1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/sodirect.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/proto_set.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 220 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 221 * directly to the socket (sodirect) and start an asynchronous copyout 222 * to a user-land receive-side buffer (uioa) when a blocking socket read 223 * (e.g. read, recv, ...) is pending. 224 * 225 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 226 * NULL so points to an sodirect_t and if marked enabled then we enqueue 227 * all mblk_t's directly to the socket. 228 * 229 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 230 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 231 * copyout will be started directly to the user-land uio buffer. Also, as we 232 * have a pending read, TCP's push logic can take into account the number of 233 * bytes to be received and only awake the blocked read()er when the uioa_t 234 * byte count has been satisfied. 235 * 236 * IPsec notes : 237 * 238 * Since a packet is always executed on the correct TCP perimeter 239 * all IPsec processing is defered to IP including checking new 240 * connections and setting IPSEC policies for new connection. The 241 * only exception is tcp_xmit_listeners_reset() which is called 242 * directly from IP and needs to policy check to see if TH_RST 243 * can be sent out. 244 * 245 * PFHooks notes : 246 * 247 * For mdt case, one meta buffer contains multiple packets. Mblks for every 248 * packet are assembled and passed to the hooks. When packets are blocked, 249 * or boundary of any packet is changed, the mdt processing is stopped, and 250 * packets of the meta buffer are send to the IP path one by one. 251 */ 252 253 /* 254 * Values for squeue switch: 255 * 1: SQ_NODRAIN 256 * 2: SQ_PROCESS 257 * 3: SQ_FILL 258 */ 259 int tcp_squeue_wput = 2; /* /etc/systems */ 260 int tcp_squeue_flag; 261 262 /* 263 * Macros for sodirect: 264 * 265 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 266 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 267 * if it exists and is enabled, else to NULL. Note, in the current 268 * sodirect implementation the sod_lockp must not be held across any 269 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 270 * will result as sod_lockp is the streamhead stdata.sd_lock. 271 * 272 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 273 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 274 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 275 * being used when sodirect code paths should be. 276 */ 277 278 #define SOD_PTR_ENTER(tcp, sodp) \ 279 (sodp) = (tcp)->tcp_sodirect; \ 280 \ 281 if ((sodp) != NULL) { \ 282 mutex_enter((sodp)->sod_lockp); \ 283 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 284 mutex_exit((sodp)->sod_lockp); \ 285 (sodp) = NULL; \ 286 } \ 287 } 288 289 #define SOD_NOT_ENABLED(tcp) \ 290 ((tcp)->tcp_sodirect == NULL || \ 291 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 292 293 /* 294 * This controls how tiny a write must be before we try to copy it 295 * into the the mblk on the tail of the transmit queue. Not much 296 * speedup is observed for values larger than sixteen. Zero will 297 * disable the optimisation. 298 */ 299 int tcp_tx_pull_len = 16; 300 301 /* 302 * TCP Statistics. 303 * 304 * How TCP statistics work. 305 * 306 * There are two types of statistics invoked by two macros. 307 * 308 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 309 * supposed to be used in non MT-hot paths of the code. 310 * 311 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 312 * supposed to be used for DEBUG purposes and may be used on a hot path. 313 * 314 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 315 * (use "kstat tcp" to get them). 316 * 317 * There is also additional debugging facility that marks tcp_clean_death() 318 * instances and saves them in tcp_t structure. It is triggered by 319 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 320 * tcp_clean_death() calls that counts the number of times each tag was hit. It 321 * is triggered by TCP_CLD_COUNTERS define. 322 * 323 * How to add new counters. 324 * 325 * 1) Add a field in the tcp_stat structure describing your counter. 326 * 2) Add a line in the template in tcp_kstat2_init() with the name 327 * of the counter. 328 * 329 * IMPORTANT!! - make sure that both are in sync !! 330 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 331 * 332 * Please avoid using private counters which are not kstat-exported. 333 * 334 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 335 * in tcp_t structure. 336 * 337 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 338 */ 339 340 #ifndef TCP_DEBUG_COUNTER 341 #ifdef DEBUG 342 #define TCP_DEBUG_COUNTER 1 343 #else 344 #define TCP_DEBUG_COUNTER 0 345 #endif 346 #endif 347 348 #define TCP_CLD_COUNTERS 0 349 350 #define TCP_TAG_CLEAN_DEATH 1 351 #define TCP_MAX_CLEAN_DEATH_TAG 32 352 353 #ifdef lint 354 static int _lint_dummy_; 355 #endif 356 357 #if TCP_CLD_COUNTERS 358 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 359 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 360 #elif defined(lint) 361 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 362 #else 363 #define TCP_CLD_STAT(x) 364 #endif 365 366 #if TCP_DEBUG_COUNTER 367 #define TCP_DBGSTAT(tcps, x) \ 368 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 369 #define TCP_G_DBGSTAT(x) \ 370 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 371 #elif defined(lint) 372 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 373 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 374 #else 375 #define TCP_DBGSTAT(tcps, x) 376 #define TCP_G_DBGSTAT(x) 377 #endif 378 379 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 380 381 tcp_g_stat_t tcp_g_statistics; 382 kstat_t *tcp_g_kstat; 383 384 /* 385 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 386 * tcp write side. 387 */ 388 #define CALL_IP_WPUT(connp, q, mp) { \ 389 ASSERT(((q)->q_flag & QREADR) == 0); \ 390 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 391 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 392 } 393 394 /* Macros for timestamp comparisons */ 395 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 396 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 397 398 /* 399 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 400 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 401 * by adding three components: a time component which grows by 1 every 4096 402 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 403 * a per-connection component which grows by 125000 for every new connection; 404 * and an "extra" component that grows by a random amount centered 405 * approximately on 64000. This causes the the ISS generator to cycle every 406 * 4.89 hours if no TCP connections are made, and faster if connections are 407 * made. 408 * 409 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 410 * components: a time component which grows by 250000 every second; and 411 * a per-connection component which grows by 125000 for every new connections. 412 * 413 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 414 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 415 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 416 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 417 * password. 418 */ 419 #define ISS_INCR 250000 420 #define ISS_NSEC_SHT 12 421 422 static sin_t sin_null; /* Zero address for quick clears */ 423 static sin6_t sin6_null; /* Zero address for quick clears */ 424 425 /* 426 * This implementation follows the 4.3BSD interpretation of the urgent 427 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 428 * incompatible changes in protocols like telnet and rlogin. 429 */ 430 #define TCP_OLD_URP_INTERPRETATION 1 431 432 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 433 (TCP_IS_DETACHED(tcp) && \ 434 (!(tcp)->tcp_hard_binding)) 435 436 /* 437 * TCP reassembly macros. We hide starting and ending sequence numbers in 438 * b_next and b_prev of messages on the reassembly queue. The messages are 439 * chained using b_cont. These macros are used in tcp_reass() so we don't 440 * have to see the ugly casts and assignments. 441 */ 442 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 443 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 444 (mblk_t *)(uintptr_t)(u)) 445 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 446 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 447 (mblk_t *)(uintptr_t)(u)) 448 449 /* 450 * Implementation of TCP Timers. 451 * ============================= 452 * 453 * INTERFACE: 454 * 455 * There are two basic functions dealing with tcp timers: 456 * 457 * timeout_id_t tcp_timeout(connp, func, time) 458 * clock_t tcp_timeout_cancel(connp, timeout_id) 459 * TCP_TIMER_RESTART(tcp, intvl) 460 * 461 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 462 * after 'time' ticks passed. The function called by timeout() must adhere to 463 * the same restrictions as a driver soft interrupt handler - it must not sleep 464 * or call other functions that might sleep. The value returned is the opaque 465 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 466 * cancel the request. The call to tcp_timeout() may fail in which case it 467 * returns zero. This is different from the timeout(9F) function which never 468 * fails. 469 * 470 * The call-back function 'func' always receives 'connp' as its single 471 * argument. It is always executed in the squeue corresponding to the tcp 472 * structure. The tcp structure is guaranteed to be present at the time the 473 * call-back is called. 474 * 475 * NOTE: The call-back function 'func' is never called if tcp is in 476 * the TCPS_CLOSED state. 477 * 478 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 479 * request. locks acquired by the call-back routine should not be held across 480 * the call to tcp_timeout_cancel() or a deadlock may result. 481 * 482 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 483 * Otherwise, it returns an integer value greater than or equal to 0. In 484 * particular, if the call-back function is already placed on the squeue, it can 485 * not be canceled. 486 * 487 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 488 * within squeue context corresponding to the tcp instance. Since the 489 * call-back is also called via the same squeue, there are no race 490 * conditions described in untimeout(9F) manual page since all calls are 491 * strictly serialized. 492 * 493 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 494 * stored in tcp_timer_tid and starts a new one using 495 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 496 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 497 * field. 498 * 499 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 500 * call-back may still be called, so it is possible tcp_timer() will be 501 * called several times. This should not be a problem since tcp_timer() 502 * should always check the tcp instance state. 503 * 504 * 505 * IMPLEMENTATION: 506 * 507 * TCP timers are implemented using three-stage process. The call to 508 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 509 * when the timer expires. The tcp_timer_callback() arranges the call of the 510 * tcp_timer_handler() function via squeue corresponding to the tcp 511 * instance. The tcp_timer_handler() calls actual requested timeout call-back 512 * and passes tcp instance as an argument to it. Information is passed between 513 * stages using the tcp_timer_t structure which contains the connp pointer, the 514 * tcp call-back to call and the timeout id returned by the timeout(9F). 515 * 516 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 517 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 518 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 519 * returns the pointer to this mblk. 520 * 521 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 522 * looks like a normal mblk without actual dblk attached to it. 523 * 524 * To optimize performance each tcp instance holds a small cache of timer 525 * mblocks. In the current implementation it caches up to two timer mblocks per 526 * tcp instance. The cache is preserved over tcp frees and is only freed when 527 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 528 * timer processing happens on a corresponding squeue, the cache manipulation 529 * does not require any locks. Experiments show that majority of timer mblocks 530 * allocations are satisfied from the tcp cache and do not involve kmem calls. 531 * 532 * The tcp_timeout() places a refhold on the connp instance which guarantees 533 * that it will be present at the time the call-back function fires. The 534 * tcp_timer_handler() drops the reference after calling the call-back, so the 535 * call-back function does not need to manipulate the references explicitly. 536 */ 537 538 typedef struct tcp_timer_s { 539 conn_t *connp; 540 void (*tcpt_proc)(void *); 541 callout_id_t tcpt_tid; 542 } tcp_timer_t; 543 544 static kmem_cache_t *tcp_timercache; 545 kmem_cache_t *tcp_sack_info_cache; 546 kmem_cache_t *tcp_iphc_cache; 547 548 /* 549 * For scalability, we must not run a timer for every TCP connection 550 * in TIME_WAIT state. To see why, consider (for time wait interval of 551 * 4 minutes): 552 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 553 * 554 * This list is ordered by time, so you need only delete from the head 555 * until you get to entries which aren't old enough to delete yet. 556 * The list consists of only the detached TIME_WAIT connections. 557 * 558 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 559 * becomes detached TIME_WAIT (either by changing the state and already 560 * being detached or the other way around). This means that the TIME_WAIT 561 * state can be extended (up to doubled) if the connection doesn't become 562 * detached for a long time. 563 * 564 * The list manipulations (including tcp_time_wait_next/prev) 565 * are protected by the tcp_time_wait_lock. The content of the 566 * detached TIME_WAIT connections is protected by the normal perimeters. 567 * 568 * This list is per squeue and squeues are shared across the tcp_stack_t's. 569 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 570 * and conn_netstack. 571 * The tcp_t's that are added to tcp_free_list are disassociated and 572 * have NULL tcp_tcps and conn_netstack pointers. 573 */ 574 typedef struct tcp_squeue_priv_s { 575 kmutex_t tcp_time_wait_lock; 576 callout_id_t tcp_time_wait_tid; 577 tcp_t *tcp_time_wait_head; 578 tcp_t *tcp_time_wait_tail; 579 tcp_t *tcp_free_list; 580 uint_t tcp_free_list_cnt; 581 } tcp_squeue_priv_t; 582 583 /* 584 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 585 * Running it every 5 seconds seems to give the best results. 586 */ 587 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 588 589 /* 590 * To prevent memory hog, limit the number of entries in tcp_free_list 591 * to 1% of available memory / number of cpus 592 */ 593 uint_t tcp_free_list_max_cnt = 0; 594 595 #define TCP_XMIT_LOWATER 4096 596 #define TCP_XMIT_HIWATER 49152 597 #define TCP_RECV_LOWATER 2048 598 #define TCP_RECV_HIWATER 49152 599 600 /* 601 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 602 */ 603 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 604 605 #define TIDUSZ 4096 /* transport interface data unit size */ 606 607 /* 608 * Bind hash list size and has function. It has to be a power of 2 for 609 * hashing. 610 */ 611 #define TCP_BIND_FANOUT_SIZE 512 612 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 613 /* 614 * Size of listen and acceptor hash list. It has to be a power of 2 for 615 * hashing. 616 */ 617 #define TCP_FANOUT_SIZE 256 618 619 #ifdef _ILP32 620 #define TCP_ACCEPTOR_HASH(accid) \ 621 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 622 #else 623 #define TCP_ACCEPTOR_HASH(accid) \ 624 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 625 #endif /* _ILP32 */ 626 627 #define IP_ADDR_CACHE_SIZE 2048 628 #define IP_ADDR_CACHE_HASH(faddr) \ 629 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 630 631 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 632 #define TCP_HSP_HASH_SIZE 256 633 634 #define TCP_HSP_HASH(addr) \ 635 (((addr>>24) ^ (addr >>16) ^ \ 636 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 637 638 /* 639 * TCP options struct returned from tcp_parse_options. 640 */ 641 typedef struct tcp_opt_s { 642 uint32_t tcp_opt_mss; 643 uint32_t tcp_opt_wscale; 644 uint32_t tcp_opt_ts_val; 645 uint32_t tcp_opt_ts_ecr; 646 tcp_t *tcp; 647 } tcp_opt_t; 648 649 /* 650 * TCP option struct passing information b/w lisenter and eager. 651 */ 652 struct tcp_options { 653 uint_t to_flags; 654 ssize_t to_boundif; /* IPV6_BOUND_IF */ 655 }; 656 657 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 658 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 659 660 /* 661 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 662 */ 663 664 #ifdef _BIG_ENDIAN 665 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 666 (TCPOPT_TSTAMP << 8) | 10) 667 #else 668 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 669 (TCPOPT_NOP << 8) | TCPOPT_NOP) 670 #endif 671 672 /* 673 * Flags returned from tcp_parse_options. 674 */ 675 #define TCP_OPT_MSS_PRESENT 1 676 #define TCP_OPT_WSCALE_PRESENT 2 677 #define TCP_OPT_TSTAMP_PRESENT 4 678 #define TCP_OPT_SACK_OK_PRESENT 8 679 #define TCP_OPT_SACK_PRESENT 16 680 681 /* TCP option length */ 682 #define TCPOPT_NOP_LEN 1 683 #define TCPOPT_MAXSEG_LEN 4 684 #define TCPOPT_WS_LEN 3 685 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 686 #define TCPOPT_TSTAMP_LEN 10 687 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 688 #define TCPOPT_SACK_OK_LEN 2 689 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 690 #define TCPOPT_REAL_SACK_LEN 4 691 #define TCPOPT_MAX_SACK_LEN 36 692 #define TCPOPT_HEADER_LEN 2 693 694 /* TCP cwnd burst factor. */ 695 #define TCP_CWND_INFINITE 65535 696 #define TCP_CWND_SS 3 697 #define TCP_CWND_NORMAL 5 698 699 /* Maximum TCP initial cwin (start/restart). */ 700 #define TCP_MAX_INIT_CWND 8 701 702 /* 703 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 704 * either tcp_slow_start_initial or tcp_slow_start_after idle 705 * depending on the caller. If the upper layer has not used the 706 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 707 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 708 * If the upper layer has changed set the tcp_init_cwnd, just use 709 * it to calculate the tcp_cwnd. 710 */ 711 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 712 { \ 713 if ((tcp)->tcp_init_cwnd == 0) { \ 714 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 715 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 716 } else { \ 717 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 718 } \ 719 tcp->tcp_cwnd_cnt = 0; \ 720 } 721 722 /* TCP Timer control structure */ 723 typedef struct tcpt_s { 724 pfv_t tcpt_pfv; /* The routine we are to call */ 725 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 726 } tcpt_t; 727 728 /* Host Specific Parameter structure */ 729 typedef struct tcp_hsp { 730 struct tcp_hsp *tcp_hsp_next; 731 in6_addr_t tcp_hsp_addr_v6; 732 in6_addr_t tcp_hsp_subnet_v6; 733 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 734 int32_t tcp_hsp_sendspace; 735 int32_t tcp_hsp_recvspace; 736 int32_t tcp_hsp_tstamp; 737 } tcp_hsp_t; 738 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 739 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 740 741 /* 742 * Functions called directly via squeue having a prototype of edesc_t. 743 */ 744 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 745 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 746 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 747 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 748 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 749 void tcp_input(void *arg, mblk_t *mp, void *arg2); 750 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 751 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 752 void tcp_output(void *arg, mblk_t *mp, void *arg2); 753 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 754 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 755 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 756 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 757 758 759 /* Prototype for TCP functions */ 760 static void tcp_random_init(void); 761 int tcp_random(void); 762 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 763 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 764 tcp_t *eager); 765 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 766 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 767 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 768 boolean_t user_specified); 769 static void tcp_closei_local(tcp_t *tcp); 770 static void tcp_close_detached(tcp_t *tcp); 771 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 772 mblk_t *idmp, mblk_t **defermp); 773 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 774 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 775 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 776 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 777 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 778 uint32_t scope_id, cred_t *cr, pid_t pid); 779 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 780 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 781 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 782 static char *tcp_display(tcp_t *tcp, char *, char); 783 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 784 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 785 static void tcp_eager_unlink(tcp_t *tcp); 786 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 787 int unixerr); 788 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 789 int tlierr, int unixerr); 790 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 791 cred_t *cr); 792 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 793 char *value, caddr_t cp, cred_t *cr); 794 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 795 char *value, caddr_t cp, cred_t *cr); 796 static int tcp_tpistate(tcp_t *tcp); 797 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 798 int caller_holds_lock); 799 static void tcp_bind_hash_remove(tcp_t *tcp); 800 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 801 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 802 static void tcp_acceptor_hash_remove(tcp_t *tcp); 803 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 804 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 805 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 806 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 807 void tcp_g_q_setup(tcp_stack_t *); 808 void tcp_g_q_create(tcp_stack_t *); 809 void tcp_g_q_destroy(tcp_stack_t *); 810 static int tcp_header_init_ipv4(tcp_t *tcp); 811 static int tcp_header_init_ipv6(tcp_t *tcp); 812 int tcp_init(tcp_t *tcp, queue_t *q); 813 static int tcp_init_values(tcp_t *tcp); 814 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 815 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 816 static void tcp_ip_notify(tcp_t *tcp); 817 static mblk_t *tcp_ire_mp(mblk_t **mpp); 818 static void tcp_iss_init(tcp_t *tcp); 819 static void tcp_keepalive_killer(void *arg); 820 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 821 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 822 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 823 int *do_disconnectp, int *t_errorp, int *sys_errorp); 824 static boolean_t tcp_allow_connopt_set(int level, int name); 825 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 826 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 827 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 828 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 829 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 830 mblk_t *mblk); 831 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 832 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 833 uchar_t *ptr, uint_t len); 834 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 835 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 836 tcp_stack_t *); 837 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 838 caddr_t cp, cred_t *cr); 839 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 840 caddr_t cp, cred_t *cr); 841 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 842 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 843 caddr_t cp, cred_t *cr); 844 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 845 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 846 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 847 static void tcp_reinit(tcp_t *tcp); 848 static void tcp_reinit_values(tcp_t *tcp); 849 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 850 tcp_t *thisstream, cred_t *cr); 851 852 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 853 static uint_t tcp_rcv_drain(tcp_t *tcp); 854 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 855 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 856 static void tcp_ss_rexmit(tcp_t *tcp); 857 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 858 static void tcp_process_options(tcp_t *, tcph_t *); 859 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 860 static void tcp_rsrv(queue_t *q); 861 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 862 static int tcp_snmp_state(tcp_t *tcp); 863 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 864 cred_t *cr); 865 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 866 cred_t *cr); 867 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 868 cred_t *cr); 869 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 870 cred_t *cr); 871 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 872 cred_t *cr); 873 static void tcp_timer(void *arg); 874 static void tcp_timer_callback(void *); 875 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 876 boolean_t random); 877 static in_port_t tcp_get_next_priv_port(const tcp_t *); 878 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 879 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 880 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 881 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 882 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 883 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 884 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 885 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 886 const int num_sack_blk, int *usable, uint_t *snxt, 887 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 888 const int mdt_thres); 889 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 890 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 891 const int num_sack_blk, int *usable, uint_t *snxt, 892 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 893 const int mdt_thres); 894 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 895 int num_sack_blk); 896 static void tcp_wsrv(queue_t *q); 897 static int tcp_xmit_end(tcp_t *tcp); 898 static void tcp_ack_timer(void *arg); 899 static mblk_t *tcp_ack_mp(tcp_t *tcp); 900 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 901 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 902 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 903 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 904 uint32_t ack, int ctl); 905 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 906 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 907 static int setmaxps(queue_t *q, int maxpsz); 908 static void tcp_set_rto(tcp_t *, time_t); 909 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 910 boolean_t, boolean_t); 911 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 912 boolean_t ipsec_mctl); 913 static int tcp_build_hdrs(tcp_t *); 914 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 915 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 916 tcph_t *tcph); 917 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 918 static mblk_t *tcp_mdt_info_mp(mblk_t *); 919 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 920 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 921 const boolean_t, const uint32_t, const uint32_t, 922 const uint32_t, const uint32_t, tcp_stack_t *); 923 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 924 const uint_t, const uint_t, boolean_t *); 925 static mblk_t *tcp_lso_info_mp(mblk_t *); 926 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 927 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 928 extern mblk_t *tcp_timermp_alloc(int); 929 extern void tcp_timermp_free(tcp_t *); 930 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 931 static void tcp_stop_lingering(tcp_t *tcp); 932 static void tcp_close_linger_timeout(void *arg); 933 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 934 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 935 static void tcp_stack_fini(netstackid_t stackid, void *arg); 936 static void *tcp_g_kstat_init(tcp_g_stat_t *); 937 static void tcp_g_kstat_fini(kstat_t *); 938 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 939 static void tcp_kstat_fini(netstackid_t, kstat_t *); 940 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 941 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 942 static int tcp_kstat_update(kstat_t *kp, int rw); 943 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 944 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 945 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 946 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 947 tcph_t *tcph, mblk_t *idmp); 948 static int tcp_squeue_switch(int); 949 950 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 951 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 952 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 953 static int tcp_tpi_close(queue_t *, int); 954 static int tcpclose_accept(queue_t *); 955 956 static void tcp_squeue_add(squeue_t *); 957 static boolean_t tcp_zcopy_check(tcp_t *); 958 static void tcp_zcopy_notify(tcp_t *); 959 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 960 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 961 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 962 963 extern void tcp_kssl_input(tcp_t *, mblk_t *); 964 965 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 966 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 967 968 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 969 sock_upper_handle_t, cred_t *); 970 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 971 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 972 static int tcp_do_listen(conn_t *, int, cred_t *); 973 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 974 cred_t *, pid_t); 975 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 976 boolean_t); 977 static int tcp_do_unbind(conn_t *); 978 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 979 boolean_t); 980 981 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 982 983 /* 984 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 985 * 986 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 987 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 988 * (defined in tcp.h) needs to be filled in and passed into the kernel 989 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 990 * structure contains the four-tuple of a TCP connection and a range of TCP 991 * states (specified by ac_start and ac_end). The use of wildcard addresses 992 * and ports is allowed. Connections with a matching four tuple and a state 993 * within the specified range will be aborted. The valid states for the 994 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 995 * inclusive. 996 * 997 * An application which has its connection aborted by this ioctl will receive 998 * an error that is dependent on the connection state at the time of the abort. 999 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1000 * though a RST packet has been received. If the connection state is equal to 1001 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1002 * and all resources associated with the connection will be freed. 1003 */ 1004 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1005 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1006 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1007 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 1008 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1009 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1010 boolean_t, tcp_stack_t *); 1011 1012 static struct module_info tcp_rinfo = { 1013 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1014 }; 1015 1016 static struct module_info tcp_winfo = { 1017 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1018 }; 1019 1020 /* 1021 * Entry points for TCP as a device. The normal case which supports 1022 * the TCP functionality. 1023 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1024 */ 1025 struct qinit tcp_rinitv4 = { 1026 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 1027 }; 1028 1029 struct qinit tcp_rinitv6 = { 1030 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 1031 }; 1032 1033 struct qinit tcp_winit = { 1034 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1035 }; 1036 1037 /* Initial entry point for TCP in socket mode. */ 1038 struct qinit tcp_sock_winit = { 1039 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1040 }; 1041 1042 /* TCP entry point during fallback */ 1043 struct qinit tcp_fallback_sock_winit = { 1044 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 1045 }; 1046 1047 /* 1048 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1049 * an accept. Avoid allocating data structures since eager has already 1050 * been created. 1051 */ 1052 struct qinit tcp_acceptor_rinit = { 1053 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1054 }; 1055 1056 struct qinit tcp_acceptor_winit = { 1057 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1058 }; 1059 1060 /* 1061 * Entry points for TCP loopback (read side only) 1062 * The open routine is only used for reopens, thus no need to 1063 * have a separate one for tcp_openv6. 1064 */ 1065 struct qinit tcp_loopback_rinit = { 1066 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 1067 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1068 }; 1069 1070 /* For AF_INET aka /dev/tcp */ 1071 struct streamtab tcpinfov4 = { 1072 &tcp_rinitv4, &tcp_winit 1073 }; 1074 1075 /* For AF_INET6 aka /dev/tcp6 */ 1076 struct streamtab tcpinfov6 = { 1077 &tcp_rinitv6, &tcp_winit 1078 }; 1079 1080 sock_downcalls_t sock_tcp_downcalls; 1081 1082 /* 1083 * Have to ensure that tcp_g_q_close is not done by an 1084 * interrupt thread. 1085 */ 1086 static taskq_t *tcp_taskq; 1087 1088 /* Setable only in /etc/system. Move to ndd? */ 1089 boolean_t tcp_icmp_source_quench = B_FALSE; 1090 1091 /* 1092 * Following assumes TPI alignment requirements stay along 32 bit 1093 * boundaries 1094 */ 1095 #define ROUNDUP32(x) \ 1096 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1097 1098 /* Template for response to info request. */ 1099 static struct T_info_ack tcp_g_t_info_ack = { 1100 T_INFO_ACK, /* PRIM_type */ 1101 0, /* TSDU_size */ 1102 T_INFINITE, /* ETSDU_size */ 1103 T_INVALID, /* CDATA_size */ 1104 T_INVALID, /* DDATA_size */ 1105 sizeof (sin_t), /* ADDR_size */ 1106 0, /* OPT_size - not initialized here */ 1107 TIDUSZ, /* TIDU_size */ 1108 T_COTS_ORD, /* SERV_type */ 1109 TCPS_IDLE, /* CURRENT_state */ 1110 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1111 }; 1112 1113 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1114 T_INFO_ACK, /* PRIM_type */ 1115 0, /* TSDU_size */ 1116 T_INFINITE, /* ETSDU_size */ 1117 T_INVALID, /* CDATA_size */ 1118 T_INVALID, /* DDATA_size */ 1119 sizeof (sin6_t), /* ADDR_size */ 1120 0, /* OPT_size - not initialized here */ 1121 TIDUSZ, /* TIDU_size */ 1122 T_COTS_ORD, /* SERV_type */ 1123 TCPS_IDLE, /* CURRENT_state */ 1124 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1125 }; 1126 1127 #define MS 1L 1128 #define SECONDS (1000 * MS) 1129 #define MINUTES (60 * SECONDS) 1130 #define HOURS (60 * MINUTES) 1131 #define DAYS (24 * HOURS) 1132 1133 #define PARAM_MAX (~(uint32_t)0) 1134 1135 /* Max size IP datagram is 64k - 1 */ 1136 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1137 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1138 /* Max of the above */ 1139 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1140 1141 /* Largest TCP port number */ 1142 #define TCP_MAX_PORT (64 * 1024 - 1) 1143 1144 /* 1145 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1146 * layer header. It has to be a multiple of 4. 1147 */ 1148 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1149 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1150 1151 /* 1152 * All of these are alterable, within the min/max values given, at run time. 1153 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1154 * per the TCP spec. 1155 */ 1156 /* BEGIN CSTYLED */ 1157 static tcpparam_t lcl_tcp_param_arr[] = { 1158 /*min max value name */ 1159 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1160 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1161 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1162 { 1, 1024, 1, "tcp_conn_req_min" }, 1163 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1164 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1165 { 0, 10, 0, "tcp_debug" }, 1166 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1167 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1168 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1169 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1170 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1171 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1172 { 1, 255, 64, "tcp_ipv4_ttl"}, 1173 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1174 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1175 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1176 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1177 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1178 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1179 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1180 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1181 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1182 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1183 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1184 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1185 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1186 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1187 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1188 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1189 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1190 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1191 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1192 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1193 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1194 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1195 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1196 /* 1197 * Question: What default value should I set for tcp_strong_iss? 1198 */ 1199 { 0, 2, 1, "tcp_strong_iss"}, 1200 { 0, 65536, 20, "tcp_rtt_updates"}, 1201 { 0, 1, 1, "tcp_wscale_always"}, 1202 { 0, 1, 0, "tcp_tstamp_always"}, 1203 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1204 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1205 { 0, 16, 2, "tcp_deferred_acks_max"}, 1206 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1207 { 1, 4, 4, "tcp_slow_start_initial"}, 1208 { 0, 2, 2, "tcp_sack_permitted"}, 1209 { 0, 1, 1, "tcp_compression_enabled"}, 1210 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1211 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1212 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1213 { 0, 1, 0, "tcp_rev_src_routes"}, 1214 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1215 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1216 { 0, 16, 8, "tcp_local_dacks_max"}, 1217 { 0, 2, 1, "tcp_ecn_permitted"}, 1218 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1219 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1220 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1221 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1222 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1223 }; 1224 /* END CSTYLED */ 1225 1226 /* 1227 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1228 * each header fragment in the header buffer. Each parameter value has 1229 * to be a multiple of 4 (32-bit aligned). 1230 */ 1231 static tcpparam_t lcl_tcp_mdt_head_param = 1232 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1233 static tcpparam_t lcl_tcp_mdt_tail_param = 1234 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1235 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1236 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1237 1238 /* 1239 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1240 * the maximum number of payload buffers associated per Multidata. 1241 */ 1242 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1243 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1244 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1245 1246 /* Round up the value to the nearest mss. */ 1247 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1248 1249 /* 1250 * Set ECN capable transport (ECT) code point in IP header. 1251 * 1252 * Note that there are 2 ECT code points '01' and '10', which are called 1253 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1254 * point ECT(0) for TCP as described in RFC 2481. 1255 */ 1256 #define SET_ECT(tcp, iph) \ 1257 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1258 /* We need to clear the code point first. */ \ 1259 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1260 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1261 } else { \ 1262 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1263 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1264 } 1265 1266 /* 1267 * The format argument to pass to tcp_display(). 1268 * DISP_PORT_ONLY means that the returned string has only port info. 1269 * DISP_ADDR_AND_PORT means that the returned string also contains the 1270 * remote and local IP address. 1271 */ 1272 #define DISP_PORT_ONLY 1 1273 #define DISP_ADDR_AND_PORT 2 1274 1275 #define NDD_TOO_QUICK_MSG \ 1276 "ndd get info rate too high for non-privileged users, try again " \ 1277 "later.\n" 1278 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1279 1280 #define IS_VMLOANED_MBLK(mp) \ 1281 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1282 1283 1284 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1285 boolean_t tcp_mdt_chain = B_TRUE; 1286 1287 /* 1288 * MDT threshold in the form of effective send MSS multiplier; we take 1289 * the MDT path if the amount of unsent data exceeds the threshold value 1290 * (default threshold is 1*SMSS). 1291 */ 1292 uint_t tcp_mdt_smss_threshold = 1; 1293 1294 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1295 1296 /* 1297 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1298 * tunable settable via NDD. Otherwise, the per-connection behavior is 1299 * determined dynamically during tcp_adapt_ire(), which is the default. 1300 */ 1301 boolean_t tcp_static_maxpsz = B_FALSE; 1302 1303 /* Setable in /etc/system */ 1304 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1305 uint32_t tcp_random_anon_port = 1; 1306 1307 /* 1308 * To reach to an eager in Q0 which can be dropped due to an incoming 1309 * new SYN request when Q0 is full, a new doubly linked list is 1310 * introduced. This list allows to select an eager from Q0 in O(1) time. 1311 * This is needed to avoid spending too much time walking through the 1312 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1313 * this new list has to be a member of Q0. 1314 * This list is headed by listener's tcp_t. When the list is empty, 1315 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1316 * of listener's tcp_t point to listener's tcp_t itself. 1317 * 1318 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1319 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1320 * These macros do not affect the eager's membership to Q0. 1321 */ 1322 1323 1324 #define MAKE_DROPPABLE(listener, eager) \ 1325 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1326 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1327 = (eager); \ 1328 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1329 (eager)->tcp_eager_next_drop_q0 = \ 1330 (listener)->tcp_eager_next_drop_q0; \ 1331 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1332 } 1333 1334 #define MAKE_UNDROPPABLE(eager) \ 1335 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1336 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1337 = (eager)->tcp_eager_prev_drop_q0; \ 1338 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1339 = (eager)->tcp_eager_next_drop_q0; \ 1340 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1341 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1342 } 1343 1344 /* 1345 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1346 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1347 * data, TCP will not respond with an ACK. RFC 793 requires that 1348 * TCP responds with an ACK for such a bogus ACK. By not following 1349 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1350 * an attacker successfully spoofs an acceptable segment to our 1351 * peer; or when our peer is "confused." 1352 */ 1353 uint32_t tcp_drop_ack_unsent_cnt = 10; 1354 1355 /* 1356 * Hook functions to enable cluster networking 1357 * On non-clustered systems these vectors must always be NULL. 1358 */ 1359 1360 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1361 sa_family_t addr_family, uint8_t *laddrp, 1362 in_port_t lport, void *args) = NULL; 1363 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1364 sa_family_t addr_family, uint8_t *laddrp, 1365 in_port_t lport, void *args) = NULL; 1366 1367 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1368 boolean_t is_outgoing, 1369 sa_family_t addr_family, 1370 uint8_t *laddrp, in_port_t lport, 1371 uint8_t *faddrp, in_port_t fport, 1372 void *args) = NULL; 1373 1374 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1375 sa_family_t addr_family, uint8_t *laddrp, 1376 in_port_t lport, uint8_t *faddrp, 1377 in_port_t fport, void *args) = NULL; 1378 1379 /* 1380 * The following are defined in ip.c 1381 */ 1382 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1383 sa_family_t addr_family, uint8_t *laddrp, 1384 void *args); 1385 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1386 sa_family_t addr_family, uint8_t *laddrp, 1387 uint8_t *faddrp, void *args); 1388 1389 1390 /* 1391 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1392 */ 1393 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1394 (err) = 0; \ 1395 if (cl_inet_connect2 != NULL) { \ 1396 /* \ 1397 * Running in cluster mode - register active connection \ 1398 * information \ 1399 */ \ 1400 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1401 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1402 (err) = (*cl_inet_connect2)( \ 1403 (connp)->conn_netstack->netstack_stackid,\ 1404 IPPROTO_TCP, is_outgoing, AF_INET, \ 1405 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1406 (in_port_t)(tcp)->tcp_lport, \ 1407 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1408 (in_port_t)(tcp)->tcp_fport, NULL); \ 1409 } \ 1410 } else { \ 1411 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1412 &(tcp)->tcp_ip6h->ip6_src)) { \ 1413 (err) = (*cl_inet_connect2)( \ 1414 (connp)->conn_netstack->netstack_stackid,\ 1415 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1416 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1417 (in_port_t)(tcp)->tcp_lport, \ 1418 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1419 (in_port_t)(tcp)->tcp_fport, NULL); \ 1420 } \ 1421 } \ 1422 } \ 1423 } 1424 1425 #define CL_INET_DISCONNECT(connp, tcp) { \ 1426 if (cl_inet_disconnect != NULL) { \ 1427 /* \ 1428 * Running in cluster mode - deregister active \ 1429 * connection information \ 1430 */ \ 1431 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1432 if ((tcp)->tcp_ip_src != 0) { \ 1433 (*cl_inet_disconnect)( \ 1434 (connp)->conn_netstack->netstack_stackid,\ 1435 IPPROTO_TCP, AF_INET, \ 1436 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1437 (in_port_t)(tcp)->tcp_lport, \ 1438 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1439 (in_port_t)(tcp)->tcp_fport, NULL); \ 1440 } \ 1441 } else { \ 1442 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1443 &(tcp)->tcp_ip_src_v6)) { \ 1444 (*cl_inet_disconnect)( \ 1445 (connp)->conn_netstack->netstack_stackid,\ 1446 IPPROTO_TCP, AF_INET6, \ 1447 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1448 (in_port_t)(tcp)->tcp_lport, \ 1449 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1450 (in_port_t)(tcp)->tcp_fport, NULL); \ 1451 } \ 1452 } \ 1453 } \ 1454 } 1455 1456 /* 1457 * Cluster networking hook for traversing current connection list. 1458 * This routine is used to extract the current list of live connections 1459 * which must continue to to be dispatched to this node. 1460 */ 1461 int cl_tcp_walk_list(netstackid_t stack_id, 1462 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1463 1464 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1465 void *arg, tcp_stack_t *tcps); 1466 1467 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1468 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1469 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1470 ip6_t *, ip6h, int, 0); 1471 1472 /* 1473 * Figure out the value of window scale opton. Note that the rwnd is 1474 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1475 * We cannot find the scale value and then do a round up of tcp_rwnd 1476 * because the scale value may not be correct after that. 1477 * 1478 * Set the compiler flag to make this function inline. 1479 */ 1480 static void 1481 tcp_set_ws_value(tcp_t *tcp) 1482 { 1483 int i; 1484 uint32_t rwnd = tcp->tcp_rwnd; 1485 1486 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1487 i++, rwnd >>= 1) 1488 ; 1489 tcp->tcp_rcv_ws = i; 1490 } 1491 1492 /* 1493 * Remove a connection from the list of detached TIME_WAIT connections. 1494 * It returns B_FALSE if it can't remove the connection from the list 1495 * as the connection has already been removed from the list due to an 1496 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1497 */ 1498 static boolean_t 1499 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1500 { 1501 boolean_t locked = B_FALSE; 1502 1503 if (tcp_time_wait == NULL) { 1504 tcp_time_wait = *((tcp_squeue_priv_t **) 1505 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1506 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1507 locked = B_TRUE; 1508 } else { 1509 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1510 } 1511 1512 if (tcp->tcp_time_wait_expire == 0) { 1513 ASSERT(tcp->tcp_time_wait_next == NULL); 1514 ASSERT(tcp->tcp_time_wait_prev == NULL); 1515 if (locked) 1516 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1517 return (B_FALSE); 1518 } 1519 ASSERT(TCP_IS_DETACHED(tcp)); 1520 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1521 1522 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1523 ASSERT(tcp->tcp_time_wait_prev == NULL); 1524 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1525 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1526 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1527 NULL; 1528 } else { 1529 tcp_time_wait->tcp_time_wait_tail = NULL; 1530 } 1531 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1532 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1533 ASSERT(tcp->tcp_time_wait_next == NULL); 1534 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1535 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1536 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1537 } else { 1538 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1539 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1540 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1541 tcp->tcp_time_wait_next; 1542 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1543 tcp->tcp_time_wait_prev; 1544 } 1545 tcp->tcp_time_wait_next = NULL; 1546 tcp->tcp_time_wait_prev = NULL; 1547 tcp->tcp_time_wait_expire = 0; 1548 1549 if (locked) 1550 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1551 return (B_TRUE); 1552 } 1553 1554 /* 1555 * Add a connection to the list of detached TIME_WAIT connections 1556 * and set its time to expire. 1557 */ 1558 static void 1559 tcp_time_wait_append(tcp_t *tcp) 1560 { 1561 tcp_stack_t *tcps = tcp->tcp_tcps; 1562 tcp_squeue_priv_t *tcp_time_wait = 1563 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1564 SQPRIVATE_TCP)); 1565 1566 tcp_timers_stop(tcp); 1567 1568 /* Freed above */ 1569 ASSERT(tcp->tcp_timer_tid == 0); 1570 ASSERT(tcp->tcp_ack_tid == 0); 1571 1572 /* must have happened at the time of detaching the tcp */ 1573 ASSERT(tcp->tcp_ptpahn == NULL); 1574 ASSERT(tcp->tcp_flow_stopped == 0); 1575 ASSERT(tcp->tcp_time_wait_next == NULL); 1576 ASSERT(tcp->tcp_time_wait_prev == NULL); 1577 ASSERT(tcp->tcp_time_wait_expire == NULL); 1578 ASSERT(tcp->tcp_listener == NULL); 1579 1580 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1581 /* 1582 * The value computed below in tcp->tcp_time_wait_expire may 1583 * appear negative or wrap around. That is ok since our 1584 * interest is only in the difference between the current lbolt 1585 * value and tcp->tcp_time_wait_expire. But the value should not 1586 * be zero, since it means the tcp is not in the TIME_WAIT list. 1587 * The corresponding comparison in tcp_time_wait_collector() uses 1588 * modular arithmetic. 1589 */ 1590 tcp->tcp_time_wait_expire += 1591 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1592 if (tcp->tcp_time_wait_expire == 0) 1593 tcp->tcp_time_wait_expire = 1; 1594 1595 ASSERT(TCP_IS_DETACHED(tcp)); 1596 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1597 ASSERT(tcp->tcp_time_wait_next == NULL); 1598 ASSERT(tcp->tcp_time_wait_prev == NULL); 1599 TCP_DBGSTAT(tcps, tcp_time_wait); 1600 1601 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1602 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1603 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1604 tcp_time_wait->tcp_time_wait_head = tcp; 1605 } else { 1606 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1607 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1608 TCPS_TIME_WAIT); 1609 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1610 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1611 } 1612 tcp_time_wait->tcp_time_wait_tail = tcp; 1613 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1614 } 1615 1616 /* ARGSUSED */ 1617 void 1618 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1619 { 1620 conn_t *connp = (conn_t *)arg; 1621 tcp_t *tcp = connp->conn_tcp; 1622 tcp_stack_t *tcps = tcp->tcp_tcps; 1623 1624 ASSERT(tcp != NULL); 1625 if (tcp->tcp_state == TCPS_CLOSED) { 1626 return; 1627 } 1628 1629 ASSERT((tcp->tcp_family == AF_INET && 1630 tcp->tcp_ipversion == IPV4_VERSION) || 1631 (tcp->tcp_family == AF_INET6 && 1632 (tcp->tcp_ipversion == IPV4_VERSION || 1633 tcp->tcp_ipversion == IPV6_VERSION))); 1634 ASSERT(!tcp->tcp_listener); 1635 1636 TCP_STAT(tcps, tcp_time_wait_reap); 1637 ASSERT(TCP_IS_DETACHED(tcp)); 1638 1639 /* 1640 * Because they have no upstream client to rebind or tcp_close() 1641 * them later, we axe the connection here and now. 1642 */ 1643 tcp_close_detached(tcp); 1644 } 1645 1646 /* 1647 * Remove cached/latched IPsec references. 1648 */ 1649 void 1650 tcp_ipsec_cleanup(tcp_t *tcp) 1651 { 1652 conn_t *connp = tcp->tcp_connp; 1653 1654 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1655 1656 if (connp->conn_latch != NULL) { 1657 IPLATCH_REFRELE(connp->conn_latch, 1658 connp->conn_netstack); 1659 connp->conn_latch = NULL; 1660 } 1661 if (connp->conn_policy != NULL) { 1662 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1663 connp->conn_policy = NULL; 1664 } 1665 } 1666 1667 /* 1668 * Cleaup before placing on free list. 1669 * Disassociate from the netstack/tcp_stack_t since the freelist 1670 * is per squeue and not per netstack. 1671 */ 1672 void 1673 tcp_cleanup(tcp_t *tcp) 1674 { 1675 mblk_t *mp; 1676 char *tcp_iphc; 1677 int tcp_iphc_len; 1678 int tcp_hdr_grown; 1679 tcp_sack_info_t *tcp_sack_info; 1680 conn_t *connp = tcp->tcp_connp; 1681 tcp_stack_t *tcps = tcp->tcp_tcps; 1682 netstack_t *ns = tcps->tcps_netstack; 1683 mblk_t *tcp_rsrv_mp; 1684 1685 tcp_bind_hash_remove(tcp); 1686 1687 /* Cleanup that which needs the netstack first */ 1688 tcp_ipsec_cleanup(tcp); 1689 1690 tcp_free(tcp); 1691 1692 /* Release any SSL context */ 1693 if (tcp->tcp_kssl_ent != NULL) { 1694 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1695 tcp->tcp_kssl_ent = NULL; 1696 } 1697 1698 if (tcp->tcp_kssl_ctx != NULL) { 1699 kssl_release_ctx(tcp->tcp_kssl_ctx); 1700 tcp->tcp_kssl_ctx = NULL; 1701 } 1702 tcp->tcp_kssl_pending = B_FALSE; 1703 1704 conn_delete_ire(connp, NULL); 1705 1706 /* 1707 * Since we will bzero the entire structure, we need to 1708 * remove it and reinsert it in global hash list. We 1709 * know the walkers can't get to this conn because we 1710 * had set CONDEMNED flag earlier and checked reference 1711 * under conn_lock so walker won't pick it and when we 1712 * go the ipcl_globalhash_remove() below, no walker 1713 * can get to it. 1714 */ 1715 ipcl_globalhash_remove(connp); 1716 1717 /* 1718 * Now it is safe to decrement the reference counts. 1719 * This might be the last reference on the netstack and TCPS 1720 * in which case it will cause the tcp_g_q_close and 1721 * the freeing of the IP Instance. 1722 */ 1723 connp->conn_netstack = NULL; 1724 netstack_rele(ns); 1725 ASSERT(tcps != NULL); 1726 tcp->tcp_tcps = NULL; 1727 TCPS_REFRELE(tcps); 1728 1729 /* Save some state */ 1730 mp = tcp->tcp_timercache; 1731 1732 tcp_sack_info = tcp->tcp_sack_info; 1733 tcp_iphc = tcp->tcp_iphc; 1734 tcp_iphc_len = tcp->tcp_iphc_len; 1735 tcp_hdr_grown = tcp->tcp_hdr_grown; 1736 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1737 1738 if (connp->conn_cred != NULL) { 1739 crfree(connp->conn_cred); 1740 connp->conn_cred = NULL; 1741 } 1742 if (connp->conn_peercred != NULL) { 1743 crfree(connp->conn_peercred); 1744 connp->conn_peercred = NULL; 1745 } 1746 ipcl_conn_cleanup(connp); 1747 connp->conn_flags = IPCL_TCPCONN; 1748 bzero(tcp, sizeof (tcp_t)); 1749 1750 /* restore the state */ 1751 tcp->tcp_timercache = mp; 1752 1753 tcp->tcp_sack_info = tcp_sack_info; 1754 tcp->tcp_iphc = tcp_iphc; 1755 tcp->tcp_iphc_len = tcp_iphc_len; 1756 tcp->tcp_hdr_grown = tcp_hdr_grown; 1757 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1758 1759 tcp->tcp_connp = connp; 1760 1761 ASSERT(connp->conn_tcp == tcp); 1762 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1763 connp->conn_state_flags = CONN_INCIPIENT; 1764 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1765 ASSERT(connp->conn_ref == 1); 1766 } 1767 1768 /* 1769 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1770 * is done forwards from the head. 1771 * This walks all stack instances since 1772 * tcp_time_wait remains global across all stacks. 1773 */ 1774 /* ARGSUSED */ 1775 void 1776 tcp_time_wait_collector(void *arg) 1777 { 1778 tcp_t *tcp; 1779 clock_t now; 1780 mblk_t *mp; 1781 conn_t *connp; 1782 kmutex_t *lock; 1783 boolean_t removed; 1784 1785 squeue_t *sqp = (squeue_t *)arg; 1786 tcp_squeue_priv_t *tcp_time_wait = 1787 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1788 1789 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1790 tcp_time_wait->tcp_time_wait_tid = 0; 1791 1792 if (tcp_time_wait->tcp_free_list != NULL && 1793 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1794 TCP_G_STAT(tcp_freelist_cleanup); 1795 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1796 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1797 tcp->tcp_time_wait_next = NULL; 1798 tcp_time_wait->tcp_free_list_cnt--; 1799 ASSERT(tcp->tcp_tcps == NULL); 1800 CONN_DEC_REF(tcp->tcp_connp); 1801 } 1802 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1803 } 1804 1805 /* 1806 * In order to reap time waits reliably, we should use a 1807 * source of time that is not adjustable by the user -- hence 1808 * the call to ddi_get_lbolt(). 1809 */ 1810 now = ddi_get_lbolt(); 1811 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1812 /* 1813 * Compare times using modular arithmetic, since 1814 * lbolt can wrapover. 1815 */ 1816 if ((now - tcp->tcp_time_wait_expire) < 0) { 1817 break; 1818 } 1819 1820 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1821 ASSERT(removed); 1822 1823 connp = tcp->tcp_connp; 1824 ASSERT(connp->conn_fanout != NULL); 1825 lock = &connp->conn_fanout->connf_lock; 1826 /* 1827 * This is essentially a TW reclaim fast path optimization for 1828 * performance where the timewait collector checks under the 1829 * fanout lock (so that no one else can get access to the 1830 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1831 * the classifier hash list. If ref count is indeed 2, we can 1832 * just remove the conn under the fanout lock and avoid 1833 * cleaning up the conn under the squeue, provided that 1834 * clustering callbacks are not enabled. If clustering is 1835 * enabled, we need to make the clustering callback before 1836 * setting the CONDEMNED flag and after dropping all locks and 1837 * so we forego this optimization and fall back to the slow 1838 * path. Also please see the comments in tcp_closei_local 1839 * regarding the refcnt logic. 1840 * 1841 * Since we are holding the tcp_time_wait_lock, its better 1842 * not to block on the fanout_lock because other connections 1843 * can't add themselves to time_wait list. So we do a 1844 * tryenter instead of mutex_enter. 1845 */ 1846 if (mutex_tryenter(lock)) { 1847 mutex_enter(&connp->conn_lock); 1848 if ((connp->conn_ref == 2) && 1849 (cl_inet_disconnect == NULL)) { 1850 ipcl_hash_remove_locked(connp, 1851 connp->conn_fanout); 1852 /* 1853 * Set the CONDEMNED flag now itself so that 1854 * the refcnt cannot increase due to any 1855 * walker. But we have still not cleaned up 1856 * conn_ire_cache. This is still ok since 1857 * we are going to clean it up in tcp_cleanup 1858 * immediately and any interface unplumb 1859 * thread will wait till the ire is blown away 1860 */ 1861 connp->conn_state_flags |= CONN_CONDEMNED; 1862 mutex_exit(lock); 1863 mutex_exit(&connp->conn_lock); 1864 if (tcp_time_wait->tcp_free_list_cnt < 1865 tcp_free_list_max_cnt) { 1866 /* Add to head of tcp_free_list */ 1867 mutex_exit( 1868 &tcp_time_wait->tcp_time_wait_lock); 1869 tcp_cleanup(tcp); 1870 ASSERT(connp->conn_latch == NULL); 1871 ASSERT(connp->conn_policy == NULL); 1872 ASSERT(tcp->tcp_tcps == NULL); 1873 ASSERT(connp->conn_netstack == NULL); 1874 1875 mutex_enter( 1876 &tcp_time_wait->tcp_time_wait_lock); 1877 tcp->tcp_time_wait_next = 1878 tcp_time_wait->tcp_free_list; 1879 tcp_time_wait->tcp_free_list = tcp; 1880 tcp_time_wait->tcp_free_list_cnt++; 1881 continue; 1882 } else { 1883 /* Do not add to tcp_free_list */ 1884 mutex_exit( 1885 &tcp_time_wait->tcp_time_wait_lock); 1886 tcp_bind_hash_remove(tcp); 1887 conn_delete_ire(tcp->tcp_connp, NULL); 1888 tcp_ipsec_cleanup(tcp); 1889 CONN_DEC_REF(tcp->tcp_connp); 1890 } 1891 } else { 1892 CONN_INC_REF_LOCKED(connp); 1893 mutex_exit(lock); 1894 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1895 mutex_exit(&connp->conn_lock); 1896 /* 1897 * We can reuse the closemp here since conn has 1898 * detached (otherwise we wouldn't even be in 1899 * time_wait list). tcp_closemp_used can safely 1900 * be changed without taking a lock as no other 1901 * thread can concurrently access it at this 1902 * point in the connection lifecycle. 1903 */ 1904 1905 if (tcp->tcp_closemp.b_prev == NULL) 1906 tcp->tcp_closemp_used = B_TRUE; 1907 else 1908 cmn_err(CE_PANIC, 1909 "tcp_timewait_collector: " 1910 "concurrent use of tcp_closemp: " 1911 "connp %p tcp %p\n", (void *)connp, 1912 (void *)tcp); 1913 1914 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1915 mp = &tcp->tcp_closemp; 1916 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1917 tcp_timewait_output, connp, 1918 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1919 } 1920 } else { 1921 mutex_enter(&connp->conn_lock); 1922 CONN_INC_REF_LOCKED(connp); 1923 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1924 mutex_exit(&connp->conn_lock); 1925 /* 1926 * We can reuse the closemp here since conn has 1927 * detached (otherwise we wouldn't even be in 1928 * time_wait list). tcp_closemp_used can safely 1929 * be changed without taking a lock as no other 1930 * thread can concurrently access it at this 1931 * point in the connection lifecycle. 1932 */ 1933 1934 if (tcp->tcp_closemp.b_prev == NULL) 1935 tcp->tcp_closemp_used = B_TRUE; 1936 else 1937 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1938 "concurrent use of tcp_closemp: " 1939 "connp %p tcp %p\n", (void *)connp, 1940 (void *)tcp); 1941 1942 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1943 mp = &tcp->tcp_closemp; 1944 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1945 tcp_timewait_output, connp, 1946 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1947 } 1948 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1949 } 1950 1951 if (tcp_time_wait->tcp_free_list != NULL) 1952 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1953 1954 tcp_time_wait->tcp_time_wait_tid = 1955 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1956 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1957 CALLOUT_FLAG_ROUNDUP); 1958 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1959 } 1960 1961 /* 1962 * Reply to a clients T_CONN_RES TPI message. This function 1963 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1964 * on the acceptor STREAM and processed in tcp_wput_accept(). 1965 * Read the block comment on top of tcp_conn_request(). 1966 */ 1967 static void 1968 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1969 { 1970 tcp_t *acceptor; 1971 tcp_t *eager; 1972 tcp_t *tcp; 1973 struct T_conn_res *tcr; 1974 t_uscalar_t acceptor_id; 1975 t_scalar_t seqnum; 1976 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1977 struct tcp_options *tcpopt; 1978 mblk_t *ok_mp; 1979 mblk_t *mp1; 1980 tcp_stack_t *tcps = listener->tcp_tcps; 1981 1982 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1983 tcp_err_ack(listener, mp, TPROTO, 0); 1984 return; 1985 } 1986 tcr = (struct T_conn_res *)mp->b_rptr; 1987 1988 /* 1989 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1990 * read side queue of the streams device underneath us i.e. the 1991 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1992 * look it up in the queue_hash. Under LP64 it sends down the 1993 * minor_t of the accepting endpoint. 1994 * 1995 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1996 * fanout hash lock is held. 1997 * This prevents any thread from entering the acceptor queue from 1998 * below (since it has not been hard bound yet i.e. any inbound 1999 * packets will arrive on the listener or default tcp queue and 2000 * go through tcp_lookup). 2001 * The CONN_INC_REF will prevent the acceptor from closing. 2002 * 2003 * XXX It is still possible for a tli application to send down data 2004 * on the accepting stream while another thread calls t_accept. 2005 * This should not be a problem for well-behaved applications since 2006 * the T_OK_ACK is sent after the queue swapping is completed. 2007 * 2008 * If the accepting fd is the same as the listening fd, avoid 2009 * queue hash lookup since that will return an eager listener in a 2010 * already established state. 2011 */ 2012 acceptor_id = tcr->ACCEPTOR_id; 2013 mutex_enter(&listener->tcp_eager_lock); 2014 if (listener->tcp_acceptor_id == acceptor_id) { 2015 eager = listener->tcp_eager_next_q; 2016 /* only count how many T_CONN_INDs so don't count q0 */ 2017 if ((listener->tcp_conn_req_cnt_q != 1) || 2018 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2019 mutex_exit(&listener->tcp_eager_lock); 2020 tcp_err_ack(listener, mp, TBADF, 0); 2021 return; 2022 } 2023 if (listener->tcp_conn_req_cnt_q0 != 0) { 2024 /* Throw away all the eagers on q0. */ 2025 tcp_eager_cleanup(listener, 1); 2026 } 2027 if (listener->tcp_syn_defense) { 2028 listener->tcp_syn_defense = B_FALSE; 2029 if (listener->tcp_ip_addr_cache != NULL) { 2030 kmem_free(listener->tcp_ip_addr_cache, 2031 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2032 listener->tcp_ip_addr_cache = NULL; 2033 } 2034 } 2035 /* 2036 * Transfer tcp_conn_req_max to the eager so that when 2037 * a disconnect occurs we can revert the endpoint to the 2038 * listen state. 2039 */ 2040 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2041 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2042 /* 2043 * Get a reference on the acceptor just like the 2044 * tcp_acceptor_hash_lookup below. 2045 */ 2046 acceptor = listener; 2047 CONN_INC_REF(acceptor->tcp_connp); 2048 } else { 2049 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 2050 if (acceptor == NULL) { 2051 if (listener->tcp_debug) { 2052 (void) strlog(TCP_MOD_ID, 0, 1, 2053 SL_ERROR|SL_TRACE, 2054 "tcp_accept: did not find acceptor 0x%x\n", 2055 acceptor_id); 2056 } 2057 mutex_exit(&listener->tcp_eager_lock); 2058 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2059 return; 2060 } 2061 /* 2062 * Verify acceptor state. The acceptable states for an acceptor 2063 * include TCPS_IDLE and TCPS_BOUND. 2064 */ 2065 switch (acceptor->tcp_state) { 2066 case TCPS_IDLE: 2067 /* FALLTHRU */ 2068 case TCPS_BOUND: 2069 break; 2070 default: 2071 CONN_DEC_REF(acceptor->tcp_connp); 2072 mutex_exit(&listener->tcp_eager_lock); 2073 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2074 return; 2075 } 2076 } 2077 2078 /* The listener must be in TCPS_LISTEN */ 2079 if (listener->tcp_state != TCPS_LISTEN) { 2080 CONN_DEC_REF(acceptor->tcp_connp); 2081 mutex_exit(&listener->tcp_eager_lock); 2082 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2083 return; 2084 } 2085 2086 /* 2087 * Rendezvous with an eager connection request packet hanging off 2088 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2089 * tcp structure when the connection packet arrived in 2090 * tcp_conn_request(). 2091 */ 2092 seqnum = tcr->SEQ_number; 2093 eager = listener; 2094 do { 2095 eager = eager->tcp_eager_next_q; 2096 if (eager == NULL) { 2097 CONN_DEC_REF(acceptor->tcp_connp); 2098 mutex_exit(&listener->tcp_eager_lock); 2099 tcp_err_ack(listener, mp, TBADSEQ, 0); 2100 return; 2101 } 2102 } while (eager->tcp_conn_req_seqnum != seqnum); 2103 mutex_exit(&listener->tcp_eager_lock); 2104 2105 /* 2106 * At this point, both acceptor and listener have 2 ref 2107 * that they begin with. Acceptor has one additional ref 2108 * we placed in lookup while listener has 3 additional 2109 * ref for being behind the squeue (tcp_accept() is 2110 * done on listener's squeue); being in classifier hash; 2111 * and eager's ref on listener. 2112 */ 2113 ASSERT(listener->tcp_connp->conn_ref >= 5); 2114 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2115 2116 /* 2117 * The eager at this point is set in its own squeue and 2118 * could easily have been killed (tcp_accept_finish will 2119 * deal with that) because of a TH_RST so we can only 2120 * ASSERT for a single ref. 2121 */ 2122 ASSERT(eager->tcp_connp->conn_ref >= 1); 2123 2124 /* Pre allocate the stroptions mblk also */ 2125 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2126 sizeof (struct T_conn_res)), BPRI_HI); 2127 if (opt_mp == NULL) { 2128 CONN_DEC_REF(acceptor->tcp_connp); 2129 CONN_DEC_REF(eager->tcp_connp); 2130 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2131 return; 2132 } 2133 DB_TYPE(opt_mp) = M_SETOPTS; 2134 opt_mp->b_wptr += sizeof (struct tcp_options); 2135 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2136 tcpopt->to_flags = 0; 2137 2138 /* 2139 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2140 * from listener to acceptor. 2141 */ 2142 if (listener->tcp_bound_if != 0) { 2143 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2144 tcpopt->to_boundif = listener->tcp_bound_if; 2145 } 2146 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2147 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2148 } 2149 2150 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2151 if ((mp1 = copymsg(mp)) == NULL) { 2152 CONN_DEC_REF(acceptor->tcp_connp); 2153 CONN_DEC_REF(eager->tcp_connp); 2154 freemsg(opt_mp); 2155 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2156 return; 2157 } 2158 2159 tcr = (struct T_conn_res *)mp1->b_rptr; 2160 2161 /* 2162 * This is an expanded version of mi_tpi_ok_ack_alloc() 2163 * which allocates a larger mblk and appends the new 2164 * local address to the ok_ack. The address is copied by 2165 * soaccept() for getsockname(). 2166 */ 2167 { 2168 int extra; 2169 2170 extra = (eager->tcp_family == AF_INET) ? 2171 sizeof (sin_t) : sizeof (sin6_t); 2172 2173 /* 2174 * Try to re-use mp, if possible. Otherwise, allocate 2175 * an mblk and return it as ok_mp. In any case, mp 2176 * is no longer usable upon return. 2177 */ 2178 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2179 CONN_DEC_REF(acceptor->tcp_connp); 2180 CONN_DEC_REF(eager->tcp_connp); 2181 freemsg(opt_mp); 2182 /* Original mp has been freed by now, so use mp1 */ 2183 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2184 return; 2185 } 2186 2187 mp = NULL; /* We should never use mp after this point */ 2188 2189 switch (extra) { 2190 case sizeof (sin_t): { 2191 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2192 2193 ok_mp->b_wptr += extra; 2194 sin->sin_family = AF_INET; 2195 sin->sin_port = eager->tcp_lport; 2196 sin->sin_addr.s_addr = 2197 eager->tcp_ipha->ipha_src; 2198 break; 2199 } 2200 case sizeof (sin6_t): { 2201 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2202 2203 ok_mp->b_wptr += extra; 2204 sin6->sin6_family = AF_INET6; 2205 sin6->sin6_port = eager->tcp_lport; 2206 if (eager->tcp_ipversion == IPV4_VERSION) { 2207 sin6->sin6_flowinfo = 0; 2208 IN6_IPADDR_TO_V4MAPPED( 2209 eager->tcp_ipha->ipha_src, 2210 &sin6->sin6_addr); 2211 } else { 2212 ASSERT(eager->tcp_ip6h != NULL); 2213 sin6->sin6_flowinfo = 2214 eager->tcp_ip6h->ip6_vcf & 2215 ~IPV6_VERS_AND_FLOW_MASK; 2216 sin6->sin6_addr = 2217 eager->tcp_ip6h->ip6_src; 2218 } 2219 sin6->sin6_scope_id = 0; 2220 sin6->__sin6_src_id = 0; 2221 break; 2222 } 2223 default: 2224 break; 2225 } 2226 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2227 } 2228 2229 /* 2230 * If there are no options we know that the T_CONN_RES will 2231 * succeed. However, we can't send the T_OK_ACK upstream until 2232 * the tcp_accept_swap is done since it would be dangerous to 2233 * let the application start using the new fd prior to the swap. 2234 */ 2235 tcp_accept_swap(listener, acceptor, eager); 2236 2237 /* 2238 * tcp_accept_swap unlinks eager from listener but does not drop 2239 * the eager's reference on the listener. 2240 */ 2241 ASSERT(eager->tcp_listener == NULL); 2242 ASSERT(listener->tcp_connp->conn_ref >= 5); 2243 2244 /* 2245 * The eager is now associated with its own queue. Insert in 2246 * the hash so that the connection can be reused for a future 2247 * T_CONN_RES. 2248 */ 2249 tcp_acceptor_hash_insert(acceptor_id, eager); 2250 2251 /* 2252 * We now do the processing of options with T_CONN_RES. 2253 * We delay till now since we wanted to have queue to pass to 2254 * option processing routines that points back to the right 2255 * instance structure which does not happen until after 2256 * tcp_accept_swap(). 2257 * 2258 * Note: 2259 * The sanity of the logic here assumes that whatever options 2260 * are appropriate to inherit from listner=>eager are done 2261 * before this point, and whatever were to be overridden (or not) 2262 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2263 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2264 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2265 * This may not be true at this point in time but can be fixed 2266 * independently. This option processing code starts with 2267 * the instantiated acceptor instance and the final queue at 2268 * this point. 2269 */ 2270 2271 if (tcr->OPT_length != 0) { 2272 /* Options to process */ 2273 int t_error = 0; 2274 int sys_error = 0; 2275 int do_disconnect = 0; 2276 2277 if (tcp_conprim_opt_process(eager, mp1, 2278 &do_disconnect, &t_error, &sys_error) < 0) { 2279 eager->tcp_accept_error = 1; 2280 if (do_disconnect) { 2281 /* 2282 * An option failed which does not allow 2283 * connection to be accepted. 2284 * 2285 * We allow T_CONN_RES to succeed and 2286 * put a T_DISCON_IND on the eager queue. 2287 */ 2288 ASSERT(t_error == 0 && sys_error == 0); 2289 eager->tcp_send_discon_ind = 1; 2290 } else { 2291 ASSERT(t_error != 0); 2292 freemsg(ok_mp); 2293 /* 2294 * Original mp was either freed or set 2295 * to ok_mp above, so use mp1 instead. 2296 */ 2297 tcp_err_ack(listener, mp1, t_error, sys_error); 2298 goto finish; 2299 } 2300 } 2301 /* 2302 * Most likely success in setting options (except if 2303 * eager->tcp_send_discon_ind set). 2304 * mp1 option buffer represented by OPT_length/offset 2305 * potentially modified and contains results of setting 2306 * options at this point 2307 */ 2308 } 2309 2310 /* We no longer need mp1, since all options processing has passed */ 2311 freemsg(mp1); 2312 2313 putnext(listener->tcp_rq, ok_mp); 2314 2315 mutex_enter(&listener->tcp_eager_lock); 2316 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2317 tcp_t *tail; 2318 mblk_t *conn_ind; 2319 2320 /* 2321 * This path should not be executed if listener and 2322 * acceptor streams are the same. 2323 */ 2324 ASSERT(listener != acceptor); 2325 2326 tcp = listener->tcp_eager_prev_q0; 2327 /* 2328 * listener->tcp_eager_prev_q0 points to the TAIL of the 2329 * deferred T_conn_ind queue. We need to get to the head of 2330 * the queue in order to send up T_conn_ind the same order as 2331 * how the 3WHS is completed. 2332 */ 2333 while (tcp != listener) { 2334 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2335 break; 2336 else 2337 tcp = tcp->tcp_eager_prev_q0; 2338 } 2339 ASSERT(tcp != listener); 2340 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2341 ASSERT(conn_ind != NULL); 2342 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2343 2344 /* Move from q0 to q */ 2345 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2346 listener->tcp_conn_req_cnt_q0--; 2347 listener->tcp_conn_req_cnt_q++; 2348 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2349 tcp->tcp_eager_prev_q0; 2350 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2351 tcp->tcp_eager_next_q0; 2352 tcp->tcp_eager_prev_q0 = NULL; 2353 tcp->tcp_eager_next_q0 = NULL; 2354 tcp->tcp_conn_def_q0 = B_FALSE; 2355 2356 /* Make sure the tcp isn't in the list of droppables */ 2357 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2358 tcp->tcp_eager_prev_drop_q0 == NULL); 2359 2360 /* 2361 * Insert at end of the queue because sockfs sends 2362 * down T_CONN_RES in chronological order. Leaving 2363 * the older conn indications at front of the queue 2364 * helps reducing search time. 2365 */ 2366 tail = listener->tcp_eager_last_q; 2367 if (tail != NULL) 2368 tail->tcp_eager_next_q = tcp; 2369 else 2370 listener->tcp_eager_next_q = tcp; 2371 listener->tcp_eager_last_q = tcp; 2372 tcp->tcp_eager_next_q = NULL; 2373 mutex_exit(&listener->tcp_eager_lock); 2374 putnext(tcp->tcp_rq, conn_ind); 2375 } else { 2376 mutex_exit(&listener->tcp_eager_lock); 2377 } 2378 2379 /* 2380 * Done with the acceptor - free it 2381 * 2382 * Note: from this point on, no access to listener should be made 2383 * as listener can be equal to acceptor. 2384 */ 2385 finish: 2386 ASSERT(acceptor->tcp_detached); 2387 ASSERT(tcps->tcps_g_q != NULL); 2388 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2389 acceptor->tcp_rq = tcps->tcps_g_q; 2390 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2391 (void) tcp_clean_death(acceptor, 0, 2); 2392 CONN_DEC_REF(acceptor->tcp_connp); 2393 2394 /* 2395 * In case we already received a FIN we have to make tcp_rput send 2396 * the ordrel_ind. This will also send up a window update if the window 2397 * has opened up. 2398 * 2399 * In the normal case of a successful connection acceptance 2400 * we give the O_T_BIND_REQ to the read side put procedure as an 2401 * indication that this was just accepted. This tells tcp_rput to 2402 * pass up any data queued in tcp_rcv_list. 2403 * 2404 * In the fringe case where options sent with T_CONN_RES failed and 2405 * we required, we would be indicating a T_DISCON_IND to blow 2406 * away this connection. 2407 */ 2408 2409 /* 2410 * XXX: we currently have a problem if XTI application closes the 2411 * acceptor stream in between. This problem exists in on10-gate also 2412 * and is well know but nothing can be done short of major rewrite 2413 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2414 * eager same squeue as listener (we can distinguish non socket 2415 * listeners at the time of handling a SYN in tcp_conn_request) 2416 * and do most of the work that tcp_accept_finish does here itself 2417 * and then get behind the acceptor squeue to access the acceptor 2418 * queue. 2419 */ 2420 /* 2421 * We already have a ref on tcp so no need to do one before squeue_enter 2422 */ 2423 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2424 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2425 } 2426 2427 /* 2428 * Swap information between the eager and acceptor for a TLI/XTI client. 2429 * The sockfs accept is done on the acceptor stream and control goes 2430 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2431 * called. In either case, both the eager and listener are in their own 2432 * perimeter (squeue) and the code has to deal with potential race. 2433 * 2434 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2435 */ 2436 static void 2437 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2438 { 2439 conn_t *econnp, *aconnp; 2440 2441 ASSERT(eager->tcp_rq == listener->tcp_rq); 2442 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2443 ASSERT(!eager->tcp_hard_bound); 2444 ASSERT(!TCP_IS_SOCKET(acceptor)); 2445 ASSERT(!TCP_IS_SOCKET(eager)); 2446 ASSERT(!TCP_IS_SOCKET(listener)); 2447 2448 acceptor->tcp_detached = B_TRUE; 2449 /* 2450 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2451 * the acceptor id. 2452 */ 2453 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2454 2455 /* remove eager from listen list... */ 2456 mutex_enter(&listener->tcp_eager_lock); 2457 tcp_eager_unlink(eager); 2458 ASSERT(eager->tcp_eager_next_q == NULL && 2459 eager->tcp_eager_last_q == NULL); 2460 ASSERT(eager->tcp_eager_next_q0 == NULL && 2461 eager->tcp_eager_prev_q0 == NULL); 2462 mutex_exit(&listener->tcp_eager_lock); 2463 eager->tcp_rq = acceptor->tcp_rq; 2464 eager->tcp_wq = acceptor->tcp_wq; 2465 2466 econnp = eager->tcp_connp; 2467 aconnp = acceptor->tcp_connp; 2468 2469 eager->tcp_rq->q_ptr = econnp; 2470 eager->tcp_wq->q_ptr = econnp; 2471 2472 /* 2473 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2474 * which might be a different squeue from our peer TCP instance. 2475 * For TCP Fusion, the peer expects that whenever tcp_detached is 2476 * clear, our TCP queues point to the acceptor's queues. Thus, use 2477 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2478 * above reach global visibility prior to the clearing of tcp_detached. 2479 */ 2480 membar_producer(); 2481 eager->tcp_detached = B_FALSE; 2482 2483 ASSERT(eager->tcp_ack_tid == 0); 2484 2485 econnp->conn_dev = aconnp->conn_dev; 2486 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2487 ASSERT(econnp->conn_minor_arena != NULL); 2488 if (eager->tcp_cred != NULL) 2489 crfree(eager->tcp_cred); 2490 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2491 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2492 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2493 2494 aconnp->conn_cred = NULL; 2495 2496 econnp->conn_zoneid = aconnp->conn_zoneid; 2497 econnp->conn_allzones = aconnp->conn_allzones; 2498 2499 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2500 aconnp->conn_mac_exempt = B_FALSE; 2501 2502 ASSERT(aconnp->conn_peercred == NULL); 2503 2504 /* Do the IPC initialization */ 2505 CONN_INC_REF(econnp); 2506 2507 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2508 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2509 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2510 2511 /* Done with old IPC. Drop its ref on its connp */ 2512 CONN_DEC_REF(aconnp); 2513 } 2514 2515 2516 /* 2517 * Adapt to the information, such as rtt and rtt_sd, provided from the 2518 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2519 * 2520 * Checks for multicast and broadcast destination address. 2521 * Returns zero on failure; non-zero if ok. 2522 * 2523 * Note that the MSS calculation here is based on the info given in 2524 * the IRE. We do not do any calculation based on TCP options. They 2525 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2526 * knows which options to use. 2527 * 2528 * Note on how TCP gets its parameters for a connection. 2529 * 2530 * When a tcp_t structure is allocated, it gets all the default parameters. 2531 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2532 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2533 * default. 2534 * 2535 * An incoming SYN with a multicast or broadcast destination address, is dropped 2536 * in 1 of 2 places. 2537 * 2538 * 1. If the packet was received over the wire it is dropped in 2539 * ip_rput_process_broadcast() 2540 * 2541 * 2. If the packet was received through internal IP loopback, i.e. the packet 2542 * was generated and received on the same machine, it is dropped in 2543 * ip_wput_local() 2544 * 2545 * An incoming SYN with a multicast or broadcast source address is always 2546 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2547 * reject an attempt to connect to a broadcast or multicast (destination) 2548 * address. 2549 */ 2550 static int 2551 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2552 { 2553 tcp_hsp_t *hsp; 2554 ire_t *ire; 2555 ire_t *sire = NULL; 2556 iulp_t *ire_uinfo = NULL; 2557 uint32_t mss_max; 2558 uint32_t mss; 2559 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2560 conn_t *connp = tcp->tcp_connp; 2561 boolean_t ire_cacheable = B_FALSE; 2562 zoneid_t zoneid = connp->conn_zoneid; 2563 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2564 MATCH_IRE_SECATTR; 2565 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2566 ill_t *ill = NULL; 2567 boolean_t incoming = (ire_mp == NULL); 2568 tcp_stack_t *tcps = tcp->tcp_tcps; 2569 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2570 2571 ASSERT(connp->conn_ire_cache == NULL); 2572 2573 if (tcp->tcp_ipversion == IPV4_VERSION) { 2574 2575 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2576 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2577 return (0); 2578 } 2579 /* 2580 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2581 * for the destination with the nexthop as gateway. 2582 * ire_ctable_lookup() is used because this particular 2583 * ire, if it exists, will be marked private. 2584 * If that is not available, use the interface ire 2585 * for the nexthop. 2586 * 2587 * TSol: tcp_update_label will detect label mismatches based 2588 * only on the destination's label, but that would not 2589 * detect label mismatches based on the security attributes 2590 * of routes or next hop gateway. Hence we need to pass the 2591 * label to ire_ftable_lookup below in order to locate the 2592 * right prefix (and/or) ire cache. Similarly we also need 2593 * pass the label to the ire_cache_lookup below to locate 2594 * the right ire that also matches on the label. 2595 */ 2596 if (tcp->tcp_connp->conn_nexthop_set) { 2597 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2598 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2599 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2600 ipst); 2601 if (ire == NULL) { 2602 ire = ire_ftable_lookup( 2603 tcp->tcp_connp->conn_nexthop_v4, 2604 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2605 tsl, match_flags, ipst); 2606 if (ire == NULL) 2607 return (0); 2608 } else { 2609 ire_uinfo = &ire->ire_uinfo; 2610 } 2611 } else { 2612 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2613 zoneid, tsl, ipst); 2614 if (ire != NULL) { 2615 ire_cacheable = B_TRUE; 2616 ire_uinfo = (ire_mp != NULL) ? 2617 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2618 &ire->ire_uinfo; 2619 2620 } else { 2621 if (ire_mp == NULL) { 2622 ire = ire_ftable_lookup( 2623 tcp->tcp_connp->conn_rem, 2624 0, 0, 0, NULL, &sire, zoneid, 0, 2625 tsl, (MATCH_IRE_RECURSIVE | 2626 MATCH_IRE_DEFAULT), ipst); 2627 if (ire == NULL) 2628 return (0); 2629 ire_uinfo = (sire != NULL) ? 2630 &sire->ire_uinfo : 2631 &ire->ire_uinfo; 2632 } else { 2633 ire = (ire_t *)ire_mp->b_rptr; 2634 ire_uinfo = 2635 &((ire_t *) 2636 ire_mp->b_rptr)->ire_uinfo; 2637 } 2638 } 2639 } 2640 ASSERT(ire != NULL); 2641 2642 if ((ire->ire_src_addr == INADDR_ANY) || 2643 (ire->ire_type & IRE_BROADCAST)) { 2644 /* 2645 * ire->ire_mp is non null when ire_mp passed in is used 2646 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2647 */ 2648 if (ire->ire_mp == NULL) 2649 ire_refrele(ire); 2650 if (sire != NULL) 2651 ire_refrele(sire); 2652 return (0); 2653 } 2654 2655 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2656 ipaddr_t src_addr; 2657 2658 /* 2659 * ip_bind_connected() has stored the correct source 2660 * address in conn_src. 2661 */ 2662 src_addr = tcp->tcp_connp->conn_src; 2663 tcp->tcp_ipha->ipha_src = src_addr; 2664 /* 2665 * Copy of the src addr. in tcp_t is needed 2666 * for the lookup funcs. 2667 */ 2668 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2669 } 2670 /* 2671 * Set the fragment bit so that IP will tell us if the MTU 2672 * should change. IP tells us the latest setting of 2673 * ip_path_mtu_discovery through ire_frag_flag. 2674 */ 2675 if (ipst->ips_ip_path_mtu_discovery) { 2676 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2677 htons(IPH_DF); 2678 } 2679 /* 2680 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2681 * for IP_NEXTHOP. No cache ire has been found for the 2682 * destination and we are working with the nexthop's 2683 * interface ire. Since we need to forward all packets 2684 * to the nexthop first, we "blindly" set tcp_localnet 2685 * to false, eventhough the destination may also be 2686 * onlink. 2687 */ 2688 if (ire_uinfo == NULL) 2689 tcp->tcp_localnet = 0; 2690 else 2691 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2692 } else { 2693 /* 2694 * For incoming connection ire_mp = NULL 2695 * For outgoing connection ire_mp != NULL 2696 * Technically we should check conn_incoming_ill 2697 * when ire_mp is NULL and conn_outgoing_ill when 2698 * ire_mp is non-NULL. But this is performance 2699 * critical path and for IPV*_BOUND_IF, outgoing 2700 * and incoming ill are always set to the same value. 2701 */ 2702 ill_t *dst_ill = NULL; 2703 ipif_t *dst_ipif = NULL; 2704 2705 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2706 2707 if (connp->conn_outgoing_ill != NULL) { 2708 /* Outgoing or incoming path */ 2709 int err; 2710 2711 dst_ill = conn_get_held_ill(connp, 2712 &connp->conn_outgoing_ill, &err); 2713 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2714 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2715 return (0); 2716 } 2717 match_flags |= MATCH_IRE_ILL; 2718 dst_ipif = dst_ill->ill_ipif; 2719 } 2720 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2721 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2722 2723 if (ire != NULL) { 2724 ire_cacheable = B_TRUE; 2725 ire_uinfo = (ire_mp != NULL) ? 2726 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2727 &ire->ire_uinfo; 2728 } else { 2729 if (ire_mp == NULL) { 2730 ire = ire_ftable_lookup_v6( 2731 &tcp->tcp_connp->conn_remv6, 2732 0, 0, 0, dst_ipif, &sire, zoneid, 2733 0, tsl, match_flags, ipst); 2734 if (ire == NULL) { 2735 if (dst_ill != NULL) 2736 ill_refrele(dst_ill); 2737 return (0); 2738 } 2739 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2740 &ire->ire_uinfo; 2741 } else { 2742 ire = (ire_t *)ire_mp->b_rptr; 2743 ire_uinfo = 2744 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2745 } 2746 } 2747 if (dst_ill != NULL) 2748 ill_refrele(dst_ill); 2749 2750 ASSERT(ire != NULL); 2751 ASSERT(ire_uinfo != NULL); 2752 2753 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2754 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2755 /* 2756 * ire->ire_mp is non null when ire_mp passed in is used 2757 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2758 */ 2759 if (ire->ire_mp == NULL) 2760 ire_refrele(ire); 2761 if (sire != NULL) 2762 ire_refrele(sire); 2763 return (0); 2764 } 2765 2766 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2767 in6_addr_t src_addr; 2768 2769 /* 2770 * ip_bind_connected_v6() has stored the correct source 2771 * address per IPv6 addr. selection policy in 2772 * conn_src_v6. 2773 */ 2774 src_addr = tcp->tcp_connp->conn_srcv6; 2775 2776 tcp->tcp_ip6h->ip6_src = src_addr; 2777 /* 2778 * Copy of the src addr. in tcp_t is needed 2779 * for the lookup funcs. 2780 */ 2781 tcp->tcp_ip_src_v6 = src_addr; 2782 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2783 &connp->conn_srcv6)); 2784 } 2785 tcp->tcp_localnet = 2786 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2787 } 2788 2789 /* 2790 * This allows applications to fail quickly when connections are made 2791 * to dead hosts. Hosts can be labeled dead by adding a reject route 2792 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2793 */ 2794 if ((ire->ire_flags & RTF_REJECT) && 2795 (ire->ire_flags & RTF_PRIVATE)) 2796 goto error; 2797 2798 /* 2799 * Make use of the cached rtt and rtt_sd values to calculate the 2800 * initial RTO. Note that they are already initialized in 2801 * tcp_init_values(). 2802 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2803 * IP_NEXTHOP, but instead are using the interface ire for the 2804 * nexthop, then we do not use the ire_uinfo from that ire to 2805 * do any initializations. 2806 */ 2807 if (ire_uinfo != NULL) { 2808 if (ire_uinfo->iulp_rtt != 0) { 2809 clock_t rto; 2810 2811 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2812 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2813 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2814 tcps->tcps_rexmit_interval_extra + 2815 (tcp->tcp_rtt_sa >> 5); 2816 2817 if (rto > tcps->tcps_rexmit_interval_max) { 2818 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2819 } else if (rto < tcps->tcps_rexmit_interval_min) { 2820 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2821 } else { 2822 tcp->tcp_rto = rto; 2823 } 2824 } 2825 if (ire_uinfo->iulp_ssthresh != 0) 2826 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2827 else 2828 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2829 if (ire_uinfo->iulp_spipe > 0) { 2830 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2831 tcps->tcps_max_buf); 2832 if (tcps->tcps_snd_lowat_fraction != 0) 2833 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2834 tcps->tcps_snd_lowat_fraction; 2835 (void) tcp_maxpsz_set(tcp, B_TRUE); 2836 } 2837 /* 2838 * Note that up till now, acceptor always inherits receive 2839 * window from the listener. But if there is a metrics 2840 * associated with a host, we should use that instead of 2841 * inheriting it from listener. Thus we need to pass this 2842 * info back to the caller. 2843 */ 2844 if (ire_uinfo->iulp_rpipe > 0) { 2845 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2846 tcps->tcps_max_buf); 2847 } 2848 2849 if (ire_uinfo->iulp_rtomax > 0) { 2850 tcp->tcp_second_timer_threshold = 2851 ire_uinfo->iulp_rtomax; 2852 } 2853 2854 /* 2855 * Use the metric option settings, iulp_tstamp_ok and 2856 * iulp_wscale_ok, only for active open. What this means 2857 * is that if the other side uses timestamp or window 2858 * scale option, TCP will also use those options. That 2859 * is for passive open. If the application sets a 2860 * large window, window scale is enabled regardless of 2861 * the value in iulp_wscale_ok. This is the behavior 2862 * since 2.6. So we keep it. 2863 * The only case left in passive open processing is the 2864 * check for SACK. 2865 * For ECN, it should probably be like SACK. But the 2866 * current value is binary, so we treat it like the other 2867 * cases. The metric only controls active open.For passive 2868 * open, the ndd param, tcp_ecn_permitted, controls the 2869 * behavior. 2870 */ 2871 if (!tcp_detached) { 2872 /* 2873 * The if check means that the following can only 2874 * be turned on by the metrics only IRE, but not off. 2875 */ 2876 if (ire_uinfo->iulp_tstamp_ok) 2877 tcp->tcp_snd_ts_ok = B_TRUE; 2878 if (ire_uinfo->iulp_wscale_ok) 2879 tcp->tcp_snd_ws_ok = B_TRUE; 2880 if (ire_uinfo->iulp_sack == 2) 2881 tcp->tcp_snd_sack_ok = B_TRUE; 2882 if (ire_uinfo->iulp_ecn_ok) 2883 tcp->tcp_ecn_ok = B_TRUE; 2884 } else { 2885 /* 2886 * Passive open. 2887 * 2888 * As above, the if check means that SACK can only be 2889 * turned on by the metric only IRE. 2890 */ 2891 if (ire_uinfo->iulp_sack > 0) { 2892 tcp->tcp_snd_sack_ok = B_TRUE; 2893 } 2894 } 2895 } 2896 2897 2898 /* 2899 * XXX: Note that currently, ire_max_frag can be as small as 68 2900 * because of PMTUd. So tcp_mss may go to negative if combined 2901 * length of all those options exceeds 28 bytes. But because 2902 * of the tcp_mss_min check below, we may not have a problem if 2903 * tcp_mss_min is of a reasonable value. The default is 1 so 2904 * the negative problem still exists. And the check defeats PMTUd. 2905 * In fact, if PMTUd finds that the MSS should be smaller than 2906 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2907 * value. 2908 * 2909 * We do not deal with that now. All those problems related to 2910 * PMTUd will be fixed later. 2911 */ 2912 ASSERT(ire->ire_max_frag != 0); 2913 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2914 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2915 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2916 mss = MIN(mss, IPV6_MIN_MTU); 2917 } 2918 } 2919 2920 /* Sanity check for MSS value. */ 2921 if (tcp->tcp_ipversion == IPV4_VERSION) 2922 mss_max = tcps->tcps_mss_max_ipv4; 2923 else 2924 mss_max = tcps->tcps_mss_max_ipv6; 2925 2926 if (tcp->tcp_ipversion == IPV6_VERSION && 2927 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2928 /* 2929 * After receiving an ICMPv6 "packet too big" message with a 2930 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2931 * will insert a 8-byte fragment header in every packet; we 2932 * reduce the MSS by that amount here. 2933 */ 2934 mss -= sizeof (ip6_frag_t); 2935 } 2936 2937 if (tcp->tcp_ipsec_overhead == 0) 2938 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2939 2940 mss -= tcp->tcp_ipsec_overhead; 2941 2942 if (mss < tcps->tcps_mss_min) 2943 mss = tcps->tcps_mss_min; 2944 if (mss > mss_max) 2945 mss = mss_max; 2946 2947 /* Note that this is the maximum MSS, excluding all options. */ 2948 tcp->tcp_mss = mss; 2949 2950 /* 2951 * Initialize the ISS here now that we have the full connection ID. 2952 * The RFC 1948 method of initial sequence number generation requires 2953 * knowledge of the full connection ID before setting the ISS. 2954 */ 2955 2956 tcp_iss_init(tcp); 2957 2958 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2959 tcp->tcp_loopback = B_TRUE; 2960 2961 if (tcp->tcp_ipversion == IPV4_VERSION) { 2962 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2963 } else { 2964 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2965 } 2966 2967 if (hsp != NULL) { 2968 /* Only modify if we're going to make them bigger */ 2969 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2970 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2971 if (tcps->tcps_snd_lowat_fraction != 0) 2972 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2973 tcps->tcps_snd_lowat_fraction; 2974 } 2975 2976 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2977 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2978 } 2979 2980 /* Copy timestamp flag only for active open */ 2981 if (!tcp_detached) 2982 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2983 } 2984 2985 if (sire != NULL) 2986 IRE_REFRELE(sire); 2987 2988 /* 2989 * If we got an IRE_CACHE and an ILL, go through their properties; 2990 * otherwise, this is deferred until later when we have an IRE_CACHE. 2991 */ 2992 if (tcp->tcp_loopback || 2993 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2994 /* 2995 * For incoming, see if this tcp may be MDT-capable. For 2996 * outgoing, this process has been taken care of through 2997 * tcp_rput_other. 2998 */ 2999 tcp_ire_ill_check(tcp, ire, ill, incoming); 3000 tcp->tcp_ire_ill_check_done = B_TRUE; 3001 } 3002 3003 mutex_enter(&connp->conn_lock); 3004 /* 3005 * Make sure that conn is not marked incipient 3006 * for incoming connections. A blind 3007 * removal of incipient flag is cheaper than 3008 * check and removal. 3009 */ 3010 connp->conn_state_flags &= ~CONN_INCIPIENT; 3011 3012 /* 3013 * Must not cache forwarding table routes 3014 * or recache an IRE after the conn_t has 3015 * had conn_ire_cache cleared and is flagged 3016 * unusable, (see the CONN_CACHE_IRE() macro). 3017 */ 3018 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 3019 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3020 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3021 connp->conn_ire_cache = ire; 3022 IRE_UNTRACE_REF(ire); 3023 rw_exit(&ire->ire_bucket->irb_lock); 3024 mutex_exit(&connp->conn_lock); 3025 return (1); 3026 } 3027 rw_exit(&ire->ire_bucket->irb_lock); 3028 } 3029 mutex_exit(&connp->conn_lock); 3030 3031 if (ire->ire_mp == NULL) 3032 ire_refrele(ire); 3033 return (1); 3034 3035 error: 3036 if (ire->ire_mp == NULL) 3037 ire_refrele(ire); 3038 if (sire != NULL) 3039 ire_refrele(sire); 3040 return (0); 3041 } 3042 3043 static void 3044 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 3045 { 3046 int error; 3047 conn_t *connp = tcp->tcp_connp; 3048 struct sockaddr *sa; 3049 mblk_t *mp1; 3050 struct T_bind_req *tbr; 3051 int backlog; 3052 socklen_t len; 3053 sin_t *sin; 3054 sin6_t *sin6; 3055 3056 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3057 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3058 if (tcp->tcp_debug) { 3059 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3060 "tcp_tpi_bind: bad req, len %u", 3061 (uint_t)(mp->b_wptr - mp->b_rptr)); 3062 } 3063 tcp_err_ack(tcp, mp, TPROTO, 0); 3064 return; 3065 } 3066 /* Make sure the largest address fits */ 3067 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3068 if (mp1 == NULL) { 3069 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3070 return; 3071 } 3072 mp = mp1; 3073 tbr = (struct T_bind_req *)mp->b_rptr; 3074 3075 backlog = tbr->CONIND_number; 3076 len = tbr->ADDR_length; 3077 3078 switch (len) { 3079 case 0: /* request for a generic port */ 3080 tbr->ADDR_offset = sizeof (struct T_bind_req); 3081 if (tcp->tcp_family == AF_INET) { 3082 tbr->ADDR_length = sizeof (sin_t); 3083 sin = (sin_t *)&tbr[1]; 3084 *sin = sin_null; 3085 sin->sin_family = AF_INET; 3086 sa = (struct sockaddr *)sin; 3087 len = sizeof (sin_t); 3088 mp->b_wptr = (uchar_t *)&sin[1]; 3089 } else { 3090 ASSERT(tcp->tcp_family == AF_INET6); 3091 tbr->ADDR_length = sizeof (sin6_t); 3092 sin6 = (sin6_t *)&tbr[1]; 3093 *sin6 = sin6_null; 3094 sin6->sin6_family = AF_INET6; 3095 sa = (struct sockaddr *)sin6; 3096 len = sizeof (sin6_t); 3097 mp->b_wptr = (uchar_t *)&sin6[1]; 3098 } 3099 break; 3100 3101 case sizeof (sin_t): /* Complete IPv4 address */ 3102 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3103 sizeof (sin_t)); 3104 break; 3105 3106 case sizeof (sin6_t): /* Complete IPv6 address */ 3107 sa = (struct sockaddr *)mi_offset_param(mp, 3108 tbr->ADDR_offset, sizeof (sin6_t)); 3109 break; 3110 3111 default: 3112 if (tcp->tcp_debug) { 3113 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3114 "tcp_tpi_bind: bad address length, %d", 3115 tbr->ADDR_length); 3116 } 3117 tcp_err_ack(tcp, mp, TBADADDR, 0); 3118 return; 3119 } 3120 3121 error = tcp_bind_check(connp, sa, len, DB_CRED(mp), 3122 tbr->PRIM_type != O_T_BIND_REQ); 3123 if (error == 0) { 3124 if (tcp->tcp_family == AF_INET) { 3125 sin = (sin_t *)sa; 3126 sin->sin_port = tcp->tcp_lport; 3127 } else { 3128 sin6 = (sin6_t *)sa; 3129 sin6->sin6_port = tcp->tcp_lport; 3130 } 3131 3132 if (backlog > 0) { 3133 error = tcp_do_listen(connp, backlog, DB_CRED(mp)); 3134 } 3135 } 3136 done: 3137 if (error > 0) { 3138 tcp_err_ack(tcp, mp, TSYSERR, error); 3139 } else if (error < 0) { 3140 tcp_err_ack(tcp, mp, -error, 0); 3141 } else { 3142 mp->b_datap->db_type = M_PCPROTO; 3143 tbr->PRIM_type = T_BIND_ACK; 3144 putnext(tcp->tcp_rq, mp); 3145 } 3146 } 3147 3148 /* 3149 * If the "bind_to_req_port_only" parameter is set, if the requested port 3150 * number is available, return it, If not return 0 3151 * 3152 * If "bind_to_req_port_only" parameter is not set and 3153 * If the requested port number is available, return it. If not, return 3154 * the first anonymous port we happen across. If no anonymous ports are 3155 * available, return 0. addr is the requested local address, if any. 3156 * 3157 * In either case, when succeeding update the tcp_t to record the port number 3158 * and insert it in the bind hash table. 3159 * 3160 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3161 * without setting SO_REUSEADDR. This is needed so that they 3162 * can be viewed as two independent transport protocols. 3163 */ 3164 static in_port_t 3165 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3166 int reuseaddr, boolean_t quick_connect, 3167 boolean_t bind_to_req_port_only, boolean_t user_specified) 3168 { 3169 /* number of times we have run around the loop */ 3170 int count = 0; 3171 /* maximum number of times to run around the loop */ 3172 int loopmax; 3173 conn_t *connp = tcp->tcp_connp; 3174 zoneid_t zoneid = connp->conn_zoneid; 3175 tcp_stack_t *tcps = tcp->tcp_tcps; 3176 3177 /* 3178 * Lookup for free addresses is done in a loop and "loopmax" 3179 * influences how long we spin in the loop 3180 */ 3181 if (bind_to_req_port_only) { 3182 /* 3183 * If the requested port is busy, don't bother to look 3184 * for a new one. Setting loop maximum count to 1 has 3185 * that effect. 3186 */ 3187 loopmax = 1; 3188 } else { 3189 /* 3190 * If the requested port is busy, look for a free one 3191 * in the anonymous port range. 3192 * Set loopmax appropriately so that one does not look 3193 * forever in the case all of the anonymous ports are in use. 3194 */ 3195 if (tcp->tcp_anon_priv_bind) { 3196 /* 3197 * loopmax = 3198 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3199 */ 3200 loopmax = IPPORT_RESERVED - 3201 tcps->tcps_min_anonpriv_port; 3202 } else { 3203 loopmax = (tcps->tcps_largest_anon_port - 3204 tcps->tcps_smallest_anon_port + 1); 3205 } 3206 } 3207 do { 3208 uint16_t lport; 3209 tf_t *tbf; 3210 tcp_t *ltcp; 3211 conn_t *lconnp; 3212 3213 lport = htons(port); 3214 3215 /* 3216 * Ensure that the tcp_t is not currently in the bind hash. 3217 * Hold the lock on the hash bucket to ensure that 3218 * the duplicate check plus the insertion is an atomic 3219 * operation. 3220 * 3221 * This function does an inline lookup on the bind hash list 3222 * Make sure that we access only members of tcp_t 3223 * and that we don't look at tcp_tcp, since we are not 3224 * doing a CONN_INC_REF. 3225 */ 3226 tcp_bind_hash_remove(tcp); 3227 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3228 mutex_enter(&tbf->tf_lock); 3229 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3230 ltcp = ltcp->tcp_bind_hash) { 3231 if (lport == ltcp->tcp_lport) 3232 break; 3233 } 3234 3235 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3236 boolean_t not_socket; 3237 boolean_t exclbind; 3238 3239 lconnp = ltcp->tcp_connp; 3240 3241 /* 3242 * On a labeled system, we must treat bindings to ports 3243 * on shared IP addresses by sockets with MAC exemption 3244 * privilege as being in all zones, as there's 3245 * otherwise no way to identify the right receiver. 3246 */ 3247 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3248 IPCL_ZONE_MATCH(connp, 3249 ltcp->tcp_connp->conn_zoneid)) && 3250 !lconnp->conn_mac_exempt && 3251 !connp->conn_mac_exempt) 3252 continue; 3253 3254 /* 3255 * If TCP_EXCLBIND is set for either the bound or 3256 * binding endpoint, the semantics of bind 3257 * is changed according to the following. 3258 * 3259 * spec = specified address (v4 or v6) 3260 * unspec = unspecified address (v4 or v6) 3261 * A = specified addresses are different for endpoints 3262 * 3263 * bound bind to allowed 3264 * ------------------------------------- 3265 * unspec unspec no 3266 * unspec spec no 3267 * spec unspec no 3268 * spec spec yes if A 3269 * 3270 * For labeled systems, SO_MAC_EXEMPT behaves the same 3271 * as TCP_EXCLBIND, except that zoneid is ignored. 3272 * 3273 * Note: 3274 * 3275 * 1. Because of TLI semantics, an endpoint can go 3276 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3277 * TCPS_BOUND, depending on whether it is originally 3278 * a listener or not. That is why we need to check 3279 * for states greater than or equal to TCPS_BOUND 3280 * here. 3281 * 3282 * 2. Ideally, we should only check for state equals 3283 * to TCPS_LISTEN. And the following check should be 3284 * added. 3285 * 3286 * if (ltcp->tcp_state == TCPS_LISTEN || 3287 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3288 * ... 3289 * } 3290 * 3291 * The semantics will be changed to this. If the 3292 * endpoint on the list is in state not equal to 3293 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3294 * set, let the bind succeed. 3295 * 3296 * Because of (1), we cannot do that for TLI 3297 * endpoints. But we can do that for socket endpoints. 3298 * If in future, we can change this going back 3299 * semantics, we can use the above check for TLI also. 3300 */ 3301 not_socket = !(TCP_IS_SOCKET(ltcp) && 3302 TCP_IS_SOCKET(tcp)); 3303 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3304 3305 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3306 (exclbind && (not_socket || 3307 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3308 if (V6_OR_V4_INADDR_ANY( 3309 ltcp->tcp_bound_source_v6) || 3310 V6_OR_V4_INADDR_ANY(*laddr) || 3311 IN6_ARE_ADDR_EQUAL(laddr, 3312 <cp->tcp_bound_source_v6)) { 3313 break; 3314 } 3315 continue; 3316 } 3317 3318 /* 3319 * Check ipversion to allow IPv4 and IPv6 sockets to 3320 * have disjoint port number spaces, if *_EXCLBIND 3321 * is not set and only if the application binds to a 3322 * specific port. We use the same autoassigned port 3323 * number space for IPv4 and IPv6 sockets. 3324 */ 3325 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3326 bind_to_req_port_only) 3327 continue; 3328 3329 /* 3330 * Ideally, we should make sure that the source 3331 * address, remote address, and remote port in the 3332 * four tuple for this tcp-connection is unique. 3333 * However, trying to find out the local source 3334 * address would require too much code duplication 3335 * with IP, since IP needs needs to have that code 3336 * to support userland TCP implementations. 3337 */ 3338 if (quick_connect && 3339 (ltcp->tcp_state > TCPS_LISTEN) && 3340 ((tcp->tcp_fport != ltcp->tcp_fport) || 3341 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3342 <cp->tcp_remote_v6))) 3343 continue; 3344 3345 if (!reuseaddr) { 3346 /* 3347 * No socket option SO_REUSEADDR. 3348 * If existing port is bound to 3349 * a non-wildcard IP address 3350 * and the requesting stream is 3351 * bound to a distinct 3352 * different IP addresses 3353 * (non-wildcard, also), keep 3354 * going. 3355 */ 3356 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3357 !V6_OR_V4_INADDR_ANY( 3358 ltcp->tcp_bound_source_v6) && 3359 !IN6_ARE_ADDR_EQUAL(laddr, 3360 <cp->tcp_bound_source_v6)) 3361 continue; 3362 if (ltcp->tcp_state >= TCPS_BOUND) { 3363 /* 3364 * This port is being used and 3365 * its state is >= TCPS_BOUND, 3366 * so we can't bind to it. 3367 */ 3368 break; 3369 } 3370 } else { 3371 /* 3372 * socket option SO_REUSEADDR is set on the 3373 * binding tcp_t. 3374 * 3375 * If two streams are bound to 3376 * same IP address or both addr 3377 * and bound source are wildcards 3378 * (INADDR_ANY), we want to stop 3379 * searching. 3380 * We have found a match of IP source 3381 * address and source port, which is 3382 * refused regardless of the 3383 * SO_REUSEADDR setting, so we break. 3384 */ 3385 if (IN6_ARE_ADDR_EQUAL(laddr, 3386 <cp->tcp_bound_source_v6) && 3387 (ltcp->tcp_state == TCPS_LISTEN || 3388 ltcp->tcp_state == TCPS_BOUND)) 3389 break; 3390 } 3391 } 3392 if (ltcp != NULL) { 3393 /* The port number is busy */ 3394 mutex_exit(&tbf->tf_lock); 3395 } else { 3396 /* 3397 * This port is ours. Insert in fanout and mark as 3398 * bound to prevent others from getting the port 3399 * number. 3400 */ 3401 tcp->tcp_state = TCPS_BOUND; 3402 tcp->tcp_lport = htons(port); 3403 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3404 3405 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3406 tcp->tcp_lport)] == tbf); 3407 tcp_bind_hash_insert(tbf, tcp, 1); 3408 3409 mutex_exit(&tbf->tf_lock); 3410 3411 /* 3412 * We don't want tcp_next_port_to_try to "inherit" 3413 * a port number supplied by the user in a bind. 3414 */ 3415 if (user_specified) 3416 return (port); 3417 3418 /* 3419 * This is the only place where tcp_next_port_to_try 3420 * is updated. After the update, it may or may not 3421 * be in the valid range. 3422 */ 3423 if (!tcp->tcp_anon_priv_bind) 3424 tcps->tcps_next_port_to_try = port + 1; 3425 return (port); 3426 } 3427 3428 if (tcp->tcp_anon_priv_bind) { 3429 port = tcp_get_next_priv_port(tcp); 3430 } else { 3431 if (count == 0 && user_specified) { 3432 /* 3433 * We may have to return an anonymous port. So 3434 * get one to start with. 3435 */ 3436 port = 3437 tcp_update_next_port( 3438 tcps->tcps_next_port_to_try, 3439 tcp, B_TRUE); 3440 user_specified = B_FALSE; 3441 } else { 3442 port = tcp_update_next_port(port + 1, tcp, 3443 B_FALSE); 3444 } 3445 } 3446 if (port == 0) 3447 break; 3448 3449 /* 3450 * Don't let this loop run forever in the case where 3451 * all of the anonymous ports are in use. 3452 */ 3453 } while (++count < loopmax); 3454 return (0); 3455 } 3456 3457 /* 3458 * tcp_clean_death / tcp_close_detached must not be called more than once 3459 * on a tcp. Thus every function that potentially calls tcp_clean_death 3460 * must check for the tcp state before calling tcp_clean_death. 3461 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3462 * tcp_timer_handler, all check for the tcp state. 3463 */ 3464 /* ARGSUSED */ 3465 void 3466 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3467 { 3468 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3469 3470 freemsg(mp); 3471 if (tcp->tcp_state > TCPS_BOUND) 3472 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3473 ETIMEDOUT, 5); 3474 } 3475 3476 /* 3477 * We are dying for some reason. Try to do it gracefully. (May be called 3478 * as writer.) 3479 * 3480 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3481 * done by a service procedure). 3482 * TBD - Should the return value distinguish between the tcp_t being 3483 * freed and it being reinitialized? 3484 */ 3485 static int 3486 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3487 { 3488 mblk_t *mp; 3489 queue_t *q; 3490 conn_t *connp = tcp->tcp_connp; 3491 tcp_stack_t *tcps = tcp->tcp_tcps; 3492 sodirect_t *sodp; 3493 3494 TCP_CLD_STAT(tag); 3495 3496 #if TCP_TAG_CLEAN_DEATH 3497 tcp->tcp_cleandeathtag = tag; 3498 #endif 3499 3500 if (tcp->tcp_fused) 3501 tcp_unfuse(tcp); 3502 3503 if (tcp->tcp_linger_tid != 0 && 3504 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3505 tcp_stop_lingering(tcp); 3506 } 3507 3508 ASSERT(tcp != NULL); 3509 ASSERT((tcp->tcp_family == AF_INET && 3510 tcp->tcp_ipversion == IPV4_VERSION) || 3511 (tcp->tcp_family == AF_INET6 && 3512 (tcp->tcp_ipversion == IPV4_VERSION || 3513 tcp->tcp_ipversion == IPV6_VERSION))); 3514 3515 if (TCP_IS_DETACHED(tcp)) { 3516 if (tcp->tcp_hard_binding) { 3517 /* 3518 * Its an eager that we are dealing with. We close the 3519 * eager but in case a conn_ind has already gone to the 3520 * listener, let tcp_accept_finish() send a discon_ind 3521 * to the listener and drop the last reference. If the 3522 * listener doesn't even know about the eager i.e. the 3523 * conn_ind hasn't gone up, blow away the eager and drop 3524 * the last reference as well. If the conn_ind has gone 3525 * up, state should be BOUND. tcp_accept_finish 3526 * will figure out that the connection has received a 3527 * RST and will send a DISCON_IND to the application. 3528 */ 3529 tcp_closei_local(tcp); 3530 if (!tcp->tcp_tconnind_started) { 3531 CONN_DEC_REF(connp); 3532 } else { 3533 tcp->tcp_state = TCPS_BOUND; 3534 } 3535 } else { 3536 tcp_close_detached(tcp); 3537 } 3538 return (0); 3539 } 3540 3541 TCP_STAT(tcps, tcp_clean_death_nondetached); 3542 3543 /* If sodirect, not anymore */ 3544 SOD_PTR_ENTER(tcp, sodp); 3545 if (sodp != NULL) { 3546 tcp->tcp_sodirect = NULL; 3547 mutex_exit(sodp->sod_lockp); 3548 } 3549 3550 q = tcp->tcp_rq; 3551 3552 /* Trash all inbound data */ 3553 if (!IPCL_IS_NONSTR(connp)) { 3554 ASSERT(q != NULL); 3555 flushq(q, FLUSHALL); 3556 } 3557 3558 /* 3559 * If we are at least part way open and there is error 3560 * (err==0 implies no error) 3561 * notify our client by a T_DISCON_IND. 3562 */ 3563 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3564 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3565 !TCP_IS_SOCKET(tcp)) { 3566 /* 3567 * Send M_FLUSH according to TPI. Because sockets will 3568 * (and must) ignore FLUSHR we do that only for TPI 3569 * endpoints and sockets in STREAMS mode. 3570 */ 3571 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3572 } 3573 if (tcp->tcp_debug) { 3574 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3575 "tcp_clean_death: discon err %d", err); 3576 } 3577 if (IPCL_IS_NONSTR(connp)) { 3578 /* Direct socket, use upcall */ 3579 (*connp->conn_upcalls->su_disconnected)( 3580 connp->conn_upper_handle, tcp->tcp_connid, err); 3581 } else { 3582 mp = mi_tpi_discon_ind(NULL, err, 0); 3583 if (mp != NULL) { 3584 putnext(q, mp); 3585 } else { 3586 if (tcp->tcp_debug) { 3587 (void) strlog(TCP_MOD_ID, 0, 1, 3588 SL_ERROR|SL_TRACE, 3589 "tcp_clean_death, sending M_ERROR"); 3590 } 3591 (void) putnextctl1(q, M_ERROR, EPROTO); 3592 } 3593 } 3594 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3595 /* SYN_SENT or SYN_RCVD */ 3596 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3597 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3598 /* ESTABLISHED or CLOSE_WAIT */ 3599 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3600 } 3601 } 3602 3603 tcp_reinit(tcp); 3604 if (IPCL_IS_NONSTR(connp)) 3605 (void) tcp_do_unbind(connp); 3606 3607 return (-1); 3608 } 3609 3610 /* 3611 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3612 * to expire, stop the wait and finish the close. 3613 */ 3614 static void 3615 tcp_stop_lingering(tcp_t *tcp) 3616 { 3617 clock_t delta = 0; 3618 tcp_stack_t *tcps = tcp->tcp_tcps; 3619 3620 tcp->tcp_linger_tid = 0; 3621 if (tcp->tcp_state > TCPS_LISTEN) { 3622 tcp_acceptor_hash_remove(tcp); 3623 mutex_enter(&tcp->tcp_non_sq_lock); 3624 if (tcp->tcp_flow_stopped) { 3625 tcp_clrqfull(tcp); 3626 } 3627 mutex_exit(&tcp->tcp_non_sq_lock); 3628 3629 if (tcp->tcp_timer_tid != 0) { 3630 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3631 tcp->tcp_timer_tid = 0; 3632 } 3633 /* 3634 * Need to cancel those timers which will not be used when 3635 * TCP is detached. This has to be done before the tcp_wq 3636 * is set to the global queue. 3637 */ 3638 tcp_timers_stop(tcp); 3639 3640 tcp->tcp_detached = B_TRUE; 3641 ASSERT(tcps->tcps_g_q != NULL); 3642 tcp->tcp_rq = tcps->tcps_g_q; 3643 tcp->tcp_wq = WR(tcps->tcps_g_q); 3644 3645 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3646 tcp_time_wait_append(tcp); 3647 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3648 goto finish; 3649 } 3650 3651 /* 3652 * If delta is zero the timer event wasn't executed and was 3653 * successfully canceled. In this case we need to restart it 3654 * with the minimal delta possible. 3655 */ 3656 if (delta >= 0) { 3657 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3658 delta ? delta : 1); 3659 } 3660 } else { 3661 tcp_closei_local(tcp); 3662 CONN_DEC_REF(tcp->tcp_connp); 3663 } 3664 finish: 3665 /* Signal closing thread that it can complete close */ 3666 mutex_enter(&tcp->tcp_closelock); 3667 tcp->tcp_detached = B_TRUE; 3668 ASSERT(tcps->tcps_g_q != NULL); 3669 3670 tcp->tcp_rq = tcps->tcps_g_q; 3671 tcp->tcp_wq = WR(tcps->tcps_g_q); 3672 3673 tcp->tcp_closed = 1; 3674 cv_signal(&tcp->tcp_closecv); 3675 mutex_exit(&tcp->tcp_closelock); 3676 } 3677 3678 /* 3679 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3680 * expires. 3681 */ 3682 static void 3683 tcp_close_linger_timeout(void *arg) 3684 { 3685 conn_t *connp = (conn_t *)arg; 3686 tcp_t *tcp = connp->conn_tcp; 3687 3688 tcp->tcp_client_errno = ETIMEDOUT; 3689 tcp_stop_lingering(tcp); 3690 } 3691 3692 static void 3693 tcp_close_common(conn_t *connp, int flags) 3694 { 3695 tcp_t *tcp = connp->conn_tcp; 3696 mblk_t *mp = &tcp->tcp_closemp; 3697 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3698 mblk_t *bp; 3699 3700 ASSERT(connp->conn_ref >= 2); 3701 3702 /* 3703 * Mark the conn as closing. ill_pending_mp_add will not 3704 * add any mp to the pending mp list, after this conn has 3705 * started closing. Same for sq_pending_mp_add 3706 */ 3707 mutex_enter(&connp->conn_lock); 3708 connp->conn_state_flags |= CONN_CLOSING; 3709 if (connp->conn_oper_pending_ill != NULL) 3710 conn_ioctl_cleanup_reqd = B_TRUE; 3711 CONN_INC_REF_LOCKED(connp); 3712 mutex_exit(&connp->conn_lock); 3713 tcp->tcp_closeflags = (uint8_t)flags; 3714 ASSERT(connp->conn_ref >= 3); 3715 3716 /* 3717 * tcp_closemp_used is used below without any protection of a lock 3718 * as we don't expect any one else to use it concurrently at this 3719 * point otherwise it would be a major defect. 3720 */ 3721 3722 if (mp->b_prev == NULL) 3723 tcp->tcp_closemp_used = B_TRUE; 3724 else 3725 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3726 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3727 3728 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3729 3730 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3731 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3732 3733 mutex_enter(&tcp->tcp_closelock); 3734 while (!tcp->tcp_closed) { 3735 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3736 /* 3737 * The cv_wait_sig() was interrupted. We now do the 3738 * following: 3739 * 3740 * 1) If the endpoint was lingering, we allow this 3741 * to be interrupted by cancelling the linger timeout 3742 * and closing normally. 3743 * 3744 * 2) Revert to calling cv_wait() 3745 * 3746 * We revert to using cv_wait() to avoid an 3747 * infinite loop which can occur if the calling 3748 * thread is higher priority than the squeue worker 3749 * thread and is bound to the same cpu. 3750 */ 3751 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3752 mutex_exit(&tcp->tcp_closelock); 3753 /* Entering squeue, bump ref count. */ 3754 CONN_INC_REF(connp); 3755 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3756 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3757 tcp_linger_interrupted, connp, 3758 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3759 mutex_enter(&tcp->tcp_closelock); 3760 } 3761 break; 3762 } 3763 } 3764 while (!tcp->tcp_closed) 3765 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3766 mutex_exit(&tcp->tcp_closelock); 3767 3768 /* 3769 * In the case of listener streams that have eagers in the q or q0 3770 * we wait for the eagers to drop their reference to us. tcp_rq and 3771 * tcp_wq of the eagers point to our queues. By waiting for the 3772 * refcnt to drop to 1, we are sure that the eagers have cleaned 3773 * up their queue pointers and also dropped their references to us. 3774 */ 3775 if (tcp->tcp_wait_for_eagers) { 3776 mutex_enter(&connp->conn_lock); 3777 while (connp->conn_ref != 1) { 3778 cv_wait(&connp->conn_cv, &connp->conn_lock); 3779 } 3780 mutex_exit(&connp->conn_lock); 3781 } 3782 /* 3783 * ioctl cleanup. The mp is queued in the 3784 * ill_pending_mp or in the sq_pending_mp. 3785 */ 3786 if (conn_ioctl_cleanup_reqd) 3787 conn_ioctl_cleanup(connp); 3788 3789 tcp->tcp_cpid = -1; 3790 } 3791 3792 static int 3793 tcp_tpi_close(queue_t *q, int flags) 3794 { 3795 conn_t *connp; 3796 3797 ASSERT(WR(q)->q_next == NULL); 3798 3799 if (flags & SO_FALLBACK) { 3800 /* 3801 * stream is being closed while in fallback 3802 * simply free the resources that were allocated 3803 */ 3804 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3805 qprocsoff(q); 3806 goto done; 3807 } 3808 3809 connp = Q_TO_CONN(q); 3810 /* 3811 * We are being closed as /dev/tcp or /dev/tcp6. 3812 */ 3813 tcp_close_common(connp, flags); 3814 3815 qprocsoff(q); 3816 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3817 3818 /* 3819 * Drop IP's reference on the conn. This is the last reference 3820 * on the connp if the state was less than established. If the 3821 * connection has gone into timewait state, then we will have 3822 * one ref for the TCP and one more ref (total of two) for the 3823 * classifier connected hash list (a timewait connections stays 3824 * in connected hash till closed). 3825 * 3826 * We can't assert the references because there might be other 3827 * transient reference places because of some walkers or queued 3828 * packets in squeue for the timewait state. 3829 */ 3830 CONN_DEC_REF(connp); 3831 done: 3832 q->q_ptr = WR(q)->q_ptr = NULL; 3833 return (0); 3834 } 3835 3836 static int 3837 tcpclose_accept(queue_t *q) 3838 { 3839 vmem_t *minor_arena; 3840 dev_t conn_dev; 3841 3842 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3843 3844 /* 3845 * We had opened an acceptor STREAM for sockfs which is 3846 * now being closed due to some error. 3847 */ 3848 qprocsoff(q); 3849 3850 minor_arena = (vmem_t *)WR(q)->q_ptr; 3851 conn_dev = (dev_t)RD(q)->q_ptr; 3852 ASSERT(minor_arena != NULL); 3853 ASSERT(conn_dev != 0); 3854 inet_minor_free(minor_arena, conn_dev); 3855 q->q_ptr = WR(q)->q_ptr = NULL; 3856 return (0); 3857 } 3858 3859 /* 3860 * Called by tcp_close() routine via squeue when lingering is 3861 * interrupted by a signal. 3862 */ 3863 3864 /* ARGSUSED */ 3865 static void 3866 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3867 { 3868 conn_t *connp = (conn_t *)arg; 3869 tcp_t *tcp = connp->conn_tcp; 3870 3871 freeb(mp); 3872 if (tcp->tcp_linger_tid != 0 && 3873 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3874 tcp_stop_lingering(tcp); 3875 tcp->tcp_client_errno = EINTR; 3876 } 3877 } 3878 3879 /* 3880 * Called by streams close routine via squeues when our client blows off her 3881 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3882 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3883 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3884 * acked. 3885 * 3886 * NOTE: tcp_close potentially returns error when lingering. 3887 * However, the stream head currently does not pass these errors 3888 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3889 * errors to the application (from tsleep()) and not errors 3890 * like ECONNRESET caused by receiving a reset packet. 3891 */ 3892 3893 /* ARGSUSED */ 3894 static void 3895 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3896 { 3897 char *msg; 3898 conn_t *connp = (conn_t *)arg; 3899 tcp_t *tcp = connp->conn_tcp; 3900 clock_t delta = 0; 3901 tcp_stack_t *tcps = tcp->tcp_tcps; 3902 3903 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3904 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3905 3906 mutex_enter(&tcp->tcp_eager_lock); 3907 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3908 /* Cleanup for listener */ 3909 tcp_eager_cleanup(tcp, 0); 3910 tcp->tcp_wait_for_eagers = 1; 3911 } 3912 mutex_exit(&tcp->tcp_eager_lock); 3913 3914 connp->conn_mdt_ok = B_FALSE; 3915 tcp->tcp_mdt = B_FALSE; 3916 3917 connp->conn_lso_ok = B_FALSE; 3918 tcp->tcp_lso = B_FALSE; 3919 3920 msg = NULL; 3921 switch (tcp->tcp_state) { 3922 case TCPS_CLOSED: 3923 case TCPS_IDLE: 3924 case TCPS_BOUND: 3925 case TCPS_LISTEN: 3926 break; 3927 case TCPS_SYN_SENT: 3928 msg = "tcp_close, during connect"; 3929 break; 3930 case TCPS_SYN_RCVD: 3931 /* 3932 * Close during the connect 3-way handshake 3933 * but here there may or may not be pending data 3934 * already on queue. Process almost same as in 3935 * the ESTABLISHED state. 3936 */ 3937 /* FALLTHRU */ 3938 default: 3939 if (tcp->tcp_sodirect != NULL) { 3940 /* Ok, no more sodirect */ 3941 tcp->tcp_sodirect = NULL; 3942 } 3943 3944 if (tcp->tcp_fused) 3945 tcp_unfuse(tcp); 3946 3947 /* 3948 * If SO_LINGER has set a zero linger time, abort the 3949 * connection with a reset. 3950 */ 3951 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3952 msg = "tcp_close, zero lingertime"; 3953 break; 3954 } 3955 3956 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3957 /* 3958 * Abort connection if there is unread data queued. 3959 */ 3960 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3961 msg = "tcp_close, unread data"; 3962 break; 3963 } 3964 /* 3965 * tcp_hard_bound is now cleared thus all packets go through 3966 * tcp_lookup. This fact is used by tcp_detach below. 3967 * 3968 * We have done a qwait() above which could have possibly 3969 * drained more messages in turn causing transition to a 3970 * different state. Check whether we have to do the rest 3971 * of the processing or not. 3972 */ 3973 if (tcp->tcp_state <= TCPS_LISTEN) 3974 break; 3975 3976 /* 3977 * Transmit the FIN before detaching the tcp_t. 3978 * After tcp_detach returns this queue/perimeter 3979 * no longer owns the tcp_t thus others can modify it. 3980 */ 3981 (void) tcp_xmit_end(tcp); 3982 3983 /* 3984 * If lingering on close then wait until the fin is acked, 3985 * the SO_LINGER time passes, or a reset is sent/received. 3986 */ 3987 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3988 !(tcp->tcp_fin_acked) && 3989 tcp->tcp_state >= TCPS_ESTABLISHED) { 3990 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3991 tcp->tcp_client_errno = EWOULDBLOCK; 3992 } else if (tcp->tcp_client_errno == 0) { 3993 3994 ASSERT(tcp->tcp_linger_tid == 0); 3995 3996 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3997 tcp_close_linger_timeout, 3998 tcp->tcp_lingertime * hz); 3999 4000 /* tcp_close_linger_timeout will finish close */ 4001 if (tcp->tcp_linger_tid == 0) 4002 tcp->tcp_client_errno = ENOSR; 4003 else 4004 return; 4005 } 4006 4007 /* 4008 * Check if we need to detach or just close 4009 * the instance. 4010 */ 4011 if (tcp->tcp_state <= TCPS_LISTEN) 4012 break; 4013 } 4014 4015 /* 4016 * Make sure that no other thread will access the tcp_rq of 4017 * this instance (through lookups etc.) as tcp_rq will go 4018 * away shortly. 4019 */ 4020 tcp_acceptor_hash_remove(tcp); 4021 4022 mutex_enter(&tcp->tcp_non_sq_lock); 4023 if (tcp->tcp_flow_stopped) { 4024 tcp_clrqfull(tcp); 4025 } 4026 mutex_exit(&tcp->tcp_non_sq_lock); 4027 4028 if (tcp->tcp_timer_tid != 0) { 4029 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4030 tcp->tcp_timer_tid = 0; 4031 } 4032 /* 4033 * Need to cancel those timers which will not be used when 4034 * TCP is detached. This has to be done before the tcp_wq 4035 * is set to the global queue. 4036 */ 4037 tcp_timers_stop(tcp); 4038 4039 tcp->tcp_detached = B_TRUE; 4040 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4041 tcp_time_wait_append(tcp); 4042 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4043 ASSERT(connp->conn_ref >= 3); 4044 goto finish; 4045 } 4046 4047 /* 4048 * If delta is zero the timer event wasn't executed and was 4049 * successfully canceled. In this case we need to restart it 4050 * with the minimal delta possible. 4051 */ 4052 if (delta >= 0) 4053 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4054 delta ? delta : 1); 4055 4056 ASSERT(connp->conn_ref >= 3); 4057 goto finish; 4058 } 4059 4060 /* Detach did not complete. Still need to remove q from stream. */ 4061 if (msg) { 4062 if (tcp->tcp_state == TCPS_ESTABLISHED || 4063 tcp->tcp_state == TCPS_CLOSE_WAIT) 4064 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4065 if (tcp->tcp_state == TCPS_SYN_SENT || 4066 tcp->tcp_state == TCPS_SYN_RCVD) 4067 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4068 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4069 } 4070 4071 tcp_closei_local(tcp); 4072 CONN_DEC_REF(connp); 4073 ASSERT(connp->conn_ref >= 2); 4074 4075 finish: 4076 /* 4077 * Although packets are always processed on the correct 4078 * tcp's perimeter and access is serialized via squeue's, 4079 * IP still needs a queue when sending packets in time_wait 4080 * state so use WR(tcps_g_q) till ip_output() can be 4081 * changed to deal with just connp. For read side, we 4082 * could have set tcp_rq to NULL but there are some cases 4083 * in tcp_rput_data() from early days of this code which 4084 * do a putnext without checking if tcp is closed. Those 4085 * need to be identified before both tcp_rq and tcp_wq 4086 * can be set to NULL and tcps_g_q can disappear forever. 4087 */ 4088 mutex_enter(&tcp->tcp_closelock); 4089 /* 4090 * Don't change the queues in the case of a listener that has 4091 * eagers in its q or q0. It could surprise the eagers. 4092 * Instead wait for the eagers outside the squeue. 4093 */ 4094 if (!tcp->tcp_wait_for_eagers) { 4095 tcp->tcp_detached = B_TRUE; 4096 /* 4097 * When default queue is closing we set tcps_g_q to NULL 4098 * after the close is done. 4099 */ 4100 ASSERT(tcps->tcps_g_q != NULL); 4101 tcp->tcp_rq = tcps->tcps_g_q; 4102 tcp->tcp_wq = WR(tcps->tcps_g_q); 4103 } 4104 4105 /* Signal tcp_close() to finish closing. */ 4106 tcp->tcp_closed = 1; 4107 cv_signal(&tcp->tcp_closecv); 4108 mutex_exit(&tcp->tcp_closelock); 4109 } 4110 4111 4112 /* 4113 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4114 * Some stream heads get upset if they see these later on as anything but NULL. 4115 */ 4116 static void 4117 tcp_close_mpp(mblk_t **mpp) 4118 { 4119 mblk_t *mp; 4120 4121 if ((mp = *mpp) != NULL) { 4122 do { 4123 mp->b_next = NULL; 4124 mp->b_prev = NULL; 4125 } while ((mp = mp->b_cont) != NULL); 4126 4127 mp = *mpp; 4128 *mpp = NULL; 4129 freemsg(mp); 4130 } 4131 } 4132 4133 /* Do detached close. */ 4134 static void 4135 tcp_close_detached(tcp_t *tcp) 4136 { 4137 if (tcp->tcp_fused) 4138 tcp_unfuse(tcp); 4139 4140 /* 4141 * Clustering code serializes TCP disconnect callbacks and 4142 * cluster tcp list walks by blocking a TCP disconnect callback 4143 * if a cluster tcp list walk is in progress. This ensures 4144 * accurate accounting of TCPs in the cluster code even though 4145 * the TCP list walk itself is not atomic. 4146 */ 4147 tcp_closei_local(tcp); 4148 CONN_DEC_REF(tcp->tcp_connp); 4149 } 4150 4151 /* 4152 * Stop all TCP timers, and free the timer mblks if requested. 4153 */ 4154 void 4155 tcp_timers_stop(tcp_t *tcp) 4156 { 4157 if (tcp->tcp_timer_tid != 0) { 4158 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4159 tcp->tcp_timer_tid = 0; 4160 } 4161 if (tcp->tcp_ka_tid != 0) { 4162 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4163 tcp->tcp_ka_tid = 0; 4164 } 4165 if (tcp->tcp_ack_tid != 0) { 4166 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4167 tcp->tcp_ack_tid = 0; 4168 } 4169 if (tcp->tcp_push_tid != 0) { 4170 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4171 tcp->tcp_push_tid = 0; 4172 } 4173 } 4174 4175 /* 4176 * The tcp_t is going away. Remove it from all lists and set it 4177 * to TCPS_CLOSED. The freeing up of memory is deferred until 4178 * tcp_inactive. This is needed since a thread in tcp_rput might have 4179 * done a CONN_INC_REF on this structure before it was removed from the 4180 * hashes. 4181 */ 4182 static void 4183 tcp_closei_local(tcp_t *tcp) 4184 { 4185 ire_t *ire; 4186 conn_t *connp = tcp->tcp_connp; 4187 tcp_stack_t *tcps = tcp->tcp_tcps; 4188 4189 if (!TCP_IS_SOCKET(tcp)) 4190 tcp_acceptor_hash_remove(tcp); 4191 4192 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4193 tcp->tcp_ibsegs = 0; 4194 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4195 tcp->tcp_obsegs = 0; 4196 4197 /* 4198 * If we are an eager connection hanging off a listener that 4199 * hasn't formally accepted the connection yet, get off his 4200 * list and blow off any data that we have accumulated. 4201 */ 4202 if (tcp->tcp_listener != NULL) { 4203 tcp_t *listener = tcp->tcp_listener; 4204 mutex_enter(&listener->tcp_eager_lock); 4205 /* 4206 * tcp_tconnind_started == B_TRUE means that the 4207 * conn_ind has already gone to listener. At 4208 * this point, eager will be closed but we 4209 * leave it in listeners eager list so that 4210 * if listener decides to close without doing 4211 * accept, we can clean this up. In tcp_wput_accept 4212 * we take care of the case of accept on closed 4213 * eager. 4214 */ 4215 if (!tcp->tcp_tconnind_started) { 4216 tcp_eager_unlink(tcp); 4217 mutex_exit(&listener->tcp_eager_lock); 4218 /* 4219 * We don't want to have any pointers to the 4220 * listener queue, after we have released our 4221 * reference on the listener 4222 */ 4223 ASSERT(tcps->tcps_g_q != NULL); 4224 tcp->tcp_rq = tcps->tcps_g_q; 4225 tcp->tcp_wq = WR(tcps->tcps_g_q); 4226 CONN_DEC_REF(listener->tcp_connp); 4227 } else { 4228 mutex_exit(&listener->tcp_eager_lock); 4229 } 4230 } 4231 4232 /* Stop all the timers */ 4233 tcp_timers_stop(tcp); 4234 4235 if (tcp->tcp_state == TCPS_LISTEN) { 4236 if (tcp->tcp_ip_addr_cache) { 4237 kmem_free((void *)tcp->tcp_ip_addr_cache, 4238 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4239 tcp->tcp_ip_addr_cache = NULL; 4240 } 4241 } 4242 mutex_enter(&tcp->tcp_non_sq_lock); 4243 if (tcp->tcp_flow_stopped) 4244 tcp_clrqfull(tcp); 4245 mutex_exit(&tcp->tcp_non_sq_lock); 4246 4247 tcp_bind_hash_remove(tcp); 4248 /* 4249 * If the tcp_time_wait_collector (which runs outside the squeue) 4250 * is trying to remove this tcp from the time wait list, we will 4251 * block in tcp_time_wait_remove while trying to acquire the 4252 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4253 * requires the ipcl_hash_remove to be ordered after the 4254 * tcp_time_wait_remove for the refcnt checks to work correctly. 4255 */ 4256 if (tcp->tcp_state == TCPS_TIME_WAIT) 4257 (void) tcp_time_wait_remove(tcp, NULL); 4258 CL_INET_DISCONNECT(connp, tcp); 4259 ipcl_hash_remove(connp); 4260 4261 /* 4262 * Delete the cached ire in conn_ire_cache and also mark 4263 * the conn as CONDEMNED 4264 */ 4265 mutex_enter(&connp->conn_lock); 4266 connp->conn_state_flags |= CONN_CONDEMNED; 4267 ire = connp->conn_ire_cache; 4268 connp->conn_ire_cache = NULL; 4269 mutex_exit(&connp->conn_lock); 4270 if (ire != NULL) 4271 IRE_REFRELE_NOTR(ire); 4272 4273 /* Need to cleanup any pending ioctls */ 4274 ASSERT(tcp->tcp_time_wait_next == NULL); 4275 ASSERT(tcp->tcp_time_wait_prev == NULL); 4276 ASSERT(tcp->tcp_time_wait_expire == 0); 4277 tcp->tcp_state = TCPS_CLOSED; 4278 4279 /* Release any SSL context */ 4280 if (tcp->tcp_kssl_ent != NULL) { 4281 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4282 tcp->tcp_kssl_ent = NULL; 4283 } 4284 if (tcp->tcp_kssl_ctx != NULL) { 4285 kssl_release_ctx(tcp->tcp_kssl_ctx); 4286 tcp->tcp_kssl_ctx = NULL; 4287 } 4288 tcp->tcp_kssl_pending = B_FALSE; 4289 4290 tcp_ipsec_cleanup(tcp); 4291 } 4292 4293 /* 4294 * tcp is dying (called from ipcl_conn_destroy and error cases). 4295 * Free the tcp_t in either case. 4296 */ 4297 void 4298 tcp_free(tcp_t *tcp) 4299 { 4300 mblk_t *mp; 4301 ip6_pkt_t *ipp; 4302 4303 ASSERT(tcp != NULL); 4304 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4305 4306 tcp->tcp_rq = NULL; 4307 tcp->tcp_wq = NULL; 4308 4309 tcp_close_mpp(&tcp->tcp_xmit_head); 4310 tcp_close_mpp(&tcp->tcp_reass_head); 4311 if (tcp->tcp_rcv_list != NULL) { 4312 /* Free b_next chain */ 4313 tcp_close_mpp(&tcp->tcp_rcv_list); 4314 } 4315 if ((mp = tcp->tcp_urp_mp) != NULL) { 4316 freemsg(mp); 4317 } 4318 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4319 freemsg(mp); 4320 } 4321 4322 if (tcp->tcp_fused_sigurg_mp != NULL) { 4323 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4324 freeb(tcp->tcp_fused_sigurg_mp); 4325 tcp->tcp_fused_sigurg_mp = NULL; 4326 } 4327 4328 if (tcp->tcp_ordrel_mp != NULL) { 4329 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4330 freeb(tcp->tcp_ordrel_mp); 4331 tcp->tcp_ordrel_mp = NULL; 4332 } 4333 4334 if (tcp->tcp_sack_info != NULL) { 4335 if (tcp->tcp_notsack_list != NULL) { 4336 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4337 } 4338 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4339 } 4340 4341 if (tcp->tcp_hopopts != NULL) { 4342 mi_free(tcp->tcp_hopopts); 4343 tcp->tcp_hopopts = NULL; 4344 tcp->tcp_hopoptslen = 0; 4345 } 4346 ASSERT(tcp->tcp_hopoptslen == 0); 4347 if (tcp->tcp_dstopts != NULL) { 4348 mi_free(tcp->tcp_dstopts); 4349 tcp->tcp_dstopts = NULL; 4350 tcp->tcp_dstoptslen = 0; 4351 } 4352 ASSERT(tcp->tcp_dstoptslen == 0); 4353 if (tcp->tcp_rtdstopts != NULL) { 4354 mi_free(tcp->tcp_rtdstopts); 4355 tcp->tcp_rtdstopts = NULL; 4356 tcp->tcp_rtdstoptslen = 0; 4357 } 4358 ASSERT(tcp->tcp_rtdstoptslen == 0); 4359 if (tcp->tcp_rthdr != NULL) { 4360 mi_free(tcp->tcp_rthdr); 4361 tcp->tcp_rthdr = NULL; 4362 tcp->tcp_rthdrlen = 0; 4363 } 4364 ASSERT(tcp->tcp_rthdrlen == 0); 4365 4366 ipp = &tcp->tcp_sticky_ipp; 4367 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4368 IPPF_RTHDR)) 4369 ip6_pkt_free(ipp); 4370 4371 /* 4372 * Free memory associated with the tcp/ip header template. 4373 */ 4374 4375 if (tcp->tcp_iphc != NULL) 4376 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4377 4378 /* 4379 * Following is really a blowing away a union. 4380 * It happens to have exactly two members of identical size 4381 * the following code is enough. 4382 */ 4383 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4384 } 4385 4386 4387 /* 4388 * Put a connection confirmation message upstream built from the 4389 * address information within 'iph' and 'tcph'. Report our success or failure. 4390 */ 4391 static boolean_t 4392 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4393 mblk_t **defermp) 4394 { 4395 sin_t sin; 4396 sin6_t sin6; 4397 mblk_t *mp; 4398 char *optp = NULL; 4399 int optlen = 0; 4400 cred_t *cr; 4401 4402 if (defermp != NULL) 4403 *defermp = NULL; 4404 4405 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4406 /* 4407 * Return in T_CONN_CON results of option negotiation through 4408 * the T_CONN_REQ. Note: If there is an real end-to-end option 4409 * negotiation, then what is received from remote end needs 4410 * to be taken into account but there is no such thing (yet?) 4411 * in our TCP/IP. 4412 * Note: We do not use mi_offset_param() here as 4413 * tcp_opts_conn_req contents do not directly come from 4414 * an application and are either generated in kernel or 4415 * from user input that was already verified. 4416 */ 4417 mp = tcp->tcp_conn.tcp_opts_conn_req; 4418 optp = (char *)(mp->b_rptr + 4419 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4420 optlen = (int) 4421 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4422 } 4423 4424 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4425 ipha_t *ipha = (ipha_t *)iphdr; 4426 4427 /* packet is IPv4 */ 4428 if (tcp->tcp_family == AF_INET) { 4429 sin = sin_null; 4430 sin.sin_addr.s_addr = ipha->ipha_src; 4431 sin.sin_port = *(uint16_t *)tcph->th_lport; 4432 sin.sin_family = AF_INET; 4433 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4434 (int)sizeof (sin_t), optp, optlen); 4435 } else { 4436 sin6 = sin6_null; 4437 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4438 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4439 sin6.sin6_family = AF_INET6; 4440 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4441 (int)sizeof (sin6_t), optp, optlen); 4442 4443 } 4444 } else { 4445 ip6_t *ip6h = (ip6_t *)iphdr; 4446 4447 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4448 ASSERT(tcp->tcp_family == AF_INET6); 4449 sin6 = sin6_null; 4450 sin6.sin6_addr = ip6h->ip6_src; 4451 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4452 sin6.sin6_family = AF_INET6; 4453 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4454 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4455 (int)sizeof (sin6_t), optp, optlen); 4456 } 4457 4458 if (!mp) 4459 return (B_FALSE); 4460 4461 if ((cr = DB_CRED(idmp)) != NULL) { 4462 mblk_setcred(mp, cr); 4463 DB_CPID(mp) = DB_CPID(idmp); 4464 } 4465 4466 if (defermp == NULL) { 4467 conn_t *connp = tcp->tcp_connp; 4468 if (IPCL_IS_NONSTR(connp)) { 4469 (*connp->conn_upcalls->su_connected) 4470 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4471 DB_CPID(mp)); 4472 freemsg(mp); 4473 } else { 4474 putnext(tcp->tcp_rq, mp); 4475 } 4476 } else { 4477 *defermp = mp; 4478 } 4479 4480 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4481 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4482 return (B_TRUE); 4483 } 4484 4485 /* 4486 * Defense for the SYN attack - 4487 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4488 * one from the list of droppable eagers. This list is a subset of q0. 4489 * see comments before the definition of MAKE_DROPPABLE(). 4490 * 2. Don't drop a SYN request before its first timeout. This gives every 4491 * request at least til the first timeout to complete its 3-way handshake. 4492 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4493 * requests currently on the queue that has timed out. This will be used 4494 * as an indicator of whether an attack is under way, so that appropriate 4495 * actions can be taken. (It's incremented in tcp_timer() and decremented 4496 * either when eager goes into ESTABLISHED, or gets freed up.) 4497 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4498 * # of timeout drops back to <= q0len/32 => SYN alert off 4499 */ 4500 static boolean_t 4501 tcp_drop_q0(tcp_t *tcp) 4502 { 4503 tcp_t *eager; 4504 mblk_t *mp; 4505 tcp_stack_t *tcps = tcp->tcp_tcps; 4506 4507 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4508 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4509 4510 /* Pick oldest eager from the list of droppable eagers */ 4511 eager = tcp->tcp_eager_prev_drop_q0; 4512 4513 /* If list is empty. return B_FALSE */ 4514 if (eager == tcp) { 4515 return (B_FALSE); 4516 } 4517 4518 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4519 if ((mp = allocb(0, BPRI_HI)) == NULL) 4520 return (B_FALSE); 4521 4522 /* 4523 * Take this eager out from the list of droppable eagers since we are 4524 * going to drop it. 4525 */ 4526 MAKE_UNDROPPABLE(eager); 4527 4528 if (tcp->tcp_debug) { 4529 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4530 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4531 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4532 tcp->tcp_conn_req_cnt_q0, 4533 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4534 } 4535 4536 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4537 4538 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4539 CONN_INC_REF(eager->tcp_connp); 4540 4541 /* Mark the IRE created for this SYN request temporary */ 4542 tcp_ip_ire_mark_advice(eager); 4543 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4544 tcp_clean_death_wrapper, eager->tcp_connp, 4545 SQ_FILL, SQTAG_TCP_DROP_Q0); 4546 4547 return (B_TRUE); 4548 } 4549 4550 int 4551 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4552 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4553 { 4554 tcp_t *ltcp = lconnp->conn_tcp; 4555 tcp_t *tcp = connp->conn_tcp; 4556 mblk_t *tpi_mp; 4557 ipha_t *ipha; 4558 ip6_t *ip6h; 4559 sin6_t sin6; 4560 in6_addr_t v6dst; 4561 int err; 4562 int ifindex = 0; 4563 cred_t *cr; 4564 tcp_stack_t *tcps = tcp->tcp_tcps; 4565 4566 if (ipvers == IPV4_VERSION) { 4567 ipha = (ipha_t *)mp->b_rptr; 4568 4569 connp->conn_send = ip_output; 4570 connp->conn_recv = tcp_input; 4571 4572 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4573 &connp->conn_bound_source_v6); 4574 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4575 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4576 4577 sin6 = sin6_null; 4578 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4579 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4580 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4581 sin6.sin6_family = AF_INET6; 4582 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4583 lconnp->conn_zoneid, tcps->tcps_netstack); 4584 if (tcp->tcp_recvdstaddr) { 4585 sin6_t sin6d; 4586 4587 sin6d = sin6_null; 4588 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4589 &sin6d.sin6_addr); 4590 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4591 sin6d.sin6_family = AF_INET; 4592 tpi_mp = mi_tpi_extconn_ind(NULL, 4593 (char *)&sin6d, sizeof (sin6_t), 4594 (char *)&tcp, 4595 (t_scalar_t)sizeof (intptr_t), 4596 (char *)&sin6d, sizeof (sin6_t), 4597 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4598 } else { 4599 tpi_mp = mi_tpi_conn_ind(NULL, 4600 (char *)&sin6, sizeof (sin6_t), 4601 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4602 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4603 } 4604 } else { 4605 ip6h = (ip6_t *)mp->b_rptr; 4606 4607 connp->conn_send = ip_output_v6; 4608 connp->conn_recv = tcp_input; 4609 4610 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4611 connp->conn_srcv6 = ip6h->ip6_dst; 4612 connp->conn_remv6 = ip6h->ip6_src; 4613 4614 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4615 ifindex = (int)DB_CKSUMSTUFF(mp); 4616 DB_CKSUMSTUFF(mp) = 0; 4617 4618 sin6 = sin6_null; 4619 sin6.sin6_addr = ip6h->ip6_src; 4620 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4621 sin6.sin6_family = AF_INET6; 4622 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4623 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4624 lconnp->conn_zoneid, tcps->tcps_netstack); 4625 4626 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4627 /* Pass up the scope_id of remote addr */ 4628 sin6.sin6_scope_id = ifindex; 4629 } else { 4630 sin6.sin6_scope_id = 0; 4631 } 4632 if (tcp->tcp_recvdstaddr) { 4633 sin6_t sin6d; 4634 4635 sin6d = sin6_null; 4636 sin6.sin6_addr = ip6h->ip6_dst; 4637 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4638 sin6d.sin6_family = AF_INET; 4639 tpi_mp = mi_tpi_extconn_ind(NULL, 4640 (char *)&sin6d, sizeof (sin6_t), 4641 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4642 (char *)&sin6d, sizeof (sin6_t), 4643 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4644 } else { 4645 tpi_mp = mi_tpi_conn_ind(NULL, 4646 (char *)&sin6, sizeof (sin6_t), 4647 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4648 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4649 } 4650 } 4651 4652 if (tpi_mp == NULL) 4653 return (ENOMEM); 4654 4655 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4656 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4657 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4658 connp->conn_fully_bound = B_FALSE; 4659 4660 /* Inherit information from the "parent" */ 4661 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4662 tcp->tcp_family = ltcp->tcp_family; 4663 4664 tcp->tcp_wq = ltcp->tcp_wq; 4665 tcp->tcp_rq = ltcp->tcp_rq; 4666 4667 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4668 tcp->tcp_detached = B_TRUE; 4669 SOCK_CONNID_INIT(tcp->tcp_connid); 4670 if ((err = tcp_init_values(tcp)) != 0) { 4671 freemsg(tpi_mp); 4672 return (err); 4673 } 4674 4675 if (ipvers == IPV4_VERSION) { 4676 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4677 freemsg(tpi_mp); 4678 return (err); 4679 } 4680 ASSERT(tcp->tcp_ipha != NULL); 4681 } else { 4682 /* ifindex must be already set */ 4683 ASSERT(ifindex != 0); 4684 4685 if (ltcp->tcp_bound_if != 0) 4686 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4687 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4688 tcp->tcp_bound_if = ifindex; 4689 4690 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4691 tcp->tcp_recvifindex = 0; 4692 tcp->tcp_recvhops = 0xffffffffU; 4693 ASSERT(tcp->tcp_ip6h != NULL); 4694 } 4695 4696 tcp->tcp_lport = ltcp->tcp_lport; 4697 4698 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4699 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4700 /* 4701 * Listener had options of some sort; eager inherits. 4702 * Free up the eager template and allocate one 4703 * of the right size. 4704 */ 4705 if (tcp->tcp_hdr_grown) { 4706 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4707 } else { 4708 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4709 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4710 } 4711 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4712 KM_NOSLEEP); 4713 if (tcp->tcp_iphc == NULL) { 4714 tcp->tcp_iphc_len = 0; 4715 freemsg(tpi_mp); 4716 return (ENOMEM); 4717 } 4718 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4719 tcp->tcp_hdr_grown = B_TRUE; 4720 } 4721 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4722 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4723 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4724 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4725 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4726 4727 /* 4728 * Copy the IP+TCP header template from listener to eager 4729 */ 4730 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4731 if (tcp->tcp_ipversion == IPV6_VERSION) { 4732 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4733 IPPROTO_RAW) { 4734 tcp->tcp_ip6h = 4735 (ip6_t *)(tcp->tcp_iphc + 4736 sizeof (ip6i_t)); 4737 } else { 4738 tcp->tcp_ip6h = 4739 (ip6_t *)(tcp->tcp_iphc); 4740 } 4741 tcp->tcp_ipha = NULL; 4742 } else { 4743 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4744 tcp->tcp_ip6h = NULL; 4745 } 4746 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4747 tcp->tcp_ip_hdr_len); 4748 } else { 4749 /* 4750 * only valid case when ipversion of listener and 4751 * eager differ is when listener is IPv6 and 4752 * eager is IPv4. 4753 * Eager header template has been initialized to the 4754 * maximum v4 header sizes, which includes space for 4755 * TCP and IP options. 4756 */ 4757 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4758 (tcp->tcp_ipversion == IPV4_VERSION)); 4759 ASSERT(tcp->tcp_iphc_len >= 4760 TCP_MAX_COMBINED_HEADER_LENGTH); 4761 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4762 /* copy IP header fields individually */ 4763 tcp->tcp_ipha->ipha_ttl = 4764 ltcp->tcp_ip6h->ip6_hops; 4765 bcopy(ltcp->tcp_tcph->th_lport, 4766 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4767 } 4768 4769 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4770 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4771 sizeof (in_port_t)); 4772 4773 if (ltcp->tcp_lport == 0) { 4774 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4775 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4776 sizeof (in_port_t)); 4777 } 4778 4779 if (tcp->tcp_ipversion == IPV4_VERSION) { 4780 ASSERT(ipha != NULL); 4781 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4782 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4783 4784 /* Source routing option copyover (reverse it) */ 4785 if (tcps->tcps_rev_src_routes) 4786 tcp_opt_reverse(tcp, ipha); 4787 } else { 4788 ASSERT(ip6h != NULL); 4789 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4790 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4791 } 4792 4793 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4794 ASSERT(!tcp->tcp_tconnind_started); 4795 /* 4796 * If the SYN contains a credential, it's a loopback packet; attach 4797 * the credential to the TPI message. 4798 */ 4799 if ((cr = DB_CRED(idmp)) != NULL) { 4800 mblk_setcred(tpi_mp, cr); 4801 DB_CPID(tpi_mp) = DB_CPID(idmp); 4802 } 4803 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4804 4805 /* Inherit the listener's SSL protection state */ 4806 4807 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4808 kssl_hold_ent(tcp->tcp_kssl_ent); 4809 tcp->tcp_kssl_pending = B_TRUE; 4810 } 4811 4812 /* Inherit the listener's non-STREAMS flag */ 4813 if (IPCL_IS_NONSTR(lconnp)) { 4814 connp->conn_flags |= IPCL_NONSTR; 4815 } 4816 4817 return (0); 4818 } 4819 4820 4821 int 4822 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4823 tcph_t *tcph, mblk_t *idmp) 4824 { 4825 tcp_t *ltcp = lconnp->conn_tcp; 4826 tcp_t *tcp = connp->conn_tcp; 4827 sin_t sin; 4828 mblk_t *tpi_mp = NULL; 4829 int err; 4830 cred_t *cr; 4831 tcp_stack_t *tcps = tcp->tcp_tcps; 4832 4833 sin = sin_null; 4834 sin.sin_addr.s_addr = ipha->ipha_src; 4835 sin.sin_port = *(uint16_t *)tcph->th_lport; 4836 sin.sin_family = AF_INET; 4837 if (ltcp->tcp_recvdstaddr) { 4838 sin_t sind; 4839 4840 sind = sin_null; 4841 sind.sin_addr.s_addr = ipha->ipha_dst; 4842 sind.sin_port = *(uint16_t *)tcph->th_fport; 4843 sind.sin_family = AF_INET; 4844 tpi_mp = mi_tpi_extconn_ind(NULL, 4845 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4846 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4847 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4848 } else { 4849 tpi_mp = mi_tpi_conn_ind(NULL, 4850 (char *)&sin, sizeof (sin_t), 4851 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4852 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4853 } 4854 4855 if (tpi_mp == NULL) { 4856 return (ENOMEM); 4857 } 4858 4859 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4860 connp->conn_send = ip_output; 4861 connp->conn_recv = tcp_input; 4862 connp->conn_fully_bound = B_FALSE; 4863 4864 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4865 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4866 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4867 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4868 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4869 4870 /* Inherit information from the "parent" */ 4871 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4872 tcp->tcp_family = ltcp->tcp_family; 4873 tcp->tcp_wq = ltcp->tcp_wq; 4874 tcp->tcp_rq = ltcp->tcp_rq; 4875 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4876 tcp->tcp_detached = B_TRUE; 4877 SOCK_CONNID_INIT(tcp->tcp_connid); 4878 if ((err = tcp_init_values(tcp)) != 0) { 4879 freemsg(tpi_mp); 4880 return (err); 4881 } 4882 4883 /* 4884 * Let's make sure that eager tcp template has enough space to 4885 * copy IPv4 listener's tcp template. Since the conn_t structure is 4886 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4887 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4888 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4889 * extension headers or with ip6i_t struct). Note that bcopy() below 4890 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4891 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4892 */ 4893 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4894 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4895 4896 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4897 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4898 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4899 tcp->tcp_ttl = ltcp->tcp_ttl; 4900 tcp->tcp_tos = ltcp->tcp_tos; 4901 4902 /* Copy the IP+TCP header template from listener to eager */ 4903 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4904 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4905 tcp->tcp_ip6h = NULL; 4906 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4907 tcp->tcp_ip_hdr_len); 4908 4909 /* Initialize the IP addresses and Ports */ 4910 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4911 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4912 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4913 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4914 4915 /* Source routing option copyover (reverse it) */ 4916 if (tcps->tcps_rev_src_routes) 4917 tcp_opt_reverse(tcp, ipha); 4918 4919 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4920 ASSERT(!tcp->tcp_tconnind_started); 4921 4922 /* 4923 * If the SYN contains a credential, it's a loopback packet; attach 4924 * the credential to the TPI message. 4925 */ 4926 if ((cr = DB_CRED(idmp)) != NULL) { 4927 mblk_setcred(tpi_mp, cr); 4928 DB_CPID(tpi_mp) = DB_CPID(idmp); 4929 } 4930 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4931 4932 /* Inherit the listener's SSL protection state */ 4933 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4934 kssl_hold_ent(tcp->tcp_kssl_ent); 4935 tcp->tcp_kssl_pending = B_TRUE; 4936 } 4937 4938 /* Inherit the listener's non-STREAMS flag */ 4939 if (IPCL_IS_NONSTR(lconnp)) { 4940 connp->conn_flags |= IPCL_NONSTR; 4941 } 4942 4943 return (0); 4944 } 4945 4946 /* 4947 * sets up conn for ipsec. 4948 * if the first mblk is M_CTL it is consumed and mpp is updated. 4949 * in case of error mpp is freed. 4950 */ 4951 conn_t * 4952 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4953 { 4954 conn_t *connp = tcp->tcp_connp; 4955 conn_t *econnp; 4956 squeue_t *new_sqp; 4957 mblk_t *first_mp = *mpp; 4958 mblk_t *mp = *mpp; 4959 boolean_t mctl_present = B_FALSE; 4960 uint_t ipvers; 4961 4962 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4963 if (econnp == NULL) { 4964 freemsg(first_mp); 4965 return (NULL); 4966 } 4967 if (DB_TYPE(mp) == M_CTL) { 4968 if (mp->b_cont == NULL || 4969 mp->b_cont->b_datap->db_type != M_DATA) { 4970 freemsg(first_mp); 4971 return (NULL); 4972 } 4973 mp = mp->b_cont; 4974 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4975 freemsg(first_mp); 4976 return (NULL); 4977 } 4978 4979 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4980 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4981 mctl_present = B_TRUE; 4982 } else { 4983 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4984 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4985 } 4986 4987 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4988 DB_CKSUMSTART(mp) = 0; 4989 4990 ASSERT(OK_32PTR(mp->b_rptr)); 4991 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4992 if (ipvers == IPV4_VERSION) { 4993 uint16_t *up; 4994 uint32_t ports; 4995 ipha_t *ipha; 4996 4997 ipha = (ipha_t *)mp->b_rptr; 4998 up = (uint16_t *)((uchar_t *)ipha + 4999 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5000 ports = *(uint32_t *)up; 5001 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5002 ipha->ipha_dst, ipha->ipha_src, ports); 5003 } else { 5004 uint16_t *up; 5005 uint32_t ports; 5006 uint16_t ip_hdr_len; 5007 uint8_t *nexthdrp; 5008 ip6_t *ip6h; 5009 tcph_t *tcph; 5010 5011 ip6h = (ip6_t *)mp->b_rptr; 5012 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5013 ip_hdr_len = IPV6_HDR_LEN; 5014 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5015 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5016 CONN_DEC_REF(econnp); 5017 freemsg(first_mp); 5018 return (NULL); 5019 } 5020 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5021 up = (uint16_t *)tcph->th_lport; 5022 ports = *(uint32_t *)up; 5023 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5024 ip6h->ip6_dst, ip6h->ip6_src, ports); 5025 } 5026 5027 /* 5028 * The caller already ensured that there is a sqp present. 5029 */ 5030 econnp->conn_sqp = new_sqp; 5031 econnp->conn_initial_sqp = new_sqp; 5032 5033 if (connp->conn_policy != NULL) { 5034 ipsec_in_t *ii; 5035 ii = (ipsec_in_t *)(first_mp->b_rptr); 5036 ASSERT(ii->ipsec_in_policy == NULL); 5037 IPPH_REFHOLD(connp->conn_policy); 5038 ii->ipsec_in_policy = connp->conn_policy; 5039 5040 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5041 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5042 CONN_DEC_REF(econnp); 5043 freemsg(first_mp); 5044 return (NULL); 5045 } 5046 } 5047 5048 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5049 CONN_DEC_REF(econnp); 5050 freemsg(first_mp); 5051 return (NULL); 5052 } 5053 5054 /* 5055 * If we know we have some policy, pass the "IPSEC" 5056 * options size TCP uses this adjust the MSS. 5057 */ 5058 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5059 if (mctl_present) { 5060 freeb(first_mp); 5061 *mpp = mp; 5062 } 5063 5064 return (econnp); 5065 } 5066 5067 /* 5068 * tcp_get_conn/tcp_free_conn 5069 * 5070 * tcp_get_conn is used to get a clean tcp connection structure. 5071 * It tries to reuse the connections put on the freelist by the 5072 * time_wait_collector failing which it goes to kmem_cache. This 5073 * way has two benefits compared to just allocating from and 5074 * freeing to kmem_cache. 5075 * 1) The time_wait_collector can free (which includes the cleanup) 5076 * outside the squeue. So when the interrupt comes, we have a clean 5077 * connection sitting in the freelist. Obviously, this buys us 5078 * performance. 5079 * 5080 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5081 * has multiple disadvantages - tying up the squeue during alloc, and the 5082 * fact that IPSec policy initialization has to happen here which 5083 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5084 * But allocating the conn/tcp in IP land is also not the best since 5085 * we can't check the 'q' and 'q0' which are protected by squeue and 5086 * blindly allocate memory which might have to be freed here if we are 5087 * not allowed to accept the connection. By using the freelist and 5088 * putting the conn/tcp back in freelist, we don't pay a penalty for 5089 * allocating memory without checking 'q/q0' and freeing it if we can't 5090 * accept the connection. 5091 * 5092 * Care should be taken to put the conn back in the same squeue's freelist 5093 * from which it was allocated. Best results are obtained if conn is 5094 * allocated from listener's squeue and freed to the same. Time wait 5095 * collector will free up the freelist is the connection ends up sitting 5096 * there for too long. 5097 */ 5098 void * 5099 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5100 { 5101 tcp_t *tcp = NULL; 5102 conn_t *connp = NULL; 5103 squeue_t *sqp = (squeue_t *)arg; 5104 tcp_squeue_priv_t *tcp_time_wait; 5105 netstack_t *ns; 5106 5107 tcp_time_wait = 5108 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5109 5110 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5111 tcp = tcp_time_wait->tcp_free_list; 5112 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5113 if (tcp != NULL) { 5114 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5115 tcp_time_wait->tcp_free_list_cnt--; 5116 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5117 tcp->tcp_time_wait_next = NULL; 5118 connp = tcp->tcp_connp; 5119 connp->conn_flags |= IPCL_REUSED; 5120 5121 ASSERT(tcp->tcp_tcps == NULL); 5122 ASSERT(connp->conn_netstack == NULL); 5123 ASSERT(tcp->tcp_rsrv_mp != NULL); 5124 ns = tcps->tcps_netstack; 5125 netstack_hold(ns); 5126 connp->conn_netstack = ns; 5127 tcp->tcp_tcps = tcps; 5128 TCPS_REFHOLD(tcps); 5129 ipcl_globalhash_insert(connp); 5130 return ((void *)connp); 5131 } 5132 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5133 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5134 tcps->tcps_netstack)) == NULL) 5135 return (NULL); 5136 tcp = connp->conn_tcp; 5137 /* 5138 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5139 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5140 */ 5141 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5142 ipcl_conn_destroy(connp); 5143 return (NULL); 5144 } 5145 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5146 tcp->tcp_tcps = tcps; 5147 TCPS_REFHOLD(tcps); 5148 5149 return ((void *)connp); 5150 } 5151 5152 /* 5153 * Update the cached label for the given tcp_t. This should be called once per 5154 * connection, and before any packets are sent or tcp_process_options is 5155 * invoked. Returns B_FALSE if the correct label could not be constructed. 5156 */ 5157 static boolean_t 5158 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5159 { 5160 conn_t *connp = tcp->tcp_connp; 5161 5162 if (tcp->tcp_ipversion == IPV4_VERSION) { 5163 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5164 int added; 5165 5166 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5167 connp->conn_mac_exempt, 5168 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5169 return (B_FALSE); 5170 5171 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5172 if (added == -1) 5173 return (B_FALSE); 5174 tcp->tcp_hdr_len += added; 5175 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5176 tcp->tcp_ip_hdr_len += added; 5177 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5178 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5179 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5180 tcp->tcp_hdr_len); 5181 if (added == -1) 5182 return (B_FALSE); 5183 tcp->tcp_hdr_len += added; 5184 tcp->tcp_tcph = (tcph_t *) 5185 ((uchar_t *)tcp->tcp_tcph + added); 5186 tcp->tcp_ip_hdr_len += added; 5187 } 5188 } else { 5189 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5190 5191 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5192 connp->conn_mac_exempt, 5193 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5194 return (B_FALSE); 5195 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5196 &tcp->tcp_label_len, optbuf) != 0) 5197 return (B_FALSE); 5198 if (tcp_build_hdrs(tcp) != 0) 5199 return (B_FALSE); 5200 } 5201 5202 connp->conn_ulp_labeled = 1; 5203 5204 return (B_TRUE); 5205 } 5206 5207 /* BEGIN CSTYLED */ 5208 /* 5209 * 5210 * The sockfs ACCEPT path: 5211 * ======================= 5212 * 5213 * The eager is now established in its own perimeter as soon as SYN is 5214 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5215 * completes the accept processing on the acceptor STREAM. The sending 5216 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5217 * listener but a TLI/XTI listener completes the accept processing 5218 * on the listener perimeter. 5219 * 5220 * Common control flow for 3 way handshake: 5221 * ---------------------------------------- 5222 * 5223 * incoming SYN (listener perimeter) -> tcp_rput_data() 5224 * -> tcp_conn_request() 5225 * 5226 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5227 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5228 * 5229 * Sockfs ACCEPT Path: 5230 * ------------------- 5231 * 5232 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5233 * as STREAM entry point) 5234 * 5235 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5236 * 5237 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5238 * association (we are not behind eager's squeue but sockfs is protecting us 5239 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5240 * is changed to point at tcp_wput(). 5241 * 5242 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5243 * listener (done on listener's perimeter). 5244 * 5245 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5246 * accept. 5247 * 5248 * TLI/XTI client ACCEPT path: 5249 * --------------------------- 5250 * 5251 * soaccept() sends T_CONN_RES on the listener STREAM. 5252 * 5253 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5254 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5255 * 5256 * Locks: 5257 * ====== 5258 * 5259 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5260 * and listeners->tcp_eager_next_q. 5261 * 5262 * Referencing: 5263 * ============ 5264 * 5265 * 1) We start out in tcp_conn_request by eager placing a ref on 5266 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5267 * 5268 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5269 * doing so we place a ref on the eager. This ref is finally dropped at the 5270 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5271 * reference is dropped by the squeue framework. 5272 * 5273 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5274 * 5275 * The reference must be released by the same entity that added the reference 5276 * In the above scheme, the eager is the entity that adds and releases the 5277 * references. Note that tcp_accept_finish executes in the squeue of the eager 5278 * (albeit after it is attached to the acceptor stream). Though 1. executes 5279 * in the listener's squeue, the eager is nascent at this point and the 5280 * reference can be considered to have been added on behalf of the eager. 5281 * 5282 * Eager getting a Reset or listener closing: 5283 * ========================================== 5284 * 5285 * Once the listener and eager are linked, the listener never does the unlink. 5286 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5287 * a message on all eager perimeter. The eager then does the unlink, clears 5288 * any pointers to the listener's queue and drops the reference to the 5289 * listener. The listener waits in tcp_close outside the squeue until its 5290 * refcount has dropped to 1. This ensures that the listener has waited for 5291 * all eagers to clear their association with the listener. 5292 * 5293 * Similarly, if eager decides to go away, it can unlink itself and close. 5294 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5295 * the reference to eager is still valid because of the extra ref we put 5296 * in tcp_send_conn_ind. 5297 * 5298 * Listener can always locate the eager under the protection 5299 * of the listener->tcp_eager_lock, and then do a refhold 5300 * on the eager during the accept processing. 5301 * 5302 * The acceptor stream accesses the eager in the accept processing 5303 * based on the ref placed on eager before sending T_conn_ind. 5304 * The only entity that can negate this refhold is a listener close 5305 * which is mutually exclusive with an active acceptor stream. 5306 * 5307 * Eager's reference on the listener 5308 * =================================== 5309 * 5310 * If the accept happens (even on a closed eager) the eager drops its 5311 * reference on the listener at the start of tcp_accept_finish. If the 5312 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5313 * the reference is dropped in tcp_closei_local. If the listener closes, 5314 * the reference is dropped in tcp_eager_kill. In all cases the reference 5315 * is dropped while executing in the eager's context (squeue). 5316 */ 5317 /* END CSTYLED */ 5318 5319 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5320 5321 /* 5322 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5323 * tcp_rput_data will not see any SYN packets. 5324 */ 5325 /* ARGSUSED */ 5326 void 5327 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5328 { 5329 tcph_t *tcph; 5330 uint32_t seg_seq; 5331 tcp_t *eager; 5332 uint_t ipvers; 5333 ipha_t *ipha; 5334 ip6_t *ip6h; 5335 int err; 5336 conn_t *econnp = NULL; 5337 squeue_t *new_sqp; 5338 mblk_t *mp1; 5339 uint_t ip_hdr_len; 5340 conn_t *connp = (conn_t *)arg; 5341 tcp_t *tcp = connp->conn_tcp; 5342 cred_t *credp; 5343 tcp_stack_t *tcps = tcp->tcp_tcps; 5344 ip_stack_t *ipst; 5345 5346 if (tcp->tcp_state != TCPS_LISTEN) 5347 goto error2; 5348 5349 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5350 5351 mutex_enter(&tcp->tcp_eager_lock); 5352 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5353 mutex_exit(&tcp->tcp_eager_lock); 5354 TCP_STAT(tcps, tcp_listendrop); 5355 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5356 if (tcp->tcp_debug) { 5357 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5358 "tcp_conn_request: listen backlog (max=%d) " 5359 "overflow (%d pending) on %s", 5360 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5361 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5362 } 5363 goto error2; 5364 } 5365 5366 if (tcp->tcp_conn_req_cnt_q0 >= 5367 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5368 /* 5369 * Q0 is full. Drop a pending half-open req from the queue 5370 * to make room for the new SYN req. Also mark the time we 5371 * drop a SYN. 5372 * 5373 * A more aggressive defense against SYN attack will 5374 * be to set the "tcp_syn_defense" flag now. 5375 */ 5376 TCP_STAT(tcps, tcp_listendropq0); 5377 tcp->tcp_last_rcv_lbolt = lbolt64; 5378 if (!tcp_drop_q0(tcp)) { 5379 mutex_exit(&tcp->tcp_eager_lock); 5380 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5381 if (tcp->tcp_debug) { 5382 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5383 "tcp_conn_request: listen half-open queue " 5384 "(max=%d) full (%d pending) on %s", 5385 tcps->tcps_conn_req_max_q0, 5386 tcp->tcp_conn_req_cnt_q0, 5387 tcp_display(tcp, NULL, 5388 DISP_PORT_ONLY)); 5389 } 5390 goto error2; 5391 } 5392 } 5393 mutex_exit(&tcp->tcp_eager_lock); 5394 5395 /* 5396 * IP adds STRUIO_EAGER and ensures that the received packet is 5397 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5398 * link local address. If IPSec is enabled, db_struioflag has 5399 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5400 * otherwise an error case if neither of them is set. 5401 */ 5402 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5403 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5404 DB_CKSUMSTART(mp) = 0; 5405 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5406 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5407 if (econnp == NULL) 5408 goto error2; 5409 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5410 econnp->conn_sqp = new_sqp; 5411 econnp->conn_initial_sqp = new_sqp; 5412 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5413 /* 5414 * mp is updated in tcp_get_ipsec_conn(). 5415 */ 5416 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5417 if (econnp == NULL) { 5418 /* 5419 * mp freed by tcp_get_ipsec_conn. 5420 */ 5421 return; 5422 } 5423 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5424 } else { 5425 goto error2; 5426 } 5427 5428 ASSERT(DB_TYPE(mp) == M_DATA); 5429 5430 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5431 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5432 ASSERT(OK_32PTR(mp->b_rptr)); 5433 if (ipvers == IPV4_VERSION) { 5434 ipha = (ipha_t *)mp->b_rptr; 5435 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5436 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5437 } else { 5438 ip6h = (ip6_t *)mp->b_rptr; 5439 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5440 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5441 } 5442 5443 if (tcp->tcp_family == AF_INET) { 5444 ASSERT(ipvers == IPV4_VERSION); 5445 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5446 } else { 5447 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5448 } 5449 5450 if (err) 5451 goto error3; 5452 5453 eager = econnp->conn_tcp; 5454 5455 /* 5456 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close 5457 * time, we will always have that to send up. Otherwise, we need to do 5458 * special handling in case the allocation fails at that time. 5459 */ 5460 ASSERT(eager->tcp_ordrel_mp == NULL); 5461 if (!IPCL_IS_NONSTR(econnp) && 5462 (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5463 goto error3; 5464 5465 /* Inherit various TCP parameters from the listener */ 5466 eager->tcp_naglim = tcp->tcp_naglim; 5467 eager->tcp_first_timer_threshold = 5468 tcp->tcp_first_timer_threshold; 5469 eager->tcp_second_timer_threshold = 5470 tcp->tcp_second_timer_threshold; 5471 5472 eager->tcp_first_ctimer_threshold = 5473 tcp->tcp_first_ctimer_threshold; 5474 eager->tcp_second_ctimer_threshold = 5475 tcp->tcp_second_ctimer_threshold; 5476 5477 /* 5478 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5479 * If it does not, the eager's receive window will be set to the 5480 * listener's receive window later in this function. 5481 */ 5482 eager->tcp_rwnd = 0; 5483 5484 /* 5485 * Inherit listener's tcp_init_cwnd. Need to do this before 5486 * calling tcp_process_options() where tcp_mss_set() is called 5487 * to set the initial cwnd. 5488 */ 5489 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5490 5491 /* 5492 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5493 * zone id before the accept is completed in tcp_wput_accept(). 5494 */ 5495 econnp->conn_zoneid = connp->conn_zoneid; 5496 econnp->conn_allzones = connp->conn_allzones; 5497 5498 /* Copy nexthop information from listener to eager */ 5499 if (connp->conn_nexthop_set) { 5500 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5501 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5502 } 5503 5504 /* 5505 * TSOL: tsol_input_proc() needs the eager's cred before the 5506 * eager is accepted 5507 */ 5508 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5509 crhold(credp); 5510 5511 /* 5512 * If the caller has the process-wide flag set, then default to MAC 5513 * exempt mode. This allows read-down to unlabeled hosts. 5514 */ 5515 if (getpflags(NET_MAC_AWARE, credp) != 0) 5516 econnp->conn_mac_exempt = B_TRUE; 5517 5518 if (is_system_labeled()) { 5519 cred_t *cr; 5520 5521 if (connp->conn_mlp_type != mlptSingle) { 5522 cr = econnp->conn_peercred = DB_CRED(mp); 5523 if (cr != NULL) 5524 crhold(cr); 5525 else 5526 cr = econnp->conn_cred; 5527 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5528 econnp, cred_t *, cr) 5529 } else { 5530 cr = econnp->conn_cred; 5531 DTRACE_PROBE2(syn_accept, conn_t *, 5532 econnp, cred_t *, cr) 5533 } 5534 5535 if (!tcp_update_label(eager, cr)) { 5536 DTRACE_PROBE3( 5537 tx__ip__log__error__connrequest__tcp, 5538 char *, "eager connp(1) label on SYN mp(2) failed", 5539 conn_t *, econnp, mblk_t *, mp); 5540 goto error3; 5541 } 5542 } 5543 5544 eager->tcp_hard_binding = B_TRUE; 5545 5546 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5547 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5548 5549 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5550 if (err != 0) { 5551 tcp_bind_hash_remove(eager); 5552 goto error3; 5553 } 5554 5555 /* 5556 * No need to check for multicast destination since ip will only pass 5557 * up multicasts to those that have expressed interest 5558 * TODO: what about rejecting broadcasts? 5559 * Also check that source is not a multicast or broadcast address. 5560 */ 5561 eager->tcp_state = TCPS_SYN_RCVD; 5562 5563 5564 /* 5565 * There should be no ire in the mp as we are being called after 5566 * receiving the SYN. 5567 */ 5568 ASSERT(tcp_ire_mp(&mp) == NULL); 5569 5570 /* 5571 * Adapt our mss, ttl, ... according to information provided in IRE. 5572 */ 5573 5574 if (tcp_adapt_ire(eager, NULL) == 0) { 5575 /* Undo the bind_hash_insert */ 5576 tcp_bind_hash_remove(eager); 5577 goto error3; 5578 } 5579 5580 /* Process all TCP options. */ 5581 tcp_process_options(eager, tcph); 5582 5583 /* Is the other end ECN capable? */ 5584 if (tcps->tcps_ecn_permitted >= 1 && 5585 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5586 eager->tcp_ecn_ok = B_TRUE; 5587 } 5588 5589 /* 5590 * listener->tcp_rq->q_hiwat should be the default window size or a 5591 * window size changed via SO_RCVBUF option. First round up the 5592 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5593 * scale option value if needed. Call tcp_rwnd_set() to finish the 5594 * setting. 5595 * 5596 * Note if there is a rpipe metric associated with the remote host, 5597 * we should not inherit receive window size from listener. 5598 */ 5599 eager->tcp_rwnd = MSS_ROUNDUP( 5600 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5601 eager->tcp_rwnd), eager->tcp_mss); 5602 if (eager->tcp_snd_ws_ok) 5603 tcp_set_ws_value(eager); 5604 /* 5605 * Note that this is the only place tcp_rwnd_set() is called for 5606 * accepting a connection. We need to call it here instead of 5607 * after the 3-way handshake because we need to tell the other 5608 * side our rwnd in the SYN-ACK segment. 5609 */ 5610 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5611 5612 /* 5613 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5614 * via soaccept()->soinheritoptions() which essentially applies 5615 * all the listener options to the new STREAM. The options that we 5616 * need to take care of are: 5617 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5618 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5619 * SO_SNDBUF, SO_RCVBUF. 5620 * 5621 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5622 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5623 * tcp_maxpsz_set() gets called later from 5624 * tcp_accept_finish(), the option takes effect. 5625 * 5626 */ 5627 /* Set the TCP options */ 5628 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5629 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5630 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5631 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5632 eager->tcp_oobinline = tcp->tcp_oobinline; 5633 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5634 eager->tcp_broadcast = tcp->tcp_broadcast; 5635 eager->tcp_useloopback = tcp->tcp_useloopback; 5636 eager->tcp_dontroute = tcp->tcp_dontroute; 5637 eager->tcp_debug = tcp->tcp_debug; 5638 eager->tcp_linger = tcp->tcp_linger; 5639 eager->tcp_lingertime = tcp->tcp_lingertime; 5640 if (tcp->tcp_ka_enabled) 5641 eager->tcp_ka_enabled = 1; 5642 5643 /* Set the IP options */ 5644 econnp->conn_broadcast = connp->conn_broadcast; 5645 econnp->conn_loopback = connp->conn_loopback; 5646 econnp->conn_dontroute = connp->conn_dontroute; 5647 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5648 5649 /* Put a ref on the listener for the eager. */ 5650 CONN_INC_REF(connp); 5651 mutex_enter(&tcp->tcp_eager_lock); 5652 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5653 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5654 tcp->tcp_eager_next_q0 = eager; 5655 eager->tcp_eager_prev_q0 = tcp; 5656 5657 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5658 eager->tcp_listener = tcp; 5659 eager->tcp_saved_listener = tcp; 5660 5661 /* 5662 * Tag this detached tcp vector for later retrieval 5663 * by our listener client in tcp_accept(). 5664 */ 5665 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5666 tcp->tcp_conn_req_cnt_q0++; 5667 if (++tcp->tcp_conn_req_seqnum == -1) { 5668 /* 5669 * -1 is "special" and defined in TPI as something 5670 * that should never be used in T_CONN_IND 5671 */ 5672 ++tcp->tcp_conn_req_seqnum; 5673 } 5674 mutex_exit(&tcp->tcp_eager_lock); 5675 5676 if (tcp->tcp_syn_defense) { 5677 /* Don't drop the SYN that comes from a good IP source */ 5678 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5679 if (addr_cache != NULL && eager->tcp_remote == 5680 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5681 eager->tcp_dontdrop = B_TRUE; 5682 } 5683 } 5684 5685 /* 5686 * We need to insert the eager in its own perimeter but as soon 5687 * as we do that, we expose the eager to the classifier and 5688 * should not touch any field outside the eager's perimeter. 5689 * So do all the work necessary before inserting the eager 5690 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5691 * will succeed but undo everything if it fails. 5692 */ 5693 seg_seq = ABE32_TO_U32(tcph->th_seq); 5694 eager->tcp_irs = seg_seq; 5695 eager->tcp_rack = seg_seq; 5696 eager->tcp_rnxt = seg_seq + 1; 5697 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5698 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5699 eager->tcp_state = TCPS_SYN_RCVD; 5700 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5701 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5702 if (mp1 == NULL) { 5703 /* 5704 * Increment the ref count as we are going to 5705 * enqueueing an mp in squeue 5706 */ 5707 CONN_INC_REF(econnp); 5708 goto error; 5709 } 5710 5711 DB_CPID(mp1) = tcp->tcp_cpid; 5712 mblk_setcred(mp1, CONN_CRED(eager->tcp_connp)); 5713 eager->tcp_cpid = tcp->tcp_cpid; 5714 eager->tcp_open_time = lbolt64; 5715 5716 /* 5717 * We need to start the rto timer. In normal case, we start 5718 * the timer after sending the packet on the wire (or at 5719 * least believing that packet was sent by waiting for 5720 * CALL_IP_WPUT() to return). Since this is the first packet 5721 * being sent on the wire for the eager, our initial tcp_rto 5722 * is at least tcp_rexmit_interval_min which is a fairly 5723 * large value to allow the algorithm to adjust slowly to large 5724 * fluctuations of RTT during first few transmissions. 5725 * 5726 * Starting the timer first and then sending the packet in this 5727 * case shouldn't make much difference since tcp_rexmit_interval_min 5728 * is of the order of several 100ms and starting the timer 5729 * first and then sending the packet will result in difference 5730 * of few micro seconds. 5731 * 5732 * Without this optimization, we are forced to hold the fanout 5733 * lock across the ipcl_bind_insert() and sending the packet 5734 * so that we don't race against an incoming packet (maybe RST) 5735 * for this eager. 5736 * 5737 * It is necessary to acquire an extra reference on the eager 5738 * at this point and hold it until after tcp_send_data() to 5739 * ensure against an eager close race. 5740 */ 5741 5742 CONN_INC_REF(eager->tcp_connp); 5743 5744 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5745 5746 /* 5747 * Insert the eager in its own perimeter now. We are ready to deal 5748 * with any packets on eager. 5749 */ 5750 if (eager->tcp_ipversion == IPV4_VERSION) { 5751 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5752 goto error; 5753 } 5754 } else { 5755 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5756 goto error; 5757 } 5758 } 5759 5760 /* mark conn as fully-bound */ 5761 econnp->conn_fully_bound = B_TRUE; 5762 5763 /* Send the SYN-ACK */ 5764 tcp_send_data(eager, eager->tcp_wq, mp1); 5765 CONN_DEC_REF(eager->tcp_connp); 5766 freemsg(mp); 5767 5768 return; 5769 error: 5770 freemsg(mp1); 5771 eager->tcp_closemp_used = B_TRUE; 5772 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5773 mp1 = &eager->tcp_closemp; 5774 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5775 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5776 5777 /* 5778 * If a connection already exists, send the mp to that connections so 5779 * that it can be appropriately dealt with. 5780 */ 5781 ipst = tcps->tcps_netstack->netstack_ip; 5782 5783 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5784 if (!IPCL_IS_CONNECTED(econnp)) { 5785 /* 5786 * Something bad happened. ipcl_conn_insert() 5787 * failed because a connection already existed 5788 * in connected hash but we can't find it 5789 * anymore (someone blew it away). Just 5790 * free this message and hopefully remote 5791 * will retransmit at which time the SYN can be 5792 * treated as a new connection or dealth with 5793 * a TH_RST if a connection already exists. 5794 */ 5795 CONN_DEC_REF(econnp); 5796 freemsg(mp); 5797 } else { 5798 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5799 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5800 } 5801 } else { 5802 /* Nobody wants this packet */ 5803 freemsg(mp); 5804 } 5805 return; 5806 error3: 5807 CONN_DEC_REF(econnp); 5808 error2: 5809 freemsg(mp); 5810 } 5811 5812 /* 5813 * In an ideal case of vertical partition in NUMA architecture, its 5814 * beneficial to have the listener and all the incoming connections 5815 * tied to the same squeue. The other constraint is that incoming 5816 * connections should be tied to the squeue attached to interrupted 5817 * CPU for obvious locality reason so this leaves the listener to 5818 * be tied to the same squeue. Our only problem is that when listener 5819 * is binding, the CPU that will get interrupted by the NIC whose 5820 * IP address the listener is binding to is not even known. So 5821 * the code below allows us to change that binding at the time the 5822 * CPU is interrupted by virtue of incoming connection's squeue. 5823 * 5824 * This is usefull only in case of a listener bound to a specific IP 5825 * address. For other kind of listeners, they get bound the 5826 * very first time and there is no attempt to rebind them. 5827 */ 5828 void 5829 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5830 { 5831 conn_t *connp = (conn_t *)arg; 5832 squeue_t *sqp = (squeue_t *)arg2; 5833 squeue_t *new_sqp; 5834 uint32_t conn_flags; 5835 5836 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5837 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5838 } else { 5839 goto done; 5840 } 5841 5842 if (connp->conn_fanout == NULL) 5843 goto done; 5844 5845 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5846 mutex_enter(&connp->conn_fanout->connf_lock); 5847 mutex_enter(&connp->conn_lock); 5848 /* 5849 * No one from read or write side can access us now 5850 * except for already queued packets on this squeue. 5851 * But since we haven't changed the squeue yet, they 5852 * can't execute. If they are processed after we have 5853 * changed the squeue, they are sent back to the 5854 * correct squeue down below. 5855 * But a listner close can race with processing of 5856 * incoming SYN. If incoming SYN processing changes 5857 * the squeue then the listener close which is waiting 5858 * to enter the squeue would operate on the wrong 5859 * squeue. Hence we don't change the squeue here unless 5860 * the refcount is exactly the minimum refcount. The 5861 * minimum refcount of 4 is counted as - 1 each for 5862 * TCP and IP, 1 for being in the classifier hash, and 5863 * 1 for the mblk being processed. 5864 */ 5865 5866 if (connp->conn_ref != 4 || 5867 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5868 mutex_exit(&connp->conn_lock); 5869 mutex_exit(&connp->conn_fanout->connf_lock); 5870 goto done; 5871 } 5872 if (connp->conn_sqp != new_sqp) { 5873 while (connp->conn_sqp != new_sqp) 5874 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5875 } 5876 5877 do { 5878 conn_flags = connp->conn_flags; 5879 conn_flags |= IPCL_FULLY_BOUND; 5880 (void) cas32(&connp->conn_flags, connp->conn_flags, 5881 conn_flags); 5882 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5883 5884 mutex_exit(&connp->conn_fanout->connf_lock); 5885 mutex_exit(&connp->conn_lock); 5886 } 5887 5888 done: 5889 if (connp->conn_sqp != sqp) { 5890 CONN_INC_REF(connp); 5891 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5892 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5893 } else { 5894 tcp_conn_request(connp, mp, sqp); 5895 } 5896 } 5897 5898 /* 5899 * Successful connect request processing begins when our client passes 5900 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5901 * our T_OK_ACK reply message upstream. The control flow looks like this: 5902 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5903 * upstream <- tcp_rput() <- IP 5904 * After various error checks are completed, tcp_tpi_connect() lays 5905 * the target address and port into the composite header template, 5906 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5907 * request followed by an IRE request, and passes the three mblk message 5908 * down to IP looking like this: 5909 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5910 * Processing continues in tcp_rput() when we receive the following message: 5911 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5912 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5913 * to fire off the connection request, and then passes the T_OK_ACK mblk 5914 * upstream that we filled in below. There are, of course, numerous 5915 * error conditions along the way which truncate the processing described 5916 * above. 5917 */ 5918 static void 5919 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5920 { 5921 sin_t *sin; 5922 queue_t *q = tcp->tcp_wq; 5923 struct T_conn_req *tcr; 5924 struct sockaddr *sa; 5925 socklen_t len; 5926 int error; 5927 5928 tcr = (struct T_conn_req *)mp->b_rptr; 5929 5930 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5931 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5932 tcp_err_ack(tcp, mp, TPROTO, 0); 5933 return; 5934 } 5935 5936 /* 5937 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5938 * will always have that to send up. Otherwise, we need to do 5939 * special handling in case the allocation fails at that time. 5940 * If the end point is TPI, the tcp_t can be reused and the 5941 * tcp_ordrel_mp may be allocated already. 5942 */ 5943 if (tcp->tcp_ordrel_mp == NULL) { 5944 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5945 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5946 return; 5947 } 5948 } 5949 5950 /* 5951 * Determine packet type based on type of address passed in 5952 * the request should contain an IPv4 or IPv6 address. 5953 * Make sure that address family matches the type of 5954 * family of the the address passed down 5955 */ 5956 switch (tcr->DEST_length) { 5957 default: 5958 tcp_err_ack(tcp, mp, TBADADDR, 0); 5959 return; 5960 5961 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5962 /* 5963 * XXX: The check for valid DEST_length was not there 5964 * in earlier releases and some buggy 5965 * TLI apps (e.g Sybase) got away with not feeding 5966 * in sin_zero part of address. 5967 * We allow that bug to keep those buggy apps humming. 5968 * Test suites require the check on DEST_length. 5969 * We construct a new mblk with valid DEST_length 5970 * free the original so the rest of the code does 5971 * not have to keep track of this special shorter 5972 * length address case. 5973 */ 5974 mblk_t *nmp; 5975 struct T_conn_req *ntcr; 5976 sin_t *nsin; 5977 5978 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5979 tcr->OPT_length, BPRI_HI); 5980 if (nmp == NULL) { 5981 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5982 return; 5983 } 5984 ntcr = (struct T_conn_req *)nmp->b_rptr; 5985 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5986 ntcr->PRIM_type = T_CONN_REQ; 5987 ntcr->DEST_length = sizeof (sin_t); 5988 ntcr->DEST_offset = sizeof (struct T_conn_req); 5989 5990 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5991 *nsin = sin_null; 5992 /* Get pointer to shorter address to copy from original mp */ 5993 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5994 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5995 if (sin == NULL || !OK_32PTR((char *)sin)) { 5996 freemsg(nmp); 5997 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5998 return; 5999 } 6000 nsin->sin_family = sin->sin_family; 6001 nsin->sin_port = sin->sin_port; 6002 nsin->sin_addr = sin->sin_addr; 6003 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6004 nmp->b_wptr = (uchar_t *)&nsin[1]; 6005 if (tcr->OPT_length != 0) { 6006 ntcr->OPT_length = tcr->OPT_length; 6007 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6008 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6009 (uchar_t *)ntcr + ntcr->OPT_offset, 6010 tcr->OPT_length); 6011 nmp->b_wptr += tcr->OPT_length; 6012 } 6013 freemsg(mp); /* original mp freed */ 6014 mp = nmp; /* re-initialize original variables */ 6015 tcr = ntcr; 6016 } 6017 /* FALLTHRU */ 6018 6019 case sizeof (sin_t): 6020 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6021 sizeof (sin_t)); 6022 len = sizeof (sin_t); 6023 break; 6024 6025 case sizeof (sin6_t): 6026 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6027 sizeof (sin6_t)); 6028 len = sizeof (sin6_t); 6029 break; 6030 } 6031 6032 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6033 if (error != 0) { 6034 tcp_err_ack(tcp, mp, TSYSERR, error); 6035 return; 6036 } 6037 6038 /* 6039 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6040 * should key on their sequence number and cut them loose. 6041 */ 6042 6043 /* 6044 * If options passed in, feed it for verification and handling 6045 */ 6046 if (tcr->OPT_length != 0) { 6047 mblk_t *ok_mp; 6048 mblk_t *discon_mp; 6049 mblk_t *conn_opts_mp; 6050 int t_error, sys_error, do_disconnect; 6051 6052 conn_opts_mp = NULL; 6053 6054 if (tcp_conprim_opt_process(tcp, mp, 6055 &do_disconnect, &t_error, &sys_error) < 0) { 6056 if (do_disconnect) { 6057 ASSERT(t_error == 0 && sys_error == 0); 6058 discon_mp = mi_tpi_discon_ind(NULL, 6059 ECONNREFUSED, 0); 6060 if (!discon_mp) { 6061 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6062 TSYSERR, ENOMEM); 6063 return; 6064 } 6065 ok_mp = mi_tpi_ok_ack_alloc(mp); 6066 if (!ok_mp) { 6067 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6068 TSYSERR, ENOMEM); 6069 return; 6070 } 6071 qreply(q, ok_mp); 6072 qreply(q, discon_mp); /* no flush! */ 6073 } else { 6074 ASSERT(t_error != 0); 6075 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6076 sys_error); 6077 } 6078 return; 6079 } 6080 /* 6081 * Success in setting options, the mp option buffer represented 6082 * by OPT_length/offset has been potentially modified and 6083 * contains results of option processing. We copy it in 6084 * another mp to save it for potentially influencing returning 6085 * it in T_CONN_CONN. 6086 */ 6087 if (tcr->OPT_length != 0) { /* there are resulting options */ 6088 conn_opts_mp = copyb(mp); 6089 if (!conn_opts_mp) { 6090 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6091 TSYSERR, ENOMEM); 6092 return; 6093 } 6094 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6095 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6096 /* 6097 * Note: 6098 * These resulting option negotiation can include any 6099 * end-to-end negotiation options but there no such 6100 * thing (yet?) in our TCP/IP. 6101 */ 6102 } 6103 } 6104 6105 /* call the non-TPI version */ 6106 error = tcp_do_connect(tcp->tcp_connp, sa, len, DB_CRED(mp), 6107 DB_CPID(mp)); 6108 if (error < 0) { 6109 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6110 } else if (error > 0) { 6111 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6112 } else { 6113 mp = mi_tpi_ok_ack_alloc(mp); 6114 } 6115 6116 /* 6117 * Note: Code below is the "failure" case 6118 */ 6119 /* return error ack and blow away saved option results if any */ 6120 connect_failed: 6121 if (mp != NULL) 6122 putnext(tcp->tcp_rq, mp); 6123 else { 6124 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6125 TSYSERR, ENOMEM); 6126 } 6127 } 6128 6129 /* 6130 * Handle connect to IPv4 destinations, including connections for AF_INET6 6131 * sockets connecting to IPv4 mapped IPv6 destinations. 6132 */ 6133 static int 6134 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6135 uint_t srcid, cred_t *cr, pid_t pid) 6136 { 6137 tcph_t *tcph; 6138 mblk_t *mp; 6139 ipaddr_t dstaddr = *dstaddrp; 6140 int32_t oldstate; 6141 uint16_t lport; 6142 int error = 0; 6143 tcp_stack_t *tcps = tcp->tcp_tcps; 6144 6145 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6146 6147 /* Check for attempt to connect to INADDR_ANY */ 6148 if (dstaddr == INADDR_ANY) { 6149 /* 6150 * SunOS 4.x and 4.3 BSD allow an application 6151 * to connect a TCP socket to INADDR_ANY. 6152 * When they do this, the kernel picks the 6153 * address of one interface and uses it 6154 * instead. The kernel usually ends up 6155 * picking the address of the loopback 6156 * interface. This is an undocumented feature. 6157 * However, we provide the same thing here 6158 * in order to have source and binary 6159 * compatibility with SunOS 4.x. 6160 * Update the T_CONN_REQ (sin/sin6) since it is used to 6161 * generate the T_CONN_CON. 6162 */ 6163 dstaddr = htonl(INADDR_LOOPBACK); 6164 *dstaddrp = dstaddr; 6165 } 6166 6167 /* Handle __sin6_src_id if socket not bound to an IP address */ 6168 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6169 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6170 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6171 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6172 tcp->tcp_ipha->ipha_src); 6173 } 6174 6175 /* 6176 * Don't let an endpoint connect to itself. Note that 6177 * the test here does not catch the case where the 6178 * source IP addr was left unspecified by the user. In 6179 * this case, the source addr is set in tcp_adapt_ire() 6180 * using the reply to the T_BIND message that we send 6181 * down to IP here and the check is repeated in tcp_rput_other. 6182 */ 6183 if (dstaddr == tcp->tcp_ipha->ipha_src && 6184 dstport == tcp->tcp_lport) { 6185 error = -TBADADDR; 6186 goto failed; 6187 } 6188 6189 tcp->tcp_ipha->ipha_dst = dstaddr; 6190 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6191 6192 /* 6193 * Massage a source route if any putting the first hop 6194 * in iph_dst. Compute a starting value for the checksum which 6195 * takes into account that the original iph_dst should be 6196 * included in the checksum but that ip will include the 6197 * first hop in the source route in the tcp checksum. 6198 */ 6199 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6200 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6201 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6202 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6203 if ((int)tcp->tcp_sum < 0) 6204 tcp->tcp_sum--; 6205 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6206 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6207 (tcp->tcp_sum >> 16)); 6208 tcph = tcp->tcp_tcph; 6209 *(uint16_t *)tcph->th_fport = dstport; 6210 tcp->tcp_fport = dstport; 6211 6212 oldstate = tcp->tcp_state; 6213 /* 6214 * At this point the remote destination address and remote port fields 6215 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6216 * have to see which state tcp was in so we can take apropriate action. 6217 */ 6218 if (oldstate == TCPS_IDLE) { 6219 /* 6220 * We support a quick connect capability here, allowing 6221 * clients to transition directly from IDLE to SYN_SENT 6222 * tcp_bindi will pick an unused port, insert the connection 6223 * in the bind hash and transition to BOUND state. 6224 */ 6225 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6226 tcp, B_TRUE); 6227 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6228 B_FALSE, B_FALSE); 6229 if (lport == 0) { 6230 error = -TNOADDR; 6231 goto failed; 6232 } 6233 } 6234 tcp->tcp_state = TCPS_SYN_SENT; 6235 6236 mp = allocb(sizeof (ire_t), BPRI_HI); 6237 if (mp == NULL) { 6238 tcp->tcp_state = oldstate; 6239 error = ENOMEM; 6240 goto failed; 6241 } 6242 6243 mp->b_wptr += sizeof (ire_t); 6244 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6245 tcp->tcp_hard_binding = 1; 6246 6247 /* 6248 * We need to make sure that the conn_recv is set to a non-null 6249 * value before we insert the conn_t into the classifier table. 6250 * This is to avoid a race with an incoming packet which does 6251 * an ipcl_classify(). 6252 */ 6253 tcp->tcp_connp->conn_recv = tcp_input; 6254 6255 if (tcp->tcp_family == AF_INET) { 6256 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6257 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6258 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE); 6259 } else { 6260 in6_addr_t v6src; 6261 if (tcp->tcp_ipversion == IPV4_VERSION) { 6262 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6263 } else { 6264 v6src = tcp->tcp_ip6h->ip6_src; 6265 } 6266 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6267 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6268 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6269 } 6270 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6271 tcp->tcp_active_open = 1; 6272 6273 6274 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6275 failed: 6276 /* return error ack and blow away saved option results if any */ 6277 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6278 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6279 return (error); 6280 } 6281 6282 /* 6283 * Handle connect to IPv6 destinations. 6284 */ 6285 static int 6286 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6287 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6288 { 6289 tcph_t *tcph; 6290 mblk_t *mp; 6291 ip6_rthdr_t *rth; 6292 int32_t oldstate; 6293 uint16_t lport; 6294 tcp_stack_t *tcps = tcp->tcp_tcps; 6295 int error = 0; 6296 conn_t *connp = tcp->tcp_connp; 6297 6298 ASSERT(tcp->tcp_family == AF_INET6); 6299 6300 /* 6301 * If we're here, it means that the destination address is a native 6302 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6303 * reason why it might not be IPv6 is if the socket was bound to an 6304 * IPv4-mapped IPv6 address. 6305 */ 6306 if (tcp->tcp_ipversion != IPV6_VERSION) { 6307 return (-TBADADDR); 6308 } 6309 6310 /* 6311 * Interpret a zero destination to mean loopback. 6312 * Update the T_CONN_REQ (sin/sin6) since it is used to 6313 * generate the T_CONN_CON. 6314 */ 6315 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6316 *dstaddrp = ipv6_loopback; 6317 } 6318 6319 /* Handle __sin6_src_id if socket not bound to an IP address */ 6320 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6321 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6322 connp->conn_zoneid, tcps->tcps_netstack); 6323 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6324 } 6325 6326 /* 6327 * Take care of the scope_id now and add ip6i_t 6328 * if ip6i_t is not already allocated through TCP 6329 * sticky options. At this point tcp_ip6h does not 6330 * have dst info, thus use dstaddrp. 6331 */ 6332 if (scope_id != 0 && 6333 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6334 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6335 ip6i_t *ip6i; 6336 6337 ipp->ipp_ifindex = scope_id; 6338 ip6i = (ip6i_t *)tcp->tcp_iphc; 6339 6340 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6341 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6342 /* Already allocated */ 6343 ip6i->ip6i_flags |= IP6I_IFINDEX; 6344 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6345 ipp->ipp_fields |= IPPF_SCOPE_ID; 6346 } else { 6347 int reterr; 6348 6349 ipp->ipp_fields |= IPPF_SCOPE_ID; 6350 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6351 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6352 reterr = tcp_build_hdrs(tcp); 6353 if (reterr != 0) 6354 goto failed; 6355 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6356 } 6357 } 6358 6359 /* 6360 * Don't let an endpoint connect to itself. Note that 6361 * the test here does not catch the case where the 6362 * source IP addr was left unspecified by the user. In 6363 * this case, the source addr is set in tcp_adapt_ire() 6364 * using the reply to the T_BIND message that we send 6365 * down to IP here and the check is repeated in tcp_rput_other. 6366 */ 6367 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6368 (dstport == tcp->tcp_lport)) { 6369 error = -TBADADDR; 6370 goto failed; 6371 } 6372 6373 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6374 tcp->tcp_remote_v6 = *dstaddrp; 6375 tcp->tcp_ip6h->ip6_vcf = 6376 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6377 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6378 6379 /* 6380 * Massage a routing header (if present) putting the first hop 6381 * in ip6_dst. Compute a starting value for the checksum which 6382 * takes into account that the original ip6_dst should be 6383 * included in the checksum but that ip will include the 6384 * first hop in the source route in the tcp checksum. 6385 */ 6386 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6387 if (rth != NULL) { 6388 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6389 tcps->tcps_netstack); 6390 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6391 (tcp->tcp_sum >> 16)); 6392 } else { 6393 tcp->tcp_sum = 0; 6394 } 6395 6396 tcph = tcp->tcp_tcph; 6397 *(uint16_t *)tcph->th_fport = dstport; 6398 tcp->tcp_fport = dstport; 6399 6400 oldstate = tcp->tcp_state; 6401 /* 6402 * At this point the remote destination address and remote port fields 6403 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6404 * have to see which state tcp was in so we can take apropriate action. 6405 */ 6406 if (oldstate == TCPS_IDLE) { 6407 /* 6408 * We support a quick connect capability here, allowing 6409 * clients to transition directly from IDLE to SYN_SENT 6410 * tcp_bindi will pick an unused port, insert the connection 6411 * in the bind hash and transition to BOUND state. 6412 */ 6413 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6414 tcp, B_TRUE); 6415 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6416 B_FALSE, B_FALSE); 6417 if (lport == 0) { 6418 error = -TNOADDR; 6419 goto failed; 6420 } 6421 } 6422 tcp->tcp_state = TCPS_SYN_SENT; 6423 6424 mp = allocb(sizeof (ire_t), BPRI_HI); 6425 if (mp != NULL) { 6426 in6_addr_t v6src; 6427 6428 mp->b_wptr += sizeof (ire_t); 6429 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6430 6431 tcp->tcp_hard_binding = 1; 6432 6433 /* 6434 * We need to make sure that the conn_recv is set to a non-null 6435 * value before we insert the conn_t into the classifier table. 6436 * This is to avoid a race with an incoming packet which does 6437 * an ipcl_classify(). 6438 */ 6439 tcp->tcp_connp->conn_recv = tcp_input; 6440 6441 if (tcp->tcp_ipversion == IPV4_VERSION) { 6442 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6443 } else { 6444 v6src = tcp->tcp_ip6h->ip6_src; 6445 } 6446 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6447 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6448 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6449 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6450 tcp->tcp_active_open = 1; 6451 6452 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6453 } 6454 /* Error case */ 6455 tcp->tcp_state = oldstate; 6456 error = ENOMEM; 6457 6458 failed: 6459 /* return error ack and blow away saved option results if any */ 6460 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6461 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6462 return (error); 6463 } 6464 6465 /* 6466 * We need a stream q for detached closing tcp connections 6467 * to use. Our client hereby indicates that this q is the 6468 * one to use. 6469 */ 6470 static void 6471 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6472 { 6473 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6474 queue_t *q = tcp->tcp_wq; 6475 tcp_stack_t *tcps = tcp->tcp_tcps; 6476 6477 #ifdef NS_DEBUG 6478 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6479 tcps->tcps_netstack->netstack_stackid); 6480 #endif 6481 mp->b_datap->db_type = M_IOCACK; 6482 iocp->ioc_count = 0; 6483 mutex_enter(&tcps->tcps_g_q_lock); 6484 if (tcps->tcps_g_q != NULL) { 6485 mutex_exit(&tcps->tcps_g_q_lock); 6486 iocp->ioc_error = EALREADY; 6487 } else { 6488 int error = 0; 6489 conn_t *connp = tcp->tcp_connp; 6490 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6491 6492 tcps->tcps_g_q = tcp->tcp_rq; 6493 mutex_exit(&tcps->tcps_g_q_lock); 6494 iocp->ioc_error = 0; 6495 iocp->ioc_rval = 0; 6496 /* 6497 * We are passing tcp_sticky_ipp as NULL 6498 * as it is not useful for tcp_default queue 6499 * 6500 * Set conn_recv just in case. 6501 */ 6502 tcp->tcp_connp->conn_recv = tcp_conn_request; 6503 6504 ASSERT(connp->conn_af_isv6); 6505 connp->conn_ulp = IPPROTO_TCP; 6506 6507 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6508 NULL || connp->conn_mac_exempt) { 6509 error = -TBADADDR; 6510 } else { 6511 connp->conn_srcv6 = ipv6_all_zeros; 6512 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6513 } 6514 6515 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6516 } 6517 qreply(q, mp); 6518 } 6519 6520 static int 6521 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6522 { 6523 tcp_t *ltcp = NULL; 6524 conn_t *connp; 6525 tcp_stack_t *tcps = tcp->tcp_tcps; 6526 6527 /* 6528 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6529 * when the stream is in BOUND state. Do not send a reset, 6530 * since the destination IP address is not valid, and it can 6531 * be the initialized value of all zeros (broadcast address). 6532 * 6533 * XXX There won't be any pending bind request to IP. 6534 */ 6535 if (tcp->tcp_state <= TCPS_BOUND) { 6536 if (tcp->tcp_debug) { 6537 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6538 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6539 } 6540 return (TOUTSTATE); 6541 } 6542 6543 6544 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6545 6546 /* 6547 * According to TPI, for non-listeners, ignore seqnum 6548 * and disconnect. 6549 * Following interpretation of -1 seqnum is historical 6550 * and implied TPI ? (TPI only states that for T_CONN_IND, 6551 * a valid seqnum should not be -1). 6552 * 6553 * -1 means disconnect everything 6554 * regardless even on a listener. 6555 */ 6556 6557 int old_state = tcp->tcp_state; 6558 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6559 6560 /* 6561 * The connection can't be on the tcp_time_wait_head list 6562 * since it is not detached. 6563 */ 6564 ASSERT(tcp->tcp_time_wait_next == NULL); 6565 ASSERT(tcp->tcp_time_wait_prev == NULL); 6566 ASSERT(tcp->tcp_time_wait_expire == 0); 6567 ltcp = NULL; 6568 /* 6569 * If it used to be a listener, check to make sure no one else 6570 * has taken the port before switching back to LISTEN state. 6571 */ 6572 if (tcp->tcp_ipversion == IPV4_VERSION) { 6573 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6574 tcp->tcp_ipha->ipha_src, 6575 tcp->tcp_connp->conn_zoneid, ipst); 6576 if (connp != NULL) 6577 ltcp = connp->conn_tcp; 6578 } else { 6579 /* Allow tcp_bound_if listeners? */ 6580 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6581 &tcp->tcp_ip6h->ip6_src, 0, 6582 tcp->tcp_connp->conn_zoneid, ipst); 6583 if (connp != NULL) 6584 ltcp = connp->conn_tcp; 6585 } 6586 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6587 tcp->tcp_state = TCPS_LISTEN; 6588 } else if (old_state > TCPS_BOUND) { 6589 tcp->tcp_conn_req_max = 0; 6590 tcp->tcp_state = TCPS_BOUND; 6591 } 6592 if (ltcp != NULL) 6593 CONN_DEC_REF(ltcp->tcp_connp); 6594 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6595 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6596 } else if (old_state == TCPS_ESTABLISHED || 6597 old_state == TCPS_CLOSE_WAIT) { 6598 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6599 } 6600 6601 if (tcp->tcp_fused) 6602 tcp_unfuse(tcp); 6603 6604 mutex_enter(&tcp->tcp_eager_lock); 6605 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6606 (tcp->tcp_conn_req_cnt_q != 0)) { 6607 tcp_eager_cleanup(tcp, 0); 6608 } 6609 mutex_exit(&tcp->tcp_eager_lock); 6610 6611 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6612 tcp->tcp_rnxt, TH_RST | TH_ACK); 6613 6614 tcp_reinit(tcp); 6615 6616 return (0); 6617 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6618 return (TBADSEQ); 6619 } 6620 return (0); 6621 } 6622 6623 /* 6624 * Our client hereby directs us to reject the connection request 6625 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6626 * of sending the appropriate RST, not an ICMP error. 6627 */ 6628 static void 6629 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6630 { 6631 t_scalar_t seqnum; 6632 int error; 6633 6634 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6635 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6636 tcp_err_ack(tcp, mp, TPROTO, 0); 6637 return; 6638 } 6639 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6640 error = tcp_disconnect_common(tcp, seqnum); 6641 if (error != 0) 6642 tcp_err_ack(tcp, mp, error, 0); 6643 else { 6644 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6645 /* Send M_FLUSH according to TPI */ 6646 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6647 } 6648 mp = mi_tpi_ok_ack_alloc(mp); 6649 if (mp) 6650 putnext(tcp->tcp_rq, mp); 6651 } 6652 } 6653 6654 /* 6655 * Diagnostic routine used to return a string associated with the tcp state. 6656 * Note that if the caller does not supply a buffer, it will use an internal 6657 * static string. This means that if multiple threads call this function at 6658 * the same time, output can be corrupted... Note also that this function 6659 * does not check the size of the supplied buffer. The caller has to make 6660 * sure that it is big enough. 6661 */ 6662 static char * 6663 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6664 { 6665 char buf1[30]; 6666 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6667 char *buf; 6668 char *cp; 6669 in6_addr_t local, remote; 6670 char local_addrbuf[INET6_ADDRSTRLEN]; 6671 char remote_addrbuf[INET6_ADDRSTRLEN]; 6672 6673 if (sup_buf != NULL) 6674 buf = sup_buf; 6675 else 6676 buf = priv_buf; 6677 6678 if (tcp == NULL) 6679 return ("NULL_TCP"); 6680 switch (tcp->tcp_state) { 6681 case TCPS_CLOSED: 6682 cp = "TCP_CLOSED"; 6683 break; 6684 case TCPS_IDLE: 6685 cp = "TCP_IDLE"; 6686 break; 6687 case TCPS_BOUND: 6688 cp = "TCP_BOUND"; 6689 break; 6690 case TCPS_LISTEN: 6691 cp = "TCP_LISTEN"; 6692 break; 6693 case TCPS_SYN_SENT: 6694 cp = "TCP_SYN_SENT"; 6695 break; 6696 case TCPS_SYN_RCVD: 6697 cp = "TCP_SYN_RCVD"; 6698 break; 6699 case TCPS_ESTABLISHED: 6700 cp = "TCP_ESTABLISHED"; 6701 break; 6702 case TCPS_CLOSE_WAIT: 6703 cp = "TCP_CLOSE_WAIT"; 6704 break; 6705 case TCPS_FIN_WAIT_1: 6706 cp = "TCP_FIN_WAIT_1"; 6707 break; 6708 case TCPS_CLOSING: 6709 cp = "TCP_CLOSING"; 6710 break; 6711 case TCPS_LAST_ACK: 6712 cp = "TCP_LAST_ACK"; 6713 break; 6714 case TCPS_FIN_WAIT_2: 6715 cp = "TCP_FIN_WAIT_2"; 6716 break; 6717 case TCPS_TIME_WAIT: 6718 cp = "TCP_TIME_WAIT"; 6719 break; 6720 default: 6721 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6722 cp = buf1; 6723 break; 6724 } 6725 switch (format) { 6726 case DISP_ADDR_AND_PORT: 6727 if (tcp->tcp_ipversion == IPV4_VERSION) { 6728 /* 6729 * Note that we use the remote address in the tcp_b 6730 * structure. This means that it will print out 6731 * the real destination address, not the next hop's 6732 * address if source routing is used. 6733 */ 6734 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6735 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6736 6737 } else { 6738 local = tcp->tcp_ip_src_v6; 6739 remote = tcp->tcp_remote_v6; 6740 } 6741 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6742 sizeof (local_addrbuf)); 6743 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6744 sizeof (remote_addrbuf)); 6745 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6746 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6747 ntohs(tcp->tcp_fport), cp); 6748 break; 6749 case DISP_PORT_ONLY: 6750 default: 6751 (void) mi_sprintf(buf, "[%u, %u] %s", 6752 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6753 break; 6754 } 6755 6756 return (buf); 6757 } 6758 6759 /* 6760 * Called via squeue to get on to eager's perimeter. It sends a 6761 * TH_RST if eager is in the fanout table. The listener wants the 6762 * eager to disappear either by means of tcp_eager_blowoff() or 6763 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6764 * called (via squeue) if the eager cannot be inserted in the 6765 * fanout table in tcp_conn_request(). 6766 */ 6767 /* ARGSUSED */ 6768 void 6769 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6770 { 6771 conn_t *econnp = (conn_t *)arg; 6772 tcp_t *eager = econnp->conn_tcp; 6773 tcp_t *listener = eager->tcp_listener; 6774 tcp_stack_t *tcps = eager->tcp_tcps; 6775 6776 /* 6777 * We could be called because listener is closing. Since 6778 * the eager is using listener's queue's, its not safe. 6779 * Better use the default queue just to send the TH_RST 6780 * out. 6781 */ 6782 ASSERT(tcps->tcps_g_q != NULL); 6783 eager->tcp_rq = tcps->tcps_g_q; 6784 eager->tcp_wq = WR(tcps->tcps_g_q); 6785 6786 /* 6787 * An eager's conn_fanout will be NULL if it's a duplicate 6788 * for an existing 4-tuples in the conn fanout table. 6789 * We don't want to send an RST out in such case. 6790 */ 6791 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6792 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6793 eager, eager->tcp_snxt, 0, TH_RST); 6794 } 6795 6796 /* We are here because listener wants this eager gone */ 6797 if (listener != NULL) { 6798 mutex_enter(&listener->tcp_eager_lock); 6799 tcp_eager_unlink(eager); 6800 if (eager->tcp_tconnind_started) { 6801 /* 6802 * The eager has sent a conn_ind up to the 6803 * listener but listener decides to close 6804 * instead. We need to drop the extra ref 6805 * placed on eager in tcp_rput_data() before 6806 * sending the conn_ind to listener. 6807 */ 6808 CONN_DEC_REF(econnp); 6809 } 6810 mutex_exit(&listener->tcp_eager_lock); 6811 CONN_DEC_REF(listener->tcp_connp); 6812 } 6813 6814 if (eager->tcp_state > TCPS_BOUND) 6815 tcp_close_detached(eager); 6816 } 6817 6818 /* 6819 * Reset any eager connection hanging off this listener marked 6820 * with 'seqnum' and then reclaim it's resources. 6821 */ 6822 static boolean_t 6823 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6824 { 6825 tcp_t *eager; 6826 mblk_t *mp; 6827 tcp_stack_t *tcps = listener->tcp_tcps; 6828 6829 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6830 eager = listener; 6831 mutex_enter(&listener->tcp_eager_lock); 6832 do { 6833 eager = eager->tcp_eager_next_q; 6834 if (eager == NULL) { 6835 mutex_exit(&listener->tcp_eager_lock); 6836 return (B_FALSE); 6837 } 6838 } while (eager->tcp_conn_req_seqnum != seqnum); 6839 6840 if (eager->tcp_closemp_used) { 6841 mutex_exit(&listener->tcp_eager_lock); 6842 return (B_TRUE); 6843 } 6844 eager->tcp_closemp_used = B_TRUE; 6845 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6846 CONN_INC_REF(eager->tcp_connp); 6847 mutex_exit(&listener->tcp_eager_lock); 6848 mp = &eager->tcp_closemp; 6849 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6850 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6851 return (B_TRUE); 6852 } 6853 6854 /* 6855 * Reset any eager connection hanging off this listener 6856 * and then reclaim it's resources. 6857 */ 6858 static void 6859 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6860 { 6861 tcp_t *eager; 6862 mblk_t *mp; 6863 tcp_stack_t *tcps = listener->tcp_tcps; 6864 6865 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6866 6867 if (!q0_only) { 6868 /* First cleanup q */ 6869 TCP_STAT(tcps, tcp_eager_blowoff_q); 6870 eager = listener->tcp_eager_next_q; 6871 while (eager != NULL) { 6872 if (!eager->tcp_closemp_used) { 6873 eager->tcp_closemp_used = B_TRUE; 6874 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6875 CONN_INC_REF(eager->tcp_connp); 6876 mp = &eager->tcp_closemp; 6877 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6878 tcp_eager_kill, eager->tcp_connp, 6879 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6880 } 6881 eager = eager->tcp_eager_next_q; 6882 } 6883 } 6884 /* Then cleanup q0 */ 6885 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6886 eager = listener->tcp_eager_next_q0; 6887 while (eager != listener) { 6888 if (!eager->tcp_closemp_used) { 6889 eager->tcp_closemp_used = B_TRUE; 6890 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6891 CONN_INC_REF(eager->tcp_connp); 6892 mp = &eager->tcp_closemp; 6893 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6894 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6895 SQTAG_TCP_EAGER_CLEANUP_Q0); 6896 } 6897 eager = eager->tcp_eager_next_q0; 6898 } 6899 } 6900 6901 /* 6902 * If we are an eager connection hanging off a listener that hasn't 6903 * formally accepted the connection yet, get off his list and blow off 6904 * any data that we have accumulated. 6905 */ 6906 static void 6907 tcp_eager_unlink(tcp_t *tcp) 6908 { 6909 tcp_t *listener = tcp->tcp_listener; 6910 6911 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6912 ASSERT(listener != NULL); 6913 if (tcp->tcp_eager_next_q0 != NULL) { 6914 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6915 6916 /* Remove the eager tcp from q0 */ 6917 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6918 tcp->tcp_eager_prev_q0; 6919 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6920 tcp->tcp_eager_next_q0; 6921 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6922 listener->tcp_conn_req_cnt_q0--; 6923 6924 tcp->tcp_eager_next_q0 = NULL; 6925 tcp->tcp_eager_prev_q0 = NULL; 6926 6927 /* 6928 * Take the eager out, if it is in the list of droppable 6929 * eagers. 6930 */ 6931 MAKE_UNDROPPABLE(tcp); 6932 6933 if (tcp->tcp_syn_rcvd_timeout != 0) { 6934 /* we have timed out before */ 6935 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6936 listener->tcp_syn_rcvd_timeout--; 6937 } 6938 } else { 6939 tcp_t **tcpp = &listener->tcp_eager_next_q; 6940 tcp_t *prev = NULL; 6941 6942 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6943 if (tcpp[0] == tcp) { 6944 if (listener->tcp_eager_last_q == tcp) { 6945 /* 6946 * If we are unlinking the last 6947 * element on the list, adjust 6948 * tail pointer. Set tail pointer 6949 * to nil when list is empty. 6950 */ 6951 ASSERT(tcp->tcp_eager_next_q == NULL); 6952 if (listener->tcp_eager_last_q == 6953 listener->tcp_eager_next_q) { 6954 listener->tcp_eager_last_q = 6955 NULL; 6956 } else { 6957 /* 6958 * We won't get here if there 6959 * is only one eager in the 6960 * list. 6961 */ 6962 ASSERT(prev != NULL); 6963 listener->tcp_eager_last_q = 6964 prev; 6965 } 6966 } 6967 tcpp[0] = tcp->tcp_eager_next_q; 6968 tcp->tcp_eager_next_q = NULL; 6969 tcp->tcp_eager_last_q = NULL; 6970 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6971 listener->tcp_conn_req_cnt_q--; 6972 break; 6973 } 6974 prev = tcpp[0]; 6975 } 6976 } 6977 tcp->tcp_listener = NULL; 6978 } 6979 6980 /* Shorthand to generate and send TPI error acks to our client */ 6981 static void 6982 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6983 { 6984 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6985 putnext(tcp->tcp_rq, mp); 6986 } 6987 6988 /* Shorthand to generate and send TPI error acks to our client */ 6989 static void 6990 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6991 int t_error, int sys_error) 6992 { 6993 struct T_error_ack *teackp; 6994 6995 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6996 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6997 teackp = (struct T_error_ack *)mp->b_rptr; 6998 teackp->ERROR_prim = primitive; 6999 teackp->TLI_error = t_error; 7000 teackp->UNIX_error = sys_error; 7001 putnext(tcp->tcp_rq, mp); 7002 } 7003 } 7004 7005 /* 7006 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7007 * but instead the code relies on: 7008 * - the fact that the address of the array and its size never changes 7009 * - the atomic assignment of the elements of the array 7010 */ 7011 /* ARGSUSED */ 7012 static int 7013 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7014 { 7015 int i; 7016 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7017 7018 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7019 if (tcps->tcps_g_epriv_ports[i] != 0) 7020 (void) mi_mpprintf(mp, "%d ", 7021 tcps->tcps_g_epriv_ports[i]); 7022 } 7023 return (0); 7024 } 7025 7026 /* 7027 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7028 * threads from changing it at the same time. 7029 */ 7030 /* ARGSUSED */ 7031 static int 7032 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7033 cred_t *cr) 7034 { 7035 long new_value; 7036 int i; 7037 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7038 7039 /* 7040 * Fail the request if the new value does not lie within the 7041 * port number limits. 7042 */ 7043 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7044 new_value <= 0 || new_value >= 65536) { 7045 return (EINVAL); 7046 } 7047 7048 mutex_enter(&tcps->tcps_epriv_port_lock); 7049 /* Check if the value is already in the list */ 7050 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7051 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7052 mutex_exit(&tcps->tcps_epriv_port_lock); 7053 return (EEXIST); 7054 } 7055 } 7056 /* Find an empty slot */ 7057 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7058 if (tcps->tcps_g_epriv_ports[i] == 0) 7059 break; 7060 } 7061 if (i == tcps->tcps_g_num_epriv_ports) { 7062 mutex_exit(&tcps->tcps_epriv_port_lock); 7063 return (EOVERFLOW); 7064 } 7065 /* Set the new value */ 7066 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7067 mutex_exit(&tcps->tcps_epriv_port_lock); 7068 return (0); 7069 } 7070 7071 /* 7072 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7073 * threads from changing it at the same time. 7074 */ 7075 /* ARGSUSED */ 7076 static int 7077 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7078 cred_t *cr) 7079 { 7080 long new_value; 7081 int i; 7082 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7083 7084 /* 7085 * Fail the request if the new value does not lie within the 7086 * port number limits. 7087 */ 7088 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7089 new_value >= 65536) { 7090 return (EINVAL); 7091 } 7092 7093 mutex_enter(&tcps->tcps_epriv_port_lock); 7094 /* Check that the value is already in the list */ 7095 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7096 if (tcps->tcps_g_epriv_ports[i] == new_value) 7097 break; 7098 } 7099 if (i == tcps->tcps_g_num_epriv_ports) { 7100 mutex_exit(&tcps->tcps_epriv_port_lock); 7101 return (ESRCH); 7102 } 7103 /* Clear the value */ 7104 tcps->tcps_g_epriv_ports[i] = 0; 7105 mutex_exit(&tcps->tcps_epriv_port_lock); 7106 return (0); 7107 } 7108 7109 /* Return the TPI/TLI equivalent of our current tcp_state */ 7110 static int 7111 tcp_tpistate(tcp_t *tcp) 7112 { 7113 switch (tcp->tcp_state) { 7114 case TCPS_IDLE: 7115 return (TS_UNBND); 7116 case TCPS_LISTEN: 7117 /* 7118 * Return whether there are outstanding T_CONN_IND waiting 7119 * for the matching T_CONN_RES. Therefore don't count q0. 7120 */ 7121 if (tcp->tcp_conn_req_cnt_q > 0) 7122 return (TS_WRES_CIND); 7123 else 7124 return (TS_IDLE); 7125 case TCPS_BOUND: 7126 return (TS_IDLE); 7127 case TCPS_SYN_SENT: 7128 return (TS_WCON_CREQ); 7129 case TCPS_SYN_RCVD: 7130 /* 7131 * Note: assumption: this has to the active open SYN_RCVD. 7132 * The passive instance is detached in SYN_RCVD stage of 7133 * incoming connection processing so we cannot get request 7134 * for T_info_ack on it. 7135 */ 7136 return (TS_WACK_CRES); 7137 case TCPS_ESTABLISHED: 7138 return (TS_DATA_XFER); 7139 case TCPS_CLOSE_WAIT: 7140 return (TS_WREQ_ORDREL); 7141 case TCPS_FIN_WAIT_1: 7142 return (TS_WIND_ORDREL); 7143 case TCPS_FIN_WAIT_2: 7144 return (TS_WIND_ORDREL); 7145 7146 case TCPS_CLOSING: 7147 case TCPS_LAST_ACK: 7148 case TCPS_TIME_WAIT: 7149 case TCPS_CLOSED: 7150 /* 7151 * Following TS_WACK_DREQ7 is a rendition of "not 7152 * yet TS_IDLE" TPI state. There is no best match to any 7153 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7154 * choose a value chosen that will map to TLI/XTI level 7155 * state of TSTATECHNG (state is process of changing) which 7156 * captures what this dummy state represents. 7157 */ 7158 return (TS_WACK_DREQ7); 7159 default: 7160 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7161 tcp->tcp_state, tcp_display(tcp, NULL, 7162 DISP_PORT_ONLY)); 7163 return (TS_UNBND); 7164 } 7165 } 7166 7167 static void 7168 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7169 { 7170 tcp_stack_t *tcps = tcp->tcp_tcps; 7171 7172 if (tcp->tcp_family == AF_INET6) 7173 *tia = tcp_g_t_info_ack_v6; 7174 else 7175 *tia = tcp_g_t_info_ack; 7176 tia->CURRENT_state = tcp_tpistate(tcp); 7177 tia->OPT_size = tcp_max_optsize; 7178 if (tcp->tcp_mss == 0) { 7179 /* Not yet set - tcp_open does not set mss */ 7180 if (tcp->tcp_ipversion == IPV4_VERSION) 7181 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7182 else 7183 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7184 } else { 7185 tia->TIDU_size = tcp->tcp_mss; 7186 } 7187 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7188 } 7189 7190 static void 7191 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7192 t_uscalar_t cap_bits1) 7193 { 7194 tcap->CAP_bits1 = 0; 7195 7196 if (cap_bits1 & TC1_INFO) { 7197 tcp_copy_info(&tcap->INFO_ack, tcp); 7198 tcap->CAP_bits1 |= TC1_INFO; 7199 } 7200 7201 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7202 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7203 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7204 } 7205 7206 } 7207 7208 /* 7209 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7210 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7211 * tcp_g_t_info_ack. The current state of the stream is copied from 7212 * tcp_state. 7213 */ 7214 static void 7215 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7216 { 7217 t_uscalar_t cap_bits1; 7218 struct T_capability_ack *tcap; 7219 7220 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7221 freemsg(mp); 7222 return; 7223 } 7224 7225 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7226 7227 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7228 mp->b_datap->db_type, T_CAPABILITY_ACK); 7229 if (mp == NULL) 7230 return; 7231 7232 tcap = (struct T_capability_ack *)mp->b_rptr; 7233 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7234 7235 putnext(tcp->tcp_rq, mp); 7236 } 7237 7238 /* 7239 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7240 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7241 * The current state of the stream is copied from tcp_state. 7242 */ 7243 static void 7244 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7245 { 7246 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7247 T_INFO_ACK); 7248 if (!mp) { 7249 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7250 return; 7251 } 7252 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7253 putnext(tcp->tcp_rq, mp); 7254 } 7255 7256 /* Respond to the TPI addr request */ 7257 static void 7258 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7259 { 7260 sin_t *sin; 7261 mblk_t *ackmp; 7262 struct T_addr_ack *taa; 7263 7264 /* Make it large enough for worst case */ 7265 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7266 2 * sizeof (sin6_t), 1); 7267 if (ackmp == NULL) { 7268 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7269 return; 7270 } 7271 7272 if (tcp->tcp_ipversion == IPV6_VERSION) { 7273 tcp_addr_req_ipv6(tcp, ackmp); 7274 return; 7275 } 7276 taa = (struct T_addr_ack *)ackmp->b_rptr; 7277 7278 bzero(taa, sizeof (struct T_addr_ack)); 7279 ackmp->b_wptr = (uchar_t *)&taa[1]; 7280 7281 taa->PRIM_type = T_ADDR_ACK; 7282 ackmp->b_datap->db_type = M_PCPROTO; 7283 7284 /* 7285 * Note: Following code assumes 32 bit alignment of basic 7286 * data structures like sin_t and struct T_addr_ack. 7287 */ 7288 if (tcp->tcp_state >= TCPS_BOUND) { 7289 /* 7290 * Fill in local address 7291 */ 7292 taa->LOCADDR_length = sizeof (sin_t); 7293 taa->LOCADDR_offset = sizeof (*taa); 7294 7295 sin = (sin_t *)&taa[1]; 7296 7297 /* Fill zeroes and then intialize non-zero fields */ 7298 *sin = sin_null; 7299 7300 sin->sin_family = AF_INET; 7301 7302 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7303 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7304 7305 ackmp->b_wptr = (uchar_t *)&sin[1]; 7306 7307 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7308 /* 7309 * Fill in Remote address 7310 */ 7311 taa->REMADDR_length = sizeof (sin_t); 7312 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7313 taa->LOCADDR_length); 7314 7315 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7316 *sin = sin_null; 7317 sin->sin_family = AF_INET; 7318 sin->sin_addr.s_addr = tcp->tcp_remote; 7319 sin->sin_port = tcp->tcp_fport; 7320 7321 ackmp->b_wptr = (uchar_t *)&sin[1]; 7322 } 7323 } 7324 putnext(tcp->tcp_rq, ackmp); 7325 } 7326 7327 /* Assumes that tcp_addr_req gets enough space and alignment */ 7328 static void 7329 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7330 { 7331 sin6_t *sin6; 7332 struct T_addr_ack *taa; 7333 7334 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7335 ASSERT(OK_32PTR(ackmp->b_rptr)); 7336 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7337 2 * sizeof (sin6_t)); 7338 7339 taa = (struct T_addr_ack *)ackmp->b_rptr; 7340 7341 bzero(taa, sizeof (struct T_addr_ack)); 7342 ackmp->b_wptr = (uchar_t *)&taa[1]; 7343 7344 taa->PRIM_type = T_ADDR_ACK; 7345 ackmp->b_datap->db_type = M_PCPROTO; 7346 7347 /* 7348 * Note: Following code assumes 32 bit alignment of basic 7349 * data structures like sin6_t and struct T_addr_ack. 7350 */ 7351 if (tcp->tcp_state >= TCPS_BOUND) { 7352 /* 7353 * Fill in local address 7354 */ 7355 taa->LOCADDR_length = sizeof (sin6_t); 7356 taa->LOCADDR_offset = sizeof (*taa); 7357 7358 sin6 = (sin6_t *)&taa[1]; 7359 *sin6 = sin6_null; 7360 7361 sin6->sin6_family = AF_INET6; 7362 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7363 sin6->sin6_port = tcp->tcp_lport; 7364 7365 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7366 7367 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7368 /* 7369 * Fill in Remote address 7370 */ 7371 taa->REMADDR_length = sizeof (sin6_t); 7372 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7373 taa->LOCADDR_length); 7374 7375 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7376 *sin6 = sin6_null; 7377 sin6->sin6_family = AF_INET6; 7378 sin6->sin6_flowinfo = 7379 tcp->tcp_ip6h->ip6_vcf & 7380 ~IPV6_VERS_AND_FLOW_MASK; 7381 sin6->sin6_addr = tcp->tcp_remote_v6; 7382 sin6->sin6_port = tcp->tcp_fport; 7383 7384 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7385 } 7386 } 7387 putnext(tcp->tcp_rq, ackmp); 7388 } 7389 7390 /* 7391 * Handle reinitialization of a tcp structure. 7392 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7393 */ 7394 static void 7395 tcp_reinit(tcp_t *tcp) 7396 { 7397 mblk_t *mp; 7398 int err; 7399 tcp_stack_t *tcps = tcp->tcp_tcps; 7400 7401 TCP_STAT(tcps, tcp_reinit_calls); 7402 7403 /* tcp_reinit should never be called for detached tcp_t's */ 7404 ASSERT(tcp->tcp_listener == NULL); 7405 ASSERT((tcp->tcp_family == AF_INET && 7406 tcp->tcp_ipversion == IPV4_VERSION) || 7407 (tcp->tcp_family == AF_INET6 && 7408 (tcp->tcp_ipversion == IPV4_VERSION || 7409 tcp->tcp_ipversion == IPV6_VERSION))); 7410 7411 /* Cancel outstanding timers */ 7412 tcp_timers_stop(tcp); 7413 7414 /* 7415 * Reset everything in the state vector, after updating global 7416 * MIB data from instance counters. 7417 */ 7418 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7419 tcp->tcp_ibsegs = 0; 7420 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7421 tcp->tcp_obsegs = 0; 7422 7423 tcp_close_mpp(&tcp->tcp_xmit_head); 7424 if (tcp->tcp_snd_zcopy_aware) 7425 tcp_zcopy_notify(tcp); 7426 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7427 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7428 mutex_enter(&tcp->tcp_non_sq_lock); 7429 if (tcp->tcp_flow_stopped && 7430 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7431 tcp_clrqfull(tcp); 7432 } 7433 mutex_exit(&tcp->tcp_non_sq_lock); 7434 tcp_close_mpp(&tcp->tcp_reass_head); 7435 tcp->tcp_reass_tail = NULL; 7436 if (tcp->tcp_rcv_list != NULL) { 7437 /* Free b_next chain */ 7438 tcp_close_mpp(&tcp->tcp_rcv_list); 7439 tcp->tcp_rcv_last_head = NULL; 7440 tcp->tcp_rcv_last_tail = NULL; 7441 tcp->tcp_rcv_cnt = 0; 7442 } 7443 tcp->tcp_rcv_last_tail = NULL; 7444 7445 if ((mp = tcp->tcp_urp_mp) != NULL) { 7446 freemsg(mp); 7447 tcp->tcp_urp_mp = NULL; 7448 } 7449 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7450 freemsg(mp); 7451 tcp->tcp_urp_mark_mp = NULL; 7452 } 7453 if (tcp->tcp_fused_sigurg_mp != NULL) { 7454 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7455 freeb(tcp->tcp_fused_sigurg_mp); 7456 tcp->tcp_fused_sigurg_mp = NULL; 7457 } 7458 if (tcp->tcp_ordrel_mp != NULL) { 7459 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7460 freeb(tcp->tcp_ordrel_mp); 7461 tcp->tcp_ordrel_mp = NULL; 7462 } 7463 7464 /* 7465 * Following is a union with two members which are 7466 * identical types and size so the following cleanup 7467 * is enough. 7468 */ 7469 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7470 7471 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7472 7473 /* 7474 * The connection can't be on the tcp_time_wait_head list 7475 * since it is not detached. 7476 */ 7477 ASSERT(tcp->tcp_time_wait_next == NULL); 7478 ASSERT(tcp->tcp_time_wait_prev == NULL); 7479 ASSERT(tcp->tcp_time_wait_expire == 0); 7480 7481 if (tcp->tcp_kssl_pending) { 7482 tcp->tcp_kssl_pending = B_FALSE; 7483 7484 /* Don't reset if the initialized by bind. */ 7485 if (tcp->tcp_kssl_ent != NULL) { 7486 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7487 KSSL_NO_PROXY); 7488 } 7489 } 7490 if (tcp->tcp_kssl_ctx != NULL) { 7491 kssl_release_ctx(tcp->tcp_kssl_ctx); 7492 tcp->tcp_kssl_ctx = NULL; 7493 } 7494 7495 /* 7496 * Reset/preserve other values 7497 */ 7498 tcp_reinit_values(tcp); 7499 ipcl_hash_remove(tcp->tcp_connp); 7500 conn_delete_ire(tcp->tcp_connp, NULL); 7501 tcp_ipsec_cleanup(tcp); 7502 7503 if (tcp->tcp_conn_req_max != 0) { 7504 /* 7505 * This is the case when a TLI program uses the same 7506 * transport end point to accept a connection. This 7507 * makes the TCP both a listener and acceptor. When 7508 * this connection is closed, we need to set the state 7509 * back to TCPS_LISTEN. Make sure that the eager list 7510 * is reinitialized. 7511 * 7512 * Note that this stream is still bound to the four 7513 * tuples of the previous connection in IP. If a new 7514 * SYN with different foreign address comes in, IP will 7515 * not find it and will send it to the global queue. In 7516 * the global queue, TCP will do a tcp_lookup_listener() 7517 * to find this stream. This works because this stream 7518 * is only removed from connected hash. 7519 * 7520 */ 7521 tcp->tcp_state = TCPS_LISTEN; 7522 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7523 tcp->tcp_eager_next_drop_q0 = tcp; 7524 tcp->tcp_eager_prev_drop_q0 = tcp; 7525 tcp->tcp_connp->conn_recv = tcp_conn_request; 7526 if (tcp->tcp_family == AF_INET6) { 7527 ASSERT(tcp->tcp_connp->conn_af_isv6); 7528 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7529 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7530 } else { 7531 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7532 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7533 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7534 } 7535 } else { 7536 tcp->tcp_state = TCPS_BOUND; 7537 } 7538 7539 /* 7540 * Initialize to default values 7541 * Can't fail since enough header template space already allocated 7542 * at open(). 7543 */ 7544 err = tcp_init_values(tcp); 7545 ASSERT(err == 0); 7546 /* Restore state in tcp_tcph */ 7547 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7548 if (tcp->tcp_ipversion == IPV4_VERSION) 7549 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7550 else 7551 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7552 /* 7553 * Copy of the src addr. in tcp_t is needed in tcp_t 7554 * since the lookup funcs can only lookup on tcp_t 7555 */ 7556 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7557 7558 ASSERT(tcp->tcp_ptpbhn != NULL); 7559 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7560 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7561 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7562 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7563 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7564 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7565 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7566 } 7567 7568 /* 7569 * Force values to zero that need be zero. 7570 * Do not touch values asociated with the BOUND or LISTEN state 7571 * since the connection will end up in that state after the reinit. 7572 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7573 * structure! 7574 */ 7575 static void 7576 tcp_reinit_values(tcp) 7577 tcp_t *tcp; 7578 { 7579 tcp_stack_t *tcps = tcp->tcp_tcps; 7580 7581 #ifndef lint 7582 #define DONTCARE(x) 7583 #define PRESERVE(x) 7584 #else 7585 #define DONTCARE(x) ((x) = (x)) 7586 #define PRESERVE(x) ((x) = (x)) 7587 #endif /* lint */ 7588 7589 PRESERVE(tcp->tcp_bind_hash_port); 7590 PRESERVE(tcp->tcp_bind_hash); 7591 PRESERVE(tcp->tcp_ptpbhn); 7592 PRESERVE(tcp->tcp_acceptor_hash); 7593 PRESERVE(tcp->tcp_ptpahn); 7594 7595 /* Should be ASSERT NULL on these with new code! */ 7596 ASSERT(tcp->tcp_time_wait_next == NULL); 7597 ASSERT(tcp->tcp_time_wait_prev == NULL); 7598 ASSERT(tcp->tcp_time_wait_expire == 0); 7599 PRESERVE(tcp->tcp_state); 7600 PRESERVE(tcp->tcp_rq); 7601 PRESERVE(tcp->tcp_wq); 7602 7603 ASSERT(tcp->tcp_xmit_head == NULL); 7604 ASSERT(tcp->tcp_xmit_last == NULL); 7605 ASSERT(tcp->tcp_unsent == 0); 7606 ASSERT(tcp->tcp_xmit_tail == NULL); 7607 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7608 7609 tcp->tcp_snxt = 0; /* Displayed in mib */ 7610 tcp->tcp_suna = 0; /* Displayed in mib */ 7611 tcp->tcp_swnd = 0; 7612 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7613 7614 ASSERT(tcp->tcp_ibsegs == 0); 7615 ASSERT(tcp->tcp_obsegs == 0); 7616 7617 if (tcp->tcp_iphc != NULL) { 7618 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7619 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7620 } 7621 7622 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7623 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7624 DONTCARE(tcp->tcp_ipha); 7625 DONTCARE(tcp->tcp_ip6h); 7626 DONTCARE(tcp->tcp_ip_hdr_len); 7627 DONTCARE(tcp->tcp_tcph); 7628 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7629 tcp->tcp_valid_bits = 0; 7630 7631 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7632 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7633 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7634 tcp->tcp_last_rcv_lbolt = 0; 7635 7636 tcp->tcp_init_cwnd = 0; 7637 7638 tcp->tcp_urp_last_valid = 0; 7639 tcp->tcp_hard_binding = 0; 7640 tcp->tcp_hard_bound = 0; 7641 PRESERVE(tcp->tcp_cred); 7642 PRESERVE(tcp->tcp_cpid); 7643 PRESERVE(tcp->tcp_open_time); 7644 PRESERVE(tcp->tcp_exclbind); 7645 7646 tcp->tcp_fin_acked = 0; 7647 tcp->tcp_fin_rcvd = 0; 7648 tcp->tcp_fin_sent = 0; 7649 tcp->tcp_ordrel_done = 0; 7650 7651 tcp->tcp_debug = 0; 7652 tcp->tcp_dontroute = 0; 7653 tcp->tcp_broadcast = 0; 7654 7655 tcp->tcp_useloopback = 0; 7656 tcp->tcp_reuseaddr = 0; 7657 tcp->tcp_oobinline = 0; 7658 tcp->tcp_dgram_errind = 0; 7659 7660 tcp->tcp_detached = 0; 7661 tcp->tcp_bind_pending = 0; 7662 tcp->tcp_unbind_pending = 0; 7663 7664 tcp->tcp_snd_ws_ok = B_FALSE; 7665 tcp->tcp_snd_ts_ok = B_FALSE; 7666 tcp->tcp_linger = 0; 7667 tcp->tcp_ka_enabled = 0; 7668 tcp->tcp_zero_win_probe = 0; 7669 7670 tcp->tcp_loopback = 0; 7671 tcp->tcp_refuse = 0; 7672 tcp->tcp_localnet = 0; 7673 tcp->tcp_syn_defense = 0; 7674 tcp->tcp_set_timer = 0; 7675 7676 tcp->tcp_active_open = 0; 7677 tcp->tcp_rexmit = B_FALSE; 7678 tcp->tcp_xmit_zc_clean = B_FALSE; 7679 7680 tcp->tcp_snd_sack_ok = B_FALSE; 7681 PRESERVE(tcp->tcp_recvdstaddr); 7682 tcp->tcp_hwcksum = B_FALSE; 7683 7684 tcp->tcp_ire_ill_check_done = B_FALSE; 7685 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7686 7687 tcp->tcp_mdt = B_FALSE; 7688 tcp->tcp_mdt_hdr_head = 0; 7689 tcp->tcp_mdt_hdr_tail = 0; 7690 7691 tcp->tcp_conn_def_q0 = 0; 7692 tcp->tcp_ip_forward_progress = B_FALSE; 7693 tcp->tcp_anon_priv_bind = 0; 7694 tcp->tcp_ecn_ok = B_FALSE; 7695 7696 tcp->tcp_cwr = B_FALSE; 7697 tcp->tcp_ecn_echo_on = B_FALSE; 7698 7699 if (tcp->tcp_sack_info != NULL) { 7700 if (tcp->tcp_notsack_list != NULL) { 7701 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7702 } 7703 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7704 tcp->tcp_sack_info = NULL; 7705 } 7706 7707 tcp->tcp_rcv_ws = 0; 7708 tcp->tcp_snd_ws = 0; 7709 tcp->tcp_ts_recent = 0; 7710 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7711 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7712 tcp->tcp_if_mtu = 0; 7713 7714 ASSERT(tcp->tcp_reass_head == NULL); 7715 ASSERT(tcp->tcp_reass_tail == NULL); 7716 7717 tcp->tcp_cwnd_cnt = 0; 7718 7719 ASSERT(tcp->tcp_rcv_list == NULL); 7720 ASSERT(tcp->tcp_rcv_last_head == NULL); 7721 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7722 ASSERT(tcp->tcp_rcv_cnt == 0); 7723 7724 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7725 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7726 tcp->tcp_csuna = 0; 7727 7728 tcp->tcp_rto = 0; /* Displayed in MIB */ 7729 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7730 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7731 tcp->tcp_rtt_update = 0; 7732 7733 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7734 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7735 7736 tcp->tcp_rack = 0; /* Displayed in mib */ 7737 tcp->tcp_rack_cnt = 0; 7738 tcp->tcp_rack_cur_max = 0; 7739 tcp->tcp_rack_abs_max = 0; 7740 7741 tcp->tcp_max_swnd = 0; 7742 7743 ASSERT(tcp->tcp_listener == NULL); 7744 7745 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7746 7747 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7748 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7749 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7750 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7751 7752 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7753 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7754 PRESERVE(tcp->tcp_conn_req_max); 7755 PRESERVE(tcp->tcp_conn_req_seqnum); 7756 7757 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7758 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7759 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7760 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7761 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7762 7763 tcp->tcp_lingertime = 0; 7764 7765 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7766 ASSERT(tcp->tcp_urp_mp == NULL); 7767 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7768 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7769 7770 ASSERT(tcp->tcp_eager_next_q == NULL); 7771 ASSERT(tcp->tcp_eager_last_q == NULL); 7772 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7773 tcp->tcp_eager_prev_q0 == NULL) || 7774 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7775 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7776 7777 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7778 tcp->tcp_eager_prev_drop_q0 == NULL) || 7779 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7780 7781 tcp->tcp_client_errno = 0; 7782 7783 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7784 7785 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7786 7787 PRESERVE(tcp->tcp_bound_source_v6); 7788 tcp->tcp_last_sent_len = 0; 7789 tcp->tcp_dupack_cnt = 0; 7790 7791 tcp->tcp_fport = 0; /* Displayed in MIB */ 7792 PRESERVE(tcp->tcp_lport); 7793 7794 PRESERVE(tcp->tcp_acceptor_lockp); 7795 7796 ASSERT(tcp->tcp_ordrel_mp == NULL); 7797 PRESERVE(tcp->tcp_acceptor_id); 7798 DONTCARE(tcp->tcp_ipsec_overhead); 7799 7800 PRESERVE(tcp->tcp_family); 7801 if (tcp->tcp_family == AF_INET6) { 7802 tcp->tcp_ipversion = IPV6_VERSION; 7803 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7804 } else { 7805 tcp->tcp_ipversion = IPV4_VERSION; 7806 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7807 } 7808 7809 tcp->tcp_bound_if = 0; 7810 tcp->tcp_ipv6_recvancillary = 0; 7811 tcp->tcp_recvifindex = 0; 7812 tcp->tcp_recvhops = 0; 7813 tcp->tcp_closed = 0; 7814 tcp->tcp_cleandeathtag = 0; 7815 if (tcp->tcp_hopopts != NULL) { 7816 mi_free(tcp->tcp_hopopts); 7817 tcp->tcp_hopopts = NULL; 7818 tcp->tcp_hopoptslen = 0; 7819 } 7820 ASSERT(tcp->tcp_hopoptslen == 0); 7821 if (tcp->tcp_dstopts != NULL) { 7822 mi_free(tcp->tcp_dstopts); 7823 tcp->tcp_dstopts = NULL; 7824 tcp->tcp_dstoptslen = 0; 7825 } 7826 ASSERT(tcp->tcp_dstoptslen == 0); 7827 if (tcp->tcp_rtdstopts != NULL) { 7828 mi_free(tcp->tcp_rtdstopts); 7829 tcp->tcp_rtdstopts = NULL; 7830 tcp->tcp_rtdstoptslen = 0; 7831 } 7832 ASSERT(tcp->tcp_rtdstoptslen == 0); 7833 if (tcp->tcp_rthdr != NULL) { 7834 mi_free(tcp->tcp_rthdr); 7835 tcp->tcp_rthdr = NULL; 7836 tcp->tcp_rthdrlen = 0; 7837 } 7838 ASSERT(tcp->tcp_rthdrlen == 0); 7839 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7840 7841 /* Reset fusion-related fields */ 7842 tcp->tcp_fused = B_FALSE; 7843 tcp->tcp_unfusable = B_FALSE; 7844 tcp->tcp_fused_sigurg = B_FALSE; 7845 tcp->tcp_direct_sockfs = B_FALSE; 7846 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7847 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7848 tcp->tcp_loopback_peer = NULL; 7849 tcp->tcp_fuse_rcv_hiwater = 0; 7850 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7851 tcp->tcp_fuse_rcv_unread_cnt = 0; 7852 7853 tcp->tcp_lso = B_FALSE; 7854 7855 tcp->tcp_in_ack_unsent = 0; 7856 tcp->tcp_cork = B_FALSE; 7857 tcp->tcp_tconnind_started = B_FALSE; 7858 7859 PRESERVE(tcp->tcp_squeue_bytes); 7860 7861 ASSERT(tcp->tcp_kssl_ctx == NULL); 7862 ASSERT(!tcp->tcp_kssl_pending); 7863 PRESERVE(tcp->tcp_kssl_ent); 7864 7865 /* Sodirect */ 7866 tcp->tcp_sodirect = NULL; 7867 7868 tcp->tcp_closemp_used = B_FALSE; 7869 7870 PRESERVE(tcp->tcp_rsrv_mp); 7871 PRESERVE(tcp->tcp_rsrv_mp_lock); 7872 7873 #ifdef DEBUG 7874 DONTCARE(tcp->tcmp_stk[0]); 7875 #endif 7876 7877 PRESERVE(tcp->tcp_connid); 7878 7879 7880 #undef DONTCARE 7881 #undef PRESERVE 7882 } 7883 7884 /* 7885 * Allocate necessary resources and initialize state vector. 7886 * Guaranteed not to fail so that when an error is returned, 7887 * the caller doesn't need to do any additional cleanup. 7888 */ 7889 int 7890 tcp_init(tcp_t *tcp, queue_t *q) 7891 { 7892 int err; 7893 7894 tcp->tcp_rq = q; 7895 tcp->tcp_wq = WR(q); 7896 tcp->tcp_state = TCPS_IDLE; 7897 if ((err = tcp_init_values(tcp)) != 0) 7898 tcp_timers_stop(tcp); 7899 return (err); 7900 } 7901 7902 static int 7903 tcp_init_values(tcp_t *tcp) 7904 { 7905 int err; 7906 tcp_stack_t *tcps = tcp->tcp_tcps; 7907 7908 ASSERT((tcp->tcp_family == AF_INET && 7909 tcp->tcp_ipversion == IPV4_VERSION) || 7910 (tcp->tcp_family == AF_INET6 && 7911 (tcp->tcp_ipversion == IPV4_VERSION || 7912 tcp->tcp_ipversion == IPV6_VERSION))); 7913 7914 /* 7915 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7916 * will be close to tcp_rexmit_interval_initial. By doing this, we 7917 * allow the algorithm to adjust slowly to large fluctuations of RTT 7918 * during first few transmissions of a connection as seen in slow 7919 * links. 7920 */ 7921 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7922 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7923 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7924 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7925 tcps->tcps_conn_grace_period; 7926 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7927 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7928 tcp->tcp_timer_backoff = 0; 7929 tcp->tcp_ms_we_have_waited = 0; 7930 tcp->tcp_last_recv_time = lbolt; 7931 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7932 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7933 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7934 7935 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7936 7937 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7938 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7939 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7940 /* 7941 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7942 * passive open. 7943 */ 7944 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7945 7946 tcp->tcp_naglim = tcps->tcps_naglim_def; 7947 7948 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7949 7950 tcp->tcp_mdt_hdr_head = 0; 7951 tcp->tcp_mdt_hdr_tail = 0; 7952 7953 /* Reset fusion-related fields */ 7954 tcp->tcp_fused = B_FALSE; 7955 tcp->tcp_unfusable = B_FALSE; 7956 tcp->tcp_fused_sigurg = B_FALSE; 7957 tcp->tcp_direct_sockfs = B_FALSE; 7958 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7959 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7960 tcp->tcp_loopback_peer = NULL; 7961 tcp->tcp_fuse_rcv_hiwater = 0; 7962 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7963 tcp->tcp_fuse_rcv_unread_cnt = 0; 7964 7965 /* Sodirect */ 7966 tcp->tcp_sodirect = NULL; 7967 7968 /* Initialize the header template */ 7969 if (tcp->tcp_ipversion == IPV4_VERSION) { 7970 err = tcp_header_init_ipv4(tcp); 7971 } else { 7972 err = tcp_header_init_ipv6(tcp); 7973 } 7974 if (err) 7975 return (err); 7976 7977 /* 7978 * Init the window scale to the max so tcp_rwnd_set() won't pare 7979 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7980 */ 7981 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7982 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7983 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7984 7985 tcp->tcp_cork = B_FALSE; 7986 /* 7987 * Init the tcp_debug option. This value determines whether TCP 7988 * calls strlog() to print out debug messages. Doing this 7989 * initialization here means that this value is not inherited thru 7990 * tcp_reinit(). 7991 */ 7992 tcp->tcp_debug = tcps->tcps_dbg; 7993 7994 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 7995 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 7996 7997 return (0); 7998 } 7999 8000 /* 8001 * Initialize the IPv4 header. Loses any record of any IP options. 8002 */ 8003 static int 8004 tcp_header_init_ipv4(tcp_t *tcp) 8005 { 8006 tcph_t *tcph; 8007 uint32_t sum; 8008 conn_t *connp; 8009 tcp_stack_t *tcps = tcp->tcp_tcps; 8010 8011 /* 8012 * This is a simple initialization. If there's 8013 * already a template, it should never be too small, 8014 * so reuse it. Otherwise, allocate space for the new one. 8015 */ 8016 if (tcp->tcp_iphc == NULL) { 8017 ASSERT(tcp->tcp_iphc_len == 0); 8018 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8019 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8020 if (tcp->tcp_iphc == NULL) { 8021 tcp->tcp_iphc_len = 0; 8022 return (ENOMEM); 8023 } 8024 } 8025 8026 /* options are gone; may need a new label */ 8027 connp = tcp->tcp_connp; 8028 connp->conn_mlp_type = mlptSingle; 8029 connp->conn_ulp_labeled = !is_system_labeled(); 8030 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8031 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8032 tcp->tcp_ip6h = NULL; 8033 tcp->tcp_ipversion = IPV4_VERSION; 8034 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8035 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8036 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8037 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8038 tcp->tcp_ipha->ipha_version_and_hdr_length 8039 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8040 tcp->tcp_ipha->ipha_ident = 0; 8041 8042 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8043 tcp->tcp_tos = 0; 8044 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8045 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8046 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8047 8048 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8049 tcp->tcp_tcph = tcph; 8050 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8051 /* 8052 * IP wants our header length in the checksum field to 8053 * allow it to perform a single pseudo-header+checksum 8054 * calculation on behalf of TCP. 8055 * Include the adjustment for a source route once IP_OPTIONS is set. 8056 */ 8057 sum = sizeof (tcph_t) + tcp->tcp_sum; 8058 sum = (sum >> 16) + (sum & 0xFFFF); 8059 U16_TO_ABE16(sum, tcph->th_sum); 8060 return (0); 8061 } 8062 8063 /* 8064 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8065 */ 8066 static int 8067 tcp_header_init_ipv6(tcp_t *tcp) 8068 { 8069 tcph_t *tcph; 8070 uint32_t sum; 8071 conn_t *connp; 8072 tcp_stack_t *tcps = tcp->tcp_tcps; 8073 8074 /* 8075 * This is a simple initialization. If there's 8076 * already a template, it should never be too small, 8077 * so reuse it. Otherwise, allocate space for the new one. 8078 * Ensure that there is enough space to "downgrade" the tcp_t 8079 * to an IPv4 tcp_t. This requires having space for a full load 8080 * of IPv4 options, as well as a full load of TCP options 8081 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8082 * than a v6 header and a TCP header with a full load of TCP options 8083 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8084 * We want to avoid reallocation in the "downgraded" case when 8085 * processing outbound IPv4 options. 8086 */ 8087 if (tcp->tcp_iphc == NULL) { 8088 ASSERT(tcp->tcp_iphc_len == 0); 8089 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8090 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8091 if (tcp->tcp_iphc == NULL) { 8092 tcp->tcp_iphc_len = 0; 8093 return (ENOMEM); 8094 } 8095 } 8096 8097 /* options are gone; may need a new label */ 8098 connp = tcp->tcp_connp; 8099 connp->conn_mlp_type = mlptSingle; 8100 connp->conn_ulp_labeled = !is_system_labeled(); 8101 8102 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8103 tcp->tcp_ipversion = IPV6_VERSION; 8104 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8105 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8106 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8107 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8108 tcp->tcp_ipha = NULL; 8109 8110 /* Initialize the header template */ 8111 8112 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8113 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8114 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8115 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8116 8117 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8118 tcp->tcp_tcph = tcph; 8119 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8120 /* 8121 * IP wants our header length in the checksum field to 8122 * allow it to perform a single psuedo-header+checksum 8123 * calculation on behalf of TCP. 8124 * Include the adjustment for a source route when IPV6_RTHDR is set. 8125 */ 8126 sum = sizeof (tcph_t) + tcp->tcp_sum; 8127 sum = (sum >> 16) + (sum & 0xFFFF); 8128 U16_TO_ABE16(sum, tcph->th_sum); 8129 return (0); 8130 } 8131 8132 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8133 #define ICMP_MIN_TCP_HDR 8 8134 8135 /* 8136 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8137 * passed up by IP. The message is always received on the correct tcp_t. 8138 * Assumes that IP has pulled up everything up to and including the ICMP header. 8139 */ 8140 void 8141 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8142 { 8143 icmph_t *icmph; 8144 ipha_t *ipha; 8145 int iph_hdr_length; 8146 tcph_t *tcph; 8147 boolean_t ipsec_mctl = B_FALSE; 8148 boolean_t secure; 8149 mblk_t *first_mp = mp; 8150 int32_t new_mss; 8151 uint32_t ratio; 8152 size_t mp_size = MBLKL(mp); 8153 uint32_t seg_seq; 8154 tcp_stack_t *tcps = tcp->tcp_tcps; 8155 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8156 8157 /* Assume IP provides aligned packets - otherwise toss */ 8158 if (!OK_32PTR(mp->b_rptr)) { 8159 freemsg(mp); 8160 return; 8161 } 8162 8163 /* 8164 * Since ICMP errors are normal data marked with M_CTL when sent 8165 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8166 * packets starting with an ipsec_info_t, see ipsec_info.h. 8167 */ 8168 if ((mp_size == sizeof (ipsec_info_t)) && 8169 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8170 ASSERT(mp->b_cont != NULL); 8171 mp = mp->b_cont; 8172 /* IP should have done this */ 8173 ASSERT(OK_32PTR(mp->b_rptr)); 8174 mp_size = MBLKL(mp); 8175 ipsec_mctl = B_TRUE; 8176 } 8177 8178 /* 8179 * Verify that we have a complete outer IP header. If not, drop it. 8180 */ 8181 if (mp_size < sizeof (ipha_t)) { 8182 noticmpv4: 8183 freemsg(first_mp); 8184 return; 8185 } 8186 8187 ipha = (ipha_t *)mp->b_rptr; 8188 /* 8189 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8190 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8191 */ 8192 switch (IPH_HDR_VERSION(ipha)) { 8193 case IPV6_VERSION: 8194 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8195 return; 8196 case IPV4_VERSION: 8197 break; 8198 default: 8199 goto noticmpv4; 8200 } 8201 8202 /* Skip past the outer IP and ICMP headers */ 8203 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8204 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8205 /* 8206 * If we don't have the correct outer IP header length or if the ULP 8207 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8208 * send it upstream. 8209 */ 8210 if (iph_hdr_length < sizeof (ipha_t) || 8211 ipha->ipha_protocol != IPPROTO_ICMP || 8212 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8213 goto noticmpv4; 8214 } 8215 ipha = (ipha_t *)&icmph[1]; 8216 8217 /* Skip past the inner IP and find the ULP header */ 8218 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8219 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8220 /* 8221 * If we don't have the correct inner IP header length or if the ULP 8222 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8223 * bytes of TCP header, drop it. 8224 */ 8225 if (iph_hdr_length < sizeof (ipha_t) || 8226 ipha->ipha_protocol != IPPROTO_TCP || 8227 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8228 goto noticmpv4; 8229 } 8230 8231 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8232 if (ipsec_mctl) { 8233 secure = ipsec_in_is_secure(first_mp); 8234 } else { 8235 secure = B_FALSE; 8236 } 8237 if (secure) { 8238 /* 8239 * If we are willing to accept this in clear 8240 * we don't have to verify policy. 8241 */ 8242 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8243 if (!tcp_check_policy(tcp, first_mp, 8244 ipha, NULL, secure, ipsec_mctl)) { 8245 /* 8246 * tcp_check_policy called 8247 * ip_drop_packet() on failure. 8248 */ 8249 return; 8250 } 8251 } 8252 } 8253 } else if (ipsec_mctl) { 8254 /* 8255 * This is a hard_bound connection. IP has already 8256 * verified policy. We don't have to do it again. 8257 */ 8258 freeb(first_mp); 8259 first_mp = mp; 8260 ipsec_mctl = B_FALSE; 8261 } 8262 8263 seg_seq = ABE32_TO_U32(tcph->th_seq); 8264 /* 8265 * TCP SHOULD check that the TCP sequence number contained in 8266 * payload of the ICMP error message is within the range 8267 * SND.UNA <= SEG.SEQ < SND.NXT. 8268 */ 8269 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8270 /* 8271 * The ICMP message is bogus, just drop it. But if this is 8272 * an ICMP too big message, IP has already changed 8273 * the ire_max_frag to the bogus value. We need to change 8274 * it back. 8275 */ 8276 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8277 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8278 conn_t *connp = tcp->tcp_connp; 8279 ire_t *ire; 8280 int flag; 8281 8282 if (tcp->tcp_ipversion == IPV4_VERSION) { 8283 flag = tcp->tcp_ipha-> 8284 ipha_fragment_offset_and_flags; 8285 } else { 8286 flag = 0; 8287 } 8288 mutex_enter(&connp->conn_lock); 8289 if ((ire = connp->conn_ire_cache) != NULL) { 8290 mutex_enter(&ire->ire_lock); 8291 mutex_exit(&connp->conn_lock); 8292 ire->ire_max_frag = tcp->tcp_if_mtu; 8293 ire->ire_frag_flag |= flag; 8294 mutex_exit(&ire->ire_lock); 8295 } else { 8296 mutex_exit(&connp->conn_lock); 8297 } 8298 } 8299 goto noticmpv4; 8300 } 8301 8302 switch (icmph->icmph_type) { 8303 case ICMP_DEST_UNREACHABLE: 8304 switch (icmph->icmph_code) { 8305 case ICMP_FRAGMENTATION_NEEDED: 8306 /* 8307 * Reduce the MSS based on the new MTU. This will 8308 * eliminate any fragmentation locally. 8309 * N.B. There may well be some funny side-effects on 8310 * the local send policy and the remote receive policy. 8311 * Pending further research, we provide 8312 * tcp_ignore_path_mtu just in case this proves 8313 * disastrous somewhere. 8314 * 8315 * After updating the MSS, retransmit part of the 8316 * dropped segment using the new mss by calling 8317 * tcp_wput_data(). Need to adjust all those 8318 * params to make sure tcp_wput_data() work properly. 8319 */ 8320 if (tcps->tcps_ignore_path_mtu || 8321 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8322 break; 8323 8324 /* 8325 * Decrease the MSS by time stamp options 8326 * IP options and IPSEC options. tcp_hdr_len 8327 * includes time stamp option and IP option 8328 * length. Note that new_mss may be negative 8329 * if tcp_ipsec_overhead is large and the 8330 * icmph_du_mtu is the minimum value, which is 68. 8331 */ 8332 new_mss = ntohs(icmph->icmph_du_mtu) - 8333 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8334 8335 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8336 new_mss); 8337 8338 /* 8339 * Only update the MSS if the new one is 8340 * smaller than the previous one. This is 8341 * to avoid problems when getting multiple 8342 * ICMP errors for the same MTU. 8343 */ 8344 if (new_mss >= tcp->tcp_mss) 8345 break; 8346 8347 /* 8348 * Note that we are using the template header's DF 8349 * bit in the fast path sending. So we need to compare 8350 * the new mss with both tcps_mss_min and ip_pmtu_min. 8351 * And stop doing IPv4 PMTUd if new_mss is less than 8352 * MAX(tcps_mss_min, ip_pmtu_min). 8353 */ 8354 if (new_mss < tcps->tcps_mss_min || 8355 new_mss < ipst->ips_ip_pmtu_min) { 8356 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8357 0; 8358 } 8359 8360 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8361 ASSERT(ratio >= 1); 8362 tcp_mss_set(tcp, new_mss, B_TRUE); 8363 8364 /* 8365 * Make sure we have something to 8366 * send. 8367 */ 8368 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8369 (tcp->tcp_xmit_head != NULL)) { 8370 /* 8371 * Shrink tcp_cwnd in 8372 * proportion to the old MSS/new MSS. 8373 */ 8374 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8375 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8376 (tcp->tcp_unsent == 0)) { 8377 tcp->tcp_rexmit_max = tcp->tcp_fss; 8378 } else { 8379 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8380 } 8381 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8382 tcp->tcp_rexmit = B_TRUE; 8383 tcp->tcp_dupack_cnt = 0; 8384 tcp->tcp_snd_burst = TCP_CWND_SS; 8385 tcp_ss_rexmit(tcp); 8386 } 8387 break; 8388 case ICMP_PORT_UNREACHABLE: 8389 case ICMP_PROTOCOL_UNREACHABLE: 8390 switch (tcp->tcp_state) { 8391 case TCPS_SYN_SENT: 8392 case TCPS_SYN_RCVD: 8393 /* 8394 * ICMP can snipe away incipient 8395 * TCP connections as long as 8396 * seq number is same as initial 8397 * send seq number. 8398 */ 8399 if (seg_seq == tcp->tcp_iss) { 8400 (void) tcp_clean_death(tcp, 8401 ECONNREFUSED, 6); 8402 } 8403 break; 8404 } 8405 break; 8406 case ICMP_HOST_UNREACHABLE: 8407 case ICMP_NET_UNREACHABLE: 8408 /* Record the error in case we finally time out. */ 8409 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8410 tcp->tcp_client_errno = EHOSTUNREACH; 8411 else 8412 tcp->tcp_client_errno = ENETUNREACH; 8413 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8414 if (tcp->tcp_listener != NULL && 8415 tcp->tcp_listener->tcp_syn_defense) { 8416 /* 8417 * Ditch the half-open connection if we 8418 * suspect a SYN attack is under way. 8419 */ 8420 tcp_ip_ire_mark_advice(tcp); 8421 (void) tcp_clean_death(tcp, 8422 tcp->tcp_client_errno, 7); 8423 } 8424 } 8425 break; 8426 default: 8427 break; 8428 } 8429 break; 8430 case ICMP_SOURCE_QUENCH: { 8431 /* 8432 * use a global boolean to control 8433 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8434 * The default is false. 8435 */ 8436 if (tcp_icmp_source_quench) { 8437 /* 8438 * Reduce the sending rate as if we got a 8439 * retransmit timeout 8440 */ 8441 uint32_t npkt; 8442 8443 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8444 tcp->tcp_mss; 8445 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8446 tcp->tcp_cwnd = tcp->tcp_mss; 8447 tcp->tcp_cwnd_cnt = 0; 8448 } 8449 break; 8450 } 8451 } 8452 freemsg(first_mp); 8453 } 8454 8455 /* 8456 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8457 * error messages passed up by IP. 8458 * Assumes that IP has pulled up all the extension headers as well 8459 * as the ICMPv6 header. 8460 */ 8461 static void 8462 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8463 { 8464 icmp6_t *icmp6; 8465 ip6_t *ip6h; 8466 uint16_t iph_hdr_length; 8467 tcpha_t *tcpha; 8468 uint8_t *nexthdrp; 8469 uint32_t new_mss; 8470 uint32_t ratio; 8471 boolean_t secure; 8472 mblk_t *first_mp = mp; 8473 size_t mp_size; 8474 uint32_t seg_seq; 8475 tcp_stack_t *tcps = tcp->tcp_tcps; 8476 8477 /* 8478 * The caller has determined if this is an IPSEC_IN packet and 8479 * set ipsec_mctl appropriately (see tcp_icmp_error). 8480 */ 8481 if (ipsec_mctl) 8482 mp = mp->b_cont; 8483 8484 mp_size = MBLKL(mp); 8485 8486 /* 8487 * Verify that we have a complete IP header. If not, send it upstream. 8488 */ 8489 if (mp_size < sizeof (ip6_t)) { 8490 noticmpv6: 8491 freemsg(first_mp); 8492 return; 8493 } 8494 8495 /* 8496 * Verify this is an ICMPV6 packet, else send it upstream. 8497 */ 8498 ip6h = (ip6_t *)mp->b_rptr; 8499 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8500 iph_hdr_length = IPV6_HDR_LEN; 8501 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8502 &nexthdrp) || 8503 *nexthdrp != IPPROTO_ICMPV6) { 8504 goto noticmpv6; 8505 } 8506 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8507 ip6h = (ip6_t *)&icmp6[1]; 8508 /* 8509 * Verify if we have a complete ICMP and inner IP header. 8510 */ 8511 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8512 goto noticmpv6; 8513 8514 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8515 goto noticmpv6; 8516 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8517 /* 8518 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8519 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8520 * packet. 8521 */ 8522 if ((*nexthdrp != IPPROTO_TCP) || 8523 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8524 goto noticmpv6; 8525 } 8526 8527 /* 8528 * ICMP errors come on the right queue or come on 8529 * listener/global queue for detached connections and 8530 * get switched to the right queue. If it comes on the 8531 * right queue, policy check has already been done by IP 8532 * and thus free the first_mp without verifying the policy. 8533 * If it has come for a non-hard bound connection, we need 8534 * to verify policy as IP may not have done it. 8535 */ 8536 if (!tcp->tcp_hard_bound) { 8537 if (ipsec_mctl) { 8538 secure = ipsec_in_is_secure(first_mp); 8539 } else { 8540 secure = B_FALSE; 8541 } 8542 if (secure) { 8543 /* 8544 * If we are willing to accept this in clear 8545 * we don't have to verify policy. 8546 */ 8547 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8548 if (!tcp_check_policy(tcp, first_mp, 8549 NULL, ip6h, secure, ipsec_mctl)) { 8550 /* 8551 * tcp_check_policy called 8552 * ip_drop_packet() on failure. 8553 */ 8554 return; 8555 } 8556 } 8557 } 8558 } else if (ipsec_mctl) { 8559 /* 8560 * This is a hard_bound connection. IP has already 8561 * verified policy. We don't have to do it again. 8562 */ 8563 freeb(first_mp); 8564 first_mp = mp; 8565 ipsec_mctl = B_FALSE; 8566 } 8567 8568 seg_seq = ntohl(tcpha->tha_seq); 8569 /* 8570 * TCP SHOULD check that the TCP sequence number contained in 8571 * payload of the ICMP error message is within the range 8572 * SND.UNA <= SEG.SEQ < SND.NXT. 8573 */ 8574 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8575 /* 8576 * If the ICMP message is bogus, should we kill the 8577 * connection, or should we just drop the bogus ICMP 8578 * message? It would probably make more sense to just 8579 * drop the message so that if this one managed to get 8580 * in, the real connection should not suffer. 8581 */ 8582 goto noticmpv6; 8583 } 8584 8585 switch (icmp6->icmp6_type) { 8586 case ICMP6_PACKET_TOO_BIG: 8587 /* 8588 * Reduce the MSS based on the new MTU. This will 8589 * eliminate any fragmentation locally. 8590 * N.B. There may well be some funny side-effects on 8591 * the local send policy and the remote receive policy. 8592 * Pending further research, we provide 8593 * tcp_ignore_path_mtu just in case this proves 8594 * disastrous somewhere. 8595 * 8596 * After updating the MSS, retransmit part of the 8597 * dropped segment using the new mss by calling 8598 * tcp_wput_data(). Need to adjust all those 8599 * params to make sure tcp_wput_data() work properly. 8600 */ 8601 if (tcps->tcps_ignore_path_mtu) 8602 break; 8603 8604 /* 8605 * Decrease the MSS by time stamp options 8606 * IP options and IPSEC options. tcp_hdr_len 8607 * includes time stamp option and IP option 8608 * length. 8609 */ 8610 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8611 tcp->tcp_ipsec_overhead; 8612 8613 /* 8614 * Only update the MSS if the new one is 8615 * smaller than the previous one. This is 8616 * to avoid problems when getting multiple 8617 * ICMP errors for the same MTU. 8618 */ 8619 if (new_mss >= tcp->tcp_mss) 8620 break; 8621 8622 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8623 ASSERT(ratio >= 1); 8624 tcp_mss_set(tcp, new_mss, B_TRUE); 8625 8626 /* 8627 * Make sure we have something to 8628 * send. 8629 */ 8630 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8631 (tcp->tcp_xmit_head != NULL)) { 8632 /* 8633 * Shrink tcp_cwnd in 8634 * proportion to the old MSS/new MSS. 8635 */ 8636 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8637 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8638 (tcp->tcp_unsent == 0)) { 8639 tcp->tcp_rexmit_max = tcp->tcp_fss; 8640 } else { 8641 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8642 } 8643 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8644 tcp->tcp_rexmit = B_TRUE; 8645 tcp->tcp_dupack_cnt = 0; 8646 tcp->tcp_snd_burst = TCP_CWND_SS; 8647 tcp_ss_rexmit(tcp); 8648 } 8649 break; 8650 8651 case ICMP6_DST_UNREACH: 8652 switch (icmp6->icmp6_code) { 8653 case ICMP6_DST_UNREACH_NOPORT: 8654 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8655 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8656 (seg_seq == tcp->tcp_iss)) { 8657 (void) tcp_clean_death(tcp, 8658 ECONNREFUSED, 8); 8659 } 8660 break; 8661 8662 case ICMP6_DST_UNREACH_ADMIN: 8663 case ICMP6_DST_UNREACH_NOROUTE: 8664 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8665 case ICMP6_DST_UNREACH_ADDR: 8666 /* Record the error in case we finally time out. */ 8667 tcp->tcp_client_errno = EHOSTUNREACH; 8668 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8669 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8670 (seg_seq == tcp->tcp_iss)) { 8671 if (tcp->tcp_listener != NULL && 8672 tcp->tcp_listener->tcp_syn_defense) { 8673 /* 8674 * Ditch the half-open connection if we 8675 * suspect a SYN attack is under way. 8676 */ 8677 tcp_ip_ire_mark_advice(tcp); 8678 (void) tcp_clean_death(tcp, 8679 tcp->tcp_client_errno, 9); 8680 } 8681 } 8682 8683 8684 break; 8685 default: 8686 break; 8687 } 8688 break; 8689 8690 case ICMP6_PARAM_PROB: 8691 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8692 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8693 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8694 (uchar_t *)nexthdrp) { 8695 if (tcp->tcp_state == TCPS_SYN_SENT || 8696 tcp->tcp_state == TCPS_SYN_RCVD) { 8697 (void) tcp_clean_death(tcp, 8698 ECONNREFUSED, 10); 8699 } 8700 break; 8701 } 8702 break; 8703 8704 case ICMP6_TIME_EXCEEDED: 8705 default: 8706 break; 8707 } 8708 freemsg(first_mp); 8709 } 8710 8711 /* 8712 * Notify IP that we are having trouble with this connection. IP should 8713 * blow the IRE away and start over. 8714 */ 8715 static void 8716 tcp_ip_notify(tcp_t *tcp) 8717 { 8718 struct iocblk *iocp; 8719 ipid_t *ipid; 8720 mblk_t *mp; 8721 8722 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8723 if (tcp->tcp_ipversion == IPV6_VERSION) 8724 return; 8725 8726 mp = mkiocb(IP_IOCTL); 8727 if (mp == NULL) 8728 return; 8729 8730 iocp = (struct iocblk *)mp->b_rptr; 8731 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8732 8733 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8734 if (!mp->b_cont) { 8735 freeb(mp); 8736 return; 8737 } 8738 8739 ipid = (ipid_t *)mp->b_cont->b_rptr; 8740 mp->b_cont->b_wptr += iocp->ioc_count; 8741 bzero(ipid, sizeof (*ipid)); 8742 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8743 ipid->ipid_ire_type = IRE_CACHE; 8744 ipid->ipid_addr_offset = sizeof (ipid_t); 8745 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8746 /* 8747 * Note: in the case of source routing we want to blow away the 8748 * route to the first source route hop. 8749 */ 8750 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8751 sizeof (tcp->tcp_ipha->ipha_dst)); 8752 8753 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8754 } 8755 8756 /* Unlink and return any mblk that looks like it contains an ire */ 8757 static mblk_t * 8758 tcp_ire_mp(mblk_t **mpp) 8759 { 8760 mblk_t *mp = *mpp; 8761 mblk_t *prev_mp = NULL; 8762 8763 for (;;) { 8764 switch (DB_TYPE(mp)) { 8765 case IRE_DB_TYPE: 8766 case IRE_DB_REQ_TYPE: 8767 if (mp == *mpp) { 8768 *mpp = mp->b_cont; 8769 } else { 8770 prev_mp->b_cont = mp->b_cont; 8771 } 8772 mp->b_cont = NULL; 8773 return (mp); 8774 default: 8775 break; 8776 } 8777 prev_mp = mp; 8778 mp = mp->b_cont; 8779 if (mp == NULL) 8780 break; 8781 } 8782 return (mp); 8783 } 8784 8785 /* 8786 * Timer callback routine for keepalive probe. We do a fake resend of 8787 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8788 * check to see if we have heard anything from the other end for the last 8789 * RTO period. If we have, set the timer to expire for another 8790 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8791 * RTO << 1 and check again when it expires. Keep exponentially increasing 8792 * the timeout if we have not heard from the other side. If for more than 8793 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8794 * kill the connection unless the keepalive abort threshold is 0. In 8795 * that case, we will probe "forever." 8796 */ 8797 static void 8798 tcp_keepalive_killer(void *arg) 8799 { 8800 mblk_t *mp; 8801 conn_t *connp = (conn_t *)arg; 8802 tcp_t *tcp = connp->conn_tcp; 8803 int32_t firetime; 8804 int32_t idletime; 8805 int32_t ka_intrvl; 8806 tcp_stack_t *tcps = tcp->tcp_tcps; 8807 8808 tcp->tcp_ka_tid = 0; 8809 8810 if (tcp->tcp_fused) 8811 return; 8812 8813 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8814 ka_intrvl = tcp->tcp_ka_interval; 8815 8816 /* 8817 * Keepalive probe should only be sent if the application has not 8818 * done a close on the connection. 8819 */ 8820 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8821 return; 8822 } 8823 /* Timer fired too early, restart it. */ 8824 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8825 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8826 MSEC_TO_TICK(ka_intrvl)); 8827 return; 8828 } 8829 8830 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8831 /* 8832 * If we have not heard from the other side for a long 8833 * time, kill the connection unless the keepalive abort 8834 * threshold is 0. In that case, we will probe "forever." 8835 */ 8836 if (tcp->tcp_ka_abort_thres != 0 && 8837 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8838 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8839 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8840 tcp->tcp_client_errno : ETIMEDOUT, 11); 8841 return; 8842 } 8843 8844 if (tcp->tcp_snxt == tcp->tcp_suna && 8845 idletime >= ka_intrvl) { 8846 /* Fake resend of last ACKed byte. */ 8847 mblk_t *mp1 = allocb(1, BPRI_LO); 8848 8849 if (mp1 != NULL) { 8850 *mp1->b_wptr++ = '\0'; 8851 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8852 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8853 freeb(mp1); 8854 /* 8855 * if allocation failed, fall through to start the 8856 * timer back. 8857 */ 8858 if (mp != NULL) { 8859 tcp_send_data(tcp, tcp->tcp_wq, mp); 8860 BUMP_MIB(&tcps->tcps_mib, 8861 tcpTimKeepaliveProbe); 8862 if (tcp->tcp_ka_last_intrvl != 0) { 8863 int max; 8864 /* 8865 * We should probe again at least 8866 * in ka_intrvl, but not more than 8867 * tcp_rexmit_interval_max. 8868 */ 8869 max = tcps->tcps_rexmit_interval_max; 8870 firetime = MIN(ka_intrvl - 1, 8871 tcp->tcp_ka_last_intrvl << 1); 8872 if (firetime > max) 8873 firetime = max; 8874 } else { 8875 firetime = tcp->tcp_rto; 8876 } 8877 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8878 tcp_keepalive_killer, 8879 MSEC_TO_TICK(firetime)); 8880 tcp->tcp_ka_last_intrvl = firetime; 8881 return; 8882 } 8883 } 8884 } else { 8885 tcp->tcp_ka_last_intrvl = 0; 8886 } 8887 8888 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8889 if ((firetime = ka_intrvl - idletime) < 0) { 8890 firetime = ka_intrvl; 8891 } 8892 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8893 MSEC_TO_TICK(firetime)); 8894 } 8895 8896 int 8897 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8898 { 8899 queue_t *q = tcp->tcp_rq; 8900 int32_t mss = tcp->tcp_mss; 8901 int maxpsz; 8902 conn_t *connp = tcp->tcp_connp; 8903 8904 if (TCP_IS_DETACHED(tcp)) 8905 return (mss); 8906 if (tcp->tcp_fused) { 8907 maxpsz = tcp_fuse_maxpsz_set(tcp); 8908 mss = INFPSZ; 8909 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8910 /* 8911 * Set the sd_qn_maxpsz according to the socket send buffer 8912 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8913 * instruct the stream head to copyin user data into contiguous 8914 * kernel-allocated buffers without breaking it up into smaller 8915 * chunks. We round up the buffer size to the nearest SMSS. 8916 */ 8917 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8918 if (tcp->tcp_kssl_ctx == NULL) 8919 mss = INFPSZ; 8920 else 8921 mss = SSL3_MAX_RECORD_LEN; 8922 } else { 8923 /* 8924 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8925 * (and a multiple of the mss). This instructs the stream 8926 * head to break down larger than SMSS writes into SMSS- 8927 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8928 */ 8929 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8930 maxpsz = tcp->tcp_maxpsz * mss; 8931 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8932 maxpsz = tcp->tcp_xmit_hiwater/2; 8933 /* Round up to nearest mss */ 8934 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8935 } 8936 } 8937 8938 (void) proto_set_maxpsz(q, connp, maxpsz); 8939 if (!(IPCL_IS_NONSTR(connp))) { 8940 /* XXX do it in set_maxpsz()? */ 8941 tcp->tcp_wq->q_maxpsz = maxpsz; 8942 } 8943 8944 if (set_maxblk) 8945 (void) proto_set_tx_maxblk(q, connp, mss); 8946 return (mss); 8947 } 8948 8949 /* 8950 * Extract option values from a tcp header. We put any found values into the 8951 * tcpopt struct and return a bitmask saying which options were found. 8952 */ 8953 static int 8954 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8955 { 8956 uchar_t *endp; 8957 int len; 8958 uint32_t mss; 8959 uchar_t *up = (uchar_t *)tcph; 8960 int found = 0; 8961 int32_t sack_len; 8962 tcp_seq sack_begin, sack_end; 8963 tcp_t *tcp; 8964 8965 endp = up + TCP_HDR_LENGTH(tcph); 8966 up += TCP_MIN_HEADER_LENGTH; 8967 while (up < endp) { 8968 len = endp - up; 8969 switch (*up) { 8970 case TCPOPT_EOL: 8971 break; 8972 8973 case TCPOPT_NOP: 8974 up++; 8975 continue; 8976 8977 case TCPOPT_MAXSEG: 8978 if (len < TCPOPT_MAXSEG_LEN || 8979 up[1] != TCPOPT_MAXSEG_LEN) 8980 break; 8981 8982 mss = BE16_TO_U16(up+2); 8983 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8984 tcpopt->tcp_opt_mss = mss; 8985 found |= TCP_OPT_MSS_PRESENT; 8986 8987 up += TCPOPT_MAXSEG_LEN; 8988 continue; 8989 8990 case TCPOPT_WSCALE: 8991 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8992 break; 8993 8994 if (up[2] > TCP_MAX_WINSHIFT) 8995 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8996 else 8997 tcpopt->tcp_opt_wscale = up[2]; 8998 found |= TCP_OPT_WSCALE_PRESENT; 8999 9000 up += TCPOPT_WS_LEN; 9001 continue; 9002 9003 case TCPOPT_SACK_PERMITTED: 9004 if (len < TCPOPT_SACK_OK_LEN || 9005 up[1] != TCPOPT_SACK_OK_LEN) 9006 break; 9007 found |= TCP_OPT_SACK_OK_PRESENT; 9008 up += TCPOPT_SACK_OK_LEN; 9009 continue; 9010 9011 case TCPOPT_SACK: 9012 if (len <= 2 || up[1] <= 2 || len < up[1]) 9013 break; 9014 9015 /* If TCP is not interested in SACK blks... */ 9016 if ((tcp = tcpopt->tcp) == NULL) { 9017 up += up[1]; 9018 continue; 9019 } 9020 sack_len = up[1] - TCPOPT_HEADER_LEN; 9021 up += TCPOPT_HEADER_LEN; 9022 9023 /* 9024 * If the list is empty, allocate one and assume 9025 * nothing is sack'ed. 9026 */ 9027 ASSERT(tcp->tcp_sack_info != NULL); 9028 if (tcp->tcp_notsack_list == NULL) { 9029 tcp_notsack_update(&(tcp->tcp_notsack_list), 9030 tcp->tcp_suna, tcp->tcp_snxt, 9031 &(tcp->tcp_num_notsack_blk), 9032 &(tcp->tcp_cnt_notsack_list)); 9033 9034 /* 9035 * Make sure tcp_notsack_list is not NULL. 9036 * This happens when kmem_alloc(KM_NOSLEEP) 9037 * returns NULL. 9038 */ 9039 if (tcp->tcp_notsack_list == NULL) { 9040 up += sack_len; 9041 continue; 9042 } 9043 tcp->tcp_fack = tcp->tcp_suna; 9044 } 9045 9046 while (sack_len > 0) { 9047 if (up + 8 > endp) { 9048 up = endp; 9049 break; 9050 } 9051 sack_begin = BE32_TO_U32(up); 9052 up += 4; 9053 sack_end = BE32_TO_U32(up); 9054 up += 4; 9055 sack_len -= 8; 9056 /* 9057 * Bounds checking. Make sure the SACK 9058 * info is within tcp_suna and tcp_snxt. 9059 * If this SACK blk is out of bound, ignore 9060 * it but continue to parse the following 9061 * blks. 9062 */ 9063 if (SEQ_LEQ(sack_end, sack_begin) || 9064 SEQ_LT(sack_begin, tcp->tcp_suna) || 9065 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9066 continue; 9067 } 9068 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9069 sack_begin, sack_end, 9070 &(tcp->tcp_num_notsack_blk), 9071 &(tcp->tcp_cnt_notsack_list)); 9072 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9073 tcp->tcp_fack = sack_end; 9074 } 9075 } 9076 found |= TCP_OPT_SACK_PRESENT; 9077 continue; 9078 9079 case TCPOPT_TSTAMP: 9080 if (len < TCPOPT_TSTAMP_LEN || 9081 up[1] != TCPOPT_TSTAMP_LEN) 9082 break; 9083 9084 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9085 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9086 9087 found |= TCP_OPT_TSTAMP_PRESENT; 9088 9089 up += TCPOPT_TSTAMP_LEN; 9090 continue; 9091 9092 default: 9093 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9094 break; 9095 up += up[1]; 9096 continue; 9097 } 9098 break; 9099 } 9100 return (found); 9101 } 9102 9103 /* 9104 * Set the mss associated with a particular tcp based on its current value, 9105 * and a new one passed in. Observe minimums and maximums, and reset 9106 * other state variables that we want to view as multiples of mss. 9107 * 9108 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9109 * highwater marks etc. need to be initialized or adjusted. 9110 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9111 * packet arrives. 9112 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9113 * ICMP6_PACKET_TOO_BIG arrives. 9114 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9115 * to increase the MSS to use the extra bytes available. 9116 * 9117 * Callers except tcp_paws_check() ensure that they only reduce mss. 9118 */ 9119 static void 9120 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9121 { 9122 uint32_t mss_max; 9123 tcp_stack_t *tcps = tcp->tcp_tcps; 9124 9125 if (tcp->tcp_ipversion == IPV4_VERSION) 9126 mss_max = tcps->tcps_mss_max_ipv4; 9127 else 9128 mss_max = tcps->tcps_mss_max_ipv6; 9129 9130 if (mss < tcps->tcps_mss_min) 9131 mss = tcps->tcps_mss_min; 9132 if (mss > mss_max) 9133 mss = mss_max; 9134 /* 9135 * Unless naglim has been set by our client to 9136 * a non-mss value, force naglim to track mss. 9137 * This can help to aggregate small writes. 9138 */ 9139 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9140 tcp->tcp_naglim = mss; 9141 /* 9142 * TCP should be able to buffer at least 4 MSS data for obvious 9143 * performance reason. 9144 */ 9145 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9146 tcp->tcp_xmit_hiwater = mss << 2; 9147 9148 if (do_ss) { 9149 /* 9150 * Either the tcp_cwnd is as yet uninitialized, or mss is 9151 * changing due to a reduction in MTU, presumably as a 9152 * result of a new path component, reset cwnd to its 9153 * "initial" value, as a multiple of the new mss. 9154 */ 9155 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9156 } else { 9157 /* 9158 * Called by tcp_paws_check(), the mss increased 9159 * marginally to allow use of space previously taken 9160 * by the timestamp option. It would be inappropriate 9161 * to apply slow start or tcp_init_cwnd values to 9162 * tcp_cwnd, simply adjust to a multiple of the new mss. 9163 */ 9164 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9165 tcp->tcp_cwnd_cnt = 0; 9166 } 9167 tcp->tcp_mss = mss; 9168 (void) tcp_maxpsz_set(tcp, B_TRUE); 9169 } 9170 9171 /* For /dev/tcp aka AF_INET open */ 9172 static int 9173 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9174 { 9175 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9176 } 9177 9178 /* For /dev/tcp6 aka AF_INET6 open */ 9179 static int 9180 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9181 { 9182 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9183 } 9184 9185 static conn_t * 9186 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9187 boolean_t issocket, int *errorp) 9188 { 9189 tcp_t *tcp = NULL; 9190 conn_t *connp; 9191 int err; 9192 zoneid_t zoneid; 9193 tcp_stack_t *tcps; 9194 squeue_t *sqp; 9195 9196 ASSERT(errorp != NULL); 9197 /* 9198 * Find the proper zoneid and netstack. 9199 */ 9200 /* 9201 * Special case for install: miniroot needs to be able to 9202 * access files via NFS as though it were always in the 9203 * global zone. 9204 */ 9205 if (credp == kcred && nfs_global_client_only != 0) { 9206 zoneid = GLOBAL_ZONEID; 9207 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9208 netstack_tcp; 9209 ASSERT(tcps != NULL); 9210 } else { 9211 netstack_t *ns; 9212 9213 ns = netstack_find_by_cred(credp); 9214 ASSERT(ns != NULL); 9215 tcps = ns->netstack_tcp; 9216 ASSERT(tcps != NULL); 9217 9218 /* 9219 * For exclusive stacks we set the zoneid to zero 9220 * to make TCP operate as if in the global zone. 9221 */ 9222 if (tcps->tcps_netstack->netstack_stackid != 9223 GLOBAL_NETSTACKID) 9224 zoneid = GLOBAL_ZONEID; 9225 else 9226 zoneid = crgetzoneid(credp); 9227 } 9228 /* 9229 * For stackid zero this is done from strplumb.c, but 9230 * non-zero stackids are handled here. 9231 */ 9232 if (tcps->tcps_g_q == NULL && 9233 tcps->tcps_netstack->netstack_stackid != 9234 GLOBAL_NETSTACKID) { 9235 tcp_g_q_setup(tcps); 9236 } 9237 9238 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9239 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9240 /* 9241 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9242 * so we drop it by one. 9243 */ 9244 netstack_rele(tcps->tcps_netstack); 9245 if (connp == NULL) { 9246 *errorp = ENOSR; 9247 return (NULL); 9248 } 9249 connp->conn_sqp = sqp; 9250 connp->conn_initial_sqp = connp->conn_sqp; 9251 tcp = connp->conn_tcp; 9252 9253 if (isv6) { 9254 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9255 connp->conn_send = ip_output_v6; 9256 connp->conn_af_isv6 = B_TRUE; 9257 connp->conn_pkt_isv6 = B_TRUE; 9258 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9259 tcp->tcp_ipversion = IPV6_VERSION; 9260 tcp->tcp_family = AF_INET6; 9261 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9262 } else { 9263 connp->conn_flags |= IPCL_TCP4; 9264 connp->conn_send = ip_output; 9265 connp->conn_af_isv6 = B_FALSE; 9266 connp->conn_pkt_isv6 = B_FALSE; 9267 tcp->tcp_ipversion = IPV4_VERSION; 9268 tcp->tcp_family = AF_INET; 9269 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9270 } 9271 9272 /* 9273 * TCP keeps a copy of cred for cache locality reasons but 9274 * we put a reference only once. If connp->conn_cred 9275 * becomes invalid, tcp_cred should also be set to NULL. 9276 */ 9277 tcp->tcp_cred = connp->conn_cred = credp; 9278 crhold(connp->conn_cred); 9279 tcp->tcp_cpid = curproc->p_pid; 9280 tcp->tcp_open_time = lbolt64; 9281 connp->conn_zoneid = zoneid; 9282 connp->conn_mlp_type = mlptSingle; 9283 connp->conn_ulp_labeled = !is_system_labeled(); 9284 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9285 ASSERT(tcp->tcp_tcps == tcps); 9286 9287 /* 9288 * If the caller has the process-wide flag set, then default to MAC 9289 * exempt mode. This allows read-down to unlabeled hosts. 9290 */ 9291 if (getpflags(NET_MAC_AWARE, credp) != 0) 9292 connp->conn_mac_exempt = B_TRUE; 9293 9294 connp->conn_dev = NULL; 9295 if (issocket) { 9296 connp->conn_flags |= IPCL_SOCKET; 9297 tcp->tcp_issocket = 1; 9298 } 9299 9300 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9301 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9302 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9303 9304 /* Non-zero default values */ 9305 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9306 9307 if (q == NULL) { 9308 /* 9309 * Create a helper stream for non-STREAMS socket. 9310 */ 9311 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9312 if (err != 0) { 9313 ip1dbg(("tcp_create_common: create of IP helper stream " 9314 "failed\n")); 9315 CONN_DEC_REF(connp); 9316 *errorp = err; 9317 return (NULL); 9318 } 9319 q = connp->conn_rq; 9320 } else { 9321 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9322 } 9323 9324 SOCK_CONNID_INIT(tcp->tcp_connid); 9325 err = tcp_init(tcp, q); 9326 if (err != 0) { 9327 CONN_DEC_REF(connp); 9328 *errorp = err; 9329 return (NULL); 9330 } 9331 9332 return (connp); 9333 } 9334 9335 static int 9336 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9337 boolean_t isv6) 9338 { 9339 tcp_t *tcp = NULL; 9340 conn_t *connp = NULL; 9341 int err; 9342 vmem_t *minor_arena = NULL; 9343 dev_t conn_dev; 9344 boolean_t issocket; 9345 9346 if (q->q_ptr != NULL) 9347 return (0); 9348 9349 if (sflag == MODOPEN) 9350 return (EINVAL); 9351 9352 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9353 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9354 minor_arena = ip_minor_arena_la; 9355 } else { 9356 /* 9357 * Either minor numbers in the large arena were exhausted 9358 * or a non socket application is doing the open. 9359 * Try to allocate from the small arena. 9360 */ 9361 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9362 return (EBUSY); 9363 } 9364 minor_arena = ip_minor_arena_sa; 9365 } 9366 9367 ASSERT(minor_arena != NULL); 9368 9369 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9370 9371 if (flag & SO_FALLBACK) { 9372 /* 9373 * Non streams socket needs a stream to fallback to 9374 */ 9375 RD(q)->q_ptr = (void *)conn_dev; 9376 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9377 WR(q)->q_ptr = (void *)minor_arena; 9378 qprocson(q); 9379 return (0); 9380 } else if (flag & SO_ACCEPTOR) { 9381 q->q_qinfo = &tcp_acceptor_rinit; 9382 /* 9383 * the conn_dev and minor_arena will be subsequently used by 9384 * tcp_wput_accept() and tcpclose_accept() to figure out the 9385 * minor device number for this connection from the q_ptr. 9386 */ 9387 RD(q)->q_ptr = (void *)conn_dev; 9388 WR(q)->q_qinfo = &tcp_acceptor_winit; 9389 WR(q)->q_ptr = (void *)minor_arena; 9390 qprocson(q); 9391 return (0); 9392 } 9393 9394 issocket = flag & SO_SOCKSTR; 9395 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9396 9397 if (connp == NULL) { 9398 inet_minor_free(minor_arena, conn_dev); 9399 q->q_ptr = WR(q)->q_ptr = NULL; 9400 return (err); 9401 } 9402 9403 q->q_ptr = WR(q)->q_ptr = connp; 9404 9405 connp->conn_dev = conn_dev; 9406 connp->conn_minor_arena = minor_arena; 9407 9408 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9409 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9410 9411 if (issocket) { 9412 WR(q)->q_qinfo = &tcp_sock_winit; 9413 } else { 9414 tcp = connp->conn_tcp; 9415 #ifdef _ILP32 9416 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9417 #else 9418 tcp->tcp_acceptor_id = conn_dev; 9419 #endif /* _ILP32 */ 9420 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9421 } 9422 9423 /* 9424 * Put the ref for TCP. Ref for IP was already put 9425 * by ipcl_conn_create. Also Make the conn_t globally 9426 * visible to walkers 9427 */ 9428 mutex_enter(&connp->conn_lock); 9429 CONN_INC_REF_LOCKED(connp); 9430 ASSERT(connp->conn_ref == 2); 9431 connp->conn_state_flags &= ~CONN_INCIPIENT; 9432 mutex_exit(&connp->conn_lock); 9433 9434 qprocson(q); 9435 return (0); 9436 } 9437 9438 /* 9439 * Some TCP options can be "set" by requesting them in the option 9440 * buffer. This is needed for XTI feature test though we do not 9441 * allow it in general. We interpret that this mechanism is more 9442 * applicable to OSI protocols and need not be allowed in general. 9443 * This routine filters out options for which it is not allowed (most) 9444 * and lets through those (few) for which it is. [ The XTI interface 9445 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9446 * ever implemented will have to be allowed here ]. 9447 */ 9448 static boolean_t 9449 tcp_allow_connopt_set(int level, int name) 9450 { 9451 9452 switch (level) { 9453 case IPPROTO_TCP: 9454 switch (name) { 9455 case TCP_NODELAY: 9456 return (B_TRUE); 9457 default: 9458 return (B_FALSE); 9459 } 9460 /*NOTREACHED*/ 9461 default: 9462 return (B_FALSE); 9463 } 9464 /*NOTREACHED*/ 9465 } 9466 9467 /* 9468 * this routine gets default values of certain options whose default 9469 * values are maintained by protocol specific code 9470 */ 9471 /* ARGSUSED */ 9472 int 9473 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9474 { 9475 int32_t *i1 = (int32_t *)ptr; 9476 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9477 9478 switch (level) { 9479 case IPPROTO_TCP: 9480 switch (name) { 9481 case TCP_NOTIFY_THRESHOLD: 9482 *i1 = tcps->tcps_ip_notify_interval; 9483 break; 9484 case TCP_ABORT_THRESHOLD: 9485 *i1 = tcps->tcps_ip_abort_interval; 9486 break; 9487 case TCP_CONN_NOTIFY_THRESHOLD: 9488 *i1 = tcps->tcps_ip_notify_cinterval; 9489 break; 9490 case TCP_CONN_ABORT_THRESHOLD: 9491 *i1 = tcps->tcps_ip_abort_cinterval; 9492 break; 9493 default: 9494 return (-1); 9495 } 9496 break; 9497 case IPPROTO_IP: 9498 switch (name) { 9499 case IP_TTL: 9500 *i1 = tcps->tcps_ipv4_ttl; 9501 break; 9502 default: 9503 return (-1); 9504 } 9505 break; 9506 case IPPROTO_IPV6: 9507 switch (name) { 9508 case IPV6_UNICAST_HOPS: 9509 *i1 = tcps->tcps_ipv6_hoplimit; 9510 break; 9511 default: 9512 return (-1); 9513 } 9514 break; 9515 default: 9516 return (-1); 9517 } 9518 return (sizeof (int)); 9519 } 9520 9521 static int 9522 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9523 { 9524 int *i1 = (int *)ptr; 9525 tcp_t *tcp = connp->conn_tcp; 9526 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9527 9528 switch (level) { 9529 case SOL_SOCKET: 9530 switch (name) { 9531 case SO_LINGER: { 9532 struct linger *lgr = (struct linger *)ptr; 9533 9534 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9535 lgr->l_linger = tcp->tcp_lingertime; 9536 } 9537 return (sizeof (struct linger)); 9538 case SO_DEBUG: 9539 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9540 break; 9541 case SO_KEEPALIVE: 9542 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9543 break; 9544 case SO_DONTROUTE: 9545 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9546 break; 9547 case SO_USELOOPBACK: 9548 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9549 break; 9550 case SO_BROADCAST: 9551 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9552 break; 9553 case SO_REUSEADDR: 9554 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9555 break; 9556 case SO_OOBINLINE: 9557 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9558 break; 9559 case SO_DGRAM_ERRIND: 9560 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9561 break; 9562 case SO_TYPE: 9563 *i1 = SOCK_STREAM; 9564 break; 9565 case SO_SNDBUF: 9566 *i1 = tcp->tcp_xmit_hiwater; 9567 break; 9568 case SO_RCVBUF: 9569 *i1 = tcp->tcp_recv_hiwater; 9570 break; 9571 case SO_SND_COPYAVOID: 9572 *i1 = tcp->tcp_snd_zcopy_on ? 9573 SO_SND_COPYAVOID : 0; 9574 break; 9575 case SO_ALLZONES: 9576 *i1 = connp->conn_allzones ? 1 : 0; 9577 break; 9578 case SO_ANON_MLP: 9579 *i1 = connp->conn_anon_mlp; 9580 break; 9581 case SO_MAC_EXEMPT: 9582 *i1 = connp->conn_mac_exempt; 9583 break; 9584 case SO_EXCLBIND: 9585 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9586 break; 9587 case SO_PROTOTYPE: 9588 *i1 = IPPROTO_TCP; 9589 break; 9590 case SO_DOMAIN: 9591 *i1 = tcp->tcp_family; 9592 break; 9593 case SO_ACCEPTCONN: 9594 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9595 default: 9596 return (-1); 9597 } 9598 break; 9599 case IPPROTO_TCP: 9600 switch (name) { 9601 case TCP_NODELAY: 9602 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9603 break; 9604 case TCP_MAXSEG: 9605 *i1 = tcp->tcp_mss; 9606 break; 9607 case TCP_NOTIFY_THRESHOLD: 9608 *i1 = (int)tcp->tcp_first_timer_threshold; 9609 break; 9610 case TCP_ABORT_THRESHOLD: 9611 *i1 = tcp->tcp_second_timer_threshold; 9612 break; 9613 case TCP_CONN_NOTIFY_THRESHOLD: 9614 *i1 = tcp->tcp_first_ctimer_threshold; 9615 break; 9616 case TCP_CONN_ABORT_THRESHOLD: 9617 *i1 = tcp->tcp_second_ctimer_threshold; 9618 break; 9619 case TCP_RECVDSTADDR: 9620 *i1 = tcp->tcp_recvdstaddr; 9621 break; 9622 case TCP_ANONPRIVBIND: 9623 *i1 = tcp->tcp_anon_priv_bind; 9624 break; 9625 case TCP_EXCLBIND: 9626 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9627 break; 9628 case TCP_INIT_CWND: 9629 *i1 = tcp->tcp_init_cwnd; 9630 break; 9631 case TCP_KEEPALIVE_THRESHOLD: 9632 *i1 = tcp->tcp_ka_interval; 9633 break; 9634 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9635 *i1 = tcp->tcp_ka_abort_thres; 9636 break; 9637 case TCP_CORK: 9638 *i1 = tcp->tcp_cork; 9639 break; 9640 default: 9641 return (-1); 9642 } 9643 break; 9644 case IPPROTO_IP: 9645 if (tcp->tcp_family != AF_INET) 9646 return (-1); 9647 switch (name) { 9648 case IP_OPTIONS: 9649 case T_IP_OPTIONS: { 9650 /* 9651 * This is compatible with BSD in that in only return 9652 * the reverse source route with the final destination 9653 * as the last entry. The first 4 bytes of the option 9654 * will contain the final destination. 9655 */ 9656 int opt_len; 9657 9658 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9659 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9660 ASSERT(opt_len >= 0); 9661 /* Caller ensures enough space */ 9662 if (opt_len > 0) { 9663 /* 9664 * TODO: Do we have to handle getsockopt on an 9665 * initiator as well? 9666 */ 9667 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9668 } 9669 return (0); 9670 } 9671 case IP_TOS: 9672 case T_IP_TOS: 9673 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9674 break; 9675 case IP_TTL: 9676 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9677 break; 9678 case IP_NEXTHOP: 9679 /* Handled at IP level */ 9680 return (-EINVAL); 9681 default: 9682 return (-1); 9683 } 9684 break; 9685 case IPPROTO_IPV6: 9686 /* 9687 * IPPROTO_IPV6 options are only supported for sockets 9688 * that are using IPv6 on the wire. 9689 */ 9690 if (tcp->tcp_ipversion != IPV6_VERSION) { 9691 return (-1); 9692 } 9693 switch (name) { 9694 case IPV6_UNICAST_HOPS: 9695 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9696 break; /* goto sizeof (int) option return */ 9697 case IPV6_BOUND_IF: 9698 /* Zero if not set */ 9699 *i1 = tcp->tcp_bound_if; 9700 break; /* goto sizeof (int) option return */ 9701 case IPV6_RECVPKTINFO: 9702 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9703 *i1 = 1; 9704 else 9705 *i1 = 0; 9706 break; /* goto sizeof (int) option return */ 9707 case IPV6_RECVTCLASS: 9708 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9709 *i1 = 1; 9710 else 9711 *i1 = 0; 9712 break; /* goto sizeof (int) option return */ 9713 case IPV6_RECVHOPLIMIT: 9714 if (tcp->tcp_ipv6_recvancillary & 9715 TCP_IPV6_RECVHOPLIMIT) 9716 *i1 = 1; 9717 else 9718 *i1 = 0; 9719 break; /* goto sizeof (int) option return */ 9720 case IPV6_RECVHOPOPTS: 9721 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9722 *i1 = 1; 9723 else 9724 *i1 = 0; 9725 break; /* goto sizeof (int) option return */ 9726 case IPV6_RECVDSTOPTS: 9727 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9728 *i1 = 1; 9729 else 9730 *i1 = 0; 9731 break; /* goto sizeof (int) option return */ 9732 case _OLD_IPV6_RECVDSTOPTS: 9733 if (tcp->tcp_ipv6_recvancillary & 9734 TCP_OLD_IPV6_RECVDSTOPTS) 9735 *i1 = 1; 9736 else 9737 *i1 = 0; 9738 break; /* goto sizeof (int) option return */ 9739 case IPV6_RECVRTHDR: 9740 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9741 *i1 = 1; 9742 else 9743 *i1 = 0; 9744 break; /* goto sizeof (int) option return */ 9745 case IPV6_RECVRTHDRDSTOPTS: 9746 if (tcp->tcp_ipv6_recvancillary & 9747 TCP_IPV6_RECVRTDSTOPTS) 9748 *i1 = 1; 9749 else 9750 *i1 = 0; 9751 break; /* goto sizeof (int) option return */ 9752 case IPV6_PKTINFO: { 9753 /* XXX assumes that caller has room for max size! */ 9754 struct in6_pktinfo *pkti; 9755 9756 pkti = (struct in6_pktinfo *)ptr; 9757 if (ipp->ipp_fields & IPPF_IFINDEX) 9758 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9759 else 9760 pkti->ipi6_ifindex = 0; 9761 if (ipp->ipp_fields & IPPF_ADDR) 9762 pkti->ipi6_addr = ipp->ipp_addr; 9763 else 9764 pkti->ipi6_addr = ipv6_all_zeros; 9765 return (sizeof (struct in6_pktinfo)); 9766 } 9767 case IPV6_TCLASS: 9768 if (ipp->ipp_fields & IPPF_TCLASS) 9769 *i1 = ipp->ipp_tclass; 9770 else 9771 *i1 = IPV6_FLOW_TCLASS( 9772 IPV6_DEFAULT_VERS_AND_FLOW); 9773 break; /* goto sizeof (int) option return */ 9774 case IPV6_NEXTHOP: { 9775 sin6_t *sin6 = (sin6_t *)ptr; 9776 9777 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9778 return (0); 9779 *sin6 = sin6_null; 9780 sin6->sin6_family = AF_INET6; 9781 sin6->sin6_addr = ipp->ipp_nexthop; 9782 return (sizeof (sin6_t)); 9783 } 9784 case IPV6_HOPOPTS: 9785 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9786 return (0); 9787 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9788 return (0); 9789 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9790 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9791 if (tcp->tcp_label_len > 0) { 9792 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9793 ptr[1] = (ipp->ipp_hopoptslen - 9794 tcp->tcp_label_len + 7) / 8 - 1; 9795 } 9796 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9797 case IPV6_RTHDRDSTOPTS: 9798 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9799 return (0); 9800 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9801 return (ipp->ipp_rtdstoptslen); 9802 case IPV6_RTHDR: 9803 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9804 return (0); 9805 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9806 return (ipp->ipp_rthdrlen); 9807 case IPV6_DSTOPTS: 9808 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9809 return (0); 9810 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9811 return (ipp->ipp_dstoptslen); 9812 case IPV6_SRC_PREFERENCES: 9813 return (ip6_get_src_preferences(connp, 9814 (uint32_t *)ptr)); 9815 case IPV6_PATHMTU: { 9816 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9817 9818 if (tcp->tcp_state < TCPS_ESTABLISHED) 9819 return (-1); 9820 9821 return (ip_fill_mtuinfo(&connp->conn_remv6, 9822 connp->conn_fport, mtuinfo, 9823 connp->conn_netstack)); 9824 } 9825 default: 9826 return (-1); 9827 } 9828 break; 9829 default: 9830 return (-1); 9831 } 9832 return (sizeof (int)); 9833 } 9834 9835 /* 9836 * TCP routine to get the values of options. 9837 */ 9838 int 9839 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9840 { 9841 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9842 } 9843 9844 /* returns UNIX error, the optlen is a value-result arg */ 9845 int 9846 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9847 void *optvalp, socklen_t *optlen, cred_t *cr) 9848 { 9849 conn_t *connp = (conn_t *)proto_handle; 9850 squeue_t *sqp = connp->conn_sqp; 9851 int error; 9852 t_uscalar_t max_optbuf_len; 9853 void *optvalp_buf; 9854 int len; 9855 9856 ASSERT(connp->conn_upper_handle != NULL); 9857 9858 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9859 tcp_opt_obj.odb_opt_des_arr, 9860 tcp_opt_obj.odb_opt_arr_cnt, 9861 tcp_opt_obj.odb_topmost_tpiprovider, 9862 B_FALSE, B_TRUE, cr); 9863 if (error != 0) { 9864 if (error < 0) { 9865 error = proto_tlitosyserr(-error); 9866 } 9867 return (error); 9868 } 9869 9870 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9871 9872 error = squeue_synch_enter(sqp, connp, 0); 9873 if (error == ENOMEM) { 9874 return (ENOMEM); 9875 } 9876 9877 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9878 squeue_synch_exit(sqp, connp); 9879 9880 if (len < 0) { 9881 /* 9882 * Pass on to IP 9883 */ 9884 kmem_free(optvalp_buf, max_optbuf_len); 9885 return (ip_get_options(connp, level, option_name, 9886 optvalp, optlen, cr)); 9887 } else { 9888 /* 9889 * update optlen and copy option value 9890 */ 9891 t_uscalar_t size = MIN(len, *optlen); 9892 bcopy(optvalp_buf, optvalp, size); 9893 bcopy(&size, optlen, sizeof (size)); 9894 9895 kmem_free(optvalp_buf, max_optbuf_len); 9896 return (0); 9897 } 9898 } 9899 9900 /* 9901 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9902 * Parameters are assumed to be verified by the caller. 9903 */ 9904 /* ARGSUSED */ 9905 int 9906 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9907 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9908 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9909 { 9910 tcp_t *tcp = connp->conn_tcp; 9911 int *i1 = (int *)invalp; 9912 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9913 boolean_t checkonly; 9914 int reterr; 9915 tcp_stack_t *tcps = tcp->tcp_tcps; 9916 9917 switch (optset_context) { 9918 case SETFN_OPTCOM_CHECKONLY: 9919 checkonly = B_TRUE; 9920 /* 9921 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9922 * inlen != 0 implies value supplied and 9923 * we have to "pretend" to set it. 9924 * inlen == 0 implies that there is no 9925 * value part in T_CHECK request and just validation 9926 * done elsewhere should be enough, we just return here. 9927 */ 9928 if (inlen == 0) { 9929 *outlenp = 0; 9930 return (0); 9931 } 9932 break; 9933 case SETFN_OPTCOM_NEGOTIATE: 9934 checkonly = B_FALSE; 9935 break; 9936 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9937 case SETFN_CONN_NEGOTIATE: 9938 checkonly = B_FALSE; 9939 /* 9940 * Negotiating local and "association-related" options 9941 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9942 * primitives is allowed by XTI, but we choose 9943 * to not implement this style negotiation for Internet 9944 * protocols (We interpret it is a must for OSI world but 9945 * optional for Internet protocols) for all options. 9946 * [ Will do only for the few options that enable test 9947 * suites that our XTI implementation of this feature 9948 * works for transports that do allow it ] 9949 */ 9950 if (!tcp_allow_connopt_set(level, name)) { 9951 *outlenp = 0; 9952 return (EINVAL); 9953 } 9954 break; 9955 default: 9956 /* 9957 * We should never get here 9958 */ 9959 *outlenp = 0; 9960 return (EINVAL); 9961 } 9962 9963 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9964 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9965 9966 /* 9967 * For TCP, we should have no ancillary data sent down 9968 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9969 * has to be zero. 9970 */ 9971 ASSERT(thisdg_attrs == NULL); 9972 9973 /* 9974 * For fixed length options, no sanity check 9975 * of passed in length is done. It is assumed *_optcom_req() 9976 * routines do the right thing. 9977 */ 9978 switch (level) { 9979 case SOL_SOCKET: 9980 switch (name) { 9981 case SO_LINGER: { 9982 struct linger *lgr = (struct linger *)invalp; 9983 9984 if (!checkonly) { 9985 if (lgr->l_onoff) { 9986 tcp->tcp_linger = 1; 9987 tcp->tcp_lingertime = lgr->l_linger; 9988 } else { 9989 tcp->tcp_linger = 0; 9990 tcp->tcp_lingertime = 0; 9991 } 9992 /* struct copy */ 9993 *(struct linger *)outvalp = *lgr; 9994 } else { 9995 if (!lgr->l_onoff) { 9996 ((struct linger *) 9997 outvalp)->l_onoff = 0; 9998 ((struct linger *) 9999 outvalp)->l_linger = 0; 10000 } else { 10001 /* struct copy */ 10002 *(struct linger *)outvalp = *lgr; 10003 } 10004 } 10005 *outlenp = sizeof (struct linger); 10006 return (0); 10007 } 10008 case SO_DEBUG: 10009 if (!checkonly) 10010 tcp->tcp_debug = onoff; 10011 break; 10012 case SO_KEEPALIVE: 10013 if (checkonly) { 10014 /* check only case */ 10015 break; 10016 } 10017 10018 if (!onoff) { 10019 if (tcp->tcp_ka_enabled) { 10020 if (tcp->tcp_ka_tid != 0) { 10021 (void) TCP_TIMER_CANCEL(tcp, 10022 tcp->tcp_ka_tid); 10023 tcp->tcp_ka_tid = 0; 10024 } 10025 tcp->tcp_ka_enabled = 0; 10026 } 10027 break; 10028 } 10029 if (!tcp->tcp_ka_enabled) { 10030 /* Crank up the keepalive timer */ 10031 tcp->tcp_ka_last_intrvl = 0; 10032 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10033 tcp_keepalive_killer, 10034 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10035 tcp->tcp_ka_enabled = 1; 10036 } 10037 break; 10038 case SO_DONTROUTE: 10039 /* 10040 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10041 * only of interest to IP. We track them here only so 10042 * that we can report their current value. 10043 */ 10044 if (!checkonly) { 10045 tcp->tcp_dontroute = onoff; 10046 tcp->tcp_connp->conn_dontroute = onoff; 10047 } 10048 break; 10049 case SO_USELOOPBACK: 10050 if (!checkonly) { 10051 tcp->tcp_useloopback = onoff; 10052 tcp->tcp_connp->conn_loopback = onoff; 10053 } 10054 break; 10055 case SO_BROADCAST: 10056 if (!checkonly) { 10057 tcp->tcp_broadcast = onoff; 10058 tcp->tcp_connp->conn_broadcast = onoff; 10059 } 10060 break; 10061 case SO_REUSEADDR: 10062 if (!checkonly) { 10063 tcp->tcp_reuseaddr = onoff; 10064 tcp->tcp_connp->conn_reuseaddr = onoff; 10065 } 10066 break; 10067 case SO_OOBINLINE: 10068 if (!checkonly) { 10069 tcp->tcp_oobinline = onoff; 10070 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10071 proto_set_rx_oob_opt(connp, onoff); 10072 } 10073 break; 10074 case SO_DGRAM_ERRIND: 10075 if (!checkonly) 10076 tcp->tcp_dgram_errind = onoff; 10077 break; 10078 case SO_SNDBUF: { 10079 if (*i1 > tcps->tcps_max_buf) { 10080 *outlenp = 0; 10081 return (ENOBUFS); 10082 } 10083 if (checkonly) 10084 break; 10085 10086 tcp->tcp_xmit_hiwater = *i1; 10087 if (tcps->tcps_snd_lowat_fraction != 0) 10088 tcp->tcp_xmit_lowater = 10089 tcp->tcp_xmit_hiwater / 10090 tcps->tcps_snd_lowat_fraction; 10091 (void) tcp_maxpsz_set(tcp, B_TRUE); 10092 /* 10093 * If we are flow-controlled, recheck the condition. 10094 * There are apps that increase SO_SNDBUF size when 10095 * flow-controlled (EWOULDBLOCK), and expect the flow 10096 * control condition to be lifted right away. 10097 */ 10098 mutex_enter(&tcp->tcp_non_sq_lock); 10099 if (tcp->tcp_flow_stopped && 10100 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10101 tcp_clrqfull(tcp); 10102 } 10103 mutex_exit(&tcp->tcp_non_sq_lock); 10104 break; 10105 } 10106 case SO_RCVBUF: 10107 if (*i1 > tcps->tcps_max_buf) { 10108 *outlenp = 0; 10109 return (ENOBUFS); 10110 } 10111 /* Silently ignore zero */ 10112 if (!checkonly && *i1 != 0) { 10113 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10114 (void) tcp_rwnd_set(tcp, *i1); 10115 } 10116 /* 10117 * XXX should we return the rwnd here 10118 * and tcp_opt_get ? 10119 */ 10120 break; 10121 case SO_SND_COPYAVOID: 10122 if (!checkonly) { 10123 /* we only allow enable at most once for now */ 10124 if (tcp->tcp_loopback || 10125 (tcp->tcp_kssl_ctx != NULL) || 10126 (!tcp->tcp_snd_zcopy_aware && 10127 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10128 *outlenp = 0; 10129 return (EOPNOTSUPP); 10130 } 10131 tcp->tcp_snd_zcopy_aware = 1; 10132 } 10133 break; 10134 case SO_RCVTIMEO: 10135 case SO_SNDTIMEO: 10136 /* 10137 * Pass these two options in order for third part 10138 * protocol usage. Here just return directly. 10139 */ 10140 return (0); 10141 case SO_ALLZONES: 10142 /* Pass option along to IP level for handling */ 10143 return (-EINVAL); 10144 case SO_ANON_MLP: 10145 /* Pass option along to IP level for handling */ 10146 return (-EINVAL); 10147 case SO_MAC_EXEMPT: 10148 /* Pass option along to IP level for handling */ 10149 return (-EINVAL); 10150 case SO_EXCLBIND: 10151 if (!checkonly) 10152 tcp->tcp_exclbind = onoff; 10153 break; 10154 default: 10155 *outlenp = 0; 10156 return (EINVAL); 10157 } 10158 break; 10159 case IPPROTO_TCP: 10160 switch (name) { 10161 case TCP_NODELAY: 10162 if (!checkonly) 10163 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10164 break; 10165 case TCP_NOTIFY_THRESHOLD: 10166 if (!checkonly) 10167 tcp->tcp_first_timer_threshold = *i1; 10168 break; 10169 case TCP_ABORT_THRESHOLD: 10170 if (!checkonly) 10171 tcp->tcp_second_timer_threshold = *i1; 10172 break; 10173 case TCP_CONN_NOTIFY_THRESHOLD: 10174 if (!checkonly) 10175 tcp->tcp_first_ctimer_threshold = *i1; 10176 break; 10177 case TCP_CONN_ABORT_THRESHOLD: 10178 if (!checkonly) 10179 tcp->tcp_second_ctimer_threshold = *i1; 10180 break; 10181 case TCP_RECVDSTADDR: 10182 if (tcp->tcp_state > TCPS_LISTEN) 10183 return (EOPNOTSUPP); 10184 if (!checkonly) 10185 tcp->tcp_recvdstaddr = onoff; 10186 break; 10187 case TCP_ANONPRIVBIND: 10188 if ((reterr = secpolicy_net_privaddr(cr, 0, 10189 IPPROTO_TCP)) != 0) { 10190 *outlenp = 0; 10191 return (reterr); 10192 } 10193 if (!checkonly) { 10194 tcp->tcp_anon_priv_bind = onoff; 10195 } 10196 break; 10197 case TCP_EXCLBIND: 10198 if (!checkonly) 10199 tcp->tcp_exclbind = onoff; 10200 break; /* goto sizeof (int) option return */ 10201 case TCP_INIT_CWND: { 10202 uint32_t init_cwnd = *((uint32_t *)invalp); 10203 10204 if (checkonly) 10205 break; 10206 10207 /* 10208 * Only allow socket with network configuration 10209 * privilege to set the initial cwnd to be larger 10210 * than allowed by RFC 3390. 10211 */ 10212 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10213 tcp->tcp_init_cwnd = init_cwnd; 10214 break; 10215 } 10216 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10217 *outlenp = 0; 10218 return (reterr); 10219 } 10220 if (init_cwnd > TCP_MAX_INIT_CWND) { 10221 *outlenp = 0; 10222 return (EINVAL); 10223 } 10224 tcp->tcp_init_cwnd = init_cwnd; 10225 break; 10226 } 10227 case TCP_KEEPALIVE_THRESHOLD: 10228 if (checkonly) 10229 break; 10230 10231 if (*i1 < tcps->tcps_keepalive_interval_low || 10232 *i1 > tcps->tcps_keepalive_interval_high) { 10233 *outlenp = 0; 10234 return (EINVAL); 10235 } 10236 if (*i1 != tcp->tcp_ka_interval) { 10237 tcp->tcp_ka_interval = *i1; 10238 /* 10239 * Check if we need to restart the 10240 * keepalive timer. 10241 */ 10242 if (tcp->tcp_ka_tid != 0) { 10243 ASSERT(tcp->tcp_ka_enabled); 10244 (void) TCP_TIMER_CANCEL(tcp, 10245 tcp->tcp_ka_tid); 10246 tcp->tcp_ka_last_intrvl = 0; 10247 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10248 tcp_keepalive_killer, 10249 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10250 } 10251 } 10252 break; 10253 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10254 if (!checkonly) { 10255 if (*i1 < 10256 tcps->tcps_keepalive_abort_interval_low || 10257 *i1 > 10258 tcps->tcps_keepalive_abort_interval_high) { 10259 *outlenp = 0; 10260 return (EINVAL); 10261 } 10262 tcp->tcp_ka_abort_thres = *i1; 10263 } 10264 break; 10265 case TCP_CORK: 10266 if (!checkonly) { 10267 /* 10268 * if tcp->tcp_cork was set and is now 10269 * being unset, we have to make sure that 10270 * the remaining data gets sent out. Also 10271 * unset tcp->tcp_cork so that tcp_wput_data() 10272 * can send data even if it is less than mss 10273 */ 10274 if (tcp->tcp_cork && onoff == 0 && 10275 tcp->tcp_unsent > 0) { 10276 tcp->tcp_cork = B_FALSE; 10277 tcp_wput_data(tcp, NULL, B_FALSE); 10278 } 10279 tcp->tcp_cork = onoff; 10280 } 10281 break; 10282 default: 10283 *outlenp = 0; 10284 return (EINVAL); 10285 } 10286 break; 10287 case IPPROTO_IP: 10288 if (tcp->tcp_family != AF_INET) { 10289 *outlenp = 0; 10290 return (ENOPROTOOPT); 10291 } 10292 switch (name) { 10293 case IP_OPTIONS: 10294 case T_IP_OPTIONS: 10295 reterr = tcp_opt_set_header(tcp, checkonly, 10296 invalp, inlen); 10297 if (reterr) { 10298 *outlenp = 0; 10299 return (reterr); 10300 } 10301 /* OK return - copy input buffer into output buffer */ 10302 if (invalp != outvalp) { 10303 /* don't trust bcopy for identical src/dst */ 10304 bcopy(invalp, outvalp, inlen); 10305 } 10306 *outlenp = inlen; 10307 return (0); 10308 case IP_TOS: 10309 case T_IP_TOS: 10310 if (!checkonly) { 10311 tcp->tcp_ipha->ipha_type_of_service = 10312 (uchar_t)*i1; 10313 tcp->tcp_tos = (uchar_t)*i1; 10314 } 10315 break; 10316 case IP_TTL: 10317 if (!checkonly) { 10318 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10319 tcp->tcp_ttl = (uchar_t)*i1; 10320 } 10321 break; 10322 case IP_BOUND_IF: 10323 case IP_NEXTHOP: 10324 /* Handled at the IP level */ 10325 return (-EINVAL); 10326 case IP_SEC_OPT: 10327 /* 10328 * We should not allow policy setting after 10329 * we start listening for connections. 10330 */ 10331 if (tcp->tcp_state == TCPS_LISTEN) { 10332 return (EINVAL); 10333 } else { 10334 /* Handled at the IP level */ 10335 return (-EINVAL); 10336 } 10337 default: 10338 *outlenp = 0; 10339 return (EINVAL); 10340 } 10341 break; 10342 case IPPROTO_IPV6: { 10343 ip6_pkt_t *ipp; 10344 10345 /* 10346 * IPPROTO_IPV6 options are only supported for sockets 10347 * that are using IPv6 on the wire. 10348 */ 10349 if (tcp->tcp_ipversion != IPV6_VERSION) { 10350 *outlenp = 0; 10351 return (ENOPROTOOPT); 10352 } 10353 /* 10354 * Only sticky options; no ancillary data 10355 */ 10356 ipp = &tcp->tcp_sticky_ipp; 10357 10358 switch (name) { 10359 case IPV6_UNICAST_HOPS: 10360 /* -1 means use default */ 10361 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10362 *outlenp = 0; 10363 return (EINVAL); 10364 } 10365 if (!checkonly) { 10366 if (*i1 == -1) { 10367 tcp->tcp_ip6h->ip6_hops = 10368 ipp->ipp_unicast_hops = 10369 (uint8_t)tcps->tcps_ipv6_hoplimit; 10370 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10371 /* Pass modified value to IP. */ 10372 *i1 = tcp->tcp_ip6h->ip6_hops; 10373 } else { 10374 tcp->tcp_ip6h->ip6_hops = 10375 ipp->ipp_unicast_hops = 10376 (uint8_t)*i1; 10377 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10378 } 10379 reterr = tcp_build_hdrs(tcp); 10380 if (reterr != 0) 10381 return (reterr); 10382 } 10383 break; 10384 case IPV6_BOUND_IF: 10385 if (!checkonly) { 10386 tcp->tcp_bound_if = *i1; 10387 PASS_OPT_TO_IP(connp); 10388 } 10389 break; 10390 /* 10391 * Set boolean switches for ancillary data delivery 10392 */ 10393 case IPV6_RECVPKTINFO: 10394 if (!checkonly) { 10395 if (onoff) 10396 tcp->tcp_ipv6_recvancillary |= 10397 TCP_IPV6_RECVPKTINFO; 10398 else 10399 tcp->tcp_ipv6_recvancillary &= 10400 ~TCP_IPV6_RECVPKTINFO; 10401 /* Force it to be sent up with the next msg */ 10402 tcp->tcp_recvifindex = 0; 10403 PASS_OPT_TO_IP(connp); 10404 } 10405 break; 10406 case IPV6_RECVTCLASS: 10407 if (!checkonly) { 10408 if (onoff) 10409 tcp->tcp_ipv6_recvancillary |= 10410 TCP_IPV6_RECVTCLASS; 10411 else 10412 tcp->tcp_ipv6_recvancillary &= 10413 ~TCP_IPV6_RECVTCLASS; 10414 PASS_OPT_TO_IP(connp); 10415 } 10416 break; 10417 case IPV6_RECVHOPLIMIT: 10418 if (!checkonly) { 10419 if (onoff) 10420 tcp->tcp_ipv6_recvancillary |= 10421 TCP_IPV6_RECVHOPLIMIT; 10422 else 10423 tcp->tcp_ipv6_recvancillary &= 10424 ~TCP_IPV6_RECVHOPLIMIT; 10425 /* Force it to be sent up with the next msg */ 10426 tcp->tcp_recvhops = 0xffffffffU; 10427 PASS_OPT_TO_IP(connp); 10428 } 10429 break; 10430 case IPV6_RECVHOPOPTS: 10431 if (!checkonly) { 10432 if (onoff) 10433 tcp->tcp_ipv6_recvancillary |= 10434 TCP_IPV6_RECVHOPOPTS; 10435 else 10436 tcp->tcp_ipv6_recvancillary &= 10437 ~TCP_IPV6_RECVHOPOPTS; 10438 PASS_OPT_TO_IP(connp); 10439 } 10440 break; 10441 case IPV6_RECVDSTOPTS: 10442 if (!checkonly) { 10443 if (onoff) 10444 tcp->tcp_ipv6_recvancillary |= 10445 TCP_IPV6_RECVDSTOPTS; 10446 else 10447 tcp->tcp_ipv6_recvancillary &= 10448 ~TCP_IPV6_RECVDSTOPTS; 10449 PASS_OPT_TO_IP(connp); 10450 } 10451 break; 10452 case _OLD_IPV6_RECVDSTOPTS: 10453 if (!checkonly) { 10454 if (onoff) 10455 tcp->tcp_ipv6_recvancillary |= 10456 TCP_OLD_IPV6_RECVDSTOPTS; 10457 else 10458 tcp->tcp_ipv6_recvancillary &= 10459 ~TCP_OLD_IPV6_RECVDSTOPTS; 10460 } 10461 break; 10462 case IPV6_RECVRTHDR: 10463 if (!checkonly) { 10464 if (onoff) 10465 tcp->tcp_ipv6_recvancillary |= 10466 TCP_IPV6_RECVRTHDR; 10467 else 10468 tcp->tcp_ipv6_recvancillary &= 10469 ~TCP_IPV6_RECVRTHDR; 10470 PASS_OPT_TO_IP(connp); 10471 } 10472 break; 10473 case IPV6_RECVRTHDRDSTOPTS: 10474 if (!checkonly) { 10475 if (onoff) 10476 tcp->tcp_ipv6_recvancillary |= 10477 TCP_IPV6_RECVRTDSTOPTS; 10478 else 10479 tcp->tcp_ipv6_recvancillary &= 10480 ~TCP_IPV6_RECVRTDSTOPTS; 10481 PASS_OPT_TO_IP(connp); 10482 } 10483 break; 10484 case IPV6_PKTINFO: 10485 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10486 return (EINVAL); 10487 if (checkonly) 10488 break; 10489 10490 if (inlen == 0) { 10491 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10492 } else { 10493 struct in6_pktinfo *pkti; 10494 10495 pkti = (struct in6_pktinfo *)invalp; 10496 /* 10497 * RFC 3542 states that ipi6_addr must be 10498 * the unspecified address when setting the 10499 * IPV6_PKTINFO sticky socket option on a 10500 * TCP socket. 10501 */ 10502 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10503 return (EINVAL); 10504 /* 10505 * IP will validate the source address and 10506 * interface index. 10507 */ 10508 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10509 reterr = ip_set_options(tcp->tcp_connp, 10510 level, name, invalp, inlen, cr); 10511 } else { 10512 reterr = ip6_set_pktinfo(cr, 10513 tcp->tcp_connp, pkti); 10514 } 10515 if (reterr != 0) 10516 return (reterr); 10517 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10518 ipp->ipp_addr = pkti->ipi6_addr; 10519 if (ipp->ipp_ifindex != 0) 10520 ipp->ipp_fields |= IPPF_IFINDEX; 10521 else 10522 ipp->ipp_fields &= ~IPPF_IFINDEX; 10523 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10524 ipp->ipp_fields |= IPPF_ADDR; 10525 else 10526 ipp->ipp_fields &= ~IPPF_ADDR; 10527 } 10528 reterr = tcp_build_hdrs(tcp); 10529 if (reterr != 0) 10530 return (reterr); 10531 break; 10532 case IPV6_TCLASS: 10533 if (inlen != 0 && inlen != sizeof (int)) 10534 return (EINVAL); 10535 if (checkonly) 10536 break; 10537 10538 if (inlen == 0) { 10539 ipp->ipp_fields &= ~IPPF_TCLASS; 10540 } else { 10541 if (*i1 > 255 || *i1 < -1) 10542 return (EINVAL); 10543 if (*i1 == -1) { 10544 ipp->ipp_tclass = 0; 10545 *i1 = 0; 10546 } else { 10547 ipp->ipp_tclass = *i1; 10548 } 10549 ipp->ipp_fields |= IPPF_TCLASS; 10550 } 10551 reterr = tcp_build_hdrs(tcp); 10552 if (reterr != 0) 10553 return (reterr); 10554 break; 10555 case IPV6_NEXTHOP: 10556 /* 10557 * IP will verify that the nexthop is reachable 10558 * and fail for sticky options. 10559 */ 10560 if (inlen != 0 && inlen != sizeof (sin6_t)) 10561 return (EINVAL); 10562 if (checkonly) 10563 break; 10564 10565 if (inlen == 0) { 10566 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10567 } else { 10568 sin6_t *sin6 = (sin6_t *)invalp; 10569 10570 if (sin6->sin6_family != AF_INET6) 10571 return (EAFNOSUPPORT); 10572 if (IN6_IS_ADDR_V4MAPPED( 10573 &sin6->sin6_addr)) 10574 return (EADDRNOTAVAIL); 10575 ipp->ipp_nexthop = sin6->sin6_addr; 10576 if (!IN6_IS_ADDR_UNSPECIFIED( 10577 &ipp->ipp_nexthop)) 10578 ipp->ipp_fields |= IPPF_NEXTHOP; 10579 else 10580 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10581 } 10582 reterr = tcp_build_hdrs(tcp); 10583 if (reterr != 0) 10584 return (reterr); 10585 PASS_OPT_TO_IP(connp); 10586 break; 10587 case IPV6_HOPOPTS: { 10588 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10589 10590 /* 10591 * Sanity checks - minimum size, size a multiple of 10592 * eight bytes, and matching size passed in. 10593 */ 10594 if (inlen != 0 && 10595 inlen != (8 * (hopts->ip6h_len + 1))) 10596 return (EINVAL); 10597 10598 if (checkonly) 10599 break; 10600 10601 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10602 (uchar_t **)&ipp->ipp_hopopts, 10603 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10604 if (reterr != 0) 10605 return (reterr); 10606 if (ipp->ipp_hopoptslen == 0) 10607 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10608 else 10609 ipp->ipp_fields |= IPPF_HOPOPTS; 10610 reterr = tcp_build_hdrs(tcp); 10611 if (reterr != 0) 10612 return (reterr); 10613 break; 10614 } 10615 case IPV6_RTHDRDSTOPTS: { 10616 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10617 10618 /* 10619 * Sanity checks - minimum size, size a multiple of 10620 * eight bytes, and matching size passed in. 10621 */ 10622 if (inlen != 0 && 10623 inlen != (8 * (dopts->ip6d_len + 1))) 10624 return (EINVAL); 10625 10626 if (checkonly) 10627 break; 10628 10629 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10630 (uchar_t **)&ipp->ipp_rtdstopts, 10631 &ipp->ipp_rtdstoptslen, 0); 10632 if (reterr != 0) 10633 return (reterr); 10634 if (ipp->ipp_rtdstoptslen == 0) 10635 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10636 else 10637 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10638 reterr = tcp_build_hdrs(tcp); 10639 if (reterr != 0) 10640 return (reterr); 10641 break; 10642 } 10643 case IPV6_DSTOPTS: { 10644 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10645 10646 /* 10647 * Sanity checks - minimum size, size a multiple of 10648 * eight bytes, and matching size passed in. 10649 */ 10650 if (inlen != 0 && 10651 inlen != (8 * (dopts->ip6d_len + 1))) 10652 return (EINVAL); 10653 10654 if (checkonly) 10655 break; 10656 10657 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10658 (uchar_t **)&ipp->ipp_dstopts, 10659 &ipp->ipp_dstoptslen, 0); 10660 if (reterr != 0) 10661 return (reterr); 10662 if (ipp->ipp_dstoptslen == 0) 10663 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10664 else 10665 ipp->ipp_fields |= IPPF_DSTOPTS; 10666 reterr = tcp_build_hdrs(tcp); 10667 if (reterr != 0) 10668 return (reterr); 10669 break; 10670 } 10671 case IPV6_RTHDR: { 10672 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10673 10674 /* 10675 * Sanity checks - minimum size, size a multiple of 10676 * eight bytes, and matching size passed in. 10677 */ 10678 if (inlen != 0 && 10679 inlen != (8 * (rt->ip6r_len + 1))) 10680 return (EINVAL); 10681 10682 if (checkonly) 10683 break; 10684 10685 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10686 (uchar_t **)&ipp->ipp_rthdr, 10687 &ipp->ipp_rthdrlen, 0); 10688 if (reterr != 0) 10689 return (reterr); 10690 if (ipp->ipp_rthdrlen == 0) 10691 ipp->ipp_fields &= ~IPPF_RTHDR; 10692 else 10693 ipp->ipp_fields |= IPPF_RTHDR; 10694 reterr = tcp_build_hdrs(tcp); 10695 if (reterr != 0) 10696 return (reterr); 10697 break; 10698 } 10699 case IPV6_V6ONLY: 10700 if (!checkonly) { 10701 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10702 } 10703 break; 10704 case IPV6_USE_MIN_MTU: 10705 if (inlen != sizeof (int)) 10706 return (EINVAL); 10707 10708 if (*i1 < -1 || *i1 > 1) 10709 return (EINVAL); 10710 10711 if (checkonly) 10712 break; 10713 10714 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10715 ipp->ipp_use_min_mtu = *i1; 10716 break; 10717 case IPV6_SEC_OPT: 10718 /* 10719 * We should not allow policy setting after 10720 * we start listening for connections. 10721 */ 10722 if (tcp->tcp_state == TCPS_LISTEN) { 10723 return (EINVAL); 10724 } else { 10725 /* Handled at the IP level */ 10726 return (-EINVAL); 10727 } 10728 case IPV6_SRC_PREFERENCES: 10729 if (inlen != sizeof (uint32_t)) 10730 return (EINVAL); 10731 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10732 *(uint32_t *)invalp); 10733 if (reterr != 0) { 10734 *outlenp = 0; 10735 return (reterr); 10736 } 10737 break; 10738 default: 10739 *outlenp = 0; 10740 return (EINVAL); 10741 } 10742 break; 10743 } /* end IPPROTO_IPV6 */ 10744 default: 10745 *outlenp = 0; 10746 return (EINVAL); 10747 } 10748 /* 10749 * Common case of OK return with outval same as inval 10750 */ 10751 if (invalp != outvalp) { 10752 /* don't trust bcopy for identical src/dst */ 10753 (void) bcopy(invalp, outvalp, inlen); 10754 } 10755 *outlenp = inlen; 10756 return (0); 10757 } 10758 10759 /* ARGSUSED */ 10760 int 10761 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10762 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10763 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10764 { 10765 conn_t *connp = Q_TO_CONN(q); 10766 10767 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10768 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10769 } 10770 10771 int 10772 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10773 const void *optvalp, socklen_t optlen, cred_t *cr) 10774 { 10775 conn_t *connp = (conn_t *)proto_handle; 10776 squeue_t *sqp = connp->conn_sqp; 10777 int error; 10778 10779 ASSERT(connp->conn_upper_handle != NULL); 10780 /* 10781 * Entering the squeue synchronously can result in a context switch, 10782 * which can cause a rather sever performance degradation. So we try to 10783 * handle whatever options we can without entering the squeue. 10784 */ 10785 if (level == IPPROTO_TCP) { 10786 switch (option_name) { 10787 case TCP_NODELAY: 10788 if (optlen != sizeof (int32_t)) 10789 return (EINVAL); 10790 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10791 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10792 connp->conn_tcp->tcp_mss; 10793 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10794 return (0); 10795 default: 10796 break; 10797 } 10798 } 10799 10800 error = squeue_synch_enter(sqp, connp, 0); 10801 if (error == ENOMEM) { 10802 return (ENOMEM); 10803 } 10804 10805 error = proto_opt_check(level, option_name, optlen, NULL, 10806 tcp_opt_obj.odb_opt_des_arr, 10807 tcp_opt_obj.odb_opt_arr_cnt, 10808 tcp_opt_obj.odb_topmost_tpiprovider, 10809 B_TRUE, B_FALSE, cr); 10810 10811 if (error != 0) { 10812 if (error < 0) { 10813 error = proto_tlitosyserr(-error); 10814 } 10815 squeue_synch_exit(sqp, connp); 10816 return (error); 10817 } 10818 10819 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10820 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10821 NULL, cr, NULL); 10822 squeue_synch_exit(sqp, connp); 10823 10824 if (error < 0) { 10825 /* 10826 * Pass on to ip 10827 */ 10828 error = ip_set_options(connp, level, option_name, optvalp, 10829 optlen, cr); 10830 } 10831 return (error); 10832 } 10833 10834 /* 10835 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10836 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10837 * headers, and the maximum size tcp header (to avoid reallocation 10838 * on the fly for additional tcp options). 10839 * Returns failure if can't allocate memory. 10840 */ 10841 static int 10842 tcp_build_hdrs(tcp_t *tcp) 10843 { 10844 char *hdrs; 10845 uint_t hdrs_len; 10846 ip6i_t *ip6i; 10847 char buf[TCP_MAX_HDR_LENGTH]; 10848 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10849 in6_addr_t src, dst; 10850 tcp_stack_t *tcps = tcp->tcp_tcps; 10851 conn_t *connp = tcp->tcp_connp; 10852 10853 /* 10854 * save the existing tcp header and source/dest IP addresses 10855 */ 10856 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10857 src = tcp->tcp_ip6h->ip6_src; 10858 dst = tcp->tcp_ip6h->ip6_dst; 10859 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10860 ASSERT(hdrs_len != 0); 10861 if (hdrs_len > tcp->tcp_iphc_len) { 10862 /* Need to reallocate */ 10863 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10864 if (hdrs == NULL) 10865 return (ENOMEM); 10866 if (tcp->tcp_iphc != NULL) { 10867 if (tcp->tcp_hdr_grown) { 10868 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10869 } else { 10870 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10871 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10872 } 10873 tcp->tcp_iphc_len = 0; 10874 } 10875 ASSERT(tcp->tcp_iphc_len == 0); 10876 tcp->tcp_iphc = hdrs; 10877 tcp->tcp_iphc_len = hdrs_len; 10878 tcp->tcp_hdr_grown = B_TRUE; 10879 } 10880 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10881 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10882 10883 /* Set header fields not in ipp */ 10884 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10885 ip6i = (ip6i_t *)tcp->tcp_iphc; 10886 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10887 } else { 10888 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10889 } 10890 /* 10891 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10892 * 10893 * tcp->tcp_tcp_hdr_len doesn't change here. 10894 */ 10895 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10896 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10897 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10898 10899 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10900 10901 tcp->tcp_ip6h->ip6_src = src; 10902 tcp->tcp_ip6h->ip6_dst = dst; 10903 10904 /* 10905 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10906 * the default value for TCP. 10907 */ 10908 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10909 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10910 10911 /* 10912 * If we're setting extension headers after a connection 10913 * has been established, and if we have a routing header 10914 * among the extension headers, call ip_massage_options_v6 to 10915 * manipulate the routing header/ip6_dst set the checksum 10916 * difference in the tcp header template. 10917 * (This happens in tcp_connect_ipv6 if the routing header 10918 * is set prior to the connect.) 10919 * Set the tcp_sum to zero first in case we've cleared a 10920 * routing header or don't have one at all. 10921 */ 10922 tcp->tcp_sum = 0; 10923 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10924 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10925 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10926 (uint8_t *)tcp->tcp_tcph); 10927 if (rth != NULL) { 10928 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10929 rth, tcps->tcps_netstack); 10930 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10931 (tcp->tcp_sum >> 16)); 10932 } 10933 } 10934 10935 /* Try to get everything in a single mblk */ 10936 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10937 hdrs_len + tcps->tcps_wroff_xtra); 10938 return (0); 10939 } 10940 10941 /* 10942 * Transfer any source route option from ipha to buf/dst in reversed form. 10943 */ 10944 static int 10945 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10946 { 10947 ipoptp_t opts; 10948 uchar_t *opt; 10949 uint8_t optval; 10950 uint8_t optlen; 10951 uint32_t len = 0; 10952 10953 for (optval = ipoptp_first(&opts, ipha); 10954 optval != IPOPT_EOL; 10955 optval = ipoptp_next(&opts)) { 10956 opt = opts.ipoptp_cur; 10957 optlen = opts.ipoptp_len; 10958 switch (optval) { 10959 int off1, off2; 10960 case IPOPT_SSRR: 10961 case IPOPT_LSRR: 10962 10963 /* Reverse source route */ 10964 /* 10965 * First entry should be the next to last one in the 10966 * current source route (the last entry is our 10967 * address.) 10968 * The last entry should be the final destination. 10969 */ 10970 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10971 buf[IPOPT_OLEN] = (uint8_t)optlen; 10972 off1 = IPOPT_MINOFF_SR - 1; 10973 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10974 if (off2 < 0) { 10975 /* No entries in source route */ 10976 break; 10977 } 10978 bcopy(opt + off2, dst, IP_ADDR_LEN); 10979 /* 10980 * Note: use src since ipha has not had its src 10981 * and dst reversed (it is in the state it was 10982 * received. 10983 */ 10984 bcopy(&ipha->ipha_src, buf + off2, 10985 IP_ADDR_LEN); 10986 off2 -= IP_ADDR_LEN; 10987 10988 while (off2 > 0) { 10989 bcopy(opt + off2, buf + off1, 10990 IP_ADDR_LEN); 10991 off1 += IP_ADDR_LEN; 10992 off2 -= IP_ADDR_LEN; 10993 } 10994 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10995 buf += optlen; 10996 len += optlen; 10997 break; 10998 } 10999 } 11000 done: 11001 /* Pad the resulting options */ 11002 while (len & 0x3) { 11003 *buf++ = IPOPT_EOL; 11004 len++; 11005 } 11006 return (len); 11007 } 11008 11009 11010 /* 11011 * Extract and revert a source route from ipha (if any) 11012 * and then update the relevant fields in both tcp_t and the standard header. 11013 */ 11014 static void 11015 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11016 { 11017 char buf[TCP_MAX_HDR_LENGTH]; 11018 uint_t tcph_len; 11019 int len; 11020 11021 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11022 len = IPH_HDR_LENGTH(ipha); 11023 if (len == IP_SIMPLE_HDR_LENGTH) 11024 /* Nothing to do */ 11025 return; 11026 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11027 (len & 0x3)) 11028 return; 11029 11030 tcph_len = tcp->tcp_tcp_hdr_len; 11031 bcopy(tcp->tcp_tcph, buf, tcph_len); 11032 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11033 (tcp->tcp_ipha->ipha_dst & 0xffff); 11034 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11035 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11036 len += IP_SIMPLE_HDR_LENGTH; 11037 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11038 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11039 if ((int)tcp->tcp_sum < 0) 11040 tcp->tcp_sum--; 11041 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11042 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11043 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11044 bcopy(buf, tcp->tcp_tcph, tcph_len); 11045 tcp->tcp_ip_hdr_len = len; 11046 tcp->tcp_ipha->ipha_version_and_hdr_length = 11047 (IP_VERSION << 4) | (len >> 2); 11048 len += tcph_len; 11049 tcp->tcp_hdr_len = len; 11050 } 11051 11052 /* 11053 * Copy the standard header into its new location, 11054 * lay in the new options and then update the relevant 11055 * fields in both tcp_t and the standard header. 11056 */ 11057 static int 11058 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11059 { 11060 uint_t tcph_len; 11061 uint8_t *ip_optp; 11062 tcph_t *new_tcph; 11063 tcp_stack_t *tcps = tcp->tcp_tcps; 11064 conn_t *connp = tcp->tcp_connp; 11065 11066 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11067 return (EINVAL); 11068 11069 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11070 return (EINVAL); 11071 11072 if (checkonly) { 11073 /* 11074 * do not really set, just pretend to - T_CHECK 11075 */ 11076 return (0); 11077 } 11078 11079 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11080 if (tcp->tcp_label_len > 0) { 11081 int padlen; 11082 uint8_t opt; 11083 11084 /* convert list termination to no-ops */ 11085 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11086 ip_optp += ip_optp[IPOPT_OLEN]; 11087 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11088 while (--padlen >= 0) 11089 *ip_optp++ = opt; 11090 } 11091 tcph_len = tcp->tcp_tcp_hdr_len; 11092 new_tcph = (tcph_t *)(ip_optp + len); 11093 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11094 tcp->tcp_tcph = new_tcph; 11095 bcopy(ptr, ip_optp, len); 11096 11097 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11098 11099 tcp->tcp_ip_hdr_len = len; 11100 tcp->tcp_ipha->ipha_version_and_hdr_length = 11101 (IP_VERSION << 4) | (len >> 2); 11102 tcp->tcp_hdr_len = len + tcph_len; 11103 if (!TCP_IS_DETACHED(tcp)) { 11104 /* Always allocate room for all options. */ 11105 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11106 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11107 } 11108 return (0); 11109 } 11110 11111 /* Get callback routine passed to nd_load by tcp_param_register */ 11112 /* ARGSUSED */ 11113 static int 11114 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11115 { 11116 tcpparam_t *tcppa = (tcpparam_t *)cp; 11117 11118 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11119 return (0); 11120 } 11121 11122 /* 11123 * Walk through the param array specified registering each element with the 11124 * named dispatch handler. 11125 */ 11126 static boolean_t 11127 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11128 { 11129 for (; cnt-- > 0; tcppa++) { 11130 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11131 if (!nd_load(ndp, tcppa->tcp_param_name, 11132 tcp_param_get, tcp_param_set, 11133 (caddr_t)tcppa)) { 11134 nd_free(ndp); 11135 return (B_FALSE); 11136 } 11137 } 11138 } 11139 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11140 KM_SLEEP); 11141 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11142 sizeof (tcpparam_t)); 11143 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11144 tcp_param_get, tcp_param_set_aligned, 11145 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11146 nd_free(ndp); 11147 return (B_FALSE); 11148 } 11149 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11150 KM_SLEEP); 11151 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11152 sizeof (tcpparam_t)); 11153 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11154 tcp_param_get, tcp_param_set_aligned, 11155 (caddr_t)tcps->tcps_mdt_head_param)) { 11156 nd_free(ndp); 11157 return (B_FALSE); 11158 } 11159 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11160 KM_SLEEP); 11161 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11162 sizeof (tcpparam_t)); 11163 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11164 tcp_param_get, tcp_param_set_aligned, 11165 (caddr_t)tcps->tcps_mdt_tail_param)) { 11166 nd_free(ndp); 11167 return (B_FALSE); 11168 } 11169 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11170 KM_SLEEP); 11171 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11172 sizeof (tcpparam_t)); 11173 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11174 tcp_param_get, tcp_param_set_aligned, 11175 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11176 nd_free(ndp); 11177 return (B_FALSE); 11178 } 11179 if (!nd_load(ndp, "tcp_extra_priv_ports", 11180 tcp_extra_priv_ports_get, NULL, NULL)) { 11181 nd_free(ndp); 11182 return (B_FALSE); 11183 } 11184 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11185 NULL, tcp_extra_priv_ports_add, NULL)) { 11186 nd_free(ndp); 11187 return (B_FALSE); 11188 } 11189 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11190 NULL, tcp_extra_priv_ports_del, NULL)) { 11191 nd_free(ndp); 11192 return (B_FALSE); 11193 } 11194 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11195 NULL)) { 11196 nd_free(ndp); 11197 return (B_FALSE); 11198 } 11199 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11200 NULL, NULL)) { 11201 nd_free(ndp); 11202 return (B_FALSE); 11203 } 11204 if (!nd_load(ndp, "tcp_listen_hash", 11205 tcp_listen_hash_report, NULL, NULL)) { 11206 nd_free(ndp); 11207 return (B_FALSE); 11208 } 11209 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11210 NULL, NULL)) { 11211 nd_free(ndp); 11212 return (B_FALSE); 11213 } 11214 if (!nd_load(ndp, "tcp_acceptor_hash", 11215 tcp_acceptor_hash_report, NULL, NULL)) { 11216 nd_free(ndp); 11217 return (B_FALSE); 11218 } 11219 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11220 tcp_1948_phrase_set, NULL)) { 11221 nd_free(ndp); 11222 return (B_FALSE); 11223 } 11224 /* 11225 * Dummy ndd variables - only to convey obsolescence information 11226 * through printing of their name (no get or set routines) 11227 * XXX Remove in future releases ? 11228 */ 11229 if (!nd_load(ndp, 11230 "tcp_close_wait_interval(obsoleted - " 11231 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11232 nd_free(ndp); 11233 return (B_FALSE); 11234 } 11235 return (B_TRUE); 11236 } 11237 11238 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11239 /* ARGSUSED */ 11240 static int 11241 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11242 cred_t *cr) 11243 { 11244 long new_value; 11245 tcpparam_t *tcppa = (tcpparam_t *)cp; 11246 11247 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11248 new_value < tcppa->tcp_param_min || 11249 new_value > tcppa->tcp_param_max) { 11250 return (EINVAL); 11251 } 11252 /* 11253 * Need to make sure new_value is a multiple of 4. If it is not, 11254 * round it up. For future 64 bit requirement, we actually make it 11255 * a multiple of 8. 11256 */ 11257 if (new_value & 0x7) { 11258 new_value = (new_value & ~0x7) + 0x8; 11259 } 11260 tcppa->tcp_param_val = new_value; 11261 return (0); 11262 } 11263 11264 /* Set callback routine passed to nd_load by tcp_param_register */ 11265 /* ARGSUSED */ 11266 static int 11267 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11268 { 11269 long new_value; 11270 tcpparam_t *tcppa = (tcpparam_t *)cp; 11271 11272 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11273 new_value < tcppa->tcp_param_min || 11274 new_value > tcppa->tcp_param_max) { 11275 return (EINVAL); 11276 } 11277 tcppa->tcp_param_val = new_value; 11278 return (0); 11279 } 11280 11281 /* 11282 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11283 * is filled, return as much as we can. The message passed in may be 11284 * multi-part, chained using b_cont. "start" is the starting sequence 11285 * number for this piece. 11286 */ 11287 static mblk_t * 11288 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11289 { 11290 uint32_t end; 11291 mblk_t *mp1; 11292 mblk_t *mp2; 11293 mblk_t *next_mp; 11294 uint32_t u1; 11295 tcp_stack_t *tcps = tcp->tcp_tcps; 11296 11297 /* Walk through all the new pieces. */ 11298 do { 11299 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11300 (uintptr_t)INT_MAX); 11301 end = start + (int)(mp->b_wptr - mp->b_rptr); 11302 next_mp = mp->b_cont; 11303 if (start == end) { 11304 /* Empty. Blast it. */ 11305 freeb(mp); 11306 continue; 11307 } 11308 mp->b_cont = NULL; 11309 TCP_REASS_SET_SEQ(mp, start); 11310 TCP_REASS_SET_END(mp, end); 11311 mp1 = tcp->tcp_reass_tail; 11312 if (!mp1) { 11313 tcp->tcp_reass_tail = mp; 11314 tcp->tcp_reass_head = mp; 11315 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11316 UPDATE_MIB(&tcps->tcps_mib, 11317 tcpInDataUnorderBytes, end - start); 11318 continue; 11319 } 11320 /* New stuff completely beyond tail? */ 11321 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11322 /* Link it on end. */ 11323 mp1->b_cont = mp; 11324 tcp->tcp_reass_tail = mp; 11325 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11326 UPDATE_MIB(&tcps->tcps_mib, 11327 tcpInDataUnorderBytes, end - start); 11328 continue; 11329 } 11330 mp1 = tcp->tcp_reass_head; 11331 u1 = TCP_REASS_SEQ(mp1); 11332 /* New stuff at the front? */ 11333 if (SEQ_LT(start, u1)) { 11334 /* Yes... Check for overlap. */ 11335 mp->b_cont = mp1; 11336 tcp->tcp_reass_head = mp; 11337 tcp_reass_elim_overlap(tcp, mp); 11338 continue; 11339 } 11340 /* 11341 * The new piece fits somewhere between the head and tail. 11342 * We find our slot, where mp1 precedes us and mp2 trails. 11343 */ 11344 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11345 u1 = TCP_REASS_SEQ(mp2); 11346 if (SEQ_LEQ(start, u1)) 11347 break; 11348 } 11349 /* Link ourselves in */ 11350 mp->b_cont = mp2; 11351 mp1->b_cont = mp; 11352 11353 /* Trim overlap with following mblk(s) first */ 11354 tcp_reass_elim_overlap(tcp, mp); 11355 11356 /* Trim overlap with preceding mblk */ 11357 tcp_reass_elim_overlap(tcp, mp1); 11358 11359 } while (start = end, mp = next_mp); 11360 mp1 = tcp->tcp_reass_head; 11361 /* Anything ready to go? */ 11362 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11363 return (NULL); 11364 /* Eat what we can off the queue */ 11365 for (;;) { 11366 mp = mp1->b_cont; 11367 end = TCP_REASS_END(mp1); 11368 TCP_REASS_SET_SEQ(mp1, 0); 11369 TCP_REASS_SET_END(mp1, 0); 11370 if (!mp) { 11371 tcp->tcp_reass_tail = NULL; 11372 break; 11373 } 11374 if (end != TCP_REASS_SEQ(mp)) { 11375 mp1->b_cont = NULL; 11376 break; 11377 } 11378 mp1 = mp; 11379 } 11380 mp1 = tcp->tcp_reass_head; 11381 tcp->tcp_reass_head = mp; 11382 return (mp1); 11383 } 11384 11385 /* Eliminate any overlap that mp may have over later mblks */ 11386 static void 11387 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11388 { 11389 uint32_t end; 11390 mblk_t *mp1; 11391 uint32_t u1; 11392 tcp_stack_t *tcps = tcp->tcp_tcps; 11393 11394 end = TCP_REASS_END(mp); 11395 while ((mp1 = mp->b_cont) != NULL) { 11396 u1 = TCP_REASS_SEQ(mp1); 11397 if (!SEQ_GT(end, u1)) 11398 break; 11399 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11400 mp->b_wptr -= end - u1; 11401 TCP_REASS_SET_END(mp, u1); 11402 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11403 UPDATE_MIB(&tcps->tcps_mib, 11404 tcpInDataPartDupBytes, end - u1); 11405 break; 11406 } 11407 mp->b_cont = mp1->b_cont; 11408 TCP_REASS_SET_SEQ(mp1, 0); 11409 TCP_REASS_SET_END(mp1, 0); 11410 freeb(mp1); 11411 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11412 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11413 } 11414 if (!mp1) 11415 tcp->tcp_reass_tail = mp; 11416 } 11417 11418 static uint_t 11419 tcp_rwnd_reopen(tcp_t *tcp) 11420 { 11421 uint_t ret = 0; 11422 uint_t thwin; 11423 11424 /* Learn the latest rwnd information that we sent to the other side. */ 11425 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11426 << tcp->tcp_rcv_ws; 11427 /* This is peer's calculated send window (our receive window). */ 11428 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11429 /* 11430 * Increase the receive window to max. But we need to do receiver 11431 * SWS avoidance. This means that we need to check the increase of 11432 * of receive window is at least 1 MSS. 11433 */ 11434 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11435 /* 11436 * If the window that the other side knows is less than max 11437 * deferred acks segments, send an update immediately. 11438 */ 11439 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11440 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11441 ret = TH_ACK_NEEDED; 11442 } 11443 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11444 } 11445 return (ret); 11446 } 11447 11448 /* 11449 * Send up all messages queued on tcp_rcv_list. 11450 */ 11451 static uint_t 11452 tcp_rcv_drain(tcp_t *tcp) 11453 { 11454 mblk_t *mp; 11455 uint_t ret = 0; 11456 #ifdef DEBUG 11457 uint_t cnt = 0; 11458 #endif 11459 queue_t *q = tcp->tcp_rq; 11460 11461 /* Can't drain on an eager connection */ 11462 if (tcp->tcp_listener != NULL) 11463 return (ret); 11464 11465 /* Can't be a non-STREAMS connection or sodirect enabled */ 11466 ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp)); 11467 11468 /* No need for the push timer now. */ 11469 if (tcp->tcp_push_tid != 0) { 11470 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11471 tcp->tcp_push_tid = 0; 11472 } 11473 11474 /* 11475 * Handle two cases here: we are currently fused or we were 11476 * previously fused and have some urgent data to be delivered 11477 * upstream. The latter happens because we either ran out of 11478 * memory or were detached and therefore sending the SIGURG was 11479 * deferred until this point. In either case we pass control 11480 * over to tcp_fuse_rcv_drain() since it may need to complete 11481 * some work. 11482 */ 11483 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11484 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11485 tcp->tcp_fused_sigurg_mp != NULL); 11486 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11487 &tcp->tcp_fused_sigurg_mp)) 11488 return (ret); 11489 } 11490 11491 while ((mp = tcp->tcp_rcv_list) != NULL) { 11492 tcp->tcp_rcv_list = mp->b_next; 11493 mp->b_next = NULL; 11494 #ifdef DEBUG 11495 cnt += msgdsize(mp); 11496 #endif 11497 /* Does this need SSL processing first? */ 11498 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11499 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11500 mblk_t *, mp); 11501 tcp_kssl_input(tcp, mp); 11502 continue; 11503 } 11504 putnext(q, mp); 11505 } 11506 #ifdef DEBUG 11507 ASSERT(cnt == tcp->tcp_rcv_cnt); 11508 #endif 11509 tcp->tcp_rcv_last_head = NULL; 11510 tcp->tcp_rcv_last_tail = NULL; 11511 tcp->tcp_rcv_cnt = 0; 11512 11513 if (canputnext(q)) 11514 return (tcp_rwnd_reopen(tcp)); 11515 11516 return (ret); 11517 } 11518 11519 /* 11520 * Queue data on tcp_rcv_list which is a b_next chain. 11521 * tcp_rcv_last_head/tail is the last element of this chain. 11522 * Each element of the chain is a b_cont chain. 11523 * 11524 * M_DATA messages are added to the current element. 11525 * Other messages are added as new (b_next) elements. 11526 */ 11527 void 11528 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11529 { 11530 ASSERT(seg_len == msgdsize(mp)); 11531 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11532 11533 if (tcp->tcp_rcv_list == NULL) { 11534 ASSERT(tcp->tcp_rcv_last_head == NULL); 11535 tcp->tcp_rcv_list = mp; 11536 tcp->tcp_rcv_last_head = mp; 11537 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11538 tcp->tcp_rcv_last_tail->b_cont = mp; 11539 } else { 11540 tcp->tcp_rcv_last_head->b_next = mp; 11541 tcp->tcp_rcv_last_head = mp; 11542 } 11543 11544 while (mp->b_cont) 11545 mp = mp->b_cont; 11546 11547 tcp->tcp_rcv_last_tail = mp; 11548 tcp->tcp_rcv_cnt += seg_len; 11549 tcp->tcp_rwnd -= seg_len; 11550 } 11551 11552 /* 11553 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11554 * above, in addition when uioa is enabled schedule an asynchronous uio 11555 * prior to enqueuing. They implement the combinhed semantics of the 11556 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11557 * canputnext(), i.e. flow-control with backenable. 11558 * 11559 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11560 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11561 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11562 * 11563 * Must be called with sodp->sod_lockp held and will return with the lock 11564 * released. 11565 */ 11566 static uint_t 11567 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11568 { 11569 queue_t *q = tcp->tcp_rq; 11570 uint_t thwin; 11571 tcp_stack_t *tcps = tcp->tcp_tcps; 11572 uint_t ret = 0; 11573 11574 /* Can't be an eager connection */ 11575 ASSERT(tcp->tcp_listener == NULL); 11576 11577 /* Caller must have lock held */ 11578 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11579 11580 /* Sodirect mode so must not be a tcp_rcv_list */ 11581 ASSERT(tcp->tcp_rcv_list == NULL); 11582 11583 if (SOD_QFULL(sodp)) { 11584 /* Q is full, mark Q for need backenable */ 11585 SOD_QSETBE(sodp); 11586 } 11587 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11588 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11589 << tcp->tcp_rcv_ws; 11590 /* This is peer's calculated send window (our available rwnd). */ 11591 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11592 /* 11593 * Increase the receive window to max. But we need to do receiver 11594 * SWS avoidance. This means that we need to check the increase of 11595 * of receive window is at least 1 MSS. 11596 */ 11597 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11598 /* 11599 * If the window that the other side knows is less than max 11600 * deferred acks segments, send an update immediately. 11601 */ 11602 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11603 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11604 ret = TH_ACK_NEEDED; 11605 } 11606 tcp->tcp_rwnd = q->q_hiwat; 11607 } 11608 11609 if (!SOD_QEMPTY(sodp)) { 11610 /* Wakeup to socket */ 11611 sodp->sod_state &= SOD_WAKE_CLR; 11612 sodp->sod_state |= SOD_WAKE_DONE; 11613 (sodp->sod_wakeup)(sodp); 11614 /* wakeup() does the mutex_ext() */ 11615 } else { 11616 /* Q is empty, no need to wake */ 11617 sodp->sod_state &= SOD_WAKE_CLR; 11618 sodp->sod_state |= SOD_WAKE_NOT; 11619 mutex_exit(sodp->sod_lockp); 11620 } 11621 11622 /* No need for the push timer now. */ 11623 if (tcp->tcp_push_tid != 0) { 11624 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11625 tcp->tcp_push_tid = 0; 11626 } 11627 11628 return (ret); 11629 } 11630 11631 /* 11632 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11633 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11634 * to the user-land buffer and flag the mblk_t as such. 11635 * 11636 * Also, handle tcp_rwnd. 11637 */ 11638 uint_t 11639 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11640 { 11641 uioa_t *uioap = &sodp->sod_uioa; 11642 boolean_t qfull; 11643 uint_t thwin; 11644 11645 /* Can't be an eager connection */ 11646 ASSERT(tcp->tcp_listener == NULL); 11647 11648 /* Caller must have lock held */ 11649 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11650 11651 /* Sodirect mode so must not be a tcp_rcv_list */ 11652 ASSERT(tcp->tcp_rcv_list == NULL); 11653 11654 /* Passed in segment length must be equal to mblk_t chain data size */ 11655 ASSERT(seg_len == msgdsize(mp)); 11656 11657 if (DB_TYPE(mp) != M_DATA) { 11658 /* Only process M_DATA mblk_t's */ 11659 goto enq; 11660 } 11661 if (uioap->uioa_state & UIOA_ENABLED) { 11662 /* Uioa is enabled */ 11663 mblk_t *mp1 = mp; 11664 mblk_t *lmp = NULL; 11665 11666 if (seg_len > uioap->uio_resid) { 11667 /* 11668 * There isn't enough uio space for the mblk_t chain 11669 * so disable uioa such that this and any additional 11670 * mblk_t data is handled by the socket and schedule 11671 * the socket for wakeup to finish this uioa. 11672 */ 11673 uioap->uioa_state &= UIOA_CLR; 11674 uioap->uioa_state |= UIOA_FINI; 11675 if (sodp->sod_state & SOD_WAKE_NOT) { 11676 sodp->sod_state &= SOD_WAKE_CLR; 11677 sodp->sod_state |= SOD_WAKE_NEED; 11678 } 11679 goto enq; 11680 } 11681 do { 11682 uint32_t len = MBLKL(mp1); 11683 11684 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11685 /* Scheduled, mark dblk_t as such */ 11686 DB_FLAGS(mp1) |= DBLK_UIOA; 11687 } else { 11688 /* Error, turn off async processing */ 11689 uioap->uioa_state &= UIOA_CLR; 11690 uioap->uioa_state |= UIOA_FINI; 11691 break; 11692 } 11693 lmp = mp1; 11694 } while ((mp1 = mp1->b_cont) != NULL); 11695 11696 if (mp1 != NULL || uioap->uio_resid == 0) { 11697 /* 11698 * Not all mblk_t(s) uioamoved (error) or all uio 11699 * space has been consumed so schedule the socket 11700 * for wakeup to finish this uio. 11701 */ 11702 sodp->sod_state &= SOD_WAKE_CLR; 11703 sodp->sod_state |= SOD_WAKE_NEED; 11704 11705 /* Break the mblk chain if neccessary. */ 11706 if (mp1 != NULL && lmp != NULL) { 11707 mp->b_next = mp1; 11708 lmp->b_cont = NULL; 11709 } 11710 } 11711 } else if (uioap->uioa_state & UIOA_FINI) { 11712 /* 11713 * Post UIO_ENABLED waiting for socket to finish processing 11714 * so just enqueue and update tcp_rwnd. 11715 */ 11716 if (SOD_QFULL(sodp)) 11717 tcp->tcp_rwnd -= seg_len; 11718 } else if (sodp->sod_want > 0) { 11719 /* 11720 * Uioa isn't enabled but sodirect has a pending read(). 11721 */ 11722 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11723 if (sodp->sod_state & SOD_WAKE_NOT) { 11724 /* Schedule socket for wakeup */ 11725 sodp->sod_state &= SOD_WAKE_CLR; 11726 sodp->sod_state |= SOD_WAKE_NEED; 11727 } 11728 tcp->tcp_rwnd -= seg_len; 11729 } 11730 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 11731 /* 11732 * No pending sodirect read() so used the default 11733 * TCP push logic to guess that a push is needed. 11734 */ 11735 if (sodp->sod_state & SOD_WAKE_NOT) { 11736 /* Schedule socket for wakeup */ 11737 sodp->sod_state &= SOD_WAKE_CLR; 11738 sodp->sod_state |= SOD_WAKE_NEED; 11739 } 11740 tcp->tcp_rwnd -= seg_len; 11741 } else { 11742 /* Just update tcp_rwnd */ 11743 tcp->tcp_rwnd -= seg_len; 11744 } 11745 enq: 11746 qfull = SOD_QFULL(sodp); 11747 11748 (sodp->sod_enqueue)(sodp, mp); 11749 11750 if (! qfull && SOD_QFULL(sodp)) { 11751 /* Wasn't QFULL, now QFULL, need back-enable */ 11752 SOD_QSETBE(sodp); 11753 } 11754 11755 /* 11756 * Check to see if remote avail swnd < mss due to delayed ACK, 11757 * first get advertised rwnd. 11758 */ 11759 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 11760 /* Minus delayed ACK count */ 11761 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11762 if (thwin < tcp->tcp_mss) { 11763 /* Remote avail swnd < mss, need ACK now */ 11764 return (TH_ACK_NEEDED); 11765 } 11766 11767 return (0); 11768 } 11769 11770 /* 11771 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11772 * 11773 * This is the default entry function into TCP on the read side. TCP is 11774 * always entered via squeue i.e. using squeue's for mutual exclusion. 11775 * When classifier does a lookup to find the tcp, it also puts a reference 11776 * on the conn structure associated so the tcp is guaranteed to exist 11777 * when we come here. We still need to check the state because it might 11778 * as well has been closed. The squeue processing function i.e. squeue_enter, 11779 * is responsible for doing the CONN_DEC_REF. 11780 * 11781 * Apart from the default entry point, IP also sends packets directly to 11782 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11783 * connections. 11784 */ 11785 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11786 void 11787 tcp_input(void *arg, mblk_t *mp, void *arg2) 11788 { 11789 conn_t *connp = (conn_t *)arg; 11790 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11791 11792 /* arg2 is the sqp */ 11793 ASSERT(arg2 != NULL); 11794 ASSERT(mp != NULL); 11795 11796 /* 11797 * Don't accept any input on a closed tcp as this TCP logically does 11798 * not exist on the system. Don't proceed further with this TCP. 11799 * For eg. this packet could trigger another close of this tcp 11800 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11801 * tcp_clean_death / tcp_closei_local must be called at most once 11802 * on a TCP. In this case we need to refeed the packet into the 11803 * classifier and figure out where the packet should go. Need to 11804 * preserve the recv_ill somehow. Until we figure that out, for 11805 * now just drop the packet if we can't classify the packet. 11806 */ 11807 if (tcp->tcp_state == TCPS_CLOSED || 11808 tcp->tcp_state == TCPS_BOUND) { 11809 conn_t *new_connp; 11810 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11811 11812 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11813 if (new_connp != NULL) { 11814 tcp_reinput(new_connp, mp, arg2); 11815 return; 11816 } 11817 /* We failed to classify. For now just drop the packet */ 11818 freemsg(mp); 11819 return; 11820 } 11821 11822 if (DB_TYPE(mp) != M_DATA) { 11823 tcp_rput_common(tcp, mp); 11824 return; 11825 } 11826 11827 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11828 squeue_t *final_sqp; 11829 11830 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11831 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11832 DB_CKSUMSTART(mp) = 0; 11833 if (tcp->tcp_state == TCPS_SYN_SENT && 11834 connp->conn_final_sqp == NULL && 11835 tcp_outbound_squeue_switch) { 11836 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11837 connp->conn_final_sqp = final_sqp; 11838 if (connp->conn_final_sqp != connp->conn_sqp) { 11839 CONN_INC_REF(connp); 11840 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11841 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11842 tcp_rput_data, connp, ip_squeue_flag, 11843 SQTAG_CONNECT_FINISH); 11844 return; 11845 } 11846 } 11847 } 11848 tcp_rput_data(connp, mp, arg2); 11849 } 11850 11851 /* 11852 * The read side put procedure. 11853 * The packets passed up by ip are assume to be aligned according to 11854 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11855 */ 11856 static void 11857 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11858 { 11859 /* 11860 * tcp_rput_data() does not expect M_CTL except for the case 11861 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11862 * type. Need to make sure that any other M_CTLs don't make 11863 * it to tcp_rput_data since it is not expecting any and doesn't 11864 * check for it. 11865 */ 11866 if (DB_TYPE(mp) == M_CTL) { 11867 switch (*(uint32_t *)(mp->b_rptr)) { 11868 case TCP_IOC_ABORT_CONN: 11869 /* 11870 * Handle connection abort request. 11871 */ 11872 tcp_ioctl_abort_handler(tcp, mp); 11873 return; 11874 case IPSEC_IN: 11875 /* 11876 * Only secure icmp arrive in TCP and they 11877 * don't go through data path. 11878 */ 11879 tcp_icmp_error(tcp, mp); 11880 return; 11881 case IN_PKTINFO: 11882 /* 11883 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11884 * sockets that are receiving IPv4 traffic. tcp 11885 */ 11886 ASSERT(tcp->tcp_family == AF_INET6); 11887 ASSERT(tcp->tcp_ipv6_recvancillary & 11888 TCP_IPV6_RECVPKTINFO); 11889 tcp_rput_data(tcp->tcp_connp, mp, 11890 tcp->tcp_connp->conn_sqp); 11891 return; 11892 case MDT_IOC_INFO_UPDATE: 11893 /* 11894 * Handle Multidata information update; the 11895 * following routine will free the message. 11896 */ 11897 if (tcp->tcp_connp->conn_mdt_ok) { 11898 tcp_mdt_update(tcp, 11899 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11900 B_FALSE); 11901 } 11902 freemsg(mp); 11903 return; 11904 case LSO_IOC_INFO_UPDATE: 11905 /* 11906 * Handle LSO information update; the following 11907 * routine will free the message. 11908 */ 11909 if (tcp->tcp_connp->conn_lso_ok) { 11910 tcp_lso_update(tcp, 11911 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11912 } 11913 freemsg(mp); 11914 return; 11915 default: 11916 /* 11917 * tcp_icmp_err() will process the M_CTL packets. 11918 * Non-ICMP packets, if any, will be discarded in 11919 * tcp_icmp_err(). We will process the ICMP packet 11920 * even if we are TCP_IS_DETACHED_NONEAGER as the 11921 * incoming ICMP packet may result in changing 11922 * the tcp_mss, which we would need if we have 11923 * packets to retransmit. 11924 */ 11925 tcp_icmp_error(tcp, mp); 11926 return; 11927 } 11928 } 11929 11930 /* No point processing the message if tcp is already closed */ 11931 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11932 freemsg(mp); 11933 return; 11934 } 11935 11936 tcp_rput_other(tcp, mp); 11937 } 11938 11939 11940 /* The minimum of smoothed mean deviation in RTO calculation. */ 11941 #define TCP_SD_MIN 400 11942 11943 /* 11944 * Set RTO for this connection. The formula is from Jacobson and Karels' 11945 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11946 * are the same as those in Appendix A.2 of that paper. 11947 * 11948 * m = new measurement 11949 * sa = smoothed RTT average (8 * average estimates). 11950 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11951 */ 11952 static void 11953 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11954 { 11955 long m = TICK_TO_MSEC(rtt); 11956 clock_t sa = tcp->tcp_rtt_sa; 11957 clock_t sv = tcp->tcp_rtt_sd; 11958 clock_t rto; 11959 tcp_stack_t *tcps = tcp->tcp_tcps; 11960 11961 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11962 tcp->tcp_rtt_update++; 11963 11964 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11965 if (sa != 0) { 11966 /* 11967 * Update average estimator: 11968 * new rtt = 7/8 old rtt + 1/8 Error 11969 */ 11970 11971 /* m is now Error in estimate. */ 11972 m -= sa >> 3; 11973 if ((sa += m) <= 0) { 11974 /* 11975 * Don't allow the smoothed average to be negative. 11976 * We use 0 to denote reinitialization of the 11977 * variables. 11978 */ 11979 sa = 1; 11980 } 11981 11982 /* 11983 * Update deviation estimator: 11984 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11985 */ 11986 if (m < 0) 11987 m = -m; 11988 m -= sv >> 2; 11989 sv += m; 11990 } else { 11991 /* 11992 * This follows BSD's implementation. So the reinitialized 11993 * RTO is 3 * m. We cannot go less than 2 because if the 11994 * link is bandwidth dominated, doubling the window size 11995 * during slow start means doubling the RTT. We want to be 11996 * more conservative when we reinitialize our estimates. 3 11997 * is just a convenient number. 11998 */ 11999 sa = m << 3; 12000 sv = m << 1; 12001 } 12002 if (sv < TCP_SD_MIN) { 12003 /* 12004 * We do not know that if sa captures the delay ACK 12005 * effect as in a long train of segments, a receiver 12006 * does not delay its ACKs. So set the minimum of sv 12007 * to be TCP_SD_MIN, which is default to 400 ms, twice 12008 * of BSD DATO. That means the minimum of mean 12009 * deviation is 100 ms. 12010 * 12011 */ 12012 sv = TCP_SD_MIN; 12013 } 12014 tcp->tcp_rtt_sa = sa; 12015 tcp->tcp_rtt_sd = sv; 12016 /* 12017 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12018 * 12019 * Add tcp_rexmit_interval extra in case of extreme environment 12020 * where the algorithm fails to work. The default value of 12021 * tcp_rexmit_interval_extra should be 0. 12022 * 12023 * As we use a finer grained clock than BSD and update 12024 * RTO for every ACKs, add in another .25 of RTT to the 12025 * deviation of RTO to accomodate burstiness of 1/4 of 12026 * window size. 12027 */ 12028 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12029 12030 if (rto > tcps->tcps_rexmit_interval_max) { 12031 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12032 } else if (rto < tcps->tcps_rexmit_interval_min) { 12033 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12034 } else { 12035 tcp->tcp_rto = rto; 12036 } 12037 12038 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12039 tcp->tcp_timer_backoff = 0; 12040 } 12041 12042 /* 12043 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12044 * send queue which starts at the given seq. no. 12045 * 12046 * Parameters: 12047 * tcp_t *tcp: the tcp instance pointer. 12048 * uint32_t seq: the starting seq. no of the requested segment. 12049 * int32_t *off: after the execution, *off will be the offset to 12050 * the returned mblk which points to the requested seq no. 12051 * It is the caller's responsibility to send in a non-null off. 12052 * 12053 * Return: 12054 * A mblk_t pointer pointing to the requested segment in send queue. 12055 */ 12056 static mblk_t * 12057 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12058 { 12059 int32_t cnt; 12060 mblk_t *mp; 12061 12062 /* Defensive coding. Make sure we don't send incorrect data. */ 12063 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12064 return (NULL); 12065 12066 cnt = seq - tcp->tcp_suna; 12067 mp = tcp->tcp_xmit_head; 12068 while (cnt > 0 && mp != NULL) { 12069 cnt -= mp->b_wptr - mp->b_rptr; 12070 if (cnt < 0) { 12071 cnt += mp->b_wptr - mp->b_rptr; 12072 break; 12073 } 12074 mp = mp->b_cont; 12075 } 12076 ASSERT(mp != NULL); 12077 *off = cnt; 12078 return (mp); 12079 } 12080 12081 /* 12082 * This function handles all retransmissions if SACK is enabled for this 12083 * connection. First it calculates how many segments can be retransmitted 12084 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12085 * segments. A segment is eligible if sack_cnt for that segment is greater 12086 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12087 * all eligible segments, it checks to see if TCP can send some new segments 12088 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12089 * 12090 * Parameters: 12091 * tcp_t *tcp: the tcp structure of the connection. 12092 * uint_t *flags: in return, appropriate value will be set for 12093 * tcp_rput_data(). 12094 */ 12095 static void 12096 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12097 { 12098 notsack_blk_t *notsack_blk; 12099 int32_t usable_swnd; 12100 int32_t mss; 12101 uint32_t seg_len; 12102 mblk_t *xmit_mp; 12103 tcp_stack_t *tcps = tcp->tcp_tcps; 12104 12105 ASSERT(tcp->tcp_sack_info != NULL); 12106 ASSERT(tcp->tcp_notsack_list != NULL); 12107 ASSERT(tcp->tcp_rexmit == B_FALSE); 12108 12109 /* Defensive coding in case there is a bug... */ 12110 if (tcp->tcp_notsack_list == NULL) { 12111 return; 12112 } 12113 notsack_blk = tcp->tcp_notsack_list; 12114 mss = tcp->tcp_mss; 12115 12116 /* 12117 * Limit the num of outstanding data in the network to be 12118 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12119 */ 12120 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12121 12122 /* At least retransmit 1 MSS of data. */ 12123 if (usable_swnd <= 0) { 12124 usable_swnd = mss; 12125 } 12126 12127 /* Make sure no new RTT samples will be taken. */ 12128 tcp->tcp_csuna = tcp->tcp_snxt; 12129 12130 notsack_blk = tcp->tcp_notsack_list; 12131 while (usable_swnd > 0) { 12132 mblk_t *snxt_mp, *tmp_mp; 12133 tcp_seq begin = tcp->tcp_sack_snxt; 12134 tcp_seq end; 12135 int32_t off; 12136 12137 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12138 if (SEQ_GT(notsack_blk->end, begin) && 12139 (notsack_blk->sack_cnt >= 12140 tcps->tcps_dupack_fast_retransmit)) { 12141 end = notsack_blk->end; 12142 if (SEQ_LT(begin, notsack_blk->begin)) { 12143 begin = notsack_blk->begin; 12144 } 12145 break; 12146 } 12147 } 12148 /* 12149 * All holes are filled. Manipulate tcp_cwnd to send more 12150 * if we can. Note that after the SACK recovery, tcp_cwnd is 12151 * set to tcp_cwnd_ssthresh. 12152 */ 12153 if (notsack_blk == NULL) { 12154 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12155 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12156 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12157 ASSERT(tcp->tcp_cwnd > 0); 12158 return; 12159 } else { 12160 usable_swnd = usable_swnd / mss; 12161 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12162 MAX(usable_swnd * mss, mss); 12163 *flags |= TH_XMIT_NEEDED; 12164 return; 12165 } 12166 } 12167 12168 /* 12169 * Note that we may send more than usable_swnd allows here 12170 * because of round off, but no more than 1 MSS of data. 12171 */ 12172 seg_len = end - begin; 12173 if (seg_len > mss) 12174 seg_len = mss; 12175 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12176 ASSERT(snxt_mp != NULL); 12177 /* This should not happen. Defensive coding again... */ 12178 if (snxt_mp == NULL) { 12179 return; 12180 } 12181 12182 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12183 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12184 if (xmit_mp == NULL) 12185 return; 12186 12187 usable_swnd -= seg_len; 12188 tcp->tcp_pipe += seg_len; 12189 tcp->tcp_sack_snxt = begin + seg_len; 12190 12191 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12192 12193 /* 12194 * Update the send timestamp to avoid false retransmission. 12195 */ 12196 snxt_mp->b_prev = (mblk_t *)lbolt; 12197 12198 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12199 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12200 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12201 /* 12202 * Update tcp_rexmit_max to extend this SACK recovery phase. 12203 * This happens when new data sent during fast recovery is 12204 * also lost. If TCP retransmits those new data, it needs 12205 * to extend SACK recover phase to avoid starting another 12206 * fast retransmit/recovery unnecessarily. 12207 */ 12208 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12209 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12210 } 12211 } 12212 } 12213 12214 /* 12215 * This function handles policy checking at TCP level for non-hard_bound/ 12216 * detached connections. 12217 */ 12218 static boolean_t 12219 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12220 boolean_t secure, boolean_t mctl_present) 12221 { 12222 ipsec_latch_t *ipl = NULL; 12223 ipsec_action_t *act = NULL; 12224 mblk_t *data_mp; 12225 ipsec_in_t *ii; 12226 const char *reason; 12227 kstat_named_t *counter; 12228 tcp_stack_t *tcps = tcp->tcp_tcps; 12229 ipsec_stack_t *ipss; 12230 ip_stack_t *ipst; 12231 12232 ASSERT(mctl_present || !secure); 12233 12234 ASSERT((ipha == NULL && ip6h != NULL) || 12235 (ip6h == NULL && ipha != NULL)); 12236 12237 /* 12238 * We don't necessarily have an ipsec_in_act action to verify 12239 * policy because of assymetrical policy where we have only 12240 * outbound policy and no inbound policy (possible with global 12241 * policy). 12242 */ 12243 if (!secure) { 12244 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12245 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12246 return (B_TRUE); 12247 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12248 "tcp_check_policy", ipha, ip6h, secure, 12249 tcps->tcps_netstack); 12250 ipss = tcps->tcps_netstack->netstack_ipsec; 12251 12252 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12253 DROPPER(ipss, ipds_tcp_clear), 12254 &tcps->tcps_dropper); 12255 return (B_FALSE); 12256 } 12257 12258 /* 12259 * We have a secure packet. 12260 */ 12261 if (act == NULL) { 12262 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12263 "tcp_check_policy", ipha, ip6h, secure, 12264 tcps->tcps_netstack); 12265 ipss = tcps->tcps_netstack->netstack_ipsec; 12266 12267 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12268 DROPPER(ipss, ipds_tcp_secure), 12269 &tcps->tcps_dropper); 12270 return (B_FALSE); 12271 } 12272 12273 /* 12274 * XXX This whole routine is currently incorrect. ipl should 12275 * be set to the latch pointer, but is currently not set, so 12276 * we initialize it to NULL to avoid picking up random garbage. 12277 */ 12278 if (ipl == NULL) 12279 return (B_TRUE); 12280 12281 data_mp = first_mp->b_cont; 12282 12283 ii = (ipsec_in_t *)first_mp->b_rptr; 12284 12285 ipst = tcps->tcps_netstack->netstack_ip; 12286 12287 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12288 &counter, tcp->tcp_connp)) { 12289 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12290 return (B_TRUE); 12291 } 12292 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12293 "tcp inbound policy mismatch: %s, packet dropped\n", 12294 reason); 12295 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12296 12297 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12298 &tcps->tcps_dropper); 12299 return (B_FALSE); 12300 } 12301 12302 /* 12303 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12304 * retransmission after a timeout. 12305 * 12306 * To limit the number of duplicate segments, we limit the number of segment 12307 * to be sent in one time to tcp_snd_burst, the burst variable. 12308 */ 12309 static void 12310 tcp_ss_rexmit(tcp_t *tcp) 12311 { 12312 uint32_t snxt; 12313 uint32_t smax; 12314 int32_t win; 12315 int32_t mss; 12316 int32_t off; 12317 int32_t burst = tcp->tcp_snd_burst; 12318 mblk_t *snxt_mp; 12319 tcp_stack_t *tcps = tcp->tcp_tcps; 12320 12321 /* 12322 * Note that tcp_rexmit can be set even though TCP has retransmitted 12323 * all unack'ed segments. 12324 */ 12325 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12326 smax = tcp->tcp_rexmit_max; 12327 snxt = tcp->tcp_rexmit_nxt; 12328 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12329 snxt = tcp->tcp_suna; 12330 } 12331 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12332 win -= snxt - tcp->tcp_suna; 12333 mss = tcp->tcp_mss; 12334 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12335 12336 while (SEQ_LT(snxt, smax) && (win > 0) && 12337 (burst > 0) && (snxt_mp != NULL)) { 12338 mblk_t *xmit_mp; 12339 mblk_t *old_snxt_mp = snxt_mp; 12340 uint32_t cnt = mss; 12341 12342 if (win < cnt) { 12343 cnt = win; 12344 } 12345 if (SEQ_GT(snxt + cnt, smax)) { 12346 cnt = smax - snxt; 12347 } 12348 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12349 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12350 if (xmit_mp == NULL) 12351 return; 12352 12353 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12354 12355 snxt += cnt; 12356 win -= cnt; 12357 /* 12358 * Update the send timestamp to avoid false 12359 * retransmission. 12360 */ 12361 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12362 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12363 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12364 12365 tcp->tcp_rexmit_nxt = snxt; 12366 burst--; 12367 } 12368 /* 12369 * If we have transmitted all we have at the time 12370 * we started the retranmission, we can leave 12371 * the rest of the job to tcp_wput_data(). But we 12372 * need to check the send window first. If the 12373 * win is not 0, go on with tcp_wput_data(). 12374 */ 12375 if (SEQ_LT(snxt, smax) || win == 0) { 12376 return; 12377 } 12378 } 12379 /* Only call tcp_wput_data() if there is data to be sent. */ 12380 if (tcp->tcp_unsent) { 12381 tcp_wput_data(tcp, NULL, B_FALSE); 12382 } 12383 } 12384 12385 /* 12386 * Process all TCP option in SYN segment. Note that this function should 12387 * be called after tcp_adapt_ire() is called so that the necessary info 12388 * from IRE is already set in the tcp structure. 12389 * 12390 * This function sets up the correct tcp_mss value according to the 12391 * MSS option value and our header size. It also sets up the window scale 12392 * and timestamp values, and initialize SACK info blocks. But it does not 12393 * change receive window size after setting the tcp_mss value. The caller 12394 * should do the appropriate change. 12395 */ 12396 void 12397 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12398 { 12399 int options; 12400 tcp_opt_t tcpopt; 12401 uint32_t mss_max; 12402 char *tmp_tcph; 12403 tcp_stack_t *tcps = tcp->tcp_tcps; 12404 12405 tcpopt.tcp = NULL; 12406 options = tcp_parse_options(tcph, &tcpopt); 12407 12408 /* 12409 * Process MSS option. Note that MSS option value does not account 12410 * for IP or TCP options. This means that it is equal to MTU - minimum 12411 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12412 * IPv6. 12413 */ 12414 if (!(options & TCP_OPT_MSS_PRESENT)) { 12415 if (tcp->tcp_ipversion == IPV4_VERSION) 12416 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12417 else 12418 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12419 } else { 12420 if (tcp->tcp_ipversion == IPV4_VERSION) 12421 mss_max = tcps->tcps_mss_max_ipv4; 12422 else 12423 mss_max = tcps->tcps_mss_max_ipv6; 12424 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12425 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12426 else if (tcpopt.tcp_opt_mss > mss_max) 12427 tcpopt.tcp_opt_mss = mss_max; 12428 } 12429 12430 /* Process Window Scale option. */ 12431 if (options & TCP_OPT_WSCALE_PRESENT) { 12432 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12433 tcp->tcp_snd_ws_ok = B_TRUE; 12434 } else { 12435 tcp->tcp_snd_ws = B_FALSE; 12436 tcp->tcp_snd_ws_ok = B_FALSE; 12437 tcp->tcp_rcv_ws = B_FALSE; 12438 } 12439 12440 /* Process Timestamp option. */ 12441 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12442 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12443 tmp_tcph = (char *)tcp->tcp_tcph; 12444 12445 tcp->tcp_snd_ts_ok = B_TRUE; 12446 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12447 tcp->tcp_last_rcv_lbolt = lbolt64; 12448 ASSERT(OK_32PTR(tmp_tcph)); 12449 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12450 12451 /* Fill in our template header with basic timestamp option. */ 12452 tmp_tcph += tcp->tcp_tcp_hdr_len; 12453 tmp_tcph[0] = TCPOPT_NOP; 12454 tmp_tcph[1] = TCPOPT_NOP; 12455 tmp_tcph[2] = TCPOPT_TSTAMP; 12456 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12457 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12458 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12459 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12460 } else { 12461 tcp->tcp_snd_ts_ok = B_FALSE; 12462 } 12463 12464 /* 12465 * Process SACK options. If SACK is enabled for this connection, 12466 * then allocate the SACK info structure. Note the following ways 12467 * when tcp_snd_sack_ok is set to true. 12468 * 12469 * For active connection: in tcp_adapt_ire() called in 12470 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12471 * is checked. 12472 * 12473 * For passive connection: in tcp_adapt_ire() called in 12474 * tcp_accept_comm(). 12475 * 12476 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12477 * That check makes sure that if we did not send a SACK OK option, 12478 * we will not enable SACK for this connection even though the other 12479 * side sends us SACK OK option. For active connection, the SACK 12480 * info structure has already been allocated. So we need to free 12481 * it if SACK is disabled. 12482 */ 12483 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12484 (tcp->tcp_snd_sack_ok || 12485 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12486 /* This should be true only in the passive case. */ 12487 if (tcp->tcp_sack_info == NULL) { 12488 ASSERT(TCP_IS_DETACHED(tcp)); 12489 tcp->tcp_sack_info = 12490 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12491 } 12492 if (tcp->tcp_sack_info == NULL) { 12493 tcp->tcp_snd_sack_ok = B_FALSE; 12494 } else { 12495 tcp->tcp_snd_sack_ok = B_TRUE; 12496 if (tcp->tcp_snd_ts_ok) { 12497 tcp->tcp_max_sack_blk = 3; 12498 } else { 12499 tcp->tcp_max_sack_blk = 4; 12500 } 12501 } 12502 } else { 12503 /* 12504 * Resetting tcp_snd_sack_ok to B_FALSE so that 12505 * no SACK info will be used for this 12506 * connection. This assumes that SACK usage 12507 * permission is negotiated. This may need 12508 * to be changed once this is clarified. 12509 */ 12510 if (tcp->tcp_sack_info != NULL) { 12511 ASSERT(tcp->tcp_notsack_list == NULL); 12512 kmem_cache_free(tcp_sack_info_cache, 12513 tcp->tcp_sack_info); 12514 tcp->tcp_sack_info = NULL; 12515 } 12516 tcp->tcp_snd_sack_ok = B_FALSE; 12517 } 12518 12519 /* 12520 * Now we know the exact TCP/IP header length, subtract 12521 * that from tcp_mss to get our side's MSS. 12522 */ 12523 tcp->tcp_mss -= tcp->tcp_hdr_len; 12524 /* 12525 * Here we assume that the other side's header size will be equal to 12526 * our header size. We calculate the real MSS accordingly. Need to 12527 * take into additional stuffs IPsec puts in. 12528 * 12529 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12530 */ 12531 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12532 ((tcp->tcp_ipversion == IPV4_VERSION ? 12533 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12534 12535 /* 12536 * Set MSS to the smaller one of both ends of the connection. 12537 * We should not have called tcp_mss_set() before, but our 12538 * side of the MSS should have been set to a proper value 12539 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12540 * STREAM head parameters properly. 12541 * 12542 * If we have a larger-than-16-bit window but the other side 12543 * didn't want to do window scale, tcp_rwnd_set() will take 12544 * care of that. 12545 */ 12546 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12547 } 12548 12549 /* 12550 * Sends the T_CONN_IND to the listener. The caller calls this 12551 * functions via squeue to get inside the listener's perimeter 12552 * once the 3 way hand shake is done a T_CONN_IND needs to be 12553 * sent. As an optimization, the caller can call this directly 12554 * if listener's perimeter is same as eager's. 12555 */ 12556 /* ARGSUSED */ 12557 void 12558 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12559 { 12560 conn_t *lconnp = (conn_t *)arg; 12561 tcp_t *listener = lconnp->conn_tcp; 12562 tcp_t *tcp; 12563 struct T_conn_ind *conn_ind; 12564 ipaddr_t *addr_cache; 12565 boolean_t need_send_conn_ind = B_FALSE; 12566 tcp_stack_t *tcps = listener->tcp_tcps; 12567 12568 /* retrieve the eager */ 12569 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12570 ASSERT(conn_ind->OPT_offset != 0 && 12571 conn_ind->OPT_length == sizeof (intptr_t)); 12572 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12573 conn_ind->OPT_length); 12574 12575 /* 12576 * TLI/XTI applications will get confused by 12577 * sending eager as an option since it violates 12578 * the option semantics. So remove the eager as 12579 * option since TLI/XTI app doesn't need it anyway. 12580 */ 12581 if (!TCP_IS_SOCKET(listener)) { 12582 conn_ind->OPT_length = 0; 12583 conn_ind->OPT_offset = 0; 12584 } 12585 if (listener->tcp_state == TCPS_CLOSED || 12586 TCP_IS_DETACHED(listener)) { 12587 /* 12588 * If listener has closed, it would have caused a 12589 * a cleanup/blowoff to happen for the eager. We 12590 * just need to return. 12591 */ 12592 freemsg(mp); 12593 return; 12594 } 12595 12596 12597 /* 12598 * if the conn_req_q is full defer passing up the 12599 * T_CONN_IND until space is availabe after t_accept() 12600 * processing 12601 */ 12602 mutex_enter(&listener->tcp_eager_lock); 12603 12604 /* 12605 * Take the eager out, if it is in the list of droppable eagers 12606 * as we are here because the 3W handshake is over. 12607 */ 12608 MAKE_UNDROPPABLE(tcp); 12609 12610 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12611 tcp_t *tail; 12612 12613 /* 12614 * The eager already has an extra ref put in tcp_rput_data 12615 * so that it stays till accept comes back even though it 12616 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12617 */ 12618 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12619 listener->tcp_conn_req_cnt_q0--; 12620 listener->tcp_conn_req_cnt_q++; 12621 12622 /* Move from SYN_RCVD to ESTABLISHED list */ 12623 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12624 tcp->tcp_eager_prev_q0; 12625 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12626 tcp->tcp_eager_next_q0; 12627 tcp->tcp_eager_prev_q0 = NULL; 12628 tcp->tcp_eager_next_q0 = NULL; 12629 12630 /* 12631 * Insert at end of the queue because sockfs 12632 * sends down T_CONN_RES in chronological 12633 * order. Leaving the older conn indications 12634 * at front of the queue helps reducing search 12635 * time. 12636 */ 12637 tail = listener->tcp_eager_last_q; 12638 if (tail != NULL) 12639 tail->tcp_eager_next_q = tcp; 12640 else 12641 listener->tcp_eager_next_q = tcp; 12642 listener->tcp_eager_last_q = tcp; 12643 tcp->tcp_eager_next_q = NULL; 12644 /* 12645 * Delay sending up the T_conn_ind until we are 12646 * done with the eager. Once we have have sent up 12647 * the T_conn_ind, the accept can potentially complete 12648 * any time and release the refhold we have on the eager. 12649 */ 12650 need_send_conn_ind = B_TRUE; 12651 } else { 12652 /* 12653 * Defer connection on q0 and set deferred 12654 * connection bit true 12655 */ 12656 tcp->tcp_conn_def_q0 = B_TRUE; 12657 12658 /* take tcp out of q0 ... */ 12659 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12660 tcp->tcp_eager_next_q0; 12661 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12662 tcp->tcp_eager_prev_q0; 12663 12664 /* ... and place it at the end of q0 */ 12665 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12666 tcp->tcp_eager_next_q0 = listener; 12667 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12668 listener->tcp_eager_prev_q0 = tcp; 12669 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12670 } 12671 12672 /* we have timed out before */ 12673 if (tcp->tcp_syn_rcvd_timeout != 0) { 12674 tcp->tcp_syn_rcvd_timeout = 0; 12675 listener->tcp_syn_rcvd_timeout--; 12676 if (listener->tcp_syn_defense && 12677 listener->tcp_syn_rcvd_timeout <= 12678 (tcps->tcps_conn_req_max_q0 >> 5) && 12679 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12680 listener->tcp_last_rcv_lbolt)) { 12681 /* 12682 * Turn off the defense mode if we 12683 * believe the SYN attack is over. 12684 */ 12685 listener->tcp_syn_defense = B_FALSE; 12686 if (listener->tcp_ip_addr_cache) { 12687 kmem_free((void *)listener->tcp_ip_addr_cache, 12688 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12689 listener->tcp_ip_addr_cache = NULL; 12690 } 12691 } 12692 } 12693 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12694 if (addr_cache != NULL) { 12695 /* 12696 * We have finished a 3-way handshake with this 12697 * remote host. This proves the IP addr is good. 12698 * Cache it! 12699 */ 12700 addr_cache[IP_ADDR_CACHE_HASH( 12701 tcp->tcp_remote)] = tcp->tcp_remote; 12702 } 12703 mutex_exit(&listener->tcp_eager_lock); 12704 if (need_send_conn_ind) 12705 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12706 } 12707 12708 /* 12709 * Send the newconn notification to ulp. The eager is blown off if the 12710 * notification fails. 12711 */ 12712 static void 12713 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12714 { 12715 if (IPCL_IS_NONSTR(lconnp)) { 12716 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12717 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12718 lconnp->conn_tcp); 12719 12720 /* Keep the message around in case of a fallback to TPI */ 12721 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12722 12723 /* 12724 * Notify the ULP about the newconn. It is guaranteed that no 12725 * tcp_accept() call will be made for the eager if the 12726 * notification fails, so it's safe to blow it off in that 12727 * case. 12728 * 12729 * The upper handle will be assigned when tcp_accept() is 12730 * called. 12731 */ 12732 if ((*lconnp->conn_upcalls->su_newconn) 12733 (lconnp->conn_upper_handle, 12734 (sock_lower_handle_t)econnp, 12735 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 12736 &econnp->conn_upcalls) == NULL) { 12737 /* Failed to allocate a socket */ 12738 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12739 tcpEstabResets); 12740 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12741 econnp->conn_tcp->tcp_conn_req_seqnum); 12742 } 12743 } else { 12744 putnext(lconnp->conn_tcp->tcp_rq, mp); 12745 } 12746 } 12747 12748 mblk_t * 12749 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12750 uint_t *ifindexp, ip6_pkt_t *ippp) 12751 { 12752 ip_pktinfo_t *pinfo; 12753 ip6_t *ip6h; 12754 uchar_t *rptr; 12755 mblk_t *first_mp = mp; 12756 boolean_t mctl_present = B_FALSE; 12757 uint_t ifindex = 0; 12758 ip6_pkt_t ipp; 12759 uint_t ipvers; 12760 uint_t ip_hdr_len; 12761 tcp_stack_t *tcps = tcp->tcp_tcps; 12762 12763 rptr = mp->b_rptr; 12764 ASSERT(OK_32PTR(rptr)); 12765 ASSERT(tcp != NULL); 12766 ipp.ipp_fields = 0; 12767 12768 switch DB_TYPE(mp) { 12769 case M_CTL: 12770 mp = mp->b_cont; 12771 if (mp == NULL) { 12772 freemsg(first_mp); 12773 return (NULL); 12774 } 12775 if (DB_TYPE(mp) != M_DATA) { 12776 freemsg(first_mp); 12777 return (NULL); 12778 } 12779 mctl_present = B_TRUE; 12780 break; 12781 case M_DATA: 12782 break; 12783 default: 12784 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12785 freemsg(mp); 12786 return (NULL); 12787 } 12788 ipvers = IPH_HDR_VERSION(rptr); 12789 if (ipvers == IPV4_VERSION) { 12790 if (tcp == NULL) { 12791 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12792 goto done; 12793 } 12794 12795 ipp.ipp_fields |= IPPF_HOPLIMIT; 12796 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12797 12798 /* 12799 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12800 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12801 */ 12802 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12803 mctl_present) { 12804 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12805 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12806 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12807 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12808 ipp.ipp_fields |= IPPF_IFINDEX; 12809 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12810 ifindex = pinfo->ip_pkt_ifindex; 12811 } 12812 freeb(first_mp); 12813 mctl_present = B_FALSE; 12814 } 12815 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12816 } else { 12817 ip6h = (ip6_t *)rptr; 12818 12819 ASSERT(ipvers == IPV6_VERSION); 12820 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12821 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12822 ipp.ipp_hoplimit = ip6h->ip6_hops; 12823 12824 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12825 uint8_t nexthdrp; 12826 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12827 12828 /* Look for ifindex information */ 12829 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12830 ip6i_t *ip6i = (ip6i_t *)ip6h; 12831 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12832 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12833 freemsg(first_mp); 12834 return (NULL); 12835 } 12836 12837 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12838 ASSERT(ip6i->ip6i_ifindex != 0); 12839 ipp.ipp_fields |= IPPF_IFINDEX; 12840 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12841 ifindex = ip6i->ip6i_ifindex; 12842 } 12843 rptr = (uchar_t *)&ip6i[1]; 12844 mp->b_rptr = rptr; 12845 if (rptr == mp->b_wptr) { 12846 mblk_t *mp1; 12847 mp1 = mp->b_cont; 12848 freeb(mp); 12849 mp = mp1; 12850 rptr = mp->b_rptr; 12851 } 12852 if (MBLKL(mp) < IPV6_HDR_LEN + 12853 sizeof (tcph_t)) { 12854 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12855 freemsg(first_mp); 12856 return (NULL); 12857 } 12858 ip6h = (ip6_t *)rptr; 12859 } 12860 12861 /* 12862 * Find any potentially interesting extension headers 12863 * as well as the length of the IPv6 + extension 12864 * headers. 12865 */ 12866 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12867 /* Verify if this is a TCP packet */ 12868 if (nexthdrp != IPPROTO_TCP) { 12869 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12870 freemsg(first_mp); 12871 return (NULL); 12872 } 12873 } else { 12874 ip_hdr_len = IPV6_HDR_LEN; 12875 } 12876 } 12877 12878 done: 12879 if (ipversp != NULL) 12880 *ipversp = ipvers; 12881 if (ip_hdr_lenp != NULL) 12882 *ip_hdr_lenp = ip_hdr_len; 12883 if (ippp != NULL) 12884 *ippp = ipp; 12885 if (ifindexp != NULL) 12886 *ifindexp = ifindex; 12887 if (mctl_present) { 12888 freeb(first_mp); 12889 } 12890 return (mp); 12891 } 12892 12893 /* 12894 * Handle M_DATA messages from IP. Its called directly from IP via 12895 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12896 * in this path. 12897 * 12898 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12899 * v4 and v6), we are called through tcp_input() and a M_CTL can 12900 * be present for options but tcp_find_pktinfo() deals with it. We 12901 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12902 * 12903 * The first argument is always the connp/tcp to which the mp belongs. 12904 * There are no exceptions to this rule. The caller has already put 12905 * a reference on this connp/tcp and once tcp_rput_data() returns, 12906 * the squeue will do the refrele. 12907 * 12908 * The TH_SYN for the listener directly go to tcp_conn_request via 12909 * squeue. 12910 * 12911 * sqp: NULL = recursive, sqp != NULL means called from squeue 12912 */ 12913 void 12914 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12915 { 12916 int32_t bytes_acked; 12917 int32_t gap; 12918 mblk_t *mp1; 12919 uint_t flags; 12920 uint32_t new_swnd = 0; 12921 uchar_t *iphdr; 12922 uchar_t *rptr; 12923 int32_t rgap; 12924 uint32_t seg_ack; 12925 int seg_len; 12926 uint_t ip_hdr_len; 12927 uint32_t seg_seq; 12928 tcph_t *tcph; 12929 int urp; 12930 tcp_opt_t tcpopt; 12931 uint_t ipvers; 12932 ip6_pkt_t ipp; 12933 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12934 uint32_t cwnd; 12935 uint32_t add; 12936 int npkt; 12937 int mss; 12938 conn_t *connp = (conn_t *)arg; 12939 squeue_t *sqp = (squeue_t *)arg2; 12940 tcp_t *tcp = connp->conn_tcp; 12941 tcp_stack_t *tcps = tcp->tcp_tcps; 12942 12943 /* 12944 * RST from fused tcp loopback peer should trigger an unfuse. 12945 */ 12946 if (tcp->tcp_fused) { 12947 TCP_STAT(tcps, tcp_fusion_aborted); 12948 tcp_unfuse(tcp); 12949 } 12950 12951 iphdr = mp->b_rptr; 12952 rptr = mp->b_rptr; 12953 ASSERT(OK_32PTR(rptr)); 12954 12955 /* 12956 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12957 * processing here. For rest call tcp_find_pktinfo to fill up the 12958 * necessary information. 12959 */ 12960 if (IPCL_IS_TCP4(connp)) { 12961 ipvers = IPV4_VERSION; 12962 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12963 } else { 12964 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12965 NULL, &ipp); 12966 if (mp == NULL) { 12967 TCP_STAT(tcps, tcp_rput_v6_error); 12968 return; 12969 } 12970 iphdr = mp->b_rptr; 12971 rptr = mp->b_rptr; 12972 } 12973 ASSERT(DB_TYPE(mp) == M_DATA); 12974 ASSERT(mp->b_next == NULL); 12975 12976 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12977 seg_seq = ABE32_TO_U32(tcph->th_seq); 12978 seg_ack = ABE32_TO_U32(tcph->th_ack); 12979 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12980 seg_len = (int)(mp->b_wptr - rptr) - 12981 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12982 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12983 do { 12984 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12985 (uintptr_t)INT_MAX); 12986 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12987 } while ((mp1 = mp1->b_cont) != NULL && 12988 mp1->b_datap->db_type == M_DATA); 12989 } 12990 12991 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12992 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12993 seg_len, tcph); 12994 return; 12995 } 12996 12997 if (sqp != NULL) { 12998 /* 12999 * This is the correct place to update tcp_last_recv_time. Note 13000 * that it is also updated for tcp structure that belongs to 13001 * global and listener queues which do not really need updating. 13002 * But that should not cause any harm. And it is updated for 13003 * all kinds of incoming segments, not only for data segments. 13004 */ 13005 tcp->tcp_last_recv_time = lbolt; 13006 } 13007 13008 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13009 13010 BUMP_LOCAL(tcp->tcp_ibsegs); 13011 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13012 13013 if ((flags & TH_URG) && sqp != NULL) { 13014 /* 13015 * TCP can't handle urgent pointers that arrive before 13016 * the connection has been accept()ed since it can't 13017 * buffer OOB data. Discard segment if this happens. 13018 * 13019 * We can't just rely on a non-null tcp_listener to indicate 13020 * that the accept() has completed since unlinking of the 13021 * eager and completion of the accept are not atomic. 13022 * tcp_detached, when it is not set (B_FALSE) indicates 13023 * that the accept() has completed. 13024 * 13025 * Nor can it reassemble urgent pointers, so discard 13026 * if it's not the next segment expected. 13027 * 13028 * Otherwise, collapse chain into one mblk (discard if 13029 * that fails). This makes sure the headers, retransmitted 13030 * data, and new data all are in the same mblk. 13031 */ 13032 ASSERT(mp != NULL); 13033 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 13034 freemsg(mp); 13035 return; 13036 } 13037 /* Update pointers into message */ 13038 iphdr = rptr = mp->b_rptr; 13039 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13040 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13041 /* 13042 * Since we can't handle any data with this urgent 13043 * pointer that is out of sequence, we expunge 13044 * the data. This allows us to still register 13045 * the urgent mark and generate the M_PCSIG, 13046 * which we can do. 13047 */ 13048 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13049 seg_len = 0; 13050 } 13051 } 13052 13053 switch (tcp->tcp_state) { 13054 case TCPS_SYN_SENT: 13055 if (flags & TH_ACK) { 13056 /* 13057 * Note that our stack cannot send data before a 13058 * connection is established, therefore the 13059 * following check is valid. Otherwise, it has 13060 * to be changed. 13061 */ 13062 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13063 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13064 freemsg(mp); 13065 if (flags & TH_RST) 13066 return; 13067 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13068 tcp, seg_ack, 0, TH_RST); 13069 return; 13070 } 13071 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13072 } 13073 if (flags & TH_RST) { 13074 freemsg(mp); 13075 if (flags & TH_ACK) 13076 (void) tcp_clean_death(tcp, 13077 ECONNREFUSED, 13); 13078 return; 13079 } 13080 if (!(flags & TH_SYN)) { 13081 freemsg(mp); 13082 return; 13083 } 13084 13085 /* Process all TCP options. */ 13086 tcp_process_options(tcp, tcph); 13087 /* 13088 * The following changes our rwnd to be a multiple of the 13089 * MIN(peer MSS, our MSS) for performance reason. 13090 */ 13091 (void) tcp_rwnd_set(tcp, 13092 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 13093 13094 /* Is the other end ECN capable? */ 13095 if (tcp->tcp_ecn_ok) { 13096 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13097 tcp->tcp_ecn_ok = B_FALSE; 13098 } 13099 } 13100 /* 13101 * Clear ECN flags because it may interfere with later 13102 * processing. 13103 */ 13104 flags &= ~(TH_ECE|TH_CWR); 13105 13106 tcp->tcp_irs = seg_seq; 13107 tcp->tcp_rack = seg_seq; 13108 tcp->tcp_rnxt = seg_seq + 1; 13109 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13110 if (!TCP_IS_DETACHED(tcp)) { 13111 /* Allocate room for SACK options if needed. */ 13112 if (tcp->tcp_snd_sack_ok) { 13113 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13114 tcp->tcp_hdr_len + 13115 TCPOPT_MAX_SACK_LEN + 13116 (tcp->tcp_loopback ? 0 : 13117 tcps->tcps_wroff_xtra)); 13118 } else { 13119 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13120 tcp->tcp_hdr_len + 13121 (tcp->tcp_loopback ? 0 : 13122 tcps->tcps_wroff_xtra)); 13123 } 13124 } 13125 if (flags & TH_ACK) { 13126 /* 13127 * If we can't get the confirmation upstream, pretend 13128 * we didn't even see this one. 13129 * 13130 * XXX: how can we pretend we didn't see it if we 13131 * have updated rnxt et. al. 13132 * 13133 * For loopback we defer sending up the T_CONN_CON 13134 * until after some checks below. 13135 */ 13136 mp1 = NULL; 13137 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13138 tcp->tcp_loopback ? &mp1 : NULL)) { 13139 freemsg(mp); 13140 return; 13141 } 13142 /* SYN was acked - making progress */ 13143 if (tcp->tcp_ipversion == IPV6_VERSION) 13144 tcp->tcp_ip_forward_progress = B_TRUE; 13145 13146 /* One for the SYN */ 13147 tcp->tcp_suna = tcp->tcp_iss + 1; 13148 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13149 tcp->tcp_state = TCPS_ESTABLISHED; 13150 13151 /* 13152 * If SYN was retransmitted, need to reset all 13153 * retransmission info. This is because this 13154 * segment will be treated as a dup ACK. 13155 */ 13156 if (tcp->tcp_rexmit) { 13157 tcp->tcp_rexmit = B_FALSE; 13158 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13159 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13160 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13161 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13162 tcp->tcp_ms_we_have_waited = 0; 13163 13164 /* 13165 * Set tcp_cwnd back to 1 MSS, per 13166 * recommendation from 13167 * draft-floyd-incr-init-win-01.txt, 13168 * Increasing TCP's Initial Window. 13169 */ 13170 tcp->tcp_cwnd = tcp->tcp_mss; 13171 } 13172 13173 tcp->tcp_swl1 = seg_seq; 13174 tcp->tcp_swl2 = seg_ack; 13175 13176 new_swnd = BE16_TO_U16(tcph->th_win); 13177 tcp->tcp_swnd = new_swnd; 13178 if (new_swnd > tcp->tcp_max_swnd) 13179 tcp->tcp_max_swnd = new_swnd; 13180 13181 /* 13182 * Always send the three-way handshake ack immediately 13183 * in order to make the connection complete as soon as 13184 * possible on the accepting host. 13185 */ 13186 flags |= TH_ACK_NEEDED; 13187 13188 /* 13189 * Special case for loopback. At this point we have 13190 * received SYN-ACK from the remote endpoint. In 13191 * order to ensure that both endpoints reach the 13192 * fused state prior to any data exchange, the final 13193 * ACK needs to be sent before we indicate T_CONN_CON 13194 * to the module upstream. 13195 */ 13196 if (tcp->tcp_loopback) { 13197 mblk_t *ack_mp; 13198 13199 ASSERT(!tcp->tcp_unfusable); 13200 ASSERT(mp1 != NULL); 13201 /* 13202 * For loopback, we always get a pure SYN-ACK 13203 * and only need to send back the final ACK 13204 * with no data (this is because the other 13205 * tcp is ours and we don't do T/TCP). This 13206 * final ACK triggers the passive side to 13207 * perform fusion in ESTABLISHED state. 13208 */ 13209 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13210 if (tcp->tcp_ack_tid != 0) { 13211 (void) TCP_TIMER_CANCEL(tcp, 13212 tcp->tcp_ack_tid); 13213 tcp->tcp_ack_tid = 0; 13214 } 13215 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13216 BUMP_LOCAL(tcp->tcp_obsegs); 13217 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13218 13219 if (!IPCL_IS_NONSTR(connp)) { 13220 /* Send up T_CONN_CON */ 13221 putnext(tcp->tcp_rq, mp1); 13222 } else { 13223 (*connp->conn_upcalls-> 13224 su_connected) 13225 (connp->conn_upper_handle, 13226 tcp->tcp_connid, 13227 DB_CRED(mp1), 13228 DB_CPID(mp1)); 13229 freemsg(mp1); 13230 } 13231 13232 freemsg(mp); 13233 return; 13234 } 13235 /* 13236 * Forget fusion; we need to handle more 13237 * complex cases below. Send the deferred 13238 * T_CONN_CON message upstream and proceed 13239 * as usual. Mark this tcp as not capable 13240 * of fusion. 13241 */ 13242 TCP_STAT(tcps, tcp_fusion_unfusable); 13243 tcp->tcp_unfusable = B_TRUE; 13244 if (!IPCL_IS_NONSTR(connp)) { 13245 putnext(tcp->tcp_rq, mp1); 13246 } else { 13247 (*connp->conn_upcalls->su_connected) 13248 (connp->conn_upper_handle, 13249 tcp->tcp_connid, DB_CRED(mp1), 13250 DB_CPID(mp1)); 13251 freemsg(mp1); 13252 } 13253 } 13254 13255 /* 13256 * Check to see if there is data to be sent. If 13257 * yes, set the transmit flag. Then check to see 13258 * if received data processing needs to be done. 13259 * If not, go straight to xmit_check. This short 13260 * cut is OK as we don't support T/TCP. 13261 */ 13262 if (tcp->tcp_unsent) 13263 flags |= TH_XMIT_NEEDED; 13264 13265 if (seg_len == 0 && !(flags & TH_URG)) { 13266 freemsg(mp); 13267 goto xmit_check; 13268 } 13269 13270 flags &= ~TH_SYN; 13271 seg_seq++; 13272 break; 13273 } 13274 tcp->tcp_state = TCPS_SYN_RCVD; 13275 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13276 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13277 if (mp1) { 13278 DB_CPID(mp1) = tcp->tcp_cpid; 13279 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13280 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13281 } 13282 freemsg(mp); 13283 return; 13284 case TCPS_SYN_RCVD: 13285 if (flags & TH_ACK) { 13286 /* 13287 * In this state, a SYN|ACK packet is either bogus 13288 * because the other side must be ACKing our SYN which 13289 * indicates it has seen the ACK for their SYN and 13290 * shouldn't retransmit it or we're crossing SYNs 13291 * on active open. 13292 */ 13293 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13294 freemsg(mp); 13295 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13296 tcp, seg_ack, 0, TH_RST); 13297 return; 13298 } 13299 /* 13300 * NOTE: RFC 793 pg. 72 says this should be 13301 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13302 * but that would mean we have an ack that ignored 13303 * our SYN. 13304 */ 13305 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13306 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13307 freemsg(mp); 13308 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13309 tcp, seg_ack, 0, TH_RST); 13310 return; 13311 } 13312 } 13313 break; 13314 case TCPS_LISTEN: 13315 /* 13316 * Only a TLI listener can come through this path when a 13317 * acceptor is going back to be a listener and a packet 13318 * for the acceptor hits the classifier. For a socket 13319 * listener, this can never happen because a listener 13320 * can never accept connection on itself and hence a 13321 * socket acceptor can not go back to being a listener. 13322 */ 13323 ASSERT(!TCP_IS_SOCKET(tcp)); 13324 /*FALLTHRU*/ 13325 case TCPS_CLOSED: 13326 case TCPS_BOUND: { 13327 conn_t *new_connp; 13328 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13329 13330 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13331 if (new_connp != NULL) { 13332 tcp_reinput(new_connp, mp, connp->conn_sqp); 13333 return; 13334 } 13335 /* We failed to classify. For now just drop the packet */ 13336 freemsg(mp); 13337 return; 13338 } 13339 case TCPS_IDLE: 13340 /* 13341 * Handle the case where the tcp_clean_death() has happened 13342 * on a connection (application hasn't closed yet) but a packet 13343 * was already queued on squeue before tcp_clean_death() 13344 * was processed. Calling tcp_clean_death() twice on same 13345 * connection can result in weird behaviour. 13346 */ 13347 freemsg(mp); 13348 return; 13349 default: 13350 break; 13351 } 13352 13353 /* 13354 * Already on the correct queue/perimeter. 13355 * If this is a detached connection and not an eager 13356 * connection hanging off a listener then new data 13357 * (past the FIN) will cause a reset. 13358 * We do a special check here where it 13359 * is out of the main line, rather than check 13360 * if we are detached every time we see new 13361 * data down below. 13362 */ 13363 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13364 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13365 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13366 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13367 13368 freemsg(mp); 13369 /* 13370 * This could be an SSL closure alert. We're detached so just 13371 * acknowledge it this last time. 13372 */ 13373 if (tcp->tcp_kssl_ctx != NULL) { 13374 kssl_release_ctx(tcp->tcp_kssl_ctx); 13375 tcp->tcp_kssl_ctx = NULL; 13376 13377 tcp->tcp_rnxt += seg_len; 13378 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13379 flags |= TH_ACK_NEEDED; 13380 goto ack_check; 13381 } 13382 13383 tcp_xmit_ctl("new data when detached", tcp, 13384 tcp->tcp_snxt, 0, TH_RST); 13385 (void) tcp_clean_death(tcp, EPROTO, 12); 13386 return; 13387 } 13388 13389 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13390 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13391 new_swnd = BE16_TO_U16(tcph->th_win) << 13392 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13393 13394 if (tcp->tcp_snd_ts_ok) { 13395 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13396 /* 13397 * This segment is not acceptable. 13398 * Drop it and send back an ACK. 13399 */ 13400 freemsg(mp); 13401 flags |= TH_ACK_NEEDED; 13402 goto ack_check; 13403 } 13404 } else if (tcp->tcp_snd_sack_ok) { 13405 ASSERT(tcp->tcp_sack_info != NULL); 13406 tcpopt.tcp = tcp; 13407 /* 13408 * SACK info in already updated in tcp_parse_options. Ignore 13409 * all other TCP options... 13410 */ 13411 (void) tcp_parse_options(tcph, &tcpopt); 13412 } 13413 try_again:; 13414 mss = tcp->tcp_mss; 13415 gap = seg_seq - tcp->tcp_rnxt; 13416 rgap = tcp->tcp_rwnd - (gap + seg_len); 13417 /* 13418 * gap is the amount of sequence space between what we expect to see 13419 * and what we got for seg_seq. A positive value for gap means 13420 * something got lost. A negative value means we got some old stuff. 13421 */ 13422 if (gap < 0) { 13423 /* Old stuff present. Is the SYN in there? */ 13424 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13425 (seg_len != 0)) { 13426 flags &= ~TH_SYN; 13427 seg_seq++; 13428 urp--; 13429 /* Recompute the gaps after noting the SYN. */ 13430 goto try_again; 13431 } 13432 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13433 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13434 (seg_len > -gap ? -gap : seg_len)); 13435 /* Remove the old stuff from seg_len. */ 13436 seg_len += gap; 13437 /* 13438 * Anything left? 13439 * Make sure to check for unack'd FIN when rest of data 13440 * has been previously ack'd. 13441 */ 13442 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13443 /* 13444 * Resets are only valid if they lie within our offered 13445 * window. If the RST bit is set, we just ignore this 13446 * segment. 13447 */ 13448 if (flags & TH_RST) { 13449 freemsg(mp); 13450 return; 13451 } 13452 13453 /* 13454 * The arriving of dup data packets indicate that we 13455 * may have postponed an ack for too long, or the other 13456 * side's RTT estimate is out of shape. Start acking 13457 * more often. 13458 */ 13459 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13460 tcp->tcp_rack_cnt >= 1 && 13461 tcp->tcp_rack_abs_max > 2) { 13462 tcp->tcp_rack_abs_max--; 13463 } 13464 tcp->tcp_rack_cur_max = 1; 13465 13466 /* 13467 * This segment is "unacceptable". None of its 13468 * sequence space lies within our advertized window. 13469 * 13470 * Adjust seg_len to the original value for tracing. 13471 */ 13472 seg_len -= gap; 13473 if (tcp->tcp_debug) { 13474 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13475 "tcp_rput: unacceptable, gap %d, rgap %d, " 13476 "flags 0x%x, seg_seq %u, seg_ack %u, " 13477 "seg_len %d, rnxt %u, snxt %u, %s", 13478 gap, rgap, flags, seg_seq, seg_ack, 13479 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13480 tcp_display(tcp, NULL, 13481 DISP_ADDR_AND_PORT)); 13482 } 13483 13484 /* 13485 * Arrange to send an ACK in response to the 13486 * unacceptable segment per RFC 793 page 69. There 13487 * is only one small difference between ours and the 13488 * acceptability test in the RFC - we accept ACK-only 13489 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13490 * will be generated. 13491 * 13492 * Note that we have to ACK an ACK-only packet at least 13493 * for stacks that send 0-length keep-alives with 13494 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13495 * section 4.2.3.6. As long as we don't ever generate 13496 * an unacceptable packet in response to an incoming 13497 * packet that is unacceptable, it should not cause 13498 * "ACK wars". 13499 */ 13500 flags |= TH_ACK_NEEDED; 13501 13502 /* 13503 * Continue processing this segment in order to use the 13504 * ACK information it contains, but skip all other 13505 * sequence-number processing. Processing the ACK 13506 * information is necessary in order to 13507 * re-synchronize connections that may have lost 13508 * synchronization. 13509 * 13510 * We clear seg_len and flag fields related to 13511 * sequence number processing as they are not 13512 * to be trusted for an unacceptable segment. 13513 */ 13514 seg_len = 0; 13515 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13516 goto process_ack; 13517 } 13518 13519 /* Fix seg_seq, and chew the gap off the front. */ 13520 seg_seq = tcp->tcp_rnxt; 13521 urp += gap; 13522 do { 13523 mblk_t *mp2; 13524 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13525 (uintptr_t)UINT_MAX); 13526 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13527 if (gap > 0) { 13528 mp->b_rptr = mp->b_wptr - gap; 13529 break; 13530 } 13531 mp2 = mp; 13532 mp = mp->b_cont; 13533 freeb(mp2); 13534 } while (gap < 0); 13535 /* 13536 * If the urgent data has already been acknowledged, we 13537 * should ignore TH_URG below 13538 */ 13539 if (urp < 0) 13540 flags &= ~TH_URG; 13541 } 13542 /* 13543 * rgap is the amount of stuff received out of window. A negative 13544 * value is the amount out of window. 13545 */ 13546 if (rgap < 0) { 13547 mblk_t *mp2; 13548 13549 if (tcp->tcp_rwnd == 0) { 13550 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13551 } else { 13552 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13553 UPDATE_MIB(&tcps->tcps_mib, 13554 tcpInDataPastWinBytes, -rgap); 13555 } 13556 13557 /* 13558 * seg_len does not include the FIN, so if more than 13559 * just the FIN is out of window, we act like we don't 13560 * see it. (If just the FIN is out of window, rgap 13561 * will be zero and we will go ahead and acknowledge 13562 * the FIN.) 13563 */ 13564 flags &= ~TH_FIN; 13565 13566 /* Fix seg_len and make sure there is something left. */ 13567 seg_len += rgap; 13568 if (seg_len <= 0) { 13569 /* 13570 * Resets are only valid if they lie within our offered 13571 * window. If the RST bit is set, we just ignore this 13572 * segment. 13573 */ 13574 if (flags & TH_RST) { 13575 freemsg(mp); 13576 return; 13577 } 13578 13579 /* Per RFC 793, we need to send back an ACK. */ 13580 flags |= TH_ACK_NEEDED; 13581 13582 /* 13583 * Send SIGURG as soon as possible i.e. even 13584 * if the TH_URG was delivered in a window probe 13585 * packet (which will be unacceptable). 13586 * 13587 * We generate a signal if none has been generated 13588 * for this connection or if this is a new urgent 13589 * byte. Also send a zero-length "unmarked" message 13590 * to inform SIOCATMARK that this is not the mark. 13591 * 13592 * tcp_urp_last_valid is cleared when the T_exdata_ind 13593 * is sent up. This plus the check for old data 13594 * (gap >= 0) handles the wraparound of the sequence 13595 * number space without having to always track the 13596 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13597 * this max in its rcv_up variable). 13598 * 13599 * This prevents duplicate SIGURGS due to a "late" 13600 * zero-window probe when the T_EXDATA_IND has already 13601 * been sent up. 13602 */ 13603 if ((flags & TH_URG) && 13604 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13605 tcp->tcp_urp_last))) { 13606 if (IPCL_IS_NONSTR(connp)) { 13607 if (!TCP_IS_DETACHED(tcp)) { 13608 (*connp->conn_upcalls-> 13609 su_signal_oob) 13610 (connp->conn_upper_handle, 13611 urp); 13612 } 13613 } else { 13614 mp1 = allocb(0, BPRI_MED); 13615 if (mp1 == NULL) { 13616 freemsg(mp); 13617 return; 13618 } 13619 if (!TCP_IS_DETACHED(tcp) && 13620 !putnextctl1(tcp->tcp_rq, 13621 M_PCSIG, SIGURG)) { 13622 /* Try again on the rexmit. */ 13623 freemsg(mp1); 13624 freemsg(mp); 13625 return; 13626 } 13627 /* 13628 * If the next byte would be the mark 13629 * then mark with MARKNEXT else mark 13630 * with NOTMARKNEXT. 13631 */ 13632 if (gap == 0 && urp == 0) 13633 mp1->b_flag |= MSGMARKNEXT; 13634 else 13635 mp1->b_flag |= MSGNOTMARKNEXT; 13636 freemsg(tcp->tcp_urp_mark_mp); 13637 tcp->tcp_urp_mark_mp = mp1; 13638 flags |= TH_SEND_URP_MARK; 13639 } 13640 tcp->tcp_urp_last_valid = B_TRUE; 13641 tcp->tcp_urp_last = urp + seg_seq; 13642 } 13643 /* 13644 * If this is a zero window probe, continue to 13645 * process the ACK part. But we need to set seg_len 13646 * to 0 to avoid data processing. Otherwise just 13647 * drop the segment and send back an ACK. 13648 */ 13649 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13650 flags &= ~(TH_SYN | TH_URG); 13651 seg_len = 0; 13652 goto process_ack; 13653 } else { 13654 freemsg(mp); 13655 goto ack_check; 13656 } 13657 } 13658 /* Pitch out of window stuff off the end. */ 13659 rgap = seg_len; 13660 mp2 = mp; 13661 do { 13662 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13663 (uintptr_t)INT_MAX); 13664 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13665 if (rgap < 0) { 13666 mp2->b_wptr += rgap; 13667 if ((mp1 = mp2->b_cont) != NULL) { 13668 mp2->b_cont = NULL; 13669 freemsg(mp1); 13670 } 13671 break; 13672 } 13673 } while ((mp2 = mp2->b_cont) != NULL); 13674 } 13675 ok:; 13676 /* 13677 * TCP should check ECN info for segments inside the window only. 13678 * Therefore the check should be done here. 13679 */ 13680 if (tcp->tcp_ecn_ok) { 13681 if (flags & TH_CWR) { 13682 tcp->tcp_ecn_echo_on = B_FALSE; 13683 } 13684 /* 13685 * Note that both ECN_CE and CWR can be set in the 13686 * same segment. In this case, we once again turn 13687 * on ECN_ECHO. 13688 */ 13689 if (tcp->tcp_ipversion == IPV4_VERSION) { 13690 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13691 13692 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13693 tcp->tcp_ecn_echo_on = B_TRUE; 13694 } 13695 } else { 13696 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13697 13698 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13699 htonl(IPH_ECN_CE << 20)) { 13700 tcp->tcp_ecn_echo_on = B_TRUE; 13701 } 13702 } 13703 } 13704 13705 /* 13706 * Check whether we can update tcp_ts_recent. This test is 13707 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13708 * Extensions for High Performance: An Update", Internet Draft. 13709 */ 13710 if (tcp->tcp_snd_ts_ok && 13711 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13712 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13713 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13714 tcp->tcp_last_rcv_lbolt = lbolt64; 13715 } 13716 13717 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13718 /* 13719 * FIN in an out of order segment. We record this in 13720 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13721 * Clear the FIN so that any check on FIN flag will fail. 13722 * Remember that FIN also counts in the sequence number 13723 * space. So we need to ack out of order FIN only segments. 13724 */ 13725 if (flags & TH_FIN) { 13726 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13727 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13728 flags &= ~TH_FIN; 13729 flags |= TH_ACK_NEEDED; 13730 } 13731 if (seg_len > 0) { 13732 /* Fill in the SACK blk list. */ 13733 if (tcp->tcp_snd_sack_ok) { 13734 ASSERT(tcp->tcp_sack_info != NULL); 13735 tcp_sack_insert(tcp->tcp_sack_list, 13736 seg_seq, seg_seq + seg_len, 13737 &(tcp->tcp_num_sack_blk)); 13738 } 13739 13740 /* 13741 * Attempt reassembly and see if we have something 13742 * ready to go. 13743 */ 13744 mp = tcp_reass(tcp, mp, seg_seq); 13745 /* Always ack out of order packets */ 13746 flags |= TH_ACK_NEEDED | TH_PUSH; 13747 if (mp) { 13748 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13749 (uintptr_t)INT_MAX); 13750 seg_len = mp->b_cont ? msgdsize(mp) : 13751 (int)(mp->b_wptr - mp->b_rptr); 13752 seg_seq = tcp->tcp_rnxt; 13753 /* 13754 * A gap is filled and the seq num and len 13755 * of the gap match that of a previously 13756 * received FIN, put the FIN flag back in. 13757 */ 13758 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13759 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13760 flags |= TH_FIN; 13761 tcp->tcp_valid_bits &= 13762 ~TCP_OFO_FIN_VALID; 13763 } 13764 } else { 13765 /* 13766 * Keep going even with NULL mp. 13767 * There may be a useful ACK or something else 13768 * we don't want to miss. 13769 * 13770 * But TCP should not perform fast retransmit 13771 * because of the ack number. TCP uses 13772 * seg_len == 0 to determine if it is a pure 13773 * ACK. And this is not a pure ACK. 13774 */ 13775 seg_len = 0; 13776 ofo_seg = B_TRUE; 13777 } 13778 } 13779 } else if (seg_len > 0) { 13780 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13781 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13782 /* 13783 * If an out of order FIN was received before, and the seq 13784 * num and len of the new segment match that of the FIN, 13785 * put the FIN flag back in. 13786 */ 13787 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13788 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13789 flags |= TH_FIN; 13790 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13791 } 13792 } 13793 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13794 if (flags & TH_RST) { 13795 freemsg(mp); 13796 switch (tcp->tcp_state) { 13797 case TCPS_SYN_RCVD: 13798 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13799 break; 13800 case TCPS_ESTABLISHED: 13801 case TCPS_FIN_WAIT_1: 13802 case TCPS_FIN_WAIT_2: 13803 case TCPS_CLOSE_WAIT: 13804 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13805 break; 13806 case TCPS_CLOSING: 13807 case TCPS_LAST_ACK: 13808 (void) tcp_clean_death(tcp, 0, 16); 13809 break; 13810 default: 13811 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13812 (void) tcp_clean_death(tcp, ENXIO, 17); 13813 break; 13814 } 13815 return; 13816 } 13817 if (flags & TH_SYN) { 13818 /* 13819 * See RFC 793, Page 71 13820 * 13821 * The seq number must be in the window as it should 13822 * be "fixed" above. If it is outside window, it should 13823 * be already rejected. Note that we allow seg_seq to be 13824 * rnxt + rwnd because we want to accept 0 window probe. 13825 */ 13826 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13827 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13828 freemsg(mp); 13829 /* 13830 * If the ACK flag is not set, just use our snxt as the 13831 * seq number of the RST segment. 13832 */ 13833 if (!(flags & TH_ACK)) { 13834 seg_ack = tcp->tcp_snxt; 13835 } 13836 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13837 TH_RST|TH_ACK); 13838 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13839 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13840 return; 13841 } 13842 /* 13843 * urp could be -1 when the urp field in the packet is 0 13844 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13845 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13846 */ 13847 if (flags & TH_URG && urp >= 0) { 13848 if (!tcp->tcp_urp_last_valid || 13849 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13850 if (IPCL_IS_NONSTR(connp)) { 13851 if (!TCP_IS_DETACHED(tcp)) { 13852 (*connp->conn_upcalls->su_signal_oob) 13853 (connp->conn_upper_handle, urp); 13854 } 13855 } else { 13856 /* 13857 * If we haven't generated the signal yet for 13858 * this urgent pointer value, do it now. Also, 13859 * send up a zero-length M_DATA indicating 13860 * whether or not this is the mark. The latter 13861 * is not needed when a T_EXDATA_IND is sent up. 13862 * However, if there are allocation failures 13863 * this code relies on the sender retransmitting 13864 * and the socket code for determining the mark 13865 * should not block waiting for the peer to 13866 * transmit. Thus, for simplicity we always 13867 * send up the mark indication. 13868 */ 13869 mp1 = allocb(0, BPRI_MED); 13870 if (mp1 == NULL) { 13871 freemsg(mp); 13872 return; 13873 } 13874 if (!TCP_IS_DETACHED(tcp) && 13875 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13876 SIGURG)) { 13877 /* Try again on the rexmit. */ 13878 freemsg(mp1); 13879 freemsg(mp); 13880 return; 13881 } 13882 /* 13883 * Mark with NOTMARKNEXT for now. 13884 * The code below will change this to MARKNEXT 13885 * if we are at the mark. 13886 * 13887 * If there are allocation failures (e.g. in 13888 * dupmsg below) the next time tcp_rput_data 13889 * sees the urgent segment it will send up the 13890 * MSGMARKNEXT message. 13891 */ 13892 mp1->b_flag |= MSGNOTMARKNEXT; 13893 freemsg(tcp->tcp_urp_mark_mp); 13894 tcp->tcp_urp_mark_mp = mp1; 13895 flags |= TH_SEND_URP_MARK; 13896 #ifdef DEBUG 13897 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13898 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13899 "last %x, %s", 13900 seg_seq, urp, tcp->tcp_urp_last, 13901 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13902 #endif /* DEBUG */ 13903 } 13904 tcp->tcp_urp_last_valid = B_TRUE; 13905 tcp->tcp_urp_last = urp + seg_seq; 13906 } else if (tcp->tcp_urp_mark_mp != NULL) { 13907 /* 13908 * An allocation failure prevented the previous 13909 * tcp_rput_data from sending up the allocated 13910 * MSG*MARKNEXT message - send it up this time 13911 * around. 13912 */ 13913 flags |= TH_SEND_URP_MARK; 13914 } 13915 13916 /* 13917 * If the urgent byte is in this segment, make sure that it is 13918 * all by itself. This makes it much easier to deal with the 13919 * possibility of an allocation failure on the T_exdata_ind. 13920 * Note that seg_len is the number of bytes in the segment, and 13921 * urp is the offset into the segment of the urgent byte. 13922 * urp < seg_len means that the urgent byte is in this segment. 13923 */ 13924 if (urp < seg_len) { 13925 if (seg_len != 1) { 13926 uint32_t tmp_rnxt; 13927 /* 13928 * Break it up and feed it back in. 13929 * Re-attach the IP header. 13930 */ 13931 mp->b_rptr = iphdr; 13932 if (urp > 0) { 13933 /* 13934 * There is stuff before the urgent 13935 * byte. 13936 */ 13937 mp1 = dupmsg(mp); 13938 if (!mp1) { 13939 /* 13940 * Trim from urgent byte on. 13941 * The rest will come back. 13942 */ 13943 (void) adjmsg(mp, 13944 urp - seg_len); 13945 tcp_rput_data(connp, 13946 mp, NULL); 13947 return; 13948 } 13949 (void) adjmsg(mp1, urp - seg_len); 13950 /* Feed this piece back in. */ 13951 tmp_rnxt = tcp->tcp_rnxt; 13952 tcp_rput_data(connp, mp1, NULL); 13953 /* 13954 * If the data passed back in was not 13955 * processed (ie: bad ACK) sending 13956 * the remainder back in will cause a 13957 * loop. In this case, drop the 13958 * packet and let the sender try 13959 * sending a good packet. 13960 */ 13961 if (tmp_rnxt == tcp->tcp_rnxt) { 13962 freemsg(mp); 13963 return; 13964 } 13965 } 13966 if (urp != seg_len - 1) { 13967 uint32_t tmp_rnxt; 13968 /* 13969 * There is stuff after the urgent 13970 * byte. 13971 */ 13972 mp1 = dupmsg(mp); 13973 if (!mp1) { 13974 /* 13975 * Trim everything beyond the 13976 * urgent byte. The rest will 13977 * come back. 13978 */ 13979 (void) adjmsg(mp, 13980 urp + 1 - seg_len); 13981 tcp_rput_data(connp, 13982 mp, NULL); 13983 return; 13984 } 13985 (void) adjmsg(mp1, urp + 1 - seg_len); 13986 tmp_rnxt = tcp->tcp_rnxt; 13987 tcp_rput_data(connp, mp1, NULL); 13988 /* 13989 * If the data passed back in was not 13990 * processed (ie: bad ACK) sending 13991 * the remainder back in will cause a 13992 * loop. In this case, drop the 13993 * packet and let the sender try 13994 * sending a good packet. 13995 */ 13996 if (tmp_rnxt == tcp->tcp_rnxt) { 13997 freemsg(mp); 13998 return; 13999 } 14000 } 14001 tcp_rput_data(connp, mp, NULL); 14002 return; 14003 } 14004 /* 14005 * This segment contains only the urgent byte. We 14006 * have to allocate the T_exdata_ind, if we can. 14007 */ 14008 if (IPCL_IS_NONSTR(connp)) { 14009 int error; 14010 14011 (*connp->conn_upcalls->su_recv) 14012 (connp->conn_upper_handle, mp, seg_len, 14013 MSG_OOB, &error, NULL); 14014 mp = NULL; 14015 goto update_ack; 14016 } else if (!tcp->tcp_urp_mp) { 14017 struct T_exdata_ind *tei; 14018 mp1 = allocb(sizeof (struct T_exdata_ind), 14019 BPRI_MED); 14020 if (!mp1) { 14021 /* 14022 * Sigh... It'll be back. 14023 * Generate any MSG*MARK message now. 14024 */ 14025 freemsg(mp); 14026 seg_len = 0; 14027 if (flags & TH_SEND_URP_MARK) { 14028 14029 14030 ASSERT(tcp->tcp_urp_mark_mp); 14031 tcp->tcp_urp_mark_mp->b_flag &= 14032 ~MSGNOTMARKNEXT; 14033 tcp->tcp_urp_mark_mp->b_flag |= 14034 MSGMARKNEXT; 14035 } 14036 goto ack_check; 14037 } 14038 mp1->b_datap->db_type = M_PROTO; 14039 tei = (struct T_exdata_ind *)mp1->b_rptr; 14040 tei->PRIM_type = T_EXDATA_IND; 14041 tei->MORE_flag = 0; 14042 mp1->b_wptr = (uchar_t *)&tei[1]; 14043 tcp->tcp_urp_mp = mp1; 14044 #ifdef DEBUG 14045 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14046 "tcp_rput: allocated exdata_ind %s", 14047 tcp_display(tcp, NULL, 14048 DISP_PORT_ONLY)); 14049 #endif /* DEBUG */ 14050 /* 14051 * There is no need to send a separate MSG*MARK 14052 * message since the T_EXDATA_IND will be sent 14053 * now. 14054 */ 14055 flags &= ~TH_SEND_URP_MARK; 14056 freemsg(tcp->tcp_urp_mark_mp); 14057 tcp->tcp_urp_mark_mp = NULL; 14058 } 14059 /* 14060 * Now we are all set. On the next putnext upstream, 14061 * tcp_urp_mp will be non-NULL and will get prepended 14062 * to what has to be this piece containing the urgent 14063 * byte. If for any reason we abort this segment below, 14064 * if it comes back, we will have this ready, or it 14065 * will get blown off in close. 14066 */ 14067 } else if (urp == seg_len) { 14068 /* 14069 * The urgent byte is the next byte after this sequence 14070 * number. If there is data it is marked with 14071 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14072 * since it is not needed. Otherwise, if the code 14073 * above just allocated a zero-length tcp_urp_mark_mp 14074 * message, that message is tagged with MSGMARKNEXT. 14075 * Sending up these MSGMARKNEXT messages makes 14076 * SIOCATMARK work correctly even though 14077 * the T_EXDATA_IND will not be sent up until the 14078 * urgent byte arrives. 14079 */ 14080 if (seg_len != 0) { 14081 flags |= TH_MARKNEXT_NEEDED; 14082 freemsg(tcp->tcp_urp_mark_mp); 14083 tcp->tcp_urp_mark_mp = NULL; 14084 flags &= ~TH_SEND_URP_MARK; 14085 } else if (tcp->tcp_urp_mark_mp != NULL) { 14086 flags |= TH_SEND_URP_MARK; 14087 tcp->tcp_urp_mark_mp->b_flag &= 14088 ~MSGNOTMARKNEXT; 14089 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14090 } 14091 #ifdef DEBUG 14092 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14093 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14094 seg_len, flags, 14095 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14096 #endif /* DEBUG */ 14097 } 14098 #ifdef DEBUG 14099 else { 14100 /* Data left until we hit mark */ 14101 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14102 "tcp_rput: URP %d bytes left, %s", 14103 urp - seg_len, tcp_display(tcp, NULL, 14104 DISP_PORT_ONLY)); 14105 } 14106 #endif /* DEBUG */ 14107 } 14108 14109 process_ack: 14110 if (!(flags & TH_ACK)) { 14111 freemsg(mp); 14112 goto xmit_check; 14113 } 14114 } 14115 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14116 14117 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14118 tcp->tcp_ip_forward_progress = B_TRUE; 14119 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14120 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14121 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14122 /* 3-way handshake complete - pass up the T_CONN_IND */ 14123 tcp_t *listener = tcp->tcp_listener; 14124 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14125 14126 tcp->tcp_tconnind_started = B_TRUE; 14127 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14128 /* 14129 * We are here means eager is fine but it can 14130 * get a TH_RST at any point between now and till 14131 * accept completes and disappear. We need to 14132 * ensure that reference to eager is valid after 14133 * we get out of eager's perimeter. So we do 14134 * an extra refhold. 14135 */ 14136 CONN_INC_REF(connp); 14137 14138 /* 14139 * The listener also exists because of the refhold 14140 * done in tcp_conn_request. Its possible that it 14141 * might have closed. We will check that once we 14142 * get inside listeners context. 14143 */ 14144 CONN_INC_REF(listener->tcp_connp); 14145 if (listener->tcp_connp->conn_sqp == 14146 connp->conn_sqp) { 14147 /* 14148 * We optimize by not calling an SQUEUE_ENTER 14149 * on the listener since we know that the 14150 * listener and eager squeues are the same. 14151 * We are able to make this check safely only 14152 * because neither the eager nor the listener 14153 * can change its squeue. Only an active connect 14154 * can change its squeue 14155 */ 14156 tcp_send_conn_ind(listener->tcp_connp, mp, 14157 listener->tcp_connp->conn_sqp); 14158 CONN_DEC_REF(listener->tcp_connp); 14159 } else if (!tcp->tcp_loopback) { 14160 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14161 mp, tcp_send_conn_ind, 14162 listener->tcp_connp, SQ_FILL, 14163 SQTAG_TCP_CONN_IND); 14164 } else { 14165 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14166 mp, tcp_send_conn_ind, 14167 listener->tcp_connp, SQ_PROCESS, 14168 SQTAG_TCP_CONN_IND); 14169 } 14170 } 14171 14172 if (tcp->tcp_active_open) { 14173 /* 14174 * We are seeing the final ack in the three way 14175 * hand shake of a active open'ed connection 14176 * so we must send up a T_CONN_CON 14177 */ 14178 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14179 freemsg(mp); 14180 return; 14181 } 14182 /* 14183 * Don't fuse the loopback endpoints for 14184 * simultaneous active opens. 14185 */ 14186 if (tcp->tcp_loopback) { 14187 TCP_STAT(tcps, tcp_fusion_unfusable); 14188 tcp->tcp_unfusable = B_TRUE; 14189 } 14190 } 14191 14192 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14193 bytes_acked--; 14194 /* SYN was acked - making progress */ 14195 if (tcp->tcp_ipversion == IPV6_VERSION) 14196 tcp->tcp_ip_forward_progress = B_TRUE; 14197 14198 /* 14199 * If SYN was retransmitted, need to reset all 14200 * retransmission info as this segment will be 14201 * treated as a dup ACK. 14202 */ 14203 if (tcp->tcp_rexmit) { 14204 tcp->tcp_rexmit = B_FALSE; 14205 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14206 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14207 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14208 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14209 tcp->tcp_ms_we_have_waited = 0; 14210 tcp->tcp_cwnd = mss; 14211 } 14212 14213 /* 14214 * We set the send window to zero here. 14215 * This is needed if there is data to be 14216 * processed already on the queue. 14217 * Later (at swnd_update label), the 14218 * "new_swnd > tcp_swnd" condition is satisfied 14219 * the XMIT_NEEDED flag is set in the current 14220 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14221 * called if there is already data on queue in 14222 * this state. 14223 */ 14224 tcp->tcp_swnd = 0; 14225 14226 if (new_swnd > tcp->tcp_max_swnd) 14227 tcp->tcp_max_swnd = new_swnd; 14228 tcp->tcp_swl1 = seg_seq; 14229 tcp->tcp_swl2 = seg_ack; 14230 tcp->tcp_state = TCPS_ESTABLISHED; 14231 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14232 14233 /* Fuse when both sides are in ESTABLISHED state */ 14234 if (tcp->tcp_loopback && do_tcp_fusion) 14235 tcp_fuse(tcp, iphdr, tcph); 14236 14237 } 14238 /* This code follows 4.4BSD-Lite2 mostly. */ 14239 if (bytes_acked < 0) 14240 goto est; 14241 14242 /* 14243 * If TCP is ECN capable and the congestion experience bit is 14244 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14245 * done once per window (or more loosely, per RTT). 14246 */ 14247 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14248 tcp->tcp_cwr = B_FALSE; 14249 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14250 if (!tcp->tcp_cwr) { 14251 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14252 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14253 tcp->tcp_cwnd = npkt * mss; 14254 /* 14255 * If the cwnd is 0, use the timer to clock out 14256 * new segments. This is required by the ECN spec. 14257 */ 14258 if (npkt == 0) { 14259 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14260 /* 14261 * This makes sure that when the ACK comes 14262 * back, we will increase tcp_cwnd by 1 MSS. 14263 */ 14264 tcp->tcp_cwnd_cnt = 0; 14265 } 14266 tcp->tcp_cwr = B_TRUE; 14267 /* 14268 * This marks the end of the current window of in 14269 * flight data. That is why we don't use 14270 * tcp_suna + tcp_swnd. Only data in flight can 14271 * provide ECN info. 14272 */ 14273 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14274 tcp->tcp_ecn_cwr_sent = B_FALSE; 14275 } 14276 } 14277 14278 mp1 = tcp->tcp_xmit_head; 14279 if (bytes_acked == 0) { 14280 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14281 int dupack_cnt; 14282 14283 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14284 /* 14285 * Fast retransmit. When we have seen exactly three 14286 * identical ACKs while we have unacked data 14287 * outstanding we take it as a hint that our peer 14288 * dropped something. 14289 * 14290 * If TCP is retransmitting, don't do fast retransmit. 14291 */ 14292 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14293 ! tcp->tcp_rexmit) { 14294 /* Do Limited Transmit */ 14295 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14296 tcps->tcps_dupack_fast_retransmit) { 14297 /* 14298 * RFC 3042 14299 * 14300 * What we need to do is temporarily 14301 * increase tcp_cwnd so that new 14302 * data can be sent if it is allowed 14303 * by the receive window (tcp_rwnd). 14304 * tcp_wput_data() will take care of 14305 * the rest. 14306 * 14307 * If the connection is SACK capable, 14308 * only do limited xmit when there 14309 * is SACK info. 14310 * 14311 * Note how tcp_cwnd is incremented. 14312 * The first dup ACK will increase 14313 * it by 1 MSS. The second dup ACK 14314 * will increase it by 2 MSS. This 14315 * means that only 1 new segment will 14316 * be sent for each dup ACK. 14317 */ 14318 if (tcp->tcp_unsent > 0 && 14319 (!tcp->tcp_snd_sack_ok || 14320 (tcp->tcp_snd_sack_ok && 14321 tcp->tcp_notsack_list != NULL))) { 14322 tcp->tcp_cwnd += mss << 14323 (tcp->tcp_dupack_cnt - 1); 14324 flags |= TH_LIMIT_XMIT; 14325 } 14326 } else if (dupack_cnt == 14327 tcps->tcps_dupack_fast_retransmit) { 14328 14329 /* 14330 * If we have reduced tcp_ssthresh 14331 * because of ECN, do not reduce it again 14332 * unless it is already one window of data 14333 * away. After one window of data, tcp_cwr 14334 * should then be cleared. Note that 14335 * for non ECN capable connection, tcp_cwr 14336 * should always be false. 14337 * 14338 * Adjust cwnd since the duplicate 14339 * ack indicates that a packet was 14340 * dropped (due to congestion.) 14341 */ 14342 if (!tcp->tcp_cwr) { 14343 npkt = ((tcp->tcp_snxt - 14344 tcp->tcp_suna) >> 1) / mss; 14345 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14346 mss; 14347 tcp->tcp_cwnd = (npkt + 14348 tcp->tcp_dupack_cnt) * mss; 14349 } 14350 if (tcp->tcp_ecn_ok) { 14351 tcp->tcp_cwr = B_TRUE; 14352 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14353 tcp->tcp_ecn_cwr_sent = B_FALSE; 14354 } 14355 14356 /* 14357 * We do Hoe's algorithm. Refer to her 14358 * paper "Improving the Start-up Behavior 14359 * of a Congestion Control Scheme for TCP," 14360 * appeared in SIGCOMM'96. 14361 * 14362 * Save highest seq no we have sent so far. 14363 * Be careful about the invisible FIN byte. 14364 */ 14365 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14366 (tcp->tcp_unsent == 0)) { 14367 tcp->tcp_rexmit_max = tcp->tcp_fss; 14368 } else { 14369 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14370 } 14371 14372 /* 14373 * Do not allow bursty traffic during. 14374 * fast recovery. Refer to Fall and Floyd's 14375 * paper "Simulation-based Comparisons of 14376 * Tahoe, Reno and SACK TCP" (in CCR?) 14377 * This is a best current practise. 14378 */ 14379 tcp->tcp_snd_burst = TCP_CWND_SS; 14380 14381 /* 14382 * For SACK: 14383 * Calculate tcp_pipe, which is the 14384 * estimated number of bytes in 14385 * network. 14386 * 14387 * tcp_fack is the highest sack'ed seq num 14388 * TCP has received. 14389 * 14390 * tcp_pipe is explained in the above quoted 14391 * Fall and Floyd's paper. tcp_fack is 14392 * explained in Mathis and Mahdavi's 14393 * "Forward Acknowledgment: Refining TCP 14394 * Congestion Control" in SIGCOMM '96. 14395 */ 14396 if (tcp->tcp_snd_sack_ok) { 14397 ASSERT(tcp->tcp_sack_info != NULL); 14398 if (tcp->tcp_notsack_list != NULL) { 14399 tcp->tcp_pipe = tcp->tcp_snxt - 14400 tcp->tcp_fack; 14401 tcp->tcp_sack_snxt = seg_ack; 14402 flags |= TH_NEED_SACK_REXMIT; 14403 } else { 14404 /* 14405 * Always initialize tcp_pipe 14406 * even though we don't have 14407 * any SACK info. If later 14408 * we get SACK info and 14409 * tcp_pipe is not initialized, 14410 * funny things will happen. 14411 */ 14412 tcp->tcp_pipe = 14413 tcp->tcp_cwnd_ssthresh; 14414 } 14415 } else { 14416 flags |= TH_REXMIT_NEEDED; 14417 } /* tcp_snd_sack_ok */ 14418 14419 } else { 14420 /* 14421 * Here we perform congestion 14422 * avoidance, but NOT slow start. 14423 * This is known as the Fast 14424 * Recovery Algorithm. 14425 */ 14426 if (tcp->tcp_snd_sack_ok && 14427 tcp->tcp_notsack_list != NULL) { 14428 flags |= TH_NEED_SACK_REXMIT; 14429 tcp->tcp_pipe -= mss; 14430 if (tcp->tcp_pipe < 0) 14431 tcp->tcp_pipe = 0; 14432 } else { 14433 /* 14434 * We know that one more packet has 14435 * left the pipe thus we can update 14436 * cwnd. 14437 */ 14438 cwnd = tcp->tcp_cwnd + mss; 14439 if (cwnd > tcp->tcp_cwnd_max) 14440 cwnd = tcp->tcp_cwnd_max; 14441 tcp->tcp_cwnd = cwnd; 14442 if (tcp->tcp_unsent > 0) 14443 flags |= TH_XMIT_NEEDED; 14444 } 14445 } 14446 } 14447 } else if (tcp->tcp_zero_win_probe) { 14448 /* 14449 * If the window has opened, need to arrange 14450 * to send additional data. 14451 */ 14452 if (new_swnd != 0) { 14453 /* tcp_suna != tcp_snxt */ 14454 /* Packet contains a window update */ 14455 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14456 tcp->tcp_zero_win_probe = 0; 14457 tcp->tcp_timer_backoff = 0; 14458 tcp->tcp_ms_we_have_waited = 0; 14459 14460 /* 14461 * Transmit starting with tcp_suna since 14462 * the one byte probe is not ack'ed. 14463 * If TCP has sent more than one identical 14464 * probe, tcp_rexmit will be set. That means 14465 * tcp_ss_rexmit() will send out the one 14466 * byte along with new data. Otherwise, 14467 * fake the retransmission. 14468 */ 14469 flags |= TH_XMIT_NEEDED; 14470 if (!tcp->tcp_rexmit) { 14471 tcp->tcp_rexmit = B_TRUE; 14472 tcp->tcp_dupack_cnt = 0; 14473 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14474 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14475 } 14476 } 14477 } 14478 goto swnd_update; 14479 } 14480 14481 /* 14482 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14483 * If the ACK value acks something that we have not yet sent, it might 14484 * be an old duplicate segment. Send an ACK to re-synchronize the 14485 * other side. 14486 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14487 * state is handled above, so we can always just drop the segment and 14488 * send an ACK here. 14489 * 14490 * Should we send ACKs in response to ACK only segments? 14491 */ 14492 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14493 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14494 /* drop the received segment */ 14495 freemsg(mp); 14496 14497 /* 14498 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14499 * greater than 0, check if the number of such 14500 * bogus ACks is greater than that count. If yes, 14501 * don't send back any ACK. This prevents TCP from 14502 * getting into an ACK storm if somehow an attacker 14503 * successfully spoofs an acceptable segment to our 14504 * peer. 14505 */ 14506 if (tcp_drop_ack_unsent_cnt > 0 && 14507 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14508 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14509 return; 14510 } 14511 mp = tcp_ack_mp(tcp); 14512 if (mp != NULL) { 14513 BUMP_LOCAL(tcp->tcp_obsegs); 14514 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14515 tcp_send_data(tcp, tcp->tcp_wq, mp); 14516 } 14517 return; 14518 } 14519 14520 /* 14521 * TCP gets a new ACK, update the notsack'ed list to delete those 14522 * blocks that are covered by this ACK. 14523 */ 14524 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14525 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14526 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14527 } 14528 14529 /* 14530 * If we got an ACK after fast retransmit, check to see 14531 * if it is a partial ACK. If it is not and the congestion 14532 * window was inflated to account for the other side's 14533 * cached packets, retract it. If it is, do Hoe's algorithm. 14534 */ 14535 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14536 ASSERT(tcp->tcp_rexmit == B_FALSE); 14537 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14538 tcp->tcp_dupack_cnt = 0; 14539 /* 14540 * Restore the orig tcp_cwnd_ssthresh after 14541 * fast retransmit phase. 14542 */ 14543 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14544 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14545 } 14546 tcp->tcp_rexmit_max = seg_ack; 14547 tcp->tcp_cwnd_cnt = 0; 14548 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14549 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14550 14551 /* 14552 * Remove all notsack info to avoid confusion with 14553 * the next fast retrasnmit/recovery phase. 14554 */ 14555 if (tcp->tcp_snd_sack_ok && 14556 tcp->tcp_notsack_list != NULL) { 14557 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14558 } 14559 } else { 14560 if (tcp->tcp_snd_sack_ok && 14561 tcp->tcp_notsack_list != NULL) { 14562 flags |= TH_NEED_SACK_REXMIT; 14563 tcp->tcp_pipe -= mss; 14564 if (tcp->tcp_pipe < 0) 14565 tcp->tcp_pipe = 0; 14566 } else { 14567 /* 14568 * Hoe's algorithm: 14569 * 14570 * Retransmit the unack'ed segment and 14571 * restart fast recovery. Note that we 14572 * need to scale back tcp_cwnd to the 14573 * original value when we started fast 14574 * recovery. This is to prevent overly 14575 * aggressive behaviour in sending new 14576 * segments. 14577 */ 14578 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14579 tcps->tcps_dupack_fast_retransmit * mss; 14580 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14581 flags |= TH_REXMIT_NEEDED; 14582 } 14583 } 14584 } else { 14585 tcp->tcp_dupack_cnt = 0; 14586 if (tcp->tcp_rexmit) { 14587 /* 14588 * TCP is retranmitting. If the ACK ack's all 14589 * outstanding data, update tcp_rexmit_max and 14590 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14591 * to the correct value. 14592 * 14593 * Note that SEQ_LEQ() is used. This is to avoid 14594 * unnecessary fast retransmit caused by dup ACKs 14595 * received when TCP does slow start retransmission 14596 * after a time out. During this phase, TCP may 14597 * send out segments which are already received. 14598 * This causes dup ACKs to be sent back. 14599 */ 14600 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14601 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14602 tcp->tcp_rexmit_nxt = seg_ack; 14603 } 14604 if (seg_ack != tcp->tcp_rexmit_max) { 14605 flags |= TH_XMIT_NEEDED; 14606 } 14607 } else { 14608 tcp->tcp_rexmit = B_FALSE; 14609 tcp->tcp_xmit_zc_clean = B_FALSE; 14610 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14611 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14612 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14613 } 14614 tcp->tcp_ms_we_have_waited = 0; 14615 } 14616 } 14617 14618 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14619 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14620 tcp->tcp_suna = seg_ack; 14621 if (tcp->tcp_zero_win_probe != 0) { 14622 tcp->tcp_zero_win_probe = 0; 14623 tcp->tcp_timer_backoff = 0; 14624 } 14625 14626 /* 14627 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14628 * Note that it cannot be the SYN being ack'ed. The code flow 14629 * will not reach here. 14630 */ 14631 if (mp1 == NULL) { 14632 goto fin_acked; 14633 } 14634 14635 /* 14636 * Update the congestion window. 14637 * 14638 * If TCP is not ECN capable or TCP is ECN capable but the 14639 * congestion experience bit is not set, increase the tcp_cwnd as 14640 * usual. 14641 */ 14642 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14643 cwnd = tcp->tcp_cwnd; 14644 add = mss; 14645 14646 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14647 /* 14648 * This is to prevent an increase of less than 1 MSS of 14649 * tcp_cwnd. With partial increase, tcp_wput_data() 14650 * may send out tinygrams in order to preserve mblk 14651 * boundaries. 14652 * 14653 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14654 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14655 * increased by 1 MSS for every RTTs. 14656 */ 14657 if (tcp->tcp_cwnd_cnt <= 0) { 14658 tcp->tcp_cwnd_cnt = cwnd + add; 14659 } else { 14660 tcp->tcp_cwnd_cnt -= add; 14661 add = 0; 14662 } 14663 } 14664 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14665 } 14666 14667 /* See if the latest urgent data has been acknowledged */ 14668 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14669 SEQ_GT(seg_ack, tcp->tcp_urg)) 14670 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14671 14672 /* Can we update the RTT estimates? */ 14673 if (tcp->tcp_snd_ts_ok) { 14674 /* Ignore zero timestamp echo-reply. */ 14675 if (tcpopt.tcp_opt_ts_ecr != 0) { 14676 tcp_set_rto(tcp, (int32_t)lbolt - 14677 (int32_t)tcpopt.tcp_opt_ts_ecr); 14678 } 14679 14680 /* If needed, restart the timer. */ 14681 if (tcp->tcp_set_timer == 1) { 14682 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14683 tcp->tcp_set_timer = 0; 14684 } 14685 /* 14686 * Update tcp_csuna in case the other side stops sending 14687 * us timestamps. 14688 */ 14689 tcp->tcp_csuna = tcp->tcp_snxt; 14690 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14691 /* 14692 * An ACK sequence we haven't seen before, so get the RTT 14693 * and update the RTO. But first check if the timestamp is 14694 * valid to use. 14695 */ 14696 if ((mp1->b_next != NULL) && 14697 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14698 tcp_set_rto(tcp, (int32_t)lbolt - 14699 (int32_t)(intptr_t)mp1->b_prev); 14700 else 14701 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14702 14703 /* Remeber the last sequence to be ACKed */ 14704 tcp->tcp_csuna = seg_ack; 14705 if (tcp->tcp_set_timer == 1) { 14706 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14707 tcp->tcp_set_timer = 0; 14708 } 14709 } else { 14710 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14711 } 14712 14713 /* Eat acknowledged bytes off the xmit queue. */ 14714 for (;;) { 14715 mblk_t *mp2; 14716 uchar_t *wptr; 14717 14718 wptr = mp1->b_wptr; 14719 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14720 bytes_acked -= (int)(wptr - mp1->b_rptr); 14721 if (bytes_acked < 0) { 14722 mp1->b_rptr = wptr + bytes_acked; 14723 /* 14724 * Set a new timestamp if all the bytes timed by the 14725 * old timestamp have been ack'ed. 14726 */ 14727 if (SEQ_GT(seg_ack, 14728 (uint32_t)(uintptr_t)(mp1->b_next))) { 14729 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14730 mp1->b_next = NULL; 14731 } 14732 break; 14733 } 14734 mp1->b_next = NULL; 14735 mp1->b_prev = NULL; 14736 mp2 = mp1; 14737 mp1 = mp1->b_cont; 14738 14739 /* 14740 * This notification is required for some zero-copy 14741 * clients to maintain a copy semantic. After the data 14742 * is ack'ed, client is safe to modify or reuse the buffer. 14743 */ 14744 if (tcp->tcp_snd_zcopy_aware && 14745 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14746 tcp_zcopy_notify(tcp); 14747 freeb(mp2); 14748 if (bytes_acked == 0) { 14749 if (mp1 == NULL) { 14750 /* Everything is ack'ed, clear the tail. */ 14751 tcp->tcp_xmit_tail = NULL; 14752 /* 14753 * Cancel the timer unless we are still 14754 * waiting for an ACK for the FIN packet. 14755 */ 14756 if (tcp->tcp_timer_tid != 0 && 14757 tcp->tcp_snxt == tcp->tcp_suna) { 14758 (void) TCP_TIMER_CANCEL(tcp, 14759 tcp->tcp_timer_tid); 14760 tcp->tcp_timer_tid = 0; 14761 } 14762 goto pre_swnd_update; 14763 } 14764 if (mp2 != tcp->tcp_xmit_tail) 14765 break; 14766 tcp->tcp_xmit_tail = mp1; 14767 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14768 (uintptr_t)INT_MAX); 14769 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14770 mp1->b_rptr); 14771 break; 14772 } 14773 if (mp1 == NULL) { 14774 /* 14775 * More was acked but there is nothing more 14776 * outstanding. This means that the FIN was 14777 * just acked or that we're talking to a clown. 14778 */ 14779 fin_acked: 14780 ASSERT(tcp->tcp_fin_sent); 14781 tcp->tcp_xmit_tail = NULL; 14782 if (tcp->tcp_fin_sent) { 14783 /* FIN was acked - making progress */ 14784 if (tcp->tcp_ipversion == IPV6_VERSION && 14785 !tcp->tcp_fin_acked) 14786 tcp->tcp_ip_forward_progress = B_TRUE; 14787 tcp->tcp_fin_acked = B_TRUE; 14788 if (tcp->tcp_linger_tid != 0 && 14789 TCP_TIMER_CANCEL(tcp, 14790 tcp->tcp_linger_tid) >= 0) { 14791 tcp_stop_lingering(tcp); 14792 freemsg(mp); 14793 mp = NULL; 14794 } 14795 } else { 14796 /* 14797 * We should never get here because 14798 * we have already checked that the 14799 * number of bytes ack'ed should be 14800 * smaller than or equal to what we 14801 * have sent so far (it is the 14802 * acceptability check of the ACK). 14803 * We can only get here if the send 14804 * queue is corrupted. 14805 * 14806 * Terminate the connection and 14807 * panic the system. It is better 14808 * for us to panic instead of 14809 * continuing to avoid other disaster. 14810 */ 14811 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14812 tcp->tcp_rnxt, TH_RST|TH_ACK); 14813 panic("Memory corruption " 14814 "detected for connection %s.", 14815 tcp_display(tcp, NULL, 14816 DISP_ADDR_AND_PORT)); 14817 /*NOTREACHED*/ 14818 } 14819 goto pre_swnd_update; 14820 } 14821 ASSERT(mp2 != tcp->tcp_xmit_tail); 14822 } 14823 if (tcp->tcp_unsent) { 14824 flags |= TH_XMIT_NEEDED; 14825 } 14826 pre_swnd_update: 14827 tcp->tcp_xmit_head = mp1; 14828 swnd_update: 14829 /* 14830 * The following check is different from most other implementations. 14831 * For bi-directional transfer, when segments are dropped, the 14832 * "normal" check will not accept a window update in those 14833 * retransmitted segemnts. Failing to do that, TCP may send out 14834 * segments which are outside receiver's window. As TCP accepts 14835 * the ack in those retransmitted segments, if the window update in 14836 * the same segment is not accepted, TCP will incorrectly calculates 14837 * that it can send more segments. This can create a deadlock 14838 * with the receiver if its window becomes zero. 14839 */ 14840 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14841 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14842 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14843 /* 14844 * The criteria for update is: 14845 * 14846 * 1. the segment acknowledges some data. Or 14847 * 2. the segment is new, i.e. it has a higher seq num. Or 14848 * 3. the segment is not old and the advertised window is 14849 * larger than the previous advertised window. 14850 */ 14851 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14852 flags |= TH_XMIT_NEEDED; 14853 tcp->tcp_swnd = new_swnd; 14854 if (new_swnd > tcp->tcp_max_swnd) 14855 tcp->tcp_max_swnd = new_swnd; 14856 tcp->tcp_swl1 = seg_seq; 14857 tcp->tcp_swl2 = seg_ack; 14858 } 14859 est: 14860 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14861 14862 switch (tcp->tcp_state) { 14863 case TCPS_FIN_WAIT_1: 14864 if (tcp->tcp_fin_acked) { 14865 tcp->tcp_state = TCPS_FIN_WAIT_2; 14866 /* 14867 * We implement the non-standard BSD/SunOS 14868 * FIN_WAIT_2 flushing algorithm. 14869 * If there is no user attached to this 14870 * TCP endpoint, then this TCP struct 14871 * could hang around forever in FIN_WAIT_2 14872 * state if the peer forgets to send us 14873 * a FIN. To prevent this, we wait only 14874 * 2*MSL (a convenient time value) for 14875 * the FIN to arrive. If it doesn't show up, 14876 * we flush the TCP endpoint. This algorithm, 14877 * though a violation of RFC-793, has worked 14878 * for over 10 years in BSD systems. 14879 * Note: SunOS 4.x waits 675 seconds before 14880 * flushing the FIN_WAIT_2 connection. 14881 */ 14882 TCP_TIMER_RESTART(tcp, 14883 tcps->tcps_fin_wait_2_flush_interval); 14884 } 14885 break; 14886 case TCPS_FIN_WAIT_2: 14887 break; /* Shutdown hook? */ 14888 case TCPS_LAST_ACK: 14889 freemsg(mp); 14890 if (tcp->tcp_fin_acked) { 14891 (void) tcp_clean_death(tcp, 0, 19); 14892 return; 14893 } 14894 goto xmit_check; 14895 case TCPS_CLOSING: 14896 if (tcp->tcp_fin_acked) { 14897 tcp->tcp_state = TCPS_TIME_WAIT; 14898 /* 14899 * Unconditionally clear the exclusive binding 14900 * bit so this TIME-WAIT connection won't 14901 * interfere with new ones. 14902 */ 14903 tcp->tcp_exclbind = 0; 14904 if (!TCP_IS_DETACHED(tcp)) { 14905 TCP_TIMER_RESTART(tcp, 14906 tcps->tcps_time_wait_interval); 14907 } else { 14908 tcp_time_wait_append(tcp); 14909 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14910 } 14911 } 14912 /*FALLTHRU*/ 14913 case TCPS_CLOSE_WAIT: 14914 freemsg(mp); 14915 goto xmit_check; 14916 default: 14917 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14918 break; 14919 } 14920 } 14921 if (flags & TH_FIN) { 14922 /* Make sure we ack the fin */ 14923 flags |= TH_ACK_NEEDED; 14924 if (!tcp->tcp_fin_rcvd) { 14925 tcp->tcp_fin_rcvd = B_TRUE; 14926 tcp->tcp_rnxt++; 14927 tcph = tcp->tcp_tcph; 14928 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14929 14930 /* 14931 * Generate the ordrel_ind at the end unless we 14932 * are an eager guy. 14933 * In the eager case tcp_rsrv will do this when run 14934 * after tcp_accept is done. 14935 */ 14936 if (tcp->tcp_listener == NULL && 14937 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14938 flags |= TH_ORDREL_NEEDED; 14939 switch (tcp->tcp_state) { 14940 case TCPS_SYN_RCVD: 14941 case TCPS_ESTABLISHED: 14942 tcp->tcp_state = TCPS_CLOSE_WAIT; 14943 /* Keepalive? */ 14944 break; 14945 case TCPS_FIN_WAIT_1: 14946 if (!tcp->tcp_fin_acked) { 14947 tcp->tcp_state = TCPS_CLOSING; 14948 break; 14949 } 14950 /* FALLTHRU */ 14951 case TCPS_FIN_WAIT_2: 14952 tcp->tcp_state = TCPS_TIME_WAIT; 14953 /* 14954 * Unconditionally clear the exclusive binding 14955 * bit so this TIME-WAIT connection won't 14956 * interfere with new ones. 14957 */ 14958 tcp->tcp_exclbind = 0; 14959 if (!TCP_IS_DETACHED(tcp)) { 14960 TCP_TIMER_RESTART(tcp, 14961 tcps->tcps_time_wait_interval); 14962 } else { 14963 tcp_time_wait_append(tcp); 14964 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14965 } 14966 if (seg_len) { 14967 /* 14968 * implies data piggybacked on FIN. 14969 * break to handle data. 14970 */ 14971 break; 14972 } 14973 freemsg(mp); 14974 goto ack_check; 14975 } 14976 } 14977 } 14978 if (mp == NULL) 14979 goto xmit_check; 14980 if (seg_len == 0) { 14981 freemsg(mp); 14982 goto xmit_check; 14983 } 14984 if (mp->b_rptr == mp->b_wptr) { 14985 /* 14986 * The header has been consumed, so we remove the 14987 * zero-length mblk here. 14988 */ 14989 mp1 = mp; 14990 mp = mp->b_cont; 14991 freeb(mp1); 14992 } 14993 update_ack: 14994 tcph = tcp->tcp_tcph; 14995 tcp->tcp_rack_cnt++; 14996 { 14997 uint32_t cur_max; 14998 14999 cur_max = tcp->tcp_rack_cur_max; 15000 if (tcp->tcp_rack_cnt >= cur_max) { 15001 /* 15002 * We have more unacked data than we should - send 15003 * an ACK now. 15004 */ 15005 flags |= TH_ACK_NEEDED; 15006 cur_max++; 15007 if (cur_max > tcp->tcp_rack_abs_max) 15008 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15009 else 15010 tcp->tcp_rack_cur_max = cur_max; 15011 } else if (TCP_IS_DETACHED(tcp)) { 15012 /* We don't have an ACK timer for detached TCP. */ 15013 flags |= TH_ACK_NEEDED; 15014 } else if (seg_len < mss) { 15015 /* 15016 * If we get a segment that is less than an mss, and we 15017 * already have unacknowledged data, and the amount 15018 * unacknowledged is not a multiple of mss, then we 15019 * better generate an ACK now. Otherwise, this may be 15020 * the tail piece of a transaction, and we would rather 15021 * wait for the response. 15022 */ 15023 uint32_t udif; 15024 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 15025 (uintptr_t)INT_MAX); 15026 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 15027 if (udif && (udif % mss)) 15028 flags |= TH_ACK_NEEDED; 15029 else 15030 flags |= TH_ACK_TIMER_NEEDED; 15031 } else { 15032 /* Start delayed ack timer */ 15033 flags |= TH_ACK_TIMER_NEEDED; 15034 } 15035 } 15036 tcp->tcp_rnxt += seg_len; 15037 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15038 15039 if (mp == NULL) 15040 goto xmit_check; 15041 15042 /* Update SACK list */ 15043 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15044 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15045 &(tcp->tcp_num_sack_blk)); 15046 } 15047 15048 if (tcp->tcp_urp_mp) { 15049 tcp->tcp_urp_mp->b_cont = mp; 15050 mp = tcp->tcp_urp_mp; 15051 tcp->tcp_urp_mp = NULL; 15052 /* Ready for a new signal. */ 15053 tcp->tcp_urp_last_valid = B_FALSE; 15054 #ifdef DEBUG 15055 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15056 "tcp_rput: sending exdata_ind %s", 15057 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15058 #endif /* DEBUG */ 15059 } 15060 15061 /* 15062 * Check for ancillary data changes compared to last segment. 15063 */ 15064 if (tcp->tcp_ipv6_recvancillary != 0) { 15065 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15066 ASSERT(mp != NULL); 15067 } 15068 15069 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15070 /* 15071 * Side queue inbound data until the accept happens. 15072 * tcp_accept/tcp_rput drains this when the accept happens. 15073 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15074 * T_EXDATA_IND) it is queued on b_next. 15075 * XXX Make urgent data use this. Requires: 15076 * Removing tcp_listener check for TH_URG 15077 * Making M_PCPROTO and MARK messages skip the eager case 15078 */ 15079 15080 if (tcp->tcp_kssl_pending) { 15081 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15082 mblk_t *, mp); 15083 tcp_kssl_input(tcp, mp); 15084 } else { 15085 tcp_rcv_enqueue(tcp, mp, seg_len); 15086 } 15087 } else { 15088 sodirect_t *sodp = tcp->tcp_sodirect; 15089 15090 /* 15091 * If an sodirect connection and an enabled sodirect_t then 15092 * sodp will be set to point to the tcp_t/sonode_t shared 15093 * sodirect_t and the sodirect_t's lock will be held. 15094 */ 15095 if (sodp != NULL) { 15096 mutex_enter(sodp->sod_lockp); 15097 if (!(sodp->sod_state & SOD_ENABLED) || 15098 (tcp->tcp_kssl_ctx != NULL && 15099 DB_TYPE(mp) == M_DATA)) { 15100 sodp = NULL; 15101 } 15102 mutex_exit(sodp->sod_lockp); 15103 } 15104 if (mp->b_datap->db_type != M_DATA || 15105 (flags & TH_MARKNEXT_NEEDED)) { 15106 if (IPCL_IS_NONSTR(connp)) { 15107 int error; 15108 15109 if ((*connp->conn_upcalls->su_recv) 15110 (connp->conn_upper_handle, mp, 15111 seg_len, 0, &error, NULL) <= 0) { 15112 if (error == ENOSPC) { 15113 tcp->tcp_rwnd -= seg_len; 15114 } else if (error == EOPNOTSUPP) { 15115 tcp_rcv_enqueue(tcp, mp, 15116 seg_len); 15117 } 15118 } 15119 } else if (sodp != NULL) { 15120 mutex_enter(sodp->sod_lockp); 15121 SOD_UIOAFINI(sodp); 15122 if (!SOD_QEMPTY(sodp) && 15123 (sodp->sod_state & SOD_WAKE_NOT)) { 15124 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15125 /* sod_wakeup() did the mutex_exit() */ 15126 } else { 15127 mutex_exit(sodp->sod_lockp); 15128 } 15129 } else if (tcp->tcp_rcv_list != NULL) { 15130 flags |= tcp_rcv_drain(tcp); 15131 } 15132 ASSERT(tcp->tcp_rcv_list == NULL || 15133 tcp->tcp_fused_sigurg); 15134 15135 if (flags & TH_MARKNEXT_NEEDED) { 15136 #ifdef DEBUG 15137 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15138 "tcp_rput: sending MSGMARKNEXT %s", 15139 tcp_display(tcp, NULL, 15140 DISP_PORT_ONLY)); 15141 #endif /* DEBUG */ 15142 mp->b_flag |= MSGMARKNEXT; 15143 flags &= ~TH_MARKNEXT_NEEDED; 15144 } 15145 15146 /* Does this need SSL processing first? */ 15147 if ((tcp->tcp_kssl_ctx != NULL) && 15148 (DB_TYPE(mp) == M_DATA)) { 15149 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15150 mblk_t *, mp); 15151 tcp_kssl_input(tcp, mp); 15152 } else if (!IPCL_IS_NONSTR(connp)) { 15153 /* Already handled non-STREAMS case. */ 15154 putnext(tcp->tcp_rq, mp); 15155 if (!canputnext(tcp->tcp_rq)) 15156 tcp->tcp_rwnd -= seg_len; 15157 } 15158 } else if ((tcp->tcp_kssl_ctx != NULL) && 15159 (DB_TYPE(mp) == M_DATA)) { 15160 /* Does this need SSL processing first? */ 15161 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15162 tcp_kssl_input(tcp, mp); 15163 } else if (IPCL_IS_NONSTR(connp)) { 15164 /* Non-STREAMS socket */ 15165 boolean_t push = flags & (TH_PUSH|TH_FIN); 15166 int error; 15167 15168 if ((*connp->conn_upcalls->su_recv)( 15169 connp->conn_upper_handle, 15170 mp, seg_len, 0, &error, &push) <= 0) { 15171 if (error == ENOSPC) { 15172 tcp->tcp_rwnd -= seg_len; 15173 } else if (error == EOPNOTSUPP) { 15174 tcp_rcv_enqueue(tcp, mp, seg_len); 15175 } 15176 } else if (push) { 15177 /* 15178 * PUSH bit set and sockfs is not 15179 * flow controlled 15180 */ 15181 flags |= tcp_rwnd_reopen(tcp); 15182 } 15183 } else if (sodp != NULL) { 15184 /* 15185 * Sodirect so all mblk_t's are queued on the 15186 * socket directly, check for wakeup of blocked 15187 * reader (if any), and last if flow-controled. 15188 */ 15189 mutex_enter(sodp->sod_lockp); 15190 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15191 if ((sodp->sod_state & SOD_WAKE_NEED) || 15192 (flags & (TH_PUSH|TH_FIN))) { 15193 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15194 /* sod_wakeup() did the mutex_exit() */ 15195 } else { 15196 if (SOD_QFULL(sodp)) { 15197 /* Q is full, need backenable */ 15198 SOD_QSETBE(sodp); 15199 } 15200 mutex_exit(sodp->sod_lockp); 15201 } 15202 } else if ((flags & (TH_PUSH|TH_FIN)) || 15203 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15204 if (tcp->tcp_rcv_list != NULL) { 15205 /* 15206 * Enqueue the new segment first and then 15207 * call tcp_rcv_drain() to send all data 15208 * up. The other way to do this is to 15209 * send all queued data up and then call 15210 * putnext() to send the new segment up. 15211 * This way can remove the else part later 15212 * on. 15213 * 15214 * We don't do this to avoid one more call to 15215 * canputnext() as tcp_rcv_drain() needs to 15216 * call canputnext(). 15217 */ 15218 tcp_rcv_enqueue(tcp, mp, seg_len); 15219 flags |= tcp_rcv_drain(tcp); 15220 } else { 15221 putnext(tcp->tcp_rq, mp); 15222 if (!canputnext(tcp->tcp_rq)) 15223 tcp->tcp_rwnd -= seg_len; 15224 } 15225 } else { 15226 /* 15227 * Enqueue all packets when processing an mblk 15228 * from the co queue and also enqueue normal packets. 15229 * For packets which belong to SSL stream do SSL 15230 * processing first. 15231 */ 15232 tcp_rcv_enqueue(tcp, mp, seg_len); 15233 } 15234 /* 15235 * Make sure the timer is running if we have data waiting 15236 * for a push bit. This provides resiliency against 15237 * implementations that do not correctly generate push bits. 15238 * 15239 * Note, for sodirect if Q isn't empty and there's not a 15240 * pending wakeup then we need a timer. Also note that sodp 15241 * is assumed to be still valid after exit()ing the sod_lockp 15242 * above and while the SOD state can change it can only change 15243 * such that the Q is empty now even though data was added 15244 * above. 15245 */ 15246 if (!IPCL_IS_NONSTR(connp) && 15247 ((sodp != NULL && !SOD_QEMPTY(sodp) && 15248 (sodp->sod_state & SOD_WAKE_NOT)) || 15249 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15250 tcp->tcp_push_tid == 0) { 15251 /* 15252 * The connection may be closed at this point, so don't 15253 * do anything for a detached tcp. 15254 */ 15255 if (!TCP_IS_DETACHED(tcp)) 15256 tcp->tcp_push_tid = TCP_TIMER(tcp, 15257 tcp_push_timer, 15258 MSEC_TO_TICK( 15259 tcps->tcps_push_timer_interval)); 15260 } 15261 } 15262 15263 xmit_check: 15264 /* Is there anything left to do? */ 15265 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15266 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15267 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15268 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15269 goto done; 15270 15271 /* Any transmit work to do and a non-zero window? */ 15272 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15273 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15274 if (flags & TH_REXMIT_NEEDED) { 15275 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15276 15277 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15278 if (snd_size > mss) 15279 snd_size = mss; 15280 if (snd_size > tcp->tcp_swnd) 15281 snd_size = tcp->tcp_swnd; 15282 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15283 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15284 B_TRUE); 15285 15286 if (mp1 != NULL) { 15287 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15288 tcp->tcp_csuna = tcp->tcp_snxt; 15289 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15290 UPDATE_MIB(&tcps->tcps_mib, 15291 tcpRetransBytes, snd_size); 15292 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15293 } 15294 } 15295 if (flags & TH_NEED_SACK_REXMIT) { 15296 tcp_sack_rxmit(tcp, &flags); 15297 } 15298 /* 15299 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15300 * out new segment. Note that tcp_rexmit should not be 15301 * set, otherwise TH_LIMIT_XMIT should not be set. 15302 */ 15303 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15304 if (!tcp->tcp_rexmit) { 15305 tcp_wput_data(tcp, NULL, B_FALSE); 15306 } else { 15307 tcp_ss_rexmit(tcp); 15308 } 15309 } 15310 /* 15311 * Adjust tcp_cwnd back to normal value after sending 15312 * new data segments. 15313 */ 15314 if (flags & TH_LIMIT_XMIT) { 15315 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15316 /* 15317 * This will restart the timer. Restarting the 15318 * timer is used to avoid a timeout before the 15319 * limited transmitted segment's ACK gets back. 15320 */ 15321 if (tcp->tcp_xmit_head != NULL) 15322 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15323 } 15324 15325 /* Anything more to do? */ 15326 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15327 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15328 goto done; 15329 } 15330 ack_check: 15331 if (flags & TH_SEND_URP_MARK) { 15332 ASSERT(tcp->tcp_urp_mark_mp); 15333 ASSERT(!IPCL_IS_NONSTR(connp)); 15334 /* 15335 * Send up any queued data and then send the mark message 15336 */ 15337 sodirect_t *sodp; 15338 15339 SOD_PTR_ENTER(tcp, sodp); 15340 15341 mp1 = tcp->tcp_urp_mark_mp; 15342 tcp->tcp_urp_mark_mp = NULL; 15343 if (sodp != NULL) { 15344 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15345 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15346 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15347 } 15348 ASSERT(tcp->tcp_rcv_list == NULL); 15349 15350 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15351 /* sod_wakeup() does the mutex_exit() */ 15352 } else if (tcp->tcp_rcv_list != NULL) { 15353 flags |= tcp_rcv_drain(tcp); 15354 15355 ASSERT(tcp->tcp_rcv_list == NULL || 15356 tcp->tcp_fused_sigurg); 15357 15358 } 15359 putnext(tcp->tcp_rq, mp1); 15360 #ifdef DEBUG 15361 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15362 "tcp_rput: sending zero-length %s %s", 15363 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15364 "MSGNOTMARKNEXT"), 15365 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15366 #endif /* DEBUG */ 15367 flags &= ~TH_SEND_URP_MARK; 15368 } 15369 if (flags & TH_ACK_NEEDED) { 15370 /* 15371 * Time to send an ack for some reason. 15372 */ 15373 mp1 = tcp_ack_mp(tcp); 15374 15375 if (mp1 != NULL) { 15376 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15377 BUMP_LOCAL(tcp->tcp_obsegs); 15378 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15379 } 15380 if (tcp->tcp_ack_tid != 0) { 15381 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15382 tcp->tcp_ack_tid = 0; 15383 } 15384 } 15385 if (flags & TH_ACK_TIMER_NEEDED) { 15386 /* 15387 * Arrange for deferred ACK or push wait timeout. 15388 * Start timer if it is not already running. 15389 */ 15390 if (tcp->tcp_ack_tid == 0) { 15391 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15392 MSEC_TO_TICK(tcp->tcp_localnet ? 15393 (clock_t)tcps->tcps_local_dack_interval : 15394 (clock_t)tcps->tcps_deferred_ack_interval)); 15395 } 15396 } 15397 if (flags & TH_ORDREL_NEEDED) { 15398 /* 15399 * Send up the ordrel_ind unless we are an eager guy. 15400 * In the eager case tcp_rsrv will do this when run 15401 * after tcp_accept is done. 15402 */ 15403 sodirect_t *sodp; 15404 15405 ASSERT(tcp->tcp_listener == NULL); 15406 15407 if (IPCL_IS_NONSTR(connp)) { 15408 ASSERT(tcp->tcp_ordrel_mp == NULL); 15409 tcp->tcp_ordrel_done = B_TRUE; 15410 (*connp->conn_upcalls->su_opctl) 15411 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15412 goto done; 15413 } 15414 15415 SOD_PTR_ENTER(tcp, sodp); 15416 if (sodp != NULL) { 15417 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15418 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15419 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15420 } 15421 /* No more sodirect */ 15422 tcp->tcp_sodirect = NULL; 15423 if (!SOD_QEMPTY(sodp)) { 15424 /* Mblk(s) to process, notify */ 15425 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15426 /* sod_wakeup() does the mutex_exit() */ 15427 } else { 15428 /* Nothing to process */ 15429 mutex_exit(sodp->sod_lockp); 15430 } 15431 } else if (tcp->tcp_rcv_list != NULL) { 15432 /* 15433 * Push any mblk(s) enqueued from co processing. 15434 */ 15435 flags |= tcp_rcv_drain(tcp); 15436 15437 ASSERT(tcp->tcp_rcv_list == NULL || 15438 tcp->tcp_fused_sigurg); 15439 } 15440 15441 mp1 = tcp->tcp_ordrel_mp; 15442 tcp->tcp_ordrel_mp = NULL; 15443 tcp->tcp_ordrel_done = B_TRUE; 15444 putnext(tcp->tcp_rq, mp1); 15445 } 15446 done: 15447 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15448 } 15449 15450 /* 15451 * This function does PAWS protection check. Returns B_TRUE if the 15452 * segment passes the PAWS test, else returns B_FALSE. 15453 */ 15454 boolean_t 15455 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15456 { 15457 uint8_t flags; 15458 int options; 15459 uint8_t *up; 15460 15461 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15462 /* 15463 * If timestamp option is aligned nicely, get values inline, 15464 * otherwise call general routine to parse. Only do that 15465 * if timestamp is the only option. 15466 */ 15467 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15468 TCPOPT_REAL_TS_LEN && 15469 OK_32PTR((up = ((uint8_t *)tcph) + 15470 TCP_MIN_HEADER_LENGTH)) && 15471 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15472 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15473 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15474 15475 options = TCP_OPT_TSTAMP_PRESENT; 15476 } else { 15477 if (tcp->tcp_snd_sack_ok) { 15478 tcpoptp->tcp = tcp; 15479 } else { 15480 tcpoptp->tcp = NULL; 15481 } 15482 options = tcp_parse_options(tcph, tcpoptp); 15483 } 15484 15485 if (options & TCP_OPT_TSTAMP_PRESENT) { 15486 /* 15487 * Do PAWS per RFC 1323 section 4.2. Accept RST 15488 * regardless of the timestamp, page 18 RFC 1323.bis. 15489 */ 15490 if ((flags & TH_RST) == 0 && 15491 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15492 tcp->tcp_ts_recent)) { 15493 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15494 PAWS_TIMEOUT)) { 15495 /* This segment is not acceptable. */ 15496 return (B_FALSE); 15497 } else { 15498 /* 15499 * Connection has been idle for 15500 * too long. Reset the timestamp 15501 * and assume the segment is valid. 15502 */ 15503 tcp->tcp_ts_recent = 15504 tcpoptp->tcp_opt_ts_val; 15505 } 15506 } 15507 } else { 15508 /* 15509 * If we don't get a timestamp on every packet, we 15510 * figure we can't really trust 'em, so we stop sending 15511 * and parsing them. 15512 */ 15513 tcp->tcp_snd_ts_ok = B_FALSE; 15514 15515 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15516 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15517 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15518 /* 15519 * Adjust the tcp_mss accordingly. We also need to 15520 * adjust tcp_cwnd here in accordance with the new mss. 15521 * But we avoid doing a slow start here so as to not 15522 * to lose on the transfer rate built up so far. 15523 */ 15524 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15525 if (tcp->tcp_snd_sack_ok) { 15526 ASSERT(tcp->tcp_sack_info != NULL); 15527 tcp->tcp_max_sack_blk = 4; 15528 } 15529 } 15530 return (B_TRUE); 15531 } 15532 15533 /* 15534 * Attach ancillary data to a received TCP segments for the 15535 * ancillary pieces requested by the application that are 15536 * different than they were in the previous data segment. 15537 * 15538 * Save the "current" values once memory allocation is ok so that 15539 * when memory allocation fails we can just wait for the next data segment. 15540 */ 15541 static mblk_t * 15542 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15543 { 15544 struct T_optdata_ind *todi; 15545 int optlen; 15546 uchar_t *optptr; 15547 struct T_opthdr *toh; 15548 uint_t addflag; /* Which pieces to add */ 15549 mblk_t *mp1; 15550 15551 optlen = 0; 15552 addflag = 0; 15553 /* If app asked for pktinfo and the index has changed ... */ 15554 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15555 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15556 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15557 optlen += sizeof (struct T_opthdr) + 15558 sizeof (struct in6_pktinfo); 15559 addflag |= TCP_IPV6_RECVPKTINFO; 15560 } 15561 /* If app asked for hoplimit and it has changed ... */ 15562 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15563 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15564 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15565 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15566 addflag |= TCP_IPV6_RECVHOPLIMIT; 15567 } 15568 /* If app asked for tclass and it has changed ... */ 15569 if ((ipp->ipp_fields & IPPF_TCLASS) && 15570 ipp->ipp_tclass != tcp->tcp_recvtclass && 15571 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15572 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15573 addflag |= TCP_IPV6_RECVTCLASS; 15574 } 15575 /* 15576 * If app asked for hopbyhop headers and it has changed ... 15577 * For security labels, note that (1) security labels can't change on 15578 * a connected socket at all, (2) we're connected to at most one peer, 15579 * (3) if anything changes, then it must be some other extra option. 15580 */ 15581 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15582 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15583 (ipp->ipp_fields & IPPF_HOPOPTS), 15584 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15585 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15586 tcp->tcp_label_len; 15587 addflag |= TCP_IPV6_RECVHOPOPTS; 15588 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15589 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15590 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15591 return (mp); 15592 } 15593 /* If app asked for dst headers before routing headers ... */ 15594 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15595 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15596 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15597 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15598 optlen += sizeof (struct T_opthdr) + 15599 ipp->ipp_rtdstoptslen; 15600 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15601 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15602 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15603 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15604 return (mp); 15605 } 15606 /* If app asked for routing headers and it has changed ... */ 15607 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15608 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15609 (ipp->ipp_fields & IPPF_RTHDR), 15610 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15611 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15612 addflag |= TCP_IPV6_RECVRTHDR; 15613 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15614 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15615 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15616 return (mp); 15617 } 15618 /* If app asked for dest headers and it has changed ... */ 15619 if ((tcp->tcp_ipv6_recvancillary & 15620 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15621 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15622 (ipp->ipp_fields & IPPF_DSTOPTS), 15623 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15624 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15625 addflag |= TCP_IPV6_RECVDSTOPTS; 15626 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15627 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15628 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15629 return (mp); 15630 } 15631 15632 if (optlen == 0) { 15633 /* Nothing to add */ 15634 return (mp); 15635 } 15636 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15637 if (mp1 == NULL) { 15638 /* 15639 * Defer sending ancillary data until the next TCP segment 15640 * arrives. 15641 */ 15642 return (mp); 15643 } 15644 mp1->b_cont = mp; 15645 mp = mp1; 15646 mp->b_wptr += sizeof (*todi) + optlen; 15647 mp->b_datap->db_type = M_PROTO; 15648 todi = (struct T_optdata_ind *)mp->b_rptr; 15649 todi->PRIM_type = T_OPTDATA_IND; 15650 todi->DATA_flag = 1; /* MORE data */ 15651 todi->OPT_length = optlen; 15652 todi->OPT_offset = sizeof (*todi); 15653 optptr = (uchar_t *)&todi[1]; 15654 /* 15655 * If app asked for pktinfo and the index has changed ... 15656 * Note that the local address never changes for the connection. 15657 */ 15658 if (addflag & TCP_IPV6_RECVPKTINFO) { 15659 struct in6_pktinfo *pkti; 15660 15661 toh = (struct T_opthdr *)optptr; 15662 toh->level = IPPROTO_IPV6; 15663 toh->name = IPV6_PKTINFO; 15664 toh->len = sizeof (*toh) + sizeof (*pkti); 15665 toh->status = 0; 15666 optptr += sizeof (*toh); 15667 pkti = (struct in6_pktinfo *)optptr; 15668 if (tcp->tcp_ipversion == IPV6_VERSION) 15669 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15670 else 15671 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15672 &pkti->ipi6_addr); 15673 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15674 optptr += sizeof (*pkti); 15675 ASSERT(OK_32PTR(optptr)); 15676 /* Save as "last" value */ 15677 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15678 } 15679 /* If app asked for hoplimit and it has changed ... */ 15680 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15681 toh = (struct T_opthdr *)optptr; 15682 toh->level = IPPROTO_IPV6; 15683 toh->name = IPV6_HOPLIMIT; 15684 toh->len = sizeof (*toh) + sizeof (uint_t); 15685 toh->status = 0; 15686 optptr += sizeof (*toh); 15687 *(uint_t *)optptr = ipp->ipp_hoplimit; 15688 optptr += sizeof (uint_t); 15689 ASSERT(OK_32PTR(optptr)); 15690 /* Save as "last" value */ 15691 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15692 } 15693 /* If app asked for tclass and it has changed ... */ 15694 if (addflag & TCP_IPV6_RECVTCLASS) { 15695 toh = (struct T_opthdr *)optptr; 15696 toh->level = IPPROTO_IPV6; 15697 toh->name = IPV6_TCLASS; 15698 toh->len = sizeof (*toh) + sizeof (uint_t); 15699 toh->status = 0; 15700 optptr += sizeof (*toh); 15701 *(uint_t *)optptr = ipp->ipp_tclass; 15702 optptr += sizeof (uint_t); 15703 ASSERT(OK_32PTR(optptr)); 15704 /* Save as "last" value */ 15705 tcp->tcp_recvtclass = ipp->ipp_tclass; 15706 } 15707 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15708 toh = (struct T_opthdr *)optptr; 15709 toh->level = IPPROTO_IPV6; 15710 toh->name = IPV6_HOPOPTS; 15711 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15712 tcp->tcp_label_len; 15713 toh->status = 0; 15714 optptr += sizeof (*toh); 15715 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15716 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15717 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15718 ASSERT(OK_32PTR(optptr)); 15719 /* Save as last value */ 15720 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15721 (ipp->ipp_fields & IPPF_HOPOPTS), 15722 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15723 } 15724 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15725 toh = (struct T_opthdr *)optptr; 15726 toh->level = IPPROTO_IPV6; 15727 toh->name = IPV6_RTHDRDSTOPTS; 15728 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15729 toh->status = 0; 15730 optptr += sizeof (*toh); 15731 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15732 optptr += ipp->ipp_rtdstoptslen; 15733 ASSERT(OK_32PTR(optptr)); 15734 /* Save as last value */ 15735 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15736 &tcp->tcp_rtdstoptslen, 15737 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15738 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15739 } 15740 if (addflag & TCP_IPV6_RECVRTHDR) { 15741 toh = (struct T_opthdr *)optptr; 15742 toh->level = IPPROTO_IPV6; 15743 toh->name = IPV6_RTHDR; 15744 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15745 toh->status = 0; 15746 optptr += sizeof (*toh); 15747 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15748 optptr += ipp->ipp_rthdrlen; 15749 ASSERT(OK_32PTR(optptr)); 15750 /* Save as last value */ 15751 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15752 (ipp->ipp_fields & IPPF_RTHDR), 15753 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15754 } 15755 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15756 toh = (struct T_opthdr *)optptr; 15757 toh->level = IPPROTO_IPV6; 15758 toh->name = IPV6_DSTOPTS; 15759 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15760 toh->status = 0; 15761 optptr += sizeof (*toh); 15762 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15763 optptr += ipp->ipp_dstoptslen; 15764 ASSERT(OK_32PTR(optptr)); 15765 /* Save as last value */ 15766 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15767 (ipp->ipp_fields & IPPF_DSTOPTS), 15768 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15769 } 15770 ASSERT(optptr == mp->b_wptr); 15771 return (mp); 15772 } 15773 15774 /* 15775 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15776 * messages. 15777 */ 15778 void 15779 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15780 { 15781 uchar_t *rptr = mp->b_rptr; 15782 queue_t *q = tcp->tcp_rq; 15783 struct T_error_ack *tea; 15784 15785 switch (mp->b_datap->db_type) { 15786 case M_PROTO: 15787 case M_PCPROTO: 15788 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15789 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15790 break; 15791 tea = (struct T_error_ack *)rptr; 15792 ASSERT(tea->PRIM_type != T_BIND_ACK); 15793 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15794 tea->ERROR_prim != T_BIND_REQ); 15795 switch (tea->PRIM_type) { 15796 case T_ERROR_ACK: 15797 if (tcp->tcp_debug) { 15798 (void) strlog(TCP_MOD_ID, 0, 1, 15799 SL_TRACE|SL_ERROR, 15800 "tcp_rput_other: case T_ERROR_ACK, " 15801 "ERROR_prim == %d", 15802 tea->ERROR_prim); 15803 } 15804 switch (tea->ERROR_prim) { 15805 case T_SVR4_OPTMGMT_REQ: 15806 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15807 /* T_OPTMGMT_REQ generated by TCP */ 15808 printf("T_SVR4_OPTMGMT_REQ failed " 15809 "%d/%d - dropped (cnt %d)\n", 15810 tea->TLI_error, tea->UNIX_error, 15811 tcp->tcp_drop_opt_ack_cnt); 15812 freemsg(mp); 15813 tcp->tcp_drop_opt_ack_cnt--; 15814 return; 15815 } 15816 break; 15817 } 15818 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15819 tcp->tcp_drop_opt_ack_cnt > 0) { 15820 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15821 "- dropped (cnt %d)\n", 15822 tea->TLI_error, tea->UNIX_error, 15823 tcp->tcp_drop_opt_ack_cnt); 15824 freemsg(mp); 15825 tcp->tcp_drop_opt_ack_cnt--; 15826 return; 15827 } 15828 break; 15829 case T_OPTMGMT_ACK: 15830 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15831 /* T_OPTMGMT_REQ generated by TCP */ 15832 freemsg(mp); 15833 tcp->tcp_drop_opt_ack_cnt--; 15834 return; 15835 } 15836 break; 15837 default: 15838 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15839 break; 15840 } 15841 break; 15842 case M_FLUSH: 15843 if (*rptr & FLUSHR) 15844 flushq(q, FLUSHDATA); 15845 break; 15846 default: 15847 /* M_CTL will be directly sent to tcp_icmp_error() */ 15848 ASSERT(DB_TYPE(mp) != M_CTL); 15849 break; 15850 } 15851 /* 15852 * Make sure we set this bit before sending the ACK for 15853 * bind. Otherwise accept could possibly run and free 15854 * this tcp struct. 15855 */ 15856 ASSERT(q != NULL); 15857 putnext(q, mp); 15858 } 15859 15860 /* ARGSUSED */ 15861 static void 15862 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15863 { 15864 conn_t *connp = (conn_t *)arg; 15865 tcp_t *tcp = connp->conn_tcp; 15866 queue_t *q = tcp->tcp_rq; 15867 uint_t thwin; 15868 tcp_stack_t *tcps = tcp->tcp_tcps; 15869 sodirect_t *sodp; 15870 boolean_t fc; 15871 15872 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15873 tcp->tcp_rsrv_mp = mp; 15874 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15875 15876 TCP_STAT(tcps, tcp_rsrv_calls); 15877 15878 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15879 return; 15880 } 15881 15882 if (tcp->tcp_fused) { 15883 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15884 15885 ASSERT(tcp->tcp_fused); 15886 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15887 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15888 ASSERT(!TCP_IS_DETACHED(tcp)); 15889 ASSERT(tcp->tcp_connp->conn_sqp == 15890 peer_tcp->tcp_connp->conn_sqp); 15891 15892 /* 15893 * Normally we would not get backenabled in synchronous 15894 * streams mode, but in case this happens, we need to plug 15895 * synchronous streams during our drain to prevent a race 15896 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15897 */ 15898 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15899 if (tcp->tcp_rcv_list != NULL) 15900 (void) tcp_rcv_drain(tcp); 15901 15902 if (peer_tcp > tcp) { 15903 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15904 mutex_enter(&tcp->tcp_non_sq_lock); 15905 } else { 15906 mutex_enter(&tcp->tcp_non_sq_lock); 15907 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15908 } 15909 15910 if (peer_tcp->tcp_flow_stopped && 15911 (TCP_UNSENT_BYTES(peer_tcp) <= 15912 peer_tcp->tcp_xmit_lowater)) { 15913 tcp_clrqfull(peer_tcp); 15914 } 15915 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15916 mutex_exit(&tcp->tcp_non_sq_lock); 15917 15918 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15919 TCP_STAT(tcps, tcp_fusion_backenabled); 15920 return; 15921 } 15922 15923 SOD_PTR_ENTER(tcp, sodp); 15924 if (sodp != NULL) { 15925 /* An sodirect connection */ 15926 if (SOD_QFULL(sodp)) { 15927 /* Flow-controlled, need another back-enable */ 15928 fc = B_TRUE; 15929 SOD_QSETBE(sodp); 15930 } else { 15931 /* Not flow-controlled */ 15932 fc = B_FALSE; 15933 } 15934 mutex_exit(sodp->sod_lockp); 15935 } else if (canputnext(q)) { 15936 /* STREAMS, not flow-controlled */ 15937 fc = B_FALSE; 15938 } else { 15939 /* STREAMS, flow-controlled */ 15940 fc = B_TRUE; 15941 } 15942 if (!fc) { 15943 /* Not flow-controlled, open rwnd */ 15944 tcp->tcp_rwnd = q->q_hiwat; 15945 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15946 << tcp->tcp_rcv_ws; 15947 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15948 /* 15949 * Send back a window update immediately if TCP is above 15950 * ESTABLISHED state and the increase of the rcv window 15951 * that the other side knows is at least 1 MSS after flow 15952 * control is lifted. 15953 */ 15954 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15955 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15956 tcp_xmit_ctl(NULL, tcp, 15957 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15958 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15959 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 15960 } 15961 } 15962 } 15963 15964 /* 15965 * The read side service routine is called mostly when we get back-enabled as a 15966 * result of flow control relief. Since we don't actually queue anything in 15967 * TCP, we have no data to send out of here. What we do is clear the receive 15968 * window, and send out a window update. 15969 */ 15970 static void 15971 tcp_rsrv(queue_t *q) 15972 { 15973 conn_t *connp = Q_TO_CONN(q); 15974 tcp_t *tcp = connp->conn_tcp; 15975 mblk_t *mp; 15976 tcp_stack_t *tcps = tcp->tcp_tcps; 15977 15978 /* No code does a putq on the read side */ 15979 ASSERT(q->q_first == NULL); 15980 15981 /* Nothing to do for the default queue */ 15982 if (q == tcps->tcps_g_q) { 15983 return; 15984 } 15985 15986 /* 15987 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15988 * been run. So just return. 15989 */ 15990 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15991 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15992 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15993 return; 15994 } 15995 tcp->tcp_rsrv_mp = NULL; 15996 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15997 15998 CONN_INC_REF(connp); 15999 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16000 SQ_PROCESS, SQTAG_TCP_RSRV); 16001 } 16002 16003 /* 16004 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16005 * We do not allow the receive window to shrink. After setting rwnd, 16006 * set the flow control hiwat of the stream. 16007 * 16008 * This function is called in 2 cases: 16009 * 16010 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16011 * connection (passive open) and in tcp_rput_data() for active connect. 16012 * This is called after tcp_mss_set() when the desired MSS value is known. 16013 * This makes sure that our window size is a mutiple of the other side's 16014 * MSS. 16015 * 2) Handling SO_RCVBUF option. 16016 * 16017 * It is ASSUMED that the requested size is a multiple of the current MSS. 16018 * 16019 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16020 * user requests so. 16021 */ 16022 static int 16023 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16024 { 16025 uint32_t mss = tcp->tcp_mss; 16026 uint32_t old_max_rwnd; 16027 uint32_t max_transmittable_rwnd; 16028 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16029 tcp_stack_t *tcps = tcp->tcp_tcps; 16030 16031 if (tcp->tcp_fused) { 16032 size_t sth_hiwat; 16033 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16034 16035 ASSERT(peer_tcp != NULL); 16036 /* 16037 * Record the stream head's high water mark for 16038 * this endpoint; this is used for flow-control 16039 * purposes in tcp_fuse_output(). 16040 */ 16041 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16042 if (!tcp_detached) { 16043 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16044 sth_hiwat); 16045 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 16046 conn_t *connp = tcp->tcp_connp; 16047 struct sock_proto_props sopp; 16048 16049 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 16050 sopp.sopp_rcvthresh = sth_hiwat >> 3; 16051 16052 (*connp->conn_upcalls->su_set_proto_props) 16053 (connp->conn_upper_handle, &sopp); 16054 } 16055 } 16056 16057 /* 16058 * In the fusion case, the maxpsz stream head value of 16059 * our peer is set according to its send buffer size 16060 * and our receive buffer size; since the latter may 16061 * have changed we need to update the peer's maxpsz. 16062 */ 16063 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16064 return (rwnd); 16065 } 16066 16067 if (tcp_detached) { 16068 old_max_rwnd = tcp->tcp_rwnd; 16069 } else { 16070 old_max_rwnd = tcp->tcp_recv_hiwater; 16071 } 16072 16073 /* 16074 * Insist on a receive window that is at least 16075 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16076 * funny TCP interactions of Nagle algorithm, SWS avoidance 16077 * and delayed acknowledgement. 16078 */ 16079 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16080 16081 /* 16082 * If window size info has already been exchanged, TCP should not 16083 * shrink the window. Shrinking window is doable if done carefully. 16084 * We may add that support later. But so far there is not a real 16085 * need to do that. 16086 */ 16087 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16088 /* MSS may have changed, do a round up again. */ 16089 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16090 } 16091 16092 /* 16093 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16094 * can be applied even before the window scale option is decided. 16095 */ 16096 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16097 if (rwnd > max_transmittable_rwnd) { 16098 rwnd = max_transmittable_rwnd - 16099 (max_transmittable_rwnd % mss); 16100 if (rwnd < mss) 16101 rwnd = max_transmittable_rwnd; 16102 /* 16103 * If we're over the limit we may have to back down tcp_rwnd. 16104 * The increment below won't work for us. So we set all three 16105 * here and the increment below will have no effect. 16106 */ 16107 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16108 } 16109 if (tcp->tcp_localnet) { 16110 tcp->tcp_rack_abs_max = 16111 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16112 } else { 16113 /* 16114 * For a remote host on a different subnet (through a router), 16115 * we ack every other packet to be conforming to RFC1122. 16116 * tcp_deferred_acks_max is default to 2. 16117 */ 16118 tcp->tcp_rack_abs_max = 16119 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16120 } 16121 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16122 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16123 else 16124 tcp->tcp_rack_cur_max = 0; 16125 /* 16126 * Increment the current rwnd by the amount the maximum grew (we 16127 * can not overwrite it since we might be in the middle of a 16128 * connection.) 16129 */ 16130 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16131 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16132 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16133 tcp->tcp_cwnd_max = rwnd; 16134 16135 if (tcp_detached) 16136 return (rwnd); 16137 /* 16138 * We set the maximum receive window into rq->q_hiwat if it is 16139 * a STREAMS socket. 16140 * This is not actually used for flow control. 16141 */ 16142 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 16143 tcp->tcp_rq->q_hiwat = rwnd; 16144 tcp->tcp_recv_hiwater = rwnd; 16145 /* 16146 * Set the STREAM head high water mark. This doesn't have to be 16147 * here, since we are simply using default values, but we would 16148 * prefer to choose these values algorithmically, with a likely 16149 * relationship to rwnd. 16150 */ 16151 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16152 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16153 return (rwnd); 16154 } 16155 16156 /* 16157 * Return SNMP stuff in buffer in mpdata. 16158 */ 16159 mblk_t * 16160 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16161 { 16162 mblk_t *mpdata; 16163 mblk_t *mp_conn_ctl = NULL; 16164 mblk_t *mp_conn_tail; 16165 mblk_t *mp_attr_ctl = NULL; 16166 mblk_t *mp_attr_tail; 16167 mblk_t *mp6_conn_ctl = NULL; 16168 mblk_t *mp6_conn_tail; 16169 mblk_t *mp6_attr_ctl = NULL; 16170 mblk_t *mp6_attr_tail; 16171 struct opthdr *optp; 16172 mib2_tcpConnEntry_t tce; 16173 mib2_tcp6ConnEntry_t tce6; 16174 mib2_transportMLPEntry_t mlp; 16175 connf_t *connfp; 16176 int i; 16177 boolean_t ispriv; 16178 zoneid_t zoneid; 16179 int v4_conn_idx; 16180 int v6_conn_idx; 16181 conn_t *connp = Q_TO_CONN(q); 16182 tcp_stack_t *tcps; 16183 ip_stack_t *ipst; 16184 mblk_t *mp2ctl; 16185 16186 /* 16187 * make a copy of the original message 16188 */ 16189 mp2ctl = copymsg(mpctl); 16190 16191 if (mpctl == NULL || 16192 (mpdata = mpctl->b_cont) == NULL || 16193 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16194 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16195 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16196 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16197 freemsg(mp_conn_ctl); 16198 freemsg(mp_attr_ctl); 16199 freemsg(mp6_conn_ctl); 16200 freemsg(mp6_attr_ctl); 16201 freemsg(mpctl); 16202 freemsg(mp2ctl); 16203 return (NULL); 16204 } 16205 16206 ipst = connp->conn_netstack->netstack_ip; 16207 tcps = connp->conn_netstack->netstack_tcp; 16208 16209 /* build table of connections -- need count in fixed part */ 16210 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16211 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16212 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16213 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16214 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16215 16216 ispriv = 16217 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16218 zoneid = Q_TO_CONN(q)->conn_zoneid; 16219 16220 v4_conn_idx = v6_conn_idx = 0; 16221 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16222 16223 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16224 ipst = tcps->tcps_netstack->netstack_ip; 16225 16226 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16227 16228 connp = NULL; 16229 16230 while ((connp = 16231 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16232 tcp_t *tcp; 16233 boolean_t needattr; 16234 16235 if (connp->conn_zoneid != zoneid) 16236 continue; /* not in this zone */ 16237 16238 tcp = connp->conn_tcp; 16239 UPDATE_MIB(&tcps->tcps_mib, 16240 tcpHCInSegs, tcp->tcp_ibsegs); 16241 tcp->tcp_ibsegs = 0; 16242 UPDATE_MIB(&tcps->tcps_mib, 16243 tcpHCOutSegs, tcp->tcp_obsegs); 16244 tcp->tcp_obsegs = 0; 16245 16246 tce6.tcp6ConnState = tce.tcpConnState = 16247 tcp_snmp_state(tcp); 16248 if (tce.tcpConnState == MIB2_TCP_established || 16249 tce.tcpConnState == MIB2_TCP_closeWait) 16250 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16251 16252 needattr = B_FALSE; 16253 bzero(&mlp, sizeof (mlp)); 16254 if (connp->conn_mlp_type != mlptSingle) { 16255 if (connp->conn_mlp_type == mlptShared || 16256 connp->conn_mlp_type == mlptBoth) 16257 mlp.tme_flags |= MIB2_TMEF_SHARED; 16258 if (connp->conn_mlp_type == mlptPrivate || 16259 connp->conn_mlp_type == mlptBoth) 16260 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16261 needattr = B_TRUE; 16262 } 16263 if (connp->conn_peercred != NULL) { 16264 ts_label_t *tsl; 16265 16266 tsl = crgetlabel(connp->conn_peercred); 16267 mlp.tme_doi = label2doi(tsl); 16268 mlp.tme_label = *label2bslabel(tsl); 16269 needattr = B_TRUE; 16270 } 16271 16272 /* Create a message to report on IPv6 entries */ 16273 if (tcp->tcp_ipversion == IPV6_VERSION) { 16274 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16275 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16276 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16277 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16278 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16279 /* Don't want just anybody seeing these... */ 16280 if (ispriv) { 16281 tce6.tcp6ConnEntryInfo.ce_snxt = 16282 tcp->tcp_snxt; 16283 tce6.tcp6ConnEntryInfo.ce_suna = 16284 tcp->tcp_suna; 16285 tce6.tcp6ConnEntryInfo.ce_rnxt = 16286 tcp->tcp_rnxt; 16287 tce6.tcp6ConnEntryInfo.ce_rack = 16288 tcp->tcp_rack; 16289 } else { 16290 /* 16291 * Netstat, unfortunately, uses this to 16292 * get send/receive queue sizes. How to fix? 16293 * Why not compute the difference only? 16294 */ 16295 tce6.tcp6ConnEntryInfo.ce_snxt = 16296 tcp->tcp_snxt - tcp->tcp_suna; 16297 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16298 tce6.tcp6ConnEntryInfo.ce_rnxt = 16299 tcp->tcp_rnxt - tcp->tcp_rack; 16300 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16301 } 16302 16303 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16304 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16305 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16306 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16307 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16308 16309 tce6.tcp6ConnCreationProcess = 16310 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16311 tcp->tcp_cpid; 16312 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16313 16314 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16315 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16316 16317 mlp.tme_connidx = v6_conn_idx++; 16318 if (needattr) 16319 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16320 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16321 } 16322 /* 16323 * Create an IPv4 table entry for IPv4 entries and also 16324 * for IPv6 entries which are bound to in6addr_any 16325 * but don't have IPV6_V6ONLY set. 16326 * (i.e. anything an IPv4 peer could connect to) 16327 */ 16328 if (tcp->tcp_ipversion == IPV4_VERSION || 16329 (tcp->tcp_state <= TCPS_LISTEN && 16330 !tcp->tcp_connp->conn_ipv6_v6only && 16331 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16332 if (tcp->tcp_ipversion == IPV6_VERSION) { 16333 tce.tcpConnRemAddress = INADDR_ANY; 16334 tce.tcpConnLocalAddress = INADDR_ANY; 16335 } else { 16336 tce.tcpConnRemAddress = 16337 tcp->tcp_remote; 16338 tce.tcpConnLocalAddress = 16339 tcp->tcp_ip_src; 16340 } 16341 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16342 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16343 /* Don't want just anybody seeing these... */ 16344 if (ispriv) { 16345 tce.tcpConnEntryInfo.ce_snxt = 16346 tcp->tcp_snxt; 16347 tce.tcpConnEntryInfo.ce_suna = 16348 tcp->tcp_suna; 16349 tce.tcpConnEntryInfo.ce_rnxt = 16350 tcp->tcp_rnxt; 16351 tce.tcpConnEntryInfo.ce_rack = 16352 tcp->tcp_rack; 16353 } else { 16354 /* 16355 * Netstat, unfortunately, uses this to 16356 * get send/receive queue sizes. How 16357 * to fix? 16358 * Why not compute the difference only? 16359 */ 16360 tce.tcpConnEntryInfo.ce_snxt = 16361 tcp->tcp_snxt - tcp->tcp_suna; 16362 tce.tcpConnEntryInfo.ce_suna = 0; 16363 tce.tcpConnEntryInfo.ce_rnxt = 16364 tcp->tcp_rnxt - tcp->tcp_rack; 16365 tce.tcpConnEntryInfo.ce_rack = 0; 16366 } 16367 16368 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16369 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16370 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16371 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16372 tce.tcpConnEntryInfo.ce_state = 16373 tcp->tcp_state; 16374 16375 tce.tcpConnCreationProcess = 16376 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16377 tcp->tcp_cpid; 16378 tce.tcpConnCreationTime = tcp->tcp_open_time; 16379 16380 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16381 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16382 16383 mlp.tme_connidx = v4_conn_idx++; 16384 if (needattr) 16385 (void) snmp_append_data2( 16386 mp_attr_ctl->b_cont, 16387 &mp_attr_tail, (char *)&mlp, 16388 sizeof (mlp)); 16389 } 16390 } 16391 } 16392 16393 /* fixed length structure for IPv4 and IPv6 counters */ 16394 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16395 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16396 sizeof (mib2_tcp6ConnEntry_t)); 16397 /* synchronize 32- and 64-bit counters */ 16398 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16399 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16400 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16401 optp->level = MIB2_TCP; 16402 optp->name = 0; 16403 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16404 sizeof (tcps->tcps_mib)); 16405 optp->len = msgdsize(mpdata); 16406 qreply(q, mpctl); 16407 16408 /* table of connections... */ 16409 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16410 sizeof (struct T_optmgmt_ack)]; 16411 optp->level = MIB2_TCP; 16412 optp->name = MIB2_TCP_CONN; 16413 optp->len = msgdsize(mp_conn_ctl->b_cont); 16414 qreply(q, mp_conn_ctl); 16415 16416 /* table of MLP attributes... */ 16417 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16418 sizeof (struct T_optmgmt_ack)]; 16419 optp->level = MIB2_TCP; 16420 optp->name = EXPER_XPORT_MLP; 16421 optp->len = msgdsize(mp_attr_ctl->b_cont); 16422 if (optp->len == 0) 16423 freemsg(mp_attr_ctl); 16424 else 16425 qreply(q, mp_attr_ctl); 16426 16427 /* table of IPv6 connections... */ 16428 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16429 sizeof (struct T_optmgmt_ack)]; 16430 optp->level = MIB2_TCP6; 16431 optp->name = MIB2_TCP6_CONN; 16432 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16433 qreply(q, mp6_conn_ctl); 16434 16435 /* table of IPv6 MLP attributes... */ 16436 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16437 sizeof (struct T_optmgmt_ack)]; 16438 optp->level = MIB2_TCP6; 16439 optp->name = EXPER_XPORT_MLP; 16440 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16441 if (optp->len == 0) 16442 freemsg(mp6_attr_ctl); 16443 else 16444 qreply(q, mp6_attr_ctl); 16445 return (mp2ctl); 16446 } 16447 16448 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16449 /* ARGSUSED */ 16450 int 16451 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16452 { 16453 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16454 16455 switch (level) { 16456 case MIB2_TCP: 16457 switch (name) { 16458 case 13: 16459 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16460 return (0); 16461 /* TODO: delete entry defined by tce */ 16462 return (1); 16463 default: 16464 return (0); 16465 } 16466 default: 16467 return (1); 16468 } 16469 } 16470 16471 /* Translate TCP state to MIB2 TCP state. */ 16472 static int 16473 tcp_snmp_state(tcp_t *tcp) 16474 { 16475 if (tcp == NULL) 16476 return (0); 16477 16478 switch (tcp->tcp_state) { 16479 case TCPS_CLOSED: 16480 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16481 case TCPS_BOUND: 16482 return (MIB2_TCP_closed); 16483 case TCPS_LISTEN: 16484 return (MIB2_TCP_listen); 16485 case TCPS_SYN_SENT: 16486 return (MIB2_TCP_synSent); 16487 case TCPS_SYN_RCVD: 16488 return (MIB2_TCP_synReceived); 16489 case TCPS_ESTABLISHED: 16490 return (MIB2_TCP_established); 16491 case TCPS_CLOSE_WAIT: 16492 return (MIB2_TCP_closeWait); 16493 case TCPS_FIN_WAIT_1: 16494 return (MIB2_TCP_finWait1); 16495 case TCPS_CLOSING: 16496 return (MIB2_TCP_closing); 16497 case TCPS_LAST_ACK: 16498 return (MIB2_TCP_lastAck); 16499 case TCPS_FIN_WAIT_2: 16500 return (MIB2_TCP_finWait2); 16501 case TCPS_TIME_WAIT: 16502 return (MIB2_TCP_timeWait); 16503 default: 16504 return (0); 16505 } 16506 } 16507 16508 static char tcp_report_header[] = 16509 "TCP " MI_COL_HDRPAD_STR 16510 "zone dest snxt suna " 16511 "swnd rnxt rack rwnd rto mss w sw rw t " 16512 "recent [lport,fport] state"; 16513 16514 /* 16515 * TCP status report triggered via the Named Dispatch mechanism. 16516 */ 16517 /* ARGSUSED */ 16518 static void 16519 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16520 cred_t *cr) 16521 { 16522 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16523 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16524 char cflag; 16525 in6_addr_t v6dst; 16526 char buf[80]; 16527 uint_t print_len, buf_len; 16528 16529 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16530 if (buf_len <= 0) 16531 return; 16532 16533 if (hashval >= 0) 16534 (void) sprintf(hash, "%03d ", hashval); 16535 else 16536 hash[0] = '\0'; 16537 16538 /* 16539 * Note that we use the remote address in the tcp_b structure. 16540 * This means that it will print out the real destination address, 16541 * not the next hop's address if source routing is used. This 16542 * avoid the confusion on the output because user may not 16543 * know that source routing is used for a connection. 16544 */ 16545 if (tcp->tcp_ipversion == IPV4_VERSION) { 16546 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16547 } else { 16548 v6dst = tcp->tcp_remote_v6; 16549 } 16550 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16551 /* 16552 * the ispriv checks are so that normal users cannot determine 16553 * sequence number information using NDD. 16554 */ 16555 16556 if (TCP_IS_DETACHED(tcp)) 16557 cflag = '*'; 16558 else 16559 cflag = ' '; 16560 print_len = snprintf((char *)mp->b_wptr, buf_len, 16561 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16562 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16563 hash, 16564 (void *)tcp, 16565 tcp->tcp_connp->conn_zoneid, 16566 addrbuf, 16567 (ispriv) ? tcp->tcp_snxt : 0, 16568 (ispriv) ? tcp->tcp_suna : 0, 16569 tcp->tcp_swnd, 16570 (ispriv) ? tcp->tcp_rnxt : 0, 16571 (ispriv) ? tcp->tcp_rack : 0, 16572 tcp->tcp_rwnd, 16573 tcp->tcp_rto, 16574 tcp->tcp_mss, 16575 tcp->tcp_snd_ws_ok, 16576 tcp->tcp_snd_ws, 16577 tcp->tcp_rcv_ws, 16578 tcp->tcp_snd_ts_ok, 16579 tcp->tcp_ts_recent, 16580 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16581 if (print_len < buf_len) { 16582 ((mblk_t *)mp)->b_wptr += print_len; 16583 } else { 16584 ((mblk_t *)mp)->b_wptr += buf_len; 16585 } 16586 } 16587 16588 /* 16589 * TCP status report (for listeners only) triggered via the Named Dispatch 16590 * mechanism. 16591 */ 16592 /* ARGSUSED */ 16593 static void 16594 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16595 { 16596 char addrbuf[INET6_ADDRSTRLEN]; 16597 in6_addr_t v6dst; 16598 uint_t print_len, buf_len; 16599 16600 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16601 if (buf_len <= 0) 16602 return; 16603 16604 if (tcp->tcp_ipversion == IPV4_VERSION) { 16605 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16606 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16607 } else { 16608 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16609 addrbuf, sizeof (addrbuf)); 16610 } 16611 print_len = snprintf((char *)mp->b_wptr, buf_len, 16612 "%03d " 16613 MI_COL_PTRFMT_STR 16614 "%d %s %05u %08u %d/%d/%d%c\n", 16615 hashval, (void *)tcp, 16616 tcp->tcp_connp->conn_zoneid, 16617 addrbuf, 16618 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16619 tcp->tcp_conn_req_seqnum, 16620 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16621 tcp->tcp_conn_req_max, 16622 tcp->tcp_syn_defense ? '*' : ' '); 16623 if (print_len < buf_len) { 16624 ((mblk_t *)mp)->b_wptr += print_len; 16625 } else { 16626 ((mblk_t *)mp)->b_wptr += buf_len; 16627 } 16628 } 16629 16630 /* TCP status report triggered via the Named Dispatch mechanism. */ 16631 /* ARGSUSED */ 16632 static int 16633 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16634 { 16635 tcp_t *tcp; 16636 int i; 16637 conn_t *connp; 16638 connf_t *connfp; 16639 zoneid_t zoneid; 16640 tcp_stack_t *tcps; 16641 ip_stack_t *ipst; 16642 16643 zoneid = Q_TO_CONN(q)->conn_zoneid; 16644 tcps = Q_TO_TCP(q)->tcp_tcps; 16645 16646 /* 16647 * Because of the ndd constraint, at most we can have 64K buffer 16648 * to put in all TCP info. So to be more efficient, just 16649 * allocate a 64K buffer here, assuming we need that large buffer. 16650 * This may be a problem as any user can read tcp_status. Therefore 16651 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16652 * This should be OK as normal users should not do this too often. 16653 */ 16654 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16655 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16656 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16657 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16658 return (0); 16659 } 16660 } 16661 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16662 /* The following may work even if we cannot get a large buf. */ 16663 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16664 return (0); 16665 } 16666 16667 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16668 16669 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16670 16671 ipst = tcps->tcps_netstack->netstack_ip; 16672 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16673 16674 connp = NULL; 16675 16676 while ((connp = 16677 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16678 tcp = connp->conn_tcp; 16679 if (zoneid != GLOBAL_ZONEID && 16680 zoneid != connp->conn_zoneid) 16681 continue; 16682 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16683 cr); 16684 } 16685 16686 } 16687 16688 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16689 return (0); 16690 } 16691 16692 /* TCP status report triggered via the Named Dispatch mechanism. */ 16693 /* ARGSUSED */ 16694 static int 16695 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16696 { 16697 tf_t *tbf; 16698 tcp_t *tcp, *ltcp; 16699 int i; 16700 zoneid_t zoneid; 16701 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16702 16703 zoneid = Q_TO_CONN(q)->conn_zoneid; 16704 16705 /* Refer to comments in tcp_status_report(). */ 16706 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16707 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16708 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16709 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16710 return (0); 16711 } 16712 } 16713 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16714 /* The following may work even if we cannot get a large buf. */ 16715 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16716 return (0); 16717 } 16718 16719 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16720 16721 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16722 tbf = &tcps->tcps_bind_fanout[i]; 16723 mutex_enter(&tbf->tf_lock); 16724 for (ltcp = tbf->tf_tcp; ltcp != NULL; 16725 ltcp = ltcp->tcp_bind_hash) { 16726 for (tcp = ltcp; tcp != NULL; 16727 tcp = tcp->tcp_bind_hash_port) { 16728 if (zoneid != GLOBAL_ZONEID && 16729 zoneid != tcp->tcp_connp->conn_zoneid) 16730 continue; 16731 CONN_INC_REF(tcp->tcp_connp); 16732 tcp_report_item(mp->b_cont, tcp, i, 16733 Q_TO_TCP(q), cr); 16734 CONN_DEC_REF(tcp->tcp_connp); 16735 } 16736 } 16737 mutex_exit(&tbf->tf_lock); 16738 } 16739 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16740 return (0); 16741 } 16742 16743 /* TCP status report triggered via the Named Dispatch mechanism. */ 16744 /* ARGSUSED */ 16745 static int 16746 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16747 { 16748 connf_t *connfp; 16749 conn_t *connp; 16750 tcp_t *tcp; 16751 int i; 16752 zoneid_t zoneid; 16753 tcp_stack_t *tcps; 16754 ip_stack_t *ipst; 16755 16756 zoneid = Q_TO_CONN(q)->conn_zoneid; 16757 tcps = Q_TO_TCP(q)->tcp_tcps; 16758 16759 /* Refer to comments in tcp_status_report(). */ 16760 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16761 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16762 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16763 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16764 return (0); 16765 } 16766 } 16767 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16768 /* The following may work even if we cannot get a large buf. */ 16769 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16770 return (0); 16771 } 16772 16773 (void) mi_mpprintf(mp, 16774 " TCP " MI_COL_HDRPAD_STR 16775 "zone IP addr port seqnum backlog (q0/q/max)"); 16776 16777 ipst = tcps->tcps_netstack->netstack_ip; 16778 16779 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16780 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16781 connp = NULL; 16782 while ((connp = 16783 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16784 tcp = connp->conn_tcp; 16785 if (zoneid != GLOBAL_ZONEID && 16786 zoneid != connp->conn_zoneid) 16787 continue; 16788 tcp_report_listener(mp->b_cont, tcp, i); 16789 } 16790 } 16791 16792 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16793 return (0); 16794 } 16795 16796 /* TCP status report triggered via the Named Dispatch mechanism. */ 16797 /* ARGSUSED */ 16798 static int 16799 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16800 { 16801 connf_t *connfp; 16802 conn_t *connp; 16803 tcp_t *tcp; 16804 int i; 16805 zoneid_t zoneid; 16806 tcp_stack_t *tcps; 16807 ip_stack_t *ipst; 16808 16809 zoneid = Q_TO_CONN(q)->conn_zoneid; 16810 tcps = Q_TO_TCP(q)->tcp_tcps; 16811 ipst = tcps->tcps_netstack->netstack_ip; 16812 16813 /* Refer to comments in tcp_status_report(). */ 16814 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16815 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16816 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16817 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16818 return (0); 16819 } 16820 } 16821 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16822 /* The following may work even if we cannot get a large buf. */ 16823 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16824 return (0); 16825 } 16826 16827 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16828 ipst->ips_ipcl_conn_fanout_size); 16829 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16830 16831 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16832 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16833 connp = NULL; 16834 while ((connp = 16835 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16836 tcp = connp->conn_tcp; 16837 if (zoneid != GLOBAL_ZONEID && 16838 zoneid != connp->conn_zoneid) 16839 continue; 16840 tcp_report_item(mp->b_cont, tcp, i, 16841 Q_TO_TCP(q), cr); 16842 } 16843 } 16844 16845 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16846 return (0); 16847 } 16848 16849 /* TCP status report triggered via the Named Dispatch mechanism. */ 16850 /* ARGSUSED */ 16851 static int 16852 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16853 { 16854 tf_t *tf; 16855 tcp_t *tcp; 16856 int i; 16857 zoneid_t zoneid; 16858 tcp_stack_t *tcps; 16859 16860 zoneid = Q_TO_CONN(q)->conn_zoneid; 16861 tcps = Q_TO_TCP(q)->tcp_tcps; 16862 16863 /* Refer to comments in tcp_status_report(). */ 16864 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16865 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16866 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16867 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16868 return (0); 16869 } 16870 } 16871 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16872 /* The following may work even if we cannot get a large buf. */ 16873 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16874 return (0); 16875 } 16876 16877 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16878 16879 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16880 tf = &tcps->tcps_acceptor_fanout[i]; 16881 mutex_enter(&tf->tf_lock); 16882 for (tcp = tf->tf_tcp; tcp != NULL; 16883 tcp = tcp->tcp_acceptor_hash) { 16884 if (zoneid != GLOBAL_ZONEID && 16885 zoneid != tcp->tcp_connp->conn_zoneid) 16886 continue; 16887 tcp_report_item(mp->b_cont, tcp, i, 16888 Q_TO_TCP(q), cr); 16889 } 16890 mutex_exit(&tf->tf_lock); 16891 } 16892 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16893 return (0); 16894 } 16895 16896 /* 16897 * tcp_timer is the timer service routine. It handles the retransmission, 16898 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16899 * from the state of the tcp instance what kind of action needs to be done 16900 * at the time it is called. 16901 */ 16902 static void 16903 tcp_timer(void *arg) 16904 { 16905 mblk_t *mp; 16906 clock_t first_threshold; 16907 clock_t second_threshold; 16908 clock_t ms; 16909 uint32_t mss; 16910 conn_t *connp = (conn_t *)arg; 16911 tcp_t *tcp = connp->conn_tcp; 16912 tcp_stack_t *tcps = tcp->tcp_tcps; 16913 16914 tcp->tcp_timer_tid = 0; 16915 16916 if (tcp->tcp_fused) 16917 return; 16918 16919 first_threshold = tcp->tcp_first_timer_threshold; 16920 second_threshold = tcp->tcp_second_timer_threshold; 16921 switch (tcp->tcp_state) { 16922 case TCPS_IDLE: 16923 case TCPS_BOUND: 16924 case TCPS_LISTEN: 16925 return; 16926 case TCPS_SYN_RCVD: { 16927 tcp_t *listener = tcp->tcp_listener; 16928 16929 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16930 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16931 /* it's our first timeout */ 16932 tcp->tcp_syn_rcvd_timeout = 1; 16933 mutex_enter(&listener->tcp_eager_lock); 16934 listener->tcp_syn_rcvd_timeout++; 16935 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16936 /* 16937 * Make this eager available for drop if we 16938 * need to drop one to accomodate a new 16939 * incoming SYN request. 16940 */ 16941 MAKE_DROPPABLE(listener, tcp); 16942 } 16943 if (!listener->tcp_syn_defense && 16944 (listener->tcp_syn_rcvd_timeout > 16945 (tcps->tcps_conn_req_max_q0 >> 2)) && 16946 (tcps->tcps_conn_req_max_q0 > 200)) { 16947 /* We may be under attack. Put on a defense. */ 16948 listener->tcp_syn_defense = B_TRUE; 16949 cmn_err(CE_WARN, "High TCP connect timeout " 16950 "rate! System (port %d) may be under a " 16951 "SYN flood attack!", 16952 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16953 16954 listener->tcp_ip_addr_cache = kmem_zalloc( 16955 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16956 KM_NOSLEEP); 16957 } 16958 mutex_exit(&listener->tcp_eager_lock); 16959 } else if (listener != NULL) { 16960 mutex_enter(&listener->tcp_eager_lock); 16961 tcp->tcp_syn_rcvd_timeout++; 16962 if (tcp->tcp_syn_rcvd_timeout > 1 && 16963 !tcp->tcp_closemp_used) { 16964 /* 16965 * This is our second timeout. Put the tcp in 16966 * the list of droppable eagers to allow it to 16967 * be dropped, if needed. We don't check 16968 * whether tcp_dontdrop is set or not to 16969 * protect ourselve from a SYN attack where a 16970 * remote host can spoof itself as one of the 16971 * good IP source and continue to hold 16972 * resources too long. 16973 */ 16974 MAKE_DROPPABLE(listener, tcp); 16975 } 16976 mutex_exit(&listener->tcp_eager_lock); 16977 } 16978 } 16979 /* FALLTHRU */ 16980 case TCPS_SYN_SENT: 16981 first_threshold = tcp->tcp_first_ctimer_threshold; 16982 second_threshold = tcp->tcp_second_ctimer_threshold; 16983 break; 16984 case TCPS_ESTABLISHED: 16985 case TCPS_FIN_WAIT_1: 16986 case TCPS_CLOSING: 16987 case TCPS_CLOSE_WAIT: 16988 case TCPS_LAST_ACK: 16989 /* If we have data to rexmit */ 16990 if (tcp->tcp_suna != tcp->tcp_snxt) { 16991 clock_t time_to_wait; 16992 16993 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16994 if (!tcp->tcp_xmit_head) 16995 break; 16996 time_to_wait = lbolt - 16997 (clock_t)tcp->tcp_xmit_head->b_prev; 16998 time_to_wait = tcp->tcp_rto - 16999 TICK_TO_MSEC(time_to_wait); 17000 /* 17001 * If the timer fires too early, 1 clock tick earlier, 17002 * restart the timer. 17003 */ 17004 if (time_to_wait > msec_per_tick) { 17005 TCP_STAT(tcps, tcp_timer_fire_early); 17006 TCP_TIMER_RESTART(tcp, time_to_wait); 17007 return; 17008 } 17009 /* 17010 * When we probe zero windows, we force the swnd open. 17011 * If our peer acks with a closed window swnd will be 17012 * set to zero by tcp_rput(). As long as we are 17013 * receiving acks tcp_rput will 17014 * reset 'tcp_ms_we_have_waited' so as not to trip the 17015 * first and second interval actions. NOTE: the timer 17016 * interval is allowed to continue its exponential 17017 * backoff. 17018 */ 17019 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17020 if (tcp->tcp_debug) { 17021 (void) strlog(TCP_MOD_ID, 0, 1, 17022 SL_TRACE, "tcp_timer: zero win"); 17023 } 17024 } else { 17025 /* 17026 * After retransmission, we need to do 17027 * slow start. Set the ssthresh to one 17028 * half of current effective window and 17029 * cwnd to one MSS. Also reset 17030 * tcp_cwnd_cnt. 17031 * 17032 * Note that if tcp_ssthresh is reduced because 17033 * of ECN, do not reduce it again unless it is 17034 * already one window of data away (tcp_cwr 17035 * should then be cleared) or this is a 17036 * timeout for a retransmitted segment. 17037 */ 17038 uint32_t npkt; 17039 17040 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17041 npkt = ((tcp->tcp_timer_backoff ? 17042 tcp->tcp_cwnd_ssthresh : 17043 tcp->tcp_snxt - 17044 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17045 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17046 tcp->tcp_mss; 17047 } 17048 tcp->tcp_cwnd = tcp->tcp_mss; 17049 tcp->tcp_cwnd_cnt = 0; 17050 if (tcp->tcp_ecn_ok) { 17051 tcp->tcp_cwr = B_TRUE; 17052 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17053 tcp->tcp_ecn_cwr_sent = B_FALSE; 17054 } 17055 } 17056 break; 17057 } 17058 /* 17059 * We have something to send yet we cannot send. The 17060 * reason can be: 17061 * 17062 * 1. Zero send window: we need to do zero window probe. 17063 * 2. Zero cwnd: because of ECN, we need to "clock out 17064 * segments. 17065 * 3. SWS avoidance: receiver may have shrunk window, 17066 * reset our knowledge. 17067 * 17068 * Note that condition 2 can happen with either 1 or 17069 * 3. But 1 and 3 are exclusive. 17070 */ 17071 if (tcp->tcp_unsent != 0) { 17072 if (tcp->tcp_cwnd == 0) { 17073 /* 17074 * Set tcp_cwnd to 1 MSS so that a 17075 * new segment can be sent out. We 17076 * are "clocking out" new data when 17077 * the network is really congested. 17078 */ 17079 ASSERT(tcp->tcp_ecn_ok); 17080 tcp->tcp_cwnd = tcp->tcp_mss; 17081 } 17082 if (tcp->tcp_swnd == 0) { 17083 /* Extend window for zero window probe */ 17084 tcp->tcp_swnd++; 17085 tcp->tcp_zero_win_probe = B_TRUE; 17086 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17087 } else { 17088 /* 17089 * Handle timeout from sender SWS avoidance. 17090 * Reset our knowledge of the max send window 17091 * since the receiver might have reduced its 17092 * receive buffer. Avoid setting tcp_max_swnd 17093 * to one since that will essentially disable 17094 * the SWS checks. 17095 * 17096 * Note that since we don't have a SWS 17097 * state variable, if the timeout is set 17098 * for ECN but not for SWS, this 17099 * code will also be executed. This is 17100 * fine as tcp_max_swnd is updated 17101 * constantly and it will not affect 17102 * anything. 17103 */ 17104 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17105 } 17106 tcp_wput_data(tcp, NULL, B_FALSE); 17107 return; 17108 } 17109 /* Is there a FIN that needs to be to re retransmitted? */ 17110 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17111 !tcp->tcp_fin_acked) 17112 break; 17113 /* Nothing to do, return without restarting timer. */ 17114 TCP_STAT(tcps, tcp_timer_fire_miss); 17115 return; 17116 case TCPS_FIN_WAIT_2: 17117 /* 17118 * User closed the TCP endpoint and peer ACK'ed our FIN. 17119 * We waited some time for for peer's FIN, but it hasn't 17120 * arrived. We flush the connection now to avoid 17121 * case where the peer has rebooted. 17122 */ 17123 if (TCP_IS_DETACHED(tcp)) { 17124 (void) tcp_clean_death(tcp, 0, 23); 17125 } else { 17126 TCP_TIMER_RESTART(tcp, 17127 tcps->tcps_fin_wait_2_flush_interval); 17128 } 17129 return; 17130 case TCPS_TIME_WAIT: 17131 (void) tcp_clean_death(tcp, 0, 24); 17132 return; 17133 default: 17134 if (tcp->tcp_debug) { 17135 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17136 "tcp_timer: strange state (%d) %s", 17137 tcp->tcp_state, tcp_display(tcp, NULL, 17138 DISP_PORT_ONLY)); 17139 } 17140 return; 17141 } 17142 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17143 /* 17144 * For zero window probe, we need to send indefinitely, 17145 * unless we have not heard from the other side for some 17146 * time... 17147 */ 17148 if ((tcp->tcp_zero_win_probe == 0) || 17149 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17150 second_threshold)) { 17151 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17152 /* 17153 * If TCP is in SYN_RCVD state, send back a 17154 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17155 * should be zero in TCPS_SYN_RCVD state. 17156 */ 17157 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17158 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17159 "in SYN_RCVD", 17160 tcp, tcp->tcp_snxt, 17161 tcp->tcp_rnxt, TH_RST | TH_ACK); 17162 } 17163 (void) tcp_clean_death(tcp, 17164 tcp->tcp_client_errno ? 17165 tcp->tcp_client_errno : ETIMEDOUT, 25); 17166 return; 17167 } else { 17168 /* 17169 * Set tcp_ms_we_have_waited to second_threshold 17170 * so that in next timeout, we will do the above 17171 * check (lbolt - tcp_last_recv_time). This is 17172 * also to avoid overflow. 17173 * 17174 * We don't need to decrement tcp_timer_backoff 17175 * to avoid overflow because it will be decremented 17176 * later if new timeout value is greater than 17177 * tcp_rexmit_interval_max. In the case when 17178 * tcp_rexmit_interval_max is greater than 17179 * second_threshold, it means that we will wait 17180 * longer than second_threshold to send the next 17181 * window probe. 17182 */ 17183 tcp->tcp_ms_we_have_waited = second_threshold; 17184 } 17185 } else if (ms > first_threshold) { 17186 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17187 tcp->tcp_xmit_head != NULL) { 17188 tcp->tcp_xmit_head = 17189 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17190 } 17191 /* 17192 * We have been retransmitting for too long... The RTT 17193 * we calculated is probably incorrect. Reinitialize it. 17194 * Need to compensate for 0 tcp_rtt_sa. Reset 17195 * tcp_rtt_update so that we won't accidentally cache a 17196 * bad value. But only do this if this is not a zero 17197 * window probe. 17198 */ 17199 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17200 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17201 (tcp->tcp_rtt_sa >> 5); 17202 tcp->tcp_rtt_sa = 0; 17203 tcp_ip_notify(tcp); 17204 tcp->tcp_rtt_update = 0; 17205 } 17206 } 17207 tcp->tcp_timer_backoff++; 17208 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17209 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17210 tcps->tcps_rexmit_interval_min) { 17211 /* 17212 * This means the original RTO is tcp_rexmit_interval_min. 17213 * So we will use tcp_rexmit_interval_min as the RTO value 17214 * and do the backoff. 17215 */ 17216 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17217 } else { 17218 ms <<= tcp->tcp_timer_backoff; 17219 } 17220 if (ms > tcps->tcps_rexmit_interval_max) { 17221 ms = tcps->tcps_rexmit_interval_max; 17222 /* 17223 * ms is at max, decrement tcp_timer_backoff to avoid 17224 * overflow. 17225 */ 17226 tcp->tcp_timer_backoff--; 17227 } 17228 tcp->tcp_ms_we_have_waited += ms; 17229 if (tcp->tcp_zero_win_probe == 0) { 17230 tcp->tcp_rto = ms; 17231 } 17232 TCP_TIMER_RESTART(tcp, ms); 17233 /* 17234 * This is after a timeout and tcp_rto is backed off. Set 17235 * tcp_set_timer to 1 so that next time RTO is updated, we will 17236 * restart the timer with a correct value. 17237 */ 17238 tcp->tcp_set_timer = 1; 17239 mss = tcp->tcp_snxt - tcp->tcp_suna; 17240 if (mss > tcp->tcp_mss) 17241 mss = tcp->tcp_mss; 17242 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17243 mss = tcp->tcp_swnd; 17244 17245 if ((mp = tcp->tcp_xmit_head) != NULL) 17246 mp->b_prev = (mblk_t *)lbolt; 17247 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17248 B_TRUE); 17249 17250 /* 17251 * When slow start after retransmission begins, start with 17252 * this seq no. tcp_rexmit_max marks the end of special slow 17253 * start phase. tcp_snd_burst controls how many segments 17254 * can be sent because of an ack. 17255 */ 17256 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17257 tcp->tcp_snd_burst = TCP_CWND_SS; 17258 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17259 (tcp->tcp_unsent == 0)) { 17260 tcp->tcp_rexmit_max = tcp->tcp_fss; 17261 } else { 17262 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17263 } 17264 tcp->tcp_rexmit = B_TRUE; 17265 tcp->tcp_dupack_cnt = 0; 17266 17267 /* 17268 * Remove all rexmit SACK blk to start from fresh. 17269 */ 17270 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17271 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17272 tcp->tcp_num_notsack_blk = 0; 17273 tcp->tcp_cnt_notsack_list = 0; 17274 } 17275 if (mp == NULL) { 17276 return; 17277 } 17278 /* Attach credentials to retransmitted initial SYNs. */ 17279 if (tcp->tcp_state == TCPS_SYN_SENT) { 17280 mblk_setcred(mp, tcp->tcp_cred); 17281 DB_CPID(mp) = tcp->tcp_cpid; 17282 } 17283 17284 tcp->tcp_csuna = tcp->tcp_snxt; 17285 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17286 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17287 tcp_send_data(tcp, tcp->tcp_wq, mp); 17288 17289 } 17290 17291 static int 17292 tcp_do_unbind(conn_t *connp) 17293 { 17294 tcp_t *tcp = connp->conn_tcp; 17295 int error = 0; 17296 17297 switch (tcp->tcp_state) { 17298 case TCPS_BOUND: 17299 case TCPS_LISTEN: 17300 break; 17301 default: 17302 return (-TOUTSTATE); 17303 } 17304 17305 /* 17306 * Need to clean up all the eagers since after the unbind, segments 17307 * will no longer be delivered to this listener stream. 17308 */ 17309 mutex_enter(&tcp->tcp_eager_lock); 17310 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17311 tcp_eager_cleanup(tcp, 0); 17312 } 17313 mutex_exit(&tcp->tcp_eager_lock); 17314 17315 if (tcp->tcp_ipversion == IPV4_VERSION) { 17316 tcp->tcp_ipha->ipha_src = 0; 17317 } else { 17318 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17319 } 17320 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17321 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17322 tcp_bind_hash_remove(tcp); 17323 tcp->tcp_state = TCPS_IDLE; 17324 tcp->tcp_mdt = B_FALSE; 17325 17326 connp = tcp->tcp_connp; 17327 connp->conn_mdt_ok = B_FALSE; 17328 ipcl_hash_remove(connp); 17329 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17330 17331 return (error); 17332 } 17333 17334 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17335 static void 17336 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 17337 { 17338 int error = tcp_do_unbind(tcp->tcp_connp); 17339 17340 if (error > 0) { 17341 tcp_err_ack(tcp, mp, TSYSERR, error); 17342 } else if (error < 0) { 17343 tcp_err_ack(tcp, mp, -error, 0); 17344 } else { 17345 /* Send M_FLUSH according to TPI */ 17346 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17347 17348 mp = mi_tpi_ok_ack_alloc(mp); 17349 putnext(tcp->tcp_rq, mp); 17350 } 17351 } 17352 17353 /* 17354 * Don't let port fall into the privileged range. 17355 * Since the extra privileged ports can be arbitrary we also 17356 * ensure that we exclude those from consideration. 17357 * tcp_g_epriv_ports is not sorted thus we loop over it until 17358 * there are no changes. 17359 * 17360 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17361 * but instead the code relies on: 17362 * - the fact that the address of the array and its size never changes 17363 * - the atomic assignment of the elements of the array 17364 * 17365 * Returns 0 if there are no more ports available. 17366 * 17367 * TS note: skip multilevel ports. 17368 */ 17369 static in_port_t 17370 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17371 { 17372 int i; 17373 boolean_t restart = B_FALSE; 17374 tcp_stack_t *tcps = tcp->tcp_tcps; 17375 17376 if (random && tcp_random_anon_port != 0) { 17377 (void) random_get_pseudo_bytes((uint8_t *)&port, 17378 sizeof (in_port_t)); 17379 /* 17380 * Unless changed by a sys admin, the smallest anon port 17381 * is 32768 and the largest anon port is 65535. It is 17382 * very likely (50%) for the random port to be smaller 17383 * than the smallest anon port. When that happens, 17384 * add port % (anon port range) to the smallest anon 17385 * port to get the random port. It should fall into the 17386 * valid anon port range. 17387 */ 17388 if (port < tcps->tcps_smallest_anon_port) { 17389 port = tcps->tcps_smallest_anon_port + 17390 port % (tcps->tcps_largest_anon_port - 17391 tcps->tcps_smallest_anon_port); 17392 } 17393 } 17394 17395 retry: 17396 if (port < tcps->tcps_smallest_anon_port) 17397 port = (in_port_t)tcps->tcps_smallest_anon_port; 17398 17399 if (port > tcps->tcps_largest_anon_port) { 17400 if (restart) 17401 return (0); 17402 restart = B_TRUE; 17403 port = (in_port_t)tcps->tcps_smallest_anon_port; 17404 } 17405 17406 if (port < tcps->tcps_smallest_nonpriv_port) 17407 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17408 17409 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17410 if (port == tcps->tcps_g_epriv_ports[i]) { 17411 port++; 17412 /* 17413 * Make sure whether the port is in the 17414 * valid range. 17415 */ 17416 goto retry; 17417 } 17418 } 17419 if (is_system_labeled() && 17420 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17421 IPPROTO_TCP, B_TRUE)) != 0) { 17422 port = i; 17423 goto retry; 17424 } 17425 return (port); 17426 } 17427 17428 /* 17429 * Return the next anonymous port in the privileged port range for 17430 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17431 * downwards. This is the same behavior as documented in the userland 17432 * library call rresvport(3N). 17433 * 17434 * TS note: skip multilevel ports. 17435 */ 17436 static in_port_t 17437 tcp_get_next_priv_port(const tcp_t *tcp) 17438 { 17439 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17440 in_port_t nextport; 17441 boolean_t restart = B_FALSE; 17442 tcp_stack_t *tcps = tcp->tcp_tcps; 17443 retry: 17444 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17445 next_priv_port >= IPPORT_RESERVED) { 17446 next_priv_port = IPPORT_RESERVED - 1; 17447 if (restart) 17448 return (0); 17449 restart = B_TRUE; 17450 } 17451 if (is_system_labeled() && 17452 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17453 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17454 next_priv_port = nextport; 17455 goto retry; 17456 } 17457 return (next_priv_port--); 17458 } 17459 17460 /* The write side r/w procedure. */ 17461 17462 #if CCS_STATS 17463 struct { 17464 struct { 17465 int64_t count, bytes; 17466 } tot, hit; 17467 } wrw_stats; 17468 #endif 17469 17470 /* 17471 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17472 * messages. 17473 */ 17474 /* ARGSUSED */ 17475 static void 17476 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17477 { 17478 conn_t *connp = (conn_t *)arg; 17479 tcp_t *tcp = connp->conn_tcp; 17480 queue_t *q = tcp->tcp_wq; 17481 17482 ASSERT(DB_TYPE(mp) != M_IOCTL); 17483 /* 17484 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17485 * Once the close starts, streamhead and sockfs will not let any data 17486 * packets come down (close ensures that there are no threads using the 17487 * queue and no new threads will come down) but since qprocsoff() 17488 * hasn't happened yet, a M_FLUSH or some non data message might 17489 * get reflected back (in response to our own FLUSHRW) and get 17490 * processed after tcp_close() is done. The conn would still be valid 17491 * because a ref would have added but we need to check the state 17492 * before actually processing the packet. 17493 */ 17494 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17495 freemsg(mp); 17496 return; 17497 } 17498 17499 switch (DB_TYPE(mp)) { 17500 case M_IOCDATA: 17501 tcp_wput_iocdata(tcp, mp); 17502 break; 17503 case M_FLUSH: 17504 tcp_wput_flush(tcp, mp); 17505 break; 17506 default: 17507 CALL_IP_WPUT(connp, q, mp); 17508 break; 17509 } 17510 } 17511 17512 /* 17513 * The TCP fast path write put procedure. 17514 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17515 */ 17516 /* ARGSUSED */ 17517 void 17518 tcp_output(void *arg, mblk_t *mp, void *arg2) 17519 { 17520 int len; 17521 int hdrlen; 17522 int plen; 17523 mblk_t *mp1; 17524 uchar_t *rptr; 17525 uint32_t snxt; 17526 tcph_t *tcph; 17527 struct datab *db; 17528 uint32_t suna; 17529 uint32_t mss; 17530 ipaddr_t *dst; 17531 ipaddr_t *src; 17532 uint32_t sum; 17533 int usable; 17534 conn_t *connp = (conn_t *)arg; 17535 tcp_t *tcp = connp->conn_tcp; 17536 uint32_t msize; 17537 tcp_stack_t *tcps = tcp->tcp_tcps; 17538 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17539 17540 /* 17541 * Try and ASSERT the minimum possible references on the 17542 * conn early enough. Since we are executing on write side, 17543 * the connection is obviously not detached and that means 17544 * there is a ref each for TCP and IP. Since we are behind 17545 * the squeue, the minimum references needed are 3. If the 17546 * conn is in classifier hash list, there should be an 17547 * extra ref for that (we check both the possibilities). 17548 */ 17549 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17550 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17551 17552 ASSERT(DB_TYPE(mp) == M_DATA); 17553 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17554 17555 mutex_enter(&tcp->tcp_non_sq_lock); 17556 tcp->tcp_squeue_bytes -= msize; 17557 mutex_exit(&tcp->tcp_non_sq_lock); 17558 17559 /* Check to see if this connection wants to be re-fused. */ 17560 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17561 if (tcp->tcp_ipversion == IPV4_VERSION) { 17562 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17563 &tcp->tcp_saved_tcph); 17564 } else { 17565 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17566 &tcp->tcp_saved_tcph); 17567 } 17568 } 17569 /* Bypass tcp protocol for fused tcp loopback */ 17570 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17571 return; 17572 17573 mss = tcp->tcp_mss; 17574 if (tcp->tcp_xmit_zc_clean) 17575 mp = tcp_zcopy_backoff(tcp, mp, 0); 17576 17577 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17578 len = (int)(mp->b_wptr - mp->b_rptr); 17579 17580 /* 17581 * Criteria for fast path: 17582 * 17583 * 1. no unsent data 17584 * 2. single mblk in request 17585 * 3. connection established 17586 * 4. data in mblk 17587 * 5. len <= mss 17588 * 6. no tcp_valid bits 17589 */ 17590 if ((tcp->tcp_unsent != 0) || 17591 (tcp->tcp_cork) || 17592 (mp->b_cont != NULL) || 17593 (tcp->tcp_state != TCPS_ESTABLISHED) || 17594 (len == 0) || 17595 (len > mss) || 17596 (tcp->tcp_valid_bits != 0)) { 17597 tcp_wput_data(tcp, mp, B_FALSE); 17598 return; 17599 } 17600 17601 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17602 ASSERT(tcp->tcp_fin_sent == 0); 17603 17604 /* queue new packet onto retransmission queue */ 17605 if (tcp->tcp_xmit_head == NULL) { 17606 tcp->tcp_xmit_head = mp; 17607 } else { 17608 tcp->tcp_xmit_last->b_cont = mp; 17609 } 17610 tcp->tcp_xmit_last = mp; 17611 tcp->tcp_xmit_tail = mp; 17612 17613 /* find out how much we can send */ 17614 /* BEGIN CSTYLED */ 17615 /* 17616 * un-acked usable 17617 * |--------------|-----------------| 17618 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17619 */ 17620 /* END CSTYLED */ 17621 17622 /* start sending from tcp_snxt */ 17623 snxt = tcp->tcp_snxt; 17624 17625 /* 17626 * Check to see if this connection has been idled for some 17627 * time and no ACK is expected. If it is, we need to slow 17628 * start again to get back the connection's "self-clock" as 17629 * described in VJ's paper. 17630 * 17631 * Refer to the comment in tcp_mss_set() for the calculation 17632 * of tcp_cwnd after idle. 17633 */ 17634 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17635 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17636 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17637 } 17638 17639 usable = tcp->tcp_swnd; /* tcp window size */ 17640 if (usable > tcp->tcp_cwnd) 17641 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17642 usable -= snxt; /* subtract stuff already sent */ 17643 suna = tcp->tcp_suna; 17644 usable += suna; 17645 /* usable can be < 0 if the congestion window is smaller */ 17646 if (len > usable) { 17647 /* Can't send complete M_DATA in one shot */ 17648 goto slow; 17649 } 17650 17651 mutex_enter(&tcp->tcp_non_sq_lock); 17652 if (tcp->tcp_flow_stopped && 17653 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17654 tcp_clrqfull(tcp); 17655 } 17656 mutex_exit(&tcp->tcp_non_sq_lock); 17657 17658 /* 17659 * determine if anything to send (Nagle). 17660 * 17661 * 1. len < tcp_mss (i.e. small) 17662 * 2. unacknowledged data present 17663 * 3. len < nagle limit 17664 * 4. last packet sent < nagle limit (previous packet sent) 17665 */ 17666 if ((len < mss) && (snxt != suna) && 17667 (len < (int)tcp->tcp_naglim) && 17668 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17669 /* 17670 * This was the first unsent packet and normally 17671 * mss < xmit_hiwater so there is no need to worry 17672 * about flow control. The next packet will go 17673 * through the flow control check in tcp_wput_data(). 17674 */ 17675 /* leftover work from above */ 17676 tcp->tcp_unsent = len; 17677 tcp->tcp_xmit_tail_unsent = len; 17678 17679 return; 17680 } 17681 17682 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17683 17684 if (snxt == suna) { 17685 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17686 } 17687 17688 /* we have always sent something */ 17689 tcp->tcp_rack_cnt = 0; 17690 17691 tcp->tcp_snxt = snxt + len; 17692 tcp->tcp_rack = tcp->tcp_rnxt; 17693 17694 if ((mp1 = dupb(mp)) == 0) 17695 goto no_memory; 17696 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17697 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17698 17699 /* adjust tcp header information */ 17700 tcph = tcp->tcp_tcph; 17701 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17702 17703 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17704 sum = (sum >> 16) + (sum & 0xFFFF); 17705 U16_TO_ABE16(sum, tcph->th_sum); 17706 17707 U32_TO_ABE32(snxt, tcph->th_seq); 17708 17709 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17710 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17711 BUMP_LOCAL(tcp->tcp_obsegs); 17712 17713 /* Update the latest receive window size in TCP header. */ 17714 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17715 tcph->th_win); 17716 17717 tcp->tcp_last_sent_len = (ushort_t)len; 17718 17719 plen = len + tcp->tcp_hdr_len; 17720 17721 if (tcp->tcp_ipversion == IPV4_VERSION) { 17722 tcp->tcp_ipha->ipha_length = htons(plen); 17723 } else { 17724 tcp->tcp_ip6h->ip6_plen = htons(plen - 17725 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17726 } 17727 17728 /* see if we need to allocate a mblk for the headers */ 17729 hdrlen = tcp->tcp_hdr_len; 17730 rptr = mp1->b_rptr - hdrlen; 17731 db = mp1->b_datap; 17732 if ((db->db_ref != 2) || rptr < db->db_base || 17733 (!OK_32PTR(rptr))) { 17734 /* NOTE: we assume allocb returns an OK_32PTR */ 17735 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17736 tcps->tcps_wroff_xtra, BPRI_MED); 17737 if (!mp) { 17738 freemsg(mp1); 17739 goto no_memory; 17740 } 17741 mp->b_cont = mp1; 17742 mp1 = mp; 17743 /* Leave room for Link Level header */ 17744 /* hdrlen = tcp->tcp_hdr_len; */ 17745 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17746 mp1->b_wptr = &rptr[hdrlen]; 17747 } 17748 mp1->b_rptr = rptr; 17749 17750 /* Fill in the timestamp option. */ 17751 if (tcp->tcp_snd_ts_ok) { 17752 U32_TO_BE32((uint32_t)lbolt, 17753 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17754 U32_TO_BE32(tcp->tcp_ts_recent, 17755 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17756 } else { 17757 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17758 } 17759 17760 /* copy header into outgoing packet */ 17761 dst = (ipaddr_t *)rptr; 17762 src = (ipaddr_t *)tcp->tcp_iphc; 17763 dst[0] = src[0]; 17764 dst[1] = src[1]; 17765 dst[2] = src[2]; 17766 dst[3] = src[3]; 17767 dst[4] = src[4]; 17768 dst[5] = src[5]; 17769 dst[6] = src[6]; 17770 dst[7] = src[7]; 17771 dst[8] = src[8]; 17772 dst[9] = src[9]; 17773 if (hdrlen -= 40) { 17774 hdrlen >>= 2; 17775 dst += 10; 17776 src += 10; 17777 do { 17778 *dst++ = *src++; 17779 } while (--hdrlen); 17780 } 17781 17782 /* 17783 * Set the ECN info in the TCP header. Note that this 17784 * is not the template header. 17785 */ 17786 if (tcp->tcp_ecn_ok) { 17787 SET_ECT(tcp, rptr); 17788 17789 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17790 if (tcp->tcp_ecn_echo_on) 17791 tcph->th_flags[0] |= TH_ECE; 17792 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17793 tcph->th_flags[0] |= TH_CWR; 17794 tcp->tcp_ecn_cwr_sent = B_TRUE; 17795 } 17796 } 17797 17798 if (tcp->tcp_ip_forward_progress) { 17799 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17800 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17801 tcp->tcp_ip_forward_progress = B_FALSE; 17802 } 17803 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17804 return; 17805 17806 /* 17807 * If we ran out of memory, we pretend to have sent the packet 17808 * and that it was lost on the wire. 17809 */ 17810 no_memory: 17811 return; 17812 17813 slow: 17814 /* leftover work from above */ 17815 tcp->tcp_unsent = len; 17816 tcp->tcp_xmit_tail_unsent = len; 17817 tcp_wput_data(tcp, NULL, B_FALSE); 17818 } 17819 17820 /* ARGSUSED */ 17821 void 17822 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17823 { 17824 conn_t *connp = (conn_t *)arg; 17825 tcp_t *tcp = connp->conn_tcp; 17826 queue_t *q = tcp->tcp_rq; 17827 struct tcp_options *tcpopt; 17828 tcp_stack_t *tcps = tcp->tcp_tcps; 17829 17830 /* socket options */ 17831 uint_t sopp_flags; 17832 ssize_t sopp_rxhiwat; 17833 ssize_t sopp_maxblk; 17834 ushort_t sopp_wroff; 17835 ushort_t sopp_tail; 17836 ushort_t sopp_copyopt; 17837 17838 tcpopt = (struct tcp_options *)mp->b_rptr; 17839 17840 /* 17841 * Drop the eager's ref on the listener, that was placed when 17842 * this eager began life in tcp_conn_request. 17843 */ 17844 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17845 if (IPCL_IS_NONSTR(connp)) { 17846 /* Safe to free conn_ind message */ 17847 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17848 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17849 } 17850 17851 tcp->tcp_detached = B_FALSE; 17852 17853 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17854 /* 17855 * Someone blewoff the eager before we could finish 17856 * the accept. 17857 * 17858 * The only reason eager exists it because we put in 17859 * a ref on it when conn ind went up. We need to send 17860 * a disconnect indication up while the last reference 17861 * on the eager will be dropped by the squeue when we 17862 * return. 17863 */ 17864 ASSERT(tcp->tcp_listener == NULL); 17865 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17866 if (IPCL_IS_NONSTR(connp)) { 17867 ASSERT(tcp->tcp_issocket); 17868 (*connp->conn_upcalls->su_disconnected)( 17869 connp->conn_upper_handle, tcp->tcp_connid, 17870 ECONNREFUSED); 17871 freemsg(mp); 17872 } else { 17873 struct T_discon_ind *tdi; 17874 17875 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17876 /* 17877 * Let us reuse the incoming mblk to avoid 17878 * memory allocation failure problems. We know 17879 * that the size of the incoming mblk i.e. 17880 * stroptions is greater than sizeof 17881 * T_discon_ind. So the reallocb below can't 17882 * fail. 17883 */ 17884 freemsg(mp->b_cont); 17885 mp->b_cont = NULL; 17886 ASSERT(DB_REF(mp) == 1); 17887 mp = reallocb(mp, sizeof (struct T_discon_ind), 17888 B_FALSE); 17889 ASSERT(mp != NULL); 17890 DB_TYPE(mp) = M_PROTO; 17891 ((union T_primitives *)mp->b_rptr)->type = 17892 T_DISCON_IND; 17893 tdi = (struct T_discon_ind *)mp->b_rptr; 17894 if (tcp->tcp_issocket) { 17895 tdi->DISCON_reason = ECONNREFUSED; 17896 tdi->SEQ_number = 0; 17897 } else { 17898 tdi->DISCON_reason = ENOPROTOOPT; 17899 tdi->SEQ_number = 17900 tcp->tcp_conn_req_seqnum; 17901 } 17902 mp->b_wptr = mp->b_rptr + 17903 sizeof (struct T_discon_ind); 17904 putnext(q, mp); 17905 return; 17906 } 17907 } 17908 if (tcp->tcp_hard_binding) { 17909 tcp->tcp_hard_binding = B_FALSE; 17910 tcp->tcp_hard_bound = B_TRUE; 17911 } 17912 return; 17913 } 17914 17915 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17916 int boundif = tcpopt->to_boundif; 17917 uint_t len = sizeof (int); 17918 17919 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17920 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17921 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17922 } 17923 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17924 uint_t on = 1; 17925 uint_t len = sizeof (uint_t); 17926 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17927 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17928 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17929 } 17930 17931 /* 17932 * For a loopback connection with tcp_direct_sockfs on, note that 17933 * we don't have to protect tcp_rcv_list yet because synchronous 17934 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17935 * possibly race with us. 17936 */ 17937 17938 /* 17939 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17940 * properly. This is the first time we know of the acceptor' 17941 * queue. So we do it here. 17942 * 17943 * XXX 17944 */ 17945 if (tcp->tcp_rcv_list == NULL) { 17946 /* 17947 * Recv queue is empty, tcp_rwnd should not have changed. 17948 * That means it should be equal to the listener's tcp_rwnd. 17949 */ 17950 if (!IPCL_IS_NONSTR(connp)) 17951 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17952 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17953 } else { 17954 #ifdef DEBUG 17955 mblk_t *tmp; 17956 mblk_t *mp1; 17957 uint_t cnt = 0; 17958 17959 mp1 = tcp->tcp_rcv_list; 17960 while ((tmp = mp1) != NULL) { 17961 mp1 = tmp->b_next; 17962 cnt += msgdsize(tmp); 17963 } 17964 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17965 #endif 17966 /* There is some data, add them back to get the max. */ 17967 if (!IPCL_IS_NONSTR(connp)) 17968 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17969 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17970 } 17971 /* 17972 * This is the first time we run on the correct 17973 * queue after tcp_accept. So fix all the q parameters 17974 * here. 17975 */ 17976 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17977 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17978 17979 /* 17980 * Record the stream head's high water mark for this endpoint; 17981 * this is used for flow-control purposes. 17982 */ 17983 sopp_rxhiwat = tcp->tcp_fused ? 17984 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17985 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17986 17987 /* 17988 * Determine what write offset value to use depending on SACK and 17989 * whether the endpoint is fused or not. 17990 */ 17991 if (tcp->tcp_fused) { 17992 ASSERT(tcp->tcp_loopback); 17993 ASSERT(tcp->tcp_loopback_peer != NULL); 17994 /* 17995 * For fused tcp loopback, set the stream head's write 17996 * offset value to zero since we won't be needing any room 17997 * for TCP/IP headers. This would also improve performance 17998 * since it would reduce the amount of work done by kmem. 17999 * Non-fused tcp loopback case is handled separately below. 18000 */ 18001 sopp_wroff = 0; 18002 /* 18003 * Update the peer's transmit parameters according to 18004 * our recently calculated high water mark value. 18005 */ 18006 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18007 } else if (tcp->tcp_snd_sack_ok) { 18008 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18009 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18010 } else { 18011 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18012 tcps->tcps_wroff_xtra); 18013 } 18014 18015 /* 18016 * If this is endpoint is handling SSL, then reserve extra 18017 * offset and space at the end. 18018 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18019 * overriding the previous setting. The extra cost of signing and 18020 * encrypting multiple MSS-size records (12 of them with Ethernet), 18021 * instead of a single contiguous one by the stream head 18022 * largely outweighs the statistical reduction of ACKs, when 18023 * applicable. The peer will also save on decryption and verification 18024 * costs. 18025 */ 18026 if (tcp->tcp_kssl_ctx != NULL) { 18027 sopp_wroff += SSL3_WROFFSET; 18028 18029 sopp_flags |= SOCKOPT_TAIL; 18030 sopp_tail = SSL3_MAX_TAIL_LEN; 18031 18032 sopp_flags |= SOCKOPT_ZCOPY; 18033 sopp_copyopt = ZCVMUNSAFE; 18034 18035 sopp_maxblk = SSL3_MAX_RECORD_LEN; 18036 } 18037 18038 /* Send the options up */ 18039 if (IPCL_IS_NONSTR(connp)) { 18040 struct sock_proto_props sopp; 18041 18042 sopp.sopp_flags = sopp_flags; 18043 sopp.sopp_wroff = sopp_wroff; 18044 sopp.sopp_maxblk = sopp_maxblk; 18045 sopp.sopp_rxhiwat = sopp_rxhiwat; 18046 if (sopp_flags & SOCKOPT_TAIL) { 18047 ASSERT(tcp->tcp_kssl_ctx != NULL); 18048 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 18049 sopp.sopp_tail = sopp_tail; 18050 sopp.sopp_zcopyflag = sopp_copyopt; 18051 } 18052 (*connp->conn_upcalls->su_set_proto_props) 18053 (connp->conn_upper_handle, &sopp); 18054 } else { 18055 struct stroptions *stropt; 18056 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18057 if (stropt_mp == NULL) { 18058 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 18059 return; 18060 } 18061 DB_TYPE(stropt_mp) = M_SETOPTS; 18062 stropt = (struct stroptions *)stropt_mp->b_rptr; 18063 stropt_mp->b_wptr += sizeof (struct stroptions); 18064 stropt = (struct stroptions *)stropt_mp->b_rptr; 18065 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 18066 stropt->so_hiwat = sopp_rxhiwat; 18067 stropt->so_wroff = sopp_wroff; 18068 stropt->so_maxblk = sopp_maxblk; 18069 18070 if (sopp_flags & SOCKOPT_TAIL) { 18071 ASSERT(tcp->tcp_kssl_ctx != NULL); 18072 18073 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 18074 stropt->so_tail = sopp_tail; 18075 stropt->so_copyopt = sopp_copyopt; 18076 } 18077 18078 /* Send the options up */ 18079 putnext(q, stropt_mp); 18080 } 18081 18082 freemsg(mp); 18083 /* 18084 * Pass up any data and/or a fin that has been received. 18085 * 18086 * Adjust receive window in case it had decreased 18087 * (because there is data <=> tcp_rcv_list != NULL) 18088 * while the connection was detached. Note that 18089 * in case the eager was flow-controlled, w/o this 18090 * code, the rwnd may never open up again! 18091 */ 18092 if (tcp->tcp_rcv_list != NULL) { 18093 if (IPCL_IS_NONSTR(connp)) { 18094 mblk_t *mp; 18095 int space_left; 18096 int error; 18097 boolean_t push = B_TRUE; 18098 18099 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 18100 (connp->conn_upper_handle, NULL, 0, 0, &error, 18101 &push) >= 0) { 18102 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 18103 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18104 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18105 tcp_xmit_ctl(NULL, 18106 tcp, (tcp->tcp_swnd == 0) ? 18107 tcp->tcp_suna : tcp->tcp_snxt, 18108 tcp->tcp_rnxt, TH_ACK); 18109 } 18110 } 18111 while ((mp = tcp->tcp_rcv_list) != NULL) { 18112 push = B_TRUE; 18113 tcp->tcp_rcv_list = mp->b_next; 18114 mp->b_next = NULL; 18115 space_left = (*connp->conn_upcalls->su_recv) 18116 (connp->conn_upper_handle, mp, msgdsize(mp), 18117 0, &error, &push); 18118 if (space_left < 0) { 18119 /* 18120 * At this point the eager is not 18121 * visible to anyone, so fallback 18122 * can not happen. 18123 */ 18124 ASSERT(error != EOPNOTSUPP); 18125 } 18126 } 18127 tcp->tcp_rcv_last_head = NULL; 18128 tcp->tcp_rcv_last_tail = NULL; 18129 tcp->tcp_rcv_cnt = 0; 18130 } else { 18131 /* We drain directly in case of fused tcp loopback */ 18132 sodirect_t *sodp; 18133 18134 if (!tcp->tcp_fused && canputnext(q)) { 18135 tcp->tcp_rwnd = q->q_hiwat; 18136 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18137 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18138 tcp_xmit_ctl(NULL, 18139 tcp, (tcp->tcp_swnd == 0) ? 18140 tcp->tcp_suna : tcp->tcp_snxt, 18141 tcp->tcp_rnxt, TH_ACK); 18142 } 18143 } 18144 18145 SOD_PTR_ENTER(tcp, sodp); 18146 if (sodp != NULL) { 18147 /* Sodirect, move from rcv_list */ 18148 ASSERT(!tcp->tcp_fused); 18149 while ((mp = tcp->tcp_rcv_list) != NULL) { 18150 tcp->tcp_rcv_list = mp->b_next; 18151 mp->b_next = NULL; 18152 (void) tcp_rcv_sod_enqueue(tcp, sodp, 18153 mp, msgdsize(mp)); 18154 } 18155 tcp->tcp_rcv_last_head = NULL; 18156 tcp->tcp_rcv_last_tail = NULL; 18157 tcp->tcp_rcv_cnt = 0; 18158 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18159 /* sod_wakeup() did the mutex_exit() */ 18160 } else { 18161 /* Not sodirect, drain */ 18162 (void) tcp_rcv_drain(tcp); 18163 } 18164 } 18165 18166 /* 18167 * For fused tcp loopback, back-enable peer endpoint 18168 * if it's currently flow-controlled. 18169 */ 18170 if (tcp->tcp_fused) { 18171 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18172 18173 ASSERT(peer_tcp != NULL); 18174 ASSERT(peer_tcp->tcp_fused); 18175 /* 18176 * In order to change the peer's tcp_flow_stopped, 18177 * we need to take locks for both end points. The 18178 * highest address is taken first. 18179 */ 18180 if (peer_tcp > tcp) { 18181 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18182 mutex_enter(&tcp->tcp_non_sq_lock); 18183 } else { 18184 mutex_enter(&tcp->tcp_non_sq_lock); 18185 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18186 } 18187 if (peer_tcp->tcp_flow_stopped) { 18188 tcp_clrqfull(peer_tcp); 18189 TCP_STAT(tcps, tcp_fusion_backenabled); 18190 } 18191 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18192 mutex_exit(&tcp->tcp_non_sq_lock); 18193 } 18194 } 18195 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18196 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18197 tcp->tcp_ordrel_done = B_TRUE; 18198 if (IPCL_IS_NONSTR(connp)) { 18199 ASSERT(tcp->tcp_ordrel_mp == NULL); 18200 (*connp->conn_upcalls->su_opctl)( 18201 connp->conn_upper_handle, 18202 SOCK_OPCTL_SHUT_RECV, 0); 18203 } else { 18204 mp = tcp->tcp_ordrel_mp; 18205 tcp->tcp_ordrel_mp = NULL; 18206 putnext(q, mp); 18207 } 18208 } 18209 if (tcp->tcp_hard_binding) { 18210 tcp->tcp_hard_binding = B_FALSE; 18211 tcp->tcp_hard_bound = B_TRUE; 18212 } 18213 18214 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 18215 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 18216 tcp->tcp_loopback_peer != NULL && 18217 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 18218 tcp_fuse_syncstr_enable_pair(tcp); 18219 } 18220 18221 if (tcp->tcp_ka_enabled) { 18222 tcp->tcp_ka_last_intrvl = 0; 18223 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18224 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18225 } 18226 18227 /* 18228 * At this point, eager is fully established and will 18229 * have the following references - 18230 * 18231 * 2 references for connection to exist (1 for TCP and 1 for IP). 18232 * 1 reference for the squeue which will be dropped by the squeue as 18233 * soon as this function returns. 18234 * There will be 1 additonal reference for being in classifier 18235 * hash list provided something bad hasn't happened. 18236 */ 18237 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18238 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18239 } 18240 18241 /* 18242 * The function called through squeue to get behind listener's perimeter to 18243 * send a deffered conn_ind. 18244 */ 18245 /* ARGSUSED */ 18246 void 18247 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18248 { 18249 conn_t *connp = (conn_t *)arg; 18250 tcp_t *listener = connp->conn_tcp; 18251 struct T_conn_ind *conn_ind; 18252 tcp_t *tcp; 18253 18254 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18255 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18256 conn_ind->OPT_length); 18257 18258 if (listener->tcp_state == TCPS_CLOSED || 18259 TCP_IS_DETACHED(listener)) { 18260 /* 18261 * If listener has closed, it would have caused a 18262 * a cleanup/blowoff to happen for the eager. 18263 * 18264 * We need to drop the ref on eager that was put 18265 * tcp_rput_data() before trying to send the conn_ind 18266 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18267 * and tcp_wput_accept() is sending this deferred conn_ind but 18268 * listener is closed so we drop the ref. 18269 */ 18270 CONN_DEC_REF(tcp->tcp_connp); 18271 freemsg(mp); 18272 return; 18273 } 18274 18275 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 18276 } 18277 18278 /* ARGSUSED */ 18279 static int 18280 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 18281 { 18282 tcp_t *listener, *eager; 18283 mblk_t *opt_mp; 18284 struct tcp_options *tcpopt; 18285 18286 listener = lconnp->conn_tcp; 18287 ASSERT(listener->tcp_state == TCPS_LISTEN); 18288 eager = econnp->conn_tcp; 18289 ASSERT(eager->tcp_listener != NULL); 18290 18291 ASSERT(eager->tcp_rq != NULL); 18292 18293 /* If tcp_fused and sodirect enabled disable it */ 18294 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18295 /* Fused, disable sodirect */ 18296 mutex_enter(eager->tcp_sodirect->sod_lockp); 18297 SOD_DISABLE(eager->tcp_sodirect); 18298 mutex_exit(eager->tcp_sodirect->sod_lockp); 18299 eager->tcp_sodirect = NULL; 18300 } 18301 18302 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 18303 if (opt_mp == NULL) { 18304 return (-TPROTO); 18305 } 18306 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 18307 eager->tcp_issocket = B_TRUE; 18308 18309 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18310 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18311 ASSERT(econnp->conn_netstack == 18312 listener->tcp_connp->conn_netstack); 18313 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18314 18315 /* Put the ref for IP */ 18316 CONN_INC_REF(econnp); 18317 18318 /* 18319 * We should have minimum of 3 references on the conn 18320 * at this point. One each for TCP and IP and one for 18321 * the T_conn_ind that was sent up when the 3-way handshake 18322 * completed. In the normal case we would also have another 18323 * reference (making a total of 4) for the conn being in the 18324 * classifier hash list. However the eager could have received 18325 * an RST subsequently and tcp_closei_local could have removed 18326 * the eager from the classifier hash list, hence we can't 18327 * assert that reference. 18328 */ 18329 ASSERT(econnp->conn_ref >= 3); 18330 18331 opt_mp->b_datap->db_type = M_SETOPTS; 18332 opt_mp->b_wptr += sizeof (struct tcp_options); 18333 18334 /* 18335 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18336 * from listener to acceptor. 18337 */ 18338 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 18339 tcpopt->to_flags = 0; 18340 18341 if (listener->tcp_bound_if != 0) { 18342 tcpopt->to_flags |= TCPOPT_BOUNDIF; 18343 tcpopt->to_boundif = listener->tcp_bound_if; 18344 } 18345 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18346 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 18347 } 18348 18349 mutex_enter(&listener->tcp_eager_lock); 18350 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18351 18352 tcp_t *tail; 18353 tcp_t *tcp; 18354 mblk_t *mp1; 18355 18356 tcp = listener->tcp_eager_prev_q0; 18357 /* 18358 * listener->tcp_eager_prev_q0 points to the TAIL of the 18359 * deferred T_conn_ind queue. We need to get to the head 18360 * of the queue in order to send up T_conn_ind the same 18361 * order as how the 3WHS is completed. 18362 */ 18363 while (tcp != listener) { 18364 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18365 !tcp->tcp_kssl_pending) 18366 break; 18367 else 18368 tcp = tcp->tcp_eager_prev_q0; 18369 } 18370 /* None of the pending eagers can be sent up now */ 18371 if (tcp == listener) 18372 goto no_more_eagers; 18373 18374 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18375 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18376 /* Move from q0 to q */ 18377 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18378 listener->tcp_conn_req_cnt_q0--; 18379 listener->tcp_conn_req_cnt_q++; 18380 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18381 tcp->tcp_eager_prev_q0; 18382 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18383 tcp->tcp_eager_next_q0; 18384 tcp->tcp_eager_prev_q0 = NULL; 18385 tcp->tcp_eager_next_q0 = NULL; 18386 tcp->tcp_conn_def_q0 = B_FALSE; 18387 18388 /* Make sure the tcp isn't in the list of droppables */ 18389 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18390 tcp->tcp_eager_prev_drop_q0 == NULL); 18391 18392 /* 18393 * Insert at end of the queue because sockfs sends 18394 * down T_CONN_RES in chronological order. Leaving 18395 * the older conn indications at front of the queue 18396 * helps reducing search time. 18397 */ 18398 tail = listener->tcp_eager_last_q; 18399 if (tail != NULL) { 18400 tail->tcp_eager_next_q = tcp; 18401 } else { 18402 listener->tcp_eager_next_q = tcp; 18403 } 18404 listener->tcp_eager_last_q = tcp; 18405 tcp->tcp_eager_next_q = NULL; 18406 18407 /* Need to get inside the listener perimeter */ 18408 CONN_INC_REF(listener->tcp_connp); 18409 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 18410 tcp_send_pending, listener->tcp_connp, SQ_FILL, 18411 SQTAG_TCP_SEND_PENDING); 18412 } 18413 no_more_eagers: 18414 tcp_eager_unlink(eager); 18415 mutex_exit(&listener->tcp_eager_lock); 18416 18417 /* 18418 * At this point, the eager is detached from the listener 18419 * but we still have an extra refs on eager (apart from the 18420 * usual tcp references). The ref was placed in tcp_rput_data 18421 * before sending the conn_ind in tcp_send_conn_ind. 18422 * The ref will be dropped in tcp_accept_finish(). 18423 */ 18424 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 18425 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 18426 return (0); 18427 } 18428 18429 int 18430 tcp_accept(sock_lower_handle_t lproto_handle, 18431 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 18432 cred_t *cr) 18433 { 18434 conn_t *lconnp, *econnp; 18435 tcp_t *listener, *eager; 18436 tcp_stack_t *tcps; 18437 18438 lconnp = (conn_t *)lproto_handle; 18439 listener = lconnp->conn_tcp; 18440 ASSERT(listener->tcp_state == TCPS_LISTEN); 18441 econnp = (conn_t *)eproto_handle; 18442 eager = econnp->conn_tcp; 18443 ASSERT(eager->tcp_listener != NULL); 18444 tcps = eager->tcp_tcps; 18445 18446 /* 18447 * It is OK to manipulate these fields outside the eager's squeue 18448 * because they will not start being used until tcp_accept_finish 18449 * has been called. 18450 */ 18451 ASSERT(lconnp->conn_upper_handle != NULL); 18452 ASSERT(econnp->conn_upper_handle == NULL); 18453 econnp->conn_upper_handle = sock_handle; 18454 econnp->conn_upcalls = lconnp->conn_upcalls; 18455 ASSERT(IPCL_IS_NONSTR(econnp)); 18456 /* 18457 * Create helper stream if it is a non-TPI TCP connection. 18458 */ 18459 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 18460 ip1dbg(("tcp_accept: create of IP helper stream" 18461 " failed\n")); 18462 return (EPROTO); 18463 } 18464 eager->tcp_rq = econnp->conn_rq; 18465 eager->tcp_wq = econnp->conn_wq; 18466 18467 ASSERT(eager->tcp_rq != NULL); 18468 18469 eager->tcp_sodirect = SOD_SOTOSODP(sock_handle); 18470 return (tcp_accept_common(lconnp, econnp, cr)); 18471 } 18472 18473 18474 /* 18475 * This is the STREAMS entry point for T_CONN_RES coming down on 18476 * Acceptor STREAM when sockfs listener does accept processing. 18477 * Read the block comment on top of tcp_conn_request(). 18478 */ 18479 void 18480 tcp_tpi_accept(queue_t *q, mblk_t *mp) 18481 { 18482 queue_t *rq = RD(q); 18483 struct T_conn_res *conn_res; 18484 tcp_t *eager; 18485 tcp_t *listener; 18486 struct T_ok_ack *ok; 18487 t_scalar_t PRIM_type; 18488 conn_t *econnp; 18489 18490 ASSERT(DB_TYPE(mp) == M_PROTO); 18491 18492 conn_res = (struct T_conn_res *)mp->b_rptr; 18493 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18494 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18495 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18496 if (mp != NULL) 18497 putnext(rq, mp); 18498 return; 18499 } 18500 switch (conn_res->PRIM_type) { 18501 case O_T_CONN_RES: 18502 case T_CONN_RES: 18503 /* 18504 * We pass up an err ack if allocb fails. This will 18505 * cause sockfs to issue a T_DISCON_REQ which will cause 18506 * tcp_eager_blowoff to be called. sockfs will then call 18507 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18508 * we need to do the allocb up here because we have to 18509 * make sure rq->q_qinfo->qi_qclose still points to the 18510 * correct function (tcpclose_accept) in case allocb 18511 * fails. 18512 */ 18513 bcopy(mp->b_rptr + conn_res->OPT_offset, 18514 &eager, conn_res->OPT_length); 18515 PRIM_type = conn_res->PRIM_type; 18516 mp->b_datap->db_type = M_PCPROTO; 18517 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18518 ok = (struct T_ok_ack *)mp->b_rptr; 18519 ok->PRIM_type = T_OK_ACK; 18520 ok->CORRECT_prim = PRIM_type; 18521 econnp = eager->tcp_connp; 18522 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18523 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18524 eager->tcp_rq = rq; 18525 eager->tcp_wq = q; 18526 rq->q_ptr = econnp; 18527 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18528 q->q_ptr = econnp; 18529 q->q_qinfo = &tcp_winit; 18530 listener = eager->tcp_listener; 18531 18532 /* 18533 * TCP is _D_SODIRECT and sockfs is directly above so 18534 * save shared sodirect_t pointer (if any). 18535 */ 18536 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18537 if (tcp_accept_common(listener->tcp_connp, 18538 econnp, CRED()) < 0) { 18539 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18540 if (mp != NULL) 18541 putnext(rq, mp); 18542 return; 18543 } 18544 18545 /* 18546 * Send the new local address also up to sockfs. There 18547 * should already be enough space in the mp that came 18548 * down from soaccept(). 18549 */ 18550 if (eager->tcp_family == AF_INET) { 18551 sin_t *sin; 18552 18553 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18554 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18555 sin = (sin_t *)mp->b_wptr; 18556 mp->b_wptr += sizeof (sin_t); 18557 sin->sin_family = AF_INET; 18558 sin->sin_port = eager->tcp_lport; 18559 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18560 } else { 18561 sin6_t *sin6; 18562 18563 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18564 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18565 sin6 = (sin6_t *)mp->b_wptr; 18566 mp->b_wptr += sizeof (sin6_t); 18567 sin6->sin6_family = AF_INET6; 18568 sin6->sin6_port = eager->tcp_lport; 18569 if (eager->tcp_ipversion == IPV4_VERSION) { 18570 sin6->sin6_flowinfo = 0; 18571 IN6_IPADDR_TO_V4MAPPED( 18572 eager->tcp_ipha->ipha_src, 18573 &sin6->sin6_addr); 18574 } else { 18575 ASSERT(eager->tcp_ip6h != NULL); 18576 sin6->sin6_flowinfo = 18577 eager->tcp_ip6h->ip6_vcf & 18578 ~IPV6_VERS_AND_FLOW_MASK; 18579 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18580 } 18581 sin6->sin6_scope_id = 0; 18582 sin6->__sin6_src_id = 0; 18583 } 18584 18585 putnext(rq, mp); 18586 return; 18587 default: 18588 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18589 if (mp != NULL) 18590 putnext(rq, mp); 18591 return; 18592 } 18593 } 18594 18595 static int 18596 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18597 { 18598 sin_t *sin = (sin_t *)sa; 18599 sin6_t *sin6 = (sin6_t *)sa; 18600 18601 switch (tcp->tcp_family) { 18602 case AF_INET: 18603 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18604 18605 if (*salenp < sizeof (sin_t)) 18606 return (EINVAL); 18607 18608 *sin = sin_null; 18609 sin->sin_family = AF_INET; 18610 if (tcp->tcp_state >= TCPS_BOUND) { 18611 sin->sin_port = tcp->tcp_lport; 18612 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18613 } 18614 *salenp = sizeof (sin_t); 18615 break; 18616 18617 case AF_INET6: 18618 if (*salenp < sizeof (sin6_t)) 18619 return (EINVAL); 18620 18621 *sin6 = sin6_null; 18622 sin6->sin6_family = AF_INET6; 18623 if (tcp->tcp_state >= TCPS_BOUND) { 18624 sin6->sin6_port = tcp->tcp_lport; 18625 if (tcp->tcp_ipversion == IPV4_VERSION) { 18626 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18627 &sin6->sin6_addr); 18628 } else { 18629 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18630 } 18631 } 18632 *salenp = sizeof (sin6_t); 18633 break; 18634 } 18635 18636 return (0); 18637 } 18638 18639 static int 18640 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18641 { 18642 sin_t *sin = (sin_t *)sa; 18643 sin6_t *sin6 = (sin6_t *)sa; 18644 18645 if (tcp->tcp_state < TCPS_SYN_RCVD) 18646 return (ENOTCONN); 18647 18648 switch (tcp->tcp_family) { 18649 case AF_INET: 18650 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18651 18652 if (*salenp < sizeof (sin_t)) 18653 return (EINVAL); 18654 18655 *sin = sin_null; 18656 sin->sin_family = AF_INET; 18657 sin->sin_port = tcp->tcp_fport; 18658 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18659 sin->sin_addr.s_addr); 18660 *salenp = sizeof (sin_t); 18661 break; 18662 18663 case AF_INET6: 18664 if (*salenp < sizeof (sin6_t)) 18665 return (EINVAL); 18666 18667 *sin6 = sin6_null; 18668 sin6->sin6_family = AF_INET6; 18669 sin6->sin6_port = tcp->tcp_fport; 18670 sin6->sin6_addr = tcp->tcp_remote_v6; 18671 if (tcp->tcp_ipversion == IPV6_VERSION) { 18672 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18673 ~IPV6_VERS_AND_FLOW_MASK; 18674 } 18675 *salenp = sizeof (sin6_t); 18676 break; 18677 } 18678 18679 return (0); 18680 } 18681 18682 /* 18683 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18684 */ 18685 static void 18686 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18687 { 18688 void *data; 18689 mblk_t *datamp = mp->b_cont; 18690 tcp_t *tcp = Q_TO_TCP(q); 18691 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18692 18693 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18694 cmdp->cb_error = EPROTO; 18695 qreply(q, mp); 18696 return; 18697 } 18698 18699 data = datamp->b_rptr; 18700 18701 switch (cmdp->cb_cmd) { 18702 case TI_GETPEERNAME: 18703 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 18704 break; 18705 case TI_GETMYNAME: 18706 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 18707 break; 18708 default: 18709 cmdp->cb_error = EINVAL; 18710 break; 18711 } 18712 18713 qreply(q, mp); 18714 } 18715 18716 void 18717 tcp_wput(queue_t *q, mblk_t *mp) 18718 { 18719 conn_t *connp = Q_TO_CONN(q); 18720 tcp_t *tcp; 18721 void (*output_proc)(); 18722 t_scalar_t type; 18723 uchar_t *rptr; 18724 struct iocblk *iocp; 18725 size_t size; 18726 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18727 18728 ASSERT(connp->conn_ref >= 2); 18729 18730 switch (DB_TYPE(mp)) { 18731 case M_DATA: 18732 tcp = connp->conn_tcp; 18733 ASSERT(tcp != NULL); 18734 18735 size = msgdsize(mp); 18736 18737 mutex_enter(&tcp->tcp_non_sq_lock); 18738 tcp->tcp_squeue_bytes += size; 18739 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18740 tcp_setqfull(tcp); 18741 } 18742 mutex_exit(&tcp->tcp_non_sq_lock); 18743 18744 CONN_INC_REF(connp); 18745 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18746 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18747 return; 18748 18749 case M_CMD: 18750 tcp_wput_cmdblk(q, mp); 18751 return; 18752 18753 case M_PROTO: 18754 case M_PCPROTO: 18755 /* 18756 * if it is a snmp message, don't get behind the squeue 18757 */ 18758 tcp = connp->conn_tcp; 18759 rptr = mp->b_rptr; 18760 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18761 type = ((union T_primitives *)rptr)->type; 18762 } else { 18763 if (tcp->tcp_debug) { 18764 (void) strlog(TCP_MOD_ID, 0, 1, 18765 SL_ERROR|SL_TRACE, 18766 "tcp_wput_proto, dropping one..."); 18767 } 18768 freemsg(mp); 18769 return; 18770 } 18771 if (type == T_SVR4_OPTMGMT_REQ) { 18772 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18773 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18774 cr)) { 18775 /* 18776 * This was a SNMP request 18777 */ 18778 return; 18779 } else { 18780 output_proc = tcp_wput_proto; 18781 } 18782 } else { 18783 output_proc = tcp_wput_proto; 18784 } 18785 break; 18786 case M_IOCTL: 18787 /* 18788 * Most ioctls can be processed right away without going via 18789 * squeues - process them right here. Those that do require 18790 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18791 * are processed by tcp_wput_ioctl(). 18792 */ 18793 iocp = (struct iocblk *)mp->b_rptr; 18794 tcp = connp->conn_tcp; 18795 18796 switch (iocp->ioc_cmd) { 18797 case TCP_IOC_ABORT_CONN: 18798 tcp_ioctl_abort_conn(q, mp); 18799 return; 18800 case TI_GETPEERNAME: 18801 case TI_GETMYNAME: 18802 mi_copyin(q, mp, NULL, 18803 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18804 return; 18805 case ND_SET: 18806 /* nd_getset does the necessary checks */ 18807 case ND_GET: 18808 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18809 CALL_IP_WPUT(connp, q, mp); 18810 return; 18811 } 18812 qreply(q, mp); 18813 return; 18814 case TCP_IOC_DEFAULT_Q: 18815 /* 18816 * Wants to be the default wq. Check the credentials 18817 * first, the rest is executed via squeue. 18818 */ 18819 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18820 iocp->ioc_error = EPERM; 18821 iocp->ioc_count = 0; 18822 mp->b_datap->db_type = M_IOCACK; 18823 qreply(q, mp); 18824 return; 18825 } 18826 output_proc = tcp_wput_ioctl; 18827 break; 18828 default: 18829 output_proc = tcp_wput_ioctl; 18830 break; 18831 } 18832 break; 18833 default: 18834 output_proc = tcp_wput_nondata; 18835 break; 18836 } 18837 18838 CONN_INC_REF(connp); 18839 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18840 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18841 } 18842 18843 /* 18844 * Initial STREAMS write side put() procedure for sockets. It tries to 18845 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18846 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18847 * are handled by tcp_wput() as usual. 18848 * 18849 * All further messages will also be handled by tcp_wput() because we cannot 18850 * be sure that the above short cut is safe later. 18851 */ 18852 static void 18853 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18854 { 18855 conn_t *connp = Q_TO_CONN(wq); 18856 tcp_t *tcp = connp->conn_tcp; 18857 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18858 18859 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18860 wq->q_qinfo = &tcp_winit; 18861 18862 ASSERT(IPCL_IS_TCP(connp)); 18863 ASSERT(TCP_IS_SOCKET(tcp)); 18864 18865 if (DB_TYPE(mp) == M_PCPROTO && 18866 MBLKL(mp) == sizeof (struct T_capability_req) && 18867 car->PRIM_type == T_CAPABILITY_REQ) { 18868 tcp_capability_req(tcp, mp); 18869 return; 18870 } 18871 18872 tcp_wput(wq, mp); 18873 } 18874 18875 /* ARGSUSED */ 18876 static void 18877 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18878 { 18879 #ifdef DEBUG 18880 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18881 #endif 18882 freemsg(mp); 18883 } 18884 18885 static boolean_t 18886 tcp_zcopy_check(tcp_t *tcp) 18887 { 18888 conn_t *connp = tcp->tcp_connp; 18889 ire_t *ire; 18890 boolean_t zc_enabled = B_FALSE; 18891 tcp_stack_t *tcps = tcp->tcp_tcps; 18892 18893 if (do_tcpzcopy == 2) 18894 zc_enabled = B_TRUE; 18895 else if (tcp->tcp_ipversion == IPV4_VERSION && 18896 IPCL_IS_CONNECTED(connp) && 18897 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18898 connp->conn_dontroute == 0 && 18899 !connp->conn_nexthop_set && 18900 connp->conn_outgoing_ill == NULL && 18901 do_tcpzcopy == 1) { 18902 /* 18903 * the checks above closely resemble the fast path checks 18904 * in tcp_send_data(). 18905 */ 18906 mutex_enter(&connp->conn_lock); 18907 ire = connp->conn_ire_cache; 18908 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18909 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18910 IRE_REFHOLD(ire); 18911 if (ire->ire_stq != NULL) { 18912 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18913 18914 zc_enabled = ill && (ill->ill_capabilities & 18915 ILL_CAPAB_ZEROCOPY) && 18916 (ill->ill_zerocopy_capab-> 18917 ill_zerocopy_flags != 0); 18918 } 18919 IRE_REFRELE(ire); 18920 } 18921 mutex_exit(&connp->conn_lock); 18922 } 18923 tcp->tcp_snd_zcopy_on = zc_enabled; 18924 if (!TCP_IS_DETACHED(tcp)) { 18925 if (zc_enabled) { 18926 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18927 ZCVMSAFE); 18928 TCP_STAT(tcps, tcp_zcopy_on); 18929 } else { 18930 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18931 ZCVMUNSAFE); 18932 TCP_STAT(tcps, tcp_zcopy_off); 18933 } 18934 } 18935 return (zc_enabled); 18936 } 18937 18938 static mblk_t * 18939 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18940 { 18941 tcp_stack_t *tcps = tcp->tcp_tcps; 18942 18943 if (do_tcpzcopy == 2) 18944 return (bp); 18945 else if (tcp->tcp_snd_zcopy_on) { 18946 tcp->tcp_snd_zcopy_on = B_FALSE; 18947 if (!TCP_IS_DETACHED(tcp)) { 18948 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18949 ZCVMUNSAFE); 18950 TCP_STAT(tcps, tcp_zcopy_disable); 18951 } 18952 } 18953 return (tcp_zcopy_backoff(tcp, bp, 0)); 18954 } 18955 18956 /* 18957 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18958 * the original desballoca'ed segmapped mblk. 18959 */ 18960 static mblk_t * 18961 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18962 { 18963 mblk_t *head, *tail, *nbp; 18964 tcp_stack_t *tcps = tcp->tcp_tcps; 18965 18966 if (IS_VMLOANED_MBLK(bp)) { 18967 TCP_STAT(tcps, tcp_zcopy_backoff); 18968 if ((head = copyb(bp)) == NULL) { 18969 /* fail to backoff; leave it for the next backoff */ 18970 tcp->tcp_xmit_zc_clean = B_FALSE; 18971 return (bp); 18972 } 18973 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18974 if (fix_xmitlist) 18975 tcp_zcopy_notify(tcp); 18976 else 18977 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18978 } 18979 nbp = bp->b_cont; 18980 if (fix_xmitlist) { 18981 head->b_prev = bp->b_prev; 18982 head->b_next = bp->b_next; 18983 if (tcp->tcp_xmit_tail == bp) 18984 tcp->tcp_xmit_tail = head; 18985 } 18986 bp->b_next = NULL; 18987 bp->b_prev = NULL; 18988 freeb(bp); 18989 } else { 18990 head = bp; 18991 nbp = bp->b_cont; 18992 } 18993 tail = head; 18994 while (nbp) { 18995 if (IS_VMLOANED_MBLK(nbp)) { 18996 TCP_STAT(tcps, tcp_zcopy_backoff); 18997 if ((tail->b_cont = copyb(nbp)) == NULL) { 18998 tcp->tcp_xmit_zc_clean = B_FALSE; 18999 tail->b_cont = nbp; 19000 return (head); 19001 } 19002 tail = tail->b_cont; 19003 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19004 if (fix_xmitlist) 19005 tcp_zcopy_notify(tcp); 19006 else 19007 tail->b_datap->db_struioflag |= 19008 STRUIO_ZCNOTIFY; 19009 } 19010 bp = nbp; 19011 nbp = nbp->b_cont; 19012 if (fix_xmitlist) { 19013 tail->b_prev = bp->b_prev; 19014 tail->b_next = bp->b_next; 19015 if (tcp->tcp_xmit_tail == bp) 19016 tcp->tcp_xmit_tail = tail; 19017 } 19018 bp->b_next = NULL; 19019 bp->b_prev = NULL; 19020 freeb(bp); 19021 } else { 19022 tail->b_cont = nbp; 19023 tail = nbp; 19024 nbp = nbp->b_cont; 19025 } 19026 } 19027 if (fix_xmitlist) { 19028 tcp->tcp_xmit_last = tail; 19029 tcp->tcp_xmit_zc_clean = B_TRUE; 19030 } 19031 return (head); 19032 } 19033 19034 static void 19035 tcp_zcopy_notify(tcp_t *tcp) 19036 { 19037 struct stdata *stp; 19038 conn_t *connp; 19039 19040 if (tcp->tcp_detached) 19041 return; 19042 connp = tcp->tcp_connp; 19043 if (IPCL_IS_NONSTR(connp)) { 19044 (*connp->conn_upcalls->su_zcopy_notify) 19045 (connp->conn_upper_handle); 19046 return; 19047 } 19048 stp = STREAM(tcp->tcp_rq); 19049 mutex_enter(&stp->sd_lock); 19050 stp->sd_flag |= STZCNOTIFY; 19051 cv_broadcast(&stp->sd_zcopy_wait); 19052 mutex_exit(&stp->sd_lock); 19053 } 19054 19055 static boolean_t 19056 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19057 { 19058 ire_t *ire; 19059 conn_t *connp = tcp->tcp_connp; 19060 tcp_stack_t *tcps = tcp->tcp_tcps; 19061 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19062 19063 mutex_enter(&connp->conn_lock); 19064 ire = connp->conn_ire_cache; 19065 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19066 19067 if ((ire != NULL) && 19068 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19069 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19070 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19071 IRE_REFHOLD(ire); 19072 mutex_exit(&connp->conn_lock); 19073 } else { 19074 boolean_t cached = B_FALSE; 19075 ts_label_t *tsl; 19076 19077 /* force a recheck later on */ 19078 tcp->tcp_ire_ill_check_done = B_FALSE; 19079 19080 TCP_DBGSTAT(tcps, tcp_ire_null1); 19081 connp->conn_ire_cache = NULL; 19082 mutex_exit(&connp->conn_lock); 19083 19084 if (ire != NULL) 19085 IRE_REFRELE_NOTR(ire); 19086 19087 tsl = crgetlabel(CONN_CRED(connp)); 19088 ire = (dst ? 19089 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19090 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19091 connp->conn_zoneid, tsl, ipst)); 19092 19093 if (ire == NULL) { 19094 TCP_STAT(tcps, tcp_ire_null); 19095 return (B_FALSE); 19096 } 19097 19098 IRE_REFHOLD_NOTR(ire); 19099 19100 mutex_enter(&connp->conn_lock); 19101 if (CONN_CACHE_IRE(connp)) { 19102 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19103 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19104 TCP_CHECK_IREINFO(tcp, ire); 19105 connp->conn_ire_cache = ire; 19106 cached = B_TRUE; 19107 } 19108 rw_exit(&ire->ire_bucket->irb_lock); 19109 } 19110 mutex_exit(&connp->conn_lock); 19111 19112 /* 19113 * We can continue to use the ire but since it was 19114 * not cached, we should drop the extra reference. 19115 */ 19116 if (!cached) 19117 IRE_REFRELE_NOTR(ire); 19118 19119 /* 19120 * Rampart note: no need to select a new label here, since 19121 * labels are not allowed to change during the life of a TCP 19122 * connection. 19123 */ 19124 } 19125 19126 *irep = ire; 19127 19128 return (B_TRUE); 19129 } 19130 19131 /* 19132 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19133 * 19134 * 0 = success; 19135 * 1 = failed to find ire and ill. 19136 */ 19137 static boolean_t 19138 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19139 { 19140 ipha_t *ipha; 19141 ipaddr_t dst; 19142 ire_t *ire; 19143 ill_t *ill; 19144 mblk_t *ire_fp_mp; 19145 tcp_stack_t *tcps = tcp->tcp_tcps; 19146 19147 if (mp != NULL) 19148 ipha = (ipha_t *)mp->b_rptr; 19149 else 19150 ipha = tcp->tcp_ipha; 19151 dst = ipha->ipha_dst; 19152 19153 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19154 return (B_FALSE); 19155 19156 if ((ire->ire_flags & RTF_MULTIRT) || 19157 (ire->ire_stq == NULL) || 19158 (ire->ire_nce == NULL) || 19159 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19160 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19161 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19162 TCP_STAT(tcps, tcp_ip_ire_send); 19163 IRE_REFRELE(ire); 19164 return (B_FALSE); 19165 } 19166 19167 ill = ire_to_ill(ire); 19168 ASSERT(ill != NULL); 19169 19170 if (!tcp->tcp_ire_ill_check_done) { 19171 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19172 tcp->tcp_ire_ill_check_done = B_TRUE; 19173 } 19174 19175 *irep = ire; 19176 *illp = ill; 19177 19178 return (B_TRUE); 19179 } 19180 19181 static void 19182 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19183 { 19184 ipha_t *ipha; 19185 ipaddr_t src; 19186 ipaddr_t dst; 19187 uint32_t cksum; 19188 ire_t *ire; 19189 uint16_t *up; 19190 ill_t *ill; 19191 conn_t *connp = tcp->tcp_connp; 19192 uint32_t hcksum_txflags = 0; 19193 mblk_t *ire_fp_mp; 19194 uint_t ire_fp_mp_len; 19195 tcp_stack_t *tcps = tcp->tcp_tcps; 19196 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19197 19198 ASSERT(DB_TYPE(mp) == M_DATA); 19199 19200 if (is_system_labeled() && DB_CRED(mp) == NULL) 19201 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp)); 19202 19203 ipha = (ipha_t *)mp->b_rptr; 19204 src = ipha->ipha_src; 19205 dst = ipha->ipha_dst; 19206 19207 ASSERT(q != NULL); 19208 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 19209 19210 /* 19211 * Drop off fast path for IPv6 and also if options are present or 19212 * we need to resolve a TS label. 19213 */ 19214 if (tcp->tcp_ipversion != IPV4_VERSION || 19215 !IPCL_IS_CONNECTED(connp) || 19216 !CONN_IS_LSO_MD_FASTPATH(connp) || 19217 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19218 !connp->conn_ulp_labeled || 19219 ipha->ipha_ident == IP_HDR_INCLUDED || 19220 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19221 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19222 if (tcp->tcp_snd_zcopy_aware) 19223 mp = tcp_zcopy_disable(tcp, mp); 19224 TCP_STAT(tcps, tcp_ip_send); 19225 CALL_IP_WPUT(connp, q, mp); 19226 return; 19227 } 19228 19229 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19230 if (tcp->tcp_snd_zcopy_aware) 19231 mp = tcp_zcopy_backoff(tcp, mp, 0); 19232 CALL_IP_WPUT(connp, q, mp); 19233 return; 19234 } 19235 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19236 ire_fp_mp_len = MBLKL(ire_fp_mp); 19237 19238 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19239 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19240 #ifndef _BIG_ENDIAN 19241 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19242 #endif 19243 19244 /* 19245 * Check to see if we need to re-enable LSO/MDT for this connection 19246 * because it was previously disabled due to changes in the ill; 19247 * note that by doing it here, this re-enabling only applies when 19248 * the packet is not dispatched through CALL_IP_WPUT(). 19249 * 19250 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19251 * case, since that's how we ended up here. For IPv6, we do the 19252 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19253 */ 19254 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19255 /* 19256 * Restore LSO for this connection, so that next time around 19257 * it is eligible to go through tcp_lsosend() path again. 19258 */ 19259 TCP_STAT(tcps, tcp_lso_enabled); 19260 tcp->tcp_lso = B_TRUE; 19261 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19262 "interface %s\n", (void *)connp, ill->ill_name)); 19263 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19264 /* 19265 * Restore MDT for this connection, so that next time around 19266 * it is eligible to go through tcp_multisend() path again. 19267 */ 19268 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19269 tcp->tcp_mdt = B_TRUE; 19270 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19271 "interface %s\n", (void *)connp, ill->ill_name)); 19272 } 19273 19274 if (tcp->tcp_snd_zcopy_aware) { 19275 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19276 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19277 mp = tcp_zcopy_disable(tcp, mp); 19278 /* 19279 * we shouldn't need to reset ipha as the mp containing 19280 * ipha should never be a zero-copy mp. 19281 */ 19282 } 19283 19284 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19285 ASSERT(ill->ill_hcksum_capab != NULL); 19286 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19287 } 19288 19289 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19290 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19291 19292 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19293 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19294 19295 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19296 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19297 19298 /* Software checksum? */ 19299 if (DB_CKSUMFLAGS(mp) == 0) { 19300 TCP_STAT(tcps, tcp_out_sw_cksum); 19301 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19302 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19303 } 19304 19305 /* Calculate IP header checksum if hardware isn't capable */ 19306 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19307 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19308 ((uint16_t *)ipha)[4]); 19309 } 19310 19311 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19312 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19313 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19314 19315 UPDATE_OB_PKT_COUNT(ire); 19316 ire->ire_last_used_time = lbolt; 19317 19318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19319 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19320 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19321 ntohs(ipha->ipha_length)); 19322 19323 DTRACE_PROBE4(ip4__physical__out__start, 19324 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 19325 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19326 ipst->ips_ipv4firewall_physical_out, 19327 NULL, ill, ipha, mp, mp, 0, ipst); 19328 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19329 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 19330 19331 if (mp != NULL) { 19332 if (ipst->ips_ipobs_enabled) { 19333 zoneid_t szone; 19334 19335 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 19336 ipst, ALL_ZONES); 19337 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 19338 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 19339 } 19340 19341 ILL_SEND_TX(ill, ire, connp, mp, 0); 19342 } 19343 19344 IRE_REFRELE(ire); 19345 } 19346 19347 /* 19348 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19349 * if the receiver shrinks the window, i.e. moves the right window to the 19350 * left, the we should not send new data, but should retransmit normally the 19351 * old unacked data between suna and suna + swnd. We might has sent data 19352 * that is now outside the new window, pretend that we didn't send it. 19353 */ 19354 static void 19355 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19356 { 19357 uint32_t snxt = tcp->tcp_snxt; 19358 mblk_t *xmit_tail; 19359 int32_t offset; 19360 19361 ASSERT(shrunk_count > 0); 19362 19363 /* Pretend we didn't send the data outside the window */ 19364 snxt -= shrunk_count; 19365 19366 /* Get the mblk and the offset in it per the shrunk window */ 19367 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19368 19369 ASSERT(xmit_tail != NULL); 19370 19371 /* Reset all the values per the now shrunk window */ 19372 tcp->tcp_snxt = snxt; 19373 tcp->tcp_xmit_tail = xmit_tail; 19374 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19375 offset; 19376 tcp->tcp_unsent += shrunk_count; 19377 19378 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19379 /* 19380 * Make sure the timer is running so that we will probe a zero 19381 * window. 19382 */ 19383 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19384 } 19385 19386 19387 /* 19388 * The TCP normal data output path. 19389 * NOTE: the logic of the fast path is duplicated from this function. 19390 */ 19391 static void 19392 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19393 { 19394 int len; 19395 mblk_t *local_time; 19396 mblk_t *mp1; 19397 uint32_t snxt; 19398 int tail_unsent; 19399 int tcpstate; 19400 int usable = 0; 19401 mblk_t *xmit_tail; 19402 queue_t *q = tcp->tcp_wq; 19403 int32_t mss; 19404 int32_t num_sack_blk = 0; 19405 int32_t tcp_hdr_len; 19406 int32_t tcp_tcp_hdr_len; 19407 int mdt_thres; 19408 int rc; 19409 tcp_stack_t *tcps = tcp->tcp_tcps; 19410 ip_stack_t *ipst; 19411 19412 tcpstate = tcp->tcp_state; 19413 if (mp == NULL) { 19414 /* 19415 * tcp_wput_data() with NULL mp should only be called when 19416 * there is unsent data. 19417 */ 19418 ASSERT(tcp->tcp_unsent > 0); 19419 /* Really tacky... but we need this for detached closes. */ 19420 len = tcp->tcp_unsent; 19421 goto data_null; 19422 } 19423 19424 #if CCS_STATS 19425 wrw_stats.tot.count++; 19426 wrw_stats.tot.bytes += msgdsize(mp); 19427 #endif 19428 ASSERT(mp->b_datap->db_type == M_DATA); 19429 /* 19430 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19431 * or before a connection attempt has begun. 19432 */ 19433 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19434 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19435 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19436 #ifdef DEBUG 19437 cmn_err(CE_WARN, 19438 "tcp_wput_data: data after ordrel, %s", 19439 tcp_display(tcp, NULL, 19440 DISP_ADDR_AND_PORT)); 19441 #else 19442 if (tcp->tcp_debug) { 19443 (void) strlog(TCP_MOD_ID, 0, 1, 19444 SL_TRACE|SL_ERROR, 19445 "tcp_wput_data: data after ordrel, %s\n", 19446 tcp_display(tcp, NULL, 19447 DISP_ADDR_AND_PORT)); 19448 } 19449 #endif /* DEBUG */ 19450 } 19451 if (tcp->tcp_snd_zcopy_aware && 19452 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19453 tcp_zcopy_notify(tcp); 19454 freemsg(mp); 19455 mutex_enter(&tcp->tcp_non_sq_lock); 19456 if (tcp->tcp_flow_stopped && 19457 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19458 tcp_clrqfull(tcp); 19459 } 19460 mutex_exit(&tcp->tcp_non_sq_lock); 19461 return; 19462 } 19463 19464 /* Strip empties */ 19465 for (;;) { 19466 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19467 (uintptr_t)INT_MAX); 19468 len = (int)(mp->b_wptr - mp->b_rptr); 19469 if (len > 0) 19470 break; 19471 mp1 = mp; 19472 mp = mp->b_cont; 19473 freeb(mp1); 19474 if (!mp) { 19475 return; 19476 } 19477 } 19478 19479 /* If we are the first on the list ... */ 19480 if (tcp->tcp_xmit_head == NULL) { 19481 tcp->tcp_xmit_head = mp; 19482 tcp->tcp_xmit_tail = mp; 19483 tcp->tcp_xmit_tail_unsent = len; 19484 } else { 19485 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19486 struct datab *dp; 19487 19488 mp1 = tcp->tcp_xmit_last; 19489 if (len < tcp_tx_pull_len && 19490 (dp = mp1->b_datap)->db_ref == 1 && 19491 dp->db_lim - mp1->b_wptr >= len) { 19492 ASSERT(len > 0); 19493 ASSERT(!mp1->b_cont); 19494 if (len == 1) { 19495 *mp1->b_wptr++ = *mp->b_rptr; 19496 } else { 19497 bcopy(mp->b_rptr, mp1->b_wptr, len); 19498 mp1->b_wptr += len; 19499 } 19500 if (mp1 == tcp->tcp_xmit_tail) 19501 tcp->tcp_xmit_tail_unsent += len; 19502 mp1->b_cont = mp->b_cont; 19503 if (tcp->tcp_snd_zcopy_aware && 19504 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19505 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19506 freeb(mp); 19507 mp = mp1; 19508 } else { 19509 tcp->tcp_xmit_last->b_cont = mp; 19510 } 19511 len += tcp->tcp_unsent; 19512 } 19513 19514 /* Tack on however many more positive length mblks we have */ 19515 if ((mp1 = mp->b_cont) != NULL) { 19516 do { 19517 int tlen; 19518 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19519 (uintptr_t)INT_MAX); 19520 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19521 if (tlen <= 0) { 19522 mp->b_cont = mp1->b_cont; 19523 freeb(mp1); 19524 } else { 19525 len += tlen; 19526 mp = mp1; 19527 } 19528 } while ((mp1 = mp->b_cont) != NULL); 19529 } 19530 tcp->tcp_xmit_last = mp; 19531 tcp->tcp_unsent = len; 19532 19533 if (urgent) 19534 usable = 1; 19535 19536 data_null: 19537 snxt = tcp->tcp_snxt; 19538 xmit_tail = tcp->tcp_xmit_tail; 19539 tail_unsent = tcp->tcp_xmit_tail_unsent; 19540 19541 /* 19542 * Note that tcp_mss has been adjusted to take into account the 19543 * timestamp option if applicable. Because SACK options do not 19544 * appear in every TCP segments and they are of variable lengths, 19545 * they cannot be included in tcp_mss. Thus we need to calculate 19546 * the actual segment length when we need to send a segment which 19547 * includes SACK options. 19548 */ 19549 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19550 int32_t opt_len; 19551 19552 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19553 tcp->tcp_num_sack_blk); 19554 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19555 2 + TCPOPT_HEADER_LEN; 19556 mss = tcp->tcp_mss - opt_len; 19557 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19558 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19559 } else { 19560 mss = tcp->tcp_mss; 19561 tcp_hdr_len = tcp->tcp_hdr_len; 19562 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19563 } 19564 19565 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19566 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19567 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19568 } 19569 if (tcpstate == TCPS_SYN_RCVD) { 19570 /* 19571 * The three-way connection establishment handshake is not 19572 * complete yet. We want to queue the data for transmission 19573 * after entering ESTABLISHED state (RFC793). A jump to 19574 * "done" label effectively leaves data on the queue. 19575 */ 19576 goto done; 19577 } else { 19578 int usable_r; 19579 19580 /* 19581 * In the special case when cwnd is zero, which can only 19582 * happen if the connection is ECN capable, return now. 19583 * New segments is sent using tcp_timer(). The timer 19584 * is set in tcp_rput_data(). 19585 */ 19586 if (tcp->tcp_cwnd == 0) { 19587 /* 19588 * Note that tcp_cwnd is 0 before 3-way handshake is 19589 * finished. 19590 */ 19591 ASSERT(tcp->tcp_ecn_ok || 19592 tcp->tcp_state < TCPS_ESTABLISHED); 19593 return; 19594 } 19595 19596 /* NOTE: trouble if xmitting while SYN not acked? */ 19597 usable_r = snxt - tcp->tcp_suna; 19598 usable_r = tcp->tcp_swnd - usable_r; 19599 19600 /* 19601 * Check if the receiver has shrunk the window. If 19602 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19603 * cannot be set as there is unsent data, so FIN cannot 19604 * be sent out. Otherwise, we need to take into account 19605 * of FIN as it consumes an "invisible" sequence number. 19606 */ 19607 ASSERT(tcp->tcp_fin_sent == 0); 19608 if (usable_r < 0) { 19609 /* 19610 * The receiver has shrunk the window and we have sent 19611 * -usable_r date beyond the window, re-adjust. 19612 * 19613 * If TCP window scaling is enabled, there can be 19614 * round down error as the advertised receive window 19615 * is actually right shifted n bits. This means that 19616 * the lower n bits info is wiped out. It will look 19617 * like the window is shrunk. Do a check here to 19618 * see if the shrunk amount is actually within the 19619 * error in window calculation. If it is, just 19620 * return. Note that this check is inside the 19621 * shrunk window check. This makes sure that even 19622 * though tcp_process_shrunk_swnd() is not called, 19623 * we will stop further processing. 19624 */ 19625 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19626 tcp_process_shrunk_swnd(tcp, -usable_r); 19627 } 19628 return; 19629 } 19630 19631 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19632 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19633 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19634 19635 /* usable = MIN(usable, unsent) */ 19636 if (usable_r > len) 19637 usable_r = len; 19638 19639 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19640 if (usable_r > 0) { 19641 usable = usable_r; 19642 } else { 19643 /* Bypass all other unnecessary processing. */ 19644 goto done; 19645 } 19646 } 19647 19648 local_time = (mblk_t *)lbolt; 19649 19650 /* 19651 * "Our" Nagle Algorithm. This is not the same as in the old 19652 * BSD. This is more in line with the true intent of Nagle. 19653 * 19654 * The conditions are: 19655 * 1. The amount of unsent data (or amount of data which can be 19656 * sent, whichever is smaller) is less than Nagle limit. 19657 * 2. The last sent size is also less than Nagle limit. 19658 * 3. There is unack'ed data. 19659 * 4. Urgent pointer is not set. Send urgent data ignoring the 19660 * Nagle algorithm. This reduces the probability that urgent 19661 * bytes get "merged" together. 19662 * 5. The app has not closed the connection. This eliminates the 19663 * wait time of the receiving side waiting for the last piece of 19664 * (small) data. 19665 * 19666 * If all are satisified, exit without sending anything. Note 19667 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19668 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19669 * 4095). 19670 */ 19671 if (usable < (int)tcp->tcp_naglim && 19672 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19673 snxt != tcp->tcp_suna && 19674 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19675 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19676 goto done; 19677 } 19678 19679 if (tcp->tcp_cork) { 19680 /* 19681 * if the tcp->tcp_cork option is set, then we have to force 19682 * TCP not to send partial segment (smaller than MSS bytes). 19683 * We are calculating the usable now based on full mss and 19684 * will save the rest of remaining data for later. 19685 */ 19686 if (usable < mss) 19687 goto done; 19688 usable = (usable / mss) * mss; 19689 } 19690 19691 /* Update the latest receive window size in TCP header. */ 19692 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19693 tcp->tcp_tcph->th_win); 19694 19695 /* 19696 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19697 * 19698 * 1. Simple TCP/IP{v4,v6} (no options). 19699 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19700 * 3. If the TCP connection is in ESTABLISHED state. 19701 * 4. The TCP is not detached. 19702 * 19703 * If any of the above conditions have changed during the 19704 * connection, stop using LSO/MDT and restore the stream head 19705 * parameters accordingly. 19706 */ 19707 ipst = tcps->tcps_netstack->netstack_ip; 19708 19709 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19710 ((tcp->tcp_ipversion == IPV4_VERSION && 19711 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19712 (tcp->tcp_ipversion == IPV6_VERSION && 19713 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19714 tcp->tcp_state != TCPS_ESTABLISHED || 19715 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19716 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19717 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19718 if (tcp->tcp_lso) { 19719 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19720 tcp->tcp_lso = B_FALSE; 19721 } else { 19722 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19723 tcp->tcp_mdt = B_FALSE; 19724 } 19725 19726 /* Anything other than detached is considered pathological */ 19727 if (!TCP_IS_DETACHED(tcp)) { 19728 if (tcp->tcp_lso) 19729 TCP_STAT(tcps, tcp_lso_disabled); 19730 else 19731 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19732 (void) tcp_maxpsz_set(tcp, B_TRUE); 19733 } 19734 } 19735 19736 /* Use MDT if sendable amount is greater than the threshold */ 19737 if (tcp->tcp_mdt && 19738 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19739 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19740 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19741 (tcp->tcp_valid_bits == 0 || 19742 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19743 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19744 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19745 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19746 local_time, mdt_thres); 19747 } else { 19748 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19749 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19750 local_time, INT_MAX); 19751 } 19752 19753 /* Pretend that all we were trying to send really got sent */ 19754 if (rc < 0 && tail_unsent < 0) { 19755 do { 19756 xmit_tail = xmit_tail->b_cont; 19757 xmit_tail->b_prev = local_time; 19758 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19759 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19760 tail_unsent += (int)(xmit_tail->b_wptr - 19761 xmit_tail->b_rptr); 19762 } while (tail_unsent < 0); 19763 } 19764 done:; 19765 tcp->tcp_xmit_tail = xmit_tail; 19766 tcp->tcp_xmit_tail_unsent = tail_unsent; 19767 len = tcp->tcp_snxt - snxt; 19768 if (len) { 19769 /* 19770 * If new data was sent, need to update the notsack 19771 * list, which is, afterall, data blocks that have 19772 * not been sack'ed by the receiver. New data is 19773 * not sack'ed. 19774 */ 19775 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19776 /* len is a negative value. */ 19777 tcp->tcp_pipe -= len; 19778 tcp_notsack_update(&(tcp->tcp_notsack_list), 19779 tcp->tcp_snxt, snxt, 19780 &(tcp->tcp_num_notsack_blk), 19781 &(tcp->tcp_cnt_notsack_list)); 19782 } 19783 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19784 tcp->tcp_rack = tcp->tcp_rnxt; 19785 tcp->tcp_rack_cnt = 0; 19786 if ((snxt + len) == tcp->tcp_suna) { 19787 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19788 } 19789 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19790 /* 19791 * Didn't send anything. Make sure the timer is running 19792 * so that we will probe a zero window. 19793 */ 19794 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19795 } 19796 /* Note that len is the amount we just sent but with a negative sign */ 19797 tcp->tcp_unsent += len; 19798 mutex_enter(&tcp->tcp_non_sq_lock); 19799 if (tcp->tcp_flow_stopped) { 19800 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19801 tcp_clrqfull(tcp); 19802 } 19803 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19804 tcp_setqfull(tcp); 19805 } 19806 mutex_exit(&tcp->tcp_non_sq_lock); 19807 } 19808 19809 /* 19810 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19811 * outgoing TCP header with the template header, as well as other 19812 * options such as time-stamp, ECN and/or SACK. 19813 */ 19814 static void 19815 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19816 { 19817 tcph_t *tcp_tmpl, *tcp_h; 19818 uint32_t *dst, *src; 19819 int hdrlen; 19820 19821 ASSERT(OK_32PTR(rptr)); 19822 19823 /* Template header */ 19824 tcp_tmpl = tcp->tcp_tcph; 19825 19826 /* Header of outgoing packet */ 19827 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19828 19829 /* dst and src are opaque 32-bit fields, used for copying */ 19830 dst = (uint32_t *)rptr; 19831 src = (uint32_t *)tcp->tcp_iphc; 19832 hdrlen = tcp->tcp_hdr_len; 19833 19834 /* Fill time-stamp option if needed */ 19835 if (tcp->tcp_snd_ts_ok) { 19836 U32_TO_BE32((uint32_t)now, 19837 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19838 U32_TO_BE32(tcp->tcp_ts_recent, 19839 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19840 } else { 19841 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19842 } 19843 19844 /* 19845 * Copy the template header; is this really more efficient than 19846 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19847 * but perhaps not for other scenarios. 19848 */ 19849 dst[0] = src[0]; 19850 dst[1] = src[1]; 19851 dst[2] = src[2]; 19852 dst[3] = src[3]; 19853 dst[4] = src[4]; 19854 dst[5] = src[5]; 19855 dst[6] = src[6]; 19856 dst[7] = src[7]; 19857 dst[8] = src[8]; 19858 dst[9] = src[9]; 19859 if (hdrlen -= 40) { 19860 hdrlen >>= 2; 19861 dst += 10; 19862 src += 10; 19863 do { 19864 *dst++ = *src++; 19865 } while (--hdrlen); 19866 } 19867 19868 /* 19869 * Set the ECN info in the TCP header if it is not a zero 19870 * window probe. Zero window probe is only sent in 19871 * tcp_wput_data() and tcp_timer(). 19872 */ 19873 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19874 SET_ECT(tcp, rptr); 19875 19876 if (tcp->tcp_ecn_echo_on) 19877 tcp_h->th_flags[0] |= TH_ECE; 19878 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19879 tcp_h->th_flags[0] |= TH_CWR; 19880 tcp->tcp_ecn_cwr_sent = B_TRUE; 19881 } 19882 } 19883 19884 /* Fill in SACK options */ 19885 if (num_sack_blk > 0) { 19886 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19887 sack_blk_t *tmp; 19888 int32_t i; 19889 19890 wptr[0] = TCPOPT_NOP; 19891 wptr[1] = TCPOPT_NOP; 19892 wptr[2] = TCPOPT_SACK; 19893 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19894 sizeof (sack_blk_t); 19895 wptr += TCPOPT_REAL_SACK_LEN; 19896 19897 tmp = tcp->tcp_sack_list; 19898 for (i = 0; i < num_sack_blk; i++) { 19899 U32_TO_BE32(tmp[i].begin, wptr); 19900 wptr += sizeof (tcp_seq); 19901 U32_TO_BE32(tmp[i].end, wptr); 19902 wptr += sizeof (tcp_seq); 19903 } 19904 tcp_h->th_offset_and_rsrvd[0] += 19905 ((num_sack_blk * 2 + 1) << 4); 19906 } 19907 } 19908 19909 /* 19910 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19911 * the destination address and SAP attribute, and if necessary, the 19912 * hardware checksum offload attribute to a Multidata message. 19913 */ 19914 static int 19915 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19916 const uint32_t start, const uint32_t stuff, const uint32_t end, 19917 const uint32_t flags, tcp_stack_t *tcps) 19918 { 19919 /* Add global destination address & SAP attribute */ 19920 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19921 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19922 "destination address+SAP\n")); 19923 19924 if (dlmp != NULL) 19925 TCP_STAT(tcps, tcp_mdt_allocfail); 19926 return (-1); 19927 } 19928 19929 /* Add global hwcksum attribute */ 19930 if (hwcksum && 19931 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19932 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19933 "checksum attribute\n")); 19934 19935 TCP_STAT(tcps, tcp_mdt_allocfail); 19936 return (-1); 19937 } 19938 19939 return (0); 19940 } 19941 19942 /* 19943 * Smaller and private version of pdescinfo_t used specifically for TCP, 19944 * which allows for only two payload spans per packet. 19945 */ 19946 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19947 19948 /* 19949 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19950 * scheme, and returns one the following: 19951 * 19952 * -1 = failed allocation. 19953 * 0 = success; burst count reached, or usable send window is too small, 19954 * and that we'd rather wait until later before sending again. 19955 */ 19956 static int 19957 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19958 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19959 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19960 const int mdt_thres) 19961 { 19962 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19963 multidata_t *mmd; 19964 uint_t obsegs, obbytes, hdr_frag_sz; 19965 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19966 int num_burst_seg, max_pld; 19967 pdesc_t *pkt; 19968 tcp_pdescinfo_t tcp_pkt_info; 19969 pdescinfo_t *pkt_info; 19970 int pbuf_idx, pbuf_idx_nxt; 19971 int seg_len, len, spill, af; 19972 boolean_t add_buffer, zcopy, clusterwide; 19973 boolean_t rconfirm = B_FALSE; 19974 boolean_t done = B_FALSE; 19975 uint32_t cksum; 19976 uint32_t hwcksum_flags; 19977 ire_t *ire = NULL; 19978 ill_t *ill; 19979 ipha_t *ipha; 19980 ip6_t *ip6h; 19981 ipaddr_t src, dst; 19982 ill_zerocopy_capab_t *zc_cap = NULL; 19983 uint16_t *up; 19984 int err; 19985 conn_t *connp; 19986 tcp_stack_t *tcps = tcp->tcp_tcps; 19987 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19988 int usable_mmd, tail_unsent_mmd; 19989 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19990 mblk_t *xmit_tail_mmd; 19991 netstackid_t stack_id; 19992 19993 #ifdef _BIG_ENDIAN 19994 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19995 #else 19996 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19997 #endif 19998 19999 #define PREP_NEW_MULTIDATA() { \ 20000 mmd = NULL; \ 20001 md_mp = md_hbuf = NULL; \ 20002 cur_hdr_off = 0; \ 20003 max_pld = tcp->tcp_mdt_max_pld; \ 20004 pbuf_idx = pbuf_idx_nxt = -1; \ 20005 add_buffer = B_TRUE; \ 20006 zcopy = B_FALSE; \ 20007 } 20008 20009 #define PREP_NEW_PBUF() { \ 20010 md_pbuf = md_pbuf_nxt = NULL; \ 20011 pbuf_idx = pbuf_idx_nxt = -1; \ 20012 cur_pld_off = 0; \ 20013 first_snxt = *snxt; \ 20014 ASSERT(*tail_unsent > 0); \ 20015 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20016 } 20017 20018 ASSERT(mdt_thres >= mss); 20019 ASSERT(*usable > 0 && *usable > mdt_thres); 20020 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20021 ASSERT(!TCP_IS_DETACHED(tcp)); 20022 ASSERT(tcp->tcp_valid_bits == 0 || 20023 tcp->tcp_valid_bits == TCP_FSS_VALID); 20024 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20025 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20026 (tcp->tcp_ipversion == IPV6_VERSION && 20027 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20028 20029 connp = tcp->tcp_connp; 20030 ASSERT(connp != NULL); 20031 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20032 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20033 20034 stack_id = connp->conn_netstack->netstack_stackid; 20035 20036 usable_mmd = tail_unsent_mmd = 0; 20037 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 20038 xmit_tail_mmd = NULL; 20039 /* 20040 * Note that tcp will only declare at most 2 payload spans per 20041 * packet, which is much lower than the maximum allowable number 20042 * of packet spans per Multidata. For this reason, we use the 20043 * privately declared and smaller descriptor info structure, in 20044 * order to save some stack space. 20045 */ 20046 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20047 20048 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20049 if (af == AF_INET) { 20050 dst = tcp->tcp_ipha->ipha_dst; 20051 src = tcp->tcp_ipha->ipha_src; 20052 ASSERT(!CLASSD(dst)); 20053 } 20054 ASSERT(af == AF_INET || 20055 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20056 20057 obsegs = obbytes = 0; 20058 num_burst_seg = tcp->tcp_snd_burst; 20059 md_mp_head = NULL; 20060 PREP_NEW_MULTIDATA(); 20061 20062 /* 20063 * Before we go on further, make sure there is an IRE that we can 20064 * use, and that the ILL supports MDT. Otherwise, there's no point 20065 * in proceeding any further, and we should just hand everything 20066 * off to the legacy path. 20067 */ 20068 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20069 goto legacy_send_no_md; 20070 20071 ASSERT(ire != NULL); 20072 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20073 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20074 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20075 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20076 /* 20077 * If we do support loopback for MDT (which requires modifications 20078 * to the receiving paths), the following assertions should go away, 20079 * and we would be sending the Multidata to loopback conn later on. 20080 */ 20081 ASSERT(!IRE_IS_LOCAL(ire)); 20082 ASSERT(ire->ire_stq != NULL); 20083 20084 ill = ire_to_ill(ire); 20085 ASSERT(ill != NULL); 20086 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20087 20088 if (!tcp->tcp_ire_ill_check_done) { 20089 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20090 tcp->tcp_ire_ill_check_done = B_TRUE; 20091 } 20092 20093 /* 20094 * If the underlying interface conditions have changed, or if the 20095 * new interface does not support MDT, go back to legacy path. 20096 */ 20097 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20098 /* don't go through this path anymore for this connection */ 20099 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20100 tcp->tcp_mdt = B_FALSE; 20101 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20102 "interface %s\n", (void *)connp, ill->ill_name)); 20103 /* IRE will be released prior to returning */ 20104 goto legacy_send_no_md; 20105 } 20106 20107 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20108 zc_cap = ill->ill_zerocopy_capab; 20109 20110 /* 20111 * Check if we can take tcp fast-path. Note that "incomplete" 20112 * ire's (where the link-layer for next hop is not resolved 20113 * or where the fast-path header in nce_fp_mp is not available 20114 * yet) are sent down the legacy (slow) path. 20115 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20116 */ 20117 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20118 /* IRE will be released prior to returning */ 20119 goto legacy_send_no_md; 20120 } 20121 20122 /* go to legacy path if interface doesn't support zerocopy */ 20123 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20124 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20125 /* IRE will be released prior to returning */ 20126 goto legacy_send_no_md; 20127 } 20128 20129 /* does the interface support hardware checksum offload? */ 20130 hwcksum_flags = 0; 20131 if (ILL_HCKSUM_CAPABLE(ill) && 20132 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20133 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20134 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20135 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20136 HCKSUM_IPHDRCKSUM) 20137 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20138 20139 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20140 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20141 hwcksum_flags |= HCK_FULLCKSUM; 20142 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20143 HCKSUM_INET_PARTIAL) 20144 hwcksum_flags |= HCK_PARTIALCKSUM; 20145 } 20146 20147 /* 20148 * Each header fragment consists of the leading extra space, 20149 * followed by the TCP/IP header, and the trailing extra space. 20150 * We make sure that each header fragment begins on a 32-bit 20151 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20152 * aligned in tcp_mdt_update). 20153 */ 20154 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20155 tcp->tcp_mdt_hdr_tail), 4); 20156 20157 /* are we starting from the beginning of data block? */ 20158 if (*tail_unsent == 0) { 20159 *xmit_tail = (*xmit_tail)->b_cont; 20160 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20161 *tail_unsent = (int)MBLKL(*xmit_tail); 20162 } 20163 20164 /* 20165 * Here we create one or more Multidata messages, each made up of 20166 * one header buffer and up to N payload buffers. This entire 20167 * operation is done within two loops: 20168 * 20169 * The outer loop mostly deals with creating the Multidata message, 20170 * as well as the header buffer that gets added to it. It also 20171 * links the Multidata messages together such that all of them can 20172 * be sent down to the lower layer in a single putnext call; this 20173 * linking behavior depends on the tcp_mdt_chain tunable. 20174 * 20175 * The inner loop takes an existing Multidata message, and adds 20176 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20177 * packetizes those buffers by filling up the corresponding header 20178 * buffer fragments with the proper IP and TCP headers, and by 20179 * describing the layout of each packet in the packet descriptors 20180 * that get added to the Multidata. 20181 */ 20182 do { 20183 /* 20184 * If usable send window is too small, or data blocks in 20185 * transmit list are smaller than our threshold (i.e. app 20186 * performs large writes followed by small ones), we hand 20187 * off the control over to the legacy path. Note that we'll 20188 * get back the control once it encounters a large block. 20189 */ 20190 if (*usable < mss || (*tail_unsent <= mdt_thres && 20191 (*xmit_tail)->b_cont != NULL && 20192 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20193 /* send down what we've got so far */ 20194 if (md_mp_head != NULL) { 20195 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20196 obsegs, obbytes, &rconfirm); 20197 } 20198 /* 20199 * Pass control over to tcp_send(), but tell it to 20200 * return to us once a large-size transmission is 20201 * possible. 20202 */ 20203 TCP_STAT(tcps, tcp_mdt_legacy_small); 20204 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20205 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20206 tail_unsent, xmit_tail, local_time, 20207 mdt_thres)) <= 0) { 20208 /* burst count reached, or alloc failed */ 20209 IRE_REFRELE(ire); 20210 return (err); 20211 } 20212 20213 /* tcp_send() may have sent everything, so check */ 20214 if (*usable <= 0) { 20215 IRE_REFRELE(ire); 20216 return (0); 20217 } 20218 20219 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20220 /* 20221 * We may have delivered the Multidata, so make sure 20222 * to re-initialize before the next round. 20223 */ 20224 md_mp_head = NULL; 20225 obsegs = obbytes = 0; 20226 num_burst_seg = tcp->tcp_snd_burst; 20227 PREP_NEW_MULTIDATA(); 20228 20229 /* are we starting from the beginning of data block? */ 20230 if (*tail_unsent == 0) { 20231 *xmit_tail = (*xmit_tail)->b_cont; 20232 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20233 (uintptr_t)INT_MAX); 20234 *tail_unsent = (int)MBLKL(*xmit_tail); 20235 } 20236 } 20237 /* 20238 * Record current values for parameters we may need to pass 20239 * to tcp_send() or tcp_multisend_data(). We checkpoint at 20240 * each iteration of the outer loop (each multidata message 20241 * creation). If we have a failure in the inner loop, we send 20242 * any complete multidata messages we have before reverting 20243 * to using the traditional non-md path. 20244 */ 20245 snxt_mmd = *snxt; 20246 usable_mmd = *usable; 20247 xmit_tail_mmd = *xmit_tail; 20248 tail_unsent_mmd = *tail_unsent; 20249 obsegs_mmd = obsegs; 20250 obbytes_mmd = obbytes; 20251 20252 /* 20253 * max_pld limits the number of mblks in tcp's transmit 20254 * queue that can be added to a Multidata message. Once 20255 * this counter reaches zero, no more additional mblks 20256 * can be added to it. What happens afterwards depends 20257 * on whether or not we are set to chain the Multidata 20258 * messages. If we are to link them together, reset 20259 * max_pld to its original value (tcp_mdt_max_pld) and 20260 * prepare to create a new Multidata message which will 20261 * get linked to md_mp_head. Else, leave it alone and 20262 * let the inner loop break on its own. 20263 */ 20264 if (tcp_mdt_chain && max_pld == 0) 20265 PREP_NEW_MULTIDATA(); 20266 20267 /* adding a payload buffer; re-initialize values */ 20268 if (add_buffer) 20269 PREP_NEW_PBUF(); 20270 20271 /* 20272 * If we don't have a Multidata, either because we just 20273 * (re)entered this outer loop, or after we branched off 20274 * to tcp_send above, setup the Multidata and header 20275 * buffer to be used. 20276 */ 20277 if (md_mp == NULL) { 20278 int md_hbuflen; 20279 uint32_t start, stuff; 20280 20281 /* 20282 * Calculate Multidata header buffer size large enough 20283 * to hold all of the headers that can possibly be 20284 * sent at this moment. We'd rather over-estimate 20285 * the size than running out of space; this is okay 20286 * since this buffer is small anyway. 20287 */ 20288 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20289 20290 /* 20291 * Start and stuff offset for partial hardware 20292 * checksum offload; these are currently for IPv4. 20293 * For full checksum offload, they are set to zero. 20294 */ 20295 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20296 if (af == AF_INET) { 20297 start = IP_SIMPLE_HDR_LENGTH; 20298 stuff = IP_SIMPLE_HDR_LENGTH + 20299 TCP_CHECKSUM_OFFSET; 20300 } else { 20301 start = IPV6_HDR_LEN; 20302 stuff = IPV6_HDR_LEN + 20303 TCP_CHECKSUM_OFFSET; 20304 } 20305 } else { 20306 start = stuff = 0; 20307 } 20308 20309 /* 20310 * Create the header buffer, Multidata, as well as 20311 * any necessary attributes (destination address, 20312 * SAP and hardware checksum offload) that should 20313 * be associated with the Multidata message. 20314 */ 20315 ASSERT(cur_hdr_off == 0); 20316 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20317 ((md_hbuf->b_wptr += md_hbuflen), 20318 (mmd = mmd_alloc(md_hbuf, &md_mp, 20319 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20320 /* fastpath mblk */ 20321 ire->ire_nce->nce_res_mp, 20322 /* hardware checksum enabled */ 20323 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20324 /* hardware checksum offsets */ 20325 start, stuff, 0, 20326 /* hardware checksum flag */ 20327 hwcksum_flags, tcps) != 0)) { 20328 legacy_send: 20329 /* 20330 * We arrive here from a failure within the 20331 * inner (packetizer) loop or we fail one of 20332 * the conditionals above. We restore the 20333 * previously checkpointed values for: 20334 * xmit_tail 20335 * usable 20336 * tail_unsent 20337 * snxt 20338 * obbytes 20339 * obsegs 20340 * We should then be able to dispatch any 20341 * complete multidata before reverting to the 20342 * traditional path with consistent parameters 20343 * (the inner loop updates these as it 20344 * iterates). 20345 */ 20346 *xmit_tail = xmit_tail_mmd; 20347 *usable = usable_mmd; 20348 *tail_unsent = tail_unsent_mmd; 20349 *snxt = snxt_mmd; 20350 obbytes = obbytes_mmd; 20351 obsegs = obsegs_mmd; 20352 if (md_mp != NULL) { 20353 /* Unlink message from the chain */ 20354 if (md_mp_head != NULL) { 20355 err = (intptr_t)rmvb(md_mp_head, 20356 md_mp); 20357 /* 20358 * We can't assert that rmvb 20359 * did not return -1, since we 20360 * may get here before linkb 20361 * happens. We do, however, 20362 * check if we just removed the 20363 * only element in the list. 20364 */ 20365 if (err == 0) 20366 md_mp_head = NULL; 20367 } 20368 /* md_hbuf gets freed automatically */ 20369 TCP_STAT(tcps, tcp_mdt_discarded); 20370 freeb(md_mp); 20371 } else { 20372 /* Either allocb or mmd_alloc failed */ 20373 TCP_STAT(tcps, tcp_mdt_allocfail); 20374 if (md_hbuf != NULL) 20375 freeb(md_hbuf); 20376 } 20377 20378 /* send down what we've got so far */ 20379 if (md_mp_head != NULL) { 20380 tcp_multisend_data(tcp, ire, ill, 20381 md_mp_head, obsegs, obbytes, 20382 &rconfirm); 20383 } 20384 legacy_send_no_md: 20385 if (ire != NULL) 20386 IRE_REFRELE(ire); 20387 /* 20388 * Too bad; let the legacy path handle this. 20389 * We specify INT_MAX for the threshold, since 20390 * we gave up with the Multidata processings 20391 * and let the old path have it all. 20392 */ 20393 TCP_STAT(tcps, tcp_mdt_legacy_all); 20394 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20395 tcp_tcp_hdr_len, num_sack_blk, usable, 20396 snxt, tail_unsent, xmit_tail, local_time, 20397 INT_MAX)); 20398 } 20399 20400 /* link to any existing ones, if applicable */ 20401 TCP_STAT(tcps, tcp_mdt_allocd); 20402 if (md_mp_head == NULL) { 20403 md_mp_head = md_mp; 20404 } else if (tcp_mdt_chain) { 20405 TCP_STAT(tcps, tcp_mdt_linked); 20406 linkb(md_mp_head, md_mp); 20407 } 20408 } 20409 20410 ASSERT(md_mp_head != NULL); 20411 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20412 ASSERT(md_mp != NULL && mmd != NULL); 20413 ASSERT(md_hbuf != NULL); 20414 20415 /* 20416 * Packetize the transmittable portion of the data block; 20417 * each data block is essentially added to the Multidata 20418 * as a payload buffer. We also deal with adding more 20419 * than one payload buffers, which happens when the remaining 20420 * packetized portion of the current payload buffer is less 20421 * than MSS, while the next data block in transmit queue 20422 * has enough data to make up for one. This "spillover" 20423 * case essentially creates a split-packet, where portions 20424 * of the packet's payload fragments may span across two 20425 * virtually discontiguous address blocks. 20426 */ 20427 seg_len = mss; 20428 do { 20429 len = seg_len; 20430 20431 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20432 ipha = NULL; 20433 ip6h = NULL; 20434 20435 ASSERT(len > 0); 20436 ASSERT(max_pld >= 0); 20437 ASSERT(!add_buffer || cur_pld_off == 0); 20438 20439 /* 20440 * First time around for this payload buffer; note 20441 * in the case of a spillover, the following has 20442 * been done prior to adding the split-packet 20443 * descriptor to Multidata, and we don't want to 20444 * repeat the process. 20445 */ 20446 if (add_buffer) { 20447 ASSERT(mmd != NULL); 20448 ASSERT(md_pbuf == NULL); 20449 ASSERT(md_pbuf_nxt == NULL); 20450 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20451 20452 /* 20453 * Have we reached the limit? We'd get to 20454 * this case when we're not chaining the 20455 * Multidata messages together, and since 20456 * we're done, terminate this loop. 20457 */ 20458 if (max_pld == 0) 20459 break; /* done */ 20460 20461 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20462 TCP_STAT(tcps, tcp_mdt_allocfail); 20463 goto legacy_send; /* out_of_mem */ 20464 } 20465 20466 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20467 zc_cap != NULL) { 20468 if (!ip_md_zcopy_attr(mmd, NULL, 20469 zc_cap->ill_zerocopy_flags)) { 20470 freeb(md_pbuf); 20471 TCP_STAT(tcps, 20472 tcp_mdt_allocfail); 20473 /* out_of_mem */ 20474 goto legacy_send; 20475 } 20476 zcopy = B_TRUE; 20477 } 20478 20479 md_pbuf->b_rptr += base_pld_off; 20480 20481 /* 20482 * Add a payload buffer to the Multidata; this 20483 * operation must not fail, or otherwise our 20484 * logic in this routine is broken. There 20485 * is no memory allocation done by the 20486 * routine, so any returned failure simply 20487 * tells us that we've done something wrong. 20488 * 20489 * A failure tells us that either we're adding 20490 * the same payload buffer more than once, or 20491 * we're trying to add more buffers than 20492 * allowed (max_pld calculation is wrong). 20493 * None of the above cases should happen, and 20494 * we panic because either there's horrible 20495 * heap corruption, and/or programming mistake. 20496 */ 20497 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20498 if (pbuf_idx < 0) { 20499 cmn_err(CE_PANIC, "tcp_multisend: " 20500 "payload buffer logic error " 20501 "detected for tcp %p mmd %p " 20502 "pbuf %p (%d)\n", 20503 (void *)tcp, (void *)mmd, 20504 (void *)md_pbuf, pbuf_idx); 20505 } 20506 20507 ASSERT(max_pld > 0); 20508 --max_pld; 20509 add_buffer = B_FALSE; 20510 } 20511 20512 ASSERT(md_mp_head != NULL); 20513 ASSERT(md_pbuf != NULL); 20514 ASSERT(md_pbuf_nxt == NULL); 20515 ASSERT(pbuf_idx != -1); 20516 ASSERT(pbuf_idx_nxt == -1); 20517 ASSERT(*usable > 0); 20518 20519 /* 20520 * We spillover to the next payload buffer only 20521 * if all of the following is true: 20522 * 20523 * 1. There is not enough data on the current 20524 * payload buffer to make up `len', 20525 * 2. We are allowed to send `len', 20526 * 3. The next payload buffer length is large 20527 * enough to accomodate `spill'. 20528 */ 20529 if ((spill = len - *tail_unsent) > 0 && 20530 *usable >= len && 20531 MBLKL((*xmit_tail)->b_cont) >= spill && 20532 max_pld > 0) { 20533 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20534 if (md_pbuf_nxt == NULL) { 20535 TCP_STAT(tcps, tcp_mdt_allocfail); 20536 goto legacy_send; /* out_of_mem */ 20537 } 20538 20539 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20540 zc_cap != NULL) { 20541 if (!ip_md_zcopy_attr(mmd, NULL, 20542 zc_cap->ill_zerocopy_flags)) { 20543 freeb(md_pbuf_nxt); 20544 TCP_STAT(tcps, 20545 tcp_mdt_allocfail); 20546 /* out_of_mem */ 20547 goto legacy_send; 20548 } 20549 zcopy = B_TRUE; 20550 } 20551 20552 /* 20553 * See comments above on the first call to 20554 * mmd_addpldbuf for explanation on the panic. 20555 */ 20556 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20557 if (pbuf_idx_nxt < 0) { 20558 panic("tcp_multisend: " 20559 "next payload buffer logic error " 20560 "detected for tcp %p mmd %p " 20561 "pbuf %p (%d)\n", 20562 (void *)tcp, (void *)mmd, 20563 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20564 } 20565 20566 ASSERT(max_pld > 0); 20567 --max_pld; 20568 } else if (spill > 0) { 20569 /* 20570 * If there's a spillover, but the following 20571 * xmit_tail couldn't give us enough octets 20572 * to reach "len", then stop the current 20573 * Multidata creation and let the legacy 20574 * tcp_send() path take over. We don't want 20575 * to send the tiny segment as part of this 20576 * Multidata for performance reasons; instead, 20577 * we let the legacy path deal with grouping 20578 * it with the subsequent small mblks. 20579 */ 20580 if (*usable >= len && 20581 MBLKL((*xmit_tail)->b_cont) < spill) { 20582 max_pld = 0; 20583 break; /* done */ 20584 } 20585 20586 /* 20587 * We can't spillover, and we are near 20588 * the end of the current payload buffer, 20589 * so send what's left. 20590 */ 20591 ASSERT(*tail_unsent > 0); 20592 len = *tail_unsent; 20593 } 20594 20595 /* tail_unsent is negated if there is a spillover */ 20596 *tail_unsent -= len; 20597 *usable -= len; 20598 ASSERT(*usable >= 0); 20599 20600 if (*usable < mss) 20601 seg_len = *usable; 20602 /* 20603 * Sender SWS avoidance; see comments in tcp_send(); 20604 * everything else is the same, except that we only 20605 * do this here if there is no more data to be sent 20606 * following the current xmit_tail. We don't check 20607 * for 1-byte urgent data because we shouldn't get 20608 * here if TCP_URG_VALID is set. 20609 */ 20610 if (*usable > 0 && *usable < mss && 20611 ((md_pbuf_nxt == NULL && 20612 (*xmit_tail)->b_cont == NULL) || 20613 (md_pbuf_nxt != NULL && 20614 (*xmit_tail)->b_cont->b_cont == NULL)) && 20615 seg_len < (tcp->tcp_max_swnd >> 1) && 20616 (tcp->tcp_unsent - 20617 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20618 !tcp->tcp_zero_win_probe) { 20619 if ((*snxt + len) == tcp->tcp_snxt && 20620 (*snxt + len) == tcp->tcp_suna) { 20621 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20622 } 20623 done = B_TRUE; 20624 } 20625 20626 /* 20627 * Prime pump for IP's checksumming on our behalf; 20628 * include the adjustment for a source route if any. 20629 * Do this only for software/partial hardware checksum 20630 * offload, as this field gets zeroed out later for 20631 * the full hardware checksum offload case. 20632 */ 20633 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20634 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20635 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20636 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20637 } 20638 20639 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20640 *snxt += len; 20641 20642 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20643 /* 20644 * We set the PUSH bit only if TCP has no more buffered 20645 * data to be transmitted (or if sender SWS avoidance 20646 * takes place), as opposed to setting it for every 20647 * last packet in the burst. 20648 */ 20649 if (done || 20650 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20651 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20652 20653 /* 20654 * Set FIN bit if this is our last segment; snxt 20655 * already includes its length, and it will not 20656 * be adjusted after this point. 20657 */ 20658 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20659 *snxt == tcp->tcp_fss) { 20660 if (!tcp->tcp_fin_acked) { 20661 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20662 BUMP_MIB(&tcps->tcps_mib, 20663 tcpOutControl); 20664 } 20665 if (!tcp->tcp_fin_sent) { 20666 tcp->tcp_fin_sent = B_TRUE; 20667 /* 20668 * tcp state must be ESTABLISHED 20669 * in order for us to get here in 20670 * the first place. 20671 */ 20672 tcp->tcp_state = TCPS_FIN_WAIT_1; 20673 20674 /* 20675 * Upon returning from this routine, 20676 * tcp_wput_data() will set tcp_snxt 20677 * to be equal to snxt + tcp_fin_sent. 20678 * This is essentially the same as 20679 * setting it to tcp_fss + 1. 20680 */ 20681 } 20682 } 20683 20684 tcp->tcp_last_sent_len = (ushort_t)len; 20685 20686 len += tcp_hdr_len; 20687 if (tcp->tcp_ipversion == IPV4_VERSION) 20688 tcp->tcp_ipha->ipha_length = htons(len); 20689 else 20690 tcp->tcp_ip6h->ip6_plen = htons(len - 20691 ((char *)&tcp->tcp_ip6h[1] - 20692 tcp->tcp_iphc)); 20693 20694 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20695 20696 /* setup header fragment */ 20697 PDESC_HDR_ADD(pkt_info, 20698 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20699 tcp->tcp_mdt_hdr_head, /* head room */ 20700 tcp_hdr_len, /* len */ 20701 tcp->tcp_mdt_hdr_tail); /* tail room */ 20702 20703 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20704 hdr_frag_sz); 20705 ASSERT(MBLKIN(md_hbuf, 20706 (pkt_info->hdr_base - md_hbuf->b_rptr), 20707 PDESC_HDRSIZE(pkt_info))); 20708 20709 /* setup first payload fragment */ 20710 PDESC_PLD_INIT(pkt_info); 20711 PDESC_PLD_SPAN_ADD(pkt_info, 20712 pbuf_idx, /* index */ 20713 md_pbuf->b_rptr + cur_pld_off, /* start */ 20714 tcp->tcp_last_sent_len); /* len */ 20715 20716 /* create a split-packet in case of a spillover */ 20717 if (md_pbuf_nxt != NULL) { 20718 ASSERT(spill > 0); 20719 ASSERT(pbuf_idx_nxt > pbuf_idx); 20720 ASSERT(!add_buffer); 20721 20722 md_pbuf = md_pbuf_nxt; 20723 md_pbuf_nxt = NULL; 20724 pbuf_idx = pbuf_idx_nxt; 20725 pbuf_idx_nxt = -1; 20726 cur_pld_off = spill; 20727 20728 /* trim out first payload fragment */ 20729 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20730 20731 /* setup second payload fragment */ 20732 PDESC_PLD_SPAN_ADD(pkt_info, 20733 pbuf_idx, /* index */ 20734 md_pbuf->b_rptr, /* start */ 20735 spill); /* len */ 20736 20737 if ((*xmit_tail)->b_next == NULL) { 20738 /* 20739 * Store the lbolt used for RTT 20740 * estimation. We can only record one 20741 * timestamp per mblk so we do it when 20742 * we reach the end of the payload 20743 * buffer. Also we only take a new 20744 * timestamp sample when the previous 20745 * timed data from the same mblk has 20746 * been ack'ed. 20747 */ 20748 (*xmit_tail)->b_prev = local_time; 20749 (*xmit_tail)->b_next = 20750 (mblk_t *)(uintptr_t)first_snxt; 20751 } 20752 20753 first_snxt = *snxt - spill; 20754 20755 /* 20756 * Advance xmit_tail; usable could be 0 by 20757 * the time we got here, but we made sure 20758 * above that we would only spillover to 20759 * the next data block if usable includes 20760 * the spilled-over amount prior to the 20761 * subtraction. Therefore, we are sure 20762 * that xmit_tail->b_cont can't be NULL. 20763 */ 20764 ASSERT((*xmit_tail)->b_cont != NULL); 20765 *xmit_tail = (*xmit_tail)->b_cont; 20766 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20767 (uintptr_t)INT_MAX); 20768 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20769 } else { 20770 cur_pld_off += tcp->tcp_last_sent_len; 20771 } 20772 20773 /* 20774 * Fill in the header using the template header, and 20775 * add options such as time-stamp, ECN and/or SACK, 20776 * as needed. 20777 */ 20778 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20779 (clock_t)local_time, num_sack_blk); 20780 20781 /* take care of some IP header businesses */ 20782 if (af == AF_INET) { 20783 ipha = (ipha_t *)pkt_info->hdr_rptr; 20784 20785 ASSERT(OK_32PTR((uchar_t *)ipha)); 20786 ASSERT(PDESC_HDRL(pkt_info) >= 20787 IP_SIMPLE_HDR_LENGTH); 20788 ASSERT(ipha->ipha_version_and_hdr_length == 20789 IP_SIMPLE_HDR_VERSION); 20790 20791 /* 20792 * Assign ident value for current packet; see 20793 * related comments in ip_wput_ire() about the 20794 * contract private interface with clustering 20795 * group. 20796 */ 20797 clusterwide = B_FALSE; 20798 if (cl_inet_ipident != NULL) { 20799 ASSERT(cl_inet_isclusterwide != NULL); 20800 if ((*cl_inet_isclusterwide)(stack_id, 20801 IPPROTO_IP, AF_INET, 20802 (uint8_t *)(uintptr_t)src, NULL)) { 20803 ipha->ipha_ident = 20804 (*cl_inet_ipident)(stack_id, 20805 IPPROTO_IP, AF_INET, 20806 (uint8_t *)(uintptr_t)src, 20807 (uint8_t *)(uintptr_t)dst, 20808 NULL); 20809 clusterwide = B_TRUE; 20810 } 20811 } 20812 20813 if (!clusterwide) { 20814 ipha->ipha_ident = (uint16_t) 20815 atomic_add_32_nv( 20816 &ire->ire_ident, 1); 20817 } 20818 #ifndef _BIG_ENDIAN 20819 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20820 (ipha->ipha_ident >> 8); 20821 #endif 20822 } else { 20823 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20824 20825 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20826 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20827 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20828 ASSERT(PDESC_HDRL(pkt_info) >= 20829 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20830 TCP_CHECKSUM_SIZE)); 20831 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20832 20833 if (tcp->tcp_ip_forward_progress) { 20834 rconfirm = B_TRUE; 20835 tcp->tcp_ip_forward_progress = B_FALSE; 20836 } 20837 } 20838 20839 /* at least one payload span, and at most two */ 20840 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20841 20842 /* add the packet descriptor to Multidata */ 20843 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20844 KM_NOSLEEP)) == NULL) { 20845 /* 20846 * Any failure other than ENOMEM indicates 20847 * that we have passed in invalid pkt_info 20848 * or parameters to mmd_addpdesc, which must 20849 * not happen. 20850 * 20851 * EINVAL is a result of failure on boundary 20852 * checks against the pkt_info contents. It 20853 * should not happen, and we panic because 20854 * either there's horrible heap corruption, 20855 * and/or programming mistake. 20856 */ 20857 if (err != ENOMEM) { 20858 cmn_err(CE_PANIC, "tcp_multisend: " 20859 "pdesc logic error detected for " 20860 "tcp %p mmd %p pinfo %p (%d)\n", 20861 (void *)tcp, (void *)mmd, 20862 (void *)pkt_info, err); 20863 } 20864 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20865 goto legacy_send; /* out_of_mem */ 20866 } 20867 ASSERT(pkt != NULL); 20868 20869 /* calculate IP header and TCP checksums */ 20870 if (af == AF_INET) { 20871 /* calculate pseudo-header checksum */ 20872 cksum = (dst >> 16) + (dst & 0xFFFF) + 20873 (src >> 16) + (src & 0xFFFF); 20874 20875 /* offset for TCP header checksum */ 20876 up = IPH_TCPH_CHECKSUMP(ipha, 20877 IP_SIMPLE_HDR_LENGTH); 20878 } else { 20879 up = (uint16_t *)&ip6h->ip6_src; 20880 20881 /* calculate pseudo-header checksum */ 20882 cksum = up[0] + up[1] + up[2] + up[3] + 20883 up[4] + up[5] + up[6] + up[7] + 20884 up[8] + up[9] + up[10] + up[11] + 20885 up[12] + up[13] + up[14] + up[15]; 20886 20887 /* Fold the initial sum */ 20888 cksum = (cksum & 0xffff) + (cksum >> 16); 20889 20890 up = (uint16_t *)(((uchar_t *)ip6h) + 20891 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20892 } 20893 20894 if (hwcksum_flags & HCK_FULLCKSUM) { 20895 /* clear checksum field for hardware */ 20896 *up = 0; 20897 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20898 uint32_t sum; 20899 20900 /* pseudo-header checksumming */ 20901 sum = *up + cksum + IP_TCP_CSUM_COMP; 20902 sum = (sum & 0xFFFF) + (sum >> 16); 20903 *up = (sum & 0xFFFF) + (sum >> 16); 20904 } else { 20905 /* software checksumming */ 20906 TCP_STAT(tcps, tcp_out_sw_cksum); 20907 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20908 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20909 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20910 cksum + IP_TCP_CSUM_COMP); 20911 if (*up == 0) 20912 *up = 0xFFFF; 20913 } 20914 20915 /* IPv4 header checksum */ 20916 if (af == AF_INET) { 20917 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20918 ipha->ipha_hdr_checksum = 0; 20919 } else { 20920 IP_HDR_CKSUM(ipha, cksum, 20921 ((uint32_t *)ipha)[0], 20922 ((uint16_t *)ipha)[4]); 20923 } 20924 } 20925 20926 if (af == AF_INET && 20927 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20928 af == AF_INET6 && 20929 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20930 mblk_t *mp, *mp1; 20931 uchar_t *hdr_rptr, *hdr_wptr; 20932 uchar_t *pld_rptr, *pld_wptr; 20933 20934 /* 20935 * We reconstruct a pseudo packet for the hooks 20936 * framework using mmd_transform_link(). 20937 * If it is a split packet we pullup the 20938 * payload. FW_HOOKS expects a pkt comprising 20939 * of two mblks: a header and the payload. 20940 */ 20941 if ((mp = mmd_transform_link(pkt)) == NULL) { 20942 TCP_STAT(tcps, tcp_mdt_allocfail); 20943 goto legacy_send; 20944 } 20945 20946 if (pkt_info->pld_cnt > 1) { 20947 /* split payload, more than one pld */ 20948 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20949 NULL) { 20950 freemsg(mp); 20951 TCP_STAT(tcps, 20952 tcp_mdt_allocfail); 20953 goto legacy_send; 20954 } 20955 freemsg(mp->b_cont); 20956 mp->b_cont = mp1; 20957 } else { 20958 mp1 = mp->b_cont; 20959 } 20960 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20961 20962 /* 20963 * Remember the message offsets. This is so we 20964 * can detect changes when we return from the 20965 * FW_HOOKS callbacks. 20966 */ 20967 hdr_rptr = mp->b_rptr; 20968 hdr_wptr = mp->b_wptr; 20969 pld_rptr = mp->b_cont->b_rptr; 20970 pld_wptr = mp->b_cont->b_wptr; 20971 20972 if (af == AF_INET) { 20973 DTRACE_PROBE4( 20974 ip4__physical__out__start, 20975 ill_t *, NULL, 20976 ill_t *, ill, 20977 ipha_t *, ipha, 20978 mblk_t *, mp); 20979 FW_HOOKS( 20980 ipst->ips_ip4_physical_out_event, 20981 ipst->ips_ipv4firewall_physical_out, 20982 NULL, ill, ipha, mp, mp, 0, ipst); 20983 DTRACE_PROBE1( 20984 ip4__physical__out__end, 20985 mblk_t *, mp); 20986 } else { 20987 DTRACE_PROBE4( 20988 ip6__physical__out_start, 20989 ill_t *, NULL, 20990 ill_t *, ill, 20991 ip6_t *, ip6h, 20992 mblk_t *, mp); 20993 FW_HOOKS6( 20994 ipst->ips_ip6_physical_out_event, 20995 ipst->ips_ipv6firewall_physical_out, 20996 NULL, ill, ip6h, mp, mp, 0, ipst); 20997 DTRACE_PROBE1( 20998 ip6__physical__out__end, 20999 mblk_t *, mp); 21000 } 21001 21002 if (mp == NULL || 21003 (mp1 = mp->b_cont) == NULL || 21004 mp->b_rptr != hdr_rptr || 21005 mp->b_wptr != hdr_wptr || 21006 mp1->b_rptr != pld_rptr || 21007 mp1->b_wptr != pld_wptr || 21008 mp1->b_cont != NULL) { 21009 /* 21010 * We abandon multidata processing and 21011 * return to the normal path, either 21012 * when a packet is blocked, or when 21013 * the boundaries of header buffer or 21014 * payload buffer have been changed by 21015 * FW_HOOKS[6]. 21016 */ 21017 if (mp != NULL) 21018 freemsg(mp); 21019 goto legacy_send; 21020 } 21021 /* Finished with the pseudo packet */ 21022 freemsg(mp); 21023 } 21024 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21025 ill, ipha, ip6h); 21026 /* advance header offset */ 21027 cur_hdr_off += hdr_frag_sz; 21028 21029 obbytes += tcp->tcp_last_sent_len; 21030 ++obsegs; 21031 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21032 *tail_unsent > 0); 21033 21034 if ((*xmit_tail)->b_next == NULL) { 21035 /* 21036 * Store the lbolt used for RTT estimation. We can only 21037 * record one timestamp per mblk so we do it when we 21038 * reach the end of the payload buffer. Also we only 21039 * take a new timestamp sample when the previous timed 21040 * data from the same mblk has been ack'ed. 21041 */ 21042 (*xmit_tail)->b_prev = local_time; 21043 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21044 } 21045 21046 ASSERT(*tail_unsent >= 0); 21047 if (*tail_unsent > 0) { 21048 /* 21049 * We got here because we broke out of the above 21050 * loop due to of one of the following cases: 21051 * 21052 * 1. len < adjusted MSS (i.e. small), 21053 * 2. Sender SWS avoidance, 21054 * 3. max_pld is zero. 21055 * 21056 * We are done for this Multidata, so trim our 21057 * last payload buffer (if any) accordingly. 21058 */ 21059 if (md_pbuf != NULL) 21060 md_pbuf->b_wptr -= *tail_unsent; 21061 } else if (*usable > 0) { 21062 *xmit_tail = (*xmit_tail)->b_cont; 21063 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21064 (uintptr_t)INT_MAX); 21065 *tail_unsent = (int)MBLKL(*xmit_tail); 21066 add_buffer = B_TRUE; 21067 } 21068 } while (!done && *usable > 0 && num_burst_seg > 0 && 21069 (tcp_mdt_chain || max_pld > 0)); 21070 21071 if (md_mp_head != NULL) { 21072 /* send everything down */ 21073 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21074 &rconfirm); 21075 } 21076 21077 #undef PREP_NEW_MULTIDATA 21078 #undef PREP_NEW_PBUF 21079 #undef IPVER 21080 21081 IRE_REFRELE(ire); 21082 return (0); 21083 } 21084 21085 /* 21086 * A wrapper function for sending one or more Multidata messages down to 21087 * the module below ip; this routine does not release the reference of the 21088 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21089 */ 21090 static void 21091 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21092 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21093 { 21094 uint64_t delta; 21095 nce_t *nce; 21096 tcp_stack_t *tcps = tcp->tcp_tcps; 21097 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21098 21099 ASSERT(ire != NULL && ill != NULL); 21100 ASSERT(ire->ire_stq != NULL); 21101 ASSERT(md_mp_head != NULL); 21102 ASSERT(rconfirm != NULL); 21103 21104 /* adjust MIBs and IRE timestamp */ 21105 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 21106 tcp->tcp_obsegs += obsegs; 21107 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21108 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21109 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21110 21111 if (tcp->tcp_ipversion == IPV4_VERSION) { 21112 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21113 } else { 21114 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21115 } 21116 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21117 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21118 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21119 21120 ire->ire_ob_pkt_count += obsegs; 21121 if (ire->ire_ipif != NULL) 21122 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21123 ire->ire_last_used_time = lbolt; 21124 21125 if (ipst->ips_ipobs_enabled) { 21126 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 21127 pdesc_t *dl_pkt; 21128 pdescinfo_t pinfo; 21129 mblk_t *nmp; 21130 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21131 21132 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 21133 (dl_pkt != NULL); 21134 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 21135 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 21136 continue; 21137 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 21138 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 21139 freemsg(nmp); 21140 } 21141 } 21142 21143 /* send it down */ 21144 putnext(ire->ire_stq, md_mp_head); 21145 21146 /* we're done for TCP/IPv4 */ 21147 if (tcp->tcp_ipversion == IPV4_VERSION) 21148 return; 21149 21150 nce = ire->ire_nce; 21151 21152 ASSERT(nce != NULL); 21153 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21154 ASSERT(nce->nce_state != ND_INCOMPLETE); 21155 21156 /* reachability confirmation? */ 21157 if (*rconfirm) { 21158 nce->nce_last = TICK_TO_MSEC(lbolt64); 21159 if (nce->nce_state != ND_REACHABLE) { 21160 mutex_enter(&nce->nce_lock); 21161 nce->nce_state = ND_REACHABLE; 21162 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21163 mutex_exit(&nce->nce_lock); 21164 (void) untimeout(nce->nce_timeout_id); 21165 if (ip_debug > 2) { 21166 /* ip1dbg */ 21167 pr_addr_dbg("tcp_multisend_data: state " 21168 "for %s changed to REACHABLE\n", 21169 AF_INET6, &ire->ire_addr_v6); 21170 } 21171 } 21172 /* reset transport reachability confirmation */ 21173 *rconfirm = B_FALSE; 21174 } 21175 21176 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21177 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21178 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21179 21180 if (delta > (uint64_t)ill->ill_reachable_time) { 21181 mutex_enter(&nce->nce_lock); 21182 switch (nce->nce_state) { 21183 case ND_REACHABLE: 21184 case ND_STALE: 21185 /* 21186 * ND_REACHABLE is identical to ND_STALE in this 21187 * specific case. If reachable time has expired for 21188 * this neighbor (delta is greater than reachable 21189 * time), conceptually, the neighbor cache is no 21190 * longer in REACHABLE state, but already in STALE 21191 * state. So the correct transition here is to 21192 * ND_DELAY. 21193 */ 21194 nce->nce_state = ND_DELAY; 21195 mutex_exit(&nce->nce_lock); 21196 NDP_RESTART_TIMER(nce, 21197 ipst->ips_delay_first_probe_time); 21198 if (ip_debug > 3) { 21199 /* ip2dbg */ 21200 pr_addr_dbg("tcp_multisend_data: state " 21201 "for %s changed to DELAY\n", 21202 AF_INET6, &ire->ire_addr_v6); 21203 } 21204 break; 21205 case ND_DELAY: 21206 case ND_PROBE: 21207 mutex_exit(&nce->nce_lock); 21208 /* Timers have already started */ 21209 break; 21210 case ND_UNREACHABLE: 21211 /* 21212 * ndp timer has detected that this nce is 21213 * unreachable and initiated deleting this nce 21214 * and all its associated IREs. This is a race 21215 * where we found the ire before it was deleted 21216 * and have just sent out a packet using this 21217 * unreachable nce. 21218 */ 21219 mutex_exit(&nce->nce_lock); 21220 break; 21221 default: 21222 ASSERT(0); 21223 } 21224 } 21225 } 21226 21227 /* 21228 * Derived from tcp_send_data(). 21229 */ 21230 static void 21231 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21232 int num_lso_seg) 21233 { 21234 ipha_t *ipha; 21235 mblk_t *ire_fp_mp; 21236 uint_t ire_fp_mp_len; 21237 uint32_t hcksum_txflags = 0; 21238 ipaddr_t src; 21239 ipaddr_t dst; 21240 uint32_t cksum; 21241 uint16_t *up; 21242 tcp_stack_t *tcps = tcp->tcp_tcps; 21243 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21244 21245 ASSERT(DB_TYPE(mp) == M_DATA); 21246 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21247 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21248 ASSERT(tcp->tcp_connp != NULL); 21249 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21250 21251 ipha = (ipha_t *)mp->b_rptr; 21252 src = ipha->ipha_src; 21253 dst = ipha->ipha_dst; 21254 21255 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 21256 21257 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21258 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21259 num_lso_seg); 21260 #ifndef _BIG_ENDIAN 21261 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21262 #endif 21263 if (tcp->tcp_snd_zcopy_aware) { 21264 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21265 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21266 mp = tcp_zcopy_disable(tcp, mp); 21267 } 21268 21269 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21270 ASSERT(ill->ill_hcksum_capab != NULL); 21271 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21272 } 21273 21274 /* 21275 * Since the TCP checksum should be recalculated by h/w, we can just 21276 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21277 * pseudo-header checksum for HCK_PARTIALCKSUM. 21278 * The partial pseudo-header excludes TCP length, that was calculated 21279 * in tcp_send(), so to zero *up before further processing. 21280 */ 21281 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21282 21283 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21284 *up = 0; 21285 21286 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21287 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21288 21289 /* 21290 * Append LSO flags and mss to the mp. 21291 */ 21292 lso_info_set(mp, mss, HW_LSO); 21293 21294 ipha->ipha_fragment_offset_and_flags |= 21295 (uint32_t)htons(ire->ire_frag_flag); 21296 21297 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21298 ire_fp_mp_len = MBLKL(ire_fp_mp); 21299 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21300 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21301 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21302 21303 UPDATE_OB_PKT_COUNT(ire); 21304 ire->ire_last_used_time = lbolt; 21305 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21307 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21308 ntohs(ipha->ipha_length)); 21309 21310 DTRACE_PROBE4(ip4__physical__out__start, 21311 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 21312 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21313 ipst->ips_ipv4firewall_physical_out, NULL, 21314 ill, ipha, mp, mp, 0, ipst); 21315 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21316 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 21317 21318 if (mp != NULL) { 21319 if (ipst->ips_ipobs_enabled) { 21320 zoneid_t szone; 21321 21322 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 21323 ipst, ALL_ZONES); 21324 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 21325 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 21326 } 21327 21328 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0); 21329 } 21330 } 21331 21332 /* 21333 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21334 * scheme, and returns one of the following: 21335 * 21336 * -1 = failed allocation. 21337 * 0 = success; burst count reached, or usable send window is too small, 21338 * and that we'd rather wait until later before sending again. 21339 * 1 = success; we are called from tcp_multisend(), and both usable send 21340 * window and tail_unsent are greater than the MDT threshold, and thus 21341 * Multidata Transmit should be used instead. 21342 */ 21343 static int 21344 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21345 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21346 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21347 const int mdt_thres) 21348 { 21349 int num_burst_seg = tcp->tcp_snd_burst; 21350 ire_t *ire = NULL; 21351 ill_t *ill = NULL; 21352 mblk_t *ire_fp_mp = NULL; 21353 uint_t ire_fp_mp_len = 0; 21354 int num_lso_seg = 1; 21355 uint_t lso_usable; 21356 boolean_t do_lso_send = B_FALSE; 21357 tcp_stack_t *tcps = tcp->tcp_tcps; 21358 21359 /* 21360 * Check LSO capability before any further work. And the similar check 21361 * need to be done in for(;;) loop. 21362 * LSO will be deployed when therer is more than one mss of available 21363 * data and a burst transmission is allowed. 21364 */ 21365 if (tcp->tcp_lso && 21366 (tcp->tcp_valid_bits == 0 || 21367 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21368 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21369 /* 21370 * Try to find usable IRE/ILL and do basic check to the ILL. 21371 */ 21372 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21373 /* 21374 * Enable LSO with this transmission. 21375 * Since IRE has been hold in 21376 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21377 * should be called before return. 21378 */ 21379 do_lso_send = B_TRUE; 21380 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21381 ire_fp_mp_len = MBLKL(ire_fp_mp); 21382 /* Round up to multiple of 4 */ 21383 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21384 } else { 21385 do_lso_send = B_FALSE; 21386 ill = NULL; 21387 } 21388 } 21389 21390 for (;;) { 21391 struct datab *db; 21392 tcph_t *tcph; 21393 uint32_t sum; 21394 mblk_t *mp, *mp1; 21395 uchar_t *rptr; 21396 int len; 21397 21398 /* 21399 * If we're called by tcp_multisend(), and the amount of 21400 * sendable data as well as the size of current xmit_tail 21401 * is beyond the MDT threshold, return to the caller and 21402 * let the large data transmit be done using MDT. 21403 */ 21404 if (*usable > 0 && *usable > mdt_thres && 21405 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21406 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21407 ASSERT(tcp->tcp_mdt); 21408 return (1); /* success; do large send */ 21409 } 21410 21411 if (num_burst_seg == 0) 21412 break; /* success; burst count reached */ 21413 21414 /* 21415 * Calculate the maximum payload length we can send in *one* 21416 * time. 21417 */ 21418 if (do_lso_send) { 21419 /* 21420 * Check whether need to do LSO any more. 21421 */ 21422 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21423 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21424 lso_usable = MIN(lso_usable, 21425 num_burst_seg * mss); 21426 21427 num_lso_seg = lso_usable / mss; 21428 if (lso_usable % mss) { 21429 num_lso_seg++; 21430 tcp->tcp_last_sent_len = (ushort_t) 21431 (lso_usable % mss); 21432 } else { 21433 tcp->tcp_last_sent_len = (ushort_t)mss; 21434 } 21435 } else { 21436 do_lso_send = B_FALSE; 21437 num_lso_seg = 1; 21438 lso_usable = mss; 21439 } 21440 } 21441 21442 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21443 21444 /* 21445 * Adjust num_burst_seg here. 21446 */ 21447 num_burst_seg -= num_lso_seg; 21448 21449 len = mss; 21450 if (len > *usable) { 21451 ASSERT(do_lso_send == B_FALSE); 21452 21453 len = *usable; 21454 if (len <= 0) { 21455 /* Terminate the loop */ 21456 break; /* success; too small */ 21457 } 21458 /* 21459 * Sender silly-window avoidance. 21460 * Ignore this if we are going to send a 21461 * zero window probe out. 21462 * 21463 * TODO: force data into microscopic window? 21464 * ==> (!pushed || (unsent > usable)) 21465 */ 21466 if (len < (tcp->tcp_max_swnd >> 1) && 21467 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21468 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21469 len == 1) && (! tcp->tcp_zero_win_probe)) { 21470 /* 21471 * If the retransmit timer is not running 21472 * we start it so that we will retransmit 21473 * in the case when the the receiver has 21474 * decremented the window. 21475 */ 21476 if (*snxt == tcp->tcp_snxt && 21477 *snxt == tcp->tcp_suna) { 21478 /* 21479 * We are not supposed to send 21480 * anything. So let's wait a little 21481 * bit longer before breaking SWS 21482 * avoidance. 21483 * 21484 * What should the value be? 21485 * Suggestion: MAX(init rexmit time, 21486 * tcp->tcp_rto) 21487 */ 21488 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21489 } 21490 break; /* success; too small */ 21491 } 21492 } 21493 21494 tcph = tcp->tcp_tcph; 21495 21496 /* 21497 * The reason to adjust len here is that we need to set flags 21498 * and calculate checksum. 21499 */ 21500 if (do_lso_send) 21501 len = lso_usable; 21502 21503 *usable -= len; /* Approximate - can be adjusted later */ 21504 if (*usable > 0) 21505 tcph->th_flags[0] = TH_ACK; 21506 else 21507 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21508 21509 /* 21510 * Prime pump for IP's checksumming on our behalf 21511 * Include the adjustment for a source route if any. 21512 */ 21513 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21514 sum = (sum >> 16) + (sum & 0xFFFF); 21515 U16_TO_ABE16(sum, tcph->th_sum); 21516 21517 U32_TO_ABE32(*snxt, tcph->th_seq); 21518 21519 /* 21520 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21521 * set. For the case when TCP_FSS_VALID is the only valid 21522 * bit (normal active close), branch off only when we think 21523 * that the FIN flag needs to be set. Note for this case, 21524 * that (snxt + len) may not reflect the actual seg_len, 21525 * as len may be further reduced in tcp_xmit_mp(). If len 21526 * gets modified, we will end up here again. 21527 */ 21528 if (tcp->tcp_valid_bits != 0 && 21529 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21530 ((*snxt + len) == tcp->tcp_fss))) { 21531 uchar_t *prev_rptr; 21532 uint32_t prev_snxt = tcp->tcp_snxt; 21533 21534 if (*tail_unsent == 0) { 21535 ASSERT((*xmit_tail)->b_cont != NULL); 21536 *xmit_tail = (*xmit_tail)->b_cont; 21537 prev_rptr = (*xmit_tail)->b_rptr; 21538 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21539 (*xmit_tail)->b_rptr); 21540 } else { 21541 prev_rptr = (*xmit_tail)->b_rptr; 21542 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21543 *tail_unsent; 21544 } 21545 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21546 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21547 /* Restore tcp_snxt so we get amount sent right. */ 21548 tcp->tcp_snxt = prev_snxt; 21549 if (prev_rptr == (*xmit_tail)->b_rptr) { 21550 /* 21551 * If the previous timestamp is still in use, 21552 * don't stomp on it. 21553 */ 21554 if ((*xmit_tail)->b_next == NULL) { 21555 (*xmit_tail)->b_prev = local_time; 21556 (*xmit_tail)->b_next = 21557 (mblk_t *)(uintptr_t)(*snxt); 21558 } 21559 } else 21560 (*xmit_tail)->b_rptr = prev_rptr; 21561 21562 if (mp == NULL) { 21563 if (ire != NULL) 21564 IRE_REFRELE(ire); 21565 return (-1); 21566 } 21567 mp1 = mp->b_cont; 21568 21569 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21570 tcp->tcp_last_sent_len = (ushort_t)len; 21571 while (mp1->b_cont) { 21572 *xmit_tail = (*xmit_tail)->b_cont; 21573 (*xmit_tail)->b_prev = local_time; 21574 (*xmit_tail)->b_next = 21575 (mblk_t *)(uintptr_t)(*snxt); 21576 mp1 = mp1->b_cont; 21577 } 21578 *snxt += len; 21579 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21580 BUMP_LOCAL(tcp->tcp_obsegs); 21581 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21582 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21583 tcp_send_data(tcp, q, mp); 21584 continue; 21585 } 21586 21587 *snxt += len; /* Adjust later if we don't send all of len */ 21588 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21589 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21590 21591 if (*tail_unsent) { 21592 /* Are the bytes above us in flight? */ 21593 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21594 if (rptr != (*xmit_tail)->b_rptr) { 21595 *tail_unsent -= len; 21596 if (len <= mss) /* LSO is unusable */ 21597 tcp->tcp_last_sent_len = (ushort_t)len; 21598 len += tcp_hdr_len; 21599 if (tcp->tcp_ipversion == IPV4_VERSION) 21600 tcp->tcp_ipha->ipha_length = htons(len); 21601 else 21602 tcp->tcp_ip6h->ip6_plen = 21603 htons(len - 21604 ((char *)&tcp->tcp_ip6h[1] - 21605 tcp->tcp_iphc)); 21606 mp = dupb(*xmit_tail); 21607 if (mp == NULL) { 21608 if (ire != NULL) 21609 IRE_REFRELE(ire); 21610 return (-1); /* out_of_mem */ 21611 } 21612 mp->b_rptr = rptr; 21613 /* 21614 * If the old timestamp is no longer in use, 21615 * sample a new timestamp now. 21616 */ 21617 if ((*xmit_tail)->b_next == NULL) { 21618 (*xmit_tail)->b_prev = local_time; 21619 (*xmit_tail)->b_next = 21620 (mblk_t *)(uintptr_t)(*snxt-len); 21621 } 21622 goto must_alloc; 21623 } 21624 } else { 21625 *xmit_tail = (*xmit_tail)->b_cont; 21626 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21627 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21628 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21629 (*xmit_tail)->b_rptr); 21630 } 21631 21632 (*xmit_tail)->b_prev = local_time; 21633 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21634 21635 *tail_unsent -= len; 21636 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21637 tcp->tcp_last_sent_len = (ushort_t)len; 21638 21639 len += tcp_hdr_len; 21640 if (tcp->tcp_ipversion == IPV4_VERSION) 21641 tcp->tcp_ipha->ipha_length = htons(len); 21642 else 21643 tcp->tcp_ip6h->ip6_plen = htons(len - 21644 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21645 21646 mp = dupb(*xmit_tail); 21647 if (mp == NULL) { 21648 if (ire != NULL) 21649 IRE_REFRELE(ire); 21650 return (-1); /* out_of_mem */ 21651 } 21652 21653 len = tcp_hdr_len; 21654 /* 21655 * There are four reasons to allocate a new hdr mblk: 21656 * 1) The bytes above us are in use by another packet 21657 * 2) We don't have good alignment 21658 * 3) The mblk is being shared 21659 * 4) We don't have enough room for a header 21660 */ 21661 rptr = mp->b_rptr - len; 21662 if (!OK_32PTR(rptr) || 21663 ((db = mp->b_datap), db->db_ref != 2) || 21664 rptr < db->db_base + ire_fp_mp_len) { 21665 /* NOTE: we assume allocb returns an OK_32PTR */ 21666 21667 must_alloc:; 21668 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21669 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21670 if (mp1 == NULL) { 21671 freemsg(mp); 21672 if (ire != NULL) 21673 IRE_REFRELE(ire); 21674 return (-1); /* out_of_mem */ 21675 } 21676 mp1->b_cont = mp; 21677 mp = mp1; 21678 /* Leave room for Link Level header */ 21679 len = tcp_hdr_len; 21680 rptr = 21681 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21682 mp->b_wptr = &rptr[len]; 21683 } 21684 21685 /* 21686 * Fill in the header using the template header, and add 21687 * options such as time-stamp, ECN and/or SACK, as needed. 21688 */ 21689 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21690 21691 mp->b_rptr = rptr; 21692 21693 if (*tail_unsent) { 21694 int spill = *tail_unsent; 21695 21696 mp1 = mp->b_cont; 21697 if (mp1 == NULL) 21698 mp1 = mp; 21699 21700 /* 21701 * If we're a little short, tack on more mblks until 21702 * there is no more spillover. 21703 */ 21704 while (spill < 0) { 21705 mblk_t *nmp; 21706 int nmpsz; 21707 21708 nmp = (*xmit_tail)->b_cont; 21709 nmpsz = MBLKL(nmp); 21710 21711 /* 21712 * Excess data in mblk; can we split it? 21713 * If MDT is enabled for the connection, 21714 * keep on splitting as this is a transient 21715 * send path. 21716 */ 21717 if (!do_lso_send && !tcp->tcp_mdt && 21718 (spill + nmpsz > 0)) { 21719 /* 21720 * Don't split if stream head was 21721 * told to break up larger writes 21722 * into smaller ones. 21723 */ 21724 if (tcp->tcp_maxpsz > 0) 21725 break; 21726 21727 /* 21728 * Next mblk is less than SMSS/2 21729 * rounded up to nearest 64-byte; 21730 * let it get sent as part of the 21731 * next segment. 21732 */ 21733 if (tcp->tcp_localnet && 21734 !tcp->tcp_cork && 21735 (nmpsz < roundup((mss >> 1), 64))) 21736 break; 21737 } 21738 21739 *xmit_tail = nmp; 21740 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21741 /* Stash for rtt use later */ 21742 (*xmit_tail)->b_prev = local_time; 21743 (*xmit_tail)->b_next = 21744 (mblk_t *)(uintptr_t)(*snxt - len); 21745 mp1->b_cont = dupb(*xmit_tail); 21746 mp1 = mp1->b_cont; 21747 21748 spill += nmpsz; 21749 if (mp1 == NULL) { 21750 *tail_unsent = spill; 21751 freemsg(mp); 21752 if (ire != NULL) 21753 IRE_REFRELE(ire); 21754 return (-1); /* out_of_mem */ 21755 } 21756 } 21757 21758 /* Trim back any surplus on the last mblk */ 21759 if (spill >= 0) { 21760 mp1->b_wptr -= spill; 21761 *tail_unsent = spill; 21762 } else { 21763 /* 21764 * We did not send everything we could in 21765 * order to remain within the b_cont limit. 21766 */ 21767 *usable -= spill; 21768 *snxt += spill; 21769 tcp->tcp_last_sent_len += spill; 21770 UPDATE_MIB(&tcps->tcps_mib, 21771 tcpOutDataBytes, spill); 21772 /* 21773 * Adjust the checksum 21774 */ 21775 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21776 sum += spill; 21777 sum = (sum >> 16) + (sum & 0xFFFF); 21778 U16_TO_ABE16(sum, tcph->th_sum); 21779 if (tcp->tcp_ipversion == IPV4_VERSION) { 21780 sum = ntohs( 21781 ((ipha_t *)rptr)->ipha_length) + 21782 spill; 21783 ((ipha_t *)rptr)->ipha_length = 21784 htons(sum); 21785 } else { 21786 sum = ntohs( 21787 ((ip6_t *)rptr)->ip6_plen) + 21788 spill; 21789 ((ip6_t *)rptr)->ip6_plen = 21790 htons(sum); 21791 } 21792 *tail_unsent = 0; 21793 } 21794 } 21795 if (tcp->tcp_ip_forward_progress) { 21796 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21797 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21798 tcp->tcp_ip_forward_progress = B_FALSE; 21799 } 21800 21801 if (do_lso_send) { 21802 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21803 num_lso_seg); 21804 tcp->tcp_obsegs += num_lso_seg; 21805 21806 TCP_STAT(tcps, tcp_lso_times); 21807 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21808 } else { 21809 tcp_send_data(tcp, q, mp); 21810 BUMP_LOCAL(tcp->tcp_obsegs); 21811 } 21812 } 21813 21814 if (ire != NULL) 21815 IRE_REFRELE(ire); 21816 return (0); 21817 } 21818 21819 /* Unlink and return any mblk that looks like it contains a MDT info */ 21820 static mblk_t * 21821 tcp_mdt_info_mp(mblk_t *mp) 21822 { 21823 mblk_t *prev_mp; 21824 21825 for (;;) { 21826 prev_mp = mp; 21827 /* no more to process? */ 21828 if ((mp = mp->b_cont) == NULL) 21829 break; 21830 21831 switch (DB_TYPE(mp)) { 21832 case M_CTL: 21833 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21834 continue; 21835 ASSERT(prev_mp != NULL); 21836 prev_mp->b_cont = mp->b_cont; 21837 mp->b_cont = NULL; 21838 return (mp); 21839 default: 21840 break; 21841 } 21842 } 21843 return (mp); 21844 } 21845 21846 /* MDT info update routine, called when IP notifies us about MDT */ 21847 static void 21848 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21849 { 21850 boolean_t prev_state; 21851 tcp_stack_t *tcps = tcp->tcp_tcps; 21852 21853 /* 21854 * IP is telling us to abort MDT on this connection? We know 21855 * this because the capability is only turned off when IP 21856 * encounters some pathological cases, e.g. link-layer change 21857 * where the new driver doesn't support MDT, or in situation 21858 * where MDT usage on the link-layer has been switched off. 21859 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21860 * if the link-layer doesn't support MDT, and if it does, it 21861 * will indicate that the feature is to be turned on. 21862 */ 21863 prev_state = tcp->tcp_mdt; 21864 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21865 if (!tcp->tcp_mdt && !first) { 21866 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21867 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21868 (void *)tcp->tcp_connp)); 21869 } 21870 21871 /* 21872 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21873 * so disable MDT otherwise. The checks are done here 21874 * and in tcp_wput_data(). 21875 */ 21876 if (tcp->tcp_mdt && 21877 (tcp->tcp_ipversion == IPV4_VERSION && 21878 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21879 (tcp->tcp_ipversion == IPV6_VERSION && 21880 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21881 tcp->tcp_mdt = B_FALSE; 21882 21883 if (tcp->tcp_mdt) { 21884 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21885 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21886 "version (%d), expected version is %d", 21887 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21888 tcp->tcp_mdt = B_FALSE; 21889 return; 21890 } 21891 21892 /* 21893 * We need the driver to be able to handle at least three 21894 * spans per packet in order for tcp MDT to be utilized. 21895 * The first is for the header portion, while the rest are 21896 * needed to handle a packet that straddles across two 21897 * virtually non-contiguous buffers; a typical tcp packet 21898 * therefore consists of only two spans. Note that we take 21899 * a zero as "don't care". 21900 */ 21901 if (mdt_capab->ill_mdt_span_limit > 0 && 21902 mdt_capab->ill_mdt_span_limit < 3) { 21903 tcp->tcp_mdt = B_FALSE; 21904 return; 21905 } 21906 21907 /* a zero means driver wants default value */ 21908 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21909 tcps->tcps_mdt_max_pbufs); 21910 if (tcp->tcp_mdt_max_pld == 0) 21911 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21912 21913 /* ensure 32-bit alignment */ 21914 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21915 mdt_capab->ill_mdt_hdr_head), 4); 21916 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21917 mdt_capab->ill_mdt_hdr_tail), 4); 21918 21919 if (!first && !prev_state) { 21920 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21921 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21922 (void *)tcp->tcp_connp)); 21923 } 21924 } 21925 } 21926 21927 /* Unlink and return any mblk that looks like it contains a LSO info */ 21928 static mblk_t * 21929 tcp_lso_info_mp(mblk_t *mp) 21930 { 21931 mblk_t *prev_mp; 21932 21933 for (;;) { 21934 prev_mp = mp; 21935 /* no more to process? */ 21936 if ((mp = mp->b_cont) == NULL) 21937 break; 21938 21939 switch (DB_TYPE(mp)) { 21940 case M_CTL: 21941 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21942 continue; 21943 ASSERT(prev_mp != NULL); 21944 prev_mp->b_cont = mp->b_cont; 21945 mp->b_cont = NULL; 21946 return (mp); 21947 default: 21948 break; 21949 } 21950 } 21951 21952 return (mp); 21953 } 21954 21955 /* LSO info update routine, called when IP notifies us about LSO */ 21956 static void 21957 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21958 { 21959 tcp_stack_t *tcps = tcp->tcp_tcps; 21960 21961 /* 21962 * IP is telling us to abort LSO on this connection? We know 21963 * this because the capability is only turned off when IP 21964 * encounters some pathological cases, e.g. link-layer change 21965 * where the new NIC/driver doesn't support LSO, or in situation 21966 * where LSO usage on the link-layer has been switched off. 21967 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21968 * if the link-layer doesn't support LSO, and if it does, it 21969 * will indicate that the feature is to be turned on. 21970 */ 21971 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21972 TCP_STAT(tcps, tcp_lso_enabled); 21973 21974 /* 21975 * We currently only support LSO on simple TCP/IPv4, 21976 * so disable LSO otherwise. The checks are done here 21977 * and in tcp_wput_data(). 21978 */ 21979 if (tcp->tcp_lso && 21980 (tcp->tcp_ipversion == IPV4_VERSION && 21981 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21982 (tcp->tcp_ipversion == IPV6_VERSION)) { 21983 tcp->tcp_lso = B_FALSE; 21984 TCP_STAT(tcps, tcp_lso_disabled); 21985 } else { 21986 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21987 lso_capab->ill_lso_max); 21988 } 21989 } 21990 21991 static void 21992 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21993 { 21994 conn_t *connp = tcp->tcp_connp; 21995 tcp_stack_t *tcps = tcp->tcp_tcps; 21996 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21997 21998 ASSERT(ire != NULL); 21999 22000 /* 22001 * We may be in the fastpath here, and although we essentially do 22002 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 22003 * we try to keep things as brief as possible. After all, these 22004 * are only best-effort checks, and we do more thorough ones prior 22005 * to calling tcp_send()/tcp_multisend(). 22006 */ 22007 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 22008 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 22009 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 22010 !(ire->ire_flags & RTF_MULTIRT) && 22011 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 22012 CONN_IS_LSO_MD_FASTPATH(connp)) { 22013 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 22014 /* Cache the result */ 22015 connp->conn_lso_ok = B_TRUE; 22016 22017 ASSERT(ill->ill_lso_capab != NULL); 22018 if (!ill->ill_lso_capab->ill_lso_on) { 22019 ill->ill_lso_capab->ill_lso_on = 1; 22020 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22021 "LSO for interface %s\n", (void *)connp, 22022 ill->ill_name)); 22023 } 22024 tcp_lso_update(tcp, ill->ill_lso_capab); 22025 } else if (ipst->ips_ip_multidata_outbound && 22026 ILL_MDT_CAPABLE(ill)) { 22027 /* Cache the result */ 22028 connp->conn_mdt_ok = B_TRUE; 22029 22030 ASSERT(ill->ill_mdt_capab != NULL); 22031 if (!ill->ill_mdt_capab->ill_mdt_on) { 22032 ill->ill_mdt_capab->ill_mdt_on = 1; 22033 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22034 "MDT for interface %s\n", (void *)connp, 22035 ill->ill_name)); 22036 } 22037 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22038 } 22039 } 22040 22041 /* 22042 * The goal is to reduce the number of generated tcp segments by 22043 * setting the maxpsz multiplier to 0; this will have an affect on 22044 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22045 * into each packet, up to SMSS bytes. Doing this reduces the number 22046 * of outbound segments and incoming ACKs, thus allowing for better 22047 * network and system performance. In contrast the legacy behavior 22048 * may result in sending less than SMSS size, because the last mblk 22049 * for some packets may have more data than needed to make up SMSS, 22050 * and the legacy code refused to "split" it. 22051 * 22052 * We apply the new behavior on following situations: 22053 * 22054 * 1) Loopback connections, 22055 * 2) Connections in which the remote peer is not on local subnet, 22056 * 3) Local subnet connections over the bge interface (see below). 22057 * 22058 * Ideally, we would like this behavior to apply for interfaces other 22059 * than bge. However, doing so would negatively impact drivers which 22060 * perform dynamic mapping and unmapping of DMA resources, which are 22061 * increased by setting the maxpsz multiplier to 0 (more mblks per 22062 * packet will be generated by tcp). The bge driver does not suffer 22063 * from this, as it copies the mblks into pre-mapped buffers, and 22064 * therefore does not require more I/O resources than before. 22065 * 22066 * Otherwise, this behavior is present on all network interfaces when 22067 * the destination endpoint is non-local, since reducing the number 22068 * of packets in general is good for the network. 22069 * 22070 * TODO We need to remove this hard-coded conditional for bge once 22071 * a better "self-tuning" mechanism, or a way to comprehend 22072 * the driver transmit strategy is devised. Until the solution 22073 * is found and well understood, we live with this hack. 22074 */ 22075 if (!tcp_static_maxpsz && 22076 (tcp->tcp_loopback || !tcp->tcp_localnet || 22077 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22078 /* override the default value */ 22079 tcp->tcp_maxpsz = 0; 22080 22081 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22082 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22083 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22084 } 22085 22086 /* set the stream head parameters accordingly */ 22087 (void) tcp_maxpsz_set(tcp, B_TRUE); 22088 } 22089 22090 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22091 static void 22092 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22093 { 22094 uchar_t fval = *mp->b_rptr; 22095 mblk_t *tail; 22096 queue_t *q = tcp->tcp_wq; 22097 22098 /* TODO: How should flush interact with urgent data? */ 22099 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22100 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22101 /* 22102 * Flush only data that has not yet been put on the wire. If 22103 * we flush data that we have already transmitted, life, as we 22104 * know it, may come to an end. 22105 */ 22106 tail = tcp->tcp_xmit_tail; 22107 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22108 tcp->tcp_xmit_tail_unsent = 0; 22109 tcp->tcp_unsent = 0; 22110 if (tail->b_wptr != tail->b_rptr) 22111 tail = tail->b_cont; 22112 if (tail) { 22113 mblk_t **excess = &tcp->tcp_xmit_head; 22114 for (;;) { 22115 mblk_t *mp1 = *excess; 22116 if (mp1 == tail) 22117 break; 22118 tcp->tcp_xmit_tail = mp1; 22119 tcp->tcp_xmit_last = mp1; 22120 excess = &mp1->b_cont; 22121 } 22122 *excess = NULL; 22123 tcp_close_mpp(&tail); 22124 if (tcp->tcp_snd_zcopy_aware) 22125 tcp_zcopy_notify(tcp); 22126 } 22127 /* 22128 * We have no unsent data, so unsent must be less than 22129 * tcp_xmit_lowater, so re-enable flow. 22130 */ 22131 mutex_enter(&tcp->tcp_non_sq_lock); 22132 if (tcp->tcp_flow_stopped) { 22133 tcp_clrqfull(tcp); 22134 } 22135 mutex_exit(&tcp->tcp_non_sq_lock); 22136 } 22137 /* 22138 * TODO: you can't just flush these, you have to increase rwnd for one 22139 * thing. For another, how should urgent data interact? 22140 */ 22141 if (fval & FLUSHR) { 22142 *mp->b_rptr = fval & ~FLUSHW; 22143 /* XXX */ 22144 qreply(q, mp); 22145 return; 22146 } 22147 freemsg(mp); 22148 } 22149 22150 /* 22151 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22152 * messages. 22153 */ 22154 static void 22155 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22156 { 22157 mblk_t *mp1; 22158 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22159 STRUCT_HANDLE(strbuf, sb); 22160 queue_t *q = tcp->tcp_wq; 22161 int error; 22162 uint_t addrlen; 22163 22164 /* Make sure it is one of ours. */ 22165 switch (iocp->ioc_cmd) { 22166 case TI_GETMYNAME: 22167 case TI_GETPEERNAME: 22168 break; 22169 default: 22170 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22171 return; 22172 } 22173 switch (mi_copy_state(q, mp, &mp1)) { 22174 case -1: 22175 return; 22176 case MI_COPY_CASE(MI_COPY_IN, 1): 22177 break; 22178 case MI_COPY_CASE(MI_COPY_OUT, 1): 22179 /* Copy out the strbuf. */ 22180 mi_copyout(q, mp); 22181 return; 22182 case MI_COPY_CASE(MI_COPY_OUT, 2): 22183 /* All done. */ 22184 mi_copy_done(q, mp, 0); 22185 return; 22186 default: 22187 mi_copy_done(q, mp, EPROTO); 22188 return; 22189 } 22190 /* Check alignment of the strbuf */ 22191 if (!OK_32PTR(mp1->b_rptr)) { 22192 mi_copy_done(q, mp, EINVAL); 22193 return; 22194 } 22195 22196 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22197 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22198 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22199 mi_copy_done(q, mp, EINVAL); 22200 return; 22201 } 22202 22203 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22204 if (mp1 == NULL) 22205 return; 22206 22207 switch (iocp->ioc_cmd) { 22208 case TI_GETMYNAME: 22209 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 22210 break; 22211 case TI_GETPEERNAME: 22212 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22213 break; 22214 } 22215 22216 if (error != 0) { 22217 mi_copy_done(q, mp, error); 22218 } else { 22219 mp1->b_wptr += addrlen; 22220 STRUCT_FSET(sb, len, addrlen); 22221 22222 /* Copy out the address */ 22223 mi_copyout(q, mp); 22224 } 22225 } 22226 22227 static void 22228 tcp_disable_direct_sockfs(tcp_t *tcp) 22229 { 22230 #ifdef _ILP32 22231 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 22232 #else 22233 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22234 #endif 22235 /* 22236 * Insert this socket into the acceptor hash. 22237 * We might need it for T_CONN_RES message 22238 */ 22239 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22240 22241 if (tcp->tcp_fused) { 22242 /* 22243 * This is a fused loopback tcp; disable 22244 * read-side synchronous streams interface 22245 * and drain any queued data. It is okay 22246 * to do this for non-synchronous streams 22247 * fused tcp as well. 22248 */ 22249 tcp_fuse_disable_pair(tcp, B_FALSE); 22250 } 22251 tcp->tcp_issocket = B_FALSE; 22252 tcp->tcp_sodirect = NULL; 22253 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 22254 } 22255 22256 /* 22257 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22258 * messages. 22259 */ 22260 /* ARGSUSED */ 22261 static void 22262 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22263 { 22264 conn_t *connp = (conn_t *)arg; 22265 tcp_t *tcp = connp->conn_tcp; 22266 queue_t *q = tcp->tcp_wq; 22267 struct iocblk *iocp; 22268 22269 ASSERT(DB_TYPE(mp) == M_IOCTL); 22270 /* 22271 * Try and ASSERT the minimum possible references on the 22272 * conn early enough. Since we are executing on write side, 22273 * the connection is obviously not detached and that means 22274 * there is a ref each for TCP and IP. Since we are behind 22275 * the squeue, the minimum references needed are 3. If the 22276 * conn is in classifier hash list, there should be an 22277 * extra ref for that (we check both the possibilities). 22278 */ 22279 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22280 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22281 22282 iocp = (struct iocblk *)mp->b_rptr; 22283 switch (iocp->ioc_cmd) { 22284 case TCP_IOC_DEFAULT_Q: 22285 /* Wants to be the default wq. */ 22286 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22287 iocp->ioc_error = EPERM; 22288 iocp->ioc_count = 0; 22289 mp->b_datap->db_type = M_IOCACK; 22290 qreply(q, mp); 22291 return; 22292 } 22293 tcp_def_q_set(tcp, mp); 22294 return; 22295 case _SIOCSOCKFALLBACK: 22296 /* 22297 * Either sockmod is about to be popped and the socket 22298 * would now be treated as a plain stream, or a module 22299 * is about to be pushed so we could no longer use read- 22300 * side synchronous streams for fused loopback tcp. 22301 * Drain any queued data and disable direct sockfs 22302 * interface from now on. 22303 */ 22304 if (!tcp->tcp_issocket) { 22305 DB_TYPE(mp) = M_IOCNAK; 22306 iocp->ioc_error = EINVAL; 22307 } else { 22308 tcp_disable_direct_sockfs(tcp); 22309 DB_TYPE(mp) = M_IOCACK; 22310 iocp->ioc_error = 0; 22311 } 22312 iocp->ioc_count = 0; 22313 iocp->ioc_rval = 0; 22314 qreply(q, mp); 22315 return; 22316 } 22317 CALL_IP_WPUT(connp, q, mp); 22318 } 22319 22320 /* 22321 * This routine is called by tcp_wput() to handle all TPI requests. 22322 */ 22323 /* ARGSUSED */ 22324 static void 22325 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22326 { 22327 conn_t *connp = (conn_t *)arg; 22328 tcp_t *tcp = connp->conn_tcp; 22329 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22330 uchar_t *rptr; 22331 t_scalar_t type; 22332 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22333 22334 /* 22335 * Try and ASSERT the minimum possible references on the 22336 * conn early enough. Since we are executing on write side, 22337 * the connection is obviously not detached and that means 22338 * there is a ref each for TCP and IP. Since we are behind 22339 * the squeue, the minimum references needed are 3. If the 22340 * conn is in classifier hash list, there should be an 22341 * extra ref for that (we check both the possibilities). 22342 */ 22343 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22344 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22345 22346 rptr = mp->b_rptr; 22347 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22348 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22349 type = ((union T_primitives *)rptr)->type; 22350 if (type == T_EXDATA_REQ) { 22351 tcp_output_urgent(connp, mp->b_cont, arg2); 22352 freeb(mp); 22353 } else if (type != T_DATA_REQ) { 22354 goto non_urgent_data; 22355 } else { 22356 /* TODO: options, flags, ... from user */ 22357 /* Set length to zero for reclamation below */ 22358 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22359 freeb(mp); 22360 } 22361 return; 22362 } else { 22363 if (tcp->tcp_debug) { 22364 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22365 "tcp_wput_proto, dropping one..."); 22366 } 22367 freemsg(mp); 22368 return; 22369 } 22370 22371 non_urgent_data: 22372 22373 switch ((int)tprim->type) { 22374 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22375 /* 22376 * save the kssl_ent_t from the next block, and convert this 22377 * back to a normal bind_req. 22378 */ 22379 if (mp->b_cont != NULL) { 22380 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22381 22382 if (tcp->tcp_kssl_ent != NULL) { 22383 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22384 KSSL_NO_PROXY); 22385 tcp->tcp_kssl_ent = NULL; 22386 } 22387 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22388 sizeof (kssl_ent_t)); 22389 kssl_hold_ent(tcp->tcp_kssl_ent); 22390 freemsg(mp->b_cont); 22391 mp->b_cont = NULL; 22392 } 22393 tprim->type = T_BIND_REQ; 22394 22395 /* FALLTHROUGH */ 22396 case O_T_BIND_REQ: /* bind request */ 22397 case T_BIND_REQ: /* new semantics bind request */ 22398 tcp_tpi_bind(tcp, mp); 22399 break; 22400 case T_UNBIND_REQ: /* unbind request */ 22401 tcp_tpi_unbind(tcp, mp); 22402 break; 22403 case O_T_CONN_RES: /* old connection response XXX */ 22404 case T_CONN_RES: /* connection response */ 22405 tcp_tli_accept(tcp, mp); 22406 break; 22407 case T_CONN_REQ: /* connection request */ 22408 tcp_tpi_connect(tcp, mp); 22409 break; 22410 case T_DISCON_REQ: /* disconnect request */ 22411 tcp_disconnect(tcp, mp); 22412 break; 22413 case T_CAPABILITY_REQ: 22414 tcp_capability_req(tcp, mp); /* capability request */ 22415 break; 22416 case T_INFO_REQ: /* information request */ 22417 tcp_info_req(tcp, mp); 22418 break; 22419 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22420 /* 22421 * If EINPROGRESS is returned, the request has been queued 22422 * for subsequent processing by ip_restart_optmgmt(), which 22423 * will do the CONN_DEC_REF(). 22424 */ 22425 CONN_INC_REF(connp); 22426 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22427 B_TRUE) != EINPROGRESS) { 22428 CONN_DEC_REF(connp); 22429 } 22430 break; 22431 case T_OPTMGMT_REQ: 22432 /* 22433 * Note: no support for snmpcom_req() through new 22434 * T_OPTMGMT_REQ. See comments in ip.c 22435 * 22436 * see comments above in T_SVR4_OPTMGMT_REQ for conn 22437 * reference changes. 22438 */ 22439 CONN_INC_REF(connp); 22440 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22441 B_TRUE) != EINPROGRESS) { 22442 CONN_DEC_REF(connp); 22443 } 22444 break; 22445 22446 case T_UNITDATA_REQ: /* unitdata request */ 22447 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22448 break; 22449 case T_ORDREL_REQ: /* orderly release req */ 22450 freemsg(mp); 22451 22452 if (tcp->tcp_fused) 22453 tcp_unfuse(tcp); 22454 22455 if (tcp_xmit_end(tcp) != 0) { 22456 /* 22457 * We were crossing FINs and got a reset from 22458 * the other side. Just ignore it. 22459 */ 22460 if (tcp->tcp_debug) { 22461 (void) strlog(TCP_MOD_ID, 0, 1, 22462 SL_ERROR|SL_TRACE, 22463 "tcp_wput_proto, T_ORDREL_REQ out of " 22464 "state %s", 22465 tcp_display(tcp, NULL, 22466 DISP_ADDR_AND_PORT)); 22467 } 22468 } 22469 break; 22470 case T_ADDR_REQ: 22471 tcp_addr_req(tcp, mp); 22472 break; 22473 default: 22474 if (tcp->tcp_debug) { 22475 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22476 "tcp_wput_proto, bogus TPI msg, type %d", 22477 tprim->type); 22478 } 22479 /* 22480 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22481 * to recover. 22482 */ 22483 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22484 break; 22485 } 22486 } 22487 22488 /* 22489 * The TCP write service routine should never be called... 22490 */ 22491 /* ARGSUSED */ 22492 static void 22493 tcp_wsrv(queue_t *q) 22494 { 22495 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22496 22497 TCP_STAT(tcps, tcp_wsrv_called); 22498 } 22499 22500 /* Non overlapping byte exchanger */ 22501 static void 22502 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22503 { 22504 uchar_t uch; 22505 22506 while (len-- > 0) { 22507 uch = a[len]; 22508 a[len] = b[len]; 22509 b[len] = uch; 22510 } 22511 } 22512 22513 /* 22514 * Send out a control packet on the tcp connection specified. This routine 22515 * is typically called where we need a simple ACK or RST generated. 22516 */ 22517 static void 22518 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22519 { 22520 uchar_t *rptr; 22521 tcph_t *tcph; 22522 ipha_t *ipha = NULL; 22523 ip6_t *ip6h = NULL; 22524 uint32_t sum; 22525 int tcp_hdr_len; 22526 int tcp_ip_hdr_len; 22527 mblk_t *mp; 22528 tcp_stack_t *tcps = tcp->tcp_tcps; 22529 22530 /* 22531 * Save sum for use in source route later. 22532 */ 22533 ASSERT(tcp != NULL); 22534 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22535 tcp_hdr_len = tcp->tcp_hdr_len; 22536 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22537 22538 /* If a text string is passed in with the request, pass it to strlog. */ 22539 if (str != NULL && tcp->tcp_debug) { 22540 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22541 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22542 str, seq, ack, ctl); 22543 } 22544 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22545 BPRI_MED); 22546 if (mp == NULL) { 22547 return; 22548 } 22549 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22550 mp->b_rptr = rptr; 22551 mp->b_wptr = &rptr[tcp_hdr_len]; 22552 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22553 22554 if (tcp->tcp_ipversion == IPV4_VERSION) { 22555 ipha = (ipha_t *)rptr; 22556 ipha->ipha_length = htons(tcp_hdr_len); 22557 } else { 22558 ip6h = (ip6_t *)rptr; 22559 ASSERT(tcp != NULL); 22560 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22561 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22562 } 22563 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22564 tcph->th_flags[0] = (uint8_t)ctl; 22565 if (ctl & TH_RST) { 22566 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22567 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22568 /* 22569 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22570 */ 22571 if (tcp->tcp_snd_ts_ok && 22572 tcp->tcp_state > TCPS_SYN_SENT) { 22573 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22574 *(mp->b_wptr) = TCPOPT_EOL; 22575 if (tcp->tcp_ipversion == IPV4_VERSION) { 22576 ipha->ipha_length = htons(tcp_hdr_len - 22577 TCPOPT_REAL_TS_LEN); 22578 } else { 22579 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22580 TCPOPT_REAL_TS_LEN); 22581 } 22582 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22583 sum -= TCPOPT_REAL_TS_LEN; 22584 } 22585 } 22586 if (ctl & TH_ACK) { 22587 if (tcp->tcp_snd_ts_ok) { 22588 U32_TO_BE32(lbolt, 22589 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22590 U32_TO_BE32(tcp->tcp_ts_recent, 22591 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22592 } 22593 22594 /* Update the latest receive window size in TCP header. */ 22595 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22596 tcph->th_win); 22597 tcp->tcp_rack = ack; 22598 tcp->tcp_rack_cnt = 0; 22599 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22600 } 22601 BUMP_LOCAL(tcp->tcp_obsegs); 22602 U32_TO_BE32(seq, tcph->th_seq); 22603 U32_TO_BE32(ack, tcph->th_ack); 22604 /* 22605 * Include the adjustment for a source route if any. 22606 */ 22607 sum = (sum >> 16) + (sum & 0xFFFF); 22608 U16_TO_BE16(sum, tcph->th_sum); 22609 tcp_send_data(tcp, tcp->tcp_wq, mp); 22610 } 22611 22612 /* 22613 * If this routine returns B_TRUE, TCP can generate a RST in response 22614 * to a segment. If it returns B_FALSE, TCP should not respond. 22615 */ 22616 static boolean_t 22617 tcp_send_rst_chk(tcp_stack_t *tcps) 22618 { 22619 clock_t now; 22620 22621 /* 22622 * TCP needs to protect itself from generating too many RSTs. 22623 * This can be a DoS attack by sending us random segments 22624 * soliciting RSTs. 22625 * 22626 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22627 * in each 1 second interval. In this way, TCP still generate 22628 * RSTs in normal cases but when under attack, the impact is 22629 * limited. 22630 */ 22631 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22632 now = lbolt; 22633 /* lbolt can wrap around. */ 22634 if ((tcps->tcps_last_rst_intrvl > now) || 22635 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22636 1*SECONDS)) { 22637 tcps->tcps_last_rst_intrvl = now; 22638 tcps->tcps_rst_cnt = 1; 22639 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22640 return (B_FALSE); 22641 } 22642 } 22643 return (B_TRUE); 22644 } 22645 22646 /* 22647 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22648 */ 22649 static void 22650 tcp_ip_ire_mark_advice(tcp_t *tcp) 22651 { 22652 mblk_t *mp; 22653 ipic_t *ipic; 22654 22655 if (tcp->tcp_ipversion == IPV4_VERSION) { 22656 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22657 &ipic); 22658 } else { 22659 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22660 &ipic); 22661 } 22662 if (mp == NULL) 22663 return; 22664 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22665 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22666 } 22667 22668 /* 22669 * Return an IP advice ioctl mblk and set ipic to be the pointer 22670 * to the advice structure. 22671 */ 22672 static mblk_t * 22673 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22674 { 22675 struct iocblk *ioc; 22676 mblk_t *mp, *mp1; 22677 22678 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22679 if (mp == NULL) 22680 return (NULL); 22681 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22682 *ipic = (ipic_t *)mp->b_rptr; 22683 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22684 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22685 22686 bcopy(addr, *ipic + 1, addr_len); 22687 22688 (*ipic)->ipic_addr_length = addr_len; 22689 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22690 22691 mp1 = mkiocb(IP_IOCTL); 22692 if (mp1 == NULL) { 22693 freemsg(mp); 22694 return (NULL); 22695 } 22696 mp1->b_cont = mp; 22697 ioc = (struct iocblk *)mp1->b_rptr; 22698 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22699 22700 return (mp1); 22701 } 22702 22703 /* 22704 * Generate a reset based on an inbound packet, connp is set by caller 22705 * when RST is in response to an unexpected inbound packet for which 22706 * there is active tcp state in the system. 22707 * 22708 * IPSEC NOTE : Try to send the reply with the same protection as it came 22709 * in. We still have the ipsec_mp that the packet was attached to. Thus 22710 * the packet will go out at the same level of protection as it came in by 22711 * converting the IPSEC_IN to IPSEC_OUT. 22712 */ 22713 static void 22714 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22715 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22716 tcp_stack_t *tcps, conn_t *connp) 22717 { 22718 ipha_t *ipha = NULL; 22719 ip6_t *ip6h = NULL; 22720 ushort_t len; 22721 tcph_t *tcph; 22722 int i; 22723 mblk_t *ipsec_mp; 22724 boolean_t mctl_present; 22725 ipic_t *ipic; 22726 ipaddr_t v4addr; 22727 in6_addr_t v6addr; 22728 int addr_len; 22729 void *addr; 22730 queue_t *q = tcps->tcps_g_q; 22731 tcp_t *tcp; 22732 cred_t *cr; 22733 mblk_t *nmp; 22734 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22735 22736 if (tcps->tcps_g_q == NULL) { 22737 /* 22738 * For non-zero stackids the default queue isn't created 22739 * until the first open, thus there can be a need to send 22740 * a reset before then. But we can't do that, hence we just 22741 * drop the packet. Later during boot, when the default queue 22742 * has been setup, a retransmitted packet from the peer 22743 * will result in a reset. 22744 */ 22745 ASSERT(tcps->tcps_netstack->netstack_stackid != 22746 GLOBAL_NETSTACKID); 22747 freemsg(mp); 22748 return; 22749 } 22750 22751 if (connp != NULL) 22752 tcp = connp->conn_tcp; 22753 else 22754 tcp = Q_TO_TCP(q); 22755 22756 if (!tcp_send_rst_chk(tcps)) { 22757 tcps->tcps_rst_unsent++; 22758 freemsg(mp); 22759 return; 22760 } 22761 22762 if (mp->b_datap->db_type == M_CTL) { 22763 ipsec_mp = mp; 22764 mp = mp->b_cont; 22765 mctl_present = B_TRUE; 22766 } else { 22767 ipsec_mp = mp; 22768 mctl_present = B_FALSE; 22769 } 22770 22771 if (str && q && tcps->tcps_dbg) { 22772 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22773 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22774 "flags 0x%x", 22775 str, seq, ack, ctl); 22776 } 22777 if (mp->b_datap->db_ref != 1) { 22778 mblk_t *mp1 = copyb(mp); 22779 freemsg(mp); 22780 mp = mp1; 22781 if (!mp) { 22782 if (mctl_present) 22783 freeb(ipsec_mp); 22784 return; 22785 } else { 22786 if (mctl_present) { 22787 ipsec_mp->b_cont = mp; 22788 } else { 22789 ipsec_mp = mp; 22790 } 22791 } 22792 } else if (mp->b_cont) { 22793 freemsg(mp->b_cont); 22794 mp->b_cont = NULL; 22795 } 22796 /* 22797 * We skip reversing source route here. 22798 * (for now we replace all IP options with EOL) 22799 */ 22800 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22801 ipha = (ipha_t *)mp->b_rptr; 22802 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22803 mp->b_rptr[i] = IPOPT_EOL; 22804 /* 22805 * Make sure that src address isn't flagrantly invalid. 22806 * Not all broadcast address checking for the src address 22807 * is possible, since we don't know the netmask of the src 22808 * addr. No check for destination address is done, since 22809 * IP will not pass up a packet with a broadcast dest 22810 * address to TCP. Similar checks are done below for IPv6. 22811 */ 22812 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22813 CLASSD(ipha->ipha_src)) { 22814 freemsg(ipsec_mp); 22815 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22816 return; 22817 } 22818 } else { 22819 ip6h = (ip6_t *)mp->b_rptr; 22820 22821 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22822 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22823 freemsg(ipsec_mp); 22824 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22825 return; 22826 } 22827 22828 /* Remove any extension headers assuming partial overlay */ 22829 if (ip_hdr_len > IPV6_HDR_LEN) { 22830 uint8_t *to; 22831 22832 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22833 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22834 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22835 ip_hdr_len = IPV6_HDR_LEN; 22836 ip6h = (ip6_t *)mp->b_rptr; 22837 ip6h->ip6_nxt = IPPROTO_TCP; 22838 } 22839 } 22840 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22841 if (tcph->th_flags[0] & TH_RST) { 22842 freemsg(ipsec_mp); 22843 return; 22844 } 22845 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22846 len = ip_hdr_len + sizeof (tcph_t); 22847 mp->b_wptr = &mp->b_rptr[len]; 22848 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22849 ipha->ipha_length = htons(len); 22850 /* Swap addresses */ 22851 v4addr = ipha->ipha_src; 22852 ipha->ipha_src = ipha->ipha_dst; 22853 ipha->ipha_dst = v4addr; 22854 ipha->ipha_ident = 0; 22855 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22856 addr_len = IP_ADDR_LEN; 22857 addr = &v4addr; 22858 } else { 22859 /* No ip6i_t in this case */ 22860 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22861 /* Swap addresses */ 22862 v6addr = ip6h->ip6_src; 22863 ip6h->ip6_src = ip6h->ip6_dst; 22864 ip6h->ip6_dst = v6addr; 22865 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22866 addr_len = IPV6_ADDR_LEN; 22867 addr = &v6addr; 22868 } 22869 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22870 U32_TO_BE32(ack, tcph->th_ack); 22871 U32_TO_BE32(seq, tcph->th_seq); 22872 U16_TO_BE16(0, tcph->th_win); 22873 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22874 tcph->th_flags[0] = (uint8_t)ctl; 22875 if (ctl & TH_RST) { 22876 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22877 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22878 } 22879 22880 /* IP trusts us to set up labels when required. */ 22881 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22882 crgetlabel(cr) != NULL) { 22883 int err; 22884 22885 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22886 err = tsol_check_label(cr, &mp, 22887 tcp->tcp_connp->conn_mac_exempt, 22888 tcps->tcps_netstack->netstack_ip); 22889 else 22890 err = tsol_check_label_v6(cr, &mp, 22891 tcp->tcp_connp->conn_mac_exempt, 22892 tcps->tcps_netstack->netstack_ip); 22893 if (mctl_present) 22894 ipsec_mp->b_cont = mp; 22895 else 22896 ipsec_mp = mp; 22897 if (err != 0) { 22898 freemsg(ipsec_mp); 22899 return; 22900 } 22901 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22902 ipha = (ipha_t *)mp->b_rptr; 22903 } else { 22904 ip6h = (ip6_t *)mp->b_rptr; 22905 } 22906 } 22907 22908 if (mctl_present) { 22909 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22910 22911 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22912 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22913 return; 22914 } 22915 } 22916 if (zoneid == ALL_ZONES) 22917 zoneid = GLOBAL_ZONEID; 22918 22919 /* Add the zoneid so ip_output routes it properly */ 22920 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22921 freemsg(ipsec_mp); 22922 return; 22923 } 22924 ipsec_mp = nmp; 22925 22926 /* 22927 * NOTE: one might consider tracing a TCP packet here, but 22928 * this function has no active TCP state and no tcp structure 22929 * that has a trace buffer. If we traced here, we would have 22930 * to keep a local trace buffer in tcp_record_trace(). 22931 * 22932 * TSol note: The mblk that contains the incoming packet was 22933 * reused by tcp_xmit_listener_reset, so it already contains 22934 * the right credentials and we don't need to call mblk_setcred. 22935 * Also the conn's cred is not right since it is associated 22936 * with tcps_g_q. 22937 */ 22938 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22939 22940 /* 22941 * Tell IP to mark the IRE used for this destination temporary. 22942 * This way, we can limit our exposure to DoS attack because IP 22943 * creates an IRE for each destination. If there are too many, 22944 * the time to do any routing lookup will be extremely long. And 22945 * the lookup can be in interrupt context. 22946 * 22947 * Note that in normal circumstances, this marking should not 22948 * affect anything. It would be nice if only 1 message is 22949 * needed to inform IP that the IRE created for this RST should 22950 * not be added to the cache table. But there is currently 22951 * not such communication mechanism between TCP and IP. So 22952 * the best we can do now is to send the advice ioctl to IP 22953 * to mark the IRE temporary. 22954 */ 22955 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22956 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22957 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22958 } 22959 } 22960 22961 /* 22962 * Initiate closedown sequence on an active connection. (May be called as 22963 * writer.) Return value zero for OK return, non-zero for error return. 22964 */ 22965 static int 22966 tcp_xmit_end(tcp_t *tcp) 22967 { 22968 ipic_t *ipic; 22969 mblk_t *mp; 22970 tcp_stack_t *tcps = tcp->tcp_tcps; 22971 22972 if (tcp->tcp_state < TCPS_SYN_RCVD || 22973 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22974 /* 22975 * Invalid state, only states TCPS_SYN_RCVD, 22976 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22977 */ 22978 return (-1); 22979 } 22980 22981 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22982 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22983 /* 22984 * If there is nothing more unsent, send the FIN now. 22985 * Otherwise, it will go out with the last segment. 22986 */ 22987 if (tcp->tcp_unsent == 0) { 22988 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22989 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22990 22991 if (mp) { 22992 tcp_send_data(tcp, tcp->tcp_wq, mp); 22993 } else { 22994 /* 22995 * Couldn't allocate msg. Pretend we got it out. 22996 * Wait for rexmit timeout. 22997 */ 22998 tcp->tcp_snxt = tcp->tcp_fss + 1; 22999 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23000 } 23001 23002 /* 23003 * If needed, update tcp_rexmit_snxt as tcp_snxt is 23004 * changed. 23005 */ 23006 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 23007 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23008 } 23009 } else { 23010 /* 23011 * If tcp->tcp_cork is set, then the data will not get sent, 23012 * so we have to check that and unset it first. 23013 */ 23014 if (tcp->tcp_cork) 23015 tcp->tcp_cork = B_FALSE; 23016 tcp_wput_data(tcp, NULL, B_FALSE); 23017 } 23018 23019 /* 23020 * If TCP does not get enough samples of RTT or tcp_rtt_updates 23021 * is 0, don't update the cache. 23022 */ 23023 if (tcps->tcps_rtt_updates == 0 || 23024 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 23025 return (0); 23026 23027 /* 23028 * NOTE: should not update if source routes i.e. if tcp_remote if 23029 * different from the destination. 23030 */ 23031 if (tcp->tcp_ipversion == IPV4_VERSION) { 23032 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23033 return (0); 23034 } 23035 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23036 &ipic); 23037 } else { 23038 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23039 &tcp->tcp_ip6h->ip6_dst))) { 23040 return (0); 23041 } 23042 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23043 &ipic); 23044 } 23045 23046 /* Record route attributes in the IRE for use by future connections. */ 23047 if (mp == NULL) 23048 return (0); 23049 23050 /* 23051 * We do not have a good algorithm to update ssthresh at this time. 23052 * So don't do any update. 23053 */ 23054 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23055 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23056 23057 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23058 23059 return (0); 23060 } 23061 23062 /* 23063 * Generate a "no listener here" RST in response to an "unknown" segment. 23064 * connp is set by caller when RST is in response to an unexpected 23065 * inbound packet for which there is active tcp state in the system. 23066 * Note that we are reusing the incoming mp to construct the outgoing RST. 23067 */ 23068 void 23069 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23070 tcp_stack_t *tcps, conn_t *connp) 23071 { 23072 uchar_t *rptr; 23073 uint32_t seg_len; 23074 tcph_t *tcph; 23075 uint32_t seg_seq; 23076 uint32_t seg_ack; 23077 uint_t flags; 23078 mblk_t *ipsec_mp; 23079 ipha_t *ipha; 23080 ip6_t *ip6h; 23081 boolean_t mctl_present = B_FALSE; 23082 boolean_t check = B_TRUE; 23083 boolean_t policy_present; 23084 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23085 23086 TCP_STAT(tcps, tcp_no_listener); 23087 23088 ipsec_mp = mp; 23089 23090 if (mp->b_datap->db_type == M_CTL) { 23091 ipsec_in_t *ii; 23092 23093 mctl_present = B_TRUE; 23094 mp = mp->b_cont; 23095 23096 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23097 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23098 if (ii->ipsec_in_dont_check) { 23099 check = B_FALSE; 23100 if (!ii->ipsec_in_secure) { 23101 freeb(ipsec_mp); 23102 mctl_present = B_FALSE; 23103 ipsec_mp = mp; 23104 } 23105 } 23106 } 23107 23108 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23109 policy_present = ipss->ipsec_inbound_v4_policy_present; 23110 ipha = (ipha_t *)mp->b_rptr; 23111 ip6h = NULL; 23112 } else { 23113 policy_present = ipss->ipsec_inbound_v6_policy_present; 23114 ipha = NULL; 23115 ip6h = (ip6_t *)mp->b_rptr; 23116 } 23117 23118 if (check && policy_present) { 23119 /* 23120 * The conn_t parameter is NULL because we already know 23121 * nobody's home. 23122 */ 23123 ipsec_mp = ipsec_check_global_policy( 23124 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23125 tcps->tcps_netstack); 23126 if (ipsec_mp == NULL) 23127 return; 23128 } 23129 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23130 DTRACE_PROBE2( 23131 tx__ip__log__error__nolistener__tcp, 23132 char *, "Could not reply with RST to mp(1)", 23133 mblk_t *, mp); 23134 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23135 freemsg(ipsec_mp); 23136 return; 23137 } 23138 23139 rptr = mp->b_rptr; 23140 23141 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23142 seg_seq = BE32_TO_U32(tcph->th_seq); 23143 seg_ack = BE32_TO_U32(tcph->th_ack); 23144 flags = tcph->th_flags[0]; 23145 23146 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23147 if (flags & TH_RST) { 23148 freemsg(ipsec_mp); 23149 } else if (flags & TH_ACK) { 23150 tcp_xmit_early_reset("no tcp, reset", 23151 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23152 connp); 23153 } else { 23154 if (flags & TH_SYN) { 23155 seg_len++; 23156 } else { 23157 /* 23158 * Here we violate the RFC. Note that a normal 23159 * TCP will never send a segment without the ACK 23160 * flag, except for RST or SYN segment. This 23161 * segment is neither. Just drop it on the 23162 * floor. 23163 */ 23164 freemsg(ipsec_mp); 23165 tcps->tcps_rst_unsent++; 23166 return; 23167 } 23168 23169 tcp_xmit_early_reset("no tcp, reset/ack", 23170 ipsec_mp, 0, seg_seq + seg_len, 23171 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23172 } 23173 } 23174 23175 /* 23176 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23177 * ip and tcp header ready to pass down to IP. If the mp passed in is 23178 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23179 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23180 * otherwise it will dup partial mblks.) 23181 * Otherwise, an appropriate ACK packet will be generated. This 23182 * routine is not usually called to send new data for the first time. It 23183 * is mostly called out of the timer for retransmits, and to generate ACKs. 23184 * 23185 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23186 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23187 * of the original mblk chain will be returned in *offset and *end_mp. 23188 */ 23189 mblk_t * 23190 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23191 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23192 boolean_t rexmit) 23193 { 23194 int data_length; 23195 int32_t off = 0; 23196 uint_t flags; 23197 mblk_t *mp1; 23198 mblk_t *mp2; 23199 uchar_t *rptr; 23200 tcph_t *tcph; 23201 int32_t num_sack_blk = 0; 23202 int32_t sack_opt_len = 0; 23203 tcp_stack_t *tcps = tcp->tcp_tcps; 23204 23205 /* Allocate for our maximum TCP header + link-level */ 23206 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23207 tcps->tcps_wroff_xtra, BPRI_MED); 23208 if (!mp1) 23209 return (NULL); 23210 data_length = 0; 23211 23212 /* 23213 * Note that tcp_mss has been adjusted to take into account the 23214 * timestamp option if applicable. Because SACK options do not 23215 * appear in every TCP segments and they are of variable lengths, 23216 * they cannot be included in tcp_mss. Thus we need to calculate 23217 * the actual segment length when we need to send a segment which 23218 * includes SACK options. 23219 */ 23220 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23221 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23222 tcp->tcp_num_sack_blk); 23223 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23224 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23225 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23226 max_to_send -= sack_opt_len; 23227 } 23228 23229 if (offset != NULL) { 23230 off = *offset; 23231 /* We use offset as an indicator that end_mp is not NULL. */ 23232 *end_mp = NULL; 23233 } 23234 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23235 /* This could be faster with cooperation from downstream */ 23236 if (mp2 != mp1 && !sendall && 23237 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23238 max_to_send) 23239 /* 23240 * Don't send the next mblk since the whole mblk 23241 * does not fit. 23242 */ 23243 break; 23244 mp2->b_cont = dupb(mp); 23245 mp2 = mp2->b_cont; 23246 if (!mp2) { 23247 freemsg(mp1); 23248 return (NULL); 23249 } 23250 mp2->b_rptr += off; 23251 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23252 (uintptr_t)INT_MAX); 23253 23254 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23255 if (data_length > max_to_send) { 23256 mp2->b_wptr -= data_length - max_to_send; 23257 data_length = max_to_send; 23258 off = mp2->b_wptr - mp->b_rptr; 23259 break; 23260 } else { 23261 off = 0; 23262 } 23263 } 23264 if (offset != NULL) { 23265 *offset = off; 23266 *end_mp = mp; 23267 } 23268 if (seg_len != NULL) { 23269 *seg_len = data_length; 23270 } 23271 23272 /* Update the latest receive window size in TCP header. */ 23273 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23274 tcp->tcp_tcph->th_win); 23275 23276 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23277 mp1->b_rptr = rptr; 23278 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23279 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23280 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23281 U32_TO_ABE32(seq, tcph->th_seq); 23282 23283 /* 23284 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23285 * that this function was called from tcp_wput_data. Thus, when called 23286 * to retransmit data the setting of the PUSH bit may appear some 23287 * what random in that it might get set when it should not. This 23288 * should not pose any performance issues. 23289 */ 23290 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23291 tcp->tcp_unsent == data_length)) { 23292 flags = TH_ACK | TH_PUSH; 23293 } else { 23294 flags = TH_ACK; 23295 } 23296 23297 if (tcp->tcp_ecn_ok) { 23298 if (tcp->tcp_ecn_echo_on) 23299 flags |= TH_ECE; 23300 23301 /* 23302 * Only set ECT bit and ECN_CWR if a segment contains new data. 23303 * There is no TCP flow control for non-data segments, and 23304 * only data segment is transmitted reliably. 23305 */ 23306 if (data_length > 0 && !rexmit) { 23307 SET_ECT(tcp, rptr); 23308 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23309 flags |= TH_CWR; 23310 tcp->tcp_ecn_cwr_sent = B_TRUE; 23311 } 23312 } 23313 } 23314 23315 if (tcp->tcp_valid_bits) { 23316 uint32_t u1; 23317 23318 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23319 seq == tcp->tcp_iss) { 23320 uchar_t *wptr; 23321 23322 /* 23323 * If TCP_ISS_VALID and the seq number is tcp_iss, 23324 * TCP can only be in SYN-SENT, SYN-RCVD or 23325 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23326 * our SYN is not ack'ed but the app closes this 23327 * TCP connection. 23328 */ 23329 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23330 tcp->tcp_state == TCPS_SYN_RCVD || 23331 tcp->tcp_state == TCPS_FIN_WAIT_1); 23332 23333 /* 23334 * Tack on the MSS option. It is always needed 23335 * for both active and passive open. 23336 * 23337 * MSS option value should be interface MTU - MIN 23338 * TCP/IP header according to RFC 793 as it means 23339 * the maximum segment size TCP can receive. But 23340 * to get around some broken middle boxes/end hosts 23341 * out there, we allow the option value to be the 23342 * same as the MSS option size on the peer side. 23343 * In this way, the other side will not send 23344 * anything larger than they can receive. 23345 * 23346 * Note that for SYN_SENT state, the ndd param 23347 * tcp_use_smss_as_mss_opt has no effect as we 23348 * don't know the peer's MSS option value. So 23349 * the only case we need to take care of is in 23350 * SYN_RCVD state, which is done later. 23351 */ 23352 wptr = mp1->b_wptr; 23353 wptr[0] = TCPOPT_MAXSEG; 23354 wptr[1] = TCPOPT_MAXSEG_LEN; 23355 wptr += 2; 23356 u1 = tcp->tcp_if_mtu - 23357 (tcp->tcp_ipversion == IPV4_VERSION ? 23358 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23359 TCP_MIN_HEADER_LENGTH; 23360 U16_TO_BE16(u1, wptr); 23361 mp1->b_wptr = wptr + 2; 23362 /* Update the offset to cover the additional word */ 23363 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23364 23365 /* 23366 * Note that the following way of filling in 23367 * TCP options are not optimal. Some NOPs can 23368 * be saved. But there is no need at this time 23369 * to optimize it. When it is needed, we will 23370 * do it. 23371 */ 23372 switch (tcp->tcp_state) { 23373 case TCPS_SYN_SENT: 23374 flags = TH_SYN; 23375 23376 if (tcp->tcp_snd_ts_ok) { 23377 uint32_t llbolt = (uint32_t)lbolt; 23378 23379 wptr = mp1->b_wptr; 23380 wptr[0] = TCPOPT_NOP; 23381 wptr[1] = TCPOPT_NOP; 23382 wptr[2] = TCPOPT_TSTAMP; 23383 wptr[3] = TCPOPT_TSTAMP_LEN; 23384 wptr += 4; 23385 U32_TO_BE32(llbolt, wptr); 23386 wptr += 4; 23387 ASSERT(tcp->tcp_ts_recent == 0); 23388 U32_TO_BE32(0L, wptr); 23389 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23390 tcph->th_offset_and_rsrvd[0] += 23391 (3 << 4); 23392 } 23393 23394 /* 23395 * Set up all the bits to tell other side 23396 * we are ECN capable. 23397 */ 23398 if (tcp->tcp_ecn_ok) { 23399 flags |= (TH_ECE | TH_CWR); 23400 } 23401 break; 23402 case TCPS_SYN_RCVD: 23403 flags |= TH_SYN; 23404 23405 /* 23406 * Reset the MSS option value to be SMSS 23407 * We should probably add back the bytes 23408 * for timestamp option and IPsec. We 23409 * don't do that as this is a workaround 23410 * for broken middle boxes/end hosts, it 23411 * is better for us to be more cautious. 23412 * They may not take these things into 23413 * account in their SMSS calculation. Thus 23414 * the peer's calculated SMSS may be smaller 23415 * than what it can be. This should be OK. 23416 */ 23417 if (tcps->tcps_use_smss_as_mss_opt) { 23418 u1 = tcp->tcp_mss; 23419 U16_TO_BE16(u1, wptr); 23420 } 23421 23422 /* 23423 * If the other side is ECN capable, reply 23424 * that we are also ECN capable. 23425 */ 23426 if (tcp->tcp_ecn_ok) 23427 flags |= TH_ECE; 23428 break; 23429 default: 23430 /* 23431 * The above ASSERT() makes sure that this 23432 * must be FIN-WAIT-1 state. Our SYN has 23433 * not been ack'ed so retransmit it. 23434 */ 23435 flags |= TH_SYN; 23436 break; 23437 } 23438 23439 if (tcp->tcp_snd_ws_ok) { 23440 wptr = mp1->b_wptr; 23441 wptr[0] = TCPOPT_NOP; 23442 wptr[1] = TCPOPT_WSCALE; 23443 wptr[2] = TCPOPT_WS_LEN; 23444 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23445 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23446 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23447 } 23448 23449 if (tcp->tcp_snd_sack_ok) { 23450 wptr = mp1->b_wptr; 23451 wptr[0] = TCPOPT_NOP; 23452 wptr[1] = TCPOPT_NOP; 23453 wptr[2] = TCPOPT_SACK_PERMITTED; 23454 wptr[3] = TCPOPT_SACK_OK_LEN; 23455 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23456 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23457 } 23458 23459 /* allocb() of adequate mblk assures space */ 23460 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23461 (uintptr_t)INT_MAX); 23462 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23463 /* 23464 * Get IP set to checksum on our behalf 23465 * Include the adjustment for a source route if any. 23466 */ 23467 u1 += tcp->tcp_sum; 23468 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23469 U16_TO_BE16(u1, tcph->th_sum); 23470 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23471 } 23472 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23473 (seq + data_length) == tcp->tcp_fss) { 23474 if (!tcp->tcp_fin_acked) { 23475 flags |= TH_FIN; 23476 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23477 } 23478 if (!tcp->tcp_fin_sent) { 23479 tcp->tcp_fin_sent = B_TRUE; 23480 switch (tcp->tcp_state) { 23481 case TCPS_SYN_RCVD: 23482 case TCPS_ESTABLISHED: 23483 tcp->tcp_state = TCPS_FIN_WAIT_1; 23484 break; 23485 case TCPS_CLOSE_WAIT: 23486 tcp->tcp_state = TCPS_LAST_ACK; 23487 break; 23488 } 23489 if (tcp->tcp_suna == tcp->tcp_snxt) 23490 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23491 tcp->tcp_snxt = tcp->tcp_fss + 1; 23492 } 23493 } 23494 /* 23495 * Note the trick here. u1 is unsigned. When tcp_urg 23496 * is smaller than seq, u1 will become a very huge value. 23497 * So the comparison will fail. Also note that tcp_urp 23498 * should be positive, see RFC 793 page 17. 23499 */ 23500 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23501 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23502 u1 < (uint32_t)(64 * 1024)) { 23503 flags |= TH_URG; 23504 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23505 U32_TO_ABE16(u1, tcph->th_urp); 23506 } 23507 } 23508 tcph->th_flags[0] = (uchar_t)flags; 23509 tcp->tcp_rack = tcp->tcp_rnxt; 23510 tcp->tcp_rack_cnt = 0; 23511 23512 if (tcp->tcp_snd_ts_ok) { 23513 if (tcp->tcp_state != TCPS_SYN_SENT) { 23514 uint32_t llbolt = (uint32_t)lbolt; 23515 23516 U32_TO_BE32(llbolt, 23517 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23518 U32_TO_BE32(tcp->tcp_ts_recent, 23519 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23520 } 23521 } 23522 23523 if (num_sack_blk > 0) { 23524 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23525 sack_blk_t *tmp; 23526 int32_t i; 23527 23528 wptr[0] = TCPOPT_NOP; 23529 wptr[1] = TCPOPT_NOP; 23530 wptr[2] = TCPOPT_SACK; 23531 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23532 sizeof (sack_blk_t); 23533 wptr += TCPOPT_REAL_SACK_LEN; 23534 23535 tmp = tcp->tcp_sack_list; 23536 for (i = 0; i < num_sack_blk; i++) { 23537 U32_TO_BE32(tmp[i].begin, wptr); 23538 wptr += sizeof (tcp_seq); 23539 U32_TO_BE32(tmp[i].end, wptr); 23540 wptr += sizeof (tcp_seq); 23541 } 23542 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23543 } 23544 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23545 data_length += (int)(mp1->b_wptr - rptr); 23546 if (tcp->tcp_ipversion == IPV4_VERSION) { 23547 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23548 } else { 23549 ip6_t *ip6 = (ip6_t *)(rptr + 23550 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23551 sizeof (ip6i_t) : 0)); 23552 23553 ip6->ip6_plen = htons(data_length - 23554 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23555 } 23556 23557 /* 23558 * Prime pump for IP 23559 * Include the adjustment for a source route if any. 23560 */ 23561 data_length -= tcp->tcp_ip_hdr_len; 23562 data_length += tcp->tcp_sum; 23563 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23564 U16_TO_ABE16(data_length, tcph->th_sum); 23565 if (tcp->tcp_ip_forward_progress) { 23566 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23567 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23568 tcp->tcp_ip_forward_progress = B_FALSE; 23569 } 23570 return (mp1); 23571 } 23572 23573 /* This function handles the push timeout. */ 23574 void 23575 tcp_push_timer(void *arg) 23576 { 23577 conn_t *connp = (conn_t *)arg; 23578 tcp_t *tcp = connp->conn_tcp; 23579 uint_t flags; 23580 sodirect_t *sodp; 23581 23582 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 23583 23584 ASSERT(tcp->tcp_listener == NULL); 23585 23586 ASSERT(!IPCL_IS_NONSTR(connp)); 23587 23588 /* 23589 * We need to plug synchronous streams during our drain to prevent 23590 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23591 */ 23592 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23593 tcp->tcp_push_tid = 0; 23594 23595 SOD_PTR_ENTER(tcp, sodp); 23596 if (sodp != NULL) { 23597 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23598 /* sod_wakeup() does the mutex_exit() */ 23599 } else if (tcp->tcp_rcv_list != NULL) { 23600 flags = tcp_rcv_drain(tcp); 23601 } 23602 if (flags == TH_ACK_NEEDED) 23603 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23604 23605 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23606 } 23607 23608 /* 23609 * This function handles delayed ACK timeout. 23610 */ 23611 static void 23612 tcp_ack_timer(void *arg) 23613 { 23614 conn_t *connp = (conn_t *)arg; 23615 tcp_t *tcp = connp->conn_tcp; 23616 mblk_t *mp; 23617 tcp_stack_t *tcps = tcp->tcp_tcps; 23618 23619 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23620 23621 tcp->tcp_ack_tid = 0; 23622 23623 if (tcp->tcp_fused) 23624 return; 23625 23626 /* 23627 * Do not send ACK if there is no outstanding unack'ed data. 23628 */ 23629 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23630 return; 23631 } 23632 23633 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23634 /* 23635 * Make sure we don't allow deferred ACKs to result in 23636 * timer-based ACKing. If we have held off an ACK 23637 * when there was more than an mss here, and the timer 23638 * goes off, we have to worry about the possibility 23639 * that the sender isn't doing slow-start, or is out 23640 * of step with us for some other reason. We fall 23641 * permanently back in the direction of 23642 * ACK-every-other-packet as suggested in RFC 1122. 23643 */ 23644 if (tcp->tcp_rack_abs_max > 2) 23645 tcp->tcp_rack_abs_max--; 23646 tcp->tcp_rack_cur_max = 2; 23647 } 23648 mp = tcp_ack_mp(tcp); 23649 23650 if (mp != NULL) { 23651 BUMP_LOCAL(tcp->tcp_obsegs); 23652 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23653 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23654 tcp_send_data(tcp, tcp->tcp_wq, mp); 23655 } 23656 } 23657 23658 23659 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23660 static mblk_t * 23661 tcp_ack_mp(tcp_t *tcp) 23662 { 23663 uint32_t seq_no; 23664 tcp_stack_t *tcps = tcp->tcp_tcps; 23665 23666 /* 23667 * There are a few cases to be considered while setting the sequence no. 23668 * Essentially, we can come here while processing an unacceptable pkt 23669 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23670 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23671 * If we are here for a zero window probe, stick with suna. In all 23672 * other cases, we check if suna + swnd encompasses snxt and set 23673 * the sequence number to snxt, if so. If snxt falls outside the 23674 * window (the receiver probably shrunk its window), we will go with 23675 * suna + swnd, otherwise the sequence no will be unacceptable to the 23676 * receiver. 23677 */ 23678 if (tcp->tcp_zero_win_probe) { 23679 seq_no = tcp->tcp_suna; 23680 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23681 ASSERT(tcp->tcp_swnd == 0); 23682 seq_no = tcp->tcp_snxt; 23683 } else { 23684 seq_no = SEQ_GT(tcp->tcp_snxt, 23685 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23686 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23687 } 23688 23689 if (tcp->tcp_valid_bits) { 23690 /* 23691 * For the complex case where we have to send some 23692 * controls (FIN or SYN), let tcp_xmit_mp do it. 23693 */ 23694 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23695 NULL, B_FALSE)); 23696 } else { 23697 /* Generate a simple ACK */ 23698 int data_length; 23699 uchar_t *rptr; 23700 tcph_t *tcph; 23701 mblk_t *mp1; 23702 int32_t tcp_hdr_len; 23703 int32_t tcp_tcp_hdr_len; 23704 int32_t num_sack_blk = 0; 23705 int32_t sack_opt_len; 23706 23707 /* 23708 * Allocate space for TCP + IP headers 23709 * and link-level header 23710 */ 23711 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23712 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23713 tcp->tcp_num_sack_blk); 23714 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23715 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23716 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23717 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23718 } else { 23719 tcp_hdr_len = tcp->tcp_hdr_len; 23720 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23721 } 23722 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23723 if (!mp1) 23724 return (NULL); 23725 23726 /* Update the latest receive window size in TCP header. */ 23727 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23728 tcp->tcp_tcph->th_win); 23729 /* copy in prototype TCP + IP header */ 23730 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23731 mp1->b_rptr = rptr; 23732 mp1->b_wptr = rptr + tcp_hdr_len; 23733 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23734 23735 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23736 23737 /* Set the TCP sequence number. */ 23738 U32_TO_ABE32(seq_no, tcph->th_seq); 23739 23740 /* Set up the TCP flag field. */ 23741 tcph->th_flags[0] = (uchar_t)TH_ACK; 23742 if (tcp->tcp_ecn_echo_on) 23743 tcph->th_flags[0] |= TH_ECE; 23744 23745 tcp->tcp_rack = tcp->tcp_rnxt; 23746 tcp->tcp_rack_cnt = 0; 23747 23748 /* fill in timestamp option if in use */ 23749 if (tcp->tcp_snd_ts_ok) { 23750 uint32_t llbolt = (uint32_t)lbolt; 23751 23752 U32_TO_BE32(llbolt, 23753 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23754 U32_TO_BE32(tcp->tcp_ts_recent, 23755 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23756 } 23757 23758 /* Fill in SACK options */ 23759 if (num_sack_blk > 0) { 23760 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23761 sack_blk_t *tmp; 23762 int32_t i; 23763 23764 wptr[0] = TCPOPT_NOP; 23765 wptr[1] = TCPOPT_NOP; 23766 wptr[2] = TCPOPT_SACK; 23767 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23768 sizeof (sack_blk_t); 23769 wptr += TCPOPT_REAL_SACK_LEN; 23770 23771 tmp = tcp->tcp_sack_list; 23772 for (i = 0; i < num_sack_blk; i++) { 23773 U32_TO_BE32(tmp[i].begin, wptr); 23774 wptr += sizeof (tcp_seq); 23775 U32_TO_BE32(tmp[i].end, wptr); 23776 wptr += sizeof (tcp_seq); 23777 } 23778 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23779 << 4); 23780 } 23781 23782 if (tcp->tcp_ipversion == IPV4_VERSION) { 23783 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23784 } else { 23785 /* Check for ip6i_t header in sticky hdrs */ 23786 ip6_t *ip6 = (ip6_t *)(rptr + 23787 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23788 sizeof (ip6i_t) : 0)); 23789 23790 ip6->ip6_plen = htons(tcp_hdr_len - 23791 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23792 } 23793 23794 /* 23795 * Prime pump for checksum calculation in IP. Include the 23796 * adjustment for a source route if any. 23797 */ 23798 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23799 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23800 U16_TO_ABE16(data_length, tcph->th_sum); 23801 23802 if (tcp->tcp_ip_forward_progress) { 23803 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23804 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23805 tcp->tcp_ip_forward_progress = B_FALSE; 23806 } 23807 return (mp1); 23808 } 23809 } 23810 23811 /* 23812 * Hash list insertion routine for tcp_t structures. Each hash bucket 23813 * contains a list of tcp_t entries, and each entry is bound to a unique 23814 * port. If there are multiple tcp_t's that are bound to the same port, then 23815 * one of them will be linked into the hash bucket list, and the rest will 23816 * hang off of that one entry. For each port, entries bound to a specific IP 23817 * address will be inserted before those those bound to INADDR_ANY. 23818 */ 23819 static void 23820 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23821 { 23822 tcp_t **tcpp; 23823 tcp_t *tcpnext; 23824 tcp_t *tcphash; 23825 23826 if (tcp->tcp_ptpbhn != NULL) { 23827 ASSERT(!caller_holds_lock); 23828 tcp_bind_hash_remove(tcp); 23829 } 23830 tcpp = &tbf->tf_tcp; 23831 if (!caller_holds_lock) { 23832 mutex_enter(&tbf->tf_lock); 23833 } else { 23834 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23835 } 23836 tcphash = tcpp[0]; 23837 tcpnext = NULL; 23838 if (tcphash != NULL) { 23839 /* Look for an entry using the same port */ 23840 while ((tcphash = tcpp[0]) != NULL && 23841 tcp->tcp_lport != tcphash->tcp_lport) 23842 tcpp = &(tcphash->tcp_bind_hash); 23843 23844 /* The port was not found, just add to the end */ 23845 if (tcphash == NULL) 23846 goto insert; 23847 23848 /* 23849 * OK, there already exists an entry bound to the 23850 * same port. 23851 * 23852 * If the new tcp bound to the INADDR_ANY address 23853 * and the first one in the list is not bound to 23854 * INADDR_ANY we skip all entries until we find the 23855 * first one bound to INADDR_ANY. 23856 * This makes sure that applications binding to a 23857 * specific address get preference over those binding to 23858 * INADDR_ANY. 23859 */ 23860 tcpnext = tcphash; 23861 tcphash = NULL; 23862 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23863 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23864 while ((tcpnext = tcpp[0]) != NULL && 23865 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23866 tcpp = &(tcpnext->tcp_bind_hash_port); 23867 23868 if (tcpnext) { 23869 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23870 tcphash = tcpnext->tcp_bind_hash; 23871 if (tcphash != NULL) { 23872 tcphash->tcp_ptpbhn = 23873 &(tcp->tcp_bind_hash); 23874 tcpnext->tcp_bind_hash = NULL; 23875 } 23876 } 23877 } else { 23878 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23879 tcphash = tcpnext->tcp_bind_hash; 23880 if (tcphash != NULL) { 23881 tcphash->tcp_ptpbhn = 23882 &(tcp->tcp_bind_hash); 23883 tcpnext->tcp_bind_hash = NULL; 23884 } 23885 } 23886 } 23887 insert: 23888 tcp->tcp_bind_hash_port = tcpnext; 23889 tcp->tcp_bind_hash = tcphash; 23890 tcp->tcp_ptpbhn = tcpp; 23891 tcpp[0] = tcp; 23892 if (!caller_holds_lock) 23893 mutex_exit(&tbf->tf_lock); 23894 } 23895 23896 /* 23897 * Hash list removal routine for tcp_t structures. 23898 */ 23899 static void 23900 tcp_bind_hash_remove(tcp_t *tcp) 23901 { 23902 tcp_t *tcpnext; 23903 kmutex_t *lockp; 23904 tcp_stack_t *tcps = tcp->tcp_tcps; 23905 23906 if (tcp->tcp_ptpbhn == NULL) 23907 return; 23908 23909 /* 23910 * Extract the lock pointer in case there are concurrent 23911 * hash_remove's for this instance. 23912 */ 23913 ASSERT(tcp->tcp_lport != 0); 23914 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23915 23916 ASSERT(lockp != NULL); 23917 mutex_enter(lockp); 23918 if (tcp->tcp_ptpbhn) { 23919 tcpnext = tcp->tcp_bind_hash_port; 23920 if (tcpnext != NULL) { 23921 tcp->tcp_bind_hash_port = NULL; 23922 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23923 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23924 if (tcpnext->tcp_bind_hash != NULL) { 23925 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23926 &(tcpnext->tcp_bind_hash); 23927 tcp->tcp_bind_hash = NULL; 23928 } 23929 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23930 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23931 tcp->tcp_bind_hash = NULL; 23932 } 23933 *tcp->tcp_ptpbhn = tcpnext; 23934 tcp->tcp_ptpbhn = NULL; 23935 } 23936 mutex_exit(lockp); 23937 } 23938 23939 23940 /* 23941 * Hash list lookup routine for tcp_t structures. 23942 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23943 */ 23944 static tcp_t * 23945 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23946 { 23947 tf_t *tf; 23948 tcp_t *tcp; 23949 23950 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23951 mutex_enter(&tf->tf_lock); 23952 for (tcp = tf->tf_tcp; tcp != NULL; 23953 tcp = tcp->tcp_acceptor_hash) { 23954 if (tcp->tcp_acceptor_id == id) { 23955 CONN_INC_REF(tcp->tcp_connp); 23956 mutex_exit(&tf->tf_lock); 23957 return (tcp); 23958 } 23959 } 23960 mutex_exit(&tf->tf_lock); 23961 return (NULL); 23962 } 23963 23964 23965 /* 23966 * Hash list insertion routine for tcp_t structures. 23967 */ 23968 void 23969 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23970 { 23971 tf_t *tf; 23972 tcp_t **tcpp; 23973 tcp_t *tcpnext; 23974 tcp_stack_t *tcps = tcp->tcp_tcps; 23975 23976 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23977 23978 if (tcp->tcp_ptpahn != NULL) 23979 tcp_acceptor_hash_remove(tcp); 23980 tcpp = &tf->tf_tcp; 23981 mutex_enter(&tf->tf_lock); 23982 tcpnext = tcpp[0]; 23983 if (tcpnext) 23984 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23985 tcp->tcp_acceptor_hash = tcpnext; 23986 tcp->tcp_ptpahn = tcpp; 23987 tcpp[0] = tcp; 23988 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23989 mutex_exit(&tf->tf_lock); 23990 } 23991 23992 /* 23993 * Hash list removal routine for tcp_t structures. 23994 */ 23995 static void 23996 tcp_acceptor_hash_remove(tcp_t *tcp) 23997 { 23998 tcp_t *tcpnext; 23999 kmutex_t *lockp; 24000 24001 /* 24002 * Extract the lock pointer in case there are concurrent 24003 * hash_remove's for this instance. 24004 */ 24005 lockp = tcp->tcp_acceptor_lockp; 24006 24007 if (tcp->tcp_ptpahn == NULL) 24008 return; 24009 24010 ASSERT(lockp != NULL); 24011 mutex_enter(lockp); 24012 if (tcp->tcp_ptpahn) { 24013 tcpnext = tcp->tcp_acceptor_hash; 24014 if (tcpnext) { 24015 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24016 tcp->tcp_acceptor_hash = NULL; 24017 } 24018 *tcp->tcp_ptpahn = tcpnext; 24019 tcp->tcp_ptpahn = NULL; 24020 } 24021 mutex_exit(lockp); 24022 tcp->tcp_acceptor_lockp = NULL; 24023 } 24024 24025 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24026 24027 static ipaddr_t netmasks[] = { 24028 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24029 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24030 }; 24031 24032 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24033 24034 /* 24035 * XXX This routine should go away and instead we should use the metrics 24036 * associated with the routes to determine the default sndspace and rcvspace. 24037 */ 24038 static tcp_hsp_t * 24039 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24040 { 24041 tcp_hsp_t *hsp = NULL; 24042 24043 /* Quick check without acquiring the lock. */ 24044 if (tcps->tcps_hsp_hash == NULL) 24045 return (NULL); 24046 24047 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24048 24049 /* This routine finds the best-matching HSP for address addr. */ 24050 24051 if (tcps->tcps_hsp_hash) { 24052 int i; 24053 ipaddr_t srchaddr; 24054 tcp_hsp_t *hsp_net; 24055 24056 /* We do three passes: host, network, and subnet. */ 24057 24058 srchaddr = addr; 24059 24060 for (i = 1; i <= 3; i++) { 24061 /* Look for exact match on srchaddr */ 24062 24063 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24064 while (hsp) { 24065 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24066 hsp->tcp_hsp_addr == srchaddr) 24067 break; 24068 hsp = hsp->tcp_hsp_next; 24069 } 24070 ASSERT(hsp == NULL || 24071 hsp->tcp_hsp_vers == IPV4_VERSION); 24072 24073 /* 24074 * If this is the first pass: 24075 * If we found a match, great, return it. 24076 * If not, search for the network on the second pass. 24077 */ 24078 24079 if (i == 1) 24080 if (hsp) 24081 break; 24082 else 24083 { 24084 srchaddr = addr & netmask(addr); 24085 continue; 24086 } 24087 24088 /* 24089 * If this is the second pass: 24090 * If we found a match, but there's a subnet mask, 24091 * save the match but try again using the subnet 24092 * mask on the third pass. 24093 * Otherwise, return whatever we found. 24094 */ 24095 24096 if (i == 2) { 24097 if (hsp && hsp->tcp_hsp_subnet) { 24098 hsp_net = hsp; 24099 srchaddr = addr & hsp->tcp_hsp_subnet; 24100 continue; 24101 } else { 24102 break; 24103 } 24104 } 24105 24106 /* 24107 * This must be the third pass. If we didn't find 24108 * anything, return the saved network HSP instead. 24109 */ 24110 24111 if (!hsp) 24112 hsp = hsp_net; 24113 } 24114 } 24115 24116 rw_exit(&tcps->tcps_hsp_lock); 24117 return (hsp); 24118 } 24119 24120 /* 24121 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24122 * match lookup. 24123 */ 24124 static tcp_hsp_t * 24125 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24126 { 24127 tcp_hsp_t *hsp = NULL; 24128 24129 /* Quick check without acquiring the lock. */ 24130 if (tcps->tcps_hsp_hash == NULL) 24131 return (NULL); 24132 24133 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24134 24135 /* This routine finds the best-matching HSP for address addr. */ 24136 24137 if (tcps->tcps_hsp_hash) { 24138 int i; 24139 in6_addr_t v6srchaddr; 24140 tcp_hsp_t *hsp_net; 24141 24142 /* We do three passes: host, network, and subnet. */ 24143 24144 v6srchaddr = *v6addr; 24145 24146 for (i = 1; i <= 3; i++) { 24147 /* Look for exact match on srchaddr */ 24148 24149 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24150 V4_PART_OF_V6(v6srchaddr))]; 24151 while (hsp) { 24152 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24153 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24154 &v6srchaddr)) 24155 break; 24156 hsp = hsp->tcp_hsp_next; 24157 } 24158 24159 /* 24160 * If this is the first pass: 24161 * If we found a match, great, return it. 24162 * If not, search for the network on the second pass. 24163 */ 24164 24165 if (i == 1) 24166 if (hsp) 24167 break; 24168 else { 24169 /* Assume a 64 bit mask */ 24170 v6srchaddr.s6_addr32[0] = 24171 v6addr->s6_addr32[0]; 24172 v6srchaddr.s6_addr32[1] = 24173 v6addr->s6_addr32[1]; 24174 v6srchaddr.s6_addr32[2] = 0; 24175 v6srchaddr.s6_addr32[3] = 0; 24176 continue; 24177 } 24178 24179 /* 24180 * If this is the second pass: 24181 * If we found a match, but there's a subnet mask, 24182 * save the match but try again using the subnet 24183 * mask on the third pass. 24184 * Otherwise, return whatever we found. 24185 */ 24186 24187 if (i == 2) { 24188 ASSERT(hsp == NULL || 24189 hsp->tcp_hsp_vers == IPV6_VERSION); 24190 if (hsp && 24191 !IN6_IS_ADDR_UNSPECIFIED( 24192 &hsp->tcp_hsp_subnet_v6)) { 24193 hsp_net = hsp; 24194 V6_MASK_COPY(*v6addr, 24195 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24196 continue; 24197 } else { 24198 break; 24199 } 24200 } 24201 24202 /* 24203 * This must be the third pass. If we didn't find 24204 * anything, return the saved network HSP instead. 24205 */ 24206 24207 if (!hsp) 24208 hsp = hsp_net; 24209 } 24210 } 24211 24212 rw_exit(&tcps->tcps_hsp_lock); 24213 return (hsp); 24214 } 24215 24216 /* 24217 * Type three generator adapted from the random() function in 4.4 BSD: 24218 */ 24219 24220 /* 24221 * Copyright (c) 1983, 1993 24222 * The Regents of the University of California. All rights reserved. 24223 * 24224 * Redistribution and use in source and binary forms, with or without 24225 * modification, are permitted provided that the following conditions 24226 * are met: 24227 * 1. Redistributions of source code must retain the above copyright 24228 * notice, this list of conditions and the following disclaimer. 24229 * 2. Redistributions in binary form must reproduce the above copyright 24230 * notice, this list of conditions and the following disclaimer in the 24231 * documentation and/or other materials provided with the distribution. 24232 * 3. All advertising materials mentioning features or use of this software 24233 * must display the following acknowledgement: 24234 * This product includes software developed by the University of 24235 * California, Berkeley and its contributors. 24236 * 4. Neither the name of the University nor the names of its contributors 24237 * may be used to endorse or promote products derived from this software 24238 * without specific prior written permission. 24239 * 24240 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24241 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24242 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24243 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24244 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24245 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24246 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24247 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24248 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24249 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24250 * SUCH DAMAGE. 24251 */ 24252 24253 /* Type 3 -- x**31 + x**3 + 1 */ 24254 #define DEG_3 31 24255 #define SEP_3 3 24256 24257 24258 /* Protected by tcp_random_lock */ 24259 static int tcp_randtbl[DEG_3 + 1]; 24260 24261 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24262 static int *tcp_random_rptr = &tcp_randtbl[1]; 24263 24264 static int *tcp_random_state = &tcp_randtbl[1]; 24265 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24266 24267 kmutex_t tcp_random_lock; 24268 24269 void 24270 tcp_random_init(void) 24271 { 24272 int i; 24273 hrtime_t hrt; 24274 time_t wallclock; 24275 uint64_t result; 24276 24277 /* 24278 * Use high-res timer and current time for seed. Gethrtime() returns 24279 * a longlong, which may contain resolution down to nanoseconds. 24280 * The current time will either be a 32-bit or a 64-bit quantity. 24281 * XOR the two together in a 64-bit result variable. 24282 * Convert the result to a 32-bit value by multiplying the high-order 24283 * 32-bits by the low-order 32-bits. 24284 */ 24285 24286 hrt = gethrtime(); 24287 (void) drv_getparm(TIME, &wallclock); 24288 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24289 mutex_enter(&tcp_random_lock); 24290 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24291 (result & 0xffffffff); 24292 24293 for (i = 1; i < DEG_3; i++) 24294 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24295 + 12345; 24296 tcp_random_fptr = &tcp_random_state[SEP_3]; 24297 tcp_random_rptr = &tcp_random_state[0]; 24298 mutex_exit(&tcp_random_lock); 24299 for (i = 0; i < 10 * DEG_3; i++) 24300 (void) tcp_random(); 24301 } 24302 24303 /* 24304 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24305 * This range is selected to be approximately centered on TCP_ISS / 2, 24306 * and easy to compute. We get this value by generating a 32-bit random 24307 * number, selecting out the high-order 17 bits, and then adding one so 24308 * that we never return zero. 24309 */ 24310 int 24311 tcp_random(void) 24312 { 24313 int i; 24314 24315 mutex_enter(&tcp_random_lock); 24316 *tcp_random_fptr += *tcp_random_rptr; 24317 24318 /* 24319 * The high-order bits are more random than the low-order bits, 24320 * so we select out the high-order 17 bits and add one so that 24321 * we never return zero. 24322 */ 24323 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24324 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24325 tcp_random_fptr = tcp_random_state; 24326 ++tcp_random_rptr; 24327 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24328 tcp_random_rptr = tcp_random_state; 24329 24330 mutex_exit(&tcp_random_lock); 24331 return (i); 24332 } 24333 24334 static int 24335 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24336 int *t_errorp, int *sys_errorp) 24337 { 24338 int error; 24339 int is_absreq_failure; 24340 t_scalar_t *opt_lenp; 24341 t_scalar_t opt_offset; 24342 int prim_type; 24343 struct T_conn_req *tcreqp; 24344 struct T_conn_res *tcresp; 24345 cred_t *cr; 24346 24347 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24348 24349 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24350 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24351 prim_type == T_CONN_RES); 24352 24353 switch (prim_type) { 24354 case T_CONN_REQ: 24355 tcreqp = (struct T_conn_req *)mp->b_rptr; 24356 opt_offset = tcreqp->OPT_offset; 24357 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24358 break; 24359 case O_T_CONN_RES: 24360 case T_CONN_RES: 24361 tcresp = (struct T_conn_res *)mp->b_rptr; 24362 opt_offset = tcresp->OPT_offset; 24363 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24364 break; 24365 } 24366 24367 *t_errorp = 0; 24368 *sys_errorp = 0; 24369 *do_disconnectp = 0; 24370 24371 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24372 opt_offset, cr, &tcp_opt_obj, 24373 NULL, &is_absreq_failure); 24374 24375 switch (error) { 24376 case 0: /* no error */ 24377 ASSERT(is_absreq_failure == 0); 24378 return (0); 24379 case ENOPROTOOPT: 24380 *t_errorp = TBADOPT; 24381 break; 24382 case EACCES: 24383 *t_errorp = TACCES; 24384 break; 24385 default: 24386 *t_errorp = TSYSERR; *sys_errorp = error; 24387 break; 24388 } 24389 if (is_absreq_failure != 0) { 24390 /* 24391 * The connection request should get the local ack 24392 * T_OK_ACK and then a T_DISCON_IND. 24393 */ 24394 *do_disconnectp = 1; 24395 } 24396 return (-1); 24397 } 24398 24399 /* 24400 * Split this function out so that if the secret changes, I'm okay. 24401 * 24402 * Initialize the tcp_iss_cookie and tcp_iss_key. 24403 */ 24404 24405 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24406 24407 static void 24408 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24409 { 24410 struct { 24411 int32_t current_time; 24412 uint32_t randnum; 24413 uint16_t pad; 24414 uint8_t ether[6]; 24415 uint8_t passwd[PASSWD_SIZE]; 24416 } tcp_iss_cookie; 24417 time_t t; 24418 24419 /* 24420 * Start with the current absolute time. 24421 */ 24422 (void) drv_getparm(TIME, &t); 24423 tcp_iss_cookie.current_time = t; 24424 24425 /* 24426 * XXX - Need a more random number per RFC 1750, not this crap. 24427 * OTOH, if what follows is pretty random, then I'm in better shape. 24428 */ 24429 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24430 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24431 24432 /* 24433 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24434 * as a good template. 24435 */ 24436 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24437 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24438 24439 /* 24440 * The pass-phrase. Normally this is supplied by user-called NDD. 24441 */ 24442 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24443 24444 /* 24445 * See 4010593 if this section becomes a problem again, 24446 * but the local ethernet address is useful here. 24447 */ 24448 (void) localetheraddr(NULL, 24449 (struct ether_addr *)&tcp_iss_cookie.ether); 24450 24451 /* 24452 * Hash 'em all together. The MD5Final is called per-connection. 24453 */ 24454 mutex_enter(&tcps->tcps_iss_key_lock); 24455 MD5Init(&tcps->tcps_iss_key); 24456 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24457 sizeof (tcp_iss_cookie)); 24458 mutex_exit(&tcps->tcps_iss_key_lock); 24459 } 24460 24461 /* 24462 * Set the RFC 1948 pass phrase 24463 */ 24464 /* ARGSUSED */ 24465 static int 24466 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24467 cred_t *cr) 24468 { 24469 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24470 24471 /* 24472 * Basically, value contains a new pass phrase. Pass it along! 24473 */ 24474 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24475 return (0); 24476 } 24477 24478 /* ARGSUSED */ 24479 static int 24480 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24481 { 24482 bzero(buf, sizeof (tcp_sack_info_t)); 24483 return (0); 24484 } 24485 24486 /* ARGSUSED */ 24487 static int 24488 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24489 { 24490 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24491 return (0); 24492 } 24493 24494 /* 24495 * Make sure we wait until the default queue is setup, yet allow 24496 * tcp_g_q_create() to open a TCP stream. 24497 * We need to allow tcp_g_q_create() do do an open 24498 * of tcp, hence we compare curhread. 24499 * All others have to wait until the tcps_g_q has been 24500 * setup. 24501 */ 24502 void 24503 tcp_g_q_setup(tcp_stack_t *tcps) 24504 { 24505 mutex_enter(&tcps->tcps_g_q_lock); 24506 if (tcps->tcps_g_q != NULL) { 24507 mutex_exit(&tcps->tcps_g_q_lock); 24508 return; 24509 } 24510 if (tcps->tcps_g_q_creator == NULL) { 24511 /* This thread will set it up */ 24512 tcps->tcps_g_q_creator = curthread; 24513 mutex_exit(&tcps->tcps_g_q_lock); 24514 tcp_g_q_create(tcps); 24515 mutex_enter(&tcps->tcps_g_q_lock); 24516 ASSERT(tcps->tcps_g_q_creator == curthread); 24517 tcps->tcps_g_q_creator = NULL; 24518 cv_signal(&tcps->tcps_g_q_cv); 24519 ASSERT(tcps->tcps_g_q != NULL); 24520 mutex_exit(&tcps->tcps_g_q_lock); 24521 return; 24522 } 24523 /* Everybody but the creator has to wait */ 24524 if (tcps->tcps_g_q_creator != curthread) { 24525 while (tcps->tcps_g_q == NULL) 24526 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24527 } 24528 mutex_exit(&tcps->tcps_g_q_lock); 24529 } 24530 24531 #define IP "ip" 24532 24533 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24534 24535 /* 24536 * Create a default tcp queue here instead of in strplumb 24537 */ 24538 void 24539 tcp_g_q_create(tcp_stack_t *tcps) 24540 { 24541 int error; 24542 ldi_handle_t lh = NULL; 24543 ldi_ident_t li = NULL; 24544 int rval; 24545 cred_t *cr; 24546 major_t IP_MAJ; 24547 24548 #ifdef NS_DEBUG 24549 (void) printf("tcp_g_q_create()\n"); 24550 #endif 24551 24552 IP_MAJ = ddi_name_to_major(IP); 24553 24554 ASSERT(tcps->tcps_g_q_creator == curthread); 24555 24556 error = ldi_ident_from_major(IP_MAJ, &li); 24557 if (error) { 24558 #ifdef DEBUG 24559 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24560 error); 24561 #endif 24562 return; 24563 } 24564 24565 cr = zone_get_kcred(netstackid_to_zoneid( 24566 tcps->tcps_netstack->netstack_stackid)); 24567 ASSERT(cr != NULL); 24568 /* 24569 * We set the tcp default queue to IPv6 because IPv4 falls 24570 * back to IPv6 when it can't find a client, but 24571 * IPv6 does not fall back to IPv4. 24572 */ 24573 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24574 if (error) { 24575 #ifdef DEBUG 24576 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24577 error); 24578 #endif 24579 goto out; 24580 } 24581 24582 /* 24583 * This ioctl causes the tcp framework to cache a pointer to 24584 * this stream, so we don't want to close the stream after 24585 * this operation. 24586 * Use the kernel credentials that are for the zone we're in. 24587 */ 24588 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24589 (intptr_t)0, FKIOCTL, cr, &rval); 24590 if (error) { 24591 #ifdef DEBUG 24592 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24593 "error %d\n", error); 24594 #endif 24595 goto out; 24596 } 24597 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24598 lh = NULL; 24599 out: 24600 /* Close layered handles */ 24601 if (li) 24602 ldi_ident_release(li); 24603 /* Keep cred around until _inactive needs it */ 24604 tcps->tcps_g_q_cr = cr; 24605 } 24606 24607 /* 24608 * We keep tcp_g_q set until all other tcp_t's in the zone 24609 * has gone away, and then when tcp_g_q_inactive() is called 24610 * we clear it. 24611 */ 24612 void 24613 tcp_g_q_destroy(tcp_stack_t *tcps) 24614 { 24615 #ifdef NS_DEBUG 24616 (void) printf("tcp_g_q_destroy()for stack %d\n", 24617 tcps->tcps_netstack->netstack_stackid); 24618 #endif 24619 24620 if (tcps->tcps_g_q == NULL) { 24621 return; /* Nothing to cleanup */ 24622 } 24623 /* 24624 * Drop reference corresponding to the default queue. 24625 * This reference was added from tcp_open when the default queue 24626 * was created, hence we compensate for this extra drop in 24627 * tcp_g_q_close. If the refcnt drops to zero here it means 24628 * the default queue was the last one to be open, in which 24629 * case, then tcp_g_q_inactive will be 24630 * called as a result of the refrele. 24631 */ 24632 TCPS_REFRELE(tcps); 24633 } 24634 24635 /* 24636 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24637 * Run by tcp_q_q_inactive using a taskq. 24638 */ 24639 static void 24640 tcp_g_q_close(void *arg) 24641 { 24642 tcp_stack_t *tcps = arg; 24643 int error; 24644 ldi_handle_t lh = NULL; 24645 ldi_ident_t li = NULL; 24646 cred_t *cr; 24647 major_t IP_MAJ; 24648 24649 IP_MAJ = ddi_name_to_major(IP); 24650 24651 #ifdef NS_DEBUG 24652 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24653 tcps->tcps_netstack->netstack_stackid, 24654 tcps->tcps_netstack->netstack_refcnt); 24655 #endif 24656 lh = tcps->tcps_g_q_lh; 24657 if (lh == NULL) 24658 return; /* Nothing to cleanup */ 24659 24660 ASSERT(tcps->tcps_refcnt == 1); 24661 ASSERT(tcps->tcps_g_q != NULL); 24662 24663 error = ldi_ident_from_major(IP_MAJ, &li); 24664 if (error) { 24665 #ifdef DEBUG 24666 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24667 error); 24668 #endif 24669 return; 24670 } 24671 24672 cr = tcps->tcps_g_q_cr; 24673 tcps->tcps_g_q_cr = NULL; 24674 ASSERT(cr != NULL); 24675 24676 /* 24677 * Make sure we can break the recursion when tcp_close decrements 24678 * the reference count causing g_q_inactive to be called again. 24679 */ 24680 tcps->tcps_g_q_lh = NULL; 24681 24682 /* close the default queue */ 24683 (void) ldi_close(lh, FREAD|FWRITE, cr); 24684 /* 24685 * At this point in time tcps and the rest of netstack_t might 24686 * have been deleted. 24687 */ 24688 tcps = NULL; 24689 24690 /* Close layered handles */ 24691 ldi_ident_release(li); 24692 crfree(cr); 24693 } 24694 24695 /* 24696 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24697 * 24698 * Have to ensure that the ldi routines are not used by an 24699 * interrupt thread by using a taskq. 24700 */ 24701 void 24702 tcp_g_q_inactive(tcp_stack_t *tcps) 24703 { 24704 if (tcps->tcps_g_q_lh == NULL) 24705 return; /* Nothing to cleanup */ 24706 24707 ASSERT(tcps->tcps_refcnt == 0); 24708 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24709 24710 if (servicing_interrupt()) { 24711 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24712 (void *) tcps, TQ_SLEEP); 24713 } else { 24714 tcp_g_q_close(tcps); 24715 } 24716 } 24717 24718 /* 24719 * Called by IP when IP is loaded into the kernel 24720 */ 24721 void 24722 tcp_ddi_g_init(void) 24723 { 24724 tcp_timercache = kmem_cache_create("tcp_timercache", 24725 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24726 NULL, NULL, NULL, NULL, NULL, 0); 24727 24728 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24729 sizeof (tcp_sack_info_t), 0, 24730 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24731 24732 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24733 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24734 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24735 24736 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24737 24738 /* Initialize the random number generator */ 24739 tcp_random_init(); 24740 24741 /* A single callback independently of how many netstacks we have */ 24742 ip_squeue_init(tcp_squeue_add); 24743 24744 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24745 24746 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24747 TASKQ_PREPOPULATE); 24748 24749 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 24750 24751 /* 24752 * We want to be informed each time a stack is created or 24753 * destroyed in the kernel, so we can maintain the 24754 * set of tcp_stack_t's. 24755 */ 24756 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24757 tcp_stack_fini); 24758 } 24759 24760 24761 #define INET_NAME "ip" 24762 24763 /* 24764 * Initialize the TCP stack instance. 24765 */ 24766 static void * 24767 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24768 { 24769 tcp_stack_t *tcps; 24770 tcpparam_t *pa; 24771 int i; 24772 int error = 0; 24773 major_t major; 24774 24775 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24776 tcps->tcps_netstack = ns; 24777 24778 /* Initialize locks */ 24779 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 24780 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24781 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24782 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24783 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24784 24785 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24786 tcps->tcps_g_epriv_ports[0] = 2049; 24787 tcps->tcps_g_epriv_ports[1] = 4045; 24788 tcps->tcps_min_anonpriv_port = 512; 24789 24790 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24791 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24792 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24793 TCP_FANOUT_SIZE, KM_SLEEP); 24794 24795 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24796 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24797 MUTEX_DEFAULT, NULL); 24798 } 24799 24800 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24801 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24802 MUTEX_DEFAULT, NULL); 24803 } 24804 24805 /* TCP's IPsec code calls the packet dropper. */ 24806 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24807 24808 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24809 tcps->tcps_params = pa; 24810 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24811 24812 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24813 A_CNT(lcl_tcp_param_arr), tcps); 24814 24815 /* 24816 * Note: To really walk the device tree you need the devinfo 24817 * pointer to your device which is only available after probe/attach. 24818 * The following is safe only because it uses ddi_root_node() 24819 */ 24820 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24821 tcp_opt_obj.odb_opt_arr_cnt); 24822 24823 /* 24824 * Initialize RFC 1948 secret values. This will probably be reset once 24825 * by the boot scripts. 24826 * 24827 * Use NULL name, as the name is caught by the new lockstats. 24828 * 24829 * Initialize with some random, non-guessable string, like the global 24830 * T_INFO_ACK. 24831 */ 24832 24833 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24834 sizeof (tcp_g_t_info_ack), tcps); 24835 24836 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24837 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24838 24839 major = mod_name_to_major(INET_NAME); 24840 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24841 ASSERT(error == 0); 24842 return (tcps); 24843 } 24844 24845 /* 24846 * Called when the IP module is about to be unloaded. 24847 */ 24848 void 24849 tcp_ddi_g_destroy(void) 24850 { 24851 tcp_g_kstat_fini(tcp_g_kstat); 24852 tcp_g_kstat = NULL; 24853 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24854 24855 mutex_destroy(&tcp_random_lock); 24856 24857 kmem_cache_destroy(tcp_timercache); 24858 kmem_cache_destroy(tcp_sack_info_cache); 24859 kmem_cache_destroy(tcp_iphc_cache); 24860 24861 netstack_unregister(NS_TCP); 24862 taskq_destroy(tcp_taskq); 24863 } 24864 24865 /* 24866 * Shut down the TCP stack instance. 24867 */ 24868 /* ARGSUSED */ 24869 static void 24870 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24871 { 24872 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24873 24874 tcp_g_q_destroy(tcps); 24875 } 24876 24877 /* 24878 * Free the TCP stack instance. 24879 */ 24880 static void 24881 tcp_stack_fini(netstackid_t stackid, void *arg) 24882 { 24883 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24884 int i; 24885 24886 nd_free(&tcps->tcps_g_nd); 24887 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24888 tcps->tcps_params = NULL; 24889 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24890 tcps->tcps_wroff_xtra_param = NULL; 24891 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24892 tcps->tcps_mdt_head_param = NULL; 24893 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24894 tcps->tcps_mdt_tail_param = NULL; 24895 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24896 tcps->tcps_mdt_max_pbufs_param = NULL; 24897 24898 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24899 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24900 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24901 } 24902 24903 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24904 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24905 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24906 } 24907 24908 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24909 tcps->tcps_bind_fanout = NULL; 24910 24911 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24912 tcps->tcps_acceptor_fanout = NULL; 24913 24914 mutex_destroy(&tcps->tcps_iss_key_lock); 24915 rw_destroy(&tcps->tcps_hsp_lock); 24916 mutex_destroy(&tcps->tcps_g_q_lock); 24917 cv_destroy(&tcps->tcps_g_q_cv); 24918 mutex_destroy(&tcps->tcps_epriv_port_lock); 24919 24920 ip_drop_unregister(&tcps->tcps_dropper); 24921 24922 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24923 tcps->tcps_kstat = NULL; 24924 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24925 24926 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24927 tcps->tcps_mibkp = NULL; 24928 24929 ldi_ident_release(tcps->tcps_ldi_ident); 24930 kmem_free(tcps, sizeof (*tcps)); 24931 } 24932 24933 /* 24934 * Generate ISS, taking into account NDD changes may happen halfway through. 24935 * (If the iss is not zero, set it.) 24936 */ 24937 24938 static void 24939 tcp_iss_init(tcp_t *tcp) 24940 { 24941 MD5_CTX context; 24942 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24943 uint32_t answer[4]; 24944 tcp_stack_t *tcps = tcp->tcp_tcps; 24945 24946 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24947 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24948 switch (tcps->tcps_strong_iss) { 24949 case 2: 24950 mutex_enter(&tcps->tcps_iss_key_lock); 24951 context = tcps->tcps_iss_key; 24952 mutex_exit(&tcps->tcps_iss_key_lock); 24953 arg.ports = tcp->tcp_ports; 24954 if (tcp->tcp_ipversion == IPV4_VERSION) { 24955 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24956 &arg.src); 24957 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24958 &arg.dst); 24959 } else { 24960 arg.src = tcp->tcp_ip6h->ip6_src; 24961 arg.dst = tcp->tcp_ip6h->ip6_dst; 24962 } 24963 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24964 MD5Final((uchar_t *)answer, &context); 24965 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24966 /* 24967 * Now that we've hashed into a unique per-connection sequence 24968 * space, add a random increment per strong_iss == 1. So I 24969 * guess we'll have to... 24970 */ 24971 /* FALLTHRU */ 24972 case 1: 24973 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24974 break; 24975 default: 24976 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24977 break; 24978 } 24979 tcp->tcp_valid_bits = TCP_ISS_VALID; 24980 tcp->tcp_fss = tcp->tcp_iss - 1; 24981 tcp->tcp_suna = tcp->tcp_iss; 24982 tcp->tcp_snxt = tcp->tcp_iss + 1; 24983 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24984 tcp->tcp_csuna = tcp->tcp_snxt; 24985 } 24986 24987 /* 24988 * Exported routine for extracting active tcp connection status. 24989 * 24990 * This is used by the Solaris Cluster Networking software to 24991 * gather a list of connections that need to be forwarded to 24992 * specific nodes in the cluster when configuration changes occur. 24993 * 24994 * The callback is invoked for each tcp_t structure from all netstacks, 24995 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24996 * from the netstack with the specified stack_id. Returning 24997 * non-zero from the callback routine terminates the search. 24998 */ 24999 int 25000 cl_tcp_walk_list(netstackid_t stack_id, 25001 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 25002 { 25003 netstack_handle_t nh; 25004 netstack_t *ns; 25005 int ret = 0; 25006 25007 if (stack_id >= 0) { 25008 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 25009 return (EINVAL); 25010 25011 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25012 ns->netstack_tcp); 25013 netstack_rele(ns); 25014 return (ret); 25015 } 25016 25017 netstack_next_init(&nh); 25018 while ((ns = netstack_next(&nh)) != NULL) { 25019 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25020 ns->netstack_tcp); 25021 netstack_rele(ns); 25022 } 25023 netstack_next_fini(&nh); 25024 return (ret); 25025 } 25026 25027 static int 25028 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25029 tcp_stack_t *tcps) 25030 { 25031 tcp_t *tcp; 25032 cl_tcp_info_t cl_tcpi; 25033 connf_t *connfp; 25034 conn_t *connp; 25035 int i; 25036 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25037 25038 ASSERT(callback != NULL); 25039 25040 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25041 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25042 connp = NULL; 25043 25044 while ((connp = 25045 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25046 25047 tcp = connp->conn_tcp; 25048 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25049 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25050 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25051 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25052 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25053 /* 25054 * The macros tcp_laddr and tcp_faddr give the IPv4 25055 * addresses. They are copied implicitly below as 25056 * mapped addresses. 25057 */ 25058 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25059 if (tcp->tcp_ipversion == IPV4_VERSION) { 25060 cl_tcpi.cl_tcpi_faddr = 25061 tcp->tcp_ipha->ipha_dst; 25062 } else { 25063 cl_tcpi.cl_tcpi_faddr_v6 = 25064 tcp->tcp_ip6h->ip6_dst; 25065 } 25066 25067 /* 25068 * If the callback returns non-zero 25069 * we terminate the traversal. 25070 */ 25071 if ((*callback)(&cl_tcpi, arg) != 0) { 25072 CONN_DEC_REF(tcp->tcp_connp); 25073 return (1); 25074 } 25075 } 25076 } 25077 25078 return (0); 25079 } 25080 25081 /* 25082 * Macros used for accessing the different types of sockaddr 25083 * structures inside a tcp_ioc_abort_conn_t. 25084 */ 25085 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25086 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25087 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25088 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25089 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25090 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25091 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25092 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25093 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25094 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25095 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25096 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25097 25098 /* 25099 * Return the correct error code to mimic the behavior 25100 * of a connection reset. 25101 */ 25102 #define TCP_AC_GET_ERRCODE(state, err) { \ 25103 switch ((state)) { \ 25104 case TCPS_SYN_SENT: \ 25105 case TCPS_SYN_RCVD: \ 25106 (err) = ECONNREFUSED; \ 25107 break; \ 25108 case TCPS_ESTABLISHED: \ 25109 case TCPS_FIN_WAIT_1: \ 25110 case TCPS_FIN_WAIT_2: \ 25111 case TCPS_CLOSE_WAIT: \ 25112 (err) = ECONNRESET; \ 25113 break; \ 25114 case TCPS_CLOSING: \ 25115 case TCPS_LAST_ACK: \ 25116 case TCPS_TIME_WAIT: \ 25117 (err) = 0; \ 25118 break; \ 25119 default: \ 25120 (err) = ENXIO; \ 25121 } \ 25122 } 25123 25124 /* 25125 * Check if a tcp structure matches the info in acp. 25126 */ 25127 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25128 (((acp)->ac_local.ss_family == AF_INET) ? \ 25129 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25130 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25131 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25132 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25133 (TCP_AC_V4LPORT((acp)) == 0 || \ 25134 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25135 (TCP_AC_V4RPORT((acp)) == 0 || \ 25136 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25137 (acp)->ac_start <= (tcp)->tcp_state && \ 25138 (acp)->ac_end >= (tcp)->tcp_state) : \ 25139 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25140 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25141 &(tcp)->tcp_ip_src_v6)) && \ 25142 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25143 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25144 &(tcp)->tcp_remote_v6)) && \ 25145 (TCP_AC_V6LPORT((acp)) == 0 || \ 25146 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25147 (TCP_AC_V6RPORT((acp)) == 0 || \ 25148 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25149 (acp)->ac_start <= (tcp)->tcp_state && \ 25150 (acp)->ac_end >= (tcp)->tcp_state)) 25151 25152 #define TCP_AC_MATCH(acp, tcp) \ 25153 (((acp)->ac_zoneid == ALL_ZONES || \ 25154 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25155 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25156 25157 /* 25158 * Build a message containing a tcp_ioc_abort_conn_t structure 25159 * which is filled in with information from acp and tp. 25160 */ 25161 static mblk_t * 25162 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25163 { 25164 mblk_t *mp; 25165 tcp_ioc_abort_conn_t *tacp; 25166 25167 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25168 if (mp == NULL) 25169 return (NULL); 25170 25171 mp->b_datap->db_type = M_CTL; 25172 25173 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25174 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25175 sizeof (uint32_t)); 25176 25177 tacp->ac_start = acp->ac_start; 25178 tacp->ac_end = acp->ac_end; 25179 tacp->ac_zoneid = acp->ac_zoneid; 25180 25181 if (acp->ac_local.ss_family == AF_INET) { 25182 tacp->ac_local.ss_family = AF_INET; 25183 tacp->ac_remote.ss_family = AF_INET; 25184 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25185 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25186 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25187 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25188 } else { 25189 tacp->ac_local.ss_family = AF_INET6; 25190 tacp->ac_remote.ss_family = AF_INET6; 25191 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25192 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25193 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25194 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25195 } 25196 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25197 return (mp); 25198 } 25199 25200 /* 25201 * Print a tcp_ioc_abort_conn_t structure. 25202 */ 25203 static void 25204 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25205 { 25206 char lbuf[128]; 25207 char rbuf[128]; 25208 sa_family_t af; 25209 in_port_t lport, rport; 25210 ushort_t logflags; 25211 25212 af = acp->ac_local.ss_family; 25213 25214 if (af == AF_INET) { 25215 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25216 lbuf, 128); 25217 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25218 rbuf, 128); 25219 lport = ntohs(TCP_AC_V4LPORT(acp)); 25220 rport = ntohs(TCP_AC_V4RPORT(acp)); 25221 } else { 25222 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25223 lbuf, 128); 25224 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25225 rbuf, 128); 25226 lport = ntohs(TCP_AC_V6LPORT(acp)); 25227 rport = ntohs(TCP_AC_V6RPORT(acp)); 25228 } 25229 25230 logflags = SL_TRACE | SL_NOTE; 25231 /* 25232 * Don't print this message to the console if the operation was done 25233 * to a non-global zone. 25234 */ 25235 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25236 logflags |= SL_CONSOLE; 25237 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25238 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25239 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25240 acp->ac_start, acp->ac_end); 25241 } 25242 25243 /* 25244 * Called inside tcp_rput when a message built using 25245 * tcp_ioctl_abort_build_msg is put into a queue. 25246 * Note that when we get here there is no wildcard in acp any more. 25247 */ 25248 static void 25249 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25250 { 25251 tcp_ioc_abort_conn_t *acp; 25252 25253 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25254 if (tcp->tcp_state <= acp->ac_end) { 25255 /* 25256 * If we get here, we are already on the correct 25257 * squeue. This ioctl follows the following path 25258 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25259 * ->tcp_ioctl_abort->squeue_enter (if on a 25260 * different squeue) 25261 */ 25262 int errcode; 25263 25264 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25265 (void) tcp_clean_death(tcp, errcode, 26); 25266 } 25267 freemsg(mp); 25268 } 25269 25270 /* 25271 * Abort all matching connections on a hash chain. 25272 */ 25273 static int 25274 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25275 boolean_t exact, tcp_stack_t *tcps) 25276 { 25277 int nmatch, err = 0; 25278 tcp_t *tcp; 25279 MBLKP mp, last, listhead = NULL; 25280 conn_t *tconnp; 25281 connf_t *connfp; 25282 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25283 25284 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25285 25286 startover: 25287 nmatch = 0; 25288 25289 mutex_enter(&connfp->connf_lock); 25290 for (tconnp = connfp->connf_head; tconnp != NULL; 25291 tconnp = tconnp->conn_next) { 25292 tcp = tconnp->conn_tcp; 25293 if (TCP_AC_MATCH(acp, tcp)) { 25294 CONN_INC_REF(tcp->tcp_connp); 25295 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25296 if (mp == NULL) { 25297 err = ENOMEM; 25298 CONN_DEC_REF(tcp->tcp_connp); 25299 break; 25300 } 25301 mp->b_prev = (mblk_t *)tcp; 25302 25303 if (listhead == NULL) { 25304 listhead = mp; 25305 last = mp; 25306 } else { 25307 last->b_next = mp; 25308 last = mp; 25309 } 25310 nmatch++; 25311 if (exact) 25312 break; 25313 } 25314 25315 /* Avoid holding lock for too long. */ 25316 if (nmatch >= 500) 25317 break; 25318 } 25319 mutex_exit(&connfp->connf_lock); 25320 25321 /* Pass mp into the correct tcp */ 25322 while ((mp = listhead) != NULL) { 25323 listhead = listhead->b_next; 25324 tcp = (tcp_t *)mp->b_prev; 25325 mp->b_next = mp->b_prev = NULL; 25326 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 25327 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 25328 } 25329 25330 *count += nmatch; 25331 if (nmatch >= 500 && err == 0) 25332 goto startover; 25333 return (err); 25334 } 25335 25336 /* 25337 * Abort all connections that matches the attributes specified in acp. 25338 */ 25339 static int 25340 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25341 { 25342 sa_family_t af; 25343 uint32_t ports; 25344 uint16_t *pports; 25345 int err = 0, count = 0; 25346 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25347 int index = -1; 25348 ushort_t logflags; 25349 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25350 25351 af = acp->ac_local.ss_family; 25352 25353 if (af == AF_INET) { 25354 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25355 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25356 pports = (uint16_t *)&ports; 25357 pports[1] = TCP_AC_V4LPORT(acp); 25358 pports[0] = TCP_AC_V4RPORT(acp); 25359 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25360 } 25361 } else { 25362 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25363 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25364 pports = (uint16_t *)&ports; 25365 pports[1] = TCP_AC_V6LPORT(acp); 25366 pports[0] = TCP_AC_V6RPORT(acp); 25367 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25368 } 25369 } 25370 25371 /* 25372 * For cases where remote addr, local port, and remote port are non- 25373 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25374 */ 25375 if (index != -1) { 25376 err = tcp_ioctl_abort_bucket(acp, index, 25377 &count, exact, tcps); 25378 } else { 25379 /* 25380 * loop through all entries for wildcard case 25381 */ 25382 for (index = 0; 25383 index < ipst->ips_ipcl_conn_fanout_size; 25384 index++) { 25385 err = tcp_ioctl_abort_bucket(acp, index, 25386 &count, exact, tcps); 25387 if (err != 0) 25388 break; 25389 } 25390 } 25391 25392 logflags = SL_TRACE | SL_NOTE; 25393 /* 25394 * Don't print this message to the console if the operation was done 25395 * to a non-global zone. 25396 */ 25397 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25398 logflags |= SL_CONSOLE; 25399 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25400 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25401 if (err == 0 && count == 0) 25402 err = ENOENT; 25403 return (err); 25404 } 25405 25406 /* 25407 * Process the TCP_IOC_ABORT_CONN ioctl request. 25408 */ 25409 static void 25410 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25411 { 25412 int err; 25413 IOCP iocp; 25414 MBLKP mp1; 25415 sa_family_t laf, raf; 25416 tcp_ioc_abort_conn_t *acp; 25417 zone_t *zptr; 25418 conn_t *connp = Q_TO_CONN(q); 25419 zoneid_t zoneid = connp->conn_zoneid; 25420 tcp_t *tcp = connp->conn_tcp; 25421 tcp_stack_t *tcps = tcp->tcp_tcps; 25422 25423 iocp = (IOCP)mp->b_rptr; 25424 25425 if ((mp1 = mp->b_cont) == NULL || 25426 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25427 err = EINVAL; 25428 goto out; 25429 } 25430 25431 /* check permissions */ 25432 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25433 err = EPERM; 25434 goto out; 25435 } 25436 25437 if (mp1->b_cont != NULL) { 25438 freemsg(mp1->b_cont); 25439 mp1->b_cont = NULL; 25440 } 25441 25442 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25443 laf = acp->ac_local.ss_family; 25444 raf = acp->ac_remote.ss_family; 25445 25446 /* check that a zone with the supplied zoneid exists */ 25447 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25448 zptr = zone_find_by_id(zoneid); 25449 if (zptr != NULL) { 25450 zone_rele(zptr); 25451 } else { 25452 err = EINVAL; 25453 goto out; 25454 } 25455 } 25456 25457 /* 25458 * For exclusive stacks we set the zoneid to zero 25459 * to make TCP operate as if in the global zone. 25460 */ 25461 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25462 acp->ac_zoneid = GLOBAL_ZONEID; 25463 25464 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25465 acp->ac_start > acp->ac_end || laf != raf || 25466 (laf != AF_INET && laf != AF_INET6)) { 25467 err = EINVAL; 25468 goto out; 25469 } 25470 25471 tcp_ioctl_abort_dump(acp); 25472 err = tcp_ioctl_abort(acp, tcps); 25473 25474 out: 25475 if (mp1 != NULL) { 25476 freemsg(mp1); 25477 mp->b_cont = NULL; 25478 } 25479 25480 if (err != 0) 25481 miocnak(q, mp, 0, err); 25482 else 25483 miocack(q, mp, 0, 0); 25484 } 25485 25486 /* 25487 * tcp_time_wait_processing() handles processing of incoming packets when 25488 * the tcp is in the TIME_WAIT state. 25489 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25490 * on the time wait list. 25491 */ 25492 void 25493 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25494 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25495 { 25496 int32_t bytes_acked; 25497 int32_t gap; 25498 int32_t rgap; 25499 tcp_opt_t tcpopt; 25500 uint_t flags; 25501 uint32_t new_swnd = 0; 25502 conn_t *connp; 25503 tcp_stack_t *tcps = tcp->tcp_tcps; 25504 25505 BUMP_LOCAL(tcp->tcp_ibsegs); 25506 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 25507 25508 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25509 new_swnd = BE16_TO_U16(tcph->th_win) << 25510 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25511 if (tcp->tcp_snd_ts_ok) { 25512 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25513 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25514 tcp->tcp_rnxt, TH_ACK); 25515 goto done; 25516 } 25517 } 25518 gap = seg_seq - tcp->tcp_rnxt; 25519 rgap = tcp->tcp_rwnd - (gap + seg_len); 25520 if (gap < 0) { 25521 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25522 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25523 (seg_len > -gap ? -gap : seg_len)); 25524 seg_len += gap; 25525 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25526 if (flags & TH_RST) { 25527 goto done; 25528 } 25529 if ((flags & TH_FIN) && seg_len == -1) { 25530 /* 25531 * When TCP receives a duplicate FIN in 25532 * TIME_WAIT state, restart the 2 MSL timer. 25533 * See page 73 in RFC 793. Make sure this TCP 25534 * is already on the TIME_WAIT list. If not, 25535 * just restart the timer. 25536 */ 25537 if (TCP_IS_DETACHED(tcp)) { 25538 if (tcp_time_wait_remove(tcp, NULL) == 25539 B_TRUE) { 25540 tcp_time_wait_append(tcp); 25541 TCP_DBGSTAT(tcps, 25542 tcp_rput_time_wait); 25543 } 25544 } else { 25545 ASSERT(tcp != NULL); 25546 TCP_TIMER_RESTART(tcp, 25547 tcps->tcps_time_wait_interval); 25548 } 25549 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25550 tcp->tcp_rnxt, TH_ACK); 25551 goto done; 25552 } 25553 flags |= TH_ACK_NEEDED; 25554 seg_len = 0; 25555 goto process_ack; 25556 } 25557 25558 /* Fix seg_seq, and chew the gap off the front. */ 25559 seg_seq = tcp->tcp_rnxt; 25560 } 25561 25562 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25563 /* 25564 * Make sure that when we accept the connection, pick 25565 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25566 * old connection. 25567 * 25568 * The next ISS generated is equal to tcp_iss_incr_extra 25569 * + ISS_INCR/2 + other components depending on the 25570 * value of tcp_strong_iss. We pre-calculate the new 25571 * ISS here and compare with tcp_snxt to determine if 25572 * we need to make adjustment to tcp_iss_incr_extra. 25573 * 25574 * The above calculation is ugly and is a 25575 * waste of CPU cycles... 25576 */ 25577 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25578 int32_t adj; 25579 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25580 25581 switch (tcps->tcps_strong_iss) { 25582 case 2: { 25583 /* Add time and MD5 components. */ 25584 uint32_t answer[4]; 25585 struct { 25586 uint32_t ports; 25587 in6_addr_t src; 25588 in6_addr_t dst; 25589 } arg; 25590 MD5_CTX context; 25591 25592 mutex_enter(&tcps->tcps_iss_key_lock); 25593 context = tcps->tcps_iss_key; 25594 mutex_exit(&tcps->tcps_iss_key_lock); 25595 arg.ports = tcp->tcp_ports; 25596 /* We use MAPPED addresses in tcp_iss_init */ 25597 arg.src = tcp->tcp_ip_src_v6; 25598 if (tcp->tcp_ipversion == IPV4_VERSION) { 25599 IN6_IPADDR_TO_V4MAPPED( 25600 tcp->tcp_ipha->ipha_dst, 25601 &arg.dst); 25602 } else { 25603 arg.dst = 25604 tcp->tcp_ip6h->ip6_dst; 25605 } 25606 MD5Update(&context, (uchar_t *)&arg, 25607 sizeof (arg)); 25608 MD5Final((uchar_t *)answer, &context); 25609 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25610 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25611 break; 25612 } 25613 case 1: 25614 /* Add time component and min random (i.e. 1). */ 25615 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25616 break; 25617 default: 25618 /* Add only time component. */ 25619 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25620 break; 25621 } 25622 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25623 /* 25624 * New ISS not guaranteed to be ISS_INCR/2 25625 * ahead of the current tcp_snxt, so add the 25626 * difference to tcp_iss_incr_extra. 25627 */ 25628 tcps->tcps_iss_incr_extra += adj; 25629 } 25630 /* 25631 * If tcp_clean_death() can not perform the task now, 25632 * drop the SYN packet and let the other side re-xmit. 25633 * Otherwise pass the SYN packet back in, since the 25634 * old tcp state has been cleaned up or freed. 25635 */ 25636 if (tcp_clean_death(tcp, 0, 27) == -1) 25637 goto done; 25638 /* 25639 * We will come back to tcp_rput_data 25640 * on the global queue. Packets destined 25641 * for the global queue will be checked 25642 * with global policy. But the policy for 25643 * this packet has already been checked as 25644 * this was destined for the detached 25645 * connection. We need to bypass policy 25646 * check this time by attaching a dummy 25647 * ipsec_in with ipsec_in_dont_check set. 25648 */ 25649 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25650 if (connp != NULL) { 25651 TCP_STAT(tcps, tcp_time_wait_syn_success); 25652 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25653 return; 25654 } 25655 goto done; 25656 } 25657 25658 /* 25659 * rgap is the amount of stuff received out of window. A negative 25660 * value is the amount out of window. 25661 */ 25662 if (rgap < 0) { 25663 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25664 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25665 /* Fix seg_len and make sure there is something left. */ 25666 seg_len += rgap; 25667 if (seg_len <= 0) { 25668 if (flags & TH_RST) { 25669 goto done; 25670 } 25671 flags |= TH_ACK_NEEDED; 25672 seg_len = 0; 25673 goto process_ack; 25674 } 25675 } 25676 /* 25677 * Check whether we can update tcp_ts_recent. This test is 25678 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25679 * Extensions for High Performance: An Update", Internet Draft. 25680 */ 25681 if (tcp->tcp_snd_ts_ok && 25682 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25683 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25684 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25685 tcp->tcp_last_rcv_lbolt = lbolt64; 25686 } 25687 25688 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25689 /* Always ack out of order packets */ 25690 flags |= TH_ACK_NEEDED; 25691 seg_len = 0; 25692 } else if (seg_len > 0) { 25693 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25694 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25695 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25696 } 25697 if (flags & TH_RST) { 25698 (void) tcp_clean_death(tcp, 0, 28); 25699 goto done; 25700 } 25701 if (flags & TH_SYN) { 25702 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25703 TH_RST|TH_ACK); 25704 /* 25705 * Do not delete the TCP structure if it is in 25706 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25707 */ 25708 goto done; 25709 } 25710 process_ack: 25711 if (flags & TH_ACK) { 25712 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25713 if (bytes_acked <= 0) { 25714 if (bytes_acked == 0 && seg_len == 0 && 25715 new_swnd == tcp->tcp_swnd) 25716 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25717 } else { 25718 /* Acks something not sent */ 25719 flags |= TH_ACK_NEEDED; 25720 } 25721 } 25722 if (flags & TH_ACK_NEEDED) { 25723 /* 25724 * Time to send an ack for some reason. 25725 */ 25726 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25727 tcp->tcp_rnxt, TH_ACK); 25728 } 25729 done: 25730 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25731 DB_CKSUMSTART(mp) = 0; 25732 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25733 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25734 } 25735 freemsg(mp); 25736 } 25737 25738 /* 25739 * TCP Timers Implementation. 25740 */ 25741 timeout_id_t 25742 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25743 { 25744 mblk_t *mp; 25745 tcp_timer_t *tcpt; 25746 tcp_t *tcp = connp->conn_tcp; 25747 25748 ASSERT(connp->conn_sqp != NULL); 25749 25750 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 25751 25752 if (tcp->tcp_timercache == NULL) { 25753 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25754 } else { 25755 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 25756 mp = tcp->tcp_timercache; 25757 tcp->tcp_timercache = mp->b_next; 25758 mp->b_next = NULL; 25759 ASSERT(mp->b_wptr == NULL); 25760 } 25761 25762 CONN_INC_REF(connp); 25763 tcpt = (tcp_timer_t *)mp->b_rptr; 25764 tcpt->connp = connp; 25765 tcpt->tcpt_proc = f; 25766 /* 25767 * TCP timers are normal timeouts. Plus, they do not require more than 25768 * a 10 millisecond resolution. By choosing a coarser resolution and by 25769 * rounding up the expiration to the next resolution boundary, we can 25770 * batch timers in the callout subsystem to make TCP timers more 25771 * efficient. The roundup also protects short timers from expiring too 25772 * early before they have a chance to be cancelled. 25773 */ 25774 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25775 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25776 25777 return ((timeout_id_t)mp); 25778 } 25779 25780 static void 25781 tcp_timer_callback(void *arg) 25782 { 25783 mblk_t *mp = (mblk_t *)arg; 25784 tcp_timer_t *tcpt; 25785 conn_t *connp; 25786 25787 tcpt = (tcp_timer_t *)mp->b_rptr; 25788 connp = tcpt->connp; 25789 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 25790 SQ_FILL, SQTAG_TCP_TIMER); 25791 } 25792 25793 static void 25794 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25795 { 25796 tcp_timer_t *tcpt; 25797 conn_t *connp = (conn_t *)arg; 25798 tcp_t *tcp = connp->conn_tcp; 25799 25800 tcpt = (tcp_timer_t *)mp->b_rptr; 25801 ASSERT(connp == tcpt->connp); 25802 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25803 25804 /* 25805 * If the TCP has reached the closed state, don't proceed any 25806 * further. This TCP logically does not exist on the system. 25807 * tcpt_proc could for example access queues, that have already 25808 * been qprocoff'ed off. Also see comments at the start of tcp_input 25809 */ 25810 if (tcp->tcp_state != TCPS_CLOSED) { 25811 (*tcpt->tcpt_proc)(connp); 25812 } else { 25813 tcp->tcp_timer_tid = 0; 25814 } 25815 tcp_timer_free(connp->conn_tcp, mp); 25816 } 25817 25818 /* 25819 * There is potential race with untimeout and the handler firing at the same 25820 * time. The mblock may be freed by the handler while we are trying to use 25821 * it. But since both should execute on the same squeue, this race should not 25822 * occur. 25823 */ 25824 clock_t 25825 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25826 { 25827 mblk_t *mp = (mblk_t *)id; 25828 tcp_timer_t *tcpt; 25829 clock_t delta; 25830 25831 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25832 25833 if (mp == NULL) 25834 return (-1); 25835 25836 tcpt = (tcp_timer_t *)mp->b_rptr; 25837 ASSERT(tcpt->connp == connp); 25838 25839 delta = untimeout_default(tcpt->tcpt_tid, 0); 25840 25841 if (delta >= 0) { 25842 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25843 tcp_timer_free(connp->conn_tcp, mp); 25844 CONN_DEC_REF(connp); 25845 } 25846 25847 return (delta); 25848 } 25849 25850 /* 25851 * Allocate space for the timer event. The allocation looks like mblk, but it is 25852 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25853 * 25854 * Dealing with failures: If we can't allocate from the timer cache we try 25855 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25856 * points to b_rptr. 25857 * If we can't allocate anything using allocb_tryhard(), we perform a last 25858 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25859 * save the actual allocation size in b_datap. 25860 */ 25861 mblk_t * 25862 tcp_timermp_alloc(int kmflags) 25863 { 25864 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25865 kmflags & ~KM_PANIC); 25866 25867 if (mp != NULL) { 25868 mp->b_next = mp->b_prev = NULL; 25869 mp->b_rptr = (uchar_t *)(&mp[1]); 25870 mp->b_wptr = NULL; 25871 mp->b_datap = NULL; 25872 mp->b_queue = NULL; 25873 mp->b_cont = NULL; 25874 } else if (kmflags & KM_PANIC) { 25875 /* 25876 * Failed to allocate memory for the timer. Try allocating from 25877 * dblock caches. 25878 */ 25879 /* ipclassifier calls this from a constructor - hence no tcps */ 25880 TCP_G_STAT(tcp_timermp_allocfail); 25881 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25882 if (mp == NULL) { 25883 size_t size = 0; 25884 /* 25885 * Memory is really low. Try tryhard allocation. 25886 * 25887 * ipclassifier calls this from a constructor - 25888 * hence no tcps 25889 */ 25890 TCP_G_STAT(tcp_timermp_allocdblfail); 25891 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25892 sizeof (tcp_timer_t), &size, kmflags); 25893 mp->b_rptr = (uchar_t *)(&mp[1]); 25894 mp->b_next = mp->b_prev = NULL; 25895 mp->b_wptr = (uchar_t *)-1; 25896 mp->b_datap = (dblk_t *)size; 25897 mp->b_queue = NULL; 25898 mp->b_cont = NULL; 25899 } 25900 ASSERT(mp->b_wptr != NULL); 25901 } 25902 /* ipclassifier calls this from a constructor - hence no tcps */ 25903 TCP_G_DBGSTAT(tcp_timermp_alloced); 25904 25905 return (mp); 25906 } 25907 25908 /* 25909 * Free per-tcp timer cache. 25910 * It can only contain entries from tcp_timercache. 25911 */ 25912 void 25913 tcp_timermp_free(tcp_t *tcp) 25914 { 25915 mblk_t *mp; 25916 25917 while ((mp = tcp->tcp_timercache) != NULL) { 25918 ASSERT(mp->b_wptr == NULL); 25919 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25920 kmem_cache_free(tcp_timercache, mp); 25921 } 25922 } 25923 25924 /* 25925 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25926 * events there already (currently at most two events are cached). 25927 * If the event is not allocated from the timer cache, free it right away. 25928 */ 25929 static void 25930 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25931 { 25932 mblk_t *mp1 = tcp->tcp_timercache; 25933 25934 if (mp->b_wptr != NULL) { 25935 /* 25936 * This allocation is not from a timer cache, free it right 25937 * away. 25938 */ 25939 if (mp->b_wptr != (uchar_t *)-1) 25940 freeb(mp); 25941 else 25942 kmem_free(mp, (size_t)mp->b_datap); 25943 } else if (mp1 == NULL || mp1->b_next == NULL) { 25944 /* Cache this timer block for future allocations */ 25945 mp->b_rptr = (uchar_t *)(&mp[1]); 25946 mp->b_next = mp1; 25947 tcp->tcp_timercache = mp; 25948 } else { 25949 kmem_cache_free(tcp_timercache, mp); 25950 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25951 } 25952 } 25953 25954 /* 25955 * End of TCP Timers implementation. 25956 */ 25957 25958 /* 25959 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25960 * on the specified backing STREAMS q. Note, the caller may make the 25961 * decision to call based on the tcp_t.tcp_flow_stopped value which 25962 * when check outside the q's lock is only an advisory check ... 25963 */ 25964 void 25965 tcp_setqfull(tcp_t *tcp) 25966 { 25967 tcp_stack_t *tcps = tcp->tcp_tcps; 25968 conn_t *connp = tcp->tcp_connp; 25969 25970 if (tcp->tcp_closed) 25971 return; 25972 25973 if (IPCL_IS_NONSTR(connp)) { 25974 (*connp->conn_upcalls->su_txq_full) 25975 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25976 tcp->tcp_flow_stopped = B_TRUE; 25977 } else { 25978 queue_t *q = tcp->tcp_wq; 25979 25980 if (!(q->q_flag & QFULL)) { 25981 mutex_enter(QLOCK(q)); 25982 if (!(q->q_flag & QFULL)) { 25983 /* still need to set QFULL */ 25984 q->q_flag |= QFULL; 25985 tcp->tcp_flow_stopped = B_TRUE; 25986 mutex_exit(QLOCK(q)); 25987 TCP_STAT(tcps, tcp_flwctl_on); 25988 } else { 25989 mutex_exit(QLOCK(q)); 25990 } 25991 } 25992 } 25993 } 25994 25995 void 25996 tcp_clrqfull(tcp_t *tcp) 25997 { 25998 conn_t *connp = tcp->tcp_connp; 25999 26000 if (tcp->tcp_closed) 26001 return; 26002 26003 if (IPCL_IS_NONSTR(connp)) { 26004 (*connp->conn_upcalls->su_txq_full) 26005 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 26006 tcp->tcp_flow_stopped = B_FALSE; 26007 } else { 26008 queue_t *q = tcp->tcp_wq; 26009 26010 if (q->q_flag & QFULL) { 26011 mutex_enter(QLOCK(q)); 26012 if (q->q_flag & QFULL) { 26013 q->q_flag &= ~QFULL; 26014 tcp->tcp_flow_stopped = B_FALSE; 26015 mutex_exit(QLOCK(q)); 26016 if (q->q_flag & QWANTW) 26017 qbackenable(q, 0); 26018 } else { 26019 mutex_exit(QLOCK(q)); 26020 } 26021 } 26022 } 26023 } 26024 26025 /* 26026 * kstats related to squeues i.e. not per IP instance 26027 */ 26028 static void * 26029 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26030 { 26031 kstat_t *ksp; 26032 26033 tcp_g_stat_t template = { 26034 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26035 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26036 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26037 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26038 }; 26039 26040 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26041 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26042 KSTAT_FLAG_VIRTUAL); 26043 26044 if (ksp == NULL) 26045 return (NULL); 26046 26047 bcopy(&template, tcp_g_statp, sizeof (template)); 26048 ksp->ks_data = (void *)tcp_g_statp; 26049 26050 kstat_install(ksp); 26051 return (ksp); 26052 } 26053 26054 static void 26055 tcp_g_kstat_fini(kstat_t *ksp) 26056 { 26057 if (ksp != NULL) { 26058 kstat_delete(ksp); 26059 } 26060 } 26061 26062 26063 static void * 26064 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26065 { 26066 kstat_t *ksp; 26067 26068 tcp_stat_t template = { 26069 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26070 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26071 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26072 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26073 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26074 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26075 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26076 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26077 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26078 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26079 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26080 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26081 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26082 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26083 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26084 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26085 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26086 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26087 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26088 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26089 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26090 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26091 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26092 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26093 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26094 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26095 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26096 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26097 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26098 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26099 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26100 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26101 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26102 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26103 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26104 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26105 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26106 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26107 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26108 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26109 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26110 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26111 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26112 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26113 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26114 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26115 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26116 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26117 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26118 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26119 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26120 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26121 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26122 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26123 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26124 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26125 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26126 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26127 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26128 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26129 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26130 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26131 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26132 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26133 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26134 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26135 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26136 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26137 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26138 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26139 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26140 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26141 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26142 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26143 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26144 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26145 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26146 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26147 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26148 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26149 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26150 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26151 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26152 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26153 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26154 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26155 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26156 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26157 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26158 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26159 }; 26160 26161 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26162 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26163 KSTAT_FLAG_VIRTUAL, stackid); 26164 26165 if (ksp == NULL) 26166 return (NULL); 26167 26168 bcopy(&template, tcps_statisticsp, sizeof (template)); 26169 ksp->ks_data = (void *)tcps_statisticsp; 26170 ksp->ks_private = (void *)(uintptr_t)stackid; 26171 26172 kstat_install(ksp); 26173 return (ksp); 26174 } 26175 26176 static void 26177 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26178 { 26179 if (ksp != NULL) { 26180 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26181 kstat_delete_netstack(ksp, stackid); 26182 } 26183 } 26184 26185 /* 26186 * TCP Kstats implementation 26187 */ 26188 static void * 26189 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26190 { 26191 kstat_t *ksp; 26192 26193 tcp_named_kstat_t template = { 26194 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26195 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26196 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26197 { "maxConn", KSTAT_DATA_INT32, 0 }, 26198 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26199 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26200 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26201 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26202 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26203 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26204 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26205 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26206 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26207 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26208 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26209 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26210 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26211 { "outAck", KSTAT_DATA_UINT32, 0 }, 26212 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26213 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26214 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26215 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26216 { "outControl", KSTAT_DATA_UINT32, 0 }, 26217 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26218 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26219 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26220 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26221 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26222 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26223 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26224 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26225 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26226 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26227 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26228 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26229 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26230 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26231 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26232 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26233 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26234 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26235 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26236 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26237 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26238 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26239 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26240 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26241 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26242 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26243 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26244 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26245 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26246 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26247 }; 26248 26249 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26250 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26251 26252 if (ksp == NULL) 26253 return (NULL); 26254 26255 template.rtoAlgorithm.value.ui32 = 4; 26256 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26257 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26258 template.maxConn.value.i32 = -1; 26259 26260 bcopy(&template, ksp->ks_data, sizeof (template)); 26261 ksp->ks_update = tcp_kstat_update; 26262 ksp->ks_private = (void *)(uintptr_t)stackid; 26263 26264 kstat_install(ksp); 26265 return (ksp); 26266 } 26267 26268 static void 26269 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26270 { 26271 if (ksp != NULL) { 26272 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26273 kstat_delete_netstack(ksp, stackid); 26274 } 26275 } 26276 26277 static int 26278 tcp_kstat_update(kstat_t *kp, int rw) 26279 { 26280 tcp_named_kstat_t *tcpkp; 26281 tcp_t *tcp; 26282 connf_t *connfp; 26283 conn_t *connp; 26284 int i; 26285 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26286 netstack_t *ns; 26287 tcp_stack_t *tcps; 26288 ip_stack_t *ipst; 26289 26290 if ((kp == NULL) || (kp->ks_data == NULL)) 26291 return (EIO); 26292 26293 if (rw == KSTAT_WRITE) 26294 return (EACCES); 26295 26296 ns = netstack_find_by_stackid(stackid); 26297 if (ns == NULL) 26298 return (-1); 26299 tcps = ns->netstack_tcp; 26300 if (tcps == NULL) { 26301 netstack_rele(ns); 26302 return (-1); 26303 } 26304 26305 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26306 26307 tcpkp->currEstab.value.ui32 = 0; 26308 26309 ipst = ns->netstack_ip; 26310 26311 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26312 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26313 connp = NULL; 26314 while ((connp = 26315 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26316 tcp = connp->conn_tcp; 26317 switch (tcp_snmp_state(tcp)) { 26318 case MIB2_TCP_established: 26319 case MIB2_TCP_closeWait: 26320 tcpkp->currEstab.value.ui32++; 26321 break; 26322 } 26323 } 26324 } 26325 26326 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26327 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26328 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26329 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26330 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26331 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26332 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26333 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26334 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26335 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26336 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26337 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26338 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26339 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26340 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26341 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26342 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26343 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26344 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26345 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26346 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26347 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26348 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26349 tcpkp->inDataInorderSegs.value.ui32 = 26350 tcps->tcps_mib.tcpInDataInorderSegs; 26351 tcpkp->inDataInorderBytes.value.ui32 = 26352 tcps->tcps_mib.tcpInDataInorderBytes; 26353 tcpkp->inDataUnorderSegs.value.ui32 = 26354 tcps->tcps_mib.tcpInDataUnorderSegs; 26355 tcpkp->inDataUnorderBytes.value.ui32 = 26356 tcps->tcps_mib.tcpInDataUnorderBytes; 26357 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26358 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26359 tcpkp->inDataPartDupSegs.value.ui32 = 26360 tcps->tcps_mib.tcpInDataPartDupSegs; 26361 tcpkp->inDataPartDupBytes.value.ui32 = 26362 tcps->tcps_mib.tcpInDataPartDupBytes; 26363 tcpkp->inDataPastWinSegs.value.ui32 = 26364 tcps->tcps_mib.tcpInDataPastWinSegs; 26365 tcpkp->inDataPastWinBytes.value.ui32 = 26366 tcps->tcps_mib.tcpInDataPastWinBytes; 26367 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26368 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26369 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26370 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26371 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26372 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26373 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26374 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26375 tcpkp->timKeepaliveProbe.value.ui32 = 26376 tcps->tcps_mib.tcpTimKeepaliveProbe; 26377 tcpkp->timKeepaliveDrop.value.ui32 = 26378 tcps->tcps_mib.tcpTimKeepaliveDrop; 26379 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26380 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26381 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26382 tcpkp->outSackRetransSegs.value.ui32 = 26383 tcps->tcps_mib.tcpOutSackRetransSegs; 26384 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26385 26386 netstack_rele(ns); 26387 return (0); 26388 } 26389 26390 void 26391 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26392 { 26393 uint16_t hdr_len; 26394 ipha_t *ipha; 26395 uint8_t *nexthdrp; 26396 tcph_t *tcph; 26397 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26398 26399 /* Already has an eager */ 26400 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26401 TCP_STAT(tcps, tcp_reinput_syn); 26402 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26403 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 26404 return; 26405 } 26406 26407 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26408 case IPV4_VERSION: 26409 ipha = (ipha_t *)mp->b_rptr; 26410 hdr_len = IPH_HDR_LENGTH(ipha); 26411 break; 26412 case IPV6_VERSION: 26413 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26414 &hdr_len, &nexthdrp)) { 26415 CONN_DEC_REF(connp); 26416 freemsg(mp); 26417 return; 26418 } 26419 break; 26420 } 26421 26422 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26423 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26424 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26425 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26426 } 26427 26428 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26429 SQ_FILL, SQTAG_TCP_REINPUT); 26430 } 26431 26432 static int 26433 tcp_squeue_switch(int val) 26434 { 26435 int rval = SQ_FILL; 26436 26437 switch (val) { 26438 case 1: 26439 rval = SQ_NODRAIN; 26440 break; 26441 case 2: 26442 rval = SQ_PROCESS; 26443 break; 26444 default: 26445 break; 26446 } 26447 return (rval); 26448 } 26449 26450 /* 26451 * This is called once for each squeue - globally for all stack 26452 * instances. 26453 */ 26454 static void 26455 tcp_squeue_add(squeue_t *sqp) 26456 { 26457 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26458 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26459 26460 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26461 tcp_time_wait->tcp_time_wait_tid = 26462 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 26463 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 26464 CALLOUT_FLAG_ROUNDUP); 26465 if (tcp_free_list_max_cnt == 0) { 26466 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26467 max_ncpus : boot_max_ncpus); 26468 26469 /* 26470 * Limit number of entries to 1% of availble memory / tcp_ncpus 26471 */ 26472 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26473 (tcp_ncpus * sizeof (tcp_t) * 100); 26474 } 26475 tcp_time_wait->tcp_free_list_cnt = 0; 26476 } 26477 26478 static int 26479 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 26480 { 26481 mblk_t *ire_mp = NULL; 26482 mblk_t *syn_mp; 26483 mblk_t *mdti; 26484 mblk_t *lsoi; 26485 int retval; 26486 tcph_t *tcph; 26487 uint32_t mss; 26488 queue_t *q = tcp->tcp_rq; 26489 conn_t *connp = tcp->tcp_connp; 26490 tcp_stack_t *tcps = tcp->tcp_tcps; 26491 26492 if (error == 0) { 26493 /* 26494 * Adapt Multidata information, if any. The 26495 * following tcp_mdt_update routine will free 26496 * the message. 26497 */ 26498 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 26499 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 26500 b_rptr)->mdt_capab, B_TRUE); 26501 freemsg(mdti); 26502 } 26503 26504 /* 26505 * Check to update LSO information with tcp, and 26506 * tcp_lso_update routine will free the message. 26507 */ 26508 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 26509 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 26510 b_rptr)->lso_capab); 26511 freemsg(lsoi); 26512 } 26513 26514 /* Get the IRE, if we had requested for it */ 26515 if (mp != NULL) 26516 ire_mp = tcp_ire_mp(&mp); 26517 26518 if (tcp->tcp_hard_binding) { 26519 tcp->tcp_hard_binding = B_FALSE; 26520 tcp->tcp_hard_bound = B_TRUE; 26521 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 26522 if (retval != 0) { 26523 error = EADDRINUSE; 26524 goto bind_failed; 26525 } 26526 } else { 26527 if (ire_mp != NULL) 26528 freeb(ire_mp); 26529 goto after_syn_sent; 26530 } 26531 26532 retval = tcp_adapt_ire(tcp, ire_mp); 26533 if (ire_mp != NULL) 26534 freeb(ire_mp); 26535 if (retval == 0) { 26536 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 26537 ENETUNREACH : EADDRNOTAVAIL); 26538 goto ipcl_rm; 26539 } 26540 /* 26541 * Don't let an endpoint connect to itself. 26542 * Also checked in tcp_connect() but that 26543 * check can't handle the case when the 26544 * local IP address is INADDR_ANY. 26545 */ 26546 if (tcp->tcp_ipversion == IPV4_VERSION) { 26547 if ((tcp->tcp_ipha->ipha_dst == 26548 tcp->tcp_ipha->ipha_src) && 26549 (BE16_EQL(tcp->tcp_tcph->th_lport, 26550 tcp->tcp_tcph->th_fport))) { 26551 error = EADDRNOTAVAIL; 26552 goto ipcl_rm; 26553 } 26554 } else { 26555 if (IN6_ARE_ADDR_EQUAL( 26556 &tcp->tcp_ip6h->ip6_dst, 26557 &tcp->tcp_ip6h->ip6_src) && 26558 (BE16_EQL(tcp->tcp_tcph->th_lport, 26559 tcp->tcp_tcph->th_fport))) { 26560 error = EADDRNOTAVAIL; 26561 goto ipcl_rm; 26562 } 26563 } 26564 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 26565 /* 26566 * This should not be possible! Just for 26567 * defensive coding... 26568 */ 26569 if (tcp->tcp_state != TCPS_SYN_SENT) 26570 goto after_syn_sent; 26571 26572 if (is_system_labeled() && 26573 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 26574 error = EHOSTUNREACH; 26575 goto ipcl_rm; 26576 } 26577 26578 /* 26579 * tcp_adapt_ire() does not adjust 26580 * for TCP/IP header length. 26581 */ 26582 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 26583 26584 /* 26585 * Just make sure our rwnd is at 26586 * least tcp_recv_hiwat_mss * MSS 26587 * large, and round up to the nearest 26588 * MSS. 26589 * 26590 * We do the round up here because 26591 * we need to get the interface 26592 * MTU first before we can do the 26593 * round up. 26594 */ 26595 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 26596 tcps->tcps_recv_hiwat_minmss * mss); 26597 if (!IPCL_IS_NONSTR(connp)) 26598 q->q_hiwat = tcp->tcp_rwnd; 26599 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 26600 tcp_set_ws_value(tcp); 26601 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 26602 tcp->tcp_tcph->th_win); 26603 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 26604 tcp->tcp_snd_ws_ok = B_TRUE; 26605 26606 /* 26607 * Set tcp_snd_ts_ok to true 26608 * so that tcp_xmit_mp will 26609 * include the timestamp 26610 * option in the SYN segment. 26611 */ 26612 if (tcps->tcps_tstamp_always || 26613 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 26614 tcp->tcp_snd_ts_ok = B_TRUE; 26615 } 26616 26617 /* 26618 * tcp_snd_sack_ok can be set in 26619 * tcp_adapt_ire() if the sack metric 26620 * is set. So check it here also. 26621 */ 26622 if (tcps->tcps_sack_permitted == 2 || 26623 tcp->tcp_snd_sack_ok) { 26624 if (tcp->tcp_sack_info == NULL) { 26625 tcp->tcp_sack_info = 26626 kmem_cache_alloc(tcp_sack_info_cache, 26627 KM_SLEEP); 26628 } 26629 tcp->tcp_snd_sack_ok = B_TRUE; 26630 } 26631 26632 /* 26633 * Should we use ECN? Note that the current 26634 * default value (SunOS 5.9) of tcp_ecn_permitted 26635 * is 1. The reason for doing this is that there 26636 * are equipments out there that will drop ECN 26637 * enabled IP packets. Setting it to 1 avoids 26638 * compatibility problems. 26639 */ 26640 if (tcps->tcps_ecn_permitted == 2) 26641 tcp->tcp_ecn_ok = B_TRUE; 26642 26643 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 26644 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 26645 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 26646 if (syn_mp) { 26647 if (cr == NULL) { 26648 cr = tcp->tcp_cred; 26649 pid = tcp->tcp_cpid; 26650 } 26651 mblk_setcred(syn_mp, cr); 26652 DB_CPID(syn_mp) = pid; 26653 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 26654 } 26655 after_syn_sent: 26656 if (mp != NULL) { 26657 ASSERT(mp->b_cont == NULL); 26658 freeb(mp); 26659 } 26660 return (error); 26661 } else { 26662 /* error */ 26663 if (tcp->tcp_debug) { 26664 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 26665 "tcp_post_ip_bind: error == %d", error); 26666 } 26667 if (mp != NULL) { 26668 freeb(mp); 26669 } 26670 } 26671 26672 ipcl_rm: 26673 /* 26674 * Need to unbind with classifier since we were just 26675 * told that our bind succeeded. a.k.a error == 0 at the entry. 26676 */ 26677 tcp->tcp_hard_bound = B_FALSE; 26678 tcp->tcp_hard_binding = B_FALSE; 26679 26680 ipcl_hash_remove(connp); 26681 26682 bind_failed: 26683 tcp->tcp_state = TCPS_IDLE; 26684 if (tcp->tcp_ipversion == IPV4_VERSION) 26685 tcp->tcp_ipha->ipha_src = 0; 26686 else 26687 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 26688 /* 26689 * Copy of the src addr. in tcp_t is needed since 26690 * the lookup funcs. can only look at tcp_t 26691 */ 26692 V6_SET_ZERO(tcp->tcp_ip_src_v6); 26693 26694 tcph = tcp->tcp_tcph; 26695 tcph->th_lport[0] = 0; 26696 tcph->th_lport[1] = 0; 26697 tcp_bind_hash_remove(tcp); 26698 bzero(&connp->u_port, sizeof (connp->u_port)); 26699 /* blow away saved option results if any */ 26700 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26701 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26702 26703 conn_delete_ire(tcp->tcp_connp, NULL); 26704 26705 return (error); 26706 } 26707 26708 static int 26709 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 26710 boolean_t bind_to_req_port_only, cred_t *cr) 26711 { 26712 in_port_t mlp_port; 26713 mlp_type_t addrtype, mlptype; 26714 boolean_t user_specified; 26715 in_port_t allocated_port; 26716 in_port_t requested_port = *requested_port_ptr; 26717 conn_t *connp; 26718 zone_t *zone; 26719 tcp_stack_t *tcps = tcp->tcp_tcps; 26720 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 26721 26722 /* 26723 * XXX It's up to the caller to specify bind_to_req_port_only or not. 26724 */ 26725 if (cr == NULL) 26726 cr = tcp->tcp_cred; 26727 /* 26728 * Get a valid port (within the anonymous range and should not 26729 * be a privileged one) to use if the user has not given a port. 26730 * If multiple threads are here, they may all start with 26731 * with the same initial port. But, it should be fine as long as 26732 * tcp_bindi will ensure that no two threads will be assigned 26733 * the same port. 26734 * 26735 * NOTE: XXX If a privileged process asks for an anonymous port, we 26736 * still check for ports only in the range > tcp_smallest_non_priv_port, 26737 * unless TCP_ANONPRIVBIND option is set. 26738 */ 26739 mlptype = mlptSingle; 26740 mlp_port = requested_port; 26741 if (requested_port == 0) { 26742 requested_port = tcp->tcp_anon_priv_bind ? 26743 tcp_get_next_priv_port(tcp) : 26744 tcp_update_next_port(tcps->tcps_next_port_to_try, 26745 tcp, B_TRUE); 26746 if (requested_port == 0) { 26747 return (-TNOADDR); 26748 } 26749 user_specified = B_FALSE; 26750 26751 /* 26752 * If the user went through one of the RPC interfaces to create 26753 * this socket and RPC is MLP in this zone, then give him an 26754 * anonymous MLP. 26755 */ 26756 connp = tcp->tcp_connp; 26757 if (connp->conn_anon_mlp && is_system_labeled()) { 26758 zone = crgetzone(cr); 26759 addrtype = tsol_mlp_addr_type(zone->zone_id, 26760 IPV6_VERSION, &v6addr, 26761 tcps->tcps_netstack->netstack_ip); 26762 if (addrtype == mlptSingle) { 26763 return (-TNOADDR); 26764 } 26765 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26766 PMAPPORT, addrtype); 26767 mlp_port = PMAPPORT; 26768 } 26769 } else { 26770 int i; 26771 boolean_t priv = B_FALSE; 26772 26773 /* 26774 * If the requested_port is in the well-known privileged range, 26775 * verify that the stream was opened by a privileged user. 26776 * Note: No locks are held when inspecting tcp_g_*epriv_ports 26777 * but instead the code relies on: 26778 * - the fact that the address of the array and its size never 26779 * changes 26780 * - the atomic assignment of the elements of the array 26781 */ 26782 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 26783 priv = B_TRUE; 26784 } else { 26785 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 26786 if (requested_port == 26787 tcps->tcps_g_epriv_ports[i]) { 26788 priv = B_TRUE; 26789 break; 26790 } 26791 } 26792 } 26793 if (priv) { 26794 if (secpolicy_net_privaddr(cr, requested_port, 26795 IPPROTO_TCP) != 0) { 26796 if (tcp->tcp_debug) { 26797 (void) strlog(TCP_MOD_ID, 0, 1, 26798 SL_ERROR|SL_TRACE, 26799 "tcp_bind: no priv for port %d", 26800 requested_port); 26801 } 26802 return (-TACCES); 26803 } 26804 } 26805 user_specified = B_TRUE; 26806 26807 connp = tcp->tcp_connp; 26808 if (is_system_labeled()) { 26809 zone = crgetzone(cr); 26810 addrtype = tsol_mlp_addr_type(zone->zone_id, 26811 IPV6_VERSION, &v6addr, 26812 tcps->tcps_netstack->netstack_ip); 26813 if (addrtype == mlptSingle) { 26814 return (-TNOADDR); 26815 } 26816 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26817 requested_port, addrtype); 26818 } 26819 } 26820 26821 if (mlptype != mlptSingle) { 26822 if (secpolicy_net_bindmlp(cr) != 0) { 26823 if (tcp->tcp_debug) { 26824 (void) strlog(TCP_MOD_ID, 0, 1, 26825 SL_ERROR|SL_TRACE, 26826 "tcp_bind: no priv for multilevel port %d", 26827 requested_port); 26828 } 26829 return (-TACCES); 26830 } 26831 26832 /* 26833 * If we're specifically binding a shared IP address and the 26834 * port is MLP on shared addresses, then check to see if this 26835 * zone actually owns the MLP. Reject if not. 26836 */ 26837 if (mlptype == mlptShared && addrtype == mlptShared) { 26838 /* 26839 * No need to handle exclusive-stack zones since 26840 * ALL_ZONES only applies to the shared stack. 26841 */ 26842 zoneid_t mlpzone; 26843 26844 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26845 htons(mlp_port)); 26846 if (connp->conn_zoneid != mlpzone) { 26847 if (tcp->tcp_debug) { 26848 (void) strlog(TCP_MOD_ID, 0, 1, 26849 SL_ERROR|SL_TRACE, 26850 "tcp_bind: attempt to bind port " 26851 "%d on shared addr in zone %d " 26852 "(should be %d)", 26853 mlp_port, connp->conn_zoneid, 26854 mlpzone); 26855 } 26856 return (-TACCES); 26857 } 26858 } 26859 26860 if (!user_specified) { 26861 int err; 26862 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26863 requested_port, B_TRUE); 26864 if (err != 0) { 26865 if (tcp->tcp_debug) { 26866 (void) strlog(TCP_MOD_ID, 0, 1, 26867 SL_ERROR|SL_TRACE, 26868 "tcp_bind: cannot establish anon " 26869 "MLP for port %d", 26870 requested_port); 26871 } 26872 return (err); 26873 } 26874 connp->conn_anon_port = B_TRUE; 26875 } 26876 connp->conn_mlp_type = mlptype; 26877 } 26878 26879 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26880 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26881 26882 if (allocated_port == 0) { 26883 connp->conn_mlp_type = mlptSingle; 26884 if (connp->conn_anon_port) { 26885 connp->conn_anon_port = B_FALSE; 26886 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26887 requested_port, B_FALSE); 26888 } 26889 if (bind_to_req_port_only) { 26890 if (tcp->tcp_debug) { 26891 (void) strlog(TCP_MOD_ID, 0, 1, 26892 SL_ERROR|SL_TRACE, 26893 "tcp_bind: requested addr busy"); 26894 } 26895 return (-TADDRBUSY); 26896 } else { 26897 /* If we are out of ports, fail the bind. */ 26898 if (tcp->tcp_debug) { 26899 (void) strlog(TCP_MOD_ID, 0, 1, 26900 SL_ERROR|SL_TRACE, 26901 "tcp_bind: out of ports?"); 26902 } 26903 return (-TNOADDR); 26904 } 26905 } 26906 26907 /* Pass the allocated port back */ 26908 *requested_port_ptr = allocated_port; 26909 return (0); 26910 } 26911 26912 static int 26913 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26914 boolean_t bind_to_req_port_only) 26915 { 26916 tcp_t *tcp = connp->conn_tcp; 26917 26918 sin_t *sin; 26919 sin6_t *sin6; 26920 sin6_t sin6addr; 26921 in_port_t requested_port; 26922 ipaddr_t v4addr; 26923 in6_addr_t v6addr; 26924 uint_t origipversion; 26925 int error = 0; 26926 26927 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26928 26929 if (tcp->tcp_state == TCPS_BOUND) { 26930 return (0); 26931 } else if (tcp->tcp_state > TCPS_BOUND) { 26932 if (tcp->tcp_debug) { 26933 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26934 "tcp_bind: bad state, %d", tcp->tcp_state); 26935 } 26936 return (-TOUTSTATE); 26937 } 26938 origipversion = tcp->tcp_ipversion; 26939 26940 if (sa != NULL && !OK_32PTR((char *)sa)) { 26941 if (tcp->tcp_debug) { 26942 (void) strlog(TCP_MOD_ID, 0, 1, 26943 SL_ERROR|SL_TRACE, 26944 "tcp_bind: bad address parameter, " 26945 "address %p, len %d", 26946 (void *)sa, len); 26947 } 26948 return (-TPROTO); 26949 } 26950 26951 switch (len) { 26952 case 0: /* request for a generic port */ 26953 if (tcp->tcp_family == AF_INET) { 26954 sin = (sin_t *)&sin6addr; 26955 *sin = sin_null; 26956 sin->sin_family = AF_INET; 26957 tcp->tcp_ipversion = IPV4_VERSION; 26958 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 26959 } else { 26960 ASSERT(tcp->tcp_family == AF_INET6); 26961 sin6 = (sin6_t *)&sin6addr; 26962 *sin6 = sin6_null; 26963 sin6->sin6_family = AF_INET6; 26964 tcp->tcp_ipversion = IPV6_VERSION; 26965 V6_SET_ZERO(v6addr); 26966 } 26967 requested_port = 0; 26968 break; 26969 26970 case sizeof (sin_t): /* Complete IPv4 address */ 26971 sin = (sin_t *)sa; 26972 /* 26973 * With sockets sockfs will accept bogus sin_family in 26974 * bind() and replace it with the family used in the socket 26975 * call. 26976 */ 26977 if (sin->sin_family != AF_INET || 26978 tcp->tcp_family != AF_INET) { 26979 return (EAFNOSUPPORT); 26980 } 26981 requested_port = ntohs(sin->sin_port); 26982 tcp->tcp_ipversion = IPV4_VERSION; 26983 v4addr = sin->sin_addr.s_addr; 26984 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26985 break; 26986 26987 case sizeof (sin6_t): /* Complete IPv6 address */ 26988 sin6 = (sin6_t *)sa; 26989 if (sin6->sin6_family != AF_INET6 || 26990 tcp->tcp_family != AF_INET6) { 26991 return (EAFNOSUPPORT); 26992 } 26993 requested_port = ntohs(sin6->sin6_port); 26994 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26995 IPV4_VERSION : IPV6_VERSION; 26996 v6addr = sin6->sin6_addr; 26997 break; 26998 26999 default: 27000 if (tcp->tcp_debug) { 27001 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27002 "tcp_bind: bad address length, %d", len); 27003 } 27004 return (EAFNOSUPPORT); 27005 /* return (-TBADADDR); */ 27006 } 27007 27008 tcp->tcp_bound_source_v6 = v6addr; 27009 27010 /* Check for change in ipversion */ 27011 if (origipversion != tcp->tcp_ipversion) { 27012 ASSERT(tcp->tcp_family == AF_INET6); 27013 error = tcp->tcp_ipversion == IPV6_VERSION ? 27014 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 27015 if (error) { 27016 return (ENOMEM); 27017 } 27018 } 27019 27020 /* 27021 * Initialize family specific fields. Copy of the src addr. 27022 * in tcp_t is needed for the lookup funcs. 27023 */ 27024 if (tcp->tcp_ipversion == IPV6_VERSION) { 27025 tcp->tcp_ip6h->ip6_src = v6addr; 27026 } else { 27027 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 27028 } 27029 tcp->tcp_ip_src_v6 = v6addr; 27030 27031 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 27032 27033 error = tcp_bind_select_lport(tcp, &requested_port, 27034 bind_to_req_port_only, cr); 27035 27036 return (error); 27037 } 27038 27039 /* 27040 * Return unix error is tli error is TSYSERR, otherwise return a negative 27041 * tli error. 27042 */ 27043 int 27044 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 27045 boolean_t bind_to_req_port_only) 27046 { 27047 int error; 27048 tcp_t *tcp = connp->conn_tcp; 27049 27050 if (tcp->tcp_state >= TCPS_BOUND) { 27051 if (tcp->tcp_debug) { 27052 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27053 "tcp_bind: bad state, %d", tcp->tcp_state); 27054 } 27055 return (-TOUTSTATE); 27056 } 27057 27058 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 27059 if (error != 0) 27060 return (error); 27061 27062 ASSERT(tcp->tcp_state == TCPS_BOUND); 27063 27064 tcp->tcp_conn_req_max = 0; 27065 27066 /* 27067 * We need to make sure that the conn_recv is set to a non-null 27068 * value before we insert the conn into the classifier table. 27069 * This is to avoid a race with an incoming packet which does an 27070 * ipcl_classify(). 27071 */ 27072 connp->conn_recv = tcp_conn_request; 27073 27074 if (tcp->tcp_family == AF_INET6) { 27075 ASSERT(tcp->tcp_connp->conn_af_isv6); 27076 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27077 &tcp->tcp_bound_source_v6, 0, B_FALSE); 27078 } else { 27079 ASSERT(!tcp->tcp_connp->conn_af_isv6); 27080 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 27081 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 27082 } 27083 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27084 } 27085 27086 int 27087 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 27088 socklen_t len, cred_t *cr) 27089 { 27090 int error; 27091 conn_t *connp = (conn_t *)proto_handle; 27092 squeue_t *sqp = connp->conn_sqp; 27093 27094 ASSERT(sqp != NULL); 27095 ASSERT(connp->conn_upper_handle != NULL); 27096 27097 error = squeue_synch_enter(sqp, connp, 0); 27098 if (error != 0) { 27099 /* failed to enter */ 27100 return (ENOSR); 27101 } 27102 27103 /* binding to a NULL address really means unbind */ 27104 if (sa == NULL) { 27105 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 27106 error = tcp_do_unbind(connp); 27107 else 27108 error = EINVAL; 27109 } else { 27110 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 27111 } 27112 27113 squeue_synch_exit(sqp, connp); 27114 27115 if (error < 0) { 27116 if (error == -TOUTSTATE) 27117 error = EINVAL; 27118 else 27119 error = proto_tlitosyserr(-error); 27120 } 27121 27122 return (error); 27123 } 27124 27125 /* 27126 * If the return value from this function is positive, it's a UNIX error. 27127 * Otherwise, if it's negative, then the absolute value is a TLI error. 27128 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 27129 */ 27130 int 27131 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 27132 cred_t *cr, pid_t pid) 27133 { 27134 tcp_t *tcp = connp->conn_tcp; 27135 sin_t *sin = (sin_t *)sa; 27136 sin6_t *sin6 = (sin6_t *)sa; 27137 ipaddr_t *dstaddrp; 27138 in_port_t dstport; 27139 uint_t srcid; 27140 int error = 0; 27141 27142 switch (len) { 27143 default: 27144 /* 27145 * Should never happen 27146 */ 27147 return (EINVAL); 27148 27149 case sizeof (sin_t): 27150 sin = (sin_t *)sa; 27151 if (sin->sin_port == 0) { 27152 return (-TBADADDR); 27153 } 27154 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 27155 return (EAFNOSUPPORT); 27156 } 27157 break; 27158 27159 case sizeof (sin6_t): 27160 sin6 = (sin6_t *)sa; 27161 if (sin6->sin6_port == 0) { 27162 return (-TBADADDR); 27163 } 27164 break; 27165 } 27166 /* 27167 * If we're connecting to an IPv4-mapped IPv6 address, we need to 27168 * make sure that the template IP header in the tcp structure is an 27169 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 27170 * need to this before we call tcp_bindi() so that the port lookup 27171 * code will look for ports in the correct port space (IPv4 and 27172 * IPv6 have separate port spaces). 27173 */ 27174 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 27175 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27176 int err = 0; 27177 27178 err = tcp_header_init_ipv4(tcp); 27179 if (err != 0) { 27180 error = ENOMEM; 27181 goto connect_failed; 27182 } 27183 if (tcp->tcp_lport != 0) 27184 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 27185 } 27186 27187 switch (tcp->tcp_state) { 27188 case TCPS_LISTEN: 27189 /* 27190 * Listening sockets are not allowed to issue connect(). 27191 */ 27192 if (IPCL_IS_NONSTR(connp)) 27193 return (EOPNOTSUPP); 27194 /* FALLTHRU */ 27195 case TCPS_IDLE: 27196 /* 27197 * We support quick connect, refer to comments in 27198 * tcp_connect_*() 27199 */ 27200 /* FALLTHRU */ 27201 case TCPS_BOUND: 27202 /* 27203 * We must bump the generation before the operation start. 27204 * This is done to ensure that any upcall made later on sends 27205 * up the right generation to the socket. 27206 */ 27207 SOCK_CONNID_BUMP(tcp->tcp_connid); 27208 27209 if (tcp->tcp_family == AF_INET6) { 27210 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27211 return (tcp_connect_ipv6(tcp, 27212 &sin6->sin6_addr, 27213 sin6->sin6_port, sin6->sin6_flowinfo, 27214 sin6->__sin6_src_id, sin6->sin6_scope_id, 27215 cr, pid)); 27216 } 27217 /* 27218 * Destination adress is mapped IPv6 address. 27219 * Source bound address should be unspecified or 27220 * IPv6 mapped address as well. 27221 */ 27222 if (!IN6_IS_ADDR_UNSPECIFIED( 27223 &tcp->tcp_bound_source_v6) && 27224 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 27225 return (EADDRNOTAVAIL); 27226 } 27227 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 27228 dstport = sin6->sin6_port; 27229 srcid = sin6->__sin6_src_id; 27230 } else { 27231 dstaddrp = &sin->sin_addr.s_addr; 27232 dstport = sin->sin_port; 27233 srcid = 0; 27234 } 27235 27236 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 27237 pid); 27238 break; 27239 default: 27240 return (-TOUTSTATE); 27241 } 27242 /* 27243 * Note: Code below is the "failure" case 27244 */ 27245 connect_failed: 27246 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 27247 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 27248 return (error); 27249 } 27250 27251 int 27252 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 27253 socklen_t len, sock_connid_t *id, cred_t *cr) 27254 { 27255 conn_t *connp = (conn_t *)proto_handle; 27256 tcp_t *tcp = connp->conn_tcp; 27257 squeue_t *sqp = connp->conn_sqp; 27258 int error; 27259 27260 ASSERT(connp->conn_upper_handle != NULL); 27261 27262 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 27263 if (error != 0) { 27264 return (error); 27265 } 27266 27267 error = squeue_synch_enter(sqp, connp, 0); 27268 if (error != 0) { 27269 /* failed to enter */ 27270 return (ENOSR); 27271 } 27272 27273 /* 27274 * TCP supports quick connect, so no need to do an implicit bind 27275 */ 27276 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 27277 if (error == 0) { 27278 *id = connp->conn_tcp->tcp_connid; 27279 } else if (error < 0) { 27280 if (error == -TOUTSTATE) { 27281 switch (connp->conn_tcp->tcp_state) { 27282 case TCPS_SYN_SENT: 27283 error = EALREADY; 27284 break; 27285 case TCPS_ESTABLISHED: 27286 error = EISCONN; 27287 break; 27288 case TCPS_LISTEN: 27289 error = EOPNOTSUPP; 27290 break; 27291 default: 27292 error = EINVAL; 27293 break; 27294 } 27295 } else { 27296 error = proto_tlitosyserr(-error); 27297 } 27298 } 27299 done: 27300 squeue_synch_exit(sqp, connp); 27301 27302 return ((error == 0) ? EINPROGRESS : error); 27303 } 27304 27305 /* ARGSUSED */ 27306 sock_lower_handle_t 27307 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 27308 uint_t *smodep, int *errorp, int flags, cred_t *credp) 27309 { 27310 conn_t *connp; 27311 boolean_t isv6 = family == AF_INET6; 27312 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 27313 (proto != 0 && proto != IPPROTO_TCP)) { 27314 *errorp = EPROTONOSUPPORT; 27315 return (NULL); 27316 } 27317 27318 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 27319 if (connp == NULL) { 27320 return (NULL); 27321 } 27322 27323 /* 27324 * Put the ref for TCP. Ref for IP was already put 27325 * by ipcl_conn_create. Also Make the conn_t globally 27326 * visible to walkers 27327 */ 27328 mutex_enter(&connp->conn_lock); 27329 CONN_INC_REF_LOCKED(connp); 27330 ASSERT(connp->conn_ref == 2); 27331 connp->conn_state_flags &= ~CONN_INCIPIENT; 27332 27333 connp->conn_flags |= IPCL_NONSTR; 27334 mutex_exit(&connp->conn_lock); 27335 27336 ASSERT(errorp != NULL); 27337 *errorp = 0; 27338 *sock_downcalls = &sock_tcp_downcalls; 27339 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 27340 SM_SENDFILESUPP; 27341 27342 return ((sock_lower_handle_t)connp); 27343 } 27344 27345 /* ARGSUSED */ 27346 void 27347 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 27348 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 27349 { 27350 conn_t *connp = (conn_t *)proto_handle; 27351 struct sock_proto_props sopp; 27352 27353 ASSERT(connp->conn_upper_handle == NULL); 27354 27355 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 27356 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 27357 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 27358 27359 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 27360 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 27361 sopp.sopp_maxpsz = INFPSZ; 27362 sopp.sopp_maxblk = INFPSZ; 27363 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 27364 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 27365 sopp.sopp_maxaddrlen = sizeof (sin6_t); 27366 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 27367 tcp_rinfo.mi_minpsz; 27368 27369 connp->conn_upcalls = sock_upcalls; 27370 connp->conn_upper_handle = sock_handle; 27371 27372 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 27373 } 27374 27375 /* ARGSUSED */ 27376 int 27377 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 27378 { 27379 conn_t *connp = (conn_t *)proto_handle; 27380 27381 ASSERT(connp->conn_upper_handle != NULL); 27382 27383 tcp_close_common(connp, flags); 27384 27385 ip_free_helper_stream(connp); 27386 27387 /* 27388 * Drop IP's reference on the conn. This is the last reference 27389 * on the connp if the state was less than established. If the 27390 * connection has gone into timewait state, then we will have 27391 * one ref for the TCP and one more ref (total of two) for the 27392 * classifier connected hash list (a timewait connections stays 27393 * in connected hash till closed). 27394 * 27395 * We can't assert the references because there might be other 27396 * transient reference places because of some walkers or queued 27397 * packets in squeue for the timewait state. 27398 */ 27399 CONN_DEC_REF(connp); 27400 return (0); 27401 } 27402 27403 /* ARGSUSED */ 27404 int 27405 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 27406 cred_t *cr) 27407 { 27408 tcp_t *tcp; 27409 uint32_t msize; 27410 conn_t *connp = (conn_t *)proto_handle; 27411 int32_t tcpstate; 27412 27413 ASSERT(connp->conn_ref >= 2); 27414 ASSERT(connp->conn_upper_handle != NULL); 27415 27416 if (msg->msg_controllen != 0) { 27417 return (EOPNOTSUPP); 27418 27419 } 27420 switch (DB_TYPE(mp)) { 27421 case M_DATA: 27422 tcp = connp->conn_tcp; 27423 ASSERT(tcp != NULL); 27424 27425 tcpstate = tcp->tcp_state; 27426 if (tcpstate < TCPS_ESTABLISHED) { 27427 freemsg(mp); 27428 return (ENOTCONN); 27429 } else if (tcpstate > TCPS_CLOSE_WAIT) { 27430 freemsg(mp); 27431 return (EPIPE); 27432 } 27433 27434 msize = msgdsize(mp); 27435 27436 mutex_enter(&tcp->tcp_non_sq_lock); 27437 tcp->tcp_squeue_bytes += msize; 27438 /* 27439 * Squeue Flow Control 27440 */ 27441 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 27442 tcp_setqfull(tcp); 27443 } 27444 mutex_exit(&tcp->tcp_non_sq_lock); 27445 27446 /* 27447 * The application may pass in an address in the msghdr, but 27448 * we ignore the address on connection-oriented sockets. 27449 * Just like BSD this code does not generate an error for 27450 * TCP (a CONNREQUIRED socket) when sending to an address 27451 * passed in with sendto/sendmsg. Instead the data is 27452 * delivered on the connection as if no address had been 27453 * supplied. 27454 */ 27455 CONN_INC_REF(connp); 27456 27457 if (msg != NULL && msg->msg_flags & MSG_OOB) { 27458 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 27459 tcp_output_urgent, connp, tcp_squeue_flag, 27460 SQTAG_TCP_OUTPUT); 27461 } else { 27462 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 27463 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 27464 } 27465 27466 return (0); 27467 27468 default: 27469 ASSERT(0); 27470 } 27471 27472 freemsg(mp); 27473 return (0); 27474 } 27475 27476 /* ARGSUSED */ 27477 void 27478 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 27479 { 27480 int len; 27481 uint32_t msize; 27482 conn_t *connp = (conn_t *)arg; 27483 tcp_t *tcp = connp->conn_tcp; 27484 27485 msize = msgdsize(mp); 27486 27487 len = msize - 1; 27488 if (len < 0) { 27489 freemsg(mp); 27490 return; 27491 } 27492 27493 /* 27494 * Try to force urgent data out on the wire. 27495 * Even if we have unsent data this will 27496 * at least send the urgent flag. 27497 * XXX does not handle more flag correctly. 27498 */ 27499 len += tcp->tcp_unsent; 27500 len += tcp->tcp_snxt; 27501 tcp->tcp_urg = len; 27502 tcp->tcp_valid_bits |= TCP_URG_VALID; 27503 27504 /* Bypass tcp protocol for fused tcp loopback */ 27505 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 27506 return; 27507 tcp_wput_data(tcp, mp, B_TRUE); 27508 } 27509 27510 /* ARGSUSED */ 27511 int 27512 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27513 socklen_t *addrlenp, cred_t *cr) 27514 { 27515 conn_t *connp = (conn_t *)proto_handle; 27516 tcp_t *tcp = connp->conn_tcp; 27517 27518 ASSERT(connp->conn_upper_handle != NULL); 27519 ASSERT(tcp != NULL); 27520 27521 return (tcp_do_getpeername(tcp, addr, addrlenp)); 27522 } 27523 27524 /* ARGSUSED */ 27525 int 27526 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27527 socklen_t *addrlenp, cred_t *cr) 27528 { 27529 conn_t *connp = (conn_t *)proto_handle; 27530 tcp_t *tcp = connp->conn_tcp; 27531 27532 ASSERT(connp->conn_upper_handle != NULL); 27533 27534 return (tcp_do_getsockname(tcp, addr, addrlenp)); 27535 } 27536 27537 /* 27538 * tcp_fallback 27539 * 27540 * A direct socket is falling back to using STREAMS. Hanging 27541 * off of the queue is a temporary tcp_t, which was created using 27542 * tcp_open(). The tcp_open() was called as part of the regular 27543 * sockfs create path, i.e., the SO_SOCKSTR flag is passed down, 27544 * and therefore the temporary tcp_t is marked to be a socket 27545 * (i.e., IPCL_SOCKET, tcp_issocket). So the optimizations 27546 * introduced by FireEngine will be used. 27547 * 27548 * The tcp_t associated with the socket falling back will 27549 * still be marked as a socket, although the direct socket flag 27550 * (IPCL_NONSTR) is removed. A fall back to true TPI semantics 27551 * will not take place until a _SIOCSOCKFALLBACK ioctl is issued. 27552 * 27553 * If the above mentioned behavior, i.e., the tmp tcp_t is created 27554 * as a STREAMS/TPI endpoint, then we will need to do more work here. 27555 * Such as inserting the direct socket into the acceptor hash. 27556 */ 27557 void 27558 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 27559 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27560 { 27561 tcp_t *tcp, *eager; 27562 conn_t *connp = (conn_t *)proto_handle; 27563 int error; 27564 struct T_capability_ack tca; 27565 struct sockaddr_in6 laddr, faddr; 27566 socklen_t laddrlen, faddrlen; 27567 short opts; 27568 struct stroptions *stropt; 27569 mblk_t *stropt_mp; 27570 mblk_t *mp; 27571 mblk_t *conn_ind_head = NULL; 27572 mblk_t *conn_ind_tail = NULL; 27573 mblk_t *ordrel_mp; 27574 mblk_t *fused_sigurp_mp; 27575 27576 tcp = connp->conn_tcp; 27577 /* 27578 * No support for acceptor fallback 27579 */ 27580 ASSERT(q->q_qinfo != &tcp_acceptor_rinit); 27581 27582 stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL); 27583 27584 /* Pre-allocate the T_ordrel_ind mblk. */ 27585 ASSERT(tcp->tcp_ordrel_mp == NULL); 27586 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 27587 STR_NOSIG, NULL); 27588 ordrel_mp->b_datap->db_type = M_PROTO; 27589 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 27590 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 27591 27592 /* Pre-allocate the M_PCSIG anyway */ 27593 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 27594 27595 /* 27596 * Enter the squeue so that no new packets can come in 27597 */ 27598 error = squeue_synch_enter(connp->conn_sqp, connp, 0); 27599 if (error != 0) { 27600 /* failed to enter, free all the pre-allocated messages. */ 27601 freeb(stropt_mp); 27602 freeb(ordrel_mp); 27603 freeb(fused_sigurp_mp); 27604 return; 27605 } 27606 27607 /* Disable I/OAT during fallback */ 27608 tcp->tcp_sodirect = NULL; 27609 27610 connp->conn_dev = (dev_t)RD(q)->q_ptr; 27611 connp->conn_minor_arena = WR(q)->q_ptr; 27612 27613 RD(q)->q_ptr = WR(q)->q_ptr = connp; 27614 27615 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 27616 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 27617 27618 WR(q)->q_qinfo = &tcp_sock_winit; 27619 27620 if (!direct_sockfs) 27621 tcp_disable_direct_sockfs(tcp); 27622 27623 /* 27624 * free the helper stream 27625 */ 27626 ip_free_helper_stream(connp); 27627 27628 /* 27629 * Notify the STREAM head about options 27630 */ 27631 DB_TYPE(stropt_mp) = M_SETOPTS; 27632 stropt = (struct stroptions *)stropt_mp->b_rptr; 27633 stropt_mp->b_wptr += sizeof (struct stroptions); 27634 stropt = (struct stroptions *)stropt_mp->b_rptr; 27635 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 27636 27637 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 27638 tcp->tcp_tcps->tcps_wroff_xtra); 27639 if (tcp->tcp_snd_sack_ok) 27640 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 27641 stropt->so_hiwat = tcp->tcp_fused ? 27642 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 27643 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 27644 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 27645 27646 putnext(RD(q), stropt_mp); 27647 27648 /* 27649 * Collect the information needed to sync with the sonode 27650 */ 27651 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 27652 27653 laddrlen = faddrlen = sizeof (sin6_t); 27654 (void) tcp_getsockname(proto_handle, (struct sockaddr *)&laddr, 27655 &laddrlen, CRED()); 27656 error = tcp_getpeername(proto_handle, (struct sockaddr *)&faddr, 27657 &faddrlen, CRED()); 27658 if (error != 0) 27659 faddrlen = 0; 27660 27661 opts = 0; 27662 if (tcp->tcp_oobinline) 27663 opts |= SO_OOBINLINE; 27664 if (tcp->tcp_dontroute) 27665 opts |= SO_DONTROUTE; 27666 27667 /* 27668 * Notify the socket that the protocol is now quiescent, 27669 * and it's therefore safe move data from the socket 27670 * to the stream head. 27671 */ 27672 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 27673 (struct sockaddr *)&laddr, laddrlen, 27674 (struct sockaddr *)&faddr, faddrlen, opts); 27675 27676 while ((mp = tcp->tcp_rcv_list) != NULL) { 27677 tcp->tcp_rcv_list = mp->b_next; 27678 mp->b_next = NULL; 27679 putnext(q, mp); 27680 } 27681 tcp->tcp_rcv_last_head = NULL; 27682 tcp->tcp_rcv_last_tail = NULL; 27683 tcp->tcp_rcv_cnt = 0; 27684 27685 /* 27686 * No longer a direct socket 27687 */ 27688 connp->conn_flags &= ~IPCL_NONSTR; 27689 27690 tcp->tcp_ordrel_mp = ordrel_mp; 27691 27692 if (tcp->tcp_fused) { 27693 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 27694 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 27695 } else { 27696 freeb(fused_sigurp_mp); 27697 } 27698 27699 /* 27700 * Send T_CONN_IND messages for all ESTABLISHED connections. 27701 */ 27702 mutex_enter(&tcp->tcp_eager_lock); 27703 for (eager = tcp->tcp_eager_next_q; eager != NULL; 27704 eager = eager->tcp_eager_next_q) { 27705 mp = eager->tcp_conn.tcp_eager_conn_ind; 27706 27707 eager->tcp_conn.tcp_eager_conn_ind = NULL; 27708 ASSERT(mp != NULL); 27709 /* 27710 * TLI/XTI applications will get confused by 27711 * sending eager as an option since it violates 27712 * the option semantics. So remove the eager as 27713 * option since TLI/XTI app doesn't need it anyway. 27714 */ 27715 if (!TCP_IS_SOCKET(tcp)) { 27716 struct T_conn_ind *conn_ind; 27717 27718 conn_ind = (struct T_conn_ind *)mp->b_rptr; 27719 conn_ind->OPT_length = 0; 27720 conn_ind->OPT_offset = 0; 27721 } 27722 if (conn_ind_head == NULL) { 27723 conn_ind_head = mp; 27724 } else { 27725 conn_ind_tail->b_next = mp; 27726 } 27727 conn_ind_tail = mp; 27728 } 27729 mutex_exit(&tcp->tcp_eager_lock); 27730 27731 mp = conn_ind_head; 27732 while (mp != NULL) { 27733 mblk_t *nmp = mp->b_next; 27734 mp->b_next = NULL; 27735 27736 putnext(tcp->tcp_rq, mp); 27737 mp = nmp; 27738 } 27739 27740 /* 27741 * There should be atleast two ref's (IP + TCP) 27742 */ 27743 ASSERT(connp->conn_ref >= 2); 27744 squeue_synch_exit(connp->conn_sqp, connp); 27745 } 27746 27747 /* ARGSUSED */ 27748 static void 27749 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 27750 { 27751 conn_t *connp = (conn_t *)arg; 27752 tcp_t *tcp = connp->conn_tcp; 27753 27754 freemsg(mp); 27755 27756 if (tcp->tcp_fused) 27757 tcp_unfuse(tcp); 27758 27759 if (tcp_xmit_end(tcp) != 0) { 27760 /* 27761 * We were crossing FINs and got a reset from 27762 * the other side. Just ignore it. 27763 */ 27764 if (tcp->tcp_debug) { 27765 (void) strlog(TCP_MOD_ID, 0, 1, 27766 SL_ERROR|SL_TRACE, 27767 "tcp_shutdown_output() out of state %s", 27768 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 27769 } 27770 } 27771 } 27772 27773 /* ARGSUSED */ 27774 int 27775 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27776 { 27777 conn_t *connp = (conn_t *)proto_handle; 27778 tcp_t *tcp = connp->conn_tcp; 27779 27780 ASSERT(connp->conn_upper_handle != NULL); 27781 27782 /* 27783 * X/Open requires that we check the connected state. 27784 */ 27785 if (tcp->tcp_state < TCPS_SYN_SENT) 27786 return (ENOTCONN); 27787 27788 /* shutdown the send side */ 27789 if (how != SHUT_RD) { 27790 mblk_t *bp; 27791 27792 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27793 CONN_INC_REF(connp); 27794 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27795 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27796 27797 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27798 SOCK_OPCTL_SHUT_SEND, 0); 27799 } 27800 27801 /* shutdown the recv side */ 27802 if (how != SHUT_WR) 27803 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27804 SOCK_OPCTL_SHUT_RECV, 0); 27805 27806 return (0); 27807 } 27808 27809 /* 27810 * SOP_LISTEN() calls into tcp_listen(). 27811 */ 27812 /* ARGSUSED */ 27813 int 27814 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27815 { 27816 conn_t *connp = (conn_t *)proto_handle; 27817 int error; 27818 squeue_t *sqp = connp->conn_sqp; 27819 27820 ASSERT(connp->conn_upper_handle != NULL); 27821 27822 error = squeue_synch_enter(sqp, connp, 0); 27823 if (error != 0) { 27824 /* failed to enter */ 27825 return (ENOBUFS); 27826 } 27827 27828 error = tcp_do_listen(connp, backlog, cr); 27829 if (error == 0) { 27830 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27831 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27832 } else if (error < 0) { 27833 if (error == -TOUTSTATE) 27834 error = EINVAL; 27835 else 27836 error = proto_tlitosyserr(-error); 27837 } 27838 squeue_synch_exit(sqp, connp); 27839 return (error); 27840 } 27841 27842 static int 27843 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr) 27844 { 27845 tcp_t *tcp = connp->conn_tcp; 27846 sin_t *sin; 27847 sin6_t *sin6; 27848 int error = 0; 27849 tcp_stack_t *tcps = tcp->tcp_tcps; 27850 27851 if (tcp->tcp_state >= TCPS_BOUND) { 27852 if ((tcp->tcp_state == TCPS_BOUND || 27853 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27854 /* 27855 * Handle listen() increasing backlog. 27856 * This is more "liberal" then what the TPI spec 27857 * requires but is needed to avoid a t_unbind 27858 * when handling listen() since the port number 27859 * might be "stolen" between the unbind and bind. 27860 */ 27861 goto do_listen; 27862 } 27863 if (tcp->tcp_debug) { 27864 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27865 "tcp_listen: bad state, %d", tcp->tcp_state); 27866 } 27867 return (-TOUTSTATE); 27868 } else { 27869 int32_t len; 27870 sin6_t addr; 27871 27872 /* Do an implicit bind: Request for a generic port. */ 27873 if (tcp->tcp_family == AF_INET) { 27874 len = sizeof (sin_t); 27875 sin = (sin_t *)&addr; 27876 *sin = sin_null; 27877 sin->sin_family = AF_INET; 27878 tcp->tcp_ipversion = IPV4_VERSION; 27879 } else { 27880 ASSERT(tcp->tcp_family == AF_INET6); 27881 len = sizeof (sin6_t); 27882 sin6 = (sin6_t *)&addr; 27883 *sin6 = sin6_null; 27884 sin6->sin6_family = AF_INET6; 27885 tcp->tcp_ipversion = IPV6_VERSION; 27886 } 27887 27888 error = tcp_bind_check(connp, (struct sockaddr *)&addr, len, 27889 cr, B_FALSE); 27890 if (error) 27891 return (error); 27892 /* Fall through and do the fanout insertion */ 27893 } 27894 27895 do_listen: 27896 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27897 tcp->tcp_conn_req_max = backlog; 27898 if (tcp->tcp_conn_req_max) { 27899 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27900 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27901 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27902 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27903 /* 27904 * If this is a listener, do not reset the eager list 27905 * and other stuffs. Note that we don't check if the 27906 * existing eager list meets the new tcp_conn_req_max 27907 * requirement. 27908 */ 27909 if (tcp->tcp_state != TCPS_LISTEN) { 27910 tcp->tcp_state = TCPS_LISTEN; 27911 /* Initialize the chain. Don't need the eager_lock */ 27912 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27913 tcp->tcp_eager_next_drop_q0 = tcp; 27914 tcp->tcp_eager_prev_drop_q0 = tcp; 27915 tcp->tcp_second_ctimer_threshold = 27916 tcps->tcps_ip_abort_linterval; 27917 } 27918 } 27919 27920 /* 27921 * We can call ip_bind directly, the processing continues 27922 * in tcp_post_ip_bind(). 27923 * 27924 * We need to make sure that the conn_recv is set to a non-null 27925 * value before we insert the conn into the classifier table. 27926 * This is to avoid a race with an incoming packet which does an 27927 * ipcl_classify(). 27928 */ 27929 connp->conn_recv = tcp_conn_request; 27930 if (tcp->tcp_family == AF_INET) { 27931 error = ip_proto_bind_laddr_v4(connp, NULL, 27932 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27933 } else { 27934 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27935 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27936 } 27937 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27938 } 27939 27940 void 27941 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27942 { 27943 conn_t *connp = (conn_t *)proto_handle; 27944 tcp_t *tcp = connp->conn_tcp; 27945 tcp_stack_t *tcps = tcp->tcp_tcps; 27946 uint_t thwin; 27947 27948 ASSERT(connp->conn_upper_handle != NULL); 27949 27950 (void) squeue_synch_enter(connp->conn_sqp, connp, 0); 27951 27952 /* Flow control condition has been removed. */ 27953 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27954 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 27955 << tcp->tcp_rcv_ws; 27956 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 27957 /* 27958 * Send back a window update immediately if TCP is above 27959 * ESTABLISHED state and the increase of the rcv window 27960 * that the other side knows is at least 1 MSS after flow 27961 * control is lifted. 27962 */ 27963 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27964 (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) { 27965 tcp_xmit_ctl(NULL, tcp, 27966 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27967 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27968 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 27969 } 27970 27971 squeue_synch_exit(connp->conn_sqp, connp); 27972 } 27973 27974 /* ARGSUSED */ 27975 int 27976 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27977 int mode, int32_t *rvalp, cred_t *cr) 27978 { 27979 conn_t *connp = (conn_t *)proto_handle; 27980 int error; 27981 27982 ASSERT(connp->conn_upper_handle != NULL); 27983 27984 switch (cmd) { 27985 case ND_SET: 27986 case ND_GET: 27987 case TCP_IOC_DEFAULT_Q: 27988 case _SIOCSOCKFALLBACK: 27989 case TCP_IOC_ABORT_CONN: 27990 case TI_GETPEERNAME: 27991 case TI_GETMYNAME: 27992 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27993 cmd)); 27994 error = EINVAL; 27995 break; 27996 default: 27997 /* 27998 * Pass on to IP using helper stream 27999 */ 28000 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 28001 cmd, arg, mode, cr, rvalp); 28002 break; 28003 } 28004 return (error); 28005 } 28006 28007 sock_downcalls_t sock_tcp_downcalls = { 28008 tcp_activate, 28009 tcp_accept, 28010 tcp_bind, 28011 tcp_listen, 28012 tcp_connect, 28013 tcp_getpeername, 28014 tcp_getsockname, 28015 tcp_getsockopt, 28016 tcp_setsockopt, 28017 tcp_sendmsg, 28018 NULL, 28019 NULL, 28020 NULL, 28021 tcp_shutdown, 28022 tcp_clr_flowctrl, 28023 tcp_ioctl, 28024 tcp_close, 28025 }; 28026