC 793. Make sure this TCP
26003 				 * is already on the TIME_WAIT list. If not,
26004 				 * just restart the timer.
26005 				 */
26006 				if (TCP_IS_DETACHED(tcp)) {
26007 					if (tcp_time_wait_remove(tcp, NULL) ==
26008 					    B_TRUE) {
26009 						tcp_time_wait_append(tcp);
26010 						TCP_DBGSTAT(tcps,
26011 						    tcp_rput_time_wait);
26012 					}
26013 				} else {
26014 					ASSERT(tcp != NULL);
26015 					TCP_TIMER_RESTART(tcp,
26016 					    tcps->tcps_time_wait_interval);
26017 				}
26018 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26019 				    tcp->tcp_rnxt, TH_ACK);
26020 				goto done;
26021 			}
26022 			flags |=  TH_ACK_NEEDED;
26023 			seg_len = 0;
26024 			goto process_ack;
26025 		}
26026 
26027 		/* Fix seg_seq, and chew the gap off the front. */
26028 		seg_seq = tcp->tcp_rnxt;
26029 	}
26030 
26031 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
26032 		/*
26033 		 * Make sure that when we accept the connection, pick
26034 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
26035 		 * old connection.
26036 		 *
26037 		 * The next ISS generated is equal to tcp_iss_incr_extra
26038 		 * + ISS_INCR/2 + other components depending on the
26039 		 * value of tcp_strong_iss.  We pre-calculate the new
26040 		 * ISS here and compare with tcp_snxt to determine if
26041 		 * we need to make adjustment to tcp_iss_incr_extra.
26042 		 *
26043 		 * The above calculation is ugly and is a
26044 		 * waste of CPU cycles...
26045 		 */
26046 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
26047 		int32_t adj;
26048 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
26049 
26050 		switch (tcps->tcps_strong_iss) {
26051 		case 2: {
26052 			/* Add time and MD5 components. */
26053 			uint32_t answer[4];
26054 			struct {
26055 				uint32_t ports;
26056 				in6_addr_t src;
26057 				in6_addr_t dst;
26058 			} arg;
26059 			MD5_CTX context;
26060 
26061 			mutex_enter(&tcps->tcps_iss_key_lock);
26062 			context = tcps->tcps_iss_key;
26063 			mutex_exit(&tcps->tcps_iss_key_lock);
26064 			arg.ports = tcp->tcp_ports;
26065 			/* We use MAPPED addresses in tcp_iss_init */
26066 			arg.src = tcp->tcp_ip_src_v6;
26067 			if (tcp->tcp_ipversion == IPV4_VERSION) {
26068 				IN6_IPADDR_TO_V4MAPPED(
26069 				    tcp->tcp_ipha->ipha_dst,
26070 				    &arg.dst);
26071 			} else {
26072 				arg.dst =
26073 				    tcp->tcp_ip6h->ip6_dst;
26074 			}
26075 			MD5Update(&context, (uchar_t *)&arg,
26076 			    sizeof (arg));
26077 			MD5Final((uchar_t *)answer, &context);
26078 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
26079 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
26080 			break;
26081 		}
26082 		case 1:
26083 			/* Add time component and min random (i.e. 1). */
26084 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
26085 			break;
26086 		default:
26087 			/* Add only time component. */
26088 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
26089 			break;
26090 		}
26091 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
26092 			/*
26093 			 * New ISS not guaranteed to be ISS_INCR/2
26094 			 * ahead of the current tcp_snxt, so add the
26095 			 * difference to tcp_iss_incr_extra.
26096 			 */
26097 			tcps->tcps_iss_incr_extra += adj;
26098 		}
26099 		/*
26100 		 * If tcp_clean_death() can not perform the task now,
26101 		 * drop the SYN packet and let the other side re-xmit.
26102 		 * Otherwise pass the SYN packet back in, since the
26103 		 * old tcp state has been cleaned up or freed.
26104 		 */
26105 		if (tcp_clean_death(tcp, 0, 27) == -1)
26106 			goto done;
26107 		/*
26108 		 * We will come back to tcp_rput_data
26109 		 * on the global queue. Packets destined
26110 		 * for the global queue will be checked
26111 		 * with global policy. But the policy for
26112 		 * this packet has already been checked as
26113 		 * this was destined for the detached
26114 		 * connection. We need to bypass policy
26115 		 * check this time by attaching a dummy
26116 		 * ipsec_in with ipsec_in_dont_check set.
26117 		 */
26118 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
26119 		if (connp != NULL) {
26120 			TCP_STAT(tcps, tcp_time_wait_syn_success);
26121 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
26122 			return;
26123 		}
26124 		goto done;
26125 	}
26126 
26127 	/*
26128 	 * rgap is the amount of stuff received out of window.  A negative
26129 	 * value is the amount out of window.
26130 	 */
26131 	if (rgap < 0) {
26132 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
26133 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
26134 		/* Fix seg_len and make sure there is something left. */
26135 		seg_len += rgap;
26136 		if (seg_len <= 0) {
26137 			if (flags & TH_RST) {
26138 				goto done;
26139 			}
26140 			flags |=  TH_ACK_NEEDED;
26141 			seg_len = 0;
26142 			goto process_ack;
26143 		}
26144 	}
26145 	/*
26146 	 * Check whether we can update tcp_ts_recent.  This test is
26147 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26148 	 * Extensions for High Performance: An Update", Internet Draft.
26149 	 */
26150 	if (tcp->tcp_snd_ts_ok &&
26151 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26152 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26153 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26154 		tcp->tcp_last_rcv_lbolt = lbolt64;
26155 	}
26156 
26157 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26158 		/* Always ack out of order packets */
26159 		flags |= TH_ACK_NEEDED;
26160 		seg_len = 0;
26161 	} else if (seg_len > 0) {
26162 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26163 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26164 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26165 	}
26166 	if (flags & TH_RST) {
26167 		(void) tcp_clean_death(tcp, 0, 28);
26168 		goto done;
26169 	}
26170 	if (flags & TH_SYN) {
26171 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26172 		    TH_RST|TH_ACK);
26173 		/*
26174 		 * Do not delete the TCP structure if it is in
26175 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26176 		 */
26177 		goto done;
26178 	}
26179 process_ack:
26180 	if (flags & TH_ACK) {
26181 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26182 		if (bytes_acked <= 0) {
26183 			if (bytes_acked == 0 && seg_len == 0 &&
26184 			    new_swnd == tcp->tcp_swnd)
26185 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26186 		} else {
26187 			/* Acks something not sent */
26188 			flags |= TH_ACK_NEEDED;
26189 		}
26190 	}
26191 	if (flags & TH_ACK_NEEDED) {
26192 		/*
26193 		 * Time to send an ack for some reason.
26194 		 */
26195 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26196 		    tcp->tcp_rnxt, TH_ACK);
26197 	}
26198 done:
26199 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26200 		DB_CKSUMSTART(mp) = 0;
26201 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26202 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26203 	}
26204 	freemsg(mp);
26205 }
26206 
26207 /*
26208  * Allocate a T_SVR4_OPTMGMT_REQ.
26209  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26210  * that tcp_rput_other can drop the acks.
26211  */
26212 static mblk_t *
26213 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26214 {
26215 	mblk_t *mp;
26216 	struct T_optmgmt_req *tor;
26217 	struct opthdr *oh;
26218 	uint_t size;
26219 	char *optptr;
26220 
26221 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26222 	mp = allocb(size, BPRI_MED);
26223 	if (mp == NULL)
26224 		return (NULL);
26225 
26226 	mp->b_wptr += size;
26227 	mp->b_datap->db_type = M_PROTO;
26228 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26229 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26230 	tor->MGMT_flags = T_NEGOTIATE;
26231 	tor->OPT_length = sizeof (*oh) + optlen;
26232 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26233 
26234 	oh = (struct opthdr *)&tor[1];
26235 	oh->level = level;
26236 	oh->name = cmd;
26237 	oh->len = optlen;
26238 	if (optlen != 0) {
26239 		optptr = (char *)&oh[1];
26240 		bcopy(opt, optptr, optlen);
26241 	}
26242 	return (mp);
26243 }
26244 
26245 /*
26246  * TCP Timers Implementation.
26247  */
26248 timeout_id_t
26249 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26250 {
26251 	mblk_t *mp;
26252 	tcp_timer_t *tcpt;
26253 	tcp_t *tcp = connp->conn_tcp;
26254 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26255 
26256 	ASSERT(connp->conn_sqp != NULL);
26257 
26258 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26259 
26260 	if (tcp->tcp_timercache == NULL) {
26261 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26262 	} else {
26263 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26264 		mp = tcp->tcp_timercache;
26265 		tcp->tcp_timercache = mp->b_next;
26266 		mp->b_next = NULL;
26267 		ASSERT(mp->b_wptr == NULL);
26268 	}
26269 
26270 	CONN_INC_REF(connp);
26271 	tcpt = (tcp_timer_t *)mp->b_rptr;
26272 	tcpt->connp = connp;
26273 	tcpt->tcpt_proc = f;
26274 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26275 	return ((timeout_id_t)mp);
26276 }
26277 
26278 static void
26279 tcp_timer_callback(void *arg)
26280 {
26281 	mblk_t *mp = (mblk_t *)arg;
26282 	tcp_timer_t *tcpt;
26283 	conn_t	*connp;
26284 
26285 	tcpt = (tcp_timer_t *)mp->b_rptr;
26286 	connp = tcpt->connp;
26287 	squeue_fill(connp->conn_sqp, mp,
26288 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26289 }
26290 
26291 static void
26292 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26293 {
26294 	tcp_timer_t *tcpt;
26295 	conn_t *connp = (conn_t *)arg;
26296 	tcp_t *tcp = connp->conn_tcp;
26297 
26298 	tcpt = (tcp_timer_t *)mp->b_rptr;
26299 	ASSERT(connp == tcpt->connp);
26300 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26301 
26302 	/*
26303 	 * If the TCP has reached the closed state, don't proceed any
26304 	 * further. This TCP logically does not exist on the system.
26305 	 * tcpt_proc could for example access queues, that have already
26306 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26307 	 */
26308 	if (tcp->tcp_state != TCPS_CLOSED) {
26309 		(*tcpt->tcpt_proc)(connp);
26310 	} else {
26311 		tcp->tcp_timer_tid = 0;
26312 	}
26313 	tcp_timer_free(connp->conn_tcp, mp);
26314 }
26315 
26316 /*
26317  * There is potential race with untimeout and the handler firing at the same
26318  * time. The mblock may be freed by the handler while we are trying to use
26319  * it. But since both should execute on the same squeue, this race should not
26320  * occur.
26321  */
26322 clock_t
26323 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26324 {
26325 	mblk_t	*mp = (mblk_t *)id;
26326 	tcp_timer_t *tcpt;
26327 	clock_t delta;
26328 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26329 
26330 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26331 
26332 	if (mp == NULL)
26333 		return (-1);
26334 
26335 	tcpt = (tcp_timer_t *)mp->b_rptr;
26336 	ASSERT(tcpt->connp == connp);
26337 
26338 	delta = untimeout(tcpt->tcpt_tid);
26339 
26340 	if (delta >= 0) {
26341 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26342 		tcp_timer_free(connp->conn_tcp, mp);
26343 		CONN_DEC_REF(connp);
26344 	}
26345 
26346 	return (delta);
26347 }
26348 
26349 /*
26350  * Allocate space for the timer event. The allocation looks like mblk, but it is
26351  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26352  *
26353  * Dealing with failures: If we can't allocate from the timer cache we try
26354  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26355  * points to b_rptr.
26356  * If we can't allocate anything using allocb_tryhard(), we perform a last
26357  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26358  * save the actual allocation size in b_datap.
26359  */
26360 mblk_t *
26361 tcp_timermp_alloc(int kmflags)
26362 {
26363 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26364 	    kmflags & ~KM_PANIC);
26365 
26366 	if (mp != NULL) {
26367 		mp->b_next = mp->b_prev = NULL;
26368 		mp->b_rptr = (uchar_t *)(&mp[1]);
26369 		mp->b_wptr = NULL;
26370 		mp->b_datap = NULL;
26371 		mp->b_queue = NULL;
26372 		mp->b_cont = NULL;
26373 	} else if (kmflags & KM_PANIC) {
26374 		/*
26375 		 * Failed to allocate memory for the timer. Try allocating from
26376 		 * dblock caches.
26377 		 */
26378 		/* ipclassifier calls this from a constructor - hence no tcps */
26379 		TCP_G_STAT(tcp_timermp_allocfail);
26380 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26381 		if (mp == NULL) {
26382 			size_t size = 0;
26383 			/*
26384 			 * Memory is really low. Try tryhard allocation.
26385 			 *
26386 			 * ipclassifier calls this from a constructor -
26387 			 * hence no tcps
26388 			 */
26389 			TCP_G_STAT(tcp_timermp_allocdblfail);
26390 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26391 			    sizeof (tcp_timer_t), &size, kmflags);
26392 			mp->b_rptr = (uchar_t *)(&mp[1]);
26393 			mp->b_next = mp->b_prev = NULL;
26394 			mp->b_wptr = (uchar_t *)-1;
26395 			mp->b_datap = (dblk_t *)size;
26396 			mp->b_queue = NULL;
26397 			mp->b_cont = NULL;
26398 		}
26399 		ASSERT(mp->b_wptr != NULL);
26400 	}
26401 	/* ipclassifier calls this from a constructor - hence no tcps */
26402 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26403 
26404 	return (mp);
26405 }
26406 
26407 /*
26408  * Free per-tcp timer cache.
26409  * It can only contain entries from tcp_timercache.
26410  */
26411 void
26412 tcp_timermp_free(tcp_t *tcp)
26413 {
26414 	mblk_t *mp;
26415 
26416 	while ((mp = tcp->tcp_timercache) != NULL) {
26417 		ASSERT(mp->b_wptr == NULL);
26418 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26419 		kmem_cache_free(tcp_timercache, mp);
26420 	}
26421 }
26422 
26423 /*
26424  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26425  * events there already (currently at most two events are cached).
26426  * If the event is not allocated from the timer cache, free it right away.
26427  */
26428 static void
26429 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26430 {
26431 	mblk_t *mp1 = tcp->tcp_timercache;
26432 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26433 
26434 	if (mp->b_wptr != NULL) {
26435 		/*
26436 		 * This allocation is not from a timer cache, free it right
26437 		 * away.
26438 		 */
26439 		if (mp->b_wptr != (uchar_t *)-1)
26440 			freeb(mp);
26441 		else
26442 			kmem_free(mp, (size_t)mp->b_datap);
26443 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26444 		/* Cache this timer block for future allocations */
26445 		mp->b_rptr = (uchar_t *)(&mp[1]);
26446 		mp->b_next = mp1;
26447 		tcp->tcp_timercache = mp;
26448 	} else {
26449 		kmem_cache_free(tcp_timercache, mp);
26450 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26451 	}
26452 }
26453 
26454 /*
26455  * End of TCP Timers implementation.
26456  */
26457 
26458 /*
26459  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26460  * on the specified backing STREAMS q. Note, the caller may make the
26461  * decision to call based on the tcp_t.tcp_flow_stopped value which
26462  * when check outside the q's lock is only an advisory check ...
26463  */
26464 
26465 void
26466 tcp_setqfull(tcp_t *tcp)
26467 {
26468 	queue_t *q = tcp->tcp_wq;
26469 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26470 
26471 	if (!(q->q_flag & QFULL)) {
26472 		mutex_enter(QLOCK(q));
26473 		if (!(q->q_flag & QFULL)) {
26474 			/* still need to set QFULL */
26475 			q->q_flag |= QFULL;
26476 			tcp->tcp_flow_stopped = B_TRUE;
26477 			mutex_exit(QLOCK(q));
26478 			TCP_STAT(tcps, tcp_flwctl_on);
26479 		} else {
26480 			mutex_exit(QLOCK(q));
26481 		}
26482 	}
26483 }
26484 
26485 void
26486 tcp_clrqfull(tcp_t *tcp)
26487 {
26488 	queue_t *q = tcp->tcp_wq;
26489 
26490 	if (q->q_flag & QFULL) {
26491 		mutex_enter(QLOCK(q));
26492 		if (q->q_flag & QFULL) {
26493 			q->q_flag &= ~QFULL;
26494 			tcp->tcp_flow_stopped = B_FALSE;
26495 			mutex_exit(QLOCK(q));
26496 			if (q->q_flag & QWANTW)
26497 				qbackenable(q, 0);
26498 		} else {
26499 			mutex_exit(QLOCK(q));
26500 		}
26501 	}
26502 }
26503 
26504 
26505 /*
26506  * kstats related to squeues i.e. not per IP instance
26507  */
26508 static void *
26509 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26510 {
26511 	kstat_t *ksp;
26512 
26513 	tcp_g_stat_t template = {
26514 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26515 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26516 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26517 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26518 	};
26519 
26520 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26521 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26522 	    KSTAT_FLAG_VIRTUAL);
26523 
26524 	if (ksp == NULL)
26525 		return (NULL);
26526 
26527 	bcopy(&template, tcp_g_statp, sizeof (template));
26528 	ksp->ks_data = (void *)tcp_g_statp;
26529 
26530 	kstat_install(ksp);
26531 	return (ksp);
26532 }
26533 
26534 static void
26535 tcp_g_kstat_fini(kstat_t *ksp)
26536 {
26537 	if (ksp != NULL) {
26538 		kstat_delete(ksp);
26539 	}
26540 }
26541 
26542 
26543 static void *
26544 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26545 {
26546 	kstat_t *ksp;
26547 
26548 	tcp_stat_t template = {
26549 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26550 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26551 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26552 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26553 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26554 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26555 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26556 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26557 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26558 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26559 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26560 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26561 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26562 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26563 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26564 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26565 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26566 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26567 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26568 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26569 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26570 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26571 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26572 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26573 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26574 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26575 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26576 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26577 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26578 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26579 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26580 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26581 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26582 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26583 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26584 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26585 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26586 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26587 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26588 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26589 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26590 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26591 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26592 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26593 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26594 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26595 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26596 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26597 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26598 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26599 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26600 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26601 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26602 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26603 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26604 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26605 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26606 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26607 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26608 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26609 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26610 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26611 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26612 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26613 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26614 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26615 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26616 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26617 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26618 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26619 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26620 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26621 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26622 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26623 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26624 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26625 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26626 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26627 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26628 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26629 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26630 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26631 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26632 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26633 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26634 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26635 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26636 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26637 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26638 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26639 	};
26640 
26641 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26642 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26643 	    KSTAT_FLAG_VIRTUAL, stackid);
26644 
26645 	if (ksp == NULL)
26646 		return (NULL);
26647 
26648 	bcopy(&template, tcps_statisticsp, sizeof (template));
26649 	ksp->ks_data = (void *)tcps_statisticsp;
26650 	ksp->ks_private = (void *)(uintptr_t)stackid;
26651 
26652 	kstat_install(ksp);
26653 	return (ksp);
26654 }
26655 
26656 static void
26657 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26658 {
26659 	if (ksp != NULL) {
26660 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26661 		kstat_delete_netstack(ksp, stackid);
26662 	}
26663 }
26664 
26665 /*
26666  * TCP Kstats implementation
26667  */
26668 static void *
26669 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26670 {
26671 	kstat_t	*ksp;
26672 
26673 	tcp_named_kstat_t template = {
26674 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26675 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26676 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26677 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26678 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26679 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26680 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26681 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26682 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26683 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26684 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26685 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26686 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26687 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26688 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26689 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26690 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26691 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26692 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26693 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26694 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26695 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26696 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26697 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26698 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26699 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26700 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26701 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26702 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26703 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26704 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26705 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26706 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26707 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26708 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26709 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26710 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26711 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26712 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26713 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26714 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26715 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26716 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26717 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26718 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26719 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26720 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26721 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26722 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26723 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26724 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26725 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26726 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26727 	};
26728 
26729 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26730 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26731 
26732 	if (ksp == NULL)
26733 		return (NULL);
26734 
26735 	template.rtoAlgorithm.value.ui32 = 4;
26736 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26737 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26738 	template.maxConn.value.i32 = -1;
26739 
26740 	bcopy(&template, ksp->ks_data, sizeof (template));
26741 	ksp->ks_update = tcp_kstat_update;
26742 	ksp->ks_private = (void *)(uintptr_t)stackid;
26743 
26744 	kstat_install(ksp);
26745 	return (ksp);
26746 }
26747 
26748 static void
26749 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26750 {
26751 	if (ksp != NULL) {
26752 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26753 		kstat_delete_netstack(ksp, stackid);
26754 	}
26755 }
26756 
26757 static int
26758 tcp_kstat_update(kstat_t *kp, int rw)
26759 {
26760 	tcp_named_kstat_t *tcpkp;
26761 	tcp_t		*tcp;
26762 	connf_t		*connfp;
26763 	conn_t		*connp;
26764 	int 		i;
26765 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26766 	netstack_t	*ns;
26767 	tcp_stack_t	*tcps;
26768 	ip_stack_t	*ipst;
26769 
26770 	if ((kp == NULL) || (kp->ks_data == NULL))
26771 		return (EIO);
26772 
26773 	if (rw == KSTAT_WRITE)
26774 		return (EACCES);
26775 
26776 	ns = netstack_find_by_stackid(stackid);
26777 	if (ns == NULL)
26778 		return (-1);
26779 	tcps = ns->netstack_tcp;
26780 	if (tcps == NULL) {
26781 		netstack_rele(ns);
26782 		return (-1);
26783 	}
26784 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26785 
26786 	tcpkp->currEstab.value.ui32 = 0;
26787 
26788 	ipst = ns->netstack_ip;
26789 
26790 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26791 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26792 		connp = NULL;
26793 		while ((connp =
26794 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26795 			tcp = connp->conn_tcp;
26796 			switch (tcp_snmp_state(tcp)) {
26797 			case MIB2_TCP_established:
26798 			case MIB2_TCP_closeWait:
26799 				tcpkp->currEstab.value.ui32++;
26800 				break;
26801 			}
26802 		}
26803 	}
26804 
26805 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26806 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26807 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26808 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26809 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26810 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26811 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26812 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26813 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26814 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26815 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26816 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26817 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26818 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26819 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26820 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26821 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26822 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26823 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26824 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26825 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26826 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26827 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26828 	tcpkp->inDataInorderSegs.value.ui32 =
26829 	    tcps->tcps_mib.tcpInDataInorderSegs;
26830 	tcpkp->inDataInorderBytes.value.ui32 =
26831 	    tcps->tcps_mib.tcpInDataInorderBytes;
26832 	tcpkp->inDataUnorderSegs.value.ui32 =
26833 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26834 	tcpkp->inDataUnorderBytes.value.ui32 =
26835 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26836 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26837 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26838 	tcpkp->inDataPartDupSegs.value.ui32 =
26839 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26840 	tcpkp->inDataPartDupBytes.value.ui32 =
26841 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26842 	tcpkp->inDataPastWinSegs.value.ui32 =
26843 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26844 	tcpkp->inDataPastWinBytes.value.ui32 =
26845 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26846 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26847 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26848 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26849 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26850 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26851 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26852 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26853 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26854 	tcpkp->timKeepaliveProbe.value.ui32 =
26855 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26856 	tcpkp->timKeepaliveDrop.value.ui32 =
26857 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26858 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26859 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26860 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26861 	tcpkp->outSackRetransSegs.value.ui32 =
26862 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26863 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26864 
26865 	netstack_rele(ns);
26866 	return (0);
26867 }
26868 
26869 void
26870 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26871 {
26872 	uint16_t	hdr_len;
26873 	ipha_t		*ipha;
26874 	uint8_t		*nexthdrp;
26875 	tcph_t		*tcph;
26876 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26877 
26878 	/* Already has an eager */
26879 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26880 		TCP_STAT(tcps, tcp_reinput_syn);
26881 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26882 		    connp, SQTAG_TCP_REINPUT_EAGER);
26883 		return;
26884 	}
26885 
26886 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26887 	case IPV4_VERSION:
26888 		ipha = (ipha_t *)mp->b_rptr;
26889 		hdr_len = IPH_HDR_LENGTH(ipha);
26890 		break;
26891 	case IPV6_VERSION:
26892 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26893 		    &hdr_len, &nexthdrp)) {
26894 			CONN_DEC_REF(connp);
26895 			freemsg(mp);
26896 			return;
26897 		}
26898 		break;
26899 	}
26900 
26901 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26902 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26903 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26904 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26905 	}
26906 
26907 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26908 	    SQTAG_TCP_REINPUT);
26909 }
26910 
26911 static squeue_func_t
26912 tcp_squeue_switch(int val)
26913 {
26914 	squeue_func_t rval = squeue_fill;
26915 
26916 	switch (val) {
26917 	case 1:
26918 		rval = squeue_enter_nodrain;
26919 		break;
26920 	case 2:
26921 		rval = squeue_enter;
26922 		break;
26923 	default:
26924 		break;
26925 	}
26926 	return (rval);
26927 }
26928 
26929 /*
26930  * This is called once for each squeue - globally for all stack
26931  * instances.
26932  */
26933 static void
26934 tcp_squeue_add(squeue_t *sqp)
26935 {
26936 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26937 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26938 
26939 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26940 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26941 	    sqp, TCP_TIME_WAIT_DELAY);
26942 	if (tcp_free_list_max_cnt == 0) {
26943 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26944 		    max_ncpus : boot_max_ncpus);
26945 
26946 		/*
26947 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26948 		 */
26949 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26950 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26951 	}
26952 	tcp_time_wait->tcp_free_list_cnt = 0;
26953 }
26954