1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #define _SUN_TPI_VERSION 2 36 #include <sys/tihdr.h> 37 #include <sys/timod.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/xti_inet.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/sdt.h> 45 #include <sys/vtrace.h> 46 #include <sys/kmem.h> 47 #include <sys/ethernet.h> 48 #include <sys/cpuvar.h> 49 #include <sys/dlpi.h> 50 #include <sys/multidata.h> 51 #include <sys/multidata_impl.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/sodirect.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue.h> 100 #include <inet/kssl/ksslapi.h> 101 #include <sys/tsol/label.h> 102 #include <sys/tsol/tnet.h> 103 #include <rpc/pmap_prot.h> 104 #include <sys/callo.h> 105 106 /* 107 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 108 * 109 * (Read the detailed design doc in PSARC case directory) 110 * 111 * The entire tcp state is contained in tcp_t and conn_t structure 112 * which are allocated in tandem using ipcl_conn_create() and passing 113 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 114 * the references on the tcp_t. The tcp_t structure is never compressed 115 * and packets always land on the correct TCP perimeter from the time 116 * eager is created till the time tcp_t dies (as such the old mentat 117 * TCP global queue is not used for detached state and no IPSEC checking 118 * is required). The global queue is still allocated to send out resets 119 * for connection which have no listeners and IP directly calls 120 * tcp_xmit_listeners_reset() which does any policy check. 121 * 122 * Protection and Synchronisation mechanism: 123 * 124 * The tcp data structure does not use any kind of lock for protecting 125 * its state but instead uses 'squeues' for mutual exclusion from various 126 * read and write side threads. To access a tcp member, the thread should 127 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 128 * squeue_fill). Since the squeues allow a direct function call, caller 129 * can pass any tcp function having prototype of edesc_t as argument 130 * (different from traditional STREAMs model where packets come in only 131 * designated entry points). The list of functions that can be directly 132 * called via squeue are listed before the usual function prototype. 133 * 134 * Referencing: 135 * 136 * TCP is MT-Hot and we use a reference based scheme to make sure that the 137 * tcp structure doesn't disappear when its needed. When the application 138 * creates an outgoing connection or accepts an incoming connection, we 139 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 140 * The IP reference is just a symbolic reference since ip_tcpclose() 141 * looks at tcp structure after tcp_close_output() returns which could 142 * have dropped the last TCP reference. So as long as the connection is 143 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 144 * conn_t. The classifier puts its own reference when the connection is 145 * inserted in listen or connected hash. Anytime a thread needs to enter 146 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 147 * on write side or by doing a classify on read side and then puts a 148 * reference on the conn before doing squeue_enter/tryenter/fill. For 149 * read side, the classifier itself puts the reference under fanout lock 150 * to make sure that tcp can't disappear before it gets processed. The 151 * squeue will drop this reference automatically so the called function 152 * doesn't have to do a DEC_REF. 153 * 154 * Opening a new connection: 155 * 156 * The outgoing connection open is pretty simple. tcp_open() does the 157 * work in creating the conn/tcp structure and initializing it. The 158 * squeue assignment is done based on the CPU the application 159 * is running on. So for outbound connections, processing is always done 160 * on application CPU which might be different from the incoming CPU 161 * being interrupted by the NIC. An optimal way would be to figure out 162 * the NIC <-> CPU binding at listen time, and assign the outgoing 163 * connection to the squeue attached to the CPU that will be interrupted 164 * for incoming packets (we know the NIC based on the bind IP address). 165 * This might seem like a problem if more data is going out but the 166 * fact is that in most cases the transmit is ACK driven transmit where 167 * the outgoing data normally sits on TCP's xmit queue waiting to be 168 * transmitted. 169 * 170 * Accepting a connection: 171 * 172 * This is a more interesting case because of various races involved in 173 * establishing a eager in its own perimeter. Read the meta comment on 174 * top of tcp_conn_request(). But briefly, the squeue is picked by 175 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 176 * 177 * Closing a connection: 178 * 179 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 180 * via squeue to do the close and mark the tcp as detached if the connection 181 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 182 * reference but tcp_close() drop IP's reference always. So if tcp was 183 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 184 * and 1 because it is in classifier's connected hash. This is the condition 185 * we use to determine that its OK to clean up the tcp outside of squeue 186 * when time wait expires (check the ref under fanout and conn_lock and 187 * if it is 2, remove it from fanout hash and kill it). 188 * 189 * Although close just drops the necessary references and marks the 190 * tcp_detached state, tcp_close needs to know the tcp_detached has been 191 * set (under squeue) before letting the STREAM go away (because a 192 * inbound packet might attempt to go up the STREAM while the close 193 * has happened and tcp_detached is not set). So a special lock and 194 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 195 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 196 * tcp_detached. 197 * 198 * Special provisions and fast paths: 199 * 200 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 201 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 202 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 203 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 204 * check to send packets directly to tcp_rput_data via squeue. Everyone 205 * else comes through tcp_input() on the read side. 206 * 207 * We also make special provisions for sockfs by marking tcp_issocket 208 * whenever we have only sockfs on top of TCP. This allows us to skip 209 * putting the tcp in acceptor hash since a sockfs listener can never 210 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 211 * since eager has already been allocated and the accept now happens 212 * on acceptor STREAM. There is a big blob of comment on top of 213 * tcp_conn_request explaining the new accept. When socket is POP'd, 214 * sockfs sends us an ioctl to mark the fact and we go back to old 215 * behaviour. Once tcp_issocket is unset, its never set for the 216 * life of that connection. 217 * 218 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 219 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 220 * directly to the socket (sodirect) and start an asynchronous copyout 221 * to a user-land receive-side buffer (uioa) when a blocking socket read 222 * (e.g. read, recv, ...) is pending. 223 * 224 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 225 * NULL so points to an sodirect_t and if marked enabled then we enqueue 226 * all mblk_t's directly to the socket. 227 * 228 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 229 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 230 * copyout will be started directly to the user-land uio buffer. Also, as we 231 * have a pending read, TCP's push logic can take into account the number of 232 * bytes to be received and only awake the blocked read()er when the uioa_t 233 * byte count has been satisfied. 234 * 235 * IPsec notes : 236 * 237 * Since a packet is always executed on the correct TCP perimeter 238 * all IPsec processing is defered to IP including checking new 239 * connections and setting IPSEC policies for new connection. The 240 * only exception is tcp_xmit_listeners_reset() which is called 241 * directly from IP and needs to policy check to see if TH_RST 242 * can be sent out. 243 * 244 * PFHooks notes : 245 * 246 * For mdt case, one meta buffer contains multiple packets. Mblks for every 247 * packet are assembled and passed to the hooks. When packets are blocked, 248 * or boundary of any packet is changed, the mdt processing is stopped, and 249 * packets of the meta buffer are send to the IP path one by one. 250 */ 251 252 /* 253 * Values for squeue switch: 254 * 1: squeue_enter_nodrain 255 * 2: squeue_enter 256 * 3: squeue_fill 257 */ 258 int tcp_squeue_close = 2; /* Setable in /etc/system */ 259 int tcp_squeue_wput = 2; 260 261 squeue_func_t tcp_squeue_close_proc; 262 squeue_func_t tcp_squeue_wput_proc; 263 264 /* 265 * Macros for sodirect: 266 * 267 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 268 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 269 * if it exists and is enabled, else to NULL. Note, in the current 270 * sodirect implementation the sod_lockp must not be held across any 271 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 272 * will result as sod_lockp is the streamhead stdata.sd_lock. 273 * 274 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 275 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 276 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 277 * being used when sodirect code paths should be. 278 */ 279 280 #define SOD_PTR_ENTER(tcp, sodp) \ 281 (sodp) = (tcp)->tcp_sodirect; \ 282 \ 283 if ((sodp) != NULL) { \ 284 mutex_enter((sodp)->sod_lockp); \ 285 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 286 mutex_exit((sodp)->sod_lockp); \ 287 (sodp) = NULL; \ 288 } \ 289 } 290 291 #define SOD_NOT_ENABLED(tcp) \ 292 ((tcp)->tcp_sodirect == NULL || \ 293 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 294 295 /* 296 * This controls how tiny a write must be before we try to copy it 297 * into the the mblk on the tail of the transmit queue. Not much 298 * speedup is observed for values larger than sixteen. Zero will 299 * disable the optimisation. 300 */ 301 int tcp_tx_pull_len = 16; 302 303 /* 304 * TCP Statistics. 305 * 306 * How TCP statistics work. 307 * 308 * There are two types of statistics invoked by two macros. 309 * 310 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 311 * supposed to be used in non MT-hot paths of the code. 312 * 313 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 314 * supposed to be used for DEBUG purposes and may be used on a hot path. 315 * 316 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 317 * (use "kstat tcp" to get them). 318 * 319 * There is also additional debugging facility that marks tcp_clean_death() 320 * instances and saves them in tcp_t structure. It is triggered by 321 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 322 * tcp_clean_death() calls that counts the number of times each tag was hit. It 323 * is triggered by TCP_CLD_COUNTERS define. 324 * 325 * How to add new counters. 326 * 327 * 1) Add a field in the tcp_stat structure describing your counter. 328 * 2) Add a line in the template in tcp_kstat2_init() with the name 329 * of the counter. 330 * 331 * IMPORTANT!! - make sure that both are in sync !! 332 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 333 * 334 * Please avoid using private counters which are not kstat-exported. 335 * 336 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 337 * in tcp_t structure. 338 * 339 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 340 */ 341 342 #ifndef TCP_DEBUG_COUNTER 343 #ifdef DEBUG 344 #define TCP_DEBUG_COUNTER 1 345 #else 346 #define TCP_DEBUG_COUNTER 0 347 #endif 348 #endif 349 350 #define TCP_CLD_COUNTERS 0 351 352 #define TCP_TAG_CLEAN_DEATH 1 353 #define TCP_MAX_CLEAN_DEATH_TAG 32 354 355 #ifdef lint 356 static int _lint_dummy_; 357 #endif 358 359 #if TCP_CLD_COUNTERS 360 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 361 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 362 #elif defined(lint) 363 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 364 #else 365 #define TCP_CLD_STAT(x) 366 #endif 367 368 #if TCP_DEBUG_COUNTER 369 #define TCP_DBGSTAT(tcps, x) \ 370 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 371 #define TCP_G_DBGSTAT(x) \ 372 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 373 #elif defined(lint) 374 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 375 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 376 #else 377 #define TCP_DBGSTAT(tcps, x) 378 #define TCP_G_DBGSTAT(x) 379 #endif 380 381 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 382 383 tcp_g_stat_t tcp_g_statistics; 384 kstat_t *tcp_g_kstat; 385 386 /* 387 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 388 * tcp write side. 389 */ 390 #define CALL_IP_WPUT(connp, q, mp) { \ 391 tcp_stack_t *tcps; \ 392 \ 393 tcps = connp->conn_netstack->netstack_tcp; \ 394 ASSERT(((q)->q_flag & QREADR) == 0); \ 395 TCP_DBGSTAT(tcps, tcp_ip_output); \ 396 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 397 } 398 399 /* Macros for timestamp comparisons */ 400 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 401 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 402 403 /* 404 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 405 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 406 * by adding three components: a time component which grows by 1 every 4096 407 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 408 * a per-connection component which grows by 125000 for every new connection; 409 * and an "extra" component that grows by a random amount centered 410 * approximately on 64000. This causes the the ISS generator to cycle every 411 * 4.89 hours if no TCP connections are made, and faster if connections are 412 * made. 413 * 414 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 415 * components: a time component which grows by 250000 every second; and 416 * a per-connection component which grows by 125000 for every new connections. 417 * 418 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 419 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 420 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 421 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 422 * password. 423 */ 424 #define ISS_INCR 250000 425 #define ISS_NSEC_SHT 12 426 427 static sin_t sin_null; /* Zero address for quick clears */ 428 static sin6_t sin6_null; /* Zero address for quick clears */ 429 430 /* 431 * This implementation follows the 4.3BSD interpretation of the urgent 432 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 433 * incompatible changes in protocols like telnet and rlogin. 434 */ 435 #define TCP_OLD_URP_INTERPRETATION 1 436 437 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 438 (TCP_IS_DETACHED(tcp) && \ 439 (!(tcp)->tcp_hard_binding)) 440 441 /* 442 * TCP reassembly macros. We hide starting and ending sequence numbers in 443 * b_next and b_prev of messages on the reassembly queue. The messages are 444 * chained using b_cont. These macros are used in tcp_reass() so we don't 445 * have to see the ugly casts and assignments. 446 */ 447 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 448 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 449 (mblk_t *)(uintptr_t)(u)) 450 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 451 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 452 (mblk_t *)(uintptr_t)(u)) 453 454 /* 455 * Implementation of TCP Timers. 456 * ============================= 457 * 458 * INTERFACE: 459 * 460 * There are two basic functions dealing with tcp timers: 461 * 462 * timeout_id_t tcp_timeout(connp, func, time) 463 * clock_t tcp_timeout_cancel(connp, timeout_id) 464 * TCP_TIMER_RESTART(tcp, intvl) 465 * 466 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 467 * after 'time' ticks passed. The function called by timeout() must adhere to 468 * the same restrictions as a driver soft interrupt handler - it must not sleep 469 * or call other functions that might sleep. The value returned is the opaque 470 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 471 * cancel the request. The call to tcp_timeout() may fail in which case it 472 * returns zero. This is different from the timeout(9F) function which never 473 * fails. 474 * 475 * The call-back function 'func' always receives 'connp' as its single 476 * argument. It is always executed in the squeue corresponding to the tcp 477 * structure. The tcp structure is guaranteed to be present at the time the 478 * call-back is called. 479 * 480 * NOTE: The call-back function 'func' is never called if tcp is in 481 * the TCPS_CLOSED state. 482 * 483 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 484 * request. locks acquired by the call-back routine should not be held across 485 * the call to tcp_timeout_cancel() or a deadlock may result. 486 * 487 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 488 * Otherwise, it returns an integer value greater than or equal to 0. In 489 * particular, if the call-back function is already placed on the squeue, it can 490 * not be canceled. 491 * 492 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 493 * within squeue context corresponding to the tcp instance. Since the 494 * call-back is also called via the same squeue, there are no race 495 * conditions described in untimeout(9F) manual page since all calls are 496 * strictly serialized. 497 * 498 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 499 * stored in tcp_timer_tid and starts a new one using 500 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 501 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 502 * field. 503 * 504 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 505 * call-back may still be called, so it is possible tcp_timer() will be 506 * called several times. This should not be a problem since tcp_timer() 507 * should always check the tcp instance state. 508 * 509 * 510 * IMPLEMENTATION: 511 * 512 * TCP timers are implemented using three-stage process. The call to 513 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 514 * when the timer expires. The tcp_timer_callback() arranges the call of the 515 * tcp_timer_handler() function via squeue corresponding to the tcp 516 * instance. The tcp_timer_handler() calls actual requested timeout call-back 517 * and passes tcp instance as an argument to it. Information is passed between 518 * stages using the tcp_timer_t structure which contains the connp pointer, the 519 * tcp call-back to call and the timeout id returned by the timeout(9F). 520 * 521 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 522 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 523 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 524 * returns the pointer to this mblk. 525 * 526 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 527 * looks like a normal mblk without actual dblk attached to it. 528 * 529 * To optimize performance each tcp instance holds a small cache of timer 530 * mblocks. In the current implementation it caches up to two timer mblocks per 531 * tcp instance. The cache is preserved over tcp frees and is only freed when 532 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 533 * timer processing happens on a corresponding squeue, the cache manipulation 534 * does not require any locks. Experiments show that majority of timer mblocks 535 * allocations are satisfied from the tcp cache and do not involve kmem calls. 536 * 537 * The tcp_timeout() places a refhold on the connp instance which guarantees 538 * that it will be present at the time the call-back function fires. The 539 * tcp_timer_handler() drops the reference after calling the call-back, so the 540 * call-back function does not need to manipulate the references explicitly. 541 */ 542 543 typedef struct tcp_timer_s { 544 conn_t *connp; 545 void (*tcpt_proc)(void *); 546 callout_id_t tcpt_tid; 547 } tcp_timer_t; 548 549 static kmem_cache_t *tcp_timercache; 550 kmem_cache_t *tcp_sack_info_cache; 551 kmem_cache_t *tcp_iphc_cache; 552 553 /* 554 * For scalability, we must not run a timer for every TCP connection 555 * in TIME_WAIT state. To see why, consider (for time wait interval of 556 * 4 minutes): 557 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 558 * 559 * This list is ordered by time, so you need only delete from the head 560 * until you get to entries which aren't old enough to delete yet. 561 * The list consists of only the detached TIME_WAIT connections. 562 * 563 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 564 * becomes detached TIME_WAIT (either by changing the state and already 565 * being detached or the other way around). This means that the TIME_WAIT 566 * state can be extended (up to doubled) if the connection doesn't become 567 * detached for a long time. 568 * 569 * The list manipulations (including tcp_time_wait_next/prev) 570 * are protected by the tcp_time_wait_lock. The content of the 571 * detached TIME_WAIT connections is protected by the normal perimeters. 572 * 573 * This list is per squeue and squeues are shared across the tcp_stack_t's. 574 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 575 * and conn_netstack. 576 * The tcp_t's that are added to tcp_free_list are disassociated and 577 * have NULL tcp_tcps and conn_netstack pointers. 578 */ 579 typedef struct tcp_squeue_priv_s { 580 kmutex_t tcp_time_wait_lock; 581 callout_id_t tcp_time_wait_tid; 582 tcp_t *tcp_time_wait_head; 583 tcp_t *tcp_time_wait_tail; 584 tcp_t *tcp_free_list; 585 uint_t tcp_free_list_cnt; 586 } tcp_squeue_priv_t; 587 588 /* 589 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 590 * Running it every 5 seconds seems to give the best results. 591 */ 592 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 593 594 /* 595 * To prevent memory hog, limit the number of entries in tcp_free_list 596 * to 1% of available memory / number of cpus 597 */ 598 uint_t tcp_free_list_max_cnt = 0; 599 600 #define TCP_XMIT_LOWATER 4096 601 #define TCP_XMIT_HIWATER 49152 602 #define TCP_RECV_LOWATER 2048 603 #define TCP_RECV_HIWATER 49152 604 605 /* 606 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 607 */ 608 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 609 610 #define TIDUSZ 4096 /* transport interface data unit size */ 611 612 /* 613 * Bind hash list size and has function. It has to be a power of 2 for 614 * hashing. 615 */ 616 #define TCP_BIND_FANOUT_SIZE 512 617 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 618 /* 619 * Size of listen and acceptor hash list. It has to be a power of 2 for 620 * hashing. 621 */ 622 #define TCP_FANOUT_SIZE 256 623 624 #ifdef _ILP32 625 #define TCP_ACCEPTOR_HASH(accid) \ 626 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 627 #else 628 #define TCP_ACCEPTOR_HASH(accid) \ 629 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 630 #endif /* _ILP32 */ 631 632 #define IP_ADDR_CACHE_SIZE 2048 633 #define IP_ADDR_CACHE_HASH(faddr) \ 634 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 635 636 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 637 #define TCP_HSP_HASH_SIZE 256 638 639 #define TCP_HSP_HASH(addr) \ 640 (((addr>>24) ^ (addr >>16) ^ \ 641 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 642 643 /* 644 * TCP options struct returned from tcp_parse_options. 645 */ 646 typedef struct tcp_opt_s { 647 uint32_t tcp_opt_mss; 648 uint32_t tcp_opt_wscale; 649 uint32_t tcp_opt_ts_val; 650 uint32_t tcp_opt_ts_ecr; 651 tcp_t *tcp; 652 } tcp_opt_t; 653 654 /* 655 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 656 */ 657 658 #ifdef _BIG_ENDIAN 659 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 660 (TCPOPT_TSTAMP << 8) | 10) 661 #else 662 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 663 (TCPOPT_NOP << 8) | TCPOPT_NOP) 664 #endif 665 666 /* 667 * Flags returned from tcp_parse_options. 668 */ 669 #define TCP_OPT_MSS_PRESENT 1 670 #define TCP_OPT_WSCALE_PRESENT 2 671 #define TCP_OPT_TSTAMP_PRESENT 4 672 #define TCP_OPT_SACK_OK_PRESENT 8 673 #define TCP_OPT_SACK_PRESENT 16 674 675 /* TCP option length */ 676 #define TCPOPT_NOP_LEN 1 677 #define TCPOPT_MAXSEG_LEN 4 678 #define TCPOPT_WS_LEN 3 679 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 680 #define TCPOPT_TSTAMP_LEN 10 681 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 682 #define TCPOPT_SACK_OK_LEN 2 683 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 684 #define TCPOPT_REAL_SACK_LEN 4 685 #define TCPOPT_MAX_SACK_LEN 36 686 #define TCPOPT_HEADER_LEN 2 687 688 /* TCP cwnd burst factor. */ 689 #define TCP_CWND_INFINITE 65535 690 #define TCP_CWND_SS 3 691 #define TCP_CWND_NORMAL 5 692 693 /* Maximum TCP initial cwin (start/restart). */ 694 #define TCP_MAX_INIT_CWND 8 695 696 /* 697 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 698 * either tcp_slow_start_initial or tcp_slow_start_after idle 699 * depending on the caller. If the upper layer has not used the 700 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 701 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 702 * If the upper layer has changed set the tcp_init_cwnd, just use 703 * it to calculate the tcp_cwnd. 704 */ 705 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 706 { \ 707 if ((tcp)->tcp_init_cwnd == 0) { \ 708 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 709 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 710 } else { \ 711 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 712 } \ 713 tcp->tcp_cwnd_cnt = 0; \ 714 } 715 716 /* TCP Timer control structure */ 717 typedef struct tcpt_s { 718 pfv_t tcpt_pfv; /* The routine we are to call */ 719 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 720 } tcpt_t; 721 722 /* Host Specific Parameter structure */ 723 typedef struct tcp_hsp { 724 struct tcp_hsp *tcp_hsp_next; 725 in6_addr_t tcp_hsp_addr_v6; 726 in6_addr_t tcp_hsp_subnet_v6; 727 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 728 int32_t tcp_hsp_sendspace; 729 int32_t tcp_hsp_recvspace; 730 int32_t tcp_hsp_tstamp; 731 } tcp_hsp_t; 732 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 733 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 734 735 /* 736 * Functions called directly via squeue having a prototype of edesc_t. 737 */ 738 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 739 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 740 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 741 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 742 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 743 void tcp_input(void *arg, mblk_t *mp, void *arg2); 744 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 745 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 746 void tcp_output(void *arg, mblk_t *mp, void *arg2); 747 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 748 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 749 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 750 751 752 /* Prototype for TCP functions */ 753 static void tcp_random_init(void); 754 int tcp_random(void); 755 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 756 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 757 tcp_t *eager); 758 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 759 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 760 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 761 boolean_t user_specified); 762 static void tcp_closei_local(tcp_t *tcp); 763 static void tcp_close_detached(tcp_t *tcp); 764 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 765 mblk_t *idmp, mblk_t **defermp); 766 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 767 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 768 in_port_t dstport, uint_t srcid); 769 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 770 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 771 uint32_t scope_id); 772 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 773 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 774 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 775 static char *tcp_display(tcp_t *tcp, char *, char); 776 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 777 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 778 static void tcp_eager_unlink(tcp_t *tcp); 779 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 780 int unixerr); 781 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 782 int tlierr, int unixerr); 783 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 784 cred_t *cr); 785 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 786 char *value, caddr_t cp, cred_t *cr); 787 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 788 char *value, caddr_t cp, cred_t *cr); 789 static int tcp_tpistate(tcp_t *tcp); 790 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 791 int caller_holds_lock); 792 static void tcp_bind_hash_remove(tcp_t *tcp); 793 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 794 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 795 static void tcp_acceptor_hash_remove(tcp_t *tcp); 796 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 797 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 798 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 799 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 800 void tcp_g_q_setup(tcp_stack_t *); 801 void tcp_g_q_create(tcp_stack_t *); 802 void tcp_g_q_destroy(tcp_stack_t *); 803 static int tcp_header_init_ipv4(tcp_t *tcp); 804 static int tcp_header_init_ipv6(tcp_t *tcp); 805 int tcp_init(tcp_t *tcp, queue_t *q); 806 static int tcp_init_values(tcp_t *tcp); 807 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 808 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 809 t_scalar_t addr_length); 810 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 811 static void tcp_ip_notify(tcp_t *tcp); 812 static mblk_t *tcp_ire_mp(mblk_t *mp); 813 static void tcp_iss_init(tcp_t *tcp); 814 static void tcp_keepalive_killer(void *arg); 815 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 816 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 817 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 818 int *do_disconnectp, int *t_errorp, int *sys_errorp); 819 static boolean_t tcp_allow_connopt_set(int level, int name); 820 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 821 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 822 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 823 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 824 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 825 mblk_t *mblk); 826 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 827 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 828 uchar_t *ptr, uint_t len); 829 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 830 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 831 tcp_stack_t *); 832 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 833 caddr_t cp, cred_t *cr); 834 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 835 caddr_t cp, cred_t *cr); 836 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 837 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 838 caddr_t cp, cred_t *cr); 839 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 840 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 841 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 842 static void tcp_reinit(tcp_t *tcp); 843 static void tcp_reinit_values(tcp_t *tcp); 844 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 845 tcp_t *thisstream, cred_t *cr); 846 847 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 848 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 849 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 850 static void tcp_ss_rexmit(tcp_t *tcp); 851 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 852 static void tcp_process_options(tcp_t *, tcph_t *); 853 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 854 static void tcp_rsrv(queue_t *q); 855 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 856 static int tcp_snmp_state(tcp_t *tcp); 857 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 858 cred_t *cr); 859 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 860 cred_t *cr); 861 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 862 cred_t *cr); 863 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 864 cred_t *cr); 865 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 866 cred_t *cr); 867 static void tcp_timer(void *arg); 868 static void tcp_timer_callback(void *); 869 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 870 boolean_t random); 871 static in_port_t tcp_get_next_priv_port(const tcp_t *); 872 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 873 void tcp_wput_accept(queue_t *q, mblk_t *mp); 874 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 875 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 876 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 877 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 878 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 879 const int num_sack_blk, int *usable, uint_t *snxt, 880 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 881 const int mdt_thres); 882 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 883 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 884 const int num_sack_blk, int *usable, uint_t *snxt, 885 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 886 const int mdt_thres); 887 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 888 int num_sack_blk); 889 static void tcp_wsrv(queue_t *q); 890 static int tcp_xmit_end(tcp_t *tcp); 891 static void tcp_ack_timer(void *arg); 892 static mblk_t *tcp_ack_mp(tcp_t *tcp); 893 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 894 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 895 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 896 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 897 uint32_t ack, int ctl); 898 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 899 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 900 static int setmaxps(queue_t *q, int maxpsz); 901 static void tcp_set_rto(tcp_t *, time_t); 902 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 903 boolean_t, boolean_t); 904 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 905 boolean_t ipsec_mctl); 906 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 907 char *opt, int optlen); 908 static int tcp_build_hdrs(queue_t *, tcp_t *); 909 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 910 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 911 tcph_t *tcph); 912 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 913 static mblk_t *tcp_mdt_info_mp(mblk_t *); 914 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 915 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 916 const boolean_t, const uint32_t, const uint32_t, 917 const uint32_t, const uint32_t, tcp_stack_t *); 918 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 919 const uint_t, const uint_t, boolean_t *); 920 static mblk_t *tcp_lso_info_mp(mblk_t *); 921 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 922 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 923 extern mblk_t *tcp_timermp_alloc(int); 924 extern void tcp_timermp_free(tcp_t *); 925 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 926 static void tcp_stop_lingering(tcp_t *tcp); 927 static void tcp_close_linger_timeout(void *arg); 928 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 929 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 930 static void tcp_stack_fini(netstackid_t stackid, void *arg); 931 static void *tcp_g_kstat_init(tcp_g_stat_t *); 932 static void tcp_g_kstat_fini(kstat_t *); 933 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 934 static void tcp_kstat_fini(netstackid_t, kstat_t *); 935 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 936 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 937 static int tcp_kstat_update(kstat_t *kp, int rw); 938 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 939 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 940 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 941 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 942 tcph_t *tcph, mblk_t *idmp); 943 static squeue_func_t tcp_squeue_switch(int); 944 945 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 946 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 947 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 948 static int tcp_close(queue_t *, int); 949 static int tcpclose_accept(queue_t *); 950 951 static void tcp_squeue_add(squeue_t *); 952 static boolean_t tcp_zcopy_check(tcp_t *); 953 static void tcp_zcopy_notify(tcp_t *); 954 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 955 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 956 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 957 958 extern void tcp_kssl_input(tcp_t *, mblk_t *); 959 960 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 961 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 962 963 /* 964 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 965 * 966 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 967 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 968 * (defined in tcp.h) needs to be filled in and passed into the kernel 969 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 970 * structure contains the four-tuple of a TCP connection and a range of TCP 971 * states (specified by ac_start and ac_end). The use of wildcard addresses 972 * and ports is allowed. Connections with a matching four tuple and a state 973 * within the specified range will be aborted. The valid states for the 974 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 975 * inclusive. 976 * 977 * An application which has its connection aborted by this ioctl will receive 978 * an error that is dependent on the connection state at the time of the abort. 979 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 980 * though a RST packet has been received. If the connection state is equal to 981 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 982 * and all resources associated with the connection will be freed. 983 */ 984 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 985 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 986 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 987 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 988 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 989 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 990 boolean_t, tcp_stack_t *); 991 992 static struct module_info tcp_rinfo = { 993 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 994 }; 995 996 static struct module_info tcp_winfo = { 997 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 998 }; 999 1000 /* 1001 * Entry points for TCP as a device. The normal case which supports 1002 * the TCP functionality. 1003 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1004 */ 1005 struct qinit tcp_rinitv4 = { 1006 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo 1007 }; 1008 1009 struct qinit tcp_rinitv6 = { 1010 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo 1011 }; 1012 1013 struct qinit tcp_winit = { 1014 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1015 }; 1016 1017 /* Initial entry point for TCP in socket mode. */ 1018 struct qinit tcp_sock_winit = { 1019 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1020 }; 1021 1022 /* 1023 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1024 * an accept. Avoid allocating data structures since eager has already 1025 * been created. 1026 */ 1027 struct qinit tcp_acceptor_rinit = { 1028 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1029 }; 1030 1031 struct qinit tcp_acceptor_winit = { 1032 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1033 }; 1034 1035 /* 1036 * Entry points for TCP loopback (read side only) 1037 * The open routine is only used for reopens, thus no need to 1038 * have a separate one for tcp_openv6. 1039 */ 1040 struct qinit tcp_loopback_rinit = { 1041 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0, 1042 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1043 }; 1044 1045 /* For AF_INET aka /dev/tcp */ 1046 struct streamtab tcpinfov4 = { 1047 &tcp_rinitv4, &tcp_winit 1048 }; 1049 1050 /* For AF_INET6 aka /dev/tcp6 */ 1051 struct streamtab tcpinfov6 = { 1052 &tcp_rinitv6, &tcp_winit 1053 }; 1054 1055 /* 1056 * Have to ensure that tcp_g_q_close is not done by an 1057 * interrupt thread. 1058 */ 1059 static taskq_t *tcp_taskq; 1060 1061 /* Setable only in /etc/system. Move to ndd? */ 1062 boolean_t tcp_icmp_source_quench = B_FALSE; 1063 1064 /* 1065 * Following assumes TPI alignment requirements stay along 32 bit 1066 * boundaries 1067 */ 1068 #define ROUNDUP32(x) \ 1069 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1070 1071 /* Template for response to info request. */ 1072 static struct T_info_ack tcp_g_t_info_ack = { 1073 T_INFO_ACK, /* PRIM_type */ 1074 0, /* TSDU_size */ 1075 T_INFINITE, /* ETSDU_size */ 1076 T_INVALID, /* CDATA_size */ 1077 T_INVALID, /* DDATA_size */ 1078 sizeof (sin_t), /* ADDR_size */ 1079 0, /* OPT_size - not initialized here */ 1080 TIDUSZ, /* TIDU_size */ 1081 T_COTS_ORD, /* SERV_type */ 1082 TCPS_IDLE, /* CURRENT_state */ 1083 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1084 }; 1085 1086 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1087 T_INFO_ACK, /* PRIM_type */ 1088 0, /* TSDU_size */ 1089 T_INFINITE, /* ETSDU_size */ 1090 T_INVALID, /* CDATA_size */ 1091 T_INVALID, /* DDATA_size */ 1092 sizeof (sin6_t), /* ADDR_size */ 1093 0, /* OPT_size - not initialized here */ 1094 TIDUSZ, /* TIDU_size */ 1095 T_COTS_ORD, /* SERV_type */ 1096 TCPS_IDLE, /* CURRENT_state */ 1097 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1098 }; 1099 1100 #define MS 1L 1101 #define SECONDS (1000 * MS) 1102 #define MINUTES (60 * SECONDS) 1103 #define HOURS (60 * MINUTES) 1104 #define DAYS (24 * HOURS) 1105 1106 #define PARAM_MAX (~(uint32_t)0) 1107 1108 /* Max size IP datagram is 64k - 1 */ 1109 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1110 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1111 /* Max of the above */ 1112 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1113 1114 /* Largest TCP port number */ 1115 #define TCP_MAX_PORT (64 * 1024 - 1) 1116 1117 /* 1118 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1119 * layer header. It has to be a multiple of 4. 1120 */ 1121 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1122 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1123 1124 /* 1125 * All of these are alterable, within the min/max values given, at run time. 1126 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1127 * per the TCP spec. 1128 */ 1129 /* BEGIN CSTYLED */ 1130 static tcpparam_t lcl_tcp_param_arr[] = { 1131 /*min max value name */ 1132 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1133 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1134 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1135 { 1, 1024, 1, "tcp_conn_req_min" }, 1136 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1137 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1138 { 0, 10, 0, "tcp_debug" }, 1139 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1140 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1141 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1142 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1143 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1144 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1145 { 1, 255, 64, "tcp_ipv4_ttl"}, 1146 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1147 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1148 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1149 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1150 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1151 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1152 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1153 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1154 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1155 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1156 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1157 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1158 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1159 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1160 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1161 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1162 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1163 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1164 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1165 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1166 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1167 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1168 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1169 /* 1170 * Question: What default value should I set for tcp_strong_iss? 1171 */ 1172 { 0, 2, 1, "tcp_strong_iss"}, 1173 { 0, 65536, 20, "tcp_rtt_updates"}, 1174 { 0, 1, 1, "tcp_wscale_always"}, 1175 { 0, 1, 0, "tcp_tstamp_always"}, 1176 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1177 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1178 { 0, 16, 2, "tcp_deferred_acks_max"}, 1179 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1180 { 1, 4, 4, "tcp_slow_start_initial"}, 1181 { 0, 2, 2, "tcp_sack_permitted"}, 1182 { 0, 1, 1, "tcp_compression_enabled"}, 1183 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1184 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1185 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1186 { 0, 1, 0, "tcp_rev_src_routes"}, 1187 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1188 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1189 { 0, 16, 8, "tcp_local_dacks_max"}, 1190 { 0, 2, 1, "tcp_ecn_permitted"}, 1191 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1192 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1193 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1194 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1195 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1196 }; 1197 /* END CSTYLED */ 1198 1199 /* 1200 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1201 * each header fragment in the header buffer. Each parameter value has 1202 * to be a multiple of 4 (32-bit aligned). 1203 */ 1204 static tcpparam_t lcl_tcp_mdt_head_param = 1205 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1206 static tcpparam_t lcl_tcp_mdt_tail_param = 1207 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1208 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1209 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1210 1211 /* 1212 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1213 * the maximum number of payload buffers associated per Multidata. 1214 */ 1215 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1216 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1217 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1218 1219 /* Round up the value to the nearest mss. */ 1220 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1221 1222 /* 1223 * Set ECN capable transport (ECT) code point in IP header. 1224 * 1225 * Note that there are 2 ECT code points '01' and '10', which are called 1226 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1227 * point ECT(0) for TCP as described in RFC 2481. 1228 */ 1229 #define SET_ECT(tcp, iph) \ 1230 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1231 /* We need to clear the code point first. */ \ 1232 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1233 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1234 } else { \ 1235 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1236 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1237 } 1238 1239 /* 1240 * The format argument to pass to tcp_display(). 1241 * DISP_PORT_ONLY means that the returned string has only port info. 1242 * DISP_ADDR_AND_PORT means that the returned string also contains the 1243 * remote and local IP address. 1244 */ 1245 #define DISP_PORT_ONLY 1 1246 #define DISP_ADDR_AND_PORT 2 1247 1248 #define NDD_TOO_QUICK_MSG \ 1249 "ndd get info rate too high for non-privileged users, try again " \ 1250 "later.\n" 1251 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1252 1253 #define IS_VMLOANED_MBLK(mp) \ 1254 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1255 1256 1257 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1258 boolean_t tcp_mdt_chain = B_TRUE; 1259 1260 /* 1261 * MDT threshold in the form of effective send MSS multiplier; we take 1262 * the MDT path if the amount of unsent data exceeds the threshold value 1263 * (default threshold is 1*SMSS). 1264 */ 1265 uint_t tcp_mdt_smss_threshold = 1; 1266 1267 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1268 1269 /* 1270 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1271 * tunable settable via NDD. Otherwise, the per-connection behavior is 1272 * determined dynamically during tcp_adapt_ire(), which is the default. 1273 */ 1274 boolean_t tcp_static_maxpsz = B_FALSE; 1275 1276 /* Setable in /etc/system */ 1277 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1278 uint32_t tcp_random_anon_port = 1; 1279 1280 /* 1281 * To reach to an eager in Q0 which can be dropped due to an incoming 1282 * new SYN request when Q0 is full, a new doubly linked list is 1283 * introduced. This list allows to select an eager from Q0 in O(1) time. 1284 * This is needed to avoid spending too much time walking through the 1285 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1286 * this new list has to be a member of Q0. 1287 * This list is headed by listener's tcp_t. When the list is empty, 1288 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1289 * of listener's tcp_t point to listener's tcp_t itself. 1290 * 1291 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1292 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1293 * These macros do not affect the eager's membership to Q0. 1294 */ 1295 1296 1297 #define MAKE_DROPPABLE(listener, eager) \ 1298 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1299 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1300 = (eager); \ 1301 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1302 (eager)->tcp_eager_next_drop_q0 = \ 1303 (listener)->tcp_eager_next_drop_q0; \ 1304 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1305 } 1306 1307 #define MAKE_UNDROPPABLE(eager) \ 1308 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1309 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1310 = (eager)->tcp_eager_prev_drop_q0; \ 1311 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1312 = (eager)->tcp_eager_next_drop_q0; \ 1313 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1314 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1315 } 1316 1317 /* 1318 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1319 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1320 * data, TCP will not respond with an ACK. RFC 793 requires that 1321 * TCP responds with an ACK for such a bogus ACK. By not following 1322 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1323 * an attacker successfully spoofs an acceptable segment to our 1324 * peer; or when our peer is "confused." 1325 */ 1326 uint32_t tcp_drop_ack_unsent_cnt = 10; 1327 1328 /* 1329 * Hook functions to enable cluster networking 1330 * On non-clustered systems these vectors must always be NULL. 1331 */ 1332 1333 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1334 uint8_t *laddrp, in_port_t lport) = NULL; 1335 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1336 uint8_t *laddrp, in_port_t lport) = NULL; 1337 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1338 uint8_t *laddrp, in_port_t lport, 1339 uint8_t *faddrp, in_port_t fport) = NULL; 1340 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1341 uint8_t *laddrp, in_port_t lport, 1342 uint8_t *faddrp, in_port_t fport) = NULL; 1343 1344 /* 1345 * The following are defined in ip.c 1346 */ 1347 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1348 uint8_t *laddrp); 1349 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1350 uint8_t *laddrp, uint8_t *faddrp); 1351 1352 #define CL_INET_CONNECT(tcp) { \ 1353 if (cl_inet_connect != NULL) { \ 1354 /* \ 1355 * Running in cluster mode - register active connection \ 1356 * information \ 1357 */ \ 1358 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1359 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1360 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1361 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1362 (in_port_t)(tcp)->tcp_lport, \ 1363 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1364 (in_port_t)(tcp)->tcp_fport); \ 1365 } \ 1366 } else { \ 1367 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1368 &(tcp)->tcp_ip6h->ip6_src)) {\ 1369 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1370 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1371 (in_port_t)(tcp)->tcp_lport, \ 1372 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1373 (in_port_t)(tcp)->tcp_fport); \ 1374 } \ 1375 } \ 1376 } \ 1377 } 1378 1379 #define CL_INET_DISCONNECT(tcp) { \ 1380 if (cl_inet_disconnect != NULL) { \ 1381 /* \ 1382 * Running in cluster mode - deregister active \ 1383 * connection information \ 1384 */ \ 1385 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1386 if ((tcp)->tcp_ip_src != 0) { \ 1387 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1388 AF_INET, \ 1389 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1390 (in_port_t)(tcp)->tcp_lport, \ 1391 (uint8_t *) \ 1392 (&((tcp)->tcp_ipha->ipha_dst)),\ 1393 (in_port_t)(tcp)->tcp_fport); \ 1394 } \ 1395 } else { \ 1396 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1397 &(tcp)->tcp_ip_src_v6)) { \ 1398 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1399 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1400 (in_port_t)(tcp)->tcp_lport, \ 1401 (uint8_t *) \ 1402 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1403 (in_port_t)(tcp)->tcp_fport); \ 1404 } \ 1405 } \ 1406 } \ 1407 } 1408 1409 /* 1410 * Cluster networking hook for traversing current connection list. 1411 * This routine is used to extract the current list of live connections 1412 * which must continue to to be dispatched to this node. 1413 */ 1414 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1415 1416 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1417 void *arg, tcp_stack_t *tcps); 1418 1419 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1420 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1421 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1422 ip6_t *, ip6h, int, 0); 1423 1424 /* 1425 * Figure out the value of window scale opton. Note that the rwnd is 1426 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1427 * We cannot find the scale value and then do a round up of tcp_rwnd 1428 * because the scale value may not be correct after that. 1429 * 1430 * Set the compiler flag to make this function inline. 1431 */ 1432 static void 1433 tcp_set_ws_value(tcp_t *tcp) 1434 { 1435 int i; 1436 uint32_t rwnd = tcp->tcp_rwnd; 1437 1438 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1439 i++, rwnd >>= 1) 1440 ; 1441 tcp->tcp_rcv_ws = i; 1442 } 1443 1444 /* 1445 * Remove a connection from the list of detached TIME_WAIT connections. 1446 * It returns B_FALSE if it can't remove the connection from the list 1447 * as the connection has already been removed from the list due to an 1448 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1449 */ 1450 static boolean_t 1451 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1452 { 1453 boolean_t locked = B_FALSE; 1454 1455 if (tcp_time_wait == NULL) { 1456 tcp_time_wait = *((tcp_squeue_priv_t **) 1457 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1458 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1459 locked = B_TRUE; 1460 } else { 1461 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1462 } 1463 1464 if (tcp->tcp_time_wait_expire == 0) { 1465 ASSERT(tcp->tcp_time_wait_next == NULL); 1466 ASSERT(tcp->tcp_time_wait_prev == NULL); 1467 if (locked) 1468 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1469 return (B_FALSE); 1470 } 1471 ASSERT(TCP_IS_DETACHED(tcp)); 1472 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1473 1474 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1475 ASSERT(tcp->tcp_time_wait_prev == NULL); 1476 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1477 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1478 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1479 NULL; 1480 } else { 1481 tcp_time_wait->tcp_time_wait_tail = NULL; 1482 } 1483 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1484 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1485 ASSERT(tcp->tcp_time_wait_next == NULL); 1486 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1487 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1488 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1489 } else { 1490 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1491 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1492 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1493 tcp->tcp_time_wait_next; 1494 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1495 tcp->tcp_time_wait_prev; 1496 } 1497 tcp->tcp_time_wait_next = NULL; 1498 tcp->tcp_time_wait_prev = NULL; 1499 tcp->tcp_time_wait_expire = 0; 1500 1501 if (locked) 1502 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1503 return (B_TRUE); 1504 } 1505 1506 /* 1507 * Add a connection to the list of detached TIME_WAIT connections 1508 * and set its time to expire. 1509 */ 1510 static void 1511 tcp_time_wait_append(tcp_t *tcp) 1512 { 1513 tcp_stack_t *tcps = tcp->tcp_tcps; 1514 tcp_squeue_priv_t *tcp_time_wait = 1515 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1516 SQPRIVATE_TCP)); 1517 1518 tcp_timers_stop(tcp); 1519 1520 /* Freed above */ 1521 ASSERT(tcp->tcp_timer_tid == 0); 1522 ASSERT(tcp->tcp_ack_tid == 0); 1523 1524 /* must have happened at the time of detaching the tcp */ 1525 ASSERT(tcp->tcp_ptpahn == NULL); 1526 ASSERT(tcp->tcp_flow_stopped == 0); 1527 ASSERT(tcp->tcp_time_wait_next == NULL); 1528 ASSERT(tcp->tcp_time_wait_prev == NULL); 1529 ASSERT(tcp->tcp_time_wait_expire == NULL); 1530 ASSERT(tcp->tcp_listener == NULL); 1531 1532 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1533 /* 1534 * The value computed below in tcp->tcp_time_wait_expire may 1535 * appear negative or wrap around. That is ok since our 1536 * interest is only in the difference between the current lbolt 1537 * value and tcp->tcp_time_wait_expire. But the value should not 1538 * be zero, since it means the tcp is not in the TIME_WAIT list. 1539 * The corresponding comparison in tcp_time_wait_collector() uses 1540 * modular arithmetic. 1541 */ 1542 tcp->tcp_time_wait_expire += 1543 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1544 if (tcp->tcp_time_wait_expire == 0) 1545 tcp->tcp_time_wait_expire = 1; 1546 1547 ASSERT(TCP_IS_DETACHED(tcp)); 1548 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1549 ASSERT(tcp->tcp_time_wait_next == NULL); 1550 ASSERT(tcp->tcp_time_wait_prev == NULL); 1551 TCP_DBGSTAT(tcps, tcp_time_wait); 1552 1553 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1554 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1555 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1556 tcp_time_wait->tcp_time_wait_head = tcp; 1557 } else { 1558 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1559 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1560 TCPS_TIME_WAIT); 1561 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1562 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1563 } 1564 tcp_time_wait->tcp_time_wait_tail = tcp; 1565 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1566 } 1567 1568 /* ARGSUSED */ 1569 void 1570 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1571 { 1572 conn_t *connp = (conn_t *)arg; 1573 tcp_t *tcp = connp->conn_tcp; 1574 tcp_stack_t *tcps = tcp->tcp_tcps; 1575 1576 ASSERT(tcp != NULL); 1577 if (tcp->tcp_state == TCPS_CLOSED) { 1578 return; 1579 } 1580 1581 ASSERT((tcp->tcp_family == AF_INET && 1582 tcp->tcp_ipversion == IPV4_VERSION) || 1583 (tcp->tcp_family == AF_INET6 && 1584 (tcp->tcp_ipversion == IPV4_VERSION || 1585 tcp->tcp_ipversion == IPV6_VERSION))); 1586 ASSERT(!tcp->tcp_listener); 1587 1588 TCP_STAT(tcps, tcp_time_wait_reap); 1589 ASSERT(TCP_IS_DETACHED(tcp)); 1590 1591 /* 1592 * Because they have no upstream client to rebind or tcp_close() 1593 * them later, we axe the connection here and now. 1594 */ 1595 tcp_close_detached(tcp); 1596 } 1597 1598 /* 1599 * Remove cached/latched IPsec references. 1600 */ 1601 void 1602 tcp_ipsec_cleanup(tcp_t *tcp) 1603 { 1604 conn_t *connp = tcp->tcp_connp; 1605 1606 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1607 1608 if (connp->conn_latch != NULL) { 1609 IPLATCH_REFRELE(connp->conn_latch, 1610 connp->conn_netstack); 1611 connp->conn_latch = NULL; 1612 } 1613 if (connp->conn_policy != NULL) { 1614 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1615 connp->conn_policy = NULL; 1616 } 1617 } 1618 1619 /* 1620 * Cleaup before placing on free list. 1621 * Disassociate from the netstack/tcp_stack_t since the freelist 1622 * is per squeue and not per netstack. 1623 */ 1624 void 1625 tcp_cleanup(tcp_t *tcp) 1626 { 1627 mblk_t *mp; 1628 char *tcp_iphc; 1629 int tcp_iphc_len; 1630 int tcp_hdr_grown; 1631 tcp_sack_info_t *tcp_sack_info; 1632 conn_t *connp = tcp->tcp_connp; 1633 tcp_stack_t *tcps = tcp->tcp_tcps; 1634 netstack_t *ns = tcps->tcps_netstack; 1635 mblk_t *tcp_rsrv_mp; 1636 1637 tcp_bind_hash_remove(tcp); 1638 1639 /* Cleanup that which needs the netstack first */ 1640 tcp_ipsec_cleanup(tcp); 1641 1642 tcp_free(tcp); 1643 1644 /* Release any SSL context */ 1645 if (tcp->tcp_kssl_ent != NULL) { 1646 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1647 tcp->tcp_kssl_ent = NULL; 1648 } 1649 1650 if (tcp->tcp_kssl_ctx != NULL) { 1651 kssl_release_ctx(tcp->tcp_kssl_ctx); 1652 tcp->tcp_kssl_ctx = NULL; 1653 } 1654 tcp->tcp_kssl_pending = B_FALSE; 1655 1656 conn_delete_ire(connp, NULL); 1657 1658 /* 1659 * Since we will bzero the entire structure, we need to 1660 * remove it and reinsert it in global hash list. We 1661 * know the walkers can't get to this conn because we 1662 * had set CONDEMNED flag earlier and checked reference 1663 * under conn_lock so walker won't pick it and when we 1664 * go the ipcl_globalhash_remove() below, no walker 1665 * can get to it. 1666 */ 1667 ipcl_globalhash_remove(connp); 1668 1669 /* 1670 * Now it is safe to decrement the reference counts. 1671 * This might be the last reference on the netstack and TCPS 1672 * in which case it will cause the tcp_g_q_close and 1673 * the freeing of the IP Instance. 1674 */ 1675 connp->conn_netstack = NULL; 1676 netstack_rele(ns); 1677 ASSERT(tcps != NULL); 1678 tcp->tcp_tcps = NULL; 1679 TCPS_REFRELE(tcps); 1680 1681 /* Save some state */ 1682 mp = tcp->tcp_timercache; 1683 1684 tcp_sack_info = tcp->tcp_sack_info; 1685 tcp_iphc = tcp->tcp_iphc; 1686 tcp_iphc_len = tcp->tcp_iphc_len; 1687 tcp_hdr_grown = tcp->tcp_hdr_grown; 1688 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1689 1690 if (connp->conn_cred != NULL) { 1691 crfree(connp->conn_cred); 1692 connp->conn_cred = NULL; 1693 } 1694 if (connp->conn_peercred != NULL) { 1695 crfree(connp->conn_peercred); 1696 connp->conn_peercred = NULL; 1697 } 1698 ipcl_conn_cleanup(connp); 1699 connp->conn_flags = IPCL_TCPCONN; 1700 bzero(tcp, sizeof (tcp_t)); 1701 1702 /* restore the state */ 1703 tcp->tcp_timercache = mp; 1704 1705 tcp->tcp_sack_info = tcp_sack_info; 1706 tcp->tcp_iphc = tcp_iphc; 1707 tcp->tcp_iphc_len = tcp_iphc_len; 1708 tcp->tcp_hdr_grown = tcp_hdr_grown; 1709 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1710 1711 tcp->tcp_connp = connp; 1712 1713 ASSERT(connp->conn_tcp == tcp); 1714 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1715 connp->conn_state_flags = CONN_INCIPIENT; 1716 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1717 ASSERT(connp->conn_ref == 1); 1718 } 1719 1720 /* 1721 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1722 * is done forwards from the head. 1723 * This walks all stack instances since 1724 * tcp_time_wait remains global across all stacks. 1725 */ 1726 /* ARGSUSED */ 1727 void 1728 tcp_time_wait_collector(void *arg) 1729 { 1730 tcp_t *tcp; 1731 clock_t now; 1732 mblk_t *mp; 1733 conn_t *connp; 1734 kmutex_t *lock; 1735 boolean_t removed; 1736 1737 squeue_t *sqp = (squeue_t *)arg; 1738 tcp_squeue_priv_t *tcp_time_wait = 1739 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1740 1741 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1742 tcp_time_wait->tcp_time_wait_tid = 0; 1743 1744 if (tcp_time_wait->tcp_free_list != NULL && 1745 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1746 TCP_G_STAT(tcp_freelist_cleanup); 1747 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1748 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1749 tcp->tcp_time_wait_next = NULL; 1750 tcp_time_wait->tcp_free_list_cnt--; 1751 ASSERT(tcp->tcp_tcps == NULL); 1752 CONN_DEC_REF(tcp->tcp_connp); 1753 } 1754 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1755 } 1756 1757 /* 1758 * In order to reap time waits reliably, we should use a 1759 * source of time that is not adjustable by the user -- hence 1760 * the call to ddi_get_lbolt(). 1761 */ 1762 now = ddi_get_lbolt(); 1763 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1764 /* 1765 * Compare times using modular arithmetic, since 1766 * lbolt can wrapover. 1767 */ 1768 if ((now - tcp->tcp_time_wait_expire) < 0) { 1769 break; 1770 } 1771 1772 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1773 ASSERT(removed); 1774 1775 connp = tcp->tcp_connp; 1776 ASSERT(connp->conn_fanout != NULL); 1777 lock = &connp->conn_fanout->connf_lock; 1778 /* 1779 * This is essentially a TW reclaim fast path optimization for 1780 * performance where the timewait collector checks under the 1781 * fanout lock (so that no one else can get access to the 1782 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1783 * the classifier hash list. If ref count is indeed 2, we can 1784 * just remove the conn under the fanout lock and avoid 1785 * cleaning up the conn under the squeue, provided that 1786 * clustering callbacks are not enabled. If clustering is 1787 * enabled, we need to make the clustering callback before 1788 * setting the CONDEMNED flag and after dropping all locks and 1789 * so we forego this optimization and fall back to the slow 1790 * path. Also please see the comments in tcp_closei_local 1791 * regarding the refcnt logic. 1792 * 1793 * Since we are holding the tcp_time_wait_lock, its better 1794 * not to block on the fanout_lock because other connections 1795 * can't add themselves to time_wait list. So we do a 1796 * tryenter instead of mutex_enter. 1797 */ 1798 if (mutex_tryenter(lock)) { 1799 mutex_enter(&connp->conn_lock); 1800 if ((connp->conn_ref == 2) && 1801 (cl_inet_disconnect == NULL)) { 1802 ipcl_hash_remove_locked(connp, 1803 connp->conn_fanout); 1804 /* 1805 * Set the CONDEMNED flag now itself so that 1806 * the refcnt cannot increase due to any 1807 * walker. But we have still not cleaned up 1808 * conn_ire_cache. This is still ok since 1809 * we are going to clean it up in tcp_cleanup 1810 * immediately and any interface unplumb 1811 * thread will wait till the ire is blown away 1812 */ 1813 connp->conn_state_flags |= CONN_CONDEMNED; 1814 mutex_exit(lock); 1815 mutex_exit(&connp->conn_lock); 1816 if (tcp_time_wait->tcp_free_list_cnt < 1817 tcp_free_list_max_cnt) { 1818 /* Add to head of tcp_free_list */ 1819 mutex_exit( 1820 &tcp_time_wait->tcp_time_wait_lock); 1821 tcp_cleanup(tcp); 1822 ASSERT(connp->conn_latch == NULL); 1823 ASSERT(connp->conn_policy == NULL); 1824 ASSERT(tcp->tcp_tcps == NULL); 1825 ASSERT(connp->conn_netstack == NULL); 1826 1827 mutex_enter( 1828 &tcp_time_wait->tcp_time_wait_lock); 1829 tcp->tcp_time_wait_next = 1830 tcp_time_wait->tcp_free_list; 1831 tcp_time_wait->tcp_free_list = tcp; 1832 tcp_time_wait->tcp_free_list_cnt++; 1833 continue; 1834 } else { 1835 /* Do not add to tcp_free_list */ 1836 mutex_exit( 1837 &tcp_time_wait->tcp_time_wait_lock); 1838 tcp_bind_hash_remove(tcp); 1839 conn_delete_ire(tcp->tcp_connp, NULL); 1840 tcp_ipsec_cleanup(tcp); 1841 CONN_DEC_REF(tcp->tcp_connp); 1842 } 1843 } else { 1844 CONN_INC_REF_LOCKED(connp); 1845 mutex_exit(lock); 1846 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1847 mutex_exit(&connp->conn_lock); 1848 /* 1849 * We can reuse the closemp here since conn has 1850 * detached (otherwise we wouldn't even be in 1851 * time_wait list). tcp_closemp_used can safely 1852 * be changed without taking a lock as no other 1853 * thread can concurrently access it at this 1854 * point in the connection lifecycle. 1855 */ 1856 1857 if (tcp->tcp_closemp.b_prev == NULL) 1858 tcp->tcp_closemp_used = B_TRUE; 1859 else 1860 cmn_err(CE_PANIC, 1861 "tcp_timewait_collector: " 1862 "concurrent use of tcp_closemp: " 1863 "connp %p tcp %p\n", (void *)connp, 1864 (void *)tcp); 1865 1866 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1867 mp = &tcp->tcp_closemp; 1868 squeue_fill(connp->conn_sqp, mp, 1869 tcp_timewait_output, connp, 1870 SQTAG_TCP_TIMEWAIT); 1871 } 1872 } else { 1873 mutex_enter(&connp->conn_lock); 1874 CONN_INC_REF_LOCKED(connp); 1875 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1876 mutex_exit(&connp->conn_lock); 1877 /* 1878 * We can reuse the closemp here since conn has 1879 * detached (otherwise we wouldn't even be in 1880 * time_wait list). tcp_closemp_used can safely 1881 * be changed without taking a lock as no other 1882 * thread can concurrently access it at this 1883 * point in the connection lifecycle. 1884 */ 1885 1886 if (tcp->tcp_closemp.b_prev == NULL) 1887 tcp->tcp_closemp_used = B_TRUE; 1888 else 1889 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1890 "concurrent use of tcp_closemp: " 1891 "connp %p tcp %p\n", (void *)connp, 1892 (void *)tcp); 1893 1894 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1895 mp = &tcp->tcp_closemp; 1896 squeue_fill(connp->conn_sqp, mp, 1897 tcp_timewait_output, connp, 0); 1898 } 1899 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1900 } 1901 1902 if (tcp_time_wait->tcp_free_list != NULL) 1903 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1904 1905 tcp_time_wait->tcp_time_wait_tid = 1906 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1907 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1908 CALLOUT_FLAG_ROUNDUP); 1909 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1910 } 1911 /* 1912 * Reply to a clients T_CONN_RES TPI message. This function 1913 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1914 * on the acceptor STREAM and processed in tcp_wput_accept(). 1915 * Read the block comment on top of tcp_conn_request(). 1916 */ 1917 static void 1918 tcp_accept(tcp_t *listener, mblk_t *mp) 1919 { 1920 tcp_t *acceptor; 1921 tcp_t *eager; 1922 tcp_t *tcp; 1923 struct T_conn_res *tcr; 1924 t_uscalar_t acceptor_id; 1925 t_scalar_t seqnum; 1926 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1927 mblk_t *ok_mp; 1928 mblk_t *mp1; 1929 tcp_stack_t *tcps = listener->tcp_tcps; 1930 1931 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1932 tcp_err_ack(listener, mp, TPROTO, 0); 1933 return; 1934 } 1935 tcr = (struct T_conn_res *)mp->b_rptr; 1936 1937 /* 1938 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1939 * read side queue of the streams device underneath us i.e. the 1940 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1941 * look it up in the queue_hash. Under LP64 it sends down the 1942 * minor_t of the accepting endpoint. 1943 * 1944 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1945 * fanout hash lock is held. 1946 * This prevents any thread from entering the acceptor queue from 1947 * below (since it has not been hard bound yet i.e. any inbound 1948 * packets will arrive on the listener or default tcp queue and 1949 * go through tcp_lookup). 1950 * The CONN_INC_REF will prevent the acceptor from closing. 1951 * 1952 * XXX It is still possible for a tli application to send down data 1953 * on the accepting stream while another thread calls t_accept. 1954 * This should not be a problem for well-behaved applications since 1955 * the T_OK_ACK is sent after the queue swapping is completed. 1956 * 1957 * If the accepting fd is the same as the listening fd, avoid 1958 * queue hash lookup since that will return an eager listener in a 1959 * already established state. 1960 */ 1961 acceptor_id = tcr->ACCEPTOR_id; 1962 mutex_enter(&listener->tcp_eager_lock); 1963 if (listener->tcp_acceptor_id == acceptor_id) { 1964 eager = listener->tcp_eager_next_q; 1965 /* only count how many T_CONN_INDs so don't count q0 */ 1966 if ((listener->tcp_conn_req_cnt_q != 1) || 1967 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1968 mutex_exit(&listener->tcp_eager_lock); 1969 tcp_err_ack(listener, mp, TBADF, 0); 1970 return; 1971 } 1972 if (listener->tcp_conn_req_cnt_q0 != 0) { 1973 /* Throw away all the eagers on q0. */ 1974 tcp_eager_cleanup(listener, 1); 1975 } 1976 if (listener->tcp_syn_defense) { 1977 listener->tcp_syn_defense = B_FALSE; 1978 if (listener->tcp_ip_addr_cache != NULL) { 1979 kmem_free(listener->tcp_ip_addr_cache, 1980 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1981 listener->tcp_ip_addr_cache = NULL; 1982 } 1983 } 1984 /* 1985 * Transfer tcp_conn_req_max to the eager so that when 1986 * a disconnect occurs we can revert the endpoint to the 1987 * listen state. 1988 */ 1989 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1990 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1991 /* 1992 * Get a reference on the acceptor just like the 1993 * tcp_acceptor_hash_lookup below. 1994 */ 1995 acceptor = listener; 1996 CONN_INC_REF(acceptor->tcp_connp); 1997 } else { 1998 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1999 if (acceptor == NULL) { 2000 if (listener->tcp_debug) { 2001 (void) strlog(TCP_MOD_ID, 0, 1, 2002 SL_ERROR|SL_TRACE, 2003 "tcp_accept: did not find acceptor 0x%x\n", 2004 acceptor_id); 2005 } 2006 mutex_exit(&listener->tcp_eager_lock); 2007 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2008 return; 2009 } 2010 /* 2011 * Verify acceptor state. The acceptable states for an acceptor 2012 * include TCPS_IDLE and TCPS_BOUND. 2013 */ 2014 switch (acceptor->tcp_state) { 2015 case TCPS_IDLE: 2016 /* FALLTHRU */ 2017 case TCPS_BOUND: 2018 break; 2019 default: 2020 CONN_DEC_REF(acceptor->tcp_connp); 2021 mutex_exit(&listener->tcp_eager_lock); 2022 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2023 return; 2024 } 2025 } 2026 2027 /* The listener must be in TCPS_LISTEN */ 2028 if (listener->tcp_state != TCPS_LISTEN) { 2029 CONN_DEC_REF(acceptor->tcp_connp); 2030 mutex_exit(&listener->tcp_eager_lock); 2031 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2032 return; 2033 } 2034 2035 /* 2036 * Rendezvous with an eager connection request packet hanging off 2037 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2038 * tcp structure when the connection packet arrived in 2039 * tcp_conn_request(). 2040 */ 2041 seqnum = tcr->SEQ_number; 2042 eager = listener; 2043 do { 2044 eager = eager->tcp_eager_next_q; 2045 if (eager == NULL) { 2046 CONN_DEC_REF(acceptor->tcp_connp); 2047 mutex_exit(&listener->tcp_eager_lock); 2048 tcp_err_ack(listener, mp, TBADSEQ, 0); 2049 return; 2050 } 2051 } while (eager->tcp_conn_req_seqnum != seqnum); 2052 mutex_exit(&listener->tcp_eager_lock); 2053 2054 /* 2055 * At this point, both acceptor and listener have 2 ref 2056 * that they begin with. Acceptor has one additional ref 2057 * we placed in lookup while listener has 3 additional 2058 * ref for being behind the squeue (tcp_accept() is 2059 * done on listener's squeue); being in classifier hash; 2060 * and eager's ref on listener. 2061 */ 2062 ASSERT(listener->tcp_connp->conn_ref >= 5); 2063 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2064 2065 /* 2066 * The eager at this point is set in its own squeue and 2067 * could easily have been killed (tcp_accept_finish will 2068 * deal with that) because of a TH_RST so we can only 2069 * ASSERT for a single ref. 2070 */ 2071 ASSERT(eager->tcp_connp->conn_ref >= 1); 2072 2073 /* Pre allocate the stroptions mblk also */ 2074 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2075 if (opt_mp == NULL) { 2076 CONN_DEC_REF(acceptor->tcp_connp); 2077 CONN_DEC_REF(eager->tcp_connp); 2078 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2079 return; 2080 } 2081 DB_TYPE(opt_mp) = M_SETOPTS; 2082 opt_mp->b_wptr += sizeof (struct stroptions); 2083 2084 /* 2085 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2086 * from listener to acceptor. The message is chained on opt_mp 2087 * which will be sent onto eager's squeue. 2088 */ 2089 if (listener->tcp_bound_if != 0) { 2090 /* allocate optmgmt req */ 2091 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2092 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2093 sizeof (int)); 2094 if (mp1 != NULL) 2095 linkb(opt_mp, mp1); 2096 } 2097 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2098 uint_t on = 1; 2099 2100 /* allocate optmgmt req */ 2101 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2102 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2103 if (mp1 != NULL) 2104 linkb(opt_mp, mp1); 2105 } 2106 2107 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2108 if ((mp1 = copymsg(mp)) == NULL) { 2109 CONN_DEC_REF(acceptor->tcp_connp); 2110 CONN_DEC_REF(eager->tcp_connp); 2111 freemsg(opt_mp); 2112 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2113 return; 2114 } 2115 2116 tcr = (struct T_conn_res *)mp1->b_rptr; 2117 2118 /* 2119 * This is an expanded version of mi_tpi_ok_ack_alloc() 2120 * which allocates a larger mblk and appends the new 2121 * local address to the ok_ack. The address is copied by 2122 * soaccept() for getsockname(). 2123 */ 2124 { 2125 int extra; 2126 2127 extra = (eager->tcp_family == AF_INET) ? 2128 sizeof (sin_t) : sizeof (sin6_t); 2129 2130 /* 2131 * Try to re-use mp, if possible. Otherwise, allocate 2132 * an mblk and return it as ok_mp. In any case, mp 2133 * is no longer usable upon return. 2134 */ 2135 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2136 CONN_DEC_REF(acceptor->tcp_connp); 2137 CONN_DEC_REF(eager->tcp_connp); 2138 freemsg(opt_mp); 2139 /* Original mp has been freed by now, so use mp1 */ 2140 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2141 return; 2142 } 2143 2144 mp = NULL; /* We should never use mp after this point */ 2145 2146 switch (extra) { 2147 case sizeof (sin_t): { 2148 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2149 2150 ok_mp->b_wptr += extra; 2151 sin->sin_family = AF_INET; 2152 sin->sin_port = eager->tcp_lport; 2153 sin->sin_addr.s_addr = 2154 eager->tcp_ipha->ipha_src; 2155 break; 2156 } 2157 case sizeof (sin6_t): { 2158 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2159 2160 ok_mp->b_wptr += extra; 2161 sin6->sin6_family = AF_INET6; 2162 sin6->sin6_port = eager->tcp_lport; 2163 if (eager->tcp_ipversion == IPV4_VERSION) { 2164 sin6->sin6_flowinfo = 0; 2165 IN6_IPADDR_TO_V4MAPPED( 2166 eager->tcp_ipha->ipha_src, 2167 &sin6->sin6_addr); 2168 } else { 2169 ASSERT(eager->tcp_ip6h != NULL); 2170 sin6->sin6_flowinfo = 2171 eager->tcp_ip6h->ip6_vcf & 2172 ~IPV6_VERS_AND_FLOW_MASK; 2173 sin6->sin6_addr = 2174 eager->tcp_ip6h->ip6_src; 2175 } 2176 sin6->sin6_scope_id = 0; 2177 sin6->__sin6_src_id = 0; 2178 break; 2179 } 2180 default: 2181 break; 2182 } 2183 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2184 } 2185 2186 /* 2187 * If there are no options we know that the T_CONN_RES will 2188 * succeed. However, we can't send the T_OK_ACK upstream until 2189 * the tcp_accept_swap is done since it would be dangerous to 2190 * let the application start using the new fd prior to the swap. 2191 */ 2192 tcp_accept_swap(listener, acceptor, eager); 2193 2194 /* 2195 * tcp_accept_swap unlinks eager from listener but does not drop 2196 * the eager's reference on the listener. 2197 */ 2198 ASSERT(eager->tcp_listener == NULL); 2199 ASSERT(listener->tcp_connp->conn_ref >= 5); 2200 2201 /* 2202 * The eager is now associated with its own queue. Insert in 2203 * the hash so that the connection can be reused for a future 2204 * T_CONN_RES. 2205 */ 2206 tcp_acceptor_hash_insert(acceptor_id, eager); 2207 2208 /* 2209 * We now do the processing of options with T_CONN_RES. 2210 * We delay till now since we wanted to have queue to pass to 2211 * option processing routines that points back to the right 2212 * instance structure which does not happen until after 2213 * tcp_accept_swap(). 2214 * 2215 * Note: 2216 * The sanity of the logic here assumes that whatever options 2217 * are appropriate to inherit from listner=>eager are done 2218 * before this point, and whatever were to be overridden (or not) 2219 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2220 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2221 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2222 * This may not be true at this point in time but can be fixed 2223 * independently. This option processing code starts with 2224 * the instantiated acceptor instance and the final queue at 2225 * this point. 2226 */ 2227 2228 if (tcr->OPT_length != 0) { 2229 /* Options to process */ 2230 int t_error = 0; 2231 int sys_error = 0; 2232 int do_disconnect = 0; 2233 2234 if (tcp_conprim_opt_process(eager, mp1, 2235 &do_disconnect, &t_error, &sys_error) < 0) { 2236 eager->tcp_accept_error = 1; 2237 if (do_disconnect) { 2238 /* 2239 * An option failed which does not allow 2240 * connection to be accepted. 2241 * 2242 * We allow T_CONN_RES to succeed and 2243 * put a T_DISCON_IND on the eager queue. 2244 */ 2245 ASSERT(t_error == 0 && sys_error == 0); 2246 eager->tcp_send_discon_ind = 1; 2247 } else { 2248 ASSERT(t_error != 0); 2249 freemsg(ok_mp); 2250 /* 2251 * Original mp was either freed or set 2252 * to ok_mp above, so use mp1 instead. 2253 */ 2254 tcp_err_ack(listener, mp1, t_error, sys_error); 2255 goto finish; 2256 } 2257 } 2258 /* 2259 * Most likely success in setting options (except if 2260 * eager->tcp_send_discon_ind set). 2261 * mp1 option buffer represented by OPT_length/offset 2262 * potentially modified and contains results of setting 2263 * options at this point 2264 */ 2265 } 2266 2267 /* We no longer need mp1, since all options processing has passed */ 2268 freemsg(mp1); 2269 2270 putnext(listener->tcp_rq, ok_mp); 2271 2272 mutex_enter(&listener->tcp_eager_lock); 2273 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2274 tcp_t *tail; 2275 mblk_t *conn_ind; 2276 2277 /* 2278 * This path should not be executed if listener and 2279 * acceptor streams are the same. 2280 */ 2281 ASSERT(listener != acceptor); 2282 2283 tcp = listener->tcp_eager_prev_q0; 2284 /* 2285 * listener->tcp_eager_prev_q0 points to the TAIL of the 2286 * deferred T_conn_ind queue. We need to get to the head of 2287 * the queue in order to send up T_conn_ind the same order as 2288 * how the 3WHS is completed. 2289 */ 2290 while (tcp != listener) { 2291 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2292 break; 2293 else 2294 tcp = tcp->tcp_eager_prev_q0; 2295 } 2296 ASSERT(tcp != listener); 2297 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2298 ASSERT(conn_ind != NULL); 2299 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2300 2301 /* Move from q0 to q */ 2302 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2303 listener->tcp_conn_req_cnt_q0--; 2304 listener->tcp_conn_req_cnt_q++; 2305 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2306 tcp->tcp_eager_prev_q0; 2307 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2308 tcp->tcp_eager_next_q0; 2309 tcp->tcp_eager_prev_q0 = NULL; 2310 tcp->tcp_eager_next_q0 = NULL; 2311 tcp->tcp_conn_def_q0 = B_FALSE; 2312 2313 /* Make sure the tcp isn't in the list of droppables */ 2314 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2315 tcp->tcp_eager_prev_drop_q0 == NULL); 2316 2317 /* 2318 * Insert at end of the queue because sockfs sends 2319 * down T_CONN_RES in chronological order. Leaving 2320 * the older conn indications at front of the queue 2321 * helps reducing search time. 2322 */ 2323 tail = listener->tcp_eager_last_q; 2324 if (tail != NULL) 2325 tail->tcp_eager_next_q = tcp; 2326 else 2327 listener->tcp_eager_next_q = tcp; 2328 listener->tcp_eager_last_q = tcp; 2329 tcp->tcp_eager_next_q = NULL; 2330 mutex_exit(&listener->tcp_eager_lock); 2331 putnext(tcp->tcp_rq, conn_ind); 2332 } else { 2333 mutex_exit(&listener->tcp_eager_lock); 2334 } 2335 2336 /* 2337 * Done with the acceptor - free it 2338 * 2339 * Note: from this point on, no access to listener should be made 2340 * as listener can be equal to acceptor. 2341 */ 2342 finish: 2343 ASSERT(acceptor->tcp_detached); 2344 ASSERT(tcps->tcps_g_q != NULL); 2345 acceptor->tcp_rq = tcps->tcps_g_q; 2346 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2347 (void) tcp_clean_death(acceptor, 0, 2); 2348 CONN_DEC_REF(acceptor->tcp_connp); 2349 2350 /* 2351 * In case we already received a FIN we have to make tcp_rput send 2352 * the ordrel_ind. This will also send up a window update if the window 2353 * has opened up. 2354 * 2355 * In the normal case of a successful connection acceptance 2356 * we give the O_T_BIND_REQ to the read side put procedure as an 2357 * indication that this was just accepted. This tells tcp_rput to 2358 * pass up any data queued in tcp_rcv_list. 2359 * 2360 * In the fringe case where options sent with T_CONN_RES failed and 2361 * we required, we would be indicating a T_DISCON_IND to blow 2362 * away this connection. 2363 */ 2364 2365 /* 2366 * XXX: we currently have a problem if XTI application closes the 2367 * acceptor stream in between. This problem exists in on10-gate also 2368 * and is well know but nothing can be done short of major rewrite 2369 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2370 * eager same squeue as listener (we can distinguish non socket 2371 * listeners at the time of handling a SYN in tcp_conn_request) 2372 * and do most of the work that tcp_accept_finish does here itself 2373 * and then get behind the acceptor squeue to access the acceptor 2374 * queue. 2375 */ 2376 /* 2377 * We already have a ref on tcp so no need to do one before squeue_fill 2378 */ 2379 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2380 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2381 } 2382 2383 /* 2384 * Swap information between the eager and acceptor for a TLI/XTI client. 2385 * The sockfs accept is done on the acceptor stream and control goes 2386 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2387 * called. In either case, both the eager and listener are in their own 2388 * perimeter (squeue) and the code has to deal with potential race. 2389 * 2390 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2391 */ 2392 static void 2393 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2394 { 2395 conn_t *econnp, *aconnp; 2396 2397 ASSERT(eager->tcp_rq == listener->tcp_rq); 2398 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2399 ASSERT(!eager->tcp_hard_bound); 2400 ASSERT(!TCP_IS_SOCKET(acceptor)); 2401 ASSERT(!TCP_IS_SOCKET(eager)); 2402 ASSERT(!TCP_IS_SOCKET(listener)); 2403 2404 acceptor->tcp_detached = B_TRUE; 2405 /* 2406 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2407 * the acceptor id. 2408 */ 2409 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2410 2411 /* remove eager from listen list... */ 2412 mutex_enter(&listener->tcp_eager_lock); 2413 tcp_eager_unlink(eager); 2414 ASSERT(eager->tcp_eager_next_q == NULL && 2415 eager->tcp_eager_last_q == NULL); 2416 ASSERT(eager->tcp_eager_next_q0 == NULL && 2417 eager->tcp_eager_prev_q0 == NULL); 2418 mutex_exit(&listener->tcp_eager_lock); 2419 eager->tcp_rq = acceptor->tcp_rq; 2420 eager->tcp_wq = acceptor->tcp_wq; 2421 2422 econnp = eager->tcp_connp; 2423 aconnp = acceptor->tcp_connp; 2424 2425 eager->tcp_rq->q_ptr = econnp; 2426 eager->tcp_wq->q_ptr = econnp; 2427 2428 /* 2429 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2430 * which might be a different squeue from our peer TCP instance. 2431 * For TCP Fusion, the peer expects that whenever tcp_detached is 2432 * clear, our TCP queues point to the acceptor's queues. Thus, use 2433 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2434 * above reach global visibility prior to the clearing of tcp_detached. 2435 */ 2436 membar_producer(); 2437 eager->tcp_detached = B_FALSE; 2438 2439 ASSERT(eager->tcp_ack_tid == 0); 2440 2441 econnp->conn_dev = aconnp->conn_dev; 2442 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2443 ASSERT(econnp->conn_minor_arena != NULL); 2444 if (eager->tcp_cred != NULL) 2445 crfree(eager->tcp_cred); 2446 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2447 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2448 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2449 2450 aconnp->conn_cred = NULL; 2451 2452 econnp->conn_zoneid = aconnp->conn_zoneid; 2453 econnp->conn_allzones = aconnp->conn_allzones; 2454 2455 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2456 aconnp->conn_mac_exempt = B_FALSE; 2457 2458 ASSERT(aconnp->conn_peercred == NULL); 2459 2460 /* Do the IPC initialization */ 2461 CONN_INC_REF(econnp); 2462 2463 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2464 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2465 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2466 2467 /* Done with old IPC. Drop its ref on its connp */ 2468 CONN_DEC_REF(aconnp); 2469 } 2470 2471 2472 /* 2473 * Adapt to the information, such as rtt and rtt_sd, provided from the 2474 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2475 * 2476 * Checks for multicast and broadcast destination address. 2477 * Returns zero on failure; non-zero if ok. 2478 * 2479 * Note that the MSS calculation here is based on the info given in 2480 * the IRE. We do not do any calculation based on TCP options. They 2481 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2482 * knows which options to use. 2483 * 2484 * Note on how TCP gets its parameters for a connection. 2485 * 2486 * When a tcp_t structure is allocated, it gets all the default parameters. 2487 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2488 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2489 * default. 2490 * 2491 * An incoming SYN with a multicast or broadcast destination address, is dropped 2492 * in 1 of 2 places. 2493 * 2494 * 1. If the packet was received over the wire it is dropped in 2495 * ip_rput_process_broadcast() 2496 * 2497 * 2. If the packet was received through internal IP loopback, i.e. the packet 2498 * was generated and received on the same machine, it is dropped in 2499 * ip_wput_local() 2500 * 2501 * An incoming SYN with a multicast or broadcast source address is always 2502 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2503 * reject an attempt to connect to a broadcast or multicast (destination) 2504 * address. 2505 */ 2506 static int 2507 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2508 { 2509 tcp_hsp_t *hsp; 2510 ire_t *ire; 2511 ire_t *sire = NULL; 2512 iulp_t *ire_uinfo = NULL; 2513 uint32_t mss_max; 2514 uint32_t mss; 2515 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2516 conn_t *connp = tcp->tcp_connp; 2517 boolean_t ire_cacheable = B_FALSE; 2518 zoneid_t zoneid = connp->conn_zoneid; 2519 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2520 MATCH_IRE_SECATTR; 2521 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2522 ill_t *ill = NULL; 2523 boolean_t incoming = (ire_mp == NULL); 2524 tcp_stack_t *tcps = tcp->tcp_tcps; 2525 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2526 2527 ASSERT(connp->conn_ire_cache == NULL); 2528 2529 if (tcp->tcp_ipversion == IPV4_VERSION) { 2530 2531 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2532 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2533 return (0); 2534 } 2535 /* 2536 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2537 * for the destination with the nexthop as gateway. 2538 * ire_ctable_lookup() is used because this particular 2539 * ire, if it exists, will be marked private. 2540 * If that is not available, use the interface ire 2541 * for the nexthop. 2542 * 2543 * TSol: tcp_update_label will detect label mismatches based 2544 * only on the destination's label, but that would not 2545 * detect label mismatches based on the security attributes 2546 * of routes or next hop gateway. Hence we need to pass the 2547 * label to ire_ftable_lookup below in order to locate the 2548 * right prefix (and/or) ire cache. Similarly we also need 2549 * pass the label to the ire_cache_lookup below to locate 2550 * the right ire that also matches on the label. 2551 */ 2552 if (tcp->tcp_connp->conn_nexthop_set) { 2553 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2554 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2555 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2556 ipst); 2557 if (ire == NULL) { 2558 ire = ire_ftable_lookup( 2559 tcp->tcp_connp->conn_nexthop_v4, 2560 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2561 tsl, match_flags, ipst); 2562 if (ire == NULL) 2563 return (0); 2564 } else { 2565 ire_uinfo = &ire->ire_uinfo; 2566 } 2567 } else { 2568 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2569 zoneid, tsl, ipst); 2570 if (ire != NULL) { 2571 ire_cacheable = B_TRUE; 2572 ire_uinfo = (ire_mp != NULL) ? 2573 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2574 &ire->ire_uinfo; 2575 2576 } else { 2577 if (ire_mp == NULL) { 2578 ire = ire_ftable_lookup( 2579 tcp->tcp_connp->conn_rem, 2580 0, 0, 0, NULL, &sire, zoneid, 0, 2581 tsl, (MATCH_IRE_RECURSIVE | 2582 MATCH_IRE_DEFAULT), ipst); 2583 if (ire == NULL) 2584 return (0); 2585 ire_uinfo = (sire != NULL) ? 2586 &sire->ire_uinfo : 2587 &ire->ire_uinfo; 2588 } else { 2589 ire = (ire_t *)ire_mp->b_rptr; 2590 ire_uinfo = 2591 &((ire_t *) 2592 ire_mp->b_rptr)->ire_uinfo; 2593 } 2594 } 2595 } 2596 ASSERT(ire != NULL); 2597 2598 if ((ire->ire_src_addr == INADDR_ANY) || 2599 (ire->ire_type & IRE_BROADCAST)) { 2600 /* 2601 * ire->ire_mp is non null when ire_mp passed in is used 2602 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2603 */ 2604 if (ire->ire_mp == NULL) 2605 ire_refrele(ire); 2606 if (sire != NULL) 2607 ire_refrele(sire); 2608 return (0); 2609 } 2610 2611 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2612 ipaddr_t src_addr; 2613 2614 /* 2615 * ip_bind_connected() has stored the correct source 2616 * address in conn_src. 2617 */ 2618 src_addr = tcp->tcp_connp->conn_src; 2619 tcp->tcp_ipha->ipha_src = src_addr; 2620 /* 2621 * Copy of the src addr. in tcp_t is needed 2622 * for the lookup funcs. 2623 */ 2624 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2625 } 2626 /* 2627 * Set the fragment bit so that IP will tell us if the MTU 2628 * should change. IP tells us the latest setting of 2629 * ip_path_mtu_discovery through ire_frag_flag. 2630 */ 2631 if (ipst->ips_ip_path_mtu_discovery) { 2632 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2633 htons(IPH_DF); 2634 } 2635 /* 2636 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2637 * for IP_NEXTHOP. No cache ire has been found for the 2638 * destination and we are working with the nexthop's 2639 * interface ire. Since we need to forward all packets 2640 * to the nexthop first, we "blindly" set tcp_localnet 2641 * to false, eventhough the destination may also be 2642 * onlink. 2643 */ 2644 if (ire_uinfo == NULL) 2645 tcp->tcp_localnet = 0; 2646 else 2647 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2648 } else { 2649 /* 2650 * For incoming connection ire_mp = NULL 2651 * For outgoing connection ire_mp != NULL 2652 * Technically we should check conn_incoming_ill 2653 * when ire_mp is NULL and conn_outgoing_ill when 2654 * ire_mp is non-NULL. But this is performance 2655 * critical path and for IPV*_BOUND_IF, outgoing 2656 * and incoming ill are always set to the same value. 2657 */ 2658 ill_t *dst_ill = NULL; 2659 ipif_t *dst_ipif = NULL; 2660 2661 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2662 2663 if (connp->conn_outgoing_ill != NULL) { 2664 /* Outgoing or incoming path */ 2665 int err; 2666 2667 dst_ill = conn_get_held_ill(connp, 2668 &connp->conn_outgoing_ill, &err); 2669 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2670 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2671 return (0); 2672 } 2673 match_flags |= MATCH_IRE_ILL; 2674 dst_ipif = dst_ill->ill_ipif; 2675 } 2676 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2677 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2678 2679 if (ire != NULL) { 2680 ire_cacheable = B_TRUE; 2681 ire_uinfo = (ire_mp != NULL) ? 2682 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2683 &ire->ire_uinfo; 2684 } else { 2685 if (ire_mp == NULL) { 2686 ire = ire_ftable_lookup_v6( 2687 &tcp->tcp_connp->conn_remv6, 2688 0, 0, 0, dst_ipif, &sire, zoneid, 2689 0, tsl, match_flags, ipst); 2690 if (ire == NULL) { 2691 if (dst_ill != NULL) 2692 ill_refrele(dst_ill); 2693 return (0); 2694 } 2695 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2696 &ire->ire_uinfo; 2697 } else { 2698 ire = (ire_t *)ire_mp->b_rptr; 2699 ire_uinfo = 2700 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2701 } 2702 } 2703 if (dst_ill != NULL) 2704 ill_refrele(dst_ill); 2705 2706 ASSERT(ire != NULL); 2707 ASSERT(ire_uinfo != NULL); 2708 2709 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2710 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2711 /* 2712 * ire->ire_mp is non null when ire_mp passed in is used 2713 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2714 */ 2715 if (ire->ire_mp == NULL) 2716 ire_refrele(ire); 2717 if (sire != NULL) 2718 ire_refrele(sire); 2719 return (0); 2720 } 2721 2722 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2723 in6_addr_t src_addr; 2724 2725 /* 2726 * ip_bind_connected_v6() has stored the correct source 2727 * address per IPv6 addr. selection policy in 2728 * conn_src_v6. 2729 */ 2730 src_addr = tcp->tcp_connp->conn_srcv6; 2731 2732 tcp->tcp_ip6h->ip6_src = src_addr; 2733 /* 2734 * Copy of the src addr. in tcp_t is needed 2735 * for the lookup funcs. 2736 */ 2737 tcp->tcp_ip_src_v6 = src_addr; 2738 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2739 &connp->conn_srcv6)); 2740 } 2741 tcp->tcp_localnet = 2742 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2743 } 2744 2745 /* 2746 * This allows applications to fail quickly when connections are made 2747 * to dead hosts. Hosts can be labeled dead by adding a reject route 2748 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2749 */ 2750 if ((ire->ire_flags & RTF_REJECT) && 2751 (ire->ire_flags & RTF_PRIVATE)) 2752 goto error; 2753 2754 /* 2755 * Make use of the cached rtt and rtt_sd values to calculate the 2756 * initial RTO. Note that they are already initialized in 2757 * tcp_init_values(). 2758 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2759 * IP_NEXTHOP, but instead are using the interface ire for the 2760 * nexthop, then we do not use the ire_uinfo from that ire to 2761 * do any initializations. 2762 */ 2763 if (ire_uinfo != NULL) { 2764 if (ire_uinfo->iulp_rtt != 0) { 2765 clock_t rto; 2766 2767 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2768 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2769 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2770 tcps->tcps_rexmit_interval_extra + 2771 (tcp->tcp_rtt_sa >> 5); 2772 2773 if (rto > tcps->tcps_rexmit_interval_max) { 2774 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2775 } else if (rto < tcps->tcps_rexmit_interval_min) { 2776 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2777 } else { 2778 tcp->tcp_rto = rto; 2779 } 2780 } 2781 if (ire_uinfo->iulp_ssthresh != 0) 2782 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2783 else 2784 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2785 if (ire_uinfo->iulp_spipe > 0) { 2786 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2787 tcps->tcps_max_buf); 2788 if (tcps->tcps_snd_lowat_fraction != 0) 2789 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2790 tcps->tcps_snd_lowat_fraction; 2791 (void) tcp_maxpsz_set(tcp, B_TRUE); 2792 } 2793 /* 2794 * Note that up till now, acceptor always inherits receive 2795 * window from the listener. But if there is a metrics 2796 * associated with a host, we should use that instead of 2797 * inheriting it from listener. Thus we need to pass this 2798 * info back to the caller. 2799 */ 2800 if (ire_uinfo->iulp_rpipe > 0) { 2801 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2802 tcps->tcps_max_buf); 2803 } 2804 2805 if (ire_uinfo->iulp_rtomax > 0) { 2806 tcp->tcp_second_timer_threshold = 2807 ire_uinfo->iulp_rtomax; 2808 } 2809 2810 /* 2811 * Use the metric option settings, iulp_tstamp_ok and 2812 * iulp_wscale_ok, only for active open. What this means 2813 * is that if the other side uses timestamp or window 2814 * scale option, TCP will also use those options. That 2815 * is for passive open. If the application sets a 2816 * large window, window scale is enabled regardless of 2817 * the value in iulp_wscale_ok. This is the behavior 2818 * since 2.6. So we keep it. 2819 * The only case left in passive open processing is the 2820 * check for SACK. 2821 * For ECN, it should probably be like SACK. But the 2822 * current value is binary, so we treat it like the other 2823 * cases. The metric only controls active open.For passive 2824 * open, the ndd param, tcp_ecn_permitted, controls the 2825 * behavior. 2826 */ 2827 if (!tcp_detached) { 2828 /* 2829 * The if check means that the following can only 2830 * be turned on by the metrics only IRE, but not off. 2831 */ 2832 if (ire_uinfo->iulp_tstamp_ok) 2833 tcp->tcp_snd_ts_ok = B_TRUE; 2834 if (ire_uinfo->iulp_wscale_ok) 2835 tcp->tcp_snd_ws_ok = B_TRUE; 2836 if (ire_uinfo->iulp_sack == 2) 2837 tcp->tcp_snd_sack_ok = B_TRUE; 2838 if (ire_uinfo->iulp_ecn_ok) 2839 tcp->tcp_ecn_ok = B_TRUE; 2840 } else { 2841 /* 2842 * Passive open. 2843 * 2844 * As above, the if check means that SACK can only be 2845 * turned on by the metric only IRE. 2846 */ 2847 if (ire_uinfo->iulp_sack > 0) { 2848 tcp->tcp_snd_sack_ok = B_TRUE; 2849 } 2850 } 2851 } 2852 2853 2854 /* 2855 * XXX: Note that currently, ire_max_frag can be as small as 68 2856 * because of PMTUd. So tcp_mss may go to negative if combined 2857 * length of all those options exceeds 28 bytes. But because 2858 * of the tcp_mss_min check below, we may not have a problem if 2859 * tcp_mss_min is of a reasonable value. The default is 1 so 2860 * the negative problem still exists. And the check defeats PMTUd. 2861 * In fact, if PMTUd finds that the MSS should be smaller than 2862 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2863 * value. 2864 * 2865 * We do not deal with that now. All those problems related to 2866 * PMTUd will be fixed later. 2867 */ 2868 ASSERT(ire->ire_max_frag != 0); 2869 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2870 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2871 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2872 mss = MIN(mss, IPV6_MIN_MTU); 2873 } 2874 } 2875 2876 /* Sanity check for MSS value. */ 2877 if (tcp->tcp_ipversion == IPV4_VERSION) 2878 mss_max = tcps->tcps_mss_max_ipv4; 2879 else 2880 mss_max = tcps->tcps_mss_max_ipv6; 2881 2882 if (tcp->tcp_ipversion == IPV6_VERSION && 2883 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2884 /* 2885 * After receiving an ICMPv6 "packet too big" message with a 2886 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2887 * will insert a 8-byte fragment header in every packet; we 2888 * reduce the MSS by that amount here. 2889 */ 2890 mss -= sizeof (ip6_frag_t); 2891 } 2892 2893 if (tcp->tcp_ipsec_overhead == 0) 2894 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2895 2896 mss -= tcp->tcp_ipsec_overhead; 2897 2898 if (mss < tcps->tcps_mss_min) 2899 mss = tcps->tcps_mss_min; 2900 if (mss > mss_max) 2901 mss = mss_max; 2902 2903 /* Note that this is the maximum MSS, excluding all options. */ 2904 tcp->tcp_mss = mss; 2905 2906 /* 2907 * Initialize the ISS here now that we have the full connection ID. 2908 * The RFC 1948 method of initial sequence number generation requires 2909 * knowledge of the full connection ID before setting the ISS. 2910 */ 2911 2912 tcp_iss_init(tcp); 2913 2914 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2915 tcp->tcp_loopback = B_TRUE; 2916 2917 if (tcp->tcp_ipversion == IPV4_VERSION) { 2918 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2919 } else { 2920 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2921 } 2922 2923 if (hsp != NULL) { 2924 /* Only modify if we're going to make them bigger */ 2925 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2926 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2927 if (tcps->tcps_snd_lowat_fraction != 0) 2928 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2929 tcps->tcps_snd_lowat_fraction; 2930 } 2931 2932 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2933 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2934 } 2935 2936 /* Copy timestamp flag only for active open */ 2937 if (!tcp_detached) 2938 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2939 } 2940 2941 if (sire != NULL) 2942 IRE_REFRELE(sire); 2943 2944 /* 2945 * If we got an IRE_CACHE and an ILL, go through their properties; 2946 * otherwise, this is deferred until later when we have an IRE_CACHE. 2947 */ 2948 if (tcp->tcp_loopback || 2949 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2950 /* 2951 * For incoming, see if this tcp may be MDT-capable. For 2952 * outgoing, this process has been taken care of through 2953 * tcp_rput_other. 2954 */ 2955 tcp_ire_ill_check(tcp, ire, ill, incoming); 2956 tcp->tcp_ire_ill_check_done = B_TRUE; 2957 } 2958 2959 mutex_enter(&connp->conn_lock); 2960 /* 2961 * Make sure that conn is not marked incipient 2962 * for incoming connections. A blind 2963 * removal of incipient flag is cheaper than 2964 * check and removal. 2965 */ 2966 connp->conn_state_flags &= ~CONN_INCIPIENT; 2967 2968 /* 2969 * Must not cache forwarding table routes 2970 * or recache an IRE after the conn_t has 2971 * had conn_ire_cache cleared and is flagged 2972 * unusable, (see the CONN_CACHE_IRE() macro). 2973 */ 2974 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2975 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2976 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2977 connp->conn_ire_cache = ire; 2978 IRE_UNTRACE_REF(ire); 2979 rw_exit(&ire->ire_bucket->irb_lock); 2980 mutex_exit(&connp->conn_lock); 2981 return (1); 2982 } 2983 rw_exit(&ire->ire_bucket->irb_lock); 2984 } 2985 mutex_exit(&connp->conn_lock); 2986 2987 if (ire->ire_mp == NULL) 2988 ire_refrele(ire); 2989 return (1); 2990 2991 error: 2992 if (ire->ire_mp == NULL) 2993 ire_refrele(ire); 2994 if (sire != NULL) 2995 ire_refrele(sire); 2996 return (0); 2997 } 2998 2999 /* 3000 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3001 * O_T_BIND_REQ/T_BIND_REQ message. 3002 */ 3003 static void 3004 tcp_bind(tcp_t *tcp, mblk_t *mp) 3005 { 3006 sin_t *sin; 3007 sin6_t *sin6; 3008 mblk_t *mp1; 3009 in_port_t requested_port; 3010 in_port_t allocated_port; 3011 struct T_bind_req *tbr; 3012 boolean_t bind_to_req_port_only; 3013 boolean_t backlog_update = B_FALSE; 3014 boolean_t user_specified; 3015 in6_addr_t v6addr; 3016 ipaddr_t v4addr; 3017 uint_t origipversion; 3018 int err; 3019 queue_t *q = tcp->tcp_wq; 3020 conn_t *connp = tcp->tcp_connp; 3021 mlp_type_t addrtype, mlptype; 3022 zone_t *zone; 3023 cred_t *cr; 3024 in_port_t mlp_port; 3025 tcp_stack_t *tcps = tcp->tcp_tcps; 3026 3027 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3028 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3029 if (tcp->tcp_debug) { 3030 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3031 "tcp_bind: bad req, len %u", 3032 (uint_t)(mp->b_wptr - mp->b_rptr)); 3033 } 3034 tcp_err_ack(tcp, mp, TPROTO, 0); 3035 return; 3036 } 3037 /* Make sure the largest address fits */ 3038 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3039 if (mp1 == NULL) { 3040 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3041 return; 3042 } 3043 mp = mp1; 3044 tbr = (struct T_bind_req *)mp->b_rptr; 3045 if (tcp->tcp_state >= TCPS_BOUND) { 3046 if ((tcp->tcp_state == TCPS_BOUND || 3047 tcp->tcp_state == TCPS_LISTEN) && 3048 tcp->tcp_conn_req_max != tbr->CONIND_number && 3049 tbr->CONIND_number > 0) { 3050 /* 3051 * Handle listen() increasing CONIND_number. 3052 * This is more "liberal" then what the TPI spec 3053 * requires but is needed to avoid a t_unbind 3054 * when handling listen() since the port number 3055 * might be "stolen" between the unbind and bind. 3056 */ 3057 backlog_update = B_TRUE; 3058 goto do_bind; 3059 } 3060 if (tcp->tcp_debug) { 3061 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3062 "tcp_bind: bad state, %d", tcp->tcp_state); 3063 } 3064 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3065 return; 3066 } 3067 origipversion = tcp->tcp_ipversion; 3068 3069 switch (tbr->ADDR_length) { 3070 case 0: /* request for a generic port */ 3071 tbr->ADDR_offset = sizeof (struct T_bind_req); 3072 if (tcp->tcp_family == AF_INET) { 3073 tbr->ADDR_length = sizeof (sin_t); 3074 sin = (sin_t *)&tbr[1]; 3075 *sin = sin_null; 3076 sin->sin_family = AF_INET; 3077 mp->b_wptr = (uchar_t *)&sin[1]; 3078 tcp->tcp_ipversion = IPV4_VERSION; 3079 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3080 } else { 3081 ASSERT(tcp->tcp_family == AF_INET6); 3082 tbr->ADDR_length = sizeof (sin6_t); 3083 sin6 = (sin6_t *)&tbr[1]; 3084 *sin6 = sin6_null; 3085 sin6->sin6_family = AF_INET6; 3086 mp->b_wptr = (uchar_t *)&sin6[1]; 3087 tcp->tcp_ipversion = IPV6_VERSION; 3088 V6_SET_ZERO(v6addr); 3089 } 3090 requested_port = 0; 3091 break; 3092 3093 case sizeof (sin_t): /* Complete IPv4 address */ 3094 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3095 sizeof (sin_t)); 3096 if (sin == NULL || !OK_32PTR((char *)sin)) { 3097 if (tcp->tcp_debug) { 3098 (void) strlog(TCP_MOD_ID, 0, 1, 3099 SL_ERROR|SL_TRACE, 3100 "tcp_bind: bad address parameter, " 3101 "offset %d, len %d", 3102 tbr->ADDR_offset, tbr->ADDR_length); 3103 } 3104 tcp_err_ack(tcp, mp, TPROTO, 0); 3105 return; 3106 } 3107 /* 3108 * With sockets sockfs will accept bogus sin_family in 3109 * bind() and replace it with the family used in the socket 3110 * call. 3111 */ 3112 if (sin->sin_family != AF_INET || 3113 tcp->tcp_family != AF_INET) { 3114 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3115 return; 3116 } 3117 requested_port = ntohs(sin->sin_port); 3118 tcp->tcp_ipversion = IPV4_VERSION; 3119 v4addr = sin->sin_addr.s_addr; 3120 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3121 break; 3122 3123 case sizeof (sin6_t): /* Complete IPv6 address */ 3124 sin6 = (sin6_t *)mi_offset_param(mp, 3125 tbr->ADDR_offset, sizeof (sin6_t)); 3126 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3127 if (tcp->tcp_debug) { 3128 (void) strlog(TCP_MOD_ID, 0, 1, 3129 SL_ERROR|SL_TRACE, 3130 "tcp_bind: bad IPv6 address parameter, " 3131 "offset %d, len %d", tbr->ADDR_offset, 3132 tbr->ADDR_length); 3133 } 3134 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3135 return; 3136 } 3137 if (sin6->sin6_family != AF_INET6 || 3138 tcp->tcp_family != AF_INET6) { 3139 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3140 return; 3141 } 3142 requested_port = ntohs(sin6->sin6_port); 3143 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3144 IPV4_VERSION : IPV6_VERSION; 3145 v6addr = sin6->sin6_addr; 3146 break; 3147 3148 default: 3149 if (tcp->tcp_debug) { 3150 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3151 "tcp_bind: bad address length, %d", 3152 tbr->ADDR_length); 3153 } 3154 tcp_err_ack(tcp, mp, TBADADDR, 0); 3155 return; 3156 } 3157 tcp->tcp_bound_source_v6 = v6addr; 3158 3159 /* Check for change in ipversion */ 3160 if (origipversion != tcp->tcp_ipversion) { 3161 ASSERT(tcp->tcp_family == AF_INET6); 3162 err = tcp->tcp_ipversion == IPV6_VERSION ? 3163 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3164 if (err) { 3165 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3166 return; 3167 } 3168 } 3169 3170 /* 3171 * Initialize family specific fields. Copy of the src addr. 3172 * in tcp_t is needed for the lookup funcs. 3173 */ 3174 if (tcp->tcp_ipversion == IPV6_VERSION) { 3175 tcp->tcp_ip6h->ip6_src = v6addr; 3176 } else { 3177 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3178 } 3179 tcp->tcp_ip_src_v6 = v6addr; 3180 3181 /* 3182 * For O_T_BIND_REQ: 3183 * Verify that the target port/addr is available, or choose 3184 * another. 3185 * For T_BIND_REQ: 3186 * Verify that the target port/addr is available or fail. 3187 * In both cases when it succeeds the tcp is inserted in the 3188 * bind hash table. This ensures that the operation is atomic 3189 * under the lock on the hash bucket. 3190 */ 3191 bind_to_req_port_only = requested_port != 0 && 3192 tbr->PRIM_type != O_T_BIND_REQ; 3193 /* 3194 * Get a valid port (within the anonymous range and should not 3195 * be a privileged one) to use if the user has not given a port. 3196 * If multiple threads are here, they may all start with 3197 * with the same initial port. But, it should be fine as long as 3198 * tcp_bindi will ensure that no two threads will be assigned 3199 * the same port. 3200 * 3201 * NOTE: XXX If a privileged process asks for an anonymous port, we 3202 * still check for ports only in the range > tcp_smallest_non_priv_port, 3203 * unless TCP_ANONPRIVBIND option is set. 3204 */ 3205 mlptype = mlptSingle; 3206 mlp_port = requested_port; 3207 if (requested_port == 0) { 3208 requested_port = tcp->tcp_anon_priv_bind ? 3209 tcp_get_next_priv_port(tcp) : 3210 tcp_update_next_port(tcps->tcps_next_port_to_try, 3211 tcp, B_TRUE); 3212 if (requested_port == 0) { 3213 tcp_err_ack(tcp, mp, TNOADDR, 0); 3214 return; 3215 } 3216 user_specified = B_FALSE; 3217 3218 /* 3219 * If the user went through one of the RPC interfaces to create 3220 * this socket and RPC is MLP in this zone, then give him an 3221 * anonymous MLP. 3222 */ 3223 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3224 if (connp->conn_anon_mlp && is_system_labeled()) { 3225 zone = crgetzone(cr); 3226 addrtype = tsol_mlp_addr_type(zone->zone_id, 3227 IPV6_VERSION, &v6addr, 3228 tcps->tcps_netstack->netstack_ip); 3229 if (addrtype == mlptSingle) { 3230 tcp_err_ack(tcp, mp, TNOADDR, 0); 3231 return; 3232 } 3233 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3234 PMAPPORT, addrtype); 3235 mlp_port = PMAPPORT; 3236 } 3237 } else { 3238 int i; 3239 boolean_t priv = B_FALSE; 3240 3241 /* 3242 * If the requested_port is in the well-known privileged range, 3243 * verify that the stream was opened by a privileged user. 3244 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3245 * but instead the code relies on: 3246 * - the fact that the address of the array and its size never 3247 * changes 3248 * - the atomic assignment of the elements of the array 3249 */ 3250 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3251 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3252 priv = B_TRUE; 3253 } else { 3254 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3255 if (requested_port == 3256 tcps->tcps_g_epriv_ports[i]) { 3257 priv = B_TRUE; 3258 break; 3259 } 3260 } 3261 } 3262 if (priv) { 3263 if (secpolicy_net_privaddr(cr, requested_port, 3264 IPPROTO_TCP) != 0) { 3265 if (tcp->tcp_debug) { 3266 (void) strlog(TCP_MOD_ID, 0, 1, 3267 SL_ERROR|SL_TRACE, 3268 "tcp_bind: no priv for port %d", 3269 requested_port); 3270 } 3271 tcp_err_ack(tcp, mp, TACCES, 0); 3272 return; 3273 } 3274 } 3275 user_specified = B_TRUE; 3276 3277 if (is_system_labeled()) { 3278 zone = crgetzone(cr); 3279 addrtype = tsol_mlp_addr_type(zone->zone_id, 3280 IPV6_VERSION, &v6addr, 3281 tcps->tcps_netstack->netstack_ip); 3282 if (addrtype == mlptSingle) { 3283 tcp_err_ack(tcp, mp, TNOADDR, 0); 3284 return; 3285 } 3286 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3287 requested_port, addrtype); 3288 } 3289 } 3290 3291 if (mlptype != mlptSingle) { 3292 if (secpolicy_net_bindmlp(cr) != 0) { 3293 if (tcp->tcp_debug) { 3294 (void) strlog(TCP_MOD_ID, 0, 1, 3295 SL_ERROR|SL_TRACE, 3296 "tcp_bind: no priv for multilevel port %d", 3297 requested_port); 3298 } 3299 tcp_err_ack(tcp, mp, TACCES, 0); 3300 return; 3301 } 3302 3303 /* 3304 * If we're specifically binding a shared IP address and the 3305 * port is MLP on shared addresses, then check to see if this 3306 * zone actually owns the MLP. Reject if not. 3307 */ 3308 if (mlptype == mlptShared && addrtype == mlptShared) { 3309 /* 3310 * No need to handle exclusive-stack zones since 3311 * ALL_ZONES only applies to the shared stack. 3312 */ 3313 zoneid_t mlpzone; 3314 3315 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3316 htons(mlp_port)); 3317 if (connp->conn_zoneid != mlpzone) { 3318 if (tcp->tcp_debug) { 3319 (void) strlog(TCP_MOD_ID, 0, 1, 3320 SL_ERROR|SL_TRACE, 3321 "tcp_bind: attempt to bind port " 3322 "%d on shared addr in zone %d " 3323 "(should be %d)", 3324 mlp_port, connp->conn_zoneid, 3325 mlpzone); 3326 } 3327 tcp_err_ack(tcp, mp, TACCES, 0); 3328 return; 3329 } 3330 } 3331 3332 if (!user_specified) { 3333 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3334 requested_port, B_TRUE); 3335 if (err != 0) { 3336 if (tcp->tcp_debug) { 3337 (void) strlog(TCP_MOD_ID, 0, 1, 3338 SL_ERROR|SL_TRACE, 3339 "tcp_bind: cannot establish anon " 3340 "MLP for port %d", 3341 requested_port); 3342 } 3343 tcp_err_ack(tcp, mp, TSYSERR, err); 3344 return; 3345 } 3346 connp->conn_anon_port = B_TRUE; 3347 } 3348 connp->conn_mlp_type = mlptype; 3349 } 3350 3351 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3352 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3353 3354 if (allocated_port == 0) { 3355 connp->conn_mlp_type = mlptSingle; 3356 if (connp->conn_anon_port) { 3357 connp->conn_anon_port = B_FALSE; 3358 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3359 requested_port, B_FALSE); 3360 } 3361 if (bind_to_req_port_only) { 3362 if (tcp->tcp_debug) { 3363 (void) strlog(TCP_MOD_ID, 0, 1, 3364 SL_ERROR|SL_TRACE, 3365 "tcp_bind: requested addr busy"); 3366 } 3367 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3368 } else { 3369 /* If we are out of ports, fail the bind. */ 3370 if (tcp->tcp_debug) { 3371 (void) strlog(TCP_MOD_ID, 0, 1, 3372 SL_ERROR|SL_TRACE, 3373 "tcp_bind: out of ports?"); 3374 } 3375 tcp_err_ack(tcp, mp, TNOADDR, 0); 3376 } 3377 return; 3378 } 3379 ASSERT(tcp->tcp_state == TCPS_BOUND); 3380 do_bind: 3381 if (!backlog_update) { 3382 if (tcp->tcp_family == AF_INET) 3383 sin->sin_port = htons(allocated_port); 3384 else 3385 sin6->sin6_port = htons(allocated_port); 3386 } 3387 if (tcp->tcp_family == AF_INET) { 3388 if (tbr->CONIND_number != 0) { 3389 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3390 sizeof (sin_t)); 3391 } else { 3392 /* Just verify the local IP address */ 3393 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3394 } 3395 } else { 3396 if (tbr->CONIND_number != 0) { 3397 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3398 sizeof (sin6_t)); 3399 } else { 3400 /* Just verify the local IP address */ 3401 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3402 IPV6_ADDR_LEN); 3403 } 3404 } 3405 if (mp1 == NULL) { 3406 if (connp->conn_anon_port) { 3407 connp->conn_anon_port = B_FALSE; 3408 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3409 requested_port, B_FALSE); 3410 } 3411 connp->conn_mlp_type = mlptSingle; 3412 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3413 return; 3414 } 3415 3416 tbr->PRIM_type = T_BIND_ACK; 3417 mp->b_datap->db_type = M_PCPROTO; 3418 3419 /* Chain in the reply mp for tcp_rput() */ 3420 mp1->b_cont = mp; 3421 mp = mp1; 3422 3423 tcp->tcp_conn_req_max = tbr->CONIND_number; 3424 if (tcp->tcp_conn_req_max) { 3425 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3426 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3427 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3428 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3429 /* 3430 * If this is a listener, do not reset the eager list 3431 * and other stuffs. Note that we don't check if the 3432 * existing eager list meets the new tcp_conn_req_max 3433 * requirement. 3434 */ 3435 if (tcp->tcp_state != TCPS_LISTEN) { 3436 tcp->tcp_state = TCPS_LISTEN; 3437 /* Initialize the chain. Don't need the eager_lock */ 3438 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3439 tcp->tcp_eager_next_drop_q0 = tcp; 3440 tcp->tcp_eager_prev_drop_q0 = tcp; 3441 tcp->tcp_second_ctimer_threshold = 3442 tcps->tcps_ip_abort_linterval; 3443 } 3444 } 3445 3446 /* 3447 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3448 * processing continues in tcp_rput_other(). 3449 * 3450 * We need to make sure that the conn_recv is set to a non-null 3451 * value before we insert the conn into the classifier table. 3452 * This is to avoid a race with an incoming packet which does an 3453 * ipcl_classify(). 3454 */ 3455 connp->conn_recv = tcp_conn_request; 3456 if (tcp->tcp_family == AF_INET6) { 3457 ASSERT(tcp->tcp_connp->conn_af_isv6); 3458 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3459 } else { 3460 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3461 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3462 } 3463 /* 3464 * If the bind cannot complete immediately 3465 * IP will arrange to call tcp_rput_other 3466 * when the bind completes. 3467 */ 3468 if (mp != NULL) { 3469 tcp_rput_other(tcp, mp); 3470 } else { 3471 /* 3472 * Bind will be resumed later. Need to ensure 3473 * that conn doesn't disappear when that happens. 3474 * This will be decremented in ip_resume_tcp_bind(). 3475 */ 3476 CONN_INC_REF(tcp->tcp_connp); 3477 } 3478 } 3479 3480 3481 /* 3482 * If the "bind_to_req_port_only" parameter is set, if the requested port 3483 * number is available, return it, If not return 0 3484 * 3485 * If "bind_to_req_port_only" parameter is not set and 3486 * If the requested port number is available, return it. If not, return 3487 * the first anonymous port we happen across. If no anonymous ports are 3488 * available, return 0. addr is the requested local address, if any. 3489 * 3490 * In either case, when succeeding update the tcp_t to record the port number 3491 * and insert it in the bind hash table. 3492 * 3493 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3494 * without setting SO_REUSEADDR. This is needed so that they 3495 * can be viewed as two independent transport protocols. 3496 */ 3497 static in_port_t 3498 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3499 int reuseaddr, boolean_t quick_connect, 3500 boolean_t bind_to_req_port_only, boolean_t user_specified) 3501 { 3502 /* number of times we have run around the loop */ 3503 int count = 0; 3504 /* maximum number of times to run around the loop */ 3505 int loopmax; 3506 conn_t *connp = tcp->tcp_connp; 3507 zoneid_t zoneid = connp->conn_zoneid; 3508 tcp_stack_t *tcps = tcp->tcp_tcps; 3509 3510 /* 3511 * Lookup for free addresses is done in a loop and "loopmax" 3512 * influences how long we spin in the loop 3513 */ 3514 if (bind_to_req_port_only) { 3515 /* 3516 * If the requested port is busy, don't bother to look 3517 * for a new one. Setting loop maximum count to 1 has 3518 * that effect. 3519 */ 3520 loopmax = 1; 3521 } else { 3522 /* 3523 * If the requested port is busy, look for a free one 3524 * in the anonymous port range. 3525 * Set loopmax appropriately so that one does not look 3526 * forever in the case all of the anonymous ports are in use. 3527 */ 3528 if (tcp->tcp_anon_priv_bind) { 3529 /* 3530 * loopmax = 3531 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3532 */ 3533 loopmax = IPPORT_RESERVED - 3534 tcps->tcps_min_anonpriv_port; 3535 } else { 3536 loopmax = (tcps->tcps_largest_anon_port - 3537 tcps->tcps_smallest_anon_port + 1); 3538 } 3539 } 3540 do { 3541 uint16_t lport; 3542 tf_t *tbf; 3543 tcp_t *ltcp; 3544 conn_t *lconnp; 3545 3546 lport = htons(port); 3547 3548 /* 3549 * Ensure that the tcp_t is not currently in the bind hash. 3550 * Hold the lock on the hash bucket to ensure that 3551 * the duplicate check plus the insertion is an atomic 3552 * operation. 3553 * 3554 * This function does an inline lookup on the bind hash list 3555 * Make sure that we access only members of tcp_t 3556 * and that we don't look at tcp_tcp, since we are not 3557 * doing a CONN_INC_REF. 3558 */ 3559 tcp_bind_hash_remove(tcp); 3560 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3561 mutex_enter(&tbf->tf_lock); 3562 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3563 ltcp = ltcp->tcp_bind_hash) { 3564 boolean_t not_socket; 3565 boolean_t exclbind; 3566 3567 if (lport != ltcp->tcp_lport) 3568 continue; 3569 3570 lconnp = ltcp->tcp_connp; 3571 3572 /* 3573 * On a labeled system, we must treat bindings to ports 3574 * on shared IP addresses by sockets with MAC exemption 3575 * privilege as being in all zones, as there's 3576 * otherwise no way to identify the right receiver. 3577 */ 3578 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3579 IPCL_ZONE_MATCH(connp, 3580 ltcp->tcp_connp->conn_zoneid)) && 3581 !lconnp->conn_mac_exempt && 3582 !connp->conn_mac_exempt) 3583 continue; 3584 3585 /* 3586 * If TCP_EXCLBIND is set for either the bound or 3587 * binding endpoint, the semantics of bind 3588 * is changed according to the following. 3589 * 3590 * spec = specified address (v4 or v6) 3591 * unspec = unspecified address (v4 or v6) 3592 * A = specified addresses are different for endpoints 3593 * 3594 * bound bind to allowed 3595 * ------------------------------------- 3596 * unspec unspec no 3597 * unspec spec no 3598 * spec unspec no 3599 * spec spec yes if A 3600 * 3601 * For labeled systems, SO_MAC_EXEMPT behaves the same 3602 * as TCP_EXCLBIND, except that zoneid is ignored. 3603 * 3604 * Note: 3605 * 3606 * 1. Because of TLI semantics, an endpoint can go 3607 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3608 * TCPS_BOUND, depending on whether it is originally 3609 * a listener or not. That is why we need to check 3610 * for states greater than or equal to TCPS_BOUND 3611 * here. 3612 * 3613 * 2. Ideally, we should only check for state equals 3614 * to TCPS_LISTEN. And the following check should be 3615 * added. 3616 * 3617 * if (ltcp->tcp_state == TCPS_LISTEN || 3618 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3619 * ... 3620 * } 3621 * 3622 * The semantics will be changed to this. If the 3623 * endpoint on the list is in state not equal to 3624 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3625 * set, let the bind succeed. 3626 * 3627 * Because of (1), we cannot do that for TLI 3628 * endpoints. But we can do that for socket endpoints. 3629 * If in future, we can change this going back 3630 * semantics, we can use the above check for TLI also. 3631 */ 3632 not_socket = !(TCP_IS_SOCKET(ltcp) && 3633 TCP_IS_SOCKET(tcp)); 3634 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3635 3636 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3637 (exclbind && (not_socket || 3638 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3639 if (V6_OR_V4_INADDR_ANY( 3640 ltcp->tcp_bound_source_v6) || 3641 V6_OR_V4_INADDR_ANY(*laddr) || 3642 IN6_ARE_ADDR_EQUAL(laddr, 3643 <cp->tcp_bound_source_v6)) { 3644 break; 3645 } 3646 continue; 3647 } 3648 3649 /* 3650 * Check ipversion to allow IPv4 and IPv6 sockets to 3651 * have disjoint port number spaces, if *_EXCLBIND 3652 * is not set and only if the application binds to a 3653 * specific port. We use the same autoassigned port 3654 * number space for IPv4 and IPv6 sockets. 3655 */ 3656 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3657 bind_to_req_port_only) 3658 continue; 3659 3660 /* 3661 * Ideally, we should make sure that the source 3662 * address, remote address, and remote port in the 3663 * four tuple for this tcp-connection is unique. 3664 * However, trying to find out the local source 3665 * address would require too much code duplication 3666 * with IP, since IP needs needs to have that code 3667 * to support userland TCP implementations. 3668 */ 3669 if (quick_connect && 3670 (ltcp->tcp_state > TCPS_LISTEN) && 3671 ((tcp->tcp_fport != ltcp->tcp_fport) || 3672 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3673 <cp->tcp_remote_v6))) 3674 continue; 3675 3676 if (!reuseaddr) { 3677 /* 3678 * No socket option SO_REUSEADDR. 3679 * If existing port is bound to 3680 * a non-wildcard IP address 3681 * and the requesting stream is 3682 * bound to a distinct 3683 * different IP addresses 3684 * (non-wildcard, also), keep 3685 * going. 3686 */ 3687 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3688 !V6_OR_V4_INADDR_ANY( 3689 ltcp->tcp_bound_source_v6) && 3690 !IN6_ARE_ADDR_EQUAL(laddr, 3691 <cp->tcp_bound_source_v6)) 3692 continue; 3693 if (ltcp->tcp_state >= TCPS_BOUND) { 3694 /* 3695 * This port is being used and 3696 * its state is >= TCPS_BOUND, 3697 * so we can't bind to it. 3698 */ 3699 break; 3700 } 3701 } else { 3702 /* 3703 * socket option SO_REUSEADDR is set on the 3704 * binding tcp_t. 3705 * 3706 * If two streams are bound to 3707 * same IP address or both addr 3708 * and bound source are wildcards 3709 * (INADDR_ANY), we want to stop 3710 * searching. 3711 * We have found a match of IP source 3712 * address and source port, which is 3713 * refused regardless of the 3714 * SO_REUSEADDR setting, so we break. 3715 */ 3716 if (IN6_ARE_ADDR_EQUAL(laddr, 3717 <cp->tcp_bound_source_v6) && 3718 (ltcp->tcp_state == TCPS_LISTEN || 3719 ltcp->tcp_state == TCPS_BOUND)) 3720 break; 3721 } 3722 } 3723 if (ltcp != NULL) { 3724 /* The port number is busy */ 3725 mutex_exit(&tbf->tf_lock); 3726 } else { 3727 /* 3728 * This port is ours. Insert in fanout and mark as 3729 * bound to prevent others from getting the port 3730 * number. 3731 */ 3732 tcp->tcp_state = TCPS_BOUND; 3733 tcp->tcp_lport = htons(port); 3734 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3735 3736 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3737 tcp->tcp_lport)] == tbf); 3738 tcp_bind_hash_insert(tbf, tcp, 1); 3739 3740 mutex_exit(&tbf->tf_lock); 3741 3742 /* 3743 * We don't want tcp_next_port_to_try to "inherit" 3744 * a port number supplied by the user in a bind. 3745 */ 3746 if (user_specified) 3747 return (port); 3748 3749 /* 3750 * This is the only place where tcp_next_port_to_try 3751 * is updated. After the update, it may or may not 3752 * be in the valid range. 3753 */ 3754 if (!tcp->tcp_anon_priv_bind) 3755 tcps->tcps_next_port_to_try = port + 1; 3756 return (port); 3757 } 3758 3759 if (tcp->tcp_anon_priv_bind) { 3760 port = tcp_get_next_priv_port(tcp); 3761 } else { 3762 if (count == 0 && user_specified) { 3763 /* 3764 * We may have to return an anonymous port. So 3765 * get one to start with. 3766 */ 3767 port = 3768 tcp_update_next_port( 3769 tcps->tcps_next_port_to_try, 3770 tcp, B_TRUE); 3771 user_specified = B_FALSE; 3772 } else { 3773 port = tcp_update_next_port(port + 1, tcp, 3774 B_FALSE); 3775 } 3776 } 3777 if (port == 0) 3778 break; 3779 3780 /* 3781 * Don't let this loop run forever in the case where 3782 * all of the anonymous ports are in use. 3783 */ 3784 } while (++count < loopmax); 3785 return (0); 3786 } 3787 3788 /* 3789 * tcp_clean_death / tcp_close_detached must not be called more than once 3790 * on a tcp. Thus every function that potentially calls tcp_clean_death 3791 * must check for the tcp state before calling tcp_clean_death. 3792 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3793 * tcp_timer_handler, all check for the tcp state. 3794 */ 3795 /* ARGSUSED */ 3796 void 3797 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3798 { 3799 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3800 3801 freemsg(mp); 3802 if (tcp->tcp_state > TCPS_BOUND) 3803 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3804 ETIMEDOUT, 5); 3805 } 3806 3807 /* 3808 * We are dying for some reason. Try to do it gracefully. (May be called 3809 * as writer.) 3810 * 3811 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3812 * done by a service procedure). 3813 * TBD - Should the return value distinguish between the tcp_t being 3814 * freed and it being reinitialized? 3815 */ 3816 static int 3817 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3818 { 3819 mblk_t *mp; 3820 queue_t *q; 3821 tcp_stack_t *tcps = tcp->tcp_tcps; 3822 sodirect_t *sodp; 3823 3824 TCP_CLD_STAT(tag); 3825 3826 #if TCP_TAG_CLEAN_DEATH 3827 tcp->tcp_cleandeathtag = tag; 3828 #endif 3829 3830 if (tcp->tcp_fused) 3831 tcp_unfuse(tcp); 3832 3833 if (tcp->tcp_linger_tid != 0 && 3834 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3835 tcp_stop_lingering(tcp); 3836 } 3837 3838 ASSERT(tcp != NULL); 3839 ASSERT((tcp->tcp_family == AF_INET && 3840 tcp->tcp_ipversion == IPV4_VERSION) || 3841 (tcp->tcp_family == AF_INET6 && 3842 (tcp->tcp_ipversion == IPV4_VERSION || 3843 tcp->tcp_ipversion == IPV6_VERSION))); 3844 3845 if (TCP_IS_DETACHED(tcp)) { 3846 if (tcp->tcp_hard_binding) { 3847 /* 3848 * Its an eager that we are dealing with. We close the 3849 * eager but in case a conn_ind has already gone to the 3850 * listener, let tcp_accept_finish() send a discon_ind 3851 * to the listener and drop the last reference. If the 3852 * listener doesn't even know about the eager i.e. the 3853 * conn_ind hasn't gone up, blow away the eager and drop 3854 * the last reference as well. If the conn_ind has gone 3855 * up, state should be BOUND. tcp_accept_finish 3856 * will figure out that the connection has received a 3857 * RST and will send a DISCON_IND to the application. 3858 */ 3859 tcp_closei_local(tcp); 3860 if (!tcp->tcp_tconnind_started) { 3861 CONN_DEC_REF(tcp->tcp_connp); 3862 } else { 3863 tcp->tcp_state = TCPS_BOUND; 3864 } 3865 } else { 3866 tcp_close_detached(tcp); 3867 } 3868 return (0); 3869 } 3870 3871 TCP_STAT(tcps, tcp_clean_death_nondetached); 3872 3873 /* If sodirect, not anymore */ 3874 SOD_PTR_ENTER(tcp, sodp); 3875 if (sodp != NULL) { 3876 tcp->tcp_sodirect = NULL; 3877 mutex_exit(sodp->sod_lockp); 3878 } 3879 3880 q = tcp->tcp_rq; 3881 3882 /* Trash all inbound data */ 3883 flushq(q, FLUSHALL); 3884 3885 /* 3886 * If we are at least part way open and there is error 3887 * (err==0 implies no error) 3888 * notify our client by a T_DISCON_IND. 3889 */ 3890 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3891 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3892 !TCP_IS_SOCKET(tcp)) { 3893 /* 3894 * Send M_FLUSH according to TPI. Because sockets will 3895 * (and must) ignore FLUSHR we do that only for TPI 3896 * endpoints and sockets in STREAMS mode. 3897 */ 3898 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3899 } 3900 if (tcp->tcp_debug) { 3901 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3902 "tcp_clean_death: discon err %d", err); 3903 } 3904 mp = mi_tpi_discon_ind(NULL, err, 0); 3905 if (mp != NULL) { 3906 putnext(q, mp); 3907 } else { 3908 if (tcp->tcp_debug) { 3909 (void) strlog(TCP_MOD_ID, 0, 1, 3910 SL_ERROR|SL_TRACE, 3911 "tcp_clean_death, sending M_ERROR"); 3912 } 3913 (void) putnextctl1(q, M_ERROR, EPROTO); 3914 } 3915 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3916 /* SYN_SENT or SYN_RCVD */ 3917 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3918 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3919 /* ESTABLISHED or CLOSE_WAIT */ 3920 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3921 } 3922 } 3923 3924 tcp_reinit(tcp); 3925 return (-1); 3926 } 3927 3928 /* 3929 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3930 * to expire, stop the wait and finish the close. 3931 */ 3932 static void 3933 tcp_stop_lingering(tcp_t *tcp) 3934 { 3935 clock_t delta = 0; 3936 tcp_stack_t *tcps = tcp->tcp_tcps; 3937 3938 tcp->tcp_linger_tid = 0; 3939 if (tcp->tcp_state > TCPS_LISTEN) { 3940 tcp_acceptor_hash_remove(tcp); 3941 mutex_enter(&tcp->tcp_non_sq_lock); 3942 if (tcp->tcp_flow_stopped) { 3943 tcp_clrqfull(tcp); 3944 } 3945 mutex_exit(&tcp->tcp_non_sq_lock); 3946 3947 if (tcp->tcp_timer_tid != 0) { 3948 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3949 tcp->tcp_timer_tid = 0; 3950 } 3951 /* 3952 * Need to cancel those timers which will not be used when 3953 * TCP is detached. This has to be done before the tcp_wq 3954 * is set to the global queue. 3955 */ 3956 tcp_timers_stop(tcp); 3957 3958 3959 tcp->tcp_detached = B_TRUE; 3960 ASSERT(tcps->tcps_g_q != NULL); 3961 tcp->tcp_rq = tcps->tcps_g_q; 3962 tcp->tcp_wq = WR(tcps->tcps_g_q); 3963 3964 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3965 tcp_time_wait_append(tcp); 3966 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3967 goto finish; 3968 } 3969 3970 /* 3971 * If delta is zero the timer event wasn't executed and was 3972 * successfully canceled. In this case we need to restart it 3973 * with the minimal delta possible. 3974 */ 3975 if (delta >= 0) { 3976 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3977 delta ? delta : 1); 3978 } 3979 } else { 3980 tcp_closei_local(tcp); 3981 CONN_DEC_REF(tcp->tcp_connp); 3982 } 3983 finish: 3984 /* Signal closing thread that it can complete close */ 3985 mutex_enter(&tcp->tcp_closelock); 3986 tcp->tcp_detached = B_TRUE; 3987 ASSERT(tcps->tcps_g_q != NULL); 3988 tcp->tcp_rq = tcps->tcps_g_q; 3989 tcp->tcp_wq = WR(tcps->tcps_g_q); 3990 tcp->tcp_closed = 1; 3991 cv_signal(&tcp->tcp_closecv); 3992 mutex_exit(&tcp->tcp_closelock); 3993 } 3994 3995 /* 3996 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3997 * expires. 3998 */ 3999 static void 4000 tcp_close_linger_timeout(void *arg) 4001 { 4002 conn_t *connp = (conn_t *)arg; 4003 tcp_t *tcp = connp->conn_tcp; 4004 4005 tcp->tcp_client_errno = ETIMEDOUT; 4006 tcp_stop_lingering(tcp); 4007 } 4008 4009 static int 4010 tcp_close(queue_t *q, int flags) 4011 { 4012 conn_t *connp = Q_TO_CONN(q); 4013 tcp_t *tcp = connp->conn_tcp; 4014 mblk_t *mp = &tcp->tcp_closemp; 4015 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4016 mblk_t *bp; 4017 4018 ASSERT(WR(q)->q_next == NULL); 4019 ASSERT(connp->conn_ref >= 2); 4020 4021 /* 4022 * We are being closed as /dev/tcp or /dev/tcp6. 4023 * 4024 * Mark the conn as closing. ill_pending_mp_add will not 4025 * add any mp to the pending mp list, after this conn has 4026 * started closing. Same for sq_pending_mp_add 4027 */ 4028 mutex_enter(&connp->conn_lock); 4029 connp->conn_state_flags |= CONN_CLOSING; 4030 if (connp->conn_oper_pending_ill != NULL) 4031 conn_ioctl_cleanup_reqd = B_TRUE; 4032 CONN_INC_REF_LOCKED(connp); 4033 mutex_exit(&connp->conn_lock); 4034 tcp->tcp_closeflags = (uint8_t)flags; 4035 ASSERT(connp->conn_ref >= 3); 4036 4037 /* 4038 * tcp_closemp_used is used below without any protection of a lock 4039 * as we don't expect any one else to use it concurrently at this 4040 * point otherwise it would be a major defect. 4041 */ 4042 4043 if (mp->b_prev == NULL) 4044 tcp->tcp_closemp_used = B_TRUE; 4045 else 4046 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4047 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4048 4049 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4050 4051 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4052 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4053 4054 mutex_enter(&tcp->tcp_closelock); 4055 while (!tcp->tcp_closed) { 4056 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4057 /* 4058 * The cv_wait_sig() was interrupted. We now do the 4059 * following: 4060 * 4061 * 1) If the endpoint was lingering, we allow this 4062 * to be interrupted by cancelling the linger timeout 4063 * and closing normally. 4064 * 4065 * 2) Revert to calling cv_wait() 4066 * 4067 * We revert to using cv_wait() to avoid an 4068 * infinite loop which can occur if the calling 4069 * thread is higher priority than the squeue worker 4070 * thread and is bound to the same cpu. 4071 */ 4072 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 4073 mutex_exit(&tcp->tcp_closelock); 4074 /* Entering squeue, bump ref count. */ 4075 CONN_INC_REF(connp); 4076 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4077 squeue_enter(connp->conn_sqp, bp, 4078 tcp_linger_interrupted, connp, 4079 SQTAG_IP_TCP_CLOSE); 4080 mutex_enter(&tcp->tcp_closelock); 4081 } 4082 break; 4083 } 4084 } 4085 while (!tcp->tcp_closed) 4086 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4087 mutex_exit(&tcp->tcp_closelock); 4088 4089 /* 4090 * In the case of listener streams that have eagers in the q or q0 4091 * we wait for the eagers to drop their reference to us. tcp_rq and 4092 * tcp_wq of the eagers point to our queues. By waiting for the 4093 * refcnt to drop to 1, we are sure that the eagers have cleaned 4094 * up their queue pointers and also dropped their references to us. 4095 */ 4096 if (tcp->tcp_wait_for_eagers) { 4097 mutex_enter(&connp->conn_lock); 4098 while (connp->conn_ref != 1) { 4099 cv_wait(&connp->conn_cv, &connp->conn_lock); 4100 } 4101 mutex_exit(&connp->conn_lock); 4102 } 4103 /* 4104 * ioctl cleanup. The mp is queued in the 4105 * ill_pending_mp or in the sq_pending_mp. 4106 */ 4107 if (conn_ioctl_cleanup_reqd) 4108 conn_ioctl_cleanup(connp); 4109 4110 qprocsoff(q); 4111 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4112 4113 tcp->tcp_cpid = -1; 4114 4115 /* 4116 * Drop IP's reference on the conn. This is the last reference 4117 * on the connp if the state was less than established. If the 4118 * connection has gone into timewait state, then we will have 4119 * one ref for the TCP and one more ref (total of two) for the 4120 * classifier connected hash list (a timewait connections stays 4121 * in connected hash till closed). 4122 * 4123 * We can't assert the references because there might be other 4124 * transient reference places because of some walkers or queued 4125 * packets in squeue for the timewait state. 4126 */ 4127 CONN_DEC_REF(connp); 4128 q->q_ptr = WR(q)->q_ptr = NULL; 4129 return (0); 4130 } 4131 4132 static int 4133 tcpclose_accept(queue_t *q) 4134 { 4135 vmem_t *minor_arena; 4136 dev_t conn_dev; 4137 4138 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4139 4140 /* 4141 * We had opened an acceptor STREAM for sockfs which is 4142 * now being closed due to some error. 4143 */ 4144 qprocsoff(q); 4145 4146 minor_arena = (vmem_t *)WR(q)->q_ptr; 4147 conn_dev = (dev_t)RD(q)->q_ptr; 4148 ASSERT(minor_arena != NULL); 4149 ASSERT(conn_dev != 0); 4150 inet_minor_free(minor_arena, conn_dev); 4151 q->q_ptr = WR(q)->q_ptr = NULL; 4152 return (0); 4153 } 4154 4155 /* 4156 * Called by tcp_close() routine via squeue when lingering is 4157 * interrupted by a signal. 4158 */ 4159 4160 /* ARGSUSED */ 4161 static void 4162 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4163 { 4164 conn_t *connp = (conn_t *)arg; 4165 tcp_t *tcp = connp->conn_tcp; 4166 4167 freeb(mp); 4168 if (tcp->tcp_linger_tid != 0 && 4169 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4170 tcp_stop_lingering(tcp); 4171 tcp->tcp_client_errno = EINTR; 4172 } 4173 } 4174 4175 /* 4176 * Called by streams close routine via squeues when our client blows off her 4177 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4178 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4179 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4180 * acked. 4181 * 4182 * NOTE: tcp_close potentially returns error when lingering. 4183 * However, the stream head currently does not pass these errors 4184 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4185 * errors to the application (from tsleep()) and not errors 4186 * like ECONNRESET caused by receiving a reset packet. 4187 */ 4188 4189 /* ARGSUSED */ 4190 static void 4191 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4192 { 4193 char *msg; 4194 conn_t *connp = (conn_t *)arg; 4195 tcp_t *tcp = connp->conn_tcp; 4196 clock_t delta = 0; 4197 tcp_stack_t *tcps = tcp->tcp_tcps; 4198 4199 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4200 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4201 4202 mutex_enter(&tcp->tcp_eager_lock); 4203 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4204 /* Cleanup for listener */ 4205 tcp_eager_cleanup(tcp, 0); 4206 tcp->tcp_wait_for_eagers = 1; 4207 } 4208 mutex_exit(&tcp->tcp_eager_lock); 4209 4210 connp->conn_mdt_ok = B_FALSE; 4211 tcp->tcp_mdt = B_FALSE; 4212 4213 connp->conn_lso_ok = B_FALSE; 4214 tcp->tcp_lso = B_FALSE; 4215 4216 msg = NULL; 4217 switch (tcp->tcp_state) { 4218 case TCPS_CLOSED: 4219 case TCPS_IDLE: 4220 case TCPS_BOUND: 4221 case TCPS_LISTEN: 4222 break; 4223 case TCPS_SYN_SENT: 4224 msg = "tcp_close, during connect"; 4225 break; 4226 case TCPS_SYN_RCVD: 4227 /* 4228 * Close during the connect 3-way handshake 4229 * but here there may or may not be pending data 4230 * already on queue. Process almost same as in 4231 * the ESTABLISHED state. 4232 */ 4233 /* FALLTHRU */ 4234 default: 4235 if (tcp->tcp_sodirect != NULL) { 4236 /* Ok, no more sodirect */ 4237 tcp->tcp_sodirect = NULL; 4238 } 4239 4240 if (tcp->tcp_fused) 4241 tcp_unfuse(tcp); 4242 4243 /* 4244 * If SO_LINGER has set a zero linger time, abort the 4245 * connection with a reset. 4246 */ 4247 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4248 msg = "tcp_close, zero lingertime"; 4249 break; 4250 } 4251 4252 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4253 /* 4254 * Abort connection if there is unread data queued. 4255 */ 4256 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4257 msg = "tcp_close, unread data"; 4258 break; 4259 } 4260 /* 4261 * tcp_hard_bound is now cleared thus all packets go through 4262 * tcp_lookup. This fact is used by tcp_detach below. 4263 * 4264 * We have done a qwait() above which could have possibly 4265 * drained more messages in turn causing transition to a 4266 * different state. Check whether we have to do the rest 4267 * of the processing or not. 4268 */ 4269 if (tcp->tcp_state <= TCPS_LISTEN) 4270 break; 4271 4272 /* 4273 * Transmit the FIN before detaching the tcp_t. 4274 * After tcp_detach returns this queue/perimeter 4275 * no longer owns the tcp_t thus others can modify it. 4276 */ 4277 (void) tcp_xmit_end(tcp); 4278 4279 /* 4280 * If lingering on close then wait until the fin is acked, 4281 * the SO_LINGER time passes, or a reset is sent/received. 4282 */ 4283 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4284 !(tcp->tcp_fin_acked) && 4285 tcp->tcp_state >= TCPS_ESTABLISHED) { 4286 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4287 tcp->tcp_client_errno = EWOULDBLOCK; 4288 } else if (tcp->tcp_client_errno == 0) { 4289 4290 ASSERT(tcp->tcp_linger_tid == 0); 4291 4292 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4293 tcp_close_linger_timeout, 4294 tcp->tcp_lingertime * hz); 4295 4296 /* tcp_close_linger_timeout will finish close */ 4297 if (tcp->tcp_linger_tid == 0) 4298 tcp->tcp_client_errno = ENOSR; 4299 else 4300 return; 4301 } 4302 4303 /* 4304 * Check if we need to detach or just close 4305 * the instance. 4306 */ 4307 if (tcp->tcp_state <= TCPS_LISTEN) 4308 break; 4309 } 4310 4311 /* 4312 * Make sure that no other thread will access the tcp_rq of 4313 * this instance (through lookups etc.) as tcp_rq will go 4314 * away shortly. 4315 */ 4316 tcp_acceptor_hash_remove(tcp); 4317 4318 mutex_enter(&tcp->tcp_non_sq_lock); 4319 if (tcp->tcp_flow_stopped) { 4320 tcp_clrqfull(tcp); 4321 } 4322 mutex_exit(&tcp->tcp_non_sq_lock); 4323 4324 if (tcp->tcp_timer_tid != 0) { 4325 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4326 tcp->tcp_timer_tid = 0; 4327 } 4328 /* 4329 * Need to cancel those timers which will not be used when 4330 * TCP is detached. This has to be done before the tcp_wq 4331 * is set to the global queue. 4332 */ 4333 tcp_timers_stop(tcp); 4334 4335 tcp->tcp_detached = B_TRUE; 4336 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4337 tcp_time_wait_append(tcp); 4338 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4339 ASSERT(connp->conn_ref >= 3); 4340 goto finish; 4341 } 4342 4343 /* 4344 * If delta is zero the timer event wasn't executed and was 4345 * successfully canceled. In this case we need to restart it 4346 * with the minimal delta possible. 4347 */ 4348 if (delta >= 0) 4349 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4350 delta ? delta : 1); 4351 4352 ASSERT(connp->conn_ref >= 3); 4353 goto finish; 4354 } 4355 4356 /* Detach did not complete. Still need to remove q from stream. */ 4357 if (msg) { 4358 if (tcp->tcp_state == TCPS_ESTABLISHED || 4359 tcp->tcp_state == TCPS_CLOSE_WAIT) 4360 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4361 if (tcp->tcp_state == TCPS_SYN_SENT || 4362 tcp->tcp_state == TCPS_SYN_RCVD) 4363 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4364 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4365 } 4366 4367 tcp_closei_local(tcp); 4368 CONN_DEC_REF(connp); 4369 ASSERT(connp->conn_ref >= 2); 4370 4371 finish: 4372 /* 4373 * Although packets are always processed on the correct 4374 * tcp's perimeter and access is serialized via squeue's, 4375 * IP still needs a queue when sending packets in time_wait 4376 * state so use WR(tcps_g_q) till ip_output() can be 4377 * changed to deal with just connp. For read side, we 4378 * could have set tcp_rq to NULL but there are some cases 4379 * in tcp_rput_data() from early days of this code which 4380 * do a putnext without checking if tcp is closed. Those 4381 * need to be identified before both tcp_rq and tcp_wq 4382 * can be set to NULL and tcps_g_q can disappear forever. 4383 */ 4384 mutex_enter(&tcp->tcp_closelock); 4385 /* 4386 * Don't change the queues in the case of a listener that has 4387 * eagers in its q or q0. It could surprise the eagers. 4388 * Instead wait for the eagers outside the squeue. 4389 */ 4390 if (!tcp->tcp_wait_for_eagers) { 4391 tcp->tcp_detached = B_TRUE; 4392 /* 4393 * When default queue is closing we set tcps_g_q to NULL 4394 * after the close is done. 4395 */ 4396 ASSERT(tcps->tcps_g_q != NULL); 4397 tcp->tcp_rq = tcps->tcps_g_q; 4398 tcp->tcp_wq = WR(tcps->tcps_g_q); 4399 } 4400 4401 /* Signal tcp_close() to finish closing. */ 4402 tcp->tcp_closed = 1; 4403 cv_signal(&tcp->tcp_closecv); 4404 mutex_exit(&tcp->tcp_closelock); 4405 } 4406 4407 4408 /* 4409 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4410 * Some stream heads get upset if they see these later on as anything but NULL. 4411 */ 4412 static void 4413 tcp_close_mpp(mblk_t **mpp) 4414 { 4415 mblk_t *mp; 4416 4417 if ((mp = *mpp) != NULL) { 4418 do { 4419 mp->b_next = NULL; 4420 mp->b_prev = NULL; 4421 } while ((mp = mp->b_cont) != NULL); 4422 4423 mp = *mpp; 4424 *mpp = NULL; 4425 freemsg(mp); 4426 } 4427 } 4428 4429 /* Do detached close. */ 4430 static void 4431 tcp_close_detached(tcp_t *tcp) 4432 { 4433 if (tcp->tcp_fused) 4434 tcp_unfuse(tcp); 4435 4436 /* 4437 * Clustering code serializes TCP disconnect callbacks and 4438 * cluster tcp list walks by blocking a TCP disconnect callback 4439 * if a cluster tcp list walk is in progress. This ensures 4440 * accurate accounting of TCPs in the cluster code even though 4441 * the TCP list walk itself is not atomic. 4442 */ 4443 tcp_closei_local(tcp); 4444 CONN_DEC_REF(tcp->tcp_connp); 4445 } 4446 4447 /* 4448 * Stop all TCP timers, and free the timer mblks if requested. 4449 */ 4450 void 4451 tcp_timers_stop(tcp_t *tcp) 4452 { 4453 if (tcp->tcp_timer_tid != 0) { 4454 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4455 tcp->tcp_timer_tid = 0; 4456 } 4457 if (tcp->tcp_ka_tid != 0) { 4458 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4459 tcp->tcp_ka_tid = 0; 4460 } 4461 if (tcp->tcp_ack_tid != 0) { 4462 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4463 tcp->tcp_ack_tid = 0; 4464 } 4465 if (tcp->tcp_push_tid != 0) { 4466 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4467 tcp->tcp_push_tid = 0; 4468 } 4469 } 4470 4471 /* 4472 * The tcp_t is going away. Remove it from all lists and set it 4473 * to TCPS_CLOSED. The freeing up of memory is deferred until 4474 * tcp_inactive. This is needed since a thread in tcp_rput might have 4475 * done a CONN_INC_REF on this structure before it was removed from the 4476 * hashes. 4477 */ 4478 static void 4479 tcp_closei_local(tcp_t *tcp) 4480 { 4481 ire_t *ire; 4482 conn_t *connp = tcp->tcp_connp; 4483 tcp_stack_t *tcps = tcp->tcp_tcps; 4484 4485 if (!TCP_IS_SOCKET(tcp)) 4486 tcp_acceptor_hash_remove(tcp); 4487 4488 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4489 tcp->tcp_ibsegs = 0; 4490 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4491 tcp->tcp_obsegs = 0; 4492 4493 /* 4494 * If we are an eager connection hanging off a listener that 4495 * hasn't formally accepted the connection yet, get off his 4496 * list and blow off any data that we have accumulated. 4497 */ 4498 if (tcp->tcp_listener != NULL) { 4499 tcp_t *listener = tcp->tcp_listener; 4500 mutex_enter(&listener->tcp_eager_lock); 4501 /* 4502 * tcp_tconnind_started == B_TRUE means that the 4503 * conn_ind has already gone to listener. At 4504 * this point, eager will be closed but we 4505 * leave it in listeners eager list so that 4506 * if listener decides to close without doing 4507 * accept, we can clean this up. In tcp_wput_accept 4508 * we take care of the case of accept on closed 4509 * eager. 4510 */ 4511 if (!tcp->tcp_tconnind_started) { 4512 tcp_eager_unlink(tcp); 4513 mutex_exit(&listener->tcp_eager_lock); 4514 /* 4515 * We don't want to have any pointers to the 4516 * listener queue, after we have released our 4517 * reference on the listener 4518 */ 4519 ASSERT(tcps->tcps_g_q != NULL); 4520 tcp->tcp_rq = tcps->tcps_g_q; 4521 tcp->tcp_wq = WR(tcps->tcps_g_q); 4522 CONN_DEC_REF(listener->tcp_connp); 4523 } else { 4524 mutex_exit(&listener->tcp_eager_lock); 4525 } 4526 } 4527 4528 /* Stop all the timers */ 4529 tcp_timers_stop(tcp); 4530 4531 if (tcp->tcp_state == TCPS_LISTEN) { 4532 if (tcp->tcp_ip_addr_cache) { 4533 kmem_free((void *)tcp->tcp_ip_addr_cache, 4534 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4535 tcp->tcp_ip_addr_cache = NULL; 4536 } 4537 } 4538 mutex_enter(&tcp->tcp_non_sq_lock); 4539 if (tcp->tcp_flow_stopped) 4540 tcp_clrqfull(tcp); 4541 mutex_exit(&tcp->tcp_non_sq_lock); 4542 4543 tcp_bind_hash_remove(tcp); 4544 /* 4545 * If the tcp_time_wait_collector (which runs outside the squeue) 4546 * is trying to remove this tcp from the time wait list, we will 4547 * block in tcp_time_wait_remove while trying to acquire the 4548 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4549 * requires the ipcl_hash_remove to be ordered after the 4550 * tcp_time_wait_remove for the refcnt checks to work correctly. 4551 */ 4552 if (tcp->tcp_state == TCPS_TIME_WAIT) 4553 (void) tcp_time_wait_remove(tcp, NULL); 4554 CL_INET_DISCONNECT(tcp); 4555 ipcl_hash_remove(connp); 4556 4557 /* 4558 * Delete the cached ire in conn_ire_cache and also mark 4559 * the conn as CONDEMNED 4560 */ 4561 mutex_enter(&connp->conn_lock); 4562 connp->conn_state_flags |= CONN_CONDEMNED; 4563 ire = connp->conn_ire_cache; 4564 connp->conn_ire_cache = NULL; 4565 mutex_exit(&connp->conn_lock); 4566 if (ire != NULL) 4567 IRE_REFRELE_NOTR(ire); 4568 4569 /* Need to cleanup any pending ioctls */ 4570 ASSERT(tcp->tcp_time_wait_next == NULL); 4571 ASSERT(tcp->tcp_time_wait_prev == NULL); 4572 ASSERT(tcp->tcp_time_wait_expire == 0); 4573 tcp->tcp_state = TCPS_CLOSED; 4574 4575 /* Release any SSL context */ 4576 if (tcp->tcp_kssl_ent != NULL) { 4577 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4578 tcp->tcp_kssl_ent = NULL; 4579 } 4580 if (tcp->tcp_kssl_ctx != NULL) { 4581 kssl_release_ctx(tcp->tcp_kssl_ctx); 4582 tcp->tcp_kssl_ctx = NULL; 4583 } 4584 tcp->tcp_kssl_pending = B_FALSE; 4585 4586 tcp_ipsec_cleanup(tcp); 4587 } 4588 4589 /* 4590 * tcp is dying (called from ipcl_conn_destroy and error cases). 4591 * Free the tcp_t in either case. 4592 */ 4593 void 4594 tcp_free(tcp_t *tcp) 4595 { 4596 mblk_t *mp; 4597 ip6_pkt_t *ipp; 4598 4599 ASSERT(tcp != NULL); 4600 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4601 4602 tcp->tcp_rq = NULL; 4603 tcp->tcp_wq = NULL; 4604 4605 tcp_close_mpp(&tcp->tcp_xmit_head); 4606 tcp_close_mpp(&tcp->tcp_reass_head); 4607 if (tcp->tcp_rcv_list != NULL) { 4608 /* Free b_next chain */ 4609 tcp_close_mpp(&tcp->tcp_rcv_list); 4610 } 4611 if ((mp = tcp->tcp_urp_mp) != NULL) { 4612 freemsg(mp); 4613 } 4614 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4615 freemsg(mp); 4616 } 4617 4618 if (tcp->tcp_fused_sigurg_mp != NULL) { 4619 freeb(tcp->tcp_fused_sigurg_mp); 4620 tcp->tcp_fused_sigurg_mp = NULL; 4621 } 4622 4623 if (tcp->tcp_sack_info != NULL) { 4624 if (tcp->tcp_notsack_list != NULL) { 4625 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4626 } 4627 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4628 } 4629 4630 if (tcp->tcp_hopopts != NULL) { 4631 mi_free(tcp->tcp_hopopts); 4632 tcp->tcp_hopopts = NULL; 4633 tcp->tcp_hopoptslen = 0; 4634 } 4635 ASSERT(tcp->tcp_hopoptslen == 0); 4636 if (tcp->tcp_dstopts != NULL) { 4637 mi_free(tcp->tcp_dstopts); 4638 tcp->tcp_dstopts = NULL; 4639 tcp->tcp_dstoptslen = 0; 4640 } 4641 ASSERT(tcp->tcp_dstoptslen == 0); 4642 if (tcp->tcp_rtdstopts != NULL) { 4643 mi_free(tcp->tcp_rtdstopts); 4644 tcp->tcp_rtdstopts = NULL; 4645 tcp->tcp_rtdstoptslen = 0; 4646 } 4647 ASSERT(tcp->tcp_rtdstoptslen == 0); 4648 if (tcp->tcp_rthdr != NULL) { 4649 mi_free(tcp->tcp_rthdr); 4650 tcp->tcp_rthdr = NULL; 4651 tcp->tcp_rthdrlen = 0; 4652 } 4653 ASSERT(tcp->tcp_rthdrlen == 0); 4654 4655 ipp = &tcp->tcp_sticky_ipp; 4656 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4657 IPPF_RTHDR)) 4658 ip6_pkt_free(ipp); 4659 4660 /* 4661 * Free memory associated with the tcp/ip header template. 4662 */ 4663 4664 if (tcp->tcp_iphc != NULL) 4665 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4666 4667 /* 4668 * Following is really a blowing away a union. 4669 * It happens to have exactly two members of identical size 4670 * the following code is enough. 4671 */ 4672 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4673 } 4674 4675 4676 /* 4677 * Put a connection confirmation message upstream built from the 4678 * address information within 'iph' and 'tcph'. Report our success or failure. 4679 */ 4680 static boolean_t 4681 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4682 mblk_t **defermp) 4683 { 4684 sin_t sin; 4685 sin6_t sin6; 4686 mblk_t *mp; 4687 char *optp = NULL; 4688 int optlen = 0; 4689 cred_t *cr; 4690 4691 if (defermp != NULL) 4692 *defermp = NULL; 4693 4694 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4695 /* 4696 * Return in T_CONN_CON results of option negotiation through 4697 * the T_CONN_REQ. Note: If there is an real end-to-end option 4698 * negotiation, then what is received from remote end needs 4699 * to be taken into account but there is no such thing (yet?) 4700 * in our TCP/IP. 4701 * Note: We do not use mi_offset_param() here as 4702 * tcp_opts_conn_req contents do not directly come from 4703 * an application and are either generated in kernel or 4704 * from user input that was already verified. 4705 */ 4706 mp = tcp->tcp_conn.tcp_opts_conn_req; 4707 optp = (char *)(mp->b_rptr + 4708 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4709 optlen = (int) 4710 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4711 } 4712 4713 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4714 ipha_t *ipha = (ipha_t *)iphdr; 4715 4716 /* packet is IPv4 */ 4717 if (tcp->tcp_family == AF_INET) { 4718 sin = sin_null; 4719 sin.sin_addr.s_addr = ipha->ipha_src; 4720 sin.sin_port = *(uint16_t *)tcph->th_lport; 4721 sin.sin_family = AF_INET; 4722 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4723 (int)sizeof (sin_t), optp, optlen); 4724 } else { 4725 sin6 = sin6_null; 4726 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4727 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4728 sin6.sin6_family = AF_INET6; 4729 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4730 (int)sizeof (sin6_t), optp, optlen); 4731 4732 } 4733 } else { 4734 ip6_t *ip6h = (ip6_t *)iphdr; 4735 4736 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4737 ASSERT(tcp->tcp_family == AF_INET6); 4738 sin6 = sin6_null; 4739 sin6.sin6_addr = ip6h->ip6_src; 4740 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4741 sin6.sin6_family = AF_INET6; 4742 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4743 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4744 (int)sizeof (sin6_t), optp, optlen); 4745 } 4746 4747 if (!mp) 4748 return (B_FALSE); 4749 4750 if ((cr = DB_CRED(idmp)) != NULL) { 4751 mblk_setcred(mp, cr); 4752 DB_CPID(mp) = DB_CPID(idmp); 4753 } 4754 4755 if (defermp == NULL) 4756 putnext(tcp->tcp_rq, mp); 4757 else 4758 *defermp = mp; 4759 4760 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4761 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4762 return (B_TRUE); 4763 } 4764 4765 /* 4766 * Defense for the SYN attack - 4767 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4768 * one from the list of droppable eagers. This list is a subset of q0. 4769 * see comments before the definition of MAKE_DROPPABLE(). 4770 * 2. Don't drop a SYN request before its first timeout. This gives every 4771 * request at least til the first timeout to complete its 3-way handshake. 4772 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4773 * requests currently on the queue that has timed out. This will be used 4774 * as an indicator of whether an attack is under way, so that appropriate 4775 * actions can be taken. (It's incremented in tcp_timer() and decremented 4776 * either when eager goes into ESTABLISHED, or gets freed up.) 4777 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4778 * # of timeout drops back to <= q0len/32 => SYN alert off 4779 */ 4780 static boolean_t 4781 tcp_drop_q0(tcp_t *tcp) 4782 { 4783 tcp_t *eager; 4784 mblk_t *mp; 4785 tcp_stack_t *tcps = tcp->tcp_tcps; 4786 4787 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4788 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4789 4790 /* Pick oldest eager from the list of droppable eagers */ 4791 eager = tcp->tcp_eager_prev_drop_q0; 4792 4793 /* If list is empty. return B_FALSE */ 4794 if (eager == tcp) { 4795 return (B_FALSE); 4796 } 4797 4798 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4799 if ((mp = allocb(0, BPRI_HI)) == NULL) 4800 return (B_FALSE); 4801 4802 /* 4803 * Take this eager out from the list of droppable eagers since we are 4804 * going to drop it. 4805 */ 4806 MAKE_UNDROPPABLE(eager); 4807 4808 if (tcp->tcp_debug) { 4809 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4810 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4811 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4812 tcp->tcp_conn_req_cnt_q0, 4813 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4814 } 4815 4816 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4817 4818 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4819 CONN_INC_REF(eager->tcp_connp); 4820 4821 /* Mark the IRE created for this SYN request temporary */ 4822 tcp_ip_ire_mark_advice(eager); 4823 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4824 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4825 4826 return (B_TRUE); 4827 } 4828 4829 int 4830 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4831 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4832 { 4833 tcp_t *ltcp = lconnp->conn_tcp; 4834 tcp_t *tcp = connp->conn_tcp; 4835 mblk_t *tpi_mp; 4836 ipha_t *ipha; 4837 ip6_t *ip6h; 4838 sin6_t sin6; 4839 in6_addr_t v6dst; 4840 int err; 4841 int ifindex = 0; 4842 cred_t *cr; 4843 tcp_stack_t *tcps = tcp->tcp_tcps; 4844 4845 if (ipvers == IPV4_VERSION) { 4846 ipha = (ipha_t *)mp->b_rptr; 4847 4848 connp->conn_send = ip_output; 4849 connp->conn_recv = tcp_input; 4850 4851 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4852 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4853 4854 sin6 = sin6_null; 4855 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4856 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4857 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4858 sin6.sin6_family = AF_INET6; 4859 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4860 lconnp->conn_zoneid, tcps->tcps_netstack); 4861 if (tcp->tcp_recvdstaddr) { 4862 sin6_t sin6d; 4863 4864 sin6d = sin6_null; 4865 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4866 &sin6d.sin6_addr); 4867 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4868 sin6d.sin6_family = AF_INET; 4869 tpi_mp = mi_tpi_extconn_ind(NULL, 4870 (char *)&sin6d, sizeof (sin6_t), 4871 (char *)&tcp, 4872 (t_scalar_t)sizeof (intptr_t), 4873 (char *)&sin6d, sizeof (sin6_t), 4874 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4875 } else { 4876 tpi_mp = mi_tpi_conn_ind(NULL, 4877 (char *)&sin6, sizeof (sin6_t), 4878 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4879 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4880 } 4881 } else { 4882 ip6h = (ip6_t *)mp->b_rptr; 4883 4884 connp->conn_send = ip_output_v6; 4885 connp->conn_recv = tcp_input; 4886 4887 connp->conn_srcv6 = ip6h->ip6_dst; 4888 connp->conn_remv6 = ip6h->ip6_src; 4889 4890 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4891 ifindex = (int)DB_CKSUMSTUFF(mp); 4892 DB_CKSUMSTUFF(mp) = 0; 4893 4894 sin6 = sin6_null; 4895 sin6.sin6_addr = ip6h->ip6_src; 4896 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4897 sin6.sin6_family = AF_INET6; 4898 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4899 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4900 lconnp->conn_zoneid, tcps->tcps_netstack); 4901 4902 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4903 /* Pass up the scope_id of remote addr */ 4904 sin6.sin6_scope_id = ifindex; 4905 } else { 4906 sin6.sin6_scope_id = 0; 4907 } 4908 if (tcp->tcp_recvdstaddr) { 4909 sin6_t sin6d; 4910 4911 sin6d = sin6_null; 4912 sin6.sin6_addr = ip6h->ip6_dst; 4913 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4914 sin6d.sin6_family = AF_INET; 4915 tpi_mp = mi_tpi_extconn_ind(NULL, 4916 (char *)&sin6d, sizeof (sin6_t), 4917 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4918 (char *)&sin6d, sizeof (sin6_t), 4919 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4920 } else { 4921 tpi_mp = mi_tpi_conn_ind(NULL, 4922 (char *)&sin6, sizeof (sin6_t), 4923 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4924 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4925 } 4926 } 4927 4928 if (tpi_mp == NULL) 4929 return (ENOMEM); 4930 4931 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4932 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4933 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4934 connp->conn_fully_bound = B_FALSE; 4935 4936 /* Inherit information from the "parent" */ 4937 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4938 tcp->tcp_family = ltcp->tcp_family; 4939 tcp->tcp_wq = ltcp->tcp_wq; 4940 tcp->tcp_rq = ltcp->tcp_rq; 4941 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4942 tcp->tcp_detached = B_TRUE; 4943 if ((err = tcp_init_values(tcp)) != 0) { 4944 freemsg(tpi_mp); 4945 return (err); 4946 } 4947 4948 if (ipvers == IPV4_VERSION) { 4949 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4950 freemsg(tpi_mp); 4951 return (err); 4952 } 4953 ASSERT(tcp->tcp_ipha != NULL); 4954 } else { 4955 /* ifindex must be already set */ 4956 ASSERT(ifindex != 0); 4957 4958 if (ltcp->tcp_bound_if != 0) { 4959 /* 4960 * Set newtcp's bound_if equal to 4961 * listener's value. If ifindex is 4962 * not the same as ltcp->tcp_bound_if, 4963 * it must be a packet for the ipmp group 4964 * of interfaces 4965 */ 4966 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4967 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4968 tcp->tcp_bound_if = ifindex; 4969 } 4970 4971 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4972 tcp->tcp_recvifindex = 0; 4973 tcp->tcp_recvhops = 0xffffffffU; 4974 ASSERT(tcp->tcp_ip6h != NULL); 4975 } 4976 4977 tcp->tcp_lport = ltcp->tcp_lport; 4978 4979 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4980 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4981 /* 4982 * Listener had options of some sort; eager inherits. 4983 * Free up the eager template and allocate one 4984 * of the right size. 4985 */ 4986 if (tcp->tcp_hdr_grown) { 4987 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4988 } else { 4989 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4990 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4991 } 4992 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4993 KM_NOSLEEP); 4994 if (tcp->tcp_iphc == NULL) { 4995 tcp->tcp_iphc_len = 0; 4996 freemsg(tpi_mp); 4997 return (ENOMEM); 4998 } 4999 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5000 tcp->tcp_hdr_grown = B_TRUE; 5001 } 5002 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5003 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5004 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5005 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5006 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5007 5008 /* 5009 * Copy the IP+TCP header template from listener to eager 5010 */ 5011 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5012 if (tcp->tcp_ipversion == IPV6_VERSION) { 5013 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5014 IPPROTO_RAW) { 5015 tcp->tcp_ip6h = 5016 (ip6_t *)(tcp->tcp_iphc + 5017 sizeof (ip6i_t)); 5018 } else { 5019 tcp->tcp_ip6h = 5020 (ip6_t *)(tcp->tcp_iphc); 5021 } 5022 tcp->tcp_ipha = NULL; 5023 } else { 5024 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5025 tcp->tcp_ip6h = NULL; 5026 } 5027 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5028 tcp->tcp_ip_hdr_len); 5029 } else { 5030 /* 5031 * only valid case when ipversion of listener and 5032 * eager differ is when listener is IPv6 and 5033 * eager is IPv4. 5034 * Eager header template has been initialized to the 5035 * maximum v4 header sizes, which includes space for 5036 * TCP and IP options. 5037 */ 5038 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5039 (tcp->tcp_ipversion == IPV4_VERSION)); 5040 ASSERT(tcp->tcp_iphc_len >= 5041 TCP_MAX_COMBINED_HEADER_LENGTH); 5042 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5043 /* copy IP header fields individually */ 5044 tcp->tcp_ipha->ipha_ttl = 5045 ltcp->tcp_ip6h->ip6_hops; 5046 bcopy(ltcp->tcp_tcph->th_lport, 5047 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5048 } 5049 5050 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5051 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5052 sizeof (in_port_t)); 5053 5054 if (ltcp->tcp_lport == 0) { 5055 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5056 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5057 sizeof (in_port_t)); 5058 } 5059 5060 if (tcp->tcp_ipversion == IPV4_VERSION) { 5061 ASSERT(ipha != NULL); 5062 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5063 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5064 5065 /* Source routing option copyover (reverse it) */ 5066 if (tcps->tcps_rev_src_routes) 5067 tcp_opt_reverse(tcp, ipha); 5068 } else { 5069 ASSERT(ip6h != NULL); 5070 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5071 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5072 } 5073 5074 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5075 ASSERT(!tcp->tcp_tconnind_started); 5076 /* 5077 * If the SYN contains a credential, it's a loopback packet; attach 5078 * the credential to the TPI message. 5079 */ 5080 if ((cr = DB_CRED(idmp)) != NULL) { 5081 mblk_setcred(tpi_mp, cr); 5082 DB_CPID(tpi_mp) = DB_CPID(idmp); 5083 } 5084 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5085 5086 /* Inherit the listener's SSL protection state */ 5087 5088 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5089 kssl_hold_ent(tcp->tcp_kssl_ent); 5090 tcp->tcp_kssl_pending = B_TRUE; 5091 } 5092 5093 return (0); 5094 } 5095 5096 5097 int 5098 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5099 tcph_t *tcph, mblk_t *idmp) 5100 { 5101 tcp_t *ltcp = lconnp->conn_tcp; 5102 tcp_t *tcp = connp->conn_tcp; 5103 sin_t sin; 5104 mblk_t *tpi_mp = NULL; 5105 int err; 5106 cred_t *cr; 5107 tcp_stack_t *tcps = tcp->tcp_tcps; 5108 5109 sin = sin_null; 5110 sin.sin_addr.s_addr = ipha->ipha_src; 5111 sin.sin_port = *(uint16_t *)tcph->th_lport; 5112 sin.sin_family = AF_INET; 5113 if (ltcp->tcp_recvdstaddr) { 5114 sin_t sind; 5115 5116 sind = sin_null; 5117 sind.sin_addr.s_addr = ipha->ipha_dst; 5118 sind.sin_port = *(uint16_t *)tcph->th_fport; 5119 sind.sin_family = AF_INET; 5120 tpi_mp = mi_tpi_extconn_ind(NULL, 5121 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5122 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5123 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5124 } else { 5125 tpi_mp = mi_tpi_conn_ind(NULL, 5126 (char *)&sin, sizeof (sin_t), 5127 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5128 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5129 } 5130 5131 if (tpi_mp == NULL) { 5132 return (ENOMEM); 5133 } 5134 5135 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5136 connp->conn_send = ip_output; 5137 connp->conn_recv = tcp_input; 5138 connp->conn_fully_bound = B_FALSE; 5139 5140 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5141 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5142 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5143 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5144 5145 /* Inherit information from the "parent" */ 5146 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5147 tcp->tcp_family = ltcp->tcp_family; 5148 tcp->tcp_wq = ltcp->tcp_wq; 5149 tcp->tcp_rq = ltcp->tcp_rq; 5150 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5151 tcp->tcp_detached = B_TRUE; 5152 if ((err = tcp_init_values(tcp)) != 0) { 5153 freemsg(tpi_mp); 5154 return (err); 5155 } 5156 5157 /* 5158 * Let's make sure that eager tcp template has enough space to 5159 * copy IPv4 listener's tcp template. Since the conn_t structure is 5160 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5161 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5162 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5163 * extension headers or with ip6i_t struct). Note that bcopy() below 5164 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5165 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5166 */ 5167 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5168 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5169 5170 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5171 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5172 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5173 tcp->tcp_ttl = ltcp->tcp_ttl; 5174 tcp->tcp_tos = ltcp->tcp_tos; 5175 5176 /* Copy the IP+TCP header template from listener to eager */ 5177 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5178 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5179 tcp->tcp_ip6h = NULL; 5180 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5181 tcp->tcp_ip_hdr_len); 5182 5183 /* Initialize the IP addresses and Ports */ 5184 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5185 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5186 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5187 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5188 5189 /* Source routing option copyover (reverse it) */ 5190 if (tcps->tcps_rev_src_routes) 5191 tcp_opt_reverse(tcp, ipha); 5192 5193 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5194 ASSERT(!tcp->tcp_tconnind_started); 5195 5196 /* 5197 * If the SYN contains a credential, it's a loopback packet; attach 5198 * the credential to the TPI message. 5199 */ 5200 if ((cr = DB_CRED(idmp)) != NULL) { 5201 mblk_setcred(tpi_mp, cr); 5202 DB_CPID(tpi_mp) = DB_CPID(idmp); 5203 } 5204 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5205 5206 /* Inherit the listener's SSL protection state */ 5207 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5208 kssl_hold_ent(tcp->tcp_kssl_ent); 5209 tcp->tcp_kssl_pending = B_TRUE; 5210 } 5211 5212 return (0); 5213 } 5214 5215 /* 5216 * sets up conn for ipsec. 5217 * if the first mblk is M_CTL it is consumed and mpp is updated. 5218 * in case of error mpp is freed. 5219 */ 5220 conn_t * 5221 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5222 { 5223 conn_t *connp = tcp->tcp_connp; 5224 conn_t *econnp; 5225 squeue_t *new_sqp; 5226 mblk_t *first_mp = *mpp; 5227 mblk_t *mp = *mpp; 5228 boolean_t mctl_present = B_FALSE; 5229 uint_t ipvers; 5230 5231 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5232 if (econnp == NULL) { 5233 freemsg(first_mp); 5234 return (NULL); 5235 } 5236 if (DB_TYPE(mp) == M_CTL) { 5237 if (mp->b_cont == NULL || 5238 mp->b_cont->b_datap->db_type != M_DATA) { 5239 freemsg(first_mp); 5240 return (NULL); 5241 } 5242 mp = mp->b_cont; 5243 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5244 freemsg(first_mp); 5245 return (NULL); 5246 } 5247 5248 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5249 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5250 mctl_present = B_TRUE; 5251 } else { 5252 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5253 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5254 } 5255 5256 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5257 DB_CKSUMSTART(mp) = 0; 5258 5259 ASSERT(OK_32PTR(mp->b_rptr)); 5260 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5261 if (ipvers == IPV4_VERSION) { 5262 uint16_t *up; 5263 uint32_t ports; 5264 ipha_t *ipha; 5265 5266 ipha = (ipha_t *)mp->b_rptr; 5267 up = (uint16_t *)((uchar_t *)ipha + 5268 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5269 ports = *(uint32_t *)up; 5270 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5271 ipha->ipha_dst, ipha->ipha_src, ports); 5272 } else { 5273 uint16_t *up; 5274 uint32_t ports; 5275 uint16_t ip_hdr_len; 5276 uint8_t *nexthdrp; 5277 ip6_t *ip6h; 5278 tcph_t *tcph; 5279 5280 ip6h = (ip6_t *)mp->b_rptr; 5281 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5282 ip_hdr_len = IPV6_HDR_LEN; 5283 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5284 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5285 CONN_DEC_REF(econnp); 5286 freemsg(first_mp); 5287 return (NULL); 5288 } 5289 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5290 up = (uint16_t *)tcph->th_lport; 5291 ports = *(uint32_t *)up; 5292 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5293 ip6h->ip6_dst, ip6h->ip6_src, ports); 5294 } 5295 5296 /* 5297 * The caller already ensured that there is a sqp present. 5298 */ 5299 econnp->conn_sqp = new_sqp; 5300 5301 if (connp->conn_policy != NULL) { 5302 ipsec_in_t *ii; 5303 ii = (ipsec_in_t *)(first_mp->b_rptr); 5304 ASSERT(ii->ipsec_in_policy == NULL); 5305 IPPH_REFHOLD(connp->conn_policy); 5306 ii->ipsec_in_policy = connp->conn_policy; 5307 5308 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5309 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5310 CONN_DEC_REF(econnp); 5311 freemsg(first_mp); 5312 return (NULL); 5313 } 5314 } 5315 5316 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5317 CONN_DEC_REF(econnp); 5318 freemsg(first_mp); 5319 return (NULL); 5320 } 5321 5322 /* 5323 * If we know we have some policy, pass the "IPSEC" 5324 * options size TCP uses this adjust the MSS. 5325 */ 5326 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5327 if (mctl_present) { 5328 freeb(first_mp); 5329 *mpp = mp; 5330 } 5331 5332 return (econnp); 5333 } 5334 5335 /* 5336 * tcp_get_conn/tcp_free_conn 5337 * 5338 * tcp_get_conn is used to get a clean tcp connection structure. 5339 * It tries to reuse the connections put on the freelist by the 5340 * time_wait_collector failing which it goes to kmem_cache. This 5341 * way has two benefits compared to just allocating from and 5342 * freeing to kmem_cache. 5343 * 1) The time_wait_collector can free (which includes the cleanup) 5344 * outside the squeue. So when the interrupt comes, we have a clean 5345 * connection sitting in the freelist. Obviously, this buys us 5346 * performance. 5347 * 5348 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5349 * has multiple disadvantages - tying up the squeue during alloc, and the 5350 * fact that IPSec policy initialization has to happen here which 5351 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5352 * But allocating the conn/tcp in IP land is also not the best since 5353 * we can't check the 'q' and 'q0' which are protected by squeue and 5354 * blindly allocate memory which might have to be freed here if we are 5355 * not allowed to accept the connection. By using the freelist and 5356 * putting the conn/tcp back in freelist, we don't pay a penalty for 5357 * allocating memory without checking 'q/q0' and freeing it if we can't 5358 * accept the connection. 5359 * 5360 * Care should be taken to put the conn back in the same squeue's freelist 5361 * from which it was allocated. Best results are obtained if conn is 5362 * allocated from listener's squeue and freed to the same. Time wait 5363 * collector will free up the freelist is the connection ends up sitting 5364 * there for too long. 5365 */ 5366 void * 5367 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5368 { 5369 tcp_t *tcp = NULL; 5370 conn_t *connp = NULL; 5371 squeue_t *sqp = (squeue_t *)arg; 5372 tcp_squeue_priv_t *tcp_time_wait; 5373 netstack_t *ns; 5374 5375 tcp_time_wait = 5376 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5377 5378 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5379 tcp = tcp_time_wait->tcp_free_list; 5380 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5381 if (tcp != NULL) { 5382 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5383 tcp_time_wait->tcp_free_list_cnt--; 5384 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5385 tcp->tcp_time_wait_next = NULL; 5386 connp = tcp->tcp_connp; 5387 connp->conn_flags |= IPCL_REUSED; 5388 5389 ASSERT(tcp->tcp_tcps == NULL); 5390 ASSERT(connp->conn_netstack == NULL); 5391 ASSERT(tcp->tcp_rsrv_mp != NULL); 5392 ns = tcps->tcps_netstack; 5393 netstack_hold(ns); 5394 connp->conn_netstack = ns; 5395 tcp->tcp_tcps = tcps; 5396 TCPS_REFHOLD(tcps); 5397 ipcl_globalhash_insert(connp); 5398 return ((void *)connp); 5399 } 5400 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5401 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5402 tcps->tcps_netstack)) == NULL) 5403 return (NULL); 5404 tcp = connp->conn_tcp; 5405 /* 5406 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5407 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5408 */ 5409 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5410 ipcl_conn_destroy(connp); 5411 return (NULL); 5412 } 5413 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5414 tcp->tcp_tcps = tcps; 5415 TCPS_REFHOLD(tcps); 5416 5417 return ((void *)connp); 5418 } 5419 5420 /* 5421 * Update the cached label for the given tcp_t. This should be called once per 5422 * connection, and before any packets are sent or tcp_process_options is 5423 * invoked. Returns B_FALSE if the correct label could not be constructed. 5424 */ 5425 static boolean_t 5426 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5427 { 5428 conn_t *connp = tcp->tcp_connp; 5429 5430 if (tcp->tcp_ipversion == IPV4_VERSION) { 5431 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5432 int added; 5433 5434 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5435 connp->conn_mac_exempt, 5436 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5437 return (B_FALSE); 5438 5439 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5440 if (added == -1) 5441 return (B_FALSE); 5442 tcp->tcp_hdr_len += added; 5443 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5444 tcp->tcp_ip_hdr_len += added; 5445 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5446 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5447 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5448 tcp->tcp_hdr_len); 5449 if (added == -1) 5450 return (B_FALSE); 5451 tcp->tcp_hdr_len += added; 5452 tcp->tcp_tcph = (tcph_t *) 5453 ((uchar_t *)tcp->tcp_tcph + added); 5454 tcp->tcp_ip_hdr_len += added; 5455 } 5456 } else { 5457 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5458 5459 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5460 connp->conn_mac_exempt, 5461 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5462 return (B_FALSE); 5463 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5464 &tcp->tcp_label_len, optbuf) != 0) 5465 return (B_FALSE); 5466 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5467 return (B_FALSE); 5468 } 5469 5470 connp->conn_ulp_labeled = 1; 5471 5472 return (B_TRUE); 5473 } 5474 5475 /* BEGIN CSTYLED */ 5476 /* 5477 * 5478 * The sockfs ACCEPT path: 5479 * ======================= 5480 * 5481 * The eager is now established in its own perimeter as soon as SYN is 5482 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5483 * completes the accept processing on the acceptor STREAM. The sending 5484 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5485 * listener but a TLI/XTI listener completes the accept processing 5486 * on the listener perimeter. 5487 * 5488 * Common control flow for 3 way handshake: 5489 * ---------------------------------------- 5490 * 5491 * incoming SYN (listener perimeter) -> tcp_rput_data() 5492 * -> tcp_conn_request() 5493 * 5494 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5495 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5496 * 5497 * Sockfs ACCEPT Path: 5498 * ------------------- 5499 * 5500 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5501 * as STREAM entry point) 5502 * 5503 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5504 * 5505 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5506 * association (we are not behind eager's squeue but sockfs is protecting us 5507 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5508 * is changed to point at tcp_wput(). 5509 * 5510 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5511 * listener (done on listener's perimeter). 5512 * 5513 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5514 * accept. 5515 * 5516 * TLI/XTI client ACCEPT path: 5517 * --------------------------- 5518 * 5519 * soaccept() sends T_CONN_RES on the listener STREAM. 5520 * 5521 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5522 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5523 * 5524 * Locks: 5525 * ====== 5526 * 5527 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5528 * and listeners->tcp_eager_next_q. 5529 * 5530 * Referencing: 5531 * ============ 5532 * 5533 * 1) We start out in tcp_conn_request by eager placing a ref on 5534 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5535 * 5536 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5537 * doing so we place a ref on the eager. This ref is finally dropped at the 5538 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5539 * reference is dropped by the squeue framework. 5540 * 5541 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5542 * 5543 * The reference must be released by the same entity that added the reference 5544 * In the above scheme, the eager is the entity that adds and releases the 5545 * references. Note that tcp_accept_finish executes in the squeue of the eager 5546 * (albeit after it is attached to the acceptor stream). Though 1. executes 5547 * in the listener's squeue, the eager is nascent at this point and the 5548 * reference can be considered to have been added on behalf of the eager. 5549 * 5550 * Eager getting a Reset or listener closing: 5551 * ========================================== 5552 * 5553 * Once the listener and eager are linked, the listener never does the unlink. 5554 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5555 * a message on all eager perimeter. The eager then does the unlink, clears 5556 * any pointers to the listener's queue and drops the reference to the 5557 * listener. The listener waits in tcp_close outside the squeue until its 5558 * refcount has dropped to 1. This ensures that the listener has waited for 5559 * all eagers to clear their association with the listener. 5560 * 5561 * Similarly, if eager decides to go away, it can unlink itself and close. 5562 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5563 * the reference to eager is still valid because of the extra ref we put 5564 * in tcp_send_conn_ind. 5565 * 5566 * Listener can always locate the eager under the protection 5567 * of the listener->tcp_eager_lock, and then do a refhold 5568 * on the eager during the accept processing. 5569 * 5570 * The acceptor stream accesses the eager in the accept processing 5571 * based on the ref placed on eager before sending T_conn_ind. 5572 * The only entity that can negate this refhold is a listener close 5573 * which is mutually exclusive with an active acceptor stream. 5574 * 5575 * Eager's reference on the listener 5576 * =================================== 5577 * 5578 * If the accept happens (even on a closed eager) the eager drops its 5579 * reference on the listener at the start of tcp_accept_finish. If the 5580 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5581 * the reference is dropped in tcp_closei_local. If the listener closes, 5582 * the reference is dropped in tcp_eager_kill. In all cases the reference 5583 * is dropped while executing in the eager's context (squeue). 5584 */ 5585 /* END CSTYLED */ 5586 5587 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5588 5589 /* 5590 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5591 * tcp_rput_data will not see any SYN packets. 5592 */ 5593 /* ARGSUSED */ 5594 void 5595 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5596 { 5597 tcph_t *tcph; 5598 uint32_t seg_seq; 5599 tcp_t *eager; 5600 uint_t ipvers; 5601 ipha_t *ipha; 5602 ip6_t *ip6h; 5603 int err; 5604 conn_t *econnp = NULL; 5605 squeue_t *new_sqp; 5606 mblk_t *mp1; 5607 uint_t ip_hdr_len; 5608 conn_t *connp = (conn_t *)arg; 5609 tcp_t *tcp = connp->conn_tcp; 5610 cred_t *credp; 5611 tcp_stack_t *tcps = tcp->tcp_tcps; 5612 ip_stack_t *ipst; 5613 5614 if (tcp->tcp_state != TCPS_LISTEN) 5615 goto error2; 5616 5617 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5618 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5621 mutex_exit(&tcp->tcp_eager_lock); 5622 TCP_STAT(tcps, tcp_listendrop); 5623 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5624 if (tcp->tcp_debug) { 5625 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5626 "tcp_conn_request: listen backlog (max=%d) " 5627 "overflow (%d pending) on %s", 5628 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 5634 if (tcp->tcp_conn_req_cnt_q0 >= 5635 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5636 /* 5637 * Q0 is full. Drop a pending half-open req from the queue 5638 * to make room for the new SYN req. Also mark the time we 5639 * drop a SYN. 5640 * 5641 * A more aggressive defense against SYN attack will 5642 * be to set the "tcp_syn_defense" flag now. 5643 */ 5644 TCP_STAT(tcps, tcp_listendropq0); 5645 tcp->tcp_last_rcv_lbolt = lbolt64; 5646 if (!tcp_drop_q0(tcp)) { 5647 mutex_exit(&tcp->tcp_eager_lock); 5648 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5649 if (tcp->tcp_debug) { 5650 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5651 "tcp_conn_request: listen half-open queue " 5652 "(max=%d) full (%d pending) on %s", 5653 tcps->tcps_conn_req_max_q0, 5654 tcp->tcp_conn_req_cnt_q0, 5655 tcp_display(tcp, NULL, 5656 DISP_PORT_ONLY)); 5657 } 5658 goto error2; 5659 } 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 /* 5664 * IP adds STRUIO_EAGER and ensures that the received packet is 5665 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5666 * link local address. If IPSec is enabled, db_struioflag has 5667 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5668 * otherwise an error case if neither of them is set. 5669 */ 5670 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5671 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5672 DB_CKSUMSTART(mp) = 0; 5673 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5674 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5675 if (econnp == NULL) 5676 goto error2; 5677 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5678 econnp->conn_sqp = new_sqp; 5679 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5680 /* 5681 * mp is updated in tcp_get_ipsec_conn(). 5682 */ 5683 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5684 if (econnp == NULL) { 5685 /* 5686 * mp freed by tcp_get_ipsec_conn. 5687 */ 5688 return; 5689 } 5690 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5691 } else { 5692 goto error2; 5693 } 5694 5695 ASSERT(DB_TYPE(mp) == M_DATA); 5696 5697 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5698 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5699 ASSERT(OK_32PTR(mp->b_rptr)); 5700 if (ipvers == IPV4_VERSION) { 5701 ipha = (ipha_t *)mp->b_rptr; 5702 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5703 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5704 } else { 5705 ip6h = (ip6_t *)mp->b_rptr; 5706 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5707 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5708 } 5709 5710 if (tcp->tcp_family == AF_INET) { 5711 ASSERT(ipvers == IPV4_VERSION); 5712 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5713 } else { 5714 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5715 } 5716 5717 if (err) 5718 goto error3; 5719 5720 eager = econnp->conn_tcp; 5721 5722 /* 5723 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5724 * will always have that to send up. Otherwise, we need to do 5725 * special handling in case the allocation fails at that time. 5726 */ 5727 ASSERT(eager->tcp_ordrel_mp == NULL); 5728 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5729 goto error3; 5730 5731 /* Inherit various TCP parameters from the listener */ 5732 eager->tcp_naglim = tcp->tcp_naglim; 5733 eager->tcp_first_timer_threshold = 5734 tcp->tcp_first_timer_threshold; 5735 eager->tcp_second_timer_threshold = 5736 tcp->tcp_second_timer_threshold; 5737 5738 eager->tcp_first_ctimer_threshold = 5739 tcp->tcp_first_ctimer_threshold; 5740 eager->tcp_second_ctimer_threshold = 5741 tcp->tcp_second_ctimer_threshold; 5742 5743 /* 5744 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5745 * If it does not, the eager's receive window will be set to the 5746 * listener's receive window later in this function. 5747 */ 5748 eager->tcp_rwnd = 0; 5749 5750 /* 5751 * Inherit listener's tcp_init_cwnd. Need to do this before 5752 * calling tcp_process_options() where tcp_mss_set() is called 5753 * to set the initial cwnd. 5754 */ 5755 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5756 5757 /* 5758 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5759 * zone id before the accept is completed in tcp_wput_accept(). 5760 */ 5761 econnp->conn_zoneid = connp->conn_zoneid; 5762 econnp->conn_allzones = connp->conn_allzones; 5763 5764 /* Copy nexthop information from listener to eager */ 5765 if (connp->conn_nexthop_set) { 5766 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5767 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5768 } 5769 5770 /* 5771 * TSOL: tsol_input_proc() needs the eager's cred before the 5772 * eager is accepted 5773 */ 5774 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5775 crhold(credp); 5776 5777 /* 5778 * If the caller has the process-wide flag set, then default to MAC 5779 * exempt mode. This allows read-down to unlabeled hosts. 5780 */ 5781 if (getpflags(NET_MAC_AWARE, credp) != 0) 5782 econnp->conn_mac_exempt = B_TRUE; 5783 5784 if (is_system_labeled()) { 5785 cred_t *cr; 5786 5787 if (connp->conn_mlp_type != mlptSingle) { 5788 cr = econnp->conn_peercred = DB_CRED(mp); 5789 if (cr != NULL) 5790 crhold(cr); 5791 else 5792 cr = econnp->conn_cred; 5793 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5794 econnp, cred_t *, cr) 5795 } else { 5796 cr = econnp->conn_cred; 5797 DTRACE_PROBE2(syn_accept, conn_t *, 5798 econnp, cred_t *, cr) 5799 } 5800 5801 if (!tcp_update_label(eager, cr)) { 5802 DTRACE_PROBE3( 5803 tx__ip__log__error__connrequest__tcp, 5804 char *, "eager connp(1) label on SYN mp(2) failed", 5805 conn_t *, econnp, mblk_t *, mp); 5806 goto error3; 5807 } 5808 } 5809 5810 eager->tcp_hard_binding = B_TRUE; 5811 5812 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5813 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5814 5815 CL_INET_CONNECT(eager); 5816 5817 /* 5818 * No need to check for multicast destination since ip will only pass 5819 * up multicasts to those that have expressed interest 5820 * TODO: what about rejecting broadcasts? 5821 * Also check that source is not a multicast or broadcast address. 5822 */ 5823 eager->tcp_state = TCPS_SYN_RCVD; 5824 5825 5826 /* 5827 * There should be no ire in the mp as we are being called after 5828 * receiving the SYN. 5829 */ 5830 ASSERT(tcp_ire_mp(mp) == NULL); 5831 5832 /* 5833 * Adapt our mss, ttl, ... according to information provided in IRE. 5834 */ 5835 5836 if (tcp_adapt_ire(eager, NULL) == 0) { 5837 /* Undo the bind_hash_insert */ 5838 tcp_bind_hash_remove(eager); 5839 goto error3; 5840 } 5841 5842 /* Process all TCP options. */ 5843 tcp_process_options(eager, tcph); 5844 5845 /* Is the other end ECN capable? */ 5846 if (tcps->tcps_ecn_permitted >= 1 && 5847 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5848 eager->tcp_ecn_ok = B_TRUE; 5849 } 5850 5851 /* 5852 * listener->tcp_rq->q_hiwat should be the default window size or a 5853 * window size changed via SO_RCVBUF option. First round up the 5854 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5855 * scale option value if needed. Call tcp_rwnd_set() to finish the 5856 * setting. 5857 * 5858 * Note if there is a rpipe metric associated with the remote host, 5859 * we should not inherit receive window size from listener. 5860 */ 5861 eager->tcp_rwnd = MSS_ROUNDUP( 5862 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5863 eager->tcp_rwnd), eager->tcp_mss); 5864 if (eager->tcp_snd_ws_ok) 5865 tcp_set_ws_value(eager); 5866 /* 5867 * Note that this is the only place tcp_rwnd_set() is called for 5868 * accepting a connection. We need to call it here instead of 5869 * after the 3-way handshake because we need to tell the other 5870 * side our rwnd in the SYN-ACK segment. 5871 */ 5872 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5873 5874 /* 5875 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5876 * via soaccept()->soinheritoptions() which essentially applies 5877 * all the listener options to the new STREAM. The options that we 5878 * need to take care of are: 5879 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5880 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5881 * SO_SNDBUF, SO_RCVBUF. 5882 * 5883 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5884 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5885 * tcp_maxpsz_set() gets called later from 5886 * tcp_accept_finish(), the option takes effect. 5887 * 5888 */ 5889 /* Set the TCP options */ 5890 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5891 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5892 eager->tcp_oobinline = tcp->tcp_oobinline; 5893 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5894 eager->tcp_broadcast = tcp->tcp_broadcast; 5895 eager->tcp_useloopback = tcp->tcp_useloopback; 5896 eager->tcp_dontroute = tcp->tcp_dontroute; 5897 eager->tcp_linger = tcp->tcp_linger; 5898 eager->tcp_lingertime = tcp->tcp_lingertime; 5899 if (tcp->tcp_ka_enabled) 5900 eager->tcp_ka_enabled = 1; 5901 5902 /* Set the IP options */ 5903 econnp->conn_broadcast = connp->conn_broadcast; 5904 econnp->conn_loopback = connp->conn_loopback; 5905 econnp->conn_dontroute = connp->conn_dontroute; 5906 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5907 5908 /* Put a ref on the listener for the eager. */ 5909 CONN_INC_REF(connp); 5910 mutex_enter(&tcp->tcp_eager_lock); 5911 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5912 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5913 tcp->tcp_eager_next_q0 = eager; 5914 eager->tcp_eager_prev_q0 = tcp; 5915 5916 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5917 eager->tcp_listener = tcp; 5918 eager->tcp_saved_listener = tcp; 5919 5920 /* 5921 * Tag this detached tcp vector for later retrieval 5922 * by our listener client in tcp_accept(). 5923 */ 5924 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5925 tcp->tcp_conn_req_cnt_q0++; 5926 if (++tcp->tcp_conn_req_seqnum == -1) { 5927 /* 5928 * -1 is "special" and defined in TPI as something 5929 * that should never be used in T_CONN_IND 5930 */ 5931 ++tcp->tcp_conn_req_seqnum; 5932 } 5933 mutex_exit(&tcp->tcp_eager_lock); 5934 5935 if (tcp->tcp_syn_defense) { 5936 /* Don't drop the SYN that comes from a good IP source */ 5937 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5938 if (addr_cache != NULL && eager->tcp_remote == 5939 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5940 eager->tcp_dontdrop = B_TRUE; 5941 } 5942 } 5943 5944 /* 5945 * We need to insert the eager in its own perimeter but as soon 5946 * as we do that, we expose the eager to the classifier and 5947 * should not touch any field outside the eager's perimeter. 5948 * So do all the work necessary before inserting the eager 5949 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5950 * will succeed but undo everything if it fails. 5951 */ 5952 seg_seq = ABE32_TO_U32(tcph->th_seq); 5953 eager->tcp_irs = seg_seq; 5954 eager->tcp_rack = seg_seq; 5955 eager->tcp_rnxt = seg_seq + 1; 5956 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5957 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5958 eager->tcp_state = TCPS_SYN_RCVD; 5959 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5960 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5961 if (mp1 == NULL) { 5962 /* 5963 * Increment the ref count as we are going to 5964 * enqueueing an mp in squeue 5965 */ 5966 CONN_INC_REF(econnp); 5967 goto error; 5968 } 5969 DB_CPID(mp1) = tcp->tcp_cpid; 5970 eager->tcp_cpid = tcp->tcp_cpid; 5971 eager->tcp_open_time = lbolt64; 5972 5973 /* 5974 * We need to start the rto timer. In normal case, we start 5975 * the timer after sending the packet on the wire (or at 5976 * least believing that packet was sent by waiting for 5977 * CALL_IP_WPUT() to return). Since this is the first packet 5978 * being sent on the wire for the eager, our initial tcp_rto 5979 * is at least tcp_rexmit_interval_min which is a fairly 5980 * large value to allow the algorithm to adjust slowly to large 5981 * fluctuations of RTT during first few transmissions. 5982 * 5983 * Starting the timer first and then sending the packet in this 5984 * case shouldn't make much difference since tcp_rexmit_interval_min 5985 * is of the order of several 100ms and starting the timer 5986 * first and then sending the packet will result in difference 5987 * of few micro seconds. 5988 * 5989 * Without this optimization, we are forced to hold the fanout 5990 * lock across the ipcl_bind_insert() and sending the packet 5991 * so that we don't race against an incoming packet (maybe RST) 5992 * for this eager. 5993 * 5994 * It is necessary to acquire an extra reference on the eager 5995 * at this point and hold it until after tcp_send_data() to 5996 * ensure against an eager close race. 5997 */ 5998 5999 CONN_INC_REF(eager->tcp_connp); 6000 6001 TCP_TIMER_RESTART(eager, eager->tcp_rto); 6002 6003 /* 6004 * Insert the eager in its own perimeter now. We are ready to deal 6005 * with any packets on eager. 6006 */ 6007 if (eager->tcp_ipversion == IPV4_VERSION) { 6008 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6009 goto error; 6010 } 6011 } else { 6012 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6013 goto error; 6014 } 6015 } 6016 6017 /* mark conn as fully-bound */ 6018 econnp->conn_fully_bound = B_TRUE; 6019 6020 /* Send the SYN-ACK */ 6021 tcp_send_data(eager, eager->tcp_wq, mp1); 6022 CONN_DEC_REF(eager->tcp_connp); 6023 freemsg(mp); 6024 6025 return; 6026 error: 6027 freemsg(mp1); 6028 eager->tcp_closemp_used = B_TRUE; 6029 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6030 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 6031 econnp, SQTAG_TCP_CONN_REQ_2); 6032 6033 /* 6034 * If a connection already exists, send the mp to that connections so 6035 * that it can be appropriately dealt with. 6036 */ 6037 ipst = tcps->tcps_netstack->netstack_ip; 6038 6039 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6040 if (!IPCL_IS_CONNECTED(econnp)) { 6041 /* 6042 * Something bad happened. ipcl_conn_insert() 6043 * failed because a connection already existed 6044 * in connected hash but we can't find it 6045 * anymore (someone blew it away). Just 6046 * free this message and hopefully remote 6047 * will retransmit at which time the SYN can be 6048 * treated as a new connection or dealth with 6049 * a TH_RST if a connection already exists. 6050 */ 6051 CONN_DEC_REF(econnp); 6052 freemsg(mp); 6053 } else { 6054 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6055 econnp, SQTAG_TCP_CONN_REQ_1); 6056 } 6057 } else { 6058 /* Nobody wants this packet */ 6059 freemsg(mp); 6060 } 6061 return; 6062 error3: 6063 CONN_DEC_REF(econnp); 6064 error2: 6065 freemsg(mp); 6066 } 6067 6068 /* 6069 * In an ideal case of vertical partition in NUMA architecture, its 6070 * beneficial to have the listener and all the incoming connections 6071 * tied to the same squeue. The other constraint is that incoming 6072 * connections should be tied to the squeue attached to interrupted 6073 * CPU for obvious locality reason so this leaves the listener to 6074 * be tied to the same squeue. Our only problem is that when listener 6075 * is binding, the CPU that will get interrupted by the NIC whose 6076 * IP address the listener is binding to is not even known. So 6077 * the code below allows us to change that binding at the time the 6078 * CPU is interrupted by virtue of incoming connection's squeue. 6079 * 6080 * This is usefull only in case of a listener bound to a specific IP 6081 * address. For other kind of listeners, they get bound the 6082 * very first time and there is no attempt to rebind them. 6083 */ 6084 void 6085 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6086 { 6087 conn_t *connp = (conn_t *)arg; 6088 squeue_t *sqp = (squeue_t *)arg2; 6089 squeue_t *new_sqp; 6090 uint32_t conn_flags; 6091 6092 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6093 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6094 } else { 6095 goto done; 6096 } 6097 6098 if (connp->conn_fanout == NULL) 6099 goto done; 6100 6101 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6102 mutex_enter(&connp->conn_fanout->connf_lock); 6103 mutex_enter(&connp->conn_lock); 6104 /* 6105 * No one from read or write side can access us now 6106 * except for already queued packets on this squeue. 6107 * But since we haven't changed the squeue yet, they 6108 * can't execute. If they are processed after we have 6109 * changed the squeue, they are sent back to the 6110 * correct squeue down below. 6111 * But a listner close can race with processing of 6112 * incoming SYN. If incoming SYN processing changes 6113 * the squeue then the listener close which is waiting 6114 * to enter the squeue would operate on the wrong 6115 * squeue. Hence we don't change the squeue here unless 6116 * the refcount is exactly the minimum refcount. The 6117 * minimum refcount of 4 is counted as - 1 each for 6118 * TCP and IP, 1 for being in the classifier hash, and 6119 * 1 for the mblk being processed. 6120 */ 6121 6122 if (connp->conn_ref != 4 || 6123 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6124 mutex_exit(&connp->conn_lock); 6125 mutex_exit(&connp->conn_fanout->connf_lock); 6126 goto done; 6127 } 6128 if (connp->conn_sqp != new_sqp) { 6129 while (connp->conn_sqp != new_sqp) 6130 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6131 } 6132 6133 do { 6134 conn_flags = connp->conn_flags; 6135 conn_flags |= IPCL_FULLY_BOUND; 6136 (void) cas32(&connp->conn_flags, connp->conn_flags, 6137 conn_flags); 6138 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6139 6140 mutex_exit(&connp->conn_fanout->connf_lock); 6141 mutex_exit(&connp->conn_lock); 6142 } 6143 6144 done: 6145 if (connp->conn_sqp != sqp) { 6146 CONN_INC_REF(connp); 6147 squeue_fill(connp->conn_sqp, mp, 6148 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6149 } else { 6150 tcp_conn_request(connp, mp, sqp); 6151 } 6152 } 6153 6154 /* 6155 * Successful connect request processing begins when our client passes 6156 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6157 * our T_OK_ACK reply message upstream. The control flow looks like this: 6158 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6159 * upstream <- tcp_rput() <- IP 6160 * After various error checks are completed, tcp_connect() lays 6161 * the target address and port into the composite header template, 6162 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6163 * request followed by an IRE request, and passes the three mblk message 6164 * down to IP looking like this: 6165 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6166 * Processing continues in tcp_rput() when we receive the following message: 6167 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6168 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6169 * to fire off the connection request, and then passes the T_OK_ACK mblk 6170 * upstream that we filled in below. There are, of course, numerous 6171 * error conditions along the way which truncate the processing described 6172 * above. 6173 */ 6174 static void 6175 tcp_connect(tcp_t *tcp, mblk_t *mp) 6176 { 6177 sin_t *sin; 6178 sin6_t *sin6; 6179 queue_t *q = tcp->tcp_wq; 6180 struct T_conn_req *tcr; 6181 ipaddr_t *dstaddrp; 6182 in_port_t dstport; 6183 uint_t srcid; 6184 6185 tcr = (struct T_conn_req *)mp->b_rptr; 6186 6187 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6188 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6189 tcp_err_ack(tcp, mp, TPROTO, 0); 6190 return; 6191 } 6192 6193 /* 6194 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 6195 * will always have that to send up. Otherwise, we need to do 6196 * special handling in case the allocation fails at that time. 6197 */ 6198 ASSERT(tcp->tcp_ordrel_mp == NULL); 6199 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 6200 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6201 return; 6202 } 6203 6204 /* 6205 * Determine packet type based on type of address passed in 6206 * the request should contain an IPv4 or IPv6 address. 6207 * Make sure that address family matches the type of 6208 * family of the the address passed down 6209 */ 6210 switch (tcr->DEST_length) { 6211 default: 6212 tcp_err_ack(tcp, mp, TBADADDR, 0); 6213 return; 6214 6215 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6216 /* 6217 * XXX: The check for valid DEST_length was not there 6218 * in earlier releases and some buggy 6219 * TLI apps (e.g Sybase) got away with not feeding 6220 * in sin_zero part of address. 6221 * We allow that bug to keep those buggy apps humming. 6222 * Test suites require the check on DEST_length. 6223 * We construct a new mblk with valid DEST_length 6224 * free the original so the rest of the code does 6225 * not have to keep track of this special shorter 6226 * length address case. 6227 */ 6228 mblk_t *nmp; 6229 struct T_conn_req *ntcr; 6230 sin_t *nsin; 6231 6232 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6233 tcr->OPT_length, BPRI_HI); 6234 if (nmp == NULL) { 6235 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6236 return; 6237 } 6238 ntcr = (struct T_conn_req *)nmp->b_rptr; 6239 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6240 ntcr->PRIM_type = T_CONN_REQ; 6241 ntcr->DEST_length = sizeof (sin_t); 6242 ntcr->DEST_offset = sizeof (struct T_conn_req); 6243 6244 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6245 *nsin = sin_null; 6246 /* Get pointer to shorter address to copy from original mp */ 6247 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6248 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6249 if (sin == NULL || !OK_32PTR((char *)sin)) { 6250 freemsg(nmp); 6251 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6252 return; 6253 } 6254 nsin->sin_family = sin->sin_family; 6255 nsin->sin_port = sin->sin_port; 6256 nsin->sin_addr = sin->sin_addr; 6257 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6258 nmp->b_wptr = (uchar_t *)&nsin[1]; 6259 if (tcr->OPT_length != 0) { 6260 ntcr->OPT_length = tcr->OPT_length; 6261 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6262 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6263 (uchar_t *)ntcr + ntcr->OPT_offset, 6264 tcr->OPT_length); 6265 nmp->b_wptr += tcr->OPT_length; 6266 } 6267 freemsg(mp); /* original mp freed */ 6268 mp = nmp; /* re-initialize original variables */ 6269 tcr = ntcr; 6270 } 6271 /* FALLTHRU */ 6272 6273 case sizeof (sin_t): 6274 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6275 sizeof (sin_t)); 6276 if (sin == NULL || !OK_32PTR((char *)sin)) { 6277 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6278 return; 6279 } 6280 if (tcp->tcp_family != AF_INET || 6281 sin->sin_family != AF_INET) { 6282 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6283 return; 6284 } 6285 if (sin->sin_port == 0) { 6286 tcp_err_ack(tcp, mp, TBADADDR, 0); 6287 return; 6288 } 6289 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6290 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6291 return; 6292 } 6293 6294 break; 6295 6296 case sizeof (sin6_t): 6297 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6298 sizeof (sin6_t)); 6299 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6300 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6301 return; 6302 } 6303 if (tcp->tcp_family != AF_INET6 || 6304 sin6->sin6_family != AF_INET6) { 6305 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6306 return; 6307 } 6308 if (sin6->sin6_port == 0) { 6309 tcp_err_ack(tcp, mp, TBADADDR, 0); 6310 return; 6311 } 6312 break; 6313 } 6314 /* 6315 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6316 * should key on their sequence number and cut them loose. 6317 */ 6318 6319 /* 6320 * If options passed in, feed it for verification and handling 6321 */ 6322 if (tcr->OPT_length != 0) { 6323 mblk_t *ok_mp; 6324 mblk_t *discon_mp; 6325 mblk_t *conn_opts_mp; 6326 int t_error, sys_error, do_disconnect; 6327 6328 conn_opts_mp = NULL; 6329 6330 if (tcp_conprim_opt_process(tcp, mp, 6331 &do_disconnect, &t_error, &sys_error) < 0) { 6332 if (do_disconnect) { 6333 ASSERT(t_error == 0 && sys_error == 0); 6334 discon_mp = mi_tpi_discon_ind(NULL, 6335 ECONNREFUSED, 0); 6336 if (!discon_mp) { 6337 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6338 TSYSERR, ENOMEM); 6339 return; 6340 } 6341 ok_mp = mi_tpi_ok_ack_alloc(mp); 6342 if (!ok_mp) { 6343 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6344 TSYSERR, ENOMEM); 6345 return; 6346 } 6347 qreply(q, ok_mp); 6348 qreply(q, discon_mp); /* no flush! */ 6349 } else { 6350 ASSERT(t_error != 0); 6351 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6352 sys_error); 6353 } 6354 return; 6355 } 6356 /* 6357 * Success in setting options, the mp option buffer represented 6358 * by OPT_length/offset has been potentially modified and 6359 * contains results of option processing. We copy it in 6360 * another mp to save it for potentially influencing returning 6361 * it in T_CONN_CONN. 6362 */ 6363 if (tcr->OPT_length != 0) { /* there are resulting options */ 6364 conn_opts_mp = copyb(mp); 6365 if (!conn_opts_mp) { 6366 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6367 TSYSERR, ENOMEM); 6368 return; 6369 } 6370 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6371 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6372 /* 6373 * Note: 6374 * These resulting option negotiation can include any 6375 * end-to-end negotiation options but there no such 6376 * thing (yet?) in our TCP/IP. 6377 */ 6378 } 6379 } 6380 6381 /* 6382 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6383 * make sure that the template IP header in the tcp structure is an 6384 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6385 * need to this before we call tcp_bindi() so that the port lookup 6386 * code will look for ports in the correct port space (IPv4 and 6387 * IPv6 have separate port spaces). 6388 */ 6389 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6390 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6391 int err = 0; 6392 6393 err = tcp_header_init_ipv4(tcp); 6394 if (err != 0) { 6395 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6396 goto connect_failed; 6397 } 6398 if (tcp->tcp_lport != 0) 6399 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6400 } 6401 6402 if (tcp->tcp_issocket) { 6403 /* 6404 * TCP is _D_SODIRECT and sockfs is directly above so save 6405 * the shared sonode sodirect_t pointer (if any) to enable 6406 * TCP sodirect. 6407 */ 6408 tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq); 6409 } 6410 6411 switch (tcp->tcp_state) { 6412 case TCPS_IDLE: 6413 /* 6414 * We support quick connect, refer to comments in 6415 * tcp_connect_*() 6416 */ 6417 /* FALLTHRU */ 6418 case TCPS_BOUND: 6419 case TCPS_LISTEN: 6420 if (tcp->tcp_family == AF_INET6) { 6421 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6422 tcp_connect_ipv6(tcp, mp, 6423 &sin6->sin6_addr, 6424 sin6->sin6_port, sin6->sin6_flowinfo, 6425 sin6->__sin6_src_id, sin6->sin6_scope_id); 6426 return; 6427 } 6428 /* 6429 * Destination adress is mapped IPv6 address. 6430 * Source bound address should be unspecified or 6431 * IPv6 mapped address as well. 6432 */ 6433 if (!IN6_IS_ADDR_UNSPECIFIED( 6434 &tcp->tcp_bound_source_v6) && 6435 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6436 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6437 EADDRNOTAVAIL); 6438 break; 6439 } 6440 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6441 dstport = sin6->sin6_port; 6442 srcid = sin6->__sin6_src_id; 6443 } else { 6444 dstaddrp = &sin->sin_addr.s_addr; 6445 dstport = sin->sin_port; 6446 srcid = 0; 6447 } 6448 6449 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6450 return; 6451 default: 6452 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6453 break; 6454 } 6455 /* 6456 * Note: Code below is the "failure" case 6457 */ 6458 /* return error ack and blow away saved option results if any */ 6459 connect_failed: 6460 if (mp != NULL) 6461 putnext(tcp->tcp_rq, mp); 6462 else { 6463 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6464 TSYSERR, ENOMEM); 6465 } 6466 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6467 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6468 } 6469 6470 /* 6471 * Handle connect to IPv4 destinations, including connections for AF_INET6 6472 * sockets connecting to IPv4 mapped IPv6 destinations. 6473 */ 6474 static void 6475 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6476 uint_t srcid) 6477 { 6478 tcph_t *tcph; 6479 mblk_t *mp1; 6480 ipaddr_t dstaddr = *dstaddrp; 6481 int32_t oldstate; 6482 uint16_t lport; 6483 tcp_stack_t *tcps = tcp->tcp_tcps; 6484 6485 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6486 6487 /* Check for attempt to connect to INADDR_ANY */ 6488 if (dstaddr == INADDR_ANY) { 6489 /* 6490 * SunOS 4.x and 4.3 BSD allow an application 6491 * to connect a TCP socket to INADDR_ANY. 6492 * When they do this, the kernel picks the 6493 * address of one interface and uses it 6494 * instead. The kernel usually ends up 6495 * picking the address of the loopback 6496 * interface. This is an undocumented feature. 6497 * However, we provide the same thing here 6498 * in order to have source and binary 6499 * compatibility with SunOS 4.x. 6500 * Update the T_CONN_REQ (sin/sin6) since it is used to 6501 * generate the T_CONN_CON. 6502 */ 6503 dstaddr = htonl(INADDR_LOOPBACK); 6504 *dstaddrp = dstaddr; 6505 } 6506 6507 /* Handle __sin6_src_id if socket not bound to an IP address */ 6508 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6509 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6510 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6511 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6512 tcp->tcp_ipha->ipha_src); 6513 } 6514 6515 /* 6516 * Don't let an endpoint connect to itself. Note that 6517 * the test here does not catch the case where the 6518 * source IP addr was left unspecified by the user. In 6519 * this case, the source addr is set in tcp_adapt_ire() 6520 * using the reply to the T_BIND message that we send 6521 * down to IP here and the check is repeated in tcp_rput_other. 6522 */ 6523 if (dstaddr == tcp->tcp_ipha->ipha_src && 6524 dstport == tcp->tcp_lport) { 6525 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6526 goto failed; 6527 } 6528 6529 tcp->tcp_ipha->ipha_dst = dstaddr; 6530 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6531 6532 /* 6533 * Massage a source route if any putting the first hop 6534 * in iph_dst. Compute a starting value for the checksum which 6535 * takes into account that the original iph_dst should be 6536 * included in the checksum but that ip will include the 6537 * first hop in the source route in the tcp checksum. 6538 */ 6539 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6540 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6541 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6542 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6543 if ((int)tcp->tcp_sum < 0) 6544 tcp->tcp_sum--; 6545 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6546 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6547 (tcp->tcp_sum >> 16)); 6548 tcph = tcp->tcp_tcph; 6549 *(uint16_t *)tcph->th_fport = dstport; 6550 tcp->tcp_fport = dstport; 6551 6552 oldstate = tcp->tcp_state; 6553 /* 6554 * At this point the remote destination address and remote port fields 6555 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6556 * have to see which state tcp was in so we can take apropriate action. 6557 */ 6558 if (oldstate == TCPS_IDLE) { 6559 /* 6560 * We support a quick connect capability here, allowing 6561 * clients to transition directly from IDLE to SYN_SENT 6562 * tcp_bindi will pick an unused port, insert the connection 6563 * in the bind hash and transition to BOUND state. 6564 */ 6565 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6566 tcp, B_TRUE); 6567 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6568 B_FALSE, B_FALSE); 6569 if (lport == 0) { 6570 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6571 goto failed; 6572 } 6573 } 6574 tcp->tcp_state = TCPS_SYN_SENT; 6575 6576 /* 6577 * TODO: allow data with connect requests 6578 * by unlinking M_DATA trailers here and 6579 * linking them in behind the T_OK_ACK mblk. 6580 * The tcp_rput() bind ack handler would then 6581 * feed them to tcp_wput_data() rather than call 6582 * tcp_timer(). 6583 */ 6584 mp = mi_tpi_ok_ack_alloc(mp); 6585 if (!mp) { 6586 tcp->tcp_state = oldstate; 6587 goto failed; 6588 } 6589 if (tcp->tcp_family == AF_INET) { 6590 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6591 sizeof (ipa_conn_t)); 6592 } else { 6593 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6594 sizeof (ipa6_conn_t)); 6595 } 6596 if (mp1) { 6597 /* 6598 * We need to make sure that the conn_recv is set to a non-null 6599 * value before we insert the conn_t into the classifier table. 6600 * This is to avoid a race with an incoming packet which does 6601 * an ipcl_classify(). 6602 */ 6603 tcp->tcp_connp->conn_recv = tcp_input; 6604 6605 /* Hang onto the T_OK_ACK for later. */ 6606 linkb(mp1, mp); 6607 mblk_setcred(mp1, tcp->tcp_cred); 6608 if (tcp->tcp_family == AF_INET) 6609 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6610 else { 6611 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6612 &tcp->tcp_sticky_ipp); 6613 } 6614 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6615 tcp->tcp_active_open = 1; 6616 /* 6617 * If the bind cannot complete immediately 6618 * IP will arrange to call tcp_rput_other 6619 * when the bind completes. 6620 */ 6621 if (mp1 != NULL) 6622 tcp_rput_other(tcp, mp1); 6623 return; 6624 } 6625 /* Error case */ 6626 tcp->tcp_state = oldstate; 6627 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6628 6629 failed: 6630 /* return error ack and blow away saved option results if any */ 6631 if (mp != NULL) 6632 putnext(tcp->tcp_rq, mp); 6633 else { 6634 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6635 TSYSERR, ENOMEM); 6636 } 6637 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6638 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6639 6640 } 6641 6642 /* 6643 * Handle connect to IPv6 destinations. 6644 */ 6645 static void 6646 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6647 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6648 { 6649 tcph_t *tcph; 6650 mblk_t *mp1; 6651 ip6_rthdr_t *rth; 6652 int32_t oldstate; 6653 uint16_t lport; 6654 tcp_stack_t *tcps = tcp->tcp_tcps; 6655 6656 ASSERT(tcp->tcp_family == AF_INET6); 6657 6658 /* 6659 * If we're here, it means that the destination address is a native 6660 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6661 * reason why it might not be IPv6 is if the socket was bound to an 6662 * IPv4-mapped IPv6 address. 6663 */ 6664 if (tcp->tcp_ipversion != IPV6_VERSION) { 6665 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6666 goto failed; 6667 } 6668 6669 /* 6670 * Interpret a zero destination to mean loopback. 6671 * Update the T_CONN_REQ (sin/sin6) since it is used to 6672 * generate the T_CONN_CON. 6673 */ 6674 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6675 *dstaddrp = ipv6_loopback; 6676 } 6677 6678 /* Handle __sin6_src_id if socket not bound to an IP address */ 6679 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6680 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6681 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6682 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6683 } 6684 6685 /* 6686 * Take care of the scope_id now and add ip6i_t 6687 * if ip6i_t is not already allocated through TCP 6688 * sticky options. At this point tcp_ip6h does not 6689 * have dst info, thus use dstaddrp. 6690 */ 6691 if (scope_id != 0 && 6692 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6693 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6694 ip6i_t *ip6i; 6695 6696 ipp->ipp_ifindex = scope_id; 6697 ip6i = (ip6i_t *)tcp->tcp_iphc; 6698 6699 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6700 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6701 /* Already allocated */ 6702 ip6i->ip6i_flags |= IP6I_IFINDEX; 6703 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6704 ipp->ipp_fields |= IPPF_SCOPE_ID; 6705 } else { 6706 int reterr; 6707 6708 ipp->ipp_fields |= IPPF_SCOPE_ID; 6709 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6710 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6711 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6712 if (reterr != 0) 6713 goto failed; 6714 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6715 } 6716 } 6717 6718 /* 6719 * Don't let an endpoint connect to itself. Note that 6720 * the test here does not catch the case where the 6721 * source IP addr was left unspecified by the user. In 6722 * this case, the source addr is set in tcp_adapt_ire() 6723 * using the reply to the T_BIND message that we send 6724 * down to IP here and the check is repeated in tcp_rput_other. 6725 */ 6726 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6727 (dstport == tcp->tcp_lport)) { 6728 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6729 goto failed; 6730 } 6731 6732 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6733 tcp->tcp_remote_v6 = *dstaddrp; 6734 tcp->tcp_ip6h->ip6_vcf = 6735 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6736 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6737 6738 6739 /* 6740 * Massage a routing header (if present) putting the first hop 6741 * in ip6_dst. Compute a starting value for the checksum which 6742 * takes into account that the original ip6_dst should be 6743 * included in the checksum but that ip will include the 6744 * first hop in the source route in the tcp checksum. 6745 */ 6746 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6747 if (rth != NULL) { 6748 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6749 tcps->tcps_netstack); 6750 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6751 (tcp->tcp_sum >> 16)); 6752 } else { 6753 tcp->tcp_sum = 0; 6754 } 6755 6756 tcph = tcp->tcp_tcph; 6757 *(uint16_t *)tcph->th_fport = dstport; 6758 tcp->tcp_fport = dstport; 6759 6760 oldstate = tcp->tcp_state; 6761 /* 6762 * At this point the remote destination address and remote port fields 6763 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6764 * have to see which state tcp was in so we can take apropriate action. 6765 */ 6766 if (oldstate == TCPS_IDLE) { 6767 /* 6768 * We support a quick connect capability here, allowing 6769 * clients to transition directly from IDLE to SYN_SENT 6770 * tcp_bindi will pick an unused port, insert the connection 6771 * in the bind hash and transition to BOUND state. 6772 */ 6773 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6774 tcp, B_TRUE); 6775 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6776 B_FALSE, B_FALSE); 6777 if (lport == 0) { 6778 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6779 goto failed; 6780 } 6781 } 6782 tcp->tcp_state = TCPS_SYN_SENT; 6783 /* 6784 * TODO: allow data with connect requests 6785 * by unlinking M_DATA trailers here and 6786 * linking them in behind the T_OK_ACK mblk. 6787 * The tcp_rput() bind ack handler would then 6788 * feed them to tcp_wput_data() rather than call 6789 * tcp_timer(). 6790 */ 6791 mp = mi_tpi_ok_ack_alloc(mp); 6792 if (!mp) { 6793 tcp->tcp_state = oldstate; 6794 goto failed; 6795 } 6796 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6797 if (mp1) { 6798 /* 6799 * We need to make sure that the conn_recv is set to a non-null 6800 * value before we insert the conn_t into the classifier table. 6801 * This is to avoid a race with an incoming packet which does 6802 * an ipcl_classify(). 6803 */ 6804 tcp->tcp_connp->conn_recv = tcp_input; 6805 6806 /* Hang onto the T_OK_ACK for later. */ 6807 linkb(mp1, mp); 6808 mblk_setcred(mp1, tcp->tcp_cred); 6809 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6810 &tcp->tcp_sticky_ipp); 6811 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6812 tcp->tcp_active_open = 1; 6813 /* ip_bind_v6() may return ACK or ERROR */ 6814 if (mp1 != NULL) 6815 tcp_rput_other(tcp, mp1); 6816 return; 6817 } 6818 /* Error case */ 6819 tcp->tcp_state = oldstate; 6820 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6821 6822 failed: 6823 /* return error ack and blow away saved option results if any */ 6824 if (mp != NULL) 6825 putnext(tcp->tcp_rq, mp); 6826 else { 6827 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6828 TSYSERR, ENOMEM); 6829 } 6830 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6831 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6832 } 6833 6834 /* 6835 * We need a stream q for detached closing tcp connections 6836 * to use. Our client hereby indicates that this q is the 6837 * one to use. 6838 */ 6839 static void 6840 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6841 { 6842 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6843 queue_t *q = tcp->tcp_wq; 6844 tcp_stack_t *tcps = tcp->tcp_tcps; 6845 6846 #ifdef NS_DEBUG 6847 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6848 tcps->tcps_netstack->netstack_stackid); 6849 #endif 6850 mp->b_datap->db_type = M_IOCACK; 6851 iocp->ioc_count = 0; 6852 mutex_enter(&tcps->tcps_g_q_lock); 6853 if (tcps->tcps_g_q != NULL) { 6854 mutex_exit(&tcps->tcps_g_q_lock); 6855 iocp->ioc_error = EALREADY; 6856 } else { 6857 mblk_t *mp1; 6858 6859 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6860 if (mp1 == NULL) { 6861 mutex_exit(&tcps->tcps_g_q_lock); 6862 iocp->ioc_error = ENOMEM; 6863 } else { 6864 tcps->tcps_g_q = tcp->tcp_rq; 6865 mutex_exit(&tcps->tcps_g_q_lock); 6866 iocp->ioc_error = 0; 6867 iocp->ioc_rval = 0; 6868 /* 6869 * We are passing tcp_sticky_ipp as NULL 6870 * as it is not useful for tcp_default queue 6871 * 6872 * Set conn_recv just in case. 6873 */ 6874 tcp->tcp_connp->conn_recv = tcp_conn_request; 6875 6876 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6877 if (mp1 != NULL) 6878 tcp_rput_other(tcp, mp1); 6879 } 6880 } 6881 qreply(q, mp); 6882 } 6883 6884 /* 6885 * Our client hereby directs us to reject the connection request 6886 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6887 * of sending the appropriate RST, not an ICMP error. 6888 */ 6889 static void 6890 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6891 { 6892 tcp_t *ltcp = NULL; 6893 t_scalar_t seqnum; 6894 conn_t *connp; 6895 tcp_stack_t *tcps = tcp->tcp_tcps; 6896 6897 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6898 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6899 tcp_err_ack(tcp, mp, TPROTO, 0); 6900 return; 6901 } 6902 6903 /* 6904 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6905 * when the stream is in BOUND state. Do not send a reset, 6906 * since the destination IP address is not valid, and it can 6907 * be the initialized value of all zeros (broadcast address). 6908 * 6909 * If TCP has sent down a bind request to IP and has not 6910 * received the reply, reject the request. Otherwise, TCP 6911 * will be confused. 6912 */ 6913 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6914 if (tcp->tcp_debug) { 6915 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6916 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6917 } 6918 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6919 return; 6920 } 6921 6922 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6923 6924 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6925 6926 /* 6927 * According to TPI, for non-listeners, ignore seqnum 6928 * and disconnect. 6929 * Following interpretation of -1 seqnum is historical 6930 * and implied TPI ? (TPI only states that for T_CONN_IND, 6931 * a valid seqnum should not be -1). 6932 * 6933 * -1 means disconnect everything 6934 * regardless even on a listener. 6935 */ 6936 6937 int old_state = tcp->tcp_state; 6938 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6939 6940 /* 6941 * The connection can't be on the tcp_time_wait_head list 6942 * since it is not detached. 6943 */ 6944 ASSERT(tcp->tcp_time_wait_next == NULL); 6945 ASSERT(tcp->tcp_time_wait_prev == NULL); 6946 ASSERT(tcp->tcp_time_wait_expire == 0); 6947 ltcp = NULL; 6948 /* 6949 * If it used to be a listener, check to make sure no one else 6950 * has taken the port before switching back to LISTEN state. 6951 */ 6952 if (tcp->tcp_ipversion == IPV4_VERSION) { 6953 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6954 tcp->tcp_ipha->ipha_src, 6955 tcp->tcp_connp->conn_zoneid, ipst); 6956 if (connp != NULL) 6957 ltcp = connp->conn_tcp; 6958 } else { 6959 /* Allow tcp_bound_if listeners? */ 6960 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6961 &tcp->tcp_ip6h->ip6_src, 0, 6962 tcp->tcp_connp->conn_zoneid, ipst); 6963 if (connp != NULL) 6964 ltcp = connp->conn_tcp; 6965 } 6966 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6967 tcp->tcp_state = TCPS_LISTEN; 6968 } else if (old_state > TCPS_BOUND) { 6969 tcp->tcp_conn_req_max = 0; 6970 tcp->tcp_state = TCPS_BOUND; 6971 } 6972 if (ltcp != NULL) 6973 CONN_DEC_REF(ltcp->tcp_connp); 6974 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6975 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6976 } else if (old_state == TCPS_ESTABLISHED || 6977 old_state == TCPS_CLOSE_WAIT) { 6978 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6979 } 6980 6981 if (tcp->tcp_fused) 6982 tcp_unfuse(tcp); 6983 6984 mutex_enter(&tcp->tcp_eager_lock); 6985 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6986 (tcp->tcp_conn_req_cnt_q != 0)) { 6987 tcp_eager_cleanup(tcp, 0); 6988 } 6989 mutex_exit(&tcp->tcp_eager_lock); 6990 6991 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6992 tcp->tcp_rnxt, TH_RST | TH_ACK); 6993 6994 tcp_reinit(tcp); 6995 6996 if (old_state >= TCPS_ESTABLISHED) { 6997 /* Send M_FLUSH according to TPI */ 6998 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6999 } 7000 mp = mi_tpi_ok_ack_alloc(mp); 7001 if (mp) 7002 putnext(tcp->tcp_rq, mp); 7003 return; 7004 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 7005 tcp_err_ack(tcp, mp, TBADSEQ, 0); 7006 return; 7007 } 7008 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 7009 /* Send M_FLUSH according to TPI */ 7010 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7011 } 7012 mp = mi_tpi_ok_ack_alloc(mp); 7013 if (mp) 7014 putnext(tcp->tcp_rq, mp); 7015 } 7016 7017 /* 7018 * Diagnostic routine used to return a string associated with the tcp state. 7019 * Note that if the caller does not supply a buffer, it will use an internal 7020 * static string. This means that if multiple threads call this function at 7021 * the same time, output can be corrupted... Note also that this function 7022 * does not check the size of the supplied buffer. The caller has to make 7023 * sure that it is big enough. 7024 */ 7025 static char * 7026 tcp_display(tcp_t *tcp, char *sup_buf, char format) 7027 { 7028 char buf1[30]; 7029 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7030 char *buf; 7031 char *cp; 7032 in6_addr_t local, remote; 7033 char local_addrbuf[INET6_ADDRSTRLEN]; 7034 char remote_addrbuf[INET6_ADDRSTRLEN]; 7035 7036 if (sup_buf != NULL) 7037 buf = sup_buf; 7038 else 7039 buf = priv_buf; 7040 7041 if (tcp == NULL) 7042 return ("NULL_TCP"); 7043 switch (tcp->tcp_state) { 7044 case TCPS_CLOSED: 7045 cp = "TCP_CLOSED"; 7046 break; 7047 case TCPS_IDLE: 7048 cp = "TCP_IDLE"; 7049 break; 7050 case TCPS_BOUND: 7051 cp = "TCP_BOUND"; 7052 break; 7053 case TCPS_LISTEN: 7054 cp = "TCP_LISTEN"; 7055 break; 7056 case TCPS_SYN_SENT: 7057 cp = "TCP_SYN_SENT"; 7058 break; 7059 case TCPS_SYN_RCVD: 7060 cp = "TCP_SYN_RCVD"; 7061 break; 7062 case TCPS_ESTABLISHED: 7063 cp = "TCP_ESTABLISHED"; 7064 break; 7065 case TCPS_CLOSE_WAIT: 7066 cp = "TCP_CLOSE_WAIT"; 7067 break; 7068 case TCPS_FIN_WAIT_1: 7069 cp = "TCP_FIN_WAIT_1"; 7070 break; 7071 case TCPS_CLOSING: 7072 cp = "TCP_CLOSING"; 7073 break; 7074 case TCPS_LAST_ACK: 7075 cp = "TCP_LAST_ACK"; 7076 break; 7077 case TCPS_FIN_WAIT_2: 7078 cp = "TCP_FIN_WAIT_2"; 7079 break; 7080 case TCPS_TIME_WAIT: 7081 cp = "TCP_TIME_WAIT"; 7082 break; 7083 default: 7084 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7085 cp = buf1; 7086 break; 7087 } 7088 switch (format) { 7089 case DISP_ADDR_AND_PORT: 7090 if (tcp->tcp_ipversion == IPV4_VERSION) { 7091 /* 7092 * Note that we use the remote address in the tcp_b 7093 * structure. This means that it will print out 7094 * the real destination address, not the next hop's 7095 * address if source routing is used. 7096 */ 7097 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7098 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7099 7100 } else { 7101 local = tcp->tcp_ip_src_v6; 7102 remote = tcp->tcp_remote_v6; 7103 } 7104 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7105 sizeof (local_addrbuf)); 7106 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7107 sizeof (remote_addrbuf)); 7108 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7109 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7110 ntohs(tcp->tcp_fport), cp); 7111 break; 7112 case DISP_PORT_ONLY: 7113 default: 7114 (void) mi_sprintf(buf, "[%u, %u] %s", 7115 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7116 break; 7117 } 7118 7119 return (buf); 7120 } 7121 7122 /* 7123 * Called via squeue to get on to eager's perimeter. It sends a 7124 * TH_RST if eager is in the fanout table. The listener wants the 7125 * eager to disappear either by means of tcp_eager_blowoff() or 7126 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7127 * called (via squeue) if the eager cannot be inserted in the 7128 * fanout table in tcp_conn_request(). 7129 */ 7130 /* ARGSUSED */ 7131 void 7132 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7133 { 7134 conn_t *econnp = (conn_t *)arg; 7135 tcp_t *eager = econnp->conn_tcp; 7136 tcp_t *listener = eager->tcp_listener; 7137 tcp_stack_t *tcps = eager->tcp_tcps; 7138 7139 /* 7140 * We could be called because listener is closing. Since 7141 * the eager is using listener's queue's, its not safe. 7142 * Better use the default queue just to send the TH_RST 7143 * out. 7144 */ 7145 ASSERT(tcps->tcps_g_q != NULL); 7146 eager->tcp_rq = tcps->tcps_g_q; 7147 eager->tcp_wq = WR(tcps->tcps_g_q); 7148 7149 /* 7150 * An eager's conn_fanout will be NULL if it's a duplicate 7151 * for an existing 4-tuples in the conn fanout table. 7152 * We don't want to send an RST out in such case. 7153 */ 7154 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7155 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7156 eager, eager->tcp_snxt, 0, TH_RST); 7157 } 7158 7159 /* We are here because listener wants this eager gone */ 7160 if (listener != NULL) { 7161 mutex_enter(&listener->tcp_eager_lock); 7162 tcp_eager_unlink(eager); 7163 if (eager->tcp_tconnind_started) { 7164 /* 7165 * The eager has sent a conn_ind up to the 7166 * listener but listener decides to close 7167 * instead. We need to drop the extra ref 7168 * placed on eager in tcp_rput_data() before 7169 * sending the conn_ind to listener. 7170 */ 7171 CONN_DEC_REF(econnp); 7172 } 7173 mutex_exit(&listener->tcp_eager_lock); 7174 CONN_DEC_REF(listener->tcp_connp); 7175 } 7176 7177 if (eager->tcp_state > TCPS_BOUND) 7178 tcp_close_detached(eager); 7179 } 7180 7181 /* 7182 * Reset any eager connection hanging off this listener marked 7183 * with 'seqnum' and then reclaim it's resources. 7184 */ 7185 static boolean_t 7186 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7187 { 7188 tcp_t *eager; 7189 mblk_t *mp; 7190 tcp_stack_t *tcps = listener->tcp_tcps; 7191 7192 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7193 eager = listener; 7194 mutex_enter(&listener->tcp_eager_lock); 7195 do { 7196 eager = eager->tcp_eager_next_q; 7197 if (eager == NULL) { 7198 mutex_exit(&listener->tcp_eager_lock); 7199 return (B_FALSE); 7200 } 7201 } while (eager->tcp_conn_req_seqnum != seqnum); 7202 7203 if (eager->tcp_closemp_used) { 7204 mutex_exit(&listener->tcp_eager_lock); 7205 return (B_TRUE); 7206 } 7207 eager->tcp_closemp_used = B_TRUE; 7208 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7209 CONN_INC_REF(eager->tcp_connp); 7210 mutex_exit(&listener->tcp_eager_lock); 7211 mp = &eager->tcp_closemp; 7212 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7213 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7214 return (B_TRUE); 7215 } 7216 7217 /* 7218 * Reset any eager connection hanging off this listener 7219 * and then reclaim it's resources. 7220 */ 7221 static void 7222 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7223 { 7224 tcp_t *eager; 7225 mblk_t *mp; 7226 tcp_stack_t *tcps = listener->tcp_tcps; 7227 7228 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7229 7230 if (!q0_only) { 7231 /* First cleanup q */ 7232 TCP_STAT(tcps, tcp_eager_blowoff_q); 7233 eager = listener->tcp_eager_next_q; 7234 while (eager != NULL) { 7235 if (!eager->tcp_closemp_used) { 7236 eager->tcp_closemp_used = B_TRUE; 7237 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7238 CONN_INC_REF(eager->tcp_connp); 7239 mp = &eager->tcp_closemp; 7240 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7241 tcp_eager_kill, eager->tcp_connp, 7242 SQTAG_TCP_EAGER_CLEANUP); 7243 } 7244 eager = eager->tcp_eager_next_q; 7245 } 7246 } 7247 /* Then cleanup q0 */ 7248 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7249 eager = listener->tcp_eager_next_q0; 7250 while (eager != listener) { 7251 if (!eager->tcp_closemp_used) { 7252 eager->tcp_closemp_used = B_TRUE; 7253 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7254 CONN_INC_REF(eager->tcp_connp); 7255 mp = &eager->tcp_closemp; 7256 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7257 tcp_eager_kill, eager->tcp_connp, 7258 SQTAG_TCP_EAGER_CLEANUP_Q0); 7259 } 7260 eager = eager->tcp_eager_next_q0; 7261 } 7262 } 7263 7264 /* 7265 * If we are an eager connection hanging off a listener that hasn't 7266 * formally accepted the connection yet, get off his list and blow off 7267 * any data that we have accumulated. 7268 */ 7269 static void 7270 tcp_eager_unlink(tcp_t *tcp) 7271 { 7272 tcp_t *listener = tcp->tcp_listener; 7273 7274 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7275 ASSERT(listener != NULL); 7276 if (tcp->tcp_eager_next_q0 != NULL) { 7277 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7278 7279 /* Remove the eager tcp from q0 */ 7280 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7281 tcp->tcp_eager_prev_q0; 7282 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7283 tcp->tcp_eager_next_q0; 7284 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7285 listener->tcp_conn_req_cnt_q0--; 7286 7287 tcp->tcp_eager_next_q0 = NULL; 7288 tcp->tcp_eager_prev_q0 = NULL; 7289 7290 /* 7291 * Take the eager out, if it is in the list of droppable 7292 * eagers. 7293 */ 7294 MAKE_UNDROPPABLE(tcp); 7295 7296 if (tcp->tcp_syn_rcvd_timeout != 0) { 7297 /* we have timed out before */ 7298 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7299 listener->tcp_syn_rcvd_timeout--; 7300 } 7301 } else { 7302 tcp_t **tcpp = &listener->tcp_eager_next_q; 7303 tcp_t *prev = NULL; 7304 7305 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7306 if (tcpp[0] == tcp) { 7307 if (listener->tcp_eager_last_q == tcp) { 7308 /* 7309 * If we are unlinking the last 7310 * element on the list, adjust 7311 * tail pointer. Set tail pointer 7312 * to nil when list is empty. 7313 */ 7314 ASSERT(tcp->tcp_eager_next_q == NULL); 7315 if (listener->tcp_eager_last_q == 7316 listener->tcp_eager_next_q) { 7317 listener->tcp_eager_last_q = 7318 NULL; 7319 } else { 7320 /* 7321 * We won't get here if there 7322 * is only one eager in the 7323 * list. 7324 */ 7325 ASSERT(prev != NULL); 7326 listener->tcp_eager_last_q = 7327 prev; 7328 } 7329 } 7330 tcpp[0] = tcp->tcp_eager_next_q; 7331 tcp->tcp_eager_next_q = NULL; 7332 tcp->tcp_eager_last_q = NULL; 7333 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7334 listener->tcp_conn_req_cnt_q--; 7335 break; 7336 } 7337 prev = tcpp[0]; 7338 } 7339 } 7340 tcp->tcp_listener = NULL; 7341 } 7342 7343 /* Shorthand to generate and send TPI error acks to our client */ 7344 static void 7345 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7346 { 7347 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7348 putnext(tcp->tcp_rq, mp); 7349 } 7350 7351 /* Shorthand to generate and send TPI error acks to our client */ 7352 static void 7353 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7354 int t_error, int sys_error) 7355 { 7356 struct T_error_ack *teackp; 7357 7358 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7359 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7360 teackp = (struct T_error_ack *)mp->b_rptr; 7361 teackp->ERROR_prim = primitive; 7362 teackp->TLI_error = t_error; 7363 teackp->UNIX_error = sys_error; 7364 putnext(tcp->tcp_rq, mp); 7365 } 7366 } 7367 7368 /* 7369 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7370 * but instead the code relies on: 7371 * - the fact that the address of the array and its size never changes 7372 * - the atomic assignment of the elements of the array 7373 */ 7374 /* ARGSUSED */ 7375 static int 7376 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7377 { 7378 int i; 7379 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7380 7381 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7382 if (tcps->tcps_g_epriv_ports[i] != 0) 7383 (void) mi_mpprintf(mp, "%d ", 7384 tcps->tcps_g_epriv_ports[i]); 7385 } 7386 return (0); 7387 } 7388 7389 /* 7390 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7391 * threads from changing it at the same time. 7392 */ 7393 /* ARGSUSED */ 7394 static int 7395 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7396 cred_t *cr) 7397 { 7398 long new_value; 7399 int i; 7400 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7401 7402 /* 7403 * Fail the request if the new value does not lie within the 7404 * port number limits. 7405 */ 7406 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7407 new_value <= 0 || new_value >= 65536) { 7408 return (EINVAL); 7409 } 7410 7411 mutex_enter(&tcps->tcps_epriv_port_lock); 7412 /* Check if the value is already in the list */ 7413 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7414 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7415 mutex_exit(&tcps->tcps_epriv_port_lock); 7416 return (EEXIST); 7417 } 7418 } 7419 /* Find an empty slot */ 7420 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7421 if (tcps->tcps_g_epriv_ports[i] == 0) 7422 break; 7423 } 7424 if (i == tcps->tcps_g_num_epriv_ports) { 7425 mutex_exit(&tcps->tcps_epriv_port_lock); 7426 return (EOVERFLOW); 7427 } 7428 /* Set the new value */ 7429 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7430 mutex_exit(&tcps->tcps_epriv_port_lock); 7431 return (0); 7432 } 7433 7434 /* 7435 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7436 * threads from changing it at the same time. 7437 */ 7438 /* ARGSUSED */ 7439 static int 7440 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7441 cred_t *cr) 7442 { 7443 long new_value; 7444 int i; 7445 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7446 7447 /* 7448 * Fail the request if the new value does not lie within the 7449 * port number limits. 7450 */ 7451 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7452 new_value >= 65536) { 7453 return (EINVAL); 7454 } 7455 7456 mutex_enter(&tcps->tcps_epriv_port_lock); 7457 /* Check that the value is already in the list */ 7458 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7459 if (tcps->tcps_g_epriv_ports[i] == new_value) 7460 break; 7461 } 7462 if (i == tcps->tcps_g_num_epriv_ports) { 7463 mutex_exit(&tcps->tcps_epriv_port_lock); 7464 return (ESRCH); 7465 } 7466 /* Clear the value */ 7467 tcps->tcps_g_epriv_ports[i] = 0; 7468 mutex_exit(&tcps->tcps_epriv_port_lock); 7469 return (0); 7470 } 7471 7472 /* Return the TPI/TLI equivalent of our current tcp_state */ 7473 static int 7474 tcp_tpistate(tcp_t *tcp) 7475 { 7476 switch (tcp->tcp_state) { 7477 case TCPS_IDLE: 7478 return (TS_UNBND); 7479 case TCPS_LISTEN: 7480 /* 7481 * Return whether there are outstanding T_CONN_IND waiting 7482 * for the matching T_CONN_RES. Therefore don't count q0. 7483 */ 7484 if (tcp->tcp_conn_req_cnt_q > 0) 7485 return (TS_WRES_CIND); 7486 else 7487 return (TS_IDLE); 7488 case TCPS_BOUND: 7489 return (TS_IDLE); 7490 case TCPS_SYN_SENT: 7491 return (TS_WCON_CREQ); 7492 case TCPS_SYN_RCVD: 7493 /* 7494 * Note: assumption: this has to the active open SYN_RCVD. 7495 * The passive instance is detached in SYN_RCVD stage of 7496 * incoming connection processing so we cannot get request 7497 * for T_info_ack on it. 7498 */ 7499 return (TS_WACK_CRES); 7500 case TCPS_ESTABLISHED: 7501 return (TS_DATA_XFER); 7502 case TCPS_CLOSE_WAIT: 7503 return (TS_WREQ_ORDREL); 7504 case TCPS_FIN_WAIT_1: 7505 return (TS_WIND_ORDREL); 7506 case TCPS_FIN_WAIT_2: 7507 return (TS_WIND_ORDREL); 7508 7509 case TCPS_CLOSING: 7510 case TCPS_LAST_ACK: 7511 case TCPS_TIME_WAIT: 7512 case TCPS_CLOSED: 7513 /* 7514 * Following TS_WACK_DREQ7 is a rendition of "not 7515 * yet TS_IDLE" TPI state. There is no best match to any 7516 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7517 * choose a value chosen that will map to TLI/XTI level 7518 * state of TSTATECHNG (state is process of changing) which 7519 * captures what this dummy state represents. 7520 */ 7521 return (TS_WACK_DREQ7); 7522 default: 7523 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7524 tcp->tcp_state, tcp_display(tcp, NULL, 7525 DISP_PORT_ONLY)); 7526 return (TS_UNBND); 7527 } 7528 } 7529 7530 static void 7531 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7532 { 7533 tcp_stack_t *tcps = tcp->tcp_tcps; 7534 7535 if (tcp->tcp_family == AF_INET6) 7536 *tia = tcp_g_t_info_ack_v6; 7537 else 7538 *tia = tcp_g_t_info_ack; 7539 tia->CURRENT_state = tcp_tpistate(tcp); 7540 tia->OPT_size = tcp_max_optsize; 7541 if (tcp->tcp_mss == 0) { 7542 /* Not yet set - tcp_open does not set mss */ 7543 if (tcp->tcp_ipversion == IPV4_VERSION) 7544 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7545 else 7546 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7547 } else { 7548 tia->TIDU_size = tcp->tcp_mss; 7549 } 7550 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7551 } 7552 7553 /* 7554 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7555 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7556 * tcp_g_t_info_ack. The current state of the stream is copied from 7557 * tcp_state. 7558 */ 7559 static void 7560 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7561 { 7562 t_uscalar_t cap_bits1; 7563 struct T_capability_ack *tcap; 7564 7565 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7566 freemsg(mp); 7567 return; 7568 } 7569 7570 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7571 7572 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7573 mp->b_datap->db_type, T_CAPABILITY_ACK); 7574 if (mp == NULL) 7575 return; 7576 7577 tcap = (struct T_capability_ack *)mp->b_rptr; 7578 tcap->CAP_bits1 = 0; 7579 7580 if (cap_bits1 & TC1_INFO) { 7581 tcp_copy_info(&tcap->INFO_ack, tcp); 7582 tcap->CAP_bits1 |= TC1_INFO; 7583 } 7584 7585 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7586 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7587 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7588 } 7589 7590 putnext(tcp->tcp_rq, mp); 7591 } 7592 7593 /* 7594 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7595 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7596 * The current state of the stream is copied from tcp_state. 7597 */ 7598 static void 7599 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7600 { 7601 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7602 T_INFO_ACK); 7603 if (!mp) { 7604 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7605 return; 7606 } 7607 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7608 putnext(tcp->tcp_rq, mp); 7609 } 7610 7611 /* Respond to the TPI addr request */ 7612 static void 7613 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7614 { 7615 sin_t *sin; 7616 mblk_t *ackmp; 7617 struct T_addr_ack *taa; 7618 7619 /* Make it large enough for worst case */ 7620 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7621 2 * sizeof (sin6_t), 1); 7622 if (ackmp == NULL) { 7623 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7624 return; 7625 } 7626 7627 if (tcp->tcp_ipversion == IPV6_VERSION) { 7628 tcp_addr_req_ipv6(tcp, ackmp); 7629 return; 7630 } 7631 taa = (struct T_addr_ack *)ackmp->b_rptr; 7632 7633 bzero(taa, sizeof (struct T_addr_ack)); 7634 ackmp->b_wptr = (uchar_t *)&taa[1]; 7635 7636 taa->PRIM_type = T_ADDR_ACK; 7637 ackmp->b_datap->db_type = M_PCPROTO; 7638 7639 /* 7640 * Note: Following code assumes 32 bit alignment of basic 7641 * data structures like sin_t and struct T_addr_ack. 7642 */ 7643 if (tcp->tcp_state >= TCPS_BOUND) { 7644 /* 7645 * Fill in local address 7646 */ 7647 taa->LOCADDR_length = sizeof (sin_t); 7648 taa->LOCADDR_offset = sizeof (*taa); 7649 7650 sin = (sin_t *)&taa[1]; 7651 7652 /* Fill zeroes and then intialize non-zero fields */ 7653 *sin = sin_null; 7654 7655 sin->sin_family = AF_INET; 7656 7657 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7658 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7659 7660 ackmp->b_wptr = (uchar_t *)&sin[1]; 7661 7662 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7663 /* 7664 * Fill in Remote address 7665 */ 7666 taa->REMADDR_length = sizeof (sin_t); 7667 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7668 taa->LOCADDR_length); 7669 7670 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7671 *sin = sin_null; 7672 sin->sin_family = AF_INET; 7673 sin->sin_addr.s_addr = tcp->tcp_remote; 7674 sin->sin_port = tcp->tcp_fport; 7675 7676 ackmp->b_wptr = (uchar_t *)&sin[1]; 7677 } 7678 } 7679 putnext(tcp->tcp_rq, ackmp); 7680 } 7681 7682 /* Assumes that tcp_addr_req gets enough space and alignment */ 7683 static void 7684 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7685 { 7686 sin6_t *sin6; 7687 struct T_addr_ack *taa; 7688 7689 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7690 ASSERT(OK_32PTR(ackmp->b_rptr)); 7691 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7692 2 * sizeof (sin6_t)); 7693 7694 taa = (struct T_addr_ack *)ackmp->b_rptr; 7695 7696 bzero(taa, sizeof (struct T_addr_ack)); 7697 ackmp->b_wptr = (uchar_t *)&taa[1]; 7698 7699 taa->PRIM_type = T_ADDR_ACK; 7700 ackmp->b_datap->db_type = M_PCPROTO; 7701 7702 /* 7703 * Note: Following code assumes 32 bit alignment of basic 7704 * data structures like sin6_t and struct T_addr_ack. 7705 */ 7706 if (tcp->tcp_state >= TCPS_BOUND) { 7707 /* 7708 * Fill in local address 7709 */ 7710 taa->LOCADDR_length = sizeof (sin6_t); 7711 taa->LOCADDR_offset = sizeof (*taa); 7712 7713 sin6 = (sin6_t *)&taa[1]; 7714 *sin6 = sin6_null; 7715 7716 sin6->sin6_family = AF_INET6; 7717 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7718 sin6->sin6_port = tcp->tcp_lport; 7719 7720 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7721 7722 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7723 /* 7724 * Fill in Remote address 7725 */ 7726 taa->REMADDR_length = sizeof (sin6_t); 7727 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7728 taa->LOCADDR_length); 7729 7730 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7731 *sin6 = sin6_null; 7732 sin6->sin6_family = AF_INET6; 7733 sin6->sin6_flowinfo = 7734 tcp->tcp_ip6h->ip6_vcf & 7735 ~IPV6_VERS_AND_FLOW_MASK; 7736 sin6->sin6_addr = tcp->tcp_remote_v6; 7737 sin6->sin6_port = tcp->tcp_fport; 7738 7739 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7740 } 7741 } 7742 putnext(tcp->tcp_rq, ackmp); 7743 } 7744 7745 /* 7746 * Handle reinitialization of a tcp structure. 7747 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7748 */ 7749 static void 7750 tcp_reinit(tcp_t *tcp) 7751 { 7752 mblk_t *mp; 7753 int err; 7754 tcp_stack_t *tcps = tcp->tcp_tcps; 7755 7756 TCP_STAT(tcps, tcp_reinit_calls); 7757 7758 /* tcp_reinit should never be called for detached tcp_t's */ 7759 ASSERT(tcp->tcp_listener == NULL); 7760 ASSERT((tcp->tcp_family == AF_INET && 7761 tcp->tcp_ipversion == IPV4_VERSION) || 7762 (tcp->tcp_family == AF_INET6 && 7763 (tcp->tcp_ipversion == IPV4_VERSION || 7764 tcp->tcp_ipversion == IPV6_VERSION))); 7765 7766 /* Cancel outstanding timers */ 7767 tcp_timers_stop(tcp); 7768 7769 /* 7770 * Reset everything in the state vector, after updating global 7771 * MIB data from instance counters. 7772 */ 7773 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7774 tcp->tcp_ibsegs = 0; 7775 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7776 tcp->tcp_obsegs = 0; 7777 7778 tcp_close_mpp(&tcp->tcp_xmit_head); 7779 if (tcp->tcp_snd_zcopy_aware) 7780 tcp_zcopy_notify(tcp); 7781 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7782 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7783 mutex_enter(&tcp->tcp_non_sq_lock); 7784 if (tcp->tcp_flow_stopped && 7785 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7786 tcp_clrqfull(tcp); 7787 } 7788 mutex_exit(&tcp->tcp_non_sq_lock); 7789 tcp_close_mpp(&tcp->tcp_reass_head); 7790 tcp->tcp_reass_tail = NULL; 7791 if (tcp->tcp_rcv_list != NULL) { 7792 /* Free b_next chain */ 7793 tcp_close_mpp(&tcp->tcp_rcv_list); 7794 tcp->tcp_rcv_last_head = NULL; 7795 tcp->tcp_rcv_last_tail = NULL; 7796 tcp->tcp_rcv_cnt = 0; 7797 } 7798 tcp->tcp_rcv_last_tail = NULL; 7799 7800 if ((mp = tcp->tcp_urp_mp) != NULL) { 7801 freemsg(mp); 7802 tcp->tcp_urp_mp = NULL; 7803 } 7804 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7805 freemsg(mp); 7806 tcp->tcp_urp_mark_mp = NULL; 7807 } 7808 if (tcp->tcp_fused_sigurg_mp != NULL) { 7809 freeb(tcp->tcp_fused_sigurg_mp); 7810 tcp->tcp_fused_sigurg_mp = NULL; 7811 } 7812 if (tcp->tcp_ordrel_mp != NULL) { 7813 freeb(tcp->tcp_ordrel_mp); 7814 tcp->tcp_ordrel_mp = NULL; 7815 } 7816 7817 /* 7818 * Following is a union with two members which are 7819 * identical types and size so the following cleanup 7820 * is enough. 7821 */ 7822 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7823 7824 CL_INET_DISCONNECT(tcp); 7825 7826 /* 7827 * The connection can't be on the tcp_time_wait_head list 7828 * since it is not detached. 7829 */ 7830 ASSERT(tcp->tcp_time_wait_next == NULL); 7831 ASSERT(tcp->tcp_time_wait_prev == NULL); 7832 ASSERT(tcp->tcp_time_wait_expire == 0); 7833 7834 if (tcp->tcp_kssl_pending) { 7835 tcp->tcp_kssl_pending = B_FALSE; 7836 7837 /* Don't reset if the initialized by bind. */ 7838 if (tcp->tcp_kssl_ent != NULL) { 7839 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7840 KSSL_NO_PROXY); 7841 } 7842 } 7843 if (tcp->tcp_kssl_ctx != NULL) { 7844 kssl_release_ctx(tcp->tcp_kssl_ctx); 7845 tcp->tcp_kssl_ctx = NULL; 7846 } 7847 7848 /* 7849 * Reset/preserve other values 7850 */ 7851 tcp_reinit_values(tcp); 7852 ipcl_hash_remove(tcp->tcp_connp); 7853 conn_delete_ire(tcp->tcp_connp, NULL); 7854 tcp_ipsec_cleanup(tcp); 7855 7856 if (tcp->tcp_conn_req_max != 0) { 7857 /* 7858 * This is the case when a TLI program uses the same 7859 * transport end point to accept a connection. This 7860 * makes the TCP both a listener and acceptor. When 7861 * this connection is closed, we need to set the state 7862 * back to TCPS_LISTEN. Make sure that the eager list 7863 * is reinitialized. 7864 * 7865 * Note that this stream is still bound to the four 7866 * tuples of the previous connection in IP. If a new 7867 * SYN with different foreign address comes in, IP will 7868 * not find it and will send it to the global queue. In 7869 * the global queue, TCP will do a tcp_lookup_listener() 7870 * to find this stream. This works because this stream 7871 * is only removed from connected hash. 7872 * 7873 */ 7874 tcp->tcp_state = TCPS_LISTEN; 7875 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7876 tcp->tcp_eager_next_drop_q0 = tcp; 7877 tcp->tcp_eager_prev_drop_q0 = tcp; 7878 tcp->tcp_connp->conn_recv = tcp_conn_request; 7879 if (tcp->tcp_family == AF_INET6) { 7880 ASSERT(tcp->tcp_connp->conn_af_isv6); 7881 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7882 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7883 } else { 7884 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7885 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7886 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7887 } 7888 } else { 7889 tcp->tcp_state = TCPS_BOUND; 7890 } 7891 7892 /* 7893 * Initialize to default values 7894 * Can't fail since enough header template space already allocated 7895 * at open(). 7896 */ 7897 err = tcp_init_values(tcp); 7898 ASSERT(err == 0); 7899 /* Restore state in tcp_tcph */ 7900 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7901 if (tcp->tcp_ipversion == IPV4_VERSION) 7902 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7903 else 7904 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7905 /* 7906 * Copy of the src addr. in tcp_t is needed in tcp_t 7907 * since the lookup funcs can only lookup on tcp_t 7908 */ 7909 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7910 7911 ASSERT(tcp->tcp_ptpbhn != NULL); 7912 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7913 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7914 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7915 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7916 } 7917 7918 /* 7919 * Force values to zero that need be zero. 7920 * Do not touch values asociated with the BOUND or LISTEN state 7921 * since the connection will end up in that state after the reinit. 7922 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7923 * structure! 7924 */ 7925 static void 7926 tcp_reinit_values(tcp) 7927 tcp_t *tcp; 7928 { 7929 tcp_stack_t *tcps = tcp->tcp_tcps; 7930 7931 #ifndef lint 7932 #define DONTCARE(x) 7933 #define PRESERVE(x) 7934 #else 7935 #define DONTCARE(x) ((x) = (x)) 7936 #define PRESERVE(x) ((x) = (x)) 7937 #endif /* lint */ 7938 7939 PRESERVE(tcp->tcp_bind_hash); 7940 PRESERVE(tcp->tcp_ptpbhn); 7941 PRESERVE(tcp->tcp_acceptor_hash); 7942 PRESERVE(tcp->tcp_ptpahn); 7943 7944 /* Should be ASSERT NULL on these with new code! */ 7945 ASSERT(tcp->tcp_time_wait_next == NULL); 7946 ASSERT(tcp->tcp_time_wait_prev == NULL); 7947 ASSERT(tcp->tcp_time_wait_expire == 0); 7948 PRESERVE(tcp->tcp_state); 7949 PRESERVE(tcp->tcp_rq); 7950 PRESERVE(tcp->tcp_wq); 7951 7952 ASSERT(tcp->tcp_xmit_head == NULL); 7953 ASSERT(tcp->tcp_xmit_last == NULL); 7954 ASSERT(tcp->tcp_unsent == 0); 7955 ASSERT(tcp->tcp_xmit_tail == NULL); 7956 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7957 7958 tcp->tcp_snxt = 0; /* Displayed in mib */ 7959 tcp->tcp_suna = 0; /* Displayed in mib */ 7960 tcp->tcp_swnd = 0; 7961 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7962 7963 ASSERT(tcp->tcp_ibsegs == 0); 7964 ASSERT(tcp->tcp_obsegs == 0); 7965 7966 if (tcp->tcp_iphc != NULL) { 7967 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7968 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7969 } 7970 7971 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7972 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7973 DONTCARE(tcp->tcp_ipha); 7974 DONTCARE(tcp->tcp_ip6h); 7975 DONTCARE(tcp->tcp_ip_hdr_len); 7976 DONTCARE(tcp->tcp_tcph); 7977 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7978 tcp->tcp_valid_bits = 0; 7979 7980 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7981 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7982 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7983 tcp->tcp_last_rcv_lbolt = 0; 7984 7985 tcp->tcp_init_cwnd = 0; 7986 7987 tcp->tcp_urp_last_valid = 0; 7988 tcp->tcp_hard_binding = 0; 7989 tcp->tcp_hard_bound = 0; 7990 PRESERVE(tcp->tcp_cred); 7991 PRESERVE(tcp->tcp_cpid); 7992 PRESERVE(tcp->tcp_open_time); 7993 PRESERVE(tcp->tcp_exclbind); 7994 7995 tcp->tcp_fin_acked = 0; 7996 tcp->tcp_fin_rcvd = 0; 7997 tcp->tcp_fin_sent = 0; 7998 tcp->tcp_ordrel_done = 0; 7999 8000 tcp->tcp_debug = 0; 8001 tcp->tcp_dontroute = 0; 8002 tcp->tcp_broadcast = 0; 8003 8004 tcp->tcp_useloopback = 0; 8005 tcp->tcp_reuseaddr = 0; 8006 tcp->tcp_oobinline = 0; 8007 tcp->tcp_dgram_errind = 0; 8008 8009 tcp->tcp_detached = 0; 8010 tcp->tcp_bind_pending = 0; 8011 tcp->tcp_unbind_pending = 0; 8012 8013 tcp->tcp_snd_ws_ok = B_FALSE; 8014 tcp->tcp_snd_ts_ok = B_FALSE; 8015 tcp->tcp_linger = 0; 8016 tcp->tcp_ka_enabled = 0; 8017 tcp->tcp_zero_win_probe = 0; 8018 8019 tcp->tcp_loopback = 0; 8020 tcp->tcp_refuse = 0; 8021 tcp->tcp_localnet = 0; 8022 tcp->tcp_syn_defense = 0; 8023 tcp->tcp_set_timer = 0; 8024 8025 tcp->tcp_active_open = 0; 8026 tcp->tcp_rexmit = B_FALSE; 8027 tcp->tcp_xmit_zc_clean = B_FALSE; 8028 8029 tcp->tcp_snd_sack_ok = B_FALSE; 8030 PRESERVE(tcp->tcp_recvdstaddr); 8031 tcp->tcp_hwcksum = B_FALSE; 8032 8033 tcp->tcp_ire_ill_check_done = B_FALSE; 8034 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8035 8036 tcp->tcp_mdt = B_FALSE; 8037 tcp->tcp_mdt_hdr_head = 0; 8038 tcp->tcp_mdt_hdr_tail = 0; 8039 8040 tcp->tcp_conn_def_q0 = 0; 8041 tcp->tcp_ip_forward_progress = B_FALSE; 8042 tcp->tcp_anon_priv_bind = 0; 8043 tcp->tcp_ecn_ok = B_FALSE; 8044 8045 tcp->tcp_cwr = B_FALSE; 8046 tcp->tcp_ecn_echo_on = B_FALSE; 8047 8048 if (tcp->tcp_sack_info != NULL) { 8049 if (tcp->tcp_notsack_list != NULL) { 8050 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8051 } 8052 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8053 tcp->tcp_sack_info = NULL; 8054 } 8055 8056 tcp->tcp_rcv_ws = 0; 8057 tcp->tcp_snd_ws = 0; 8058 tcp->tcp_ts_recent = 0; 8059 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8060 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8061 tcp->tcp_if_mtu = 0; 8062 8063 ASSERT(tcp->tcp_reass_head == NULL); 8064 ASSERT(tcp->tcp_reass_tail == NULL); 8065 8066 tcp->tcp_cwnd_cnt = 0; 8067 8068 ASSERT(tcp->tcp_rcv_list == NULL); 8069 ASSERT(tcp->tcp_rcv_last_head == NULL); 8070 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8071 ASSERT(tcp->tcp_rcv_cnt == 0); 8072 8073 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8074 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8075 tcp->tcp_csuna = 0; 8076 8077 tcp->tcp_rto = 0; /* Displayed in MIB */ 8078 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8079 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8080 tcp->tcp_rtt_update = 0; 8081 8082 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8083 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8084 8085 tcp->tcp_rack = 0; /* Displayed in mib */ 8086 tcp->tcp_rack_cnt = 0; 8087 tcp->tcp_rack_cur_max = 0; 8088 tcp->tcp_rack_abs_max = 0; 8089 8090 tcp->tcp_max_swnd = 0; 8091 8092 ASSERT(tcp->tcp_listener == NULL); 8093 8094 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8095 8096 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8097 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8098 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8099 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8100 8101 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8102 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8103 PRESERVE(tcp->tcp_conn_req_max); 8104 PRESERVE(tcp->tcp_conn_req_seqnum); 8105 8106 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8107 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8108 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8109 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8110 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8111 8112 tcp->tcp_lingertime = 0; 8113 8114 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8115 ASSERT(tcp->tcp_urp_mp == NULL); 8116 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8117 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8118 8119 ASSERT(tcp->tcp_eager_next_q == NULL); 8120 ASSERT(tcp->tcp_eager_last_q == NULL); 8121 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8122 tcp->tcp_eager_prev_q0 == NULL) || 8123 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8124 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8125 8126 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8127 tcp->tcp_eager_prev_drop_q0 == NULL) || 8128 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8129 8130 tcp->tcp_client_errno = 0; 8131 8132 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8133 8134 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8135 8136 PRESERVE(tcp->tcp_bound_source_v6); 8137 tcp->tcp_last_sent_len = 0; 8138 tcp->tcp_dupack_cnt = 0; 8139 8140 tcp->tcp_fport = 0; /* Displayed in MIB */ 8141 PRESERVE(tcp->tcp_lport); 8142 8143 PRESERVE(tcp->tcp_acceptor_lockp); 8144 8145 ASSERT(tcp->tcp_ordrel_mp == NULL); 8146 PRESERVE(tcp->tcp_acceptor_id); 8147 DONTCARE(tcp->tcp_ipsec_overhead); 8148 8149 PRESERVE(tcp->tcp_family); 8150 if (tcp->tcp_family == AF_INET6) { 8151 tcp->tcp_ipversion = IPV6_VERSION; 8152 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8153 } else { 8154 tcp->tcp_ipversion = IPV4_VERSION; 8155 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8156 } 8157 8158 tcp->tcp_bound_if = 0; 8159 tcp->tcp_ipv6_recvancillary = 0; 8160 tcp->tcp_recvifindex = 0; 8161 tcp->tcp_recvhops = 0; 8162 tcp->tcp_closed = 0; 8163 tcp->tcp_cleandeathtag = 0; 8164 if (tcp->tcp_hopopts != NULL) { 8165 mi_free(tcp->tcp_hopopts); 8166 tcp->tcp_hopopts = NULL; 8167 tcp->tcp_hopoptslen = 0; 8168 } 8169 ASSERT(tcp->tcp_hopoptslen == 0); 8170 if (tcp->tcp_dstopts != NULL) { 8171 mi_free(tcp->tcp_dstopts); 8172 tcp->tcp_dstopts = NULL; 8173 tcp->tcp_dstoptslen = 0; 8174 } 8175 ASSERT(tcp->tcp_dstoptslen == 0); 8176 if (tcp->tcp_rtdstopts != NULL) { 8177 mi_free(tcp->tcp_rtdstopts); 8178 tcp->tcp_rtdstopts = NULL; 8179 tcp->tcp_rtdstoptslen = 0; 8180 } 8181 ASSERT(tcp->tcp_rtdstoptslen == 0); 8182 if (tcp->tcp_rthdr != NULL) { 8183 mi_free(tcp->tcp_rthdr); 8184 tcp->tcp_rthdr = NULL; 8185 tcp->tcp_rthdrlen = 0; 8186 } 8187 ASSERT(tcp->tcp_rthdrlen == 0); 8188 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8189 8190 /* Reset fusion-related fields */ 8191 tcp->tcp_fused = B_FALSE; 8192 tcp->tcp_unfusable = B_FALSE; 8193 tcp->tcp_fused_sigurg = B_FALSE; 8194 tcp->tcp_direct_sockfs = B_FALSE; 8195 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8196 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8197 tcp->tcp_loopback_peer = NULL; 8198 tcp->tcp_fuse_rcv_hiwater = 0; 8199 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8200 tcp->tcp_fuse_rcv_unread_cnt = 0; 8201 8202 tcp->tcp_lso = B_FALSE; 8203 8204 tcp->tcp_in_ack_unsent = 0; 8205 tcp->tcp_cork = B_FALSE; 8206 tcp->tcp_tconnind_started = B_FALSE; 8207 8208 PRESERVE(tcp->tcp_squeue_bytes); 8209 8210 ASSERT(tcp->tcp_kssl_ctx == NULL); 8211 ASSERT(!tcp->tcp_kssl_pending); 8212 PRESERVE(tcp->tcp_kssl_ent); 8213 8214 /* Sodirect */ 8215 tcp->tcp_sodirect = NULL; 8216 8217 tcp->tcp_closemp_used = B_FALSE; 8218 8219 PRESERVE(tcp->tcp_rsrv_mp); 8220 PRESERVE(tcp->tcp_rsrv_mp_lock); 8221 8222 #ifdef DEBUG 8223 DONTCARE(tcp->tcmp_stk[0]); 8224 #endif 8225 8226 8227 #undef DONTCARE 8228 #undef PRESERVE 8229 } 8230 8231 /* 8232 * Allocate necessary resources and initialize state vector. 8233 * Guaranteed not to fail so that when an error is returned, 8234 * the caller doesn't need to do any additional cleanup. 8235 */ 8236 int 8237 tcp_init(tcp_t *tcp, queue_t *q) 8238 { 8239 int err; 8240 8241 tcp->tcp_rq = q; 8242 tcp->tcp_wq = WR(q); 8243 tcp->tcp_state = TCPS_IDLE; 8244 if ((err = tcp_init_values(tcp)) != 0) 8245 tcp_timers_stop(tcp); 8246 return (err); 8247 } 8248 8249 static int 8250 tcp_init_values(tcp_t *tcp) 8251 { 8252 int err; 8253 tcp_stack_t *tcps = tcp->tcp_tcps; 8254 8255 ASSERT((tcp->tcp_family == AF_INET && 8256 tcp->tcp_ipversion == IPV4_VERSION) || 8257 (tcp->tcp_family == AF_INET6 && 8258 (tcp->tcp_ipversion == IPV4_VERSION || 8259 tcp->tcp_ipversion == IPV6_VERSION))); 8260 8261 /* 8262 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8263 * will be close to tcp_rexmit_interval_initial. By doing this, we 8264 * allow the algorithm to adjust slowly to large fluctuations of RTT 8265 * during first few transmissions of a connection as seen in slow 8266 * links. 8267 */ 8268 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8269 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8270 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8271 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8272 tcps->tcps_conn_grace_period; 8273 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8274 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8275 tcp->tcp_timer_backoff = 0; 8276 tcp->tcp_ms_we_have_waited = 0; 8277 tcp->tcp_last_recv_time = lbolt; 8278 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8279 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8280 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8281 8282 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8283 8284 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8285 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8286 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8287 /* 8288 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8289 * passive open. 8290 */ 8291 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8292 8293 tcp->tcp_naglim = tcps->tcps_naglim_def; 8294 8295 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8296 8297 tcp->tcp_mdt_hdr_head = 0; 8298 tcp->tcp_mdt_hdr_tail = 0; 8299 8300 /* Reset fusion-related fields */ 8301 tcp->tcp_fused = B_FALSE; 8302 tcp->tcp_unfusable = B_FALSE; 8303 tcp->tcp_fused_sigurg = B_FALSE; 8304 tcp->tcp_direct_sockfs = B_FALSE; 8305 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8306 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8307 tcp->tcp_loopback_peer = NULL; 8308 tcp->tcp_fuse_rcv_hiwater = 0; 8309 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8310 tcp->tcp_fuse_rcv_unread_cnt = 0; 8311 8312 /* Sodirect */ 8313 tcp->tcp_sodirect = NULL; 8314 8315 /* Initialize the header template */ 8316 if (tcp->tcp_ipversion == IPV4_VERSION) { 8317 err = tcp_header_init_ipv4(tcp); 8318 } else { 8319 err = tcp_header_init_ipv6(tcp); 8320 } 8321 if (err) 8322 return (err); 8323 8324 /* 8325 * Init the window scale to the max so tcp_rwnd_set() won't pare 8326 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8327 */ 8328 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8329 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8330 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8331 8332 tcp->tcp_cork = B_FALSE; 8333 /* 8334 * Init the tcp_debug option. This value determines whether TCP 8335 * calls strlog() to print out debug messages. Doing this 8336 * initialization here means that this value is not inherited thru 8337 * tcp_reinit(). 8338 */ 8339 tcp->tcp_debug = tcps->tcps_dbg; 8340 8341 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8342 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8343 8344 return (0); 8345 } 8346 8347 /* 8348 * Initialize the IPv4 header. Loses any record of any IP options. 8349 */ 8350 static int 8351 tcp_header_init_ipv4(tcp_t *tcp) 8352 { 8353 tcph_t *tcph; 8354 uint32_t sum; 8355 conn_t *connp; 8356 tcp_stack_t *tcps = tcp->tcp_tcps; 8357 8358 /* 8359 * This is a simple initialization. If there's 8360 * already a template, it should never be too small, 8361 * so reuse it. Otherwise, allocate space for the new one. 8362 */ 8363 if (tcp->tcp_iphc == NULL) { 8364 ASSERT(tcp->tcp_iphc_len == 0); 8365 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8366 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8367 if (tcp->tcp_iphc == NULL) { 8368 tcp->tcp_iphc_len = 0; 8369 return (ENOMEM); 8370 } 8371 } 8372 8373 /* options are gone; may need a new label */ 8374 connp = tcp->tcp_connp; 8375 connp->conn_mlp_type = mlptSingle; 8376 connp->conn_ulp_labeled = !is_system_labeled(); 8377 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8378 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8379 tcp->tcp_ip6h = NULL; 8380 tcp->tcp_ipversion = IPV4_VERSION; 8381 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8382 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8383 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8384 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8385 tcp->tcp_ipha->ipha_version_and_hdr_length 8386 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8387 tcp->tcp_ipha->ipha_ident = 0; 8388 8389 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8390 tcp->tcp_tos = 0; 8391 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8392 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8393 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8394 8395 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8396 tcp->tcp_tcph = tcph; 8397 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8398 /* 8399 * IP wants our header length in the checksum field to 8400 * allow it to perform a single pseudo-header+checksum 8401 * calculation on behalf of TCP. 8402 * Include the adjustment for a source route once IP_OPTIONS is set. 8403 */ 8404 sum = sizeof (tcph_t) + tcp->tcp_sum; 8405 sum = (sum >> 16) + (sum & 0xFFFF); 8406 U16_TO_ABE16(sum, tcph->th_sum); 8407 return (0); 8408 } 8409 8410 /* 8411 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8412 */ 8413 static int 8414 tcp_header_init_ipv6(tcp_t *tcp) 8415 { 8416 tcph_t *tcph; 8417 uint32_t sum; 8418 conn_t *connp; 8419 tcp_stack_t *tcps = tcp->tcp_tcps; 8420 8421 /* 8422 * This is a simple initialization. If there's 8423 * already a template, it should never be too small, 8424 * so reuse it. Otherwise, allocate space for the new one. 8425 * Ensure that there is enough space to "downgrade" the tcp_t 8426 * to an IPv4 tcp_t. This requires having space for a full load 8427 * of IPv4 options, as well as a full load of TCP options 8428 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8429 * than a v6 header and a TCP header with a full load of TCP options 8430 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8431 * We want to avoid reallocation in the "downgraded" case when 8432 * processing outbound IPv4 options. 8433 */ 8434 if (tcp->tcp_iphc == NULL) { 8435 ASSERT(tcp->tcp_iphc_len == 0); 8436 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8437 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8438 if (tcp->tcp_iphc == NULL) { 8439 tcp->tcp_iphc_len = 0; 8440 return (ENOMEM); 8441 } 8442 } 8443 8444 /* options are gone; may need a new label */ 8445 connp = tcp->tcp_connp; 8446 connp->conn_mlp_type = mlptSingle; 8447 connp->conn_ulp_labeled = !is_system_labeled(); 8448 8449 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8450 tcp->tcp_ipversion = IPV6_VERSION; 8451 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8452 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8453 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8454 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8455 tcp->tcp_ipha = NULL; 8456 8457 /* Initialize the header template */ 8458 8459 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8460 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8461 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8462 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8463 8464 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8465 tcp->tcp_tcph = tcph; 8466 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8467 /* 8468 * IP wants our header length in the checksum field to 8469 * allow it to perform a single psuedo-header+checksum 8470 * calculation on behalf of TCP. 8471 * Include the adjustment for a source route when IPV6_RTHDR is set. 8472 */ 8473 sum = sizeof (tcph_t) + tcp->tcp_sum; 8474 sum = (sum >> 16) + (sum & 0xFFFF); 8475 U16_TO_ABE16(sum, tcph->th_sum); 8476 return (0); 8477 } 8478 8479 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8480 #define ICMP_MIN_TCP_HDR 8 8481 8482 /* 8483 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8484 * passed up by IP. The message is always received on the correct tcp_t. 8485 * Assumes that IP has pulled up everything up to and including the ICMP header. 8486 */ 8487 void 8488 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8489 { 8490 icmph_t *icmph; 8491 ipha_t *ipha; 8492 int iph_hdr_length; 8493 tcph_t *tcph; 8494 boolean_t ipsec_mctl = B_FALSE; 8495 boolean_t secure; 8496 mblk_t *first_mp = mp; 8497 uint32_t new_mss; 8498 uint32_t ratio; 8499 size_t mp_size = MBLKL(mp); 8500 uint32_t seg_seq; 8501 tcp_stack_t *tcps = tcp->tcp_tcps; 8502 8503 /* Assume IP provides aligned packets - otherwise toss */ 8504 if (!OK_32PTR(mp->b_rptr)) { 8505 freemsg(mp); 8506 return; 8507 } 8508 8509 /* 8510 * Since ICMP errors are normal data marked with M_CTL when sent 8511 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8512 * packets starting with an ipsec_info_t, see ipsec_info.h. 8513 */ 8514 if ((mp_size == sizeof (ipsec_info_t)) && 8515 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8516 ASSERT(mp->b_cont != NULL); 8517 mp = mp->b_cont; 8518 /* IP should have done this */ 8519 ASSERT(OK_32PTR(mp->b_rptr)); 8520 mp_size = MBLKL(mp); 8521 ipsec_mctl = B_TRUE; 8522 } 8523 8524 /* 8525 * Verify that we have a complete outer IP header. If not, drop it. 8526 */ 8527 if (mp_size < sizeof (ipha_t)) { 8528 noticmpv4: 8529 freemsg(first_mp); 8530 return; 8531 } 8532 8533 ipha = (ipha_t *)mp->b_rptr; 8534 /* 8535 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8536 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8537 */ 8538 switch (IPH_HDR_VERSION(ipha)) { 8539 case IPV6_VERSION: 8540 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8541 return; 8542 case IPV4_VERSION: 8543 break; 8544 default: 8545 goto noticmpv4; 8546 } 8547 8548 /* Skip past the outer IP and ICMP headers */ 8549 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8550 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8551 /* 8552 * If we don't have the correct outer IP header length or if the ULP 8553 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8554 * send it upstream. 8555 */ 8556 if (iph_hdr_length < sizeof (ipha_t) || 8557 ipha->ipha_protocol != IPPROTO_ICMP || 8558 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8559 goto noticmpv4; 8560 } 8561 ipha = (ipha_t *)&icmph[1]; 8562 8563 /* Skip past the inner IP and find the ULP header */ 8564 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8565 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8566 /* 8567 * If we don't have the correct inner IP header length or if the ULP 8568 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8569 * bytes of TCP header, drop it. 8570 */ 8571 if (iph_hdr_length < sizeof (ipha_t) || 8572 ipha->ipha_protocol != IPPROTO_TCP || 8573 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8574 goto noticmpv4; 8575 } 8576 8577 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8578 if (ipsec_mctl) { 8579 secure = ipsec_in_is_secure(first_mp); 8580 } else { 8581 secure = B_FALSE; 8582 } 8583 if (secure) { 8584 /* 8585 * If we are willing to accept this in clear 8586 * we don't have to verify policy. 8587 */ 8588 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8589 if (!tcp_check_policy(tcp, first_mp, 8590 ipha, NULL, secure, ipsec_mctl)) { 8591 /* 8592 * tcp_check_policy called 8593 * ip_drop_packet() on failure. 8594 */ 8595 return; 8596 } 8597 } 8598 } 8599 } else if (ipsec_mctl) { 8600 /* 8601 * This is a hard_bound connection. IP has already 8602 * verified policy. We don't have to do it again. 8603 */ 8604 freeb(first_mp); 8605 first_mp = mp; 8606 ipsec_mctl = B_FALSE; 8607 } 8608 8609 seg_seq = ABE32_TO_U32(tcph->th_seq); 8610 /* 8611 * TCP SHOULD check that the TCP sequence number contained in 8612 * payload of the ICMP error message is within the range 8613 * SND.UNA <= SEG.SEQ < SND.NXT. 8614 */ 8615 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8616 /* 8617 * If the ICMP message is bogus, should we kill the 8618 * connection, or should we just drop the bogus ICMP 8619 * message? It would probably make more sense to just 8620 * drop the message so that if this one managed to get 8621 * in, the real connection should not suffer. 8622 */ 8623 goto noticmpv4; 8624 } 8625 8626 switch (icmph->icmph_type) { 8627 case ICMP_DEST_UNREACHABLE: 8628 switch (icmph->icmph_code) { 8629 case ICMP_FRAGMENTATION_NEEDED: 8630 /* 8631 * Reduce the MSS based on the new MTU. This will 8632 * eliminate any fragmentation locally. 8633 * N.B. There may well be some funny side-effects on 8634 * the local send policy and the remote receive policy. 8635 * Pending further research, we provide 8636 * tcp_ignore_path_mtu just in case this proves 8637 * disastrous somewhere. 8638 * 8639 * After updating the MSS, retransmit part of the 8640 * dropped segment using the new mss by calling 8641 * tcp_wput_data(). Need to adjust all those 8642 * params to make sure tcp_wput_data() work properly. 8643 */ 8644 if (tcps->tcps_ignore_path_mtu) 8645 break; 8646 8647 /* 8648 * Decrease the MSS by time stamp options 8649 * IP options and IPSEC options. tcp_hdr_len 8650 * includes time stamp option and IP option 8651 * length. 8652 */ 8653 8654 new_mss = ntohs(icmph->icmph_du_mtu) - 8655 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8656 8657 /* 8658 * Only update the MSS if the new one is 8659 * smaller than the previous one. This is 8660 * to avoid problems when getting multiple 8661 * ICMP errors for the same MTU. 8662 */ 8663 if (new_mss >= tcp->tcp_mss) 8664 break; 8665 8666 /* 8667 * Stop doing PMTU if new_mss is less than 68 8668 * or less than tcp_mss_min. 8669 * The value 68 comes from rfc 1191. 8670 */ 8671 if (new_mss < MAX(68, tcps->tcps_mss_min)) 8672 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8673 0; 8674 8675 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8676 ASSERT(ratio >= 1); 8677 tcp_mss_set(tcp, new_mss, B_TRUE); 8678 8679 /* 8680 * Make sure we have something to 8681 * send. 8682 */ 8683 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8684 (tcp->tcp_xmit_head != NULL)) { 8685 /* 8686 * Shrink tcp_cwnd in 8687 * proportion to the old MSS/new MSS. 8688 */ 8689 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8690 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8691 (tcp->tcp_unsent == 0)) { 8692 tcp->tcp_rexmit_max = tcp->tcp_fss; 8693 } else { 8694 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8695 } 8696 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8697 tcp->tcp_rexmit = B_TRUE; 8698 tcp->tcp_dupack_cnt = 0; 8699 tcp->tcp_snd_burst = TCP_CWND_SS; 8700 tcp_ss_rexmit(tcp); 8701 } 8702 break; 8703 case ICMP_PORT_UNREACHABLE: 8704 case ICMP_PROTOCOL_UNREACHABLE: 8705 switch (tcp->tcp_state) { 8706 case TCPS_SYN_SENT: 8707 case TCPS_SYN_RCVD: 8708 /* 8709 * ICMP can snipe away incipient 8710 * TCP connections as long as 8711 * seq number is same as initial 8712 * send seq number. 8713 */ 8714 if (seg_seq == tcp->tcp_iss) { 8715 (void) tcp_clean_death(tcp, 8716 ECONNREFUSED, 6); 8717 } 8718 break; 8719 } 8720 break; 8721 case ICMP_HOST_UNREACHABLE: 8722 case ICMP_NET_UNREACHABLE: 8723 /* Record the error in case we finally time out. */ 8724 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8725 tcp->tcp_client_errno = EHOSTUNREACH; 8726 else 8727 tcp->tcp_client_errno = ENETUNREACH; 8728 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8729 if (tcp->tcp_listener != NULL && 8730 tcp->tcp_listener->tcp_syn_defense) { 8731 /* 8732 * Ditch the half-open connection if we 8733 * suspect a SYN attack is under way. 8734 */ 8735 tcp_ip_ire_mark_advice(tcp); 8736 (void) tcp_clean_death(tcp, 8737 tcp->tcp_client_errno, 7); 8738 } 8739 } 8740 break; 8741 default: 8742 break; 8743 } 8744 break; 8745 case ICMP_SOURCE_QUENCH: { 8746 /* 8747 * use a global boolean to control 8748 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8749 * The default is false. 8750 */ 8751 if (tcp_icmp_source_quench) { 8752 /* 8753 * Reduce the sending rate as if we got a 8754 * retransmit timeout 8755 */ 8756 uint32_t npkt; 8757 8758 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8759 tcp->tcp_mss; 8760 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8761 tcp->tcp_cwnd = tcp->tcp_mss; 8762 tcp->tcp_cwnd_cnt = 0; 8763 } 8764 break; 8765 } 8766 } 8767 freemsg(first_mp); 8768 } 8769 8770 /* 8771 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8772 * error messages passed up by IP. 8773 * Assumes that IP has pulled up all the extension headers as well 8774 * as the ICMPv6 header. 8775 */ 8776 static void 8777 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8778 { 8779 icmp6_t *icmp6; 8780 ip6_t *ip6h; 8781 uint16_t iph_hdr_length; 8782 tcpha_t *tcpha; 8783 uint8_t *nexthdrp; 8784 uint32_t new_mss; 8785 uint32_t ratio; 8786 boolean_t secure; 8787 mblk_t *first_mp = mp; 8788 size_t mp_size; 8789 uint32_t seg_seq; 8790 tcp_stack_t *tcps = tcp->tcp_tcps; 8791 8792 /* 8793 * The caller has determined if this is an IPSEC_IN packet and 8794 * set ipsec_mctl appropriately (see tcp_icmp_error). 8795 */ 8796 if (ipsec_mctl) 8797 mp = mp->b_cont; 8798 8799 mp_size = MBLKL(mp); 8800 8801 /* 8802 * Verify that we have a complete IP header. If not, send it upstream. 8803 */ 8804 if (mp_size < sizeof (ip6_t)) { 8805 noticmpv6: 8806 freemsg(first_mp); 8807 return; 8808 } 8809 8810 /* 8811 * Verify this is an ICMPV6 packet, else send it upstream. 8812 */ 8813 ip6h = (ip6_t *)mp->b_rptr; 8814 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8815 iph_hdr_length = IPV6_HDR_LEN; 8816 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8817 &nexthdrp) || 8818 *nexthdrp != IPPROTO_ICMPV6) { 8819 goto noticmpv6; 8820 } 8821 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8822 ip6h = (ip6_t *)&icmp6[1]; 8823 /* 8824 * Verify if we have a complete ICMP and inner IP header. 8825 */ 8826 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8827 goto noticmpv6; 8828 8829 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8830 goto noticmpv6; 8831 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8832 /* 8833 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8834 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8835 * packet. 8836 */ 8837 if ((*nexthdrp != IPPROTO_TCP) || 8838 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8839 goto noticmpv6; 8840 } 8841 8842 /* 8843 * ICMP errors come on the right queue or come on 8844 * listener/global queue for detached connections and 8845 * get switched to the right queue. If it comes on the 8846 * right queue, policy check has already been done by IP 8847 * and thus free the first_mp without verifying the policy. 8848 * If it has come for a non-hard bound connection, we need 8849 * to verify policy as IP may not have done it. 8850 */ 8851 if (!tcp->tcp_hard_bound) { 8852 if (ipsec_mctl) { 8853 secure = ipsec_in_is_secure(first_mp); 8854 } else { 8855 secure = B_FALSE; 8856 } 8857 if (secure) { 8858 /* 8859 * If we are willing to accept this in clear 8860 * we don't have to verify policy. 8861 */ 8862 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8863 if (!tcp_check_policy(tcp, first_mp, 8864 NULL, ip6h, secure, ipsec_mctl)) { 8865 /* 8866 * tcp_check_policy called 8867 * ip_drop_packet() on failure. 8868 */ 8869 return; 8870 } 8871 } 8872 } 8873 } else if (ipsec_mctl) { 8874 /* 8875 * This is a hard_bound connection. IP has already 8876 * verified policy. We don't have to do it again. 8877 */ 8878 freeb(first_mp); 8879 first_mp = mp; 8880 ipsec_mctl = B_FALSE; 8881 } 8882 8883 seg_seq = ntohl(tcpha->tha_seq); 8884 /* 8885 * TCP SHOULD check that the TCP sequence number contained in 8886 * payload of the ICMP error message is within the range 8887 * SND.UNA <= SEG.SEQ < SND.NXT. 8888 */ 8889 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8890 /* 8891 * If the ICMP message is bogus, should we kill the 8892 * connection, or should we just drop the bogus ICMP 8893 * message? It would probably make more sense to just 8894 * drop the message so that if this one managed to get 8895 * in, the real connection should not suffer. 8896 */ 8897 goto noticmpv6; 8898 } 8899 8900 switch (icmp6->icmp6_type) { 8901 case ICMP6_PACKET_TOO_BIG: 8902 /* 8903 * Reduce the MSS based on the new MTU. This will 8904 * eliminate any fragmentation locally. 8905 * N.B. There may well be some funny side-effects on 8906 * the local send policy and the remote receive policy. 8907 * Pending further research, we provide 8908 * tcp_ignore_path_mtu just in case this proves 8909 * disastrous somewhere. 8910 * 8911 * After updating the MSS, retransmit part of the 8912 * dropped segment using the new mss by calling 8913 * tcp_wput_data(). Need to adjust all those 8914 * params to make sure tcp_wput_data() work properly. 8915 */ 8916 if (tcps->tcps_ignore_path_mtu) 8917 break; 8918 8919 /* 8920 * Decrease the MSS by time stamp options 8921 * IP options and IPSEC options. tcp_hdr_len 8922 * includes time stamp option and IP option 8923 * length. 8924 */ 8925 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8926 tcp->tcp_ipsec_overhead; 8927 8928 /* 8929 * Only update the MSS if the new one is 8930 * smaller than the previous one. This is 8931 * to avoid problems when getting multiple 8932 * ICMP errors for the same MTU. 8933 */ 8934 if (new_mss >= tcp->tcp_mss) 8935 break; 8936 8937 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8938 ASSERT(ratio >= 1); 8939 tcp_mss_set(tcp, new_mss, B_TRUE); 8940 8941 /* 8942 * Make sure we have something to 8943 * send. 8944 */ 8945 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8946 (tcp->tcp_xmit_head != NULL)) { 8947 /* 8948 * Shrink tcp_cwnd in 8949 * proportion to the old MSS/new MSS. 8950 */ 8951 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8952 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8953 (tcp->tcp_unsent == 0)) { 8954 tcp->tcp_rexmit_max = tcp->tcp_fss; 8955 } else { 8956 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8957 } 8958 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8959 tcp->tcp_rexmit = B_TRUE; 8960 tcp->tcp_dupack_cnt = 0; 8961 tcp->tcp_snd_burst = TCP_CWND_SS; 8962 tcp_ss_rexmit(tcp); 8963 } 8964 break; 8965 8966 case ICMP6_DST_UNREACH: 8967 switch (icmp6->icmp6_code) { 8968 case ICMP6_DST_UNREACH_NOPORT: 8969 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8970 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8971 (seg_seq == tcp->tcp_iss)) { 8972 (void) tcp_clean_death(tcp, 8973 ECONNREFUSED, 8); 8974 } 8975 break; 8976 8977 case ICMP6_DST_UNREACH_ADMIN: 8978 case ICMP6_DST_UNREACH_NOROUTE: 8979 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8980 case ICMP6_DST_UNREACH_ADDR: 8981 /* Record the error in case we finally time out. */ 8982 tcp->tcp_client_errno = EHOSTUNREACH; 8983 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8984 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8985 (seg_seq == tcp->tcp_iss)) { 8986 if (tcp->tcp_listener != NULL && 8987 tcp->tcp_listener->tcp_syn_defense) { 8988 /* 8989 * Ditch the half-open connection if we 8990 * suspect a SYN attack is under way. 8991 */ 8992 tcp_ip_ire_mark_advice(tcp); 8993 (void) tcp_clean_death(tcp, 8994 tcp->tcp_client_errno, 9); 8995 } 8996 } 8997 8998 8999 break; 9000 default: 9001 break; 9002 } 9003 break; 9004 9005 case ICMP6_PARAM_PROB: 9006 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 9007 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 9008 (uchar_t *)ip6h + icmp6->icmp6_pptr == 9009 (uchar_t *)nexthdrp) { 9010 if (tcp->tcp_state == TCPS_SYN_SENT || 9011 tcp->tcp_state == TCPS_SYN_RCVD) { 9012 (void) tcp_clean_death(tcp, 9013 ECONNREFUSED, 10); 9014 } 9015 break; 9016 } 9017 break; 9018 9019 case ICMP6_TIME_EXCEEDED: 9020 default: 9021 break; 9022 } 9023 freemsg(first_mp); 9024 } 9025 9026 /* 9027 * IP recognizes seven kinds of bind requests: 9028 * 9029 * - A zero-length address binds only to the protocol number. 9030 * 9031 * - A 4-byte address is treated as a request to 9032 * validate that the address is a valid local IPv4 9033 * address, appropriate for an application to bind to. 9034 * IP does the verification, but does not make any note 9035 * of the address at this time. 9036 * 9037 * - A 16-byte address contains is treated as a request 9038 * to validate a local IPv6 address, as the 4-byte 9039 * address case above. 9040 * 9041 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9042 * use it for the inbound fanout of packets. 9043 * 9044 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9045 * use it for the inbound fanout of packets. 9046 * 9047 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9048 * information consisting of local and remote addresses 9049 * and ports. In this case, the addresses are both 9050 * validated as appropriate for this operation, and, if 9051 * so, the information is retained for use in the 9052 * inbound fanout. 9053 * 9054 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9055 * fanout information, like the 12-byte case above. 9056 * 9057 * IP will also fill in the IRE request mblk with information 9058 * regarding our peer. In all cases, we notify IP of our protocol 9059 * type by appending a single protocol byte to the bind request. 9060 */ 9061 static mblk_t * 9062 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9063 { 9064 char *cp; 9065 mblk_t *mp; 9066 struct T_bind_req *tbr; 9067 ipa_conn_t *ac; 9068 ipa6_conn_t *ac6; 9069 sin_t *sin; 9070 sin6_t *sin6; 9071 9072 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9073 ASSERT((tcp->tcp_family == AF_INET && 9074 tcp->tcp_ipversion == IPV4_VERSION) || 9075 (tcp->tcp_family == AF_INET6 && 9076 (tcp->tcp_ipversion == IPV4_VERSION || 9077 tcp->tcp_ipversion == IPV6_VERSION))); 9078 9079 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9080 if (!mp) 9081 return (mp); 9082 mp->b_datap->db_type = M_PROTO; 9083 tbr = (struct T_bind_req *)mp->b_rptr; 9084 tbr->PRIM_type = bind_prim; 9085 tbr->ADDR_offset = sizeof (*tbr); 9086 tbr->CONIND_number = 0; 9087 tbr->ADDR_length = addr_length; 9088 cp = (char *)&tbr[1]; 9089 switch (addr_length) { 9090 case sizeof (ipa_conn_t): 9091 ASSERT(tcp->tcp_family == AF_INET); 9092 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9093 9094 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9095 if (mp->b_cont == NULL) { 9096 freemsg(mp); 9097 return (NULL); 9098 } 9099 mp->b_cont->b_wptr += sizeof (ire_t); 9100 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9101 9102 /* cp known to be 32 bit aligned */ 9103 ac = (ipa_conn_t *)cp; 9104 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9105 ac->ac_faddr = tcp->tcp_remote; 9106 ac->ac_fport = tcp->tcp_fport; 9107 ac->ac_lport = tcp->tcp_lport; 9108 tcp->tcp_hard_binding = 1; 9109 break; 9110 9111 case sizeof (ipa6_conn_t): 9112 ASSERT(tcp->tcp_family == AF_INET6); 9113 9114 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9115 if (mp->b_cont == NULL) { 9116 freemsg(mp); 9117 return (NULL); 9118 } 9119 mp->b_cont->b_wptr += sizeof (ire_t); 9120 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9121 9122 /* cp known to be 32 bit aligned */ 9123 ac6 = (ipa6_conn_t *)cp; 9124 if (tcp->tcp_ipversion == IPV4_VERSION) { 9125 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9126 &ac6->ac6_laddr); 9127 } else { 9128 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9129 } 9130 ac6->ac6_faddr = tcp->tcp_remote_v6; 9131 ac6->ac6_fport = tcp->tcp_fport; 9132 ac6->ac6_lport = tcp->tcp_lport; 9133 tcp->tcp_hard_binding = 1; 9134 break; 9135 9136 case sizeof (sin_t): 9137 /* 9138 * NOTE: IPV6_ADDR_LEN also has same size. 9139 * Use family to discriminate. 9140 */ 9141 if (tcp->tcp_family == AF_INET) { 9142 sin = (sin_t *)cp; 9143 9144 *sin = sin_null; 9145 sin->sin_family = AF_INET; 9146 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9147 sin->sin_port = tcp->tcp_lport; 9148 break; 9149 } else { 9150 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9151 } 9152 break; 9153 9154 case sizeof (sin6_t): 9155 ASSERT(tcp->tcp_family == AF_INET6); 9156 sin6 = (sin6_t *)cp; 9157 9158 *sin6 = sin6_null; 9159 sin6->sin6_family = AF_INET6; 9160 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9161 sin6->sin6_port = tcp->tcp_lport; 9162 break; 9163 9164 case IP_ADDR_LEN: 9165 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9166 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9167 break; 9168 9169 } 9170 /* Add protocol number to end */ 9171 cp[addr_length] = (char)IPPROTO_TCP; 9172 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9173 return (mp); 9174 } 9175 9176 /* 9177 * Notify IP that we are having trouble with this connection. IP should 9178 * blow the IRE away and start over. 9179 */ 9180 static void 9181 tcp_ip_notify(tcp_t *tcp) 9182 { 9183 struct iocblk *iocp; 9184 ipid_t *ipid; 9185 mblk_t *mp; 9186 9187 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9188 if (tcp->tcp_ipversion == IPV6_VERSION) 9189 return; 9190 9191 mp = mkiocb(IP_IOCTL); 9192 if (mp == NULL) 9193 return; 9194 9195 iocp = (struct iocblk *)mp->b_rptr; 9196 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9197 9198 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9199 if (!mp->b_cont) { 9200 freeb(mp); 9201 return; 9202 } 9203 9204 ipid = (ipid_t *)mp->b_cont->b_rptr; 9205 mp->b_cont->b_wptr += iocp->ioc_count; 9206 bzero(ipid, sizeof (*ipid)); 9207 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9208 ipid->ipid_ire_type = IRE_CACHE; 9209 ipid->ipid_addr_offset = sizeof (ipid_t); 9210 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9211 /* 9212 * Note: in the case of source routing we want to blow away the 9213 * route to the first source route hop. 9214 */ 9215 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9216 sizeof (tcp->tcp_ipha->ipha_dst)); 9217 9218 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9219 } 9220 9221 /* Unlink and return any mblk that looks like it contains an ire */ 9222 static mblk_t * 9223 tcp_ire_mp(mblk_t *mp) 9224 { 9225 mblk_t *prev_mp; 9226 9227 for (;;) { 9228 prev_mp = mp; 9229 mp = mp->b_cont; 9230 if (mp == NULL) 9231 break; 9232 switch (DB_TYPE(mp)) { 9233 case IRE_DB_TYPE: 9234 case IRE_DB_REQ_TYPE: 9235 if (prev_mp != NULL) 9236 prev_mp->b_cont = mp->b_cont; 9237 mp->b_cont = NULL; 9238 return (mp); 9239 default: 9240 break; 9241 } 9242 } 9243 return (mp); 9244 } 9245 9246 /* 9247 * Timer callback routine for keepalive probe. We do a fake resend of 9248 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9249 * check to see if we have heard anything from the other end for the last 9250 * RTO period. If we have, set the timer to expire for another 9251 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9252 * RTO << 1 and check again when it expires. Keep exponentially increasing 9253 * the timeout if we have not heard from the other side. If for more than 9254 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9255 * kill the connection unless the keepalive abort threshold is 0. In 9256 * that case, we will probe "forever." 9257 */ 9258 static void 9259 tcp_keepalive_killer(void *arg) 9260 { 9261 mblk_t *mp; 9262 conn_t *connp = (conn_t *)arg; 9263 tcp_t *tcp = connp->conn_tcp; 9264 int32_t firetime; 9265 int32_t idletime; 9266 int32_t ka_intrvl; 9267 tcp_stack_t *tcps = tcp->tcp_tcps; 9268 9269 tcp->tcp_ka_tid = 0; 9270 9271 if (tcp->tcp_fused) 9272 return; 9273 9274 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9275 ka_intrvl = tcp->tcp_ka_interval; 9276 9277 /* 9278 * Keepalive probe should only be sent if the application has not 9279 * done a close on the connection. 9280 */ 9281 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9282 return; 9283 } 9284 /* Timer fired too early, restart it. */ 9285 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9286 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9287 MSEC_TO_TICK(ka_intrvl)); 9288 return; 9289 } 9290 9291 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9292 /* 9293 * If we have not heard from the other side for a long 9294 * time, kill the connection unless the keepalive abort 9295 * threshold is 0. In that case, we will probe "forever." 9296 */ 9297 if (tcp->tcp_ka_abort_thres != 0 && 9298 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9299 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9300 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9301 tcp->tcp_client_errno : ETIMEDOUT, 11); 9302 return; 9303 } 9304 9305 if (tcp->tcp_snxt == tcp->tcp_suna && 9306 idletime >= ka_intrvl) { 9307 /* Fake resend of last ACKed byte. */ 9308 mblk_t *mp1 = allocb(1, BPRI_LO); 9309 9310 if (mp1 != NULL) { 9311 *mp1->b_wptr++ = '\0'; 9312 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9313 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9314 freeb(mp1); 9315 /* 9316 * if allocation failed, fall through to start the 9317 * timer back. 9318 */ 9319 if (mp != NULL) { 9320 tcp_send_data(tcp, tcp->tcp_wq, mp); 9321 BUMP_MIB(&tcps->tcps_mib, 9322 tcpTimKeepaliveProbe); 9323 if (tcp->tcp_ka_last_intrvl != 0) { 9324 int max; 9325 /* 9326 * We should probe again at least 9327 * in ka_intrvl, but not more than 9328 * tcp_rexmit_interval_max. 9329 */ 9330 max = tcps->tcps_rexmit_interval_max; 9331 firetime = MIN(ka_intrvl - 1, 9332 tcp->tcp_ka_last_intrvl << 1); 9333 if (firetime > max) 9334 firetime = max; 9335 } else { 9336 firetime = tcp->tcp_rto; 9337 } 9338 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9339 tcp_keepalive_killer, 9340 MSEC_TO_TICK(firetime)); 9341 tcp->tcp_ka_last_intrvl = firetime; 9342 return; 9343 } 9344 } 9345 } else { 9346 tcp->tcp_ka_last_intrvl = 0; 9347 } 9348 9349 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9350 if ((firetime = ka_intrvl - idletime) < 0) { 9351 firetime = ka_intrvl; 9352 } 9353 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9354 MSEC_TO_TICK(firetime)); 9355 } 9356 9357 int 9358 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9359 { 9360 queue_t *q = tcp->tcp_rq; 9361 int32_t mss = tcp->tcp_mss; 9362 int maxpsz; 9363 9364 if (TCP_IS_DETACHED(tcp)) 9365 return (mss); 9366 9367 if (tcp->tcp_fused) { 9368 maxpsz = tcp_fuse_maxpsz_set(tcp); 9369 mss = INFPSZ; 9370 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9371 /* 9372 * Set the sd_qn_maxpsz according to the socket send buffer 9373 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9374 * instruct the stream head to copyin user data into contiguous 9375 * kernel-allocated buffers without breaking it up into smaller 9376 * chunks. We round up the buffer size to the nearest SMSS. 9377 */ 9378 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9379 if (tcp->tcp_kssl_ctx == NULL) 9380 mss = INFPSZ; 9381 else 9382 mss = SSL3_MAX_RECORD_LEN; 9383 } else { 9384 /* 9385 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9386 * (and a multiple of the mss). This instructs the stream 9387 * head to break down larger than SMSS writes into SMSS- 9388 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9389 */ 9390 maxpsz = tcp->tcp_maxpsz * mss; 9391 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9392 maxpsz = tcp->tcp_xmit_hiwater/2; 9393 /* Round up to nearest mss */ 9394 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9395 } 9396 } 9397 (void) setmaxps(q, maxpsz); 9398 tcp->tcp_wq->q_maxpsz = maxpsz; 9399 9400 if (set_maxblk) 9401 (void) mi_set_sth_maxblk(q, mss); 9402 9403 return (mss); 9404 } 9405 9406 /* 9407 * Extract option values from a tcp header. We put any found values into the 9408 * tcpopt struct and return a bitmask saying which options were found. 9409 */ 9410 static int 9411 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9412 { 9413 uchar_t *endp; 9414 int len; 9415 uint32_t mss; 9416 uchar_t *up = (uchar_t *)tcph; 9417 int found = 0; 9418 int32_t sack_len; 9419 tcp_seq sack_begin, sack_end; 9420 tcp_t *tcp; 9421 9422 endp = up + TCP_HDR_LENGTH(tcph); 9423 up += TCP_MIN_HEADER_LENGTH; 9424 while (up < endp) { 9425 len = endp - up; 9426 switch (*up) { 9427 case TCPOPT_EOL: 9428 break; 9429 9430 case TCPOPT_NOP: 9431 up++; 9432 continue; 9433 9434 case TCPOPT_MAXSEG: 9435 if (len < TCPOPT_MAXSEG_LEN || 9436 up[1] != TCPOPT_MAXSEG_LEN) 9437 break; 9438 9439 mss = BE16_TO_U16(up+2); 9440 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9441 tcpopt->tcp_opt_mss = mss; 9442 found |= TCP_OPT_MSS_PRESENT; 9443 9444 up += TCPOPT_MAXSEG_LEN; 9445 continue; 9446 9447 case TCPOPT_WSCALE: 9448 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9449 break; 9450 9451 if (up[2] > TCP_MAX_WINSHIFT) 9452 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9453 else 9454 tcpopt->tcp_opt_wscale = up[2]; 9455 found |= TCP_OPT_WSCALE_PRESENT; 9456 9457 up += TCPOPT_WS_LEN; 9458 continue; 9459 9460 case TCPOPT_SACK_PERMITTED: 9461 if (len < TCPOPT_SACK_OK_LEN || 9462 up[1] != TCPOPT_SACK_OK_LEN) 9463 break; 9464 found |= TCP_OPT_SACK_OK_PRESENT; 9465 up += TCPOPT_SACK_OK_LEN; 9466 continue; 9467 9468 case TCPOPT_SACK: 9469 if (len <= 2 || up[1] <= 2 || len < up[1]) 9470 break; 9471 9472 /* If TCP is not interested in SACK blks... */ 9473 if ((tcp = tcpopt->tcp) == NULL) { 9474 up += up[1]; 9475 continue; 9476 } 9477 sack_len = up[1] - TCPOPT_HEADER_LEN; 9478 up += TCPOPT_HEADER_LEN; 9479 9480 /* 9481 * If the list is empty, allocate one and assume 9482 * nothing is sack'ed. 9483 */ 9484 ASSERT(tcp->tcp_sack_info != NULL); 9485 if (tcp->tcp_notsack_list == NULL) { 9486 tcp_notsack_update(&(tcp->tcp_notsack_list), 9487 tcp->tcp_suna, tcp->tcp_snxt, 9488 &(tcp->tcp_num_notsack_blk), 9489 &(tcp->tcp_cnt_notsack_list)); 9490 9491 /* 9492 * Make sure tcp_notsack_list is not NULL. 9493 * This happens when kmem_alloc(KM_NOSLEEP) 9494 * returns NULL. 9495 */ 9496 if (tcp->tcp_notsack_list == NULL) { 9497 up += sack_len; 9498 continue; 9499 } 9500 tcp->tcp_fack = tcp->tcp_suna; 9501 } 9502 9503 while (sack_len > 0) { 9504 if (up + 8 > endp) { 9505 up = endp; 9506 break; 9507 } 9508 sack_begin = BE32_TO_U32(up); 9509 up += 4; 9510 sack_end = BE32_TO_U32(up); 9511 up += 4; 9512 sack_len -= 8; 9513 /* 9514 * Bounds checking. Make sure the SACK 9515 * info is within tcp_suna and tcp_snxt. 9516 * If this SACK blk is out of bound, ignore 9517 * it but continue to parse the following 9518 * blks. 9519 */ 9520 if (SEQ_LEQ(sack_end, sack_begin) || 9521 SEQ_LT(sack_begin, tcp->tcp_suna) || 9522 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9523 continue; 9524 } 9525 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9526 sack_begin, sack_end, 9527 &(tcp->tcp_num_notsack_blk), 9528 &(tcp->tcp_cnt_notsack_list)); 9529 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9530 tcp->tcp_fack = sack_end; 9531 } 9532 } 9533 found |= TCP_OPT_SACK_PRESENT; 9534 continue; 9535 9536 case TCPOPT_TSTAMP: 9537 if (len < TCPOPT_TSTAMP_LEN || 9538 up[1] != TCPOPT_TSTAMP_LEN) 9539 break; 9540 9541 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9542 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9543 9544 found |= TCP_OPT_TSTAMP_PRESENT; 9545 9546 up += TCPOPT_TSTAMP_LEN; 9547 continue; 9548 9549 default: 9550 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9551 break; 9552 up += up[1]; 9553 continue; 9554 } 9555 break; 9556 } 9557 return (found); 9558 } 9559 9560 /* 9561 * Set the mss associated with a particular tcp based on its current value, 9562 * and a new one passed in. Observe minimums and maximums, and reset 9563 * other state variables that we want to view as multiples of mss. 9564 * 9565 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9566 * highwater marks etc. need to be initialized or adjusted. 9567 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9568 * packet arrives. 9569 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9570 * ICMP6_PACKET_TOO_BIG arrives. 9571 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9572 * to increase the MSS to use the extra bytes available. 9573 * 9574 * Callers except tcp_paws_check() ensure that they only reduce mss. 9575 */ 9576 static void 9577 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9578 { 9579 uint32_t mss_max; 9580 tcp_stack_t *tcps = tcp->tcp_tcps; 9581 9582 if (tcp->tcp_ipversion == IPV4_VERSION) 9583 mss_max = tcps->tcps_mss_max_ipv4; 9584 else 9585 mss_max = tcps->tcps_mss_max_ipv6; 9586 9587 if (mss < tcps->tcps_mss_min) 9588 mss = tcps->tcps_mss_min; 9589 if (mss > mss_max) 9590 mss = mss_max; 9591 /* 9592 * Unless naglim has been set by our client to 9593 * a non-mss value, force naglim to track mss. 9594 * This can help to aggregate small writes. 9595 */ 9596 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9597 tcp->tcp_naglim = mss; 9598 /* 9599 * TCP should be able to buffer at least 4 MSS data for obvious 9600 * performance reason. 9601 */ 9602 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9603 tcp->tcp_xmit_hiwater = mss << 2; 9604 9605 if (do_ss) { 9606 /* 9607 * Either the tcp_cwnd is as yet uninitialized, or mss is 9608 * changing due to a reduction in MTU, presumably as a 9609 * result of a new path component, reset cwnd to its 9610 * "initial" value, as a multiple of the new mss. 9611 */ 9612 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9613 } else { 9614 /* 9615 * Called by tcp_paws_check(), the mss increased 9616 * marginally to allow use of space previously taken 9617 * by the timestamp option. It would be inappropriate 9618 * to apply slow start or tcp_init_cwnd values to 9619 * tcp_cwnd, simply adjust to a multiple of the new mss. 9620 */ 9621 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9622 tcp->tcp_cwnd_cnt = 0; 9623 } 9624 tcp->tcp_mss = mss; 9625 (void) tcp_maxpsz_set(tcp, B_TRUE); 9626 } 9627 9628 /* For /dev/tcp aka AF_INET open */ 9629 static int 9630 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9631 { 9632 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9633 } 9634 9635 /* For /dev/tcp6 aka AF_INET6 open */ 9636 static int 9637 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9638 { 9639 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9640 } 9641 9642 static int 9643 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9644 boolean_t isv6) 9645 { 9646 tcp_t *tcp = NULL; 9647 conn_t *connp; 9648 int err; 9649 vmem_t *minor_arena = NULL; 9650 dev_t conn_dev; 9651 zoneid_t zoneid; 9652 tcp_stack_t *tcps = NULL; 9653 9654 if (q->q_ptr != NULL) 9655 return (0); 9656 9657 if (sflag == MODOPEN) 9658 return (EINVAL); 9659 9660 if (!(flag & SO_ACCEPTOR)) { 9661 /* 9662 * Special case for install: miniroot needs to be able to 9663 * access files via NFS as though it were always in the 9664 * global zone. 9665 */ 9666 if (credp == kcred && nfs_global_client_only != 0) { 9667 zoneid = GLOBAL_ZONEID; 9668 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9669 netstack_tcp; 9670 ASSERT(tcps != NULL); 9671 } else { 9672 netstack_t *ns; 9673 9674 ns = netstack_find_by_cred(credp); 9675 ASSERT(ns != NULL); 9676 tcps = ns->netstack_tcp; 9677 ASSERT(tcps != NULL); 9678 9679 /* 9680 * For exclusive stacks we set the zoneid to zero 9681 * to make TCP operate as if in the global zone. 9682 */ 9683 if (tcps->tcps_netstack->netstack_stackid != 9684 GLOBAL_NETSTACKID) 9685 zoneid = GLOBAL_ZONEID; 9686 else 9687 zoneid = crgetzoneid(credp); 9688 } 9689 /* 9690 * For stackid zero this is done from strplumb.c, but 9691 * non-zero stackids are handled here. 9692 */ 9693 if (tcps->tcps_g_q == NULL && 9694 tcps->tcps_netstack->netstack_stackid != 9695 GLOBAL_NETSTACKID) { 9696 tcp_g_q_setup(tcps); 9697 } 9698 } 9699 9700 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9701 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9702 minor_arena = ip_minor_arena_la; 9703 } else { 9704 /* 9705 * Either minor numbers in the large arena were exhausted 9706 * or a non socket application is doing the open. 9707 * Try to allocate from the small arena. 9708 */ 9709 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9710 if (tcps != NULL) 9711 netstack_rele(tcps->tcps_netstack); 9712 return (EBUSY); 9713 } 9714 minor_arena = ip_minor_arena_sa; 9715 } 9716 ASSERT(minor_arena != NULL); 9717 9718 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9719 9720 if (flag & SO_ACCEPTOR) { 9721 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9722 ASSERT(tcps == NULL); 9723 q->q_qinfo = &tcp_acceptor_rinit; 9724 /* 9725 * the conn_dev and minor_arena will be subsequently used by 9726 * tcp_wput_accept() and tcpclose_accept() to figure out the 9727 * minor device number for this connection from the q_ptr. 9728 */ 9729 RD(q)->q_ptr = (void *)conn_dev; 9730 WR(q)->q_qinfo = &tcp_acceptor_winit; 9731 WR(q)->q_ptr = (void *)minor_arena; 9732 qprocson(q); 9733 return (0); 9734 } 9735 9736 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9737 /* 9738 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9739 * so we drop it by one. 9740 */ 9741 netstack_rele(tcps->tcps_netstack); 9742 if (connp == NULL) { 9743 inet_minor_free(minor_arena, conn_dev); 9744 q->q_ptr = NULL; 9745 return (ENOSR); 9746 } 9747 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9748 tcp = connp->conn_tcp; 9749 9750 q->q_ptr = WR(q)->q_ptr = connp; 9751 if (isv6) { 9752 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9753 connp->conn_send = ip_output_v6; 9754 connp->conn_af_isv6 = B_TRUE; 9755 connp->conn_pkt_isv6 = B_TRUE; 9756 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9757 tcp->tcp_ipversion = IPV6_VERSION; 9758 tcp->tcp_family = AF_INET6; 9759 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9760 } else { 9761 connp->conn_flags |= IPCL_TCP4; 9762 connp->conn_send = ip_output; 9763 connp->conn_af_isv6 = B_FALSE; 9764 connp->conn_pkt_isv6 = B_FALSE; 9765 tcp->tcp_ipversion = IPV4_VERSION; 9766 tcp->tcp_family = AF_INET; 9767 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9768 } 9769 9770 /* 9771 * TCP keeps a copy of cred for cache locality reasons but 9772 * we put a reference only once. If connp->conn_cred 9773 * becomes invalid, tcp_cred should also be set to NULL. 9774 */ 9775 tcp->tcp_cred = connp->conn_cred = credp; 9776 crhold(connp->conn_cred); 9777 tcp->tcp_cpid = curproc->p_pid; 9778 tcp->tcp_open_time = lbolt64; 9779 connp->conn_zoneid = zoneid; 9780 connp->conn_mlp_type = mlptSingle; 9781 connp->conn_ulp_labeled = !is_system_labeled(); 9782 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9783 ASSERT(tcp->tcp_tcps == tcps); 9784 9785 /* 9786 * If the caller has the process-wide flag set, then default to MAC 9787 * exempt mode. This allows read-down to unlabeled hosts. 9788 */ 9789 if (getpflags(NET_MAC_AWARE, credp) != 0) 9790 connp->conn_mac_exempt = B_TRUE; 9791 9792 connp->conn_dev = conn_dev; 9793 connp->conn_minor_arena = minor_arena; 9794 9795 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9796 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9797 9798 if (flag & SO_SOCKSTR) { 9799 /* 9800 * No need to insert a socket in tcp acceptor hash. 9801 * If it was a socket acceptor stream, we dealt with 9802 * it above. A socket listener can never accept a 9803 * connection and doesn't need acceptor_id. 9804 */ 9805 connp->conn_flags |= IPCL_SOCKET; 9806 tcp->tcp_issocket = 1; 9807 WR(q)->q_qinfo = &tcp_sock_winit; 9808 } else { 9809 #ifdef _ILP32 9810 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9811 #else 9812 tcp->tcp_acceptor_id = conn_dev; 9813 #endif /* _ILP32 */ 9814 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9815 } 9816 9817 err = tcp_init(tcp, q); 9818 if (err != 0) { 9819 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 9820 tcp_acceptor_hash_remove(tcp); 9821 CONN_DEC_REF(connp); 9822 q->q_ptr = WR(q)->q_ptr = NULL; 9823 return (err); 9824 } 9825 9826 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9827 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9828 9829 /* Non-zero default values */ 9830 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9831 /* 9832 * Put the ref for TCP. Ref for IP was already put 9833 * by ipcl_conn_create. Also Make the conn_t globally 9834 * visible to walkers 9835 */ 9836 mutex_enter(&connp->conn_lock); 9837 CONN_INC_REF_LOCKED(connp); 9838 ASSERT(connp->conn_ref == 2); 9839 connp->conn_state_flags &= ~CONN_INCIPIENT; 9840 mutex_exit(&connp->conn_lock); 9841 9842 qprocson(q); 9843 return (0); 9844 } 9845 9846 /* 9847 * Some TCP options can be "set" by requesting them in the option 9848 * buffer. This is needed for XTI feature test though we do not 9849 * allow it in general. We interpret that this mechanism is more 9850 * applicable to OSI protocols and need not be allowed in general. 9851 * This routine filters out options for which it is not allowed (most) 9852 * and lets through those (few) for which it is. [ The XTI interface 9853 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9854 * ever implemented will have to be allowed here ]. 9855 */ 9856 static boolean_t 9857 tcp_allow_connopt_set(int level, int name) 9858 { 9859 9860 switch (level) { 9861 case IPPROTO_TCP: 9862 switch (name) { 9863 case TCP_NODELAY: 9864 return (B_TRUE); 9865 default: 9866 return (B_FALSE); 9867 } 9868 /*NOTREACHED*/ 9869 default: 9870 return (B_FALSE); 9871 } 9872 /*NOTREACHED*/ 9873 } 9874 9875 /* 9876 * This routine gets default values of certain options whose default 9877 * values are maintained by protocol specific code 9878 */ 9879 /* ARGSUSED */ 9880 int 9881 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9882 { 9883 int32_t *i1 = (int32_t *)ptr; 9884 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9885 9886 switch (level) { 9887 case IPPROTO_TCP: 9888 switch (name) { 9889 case TCP_NOTIFY_THRESHOLD: 9890 *i1 = tcps->tcps_ip_notify_interval; 9891 break; 9892 case TCP_ABORT_THRESHOLD: 9893 *i1 = tcps->tcps_ip_abort_interval; 9894 break; 9895 case TCP_CONN_NOTIFY_THRESHOLD: 9896 *i1 = tcps->tcps_ip_notify_cinterval; 9897 break; 9898 case TCP_CONN_ABORT_THRESHOLD: 9899 *i1 = tcps->tcps_ip_abort_cinterval; 9900 break; 9901 default: 9902 return (-1); 9903 } 9904 break; 9905 case IPPROTO_IP: 9906 switch (name) { 9907 case IP_TTL: 9908 *i1 = tcps->tcps_ipv4_ttl; 9909 break; 9910 default: 9911 return (-1); 9912 } 9913 break; 9914 case IPPROTO_IPV6: 9915 switch (name) { 9916 case IPV6_UNICAST_HOPS: 9917 *i1 = tcps->tcps_ipv6_hoplimit; 9918 break; 9919 default: 9920 return (-1); 9921 } 9922 break; 9923 default: 9924 return (-1); 9925 } 9926 return (sizeof (int)); 9927 } 9928 9929 9930 /* 9931 * TCP routine to get the values of options. 9932 */ 9933 int 9934 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9935 { 9936 int *i1 = (int *)ptr; 9937 conn_t *connp = Q_TO_CONN(q); 9938 tcp_t *tcp = connp->conn_tcp; 9939 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9940 9941 switch (level) { 9942 case SOL_SOCKET: 9943 switch (name) { 9944 case SO_LINGER: { 9945 struct linger *lgr = (struct linger *)ptr; 9946 9947 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9948 lgr->l_linger = tcp->tcp_lingertime; 9949 } 9950 return (sizeof (struct linger)); 9951 case SO_DEBUG: 9952 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9953 break; 9954 case SO_KEEPALIVE: 9955 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9956 break; 9957 case SO_DONTROUTE: 9958 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9959 break; 9960 case SO_USELOOPBACK: 9961 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9962 break; 9963 case SO_BROADCAST: 9964 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9965 break; 9966 case SO_REUSEADDR: 9967 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9968 break; 9969 case SO_OOBINLINE: 9970 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9971 break; 9972 case SO_DGRAM_ERRIND: 9973 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9974 break; 9975 case SO_TYPE: 9976 *i1 = SOCK_STREAM; 9977 break; 9978 case SO_SNDBUF: 9979 *i1 = tcp->tcp_xmit_hiwater; 9980 break; 9981 case SO_RCVBUF: 9982 *i1 = RD(q)->q_hiwat; 9983 break; 9984 case SO_SND_COPYAVOID: 9985 *i1 = tcp->tcp_snd_zcopy_on ? 9986 SO_SND_COPYAVOID : 0; 9987 break; 9988 case SO_ALLZONES: 9989 *i1 = connp->conn_allzones ? 1 : 0; 9990 break; 9991 case SO_ANON_MLP: 9992 *i1 = connp->conn_anon_mlp; 9993 break; 9994 case SO_MAC_EXEMPT: 9995 *i1 = connp->conn_mac_exempt; 9996 break; 9997 case SO_EXCLBIND: 9998 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9999 break; 10000 case SO_PROTOTYPE: 10001 *i1 = IPPROTO_TCP; 10002 break; 10003 case SO_DOMAIN: 10004 *i1 = tcp->tcp_family; 10005 break; 10006 default: 10007 return (-1); 10008 } 10009 break; 10010 case IPPROTO_TCP: 10011 switch (name) { 10012 case TCP_NODELAY: 10013 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 10014 break; 10015 case TCP_MAXSEG: 10016 *i1 = tcp->tcp_mss; 10017 break; 10018 case TCP_NOTIFY_THRESHOLD: 10019 *i1 = (int)tcp->tcp_first_timer_threshold; 10020 break; 10021 case TCP_ABORT_THRESHOLD: 10022 *i1 = tcp->tcp_second_timer_threshold; 10023 break; 10024 case TCP_CONN_NOTIFY_THRESHOLD: 10025 *i1 = tcp->tcp_first_ctimer_threshold; 10026 break; 10027 case TCP_CONN_ABORT_THRESHOLD: 10028 *i1 = tcp->tcp_second_ctimer_threshold; 10029 break; 10030 case TCP_RECVDSTADDR: 10031 *i1 = tcp->tcp_recvdstaddr; 10032 break; 10033 case TCP_ANONPRIVBIND: 10034 *i1 = tcp->tcp_anon_priv_bind; 10035 break; 10036 case TCP_EXCLBIND: 10037 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10038 break; 10039 case TCP_INIT_CWND: 10040 *i1 = tcp->tcp_init_cwnd; 10041 break; 10042 case TCP_KEEPALIVE_THRESHOLD: 10043 *i1 = tcp->tcp_ka_interval; 10044 break; 10045 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10046 *i1 = tcp->tcp_ka_abort_thres; 10047 break; 10048 case TCP_CORK: 10049 *i1 = tcp->tcp_cork; 10050 break; 10051 default: 10052 return (-1); 10053 } 10054 break; 10055 case IPPROTO_IP: 10056 if (tcp->tcp_family != AF_INET) 10057 return (-1); 10058 switch (name) { 10059 case IP_OPTIONS: 10060 case T_IP_OPTIONS: { 10061 /* 10062 * This is compatible with BSD in that in only return 10063 * the reverse source route with the final destination 10064 * as the last entry. The first 4 bytes of the option 10065 * will contain the final destination. 10066 */ 10067 int opt_len; 10068 10069 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 10070 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 10071 ASSERT(opt_len >= 0); 10072 /* Caller ensures enough space */ 10073 if (opt_len > 0) { 10074 /* 10075 * TODO: Do we have to handle getsockopt on an 10076 * initiator as well? 10077 */ 10078 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10079 } 10080 return (0); 10081 } 10082 case IP_TOS: 10083 case T_IP_TOS: 10084 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10085 break; 10086 case IP_TTL: 10087 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10088 break; 10089 case IP_NEXTHOP: 10090 /* Handled at IP level */ 10091 return (-EINVAL); 10092 default: 10093 return (-1); 10094 } 10095 break; 10096 case IPPROTO_IPV6: 10097 /* 10098 * IPPROTO_IPV6 options are only supported for sockets 10099 * that are using IPv6 on the wire. 10100 */ 10101 if (tcp->tcp_ipversion != IPV6_VERSION) { 10102 return (-1); 10103 } 10104 switch (name) { 10105 case IPV6_UNICAST_HOPS: 10106 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10107 break; /* goto sizeof (int) option return */ 10108 case IPV6_BOUND_IF: 10109 /* Zero if not set */ 10110 *i1 = tcp->tcp_bound_if; 10111 break; /* goto sizeof (int) option return */ 10112 case IPV6_RECVPKTINFO: 10113 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10114 *i1 = 1; 10115 else 10116 *i1 = 0; 10117 break; /* goto sizeof (int) option return */ 10118 case IPV6_RECVTCLASS: 10119 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10120 *i1 = 1; 10121 else 10122 *i1 = 0; 10123 break; /* goto sizeof (int) option return */ 10124 case IPV6_RECVHOPLIMIT: 10125 if (tcp->tcp_ipv6_recvancillary & 10126 TCP_IPV6_RECVHOPLIMIT) 10127 *i1 = 1; 10128 else 10129 *i1 = 0; 10130 break; /* goto sizeof (int) option return */ 10131 case IPV6_RECVHOPOPTS: 10132 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10133 *i1 = 1; 10134 else 10135 *i1 = 0; 10136 break; /* goto sizeof (int) option return */ 10137 case IPV6_RECVDSTOPTS: 10138 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10139 *i1 = 1; 10140 else 10141 *i1 = 0; 10142 break; /* goto sizeof (int) option return */ 10143 case _OLD_IPV6_RECVDSTOPTS: 10144 if (tcp->tcp_ipv6_recvancillary & 10145 TCP_OLD_IPV6_RECVDSTOPTS) 10146 *i1 = 1; 10147 else 10148 *i1 = 0; 10149 break; /* goto sizeof (int) option return */ 10150 case IPV6_RECVRTHDR: 10151 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10152 *i1 = 1; 10153 else 10154 *i1 = 0; 10155 break; /* goto sizeof (int) option return */ 10156 case IPV6_RECVRTHDRDSTOPTS: 10157 if (tcp->tcp_ipv6_recvancillary & 10158 TCP_IPV6_RECVRTDSTOPTS) 10159 *i1 = 1; 10160 else 10161 *i1 = 0; 10162 break; /* goto sizeof (int) option return */ 10163 case IPV6_PKTINFO: { 10164 /* XXX assumes that caller has room for max size! */ 10165 struct in6_pktinfo *pkti; 10166 10167 pkti = (struct in6_pktinfo *)ptr; 10168 if (ipp->ipp_fields & IPPF_IFINDEX) 10169 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10170 else 10171 pkti->ipi6_ifindex = 0; 10172 if (ipp->ipp_fields & IPPF_ADDR) 10173 pkti->ipi6_addr = ipp->ipp_addr; 10174 else 10175 pkti->ipi6_addr = ipv6_all_zeros; 10176 return (sizeof (struct in6_pktinfo)); 10177 } 10178 case IPV6_TCLASS: 10179 if (ipp->ipp_fields & IPPF_TCLASS) 10180 *i1 = ipp->ipp_tclass; 10181 else 10182 *i1 = IPV6_FLOW_TCLASS( 10183 IPV6_DEFAULT_VERS_AND_FLOW); 10184 break; /* goto sizeof (int) option return */ 10185 case IPV6_NEXTHOP: { 10186 sin6_t *sin6 = (sin6_t *)ptr; 10187 10188 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10189 return (0); 10190 *sin6 = sin6_null; 10191 sin6->sin6_family = AF_INET6; 10192 sin6->sin6_addr = ipp->ipp_nexthop; 10193 return (sizeof (sin6_t)); 10194 } 10195 case IPV6_HOPOPTS: 10196 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10197 return (0); 10198 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10199 return (0); 10200 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10201 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10202 if (tcp->tcp_label_len > 0) { 10203 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10204 ptr[1] = (ipp->ipp_hopoptslen - 10205 tcp->tcp_label_len + 7) / 8 - 1; 10206 } 10207 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10208 case IPV6_RTHDRDSTOPTS: 10209 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10210 return (0); 10211 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10212 return (ipp->ipp_rtdstoptslen); 10213 case IPV6_RTHDR: 10214 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10215 return (0); 10216 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10217 return (ipp->ipp_rthdrlen); 10218 case IPV6_DSTOPTS: 10219 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10220 return (0); 10221 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10222 return (ipp->ipp_dstoptslen); 10223 case IPV6_SRC_PREFERENCES: 10224 return (ip6_get_src_preferences(connp, 10225 (uint32_t *)ptr)); 10226 case IPV6_PATHMTU: { 10227 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10228 10229 if (tcp->tcp_state < TCPS_ESTABLISHED) 10230 return (-1); 10231 10232 return (ip_fill_mtuinfo(&connp->conn_remv6, 10233 connp->conn_fport, mtuinfo, 10234 connp->conn_netstack)); 10235 } 10236 default: 10237 return (-1); 10238 } 10239 break; 10240 default: 10241 return (-1); 10242 } 10243 return (sizeof (int)); 10244 } 10245 10246 /* 10247 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10248 * Parameters are assumed to be verified by the caller. 10249 */ 10250 /* ARGSUSED */ 10251 int 10252 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10253 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10254 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10255 { 10256 conn_t *connp = Q_TO_CONN(q); 10257 tcp_t *tcp = connp->conn_tcp; 10258 int *i1 = (int *)invalp; 10259 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10260 boolean_t checkonly; 10261 int reterr; 10262 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10263 10264 switch (optset_context) { 10265 case SETFN_OPTCOM_CHECKONLY: 10266 checkonly = B_TRUE; 10267 /* 10268 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10269 * inlen != 0 implies value supplied and 10270 * we have to "pretend" to set it. 10271 * inlen == 0 implies that there is no 10272 * value part in T_CHECK request and just validation 10273 * done elsewhere should be enough, we just return here. 10274 */ 10275 if (inlen == 0) { 10276 *outlenp = 0; 10277 return (0); 10278 } 10279 break; 10280 case SETFN_OPTCOM_NEGOTIATE: 10281 checkonly = B_FALSE; 10282 break; 10283 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10284 case SETFN_CONN_NEGOTIATE: 10285 checkonly = B_FALSE; 10286 /* 10287 * Negotiating local and "association-related" options 10288 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10289 * primitives is allowed by XTI, but we choose 10290 * to not implement this style negotiation for Internet 10291 * protocols (We interpret it is a must for OSI world but 10292 * optional for Internet protocols) for all options. 10293 * [ Will do only for the few options that enable test 10294 * suites that our XTI implementation of this feature 10295 * works for transports that do allow it ] 10296 */ 10297 if (!tcp_allow_connopt_set(level, name)) { 10298 *outlenp = 0; 10299 return (EINVAL); 10300 } 10301 break; 10302 default: 10303 /* 10304 * We should never get here 10305 */ 10306 *outlenp = 0; 10307 return (EINVAL); 10308 } 10309 10310 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10311 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10312 10313 /* 10314 * For TCP, we should have no ancillary data sent down 10315 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10316 * has to be zero. 10317 */ 10318 ASSERT(thisdg_attrs == NULL); 10319 10320 /* 10321 * For fixed length options, no sanity check 10322 * of passed in length is done. It is assumed *_optcom_req() 10323 * routines do the right thing. 10324 */ 10325 10326 switch (level) { 10327 case SOL_SOCKET: 10328 switch (name) { 10329 case SO_LINGER: { 10330 struct linger *lgr = (struct linger *)invalp; 10331 10332 if (!checkonly) { 10333 if (lgr->l_onoff) { 10334 tcp->tcp_linger = 1; 10335 tcp->tcp_lingertime = lgr->l_linger; 10336 } else { 10337 tcp->tcp_linger = 0; 10338 tcp->tcp_lingertime = 0; 10339 } 10340 /* struct copy */ 10341 *(struct linger *)outvalp = *lgr; 10342 } else { 10343 if (!lgr->l_onoff) { 10344 ((struct linger *) 10345 outvalp)->l_onoff = 0; 10346 ((struct linger *) 10347 outvalp)->l_linger = 0; 10348 } else { 10349 /* struct copy */ 10350 *(struct linger *)outvalp = *lgr; 10351 } 10352 } 10353 *outlenp = sizeof (struct linger); 10354 return (0); 10355 } 10356 case SO_DEBUG: 10357 if (!checkonly) 10358 tcp->tcp_debug = onoff; 10359 break; 10360 case SO_KEEPALIVE: 10361 if (checkonly) { 10362 /* T_CHECK case */ 10363 break; 10364 } 10365 10366 if (!onoff) { 10367 if (tcp->tcp_ka_enabled) { 10368 if (tcp->tcp_ka_tid != 0) { 10369 (void) TCP_TIMER_CANCEL(tcp, 10370 tcp->tcp_ka_tid); 10371 tcp->tcp_ka_tid = 0; 10372 } 10373 tcp->tcp_ka_enabled = 0; 10374 } 10375 break; 10376 } 10377 if (!tcp->tcp_ka_enabled) { 10378 /* Crank up the keepalive timer */ 10379 tcp->tcp_ka_last_intrvl = 0; 10380 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10381 tcp_keepalive_killer, 10382 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10383 tcp->tcp_ka_enabled = 1; 10384 } 10385 break; 10386 case SO_DONTROUTE: 10387 /* 10388 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10389 * only of interest to IP. We track them here only so 10390 * that we can report their current value. 10391 */ 10392 if (!checkonly) { 10393 tcp->tcp_dontroute = onoff; 10394 tcp->tcp_connp->conn_dontroute = onoff; 10395 } 10396 break; 10397 case SO_USELOOPBACK: 10398 if (!checkonly) { 10399 tcp->tcp_useloopback = onoff; 10400 tcp->tcp_connp->conn_loopback = onoff; 10401 } 10402 break; 10403 case SO_BROADCAST: 10404 if (!checkonly) { 10405 tcp->tcp_broadcast = onoff; 10406 tcp->tcp_connp->conn_broadcast = onoff; 10407 } 10408 break; 10409 case SO_REUSEADDR: 10410 if (!checkonly) { 10411 tcp->tcp_reuseaddr = onoff; 10412 tcp->tcp_connp->conn_reuseaddr = onoff; 10413 } 10414 break; 10415 case SO_OOBINLINE: 10416 if (!checkonly) 10417 tcp->tcp_oobinline = onoff; 10418 break; 10419 case SO_DGRAM_ERRIND: 10420 if (!checkonly) 10421 tcp->tcp_dgram_errind = onoff; 10422 break; 10423 case SO_SNDBUF: { 10424 if (*i1 > tcps->tcps_max_buf) { 10425 *outlenp = 0; 10426 return (ENOBUFS); 10427 } 10428 if (checkonly) 10429 break; 10430 10431 tcp->tcp_xmit_hiwater = *i1; 10432 if (tcps->tcps_snd_lowat_fraction != 0) 10433 tcp->tcp_xmit_lowater = 10434 tcp->tcp_xmit_hiwater / 10435 tcps->tcps_snd_lowat_fraction; 10436 (void) tcp_maxpsz_set(tcp, B_TRUE); 10437 /* 10438 * If we are flow-controlled, recheck the condition. 10439 * There are apps that increase SO_SNDBUF size when 10440 * flow-controlled (EWOULDBLOCK), and expect the flow 10441 * control condition to be lifted right away. 10442 */ 10443 mutex_enter(&tcp->tcp_non_sq_lock); 10444 if (tcp->tcp_flow_stopped && 10445 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10446 tcp_clrqfull(tcp); 10447 } 10448 mutex_exit(&tcp->tcp_non_sq_lock); 10449 break; 10450 } 10451 case SO_RCVBUF: 10452 if (*i1 > tcps->tcps_max_buf) { 10453 *outlenp = 0; 10454 return (ENOBUFS); 10455 } 10456 /* Silently ignore zero */ 10457 if (!checkonly && *i1 != 0) { 10458 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10459 (void) tcp_rwnd_set(tcp, *i1); 10460 } 10461 /* 10462 * XXX should we return the rwnd here 10463 * and tcp_opt_get ? 10464 */ 10465 break; 10466 case SO_SND_COPYAVOID: 10467 if (!checkonly) { 10468 /* we only allow enable at most once for now */ 10469 if (tcp->tcp_loopback || 10470 (tcp->tcp_kssl_ctx != NULL) || 10471 (!tcp->tcp_snd_zcopy_aware && 10472 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10473 *outlenp = 0; 10474 return (EOPNOTSUPP); 10475 } 10476 tcp->tcp_snd_zcopy_aware = 1; 10477 } 10478 break; 10479 case SO_ALLZONES: 10480 /* Pass option along to IP level for handling */ 10481 return (-EINVAL); 10482 case SO_ANON_MLP: 10483 /* Pass option along to IP level for handling */ 10484 return (-EINVAL); 10485 case SO_MAC_EXEMPT: 10486 /* Pass option along to IP level for handling */ 10487 return (-EINVAL); 10488 case SO_EXCLBIND: 10489 if (!checkonly) 10490 tcp->tcp_exclbind = onoff; 10491 break; 10492 default: 10493 *outlenp = 0; 10494 return (EINVAL); 10495 } 10496 break; 10497 case IPPROTO_TCP: 10498 switch (name) { 10499 case TCP_NODELAY: 10500 if (!checkonly) 10501 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10502 break; 10503 case TCP_NOTIFY_THRESHOLD: 10504 if (!checkonly) 10505 tcp->tcp_first_timer_threshold = *i1; 10506 break; 10507 case TCP_ABORT_THRESHOLD: 10508 if (!checkonly) 10509 tcp->tcp_second_timer_threshold = *i1; 10510 break; 10511 case TCP_CONN_NOTIFY_THRESHOLD: 10512 if (!checkonly) 10513 tcp->tcp_first_ctimer_threshold = *i1; 10514 break; 10515 case TCP_CONN_ABORT_THRESHOLD: 10516 if (!checkonly) 10517 tcp->tcp_second_ctimer_threshold = *i1; 10518 break; 10519 case TCP_RECVDSTADDR: 10520 if (tcp->tcp_state > TCPS_LISTEN) 10521 return (EOPNOTSUPP); 10522 if (!checkonly) 10523 tcp->tcp_recvdstaddr = onoff; 10524 break; 10525 case TCP_ANONPRIVBIND: 10526 if ((reterr = secpolicy_net_privaddr(cr, 0, 10527 IPPROTO_TCP)) != 0) { 10528 *outlenp = 0; 10529 return (reterr); 10530 } 10531 if (!checkonly) { 10532 tcp->tcp_anon_priv_bind = onoff; 10533 } 10534 break; 10535 case TCP_EXCLBIND: 10536 if (!checkonly) 10537 tcp->tcp_exclbind = onoff; 10538 break; /* goto sizeof (int) option return */ 10539 case TCP_INIT_CWND: { 10540 uint32_t init_cwnd = *((uint32_t *)invalp); 10541 10542 if (checkonly) 10543 break; 10544 10545 /* 10546 * Only allow socket with network configuration 10547 * privilege to set the initial cwnd to be larger 10548 * than allowed by RFC 3390. 10549 */ 10550 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10551 tcp->tcp_init_cwnd = init_cwnd; 10552 break; 10553 } 10554 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10555 *outlenp = 0; 10556 return (reterr); 10557 } 10558 if (init_cwnd > TCP_MAX_INIT_CWND) { 10559 *outlenp = 0; 10560 return (EINVAL); 10561 } 10562 tcp->tcp_init_cwnd = init_cwnd; 10563 break; 10564 } 10565 case TCP_KEEPALIVE_THRESHOLD: 10566 if (checkonly) 10567 break; 10568 10569 if (*i1 < tcps->tcps_keepalive_interval_low || 10570 *i1 > tcps->tcps_keepalive_interval_high) { 10571 *outlenp = 0; 10572 return (EINVAL); 10573 } 10574 if (*i1 != tcp->tcp_ka_interval) { 10575 tcp->tcp_ka_interval = *i1; 10576 /* 10577 * Check if we need to restart the 10578 * keepalive timer. 10579 */ 10580 if (tcp->tcp_ka_tid != 0) { 10581 ASSERT(tcp->tcp_ka_enabled); 10582 (void) TCP_TIMER_CANCEL(tcp, 10583 tcp->tcp_ka_tid); 10584 tcp->tcp_ka_last_intrvl = 0; 10585 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10586 tcp_keepalive_killer, 10587 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10588 } 10589 } 10590 break; 10591 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10592 if (!checkonly) { 10593 if (*i1 < 10594 tcps->tcps_keepalive_abort_interval_low || 10595 *i1 > 10596 tcps->tcps_keepalive_abort_interval_high) { 10597 *outlenp = 0; 10598 return (EINVAL); 10599 } 10600 tcp->tcp_ka_abort_thres = *i1; 10601 } 10602 break; 10603 case TCP_CORK: 10604 if (!checkonly) { 10605 /* 10606 * if tcp->tcp_cork was set and is now 10607 * being unset, we have to make sure that 10608 * the remaining data gets sent out. Also 10609 * unset tcp->tcp_cork so that tcp_wput_data() 10610 * can send data even if it is less than mss 10611 */ 10612 if (tcp->tcp_cork && onoff == 0 && 10613 tcp->tcp_unsent > 0) { 10614 tcp->tcp_cork = B_FALSE; 10615 tcp_wput_data(tcp, NULL, B_FALSE); 10616 } 10617 tcp->tcp_cork = onoff; 10618 } 10619 break; 10620 default: 10621 *outlenp = 0; 10622 return (EINVAL); 10623 } 10624 break; 10625 case IPPROTO_IP: 10626 if (tcp->tcp_family != AF_INET) { 10627 *outlenp = 0; 10628 return (ENOPROTOOPT); 10629 } 10630 switch (name) { 10631 case IP_OPTIONS: 10632 case T_IP_OPTIONS: 10633 reterr = tcp_opt_set_header(tcp, checkonly, 10634 invalp, inlen); 10635 if (reterr) { 10636 *outlenp = 0; 10637 return (reterr); 10638 } 10639 /* OK return - copy input buffer into output buffer */ 10640 if (invalp != outvalp) { 10641 /* don't trust bcopy for identical src/dst */ 10642 bcopy(invalp, outvalp, inlen); 10643 } 10644 *outlenp = inlen; 10645 return (0); 10646 case IP_TOS: 10647 case T_IP_TOS: 10648 if (!checkonly) { 10649 tcp->tcp_ipha->ipha_type_of_service = 10650 (uchar_t)*i1; 10651 tcp->tcp_tos = (uchar_t)*i1; 10652 } 10653 break; 10654 case IP_TTL: 10655 if (!checkonly) { 10656 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10657 tcp->tcp_ttl = (uchar_t)*i1; 10658 } 10659 break; 10660 case IP_BOUND_IF: 10661 case IP_NEXTHOP: 10662 /* Handled at the IP level */ 10663 return (-EINVAL); 10664 case IP_SEC_OPT: 10665 /* 10666 * We should not allow policy setting after 10667 * we start listening for connections. 10668 */ 10669 if (tcp->tcp_state == TCPS_LISTEN) { 10670 return (EINVAL); 10671 } else { 10672 /* Handled at the IP level */ 10673 return (-EINVAL); 10674 } 10675 default: 10676 *outlenp = 0; 10677 return (EINVAL); 10678 } 10679 break; 10680 case IPPROTO_IPV6: { 10681 ip6_pkt_t *ipp; 10682 10683 /* 10684 * IPPROTO_IPV6 options are only supported for sockets 10685 * that are using IPv6 on the wire. 10686 */ 10687 if (tcp->tcp_ipversion != IPV6_VERSION) { 10688 *outlenp = 0; 10689 return (ENOPROTOOPT); 10690 } 10691 /* 10692 * Only sticky options; no ancillary data 10693 */ 10694 ASSERT(thisdg_attrs == NULL); 10695 ipp = &tcp->tcp_sticky_ipp; 10696 10697 switch (name) { 10698 case IPV6_UNICAST_HOPS: 10699 /* -1 means use default */ 10700 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10701 *outlenp = 0; 10702 return (EINVAL); 10703 } 10704 if (!checkonly) { 10705 if (*i1 == -1) { 10706 tcp->tcp_ip6h->ip6_hops = 10707 ipp->ipp_unicast_hops = 10708 (uint8_t)tcps->tcps_ipv6_hoplimit; 10709 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10710 /* Pass modified value to IP. */ 10711 *i1 = tcp->tcp_ip6h->ip6_hops; 10712 } else { 10713 tcp->tcp_ip6h->ip6_hops = 10714 ipp->ipp_unicast_hops = 10715 (uint8_t)*i1; 10716 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10717 } 10718 reterr = tcp_build_hdrs(q, tcp); 10719 if (reterr != 0) 10720 return (reterr); 10721 } 10722 break; 10723 case IPV6_BOUND_IF: 10724 if (!checkonly) { 10725 int error = 0; 10726 10727 tcp->tcp_bound_if = *i1; 10728 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10729 B_TRUE, checkonly, level, name, mblk); 10730 if (error != 0) { 10731 *outlenp = 0; 10732 return (error); 10733 } 10734 } 10735 break; 10736 /* 10737 * Set boolean switches for ancillary data delivery 10738 */ 10739 case IPV6_RECVPKTINFO: 10740 if (!checkonly) { 10741 if (onoff) 10742 tcp->tcp_ipv6_recvancillary |= 10743 TCP_IPV6_RECVPKTINFO; 10744 else 10745 tcp->tcp_ipv6_recvancillary &= 10746 ~TCP_IPV6_RECVPKTINFO; 10747 /* Force it to be sent up with the next msg */ 10748 tcp->tcp_recvifindex = 0; 10749 } 10750 break; 10751 case IPV6_RECVTCLASS: 10752 if (!checkonly) { 10753 if (onoff) 10754 tcp->tcp_ipv6_recvancillary |= 10755 TCP_IPV6_RECVTCLASS; 10756 else 10757 tcp->tcp_ipv6_recvancillary &= 10758 ~TCP_IPV6_RECVTCLASS; 10759 } 10760 break; 10761 case IPV6_RECVHOPLIMIT: 10762 if (!checkonly) { 10763 if (onoff) 10764 tcp->tcp_ipv6_recvancillary |= 10765 TCP_IPV6_RECVHOPLIMIT; 10766 else 10767 tcp->tcp_ipv6_recvancillary &= 10768 ~TCP_IPV6_RECVHOPLIMIT; 10769 /* Force it to be sent up with the next msg */ 10770 tcp->tcp_recvhops = 0xffffffffU; 10771 } 10772 break; 10773 case IPV6_RECVHOPOPTS: 10774 if (!checkonly) { 10775 if (onoff) 10776 tcp->tcp_ipv6_recvancillary |= 10777 TCP_IPV6_RECVHOPOPTS; 10778 else 10779 tcp->tcp_ipv6_recvancillary &= 10780 ~TCP_IPV6_RECVHOPOPTS; 10781 } 10782 break; 10783 case IPV6_RECVDSTOPTS: 10784 if (!checkonly) { 10785 if (onoff) 10786 tcp->tcp_ipv6_recvancillary |= 10787 TCP_IPV6_RECVDSTOPTS; 10788 else 10789 tcp->tcp_ipv6_recvancillary &= 10790 ~TCP_IPV6_RECVDSTOPTS; 10791 } 10792 break; 10793 case _OLD_IPV6_RECVDSTOPTS: 10794 if (!checkonly) { 10795 if (onoff) 10796 tcp->tcp_ipv6_recvancillary |= 10797 TCP_OLD_IPV6_RECVDSTOPTS; 10798 else 10799 tcp->tcp_ipv6_recvancillary &= 10800 ~TCP_OLD_IPV6_RECVDSTOPTS; 10801 } 10802 break; 10803 case IPV6_RECVRTHDR: 10804 if (!checkonly) { 10805 if (onoff) 10806 tcp->tcp_ipv6_recvancillary |= 10807 TCP_IPV6_RECVRTHDR; 10808 else 10809 tcp->tcp_ipv6_recvancillary &= 10810 ~TCP_IPV6_RECVRTHDR; 10811 } 10812 break; 10813 case IPV6_RECVRTHDRDSTOPTS: 10814 if (!checkonly) { 10815 if (onoff) 10816 tcp->tcp_ipv6_recvancillary |= 10817 TCP_IPV6_RECVRTDSTOPTS; 10818 else 10819 tcp->tcp_ipv6_recvancillary &= 10820 ~TCP_IPV6_RECVRTDSTOPTS; 10821 } 10822 break; 10823 case IPV6_PKTINFO: 10824 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10825 return (EINVAL); 10826 if (checkonly) 10827 break; 10828 10829 if (inlen == 0) { 10830 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10831 } else { 10832 struct in6_pktinfo *pkti; 10833 10834 pkti = (struct in6_pktinfo *)invalp; 10835 /* 10836 * RFC 3542 states that ipi6_addr must be 10837 * the unspecified address when setting the 10838 * IPV6_PKTINFO sticky socket option on a 10839 * TCP socket. 10840 */ 10841 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10842 return (EINVAL); 10843 /* 10844 * ip6_set_pktinfo() validates the source 10845 * address and interface index. 10846 */ 10847 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10848 pkti, mblk); 10849 if (reterr != 0) 10850 return (reterr); 10851 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10852 ipp->ipp_addr = pkti->ipi6_addr; 10853 if (ipp->ipp_ifindex != 0) 10854 ipp->ipp_fields |= IPPF_IFINDEX; 10855 else 10856 ipp->ipp_fields &= ~IPPF_IFINDEX; 10857 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10858 ipp->ipp_fields |= IPPF_ADDR; 10859 else 10860 ipp->ipp_fields &= ~IPPF_ADDR; 10861 } 10862 reterr = tcp_build_hdrs(q, tcp); 10863 if (reterr != 0) 10864 return (reterr); 10865 break; 10866 case IPV6_TCLASS: 10867 if (inlen != 0 && inlen != sizeof (int)) 10868 return (EINVAL); 10869 if (checkonly) 10870 break; 10871 10872 if (inlen == 0) { 10873 ipp->ipp_fields &= ~IPPF_TCLASS; 10874 } else { 10875 if (*i1 > 255 || *i1 < -1) 10876 return (EINVAL); 10877 if (*i1 == -1) { 10878 ipp->ipp_tclass = 0; 10879 *i1 = 0; 10880 } else { 10881 ipp->ipp_tclass = *i1; 10882 } 10883 ipp->ipp_fields |= IPPF_TCLASS; 10884 } 10885 reterr = tcp_build_hdrs(q, tcp); 10886 if (reterr != 0) 10887 return (reterr); 10888 break; 10889 case IPV6_NEXTHOP: 10890 /* 10891 * IP will verify that the nexthop is reachable 10892 * and fail for sticky options. 10893 */ 10894 if (inlen != 0 && inlen != sizeof (sin6_t)) 10895 return (EINVAL); 10896 if (checkonly) 10897 break; 10898 10899 if (inlen == 0) { 10900 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10901 } else { 10902 sin6_t *sin6 = (sin6_t *)invalp; 10903 10904 if (sin6->sin6_family != AF_INET6) 10905 return (EAFNOSUPPORT); 10906 if (IN6_IS_ADDR_V4MAPPED( 10907 &sin6->sin6_addr)) 10908 return (EADDRNOTAVAIL); 10909 ipp->ipp_nexthop = sin6->sin6_addr; 10910 if (!IN6_IS_ADDR_UNSPECIFIED( 10911 &ipp->ipp_nexthop)) 10912 ipp->ipp_fields |= IPPF_NEXTHOP; 10913 else 10914 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10915 } 10916 reterr = tcp_build_hdrs(q, tcp); 10917 if (reterr != 0) 10918 return (reterr); 10919 break; 10920 case IPV6_HOPOPTS: { 10921 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10922 10923 /* 10924 * Sanity checks - minimum size, size a multiple of 10925 * eight bytes, and matching size passed in. 10926 */ 10927 if (inlen != 0 && 10928 inlen != (8 * (hopts->ip6h_len + 1))) 10929 return (EINVAL); 10930 10931 if (checkonly) 10932 break; 10933 10934 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10935 (uchar_t **)&ipp->ipp_hopopts, 10936 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10937 if (reterr != 0) 10938 return (reterr); 10939 if (ipp->ipp_hopoptslen == 0) 10940 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10941 else 10942 ipp->ipp_fields |= IPPF_HOPOPTS; 10943 reterr = tcp_build_hdrs(q, tcp); 10944 if (reterr != 0) 10945 return (reterr); 10946 break; 10947 } 10948 case IPV6_RTHDRDSTOPTS: { 10949 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10950 10951 /* 10952 * Sanity checks - minimum size, size a multiple of 10953 * eight bytes, and matching size passed in. 10954 */ 10955 if (inlen != 0 && 10956 inlen != (8 * (dopts->ip6d_len + 1))) 10957 return (EINVAL); 10958 10959 if (checkonly) 10960 break; 10961 10962 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10963 (uchar_t **)&ipp->ipp_rtdstopts, 10964 &ipp->ipp_rtdstoptslen, 0); 10965 if (reterr != 0) 10966 return (reterr); 10967 if (ipp->ipp_rtdstoptslen == 0) 10968 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10969 else 10970 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10971 reterr = tcp_build_hdrs(q, tcp); 10972 if (reterr != 0) 10973 return (reterr); 10974 break; 10975 } 10976 case IPV6_DSTOPTS: { 10977 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10978 10979 /* 10980 * Sanity checks - minimum size, size a multiple of 10981 * eight bytes, and matching size passed in. 10982 */ 10983 if (inlen != 0 && 10984 inlen != (8 * (dopts->ip6d_len + 1))) 10985 return (EINVAL); 10986 10987 if (checkonly) 10988 break; 10989 10990 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10991 (uchar_t **)&ipp->ipp_dstopts, 10992 &ipp->ipp_dstoptslen, 0); 10993 if (reterr != 0) 10994 return (reterr); 10995 if (ipp->ipp_dstoptslen == 0) 10996 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10997 else 10998 ipp->ipp_fields |= IPPF_DSTOPTS; 10999 reterr = tcp_build_hdrs(q, tcp); 11000 if (reterr != 0) 11001 return (reterr); 11002 break; 11003 } 11004 case IPV6_RTHDR: { 11005 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 11006 11007 /* 11008 * Sanity checks - minimum size, size a multiple of 11009 * eight bytes, and matching size passed in. 11010 */ 11011 if (inlen != 0 && 11012 inlen != (8 * (rt->ip6r_len + 1))) 11013 return (EINVAL); 11014 11015 if (checkonly) 11016 break; 11017 11018 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11019 (uchar_t **)&ipp->ipp_rthdr, 11020 &ipp->ipp_rthdrlen, 0); 11021 if (reterr != 0) 11022 return (reterr); 11023 if (ipp->ipp_rthdrlen == 0) 11024 ipp->ipp_fields &= ~IPPF_RTHDR; 11025 else 11026 ipp->ipp_fields |= IPPF_RTHDR; 11027 reterr = tcp_build_hdrs(q, tcp); 11028 if (reterr != 0) 11029 return (reterr); 11030 break; 11031 } 11032 case IPV6_V6ONLY: 11033 if (!checkonly) 11034 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11035 break; 11036 case IPV6_USE_MIN_MTU: 11037 if (inlen != sizeof (int)) 11038 return (EINVAL); 11039 11040 if (*i1 < -1 || *i1 > 1) 11041 return (EINVAL); 11042 11043 if (checkonly) 11044 break; 11045 11046 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11047 ipp->ipp_use_min_mtu = *i1; 11048 break; 11049 case IPV6_BOUND_PIF: 11050 /* Handled at the IP level */ 11051 return (-EINVAL); 11052 case IPV6_SEC_OPT: 11053 /* 11054 * We should not allow policy setting after 11055 * we start listening for connections. 11056 */ 11057 if (tcp->tcp_state == TCPS_LISTEN) { 11058 return (EINVAL); 11059 } else { 11060 /* Handled at the IP level */ 11061 return (-EINVAL); 11062 } 11063 case IPV6_SRC_PREFERENCES: 11064 if (inlen != sizeof (uint32_t)) 11065 return (EINVAL); 11066 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11067 *(uint32_t *)invalp); 11068 if (reterr != 0) { 11069 *outlenp = 0; 11070 return (reterr); 11071 } 11072 break; 11073 default: 11074 *outlenp = 0; 11075 return (EINVAL); 11076 } 11077 break; 11078 } /* end IPPROTO_IPV6 */ 11079 default: 11080 *outlenp = 0; 11081 return (EINVAL); 11082 } 11083 /* 11084 * Common case of OK return with outval same as inval 11085 */ 11086 if (invalp != outvalp) { 11087 /* don't trust bcopy for identical src/dst */ 11088 (void) bcopy(invalp, outvalp, inlen); 11089 } 11090 *outlenp = inlen; 11091 return (0); 11092 } 11093 11094 /* 11095 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11096 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11097 * headers, and the maximum size tcp header (to avoid reallocation 11098 * on the fly for additional tcp options). 11099 * Returns failure if can't allocate memory. 11100 */ 11101 static int 11102 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11103 { 11104 char *hdrs; 11105 uint_t hdrs_len; 11106 ip6i_t *ip6i; 11107 char buf[TCP_MAX_HDR_LENGTH]; 11108 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11109 in6_addr_t src, dst; 11110 tcp_stack_t *tcps = tcp->tcp_tcps; 11111 11112 /* 11113 * save the existing tcp header and source/dest IP addresses 11114 */ 11115 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11116 src = tcp->tcp_ip6h->ip6_src; 11117 dst = tcp->tcp_ip6h->ip6_dst; 11118 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11119 ASSERT(hdrs_len != 0); 11120 if (hdrs_len > tcp->tcp_iphc_len) { 11121 /* Need to reallocate */ 11122 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11123 if (hdrs == NULL) 11124 return (ENOMEM); 11125 if (tcp->tcp_iphc != NULL) { 11126 if (tcp->tcp_hdr_grown) { 11127 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11128 } else { 11129 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11130 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11131 } 11132 tcp->tcp_iphc_len = 0; 11133 } 11134 ASSERT(tcp->tcp_iphc_len == 0); 11135 tcp->tcp_iphc = hdrs; 11136 tcp->tcp_iphc_len = hdrs_len; 11137 tcp->tcp_hdr_grown = B_TRUE; 11138 } 11139 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11140 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11141 11142 /* Set header fields not in ipp */ 11143 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11144 ip6i = (ip6i_t *)tcp->tcp_iphc; 11145 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11146 } else { 11147 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11148 } 11149 /* 11150 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11151 * 11152 * tcp->tcp_tcp_hdr_len doesn't change here. 11153 */ 11154 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11155 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11156 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11157 11158 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11159 11160 tcp->tcp_ip6h->ip6_src = src; 11161 tcp->tcp_ip6h->ip6_dst = dst; 11162 11163 /* 11164 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11165 * the default value for TCP. 11166 */ 11167 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11168 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11169 11170 /* 11171 * If we're setting extension headers after a connection 11172 * has been established, and if we have a routing header 11173 * among the extension headers, call ip_massage_options_v6 to 11174 * manipulate the routing header/ip6_dst set the checksum 11175 * difference in the tcp header template. 11176 * (This happens in tcp_connect_ipv6 if the routing header 11177 * is set prior to the connect.) 11178 * Set the tcp_sum to zero first in case we've cleared a 11179 * routing header or don't have one at all. 11180 */ 11181 tcp->tcp_sum = 0; 11182 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11183 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11184 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11185 (uint8_t *)tcp->tcp_tcph); 11186 if (rth != NULL) { 11187 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11188 rth, tcps->tcps_netstack); 11189 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11190 (tcp->tcp_sum >> 16)); 11191 } 11192 } 11193 11194 /* Try to get everything in a single mblk */ 11195 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11196 return (0); 11197 } 11198 11199 /* 11200 * Transfer any source route option from ipha to buf/dst in reversed form. 11201 */ 11202 static int 11203 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11204 { 11205 ipoptp_t opts; 11206 uchar_t *opt; 11207 uint8_t optval; 11208 uint8_t optlen; 11209 uint32_t len = 0; 11210 11211 for (optval = ipoptp_first(&opts, ipha); 11212 optval != IPOPT_EOL; 11213 optval = ipoptp_next(&opts)) { 11214 opt = opts.ipoptp_cur; 11215 optlen = opts.ipoptp_len; 11216 switch (optval) { 11217 int off1, off2; 11218 case IPOPT_SSRR: 11219 case IPOPT_LSRR: 11220 11221 /* Reverse source route */ 11222 /* 11223 * First entry should be the next to last one in the 11224 * current source route (the last entry is our 11225 * address.) 11226 * The last entry should be the final destination. 11227 */ 11228 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11229 buf[IPOPT_OLEN] = (uint8_t)optlen; 11230 off1 = IPOPT_MINOFF_SR - 1; 11231 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11232 if (off2 < 0) { 11233 /* No entries in source route */ 11234 break; 11235 } 11236 bcopy(opt + off2, dst, IP_ADDR_LEN); 11237 /* 11238 * Note: use src since ipha has not had its src 11239 * and dst reversed (it is in the state it was 11240 * received. 11241 */ 11242 bcopy(&ipha->ipha_src, buf + off2, 11243 IP_ADDR_LEN); 11244 off2 -= IP_ADDR_LEN; 11245 11246 while (off2 > 0) { 11247 bcopy(opt + off2, buf + off1, 11248 IP_ADDR_LEN); 11249 off1 += IP_ADDR_LEN; 11250 off2 -= IP_ADDR_LEN; 11251 } 11252 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11253 buf += optlen; 11254 len += optlen; 11255 break; 11256 } 11257 } 11258 done: 11259 /* Pad the resulting options */ 11260 while (len & 0x3) { 11261 *buf++ = IPOPT_EOL; 11262 len++; 11263 } 11264 return (len); 11265 } 11266 11267 11268 /* 11269 * Extract and revert a source route from ipha (if any) 11270 * and then update the relevant fields in both tcp_t and the standard header. 11271 */ 11272 static void 11273 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11274 { 11275 char buf[TCP_MAX_HDR_LENGTH]; 11276 uint_t tcph_len; 11277 int len; 11278 11279 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11280 len = IPH_HDR_LENGTH(ipha); 11281 if (len == IP_SIMPLE_HDR_LENGTH) 11282 /* Nothing to do */ 11283 return; 11284 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11285 (len & 0x3)) 11286 return; 11287 11288 tcph_len = tcp->tcp_tcp_hdr_len; 11289 bcopy(tcp->tcp_tcph, buf, tcph_len); 11290 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11291 (tcp->tcp_ipha->ipha_dst & 0xffff); 11292 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11293 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11294 len += IP_SIMPLE_HDR_LENGTH; 11295 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11296 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11297 if ((int)tcp->tcp_sum < 0) 11298 tcp->tcp_sum--; 11299 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11300 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11301 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11302 bcopy(buf, tcp->tcp_tcph, tcph_len); 11303 tcp->tcp_ip_hdr_len = len; 11304 tcp->tcp_ipha->ipha_version_and_hdr_length = 11305 (IP_VERSION << 4) | (len >> 2); 11306 len += tcph_len; 11307 tcp->tcp_hdr_len = len; 11308 } 11309 11310 /* 11311 * Copy the standard header into its new location, 11312 * lay in the new options and then update the relevant 11313 * fields in both tcp_t and the standard header. 11314 */ 11315 static int 11316 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11317 { 11318 uint_t tcph_len; 11319 uint8_t *ip_optp; 11320 tcph_t *new_tcph; 11321 tcp_stack_t *tcps = tcp->tcp_tcps; 11322 11323 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11324 return (EINVAL); 11325 11326 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11327 return (EINVAL); 11328 11329 if (checkonly) { 11330 /* 11331 * do not really set, just pretend to - T_CHECK 11332 */ 11333 return (0); 11334 } 11335 11336 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11337 if (tcp->tcp_label_len > 0) { 11338 int padlen; 11339 uint8_t opt; 11340 11341 /* convert list termination to no-ops */ 11342 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11343 ip_optp += ip_optp[IPOPT_OLEN]; 11344 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11345 while (--padlen >= 0) 11346 *ip_optp++ = opt; 11347 } 11348 tcph_len = tcp->tcp_tcp_hdr_len; 11349 new_tcph = (tcph_t *)(ip_optp + len); 11350 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11351 tcp->tcp_tcph = new_tcph; 11352 bcopy(ptr, ip_optp, len); 11353 11354 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11355 11356 tcp->tcp_ip_hdr_len = len; 11357 tcp->tcp_ipha->ipha_version_and_hdr_length = 11358 (IP_VERSION << 4) | (len >> 2); 11359 tcp->tcp_hdr_len = len + tcph_len; 11360 if (!TCP_IS_DETACHED(tcp)) { 11361 /* Always allocate room for all options. */ 11362 (void) mi_set_sth_wroff(tcp->tcp_rq, 11363 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11364 } 11365 return (0); 11366 } 11367 11368 /* Get callback routine passed to nd_load by tcp_param_register */ 11369 /* ARGSUSED */ 11370 static int 11371 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11372 { 11373 tcpparam_t *tcppa = (tcpparam_t *)cp; 11374 11375 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11376 return (0); 11377 } 11378 11379 /* 11380 * Walk through the param array specified registering each element with the 11381 * named dispatch handler. 11382 */ 11383 static boolean_t 11384 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11385 { 11386 for (; cnt-- > 0; tcppa++) { 11387 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11388 if (!nd_load(ndp, tcppa->tcp_param_name, 11389 tcp_param_get, tcp_param_set, 11390 (caddr_t)tcppa)) { 11391 nd_free(ndp); 11392 return (B_FALSE); 11393 } 11394 } 11395 } 11396 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11397 KM_SLEEP); 11398 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11399 sizeof (tcpparam_t)); 11400 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11401 tcp_param_get, tcp_param_set_aligned, 11402 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11403 nd_free(ndp); 11404 return (B_FALSE); 11405 } 11406 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11407 KM_SLEEP); 11408 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11409 sizeof (tcpparam_t)); 11410 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11411 tcp_param_get, tcp_param_set_aligned, 11412 (caddr_t)tcps->tcps_mdt_head_param)) { 11413 nd_free(ndp); 11414 return (B_FALSE); 11415 } 11416 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11417 KM_SLEEP); 11418 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11419 sizeof (tcpparam_t)); 11420 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11421 tcp_param_get, tcp_param_set_aligned, 11422 (caddr_t)tcps->tcps_mdt_tail_param)) { 11423 nd_free(ndp); 11424 return (B_FALSE); 11425 } 11426 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11427 KM_SLEEP); 11428 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11429 sizeof (tcpparam_t)); 11430 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11431 tcp_param_get, tcp_param_set_aligned, 11432 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11433 nd_free(ndp); 11434 return (B_FALSE); 11435 } 11436 if (!nd_load(ndp, "tcp_extra_priv_ports", 11437 tcp_extra_priv_ports_get, NULL, NULL)) { 11438 nd_free(ndp); 11439 return (B_FALSE); 11440 } 11441 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11442 NULL, tcp_extra_priv_ports_add, NULL)) { 11443 nd_free(ndp); 11444 return (B_FALSE); 11445 } 11446 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11447 NULL, tcp_extra_priv_ports_del, NULL)) { 11448 nd_free(ndp); 11449 return (B_FALSE); 11450 } 11451 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11452 NULL)) { 11453 nd_free(ndp); 11454 return (B_FALSE); 11455 } 11456 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11457 NULL, NULL)) { 11458 nd_free(ndp); 11459 return (B_FALSE); 11460 } 11461 if (!nd_load(ndp, "tcp_listen_hash", 11462 tcp_listen_hash_report, NULL, NULL)) { 11463 nd_free(ndp); 11464 return (B_FALSE); 11465 } 11466 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11467 NULL, NULL)) { 11468 nd_free(ndp); 11469 return (B_FALSE); 11470 } 11471 if (!nd_load(ndp, "tcp_acceptor_hash", 11472 tcp_acceptor_hash_report, NULL, NULL)) { 11473 nd_free(ndp); 11474 return (B_FALSE); 11475 } 11476 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11477 tcp_1948_phrase_set, NULL)) { 11478 nd_free(ndp); 11479 return (B_FALSE); 11480 } 11481 /* 11482 * Dummy ndd variables - only to convey obsolescence information 11483 * through printing of their name (no get or set routines) 11484 * XXX Remove in future releases ? 11485 */ 11486 if (!nd_load(ndp, 11487 "tcp_close_wait_interval(obsoleted - " 11488 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11489 nd_free(ndp); 11490 return (B_FALSE); 11491 } 11492 return (B_TRUE); 11493 } 11494 11495 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11496 /* ARGSUSED */ 11497 static int 11498 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11499 cred_t *cr) 11500 { 11501 long new_value; 11502 tcpparam_t *tcppa = (tcpparam_t *)cp; 11503 11504 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11505 new_value < tcppa->tcp_param_min || 11506 new_value > tcppa->tcp_param_max) { 11507 return (EINVAL); 11508 } 11509 /* 11510 * Need to make sure new_value is a multiple of 4. If it is not, 11511 * round it up. For future 64 bit requirement, we actually make it 11512 * a multiple of 8. 11513 */ 11514 if (new_value & 0x7) { 11515 new_value = (new_value & ~0x7) + 0x8; 11516 } 11517 tcppa->tcp_param_val = new_value; 11518 return (0); 11519 } 11520 11521 /* Set callback routine passed to nd_load by tcp_param_register */ 11522 /* ARGSUSED */ 11523 static int 11524 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11525 { 11526 long new_value; 11527 tcpparam_t *tcppa = (tcpparam_t *)cp; 11528 11529 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11530 new_value < tcppa->tcp_param_min || 11531 new_value > tcppa->tcp_param_max) { 11532 return (EINVAL); 11533 } 11534 tcppa->tcp_param_val = new_value; 11535 return (0); 11536 } 11537 11538 /* 11539 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11540 * is filled, return as much as we can. The message passed in may be 11541 * multi-part, chained using b_cont. "start" is the starting sequence 11542 * number for this piece. 11543 */ 11544 static mblk_t * 11545 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11546 { 11547 uint32_t end; 11548 mblk_t *mp1; 11549 mblk_t *mp2; 11550 mblk_t *next_mp; 11551 uint32_t u1; 11552 tcp_stack_t *tcps = tcp->tcp_tcps; 11553 11554 /* Walk through all the new pieces. */ 11555 do { 11556 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11557 (uintptr_t)INT_MAX); 11558 end = start + (int)(mp->b_wptr - mp->b_rptr); 11559 next_mp = mp->b_cont; 11560 if (start == end) { 11561 /* Empty. Blast it. */ 11562 freeb(mp); 11563 continue; 11564 } 11565 mp->b_cont = NULL; 11566 TCP_REASS_SET_SEQ(mp, start); 11567 TCP_REASS_SET_END(mp, end); 11568 mp1 = tcp->tcp_reass_tail; 11569 if (!mp1) { 11570 tcp->tcp_reass_tail = mp; 11571 tcp->tcp_reass_head = mp; 11572 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11573 UPDATE_MIB(&tcps->tcps_mib, 11574 tcpInDataUnorderBytes, end - start); 11575 continue; 11576 } 11577 /* New stuff completely beyond tail? */ 11578 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11579 /* Link it on end. */ 11580 mp1->b_cont = mp; 11581 tcp->tcp_reass_tail = mp; 11582 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11583 UPDATE_MIB(&tcps->tcps_mib, 11584 tcpInDataUnorderBytes, end - start); 11585 continue; 11586 } 11587 mp1 = tcp->tcp_reass_head; 11588 u1 = TCP_REASS_SEQ(mp1); 11589 /* New stuff at the front? */ 11590 if (SEQ_LT(start, u1)) { 11591 /* Yes... Check for overlap. */ 11592 mp->b_cont = mp1; 11593 tcp->tcp_reass_head = mp; 11594 tcp_reass_elim_overlap(tcp, mp); 11595 continue; 11596 } 11597 /* 11598 * The new piece fits somewhere between the head and tail. 11599 * We find our slot, where mp1 precedes us and mp2 trails. 11600 */ 11601 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11602 u1 = TCP_REASS_SEQ(mp2); 11603 if (SEQ_LEQ(start, u1)) 11604 break; 11605 } 11606 /* Link ourselves in */ 11607 mp->b_cont = mp2; 11608 mp1->b_cont = mp; 11609 11610 /* Trim overlap with following mblk(s) first */ 11611 tcp_reass_elim_overlap(tcp, mp); 11612 11613 /* Trim overlap with preceding mblk */ 11614 tcp_reass_elim_overlap(tcp, mp1); 11615 11616 } while (start = end, mp = next_mp); 11617 mp1 = tcp->tcp_reass_head; 11618 /* Anything ready to go? */ 11619 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11620 return (NULL); 11621 /* Eat what we can off the queue */ 11622 for (;;) { 11623 mp = mp1->b_cont; 11624 end = TCP_REASS_END(mp1); 11625 TCP_REASS_SET_SEQ(mp1, 0); 11626 TCP_REASS_SET_END(mp1, 0); 11627 if (!mp) { 11628 tcp->tcp_reass_tail = NULL; 11629 break; 11630 } 11631 if (end != TCP_REASS_SEQ(mp)) { 11632 mp1->b_cont = NULL; 11633 break; 11634 } 11635 mp1 = mp; 11636 } 11637 mp1 = tcp->tcp_reass_head; 11638 tcp->tcp_reass_head = mp; 11639 return (mp1); 11640 } 11641 11642 /* Eliminate any overlap that mp may have over later mblks */ 11643 static void 11644 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11645 { 11646 uint32_t end; 11647 mblk_t *mp1; 11648 uint32_t u1; 11649 tcp_stack_t *tcps = tcp->tcp_tcps; 11650 11651 end = TCP_REASS_END(mp); 11652 while ((mp1 = mp->b_cont) != NULL) { 11653 u1 = TCP_REASS_SEQ(mp1); 11654 if (!SEQ_GT(end, u1)) 11655 break; 11656 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11657 mp->b_wptr -= end - u1; 11658 TCP_REASS_SET_END(mp, u1); 11659 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11660 UPDATE_MIB(&tcps->tcps_mib, 11661 tcpInDataPartDupBytes, end - u1); 11662 break; 11663 } 11664 mp->b_cont = mp1->b_cont; 11665 TCP_REASS_SET_SEQ(mp1, 0); 11666 TCP_REASS_SET_END(mp1, 0); 11667 freeb(mp1); 11668 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11669 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11670 } 11671 if (!mp1) 11672 tcp->tcp_reass_tail = mp; 11673 } 11674 11675 /* 11676 * Send up all messages queued on tcp_rcv_list. 11677 */ 11678 static uint_t 11679 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11680 { 11681 mblk_t *mp; 11682 uint_t ret = 0; 11683 uint_t thwin; 11684 #ifdef DEBUG 11685 uint_t cnt = 0; 11686 #endif 11687 tcp_stack_t *tcps = tcp->tcp_tcps; 11688 11689 /* Can't drain on an eager connection */ 11690 if (tcp->tcp_listener != NULL) 11691 return (ret); 11692 11693 /* Can't be sodirect enabled */ 11694 ASSERT(SOD_NOT_ENABLED(tcp)); 11695 11696 /* No need for the push timer now. */ 11697 if (tcp->tcp_push_tid != 0) { 11698 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11699 tcp->tcp_push_tid = 0; 11700 } 11701 11702 /* 11703 * Handle two cases here: we are currently fused or we were 11704 * previously fused and have some urgent data to be delivered 11705 * upstream. The latter happens because we either ran out of 11706 * memory or were detached and therefore sending the SIGURG was 11707 * deferred until this point. In either case we pass control 11708 * over to tcp_fuse_rcv_drain() since it may need to complete 11709 * some work. 11710 */ 11711 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11712 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11713 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11714 &tcp->tcp_fused_sigurg_mp)) 11715 return (ret); 11716 } 11717 11718 while ((mp = tcp->tcp_rcv_list) != NULL) { 11719 tcp->tcp_rcv_list = mp->b_next; 11720 mp->b_next = NULL; 11721 #ifdef DEBUG 11722 cnt += msgdsize(mp); 11723 #endif 11724 /* Does this need SSL processing first? */ 11725 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11726 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11727 mblk_t *, mp); 11728 tcp_kssl_input(tcp, mp); 11729 continue; 11730 } 11731 putnext(q, mp); 11732 } 11733 ASSERT(cnt == tcp->tcp_rcv_cnt); 11734 tcp->tcp_rcv_last_head = NULL; 11735 tcp->tcp_rcv_last_tail = NULL; 11736 tcp->tcp_rcv_cnt = 0; 11737 11738 /* Learn the latest rwnd information that we sent to the other side. */ 11739 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11740 << tcp->tcp_rcv_ws; 11741 /* This is peer's calculated send window (our receive window). */ 11742 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11743 /* 11744 * Increase the receive window to max. But we need to do receiver 11745 * SWS avoidance. This means that we need to check the increase of 11746 * of receive window is at least 1 MSS. 11747 */ 11748 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11749 /* 11750 * If the window that the other side knows is less than max 11751 * deferred acks segments, send an update immediately. 11752 */ 11753 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11754 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11755 ret = TH_ACK_NEEDED; 11756 } 11757 tcp->tcp_rwnd = q->q_hiwat; 11758 } 11759 return (ret); 11760 } 11761 11762 /* 11763 * Queue data on tcp_rcv_list which is a b_next chain. 11764 * tcp_rcv_last_head/tail is the last element of this chain. 11765 * Each element of the chain is a b_cont chain. 11766 * 11767 * M_DATA messages are added to the current element. 11768 * Other messages are added as new (b_next) elements. 11769 */ 11770 void 11771 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11772 { 11773 ASSERT(seg_len == msgdsize(mp)); 11774 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11775 11776 if (tcp->tcp_rcv_list == NULL) { 11777 ASSERT(tcp->tcp_rcv_last_head == NULL); 11778 tcp->tcp_rcv_list = mp; 11779 tcp->tcp_rcv_last_head = mp; 11780 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11781 tcp->tcp_rcv_last_tail->b_cont = mp; 11782 } else { 11783 tcp->tcp_rcv_last_head->b_next = mp; 11784 tcp->tcp_rcv_last_head = mp; 11785 } 11786 11787 while (mp->b_cont) 11788 mp = mp->b_cont; 11789 11790 tcp->tcp_rcv_last_tail = mp; 11791 tcp->tcp_rcv_cnt += seg_len; 11792 tcp->tcp_rwnd -= seg_len; 11793 } 11794 11795 /* 11796 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11797 * above, in addition when uioa is enabled schedule an asynchronous uio 11798 * prior to enqueuing. They implement the combinhed semantics of the 11799 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11800 * canputnext(), i.e. flow-control with backenable. 11801 * 11802 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11803 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11804 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11805 * 11806 * Must be called with sodp->sod_lockp held and will return with the lock 11807 * released. 11808 */ 11809 static uint_t 11810 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11811 { 11812 queue_t *q = tcp->tcp_rq; 11813 uint_t thwin; 11814 tcp_stack_t *tcps = tcp->tcp_tcps; 11815 uint_t ret = 0; 11816 11817 /* Can't be an eager connection */ 11818 ASSERT(tcp->tcp_listener == NULL); 11819 11820 /* Caller must have lock held */ 11821 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11822 11823 /* Sodirect mode so must not be a tcp_rcv_list */ 11824 ASSERT(tcp->tcp_rcv_list == NULL); 11825 11826 if (SOD_QFULL(sodp)) { 11827 /* Q is full, mark Q for need backenable */ 11828 SOD_QSETBE(sodp); 11829 } 11830 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11831 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11832 << tcp->tcp_rcv_ws; 11833 /* This is peer's calculated send window (our available rwnd). */ 11834 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11835 /* 11836 * Increase the receive window to max. But we need to do receiver 11837 * SWS avoidance. This means that we need to check the increase of 11838 * of receive window is at least 1 MSS. 11839 */ 11840 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11841 /* 11842 * If the window that the other side knows is less than max 11843 * deferred acks segments, send an update immediately. 11844 */ 11845 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11846 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11847 ret = TH_ACK_NEEDED; 11848 } 11849 tcp->tcp_rwnd = q->q_hiwat; 11850 } 11851 11852 if (!SOD_QEMPTY(sodp)) { 11853 /* Wakeup to socket */ 11854 sodp->sod_state &= SOD_WAKE_CLR; 11855 sodp->sod_state |= SOD_WAKE_DONE; 11856 (sodp->sod_wakeup)(sodp); 11857 /* wakeup() does the mutex_ext() */ 11858 } else { 11859 /* Q is empty, no need to wake */ 11860 sodp->sod_state &= SOD_WAKE_CLR; 11861 sodp->sod_state |= SOD_WAKE_NOT; 11862 mutex_exit(sodp->sod_lockp); 11863 } 11864 11865 /* No need for the push timer now. */ 11866 if (tcp->tcp_push_tid != 0) { 11867 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11868 tcp->tcp_push_tid = 0; 11869 } 11870 11871 return (ret); 11872 } 11873 11874 /* 11875 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11876 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11877 * to the user-land buffer and flag the mblk_t as such. 11878 * 11879 * Also, handle tcp_rwnd. 11880 */ 11881 uint_t 11882 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11883 { 11884 uioa_t *uioap = &sodp->sod_uioa; 11885 boolean_t qfull; 11886 uint_t thwin; 11887 11888 /* Can't be an eager connection */ 11889 ASSERT(tcp->tcp_listener == NULL); 11890 11891 /* Caller must have lock held */ 11892 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11893 11894 /* Sodirect mode so must not be a tcp_rcv_list */ 11895 ASSERT(tcp->tcp_rcv_list == NULL); 11896 11897 /* Passed in segment length must be equal to mblk_t chain data size */ 11898 ASSERT(seg_len == msgdsize(mp)); 11899 11900 if (DB_TYPE(mp) != M_DATA) { 11901 /* Only process M_DATA mblk_t's */ 11902 goto enq; 11903 } 11904 if (uioap->uioa_state & UIOA_ENABLED) { 11905 /* Uioa is enabled */ 11906 mblk_t *mp1 = mp; 11907 mblk_t *lmp = NULL; 11908 11909 if (seg_len > uioap->uio_resid) { 11910 /* 11911 * There isn't enough uio space for the mblk_t chain 11912 * so disable uioa such that this and any additional 11913 * mblk_t data is handled by the socket and schedule 11914 * the socket for wakeup to finish this uioa. 11915 */ 11916 uioap->uioa_state &= UIOA_CLR; 11917 uioap->uioa_state |= UIOA_FINI; 11918 if (sodp->sod_state & SOD_WAKE_NOT) { 11919 sodp->sod_state &= SOD_WAKE_CLR; 11920 sodp->sod_state |= SOD_WAKE_NEED; 11921 } 11922 goto enq; 11923 } 11924 do { 11925 uint32_t len = MBLKL(mp1); 11926 11927 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11928 /* Scheduled, mark dblk_t as such */ 11929 DB_FLAGS(mp1) |= DBLK_UIOA; 11930 } else { 11931 /* Error, turn off async processing */ 11932 uioap->uioa_state &= UIOA_CLR; 11933 uioap->uioa_state |= UIOA_FINI; 11934 break; 11935 } 11936 lmp = mp1; 11937 } while ((mp1 = mp1->b_cont) != NULL); 11938 11939 if (mp1 != NULL || uioap->uio_resid == 0) { 11940 /* 11941 * Not all mblk_t(s) uioamoved (error) or all uio 11942 * space has been consumed so schedule the socket 11943 * for wakeup to finish this uio. 11944 */ 11945 sodp->sod_state &= SOD_WAKE_CLR; 11946 sodp->sod_state |= SOD_WAKE_NEED; 11947 11948 /* Break the mblk chain if neccessary. */ 11949 if (mp1 != NULL && lmp != NULL) { 11950 mp->b_next = mp1; 11951 lmp->b_cont = NULL; 11952 } 11953 } 11954 } else if (uioap->uioa_state & UIOA_FINI) { 11955 /* 11956 * Post UIO_ENABLED waiting for socket to finish processing 11957 * so just enqueue and update tcp_rwnd. 11958 */ 11959 if (SOD_QFULL(sodp)) 11960 tcp->tcp_rwnd -= seg_len; 11961 } else if (sodp->sod_want > 0) { 11962 /* 11963 * Uioa isn't enabled but sodirect has a pending read(). 11964 */ 11965 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11966 if (sodp->sod_state & SOD_WAKE_NOT) { 11967 /* Schedule socket for wakeup */ 11968 sodp->sod_state &= SOD_WAKE_CLR; 11969 sodp->sod_state |= SOD_WAKE_NEED; 11970 } 11971 tcp->tcp_rwnd -= seg_len; 11972 } 11973 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 11974 /* 11975 * No pending sodirect read() so used the default 11976 * TCP push logic to guess that a push is needed. 11977 */ 11978 if (sodp->sod_state & SOD_WAKE_NOT) { 11979 /* Schedule socket for wakeup */ 11980 sodp->sod_state &= SOD_WAKE_CLR; 11981 sodp->sod_state |= SOD_WAKE_NEED; 11982 } 11983 tcp->tcp_rwnd -= seg_len; 11984 } else { 11985 /* Just update tcp_rwnd */ 11986 tcp->tcp_rwnd -= seg_len; 11987 } 11988 enq: 11989 qfull = SOD_QFULL(sodp); 11990 11991 (sodp->sod_enqueue)(sodp, mp); 11992 11993 if (! qfull && SOD_QFULL(sodp)) { 11994 /* Wasn't QFULL, now QFULL, need back-enable */ 11995 SOD_QSETBE(sodp); 11996 } 11997 11998 /* 11999 * Check to see if remote avail swnd < mss due to delayed ACK, 12000 * first get advertised rwnd. 12001 */ 12002 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 12003 /* Minus delayed ACK count */ 12004 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 12005 if (thwin < tcp->tcp_mss) { 12006 /* Remote avail swnd < mss, need ACK now */ 12007 return (TH_ACK_NEEDED); 12008 } 12009 12010 return (0); 12011 } 12012 12013 /* 12014 * DEFAULT TCP ENTRY POINT via squeue on READ side. 12015 * 12016 * This is the default entry function into TCP on the read side. TCP is 12017 * always entered via squeue i.e. using squeue's for mutual exclusion. 12018 * When classifier does a lookup to find the tcp, it also puts a reference 12019 * on the conn structure associated so the tcp is guaranteed to exist 12020 * when we come here. We still need to check the state because it might 12021 * as well has been closed. The squeue processing function i.e. squeue_enter, 12022 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 12023 * CONN_DEC_REF. 12024 * 12025 * Apart from the default entry point, IP also sends packets directly to 12026 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 12027 * connections. 12028 */ 12029 void 12030 tcp_input(void *arg, mblk_t *mp, void *arg2) 12031 { 12032 conn_t *connp = (conn_t *)arg; 12033 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 12034 12035 /* arg2 is the sqp */ 12036 ASSERT(arg2 != NULL); 12037 ASSERT(mp != NULL); 12038 12039 /* 12040 * Don't accept any input on a closed tcp as this TCP logically does 12041 * not exist on the system. Don't proceed further with this TCP. 12042 * For eg. this packet could trigger another close of this tcp 12043 * which would be disastrous for tcp_refcnt. tcp_close_detached / 12044 * tcp_clean_death / tcp_closei_local must be called at most once 12045 * on a TCP. In this case we need to refeed the packet into the 12046 * classifier and figure out where the packet should go. Need to 12047 * preserve the recv_ill somehow. Until we figure that out, for 12048 * now just drop the packet if we can't classify the packet. 12049 */ 12050 if (tcp->tcp_state == TCPS_CLOSED || 12051 tcp->tcp_state == TCPS_BOUND) { 12052 conn_t *new_connp; 12053 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 12054 12055 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 12056 if (new_connp != NULL) { 12057 tcp_reinput(new_connp, mp, arg2); 12058 return; 12059 } 12060 /* We failed to classify. For now just drop the packet */ 12061 freemsg(mp); 12062 return; 12063 } 12064 12065 if (DB_TYPE(mp) == M_DATA) 12066 tcp_rput_data(connp, mp, arg2); 12067 else 12068 tcp_rput_common(tcp, mp); 12069 } 12070 12071 /* 12072 * The read side put procedure. 12073 * The packets passed up by ip are assume to be aligned according to 12074 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 12075 */ 12076 static void 12077 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 12078 { 12079 /* 12080 * tcp_rput_data() does not expect M_CTL except for the case 12081 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 12082 * type. Need to make sure that any other M_CTLs don't make 12083 * it to tcp_rput_data since it is not expecting any and doesn't 12084 * check for it. 12085 */ 12086 if (DB_TYPE(mp) == M_CTL) { 12087 switch (*(uint32_t *)(mp->b_rptr)) { 12088 case TCP_IOC_ABORT_CONN: 12089 /* 12090 * Handle connection abort request. 12091 */ 12092 tcp_ioctl_abort_handler(tcp, mp); 12093 return; 12094 case IPSEC_IN: 12095 /* 12096 * Only secure icmp arrive in TCP and they 12097 * don't go through data path. 12098 */ 12099 tcp_icmp_error(tcp, mp); 12100 return; 12101 case IN_PKTINFO: 12102 /* 12103 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 12104 * sockets that are receiving IPv4 traffic. tcp 12105 */ 12106 ASSERT(tcp->tcp_family == AF_INET6); 12107 ASSERT(tcp->tcp_ipv6_recvancillary & 12108 TCP_IPV6_RECVPKTINFO); 12109 tcp_rput_data(tcp->tcp_connp, mp, 12110 tcp->tcp_connp->conn_sqp); 12111 return; 12112 case MDT_IOC_INFO_UPDATE: 12113 /* 12114 * Handle Multidata information update; the 12115 * following routine will free the message. 12116 */ 12117 if (tcp->tcp_connp->conn_mdt_ok) { 12118 tcp_mdt_update(tcp, 12119 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 12120 B_FALSE); 12121 } 12122 freemsg(mp); 12123 return; 12124 case LSO_IOC_INFO_UPDATE: 12125 /* 12126 * Handle LSO information update; the following 12127 * routine will free the message. 12128 */ 12129 if (tcp->tcp_connp->conn_lso_ok) { 12130 tcp_lso_update(tcp, 12131 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 12132 } 12133 freemsg(mp); 12134 return; 12135 default: 12136 /* 12137 * tcp_icmp_err() will process the M_CTL packets. 12138 * Non-ICMP packets, if any, will be discarded in 12139 * tcp_icmp_err(). We will process the ICMP packet 12140 * even if we are TCP_IS_DETACHED_NONEAGER as the 12141 * incoming ICMP packet may result in changing 12142 * the tcp_mss, which we would need if we have 12143 * packets to retransmit. 12144 */ 12145 tcp_icmp_error(tcp, mp); 12146 return; 12147 } 12148 } 12149 12150 /* No point processing the message if tcp is already closed */ 12151 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 12152 freemsg(mp); 12153 return; 12154 } 12155 12156 tcp_rput_other(tcp, mp); 12157 } 12158 12159 12160 /* The minimum of smoothed mean deviation in RTO calculation. */ 12161 #define TCP_SD_MIN 400 12162 12163 /* 12164 * Set RTO for this connection. The formula is from Jacobson and Karels' 12165 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 12166 * are the same as those in Appendix A.2 of that paper. 12167 * 12168 * m = new measurement 12169 * sa = smoothed RTT average (8 * average estimates). 12170 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 12171 */ 12172 static void 12173 tcp_set_rto(tcp_t *tcp, clock_t rtt) 12174 { 12175 long m = TICK_TO_MSEC(rtt); 12176 clock_t sa = tcp->tcp_rtt_sa; 12177 clock_t sv = tcp->tcp_rtt_sd; 12178 clock_t rto; 12179 tcp_stack_t *tcps = tcp->tcp_tcps; 12180 12181 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 12182 tcp->tcp_rtt_update++; 12183 12184 /* tcp_rtt_sa is not 0 means this is a new sample. */ 12185 if (sa != 0) { 12186 /* 12187 * Update average estimator: 12188 * new rtt = 7/8 old rtt + 1/8 Error 12189 */ 12190 12191 /* m is now Error in estimate. */ 12192 m -= sa >> 3; 12193 if ((sa += m) <= 0) { 12194 /* 12195 * Don't allow the smoothed average to be negative. 12196 * We use 0 to denote reinitialization of the 12197 * variables. 12198 */ 12199 sa = 1; 12200 } 12201 12202 /* 12203 * Update deviation estimator: 12204 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 12205 */ 12206 if (m < 0) 12207 m = -m; 12208 m -= sv >> 2; 12209 sv += m; 12210 } else { 12211 /* 12212 * This follows BSD's implementation. So the reinitialized 12213 * RTO is 3 * m. We cannot go less than 2 because if the 12214 * link is bandwidth dominated, doubling the window size 12215 * during slow start means doubling the RTT. We want to be 12216 * more conservative when we reinitialize our estimates. 3 12217 * is just a convenient number. 12218 */ 12219 sa = m << 3; 12220 sv = m << 1; 12221 } 12222 if (sv < TCP_SD_MIN) { 12223 /* 12224 * We do not know that if sa captures the delay ACK 12225 * effect as in a long train of segments, a receiver 12226 * does not delay its ACKs. So set the minimum of sv 12227 * to be TCP_SD_MIN, which is default to 400 ms, twice 12228 * of BSD DATO. That means the minimum of mean 12229 * deviation is 100 ms. 12230 * 12231 */ 12232 sv = TCP_SD_MIN; 12233 } 12234 tcp->tcp_rtt_sa = sa; 12235 tcp->tcp_rtt_sd = sv; 12236 /* 12237 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12238 * 12239 * Add tcp_rexmit_interval extra in case of extreme environment 12240 * where the algorithm fails to work. The default value of 12241 * tcp_rexmit_interval_extra should be 0. 12242 * 12243 * As we use a finer grained clock than BSD and update 12244 * RTO for every ACKs, add in another .25 of RTT to the 12245 * deviation of RTO to accomodate burstiness of 1/4 of 12246 * window size. 12247 */ 12248 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12249 12250 if (rto > tcps->tcps_rexmit_interval_max) { 12251 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12252 } else if (rto < tcps->tcps_rexmit_interval_min) { 12253 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12254 } else { 12255 tcp->tcp_rto = rto; 12256 } 12257 12258 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12259 tcp->tcp_timer_backoff = 0; 12260 } 12261 12262 /* 12263 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12264 * send queue which starts at the given seq. no. 12265 * 12266 * Parameters: 12267 * tcp_t *tcp: the tcp instance pointer. 12268 * uint32_t seq: the starting seq. no of the requested segment. 12269 * int32_t *off: after the execution, *off will be the offset to 12270 * the returned mblk which points to the requested seq no. 12271 * It is the caller's responsibility to send in a non-null off. 12272 * 12273 * Return: 12274 * A mblk_t pointer pointing to the requested segment in send queue. 12275 */ 12276 static mblk_t * 12277 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12278 { 12279 int32_t cnt; 12280 mblk_t *mp; 12281 12282 /* Defensive coding. Make sure we don't send incorrect data. */ 12283 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12284 return (NULL); 12285 12286 cnt = seq - tcp->tcp_suna; 12287 mp = tcp->tcp_xmit_head; 12288 while (cnt > 0 && mp != NULL) { 12289 cnt -= mp->b_wptr - mp->b_rptr; 12290 if (cnt < 0) { 12291 cnt += mp->b_wptr - mp->b_rptr; 12292 break; 12293 } 12294 mp = mp->b_cont; 12295 } 12296 ASSERT(mp != NULL); 12297 *off = cnt; 12298 return (mp); 12299 } 12300 12301 /* 12302 * This function handles all retransmissions if SACK is enabled for this 12303 * connection. First it calculates how many segments can be retransmitted 12304 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12305 * segments. A segment is eligible if sack_cnt for that segment is greater 12306 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12307 * all eligible segments, it checks to see if TCP can send some new segments 12308 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12309 * 12310 * Parameters: 12311 * tcp_t *tcp: the tcp structure of the connection. 12312 * uint_t *flags: in return, appropriate value will be set for 12313 * tcp_rput_data(). 12314 */ 12315 static void 12316 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12317 { 12318 notsack_blk_t *notsack_blk; 12319 int32_t usable_swnd; 12320 int32_t mss; 12321 uint32_t seg_len; 12322 mblk_t *xmit_mp; 12323 tcp_stack_t *tcps = tcp->tcp_tcps; 12324 12325 ASSERT(tcp->tcp_sack_info != NULL); 12326 ASSERT(tcp->tcp_notsack_list != NULL); 12327 ASSERT(tcp->tcp_rexmit == B_FALSE); 12328 12329 /* Defensive coding in case there is a bug... */ 12330 if (tcp->tcp_notsack_list == NULL) { 12331 return; 12332 } 12333 notsack_blk = tcp->tcp_notsack_list; 12334 mss = tcp->tcp_mss; 12335 12336 /* 12337 * Limit the num of outstanding data in the network to be 12338 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12339 */ 12340 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12341 12342 /* At least retransmit 1 MSS of data. */ 12343 if (usable_swnd <= 0) { 12344 usable_swnd = mss; 12345 } 12346 12347 /* Make sure no new RTT samples will be taken. */ 12348 tcp->tcp_csuna = tcp->tcp_snxt; 12349 12350 notsack_blk = tcp->tcp_notsack_list; 12351 while (usable_swnd > 0) { 12352 mblk_t *snxt_mp, *tmp_mp; 12353 tcp_seq begin = tcp->tcp_sack_snxt; 12354 tcp_seq end; 12355 int32_t off; 12356 12357 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12358 if (SEQ_GT(notsack_blk->end, begin) && 12359 (notsack_blk->sack_cnt >= 12360 tcps->tcps_dupack_fast_retransmit)) { 12361 end = notsack_blk->end; 12362 if (SEQ_LT(begin, notsack_blk->begin)) { 12363 begin = notsack_blk->begin; 12364 } 12365 break; 12366 } 12367 } 12368 /* 12369 * All holes are filled. Manipulate tcp_cwnd to send more 12370 * if we can. Note that after the SACK recovery, tcp_cwnd is 12371 * set to tcp_cwnd_ssthresh. 12372 */ 12373 if (notsack_blk == NULL) { 12374 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12375 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12376 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12377 ASSERT(tcp->tcp_cwnd > 0); 12378 return; 12379 } else { 12380 usable_swnd = usable_swnd / mss; 12381 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12382 MAX(usable_swnd * mss, mss); 12383 *flags |= TH_XMIT_NEEDED; 12384 return; 12385 } 12386 } 12387 12388 /* 12389 * Note that we may send more than usable_swnd allows here 12390 * because of round off, but no more than 1 MSS of data. 12391 */ 12392 seg_len = end - begin; 12393 if (seg_len > mss) 12394 seg_len = mss; 12395 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12396 ASSERT(snxt_mp != NULL); 12397 /* This should not happen. Defensive coding again... */ 12398 if (snxt_mp == NULL) { 12399 return; 12400 } 12401 12402 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12403 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12404 if (xmit_mp == NULL) 12405 return; 12406 12407 usable_swnd -= seg_len; 12408 tcp->tcp_pipe += seg_len; 12409 tcp->tcp_sack_snxt = begin + seg_len; 12410 12411 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12412 12413 /* 12414 * Update the send timestamp to avoid false retransmission. 12415 */ 12416 snxt_mp->b_prev = (mblk_t *)lbolt; 12417 12418 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12419 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12420 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12421 /* 12422 * Update tcp_rexmit_max to extend this SACK recovery phase. 12423 * This happens when new data sent during fast recovery is 12424 * also lost. If TCP retransmits those new data, it needs 12425 * to extend SACK recover phase to avoid starting another 12426 * fast retransmit/recovery unnecessarily. 12427 */ 12428 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12429 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12430 } 12431 } 12432 } 12433 12434 /* 12435 * This function handles policy checking at TCP level for non-hard_bound/ 12436 * detached connections. 12437 */ 12438 static boolean_t 12439 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12440 boolean_t secure, boolean_t mctl_present) 12441 { 12442 ipsec_latch_t *ipl = NULL; 12443 ipsec_action_t *act = NULL; 12444 mblk_t *data_mp; 12445 ipsec_in_t *ii; 12446 const char *reason; 12447 kstat_named_t *counter; 12448 tcp_stack_t *tcps = tcp->tcp_tcps; 12449 ipsec_stack_t *ipss; 12450 ip_stack_t *ipst; 12451 12452 ASSERT(mctl_present || !secure); 12453 12454 ASSERT((ipha == NULL && ip6h != NULL) || 12455 (ip6h == NULL && ipha != NULL)); 12456 12457 /* 12458 * We don't necessarily have an ipsec_in_act action to verify 12459 * policy because of assymetrical policy where we have only 12460 * outbound policy and no inbound policy (possible with global 12461 * policy). 12462 */ 12463 if (!secure) { 12464 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12465 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12466 return (B_TRUE); 12467 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12468 "tcp_check_policy", ipha, ip6h, secure, 12469 tcps->tcps_netstack); 12470 ipss = tcps->tcps_netstack->netstack_ipsec; 12471 12472 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12473 DROPPER(ipss, ipds_tcp_clear), 12474 &tcps->tcps_dropper); 12475 return (B_FALSE); 12476 } 12477 12478 /* 12479 * We have a secure packet. 12480 */ 12481 if (act == NULL) { 12482 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12483 "tcp_check_policy", ipha, ip6h, secure, 12484 tcps->tcps_netstack); 12485 ipss = tcps->tcps_netstack->netstack_ipsec; 12486 12487 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12488 DROPPER(ipss, ipds_tcp_secure), 12489 &tcps->tcps_dropper); 12490 return (B_FALSE); 12491 } 12492 12493 /* 12494 * XXX This whole routine is currently incorrect. ipl should 12495 * be set to the latch pointer, but is currently not set, so 12496 * we initialize it to NULL to avoid picking up random garbage. 12497 */ 12498 if (ipl == NULL) 12499 return (B_TRUE); 12500 12501 data_mp = first_mp->b_cont; 12502 12503 ii = (ipsec_in_t *)first_mp->b_rptr; 12504 12505 ipst = tcps->tcps_netstack->netstack_ip; 12506 12507 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12508 &counter, tcp->tcp_connp)) { 12509 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12510 return (B_TRUE); 12511 } 12512 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12513 "tcp inbound policy mismatch: %s, packet dropped\n", 12514 reason); 12515 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12516 12517 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12518 &tcps->tcps_dropper); 12519 return (B_FALSE); 12520 } 12521 12522 /* 12523 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12524 * retransmission after a timeout. 12525 * 12526 * To limit the number of duplicate segments, we limit the number of segment 12527 * to be sent in one time to tcp_snd_burst, the burst variable. 12528 */ 12529 static void 12530 tcp_ss_rexmit(tcp_t *tcp) 12531 { 12532 uint32_t snxt; 12533 uint32_t smax; 12534 int32_t win; 12535 int32_t mss; 12536 int32_t off; 12537 int32_t burst = tcp->tcp_snd_burst; 12538 mblk_t *snxt_mp; 12539 tcp_stack_t *tcps = tcp->tcp_tcps; 12540 12541 /* 12542 * Note that tcp_rexmit can be set even though TCP has retransmitted 12543 * all unack'ed segments. 12544 */ 12545 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12546 smax = tcp->tcp_rexmit_max; 12547 snxt = tcp->tcp_rexmit_nxt; 12548 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12549 snxt = tcp->tcp_suna; 12550 } 12551 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12552 win -= snxt - tcp->tcp_suna; 12553 mss = tcp->tcp_mss; 12554 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12555 12556 while (SEQ_LT(snxt, smax) && (win > 0) && 12557 (burst > 0) && (snxt_mp != NULL)) { 12558 mblk_t *xmit_mp; 12559 mblk_t *old_snxt_mp = snxt_mp; 12560 uint32_t cnt = mss; 12561 12562 if (win < cnt) { 12563 cnt = win; 12564 } 12565 if (SEQ_GT(snxt + cnt, smax)) { 12566 cnt = smax - snxt; 12567 } 12568 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12569 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12570 if (xmit_mp == NULL) 12571 return; 12572 12573 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12574 12575 snxt += cnt; 12576 win -= cnt; 12577 /* 12578 * Update the send timestamp to avoid false 12579 * retransmission. 12580 */ 12581 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12582 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12583 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12584 12585 tcp->tcp_rexmit_nxt = snxt; 12586 burst--; 12587 } 12588 /* 12589 * If we have transmitted all we have at the time 12590 * we started the retranmission, we can leave 12591 * the rest of the job to tcp_wput_data(). But we 12592 * need to check the send window first. If the 12593 * win is not 0, go on with tcp_wput_data(). 12594 */ 12595 if (SEQ_LT(snxt, smax) || win == 0) { 12596 return; 12597 } 12598 } 12599 /* Only call tcp_wput_data() if there is data to be sent. */ 12600 if (tcp->tcp_unsent) { 12601 tcp_wput_data(tcp, NULL, B_FALSE); 12602 } 12603 } 12604 12605 /* 12606 * Process all TCP option in SYN segment. Note that this function should 12607 * be called after tcp_adapt_ire() is called so that the necessary info 12608 * from IRE is already set in the tcp structure. 12609 * 12610 * This function sets up the correct tcp_mss value according to the 12611 * MSS option value and our header size. It also sets up the window scale 12612 * and timestamp values, and initialize SACK info blocks. But it does not 12613 * change receive window size after setting the tcp_mss value. The caller 12614 * should do the appropriate change. 12615 */ 12616 void 12617 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12618 { 12619 int options; 12620 tcp_opt_t tcpopt; 12621 uint32_t mss_max; 12622 char *tmp_tcph; 12623 tcp_stack_t *tcps = tcp->tcp_tcps; 12624 12625 tcpopt.tcp = NULL; 12626 options = tcp_parse_options(tcph, &tcpopt); 12627 12628 /* 12629 * Process MSS option. Note that MSS option value does not account 12630 * for IP or TCP options. This means that it is equal to MTU - minimum 12631 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12632 * IPv6. 12633 */ 12634 if (!(options & TCP_OPT_MSS_PRESENT)) { 12635 if (tcp->tcp_ipversion == IPV4_VERSION) 12636 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12637 else 12638 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12639 } else { 12640 if (tcp->tcp_ipversion == IPV4_VERSION) 12641 mss_max = tcps->tcps_mss_max_ipv4; 12642 else 12643 mss_max = tcps->tcps_mss_max_ipv6; 12644 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12645 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12646 else if (tcpopt.tcp_opt_mss > mss_max) 12647 tcpopt.tcp_opt_mss = mss_max; 12648 } 12649 12650 /* Process Window Scale option. */ 12651 if (options & TCP_OPT_WSCALE_PRESENT) { 12652 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12653 tcp->tcp_snd_ws_ok = B_TRUE; 12654 } else { 12655 tcp->tcp_snd_ws = B_FALSE; 12656 tcp->tcp_snd_ws_ok = B_FALSE; 12657 tcp->tcp_rcv_ws = B_FALSE; 12658 } 12659 12660 /* Process Timestamp option. */ 12661 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12662 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12663 tmp_tcph = (char *)tcp->tcp_tcph; 12664 12665 tcp->tcp_snd_ts_ok = B_TRUE; 12666 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12667 tcp->tcp_last_rcv_lbolt = lbolt64; 12668 ASSERT(OK_32PTR(tmp_tcph)); 12669 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12670 12671 /* Fill in our template header with basic timestamp option. */ 12672 tmp_tcph += tcp->tcp_tcp_hdr_len; 12673 tmp_tcph[0] = TCPOPT_NOP; 12674 tmp_tcph[1] = TCPOPT_NOP; 12675 tmp_tcph[2] = TCPOPT_TSTAMP; 12676 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12677 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12678 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12679 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12680 } else { 12681 tcp->tcp_snd_ts_ok = B_FALSE; 12682 } 12683 12684 /* 12685 * Process SACK options. If SACK is enabled for this connection, 12686 * then allocate the SACK info structure. Note the following ways 12687 * when tcp_snd_sack_ok is set to true. 12688 * 12689 * For active connection: in tcp_adapt_ire() called in 12690 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12691 * is checked. 12692 * 12693 * For passive connection: in tcp_adapt_ire() called in 12694 * tcp_accept_comm(). 12695 * 12696 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12697 * That check makes sure that if we did not send a SACK OK option, 12698 * we will not enable SACK for this connection even though the other 12699 * side sends us SACK OK option. For active connection, the SACK 12700 * info structure has already been allocated. So we need to free 12701 * it if SACK is disabled. 12702 */ 12703 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12704 (tcp->tcp_snd_sack_ok || 12705 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12706 /* This should be true only in the passive case. */ 12707 if (tcp->tcp_sack_info == NULL) { 12708 ASSERT(TCP_IS_DETACHED(tcp)); 12709 tcp->tcp_sack_info = 12710 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12711 } 12712 if (tcp->tcp_sack_info == NULL) { 12713 tcp->tcp_snd_sack_ok = B_FALSE; 12714 } else { 12715 tcp->tcp_snd_sack_ok = B_TRUE; 12716 if (tcp->tcp_snd_ts_ok) { 12717 tcp->tcp_max_sack_blk = 3; 12718 } else { 12719 tcp->tcp_max_sack_blk = 4; 12720 } 12721 } 12722 } else { 12723 /* 12724 * Resetting tcp_snd_sack_ok to B_FALSE so that 12725 * no SACK info will be used for this 12726 * connection. This assumes that SACK usage 12727 * permission is negotiated. This may need 12728 * to be changed once this is clarified. 12729 */ 12730 if (tcp->tcp_sack_info != NULL) { 12731 ASSERT(tcp->tcp_notsack_list == NULL); 12732 kmem_cache_free(tcp_sack_info_cache, 12733 tcp->tcp_sack_info); 12734 tcp->tcp_sack_info = NULL; 12735 } 12736 tcp->tcp_snd_sack_ok = B_FALSE; 12737 } 12738 12739 /* 12740 * Now we know the exact TCP/IP header length, subtract 12741 * that from tcp_mss to get our side's MSS. 12742 */ 12743 tcp->tcp_mss -= tcp->tcp_hdr_len; 12744 /* 12745 * Here we assume that the other side's header size will be equal to 12746 * our header size. We calculate the real MSS accordingly. Need to 12747 * take into additional stuffs IPsec puts in. 12748 * 12749 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12750 */ 12751 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12752 ((tcp->tcp_ipversion == IPV4_VERSION ? 12753 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12754 12755 /* 12756 * Set MSS to the smaller one of both ends of the connection. 12757 * We should not have called tcp_mss_set() before, but our 12758 * side of the MSS should have been set to a proper value 12759 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12760 * STREAM head parameters properly. 12761 * 12762 * If we have a larger-than-16-bit window but the other side 12763 * didn't want to do window scale, tcp_rwnd_set() will take 12764 * care of that. 12765 */ 12766 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12767 } 12768 12769 /* 12770 * Sends the T_CONN_IND to the listener. The caller calls this 12771 * functions via squeue to get inside the listener's perimeter 12772 * once the 3 way hand shake is done a T_CONN_IND needs to be 12773 * sent. As an optimization, the caller can call this directly 12774 * if listener's perimeter is same as eager's. 12775 */ 12776 /* ARGSUSED */ 12777 void 12778 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12779 { 12780 conn_t *lconnp = (conn_t *)arg; 12781 tcp_t *listener = lconnp->conn_tcp; 12782 tcp_t *tcp; 12783 struct T_conn_ind *conn_ind; 12784 ipaddr_t *addr_cache; 12785 boolean_t need_send_conn_ind = B_FALSE; 12786 tcp_stack_t *tcps = listener->tcp_tcps; 12787 12788 /* retrieve the eager */ 12789 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12790 ASSERT(conn_ind->OPT_offset != 0 && 12791 conn_ind->OPT_length == sizeof (intptr_t)); 12792 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12793 conn_ind->OPT_length); 12794 12795 /* 12796 * TLI/XTI applications will get confused by 12797 * sending eager as an option since it violates 12798 * the option semantics. So remove the eager as 12799 * option since TLI/XTI app doesn't need it anyway. 12800 */ 12801 if (!TCP_IS_SOCKET(listener)) { 12802 conn_ind->OPT_length = 0; 12803 conn_ind->OPT_offset = 0; 12804 } 12805 if (listener->tcp_state == TCPS_CLOSED || 12806 TCP_IS_DETACHED(listener)) { 12807 /* 12808 * If listener has closed, it would have caused a 12809 * a cleanup/blowoff to happen for the eager. We 12810 * just need to return. 12811 */ 12812 freemsg(mp); 12813 return; 12814 } 12815 12816 12817 /* 12818 * if the conn_req_q is full defer passing up the 12819 * T_CONN_IND until space is availabe after t_accept() 12820 * processing 12821 */ 12822 mutex_enter(&listener->tcp_eager_lock); 12823 12824 /* 12825 * Take the eager out, if it is in the list of droppable eagers 12826 * as we are here because the 3W handshake is over. 12827 */ 12828 MAKE_UNDROPPABLE(tcp); 12829 12830 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12831 tcp_t *tail; 12832 12833 /* 12834 * The eager already has an extra ref put in tcp_rput_data 12835 * so that it stays till accept comes back even though it 12836 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12837 */ 12838 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12839 listener->tcp_conn_req_cnt_q0--; 12840 listener->tcp_conn_req_cnt_q++; 12841 12842 /* Move from SYN_RCVD to ESTABLISHED list */ 12843 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12844 tcp->tcp_eager_prev_q0; 12845 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12846 tcp->tcp_eager_next_q0; 12847 tcp->tcp_eager_prev_q0 = NULL; 12848 tcp->tcp_eager_next_q0 = NULL; 12849 12850 /* 12851 * Insert at end of the queue because sockfs 12852 * sends down T_CONN_RES in chronological 12853 * order. Leaving the older conn indications 12854 * at front of the queue helps reducing search 12855 * time. 12856 */ 12857 tail = listener->tcp_eager_last_q; 12858 if (tail != NULL) 12859 tail->tcp_eager_next_q = tcp; 12860 else 12861 listener->tcp_eager_next_q = tcp; 12862 listener->tcp_eager_last_q = tcp; 12863 tcp->tcp_eager_next_q = NULL; 12864 /* 12865 * Delay sending up the T_conn_ind until we are 12866 * done with the eager. Once we have have sent up 12867 * the T_conn_ind, the accept can potentially complete 12868 * any time and release the refhold we have on the eager. 12869 */ 12870 need_send_conn_ind = B_TRUE; 12871 } else { 12872 /* 12873 * Defer connection on q0 and set deferred 12874 * connection bit true 12875 */ 12876 tcp->tcp_conn_def_q0 = B_TRUE; 12877 12878 /* take tcp out of q0 ... */ 12879 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12880 tcp->tcp_eager_next_q0; 12881 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12882 tcp->tcp_eager_prev_q0; 12883 12884 /* ... and place it at the end of q0 */ 12885 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12886 tcp->tcp_eager_next_q0 = listener; 12887 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12888 listener->tcp_eager_prev_q0 = tcp; 12889 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12890 } 12891 12892 /* we have timed out before */ 12893 if (tcp->tcp_syn_rcvd_timeout != 0) { 12894 tcp->tcp_syn_rcvd_timeout = 0; 12895 listener->tcp_syn_rcvd_timeout--; 12896 if (listener->tcp_syn_defense && 12897 listener->tcp_syn_rcvd_timeout <= 12898 (tcps->tcps_conn_req_max_q0 >> 5) && 12899 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12900 listener->tcp_last_rcv_lbolt)) { 12901 /* 12902 * Turn off the defense mode if we 12903 * believe the SYN attack is over. 12904 */ 12905 listener->tcp_syn_defense = B_FALSE; 12906 if (listener->tcp_ip_addr_cache) { 12907 kmem_free((void *)listener->tcp_ip_addr_cache, 12908 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12909 listener->tcp_ip_addr_cache = NULL; 12910 } 12911 } 12912 } 12913 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12914 if (addr_cache != NULL) { 12915 /* 12916 * We have finished a 3-way handshake with this 12917 * remote host. This proves the IP addr is good. 12918 * Cache it! 12919 */ 12920 addr_cache[IP_ADDR_CACHE_HASH( 12921 tcp->tcp_remote)] = tcp->tcp_remote; 12922 } 12923 mutex_exit(&listener->tcp_eager_lock); 12924 if (need_send_conn_ind) 12925 putnext(listener->tcp_rq, mp); 12926 } 12927 12928 mblk_t * 12929 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12930 uint_t *ifindexp, ip6_pkt_t *ippp) 12931 { 12932 ip_pktinfo_t *pinfo; 12933 ip6_t *ip6h; 12934 uchar_t *rptr; 12935 mblk_t *first_mp = mp; 12936 boolean_t mctl_present = B_FALSE; 12937 uint_t ifindex = 0; 12938 ip6_pkt_t ipp; 12939 uint_t ipvers; 12940 uint_t ip_hdr_len; 12941 tcp_stack_t *tcps = tcp->tcp_tcps; 12942 12943 rptr = mp->b_rptr; 12944 ASSERT(OK_32PTR(rptr)); 12945 ASSERT(tcp != NULL); 12946 ipp.ipp_fields = 0; 12947 12948 switch DB_TYPE(mp) { 12949 case M_CTL: 12950 mp = mp->b_cont; 12951 if (mp == NULL) { 12952 freemsg(first_mp); 12953 return (NULL); 12954 } 12955 if (DB_TYPE(mp) != M_DATA) { 12956 freemsg(first_mp); 12957 return (NULL); 12958 } 12959 mctl_present = B_TRUE; 12960 break; 12961 case M_DATA: 12962 break; 12963 default: 12964 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12965 freemsg(mp); 12966 return (NULL); 12967 } 12968 ipvers = IPH_HDR_VERSION(rptr); 12969 if (ipvers == IPV4_VERSION) { 12970 if (tcp == NULL) { 12971 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12972 goto done; 12973 } 12974 12975 ipp.ipp_fields |= IPPF_HOPLIMIT; 12976 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12977 12978 /* 12979 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12980 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12981 */ 12982 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12983 mctl_present) { 12984 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12985 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12986 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12987 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12988 ipp.ipp_fields |= IPPF_IFINDEX; 12989 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12990 ifindex = pinfo->ip_pkt_ifindex; 12991 } 12992 freeb(first_mp); 12993 mctl_present = B_FALSE; 12994 } 12995 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12996 } else { 12997 ip6h = (ip6_t *)rptr; 12998 12999 ASSERT(ipvers == IPV6_VERSION); 13000 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 13001 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 13002 ipp.ipp_hoplimit = ip6h->ip6_hops; 13003 13004 if (ip6h->ip6_nxt != IPPROTO_TCP) { 13005 uint8_t nexthdrp; 13006 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13007 13008 /* Look for ifindex information */ 13009 if (ip6h->ip6_nxt == IPPROTO_RAW) { 13010 ip6i_t *ip6i = (ip6i_t *)ip6h; 13011 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 13012 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13013 freemsg(first_mp); 13014 return (NULL); 13015 } 13016 13017 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 13018 ASSERT(ip6i->ip6i_ifindex != 0); 13019 ipp.ipp_fields |= IPPF_IFINDEX; 13020 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 13021 ifindex = ip6i->ip6i_ifindex; 13022 } 13023 rptr = (uchar_t *)&ip6i[1]; 13024 mp->b_rptr = rptr; 13025 if (rptr == mp->b_wptr) { 13026 mblk_t *mp1; 13027 mp1 = mp->b_cont; 13028 freeb(mp); 13029 mp = mp1; 13030 rptr = mp->b_rptr; 13031 } 13032 if (MBLKL(mp) < IPV6_HDR_LEN + 13033 sizeof (tcph_t)) { 13034 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13035 freemsg(first_mp); 13036 return (NULL); 13037 } 13038 ip6h = (ip6_t *)rptr; 13039 } 13040 13041 /* 13042 * Find any potentially interesting extension headers 13043 * as well as the length of the IPv6 + extension 13044 * headers. 13045 */ 13046 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 13047 /* Verify if this is a TCP packet */ 13048 if (nexthdrp != IPPROTO_TCP) { 13049 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13050 freemsg(first_mp); 13051 return (NULL); 13052 } 13053 } else { 13054 ip_hdr_len = IPV6_HDR_LEN; 13055 } 13056 } 13057 13058 done: 13059 if (ipversp != NULL) 13060 *ipversp = ipvers; 13061 if (ip_hdr_lenp != NULL) 13062 *ip_hdr_lenp = ip_hdr_len; 13063 if (ippp != NULL) 13064 *ippp = ipp; 13065 if (ifindexp != NULL) 13066 *ifindexp = ifindex; 13067 if (mctl_present) { 13068 freeb(first_mp); 13069 } 13070 return (mp); 13071 } 13072 13073 /* 13074 * Handle M_DATA messages from IP. Its called directly from IP via 13075 * squeue for AF_INET type sockets fast path. No M_CTL are expected 13076 * in this path. 13077 * 13078 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 13079 * v4 and v6), we are called through tcp_input() and a M_CTL can 13080 * be present for options but tcp_find_pktinfo() deals with it. We 13081 * only expect M_DATA packets after tcp_find_pktinfo() is done. 13082 * 13083 * The first argument is always the connp/tcp to which the mp belongs. 13084 * There are no exceptions to this rule. The caller has already put 13085 * a reference on this connp/tcp and once tcp_rput_data() returns, 13086 * the squeue will do the refrele. 13087 * 13088 * The TH_SYN for the listener directly go to tcp_conn_request via 13089 * squeue. 13090 * 13091 * sqp: NULL = recursive, sqp != NULL means called from squeue 13092 */ 13093 void 13094 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 13095 { 13096 int32_t bytes_acked; 13097 int32_t gap; 13098 mblk_t *mp1; 13099 uint_t flags; 13100 uint32_t new_swnd = 0; 13101 uchar_t *iphdr; 13102 uchar_t *rptr; 13103 int32_t rgap; 13104 uint32_t seg_ack; 13105 int seg_len; 13106 uint_t ip_hdr_len; 13107 uint32_t seg_seq; 13108 tcph_t *tcph; 13109 int urp; 13110 tcp_opt_t tcpopt; 13111 uint_t ipvers; 13112 ip6_pkt_t ipp; 13113 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 13114 uint32_t cwnd; 13115 uint32_t add; 13116 int npkt; 13117 int mss; 13118 conn_t *connp = (conn_t *)arg; 13119 squeue_t *sqp = (squeue_t *)arg2; 13120 tcp_t *tcp = connp->conn_tcp; 13121 tcp_stack_t *tcps = tcp->tcp_tcps; 13122 13123 /* 13124 * RST from fused tcp loopback peer should trigger an unfuse. 13125 */ 13126 if (tcp->tcp_fused) { 13127 TCP_STAT(tcps, tcp_fusion_aborted); 13128 tcp_unfuse(tcp); 13129 } 13130 13131 iphdr = mp->b_rptr; 13132 rptr = mp->b_rptr; 13133 ASSERT(OK_32PTR(rptr)); 13134 13135 /* 13136 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 13137 * processing here. For rest call tcp_find_pktinfo to fill up the 13138 * necessary information. 13139 */ 13140 if (IPCL_IS_TCP4(connp)) { 13141 ipvers = IPV4_VERSION; 13142 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13143 } else { 13144 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 13145 NULL, &ipp); 13146 if (mp == NULL) { 13147 TCP_STAT(tcps, tcp_rput_v6_error); 13148 return; 13149 } 13150 iphdr = mp->b_rptr; 13151 rptr = mp->b_rptr; 13152 } 13153 ASSERT(DB_TYPE(mp) == M_DATA); 13154 13155 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13156 seg_seq = ABE32_TO_U32(tcph->th_seq); 13157 seg_ack = ABE32_TO_U32(tcph->th_ack); 13158 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 13159 seg_len = (int)(mp->b_wptr - rptr) - 13160 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 13161 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 13162 do { 13163 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13164 (uintptr_t)INT_MAX); 13165 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 13166 } while ((mp1 = mp1->b_cont) != NULL && 13167 mp1->b_datap->db_type == M_DATA); 13168 } 13169 13170 if (tcp->tcp_state == TCPS_TIME_WAIT) { 13171 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 13172 seg_len, tcph); 13173 return; 13174 } 13175 13176 if (sqp != NULL) { 13177 /* 13178 * This is the correct place to update tcp_last_recv_time. Note 13179 * that it is also updated for tcp structure that belongs to 13180 * global and listener queues which do not really need updating. 13181 * But that should not cause any harm. And it is updated for 13182 * all kinds of incoming segments, not only for data segments. 13183 */ 13184 tcp->tcp_last_recv_time = lbolt; 13185 } 13186 13187 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13188 13189 BUMP_LOCAL(tcp->tcp_ibsegs); 13190 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13191 13192 if ((flags & TH_URG) && sqp != NULL) { 13193 /* 13194 * TCP can't handle urgent pointers that arrive before 13195 * the connection has been accept()ed since it can't 13196 * buffer OOB data. Discard segment if this happens. 13197 * 13198 * We can't just rely on a non-null tcp_listener to indicate 13199 * that the accept() has completed since unlinking of the 13200 * eager and completion of the accept are not atomic. 13201 * tcp_detached, when it is not set (B_FALSE) indicates 13202 * that the accept() has completed. 13203 * 13204 * Nor can it reassemble urgent pointers, so discard 13205 * if it's not the next segment expected. 13206 * 13207 * Otherwise, collapse chain into one mblk (discard if 13208 * that fails). This makes sure the headers, retransmitted 13209 * data, and new data all are in the same mblk. 13210 */ 13211 ASSERT(mp != NULL); 13212 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 13213 freemsg(mp); 13214 return; 13215 } 13216 /* Update pointers into message */ 13217 iphdr = rptr = mp->b_rptr; 13218 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13219 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13220 /* 13221 * Since we can't handle any data with this urgent 13222 * pointer that is out of sequence, we expunge 13223 * the data. This allows us to still register 13224 * the urgent mark and generate the M_PCSIG, 13225 * which we can do. 13226 */ 13227 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13228 seg_len = 0; 13229 } 13230 } 13231 13232 switch (tcp->tcp_state) { 13233 case TCPS_SYN_SENT: 13234 if (flags & TH_ACK) { 13235 /* 13236 * Note that our stack cannot send data before a 13237 * connection is established, therefore the 13238 * following check is valid. Otherwise, it has 13239 * to be changed. 13240 */ 13241 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13242 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13243 freemsg(mp); 13244 if (flags & TH_RST) 13245 return; 13246 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13247 tcp, seg_ack, 0, TH_RST); 13248 return; 13249 } 13250 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13251 } 13252 if (flags & TH_RST) { 13253 freemsg(mp); 13254 if (flags & TH_ACK) 13255 (void) tcp_clean_death(tcp, 13256 ECONNREFUSED, 13); 13257 return; 13258 } 13259 if (!(flags & TH_SYN)) { 13260 freemsg(mp); 13261 return; 13262 } 13263 13264 /* Process all TCP options. */ 13265 tcp_process_options(tcp, tcph); 13266 /* 13267 * The following changes our rwnd to be a multiple of the 13268 * MIN(peer MSS, our MSS) for performance reason. 13269 */ 13270 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13271 tcp->tcp_mss)); 13272 13273 /* Is the other end ECN capable? */ 13274 if (tcp->tcp_ecn_ok) { 13275 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13276 tcp->tcp_ecn_ok = B_FALSE; 13277 } 13278 } 13279 /* 13280 * Clear ECN flags because it may interfere with later 13281 * processing. 13282 */ 13283 flags &= ~(TH_ECE|TH_CWR); 13284 13285 tcp->tcp_irs = seg_seq; 13286 tcp->tcp_rack = seg_seq; 13287 tcp->tcp_rnxt = seg_seq + 1; 13288 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13289 if (!TCP_IS_DETACHED(tcp)) { 13290 /* Allocate room for SACK options if needed. */ 13291 if (tcp->tcp_snd_sack_ok) { 13292 (void) mi_set_sth_wroff(tcp->tcp_rq, 13293 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13294 (tcp->tcp_loopback ? 0 : 13295 tcps->tcps_wroff_xtra)); 13296 } else { 13297 (void) mi_set_sth_wroff(tcp->tcp_rq, 13298 tcp->tcp_hdr_len + 13299 (tcp->tcp_loopback ? 0 : 13300 tcps->tcps_wroff_xtra)); 13301 } 13302 } 13303 if (flags & TH_ACK) { 13304 /* 13305 * If we can't get the confirmation upstream, pretend 13306 * we didn't even see this one. 13307 * 13308 * XXX: how can we pretend we didn't see it if we 13309 * have updated rnxt et. al. 13310 * 13311 * For loopback we defer sending up the T_CONN_CON 13312 * until after some checks below. 13313 */ 13314 mp1 = NULL; 13315 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13316 tcp->tcp_loopback ? &mp1 : NULL)) { 13317 freemsg(mp); 13318 return; 13319 } 13320 /* SYN was acked - making progress */ 13321 if (tcp->tcp_ipversion == IPV6_VERSION) 13322 tcp->tcp_ip_forward_progress = B_TRUE; 13323 13324 /* One for the SYN */ 13325 tcp->tcp_suna = tcp->tcp_iss + 1; 13326 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13327 tcp->tcp_state = TCPS_ESTABLISHED; 13328 13329 /* 13330 * If SYN was retransmitted, need to reset all 13331 * retransmission info. This is because this 13332 * segment will be treated as a dup ACK. 13333 */ 13334 if (tcp->tcp_rexmit) { 13335 tcp->tcp_rexmit = B_FALSE; 13336 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13337 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13338 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13339 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13340 tcp->tcp_ms_we_have_waited = 0; 13341 13342 /* 13343 * Set tcp_cwnd back to 1 MSS, per 13344 * recommendation from 13345 * draft-floyd-incr-init-win-01.txt, 13346 * Increasing TCP's Initial Window. 13347 */ 13348 tcp->tcp_cwnd = tcp->tcp_mss; 13349 } 13350 13351 tcp->tcp_swl1 = seg_seq; 13352 tcp->tcp_swl2 = seg_ack; 13353 13354 new_swnd = BE16_TO_U16(tcph->th_win); 13355 tcp->tcp_swnd = new_swnd; 13356 if (new_swnd > tcp->tcp_max_swnd) 13357 tcp->tcp_max_swnd = new_swnd; 13358 13359 /* 13360 * Always send the three-way handshake ack immediately 13361 * in order to make the connection complete as soon as 13362 * possible on the accepting host. 13363 */ 13364 flags |= TH_ACK_NEEDED; 13365 13366 /* 13367 * Special case for loopback. At this point we have 13368 * received SYN-ACK from the remote endpoint. In 13369 * order to ensure that both endpoints reach the 13370 * fused state prior to any data exchange, the final 13371 * ACK needs to be sent before we indicate T_CONN_CON 13372 * to the module upstream. 13373 */ 13374 if (tcp->tcp_loopback) { 13375 mblk_t *ack_mp; 13376 13377 ASSERT(!tcp->tcp_unfusable); 13378 ASSERT(mp1 != NULL); 13379 /* 13380 * For loopback, we always get a pure SYN-ACK 13381 * and only need to send back the final ACK 13382 * with no data (this is because the other 13383 * tcp is ours and we don't do T/TCP). This 13384 * final ACK triggers the passive side to 13385 * perform fusion in ESTABLISHED state. 13386 */ 13387 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13388 if (tcp->tcp_ack_tid != 0) { 13389 (void) TCP_TIMER_CANCEL(tcp, 13390 tcp->tcp_ack_tid); 13391 tcp->tcp_ack_tid = 0; 13392 } 13393 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13394 BUMP_LOCAL(tcp->tcp_obsegs); 13395 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13396 13397 /* Send up T_CONN_CON */ 13398 putnext(tcp->tcp_rq, mp1); 13399 13400 freemsg(mp); 13401 return; 13402 } 13403 /* 13404 * Forget fusion; we need to handle more 13405 * complex cases below. Send the deferred 13406 * T_CONN_CON message upstream and proceed 13407 * as usual. Mark this tcp as not capable 13408 * of fusion. 13409 */ 13410 TCP_STAT(tcps, tcp_fusion_unfusable); 13411 tcp->tcp_unfusable = B_TRUE; 13412 putnext(tcp->tcp_rq, mp1); 13413 } 13414 13415 /* 13416 * Check to see if there is data to be sent. If 13417 * yes, set the transmit flag. Then check to see 13418 * if received data processing needs to be done. 13419 * If not, go straight to xmit_check. This short 13420 * cut is OK as we don't support T/TCP. 13421 */ 13422 if (tcp->tcp_unsent) 13423 flags |= TH_XMIT_NEEDED; 13424 13425 if (seg_len == 0 && !(flags & TH_URG)) { 13426 freemsg(mp); 13427 goto xmit_check; 13428 } 13429 13430 flags &= ~TH_SYN; 13431 seg_seq++; 13432 break; 13433 } 13434 tcp->tcp_state = TCPS_SYN_RCVD; 13435 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13436 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13437 if (mp1) { 13438 DB_CPID(mp1) = tcp->tcp_cpid; 13439 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13440 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13441 } 13442 freemsg(mp); 13443 return; 13444 case TCPS_SYN_RCVD: 13445 if (flags & TH_ACK) { 13446 /* 13447 * In this state, a SYN|ACK packet is either bogus 13448 * because the other side must be ACKing our SYN which 13449 * indicates it has seen the ACK for their SYN and 13450 * shouldn't retransmit it or we're crossing SYNs 13451 * on active open. 13452 */ 13453 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13454 freemsg(mp); 13455 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13456 tcp, seg_ack, 0, TH_RST); 13457 return; 13458 } 13459 /* 13460 * NOTE: RFC 793 pg. 72 says this should be 13461 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13462 * but that would mean we have an ack that ignored 13463 * our SYN. 13464 */ 13465 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13466 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13467 freemsg(mp); 13468 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13469 tcp, seg_ack, 0, TH_RST); 13470 return; 13471 } 13472 } 13473 break; 13474 case TCPS_LISTEN: 13475 /* 13476 * Only a TLI listener can come through this path when a 13477 * acceptor is going back to be a listener and a packet 13478 * for the acceptor hits the classifier. For a socket 13479 * listener, this can never happen because a listener 13480 * can never accept connection on itself and hence a 13481 * socket acceptor can not go back to being a listener. 13482 */ 13483 ASSERT(!TCP_IS_SOCKET(tcp)); 13484 /*FALLTHRU*/ 13485 case TCPS_CLOSED: 13486 case TCPS_BOUND: { 13487 conn_t *new_connp; 13488 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13489 13490 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13491 if (new_connp != NULL) { 13492 tcp_reinput(new_connp, mp, connp->conn_sqp); 13493 return; 13494 } 13495 /* We failed to classify. For now just drop the packet */ 13496 freemsg(mp); 13497 return; 13498 } 13499 case TCPS_IDLE: 13500 /* 13501 * Handle the case where the tcp_clean_death() has happened 13502 * on a connection (application hasn't closed yet) but a packet 13503 * was already queued on squeue before tcp_clean_death() 13504 * was processed. Calling tcp_clean_death() twice on same 13505 * connection can result in weird behaviour. 13506 */ 13507 freemsg(mp); 13508 return; 13509 default: 13510 break; 13511 } 13512 13513 /* 13514 * Already on the correct queue/perimeter. 13515 * If this is a detached connection and not an eager 13516 * connection hanging off a listener then new data 13517 * (past the FIN) will cause a reset. 13518 * We do a special check here where it 13519 * is out of the main line, rather than check 13520 * if we are detached every time we see new 13521 * data down below. 13522 */ 13523 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13524 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13525 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13526 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13527 13528 freemsg(mp); 13529 /* 13530 * This could be an SSL closure alert. We're detached so just 13531 * acknowledge it this last time. 13532 */ 13533 if (tcp->tcp_kssl_ctx != NULL) { 13534 kssl_release_ctx(tcp->tcp_kssl_ctx); 13535 tcp->tcp_kssl_ctx = NULL; 13536 13537 tcp->tcp_rnxt += seg_len; 13538 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13539 flags |= TH_ACK_NEEDED; 13540 goto ack_check; 13541 } 13542 13543 tcp_xmit_ctl("new data when detached", tcp, 13544 tcp->tcp_snxt, 0, TH_RST); 13545 (void) tcp_clean_death(tcp, EPROTO, 12); 13546 return; 13547 } 13548 13549 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13550 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13551 new_swnd = BE16_TO_U16(tcph->th_win) << 13552 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13553 13554 if (tcp->tcp_snd_ts_ok) { 13555 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13556 /* 13557 * This segment is not acceptable. 13558 * Drop it and send back an ACK. 13559 */ 13560 freemsg(mp); 13561 flags |= TH_ACK_NEEDED; 13562 goto ack_check; 13563 } 13564 } else if (tcp->tcp_snd_sack_ok) { 13565 ASSERT(tcp->tcp_sack_info != NULL); 13566 tcpopt.tcp = tcp; 13567 /* 13568 * SACK info in already updated in tcp_parse_options. Ignore 13569 * all other TCP options... 13570 */ 13571 (void) tcp_parse_options(tcph, &tcpopt); 13572 } 13573 try_again:; 13574 mss = tcp->tcp_mss; 13575 gap = seg_seq - tcp->tcp_rnxt; 13576 rgap = tcp->tcp_rwnd - (gap + seg_len); 13577 /* 13578 * gap is the amount of sequence space between what we expect to see 13579 * and what we got for seg_seq. A positive value for gap means 13580 * something got lost. A negative value means we got some old stuff. 13581 */ 13582 if (gap < 0) { 13583 /* Old stuff present. Is the SYN in there? */ 13584 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13585 (seg_len != 0)) { 13586 flags &= ~TH_SYN; 13587 seg_seq++; 13588 urp--; 13589 /* Recompute the gaps after noting the SYN. */ 13590 goto try_again; 13591 } 13592 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13593 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13594 (seg_len > -gap ? -gap : seg_len)); 13595 /* Remove the old stuff from seg_len. */ 13596 seg_len += gap; 13597 /* 13598 * Anything left? 13599 * Make sure to check for unack'd FIN when rest of data 13600 * has been previously ack'd. 13601 */ 13602 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13603 /* 13604 * Resets are only valid if they lie within our offered 13605 * window. If the RST bit is set, we just ignore this 13606 * segment. 13607 */ 13608 if (flags & TH_RST) { 13609 freemsg(mp); 13610 return; 13611 } 13612 13613 /* 13614 * The arriving of dup data packets indicate that we 13615 * may have postponed an ack for too long, or the other 13616 * side's RTT estimate is out of shape. Start acking 13617 * more often. 13618 */ 13619 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13620 tcp->tcp_rack_cnt >= 1 && 13621 tcp->tcp_rack_abs_max > 2) { 13622 tcp->tcp_rack_abs_max--; 13623 } 13624 tcp->tcp_rack_cur_max = 1; 13625 13626 /* 13627 * This segment is "unacceptable". None of its 13628 * sequence space lies within our advertized window. 13629 * 13630 * Adjust seg_len to the original value for tracing. 13631 */ 13632 seg_len -= gap; 13633 if (tcp->tcp_debug) { 13634 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13635 "tcp_rput: unacceptable, gap %d, rgap %d, " 13636 "flags 0x%x, seg_seq %u, seg_ack %u, " 13637 "seg_len %d, rnxt %u, snxt %u, %s", 13638 gap, rgap, flags, seg_seq, seg_ack, 13639 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13640 tcp_display(tcp, NULL, 13641 DISP_ADDR_AND_PORT)); 13642 } 13643 13644 /* 13645 * Arrange to send an ACK in response to the 13646 * unacceptable segment per RFC 793 page 69. There 13647 * is only one small difference between ours and the 13648 * acceptability test in the RFC - we accept ACK-only 13649 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13650 * will be generated. 13651 * 13652 * Note that we have to ACK an ACK-only packet at least 13653 * for stacks that send 0-length keep-alives with 13654 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13655 * section 4.2.3.6. As long as we don't ever generate 13656 * an unacceptable packet in response to an incoming 13657 * packet that is unacceptable, it should not cause 13658 * "ACK wars". 13659 */ 13660 flags |= TH_ACK_NEEDED; 13661 13662 /* 13663 * Continue processing this segment in order to use the 13664 * ACK information it contains, but skip all other 13665 * sequence-number processing. Processing the ACK 13666 * information is necessary in order to 13667 * re-synchronize connections that may have lost 13668 * synchronization. 13669 * 13670 * We clear seg_len and flag fields related to 13671 * sequence number processing as they are not 13672 * to be trusted for an unacceptable segment. 13673 */ 13674 seg_len = 0; 13675 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13676 goto process_ack; 13677 } 13678 13679 /* Fix seg_seq, and chew the gap off the front. */ 13680 seg_seq = tcp->tcp_rnxt; 13681 urp += gap; 13682 do { 13683 mblk_t *mp2; 13684 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13685 (uintptr_t)UINT_MAX); 13686 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13687 if (gap > 0) { 13688 mp->b_rptr = mp->b_wptr - gap; 13689 break; 13690 } 13691 mp2 = mp; 13692 mp = mp->b_cont; 13693 freeb(mp2); 13694 } while (gap < 0); 13695 /* 13696 * If the urgent data has already been acknowledged, we 13697 * should ignore TH_URG below 13698 */ 13699 if (urp < 0) 13700 flags &= ~TH_URG; 13701 } 13702 /* 13703 * rgap is the amount of stuff received out of window. A negative 13704 * value is the amount out of window. 13705 */ 13706 if (rgap < 0) { 13707 mblk_t *mp2; 13708 13709 if (tcp->tcp_rwnd == 0) { 13710 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13711 } else { 13712 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13713 UPDATE_MIB(&tcps->tcps_mib, 13714 tcpInDataPastWinBytes, -rgap); 13715 } 13716 13717 /* 13718 * seg_len does not include the FIN, so if more than 13719 * just the FIN is out of window, we act like we don't 13720 * see it. (If just the FIN is out of window, rgap 13721 * will be zero and we will go ahead and acknowledge 13722 * the FIN.) 13723 */ 13724 flags &= ~TH_FIN; 13725 13726 /* Fix seg_len and make sure there is something left. */ 13727 seg_len += rgap; 13728 if (seg_len <= 0) { 13729 /* 13730 * Resets are only valid if they lie within our offered 13731 * window. If the RST bit is set, we just ignore this 13732 * segment. 13733 */ 13734 if (flags & TH_RST) { 13735 freemsg(mp); 13736 return; 13737 } 13738 13739 /* Per RFC 793, we need to send back an ACK. */ 13740 flags |= TH_ACK_NEEDED; 13741 13742 /* 13743 * Send SIGURG as soon as possible i.e. even 13744 * if the TH_URG was delivered in a window probe 13745 * packet (which will be unacceptable). 13746 * 13747 * We generate a signal if none has been generated 13748 * for this connection or if this is a new urgent 13749 * byte. Also send a zero-length "unmarked" message 13750 * to inform SIOCATMARK that this is not the mark. 13751 * 13752 * tcp_urp_last_valid is cleared when the T_exdata_ind 13753 * is sent up. This plus the check for old data 13754 * (gap >= 0) handles the wraparound of the sequence 13755 * number space without having to always track the 13756 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13757 * this max in its rcv_up variable). 13758 * 13759 * This prevents duplicate SIGURGS due to a "late" 13760 * zero-window probe when the T_EXDATA_IND has already 13761 * been sent up. 13762 */ 13763 if ((flags & TH_URG) && 13764 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13765 tcp->tcp_urp_last))) { 13766 mp1 = allocb(0, BPRI_MED); 13767 if (mp1 == NULL) { 13768 freemsg(mp); 13769 return; 13770 } 13771 if (!TCP_IS_DETACHED(tcp) && 13772 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13773 SIGURG)) { 13774 /* Try again on the rexmit. */ 13775 freemsg(mp1); 13776 freemsg(mp); 13777 return; 13778 } 13779 /* 13780 * If the next byte would be the mark 13781 * then mark with MARKNEXT else mark 13782 * with NOTMARKNEXT. 13783 */ 13784 if (gap == 0 && urp == 0) 13785 mp1->b_flag |= MSGMARKNEXT; 13786 else 13787 mp1->b_flag |= MSGNOTMARKNEXT; 13788 freemsg(tcp->tcp_urp_mark_mp); 13789 tcp->tcp_urp_mark_mp = mp1; 13790 flags |= TH_SEND_URP_MARK; 13791 tcp->tcp_urp_last_valid = B_TRUE; 13792 tcp->tcp_urp_last = urp + seg_seq; 13793 } 13794 /* 13795 * If this is a zero window probe, continue to 13796 * process the ACK part. But we need to set seg_len 13797 * to 0 to avoid data processing. Otherwise just 13798 * drop the segment and send back an ACK. 13799 */ 13800 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13801 flags &= ~(TH_SYN | TH_URG); 13802 seg_len = 0; 13803 goto process_ack; 13804 } else { 13805 freemsg(mp); 13806 goto ack_check; 13807 } 13808 } 13809 /* Pitch out of window stuff off the end. */ 13810 rgap = seg_len; 13811 mp2 = mp; 13812 do { 13813 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13814 (uintptr_t)INT_MAX); 13815 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13816 if (rgap < 0) { 13817 mp2->b_wptr += rgap; 13818 if ((mp1 = mp2->b_cont) != NULL) { 13819 mp2->b_cont = NULL; 13820 freemsg(mp1); 13821 } 13822 break; 13823 } 13824 } while ((mp2 = mp2->b_cont) != NULL); 13825 } 13826 ok:; 13827 /* 13828 * TCP should check ECN info for segments inside the window only. 13829 * Therefore the check should be done here. 13830 */ 13831 if (tcp->tcp_ecn_ok) { 13832 if (flags & TH_CWR) { 13833 tcp->tcp_ecn_echo_on = B_FALSE; 13834 } 13835 /* 13836 * Note that both ECN_CE and CWR can be set in the 13837 * same segment. In this case, we once again turn 13838 * on ECN_ECHO. 13839 */ 13840 if (tcp->tcp_ipversion == IPV4_VERSION) { 13841 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13842 13843 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13844 tcp->tcp_ecn_echo_on = B_TRUE; 13845 } 13846 } else { 13847 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13848 13849 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13850 htonl(IPH_ECN_CE << 20)) { 13851 tcp->tcp_ecn_echo_on = B_TRUE; 13852 } 13853 } 13854 } 13855 13856 /* 13857 * Check whether we can update tcp_ts_recent. This test is 13858 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13859 * Extensions for High Performance: An Update", Internet Draft. 13860 */ 13861 if (tcp->tcp_snd_ts_ok && 13862 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13863 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13864 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13865 tcp->tcp_last_rcv_lbolt = lbolt64; 13866 } 13867 13868 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13869 /* 13870 * FIN in an out of order segment. We record this in 13871 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13872 * Clear the FIN so that any check on FIN flag will fail. 13873 * Remember that FIN also counts in the sequence number 13874 * space. So we need to ack out of order FIN only segments. 13875 */ 13876 if (flags & TH_FIN) { 13877 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13878 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13879 flags &= ~TH_FIN; 13880 flags |= TH_ACK_NEEDED; 13881 } 13882 if (seg_len > 0) { 13883 /* Fill in the SACK blk list. */ 13884 if (tcp->tcp_snd_sack_ok) { 13885 ASSERT(tcp->tcp_sack_info != NULL); 13886 tcp_sack_insert(tcp->tcp_sack_list, 13887 seg_seq, seg_seq + seg_len, 13888 &(tcp->tcp_num_sack_blk)); 13889 } 13890 13891 /* 13892 * Attempt reassembly and see if we have something 13893 * ready to go. 13894 */ 13895 mp = tcp_reass(tcp, mp, seg_seq); 13896 /* Always ack out of order packets */ 13897 flags |= TH_ACK_NEEDED | TH_PUSH; 13898 if (mp) { 13899 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13900 (uintptr_t)INT_MAX); 13901 seg_len = mp->b_cont ? msgdsize(mp) : 13902 (int)(mp->b_wptr - mp->b_rptr); 13903 seg_seq = tcp->tcp_rnxt; 13904 /* 13905 * A gap is filled and the seq num and len 13906 * of the gap match that of a previously 13907 * received FIN, put the FIN flag back in. 13908 */ 13909 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13910 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13911 flags |= TH_FIN; 13912 tcp->tcp_valid_bits &= 13913 ~TCP_OFO_FIN_VALID; 13914 } 13915 } else { 13916 /* 13917 * Keep going even with NULL mp. 13918 * There may be a useful ACK or something else 13919 * we don't want to miss. 13920 * 13921 * But TCP should not perform fast retransmit 13922 * because of the ack number. TCP uses 13923 * seg_len == 0 to determine if it is a pure 13924 * ACK. And this is not a pure ACK. 13925 */ 13926 seg_len = 0; 13927 ofo_seg = B_TRUE; 13928 } 13929 } 13930 } else if (seg_len > 0) { 13931 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13932 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13933 /* 13934 * If an out of order FIN was received before, and the seq 13935 * num and len of the new segment match that of the FIN, 13936 * put the FIN flag back in. 13937 */ 13938 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13939 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13940 flags |= TH_FIN; 13941 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13942 } 13943 } 13944 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13945 if (flags & TH_RST) { 13946 freemsg(mp); 13947 switch (tcp->tcp_state) { 13948 case TCPS_SYN_RCVD: 13949 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13950 break; 13951 case TCPS_ESTABLISHED: 13952 case TCPS_FIN_WAIT_1: 13953 case TCPS_FIN_WAIT_2: 13954 case TCPS_CLOSE_WAIT: 13955 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13956 break; 13957 case TCPS_CLOSING: 13958 case TCPS_LAST_ACK: 13959 (void) tcp_clean_death(tcp, 0, 16); 13960 break; 13961 default: 13962 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13963 (void) tcp_clean_death(tcp, ENXIO, 17); 13964 break; 13965 } 13966 return; 13967 } 13968 if (flags & TH_SYN) { 13969 /* 13970 * See RFC 793, Page 71 13971 * 13972 * The seq number must be in the window as it should 13973 * be "fixed" above. If it is outside window, it should 13974 * be already rejected. Note that we allow seg_seq to be 13975 * rnxt + rwnd because we want to accept 0 window probe. 13976 */ 13977 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13978 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13979 freemsg(mp); 13980 /* 13981 * If the ACK flag is not set, just use our snxt as the 13982 * seq number of the RST segment. 13983 */ 13984 if (!(flags & TH_ACK)) { 13985 seg_ack = tcp->tcp_snxt; 13986 } 13987 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13988 TH_RST|TH_ACK); 13989 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13990 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13991 return; 13992 } 13993 /* 13994 * urp could be -1 when the urp field in the packet is 0 13995 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13996 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13997 */ 13998 if (flags & TH_URG && urp >= 0) { 13999 if (!tcp->tcp_urp_last_valid || 14000 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 14001 /* 14002 * If we haven't generated the signal yet for this 14003 * urgent pointer value, do it now. Also, send up a 14004 * zero-length M_DATA indicating whether or not this is 14005 * the mark. The latter is not needed when a 14006 * T_EXDATA_IND is sent up. However, if there are 14007 * allocation failures this code relies on the sender 14008 * retransmitting and the socket code for determining 14009 * the mark should not block waiting for the peer to 14010 * transmit. Thus, for simplicity we always send up the 14011 * mark indication. 14012 */ 14013 mp1 = allocb(0, BPRI_MED); 14014 if (mp1 == NULL) { 14015 freemsg(mp); 14016 return; 14017 } 14018 if (!TCP_IS_DETACHED(tcp) && 14019 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 14020 /* Try again on the rexmit. */ 14021 freemsg(mp1); 14022 freemsg(mp); 14023 return; 14024 } 14025 /* 14026 * Mark with NOTMARKNEXT for now. 14027 * The code below will change this to MARKNEXT 14028 * if we are at the mark. 14029 * 14030 * If there are allocation failures (e.g. in dupmsg 14031 * below) the next time tcp_rput_data sees the urgent 14032 * segment it will send up the MSG*MARKNEXT message. 14033 */ 14034 mp1->b_flag |= MSGNOTMARKNEXT; 14035 freemsg(tcp->tcp_urp_mark_mp); 14036 tcp->tcp_urp_mark_mp = mp1; 14037 flags |= TH_SEND_URP_MARK; 14038 #ifdef DEBUG 14039 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14040 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 14041 "last %x, %s", 14042 seg_seq, urp, tcp->tcp_urp_last, 14043 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14044 #endif /* DEBUG */ 14045 tcp->tcp_urp_last_valid = B_TRUE; 14046 tcp->tcp_urp_last = urp + seg_seq; 14047 } else if (tcp->tcp_urp_mark_mp != NULL) { 14048 /* 14049 * An allocation failure prevented the previous 14050 * tcp_rput_data from sending up the allocated 14051 * MSG*MARKNEXT message - send it up this time 14052 * around. 14053 */ 14054 flags |= TH_SEND_URP_MARK; 14055 } 14056 14057 /* 14058 * If the urgent byte is in this segment, make sure that it is 14059 * all by itself. This makes it much easier to deal with the 14060 * possibility of an allocation failure on the T_exdata_ind. 14061 * Note that seg_len is the number of bytes in the segment, and 14062 * urp is the offset into the segment of the urgent byte. 14063 * urp < seg_len means that the urgent byte is in this segment. 14064 */ 14065 if (urp < seg_len) { 14066 if (seg_len != 1) { 14067 uint32_t tmp_rnxt; 14068 /* 14069 * Break it up and feed it back in. 14070 * Re-attach the IP header. 14071 */ 14072 mp->b_rptr = iphdr; 14073 if (urp > 0) { 14074 /* 14075 * There is stuff before the urgent 14076 * byte. 14077 */ 14078 mp1 = dupmsg(mp); 14079 if (!mp1) { 14080 /* 14081 * Trim from urgent byte on. 14082 * The rest will come back. 14083 */ 14084 (void) adjmsg(mp, 14085 urp - seg_len); 14086 tcp_rput_data(connp, 14087 mp, NULL); 14088 return; 14089 } 14090 (void) adjmsg(mp1, urp - seg_len); 14091 /* Feed this piece back in. */ 14092 tmp_rnxt = tcp->tcp_rnxt; 14093 tcp_rput_data(connp, mp1, NULL); 14094 /* 14095 * If the data passed back in was not 14096 * processed (ie: bad ACK) sending 14097 * the remainder back in will cause a 14098 * loop. In this case, drop the 14099 * packet and let the sender try 14100 * sending a good packet. 14101 */ 14102 if (tmp_rnxt == tcp->tcp_rnxt) { 14103 freemsg(mp); 14104 return; 14105 } 14106 } 14107 if (urp != seg_len - 1) { 14108 uint32_t tmp_rnxt; 14109 /* 14110 * There is stuff after the urgent 14111 * byte. 14112 */ 14113 mp1 = dupmsg(mp); 14114 if (!mp1) { 14115 /* 14116 * Trim everything beyond the 14117 * urgent byte. The rest will 14118 * come back. 14119 */ 14120 (void) adjmsg(mp, 14121 urp + 1 - seg_len); 14122 tcp_rput_data(connp, 14123 mp, NULL); 14124 return; 14125 } 14126 (void) adjmsg(mp1, urp + 1 - seg_len); 14127 tmp_rnxt = tcp->tcp_rnxt; 14128 tcp_rput_data(connp, mp1, NULL); 14129 /* 14130 * If the data passed back in was not 14131 * processed (ie: bad ACK) sending 14132 * the remainder back in will cause a 14133 * loop. In this case, drop the 14134 * packet and let the sender try 14135 * sending a good packet. 14136 */ 14137 if (tmp_rnxt == tcp->tcp_rnxt) { 14138 freemsg(mp); 14139 return; 14140 } 14141 } 14142 tcp_rput_data(connp, mp, NULL); 14143 return; 14144 } 14145 /* 14146 * This segment contains only the urgent byte. We 14147 * have to allocate the T_exdata_ind, if we can. 14148 */ 14149 if (!tcp->tcp_urp_mp) { 14150 struct T_exdata_ind *tei; 14151 mp1 = allocb(sizeof (struct T_exdata_ind), 14152 BPRI_MED); 14153 if (!mp1) { 14154 /* 14155 * Sigh... It'll be back. 14156 * Generate any MSG*MARK message now. 14157 */ 14158 freemsg(mp); 14159 seg_len = 0; 14160 if (flags & TH_SEND_URP_MARK) { 14161 14162 14163 ASSERT(tcp->tcp_urp_mark_mp); 14164 tcp->tcp_urp_mark_mp->b_flag &= 14165 ~MSGNOTMARKNEXT; 14166 tcp->tcp_urp_mark_mp->b_flag |= 14167 MSGMARKNEXT; 14168 } 14169 goto ack_check; 14170 } 14171 mp1->b_datap->db_type = M_PROTO; 14172 tei = (struct T_exdata_ind *)mp1->b_rptr; 14173 tei->PRIM_type = T_EXDATA_IND; 14174 tei->MORE_flag = 0; 14175 mp1->b_wptr = (uchar_t *)&tei[1]; 14176 tcp->tcp_urp_mp = mp1; 14177 #ifdef DEBUG 14178 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14179 "tcp_rput: allocated exdata_ind %s", 14180 tcp_display(tcp, NULL, 14181 DISP_PORT_ONLY)); 14182 #endif /* DEBUG */ 14183 /* 14184 * There is no need to send a separate MSG*MARK 14185 * message since the T_EXDATA_IND will be sent 14186 * now. 14187 */ 14188 flags &= ~TH_SEND_URP_MARK; 14189 freemsg(tcp->tcp_urp_mark_mp); 14190 tcp->tcp_urp_mark_mp = NULL; 14191 } 14192 /* 14193 * Now we are all set. On the next putnext upstream, 14194 * tcp_urp_mp will be non-NULL and will get prepended 14195 * to what has to be this piece containing the urgent 14196 * byte. If for any reason we abort this segment below, 14197 * if it comes back, we will have this ready, or it 14198 * will get blown off in close. 14199 */ 14200 } else if (urp == seg_len) { 14201 /* 14202 * The urgent byte is the next byte after this sequence 14203 * number. If there is data it is marked with 14204 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14205 * since it is not needed. Otherwise, if the code 14206 * above just allocated a zero-length tcp_urp_mark_mp 14207 * message, that message is tagged with MSGMARKNEXT. 14208 * Sending up these MSGMARKNEXT messages makes 14209 * SIOCATMARK work correctly even though 14210 * the T_EXDATA_IND will not be sent up until the 14211 * urgent byte arrives. 14212 */ 14213 if (seg_len != 0) { 14214 flags |= TH_MARKNEXT_NEEDED; 14215 freemsg(tcp->tcp_urp_mark_mp); 14216 tcp->tcp_urp_mark_mp = NULL; 14217 flags &= ~TH_SEND_URP_MARK; 14218 } else if (tcp->tcp_urp_mark_mp != NULL) { 14219 flags |= TH_SEND_URP_MARK; 14220 tcp->tcp_urp_mark_mp->b_flag &= 14221 ~MSGNOTMARKNEXT; 14222 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14223 } 14224 #ifdef DEBUG 14225 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14226 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14227 seg_len, flags, 14228 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14229 #endif /* DEBUG */ 14230 } else { 14231 /* Data left until we hit mark */ 14232 #ifdef DEBUG 14233 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14234 "tcp_rput: URP %d bytes left, %s", 14235 urp - seg_len, tcp_display(tcp, NULL, 14236 DISP_PORT_ONLY)); 14237 #endif /* DEBUG */ 14238 } 14239 } 14240 14241 process_ack: 14242 if (!(flags & TH_ACK)) { 14243 freemsg(mp); 14244 goto xmit_check; 14245 } 14246 } 14247 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14248 14249 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14250 tcp->tcp_ip_forward_progress = B_TRUE; 14251 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14252 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14253 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14254 /* 3-way handshake complete - pass up the T_CONN_IND */ 14255 tcp_t *listener = tcp->tcp_listener; 14256 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14257 14258 tcp->tcp_tconnind_started = B_TRUE; 14259 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14260 /* 14261 * We are here means eager is fine but it can 14262 * get a TH_RST at any point between now and till 14263 * accept completes and disappear. We need to 14264 * ensure that reference to eager is valid after 14265 * we get out of eager's perimeter. So we do 14266 * an extra refhold. 14267 */ 14268 CONN_INC_REF(connp); 14269 14270 /* 14271 * The listener also exists because of the refhold 14272 * done in tcp_conn_request. Its possible that it 14273 * might have closed. We will check that once we 14274 * get inside listeners context. 14275 */ 14276 CONN_INC_REF(listener->tcp_connp); 14277 if (listener->tcp_connp->conn_sqp == 14278 connp->conn_sqp) { 14279 tcp_send_conn_ind(listener->tcp_connp, mp, 14280 listener->tcp_connp->conn_sqp); 14281 CONN_DEC_REF(listener->tcp_connp); 14282 } else if (!tcp->tcp_loopback) { 14283 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14284 tcp_send_conn_ind, 14285 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14286 } else { 14287 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14288 tcp_send_conn_ind, listener->tcp_connp, 14289 SQTAG_TCP_CONN_IND); 14290 } 14291 } 14292 14293 if (tcp->tcp_active_open) { 14294 /* 14295 * We are seeing the final ack in the three way 14296 * hand shake of a active open'ed connection 14297 * so we must send up a T_CONN_CON 14298 */ 14299 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14300 freemsg(mp); 14301 return; 14302 } 14303 /* 14304 * Don't fuse the loopback endpoints for 14305 * simultaneous active opens. 14306 */ 14307 if (tcp->tcp_loopback) { 14308 TCP_STAT(tcps, tcp_fusion_unfusable); 14309 tcp->tcp_unfusable = B_TRUE; 14310 } 14311 } 14312 14313 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14314 bytes_acked--; 14315 /* SYN was acked - making progress */ 14316 if (tcp->tcp_ipversion == IPV6_VERSION) 14317 tcp->tcp_ip_forward_progress = B_TRUE; 14318 14319 /* 14320 * If SYN was retransmitted, need to reset all 14321 * retransmission info as this segment will be 14322 * treated as a dup ACK. 14323 */ 14324 if (tcp->tcp_rexmit) { 14325 tcp->tcp_rexmit = B_FALSE; 14326 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14327 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14328 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14329 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14330 tcp->tcp_ms_we_have_waited = 0; 14331 tcp->tcp_cwnd = mss; 14332 } 14333 14334 /* 14335 * We set the send window to zero here. 14336 * This is needed if there is data to be 14337 * processed already on the queue. 14338 * Later (at swnd_update label), the 14339 * "new_swnd > tcp_swnd" condition is satisfied 14340 * the XMIT_NEEDED flag is set in the current 14341 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14342 * called if there is already data on queue in 14343 * this state. 14344 */ 14345 tcp->tcp_swnd = 0; 14346 14347 if (new_swnd > tcp->tcp_max_swnd) 14348 tcp->tcp_max_swnd = new_swnd; 14349 tcp->tcp_swl1 = seg_seq; 14350 tcp->tcp_swl2 = seg_ack; 14351 tcp->tcp_state = TCPS_ESTABLISHED; 14352 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14353 14354 /* Fuse when both sides are in ESTABLISHED state */ 14355 if (tcp->tcp_loopback && do_tcp_fusion) 14356 tcp_fuse(tcp, iphdr, tcph); 14357 14358 } 14359 /* This code follows 4.4BSD-Lite2 mostly. */ 14360 if (bytes_acked < 0) 14361 goto est; 14362 14363 /* 14364 * If TCP is ECN capable and the congestion experience bit is 14365 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14366 * done once per window (or more loosely, per RTT). 14367 */ 14368 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14369 tcp->tcp_cwr = B_FALSE; 14370 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14371 if (!tcp->tcp_cwr) { 14372 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14373 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14374 tcp->tcp_cwnd = npkt * mss; 14375 /* 14376 * If the cwnd is 0, use the timer to clock out 14377 * new segments. This is required by the ECN spec. 14378 */ 14379 if (npkt == 0) { 14380 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14381 /* 14382 * This makes sure that when the ACK comes 14383 * back, we will increase tcp_cwnd by 1 MSS. 14384 */ 14385 tcp->tcp_cwnd_cnt = 0; 14386 } 14387 tcp->tcp_cwr = B_TRUE; 14388 /* 14389 * This marks the end of the current window of in 14390 * flight data. That is why we don't use 14391 * tcp_suna + tcp_swnd. Only data in flight can 14392 * provide ECN info. 14393 */ 14394 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14395 tcp->tcp_ecn_cwr_sent = B_FALSE; 14396 } 14397 } 14398 14399 mp1 = tcp->tcp_xmit_head; 14400 if (bytes_acked == 0) { 14401 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14402 int dupack_cnt; 14403 14404 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14405 /* 14406 * Fast retransmit. When we have seen exactly three 14407 * identical ACKs while we have unacked data 14408 * outstanding we take it as a hint that our peer 14409 * dropped something. 14410 * 14411 * If TCP is retransmitting, don't do fast retransmit. 14412 */ 14413 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14414 ! tcp->tcp_rexmit) { 14415 /* Do Limited Transmit */ 14416 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14417 tcps->tcps_dupack_fast_retransmit) { 14418 /* 14419 * RFC 3042 14420 * 14421 * What we need to do is temporarily 14422 * increase tcp_cwnd so that new 14423 * data can be sent if it is allowed 14424 * by the receive window (tcp_rwnd). 14425 * tcp_wput_data() will take care of 14426 * the rest. 14427 * 14428 * If the connection is SACK capable, 14429 * only do limited xmit when there 14430 * is SACK info. 14431 * 14432 * Note how tcp_cwnd is incremented. 14433 * The first dup ACK will increase 14434 * it by 1 MSS. The second dup ACK 14435 * will increase it by 2 MSS. This 14436 * means that only 1 new segment will 14437 * be sent for each dup ACK. 14438 */ 14439 if (tcp->tcp_unsent > 0 && 14440 (!tcp->tcp_snd_sack_ok || 14441 (tcp->tcp_snd_sack_ok && 14442 tcp->tcp_notsack_list != NULL))) { 14443 tcp->tcp_cwnd += mss << 14444 (tcp->tcp_dupack_cnt - 1); 14445 flags |= TH_LIMIT_XMIT; 14446 } 14447 } else if (dupack_cnt == 14448 tcps->tcps_dupack_fast_retransmit) { 14449 14450 /* 14451 * If we have reduced tcp_ssthresh 14452 * because of ECN, do not reduce it again 14453 * unless it is already one window of data 14454 * away. After one window of data, tcp_cwr 14455 * should then be cleared. Note that 14456 * for non ECN capable connection, tcp_cwr 14457 * should always be false. 14458 * 14459 * Adjust cwnd since the duplicate 14460 * ack indicates that a packet was 14461 * dropped (due to congestion.) 14462 */ 14463 if (!tcp->tcp_cwr) { 14464 npkt = ((tcp->tcp_snxt - 14465 tcp->tcp_suna) >> 1) / mss; 14466 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14467 mss; 14468 tcp->tcp_cwnd = (npkt + 14469 tcp->tcp_dupack_cnt) * mss; 14470 } 14471 if (tcp->tcp_ecn_ok) { 14472 tcp->tcp_cwr = B_TRUE; 14473 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14474 tcp->tcp_ecn_cwr_sent = B_FALSE; 14475 } 14476 14477 /* 14478 * We do Hoe's algorithm. Refer to her 14479 * paper "Improving the Start-up Behavior 14480 * of a Congestion Control Scheme for TCP," 14481 * appeared in SIGCOMM'96. 14482 * 14483 * Save highest seq no we have sent so far. 14484 * Be careful about the invisible FIN byte. 14485 */ 14486 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14487 (tcp->tcp_unsent == 0)) { 14488 tcp->tcp_rexmit_max = tcp->tcp_fss; 14489 } else { 14490 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14491 } 14492 14493 /* 14494 * Do not allow bursty traffic during. 14495 * fast recovery. Refer to Fall and Floyd's 14496 * paper "Simulation-based Comparisons of 14497 * Tahoe, Reno and SACK TCP" (in CCR?) 14498 * This is a best current practise. 14499 */ 14500 tcp->tcp_snd_burst = TCP_CWND_SS; 14501 14502 /* 14503 * For SACK: 14504 * Calculate tcp_pipe, which is the 14505 * estimated number of bytes in 14506 * network. 14507 * 14508 * tcp_fack is the highest sack'ed seq num 14509 * TCP has received. 14510 * 14511 * tcp_pipe is explained in the above quoted 14512 * Fall and Floyd's paper. tcp_fack is 14513 * explained in Mathis and Mahdavi's 14514 * "Forward Acknowledgment: Refining TCP 14515 * Congestion Control" in SIGCOMM '96. 14516 */ 14517 if (tcp->tcp_snd_sack_ok) { 14518 ASSERT(tcp->tcp_sack_info != NULL); 14519 if (tcp->tcp_notsack_list != NULL) { 14520 tcp->tcp_pipe = tcp->tcp_snxt - 14521 tcp->tcp_fack; 14522 tcp->tcp_sack_snxt = seg_ack; 14523 flags |= TH_NEED_SACK_REXMIT; 14524 } else { 14525 /* 14526 * Always initialize tcp_pipe 14527 * even though we don't have 14528 * any SACK info. If later 14529 * we get SACK info and 14530 * tcp_pipe is not initialized, 14531 * funny things will happen. 14532 */ 14533 tcp->tcp_pipe = 14534 tcp->tcp_cwnd_ssthresh; 14535 } 14536 } else { 14537 flags |= TH_REXMIT_NEEDED; 14538 } /* tcp_snd_sack_ok */ 14539 14540 } else { 14541 /* 14542 * Here we perform congestion 14543 * avoidance, but NOT slow start. 14544 * This is known as the Fast 14545 * Recovery Algorithm. 14546 */ 14547 if (tcp->tcp_snd_sack_ok && 14548 tcp->tcp_notsack_list != NULL) { 14549 flags |= TH_NEED_SACK_REXMIT; 14550 tcp->tcp_pipe -= mss; 14551 if (tcp->tcp_pipe < 0) 14552 tcp->tcp_pipe = 0; 14553 } else { 14554 /* 14555 * We know that one more packet has 14556 * left the pipe thus we can update 14557 * cwnd. 14558 */ 14559 cwnd = tcp->tcp_cwnd + mss; 14560 if (cwnd > tcp->tcp_cwnd_max) 14561 cwnd = tcp->tcp_cwnd_max; 14562 tcp->tcp_cwnd = cwnd; 14563 if (tcp->tcp_unsent > 0) 14564 flags |= TH_XMIT_NEEDED; 14565 } 14566 } 14567 } 14568 } else if (tcp->tcp_zero_win_probe) { 14569 /* 14570 * If the window has opened, need to arrange 14571 * to send additional data. 14572 */ 14573 if (new_swnd != 0) { 14574 /* tcp_suna != tcp_snxt */ 14575 /* Packet contains a window update */ 14576 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14577 tcp->tcp_zero_win_probe = 0; 14578 tcp->tcp_timer_backoff = 0; 14579 tcp->tcp_ms_we_have_waited = 0; 14580 14581 /* 14582 * Transmit starting with tcp_suna since 14583 * the one byte probe is not ack'ed. 14584 * If TCP has sent more than one identical 14585 * probe, tcp_rexmit will be set. That means 14586 * tcp_ss_rexmit() will send out the one 14587 * byte along with new data. Otherwise, 14588 * fake the retransmission. 14589 */ 14590 flags |= TH_XMIT_NEEDED; 14591 if (!tcp->tcp_rexmit) { 14592 tcp->tcp_rexmit = B_TRUE; 14593 tcp->tcp_dupack_cnt = 0; 14594 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14595 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14596 } 14597 } 14598 } 14599 goto swnd_update; 14600 } 14601 14602 /* 14603 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14604 * If the ACK value acks something that we have not yet sent, it might 14605 * be an old duplicate segment. Send an ACK to re-synchronize the 14606 * other side. 14607 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14608 * state is handled above, so we can always just drop the segment and 14609 * send an ACK here. 14610 * 14611 * Should we send ACKs in response to ACK only segments? 14612 */ 14613 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14614 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14615 /* drop the received segment */ 14616 freemsg(mp); 14617 14618 /* 14619 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14620 * greater than 0, check if the number of such 14621 * bogus ACks is greater than that count. If yes, 14622 * don't send back any ACK. This prevents TCP from 14623 * getting into an ACK storm if somehow an attacker 14624 * successfully spoofs an acceptable segment to our 14625 * peer. 14626 */ 14627 if (tcp_drop_ack_unsent_cnt > 0 && 14628 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14629 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14630 return; 14631 } 14632 mp = tcp_ack_mp(tcp); 14633 if (mp != NULL) { 14634 BUMP_LOCAL(tcp->tcp_obsegs); 14635 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14636 tcp_send_data(tcp, tcp->tcp_wq, mp); 14637 } 14638 return; 14639 } 14640 14641 /* 14642 * TCP gets a new ACK, update the notsack'ed list to delete those 14643 * blocks that are covered by this ACK. 14644 */ 14645 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14646 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14647 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14648 } 14649 14650 /* 14651 * If we got an ACK after fast retransmit, check to see 14652 * if it is a partial ACK. If it is not and the congestion 14653 * window was inflated to account for the other side's 14654 * cached packets, retract it. If it is, do Hoe's algorithm. 14655 */ 14656 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14657 ASSERT(tcp->tcp_rexmit == B_FALSE); 14658 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14659 tcp->tcp_dupack_cnt = 0; 14660 /* 14661 * Restore the orig tcp_cwnd_ssthresh after 14662 * fast retransmit phase. 14663 */ 14664 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14665 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14666 } 14667 tcp->tcp_rexmit_max = seg_ack; 14668 tcp->tcp_cwnd_cnt = 0; 14669 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14670 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14671 14672 /* 14673 * Remove all notsack info to avoid confusion with 14674 * the next fast retrasnmit/recovery phase. 14675 */ 14676 if (tcp->tcp_snd_sack_ok && 14677 tcp->tcp_notsack_list != NULL) { 14678 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14679 } 14680 } else { 14681 if (tcp->tcp_snd_sack_ok && 14682 tcp->tcp_notsack_list != NULL) { 14683 flags |= TH_NEED_SACK_REXMIT; 14684 tcp->tcp_pipe -= mss; 14685 if (tcp->tcp_pipe < 0) 14686 tcp->tcp_pipe = 0; 14687 } else { 14688 /* 14689 * Hoe's algorithm: 14690 * 14691 * Retransmit the unack'ed segment and 14692 * restart fast recovery. Note that we 14693 * need to scale back tcp_cwnd to the 14694 * original value when we started fast 14695 * recovery. This is to prevent overly 14696 * aggressive behaviour in sending new 14697 * segments. 14698 */ 14699 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14700 tcps->tcps_dupack_fast_retransmit * mss; 14701 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14702 flags |= TH_REXMIT_NEEDED; 14703 } 14704 } 14705 } else { 14706 tcp->tcp_dupack_cnt = 0; 14707 if (tcp->tcp_rexmit) { 14708 /* 14709 * TCP is retranmitting. If the ACK ack's all 14710 * outstanding data, update tcp_rexmit_max and 14711 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14712 * to the correct value. 14713 * 14714 * Note that SEQ_LEQ() is used. This is to avoid 14715 * unnecessary fast retransmit caused by dup ACKs 14716 * received when TCP does slow start retransmission 14717 * after a time out. During this phase, TCP may 14718 * send out segments which are already received. 14719 * This causes dup ACKs to be sent back. 14720 */ 14721 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14722 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14723 tcp->tcp_rexmit_nxt = seg_ack; 14724 } 14725 if (seg_ack != tcp->tcp_rexmit_max) { 14726 flags |= TH_XMIT_NEEDED; 14727 } 14728 } else { 14729 tcp->tcp_rexmit = B_FALSE; 14730 tcp->tcp_xmit_zc_clean = B_FALSE; 14731 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14732 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14733 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14734 } 14735 tcp->tcp_ms_we_have_waited = 0; 14736 } 14737 } 14738 14739 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14740 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14741 tcp->tcp_suna = seg_ack; 14742 if (tcp->tcp_zero_win_probe != 0) { 14743 tcp->tcp_zero_win_probe = 0; 14744 tcp->tcp_timer_backoff = 0; 14745 } 14746 14747 /* 14748 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14749 * Note that it cannot be the SYN being ack'ed. The code flow 14750 * will not reach here. 14751 */ 14752 if (mp1 == NULL) { 14753 goto fin_acked; 14754 } 14755 14756 /* 14757 * Update the congestion window. 14758 * 14759 * If TCP is not ECN capable or TCP is ECN capable but the 14760 * congestion experience bit is not set, increase the tcp_cwnd as 14761 * usual. 14762 */ 14763 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14764 cwnd = tcp->tcp_cwnd; 14765 add = mss; 14766 14767 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14768 /* 14769 * This is to prevent an increase of less than 1 MSS of 14770 * tcp_cwnd. With partial increase, tcp_wput_data() 14771 * may send out tinygrams in order to preserve mblk 14772 * boundaries. 14773 * 14774 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14775 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14776 * increased by 1 MSS for every RTTs. 14777 */ 14778 if (tcp->tcp_cwnd_cnt <= 0) { 14779 tcp->tcp_cwnd_cnt = cwnd + add; 14780 } else { 14781 tcp->tcp_cwnd_cnt -= add; 14782 add = 0; 14783 } 14784 } 14785 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14786 } 14787 14788 /* See if the latest urgent data has been acknowledged */ 14789 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14790 SEQ_GT(seg_ack, tcp->tcp_urg)) 14791 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14792 14793 /* Can we update the RTT estimates? */ 14794 if (tcp->tcp_snd_ts_ok) { 14795 /* Ignore zero timestamp echo-reply. */ 14796 if (tcpopt.tcp_opt_ts_ecr != 0) { 14797 tcp_set_rto(tcp, (int32_t)lbolt - 14798 (int32_t)tcpopt.tcp_opt_ts_ecr); 14799 } 14800 14801 /* If needed, restart the timer. */ 14802 if (tcp->tcp_set_timer == 1) { 14803 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14804 tcp->tcp_set_timer = 0; 14805 } 14806 /* 14807 * Update tcp_csuna in case the other side stops sending 14808 * us timestamps. 14809 */ 14810 tcp->tcp_csuna = tcp->tcp_snxt; 14811 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14812 /* 14813 * An ACK sequence we haven't seen before, so get the RTT 14814 * and update the RTO. But first check if the timestamp is 14815 * valid to use. 14816 */ 14817 if ((mp1->b_next != NULL) && 14818 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14819 tcp_set_rto(tcp, (int32_t)lbolt - 14820 (int32_t)(intptr_t)mp1->b_prev); 14821 else 14822 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14823 14824 /* Remeber the last sequence to be ACKed */ 14825 tcp->tcp_csuna = seg_ack; 14826 if (tcp->tcp_set_timer == 1) { 14827 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14828 tcp->tcp_set_timer = 0; 14829 } 14830 } else { 14831 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14832 } 14833 14834 /* Eat acknowledged bytes off the xmit queue. */ 14835 for (;;) { 14836 mblk_t *mp2; 14837 uchar_t *wptr; 14838 14839 wptr = mp1->b_wptr; 14840 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14841 bytes_acked -= (int)(wptr - mp1->b_rptr); 14842 if (bytes_acked < 0) { 14843 mp1->b_rptr = wptr + bytes_acked; 14844 /* 14845 * Set a new timestamp if all the bytes timed by the 14846 * old timestamp have been ack'ed. 14847 */ 14848 if (SEQ_GT(seg_ack, 14849 (uint32_t)(uintptr_t)(mp1->b_next))) { 14850 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14851 mp1->b_next = NULL; 14852 } 14853 break; 14854 } 14855 mp1->b_next = NULL; 14856 mp1->b_prev = NULL; 14857 mp2 = mp1; 14858 mp1 = mp1->b_cont; 14859 14860 /* 14861 * This notification is required for some zero-copy 14862 * clients to maintain a copy semantic. After the data 14863 * is ack'ed, client is safe to modify or reuse the buffer. 14864 */ 14865 if (tcp->tcp_snd_zcopy_aware && 14866 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14867 tcp_zcopy_notify(tcp); 14868 freeb(mp2); 14869 if (bytes_acked == 0) { 14870 if (mp1 == NULL) { 14871 /* Everything is ack'ed, clear the tail. */ 14872 tcp->tcp_xmit_tail = NULL; 14873 /* 14874 * Cancel the timer unless we are still 14875 * waiting for an ACK for the FIN packet. 14876 */ 14877 if (tcp->tcp_timer_tid != 0 && 14878 tcp->tcp_snxt == tcp->tcp_suna) { 14879 (void) TCP_TIMER_CANCEL(tcp, 14880 tcp->tcp_timer_tid); 14881 tcp->tcp_timer_tid = 0; 14882 } 14883 goto pre_swnd_update; 14884 } 14885 if (mp2 != tcp->tcp_xmit_tail) 14886 break; 14887 tcp->tcp_xmit_tail = mp1; 14888 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14889 (uintptr_t)INT_MAX); 14890 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14891 mp1->b_rptr); 14892 break; 14893 } 14894 if (mp1 == NULL) { 14895 /* 14896 * More was acked but there is nothing more 14897 * outstanding. This means that the FIN was 14898 * just acked or that we're talking to a clown. 14899 */ 14900 fin_acked: 14901 ASSERT(tcp->tcp_fin_sent); 14902 tcp->tcp_xmit_tail = NULL; 14903 if (tcp->tcp_fin_sent) { 14904 /* FIN was acked - making progress */ 14905 if (tcp->tcp_ipversion == IPV6_VERSION && 14906 !tcp->tcp_fin_acked) 14907 tcp->tcp_ip_forward_progress = B_TRUE; 14908 tcp->tcp_fin_acked = B_TRUE; 14909 if (tcp->tcp_linger_tid != 0 && 14910 TCP_TIMER_CANCEL(tcp, 14911 tcp->tcp_linger_tid) >= 0) { 14912 tcp_stop_lingering(tcp); 14913 freemsg(mp); 14914 mp = NULL; 14915 } 14916 } else { 14917 /* 14918 * We should never get here because 14919 * we have already checked that the 14920 * number of bytes ack'ed should be 14921 * smaller than or equal to what we 14922 * have sent so far (it is the 14923 * acceptability check of the ACK). 14924 * We can only get here if the send 14925 * queue is corrupted. 14926 * 14927 * Terminate the connection and 14928 * panic the system. It is better 14929 * for us to panic instead of 14930 * continuing to avoid other disaster. 14931 */ 14932 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14933 tcp->tcp_rnxt, TH_RST|TH_ACK); 14934 panic("Memory corruption " 14935 "detected for connection %s.", 14936 tcp_display(tcp, NULL, 14937 DISP_ADDR_AND_PORT)); 14938 /*NOTREACHED*/ 14939 } 14940 goto pre_swnd_update; 14941 } 14942 ASSERT(mp2 != tcp->tcp_xmit_tail); 14943 } 14944 if (tcp->tcp_unsent) { 14945 flags |= TH_XMIT_NEEDED; 14946 } 14947 pre_swnd_update: 14948 tcp->tcp_xmit_head = mp1; 14949 swnd_update: 14950 /* 14951 * The following check is different from most other implementations. 14952 * For bi-directional transfer, when segments are dropped, the 14953 * "normal" check will not accept a window update in those 14954 * retransmitted segemnts. Failing to do that, TCP may send out 14955 * segments which are outside receiver's window. As TCP accepts 14956 * the ack in those retransmitted segments, if the window update in 14957 * the same segment is not accepted, TCP will incorrectly calculates 14958 * that it can send more segments. This can create a deadlock 14959 * with the receiver if its window becomes zero. 14960 */ 14961 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14962 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14963 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14964 /* 14965 * The criteria for update is: 14966 * 14967 * 1. the segment acknowledges some data. Or 14968 * 2. the segment is new, i.e. it has a higher seq num. Or 14969 * 3. the segment is not old and the advertised window is 14970 * larger than the previous advertised window. 14971 */ 14972 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14973 flags |= TH_XMIT_NEEDED; 14974 tcp->tcp_swnd = new_swnd; 14975 if (new_swnd > tcp->tcp_max_swnd) 14976 tcp->tcp_max_swnd = new_swnd; 14977 tcp->tcp_swl1 = seg_seq; 14978 tcp->tcp_swl2 = seg_ack; 14979 } 14980 est: 14981 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14982 14983 switch (tcp->tcp_state) { 14984 case TCPS_FIN_WAIT_1: 14985 if (tcp->tcp_fin_acked) { 14986 tcp->tcp_state = TCPS_FIN_WAIT_2; 14987 /* 14988 * We implement the non-standard BSD/SunOS 14989 * FIN_WAIT_2 flushing algorithm. 14990 * If there is no user attached to this 14991 * TCP endpoint, then this TCP struct 14992 * could hang around forever in FIN_WAIT_2 14993 * state if the peer forgets to send us 14994 * a FIN. To prevent this, we wait only 14995 * 2*MSL (a convenient time value) for 14996 * the FIN to arrive. If it doesn't show up, 14997 * we flush the TCP endpoint. This algorithm, 14998 * though a violation of RFC-793, has worked 14999 * for over 10 years in BSD systems. 15000 * Note: SunOS 4.x waits 675 seconds before 15001 * flushing the FIN_WAIT_2 connection. 15002 */ 15003 TCP_TIMER_RESTART(tcp, 15004 tcps->tcps_fin_wait_2_flush_interval); 15005 } 15006 break; 15007 case TCPS_FIN_WAIT_2: 15008 break; /* Shutdown hook? */ 15009 case TCPS_LAST_ACK: 15010 freemsg(mp); 15011 if (tcp->tcp_fin_acked) { 15012 (void) tcp_clean_death(tcp, 0, 19); 15013 return; 15014 } 15015 goto xmit_check; 15016 case TCPS_CLOSING: 15017 if (tcp->tcp_fin_acked) { 15018 tcp->tcp_state = TCPS_TIME_WAIT; 15019 /* 15020 * Unconditionally clear the exclusive binding 15021 * bit so this TIME-WAIT connection won't 15022 * interfere with new ones. 15023 */ 15024 tcp->tcp_exclbind = 0; 15025 if (!TCP_IS_DETACHED(tcp)) { 15026 TCP_TIMER_RESTART(tcp, 15027 tcps->tcps_time_wait_interval); 15028 } else { 15029 tcp_time_wait_append(tcp); 15030 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 15031 } 15032 } 15033 /*FALLTHRU*/ 15034 case TCPS_CLOSE_WAIT: 15035 freemsg(mp); 15036 goto xmit_check; 15037 default: 15038 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 15039 break; 15040 } 15041 } 15042 if (flags & TH_FIN) { 15043 /* Make sure we ack the fin */ 15044 flags |= TH_ACK_NEEDED; 15045 if (!tcp->tcp_fin_rcvd) { 15046 tcp->tcp_fin_rcvd = B_TRUE; 15047 tcp->tcp_rnxt++; 15048 tcph = tcp->tcp_tcph; 15049 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15050 15051 /* 15052 * Generate the ordrel_ind at the end unless we 15053 * are an eager guy. 15054 * In the eager case tcp_rsrv will do this when run 15055 * after tcp_accept is done. 15056 */ 15057 if (tcp->tcp_listener == NULL && 15058 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 15059 flags |= TH_ORDREL_NEEDED; 15060 switch (tcp->tcp_state) { 15061 case TCPS_SYN_RCVD: 15062 case TCPS_ESTABLISHED: 15063 tcp->tcp_state = TCPS_CLOSE_WAIT; 15064 /* Keepalive? */ 15065 break; 15066 case TCPS_FIN_WAIT_1: 15067 if (!tcp->tcp_fin_acked) { 15068 tcp->tcp_state = TCPS_CLOSING; 15069 break; 15070 } 15071 /* FALLTHRU */ 15072 case TCPS_FIN_WAIT_2: 15073 tcp->tcp_state = TCPS_TIME_WAIT; 15074 /* 15075 * Unconditionally clear the exclusive binding 15076 * bit so this TIME-WAIT connection won't 15077 * interfere with new ones. 15078 */ 15079 tcp->tcp_exclbind = 0; 15080 if (!TCP_IS_DETACHED(tcp)) { 15081 TCP_TIMER_RESTART(tcp, 15082 tcps->tcps_time_wait_interval); 15083 } else { 15084 tcp_time_wait_append(tcp); 15085 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 15086 } 15087 if (seg_len) { 15088 /* 15089 * implies data piggybacked on FIN. 15090 * break to handle data. 15091 */ 15092 break; 15093 } 15094 freemsg(mp); 15095 goto ack_check; 15096 } 15097 } 15098 } 15099 if (mp == NULL) 15100 goto xmit_check; 15101 if (seg_len == 0) { 15102 freemsg(mp); 15103 goto xmit_check; 15104 } 15105 if (mp->b_rptr == mp->b_wptr) { 15106 /* 15107 * The header has been consumed, so we remove the 15108 * zero-length mblk here. 15109 */ 15110 mp1 = mp; 15111 mp = mp->b_cont; 15112 freeb(mp1); 15113 } 15114 tcph = tcp->tcp_tcph; 15115 tcp->tcp_rack_cnt++; 15116 { 15117 uint32_t cur_max; 15118 15119 cur_max = tcp->tcp_rack_cur_max; 15120 if (tcp->tcp_rack_cnt >= cur_max) { 15121 /* 15122 * We have more unacked data than we should - send 15123 * an ACK now. 15124 */ 15125 flags |= TH_ACK_NEEDED; 15126 cur_max++; 15127 if (cur_max > tcp->tcp_rack_abs_max) 15128 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15129 else 15130 tcp->tcp_rack_cur_max = cur_max; 15131 } else if (TCP_IS_DETACHED(tcp)) { 15132 /* We don't have an ACK timer for detached TCP. */ 15133 flags |= TH_ACK_NEEDED; 15134 } else if (seg_len < mss) { 15135 /* 15136 * If we get a segment that is less than an mss, and we 15137 * already have unacknowledged data, and the amount 15138 * unacknowledged is not a multiple of mss, then we 15139 * better generate an ACK now. Otherwise, this may be 15140 * the tail piece of a transaction, and we would rather 15141 * wait for the response. 15142 */ 15143 uint32_t udif; 15144 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 15145 (uintptr_t)INT_MAX); 15146 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 15147 if (udif && (udif % mss)) 15148 flags |= TH_ACK_NEEDED; 15149 else 15150 flags |= TH_ACK_TIMER_NEEDED; 15151 } else { 15152 /* Start delayed ack timer */ 15153 flags |= TH_ACK_TIMER_NEEDED; 15154 } 15155 } 15156 tcp->tcp_rnxt += seg_len; 15157 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15158 15159 /* Update SACK list */ 15160 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15161 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15162 &(tcp->tcp_num_sack_blk)); 15163 } 15164 15165 if (tcp->tcp_urp_mp) { 15166 tcp->tcp_urp_mp->b_cont = mp; 15167 mp = tcp->tcp_urp_mp; 15168 tcp->tcp_urp_mp = NULL; 15169 /* Ready for a new signal. */ 15170 tcp->tcp_urp_last_valid = B_FALSE; 15171 #ifdef DEBUG 15172 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15173 "tcp_rput: sending exdata_ind %s", 15174 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15175 #endif /* DEBUG */ 15176 } 15177 15178 /* 15179 * Check for ancillary data changes compared to last segment. 15180 */ 15181 if (tcp->tcp_ipv6_recvancillary != 0) { 15182 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15183 ASSERT(mp != NULL); 15184 } 15185 15186 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15187 /* 15188 * Side queue inbound data until the accept happens. 15189 * tcp_accept/tcp_rput drains this when the accept happens. 15190 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15191 * T_EXDATA_IND) it is queued on b_next. 15192 * XXX Make urgent data use this. Requires: 15193 * Removing tcp_listener check for TH_URG 15194 * Making M_PCPROTO and MARK messages skip the eager case 15195 */ 15196 15197 if (tcp->tcp_kssl_pending) { 15198 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15199 mblk_t *, mp); 15200 tcp_kssl_input(tcp, mp); 15201 } else { 15202 tcp_rcv_enqueue(tcp, mp, seg_len); 15203 } 15204 } else { 15205 sodirect_t *sodp = tcp->tcp_sodirect; 15206 15207 /* 15208 * If an sodirect connection and an enabled sodirect_t then 15209 * sodp will be set to point to the tcp_t/sonode_t shared 15210 * sodirect_t and the sodirect_t's lock will be held. 15211 */ 15212 if (sodp != NULL) { 15213 mutex_enter(sodp->sod_lockp); 15214 if (!(sodp->sod_state & SOD_ENABLED) || 15215 (tcp->tcp_kssl_ctx != NULL && 15216 DB_TYPE(mp) == M_DATA)) { 15217 mutex_exit(sodp->sod_lockp); 15218 sodp = NULL; 15219 } 15220 } 15221 if (mp->b_datap->db_type != M_DATA || 15222 (flags & TH_MARKNEXT_NEEDED)) { 15223 if (sodp != NULL) { 15224 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15225 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15226 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15227 } 15228 if (!SOD_QEMPTY(sodp) && 15229 (sodp->sod_state & SOD_WAKE_NOT)) { 15230 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15231 /* sod_wakeup() did the mutex_exit() */ 15232 } else { 15233 mutex_exit(sodp->sod_lockp); 15234 } 15235 } else if (tcp->tcp_rcv_list != NULL) { 15236 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15237 } 15238 ASSERT(tcp->tcp_rcv_list == NULL || 15239 tcp->tcp_fused_sigurg); 15240 15241 if (flags & TH_MARKNEXT_NEEDED) { 15242 #ifdef DEBUG 15243 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15244 "tcp_rput: sending MSGMARKNEXT %s", 15245 tcp_display(tcp, NULL, 15246 DISP_PORT_ONLY)); 15247 #endif /* DEBUG */ 15248 mp->b_flag |= MSGMARKNEXT; 15249 flags &= ~TH_MARKNEXT_NEEDED; 15250 } 15251 15252 /* Does this need SSL processing first? */ 15253 if ((tcp->tcp_kssl_ctx != NULL) && 15254 (DB_TYPE(mp) == M_DATA)) { 15255 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15256 mblk_t *, mp); 15257 tcp_kssl_input(tcp, mp); 15258 } else { 15259 putnext(tcp->tcp_rq, mp); 15260 if (!canputnext(tcp->tcp_rq)) 15261 tcp->tcp_rwnd -= seg_len; 15262 } 15263 } else if ((tcp->tcp_kssl_ctx != NULL) && 15264 (DB_TYPE(mp) == M_DATA)) { 15265 /* Do SSL processing first */ 15266 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, 15267 mblk_t *, mp); 15268 tcp_kssl_input(tcp, mp); 15269 } else if (sodp != NULL) { 15270 /* 15271 * Sodirect so all mblk_t's are queued on the 15272 * socket directly, check for wakeup of blocked 15273 * reader (if any), and last if flow-controled. 15274 */ 15275 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15276 if ((sodp->sod_state & SOD_WAKE_NEED) || 15277 (flags & (TH_PUSH|TH_FIN))) { 15278 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15279 /* sod_wakeup() did the mutex_exit() */ 15280 } else { 15281 if (SOD_QFULL(sodp)) { 15282 /* Q is full, need backenable */ 15283 SOD_QSETBE(sodp); 15284 } 15285 mutex_exit(sodp->sod_lockp); 15286 } 15287 } else if ((flags & (TH_PUSH|TH_FIN)) || 15288 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 15289 if (tcp->tcp_rcv_list != NULL) { 15290 /* 15291 * Enqueue the new segment first and then 15292 * call tcp_rcv_drain() to send all data 15293 * up. The other way to do this is to 15294 * send all queued data up and then call 15295 * putnext() to send the new segment up. 15296 * This way can remove the else part later 15297 * on. 15298 * 15299 * We don't this to avoid one more call to 15300 * canputnext() as tcp_rcv_drain() needs to 15301 * call canputnext(). 15302 */ 15303 tcp_rcv_enqueue(tcp, mp, seg_len); 15304 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15305 } else { 15306 putnext(tcp->tcp_rq, mp); 15307 if (!canputnext(tcp->tcp_rq)) 15308 tcp->tcp_rwnd -= seg_len; 15309 } 15310 } else { 15311 /* 15312 * Enqueue all packets when processing an mblk 15313 * from the co queue and also enqueue normal packets. 15314 */ 15315 tcp_rcv_enqueue(tcp, mp, seg_len); 15316 } 15317 /* 15318 * Make sure the timer is running if we have data waiting 15319 * for a push bit. This provides resiliency against 15320 * implementations that do not correctly generate push bits. 15321 * 15322 * Note, for sodirect if Q isn't empty and there's not a 15323 * pending wakeup then we need a timer. Also note that sodp 15324 * is assumed to be still valid after exit()ing the sod_lockp 15325 * above and while the SOD state can change it can only change 15326 * such that the Q is empty now even though data was added 15327 * above. 15328 */ 15329 if (((sodp != NULL && !SOD_QEMPTY(sodp) && 15330 (sodp->sod_state & SOD_WAKE_NOT)) || 15331 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15332 tcp->tcp_push_tid == 0) { 15333 /* 15334 * The connection may be closed at this point, so don't 15335 * do anything for a detached tcp. 15336 */ 15337 if (!TCP_IS_DETACHED(tcp)) 15338 tcp->tcp_push_tid = TCP_TIMER(tcp, 15339 tcp_push_timer, 15340 MSEC_TO_TICK( 15341 tcps->tcps_push_timer_interval)); 15342 } 15343 } 15344 15345 xmit_check: 15346 /* Is there anything left to do? */ 15347 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15348 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15349 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15350 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15351 goto done; 15352 15353 /* Any transmit work to do and a non-zero window? */ 15354 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15355 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15356 if (flags & TH_REXMIT_NEEDED) { 15357 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15358 15359 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15360 if (snd_size > mss) 15361 snd_size = mss; 15362 if (snd_size > tcp->tcp_swnd) 15363 snd_size = tcp->tcp_swnd; 15364 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15365 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15366 B_TRUE); 15367 15368 if (mp1 != NULL) { 15369 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15370 tcp->tcp_csuna = tcp->tcp_snxt; 15371 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15372 UPDATE_MIB(&tcps->tcps_mib, 15373 tcpRetransBytes, snd_size); 15374 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15375 } 15376 } 15377 if (flags & TH_NEED_SACK_REXMIT) { 15378 tcp_sack_rxmit(tcp, &flags); 15379 } 15380 /* 15381 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15382 * out new segment. Note that tcp_rexmit should not be 15383 * set, otherwise TH_LIMIT_XMIT should not be set. 15384 */ 15385 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15386 if (!tcp->tcp_rexmit) { 15387 tcp_wput_data(tcp, NULL, B_FALSE); 15388 } else { 15389 tcp_ss_rexmit(tcp); 15390 } 15391 } 15392 /* 15393 * Adjust tcp_cwnd back to normal value after sending 15394 * new data segments. 15395 */ 15396 if (flags & TH_LIMIT_XMIT) { 15397 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15398 /* 15399 * This will restart the timer. Restarting the 15400 * timer is used to avoid a timeout before the 15401 * limited transmitted segment's ACK gets back. 15402 */ 15403 if (tcp->tcp_xmit_head != NULL) 15404 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15405 } 15406 15407 /* Anything more to do? */ 15408 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15409 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15410 goto done; 15411 } 15412 ack_check: 15413 if (flags & TH_SEND_URP_MARK) { 15414 ASSERT(tcp->tcp_urp_mark_mp); 15415 /* 15416 * Send up any queued data and then send the mark message 15417 */ 15418 sodirect_t *sodp; 15419 15420 SOD_PTR_ENTER(tcp, sodp); 15421 15422 mp1 = tcp->tcp_urp_mark_mp; 15423 tcp->tcp_urp_mark_mp = NULL; 15424 if (sodp != NULL) { 15425 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15426 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15427 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15428 } 15429 ASSERT(tcp->tcp_rcv_list == NULL); 15430 15431 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15432 /* sod_wakeup() does the mutex_exit() */ 15433 } else if (tcp->tcp_rcv_list != NULL) { 15434 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15435 15436 ASSERT(tcp->tcp_rcv_list == NULL || 15437 tcp->tcp_fused_sigurg); 15438 15439 } 15440 putnext(tcp->tcp_rq, mp1); 15441 #ifdef DEBUG 15442 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15443 "tcp_rput: sending zero-length %s %s", 15444 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15445 "MSGNOTMARKNEXT"), 15446 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15447 #endif /* DEBUG */ 15448 flags &= ~TH_SEND_URP_MARK; 15449 } 15450 if (flags & TH_ACK_NEEDED) { 15451 /* 15452 * Time to send an ack for some reason. 15453 */ 15454 mp1 = tcp_ack_mp(tcp); 15455 15456 if (mp1 != NULL) { 15457 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15458 BUMP_LOCAL(tcp->tcp_obsegs); 15459 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15460 } 15461 if (tcp->tcp_ack_tid != 0) { 15462 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15463 tcp->tcp_ack_tid = 0; 15464 } 15465 } 15466 if (flags & TH_ACK_TIMER_NEEDED) { 15467 /* 15468 * Arrange for deferred ACK or push wait timeout. 15469 * Start timer if it is not already running. 15470 */ 15471 if (tcp->tcp_ack_tid == 0) { 15472 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15473 MSEC_TO_TICK(tcp->tcp_localnet ? 15474 (clock_t)tcps->tcps_local_dack_interval : 15475 (clock_t)tcps->tcps_deferred_ack_interval)); 15476 } 15477 } 15478 if (flags & TH_ORDREL_NEEDED) { 15479 /* 15480 * Send up the ordrel_ind unless we are an eager guy. 15481 * In the eager case tcp_rsrv will do this when run 15482 * after tcp_accept is done. 15483 */ 15484 sodirect_t *sodp; 15485 15486 ASSERT(tcp->tcp_listener == NULL); 15487 15488 SOD_PTR_ENTER(tcp, sodp); 15489 if (sodp != NULL) { 15490 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15491 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15492 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15493 } 15494 /* No more sodirect */ 15495 tcp->tcp_sodirect = NULL; 15496 if (!SOD_QEMPTY(sodp)) { 15497 /* Mblk(s) to process, notify */ 15498 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15499 /* sod_wakeup() does the mutex_exit() */ 15500 } else { 15501 /* Nothing to process */ 15502 mutex_exit(sodp->sod_lockp); 15503 } 15504 } else if (tcp->tcp_rcv_list != NULL) { 15505 /* 15506 * Push any mblk(s) enqueued from co processing. 15507 */ 15508 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15509 15510 ASSERT(tcp->tcp_rcv_list == NULL || 15511 tcp->tcp_fused_sigurg); 15512 } 15513 15514 mp1 = tcp->tcp_ordrel_mp; 15515 tcp->tcp_ordrel_mp = NULL; 15516 tcp->tcp_ordrel_done = B_TRUE; 15517 putnext(tcp->tcp_rq, mp1); 15518 } 15519 done: 15520 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15521 } 15522 15523 /* 15524 * This function does PAWS protection check. Returns B_TRUE if the 15525 * segment passes the PAWS test, else returns B_FALSE. 15526 */ 15527 boolean_t 15528 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15529 { 15530 uint8_t flags; 15531 int options; 15532 uint8_t *up; 15533 15534 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15535 /* 15536 * If timestamp option is aligned nicely, get values inline, 15537 * otherwise call general routine to parse. Only do that 15538 * if timestamp is the only option. 15539 */ 15540 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15541 TCPOPT_REAL_TS_LEN && 15542 OK_32PTR((up = ((uint8_t *)tcph) + 15543 TCP_MIN_HEADER_LENGTH)) && 15544 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15545 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15546 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15547 15548 options = TCP_OPT_TSTAMP_PRESENT; 15549 } else { 15550 if (tcp->tcp_snd_sack_ok) { 15551 tcpoptp->tcp = tcp; 15552 } else { 15553 tcpoptp->tcp = NULL; 15554 } 15555 options = tcp_parse_options(tcph, tcpoptp); 15556 } 15557 15558 if (options & TCP_OPT_TSTAMP_PRESENT) { 15559 /* 15560 * Do PAWS per RFC 1323 section 4.2. Accept RST 15561 * regardless of the timestamp, page 18 RFC 1323.bis. 15562 */ 15563 if ((flags & TH_RST) == 0 && 15564 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15565 tcp->tcp_ts_recent)) { 15566 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15567 PAWS_TIMEOUT)) { 15568 /* This segment is not acceptable. */ 15569 return (B_FALSE); 15570 } else { 15571 /* 15572 * Connection has been idle for 15573 * too long. Reset the timestamp 15574 * and assume the segment is valid. 15575 */ 15576 tcp->tcp_ts_recent = 15577 tcpoptp->tcp_opt_ts_val; 15578 } 15579 } 15580 } else { 15581 /* 15582 * If we don't get a timestamp on every packet, we 15583 * figure we can't really trust 'em, so we stop sending 15584 * and parsing them. 15585 */ 15586 tcp->tcp_snd_ts_ok = B_FALSE; 15587 15588 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15589 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15590 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15591 /* 15592 * Adjust the tcp_mss accordingly. We also need to 15593 * adjust tcp_cwnd here in accordance with the new mss. 15594 * But we avoid doing a slow start here so as to not 15595 * to lose on the transfer rate built up so far. 15596 */ 15597 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15598 if (tcp->tcp_snd_sack_ok) { 15599 ASSERT(tcp->tcp_sack_info != NULL); 15600 tcp->tcp_max_sack_blk = 4; 15601 } 15602 } 15603 return (B_TRUE); 15604 } 15605 15606 /* 15607 * Attach ancillary data to a received TCP segments for the 15608 * ancillary pieces requested by the application that are 15609 * different than they were in the previous data segment. 15610 * 15611 * Save the "current" values once memory allocation is ok so that 15612 * when memory allocation fails we can just wait for the next data segment. 15613 */ 15614 static mblk_t * 15615 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15616 { 15617 struct T_optdata_ind *todi; 15618 int optlen; 15619 uchar_t *optptr; 15620 struct T_opthdr *toh; 15621 uint_t addflag; /* Which pieces to add */ 15622 mblk_t *mp1; 15623 15624 optlen = 0; 15625 addflag = 0; 15626 /* If app asked for pktinfo and the index has changed ... */ 15627 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15628 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15629 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15630 optlen += sizeof (struct T_opthdr) + 15631 sizeof (struct in6_pktinfo); 15632 addflag |= TCP_IPV6_RECVPKTINFO; 15633 } 15634 /* If app asked for hoplimit and it has changed ... */ 15635 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15636 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15637 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15638 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15639 addflag |= TCP_IPV6_RECVHOPLIMIT; 15640 } 15641 /* If app asked for tclass and it has changed ... */ 15642 if ((ipp->ipp_fields & IPPF_TCLASS) && 15643 ipp->ipp_tclass != tcp->tcp_recvtclass && 15644 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15645 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15646 addflag |= TCP_IPV6_RECVTCLASS; 15647 } 15648 /* 15649 * If app asked for hopbyhop headers and it has changed ... 15650 * For security labels, note that (1) security labels can't change on 15651 * a connected socket at all, (2) we're connected to at most one peer, 15652 * (3) if anything changes, then it must be some other extra option. 15653 */ 15654 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15655 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15656 (ipp->ipp_fields & IPPF_HOPOPTS), 15657 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15658 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15659 tcp->tcp_label_len; 15660 addflag |= TCP_IPV6_RECVHOPOPTS; 15661 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15662 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15663 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15664 return (mp); 15665 } 15666 /* If app asked for dst headers before routing headers ... */ 15667 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15668 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15669 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15670 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15671 optlen += sizeof (struct T_opthdr) + 15672 ipp->ipp_rtdstoptslen; 15673 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15674 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15675 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15676 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15677 return (mp); 15678 } 15679 /* If app asked for routing headers and it has changed ... */ 15680 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15681 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15682 (ipp->ipp_fields & IPPF_RTHDR), 15683 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15684 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15685 addflag |= TCP_IPV6_RECVRTHDR; 15686 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15687 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15688 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15689 return (mp); 15690 } 15691 /* If app asked for dest headers and it has changed ... */ 15692 if ((tcp->tcp_ipv6_recvancillary & 15693 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15694 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15695 (ipp->ipp_fields & IPPF_DSTOPTS), 15696 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15697 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15698 addflag |= TCP_IPV6_RECVDSTOPTS; 15699 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15700 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15701 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15702 return (mp); 15703 } 15704 15705 if (optlen == 0) { 15706 /* Nothing to add */ 15707 return (mp); 15708 } 15709 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15710 if (mp1 == NULL) { 15711 /* 15712 * Defer sending ancillary data until the next TCP segment 15713 * arrives. 15714 */ 15715 return (mp); 15716 } 15717 mp1->b_cont = mp; 15718 mp = mp1; 15719 mp->b_wptr += sizeof (*todi) + optlen; 15720 mp->b_datap->db_type = M_PROTO; 15721 todi = (struct T_optdata_ind *)mp->b_rptr; 15722 todi->PRIM_type = T_OPTDATA_IND; 15723 todi->DATA_flag = 1; /* MORE data */ 15724 todi->OPT_length = optlen; 15725 todi->OPT_offset = sizeof (*todi); 15726 optptr = (uchar_t *)&todi[1]; 15727 /* 15728 * If app asked for pktinfo and the index has changed ... 15729 * Note that the local address never changes for the connection. 15730 */ 15731 if (addflag & TCP_IPV6_RECVPKTINFO) { 15732 struct in6_pktinfo *pkti; 15733 15734 toh = (struct T_opthdr *)optptr; 15735 toh->level = IPPROTO_IPV6; 15736 toh->name = IPV6_PKTINFO; 15737 toh->len = sizeof (*toh) + sizeof (*pkti); 15738 toh->status = 0; 15739 optptr += sizeof (*toh); 15740 pkti = (struct in6_pktinfo *)optptr; 15741 if (tcp->tcp_ipversion == IPV6_VERSION) 15742 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15743 else 15744 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15745 &pkti->ipi6_addr); 15746 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15747 optptr += sizeof (*pkti); 15748 ASSERT(OK_32PTR(optptr)); 15749 /* Save as "last" value */ 15750 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15751 } 15752 /* If app asked for hoplimit and it has changed ... */ 15753 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15754 toh = (struct T_opthdr *)optptr; 15755 toh->level = IPPROTO_IPV6; 15756 toh->name = IPV6_HOPLIMIT; 15757 toh->len = sizeof (*toh) + sizeof (uint_t); 15758 toh->status = 0; 15759 optptr += sizeof (*toh); 15760 *(uint_t *)optptr = ipp->ipp_hoplimit; 15761 optptr += sizeof (uint_t); 15762 ASSERT(OK_32PTR(optptr)); 15763 /* Save as "last" value */ 15764 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15765 } 15766 /* If app asked for tclass and it has changed ... */ 15767 if (addflag & TCP_IPV6_RECVTCLASS) { 15768 toh = (struct T_opthdr *)optptr; 15769 toh->level = IPPROTO_IPV6; 15770 toh->name = IPV6_TCLASS; 15771 toh->len = sizeof (*toh) + sizeof (uint_t); 15772 toh->status = 0; 15773 optptr += sizeof (*toh); 15774 *(uint_t *)optptr = ipp->ipp_tclass; 15775 optptr += sizeof (uint_t); 15776 ASSERT(OK_32PTR(optptr)); 15777 /* Save as "last" value */ 15778 tcp->tcp_recvtclass = ipp->ipp_tclass; 15779 } 15780 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15781 toh = (struct T_opthdr *)optptr; 15782 toh->level = IPPROTO_IPV6; 15783 toh->name = IPV6_HOPOPTS; 15784 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15785 tcp->tcp_label_len; 15786 toh->status = 0; 15787 optptr += sizeof (*toh); 15788 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15789 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15790 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15791 ASSERT(OK_32PTR(optptr)); 15792 /* Save as last value */ 15793 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15794 (ipp->ipp_fields & IPPF_HOPOPTS), 15795 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15796 } 15797 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15798 toh = (struct T_opthdr *)optptr; 15799 toh->level = IPPROTO_IPV6; 15800 toh->name = IPV6_RTHDRDSTOPTS; 15801 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15802 toh->status = 0; 15803 optptr += sizeof (*toh); 15804 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15805 optptr += ipp->ipp_rtdstoptslen; 15806 ASSERT(OK_32PTR(optptr)); 15807 /* Save as last value */ 15808 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15809 &tcp->tcp_rtdstoptslen, 15810 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15811 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15812 } 15813 if (addflag & TCP_IPV6_RECVRTHDR) { 15814 toh = (struct T_opthdr *)optptr; 15815 toh->level = IPPROTO_IPV6; 15816 toh->name = IPV6_RTHDR; 15817 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15818 toh->status = 0; 15819 optptr += sizeof (*toh); 15820 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15821 optptr += ipp->ipp_rthdrlen; 15822 ASSERT(OK_32PTR(optptr)); 15823 /* Save as last value */ 15824 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15825 (ipp->ipp_fields & IPPF_RTHDR), 15826 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15827 } 15828 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15829 toh = (struct T_opthdr *)optptr; 15830 toh->level = IPPROTO_IPV6; 15831 toh->name = IPV6_DSTOPTS; 15832 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15833 toh->status = 0; 15834 optptr += sizeof (*toh); 15835 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15836 optptr += ipp->ipp_dstoptslen; 15837 ASSERT(OK_32PTR(optptr)); 15838 /* Save as last value */ 15839 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15840 (ipp->ipp_fields & IPPF_DSTOPTS), 15841 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15842 } 15843 ASSERT(optptr == mp->b_wptr); 15844 return (mp); 15845 } 15846 15847 15848 /* 15849 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15850 * or a "bad" IRE detected by tcp_adapt_ire. 15851 * We can't tell if the failure was due to the laddr or the faddr 15852 * thus we clear out all addresses and ports. 15853 */ 15854 static void 15855 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15856 { 15857 queue_t *q = tcp->tcp_rq; 15858 tcph_t *tcph; 15859 struct T_error_ack *tea; 15860 conn_t *connp = tcp->tcp_connp; 15861 15862 15863 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15864 15865 if (mp->b_cont) { 15866 freemsg(mp->b_cont); 15867 mp->b_cont = NULL; 15868 } 15869 tea = (struct T_error_ack *)mp->b_rptr; 15870 switch (tea->PRIM_type) { 15871 case T_BIND_ACK: 15872 /* 15873 * Need to unbind with classifier since we were just told that 15874 * our bind succeeded. 15875 */ 15876 tcp->tcp_hard_bound = B_FALSE; 15877 tcp->tcp_hard_binding = B_FALSE; 15878 15879 ipcl_hash_remove(connp); 15880 /* Reuse the mblk if possible */ 15881 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15882 sizeof (*tea)); 15883 mp->b_rptr = mp->b_datap->db_base; 15884 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15885 tea = (struct T_error_ack *)mp->b_rptr; 15886 tea->PRIM_type = T_ERROR_ACK; 15887 tea->TLI_error = TSYSERR; 15888 tea->UNIX_error = error; 15889 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15890 tea->ERROR_prim = T_CONN_REQ; 15891 } else { 15892 tea->ERROR_prim = O_T_BIND_REQ; 15893 } 15894 break; 15895 15896 case T_ERROR_ACK: 15897 if (tcp->tcp_state >= TCPS_SYN_SENT) 15898 tea->ERROR_prim = T_CONN_REQ; 15899 break; 15900 default: 15901 panic("tcp_bind_failed: unexpected TPI type"); 15902 /*NOTREACHED*/ 15903 } 15904 15905 tcp->tcp_state = TCPS_IDLE; 15906 if (tcp->tcp_ipversion == IPV4_VERSION) 15907 tcp->tcp_ipha->ipha_src = 0; 15908 else 15909 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15910 /* 15911 * Copy of the src addr. in tcp_t is needed since 15912 * the lookup funcs. can only look at tcp_t 15913 */ 15914 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15915 15916 tcph = tcp->tcp_tcph; 15917 tcph->th_lport[0] = 0; 15918 tcph->th_lport[1] = 0; 15919 tcp_bind_hash_remove(tcp); 15920 bzero(&connp->u_port, sizeof (connp->u_port)); 15921 /* blow away saved option results if any */ 15922 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15923 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15924 15925 conn_delete_ire(tcp->tcp_connp, NULL); 15926 putnext(q, mp); 15927 } 15928 15929 /* 15930 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15931 * messages. 15932 */ 15933 void 15934 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15935 { 15936 mblk_t *mp1; 15937 uchar_t *rptr = mp->b_rptr; 15938 queue_t *q = tcp->tcp_rq; 15939 struct T_error_ack *tea; 15940 uint32_t mss; 15941 mblk_t *syn_mp; 15942 mblk_t *mdti; 15943 mblk_t *lsoi; 15944 int retval; 15945 mblk_t *ire_mp; 15946 tcp_stack_t *tcps = tcp->tcp_tcps; 15947 15948 switch (mp->b_datap->db_type) { 15949 case M_PROTO: 15950 case M_PCPROTO: 15951 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15952 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15953 break; 15954 tea = (struct T_error_ack *)rptr; 15955 switch (tea->PRIM_type) { 15956 case T_BIND_ACK: 15957 /* 15958 * Adapt Multidata information, if any. The 15959 * following tcp_mdt_update routine will free 15960 * the message. 15961 */ 15962 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15963 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15964 b_rptr)->mdt_capab, B_TRUE); 15965 freemsg(mdti); 15966 } 15967 15968 /* 15969 * Check to update LSO information with tcp, and 15970 * tcp_lso_update routine will free the message. 15971 */ 15972 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15973 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15974 b_rptr)->lso_capab); 15975 freemsg(lsoi); 15976 } 15977 15978 /* Get the IRE, if we had requested for it */ 15979 ire_mp = tcp_ire_mp(mp); 15980 15981 if (tcp->tcp_hard_binding) { 15982 tcp->tcp_hard_binding = B_FALSE; 15983 tcp->tcp_hard_bound = B_TRUE; 15984 CL_INET_CONNECT(tcp); 15985 } else { 15986 if (ire_mp != NULL) 15987 freeb(ire_mp); 15988 goto after_syn_sent; 15989 } 15990 15991 retval = tcp_adapt_ire(tcp, ire_mp); 15992 if (ire_mp != NULL) 15993 freeb(ire_mp); 15994 if (retval == 0) { 15995 tcp_bind_failed(tcp, mp, 15996 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15997 ENETUNREACH : EADDRNOTAVAIL)); 15998 return; 15999 } 16000 /* 16001 * Don't let an endpoint connect to itself. 16002 * Also checked in tcp_connect() but that 16003 * check can't handle the case when the 16004 * local IP address is INADDR_ANY. 16005 */ 16006 if (tcp->tcp_ipversion == IPV4_VERSION) { 16007 if ((tcp->tcp_ipha->ipha_dst == 16008 tcp->tcp_ipha->ipha_src) && 16009 (BE16_EQL(tcp->tcp_tcph->th_lport, 16010 tcp->tcp_tcph->th_fport))) { 16011 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 16012 return; 16013 } 16014 } else { 16015 if (IN6_ARE_ADDR_EQUAL( 16016 &tcp->tcp_ip6h->ip6_dst, 16017 &tcp->tcp_ip6h->ip6_src) && 16018 (BE16_EQL(tcp->tcp_tcph->th_lport, 16019 tcp->tcp_tcph->th_fport))) { 16020 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 16021 return; 16022 } 16023 } 16024 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 16025 /* 16026 * This should not be possible! Just for 16027 * defensive coding... 16028 */ 16029 if (tcp->tcp_state != TCPS_SYN_SENT) 16030 goto after_syn_sent; 16031 16032 if (is_system_labeled() && 16033 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 16034 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 16035 return; 16036 } 16037 16038 ASSERT(q == tcp->tcp_rq); 16039 /* 16040 * tcp_adapt_ire() does not adjust 16041 * for TCP/IP header length. 16042 */ 16043 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 16044 16045 /* 16046 * Just make sure our rwnd is at 16047 * least tcp_recv_hiwat_mss * MSS 16048 * large, and round up to the nearest 16049 * MSS. 16050 * 16051 * We do the round up here because 16052 * we need to get the interface 16053 * MTU first before we can do the 16054 * round up. 16055 */ 16056 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 16057 tcps->tcps_recv_hiwat_minmss * mss); 16058 q->q_hiwat = tcp->tcp_rwnd; 16059 tcp_set_ws_value(tcp); 16060 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 16061 tcp->tcp_tcph->th_win); 16062 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 16063 tcp->tcp_snd_ws_ok = B_TRUE; 16064 16065 /* 16066 * Set tcp_snd_ts_ok to true 16067 * so that tcp_xmit_mp will 16068 * include the timestamp 16069 * option in the SYN segment. 16070 */ 16071 if (tcps->tcps_tstamp_always || 16072 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 16073 tcp->tcp_snd_ts_ok = B_TRUE; 16074 } 16075 16076 /* 16077 * tcp_snd_sack_ok can be set in 16078 * tcp_adapt_ire() if the sack metric 16079 * is set. So check it here also. 16080 */ 16081 if (tcps->tcps_sack_permitted == 2 || 16082 tcp->tcp_snd_sack_ok) { 16083 if (tcp->tcp_sack_info == NULL) { 16084 tcp->tcp_sack_info = 16085 kmem_cache_alloc( 16086 tcp_sack_info_cache, 16087 KM_SLEEP); 16088 } 16089 tcp->tcp_snd_sack_ok = B_TRUE; 16090 } 16091 16092 /* 16093 * Should we use ECN? Note that the current 16094 * default value (SunOS 5.9) of tcp_ecn_permitted 16095 * is 1. The reason for doing this is that there 16096 * are equipments out there that will drop ECN 16097 * enabled IP packets. Setting it to 1 avoids 16098 * compatibility problems. 16099 */ 16100 if (tcps->tcps_ecn_permitted == 2) 16101 tcp->tcp_ecn_ok = B_TRUE; 16102 16103 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16104 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 16105 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 16106 if (syn_mp) { 16107 cred_t *cr; 16108 pid_t pid; 16109 16110 /* 16111 * Obtain the credential from the 16112 * thread calling connect(); the credential 16113 * lives on in the second mblk which 16114 * originated from T_CONN_REQ and is echoed 16115 * with the T_BIND_ACK from ip. If none 16116 * can be found, default to the creator 16117 * of the socket. 16118 */ 16119 if (mp->b_cont == NULL || 16120 (cr = DB_CRED(mp->b_cont)) == NULL) { 16121 cr = tcp->tcp_cred; 16122 pid = tcp->tcp_cpid; 16123 } else { 16124 pid = DB_CPID(mp->b_cont); 16125 } 16126 mblk_setcred(syn_mp, cr); 16127 DB_CPID(syn_mp) = pid; 16128 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 16129 } 16130 after_syn_sent: 16131 /* 16132 * A trailer mblk indicates a waiting client upstream. 16133 * We complete here the processing begun in 16134 * either tcp_bind() or tcp_connect() by passing 16135 * upstream the reply message they supplied. 16136 */ 16137 mp1 = mp; 16138 mp = mp->b_cont; 16139 freeb(mp1); 16140 if (mp) 16141 break; 16142 return; 16143 case T_ERROR_ACK: 16144 if (tcp->tcp_debug) { 16145 (void) strlog(TCP_MOD_ID, 0, 1, 16146 SL_TRACE|SL_ERROR, 16147 "tcp_rput_other: case T_ERROR_ACK, " 16148 "ERROR_prim == %d", 16149 tea->ERROR_prim); 16150 } 16151 switch (tea->ERROR_prim) { 16152 case O_T_BIND_REQ: 16153 case T_BIND_REQ: 16154 tcp_bind_failed(tcp, mp, 16155 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 16156 ENETUNREACH : EADDRNOTAVAIL)); 16157 return; 16158 case T_UNBIND_REQ: 16159 tcp->tcp_hard_binding = B_FALSE; 16160 tcp->tcp_hard_bound = B_FALSE; 16161 if (mp->b_cont) { 16162 freemsg(mp->b_cont); 16163 mp->b_cont = NULL; 16164 } 16165 if (tcp->tcp_unbind_pending) 16166 tcp->tcp_unbind_pending = 0; 16167 else { 16168 /* From tcp_ip_unbind() - free */ 16169 freemsg(mp); 16170 return; 16171 } 16172 break; 16173 case T_SVR4_OPTMGMT_REQ: 16174 if (tcp->tcp_drop_opt_ack_cnt > 0) { 16175 /* T_OPTMGMT_REQ generated by TCP */ 16176 printf("T_SVR4_OPTMGMT_REQ failed " 16177 "%d/%d - dropped (cnt %d)\n", 16178 tea->TLI_error, tea->UNIX_error, 16179 tcp->tcp_drop_opt_ack_cnt); 16180 freemsg(mp); 16181 tcp->tcp_drop_opt_ack_cnt--; 16182 return; 16183 } 16184 break; 16185 } 16186 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 16187 tcp->tcp_drop_opt_ack_cnt > 0) { 16188 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 16189 "- dropped (cnt %d)\n", 16190 tea->TLI_error, tea->UNIX_error, 16191 tcp->tcp_drop_opt_ack_cnt); 16192 freemsg(mp); 16193 tcp->tcp_drop_opt_ack_cnt--; 16194 return; 16195 } 16196 break; 16197 case T_OPTMGMT_ACK: 16198 if (tcp->tcp_drop_opt_ack_cnt > 0) { 16199 /* T_OPTMGMT_REQ generated by TCP */ 16200 freemsg(mp); 16201 tcp->tcp_drop_opt_ack_cnt--; 16202 return; 16203 } 16204 break; 16205 default: 16206 break; 16207 } 16208 break; 16209 case M_FLUSH: 16210 if (*rptr & FLUSHR) 16211 flushq(q, FLUSHDATA); 16212 break; 16213 default: 16214 /* M_CTL will be directly sent to tcp_icmp_error() */ 16215 ASSERT(DB_TYPE(mp) != M_CTL); 16216 break; 16217 } 16218 /* 16219 * Make sure we set this bit before sending the ACK for 16220 * bind. Otherwise accept could possibly run and free 16221 * this tcp struct. 16222 */ 16223 putnext(q, mp); 16224 } 16225 16226 /* ARGSUSED */ 16227 static void 16228 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 16229 { 16230 conn_t *connp = (conn_t *)arg; 16231 tcp_t *tcp = connp->conn_tcp; 16232 queue_t *q = tcp->tcp_rq; 16233 uint_t thwin; 16234 tcp_stack_t *tcps = tcp->tcp_tcps; 16235 sodirect_t *sodp; 16236 boolean_t fc; 16237 16238 mutex_enter(&tcp->tcp_rsrv_mp_lock); 16239 tcp->tcp_rsrv_mp = mp; 16240 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16241 16242 TCP_STAT(tcps, tcp_rsrv_calls); 16243 16244 if (TCP_IS_DETACHED(tcp) || q == NULL) { 16245 return; 16246 } 16247 16248 if (tcp->tcp_fused) { 16249 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16250 16251 ASSERT(tcp->tcp_fused); 16252 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 16253 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 16254 ASSERT(!TCP_IS_DETACHED(tcp)); 16255 ASSERT(tcp->tcp_connp->conn_sqp == 16256 peer_tcp->tcp_connp->conn_sqp); 16257 16258 /* 16259 * Normally we would not get backenabled in synchronous 16260 * streams mode, but in case this happens, we need to plug 16261 * synchronous streams during our drain to prevent a race 16262 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 16263 */ 16264 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 16265 if (tcp->tcp_rcv_list != NULL) 16266 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16267 16268 if (peer_tcp > tcp) { 16269 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16270 mutex_enter(&tcp->tcp_non_sq_lock); 16271 } else { 16272 mutex_enter(&tcp->tcp_non_sq_lock); 16273 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16274 } 16275 16276 if (peer_tcp->tcp_flow_stopped && 16277 (TCP_UNSENT_BYTES(peer_tcp) <= 16278 peer_tcp->tcp_xmit_lowater)) { 16279 tcp_clrqfull(peer_tcp); 16280 } 16281 mutex_exit(&peer_tcp->tcp_non_sq_lock); 16282 mutex_exit(&tcp->tcp_non_sq_lock); 16283 16284 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 16285 TCP_STAT(tcps, tcp_fusion_backenabled); 16286 return; 16287 } 16288 16289 SOD_PTR_ENTER(tcp, sodp); 16290 if (sodp != NULL) { 16291 /* An sodirect connection */ 16292 if (SOD_QFULL(sodp)) { 16293 /* Flow-controlled, need another back-enable */ 16294 fc = B_TRUE; 16295 SOD_QSETBE(sodp); 16296 } else { 16297 /* Not flow-controlled */ 16298 fc = B_FALSE; 16299 } 16300 mutex_exit(sodp->sod_lockp); 16301 } else if (canputnext(q)) { 16302 /* STREAMS, not flow-controlled */ 16303 fc = B_FALSE; 16304 } else { 16305 /* STREAMS, flow-controlled */ 16306 fc = B_TRUE; 16307 } 16308 if (!fc) { 16309 /* Not flow-controlled, open rwnd */ 16310 tcp->tcp_rwnd = q->q_hiwat; 16311 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16312 << tcp->tcp_rcv_ws; 16313 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16314 /* 16315 * Send back a window update immediately if TCP is above 16316 * ESTABLISHED state and the increase of the rcv window 16317 * that the other side knows is at least 1 MSS after flow 16318 * control is lifted. 16319 */ 16320 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16321 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16322 tcp_xmit_ctl(NULL, tcp, 16323 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16324 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16325 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16326 } 16327 } 16328 } 16329 16330 /* 16331 * The read side service routine is called mostly when we get back-enabled as a 16332 * result of flow control relief. Since we don't actually queue anything in 16333 * TCP, we have no data to send out of here. What we do is clear the receive 16334 * window, and send out a window update. 16335 */ 16336 static void 16337 tcp_rsrv(queue_t *q) 16338 { 16339 conn_t *connp = Q_TO_CONN(q); 16340 tcp_t *tcp = connp->conn_tcp; 16341 mblk_t *mp; 16342 tcp_stack_t *tcps = tcp->tcp_tcps; 16343 16344 /* No code does a putq on the read side */ 16345 ASSERT(q->q_first == NULL); 16346 16347 /* Nothing to do for the default queue */ 16348 if (q == tcps->tcps_g_q) { 16349 return; 16350 } 16351 16352 /* 16353 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 16354 * been run. So just return. 16355 */ 16356 mutex_enter(&tcp->tcp_rsrv_mp_lock); 16357 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 16358 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16359 return; 16360 } 16361 tcp->tcp_rsrv_mp = NULL; 16362 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16363 16364 CONN_INC_REF(connp); 16365 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16366 SQTAG_TCP_RSRV); 16367 } 16368 16369 /* 16370 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16371 * We do not allow the receive window to shrink. After setting rwnd, 16372 * set the flow control hiwat of the stream. 16373 * 16374 * This function is called in 2 cases: 16375 * 16376 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16377 * connection (passive open) and in tcp_rput_data() for active connect. 16378 * This is called after tcp_mss_set() when the desired MSS value is known. 16379 * This makes sure that our window size is a mutiple of the other side's 16380 * MSS. 16381 * 2) Handling SO_RCVBUF option. 16382 * 16383 * It is ASSUMED that the requested size is a multiple of the current MSS. 16384 * 16385 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16386 * user requests so. 16387 */ 16388 static int 16389 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16390 { 16391 uint32_t mss = tcp->tcp_mss; 16392 uint32_t old_max_rwnd; 16393 uint32_t max_transmittable_rwnd; 16394 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16395 tcp_stack_t *tcps = tcp->tcp_tcps; 16396 16397 if (tcp->tcp_fused) { 16398 size_t sth_hiwat; 16399 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16400 16401 ASSERT(peer_tcp != NULL); 16402 /* 16403 * Record the stream head's high water mark for 16404 * this endpoint; this is used for flow-control 16405 * purposes in tcp_fuse_output(). 16406 */ 16407 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16408 if (!tcp_detached) 16409 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16410 16411 /* 16412 * In the fusion case, the maxpsz stream head value of 16413 * our peer is set according to its send buffer size 16414 * and our receive buffer size; since the latter may 16415 * have changed we need to update the peer's maxpsz. 16416 */ 16417 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16418 return (rwnd); 16419 } 16420 16421 if (tcp_detached) 16422 old_max_rwnd = tcp->tcp_rwnd; 16423 else 16424 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16425 16426 /* 16427 * Insist on a receive window that is at least 16428 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16429 * funny TCP interactions of Nagle algorithm, SWS avoidance 16430 * and delayed acknowledgement. 16431 */ 16432 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16433 16434 /* 16435 * If window size info has already been exchanged, TCP should not 16436 * shrink the window. Shrinking window is doable if done carefully. 16437 * We may add that support later. But so far there is not a real 16438 * need to do that. 16439 */ 16440 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16441 /* MSS may have changed, do a round up again. */ 16442 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16443 } 16444 16445 /* 16446 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16447 * can be applied even before the window scale option is decided. 16448 */ 16449 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16450 if (rwnd > max_transmittable_rwnd) { 16451 rwnd = max_transmittable_rwnd - 16452 (max_transmittable_rwnd % mss); 16453 if (rwnd < mss) 16454 rwnd = max_transmittable_rwnd; 16455 /* 16456 * If we're over the limit we may have to back down tcp_rwnd. 16457 * The increment below won't work for us. So we set all three 16458 * here and the increment below will have no effect. 16459 */ 16460 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16461 } 16462 if (tcp->tcp_localnet) { 16463 tcp->tcp_rack_abs_max = 16464 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16465 } else { 16466 /* 16467 * For a remote host on a different subnet (through a router), 16468 * we ack every other packet to be conforming to RFC1122. 16469 * tcp_deferred_acks_max is default to 2. 16470 */ 16471 tcp->tcp_rack_abs_max = 16472 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16473 } 16474 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16475 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16476 else 16477 tcp->tcp_rack_cur_max = 0; 16478 /* 16479 * Increment the current rwnd by the amount the maximum grew (we 16480 * can not overwrite it since we might be in the middle of a 16481 * connection.) 16482 */ 16483 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16484 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16485 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16486 tcp->tcp_cwnd_max = rwnd; 16487 16488 if (tcp_detached) 16489 return (rwnd); 16490 /* 16491 * We set the maximum receive window into rq->q_hiwat. 16492 * This is not actually used for flow control. 16493 */ 16494 tcp->tcp_rq->q_hiwat = rwnd; 16495 /* 16496 * Set the Stream head high water mark. This doesn't have to be 16497 * here, since we are simply using default values, but we would 16498 * prefer to choose these values algorithmically, with a likely 16499 * relationship to rwnd. 16500 */ 16501 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16502 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16503 return (rwnd); 16504 } 16505 16506 /* 16507 * Return SNMP stuff in buffer in mpdata. 16508 */ 16509 mblk_t * 16510 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16511 { 16512 mblk_t *mpdata; 16513 mblk_t *mp_conn_ctl = NULL; 16514 mblk_t *mp_conn_tail; 16515 mblk_t *mp_attr_ctl = NULL; 16516 mblk_t *mp_attr_tail; 16517 mblk_t *mp6_conn_ctl = NULL; 16518 mblk_t *mp6_conn_tail; 16519 mblk_t *mp6_attr_ctl = NULL; 16520 mblk_t *mp6_attr_tail; 16521 struct opthdr *optp; 16522 mib2_tcpConnEntry_t tce; 16523 mib2_tcp6ConnEntry_t tce6; 16524 mib2_transportMLPEntry_t mlp; 16525 connf_t *connfp; 16526 int i; 16527 boolean_t ispriv; 16528 zoneid_t zoneid; 16529 int v4_conn_idx; 16530 int v6_conn_idx; 16531 conn_t *connp = Q_TO_CONN(q); 16532 tcp_stack_t *tcps; 16533 ip_stack_t *ipst; 16534 mblk_t *mp2ctl; 16535 16536 /* 16537 * make a copy of the original message 16538 */ 16539 mp2ctl = copymsg(mpctl); 16540 16541 if (mpctl == NULL || 16542 (mpdata = mpctl->b_cont) == NULL || 16543 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16544 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16545 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16546 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16547 freemsg(mp_conn_ctl); 16548 freemsg(mp_attr_ctl); 16549 freemsg(mp6_conn_ctl); 16550 freemsg(mp6_attr_ctl); 16551 freemsg(mpctl); 16552 freemsg(mp2ctl); 16553 return (NULL); 16554 } 16555 16556 ipst = connp->conn_netstack->netstack_ip; 16557 tcps = connp->conn_netstack->netstack_tcp; 16558 16559 /* build table of connections -- need count in fixed part */ 16560 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16561 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16562 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16563 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16564 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16565 16566 ispriv = 16567 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16568 zoneid = Q_TO_CONN(q)->conn_zoneid; 16569 16570 v4_conn_idx = v6_conn_idx = 0; 16571 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16572 16573 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16574 ipst = tcps->tcps_netstack->netstack_ip; 16575 16576 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16577 16578 connp = NULL; 16579 16580 while ((connp = 16581 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16582 tcp_t *tcp; 16583 boolean_t needattr; 16584 16585 if (connp->conn_zoneid != zoneid) 16586 continue; /* not in this zone */ 16587 16588 tcp = connp->conn_tcp; 16589 UPDATE_MIB(&tcps->tcps_mib, 16590 tcpHCInSegs, tcp->tcp_ibsegs); 16591 tcp->tcp_ibsegs = 0; 16592 UPDATE_MIB(&tcps->tcps_mib, 16593 tcpHCOutSegs, tcp->tcp_obsegs); 16594 tcp->tcp_obsegs = 0; 16595 16596 tce6.tcp6ConnState = tce.tcpConnState = 16597 tcp_snmp_state(tcp); 16598 if (tce.tcpConnState == MIB2_TCP_established || 16599 tce.tcpConnState == MIB2_TCP_closeWait) 16600 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16601 16602 needattr = B_FALSE; 16603 bzero(&mlp, sizeof (mlp)); 16604 if (connp->conn_mlp_type != mlptSingle) { 16605 if (connp->conn_mlp_type == mlptShared || 16606 connp->conn_mlp_type == mlptBoth) 16607 mlp.tme_flags |= MIB2_TMEF_SHARED; 16608 if (connp->conn_mlp_type == mlptPrivate || 16609 connp->conn_mlp_type == mlptBoth) 16610 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16611 needattr = B_TRUE; 16612 } 16613 if (connp->conn_peercred != NULL) { 16614 ts_label_t *tsl; 16615 16616 tsl = crgetlabel(connp->conn_peercred); 16617 mlp.tme_doi = label2doi(tsl); 16618 mlp.tme_label = *label2bslabel(tsl); 16619 needattr = B_TRUE; 16620 } 16621 16622 /* Create a message to report on IPv6 entries */ 16623 if (tcp->tcp_ipversion == IPV6_VERSION) { 16624 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16625 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16626 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16627 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16628 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16629 /* Don't want just anybody seeing these... */ 16630 if (ispriv) { 16631 tce6.tcp6ConnEntryInfo.ce_snxt = 16632 tcp->tcp_snxt; 16633 tce6.tcp6ConnEntryInfo.ce_suna = 16634 tcp->tcp_suna; 16635 tce6.tcp6ConnEntryInfo.ce_rnxt = 16636 tcp->tcp_rnxt; 16637 tce6.tcp6ConnEntryInfo.ce_rack = 16638 tcp->tcp_rack; 16639 } else { 16640 /* 16641 * Netstat, unfortunately, uses this to 16642 * get send/receive queue sizes. How to fix? 16643 * Why not compute the difference only? 16644 */ 16645 tce6.tcp6ConnEntryInfo.ce_snxt = 16646 tcp->tcp_snxt - tcp->tcp_suna; 16647 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16648 tce6.tcp6ConnEntryInfo.ce_rnxt = 16649 tcp->tcp_rnxt - tcp->tcp_rack; 16650 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16651 } 16652 16653 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16654 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16655 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16656 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16657 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16658 16659 tce6.tcp6ConnCreationProcess = 16660 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16661 tcp->tcp_cpid; 16662 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16663 16664 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16665 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16666 16667 mlp.tme_connidx = v6_conn_idx++; 16668 if (needattr) 16669 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16670 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16671 } 16672 /* 16673 * Create an IPv4 table entry for IPv4 entries and also 16674 * for IPv6 entries which are bound to in6addr_any 16675 * but don't have IPV6_V6ONLY set. 16676 * (i.e. anything an IPv4 peer could connect to) 16677 */ 16678 if (tcp->tcp_ipversion == IPV4_VERSION || 16679 (tcp->tcp_state <= TCPS_LISTEN && 16680 !tcp->tcp_connp->conn_ipv6_v6only && 16681 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16682 if (tcp->tcp_ipversion == IPV6_VERSION) { 16683 tce.tcpConnRemAddress = INADDR_ANY; 16684 tce.tcpConnLocalAddress = INADDR_ANY; 16685 } else { 16686 tce.tcpConnRemAddress = 16687 tcp->tcp_remote; 16688 tce.tcpConnLocalAddress = 16689 tcp->tcp_ip_src; 16690 } 16691 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16692 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16693 /* Don't want just anybody seeing these... */ 16694 if (ispriv) { 16695 tce.tcpConnEntryInfo.ce_snxt = 16696 tcp->tcp_snxt; 16697 tce.tcpConnEntryInfo.ce_suna = 16698 tcp->tcp_suna; 16699 tce.tcpConnEntryInfo.ce_rnxt = 16700 tcp->tcp_rnxt; 16701 tce.tcpConnEntryInfo.ce_rack = 16702 tcp->tcp_rack; 16703 } else { 16704 /* 16705 * Netstat, unfortunately, uses this to 16706 * get send/receive queue sizes. How 16707 * to fix? 16708 * Why not compute the difference only? 16709 */ 16710 tce.tcpConnEntryInfo.ce_snxt = 16711 tcp->tcp_snxt - tcp->tcp_suna; 16712 tce.tcpConnEntryInfo.ce_suna = 0; 16713 tce.tcpConnEntryInfo.ce_rnxt = 16714 tcp->tcp_rnxt - tcp->tcp_rack; 16715 tce.tcpConnEntryInfo.ce_rack = 0; 16716 } 16717 16718 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16719 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16720 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16721 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16722 tce.tcpConnEntryInfo.ce_state = 16723 tcp->tcp_state; 16724 16725 tce.tcpConnCreationProcess = 16726 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16727 tcp->tcp_cpid; 16728 tce.tcpConnCreationTime = tcp->tcp_open_time; 16729 16730 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16731 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16732 16733 mlp.tme_connidx = v4_conn_idx++; 16734 if (needattr) 16735 (void) snmp_append_data2( 16736 mp_attr_ctl->b_cont, 16737 &mp_attr_tail, (char *)&mlp, 16738 sizeof (mlp)); 16739 } 16740 } 16741 } 16742 16743 /* fixed length structure for IPv4 and IPv6 counters */ 16744 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16745 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16746 sizeof (mib2_tcp6ConnEntry_t)); 16747 /* synchronize 32- and 64-bit counters */ 16748 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16749 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16750 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16751 optp->level = MIB2_TCP; 16752 optp->name = 0; 16753 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16754 sizeof (tcps->tcps_mib)); 16755 optp->len = msgdsize(mpdata); 16756 qreply(q, mpctl); 16757 16758 /* table of connections... */ 16759 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16760 sizeof (struct T_optmgmt_ack)]; 16761 optp->level = MIB2_TCP; 16762 optp->name = MIB2_TCP_CONN; 16763 optp->len = msgdsize(mp_conn_ctl->b_cont); 16764 qreply(q, mp_conn_ctl); 16765 16766 /* table of MLP attributes... */ 16767 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16768 sizeof (struct T_optmgmt_ack)]; 16769 optp->level = MIB2_TCP; 16770 optp->name = EXPER_XPORT_MLP; 16771 optp->len = msgdsize(mp_attr_ctl->b_cont); 16772 if (optp->len == 0) 16773 freemsg(mp_attr_ctl); 16774 else 16775 qreply(q, mp_attr_ctl); 16776 16777 /* table of IPv6 connections... */ 16778 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16779 sizeof (struct T_optmgmt_ack)]; 16780 optp->level = MIB2_TCP6; 16781 optp->name = MIB2_TCP6_CONN; 16782 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16783 qreply(q, mp6_conn_ctl); 16784 16785 /* table of IPv6 MLP attributes... */ 16786 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16787 sizeof (struct T_optmgmt_ack)]; 16788 optp->level = MIB2_TCP6; 16789 optp->name = EXPER_XPORT_MLP; 16790 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16791 if (optp->len == 0) 16792 freemsg(mp6_attr_ctl); 16793 else 16794 qreply(q, mp6_attr_ctl); 16795 return (mp2ctl); 16796 } 16797 16798 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16799 /* ARGSUSED */ 16800 int 16801 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16802 { 16803 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16804 16805 switch (level) { 16806 case MIB2_TCP: 16807 switch (name) { 16808 case 13: 16809 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16810 return (0); 16811 /* TODO: delete entry defined by tce */ 16812 return (1); 16813 default: 16814 return (0); 16815 } 16816 default: 16817 return (1); 16818 } 16819 } 16820 16821 /* Translate TCP state to MIB2 TCP state. */ 16822 static int 16823 tcp_snmp_state(tcp_t *tcp) 16824 { 16825 if (tcp == NULL) 16826 return (0); 16827 16828 switch (tcp->tcp_state) { 16829 case TCPS_CLOSED: 16830 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16831 case TCPS_BOUND: 16832 return (MIB2_TCP_closed); 16833 case TCPS_LISTEN: 16834 return (MIB2_TCP_listen); 16835 case TCPS_SYN_SENT: 16836 return (MIB2_TCP_synSent); 16837 case TCPS_SYN_RCVD: 16838 return (MIB2_TCP_synReceived); 16839 case TCPS_ESTABLISHED: 16840 return (MIB2_TCP_established); 16841 case TCPS_CLOSE_WAIT: 16842 return (MIB2_TCP_closeWait); 16843 case TCPS_FIN_WAIT_1: 16844 return (MIB2_TCP_finWait1); 16845 case TCPS_CLOSING: 16846 return (MIB2_TCP_closing); 16847 case TCPS_LAST_ACK: 16848 return (MIB2_TCP_lastAck); 16849 case TCPS_FIN_WAIT_2: 16850 return (MIB2_TCP_finWait2); 16851 case TCPS_TIME_WAIT: 16852 return (MIB2_TCP_timeWait); 16853 default: 16854 return (0); 16855 } 16856 } 16857 16858 static char tcp_report_header[] = 16859 "TCP " MI_COL_HDRPAD_STR 16860 "zone dest snxt suna " 16861 "swnd rnxt rack rwnd rto mss w sw rw t " 16862 "recent [lport,fport] state"; 16863 16864 /* 16865 * TCP status report triggered via the Named Dispatch mechanism. 16866 */ 16867 /* ARGSUSED */ 16868 static void 16869 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16870 cred_t *cr) 16871 { 16872 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16873 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16874 char cflag; 16875 in6_addr_t v6dst; 16876 char buf[80]; 16877 uint_t print_len, buf_len; 16878 16879 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16880 if (buf_len <= 0) 16881 return; 16882 16883 if (hashval >= 0) 16884 (void) sprintf(hash, "%03d ", hashval); 16885 else 16886 hash[0] = '\0'; 16887 16888 /* 16889 * Note that we use the remote address in the tcp_b structure. 16890 * This means that it will print out the real destination address, 16891 * not the next hop's address if source routing is used. This 16892 * avoid the confusion on the output because user may not 16893 * know that source routing is used for a connection. 16894 */ 16895 if (tcp->tcp_ipversion == IPV4_VERSION) { 16896 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16897 } else { 16898 v6dst = tcp->tcp_remote_v6; 16899 } 16900 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16901 /* 16902 * the ispriv checks are so that normal users cannot determine 16903 * sequence number information using NDD. 16904 */ 16905 16906 if (TCP_IS_DETACHED(tcp)) 16907 cflag = '*'; 16908 else 16909 cflag = ' '; 16910 print_len = snprintf((char *)mp->b_wptr, buf_len, 16911 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16912 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16913 hash, 16914 (void *)tcp, 16915 tcp->tcp_connp->conn_zoneid, 16916 addrbuf, 16917 (ispriv) ? tcp->tcp_snxt : 0, 16918 (ispriv) ? tcp->tcp_suna : 0, 16919 tcp->tcp_swnd, 16920 (ispriv) ? tcp->tcp_rnxt : 0, 16921 (ispriv) ? tcp->tcp_rack : 0, 16922 tcp->tcp_rwnd, 16923 tcp->tcp_rto, 16924 tcp->tcp_mss, 16925 tcp->tcp_snd_ws_ok, 16926 tcp->tcp_snd_ws, 16927 tcp->tcp_rcv_ws, 16928 tcp->tcp_snd_ts_ok, 16929 tcp->tcp_ts_recent, 16930 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16931 if (print_len < buf_len) { 16932 ((mblk_t *)mp)->b_wptr += print_len; 16933 } else { 16934 ((mblk_t *)mp)->b_wptr += buf_len; 16935 } 16936 } 16937 16938 /* 16939 * TCP status report (for listeners only) triggered via the Named Dispatch 16940 * mechanism. 16941 */ 16942 /* ARGSUSED */ 16943 static void 16944 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16945 { 16946 char addrbuf[INET6_ADDRSTRLEN]; 16947 in6_addr_t v6dst; 16948 uint_t print_len, buf_len; 16949 16950 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16951 if (buf_len <= 0) 16952 return; 16953 16954 if (tcp->tcp_ipversion == IPV4_VERSION) { 16955 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16956 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16957 } else { 16958 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16959 addrbuf, sizeof (addrbuf)); 16960 } 16961 print_len = snprintf((char *)mp->b_wptr, buf_len, 16962 "%03d " 16963 MI_COL_PTRFMT_STR 16964 "%d %s %05u %08u %d/%d/%d%c\n", 16965 hashval, (void *)tcp, 16966 tcp->tcp_connp->conn_zoneid, 16967 addrbuf, 16968 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16969 tcp->tcp_conn_req_seqnum, 16970 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16971 tcp->tcp_conn_req_max, 16972 tcp->tcp_syn_defense ? '*' : ' '); 16973 if (print_len < buf_len) { 16974 ((mblk_t *)mp)->b_wptr += print_len; 16975 } else { 16976 ((mblk_t *)mp)->b_wptr += buf_len; 16977 } 16978 } 16979 16980 /* TCP status report triggered via the Named Dispatch mechanism. */ 16981 /* ARGSUSED */ 16982 static int 16983 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16984 { 16985 tcp_t *tcp; 16986 int i; 16987 conn_t *connp; 16988 connf_t *connfp; 16989 zoneid_t zoneid; 16990 tcp_stack_t *tcps; 16991 ip_stack_t *ipst; 16992 16993 zoneid = Q_TO_CONN(q)->conn_zoneid; 16994 tcps = Q_TO_TCP(q)->tcp_tcps; 16995 16996 /* 16997 * Because of the ndd constraint, at most we can have 64K buffer 16998 * to put in all TCP info. So to be more efficient, just 16999 * allocate a 64K buffer here, assuming we need that large buffer. 17000 * This may be a problem as any user can read tcp_status. Therefore 17001 * we limit the rate of doing this using tcp_ndd_get_info_interval. 17002 * This should be OK as normal users should not do this too often. 17003 */ 17004 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17005 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17006 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17007 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17008 return (0); 17009 } 17010 } 17011 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17012 /* The following may work even if we cannot get a large buf. */ 17013 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17014 return (0); 17015 } 17016 17017 (void) mi_mpprintf(mp, "%s", tcp_report_header); 17018 17019 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 17020 17021 ipst = tcps->tcps_netstack->netstack_ip; 17022 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 17023 17024 connp = NULL; 17025 17026 while ((connp = 17027 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17028 tcp = connp->conn_tcp; 17029 if (zoneid != GLOBAL_ZONEID && 17030 zoneid != connp->conn_zoneid) 17031 continue; 17032 tcp_report_item(mp->b_cont, tcp, -1, tcp, 17033 cr); 17034 } 17035 17036 } 17037 17038 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17039 return (0); 17040 } 17041 17042 /* TCP status report triggered via the Named Dispatch mechanism. */ 17043 /* ARGSUSED */ 17044 static int 17045 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17046 { 17047 tf_t *tbf; 17048 tcp_t *tcp; 17049 int i; 17050 zoneid_t zoneid; 17051 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17052 17053 zoneid = Q_TO_CONN(q)->conn_zoneid; 17054 17055 /* Refer to comments in tcp_status_report(). */ 17056 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17057 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17058 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17059 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17060 return (0); 17061 } 17062 } 17063 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17064 /* The following may work even if we cannot get a large buf. */ 17065 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17066 return (0); 17067 } 17068 17069 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17070 17071 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 17072 tbf = &tcps->tcps_bind_fanout[i]; 17073 mutex_enter(&tbf->tf_lock); 17074 for (tcp = tbf->tf_tcp; tcp != NULL; 17075 tcp = tcp->tcp_bind_hash) { 17076 if (zoneid != GLOBAL_ZONEID && 17077 zoneid != tcp->tcp_connp->conn_zoneid) 17078 continue; 17079 CONN_INC_REF(tcp->tcp_connp); 17080 tcp_report_item(mp->b_cont, tcp, i, 17081 Q_TO_TCP(q), cr); 17082 CONN_DEC_REF(tcp->tcp_connp); 17083 } 17084 mutex_exit(&tbf->tf_lock); 17085 } 17086 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17087 return (0); 17088 } 17089 17090 /* TCP status report triggered via the Named Dispatch mechanism. */ 17091 /* ARGSUSED */ 17092 static int 17093 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17094 { 17095 connf_t *connfp; 17096 conn_t *connp; 17097 tcp_t *tcp; 17098 int i; 17099 zoneid_t zoneid; 17100 tcp_stack_t *tcps; 17101 ip_stack_t *ipst; 17102 17103 zoneid = Q_TO_CONN(q)->conn_zoneid; 17104 tcps = Q_TO_TCP(q)->tcp_tcps; 17105 17106 /* Refer to comments in tcp_status_report(). */ 17107 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17108 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17109 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17110 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17111 return (0); 17112 } 17113 } 17114 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17115 /* The following may work even if we cannot get a large buf. */ 17116 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17117 return (0); 17118 } 17119 17120 (void) mi_mpprintf(mp, 17121 " TCP " MI_COL_HDRPAD_STR 17122 "zone IP addr port seqnum backlog (q0/q/max)"); 17123 17124 ipst = tcps->tcps_netstack->netstack_ip; 17125 17126 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 17127 connfp = &ipst->ips_ipcl_bind_fanout[i]; 17128 connp = NULL; 17129 while ((connp = 17130 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17131 tcp = connp->conn_tcp; 17132 if (zoneid != GLOBAL_ZONEID && 17133 zoneid != connp->conn_zoneid) 17134 continue; 17135 tcp_report_listener(mp->b_cont, tcp, i); 17136 } 17137 } 17138 17139 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17140 return (0); 17141 } 17142 17143 /* TCP status report triggered via the Named Dispatch mechanism. */ 17144 /* ARGSUSED */ 17145 static int 17146 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17147 { 17148 connf_t *connfp; 17149 conn_t *connp; 17150 tcp_t *tcp; 17151 int i; 17152 zoneid_t zoneid; 17153 tcp_stack_t *tcps; 17154 ip_stack_t *ipst; 17155 17156 zoneid = Q_TO_CONN(q)->conn_zoneid; 17157 tcps = Q_TO_TCP(q)->tcp_tcps; 17158 ipst = tcps->tcps_netstack->netstack_ip; 17159 17160 /* Refer to comments in tcp_status_report(). */ 17161 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17162 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17163 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17164 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17165 return (0); 17166 } 17167 } 17168 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17169 /* The following may work even if we cannot get a large buf. */ 17170 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17171 return (0); 17172 } 17173 17174 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 17175 ipst->ips_ipcl_conn_fanout_size); 17176 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17177 17178 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 17179 connfp = &ipst->ips_ipcl_conn_fanout[i]; 17180 connp = NULL; 17181 while ((connp = 17182 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17183 tcp = connp->conn_tcp; 17184 if (zoneid != GLOBAL_ZONEID && 17185 zoneid != connp->conn_zoneid) 17186 continue; 17187 tcp_report_item(mp->b_cont, tcp, i, 17188 Q_TO_TCP(q), cr); 17189 } 17190 } 17191 17192 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17193 return (0); 17194 } 17195 17196 /* TCP status report triggered via the Named Dispatch mechanism. */ 17197 /* ARGSUSED */ 17198 static int 17199 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17200 { 17201 tf_t *tf; 17202 tcp_t *tcp; 17203 int i; 17204 zoneid_t zoneid; 17205 tcp_stack_t *tcps; 17206 17207 zoneid = Q_TO_CONN(q)->conn_zoneid; 17208 tcps = Q_TO_TCP(q)->tcp_tcps; 17209 17210 /* Refer to comments in tcp_status_report(). */ 17211 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17212 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17213 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17214 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17215 return (0); 17216 } 17217 } 17218 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17219 /* The following may work even if we cannot get a large buf. */ 17220 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17221 return (0); 17222 } 17223 17224 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17225 17226 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 17227 tf = &tcps->tcps_acceptor_fanout[i]; 17228 mutex_enter(&tf->tf_lock); 17229 for (tcp = tf->tf_tcp; tcp != NULL; 17230 tcp = tcp->tcp_acceptor_hash) { 17231 if (zoneid != GLOBAL_ZONEID && 17232 zoneid != tcp->tcp_connp->conn_zoneid) 17233 continue; 17234 tcp_report_item(mp->b_cont, tcp, i, 17235 Q_TO_TCP(q), cr); 17236 } 17237 mutex_exit(&tf->tf_lock); 17238 } 17239 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17240 return (0); 17241 } 17242 17243 /* 17244 * tcp_timer is the timer service routine. It handles the retransmission, 17245 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 17246 * from the state of the tcp instance what kind of action needs to be done 17247 * at the time it is called. 17248 */ 17249 static void 17250 tcp_timer(void *arg) 17251 { 17252 mblk_t *mp; 17253 clock_t first_threshold; 17254 clock_t second_threshold; 17255 clock_t ms; 17256 uint32_t mss; 17257 conn_t *connp = (conn_t *)arg; 17258 tcp_t *tcp = connp->conn_tcp; 17259 tcp_stack_t *tcps = tcp->tcp_tcps; 17260 17261 tcp->tcp_timer_tid = 0; 17262 17263 if (tcp->tcp_fused) 17264 return; 17265 17266 first_threshold = tcp->tcp_first_timer_threshold; 17267 second_threshold = tcp->tcp_second_timer_threshold; 17268 switch (tcp->tcp_state) { 17269 case TCPS_IDLE: 17270 case TCPS_BOUND: 17271 case TCPS_LISTEN: 17272 return; 17273 case TCPS_SYN_RCVD: { 17274 tcp_t *listener = tcp->tcp_listener; 17275 17276 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17277 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17278 /* it's our first timeout */ 17279 tcp->tcp_syn_rcvd_timeout = 1; 17280 mutex_enter(&listener->tcp_eager_lock); 17281 listener->tcp_syn_rcvd_timeout++; 17282 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17283 /* 17284 * Make this eager available for drop if we 17285 * need to drop one to accomodate a new 17286 * incoming SYN request. 17287 */ 17288 MAKE_DROPPABLE(listener, tcp); 17289 } 17290 if (!listener->tcp_syn_defense && 17291 (listener->tcp_syn_rcvd_timeout > 17292 (tcps->tcps_conn_req_max_q0 >> 2)) && 17293 (tcps->tcps_conn_req_max_q0 > 200)) { 17294 /* We may be under attack. Put on a defense. */ 17295 listener->tcp_syn_defense = B_TRUE; 17296 cmn_err(CE_WARN, "High TCP connect timeout " 17297 "rate! System (port %d) may be under a " 17298 "SYN flood attack!", 17299 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17300 17301 listener->tcp_ip_addr_cache = kmem_zalloc( 17302 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17303 KM_NOSLEEP); 17304 } 17305 mutex_exit(&listener->tcp_eager_lock); 17306 } else if (listener != NULL) { 17307 mutex_enter(&listener->tcp_eager_lock); 17308 tcp->tcp_syn_rcvd_timeout++; 17309 if (tcp->tcp_syn_rcvd_timeout > 1 && 17310 !tcp->tcp_closemp_used) { 17311 /* 17312 * This is our second timeout. Put the tcp in 17313 * the list of droppable eagers to allow it to 17314 * be dropped, if needed. We don't check 17315 * whether tcp_dontdrop is set or not to 17316 * protect ourselve from a SYN attack where a 17317 * remote host can spoof itself as one of the 17318 * good IP source and continue to hold 17319 * resources too long. 17320 */ 17321 MAKE_DROPPABLE(listener, tcp); 17322 } 17323 mutex_exit(&listener->tcp_eager_lock); 17324 } 17325 } 17326 /* FALLTHRU */ 17327 case TCPS_SYN_SENT: 17328 first_threshold = tcp->tcp_first_ctimer_threshold; 17329 second_threshold = tcp->tcp_second_ctimer_threshold; 17330 break; 17331 case TCPS_ESTABLISHED: 17332 case TCPS_FIN_WAIT_1: 17333 case TCPS_CLOSING: 17334 case TCPS_CLOSE_WAIT: 17335 case TCPS_LAST_ACK: 17336 /* If we have data to rexmit */ 17337 if (tcp->tcp_suna != tcp->tcp_snxt) { 17338 clock_t time_to_wait; 17339 17340 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17341 if (!tcp->tcp_xmit_head) 17342 break; 17343 time_to_wait = lbolt - 17344 (clock_t)tcp->tcp_xmit_head->b_prev; 17345 time_to_wait = tcp->tcp_rto - 17346 TICK_TO_MSEC(time_to_wait); 17347 /* 17348 * If the timer fires too early, 1 clock tick earlier, 17349 * restart the timer. 17350 */ 17351 if (time_to_wait > msec_per_tick) { 17352 TCP_STAT(tcps, tcp_timer_fire_early); 17353 TCP_TIMER_RESTART(tcp, time_to_wait); 17354 return; 17355 } 17356 /* 17357 * When we probe zero windows, we force the swnd open. 17358 * If our peer acks with a closed window swnd will be 17359 * set to zero by tcp_rput(). As long as we are 17360 * receiving acks tcp_rput will 17361 * reset 'tcp_ms_we_have_waited' so as not to trip the 17362 * first and second interval actions. NOTE: the timer 17363 * interval is allowed to continue its exponential 17364 * backoff. 17365 */ 17366 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17367 if (tcp->tcp_debug) { 17368 (void) strlog(TCP_MOD_ID, 0, 1, 17369 SL_TRACE, "tcp_timer: zero win"); 17370 } 17371 } else { 17372 /* 17373 * After retransmission, we need to do 17374 * slow start. Set the ssthresh to one 17375 * half of current effective window and 17376 * cwnd to one MSS. Also reset 17377 * tcp_cwnd_cnt. 17378 * 17379 * Note that if tcp_ssthresh is reduced because 17380 * of ECN, do not reduce it again unless it is 17381 * already one window of data away (tcp_cwr 17382 * should then be cleared) or this is a 17383 * timeout for a retransmitted segment. 17384 */ 17385 uint32_t npkt; 17386 17387 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17388 npkt = ((tcp->tcp_timer_backoff ? 17389 tcp->tcp_cwnd_ssthresh : 17390 tcp->tcp_snxt - 17391 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17392 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17393 tcp->tcp_mss; 17394 } 17395 tcp->tcp_cwnd = tcp->tcp_mss; 17396 tcp->tcp_cwnd_cnt = 0; 17397 if (tcp->tcp_ecn_ok) { 17398 tcp->tcp_cwr = B_TRUE; 17399 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17400 tcp->tcp_ecn_cwr_sent = B_FALSE; 17401 } 17402 } 17403 break; 17404 } 17405 /* 17406 * We have something to send yet we cannot send. The 17407 * reason can be: 17408 * 17409 * 1. Zero send window: we need to do zero window probe. 17410 * 2. Zero cwnd: because of ECN, we need to "clock out 17411 * segments. 17412 * 3. SWS avoidance: receiver may have shrunk window, 17413 * reset our knowledge. 17414 * 17415 * Note that condition 2 can happen with either 1 or 17416 * 3. But 1 and 3 are exclusive. 17417 */ 17418 if (tcp->tcp_unsent != 0) { 17419 if (tcp->tcp_cwnd == 0) { 17420 /* 17421 * Set tcp_cwnd to 1 MSS so that a 17422 * new segment can be sent out. We 17423 * are "clocking out" new data when 17424 * the network is really congested. 17425 */ 17426 ASSERT(tcp->tcp_ecn_ok); 17427 tcp->tcp_cwnd = tcp->tcp_mss; 17428 } 17429 if (tcp->tcp_swnd == 0) { 17430 /* Extend window for zero window probe */ 17431 tcp->tcp_swnd++; 17432 tcp->tcp_zero_win_probe = B_TRUE; 17433 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17434 } else { 17435 /* 17436 * Handle timeout from sender SWS avoidance. 17437 * Reset our knowledge of the max send window 17438 * since the receiver might have reduced its 17439 * receive buffer. Avoid setting tcp_max_swnd 17440 * to one since that will essentially disable 17441 * the SWS checks. 17442 * 17443 * Note that since we don't have a SWS 17444 * state variable, if the timeout is set 17445 * for ECN but not for SWS, this 17446 * code will also be executed. This is 17447 * fine as tcp_max_swnd is updated 17448 * constantly and it will not affect 17449 * anything. 17450 */ 17451 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17452 } 17453 tcp_wput_data(tcp, NULL, B_FALSE); 17454 return; 17455 } 17456 /* Is there a FIN that needs to be to re retransmitted? */ 17457 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17458 !tcp->tcp_fin_acked) 17459 break; 17460 /* Nothing to do, return without restarting timer. */ 17461 TCP_STAT(tcps, tcp_timer_fire_miss); 17462 return; 17463 case TCPS_FIN_WAIT_2: 17464 /* 17465 * User closed the TCP endpoint and peer ACK'ed our FIN. 17466 * We waited some time for for peer's FIN, but it hasn't 17467 * arrived. We flush the connection now to avoid 17468 * case where the peer has rebooted. 17469 */ 17470 if (TCP_IS_DETACHED(tcp)) { 17471 (void) tcp_clean_death(tcp, 0, 23); 17472 } else { 17473 TCP_TIMER_RESTART(tcp, 17474 tcps->tcps_fin_wait_2_flush_interval); 17475 } 17476 return; 17477 case TCPS_TIME_WAIT: 17478 (void) tcp_clean_death(tcp, 0, 24); 17479 return; 17480 default: 17481 if (tcp->tcp_debug) { 17482 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17483 "tcp_timer: strange state (%d) %s", 17484 tcp->tcp_state, tcp_display(tcp, NULL, 17485 DISP_PORT_ONLY)); 17486 } 17487 return; 17488 } 17489 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17490 /* 17491 * For zero window probe, we need to send indefinitely, 17492 * unless we have not heard from the other side for some 17493 * time... 17494 */ 17495 if ((tcp->tcp_zero_win_probe == 0) || 17496 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17497 second_threshold)) { 17498 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17499 /* 17500 * If TCP is in SYN_RCVD state, send back a 17501 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17502 * should be zero in TCPS_SYN_RCVD state. 17503 */ 17504 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17505 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17506 "in SYN_RCVD", 17507 tcp, tcp->tcp_snxt, 17508 tcp->tcp_rnxt, TH_RST | TH_ACK); 17509 } 17510 (void) tcp_clean_death(tcp, 17511 tcp->tcp_client_errno ? 17512 tcp->tcp_client_errno : ETIMEDOUT, 25); 17513 return; 17514 } else { 17515 /* 17516 * Set tcp_ms_we_have_waited to second_threshold 17517 * so that in next timeout, we will do the above 17518 * check (lbolt - tcp_last_recv_time). This is 17519 * also to avoid overflow. 17520 * 17521 * We don't need to decrement tcp_timer_backoff 17522 * to avoid overflow because it will be decremented 17523 * later if new timeout value is greater than 17524 * tcp_rexmit_interval_max. In the case when 17525 * tcp_rexmit_interval_max is greater than 17526 * second_threshold, it means that we will wait 17527 * longer than second_threshold to send the next 17528 * window probe. 17529 */ 17530 tcp->tcp_ms_we_have_waited = second_threshold; 17531 } 17532 } else if (ms > first_threshold) { 17533 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17534 tcp->tcp_xmit_head != NULL) { 17535 tcp->tcp_xmit_head = 17536 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17537 } 17538 /* 17539 * We have been retransmitting for too long... The RTT 17540 * we calculated is probably incorrect. Reinitialize it. 17541 * Need to compensate for 0 tcp_rtt_sa. Reset 17542 * tcp_rtt_update so that we won't accidentally cache a 17543 * bad value. But only do this if this is not a zero 17544 * window probe. 17545 */ 17546 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17547 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17548 (tcp->tcp_rtt_sa >> 5); 17549 tcp->tcp_rtt_sa = 0; 17550 tcp_ip_notify(tcp); 17551 tcp->tcp_rtt_update = 0; 17552 } 17553 } 17554 tcp->tcp_timer_backoff++; 17555 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17556 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17557 tcps->tcps_rexmit_interval_min) { 17558 /* 17559 * This means the original RTO is tcp_rexmit_interval_min. 17560 * So we will use tcp_rexmit_interval_min as the RTO value 17561 * and do the backoff. 17562 */ 17563 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17564 } else { 17565 ms <<= tcp->tcp_timer_backoff; 17566 } 17567 if (ms > tcps->tcps_rexmit_interval_max) { 17568 ms = tcps->tcps_rexmit_interval_max; 17569 /* 17570 * ms is at max, decrement tcp_timer_backoff to avoid 17571 * overflow. 17572 */ 17573 tcp->tcp_timer_backoff--; 17574 } 17575 tcp->tcp_ms_we_have_waited += ms; 17576 if (tcp->tcp_zero_win_probe == 0) { 17577 tcp->tcp_rto = ms; 17578 } 17579 TCP_TIMER_RESTART(tcp, ms); 17580 /* 17581 * This is after a timeout and tcp_rto is backed off. Set 17582 * tcp_set_timer to 1 so that next time RTO is updated, we will 17583 * restart the timer with a correct value. 17584 */ 17585 tcp->tcp_set_timer = 1; 17586 mss = tcp->tcp_snxt - tcp->tcp_suna; 17587 if (mss > tcp->tcp_mss) 17588 mss = tcp->tcp_mss; 17589 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17590 mss = tcp->tcp_swnd; 17591 17592 if ((mp = tcp->tcp_xmit_head) != NULL) 17593 mp->b_prev = (mblk_t *)lbolt; 17594 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17595 B_TRUE); 17596 17597 /* 17598 * When slow start after retransmission begins, start with 17599 * this seq no. tcp_rexmit_max marks the end of special slow 17600 * start phase. tcp_snd_burst controls how many segments 17601 * can be sent because of an ack. 17602 */ 17603 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17604 tcp->tcp_snd_burst = TCP_CWND_SS; 17605 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17606 (tcp->tcp_unsent == 0)) { 17607 tcp->tcp_rexmit_max = tcp->tcp_fss; 17608 } else { 17609 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17610 } 17611 tcp->tcp_rexmit = B_TRUE; 17612 tcp->tcp_dupack_cnt = 0; 17613 17614 /* 17615 * Remove all rexmit SACK blk to start from fresh. 17616 */ 17617 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17618 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17619 tcp->tcp_num_notsack_blk = 0; 17620 tcp->tcp_cnt_notsack_list = 0; 17621 } 17622 if (mp == NULL) { 17623 return; 17624 } 17625 /* Attach credentials to retransmitted initial SYNs. */ 17626 if (tcp->tcp_state == TCPS_SYN_SENT) { 17627 mblk_setcred(mp, tcp->tcp_cred); 17628 DB_CPID(mp) = tcp->tcp_cpid; 17629 } 17630 17631 tcp->tcp_csuna = tcp->tcp_snxt; 17632 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17633 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17634 tcp_send_data(tcp, tcp->tcp_wq, mp); 17635 17636 } 17637 17638 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17639 static void 17640 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17641 { 17642 conn_t *connp; 17643 17644 switch (tcp->tcp_state) { 17645 case TCPS_BOUND: 17646 case TCPS_LISTEN: 17647 break; 17648 default: 17649 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17650 return; 17651 } 17652 17653 /* 17654 * Need to clean up all the eagers since after the unbind, segments 17655 * will no longer be delivered to this listener stream. 17656 */ 17657 mutex_enter(&tcp->tcp_eager_lock); 17658 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17659 tcp_eager_cleanup(tcp, 0); 17660 } 17661 mutex_exit(&tcp->tcp_eager_lock); 17662 17663 if (tcp->tcp_ipversion == IPV4_VERSION) { 17664 tcp->tcp_ipha->ipha_src = 0; 17665 } else { 17666 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17667 } 17668 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17669 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17670 tcp_bind_hash_remove(tcp); 17671 tcp->tcp_state = TCPS_IDLE; 17672 tcp->tcp_mdt = B_FALSE; 17673 /* Send M_FLUSH according to TPI */ 17674 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17675 connp = tcp->tcp_connp; 17676 connp->conn_mdt_ok = B_FALSE; 17677 ipcl_hash_remove(connp); 17678 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17679 mp = mi_tpi_ok_ack_alloc(mp); 17680 putnext(tcp->tcp_rq, mp); 17681 } 17682 17683 /* 17684 * Don't let port fall into the privileged range. 17685 * Since the extra privileged ports can be arbitrary we also 17686 * ensure that we exclude those from consideration. 17687 * tcp_g_epriv_ports is not sorted thus we loop over it until 17688 * there are no changes. 17689 * 17690 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17691 * but instead the code relies on: 17692 * - the fact that the address of the array and its size never changes 17693 * - the atomic assignment of the elements of the array 17694 * 17695 * Returns 0 if there are no more ports available. 17696 * 17697 * TS note: skip multilevel ports. 17698 */ 17699 static in_port_t 17700 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17701 { 17702 int i; 17703 boolean_t restart = B_FALSE; 17704 tcp_stack_t *tcps = tcp->tcp_tcps; 17705 17706 if (random && tcp_random_anon_port != 0) { 17707 (void) random_get_pseudo_bytes((uint8_t *)&port, 17708 sizeof (in_port_t)); 17709 /* 17710 * Unless changed by a sys admin, the smallest anon port 17711 * is 32768 and the largest anon port is 65535. It is 17712 * very likely (50%) for the random port to be smaller 17713 * than the smallest anon port. When that happens, 17714 * add port % (anon port range) to the smallest anon 17715 * port to get the random port. It should fall into the 17716 * valid anon port range. 17717 */ 17718 if (port < tcps->tcps_smallest_anon_port) { 17719 port = tcps->tcps_smallest_anon_port + 17720 port % (tcps->tcps_largest_anon_port - 17721 tcps->tcps_smallest_anon_port); 17722 } 17723 } 17724 17725 retry: 17726 if (port < tcps->tcps_smallest_anon_port) 17727 port = (in_port_t)tcps->tcps_smallest_anon_port; 17728 17729 if (port > tcps->tcps_largest_anon_port) { 17730 if (restart) 17731 return (0); 17732 restart = B_TRUE; 17733 port = (in_port_t)tcps->tcps_smallest_anon_port; 17734 } 17735 17736 if (port < tcps->tcps_smallest_nonpriv_port) 17737 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17738 17739 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17740 if (port == tcps->tcps_g_epriv_ports[i]) { 17741 port++; 17742 /* 17743 * Make sure whether the port is in the 17744 * valid range. 17745 */ 17746 goto retry; 17747 } 17748 } 17749 if (is_system_labeled() && 17750 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17751 IPPROTO_TCP, B_TRUE)) != 0) { 17752 port = i; 17753 goto retry; 17754 } 17755 return (port); 17756 } 17757 17758 /* 17759 * Return the next anonymous port in the privileged port range for 17760 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17761 * downwards. This is the same behavior as documented in the userland 17762 * library call rresvport(3N). 17763 * 17764 * TS note: skip multilevel ports. 17765 */ 17766 static in_port_t 17767 tcp_get_next_priv_port(const tcp_t *tcp) 17768 { 17769 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17770 in_port_t nextport; 17771 boolean_t restart = B_FALSE; 17772 tcp_stack_t *tcps = tcp->tcp_tcps; 17773 retry: 17774 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17775 next_priv_port >= IPPORT_RESERVED) { 17776 next_priv_port = IPPORT_RESERVED - 1; 17777 if (restart) 17778 return (0); 17779 restart = B_TRUE; 17780 } 17781 if (is_system_labeled() && 17782 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17783 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17784 next_priv_port = nextport; 17785 goto retry; 17786 } 17787 return (next_priv_port--); 17788 } 17789 17790 /* The write side r/w procedure. */ 17791 17792 #if CCS_STATS 17793 struct { 17794 struct { 17795 int64_t count, bytes; 17796 } tot, hit; 17797 } wrw_stats; 17798 #endif 17799 17800 /* 17801 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17802 * messages. 17803 */ 17804 /* ARGSUSED */ 17805 static void 17806 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17807 { 17808 conn_t *connp = (conn_t *)arg; 17809 tcp_t *tcp = connp->conn_tcp; 17810 queue_t *q = tcp->tcp_wq; 17811 17812 ASSERT(DB_TYPE(mp) != M_IOCTL); 17813 /* 17814 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17815 * Once the close starts, streamhead and sockfs will not let any data 17816 * packets come down (close ensures that there are no threads using the 17817 * queue and no new threads will come down) but since qprocsoff() 17818 * hasn't happened yet, a M_FLUSH or some non data message might 17819 * get reflected back (in response to our own FLUSHRW) and get 17820 * processed after tcp_close() is done. The conn would still be valid 17821 * because a ref would have added but we need to check the state 17822 * before actually processing the packet. 17823 */ 17824 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17825 freemsg(mp); 17826 return; 17827 } 17828 17829 switch (DB_TYPE(mp)) { 17830 case M_IOCDATA: 17831 tcp_wput_iocdata(tcp, mp); 17832 break; 17833 case M_FLUSH: 17834 tcp_wput_flush(tcp, mp); 17835 break; 17836 default: 17837 CALL_IP_WPUT(connp, q, mp); 17838 break; 17839 } 17840 } 17841 17842 /* 17843 * The TCP fast path write put procedure. 17844 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17845 */ 17846 /* ARGSUSED */ 17847 void 17848 tcp_output(void *arg, mblk_t *mp, void *arg2) 17849 { 17850 int len; 17851 int hdrlen; 17852 int plen; 17853 mblk_t *mp1; 17854 uchar_t *rptr; 17855 uint32_t snxt; 17856 tcph_t *tcph; 17857 struct datab *db; 17858 uint32_t suna; 17859 uint32_t mss; 17860 ipaddr_t *dst; 17861 ipaddr_t *src; 17862 uint32_t sum; 17863 int usable; 17864 conn_t *connp = (conn_t *)arg; 17865 tcp_t *tcp = connp->conn_tcp; 17866 uint32_t msize; 17867 tcp_stack_t *tcps = tcp->tcp_tcps; 17868 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17869 17870 /* 17871 * Try and ASSERT the minimum possible references on the 17872 * conn early enough. Since we are executing on write side, 17873 * the connection is obviously not detached and that means 17874 * there is a ref each for TCP and IP. Since we are behind 17875 * the squeue, the minimum references needed are 3. If the 17876 * conn is in classifier hash list, there should be an 17877 * extra ref for that (we check both the possibilities). 17878 */ 17879 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17880 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17881 17882 ASSERT(DB_TYPE(mp) == M_DATA); 17883 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17884 17885 mutex_enter(&tcp->tcp_non_sq_lock); 17886 tcp->tcp_squeue_bytes -= msize; 17887 mutex_exit(&tcp->tcp_non_sq_lock); 17888 17889 /* Check to see if this connection wants to be re-fused. */ 17890 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17891 if (tcp->tcp_ipversion == IPV4_VERSION) { 17892 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17893 &tcp->tcp_saved_tcph); 17894 } else { 17895 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17896 &tcp->tcp_saved_tcph); 17897 } 17898 } 17899 /* Bypass tcp protocol for fused tcp loopback */ 17900 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17901 return; 17902 17903 mss = tcp->tcp_mss; 17904 if (tcp->tcp_xmit_zc_clean) 17905 mp = tcp_zcopy_backoff(tcp, mp, 0); 17906 17907 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17908 len = (int)(mp->b_wptr - mp->b_rptr); 17909 17910 /* 17911 * Criteria for fast path: 17912 * 17913 * 1. no unsent data 17914 * 2. single mblk in request 17915 * 3. connection established 17916 * 4. data in mblk 17917 * 5. len <= mss 17918 * 6. no tcp_valid bits 17919 */ 17920 if ((tcp->tcp_unsent != 0) || 17921 (tcp->tcp_cork) || 17922 (mp->b_cont != NULL) || 17923 (tcp->tcp_state != TCPS_ESTABLISHED) || 17924 (len == 0) || 17925 (len > mss) || 17926 (tcp->tcp_valid_bits != 0)) { 17927 tcp_wput_data(tcp, mp, B_FALSE); 17928 return; 17929 } 17930 17931 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17932 ASSERT(tcp->tcp_fin_sent == 0); 17933 17934 /* queue new packet onto retransmission queue */ 17935 if (tcp->tcp_xmit_head == NULL) { 17936 tcp->tcp_xmit_head = mp; 17937 } else { 17938 tcp->tcp_xmit_last->b_cont = mp; 17939 } 17940 tcp->tcp_xmit_last = mp; 17941 tcp->tcp_xmit_tail = mp; 17942 17943 /* find out how much we can send */ 17944 /* BEGIN CSTYLED */ 17945 /* 17946 * un-acked usable 17947 * |--------------|-----------------| 17948 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17949 */ 17950 /* END CSTYLED */ 17951 17952 /* start sending from tcp_snxt */ 17953 snxt = tcp->tcp_snxt; 17954 17955 /* 17956 * Check to see if this connection has been idled for some 17957 * time and no ACK is expected. If it is, we need to slow 17958 * start again to get back the connection's "self-clock" as 17959 * described in VJ's paper. 17960 * 17961 * Refer to the comment in tcp_mss_set() for the calculation 17962 * of tcp_cwnd after idle. 17963 */ 17964 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17965 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17966 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17967 } 17968 17969 usable = tcp->tcp_swnd; /* tcp window size */ 17970 if (usable > tcp->tcp_cwnd) 17971 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17972 usable -= snxt; /* subtract stuff already sent */ 17973 suna = tcp->tcp_suna; 17974 usable += suna; 17975 /* usable can be < 0 if the congestion window is smaller */ 17976 if (len > usable) { 17977 /* Can't send complete M_DATA in one shot */ 17978 goto slow; 17979 } 17980 17981 mutex_enter(&tcp->tcp_non_sq_lock); 17982 if (tcp->tcp_flow_stopped && 17983 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17984 tcp_clrqfull(tcp); 17985 } 17986 mutex_exit(&tcp->tcp_non_sq_lock); 17987 17988 /* 17989 * determine if anything to send (Nagle). 17990 * 17991 * 1. len < tcp_mss (i.e. small) 17992 * 2. unacknowledged data present 17993 * 3. len < nagle limit 17994 * 4. last packet sent < nagle limit (previous packet sent) 17995 */ 17996 if ((len < mss) && (snxt != suna) && 17997 (len < (int)tcp->tcp_naglim) && 17998 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17999 /* 18000 * This was the first unsent packet and normally 18001 * mss < xmit_hiwater so there is no need to worry 18002 * about flow control. The next packet will go 18003 * through the flow control check in tcp_wput_data(). 18004 */ 18005 /* leftover work from above */ 18006 tcp->tcp_unsent = len; 18007 tcp->tcp_xmit_tail_unsent = len; 18008 18009 return; 18010 } 18011 18012 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 18013 18014 if (snxt == suna) { 18015 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18016 } 18017 18018 /* we have always sent something */ 18019 tcp->tcp_rack_cnt = 0; 18020 18021 tcp->tcp_snxt = snxt + len; 18022 tcp->tcp_rack = tcp->tcp_rnxt; 18023 18024 if ((mp1 = dupb(mp)) == 0) 18025 goto no_memory; 18026 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 18027 mp->b_next = (mblk_t *)(uintptr_t)snxt; 18028 18029 /* adjust tcp header information */ 18030 tcph = tcp->tcp_tcph; 18031 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 18032 18033 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 18034 sum = (sum >> 16) + (sum & 0xFFFF); 18035 U16_TO_ABE16(sum, tcph->th_sum); 18036 18037 U32_TO_ABE32(snxt, tcph->th_seq); 18038 18039 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 18040 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 18041 BUMP_LOCAL(tcp->tcp_obsegs); 18042 18043 /* Update the latest receive window size in TCP header. */ 18044 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18045 tcph->th_win); 18046 18047 tcp->tcp_last_sent_len = (ushort_t)len; 18048 18049 plen = len + tcp->tcp_hdr_len; 18050 18051 if (tcp->tcp_ipversion == IPV4_VERSION) { 18052 tcp->tcp_ipha->ipha_length = htons(plen); 18053 } else { 18054 tcp->tcp_ip6h->ip6_plen = htons(plen - 18055 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 18056 } 18057 18058 /* see if we need to allocate a mblk for the headers */ 18059 hdrlen = tcp->tcp_hdr_len; 18060 rptr = mp1->b_rptr - hdrlen; 18061 db = mp1->b_datap; 18062 if ((db->db_ref != 2) || rptr < db->db_base || 18063 (!OK_32PTR(rptr))) { 18064 /* NOTE: we assume allocb returns an OK_32PTR */ 18065 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 18066 tcps->tcps_wroff_xtra, BPRI_MED); 18067 if (!mp) { 18068 freemsg(mp1); 18069 goto no_memory; 18070 } 18071 mp->b_cont = mp1; 18072 mp1 = mp; 18073 /* Leave room for Link Level header */ 18074 /* hdrlen = tcp->tcp_hdr_len; */ 18075 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 18076 mp1->b_wptr = &rptr[hdrlen]; 18077 } 18078 mp1->b_rptr = rptr; 18079 18080 /* Fill in the timestamp option. */ 18081 if (tcp->tcp_snd_ts_ok) { 18082 U32_TO_BE32((uint32_t)lbolt, 18083 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 18084 U32_TO_BE32(tcp->tcp_ts_recent, 18085 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 18086 } else { 18087 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18088 } 18089 18090 /* copy header into outgoing packet */ 18091 dst = (ipaddr_t *)rptr; 18092 src = (ipaddr_t *)tcp->tcp_iphc; 18093 dst[0] = src[0]; 18094 dst[1] = src[1]; 18095 dst[2] = src[2]; 18096 dst[3] = src[3]; 18097 dst[4] = src[4]; 18098 dst[5] = src[5]; 18099 dst[6] = src[6]; 18100 dst[7] = src[7]; 18101 dst[8] = src[8]; 18102 dst[9] = src[9]; 18103 if (hdrlen -= 40) { 18104 hdrlen >>= 2; 18105 dst += 10; 18106 src += 10; 18107 do { 18108 *dst++ = *src++; 18109 } while (--hdrlen); 18110 } 18111 18112 /* 18113 * Set the ECN info in the TCP header. Note that this 18114 * is not the template header. 18115 */ 18116 if (tcp->tcp_ecn_ok) { 18117 SET_ECT(tcp, rptr); 18118 18119 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18120 if (tcp->tcp_ecn_echo_on) 18121 tcph->th_flags[0] |= TH_ECE; 18122 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18123 tcph->th_flags[0] |= TH_CWR; 18124 tcp->tcp_ecn_cwr_sent = B_TRUE; 18125 } 18126 } 18127 18128 if (tcp->tcp_ip_forward_progress) { 18129 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 18130 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 18131 tcp->tcp_ip_forward_progress = B_FALSE; 18132 } 18133 tcp_send_data(tcp, tcp->tcp_wq, mp1); 18134 return; 18135 18136 /* 18137 * If we ran out of memory, we pretend to have sent the packet 18138 * and that it was lost on the wire. 18139 */ 18140 no_memory: 18141 return; 18142 18143 slow: 18144 /* leftover work from above */ 18145 tcp->tcp_unsent = len; 18146 tcp->tcp_xmit_tail_unsent = len; 18147 tcp_wput_data(tcp, NULL, B_FALSE); 18148 } 18149 18150 /* 18151 * The function called through squeue to get behind eager's perimeter to 18152 * finish the accept processing. 18153 */ 18154 /* ARGSUSED */ 18155 void 18156 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 18157 { 18158 conn_t *connp = (conn_t *)arg; 18159 tcp_t *tcp = connp->conn_tcp; 18160 queue_t *q = tcp->tcp_rq; 18161 mblk_t *mp1; 18162 mblk_t *stropt_mp = mp; 18163 struct stroptions *stropt; 18164 uint_t thwin; 18165 tcp_stack_t *tcps = tcp->tcp_tcps; 18166 18167 /* 18168 * Drop the eager's ref on the listener, that was placed when 18169 * this eager began life in tcp_conn_request. 18170 */ 18171 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 18172 18173 tcp->tcp_detached = B_FALSE; 18174 18175 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 18176 /* 18177 * Someone blewoff the eager before we could finish 18178 * the accept. 18179 * 18180 * The only reason eager exists it because we put in 18181 * a ref on it when conn ind went up. We need to send 18182 * a disconnect indication up while the last reference 18183 * on the eager will be dropped by the squeue when we 18184 * return. 18185 */ 18186 ASSERT(tcp->tcp_listener == NULL); 18187 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 18188 struct T_discon_ind *tdi; 18189 18190 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 18191 /* 18192 * Let us reuse the incoming mblk to avoid memory 18193 * allocation failure problems. We know that the 18194 * size of the incoming mblk i.e. stroptions is greater 18195 * than sizeof T_discon_ind. So the reallocb below 18196 * can't fail. 18197 */ 18198 freemsg(mp->b_cont); 18199 mp->b_cont = NULL; 18200 ASSERT(DB_REF(mp) == 1); 18201 mp = reallocb(mp, sizeof (struct T_discon_ind), 18202 B_FALSE); 18203 ASSERT(mp != NULL); 18204 DB_TYPE(mp) = M_PROTO; 18205 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 18206 tdi = (struct T_discon_ind *)mp->b_rptr; 18207 if (tcp->tcp_issocket) { 18208 tdi->DISCON_reason = ECONNREFUSED; 18209 tdi->SEQ_number = 0; 18210 } else { 18211 tdi->DISCON_reason = ENOPROTOOPT; 18212 tdi->SEQ_number = 18213 tcp->tcp_conn_req_seqnum; 18214 } 18215 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 18216 putnext(q, mp); 18217 } else { 18218 freemsg(mp); 18219 } 18220 if (tcp->tcp_hard_binding) { 18221 tcp->tcp_hard_binding = B_FALSE; 18222 tcp->tcp_hard_bound = B_TRUE; 18223 } 18224 return; 18225 } 18226 18227 mp1 = stropt_mp->b_cont; 18228 stropt_mp->b_cont = NULL; 18229 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 18230 stropt = (struct stroptions *)stropt_mp->b_rptr; 18231 18232 while (mp1 != NULL) { 18233 mp = mp1; 18234 mp1 = mp1->b_cont; 18235 mp->b_cont = NULL; 18236 tcp->tcp_drop_opt_ack_cnt++; 18237 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 18238 } 18239 mp = NULL; 18240 18241 /* 18242 * For a loopback connection with tcp_direct_sockfs on, note that 18243 * we don't have to protect tcp_rcv_list yet because synchronous 18244 * streams has not yet been enabled and tcp_fuse_rrw() cannot 18245 * possibly race with us. 18246 */ 18247 18248 /* 18249 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 18250 * properly. This is the first time we know of the acceptor' 18251 * queue. So we do it here. 18252 */ 18253 if (tcp->tcp_rcv_list == NULL) { 18254 /* 18255 * Recv queue is empty, tcp_rwnd should not have changed. 18256 * That means it should be equal to the listener's tcp_rwnd. 18257 */ 18258 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18259 } else { 18260 #ifdef DEBUG 18261 uint_t cnt = 0; 18262 18263 mp1 = tcp->tcp_rcv_list; 18264 while ((mp = mp1) != NULL) { 18265 mp1 = mp->b_next; 18266 cnt += msgdsize(mp); 18267 } 18268 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18269 #endif 18270 /* There is some data, add them back to get the max. */ 18271 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18272 } 18273 /* 18274 * This is the first time we run on the correct 18275 * queue after tcp_accept. So fix all the q parameters 18276 * here. 18277 */ 18278 stropt->so_flags = SO_HIWAT | SO_MAXBLK | SO_WROFF; 18279 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18280 18281 /* 18282 * Record the stream head's high water mark for this endpoint; 18283 * this is used for flow-control purposes. 18284 */ 18285 stropt->so_hiwat = tcp->tcp_fused ? 18286 tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat) : 18287 MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 18288 18289 /* 18290 * Determine what write offset value to use depending on SACK and 18291 * whether the endpoint is fused or not. 18292 */ 18293 if (tcp->tcp_fused) { 18294 ASSERT(tcp->tcp_loopback); 18295 ASSERT(tcp->tcp_loopback_peer != NULL); 18296 /* 18297 * For fused tcp loopback, set the stream head's write 18298 * offset value to zero since we won't be needing any room 18299 * for TCP/IP headers. This would also improve performance 18300 * since it would reduce the amount of work done by kmem. 18301 * Non-fused tcp loopback case is handled separately below. 18302 */ 18303 stropt->so_wroff = 0; 18304 /* 18305 * Update the peer's transmit parameters according to 18306 * our recently calculated high water mark value. 18307 */ 18308 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18309 } else if (tcp->tcp_snd_sack_ok) { 18310 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18311 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18312 } else { 18313 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18314 tcps->tcps_wroff_xtra); 18315 } 18316 18317 /* 18318 * If this is endpoint is handling SSL, then reserve extra 18319 * offset and space at the end. 18320 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18321 * overriding the previous setting. The extra cost of signing and 18322 * encrypting multiple MSS-size records (12 of them with Ethernet), 18323 * instead of a single contiguous one by the stream head 18324 * largely outweighs the statistical reduction of ACKs, when 18325 * applicable. The peer will also save on decryption and verification 18326 * costs. 18327 */ 18328 if (tcp->tcp_kssl_ctx != NULL) { 18329 stropt->so_wroff += SSL3_WROFFSET; 18330 18331 stropt->so_flags |= SO_TAIL; 18332 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18333 18334 stropt->so_flags |= SO_COPYOPT; 18335 stropt->so_copyopt = ZCVMUNSAFE; 18336 18337 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18338 } 18339 18340 /* Send the options up */ 18341 putnext(q, stropt_mp); 18342 18343 /* 18344 * Pass up any data and/or a fin that has been received. 18345 * 18346 * Adjust receive window in case it had decreased 18347 * (because there is data <=> tcp_rcv_list != NULL) 18348 * while the connection was detached. Note that 18349 * in case the eager was flow-controlled, w/o this 18350 * code, the rwnd may never open up again! 18351 */ 18352 if (tcp->tcp_rcv_list != NULL) { 18353 /* We drain directly in case of fused tcp loopback */ 18354 sodirect_t *sodp; 18355 18356 if (!tcp->tcp_fused && canputnext(q)) { 18357 tcp->tcp_rwnd = q->q_hiwat; 18358 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18359 << tcp->tcp_rcv_ws; 18360 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18361 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18362 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18363 tcp_xmit_ctl(NULL, 18364 tcp, (tcp->tcp_swnd == 0) ? 18365 tcp->tcp_suna : tcp->tcp_snxt, 18366 tcp->tcp_rnxt, TH_ACK); 18367 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18368 } 18369 18370 } 18371 18372 SOD_PTR_ENTER(tcp, sodp); 18373 if (sodp != NULL) { 18374 /* Sodirect, move from rcv_list */ 18375 ASSERT(!tcp->tcp_fused); 18376 while ((mp = tcp->tcp_rcv_list) != NULL) { 18377 tcp->tcp_rcv_list = mp->b_next; 18378 mp->b_next = NULL; 18379 (void) tcp_rcv_sod_enqueue(tcp, sodp, mp, 18380 msgdsize(mp)); 18381 } 18382 tcp->tcp_rcv_last_head = NULL; 18383 tcp->tcp_rcv_last_tail = NULL; 18384 tcp->tcp_rcv_cnt = 0; 18385 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18386 /* sod_wakeup() did the mutex_exit() */ 18387 } else { 18388 /* Not sodirect, drain */ 18389 (void) tcp_rcv_drain(q, tcp); 18390 } 18391 18392 /* 18393 * For fused tcp loopback, back-enable peer endpoint 18394 * if it's currently flow-controlled. 18395 */ 18396 if (tcp->tcp_fused) { 18397 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18398 18399 ASSERT(peer_tcp != NULL); 18400 ASSERT(peer_tcp->tcp_fused); 18401 /* 18402 * In order to change the peer's tcp_flow_stopped, 18403 * we need to take locks for both end points. The 18404 * highest address is taken first. 18405 */ 18406 if (peer_tcp > tcp) { 18407 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18408 mutex_enter(&tcp->tcp_non_sq_lock); 18409 } else { 18410 mutex_enter(&tcp->tcp_non_sq_lock); 18411 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18412 } 18413 if (peer_tcp->tcp_flow_stopped) { 18414 tcp_clrqfull(peer_tcp); 18415 TCP_STAT(tcps, tcp_fusion_backenabled); 18416 } 18417 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18418 mutex_exit(&tcp->tcp_non_sq_lock); 18419 } 18420 } 18421 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18422 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18423 mp = tcp->tcp_ordrel_mp; 18424 tcp->tcp_ordrel_mp = NULL; 18425 tcp->tcp_ordrel_done = B_TRUE; 18426 putnext(q, mp); 18427 } 18428 if (tcp->tcp_hard_binding) { 18429 tcp->tcp_hard_binding = B_FALSE; 18430 tcp->tcp_hard_bound = B_TRUE; 18431 } 18432 18433 /* We can enable synchronous streams now */ 18434 if (tcp->tcp_fused) { 18435 tcp_fuse_syncstr_enable_pair(tcp); 18436 } 18437 18438 if (tcp->tcp_ka_enabled) { 18439 tcp->tcp_ka_last_intrvl = 0; 18440 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18441 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18442 } 18443 18444 /* 18445 * At this point, eager is fully established and will 18446 * have the following references - 18447 * 18448 * 2 references for connection to exist (1 for TCP and 1 for IP). 18449 * 1 reference for the squeue which will be dropped by the squeue as 18450 * soon as this function returns. 18451 * There will be 1 additonal reference for being in classifier 18452 * hash list provided something bad hasn't happened. 18453 */ 18454 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18455 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18456 } 18457 18458 /* 18459 * The function called through squeue to get behind listener's perimeter to 18460 * send a deffered conn_ind. 18461 */ 18462 /* ARGSUSED */ 18463 void 18464 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18465 { 18466 conn_t *connp = (conn_t *)arg; 18467 tcp_t *listener = connp->conn_tcp; 18468 18469 if (listener->tcp_state == TCPS_CLOSED || 18470 TCP_IS_DETACHED(listener)) { 18471 /* 18472 * If listener has closed, it would have caused a 18473 * a cleanup/blowoff to happen for the eager. 18474 */ 18475 tcp_t *tcp; 18476 struct T_conn_ind *conn_ind; 18477 18478 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18479 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18480 conn_ind->OPT_length); 18481 /* 18482 * We need to drop the ref on eager that was put 18483 * tcp_rput_data() before trying to send the conn_ind 18484 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18485 * and tcp_wput_accept() is sending this deferred conn_ind but 18486 * listener is closed so we drop the ref. 18487 */ 18488 CONN_DEC_REF(tcp->tcp_connp); 18489 freemsg(mp); 18490 return; 18491 } 18492 putnext(listener->tcp_rq, mp); 18493 } 18494 18495 18496 /* 18497 * This is the STREAMS entry point for T_CONN_RES coming down on 18498 * Acceptor STREAM when sockfs listener does accept processing. 18499 * Read the block comment on top of tcp_conn_request(). 18500 */ 18501 void 18502 tcp_wput_accept(queue_t *q, mblk_t *mp) 18503 { 18504 queue_t *rq = RD(q); 18505 struct T_conn_res *conn_res; 18506 tcp_t *eager; 18507 tcp_t *listener; 18508 struct T_ok_ack *ok; 18509 t_scalar_t PRIM_type; 18510 mblk_t *opt_mp; 18511 conn_t *econnp; 18512 18513 ASSERT(DB_TYPE(mp) == M_PROTO); 18514 18515 conn_res = (struct T_conn_res *)mp->b_rptr; 18516 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18517 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18518 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18519 if (mp != NULL) 18520 putnext(rq, mp); 18521 return; 18522 } 18523 switch (conn_res->PRIM_type) { 18524 case O_T_CONN_RES: 18525 case T_CONN_RES: 18526 /* 18527 * We pass up an err ack if allocb fails. This will 18528 * cause sockfs to issue a T_DISCON_REQ which will cause 18529 * tcp_eager_blowoff to be called. sockfs will then call 18530 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18531 * we need to do the allocb up here because we have to 18532 * make sure rq->q_qinfo->qi_qclose still points to the 18533 * correct function (tcpclose_accept) in case allocb 18534 * fails. 18535 */ 18536 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18537 if (opt_mp == NULL) { 18538 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18539 if (mp != NULL) 18540 putnext(rq, mp); 18541 return; 18542 } 18543 18544 bcopy(mp->b_rptr + conn_res->OPT_offset, 18545 &eager, conn_res->OPT_length); 18546 PRIM_type = conn_res->PRIM_type; 18547 mp->b_datap->db_type = M_PCPROTO; 18548 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18549 ok = (struct T_ok_ack *)mp->b_rptr; 18550 ok->PRIM_type = T_OK_ACK; 18551 ok->CORRECT_prim = PRIM_type; 18552 econnp = eager->tcp_connp; 18553 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18554 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18555 eager->tcp_rq = rq; 18556 eager->tcp_wq = q; 18557 rq->q_ptr = econnp; 18558 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18559 q->q_ptr = econnp; 18560 q->q_qinfo = &tcp_winit; 18561 listener = eager->tcp_listener; 18562 eager->tcp_issocket = B_TRUE; 18563 18564 /* 18565 * TCP is _D_SODIRECT and sockfs is directly above so 18566 * save shared sodirect_t pointer (if any). 18567 * 18568 * If tcp_fused and sodirect enabled disable it. 18569 */ 18570 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18571 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18572 /* Fused, disable sodirect */ 18573 mutex_enter(eager->tcp_sodirect->sod_lockp); 18574 SOD_DISABLE(eager->tcp_sodirect); 18575 mutex_exit(eager->tcp_sodirect->sod_lockp); 18576 eager->tcp_sodirect = NULL; 18577 } 18578 18579 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18580 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18581 ASSERT(econnp->conn_netstack == 18582 listener->tcp_connp->conn_netstack); 18583 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18584 18585 /* Put the ref for IP */ 18586 CONN_INC_REF(econnp); 18587 18588 /* 18589 * We should have minimum of 3 references on the conn 18590 * at this point. One each for TCP and IP and one for 18591 * the T_conn_ind that was sent up when the 3-way handshake 18592 * completed. In the normal case we would also have another 18593 * reference (making a total of 4) for the conn being in the 18594 * classifier hash list. However the eager could have received 18595 * an RST subsequently and tcp_closei_local could have removed 18596 * the eager from the classifier hash list, hence we can't 18597 * assert that reference. 18598 */ 18599 ASSERT(econnp->conn_ref >= 3); 18600 18601 /* 18602 * Send the new local address also up to sockfs. There 18603 * should already be enough space in the mp that came 18604 * down from soaccept(). 18605 */ 18606 if (eager->tcp_family == AF_INET) { 18607 sin_t *sin; 18608 18609 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18610 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18611 sin = (sin_t *)mp->b_wptr; 18612 mp->b_wptr += sizeof (sin_t); 18613 sin->sin_family = AF_INET; 18614 sin->sin_port = eager->tcp_lport; 18615 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18616 } else { 18617 sin6_t *sin6; 18618 18619 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18620 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18621 sin6 = (sin6_t *)mp->b_wptr; 18622 mp->b_wptr += sizeof (sin6_t); 18623 sin6->sin6_family = AF_INET6; 18624 sin6->sin6_port = eager->tcp_lport; 18625 if (eager->tcp_ipversion == IPV4_VERSION) { 18626 sin6->sin6_flowinfo = 0; 18627 IN6_IPADDR_TO_V4MAPPED( 18628 eager->tcp_ipha->ipha_src, 18629 &sin6->sin6_addr); 18630 } else { 18631 ASSERT(eager->tcp_ip6h != NULL); 18632 sin6->sin6_flowinfo = 18633 eager->tcp_ip6h->ip6_vcf & 18634 ~IPV6_VERS_AND_FLOW_MASK; 18635 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18636 } 18637 sin6->sin6_scope_id = 0; 18638 sin6->__sin6_src_id = 0; 18639 } 18640 18641 putnext(rq, mp); 18642 18643 opt_mp->b_datap->db_type = M_SETOPTS; 18644 opt_mp->b_wptr += sizeof (struct stroptions); 18645 18646 /* 18647 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18648 * from listener to acceptor. The message is chained on the 18649 * bind_mp which tcp_rput_other will send down to IP. 18650 */ 18651 if (listener->tcp_bound_if != 0) { 18652 /* allocate optmgmt req */ 18653 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18654 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18655 sizeof (int)); 18656 if (mp != NULL) 18657 linkb(opt_mp, mp); 18658 } 18659 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18660 uint_t on = 1; 18661 18662 /* allocate optmgmt req */ 18663 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18664 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18665 if (mp != NULL) 18666 linkb(opt_mp, mp); 18667 } 18668 18669 18670 mutex_enter(&listener->tcp_eager_lock); 18671 18672 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18673 18674 tcp_t *tail; 18675 tcp_t *tcp; 18676 mblk_t *mp1; 18677 18678 tcp = listener->tcp_eager_prev_q0; 18679 /* 18680 * listener->tcp_eager_prev_q0 points to the TAIL of the 18681 * deferred T_conn_ind queue. We need to get to the head 18682 * of the queue in order to send up T_conn_ind the same 18683 * order as how the 3WHS is completed. 18684 */ 18685 while (tcp != listener) { 18686 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18687 !tcp->tcp_kssl_pending) 18688 break; 18689 else 18690 tcp = tcp->tcp_eager_prev_q0; 18691 } 18692 /* None of the pending eagers can be sent up now */ 18693 if (tcp == listener) 18694 goto no_more_eagers; 18695 18696 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18697 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18698 /* Move from q0 to q */ 18699 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18700 listener->tcp_conn_req_cnt_q0--; 18701 listener->tcp_conn_req_cnt_q++; 18702 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18703 tcp->tcp_eager_prev_q0; 18704 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18705 tcp->tcp_eager_next_q0; 18706 tcp->tcp_eager_prev_q0 = NULL; 18707 tcp->tcp_eager_next_q0 = NULL; 18708 tcp->tcp_conn_def_q0 = B_FALSE; 18709 18710 /* Make sure the tcp isn't in the list of droppables */ 18711 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18712 tcp->tcp_eager_prev_drop_q0 == NULL); 18713 18714 /* 18715 * Insert at end of the queue because sockfs sends 18716 * down T_CONN_RES in chronological order. Leaving 18717 * the older conn indications at front of the queue 18718 * helps reducing search time. 18719 */ 18720 tail = listener->tcp_eager_last_q; 18721 if (tail != NULL) { 18722 tail->tcp_eager_next_q = tcp; 18723 } else { 18724 listener->tcp_eager_next_q = tcp; 18725 } 18726 listener->tcp_eager_last_q = tcp; 18727 tcp->tcp_eager_next_q = NULL; 18728 18729 /* Need to get inside the listener perimeter */ 18730 CONN_INC_REF(listener->tcp_connp); 18731 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18732 tcp_send_pending, listener->tcp_connp, 18733 SQTAG_TCP_SEND_PENDING); 18734 } 18735 no_more_eagers: 18736 tcp_eager_unlink(eager); 18737 mutex_exit(&listener->tcp_eager_lock); 18738 18739 /* 18740 * At this point, the eager is detached from the listener 18741 * but we still have an extra refs on eager (apart from the 18742 * usual tcp references). The ref was placed in tcp_rput_data 18743 * before sending the conn_ind in tcp_send_conn_ind. 18744 * The ref will be dropped in tcp_accept_finish(). 18745 */ 18746 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18747 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18748 return; 18749 default: 18750 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18751 if (mp != NULL) 18752 putnext(rq, mp); 18753 return; 18754 } 18755 } 18756 18757 static int 18758 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18759 { 18760 sin_t *sin = (sin_t *)sa; 18761 sin6_t *sin6 = (sin6_t *)sa; 18762 18763 switch (tcp->tcp_family) { 18764 case AF_INET: 18765 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18766 18767 if (*salenp < sizeof (sin_t)) 18768 return (EINVAL); 18769 18770 *sin = sin_null; 18771 sin->sin_family = AF_INET; 18772 sin->sin_port = tcp->tcp_lport; 18773 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18774 break; 18775 18776 case AF_INET6: 18777 if (*salenp < sizeof (sin6_t)) 18778 return (EINVAL); 18779 18780 *sin6 = sin6_null; 18781 sin6->sin6_family = AF_INET6; 18782 sin6->sin6_port = tcp->tcp_lport; 18783 if (tcp->tcp_ipversion == IPV4_VERSION) { 18784 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18785 &sin6->sin6_addr); 18786 } else { 18787 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18788 } 18789 break; 18790 } 18791 18792 return (0); 18793 } 18794 18795 static int 18796 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18797 { 18798 sin_t *sin = (sin_t *)sa; 18799 sin6_t *sin6 = (sin6_t *)sa; 18800 18801 if (tcp->tcp_state < TCPS_SYN_RCVD) 18802 return (ENOTCONN); 18803 18804 switch (tcp->tcp_family) { 18805 case AF_INET: 18806 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18807 18808 if (*salenp < sizeof (sin_t)) 18809 return (EINVAL); 18810 18811 *sin = sin_null; 18812 sin->sin_family = AF_INET; 18813 sin->sin_port = tcp->tcp_fport; 18814 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18815 sin->sin_addr.s_addr); 18816 break; 18817 18818 case AF_INET6: 18819 if (*salenp < sizeof (sin6_t)) 18820 return (EINVAL); 18821 18822 *sin6 = sin6_null; 18823 sin6->sin6_family = AF_INET6; 18824 sin6->sin6_port = tcp->tcp_fport; 18825 sin6->sin6_addr = tcp->tcp_remote_v6; 18826 if (tcp->tcp_ipversion == IPV6_VERSION) { 18827 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18828 ~IPV6_VERS_AND_FLOW_MASK; 18829 } 18830 break; 18831 } 18832 18833 return (0); 18834 } 18835 18836 /* 18837 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18838 */ 18839 static void 18840 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18841 { 18842 void *data; 18843 mblk_t *datamp = mp->b_cont; 18844 tcp_t *tcp = Q_TO_TCP(q); 18845 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18846 18847 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18848 cmdp->cb_error = EPROTO; 18849 qreply(q, mp); 18850 return; 18851 } 18852 18853 data = datamp->b_rptr; 18854 18855 switch (cmdp->cb_cmd) { 18856 case TI_GETPEERNAME: 18857 cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len); 18858 break; 18859 case TI_GETMYNAME: 18860 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 18861 break; 18862 default: 18863 cmdp->cb_error = EINVAL; 18864 break; 18865 } 18866 18867 qreply(q, mp); 18868 } 18869 18870 void 18871 tcp_wput(queue_t *q, mblk_t *mp) 18872 { 18873 conn_t *connp = Q_TO_CONN(q); 18874 tcp_t *tcp; 18875 void (*output_proc)(); 18876 t_scalar_t type; 18877 uchar_t *rptr; 18878 struct iocblk *iocp; 18879 uint32_t msize; 18880 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18881 18882 ASSERT(connp->conn_ref >= 2); 18883 18884 switch (DB_TYPE(mp)) { 18885 case M_DATA: 18886 tcp = connp->conn_tcp; 18887 ASSERT(tcp != NULL); 18888 18889 msize = msgdsize(mp); 18890 18891 mutex_enter(&tcp->tcp_non_sq_lock); 18892 tcp->tcp_squeue_bytes += msize; 18893 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18894 tcp_setqfull(tcp); 18895 } 18896 mutex_exit(&tcp->tcp_non_sq_lock); 18897 18898 CONN_INC_REF(connp); 18899 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18900 tcp_output, connp, SQTAG_TCP_OUTPUT); 18901 return; 18902 18903 case M_CMD: 18904 tcp_wput_cmdblk(q, mp); 18905 return; 18906 18907 case M_PROTO: 18908 case M_PCPROTO: 18909 /* 18910 * if it is a snmp message, don't get behind the squeue 18911 */ 18912 tcp = connp->conn_tcp; 18913 rptr = mp->b_rptr; 18914 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18915 type = ((union T_primitives *)rptr)->type; 18916 } else { 18917 if (tcp->tcp_debug) { 18918 (void) strlog(TCP_MOD_ID, 0, 1, 18919 SL_ERROR|SL_TRACE, 18920 "tcp_wput_proto, dropping one..."); 18921 } 18922 freemsg(mp); 18923 return; 18924 } 18925 if (type == T_SVR4_OPTMGMT_REQ) { 18926 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18927 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18928 cr)) { 18929 /* 18930 * This was a SNMP request 18931 */ 18932 return; 18933 } else { 18934 output_proc = tcp_wput_proto; 18935 } 18936 } else { 18937 output_proc = tcp_wput_proto; 18938 } 18939 break; 18940 case M_IOCTL: 18941 /* 18942 * Most ioctls can be processed right away without going via 18943 * squeues - process them right here. Those that do require 18944 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18945 * are processed by tcp_wput_ioctl(). 18946 */ 18947 iocp = (struct iocblk *)mp->b_rptr; 18948 tcp = connp->conn_tcp; 18949 18950 switch (iocp->ioc_cmd) { 18951 case TCP_IOC_ABORT_CONN: 18952 tcp_ioctl_abort_conn(q, mp); 18953 return; 18954 case TI_GETPEERNAME: 18955 case TI_GETMYNAME: 18956 mi_copyin(q, mp, NULL, 18957 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18958 return; 18959 case ND_SET: 18960 /* nd_getset does the necessary checks */ 18961 case ND_GET: 18962 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18963 CALL_IP_WPUT(connp, q, mp); 18964 return; 18965 } 18966 qreply(q, mp); 18967 return; 18968 case TCP_IOC_DEFAULT_Q: 18969 /* 18970 * Wants to be the default wq. Check the credentials 18971 * first, the rest is executed via squeue. 18972 */ 18973 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18974 iocp->ioc_error = EPERM; 18975 iocp->ioc_count = 0; 18976 mp->b_datap->db_type = M_IOCACK; 18977 qreply(q, mp); 18978 return; 18979 } 18980 output_proc = tcp_wput_ioctl; 18981 break; 18982 default: 18983 output_proc = tcp_wput_ioctl; 18984 break; 18985 } 18986 break; 18987 default: 18988 output_proc = tcp_wput_nondata; 18989 break; 18990 } 18991 18992 CONN_INC_REF(connp); 18993 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18994 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18995 } 18996 18997 /* 18998 * Initial STREAMS write side put() procedure for sockets. It tries to 18999 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 19000 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 19001 * are handled by tcp_wput() as usual. 19002 * 19003 * All further messages will also be handled by tcp_wput() because we cannot 19004 * be sure that the above short cut is safe later. 19005 */ 19006 static void 19007 tcp_wput_sock(queue_t *wq, mblk_t *mp) 19008 { 19009 conn_t *connp = Q_TO_CONN(wq); 19010 tcp_t *tcp = connp->conn_tcp; 19011 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 19012 19013 ASSERT(wq->q_qinfo == &tcp_sock_winit); 19014 wq->q_qinfo = &tcp_winit; 19015 19016 ASSERT(IPCL_IS_TCP(connp)); 19017 ASSERT(TCP_IS_SOCKET(tcp)); 19018 19019 if (DB_TYPE(mp) == M_PCPROTO && 19020 MBLKL(mp) == sizeof (struct T_capability_req) && 19021 car->PRIM_type == T_CAPABILITY_REQ) { 19022 tcp_capability_req(tcp, mp); 19023 return; 19024 } 19025 19026 tcp_wput(wq, mp); 19027 } 19028 19029 static boolean_t 19030 tcp_zcopy_check(tcp_t *tcp) 19031 { 19032 conn_t *connp = tcp->tcp_connp; 19033 ire_t *ire; 19034 boolean_t zc_enabled = B_FALSE; 19035 tcp_stack_t *tcps = tcp->tcp_tcps; 19036 19037 if (do_tcpzcopy == 2) 19038 zc_enabled = B_TRUE; 19039 else if (tcp->tcp_ipversion == IPV4_VERSION && 19040 IPCL_IS_CONNECTED(connp) && 19041 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 19042 connp->conn_dontroute == 0 && 19043 !connp->conn_nexthop_set && 19044 connp->conn_outgoing_ill == NULL && 19045 connp->conn_nofailover_ill == NULL && 19046 do_tcpzcopy == 1) { 19047 /* 19048 * the checks above closely resemble the fast path checks 19049 * in tcp_send_data(). 19050 */ 19051 mutex_enter(&connp->conn_lock); 19052 ire = connp->conn_ire_cache; 19053 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19054 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19055 IRE_REFHOLD(ire); 19056 if (ire->ire_stq != NULL) { 19057 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 19058 19059 zc_enabled = ill && (ill->ill_capabilities & 19060 ILL_CAPAB_ZEROCOPY) && 19061 (ill->ill_zerocopy_capab-> 19062 ill_zerocopy_flags != 0); 19063 } 19064 IRE_REFRELE(ire); 19065 } 19066 mutex_exit(&connp->conn_lock); 19067 } 19068 tcp->tcp_snd_zcopy_on = zc_enabled; 19069 if (!TCP_IS_DETACHED(tcp)) { 19070 if (zc_enabled) { 19071 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 19072 TCP_STAT(tcps, tcp_zcopy_on); 19073 } else { 19074 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 19075 TCP_STAT(tcps, tcp_zcopy_off); 19076 } 19077 } 19078 return (zc_enabled); 19079 } 19080 19081 static mblk_t * 19082 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 19083 { 19084 tcp_stack_t *tcps = tcp->tcp_tcps; 19085 19086 if (do_tcpzcopy == 2) 19087 return (bp); 19088 else if (tcp->tcp_snd_zcopy_on) { 19089 tcp->tcp_snd_zcopy_on = B_FALSE; 19090 if (!TCP_IS_DETACHED(tcp)) { 19091 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 19092 TCP_STAT(tcps, tcp_zcopy_disable); 19093 } 19094 } 19095 return (tcp_zcopy_backoff(tcp, bp, 0)); 19096 } 19097 19098 /* 19099 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 19100 * the original desballoca'ed segmapped mblk. 19101 */ 19102 static mblk_t * 19103 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 19104 { 19105 mblk_t *head, *tail, *nbp; 19106 tcp_stack_t *tcps = tcp->tcp_tcps; 19107 19108 if (IS_VMLOANED_MBLK(bp)) { 19109 TCP_STAT(tcps, tcp_zcopy_backoff); 19110 if ((head = copyb(bp)) == NULL) { 19111 /* fail to backoff; leave it for the next backoff */ 19112 tcp->tcp_xmit_zc_clean = B_FALSE; 19113 return (bp); 19114 } 19115 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19116 if (fix_xmitlist) 19117 tcp_zcopy_notify(tcp); 19118 else 19119 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19120 } 19121 nbp = bp->b_cont; 19122 if (fix_xmitlist) { 19123 head->b_prev = bp->b_prev; 19124 head->b_next = bp->b_next; 19125 if (tcp->tcp_xmit_tail == bp) 19126 tcp->tcp_xmit_tail = head; 19127 } 19128 bp->b_next = NULL; 19129 bp->b_prev = NULL; 19130 freeb(bp); 19131 } else { 19132 head = bp; 19133 nbp = bp->b_cont; 19134 } 19135 tail = head; 19136 while (nbp) { 19137 if (IS_VMLOANED_MBLK(nbp)) { 19138 TCP_STAT(tcps, tcp_zcopy_backoff); 19139 if ((tail->b_cont = copyb(nbp)) == NULL) { 19140 tcp->tcp_xmit_zc_clean = B_FALSE; 19141 tail->b_cont = nbp; 19142 return (head); 19143 } 19144 tail = tail->b_cont; 19145 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19146 if (fix_xmitlist) 19147 tcp_zcopy_notify(tcp); 19148 else 19149 tail->b_datap->db_struioflag |= 19150 STRUIO_ZCNOTIFY; 19151 } 19152 bp = nbp; 19153 nbp = nbp->b_cont; 19154 if (fix_xmitlist) { 19155 tail->b_prev = bp->b_prev; 19156 tail->b_next = bp->b_next; 19157 if (tcp->tcp_xmit_tail == bp) 19158 tcp->tcp_xmit_tail = tail; 19159 } 19160 bp->b_next = NULL; 19161 bp->b_prev = NULL; 19162 freeb(bp); 19163 } else { 19164 tail->b_cont = nbp; 19165 tail = nbp; 19166 nbp = nbp->b_cont; 19167 } 19168 } 19169 if (fix_xmitlist) { 19170 tcp->tcp_xmit_last = tail; 19171 tcp->tcp_xmit_zc_clean = B_TRUE; 19172 } 19173 return (head); 19174 } 19175 19176 static void 19177 tcp_zcopy_notify(tcp_t *tcp) 19178 { 19179 struct stdata *stp; 19180 19181 if (tcp->tcp_detached) 19182 return; 19183 stp = STREAM(tcp->tcp_rq); 19184 mutex_enter(&stp->sd_lock); 19185 stp->sd_flag |= STZCNOTIFY; 19186 cv_broadcast(&stp->sd_zcopy_wait); 19187 mutex_exit(&stp->sd_lock); 19188 } 19189 19190 static boolean_t 19191 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19192 { 19193 ire_t *ire; 19194 conn_t *connp = tcp->tcp_connp; 19195 tcp_stack_t *tcps = tcp->tcp_tcps; 19196 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19197 19198 mutex_enter(&connp->conn_lock); 19199 ire = connp->conn_ire_cache; 19200 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19201 19202 if ((ire != NULL) && 19203 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19204 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19205 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19206 IRE_REFHOLD(ire); 19207 mutex_exit(&connp->conn_lock); 19208 } else { 19209 boolean_t cached = B_FALSE; 19210 ts_label_t *tsl; 19211 19212 /* force a recheck later on */ 19213 tcp->tcp_ire_ill_check_done = B_FALSE; 19214 19215 TCP_DBGSTAT(tcps, tcp_ire_null1); 19216 connp->conn_ire_cache = NULL; 19217 mutex_exit(&connp->conn_lock); 19218 19219 if (ire != NULL) 19220 IRE_REFRELE_NOTR(ire); 19221 19222 tsl = crgetlabel(CONN_CRED(connp)); 19223 ire = (dst ? 19224 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19225 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19226 connp->conn_zoneid, tsl, ipst)); 19227 19228 if (ire == NULL) { 19229 TCP_STAT(tcps, tcp_ire_null); 19230 return (B_FALSE); 19231 } 19232 19233 IRE_REFHOLD_NOTR(ire); 19234 19235 mutex_enter(&connp->conn_lock); 19236 if (CONN_CACHE_IRE(connp)) { 19237 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19238 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19239 TCP_CHECK_IREINFO(tcp, ire); 19240 connp->conn_ire_cache = ire; 19241 cached = B_TRUE; 19242 } 19243 rw_exit(&ire->ire_bucket->irb_lock); 19244 } 19245 mutex_exit(&connp->conn_lock); 19246 19247 /* 19248 * We can continue to use the ire but since it was 19249 * not cached, we should drop the extra reference. 19250 */ 19251 if (!cached) 19252 IRE_REFRELE_NOTR(ire); 19253 19254 /* 19255 * Rampart note: no need to select a new label here, since 19256 * labels are not allowed to change during the life of a TCP 19257 * connection. 19258 */ 19259 } 19260 19261 *irep = ire; 19262 19263 return (B_TRUE); 19264 } 19265 19266 /* 19267 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19268 * 19269 * 0 = success; 19270 * 1 = failed to find ire and ill. 19271 */ 19272 static boolean_t 19273 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19274 { 19275 ipha_t *ipha; 19276 ipaddr_t dst; 19277 ire_t *ire; 19278 ill_t *ill; 19279 conn_t *connp = tcp->tcp_connp; 19280 mblk_t *ire_fp_mp; 19281 tcp_stack_t *tcps = tcp->tcp_tcps; 19282 19283 if (mp != NULL) 19284 ipha = (ipha_t *)mp->b_rptr; 19285 else 19286 ipha = tcp->tcp_ipha; 19287 dst = ipha->ipha_dst; 19288 19289 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19290 return (B_FALSE); 19291 19292 if ((ire->ire_flags & RTF_MULTIRT) || 19293 (ire->ire_stq == NULL) || 19294 (ire->ire_nce == NULL) || 19295 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19296 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19297 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19298 TCP_STAT(tcps, tcp_ip_ire_send); 19299 IRE_REFRELE(ire); 19300 return (B_FALSE); 19301 } 19302 19303 ill = ire_to_ill(ire); 19304 if (connp->conn_outgoing_ill != NULL) { 19305 ill_t *conn_outgoing_ill = NULL; 19306 /* 19307 * Choose a good ill in the group to send the packets on. 19308 */ 19309 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 19310 ill = ire_to_ill(ire); 19311 } 19312 ASSERT(ill != NULL); 19313 19314 if (!tcp->tcp_ire_ill_check_done) { 19315 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19316 tcp->tcp_ire_ill_check_done = B_TRUE; 19317 } 19318 19319 *irep = ire; 19320 *illp = ill; 19321 19322 return (B_TRUE); 19323 } 19324 19325 static void 19326 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19327 { 19328 ipha_t *ipha; 19329 ipaddr_t src; 19330 ipaddr_t dst; 19331 uint32_t cksum; 19332 ire_t *ire; 19333 uint16_t *up; 19334 ill_t *ill; 19335 conn_t *connp = tcp->tcp_connp; 19336 uint32_t hcksum_txflags = 0; 19337 mblk_t *ire_fp_mp; 19338 uint_t ire_fp_mp_len; 19339 tcp_stack_t *tcps = tcp->tcp_tcps; 19340 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19341 19342 ASSERT(DB_TYPE(mp) == M_DATA); 19343 19344 if (DB_CRED(mp) == NULL) 19345 mblk_setcred(mp, CONN_CRED(connp)); 19346 19347 ipha = (ipha_t *)mp->b_rptr; 19348 src = ipha->ipha_src; 19349 dst = ipha->ipha_dst; 19350 19351 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 19352 19353 /* 19354 * Drop off fast path for IPv6 and also if options are present or 19355 * we need to resolve a TS label. 19356 */ 19357 if (tcp->tcp_ipversion != IPV4_VERSION || 19358 !IPCL_IS_CONNECTED(connp) || 19359 !CONN_IS_LSO_MD_FASTPATH(connp) || 19360 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19361 !connp->conn_ulp_labeled || 19362 ipha->ipha_ident == IP_HDR_INCLUDED || 19363 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19364 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19365 if (tcp->tcp_snd_zcopy_aware) 19366 mp = tcp_zcopy_disable(tcp, mp); 19367 TCP_STAT(tcps, tcp_ip_send); 19368 CALL_IP_WPUT(connp, q, mp); 19369 return; 19370 } 19371 19372 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19373 if (tcp->tcp_snd_zcopy_aware) 19374 mp = tcp_zcopy_backoff(tcp, mp, 0); 19375 CALL_IP_WPUT(connp, q, mp); 19376 return; 19377 } 19378 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19379 ire_fp_mp_len = MBLKL(ire_fp_mp); 19380 19381 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19382 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19383 #ifndef _BIG_ENDIAN 19384 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19385 #endif 19386 19387 /* 19388 * Check to see if we need to re-enable LSO/MDT for this connection 19389 * because it was previously disabled due to changes in the ill; 19390 * note that by doing it here, this re-enabling only applies when 19391 * the packet is not dispatched through CALL_IP_WPUT(). 19392 * 19393 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19394 * case, since that's how we ended up here. For IPv6, we do the 19395 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19396 */ 19397 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19398 /* 19399 * Restore LSO for this connection, so that next time around 19400 * it is eligible to go through tcp_lsosend() path again. 19401 */ 19402 TCP_STAT(tcps, tcp_lso_enabled); 19403 tcp->tcp_lso = B_TRUE; 19404 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19405 "interface %s\n", (void *)connp, ill->ill_name)); 19406 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19407 /* 19408 * Restore MDT for this connection, so that next time around 19409 * it is eligible to go through tcp_multisend() path again. 19410 */ 19411 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19412 tcp->tcp_mdt = B_TRUE; 19413 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19414 "interface %s\n", (void *)connp, ill->ill_name)); 19415 } 19416 19417 if (tcp->tcp_snd_zcopy_aware) { 19418 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19419 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19420 mp = tcp_zcopy_disable(tcp, mp); 19421 /* 19422 * we shouldn't need to reset ipha as the mp containing 19423 * ipha should never be a zero-copy mp. 19424 */ 19425 } 19426 19427 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19428 ASSERT(ill->ill_hcksum_capab != NULL); 19429 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19430 } 19431 19432 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19433 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19434 19435 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19436 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19437 19438 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19439 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19440 19441 /* Software checksum? */ 19442 if (DB_CKSUMFLAGS(mp) == 0) { 19443 TCP_STAT(tcps, tcp_out_sw_cksum); 19444 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19445 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19446 } 19447 19448 ipha->ipha_fragment_offset_and_flags |= 19449 (uint32_t)htons(ire->ire_frag_flag); 19450 19451 /* Calculate IP header checksum if hardware isn't capable */ 19452 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19453 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19454 ((uint16_t *)ipha)[4]); 19455 } 19456 19457 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19458 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19459 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19460 19461 UPDATE_OB_PKT_COUNT(ire); 19462 ire->ire_last_used_time = lbolt; 19463 19464 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19465 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19466 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19467 ntohs(ipha->ipha_length)); 19468 19469 if (ILL_DLS_CAPABLE(ill)) { 19470 /* 19471 * Send the packet directly to DLD, where it may be queued 19472 * depending on the availability of transmit resources at 19473 * the media layer. 19474 */ 19475 IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len); 19476 } else { 19477 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19478 DTRACE_PROBE4(ip4__physical__out__start, 19479 ill_t *, NULL, ill_t *, out_ill, 19480 ipha_t *, ipha, mblk_t *, mp); 19481 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19482 ipst->ips_ipv4firewall_physical_out, 19483 NULL, out_ill, ipha, mp, mp, 0, ipst); 19484 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19485 19486 if (mp != NULL) { 19487 if (ipst->ips_ipobs_enabled) { 19488 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, 19489 IP_REAL_ZONEID(connp->conn_zoneid, ipst), 19490 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, 19491 ipst); 19492 } 19493 DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL); 19494 putnext(ire->ire_stq, mp); 19495 } 19496 } 19497 IRE_REFRELE(ire); 19498 } 19499 19500 /* 19501 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19502 * if the receiver shrinks the window, i.e. moves the right window to the 19503 * left, the we should not send new data, but should retransmit normally the 19504 * old unacked data between suna and suna + swnd. We might has sent data 19505 * that is now outside the new window, pretend that we didn't send it. 19506 */ 19507 static void 19508 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19509 { 19510 uint32_t snxt = tcp->tcp_snxt; 19511 mblk_t *xmit_tail; 19512 int32_t offset; 19513 19514 ASSERT(shrunk_count > 0); 19515 19516 /* Pretend we didn't send the data outside the window */ 19517 snxt -= shrunk_count; 19518 19519 /* Get the mblk and the offset in it per the shrunk window */ 19520 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19521 19522 ASSERT(xmit_tail != NULL); 19523 19524 /* Reset all the values per the now shrunk window */ 19525 tcp->tcp_snxt = snxt; 19526 tcp->tcp_xmit_tail = xmit_tail; 19527 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19528 offset; 19529 tcp->tcp_unsent += shrunk_count; 19530 19531 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19532 /* 19533 * Make sure the timer is running so that we will probe a zero 19534 * window. 19535 */ 19536 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19537 } 19538 19539 19540 /* 19541 * The TCP normal data output path. 19542 * NOTE: the logic of the fast path is duplicated from this function. 19543 */ 19544 static void 19545 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19546 { 19547 int len; 19548 mblk_t *local_time; 19549 mblk_t *mp1; 19550 uint32_t snxt; 19551 int tail_unsent; 19552 int tcpstate; 19553 int usable = 0; 19554 mblk_t *xmit_tail; 19555 queue_t *q = tcp->tcp_wq; 19556 int32_t mss; 19557 int32_t num_sack_blk = 0; 19558 int32_t tcp_hdr_len; 19559 int32_t tcp_tcp_hdr_len; 19560 int mdt_thres; 19561 int rc; 19562 tcp_stack_t *tcps = tcp->tcp_tcps; 19563 ip_stack_t *ipst; 19564 19565 tcpstate = tcp->tcp_state; 19566 if (mp == NULL) { 19567 /* 19568 * tcp_wput_data() with NULL mp should only be called when 19569 * there is unsent data. 19570 */ 19571 ASSERT(tcp->tcp_unsent > 0); 19572 /* Really tacky... but we need this for detached closes. */ 19573 len = tcp->tcp_unsent; 19574 goto data_null; 19575 } 19576 19577 #if CCS_STATS 19578 wrw_stats.tot.count++; 19579 wrw_stats.tot.bytes += msgdsize(mp); 19580 #endif 19581 ASSERT(mp->b_datap->db_type == M_DATA); 19582 /* 19583 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19584 * or before a connection attempt has begun. 19585 */ 19586 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19587 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19588 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19589 #ifdef DEBUG 19590 cmn_err(CE_WARN, 19591 "tcp_wput_data: data after ordrel, %s", 19592 tcp_display(tcp, NULL, 19593 DISP_ADDR_AND_PORT)); 19594 #else 19595 if (tcp->tcp_debug) { 19596 (void) strlog(TCP_MOD_ID, 0, 1, 19597 SL_TRACE|SL_ERROR, 19598 "tcp_wput_data: data after ordrel, %s\n", 19599 tcp_display(tcp, NULL, 19600 DISP_ADDR_AND_PORT)); 19601 } 19602 #endif /* DEBUG */ 19603 } 19604 if (tcp->tcp_snd_zcopy_aware && 19605 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19606 tcp_zcopy_notify(tcp); 19607 freemsg(mp); 19608 mutex_enter(&tcp->tcp_non_sq_lock); 19609 if (tcp->tcp_flow_stopped && 19610 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19611 tcp_clrqfull(tcp); 19612 } 19613 mutex_exit(&tcp->tcp_non_sq_lock); 19614 return; 19615 } 19616 19617 /* Strip empties */ 19618 for (;;) { 19619 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19620 (uintptr_t)INT_MAX); 19621 len = (int)(mp->b_wptr - mp->b_rptr); 19622 if (len > 0) 19623 break; 19624 mp1 = mp; 19625 mp = mp->b_cont; 19626 freeb(mp1); 19627 if (!mp) { 19628 return; 19629 } 19630 } 19631 19632 /* If we are the first on the list ... */ 19633 if (tcp->tcp_xmit_head == NULL) { 19634 tcp->tcp_xmit_head = mp; 19635 tcp->tcp_xmit_tail = mp; 19636 tcp->tcp_xmit_tail_unsent = len; 19637 } else { 19638 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19639 struct datab *dp; 19640 19641 mp1 = tcp->tcp_xmit_last; 19642 if (len < tcp_tx_pull_len && 19643 (dp = mp1->b_datap)->db_ref == 1 && 19644 dp->db_lim - mp1->b_wptr >= len) { 19645 ASSERT(len > 0); 19646 ASSERT(!mp1->b_cont); 19647 if (len == 1) { 19648 *mp1->b_wptr++ = *mp->b_rptr; 19649 } else { 19650 bcopy(mp->b_rptr, mp1->b_wptr, len); 19651 mp1->b_wptr += len; 19652 } 19653 if (mp1 == tcp->tcp_xmit_tail) 19654 tcp->tcp_xmit_tail_unsent += len; 19655 mp1->b_cont = mp->b_cont; 19656 if (tcp->tcp_snd_zcopy_aware && 19657 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19658 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19659 freeb(mp); 19660 mp = mp1; 19661 } else { 19662 tcp->tcp_xmit_last->b_cont = mp; 19663 } 19664 len += tcp->tcp_unsent; 19665 } 19666 19667 /* Tack on however many more positive length mblks we have */ 19668 if ((mp1 = mp->b_cont) != NULL) { 19669 do { 19670 int tlen; 19671 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19672 (uintptr_t)INT_MAX); 19673 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19674 if (tlen <= 0) { 19675 mp->b_cont = mp1->b_cont; 19676 freeb(mp1); 19677 } else { 19678 len += tlen; 19679 mp = mp1; 19680 } 19681 } while ((mp1 = mp->b_cont) != NULL); 19682 } 19683 tcp->tcp_xmit_last = mp; 19684 tcp->tcp_unsent = len; 19685 19686 if (urgent) 19687 usable = 1; 19688 19689 data_null: 19690 snxt = tcp->tcp_snxt; 19691 xmit_tail = tcp->tcp_xmit_tail; 19692 tail_unsent = tcp->tcp_xmit_tail_unsent; 19693 19694 /* 19695 * Note that tcp_mss has been adjusted to take into account the 19696 * timestamp option if applicable. Because SACK options do not 19697 * appear in every TCP segments and they are of variable lengths, 19698 * they cannot be included in tcp_mss. Thus we need to calculate 19699 * the actual segment length when we need to send a segment which 19700 * includes SACK options. 19701 */ 19702 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19703 int32_t opt_len; 19704 19705 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19706 tcp->tcp_num_sack_blk); 19707 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19708 2 + TCPOPT_HEADER_LEN; 19709 mss = tcp->tcp_mss - opt_len; 19710 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19711 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19712 } else { 19713 mss = tcp->tcp_mss; 19714 tcp_hdr_len = tcp->tcp_hdr_len; 19715 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19716 } 19717 19718 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19719 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19720 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19721 } 19722 if (tcpstate == TCPS_SYN_RCVD) { 19723 /* 19724 * The three-way connection establishment handshake is not 19725 * complete yet. We want to queue the data for transmission 19726 * after entering ESTABLISHED state (RFC793). A jump to 19727 * "done" label effectively leaves data on the queue. 19728 */ 19729 goto done; 19730 } else { 19731 int usable_r; 19732 19733 /* 19734 * In the special case when cwnd is zero, which can only 19735 * happen if the connection is ECN capable, return now. 19736 * New segments is sent using tcp_timer(). The timer 19737 * is set in tcp_rput_data(). 19738 */ 19739 if (tcp->tcp_cwnd == 0) { 19740 /* 19741 * Note that tcp_cwnd is 0 before 3-way handshake is 19742 * finished. 19743 */ 19744 ASSERT(tcp->tcp_ecn_ok || 19745 tcp->tcp_state < TCPS_ESTABLISHED); 19746 return; 19747 } 19748 19749 /* NOTE: trouble if xmitting while SYN not acked? */ 19750 usable_r = snxt - tcp->tcp_suna; 19751 usable_r = tcp->tcp_swnd - usable_r; 19752 19753 /* 19754 * Check if the receiver has shrunk the window. If 19755 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19756 * cannot be set as there is unsent data, so FIN cannot 19757 * be sent out. Otherwise, we need to take into account 19758 * of FIN as it consumes an "invisible" sequence number. 19759 */ 19760 ASSERT(tcp->tcp_fin_sent == 0); 19761 if (usable_r < 0) { 19762 /* 19763 * The receiver has shrunk the window and we have sent 19764 * -usable_r date beyond the window, re-adjust. 19765 * 19766 * If TCP window scaling is enabled, there can be 19767 * round down error as the advertised receive window 19768 * is actually right shifted n bits. This means that 19769 * the lower n bits info is wiped out. It will look 19770 * like the window is shrunk. Do a check here to 19771 * see if the shrunk amount is actually within the 19772 * error in window calculation. If it is, just 19773 * return. Note that this check is inside the 19774 * shrunk window check. This makes sure that even 19775 * though tcp_process_shrunk_swnd() is not called, 19776 * we will stop further processing. 19777 */ 19778 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19779 tcp_process_shrunk_swnd(tcp, -usable_r); 19780 } 19781 return; 19782 } 19783 19784 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19785 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19786 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19787 19788 /* usable = MIN(usable, unsent) */ 19789 if (usable_r > len) 19790 usable_r = len; 19791 19792 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19793 if (usable_r > 0) { 19794 usable = usable_r; 19795 } else { 19796 /* Bypass all other unnecessary processing. */ 19797 goto done; 19798 } 19799 } 19800 19801 local_time = (mblk_t *)lbolt; 19802 19803 /* 19804 * "Our" Nagle Algorithm. This is not the same as in the old 19805 * BSD. This is more in line with the true intent of Nagle. 19806 * 19807 * The conditions are: 19808 * 1. The amount of unsent data (or amount of data which can be 19809 * sent, whichever is smaller) is less than Nagle limit. 19810 * 2. The last sent size is also less than Nagle limit. 19811 * 3. There is unack'ed data. 19812 * 4. Urgent pointer is not set. Send urgent data ignoring the 19813 * Nagle algorithm. This reduces the probability that urgent 19814 * bytes get "merged" together. 19815 * 5. The app has not closed the connection. This eliminates the 19816 * wait time of the receiving side waiting for the last piece of 19817 * (small) data. 19818 * 19819 * If all are satisified, exit without sending anything. Note 19820 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19821 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19822 * 4095). 19823 */ 19824 if (usable < (int)tcp->tcp_naglim && 19825 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19826 snxt != tcp->tcp_suna && 19827 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19828 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19829 goto done; 19830 } 19831 19832 if (tcp->tcp_cork) { 19833 /* 19834 * if the tcp->tcp_cork option is set, then we have to force 19835 * TCP not to send partial segment (smaller than MSS bytes). 19836 * We are calculating the usable now based on full mss and 19837 * will save the rest of remaining data for later. 19838 */ 19839 if (usable < mss) 19840 goto done; 19841 usable = (usable / mss) * mss; 19842 } 19843 19844 /* Update the latest receive window size in TCP header. */ 19845 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19846 tcp->tcp_tcph->th_win); 19847 19848 /* 19849 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19850 * 19851 * 1. Simple TCP/IP{v4,v6} (no options). 19852 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19853 * 3. If the TCP connection is in ESTABLISHED state. 19854 * 4. The TCP is not detached. 19855 * 19856 * If any of the above conditions have changed during the 19857 * connection, stop using LSO/MDT and restore the stream head 19858 * parameters accordingly. 19859 */ 19860 ipst = tcps->tcps_netstack->netstack_ip; 19861 19862 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19863 ((tcp->tcp_ipversion == IPV4_VERSION && 19864 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19865 (tcp->tcp_ipversion == IPV6_VERSION && 19866 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19867 tcp->tcp_state != TCPS_ESTABLISHED || 19868 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19869 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19870 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19871 if (tcp->tcp_lso) { 19872 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19873 tcp->tcp_lso = B_FALSE; 19874 } else { 19875 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19876 tcp->tcp_mdt = B_FALSE; 19877 } 19878 19879 /* Anything other than detached is considered pathological */ 19880 if (!TCP_IS_DETACHED(tcp)) { 19881 if (tcp->tcp_lso) 19882 TCP_STAT(tcps, tcp_lso_disabled); 19883 else 19884 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19885 (void) tcp_maxpsz_set(tcp, B_TRUE); 19886 } 19887 } 19888 19889 /* Use MDT if sendable amount is greater than the threshold */ 19890 if (tcp->tcp_mdt && 19891 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19892 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19893 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19894 (tcp->tcp_valid_bits == 0 || 19895 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19896 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19897 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19898 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19899 local_time, mdt_thres); 19900 } else { 19901 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19902 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19903 local_time, INT_MAX); 19904 } 19905 19906 /* Pretend that all we were trying to send really got sent */ 19907 if (rc < 0 && tail_unsent < 0) { 19908 do { 19909 xmit_tail = xmit_tail->b_cont; 19910 xmit_tail->b_prev = local_time; 19911 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19912 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19913 tail_unsent += (int)(xmit_tail->b_wptr - 19914 xmit_tail->b_rptr); 19915 } while (tail_unsent < 0); 19916 } 19917 done:; 19918 tcp->tcp_xmit_tail = xmit_tail; 19919 tcp->tcp_xmit_tail_unsent = tail_unsent; 19920 len = tcp->tcp_snxt - snxt; 19921 if (len) { 19922 /* 19923 * If new data was sent, need to update the notsack 19924 * list, which is, afterall, data blocks that have 19925 * not been sack'ed by the receiver. New data is 19926 * not sack'ed. 19927 */ 19928 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19929 /* len is a negative value. */ 19930 tcp->tcp_pipe -= len; 19931 tcp_notsack_update(&(tcp->tcp_notsack_list), 19932 tcp->tcp_snxt, snxt, 19933 &(tcp->tcp_num_notsack_blk), 19934 &(tcp->tcp_cnt_notsack_list)); 19935 } 19936 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19937 tcp->tcp_rack = tcp->tcp_rnxt; 19938 tcp->tcp_rack_cnt = 0; 19939 if ((snxt + len) == tcp->tcp_suna) { 19940 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19941 } 19942 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19943 /* 19944 * Didn't send anything. Make sure the timer is running 19945 * so that we will probe a zero window. 19946 */ 19947 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19948 } 19949 /* Note that len is the amount we just sent but with a negative sign */ 19950 tcp->tcp_unsent += len; 19951 mutex_enter(&tcp->tcp_non_sq_lock); 19952 if (tcp->tcp_flow_stopped) { 19953 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19954 tcp_clrqfull(tcp); 19955 } 19956 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19957 tcp_setqfull(tcp); 19958 } 19959 mutex_exit(&tcp->tcp_non_sq_lock); 19960 } 19961 19962 /* 19963 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19964 * outgoing TCP header with the template header, as well as other 19965 * options such as time-stamp, ECN and/or SACK. 19966 */ 19967 static void 19968 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19969 { 19970 tcph_t *tcp_tmpl, *tcp_h; 19971 uint32_t *dst, *src; 19972 int hdrlen; 19973 19974 ASSERT(OK_32PTR(rptr)); 19975 19976 /* Template header */ 19977 tcp_tmpl = tcp->tcp_tcph; 19978 19979 /* Header of outgoing packet */ 19980 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19981 19982 /* dst and src are opaque 32-bit fields, used for copying */ 19983 dst = (uint32_t *)rptr; 19984 src = (uint32_t *)tcp->tcp_iphc; 19985 hdrlen = tcp->tcp_hdr_len; 19986 19987 /* Fill time-stamp option if needed */ 19988 if (tcp->tcp_snd_ts_ok) { 19989 U32_TO_BE32((uint32_t)now, 19990 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19991 U32_TO_BE32(tcp->tcp_ts_recent, 19992 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19993 } else { 19994 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19995 } 19996 19997 /* 19998 * Copy the template header; is this really more efficient than 19999 * calling bcopy()? For simple IPv4/TCP, it may be the case, 20000 * but perhaps not for other scenarios. 20001 */ 20002 dst[0] = src[0]; 20003 dst[1] = src[1]; 20004 dst[2] = src[2]; 20005 dst[3] = src[3]; 20006 dst[4] = src[4]; 20007 dst[5] = src[5]; 20008 dst[6] = src[6]; 20009 dst[7] = src[7]; 20010 dst[8] = src[8]; 20011 dst[9] = src[9]; 20012 if (hdrlen -= 40) { 20013 hdrlen >>= 2; 20014 dst += 10; 20015 src += 10; 20016 do { 20017 *dst++ = *src++; 20018 } while (--hdrlen); 20019 } 20020 20021 /* 20022 * Set the ECN info in the TCP header if it is not a zero 20023 * window probe. Zero window probe is only sent in 20024 * tcp_wput_data() and tcp_timer(). 20025 */ 20026 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 20027 SET_ECT(tcp, rptr); 20028 20029 if (tcp->tcp_ecn_echo_on) 20030 tcp_h->th_flags[0] |= TH_ECE; 20031 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 20032 tcp_h->th_flags[0] |= TH_CWR; 20033 tcp->tcp_ecn_cwr_sent = B_TRUE; 20034 } 20035 } 20036 20037 /* Fill in SACK options */ 20038 if (num_sack_blk > 0) { 20039 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 20040 sack_blk_t *tmp; 20041 int32_t i; 20042 20043 wptr[0] = TCPOPT_NOP; 20044 wptr[1] = TCPOPT_NOP; 20045 wptr[2] = TCPOPT_SACK; 20046 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 20047 sizeof (sack_blk_t); 20048 wptr += TCPOPT_REAL_SACK_LEN; 20049 20050 tmp = tcp->tcp_sack_list; 20051 for (i = 0; i < num_sack_blk; i++) { 20052 U32_TO_BE32(tmp[i].begin, wptr); 20053 wptr += sizeof (tcp_seq); 20054 U32_TO_BE32(tmp[i].end, wptr); 20055 wptr += sizeof (tcp_seq); 20056 } 20057 tcp_h->th_offset_and_rsrvd[0] += 20058 ((num_sack_blk * 2 + 1) << 4); 20059 } 20060 } 20061 20062 /* 20063 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 20064 * the destination address and SAP attribute, and if necessary, the 20065 * hardware checksum offload attribute to a Multidata message. 20066 */ 20067 static int 20068 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 20069 const uint32_t start, const uint32_t stuff, const uint32_t end, 20070 const uint32_t flags, tcp_stack_t *tcps) 20071 { 20072 /* Add global destination address & SAP attribute */ 20073 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 20074 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 20075 "destination address+SAP\n")); 20076 20077 if (dlmp != NULL) 20078 TCP_STAT(tcps, tcp_mdt_allocfail); 20079 return (-1); 20080 } 20081 20082 /* Add global hwcksum attribute */ 20083 if (hwcksum && 20084 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 20085 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 20086 "checksum attribute\n")); 20087 20088 TCP_STAT(tcps, tcp_mdt_allocfail); 20089 return (-1); 20090 } 20091 20092 return (0); 20093 } 20094 20095 /* 20096 * Smaller and private version of pdescinfo_t used specifically for TCP, 20097 * which allows for only two payload spans per packet. 20098 */ 20099 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 20100 20101 /* 20102 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 20103 * scheme, and returns one the following: 20104 * 20105 * -1 = failed allocation. 20106 * 0 = success; burst count reached, or usable send window is too small, 20107 * and that we'd rather wait until later before sending again. 20108 */ 20109 static int 20110 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20111 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20112 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20113 const int mdt_thres) 20114 { 20115 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 20116 multidata_t *mmd; 20117 uint_t obsegs, obbytes, hdr_frag_sz; 20118 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 20119 int num_burst_seg, max_pld; 20120 pdesc_t *pkt; 20121 tcp_pdescinfo_t tcp_pkt_info; 20122 pdescinfo_t *pkt_info; 20123 int pbuf_idx, pbuf_idx_nxt; 20124 int seg_len, len, spill, af; 20125 boolean_t add_buffer, zcopy, clusterwide; 20126 boolean_t rconfirm = B_FALSE; 20127 boolean_t done = B_FALSE; 20128 uint32_t cksum; 20129 uint32_t hwcksum_flags; 20130 ire_t *ire = NULL; 20131 ill_t *ill; 20132 ipha_t *ipha; 20133 ip6_t *ip6h; 20134 ipaddr_t src, dst; 20135 ill_zerocopy_capab_t *zc_cap = NULL; 20136 uint16_t *up; 20137 int err; 20138 conn_t *connp; 20139 tcp_stack_t *tcps = tcp->tcp_tcps; 20140 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20141 int usable_mmd, tail_unsent_mmd; 20142 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 20143 mblk_t *xmit_tail_mmd; 20144 20145 #ifdef _BIG_ENDIAN 20146 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 20147 #else 20148 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 20149 #endif 20150 20151 #define PREP_NEW_MULTIDATA() { \ 20152 mmd = NULL; \ 20153 md_mp = md_hbuf = NULL; \ 20154 cur_hdr_off = 0; \ 20155 max_pld = tcp->tcp_mdt_max_pld; \ 20156 pbuf_idx = pbuf_idx_nxt = -1; \ 20157 add_buffer = B_TRUE; \ 20158 zcopy = B_FALSE; \ 20159 } 20160 20161 #define PREP_NEW_PBUF() { \ 20162 md_pbuf = md_pbuf_nxt = NULL; \ 20163 pbuf_idx = pbuf_idx_nxt = -1; \ 20164 cur_pld_off = 0; \ 20165 first_snxt = *snxt; \ 20166 ASSERT(*tail_unsent > 0); \ 20167 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20168 } 20169 20170 ASSERT(mdt_thres >= mss); 20171 ASSERT(*usable > 0 && *usable > mdt_thres); 20172 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20173 ASSERT(!TCP_IS_DETACHED(tcp)); 20174 ASSERT(tcp->tcp_valid_bits == 0 || 20175 tcp->tcp_valid_bits == TCP_FSS_VALID); 20176 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20177 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20178 (tcp->tcp_ipversion == IPV6_VERSION && 20179 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20180 20181 connp = tcp->tcp_connp; 20182 ASSERT(connp != NULL); 20183 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20184 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20185 20186 usable_mmd = tail_unsent_mmd = 0; 20187 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 20188 xmit_tail_mmd = NULL; 20189 /* 20190 * Note that tcp will only declare at most 2 payload spans per 20191 * packet, which is much lower than the maximum allowable number 20192 * of packet spans per Multidata. For this reason, we use the 20193 * privately declared and smaller descriptor info structure, in 20194 * order to save some stack space. 20195 */ 20196 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20197 20198 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20199 if (af == AF_INET) { 20200 dst = tcp->tcp_ipha->ipha_dst; 20201 src = tcp->tcp_ipha->ipha_src; 20202 ASSERT(!CLASSD(dst)); 20203 } 20204 ASSERT(af == AF_INET || 20205 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20206 20207 obsegs = obbytes = 0; 20208 num_burst_seg = tcp->tcp_snd_burst; 20209 md_mp_head = NULL; 20210 PREP_NEW_MULTIDATA(); 20211 20212 /* 20213 * Before we go on further, make sure there is an IRE that we can 20214 * use, and that the ILL supports MDT. Otherwise, there's no point 20215 * in proceeding any further, and we should just hand everything 20216 * off to the legacy path. 20217 */ 20218 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20219 goto legacy_send_no_md; 20220 20221 ASSERT(ire != NULL); 20222 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20223 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20224 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20225 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20226 /* 20227 * If we do support loopback for MDT (which requires modifications 20228 * to the receiving paths), the following assertions should go away, 20229 * and we would be sending the Multidata to loopback conn later on. 20230 */ 20231 ASSERT(!IRE_IS_LOCAL(ire)); 20232 ASSERT(ire->ire_stq != NULL); 20233 20234 ill = ire_to_ill(ire); 20235 ASSERT(ill != NULL); 20236 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20237 20238 if (!tcp->tcp_ire_ill_check_done) { 20239 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20240 tcp->tcp_ire_ill_check_done = B_TRUE; 20241 } 20242 20243 /* 20244 * If the underlying interface conditions have changed, or if the 20245 * new interface does not support MDT, go back to legacy path. 20246 */ 20247 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20248 /* don't go through this path anymore for this connection */ 20249 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20250 tcp->tcp_mdt = B_FALSE; 20251 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20252 "interface %s\n", (void *)connp, ill->ill_name)); 20253 /* IRE will be released prior to returning */ 20254 goto legacy_send_no_md; 20255 } 20256 20257 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20258 zc_cap = ill->ill_zerocopy_capab; 20259 20260 /* 20261 * Check if we can take tcp fast-path. Note that "incomplete" 20262 * ire's (where the link-layer for next hop is not resolved 20263 * or where the fast-path header in nce_fp_mp is not available 20264 * yet) are sent down the legacy (slow) path. 20265 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20266 */ 20267 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20268 /* IRE will be released prior to returning */ 20269 goto legacy_send_no_md; 20270 } 20271 20272 /* go to legacy path if interface doesn't support zerocopy */ 20273 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20274 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20275 /* IRE will be released prior to returning */ 20276 goto legacy_send_no_md; 20277 } 20278 20279 /* does the interface support hardware checksum offload? */ 20280 hwcksum_flags = 0; 20281 if (ILL_HCKSUM_CAPABLE(ill) && 20282 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20283 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20284 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20285 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20286 HCKSUM_IPHDRCKSUM) 20287 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20288 20289 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20290 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20291 hwcksum_flags |= HCK_FULLCKSUM; 20292 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20293 HCKSUM_INET_PARTIAL) 20294 hwcksum_flags |= HCK_PARTIALCKSUM; 20295 } 20296 20297 /* 20298 * Each header fragment consists of the leading extra space, 20299 * followed by the TCP/IP header, and the trailing extra space. 20300 * We make sure that each header fragment begins on a 32-bit 20301 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20302 * aligned in tcp_mdt_update). 20303 */ 20304 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20305 tcp->tcp_mdt_hdr_tail), 4); 20306 20307 /* are we starting from the beginning of data block? */ 20308 if (*tail_unsent == 0) { 20309 *xmit_tail = (*xmit_tail)->b_cont; 20310 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20311 *tail_unsent = (int)MBLKL(*xmit_tail); 20312 } 20313 20314 /* 20315 * Here we create one or more Multidata messages, each made up of 20316 * one header buffer and up to N payload buffers. This entire 20317 * operation is done within two loops: 20318 * 20319 * The outer loop mostly deals with creating the Multidata message, 20320 * as well as the header buffer that gets added to it. It also 20321 * links the Multidata messages together such that all of them can 20322 * be sent down to the lower layer in a single putnext call; this 20323 * linking behavior depends on the tcp_mdt_chain tunable. 20324 * 20325 * The inner loop takes an existing Multidata message, and adds 20326 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20327 * packetizes those buffers by filling up the corresponding header 20328 * buffer fragments with the proper IP and TCP headers, and by 20329 * describing the layout of each packet in the packet descriptors 20330 * that get added to the Multidata. 20331 */ 20332 do { 20333 /* 20334 * If usable send window is too small, or data blocks in 20335 * transmit list are smaller than our threshold (i.e. app 20336 * performs large writes followed by small ones), we hand 20337 * off the control over to the legacy path. Note that we'll 20338 * get back the control once it encounters a large block. 20339 */ 20340 if (*usable < mss || (*tail_unsent <= mdt_thres && 20341 (*xmit_tail)->b_cont != NULL && 20342 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20343 /* send down what we've got so far */ 20344 if (md_mp_head != NULL) { 20345 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20346 obsegs, obbytes, &rconfirm); 20347 } 20348 /* 20349 * Pass control over to tcp_send(), but tell it to 20350 * return to us once a large-size transmission is 20351 * possible. 20352 */ 20353 TCP_STAT(tcps, tcp_mdt_legacy_small); 20354 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20355 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20356 tail_unsent, xmit_tail, local_time, 20357 mdt_thres)) <= 0) { 20358 /* burst count reached, or alloc failed */ 20359 IRE_REFRELE(ire); 20360 return (err); 20361 } 20362 20363 /* tcp_send() may have sent everything, so check */ 20364 if (*usable <= 0) { 20365 IRE_REFRELE(ire); 20366 return (0); 20367 } 20368 20369 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20370 /* 20371 * We may have delivered the Multidata, so make sure 20372 * to re-initialize before the next round. 20373 */ 20374 md_mp_head = NULL; 20375 obsegs = obbytes = 0; 20376 num_burst_seg = tcp->tcp_snd_burst; 20377 PREP_NEW_MULTIDATA(); 20378 20379 /* are we starting from the beginning of data block? */ 20380 if (*tail_unsent == 0) { 20381 *xmit_tail = (*xmit_tail)->b_cont; 20382 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20383 (uintptr_t)INT_MAX); 20384 *tail_unsent = (int)MBLKL(*xmit_tail); 20385 } 20386 } 20387 /* 20388 * Record current values for parameters we may need to pass 20389 * to tcp_send() or tcp_multisend_data(). We checkpoint at 20390 * each iteration of the outer loop (each multidata message 20391 * creation). If we have a failure in the inner loop, we send 20392 * any complete multidata messages we have before reverting 20393 * to using the traditional non-md path. 20394 */ 20395 snxt_mmd = *snxt; 20396 usable_mmd = *usable; 20397 xmit_tail_mmd = *xmit_tail; 20398 tail_unsent_mmd = *tail_unsent; 20399 obsegs_mmd = obsegs; 20400 obbytes_mmd = obbytes; 20401 20402 /* 20403 * max_pld limits the number of mblks in tcp's transmit 20404 * queue that can be added to a Multidata message. Once 20405 * this counter reaches zero, no more additional mblks 20406 * can be added to it. What happens afterwards depends 20407 * on whether or not we are set to chain the Multidata 20408 * messages. If we are to link them together, reset 20409 * max_pld to its original value (tcp_mdt_max_pld) and 20410 * prepare to create a new Multidata message which will 20411 * get linked to md_mp_head. Else, leave it alone and 20412 * let the inner loop break on its own. 20413 */ 20414 if (tcp_mdt_chain && max_pld == 0) 20415 PREP_NEW_MULTIDATA(); 20416 20417 /* adding a payload buffer; re-initialize values */ 20418 if (add_buffer) 20419 PREP_NEW_PBUF(); 20420 20421 /* 20422 * If we don't have a Multidata, either because we just 20423 * (re)entered this outer loop, or after we branched off 20424 * to tcp_send above, setup the Multidata and header 20425 * buffer to be used. 20426 */ 20427 if (md_mp == NULL) { 20428 int md_hbuflen; 20429 uint32_t start, stuff; 20430 20431 /* 20432 * Calculate Multidata header buffer size large enough 20433 * to hold all of the headers that can possibly be 20434 * sent at this moment. We'd rather over-estimate 20435 * the size than running out of space; this is okay 20436 * since this buffer is small anyway. 20437 */ 20438 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20439 20440 /* 20441 * Start and stuff offset for partial hardware 20442 * checksum offload; these are currently for IPv4. 20443 * For full checksum offload, they are set to zero. 20444 */ 20445 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20446 if (af == AF_INET) { 20447 start = IP_SIMPLE_HDR_LENGTH; 20448 stuff = IP_SIMPLE_HDR_LENGTH + 20449 TCP_CHECKSUM_OFFSET; 20450 } else { 20451 start = IPV6_HDR_LEN; 20452 stuff = IPV6_HDR_LEN + 20453 TCP_CHECKSUM_OFFSET; 20454 } 20455 } else { 20456 start = stuff = 0; 20457 } 20458 20459 /* 20460 * Create the header buffer, Multidata, as well as 20461 * any necessary attributes (destination address, 20462 * SAP and hardware checksum offload) that should 20463 * be associated with the Multidata message. 20464 */ 20465 ASSERT(cur_hdr_off == 0); 20466 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20467 ((md_hbuf->b_wptr += md_hbuflen), 20468 (mmd = mmd_alloc(md_hbuf, &md_mp, 20469 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20470 /* fastpath mblk */ 20471 ire->ire_nce->nce_res_mp, 20472 /* hardware checksum enabled */ 20473 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20474 /* hardware checksum offsets */ 20475 start, stuff, 0, 20476 /* hardware checksum flag */ 20477 hwcksum_flags, tcps) != 0)) { 20478 legacy_send: 20479 /* 20480 * We arrive here from a failure within the 20481 * inner (packetizer) loop or we fail one of 20482 * the conditionals above. We restore the 20483 * previously checkpointed values for: 20484 * xmit_tail 20485 * usable 20486 * tail_unsent 20487 * snxt 20488 * obbytes 20489 * obsegs 20490 * We should then be able to dispatch any 20491 * complete multidata before reverting to the 20492 * traditional path with consistent parameters 20493 * (the inner loop updates these as it 20494 * iterates). 20495 */ 20496 *xmit_tail = xmit_tail_mmd; 20497 *usable = usable_mmd; 20498 *tail_unsent = tail_unsent_mmd; 20499 *snxt = snxt_mmd; 20500 obbytes = obbytes_mmd; 20501 obsegs = obsegs_mmd; 20502 if (md_mp != NULL) { 20503 /* Unlink message from the chain */ 20504 if (md_mp_head != NULL) { 20505 err = (intptr_t)rmvb(md_mp_head, 20506 md_mp); 20507 /* 20508 * We can't assert that rmvb 20509 * did not return -1, since we 20510 * may get here before linkb 20511 * happens. We do, however, 20512 * check if we just removed the 20513 * only element in the list. 20514 */ 20515 if (err == 0) 20516 md_mp_head = NULL; 20517 } 20518 /* md_hbuf gets freed automatically */ 20519 TCP_STAT(tcps, tcp_mdt_discarded); 20520 freeb(md_mp); 20521 } else { 20522 /* Either allocb or mmd_alloc failed */ 20523 TCP_STAT(tcps, tcp_mdt_allocfail); 20524 if (md_hbuf != NULL) 20525 freeb(md_hbuf); 20526 } 20527 20528 /* send down what we've got so far */ 20529 if (md_mp_head != NULL) { 20530 tcp_multisend_data(tcp, ire, ill, 20531 md_mp_head, obsegs, obbytes, 20532 &rconfirm); 20533 } 20534 legacy_send_no_md: 20535 if (ire != NULL) 20536 IRE_REFRELE(ire); 20537 /* 20538 * Too bad; let the legacy path handle this. 20539 * We specify INT_MAX for the threshold, since 20540 * we gave up with the Multidata processings 20541 * and let the old path have it all. 20542 */ 20543 TCP_STAT(tcps, tcp_mdt_legacy_all); 20544 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20545 tcp_tcp_hdr_len, num_sack_blk, usable, 20546 snxt, tail_unsent, xmit_tail, local_time, 20547 INT_MAX)); 20548 } 20549 20550 /* link to any existing ones, if applicable */ 20551 TCP_STAT(tcps, tcp_mdt_allocd); 20552 if (md_mp_head == NULL) { 20553 md_mp_head = md_mp; 20554 } else if (tcp_mdt_chain) { 20555 TCP_STAT(tcps, tcp_mdt_linked); 20556 linkb(md_mp_head, md_mp); 20557 } 20558 } 20559 20560 ASSERT(md_mp_head != NULL); 20561 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20562 ASSERT(md_mp != NULL && mmd != NULL); 20563 ASSERT(md_hbuf != NULL); 20564 20565 /* 20566 * Packetize the transmittable portion of the data block; 20567 * each data block is essentially added to the Multidata 20568 * as a payload buffer. We also deal with adding more 20569 * than one payload buffers, which happens when the remaining 20570 * packetized portion of the current payload buffer is less 20571 * than MSS, while the next data block in transmit queue 20572 * has enough data to make up for one. This "spillover" 20573 * case essentially creates a split-packet, where portions 20574 * of the packet's payload fragments may span across two 20575 * virtually discontiguous address blocks. 20576 */ 20577 seg_len = mss; 20578 do { 20579 len = seg_len; 20580 20581 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20582 ipha = NULL; 20583 ip6h = NULL; 20584 20585 ASSERT(len > 0); 20586 ASSERT(max_pld >= 0); 20587 ASSERT(!add_buffer || cur_pld_off == 0); 20588 20589 /* 20590 * First time around for this payload buffer; note 20591 * in the case of a spillover, the following has 20592 * been done prior to adding the split-packet 20593 * descriptor to Multidata, and we don't want to 20594 * repeat the process. 20595 */ 20596 if (add_buffer) { 20597 ASSERT(mmd != NULL); 20598 ASSERT(md_pbuf == NULL); 20599 ASSERT(md_pbuf_nxt == NULL); 20600 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20601 20602 /* 20603 * Have we reached the limit? We'd get to 20604 * this case when we're not chaining the 20605 * Multidata messages together, and since 20606 * we're done, terminate this loop. 20607 */ 20608 if (max_pld == 0) 20609 break; /* done */ 20610 20611 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20612 TCP_STAT(tcps, tcp_mdt_allocfail); 20613 goto legacy_send; /* out_of_mem */ 20614 } 20615 20616 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20617 zc_cap != NULL) { 20618 if (!ip_md_zcopy_attr(mmd, NULL, 20619 zc_cap->ill_zerocopy_flags)) { 20620 freeb(md_pbuf); 20621 TCP_STAT(tcps, 20622 tcp_mdt_allocfail); 20623 /* out_of_mem */ 20624 goto legacy_send; 20625 } 20626 zcopy = B_TRUE; 20627 } 20628 20629 md_pbuf->b_rptr += base_pld_off; 20630 20631 /* 20632 * Add a payload buffer to the Multidata; this 20633 * operation must not fail, or otherwise our 20634 * logic in this routine is broken. There 20635 * is no memory allocation done by the 20636 * routine, so any returned failure simply 20637 * tells us that we've done something wrong. 20638 * 20639 * A failure tells us that either we're adding 20640 * the same payload buffer more than once, or 20641 * we're trying to add more buffers than 20642 * allowed (max_pld calculation is wrong). 20643 * None of the above cases should happen, and 20644 * we panic because either there's horrible 20645 * heap corruption, and/or programming mistake. 20646 */ 20647 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20648 if (pbuf_idx < 0) { 20649 cmn_err(CE_PANIC, "tcp_multisend: " 20650 "payload buffer logic error " 20651 "detected for tcp %p mmd %p " 20652 "pbuf %p (%d)\n", 20653 (void *)tcp, (void *)mmd, 20654 (void *)md_pbuf, pbuf_idx); 20655 } 20656 20657 ASSERT(max_pld > 0); 20658 --max_pld; 20659 add_buffer = B_FALSE; 20660 } 20661 20662 ASSERT(md_mp_head != NULL); 20663 ASSERT(md_pbuf != NULL); 20664 ASSERT(md_pbuf_nxt == NULL); 20665 ASSERT(pbuf_idx != -1); 20666 ASSERT(pbuf_idx_nxt == -1); 20667 ASSERT(*usable > 0); 20668 20669 /* 20670 * We spillover to the next payload buffer only 20671 * if all of the following is true: 20672 * 20673 * 1. There is not enough data on the current 20674 * payload buffer to make up `len', 20675 * 2. We are allowed to send `len', 20676 * 3. The next payload buffer length is large 20677 * enough to accomodate `spill'. 20678 */ 20679 if ((spill = len - *tail_unsent) > 0 && 20680 *usable >= len && 20681 MBLKL((*xmit_tail)->b_cont) >= spill && 20682 max_pld > 0) { 20683 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20684 if (md_pbuf_nxt == NULL) { 20685 TCP_STAT(tcps, tcp_mdt_allocfail); 20686 goto legacy_send; /* out_of_mem */ 20687 } 20688 20689 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20690 zc_cap != NULL) { 20691 if (!ip_md_zcopy_attr(mmd, NULL, 20692 zc_cap->ill_zerocopy_flags)) { 20693 freeb(md_pbuf_nxt); 20694 TCP_STAT(tcps, 20695 tcp_mdt_allocfail); 20696 /* out_of_mem */ 20697 goto legacy_send; 20698 } 20699 zcopy = B_TRUE; 20700 } 20701 20702 /* 20703 * See comments above on the first call to 20704 * mmd_addpldbuf for explanation on the panic. 20705 */ 20706 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20707 if (pbuf_idx_nxt < 0) { 20708 panic("tcp_multisend: " 20709 "next payload buffer logic error " 20710 "detected for tcp %p mmd %p " 20711 "pbuf %p (%d)\n", 20712 (void *)tcp, (void *)mmd, 20713 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20714 } 20715 20716 ASSERT(max_pld > 0); 20717 --max_pld; 20718 } else if (spill > 0) { 20719 /* 20720 * If there's a spillover, but the following 20721 * xmit_tail couldn't give us enough octets 20722 * to reach "len", then stop the current 20723 * Multidata creation and let the legacy 20724 * tcp_send() path take over. We don't want 20725 * to send the tiny segment as part of this 20726 * Multidata for performance reasons; instead, 20727 * we let the legacy path deal with grouping 20728 * it with the subsequent small mblks. 20729 */ 20730 if (*usable >= len && 20731 MBLKL((*xmit_tail)->b_cont) < spill) { 20732 max_pld = 0; 20733 break; /* done */ 20734 } 20735 20736 /* 20737 * We can't spillover, and we are near 20738 * the end of the current payload buffer, 20739 * so send what's left. 20740 */ 20741 ASSERT(*tail_unsent > 0); 20742 len = *tail_unsent; 20743 } 20744 20745 /* tail_unsent is negated if there is a spillover */ 20746 *tail_unsent -= len; 20747 *usable -= len; 20748 ASSERT(*usable >= 0); 20749 20750 if (*usable < mss) 20751 seg_len = *usable; 20752 /* 20753 * Sender SWS avoidance; see comments in tcp_send(); 20754 * everything else is the same, except that we only 20755 * do this here if there is no more data to be sent 20756 * following the current xmit_tail. We don't check 20757 * for 1-byte urgent data because we shouldn't get 20758 * here if TCP_URG_VALID is set. 20759 */ 20760 if (*usable > 0 && *usable < mss && 20761 ((md_pbuf_nxt == NULL && 20762 (*xmit_tail)->b_cont == NULL) || 20763 (md_pbuf_nxt != NULL && 20764 (*xmit_tail)->b_cont->b_cont == NULL)) && 20765 seg_len < (tcp->tcp_max_swnd >> 1) && 20766 (tcp->tcp_unsent - 20767 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20768 !tcp->tcp_zero_win_probe) { 20769 if ((*snxt + len) == tcp->tcp_snxt && 20770 (*snxt + len) == tcp->tcp_suna) { 20771 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20772 } 20773 done = B_TRUE; 20774 } 20775 20776 /* 20777 * Prime pump for IP's checksumming on our behalf; 20778 * include the adjustment for a source route if any. 20779 * Do this only for software/partial hardware checksum 20780 * offload, as this field gets zeroed out later for 20781 * the full hardware checksum offload case. 20782 */ 20783 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20784 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20785 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20786 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20787 } 20788 20789 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20790 *snxt += len; 20791 20792 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20793 /* 20794 * We set the PUSH bit only if TCP has no more buffered 20795 * data to be transmitted (or if sender SWS avoidance 20796 * takes place), as opposed to setting it for every 20797 * last packet in the burst. 20798 */ 20799 if (done || 20800 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20801 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20802 20803 /* 20804 * Set FIN bit if this is our last segment; snxt 20805 * already includes its length, and it will not 20806 * be adjusted after this point. 20807 */ 20808 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20809 *snxt == tcp->tcp_fss) { 20810 if (!tcp->tcp_fin_acked) { 20811 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20812 BUMP_MIB(&tcps->tcps_mib, 20813 tcpOutControl); 20814 } 20815 if (!tcp->tcp_fin_sent) { 20816 tcp->tcp_fin_sent = B_TRUE; 20817 /* 20818 * tcp state must be ESTABLISHED 20819 * in order for us to get here in 20820 * the first place. 20821 */ 20822 tcp->tcp_state = TCPS_FIN_WAIT_1; 20823 20824 /* 20825 * Upon returning from this routine, 20826 * tcp_wput_data() will set tcp_snxt 20827 * to be equal to snxt + tcp_fin_sent. 20828 * This is essentially the same as 20829 * setting it to tcp_fss + 1. 20830 */ 20831 } 20832 } 20833 20834 tcp->tcp_last_sent_len = (ushort_t)len; 20835 20836 len += tcp_hdr_len; 20837 if (tcp->tcp_ipversion == IPV4_VERSION) 20838 tcp->tcp_ipha->ipha_length = htons(len); 20839 else 20840 tcp->tcp_ip6h->ip6_plen = htons(len - 20841 ((char *)&tcp->tcp_ip6h[1] - 20842 tcp->tcp_iphc)); 20843 20844 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20845 20846 /* setup header fragment */ 20847 PDESC_HDR_ADD(pkt_info, 20848 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20849 tcp->tcp_mdt_hdr_head, /* head room */ 20850 tcp_hdr_len, /* len */ 20851 tcp->tcp_mdt_hdr_tail); /* tail room */ 20852 20853 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20854 hdr_frag_sz); 20855 ASSERT(MBLKIN(md_hbuf, 20856 (pkt_info->hdr_base - md_hbuf->b_rptr), 20857 PDESC_HDRSIZE(pkt_info))); 20858 20859 /* setup first payload fragment */ 20860 PDESC_PLD_INIT(pkt_info); 20861 PDESC_PLD_SPAN_ADD(pkt_info, 20862 pbuf_idx, /* index */ 20863 md_pbuf->b_rptr + cur_pld_off, /* start */ 20864 tcp->tcp_last_sent_len); /* len */ 20865 20866 /* create a split-packet in case of a spillover */ 20867 if (md_pbuf_nxt != NULL) { 20868 ASSERT(spill > 0); 20869 ASSERT(pbuf_idx_nxt > pbuf_idx); 20870 ASSERT(!add_buffer); 20871 20872 md_pbuf = md_pbuf_nxt; 20873 md_pbuf_nxt = NULL; 20874 pbuf_idx = pbuf_idx_nxt; 20875 pbuf_idx_nxt = -1; 20876 cur_pld_off = spill; 20877 20878 /* trim out first payload fragment */ 20879 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20880 20881 /* setup second payload fragment */ 20882 PDESC_PLD_SPAN_ADD(pkt_info, 20883 pbuf_idx, /* index */ 20884 md_pbuf->b_rptr, /* start */ 20885 spill); /* len */ 20886 20887 if ((*xmit_tail)->b_next == NULL) { 20888 /* 20889 * Store the lbolt used for RTT 20890 * estimation. We can only record one 20891 * timestamp per mblk so we do it when 20892 * we reach the end of the payload 20893 * buffer. Also we only take a new 20894 * timestamp sample when the previous 20895 * timed data from the same mblk has 20896 * been ack'ed. 20897 */ 20898 (*xmit_tail)->b_prev = local_time; 20899 (*xmit_tail)->b_next = 20900 (mblk_t *)(uintptr_t)first_snxt; 20901 } 20902 20903 first_snxt = *snxt - spill; 20904 20905 /* 20906 * Advance xmit_tail; usable could be 0 by 20907 * the time we got here, but we made sure 20908 * above that we would only spillover to 20909 * the next data block if usable includes 20910 * the spilled-over amount prior to the 20911 * subtraction. Therefore, we are sure 20912 * that xmit_tail->b_cont can't be NULL. 20913 */ 20914 ASSERT((*xmit_tail)->b_cont != NULL); 20915 *xmit_tail = (*xmit_tail)->b_cont; 20916 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20917 (uintptr_t)INT_MAX); 20918 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20919 } else { 20920 cur_pld_off += tcp->tcp_last_sent_len; 20921 } 20922 20923 /* 20924 * Fill in the header using the template header, and 20925 * add options such as time-stamp, ECN and/or SACK, 20926 * as needed. 20927 */ 20928 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20929 (clock_t)local_time, num_sack_blk); 20930 20931 /* take care of some IP header businesses */ 20932 if (af == AF_INET) { 20933 ipha = (ipha_t *)pkt_info->hdr_rptr; 20934 20935 ASSERT(OK_32PTR((uchar_t *)ipha)); 20936 ASSERT(PDESC_HDRL(pkt_info) >= 20937 IP_SIMPLE_HDR_LENGTH); 20938 ASSERT(ipha->ipha_version_and_hdr_length == 20939 IP_SIMPLE_HDR_VERSION); 20940 20941 /* 20942 * Assign ident value for current packet; see 20943 * related comments in ip_wput_ire() about the 20944 * contract private interface with clustering 20945 * group. 20946 */ 20947 clusterwide = B_FALSE; 20948 if (cl_inet_ipident != NULL) { 20949 ASSERT(cl_inet_isclusterwide != NULL); 20950 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20951 AF_INET, 20952 (uint8_t *)(uintptr_t)src)) { 20953 ipha->ipha_ident = 20954 (*cl_inet_ipident) 20955 (IPPROTO_IP, AF_INET, 20956 (uint8_t *)(uintptr_t)src, 20957 (uint8_t *)(uintptr_t)dst); 20958 clusterwide = B_TRUE; 20959 } 20960 } 20961 20962 if (!clusterwide) { 20963 ipha->ipha_ident = (uint16_t) 20964 atomic_add_32_nv( 20965 &ire->ire_ident, 1); 20966 } 20967 #ifndef _BIG_ENDIAN 20968 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20969 (ipha->ipha_ident >> 8); 20970 #endif 20971 } else { 20972 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20973 20974 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20975 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20976 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20977 ASSERT(PDESC_HDRL(pkt_info) >= 20978 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20979 TCP_CHECKSUM_SIZE)); 20980 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20981 20982 if (tcp->tcp_ip_forward_progress) { 20983 rconfirm = B_TRUE; 20984 tcp->tcp_ip_forward_progress = B_FALSE; 20985 } 20986 } 20987 20988 /* at least one payload span, and at most two */ 20989 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20990 20991 /* add the packet descriptor to Multidata */ 20992 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20993 KM_NOSLEEP)) == NULL) { 20994 /* 20995 * Any failure other than ENOMEM indicates 20996 * that we have passed in invalid pkt_info 20997 * or parameters to mmd_addpdesc, which must 20998 * not happen. 20999 * 21000 * EINVAL is a result of failure on boundary 21001 * checks against the pkt_info contents. It 21002 * should not happen, and we panic because 21003 * either there's horrible heap corruption, 21004 * and/or programming mistake. 21005 */ 21006 if (err != ENOMEM) { 21007 cmn_err(CE_PANIC, "tcp_multisend: " 21008 "pdesc logic error detected for " 21009 "tcp %p mmd %p pinfo %p (%d)\n", 21010 (void *)tcp, (void *)mmd, 21011 (void *)pkt_info, err); 21012 } 21013 TCP_STAT(tcps, tcp_mdt_addpdescfail); 21014 goto legacy_send; /* out_of_mem */ 21015 } 21016 ASSERT(pkt != NULL); 21017 21018 /* calculate IP header and TCP checksums */ 21019 if (af == AF_INET) { 21020 /* calculate pseudo-header checksum */ 21021 cksum = (dst >> 16) + (dst & 0xFFFF) + 21022 (src >> 16) + (src & 0xFFFF); 21023 21024 /* offset for TCP header checksum */ 21025 up = IPH_TCPH_CHECKSUMP(ipha, 21026 IP_SIMPLE_HDR_LENGTH); 21027 } else { 21028 up = (uint16_t *)&ip6h->ip6_src; 21029 21030 /* calculate pseudo-header checksum */ 21031 cksum = up[0] + up[1] + up[2] + up[3] + 21032 up[4] + up[5] + up[6] + up[7] + 21033 up[8] + up[9] + up[10] + up[11] + 21034 up[12] + up[13] + up[14] + up[15]; 21035 21036 /* Fold the initial sum */ 21037 cksum = (cksum & 0xffff) + (cksum >> 16); 21038 21039 up = (uint16_t *)(((uchar_t *)ip6h) + 21040 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 21041 } 21042 21043 if (hwcksum_flags & HCK_FULLCKSUM) { 21044 /* clear checksum field for hardware */ 21045 *up = 0; 21046 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 21047 uint32_t sum; 21048 21049 /* pseudo-header checksumming */ 21050 sum = *up + cksum + IP_TCP_CSUM_COMP; 21051 sum = (sum & 0xFFFF) + (sum >> 16); 21052 *up = (sum & 0xFFFF) + (sum >> 16); 21053 } else { 21054 /* software checksumming */ 21055 TCP_STAT(tcps, tcp_out_sw_cksum); 21056 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 21057 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 21058 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 21059 cksum + IP_TCP_CSUM_COMP); 21060 if (*up == 0) 21061 *up = 0xFFFF; 21062 } 21063 21064 /* IPv4 header checksum */ 21065 if (af == AF_INET) { 21066 ipha->ipha_fragment_offset_and_flags |= 21067 (uint32_t)htons(ire->ire_frag_flag); 21068 21069 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 21070 ipha->ipha_hdr_checksum = 0; 21071 } else { 21072 IP_HDR_CKSUM(ipha, cksum, 21073 ((uint32_t *)ipha)[0], 21074 ((uint16_t *)ipha)[4]); 21075 } 21076 } 21077 21078 if (af == AF_INET && 21079 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 21080 af == AF_INET6 && 21081 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 21082 mblk_t *mp, *mp1; 21083 uchar_t *hdr_rptr, *hdr_wptr; 21084 uchar_t *pld_rptr, *pld_wptr; 21085 21086 /* 21087 * We reconstruct a pseudo packet for the hooks 21088 * framework using mmd_transform_link(). 21089 * If it is a split packet we pullup the 21090 * payload. FW_HOOKS expects a pkt comprising 21091 * of two mblks: a header and the payload. 21092 */ 21093 if ((mp = mmd_transform_link(pkt)) == NULL) { 21094 TCP_STAT(tcps, tcp_mdt_allocfail); 21095 goto legacy_send; 21096 } 21097 21098 if (pkt_info->pld_cnt > 1) { 21099 /* split payload, more than one pld */ 21100 if ((mp1 = msgpullup(mp->b_cont, -1)) == 21101 NULL) { 21102 freemsg(mp); 21103 TCP_STAT(tcps, 21104 tcp_mdt_allocfail); 21105 goto legacy_send; 21106 } 21107 freemsg(mp->b_cont); 21108 mp->b_cont = mp1; 21109 } else { 21110 mp1 = mp->b_cont; 21111 } 21112 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 21113 21114 /* 21115 * Remember the message offsets. This is so we 21116 * can detect changes when we return from the 21117 * FW_HOOKS callbacks. 21118 */ 21119 hdr_rptr = mp->b_rptr; 21120 hdr_wptr = mp->b_wptr; 21121 pld_rptr = mp->b_cont->b_rptr; 21122 pld_wptr = mp->b_cont->b_wptr; 21123 21124 if (af == AF_INET) { 21125 DTRACE_PROBE4( 21126 ip4__physical__out__start, 21127 ill_t *, NULL, 21128 ill_t *, ill, 21129 ipha_t *, ipha, 21130 mblk_t *, mp); 21131 FW_HOOKS( 21132 ipst->ips_ip4_physical_out_event, 21133 ipst->ips_ipv4firewall_physical_out, 21134 NULL, ill, ipha, mp, mp, 0, ipst); 21135 DTRACE_PROBE1( 21136 ip4__physical__out__end, 21137 mblk_t *, mp); 21138 } else { 21139 DTRACE_PROBE4( 21140 ip6__physical__out_start, 21141 ill_t *, NULL, 21142 ill_t *, ill, 21143 ip6_t *, ip6h, 21144 mblk_t *, mp); 21145 FW_HOOKS6( 21146 ipst->ips_ip6_physical_out_event, 21147 ipst->ips_ipv6firewall_physical_out, 21148 NULL, ill, ip6h, mp, mp, 0, ipst); 21149 DTRACE_PROBE1( 21150 ip6__physical__out__end, 21151 mblk_t *, mp); 21152 } 21153 21154 if (mp == NULL || 21155 (mp1 = mp->b_cont) == NULL || 21156 mp->b_rptr != hdr_rptr || 21157 mp->b_wptr != hdr_wptr || 21158 mp1->b_rptr != pld_rptr || 21159 mp1->b_wptr != pld_wptr || 21160 mp1->b_cont != NULL) { 21161 /* 21162 * We abandon multidata processing and 21163 * return to the normal path, either 21164 * when a packet is blocked, or when 21165 * the boundaries of header buffer or 21166 * payload buffer have been changed by 21167 * FW_HOOKS[6]. 21168 */ 21169 if (mp != NULL) 21170 freemsg(mp); 21171 goto legacy_send; 21172 } 21173 /* Finished with the pseudo packet */ 21174 freemsg(mp); 21175 } 21176 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21177 ill, ipha, ip6h); 21178 /* advance header offset */ 21179 cur_hdr_off += hdr_frag_sz; 21180 21181 obbytes += tcp->tcp_last_sent_len; 21182 ++obsegs; 21183 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21184 *tail_unsent > 0); 21185 21186 if ((*xmit_tail)->b_next == NULL) { 21187 /* 21188 * Store the lbolt used for RTT estimation. We can only 21189 * record one timestamp per mblk so we do it when we 21190 * reach the end of the payload buffer. Also we only 21191 * take a new timestamp sample when the previous timed 21192 * data from the same mblk has been ack'ed. 21193 */ 21194 (*xmit_tail)->b_prev = local_time; 21195 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21196 } 21197 21198 ASSERT(*tail_unsent >= 0); 21199 if (*tail_unsent > 0) { 21200 /* 21201 * We got here because we broke out of the above 21202 * loop due to of one of the following cases: 21203 * 21204 * 1. len < adjusted MSS (i.e. small), 21205 * 2. Sender SWS avoidance, 21206 * 3. max_pld is zero. 21207 * 21208 * We are done for this Multidata, so trim our 21209 * last payload buffer (if any) accordingly. 21210 */ 21211 if (md_pbuf != NULL) 21212 md_pbuf->b_wptr -= *tail_unsent; 21213 } else if (*usable > 0) { 21214 *xmit_tail = (*xmit_tail)->b_cont; 21215 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21216 (uintptr_t)INT_MAX); 21217 *tail_unsent = (int)MBLKL(*xmit_tail); 21218 add_buffer = B_TRUE; 21219 } 21220 } while (!done && *usable > 0 && num_burst_seg > 0 && 21221 (tcp_mdt_chain || max_pld > 0)); 21222 21223 if (md_mp_head != NULL) { 21224 /* send everything down */ 21225 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21226 &rconfirm); 21227 } 21228 21229 #undef PREP_NEW_MULTIDATA 21230 #undef PREP_NEW_PBUF 21231 #undef IPVER 21232 21233 IRE_REFRELE(ire); 21234 return (0); 21235 } 21236 21237 /* 21238 * A wrapper function for sending one or more Multidata messages down to 21239 * the module below ip; this routine does not release the reference of the 21240 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21241 */ 21242 static void 21243 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21244 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21245 { 21246 uint64_t delta; 21247 nce_t *nce; 21248 tcp_stack_t *tcps = tcp->tcp_tcps; 21249 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21250 21251 ASSERT(ire != NULL && ill != NULL); 21252 ASSERT(ire->ire_stq != NULL); 21253 ASSERT(md_mp_head != NULL); 21254 ASSERT(rconfirm != NULL); 21255 21256 /* adjust MIBs and IRE timestamp */ 21257 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 21258 tcp->tcp_obsegs += obsegs; 21259 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21260 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21261 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21262 21263 if (tcp->tcp_ipversion == IPV4_VERSION) { 21264 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21265 } else { 21266 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21267 } 21268 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21269 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21270 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21271 21272 ire->ire_ob_pkt_count += obsegs; 21273 if (ire->ire_ipif != NULL) 21274 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21275 ire->ire_last_used_time = lbolt; 21276 21277 if (ipst->ips_ipobs_enabled) { 21278 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 21279 pdesc_t *dl_pkt; 21280 pdescinfo_t pinfo; 21281 mblk_t *nmp; 21282 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21283 21284 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 21285 (dl_pkt != NULL); 21286 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 21287 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 21288 continue; 21289 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 21290 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 21291 freemsg(nmp); 21292 } 21293 } 21294 21295 /* send it down */ 21296 if (ILL_DLS_CAPABLE(ill)) { 21297 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 21298 ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head); 21299 } else { 21300 putnext(ire->ire_stq, md_mp_head); 21301 } 21302 21303 /* we're done for TCP/IPv4 */ 21304 if (tcp->tcp_ipversion == IPV4_VERSION) 21305 return; 21306 21307 nce = ire->ire_nce; 21308 21309 ASSERT(nce != NULL); 21310 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21311 ASSERT(nce->nce_state != ND_INCOMPLETE); 21312 21313 /* reachability confirmation? */ 21314 if (*rconfirm) { 21315 nce->nce_last = TICK_TO_MSEC(lbolt64); 21316 if (nce->nce_state != ND_REACHABLE) { 21317 mutex_enter(&nce->nce_lock); 21318 nce->nce_state = ND_REACHABLE; 21319 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21320 mutex_exit(&nce->nce_lock); 21321 (void) untimeout(nce->nce_timeout_id); 21322 if (ip_debug > 2) { 21323 /* ip1dbg */ 21324 pr_addr_dbg("tcp_multisend_data: state " 21325 "for %s changed to REACHABLE\n", 21326 AF_INET6, &ire->ire_addr_v6); 21327 } 21328 } 21329 /* reset transport reachability confirmation */ 21330 *rconfirm = B_FALSE; 21331 } 21332 21333 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21334 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21335 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21336 21337 if (delta > (uint64_t)ill->ill_reachable_time) { 21338 mutex_enter(&nce->nce_lock); 21339 switch (nce->nce_state) { 21340 case ND_REACHABLE: 21341 case ND_STALE: 21342 /* 21343 * ND_REACHABLE is identical to ND_STALE in this 21344 * specific case. If reachable time has expired for 21345 * this neighbor (delta is greater than reachable 21346 * time), conceptually, the neighbor cache is no 21347 * longer in REACHABLE state, but already in STALE 21348 * state. So the correct transition here is to 21349 * ND_DELAY. 21350 */ 21351 nce->nce_state = ND_DELAY; 21352 mutex_exit(&nce->nce_lock); 21353 NDP_RESTART_TIMER(nce, 21354 ipst->ips_delay_first_probe_time); 21355 if (ip_debug > 3) { 21356 /* ip2dbg */ 21357 pr_addr_dbg("tcp_multisend_data: state " 21358 "for %s changed to DELAY\n", 21359 AF_INET6, &ire->ire_addr_v6); 21360 } 21361 break; 21362 case ND_DELAY: 21363 case ND_PROBE: 21364 mutex_exit(&nce->nce_lock); 21365 /* Timers have already started */ 21366 break; 21367 case ND_UNREACHABLE: 21368 /* 21369 * ndp timer has detected that this nce is 21370 * unreachable and initiated deleting this nce 21371 * and all its associated IREs. This is a race 21372 * where we found the ire before it was deleted 21373 * and have just sent out a packet using this 21374 * unreachable nce. 21375 */ 21376 mutex_exit(&nce->nce_lock); 21377 break; 21378 default: 21379 ASSERT(0); 21380 } 21381 } 21382 } 21383 21384 /* 21385 * Derived from tcp_send_data(). 21386 */ 21387 static void 21388 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21389 int num_lso_seg) 21390 { 21391 ipha_t *ipha; 21392 mblk_t *ire_fp_mp; 21393 uint_t ire_fp_mp_len; 21394 uint32_t hcksum_txflags = 0; 21395 ipaddr_t src; 21396 ipaddr_t dst; 21397 uint32_t cksum; 21398 uint16_t *up; 21399 tcp_stack_t *tcps = tcp->tcp_tcps; 21400 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21401 21402 ASSERT(DB_TYPE(mp) == M_DATA); 21403 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21404 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21405 ASSERT(tcp->tcp_connp != NULL); 21406 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21407 21408 ipha = (ipha_t *)mp->b_rptr; 21409 src = ipha->ipha_src; 21410 dst = ipha->ipha_dst; 21411 21412 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 21413 21414 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21415 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21416 num_lso_seg); 21417 #ifndef _BIG_ENDIAN 21418 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21419 #endif 21420 if (tcp->tcp_snd_zcopy_aware) { 21421 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21422 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21423 mp = tcp_zcopy_disable(tcp, mp); 21424 } 21425 21426 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21427 ASSERT(ill->ill_hcksum_capab != NULL); 21428 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21429 } 21430 21431 /* 21432 * Since the TCP checksum should be recalculated by h/w, we can just 21433 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21434 * pseudo-header checksum for HCK_PARTIALCKSUM. 21435 * The partial pseudo-header excludes TCP length, that was calculated 21436 * in tcp_send(), so to zero *up before further processing. 21437 */ 21438 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21439 21440 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21441 *up = 0; 21442 21443 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21444 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21445 21446 /* 21447 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 21448 */ 21449 DB_LSOFLAGS(mp) |= HW_LSO; 21450 DB_LSOMSS(mp) = mss; 21451 21452 ipha->ipha_fragment_offset_and_flags |= 21453 (uint32_t)htons(ire->ire_frag_flag); 21454 21455 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21456 ire_fp_mp_len = MBLKL(ire_fp_mp); 21457 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21458 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21459 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21460 21461 UPDATE_OB_PKT_COUNT(ire); 21462 ire->ire_last_used_time = lbolt; 21463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21464 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21465 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21466 ntohs(ipha->ipha_length)); 21467 21468 if (ILL_DLS_CAPABLE(ill)) { 21469 /* 21470 * Send the packet directly to DLD, where it may be queued 21471 * depending on the availability of transmit resources at 21472 * the media layer. 21473 */ 21474 IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len); 21475 } else { 21476 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 21477 DTRACE_PROBE4(ip4__physical__out__start, 21478 ill_t *, NULL, ill_t *, out_ill, 21479 ipha_t *, ipha, mblk_t *, mp); 21480 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21481 ipst->ips_ipv4firewall_physical_out, 21482 NULL, out_ill, ipha, mp, mp, 0, ipst); 21483 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21484 21485 if (mp != NULL) { 21486 if (ipst->ips_ipobs_enabled) { 21487 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21488 21489 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 21490 ALL_ZONES, ill, tcp->tcp_ipversion, 21491 ire_fp_mp_len, ipst); 21492 } 21493 DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL); 21494 putnext(ire->ire_stq, mp); 21495 } 21496 } 21497 } 21498 21499 /* 21500 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21501 * scheme, and returns one of the following: 21502 * 21503 * -1 = failed allocation. 21504 * 0 = success; burst count reached, or usable send window is too small, 21505 * and that we'd rather wait until later before sending again. 21506 * 1 = success; we are called from tcp_multisend(), and both usable send 21507 * window and tail_unsent are greater than the MDT threshold, and thus 21508 * Multidata Transmit should be used instead. 21509 */ 21510 static int 21511 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21512 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21513 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21514 const int mdt_thres) 21515 { 21516 int num_burst_seg = tcp->tcp_snd_burst; 21517 ire_t *ire = NULL; 21518 ill_t *ill = NULL; 21519 mblk_t *ire_fp_mp = NULL; 21520 uint_t ire_fp_mp_len = 0; 21521 int num_lso_seg = 1; 21522 uint_t lso_usable; 21523 boolean_t do_lso_send = B_FALSE; 21524 tcp_stack_t *tcps = tcp->tcp_tcps; 21525 21526 /* 21527 * Check LSO capability before any further work. And the similar check 21528 * need to be done in for(;;) loop. 21529 * LSO will be deployed when therer is more than one mss of available 21530 * data and a burst transmission is allowed. 21531 */ 21532 if (tcp->tcp_lso && 21533 (tcp->tcp_valid_bits == 0 || 21534 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21535 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21536 /* 21537 * Try to find usable IRE/ILL and do basic check to the ILL. 21538 */ 21539 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21540 /* 21541 * Enable LSO with this transmission. 21542 * Since IRE has been hold in 21543 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21544 * should be called before return. 21545 */ 21546 do_lso_send = B_TRUE; 21547 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21548 ire_fp_mp_len = MBLKL(ire_fp_mp); 21549 /* Round up to multiple of 4 */ 21550 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21551 } else { 21552 do_lso_send = B_FALSE; 21553 ill = NULL; 21554 } 21555 } 21556 21557 for (;;) { 21558 struct datab *db; 21559 tcph_t *tcph; 21560 uint32_t sum; 21561 mblk_t *mp, *mp1; 21562 uchar_t *rptr; 21563 int len; 21564 21565 /* 21566 * If we're called by tcp_multisend(), and the amount of 21567 * sendable data as well as the size of current xmit_tail 21568 * is beyond the MDT threshold, return to the caller and 21569 * let the large data transmit be done using MDT. 21570 */ 21571 if (*usable > 0 && *usable > mdt_thres && 21572 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21573 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21574 ASSERT(tcp->tcp_mdt); 21575 return (1); /* success; do large send */ 21576 } 21577 21578 if (num_burst_seg == 0) 21579 break; /* success; burst count reached */ 21580 21581 /* 21582 * Calculate the maximum payload length we can send in *one* 21583 * time. 21584 */ 21585 if (do_lso_send) { 21586 /* 21587 * Check whether need to do LSO any more. 21588 */ 21589 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21590 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21591 lso_usable = MIN(lso_usable, 21592 num_burst_seg * mss); 21593 21594 num_lso_seg = lso_usable / mss; 21595 if (lso_usable % mss) { 21596 num_lso_seg++; 21597 tcp->tcp_last_sent_len = (ushort_t) 21598 (lso_usable % mss); 21599 } else { 21600 tcp->tcp_last_sent_len = (ushort_t)mss; 21601 } 21602 } else { 21603 do_lso_send = B_FALSE; 21604 num_lso_seg = 1; 21605 lso_usable = mss; 21606 } 21607 } 21608 21609 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21610 21611 /* 21612 * Adjust num_burst_seg here. 21613 */ 21614 num_burst_seg -= num_lso_seg; 21615 21616 len = mss; 21617 if (len > *usable) { 21618 ASSERT(do_lso_send == B_FALSE); 21619 21620 len = *usable; 21621 if (len <= 0) { 21622 /* Terminate the loop */ 21623 break; /* success; too small */ 21624 } 21625 /* 21626 * Sender silly-window avoidance. 21627 * Ignore this if we are going to send a 21628 * zero window probe out. 21629 * 21630 * TODO: force data into microscopic window? 21631 * ==> (!pushed || (unsent > usable)) 21632 */ 21633 if (len < (tcp->tcp_max_swnd >> 1) && 21634 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21635 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21636 len == 1) && (! tcp->tcp_zero_win_probe)) { 21637 /* 21638 * If the retransmit timer is not running 21639 * we start it so that we will retransmit 21640 * in the case when the the receiver has 21641 * decremented the window. 21642 */ 21643 if (*snxt == tcp->tcp_snxt && 21644 *snxt == tcp->tcp_suna) { 21645 /* 21646 * We are not supposed to send 21647 * anything. So let's wait a little 21648 * bit longer before breaking SWS 21649 * avoidance. 21650 * 21651 * What should the value be? 21652 * Suggestion: MAX(init rexmit time, 21653 * tcp->tcp_rto) 21654 */ 21655 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21656 } 21657 break; /* success; too small */ 21658 } 21659 } 21660 21661 tcph = tcp->tcp_tcph; 21662 21663 /* 21664 * The reason to adjust len here is that we need to set flags 21665 * and calculate checksum. 21666 */ 21667 if (do_lso_send) 21668 len = lso_usable; 21669 21670 *usable -= len; /* Approximate - can be adjusted later */ 21671 if (*usable > 0) 21672 tcph->th_flags[0] = TH_ACK; 21673 else 21674 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21675 21676 /* 21677 * Prime pump for IP's checksumming on our behalf 21678 * Include the adjustment for a source route if any. 21679 */ 21680 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21681 sum = (sum >> 16) + (sum & 0xFFFF); 21682 U16_TO_ABE16(sum, tcph->th_sum); 21683 21684 U32_TO_ABE32(*snxt, tcph->th_seq); 21685 21686 /* 21687 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21688 * set. For the case when TCP_FSS_VALID is the only valid 21689 * bit (normal active close), branch off only when we think 21690 * that the FIN flag needs to be set. Note for this case, 21691 * that (snxt + len) may not reflect the actual seg_len, 21692 * as len may be further reduced in tcp_xmit_mp(). If len 21693 * gets modified, we will end up here again. 21694 */ 21695 if (tcp->tcp_valid_bits != 0 && 21696 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21697 ((*snxt + len) == tcp->tcp_fss))) { 21698 uchar_t *prev_rptr; 21699 uint32_t prev_snxt = tcp->tcp_snxt; 21700 21701 if (*tail_unsent == 0) { 21702 ASSERT((*xmit_tail)->b_cont != NULL); 21703 *xmit_tail = (*xmit_tail)->b_cont; 21704 prev_rptr = (*xmit_tail)->b_rptr; 21705 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21706 (*xmit_tail)->b_rptr); 21707 } else { 21708 prev_rptr = (*xmit_tail)->b_rptr; 21709 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21710 *tail_unsent; 21711 } 21712 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21713 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21714 /* Restore tcp_snxt so we get amount sent right. */ 21715 tcp->tcp_snxt = prev_snxt; 21716 if (prev_rptr == (*xmit_tail)->b_rptr) { 21717 /* 21718 * If the previous timestamp is still in use, 21719 * don't stomp on it. 21720 */ 21721 if ((*xmit_tail)->b_next == NULL) { 21722 (*xmit_tail)->b_prev = local_time; 21723 (*xmit_tail)->b_next = 21724 (mblk_t *)(uintptr_t)(*snxt); 21725 } 21726 } else 21727 (*xmit_tail)->b_rptr = prev_rptr; 21728 21729 if (mp == NULL) { 21730 if (ire != NULL) 21731 IRE_REFRELE(ire); 21732 return (-1); 21733 } 21734 mp1 = mp->b_cont; 21735 21736 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21737 tcp->tcp_last_sent_len = (ushort_t)len; 21738 while (mp1->b_cont) { 21739 *xmit_tail = (*xmit_tail)->b_cont; 21740 (*xmit_tail)->b_prev = local_time; 21741 (*xmit_tail)->b_next = 21742 (mblk_t *)(uintptr_t)(*snxt); 21743 mp1 = mp1->b_cont; 21744 } 21745 *snxt += len; 21746 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21747 BUMP_LOCAL(tcp->tcp_obsegs); 21748 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21749 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21750 tcp_send_data(tcp, q, mp); 21751 continue; 21752 } 21753 21754 *snxt += len; /* Adjust later if we don't send all of len */ 21755 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21756 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21757 21758 if (*tail_unsent) { 21759 /* Are the bytes above us in flight? */ 21760 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21761 if (rptr != (*xmit_tail)->b_rptr) { 21762 *tail_unsent -= len; 21763 if (len <= mss) /* LSO is unusable */ 21764 tcp->tcp_last_sent_len = (ushort_t)len; 21765 len += tcp_hdr_len; 21766 if (tcp->tcp_ipversion == IPV4_VERSION) 21767 tcp->tcp_ipha->ipha_length = htons(len); 21768 else 21769 tcp->tcp_ip6h->ip6_plen = 21770 htons(len - 21771 ((char *)&tcp->tcp_ip6h[1] - 21772 tcp->tcp_iphc)); 21773 mp = dupb(*xmit_tail); 21774 if (mp == NULL) { 21775 if (ire != NULL) 21776 IRE_REFRELE(ire); 21777 return (-1); /* out_of_mem */ 21778 } 21779 mp->b_rptr = rptr; 21780 /* 21781 * If the old timestamp is no longer in use, 21782 * sample a new timestamp now. 21783 */ 21784 if ((*xmit_tail)->b_next == NULL) { 21785 (*xmit_tail)->b_prev = local_time; 21786 (*xmit_tail)->b_next = 21787 (mblk_t *)(uintptr_t)(*snxt-len); 21788 } 21789 goto must_alloc; 21790 } 21791 } else { 21792 *xmit_tail = (*xmit_tail)->b_cont; 21793 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21794 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21795 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21796 (*xmit_tail)->b_rptr); 21797 } 21798 21799 (*xmit_tail)->b_prev = local_time; 21800 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21801 21802 *tail_unsent -= len; 21803 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21804 tcp->tcp_last_sent_len = (ushort_t)len; 21805 21806 len += tcp_hdr_len; 21807 if (tcp->tcp_ipversion == IPV4_VERSION) 21808 tcp->tcp_ipha->ipha_length = htons(len); 21809 else 21810 tcp->tcp_ip6h->ip6_plen = htons(len - 21811 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21812 21813 mp = dupb(*xmit_tail); 21814 if (mp == NULL) { 21815 if (ire != NULL) 21816 IRE_REFRELE(ire); 21817 return (-1); /* out_of_mem */ 21818 } 21819 21820 len = tcp_hdr_len; 21821 /* 21822 * There are four reasons to allocate a new hdr mblk: 21823 * 1) The bytes above us are in use by another packet 21824 * 2) We don't have good alignment 21825 * 3) The mblk is being shared 21826 * 4) We don't have enough room for a header 21827 */ 21828 rptr = mp->b_rptr - len; 21829 if (!OK_32PTR(rptr) || 21830 ((db = mp->b_datap), db->db_ref != 2) || 21831 rptr < db->db_base + ire_fp_mp_len) { 21832 /* NOTE: we assume allocb returns an OK_32PTR */ 21833 21834 must_alloc:; 21835 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21836 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21837 if (mp1 == NULL) { 21838 freemsg(mp); 21839 if (ire != NULL) 21840 IRE_REFRELE(ire); 21841 return (-1); /* out_of_mem */ 21842 } 21843 mp1->b_cont = mp; 21844 mp = mp1; 21845 /* Leave room for Link Level header */ 21846 len = tcp_hdr_len; 21847 rptr = 21848 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21849 mp->b_wptr = &rptr[len]; 21850 } 21851 21852 /* 21853 * Fill in the header using the template header, and add 21854 * options such as time-stamp, ECN and/or SACK, as needed. 21855 */ 21856 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21857 21858 mp->b_rptr = rptr; 21859 21860 if (*tail_unsent) { 21861 int spill = *tail_unsent; 21862 21863 mp1 = mp->b_cont; 21864 if (mp1 == NULL) 21865 mp1 = mp; 21866 21867 /* 21868 * If we're a little short, tack on more mblks until 21869 * there is no more spillover. 21870 */ 21871 while (spill < 0) { 21872 mblk_t *nmp; 21873 int nmpsz; 21874 21875 nmp = (*xmit_tail)->b_cont; 21876 nmpsz = MBLKL(nmp); 21877 21878 /* 21879 * Excess data in mblk; can we split it? 21880 * If MDT is enabled for the connection, 21881 * keep on splitting as this is a transient 21882 * send path. 21883 */ 21884 if (!do_lso_send && !tcp->tcp_mdt && 21885 (spill + nmpsz > 0)) { 21886 /* 21887 * Don't split if stream head was 21888 * told to break up larger writes 21889 * into smaller ones. 21890 */ 21891 if (tcp->tcp_maxpsz > 0) 21892 break; 21893 21894 /* 21895 * Next mblk is less than SMSS/2 21896 * rounded up to nearest 64-byte; 21897 * let it get sent as part of the 21898 * next segment. 21899 */ 21900 if (tcp->tcp_localnet && 21901 !tcp->tcp_cork && 21902 (nmpsz < roundup((mss >> 1), 64))) 21903 break; 21904 } 21905 21906 *xmit_tail = nmp; 21907 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21908 /* Stash for rtt use later */ 21909 (*xmit_tail)->b_prev = local_time; 21910 (*xmit_tail)->b_next = 21911 (mblk_t *)(uintptr_t)(*snxt - len); 21912 mp1->b_cont = dupb(*xmit_tail); 21913 mp1 = mp1->b_cont; 21914 21915 spill += nmpsz; 21916 if (mp1 == NULL) { 21917 *tail_unsent = spill; 21918 freemsg(mp); 21919 if (ire != NULL) 21920 IRE_REFRELE(ire); 21921 return (-1); /* out_of_mem */ 21922 } 21923 } 21924 21925 /* Trim back any surplus on the last mblk */ 21926 if (spill >= 0) { 21927 mp1->b_wptr -= spill; 21928 *tail_unsent = spill; 21929 } else { 21930 /* 21931 * We did not send everything we could in 21932 * order to remain within the b_cont limit. 21933 */ 21934 *usable -= spill; 21935 *snxt += spill; 21936 tcp->tcp_last_sent_len += spill; 21937 UPDATE_MIB(&tcps->tcps_mib, 21938 tcpOutDataBytes, spill); 21939 /* 21940 * Adjust the checksum 21941 */ 21942 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21943 sum += spill; 21944 sum = (sum >> 16) + (sum & 0xFFFF); 21945 U16_TO_ABE16(sum, tcph->th_sum); 21946 if (tcp->tcp_ipversion == IPV4_VERSION) { 21947 sum = ntohs( 21948 ((ipha_t *)rptr)->ipha_length) + 21949 spill; 21950 ((ipha_t *)rptr)->ipha_length = 21951 htons(sum); 21952 } else { 21953 sum = ntohs( 21954 ((ip6_t *)rptr)->ip6_plen) + 21955 spill; 21956 ((ip6_t *)rptr)->ip6_plen = 21957 htons(sum); 21958 } 21959 *tail_unsent = 0; 21960 } 21961 } 21962 if (tcp->tcp_ip_forward_progress) { 21963 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21964 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21965 tcp->tcp_ip_forward_progress = B_FALSE; 21966 } 21967 21968 if (do_lso_send) { 21969 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21970 num_lso_seg); 21971 tcp->tcp_obsegs += num_lso_seg; 21972 21973 TCP_STAT(tcps, tcp_lso_times); 21974 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21975 } else { 21976 tcp_send_data(tcp, q, mp); 21977 BUMP_LOCAL(tcp->tcp_obsegs); 21978 } 21979 } 21980 21981 if (ire != NULL) 21982 IRE_REFRELE(ire); 21983 return (0); 21984 } 21985 21986 /* Unlink and return any mblk that looks like it contains a MDT info */ 21987 static mblk_t * 21988 tcp_mdt_info_mp(mblk_t *mp) 21989 { 21990 mblk_t *prev_mp; 21991 21992 for (;;) { 21993 prev_mp = mp; 21994 /* no more to process? */ 21995 if ((mp = mp->b_cont) == NULL) 21996 break; 21997 21998 switch (DB_TYPE(mp)) { 21999 case M_CTL: 22000 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 22001 continue; 22002 ASSERT(prev_mp != NULL); 22003 prev_mp->b_cont = mp->b_cont; 22004 mp->b_cont = NULL; 22005 return (mp); 22006 default: 22007 break; 22008 } 22009 } 22010 return (mp); 22011 } 22012 22013 /* MDT info update routine, called when IP notifies us about MDT */ 22014 static void 22015 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 22016 { 22017 boolean_t prev_state; 22018 tcp_stack_t *tcps = tcp->tcp_tcps; 22019 22020 /* 22021 * IP is telling us to abort MDT on this connection? We know 22022 * this because the capability is only turned off when IP 22023 * encounters some pathological cases, e.g. link-layer change 22024 * where the new driver doesn't support MDT, or in situation 22025 * where MDT usage on the link-layer has been switched off. 22026 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 22027 * if the link-layer doesn't support MDT, and if it does, it 22028 * will indicate that the feature is to be turned on. 22029 */ 22030 prev_state = tcp->tcp_mdt; 22031 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 22032 if (!tcp->tcp_mdt && !first) { 22033 TCP_STAT(tcps, tcp_mdt_conn_halted3); 22034 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 22035 (void *)tcp->tcp_connp)); 22036 } 22037 22038 /* 22039 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 22040 * so disable MDT otherwise. The checks are done here 22041 * and in tcp_wput_data(). 22042 */ 22043 if (tcp->tcp_mdt && 22044 (tcp->tcp_ipversion == IPV4_VERSION && 22045 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22046 (tcp->tcp_ipversion == IPV6_VERSION && 22047 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 22048 tcp->tcp_mdt = B_FALSE; 22049 22050 if (tcp->tcp_mdt) { 22051 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 22052 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 22053 "version (%d), expected version is %d", 22054 mdt_capab->ill_mdt_version, MDT_VERSION_2); 22055 tcp->tcp_mdt = B_FALSE; 22056 return; 22057 } 22058 22059 /* 22060 * We need the driver to be able to handle at least three 22061 * spans per packet in order for tcp MDT to be utilized. 22062 * The first is for the header portion, while the rest are 22063 * needed to handle a packet that straddles across two 22064 * virtually non-contiguous buffers; a typical tcp packet 22065 * therefore consists of only two spans. Note that we take 22066 * a zero as "don't care". 22067 */ 22068 if (mdt_capab->ill_mdt_span_limit > 0 && 22069 mdt_capab->ill_mdt_span_limit < 3) { 22070 tcp->tcp_mdt = B_FALSE; 22071 return; 22072 } 22073 22074 /* a zero means driver wants default value */ 22075 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 22076 tcps->tcps_mdt_max_pbufs); 22077 if (tcp->tcp_mdt_max_pld == 0) 22078 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 22079 22080 /* ensure 32-bit alignment */ 22081 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 22082 mdt_capab->ill_mdt_hdr_head), 4); 22083 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 22084 mdt_capab->ill_mdt_hdr_tail), 4); 22085 22086 if (!first && !prev_state) { 22087 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 22088 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 22089 (void *)tcp->tcp_connp)); 22090 } 22091 } 22092 } 22093 22094 /* Unlink and return any mblk that looks like it contains a LSO info */ 22095 static mblk_t * 22096 tcp_lso_info_mp(mblk_t *mp) 22097 { 22098 mblk_t *prev_mp; 22099 22100 for (;;) { 22101 prev_mp = mp; 22102 /* no more to process? */ 22103 if ((mp = mp->b_cont) == NULL) 22104 break; 22105 22106 switch (DB_TYPE(mp)) { 22107 case M_CTL: 22108 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 22109 continue; 22110 ASSERT(prev_mp != NULL); 22111 prev_mp->b_cont = mp->b_cont; 22112 mp->b_cont = NULL; 22113 return (mp); 22114 default: 22115 break; 22116 } 22117 } 22118 22119 return (mp); 22120 } 22121 22122 /* LSO info update routine, called when IP notifies us about LSO */ 22123 static void 22124 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 22125 { 22126 tcp_stack_t *tcps = tcp->tcp_tcps; 22127 22128 /* 22129 * IP is telling us to abort LSO on this connection? We know 22130 * this because the capability is only turned off when IP 22131 * encounters some pathological cases, e.g. link-layer change 22132 * where the new NIC/driver doesn't support LSO, or in situation 22133 * where LSO usage on the link-layer has been switched off. 22134 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 22135 * if the link-layer doesn't support LSO, and if it does, it 22136 * will indicate that the feature is to be turned on. 22137 */ 22138 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 22139 TCP_STAT(tcps, tcp_lso_enabled); 22140 22141 /* 22142 * We currently only support LSO on simple TCP/IPv4, 22143 * so disable LSO otherwise. The checks are done here 22144 * and in tcp_wput_data(). 22145 */ 22146 if (tcp->tcp_lso && 22147 (tcp->tcp_ipversion == IPV4_VERSION && 22148 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22149 (tcp->tcp_ipversion == IPV6_VERSION)) { 22150 tcp->tcp_lso = B_FALSE; 22151 TCP_STAT(tcps, tcp_lso_disabled); 22152 } else { 22153 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 22154 lso_capab->ill_lso_max); 22155 } 22156 } 22157 22158 static void 22159 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 22160 { 22161 conn_t *connp = tcp->tcp_connp; 22162 tcp_stack_t *tcps = tcp->tcp_tcps; 22163 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22164 22165 ASSERT(ire != NULL); 22166 22167 /* 22168 * We may be in the fastpath here, and although we essentially do 22169 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 22170 * we try to keep things as brief as possible. After all, these 22171 * are only best-effort checks, and we do more thorough ones prior 22172 * to calling tcp_send()/tcp_multisend(). 22173 */ 22174 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 22175 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 22176 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 22177 !(ire->ire_flags & RTF_MULTIRT) && 22178 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 22179 CONN_IS_LSO_MD_FASTPATH(connp)) { 22180 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 22181 /* Cache the result */ 22182 connp->conn_lso_ok = B_TRUE; 22183 22184 ASSERT(ill->ill_lso_capab != NULL); 22185 if (!ill->ill_lso_capab->ill_lso_on) { 22186 ill->ill_lso_capab->ill_lso_on = 1; 22187 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22188 "LSO for interface %s\n", (void *)connp, 22189 ill->ill_name)); 22190 } 22191 tcp_lso_update(tcp, ill->ill_lso_capab); 22192 } else if (ipst->ips_ip_multidata_outbound && 22193 ILL_MDT_CAPABLE(ill)) { 22194 /* Cache the result */ 22195 connp->conn_mdt_ok = B_TRUE; 22196 22197 ASSERT(ill->ill_mdt_capab != NULL); 22198 if (!ill->ill_mdt_capab->ill_mdt_on) { 22199 ill->ill_mdt_capab->ill_mdt_on = 1; 22200 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22201 "MDT for interface %s\n", (void *)connp, 22202 ill->ill_name)); 22203 } 22204 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22205 } 22206 } 22207 22208 /* 22209 * The goal is to reduce the number of generated tcp segments by 22210 * setting the maxpsz multiplier to 0; this will have an affect on 22211 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22212 * into each packet, up to SMSS bytes. Doing this reduces the number 22213 * of outbound segments and incoming ACKs, thus allowing for better 22214 * network and system performance. In contrast the legacy behavior 22215 * may result in sending less than SMSS size, because the last mblk 22216 * for some packets may have more data than needed to make up SMSS, 22217 * and the legacy code refused to "split" it. 22218 * 22219 * We apply the new behavior on following situations: 22220 * 22221 * 1) Loopback connections, 22222 * 2) Connections in which the remote peer is not on local subnet, 22223 * 3) Local subnet connections over the bge interface (see below). 22224 * 22225 * Ideally, we would like this behavior to apply for interfaces other 22226 * than bge. However, doing so would negatively impact drivers which 22227 * perform dynamic mapping and unmapping of DMA resources, which are 22228 * increased by setting the maxpsz multiplier to 0 (more mblks per 22229 * packet will be generated by tcp). The bge driver does not suffer 22230 * from this, as it copies the mblks into pre-mapped buffers, and 22231 * therefore does not require more I/O resources than before. 22232 * 22233 * Otherwise, this behavior is present on all network interfaces when 22234 * the destination endpoint is non-local, since reducing the number 22235 * of packets in general is good for the network. 22236 * 22237 * TODO We need to remove this hard-coded conditional for bge once 22238 * a better "self-tuning" mechanism, or a way to comprehend 22239 * the driver transmit strategy is devised. Until the solution 22240 * is found and well understood, we live with this hack. 22241 */ 22242 if (!tcp_static_maxpsz && 22243 (tcp->tcp_loopback || !tcp->tcp_localnet || 22244 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22245 /* override the default value */ 22246 tcp->tcp_maxpsz = 0; 22247 22248 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22249 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22250 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22251 } 22252 22253 /* set the stream head parameters accordingly */ 22254 (void) tcp_maxpsz_set(tcp, B_TRUE); 22255 } 22256 22257 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22258 static void 22259 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22260 { 22261 uchar_t fval = *mp->b_rptr; 22262 mblk_t *tail; 22263 queue_t *q = tcp->tcp_wq; 22264 22265 /* TODO: How should flush interact with urgent data? */ 22266 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22267 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22268 /* 22269 * Flush only data that has not yet been put on the wire. If 22270 * we flush data that we have already transmitted, life, as we 22271 * know it, may come to an end. 22272 */ 22273 tail = tcp->tcp_xmit_tail; 22274 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22275 tcp->tcp_xmit_tail_unsent = 0; 22276 tcp->tcp_unsent = 0; 22277 if (tail->b_wptr != tail->b_rptr) 22278 tail = tail->b_cont; 22279 if (tail) { 22280 mblk_t **excess = &tcp->tcp_xmit_head; 22281 for (;;) { 22282 mblk_t *mp1 = *excess; 22283 if (mp1 == tail) 22284 break; 22285 tcp->tcp_xmit_tail = mp1; 22286 tcp->tcp_xmit_last = mp1; 22287 excess = &mp1->b_cont; 22288 } 22289 *excess = NULL; 22290 tcp_close_mpp(&tail); 22291 if (tcp->tcp_snd_zcopy_aware) 22292 tcp_zcopy_notify(tcp); 22293 } 22294 /* 22295 * We have no unsent data, so unsent must be less than 22296 * tcp_xmit_lowater, so re-enable flow. 22297 */ 22298 mutex_enter(&tcp->tcp_non_sq_lock); 22299 if (tcp->tcp_flow_stopped) { 22300 tcp_clrqfull(tcp); 22301 } 22302 mutex_exit(&tcp->tcp_non_sq_lock); 22303 } 22304 /* 22305 * TODO: you can't just flush these, you have to increase rwnd for one 22306 * thing. For another, how should urgent data interact? 22307 */ 22308 if (fval & FLUSHR) { 22309 *mp->b_rptr = fval & ~FLUSHW; 22310 /* XXX */ 22311 qreply(q, mp); 22312 return; 22313 } 22314 freemsg(mp); 22315 } 22316 22317 /* 22318 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22319 * messages. 22320 */ 22321 static void 22322 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22323 { 22324 mblk_t *mp1; 22325 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22326 STRUCT_HANDLE(strbuf, sb); 22327 queue_t *q = tcp->tcp_wq; 22328 int error; 22329 uint_t addrlen; 22330 22331 /* Make sure it is one of ours. */ 22332 switch (iocp->ioc_cmd) { 22333 case TI_GETMYNAME: 22334 case TI_GETPEERNAME: 22335 break; 22336 default: 22337 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22338 return; 22339 } 22340 switch (mi_copy_state(q, mp, &mp1)) { 22341 case -1: 22342 return; 22343 case MI_COPY_CASE(MI_COPY_IN, 1): 22344 break; 22345 case MI_COPY_CASE(MI_COPY_OUT, 1): 22346 /* Copy out the strbuf. */ 22347 mi_copyout(q, mp); 22348 return; 22349 case MI_COPY_CASE(MI_COPY_OUT, 2): 22350 /* All done. */ 22351 mi_copy_done(q, mp, 0); 22352 return; 22353 default: 22354 mi_copy_done(q, mp, EPROTO); 22355 return; 22356 } 22357 /* Check alignment of the strbuf */ 22358 if (!OK_32PTR(mp1->b_rptr)) { 22359 mi_copy_done(q, mp, EINVAL); 22360 return; 22361 } 22362 22363 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22364 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22365 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22366 mi_copy_done(q, mp, EINVAL); 22367 return; 22368 } 22369 22370 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22371 if (mp1 == NULL) 22372 return; 22373 22374 switch (iocp->ioc_cmd) { 22375 case TI_GETMYNAME: 22376 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22377 break; 22378 case TI_GETPEERNAME: 22379 error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22380 break; 22381 } 22382 22383 if (error != 0) { 22384 mi_copy_done(q, mp, error); 22385 } else { 22386 mp1->b_wptr += addrlen; 22387 STRUCT_FSET(sb, len, addrlen); 22388 22389 /* Copy out the address */ 22390 mi_copyout(q, mp); 22391 } 22392 } 22393 22394 /* 22395 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22396 * messages. 22397 */ 22398 /* ARGSUSED */ 22399 static void 22400 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22401 { 22402 conn_t *connp = (conn_t *)arg; 22403 tcp_t *tcp = connp->conn_tcp; 22404 queue_t *q = tcp->tcp_wq; 22405 struct iocblk *iocp; 22406 tcp_stack_t *tcps = tcp->tcp_tcps; 22407 22408 ASSERT(DB_TYPE(mp) == M_IOCTL); 22409 /* 22410 * Try and ASSERT the minimum possible references on the 22411 * conn early enough. Since we are executing on write side, 22412 * the connection is obviously not detached and that means 22413 * there is a ref each for TCP and IP. Since we are behind 22414 * the squeue, the minimum references needed are 3. If the 22415 * conn is in classifier hash list, there should be an 22416 * extra ref for that (we check both the possibilities). 22417 */ 22418 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22419 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22420 22421 iocp = (struct iocblk *)mp->b_rptr; 22422 switch (iocp->ioc_cmd) { 22423 case TCP_IOC_DEFAULT_Q: 22424 /* Wants to be the default wq. */ 22425 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22426 iocp->ioc_error = EPERM; 22427 iocp->ioc_count = 0; 22428 mp->b_datap->db_type = M_IOCACK; 22429 qreply(q, mp); 22430 return; 22431 } 22432 tcp_def_q_set(tcp, mp); 22433 return; 22434 case _SIOCSOCKFALLBACK: 22435 /* 22436 * Either sockmod is about to be popped and the socket 22437 * would now be treated as a plain stream, or a module 22438 * is about to be pushed so we could no longer use read- 22439 * side synchronous streams for fused loopback tcp. 22440 * Drain any queued data and disable direct sockfs 22441 * interface from now on. 22442 */ 22443 if (!tcp->tcp_issocket) { 22444 DB_TYPE(mp) = M_IOCNAK; 22445 iocp->ioc_error = EINVAL; 22446 } else { 22447 #ifdef _ILP32 22448 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 22449 #else 22450 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22451 #endif 22452 /* 22453 * Insert this socket into the acceptor hash. 22454 * We might need it for T_CONN_RES message 22455 */ 22456 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22457 22458 if (tcp->tcp_fused) { 22459 /* 22460 * This is a fused loopback tcp; disable 22461 * read-side synchronous streams interface 22462 * and drain any queued data. It is okay 22463 * to do this for non-synchronous streams 22464 * fused tcp as well. 22465 */ 22466 tcp_fuse_disable_pair(tcp, B_FALSE); 22467 } 22468 tcp->tcp_issocket = B_FALSE; 22469 tcp->tcp_sodirect = NULL; 22470 TCP_STAT(tcps, tcp_sock_fallback); 22471 22472 DB_TYPE(mp) = M_IOCACK; 22473 iocp->ioc_error = 0; 22474 } 22475 iocp->ioc_count = 0; 22476 iocp->ioc_rval = 0; 22477 qreply(q, mp); 22478 return; 22479 } 22480 CALL_IP_WPUT(connp, q, mp); 22481 } 22482 22483 /* 22484 * This routine is called by tcp_wput() to handle all TPI requests. 22485 */ 22486 /* ARGSUSED */ 22487 static void 22488 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22489 { 22490 conn_t *connp = (conn_t *)arg; 22491 tcp_t *tcp = connp->conn_tcp; 22492 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22493 uchar_t *rptr; 22494 t_scalar_t type; 22495 int len; 22496 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22497 22498 /* 22499 * Try and ASSERT the minimum possible references on the 22500 * conn early enough. Since we are executing on write side, 22501 * the connection is obviously not detached and that means 22502 * there is a ref each for TCP and IP. Since we are behind 22503 * the squeue, the minimum references needed are 3. If the 22504 * conn is in classifier hash list, there should be an 22505 * extra ref for that (we check both the possibilities). 22506 */ 22507 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22508 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22509 22510 rptr = mp->b_rptr; 22511 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22512 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22513 type = ((union T_primitives *)rptr)->type; 22514 if (type == T_EXDATA_REQ) { 22515 uint32_t msize = msgdsize(mp->b_cont); 22516 22517 len = msize - 1; 22518 if (len < 0) { 22519 freemsg(mp); 22520 return; 22521 } 22522 /* 22523 * Try to force urgent data out on the wire. 22524 * Even if we have unsent data this will 22525 * at least send the urgent flag. 22526 * XXX does not handle more flag correctly. 22527 */ 22528 len += tcp->tcp_unsent; 22529 len += tcp->tcp_snxt; 22530 tcp->tcp_urg = len; 22531 tcp->tcp_valid_bits |= TCP_URG_VALID; 22532 22533 /* Bypass tcp protocol for fused tcp loopback */ 22534 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22535 return; 22536 } else if (type != T_DATA_REQ) { 22537 goto non_urgent_data; 22538 } 22539 /* TODO: options, flags, ... from user */ 22540 /* Set length to zero for reclamation below */ 22541 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22542 freeb(mp); 22543 return; 22544 } else { 22545 if (tcp->tcp_debug) { 22546 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22547 "tcp_wput_proto, dropping one..."); 22548 } 22549 freemsg(mp); 22550 return; 22551 } 22552 22553 non_urgent_data: 22554 22555 switch ((int)tprim->type) { 22556 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22557 /* 22558 * save the kssl_ent_t from the next block, and convert this 22559 * back to a normal bind_req. 22560 */ 22561 if (mp->b_cont != NULL) { 22562 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22563 22564 if (tcp->tcp_kssl_ent != NULL) { 22565 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22566 KSSL_NO_PROXY); 22567 tcp->tcp_kssl_ent = NULL; 22568 } 22569 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22570 sizeof (kssl_ent_t)); 22571 kssl_hold_ent(tcp->tcp_kssl_ent); 22572 freemsg(mp->b_cont); 22573 mp->b_cont = NULL; 22574 } 22575 tprim->type = T_BIND_REQ; 22576 22577 /* FALLTHROUGH */ 22578 case O_T_BIND_REQ: /* bind request */ 22579 case T_BIND_REQ: /* new semantics bind request */ 22580 tcp_bind(tcp, mp); 22581 break; 22582 case T_UNBIND_REQ: /* unbind request */ 22583 tcp_unbind(tcp, mp); 22584 break; 22585 case O_T_CONN_RES: /* old connection response XXX */ 22586 case T_CONN_RES: /* connection response */ 22587 tcp_accept(tcp, mp); 22588 break; 22589 case T_CONN_REQ: /* connection request */ 22590 tcp_connect(tcp, mp); 22591 break; 22592 case T_DISCON_REQ: /* disconnect request */ 22593 tcp_disconnect(tcp, mp); 22594 break; 22595 case T_CAPABILITY_REQ: 22596 tcp_capability_req(tcp, mp); /* capability request */ 22597 break; 22598 case T_INFO_REQ: /* information request */ 22599 tcp_info_req(tcp, mp); 22600 break; 22601 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22602 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22603 &tcp_opt_obj, B_TRUE); 22604 break; 22605 case T_OPTMGMT_REQ: 22606 /* 22607 * Note: no support for snmpcom_req() through new 22608 * T_OPTMGMT_REQ. See comments in ip.c 22609 */ 22610 /* Only IP is allowed to return meaningful value */ 22611 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22612 B_TRUE); 22613 break; 22614 22615 case T_UNITDATA_REQ: /* unitdata request */ 22616 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22617 break; 22618 case T_ORDREL_REQ: /* orderly release req */ 22619 freemsg(mp); 22620 22621 if (tcp->tcp_fused) 22622 tcp_unfuse(tcp); 22623 22624 if (tcp_xmit_end(tcp) != 0) { 22625 /* 22626 * We were crossing FINs and got a reset from 22627 * the other side. Just ignore it. 22628 */ 22629 if (tcp->tcp_debug) { 22630 (void) strlog(TCP_MOD_ID, 0, 1, 22631 SL_ERROR|SL_TRACE, 22632 "tcp_wput_proto, T_ORDREL_REQ out of " 22633 "state %s", 22634 tcp_display(tcp, NULL, 22635 DISP_ADDR_AND_PORT)); 22636 } 22637 } 22638 break; 22639 case T_ADDR_REQ: 22640 tcp_addr_req(tcp, mp); 22641 break; 22642 default: 22643 if (tcp->tcp_debug) { 22644 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22645 "tcp_wput_proto, bogus TPI msg, type %d", 22646 tprim->type); 22647 } 22648 /* 22649 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22650 * to recover. 22651 */ 22652 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22653 break; 22654 } 22655 } 22656 22657 /* 22658 * The TCP write service routine should never be called... 22659 */ 22660 /* ARGSUSED */ 22661 static void 22662 tcp_wsrv(queue_t *q) 22663 { 22664 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22665 22666 TCP_STAT(tcps, tcp_wsrv_called); 22667 } 22668 22669 /* Non overlapping byte exchanger */ 22670 static void 22671 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22672 { 22673 uchar_t uch; 22674 22675 while (len-- > 0) { 22676 uch = a[len]; 22677 a[len] = b[len]; 22678 b[len] = uch; 22679 } 22680 } 22681 22682 /* 22683 * Send out a control packet on the tcp connection specified. This routine 22684 * is typically called where we need a simple ACK or RST generated. 22685 */ 22686 static void 22687 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22688 { 22689 uchar_t *rptr; 22690 tcph_t *tcph; 22691 ipha_t *ipha = NULL; 22692 ip6_t *ip6h = NULL; 22693 uint32_t sum; 22694 int tcp_hdr_len; 22695 int tcp_ip_hdr_len; 22696 mblk_t *mp; 22697 tcp_stack_t *tcps = tcp->tcp_tcps; 22698 22699 /* 22700 * Save sum for use in source route later. 22701 */ 22702 ASSERT(tcp != NULL); 22703 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22704 tcp_hdr_len = tcp->tcp_hdr_len; 22705 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22706 22707 /* If a text string is passed in with the request, pass it to strlog. */ 22708 if (str != NULL && tcp->tcp_debug) { 22709 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22710 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22711 str, seq, ack, ctl); 22712 } 22713 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22714 BPRI_MED); 22715 if (mp == NULL) { 22716 return; 22717 } 22718 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22719 mp->b_rptr = rptr; 22720 mp->b_wptr = &rptr[tcp_hdr_len]; 22721 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22722 22723 if (tcp->tcp_ipversion == IPV4_VERSION) { 22724 ipha = (ipha_t *)rptr; 22725 ipha->ipha_length = htons(tcp_hdr_len); 22726 } else { 22727 ip6h = (ip6_t *)rptr; 22728 ASSERT(tcp != NULL); 22729 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22730 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22731 } 22732 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22733 tcph->th_flags[0] = (uint8_t)ctl; 22734 if (ctl & TH_RST) { 22735 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22736 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22737 /* 22738 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22739 */ 22740 if (tcp->tcp_snd_ts_ok && 22741 tcp->tcp_state > TCPS_SYN_SENT) { 22742 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22743 *(mp->b_wptr) = TCPOPT_EOL; 22744 if (tcp->tcp_ipversion == IPV4_VERSION) { 22745 ipha->ipha_length = htons(tcp_hdr_len - 22746 TCPOPT_REAL_TS_LEN); 22747 } else { 22748 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22749 TCPOPT_REAL_TS_LEN); 22750 } 22751 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22752 sum -= TCPOPT_REAL_TS_LEN; 22753 } 22754 } 22755 if (ctl & TH_ACK) { 22756 if (tcp->tcp_snd_ts_ok) { 22757 U32_TO_BE32(lbolt, 22758 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22759 U32_TO_BE32(tcp->tcp_ts_recent, 22760 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22761 } 22762 22763 /* Update the latest receive window size in TCP header. */ 22764 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22765 tcph->th_win); 22766 tcp->tcp_rack = ack; 22767 tcp->tcp_rack_cnt = 0; 22768 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22769 } 22770 BUMP_LOCAL(tcp->tcp_obsegs); 22771 U32_TO_BE32(seq, tcph->th_seq); 22772 U32_TO_BE32(ack, tcph->th_ack); 22773 /* 22774 * Include the adjustment for a source route if any. 22775 */ 22776 sum = (sum >> 16) + (sum & 0xFFFF); 22777 U16_TO_BE16(sum, tcph->th_sum); 22778 tcp_send_data(tcp, tcp->tcp_wq, mp); 22779 } 22780 22781 /* 22782 * If this routine returns B_TRUE, TCP can generate a RST in response 22783 * to a segment. If it returns B_FALSE, TCP should not respond. 22784 */ 22785 static boolean_t 22786 tcp_send_rst_chk(tcp_stack_t *tcps) 22787 { 22788 clock_t now; 22789 22790 /* 22791 * TCP needs to protect itself from generating too many RSTs. 22792 * This can be a DoS attack by sending us random segments 22793 * soliciting RSTs. 22794 * 22795 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22796 * in each 1 second interval. In this way, TCP still generate 22797 * RSTs in normal cases but when under attack, the impact is 22798 * limited. 22799 */ 22800 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22801 now = lbolt; 22802 /* lbolt can wrap around. */ 22803 if ((tcps->tcps_last_rst_intrvl > now) || 22804 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22805 1*SECONDS)) { 22806 tcps->tcps_last_rst_intrvl = now; 22807 tcps->tcps_rst_cnt = 1; 22808 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22809 return (B_FALSE); 22810 } 22811 } 22812 return (B_TRUE); 22813 } 22814 22815 /* 22816 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22817 */ 22818 static void 22819 tcp_ip_ire_mark_advice(tcp_t *tcp) 22820 { 22821 mblk_t *mp; 22822 ipic_t *ipic; 22823 22824 if (tcp->tcp_ipversion == IPV4_VERSION) { 22825 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22826 &ipic); 22827 } else { 22828 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22829 &ipic); 22830 } 22831 if (mp == NULL) 22832 return; 22833 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22834 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22835 } 22836 22837 /* 22838 * Return an IP advice ioctl mblk and set ipic to be the pointer 22839 * to the advice structure. 22840 */ 22841 static mblk_t * 22842 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22843 { 22844 struct iocblk *ioc; 22845 mblk_t *mp, *mp1; 22846 22847 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22848 if (mp == NULL) 22849 return (NULL); 22850 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22851 *ipic = (ipic_t *)mp->b_rptr; 22852 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22853 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22854 22855 bcopy(addr, *ipic + 1, addr_len); 22856 22857 (*ipic)->ipic_addr_length = addr_len; 22858 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22859 22860 mp1 = mkiocb(IP_IOCTL); 22861 if (mp1 == NULL) { 22862 freemsg(mp); 22863 return (NULL); 22864 } 22865 mp1->b_cont = mp; 22866 ioc = (struct iocblk *)mp1->b_rptr; 22867 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22868 22869 return (mp1); 22870 } 22871 22872 /* 22873 * Generate a reset based on an inbound packet, connp is set by caller 22874 * when RST is in response to an unexpected inbound packet for which 22875 * there is active tcp state in the system. 22876 * 22877 * IPSEC NOTE : Try to send the reply with the same protection as it came 22878 * in. We still have the ipsec_mp that the packet was attached to. Thus 22879 * the packet will go out at the same level of protection as it came in by 22880 * converting the IPSEC_IN to IPSEC_OUT. 22881 */ 22882 static void 22883 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22884 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22885 tcp_stack_t *tcps, conn_t *connp) 22886 { 22887 ipha_t *ipha = NULL; 22888 ip6_t *ip6h = NULL; 22889 ushort_t len; 22890 tcph_t *tcph; 22891 int i; 22892 mblk_t *ipsec_mp; 22893 boolean_t mctl_present; 22894 ipic_t *ipic; 22895 ipaddr_t v4addr; 22896 in6_addr_t v6addr; 22897 int addr_len; 22898 void *addr; 22899 queue_t *q = tcps->tcps_g_q; 22900 tcp_t *tcp; 22901 cred_t *cr; 22902 mblk_t *nmp; 22903 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22904 22905 if (tcps->tcps_g_q == NULL) { 22906 /* 22907 * For non-zero stackids the default queue isn't created 22908 * until the first open, thus there can be a need to send 22909 * a reset before then. But we can't do that, hence we just 22910 * drop the packet. Later during boot, when the default queue 22911 * has been setup, a retransmitted packet from the peer 22912 * will result in a reset. 22913 */ 22914 ASSERT(tcps->tcps_netstack->netstack_stackid != 22915 GLOBAL_NETSTACKID); 22916 freemsg(mp); 22917 return; 22918 } 22919 22920 if (connp != NULL) 22921 tcp = connp->conn_tcp; 22922 else 22923 tcp = Q_TO_TCP(q); 22924 22925 if (!tcp_send_rst_chk(tcps)) { 22926 tcps->tcps_rst_unsent++; 22927 freemsg(mp); 22928 return; 22929 } 22930 22931 if (mp->b_datap->db_type == M_CTL) { 22932 ipsec_mp = mp; 22933 mp = mp->b_cont; 22934 mctl_present = B_TRUE; 22935 } else { 22936 ipsec_mp = mp; 22937 mctl_present = B_FALSE; 22938 } 22939 22940 if (str && q && tcps->tcps_dbg) { 22941 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22942 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22943 "flags 0x%x", 22944 str, seq, ack, ctl); 22945 } 22946 if (mp->b_datap->db_ref != 1) { 22947 mblk_t *mp1 = copyb(mp); 22948 freemsg(mp); 22949 mp = mp1; 22950 if (!mp) { 22951 if (mctl_present) 22952 freeb(ipsec_mp); 22953 return; 22954 } else { 22955 if (mctl_present) { 22956 ipsec_mp->b_cont = mp; 22957 } else { 22958 ipsec_mp = mp; 22959 } 22960 } 22961 } else if (mp->b_cont) { 22962 freemsg(mp->b_cont); 22963 mp->b_cont = NULL; 22964 } 22965 /* 22966 * We skip reversing source route here. 22967 * (for now we replace all IP options with EOL) 22968 */ 22969 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22970 ipha = (ipha_t *)mp->b_rptr; 22971 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22972 mp->b_rptr[i] = IPOPT_EOL; 22973 /* 22974 * Make sure that src address isn't flagrantly invalid. 22975 * Not all broadcast address checking for the src address 22976 * is possible, since we don't know the netmask of the src 22977 * addr. No check for destination address is done, since 22978 * IP will not pass up a packet with a broadcast dest 22979 * address to TCP. Similar checks are done below for IPv6. 22980 */ 22981 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22982 CLASSD(ipha->ipha_src)) { 22983 freemsg(ipsec_mp); 22984 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22985 return; 22986 } 22987 } else { 22988 ip6h = (ip6_t *)mp->b_rptr; 22989 22990 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22991 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22992 freemsg(ipsec_mp); 22993 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22994 return; 22995 } 22996 22997 /* Remove any extension headers assuming partial overlay */ 22998 if (ip_hdr_len > IPV6_HDR_LEN) { 22999 uint8_t *to; 23000 23001 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 23002 ovbcopy(ip6h, to, IPV6_HDR_LEN); 23003 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 23004 ip_hdr_len = IPV6_HDR_LEN; 23005 ip6h = (ip6_t *)mp->b_rptr; 23006 ip6h->ip6_nxt = IPPROTO_TCP; 23007 } 23008 } 23009 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 23010 if (tcph->th_flags[0] & TH_RST) { 23011 freemsg(ipsec_mp); 23012 return; 23013 } 23014 tcph->th_offset_and_rsrvd[0] = (5 << 4); 23015 len = ip_hdr_len + sizeof (tcph_t); 23016 mp->b_wptr = &mp->b_rptr[len]; 23017 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23018 ipha->ipha_length = htons(len); 23019 /* Swap addresses */ 23020 v4addr = ipha->ipha_src; 23021 ipha->ipha_src = ipha->ipha_dst; 23022 ipha->ipha_dst = v4addr; 23023 ipha->ipha_ident = 0; 23024 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 23025 addr_len = IP_ADDR_LEN; 23026 addr = &v4addr; 23027 } else { 23028 /* No ip6i_t in this case */ 23029 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 23030 /* Swap addresses */ 23031 v6addr = ip6h->ip6_src; 23032 ip6h->ip6_src = ip6h->ip6_dst; 23033 ip6h->ip6_dst = v6addr; 23034 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 23035 addr_len = IPV6_ADDR_LEN; 23036 addr = &v6addr; 23037 } 23038 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 23039 U32_TO_BE32(ack, tcph->th_ack); 23040 U32_TO_BE32(seq, tcph->th_seq); 23041 U16_TO_BE16(0, tcph->th_win); 23042 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 23043 tcph->th_flags[0] = (uint8_t)ctl; 23044 if (ctl & TH_RST) { 23045 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 23046 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23047 } 23048 23049 /* IP trusts us to set up labels when required. */ 23050 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 23051 crgetlabel(cr) != NULL) { 23052 int err; 23053 23054 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 23055 err = tsol_check_label(cr, &mp, 23056 tcp->tcp_connp->conn_mac_exempt, 23057 tcps->tcps_netstack->netstack_ip); 23058 else 23059 err = tsol_check_label_v6(cr, &mp, 23060 tcp->tcp_connp->conn_mac_exempt, 23061 tcps->tcps_netstack->netstack_ip); 23062 if (mctl_present) 23063 ipsec_mp->b_cont = mp; 23064 else 23065 ipsec_mp = mp; 23066 if (err != 0) { 23067 freemsg(ipsec_mp); 23068 return; 23069 } 23070 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23071 ipha = (ipha_t *)mp->b_rptr; 23072 } else { 23073 ip6h = (ip6_t *)mp->b_rptr; 23074 } 23075 } 23076 23077 if (mctl_present) { 23078 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23079 23080 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23081 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 23082 return; 23083 } 23084 } 23085 if (zoneid == ALL_ZONES) 23086 zoneid = GLOBAL_ZONEID; 23087 23088 /* Add the zoneid so ip_output routes it properly */ 23089 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 23090 freemsg(ipsec_mp); 23091 return; 23092 } 23093 ipsec_mp = nmp; 23094 23095 /* 23096 * NOTE: one might consider tracing a TCP packet here, but 23097 * this function has no active TCP state and no tcp structure 23098 * that has a trace buffer. If we traced here, we would have 23099 * to keep a local trace buffer in tcp_record_trace(). 23100 * 23101 * TSol note: The mblk that contains the incoming packet was 23102 * reused by tcp_xmit_listener_reset, so it already contains 23103 * the right credentials and we don't need to call mblk_setcred. 23104 * Also the conn's cred is not right since it is associated 23105 * with tcps_g_q. 23106 */ 23107 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 23108 23109 /* 23110 * Tell IP to mark the IRE used for this destination temporary. 23111 * This way, we can limit our exposure to DoS attack because IP 23112 * creates an IRE for each destination. If there are too many, 23113 * the time to do any routing lookup will be extremely long. And 23114 * the lookup can be in interrupt context. 23115 * 23116 * Note that in normal circumstances, this marking should not 23117 * affect anything. It would be nice if only 1 message is 23118 * needed to inform IP that the IRE created for this RST should 23119 * not be added to the cache table. But there is currently 23120 * not such communication mechanism between TCP and IP. So 23121 * the best we can do now is to send the advice ioctl to IP 23122 * to mark the IRE temporary. 23123 */ 23124 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 23125 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 23126 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23127 } 23128 } 23129 23130 /* 23131 * Initiate closedown sequence on an active connection. (May be called as 23132 * writer.) Return value zero for OK return, non-zero for error return. 23133 */ 23134 static int 23135 tcp_xmit_end(tcp_t *tcp) 23136 { 23137 ipic_t *ipic; 23138 mblk_t *mp; 23139 tcp_stack_t *tcps = tcp->tcp_tcps; 23140 23141 if (tcp->tcp_state < TCPS_SYN_RCVD || 23142 tcp->tcp_state > TCPS_CLOSE_WAIT) { 23143 /* 23144 * Invalid state, only states TCPS_SYN_RCVD, 23145 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 23146 */ 23147 return (-1); 23148 } 23149 23150 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 23151 tcp->tcp_valid_bits |= TCP_FSS_VALID; 23152 /* 23153 * If there is nothing more unsent, send the FIN now. 23154 * Otherwise, it will go out with the last segment. 23155 */ 23156 if (tcp->tcp_unsent == 0) { 23157 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 23158 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 23159 23160 if (mp) { 23161 tcp_send_data(tcp, tcp->tcp_wq, mp); 23162 } else { 23163 /* 23164 * Couldn't allocate msg. Pretend we got it out. 23165 * Wait for rexmit timeout. 23166 */ 23167 tcp->tcp_snxt = tcp->tcp_fss + 1; 23168 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23169 } 23170 23171 /* 23172 * If needed, update tcp_rexmit_snxt as tcp_snxt is 23173 * changed. 23174 */ 23175 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 23176 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23177 } 23178 } else { 23179 /* 23180 * If tcp->tcp_cork is set, then the data will not get sent, 23181 * so we have to check that and unset it first. 23182 */ 23183 if (tcp->tcp_cork) 23184 tcp->tcp_cork = B_FALSE; 23185 tcp_wput_data(tcp, NULL, B_FALSE); 23186 } 23187 23188 /* 23189 * If TCP does not get enough samples of RTT or tcp_rtt_updates 23190 * is 0, don't update the cache. 23191 */ 23192 if (tcps->tcps_rtt_updates == 0 || 23193 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 23194 return (0); 23195 23196 /* 23197 * NOTE: should not update if source routes i.e. if tcp_remote if 23198 * different from the destination. 23199 */ 23200 if (tcp->tcp_ipversion == IPV4_VERSION) { 23201 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23202 return (0); 23203 } 23204 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23205 &ipic); 23206 } else { 23207 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23208 &tcp->tcp_ip6h->ip6_dst))) { 23209 return (0); 23210 } 23211 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23212 &ipic); 23213 } 23214 23215 /* Record route attributes in the IRE for use by future connections. */ 23216 if (mp == NULL) 23217 return (0); 23218 23219 /* 23220 * We do not have a good algorithm to update ssthresh at this time. 23221 * So don't do any update. 23222 */ 23223 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23224 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23225 23226 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23227 return (0); 23228 } 23229 23230 /* 23231 * Generate a "no listener here" RST in response to an "unknown" segment. 23232 * connp is set by caller when RST is in response to an unexpected 23233 * inbound packet for which there is active tcp state in the system. 23234 * Note that we are reusing the incoming mp to construct the outgoing RST. 23235 */ 23236 void 23237 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23238 tcp_stack_t *tcps, conn_t *connp) 23239 { 23240 uchar_t *rptr; 23241 uint32_t seg_len; 23242 tcph_t *tcph; 23243 uint32_t seg_seq; 23244 uint32_t seg_ack; 23245 uint_t flags; 23246 mblk_t *ipsec_mp; 23247 ipha_t *ipha; 23248 ip6_t *ip6h; 23249 boolean_t mctl_present = B_FALSE; 23250 boolean_t check = B_TRUE; 23251 boolean_t policy_present; 23252 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23253 23254 TCP_STAT(tcps, tcp_no_listener); 23255 23256 ipsec_mp = mp; 23257 23258 if (mp->b_datap->db_type == M_CTL) { 23259 ipsec_in_t *ii; 23260 23261 mctl_present = B_TRUE; 23262 mp = mp->b_cont; 23263 23264 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23265 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23266 if (ii->ipsec_in_dont_check) { 23267 check = B_FALSE; 23268 if (!ii->ipsec_in_secure) { 23269 freeb(ipsec_mp); 23270 mctl_present = B_FALSE; 23271 ipsec_mp = mp; 23272 } 23273 } 23274 } 23275 23276 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23277 policy_present = ipss->ipsec_inbound_v4_policy_present; 23278 ipha = (ipha_t *)mp->b_rptr; 23279 ip6h = NULL; 23280 } else { 23281 policy_present = ipss->ipsec_inbound_v6_policy_present; 23282 ipha = NULL; 23283 ip6h = (ip6_t *)mp->b_rptr; 23284 } 23285 23286 if (check && policy_present) { 23287 /* 23288 * The conn_t parameter is NULL because we already know 23289 * nobody's home. 23290 */ 23291 ipsec_mp = ipsec_check_global_policy( 23292 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23293 tcps->tcps_netstack); 23294 if (ipsec_mp == NULL) 23295 return; 23296 } 23297 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23298 DTRACE_PROBE2( 23299 tx__ip__log__error__nolistener__tcp, 23300 char *, "Could not reply with RST to mp(1)", 23301 mblk_t *, mp); 23302 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23303 freemsg(ipsec_mp); 23304 return; 23305 } 23306 23307 rptr = mp->b_rptr; 23308 23309 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23310 seg_seq = BE32_TO_U32(tcph->th_seq); 23311 seg_ack = BE32_TO_U32(tcph->th_ack); 23312 flags = tcph->th_flags[0]; 23313 23314 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23315 if (flags & TH_RST) { 23316 freemsg(ipsec_mp); 23317 } else if (flags & TH_ACK) { 23318 tcp_xmit_early_reset("no tcp, reset", 23319 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23320 connp); 23321 } else { 23322 if (flags & TH_SYN) { 23323 seg_len++; 23324 } else { 23325 /* 23326 * Here we violate the RFC. Note that a normal 23327 * TCP will never send a segment without the ACK 23328 * flag, except for RST or SYN segment. This 23329 * segment is neither. Just drop it on the 23330 * floor. 23331 */ 23332 freemsg(ipsec_mp); 23333 tcps->tcps_rst_unsent++; 23334 return; 23335 } 23336 23337 tcp_xmit_early_reset("no tcp, reset/ack", 23338 ipsec_mp, 0, seg_seq + seg_len, 23339 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23340 } 23341 } 23342 23343 /* 23344 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23345 * ip and tcp header ready to pass down to IP. If the mp passed in is 23346 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23347 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23348 * otherwise it will dup partial mblks.) 23349 * Otherwise, an appropriate ACK packet will be generated. This 23350 * routine is not usually called to send new data for the first time. It 23351 * is mostly called out of the timer for retransmits, and to generate ACKs. 23352 * 23353 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23354 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23355 * of the original mblk chain will be returned in *offset and *end_mp. 23356 */ 23357 mblk_t * 23358 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23359 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23360 boolean_t rexmit) 23361 { 23362 int data_length; 23363 int32_t off = 0; 23364 uint_t flags; 23365 mblk_t *mp1; 23366 mblk_t *mp2; 23367 uchar_t *rptr; 23368 tcph_t *tcph; 23369 int32_t num_sack_blk = 0; 23370 int32_t sack_opt_len = 0; 23371 tcp_stack_t *tcps = tcp->tcp_tcps; 23372 23373 /* Allocate for our maximum TCP header + link-level */ 23374 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23375 tcps->tcps_wroff_xtra, BPRI_MED); 23376 if (!mp1) 23377 return (NULL); 23378 data_length = 0; 23379 23380 /* 23381 * Note that tcp_mss has been adjusted to take into account the 23382 * timestamp option if applicable. Because SACK options do not 23383 * appear in every TCP segments and they are of variable lengths, 23384 * they cannot be included in tcp_mss. Thus we need to calculate 23385 * the actual segment length when we need to send a segment which 23386 * includes SACK options. 23387 */ 23388 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23389 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23390 tcp->tcp_num_sack_blk); 23391 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23392 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23393 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23394 max_to_send -= sack_opt_len; 23395 } 23396 23397 if (offset != NULL) { 23398 off = *offset; 23399 /* We use offset as an indicator that end_mp is not NULL. */ 23400 *end_mp = NULL; 23401 } 23402 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23403 /* This could be faster with cooperation from downstream */ 23404 if (mp2 != mp1 && !sendall && 23405 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23406 max_to_send) 23407 /* 23408 * Don't send the next mblk since the whole mblk 23409 * does not fit. 23410 */ 23411 break; 23412 mp2->b_cont = dupb(mp); 23413 mp2 = mp2->b_cont; 23414 if (!mp2) { 23415 freemsg(mp1); 23416 return (NULL); 23417 } 23418 mp2->b_rptr += off; 23419 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23420 (uintptr_t)INT_MAX); 23421 23422 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23423 if (data_length > max_to_send) { 23424 mp2->b_wptr -= data_length - max_to_send; 23425 data_length = max_to_send; 23426 off = mp2->b_wptr - mp->b_rptr; 23427 break; 23428 } else { 23429 off = 0; 23430 } 23431 } 23432 if (offset != NULL) { 23433 *offset = off; 23434 *end_mp = mp; 23435 } 23436 if (seg_len != NULL) { 23437 *seg_len = data_length; 23438 } 23439 23440 /* Update the latest receive window size in TCP header. */ 23441 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23442 tcp->tcp_tcph->th_win); 23443 23444 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23445 mp1->b_rptr = rptr; 23446 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23447 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23448 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23449 U32_TO_ABE32(seq, tcph->th_seq); 23450 23451 /* 23452 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23453 * that this function was called from tcp_wput_data. Thus, when called 23454 * to retransmit data the setting of the PUSH bit may appear some 23455 * what random in that it might get set when it should not. This 23456 * should not pose any performance issues. 23457 */ 23458 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23459 tcp->tcp_unsent == data_length)) { 23460 flags = TH_ACK | TH_PUSH; 23461 } else { 23462 flags = TH_ACK; 23463 } 23464 23465 if (tcp->tcp_ecn_ok) { 23466 if (tcp->tcp_ecn_echo_on) 23467 flags |= TH_ECE; 23468 23469 /* 23470 * Only set ECT bit and ECN_CWR if a segment contains new data. 23471 * There is no TCP flow control for non-data segments, and 23472 * only data segment is transmitted reliably. 23473 */ 23474 if (data_length > 0 && !rexmit) { 23475 SET_ECT(tcp, rptr); 23476 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23477 flags |= TH_CWR; 23478 tcp->tcp_ecn_cwr_sent = B_TRUE; 23479 } 23480 } 23481 } 23482 23483 if (tcp->tcp_valid_bits) { 23484 uint32_t u1; 23485 23486 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23487 seq == tcp->tcp_iss) { 23488 uchar_t *wptr; 23489 23490 /* 23491 * If TCP_ISS_VALID and the seq number is tcp_iss, 23492 * TCP can only be in SYN-SENT, SYN-RCVD or 23493 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23494 * our SYN is not ack'ed but the app closes this 23495 * TCP connection. 23496 */ 23497 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23498 tcp->tcp_state == TCPS_SYN_RCVD || 23499 tcp->tcp_state == TCPS_FIN_WAIT_1); 23500 23501 /* 23502 * Tack on the MSS option. It is always needed 23503 * for both active and passive open. 23504 * 23505 * MSS option value should be interface MTU - MIN 23506 * TCP/IP header according to RFC 793 as it means 23507 * the maximum segment size TCP can receive. But 23508 * to get around some broken middle boxes/end hosts 23509 * out there, we allow the option value to be the 23510 * same as the MSS option size on the peer side. 23511 * In this way, the other side will not send 23512 * anything larger than they can receive. 23513 * 23514 * Note that for SYN_SENT state, the ndd param 23515 * tcp_use_smss_as_mss_opt has no effect as we 23516 * don't know the peer's MSS option value. So 23517 * the only case we need to take care of is in 23518 * SYN_RCVD state, which is done later. 23519 */ 23520 wptr = mp1->b_wptr; 23521 wptr[0] = TCPOPT_MAXSEG; 23522 wptr[1] = TCPOPT_MAXSEG_LEN; 23523 wptr += 2; 23524 u1 = tcp->tcp_if_mtu - 23525 (tcp->tcp_ipversion == IPV4_VERSION ? 23526 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23527 TCP_MIN_HEADER_LENGTH; 23528 U16_TO_BE16(u1, wptr); 23529 mp1->b_wptr = wptr + 2; 23530 /* Update the offset to cover the additional word */ 23531 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23532 23533 /* 23534 * Note that the following way of filling in 23535 * TCP options are not optimal. Some NOPs can 23536 * be saved. But there is no need at this time 23537 * to optimize it. When it is needed, we will 23538 * do it. 23539 */ 23540 switch (tcp->tcp_state) { 23541 case TCPS_SYN_SENT: 23542 flags = TH_SYN; 23543 23544 if (tcp->tcp_snd_ts_ok) { 23545 uint32_t llbolt = (uint32_t)lbolt; 23546 23547 wptr = mp1->b_wptr; 23548 wptr[0] = TCPOPT_NOP; 23549 wptr[1] = TCPOPT_NOP; 23550 wptr[2] = TCPOPT_TSTAMP; 23551 wptr[3] = TCPOPT_TSTAMP_LEN; 23552 wptr += 4; 23553 U32_TO_BE32(llbolt, wptr); 23554 wptr += 4; 23555 ASSERT(tcp->tcp_ts_recent == 0); 23556 U32_TO_BE32(0L, wptr); 23557 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23558 tcph->th_offset_and_rsrvd[0] += 23559 (3 << 4); 23560 } 23561 23562 /* 23563 * Set up all the bits to tell other side 23564 * we are ECN capable. 23565 */ 23566 if (tcp->tcp_ecn_ok) { 23567 flags |= (TH_ECE | TH_CWR); 23568 } 23569 break; 23570 case TCPS_SYN_RCVD: 23571 flags |= TH_SYN; 23572 23573 /* 23574 * Reset the MSS option value to be SMSS 23575 * We should probably add back the bytes 23576 * for timestamp option and IPsec. We 23577 * don't do that as this is a workaround 23578 * for broken middle boxes/end hosts, it 23579 * is better for us to be more cautious. 23580 * They may not take these things into 23581 * account in their SMSS calculation. Thus 23582 * the peer's calculated SMSS may be smaller 23583 * than what it can be. This should be OK. 23584 */ 23585 if (tcps->tcps_use_smss_as_mss_opt) { 23586 u1 = tcp->tcp_mss; 23587 U16_TO_BE16(u1, wptr); 23588 } 23589 23590 /* 23591 * If the other side is ECN capable, reply 23592 * that we are also ECN capable. 23593 */ 23594 if (tcp->tcp_ecn_ok) 23595 flags |= TH_ECE; 23596 break; 23597 default: 23598 /* 23599 * The above ASSERT() makes sure that this 23600 * must be FIN-WAIT-1 state. Our SYN has 23601 * not been ack'ed so retransmit it. 23602 */ 23603 flags |= TH_SYN; 23604 break; 23605 } 23606 23607 if (tcp->tcp_snd_ws_ok) { 23608 wptr = mp1->b_wptr; 23609 wptr[0] = TCPOPT_NOP; 23610 wptr[1] = TCPOPT_WSCALE; 23611 wptr[2] = TCPOPT_WS_LEN; 23612 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23613 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23614 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23615 } 23616 23617 if (tcp->tcp_snd_sack_ok) { 23618 wptr = mp1->b_wptr; 23619 wptr[0] = TCPOPT_NOP; 23620 wptr[1] = TCPOPT_NOP; 23621 wptr[2] = TCPOPT_SACK_PERMITTED; 23622 wptr[3] = TCPOPT_SACK_OK_LEN; 23623 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23624 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23625 } 23626 23627 /* allocb() of adequate mblk assures space */ 23628 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23629 (uintptr_t)INT_MAX); 23630 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23631 /* 23632 * Get IP set to checksum on our behalf 23633 * Include the adjustment for a source route if any. 23634 */ 23635 u1 += tcp->tcp_sum; 23636 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23637 U16_TO_BE16(u1, tcph->th_sum); 23638 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23639 } 23640 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23641 (seq + data_length) == tcp->tcp_fss) { 23642 if (!tcp->tcp_fin_acked) { 23643 flags |= TH_FIN; 23644 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23645 } 23646 if (!tcp->tcp_fin_sent) { 23647 tcp->tcp_fin_sent = B_TRUE; 23648 switch (tcp->tcp_state) { 23649 case TCPS_SYN_RCVD: 23650 case TCPS_ESTABLISHED: 23651 tcp->tcp_state = TCPS_FIN_WAIT_1; 23652 break; 23653 case TCPS_CLOSE_WAIT: 23654 tcp->tcp_state = TCPS_LAST_ACK; 23655 break; 23656 } 23657 if (tcp->tcp_suna == tcp->tcp_snxt) 23658 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23659 tcp->tcp_snxt = tcp->tcp_fss + 1; 23660 } 23661 } 23662 /* 23663 * Note the trick here. u1 is unsigned. When tcp_urg 23664 * is smaller than seq, u1 will become a very huge value. 23665 * So the comparison will fail. Also note that tcp_urp 23666 * should be positive, see RFC 793 page 17. 23667 */ 23668 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23669 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23670 u1 < (uint32_t)(64 * 1024)) { 23671 flags |= TH_URG; 23672 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23673 U32_TO_ABE16(u1, tcph->th_urp); 23674 } 23675 } 23676 tcph->th_flags[0] = (uchar_t)flags; 23677 tcp->tcp_rack = tcp->tcp_rnxt; 23678 tcp->tcp_rack_cnt = 0; 23679 23680 if (tcp->tcp_snd_ts_ok) { 23681 if (tcp->tcp_state != TCPS_SYN_SENT) { 23682 uint32_t llbolt = (uint32_t)lbolt; 23683 23684 U32_TO_BE32(llbolt, 23685 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23686 U32_TO_BE32(tcp->tcp_ts_recent, 23687 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23688 } 23689 } 23690 23691 if (num_sack_blk > 0) { 23692 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23693 sack_blk_t *tmp; 23694 int32_t i; 23695 23696 wptr[0] = TCPOPT_NOP; 23697 wptr[1] = TCPOPT_NOP; 23698 wptr[2] = TCPOPT_SACK; 23699 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23700 sizeof (sack_blk_t); 23701 wptr += TCPOPT_REAL_SACK_LEN; 23702 23703 tmp = tcp->tcp_sack_list; 23704 for (i = 0; i < num_sack_blk; i++) { 23705 U32_TO_BE32(tmp[i].begin, wptr); 23706 wptr += sizeof (tcp_seq); 23707 U32_TO_BE32(tmp[i].end, wptr); 23708 wptr += sizeof (tcp_seq); 23709 } 23710 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23711 } 23712 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23713 data_length += (int)(mp1->b_wptr - rptr); 23714 if (tcp->tcp_ipversion == IPV4_VERSION) { 23715 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23716 } else { 23717 ip6_t *ip6 = (ip6_t *)(rptr + 23718 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23719 sizeof (ip6i_t) : 0)); 23720 23721 ip6->ip6_plen = htons(data_length - 23722 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23723 } 23724 23725 /* 23726 * Prime pump for IP 23727 * Include the adjustment for a source route if any. 23728 */ 23729 data_length -= tcp->tcp_ip_hdr_len; 23730 data_length += tcp->tcp_sum; 23731 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23732 U16_TO_ABE16(data_length, tcph->th_sum); 23733 if (tcp->tcp_ip_forward_progress) { 23734 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23735 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23736 tcp->tcp_ip_forward_progress = B_FALSE; 23737 } 23738 return (mp1); 23739 } 23740 23741 /* This function handles the push timeout. */ 23742 void 23743 tcp_push_timer(void *arg) 23744 { 23745 conn_t *connp = (conn_t *)arg; 23746 tcp_t *tcp = connp->conn_tcp; 23747 tcp_stack_t *tcps = tcp->tcp_tcps; 23748 uint_t flags; 23749 sodirect_t *sodp; 23750 23751 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23752 23753 ASSERT(tcp->tcp_listener == NULL); 23754 23755 /* 23756 * We need to plug synchronous streams during our drain to prevent 23757 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23758 */ 23759 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23760 tcp->tcp_push_tid = 0; 23761 23762 SOD_PTR_ENTER(tcp, sodp); 23763 if (sodp != NULL) { 23764 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23765 /* sod_wakeup() does the mutex_exit() */ 23766 } else if (tcp->tcp_rcv_list != NULL) { 23767 flags = tcp_rcv_drain(tcp->tcp_rq, tcp); 23768 } 23769 if (flags == TH_ACK_NEEDED) 23770 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23771 23772 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23773 } 23774 23775 /* 23776 * This function handles delayed ACK timeout. 23777 */ 23778 static void 23779 tcp_ack_timer(void *arg) 23780 { 23781 conn_t *connp = (conn_t *)arg; 23782 tcp_t *tcp = connp->conn_tcp; 23783 mblk_t *mp; 23784 tcp_stack_t *tcps = tcp->tcp_tcps; 23785 23786 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23787 23788 tcp->tcp_ack_tid = 0; 23789 23790 if (tcp->tcp_fused) 23791 return; 23792 23793 /* 23794 * Do not send ACK if there is no outstanding unack'ed data. 23795 */ 23796 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23797 return; 23798 } 23799 23800 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23801 /* 23802 * Make sure we don't allow deferred ACKs to result in 23803 * timer-based ACKing. If we have held off an ACK 23804 * when there was more than an mss here, and the timer 23805 * goes off, we have to worry about the possibility 23806 * that the sender isn't doing slow-start, or is out 23807 * of step with us for some other reason. We fall 23808 * permanently back in the direction of 23809 * ACK-every-other-packet as suggested in RFC 1122. 23810 */ 23811 if (tcp->tcp_rack_abs_max > 2) 23812 tcp->tcp_rack_abs_max--; 23813 tcp->tcp_rack_cur_max = 2; 23814 } 23815 mp = tcp_ack_mp(tcp); 23816 23817 if (mp != NULL) { 23818 BUMP_LOCAL(tcp->tcp_obsegs); 23819 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23820 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23821 tcp_send_data(tcp, tcp->tcp_wq, mp); 23822 } 23823 } 23824 23825 23826 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23827 static mblk_t * 23828 tcp_ack_mp(tcp_t *tcp) 23829 { 23830 uint32_t seq_no; 23831 tcp_stack_t *tcps = tcp->tcp_tcps; 23832 23833 /* 23834 * There are a few cases to be considered while setting the sequence no. 23835 * Essentially, we can come here while processing an unacceptable pkt 23836 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23837 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23838 * If we are here for a zero window probe, stick with suna. In all 23839 * other cases, we check if suna + swnd encompasses snxt and set 23840 * the sequence number to snxt, if so. If snxt falls outside the 23841 * window (the receiver probably shrunk its window), we will go with 23842 * suna + swnd, otherwise the sequence no will be unacceptable to the 23843 * receiver. 23844 */ 23845 if (tcp->tcp_zero_win_probe) { 23846 seq_no = tcp->tcp_suna; 23847 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23848 ASSERT(tcp->tcp_swnd == 0); 23849 seq_no = tcp->tcp_snxt; 23850 } else { 23851 seq_no = SEQ_GT(tcp->tcp_snxt, 23852 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23853 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23854 } 23855 23856 if (tcp->tcp_valid_bits) { 23857 /* 23858 * For the complex case where we have to send some 23859 * controls (FIN or SYN), let tcp_xmit_mp do it. 23860 */ 23861 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23862 NULL, B_FALSE)); 23863 } else { 23864 /* Generate a simple ACK */ 23865 int data_length; 23866 uchar_t *rptr; 23867 tcph_t *tcph; 23868 mblk_t *mp1; 23869 int32_t tcp_hdr_len; 23870 int32_t tcp_tcp_hdr_len; 23871 int32_t num_sack_blk = 0; 23872 int32_t sack_opt_len; 23873 23874 /* 23875 * Allocate space for TCP + IP headers 23876 * and link-level header 23877 */ 23878 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23879 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23880 tcp->tcp_num_sack_blk); 23881 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23882 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23883 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23884 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23885 } else { 23886 tcp_hdr_len = tcp->tcp_hdr_len; 23887 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23888 } 23889 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23890 if (!mp1) 23891 return (NULL); 23892 23893 /* Update the latest receive window size in TCP header. */ 23894 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23895 tcp->tcp_tcph->th_win); 23896 /* copy in prototype TCP + IP header */ 23897 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23898 mp1->b_rptr = rptr; 23899 mp1->b_wptr = rptr + tcp_hdr_len; 23900 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23901 23902 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23903 23904 /* Set the TCP sequence number. */ 23905 U32_TO_ABE32(seq_no, tcph->th_seq); 23906 23907 /* Set up the TCP flag field. */ 23908 tcph->th_flags[0] = (uchar_t)TH_ACK; 23909 if (tcp->tcp_ecn_echo_on) 23910 tcph->th_flags[0] |= TH_ECE; 23911 23912 tcp->tcp_rack = tcp->tcp_rnxt; 23913 tcp->tcp_rack_cnt = 0; 23914 23915 /* fill in timestamp option if in use */ 23916 if (tcp->tcp_snd_ts_ok) { 23917 uint32_t llbolt = (uint32_t)lbolt; 23918 23919 U32_TO_BE32(llbolt, 23920 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23921 U32_TO_BE32(tcp->tcp_ts_recent, 23922 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23923 } 23924 23925 /* Fill in SACK options */ 23926 if (num_sack_blk > 0) { 23927 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23928 sack_blk_t *tmp; 23929 int32_t i; 23930 23931 wptr[0] = TCPOPT_NOP; 23932 wptr[1] = TCPOPT_NOP; 23933 wptr[2] = TCPOPT_SACK; 23934 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23935 sizeof (sack_blk_t); 23936 wptr += TCPOPT_REAL_SACK_LEN; 23937 23938 tmp = tcp->tcp_sack_list; 23939 for (i = 0; i < num_sack_blk; i++) { 23940 U32_TO_BE32(tmp[i].begin, wptr); 23941 wptr += sizeof (tcp_seq); 23942 U32_TO_BE32(tmp[i].end, wptr); 23943 wptr += sizeof (tcp_seq); 23944 } 23945 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23946 << 4); 23947 } 23948 23949 if (tcp->tcp_ipversion == IPV4_VERSION) { 23950 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23951 } else { 23952 /* Check for ip6i_t header in sticky hdrs */ 23953 ip6_t *ip6 = (ip6_t *)(rptr + 23954 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23955 sizeof (ip6i_t) : 0)); 23956 23957 ip6->ip6_plen = htons(tcp_hdr_len - 23958 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23959 } 23960 23961 /* 23962 * Prime pump for checksum calculation in IP. Include the 23963 * adjustment for a source route if any. 23964 */ 23965 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23966 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23967 U16_TO_ABE16(data_length, tcph->th_sum); 23968 23969 if (tcp->tcp_ip_forward_progress) { 23970 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23971 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23972 tcp->tcp_ip_forward_progress = B_FALSE; 23973 } 23974 return (mp1); 23975 } 23976 } 23977 23978 /* 23979 * Hash list insertion routine for tcp_t structures. 23980 * Inserts entries with the ones bound to a specific IP address first 23981 * followed by those bound to INADDR_ANY. 23982 */ 23983 static void 23984 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23985 { 23986 tcp_t **tcpp; 23987 tcp_t *tcpnext; 23988 23989 if (tcp->tcp_ptpbhn != NULL) { 23990 ASSERT(!caller_holds_lock); 23991 tcp_bind_hash_remove(tcp); 23992 } 23993 tcpp = &tbf->tf_tcp; 23994 if (!caller_holds_lock) { 23995 mutex_enter(&tbf->tf_lock); 23996 } else { 23997 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23998 } 23999 tcpnext = tcpp[0]; 24000 if (tcpnext) { 24001 /* 24002 * If the new tcp bound to the INADDR_ANY address 24003 * and the first one in the list is not bound to 24004 * INADDR_ANY we skip all entries until we find the 24005 * first one bound to INADDR_ANY. 24006 * This makes sure that applications binding to a 24007 * specific address get preference over those binding to 24008 * INADDR_ANY. 24009 */ 24010 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 24011 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 24012 while ((tcpnext = tcpp[0]) != NULL && 24013 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 24014 tcpp = &(tcpnext->tcp_bind_hash); 24015 if (tcpnext) 24016 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24017 } else 24018 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24019 } 24020 tcp->tcp_bind_hash = tcpnext; 24021 tcp->tcp_ptpbhn = tcpp; 24022 tcpp[0] = tcp; 24023 if (!caller_holds_lock) 24024 mutex_exit(&tbf->tf_lock); 24025 } 24026 24027 /* 24028 * Hash list removal routine for tcp_t structures. 24029 */ 24030 static void 24031 tcp_bind_hash_remove(tcp_t *tcp) 24032 { 24033 tcp_t *tcpnext; 24034 kmutex_t *lockp; 24035 tcp_stack_t *tcps = tcp->tcp_tcps; 24036 24037 if (tcp->tcp_ptpbhn == NULL) 24038 return; 24039 24040 /* 24041 * Extract the lock pointer in case there are concurrent 24042 * hash_remove's for this instance. 24043 */ 24044 ASSERT(tcp->tcp_lport != 0); 24045 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 24046 24047 ASSERT(lockp != NULL); 24048 mutex_enter(lockp); 24049 if (tcp->tcp_ptpbhn) { 24050 tcpnext = tcp->tcp_bind_hash; 24051 if (tcpnext) { 24052 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24053 tcp->tcp_bind_hash = NULL; 24054 } 24055 *tcp->tcp_ptpbhn = tcpnext; 24056 tcp->tcp_ptpbhn = NULL; 24057 } 24058 mutex_exit(lockp); 24059 } 24060 24061 24062 /* 24063 * Hash list lookup routine for tcp_t structures. 24064 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24065 */ 24066 static tcp_t * 24067 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24068 { 24069 tf_t *tf; 24070 tcp_t *tcp; 24071 24072 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24073 mutex_enter(&tf->tf_lock); 24074 for (tcp = tf->tf_tcp; tcp != NULL; 24075 tcp = tcp->tcp_acceptor_hash) { 24076 if (tcp->tcp_acceptor_id == id) { 24077 CONN_INC_REF(tcp->tcp_connp); 24078 mutex_exit(&tf->tf_lock); 24079 return (tcp); 24080 } 24081 } 24082 mutex_exit(&tf->tf_lock); 24083 return (NULL); 24084 } 24085 24086 24087 /* 24088 * Hash list insertion routine for tcp_t structures. 24089 */ 24090 void 24091 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24092 { 24093 tf_t *tf; 24094 tcp_t **tcpp; 24095 tcp_t *tcpnext; 24096 tcp_stack_t *tcps = tcp->tcp_tcps; 24097 24098 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24099 24100 if (tcp->tcp_ptpahn != NULL) 24101 tcp_acceptor_hash_remove(tcp); 24102 tcpp = &tf->tf_tcp; 24103 mutex_enter(&tf->tf_lock); 24104 tcpnext = tcpp[0]; 24105 if (tcpnext) 24106 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24107 tcp->tcp_acceptor_hash = tcpnext; 24108 tcp->tcp_ptpahn = tcpp; 24109 tcpp[0] = tcp; 24110 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24111 mutex_exit(&tf->tf_lock); 24112 } 24113 24114 /* 24115 * Hash list removal routine for tcp_t structures. 24116 */ 24117 static void 24118 tcp_acceptor_hash_remove(tcp_t *tcp) 24119 { 24120 tcp_t *tcpnext; 24121 kmutex_t *lockp; 24122 24123 /* 24124 * Extract the lock pointer in case there are concurrent 24125 * hash_remove's for this instance. 24126 */ 24127 lockp = tcp->tcp_acceptor_lockp; 24128 24129 if (tcp->tcp_ptpahn == NULL) 24130 return; 24131 24132 ASSERT(lockp != NULL); 24133 mutex_enter(lockp); 24134 if (tcp->tcp_ptpahn) { 24135 tcpnext = tcp->tcp_acceptor_hash; 24136 if (tcpnext) { 24137 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24138 tcp->tcp_acceptor_hash = NULL; 24139 } 24140 *tcp->tcp_ptpahn = tcpnext; 24141 tcp->tcp_ptpahn = NULL; 24142 } 24143 mutex_exit(lockp); 24144 tcp->tcp_acceptor_lockp = NULL; 24145 } 24146 24147 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24148 24149 static ipaddr_t netmasks[] = { 24150 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24151 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24152 }; 24153 24154 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24155 24156 /* 24157 * XXX This routine should go away and instead we should use the metrics 24158 * associated with the routes to determine the default sndspace and rcvspace. 24159 */ 24160 static tcp_hsp_t * 24161 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24162 { 24163 tcp_hsp_t *hsp = NULL; 24164 24165 /* Quick check without acquiring the lock. */ 24166 if (tcps->tcps_hsp_hash == NULL) 24167 return (NULL); 24168 24169 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24170 24171 /* This routine finds the best-matching HSP for address addr. */ 24172 24173 if (tcps->tcps_hsp_hash) { 24174 int i; 24175 ipaddr_t srchaddr; 24176 tcp_hsp_t *hsp_net; 24177 24178 /* We do three passes: host, network, and subnet. */ 24179 24180 srchaddr = addr; 24181 24182 for (i = 1; i <= 3; i++) { 24183 /* Look for exact match on srchaddr */ 24184 24185 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24186 while (hsp) { 24187 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24188 hsp->tcp_hsp_addr == srchaddr) 24189 break; 24190 hsp = hsp->tcp_hsp_next; 24191 } 24192 ASSERT(hsp == NULL || 24193 hsp->tcp_hsp_vers == IPV4_VERSION); 24194 24195 /* 24196 * If this is the first pass: 24197 * If we found a match, great, return it. 24198 * If not, search for the network on the second pass. 24199 */ 24200 24201 if (i == 1) 24202 if (hsp) 24203 break; 24204 else 24205 { 24206 srchaddr = addr & netmask(addr); 24207 continue; 24208 } 24209 24210 /* 24211 * If this is the second pass: 24212 * If we found a match, but there's a subnet mask, 24213 * save the match but try again using the subnet 24214 * mask on the third pass. 24215 * Otherwise, return whatever we found. 24216 */ 24217 24218 if (i == 2) { 24219 if (hsp && hsp->tcp_hsp_subnet) { 24220 hsp_net = hsp; 24221 srchaddr = addr & hsp->tcp_hsp_subnet; 24222 continue; 24223 } else { 24224 break; 24225 } 24226 } 24227 24228 /* 24229 * This must be the third pass. If we didn't find 24230 * anything, return the saved network HSP instead. 24231 */ 24232 24233 if (!hsp) 24234 hsp = hsp_net; 24235 } 24236 } 24237 24238 rw_exit(&tcps->tcps_hsp_lock); 24239 return (hsp); 24240 } 24241 24242 /* 24243 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24244 * match lookup. 24245 */ 24246 static tcp_hsp_t * 24247 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24248 { 24249 tcp_hsp_t *hsp = NULL; 24250 24251 /* Quick check without acquiring the lock. */ 24252 if (tcps->tcps_hsp_hash == NULL) 24253 return (NULL); 24254 24255 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24256 24257 /* This routine finds the best-matching HSP for address addr. */ 24258 24259 if (tcps->tcps_hsp_hash) { 24260 int i; 24261 in6_addr_t v6srchaddr; 24262 tcp_hsp_t *hsp_net; 24263 24264 /* We do three passes: host, network, and subnet. */ 24265 24266 v6srchaddr = *v6addr; 24267 24268 for (i = 1; i <= 3; i++) { 24269 /* Look for exact match on srchaddr */ 24270 24271 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24272 V4_PART_OF_V6(v6srchaddr))]; 24273 while (hsp) { 24274 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24275 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24276 &v6srchaddr)) 24277 break; 24278 hsp = hsp->tcp_hsp_next; 24279 } 24280 24281 /* 24282 * If this is the first pass: 24283 * If we found a match, great, return it. 24284 * If not, search for the network on the second pass. 24285 */ 24286 24287 if (i == 1) 24288 if (hsp) 24289 break; 24290 else { 24291 /* Assume a 64 bit mask */ 24292 v6srchaddr.s6_addr32[0] = 24293 v6addr->s6_addr32[0]; 24294 v6srchaddr.s6_addr32[1] = 24295 v6addr->s6_addr32[1]; 24296 v6srchaddr.s6_addr32[2] = 0; 24297 v6srchaddr.s6_addr32[3] = 0; 24298 continue; 24299 } 24300 24301 /* 24302 * If this is the second pass: 24303 * If we found a match, but there's a subnet mask, 24304 * save the match but try again using the subnet 24305 * mask on the third pass. 24306 * Otherwise, return whatever we found. 24307 */ 24308 24309 if (i == 2) { 24310 ASSERT(hsp == NULL || 24311 hsp->tcp_hsp_vers == IPV6_VERSION); 24312 if (hsp && 24313 !IN6_IS_ADDR_UNSPECIFIED( 24314 &hsp->tcp_hsp_subnet_v6)) { 24315 hsp_net = hsp; 24316 V6_MASK_COPY(*v6addr, 24317 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24318 continue; 24319 } else { 24320 break; 24321 } 24322 } 24323 24324 /* 24325 * This must be the third pass. If we didn't find 24326 * anything, return the saved network HSP instead. 24327 */ 24328 24329 if (!hsp) 24330 hsp = hsp_net; 24331 } 24332 } 24333 24334 rw_exit(&tcps->tcps_hsp_lock); 24335 return (hsp); 24336 } 24337 24338 /* 24339 * Type three generator adapted from the random() function in 4.4 BSD: 24340 */ 24341 24342 /* 24343 * Copyright (c) 1983, 1993 24344 * The Regents of the University of California. All rights reserved. 24345 * 24346 * Redistribution and use in source and binary forms, with or without 24347 * modification, are permitted provided that the following conditions 24348 * are met: 24349 * 1. Redistributions of source code must retain the above copyright 24350 * notice, this list of conditions and the following disclaimer. 24351 * 2. Redistributions in binary form must reproduce the above copyright 24352 * notice, this list of conditions and the following disclaimer in the 24353 * documentation and/or other materials provided with the distribution. 24354 * 3. All advertising materials mentioning features or use of this software 24355 * must display the following acknowledgement: 24356 * This product includes software developed by the University of 24357 * California, Berkeley and its contributors. 24358 * 4. Neither the name of the University nor the names of its contributors 24359 * may be used to endorse or promote products derived from this software 24360 * without specific prior written permission. 24361 * 24362 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24363 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24364 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24365 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24366 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24367 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24368 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24369 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24370 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24371 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24372 * SUCH DAMAGE. 24373 */ 24374 24375 /* Type 3 -- x**31 + x**3 + 1 */ 24376 #define DEG_3 31 24377 #define SEP_3 3 24378 24379 24380 /* Protected by tcp_random_lock */ 24381 static int tcp_randtbl[DEG_3 + 1]; 24382 24383 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24384 static int *tcp_random_rptr = &tcp_randtbl[1]; 24385 24386 static int *tcp_random_state = &tcp_randtbl[1]; 24387 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24388 24389 kmutex_t tcp_random_lock; 24390 24391 void 24392 tcp_random_init(void) 24393 { 24394 int i; 24395 hrtime_t hrt; 24396 time_t wallclock; 24397 uint64_t result; 24398 24399 /* 24400 * Use high-res timer and current time for seed. Gethrtime() returns 24401 * a longlong, which may contain resolution down to nanoseconds. 24402 * The current time will either be a 32-bit or a 64-bit quantity. 24403 * XOR the two together in a 64-bit result variable. 24404 * Convert the result to a 32-bit value by multiplying the high-order 24405 * 32-bits by the low-order 32-bits. 24406 */ 24407 24408 hrt = gethrtime(); 24409 (void) drv_getparm(TIME, &wallclock); 24410 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24411 mutex_enter(&tcp_random_lock); 24412 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24413 (result & 0xffffffff); 24414 24415 for (i = 1; i < DEG_3; i++) 24416 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24417 + 12345; 24418 tcp_random_fptr = &tcp_random_state[SEP_3]; 24419 tcp_random_rptr = &tcp_random_state[0]; 24420 mutex_exit(&tcp_random_lock); 24421 for (i = 0; i < 10 * DEG_3; i++) 24422 (void) tcp_random(); 24423 } 24424 24425 /* 24426 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24427 * This range is selected to be approximately centered on TCP_ISS / 2, 24428 * and easy to compute. We get this value by generating a 32-bit random 24429 * number, selecting out the high-order 17 bits, and then adding one so 24430 * that we never return zero. 24431 */ 24432 int 24433 tcp_random(void) 24434 { 24435 int i; 24436 24437 mutex_enter(&tcp_random_lock); 24438 *tcp_random_fptr += *tcp_random_rptr; 24439 24440 /* 24441 * The high-order bits are more random than the low-order bits, 24442 * so we select out the high-order 17 bits and add one so that 24443 * we never return zero. 24444 */ 24445 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24446 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24447 tcp_random_fptr = tcp_random_state; 24448 ++tcp_random_rptr; 24449 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24450 tcp_random_rptr = tcp_random_state; 24451 24452 mutex_exit(&tcp_random_lock); 24453 return (i); 24454 } 24455 24456 /* 24457 * XXX This will go away when TPI is extended to send 24458 * info reqs to sockfs/timod ..... 24459 * Given a queue, set the max packet size for the write 24460 * side of the queue below stream head. This value is 24461 * cached on the stream head. 24462 * Returns 1 on success, 0 otherwise. 24463 */ 24464 static int 24465 setmaxps(queue_t *q, int maxpsz) 24466 { 24467 struct stdata *stp; 24468 queue_t *wq; 24469 stp = STREAM(q); 24470 24471 /* 24472 * At this point change of a queue parameter is not allowed 24473 * when a multiplexor is sitting on top. 24474 */ 24475 if (stp->sd_flag & STPLEX) 24476 return (0); 24477 24478 claimstr(stp->sd_wrq); 24479 wq = stp->sd_wrq->q_next; 24480 ASSERT(wq != NULL); 24481 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24482 releasestr(stp->sd_wrq); 24483 return (1); 24484 } 24485 24486 static int 24487 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24488 int *t_errorp, int *sys_errorp) 24489 { 24490 int error; 24491 int is_absreq_failure; 24492 t_scalar_t *opt_lenp; 24493 t_scalar_t opt_offset; 24494 int prim_type; 24495 struct T_conn_req *tcreqp; 24496 struct T_conn_res *tcresp; 24497 cred_t *cr; 24498 24499 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24500 24501 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24502 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24503 prim_type == T_CONN_RES); 24504 24505 switch (prim_type) { 24506 case T_CONN_REQ: 24507 tcreqp = (struct T_conn_req *)mp->b_rptr; 24508 opt_offset = tcreqp->OPT_offset; 24509 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24510 break; 24511 case O_T_CONN_RES: 24512 case T_CONN_RES: 24513 tcresp = (struct T_conn_res *)mp->b_rptr; 24514 opt_offset = tcresp->OPT_offset; 24515 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24516 break; 24517 } 24518 24519 *t_errorp = 0; 24520 *sys_errorp = 0; 24521 *do_disconnectp = 0; 24522 24523 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24524 opt_offset, cr, &tcp_opt_obj, 24525 NULL, &is_absreq_failure); 24526 24527 switch (error) { 24528 case 0: /* no error */ 24529 ASSERT(is_absreq_failure == 0); 24530 return (0); 24531 case ENOPROTOOPT: 24532 *t_errorp = TBADOPT; 24533 break; 24534 case EACCES: 24535 *t_errorp = TACCES; 24536 break; 24537 default: 24538 *t_errorp = TSYSERR; *sys_errorp = error; 24539 break; 24540 } 24541 if (is_absreq_failure != 0) { 24542 /* 24543 * The connection request should get the local ack 24544 * T_OK_ACK and then a T_DISCON_IND. 24545 */ 24546 *do_disconnectp = 1; 24547 } 24548 return (-1); 24549 } 24550 24551 /* 24552 * Split this function out so that if the secret changes, I'm okay. 24553 * 24554 * Initialize the tcp_iss_cookie and tcp_iss_key. 24555 */ 24556 24557 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24558 24559 static void 24560 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24561 { 24562 struct { 24563 int32_t current_time; 24564 uint32_t randnum; 24565 uint16_t pad; 24566 uint8_t ether[6]; 24567 uint8_t passwd[PASSWD_SIZE]; 24568 } tcp_iss_cookie; 24569 time_t t; 24570 24571 /* 24572 * Start with the current absolute time. 24573 */ 24574 (void) drv_getparm(TIME, &t); 24575 tcp_iss_cookie.current_time = t; 24576 24577 /* 24578 * XXX - Need a more random number per RFC 1750, not this crap. 24579 * OTOH, if what follows is pretty random, then I'm in better shape. 24580 */ 24581 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24582 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24583 24584 /* 24585 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24586 * as a good template. 24587 */ 24588 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24589 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24590 24591 /* 24592 * The pass-phrase. Normally this is supplied by user-called NDD. 24593 */ 24594 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24595 24596 /* 24597 * See 4010593 if this section becomes a problem again, 24598 * but the local ethernet address is useful here. 24599 */ 24600 (void) localetheraddr(NULL, 24601 (struct ether_addr *)&tcp_iss_cookie.ether); 24602 24603 /* 24604 * Hash 'em all together. The MD5Final is called per-connection. 24605 */ 24606 mutex_enter(&tcps->tcps_iss_key_lock); 24607 MD5Init(&tcps->tcps_iss_key); 24608 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24609 sizeof (tcp_iss_cookie)); 24610 mutex_exit(&tcps->tcps_iss_key_lock); 24611 } 24612 24613 /* 24614 * Set the RFC 1948 pass phrase 24615 */ 24616 /* ARGSUSED */ 24617 static int 24618 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24619 cred_t *cr) 24620 { 24621 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24622 24623 /* 24624 * Basically, value contains a new pass phrase. Pass it along! 24625 */ 24626 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24627 return (0); 24628 } 24629 24630 /* ARGSUSED */ 24631 static int 24632 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24633 { 24634 bzero(buf, sizeof (tcp_sack_info_t)); 24635 return (0); 24636 } 24637 24638 /* ARGSUSED */ 24639 static int 24640 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24641 { 24642 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24643 return (0); 24644 } 24645 24646 /* 24647 * Make sure we wait until the default queue is setup, yet allow 24648 * tcp_g_q_create() to open a TCP stream. 24649 * We need to allow tcp_g_q_create() do do an open 24650 * of tcp, hence we compare curhread. 24651 * All others have to wait until the tcps_g_q has been 24652 * setup. 24653 */ 24654 void 24655 tcp_g_q_setup(tcp_stack_t *tcps) 24656 { 24657 mutex_enter(&tcps->tcps_g_q_lock); 24658 if (tcps->tcps_g_q != NULL) { 24659 mutex_exit(&tcps->tcps_g_q_lock); 24660 return; 24661 } 24662 if (tcps->tcps_g_q_creator == NULL) { 24663 /* This thread will set it up */ 24664 tcps->tcps_g_q_creator = curthread; 24665 mutex_exit(&tcps->tcps_g_q_lock); 24666 tcp_g_q_create(tcps); 24667 mutex_enter(&tcps->tcps_g_q_lock); 24668 ASSERT(tcps->tcps_g_q_creator == curthread); 24669 tcps->tcps_g_q_creator = NULL; 24670 cv_signal(&tcps->tcps_g_q_cv); 24671 ASSERT(tcps->tcps_g_q != NULL); 24672 mutex_exit(&tcps->tcps_g_q_lock); 24673 return; 24674 } 24675 /* Everybody but the creator has to wait */ 24676 if (tcps->tcps_g_q_creator != curthread) { 24677 while (tcps->tcps_g_q == NULL) 24678 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24679 } 24680 mutex_exit(&tcps->tcps_g_q_lock); 24681 } 24682 24683 #define IP "ip" 24684 24685 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24686 24687 /* 24688 * Create a default tcp queue here instead of in strplumb 24689 */ 24690 void 24691 tcp_g_q_create(tcp_stack_t *tcps) 24692 { 24693 int error; 24694 ldi_handle_t lh = NULL; 24695 ldi_ident_t li = NULL; 24696 int rval; 24697 cred_t *cr; 24698 major_t IP_MAJ; 24699 24700 #ifdef NS_DEBUG 24701 (void) printf("tcp_g_q_create()\n"); 24702 #endif 24703 24704 IP_MAJ = ddi_name_to_major(IP); 24705 24706 ASSERT(tcps->tcps_g_q_creator == curthread); 24707 24708 error = ldi_ident_from_major(IP_MAJ, &li); 24709 if (error) { 24710 #ifdef DEBUG 24711 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24712 error); 24713 #endif 24714 return; 24715 } 24716 24717 cr = zone_get_kcred(netstackid_to_zoneid( 24718 tcps->tcps_netstack->netstack_stackid)); 24719 ASSERT(cr != NULL); 24720 /* 24721 * We set the tcp default queue to IPv6 because IPv4 falls 24722 * back to IPv6 when it can't find a client, but 24723 * IPv6 does not fall back to IPv4. 24724 */ 24725 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24726 if (error) { 24727 #ifdef DEBUG 24728 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24729 error); 24730 #endif 24731 goto out; 24732 } 24733 24734 /* 24735 * This ioctl causes the tcp framework to cache a pointer to 24736 * this stream, so we don't want to close the stream after 24737 * this operation. 24738 * Use the kernel credentials that are for the zone we're in. 24739 */ 24740 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24741 (intptr_t)0, FKIOCTL, cr, &rval); 24742 if (error) { 24743 #ifdef DEBUG 24744 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24745 "error %d\n", error); 24746 #endif 24747 goto out; 24748 } 24749 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24750 lh = NULL; 24751 out: 24752 /* Close layered handles */ 24753 if (li) 24754 ldi_ident_release(li); 24755 /* Keep cred around until _inactive needs it */ 24756 tcps->tcps_g_q_cr = cr; 24757 } 24758 24759 /* 24760 * We keep tcp_g_q set until all other tcp_t's in the zone 24761 * has gone away, and then when tcp_g_q_inactive() is called 24762 * we clear it. 24763 */ 24764 void 24765 tcp_g_q_destroy(tcp_stack_t *tcps) 24766 { 24767 #ifdef NS_DEBUG 24768 (void) printf("tcp_g_q_destroy()for stack %d\n", 24769 tcps->tcps_netstack->netstack_stackid); 24770 #endif 24771 24772 if (tcps->tcps_g_q == NULL) { 24773 return; /* Nothing to cleanup */ 24774 } 24775 /* 24776 * Drop reference corresponding to the default queue. 24777 * This reference was added from tcp_open when the default queue 24778 * was created, hence we compensate for this extra drop in 24779 * tcp_g_q_close. If the refcnt drops to zero here it means 24780 * the default queue was the last one to be open, in which 24781 * case, then tcp_g_q_inactive will be 24782 * called as a result of the refrele. 24783 */ 24784 TCPS_REFRELE(tcps); 24785 } 24786 24787 /* 24788 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24789 * Run by tcp_q_q_inactive using a taskq. 24790 */ 24791 static void 24792 tcp_g_q_close(void *arg) 24793 { 24794 tcp_stack_t *tcps = arg; 24795 int error; 24796 ldi_handle_t lh = NULL; 24797 ldi_ident_t li = NULL; 24798 cred_t *cr; 24799 major_t IP_MAJ; 24800 24801 IP_MAJ = ddi_name_to_major(IP); 24802 24803 #ifdef NS_DEBUG 24804 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24805 tcps->tcps_netstack->netstack_stackid, 24806 tcps->tcps_netstack->netstack_refcnt); 24807 #endif 24808 lh = tcps->tcps_g_q_lh; 24809 if (lh == NULL) 24810 return; /* Nothing to cleanup */ 24811 24812 ASSERT(tcps->tcps_refcnt == 1); 24813 ASSERT(tcps->tcps_g_q != NULL); 24814 24815 error = ldi_ident_from_major(IP_MAJ, &li); 24816 if (error) { 24817 #ifdef DEBUG 24818 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24819 error); 24820 #endif 24821 return; 24822 } 24823 24824 cr = tcps->tcps_g_q_cr; 24825 tcps->tcps_g_q_cr = NULL; 24826 ASSERT(cr != NULL); 24827 24828 /* 24829 * Make sure we can break the recursion when tcp_close decrements 24830 * the reference count causing g_q_inactive to be called again. 24831 */ 24832 tcps->tcps_g_q_lh = NULL; 24833 24834 /* close the default queue */ 24835 (void) ldi_close(lh, FREAD|FWRITE, cr); 24836 /* 24837 * At this point in time tcps and the rest of netstack_t might 24838 * have been deleted. 24839 */ 24840 tcps = NULL; 24841 24842 /* Close layered handles */ 24843 ldi_ident_release(li); 24844 crfree(cr); 24845 } 24846 24847 /* 24848 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24849 * 24850 * Have to ensure that the ldi routines are not used by an 24851 * interrupt thread by using a taskq. 24852 */ 24853 void 24854 tcp_g_q_inactive(tcp_stack_t *tcps) 24855 { 24856 if (tcps->tcps_g_q_lh == NULL) 24857 return; /* Nothing to cleanup */ 24858 24859 ASSERT(tcps->tcps_refcnt == 0); 24860 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24861 24862 if (servicing_interrupt()) { 24863 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24864 (void *) tcps, TQ_SLEEP); 24865 } else { 24866 tcp_g_q_close(tcps); 24867 } 24868 } 24869 24870 /* 24871 * Called by IP when IP is loaded into the kernel 24872 */ 24873 void 24874 tcp_ddi_g_init(void) 24875 { 24876 tcp_timercache = kmem_cache_create("tcp_timercache", 24877 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24878 NULL, NULL, NULL, NULL, NULL, 0); 24879 24880 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24881 sizeof (tcp_sack_info_t), 0, 24882 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24883 24884 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24885 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24886 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24887 24888 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24889 24890 /* Initialize the random number generator */ 24891 tcp_random_init(); 24892 24893 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24894 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24895 24896 /* A single callback independently of how many netstacks we have */ 24897 ip_squeue_init(tcp_squeue_add); 24898 24899 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24900 24901 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24902 TASKQ_PREPOPULATE); 24903 24904 /* 24905 * We want to be informed each time a stack is created or 24906 * destroyed in the kernel, so we can maintain the 24907 * set of tcp_stack_t's. 24908 */ 24909 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24910 tcp_stack_fini); 24911 } 24912 24913 24914 /* 24915 * Initialize the TCP stack instance. 24916 */ 24917 static void * 24918 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24919 { 24920 tcp_stack_t *tcps; 24921 tcpparam_t *pa; 24922 int i; 24923 24924 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24925 tcps->tcps_netstack = ns; 24926 24927 /* Initialize locks */ 24928 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 24929 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24930 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24931 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24932 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24933 24934 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24935 tcps->tcps_g_epriv_ports[0] = 2049; 24936 tcps->tcps_g_epriv_ports[1] = 4045; 24937 tcps->tcps_min_anonpriv_port = 512; 24938 24939 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24940 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24941 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24942 TCP_FANOUT_SIZE, KM_SLEEP); 24943 24944 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24945 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24946 MUTEX_DEFAULT, NULL); 24947 } 24948 24949 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24950 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24951 MUTEX_DEFAULT, NULL); 24952 } 24953 24954 /* TCP's IPsec code calls the packet dropper. */ 24955 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24956 24957 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24958 tcps->tcps_params = pa; 24959 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24960 24961 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24962 A_CNT(lcl_tcp_param_arr), tcps); 24963 24964 /* 24965 * Note: To really walk the device tree you need the devinfo 24966 * pointer to your device which is only available after probe/attach. 24967 * The following is safe only because it uses ddi_root_node() 24968 */ 24969 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24970 tcp_opt_obj.odb_opt_arr_cnt); 24971 24972 /* 24973 * Initialize RFC 1948 secret values. This will probably be reset once 24974 * by the boot scripts. 24975 * 24976 * Use NULL name, as the name is caught by the new lockstats. 24977 * 24978 * Initialize with some random, non-guessable string, like the global 24979 * T_INFO_ACK. 24980 */ 24981 24982 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24983 sizeof (tcp_g_t_info_ack), tcps); 24984 24985 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24986 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24987 24988 return (tcps); 24989 } 24990 24991 /* 24992 * Called when the IP module is about to be unloaded. 24993 */ 24994 void 24995 tcp_ddi_g_destroy(void) 24996 { 24997 tcp_g_kstat_fini(tcp_g_kstat); 24998 tcp_g_kstat = NULL; 24999 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25000 25001 mutex_destroy(&tcp_random_lock); 25002 25003 kmem_cache_destroy(tcp_timercache); 25004 kmem_cache_destroy(tcp_sack_info_cache); 25005 kmem_cache_destroy(tcp_iphc_cache); 25006 25007 netstack_unregister(NS_TCP); 25008 taskq_destroy(tcp_taskq); 25009 } 25010 25011 /* 25012 * Shut down the TCP stack instance. 25013 */ 25014 /* ARGSUSED */ 25015 static void 25016 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25017 { 25018 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25019 25020 tcp_g_q_destroy(tcps); 25021 } 25022 25023 /* 25024 * Free the TCP stack instance. 25025 */ 25026 static void 25027 tcp_stack_fini(netstackid_t stackid, void *arg) 25028 { 25029 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25030 int i; 25031 25032 nd_free(&tcps->tcps_g_nd); 25033 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25034 tcps->tcps_params = NULL; 25035 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25036 tcps->tcps_wroff_xtra_param = NULL; 25037 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25038 tcps->tcps_mdt_head_param = NULL; 25039 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25040 tcps->tcps_mdt_tail_param = NULL; 25041 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25042 tcps->tcps_mdt_max_pbufs_param = NULL; 25043 25044 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25045 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25046 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25047 } 25048 25049 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25050 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25051 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25052 } 25053 25054 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25055 tcps->tcps_bind_fanout = NULL; 25056 25057 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25058 tcps->tcps_acceptor_fanout = NULL; 25059 25060 mutex_destroy(&tcps->tcps_iss_key_lock); 25061 rw_destroy(&tcps->tcps_hsp_lock); 25062 mutex_destroy(&tcps->tcps_g_q_lock); 25063 cv_destroy(&tcps->tcps_g_q_cv); 25064 mutex_destroy(&tcps->tcps_epriv_port_lock); 25065 25066 ip_drop_unregister(&tcps->tcps_dropper); 25067 25068 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25069 tcps->tcps_kstat = NULL; 25070 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25071 25072 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25073 tcps->tcps_mibkp = NULL; 25074 25075 kmem_free(tcps, sizeof (*tcps)); 25076 } 25077 25078 /* 25079 * Generate ISS, taking into account NDD changes may happen halfway through. 25080 * (If the iss is not zero, set it.) 25081 */ 25082 25083 static void 25084 tcp_iss_init(tcp_t *tcp) 25085 { 25086 MD5_CTX context; 25087 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25088 uint32_t answer[4]; 25089 tcp_stack_t *tcps = tcp->tcp_tcps; 25090 25091 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25092 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25093 switch (tcps->tcps_strong_iss) { 25094 case 2: 25095 mutex_enter(&tcps->tcps_iss_key_lock); 25096 context = tcps->tcps_iss_key; 25097 mutex_exit(&tcps->tcps_iss_key_lock); 25098 arg.ports = tcp->tcp_ports; 25099 if (tcp->tcp_ipversion == IPV4_VERSION) { 25100 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25101 &arg.src); 25102 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25103 &arg.dst); 25104 } else { 25105 arg.src = tcp->tcp_ip6h->ip6_src; 25106 arg.dst = tcp->tcp_ip6h->ip6_dst; 25107 } 25108 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25109 MD5Final((uchar_t *)answer, &context); 25110 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25111 /* 25112 * Now that we've hashed into a unique per-connection sequence 25113 * space, add a random increment per strong_iss == 1. So I 25114 * guess we'll have to... 25115 */ 25116 /* FALLTHRU */ 25117 case 1: 25118 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25119 break; 25120 default: 25121 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25122 break; 25123 } 25124 tcp->tcp_valid_bits = TCP_ISS_VALID; 25125 tcp->tcp_fss = tcp->tcp_iss - 1; 25126 tcp->tcp_suna = tcp->tcp_iss; 25127 tcp->tcp_snxt = tcp->tcp_iss + 1; 25128 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25129 tcp->tcp_csuna = tcp->tcp_snxt; 25130 } 25131 25132 /* 25133 * Exported routine for extracting active tcp connection status. 25134 * 25135 * This is used by the Solaris Cluster Networking software to 25136 * gather a list of connections that need to be forwarded to 25137 * specific nodes in the cluster when configuration changes occur. 25138 * 25139 * The callback is invoked for each tcp_t structure. Returning 25140 * non-zero from the callback routine terminates the search. 25141 */ 25142 int 25143 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25144 void *arg) 25145 { 25146 netstack_handle_t nh; 25147 netstack_t *ns; 25148 int ret = 0; 25149 25150 netstack_next_init(&nh); 25151 while ((ns = netstack_next(&nh)) != NULL) { 25152 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25153 ns->netstack_tcp); 25154 netstack_rele(ns); 25155 } 25156 netstack_next_fini(&nh); 25157 return (ret); 25158 } 25159 25160 static int 25161 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25162 tcp_stack_t *tcps) 25163 { 25164 tcp_t *tcp; 25165 cl_tcp_info_t cl_tcpi; 25166 connf_t *connfp; 25167 conn_t *connp; 25168 int i; 25169 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25170 25171 ASSERT(callback != NULL); 25172 25173 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25174 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25175 connp = NULL; 25176 25177 while ((connp = 25178 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25179 25180 tcp = connp->conn_tcp; 25181 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25182 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25183 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25184 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25185 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25186 /* 25187 * The macros tcp_laddr and tcp_faddr give the IPv4 25188 * addresses. They are copied implicitly below as 25189 * mapped addresses. 25190 */ 25191 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25192 if (tcp->tcp_ipversion == IPV4_VERSION) { 25193 cl_tcpi.cl_tcpi_faddr = 25194 tcp->tcp_ipha->ipha_dst; 25195 } else { 25196 cl_tcpi.cl_tcpi_faddr_v6 = 25197 tcp->tcp_ip6h->ip6_dst; 25198 } 25199 25200 /* 25201 * If the callback returns non-zero 25202 * we terminate the traversal. 25203 */ 25204 if ((*callback)(&cl_tcpi, arg) != 0) { 25205 CONN_DEC_REF(tcp->tcp_connp); 25206 return (1); 25207 } 25208 } 25209 } 25210 25211 return (0); 25212 } 25213 25214 /* 25215 * Macros used for accessing the different types of sockaddr 25216 * structures inside a tcp_ioc_abort_conn_t. 25217 */ 25218 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25219 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25220 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25221 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25222 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25223 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25224 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25225 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25226 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25227 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25228 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25229 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25230 25231 /* 25232 * Return the correct error code to mimic the behavior 25233 * of a connection reset. 25234 */ 25235 #define TCP_AC_GET_ERRCODE(state, err) { \ 25236 switch ((state)) { \ 25237 case TCPS_SYN_SENT: \ 25238 case TCPS_SYN_RCVD: \ 25239 (err) = ECONNREFUSED; \ 25240 break; \ 25241 case TCPS_ESTABLISHED: \ 25242 case TCPS_FIN_WAIT_1: \ 25243 case TCPS_FIN_WAIT_2: \ 25244 case TCPS_CLOSE_WAIT: \ 25245 (err) = ECONNRESET; \ 25246 break; \ 25247 case TCPS_CLOSING: \ 25248 case TCPS_LAST_ACK: \ 25249 case TCPS_TIME_WAIT: \ 25250 (err) = 0; \ 25251 break; \ 25252 default: \ 25253 (err) = ENXIO; \ 25254 } \ 25255 } 25256 25257 /* 25258 * Check if a tcp structure matches the info in acp. 25259 */ 25260 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25261 (((acp)->ac_local.ss_family == AF_INET) ? \ 25262 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25263 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25264 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25265 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25266 (TCP_AC_V4LPORT((acp)) == 0 || \ 25267 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25268 (TCP_AC_V4RPORT((acp)) == 0 || \ 25269 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25270 (acp)->ac_start <= (tcp)->tcp_state && \ 25271 (acp)->ac_end >= (tcp)->tcp_state) : \ 25272 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25273 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25274 &(tcp)->tcp_ip_src_v6)) && \ 25275 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25276 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25277 &(tcp)->tcp_remote_v6)) && \ 25278 (TCP_AC_V6LPORT((acp)) == 0 || \ 25279 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25280 (TCP_AC_V6RPORT((acp)) == 0 || \ 25281 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25282 (acp)->ac_start <= (tcp)->tcp_state && \ 25283 (acp)->ac_end >= (tcp)->tcp_state)) 25284 25285 #define TCP_AC_MATCH(acp, tcp) \ 25286 (((acp)->ac_zoneid == ALL_ZONES || \ 25287 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25288 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25289 25290 /* 25291 * Build a message containing a tcp_ioc_abort_conn_t structure 25292 * which is filled in with information from acp and tp. 25293 */ 25294 static mblk_t * 25295 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25296 { 25297 mblk_t *mp; 25298 tcp_ioc_abort_conn_t *tacp; 25299 25300 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25301 if (mp == NULL) 25302 return (NULL); 25303 25304 mp->b_datap->db_type = M_CTL; 25305 25306 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25307 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25308 sizeof (uint32_t)); 25309 25310 tacp->ac_start = acp->ac_start; 25311 tacp->ac_end = acp->ac_end; 25312 tacp->ac_zoneid = acp->ac_zoneid; 25313 25314 if (acp->ac_local.ss_family == AF_INET) { 25315 tacp->ac_local.ss_family = AF_INET; 25316 tacp->ac_remote.ss_family = AF_INET; 25317 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25318 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25319 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25320 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25321 } else { 25322 tacp->ac_local.ss_family = AF_INET6; 25323 tacp->ac_remote.ss_family = AF_INET6; 25324 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25325 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25326 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25327 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25328 } 25329 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25330 return (mp); 25331 } 25332 25333 /* 25334 * Print a tcp_ioc_abort_conn_t structure. 25335 */ 25336 static void 25337 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25338 { 25339 char lbuf[128]; 25340 char rbuf[128]; 25341 sa_family_t af; 25342 in_port_t lport, rport; 25343 ushort_t logflags; 25344 25345 af = acp->ac_local.ss_family; 25346 25347 if (af == AF_INET) { 25348 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25349 lbuf, 128); 25350 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25351 rbuf, 128); 25352 lport = ntohs(TCP_AC_V4LPORT(acp)); 25353 rport = ntohs(TCP_AC_V4RPORT(acp)); 25354 } else { 25355 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25356 lbuf, 128); 25357 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25358 rbuf, 128); 25359 lport = ntohs(TCP_AC_V6LPORT(acp)); 25360 rport = ntohs(TCP_AC_V6RPORT(acp)); 25361 } 25362 25363 logflags = SL_TRACE | SL_NOTE; 25364 /* 25365 * Don't print this message to the console if the operation was done 25366 * to a non-global zone. 25367 */ 25368 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25369 logflags |= SL_CONSOLE; 25370 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25371 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25372 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25373 acp->ac_start, acp->ac_end); 25374 } 25375 25376 /* 25377 * Called inside tcp_rput when a message built using 25378 * tcp_ioctl_abort_build_msg is put into a queue. 25379 * Note that when we get here there is no wildcard in acp any more. 25380 */ 25381 static void 25382 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25383 { 25384 tcp_ioc_abort_conn_t *acp; 25385 25386 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25387 if (tcp->tcp_state <= acp->ac_end) { 25388 /* 25389 * If we get here, we are already on the correct 25390 * squeue. This ioctl follows the following path 25391 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25392 * ->tcp_ioctl_abort->squeue_fill (if on a 25393 * different squeue) 25394 */ 25395 int errcode; 25396 25397 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25398 (void) tcp_clean_death(tcp, errcode, 26); 25399 } 25400 freemsg(mp); 25401 } 25402 25403 /* 25404 * Abort all matching connections on a hash chain. 25405 */ 25406 static int 25407 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25408 boolean_t exact, tcp_stack_t *tcps) 25409 { 25410 int nmatch, err = 0; 25411 tcp_t *tcp; 25412 MBLKP mp, last, listhead = NULL; 25413 conn_t *tconnp; 25414 connf_t *connfp; 25415 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25416 25417 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25418 25419 startover: 25420 nmatch = 0; 25421 25422 mutex_enter(&connfp->connf_lock); 25423 for (tconnp = connfp->connf_head; tconnp != NULL; 25424 tconnp = tconnp->conn_next) { 25425 tcp = tconnp->conn_tcp; 25426 if (TCP_AC_MATCH(acp, tcp)) { 25427 CONN_INC_REF(tcp->tcp_connp); 25428 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25429 if (mp == NULL) { 25430 err = ENOMEM; 25431 CONN_DEC_REF(tcp->tcp_connp); 25432 break; 25433 } 25434 mp->b_prev = (mblk_t *)tcp; 25435 25436 if (listhead == NULL) { 25437 listhead = mp; 25438 last = mp; 25439 } else { 25440 last->b_next = mp; 25441 last = mp; 25442 } 25443 nmatch++; 25444 if (exact) 25445 break; 25446 } 25447 25448 /* Avoid holding lock for too long. */ 25449 if (nmatch >= 500) 25450 break; 25451 } 25452 mutex_exit(&connfp->connf_lock); 25453 25454 /* Pass mp into the correct tcp */ 25455 while ((mp = listhead) != NULL) { 25456 listhead = listhead->b_next; 25457 tcp = (tcp_t *)mp->b_prev; 25458 mp->b_next = mp->b_prev = NULL; 25459 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25460 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25461 } 25462 25463 *count += nmatch; 25464 if (nmatch >= 500 && err == 0) 25465 goto startover; 25466 return (err); 25467 } 25468 25469 /* 25470 * Abort all connections that matches the attributes specified in acp. 25471 */ 25472 static int 25473 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25474 { 25475 sa_family_t af; 25476 uint32_t ports; 25477 uint16_t *pports; 25478 int err = 0, count = 0; 25479 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25480 int index = -1; 25481 ushort_t logflags; 25482 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25483 25484 af = acp->ac_local.ss_family; 25485 25486 if (af == AF_INET) { 25487 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25488 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25489 pports = (uint16_t *)&ports; 25490 pports[1] = TCP_AC_V4LPORT(acp); 25491 pports[0] = TCP_AC_V4RPORT(acp); 25492 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25493 } 25494 } else { 25495 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25496 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25497 pports = (uint16_t *)&ports; 25498 pports[1] = TCP_AC_V6LPORT(acp); 25499 pports[0] = TCP_AC_V6RPORT(acp); 25500 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25501 } 25502 } 25503 25504 /* 25505 * For cases where remote addr, local port, and remote port are non- 25506 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25507 */ 25508 if (index != -1) { 25509 err = tcp_ioctl_abort_bucket(acp, index, 25510 &count, exact, tcps); 25511 } else { 25512 /* 25513 * loop through all entries for wildcard case 25514 */ 25515 for (index = 0; 25516 index < ipst->ips_ipcl_conn_fanout_size; 25517 index++) { 25518 err = tcp_ioctl_abort_bucket(acp, index, 25519 &count, exact, tcps); 25520 if (err != 0) 25521 break; 25522 } 25523 } 25524 25525 logflags = SL_TRACE | SL_NOTE; 25526 /* 25527 * Don't print this message to the console if the operation was done 25528 * to a non-global zone. 25529 */ 25530 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25531 logflags |= SL_CONSOLE; 25532 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25533 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25534 if (err == 0 && count == 0) 25535 err = ENOENT; 25536 return (err); 25537 } 25538 25539 /* 25540 * Process the TCP_IOC_ABORT_CONN ioctl request. 25541 */ 25542 static void 25543 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25544 { 25545 int err; 25546 IOCP iocp; 25547 MBLKP mp1; 25548 sa_family_t laf, raf; 25549 tcp_ioc_abort_conn_t *acp; 25550 zone_t *zptr; 25551 conn_t *connp = Q_TO_CONN(q); 25552 zoneid_t zoneid = connp->conn_zoneid; 25553 tcp_t *tcp = connp->conn_tcp; 25554 tcp_stack_t *tcps = tcp->tcp_tcps; 25555 25556 iocp = (IOCP)mp->b_rptr; 25557 25558 if ((mp1 = mp->b_cont) == NULL || 25559 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25560 err = EINVAL; 25561 goto out; 25562 } 25563 25564 /* check permissions */ 25565 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25566 err = EPERM; 25567 goto out; 25568 } 25569 25570 if (mp1->b_cont != NULL) { 25571 freemsg(mp1->b_cont); 25572 mp1->b_cont = NULL; 25573 } 25574 25575 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25576 laf = acp->ac_local.ss_family; 25577 raf = acp->ac_remote.ss_family; 25578 25579 /* check that a zone with the supplied zoneid exists */ 25580 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25581 zptr = zone_find_by_id(zoneid); 25582 if (zptr != NULL) { 25583 zone_rele(zptr); 25584 } else { 25585 err = EINVAL; 25586 goto out; 25587 } 25588 } 25589 25590 /* 25591 * For exclusive stacks we set the zoneid to zero 25592 * to make TCP operate as if in the global zone. 25593 */ 25594 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25595 acp->ac_zoneid = GLOBAL_ZONEID; 25596 25597 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25598 acp->ac_start > acp->ac_end || laf != raf || 25599 (laf != AF_INET && laf != AF_INET6)) { 25600 err = EINVAL; 25601 goto out; 25602 } 25603 25604 tcp_ioctl_abort_dump(acp); 25605 err = tcp_ioctl_abort(acp, tcps); 25606 25607 out: 25608 if (mp1 != NULL) { 25609 freemsg(mp1); 25610 mp->b_cont = NULL; 25611 } 25612 25613 if (err != 0) 25614 miocnak(q, mp, 0, err); 25615 else 25616 miocack(q, mp, 0, 0); 25617 } 25618 25619 /* 25620 * tcp_time_wait_processing() handles processing of incoming packets when 25621 * the tcp is in the TIME_WAIT state. 25622 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25623 * on the time wait list. 25624 */ 25625 void 25626 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25627 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25628 { 25629 int32_t bytes_acked; 25630 int32_t gap; 25631 int32_t rgap; 25632 tcp_opt_t tcpopt; 25633 uint_t flags; 25634 uint32_t new_swnd = 0; 25635 conn_t *connp; 25636 tcp_stack_t *tcps = tcp->tcp_tcps; 25637 25638 BUMP_LOCAL(tcp->tcp_ibsegs); 25639 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 25640 25641 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25642 new_swnd = BE16_TO_U16(tcph->th_win) << 25643 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25644 if (tcp->tcp_snd_ts_ok) { 25645 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25646 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25647 tcp->tcp_rnxt, TH_ACK); 25648 goto done; 25649 } 25650 } 25651 gap = seg_seq - tcp->tcp_rnxt; 25652 rgap = tcp->tcp_rwnd - (gap + seg_len); 25653 if (gap < 0) { 25654 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25655 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25656 (seg_len > -gap ? -gap : seg_len)); 25657 seg_len += gap; 25658 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25659 if (flags & TH_RST) { 25660 goto done; 25661 } 25662 if ((flags & TH_FIN) && seg_len == -1) { 25663 /* 25664 * When TCP receives a duplicate FIN in 25665 * TIME_WAIT state, restart the 2 MSL timer. 25666 * See page 73 in RFC 793. Make sure this TCP 25667 * is already on the TIME_WAIT list. If not, 25668 * just restart the timer. 25669 */ 25670 if (TCP_IS_DETACHED(tcp)) { 25671 if (tcp_time_wait_remove(tcp, NULL) == 25672 B_TRUE) { 25673 tcp_time_wait_append(tcp); 25674 TCP_DBGSTAT(tcps, 25675 tcp_rput_time_wait); 25676 } 25677 } else { 25678 ASSERT(tcp != NULL); 25679 TCP_TIMER_RESTART(tcp, 25680 tcps->tcps_time_wait_interval); 25681 } 25682 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25683 tcp->tcp_rnxt, TH_ACK); 25684 goto done; 25685 } 25686 flags |= TH_ACK_NEEDED; 25687 seg_len = 0; 25688 goto process_ack; 25689 } 25690 25691 /* Fix seg_seq, and chew the gap off the front. */ 25692 seg_seq = tcp->tcp_rnxt; 25693 } 25694 25695 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25696 /* 25697 * Make sure that when we accept the connection, pick 25698 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25699 * old connection. 25700 * 25701 * The next ISS generated is equal to tcp_iss_incr_extra 25702 * + ISS_INCR/2 + other components depending on the 25703 * value of tcp_strong_iss. We pre-calculate the new 25704 * ISS here and compare with tcp_snxt to determine if 25705 * we need to make adjustment to tcp_iss_incr_extra. 25706 * 25707 * The above calculation is ugly and is a 25708 * waste of CPU cycles... 25709 */ 25710 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25711 int32_t adj; 25712 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25713 25714 switch (tcps->tcps_strong_iss) { 25715 case 2: { 25716 /* Add time and MD5 components. */ 25717 uint32_t answer[4]; 25718 struct { 25719 uint32_t ports; 25720 in6_addr_t src; 25721 in6_addr_t dst; 25722 } arg; 25723 MD5_CTX context; 25724 25725 mutex_enter(&tcps->tcps_iss_key_lock); 25726 context = tcps->tcps_iss_key; 25727 mutex_exit(&tcps->tcps_iss_key_lock); 25728 arg.ports = tcp->tcp_ports; 25729 /* We use MAPPED addresses in tcp_iss_init */ 25730 arg.src = tcp->tcp_ip_src_v6; 25731 if (tcp->tcp_ipversion == IPV4_VERSION) { 25732 IN6_IPADDR_TO_V4MAPPED( 25733 tcp->tcp_ipha->ipha_dst, 25734 &arg.dst); 25735 } else { 25736 arg.dst = 25737 tcp->tcp_ip6h->ip6_dst; 25738 } 25739 MD5Update(&context, (uchar_t *)&arg, 25740 sizeof (arg)); 25741 MD5Final((uchar_t *)answer, &context); 25742 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25743 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25744 break; 25745 } 25746 case 1: 25747 /* Add time component and min random (i.e. 1). */ 25748 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25749 break; 25750 default: 25751 /* Add only time component. */ 25752 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25753 break; 25754 } 25755 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25756 /* 25757 * New ISS not guaranteed to be ISS_INCR/2 25758 * ahead of the current tcp_snxt, so add the 25759 * difference to tcp_iss_incr_extra. 25760 */ 25761 tcps->tcps_iss_incr_extra += adj; 25762 } 25763 /* 25764 * If tcp_clean_death() can not perform the task now, 25765 * drop the SYN packet and let the other side re-xmit. 25766 * Otherwise pass the SYN packet back in, since the 25767 * old tcp state has been cleaned up or freed. 25768 */ 25769 if (tcp_clean_death(tcp, 0, 27) == -1) 25770 goto done; 25771 /* 25772 * We will come back to tcp_rput_data 25773 * on the global queue. Packets destined 25774 * for the global queue will be checked 25775 * with global policy. But the policy for 25776 * this packet has already been checked as 25777 * this was destined for the detached 25778 * connection. We need to bypass policy 25779 * check this time by attaching a dummy 25780 * ipsec_in with ipsec_in_dont_check set. 25781 */ 25782 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25783 if (connp != NULL) { 25784 TCP_STAT(tcps, tcp_time_wait_syn_success); 25785 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25786 return; 25787 } 25788 goto done; 25789 } 25790 25791 /* 25792 * rgap is the amount of stuff received out of window. A negative 25793 * value is the amount out of window. 25794 */ 25795 if (rgap < 0) { 25796 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25797 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25798 /* Fix seg_len and make sure there is something left. */ 25799 seg_len += rgap; 25800 if (seg_len <= 0) { 25801 if (flags & TH_RST) { 25802 goto done; 25803 } 25804 flags |= TH_ACK_NEEDED; 25805 seg_len = 0; 25806 goto process_ack; 25807 } 25808 } 25809 /* 25810 * Check whether we can update tcp_ts_recent. This test is 25811 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25812 * Extensions for High Performance: An Update", Internet Draft. 25813 */ 25814 if (tcp->tcp_snd_ts_ok && 25815 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25816 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25817 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25818 tcp->tcp_last_rcv_lbolt = lbolt64; 25819 } 25820 25821 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25822 /* Always ack out of order packets */ 25823 flags |= TH_ACK_NEEDED; 25824 seg_len = 0; 25825 } else if (seg_len > 0) { 25826 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25827 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25828 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25829 } 25830 if (flags & TH_RST) { 25831 (void) tcp_clean_death(tcp, 0, 28); 25832 goto done; 25833 } 25834 if (flags & TH_SYN) { 25835 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25836 TH_RST|TH_ACK); 25837 /* 25838 * Do not delete the TCP structure if it is in 25839 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25840 */ 25841 goto done; 25842 } 25843 process_ack: 25844 if (flags & TH_ACK) { 25845 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25846 if (bytes_acked <= 0) { 25847 if (bytes_acked == 0 && seg_len == 0 && 25848 new_swnd == tcp->tcp_swnd) 25849 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25850 } else { 25851 /* Acks something not sent */ 25852 flags |= TH_ACK_NEEDED; 25853 } 25854 } 25855 if (flags & TH_ACK_NEEDED) { 25856 /* 25857 * Time to send an ack for some reason. 25858 */ 25859 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25860 tcp->tcp_rnxt, TH_ACK); 25861 } 25862 done: 25863 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25864 DB_CKSUMSTART(mp) = 0; 25865 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25866 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25867 } 25868 freemsg(mp); 25869 } 25870 25871 /* 25872 * Allocate a T_SVR4_OPTMGMT_REQ. 25873 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 25874 * that tcp_rput_other can drop the acks. 25875 */ 25876 static mblk_t * 25877 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 25878 { 25879 mblk_t *mp; 25880 struct T_optmgmt_req *tor; 25881 struct opthdr *oh; 25882 uint_t size; 25883 char *optptr; 25884 25885 size = sizeof (*tor) + sizeof (*oh) + optlen; 25886 mp = allocb(size, BPRI_MED); 25887 if (mp == NULL) 25888 return (NULL); 25889 25890 mp->b_wptr += size; 25891 mp->b_datap->db_type = M_PROTO; 25892 tor = (struct T_optmgmt_req *)mp->b_rptr; 25893 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25894 tor->MGMT_flags = T_NEGOTIATE; 25895 tor->OPT_length = sizeof (*oh) + optlen; 25896 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25897 25898 oh = (struct opthdr *)&tor[1]; 25899 oh->level = level; 25900 oh->name = cmd; 25901 oh->len = optlen; 25902 if (optlen != 0) { 25903 optptr = (char *)&oh[1]; 25904 bcopy(opt, optptr, optlen); 25905 } 25906 return (mp); 25907 } 25908 25909 /* 25910 * TCP Timers Implementation. 25911 */ 25912 timeout_id_t 25913 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25914 { 25915 mblk_t *mp; 25916 tcp_timer_t *tcpt; 25917 tcp_t *tcp = connp->conn_tcp; 25918 tcp_stack_t *tcps = tcp->tcp_tcps; 25919 25920 ASSERT(connp->conn_sqp != NULL); 25921 25922 TCP_DBGSTAT(tcps, tcp_timeout_calls); 25923 25924 if (tcp->tcp_timercache == NULL) { 25925 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25926 } else { 25927 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 25928 mp = tcp->tcp_timercache; 25929 tcp->tcp_timercache = mp->b_next; 25930 mp->b_next = NULL; 25931 ASSERT(mp->b_wptr == NULL); 25932 } 25933 25934 CONN_INC_REF(connp); 25935 tcpt = (tcp_timer_t *)mp->b_rptr; 25936 tcpt->connp = connp; 25937 tcpt->tcpt_proc = f; 25938 /* 25939 * TCP timers are normal timeouts. Plus, they do not require more than 25940 * a 10 millisecond resolution. By choosing a coarser resolution and by 25941 * rounding up the expiration to the next resolution boundary, we can 25942 * batch timers in the callout subsystem to make TCP timers more 25943 * efficient. The roundup also protects short timers from expiring too 25944 * early before they have a chance to be cancelled. 25945 */ 25946 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25947 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25948 25949 return ((timeout_id_t)mp); 25950 } 25951 25952 static void 25953 tcp_timer_callback(void *arg) 25954 { 25955 mblk_t *mp = (mblk_t *)arg; 25956 tcp_timer_t *tcpt; 25957 conn_t *connp; 25958 25959 tcpt = (tcp_timer_t *)mp->b_rptr; 25960 connp = tcpt->connp; 25961 squeue_fill(connp->conn_sqp, mp, 25962 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25963 } 25964 25965 static void 25966 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25967 { 25968 tcp_timer_t *tcpt; 25969 conn_t *connp = (conn_t *)arg; 25970 tcp_t *tcp = connp->conn_tcp; 25971 25972 tcpt = (tcp_timer_t *)mp->b_rptr; 25973 ASSERT(connp == tcpt->connp); 25974 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25975 25976 /* 25977 * If the TCP has reached the closed state, don't proceed any 25978 * further. This TCP logically does not exist on the system. 25979 * tcpt_proc could for example access queues, that have already 25980 * been qprocoff'ed off. Also see comments at the start of tcp_input 25981 */ 25982 if (tcp->tcp_state != TCPS_CLOSED) { 25983 (*tcpt->tcpt_proc)(connp); 25984 } else { 25985 tcp->tcp_timer_tid = 0; 25986 } 25987 tcp_timer_free(connp->conn_tcp, mp); 25988 } 25989 25990 /* 25991 * There is potential race with untimeout and the handler firing at the same 25992 * time. The mblock may be freed by the handler while we are trying to use 25993 * it. But since both should execute on the same squeue, this race should not 25994 * occur. 25995 */ 25996 clock_t 25997 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25998 { 25999 mblk_t *mp = (mblk_t *)id; 26000 tcp_timer_t *tcpt; 26001 clock_t delta; 26002 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26003 26004 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26005 26006 if (mp == NULL) 26007 return (-1); 26008 26009 tcpt = (tcp_timer_t *)mp->b_rptr; 26010 ASSERT(tcpt->connp == connp); 26011 26012 delta = untimeout_default(tcpt->tcpt_tid, 0); 26013 26014 if (delta >= 0) { 26015 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26016 tcp_timer_free(connp->conn_tcp, mp); 26017 CONN_DEC_REF(connp); 26018 } 26019 26020 return (delta); 26021 } 26022 26023 /* 26024 * Allocate space for the timer event. The allocation looks like mblk, but it is 26025 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26026 * 26027 * Dealing with failures: If we can't allocate from the timer cache we try 26028 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26029 * points to b_rptr. 26030 * If we can't allocate anything using allocb_tryhard(), we perform a last 26031 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26032 * save the actual allocation size in b_datap. 26033 */ 26034 mblk_t * 26035 tcp_timermp_alloc(int kmflags) 26036 { 26037 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26038 kmflags & ~KM_PANIC); 26039 26040 if (mp != NULL) { 26041 mp->b_next = mp->b_prev = NULL; 26042 mp->b_rptr = (uchar_t *)(&mp[1]); 26043 mp->b_wptr = NULL; 26044 mp->b_datap = NULL; 26045 mp->b_queue = NULL; 26046 mp->b_cont = NULL; 26047 } else if (kmflags & KM_PANIC) { 26048 /* 26049 * Failed to allocate memory for the timer. Try allocating from 26050 * dblock caches. 26051 */ 26052 /* ipclassifier calls this from a constructor - hence no tcps */ 26053 TCP_G_STAT(tcp_timermp_allocfail); 26054 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26055 if (mp == NULL) { 26056 size_t size = 0; 26057 /* 26058 * Memory is really low. Try tryhard allocation. 26059 * 26060 * ipclassifier calls this from a constructor - 26061 * hence no tcps 26062 */ 26063 TCP_G_STAT(tcp_timermp_allocdblfail); 26064 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26065 sizeof (tcp_timer_t), &size, kmflags); 26066 mp->b_rptr = (uchar_t *)(&mp[1]); 26067 mp->b_next = mp->b_prev = NULL; 26068 mp->b_wptr = (uchar_t *)-1; 26069 mp->b_datap = (dblk_t *)size; 26070 mp->b_queue = NULL; 26071 mp->b_cont = NULL; 26072 } 26073 ASSERT(mp->b_wptr != NULL); 26074 } 26075 /* ipclassifier calls this from a constructor - hence no tcps */ 26076 TCP_G_DBGSTAT(tcp_timermp_alloced); 26077 26078 return (mp); 26079 } 26080 26081 /* 26082 * Free per-tcp timer cache. 26083 * It can only contain entries from tcp_timercache. 26084 */ 26085 void 26086 tcp_timermp_free(tcp_t *tcp) 26087 { 26088 mblk_t *mp; 26089 26090 while ((mp = tcp->tcp_timercache) != NULL) { 26091 ASSERT(mp->b_wptr == NULL); 26092 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26093 kmem_cache_free(tcp_timercache, mp); 26094 } 26095 } 26096 26097 /* 26098 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26099 * events there already (currently at most two events are cached). 26100 * If the event is not allocated from the timer cache, free it right away. 26101 */ 26102 static void 26103 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26104 { 26105 mblk_t *mp1 = tcp->tcp_timercache; 26106 tcp_stack_t *tcps = tcp->tcp_tcps; 26107 26108 if (mp->b_wptr != NULL) { 26109 /* 26110 * This allocation is not from a timer cache, free it right 26111 * away. 26112 */ 26113 if (mp->b_wptr != (uchar_t *)-1) 26114 freeb(mp); 26115 else 26116 kmem_free(mp, (size_t)mp->b_datap); 26117 } else if (mp1 == NULL || mp1->b_next == NULL) { 26118 /* Cache this timer block for future allocations */ 26119 mp->b_rptr = (uchar_t *)(&mp[1]); 26120 mp->b_next = mp1; 26121 tcp->tcp_timercache = mp; 26122 } else { 26123 kmem_cache_free(tcp_timercache, mp); 26124 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26125 } 26126 } 26127 26128 /* 26129 * End of TCP Timers implementation. 26130 */ 26131 26132 /* 26133 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26134 * on the specified backing STREAMS q. Note, the caller may make the 26135 * decision to call based on the tcp_t.tcp_flow_stopped value which 26136 * when check outside the q's lock is only an advisory check ... 26137 */ 26138 26139 void 26140 tcp_setqfull(tcp_t *tcp) 26141 { 26142 queue_t *q = tcp->tcp_wq; 26143 tcp_stack_t *tcps = tcp->tcp_tcps; 26144 26145 if (!(q->q_flag & QFULL)) { 26146 mutex_enter(QLOCK(q)); 26147 if (!(q->q_flag & QFULL)) { 26148 /* still need to set QFULL */ 26149 q->q_flag |= QFULL; 26150 tcp->tcp_flow_stopped = B_TRUE; 26151 mutex_exit(QLOCK(q)); 26152 TCP_STAT(tcps, tcp_flwctl_on); 26153 } else { 26154 mutex_exit(QLOCK(q)); 26155 } 26156 } 26157 } 26158 26159 void 26160 tcp_clrqfull(tcp_t *tcp) 26161 { 26162 queue_t *q = tcp->tcp_wq; 26163 26164 if (q->q_flag & QFULL) { 26165 mutex_enter(QLOCK(q)); 26166 if (q->q_flag & QFULL) { 26167 q->q_flag &= ~QFULL; 26168 tcp->tcp_flow_stopped = B_FALSE; 26169 mutex_exit(QLOCK(q)); 26170 if (q->q_flag & QWANTW) 26171 qbackenable(q, 0); 26172 } else { 26173 mutex_exit(QLOCK(q)); 26174 } 26175 } 26176 } 26177 26178 26179 /* 26180 * kstats related to squeues i.e. not per IP instance 26181 */ 26182 static void * 26183 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26184 { 26185 kstat_t *ksp; 26186 26187 tcp_g_stat_t template = { 26188 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26189 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26190 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26191 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26192 }; 26193 26194 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26195 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26196 KSTAT_FLAG_VIRTUAL); 26197 26198 if (ksp == NULL) 26199 return (NULL); 26200 26201 bcopy(&template, tcp_g_statp, sizeof (template)); 26202 ksp->ks_data = (void *)tcp_g_statp; 26203 26204 kstat_install(ksp); 26205 return (ksp); 26206 } 26207 26208 static void 26209 tcp_g_kstat_fini(kstat_t *ksp) 26210 { 26211 if (ksp != NULL) { 26212 kstat_delete(ksp); 26213 } 26214 } 26215 26216 26217 static void * 26218 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26219 { 26220 kstat_t *ksp; 26221 26222 tcp_stat_t template = { 26223 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26224 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26225 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26226 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26227 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26228 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26229 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26230 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26231 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26232 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26233 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26234 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26235 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26236 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26237 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26238 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26239 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26240 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26241 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26242 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26243 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26244 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26245 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26246 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26247 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26248 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26249 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26250 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26251 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26252 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26253 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26254 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26255 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26256 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26257 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26258 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26259 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26260 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26261 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26262 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26263 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26264 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26265 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26266 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26267 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26268 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26269 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26270 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26271 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26272 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26273 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26274 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26275 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26276 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26277 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26278 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26279 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26280 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26281 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26282 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26283 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26284 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26285 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26286 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26287 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26288 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26289 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26290 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26291 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26292 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26293 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26294 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26295 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26296 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26297 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26298 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26299 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26300 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26301 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26302 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26303 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26304 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26305 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26306 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26307 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26308 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26309 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26310 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26311 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26312 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26313 }; 26314 26315 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26316 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26317 KSTAT_FLAG_VIRTUAL, stackid); 26318 26319 if (ksp == NULL) 26320 return (NULL); 26321 26322 bcopy(&template, tcps_statisticsp, sizeof (template)); 26323 ksp->ks_data = (void *)tcps_statisticsp; 26324 ksp->ks_private = (void *)(uintptr_t)stackid; 26325 26326 kstat_install(ksp); 26327 return (ksp); 26328 } 26329 26330 static void 26331 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26332 { 26333 if (ksp != NULL) { 26334 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26335 kstat_delete_netstack(ksp, stackid); 26336 } 26337 } 26338 26339 /* 26340 * TCP Kstats implementation 26341 */ 26342 static void * 26343 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26344 { 26345 kstat_t *ksp; 26346 26347 tcp_named_kstat_t template = { 26348 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26349 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26350 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26351 { "maxConn", KSTAT_DATA_INT32, 0 }, 26352 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26353 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26354 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26355 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26356 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26357 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26358 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26359 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26360 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26361 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26362 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26363 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26364 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26365 { "outAck", KSTAT_DATA_UINT32, 0 }, 26366 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26367 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26368 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26369 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26370 { "outControl", KSTAT_DATA_UINT32, 0 }, 26371 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26372 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26373 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26374 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26375 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26376 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26377 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26378 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26379 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26380 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26381 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26382 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26383 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26384 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26385 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26386 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26387 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26388 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26389 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26390 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26391 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26392 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26393 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26394 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26395 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26396 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26397 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26398 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26399 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26400 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26401 }; 26402 26403 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26404 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26405 26406 if (ksp == NULL) 26407 return (NULL); 26408 26409 template.rtoAlgorithm.value.ui32 = 4; 26410 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26411 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26412 template.maxConn.value.i32 = -1; 26413 26414 bcopy(&template, ksp->ks_data, sizeof (template)); 26415 ksp->ks_update = tcp_kstat_update; 26416 ksp->ks_private = (void *)(uintptr_t)stackid; 26417 26418 kstat_install(ksp); 26419 return (ksp); 26420 } 26421 26422 static void 26423 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26424 { 26425 if (ksp != NULL) { 26426 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26427 kstat_delete_netstack(ksp, stackid); 26428 } 26429 } 26430 26431 static int 26432 tcp_kstat_update(kstat_t *kp, int rw) 26433 { 26434 tcp_named_kstat_t *tcpkp; 26435 tcp_t *tcp; 26436 connf_t *connfp; 26437 conn_t *connp; 26438 int i; 26439 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26440 netstack_t *ns; 26441 tcp_stack_t *tcps; 26442 ip_stack_t *ipst; 26443 26444 if ((kp == NULL) || (kp->ks_data == NULL)) 26445 return (EIO); 26446 26447 if (rw == KSTAT_WRITE) 26448 return (EACCES); 26449 26450 ns = netstack_find_by_stackid(stackid); 26451 if (ns == NULL) 26452 return (-1); 26453 tcps = ns->netstack_tcp; 26454 if (tcps == NULL) { 26455 netstack_rele(ns); 26456 return (-1); 26457 } 26458 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26459 26460 tcpkp->currEstab.value.ui32 = 0; 26461 26462 ipst = ns->netstack_ip; 26463 26464 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26465 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26466 connp = NULL; 26467 while ((connp = 26468 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26469 tcp = connp->conn_tcp; 26470 switch (tcp_snmp_state(tcp)) { 26471 case MIB2_TCP_established: 26472 case MIB2_TCP_closeWait: 26473 tcpkp->currEstab.value.ui32++; 26474 break; 26475 } 26476 } 26477 } 26478 26479 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26480 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26481 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26482 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26483 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26484 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26485 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26486 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26487 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26488 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26489 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26490 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26491 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26492 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26493 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26494 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26495 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26496 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26497 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26498 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26499 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26500 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26501 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26502 tcpkp->inDataInorderSegs.value.ui32 = 26503 tcps->tcps_mib.tcpInDataInorderSegs; 26504 tcpkp->inDataInorderBytes.value.ui32 = 26505 tcps->tcps_mib.tcpInDataInorderBytes; 26506 tcpkp->inDataUnorderSegs.value.ui32 = 26507 tcps->tcps_mib.tcpInDataUnorderSegs; 26508 tcpkp->inDataUnorderBytes.value.ui32 = 26509 tcps->tcps_mib.tcpInDataUnorderBytes; 26510 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26511 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26512 tcpkp->inDataPartDupSegs.value.ui32 = 26513 tcps->tcps_mib.tcpInDataPartDupSegs; 26514 tcpkp->inDataPartDupBytes.value.ui32 = 26515 tcps->tcps_mib.tcpInDataPartDupBytes; 26516 tcpkp->inDataPastWinSegs.value.ui32 = 26517 tcps->tcps_mib.tcpInDataPastWinSegs; 26518 tcpkp->inDataPastWinBytes.value.ui32 = 26519 tcps->tcps_mib.tcpInDataPastWinBytes; 26520 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26521 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26522 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26523 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26524 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26525 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26526 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26527 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26528 tcpkp->timKeepaliveProbe.value.ui32 = 26529 tcps->tcps_mib.tcpTimKeepaliveProbe; 26530 tcpkp->timKeepaliveDrop.value.ui32 = 26531 tcps->tcps_mib.tcpTimKeepaliveDrop; 26532 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26533 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26534 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26535 tcpkp->outSackRetransSegs.value.ui32 = 26536 tcps->tcps_mib.tcpOutSackRetransSegs; 26537 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26538 26539 netstack_rele(ns); 26540 return (0); 26541 } 26542 26543 void 26544 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26545 { 26546 uint16_t hdr_len; 26547 ipha_t *ipha; 26548 uint8_t *nexthdrp; 26549 tcph_t *tcph; 26550 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26551 26552 /* Already has an eager */ 26553 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26554 TCP_STAT(tcps, tcp_reinput_syn); 26555 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 26556 connp, SQTAG_TCP_REINPUT_EAGER); 26557 return; 26558 } 26559 26560 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26561 case IPV4_VERSION: 26562 ipha = (ipha_t *)mp->b_rptr; 26563 hdr_len = IPH_HDR_LENGTH(ipha); 26564 break; 26565 case IPV6_VERSION: 26566 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26567 &hdr_len, &nexthdrp)) { 26568 CONN_DEC_REF(connp); 26569 freemsg(mp); 26570 return; 26571 } 26572 break; 26573 } 26574 26575 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26576 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26577 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26578 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26579 } 26580 26581 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 26582 SQTAG_TCP_REINPUT); 26583 } 26584 26585 static squeue_func_t 26586 tcp_squeue_switch(int val) 26587 { 26588 squeue_func_t rval = squeue_fill; 26589 26590 switch (val) { 26591 case 1: 26592 rval = squeue_enter_nodrain; 26593 break; 26594 case 2: 26595 rval = squeue_enter; 26596 break; 26597 default: 26598 break; 26599 } 26600 return (rval); 26601 } 26602 26603 /* 26604 * This is called once for each squeue - globally for all stack 26605 * instances. 26606 */ 26607 static void 26608 tcp_squeue_add(squeue_t *sqp) 26609 { 26610 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26611 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26612 26613 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26614 tcp_time_wait->tcp_time_wait_tid = 26615 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 26616 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 26617 CALLOUT_FLAG_ROUNDUP); 26618 if (tcp_free_list_max_cnt == 0) { 26619 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26620 max_ncpus : boot_max_ncpus); 26621 26622 /* 26623 * Limit number of entries to 1% of availble memory / tcp_ncpus 26624 */ 26625 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26626 (tcp_ncpus * sizeof (tcp_t) * 100); 26627 } 26628 tcp_time_wait->tcp_free_list_cnt = 0; 26629 } 26630