xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision 8654d0253136055bd4cc2423d87378e8a37f2eb5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <sys/sdt.h>
106 #include <rpc/pmap_prot.h>
107 
108 /*
109  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
110  *
111  * (Read the detailed design doc in PSARC case directory)
112  *
113  * The entire tcp state is contained in tcp_t and conn_t structure
114  * which are allocated in tandem using ipcl_conn_create() and passing
115  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
116  * the references on the tcp_t. The tcp_t structure is never compressed
117  * and packets always land on the correct TCP perimeter from the time
118  * eager is created till the time tcp_t dies (as such the old mentat
119  * TCP global queue is not used for detached state and no IPSEC checking
120  * is required). The global queue is still allocated to send out resets
121  * for connection which have no listeners and IP directly calls
122  * tcp_xmit_listeners_reset() which does any policy check.
123  *
124  * Protection and Synchronisation mechanism:
125  *
126  * The tcp data structure does not use any kind of lock for protecting
127  * its state but instead uses 'squeues' for mutual exclusion from various
128  * read and write side threads. To access a tcp member, the thread should
129  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
130  * squeue_fill). Since the squeues allow a direct function call, caller
131  * can pass any tcp function having prototype of edesc_t as argument
132  * (different from traditional STREAMs model where packets come in only
133  * designated entry points). The list of functions that can be directly
134  * called via squeue are listed before the usual function prototype.
135  *
136  * Referencing:
137  *
138  * TCP is MT-Hot and we use a reference based scheme to make sure that the
139  * tcp structure doesn't disappear when its needed. When the application
140  * creates an outgoing connection or accepts an incoming connection, we
141  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
142  * The IP reference is just a symbolic reference since ip_tcpclose()
143  * looks at tcp structure after tcp_close_output() returns which could
144  * have dropped the last TCP reference. So as long as the connection is
145  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
146  * conn_t. The classifier puts its own reference when the connection is
147  * inserted in listen or connected hash. Anytime a thread needs to enter
148  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
149  * on write side or by doing a classify on read side and then puts a
150  * reference on the conn before doing squeue_enter/tryenter/fill. For
151  * read side, the classifier itself puts the reference under fanout lock
152  * to make sure that tcp can't disappear before it gets processed. The
153  * squeue will drop this reference automatically so the called function
154  * doesn't have to do a DEC_REF.
155  *
156  * Opening a new connection:
157  *
158  * The outgoing connection open is pretty simple. tcp_open() does the
159  * work in creating the conn/tcp structure and initializing it. The
160  * squeue assignment is done based on the CPU the application
161  * is running on. So for outbound connections, processing is always done
162  * on application CPU which might be different from the incoming CPU
163  * being interrupted by the NIC. An optimal way would be to figure out
164  * the NIC <-> CPU binding at listen time, and assign the outgoing
165  * connection to the squeue attached to the CPU that will be interrupted
166  * for incoming packets (we know the NIC based on the bind IP address).
167  * This might seem like a problem if more data is going out but the
168  * fact is that in most cases the transmit is ACK driven transmit where
169  * the outgoing data normally sits on TCP's xmit queue waiting to be
170  * transmitted.
171  *
172  * Accepting a connection:
173  *
174  * This is a more interesting case because of various races involved in
175  * establishing a eager in its own perimeter. Read the meta comment on
176  * top of tcp_conn_request(). But briefly, the squeue is picked by
177  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
178  *
179  * Closing a connection:
180  *
181  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
182  * via squeue to do the close and mark the tcp as detached if the connection
183  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
184  * reference but tcp_close() drop IP's reference always. So if tcp was
185  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
186  * and 1 because it is in classifier's connected hash. This is the condition
187  * we use to determine that its OK to clean up the tcp outside of squeue
188  * when time wait expires (check the ref under fanout and conn_lock and
189  * if it is 2, remove it from fanout hash and kill it).
190  *
191  * Although close just drops the necessary references and marks the
192  * tcp_detached state, tcp_close needs to know the tcp_detached has been
193  * set (under squeue) before letting the STREAM go away (because a
194  * inbound packet might attempt to go up the STREAM while the close
195  * has happened and tcp_detached is not set). So a special lock and
196  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
197  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
198  * tcp_detached.
199  *
200  * Special provisions and fast paths:
201  *
202  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
203  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
204  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
205  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
206  * check to send packets directly to tcp_rput_data via squeue. Everyone
207  * else comes through tcp_input() on the read side.
208  *
209  * We also make special provisions for sockfs by marking tcp_issocket
210  * whenever we have only sockfs on top of TCP. This allows us to skip
211  * putting the tcp in acceptor hash since a sockfs listener can never
212  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
213  * since eager has already been allocated and the accept now happens
214  * on acceptor STREAM. There is a big blob of comment on top of
215  * tcp_conn_request explaining the new accept. When socket is POP'd,
216  * sockfs sends us an ioctl to mark the fact and we go back to old
217  * behaviour. Once tcp_issocket is unset, its never set for the
218  * life of that connection.
219  *
220  * IPsec notes :
221  *
222  * Since a packet is always executed on the correct TCP perimeter
223  * all IPsec processing is defered to IP including checking new
224  * connections and setting IPSEC policies for new connection. The
225  * only exception is tcp_xmit_listeners_reset() which is called
226  * directly from IP and needs to policy check to see if TH_RST
227  * can be sent out.
228  *
229  * PFHooks notes :
230  *
231  * For mdt case, one meta buffer contains multiple packets. Mblks for every
232  * packet are assembled and passed to the hooks. When packets are blocked,
233  * or boundary of any packet is changed, the mdt processing is stopped, and
234  * packets of the meta buffer are send to the IP path one by one.
235  */
236 
237 extern major_t TCP6_MAJ;
238 
239 /*
240  * Values for squeue switch:
241  * 1: squeue_enter_nodrain
242  * 2: squeue_enter
243  * 3: squeue_fill
244  */
245 int tcp_squeue_close = 2;	/* Setable in /etc/system */
246 int tcp_squeue_wput = 2;
247 
248 squeue_func_t tcp_squeue_close_proc;
249 squeue_func_t tcp_squeue_wput_proc;
250 
251 /*
252  * This controls how tiny a write must be before we try to copy it
253  * into the the mblk on the tail of the transmit queue.  Not much
254  * speedup is observed for values larger than sixteen.  Zero will
255  * disable the optimisation.
256  */
257 int tcp_tx_pull_len = 16;
258 
259 /*
260  * TCP Statistics.
261  *
262  * How TCP statistics work.
263  *
264  * There are two types of statistics invoked by two macros.
265  *
266  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
267  * supposed to be used in non MT-hot paths of the code.
268  *
269  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
270  * supposed to be used for DEBUG purposes and may be used on a hot path.
271  *
272  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
273  * (use "kstat tcp" to get them).
274  *
275  * There is also additional debugging facility that marks tcp_clean_death()
276  * instances and saves them in tcp_t structure. It is triggered by
277  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
278  * tcp_clean_death() calls that counts the number of times each tag was hit. It
279  * is triggered by TCP_CLD_COUNTERS define.
280  *
281  * How to add new counters.
282  *
283  * 1) Add a field in the tcp_stat structure describing your counter.
284  * 2) Add a line in the template in tcp_kstat2_init() with the name
285  *    of the counter.
286  *
287  *    IMPORTANT!! - make sure that both are in sync !!
288  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
289  *
290  * Please avoid using private counters which are not kstat-exported.
291  *
292  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
293  * in tcp_t structure.
294  *
295  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
296  */
297 
298 #ifndef TCP_DEBUG_COUNTER
299 #ifdef DEBUG
300 #define	TCP_DEBUG_COUNTER 1
301 #else
302 #define	TCP_DEBUG_COUNTER 0
303 #endif
304 #endif
305 
306 #define	TCP_CLD_COUNTERS 0
307 
308 #define	TCP_TAG_CLEAN_DEATH 1
309 #define	TCP_MAX_CLEAN_DEATH_TAG 32
310 
311 #ifdef lint
312 static int _lint_dummy_;
313 #endif
314 
315 #if TCP_CLD_COUNTERS
316 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
317 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
318 #elif defined(lint)
319 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
320 #else
321 #define	TCP_CLD_STAT(x)
322 #endif
323 
324 #if TCP_DEBUG_COUNTER
325 #define	TCP_DBGSTAT(tcps, x)	\
326 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
327 #define	TCP_G_DBGSTAT(x)	\
328 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
329 #elif defined(lint)
330 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
331 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
332 #else
333 #define	TCP_DBGSTAT(tcps, x)
334 #define	TCP_G_DBGSTAT(x)
335 #endif
336 
337 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
338 
339 tcp_g_stat_t	tcp_g_statistics;
340 kstat_t		*tcp_g_kstat;
341 
342 /*
343  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
344  * tcp write side.
345  */
346 #define	CALL_IP_WPUT(connp, q, mp) {					\
347 	tcp_stack_t	*tcps;						\
348 									\
349 	tcps = connp->conn_netstack->netstack_tcp;			\
350 	ASSERT(((q)->q_flag & QREADR) == 0);				\
351 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
352 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
353 }
354 
355 /* Macros for timestamp comparisons */
356 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
357 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
358 
359 /*
360  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
361  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
362  * by adding three components: a time component which grows by 1 every 4096
363  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
364  * a per-connection component which grows by 125000 for every new connection;
365  * and an "extra" component that grows by a random amount centered
366  * approximately on 64000.  This causes the the ISS generator to cycle every
367  * 4.89 hours if no TCP connections are made, and faster if connections are
368  * made.
369  *
370  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
371  * components: a time component which grows by 250000 every second; and
372  * a per-connection component which grows by 125000 for every new connections.
373  *
374  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
375  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
376  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
377  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
378  * password.
379  */
380 #define	ISS_INCR	250000
381 #define	ISS_NSEC_SHT	12
382 
383 static sin_t	sin_null;	/* Zero address for quick clears */
384 static sin6_t	sin6_null;	/* Zero address for quick clears */
385 
386 /*
387  * This implementation follows the 4.3BSD interpretation of the urgent
388  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
389  * incompatible changes in protocols like telnet and rlogin.
390  */
391 #define	TCP_OLD_URP_INTERPRETATION	1
392 
393 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
394 	(TCP_IS_DETACHED(tcp) && \
395 	    (!(tcp)->tcp_hard_binding))
396 
397 /*
398  * TCP reassembly macros.  We hide starting and ending sequence numbers in
399  * b_next and b_prev of messages on the reassembly queue.  The messages are
400  * chained using b_cont.  These macros are used in tcp_reass() so we don't
401  * have to see the ugly casts and assignments.
402  */
403 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
404 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
405 					(mblk_t *)(uintptr_t)(u))
406 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
407 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
408 					(mblk_t *)(uintptr_t)(u))
409 
410 /*
411  * Implementation of TCP Timers.
412  * =============================
413  *
414  * INTERFACE:
415  *
416  * There are two basic functions dealing with tcp timers:
417  *
418  *	timeout_id_t	tcp_timeout(connp, func, time)
419  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
420  *	TCP_TIMER_RESTART(tcp, intvl)
421  *
422  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
423  * after 'time' ticks passed. The function called by timeout() must adhere to
424  * the same restrictions as a driver soft interrupt handler - it must not sleep
425  * or call other functions that might sleep. The value returned is the opaque
426  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
427  * cancel the request. The call to tcp_timeout() may fail in which case it
428  * returns zero. This is different from the timeout(9F) function which never
429  * fails.
430  *
431  * The call-back function 'func' always receives 'connp' as its single
432  * argument. It is always executed in the squeue corresponding to the tcp
433  * structure. The tcp structure is guaranteed to be present at the time the
434  * call-back is called.
435  *
436  * NOTE: The call-back function 'func' is never called if tcp is in
437  * 	the TCPS_CLOSED state.
438  *
439  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
440  * request. locks acquired by the call-back routine should not be held across
441  * the call to tcp_timeout_cancel() or a deadlock may result.
442  *
443  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
444  * Otherwise, it returns an integer value greater than or equal to 0. In
445  * particular, if the call-back function is already placed on the squeue, it can
446  * not be canceled.
447  *
448  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
449  * 	within squeue context corresponding to the tcp instance. Since the
450  *	call-back is also called via the same squeue, there are no race
451  *	conditions described in untimeout(9F) manual page since all calls are
452  *	strictly serialized.
453  *
454  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
455  *	stored in tcp_timer_tid and starts a new one using
456  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
457  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
458  *	field.
459  *
460  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
461  *	call-back may still be called, so it is possible tcp_timer() will be
462  *	called several times. This should not be a problem since tcp_timer()
463  *	should always check the tcp instance state.
464  *
465  *
466  * IMPLEMENTATION:
467  *
468  * TCP timers are implemented using three-stage process. The call to
469  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
470  * when the timer expires. The tcp_timer_callback() arranges the call of the
471  * tcp_timer_handler() function via squeue corresponding to the tcp
472  * instance. The tcp_timer_handler() calls actual requested timeout call-back
473  * and passes tcp instance as an argument to it. Information is passed between
474  * stages using the tcp_timer_t structure which contains the connp pointer, the
475  * tcp call-back to call and the timeout id returned by the timeout(9F).
476  *
477  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
478  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
479  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
480  * returns the pointer to this mblk.
481  *
482  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
483  * looks like a normal mblk without actual dblk attached to it.
484  *
485  * To optimize performance each tcp instance holds a small cache of timer
486  * mblocks. In the current implementation it caches up to two timer mblocks per
487  * tcp instance. The cache is preserved over tcp frees and is only freed when
488  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
489  * timer processing happens on a corresponding squeue, the cache manipulation
490  * does not require any locks. Experiments show that majority of timer mblocks
491  * allocations are satisfied from the tcp cache and do not involve kmem calls.
492  *
493  * The tcp_timeout() places a refhold on the connp instance which guarantees
494  * that it will be present at the time the call-back function fires. The
495  * tcp_timer_handler() drops the reference after calling the call-back, so the
496  * call-back function does not need to manipulate the references explicitly.
497  */
498 
499 typedef struct tcp_timer_s {
500 	conn_t	*connp;
501 	void 	(*tcpt_proc)(void *);
502 	timeout_id_t   tcpt_tid;
503 } tcp_timer_t;
504 
505 static kmem_cache_t *tcp_timercache;
506 kmem_cache_t	*tcp_sack_info_cache;
507 kmem_cache_t	*tcp_iphc_cache;
508 
509 /*
510  * For scalability, we must not run a timer for every TCP connection
511  * in TIME_WAIT state.  To see why, consider (for time wait interval of
512  * 4 minutes):
513  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
514  *
515  * This list is ordered by time, so you need only delete from the head
516  * until you get to entries which aren't old enough to delete yet.
517  * The list consists of only the detached TIME_WAIT connections.
518  *
519  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
520  * becomes detached TIME_WAIT (either by changing the state and already
521  * being detached or the other way around). This means that the TIME_WAIT
522  * state can be extended (up to doubled) if the connection doesn't become
523  * detached for a long time.
524  *
525  * The list manipulations (including tcp_time_wait_next/prev)
526  * are protected by the tcp_time_wait_lock. The content of the
527  * detached TIME_WAIT connections is protected by the normal perimeters.
528  *
529  * This list is per squeue and squeues are shared across the tcp_stack_t's.
530  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
531  * and conn_netstack.
532  * The tcp_t's that are added to tcp_free_list are disassociated and
533  * have NULL tcp_tcps and conn_netstack pointers.
534  */
535 typedef struct tcp_squeue_priv_s {
536 	kmutex_t	tcp_time_wait_lock;
537 	timeout_id_t	tcp_time_wait_tid;
538 	tcp_t		*tcp_time_wait_head;
539 	tcp_t		*tcp_time_wait_tail;
540 	tcp_t		*tcp_free_list;
541 	uint_t		tcp_free_list_cnt;
542 } tcp_squeue_priv_t;
543 
544 /*
545  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
546  * Running it every 5 seconds seems to give the best results.
547  */
548 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
549 
550 /*
551  * To prevent memory hog, limit the number of entries in tcp_free_list
552  * to 1% of available memory / number of cpus
553  */
554 uint_t tcp_free_list_max_cnt = 0;
555 
556 #define	TCP_XMIT_LOWATER	4096
557 #define	TCP_XMIT_HIWATER	49152
558 #define	TCP_RECV_LOWATER	2048
559 #define	TCP_RECV_HIWATER	49152
560 
561 /*
562  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
563  */
564 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
565 
566 #define	TIDUSZ	4096	/* transport interface data unit size */
567 
568 /*
569  * Bind hash list size and has function.  It has to be a power of 2 for
570  * hashing.
571  */
572 #define	TCP_BIND_FANOUT_SIZE	512
573 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
574 /*
575  * Size of listen and acceptor hash list.  It has to be a power of 2 for
576  * hashing.
577  */
578 #define	TCP_FANOUT_SIZE		256
579 
580 #ifdef	_ILP32
581 #define	TCP_ACCEPTOR_HASH(accid)					\
582 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
583 #else
584 #define	TCP_ACCEPTOR_HASH(accid)					\
585 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
586 #endif	/* _ILP32 */
587 
588 #define	IP_ADDR_CACHE_SIZE	2048
589 #define	IP_ADDR_CACHE_HASH(faddr)					\
590 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
591 
592 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
593 #define	TCP_HSP_HASH_SIZE 256
594 
595 #define	TCP_HSP_HASH(addr)					\
596 	(((addr>>24) ^ (addr >>16) ^			\
597 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
598 
599 /*
600  * TCP options struct returned from tcp_parse_options.
601  */
602 typedef struct tcp_opt_s {
603 	uint32_t	tcp_opt_mss;
604 	uint32_t	tcp_opt_wscale;
605 	uint32_t	tcp_opt_ts_val;
606 	uint32_t	tcp_opt_ts_ecr;
607 	tcp_t		*tcp;
608 } tcp_opt_t;
609 
610 /*
611  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
612  */
613 
614 #ifdef _BIG_ENDIAN
615 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
616 	(TCPOPT_TSTAMP << 8) | 10)
617 #else
618 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
619 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
620 #endif
621 
622 /*
623  * Flags returned from tcp_parse_options.
624  */
625 #define	TCP_OPT_MSS_PRESENT	1
626 #define	TCP_OPT_WSCALE_PRESENT	2
627 #define	TCP_OPT_TSTAMP_PRESENT	4
628 #define	TCP_OPT_SACK_OK_PRESENT	8
629 #define	TCP_OPT_SACK_PRESENT	16
630 
631 /* TCP option length */
632 #define	TCPOPT_NOP_LEN		1
633 #define	TCPOPT_MAXSEG_LEN	4
634 #define	TCPOPT_WS_LEN		3
635 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
636 #define	TCPOPT_TSTAMP_LEN	10
637 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
638 #define	TCPOPT_SACK_OK_LEN	2
639 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
640 #define	TCPOPT_REAL_SACK_LEN	4
641 #define	TCPOPT_MAX_SACK_LEN	36
642 #define	TCPOPT_HEADER_LEN	2
643 
644 /* TCP cwnd burst factor. */
645 #define	TCP_CWND_INFINITE	65535
646 #define	TCP_CWND_SS		3
647 #define	TCP_CWND_NORMAL		5
648 
649 /* Maximum TCP initial cwin (start/restart). */
650 #define	TCP_MAX_INIT_CWND	8
651 
652 /*
653  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
654  * either tcp_slow_start_initial or tcp_slow_start_after idle
655  * depending on the caller.  If the upper layer has not used the
656  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
657  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
658  * If the upper layer has changed set the tcp_init_cwnd, just use
659  * it to calculate the tcp_cwnd.
660  */
661 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
662 {									\
663 	if ((tcp)->tcp_init_cwnd == 0) {				\
664 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
665 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
666 	} else {							\
667 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
668 	}								\
669 	tcp->tcp_cwnd_cnt = 0;						\
670 }
671 
672 /* TCP Timer control structure */
673 typedef struct tcpt_s {
674 	pfv_t	tcpt_pfv;	/* The routine we are to call */
675 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
676 } tcpt_t;
677 
678 /* Host Specific Parameter structure */
679 typedef struct tcp_hsp {
680 	struct tcp_hsp	*tcp_hsp_next;
681 	in6_addr_t	tcp_hsp_addr_v6;
682 	in6_addr_t	tcp_hsp_subnet_v6;
683 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
684 	int32_t		tcp_hsp_sendspace;
685 	int32_t		tcp_hsp_recvspace;
686 	int32_t		tcp_hsp_tstamp;
687 } tcp_hsp_t;
688 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
689 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
690 
691 /*
692  * Functions called directly via squeue having a prototype of edesc_t.
693  */
694 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
696 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
697 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
698 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
699 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
700 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
702 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
703 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
704 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
705 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
706 
707 
708 /* Prototype for TCP functions */
709 static void	tcp_random_init(void);
710 int		tcp_random(void);
711 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
712 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
713 		    tcp_t *eager);
714 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
715 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
716     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
717     boolean_t user_specified);
718 static void	tcp_closei_local(tcp_t *tcp);
719 static void	tcp_close_detached(tcp_t *tcp);
720 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
721 			mblk_t *idmp, mblk_t **defermp);
722 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
723 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
724 		    in_port_t dstport, uint_t srcid);
725 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
726 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
727 		    uint32_t scope_id);
728 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
729 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
730 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
731 static char	*tcp_display(tcp_t *tcp, char *, char);
732 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
733 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
734 static void	tcp_eager_unlink(tcp_t *tcp);
735 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
736 		    int unixerr);
737 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
738 		    int tlierr, int unixerr);
739 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
740 		    cred_t *cr);
741 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
742 		    char *value, caddr_t cp, cred_t *cr);
743 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
744 		    char *value, caddr_t cp, cred_t *cr);
745 static int	tcp_tpistate(tcp_t *tcp);
746 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
747     int caller_holds_lock);
748 static void	tcp_bind_hash_remove(tcp_t *tcp);
749 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
750 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
751 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
752 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
753 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
754 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
755 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
756 void		tcp_g_q_setup(tcp_stack_t *);
757 void		tcp_g_q_create(tcp_stack_t *);
758 void		tcp_g_q_destroy(tcp_stack_t *);
759 static int	tcp_header_init_ipv4(tcp_t *tcp);
760 static int	tcp_header_init_ipv6(tcp_t *tcp);
761 int		tcp_init(tcp_t *tcp, queue_t *q);
762 static int	tcp_init_values(tcp_t *tcp);
763 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
764 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
765 		    t_scalar_t addr_length);
766 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
767 static void	tcp_ip_notify(tcp_t *tcp);
768 static mblk_t	*tcp_ire_mp(mblk_t *mp);
769 static void	tcp_iss_init(tcp_t *tcp);
770 static void	tcp_keepalive_killer(void *arg);
771 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
772 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
773 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
774 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
775 static boolean_t tcp_allow_connopt_set(int level, int name);
776 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
777 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
778 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
779 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
780 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
781 		    mblk_t *mblk);
782 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
783 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
784 		    uchar_t *ptr, uint_t len);
785 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
786 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
787     tcp_stack_t *);
788 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
789 		    caddr_t cp, cred_t *cr);
790 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
791 		    caddr_t cp, cred_t *cr);
792 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
793 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
794 		    caddr_t cp, cred_t *cr);
795 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
796 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
797 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
798 static void	tcp_reinit(tcp_t *tcp);
799 static void	tcp_reinit_values(tcp_t *tcp);
800 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
801 		    tcp_t *thisstream, cred_t *cr);
802 
803 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
804 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
805 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
806 static void	tcp_ss_rexmit(tcp_t *tcp);
807 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
808 static void	tcp_process_options(tcp_t *, tcph_t *);
809 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
810 static void	tcp_rsrv(queue_t *q);
811 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
812 static int	tcp_snmp_state(tcp_t *tcp);
813 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
814 		    cred_t *cr);
815 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
816 		    cred_t *cr);
817 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
818 		    cred_t *cr);
819 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
820 		    cred_t *cr);
821 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
822 		    cred_t *cr);
823 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
824 		    caddr_t cp, cred_t *cr);
825 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
826 		    caddr_t cp, cred_t *cr);
827 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
828 		    cred_t *cr);
829 static void	tcp_timer(void *arg);
830 static void	tcp_timer_callback(void *);
831 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
832     boolean_t random);
833 static in_port_t tcp_get_next_priv_port(const tcp_t *);
834 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
835 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
836 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
837 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
838 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
839 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
840 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
841 		    const int num_sack_blk, int *usable, uint_t *snxt,
842 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
843 		    const int mdt_thres);
844 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
845 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
846 		    const int num_sack_blk, int *usable, uint_t *snxt,
847 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
848 		    const int mdt_thres);
849 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
850 		    int num_sack_blk);
851 static void	tcp_wsrv(queue_t *q);
852 static int	tcp_xmit_end(tcp_t *tcp);
853 static void	tcp_ack_timer(void *arg);
854 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
855 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
856 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
857 		    zoneid_t zoneid, tcp_stack_t *);
858 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
859 		    uint32_t ack, int ctl);
860 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
861 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
862 static int	setmaxps(queue_t *q, int maxpsz);
863 static void	tcp_set_rto(tcp_t *, time_t);
864 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
865 		    boolean_t, boolean_t);
866 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
867 		    boolean_t ipsec_mctl);
868 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
869 		    char *opt, int optlen);
870 static int	tcp_build_hdrs(queue_t *, tcp_t *);
871 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
872 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
873 		    tcph_t *tcph);
874 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
875 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
876 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
877 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
878 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
879 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
880 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
881 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
882 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
883 		    const boolean_t, const uint32_t, const uint32_t,
884 		    const uint32_t, const uint32_t, tcp_stack_t *);
885 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
886 		    const uint_t, const uint_t, boolean_t *);
887 static mblk_t	*tcp_lso_info_mp(mblk_t *);
888 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
889 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
890 extern mblk_t	*tcp_timermp_alloc(int);
891 extern void	tcp_timermp_free(tcp_t *);
892 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
893 static void	tcp_stop_lingering(tcp_t *tcp);
894 static void	tcp_close_linger_timeout(void *arg);
895 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
896 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
897 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
898 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
899 static void	tcp_g_kstat_fini(kstat_t *);
900 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
901 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
902 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
903 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
904 static int	tcp_kstat_update(kstat_t *kp, int rw);
905 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
906 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
907 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
908 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
909 			tcph_t *tcph, mblk_t *idmp);
910 static squeue_func_t tcp_squeue_switch(int);
911 
912 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
913 static int	tcp_close(queue_t *, int);
914 static int	tcpclose_accept(queue_t *);
915 static int	tcp_modclose(queue_t *);
916 static void	tcp_wput_mod(queue_t *, mblk_t *);
917 
918 static void	tcp_squeue_add(squeue_t *);
919 static boolean_t tcp_zcopy_check(tcp_t *);
920 static void	tcp_zcopy_notify(tcp_t *);
921 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
922 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
923 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
924 
925 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
926 
927 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
928 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
929 
930 /*
931  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
932  *
933  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
934  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
935  * (defined in tcp.h) needs to be filled in and passed into the kernel
936  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
937  * structure contains the four-tuple of a TCP connection and a range of TCP
938  * states (specified by ac_start and ac_end). The use of wildcard addresses
939  * and ports is allowed. Connections with a matching four tuple and a state
940  * within the specified range will be aborted. The valid states for the
941  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
942  * inclusive.
943  *
944  * An application which has its connection aborted by this ioctl will receive
945  * an error that is dependent on the connection state at the time of the abort.
946  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
947  * though a RST packet has been received.  If the connection state is equal to
948  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
949  * and all resources associated with the connection will be freed.
950  */
951 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
952 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
953 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
954 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
955 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
956 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
957     boolean_t, tcp_stack_t *);
958 
959 static struct module_info tcp_rinfo =  {
960 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
961 };
962 
963 static struct module_info tcp_winfo =  {
964 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
965 };
966 
967 /*
968  * Entry points for TCP as a module. It only allows SNMP requests
969  * to pass through.
970  */
971 struct qinit tcp_mod_rinit = {
972 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
973 };
974 
975 struct qinit tcp_mod_winit = {
976 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
977 	&tcp_rinfo
978 };
979 
980 /*
981  * Entry points for TCP as a device. The normal case which supports
982  * the TCP functionality.
983  */
984 struct qinit tcp_rinit = {
985 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
986 };
987 
988 struct qinit tcp_winit = {
989 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
990 };
991 
992 /* Initial entry point for TCP in socket mode. */
993 struct qinit tcp_sock_winit = {
994 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
995 };
996 
997 /*
998  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
999  * an accept. Avoid allocating data structures since eager has already
1000  * been created.
1001  */
1002 struct qinit tcp_acceptor_rinit = {
1003 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1004 };
1005 
1006 struct qinit tcp_acceptor_winit = {
1007 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1008 };
1009 
1010 /*
1011  * Entry points for TCP loopback (read side only)
1012  */
1013 struct qinit tcp_loopback_rinit = {
1014 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1015 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1016 };
1017 
1018 struct streamtab tcpinfo = {
1019 	&tcp_rinit, &tcp_winit
1020 };
1021 
1022 /*
1023  * Have to ensure that tcp_g_q_close is not done by an
1024  * interrupt thread.
1025  */
1026 static taskq_t *tcp_taskq;
1027 
1028 /*
1029  * TCP has a private interface for other kernel modules to reserve a
1030  * port range for them to use.  Once reserved, TCP will not use any ports
1031  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1032  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1033  * has to be verified.
1034  *
1035  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1036  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1037  * range is [port a, port b] inclusive.  And each port range is between
1038  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1039  *
1040  * Note that the default anonymous port range starts from 32768.  There is
1041  * no port "collision" between that and the reserved port range.  If there
1042  * is port collision (because the default smallest anonymous port is lowered
1043  * or some apps specifically bind to ports in the reserved port range), the
1044  * system may not be able to reserve a port range even there are enough
1045  * unbound ports as a reserved port range contains consecutive ports .
1046  */
1047 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1048 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1049 #define	TCP_SMALLEST_RESERVED_PORT		10240
1050 #define	TCP_LARGEST_RESERVED_PORT		20480
1051 
1052 /* Structure to represent those reserved port ranges. */
1053 typedef struct tcp_rport_s {
1054 	in_port_t	lo_port;
1055 	in_port_t	hi_port;
1056 	tcp_t		**temp_tcp_array;
1057 } tcp_rport_t;
1058 
1059 /* Setable only in /etc/system. Move to ndd? */
1060 boolean_t tcp_icmp_source_quench = B_FALSE;
1061 
1062 /*
1063  * Following assumes TPI alignment requirements stay along 32 bit
1064  * boundaries
1065  */
1066 #define	ROUNDUP32(x) \
1067 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1068 
1069 /* Template for response to info request. */
1070 static struct T_info_ack tcp_g_t_info_ack = {
1071 	T_INFO_ACK,		/* PRIM_type */
1072 	0,			/* TSDU_size */
1073 	T_INFINITE,		/* ETSDU_size */
1074 	T_INVALID,		/* CDATA_size */
1075 	T_INVALID,		/* DDATA_size */
1076 	sizeof (sin_t),		/* ADDR_size */
1077 	0,			/* OPT_size - not initialized here */
1078 	TIDUSZ,			/* TIDU_size */
1079 	T_COTS_ORD,		/* SERV_type */
1080 	TCPS_IDLE,		/* CURRENT_state */
1081 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1082 };
1083 
1084 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1085 	T_INFO_ACK,		/* PRIM_type */
1086 	0,			/* TSDU_size */
1087 	T_INFINITE,		/* ETSDU_size */
1088 	T_INVALID,		/* CDATA_size */
1089 	T_INVALID,		/* DDATA_size */
1090 	sizeof (sin6_t),	/* ADDR_size */
1091 	0,			/* OPT_size - not initialized here */
1092 	TIDUSZ,		/* TIDU_size */
1093 	T_COTS_ORD,		/* SERV_type */
1094 	TCPS_IDLE,		/* CURRENT_state */
1095 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1096 };
1097 
1098 #define	MS	1L
1099 #define	SECONDS	(1000 * MS)
1100 #define	MINUTES	(60 * SECONDS)
1101 #define	HOURS	(60 * MINUTES)
1102 #define	DAYS	(24 * HOURS)
1103 
1104 #define	PARAM_MAX (~(uint32_t)0)
1105 
1106 /* Max size IP datagram is 64k - 1 */
1107 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1108 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1109 /* Max of the above */
1110 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1111 
1112 /* Largest TCP port number */
1113 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1114 
1115 /*
1116  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1117  * layer header.  It has to be a multiple of 4.
1118  */
1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1120 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1121 
1122 /*
1123  * All of these are alterable, within the min/max values given, at run time.
1124  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1125  * per the TCP spec.
1126  */
1127 /* BEGIN CSTYLED */
1128 static tcpparam_t	lcl_tcp_param_arr[] = {
1129  /*min		max		value		name */
1130  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1131  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1132  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1133  { 1,		1024,		1,		"tcp_conn_req_min" },
1134  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1135  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1136  { 0,		10,		0,		"tcp_debug" },
1137  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1138  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1139  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1140  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1141  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1142  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1143  { 1,		255,		64,		"tcp_ipv4_ttl"},
1144  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1145  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1146  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1147  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1148  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1149  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1150  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1151  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1152  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1153  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1154  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1155  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1156  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1157  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1158  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1159  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1160  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1161  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1162  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1163  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1164  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1165  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1166  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1167  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1168 /*
1169  * Question:  What default value should I set for tcp_strong_iss?
1170  */
1171  { 0,		2,		1,		"tcp_strong_iss"},
1172  { 0,		65536,		20,		"tcp_rtt_updates"},
1173  { 0,		1,		1,		"tcp_wscale_always"},
1174  { 0,		1,		0,		"tcp_tstamp_always"},
1175  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1176  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1177  { 0,		16,		2,		"tcp_deferred_acks_max"},
1178  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1179  { 1,		4,		4,		"tcp_slow_start_initial"},
1180  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1181  { 0,		2,		2,		"tcp_sack_permitted"},
1182  { 0,		1,		0,		"tcp_trace"},
1183  { 0,		1,		1,		"tcp_compression_enabled"},
1184  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1185  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1186  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1187  { 0,		1,		0,		"tcp_rev_src_routes"},
1188  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1189  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1190  { 0,		16,		8,		"tcp_local_dacks_max"},
1191  { 0,		2,		1,		"tcp_ecn_permitted"},
1192  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1193  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1194  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1195  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1196  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1197 };
1198 /* END CSTYLED */
1199 
1200 /*
1201  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1202  * each header fragment in the header buffer.  Each parameter value has
1203  * to be a multiple of 4 (32-bit aligned).
1204  */
1205 static tcpparam_t lcl_tcp_mdt_head_param =
1206 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1207 static tcpparam_t lcl_tcp_mdt_tail_param =
1208 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1209 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1210 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1211 
1212 /*
1213  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1214  * the maximum number of payload buffers associated per Multidata.
1215  */
1216 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1217 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1218 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1219 
1220 /* Round up the value to the nearest mss. */
1221 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1222 
1223 /*
1224  * Set ECN capable transport (ECT) code point in IP header.
1225  *
1226  * Note that there are 2 ECT code points '01' and '10', which are called
1227  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1228  * point ECT(0) for TCP as described in RFC 2481.
1229  */
1230 #define	SET_ECT(tcp, iph) \
1231 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1232 		/* We need to clear the code point first. */ \
1233 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1234 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1235 	} else { \
1236 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1237 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1238 	}
1239 
1240 /*
1241  * The format argument to pass to tcp_display().
1242  * DISP_PORT_ONLY means that the returned string has only port info.
1243  * DISP_ADDR_AND_PORT means that the returned string also contains the
1244  * remote and local IP address.
1245  */
1246 #define	DISP_PORT_ONLY		1
1247 #define	DISP_ADDR_AND_PORT	2
1248 
1249 #define	NDD_TOO_QUICK_MSG \
1250 	"ndd get info rate too high for non-privileged users, try again " \
1251 	"later.\n"
1252 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1253 
1254 #define	IS_VMLOANED_MBLK(mp) \
1255 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1256 
1257 
1258 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1259 boolean_t tcp_mdt_chain = B_TRUE;
1260 
1261 /*
1262  * MDT threshold in the form of effective send MSS multiplier; we take
1263  * the MDT path if the amount of unsent data exceeds the threshold value
1264  * (default threshold is 1*SMSS).
1265  */
1266 uint_t tcp_mdt_smss_threshold = 1;
1267 
1268 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1269 
1270 /*
1271  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1272  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1273  * determined dynamically during tcp_adapt_ire(), which is the default.
1274  */
1275 boolean_t tcp_static_maxpsz = B_FALSE;
1276 
1277 /* Setable in /etc/system */
1278 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1279 uint32_t tcp_random_anon_port = 1;
1280 
1281 /*
1282  * To reach to an eager in Q0 which can be dropped due to an incoming
1283  * new SYN request when Q0 is full, a new doubly linked list is
1284  * introduced. This list allows to select an eager from Q0 in O(1) time.
1285  * This is needed to avoid spending too much time walking through the
1286  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1287  * this new list has to be a member of Q0.
1288  * This list is headed by listener's tcp_t. When the list is empty,
1289  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1290  * of listener's tcp_t point to listener's tcp_t itself.
1291  *
1292  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1293  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1294  * These macros do not affect the eager's membership to Q0.
1295  */
1296 
1297 
1298 #define	MAKE_DROPPABLE(listener, eager)					\
1299 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1300 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1301 		    = (eager);						\
1302 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1303 		(eager)->tcp_eager_next_drop_q0 =			\
1304 		    (listener)->tcp_eager_next_drop_q0;			\
1305 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1306 	}
1307 
1308 #define	MAKE_UNDROPPABLE(eager)						\
1309 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1310 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1311 		    = (eager)->tcp_eager_prev_drop_q0;			\
1312 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1313 		    = (eager)->tcp_eager_next_drop_q0;			\
1314 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1315 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1316 	}
1317 
1318 /*
1319  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1320  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1321  * data, TCP will not respond with an ACK.  RFC 793 requires that
1322  * TCP responds with an ACK for such a bogus ACK.  By not following
1323  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1324  * an attacker successfully spoofs an acceptable segment to our
1325  * peer; or when our peer is "confused."
1326  */
1327 uint32_t tcp_drop_ack_unsent_cnt = 10;
1328 
1329 /*
1330  * Hook functions to enable cluster networking
1331  * On non-clustered systems these vectors must always be NULL.
1332  */
1333 
1334 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1335 			    uint8_t *laddrp, in_port_t lport) = NULL;
1336 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1337 			    uint8_t *laddrp, in_port_t lport) = NULL;
1338 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1342 			    uint8_t *laddrp, in_port_t lport,
1343 			    uint8_t *faddrp, in_port_t fport) = NULL;
1344 
1345 /*
1346  * The following are defined in ip.c
1347  */
1348 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1349 				uint8_t *laddrp);
1350 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1351 				uint8_t *laddrp, uint8_t *faddrp);
1352 
1353 #define	CL_INET_CONNECT(tcp)		{			\
1354 	if (cl_inet_connect != NULL) {				\
1355 		/*						\
1356 		 * Running in cluster mode - register active connection	\
1357 		 * information						\
1358 		 */							\
1359 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1360 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1361 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1362 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1363 				    (in_port_t)(tcp)->tcp_lport,	\
1364 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1365 				    (in_port_t)(tcp)->tcp_fport);	\
1366 			}						\
1367 		} else {						\
1368 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1369 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1370 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1371 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1372 				    (in_port_t)(tcp)->tcp_lport,	\
1373 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1374 				    (in_port_t)(tcp)->tcp_fport);	\
1375 			}						\
1376 		}							\
1377 	}								\
1378 }
1379 
1380 #define	CL_INET_DISCONNECT(tcp)	{				\
1381 	if (cl_inet_disconnect != NULL) {				\
1382 		/*							\
1383 		 * Running in cluster mode - deregister active		\
1384 		 * connection information				\
1385 		 */							\
1386 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1387 			if ((tcp)->tcp_ip_src != 0) {			\
1388 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1389 				    AF_INET,				\
1390 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1391 				    (in_port_t)(tcp)->tcp_lport,	\
1392 				    (uint8_t *)				\
1393 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1394 				    (in_port_t)(tcp)->tcp_fport);	\
1395 			}						\
1396 		} else {						\
1397 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1398 			    &(tcp)->tcp_ip_src_v6)) {			\
1399 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1400 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1401 				    (in_port_t)(tcp)->tcp_lport,	\
1402 				    (uint8_t *)				\
1403 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1404 				    (in_port_t)(tcp)->tcp_fport);	\
1405 			}						\
1406 		}							\
1407 	}								\
1408 }
1409 
1410 /*
1411  * Cluster networking hook for traversing current connection list.
1412  * This routine is used to extract the current list of live connections
1413  * which must continue to to be dispatched to this node.
1414  */
1415 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1416 
1417 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1418     void *arg, tcp_stack_t *tcps);
1419 
1420 /*
1421  * Figure out the value of window scale opton.  Note that the rwnd is
1422  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1423  * We cannot find the scale value and then do a round up of tcp_rwnd
1424  * because the scale value may not be correct after that.
1425  *
1426  * Set the compiler flag to make this function inline.
1427  */
1428 static void
1429 tcp_set_ws_value(tcp_t *tcp)
1430 {
1431 	int i;
1432 	uint32_t rwnd = tcp->tcp_rwnd;
1433 
1434 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1435 	    i++, rwnd >>= 1)
1436 		;
1437 	tcp->tcp_rcv_ws = i;
1438 }
1439 
1440 /*
1441  * Remove a connection from the list of detached TIME_WAIT connections.
1442  * It returns B_FALSE if it can't remove the connection from the list
1443  * as the connection has already been removed from the list due to an
1444  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1445  */
1446 static boolean_t
1447 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1448 {
1449 	boolean_t	locked = B_FALSE;
1450 
1451 	if (tcp_time_wait == NULL) {
1452 		tcp_time_wait = *((tcp_squeue_priv_t **)
1453 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1454 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1455 		locked = B_TRUE;
1456 	} else {
1457 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1458 	}
1459 
1460 	if (tcp->tcp_time_wait_expire == 0) {
1461 		ASSERT(tcp->tcp_time_wait_next == NULL);
1462 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1463 		if (locked)
1464 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1465 		return (B_FALSE);
1466 	}
1467 	ASSERT(TCP_IS_DETACHED(tcp));
1468 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1469 
1470 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1471 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1472 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1473 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1474 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1475 			    NULL;
1476 		} else {
1477 			tcp_time_wait->tcp_time_wait_tail = NULL;
1478 		}
1479 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1480 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1481 		ASSERT(tcp->tcp_time_wait_next == NULL);
1482 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1483 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1484 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1485 	} else {
1486 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1487 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1488 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1489 		    tcp->tcp_time_wait_next;
1490 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1491 		    tcp->tcp_time_wait_prev;
1492 	}
1493 	tcp->tcp_time_wait_next = NULL;
1494 	tcp->tcp_time_wait_prev = NULL;
1495 	tcp->tcp_time_wait_expire = 0;
1496 
1497 	if (locked)
1498 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1499 	return (B_TRUE);
1500 }
1501 
1502 /*
1503  * Add a connection to the list of detached TIME_WAIT connections
1504  * and set its time to expire.
1505  */
1506 static void
1507 tcp_time_wait_append(tcp_t *tcp)
1508 {
1509 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1510 	tcp_squeue_priv_t *tcp_time_wait =
1511 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1512 		SQPRIVATE_TCP));
1513 
1514 	tcp_timers_stop(tcp);
1515 
1516 	/* Freed above */
1517 	ASSERT(tcp->tcp_timer_tid == 0);
1518 	ASSERT(tcp->tcp_ack_tid == 0);
1519 
1520 	/* must have happened at the time of detaching the tcp */
1521 	ASSERT(tcp->tcp_ptpahn == NULL);
1522 	ASSERT(tcp->tcp_flow_stopped == 0);
1523 	ASSERT(tcp->tcp_time_wait_next == NULL);
1524 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1525 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1526 	ASSERT(tcp->tcp_listener == NULL);
1527 
1528 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1529 	/*
1530 	 * The value computed below in tcp->tcp_time_wait_expire may
1531 	 * appear negative or wrap around. That is ok since our
1532 	 * interest is only in the difference between the current lbolt
1533 	 * value and tcp->tcp_time_wait_expire. But the value should not
1534 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1535 	 * The corresponding comparison in tcp_time_wait_collector() uses
1536 	 * modular arithmetic.
1537 	 */
1538 	tcp->tcp_time_wait_expire +=
1539 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1540 	if (tcp->tcp_time_wait_expire == 0)
1541 		tcp->tcp_time_wait_expire = 1;
1542 
1543 	ASSERT(TCP_IS_DETACHED(tcp));
1544 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1545 	ASSERT(tcp->tcp_time_wait_next == NULL);
1546 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1547 	TCP_DBGSTAT(tcps, tcp_time_wait);
1548 
1549 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1550 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1551 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1552 		tcp_time_wait->tcp_time_wait_head = tcp;
1553 	} else {
1554 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1555 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1556 		    TCPS_TIME_WAIT);
1557 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1558 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1559 	}
1560 	tcp_time_wait->tcp_time_wait_tail = tcp;
1561 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1562 }
1563 
1564 /* ARGSUSED */
1565 void
1566 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1567 {
1568 	conn_t	*connp = (conn_t *)arg;
1569 	tcp_t	*tcp = connp->conn_tcp;
1570 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1571 
1572 	ASSERT(tcp != NULL);
1573 	if (tcp->tcp_state == TCPS_CLOSED) {
1574 		return;
1575 	}
1576 
1577 	ASSERT((tcp->tcp_family == AF_INET &&
1578 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1579 	    (tcp->tcp_family == AF_INET6 &&
1580 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1581 	    tcp->tcp_ipversion == IPV6_VERSION)));
1582 	ASSERT(!tcp->tcp_listener);
1583 
1584 	TCP_STAT(tcps, tcp_time_wait_reap);
1585 	ASSERT(TCP_IS_DETACHED(tcp));
1586 
1587 	/*
1588 	 * Because they have no upstream client to rebind or tcp_close()
1589 	 * them later, we axe the connection here and now.
1590 	 */
1591 	tcp_close_detached(tcp);
1592 }
1593 
1594 /*
1595  * Remove cached/latched IPsec references.
1596  */
1597 void
1598 tcp_ipsec_cleanup(tcp_t *tcp)
1599 {
1600 	conn_t		*connp = tcp->tcp_connp;
1601 
1602 	if (connp->conn_flags & IPCL_TCPCONN) {
1603 		if (connp->conn_latch != NULL) {
1604 			IPLATCH_REFRELE(connp->conn_latch,
1605 			    connp->conn_netstack);
1606 			connp->conn_latch = NULL;
1607 		}
1608 		if (connp->conn_policy != NULL) {
1609 			IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1610 			connp->conn_policy = NULL;
1611 		}
1612 	}
1613 }
1614 
1615 /*
1616  * Cleaup before placing on free list.
1617  * Disassociate from the netstack/tcp_stack_t since the freelist
1618  * is per squeue and not per netstack.
1619  */
1620 void
1621 tcp_cleanup(tcp_t *tcp)
1622 {
1623 	mblk_t		*mp;
1624 	char		*tcp_iphc;
1625 	int		tcp_iphc_len;
1626 	int		tcp_hdr_grown;
1627 	tcp_sack_info_t	*tcp_sack_info;
1628 	conn_t		*connp = tcp->tcp_connp;
1629 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1630 	netstack_t	*ns = tcps->tcps_netstack;
1631 
1632 	tcp_bind_hash_remove(tcp);
1633 
1634 	/* Cleanup that which needs the netstack first */
1635 	tcp_ipsec_cleanup(tcp);
1636 
1637 	tcp_free(tcp);
1638 
1639 	/* Release any SSL context */
1640 	if (tcp->tcp_kssl_ent != NULL) {
1641 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1642 		tcp->tcp_kssl_ent = NULL;
1643 	}
1644 
1645 	if (tcp->tcp_kssl_ctx != NULL) {
1646 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1647 		tcp->tcp_kssl_ctx = NULL;
1648 	}
1649 	tcp->tcp_kssl_pending = B_FALSE;
1650 
1651 	conn_delete_ire(connp, NULL);
1652 
1653 	/*
1654 	 * Since we will bzero the entire structure, we need to
1655 	 * remove it and reinsert it in global hash list. We
1656 	 * know the walkers can't get to this conn because we
1657 	 * had set CONDEMNED flag earlier and checked reference
1658 	 * under conn_lock so walker won't pick it and when we
1659 	 * go the ipcl_globalhash_remove() below, no walker
1660 	 * can get to it.
1661 	 */
1662 	ipcl_globalhash_remove(connp);
1663 
1664 	/*
1665 	 * Now it is safe to decrement the reference counts.
1666 	 * This might be the last reference on the netstack and TCPS
1667 	 * in which case it will cause the tcp_g_q_close and
1668 	 * the freeing of the IP Instance.
1669 	 */
1670 	connp->conn_netstack = NULL;
1671 	netstack_rele(ns);
1672 	ASSERT(tcps != NULL);
1673 	tcp->tcp_tcps = NULL;
1674 	TCPS_REFRELE(tcps);
1675 
1676 	/* Save some state */
1677 	mp = tcp->tcp_timercache;
1678 
1679 	tcp_sack_info = tcp->tcp_sack_info;
1680 	tcp_iphc = tcp->tcp_iphc;
1681 	tcp_iphc_len = tcp->tcp_iphc_len;
1682 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1683 
1684 	if (connp->conn_cred != NULL)
1685 		crfree(connp->conn_cred);
1686 	if (connp->conn_peercred != NULL)
1687 		crfree(connp->conn_peercred);
1688 	bzero(connp, sizeof (conn_t));
1689 	bzero(tcp, sizeof (tcp_t));
1690 
1691 	/* restore the state */
1692 	tcp->tcp_timercache = mp;
1693 
1694 	tcp->tcp_sack_info = tcp_sack_info;
1695 	tcp->tcp_iphc = tcp_iphc;
1696 	tcp->tcp_iphc_len = tcp_iphc_len;
1697 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1698 
1699 
1700 	tcp->tcp_connp = connp;
1701 
1702 	connp->conn_tcp = tcp;
1703 	connp->conn_flags = IPCL_TCPCONN;
1704 	connp->conn_state_flags = CONN_INCIPIENT;
1705 	connp->conn_ulp = IPPROTO_TCP;
1706 	connp->conn_ref = 1;
1707 }
1708 
1709 /*
1710  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1711  * is done forwards from the head.
1712  * This walks all stack instances since
1713  * tcp_time_wait remains global across all stacks.
1714  */
1715 /* ARGSUSED */
1716 void
1717 tcp_time_wait_collector(void *arg)
1718 {
1719 	tcp_t *tcp;
1720 	clock_t now;
1721 	mblk_t *mp;
1722 	conn_t *connp;
1723 	kmutex_t *lock;
1724 	boolean_t removed;
1725 
1726 	squeue_t *sqp = (squeue_t *)arg;
1727 	tcp_squeue_priv_t *tcp_time_wait =
1728 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1729 
1730 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1731 	tcp_time_wait->tcp_time_wait_tid = 0;
1732 
1733 	if (tcp_time_wait->tcp_free_list != NULL &&
1734 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1735 		TCP_G_STAT(tcp_freelist_cleanup);
1736 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1737 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1738 			tcp->tcp_time_wait_next = NULL;
1739 			tcp_time_wait->tcp_free_list_cnt--;
1740 			ASSERT(tcp->tcp_tcps == NULL);
1741 			CONN_DEC_REF(tcp->tcp_connp);
1742 		}
1743 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1744 	}
1745 
1746 	/*
1747 	 * In order to reap time waits reliably, we should use a
1748 	 * source of time that is not adjustable by the user -- hence
1749 	 * the call to ddi_get_lbolt().
1750 	 */
1751 	now = ddi_get_lbolt();
1752 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1753 		/*
1754 		 * Compare times using modular arithmetic, since
1755 		 * lbolt can wrapover.
1756 		 */
1757 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1758 			break;
1759 		}
1760 
1761 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1762 		ASSERT(removed);
1763 
1764 		connp = tcp->tcp_connp;
1765 		ASSERT(connp->conn_fanout != NULL);
1766 		lock = &connp->conn_fanout->connf_lock;
1767 		/*
1768 		 * This is essentially a TW reclaim fast path optimization for
1769 		 * performance where the timewait collector checks under the
1770 		 * fanout lock (so that no one else can get access to the
1771 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1772 		 * the classifier hash list. If ref count is indeed 2, we can
1773 		 * just remove the conn under the fanout lock and avoid
1774 		 * cleaning up the conn under the squeue, provided that
1775 		 * clustering callbacks are not enabled. If clustering is
1776 		 * enabled, we need to make the clustering callback before
1777 		 * setting the CONDEMNED flag and after dropping all locks and
1778 		 * so we forego this optimization and fall back to the slow
1779 		 * path. Also please see the comments in tcp_closei_local
1780 		 * regarding the refcnt logic.
1781 		 *
1782 		 * Since we are holding the tcp_time_wait_lock, its better
1783 		 * not to block on the fanout_lock because other connections
1784 		 * can't add themselves to time_wait list. So we do a
1785 		 * tryenter instead of mutex_enter.
1786 		 */
1787 		if (mutex_tryenter(lock)) {
1788 			mutex_enter(&connp->conn_lock);
1789 			if ((connp->conn_ref == 2) &&
1790 			    (cl_inet_disconnect == NULL)) {
1791 				ipcl_hash_remove_locked(connp,
1792 				    connp->conn_fanout);
1793 				/*
1794 				 * Set the CONDEMNED flag now itself so that
1795 				 * the refcnt cannot increase due to any
1796 				 * walker. But we have still not cleaned up
1797 				 * conn_ire_cache. This is still ok since
1798 				 * we are going to clean it up in tcp_cleanup
1799 				 * immediately and any interface unplumb
1800 				 * thread will wait till the ire is blown away
1801 				 */
1802 				connp->conn_state_flags |= CONN_CONDEMNED;
1803 				mutex_exit(lock);
1804 				mutex_exit(&connp->conn_lock);
1805 				if (tcp_time_wait->tcp_free_list_cnt <
1806 				    tcp_free_list_max_cnt) {
1807 					/* Add to head of tcp_free_list */
1808 					mutex_exit(
1809 					    &tcp_time_wait->tcp_time_wait_lock);
1810 					tcp_cleanup(tcp);
1811 					ASSERT(connp->conn_latch == NULL);
1812 					ASSERT(connp->conn_policy == NULL);
1813 					ASSERT(tcp->tcp_tcps == NULL);
1814 					ASSERT(connp->conn_netstack == NULL);
1815 
1816 					mutex_enter(
1817 					    &tcp_time_wait->tcp_time_wait_lock);
1818 					tcp->tcp_time_wait_next =
1819 					    tcp_time_wait->tcp_free_list;
1820 					tcp_time_wait->tcp_free_list = tcp;
1821 					tcp_time_wait->tcp_free_list_cnt++;
1822 					continue;
1823 				} else {
1824 					/* Do not add to tcp_free_list */
1825 					mutex_exit(
1826 					    &tcp_time_wait->tcp_time_wait_lock);
1827 					tcp_bind_hash_remove(tcp);
1828 					conn_delete_ire(tcp->tcp_connp, NULL);
1829 					tcp_ipsec_cleanup(tcp);
1830 					CONN_DEC_REF(tcp->tcp_connp);
1831 				}
1832 			} else {
1833 				CONN_INC_REF_LOCKED(connp);
1834 				mutex_exit(lock);
1835 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1836 				mutex_exit(&connp->conn_lock);
1837 				/*
1838 				 * We can reuse the closemp here since conn has
1839 				 * detached (otherwise we wouldn't even be in
1840 				 * time_wait list). tcp_closemp_used can safely
1841 				 * be changed without taking a lock as no other
1842 				 * thread can concurrently access it at this
1843 				 * point in the connection lifecycle.
1844 				 */
1845 
1846 				if (tcp->tcp_closemp.b_prev == NULL)
1847 					tcp->tcp_closemp_used = B_TRUE;
1848 				else
1849 					cmn_err(CE_PANIC,
1850 					    "tcp_timewait_collector: "
1851 					    "concurrent use of tcp_closemp: "
1852 					    "connp %p tcp %p\n", (void *)connp,
1853 					    (void *)tcp);
1854 
1855 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1856 				mp = &tcp->tcp_closemp;
1857 				squeue_fill(connp->conn_sqp, mp,
1858 				    tcp_timewait_output, connp,
1859 				    SQTAG_TCP_TIMEWAIT);
1860 			}
1861 		} else {
1862 			mutex_enter(&connp->conn_lock);
1863 			CONN_INC_REF_LOCKED(connp);
1864 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1865 			mutex_exit(&connp->conn_lock);
1866 			/*
1867 			 * We can reuse the closemp here since conn has
1868 			 * detached (otherwise we wouldn't even be in
1869 			 * time_wait list). tcp_closemp_used can safely
1870 			 * be changed without taking a lock as no other
1871 			 * thread can concurrently access it at this
1872 			 * point in the connection lifecycle.
1873 			 */
1874 
1875 			if (tcp->tcp_closemp.b_prev == NULL)
1876 				tcp->tcp_closemp_used = B_TRUE;
1877 			else
1878 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1879 				    "concurrent use of tcp_closemp: "
1880 				    "connp %p tcp %p\n", (void *)connp,
1881 				    (void *)tcp);
1882 
1883 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1884 			mp = &tcp->tcp_closemp;
1885 			squeue_fill(connp->conn_sqp, mp,
1886 			    tcp_timewait_output, connp, 0);
1887 		}
1888 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1889 	}
1890 
1891 	if (tcp_time_wait->tcp_free_list != NULL)
1892 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1893 
1894 	tcp_time_wait->tcp_time_wait_tid =
1895 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1896 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1897 }
1898 /*
1899  * Reply to a clients T_CONN_RES TPI message. This function
1900  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1901  * on the acceptor STREAM and processed in tcp_wput_accept().
1902  * Read the block comment on top of tcp_conn_request().
1903  */
1904 static void
1905 tcp_accept(tcp_t *listener, mblk_t *mp)
1906 {
1907 	tcp_t	*acceptor;
1908 	tcp_t	*eager;
1909 	tcp_t   *tcp;
1910 	struct T_conn_res	*tcr;
1911 	t_uscalar_t	acceptor_id;
1912 	t_scalar_t	seqnum;
1913 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1914 	mblk_t	*ok_mp;
1915 	mblk_t	*mp1;
1916 	tcp_stack_t	*tcps = listener->tcp_tcps;
1917 
1918 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1919 		tcp_err_ack(listener, mp, TPROTO, 0);
1920 		return;
1921 	}
1922 	tcr = (struct T_conn_res *)mp->b_rptr;
1923 
1924 	/*
1925 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1926 	 * read side queue of the streams device underneath us i.e. the
1927 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1928 	 * look it up in the queue_hash.  Under LP64 it sends down the
1929 	 * minor_t of the accepting endpoint.
1930 	 *
1931 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1932 	 * fanout hash lock is held.
1933 	 * This prevents any thread from entering the acceptor queue from
1934 	 * below (since it has not been hard bound yet i.e. any inbound
1935 	 * packets will arrive on the listener or default tcp queue and
1936 	 * go through tcp_lookup).
1937 	 * The CONN_INC_REF will prevent the acceptor from closing.
1938 	 *
1939 	 * XXX It is still possible for a tli application to send down data
1940 	 * on the accepting stream while another thread calls t_accept.
1941 	 * This should not be a problem for well-behaved applications since
1942 	 * the T_OK_ACK is sent after the queue swapping is completed.
1943 	 *
1944 	 * If the accepting fd is the same as the listening fd, avoid
1945 	 * queue hash lookup since that will return an eager listener in a
1946 	 * already established state.
1947 	 */
1948 	acceptor_id = tcr->ACCEPTOR_id;
1949 	mutex_enter(&listener->tcp_eager_lock);
1950 	if (listener->tcp_acceptor_id == acceptor_id) {
1951 		eager = listener->tcp_eager_next_q;
1952 		/* only count how many T_CONN_INDs so don't count q0 */
1953 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1954 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1955 			mutex_exit(&listener->tcp_eager_lock);
1956 			tcp_err_ack(listener, mp, TBADF, 0);
1957 			return;
1958 		}
1959 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1960 			/* Throw away all the eagers on q0. */
1961 			tcp_eager_cleanup(listener, 1);
1962 		}
1963 		if (listener->tcp_syn_defense) {
1964 			listener->tcp_syn_defense = B_FALSE;
1965 			if (listener->tcp_ip_addr_cache != NULL) {
1966 				kmem_free(listener->tcp_ip_addr_cache,
1967 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1968 				listener->tcp_ip_addr_cache = NULL;
1969 			}
1970 		}
1971 		/*
1972 		 * Transfer tcp_conn_req_max to the eager so that when
1973 		 * a disconnect occurs we can revert the endpoint to the
1974 		 * listen state.
1975 		 */
1976 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1977 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1978 		/*
1979 		 * Get a reference on the acceptor just like the
1980 		 * tcp_acceptor_hash_lookup below.
1981 		 */
1982 		acceptor = listener;
1983 		CONN_INC_REF(acceptor->tcp_connp);
1984 	} else {
1985 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1986 		if (acceptor == NULL) {
1987 			if (listener->tcp_debug) {
1988 				(void) strlog(TCP_MOD_ID, 0, 1,
1989 				    SL_ERROR|SL_TRACE,
1990 				    "tcp_accept: did not find acceptor 0x%x\n",
1991 				    acceptor_id);
1992 			}
1993 			mutex_exit(&listener->tcp_eager_lock);
1994 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1995 			return;
1996 		}
1997 		/*
1998 		 * Verify acceptor state. The acceptable states for an acceptor
1999 		 * include TCPS_IDLE and TCPS_BOUND.
2000 		 */
2001 		switch (acceptor->tcp_state) {
2002 		case TCPS_IDLE:
2003 			/* FALLTHRU */
2004 		case TCPS_BOUND:
2005 			break;
2006 		default:
2007 			CONN_DEC_REF(acceptor->tcp_connp);
2008 			mutex_exit(&listener->tcp_eager_lock);
2009 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2010 			return;
2011 		}
2012 	}
2013 
2014 	/* The listener must be in TCPS_LISTEN */
2015 	if (listener->tcp_state != TCPS_LISTEN) {
2016 		CONN_DEC_REF(acceptor->tcp_connp);
2017 		mutex_exit(&listener->tcp_eager_lock);
2018 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2019 		return;
2020 	}
2021 
2022 	/*
2023 	 * Rendezvous with an eager connection request packet hanging off
2024 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2025 	 * tcp structure when the connection packet arrived in
2026 	 * tcp_conn_request().
2027 	 */
2028 	seqnum = tcr->SEQ_number;
2029 	eager = listener;
2030 	do {
2031 		eager = eager->tcp_eager_next_q;
2032 		if (eager == NULL) {
2033 			CONN_DEC_REF(acceptor->tcp_connp);
2034 			mutex_exit(&listener->tcp_eager_lock);
2035 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2036 			return;
2037 		}
2038 	} while (eager->tcp_conn_req_seqnum != seqnum);
2039 	mutex_exit(&listener->tcp_eager_lock);
2040 
2041 	/*
2042 	 * At this point, both acceptor and listener have 2 ref
2043 	 * that they begin with. Acceptor has one additional ref
2044 	 * we placed in lookup while listener has 3 additional
2045 	 * ref for being behind the squeue (tcp_accept() is
2046 	 * done on listener's squeue); being in classifier hash;
2047 	 * and eager's ref on listener.
2048 	 */
2049 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2050 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2051 
2052 	/*
2053 	 * The eager at this point is set in its own squeue and
2054 	 * could easily have been killed (tcp_accept_finish will
2055 	 * deal with that) because of a TH_RST so we can only
2056 	 * ASSERT for a single ref.
2057 	 */
2058 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2059 
2060 	/* Pre allocate the stroptions mblk also */
2061 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2062 	if (opt_mp == NULL) {
2063 		CONN_DEC_REF(acceptor->tcp_connp);
2064 		CONN_DEC_REF(eager->tcp_connp);
2065 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2066 		return;
2067 	}
2068 	DB_TYPE(opt_mp) = M_SETOPTS;
2069 	opt_mp->b_wptr += sizeof (struct stroptions);
2070 
2071 	/*
2072 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2073 	 * from listener to acceptor. The message is chained on opt_mp
2074 	 * which will be sent onto eager's squeue.
2075 	 */
2076 	if (listener->tcp_bound_if != 0) {
2077 		/* allocate optmgmt req */
2078 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2079 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2080 		    sizeof (int));
2081 		if (mp1 != NULL)
2082 			linkb(opt_mp, mp1);
2083 	}
2084 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2085 		uint_t on = 1;
2086 
2087 		/* allocate optmgmt req */
2088 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2089 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2090 		if (mp1 != NULL)
2091 			linkb(opt_mp, mp1);
2092 	}
2093 
2094 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2095 	if ((mp1 = copymsg(mp)) == NULL) {
2096 		CONN_DEC_REF(acceptor->tcp_connp);
2097 		CONN_DEC_REF(eager->tcp_connp);
2098 		freemsg(opt_mp);
2099 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2100 		return;
2101 	}
2102 
2103 	tcr = (struct T_conn_res *)mp1->b_rptr;
2104 
2105 	/*
2106 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2107 	 * which allocates a larger mblk and appends the new
2108 	 * local address to the ok_ack.  The address is copied by
2109 	 * soaccept() for getsockname().
2110 	 */
2111 	{
2112 		int extra;
2113 
2114 		extra = (eager->tcp_family == AF_INET) ?
2115 		    sizeof (sin_t) : sizeof (sin6_t);
2116 
2117 		/*
2118 		 * Try to re-use mp, if possible.  Otherwise, allocate
2119 		 * an mblk and return it as ok_mp.  In any case, mp
2120 		 * is no longer usable upon return.
2121 		 */
2122 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2123 			CONN_DEC_REF(acceptor->tcp_connp);
2124 			CONN_DEC_REF(eager->tcp_connp);
2125 			freemsg(opt_mp);
2126 			/* Original mp has been freed by now, so use mp1 */
2127 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2128 			return;
2129 		}
2130 
2131 		mp = NULL;	/* We should never use mp after this point */
2132 
2133 		switch (extra) {
2134 		case sizeof (sin_t): {
2135 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2136 
2137 				ok_mp->b_wptr += extra;
2138 				sin->sin_family = AF_INET;
2139 				sin->sin_port = eager->tcp_lport;
2140 				sin->sin_addr.s_addr =
2141 				    eager->tcp_ipha->ipha_src;
2142 				break;
2143 			}
2144 		case sizeof (sin6_t): {
2145 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2146 
2147 				ok_mp->b_wptr += extra;
2148 				sin6->sin6_family = AF_INET6;
2149 				sin6->sin6_port = eager->tcp_lport;
2150 				if (eager->tcp_ipversion == IPV4_VERSION) {
2151 					sin6->sin6_flowinfo = 0;
2152 					IN6_IPADDR_TO_V4MAPPED(
2153 					    eager->tcp_ipha->ipha_src,
2154 					    &sin6->sin6_addr);
2155 				} else {
2156 					ASSERT(eager->tcp_ip6h != NULL);
2157 					sin6->sin6_flowinfo =
2158 					    eager->tcp_ip6h->ip6_vcf &
2159 					    ~IPV6_VERS_AND_FLOW_MASK;
2160 					sin6->sin6_addr =
2161 					    eager->tcp_ip6h->ip6_src;
2162 				}
2163 				sin6->sin6_scope_id = 0;
2164 				sin6->__sin6_src_id = 0;
2165 				break;
2166 			}
2167 		default:
2168 			break;
2169 		}
2170 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2171 	}
2172 
2173 	/*
2174 	 * If there are no options we know that the T_CONN_RES will
2175 	 * succeed. However, we can't send the T_OK_ACK upstream until
2176 	 * the tcp_accept_swap is done since it would be dangerous to
2177 	 * let the application start using the new fd prior to the swap.
2178 	 */
2179 	tcp_accept_swap(listener, acceptor, eager);
2180 
2181 	/*
2182 	 * tcp_accept_swap unlinks eager from listener but does not drop
2183 	 * the eager's reference on the listener.
2184 	 */
2185 	ASSERT(eager->tcp_listener == NULL);
2186 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2187 
2188 	/*
2189 	 * The eager is now associated with its own queue. Insert in
2190 	 * the hash so that the connection can be reused for a future
2191 	 * T_CONN_RES.
2192 	 */
2193 	tcp_acceptor_hash_insert(acceptor_id, eager);
2194 
2195 	/*
2196 	 * We now do the processing of options with T_CONN_RES.
2197 	 * We delay till now since we wanted to have queue to pass to
2198 	 * option processing routines that points back to the right
2199 	 * instance structure which does not happen until after
2200 	 * tcp_accept_swap().
2201 	 *
2202 	 * Note:
2203 	 * The sanity of the logic here assumes that whatever options
2204 	 * are appropriate to inherit from listner=>eager are done
2205 	 * before this point, and whatever were to be overridden (or not)
2206 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2207 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2208 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2209 	 * This may not be true at this point in time but can be fixed
2210 	 * independently. This option processing code starts with
2211 	 * the instantiated acceptor instance and the final queue at
2212 	 * this point.
2213 	 */
2214 
2215 	if (tcr->OPT_length != 0) {
2216 		/* Options to process */
2217 		int t_error = 0;
2218 		int sys_error = 0;
2219 		int do_disconnect = 0;
2220 
2221 		if (tcp_conprim_opt_process(eager, mp1,
2222 		    &do_disconnect, &t_error, &sys_error) < 0) {
2223 			eager->tcp_accept_error = 1;
2224 			if (do_disconnect) {
2225 				/*
2226 				 * An option failed which does not allow
2227 				 * connection to be accepted.
2228 				 *
2229 				 * We allow T_CONN_RES to succeed and
2230 				 * put a T_DISCON_IND on the eager queue.
2231 				 */
2232 				ASSERT(t_error == 0 && sys_error == 0);
2233 				eager->tcp_send_discon_ind = 1;
2234 			} else {
2235 				ASSERT(t_error != 0);
2236 				freemsg(ok_mp);
2237 				/*
2238 				 * Original mp was either freed or set
2239 				 * to ok_mp above, so use mp1 instead.
2240 				 */
2241 				tcp_err_ack(listener, mp1, t_error, sys_error);
2242 				goto finish;
2243 			}
2244 		}
2245 		/*
2246 		 * Most likely success in setting options (except if
2247 		 * eager->tcp_send_discon_ind set).
2248 		 * mp1 option buffer represented by OPT_length/offset
2249 		 * potentially modified and contains results of setting
2250 		 * options at this point
2251 		 */
2252 	}
2253 
2254 	/* We no longer need mp1, since all options processing has passed */
2255 	freemsg(mp1);
2256 
2257 	putnext(listener->tcp_rq, ok_mp);
2258 
2259 	mutex_enter(&listener->tcp_eager_lock);
2260 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2261 		tcp_t	*tail;
2262 		mblk_t	*conn_ind;
2263 
2264 		/*
2265 		 * This path should not be executed if listener and
2266 		 * acceptor streams are the same.
2267 		 */
2268 		ASSERT(listener != acceptor);
2269 
2270 		tcp = listener->tcp_eager_prev_q0;
2271 		/*
2272 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2273 		 * deferred T_conn_ind queue. We need to get to the head of
2274 		 * the queue in order to send up T_conn_ind the same order as
2275 		 * how the 3WHS is completed.
2276 		 */
2277 		while (tcp != listener) {
2278 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2279 				break;
2280 			else
2281 				tcp = tcp->tcp_eager_prev_q0;
2282 		}
2283 		ASSERT(tcp != listener);
2284 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2285 		ASSERT(conn_ind != NULL);
2286 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2287 
2288 		/* Move from q0 to q */
2289 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2290 		listener->tcp_conn_req_cnt_q0--;
2291 		listener->tcp_conn_req_cnt_q++;
2292 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2293 		    tcp->tcp_eager_prev_q0;
2294 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2295 		    tcp->tcp_eager_next_q0;
2296 		tcp->tcp_eager_prev_q0 = NULL;
2297 		tcp->tcp_eager_next_q0 = NULL;
2298 		tcp->tcp_conn_def_q0 = B_FALSE;
2299 
2300 		/* Make sure the tcp isn't in the list of droppables */
2301 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2302 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2303 
2304 		/*
2305 		 * Insert at end of the queue because sockfs sends
2306 		 * down T_CONN_RES in chronological order. Leaving
2307 		 * the older conn indications at front of the queue
2308 		 * helps reducing search time.
2309 		 */
2310 		tail = listener->tcp_eager_last_q;
2311 		if (tail != NULL)
2312 			tail->tcp_eager_next_q = tcp;
2313 		else
2314 			listener->tcp_eager_next_q = tcp;
2315 		listener->tcp_eager_last_q = tcp;
2316 		tcp->tcp_eager_next_q = NULL;
2317 		mutex_exit(&listener->tcp_eager_lock);
2318 		putnext(tcp->tcp_rq, conn_ind);
2319 	} else {
2320 		mutex_exit(&listener->tcp_eager_lock);
2321 	}
2322 
2323 	/*
2324 	 * Done with the acceptor - free it
2325 	 *
2326 	 * Note: from this point on, no access to listener should be made
2327 	 * as listener can be equal to acceptor.
2328 	 */
2329 finish:
2330 	ASSERT(acceptor->tcp_detached);
2331 	ASSERT(tcps->tcps_g_q != NULL);
2332 	acceptor->tcp_rq = tcps->tcps_g_q;
2333 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2334 	(void) tcp_clean_death(acceptor, 0, 2);
2335 	CONN_DEC_REF(acceptor->tcp_connp);
2336 
2337 	/*
2338 	 * In case we already received a FIN we have to make tcp_rput send
2339 	 * the ordrel_ind. This will also send up a window update if the window
2340 	 * has opened up.
2341 	 *
2342 	 * In the normal case of a successful connection acceptance
2343 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2344 	 * indication that this was just accepted. This tells tcp_rput to
2345 	 * pass up any data queued in tcp_rcv_list.
2346 	 *
2347 	 * In the fringe case where options sent with T_CONN_RES failed and
2348 	 * we required, we would be indicating a T_DISCON_IND to blow
2349 	 * away this connection.
2350 	 */
2351 
2352 	/*
2353 	 * XXX: we currently have a problem if XTI application closes the
2354 	 * acceptor stream in between. This problem exists in on10-gate also
2355 	 * and is well know but nothing can be done short of major rewrite
2356 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2357 	 * eager same squeue as listener (we can distinguish non socket
2358 	 * listeners at the time of handling a SYN in tcp_conn_request)
2359 	 * and do most of the work that tcp_accept_finish does here itself
2360 	 * and then get behind the acceptor squeue to access the acceptor
2361 	 * queue.
2362 	 */
2363 	/*
2364 	 * We already have a ref on tcp so no need to do one before squeue_fill
2365 	 */
2366 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2367 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2368 }
2369 
2370 /*
2371  * Swap information between the eager and acceptor for a TLI/XTI client.
2372  * The sockfs accept is done on the acceptor stream and control goes
2373  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2374  * called. In either case, both the eager and listener are in their own
2375  * perimeter (squeue) and the code has to deal with potential race.
2376  *
2377  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2378  */
2379 static void
2380 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2381 {
2382 	conn_t	*econnp, *aconnp;
2383 
2384 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2385 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2386 	ASSERT(!eager->tcp_hard_bound);
2387 	ASSERT(!TCP_IS_SOCKET(acceptor));
2388 	ASSERT(!TCP_IS_SOCKET(eager));
2389 	ASSERT(!TCP_IS_SOCKET(listener));
2390 
2391 	acceptor->tcp_detached = B_TRUE;
2392 	/*
2393 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2394 	 * the acceptor id.
2395 	 */
2396 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2397 
2398 	/* remove eager from listen list... */
2399 	mutex_enter(&listener->tcp_eager_lock);
2400 	tcp_eager_unlink(eager);
2401 	ASSERT(eager->tcp_eager_next_q == NULL &&
2402 	    eager->tcp_eager_last_q == NULL);
2403 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2404 	    eager->tcp_eager_prev_q0 == NULL);
2405 	mutex_exit(&listener->tcp_eager_lock);
2406 	eager->tcp_rq = acceptor->tcp_rq;
2407 	eager->tcp_wq = acceptor->tcp_wq;
2408 
2409 	econnp = eager->tcp_connp;
2410 	aconnp = acceptor->tcp_connp;
2411 
2412 	eager->tcp_rq->q_ptr = econnp;
2413 	eager->tcp_wq->q_ptr = econnp;
2414 
2415 	/*
2416 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2417 	 * which might be a different squeue from our peer TCP instance.
2418 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2419 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2420 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2421 	 * above reach global visibility prior to the clearing of tcp_detached.
2422 	 */
2423 	membar_producer();
2424 	eager->tcp_detached = B_FALSE;
2425 
2426 	ASSERT(eager->tcp_ack_tid == 0);
2427 
2428 	econnp->conn_dev = aconnp->conn_dev;
2429 	if (eager->tcp_cred != NULL)
2430 		crfree(eager->tcp_cred);
2431 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2432 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2433 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2434 
2435 	aconnp->conn_cred = NULL;
2436 
2437 	econnp->conn_zoneid = aconnp->conn_zoneid;
2438 	econnp->conn_allzones = aconnp->conn_allzones;
2439 
2440 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2441 	aconnp->conn_mac_exempt = B_FALSE;
2442 
2443 	ASSERT(aconnp->conn_peercred == NULL);
2444 
2445 	/* Do the IPC initialization */
2446 	CONN_INC_REF(econnp);
2447 
2448 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2449 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2450 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2451 	econnp->conn_ulp = aconnp->conn_ulp;
2452 
2453 	/* Done with old IPC. Drop its ref on its connp */
2454 	CONN_DEC_REF(aconnp);
2455 }
2456 
2457 
2458 /*
2459  * Adapt to the information, such as rtt and rtt_sd, provided from the
2460  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2461  *
2462  * Checks for multicast and broadcast destination address.
2463  * Returns zero on failure; non-zero if ok.
2464  *
2465  * Note that the MSS calculation here is based on the info given in
2466  * the IRE.  We do not do any calculation based on TCP options.  They
2467  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2468  * knows which options to use.
2469  *
2470  * Note on how TCP gets its parameters for a connection.
2471  *
2472  * When a tcp_t structure is allocated, it gets all the default parameters.
2473  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2474  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2475  * default.  But if there is an associated tcp_host_param, it will override
2476  * the metrics.
2477  *
2478  * An incoming SYN with a multicast or broadcast destination address, is dropped
2479  * in 1 of 2 places.
2480  *
2481  * 1. If the packet was received over the wire it is dropped in
2482  * ip_rput_process_broadcast()
2483  *
2484  * 2. If the packet was received through internal IP loopback, i.e. the packet
2485  * was generated and received on the same machine, it is dropped in
2486  * ip_wput_local()
2487  *
2488  * An incoming SYN with a multicast or broadcast source address is always
2489  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2490  * reject an attempt to connect to a broadcast or multicast (destination)
2491  * address.
2492  */
2493 static int
2494 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2495 {
2496 	tcp_hsp_t	*hsp;
2497 	ire_t		*ire;
2498 	ire_t		*sire = NULL;
2499 	iulp_t		*ire_uinfo = NULL;
2500 	uint32_t	mss_max;
2501 	uint32_t	mss;
2502 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2503 	conn_t		*connp = tcp->tcp_connp;
2504 	boolean_t	ire_cacheable = B_FALSE;
2505 	zoneid_t	zoneid = connp->conn_zoneid;
2506 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2507 			    MATCH_IRE_SECATTR;
2508 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2509 	ill_t		*ill = NULL;
2510 	boolean_t	incoming = (ire_mp == NULL);
2511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2512 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2513 
2514 	ASSERT(connp->conn_ire_cache == NULL);
2515 
2516 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2517 
2518 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2519 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2520 			return (0);
2521 		}
2522 		/*
2523 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2524 		 * for the destination with the nexthop as gateway.
2525 		 * ire_ctable_lookup() is used because this particular
2526 		 * ire, if it exists, will be marked private.
2527 		 * If that is not available, use the interface ire
2528 		 * for the nexthop.
2529 		 *
2530 		 * TSol: tcp_update_label will detect label mismatches based
2531 		 * only on the destination's label, but that would not
2532 		 * detect label mismatches based on the security attributes
2533 		 * of routes or next hop gateway. Hence we need to pass the
2534 		 * label to ire_ftable_lookup below in order to locate the
2535 		 * right prefix (and/or) ire cache. Similarly we also need
2536 		 * pass the label to the ire_cache_lookup below to locate
2537 		 * the right ire that also matches on the label.
2538 		 */
2539 		if (tcp->tcp_connp->conn_nexthop_set) {
2540 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2541 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2542 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2543 			    ipst);
2544 			if (ire == NULL) {
2545 				ire = ire_ftable_lookup(
2546 				    tcp->tcp_connp->conn_nexthop_v4,
2547 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2548 				    tsl, match_flags, ipst);
2549 				if (ire == NULL)
2550 					return (0);
2551 			} else {
2552 				ire_uinfo = &ire->ire_uinfo;
2553 			}
2554 		} else {
2555 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2556 			    zoneid, tsl, ipst);
2557 			if (ire != NULL) {
2558 				ire_cacheable = B_TRUE;
2559 				ire_uinfo = (ire_mp != NULL) ?
2560 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2561 				    &ire->ire_uinfo;
2562 
2563 			} else {
2564 				if (ire_mp == NULL) {
2565 					ire = ire_ftable_lookup(
2566 					    tcp->tcp_connp->conn_rem,
2567 					    0, 0, 0, NULL, &sire, zoneid, 0,
2568 					    tsl, (MATCH_IRE_RECURSIVE |
2569 					    MATCH_IRE_DEFAULT), ipst);
2570 					if (ire == NULL)
2571 						return (0);
2572 					ire_uinfo = (sire != NULL) ?
2573 					    &sire->ire_uinfo :
2574 					    &ire->ire_uinfo;
2575 				} else {
2576 					ire = (ire_t *)ire_mp->b_rptr;
2577 					ire_uinfo =
2578 					    &((ire_t *)
2579 					    ire_mp->b_rptr)->ire_uinfo;
2580 				}
2581 			}
2582 		}
2583 		ASSERT(ire != NULL);
2584 
2585 		if ((ire->ire_src_addr == INADDR_ANY) ||
2586 		    (ire->ire_type & IRE_BROADCAST)) {
2587 			/*
2588 			 * ire->ire_mp is non null when ire_mp passed in is used
2589 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2590 			 */
2591 			if (ire->ire_mp == NULL)
2592 				ire_refrele(ire);
2593 			if (sire != NULL)
2594 				ire_refrele(sire);
2595 			return (0);
2596 		}
2597 
2598 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2599 			ipaddr_t src_addr;
2600 
2601 			/*
2602 			 * ip_bind_connected() has stored the correct source
2603 			 * address in conn_src.
2604 			 */
2605 			src_addr = tcp->tcp_connp->conn_src;
2606 			tcp->tcp_ipha->ipha_src = src_addr;
2607 			/*
2608 			 * Copy of the src addr. in tcp_t is needed
2609 			 * for the lookup funcs.
2610 			 */
2611 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2612 		}
2613 		/*
2614 		 * Set the fragment bit so that IP will tell us if the MTU
2615 		 * should change. IP tells us the latest setting of
2616 		 * ip_path_mtu_discovery through ire_frag_flag.
2617 		 */
2618 		if (ipst->ips_ip_path_mtu_discovery) {
2619 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2620 			    htons(IPH_DF);
2621 		}
2622 		/*
2623 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2624 		 * for IP_NEXTHOP. No cache ire has been found for the
2625 		 * destination and we are working with the nexthop's
2626 		 * interface ire. Since we need to forward all packets
2627 		 * to the nexthop first, we "blindly" set tcp_localnet
2628 		 * to false, eventhough the destination may also be
2629 		 * onlink.
2630 		 */
2631 		if (ire_uinfo == NULL)
2632 			tcp->tcp_localnet = 0;
2633 		else
2634 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2635 	} else {
2636 		/*
2637 		 * For incoming connection ire_mp = NULL
2638 		 * For outgoing connection ire_mp != NULL
2639 		 * Technically we should check conn_incoming_ill
2640 		 * when ire_mp is NULL and conn_outgoing_ill when
2641 		 * ire_mp is non-NULL. But this is performance
2642 		 * critical path and for IPV*_BOUND_IF, outgoing
2643 		 * and incoming ill are always set to the same value.
2644 		 */
2645 		ill_t	*dst_ill = NULL;
2646 		ipif_t  *dst_ipif = NULL;
2647 
2648 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2649 
2650 		if (connp->conn_outgoing_ill != NULL) {
2651 			/* Outgoing or incoming path */
2652 			int   err;
2653 
2654 			dst_ill = conn_get_held_ill(connp,
2655 			    &connp->conn_outgoing_ill, &err);
2656 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2657 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2658 				return (0);
2659 			}
2660 			match_flags |= MATCH_IRE_ILL;
2661 			dst_ipif = dst_ill->ill_ipif;
2662 		}
2663 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2664 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2665 
2666 		if (ire != NULL) {
2667 			ire_cacheable = B_TRUE;
2668 			ire_uinfo = (ire_mp != NULL) ?
2669 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2670 			    &ire->ire_uinfo;
2671 		} else {
2672 			if (ire_mp == NULL) {
2673 				ire = ire_ftable_lookup_v6(
2674 				    &tcp->tcp_connp->conn_remv6,
2675 				    0, 0, 0, dst_ipif, &sire, zoneid,
2676 				    0, tsl, match_flags, ipst);
2677 				if (ire == NULL) {
2678 					if (dst_ill != NULL)
2679 						ill_refrele(dst_ill);
2680 					return (0);
2681 				}
2682 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2683 				    &ire->ire_uinfo;
2684 			} else {
2685 				ire = (ire_t *)ire_mp->b_rptr;
2686 				ire_uinfo =
2687 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2688 			}
2689 		}
2690 		if (dst_ill != NULL)
2691 			ill_refrele(dst_ill);
2692 
2693 		ASSERT(ire != NULL);
2694 		ASSERT(ire_uinfo != NULL);
2695 
2696 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2697 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2698 			/*
2699 			 * ire->ire_mp is non null when ire_mp passed in is used
2700 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2701 			 */
2702 			if (ire->ire_mp == NULL)
2703 				ire_refrele(ire);
2704 			if (sire != NULL)
2705 				ire_refrele(sire);
2706 			return (0);
2707 		}
2708 
2709 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2710 			in6_addr_t	src_addr;
2711 
2712 			/*
2713 			 * ip_bind_connected_v6() has stored the correct source
2714 			 * address per IPv6 addr. selection policy in
2715 			 * conn_src_v6.
2716 			 */
2717 			src_addr = tcp->tcp_connp->conn_srcv6;
2718 
2719 			tcp->tcp_ip6h->ip6_src = src_addr;
2720 			/*
2721 			 * Copy of the src addr. in tcp_t is needed
2722 			 * for the lookup funcs.
2723 			 */
2724 			tcp->tcp_ip_src_v6 = src_addr;
2725 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2726 			    &connp->conn_srcv6));
2727 		}
2728 		tcp->tcp_localnet =
2729 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2730 	}
2731 
2732 	/*
2733 	 * This allows applications to fail quickly when connections are made
2734 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2735 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2736 	 */
2737 	if ((ire->ire_flags & RTF_REJECT) &&
2738 	    (ire->ire_flags & RTF_PRIVATE))
2739 		goto error;
2740 
2741 	/*
2742 	 * Make use of the cached rtt and rtt_sd values to calculate the
2743 	 * initial RTO.  Note that they are already initialized in
2744 	 * tcp_init_values().
2745 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2746 	 * IP_NEXTHOP, but instead are using the interface ire for the
2747 	 * nexthop, then we do not use the ire_uinfo from that ire to
2748 	 * do any initializations.
2749 	 */
2750 	if (ire_uinfo != NULL) {
2751 		if (ire_uinfo->iulp_rtt != 0) {
2752 			clock_t	rto;
2753 
2754 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2755 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2756 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2757 			    tcps->tcps_rexmit_interval_extra +
2758 			    (tcp->tcp_rtt_sa >> 5);
2759 
2760 			if (rto > tcps->tcps_rexmit_interval_max) {
2761 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2762 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2763 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2764 			} else {
2765 				tcp->tcp_rto = rto;
2766 			}
2767 		}
2768 		if (ire_uinfo->iulp_ssthresh != 0)
2769 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2770 		else
2771 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2772 		if (ire_uinfo->iulp_spipe > 0) {
2773 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2774 			    tcps->tcps_max_buf);
2775 			if (tcps->tcps_snd_lowat_fraction != 0)
2776 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2777 				    tcps->tcps_snd_lowat_fraction;
2778 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2779 		}
2780 		/*
2781 		 * Note that up till now, acceptor always inherits receive
2782 		 * window from the listener.  But if there is a metrics
2783 		 * associated with a host, we should use that instead of
2784 		 * inheriting it from listener. Thus we need to pass this
2785 		 * info back to the caller.
2786 		 */
2787 		if (ire_uinfo->iulp_rpipe > 0) {
2788 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2789 					    tcps->tcps_max_buf);
2790 		}
2791 
2792 		if (ire_uinfo->iulp_rtomax > 0) {
2793 			tcp->tcp_second_timer_threshold =
2794 			    ire_uinfo->iulp_rtomax;
2795 		}
2796 
2797 		/*
2798 		 * Use the metric option settings, iulp_tstamp_ok and
2799 		 * iulp_wscale_ok, only for active open. What this means
2800 		 * is that if the other side uses timestamp or window
2801 		 * scale option, TCP will also use those options. That
2802 		 * is for passive open.  If the application sets a
2803 		 * large window, window scale is enabled regardless of
2804 		 * the value in iulp_wscale_ok.  This is the behavior
2805 		 * since 2.6.  So we keep it.
2806 		 * The only case left in passive open processing is the
2807 		 * check for SACK.
2808 		 * For ECN, it should probably be like SACK.  But the
2809 		 * current value is binary, so we treat it like the other
2810 		 * cases.  The metric only controls active open.For passive
2811 		 * open, the ndd param, tcp_ecn_permitted, controls the
2812 		 * behavior.
2813 		 */
2814 		if (!tcp_detached) {
2815 			/*
2816 			 * The if check means that the following can only
2817 			 * be turned on by the metrics only IRE, but not off.
2818 			 */
2819 			if (ire_uinfo->iulp_tstamp_ok)
2820 				tcp->tcp_snd_ts_ok = B_TRUE;
2821 			if (ire_uinfo->iulp_wscale_ok)
2822 				tcp->tcp_snd_ws_ok = B_TRUE;
2823 			if (ire_uinfo->iulp_sack == 2)
2824 				tcp->tcp_snd_sack_ok = B_TRUE;
2825 			if (ire_uinfo->iulp_ecn_ok)
2826 				tcp->tcp_ecn_ok = B_TRUE;
2827 		} else {
2828 			/*
2829 			 * Passive open.
2830 			 *
2831 			 * As above, the if check means that SACK can only be
2832 			 * turned on by the metric only IRE.
2833 			 */
2834 			if (ire_uinfo->iulp_sack > 0) {
2835 				tcp->tcp_snd_sack_ok = B_TRUE;
2836 			}
2837 		}
2838 	}
2839 
2840 
2841 	/*
2842 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2843 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2844 	 * length of all those options exceeds 28 bytes.  But because
2845 	 * of the tcp_mss_min check below, we may not have a problem if
2846 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2847 	 * the negative problem still exists.  And the check defeats PMTUd.
2848 	 * In fact, if PMTUd finds that the MSS should be smaller than
2849 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2850 	 * value.
2851 	 *
2852 	 * We do not deal with that now.  All those problems related to
2853 	 * PMTUd will be fixed later.
2854 	 */
2855 	ASSERT(ire->ire_max_frag != 0);
2856 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2857 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2858 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2859 			mss = MIN(mss, IPV6_MIN_MTU);
2860 		}
2861 	}
2862 
2863 	/* Sanity check for MSS value. */
2864 	if (tcp->tcp_ipversion == IPV4_VERSION)
2865 		mss_max = tcps->tcps_mss_max_ipv4;
2866 	else
2867 		mss_max = tcps->tcps_mss_max_ipv6;
2868 
2869 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2870 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2871 		/*
2872 		 * After receiving an ICMPv6 "packet too big" message with a
2873 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2874 		 * will insert a 8-byte fragment header in every packet; we
2875 		 * reduce the MSS by that amount here.
2876 		 */
2877 		mss -= sizeof (ip6_frag_t);
2878 	}
2879 
2880 	if (tcp->tcp_ipsec_overhead == 0)
2881 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2882 
2883 	mss -= tcp->tcp_ipsec_overhead;
2884 
2885 	if (mss < tcps->tcps_mss_min)
2886 		mss = tcps->tcps_mss_min;
2887 	if (mss > mss_max)
2888 		mss = mss_max;
2889 
2890 	/* Note that this is the maximum MSS, excluding all options. */
2891 	tcp->tcp_mss = mss;
2892 
2893 	/*
2894 	 * Initialize the ISS here now that we have the full connection ID.
2895 	 * The RFC 1948 method of initial sequence number generation requires
2896 	 * knowledge of the full connection ID before setting the ISS.
2897 	 */
2898 
2899 	tcp_iss_init(tcp);
2900 
2901 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2902 		tcp->tcp_loopback = B_TRUE;
2903 
2904 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2905 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2906 	} else {
2907 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2908 	}
2909 
2910 	if (hsp != NULL) {
2911 		/* Only modify if we're going to make them bigger */
2912 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2913 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2914 			if (tcps->tcps_snd_lowat_fraction != 0)
2915 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2916 					tcps->tcps_snd_lowat_fraction;
2917 		}
2918 
2919 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2920 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2921 		}
2922 
2923 		/* Copy timestamp flag only for active open */
2924 		if (!tcp_detached)
2925 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2926 	}
2927 
2928 	if (sire != NULL)
2929 		IRE_REFRELE(sire);
2930 
2931 	/*
2932 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2933 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2934 	 */
2935 	if (tcp->tcp_loopback ||
2936 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2937 		/*
2938 		 * For incoming, see if this tcp may be MDT-capable.  For
2939 		 * outgoing, this process has been taken care of through
2940 		 * tcp_rput_other.
2941 		 */
2942 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2943 		tcp->tcp_ire_ill_check_done = B_TRUE;
2944 	}
2945 
2946 	mutex_enter(&connp->conn_lock);
2947 	/*
2948 	 * Make sure that conn is not marked incipient
2949 	 * for incoming connections. A blind
2950 	 * removal of incipient flag is cheaper than
2951 	 * check and removal.
2952 	 */
2953 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2954 
2955 	/*
2956 	 * Must not cache forwarding table routes
2957 	 * or recache an IRE after the conn_t has
2958 	 * had conn_ire_cache cleared and is flagged
2959 	 * unusable, (see the CONN_CACHE_IRE() macro).
2960 	 */
2961 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2962 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2963 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2964 			connp->conn_ire_cache = ire;
2965 			IRE_UNTRACE_REF(ire);
2966 			rw_exit(&ire->ire_bucket->irb_lock);
2967 			mutex_exit(&connp->conn_lock);
2968 			return (1);
2969 		}
2970 		rw_exit(&ire->ire_bucket->irb_lock);
2971 	}
2972 	mutex_exit(&connp->conn_lock);
2973 
2974 	if (ire->ire_mp == NULL)
2975 		ire_refrele(ire);
2976 	return (1);
2977 
2978 error:
2979 	if (ire->ire_mp == NULL)
2980 		ire_refrele(ire);
2981 	if (sire != NULL)
2982 		ire_refrele(sire);
2983 	return (0);
2984 }
2985 
2986 /*
2987  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2988  * O_T_BIND_REQ/T_BIND_REQ message.
2989  */
2990 static void
2991 tcp_bind(tcp_t *tcp, mblk_t *mp)
2992 {
2993 	sin_t	*sin;
2994 	sin6_t	*sin6;
2995 	mblk_t	*mp1;
2996 	in_port_t requested_port;
2997 	in_port_t allocated_port;
2998 	struct T_bind_req *tbr;
2999 	boolean_t	bind_to_req_port_only;
3000 	boolean_t	backlog_update = B_FALSE;
3001 	boolean_t	user_specified;
3002 	in6_addr_t	v6addr;
3003 	ipaddr_t	v4addr;
3004 	uint_t	origipversion;
3005 	int	err;
3006 	queue_t *q = tcp->tcp_wq;
3007 	conn_t	*connp;
3008 	mlp_type_t addrtype, mlptype;
3009 	zone_t	*zone;
3010 	cred_t	*cr;
3011 	in_port_t mlp_port;
3012 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3013 
3014 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3015 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3016 		if (tcp->tcp_debug) {
3017 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3018 			    "tcp_bind: bad req, len %u",
3019 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3020 		}
3021 		tcp_err_ack(tcp, mp, TPROTO, 0);
3022 		return;
3023 	}
3024 	/* Make sure the largest address fits */
3025 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3026 	if (mp1 == NULL) {
3027 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3028 		return;
3029 	}
3030 	mp = mp1;
3031 	tbr = (struct T_bind_req *)mp->b_rptr;
3032 	if (tcp->tcp_state >= TCPS_BOUND) {
3033 		if ((tcp->tcp_state == TCPS_BOUND ||
3034 		    tcp->tcp_state == TCPS_LISTEN) &&
3035 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3036 		    tbr->CONIND_number > 0) {
3037 			/*
3038 			 * Handle listen() increasing CONIND_number.
3039 			 * This is more "liberal" then what the TPI spec
3040 			 * requires but is needed to avoid a t_unbind
3041 			 * when handling listen() since the port number
3042 			 * might be "stolen" between the unbind and bind.
3043 			 */
3044 			backlog_update = B_TRUE;
3045 			goto do_bind;
3046 		}
3047 		if (tcp->tcp_debug) {
3048 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3049 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3050 		}
3051 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3052 		return;
3053 	}
3054 	origipversion = tcp->tcp_ipversion;
3055 
3056 	switch (tbr->ADDR_length) {
3057 	case 0:			/* request for a generic port */
3058 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3059 		if (tcp->tcp_family == AF_INET) {
3060 			tbr->ADDR_length = sizeof (sin_t);
3061 			sin = (sin_t *)&tbr[1];
3062 			*sin = sin_null;
3063 			sin->sin_family = AF_INET;
3064 			mp->b_wptr = (uchar_t *)&sin[1];
3065 			tcp->tcp_ipversion = IPV4_VERSION;
3066 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3067 		} else {
3068 			ASSERT(tcp->tcp_family == AF_INET6);
3069 			tbr->ADDR_length = sizeof (sin6_t);
3070 			sin6 = (sin6_t *)&tbr[1];
3071 			*sin6 = sin6_null;
3072 			sin6->sin6_family = AF_INET6;
3073 			mp->b_wptr = (uchar_t *)&sin6[1];
3074 			tcp->tcp_ipversion = IPV6_VERSION;
3075 			V6_SET_ZERO(v6addr);
3076 		}
3077 		requested_port = 0;
3078 		break;
3079 
3080 	case sizeof (sin_t):	/* Complete IPv4 address */
3081 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3082 		    sizeof (sin_t));
3083 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3084 			if (tcp->tcp_debug) {
3085 				(void) strlog(TCP_MOD_ID, 0, 1,
3086 				    SL_ERROR|SL_TRACE,
3087 				    "tcp_bind: bad address parameter, "
3088 				    "offset %d, len %d",
3089 				    tbr->ADDR_offset, tbr->ADDR_length);
3090 			}
3091 			tcp_err_ack(tcp, mp, TPROTO, 0);
3092 			return;
3093 		}
3094 		/*
3095 		 * With sockets sockfs will accept bogus sin_family in
3096 		 * bind() and replace it with the family used in the socket
3097 		 * call.
3098 		 */
3099 		if (sin->sin_family != AF_INET ||
3100 		    tcp->tcp_family != AF_INET) {
3101 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3102 			return;
3103 		}
3104 		requested_port = ntohs(sin->sin_port);
3105 		tcp->tcp_ipversion = IPV4_VERSION;
3106 		v4addr = sin->sin_addr.s_addr;
3107 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3108 		break;
3109 
3110 	case sizeof (sin6_t): /* Complete IPv6 address */
3111 		sin6 = (sin6_t *)mi_offset_param(mp,
3112 		    tbr->ADDR_offset, sizeof (sin6_t));
3113 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3114 			if (tcp->tcp_debug) {
3115 				(void) strlog(TCP_MOD_ID, 0, 1,
3116 				    SL_ERROR|SL_TRACE,
3117 				    "tcp_bind: bad IPv6 address parameter, "
3118 				    "offset %d, len %d", tbr->ADDR_offset,
3119 				    tbr->ADDR_length);
3120 			}
3121 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3122 			return;
3123 		}
3124 		if (sin6->sin6_family != AF_INET6 ||
3125 		    tcp->tcp_family != AF_INET6) {
3126 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3127 			return;
3128 		}
3129 		requested_port = ntohs(sin6->sin6_port);
3130 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3131 		    IPV4_VERSION : IPV6_VERSION;
3132 		v6addr = sin6->sin6_addr;
3133 		break;
3134 
3135 	default:
3136 		if (tcp->tcp_debug) {
3137 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3138 			    "tcp_bind: bad address length, %d",
3139 			    tbr->ADDR_length);
3140 		}
3141 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3142 		return;
3143 	}
3144 	tcp->tcp_bound_source_v6 = v6addr;
3145 
3146 	/* Check for change in ipversion */
3147 	if (origipversion != tcp->tcp_ipversion) {
3148 		ASSERT(tcp->tcp_family == AF_INET6);
3149 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3150 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3151 		if (err) {
3152 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3153 			return;
3154 		}
3155 	}
3156 
3157 	/*
3158 	 * Initialize family specific fields. Copy of the src addr.
3159 	 * in tcp_t is needed for the lookup funcs.
3160 	 */
3161 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3162 		tcp->tcp_ip6h->ip6_src = v6addr;
3163 	} else {
3164 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3165 	}
3166 	tcp->tcp_ip_src_v6 = v6addr;
3167 
3168 	/*
3169 	 * For O_T_BIND_REQ:
3170 	 * Verify that the target port/addr is available, or choose
3171 	 * another.
3172 	 * For  T_BIND_REQ:
3173 	 * Verify that the target port/addr is available or fail.
3174 	 * In both cases when it succeeds the tcp is inserted in the
3175 	 * bind hash table. This ensures that the operation is atomic
3176 	 * under the lock on the hash bucket.
3177 	 */
3178 	bind_to_req_port_only = requested_port != 0 &&
3179 	    tbr->PRIM_type != O_T_BIND_REQ;
3180 	/*
3181 	 * Get a valid port (within the anonymous range and should not
3182 	 * be a privileged one) to use if the user has not given a port.
3183 	 * If multiple threads are here, they may all start with
3184 	 * with the same initial port. But, it should be fine as long as
3185 	 * tcp_bindi will ensure that no two threads will be assigned
3186 	 * the same port.
3187 	 *
3188 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3189 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3190 	 * unless TCP_ANONPRIVBIND option is set.
3191 	 */
3192 	mlptype = mlptSingle;
3193 	mlp_port = requested_port;
3194 	if (requested_port == 0) {
3195 		requested_port = tcp->tcp_anon_priv_bind ?
3196 		    tcp_get_next_priv_port(tcp) :
3197 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3198 			tcp, B_TRUE);
3199 		if (requested_port == 0) {
3200 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3201 			return;
3202 		}
3203 		user_specified = B_FALSE;
3204 
3205 		/*
3206 		 * If the user went through one of the RPC interfaces to create
3207 		 * this socket and RPC is MLP in this zone, then give him an
3208 		 * anonymous MLP.
3209 		 */
3210 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3211 		connp = tcp->tcp_connp;
3212 		if (connp->conn_anon_mlp && is_system_labeled()) {
3213 			zone = crgetzone(cr);
3214 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3215 			    IPV6_VERSION, &v6addr,
3216 			    tcps->tcps_netstack->netstack_ip);
3217 			if (addrtype == mlptSingle) {
3218 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3219 				return;
3220 			}
3221 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3222 			    PMAPPORT, addrtype);
3223 			mlp_port = PMAPPORT;
3224 		}
3225 	} else {
3226 		int i;
3227 		boolean_t priv = B_FALSE;
3228 
3229 		/*
3230 		 * If the requested_port is in the well-known privileged range,
3231 		 * verify that the stream was opened by a privileged user.
3232 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3233 		 * but instead the code relies on:
3234 		 * - the fact that the address of the array and its size never
3235 		 *   changes
3236 		 * - the atomic assignment of the elements of the array
3237 		 */
3238 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3239 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3240 			priv = B_TRUE;
3241 		} else {
3242 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3243 				if (requested_port ==
3244 				    tcps->tcps_g_epriv_ports[i]) {
3245 					priv = B_TRUE;
3246 					break;
3247 				}
3248 			}
3249 		}
3250 		if (priv) {
3251 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3252 				if (tcp->tcp_debug) {
3253 					(void) strlog(TCP_MOD_ID, 0, 1,
3254 					    SL_ERROR|SL_TRACE,
3255 					    "tcp_bind: no priv for port %d",
3256 					    requested_port);
3257 				}
3258 				tcp_err_ack(tcp, mp, TACCES, 0);
3259 				return;
3260 			}
3261 		}
3262 		user_specified = B_TRUE;
3263 
3264 		connp = tcp->tcp_connp;
3265 		if (is_system_labeled()) {
3266 			zone = crgetzone(cr);
3267 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3268 			    IPV6_VERSION, &v6addr,
3269 			    tcps->tcps_netstack->netstack_ip);
3270 			if (addrtype == mlptSingle) {
3271 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3272 				return;
3273 			}
3274 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3275 			    requested_port, addrtype);
3276 		}
3277 	}
3278 
3279 	if (mlptype != mlptSingle) {
3280 		if (secpolicy_net_bindmlp(cr) != 0) {
3281 			if (tcp->tcp_debug) {
3282 				(void) strlog(TCP_MOD_ID, 0, 1,
3283 				    SL_ERROR|SL_TRACE,
3284 				    "tcp_bind: no priv for multilevel port %d",
3285 				    requested_port);
3286 			}
3287 			tcp_err_ack(tcp, mp, TACCES, 0);
3288 			return;
3289 		}
3290 
3291 		/*
3292 		 * If we're specifically binding a shared IP address and the
3293 		 * port is MLP on shared addresses, then check to see if this
3294 		 * zone actually owns the MLP.  Reject if not.
3295 		 */
3296 		if (mlptype == mlptShared && addrtype == mlptShared) {
3297 			/*
3298 			 * No need to handle exclusive-stack zones since
3299 			 * ALL_ZONES only applies to the shared stack.
3300 			 */
3301 			zoneid_t mlpzone;
3302 
3303 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3304 			    htons(mlp_port));
3305 			if (connp->conn_zoneid != mlpzone) {
3306 				if (tcp->tcp_debug) {
3307 					(void) strlog(TCP_MOD_ID, 0, 1,
3308 					    SL_ERROR|SL_TRACE,
3309 					    "tcp_bind: attempt to bind port "
3310 					    "%d on shared addr in zone %d "
3311 					    "(should be %d)",
3312 					    mlp_port, connp->conn_zoneid,
3313 					    mlpzone);
3314 				}
3315 				tcp_err_ack(tcp, mp, TACCES, 0);
3316 				return;
3317 			}
3318 		}
3319 
3320 		if (!user_specified) {
3321 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3322 			    requested_port, B_TRUE);
3323 			if (err != 0) {
3324 				if (tcp->tcp_debug) {
3325 					(void) strlog(TCP_MOD_ID, 0, 1,
3326 					    SL_ERROR|SL_TRACE,
3327 					    "tcp_bind: cannot establish anon "
3328 					    "MLP for port %d",
3329 					    requested_port);
3330 				}
3331 				tcp_err_ack(tcp, mp, TSYSERR, err);
3332 				return;
3333 			}
3334 			connp->conn_anon_port = B_TRUE;
3335 		}
3336 		connp->conn_mlp_type = mlptype;
3337 	}
3338 
3339 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3340 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3341 
3342 	if (allocated_port == 0) {
3343 		connp->conn_mlp_type = mlptSingle;
3344 		if (connp->conn_anon_port) {
3345 			connp->conn_anon_port = B_FALSE;
3346 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3347 			    requested_port, B_FALSE);
3348 		}
3349 		if (bind_to_req_port_only) {
3350 			if (tcp->tcp_debug) {
3351 				(void) strlog(TCP_MOD_ID, 0, 1,
3352 				    SL_ERROR|SL_TRACE,
3353 				    "tcp_bind: requested addr busy");
3354 			}
3355 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3356 		} else {
3357 			/* If we are out of ports, fail the bind. */
3358 			if (tcp->tcp_debug) {
3359 				(void) strlog(TCP_MOD_ID, 0, 1,
3360 				    SL_ERROR|SL_TRACE,
3361 				    "tcp_bind: out of ports?");
3362 			}
3363 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3364 		}
3365 		return;
3366 	}
3367 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3368 do_bind:
3369 	if (!backlog_update) {
3370 		if (tcp->tcp_family == AF_INET)
3371 			sin->sin_port = htons(allocated_port);
3372 		else
3373 			sin6->sin6_port = htons(allocated_port);
3374 	}
3375 	if (tcp->tcp_family == AF_INET) {
3376 		if (tbr->CONIND_number != 0) {
3377 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3378 			    sizeof (sin_t));
3379 		} else {
3380 			/* Just verify the local IP address */
3381 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3382 		}
3383 	} else {
3384 		if (tbr->CONIND_number != 0) {
3385 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3386 			    sizeof (sin6_t));
3387 		} else {
3388 			/* Just verify the local IP address */
3389 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3390 			    IPV6_ADDR_LEN);
3391 		}
3392 	}
3393 	if (mp1 == NULL) {
3394 		if (connp->conn_anon_port) {
3395 			connp->conn_anon_port = B_FALSE;
3396 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3397 			    requested_port, B_FALSE);
3398 		}
3399 		connp->conn_mlp_type = mlptSingle;
3400 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3401 		return;
3402 	}
3403 
3404 	tbr->PRIM_type = T_BIND_ACK;
3405 	mp->b_datap->db_type = M_PCPROTO;
3406 
3407 	/* Chain in the reply mp for tcp_rput() */
3408 	mp1->b_cont = mp;
3409 	mp = mp1;
3410 
3411 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3412 	if (tcp->tcp_conn_req_max) {
3413 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3414 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3415 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3416 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3417 		/*
3418 		 * If this is a listener, do not reset the eager list
3419 		 * and other stuffs.  Note that we don't check if the
3420 		 * existing eager list meets the new tcp_conn_req_max
3421 		 * requirement.
3422 		 */
3423 		if (tcp->tcp_state != TCPS_LISTEN) {
3424 			tcp->tcp_state = TCPS_LISTEN;
3425 			/* Initialize the chain. Don't need the eager_lock */
3426 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3427 			tcp->tcp_eager_next_drop_q0 = tcp;
3428 			tcp->tcp_eager_prev_drop_q0 = tcp;
3429 			tcp->tcp_second_ctimer_threshold =
3430 			    tcps->tcps_ip_abort_linterval;
3431 		}
3432 	}
3433 
3434 	/*
3435 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3436 	 * processing continues in tcp_rput_other().
3437 	 */
3438 	if (tcp->tcp_family == AF_INET6) {
3439 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3440 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3441 	} else {
3442 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3443 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3444 	}
3445 	/*
3446 	 * If the bind cannot complete immediately
3447 	 * IP will arrange to call tcp_rput_other
3448 	 * when the bind completes.
3449 	 */
3450 	if (mp != NULL) {
3451 		tcp_rput_other(tcp, mp);
3452 	} else {
3453 		/*
3454 		 * Bind will be resumed later. Need to ensure
3455 		 * that conn doesn't disappear when that happens.
3456 		 * This will be decremented in ip_resume_tcp_bind().
3457 		 */
3458 		CONN_INC_REF(tcp->tcp_connp);
3459 	}
3460 }
3461 
3462 
3463 /*
3464  * If the "bind_to_req_port_only" parameter is set, if the requested port
3465  * number is available, return it, If not return 0
3466  *
3467  * If "bind_to_req_port_only" parameter is not set and
3468  * If the requested port number is available, return it.  If not, return
3469  * the first anonymous port we happen across.  If no anonymous ports are
3470  * available, return 0. addr is the requested local address, if any.
3471  *
3472  * In either case, when succeeding update the tcp_t to record the port number
3473  * and insert it in the bind hash table.
3474  *
3475  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3476  * without setting SO_REUSEADDR. This is needed so that they
3477  * can be viewed as two independent transport protocols.
3478  */
3479 static in_port_t
3480 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3481     int reuseaddr, boolean_t quick_connect,
3482     boolean_t bind_to_req_port_only, boolean_t user_specified)
3483 {
3484 	/* number of times we have run around the loop */
3485 	int count = 0;
3486 	/* maximum number of times to run around the loop */
3487 	int loopmax;
3488 	conn_t *connp = tcp->tcp_connp;
3489 	zoneid_t zoneid = connp->conn_zoneid;
3490 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3491 
3492 	/*
3493 	 * Lookup for free addresses is done in a loop and "loopmax"
3494 	 * influences how long we spin in the loop
3495 	 */
3496 	if (bind_to_req_port_only) {
3497 		/*
3498 		 * If the requested port is busy, don't bother to look
3499 		 * for a new one. Setting loop maximum count to 1 has
3500 		 * that effect.
3501 		 */
3502 		loopmax = 1;
3503 	} else {
3504 		/*
3505 		 * If the requested port is busy, look for a free one
3506 		 * in the anonymous port range.
3507 		 * Set loopmax appropriately so that one does not look
3508 		 * forever in the case all of the anonymous ports are in use.
3509 		 */
3510 		if (tcp->tcp_anon_priv_bind) {
3511 			/*
3512 			 * loopmax =
3513 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3514 			 */
3515 			loopmax = IPPORT_RESERVED -
3516 			    tcps->tcps_min_anonpriv_port;
3517 		} else {
3518 			loopmax = (tcps->tcps_largest_anon_port -
3519 			    tcps->tcps_smallest_anon_port + 1);
3520 		}
3521 	}
3522 	do {
3523 		uint16_t	lport;
3524 		tf_t		*tbf;
3525 		tcp_t		*ltcp;
3526 		conn_t		*lconnp;
3527 
3528 		lport = htons(port);
3529 
3530 		/*
3531 		 * Ensure that the tcp_t is not currently in the bind hash.
3532 		 * Hold the lock on the hash bucket to ensure that
3533 		 * the duplicate check plus the insertion is an atomic
3534 		 * operation.
3535 		 *
3536 		 * This function does an inline lookup on the bind hash list
3537 		 * Make sure that we access only members of tcp_t
3538 		 * and that we don't look at tcp_tcp, since we are not
3539 		 * doing a CONN_INC_REF.
3540 		 */
3541 		tcp_bind_hash_remove(tcp);
3542 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3543 		mutex_enter(&tbf->tf_lock);
3544 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3545 		    ltcp = ltcp->tcp_bind_hash) {
3546 			boolean_t not_socket;
3547 			boolean_t exclbind;
3548 
3549 			if (lport != ltcp->tcp_lport)
3550 				continue;
3551 
3552 			lconnp = ltcp->tcp_connp;
3553 
3554 			/*
3555 			 * On a labeled system, we must treat bindings to ports
3556 			 * on shared IP addresses by sockets with MAC exemption
3557 			 * privilege as being in all zones, as there's
3558 			 * otherwise no way to identify the right receiver.
3559 			 */
3560 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3561 			    !lconnp->conn_mac_exempt &&
3562 			    !connp->conn_mac_exempt)
3563 				continue;
3564 
3565 			/*
3566 			 * If TCP_EXCLBIND is set for either the bound or
3567 			 * binding endpoint, the semantics of bind
3568 			 * is changed according to the following.
3569 			 *
3570 			 * spec = specified address (v4 or v6)
3571 			 * unspec = unspecified address (v4 or v6)
3572 			 * A = specified addresses are different for endpoints
3573 			 *
3574 			 * bound	bind to		allowed
3575 			 * -------------------------------------
3576 			 * unspec	unspec		no
3577 			 * unspec	spec		no
3578 			 * spec		unspec		no
3579 			 * spec		spec		yes if A
3580 			 *
3581 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3582 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3583 			 *
3584 			 * Note:
3585 			 *
3586 			 * 1. Because of TLI semantics, an endpoint can go
3587 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3588 			 * TCPS_BOUND, depending on whether it is originally
3589 			 * a listener or not.  That is why we need to check
3590 			 * for states greater than or equal to TCPS_BOUND
3591 			 * here.
3592 			 *
3593 			 * 2. Ideally, we should only check for state equals
3594 			 * to TCPS_LISTEN. And the following check should be
3595 			 * added.
3596 			 *
3597 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3598 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3599 			 *		...
3600 			 * }
3601 			 *
3602 			 * The semantics will be changed to this.  If the
3603 			 * endpoint on the list is in state not equal to
3604 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3605 			 * set, let the bind succeed.
3606 			 *
3607 			 * Because of (1), we cannot do that for TLI
3608 			 * endpoints.  But we can do that for socket endpoints.
3609 			 * If in future, we can change this going back
3610 			 * semantics, we can use the above check for TLI also.
3611 			 */
3612 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3613 			    TCP_IS_SOCKET(tcp));
3614 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3615 
3616 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3617 			    (exclbind && (not_socket ||
3618 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3619 				if (V6_OR_V4_INADDR_ANY(
3620 				    ltcp->tcp_bound_source_v6) ||
3621 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3622 				    IN6_ARE_ADDR_EQUAL(laddr,
3623 				    &ltcp->tcp_bound_source_v6)) {
3624 					break;
3625 				}
3626 				continue;
3627 			}
3628 
3629 			/*
3630 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3631 			 * have disjoint port number spaces, if *_EXCLBIND
3632 			 * is not set and only if the application binds to a
3633 			 * specific port. We use the same autoassigned port
3634 			 * number space for IPv4 and IPv6 sockets.
3635 			 */
3636 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3637 			    bind_to_req_port_only)
3638 				continue;
3639 
3640 			/*
3641 			 * Ideally, we should make sure that the source
3642 			 * address, remote address, and remote port in the
3643 			 * four tuple for this tcp-connection is unique.
3644 			 * However, trying to find out the local source
3645 			 * address would require too much code duplication
3646 			 * with IP, since IP needs needs to have that code
3647 			 * to support userland TCP implementations.
3648 			 */
3649 			if (quick_connect &&
3650 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3651 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3652 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3653 				    &ltcp->tcp_remote_v6)))
3654 				continue;
3655 
3656 			if (!reuseaddr) {
3657 				/*
3658 				 * No socket option SO_REUSEADDR.
3659 				 * If existing port is bound to
3660 				 * a non-wildcard IP address
3661 				 * and the requesting stream is
3662 				 * bound to a distinct
3663 				 * different IP addresses
3664 				 * (non-wildcard, also), keep
3665 				 * going.
3666 				 */
3667 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3668 				    !V6_OR_V4_INADDR_ANY(
3669 				    ltcp->tcp_bound_source_v6) &&
3670 				    !IN6_ARE_ADDR_EQUAL(laddr,
3671 					&ltcp->tcp_bound_source_v6))
3672 					continue;
3673 				if (ltcp->tcp_state >= TCPS_BOUND) {
3674 					/*
3675 					 * This port is being used and
3676 					 * its state is >= TCPS_BOUND,
3677 					 * so we can't bind to it.
3678 					 */
3679 					break;
3680 				}
3681 			} else {
3682 				/*
3683 				 * socket option SO_REUSEADDR is set on the
3684 				 * binding tcp_t.
3685 				 *
3686 				 * If two streams are bound to
3687 				 * same IP address or both addr
3688 				 * and bound source are wildcards
3689 				 * (INADDR_ANY), we want to stop
3690 				 * searching.
3691 				 * We have found a match of IP source
3692 				 * address and source port, which is
3693 				 * refused regardless of the
3694 				 * SO_REUSEADDR setting, so we break.
3695 				 */
3696 				if (IN6_ARE_ADDR_EQUAL(laddr,
3697 				    &ltcp->tcp_bound_source_v6) &&
3698 				    (ltcp->tcp_state == TCPS_LISTEN ||
3699 					ltcp->tcp_state == TCPS_BOUND))
3700 					break;
3701 			}
3702 		}
3703 		if (ltcp != NULL) {
3704 			/* The port number is busy */
3705 			mutex_exit(&tbf->tf_lock);
3706 		} else {
3707 			/*
3708 			 * This port is ours. Insert in fanout and mark as
3709 			 * bound to prevent others from getting the port
3710 			 * number.
3711 			 */
3712 			tcp->tcp_state = TCPS_BOUND;
3713 			tcp->tcp_lport = htons(port);
3714 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3715 
3716 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3717 			    tcp->tcp_lport)] == tbf);
3718 			tcp_bind_hash_insert(tbf, tcp, 1);
3719 
3720 			mutex_exit(&tbf->tf_lock);
3721 
3722 			/*
3723 			 * We don't want tcp_next_port_to_try to "inherit"
3724 			 * a port number supplied by the user in a bind.
3725 			 */
3726 			if (user_specified)
3727 				return (port);
3728 
3729 			/*
3730 			 * This is the only place where tcp_next_port_to_try
3731 			 * is updated. After the update, it may or may not
3732 			 * be in the valid range.
3733 			 */
3734 			if (!tcp->tcp_anon_priv_bind)
3735 				tcps->tcps_next_port_to_try = port + 1;
3736 			return (port);
3737 		}
3738 
3739 		if (tcp->tcp_anon_priv_bind) {
3740 			port = tcp_get_next_priv_port(tcp);
3741 		} else {
3742 			if (count == 0 && user_specified) {
3743 				/*
3744 				 * We may have to return an anonymous port. So
3745 				 * get one to start with.
3746 				 */
3747 				port =
3748 				    tcp_update_next_port(
3749 					tcps->tcps_next_port_to_try,
3750 					tcp, B_TRUE);
3751 				user_specified = B_FALSE;
3752 			} else {
3753 				port = tcp_update_next_port(port + 1, tcp,
3754 				    B_FALSE);
3755 			}
3756 		}
3757 		if (port == 0)
3758 			break;
3759 
3760 		/*
3761 		 * Don't let this loop run forever in the case where
3762 		 * all of the anonymous ports are in use.
3763 		 */
3764 	} while (++count < loopmax);
3765 	return (0);
3766 }
3767 
3768 /*
3769  * tcp_clean_death / tcp_close_detached must not be called more than once
3770  * on a tcp. Thus every function that potentially calls tcp_clean_death
3771  * must check for the tcp state before calling tcp_clean_death.
3772  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3773  * tcp_timer_handler, all check for the tcp state.
3774  */
3775 /* ARGSUSED */
3776 void
3777 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3778 {
3779 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3780 
3781 	freemsg(mp);
3782 	if (tcp->tcp_state > TCPS_BOUND)
3783 	    (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5);
3784 }
3785 
3786 /*
3787  * We are dying for some reason.  Try to do it gracefully.  (May be called
3788  * as writer.)
3789  *
3790  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3791  * done by a service procedure).
3792  * TBD - Should the return value distinguish between the tcp_t being
3793  * freed and it being reinitialized?
3794  */
3795 static int
3796 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3797 {
3798 	mblk_t	*mp;
3799 	queue_t	*q;
3800 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3801 
3802 	TCP_CLD_STAT(tag);
3803 
3804 #if TCP_TAG_CLEAN_DEATH
3805 	tcp->tcp_cleandeathtag = tag;
3806 #endif
3807 
3808 	if (tcp->tcp_fused)
3809 		tcp_unfuse(tcp);
3810 
3811 	if (tcp->tcp_linger_tid != 0 &&
3812 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3813 		tcp_stop_lingering(tcp);
3814 	}
3815 
3816 	ASSERT(tcp != NULL);
3817 	ASSERT((tcp->tcp_family == AF_INET &&
3818 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3819 	    (tcp->tcp_family == AF_INET6 &&
3820 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3821 	    tcp->tcp_ipversion == IPV6_VERSION)));
3822 
3823 	if (TCP_IS_DETACHED(tcp)) {
3824 		if (tcp->tcp_hard_binding) {
3825 			/*
3826 			 * Its an eager that we are dealing with. We close the
3827 			 * eager but in case a conn_ind has already gone to the
3828 			 * listener, let tcp_accept_finish() send a discon_ind
3829 			 * to the listener and drop the last reference. If the
3830 			 * listener doesn't even know about the eager i.e. the
3831 			 * conn_ind hasn't gone up, blow away the eager and drop
3832 			 * the last reference as well. If the conn_ind has gone
3833 			 * up, state should be BOUND. tcp_accept_finish
3834 			 * will figure out that the connection has received a
3835 			 * RST and will send a DISCON_IND to the application.
3836 			 */
3837 			tcp_closei_local(tcp);
3838 			if (!tcp->tcp_tconnind_started) {
3839 				CONN_DEC_REF(tcp->tcp_connp);
3840 			} else {
3841 				tcp->tcp_state = TCPS_BOUND;
3842 			}
3843 		} else {
3844 			tcp_close_detached(tcp);
3845 		}
3846 		return (0);
3847 	}
3848 
3849 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3850 
3851 	/*
3852 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3853 	 * is run) postpone cleaning up the endpoint until service routine
3854 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3855 	 * client_errno since tcp_close uses the client_errno field.
3856 	 */
3857 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3858 		if (err != 0)
3859 			tcp->tcp_client_errno = err;
3860 
3861 		tcp->tcp_deferred_clean_death = B_TRUE;
3862 		return (-1);
3863 	}
3864 
3865 	q = tcp->tcp_rq;
3866 
3867 	/* Trash all inbound data */
3868 	flushq(q, FLUSHALL);
3869 
3870 	/*
3871 	 * If we are at least part way open and there is error
3872 	 * (err==0 implies no error)
3873 	 * notify our client by a T_DISCON_IND.
3874 	 */
3875 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3876 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3877 		    !TCP_IS_SOCKET(tcp)) {
3878 			/*
3879 			 * Send M_FLUSH according to TPI. Because sockets will
3880 			 * (and must) ignore FLUSHR we do that only for TPI
3881 			 * endpoints and sockets in STREAMS mode.
3882 			 */
3883 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3884 		}
3885 		if (tcp->tcp_debug) {
3886 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3887 			    "tcp_clean_death: discon err %d", err);
3888 		}
3889 		mp = mi_tpi_discon_ind(NULL, err, 0);
3890 		if (mp != NULL) {
3891 			putnext(q, mp);
3892 		} else {
3893 			if (tcp->tcp_debug) {
3894 				(void) strlog(TCP_MOD_ID, 0, 1,
3895 				    SL_ERROR|SL_TRACE,
3896 				    "tcp_clean_death, sending M_ERROR");
3897 			}
3898 			(void) putnextctl1(q, M_ERROR, EPROTO);
3899 		}
3900 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3901 			/* SYN_SENT or SYN_RCVD */
3902 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3903 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3904 			/* ESTABLISHED or CLOSE_WAIT */
3905 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3906 		}
3907 	}
3908 
3909 	tcp_reinit(tcp);
3910 	return (-1);
3911 }
3912 
3913 /*
3914  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3915  * to expire, stop the wait and finish the close.
3916  */
3917 static void
3918 tcp_stop_lingering(tcp_t *tcp)
3919 {
3920 	clock_t	delta = 0;
3921 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3922 
3923 	tcp->tcp_linger_tid = 0;
3924 	if (tcp->tcp_state > TCPS_LISTEN) {
3925 		tcp_acceptor_hash_remove(tcp);
3926 		mutex_enter(&tcp->tcp_non_sq_lock);
3927 		if (tcp->tcp_flow_stopped) {
3928 			tcp_clrqfull(tcp);
3929 		}
3930 		mutex_exit(&tcp->tcp_non_sq_lock);
3931 
3932 		if (tcp->tcp_timer_tid != 0) {
3933 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3934 			tcp->tcp_timer_tid = 0;
3935 		}
3936 		/*
3937 		 * Need to cancel those timers which will not be used when
3938 		 * TCP is detached.  This has to be done before the tcp_wq
3939 		 * is set to the global queue.
3940 		 */
3941 		tcp_timers_stop(tcp);
3942 
3943 
3944 		tcp->tcp_detached = B_TRUE;
3945 		ASSERT(tcps->tcps_g_q != NULL);
3946 		tcp->tcp_rq = tcps->tcps_g_q;
3947 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3948 
3949 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3950 			tcp_time_wait_append(tcp);
3951 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3952 			goto finish;
3953 		}
3954 
3955 		/*
3956 		 * If delta is zero the timer event wasn't executed and was
3957 		 * successfully canceled. In this case we need to restart it
3958 		 * with the minimal delta possible.
3959 		 */
3960 		if (delta >= 0) {
3961 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3962 			    delta ? delta : 1);
3963 		}
3964 	} else {
3965 		tcp_closei_local(tcp);
3966 		CONN_DEC_REF(tcp->tcp_connp);
3967 	}
3968 finish:
3969 	/* Signal closing thread that it can complete close */
3970 	mutex_enter(&tcp->tcp_closelock);
3971 	tcp->tcp_detached = B_TRUE;
3972 	ASSERT(tcps->tcps_g_q != NULL);
3973 	tcp->tcp_rq = tcps->tcps_g_q;
3974 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3975 	tcp->tcp_closed = 1;
3976 	cv_signal(&tcp->tcp_closecv);
3977 	mutex_exit(&tcp->tcp_closelock);
3978 }
3979 
3980 /*
3981  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3982  * expires.
3983  */
3984 static void
3985 tcp_close_linger_timeout(void *arg)
3986 {
3987 	conn_t	*connp = (conn_t *)arg;
3988 	tcp_t 	*tcp = connp->conn_tcp;
3989 
3990 	tcp->tcp_client_errno = ETIMEDOUT;
3991 	tcp_stop_lingering(tcp);
3992 }
3993 
3994 static int
3995 tcp_close(queue_t *q, int flags)
3996 {
3997 	conn_t		*connp = Q_TO_CONN(q);
3998 	tcp_t		*tcp = connp->conn_tcp;
3999 	mblk_t 		*mp = &tcp->tcp_closemp;
4000 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4001 	boolean_t	linger_interrupted = B_FALSE;
4002 	mblk_t		*bp;
4003 
4004 	ASSERT(WR(q)->q_next == NULL);
4005 	ASSERT(connp->conn_ref >= 2);
4006 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
4007 
4008 	/*
4009 	 * We are being closed as /dev/tcp or /dev/tcp6.
4010 	 *
4011 	 * Mark the conn as closing. ill_pending_mp_add will not
4012 	 * add any mp to the pending mp list, after this conn has
4013 	 * started closing. Same for sq_pending_mp_add
4014 	 */
4015 	mutex_enter(&connp->conn_lock);
4016 	connp->conn_state_flags |= CONN_CLOSING;
4017 	if (connp->conn_oper_pending_ill != NULL)
4018 		conn_ioctl_cleanup_reqd = B_TRUE;
4019 	CONN_INC_REF_LOCKED(connp);
4020 	mutex_exit(&connp->conn_lock);
4021 	tcp->tcp_closeflags = (uint8_t)flags;
4022 	ASSERT(connp->conn_ref >= 3);
4023 
4024 	/*
4025 	 * tcp_closemp_used is used below without any protection of a lock
4026 	 * as we don't expect any one else to use it concurrently at this
4027 	 * point otherwise it would be a major defect.
4028 	 */
4029 
4030 	if (mp->b_prev == NULL)
4031 		tcp->tcp_closemp_used = B_TRUE;
4032 	else
4033 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4034 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4035 
4036 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4037 
4038 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4039 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4040 
4041 	mutex_enter(&tcp->tcp_closelock);
4042 	while (!tcp->tcp_closed) {
4043 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4044 			/*
4045 			 * We got interrupted. Check if we are lingering,
4046 			 * if yes, post a message to stop and wait until
4047 			 * tcp_closed is set. If we aren't lingering,
4048 			 * just go back around.
4049 			 */
4050 			if (tcp->tcp_linger &&
4051 			    tcp->tcp_lingertime > 0 &&
4052 			    !linger_interrupted) {
4053 				mutex_exit(&tcp->tcp_closelock);
4054 				/* Entering squeue, bump ref count. */
4055 				CONN_INC_REF(connp);
4056 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4057 				squeue_enter(connp->conn_sqp, bp,
4058 				    tcp_linger_interrupted, connp,
4059 				    SQTAG_IP_TCP_CLOSE);
4060 				linger_interrupted = B_TRUE;
4061 				mutex_enter(&tcp->tcp_closelock);
4062 			}
4063 		}
4064 	}
4065 	mutex_exit(&tcp->tcp_closelock);
4066 
4067 	/*
4068 	 * In the case of listener streams that have eagers in the q or q0
4069 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4070 	 * tcp_wq of the eagers point to our queues. By waiting for the
4071 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4072 	 * up their queue pointers and also dropped their references to us.
4073 	 */
4074 	if (tcp->tcp_wait_for_eagers) {
4075 		mutex_enter(&connp->conn_lock);
4076 		while (connp->conn_ref != 1) {
4077 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4078 		}
4079 		mutex_exit(&connp->conn_lock);
4080 	}
4081 	/*
4082 	 * ioctl cleanup. The mp is queued in the
4083 	 * ill_pending_mp or in the sq_pending_mp.
4084 	 */
4085 	if (conn_ioctl_cleanup_reqd)
4086 		conn_ioctl_cleanup(connp);
4087 
4088 	qprocsoff(q);
4089 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4090 
4091 	tcp->tcp_cpid = -1;
4092 
4093 	/*
4094 	 * Drop IP's reference on the conn. This is the last reference
4095 	 * on the connp if the state was less than established. If the
4096 	 * connection has gone into timewait state, then we will have
4097 	 * one ref for the TCP and one more ref (total of two) for the
4098 	 * classifier connected hash list (a timewait connections stays
4099 	 * in connected hash till closed).
4100 	 *
4101 	 * We can't assert the references because there might be other
4102 	 * transient reference places because of some walkers or queued
4103 	 * packets in squeue for the timewait state.
4104 	 */
4105 	CONN_DEC_REF(connp);
4106 	q->q_ptr = WR(q)->q_ptr = NULL;
4107 	return (0);
4108 }
4109 
4110 static int
4111 tcpclose_accept(queue_t *q)
4112 {
4113 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4114 
4115 	/*
4116 	 * We had opened an acceptor STREAM for sockfs which is
4117 	 * now being closed due to some error.
4118 	 */
4119 	qprocsoff(q);
4120 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4121 	q->q_ptr = WR(q)->q_ptr = NULL;
4122 	return (0);
4123 }
4124 
4125 /*
4126  * Called by tcp_close() routine via squeue when lingering is
4127  * interrupted by a signal.
4128  */
4129 
4130 /* ARGSUSED */
4131 static void
4132 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4133 {
4134 	conn_t	*connp = (conn_t *)arg;
4135 	tcp_t	*tcp = connp->conn_tcp;
4136 
4137 	freeb(mp);
4138 	if (tcp->tcp_linger_tid != 0 &&
4139 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4140 		tcp_stop_lingering(tcp);
4141 		tcp->tcp_client_errno = EINTR;
4142 	}
4143 }
4144 
4145 /*
4146  * Called by streams close routine via squeues when our client blows off her
4147  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4148  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4149  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4150  * acked.
4151  *
4152  * NOTE: tcp_close potentially returns error when lingering.
4153  * However, the stream head currently does not pass these errors
4154  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4155  * errors to the application (from tsleep()) and not errors
4156  * like ECONNRESET caused by receiving a reset packet.
4157  */
4158 
4159 /* ARGSUSED */
4160 static void
4161 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4162 {
4163 	char	*msg;
4164 	conn_t	*connp = (conn_t *)arg;
4165 	tcp_t	*tcp = connp->conn_tcp;
4166 	clock_t	delta = 0;
4167 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4168 
4169 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4170 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4171 
4172 	/* Cancel any pending timeout */
4173 	if (tcp->tcp_ordrelid != 0) {
4174 		if (tcp->tcp_timeout) {
4175 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4176 		}
4177 		tcp->tcp_ordrelid = 0;
4178 		tcp->tcp_timeout = B_FALSE;
4179 	}
4180 
4181 	mutex_enter(&tcp->tcp_eager_lock);
4182 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4183 		/* Cleanup for listener */
4184 		tcp_eager_cleanup(tcp, 0);
4185 		tcp->tcp_wait_for_eagers = 1;
4186 	}
4187 	mutex_exit(&tcp->tcp_eager_lock);
4188 
4189 	connp->conn_mdt_ok = B_FALSE;
4190 	tcp->tcp_mdt = B_FALSE;
4191 
4192 	connp->conn_lso_ok = B_FALSE;
4193 	tcp->tcp_lso = B_FALSE;
4194 
4195 	msg = NULL;
4196 	switch (tcp->tcp_state) {
4197 	case TCPS_CLOSED:
4198 	case TCPS_IDLE:
4199 	case TCPS_BOUND:
4200 	case TCPS_LISTEN:
4201 		break;
4202 	case TCPS_SYN_SENT:
4203 		msg = "tcp_close, during connect";
4204 		break;
4205 	case TCPS_SYN_RCVD:
4206 		/*
4207 		 * Close during the connect 3-way handshake
4208 		 * but here there may or may not be pending data
4209 		 * already on queue. Process almost same as in
4210 		 * the ESTABLISHED state.
4211 		 */
4212 		/* FALLTHRU */
4213 	default:
4214 		if (tcp->tcp_fused)
4215 			tcp_unfuse(tcp);
4216 
4217 		/*
4218 		 * If SO_LINGER has set a zero linger time, abort the
4219 		 * connection with a reset.
4220 		 */
4221 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4222 			msg = "tcp_close, zero lingertime";
4223 			break;
4224 		}
4225 
4226 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4227 		/*
4228 		 * Abort connection if there is unread data queued.
4229 		 */
4230 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4231 			msg = "tcp_close, unread data";
4232 			break;
4233 		}
4234 		/*
4235 		 * tcp_hard_bound is now cleared thus all packets go through
4236 		 * tcp_lookup. This fact is used by tcp_detach below.
4237 		 *
4238 		 * We have done a qwait() above which could have possibly
4239 		 * drained more messages in turn causing transition to a
4240 		 * different state. Check whether we have to do the rest
4241 		 * of the processing or not.
4242 		 */
4243 		if (tcp->tcp_state <= TCPS_LISTEN)
4244 			break;
4245 
4246 		/*
4247 		 * Transmit the FIN before detaching the tcp_t.
4248 		 * After tcp_detach returns this queue/perimeter
4249 		 * no longer owns the tcp_t thus others can modify it.
4250 		 */
4251 		(void) tcp_xmit_end(tcp);
4252 
4253 		/*
4254 		 * If lingering on close then wait until the fin is acked,
4255 		 * the SO_LINGER time passes, or a reset is sent/received.
4256 		 */
4257 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4258 		    !(tcp->tcp_fin_acked) &&
4259 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4260 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4261 				tcp->tcp_client_errno = EWOULDBLOCK;
4262 			} else if (tcp->tcp_client_errno == 0) {
4263 
4264 				ASSERT(tcp->tcp_linger_tid == 0);
4265 
4266 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4267 				    tcp_close_linger_timeout,
4268 				    tcp->tcp_lingertime * hz);
4269 
4270 				/* tcp_close_linger_timeout will finish close */
4271 				if (tcp->tcp_linger_tid == 0)
4272 					tcp->tcp_client_errno = ENOSR;
4273 				else
4274 					return;
4275 			}
4276 
4277 			/*
4278 			 * Check if we need to detach or just close
4279 			 * the instance.
4280 			 */
4281 			if (tcp->tcp_state <= TCPS_LISTEN)
4282 				break;
4283 		}
4284 
4285 		/*
4286 		 * Make sure that no other thread will access the tcp_rq of
4287 		 * this instance (through lookups etc.) as tcp_rq will go
4288 		 * away shortly.
4289 		 */
4290 		tcp_acceptor_hash_remove(tcp);
4291 
4292 		mutex_enter(&tcp->tcp_non_sq_lock);
4293 		if (tcp->tcp_flow_stopped) {
4294 			tcp_clrqfull(tcp);
4295 		}
4296 		mutex_exit(&tcp->tcp_non_sq_lock);
4297 
4298 		if (tcp->tcp_timer_tid != 0) {
4299 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4300 			tcp->tcp_timer_tid = 0;
4301 		}
4302 		/*
4303 		 * Need to cancel those timers which will not be used when
4304 		 * TCP is detached.  This has to be done before the tcp_wq
4305 		 * is set to the global queue.
4306 		 */
4307 		tcp_timers_stop(tcp);
4308 
4309 		tcp->tcp_detached = B_TRUE;
4310 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4311 			tcp_time_wait_append(tcp);
4312 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4313 			ASSERT(connp->conn_ref >= 3);
4314 			goto finish;
4315 		}
4316 
4317 		/*
4318 		 * If delta is zero the timer event wasn't executed and was
4319 		 * successfully canceled. In this case we need to restart it
4320 		 * with the minimal delta possible.
4321 		 */
4322 		if (delta >= 0)
4323 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4324 			    delta ? delta : 1);
4325 
4326 		ASSERT(connp->conn_ref >= 3);
4327 		goto finish;
4328 	}
4329 
4330 	/* Detach did not complete. Still need to remove q from stream. */
4331 	if (msg) {
4332 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4333 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4334 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4335 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4336 		    tcp->tcp_state == TCPS_SYN_RCVD)
4337 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4338 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4339 	}
4340 
4341 	tcp_closei_local(tcp);
4342 	CONN_DEC_REF(connp);
4343 	ASSERT(connp->conn_ref >= 2);
4344 
4345 finish:
4346 	/*
4347 	 * Although packets are always processed on the correct
4348 	 * tcp's perimeter and access is serialized via squeue's,
4349 	 * IP still needs a queue when sending packets in time_wait
4350 	 * state so use WR(tcps_g_q) till ip_output() can be
4351 	 * changed to deal with just connp. For read side, we
4352 	 * could have set tcp_rq to NULL but there are some cases
4353 	 * in tcp_rput_data() from early days of this code which
4354 	 * do a putnext without checking if tcp is closed. Those
4355 	 * need to be identified before both tcp_rq and tcp_wq
4356 	 * can be set to NULL and tcps_g_q can disappear forever.
4357 	 */
4358 	mutex_enter(&tcp->tcp_closelock);
4359 	/*
4360 	 * Don't change the queues in the case of a listener that has
4361 	 * eagers in its q or q0. It could surprise the eagers.
4362 	 * Instead wait for the eagers outside the squeue.
4363 	 */
4364 	if (!tcp->tcp_wait_for_eagers) {
4365 		tcp->tcp_detached = B_TRUE;
4366 		/*
4367 		 * When default queue is closing we set tcps_g_q to NULL
4368 		 * after the close is done.
4369 		 */
4370 		ASSERT(tcps->tcps_g_q != NULL);
4371 		tcp->tcp_rq = tcps->tcps_g_q;
4372 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4373 	}
4374 
4375 	/* Signal tcp_close() to finish closing. */
4376 	tcp->tcp_closed = 1;
4377 	cv_signal(&tcp->tcp_closecv);
4378 	mutex_exit(&tcp->tcp_closelock);
4379 }
4380 
4381 
4382 /*
4383  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4384  * Some stream heads get upset if they see these later on as anything but NULL.
4385  */
4386 static void
4387 tcp_close_mpp(mblk_t **mpp)
4388 {
4389 	mblk_t	*mp;
4390 
4391 	if ((mp = *mpp) != NULL) {
4392 		do {
4393 			mp->b_next = NULL;
4394 			mp->b_prev = NULL;
4395 		} while ((mp = mp->b_cont) != NULL);
4396 
4397 		mp = *mpp;
4398 		*mpp = NULL;
4399 		freemsg(mp);
4400 	}
4401 }
4402 
4403 /* Do detached close. */
4404 static void
4405 tcp_close_detached(tcp_t *tcp)
4406 {
4407 	if (tcp->tcp_fused)
4408 		tcp_unfuse(tcp);
4409 
4410 	/*
4411 	 * Clustering code serializes TCP disconnect callbacks and
4412 	 * cluster tcp list walks by blocking a TCP disconnect callback
4413 	 * if a cluster tcp list walk is in progress. This ensures
4414 	 * accurate accounting of TCPs in the cluster code even though
4415 	 * the TCP list walk itself is not atomic.
4416 	 */
4417 	tcp_closei_local(tcp);
4418 	CONN_DEC_REF(tcp->tcp_connp);
4419 }
4420 
4421 /*
4422  * Stop all TCP timers, and free the timer mblks if requested.
4423  */
4424 void
4425 tcp_timers_stop(tcp_t *tcp)
4426 {
4427 	if (tcp->tcp_timer_tid != 0) {
4428 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4429 		tcp->tcp_timer_tid = 0;
4430 	}
4431 	if (tcp->tcp_ka_tid != 0) {
4432 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4433 		tcp->tcp_ka_tid = 0;
4434 	}
4435 	if (tcp->tcp_ack_tid != 0) {
4436 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4437 		tcp->tcp_ack_tid = 0;
4438 	}
4439 	if (tcp->tcp_push_tid != 0) {
4440 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4441 		tcp->tcp_push_tid = 0;
4442 	}
4443 }
4444 
4445 /*
4446  * The tcp_t is going away. Remove it from all lists and set it
4447  * to TCPS_CLOSED. The freeing up of memory is deferred until
4448  * tcp_inactive. This is needed since a thread in tcp_rput might have
4449  * done a CONN_INC_REF on this structure before it was removed from the
4450  * hashes.
4451  */
4452 static void
4453 tcp_closei_local(tcp_t *tcp)
4454 {
4455 	ire_t 	*ire;
4456 	conn_t	*connp = tcp->tcp_connp;
4457 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4458 
4459 	if (!TCP_IS_SOCKET(tcp))
4460 		tcp_acceptor_hash_remove(tcp);
4461 
4462 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4463 	tcp->tcp_ibsegs = 0;
4464 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4465 	tcp->tcp_obsegs = 0;
4466 
4467 	/*
4468 	 * If we are an eager connection hanging off a listener that
4469 	 * hasn't formally accepted the connection yet, get off his
4470 	 * list and blow off any data that we have accumulated.
4471 	 */
4472 	if (tcp->tcp_listener != NULL) {
4473 		tcp_t	*listener = tcp->tcp_listener;
4474 		mutex_enter(&listener->tcp_eager_lock);
4475 		/*
4476 		 * tcp_tconnind_started == B_TRUE means that the
4477 		 * conn_ind has already gone to listener. At
4478 		 * this point, eager will be closed but we
4479 		 * leave it in listeners eager list so that
4480 		 * if listener decides to close without doing
4481 		 * accept, we can clean this up. In tcp_wput_accept
4482 		 * we take care of the case of accept on closed
4483 		 * eager.
4484 		 */
4485 		if (!tcp->tcp_tconnind_started) {
4486 			tcp_eager_unlink(tcp);
4487 			mutex_exit(&listener->tcp_eager_lock);
4488 			/*
4489 			 * We don't want to have any pointers to the
4490 			 * listener queue, after we have released our
4491 			 * reference on the listener
4492 			 */
4493 			ASSERT(tcps->tcps_g_q != NULL);
4494 			tcp->tcp_rq = tcps->tcps_g_q;
4495 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4496 			CONN_DEC_REF(listener->tcp_connp);
4497 		} else {
4498 			mutex_exit(&listener->tcp_eager_lock);
4499 		}
4500 	}
4501 
4502 	/* Stop all the timers */
4503 	tcp_timers_stop(tcp);
4504 
4505 	if (tcp->tcp_state == TCPS_LISTEN) {
4506 		if (tcp->tcp_ip_addr_cache) {
4507 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4508 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4509 			tcp->tcp_ip_addr_cache = NULL;
4510 		}
4511 	}
4512 	mutex_enter(&tcp->tcp_non_sq_lock);
4513 	if (tcp->tcp_flow_stopped)
4514 		tcp_clrqfull(tcp);
4515 	mutex_exit(&tcp->tcp_non_sq_lock);
4516 
4517 	tcp_bind_hash_remove(tcp);
4518 	/*
4519 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4520 	 * is trying to remove this tcp from the time wait list, we will
4521 	 * block in tcp_time_wait_remove while trying to acquire the
4522 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4523 	 * requires the ipcl_hash_remove to be ordered after the
4524 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4525 	 */
4526 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4527 		(void) tcp_time_wait_remove(tcp, NULL);
4528 	CL_INET_DISCONNECT(tcp);
4529 	ipcl_hash_remove(connp);
4530 
4531 	/*
4532 	 * Delete the cached ire in conn_ire_cache and also mark
4533 	 * the conn as CONDEMNED
4534 	 */
4535 	mutex_enter(&connp->conn_lock);
4536 	connp->conn_state_flags |= CONN_CONDEMNED;
4537 	ire = connp->conn_ire_cache;
4538 	connp->conn_ire_cache = NULL;
4539 	mutex_exit(&connp->conn_lock);
4540 	if (ire != NULL)
4541 		IRE_REFRELE_NOTR(ire);
4542 
4543 	/* Need to cleanup any pending ioctls */
4544 	ASSERT(tcp->tcp_time_wait_next == NULL);
4545 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4546 	ASSERT(tcp->tcp_time_wait_expire == 0);
4547 	tcp->tcp_state = TCPS_CLOSED;
4548 
4549 	/* Release any SSL context */
4550 	if (tcp->tcp_kssl_ent != NULL) {
4551 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4552 		tcp->tcp_kssl_ent = NULL;
4553 	}
4554 	if (tcp->tcp_kssl_ctx != NULL) {
4555 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4556 		tcp->tcp_kssl_ctx = NULL;
4557 	}
4558 	tcp->tcp_kssl_pending = B_FALSE;
4559 
4560 	tcp_ipsec_cleanup(tcp);
4561 }
4562 
4563 /*
4564  * tcp is dying (called from ipcl_conn_destroy and error cases).
4565  * Free the tcp_t in either case.
4566  */
4567 void
4568 tcp_free(tcp_t *tcp)
4569 {
4570 	mblk_t	*mp;
4571 	ip6_pkt_t	*ipp;
4572 
4573 	ASSERT(tcp != NULL);
4574 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4575 
4576 	tcp->tcp_rq = NULL;
4577 	tcp->tcp_wq = NULL;
4578 
4579 	tcp_close_mpp(&tcp->tcp_xmit_head);
4580 	tcp_close_mpp(&tcp->tcp_reass_head);
4581 	if (tcp->tcp_rcv_list != NULL) {
4582 		/* Free b_next chain */
4583 		tcp_close_mpp(&tcp->tcp_rcv_list);
4584 	}
4585 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4586 		freemsg(mp);
4587 	}
4588 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4589 		freemsg(mp);
4590 	}
4591 
4592 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4593 		freeb(tcp->tcp_fused_sigurg_mp);
4594 		tcp->tcp_fused_sigurg_mp = NULL;
4595 	}
4596 
4597 	if (tcp->tcp_sack_info != NULL) {
4598 		if (tcp->tcp_notsack_list != NULL) {
4599 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4600 		}
4601 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4602 	}
4603 
4604 	if (tcp->tcp_hopopts != NULL) {
4605 		mi_free(tcp->tcp_hopopts);
4606 		tcp->tcp_hopopts = NULL;
4607 		tcp->tcp_hopoptslen = 0;
4608 	}
4609 	ASSERT(tcp->tcp_hopoptslen == 0);
4610 	if (tcp->tcp_dstopts != NULL) {
4611 		mi_free(tcp->tcp_dstopts);
4612 		tcp->tcp_dstopts = NULL;
4613 		tcp->tcp_dstoptslen = 0;
4614 	}
4615 	ASSERT(tcp->tcp_dstoptslen == 0);
4616 	if (tcp->tcp_rtdstopts != NULL) {
4617 		mi_free(tcp->tcp_rtdstopts);
4618 		tcp->tcp_rtdstopts = NULL;
4619 		tcp->tcp_rtdstoptslen = 0;
4620 	}
4621 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4622 	if (tcp->tcp_rthdr != NULL) {
4623 		mi_free(tcp->tcp_rthdr);
4624 		tcp->tcp_rthdr = NULL;
4625 		tcp->tcp_rthdrlen = 0;
4626 	}
4627 	ASSERT(tcp->tcp_rthdrlen == 0);
4628 
4629 	ipp = &tcp->tcp_sticky_ipp;
4630 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4631 	    IPPF_RTHDR))
4632 		ip6_pkt_free(ipp);
4633 
4634 	/*
4635 	 * Free memory associated with the tcp/ip header template.
4636 	 */
4637 
4638 	if (tcp->tcp_iphc != NULL)
4639 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4640 
4641 	/*
4642 	 * Following is really a blowing away a union.
4643 	 * It happens to have exactly two members of identical size
4644 	 * the following code is enough.
4645 	 */
4646 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4647 
4648 	if (tcp->tcp_tracebuf != NULL) {
4649 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4650 		tcp->tcp_tracebuf = NULL;
4651 	}
4652 }
4653 
4654 
4655 /*
4656  * Put a connection confirmation message upstream built from the
4657  * address information within 'iph' and 'tcph'.  Report our success or failure.
4658  */
4659 static boolean_t
4660 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4661     mblk_t **defermp)
4662 {
4663 	sin_t	sin;
4664 	sin6_t	sin6;
4665 	mblk_t	*mp;
4666 	char	*optp = NULL;
4667 	int	optlen = 0;
4668 	cred_t	*cr;
4669 
4670 	if (defermp != NULL)
4671 		*defermp = NULL;
4672 
4673 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4674 		/*
4675 		 * Return in T_CONN_CON results of option negotiation through
4676 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4677 		 * negotiation, then what is received from remote end needs
4678 		 * to be taken into account but there is no such thing (yet?)
4679 		 * in our TCP/IP.
4680 		 * Note: We do not use mi_offset_param() here as
4681 		 * tcp_opts_conn_req contents do not directly come from
4682 		 * an application and are either generated in kernel or
4683 		 * from user input that was already verified.
4684 		 */
4685 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4686 		optp = (char *)(mp->b_rptr +
4687 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4688 		optlen = (int)
4689 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4690 	}
4691 
4692 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4693 		ipha_t *ipha = (ipha_t *)iphdr;
4694 
4695 		/* packet is IPv4 */
4696 		if (tcp->tcp_family == AF_INET) {
4697 			sin = sin_null;
4698 			sin.sin_addr.s_addr = ipha->ipha_src;
4699 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4700 			sin.sin_family = AF_INET;
4701 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4702 			    (int)sizeof (sin_t), optp, optlen);
4703 		} else {
4704 			sin6 = sin6_null;
4705 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4706 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4707 			sin6.sin6_family = AF_INET6;
4708 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4709 			    (int)sizeof (sin6_t), optp, optlen);
4710 
4711 		}
4712 	} else {
4713 		ip6_t	*ip6h = (ip6_t *)iphdr;
4714 
4715 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4716 		ASSERT(tcp->tcp_family == AF_INET6);
4717 		sin6 = sin6_null;
4718 		sin6.sin6_addr = ip6h->ip6_src;
4719 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4720 		sin6.sin6_family = AF_INET6;
4721 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4722 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4723 		    (int)sizeof (sin6_t), optp, optlen);
4724 	}
4725 
4726 	if (!mp)
4727 		return (B_FALSE);
4728 
4729 	if ((cr = DB_CRED(idmp)) != NULL) {
4730 		mblk_setcred(mp, cr);
4731 		DB_CPID(mp) = DB_CPID(idmp);
4732 	}
4733 
4734 	if (defermp == NULL)
4735 		putnext(tcp->tcp_rq, mp);
4736 	else
4737 		*defermp = mp;
4738 
4739 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4740 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4741 	return (B_TRUE);
4742 }
4743 
4744 /*
4745  * Defense for the SYN attack -
4746  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4747  *    one from the list of droppable eagers. This list is a subset of q0.
4748  *    see comments before the definition of MAKE_DROPPABLE().
4749  * 2. Don't drop a SYN request before its first timeout. This gives every
4750  *    request at least til the first timeout to complete its 3-way handshake.
4751  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4752  *    requests currently on the queue that has timed out. This will be used
4753  *    as an indicator of whether an attack is under way, so that appropriate
4754  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4755  *    either when eager goes into ESTABLISHED, or gets freed up.)
4756  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4757  *    # of timeout drops back to <= q0len/32 => SYN alert off
4758  */
4759 static boolean_t
4760 tcp_drop_q0(tcp_t *tcp)
4761 {
4762 	tcp_t	*eager;
4763 	mblk_t	*mp;
4764 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4765 
4766 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4767 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4768 
4769 	/* Pick oldest eager from the list of droppable eagers */
4770 	eager = tcp->tcp_eager_prev_drop_q0;
4771 
4772 	/* If list is empty. return B_FALSE */
4773 	if (eager == tcp) {
4774 		return (B_FALSE);
4775 	}
4776 
4777 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4778 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4779 		return (B_FALSE);
4780 
4781 	/*
4782 	 * Take this eager out from the list of droppable eagers since we are
4783 	 * going to drop it.
4784 	 */
4785 	MAKE_UNDROPPABLE(eager);
4786 
4787 	if (tcp->tcp_debug) {
4788 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4789 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4790 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4791 		    tcp->tcp_conn_req_cnt_q0,
4792 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4793 	}
4794 
4795 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4796 
4797 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4798 	CONN_INC_REF(eager->tcp_connp);
4799 
4800 	/* Mark the IRE created for this SYN request temporary */
4801 	tcp_ip_ire_mark_advice(eager);
4802 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4803 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4804 
4805 	return (B_TRUE);
4806 }
4807 
4808 int
4809 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4810     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4811 {
4812 	tcp_t 		*ltcp = lconnp->conn_tcp;
4813 	tcp_t		*tcp = connp->conn_tcp;
4814 	mblk_t		*tpi_mp;
4815 	ipha_t		*ipha;
4816 	ip6_t		*ip6h;
4817 	sin6_t 		sin6;
4818 	in6_addr_t 	v6dst;
4819 	int		err;
4820 	int		ifindex = 0;
4821 	cred_t		*cr;
4822 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4823 
4824 	if (ipvers == IPV4_VERSION) {
4825 		ipha = (ipha_t *)mp->b_rptr;
4826 
4827 		connp->conn_send = ip_output;
4828 		connp->conn_recv = tcp_input;
4829 
4830 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4831 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4832 
4833 		sin6 = sin6_null;
4834 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4835 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4836 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4837 		sin6.sin6_family = AF_INET6;
4838 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4839 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4840 		if (tcp->tcp_recvdstaddr) {
4841 			sin6_t	sin6d;
4842 
4843 			sin6d = sin6_null;
4844 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4845 			    &sin6d.sin6_addr);
4846 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4847 			sin6d.sin6_family = AF_INET;
4848 			tpi_mp = mi_tpi_extconn_ind(NULL,
4849 			    (char *)&sin6d, sizeof (sin6_t),
4850 			    (char *)&tcp,
4851 			    (t_scalar_t)sizeof (intptr_t),
4852 			    (char *)&sin6d, sizeof (sin6_t),
4853 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4854 		} else {
4855 			tpi_mp = mi_tpi_conn_ind(NULL,
4856 			    (char *)&sin6, sizeof (sin6_t),
4857 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4858 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4859 		}
4860 	} else {
4861 		ip6h = (ip6_t *)mp->b_rptr;
4862 
4863 		connp->conn_send = ip_output_v6;
4864 		connp->conn_recv = tcp_input;
4865 
4866 		connp->conn_srcv6 = ip6h->ip6_dst;
4867 		connp->conn_remv6 = ip6h->ip6_src;
4868 
4869 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4870 		ifindex = (int)DB_CKSUMSTUFF(mp);
4871 		DB_CKSUMSTUFF(mp) = 0;
4872 
4873 		sin6 = sin6_null;
4874 		sin6.sin6_addr = ip6h->ip6_src;
4875 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4876 		sin6.sin6_family = AF_INET6;
4877 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4878 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4879 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4880 
4881 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4882 			/* Pass up the scope_id of remote addr */
4883 			sin6.sin6_scope_id = ifindex;
4884 		} else {
4885 			sin6.sin6_scope_id = 0;
4886 		}
4887 		if (tcp->tcp_recvdstaddr) {
4888 			sin6_t	sin6d;
4889 
4890 			sin6d = sin6_null;
4891 			sin6.sin6_addr = ip6h->ip6_dst;
4892 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4893 			sin6d.sin6_family = AF_INET;
4894 			tpi_mp = mi_tpi_extconn_ind(NULL,
4895 			    (char *)&sin6d, sizeof (sin6_t),
4896 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4897 			    (char *)&sin6d, sizeof (sin6_t),
4898 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4899 		} else {
4900 			tpi_mp = mi_tpi_conn_ind(NULL,
4901 			    (char *)&sin6, sizeof (sin6_t),
4902 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4903 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4904 		}
4905 	}
4906 
4907 	if (tpi_mp == NULL)
4908 		return (ENOMEM);
4909 
4910 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4911 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4912 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4913 	connp->conn_fully_bound = B_FALSE;
4914 
4915 	if (tcps->tcps_trace)
4916 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4917 
4918 	/* Inherit information from the "parent" */
4919 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4920 	tcp->tcp_family = ltcp->tcp_family;
4921 	tcp->tcp_wq = ltcp->tcp_wq;
4922 	tcp->tcp_rq = ltcp->tcp_rq;
4923 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4924 	tcp->tcp_detached = B_TRUE;
4925 	if ((err = tcp_init_values(tcp)) != 0) {
4926 		freemsg(tpi_mp);
4927 		return (err);
4928 	}
4929 
4930 	if (ipvers == IPV4_VERSION) {
4931 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4932 			freemsg(tpi_mp);
4933 			return (err);
4934 		}
4935 		ASSERT(tcp->tcp_ipha != NULL);
4936 	} else {
4937 		/* ifindex must be already set */
4938 		ASSERT(ifindex != 0);
4939 
4940 		if (ltcp->tcp_bound_if != 0) {
4941 			/*
4942 			 * Set newtcp's bound_if equal to
4943 			 * listener's value. If ifindex is
4944 			 * not the same as ltcp->tcp_bound_if,
4945 			 * it must be a packet for the ipmp group
4946 			 * of interfaces
4947 			 */
4948 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4949 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4950 			tcp->tcp_bound_if = ifindex;
4951 		}
4952 
4953 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4954 		tcp->tcp_recvifindex = 0;
4955 		tcp->tcp_recvhops = 0xffffffffU;
4956 		ASSERT(tcp->tcp_ip6h != NULL);
4957 	}
4958 
4959 	tcp->tcp_lport = ltcp->tcp_lport;
4960 
4961 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4962 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4963 			/*
4964 			 * Listener had options of some sort; eager inherits.
4965 			 * Free up the eager template and allocate one
4966 			 * of the right size.
4967 			 */
4968 			if (tcp->tcp_hdr_grown) {
4969 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4970 			} else {
4971 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4972 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4973 			}
4974 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4975 			    KM_NOSLEEP);
4976 			if (tcp->tcp_iphc == NULL) {
4977 				tcp->tcp_iphc_len = 0;
4978 				freemsg(tpi_mp);
4979 				return (ENOMEM);
4980 			}
4981 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4982 			tcp->tcp_hdr_grown = B_TRUE;
4983 		}
4984 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4985 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4986 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4987 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4988 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4989 
4990 		/*
4991 		 * Copy the IP+TCP header template from listener to eager
4992 		 */
4993 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4994 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4995 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4996 			    IPPROTO_RAW) {
4997 				tcp->tcp_ip6h =
4998 				    (ip6_t *)(tcp->tcp_iphc +
4999 					sizeof (ip6i_t));
5000 			} else {
5001 				tcp->tcp_ip6h =
5002 				    (ip6_t *)(tcp->tcp_iphc);
5003 			}
5004 			tcp->tcp_ipha = NULL;
5005 		} else {
5006 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5007 			tcp->tcp_ip6h = NULL;
5008 		}
5009 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5010 		    tcp->tcp_ip_hdr_len);
5011 	} else {
5012 		/*
5013 		 * only valid case when ipversion of listener and
5014 		 * eager differ is when listener is IPv6 and
5015 		 * eager is IPv4.
5016 		 * Eager header template has been initialized to the
5017 		 * maximum v4 header sizes, which includes space for
5018 		 * TCP and IP options.
5019 		 */
5020 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5021 		    (tcp->tcp_ipversion == IPV4_VERSION));
5022 		ASSERT(tcp->tcp_iphc_len >=
5023 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5024 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5025 		/* copy IP header fields individually */
5026 		tcp->tcp_ipha->ipha_ttl =
5027 		    ltcp->tcp_ip6h->ip6_hops;
5028 		bcopy(ltcp->tcp_tcph->th_lport,
5029 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5030 	}
5031 
5032 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5033 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5034 	    sizeof (in_port_t));
5035 
5036 	if (ltcp->tcp_lport == 0) {
5037 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5038 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5039 		    sizeof (in_port_t));
5040 	}
5041 
5042 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5043 		ASSERT(ipha != NULL);
5044 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5045 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5046 
5047 		/* Source routing option copyover (reverse it) */
5048 		if (tcps->tcps_rev_src_routes)
5049 			tcp_opt_reverse(tcp, ipha);
5050 	} else {
5051 		ASSERT(ip6h != NULL);
5052 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5053 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5054 	}
5055 
5056 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5057 	ASSERT(!tcp->tcp_tconnind_started);
5058 	/*
5059 	 * If the SYN contains a credential, it's a loopback packet; attach
5060 	 * the credential to the TPI message.
5061 	 */
5062 	if ((cr = DB_CRED(idmp)) != NULL) {
5063 		mblk_setcred(tpi_mp, cr);
5064 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5065 	}
5066 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5067 
5068 	/* Inherit the listener's SSL protection state */
5069 
5070 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5071 		kssl_hold_ent(tcp->tcp_kssl_ent);
5072 		tcp->tcp_kssl_pending = B_TRUE;
5073 	}
5074 
5075 	return (0);
5076 }
5077 
5078 
5079 int
5080 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5081     tcph_t *tcph, mblk_t *idmp)
5082 {
5083 	tcp_t 		*ltcp = lconnp->conn_tcp;
5084 	tcp_t		*tcp = connp->conn_tcp;
5085 	sin_t		sin;
5086 	mblk_t		*tpi_mp = NULL;
5087 	int		err;
5088 	cred_t		*cr;
5089 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5090 
5091 	sin = sin_null;
5092 	sin.sin_addr.s_addr = ipha->ipha_src;
5093 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5094 	sin.sin_family = AF_INET;
5095 	if (ltcp->tcp_recvdstaddr) {
5096 		sin_t	sind;
5097 
5098 		sind = sin_null;
5099 		sind.sin_addr.s_addr = ipha->ipha_dst;
5100 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5101 		sind.sin_family = AF_INET;
5102 		tpi_mp = mi_tpi_extconn_ind(NULL,
5103 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5104 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5105 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5106 	} else {
5107 		tpi_mp = mi_tpi_conn_ind(NULL,
5108 		    (char *)&sin, sizeof (sin_t),
5109 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5110 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5111 	}
5112 
5113 	if (tpi_mp == NULL) {
5114 		return (ENOMEM);
5115 	}
5116 
5117 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5118 	connp->conn_send = ip_output;
5119 	connp->conn_recv = tcp_input;
5120 	connp->conn_fully_bound = B_FALSE;
5121 
5122 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5123 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5124 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5125 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5126 
5127 	if (tcps->tcps_trace) {
5128 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5129 	}
5130 
5131 	/* Inherit information from the "parent" */
5132 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5133 	tcp->tcp_family = ltcp->tcp_family;
5134 	tcp->tcp_wq = ltcp->tcp_wq;
5135 	tcp->tcp_rq = ltcp->tcp_rq;
5136 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5137 	tcp->tcp_detached = B_TRUE;
5138 	if ((err = tcp_init_values(tcp)) != 0) {
5139 		freemsg(tpi_mp);
5140 		return (err);
5141 	}
5142 
5143 	/*
5144 	 * Let's make sure that eager tcp template has enough space to
5145 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5146 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5147 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5148 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5149 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5150 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5151 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5152 	 */
5153 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5154 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5155 
5156 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5157 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5158 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5159 	tcp->tcp_ttl = ltcp->tcp_ttl;
5160 	tcp->tcp_tos = ltcp->tcp_tos;
5161 
5162 	/* Copy the IP+TCP header template from listener to eager */
5163 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5164 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5165 	tcp->tcp_ip6h = NULL;
5166 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5167 	    tcp->tcp_ip_hdr_len);
5168 
5169 	/* Initialize the IP addresses and Ports */
5170 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5171 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5172 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5173 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5174 
5175 	/* Source routing option copyover (reverse it) */
5176 	if (tcps->tcps_rev_src_routes)
5177 		tcp_opt_reverse(tcp, ipha);
5178 
5179 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5180 	ASSERT(!tcp->tcp_tconnind_started);
5181 
5182 	/*
5183 	 * If the SYN contains a credential, it's a loopback packet; attach
5184 	 * the credential to the TPI message.
5185 	 */
5186 	if ((cr = DB_CRED(idmp)) != NULL) {
5187 		mblk_setcred(tpi_mp, cr);
5188 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5189 	}
5190 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5191 
5192 	/* Inherit the listener's SSL protection state */
5193 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5194 		kssl_hold_ent(tcp->tcp_kssl_ent);
5195 		tcp->tcp_kssl_pending = B_TRUE;
5196 	}
5197 
5198 	return (0);
5199 }
5200 
5201 /*
5202  * sets up conn for ipsec.
5203  * if the first mblk is M_CTL it is consumed and mpp is updated.
5204  * in case of error mpp is freed.
5205  */
5206 conn_t *
5207 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5208 {
5209 	conn_t 		*connp = tcp->tcp_connp;
5210 	conn_t 		*econnp;
5211 	squeue_t 	*new_sqp;
5212 	mblk_t 		*first_mp = *mpp;
5213 	mblk_t		*mp = *mpp;
5214 	boolean_t	mctl_present = B_FALSE;
5215 	uint_t		ipvers;
5216 
5217 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5218 	if (econnp == NULL) {
5219 		freemsg(first_mp);
5220 		return (NULL);
5221 	}
5222 	if (DB_TYPE(mp) == M_CTL) {
5223 		if (mp->b_cont == NULL ||
5224 		    mp->b_cont->b_datap->db_type != M_DATA) {
5225 			freemsg(first_mp);
5226 			return (NULL);
5227 		}
5228 		mp = mp->b_cont;
5229 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5230 			freemsg(first_mp);
5231 			return (NULL);
5232 		}
5233 
5234 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5235 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5236 		mctl_present = B_TRUE;
5237 	} else {
5238 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5239 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5240 	}
5241 
5242 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5243 	DB_CKSUMSTART(mp) = 0;
5244 
5245 	ASSERT(OK_32PTR(mp->b_rptr));
5246 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5247 	if (ipvers == IPV4_VERSION) {
5248 		uint16_t  	*up;
5249 		uint32_t	ports;
5250 		ipha_t		*ipha;
5251 
5252 		ipha = (ipha_t *)mp->b_rptr;
5253 		up = (uint16_t *)((uchar_t *)ipha +
5254 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5255 		ports = *(uint32_t *)up;
5256 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5257 		    ipha->ipha_dst, ipha->ipha_src, ports);
5258 	} else {
5259 		uint16_t  	*up;
5260 		uint32_t	ports;
5261 		uint16_t	ip_hdr_len;
5262 		uint8_t		*nexthdrp;
5263 		ip6_t 		*ip6h;
5264 		tcph_t		*tcph;
5265 
5266 		ip6h = (ip6_t *)mp->b_rptr;
5267 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5268 			ip_hdr_len = IPV6_HDR_LEN;
5269 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5270 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5271 			CONN_DEC_REF(econnp);
5272 			freemsg(first_mp);
5273 			return (NULL);
5274 		}
5275 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5276 		up = (uint16_t *)tcph->th_lport;
5277 		ports = *(uint32_t *)up;
5278 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5279 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5280 	}
5281 
5282 	/*
5283 	 * The caller already ensured that there is a sqp present.
5284 	 */
5285 	econnp->conn_sqp = new_sqp;
5286 
5287 	if (connp->conn_policy != NULL) {
5288 		ipsec_in_t *ii;
5289 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5290 		ASSERT(ii->ipsec_in_policy == NULL);
5291 		IPPH_REFHOLD(connp->conn_policy);
5292 		ii->ipsec_in_policy = connp->conn_policy;
5293 
5294 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5295 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5296 			CONN_DEC_REF(econnp);
5297 			freemsg(first_mp);
5298 			return (NULL);
5299 		}
5300 	}
5301 
5302 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5303 		CONN_DEC_REF(econnp);
5304 		freemsg(first_mp);
5305 		return (NULL);
5306 	}
5307 
5308 	/*
5309 	 * If we know we have some policy, pass the "IPSEC"
5310 	 * options size TCP uses this adjust the MSS.
5311 	 */
5312 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5313 	if (mctl_present) {
5314 		freeb(first_mp);
5315 		*mpp = mp;
5316 	}
5317 
5318 	return (econnp);
5319 }
5320 
5321 /*
5322  * tcp_get_conn/tcp_free_conn
5323  *
5324  * tcp_get_conn is used to get a clean tcp connection structure.
5325  * It tries to reuse the connections put on the freelist by the
5326  * time_wait_collector failing which it goes to kmem_cache. This
5327  * way has two benefits compared to just allocating from and
5328  * freeing to kmem_cache.
5329  * 1) The time_wait_collector can free (which includes the cleanup)
5330  * outside the squeue. So when the interrupt comes, we have a clean
5331  * connection sitting in the freelist. Obviously, this buys us
5332  * performance.
5333  *
5334  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5335  * has multiple disadvantages - tying up the squeue during alloc, and the
5336  * fact that IPSec policy initialization has to happen here which
5337  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5338  * But allocating the conn/tcp in IP land is also not the best since
5339  * we can't check the 'q' and 'q0' which are protected by squeue and
5340  * blindly allocate memory which might have to be freed here if we are
5341  * not allowed to accept the connection. By using the freelist and
5342  * putting the conn/tcp back in freelist, we don't pay a penalty for
5343  * allocating memory without checking 'q/q0' and freeing it if we can't
5344  * accept the connection.
5345  *
5346  * Care should be taken to put the conn back in the same squeue's freelist
5347  * from which it was allocated. Best results are obtained if conn is
5348  * allocated from listener's squeue and freed to the same. Time wait
5349  * collector will free up the freelist is the connection ends up sitting
5350  * there for too long.
5351  */
5352 void *
5353 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5354 {
5355 	tcp_t			*tcp = NULL;
5356 	conn_t			*connp = NULL;
5357 	squeue_t		*sqp = (squeue_t *)arg;
5358 	tcp_squeue_priv_t 	*tcp_time_wait;
5359 	netstack_t		*ns;
5360 
5361 	tcp_time_wait =
5362 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5363 
5364 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5365 	tcp = tcp_time_wait->tcp_free_list;
5366 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5367 	if (tcp != NULL) {
5368 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5369 		tcp_time_wait->tcp_free_list_cnt--;
5370 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5371 		tcp->tcp_time_wait_next = NULL;
5372 		connp = tcp->tcp_connp;
5373 		connp->conn_flags |= IPCL_REUSED;
5374 
5375 		ASSERT(tcp->tcp_tcps == NULL);
5376 		ASSERT(connp->conn_netstack == NULL);
5377 		ns = tcps->tcps_netstack;
5378 		netstack_hold(ns);
5379 		connp->conn_netstack = ns;
5380 		tcp->tcp_tcps = tcps;
5381 		TCPS_REFHOLD(tcps);
5382 		ipcl_globalhash_insert(connp);
5383 		return ((void *)connp);
5384 	}
5385 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5386 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5387 		    tcps->tcps_netstack)) == NULL)
5388 		return (NULL);
5389 	tcp = connp->conn_tcp;
5390 	tcp->tcp_tcps = tcps;
5391 	TCPS_REFHOLD(tcps);
5392 	return ((void *)connp);
5393 }
5394 
5395 /*
5396  * Update the cached label for the given tcp_t.  This should be called once per
5397  * connection, and before any packets are sent or tcp_process_options is
5398  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5399  */
5400 static boolean_t
5401 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5402 {
5403 	conn_t *connp = tcp->tcp_connp;
5404 
5405 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5406 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5407 		int added;
5408 
5409 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5410 		    connp->conn_mac_exempt,
5411 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5412 			return (B_FALSE);
5413 
5414 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5415 		if (added == -1)
5416 			return (B_FALSE);
5417 		tcp->tcp_hdr_len += added;
5418 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5419 		tcp->tcp_ip_hdr_len += added;
5420 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5421 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5422 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5423 			    tcp->tcp_hdr_len);
5424 			if (added == -1)
5425 				return (B_FALSE);
5426 			tcp->tcp_hdr_len += added;
5427 			tcp->tcp_tcph = (tcph_t *)
5428 			    ((uchar_t *)tcp->tcp_tcph + added);
5429 			tcp->tcp_ip_hdr_len += added;
5430 		}
5431 	} else {
5432 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5433 
5434 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5435 		    connp->conn_mac_exempt,
5436 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5437 			return (B_FALSE);
5438 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5439 		    &tcp->tcp_label_len, optbuf) != 0)
5440 			return (B_FALSE);
5441 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5442 			return (B_FALSE);
5443 	}
5444 
5445 	connp->conn_ulp_labeled = 1;
5446 
5447 	return (B_TRUE);
5448 }
5449 
5450 /* BEGIN CSTYLED */
5451 /*
5452  *
5453  * The sockfs ACCEPT path:
5454  * =======================
5455  *
5456  * The eager is now established in its own perimeter as soon as SYN is
5457  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5458  * completes the accept processing on the acceptor STREAM. The sending
5459  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5460  * listener but a TLI/XTI listener completes the accept processing
5461  * on the listener perimeter.
5462  *
5463  * Common control flow for 3 way handshake:
5464  * ----------------------------------------
5465  *
5466  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5467  *					-> tcp_conn_request()
5468  *
5469  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5470  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5471  *
5472  * Sockfs ACCEPT Path:
5473  * -------------------
5474  *
5475  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5476  * as STREAM entry point)
5477  *
5478  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5479  *
5480  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5481  * association (we are not behind eager's squeue but sockfs is protecting us
5482  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5483  * is changed to point at tcp_wput().
5484  *
5485  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5486  * listener (done on listener's perimeter).
5487  *
5488  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5489  * accept.
5490  *
5491  * TLI/XTI client ACCEPT path:
5492  * ---------------------------
5493  *
5494  * soaccept() sends T_CONN_RES on the listener STREAM.
5495  *
5496  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5497  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5498  *
5499  * Locks:
5500  * ======
5501  *
5502  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5503  * and listeners->tcp_eager_next_q.
5504  *
5505  * Referencing:
5506  * ============
5507  *
5508  * 1) We start out in tcp_conn_request by eager placing a ref on
5509  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5510  *
5511  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5512  * doing so we place a ref on the eager. This ref is finally dropped at the
5513  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5514  * reference is dropped by the squeue framework.
5515  *
5516  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5517  *
5518  * The reference must be released by the same entity that added the reference
5519  * In the above scheme, the eager is the entity that adds and releases the
5520  * references. Note that tcp_accept_finish executes in the squeue of the eager
5521  * (albeit after it is attached to the acceptor stream). Though 1. executes
5522  * in the listener's squeue, the eager is nascent at this point and the
5523  * reference can be considered to have been added on behalf of the eager.
5524  *
5525  * Eager getting a Reset or listener closing:
5526  * ==========================================
5527  *
5528  * Once the listener and eager are linked, the listener never does the unlink.
5529  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5530  * a message on all eager perimeter. The eager then does the unlink, clears
5531  * any pointers to the listener's queue and drops the reference to the
5532  * listener. The listener waits in tcp_close outside the squeue until its
5533  * refcount has dropped to 1. This ensures that the listener has waited for
5534  * all eagers to clear their association with the listener.
5535  *
5536  * Similarly, if eager decides to go away, it can unlink itself and close.
5537  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5538  * the reference to eager is still valid because of the extra ref we put
5539  * in tcp_send_conn_ind.
5540  *
5541  * Listener can always locate the eager under the protection
5542  * of the listener->tcp_eager_lock, and then do a refhold
5543  * on the eager during the accept processing.
5544  *
5545  * The acceptor stream accesses the eager in the accept processing
5546  * based on the ref placed on eager before sending T_conn_ind.
5547  * The only entity that can negate this refhold is a listener close
5548  * which is mutually exclusive with an active acceptor stream.
5549  *
5550  * Eager's reference on the listener
5551  * ===================================
5552  *
5553  * If the accept happens (even on a closed eager) the eager drops its
5554  * reference on the listener at the start of tcp_accept_finish. If the
5555  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5556  * the reference is dropped in tcp_closei_local. If the listener closes,
5557  * the reference is dropped in tcp_eager_kill. In all cases the reference
5558  * is dropped while executing in the eager's context (squeue).
5559  */
5560 /* END CSTYLED */
5561 
5562 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5563 
5564 /*
5565  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5566  * tcp_rput_data will not see any SYN packets.
5567  */
5568 /* ARGSUSED */
5569 void
5570 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5571 {
5572 	tcph_t		*tcph;
5573 	uint32_t	seg_seq;
5574 	tcp_t		*eager;
5575 	uint_t		ipvers;
5576 	ipha_t		*ipha;
5577 	ip6_t		*ip6h;
5578 	int		err;
5579 	conn_t		*econnp = NULL;
5580 	squeue_t	*new_sqp;
5581 	mblk_t		*mp1;
5582 	uint_t 		ip_hdr_len;
5583 	conn_t		*connp = (conn_t *)arg;
5584 	tcp_t		*tcp = connp->conn_tcp;
5585 	cred_t		*credp;
5586 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5587 	ip_stack_t	*ipst;
5588 
5589 	if (tcp->tcp_state != TCPS_LISTEN)
5590 		goto error2;
5591 
5592 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5593 
5594 	mutex_enter(&tcp->tcp_eager_lock);
5595 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5596 		mutex_exit(&tcp->tcp_eager_lock);
5597 		TCP_STAT(tcps, tcp_listendrop);
5598 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5599 		if (tcp->tcp_debug) {
5600 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5601 			    "tcp_conn_request: listen backlog (max=%d) "
5602 			    "overflow (%d pending) on %s",
5603 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5604 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5605 		}
5606 		goto error2;
5607 	}
5608 
5609 	if (tcp->tcp_conn_req_cnt_q0 >=
5610 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5611 		/*
5612 		 * Q0 is full. Drop a pending half-open req from the queue
5613 		 * to make room for the new SYN req. Also mark the time we
5614 		 * drop a SYN.
5615 		 *
5616 		 * A more aggressive defense against SYN attack will
5617 		 * be to set the "tcp_syn_defense" flag now.
5618 		 */
5619 		TCP_STAT(tcps, tcp_listendropq0);
5620 		tcp->tcp_last_rcv_lbolt = lbolt64;
5621 		if (!tcp_drop_q0(tcp)) {
5622 			mutex_exit(&tcp->tcp_eager_lock);
5623 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5624 			if (tcp->tcp_debug) {
5625 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5626 				    "tcp_conn_request: listen half-open queue "
5627 				    "(max=%d) full (%d pending) on %s",
5628 				    tcps->tcps_conn_req_max_q0,
5629 				    tcp->tcp_conn_req_cnt_q0,
5630 				    tcp_display(tcp, NULL,
5631 				    DISP_PORT_ONLY));
5632 			}
5633 			goto error2;
5634 		}
5635 	}
5636 	mutex_exit(&tcp->tcp_eager_lock);
5637 
5638 	/*
5639 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5640 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5641 	 * link local address.  If IPSec is enabled, db_struioflag has
5642 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5643 	 * otherwise an error case if neither of them is set.
5644 	 */
5645 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5646 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5647 		DB_CKSUMSTART(mp) = 0;
5648 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5649 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5650 		if (econnp == NULL)
5651 			goto error2;
5652 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5653 		econnp->conn_sqp = new_sqp;
5654 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5655 		/*
5656 		 * mp is updated in tcp_get_ipsec_conn().
5657 		 */
5658 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5659 		if (econnp == NULL) {
5660 			/*
5661 			 * mp freed by tcp_get_ipsec_conn.
5662 			 */
5663 			return;
5664 		}
5665 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5666 	} else {
5667 		goto error2;
5668 	}
5669 
5670 	ASSERT(DB_TYPE(mp) == M_DATA);
5671 
5672 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5673 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5674 	ASSERT(OK_32PTR(mp->b_rptr));
5675 	if (ipvers == IPV4_VERSION) {
5676 		ipha = (ipha_t *)mp->b_rptr;
5677 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5678 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5679 	} else {
5680 		ip6h = (ip6_t *)mp->b_rptr;
5681 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5682 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5683 	}
5684 
5685 	if (tcp->tcp_family == AF_INET) {
5686 		ASSERT(ipvers == IPV4_VERSION);
5687 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5688 	} else {
5689 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5690 	}
5691 
5692 	if (err)
5693 		goto error3;
5694 
5695 	eager = econnp->conn_tcp;
5696 
5697 	/* Inherit various TCP parameters from the listener */
5698 	eager->tcp_naglim = tcp->tcp_naglim;
5699 	eager->tcp_first_timer_threshold =
5700 	    tcp->tcp_first_timer_threshold;
5701 	eager->tcp_second_timer_threshold =
5702 	    tcp->tcp_second_timer_threshold;
5703 
5704 	eager->tcp_first_ctimer_threshold =
5705 	    tcp->tcp_first_ctimer_threshold;
5706 	eager->tcp_second_ctimer_threshold =
5707 	    tcp->tcp_second_ctimer_threshold;
5708 
5709 	/*
5710 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5711 	 * If it does not, the eager's receive window will be set to the
5712 	 * listener's receive window later in this function.
5713 	 */
5714 	eager->tcp_rwnd = 0;
5715 
5716 	/*
5717 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5718 	 * calling tcp_process_options() where tcp_mss_set() is called
5719 	 * to set the initial cwnd.
5720 	 */
5721 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5722 
5723 	/*
5724 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5725 	 * zone id before the accept is completed in tcp_wput_accept().
5726 	 */
5727 	econnp->conn_zoneid = connp->conn_zoneid;
5728 	econnp->conn_allzones = connp->conn_allzones;
5729 
5730 	/* Copy nexthop information from listener to eager */
5731 	if (connp->conn_nexthop_set) {
5732 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5733 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5734 	}
5735 
5736 	/*
5737 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5738 	 * eager is accepted
5739 	 */
5740 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5741 	crhold(credp);
5742 
5743 	/*
5744 	 * If the caller has the process-wide flag set, then default to MAC
5745 	 * exempt mode.  This allows read-down to unlabeled hosts.
5746 	 */
5747 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5748 		econnp->conn_mac_exempt = B_TRUE;
5749 
5750 	if (is_system_labeled()) {
5751 		cred_t *cr;
5752 
5753 		if (connp->conn_mlp_type != mlptSingle) {
5754 			cr = econnp->conn_peercred = DB_CRED(mp);
5755 			if (cr != NULL)
5756 				crhold(cr);
5757 			else
5758 				cr = econnp->conn_cred;
5759 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5760 			    econnp, cred_t *, cr)
5761 		} else {
5762 			cr = econnp->conn_cred;
5763 			DTRACE_PROBE2(syn_accept, conn_t *,
5764 			    econnp, cred_t *, cr)
5765 		}
5766 
5767 		if (!tcp_update_label(eager, cr)) {
5768 			DTRACE_PROBE3(
5769 			    tx__ip__log__error__connrequest__tcp,
5770 			    char *, "eager connp(1) label on SYN mp(2) failed",
5771 			    conn_t *, econnp, mblk_t *, mp);
5772 			goto error3;
5773 		}
5774 	}
5775 
5776 	eager->tcp_hard_binding = B_TRUE;
5777 
5778 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5779 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5780 
5781 	CL_INET_CONNECT(eager);
5782 
5783 	/*
5784 	 * No need to check for multicast destination since ip will only pass
5785 	 * up multicasts to those that have expressed interest
5786 	 * TODO: what about rejecting broadcasts?
5787 	 * Also check that source is not a multicast or broadcast address.
5788 	 */
5789 	eager->tcp_state = TCPS_SYN_RCVD;
5790 
5791 
5792 	/*
5793 	 * There should be no ire in the mp as we are being called after
5794 	 * receiving the SYN.
5795 	 */
5796 	ASSERT(tcp_ire_mp(mp) == NULL);
5797 
5798 	/*
5799 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5800 	 */
5801 
5802 	if (tcp_adapt_ire(eager, NULL) == 0) {
5803 		/* Undo the bind_hash_insert */
5804 		tcp_bind_hash_remove(eager);
5805 		goto error3;
5806 	}
5807 
5808 	/* Process all TCP options. */
5809 	tcp_process_options(eager, tcph);
5810 
5811 	/* Is the other end ECN capable? */
5812 	if (tcps->tcps_ecn_permitted >= 1 &&
5813 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5814 		eager->tcp_ecn_ok = B_TRUE;
5815 	}
5816 
5817 	/*
5818 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5819 	 * window size changed via SO_RCVBUF option.  First round up the
5820 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5821 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5822 	 * setting.
5823 	 *
5824 	 * Note if there is a rpipe metric associated with the remote host,
5825 	 * we should not inherit receive window size from listener.
5826 	 */
5827 	eager->tcp_rwnd = MSS_ROUNDUP(
5828 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5829 	    eager->tcp_rwnd), eager->tcp_mss);
5830 	if (eager->tcp_snd_ws_ok)
5831 		tcp_set_ws_value(eager);
5832 	/*
5833 	 * Note that this is the only place tcp_rwnd_set() is called for
5834 	 * accepting a connection.  We need to call it here instead of
5835 	 * after the 3-way handshake because we need to tell the other
5836 	 * side our rwnd in the SYN-ACK segment.
5837 	 */
5838 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5839 
5840 	/*
5841 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5842 	 * via soaccept()->soinheritoptions() which essentially applies
5843 	 * all the listener options to the new STREAM. The options that we
5844 	 * need to take care of are:
5845 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5846 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5847 	 * SO_SNDBUF, SO_RCVBUF.
5848 	 *
5849 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5850 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5851 	 *		tcp_maxpsz_set() gets called later from
5852 	 *		tcp_accept_finish(), the option takes effect.
5853 	 *
5854 	 */
5855 	/* Set the TCP options */
5856 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5857 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5858 	eager->tcp_oobinline = tcp->tcp_oobinline;
5859 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5860 	eager->tcp_broadcast = tcp->tcp_broadcast;
5861 	eager->tcp_useloopback = tcp->tcp_useloopback;
5862 	eager->tcp_dontroute = tcp->tcp_dontroute;
5863 	eager->tcp_linger = tcp->tcp_linger;
5864 	eager->tcp_lingertime = tcp->tcp_lingertime;
5865 	if (tcp->tcp_ka_enabled)
5866 		eager->tcp_ka_enabled = 1;
5867 
5868 	/* Set the IP options */
5869 	econnp->conn_broadcast = connp->conn_broadcast;
5870 	econnp->conn_loopback = connp->conn_loopback;
5871 	econnp->conn_dontroute = connp->conn_dontroute;
5872 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5873 
5874 	/* Put a ref on the listener for the eager. */
5875 	CONN_INC_REF(connp);
5876 	mutex_enter(&tcp->tcp_eager_lock);
5877 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5878 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5879 	tcp->tcp_eager_next_q0 = eager;
5880 	eager->tcp_eager_prev_q0 = tcp;
5881 
5882 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5883 	eager->tcp_listener = tcp;
5884 	eager->tcp_saved_listener = tcp;
5885 
5886 	/*
5887 	 * Tag this detached tcp vector for later retrieval
5888 	 * by our listener client in tcp_accept().
5889 	 */
5890 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5891 	tcp->tcp_conn_req_cnt_q0++;
5892 	if (++tcp->tcp_conn_req_seqnum == -1) {
5893 		/*
5894 		 * -1 is "special" and defined in TPI as something
5895 		 * that should never be used in T_CONN_IND
5896 		 */
5897 		++tcp->tcp_conn_req_seqnum;
5898 	}
5899 	mutex_exit(&tcp->tcp_eager_lock);
5900 
5901 	if (tcp->tcp_syn_defense) {
5902 		/* Don't drop the SYN that comes from a good IP source */
5903 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5904 		if (addr_cache != NULL && eager->tcp_remote ==
5905 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5906 			eager->tcp_dontdrop = B_TRUE;
5907 		}
5908 	}
5909 
5910 	/*
5911 	 * We need to insert the eager in its own perimeter but as soon
5912 	 * as we do that, we expose the eager to the classifier and
5913 	 * should not touch any field outside the eager's perimeter.
5914 	 * So do all the work necessary before inserting the eager
5915 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5916 	 * will succeed but undo everything if it fails.
5917 	 */
5918 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5919 	eager->tcp_irs = seg_seq;
5920 	eager->tcp_rack = seg_seq;
5921 	eager->tcp_rnxt = seg_seq + 1;
5922 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5923 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5924 	eager->tcp_state = TCPS_SYN_RCVD;
5925 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5926 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5927 	if (mp1 == NULL) {
5928 		/*
5929 		 * Increment the ref count as we are going to
5930 		 * enqueueing an mp in squeue
5931 		 */
5932 		CONN_INC_REF(econnp);
5933 		goto error;
5934 	}
5935 	DB_CPID(mp1) = tcp->tcp_cpid;
5936 	eager->tcp_cpid = tcp->tcp_cpid;
5937 	eager->tcp_open_time = lbolt64;
5938 
5939 	/*
5940 	 * We need to start the rto timer. In normal case, we start
5941 	 * the timer after sending the packet on the wire (or at
5942 	 * least believing that packet was sent by waiting for
5943 	 * CALL_IP_WPUT() to return). Since this is the first packet
5944 	 * being sent on the wire for the eager, our initial tcp_rto
5945 	 * is at least tcp_rexmit_interval_min which is a fairly
5946 	 * large value to allow the algorithm to adjust slowly to large
5947 	 * fluctuations of RTT during first few transmissions.
5948 	 *
5949 	 * Starting the timer first and then sending the packet in this
5950 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5951 	 * is of the order of several 100ms and starting the timer
5952 	 * first and then sending the packet will result in difference
5953 	 * of few micro seconds.
5954 	 *
5955 	 * Without this optimization, we are forced to hold the fanout
5956 	 * lock across the ipcl_bind_insert() and sending the packet
5957 	 * so that we don't race against an incoming packet (maybe RST)
5958 	 * for this eager.
5959 	 *
5960 	 * It is necessary to acquire an extra reference on the eager
5961 	 * at this point and hold it until after tcp_send_data() to
5962 	 * ensure against an eager close race.
5963 	 */
5964 
5965 	CONN_INC_REF(eager->tcp_connp);
5966 
5967 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5968 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5969 
5970 
5971 	/*
5972 	 * Insert the eager in its own perimeter now. We are ready to deal
5973 	 * with any packets on eager.
5974 	 */
5975 	if (eager->tcp_ipversion == IPV4_VERSION) {
5976 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5977 			goto error;
5978 		}
5979 	} else {
5980 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5981 			goto error;
5982 		}
5983 	}
5984 
5985 	/* mark conn as fully-bound */
5986 	econnp->conn_fully_bound = B_TRUE;
5987 
5988 	/* Send the SYN-ACK */
5989 	tcp_send_data(eager, eager->tcp_wq, mp1);
5990 	CONN_DEC_REF(eager->tcp_connp);
5991 	freemsg(mp);
5992 
5993 	return;
5994 error:
5995 	freemsg(mp1);
5996 	eager->tcp_closemp_used = B_TRUE;
5997 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5998 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
5999 	    econnp, SQTAG_TCP_CONN_REQ_2);
6000 
6001 	/*
6002 	 * If a connection already exists, send the mp to that connections so
6003 	 * that it can be appropriately dealt with.
6004 	 */
6005 	ipst = tcps->tcps_netstack->netstack_ip;
6006 
6007 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6008 		if (!IPCL_IS_CONNECTED(econnp)) {
6009 			/*
6010 			 * Something bad happened. ipcl_conn_insert()
6011 			 * failed because a connection already existed
6012 			 * in connected hash but we can't find it
6013 			 * anymore (someone blew it away). Just
6014 			 * free this message and hopefully remote
6015 			 * will retransmit at which time the SYN can be
6016 			 * treated as a new connection or dealth with
6017 			 * a TH_RST if a connection already exists.
6018 			 */
6019 			CONN_DEC_REF(econnp);
6020 			freemsg(mp);
6021 		} else {
6022 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6023 			    econnp, SQTAG_TCP_CONN_REQ_1);
6024 		}
6025 	} else {
6026 		/* Nobody wants this packet */
6027 		freemsg(mp);
6028 	}
6029 	return;
6030 error3:
6031 	CONN_DEC_REF(econnp);
6032 error2:
6033 	freemsg(mp);
6034 }
6035 
6036 /*
6037  * In an ideal case of vertical partition in NUMA architecture, its
6038  * beneficial to have the listener and all the incoming connections
6039  * tied to the same squeue. The other constraint is that incoming
6040  * connections should be tied to the squeue attached to interrupted
6041  * CPU for obvious locality reason so this leaves the listener to
6042  * be tied to the same squeue. Our only problem is that when listener
6043  * is binding, the CPU that will get interrupted by the NIC whose
6044  * IP address the listener is binding to is not even known. So
6045  * the code below allows us to change that binding at the time the
6046  * CPU is interrupted by virtue of incoming connection's squeue.
6047  *
6048  * This is usefull only in case of a listener bound to a specific IP
6049  * address. For other kind of listeners, they get bound the
6050  * very first time and there is no attempt to rebind them.
6051  */
6052 void
6053 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6054 {
6055 	conn_t		*connp = (conn_t *)arg;
6056 	squeue_t	*sqp = (squeue_t *)arg2;
6057 	squeue_t	*new_sqp;
6058 	uint32_t	conn_flags;
6059 
6060 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6061 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6062 	} else {
6063 		goto done;
6064 	}
6065 
6066 	if (connp->conn_fanout == NULL)
6067 		goto done;
6068 
6069 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6070 		mutex_enter(&connp->conn_fanout->connf_lock);
6071 		mutex_enter(&connp->conn_lock);
6072 		/*
6073 		 * No one from read or write side can access us now
6074 		 * except for already queued packets on this squeue.
6075 		 * But since we haven't changed the squeue yet, they
6076 		 * can't execute. If they are processed after we have
6077 		 * changed the squeue, they are sent back to the
6078 		 * correct squeue down below.
6079 		 * But a listner close can race with processing of
6080 		 * incoming SYN. If incoming SYN processing changes
6081 		 * the squeue then the listener close which is waiting
6082 		 * to enter the squeue would operate on the wrong
6083 		 * squeue. Hence we don't change the squeue here unless
6084 		 * the refcount is exactly the minimum refcount. The
6085 		 * minimum refcount of 4 is counted as - 1 each for
6086 		 * TCP and IP, 1 for being in the classifier hash, and
6087 		 * 1 for the mblk being processed.
6088 		 */
6089 
6090 		if (connp->conn_ref != 4 ||
6091 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6092 			mutex_exit(&connp->conn_lock);
6093 			mutex_exit(&connp->conn_fanout->connf_lock);
6094 			goto done;
6095 		}
6096 		if (connp->conn_sqp != new_sqp) {
6097 			while (connp->conn_sqp != new_sqp)
6098 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6099 		}
6100 
6101 		do {
6102 			conn_flags = connp->conn_flags;
6103 			conn_flags |= IPCL_FULLY_BOUND;
6104 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6105 			    conn_flags);
6106 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6107 
6108 		mutex_exit(&connp->conn_fanout->connf_lock);
6109 		mutex_exit(&connp->conn_lock);
6110 	}
6111 
6112 done:
6113 	if (connp->conn_sqp != sqp) {
6114 		CONN_INC_REF(connp);
6115 		squeue_fill(connp->conn_sqp, mp,
6116 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6117 	} else {
6118 		tcp_conn_request(connp, mp, sqp);
6119 	}
6120 }
6121 
6122 /*
6123  * Successful connect request processing begins when our client passes
6124  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6125  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6126  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6127  *   upstream <- tcp_rput()                <- IP
6128  * After various error checks are completed, tcp_connect() lays
6129  * the target address and port into the composite header template,
6130  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6131  * request followed by an IRE request, and passes the three mblk message
6132  * down to IP looking like this:
6133  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6134  * Processing continues in tcp_rput() when we receive the following message:
6135  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6136  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6137  * to fire off the connection request, and then passes the T_OK_ACK mblk
6138  * upstream that we filled in below.  There are, of course, numerous
6139  * error conditions along the way which truncate the processing described
6140  * above.
6141  */
6142 static void
6143 tcp_connect(tcp_t *tcp, mblk_t *mp)
6144 {
6145 	sin_t		*sin;
6146 	sin6_t		*sin6;
6147 	queue_t		*q = tcp->tcp_wq;
6148 	struct T_conn_req	*tcr;
6149 	ipaddr_t	*dstaddrp;
6150 	in_port_t	dstport;
6151 	uint_t		srcid;
6152 
6153 	tcr = (struct T_conn_req *)mp->b_rptr;
6154 
6155 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6156 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6157 		tcp_err_ack(tcp, mp, TPROTO, 0);
6158 		return;
6159 	}
6160 
6161 	/*
6162 	 * Determine packet type based on type of address passed in
6163 	 * the request should contain an IPv4 or IPv6 address.
6164 	 * Make sure that address family matches the type of
6165 	 * family of the the address passed down
6166 	 */
6167 	switch (tcr->DEST_length) {
6168 	default:
6169 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6170 		return;
6171 
6172 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6173 		/*
6174 		 * XXX: The check for valid DEST_length was not there
6175 		 * in earlier releases and some buggy
6176 		 * TLI apps (e.g Sybase) got away with not feeding
6177 		 * in sin_zero part of address.
6178 		 * We allow that bug to keep those buggy apps humming.
6179 		 * Test suites require the check on DEST_length.
6180 		 * We construct a new mblk with valid DEST_length
6181 		 * free the original so the rest of the code does
6182 		 * not have to keep track of this special shorter
6183 		 * length address case.
6184 		 */
6185 		mblk_t *nmp;
6186 		struct T_conn_req *ntcr;
6187 		sin_t *nsin;
6188 
6189 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6190 		    tcr->OPT_length, BPRI_HI);
6191 		if (nmp == NULL) {
6192 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6193 			return;
6194 		}
6195 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6196 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6197 		ntcr->PRIM_type = T_CONN_REQ;
6198 		ntcr->DEST_length = sizeof (sin_t);
6199 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6200 
6201 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6202 		*nsin = sin_null;
6203 		/* Get pointer to shorter address to copy from original mp */
6204 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6205 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6206 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6207 			freemsg(nmp);
6208 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6209 			return;
6210 		}
6211 		nsin->sin_family = sin->sin_family;
6212 		nsin->sin_port = sin->sin_port;
6213 		nsin->sin_addr = sin->sin_addr;
6214 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6215 		nmp->b_wptr = (uchar_t *)&nsin[1];
6216 		if (tcr->OPT_length != 0) {
6217 			ntcr->OPT_length = tcr->OPT_length;
6218 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6219 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6220 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6221 			    tcr->OPT_length);
6222 			nmp->b_wptr += tcr->OPT_length;
6223 		}
6224 		freemsg(mp);	/* original mp freed */
6225 		mp = nmp;	/* re-initialize original variables */
6226 		tcr = ntcr;
6227 	}
6228 	/* FALLTHRU */
6229 
6230 	case sizeof (sin_t):
6231 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6232 		    sizeof (sin_t));
6233 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6234 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6235 			return;
6236 		}
6237 		if (tcp->tcp_family != AF_INET ||
6238 		    sin->sin_family != AF_INET) {
6239 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6240 			return;
6241 		}
6242 		if (sin->sin_port == 0) {
6243 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6244 			return;
6245 		}
6246 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6247 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6248 			return;
6249 		}
6250 
6251 		break;
6252 
6253 	case sizeof (sin6_t):
6254 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6255 		    sizeof (sin6_t));
6256 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6257 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6258 			return;
6259 		}
6260 		if (tcp->tcp_family != AF_INET6 ||
6261 		    sin6->sin6_family != AF_INET6) {
6262 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6263 			return;
6264 		}
6265 		if (sin6->sin6_port == 0) {
6266 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6267 			return;
6268 		}
6269 		break;
6270 	}
6271 	/*
6272 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6273 	 * should key on their sequence number and cut them loose.
6274 	 */
6275 
6276 	/*
6277 	 * If options passed in, feed it for verification and handling
6278 	 */
6279 	if (tcr->OPT_length != 0) {
6280 		mblk_t	*ok_mp;
6281 		mblk_t	*discon_mp;
6282 		mblk_t  *conn_opts_mp;
6283 		int t_error, sys_error, do_disconnect;
6284 
6285 		conn_opts_mp = NULL;
6286 
6287 		if (tcp_conprim_opt_process(tcp, mp,
6288 			&do_disconnect, &t_error, &sys_error) < 0) {
6289 			if (do_disconnect) {
6290 				ASSERT(t_error == 0 && sys_error == 0);
6291 				discon_mp = mi_tpi_discon_ind(NULL,
6292 				    ECONNREFUSED, 0);
6293 				if (!discon_mp) {
6294 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6295 					    TSYSERR, ENOMEM);
6296 					return;
6297 				}
6298 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6299 				if (!ok_mp) {
6300 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6301 					    TSYSERR, ENOMEM);
6302 					return;
6303 				}
6304 				qreply(q, ok_mp);
6305 				qreply(q, discon_mp); /* no flush! */
6306 			} else {
6307 				ASSERT(t_error != 0);
6308 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6309 				    sys_error);
6310 			}
6311 			return;
6312 		}
6313 		/*
6314 		 * Success in setting options, the mp option buffer represented
6315 		 * by OPT_length/offset has been potentially modified and
6316 		 * contains results of option processing. We copy it in
6317 		 * another mp to save it for potentially influencing returning
6318 		 * it in T_CONN_CONN.
6319 		 */
6320 		if (tcr->OPT_length != 0) { /* there are resulting options */
6321 			conn_opts_mp = copyb(mp);
6322 			if (!conn_opts_mp) {
6323 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6324 				    TSYSERR, ENOMEM);
6325 				return;
6326 			}
6327 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6328 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6329 			/*
6330 			 * Note:
6331 			 * These resulting option negotiation can include any
6332 			 * end-to-end negotiation options but there no such
6333 			 * thing (yet?) in our TCP/IP.
6334 			 */
6335 		}
6336 	}
6337 
6338 	/*
6339 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6340 	 * make sure that the template IP header in the tcp structure is an
6341 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6342 	 * need to this before we call tcp_bindi() so that the port lookup
6343 	 * code will look for ports in the correct port space (IPv4 and
6344 	 * IPv6 have separate port spaces).
6345 	 */
6346 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6347 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6348 		int err = 0;
6349 
6350 		err = tcp_header_init_ipv4(tcp);
6351 		if (err != 0) {
6352 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6353 			goto connect_failed;
6354 		}
6355 		if (tcp->tcp_lport != 0)
6356 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6357 	}
6358 
6359 	switch (tcp->tcp_state) {
6360 	case TCPS_IDLE:
6361 		/*
6362 		 * We support quick connect, refer to comments in
6363 		 * tcp_connect_*()
6364 		 */
6365 		/* FALLTHRU */
6366 	case TCPS_BOUND:
6367 	case TCPS_LISTEN:
6368 		if (tcp->tcp_family == AF_INET6) {
6369 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6370 				tcp_connect_ipv6(tcp, mp,
6371 				    &sin6->sin6_addr,
6372 				    sin6->sin6_port, sin6->sin6_flowinfo,
6373 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6374 				return;
6375 			}
6376 			/*
6377 			 * Destination adress is mapped IPv6 address.
6378 			 * Source bound address should be unspecified or
6379 			 * IPv6 mapped address as well.
6380 			 */
6381 			if (!IN6_IS_ADDR_UNSPECIFIED(
6382 			    &tcp->tcp_bound_source_v6) &&
6383 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6384 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6385 				    EADDRNOTAVAIL);
6386 				break;
6387 			}
6388 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6389 			dstport = sin6->sin6_port;
6390 			srcid = sin6->__sin6_src_id;
6391 		} else {
6392 			dstaddrp = &sin->sin_addr.s_addr;
6393 			dstport = sin->sin_port;
6394 			srcid = 0;
6395 		}
6396 
6397 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6398 		return;
6399 	default:
6400 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6401 		break;
6402 	}
6403 	/*
6404 	 * Note: Code below is the "failure" case
6405 	 */
6406 	/* return error ack and blow away saved option results if any */
6407 connect_failed:
6408 	if (mp != NULL)
6409 		putnext(tcp->tcp_rq, mp);
6410 	else {
6411 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6412 		    TSYSERR, ENOMEM);
6413 	}
6414 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6415 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6416 }
6417 
6418 /*
6419  * Handle connect to IPv4 destinations, including connections for AF_INET6
6420  * sockets connecting to IPv4 mapped IPv6 destinations.
6421  */
6422 static void
6423 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6424     uint_t srcid)
6425 {
6426 	tcph_t	*tcph;
6427 	mblk_t	*mp1;
6428 	ipaddr_t dstaddr = *dstaddrp;
6429 	int32_t	oldstate;
6430 	uint16_t lport;
6431 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6432 
6433 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6434 
6435 	/* Check for attempt to connect to INADDR_ANY */
6436 	if (dstaddr == INADDR_ANY)  {
6437 		/*
6438 		 * SunOS 4.x and 4.3 BSD allow an application
6439 		 * to connect a TCP socket to INADDR_ANY.
6440 		 * When they do this, the kernel picks the
6441 		 * address of one interface and uses it
6442 		 * instead.  The kernel usually ends up
6443 		 * picking the address of the loopback
6444 		 * interface.  This is an undocumented feature.
6445 		 * However, we provide the same thing here
6446 		 * in order to have source and binary
6447 		 * compatibility with SunOS 4.x.
6448 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6449 		 * generate the T_CONN_CON.
6450 		 */
6451 		dstaddr = htonl(INADDR_LOOPBACK);
6452 		*dstaddrp = dstaddr;
6453 	}
6454 
6455 	/* Handle __sin6_src_id if socket not bound to an IP address */
6456 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6457 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6458 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6459 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6460 		    tcp->tcp_ipha->ipha_src);
6461 	}
6462 
6463 	/*
6464 	 * Don't let an endpoint connect to itself.  Note that
6465 	 * the test here does not catch the case where the
6466 	 * source IP addr was left unspecified by the user. In
6467 	 * this case, the source addr is set in tcp_adapt_ire()
6468 	 * using the reply to the T_BIND message that we send
6469 	 * down to IP here and the check is repeated in tcp_rput_other.
6470 	 */
6471 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6472 	    dstport == tcp->tcp_lport) {
6473 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6474 		goto failed;
6475 	}
6476 
6477 	tcp->tcp_ipha->ipha_dst = dstaddr;
6478 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6479 
6480 	/*
6481 	 * Massage a source route if any putting the first hop
6482 	 * in iph_dst. Compute a starting value for the checksum which
6483 	 * takes into account that the original iph_dst should be
6484 	 * included in the checksum but that ip will include the
6485 	 * first hop in the source route in the tcp checksum.
6486 	 */
6487 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6488 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6489 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6490 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6491 	if ((int)tcp->tcp_sum < 0)
6492 		tcp->tcp_sum--;
6493 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6494 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6495 	    (tcp->tcp_sum >> 16));
6496 	tcph = tcp->tcp_tcph;
6497 	*(uint16_t *)tcph->th_fport = dstport;
6498 	tcp->tcp_fport = dstport;
6499 
6500 	oldstate = tcp->tcp_state;
6501 	/*
6502 	 * At this point the remote destination address and remote port fields
6503 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6504 	 * have to see which state tcp was in so we can take apropriate action.
6505 	 */
6506 	if (oldstate == TCPS_IDLE) {
6507 		/*
6508 		 * We support a quick connect capability here, allowing
6509 		 * clients to transition directly from IDLE to SYN_SENT
6510 		 * tcp_bindi will pick an unused port, insert the connection
6511 		 * in the bind hash and transition to BOUND state.
6512 		 */
6513 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6514 		    tcp, B_TRUE);
6515 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6516 		    B_FALSE, B_FALSE);
6517 		if (lport == 0) {
6518 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6519 			goto failed;
6520 		}
6521 	}
6522 	tcp->tcp_state = TCPS_SYN_SENT;
6523 
6524 	/*
6525 	 * TODO: allow data with connect requests
6526 	 * by unlinking M_DATA trailers here and
6527 	 * linking them in behind the T_OK_ACK mblk.
6528 	 * The tcp_rput() bind ack handler would then
6529 	 * feed them to tcp_wput_data() rather than call
6530 	 * tcp_timer().
6531 	 */
6532 	mp = mi_tpi_ok_ack_alloc(mp);
6533 	if (!mp) {
6534 		tcp->tcp_state = oldstate;
6535 		goto failed;
6536 	}
6537 	if (tcp->tcp_family == AF_INET) {
6538 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6539 		    sizeof (ipa_conn_t));
6540 	} else {
6541 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6542 		    sizeof (ipa6_conn_t));
6543 	}
6544 	if (mp1) {
6545 		/* Hang onto the T_OK_ACK for later. */
6546 		linkb(mp1, mp);
6547 		mblk_setcred(mp1, tcp->tcp_cred);
6548 		if (tcp->tcp_family == AF_INET)
6549 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6550 		else {
6551 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6552 			    &tcp->tcp_sticky_ipp);
6553 		}
6554 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6555 		tcp->tcp_active_open = 1;
6556 		/*
6557 		 * If the bind cannot complete immediately
6558 		 * IP will arrange to call tcp_rput_other
6559 		 * when the bind completes.
6560 		 */
6561 		if (mp1 != NULL)
6562 			tcp_rput_other(tcp, mp1);
6563 		return;
6564 	}
6565 	/* Error case */
6566 	tcp->tcp_state = oldstate;
6567 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6568 
6569 failed:
6570 	/* return error ack and blow away saved option results if any */
6571 	if (mp != NULL)
6572 		putnext(tcp->tcp_rq, mp);
6573 	else {
6574 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6575 		    TSYSERR, ENOMEM);
6576 	}
6577 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6578 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6579 
6580 }
6581 
6582 /*
6583  * Handle connect to IPv6 destinations.
6584  */
6585 static void
6586 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6587     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6588 {
6589 	tcph_t	*tcph;
6590 	mblk_t	*mp1;
6591 	ip6_rthdr_t *rth;
6592 	int32_t  oldstate;
6593 	uint16_t lport;
6594 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6595 
6596 	ASSERT(tcp->tcp_family == AF_INET6);
6597 
6598 	/*
6599 	 * If we're here, it means that the destination address is a native
6600 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6601 	 * reason why it might not be IPv6 is if the socket was bound to an
6602 	 * IPv4-mapped IPv6 address.
6603 	 */
6604 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6605 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6606 		goto failed;
6607 	}
6608 
6609 	/*
6610 	 * Interpret a zero destination to mean loopback.
6611 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6612 	 * generate the T_CONN_CON.
6613 	 */
6614 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6615 		*dstaddrp = ipv6_loopback;
6616 	}
6617 
6618 	/* Handle __sin6_src_id if socket not bound to an IP address */
6619 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6620 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6621 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6622 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6623 	}
6624 
6625 	/*
6626 	 * Take care of the scope_id now and add ip6i_t
6627 	 * if ip6i_t is not already allocated through TCP
6628 	 * sticky options. At this point tcp_ip6h does not
6629 	 * have dst info, thus use dstaddrp.
6630 	 */
6631 	if (scope_id != 0 &&
6632 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6633 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6634 		ip6i_t  *ip6i;
6635 
6636 		ipp->ipp_ifindex = scope_id;
6637 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6638 
6639 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6640 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6641 			/* Already allocated */
6642 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6643 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6644 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6645 		} else {
6646 			int reterr;
6647 
6648 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6649 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6650 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6651 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6652 			if (reterr != 0)
6653 				goto failed;
6654 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6655 		}
6656 	}
6657 
6658 	/*
6659 	 * Don't let an endpoint connect to itself.  Note that
6660 	 * the test here does not catch the case where the
6661 	 * source IP addr was left unspecified by the user. In
6662 	 * this case, the source addr is set in tcp_adapt_ire()
6663 	 * using the reply to the T_BIND message that we send
6664 	 * down to IP here and the check is repeated in tcp_rput_other.
6665 	 */
6666 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6667 	    (dstport == tcp->tcp_lport)) {
6668 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6669 		goto failed;
6670 	}
6671 
6672 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6673 	tcp->tcp_remote_v6 = *dstaddrp;
6674 	tcp->tcp_ip6h->ip6_vcf =
6675 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6676 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6677 
6678 
6679 	/*
6680 	 * Massage a routing header (if present) putting the first hop
6681 	 * in ip6_dst. Compute a starting value for the checksum which
6682 	 * takes into account that the original ip6_dst should be
6683 	 * included in the checksum but that ip will include the
6684 	 * first hop in the source route in the tcp checksum.
6685 	 */
6686 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6687 	if (rth != NULL) {
6688 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6689 		    tcps->tcps_netstack);
6690 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6691 		    (tcp->tcp_sum >> 16));
6692 	} else {
6693 		tcp->tcp_sum = 0;
6694 	}
6695 
6696 	tcph = tcp->tcp_tcph;
6697 	*(uint16_t *)tcph->th_fport = dstport;
6698 	tcp->tcp_fport = dstport;
6699 
6700 	oldstate = tcp->tcp_state;
6701 	/*
6702 	 * At this point the remote destination address and remote port fields
6703 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6704 	 * have to see which state tcp was in so we can take apropriate action.
6705 	 */
6706 	if (oldstate == TCPS_IDLE) {
6707 		/*
6708 		 * We support a quick connect capability here, allowing
6709 		 * clients to transition directly from IDLE to SYN_SENT
6710 		 * tcp_bindi will pick an unused port, insert the connection
6711 		 * in the bind hash and transition to BOUND state.
6712 		 */
6713 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6714 		    tcp, B_TRUE);
6715 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6716 		    B_FALSE, B_FALSE);
6717 		if (lport == 0) {
6718 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6719 			goto failed;
6720 		}
6721 	}
6722 	tcp->tcp_state = TCPS_SYN_SENT;
6723 	/*
6724 	 * TODO: allow data with connect requests
6725 	 * by unlinking M_DATA trailers here and
6726 	 * linking them in behind the T_OK_ACK mblk.
6727 	 * The tcp_rput() bind ack handler would then
6728 	 * feed them to tcp_wput_data() rather than call
6729 	 * tcp_timer().
6730 	 */
6731 	mp = mi_tpi_ok_ack_alloc(mp);
6732 	if (!mp) {
6733 		tcp->tcp_state = oldstate;
6734 		goto failed;
6735 	}
6736 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6737 	if (mp1) {
6738 		/* Hang onto the T_OK_ACK for later. */
6739 		linkb(mp1, mp);
6740 		mblk_setcred(mp1, tcp->tcp_cred);
6741 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6742 		    &tcp->tcp_sticky_ipp);
6743 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6744 		tcp->tcp_active_open = 1;
6745 		/* ip_bind_v6() may return ACK or ERROR */
6746 		if (mp1 != NULL)
6747 			tcp_rput_other(tcp, mp1);
6748 		return;
6749 	}
6750 	/* Error case */
6751 	tcp->tcp_state = oldstate;
6752 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6753 
6754 failed:
6755 	/* return error ack and blow away saved option results if any */
6756 	if (mp != NULL)
6757 		putnext(tcp->tcp_rq, mp);
6758 	else {
6759 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6760 		    TSYSERR, ENOMEM);
6761 	}
6762 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6763 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6764 }
6765 
6766 /*
6767  * We need a stream q for detached closing tcp connections
6768  * to use.  Our client hereby indicates that this q is the
6769  * one to use.
6770  */
6771 static void
6772 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6773 {
6774 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6775 	queue_t	*q = tcp->tcp_wq;
6776 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6777 
6778 #ifdef NS_DEBUG
6779 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6780 	    tcps->tcps_netstack->netstack_stackid);
6781 #endif
6782 	mp->b_datap->db_type = M_IOCACK;
6783 	iocp->ioc_count = 0;
6784 	mutex_enter(&tcps->tcps_g_q_lock);
6785 	if (tcps->tcps_g_q != NULL) {
6786 		mutex_exit(&tcps->tcps_g_q_lock);
6787 		iocp->ioc_error = EALREADY;
6788 	} else {
6789 		mblk_t *mp1;
6790 
6791 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6792 		if (mp1 == NULL) {
6793 			mutex_exit(&tcps->tcps_g_q_lock);
6794 			iocp->ioc_error = ENOMEM;
6795 		} else {
6796 			tcps->tcps_g_q = tcp->tcp_rq;
6797 			mutex_exit(&tcps->tcps_g_q_lock);
6798 			iocp->ioc_error = 0;
6799 			iocp->ioc_rval = 0;
6800 			/*
6801 			 * We are passing tcp_sticky_ipp as NULL
6802 			 * as it is not useful for tcp_default queue
6803 			 */
6804 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6805 			if (mp1 != NULL)
6806 				tcp_rput_other(tcp, mp1);
6807 		}
6808 	}
6809 	qreply(q, mp);
6810 }
6811 
6812 /*
6813  * Our client hereby directs us to reject the connection request
6814  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6815  * of sending the appropriate RST, not an ICMP error.
6816  */
6817 static void
6818 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6819 {
6820 	tcp_t	*ltcp = NULL;
6821 	t_scalar_t seqnum;
6822 	conn_t	*connp;
6823 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6824 
6825 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6826 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6827 		tcp_err_ack(tcp, mp, TPROTO, 0);
6828 		return;
6829 	}
6830 
6831 	/*
6832 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6833 	 * when the stream is in BOUND state. Do not send a reset,
6834 	 * since the destination IP address is not valid, and it can
6835 	 * be the initialized value of all zeros (broadcast address).
6836 	 *
6837 	 * If TCP has sent down a bind request to IP and has not
6838 	 * received the reply, reject the request.  Otherwise, TCP
6839 	 * will be confused.
6840 	 */
6841 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6842 		if (tcp->tcp_debug) {
6843 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6844 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6845 		}
6846 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6847 		return;
6848 	}
6849 
6850 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6851 
6852 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6853 
6854 		/*
6855 		 * According to TPI, for non-listeners, ignore seqnum
6856 		 * and disconnect.
6857 		 * Following interpretation of -1 seqnum is historical
6858 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6859 		 * a valid seqnum should not be -1).
6860 		 *
6861 		 *	-1 means disconnect everything
6862 		 *	regardless even on a listener.
6863 		 */
6864 
6865 		int old_state = tcp->tcp_state;
6866 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6867 
6868 		/*
6869 		 * The connection can't be on the tcp_time_wait_head list
6870 		 * since it is not detached.
6871 		 */
6872 		ASSERT(tcp->tcp_time_wait_next == NULL);
6873 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6874 		ASSERT(tcp->tcp_time_wait_expire == 0);
6875 		ltcp = NULL;
6876 		/*
6877 		 * If it used to be a listener, check to make sure no one else
6878 		 * has taken the port before switching back to LISTEN state.
6879 		 */
6880 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6881 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6882 			    tcp->tcp_ipha->ipha_src,
6883 			    tcp->tcp_connp->conn_zoneid, ipst);
6884 			if (connp != NULL)
6885 				ltcp = connp->conn_tcp;
6886 		} else {
6887 			/* Allow tcp_bound_if listeners? */
6888 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6889 			    &tcp->tcp_ip6h->ip6_src, 0,
6890 			    tcp->tcp_connp->conn_zoneid, ipst);
6891 			if (connp != NULL)
6892 				ltcp = connp->conn_tcp;
6893 		}
6894 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6895 			tcp->tcp_state = TCPS_LISTEN;
6896 		} else if (old_state > TCPS_BOUND) {
6897 			tcp->tcp_conn_req_max = 0;
6898 			tcp->tcp_state = TCPS_BOUND;
6899 		}
6900 		if (ltcp != NULL)
6901 			CONN_DEC_REF(ltcp->tcp_connp);
6902 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6903 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6904 		} else if (old_state == TCPS_ESTABLISHED ||
6905 		    old_state == TCPS_CLOSE_WAIT) {
6906 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6907 		}
6908 
6909 		if (tcp->tcp_fused)
6910 			tcp_unfuse(tcp);
6911 
6912 		mutex_enter(&tcp->tcp_eager_lock);
6913 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6914 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6915 			tcp_eager_cleanup(tcp, 0);
6916 		}
6917 		mutex_exit(&tcp->tcp_eager_lock);
6918 
6919 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6920 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6921 
6922 		tcp_reinit(tcp);
6923 
6924 		if (old_state >= TCPS_ESTABLISHED) {
6925 			/* Send M_FLUSH according to TPI */
6926 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6927 		}
6928 		mp = mi_tpi_ok_ack_alloc(mp);
6929 		if (mp)
6930 			putnext(tcp->tcp_rq, mp);
6931 		return;
6932 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6933 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6934 		return;
6935 	}
6936 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6937 		/* Send M_FLUSH according to TPI */
6938 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6939 	}
6940 	mp = mi_tpi_ok_ack_alloc(mp);
6941 	if (mp)
6942 		putnext(tcp->tcp_rq, mp);
6943 }
6944 
6945 /*
6946  * Diagnostic routine used to return a string associated with the tcp state.
6947  * Note that if the caller does not supply a buffer, it will use an internal
6948  * static string.  This means that if multiple threads call this function at
6949  * the same time, output can be corrupted...  Note also that this function
6950  * does not check the size of the supplied buffer.  The caller has to make
6951  * sure that it is big enough.
6952  */
6953 static char *
6954 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6955 {
6956 	char		buf1[30];
6957 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6958 	char		*buf;
6959 	char		*cp;
6960 	in6_addr_t	local, remote;
6961 	char		local_addrbuf[INET6_ADDRSTRLEN];
6962 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6963 
6964 	if (sup_buf != NULL)
6965 		buf = sup_buf;
6966 	else
6967 		buf = priv_buf;
6968 
6969 	if (tcp == NULL)
6970 		return ("NULL_TCP");
6971 	switch (tcp->tcp_state) {
6972 	case TCPS_CLOSED:
6973 		cp = "TCP_CLOSED";
6974 		break;
6975 	case TCPS_IDLE:
6976 		cp = "TCP_IDLE";
6977 		break;
6978 	case TCPS_BOUND:
6979 		cp = "TCP_BOUND";
6980 		break;
6981 	case TCPS_LISTEN:
6982 		cp = "TCP_LISTEN";
6983 		break;
6984 	case TCPS_SYN_SENT:
6985 		cp = "TCP_SYN_SENT";
6986 		break;
6987 	case TCPS_SYN_RCVD:
6988 		cp = "TCP_SYN_RCVD";
6989 		break;
6990 	case TCPS_ESTABLISHED:
6991 		cp = "TCP_ESTABLISHED";
6992 		break;
6993 	case TCPS_CLOSE_WAIT:
6994 		cp = "TCP_CLOSE_WAIT";
6995 		break;
6996 	case TCPS_FIN_WAIT_1:
6997 		cp = "TCP_FIN_WAIT_1";
6998 		break;
6999 	case TCPS_CLOSING:
7000 		cp = "TCP_CLOSING";
7001 		break;
7002 	case TCPS_LAST_ACK:
7003 		cp = "TCP_LAST_ACK";
7004 		break;
7005 	case TCPS_FIN_WAIT_2:
7006 		cp = "TCP_FIN_WAIT_2";
7007 		break;
7008 	case TCPS_TIME_WAIT:
7009 		cp = "TCP_TIME_WAIT";
7010 		break;
7011 	default:
7012 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7013 		cp = buf1;
7014 		break;
7015 	}
7016 	switch (format) {
7017 	case DISP_ADDR_AND_PORT:
7018 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7019 			/*
7020 			 * Note that we use the remote address in the tcp_b
7021 			 * structure.  This means that it will print out
7022 			 * the real destination address, not the next hop's
7023 			 * address if source routing is used.
7024 			 */
7025 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7026 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7027 
7028 		} else {
7029 			local = tcp->tcp_ip_src_v6;
7030 			remote = tcp->tcp_remote_v6;
7031 		}
7032 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7033 		    sizeof (local_addrbuf));
7034 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7035 		    sizeof (remote_addrbuf));
7036 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7037 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7038 		    ntohs(tcp->tcp_fport), cp);
7039 		break;
7040 	case DISP_PORT_ONLY:
7041 	default:
7042 		(void) mi_sprintf(buf, "[%u, %u] %s",
7043 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7044 		break;
7045 	}
7046 
7047 	return (buf);
7048 }
7049 
7050 /*
7051  * Called via squeue to get on to eager's perimeter. It sends a
7052  * TH_RST if eager is in the fanout table. The listener wants the
7053  * eager to disappear either by means of tcp_eager_blowoff() or
7054  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7055  * called (via squeue) if the eager cannot be inserted in the
7056  * fanout table in tcp_conn_request().
7057  */
7058 /* ARGSUSED */
7059 void
7060 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7061 {
7062 	conn_t	*econnp = (conn_t *)arg;
7063 	tcp_t	*eager = econnp->conn_tcp;
7064 	tcp_t	*listener = eager->tcp_listener;
7065 	tcp_stack_t	*tcps = eager->tcp_tcps;
7066 
7067 	/*
7068 	 * We could be called because listener is closing. Since
7069 	 * the eager is using listener's queue's, its not safe.
7070 	 * Better use the default queue just to send the TH_RST
7071 	 * out.
7072 	 */
7073 	ASSERT(tcps->tcps_g_q != NULL);
7074 	eager->tcp_rq = tcps->tcps_g_q;
7075 	eager->tcp_wq = WR(tcps->tcps_g_q);
7076 
7077 	/*
7078 	 * An eager's conn_fanout will be NULL if it's a duplicate
7079 	 * for an existing 4-tuples in the conn fanout table.
7080 	 * We don't want to send an RST out in such case.
7081 	 */
7082 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7083 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7084 		    eager, eager->tcp_snxt, 0, TH_RST);
7085 	}
7086 
7087 	/* We are here because listener wants this eager gone */
7088 	if (listener != NULL) {
7089 		mutex_enter(&listener->tcp_eager_lock);
7090 		tcp_eager_unlink(eager);
7091 		if (eager->tcp_tconnind_started) {
7092 			/*
7093 			 * The eager has sent a conn_ind up to the
7094 			 * listener but listener decides to close
7095 			 * instead. We need to drop the extra ref
7096 			 * placed on eager in tcp_rput_data() before
7097 			 * sending the conn_ind to listener.
7098 			 */
7099 			CONN_DEC_REF(econnp);
7100 		}
7101 		mutex_exit(&listener->tcp_eager_lock);
7102 		CONN_DEC_REF(listener->tcp_connp);
7103 	}
7104 
7105 	if (eager->tcp_state > TCPS_BOUND)
7106 		tcp_close_detached(eager);
7107 }
7108 
7109 /*
7110  * Reset any eager connection hanging off this listener marked
7111  * with 'seqnum' and then reclaim it's resources.
7112  */
7113 static boolean_t
7114 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7115 {
7116 	tcp_t	*eager;
7117 	mblk_t 	*mp;
7118 	tcp_stack_t	*tcps = listener->tcp_tcps;
7119 
7120 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7121 	eager = listener;
7122 	mutex_enter(&listener->tcp_eager_lock);
7123 	do {
7124 		eager = eager->tcp_eager_next_q;
7125 		if (eager == NULL) {
7126 			mutex_exit(&listener->tcp_eager_lock);
7127 			return (B_FALSE);
7128 		}
7129 	} while (eager->tcp_conn_req_seqnum != seqnum);
7130 
7131 	if (eager->tcp_closemp_used) {
7132 		mutex_exit(&listener->tcp_eager_lock);
7133 		return (B_TRUE);
7134 	}
7135 	eager->tcp_closemp_used = B_TRUE;
7136 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7137 	CONN_INC_REF(eager->tcp_connp);
7138 	mutex_exit(&listener->tcp_eager_lock);
7139 	mp = &eager->tcp_closemp;
7140 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7141 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7142 	return (B_TRUE);
7143 }
7144 
7145 /*
7146  * Reset any eager connection hanging off this listener
7147  * and then reclaim it's resources.
7148  */
7149 static void
7150 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7151 {
7152 	tcp_t	*eager;
7153 	mblk_t	*mp;
7154 	tcp_stack_t	*tcps = listener->tcp_tcps;
7155 
7156 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7157 
7158 	if (!q0_only) {
7159 		/* First cleanup q */
7160 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7161 		eager = listener->tcp_eager_next_q;
7162 		while (eager != NULL) {
7163 			if (!eager->tcp_closemp_used) {
7164 				eager->tcp_closemp_used = B_TRUE;
7165 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7166 				CONN_INC_REF(eager->tcp_connp);
7167 				mp = &eager->tcp_closemp;
7168 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7169 				    tcp_eager_kill, eager->tcp_connp,
7170 				    SQTAG_TCP_EAGER_CLEANUP);
7171 			}
7172 			eager = eager->tcp_eager_next_q;
7173 		}
7174 	}
7175 	/* Then cleanup q0 */
7176 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7177 	eager = listener->tcp_eager_next_q0;
7178 	while (eager != listener) {
7179 		if (!eager->tcp_closemp_used) {
7180 			eager->tcp_closemp_used = B_TRUE;
7181 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7182 			CONN_INC_REF(eager->tcp_connp);
7183 			mp = &eager->tcp_closemp;
7184 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7185 			    tcp_eager_kill, eager->tcp_connp,
7186 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7187 		}
7188 		eager = eager->tcp_eager_next_q0;
7189 	}
7190 }
7191 
7192 /*
7193  * If we are an eager connection hanging off a listener that hasn't
7194  * formally accepted the connection yet, get off his list and blow off
7195  * any data that we have accumulated.
7196  */
7197 static void
7198 tcp_eager_unlink(tcp_t *tcp)
7199 {
7200 	tcp_t	*listener = tcp->tcp_listener;
7201 
7202 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7203 	ASSERT(listener != NULL);
7204 	if (tcp->tcp_eager_next_q0 != NULL) {
7205 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7206 
7207 		/* Remove the eager tcp from q0 */
7208 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7209 		    tcp->tcp_eager_prev_q0;
7210 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7211 		    tcp->tcp_eager_next_q0;
7212 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7213 		listener->tcp_conn_req_cnt_q0--;
7214 
7215 		tcp->tcp_eager_next_q0 = NULL;
7216 		tcp->tcp_eager_prev_q0 = NULL;
7217 
7218 		/*
7219 		 * Take the eager out, if it is in the list of droppable
7220 		 * eagers.
7221 		 */
7222 		MAKE_UNDROPPABLE(tcp);
7223 
7224 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7225 			/* we have timed out before */
7226 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7227 			listener->tcp_syn_rcvd_timeout--;
7228 		}
7229 	} else {
7230 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7231 		tcp_t	*prev = NULL;
7232 
7233 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7234 			if (tcpp[0] == tcp) {
7235 				if (listener->tcp_eager_last_q == tcp) {
7236 					/*
7237 					 * If we are unlinking the last
7238 					 * element on the list, adjust
7239 					 * tail pointer. Set tail pointer
7240 					 * to nil when list is empty.
7241 					 */
7242 					ASSERT(tcp->tcp_eager_next_q == NULL);
7243 					if (listener->tcp_eager_last_q ==
7244 					    listener->tcp_eager_next_q) {
7245 						listener->tcp_eager_last_q =
7246 						NULL;
7247 					} else {
7248 						/*
7249 						 * We won't get here if there
7250 						 * is only one eager in the
7251 						 * list.
7252 						 */
7253 						ASSERT(prev != NULL);
7254 						listener->tcp_eager_last_q =
7255 						    prev;
7256 					}
7257 				}
7258 				tcpp[0] = tcp->tcp_eager_next_q;
7259 				tcp->tcp_eager_next_q = NULL;
7260 				tcp->tcp_eager_last_q = NULL;
7261 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7262 				listener->tcp_conn_req_cnt_q--;
7263 				break;
7264 			}
7265 			prev = tcpp[0];
7266 		}
7267 	}
7268 	tcp->tcp_listener = NULL;
7269 }
7270 
7271 /* Shorthand to generate and send TPI error acks to our client */
7272 static void
7273 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7274 {
7275 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7276 		putnext(tcp->tcp_rq, mp);
7277 }
7278 
7279 /* Shorthand to generate and send TPI error acks to our client */
7280 static void
7281 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7282     int t_error, int sys_error)
7283 {
7284 	struct T_error_ack	*teackp;
7285 
7286 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7287 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7288 		teackp = (struct T_error_ack *)mp->b_rptr;
7289 		teackp->ERROR_prim = primitive;
7290 		teackp->TLI_error = t_error;
7291 		teackp->UNIX_error = sys_error;
7292 		putnext(tcp->tcp_rq, mp);
7293 	}
7294 }
7295 
7296 /*
7297  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7298  * but instead the code relies on:
7299  * - the fact that the address of the array and its size never changes
7300  * - the atomic assignment of the elements of the array
7301  */
7302 /* ARGSUSED */
7303 static int
7304 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7305 {
7306 	int i;
7307 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7308 
7309 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7310 		if (tcps->tcps_g_epriv_ports[i] != 0)
7311 			(void) mi_mpprintf(mp, "%d ",
7312 			    tcps->tcps_g_epriv_ports[i]);
7313 	}
7314 	return (0);
7315 }
7316 
7317 /*
7318  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7319  * threads from changing it at the same time.
7320  */
7321 /* ARGSUSED */
7322 static int
7323 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7324     cred_t *cr)
7325 {
7326 	long	new_value;
7327 	int	i;
7328 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7329 
7330 	/*
7331 	 * Fail the request if the new value does not lie within the
7332 	 * port number limits.
7333 	 */
7334 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7335 	    new_value <= 0 || new_value >= 65536) {
7336 		return (EINVAL);
7337 	}
7338 
7339 	mutex_enter(&tcps->tcps_epriv_port_lock);
7340 	/* Check if the value is already in the list */
7341 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7342 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7343 			mutex_exit(&tcps->tcps_epriv_port_lock);
7344 			return (EEXIST);
7345 		}
7346 	}
7347 	/* Find an empty slot */
7348 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7349 		if (tcps->tcps_g_epriv_ports[i] == 0)
7350 			break;
7351 	}
7352 	if (i == tcps->tcps_g_num_epriv_ports) {
7353 		mutex_exit(&tcps->tcps_epriv_port_lock);
7354 		return (EOVERFLOW);
7355 	}
7356 	/* Set the new value */
7357 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7358 	mutex_exit(&tcps->tcps_epriv_port_lock);
7359 	return (0);
7360 }
7361 
7362 /*
7363  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7364  * threads from changing it at the same time.
7365  */
7366 /* ARGSUSED */
7367 static int
7368 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7369     cred_t *cr)
7370 {
7371 	long	new_value;
7372 	int	i;
7373 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7374 
7375 	/*
7376 	 * Fail the request if the new value does not lie within the
7377 	 * port number limits.
7378 	 */
7379 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7380 	    new_value >= 65536) {
7381 		return (EINVAL);
7382 	}
7383 
7384 	mutex_enter(&tcps->tcps_epriv_port_lock);
7385 	/* Check that the value is already in the list */
7386 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7387 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7388 			break;
7389 	}
7390 	if (i == tcps->tcps_g_num_epriv_ports) {
7391 		mutex_exit(&tcps->tcps_epriv_port_lock);
7392 		return (ESRCH);
7393 	}
7394 	/* Clear the value */
7395 	tcps->tcps_g_epriv_ports[i] = 0;
7396 	mutex_exit(&tcps->tcps_epriv_port_lock);
7397 	return (0);
7398 }
7399 
7400 /* Return the TPI/TLI equivalent of our current tcp_state */
7401 static int
7402 tcp_tpistate(tcp_t *tcp)
7403 {
7404 	switch (tcp->tcp_state) {
7405 	case TCPS_IDLE:
7406 		return (TS_UNBND);
7407 	case TCPS_LISTEN:
7408 		/*
7409 		 * Return whether there are outstanding T_CONN_IND waiting
7410 		 * for the matching T_CONN_RES. Therefore don't count q0.
7411 		 */
7412 		if (tcp->tcp_conn_req_cnt_q > 0)
7413 			return (TS_WRES_CIND);
7414 		else
7415 			return (TS_IDLE);
7416 	case TCPS_BOUND:
7417 		return (TS_IDLE);
7418 	case TCPS_SYN_SENT:
7419 		return (TS_WCON_CREQ);
7420 	case TCPS_SYN_RCVD:
7421 		/*
7422 		 * Note: assumption: this has to the active open SYN_RCVD.
7423 		 * The passive instance is detached in SYN_RCVD stage of
7424 		 * incoming connection processing so we cannot get request
7425 		 * for T_info_ack on it.
7426 		 */
7427 		return (TS_WACK_CRES);
7428 	case TCPS_ESTABLISHED:
7429 		return (TS_DATA_XFER);
7430 	case TCPS_CLOSE_WAIT:
7431 		return (TS_WREQ_ORDREL);
7432 	case TCPS_FIN_WAIT_1:
7433 		return (TS_WIND_ORDREL);
7434 	case TCPS_FIN_WAIT_2:
7435 		return (TS_WIND_ORDREL);
7436 
7437 	case TCPS_CLOSING:
7438 	case TCPS_LAST_ACK:
7439 	case TCPS_TIME_WAIT:
7440 	case TCPS_CLOSED:
7441 		/*
7442 		 * Following TS_WACK_DREQ7 is a rendition of "not
7443 		 * yet TS_IDLE" TPI state. There is no best match to any
7444 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7445 		 * choose a value chosen that will map to TLI/XTI level
7446 		 * state of TSTATECHNG (state is process of changing) which
7447 		 * captures what this dummy state represents.
7448 		 */
7449 		return (TS_WACK_DREQ7);
7450 	default:
7451 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7452 		    tcp->tcp_state, tcp_display(tcp, NULL,
7453 		    DISP_PORT_ONLY));
7454 		return (TS_UNBND);
7455 	}
7456 }
7457 
7458 static void
7459 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7460 {
7461 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7462 
7463 	if (tcp->tcp_family == AF_INET6)
7464 		*tia = tcp_g_t_info_ack_v6;
7465 	else
7466 		*tia = tcp_g_t_info_ack;
7467 	tia->CURRENT_state = tcp_tpistate(tcp);
7468 	tia->OPT_size = tcp_max_optsize;
7469 	if (tcp->tcp_mss == 0) {
7470 		/* Not yet set - tcp_open does not set mss */
7471 		if (tcp->tcp_ipversion == IPV4_VERSION)
7472 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7473 		else
7474 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7475 	} else {
7476 		tia->TIDU_size = tcp->tcp_mss;
7477 	}
7478 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7479 }
7480 
7481 /*
7482  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7483  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7484  * tcp_g_t_info_ack.  The current state of the stream is copied from
7485  * tcp_state.
7486  */
7487 static void
7488 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7489 {
7490 	t_uscalar_t		cap_bits1;
7491 	struct T_capability_ack	*tcap;
7492 
7493 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7494 		freemsg(mp);
7495 		return;
7496 	}
7497 
7498 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7499 
7500 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7501 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7502 	if (mp == NULL)
7503 		return;
7504 
7505 	tcap = (struct T_capability_ack *)mp->b_rptr;
7506 	tcap->CAP_bits1 = 0;
7507 
7508 	if (cap_bits1 & TC1_INFO) {
7509 		tcp_copy_info(&tcap->INFO_ack, tcp);
7510 		tcap->CAP_bits1 |= TC1_INFO;
7511 	}
7512 
7513 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7514 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7515 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7516 	}
7517 
7518 	putnext(tcp->tcp_rq, mp);
7519 }
7520 
7521 /*
7522  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7523  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7524  * The current state of the stream is copied from tcp_state.
7525  */
7526 static void
7527 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7528 {
7529 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7530 	    T_INFO_ACK);
7531 	if (!mp) {
7532 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7533 		return;
7534 	}
7535 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7536 	putnext(tcp->tcp_rq, mp);
7537 }
7538 
7539 /* Respond to the TPI addr request */
7540 static void
7541 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7542 {
7543 	sin_t	*sin;
7544 	mblk_t	*ackmp;
7545 	struct T_addr_ack *taa;
7546 
7547 	/* Make it large enough for worst case */
7548 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7549 	    2 * sizeof (sin6_t), 1);
7550 	if (ackmp == NULL) {
7551 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7552 		return;
7553 	}
7554 
7555 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7556 		tcp_addr_req_ipv6(tcp, ackmp);
7557 		return;
7558 	}
7559 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7560 
7561 	bzero(taa, sizeof (struct T_addr_ack));
7562 	ackmp->b_wptr = (uchar_t *)&taa[1];
7563 
7564 	taa->PRIM_type = T_ADDR_ACK;
7565 	ackmp->b_datap->db_type = M_PCPROTO;
7566 
7567 	/*
7568 	 * Note: Following code assumes 32 bit alignment of basic
7569 	 * data structures like sin_t and struct T_addr_ack.
7570 	 */
7571 	if (tcp->tcp_state >= TCPS_BOUND) {
7572 		/*
7573 		 * Fill in local address
7574 		 */
7575 		taa->LOCADDR_length = sizeof (sin_t);
7576 		taa->LOCADDR_offset = sizeof (*taa);
7577 
7578 		sin = (sin_t *)&taa[1];
7579 
7580 		/* Fill zeroes and then intialize non-zero fields */
7581 		*sin = sin_null;
7582 
7583 		sin->sin_family = AF_INET;
7584 
7585 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7586 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7587 
7588 		ackmp->b_wptr = (uchar_t *)&sin[1];
7589 
7590 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7591 			/*
7592 			 * Fill in Remote address
7593 			 */
7594 			taa->REMADDR_length = sizeof (sin_t);
7595 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7596 						taa->LOCADDR_length);
7597 
7598 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7599 			*sin = sin_null;
7600 			sin->sin_family = AF_INET;
7601 			sin->sin_addr.s_addr = tcp->tcp_remote;
7602 			sin->sin_port = tcp->tcp_fport;
7603 
7604 			ackmp->b_wptr = (uchar_t *)&sin[1];
7605 		}
7606 	}
7607 	putnext(tcp->tcp_rq, ackmp);
7608 }
7609 
7610 /* Assumes that tcp_addr_req gets enough space and alignment */
7611 static void
7612 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7613 {
7614 	sin6_t	*sin6;
7615 	struct T_addr_ack *taa;
7616 
7617 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7618 	ASSERT(OK_32PTR(ackmp->b_rptr));
7619 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7620 	    2 * sizeof (sin6_t));
7621 
7622 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7623 
7624 	bzero(taa, sizeof (struct T_addr_ack));
7625 	ackmp->b_wptr = (uchar_t *)&taa[1];
7626 
7627 	taa->PRIM_type = T_ADDR_ACK;
7628 	ackmp->b_datap->db_type = M_PCPROTO;
7629 
7630 	/*
7631 	 * Note: Following code assumes 32 bit alignment of basic
7632 	 * data structures like sin6_t and struct T_addr_ack.
7633 	 */
7634 	if (tcp->tcp_state >= TCPS_BOUND) {
7635 		/*
7636 		 * Fill in local address
7637 		 */
7638 		taa->LOCADDR_length = sizeof (sin6_t);
7639 		taa->LOCADDR_offset = sizeof (*taa);
7640 
7641 		sin6 = (sin6_t *)&taa[1];
7642 		*sin6 = sin6_null;
7643 
7644 		sin6->sin6_family = AF_INET6;
7645 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7646 		sin6->sin6_port = tcp->tcp_lport;
7647 
7648 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7649 
7650 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7651 			/*
7652 			 * Fill in Remote address
7653 			 */
7654 			taa->REMADDR_length = sizeof (sin6_t);
7655 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7656 						taa->LOCADDR_length);
7657 
7658 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7659 			*sin6 = sin6_null;
7660 			sin6->sin6_family = AF_INET6;
7661 			sin6->sin6_flowinfo =
7662 			    tcp->tcp_ip6h->ip6_vcf &
7663 			    ~IPV6_VERS_AND_FLOW_MASK;
7664 			sin6->sin6_addr = tcp->tcp_remote_v6;
7665 			sin6->sin6_port = tcp->tcp_fport;
7666 
7667 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7668 		}
7669 	}
7670 	putnext(tcp->tcp_rq, ackmp);
7671 }
7672 
7673 /*
7674  * Handle reinitialization of a tcp structure.
7675  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7676  */
7677 static void
7678 tcp_reinit(tcp_t *tcp)
7679 {
7680 	mblk_t	*mp;
7681 	int 	err;
7682 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7683 
7684 	TCP_STAT(tcps, tcp_reinit_calls);
7685 
7686 	/* tcp_reinit should never be called for detached tcp_t's */
7687 	ASSERT(tcp->tcp_listener == NULL);
7688 	ASSERT((tcp->tcp_family == AF_INET &&
7689 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7690 	    (tcp->tcp_family == AF_INET6 &&
7691 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7692 	    tcp->tcp_ipversion == IPV6_VERSION)));
7693 
7694 	/* Cancel outstanding timers */
7695 	tcp_timers_stop(tcp);
7696 
7697 	/*
7698 	 * Reset everything in the state vector, after updating global
7699 	 * MIB data from instance counters.
7700 	 */
7701 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7702 	tcp->tcp_ibsegs = 0;
7703 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7704 	tcp->tcp_obsegs = 0;
7705 
7706 	tcp_close_mpp(&tcp->tcp_xmit_head);
7707 	if (tcp->tcp_snd_zcopy_aware)
7708 		tcp_zcopy_notify(tcp);
7709 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7710 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7711 	mutex_enter(&tcp->tcp_non_sq_lock);
7712 	if (tcp->tcp_flow_stopped &&
7713 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7714 		tcp_clrqfull(tcp);
7715 	}
7716 	mutex_exit(&tcp->tcp_non_sq_lock);
7717 	tcp_close_mpp(&tcp->tcp_reass_head);
7718 	tcp->tcp_reass_tail = NULL;
7719 	if (tcp->tcp_rcv_list != NULL) {
7720 		/* Free b_next chain */
7721 		tcp_close_mpp(&tcp->tcp_rcv_list);
7722 		tcp->tcp_rcv_last_head = NULL;
7723 		tcp->tcp_rcv_last_tail = NULL;
7724 		tcp->tcp_rcv_cnt = 0;
7725 	}
7726 	tcp->tcp_rcv_last_tail = NULL;
7727 
7728 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7729 		freemsg(mp);
7730 		tcp->tcp_urp_mp = NULL;
7731 	}
7732 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7733 		freemsg(mp);
7734 		tcp->tcp_urp_mark_mp = NULL;
7735 	}
7736 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7737 		freeb(tcp->tcp_fused_sigurg_mp);
7738 		tcp->tcp_fused_sigurg_mp = NULL;
7739 	}
7740 
7741 	/*
7742 	 * Following is a union with two members which are
7743 	 * identical types and size so the following cleanup
7744 	 * is enough.
7745 	 */
7746 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7747 
7748 	CL_INET_DISCONNECT(tcp);
7749 
7750 	/*
7751 	 * The connection can't be on the tcp_time_wait_head list
7752 	 * since it is not detached.
7753 	 */
7754 	ASSERT(tcp->tcp_time_wait_next == NULL);
7755 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7756 	ASSERT(tcp->tcp_time_wait_expire == 0);
7757 
7758 	if (tcp->tcp_kssl_pending) {
7759 		tcp->tcp_kssl_pending = B_FALSE;
7760 
7761 		/* Don't reset if the initialized by bind. */
7762 		if (tcp->tcp_kssl_ent != NULL) {
7763 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7764 			    KSSL_NO_PROXY);
7765 		}
7766 	}
7767 	if (tcp->tcp_kssl_ctx != NULL) {
7768 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7769 		tcp->tcp_kssl_ctx = NULL;
7770 	}
7771 
7772 	/*
7773 	 * Reset/preserve other values
7774 	 */
7775 	tcp_reinit_values(tcp);
7776 	ipcl_hash_remove(tcp->tcp_connp);
7777 	conn_delete_ire(tcp->tcp_connp, NULL);
7778 	tcp_ipsec_cleanup(tcp);
7779 
7780 	if (tcp->tcp_conn_req_max != 0) {
7781 		/*
7782 		 * This is the case when a TLI program uses the same
7783 		 * transport end point to accept a connection.  This
7784 		 * makes the TCP both a listener and acceptor.  When
7785 		 * this connection is closed, we need to set the state
7786 		 * back to TCPS_LISTEN.  Make sure that the eager list
7787 		 * is reinitialized.
7788 		 *
7789 		 * Note that this stream is still bound to the four
7790 		 * tuples of the previous connection in IP.  If a new
7791 		 * SYN with different foreign address comes in, IP will
7792 		 * not find it and will send it to the global queue.  In
7793 		 * the global queue, TCP will do a tcp_lookup_listener()
7794 		 * to find this stream.  This works because this stream
7795 		 * is only removed from connected hash.
7796 		 *
7797 		 */
7798 		tcp->tcp_state = TCPS_LISTEN;
7799 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7800 		tcp->tcp_eager_next_drop_q0 = tcp;
7801 		tcp->tcp_eager_prev_drop_q0 = tcp;
7802 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7803 		if (tcp->tcp_family == AF_INET6) {
7804 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7805 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7806 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7807 		} else {
7808 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7809 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7810 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7811 		}
7812 	} else {
7813 		tcp->tcp_state = TCPS_BOUND;
7814 	}
7815 
7816 	/*
7817 	 * Initialize to default values
7818 	 * Can't fail since enough header template space already allocated
7819 	 * at open().
7820 	 */
7821 	err = tcp_init_values(tcp);
7822 	ASSERT(err == 0);
7823 	/* Restore state in tcp_tcph */
7824 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7825 	if (tcp->tcp_ipversion == IPV4_VERSION)
7826 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7827 	else
7828 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7829 	/*
7830 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7831 	 * since the lookup funcs can only lookup on tcp_t
7832 	 */
7833 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7834 
7835 	ASSERT(tcp->tcp_ptpbhn != NULL);
7836 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7837 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7838 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7839 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7840 }
7841 
7842 /*
7843  * Force values to zero that need be zero.
7844  * Do not touch values asociated with the BOUND or LISTEN state
7845  * since the connection will end up in that state after the reinit.
7846  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7847  * structure!
7848  */
7849 static void
7850 tcp_reinit_values(tcp)
7851 	tcp_t *tcp;
7852 {
7853 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7854 
7855 #ifndef	lint
7856 #define	DONTCARE(x)
7857 #define	PRESERVE(x)
7858 #else
7859 #define	DONTCARE(x)	((x) = (x))
7860 #define	PRESERVE(x)	((x) = (x))
7861 #endif	/* lint */
7862 
7863 	PRESERVE(tcp->tcp_bind_hash);
7864 	PRESERVE(tcp->tcp_ptpbhn);
7865 	PRESERVE(tcp->tcp_acceptor_hash);
7866 	PRESERVE(tcp->tcp_ptpahn);
7867 
7868 	/* Should be ASSERT NULL on these with new code! */
7869 	ASSERT(tcp->tcp_time_wait_next == NULL);
7870 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7871 	ASSERT(tcp->tcp_time_wait_expire == 0);
7872 	PRESERVE(tcp->tcp_state);
7873 	PRESERVE(tcp->tcp_rq);
7874 	PRESERVE(tcp->tcp_wq);
7875 
7876 	ASSERT(tcp->tcp_xmit_head == NULL);
7877 	ASSERT(tcp->tcp_xmit_last == NULL);
7878 	ASSERT(tcp->tcp_unsent == 0);
7879 	ASSERT(tcp->tcp_xmit_tail == NULL);
7880 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7881 
7882 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7883 	tcp->tcp_suna = 0;			/* Displayed in mib */
7884 	tcp->tcp_swnd = 0;
7885 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7886 
7887 	ASSERT(tcp->tcp_ibsegs == 0);
7888 	ASSERT(tcp->tcp_obsegs == 0);
7889 
7890 	if (tcp->tcp_iphc != NULL) {
7891 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7892 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7893 	}
7894 
7895 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7896 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7897 	DONTCARE(tcp->tcp_ipha);
7898 	DONTCARE(tcp->tcp_ip6h);
7899 	DONTCARE(tcp->tcp_ip_hdr_len);
7900 	DONTCARE(tcp->tcp_tcph);
7901 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7902 	tcp->tcp_valid_bits = 0;
7903 
7904 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7905 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7906 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7907 	tcp->tcp_last_rcv_lbolt = 0;
7908 
7909 	tcp->tcp_init_cwnd = 0;
7910 
7911 	tcp->tcp_urp_last_valid = 0;
7912 	tcp->tcp_hard_binding = 0;
7913 	tcp->tcp_hard_bound = 0;
7914 	PRESERVE(tcp->tcp_cred);
7915 	PRESERVE(tcp->tcp_cpid);
7916 	PRESERVE(tcp->tcp_open_time);
7917 	PRESERVE(tcp->tcp_exclbind);
7918 
7919 	tcp->tcp_fin_acked = 0;
7920 	tcp->tcp_fin_rcvd = 0;
7921 	tcp->tcp_fin_sent = 0;
7922 	tcp->tcp_ordrel_done = 0;
7923 
7924 	tcp->tcp_debug = 0;
7925 	tcp->tcp_dontroute = 0;
7926 	tcp->tcp_broadcast = 0;
7927 
7928 	tcp->tcp_useloopback = 0;
7929 	tcp->tcp_reuseaddr = 0;
7930 	tcp->tcp_oobinline = 0;
7931 	tcp->tcp_dgram_errind = 0;
7932 
7933 	tcp->tcp_detached = 0;
7934 	tcp->tcp_bind_pending = 0;
7935 	tcp->tcp_unbind_pending = 0;
7936 	tcp->tcp_deferred_clean_death = 0;
7937 
7938 	tcp->tcp_snd_ws_ok = B_FALSE;
7939 	tcp->tcp_snd_ts_ok = B_FALSE;
7940 	tcp->tcp_linger = 0;
7941 	tcp->tcp_ka_enabled = 0;
7942 	tcp->tcp_zero_win_probe = 0;
7943 
7944 	tcp->tcp_loopback = 0;
7945 	tcp->tcp_localnet = 0;
7946 	tcp->tcp_syn_defense = 0;
7947 	tcp->tcp_set_timer = 0;
7948 
7949 	tcp->tcp_active_open = 0;
7950 	ASSERT(tcp->tcp_timeout == B_FALSE);
7951 	tcp->tcp_rexmit = B_FALSE;
7952 	tcp->tcp_xmit_zc_clean = B_FALSE;
7953 
7954 	tcp->tcp_snd_sack_ok = B_FALSE;
7955 	PRESERVE(tcp->tcp_recvdstaddr);
7956 	tcp->tcp_hwcksum = B_FALSE;
7957 
7958 	tcp->tcp_ire_ill_check_done = B_FALSE;
7959 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7960 
7961 	tcp->tcp_mdt = B_FALSE;
7962 	tcp->tcp_mdt_hdr_head = 0;
7963 	tcp->tcp_mdt_hdr_tail = 0;
7964 
7965 	tcp->tcp_conn_def_q0 = 0;
7966 	tcp->tcp_ip_forward_progress = B_FALSE;
7967 	tcp->tcp_anon_priv_bind = 0;
7968 	tcp->tcp_ecn_ok = B_FALSE;
7969 
7970 	tcp->tcp_cwr = B_FALSE;
7971 	tcp->tcp_ecn_echo_on = B_FALSE;
7972 
7973 	if (tcp->tcp_sack_info != NULL) {
7974 		if (tcp->tcp_notsack_list != NULL) {
7975 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7976 		}
7977 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7978 		tcp->tcp_sack_info = NULL;
7979 	}
7980 
7981 	tcp->tcp_rcv_ws = 0;
7982 	tcp->tcp_snd_ws = 0;
7983 	tcp->tcp_ts_recent = 0;
7984 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7985 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7986 	tcp->tcp_if_mtu = 0;
7987 
7988 	ASSERT(tcp->tcp_reass_head == NULL);
7989 	ASSERT(tcp->tcp_reass_tail == NULL);
7990 
7991 	tcp->tcp_cwnd_cnt = 0;
7992 
7993 	ASSERT(tcp->tcp_rcv_list == NULL);
7994 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7995 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7996 	ASSERT(tcp->tcp_rcv_cnt == 0);
7997 
7998 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7999 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8000 	tcp->tcp_csuna = 0;
8001 
8002 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8003 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8004 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8005 	tcp->tcp_rtt_update = 0;
8006 
8007 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8008 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8009 
8010 	tcp->tcp_rack = 0;			/* Displayed in mib */
8011 	tcp->tcp_rack_cnt = 0;
8012 	tcp->tcp_rack_cur_max = 0;
8013 	tcp->tcp_rack_abs_max = 0;
8014 
8015 	tcp->tcp_max_swnd = 0;
8016 
8017 	ASSERT(tcp->tcp_listener == NULL);
8018 
8019 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8020 
8021 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8022 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8023 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8024 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8025 
8026 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8027 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8028 	PRESERVE(tcp->tcp_conn_req_max);
8029 	PRESERVE(tcp->tcp_conn_req_seqnum);
8030 
8031 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8032 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8033 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8034 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8035 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8036 
8037 	tcp->tcp_lingertime = 0;
8038 
8039 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8040 	ASSERT(tcp->tcp_urp_mp == NULL);
8041 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8042 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8043 
8044 	ASSERT(tcp->tcp_eager_next_q == NULL);
8045 	ASSERT(tcp->tcp_eager_last_q == NULL);
8046 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8047 	    tcp->tcp_eager_prev_q0 == NULL) ||
8048 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8049 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8050 
8051 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8052 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8053 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8054 
8055 	tcp->tcp_client_errno = 0;
8056 
8057 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8058 
8059 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8060 
8061 	PRESERVE(tcp->tcp_bound_source_v6);
8062 	tcp->tcp_last_sent_len = 0;
8063 	tcp->tcp_dupack_cnt = 0;
8064 
8065 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8066 	PRESERVE(tcp->tcp_lport);
8067 
8068 	PRESERVE(tcp->tcp_acceptor_lockp);
8069 
8070 	ASSERT(tcp->tcp_ordrelid == 0);
8071 	PRESERVE(tcp->tcp_acceptor_id);
8072 	DONTCARE(tcp->tcp_ipsec_overhead);
8073 
8074 	/*
8075 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8076 	 * in tcp structure and now tracing), Re-initialize all
8077 	 * members of tcp_traceinfo.
8078 	 */
8079 	if (tcp->tcp_tracebuf != NULL) {
8080 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8081 	}
8082 
8083 	PRESERVE(tcp->tcp_family);
8084 	if (tcp->tcp_family == AF_INET6) {
8085 		tcp->tcp_ipversion = IPV6_VERSION;
8086 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8087 	} else {
8088 		tcp->tcp_ipversion = IPV4_VERSION;
8089 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8090 	}
8091 
8092 	tcp->tcp_bound_if = 0;
8093 	tcp->tcp_ipv6_recvancillary = 0;
8094 	tcp->tcp_recvifindex = 0;
8095 	tcp->tcp_recvhops = 0;
8096 	tcp->tcp_closed = 0;
8097 	tcp->tcp_cleandeathtag = 0;
8098 	if (tcp->tcp_hopopts != NULL) {
8099 		mi_free(tcp->tcp_hopopts);
8100 		tcp->tcp_hopopts = NULL;
8101 		tcp->tcp_hopoptslen = 0;
8102 	}
8103 	ASSERT(tcp->tcp_hopoptslen == 0);
8104 	if (tcp->tcp_dstopts != NULL) {
8105 		mi_free(tcp->tcp_dstopts);
8106 		tcp->tcp_dstopts = NULL;
8107 		tcp->tcp_dstoptslen = 0;
8108 	}
8109 	ASSERT(tcp->tcp_dstoptslen == 0);
8110 	if (tcp->tcp_rtdstopts != NULL) {
8111 		mi_free(tcp->tcp_rtdstopts);
8112 		tcp->tcp_rtdstopts = NULL;
8113 		tcp->tcp_rtdstoptslen = 0;
8114 	}
8115 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8116 	if (tcp->tcp_rthdr != NULL) {
8117 		mi_free(tcp->tcp_rthdr);
8118 		tcp->tcp_rthdr = NULL;
8119 		tcp->tcp_rthdrlen = 0;
8120 	}
8121 	ASSERT(tcp->tcp_rthdrlen == 0);
8122 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8123 
8124 	/* Reset fusion-related fields */
8125 	tcp->tcp_fused = B_FALSE;
8126 	tcp->tcp_unfusable = B_FALSE;
8127 	tcp->tcp_fused_sigurg = B_FALSE;
8128 	tcp->tcp_direct_sockfs = B_FALSE;
8129 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8130 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8131 	tcp->tcp_loopback_peer = NULL;
8132 	tcp->tcp_fuse_rcv_hiwater = 0;
8133 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8134 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8135 
8136 	tcp->tcp_lso = B_FALSE;
8137 
8138 	tcp->tcp_in_ack_unsent = 0;
8139 	tcp->tcp_cork = B_FALSE;
8140 	tcp->tcp_tconnind_started = B_FALSE;
8141 
8142 	PRESERVE(tcp->tcp_squeue_bytes);
8143 
8144 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8145 	ASSERT(!tcp->tcp_kssl_pending);
8146 	PRESERVE(tcp->tcp_kssl_ent);
8147 
8148 	tcp->tcp_closemp_used = B_FALSE;
8149 
8150 #ifdef DEBUG
8151 	DONTCARE(tcp->tcmp_stk[0]);
8152 #endif
8153 
8154 
8155 #undef	DONTCARE
8156 #undef	PRESERVE
8157 }
8158 
8159 /*
8160  * Allocate necessary resources and initialize state vector.
8161  * Guaranteed not to fail so that when an error is returned,
8162  * the caller doesn't need to do any additional cleanup.
8163  */
8164 int
8165 tcp_init(tcp_t *tcp, queue_t *q)
8166 {
8167 	int	err;
8168 
8169 	tcp->tcp_rq = q;
8170 	tcp->tcp_wq = WR(q);
8171 	tcp->tcp_state = TCPS_IDLE;
8172 	if ((err = tcp_init_values(tcp)) != 0)
8173 		tcp_timers_stop(tcp);
8174 	return (err);
8175 }
8176 
8177 static int
8178 tcp_init_values(tcp_t *tcp)
8179 {
8180 	int	err;
8181 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8182 
8183 	ASSERT((tcp->tcp_family == AF_INET &&
8184 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8185 	    (tcp->tcp_family == AF_INET6 &&
8186 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8187 	    tcp->tcp_ipversion == IPV6_VERSION)));
8188 
8189 	/*
8190 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8191 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8192 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8193 	 * during first few transmissions of a connection as seen in slow
8194 	 * links.
8195 	 */
8196 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8197 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8198 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8199 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8200 	    tcps->tcps_conn_grace_period;
8201 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8202 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8203 	tcp->tcp_timer_backoff = 0;
8204 	tcp->tcp_ms_we_have_waited = 0;
8205 	tcp->tcp_last_recv_time = lbolt;
8206 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8207 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8208 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8209 
8210 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8211 
8212 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8213 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8214 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8215 	/*
8216 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8217 	 * passive open.
8218 	 */
8219 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8220 
8221 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8222 
8223 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8224 
8225 	tcp->tcp_mdt_hdr_head = 0;
8226 	tcp->tcp_mdt_hdr_tail = 0;
8227 
8228 	/* Reset fusion-related fields */
8229 	tcp->tcp_fused = B_FALSE;
8230 	tcp->tcp_unfusable = B_FALSE;
8231 	tcp->tcp_fused_sigurg = B_FALSE;
8232 	tcp->tcp_direct_sockfs = B_FALSE;
8233 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8234 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8235 	tcp->tcp_loopback_peer = NULL;
8236 	tcp->tcp_fuse_rcv_hiwater = 0;
8237 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8238 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8239 
8240 	/* Initialize the header template */
8241 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8242 		err = tcp_header_init_ipv4(tcp);
8243 	} else {
8244 		err = tcp_header_init_ipv6(tcp);
8245 	}
8246 	if (err)
8247 		return (err);
8248 
8249 	/*
8250 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8251 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8252 	 */
8253 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8254 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8255 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8256 
8257 	tcp->tcp_cork = B_FALSE;
8258 	/*
8259 	 * Init the tcp_debug option.  This value determines whether TCP
8260 	 * calls strlog() to print out debug messages.  Doing this
8261 	 * initialization here means that this value is not inherited thru
8262 	 * tcp_reinit().
8263 	 */
8264 	tcp->tcp_debug = tcps->tcps_dbg;
8265 
8266 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8267 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8268 
8269 	return (0);
8270 }
8271 
8272 /*
8273  * Initialize the IPv4 header. Loses any record of any IP options.
8274  */
8275 static int
8276 tcp_header_init_ipv4(tcp_t *tcp)
8277 {
8278 	tcph_t		*tcph;
8279 	uint32_t	sum;
8280 	conn_t		*connp;
8281 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8282 
8283 	/*
8284 	 * This is a simple initialization. If there's
8285 	 * already a template, it should never be too small,
8286 	 * so reuse it.  Otherwise, allocate space for the new one.
8287 	 */
8288 	if (tcp->tcp_iphc == NULL) {
8289 		ASSERT(tcp->tcp_iphc_len == 0);
8290 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8291 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8292 		if (tcp->tcp_iphc == NULL) {
8293 			tcp->tcp_iphc_len = 0;
8294 			return (ENOMEM);
8295 		}
8296 	}
8297 
8298 	/* options are gone; may need a new label */
8299 	connp = tcp->tcp_connp;
8300 	connp->conn_mlp_type = mlptSingle;
8301 	connp->conn_ulp_labeled = !is_system_labeled();
8302 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8303 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8304 	tcp->tcp_ip6h = NULL;
8305 	tcp->tcp_ipversion = IPV4_VERSION;
8306 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8307 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8308 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8309 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8310 	tcp->tcp_ipha->ipha_version_and_hdr_length
8311 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8312 	tcp->tcp_ipha->ipha_ident = 0;
8313 
8314 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8315 	tcp->tcp_tos = 0;
8316 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8317 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8318 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8319 
8320 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8321 	tcp->tcp_tcph = tcph;
8322 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8323 	/*
8324 	 * IP wants our header length in the checksum field to
8325 	 * allow it to perform a single pseudo-header+checksum
8326 	 * calculation on behalf of TCP.
8327 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8328 	 */
8329 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8330 	sum = (sum >> 16) + (sum & 0xFFFF);
8331 	U16_TO_ABE16(sum, tcph->th_sum);
8332 	return (0);
8333 }
8334 
8335 /*
8336  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8337  */
8338 static int
8339 tcp_header_init_ipv6(tcp_t *tcp)
8340 {
8341 	tcph_t	*tcph;
8342 	uint32_t	sum;
8343 	conn_t	*connp;
8344 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8345 
8346 	/*
8347 	 * This is a simple initialization. If there's
8348 	 * already a template, it should never be too small,
8349 	 * so reuse it. Otherwise, allocate space for the new one.
8350 	 * Ensure that there is enough space to "downgrade" the tcp_t
8351 	 * to an IPv4 tcp_t. This requires having space for a full load
8352 	 * of IPv4 options, as well as a full load of TCP options
8353 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8354 	 * than a v6 header and a TCP header with a full load of TCP options
8355 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8356 	 * We want to avoid reallocation in the "downgraded" case when
8357 	 * processing outbound IPv4 options.
8358 	 */
8359 	if (tcp->tcp_iphc == NULL) {
8360 		ASSERT(tcp->tcp_iphc_len == 0);
8361 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8362 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8363 		if (tcp->tcp_iphc == NULL) {
8364 			tcp->tcp_iphc_len = 0;
8365 			return (ENOMEM);
8366 		}
8367 	}
8368 
8369 	/* options are gone; may need a new label */
8370 	connp = tcp->tcp_connp;
8371 	connp->conn_mlp_type = mlptSingle;
8372 	connp->conn_ulp_labeled = !is_system_labeled();
8373 
8374 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8375 	tcp->tcp_ipversion = IPV6_VERSION;
8376 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8377 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8378 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8379 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8380 	tcp->tcp_ipha = NULL;
8381 
8382 	/* Initialize the header template */
8383 
8384 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8385 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8386 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8387 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8388 
8389 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8390 	tcp->tcp_tcph = tcph;
8391 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8392 	/*
8393 	 * IP wants our header length in the checksum field to
8394 	 * allow it to perform a single psuedo-header+checksum
8395 	 * calculation on behalf of TCP.
8396 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8397 	 */
8398 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8399 	sum = (sum >> 16) + (sum & 0xFFFF);
8400 	U16_TO_ABE16(sum, tcph->th_sum);
8401 	return (0);
8402 }
8403 
8404 /* At minimum we need 8 bytes in the TCP header for the lookup */
8405 #define	ICMP_MIN_TCP_HDR	8
8406 
8407 /*
8408  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8409  * passed up by IP. The message is always received on the correct tcp_t.
8410  * Assumes that IP has pulled up everything up to and including the ICMP header.
8411  */
8412 void
8413 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8414 {
8415 	icmph_t *icmph;
8416 	ipha_t	*ipha;
8417 	int	iph_hdr_length;
8418 	tcph_t	*tcph;
8419 	boolean_t ipsec_mctl = B_FALSE;
8420 	boolean_t secure;
8421 	mblk_t *first_mp = mp;
8422 	uint32_t new_mss;
8423 	uint32_t ratio;
8424 	size_t mp_size = MBLKL(mp);
8425 	uint32_t seg_seq;
8426 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8427 
8428 	/* Assume IP provides aligned packets - otherwise toss */
8429 	if (!OK_32PTR(mp->b_rptr)) {
8430 		freemsg(mp);
8431 		return;
8432 	}
8433 
8434 	/*
8435 	 * Since ICMP errors are normal data marked with M_CTL when sent
8436 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8437 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8438 	 */
8439 	if ((mp_size == sizeof (ipsec_info_t)) &&
8440 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8441 		ASSERT(mp->b_cont != NULL);
8442 		mp = mp->b_cont;
8443 		/* IP should have done this */
8444 		ASSERT(OK_32PTR(mp->b_rptr));
8445 		mp_size = MBLKL(mp);
8446 		ipsec_mctl = B_TRUE;
8447 	}
8448 
8449 	/*
8450 	 * Verify that we have a complete outer IP header. If not, drop it.
8451 	 */
8452 	if (mp_size < sizeof (ipha_t)) {
8453 noticmpv4:
8454 		freemsg(first_mp);
8455 		return;
8456 	}
8457 
8458 	ipha = (ipha_t *)mp->b_rptr;
8459 	/*
8460 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8461 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8462 	 */
8463 	switch (IPH_HDR_VERSION(ipha)) {
8464 	case IPV6_VERSION:
8465 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8466 		return;
8467 	case IPV4_VERSION:
8468 		break;
8469 	default:
8470 		goto noticmpv4;
8471 	}
8472 
8473 	/* Skip past the outer IP and ICMP headers */
8474 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8475 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8476 	/*
8477 	 * If we don't have the correct outer IP header length or if the ULP
8478 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8479 	 * send it upstream.
8480 	 */
8481 	if (iph_hdr_length < sizeof (ipha_t) ||
8482 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8483 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8484 		goto noticmpv4;
8485 	}
8486 	ipha = (ipha_t *)&icmph[1];
8487 
8488 	/* Skip past the inner IP and find the ULP header */
8489 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8490 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8491 	/*
8492 	 * If we don't have the correct inner IP header length or if the ULP
8493 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8494 	 * bytes of TCP header, drop it.
8495 	 */
8496 	if (iph_hdr_length < sizeof (ipha_t) ||
8497 	    ipha->ipha_protocol != IPPROTO_TCP ||
8498 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8499 		goto noticmpv4;
8500 	}
8501 
8502 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8503 		if (ipsec_mctl) {
8504 			secure = ipsec_in_is_secure(first_mp);
8505 		} else {
8506 			secure = B_FALSE;
8507 		}
8508 		if (secure) {
8509 			/*
8510 			 * If we are willing to accept this in clear
8511 			 * we don't have to verify policy.
8512 			 */
8513 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8514 				if (!tcp_check_policy(tcp, first_mp,
8515 				    ipha, NULL, secure, ipsec_mctl)) {
8516 					/*
8517 					 * tcp_check_policy called
8518 					 * ip_drop_packet() on failure.
8519 					 */
8520 					return;
8521 				}
8522 			}
8523 		}
8524 	} else if (ipsec_mctl) {
8525 		/*
8526 		 * This is a hard_bound connection. IP has already
8527 		 * verified policy. We don't have to do it again.
8528 		 */
8529 		freeb(first_mp);
8530 		first_mp = mp;
8531 		ipsec_mctl = B_FALSE;
8532 	}
8533 
8534 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8535 	/*
8536 	 * TCP SHOULD check that the TCP sequence number contained in
8537 	 * payload of the ICMP error message is within the range
8538 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8539 	 */
8540 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8541 		/*
8542 		 * If the ICMP message is bogus, should we kill the
8543 		 * connection, or should we just drop the bogus ICMP
8544 		 * message? It would probably make more sense to just
8545 		 * drop the message so that if this one managed to get
8546 		 * in, the real connection should not suffer.
8547 		 */
8548 		goto noticmpv4;
8549 	}
8550 
8551 	switch (icmph->icmph_type) {
8552 	case ICMP_DEST_UNREACHABLE:
8553 		switch (icmph->icmph_code) {
8554 		case ICMP_FRAGMENTATION_NEEDED:
8555 			/*
8556 			 * Reduce the MSS based on the new MTU.  This will
8557 			 * eliminate any fragmentation locally.
8558 			 * N.B.  There may well be some funny side-effects on
8559 			 * the local send policy and the remote receive policy.
8560 			 * Pending further research, we provide
8561 			 * tcp_ignore_path_mtu just in case this proves
8562 			 * disastrous somewhere.
8563 			 *
8564 			 * After updating the MSS, retransmit part of the
8565 			 * dropped segment using the new mss by calling
8566 			 * tcp_wput_data().  Need to adjust all those
8567 			 * params to make sure tcp_wput_data() work properly.
8568 			 */
8569 			if (tcps->tcps_ignore_path_mtu)
8570 				break;
8571 
8572 			/*
8573 			 * Decrease the MSS by time stamp options
8574 			 * IP options and IPSEC options. tcp_hdr_len
8575 			 * includes time stamp option and IP option
8576 			 * length.
8577 			 */
8578 
8579 			new_mss = ntohs(icmph->icmph_du_mtu) -
8580 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8581 
8582 			/*
8583 			 * Only update the MSS if the new one is
8584 			 * smaller than the previous one.  This is
8585 			 * to avoid problems when getting multiple
8586 			 * ICMP errors for the same MTU.
8587 			 */
8588 			if (new_mss >= tcp->tcp_mss)
8589 				break;
8590 
8591 			/*
8592 			 * Stop doing PMTU if new_mss is less than 68
8593 			 * or less than tcp_mss_min.
8594 			 * The value 68 comes from rfc 1191.
8595 			 */
8596 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8597 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8598 				    0;
8599 
8600 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8601 			ASSERT(ratio >= 1);
8602 			tcp_mss_set(tcp, new_mss, B_TRUE);
8603 
8604 			/*
8605 			 * Make sure we have something to
8606 			 * send.
8607 			 */
8608 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8609 			    (tcp->tcp_xmit_head != NULL)) {
8610 				/*
8611 				 * Shrink tcp_cwnd in
8612 				 * proportion to the old MSS/new MSS.
8613 				 */
8614 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8615 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8616 				    (tcp->tcp_unsent == 0)) {
8617 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8618 				} else {
8619 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8620 				}
8621 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8622 				tcp->tcp_rexmit = B_TRUE;
8623 				tcp->tcp_dupack_cnt = 0;
8624 				tcp->tcp_snd_burst = TCP_CWND_SS;
8625 				tcp_ss_rexmit(tcp);
8626 			}
8627 			break;
8628 		case ICMP_PORT_UNREACHABLE:
8629 		case ICMP_PROTOCOL_UNREACHABLE:
8630 			switch (tcp->tcp_state) {
8631 			case TCPS_SYN_SENT:
8632 			case TCPS_SYN_RCVD:
8633 				/*
8634 				 * ICMP can snipe away incipient
8635 				 * TCP connections as long as
8636 				 * seq number is same as initial
8637 				 * send seq number.
8638 				 */
8639 				if (seg_seq == tcp->tcp_iss) {
8640 					(void) tcp_clean_death(tcp,
8641 					    ECONNREFUSED, 6);
8642 				}
8643 				break;
8644 			}
8645 			break;
8646 		case ICMP_HOST_UNREACHABLE:
8647 		case ICMP_NET_UNREACHABLE:
8648 			/* Record the error in case we finally time out. */
8649 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8650 				tcp->tcp_client_errno = EHOSTUNREACH;
8651 			else
8652 				tcp->tcp_client_errno = ENETUNREACH;
8653 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8654 				if (tcp->tcp_listener != NULL &&
8655 				    tcp->tcp_listener->tcp_syn_defense) {
8656 					/*
8657 					 * Ditch the half-open connection if we
8658 					 * suspect a SYN attack is under way.
8659 					 */
8660 					tcp_ip_ire_mark_advice(tcp);
8661 					(void) tcp_clean_death(tcp,
8662 					    tcp->tcp_client_errno, 7);
8663 				}
8664 			}
8665 			break;
8666 		default:
8667 			break;
8668 		}
8669 		break;
8670 	case ICMP_SOURCE_QUENCH: {
8671 		/*
8672 		 * use a global boolean to control
8673 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8674 		 * The default is false.
8675 		 */
8676 		if (tcp_icmp_source_quench) {
8677 			/*
8678 			 * Reduce the sending rate as if we got a
8679 			 * retransmit timeout
8680 			 */
8681 			uint32_t npkt;
8682 
8683 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8684 			    tcp->tcp_mss;
8685 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8686 			tcp->tcp_cwnd = tcp->tcp_mss;
8687 			tcp->tcp_cwnd_cnt = 0;
8688 		}
8689 		break;
8690 	}
8691 	}
8692 	freemsg(first_mp);
8693 }
8694 
8695 /*
8696  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8697  * error messages passed up by IP.
8698  * Assumes that IP has pulled up all the extension headers as well
8699  * as the ICMPv6 header.
8700  */
8701 static void
8702 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8703 {
8704 	icmp6_t *icmp6;
8705 	ip6_t	*ip6h;
8706 	uint16_t	iph_hdr_length;
8707 	tcpha_t	*tcpha;
8708 	uint8_t	*nexthdrp;
8709 	uint32_t new_mss;
8710 	uint32_t ratio;
8711 	boolean_t secure;
8712 	mblk_t *first_mp = mp;
8713 	size_t mp_size;
8714 	uint32_t seg_seq;
8715 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8716 
8717 	/*
8718 	 * The caller has determined if this is an IPSEC_IN packet and
8719 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8720 	 */
8721 	if (ipsec_mctl)
8722 		mp = mp->b_cont;
8723 
8724 	mp_size = MBLKL(mp);
8725 
8726 	/*
8727 	 * Verify that we have a complete IP header. If not, send it upstream.
8728 	 */
8729 	if (mp_size < sizeof (ip6_t)) {
8730 noticmpv6:
8731 		freemsg(first_mp);
8732 		return;
8733 	}
8734 
8735 	/*
8736 	 * Verify this is an ICMPV6 packet, else send it upstream.
8737 	 */
8738 	ip6h = (ip6_t *)mp->b_rptr;
8739 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8740 		iph_hdr_length = IPV6_HDR_LEN;
8741 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8742 	    &nexthdrp) ||
8743 	    *nexthdrp != IPPROTO_ICMPV6) {
8744 		goto noticmpv6;
8745 	}
8746 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8747 	ip6h = (ip6_t *)&icmp6[1];
8748 	/*
8749 	 * Verify if we have a complete ICMP and inner IP header.
8750 	 */
8751 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8752 		goto noticmpv6;
8753 
8754 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8755 		goto noticmpv6;
8756 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8757 	/*
8758 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8759 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8760 	 * packet.
8761 	 */
8762 	if ((*nexthdrp != IPPROTO_TCP) ||
8763 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8764 		goto noticmpv6;
8765 	}
8766 
8767 	/*
8768 	 * ICMP errors come on the right queue or come on
8769 	 * listener/global queue for detached connections and
8770 	 * get switched to the right queue. If it comes on the
8771 	 * right queue, policy check has already been done by IP
8772 	 * and thus free the first_mp without verifying the policy.
8773 	 * If it has come for a non-hard bound connection, we need
8774 	 * to verify policy as IP may not have done it.
8775 	 */
8776 	if (!tcp->tcp_hard_bound) {
8777 		if (ipsec_mctl) {
8778 			secure = ipsec_in_is_secure(first_mp);
8779 		} else {
8780 			secure = B_FALSE;
8781 		}
8782 		if (secure) {
8783 			/*
8784 			 * If we are willing to accept this in clear
8785 			 * we don't have to verify policy.
8786 			 */
8787 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8788 				if (!tcp_check_policy(tcp, first_mp,
8789 				    NULL, ip6h, secure, ipsec_mctl)) {
8790 					/*
8791 					 * tcp_check_policy called
8792 					 * ip_drop_packet() on failure.
8793 					 */
8794 					return;
8795 				}
8796 			}
8797 		}
8798 	} else if (ipsec_mctl) {
8799 		/*
8800 		 * This is a hard_bound connection. IP has already
8801 		 * verified policy. We don't have to do it again.
8802 		 */
8803 		freeb(first_mp);
8804 		first_mp = mp;
8805 		ipsec_mctl = B_FALSE;
8806 	}
8807 
8808 	seg_seq = ntohl(tcpha->tha_seq);
8809 	/*
8810 	 * TCP SHOULD check that the TCP sequence number contained in
8811 	 * payload of the ICMP error message is within the range
8812 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8813 	 */
8814 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8815 		/*
8816 		 * If the ICMP message is bogus, should we kill the
8817 		 * connection, or should we just drop the bogus ICMP
8818 		 * message? It would probably make more sense to just
8819 		 * drop the message so that if this one managed to get
8820 		 * in, the real connection should not suffer.
8821 		 */
8822 		goto noticmpv6;
8823 	}
8824 
8825 	switch (icmp6->icmp6_type) {
8826 	case ICMP6_PACKET_TOO_BIG:
8827 		/*
8828 		 * Reduce the MSS based on the new MTU.  This will
8829 		 * eliminate any fragmentation locally.
8830 		 * N.B.  There may well be some funny side-effects on
8831 		 * the local send policy and the remote receive policy.
8832 		 * Pending further research, we provide
8833 		 * tcp_ignore_path_mtu just in case this proves
8834 		 * disastrous somewhere.
8835 		 *
8836 		 * After updating the MSS, retransmit part of the
8837 		 * dropped segment using the new mss by calling
8838 		 * tcp_wput_data().  Need to adjust all those
8839 		 * params to make sure tcp_wput_data() work properly.
8840 		 */
8841 		if (tcps->tcps_ignore_path_mtu)
8842 			break;
8843 
8844 		/*
8845 		 * Decrease the MSS by time stamp options
8846 		 * IP options and IPSEC options. tcp_hdr_len
8847 		 * includes time stamp option and IP option
8848 		 * length.
8849 		 */
8850 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8851 			    tcp->tcp_ipsec_overhead;
8852 
8853 		/*
8854 		 * Only update the MSS if the new one is
8855 		 * smaller than the previous one.  This is
8856 		 * to avoid problems when getting multiple
8857 		 * ICMP errors for the same MTU.
8858 		 */
8859 		if (new_mss >= tcp->tcp_mss)
8860 			break;
8861 
8862 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8863 		ASSERT(ratio >= 1);
8864 		tcp_mss_set(tcp, new_mss, B_TRUE);
8865 
8866 		/*
8867 		 * Make sure we have something to
8868 		 * send.
8869 		 */
8870 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8871 		    (tcp->tcp_xmit_head != NULL)) {
8872 			/*
8873 			 * Shrink tcp_cwnd in
8874 			 * proportion to the old MSS/new MSS.
8875 			 */
8876 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8877 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8878 			    (tcp->tcp_unsent == 0)) {
8879 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8880 			} else {
8881 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8882 			}
8883 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8884 			tcp->tcp_rexmit = B_TRUE;
8885 			tcp->tcp_dupack_cnt = 0;
8886 			tcp->tcp_snd_burst = TCP_CWND_SS;
8887 			tcp_ss_rexmit(tcp);
8888 		}
8889 		break;
8890 
8891 	case ICMP6_DST_UNREACH:
8892 		switch (icmp6->icmp6_code) {
8893 		case ICMP6_DST_UNREACH_NOPORT:
8894 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8895 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8896 			    (seg_seq == tcp->tcp_iss)) {
8897 				(void) tcp_clean_death(tcp,
8898 				    ECONNREFUSED, 8);
8899 			}
8900 			break;
8901 
8902 		case ICMP6_DST_UNREACH_ADMIN:
8903 		case ICMP6_DST_UNREACH_NOROUTE:
8904 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8905 		case ICMP6_DST_UNREACH_ADDR:
8906 			/* Record the error in case we finally time out. */
8907 			tcp->tcp_client_errno = EHOSTUNREACH;
8908 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8909 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8910 			    (seg_seq == tcp->tcp_iss)) {
8911 				if (tcp->tcp_listener != NULL &&
8912 				    tcp->tcp_listener->tcp_syn_defense) {
8913 					/*
8914 					 * Ditch the half-open connection if we
8915 					 * suspect a SYN attack is under way.
8916 					 */
8917 					tcp_ip_ire_mark_advice(tcp);
8918 					(void) tcp_clean_death(tcp,
8919 					    tcp->tcp_client_errno, 9);
8920 				}
8921 			}
8922 
8923 
8924 			break;
8925 		default:
8926 			break;
8927 		}
8928 		break;
8929 
8930 	case ICMP6_PARAM_PROB:
8931 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8932 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8933 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8934 		    (uchar_t *)nexthdrp) {
8935 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8936 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8937 				(void) tcp_clean_death(tcp,
8938 				    ECONNREFUSED, 10);
8939 			}
8940 			break;
8941 		}
8942 		break;
8943 
8944 	case ICMP6_TIME_EXCEEDED:
8945 	default:
8946 		break;
8947 	}
8948 	freemsg(first_mp);
8949 }
8950 
8951 /*
8952  * IP recognizes seven kinds of bind requests:
8953  *
8954  * - A zero-length address binds only to the protocol number.
8955  *
8956  * - A 4-byte address is treated as a request to
8957  * validate that the address is a valid local IPv4
8958  * address, appropriate for an application to bind to.
8959  * IP does the verification, but does not make any note
8960  * of the address at this time.
8961  *
8962  * - A 16-byte address contains is treated as a request
8963  * to validate a local IPv6 address, as the 4-byte
8964  * address case above.
8965  *
8966  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8967  * use it for the inbound fanout of packets.
8968  *
8969  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8970  * use it for the inbound fanout of packets.
8971  *
8972  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8973  * information consisting of local and remote addresses
8974  * and ports.  In this case, the addresses are both
8975  * validated as appropriate for this operation, and, if
8976  * so, the information is retained for use in the
8977  * inbound fanout.
8978  *
8979  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8980  * fanout information, like the 12-byte case above.
8981  *
8982  * IP will also fill in the IRE request mblk with information
8983  * regarding our peer.  In all cases, we notify IP of our protocol
8984  * type by appending a single protocol byte to the bind request.
8985  */
8986 static mblk_t *
8987 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8988 {
8989 	char	*cp;
8990 	mblk_t	*mp;
8991 	struct T_bind_req *tbr;
8992 	ipa_conn_t	*ac;
8993 	ipa6_conn_t	*ac6;
8994 	sin_t		*sin;
8995 	sin6_t		*sin6;
8996 
8997 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8998 	ASSERT((tcp->tcp_family == AF_INET &&
8999 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9000 	    (tcp->tcp_family == AF_INET6 &&
9001 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9002 	    tcp->tcp_ipversion == IPV6_VERSION)));
9003 
9004 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9005 	if (!mp)
9006 		return (mp);
9007 	mp->b_datap->db_type = M_PROTO;
9008 	tbr = (struct T_bind_req *)mp->b_rptr;
9009 	tbr->PRIM_type = bind_prim;
9010 	tbr->ADDR_offset = sizeof (*tbr);
9011 	tbr->CONIND_number = 0;
9012 	tbr->ADDR_length = addr_length;
9013 	cp = (char *)&tbr[1];
9014 	switch (addr_length) {
9015 	case sizeof (ipa_conn_t):
9016 		ASSERT(tcp->tcp_family == AF_INET);
9017 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9018 
9019 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9020 		if (mp->b_cont == NULL) {
9021 			freemsg(mp);
9022 			return (NULL);
9023 		}
9024 		mp->b_cont->b_wptr += sizeof (ire_t);
9025 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9026 
9027 		/* cp known to be 32 bit aligned */
9028 		ac = (ipa_conn_t *)cp;
9029 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9030 		ac->ac_faddr = tcp->tcp_remote;
9031 		ac->ac_fport = tcp->tcp_fport;
9032 		ac->ac_lport = tcp->tcp_lport;
9033 		tcp->tcp_hard_binding = 1;
9034 		break;
9035 
9036 	case sizeof (ipa6_conn_t):
9037 		ASSERT(tcp->tcp_family == AF_INET6);
9038 
9039 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9040 		if (mp->b_cont == NULL) {
9041 			freemsg(mp);
9042 			return (NULL);
9043 		}
9044 		mp->b_cont->b_wptr += sizeof (ire_t);
9045 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9046 
9047 		/* cp known to be 32 bit aligned */
9048 		ac6 = (ipa6_conn_t *)cp;
9049 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9050 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9051 			    &ac6->ac6_laddr);
9052 		} else {
9053 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9054 		}
9055 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9056 		ac6->ac6_fport = tcp->tcp_fport;
9057 		ac6->ac6_lport = tcp->tcp_lport;
9058 		tcp->tcp_hard_binding = 1;
9059 		break;
9060 
9061 	case sizeof (sin_t):
9062 		/*
9063 		 * NOTE: IPV6_ADDR_LEN also has same size.
9064 		 * Use family to discriminate.
9065 		 */
9066 		if (tcp->tcp_family == AF_INET) {
9067 			sin = (sin_t *)cp;
9068 
9069 			*sin = sin_null;
9070 			sin->sin_family = AF_INET;
9071 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9072 			sin->sin_port = tcp->tcp_lport;
9073 			break;
9074 		} else {
9075 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9076 		}
9077 		break;
9078 
9079 	case sizeof (sin6_t):
9080 		ASSERT(tcp->tcp_family == AF_INET6);
9081 		sin6 = (sin6_t *)cp;
9082 
9083 		*sin6 = sin6_null;
9084 		sin6->sin6_family = AF_INET6;
9085 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9086 		sin6->sin6_port = tcp->tcp_lport;
9087 		break;
9088 
9089 	case IP_ADDR_LEN:
9090 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9091 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9092 		break;
9093 
9094 	}
9095 	/* Add protocol number to end */
9096 	cp[addr_length] = (char)IPPROTO_TCP;
9097 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9098 	return (mp);
9099 }
9100 
9101 /*
9102  * Notify IP that we are having trouble with this connection.  IP should
9103  * blow the IRE away and start over.
9104  */
9105 static void
9106 tcp_ip_notify(tcp_t *tcp)
9107 {
9108 	struct iocblk	*iocp;
9109 	ipid_t	*ipid;
9110 	mblk_t	*mp;
9111 
9112 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9113 	if (tcp->tcp_ipversion == IPV6_VERSION)
9114 		return;
9115 
9116 	mp = mkiocb(IP_IOCTL);
9117 	if (mp == NULL)
9118 		return;
9119 
9120 	iocp = (struct iocblk *)mp->b_rptr;
9121 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9122 
9123 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9124 	if (!mp->b_cont) {
9125 		freeb(mp);
9126 		return;
9127 	}
9128 
9129 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9130 	mp->b_cont->b_wptr += iocp->ioc_count;
9131 	bzero(ipid, sizeof (*ipid));
9132 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9133 	ipid->ipid_ire_type = IRE_CACHE;
9134 	ipid->ipid_addr_offset = sizeof (ipid_t);
9135 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9136 	/*
9137 	 * Note: in the case of source routing we want to blow away the
9138 	 * route to the first source route hop.
9139 	 */
9140 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9141 	    sizeof (tcp->tcp_ipha->ipha_dst));
9142 
9143 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9144 }
9145 
9146 /* Unlink and return any mblk that looks like it contains an ire */
9147 static mblk_t *
9148 tcp_ire_mp(mblk_t *mp)
9149 {
9150 	mblk_t	*prev_mp;
9151 
9152 	for (;;) {
9153 		prev_mp = mp;
9154 		mp = mp->b_cont;
9155 		if (mp == NULL)
9156 			break;
9157 		switch (DB_TYPE(mp)) {
9158 		case IRE_DB_TYPE:
9159 		case IRE_DB_REQ_TYPE:
9160 			if (prev_mp != NULL)
9161 				prev_mp->b_cont = mp->b_cont;
9162 			mp->b_cont = NULL;
9163 			return (mp);
9164 		default:
9165 			break;
9166 		}
9167 	}
9168 	return (mp);
9169 }
9170 
9171 /*
9172  * Timer callback routine for keepalive probe.  We do a fake resend of
9173  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9174  * check to see if we have heard anything from the other end for the last
9175  * RTO period.  If we have, set the timer to expire for another
9176  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9177  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9178  * the timeout if we have not heard from the other side.  If for more than
9179  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9180  * kill the connection unless the keepalive abort threshold is 0.  In
9181  * that case, we will probe "forever."
9182  */
9183 static void
9184 tcp_keepalive_killer(void *arg)
9185 {
9186 	mblk_t	*mp;
9187 	conn_t	*connp = (conn_t *)arg;
9188 	tcp_t  	*tcp = connp->conn_tcp;
9189 	int32_t	firetime;
9190 	int32_t	idletime;
9191 	int32_t	ka_intrvl;
9192 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9193 
9194 	tcp->tcp_ka_tid = 0;
9195 
9196 	if (tcp->tcp_fused)
9197 		return;
9198 
9199 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9200 	ka_intrvl = tcp->tcp_ka_interval;
9201 
9202 	/*
9203 	 * Keepalive probe should only be sent if the application has not
9204 	 * done a close on the connection.
9205 	 */
9206 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9207 		return;
9208 	}
9209 	/* Timer fired too early, restart it. */
9210 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9211 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9212 		    MSEC_TO_TICK(ka_intrvl));
9213 		return;
9214 	}
9215 
9216 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9217 	/*
9218 	 * If we have not heard from the other side for a long
9219 	 * time, kill the connection unless the keepalive abort
9220 	 * threshold is 0.  In that case, we will probe "forever."
9221 	 */
9222 	if (tcp->tcp_ka_abort_thres != 0 &&
9223 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9224 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9225 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9226 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9227 		return;
9228 	}
9229 
9230 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9231 	    idletime >= ka_intrvl) {
9232 		/* Fake resend of last ACKed byte. */
9233 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9234 
9235 		if (mp1 != NULL) {
9236 			*mp1->b_wptr++ = '\0';
9237 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9238 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9239 			freeb(mp1);
9240 			/*
9241 			 * if allocation failed, fall through to start the
9242 			 * timer back.
9243 			 */
9244 			if (mp != NULL) {
9245 				TCP_RECORD_TRACE(tcp, mp,
9246 				    TCP_TRACE_SEND_PKT);
9247 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9248 				BUMP_MIB(&tcps->tcps_mib,
9249 				    tcpTimKeepaliveProbe);
9250 				if (tcp->tcp_ka_last_intrvl != 0) {
9251 					int max;
9252 					/*
9253 					 * We should probe again at least
9254 					 * in ka_intrvl, but not more than
9255 					 * tcp_rexmit_interval_max.
9256 					 */
9257 					max = tcps->tcps_rexmit_interval_max;
9258 					firetime = MIN(ka_intrvl - 1,
9259 					    tcp->tcp_ka_last_intrvl << 1);
9260 					if (firetime > max)
9261 						firetime = max;
9262 				} else {
9263 					firetime = tcp->tcp_rto;
9264 				}
9265 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9266 				    tcp_keepalive_killer,
9267 				    MSEC_TO_TICK(firetime));
9268 				tcp->tcp_ka_last_intrvl = firetime;
9269 				return;
9270 			}
9271 		}
9272 	} else {
9273 		tcp->tcp_ka_last_intrvl = 0;
9274 	}
9275 
9276 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9277 	if ((firetime = ka_intrvl - idletime) < 0) {
9278 		firetime = ka_intrvl;
9279 	}
9280 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9281 	    MSEC_TO_TICK(firetime));
9282 }
9283 
9284 int
9285 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9286 {
9287 	queue_t	*q = tcp->tcp_rq;
9288 	int32_t	mss = tcp->tcp_mss;
9289 	int	maxpsz;
9290 
9291 	if (TCP_IS_DETACHED(tcp))
9292 		return (mss);
9293 
9294 	if (tcp->tcp_fused) {
9295 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9296 		mss = INFPSZ;
9297 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9298 		/*
9299 		 * Set the sd_qn_maxpsz according to the socket send buffer
9300 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9301 		 * instruct the stream head to copyin user data into contiguous
9302 		 * kernel-allocated buffers without breaking it up into smaller
9303 		 * chunks.  We round up the buffer size to the nearest SMSS.
9304 		 */
9305 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9306 		if (tcp->tcp_kssl_ctx == NULL)
9307 			mss = INFPSZ;
9308 		else
9309 			mss = SSL3_MAX_RECORD_LEN;
9310 	} else {
9311 		/*
9312 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9313 		 * (and a multiple of the mss).  This instructs the stream
9314 		 * head to break down larger than SMSS writes into SMSS-
9315 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9316 		 */
9317 		maxpsz = tcp->tcp_maxpsz * mss;
9318 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9319 			maxpsz = tcp->tcp_xmit_hiwater/2;
9320 			/* Round up to nearest mss */
9321 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9322 		}
9323 	}
9324 	(void) setmaxps(q, maxpsz);
9325 	tcp->tcp_wq->q_maxpsz = maxpsz;
9326 
9327 	if (set_maxblk)
9328 		(void) mi_set_sth_maxblk(q, mss);
9329 
9330 	return (mss);
9331 }
9332 
9333 /*
9334  * Extract option values from a tcp header.  We put any found values into the
9335  * tcpopt struct and return a bitmask saying which options were found.
9336  */
9337 static int
9338 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9339 {
9340 	uchar_t		*endp;
9341 	int		len;
9342 	uint32_t	mss;
9343 	uchar_t		*up = (uchar_t *)tcph;
9344 	int		found = 0;
9345 	int32_t		sack_len;
9346 	tcp_seq		sack_begin, sack_end;
9347 	tcp_t		*tcp;
9348 
9349 	endp = up + TCP_HDR_LENGTH(tcph);
9350 	up += TCP_MIN_HEADER_LENGTH;
9351 	while (up < endp) {
9352 		len = endp - up;
9353 		switch (*up) {
9354 		case TCPOPT_EOL:
9355 			break;
9356 
9357 		case TCPOPT_NOP:
9358 			up++;
9359 			continue;
9360 
9361 		case TCPOPT_MAXSEG:
9362 			if (len < TCPOPT_MAXSEG_LEN ||
9363 			    up[1] != TCPOPT_MAXSEG_LEN)
9364 				break;
9365 
9366 			mss = BE16_TO_U16(up+2);
9367 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9368 			tcpopt->tcp_opt_mss = mss;
9369 			found |= TCP_OPT_MSS_PRESENT;
9370 
9371 			up += TCPOPT_MAXSEG_LEN;
9372 			continue;
9373 
9374 		case TCPOPT_WSCALE:
9375 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9376 				break;
9377 
9378 			if (up[2] > TCP_MAX_WINSHIFT)
9379 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9380 			else
9381 				tcpopt->tcp_opt_wscale = up[2];
9382 			found |= TCP_OPT_WSCALE_PRESENT;
9383 
9384 			up += TCPOPT_WS_LEN;
9385 			continue;
9386 
9387 		case TCPOPT_SACK_PERMITTED:
9388 			if (len < TCPOPT_SACK_OK_LEN ||
9389 			    up[1] != TCPOPT_SACK_OK_LEN)
9390 				break;
9391 			found |= TCP_OPT_SACK_OK_PRESENT;
9392 			up += TCPOPT_SACK_OK_LEN;
9393 			continue;
9394 
9395 		case TCPOPT_SACK:
9396 			if (len <= 2 || up[1] <= 2 || len < up[1])
9397 				break;
9398 
9399 			/* If TCP is not interested in SACK blks... */
9400 			if ((tcp = tcpopt->tcp) == NULL) {
9401 				up += up[1];
9402 				continue;
9403 			}
9404 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9405 			up += TCPOPT_HEADER_LEN;
9406 
9407 			/*
9408 			 * If the list is empty, allocate one and assume
9409 			 * nothing is sack'ed.
9410 			 */
9411 			ASSERT(tcp->tcp_sack_info != NULL);
9412 			if (tcp->tcp_notsack_list == NULL) {
9413 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9414 				    tcp->tcp_suna, tcp->tcp_snxt,
9415 				    &(tcp->tcp_num_notsack_blk),
9416 				    &(tcp->tcp_cnt_notsack_list));
9417 
9418 				/*
9419 				 * Make sure tcp_notsack_list is not NULL.
9420 				 * This happens when kmem_alloc(KM_NOSLEEP)
9421 				 * returns NULL.
9422 				 */
9423 				if (tcp->tcp_notsack_list == NULL) {
9424 					up += sack_len;
9425 					continue;
9426 				}
9427 				tcp->tcp_fack = tcp->tcp_suna;
9428 			}
9429 
9430 			while (sack_len > 0) {
9431 				if (up + 8 > endp) {
9432 					up = endp;
9433 					break;
9434 				}
9435 				sack_begin = BE32_TO_U32(up);
9436 				up += 4;
9437 				sack_end = BE32_TO_U32(up);
9438 				up += 4;
9439 				sack_len -= 8;
9440 				/*
9441 				 * Bounds checking.  Make sure the SACK
9442 				 * info is within tcp_suna and tcp_snxt.
9443 				 * If this SACK blk is out of bound, ignore
9444 				 * it but continue to parse the following
9445 				 * blks.
9446 				 */
9447 				if (SEQ_LEQ(sack_end, sack_begin) ||
9448 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9449 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9450 					continue;
9451 				}
9452 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9453 				    sack_begin, sack_end,
9454 				    &(tcp->tcp_num_notsack_blk),
9455 				    &(tcp->tcp_cnt_notsack_list));
9456 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9457 					tcp->tcp_fack = sack_end;
9458 				}
9459 			}
9460 			found |= TCP_OPT_SACK_PRESENT;
9461 			continue;
9462 
9463 		case TCPOPT_TSTAMP:
9464 			if (len < TCPOPT_TSTAMP_LEN ||
9465 			    up[1] != TCPOPT_TSTAMP_LEN)
9466 				break;
9467 
9468 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9469 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9470 
9471 			found |= TCP_OPT_TSTAMP_PRESENT;
9472 
9473 			up += TCPOPT_TSTAMP_LEN;
9474 			continue;
9475 
9476 		default:
9477 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9478 				break;
9479 			up += up[1];
9480 			continue;
9481 		}
9482 		break;
9483 	}
9484 	return (found);
9485 }
9486 
9487 /*
9488  * Set the mss associated with a particular tcp based on its current value,
9489  * and a new one passed in. Observe minimums and maximums, and reset
9490  * other state variables that we want to view as multiples of mss.
9491  *
9492  * This function is called in various places mainly because
9493  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9494  *    other side's SYN/SYN-ACK packet arrives.
9495  * 2) PMTUd may get us a new MSS.
9496  * 3) If the other side stops sending us timestamp option, we need to
9497  *    increase the MSS size to use the extra bytes available.
9498  *
9499  * do_ss is used to control whether we will be doing slow start or
9500  * not if there is a change in the mss. Note that for some events like
9501  * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but
9502  * do not perform a slow start specifically.
9503  */
9504 static void
9505 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9506 {
9507 	uint32_t	mss_max;
9508 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9509 
9510 	if (tcp->tcp_ipversion == IPV4_VERSION)
9511 		mss_max = tcps->tcps_mss_max_ipv4;
9512 	else
9513 		mss_max = tcps->tcps_mss_max_ipv6;
9514 
9515 	if (mss < tcps->tcps_mss_min)
9516 		mss = tcps->tcps_mss_min;
9517 	if (mss > mss_max)
9518 		mss = mss_max;
9519 	/*
9520 	 * Unless naglim has been set by our client to
9521 	 * a non-mss value, force naglim to track mss.
9522 	 * This can help to aggregate small writes.
9523 	 */
9524 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9525 		tcp->tcp_naglim = mss;
9526 	/*
9527 	 * TCP should be able to buffer at least 4 MSS data for obvious
9528 	 * performance reason.
9529 	 */
9530 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9531 		tcp->tcp_xmit_hiwater = mss << 2;
9532 
9533 	/*
9534 	 * Check if we need to apply the tcp_init_cwnd here.  If
9535 	 * it is set and the MSS gets bigger (should not happen
9536 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9537 	 * The new tcp_cwnd should not get bigger.
9538 	 */
9539 	/*
9540 	 * We need to avoid setting tcp_cwnd to its slow start value
9541 	 * unnecessarily. However we have to let the tcp_cwnd adjust
9542 	 * to the modified mss.
9543 	 */
9544 	if (tcp->tcp_init_cwnd == 0 && do_ss) {
9545 		tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial *
9546 		    mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9547 	} else {
9548 		if (tcp->tcp_mss < mss) {
9549 			tcp->tcp_cwnd = MAX(1,
9550 			    (tcp->tcp_init_cwnd * tcp->tcp_mss /
9551 			    mss)) * mss;
9552 		} else {
9553 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9554 		}
9555 	}
9556 	tcp->tcp_mss = mss;
9557 	tcp->tcp_cwnd_cnt = 0;
9558 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9559 }
9560 
9561 static int
9562 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9563 {
9564 	tcp_t		*tcp = NULL;
9565 	conn_t		*connp;
9566 	int		err;
9567 	dev_t		conn_dev;
9568 	zoneid_t	zoneid;
9569 	tcp_stack_t	*tcps = NULL;
9570 
9571 	if (q->q_ptr != NULL)
9572 		return (0);
9573 
9574 	if (!(flag & SO_ACCEPTOR)) {
9575 		/*
9576 		 * Special case for install: miniroot needs to be able to
9577 		 * access files via NFS as though it were always in the
9578 		 * global zone.
9579 		 */
9580 		if (credp == kcred && nfs_global_client_only != 0) {
9581 			zoneid = GLOBAL_ZONEID;
9582 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9583 			    netstack_tcp;
9584 			ASSERT(tcps != NULL);
9585 		} else {
9586 			netstack_t *ns;
9587 
9588 			ns = netstack_find_by_cred(credp);
9589 			ASSERT(ns != NULL);
9590 			tcps = ns->netstack_tcp;
9591 			ASSERT(tcps != NULL);
9592 
9593 			/*
9594 			 * For exclusive stacks we set the zoneid to zero
9595 			 * to make TCP operate as if in the global zone.
9596 			 */
9597 			if (tcps->tcps_netstack->netstack_stackid !=
9598 			    GLOBAL_NETSTACKID)
9599 				zoneid = GLOBAL_ZONEID;
9600 			else
9601 				zoneid = crgetzoneid(credp);
9602 		}
9603 		/*
9604 		 * For stackid zero this is done from strplumb.c, but
9605 		 * non-zero stackids are handled here.
9606 		 */
9607 		if (tcps->tcps_g_q == NULL &&
9608 		    tcps->tcps_netstack->netstack_stackid !=
9609 		    GLOBAL_NETSTACKID) {
9610 			tcp_g_q_setup(tcps);
9611 		}
9612 	}
9613 	if (sflag == MODOPEN) {
9614 		/*
9615 		 * This is a special case. The purpose of a modopen
9616 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9617 		 * through for MIB browsers. Everything else is failed.
9618 		 */
9619 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9620 		/* tcp_get_conn incremented refcnt */
9621 		netstack_rele(tcps->tcps_netstack);
9622 
9623 		if (connp == NULL)
9624 			return (ENOMEM);
9625 
9626 		connp->conn_flags |= IPCL_TCPMOD;
9627 		connp->conn_cred = credp;
9628 		connp->conn_zoneid = zoneid;
9629 		ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9630 		ASSERT(connp->conn_netstack->netstack_tcp == tcps);
9631 		q->q_ptr = WR(q)->q_ptr = connp;
9632 		crhold(credp);
9633 		q->q_qinfo = &tcp_mod_rinit;
9634 		WR(q)->q_qinfo = &tcp_mod_winit;
9635 		qprocson(q);
9636 		return (0);
9637 	}
9638 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
9639 		if (tcps != NULL)
9640 			netstack_rele(tcps->tcps_netstack);
9641 		return (EBUSY);
9642 	}
9643 
9644 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9645 
9646 	if (flag & SO_ACCEPTOR) {
9647 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9648 		ASSERT(tcps == NULL);
9649 		q->q_qinfo = &tcp_acceptor_rinit;
9650 		q->q_ptr = (void *)conn_dev;
9651 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9652 		WR(q)->q_ptr = (void *)conn_dev;
9653 		qprocson(q);
9654 		return (0);
9655 	}
9656 
9657 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9658 	/*
9659 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9660 	 * so we drop it by one.
9661 	 */
9662 	netstack_rele(tcps->tcps_netstack);
9663 	if (connp == NULL) {
9664 		inet_minor_free(ip_minor_arena, conn_dev);
9665 		q->q_ptr = NULL;
9666 		return (ENOSR);
9667 	}
9668 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9669 	tcp = connp->conn_tcp;
9670 
9671 	q->q_ptr = WR(q)->q_ptr = connp;
9672 	if (getmajor(*devp) == TCP6_MAJ) {
9673 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9674 		connp->conn_send = ip_output_v6;
9675 		connp->conn_af_isv6 = B_TRUE;
9676 		connp->conn_pkt_isv6 = B_TRUE;
9677 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9678 		tcp->tcp_ipversion = IPV6_VERSION;
9679 		tcp->tcp_family = AF_INET6;
9680 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9681 	} else {
9682 		connp->conn_flags |= IPCL_TCP4;
9683 		connp->conn_send = ip_output;
9684 		connp->conn_af_isv6 = B_FALSE;
9685 		connp->conn_pkt_isv6 = B_FALSE;
9686 		tcp->tcp_ipversion = IPV4_VERSION;
9687 		tcp->tcp_family = AF_INET;
9688 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9689 	}
9690 
9691 	/*
9692 	 * TCP keeps a copy of cred for cache locality reasons but
9693 	 * we put a reference only once. If connp->conn_cred
9694 	 * becomes invalid, tcp_cred should also be set to NULL.
9695 	 */
9696 	tcp->tcp_cred = connp->conn_cred = credp;
9697 	crhold(connp->conn_cred);
9698 	tcp->tcp_cpid = curproc->p_pid;
9699 	tcp->tcp_open_time = lbolt64;
9700 	connp->conn_zoneid = zoneid;
9701 	connp->conn_mlp_type = mlptSingle;
9702 	connp->conn_ulp_labeled = !is_system_labeled();
9703 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9704 	ASSERT(tcp->tcp_tcps == tcps);
9705 
9706 	/*
9707 	 * If the caller has the process-wide flag set, then default to MAC
9708 	 * exempt mode.  This allows read-down to unlabeled hosts.
9709 	 */
9710 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9711 		connp->conn_mac_exempt = B_TRUE;
9712 
9713 	connp->conn_dev = conn_dev;
9714 
9715 	ASSERT(q->q_qinfo == &tcp_rinit);
9716 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9717 
9718 	if (flag & SO_SOCKSTR) {
9719 		/*
9720 		 * No need to insert a socket in tcp acceptor hash.
9721 		 * If it was a socket acceptor stream, we dealt with
9722 		 * it above. A socket listener can never accept a
9723 		 * connection and doesn't need acceptor_id.
9724 		 */
9725 		connp->conn_flags |= IPCL_SOCKET;
9726 		tcp->tcp_issocket = 1;
9727 		WR(q)->q_qinfo = &tcp_sock_winit;
9728 	} else {
9729 #ifdef	_ILP32
9730 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9731 #else
9732 		tcp->tcp_acceptor_id = conn_dev;
9733 #endif	/* _ILP32 */
9734 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9735 	}
9736 
9737 	if (tcps->tcps_trace)
9738 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9739 
9740 	err = tcp_init(tcp, q);
9741 	if (err != 0) {
9742 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9743 		tcp_acceptor_hash_remove(tcp);
9744 		CONN_DEC_REF(connp);
9745 		q->q_ptr = WR(q)->q_ptr = NULL;
9746 		return (err);
9747 	}
9748 
9749 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9750 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9751 
9752 	/* Non-zero default values */
9753 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9754 	/*
9755 	 * Put the ref for TCP. Ref for IP was already put
9756 	 * by ipcl_conn_create. Also Make the conn_t globally
9757 	 * visible to walkers
9758 	 */
9759 	mutex_enter(&connp->conn_lock);
9760 	CONN_INC_REF_LOCKED(connp);
9761 	ASSERT(connp->conn_ref == 2);
9762 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9763 	mutex_exit(&connp->conn_lock);
9764 
9765 	qprocson(q);
9766 	return (0);
9767 }
9768 
9769 /*
9770  * Some TCP options can be "set" by requesting them in the option
9771  * buffer. This is needed for XTI feature test though we do not
9772  * allow it in general. We interpret that this mechanism is more
9773  * applicable to OSI protocols and need not be allowed in general.
9774  * This routine filters out options for which it is not allowed (most)
9775  * and lets through those (few) for which it is. [ The XTI interface
9776  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9777  * ever implemented will have to be allowed here ].
9778  */
9779 static boolean_t
9780 tcp_allow_connopt_set(int level, int name)
9781 {
9782 
9783 	switch (level) {
9784 	case IPPROTO_TCP:
9785 		switch (name) {
9786 		case TCP_NODELAY:
9787 			return (B_TRUE);
9788 		default:
9789 			return (B_FALSE);
9790 		}
9791 		/*NOTREACHED*/
9792 	default:
9793 		return (B_FALSE);
9794 	}
9795 	/*NOTREACHED*/
9796 }
9797 
9798 /*
9799  * This routine gets default values of certain options whose default
9800  * values are maintained by protocol specific code
9801  */
9802 /* ARGSUSED */
9803 int
9804 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9805 {
9806 	int32_t	*i1 = (int32_t *)ptr;
9807 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9808 
9809 	switch (level) {
9810 	case IPPROTO_TCP:
9811 		switch (name) {
9812 		case TCP_NOTIFY_THRESHOLD:
9813 			*i1 = tcps->tcps_ip_notify_interval;
9814 			break;
9815 		case TCP_ABORT_THRESHOLD:
9816 			*i1 = tcps->tcps_ip_abort_interval;
9817 			break;
9818 		case TCP_CONN_NOTIFY_THRESHOLD:
9819 			*i1 = tcps->tcps_ip_notify_cinterval;
9820 			break;
9821 		case TCP_CONN_ABORT_THRESHOLD:
9822 			*i1 = tcps->tcps_ip_abort_cinterval;
9823 			break;
9824 		default:
9825 			return (-1);
9826 		}
9827 		break;
9828 	case IPPROTO_IP:
9829 		switch (name) {
9830 		case IP_TTL:
9831 			*i1 = tcps->tcps_ipv4_ttl;
9832 			break;
9833 		default:
9834 			return (-1);
9835 		}
9836 		break;
9837 	case IPPROTO_IPV6:
9838 		switch (name) {
9839 		case IPV6_UNICAST_HOPS:
9840 			*i1 = tcps->tcps_ipv6_hoplimit;
9841 			break;
9842 		default:
9843 			return (-1);
9844 		}
9845 		break;
9846 	default:
9847 		return (-1);
9848 	}
9849 	return (sizeof (int));
9850 }
9851 
9852 
9853 /*
9854  * TCP routine to get the values of options.
9855  */
9856 int
9857 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9858 {
9859 	int		*i1 = (int *)ptr;
9860 	conn_t		*connp = Q_TO_CONN(q);
9861 	tcp_t		*tcp = connp->conn_tcp;
9862 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9863 
9864 	switch (level) {
9865 	case SOL_SOCKET:
9866 		switch (name) {
9867 		case SO_LINGER:	{
9868 			struct linger *lgr = (struct linger *)ptr;
9869 
9870 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9871 			lgr->l_linger = tcp->tcp_lingertime;
9872 			}
9873 			return (sizeof (struct linger));
9874 		case SO_DEBUG:
9875 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9876 			break;
9877 		case SO_KEEPALIVE:
9878 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9879 			break;
9880 		case SO_DONTROUTE:
9881 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9882 			break;
9883 		case SO_USELOOPBACK:
9884 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9885 			break;
9886 		case SO_BROADCAST:
9887 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9888 			break;
9889 		case SO_REUSEADDR:
9890 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9891 			break;
9892 		case SO_OOBINLINE:
9893 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9894 			break;
9895 		case SO_DGRAM_ERRIND:
9896 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9897 			break;
9898 		case SO_TYPE:
9899 			*i1 = SOCK_STREAM;
9900 			break;
9901 		case SO_SNDBUF:
9902 			*i1 = tcp->tcp_xmit_hiwater;
9903 			break;
9904 		case SO_RCVBUF:
9905 			*i1 = RD(q)->q_hiwat;
9906 			break;
9907 		case SO_SND_COPYAVOID:
9908 			*i1 = tcp->tcp_snd_zcopy_on ?
9909 			    SO_SND_COPYAVOID : 0;
9910 			break;
9911 		case SO_ALLZONES:
9912 			*i1 = connp->conn_allzones ? 1 : 0;
9913 			break;
9914 		case SO_ANON_MLP:
9915 			*i1 = connp->conn_anon_mlp;
9916 			break;
9917 		case SO_MAC_EXEMPT:
9918 			*i1 = connp->conn_mac_exempt;
9919 			break;
9920 		case SO_EXCLBIND:
9921 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9922 			break;
9923 		case SO_PROTOTYPE:
9924 			*i1 = IPPROTO_TCP;
9925 			break;
9926 		case SO_DOMAIN:
9927 			*i1 = tcp->tcp_family;
9928 			break;
9929 		default:
9930 			return (-1);
9931 		}
9932 		break;
9933 	case IPPROTO_TCP:
9934 		switch (name) {
9935 		case TCP_NODELAY:
9936 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9937 			break;
9938 		case TCP_MAXSEG:
9939 			*i1 = tcp->tcp_mss;
9940 			break;
9941 		case TCP_NOTIFY_THRESHOLD:
9942 			*i1 = (int)tcp->tcp_first_timer_threshold;
9943 			break;
9944 		case TCP_ABORT_THRESHOLD:
9945 			*i1 = tcp->tcp_second_timer_threshold;
9946 			break;
9947 		case TCP_CONN_NOTIFY_THRESHOLD:
9948 			*i1 = tcp->tcp_first_ctimer_threshold;
9949 			break;
9950 		case TCP_CONN_ABORT_THRESHOLD:
9951 			*i1 = tcp->tcp_second_ctimer_threshold;
9952 			break;
9953 		case TCP_RECVDSTADDR:
9954 			*i1 = tcp->tcp_recvdstaddr;
9955 			break;
9956 		case TCP_ANONPRIVBIND:
9957 			*i1 = tcp->tcp_anon_priv_bind;
9958 			break;
9959 		case TCP_EXCLBIND:
9960 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9961 			break;
9962 		case TCP_INIT_CWND:
9963 			*i1 = tcp->tcp_init_cwnd;
9964 			break;
9965 		case TCP_KEEPALIVE_THRESHOLD:
9966 			*i1 = tcp->tcp_ka_interval;
9967 			break;
9968 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9969 			*i1 = tcp->tcp_ka_abort_thres;
9970 			break;
9971 		case TCP_CORK:
9972 			*i1 = tcp->tcp_cork;
9973 			break;
9974 		default:
9975 			return (-1);
9976 		}
9977 		break;
9978 	case IPPROTO_IP:
9979 		if (tcp->tcp_family != AF_INET)
9980 			return (-1);
9981 		switch (name) {
9982 		case IP_OPTIONS:
9983 		case T_IP_OPTIONS: {
9984 			/*
9985 			 * This is compatible with BSD in that in only return
9986 			 * the reverse source route with the final destination
9987 			 * as the last entry. The first 4 bytes of the option
9988 			 * will contain the final destination.
9989 			 */
9990 			int	opt_len;
9991 
9992 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9993 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9994 			ASSERT(opt_len >= 0);
9995 			/* Caller ensures enough space */
9996 			if (opt_len > 0) {
9997 				/*
9998 				 * TODO: Do we have to handle getsockopt on an
9999 				 * initiator as well?
10000 				 */
10001 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10002 			}
10003 			return (0);
10004 			}
10005 		case IP_TOS:
10006 		case T_IP_TOS:
10007 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10008 			break;
10009 		case IP_TTL:
10010 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10011 			break;
10012 		case IP_NEXTHOP:
10013 			/* Handled at IP level */
10014 			return (-EINVAL);
10015 		default:
10016 			return (-1);
10017 		}
10018 		break;
10019 	case IPPROTO_IPV6:
10020 		/*
10021 		 * IPPROTO_IPV6 options are only supported for sockets
10022 		 * that are using IPv6 on the wire.
10023 		 */
10024 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10025 			return (-1);
10026 		}
10027 		switch (name) {
10028 		case IPV6_UNICAST_HOPS:
10029 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10030 			break;	/* goto sizeof (int) option return */
10031 		case IPV6_BOUND_IF:
10032 			/* Zero if not set */
10033 			*i1 = tcp->tcp_bound_if;
10034 			break;	/* goto sizeof (int) option return */
10035 		case IPV6_RECVPKTINFO:
10036 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10037 				*i1 = 1;
10038 			else
10039 				*i1 = 0;
10040 			break;	/* goto sizeof (int) option return */
10041 		case IPV6_RECVTCLASS:
10042 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10043 				*i1 = 1;
10044 			else
10045 				*i1 = 0;
10046 			break;	/* goto sizeof (int) option return */
10047 		case IPV6_RECVHOPLIMIT:
10048 			if (tcp->tcp_ipv6_recvancillary &
10049 			    TCP_IPV6_RECVHOPLIMIT)
10050 				*i1 = 1;
10051 			else
10052 				*i1 = 0;
10053 			break;	/* goto sizeof (int) option return */
10054 		case IPV6_RECVHOPOPTS:
10055 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10056 				*i1 = 1;
10057 			else
10058 				*i1 = 0;
10059 			break;	/* goto sizeof (int) option return */
10060 		case IPV6_RECVDSTOPTS:
10061 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10062 				*i1 = 1;
10063 			else
10064 				*i1 = 0;
10065 			break;	/* goto sizeof (int) option return */
10066 		case _OLD_IPV6_RECVDSTOPTS:
10067 			if (tcp->tcp_ipv6_recvancillary &
10068 			    TCP_OLD_IPV6_RECVDSTOPTS)
10069 				*i1 = 1;
10070 			else
10071 				*i1 = 0;
10072 			break;	/* goto sizeof (int) option return */
10073 		case IPV6_RECVRTHDR:
10074 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10075 				*i1 = 1;
10076 			else
10077 				*i1 = 0;
10078 			break;	/* goto sizeof (int) option return */
10079 		case IPV6_RECVRTHDRDSTOPTS:
10080 			if (tcp->tcp_ipv6_recvancillary &
10081 			    TCP_IPV6_RECVRTDSTOPTS)
10082 				*i1 = 1;
10083 			else
10084 				*i1 = 0;
10085 			break;	/* goto sizeof (int) option return */
10086 		case IPV6_PKTINFO: {
10087 			/* XXX assumes that caller has room for max size! */
10088 			struct in6_pktinfo *pkti;
10089 
10090 			pkti = (struct in6_pktinfo *)ptr;
10091 			if (ipp->ipp_fields & IPPF_IFINDEX)
10092 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10093 			else
10094 				pkti->ipi6_ifindex = 0;
10095 			if (ipp->ipp_fields & IPPF_ADDR)
10096 				pkti->ipi6_addr = ipp->ipp_addr;
10097 			else
10098 				pkti->ipi6_addr = ipv6_all_zeros;
10099 			return (sizeof (struct in6_pktinfo));
10100 		}
10101 		case IPV6_TCLASS:
10102 			if (ipp->ipp_fields & IPPF_TCLASS)
10103 				*i1 = ipp->ipp_tclass;
10104 			else
10105 				*i1 = IPV6_FLOW_TCLASS(
10106 				    IPV6_DEFAULT_VERS_AND_FLOW);
10107 			break;	/* goto sizeof (int) option return */
10108 		case IPV6_NEXTHOP: {
10109 			sin6_t *sin6 = (sin6_t *)ptr;
10110 
10111 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10112 				return (0);
10113 			*sin6 = sin6_null;
10114 			sin6->sin6_family = AF_INET6;
10115 			sin6->sin6_addr = ipp->ipp_nexthop;
10116 			return (sizeof (sin6_t));
10117 		}
10118 		case IPV6_HOPOPTS:
10119 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10120 				return (0);
10121 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10122 				return (0);
10123 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10124 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10125 			if (tcp->tcp_label_len > 0) {
10126 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10127 				ptr[1] = (ipp->ipp_hopoptslen -
10128 				    tcp->tcp_label_len + 7) / 8 - 1;
10129 			}
10130 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10131 		case IPV6_RTHDRDSTOPTS:
10132 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10133 				return (0);
10134 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10135 			return (ipp->ipp_rtdstoptslen);
10136 		case IPV6_RTHDR:
10137 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10138 				return (0);
10139 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10140 			return (ipp->ipp_rthdrlen);
10141 		case IPV6_DSTOPTS:
10142 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10143 				return (0);
10144 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10145 			return (ipp->ipp_dstoptslen);
10146 		case IPV6_SRC_PREFERENCES:
10147 			return (ip6_get_src_preferences(connp,
10148 			    (uint32_t *)ptr));
10149 		case IPV6_PATHMTU: {
10150 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10151 
10152 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10153 				return (-1);
10154 
10155 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10156 				connp->conn_fport, mtuinfo,
10157 				connp->conn_netstack));
10158 		}
10159 		default:
10160 			return (-1);
10161 		}
10162 		break;
10163 	default:
10164 		return (-1);
10165 	}
10166 	return (sizeof (int));
10167 }
10168 
10169 /*
10170  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10171  * Parameters are assumed to be verified by the caller.
10172  */
10173 /* ARGSUSED */
10174 int
10175 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10176     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10177     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10178 {
10179 	conn_t	*connp = Q_TO_CONN(q);
10180 	tcp_t	*tcp = connp->conn_tcp;
10181 	int	*i1 = (int *)invalp;
10182 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10183 	boolean_t checkonly;
10184 	int	reterr;
10185 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10186 
10187 	switch (optset_context) {
10188 	case SETFN_OPTCOM_CHECKONLY:
10189 		checkonly = B_TRUE;
10190 		/*
10191 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10192 		 * inlen != 0 implies value supplied and
10193 		 * 	we have to "pretend" to set it.
10194 		 * inlen == 0 implies that there is no
10195 		 * 	value part in T_CHECK request and just validation
10196 		 * done elsewhere should be enough, we just return here.
10197 		 */
10198 		if (inlen == 0) {
10199 			*outlenp = 0;
10200 			return (0);
10201 		}
10202 		break;
10203 	case SETFN_OPTCOM_NEGOTIATE:
10204 		checkonly = B_FALSE;
10205 		break;
10206 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10207 	case SETFN_CONN_NEGOTIATE:
10208 		checkonly = B_FALSE;
10209 		/*
10210 		 * Negotiating local and "association-related" options
10211 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10212 		 * primitives is allowed by XTI, but we choose
10213 		 * to not implement this style negotiation for Internet
10214 		 * protocols (We interpret it is a must for OSI world but
10215 		 * optional for Internet protocols) for all options.
10216 		 * [ Will do only for the few options that enable test
10217 		 * suites that our XTI implementation of this feature
10218 		 * works for transports that do allow it ]
10219 		 */
10220 		if (!tcp_allow_connopt_set(level, name)) {
10221 			*outlenp = 0;
10222 			return (EINVAL);
10223 		}
10224 		break;
10225 	default:
10226 		/*
10227 		 * We should never get here
10228 		 */
10229 		*outlenp = 0;
10230 		return (EINVAL);
10231 	}
10232 
10233 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10234 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10235 
10236 	/*
10237 	 * For TCP, we should have no ancillary data sent down
10238 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10239 	 * has to be zero.
10240 	 */
10241 	ASSERT(thisdg_attrs == NULL);
10242 
10243 	/*
10244 	 * For fixed length options, no sanity check
10245 	 * of passed in length is done. It is assumed *_optcom_req()
10246 	 * routines do the right thing.
10247 	 */
10248 
10249 	switch (level) {
10250 	case SOL_SOCKET:
10251 		switch (name) {
10252 		case SO_LINGER: {
10253 			struct linger *lgr = (struct linger *)invalp;
10254 
10255 			if (!checkonly) {
10256 				if (lgr->l_onoff) {
10257 					tcp->tcp_linger = 1;
10258 					tcp->tcp_lingertime = lgr->l_linger;
10259 				} else {
10260 					tcp->tcp_linger = 0;
10261 					tcp->tcp_lingertime = 0;
10262 				}
10263 				/* struct copy */
10264 				*(struct linger *)outvalp = *lgr;
10265 			} else {
10266 				if (!lgr->l_onoff) {
10267 				    ((struct linger *)outvalp)->l_onoff = 0;
10268 				    ((struct linger *)outvalp)->l_linger = 0;
10269 				} else {
10270 				    /* struct copy */
10271 				    *(struct linger *)outvalp = *lgr;
10272 				}
10273 			}
10274 			*outlenp = sizeof (struct linger);
10275 			return (0);
10276 		}
10277 		case SO_DEBUG:
10278 			if (!checkonly)
10279 				tcp->tcp_debug = onoff;
10280 			break;
10281 		case SO_KEEPALIVE:
10282 			if (checkonly) {
10283 				/* T_CHECK case */
10284 				break;
10285 			}
10286 
10287 			if (!onoff) {
10288 				if (tcp->tcp_ka_enabled) {
10289 					if (tcp->tcp_ka_tid != 0) {
10290 						(void) TCP_TIMER_CANCEL(tcp,
10291 						    tcp->tcp_ka_tid);
10292 						tcp->tcp_ka_tid = 0;
10293 					}
10294 					tcp->tcp_ka_enabled = 0;
10295 				}
10296 				break;
10297 			}
10298 			if (!tcp->tcp_ka_enabled) {
10299 				/* Crank up the keepalive timer */
10300 				tcp->tcp_ka_last_intrvl = 0;
10301 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10302 				    tcp_keepalive_killer,
10303 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10304 				tcp->tcp_ka_enabled = 1;
10305 			}
10306 			break;
10307 		case SO_DONTROUTE:
10308 			/*
10309 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10310 			 * only of interest to IP.  We track them here only so
10311 			 * that we can report their current value.
10312 			 */
10313 			if (!checkonly) {
10314 				tcp->tcp_dontroute = onoff;
10315 				tcp->tcp_connp->conn_dontroute = onoff;
10316 			}
10317 			break;
10318 		case SO_USELOOPBACK:
10319 			if (!checkonly) {
10320 				tcp->tcp_useloopback = onoff;
10321 				tcp->tcp_connp->conn_loopback = onoff;
10322 			}
10323 			break;
10324 		case SO_BROADCAST:
10325 			if (!checkonly) {
10326 				tcp->tcp_broadcast = onoff;
10327 				tcp->tcp_connp->conn_broadcast = onoff;
10328 			}
10329 			break;
10330 		case SO_REUSEADDR:
10331 			if (!checkonly) {
10332 				tcp->tcp_reuseaddr = onoff;
10333 				tcp->tcp_connp->conn_reuseaddr = onoff;
10334 			}
10335 			break;
10336 		case SO_OOBINLINE:
10337 			if (!checkonly)
10338 				tcp->tcp_oobinline = onoff;
10339 			break;
10340 		case SO_DGRAM_ERRIND:
10341 			if (!checkonly)
10342 				tcp->tcp_dgram_errind = onoff;
10343 			break;
10344 		case SO_SNDBUF: {
10345 			if (*i1 > tcps->tcps_max_buf) {
10346 				*outlenp = 0;
10347 				return (ENOBUFS);
10348 			}
10349 			if (checkonly)
10350 				break;
10351 
10352 			tcp->tcp_xmit_hiwater = *i1;
10353 			if (tcps->tcps_snd_lowat_fraction != 0)
10354 				tcp->tcp_xmit_lowater =
10355 				    tcp->tcp_xmit_hiwater /
10356 				    tcps->tcps_snd_lowat_fraction;
10357 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10358 			/*
10359 			 * If we are flow-controlled, recheck the condition.
10360 			 * There are apps that increase SO_SNDBUF size when
10361 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10362 			 * control condition to be lifted right away.
10363 			 */
10364 			mutex_enter(&tcp->tcp_non_sq_lock);
10365 			if (tcp->tcp_flow_stopped &&
10366 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10367 				tcp_clrqfull(tcp);
10368 			}
10369 			mutex_exit(&tcp->tcp_non_sq_lock);
10370 			break;
10371 		}
10372 		case SO_RCVBUF:
10373 			if (*i1 > tcps->tcps_max_buf) {
10374 				*outlenp = 0;
10375 				return (ENOBUFS);
10376 			}
10377 			/* Silently ignore zero */
10378 			if (!checkonly && *i1 != 0) {
10379 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10380 				(void) tcp_rwnd_set(tcp, *i1);
10381 			}
10382 			/*
10383 			 * XXX should we return the rwnd here
10384 			 * and tcp_opt_get ?
10385 			 */
10386 			break;
10387 		case SO_SND_COPYAVOID:
10388 			if (!checkonly) {
10389 				/* we only allow enable at most once for now */
10390 				if (tcp->tcp_loopback ||
10391 				    (!tcp->tcp_snd_zcopy_aware &&
10392 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10393 					*outlenp = 0;
10394 					return (EOPNOTSUPP);
10395 				}
10396 				tcp->tcp_snd_zcopy_aware = 1;
10397 			}
10398 			break;
10399 		case SO_ALLZONES:
10400 			/* Handled at the IP level */
10401 			return (-EINVAL);
10402 		case SO_ANON_MLP:
10403 			if (!checkonly) {
10404 				mutex_enter(&connp->conn_lock);
10405 				connp->conn_anon_mlp = onoff;
10406 				mutex_exit(&connp->conn_lock);
10407 			}
10408 			break;
10409 		case SO_MAC_EXEMPT:
10410 			if (secpolicy_net_mac_aware(cr) != 0 ||
10411 			    IPCL_IS_BOUND(connp))
10412 				return (EACCES);
10413 			if (!checkonly) {
10414 				mutex_enter(&connp->conn_lock);
10415 				connp->conn_mac_exempt = onoff;
10416 				mutex_exit(&connp->conn_lock);
10417 			}
10418 			break;
10419 		case SO_EXCLBIND:
10420 			if (!checkonly)
10421 				tcp->tcp_exclbind = onoff;
10422 			break;
10423 		default:
10424 			*outlenp = 0;
10425 			return (EINVAL);
10426 		}
10427 		break;
10428 	case IPPROTO_TCP:
10429 		switch (name) {
10430 		case TCP_NODELAY:
10431 			if (!checkonly)
10432 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10433 			break;
10434 		case TCP_NOTIFY_THRESHOLD:
10435 			if (!checkonly)
10436 				tcp->tcp_first_timer_threshold = *i1;
10437 			break;
10438 		case TCP_ABORT_THRESHOLD:
10439 			if (!checkonly)
10440 				tcp->tcp_second_timer_threshold = *i1;
10441 			break;
10442 		case TCP_CONN_NOTIFY_THRESHOLD:
10443 			if (!checkonly)
10444 				tcp->tcp_first_ctimer_threshold = *i1;
10445 			break;
10446 		case TCP_CONN_ABORT_THRESHOLD:
10447 			if (!checkonly)
10448 				tcp->tcp_second_ctimer_threshold = *i1;
10449 			break;
10450 		case TCP_RECVDSTADDR:
10451 			if (tcp->tcp_state > TCPS_LISTEN)
10452 				return (EOPNOTSUPP);
10453 			if (!checkonly)
10454 				tcp->tcp_recvdstaddr = onoff;
10455 			break;
10456 		case TCP_ANONPRIVBIND:
10457 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10458 				*outlenp = 0;
10459 				return (reterr);
10460 			}
10461 			if (!checkonly) {
10462 				tcp->tcp_anon_priv_bind = onoff;
10463 			}
10464 			break;
10465 		case TCP_EXCLBIND:
10466 			if (!checkonly)
10467 				tcp->tcp_exclbind = onoff;
10468 			break;	/* goto sizeof (int) option return */
10469 		case TCP_INIT_CWND: {
10470 			uint32_t init_cwnd = *((uint32_t *)invalp);
10471 
10472 			if (checkonly)
10473 				break;
10474 
10475 			/*
10476 			 * Only allow socket with network configuration
10477 			 * privilege to set the initial cwnd to be larger
10478 			 * than allowed by RFC 3390.
10479 			 */
10480 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10481 				tcp->tcp_init_cwnd = init_cwnd;
10482 				break;
10483 			}
10484 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10485 				*outlenp = 0;
10486 				return (reterr);
10487 			}
10488 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10489 				*outlenp = 0;
10490 				return (EINVAL);
10491 			}
10492 			tcp->tcp_init_cwnd = init_cwnd;
10493 			break;
10494 		}
10495 		case TCP_KEEPALIVE_THRESHOLD:
10496 			if (checkonly)
10497 				break;
10498 
10499 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10500 			    *i1 > tcps->tcps_keepalive_interval_high) {
10501 				*outlenp = 0;
10502 				return (EINVAL);
10503 			}
10504 			if (*i1 != tcp->tcp_ka_interval) {
10505 				tcp->tcp_ka_interval = *i1;
10506 				/*
10507 				 * Check if we need to restart the
10508 				 * keepalive timer.
10509 				 */
10510 				if (tcp->tcp_ka_tid != 0) {
10511 					ASSERT(tcp->tcp_ka_enabled);
10512 					(void) TCP_TIMER_CANCEL(tcp,
10513 					    tcp->tcp_ka_tid);
10514 					tcp->tcp_ka_last_intrvl = 0;
10515 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10516 					    tcp_keepalive_killer,
10517 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10518 				}
10519 			}
10520 			break;
10521 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10522 			if (!checkonly) {
10523 				if (*i1 <
10524 				    tcps->tcps_keepalive_abort_interval_low ||
10525 				    *i1 >
10526 				    tcps->tcps_keepalive_abort_interval_high) {
10527 					*outlenp = 0;
10528 					return (EINVAL);
10529 				}
10530 				tcp->tcp_ka_abort_thres = *i1;
10531 			}
10532 			break;
10533 		case TCP_CORK:
10534 			if (!checkonly) {
10535 				/*
10536 				 * if tcp->tcp_cork was set and is now
10537 				 * being unset, we have to make sure that
10538 				 * the remaining data gets sent out. Also
10539 				 * unset tcp->tcp_cork so that tcp_wput_data()
10540 				 * can send data even if it is less than mss
10541 				 */
10542 				if (tcp->tcp_cork && onoff == 0 &&
10543 				    tcp->tcp_unsent > 0) {
10544 					tcp->tcp_cork = B_FALSE;
10545 					tcp_wput_data(tcp, NULL, B_FALSE);
10546 				}
10547 				tcp->tcp_cork = onoff;
10548 			}
10549 			break;
10550 		default:
10551 			*outlenp = 0;
10552 			return (EINVAL);
10553 		}
10554 		break;
10555 	case IPPROTO_IP:
10556 		if (tcp->tcp_family != AF_INET) {
10557 			*outlenp = 0;
10558 			return (ENOPROTOOPT);
10559 		}
10560 		switch (name) {
10561 		case IP_OPTIONS:
10562 		case T_IP_OPTIONS:
10563 			reterr = tcp_opt_set_header(tcp, checkonly,
10564 			    invalp, inlen);
10565 			if (reterr) {
10566 				*outlenp = 0;
10567 				return (reterr);
10568 			}
10569 			/* OK return - copy input buffer into output buffer */
10570 			if (invalp != outvalp) {
10571 				/* don't trust bcopy for identical src/dst */
10572 				bcopy(invalp, outvalp, inlen);
10573 			}
10574 			*outlenp = inlen;
10575 			return (0);
10576 		case IP_TOS:
10577 		case T_IP_TOS:
10578 			if (!checkonly) {
10579 				tcp->tcp_ipha->ipha_type_of_service =
10580 				    (uchar_t)*i1;
10581 				tcp->tcp_tos = (uchar_t)*i1;
10582 			}
10583 			break;
10584 		case IP_TTL:
10585 			if (!checkonly) {
10586 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10587 				tcp->tcp_ttl = (uchar_t)*i1;
10588 			}
10589 			break;
10590 		case IP_BOUND_IF:
10591 		case IP_NEXTHOP:
10592 			/* Handled at the IP level */
10593 			return (-EINVAL);
10594 		case IP_SEC_OPT:
10595 			/*
10596 			 * We should not allow policy setting after
10597 			 * we start listening for connections.
10598 			 */
10599 			if (tcp->tcp_state == TCPS_LISTEN) {
10600 				return (EINVAL);
10601 			} else {
10602 				/* Handled at the IP level */
10603 				return (-EINVAL);
10604 			}
10605 		default:
10606 			*outlenp = 0;
10607 			return (EINVAL);
10608 		}
10609 		break;
10610 	case IPPROTO_IPV6: {
10611 		ip6_pkt_t		*ipp;
10612 
10613 		/*
10614 		 * IPPROTO_IPV6 options are only supported for sockets
10615 		 * that are using IPv6 on the wire.
10616 		 */
10617 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10618 			*outlenp = 0;
10619 			return (ENOPROTOOPT);
10620 		}
10621 		/*
10622 		 * Only sticky options; no ancillary data
10623 		 */
10624 		ASSERT(thisdg_attrs == NULL);
10625 		ipp = &tcp->tcp_sticky_ipp;
10626 
10627 		switch (name) {
10628 		case IPV6_UNICAST_HOPS:
10629 			/* -1 means use default */
10630 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10631 				*outlenp = 0;
10632 				return (EINVAL);
10633 			}
10634 			if (!checkonly) {
10635 				if (*i1 == -1) {
10636 					tcp->tcp_ip6h->ip6_hops =
10637 					    ipp->ipp_unicast_hops =
10638 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10639 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10640 					/* Pass modified value to IP. */
10641 					*i1 = tcp->tcp_ip6h->ip6_hops;
10642 				} else {
10643 					tcp->tcp_ip6h->ip6_hops =
10644 					    ipp->ipp_unicast_hops =
10645 					    (uint8_t)*i1;
10646 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10647 				}
10648 				reterr = tcp_build_hdrs(q, tcp);
10649 				if (reterr != 0)
10650 					return (reterr);
10651 			}
10652 			break;
10653 		case IPV6_BOUND_IF:
10654 			if (!checkonly) {
10655 				int error = 0;
10656 
10657 				tcp->tcp_bound_if = *i1;
10658 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10659 				    B_TRUE, checkonly, level, name, mblk);
10660 				if (error != 0) {
10661 					*outlenp = 0;
10662 					return (error);
10663 				}
10664 			}
10665 			break;
10666 		/*
10667 		 * Set boolean switches for ancillary data delivery
10668 		 */
10669 		case IPV6_RECVPKTINFO:
10670 			if (!checkonly) {
10671 				if (onoff)
10672 					tcp->tcp_ipv6_recvancillary |=
10673 					    TCP_IPV6_RECVPKTINFO;
10674 				else
10675 					tcp->tcp_ipv6_recvancillary &=
10676 					    ~TCP_IPV6_RECVPKTINFO;
10677 				/* Force it to be sent up with the next msg */
10678 				tcp->tcp_recvifindex = 0;
10679 			}
10680 			break;
10681 		case IPV6_RECVTCLASS:
10682 			if (!checkonly) {
10683 				if (onoff)
10684 					tcp->tcp_ipv6_recvancillary |=
10685 					    TCP_IPV6_RECVTCLASS;
10686 				else
10687 					tcp->tcp_ipv6_recvancillary &=
10688 					    ~TCP_IPV6_RECVTCLASS;
10689 			}
10690 			break;
10691 		case IPV6_RECVHOPLIMIT:
10692 			if (!checkonly) {
10693 				if (onoff)
10694 					tcp->tcp_ipv6_recvancillary |=
10695 					    TCP_IPV6_RECVHOPLIMIT;
10696 				else
10697 					tcp->tcp_ipv6_recvancillary &=
10698 					    ~TCP_IPV6_RECVHOPLIMIT;
10699 				/* Force it to be sent up with the next msg */
10700 				tcp->tcp_recvhops = 0xffffffffU;
10701 			}
10702 			break;
10703 		case IPV6_RECVHOPOPTS:
10704 			if (!checkonly) {
10705 				if (onoff)
10706 					tcp->tcp_ipv6_recvancillary |=
10707 					    TCP_IPV6_RECVHOPOPTS;
10708 				else
10709 					tcp->tcp_ipv6_recvancillary &=
10710 					    ~TCP_IPV6_RECVHOPOPTS;
10711 			}
10712 			break;
10713 		case IPV6_RECVDSTOPTS:
10714 			if (!checkonly) {
10715 				if (onoff)
10716 					tcp->tcp_ipv6_recvancillary |=
10717 					    TCP_IPV6_RECVDSTOPTS;
10718 				else
10719 					tcp->tcp_ipv6_recvancillary &=
10720 					    ~TCP_IPV6_RECVDSTOPTS;
10721 			}
10722 			break;
10723 		case _OLD_IPV6_RECVDSTOPTS:
10724 			if (!checkonly) {
10725 				if (onoff)
10726 					tcp->tcp_ipv6_recvancillary |=
10727 					    TCP_OLD_IPV6_RECVDSTOPTS;
10728 				else
10729 					tcp->tcp_ipv6_recvancillary &=
10730 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10731 			}
10732 			break;
10733 		case IPV6_RECVRTHDR:
10734 			if (!checkonly) {
10735 				if (onoff)
10736 					tcp->tcp_ipv6_recvancillary |=
10737 					    TCP_IPV6_RECVRTHDR;
10738 				else
10739 					tcp->tcp_ipv6_recvancillary &=
10740 					    ~TCP_IPV6_RECVRTHDR;
10741 			}
10742 			break;
10743 		case IPV6_RECVRTHDRDSTOPTS:
10744 			if (!checkonly) {
10745 				if (onoff)
10746 					tcp->tcp_ipv6_recvancillary |=
10747 					    TCP_IPV6_RECVRTDSTOPTS;
10748 				else
10749 					tcp->tcp_ipv6_recvancillary &=
10750 					    ~TCP_IPV6_RECVRTDSTOPTS;
10751 			}
10752 			break;
10753 		case IPV6_PKTINFO:
10754 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10755 				return (EINVAL);
10756 			if (checkonly)
10757 				break;
10758 
10759 			if (inlen == 0) {
10760 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10761 			} else {
10762 				struct in6_pktinfo *pkti;
10763 
10764 				pkti = (struct in6_pktinfo *)invalp;
10765 				/*
10766 				 * RFC 3542 states that ipi6_addr must be
10767 				 * the unspecified address when setting the
10768 				 * IPV6_PKTINFO sticky socket option on a
10769 				 * TCP socket.
10770 				 */
10771 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10772 					return (EINVAL);
10773 				/*
10774 				 * ip6_set_pktinfo() validates the source
10775 				 * address and interface index.
10776 				 */
10777 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10778 				    pkti, mblk);
10779 				if (reterr != 0)
10780 					return (reterr);
10781 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10782 				ipp->ipp_addr = pkti->ipi6_addr;
10783 				if (ipp->ipp_ifindex != 0)
10784 					ipp->ipp_fields |= IPPF_IFINDEX;
10785 				else
10786 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10787 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10788 					ipp->ipp_fields |= IPPF_ADDR;
10789 				else
10790 					ipp->ipp_fields &= ~IPPF_ADDR;
10791 			}
10792 			reterr = tcp_build_hdrs(q, tcp);
10793 			if (reterr != 0)
10794 				return (reterr);
10795 			break;
10796 		case IPV6_TCLASS:
10797 			if (inlen != 0 && inlen != sizeof (int))
10798 				return (EINVAL);
10799 			if (checkonly)
10800 				break;
10801 
10802 			if (inlen == 0) {
10803 				ipp->ipp_fields &= ~IPPF_TCLASS;
10804 			} else {
10805 				if (*i1 > 255 || *i1 < -1)
10806 					return (EINVAL);
10807 				if (*i1 == -1) {
10808 					ipp->ipp_tclass = 0;
10809 					*i1 = 0;
10810 				} else {
10811 					ipp->ipp_tclass = *i1;
10812 				}
10813 				ipp->ipp_fields |= IPPF_TCLASS;
10814 			}
10815 			reterr = tcp_build_hdrs(q, tcp);
10816 			if (reterr != 0)
10817 				return (reterr);
10818 			break;
10819 		case IPV6_NEXTHOP:
10820 			/*
10821 			 * IP will verify that the nexthop is reachable
10822 			 * and fail for sticky options.
10823 			 */
10824 			if (inlen != 0 && inlen != sizeof (sin6_t))
10825 				return (EINVAL);
10826 			if (checkonly)
10827 				break;
10828 
10829 			if (inlen == 0) {
10830 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10831 			} else {
10832 				sin6_t *sin6 = (sin6_t *)invalp;
10833 
10834 				if (sin6->sin6_family != AF_INET6)
10835 					return (EAFNOSUPPORT);
10836 				if (IN6_IS_ADDR_V4MAPPED(
10837 				    &sin6->sin6_addr))
10838 					return (EADDRNOTAVAIL);
10839 				ipp->ipp_nexthop = sin6->sin6_addr;
10840 				if (!IN6_IS_ADDR_UNSPECIFIED(
10841 				    &ipp->ipp_nexthop))
10842 					ipp->ipp_fields |= IPPF_NEXTHOP;
10843 				else
10844 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10845 			}
10846 			reterr = tcp_build_hdrs(q, tcp);
10847 			if (reterr != 0)
10848 				return (reterr);
10849 			break;
10850 		case IPV6_HOPOPTS: {
10851 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10852 
10853 			/*
10854 			 * Sanity checks - minimum size, size a multiple of
10855 			 * eight bytes, and matching size passed in.
10856 			 */
10857 			if (inlen != 0 &&
10858 			    inlen != (8 * (hopts->ip6h_len + 1)))
10859 				return (EINVAL);
10860 
10861 			if (checkonly)
10862 				break;
10863 
10864 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10865 			    (uchar_t **)&ipp->ipp_hopopts,
10866 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10867 			if (reterr != 0)
10868 				return (reterr);
10869 			if (ipp->ipp_hopoptslen == 0)
10870 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10871 			else
10872 				ipp->ipp_fields |= IPPF_HOPOPTS;
10873 			reterr = tcp_build_hdrs(q, tcp);
10874 			if (reterr != 0)
10875 				return (reterr);
10876 			break;
10877 		}
10878 		case IPV6_RTHDRDSTOPTS: {
10879 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10880 
10881 			/*
10882 			 * Sanity checks - minimum size, size a multiple of
10883 			 * eight bytes, and matching size passed in.
10884 			 */
10885 			if (inlen != 0 &&
10886 			    inlen != (8 * (dopts->ip6d_len + 1)))
10887 				return (EINVAL);
10888 
10889 			if (checkonly)
10890 				break;
10891 
10892 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10893 			    (uchar_t **)&ipp->ipp_rtdstopts,
10894 			    &ipp->ipp_rtdstoptslen, 0);
10895 			if (reterr != 0)
10896 				return (reterr);
10897 			if (ipp->ipp_rtdstoptslen == 0)
10898 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10899 			else
10900 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10901 			reterr = tcp_build_hdrs(q, tcp);
10902 			if (reterr != 0)
10903 				return (reterr);
10904 			break;
10905 		}
10906 		case IPV6_DSTOPTS: {
10907 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10908 
10909 			/*
10910 			 * Sanity checks - minimum size, size a multiple of
10911 			 * eight bytes, and matching size passed in.
10912 			 */
10913 			if (inlen != 0 &&
10914 			    inlen != (8 * (dopts->ip6d_len + 1)))
10915 				return (EINVAL);
10916 
10917 			if (checkonly)
10918 				break;
10919 
10920 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10921 			    (uchar_t **)&ipp->ipp_dstopts,
10922 			    &ipp->ipp_dstoptslen, 0);
10923 			if (reterr != 0)
10924 				return (reterr);
10925 			if (ipp->ipp_dstoptslen == 0)
10926 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10927 			else
10928 				ipp->ipp_fields |= IPPF_DSTOPTS;
10929 			reterr = tcp_build_hdrs(q, tcp);
10930 			if (reterr != 0)
10931 				return (reterr);
10932 			break;
10933 		}
10934 		case IPV6_RTHDR: {
10935 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10936 
10937 			/*
10938 			 * Sanity checks - minimum size, size a multiple of
10939 			 * eight bytes, and matching size passed in.
10940 			 */
10941 			if (inlen != 0 &&
10942 			    inlen != (8 * (rt->ip6r_len + 1)))
10943 				return (EINVAL);
10944 
10945 			if (checkonly)
10946 				break;
10947 
10948 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10949 			    (uchar_t **)&ipp->ipp_rthdr,
10950 			    &ipp->ipp_rthdrlen, 0);
10951 			if (reterr != 0)
10952 				return (reterr);
10953 			if (ipp->ipp_rthdrlen == 0)
10954 				ipp->ipp_fields &= ~IPPF_RTHDR;
10955 			else
10956 				ipp->ipp_fields |= IPPF_RTHDR;
10957 			reterr = tcp_build_hdrs(q, tcp);
10958 			if (reterr != 0)
10959 				return (reterr);
10960 			break;
10961 		}
10962 		case IPV6_V6ONLY:
10963 			if (!checkonly)
10964 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10965 			break;
10966 		case IPV6_USE_MIN_MTU:
10967 			if (inlen != sizeof (int))
10968 				return (EINVAL);
10969 
10970 			if (*i1 < -1 || *i1 > 1)
10971 				return (EINVAL);
10972 
10973 			if (checkonly)
10974 				break;
10975 
10976 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10977 			ipp->ipp_use_min_mtu = *i1;
10978 			break;
10979 		case IPV6_BOUND_PIF:
10980 			/* Handled at the IP level */
10981 			return (-EINVAL);
10982 		case IPV6_SEC_OPT:
10983 			/*
10984 			 * We should not allow policy setting after
10985 			 * we start listening for connections.
10986 			 */
10987 			if (tcp->tcp_state == TCPS_LISTEN) {
10988 				return (EINVAL);
10989 			} else {
10990 				/* Handled at the IP level */
10991 				return (-EINVAL);
10992 			}
10993 		case IPV6_SRC_PREFERENCES:
10994 			if (inlen != sizeof (uint32_t))
10995 				return (EINVAL);
10996 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10997 			    *(uint32_t *)invalp);
10998 			if (reterr != 0) {
10999 				*outlenp = 0;
11000 				return (reterr);
11001 			}
11002 			break;
11003 		default:
11004 			*outlenp = 0;
11005 			return (EINVAL);
11006 		}
11007 		break;
11008 	}		/* end IPPROTO_IPV6 */
11009 	default:
11010 		*outlenp = 0;
11011 		return (EINVAL);
11012 	}
11013 	/*
11014 	 * Common case of OK return with outval same as inval
11015 	 */
11016 	if (invalp != outvalp) {
11017 		/* don't trust bcopy for identical src/dst */
11018 		(void) bcopy(invalp, outvalp, inlen);
11019 	}
11020 	*outlenp = inlen;
11021 	return (0);
11022 }
11023 
11024 /*
11025  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11026  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11027  * headers, and the maximum size tcp header (to avoid reallocation
11028  * on the fly for additional tcp options).
11029  * Returns failure if can't allocate memory.
11030  */
11031 static int
11032 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11033 {
11034 	char	*hdrs;
11035 	uint_t	hdrs_len;
11036 	ip6i_t	*ip6i;
11037 	char	buf[TCP_MAX_HDR_LENGTH];
11038 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11039 	in6_addr_t src, dst;
11040 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11041 
11042 	/*
11043 	 * save the existing tcp header and source/dest IP addresses
11044 	 */
11045 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11046 	src = tcp->tcp_ip6h->ip6_src;
11047 	dst = tcp->tcp_ip6h->ip6_dst;
11048 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11049 	ASSERT(hdrs_len != 0);
11050 	if (hdrs_len > tcp->tcp_iphc_len) {
11051 		/* Need to reallocate */
11052 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11053 		if (hdrs == NULL)
11054 			return (ENOMEM);
11055 		if (tcp->tcp_iphc != NULL) {
11056 			if (tcp->tcp_hdr_grown) {
11057 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11058 			} else {
11059 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11060 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11061 			}
11062 			tcp->tcp_iphc_len = 0;
11063 		}
11064 		ASSERT(tcp->tcp_iphc_len == 0);
11065 		tcp->tcp_iphc = hdrs;
11066 		tcp->tcp_iphc_len = hdrs_len;
11067 		tcp->tcp_hdr_grown = B_TRUE;
11068 	}
11069 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11070 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11071 
11072 	/* Set header fields not in ipp */
11073 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11074 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11075 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11076 	} else {
11077 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11078 	}
11079 	/*
11080 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11081 	 *
11082 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11083 	 */
11084 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11085 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11086 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11087 
11088 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11089 
11090 	tcp->tcp_ip6h->ip6_src = src;
11091 	tcp->tcp_ip6h->ip6_dst = dst;
11092 
11093 	/*
11094 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11095 	 * the default value for TCP.
11096 	 */
11097 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11098 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11099 
11100 	/*
11101 	 * If we're setting extension headers after a connection
11102 	 * has been established, and if we have a routing header
11103 	 * among the extension headers, call ip_massage_options_v6 to
11104 	 * manipulate the routing header/ip6_dst set the checksum
11105 	 * difference in the tcp header template.
11106 	 * (This happens in tcp_connect_ipv6 if the routing header
11107 	 * is set prior to the connect.)
11108 	 * Set the tcp_sum to zero first in case we've cleared a
11109 	 * routing header or don't have one at all.
11110 	 */
11111 	tcp->tcp_sum = 0;
11112 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11113 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11114 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11115 		    (uint8_t *)tcp->tcp_tcph);
11116 		if (rth != NULL) {
11117 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11118 			    rth, tcps->tcps_netstack);
11119 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11120 			    (tcp->tcp_sum >> 16));
11121 		}
11122 	}
11123 
11124 	/* Try to get everything in a single mblk */
11125 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11126 	return (0);
11127 }
11128 
11129 /*
11130  * Transfer any source route option from ipha to buf/dst in reversed form.
11131  */
11132 static int
11133 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11134 {
11135 	ipoptp_t	opts;
11136 	uchar_t		*opt;
11137 	uint8_t		optval;
11138 	uint8_t		optlen;
11139 	uint32_t	len = 0;
11140 
11141 	for (optval = ipoptp_first(&opts, ipha);
11142 	    optval != IPOPT_EOL;
11143 	    optval = ipoptp_next(&opts)) {
11144 		opt = opts.ipoptp_cur;
11145 		optlen = opts.ipoptp_len;
11146 		switch (optval) {
11147 			int	off1, off2;
11148 		case IPOPT_SSRR:
11149 		case IPOPT_LSRR:
11150 
11151 			/* Reverse source route */
11152 			/*
11153 			 * First entry should be the next to last one in the
11154 			 * current source route (the last entry is our
11155 			 * address.)
11156 			 * The last entry should be the final destination.
11157 			 */
11158 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11159 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11160 			off1 = IPOPT_MINOFF_SR - 1;
11161 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11162 			if (off2 < 0) {
11163 				/* No entries in source route */
11164 				break;
11165 			}
11166 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11167 			/*
11168 			 * Note: use src since ipha has not had its src
11169 			 * and dst reversed (it is in the state it was
11170 			 * received.
11171 			 */
11172 			bcopy(&ipha->ipha_src, buf + off2,
11173 			    IP_ADDR_LEN);
11174 			off2 -= IP_ADDR_LEN;
11175 
11176 			while (off2 > 0) {
11177 				bcopy(opt + off2, buf + off1,
11178 				    IP_ADDR_LEN);
11179 				off1 += IP_ADDR_LEN;
11180 				off2 -= IP_ADDR_LEN;
11181 			}
11182 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11183 			buf += optlen;
11184 			len += optlen;
11185 			break;
11186 		}
11187 	}
11188 done:
11189 	/* Pad the resulting options */
11190 	while (len & 0x3) {
11191 		*buf++ = IPOPT_EOL;
11192 		len++;
11193 	}
11194 	return (len);
11195 }
11196 
11197 
11198 /*
11199  * Extract and revert a source route from ipha (if any)
11200  * and then update the relevant fields in both tcp_t and the standard header.
11201  */
11202 static void
11203 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11204 {
11205 	char	buf[TCP_MAX_HDR_LENGTH];
11206 	uint_t	tcph_len;
11207 	int	len;
11208 
11209 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11210 	len = IPH_HDR_LENGTH(ipha);
11211 	if (len == IP_SIMPLE_HDR_LENGTH)
11212 		/* Nothing to do */
11213 		return;
11214 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11215 	    (len & 0x3))
11216 		return;
11217 
11218 	tcph_len = tcp->tcp_tcp_hdr_len;
11219 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11220 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11221 		(tcp->tcp_ipha->ipha_dst & 0xffff);
11222 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11223 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11224 	len += IP_SIMPLE_HDR_LENGTH;
11225 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11226 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11227 	if ((int)tcp->tcp_sum < 0)
11228 		tcp->tcp_sum--;
11229 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11230 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11231 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11232 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11233 	tcp->tcp_ip_hdr_len = len;
11234 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11235 	    (IP_VERSION << 4) | (len >> 2);
11236 	len += tcph_len;
11237 	tcp->tcp_hdr_len = len;
11238 }
11239 
11240 /*
11241  * Copy the standard header into its new location,
11242  * lay in the new options and then update the relevant
11243  * fields in both tcp_t and the standard header.
11244  */
11245 static int
11246 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11247 {
11248 	uint_t	tcph_len;
11249 	uint8_t	*ip_optp;
11250 	tcph_t	*new_tcph;
11251 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11252 
11253 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11254 		return (EINVAL);
11255 
11256 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11257 		return (EINVAL);
11258 
11259 	if (checkonly) {
11260 		/*
11261 		 * do not really set, just pretend to - T_CHECK
11262 		 */
11263 		return (0);
11264 	}
11265 
11266 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11267 	if (tcp->tcp_label_len > 0) {
11268 		int padlen;
11269 		uint8_t opt;
11270 
11271 		/* convert list termination to no-ops */
11272 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11273 		ip_optp += ip_optp[IPOPT_OLEN];
11274 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11275 		while (--padlen >= 0)
11276 			*ip_optp++ = opt;
11277 	}
11278 	tcph_len = tcp->tcp_tcp_hdr_len;
11279 	new_tcph = (tcph_t *)(ip_optp + len);
11280 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11281 	tcp->tcp_tcph = new_tcph;
11282 	bcopy(ptr, ip_optp, len);
11283 
11284 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11285 
11286 	tcp->tcp_ip_hdr_len = len;
11287 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11288 	    (IP_VERSION << 4) | (len >> 2);
11289 	tcp->tcp_hdr_len = len + tcph_len;
11290 	if (!TCP_IS_DETACHED(tcp)) {
11291 		/* Always allocate room for all options. */
11292 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11293 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11294 	}
11295 	return (0);
11296 }
11297 
11298 /* Get callback routine passed to nd_load by tcp_param_register */
11299 /* ARGSUSED */
11300 static int
11301 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11302 {
11303 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11304 
11305 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11306 	return (0);
11307 }
11308 
11309 /*
11310  * Walk through the param array specified registering each element with the
11311  * named dispatch handler.
11312  */
11313 static boolean_t
11314 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11315 {
11316 	for (; cnt-- > 0; tcppa++) {
11317 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11318 			if (!nd_load(ndp, tcppa->tcp_param_name,
11319 			    tcp_param_get, tcp_param_set,
11320 			    (caddr_t)tcppa)) {
11321 				nd_free(ndp);
11322 				return (B_FALSE);
11323 			}
11324 		}
11325 	}
11326 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11327 	    KM_SLEEP);
11328 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11329 	    sizeof (tcpparam_t));
11330 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11331 	    tcp_param_get, tcp_param_set_aligned,
11332 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11333 		nd_free(ndp);
11334 		return (B_FALSE);
11335 	}
11336 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11337 	    KM_SLEEP);
11338 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11339 	    sizeof (tcpparam_t));
11340 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11341 	    tcp_param_get, tcp_param_set_aligned,
11342 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11343 		nd_free(ndp);
11344 		return (B_FALSE);
11345 	}
11346 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11347 	    KM_SLEEP);
11348 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11349 	    sizeof (tcpparam_t));
11350 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11351 	    tcp_param_get, tcp_param_set_aligned,
11352 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11353 		nd_free(ndp);
11354 		return (B_FALSE);
11355 	}
11356 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11357 	    KM_SLEEP);
11358 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11359 	    sizeof (tcpparam_t));
11360 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11361 	    tcp_param_get, tcp_param_set_aligned,
11362 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11363 		nd_free(ndp);
11364 		return (B_FALSE);
11365 	}
11366 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11367 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11368 		nd_free(ndp);
11369 		return (B_FALSE);
11370 	}
11371 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11372 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11373 		nd_free(ndp);
11374 		return (B_FALSE);
11375 	}
11376 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11377 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11378 		nd_free(ndp);
11379 		return (B_FALSE);
11380 	}
11381 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11382 	    NULL)) {
11383 		nd_free(ndp);
11384 		return (B_FALSE);
11385 	}
11386 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11387 	    NULL, NULL)) {
11388 		nd_free(ndp);
11389 		return (B_FALSE);
11390 	}
11391 	if (!nd_load(ndp, "tcp_listen_hash",
11392 	    tcp_listen_hash_report, NULL, NULL)) {
11393 		nd_free(ndp);
11394 		return (B_FALSE);
11395 	}
11396 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11397 	    NULL, NULL)) {
11398 		nd_free(ndp);
11399 		return (B_FALSE);
11400 	}
11401 	if (!nd_load(ndp, "tcp_acceptor_hash",
11402 	    tcp_acceptor_hash_report, NULL, NULL)) {
11403 		nd_free(ndp);
11404 		return (B_FALSE);
11405 	}
11406 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11407 	    tcp_host_param_set, NULL)) {
11408 		nd_free(ndp);
11409 		return (B_FALSE);
11410 	}
11411 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11412 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11413 		nd_free(ndp);
11414 		return (B_FALSE);
11415 	}
11416 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11417 	    tcp_1948_phrase_set, NULL)) {
11418 		nd_free(ndp);
11419 		return (B_FALSE);
11420 	}
11421 	if (!nd_load(ndp, "tcp_reserved_port_list",
11422 	    tcp_reserved_port_list, NULL, NULL)) {
11423 		nd_free(ndp);
11424 		return (B_FALSE);
11425 	}
11426 	/*
11427 	 * Dummy ndd variables - only to convey obsolescence information
11428 	 * through printing of their name (no get or set routines)
11429 	 * XXX Remove in future releases ?
11430 	 */
11431 	if (!nd_load(ndp,
11432 	    "tcp_close_wait_interval(obsoleted - "
11433 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11434 		nd_free(ndp);
11435 		return (B_FALSE);
11436 	}
11437 	return (B_TRUE);
11438 }
11439 
11440 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11441 /* ARGSUSED */
11442 static int
11443 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11444     cred_t *cr)
11445 {
11446 	long new_value;
11447 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11448 
11449 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11450 	    new_value < tcppa->tcp_param_min ||
11451 	    new_value > tcppa->tcp_param_max) {
11452 		return (EINVAL);
11453 	}
11454 	/*
11455 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11456 	 * round it up.  For future 64 bit requirement, we actually make it
11457 	 * a multiple of 8.
11458 	 */
11459 	if (new_value & 0x7) {
11460 		new_value = (new_value & ~0x7) + 0x8;
11461 	}
11462 	tcppa->tcp_param_val = new_value;
11463 	return (0);
11464 }
11465 
11466 /* Set callback routine passed to nd_load by tcp_param_register */
11467 /* ARGSUSED */
11468 static int
11469 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11470 {
11471 	long	new_value;
11472 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11473 
11474 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11475 	    new_value < tcppa->tcp_param_min ||
11476 	    new_value > tcppa->tcp_param_max) {
11477 		return (EINVAL);
11478 	}
11479 	tcppa->tcp_param_val = new_value;
11480 	return (0);
11481 }
11482 
11483 /*
11484  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11485  * is filled, return as much as we can.  The message passed in may be
11486  * multi-part, chained using b_cont.  "start" is the starting sequence
11487  * number for this piece.
11488  */
11489 static mblk_t *
11490 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11491 {
11492 	uint32_t	end;
11493 	mblk_t		*mp1;
11494 	mblk_t		*mp2;
11495 	mblk_t		*next_mp;
11496 	uint32_t	u1;
11497 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11498 
11499 	/* Walk through all the new pieces. */
11500 	do {
11501 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11502 		    (uintptr_t)INT_MAX);
11503 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11504 		next_mp = mp->b_cont;
11505 		if (start == end) {
11506 			/* Empty.  Blast it. */
11507 			freeb(mp);
11508 			continue;
11509 		}
11510 		mp->b_cont = NULL;
11511 		TCP_REASS_SET_SEQ(mp, start);
11512 		TCP_REASS_SET_END(mp, end);
11513 		mp1 = tcp->tcp_reass_tail;
11514 		if (!mp1) {
11515 			tcp->tcp_reass_tail = mp;
11516 			tcp->tcp_reass_head = mp;
11517 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11518 			UPDATE_MIB(&tcps->tcps_mib,
11519 			    tcpInDataUnorderBytes, end - start);
11520 			continue;
11521 		}
11522 		/* New stuff completely beyond tail? */
11523 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11524 			/* Link it on end. */
11525 			mp1->b_cont = mp;
11526 			tcp->tcp_reass_tail = mp;
11527 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11528 			UPDATE_MIB(&tcps->tcps_mib,
11529 			    tcpInDataUnorderBytes, end - start);
11530 			continue;
11531 		}
11532 		mp1 = tcp->tcp_reass_head;
11533 		u1 = TCP_REASS_SEQ(mp1);
11534 		/* New stuff at the front? */
11535 		if (SEQ_LT(start, u1)) {
11536 			/* Yes... Check for overlap. */
11537 			mp->b_cont = mp1;
11538 			tcp->tcp_reass_head = mp;
11539 			tcp_reass_elim_overlap(tcp, mp);
11540 			continue;
11541 		}
11542 		/*
11543 		 * The new piece fits somewhere between the head and tail.
11544 		 * We find our slot, where mp1 precedes us and mp2 trails.
11545 		 */
11546 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11547 			u1 = TCP_REASS_SEQ(mp2);
11548 			if (SEQ_LEQ(start, u1))
11549 				break;
11550 		}
11551 		/* Link ourselves in */
11552 		mp->b_cont = mp2;
11553 		mp1->b_cont = mp;
11554 
11555 		/* Trim overlap with following mblk(s) first */
11556 		tcp_reass_elim_overlap(tcp, mp);
11557 
11558 		/* Trim overlap with preceding mblk */
11559 		tcp_reass_elim_overlap(tcp, mp1);
11560 
11561 	} while (start = end, mp = next_mp);
11562 	mp1 = tcp->tcp_reass_head;
11563 	/* Anything ready to go? */
11564 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11565 		return (NULL);
11566 	/* Eat what we can off the queue */
11567 	for (;;) {
11568 		mp = mp1->b_cont;
11569 		end = TCP_REASS_END(mp1);
11570 		TCP_REASS_SET_SEQ(mp1, 0);
11571 		TCP_REASS_SET_END(mp1, 0);
11572 		if (!mp) {
11573 			tcp->tcp_reass_tail = NULL;
11574 			break;
11575 		}
11576 		if (end != TCP_REASS_SEQ(mp)) {
11577 			mp1->b_cont = NULL;
11578 			break;
11579 		}
11580 		mp1 = mp;
11581 	}
11582 	mp1 = tcp->tcp_reass_head;
11583 	tcp->tcp_reass_head = mp;
11584 	return (mp1);
11585 }
11586 
11587 /* Eliminate any overlap that mp may have over later mblks */
11588 static void
11589 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11590 {
11591 	uint32_t	end;
11592 	mblk_t		*mp1;
11593 	uint32_t	u1;
11594 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11595 
11596 	end = TCP_REASS_END(mp);
11597 	while ((mp1 = mp->b_cont) != NULL) {
11598 		u1 = TCP_REASS_SEQ(mp1);
11599 		if (!SEQ_GT(end, u1))
11600 			break;
11601 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11602 			mp->b_wptr -= end - u1;
11603 			TCP_REASS_SET_END(mp, u1);
11604 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11605 			UPDATE_MIB(&tcps->tcps_mib,
11606 			    tcpInDataPartDupBytes, end - u1);
11607 			break;
11608 		}
11609 		mp->b_cont = mp1->b_cont;
11610 		TCP_REASS_SET_SEQ(mp1, 0);
11611 		TCP_REASS_SET_END(mp1, 0);
11612 		freeb(mp1);
11613 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11614 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11615 	}
11616 	if (!mp1)
11617 		tcp->tcp_reass_tail = mp;
11618 }
11619 
11620 /*
11621  * Send up all messages queued on tcp_rcv_list.
11622  */
11623 static uint_t
11624 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11625 {
11626 	mblk_t *mp;
11627 	uint_t ret = 0;
11628 	uint_t thwin;
11629 #ifdef DEBUG
11630 	uint_t cnt = 0;
11631 #endif
11632 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11633 
11634 	/* Can't drain on an eager connection */
11635 	if (tcp->tcp_listener != NULL)
11636 		return (ret);
11637 
11638 	/*
11639 	 * Handle two cases here: we are currently fused or we were
11640 	 * previously fused and have some urgent data to be delivered
11641 	 * upstream.  The latter happens because we either ran out of
11642 	 * memory or were detached and therefore sending the SIGURG was
11643 	 * deferred until this point.  In either case we pass control
11644 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11645 	 * some work.
11646 	 */
11647 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11648 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11649 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11650 		    &tcp->tcp_fused_sigurg_mp))
11651 			return (ret);
11652 	}
11653 
11654 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11655 		tcp->tcp_rcv_list = mp->b_next;
11656 		mp->b_next = NULL;
11657 #ifdef DEBUG
11658 		cnt += msgdsize(mp);
11659 #endif
11660 		/* Does this need SSL processing first? */
11661 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11662 			tcp_kssl_input(tcp, mp);
11663 			continue;
11664 		}
11665 		putnext(q, mp);
11666 	}
11667 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11668 	tcp->tcp_rcv_last_head = NULL;
11669 	tcp->tcp_rcv_last_tail = NULL;
11670 	tcp->tcp_rcv_cnt = 0;
11671 
11672 	/* Learn the latest rwnd information that we sent to the other side. */
11673 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11674 	    << tcp->tcp_rcv_ws;
11675 	/* This is peer's calculated send window (our receive window). */
11676 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11677 	/*
11678 	 * Increase the receive window to max.  But we need to do receiver
11679 	 * SWS avoidance.  This means that we need to check the increase of
11680 	 * of receive window is at least 1 MSS.
11681 	 */
11682 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11683 		/*
11684 		 * If the window that the other side knows is less than max
11685 		 * deferred acks segments, send an update immediately.
11686 		 */
11687 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11688 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11689 			ret = TH_ACK_NEEDED;
11690 		}
11691 		tcp->tcp_rwnd = q->q_hiwat;
11692 	}
11693 	/* No need for the push timer now. */
11694 	if (tcp->tcp_push_tid != 0) {
11695 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11696 		tcp->tcp_push_tid = 0;
11697 	}
11698 	return (ret);
11699 }
11700 
11701 /*
11702  * Queue data on tcp_rcv_list which is a b_next chain.
11703  * tcp_rcv_last_head/tail is the last element of this chain.
11704  * Each element of the chain is a b_cont chain.
11705  *
11706  * M_DATA messages are added to the current element.
11707  * Other messages are added as new (b_next) elements.
11708  */
11709 void
11710 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11711 {
11712 	ASSERT(seg_len == msgdsize(mp));
11713 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11714 
11715 	if (tcp->tcp_rcv_list == NULL) {
11716 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11717 		tcp->tcp_rcv_list = mp;
11718 		tcp->tcp_rcv_last_head = mp;
11719 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11720 		tcp->tcp_rcv_last_tail->b_cont = mp;
11721 	} else {
11722 		tcp->tcp_rcv_last_head->b_next = mp;
11723 		tcp->tcp_rcv_last_head = mp;
11724 	}
11725 
11726 	while (mp->b_cont)
11727 		mp = mp->b_cont;
11728 
11729 	tcp->tcp_rcv_last_tail = mp;
11730 	tcp->tcp_rcv_cnt += seg_len;
11731 	tcp->tcp_rwnd -= seg_len;
11732 }
11733 
11734 /*
11735  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11736  *
11737  * This is the default entry function into TCP on the read side. TCP is
11738  * always entered via squeue i.e. using squeue's for mutual exclusion.
11739  * When classifier does a lookup to find the tcp, it also puts a reference
11740  * on the conn structure associated so the tcp is guaranteed to exist
11741  * when we come here. We still need to check the state because it might
11742  * as well has been closed. The squeue processing function i.e. squeue_enter,
11743  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11744  * CONN_DEC_REF.
11745  *
11746  * Apart from the default entry point, IP also sends packets directly to
11747  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11748  * connections.
11749  */
11750 void
11751 tcp_input(void *arg, mblk_t *mp, void *arg2)
11752 {
11753 	conn_t	*connp = (conn_t *)arg;
11754 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11755 
11756 	/* arg2 is the sqp */
11757 	ASSERT(arg2 != NULL);
11758 	ASSERT(mp != NULL);
11759 
11760 	/*
11761 	 * Don't accept any input on a closed tcp as this TCP logically does
11762 	 * not exist on the system. Don't proceed further with this TCP.
11763 	 * For eg. this packet could trigger another close of this tcp
11764 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11765 	 * tcp_clean_death / tcp_closei_local must be called at most once
11766 	 * on a TCP. In this case we need to refeed the packet into the
11767 	 * classifier and figure out where the packet should go. Need to
11768 	 * preserve the recv_ill somehow. Until we figure that out, for
11769 	 * now just drop the packet if we can't classify the packet.
11770 	 */
11771 	if (tcp->tcp_state == TCPS_CLOSED ||
11772 	    tcp->tcp_state == TCPS_BOUND) {
11773 		conn_t	*new_connp;
11774 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11775 
11776 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11777 		if (new_connp != NULL) {
11778 			tcp_reinput(new_connp, mp, arg2);
11779 			return;
11780 		}
11781 		/* We failed to classify. For now just drop the packet */
11782 		freemsg(mp);
11783 		return;
11784 	}
11785 
11786 	if (DB_TYPE(mp) == M_DATA)
11787 		tcp_rput_data(connp, mp, arg2);
11788 	else
11789 		tcp_rput_common(tcp, mp);
11790 }
11791 
11792 /*
11793  * The read side put procedure.
11794  * The packets passed up by ip are assume to be aligned according to
11795  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11796  */
11797 static void
11798 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11799 {
11800 	/*
11801 	 * tcp_rput_data() does not expect M_CTL except for the case
11802 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11803 	 * type. Need to make sure that any other M_CTLs don't make
11804 	 * it to tcp_rput_data since it is not expecting any and doesn't
11805 	 * check for it.
11806 	 */
11807 	if (DB_TYPE(mp) == M_CTL) {
11808 		switch (*(uint32_t *)(mp->b_rptr)) {
11809 		case TCP_IOC_ABORT_CONN:
11810 			/*
11811 			 * Handle connection abort request.
11812 			 */
11813 			tcp_ioctl_abort_handler(tcp, mp);
11814 			return;
11815 		case IPSEC_IN:
11816 			/*
11817 			 * Only secure icmp arrive in TCP and they
11818 			 * don't go through data path.
11819 			 */
11820 			tcp_icmp_error(tcp, mp);
11821 			return;
11822 		case IN_PKTINFO:
11823 			/*
11824 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11825 			 * sockets that are receiving IPv4 traffic. tcp
11826 			 */
11827 			ASSERT(tcp->tcp_family == AF_INET6);
11828 			ASSERT(tcp->tcp_ipv6_recvancillary &
11829 			    TCP_IPV6_RECVPKTINFO);
11830 			tcp_rput_data(tcp->tcp_connp, mp,
11831 			    tcp->tcp_connp->conn_sqp);
11832 			return;
11833 		case MDT_IOC_INFO_UPDATE:
11834 			/*
11835 			 * Handle Multidata information update; the
11836 			 * following routine will free the message.
11837 			 */
11838 			if (tcp->tcp_connp->conn_mdt_ok) {
11839 				tcp_mdt_update(tcp,
11840 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11841 				    B_FALSE);
11842 			}
11843 			freemsg(mp);
11844 			return;
11845 		case LSO_IOC_INFO_UPDATE:
11846 			/*
11847 			 * Handle LSO information update; the following
11848 			 * routine will free the message.
11849 			 */
11850 			if (tcp->tcp_connp->conn_lso_ok) {
11851 				tcp_lso_update(tcp,
11852 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11853 			}
11854 			freemsg(mp);
11855 			return;
11856 		default:
11857 			/*
11858 			 * tcp_icmp_err() will process the M_CTL packets.
11859 			 * Non-ICMP packets, if any, will be discarded in
11860 			 * tcp_icmp_err(). We will process the ICMP packet
11861 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11862 			 * incoming ICMP packet may result in changing
11863 			 * the tcp_mss, which we would need if we have
11864 			 * packets to retransmit.
11865 			 */
11866 			tcp_icmp_error(tcp, mp);
11867 			return;
11868 		}
11869 	}
11870 
11871 	/* No point processing the message if tcp is already closed */
11872 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11873 		freemsg(mp);
11874 		return;
11875 	}
11876 
11877 	tcp_rput_other(tcp, mp);
11878 }
11879 
11880 
11881 /* The minimum of smoothed mean deviation in RTO calculation. */
11882 #define	TCP_SD_MIN	400
11883 
11884 /*
11885  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11886  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11887  * are the same as those in Appendix A.2 of that paper.
11888  *
11889  * m = new measurement
11890  * sa = smoothed RTT average (8 * average estimates).
11891  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11892  */
11893 static void
11894 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11895 {
11896 	long m = TICK_TO_MSEC(rtt);
11897 	clock_t sa = tcp->tcp_rtt_sa;
11898 	clock_t sv = tcp->tcp_rtt_sd;
11899 	clock_t rto;
11900 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11901 
11902 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11903 	tcp->tcp_rtt_update++;
11904 
11905 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11906 	if (sa != 0) {
11907 		/*
11908 		 * Update average estimator:
11909 		 *	new rtt = 7/8 old rtt + 1/8 Error
11910 		 */
11911 
11912 		/* m is now Error in estimate. */
11913 		m -= sa >> 3;
11914 		if ((sa += m) <= 0) {
11915 			/*
11916 			 * Don't allow the smoothed average to be negative.
11917 			 * We use 0 to denote reinitialization of the
11918 			 * variables.
11919 			 */
11920 			sa = 1;
11921 		}
11922 
11923 		/*
11924 		 * Update deviation estimator:
11925 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11926 		 */
11927 		if (m < 0)
11928 			m = -m;
11929 		m -= sv >> 2;
11930 		sv += m;
11931 	} else {
11932 		/*
11933 		 * This follows BSD's implementation.  So the reinitialized
11934 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11935 		 * link is bandwidth dominated, doubling the window size
11936 		 * during slow start means doubling the RTT.  We want to be
11937 		 * more conservative when we reinitialize our estimates.  3
11938 		 * is just a convenient number.
11939 		 */
11940 		sa = m << 3;
11941 		sv = m << 1;
11942 	}
11943 	if (sv < TCP_SD_MIN) {
11944 		/*
11945 		 * We do not know that if sa captures the delay ACK
11946 		 * effect as in a long train of segments, a receiver
11947 		 * does not delay its ACKs.  So set the minimum of sv
11948 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11949 		 * of BSD DATO.  That means the minimum of mean
11950 		 * deviation is 100 ms.
11951 		 *
11952 		 */
11953 		sv = TCP_SD_MIN;
11954 	}
11955 	tcp->tcp_rtt_sa = sa;
11956 	tcp->tcp_rtt_sd = sv;
11957 	/*
11958 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11959 	 *
11960 	 * Add tcp_rexmit_interval extra in case of extreme environment
11961 	 * where the algorithm fails to work.  The default value of
11962 	 * tcp_rexmit_interval_extra should be 0.
11963 	 *
11964 	 * As we use a finer grained clock than BSD and update
11965 	 * RTO for every ACKs, add in another .25 of RTT to the
11966 	 * deviation of RTO to accomodate burstiness of 1/4 of
11967 	 * window size.
11968 	 */
11969 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
11970 
11971 	if (rto > tcps->tcps_rexmit_interval_max) {
11972 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
11973 	} else if (rto < tcps->tcps_rexmit_interval_min) {
11974 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
11975 	} else {
11976 		tcp->tcp_rto = rto;
11977 	}
11978 
11979 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11980 	tcp->tcp_timer_backoff = 0;
11981 }
11982 
11983 /*
11984  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11985  * send queue which starts at the given seq. no.
11986  *
11987  * Parameters:
11988  *	tcp_t *tcp: the tcp instance pointer.
11989  *	uint32_t seq: the starting seq. no of the requested segment.
11990  *	int32_t *off: after the execution, *off will be the offset to
11991  *		the returned mblk which points to the requested seq no.
11992  *		It is the caller's responsibility to send in a non-null off.
11993  *
11994  * Return:
11995  *	A mblk_t pointer pointing to the requested segment in send queue.
11996  */
11997 static mblk_t *
11998 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11999 {
12000 	int32_t	cnt;
12001 	mblk_t	*mp;
12002 
12003 	/* Defensive coding.  Make sure we don't send incorrect data. */
12004 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12005 		return (NULL);
12006 
12007 	cnt = seq - tcp->tcp_suna;
12008 	mp = tcp->tcp_xmit_head;
12009 	while (cnt > 0 && mp != NULL) {
12010 		cnt -= mp->b_wptr - mp->b_rptr;
12011 		if (cnt < 0) {
12012 			cnt += mp->b_wptr - mp->b_rptr;
12013 			break;
12014 		}
12015 		mp = mp->b_cont;
12016 	}
12017 	ASSERT(mp != NULL);
12018 	*off = cnt;
12019 	return (mp);
12020 }
12021 
12022 /*
12023  * This function handles all retransmissions if SACK is enabled for this
12024  * connection.  First it calculates how many segments can be retransmitted
12025  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12026  * segments.  A segment is eligible if sack_cnt for that segment is greater
12027  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12028  * all eligible segments, it checks to see if TCP can send some new segments
12029  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12030  *
12031  * Parameters:
12032  *	tcp_t *tcp: the tcp structure of the connection.
12033  *	uint_t *flags: in return, appropriate value will be set for
12034  *	tcp_rput_data().
12035  */
12036 static void
12037 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12038 {
12039 	notsack_blk_t	*notsack_blk;
12040 	int32_t		usable_swnd;
12041 	int32_t		mss;
12042 	uint32_t	seg_len;
12043 	mblk_t		*xmit_mp;
12044 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12045 
12046 	ASSERT(tcp->tcp_sack_info != NULL);
12047 	ASSERT(tcp->tcp_notsack_list != NULL);
12048 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12049 
12050 	/* Defensive coding in case there is a bug... */
12051 	if (tcp->tcp_notsack_list == NULL) {
12052 		return;
12053 	}
12054 	notsack_blk = tcp->tcp_notsack_list;
12055 	mss = tcp->tcp_mss;
12056 
12057 	/*
12058 	 * Limit the num of outstanding data in the network to be
12059 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12060 	 */
12061 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12062 
12063 	/* At least retransmit 1 MSS of data. */
12064 	if (usable_swnd <= 0) {
12065 		usable_swnd = mss;
12066 	}
12067 
12068 	/* Make sure no new RTT samples will be taken. */
12069 	tcp->tcp_csuna = tcp->tcp_snxt;
12070 
12071 	notsack_blk = tcp->tcp_notsack_list;
12072 	while (usable_swnd > 0) {
12073 		mblk_t		*snxt_mp, *tmp_mp;
12074 		tcp_seq		begin = tcp->tcp_sack_snxt;
12075 		tcp_seq		end;
12076 		int32_t		off;
12077 
12078 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12079 			if (SEQ_GT(notsack_blk->end, begin) &&
12080 			    (notsack_blk->sack_cnt >=
12081 			    tcps->tcps_dupack_fast_retransmit)) {
12082 				end = notsack_blk->end;
12083 				if (SEQ_LT(begin, notsack_blk->begin)) {
12084 					begin = notsack_blk->begin;
12085 				}
12086 				break;
12087 			}
12088 		}
12089 		/*
12090 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12091 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12092 		 * set to tcp_cwnd_ssthresh.
12093 		 */
12094 		if (notsack_blk == NULL) {
12095 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12096 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12097 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12098 				ASSERT(tcp->tcp_cwnd > 0);
12099 				return;
12100 			} else {
12101 				usable_swnd = usable_swnd / mss;
12102 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12103 				    MAX(usable_swnd * mss, mss);
12104 				*flags |= TH_XMIT_NEEDED;
12105 				return;
12106 			}
12107 		}
12108 
12109 		/*
12110 		 * Note that we may send more than usable_swnd allows here
12111 		 * because of round off, but no more than 1 MSS of data.
12112 		 */
12113 		seg_len = end - begin;
12114 		if (seg_len > mss)
12115 			seg_len = mss;
12116 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12117 		ASSERT(snxt_mp != NULL);
12118 		/* This should not happen.  Defensive coding again... */
12119 		if (snxt_mp == NULL) {
12120 			return;
12121 		}
12122 
12123 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12124 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12125 		if (xmit_mp == NULL)
12126 			return;
12127 
12128 		usable_swnd -= seg_len;
12129 		tcp->tcp_pipe += seg_len;
12130 		tcp->tcp_sack_snxt = begin + seg_len;
12131 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12132 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12133 
12134 		/*
12135 		 * Update the send timestamp to avoid false retransmission.
12136 		 */
12137 		snxt_mp->b_prev = (mblk_t *)lbolt;
12138 
12139 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12140 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12141 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12142 		/*
12143 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12144 		 * This happens when new data sent during fast recovery is
12145 		 * also lost.  If TCP retransmits those new data, it needs
12146 		 * to extend SACK recover phase to avoid starting another
12147 		 * fast retransmit/recovery unnecessarily.
12148 		 */
12149 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12150 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12151 		}
12152 	}
12153 }
12154 
12155 /*
12156  * This function handles policy checking at TCP level for non-hard_bound/
12157  * detached connections.
12158  */
12159 static boolean_t
12160 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12161     boolean_t secure, boolean_t mctl_present)
12162 {
12163 	ipsec_latch_t *ipl = NULL;
12164 	ipsec_action_t *act = NULL;
12165 	mblk_t *data_mp;
12166 	ipsec_in_t *ii;
12167 	const char *reason;
12168 	kstat_named_t *counter;
12169 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12170 	ipsec_stack_t	*ipss;
12171 	ip_stack_t	*ipst;
12172 
12173 	ASSERT(mctl_present || !secure);
12174 
12175 	ASSERT((ipha == NULL && ip6h != NULL) ||
12176 	    (ip6h == NULL && ipha != NULL));
12177 
12178 	/*
12179 	 * We don't necessarily have an ipsec_in_act action to verify
12180 	 * policy because of assymetrical policy where we have only
12181 	 * outbound policy and no inbound policy (possible with global
12182 	 * policy).
12183 	 */
12184 	if (!secure) {
12185 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12186 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12187 			return (B_TRUE);
12188 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12189 		    "tcp_check_policy", ipha, ip6h, secure,
12190 		    tcps->tcps_netstack);
12191 		ipss = tcps->tcps_netstack->netstack_ipsec;
12192 
12193 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12194 		    DROPPER(ipss, ipds_tcp_clear),
12195 		    &tcps->tcps_dropper);
12196 		return (B_FALSE);
12197 	}
12198 
12199 	/*
12200 	 * We have a secure packet.
12201 	 */
12202 	if (act == NULL) {
12203 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12204 		    "tcp_check_policy", ipha, ip6h, secure,
12205 		    tcps->tcps_netstack);
12206 		ipss = tcps->tcps_netstack->netstack_ipsec;
12207 
12208 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12209 		    DROPPER(ipss, ipds_tcp_secure),
12210 		    &tcps->tcps_dropper);
12211 		return (B_FALSE);
12212 	}
12213 
12214 	/*
12215 	 * XXX This whole routine is currently incorrect.  ipl should
12216 	 * be set to the latch pointer, but is currently not set, so
12217 	 * we initialize it to NULL to avoid picking up random garbage.
12218 	 */
12219 	if (ipl == NULL)
12220 		return (B_TRUE);
12221 
12222 	data_mp = first_mp->b_cont;
12223 
12224 	ii = (ipsec_in_t *)first_mp->b_rptr;
12225 
12226 	ipst = tcps->tcps_netstack->netstack_ip;
12227 
12228 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12229 	    &counter, tcp->tcp_connp)) {
12230 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12231 		return (B_TRUE);
12232 	}
12233 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12234 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12235 	    reason);
12236 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12237 
12238 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12239 	    &tcps->tcps_dropper);
12240 	return (B_FALSE);
12241 }
12242 
12243 /*
12244  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12245  * retransmission after a timeout.
12246  *
12247  * To limit the number of duplicate segments, we limit the number of segment
12248  * to be sent in one time to tcp_snd_burst, the burst variable.
12249  */
12250 static void
12251 tcp_ss_rexmit(tcp_t *tcp)
12252 {
12253 	uint32_t	snxt;
12254 	uint32_t	smax;
12255 	int32_t		win;
12256 	int32_t		mss;
12257 	int32_t		off;
12258 	int32_t		burst = tcp->tcp_snd_burst;
12259 	mblk_t		*snxt_mp;
12260 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12261 
12262 	/*
12263 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12264 	 * all unack'ed segments.
12265 	 */
12266 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12267 		smax = tcp->tcp_rexmit_max;
12268 		snxt = tcp->tcp_rexmit_nxt;
12269 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12270 			snxt = tcp->tcp_suna;
12271 		}
12272 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12273 		win -= snxt - tcp->tcp_suna;
12274 		mss = tcp->tcp_mss;
12275 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12276 
12277 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12278 		    (burst > 0) && (snxt_mp != NULL)) {
12279 			mblk_t	*xmit_mp;
12280 			mblk_t	*old_snxt_mp = snxt_mp;
12281 			uint32_t cnt = mss;
12282 
12283 			if (win < cnt) {
12284 				cnt = win;
12285 			}
12286 			if (SEQ_GT(snxt + cnt, smax)) {
12287 				cnt = smax - snxt;
12288 			}
12289 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12290 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12291 			if (xmit_mp == NULL)
12292 				return;
12293 
12294 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12295 
12296 			snxt += cnt;
12297 			win -= cnt;
12298 			/*
12299 			 * Update the send timestamp to avoid false
12300 			 * retransmission.
12301 			 */
12302 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12303 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12304 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12305 
12306 			tcp->tcp_rexmit_nxt = snxt;
12307 			burst--;
12308 		}
12309 		/*
12310 		 * If we have transmitted all we have at the time
12311 		 * we started the retranmission, we can leave
12312 		 * the rest of the job to tcp_wput_data().  But we
12313 		 * need to check the send window first.  If the
12314 		 * win is not 0, go on with tcp_wput_data().
12315 		 */
12316 		if (SEQ_LT(snxt, smax) || win == 0) {
12317 			return;
12318 		}
12319 	}
12320 	/* Only call tcp_wput_data() if there is data to be sent. */
12321 	if (tcp->tcp_unsent) {
12322 		tcp_wput_data(tcp, NULL, B_FALSE);
12323 	}
12324 }
12325 
12326 /*
12327  * Process all TCP option in SYN segment.  Note that this function should
12328  * be called after tcp_adapt_ire() is called so that the necessary info
12329  * from IRE is already set in the tcp structure.
12330  *
12331  * This function sets up the correct tcp_mss value according to the
12332  * MSS option value and our header size.  It also sets up the window scale
12333  * and timestamp values, and initialize SACK info blocks.  But it does not
12334  * change receive window size after setting the tcp_mss value.  The caller
12335  * should do the appropriate change.
12336  */
12337 void
12338 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12339 {
12340 	int options;
12341 	tcp_opt_t tcpopt;
12342 	uint32_t mss_max;
12343 	char *tmp_tcph;
12344 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12345 
12346 	tcpopt.tcp = NULL;
12347 	options = tcp_parse_options(tcph, &tcpopt);
12348 
12349 	/*
12350 	 * Process MSS option.  Note that MSS option value does not account
12351 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12352 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12353 	 * IPv6.
12354 	 */
12355 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12356 		if (tcp->tcp_ipversion == IPV4_VERSION)
12357 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12358 		else
12359 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12360 	} else {
12361 		if (tcp->tcp_ipversion == IPV4_VERSION)
12362 			mss_max = tcps->tcps_mss_max_ipv4;
12363 		else
12364 			mss_max = tcps->tcps_mss_max_ipv6;
12365 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12366 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12367 		else if (tcpopt.tcp_opt_mss > mss_max)
12368 			tcpopt.tcp_opt_mss = mss_max;
12369 	}
12370 
12371 	/* Process Window Scale option. */
12372 	if (options & TCP_OPT_WSCALE_PRESENT) {
12373 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12374 		tcp->tcp_snd_ws_ok = B_TRUE;
12375 	} else {
12376 		tcp->tcp_snd_ws = B_FALSE;
12377 		tcp->tcp_snd_ws_ok = B_FALSE;
12378 		tcp->tcp_rcv_ws = B_FALSE;
12379 	}
12380 
12381 	/* Process Timestamp option. */
12382 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12383 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12384 		tmp_tcph = (char *)tcp->tcp_tcph;
12385 
12386 		tcp->tcp_snd_ts_ok = B_TRUE;
12387 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12388 		tcp->tcp_last_rcv_lbolt = lbolt64;
12389 		ASSERT(OK_32PTR(tmp_tcph));
12390 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12391 
12392 		/* Fill in our template header with basic timestamp option. */
12393 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12394 		tmp_tcph[0] = TCPOPT_NOP;
12395 		tmp_tcph[1] = TCPOPT_NOP;
12396 		tmp_tcph[2] = TCPOPT_TSTAMP;
12397 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12398 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12399 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12400 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12401 	} else {
12402 		tcp->tcp_snd_ts_ok = B_FALSE;
12403 	}
12404 
12405 	/*
12406 	 * Process SACK options.  If SACK is enabled for this connection,
12407 	 * then allocate the SACK info structure.  Note the following ways
12408 	 * when tcp_snd_sack_ok is set to true.
12409 	 *
12410 	 * For active connection: in tcp_adapt_ire() called in
12411 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12412 	 * is checked.
12413 	 *
12414 	 * For passive connection: in tcp_adapt_ire() called in
12415 	 * tcp_accept_comm().
12416 	 *
12417 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12418 	 * That check makes sure that if we did not send a SACK OK option,
12419 	 * we will not enable SACK for this connection even though the other
12420 	 * side sends us SACK OK option.  For active connection, the SACK
12421 	 * info structure has already been allocated.  So we need to free
12422 	 * it if SACK is disabled.
12423 	 */
12424 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12425 	    (tcp->tcp_snd_sack_ok ||
12426 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12427 		/* This should be true only in the passive case. */
12428 		if (tcp->tcp_sack_info == NULL) {
12429 			ASSERT(TCP_IS_DETACHED(tcp));
12430 			tcp->tcp_sack_info =
12431 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12432 		}
12433 		if (tcp->tcp_sack_info == NULL) {
12434 			tcp->tcp_snd_sack_ok = B_FALSE;
12435 		} else {
12436 			tcp->tcp_snd_sack_ok = B_TRUE;
12437 			if (tcp->tcp_snd_ts_ok) {
12438 				tcp->tcp_max_sack_blk = 3;
12439 			} else {
12440 				tcp->tcp_max_sack_blk = 4;
12441 			}
12442 		}
12443 	} else {
12444 		/*
12445 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12446 		 * no SACK info will be used for this
12447 		 * connection.  This assumes that SACK usage
12448 		 * permission is negotiated.  This may need
12449 		 * to be changed once this is clarified.
12450 		 */
12451 		if (tcp->tcp_sack_info != NULL) {
12452 			ASSERT(tcp->tcp_notsack_list == NULL);
12453 			kmem_cache_free(tcp_sack_info_cache,
12454 			    tcp->tcp_sack_info);
12455 			tcp->tcp_sack_info = NULL;
12456 		}
12457 		tcp->tcp_snd_sack_ok = B_FALSE;
12458 	}
12459 
12460 	/*
12461 	 * Now we know the exact TCP/IP header length, subtract
12462 	 * that from tcp_mss to get our side's MSS.
12463 	 */
12464 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12465 	/*
12466 	 * Here we assume that the other side's header size will be equal to
12467 	 * our header size.  We calculate the real MSS accordingly.  Need to
12468 	 * take into additional stuffs IPsec puts in.
12469 	 *
12470 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12471 	 */
12472 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12473 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12474 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12475 
12476 	/*
12477 	 * Set MSS to the smaller one of both ends of the connection.
12478 	 * We should not have called tcp_mss_set() before, but our
12479 	 * side of the MSS should have been set to a proper value
12480 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12481 	 * STREAM head parameters properly.
12482 	 *
12483 	 * If we have a larger-than-16-bit window but the other side
12484 	 * didn't want to do window scale, tcp_rwnd_set() will take
12485 	 * care of that.
12486 	 */
12487 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12488 }
12489 
12490 /*
12491  * Sends the T_CONN_IND to the listener. The caller calls this
12492  * functions via squeue to get inside the listener's perimeter
12493  * once the 3 way hand shake is done a T_CONN_IND needs to be
12494  * sent. As an optimization, the caller can call this directly
12495  * if listener's perimeter is same as eager's.
12496  */
12497 /* ARGSUSED */
12498 void
12499 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12500 {
12501 	conn_t			*lconnp = (conn_t *)arg;
12502 	tcp_t			*listener = lconnp->conn_tcp;
12503 	tcp_t			*tcp;
12504 	struct T_conn_ind	*conn_ind;
12505 	ipaddr_t 		*addr_cache;
12506 	boolean_t		need_send_conn_ind = B_FALSE;
12507 	tcp_stack_t		*tcps = listener->tcp_tcps;
12508 
12509 	/* retrieve the eager */
12510 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12511 	ASSERT(conn_ind->OPT_offset != 0 &&
12512 	    conn_ind->OPT_length == sizeof (intptr_t));
12513 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12514 		conn_ind->OPT_length);
12515 
12516 	/*
12517 	 * TLI/XTI applications will get confused by
12518 	 * sending eager as an option since it violates
12519 	 * the option semantics. So remove the eager as
12520 	 * option since TLI/XTI app doesn't need it anyway.
12521 	 */
12522 	if (!TCP_IS_SOCKET(listener)) {
12523 		conn_ind->OPT_length = 0;
12524 		conn_ind->OPT_offset = 0;
12525 	}
12526 	if (listener->tcp_state == TCPS_CLOSED ||
12527 	    TCP_IS_DETACHED(listener)) {
12528 		/*
12529 		 * If listener has closed, it would have caused a
12530 		 * a cleanup/blowoff to happen for the eager. We
12531 		 * just need to return.
12532 		 */
12533 		freemsg(mp);
12534 		return;
12535 	}
12536 
12537 
12538 	/*
12539 	 * if the conn_req_q is full defer passing up the
12540 	 * T_CONN_IND until space is availabe after t_accept()
12541 	 * processing
12542 	 */
12543 	mutex_enter(&listener->tcp_eager_lock);
12544 
12545 	/*
12546 	 * Take the eager out, if it is in the list of droppable eagers
12547 	 * as we are here because the 3W handshake is over.
12548 	 */
12549 	MAKE_UNDROPPABLE(tcp);
12550 
12551 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12552 		tcp_t *tail;
12553 
12554 		/*
12555 		 * The eager already has an extra ref put in tcp_rput_data
12556 		 * so that it stays till accept comes back even though it
12557 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12558 		 */
12559 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12560 		listener->tcp_conn_req_cnt_q0--;
12561 		listener->tcp_conn_req_cnt_q++;
12562 
12563 		/* Move from SYN_RCVD to ESTABLISHED list  */
12564 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12565 		    tcp->tcp_eager_prev_q0;
12566 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12567 		    tcp->tcp_eager_next_q0;
12568 		tcp->tcp_eager_prev_q0 = NULL;
12569 		tcp->tcp_eager_next_q0 = NULL;
12570 
12571 		/*
12572 		 * Insert at end of the queue because sockfs
12573 		 * sends down T_CONN_RES in chronological
12574 		 * order. Leaving the older conn indications
12575 		 * at front of the queue helps reducing search
12576 		 * time.
12577 		 */
12578 		tail = listener->tcp_eager_last_q;
12579 		if (tail != NULL)
12580 			tail->tcp_eager_next_q = tcp;
12581 		else
12582 			listener->tcp_eager_next_q = tcp;
12583 		listener->tcp_eager_last_q = tcp;
12584 		tcp->tcp_eager_next_q = NULL;
12585 		/*
12586 		 * Delay sending up the T_conn_ind until we are
12587 		 * done with the eager. Once we have have sent up
12588 		 * the T_conn_ind, the accept can potentially complete
12589 		 * any time and release the refhold we have on the eager.
12590 		 */
12591 		need_send_conn_ind = B_TRUE;
12592 	} else {
12593 		/*
12594 		 * Defer connection on q0 and set deferred
12595 		 * connection bit true
12596 		 */
12597 		tcp->tcp_conn_def_q0 = B_TRUE;
12598 
12599 		/* take tcp out of q0 ... */
12600 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12601 		    tcp->tcp_eager_next_q0;
12602 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12603 		    tcp->tcp_eager_prev_q0;
12604 
12605 		/* ... and place it at the end of q0 */
12606 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12607 		tcp->tcp_eager_next_q0 = listener;
12608 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12609 		listener->tcp_eager_prev_q0 = tcp;
12610 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12611 	}
12612 
12613 	/* we have timed out before */
12614 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12615 		tcp->tcp_syn_rcvd_timeout = 0;
12616 		listener->tcp_syn_rcvd_timeout--;
12617 		if (listener->tcp_syn_defense &&
12618 		    listener->tcp_syn_rcvd_timeout <=
12619 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12620 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12621 			listener->tcp_last_rcv_lbolt)) {
12622 			/*
12623 			 * Turn off the defense mode if we
12624 			 * believe the SYN attack is over.
12625 			 */
12626 			listener->tcp_syn_defense = B_FALSE;
12627 			if (listener->tcp_ip_addr_cache) {
12628 				kmem_free((void *)listener->tcp_ip_addr_cache,
12629 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12630 				listener->tcp_ip_addr_cache = NULL;
12631 			}
12632 		}
12633 	}
12634 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12635 	if (addr_cache != NULL) {
12636 		/*
12637 		 * We have finished a 3-way handshake with this
12638 		 * remote host. This proves the IP addr is good.
12639 		 * Cache it!
12640 		 */
12641 		addr_cache[IP_ADDR_CACHE_HASH(
12642 			tcp->tcp_remote)] = tcp->tcp_remote;
12643 	}
12644 	mutex_exit(&listener->tcp_eager_lock);
12645 	if (need_send_conn_ind)
12646 		putnext(listener->tcp_rq, mp);
12647 }
12648 
12649 mblk_t *
12650 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12651     uint_t *ifindexp, ip6_pkt_t *ippp)
12652 {
12653 	ip_pktinfo_t	*pinfo;
12654 	ip6_t		*ip6h;
12655 	uchar_t		*rptr;
12656 	mblk_t		*first_mp = mp;
12657 	boolean_t	mctl_present = B_FALSE;
12658 	uint_t 		ifindex = 0;
12659 	ip6_pkt_t	ipp;
12660 	uint_t		ipvers;
12661 	uint_t		ip_hdr_len;
12662 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12663 
12664 	rptr = mp->b_rptr;
12665 	ASSERT(OK_32PTR(rptr));
12666 	ASSERT(tcp != NULL);
12667 	ipp.ipp_fields = 0;
12668 
12669 	switch DB_TYPE(mp) {
12670 	case M_CTL:
12671 		mp = mp->b_cont;
12672 		if (mp == NULL) {
12673 			freemsg(first_mp);
12674 			return (NULL);
12675 		}
12676 		if (DB_TYPE(mp) != M_DATA) {
12677 			freemsg(first_mp);
12678 			return (NULL);
12679 		}
12680 		mctl_present = B_TRUE;
12681 		break;
12682 	case M_DATA:
12683 		break;
12684 	default:
12685 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12686 		freemsg(mp);
12687 		return (NULL);
12688 	}
12689 	ipvers = IPH_HDR_VERSION(rptr);
12690 	if (ipvers == IPV4_VERSION) {
12691 		if (tcp == NULL) {
12692 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12693 			goto done;
12694 		}
12695 
12696 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12697 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12698 
12699 		/*
12700 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12701 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12702 		 */
12703 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12704 		    mctl_present) {
12705 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12706 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12707 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12708 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12709 				ipp.ipp_fields |= IPPF_IFINDEX;
12710 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12711 				ifindex = pinfo->ip_pkt_ifindex;
12712 			}
12713 			freeb(first_mp);
12714 			mctl_present = B_FALSE;
12715 		}
12716 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12717 	} else {
12718 		ip6h = (ip6_t *)rptr;
12719 
12720 		ASSERT(ipvers == IPV6_VERSION);
12721 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12722 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12723 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12724 
12725 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12726 			uint8_t	nexthdrp;
12727 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12728 
12729 			/* Look for ifindex information */
12730 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12731 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12732 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12733 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12734 					freemsg(first_mp);
12735 					return (NULL);
12736 				}
12737 
12738 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12739 					ASSERT(ip6i->ip6i_ifindex != 0);
12740 					ipp.ipp_fields |= IPPF_IFINDEX;
12741 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12742 					ifindex = ip6i->ip6i_ifindex;
12743 				}
12744 				rptr = (uchar_t *)&ip6i[1];
12745 				mp->b_rptr = rptr;
12746 				if (rptr == mp->b_wptr) {
12747 					mblk_t *mp1;
12748 					mp1 = mp->b_cont;
12749 					freeb(mp);
12750 					mp = mp1;
12751 					rptr = mp->b_rptr;
12752 				}
12753 				if (MBLKL(mp) < IPV6_HDR_LEN +
12754 				    sizeof (tcph_t)) {
12755 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12756 					freemsg(first_mp);
12757 					return (NULL);
12758 				}
12759 				ip6h = (ip6_t *)rptr;
12760 			}
12761 
12762 			/*
12763 			 * Find any potentially interesting extension headers
12764 			 * as well as the length of the IPv6 + extension
12765 			 * headers.
12766 			 */
12767 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12768 			/* Verify if this is a TCP packet */
12769 			if (nexthdrp != IPPROTO_TCP) {
12770 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12771 				freemsg(first_mp);
12772 				return (NULL);
12773 			}
12774 		} else {
12775 			ip_hdr_len = IPV6_HDR_LEN;
12776 		}
12777 	}
12778 
12779 done:
12780 	if (ipversp != NULL)
12781 		*ipversp = ipvers;
12782 	if (ip_hdr_lenp != NULL)
12783 		*ip_hdr_lenp = ip_hdr_len;
12784 	if (ippp != NULL)
12785 		*ippp = ipp;
12786 	if (ifindexp != NULL)
12787 		*ifindexp = ifindex;
12788 	if (mctl_present) {
12789 		freeb(first_mp);
12790 	}
12791 	return (mp);
12792 }
12793 
12794 /*
12795  * Handle M_DATA messages from IP. Its called directly from IP via
12796  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12797  * in this path.
12798  *
12799  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12800  * v4 and v6), we are called through tcp_input() and a M_CTL can
12801  * be present for options but tcp_find_pktinfo() deals with it. We
12802  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12803  *
12804  * The first argument is always the connp/tcp to which the mp belongs.
12805  * There are no exceptions to this rule. The caller has already put
12806  * a reference on this connp/tcp and once tcp_rput_data() returns,
12807  * the squeue will do the refrele.
12808  *
12809  * The TH_SYN for the listener directly go to tcp_conn_request via
12810  * squeue.
12811  *
12812  * sqp: NULL = recursive, sqp != NULL means called from squeue
12813  */
12814 void
12815 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12816 {
12817 	int32_t		bytes_acked;
12818 	int32_t		gap;
12819 	mblk_t		*mp1;
12820 	uint_t		flags;
12821 	uint32_t	new_swnd = 0;
12822 	uchar_t		*iphdr;
12823 	uchar_t		*rptr;
12824 	int32_t		rgap;
12825 	uint32_t	seg_ack;
12826 	int		seg_len;
12827 	uint_t		ip_hdr_len;
12828 	uint32_t	seg_seq;
12829 	tcph_t		*tcph;
12830 	int		urp;
12831 	tcp_opt_t	tcpopt;
12832 	uint_t		ipvers;
12833 	ip6_pkt_t	ipp;
12834 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12835 	uint32_t	cwnd;
12836 	uint32_t	add;
12837 	int		npkt;
12838 	int		mss;
12839 	conn_t		*connp = (conn_t *)arg;
12840 	squeue_t	*sqp = (squeue_t *)arg2;
12841 	tcp_t		*tcp = connp->conn_tcp;
12842 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12843 
12844 	/*
12845 	 * RST from fused tcp loopback peer should trigger an unfuse.
12846 	 */
12847 	if (tcp->tcp_fused) {
12848 		TCP_STAT(tcps, tcp_fusion_aborted);
12849 		tcp_unfuse(tcp);
12850 	}
12851 
12852 	iphdr = mp->b_rptr;
12853 	rptr = mp->b_rptr;
12854 	ASSERT(OK_32PTR(rptr));
12855 
12856 	/*
12857 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12858 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12859 	 * necessary information.
12860 	 */
12861 	if (IPCL_IS_TCP4(connp)) {
12862 		ipvers = IPV4_VERSION;
12863 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12864 	} else {
12865 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12866 		    NULL, &ipp);
12867 		if (mp == NULL) {
12868 			TCP_STAT(tcps, tcp_rput_v6_error);
12869 			return;
12870 		}
12871 		iphdr = mp->b_rptr;
12872 		rptr = mp->b_rptr;
12873 	}
12874 	ASSERT(DB_TYPE(mp) == M_DATA);
12875 
12876 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12877 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12878 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12879 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12880 	seg_len = (int)(mp->b_wptr - rptr) -
12881 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12882 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12883 		do {
12884 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12885 			    (uintptr_t)INT_MAX);
12886 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12887 		} while ((mp1 = mp1->b_cont) != NULL &&
12888 		    mp1->b_datap->db_type == M_DATA);
12889 	}
12890 
12891 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12892 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12893 		    seg_len, tcph);
12894 		return;
12895 	}
12896 
12897 	if (sqp != NULL) {
12898 		/*
12899 		 * This is the correct place to update tcp_last_recv_time. Note
12900 		 * that it is also updated for tcp structure that belongs to
12901 		 * global and listener queues which do not really need updating.
12902 		 * But that should not cause any harm.  And it is updated for
12903 		 * all kinds of incoming segments, not only for data segments.
12904 		 */
12905 		tcp->tcp_last_recv_time = lbolt;
12906 	}
12907 
12908 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12909 
12910 	BUMP_LOCAL(tcp->tcp_ibsegs);
12911 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12912 
12913 	if ((flags & TH_URG) && sqp != NULL) {
12914 		/*
12915 		 * TCP can't handle urgent pointers that arrive before
12916 		 * the connection has been accept()ed since it can't
12917 		 * buffer OOB data.  Discard segment if this happens.
12918 		 *
12919 		 * We can't just rely on a non-null tcp_listener to indicate
12920 		 * that the accept() has completed since unlinking of the
12921 		 * eager and completion of the accept are not atomic.
12922 		 * tcp_detached, when it is not set (B_FALSE) indicates
12923 		 * that the accept() has completed.
12924 		 *
12925 		 * Nor can it reassemble urgent pointers, so discard
12926 		 * if it's not the next segment expected.
12927 		 *
12928 		 * Otherwise, collapse chain into one mblk (discard if
12929 		 * that fails).  This makes sure the headers, retransmitted
12930 		 * data, and new data all are in the same mblk.
12931 		 */
12932 		ASSERT(mp != NULL);
12933 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12934 			freemsg(mp);
12935 			return;
12936 		}
12937 		/* Update pointers into message */
12938 		iphdr = rptr = mp->b_rptr;
12939 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12940 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12941 			/*
12942 			 * Since we can't handle any data with this urgent
12943 			 * pointer that is out of sequence, we expunge
12944 			 * the data.  This allows us to still register
12945 			 * the urgent mark and generate the M_PCSIG,
12946 			 * which we can do.
12947 			 */
12948 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12949 			seg_len = 0;
12950 		}
12951 	}
12952 
12953 	switch (tcp->tcp_state) {
12954 	case TCPS_SYN_SENT:
12955 		if (flags & TH_ACK) {
12956 			/*
12957 			 * Note that our stack cannot send data before a
12958 			 * connection is established, therefore the
12959 			 * following check is valid.  Otherwise, it has
12960 			 * to be changed.
12961 			 */
12962 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12963 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12964 				freemsg(mp);
12965 				if (flags & TH_RST)
12966 					return;
12967 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12968 				    tcp, seg_ack, 0, TH_RST);
12969 				return;
12970 			}
12971 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12972 		}
12973 		if (flags & TH_RST) {
12974 			freemsg(mp);
12975 			if (flags & TH_ACK)
12976 				(void) tcp_clean_death(tcp,
12977 				    ECONNREFUSED, 13);
12978 			return;
12979 		}
12980 		if (!(flags & TH_SYN)) {
12981 			freemsg(mp);
12982 			return;
12983 		}
12984 
12985 		/* Process all TCP options. */
12986 		tcp_process_options(tcp, tcph);
12987 		/*
12988 		 * The following changes our rwnd to be a multiple of the
12989 		 * MIN(peer MSS, our MSS) for performance reason.
12990 		 */
12991 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12992 		    tcp->tcp_mss));
12993 
12994 		/* Is the other end ECN capable? */
12995 		if (tcp->tcp_ecn_ok) {
12996 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12997 				tcp->tcp_ecn_ok = B_FALSE;
12998 			}
12999 		}
13000 		/*
13001 		 * Clear ECN flags because it may interfere with later
13002 		 * processing.
13003 		 */
13004 		flags &= ~(TH_ECE|TH_CWR);
13005 
13006 		tcp->tcp_irs = seg_seq;
13007 		tcp->tcp_rack = seg_seq;
13008 		tcp->tcp_rnxt = seg_seq + 1;
13009 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13010 		if (!TCP_IS_DETACHED(tcp)) {
13011 			/* Allocate room for SACK options if needed. */
13012 			if (tcp->tcp_snd_sack_ok) {
13013 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13014 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13015 				    (tcp->tcp_loopback ? 0 :
13016 				    tcps->tcps_wroff_xtra));
13017 			} else {
13018 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13019 				    tcp->tcp_hdr_len +
13020 				    (tcp->tcp_loopback ? 0 :
13021 				    tcps->tcps_wroff_xtra));
13022 			}
13023 		}
13024 		if (flags & TH_ACK) {
13025 			/*
13026 			 * If we can't get the confirmation upstream, pretend
13027 			 * we didn't even see this one.
13028 			 *
13029 			 * XXX: how can we pretend we didn't see it if we
13030 			 * have updated rnxt et. al.
13031 			 *
13032 			 * For loopback we defer sending up the T_CONN_CON
13033 			 * until after some checks below.
13034 			 */
13035 			mp1 = NULL;
13036 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13037 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13038 				freemsg(mp);
13039 				return;
13040 			}
13041 			/* SYN was acked - making progress */
13042 			if (tcp->tcp_ipversion == IPV6_VERSION)
13043 				tcp->tcp_ip_forward_progress = B_TRUE;
13044 
13045 			/* One for the SYN */
13046 			tcp->tcp_suna = tcp->tcp_iss + 1;
13047 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13048 			tcp->tcp_state = TCPS_ESTABLISHED;
13049 
13050 			/*
13051 			 * If SYN was retransmitted, need to reset all
13052 			 * retransmission info.  This is because this
13053 			 * segment will be treated as a dup ACK.
13054 			 */
13055 			if (tcp->tcp_rexmit) {
13056 				tcp->tcp_rexmit = B_FALSE;
13057 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13058 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13059 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13060 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13061 				tcp->tcp_ms_we_have_waited = 0;
13062 
13063 				/*
13064 				 * Set tcp_cwnd back to 1 MSS, per
13065 				 * recommendation from
13066 				 * draft-floyd-incr-init-win-01.txt,
13067 				 * Increasing TCP's Initial Window.
13068 				 */
13069 				tcp->tcp_cwnd = tcp->tcp_mss;
13070 			}
13071 
13072 			tcp->tcp_swl1 = seg_seq;
13073 			tcp->tcp_swl2 = seg_ack;
13074 
13075 			new_swnd = BE16_TO_U16(tcph->th_win);
13076 			tcp->tcp_swnd = new_swnd;
13077 			if (new_swnd > tcp->tcp_max_swnd)
13078 				tcp->tcp_max_swnd = new_swnd;
13079 
13080 			/*
13081 			 * Always send the three-way handshake ack immediately
13082 			 * in order to make the connection complete as soon as
13083 			 * possible on the accepting host.
13084 			 */
13085 			flags |= TH_ACK_NEEDED;
13086 
13087 			/*
13088 			 * Special case for loopback.  At this point we have
13089 			 * received SYN-ACK from the remote endpoint.  In
13090 			 * order to ensure that both endpoints reach the
13091 			 * fused state prior to any data exchange, the final
13092 			 * ACK needs to be sent before we indicate T_CONN_CON
13093 			 * to the module upstream.
13094 			 */
13095 			if (tcp->tcp_loopback) {
13096 				mblk_t *ack_mp;
13097 
13098 				ASSERT(!tcp->tcp_unfusable);
13099 				ASSERT(mp1 != NULL);
13100 				/*
13101 				 * For loopback, we always get a pure SYN-ACK
13102 				 * and only need to send back the final ACK
13103 				 * with no data (this is because the other
13104 				 * tcp is ours and we don't do T/TCP).  This
13105 				 * final ACK triggers the passive side to
13106 				 * perform fusion in ESTABLISHED state.
13107 				 */
13108 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13109 					if (tcp->tcp_ack_tid != 0) {
13110 						(void) TCP_TIMER_CANCEL(tcp,
13111 						    tcp->tcp_ack_tid);
13112 						tcp->tcp_ack_tid = 0;
13113 					}
13114 					TCP_RECORD_TRACE(tcp, ack_mp,
13115 					    TCP_TRACE_SEND_PKT);
13116 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13117 					BUMP_LOCAL(tcp->tcp_obsegs);
13118 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13119 
13120 					/* Send up T_CONN_CON */
13121 					putnext(tcp->tcp_rq, mp1);
13122 
13123 					freemsg(mp);
13124 					return;
13125 				}
13126 				/*
13127 				 * Forget fusion; we need to handle more
13128 				 * complex cases below.  Send the deferred
13129 				 * T_CONN_CON message upstream and proceed
13130 				 * as usual.  Mark this tcp as not capable
13131 				 * of fusion.
13132 				 */
13133 				TCP_STAT(tcps, tcp_fusion_unfusable);
13134 				tcp->tcp_unfusable = B_TRUE;
13135 				putnext(tcp->tcp_rq, mp1);
13136 			}
13137 
13138 			/*
13139 			 * Check to see if there is data to be sent.  If
13140 			 * yes, set the transmit flag.  Then check to see
13141 			 * if received data processing needs to be done.
13142 			 * If not, go straight to xmit_check.  This short
13143 			 * cut is OK as we don't support T/TCP.
13144 			 */
13145 			if (tcp->tcp_unsent)
13146 				flags |= TH_XMIT_NEEDED;
13147 
13148 			if (seg_len == 0 && !(flags & TH_URG)) {
13149 				freemsg(mp);
13150 				goto xmit_check;
13151 			}
13152 
13153 			flags &= ~TH_SYN;
13154 			seg_seq++;
13155 			break;
13156 		}
13157 		tcp->tcp_state = TCPS_SYN_RCVD;
13158 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13159 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13160 		if (mp1) {
13161 			DB_CPID(mp1) = tcp->tcp_cpid;
13162 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13163 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13164 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13165 		}
13166 		freemsg(mp);
13167 		return;
13168 	case TCPS_SYN_RCVD:
13169 		if (flags & TH_ACK) {
13170 			/*
13171 			 * In this state, a SYN|ACK packet is either bogus
13172 			 * because the other side must be ACKing our SYN which
13173 			 * indicates it has seen the ACK for their SYN and
13174 			 * shouldn't retransmit it or we're crossing SYNs
13175 			 * on active open.
13176 			 */
13177 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13178 				freemsg(mp);
13179 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13180 				    tcp, seg_ack, 0, TH_RST);
13181 				return;
13182 			}
13183 			/*
13184 			 * NOTE: RFC 793 pg. 72 says this should be
13185 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13186 			 * but that would mean we have an ack that ignored
13187 			 * our SYN.
13188 			 */
13189 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13190 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13191 				freemsg(mp);
13192 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13193 				    tcp, seg_ack, 0, TH_RST);
13194 				return;
13195 			}
13196 		}
13197 		break;
13198 	case TCPS_LISTEN:
13199 		/*
13200 		 * Only a TLI listener can come through this path when a
13201 		 * acceptor is going back to be a listener and a packet
13202 		 * for the acceptor hits the classifier. For a socket
13203 		 * listener, this can never happen because a listener
13204 		 * can never accept connection on itself and hence a
13205 		 * socket acceptor can not go back to being a listener.
13206 		 */
13207 		ASSERT(!TCP_IS_SOCKET(tcp));
13208 		/*FALLTHRU*/
13209 	case TCPS_CLOSED:
13210 	case TCPS_BOUND: {
13211 		conn_t	*new_connp;
13212 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13213 
13214 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13215 		if (new_connp != NULL) {
13216 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13217 			return;
13218 		}
13219 		/* We failed to classify. For now just drop the packet */
13220 		freemsg(mp);
13221 		return;
13222 	}
13223 	case TCPS_IDLE:
13224 		/*
13225 		 * Handle the case where the tcp_clean_death() has happened
13226 		 * on a connection (application hasn't closed yet) but a packet
13227 		 * was already queued on squeue before tcp_clean_death()
13228 		 * was processed. Calling tcp_clean_death() twice on same
13229 		 * connection can result in weird behaviour.
13230 		 */
13231 		freemsg(mp);
13232 		return;
13233 	default:
13234 		break;
13235 	}
13236 
13237 	/*
13238 	 * Already on the correct queue/perimeter.
13239 	 * If this is a detached connection and not an eager
13240 	 * connection hanging off a listener then new data
13241 	 * (past the FIN) will cause a reset.
13242 	 * We do a special check here where it
13243 	 * is out of the main line, rather than check
13244 	 * if we are detached every time we see new
13245 	 * data down below.
13246 	 */
13247 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13248 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13249 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13250 		TCP_RECORD_TRACE(tcp,
13251 		    mp, TCP_TRACE_RECV_PKT);
13252 
13253 		freemsg(mp);
13254 		/*
13255 		 * This could be an SSL closure alert. We're detached so just
13256 		 * acknowledge it this last time.
13257 		 */
13258 		if (tcp->tcp_kssl_ctx != NULL) {
13259 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13260 			tcp->tcp_kssl_ctx = NULL;
13261 
13262 			tcp->tcp_rnxt += seg_len;
13263 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13264 			flags |= TH_ACK_NEEDED;
13265 			goto ack_check;
13266 		}
13267 
13268 		tcp_xmit_ctl("new data when detached", tcp,
13269 		    tcp->tcp_snxt, 0, TH_RST);
13270 		(void) tcp_clean_death(tcp, EPROTO, 12);
13271 		return;
13272 	}
13273 
13274 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13275 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13276 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13277 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13278 
13279 	if (tcp->tcp_snd_ts_ok) {
13280 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13281 			/*
13282 			 * This segment is not acceptable.
13283 			 * Drop it and send back an ACK.
13284 			 */
13285 			freemsg(mp);
13286 			flags |= TH_ACK_NEEDED;
13287 			goto ack_check;
13288 		}
13289 	} else if (tcp->tcp_snd_sack_ok) {
13290 		ASSERT(tcp->tcp_sack_info != NULL);
13291 		tcpopt.tcp = tcp;
13292 		/*
13293 		 * SACK info in already updated in tcp_parse_options.  Ignore
13294 		 * all other TCP options...
13295 		 */
13296 		(void) tcp_parse_options(tcph, &tcpopt);
13297 	}
13298 try_again:;
13299 	mss = tcp->tcp_mss;
13300 	gap = seg_seq - tcp->tcp_rnxt;
13301 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13302 	/*
13303 	 * gap is the amount of sequence space between what we expect to see
13304 	 * and what we got for seg_seq.  A positive value for gap means
13305 	 * something got lost.  A negative value means we got some old stuff.
13306 	 */
13307 	if (gap < 0) {
13308 		/* Old stuff present.  Is the SYN in there? */
13309 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13310 		    (seg_len != 0)) {
13311 			flags &= ~TH_SYN;
13312 			seg_seq++;
13313 			urp--;
13314 			/* Recompute the gaps after noting the SYN. */
13315 			goto try_again;
13316 		}
13317 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13318 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13319 		    (seg_len > -gap ? -gap : seg_len));
13320 		/* Remove the old stuff from seg_len. */
13321 		seg_len += gap;
13322 		/*
13323 		 * Anything left?
13324 		 * Make sure to check for unack'd FIN when rest of data
13325 		 * has been previously ack'd.
13326 		 */
13327 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13328 			/*
13329 			 * Resets are only valid if they lie within our offered
13330 			 * window.  If the RST bit is set, we just ignore this
13331 			 * segment.
13332 			 */
13333 			if (flags & TH_RST) {
13334 				freemsg(mp);
13335 				return;
13336 			}
13337 
13338 			/*
13339 			 * The arriving of dup data packets indicate that we
13340 			 * may have postponed an ack for too long, or the other
13341 			 * side's RTT estimate is out of shape. Start acking
13342 			 * more often.
13343 			 */
13344 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13345 			    tcp->tcp_rack_cnt >= 1 &&
13346 			    tcp->tcp_rack_abs_max > 2) {
13347 				tcp->tcp_rack_abs_max--;
13348 			}
13349 			tcp->tcp_rack_cur_max = 1;
13350 
13351 			/*
13352 			 * This segment is "unacceptable".  None of its
13353 			 * sequence space lies within our advertized window.
13354 			 *
13355 			 * Adjust seg_len to the original value for tracing.
13356 			 */
13357 			seg_len -= gap;
13358 			if (tcp->tcp_debug) {
13359 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13360 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13361 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13362 				    "seg_len %d, rnxt %u, snxt %u, %s",
13363 				    gap, rgap, flags, seg_seq, seg_ack,
13364 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13365 				    tcp_display(tcp, NULL,
13366 				    DISP_ADDR_AND_PORT));
13367 			}
13368 
13369 			/*
13370 			 * Arrange to send an ACK in response to the
13371 			 * unacceptable segment per RFC 793 page 69. There
13372 			 * is only one small difference between ours and the
13373 			 * acceptability test in the RFC - we accept ACK-only
13374 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13375 			 * will be generated.
13376 			 *
13377 			 * Note that we have to ACK an ACK-only packet at least
13378 			 * for stacks that send 0-length keep-alives with
13379 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13380 			 * section 4.2.3.6. As long as we don't ever generate
13381 			 * an unacceptable packet in response to an incoming
13382 			 * packet that is unacceptable, it should not cause
13383 			 * "ACK wars".
13384 			 */
13385 			flags |=  TH_ACK_NEEDED;
13386 
13387 			/*
13388 			 * Continue processing this segment in order to use the
13389 			 * ACK information it contains, but skip all other
13390 			 * sequence-number processing.	Processing the ACK
13391 			 * information is necessary in order to
13392 			 * re-synchronize connections that may have lost
13393 			 * synchronization.
13394 			 *
13395 			 * We clear seg_len and flag fields related to
13396 			 * sequence number processing as they are not
13397 			 * to be trusted for an unacceptable segment.
13398 			 */
13399 			seg_len = 0;
13400 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13401 			goto process_ack;
13402 		}
13403 
13404 		/* Fix seg_seq, and chew the gap off the front. */
13405 		seg_seq = tcp->tcp_rnxt;
13406 		urp += gap;
13407 		do {
13408 			mblk_t	*mp2;
13409 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13410 			    (uintptr_t)UINT_MAX);
13411 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13412 			if (gap > 0) {
13413 				mp->b_rptr = mp->b_wptr - gap;
13414 				break;
13415 			}
13416 			mp2 = mp;
13417 			mp = mp->b_cont;
13418 			freeb(mp2);
13419 		} while (gap < 0);
13420 		/*
13421 		 * If the urgent data has already been acknowledged, we
13422 		 * should ignore TH_URG below
13423 		 */
13424 		if (urp < 0)
13425 			flags &= ~TH_URG;
13426 	}
13427 	/*
13428 	 * rgap is the amount of stuff received out of window.  A negative
13429 	 * value is the amount out of window.
13430 	 */
13431 	if (rgap < 0) {
13432 		mblk_t	*mp2;
13433 
13434 		if (tcp->tcp_rwnd == 0) {
13435 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13436 		} else {
13437 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13438 			UPDATE_MIB(&tcps->tcps_mib,
13439 			    tcpInDataPastWinBytes, -rgap);
13440 		}
13441 
13442 		/*
13443 		 * seg_len does not include the FIN, so if more than
13444 		 * just the FIN is out of window, we act like we don't
13445 		 * see it.  (If just the FIN is out of window, rgap
13446 		 * will be zero and we will go ahead and acknowledge
13447 		 * the FIN.)
13448 		 */
13449 		flags &= ~TH_FIN;
13450 
13451 		/* Fix seg_len and make sure there is something left. */
13452 		seg_len += rgap;
13453 		if (seg_len <= 0) {
13454 			/*
13455 			 * Resets are only valid if they lie within our offered
13456 			 * window.  If the RST bit is set, we just ignore this
13457 			 * segment.
13458 			 */
13459 			if (flags & TH_RST) {
13460 				freemsg(mp);
13461 				return;
13462 			}
13463 
13464 			/* Per RFC 793, we need to send back an ACK. */
13465 			flags |= TH_ACK_NEEDED;
13466 
13467 			/*
13468 			 * Send SIGURG as soon as possible i.e. even
13469 			 * if the TH_URG was delivered in a window probe
13470 			 * packet (which will be unacceptable).
13471 			 *
13472 			 * We generate a signal if none has been generated
13473 			 * for this connection or if this is a new urgent
13474 			 * byte. Also send a zero-length "unmarked" message
13475 			 * to inform SIOCATMARK that this is not the mark.
13476 			 *
13477 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13478 			 * is sent up. This plus the check for old data
13479 			 * (gap >= 0) handles the wraparound of the sequence
13480 			 * number space without having to always track the
13481 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13482 			 * this max in its rcv_up variable).
13483 			 *
13484 			 * This prevents duplicate SIGURGS due to a "late"
13485 			 * zero-window probe when the T_EXDATA_IND has already
13486 			 * been sent up.
13487 			 */
13488 			if ((flags & TH_URG) &&
13489 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13490 			    tcp->tcp_urp_last))) {
13491 				mp1 = allocb(0, BPRI_MED);
13492 				if (mp1 == NULL) {
13493 					freemsg(mp);
13494 					return;
13495 				}
13496 				if (!TCP_IS_DETACHED(tcp) &&
13497 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13498 				    SIGURG)) {
13499 					/* Try again on the rexmit. */
13500 					freemsg(mp1);
13501 					freemsg(mp);
13502 					return;
13503 				}
13504 				/*
13505 				 * If the next byte would be the mark
13506 				 * then mark with MARKNEXT else mark
13507 				 * with NOTMARKNEXT.
13508 				 */
13509 				if (gap == 0 && urp == 0)
13510 					mp1->b_flag |= MSGMARKNEXT;
13511 				else
13512 					mp1->b_flag |= MSGNOTMARKNEXT;
13513 				freemsg(tcp->tcp_urp_mark_mp);
13514 				tcp->tcp_urp_mark_mp = mp1;
13515 				flags |= TH_SEND_URP_MARK;
13516 				tcp->tcp_urp_last_valid = B_TRUE;
13517 				tcp->tcp_urp_last = urp + seg_seq;
13518 			}
13519 			/*
13520 			 * If this is a zero window probe, continue to
13521 			 * process the ACK part.  But we need to set seg_len
13522 			 * to 0 to avoid data processing.  Otherwise just
13523 			 * drop the segment and send back an ACK.
13524 			 */
13525 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13526 				flags &= ~(TH_SYN | TH_URG);
13527 				seg_len = 0;
13528 				goto process_ack;
13529 			} else {
13530 				freemsg(mp);
13531 				goto ack_check;
13532 			}
13533 		}
13534 		/* Pitch out of window stuff off the end. */
13535 		rgap = seg_len;
13536 		mp2 = mp;
13537 		do {
13538 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13539 			    (uintptr_t)INT_MAX);
13540 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13541 			if (rgap < 0) {
13542 				mp2->b_wptr += rgap;
13543 				if ((mp1 = mp2->b_cont) != NULL) {
13544 					mp2->b_cont = NULL;
13545 					freemsg(mp1);
13546 				}
13547 				break;
13548 			}
13549 		} while ((mp2 = mp2->b_cont) != NULL);
13550 	}
13551 ok:;
13552 	/*
13553 	 * TCP should check ECN info for segments inside the window only.
13554 	 * Therefore the check should be done here.
13555 	 */
13556 	if (tcp->tcp_ecn_ok) {
13557 		if (flags & TH_CWR) {
13558 			tcp->tcp_ecn_echo_on = B_FALSE;
13559 		}
13560 		/*
13561 		 * Note that both ECN_CE and CWR can be set in the
13562 		 * same segment.  In this case, we once again turn
13563 		 * on ECN_ECHO.
13564 		 */
13565 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13566 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13567 
13568 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13569 				tcp->tcp_ecn_echo_on = B_TRUE;
13570 			}
13571 		} else {
13572 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13573 
13574 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13575 			    htonl(IPH_ECN_CE << 20)) {
13576 				tcp->tcp_ecn_echo_on = B_TRUE;
13577 			}
13578 		}
13579 	}
13580 
13581 	/*
13582 	 * Check whether we can update tcp_ts_recent.  This test is
13583 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13584 	 * Extensions for High Performance: An Update", Internet Draft.
13585 	 */
13586 	if (tcp->tcp_snd_ts_ok &&
13587 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13588 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13589 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13590 		tcp->tcp_last_rcv_lbolt = lbolt64;
13591 	}
13592 
13593 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13594 		/*
13595 		 * FIN in an out of order segment.  We record this in
13596 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13597 		 * Clear the FIN so that any check on FIN flag will fail.
13598 		 * Remember that FIN also counts in the sequence number
13599 		 * space.  So we need to ack out of order FIN only segments.
13600 		 */
13601 		if (flags & TH_FIN) {
13602 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13603 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13604 			flags &= ~TH_FIN;
13605 			flags |= TH_ACK_NEEDED;
13606 		}
13607 		if (seg_len > 0) {
13608 			/* Fill in the SACK blk list. */
13609 			if (tcp->tcp_snd_sack_ok) {
13610 				ASSERT(tcp->tcp_sack_info != NULL);
13611 				tcp_sack_insert(tcp->tcp_sack_list,
13612 				    seg_seq, seg_seq + seg_len,
13613 				    &(tcp->tcp_num_sack_blk));
13614 			}
13615 
13616 			/*
13617 			 * Attempt reassembly and see if we have something
13618 			 * ready to go.
13619 			 */
13620 			mp = tcp_reass(tcp, mp, seg_seq);
13621 			/* Always ack out of order packets */
13622 			flags |= TH_ACK_NEEDED | TH_PUSH;
13623 			if (mp) {
13624 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13625 				    (uintptr_t)INT_MAX);
13626 				seg_len = mp->b_cont ? msgdsize(mp) :
13627 					(int)(mp->b_wptr - mp->b_rptr);
13628 				seg_seq = tcp->tcp_rnxt;
13629 				/*
13630 				 * A gap is filled and the seq num and len
13631 				 * of the gap match that of a previously
13632 				 * received FIN, put the FIN flag back in.
13633 				 */
13634 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13635 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13636 					flags |= TH_FIN;
13637 					tcp->tcp_valid_bits &=
13638 					    ~TCP_OFO_FIN_VALID;
13639 				}
13640 			} else {
13641 				/*
13642 				 * Keep going even with NULL mp.
13643 				 * There may be a useful ACK or something else
13644 				 * we don't want to miss.
13645 				 *
13646 				 * But TCP should not perform fast retransmit
13647 				 * because of the ack number.  TCP uses
13648 				 * seg_len == 0 to determine if it is a pure
13649 				 * ACK.  And this is not a pure ACK.
13650 				 */
13651 				seg_len = 0;
13652 				ofo_seg = B_TRUE;
13653 			}
13654 		}
13655 	} else if (seg_len > 0) {
13656 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13657 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13658 		/*
13659 		 * If an out of order FIN was received before, and the seq
13660 		 * num and len of the new segment match that of the FIN,
13661 		 * put the FIN flag back in.
13662 		 */
13663 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13664 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13665 			flags |= TH_FIN;
13666 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13667 		}
13668 	}
13669 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13670 	if (flags & TH_RST) {
13671 		freemsg(mp);
13672 		switch (tcp->tcp_state) {
13673 		case TCPS_SYN_RCVD:
13674 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13675 			break;
13676 		case TCPS_ESTABLISHED:
13677 		case TCPS_FIN_WAIT_1:
13678 		case TCPS_FIN_WAIT_2:
13679 		case TCPS_CLOSE_WAIT:
13680 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13681 			break;
13682 		case TCPS_CLOSING:
13683 		case TCPS_LAST_ACK:
13684 			(void) tcp_clean_death(tcp, 0, 16);
13685 			break;
13686 		default:
13687 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13688 			(void) tcp_clean_death(tcp, ENXIO, 17);
13689 			break;
13690 		}
13691 		return;
13692 	}
13693 	if (flags & TH_SYN) {
13694 		/*
13695 		 * See RFC 793, Page 71
13696 		 *
13697 		 * The seq number must be in the window as it should
13698 		 * be "fixed" above.  If it is outside window, it should
13699 		 * be already rejected.  Note that we allow seg_seq to be
13700 		 * rnxt + rwnd because we want to accept 0 window probe.
13701 		 */
13702 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13703 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13704 		freemsg(mp);
13705 		/*
13706 		 * If the ACK flag is not set, just use our snxt as the
13707 		 * seq number of the RST segment.
13708 		 */
13709 		if (!(flags & TH_ACK)) {
13710 			seg_ack = tcp->tcp_snxt;
13711 		}
13712 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13713 		    TH_RST|TH_ACK);
13714 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13715 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13716 		return;
13717 	}
13718 	/*
13719 	 * urp could be -1 when the urp field in the packet is 0
13720 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13721 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13722 	 */
13723 	if (flags & TH_URG && urp >= 0) {
13724 		if (!tcp->tcp_urp_last_valid ||
13725 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13726 			/*
13727 			 * If we haven't generated the signal yet for this
13728 			 * urgent pointer value, do it now.  Also, send up a
13729 			 * zero-length M_DATA indicating whether or not this is
13730 			 * the mark. The latter is not needed when a
13731 			 * T_EXDATA_IND is sent up. However, if there are
13732 			 * allocation failures this code relies on the sender
13733 			 * retransmitting and the socket code for determining
13734 			 * the mark should not block waiting for the peer to
13735 			 * transmit. Thus, for simplicity we always send up the
13736 			 * mark indication.
13737 			 */
13738 			mp1 = allocb(0, BPRI_MED);
13739 			if (mp1 == NULL) {
13740 				freemsg(mp);
13741 				return;
13742 			}
13743 			if (!TCP_IS_DETACHED(tcp) &&
13744 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13745 				/* Try again on the rexmit. */
13746 				freemsg(mp1);
13747 				freemsg(mp);
13748 				return;
13749 			}
13750 			/*
13751 			 * Mark with NOTMARKNEXT for now.
13752 			 * The code below will change this to MARKNEXT
13753 			 * if we are at the mark.
13754 			 *
13755 			 * If there are allocation failures (e.g. in dupmsg
13756 			 * below) the next time tcp_rput_data sees the urgent
13757 			 * segment it will send up the MSG*MARKNEXT message.
13758 			 */
13759 			mp1->b_flag |= MSGNOTMARKNEXT;
13760 			freemsg(tcp->tcp_urp_mark_mp);
13761 			tcp->tcp_urp_mark_mp = mp1;
13762 			flags |= TH_SEND_URP_MARK;
13763 #ifdef DEBUG
13764 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13765 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13766 			    "last %x, %s",
13767 			    seg_seq, urp, tcp->tcp_urp_last,
13768 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13769 #endif /* DEBUG */
13770 			tcp->tcp_urp_last_valid = B_TRUE;
13771 			tcp->tcp_urp_last = urp + seg_seq;
13772 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13773 			/*
13774 			 * An allocation failure prevented the previous
13775 			 * tcp_rput_data from sending up the allocated
13776 			 * MSG*MARKNEXT message - send it up this time
13777 			 * around.
13778 			 */
13779 			flags |= TH_SEND_URP_MARK;
13780 		}
13781 
13782 		/*
13783 		 * If the urgent byte is in this segment, make sure that it is
13784 		 * all by itself.  This makes it much easier to deal with the
13785 		 * possibility of an allocation failure on the T_exdata_ind.
13786 		 * Note that seg_len is the number of bytes in the segment, and
13787 		 * urp is the offset into the segment of the urgent byte.
13788 		 * urp < seg_len means that the urgent byte is in this segment.
13789 		 */
13790 		if (urp < seg_len) {
13791 			if (seg_len != 1) {
13792 				uint32_t  tmp_rnxt;
13793 				/*
13794 				 * Break it up and feed it back in.
13795 				 * Re-attach the IP header.
13796 				 */
13797 				mp->b_rptr = iphdr;
13798 				if (urp > 0) {
13799 					/*
13800 					 * There is stuff before the urgent
13801 					 * byte.
13802 					 */
13803 					mp1 = dupmsg(mp);
13804 					if (!mp1) {
13805 						/*
13806 						 * Trim from urgent byte on.
13807 						 * The rest will come back.
13808 						 */
13809 						(void) adjmsg(mp,
13810 						    urp - seg_len);
13811 						tcp_rput_data(connp,
13812 						    mp, NULL);
13813 						return;
13814 					}
13815 					(void) adjmsg(mp1, urp - seg_len);
13816 					/* Feed this piece back in. */
13817 					tmp_rnxt = tcp->tcp_rnxt;
13818 					tcp_rput_data(connp, mp1, NULL);
13819 					/*
13820 					 * If the data passed back in was not
13821 					 * processed (ie: bad ACK) sending
13822 					 * the remainder back in will cause a
13823 					 * loop. In this case, drop the
13824 					 * packet and let the sender try
13825 					 * sending a good packet.
13826 					 */
13827 					if (tmp_rnxt == tcp->tcp_rnxt) {
13828 						freemsg(mp);
13829 						return;
13830 					}
13831 				}
13832 				if (urp != seg_len - 1) {
13833 					uint32_t  tmp_rnxt;
13834 					/*
13835 					 * There is stuff after the urgent
13836 					 * byte.
13837 					 */
13838 					mp1 = dupmsg(mp);
13839 					if (!mp1) {
13840 						/*
13841 						 * Trim everything beyond the
13842 						 * urgent byte.  The rest will
13843 						 * come back.
13844 						 */
13845 						(void) adjmsg(mp,
13846 						    urp + 1 - seg_len);
13847 						tcp_rput_data(connp,
13848 						    mp, NULL);
13849 						return;
13850 					}
13851 					(void) adjmsg(mp1, urp + 1 - seg_len);
13852 					tmp_rnxt = tcp->tcp_rnxt;
13853 					tcp_rput_data(connp, mp1, NULL);
13854 					/*
13855 					 * If the data passed back in was not
13856 					 * processed (ie: bad ACK) sending
13857 					 * the remainder back in will cause a
13858 					 * loop. In this case, drop the
13859 					 * packet and let the sender try
13860 					 * sending a good packet.
13861 					 */
13862 					if (tmp_rnxt == tcp->tcp_rnxt) {
13863 						freemsg(mp);
13864 						return;
13865 					}
13866 				}
13867 				tcp_rput_data(connp, mp, NULL);
13868 				return;
13869 			}
13870 			/*
13871 			 * This segment contains only the urgent byte.  We
13872 			 * have to allocate the T_exdata_ind, if we can.
13873 			 */
13874 			if (!tcp->tcp_urp_mp) {
13875 				struct T_exdata_ind *tei;
13876 				mp1 = allocb(sizeof (struct T_exdata_ind),
13877 				    BPRI_MED);
13878 				if (!mp1) {
13879 					/*
13880 					 * Sigh... It'll be back.
13881 					 * Generate any MSG*MARK message now.
13882 					 */
13883 					freemsg(mp);
13884 					seg_len = 0;
13885 					if (flags & TH_SEND_URP_MARK) {
13886 
13887 
13888 						ASSERT(tcp->tcp_urp_mark_mp);
13889 						tcp->tcp_urp_mark_mp->b_flag &=
13890 							~MSGNOTMARKNEXT;
13891 						tcp->tcp_urp_mark_mp->b_flag |=
13892 							MSGMARKNEXT;
13893 					}
13894 					goto ack_check;
13895 				}
13896 				mp1->b_datap->db_type = M_PROTO;
13897 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13898 				tei->PRIM_type = T_EXDATA_IND;
13899 				tei->MORE_flag = 0;
13900 				mp1->b_wptr = (uchar_t *)&tei[1];
13901 				tcp->tcp_urp_mp = mp1;
13902 #ifdef DEBUG
13903 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13904 				    "tcp_rput: allocated exdata_ind %s",
13905 				    tcp_display(tcp, NULL,
13906 				    DISP_PORT_ONLY));
13907 #endif /* DEBUG */
13908 				/*
13909 				 * There is no need to send a separate MSG*MARK
13910 				 * message since the T_EXDATA_IND will be sent
13911 				 * now.
13912 				 */
13913 				flags &= ~TH_SEND_URP_MARK;
13914 				freemsg(tcp->tcp_urp_mark_mp);
13915 				tcp->tcp_urp_mark_mp = NULL;
13916 			}
13917 			/*
13918 			 * Now we are all set.  On the next putnext upstream,
13919 			 * tcp_urp_mp will be non-NULL and will get prepended
13920 			 * to what has to be this piece containing the urgent
13921 			 * byte.  If for any reason we abort this segment below,
13922 			 * if it comes back, we will have this ready, or it
13923 			 * will get blown off in close.
13924 			 */
13925 		} else if (urp == seg_len) {
13926 			/*
13927 			 * The urgent byte is the next byte after this sequence
13928 			 * number. If there is data it is marked with
13929 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13930 			 * since it is not needed. Otherwise, if the code
13931 			 * above just allocated a zero-length tcp_urp_mark_mp
13932 			 * message, that message is tagged with MSGMARKNEXT.
13933 			 * Sending up these MSGMARKNEXT messages makes
13934 			 * SIOCATMARK work correctly even though
13935 			 * the T_EXDATA_IND will not be sent up until the
13936 			 * urgent byte arrives.
13937 			 */
13938 			if (seg_len != 0) {
13939 				flags |= TH_MARKNEXT_NEEDED;
13940 				freemsg(tcp->tcp_urp_mark_mp);
13941 				tcp->tcp_urp_mark_mp = NULL;
13942 				flags &= ~TH_SEND_URP_MARK;
13943 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13944 				flags |= TH_SEND_URP_MARK;
13945 				tcp->tcp_urp_mark_mp->b_flag &=
13946 					~MSGNOTMARKNEXT;
13947 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13948 			}
13949 #ifdef DEBUG
13950 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13951 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13952 			    seg_len, flags,
13953 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13954 #endif /* DEBUG */
13955 		} else {
13956 			/* Data left until we hit mark */
13957 #ifdef DEBUG
13958 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13959 			    "tcp_rput: URP %d bytes left, %s",
13960 			    urp - seg_len, tcp_display(tcp, NULL,
13961 			    DISP_PORT_ONLY));
13962 #endif /* DEBUG */
13963 		}
13964 	}
13965 
13966 process_ack:
13967 	if (!(flags & TH_ACK)) {
13968 		freemsg(mp);
13969 		goto xmit_check;
13970 	}
13971 	}
13972 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13973 
13974 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13975 		tcp->tcp_ip_forward_progress = B_TRUE;
13976 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13977 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13978 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13979 			/* 3-way handshake complete - pass up the T_CONN_IND */
13980 			tcp_t	*listener = tcp->tcp_listener;
13981 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13982 
13983 			tcp->tcp_tconnind_started = B_TRUE;
13984 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13985 			/*
13986 			 * We are here means eager is fine but it can
13987 			 * get a TH_RST at any point between now and till
13988 			 * accept completes and disappear. We need to
13989 			 * ensure that reference to eager is valid after
13990 			 * we get out of eager's perimeter. So we do
13991 			 * an extra refhold.
13992 			 */
13993 			CONN_INC_REF(connp);
13994 
13995 			/*
13996 			 * The listener also exists because of the refhold
13997 			 * done in tcp_conn_request. Its possible that it
13998 			 * might have closed. We will check that once we
13999 			 * get inside listeners context.
14000 			 */
14001 			CONN_INC_REF(listener->tcp_connp);
14002 			if (listener->tcp_connp->conn_sqp ==
14003 			    connp->conn_sqp) {
14004 				tcp_send_conn_ind(listener->tcp_connp, mp,
14005 				    listener->tcp_connp->conn_sqp);
14006 				CONN_DEC_REF(listener->tcp_connp);
14007 			} else if (!tcp->tcp_loopback) {
14008 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14009 				    tcp_send_conn_ind,
14010 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14011 			} else {
14012 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14013 				    tcp_send_conn_ind, listener->tcp_connp,
14014 				    SQTAG_TCP_CONN_IND);
14015 			}
14016 		}
14017 
14018 		if (tcp->tcp_active_open) {
14019 			/*
14020 			 * We are seeing the final ack in the three way
14021 			 * hand shake of a active open'ed connection
14022 			 * so we must send up a T_CONN_CON
14023 			 */
14024 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14025 				freemsg(mp);
14026 				return;
14027 			}
14028 			/*
14029 			 * Don't fuse the loopback endpoints for
14030 			 * simultaneous active opens.
14031 			 */
14032 			if (tcp->tcp_loopback) {
14033 				TCP_STAT(tcps, tcp_fusion_unfusable);
14034 				tcp->tcp_unfusable = B_TRUE;
14035 			}
14036 		}
14037 
14038 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14039 		bytes_acked--;
14040 		/* SYN was acked - making progress */
14041 		if (tcp->tcp_ipversion == IPV6_VERSION)
14042 			tcp->tcp_ip_forward_progress = B_TRUE;
14043 
14044 		/*
14045 		 * If SYN was retransmitted, need to reset all
14046 		 * retransmission info as this segment will be
14047 		 * treated as a dup ACK.
14048 		 */
14049 		if (tcp->tcp_rexmit) {
14050 			tcp->tcp_rexmit = B_FALSE;
14051 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14052 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14053 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14054 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14055 			tcp->tcp_ms_we_have_waited = 0;
14056 			tcp->tcp_cwnd = mss;
14057 		}
14058 
14059 		/*
14060 		 * We set the send window to zero here.
14061 		 * This is needed if there is data to be
14062 		 * processed already on the queue.
14063 		 * Later (at swnd_update label), the
14064 		 * "new_swnd > tcp_swnd" condition is satisfied
14065 		 * the XMIT_NEEDED flag is set in the current
14066 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14067 		 * called if there is already data on queue in
14068 		 * this state.
14069 		 */
14070 		tcp->tcp_swnd = 0;
14071 
14072 		if (new_swnd > tcp->tcp_max_swnd)
14073 			tcp->tcp_max_swnd = new_swnd;
14074 		tcp->tcp_swl1 = seg_seq;
14075 		tcp->tcp_swl2 = seg_ack;
14076 		tcp->tcp_state = TCPS_ESTABLISHED;
14077 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14078 
14079 		/* Fuse when both sides are in ESTABLISHED state */
14080 		if (tcp->tcp_loopback && do_tcp_fusion)
14081 			tcp_fuse(tcp, iphdr, tcph);
14082 
14083 	}
14084 	/* This code follows 4.4BSD-Lite2 mostly. */
14085 	if (bytes_acked < 0)
14086 		goto est;
14087 
14088 	/*
14089 	 * If TCP is ECN capable and the congestion experience bit is
14090 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14091 	 * done once per window (or more loosely, per RTT).
14092 	 */
14093 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14094 		tcp->tcp_cwr = B_FALSE;
14095 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14096 		if (!tcp->tcp_cwr) {
14097 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14098 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14099 			tcp->tcp_cwnd = npkt * mss;
14100 			/*
14101 			 * If the cwnd is 0, use the timer to clock out
14102 			 * new segments.  This is required by the ECN spec.
14103 			 */
14104 			if (npkt == 0) {
14105 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14106 				/*
14107 				 * This makes sure that when the ACK comes
14108 				 * back, we will increase tcp_cwnd by 1 MSS.
14109 				 */
14110 				tcp->tcp_cwnd_cnt = 0;
14111 			}
14112 			tcp->tcp_cwr = B_TRUE;
14113 			/*
14114 			 * This marks the end of the current window of in
14115 			 * flight data.  That is why we don't use
14116 			 * tcp_suna + tcp_swnd.  Only data in flight can
14117 			 * provide ECN info.
14118 			 */
14119 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14120 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14121 		}
14122 	}
14123 
14124 	mp1 = tcp->tcp_xmit_head;
14125 	if (bytes_acked == 0) {
14126 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14127 			int dupack_cnt;
14128 
14129 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14130 			/*
14131 			 * Fast retransmit.  When we have seen exactly three
14132 			 * identical ACKs while we have unacked data
14133 			 * outstanding we take it as a hint that our peer
14134 			 * dropped something.
14135 			 *
14136 			 * If TCP is retransmitting, don't do fast retransmit.
14137 			 */
14138 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14139 			    ! tcp->tcp_rexmit) {
14140 				/* Do Limited Transmit */
14141 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14142 				    tcps->tcps_dupack_fast_retransmit) {
14143 					/*
14144 					 * RFC 3042
14145 					 *
14146 					 * What we need to do is temporarily
14147 					 * increase tcp_cwnd so that new
14148 					 * data can be sent if it is allowed
14149 					 * by the receive window (tcp_rwnd).
14150 					 * tcp_wput_data() will take care of
14151 					 * the rest.
14152 					 *
14153 					 * If the connection is SACK capable,
14154 					 * only do limited xmit when there
14155 					 * is SACK info.
14156 					 *
14157 					 * Note how tcp_cwnd is incremented.
14158 					 * The first dup ACK will increase
14159 					 * it by 1 MSS.  The second dup ACK
14160 					 * will increase it by 2 MSS.  This
14161 					 * means that only 1 new segment will
14162 					 * be sent for each dup ACK.
14163 					 */
14164 					if (tcp->tcp_unsent > 0 &&
14165 					    (!tcp->tcp_snd_sack_ok ||
14166 					    (tcp->tcp_snd_sack_ok &&
14167 					    tcp->tcp_notsack_list != NULL))) {
14168 						tcp->tcp_cwnd += mss <<
14169 						    (tcp->tcp_dupack_cnt - 1);
14170 						flags |= TH_LIMIT_XMIT;
14171 					}
14172 				} else if (dupack_cnt ==
14173 				    tcps->tcps_dupack_fast_retransmit) {
14174 
14175 				/*
14176 				 * If we have reduced tcp_ssthresh
14177 				 * because of ECN, do not reduce it again
14178 				 * unless it is already one window of data
14179 				 * away.  After one window of data, tcp_cwr
14180 				 * should then be cleared.  Note that
14181 				 * for non ECN capable connection, tcp_cwr
14182 				 * should always be false.
14183 				 *
14184 				 * Adjust cwnd since the duplicate
14185 				 * ack indicates that a packet was
14186 				 * dropped (due to congestion.)
14187 				 */
14188 				if (!tcp->tcp_cwr) {
14189 					npkt = ((tcp->tcp_snxt -
14190 					    tcp->tcp_suna) >> 1) / mss;
14191 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14192 					    mss;
14193 					tcp->tcp_cwnd = (npkt +
14194 					    tcp->tcp_dupack_cnt) * mss;
14195 				}
14196 				if (tcp->tcp_ecn_ok) {
14197 					tcp->tcp_cwr = B_TRUE;
14198 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14199 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14200 				}
14201 
14202 				/*
14203 				 * We do Hoe's algorithm.  Refer to her
14204 				 * paper "Improving the Start-up Behavior
14205 				 * of a Congestion Control Scheme for TCP,"
14206 				 * appeared in SIGCOMM'96.
14207 				 *
14208 				 * Save highest seq no we have sent so far.
14209 				 * Be careful about the invisible FIN byte.
14210 				 */
14211 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14212 				    (tcp->tcp_unsent == 0)) {
14213 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14214 				} else {
14215 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14216 				}
14217 
14218 				/*
14219 				 * Do not allow bursty traffic during.
14220 				 * fast recovery.  Refer to Fall and Floyd's
14221 				 * paper "Simulation-based Comparisons of
14222 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14223 				 * This is a best current practise.
14224 				 */
14225 				tcp->tcp_snd_burst = TCP_CWND_SS;
14226 
14227 				/*
14228 				 * For SACK:
14229 				 * Calculate tcp_pipe, which is the
14230 				 * estimated number of bytes in
14231 				 * network.
14232 				 *
14233 				 * tcp_fack is the highest sack'ed seq num
14234 				 * TCP has received.
14235 				 *
14236 				 * tcp_pipe is explained in the above quoted
14237 				 * Fall and Floyd's paper.  tcp_fack is
14238 				 * explained in Mathis and Mahdavi's
14239 				 * "Forward Acknowledgment: Refining TCP
14240 				 * Congestion Control" in SIGCOMM '96.
14241 				 */
14242 				if (tcp->tcp_snd_sack_ok) {
14243 					ASSERT(tcp->tcp_sack_info != NULL);
14244 					if (tcp->tcp_notsack_list != NULL) {
14245 						tcp->tcp_pipe = tcp->tcp_snxt -
14246 						    tcp->tcp_fack;
14247 						tcp->tcp_sack_snxt = seg_ack;
14248 						flags |= TH_NEED_SACK_REXMIT;
14249 					} else {
14250 						/*
14251 						 * Always initialize tcp_pipe
14252 						 * even though we don't have
14253 						 * any SACK info.  If later
14254 						 * we get SACK info and
14255 						 * tcp_pipe is not initialized,
14256 						 * funny things will happen.
14257 						 */
14258 						tcp->tcp_pipe =
14259 						    tcp->tcp_cwnd_ssthresh;
14260 					}
14261 				} else {
14262 					flags |= TH_REXMIT_NEEDED;
14263 				} /* tcp_snd_sack_ok */
14264 
14265 				} else {
14266 					/*
14267 					 * Here we perform congestion
14268 					 * avoidance, but NOT slow start.
14269 					 * This is known as the Fast
14270 					 * Recovery Algorithm.
14271 					 */
14272 					if (tcp->tcp_snd_sack_ok &&
14273 					    tcp->tcp_notsack_list != NULL) {
14274 						flags |= TH_NEED_SACK_REXMIT;
14275 						tcp->tcp_pipe -= mss;
14276 						if (tcp->tcp_pipe < 0)
14277 							tcp->tcp_pipe = 0;
14278 					} else {
14279 					/*
14280 					 * We know that one more packet has
14281 					 * left the pipe thus we can update
14282 					 * cwnd.
14283 					 */
14284 					cwnd = tcp->tcp_cwnd + mss;
14285 					if (cwnd > tcp->tcp_cwnd_max)
14286 						cwnd = tcp->tcp_cwnd_max;
14287 					tcp->tcp_cwnd = cwnd;
14288 					if (tcp->tcp_unsent > 0)
14289 						flags |= TH_XMIT_NEEDED;
14290 					}
14291 				}
14292 			}
14293 		} else if (tcp->tcp_zero_win_probe) {
14294 			/*
14295 			 * If the window has opened, need to arrange
14296 			 * to send additional data.
14297 			 */
14298 			if (new_swnd != 0) {
14299 				/* tcp_suna != tcp_snxt */
14300 				/* Packet contains a window update */
14301 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14302 				tcp->tcp_zero_win_probe = 0;
14303 				tcp->tcp_timer_backoff = 0;
14304 				tcp->tcp_ms_we_have_waited = 0;
14305 
14306 				/*
14307 				 * Transmit starting with tcp_suna since
14308 				 * the one byte probe is not ack'ed.
14309 				 * If TCP has sent more than one identical
14310 				 * probe, tcp_rexmit will be set.  That means
14311 				 * tcp_ss_rexmit() will send out the one
14312 				 * byte along with new data.  Otherwise,
14313 				 * fake the retransmission.
14314 				 */
14315 				flags |= TH_XMIT_NEEDED;
14316 				if (!tcp->tcp_rexmit) {
14317 					tcp->tcp_rexmit = B_TRUE;
14318 					tcp->tcp_dupack_cnt = 0;
14319 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14320 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14321 				}
14322 			}
14323 		}
14324 		goto swnd_update;
14325 	}
14326 
14327 	/*
14328 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14329 	 * If the ACK value acks something that we have not yet sent, it might
14330 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14331 	 * other side.
14332 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14333 	 * state is handled above, so we can always just drop the segment and
14334 	 * send an ACK here.
14335 	 *
14336 	 * Should we send ACKs in response to ACK only segments?
14337 	 */
14338 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14339 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14340 		/* drop the received segment */
14341 		freemsg(mp);
14342 
14343 		/*
14344 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14345 		 * greater than 0, check if the number of such
14346 		 * bogus ACks is greater than that count.  If yes,
14347 		 * don't send back any ACK.  This prevents TCP from
14348 		 * getting into an ACK storm if somehow an attacker
14349 		 * successfully spoofs an acceptable segment to our
14350 		 * peer.
14351 		 */
14352 		if (tcp_drop_ack_unsent_cnt > 0 &&
14353 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14354 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14355 			return;
14356 		}
14357 		mp = tcp_ack_mp(tcp);
14358 		if (mp != NULL) {
14359 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14360 			BUMP_LOCAL(tcp->tcp_obsegs);
14361 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14362 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14363 		}
14364 		return;
14365 	}
14366 
14367 	/*
14368 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14369 	 * blocks that are covered by this ACK.
14370 	 */
14371 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14372 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14373 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14374 	}
14375 
14376 	/*
14377 	 * If we got an ACK after fast retransmit, check to see
14378 	 * if it is a partial ACK.  If it is not and the congestion
14379 	 * window was inflated to account for the other side's
14380 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14381 	 */
14382 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14383 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14384 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14385 			tcp->tcp_dupack_cnt = 0;
14386 			/*
14387 			 * Restore the orig tcp_cwnd_ssthresh after
14388 			 * fast retransmit phase.
14389 			 */
14390 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14391 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14392 			}
14393 			tcp->tcp_rexmit_max = seg_ack;
14394 			tcp->tcp_cwnd_cnt = 0;
14395 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14396 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14397 
14398 			/*
14399 			 * Remove all notsack info to avoid confusion with
14400 			 * the next fast retrasnmit/recovery phase.
14401 			 */
14402 			if (tcp->tcp_snd_sack_ok &&
14403 			    tcp->tcp_notsack_list != NULL) {
14404 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14405 			}
14406 		} else {
14407 			if (tcp->tcp_snd_sack_ok &&
14408 			    tcp->tcp_notsack_list != NULL) {
14409 				flags |= TH_NEED_SACK_REXMIT;
14410 				tcp->tcp_pipe -= mss;
14411 				if (tcp->tcp_pipe < 0)
14412 					tcp->tcp_pipe = 0;
14413 			} else {
14414 				/*
14415 				 * Hoe's algorithm:
14416 				 *
14417 				 * Retransmit the unack'ed segment and
14418 				 * restart fast recovery.  Note that we
14419 				 * need to scale back tcp_cwnd to the
14420 				 * original value when we started fast
14421 				 * recovery.  This is to prevent overly
14422 				 * aggressive behaviour in sending new
14423 				 * segments.
14424 				 */
14425 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14426 				    tcps->tcps_dupack_fast_retransmit * mss;
14427 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14428 				flags |= TH_REXMIT_NEEDED;
14429 			}
14430 		}
14431 	} else {
14432 		tcp->tcp_dupack_cnt = 0;
14433 		if (tcp->tcp_rexmit) {
14434 			/*
14435 			 * TCP is retranmitting.  If the ACK ack's all
14436 			 * outstanding data, update tcp_rexmit_max and
14437 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14438 			 * to the correct value.
14439 			 *
14440 			 * Note that SEQ_LEQ() is used.  This is to avoid
14441 			 * unnecessary fast retransmit caused by dup ACKs
14442 			 * received when TCP does slow start retransmission
14443 			 * after a time out.  During this phase, TCP may
14444 			 * send out segments which are already received.
14445 			 * This causes dup ACKs to be sent back.
14446 			 */
14447 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14448 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14449 					tcp->tcp_rexmit_nxt = seg_ack;
14450 				}
14451 				if (seg_ack != tcp->tcp_rexmit_max) {
14452 					flags |= TH_XMIT_NEEDED;
14453 				}
14454 			} else {
14455 				tcp->tcp_rexmit = B_FALSE;
14456 				tcp->tcp_xmit_zc_clean = B_FALSE;
14457 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14458 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14459 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14460 			}
14461 			tcp->tcp_ms_we_have_waited = 0;
14462 		}
14463 	}
14464 
14465 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14466 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14467 	tcp->tcp_suna = seg_ack;
14468 	if (tcp->tcp_zero_win_probe != 0) {
14469 		tcp->tcp_zero_win_probe = 0;
14470 		tcp->tcp_timer_backoff = 0;
14471 	}
14472 
14473 	/*
14474 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14475 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14476 	 * will not reach here.
14477 	 */
14478 	if (mp1 == NULL) {
14479 		goto fin_acked;
14480 	}
14481 
14482 	/*
14483 	 * Update the congestion window.
14484 	 *
14485 	 * If TCP is not ECN capable or TCP is ECN capable but the
14486 	 * congestion experience bit is not set, increase the tcp_cwnd as
14487 	 * usual.
14488 	 */
14489 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14490 		cwnd = tcp->tcp_cwnd;
14491 		add = mss;
14492 
14493 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14494 			/*
14495 			 * This is to prevent an increase of less than 1 MSS of
14496 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14497 			 * may send out tinygrams in order to preserve mblk
14498 			 * boundaries.
14499 			 *
14500 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14501 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14502 			 * increased by 1 MSS for every RTTs.
14503 			 */
14504 			if (tcp->tcp_cwnd_cnt <= 0) {
14505 				tcp->tcp_cwnd_cnt = cwnd + add;
14506 			} else {
14507 				tcp->tcp_cwnd_cnt -= add;
14508 				add = 0;
14509 			}
14510 		}
14511 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14512 	}
14513 
14514 	/* See if the latest urgent data has been acknowledged */
14515 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14516 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14517 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14518 
14519 	/* Can we update the RTT estimates? */
14520 	if (tcp->tcp_snd_ts_ok) {
14521 		/* Ignore zero timestamp echo-reply. */
14522 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14523 			tcp_set_rto(tcp, (int32_t)lbolt -
14524 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14525 		}
14526 
14527 		/* If needed, restart the timer. */
14528 		if (tcp->tcp_set_timer == 1) {
14529 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14530 			tcp->tcp_set_timer = 0;
14531 		}
14532 		/*
14533 		 * Update tcp_csuna in case the other side stops sending
14534 		 * us timestamps.
14535 		 */
14536 		tcp->tcp_csuna = tcp->tcp_snxt;
14537 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14538 		/*
14539 		 * An ACK sequence we haven't seen before, so get the RTT
14540 		 * and update the RTO. But first check if the timestamp is
14541 		 * valid to use.
14542 		 */
14543 		if ((mp1->b_next != NULL) &&
14544 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14545 			tcp_set_rto(tcp, (int32_t)lbolt -
14546 			    (int32_t)(intptr_t)mp1->b_prev);
14547 		else
14548 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14549 
14550 		/* Remeber the last sequence to be ACKed */
14551 		tcp->tcp_csuna = seg_ack;
14552 		if (tcp->tcp_set_timer == 1) {
14553 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14554 			tcp->tcp_set_timer = 0;
14555 		}
14556 	} else {
14557 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14558 	}
14559 
14560 	/* Eat acknowledged bytes off the xmit queue. */
14561 	for (;;) {
14562 		mblk_t	*mp2;
14563 		uchar_t	*wptr;
14564 
14565 		wptr = mp1->b_wptr;
14566 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14567 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14568 		if (bytes_acked < 0) {
14569 			mp1->b_rptr = wptr + bytes_acked;
14570 			/*
14571 			 * Set a new timestamp if all the bytes timed by the
14572 			 * old timestamp have been ack'ed.
14573 			 */
14574 			if (SEQ_GT(seg_ack,
14575 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14576 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14577 				mp1->b_next = NULL;
14578 			}
14579 			break;
14580 		}
14581 		mp1->b_next = NULL;
14582 		mp1->b_prev = NULL;
14583 		mp2 = mp1;
14584 		mp1 = mp1->b_cont;
14585 
14586 		/*
14587 		 * This notification is required for some zero-copy
14588 		 * clients to maintain a copy semantic. After the data
14589 		 * is ack'ed, client is safe to modify or reuse the buffer.
14590 		 */
14591 		if (tcp->tcp_snd_zcopy_aware &&
14592 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14593 			tcp_zcopy_notify(tcp);
14594 		freeb(mp2);
14595 		if (bytes_acked == 0) {
14596 			if (mp1 == NULL) {
14597 				/* Everything is ack'ed, clear the tail. */
14598 				tcp->tcp_xmit_tail = NULL;
14599 				/*
14600 				 * Cancel the timer unless we are still
14601 				 * waiting for an ACK for the FIN packet.
14602 				 */
14603 				if (tcp->tcp_timer_tid != 0 &&
14604 				    tcp->tcp_snxt == tcp->tcp_suna) {
14605 					(void) TCP_TIMER_CANCEL(tcp,
14606 					    tcp->tcp_timer_tid);
14607 					tcp->tcp_timer_tid = 0;
14608 				}
14609 				goto pre_swnd_update;
14610 			}
14611 			if (mp2 != tcp->tcp_xmit_tail)
14612 				break;
14613 			tcp->tcp_xmit_tail = mp1;
14614 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14615 			    (uintptr_t)INT_MAX);
14616 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14617 			    mp1->b_rptr);
14618 			break;
14619 		}
14620 		if (mp1 == NULL) {
14621 			/*
14622 			 * More was acked but there is nothing more
14623 			 * outstanding.  This means that the FIN was
14624 			 * just acked or that we're talking to a clown.
14625 			 */
14626 fin_acked:
14627 			ASSERT(tcp->tcp_fin_sent);
14628 			tcp->tcp_xmit_tail = NULL;
14629 			if (tcp->tcp_fin_sent) {
14630 				/* FIN was acked - making progress */
14631 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14632 				    !tcp->tcp_fin_acked)
14633 					tcp->tcp_ip_forward_progress = B_TRUE;
14634 				tcp->tcp_fin_acked = B_TRUE;
14635 				if (tcp->tcp_linger_tid != 0 &&
14636 				    TCP_TIMER_CANCEL(tcp,
14637 					tcp->tcp_linger_tid) >= 0) {
14638 					tcp_stop_lingering(tcp);
14639 					freemsg(mp);
14640 					mp = NULL;
14641 				}
14642 			} else {
14643 				/*
14644 				 * We should never get here because
14645 				 * we have already checked that the
14646 				 * number of bytes ack'ed should be
14647 				 * smaller than or equal to what we
14648 				 * have sent so far (it is the
14649 				 * acceptability check of the ACK).
14650 				 * We can only get here if the send
14651 				 * queue is corrupted.
14652 				 *
14653 				 * Terminate the connection and
14654 				 * panic the system.  It is better
14655 				 * for us to panic instead of
14656 				 * continuing to avoid other disaster.
14657 				 */
14658 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14659 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14660 				panic("Memory corruption "
14661 				    "detected for connection %s.",
14662 				    tcp_display(tcp, NULL,
14663 					DISP_ADDR_AND_PORT));
14664 				/*NOTREACHED*/
14665 			}
14666 			goto pre_swnd_update;
14667 		}
14668 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14669 	}
14670 	if (tcp->tcp_unsent) {
14671 		flags |= TH_XMIT_NEEDED;
14672 	}
14673 pre_swnd_update:
14674 	tcp->tcp_xmit_head = mp1;
14675 swnd_update:
14676 	/*
14677 	 * The following check is different from most other implementations.
14678 	 * For bi-directional transfer, when segments are dropped, the
14679 	 * "normal" check will not accept a window update in those
14680 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14681 	 * segments which are outside receiver's window.  As TCP accepts
14682 	 * the ack in those retransmitted segments, if the window update in
14683 	 * the same segment is not accepted, TCP will incorrectly calculates
14684 	 * that it can send more segments.  This can create a deadlock
14685 	 * with the receiver if its window becomes zero.
14686 	 */
14687 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14688 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14689 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14690 		/*
14691 		 * The criteria for update is:
14692 		 *
14693 		 * 1. the segment acknowledges some data.  Or
14694 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14695 		 * 3. the segment is not old and the advertised window is
14696 		 * larger than the previous advertised window.
14697 		 */
14698 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14699 			flags |= TH_XMIT_NEEDED;
14700 		tcp->tcp_swnd = new_swnd;
14701 		if (new_swnd > tcp->tcp_max_swnd)
14702 			tcp->tcp_max_swnd = new_swnd;
14703 		tcp->tcp_swl1 = seg_seq;
14704 		tcp->tcp_swl2 = seg_ack;
14705 	}
14706 est:
14707 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14708 
14709 		switch (tcp->tcp_state) {
14710 		case TCPS_FIN_WAIT_1:
14711 			if (tcp->tcp_fin_acked) {
14712 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14713 				/*
14714 				 * We implement the non-standard BSD/SunOS
14715 				 * FIN_WAIT_2 flushing algorithm.
14716 				 * If there is no user attached to this
14717 				 * TCP endpoint, then this TCP struct
14718 				 * could hang around forever in FIN_WAIT_2
14719 				 * state if the peer forgets to send us
14720 				 * a FIN.  To prevent this, we wait only
14721 				 * 2*MSL (a convenient time value) for
14722 				 * the FIN to arrive.  If it doesn't show up,
14723 				 * we flush the TCP endpoint.  This algorithm,
14724 				 * though a violation of RFC-793, has worked
14725 				 * for over 10 years in BSD systems.
14726 				 * Note: SunOS 4.x waits 675 seconds before
14727 				 * flushing the FIN_WAIT_2 connection.
14728 				 */
14729 				TCP_TIMER_RESTART(tcp,
14730 				    tcps->tcps_fin_wait_2_flush_interval);
14731 			}
14732 			break;
14733 		case TCPS_FIN_WAIT_2:
14734 			break;	/* Shutdown hook? */
14735 		case TCPS_LAST_ACK:
14736 			freemsg(mp);
14737 			if (tcp->tcp_fin_acked) {
14738 				(void) tcp_clean_death(tcp, 0, 19);
14739 				return;
14740 			}
14741 			goto xmit_check;
14742 		case TCPS_CLOSING:
14743 			if (tcp->tcp_fin_acked) {
14744 				tcp->tcp_state = TCPS_TIME_WAIT;
14745 				/*
14746 				 * Unconditionally clear the exclusive binding
14747 				 * bit so this TIME-WAIT connection won't
14748 				 * interfere with new ones.
14749 				 */
14750 				tcp->tcp_exclbind = 0;
14751 				if (!TCP_IS_DETACHED(tcp)) {
14752 					TCP_TIMER_RESTART(tcp,
14753 					    tcps->tcps_time_wait_interval);
14754 				} else {
14755 					tcp_time_wait_append(tcp);
14756 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14757 				}
14758 			}
14759 			/*FALLTHRU*/
14760 		case TCPS_CLOSE_WAIT:
14761 			freemsg(mp);
14762 			goto xmit_check;
14763 		default:
14764 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14765 			break;
14766 		}
14767 	}
14768 	if (flags & TH_FIN) {
14769 		/* Make sure we ack the fin */
14770 		flags |= TH_ACK_NEEDED;
14771 		if (!tcp->tcp_fin_rcvd) {
14772 			tcp->tcp_fin_rcvd = B_TRUE;
14773 			tcp->tcp_rnxt++;
14774 			tcph = tcp->tcp_tcph;
14775 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14776 
14777 			/*
14778 			 * Generate the ordrel_ind at the end unless we
14779 			 * are an eager guy.
14780 			 * In the eager case tcp_rsrv will do this when run
14781 			 * after tcp_accept is done.
14782 			 */
14783 			if (tcp->tcp_listener == NULL &&
14784 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14785 				flags |= TH_ORDREL_NEEDED;
14786 			switch (tcp->tcp_state) {
14787 			case TCPS_SYN_RCVD:
14788 			case TCPS_ESTABLISHED:
14789 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14790 				/* Keepalive? */
14791 				break;
14792 			case TCPS_FIN_WAIT_1:
14793 				if (!tcp->tcp_fin_acked) {
14794 					tcp->tcp_state = TCPS_CLOSING;
14795 					break;
14796 				}
14797 				/* FALLTHRU */
14798 			case TCPS_FIN_WAIT_2:
14799 				tcp->tcp_state = TCPS_TIME_WAIT;
14800 				/*
14801 				 * Unconditionally clear the exclusive binding
14802 				 * bit so this TIME-WAIT connection won't
14803 				 * interfere with new ones.
14804 				 */
14805 				tcp->tcp_exclbind = 0;
14806 				if (!TCP_IS_DETACHED(tcp)) {
14807 					TCP_TIMER_RESTART(tcp,
14808 					    tcps->tcps_time_wait_interval);
14809 				} else {
14810 					tcp_time_wait_append(tcp);
14811 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14812 				}
14813 				if (seg_len) {
14814 					/*
14815 					 * implies data piggybacked on FIN.
14816 					 * break to handle data.
14817 					 */
14818 					break;
14819 				}
14820 				freemsg(mp);
14821 				goto ack_check;
14822 			}
14823 		}
14824 	}
14825 	if (mp == NULL)
14826 		goto xmit_check;
14827 	if (seg_len == 0) {
14828 		freemsg(mp);
14829 		goto xmit_check;
14830 	}
14831 	if (mp->b_rptr == mp->b_wptr) {
14832 		/*
14833 		 * The header has been consumed, so we remove the
14834 		 * zero-length mblk here.
14835 		 */
14836 		mp1 = mp;
14837 		mp = mp->b_cont;
14838 		freeb(mp1);
14839 	}
14840 	tcph = tcp->tcp_tcph;
14841 	tcp->tcp_rack_cnt++;
14842 	{
14843 		uint32_t cur_max;
14844 
14845 		cur_max = tcp->tcp_rack_cur_max;
14846 		if (tcp->tcp_rack_cnt >= cur_max) {
14847 			/*
14848 			 * We have more unacked data than we should - send
14849 			 * an ACK now.
14850 			 */
14851 			flags |= TH_ACK_NEEDED;
14852 			cur_max++;
14853 			if (cur_max > tcp->tcp_rack_abs_max)
14854 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14855 			else
14856 				tcp->tcp_rack_cur_max = cur_max;
14857 		} else if (TCP_IS_DETACHED(tcp)) {
14858 			/* We don't have an ACK timer for detached TCP. */
14859 			flags |= TH_ACK_NEEDED;
14860 		} else if (seg_len < mss) {
14861 			/*
14862 			 * If we get a segment that is less than an mss, and we
14863 			 * already have unacknowledged data, and the amount
14864 			 * unacknowledged is not a multiple of mss, then we
14865 			 * better generate an ACK now.  Otherwise, this may be
14866 			 * the tail piece of a transaction, and we would rather
14867 			 * wait for the response.
14868 			 */
14869 			uint32_t udif;
14870 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14871 			    (uintptr_t)INT_MAX);
14872 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14873 			if (udif && (udif % mss))
14874 				flags |= TH_ACK_NEEDED;
14875 			else
14876 				flags |= TH_ACK_TIMER_NEEDED;
14877 		} else {
14878 			/* Start delayed ack timer */
14879 			flags |= TH_ACK_TIMER_NEEDED;
14880 		}
14881 	}
14882 	tcp->tcp_rnxt += seg_len;
14883 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14884 
14885 	/* Update SACK list */
14886 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14887 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14888 		    &(tcp->tcp_num_sack_blk));
14889 	}
14890 
14891 	if (tcp->tcp_urp_mp) {
14892 		tcp->tcp_urp_mp->b_cont = mp;
14893 		mp = tcp->tcp_urp_mp;
14894 		tcp->tcp_urp_mp = NULL;
14895 		/* Ready for a new signal. */
14896 		tcp->tcp_urp_last_valid = B_FALSE;
14897 #ifdef DEBUG
14898 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14899 		    "tcp_rput: sending exdata_ind %s",
14900 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14901 #endif /* DEBUG */
14902 	}
14903 
14904 	/*
14905 	 * Check for ancillary data changes compared to last segment.
14906 	 */
14907 	if (tcp->tcp_ipv6_recvancillary != 0) {
14908 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14909 		if (mp == NULL)
14910 			return;
14911 	}
14912 
14913 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14914 		/*
14915 		 * Side queue inbound data until the accept happens.
14916 		 * tcp_accept/tcp_rput drains this when the accept happens.
14917 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14918 		 * T_EXDATA_IND) it is queued on b_next.
14919 		 * XXX Make urgent data use this. Requires:
14920 		 *	Removing tcp_listener check for TH_URG
14921 		 *	Making M_PCPROTO and MARK messages skip the eager case
14922 		 */
14923 
14924 		if (tcp->tcp_kssl_pending) {
14925 			tcp_kssl_input(tcp, mp);
14926 		} else {
14927 			tcp_rcv_enqueue(tcp, mp, seg_len);
14928 		}
14929 	} else {
14930 		if (mp->b_datap->db_type != M_DATA ||
14931 		    (flags & TH_MARKNEXT_NEEDED)) {
14932 			if (tcp->tcp_rcv_list != NULL) {
14933 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14934 			}
14935 			ASSERT(tcp->tcp_rcv_list == NULL ||
14936 			    tcp->tcp_fused_sigurg);
14937 			if (flags & TH_MARKNEXT_NEEDED) {
14938 #ifdef DEBUG
14939 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14940 				    "tcp_rput: sending MSGMARKNEXT %s",
14941 				    tcp_display(tcp, NULL,
14942 				    DISP_PORT_ONLY));
14943 #endif /* DEBUG */
14944 				mp->b_flag |= MSGMARKNEXT;
14945 				flags &= ~TH_MARKNEXT_NEEDED;
14946 			}
14947 
14948 			/* Does this need SSL processing first? */
14949 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14950 			    (DB_TYPE(mp) == M_DATA)) {
14951 				tcp_kssl_input(tcp, mp);
14952 			} else {
14953 				putnext(tcp->tcp_rq, mp);
14954 				if (!canputnext(tcp->tcp_rq))
14955 					tcp->tcp_rwnd -= seg_len;
14956 			}
14957 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14958 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14959 			if (tcp->tcp_rcv_list != NULL) {
14960 				/*
14961 				 * Enqueue the new segment first and then
14962 				 * call tcp_rcv_drain() to send all data
14963 				 * up.  The other way to do this is to
14964 				 * send all queued data up and then call
14965 				 * putnext() to send the new segment up.
14966 				 * This way can remove the else part later
14967 				 * on.
14968 				 *
14969 				 * We don't this to avoid one more call to
14970 				 * canputnext() as tcp_rcv_drain() needs to
14971 				 * call canputnext().
14972 				 */
14973 				tcp_rcv_enqueue(tcp, mp, seg_len);
14974 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14975 			} else {
14976 				/* Does this need SSL processing first? */
14977 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14978 				    (DB_TYPE(mp) == M_DATA)) {
14979 					tcp_kssl_input(tcp, mp);
14980 				} else {
14981 					putnext(tcp->tcp_rq, mp);
14982 					if (!canputnext(tcp->tcp_rq))
14983 						tcp->tcp_rwnd -= seg_len;
14984 				}
14985 			}
14986 		} else {
14987 			/*
14988 			 * Enqueue all packets when processing an mblk
14989 			 * from the co queue and also enqueue normal packets.
14990 			 */
14991 			tcp_rcv_enqueue(tcp, mp, seg_len);
14992 		}
14993 		/*
14994 		 * Make sure the timer is running if we have data waiting
14995 		 * for a push bit. This provides resiliency against
14996 		 * implementations that do not correctly generate push bits.
14997 		 */
14998 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14999 			/*
15000 			 * The connection may be closed at this point, so don't
15001 			 * do anything for a detached tcp.
15002 			 */
15003 			if (!TCP_IS_DETACHED(tcp))
15004 			    tcp->tcp_push_tid = TCP_TIMER(tcp,
15005 				tcp_push_timer,
15006 				MSEC_TO_TICK(tcps->tcps_push_timer_interval));
15007 		}
15008 	}
15009 xmit_check:
15010 	/* Is there anything left to do? */
15011 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15012 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15013 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15014 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15015 		goto done;
15016 
15017 	/* Any transmit work to do and a non-zero window? */
15018 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15019 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15020 		if (flags & TH_REXMIT_NEEDED) {
15021 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15022 
15023 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15024 			if (snd_size > mss)
15025 				snd_size = mss;
15026 			if (snd_size > tcp->tcp_swnd)
15027 				snd_size = tcp->tcp_swnd;
15028 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15029 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15030 			    B_TRUE);
15031 
15032 			if (mp1 != NULL) {
15033 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15034 				tcp->tcp_csuna = tcp->tcp_snxt;
15035 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15036 				UPDATE_MIB(&tcps->tcps_mib,
15037 				    tcpRetransBytes, snd_size);
15038 				TCP_RECORD_TRACE(tcp, mp1,
15039 				    TCP_TRACE_SEND_PKT);
15040 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15041 			}
15042 		}
15043 		if (flags & TH_NEED_SACK_REXMIT) {
15044 			tcp_sack_rxmit(tcp, &flags);
15045 		}
15046 		/*
15047 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15048 		 * out new segment.  Note that tcp_rexmit should not be
15049 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15050 		 */
15051 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15052 			if (!tcp->tcp_rexmit) {
15053 				tcp_wput_data(tcp, NULL, B_FALSE);
15054 			} else {
15055 				tcp_ss_rexmit(tcp);
15056 			}
15057 		}
15058 		/*
15059 		 * Adjust tcp_cwnd back to normal value after sending
15060 		 * new data segments.
15061 		 */
15062 		if (flags & TH_LIMIT_XMIT) {
15063 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15064 			/*
15065 			 * This will restart the timer.  Restarting the
15066 			 * timer is used to avoid a timeout before the
15067 			 * limited transmitted segment's ACK gets back.
15068 			 */
15069 			if (tcp->tcp_xmit_head != NULL)
15070 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15071 		}
15072 
15073 		/* Anything more to do? */
15074 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15075 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15076 			goto done;
15077 	}
15078 ack_check:
15079 	if (flags & TH_SEND_URP_MARK) {
15080 		ASSERT(tcp->tcp_urp_mark_mp);
15081 		/*
15082 		 * Send up any queued data and then send the mark message
15083 		 */
15084 		if (tcp->tcp_rcv_list != NULL) {
15085 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15086 		}
15087 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15088 
15089 		mp1 = tcp->tcp_urp_mark_mp;
15090 		tcp->tcp_urp_mark_mp = NULL;
15091 #ifdef DEBUG
15092 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15093 		    "tcp_rput: sending zero-length %s %s",
15094 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15095 		    "MSGNOTMARKNEXT"),
15096 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15097 #endif /* DEBUG */
15098 		putnext(tcp->tcp_rq, mp1);
15099 		flags &= ~TH_SEND_URP_MARK;
15100 	}
15101 	if (flags & TH_ACK_NEEDED) {
15102 		/*
15103 		 * Time to send an ack for some reason.
15104 		 */
15105 		mp1 = tcp_ack_mp(tcp);
15106 
15107 		if (mp1 != NULL) {
15108 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15109 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15110 			BUMP_LOCAL(tcp->tcp_obsegs);
15111 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15112 		}
15113 		if (tcp->tcp_ack_tid != 0) {
15114 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15115 			tcp->tcp_ack_tid = 0;
15116 		}
15117 	}
15118 	if (flags & TH_ACK_TIMER_NEEDED) {
15119 		/*
15120 		 * Arrange for deferred ACK or push wait timeout.
15121 		 * Start timer if it is not already running.
15122 		 */
15123 		if (tcp->tcp_ack_tid == 0) {
15124 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15125 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15126 			    (clock_t)tcps->tcps_local_dack_interval :
15127 			    (clock_t)tcps->tcps_deferred_ack_interval));
15128 		}
15129 	}
15130 	if (flags & TH_ORDREL_NEEDED) {
15131 		/*
15132 		 * Send up the ordrel_ind unless we are an eager guy.
15133 		 * In the eager case tcp_rsrv will do this when run
15134 		 * after tcp_accept is done.
15135 		 */
15136 		ASSERT(tcp->tcp_listener == NULL);
15137 		if (tcp->tcp_rcv_list != NULL) {
15138 			/*
15139 			 * Push any mblk(s) enqueued from co processing.
15140 			 */
15141 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15142 		}
15143 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15144 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15145 			tcp->tcp_ordrel_done = B_TRUE;
15146 			putnext(tcp->tcp_rq, mp1);
15147 			if (tcp->tcp_deferred_clean_death) {
15148 				/*
15149 				 * tcp_clean_death was deferred
15150 				 * for T_ORDREL_IND - do it now
15151 				 */
15152 				(void) tcp_clean_death(tcp,
15153 				    tcp->tcp_client_errno, 20);
15154 				tcp->tcp_deferred_clean_death =	B_FALSE;
15155 			}
15156 		} else {
15157 			/*
15158 			 * Run the orderly release in the
15159 			 * service routine.
15160 			 */
15161 			qenable(tcp->tcp_rq);
15162 			/*
15163 			 * Caveat(XXX): The machine may be so
15164 			 * overloaded that tcp_rsrv() is not scheduled
15165 			 * until after the endpoint has transitioned
15166 			 * to TCPS_TIME_WAIT
15167 			 * and tcp_time_wait_interval expires. Then
15168 			 * tcp_timer() will blow away state in tcp_t
15169 			 * and T_ORDREL_IND will never be delivered
15170 			 * upstream. Unlikely but potentially
15171 			 * a problem.
15172 			 */
15173 		}
15174 	}
15175 done:
15176 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15177 }
15178 
15179 /*
15180  * This function does PAWS protection check. Returns B_TRUE if the
15181  * segment passes the PAWS test, else returns B_FALSE.
15182  */
15183 boolean_t
15184 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15185 {
15186 	uint8_t	flags;
15187 	int	options;
15188 	uint8_t *up;
15189 
15190 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15191 	/*
15192 	 * If timestamp option is aligned nicely, get values inline,
15193 	 * otherwise call general routine to parse.  Only do that
15194 	 * if timestamp is the only option.
15195 	 */
15196 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15197 	    TCPOPT_REAL_TS_LEN &&
15198 	    OK_32PTR((up = ((uint8_t *)tcph) +
15199 	    TCP_MIN_HEADER_LENGTH)) &&
15200 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15201 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15202 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15203 
15204 		options = TCP_OPT_TSTAMP_PRESENT;
15205 	} else {
15206 		if (tcp->tcp_snd_sack_ok) {
15207 			tcpoptp->tcp = tcp;
15208 		} else {
15209 			tcpoptp->tcp = NULL;
15210 		}
15211 		options = tcp_parse_options(tcph, tcpoptp);
15212 	}
15213 
15214 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15215 		/*
15216 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15217 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15218 		 */
15219 		if ((flags & TH_RST) == 0 &&
15220 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15221 		    tcp->tcp_ts_recent)) {
15222 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15223 			    PAWS_TIMEOUT)) {
15224 				/* This segment is not acceptable. */
15225 				return (B_FALSE);
15226 			} else {
15227 				/*
15228 				 * Connection has been idle for
15229 				 * too long.  Reset the timestamp
15230 				 * and assume the segment is valid.
15231 				 */
15232 				tcp->tcp_ts_recent =
15233 				    tcpoptp->tcp_opt_ts_val;
15234 			}
15235 		}
15236 	} else {
15237 		/*
15238 		 * If we don't get a timestamp on every packet, we
15239 		 * figure we can't really trust 'em, so we stop sending
15240 		 * and parsing them.
15241 		 */
15242 		tcp->tcp_snd_ts_ok = B_FALSE;
15243 
15244 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15245 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15246 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15247 		/*
15248 		 * Adjust the tcp_mss accordingly. We also need to
15249 		 * adjust tcp_cwnd here in accordance with the new mss.
15250 		 * But we avoid doing a slow start here so as to not
15251 		 * to lose on the transfer rate built up so far.
15252 		 */
15253 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15254 		if (tcp->tcp_snd_sack_ok) {
15255 			ASSERT(tcp->tcp_sack_info != NULL);
15256 			tcp->tcp_max_sack_blk = 4;
15257 		}
15258 	}
15259 	return (B_TRUE);
15260 }
15261 
15262 /*
15263  * Attach ancillary data to a received TCP segments for the
15264  * ancillary pieces requested by the application that are
15265  * different than they were in the previous data segment.
15266  *
15267  * Save the "current" values once memory allocation is ok so that
15268  * when memory allocation fails we can just wait for the next data segment.
15269  */
15270 static mblk_t *
15271 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15272 {
15273 	struct T_optdata_ind *todi;
15274 	int optlen;
15275 	uchar_t *optptr;
15276 	struct T_opthdr *toh;
15277 	uint_t addflag;	/* Which pieces to add */
15278 	mblk_t *mp1;
15279 
15280 	optlen = 0;
15281 	addflag = 0;
15282 	/* If app asked for pktinfo and the index has changed ... */
15283 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15284 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15285 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15286 		optlen += sizeof (struct T_opthdr) +
15287 		    sizeof (struct in6_pktinfo);
15288 		addflag |= TCP_IPV6_RECVPKTINFO;
15289 	}
15290 	/* If app asked for hoplimit and it has changed ... */
15291 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15292 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15293 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15294 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15295 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15296 	}
15297 	/* If app asked for tclass and it has changed ... */
15298 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15299 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15300 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15301 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15302 		addflag |= TCP_IPV6_RECVTCLASS;
15303 	}
15304 	/*
15305 	 * If app asked for hopbyhop headers and it has changed ...
15306 	 * For security labels, note that (1) security labels can't change on
15307 	 * a connected socket at all, (2) we're connected to at most one peer,
15308 	 * (3) if anything changes, then it must be some other extra option.
15309 	 */
15310 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15311 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15312 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15313 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15314 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15315 		    tcp->tcp_label_len;
15316 		addflag |= TCP_IPV6_RECVHOPOPTS;
15317 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15318 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15319 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15320 			return (mp);
15321 	}
15322 	/* If app asked for dst headers before routing headers ... */
15323 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15324 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15325 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
15326 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15327 		optlen += sizeof (struct T_opthdr) +
15328 		    ipp->ipp_rtdstoptslen;
15329 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15330 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15331 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15332 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15333 			return (mp);
15334 	}
15335 	/* If app asked for routing headers and it has changed ... */
15336 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15337 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15338 	    (ipp->ipp_fields & IPPF_RTHDR),
15339 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15340 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15341 		addflag |= TCP_IPV6_RECVRTHDR;
15342 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15343 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15344 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15345 			return (mp);
15346 	}
15347 	/* If app asked for dest headers and it has changed ... */
15348 	if ((tcp->tcp_ipv6_recvancillary &
15349 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15350 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15351 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15352 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15353 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15354 		addflag |= TCP_IPV6_RECVDSTOPTS;
15355 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15356 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15357 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15358 			return (mp);
15359 	}
15360 
15361 	if (optlen == 0) {
15362 		/* Nothing to add */
15363 		return (mp);
15364 	}
15365 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15366 	if (mp1 == NULL) {
15367 		/*
15368 		 * Defer sending ancillary data until the next TCP segment
15369 		 * arrives.
15370 		 */
15371 		return (mp);
15372 	}
15373 	mp1->b_cont = mp;
15374 	mp = mp1;
15375 	mp->b_wptr += sizeof (*todi) + optlen;
15376 	mp->b_datap->db_type = M_PROTO;
15377 	todi = (struct T_optdata_ind *)mp->b_rptr;
15378 	todi->PRIM_type = T_OPTDATA_IND;
15379 	todi->DATA_flag = 1;	/* MORE data */
15380 	todi->OPT_length = optlen;
15381 	todi->OPT_offset = sizeof (*todi);
15382 	optptr = (uchar_t *)&todi[1];
15383 	/*
15384 	 * If app asked for pktinfo and the index has changed ...
15385 	 * Note that the local address never changes for the connection.
15386 	 */
15387 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15388 		struct in6_pktinfo *pkti;
15389 
15390 		toh = (struct T_opthdr *)optptr;
15391 		toh->level = IPPROTO_IPV6;
15392 		toh->name = IPV6_PKTINFO;
15393 		toh->len = sizeof (*toh) + sizeof (*pkti);
15394 		toh->status = 0;
15395 		optptr += sizeof (*toh);
15396 		pkti = (struct in6_pktinfo *)optptr;
15397 		if (tcp->tcp_ipversion == IPV6_VERSION)
15398 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15399 		else
15400 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15401 			    &pkti->ipi6_addr);
15402 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15403 		optptr += sizeof (*pkti);
15404 		ASSERT(OK_32PTR(optptr));
15405 		/* Save as "last" value */
15406 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15407 	}
15408 	/* If app asked for hoplimit and it has changed ... */
15409 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15410 		toh = (struct T_opthdr *)optptr;
15411 		toh->level = IPPROTO_IPV6;
15412 		toh->name = IPV6_HOPLIMIT;
15413 		toh->len = sizeof (*toh) + sizeof (uint_t);
15414 		toh->status = 0;
15415 		optptr += sizeof (*toh);
15416 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15417 		optptr += sizeof (uint_t);
15418 		ASSERT(OK_32PTR(optptr));
15419 		/* Save as "last" value */
15420 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15421 	}
15422 	/* If app asked for tclass and it has changed ... */
15423 	if (addflag & TCP_IPV6_RECVTCLASS) {
15424 		toh = (struct T_opthdr *)optptr;
15425 		toh->level = IPPROTO_IPV6;
15426 		toh->name = IPV6_TCLASS;
15427 		toh->len = sizeof (*toh) + sizeof (uint_t);
15428 		toh->status = 0;
15429 		optptr += sizeof (*toh);
15430 		*(uint_t *)optptr = ipp->ipp_tclass;
15431 		optptr += sizeof (uint_t);
15432 		ASSERT(OK_32PTR(optptr));
15433 		/* Save as "last" value */
15434 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15435 	}
15436 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15437 		toh = (struct T_opthdr *)optptr;
15438 		toh->level = IPPROTO_IPV6;
15439 		toh->name = IPV6_HOPOPTS;
15440 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15441 		    tcp->tcp_label_len;
15442 		toh->status = 0;
15443 		optptr += sizeof (*toh);
15444 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15445 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15446 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15447 		ASSERT(OK_32PTR(optptr));
15448 		/* Save as last value */
15449 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15450 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15451 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15452 	}
15453 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15454 		toh = (struct T_opthdr *)optptr;
15455 		toh->level = IPPROTO_IPV6;
15456 		toh->name = IPV6_RTHDRDSTOPTS;
15457 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15458 		toh->status = 0;
15459 		optptr += sizeof (*toh);
15460 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15461 		optptr += ipp->ipp_rtdstoptslen;
15462 		ASSERT(OK_32PTR(optptr));
15463 		/* Save as last value */
15464 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15465 		    &tcp->tcp_rtdstoptslen,
15466 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15467 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15468 	}
15469 	if (addflag & TCP_IPV6_RECVRTHDR) {
15470 		toh = (struct T_opthdr *)optptr;
15471 		toh->level = IPPROTO_IPV6;
15472 		toh->name = IPV6_RTHDR;
15473 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15474 		toh->status = 0;
15475 		optptr += sizeof (*toh);
15476 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15477 		optptr += ipp->ipp_rthdrlen;
15478 		ASSERT(OK_32PTR(optptr));
15479 		/* Save as last value */
15480 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15481 		    (ipp->ipp_fields & IPPF_RTHDR),
15482 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15483 	}
15484 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15485 		toh = (struct T_opthdr *)optptr;
15486 		toh->level = IPPROTO_IPV6;
15487 		toh->name = IPV6_DSTOPTS;
15488 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15489 		toh->status = 0;
15490 		optptr += sizeof (*toh);
15491 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15492 		optptr += ipp->ipp_dstoptslen;
15493 		ASSERT(OK_32PTR(optptr));
15494 		/* Save as last value */
15495 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15496 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15497 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15498 	}
15499 	ASSERT(optptr == mp->b_wptr);
15500 	return (mp);
15501 }
15502 
15503 
15504 /*
15505  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15506  * or a "bad" IRE detected by tcp_adapt_ire.
15507  * We can't tell if the failure was due to the laddr or the faddr
15508  * thus we clear out all addresses and ports.
15509  */
15510 static void
15511 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15512 {
15513 	queue_t	*q = tcp->tcp_rq;
15514 	tcph_t	*tcph;
15515 	struct T_error_ack *tea;
15516 	conn_t	*connp = tcp->tcp_connp;
15517 
15518 
15519 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15520 
15521 	if (mp->b_cont) {
15522 		freemsg(mp->b_cont);
15523 		mp->b_cont = NULL;
15524 	}
15525 	tea = (struct T_error_ack *)mp->b_rptr;
15526 	switch (tea->PRIM_type) {
15527 	case T_BIND_ACK:
15528 		/*
15529 		 * Need to unbind with classifier since we were just told that
15530 		 * our bind succeeded.
15531 		 */
15532 		tcp->tcp_hard_bound = B_FALSE;
15533 		tcp->tcp_hard_binding = B_FALSE;
15534 
15535 		ipcl_hash_remove(connp);
15536 		/* Reuse the mblk if possible */
15537 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15538 			sizeof (*tea));
15539 		mp->b_rptr = mp->b_datap->db_base;
15540 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15541 		tea = (struct T_error_ack *)mp->b_rptr;
15542 		tea->PRIM_type = T_ERROR_ACK;
15543 		tea->TLI_error = TSYSERR;
15544 		tea->UNIX_error = error;
15545 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15546 			tea->ERROR_prim = T_CONN_REQ;
15547 		} else {
15548 			tea->ERROR_prim = O_T_BIND_REQ;
15549 		}
15550 		break;
15551 
15552 	case T_ERROR_ACK:
15553 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15554 			tea->ERROR_prim = T_CONN_REQ;
15555 		break;
15556 	default:
15557 		panic("tcp_bind_failed: unexpected TPI type");
15558 		/*NOTREACHED*/
15559 	}
15560 
15561 	tcp->tcp_state = TCPS_IDLE;
15562 	if (tcp->tcp_ipversion == IPV4_VERSION)
15563 		tcp->tcp_ipha->ipha_src = 0;
15564 	else
15565 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15566 	/*
15567 	 * Copy of the src addr. in tcp_t is needed since
15568 	 * the lookup funcs. can only look at tcp_t
15569 	 */
15570 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15571 
15572 	tcph = tcp->tcp_tcph;
15573 	tcph->th_lport[0] = 0;
15574 	tcph->th_lport[1] = 0;
15575 	tcp_bind_hash_remove(tcp);
15576 	bzero(&connp->u_port, sizeof (connp->u_port));
15577 	/* blow away saved option results if any */
15578 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15579 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15580 
15581 	conn_delete_ire(tcp->tcp_connp, NULL);
15582 	putnext(q, mp);
15583 }
15584 
15585 /*
15586  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15587  * messages.
15588  */
15589 void
15590 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15591 {
15592 	mblk_t	*mp1;
15593 	uchar_t	*rptr = mp->b_rptr;
15594 	queue_t	*q = tcp->tcp_rq;
15595 	struct T_error_ack *tea;
15596 	uint32_t mss;
15597 	mblk_t *syn_mp;
15598 	mblk_t *mdti;
15599 	mblk_t *lsoi;
15600 	int	retval;
15601 	mblk_t *ire_mp;
15602 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15603 
15604 	switch (mp->b_datap->db_type) {
15605 	case M_PROTO:
15606 	case M_PCPROTO:
15607 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15608 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15609 			break;
15610 		tea = (struct T_error_ack *)rptr;
15611 		switch (tea->PRIM_type) {
15612 		case T_BIND_ACK:
15613 			/*
15614 			 * Adapt Multidata information, if any.  The
15615 			 * following tcp_mdt_update routine will free
15616 			 * the message.
15617 			 */
15618 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15619 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15620 				    b_rptr)->mdt_capab, B_TRUE);
15621 				freemsg(mdti);
15622 			}
15623 
15624 			/*
15625 			 * Check to update LSO information with tcp, and
15626 			 * tcp_lso_update routine will free the message.
15627 			 */
15628 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15629 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15630 				    b_rptr)->lso_capab);
15631 				freemsg(lsoi);
15632 			}
15633 
15634 			/* Get the IRE, if we had requested for it */
15635 			ire_mp = tcp_ire_mp(mp);
15636 
15637 			if (tcp->tcp_hard_binding) {
15638 				tcp->tcp_hard_binding = B_FALSE;
15639 				tcp->tcp_hard_bound = B_TRUE;
15640 				CL_INET_CONNECT(tcp);
15641 			} else {
15642 				if (ire_mp != NULL)
15643 					freeb(ire_mp);
15644 				goto after_syn_sent;
15645 			}
15646 
15647 			retval = tcp_adapt_ire(tcp, ire_mp);
15648 			if (ire_mp != NULL)
15649 				freeb(ire_mp);
15650 			if (retval == 0) {
15651 				tcp_bind_failed(tcp, mp,
15652 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15653 				    ENETUNREACH : EADDRNOTAVAIL));
15654 				return;
15655 			}
15656 			/*
15657 			 * Don't let an endpoint connect to itself.
15658 			 * Also checked in tcp_connect() but that
15659 			 * check can't handle the case when the
15660 			 * local IP address is INADDR_ANY.
15661 			 */
15662 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15663 				if ((tcp->tcp_ipha->ipha_dst ==
15664 				    tcp->tcp_ipha->ipha_src) &&
15665 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15666 				    tcp->tcp_tcph->th_fport))) {
15667 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15668 					return;
15669 				}
15670 			} else {
15671 				if (IN6_ARE_ADDR_EQUAL(
15672 				    &tcp->tcp_ip6h->ip6_dst,
15673 				    &tcp->tcp_ip6h->ip6_src) &&
15674 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15675 				    tcp->tcp_tcph->th_fport))) {
15676 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15677 					return;
15678 				}
15679 			}
15680 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15681 			/*
15682 			 * This should not be possible!  Just for
15683 			 * defensive coding...
15684 			 */
15685 			if (tcp->tcp_state != TCPS_SYN_SENT)
15686 				goto after_syn_sent;
15687 
15688 			if (is_system_labeled() &&
15689 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15690 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15691 				return;
15692 			}
15693 
15694 			ASSERT(q == tcp->tcp_rq);
15695 			/*
15696 			 * tcp_adapt_ire() does not adjust
15697 			 * for TCP/IP header length.
15698 			 */
15699 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15700 
15701 			/*
15702 			 * Just make sure our rwnd is at
15703 			 * least tcp_recv_hiwat_mss * MSS
15704 			 * large, and round up to the nearest
15705 			 * MSS.
15706 			 *
15707 			 * We do the round up here because
15708 			 * we need to get the interface
15709 			 * MTU first before we can do the
15710 			 * round up.
15711 			 */
15712 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15713 			    tcps->tcps_recv_hiwat_minmss * mss);
15714 			q->q_hiwat = tcp->tcp_rwnd;
15715 			tcp_set_ws_value(tcp);
15716 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15717 			    tcp->tcp_tcph->th_win);
15718 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15719 				tcp->tcp_snd_ws_ok = B_TRUE;
15720 
15721 			/*
15722 			 * Set tcp_snd_ts_ok to true
15723 			 * so that tcp_xmit_mp will
15724 			 * include the timestamp
15725 			 * option in the SYN segment.
15726 			 */
15727 			if (tcps->tcps_tstamp_always ||
15728 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15729 				tcp->tcp_snd_ts_ok = B_TRUE;
15730 			}
15731 
15732 			/*
15733 			 * tcp_snd_sack_ok can be set in
15734 			 * tcp_adapt_ire() if the sack metric
15735 			 * is set.  So check it here also.
15736 			 */
15737 			if (tcps->tcps_sack_permitted == 2 ||
15738 			    tcp->tcp_snd_sack_ok) {
15739 				if (tcp->tcp_sack_info == NULL) {
15740 					tcp->tcp_sack_info =
15741 					kmem_cache_alloc(tcp_sack_info_cache,
15742 					    KM_SLEEP);
15743 				}
15744 				tcp->tcp_snd_sack_ok = B_TRUE;
15745 			}
15746 
15747 			/*
15748 			 * Should we use ECN?  Note that the current
15749 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15750 			 * is 1.  The reason for doing this is that there
15751 			 * are equipments out there that will drop ECN
15752 			 * enabled IP packets.  Setting it to 1 avoids
15753 			 * compatibility problems.
15754 			 */
15755 			if (tcps->tcps_ecn_permitted == 2)
15756 				tcp->tcp_ecn_ok = B_TRUE;
15757 
15758 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15759 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15760 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15761 			if (syn_mp) {
15762 				cred_t *cr;
15763 				pid_t pid;
15764 
15765 				/*
15766 				 * Obtain the credential from the
15767 				 * thread calling connect(); the credential
15768 				 * lives on in the second mblk which
15769 				 * originated from T_CONN_REQ and is echoed
15770 				 * with the T_BIND_ACK from ip.  If none
15771 				 * can be found, default to the creator
15772 				 * of the socket.
15773 				 */
15774 				if (mp->b_cont == NULL ||
15775 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15776 					cr = tcp->tcp_cred;
15777 					pid = tcp->tcp_cpid;
15778 				} else {
15779 					pid = DB_CPID(mp->b_cont);
15780 				}
15781 
15782 				TCP_RECORD_TRACE(tcp, syn_mp,
15783 				    TCP_TRACE_SEND_PKT);
15784 				mblk_setcred(syn_mp, cr);
15785 				DB_CPID(syn_mp) = pid;
15786 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15787 			}
15788 		after_syn_sent:
15789 			/*
15790 			 * A trailer mblk indicates a waiting client upstream.
15791 			 * We complete here the processing begun in
15792 			 * either tcp_bind() or tcp_connect() by passing
15793 			 * upstream the reply message they supplied.
15794 			 */
15795 			mp1 = mp;
15796 			mp = mp->b_cont;
15797 			freeb(mp1);
15798 			if (mp)
15799 				break;
15800 			return;
15801 		case T_ERROR_ACK:
15802 			if (tcp->tcp_debug) {
15803 				(void) strlog(TCP_MOD_ID, 0, 1,
15804 				    SL_TRACE|SL_ERROR,
15805 				    "tcp_rput_other: case T_ERROR_ACK, "
15806 				    "ERROR_prim == %d",
15807 				    tea->ERROR_prim);
15808 			}
15809 			switch (tea->ERROR_prim) {
15810 			case O_T_BIND_REQ:
15811 			case T_BIND_REQ:
15812 				tcp_bind_failed(tcp, mp,
15813 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15814 				    ENETUNREACH : EADDRNOTAVAIL));
15815 				return;
15816 			case T_UNBIND_REQ:
15817 				tcp->tcp_hard_binding = B_FALSE;
15818 				tcp->tcp_hard_bound = B_FALSE;
15819 				if (mp->b_cont) {
15820 					freemsg(mp->b_cont);
15821 					mp->b_cont = NULL;
15822 				}
15823 				if (tcp->tcp_unbind_pending)
15824 					tcp->tcp_unbind_pending = 0;
15825 				else {
15826 					/* From tcp_ip_unbind() - free */
15827 					freemsg(mp);
15828 					return;
15829 				}
15830 				break;
15831 			case T_SVR4_OPTMGMT_REQ:
15832 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15833 					/* T_OPTMGMT_REQ generated by TCP */
15834 					printf("T_SVR4_OPTMGMT_REQ failed "
15835 					    "%d/%d - dropped (cnt %d)\n",
15836 					    tea->TLI_error, tea->UNIX_error,
15837 					    tcp->tcp_drop_opt_ack_cnt);
15838 					freemsg(mp);
15839 					tcp->tcp_drop_opt_ack_cnt--;
15840 					return;
15841 				}
15842 				break;
15843 			}
15844 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15845 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15846 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15847 				    "- dropped (cnt %d)\n",
15848 				    tea->TLI_error, tea->UNIX_error,
15849 				    tcp->tcp_drop_opt_ack_cnt);
15850 				freemsg(mp);
15851 				tcp->tcp_drop_opt_ack_cnt--;
15852 				return;
15853 			}
15854 			break;
15855 		case T_OPTMGMT_ACK:
15856 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15857 				/* T_OPTMGMT_REQ generated by TCP */
15858 				freemsg(mp);
15859 				tcp->tcp_drop_opt_ack_cnt--;
15860 				return;
15861 			}
15862 			break;
15863 		default:
15864 			break;
15865 		}
15866 		break;
15867 	case M_FLUSH:
15868 		if (*rptr & FLUSHR)
15869 			flushq(q, FLUSHDATA);
15870 		break;
15871 	default:
15872 		/* M_CTL will be directly sent to tcp_icmp_error() */
15873 		ASSERT(DB_TYPE(mp) != M_CTL);
15874 		break;
15875 	}
15876 	/*
15877 	 * Make sure we set this bit before sending the ACK for
15878 	 * bind. Otherwise accept could possibly run and free
15879 	 * this tcp struct.
15880 	 */
15881 	putnext(q, mp);
15882 }
15883 
15884 /*
15885  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15886  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15887  * tcp_rsrv() try again.
15888  */
15889 static void
15890 tcp_ordrel_kick(void *arg)
15891 {
15892 	conn_t 	*connp = (conn_t *)arg;
15893 	tcp_t	*tcp = connp->conn_tcp;
15894 
15895 	tcp->tcp_ordrelid = 0;
15896 	tcp->tcp_timeout = B_FALSE;
15897 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15898 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15899 		qenable(tcp->tcp_rq);
15900 	}
15901 }
15902 
15903 /* ARGSUSED */
15904 static void
15905 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15906 {
15907 	conn_t	*connp = (conn_t *)arg;
15908 	tcp_t	*tcp = connp->conn_tcp;
15909 	queue_t	*q = tcp->tcp_rq;
15910 	uint_t	thwin;
15911 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15912 
15913 	freeb(mp);
15914 
15915 	TCP_STAT(tcps, tcp_rsrv_calls);
15916 
15917 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15918 		return;
15919 	}
15920 
15921 	if (tcp->tcp_fused) {
15922 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15923 
15924 		ASSERT(tcp->tcp_fused);
15925 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15926 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15927 		ASSERT(!TCP_IS_DETACHED(tcp));
15928 		ASSERT(tcp->tcp_connp->conn_sqp ==
15929 		    peer_tcp->tcp_connp->conn_sqp);
15930 
15931 		/*
15932 		 * Normally we would not get backenabled in synchronous
15933 		 * streams mode, but in case this happens, we need to plug
15934 		 * synchronous streams during our drain to prevent a race
15935 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15936 		 */
15937 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15938 		if (tcp->tcp_rcv_list != NULL)
15939 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15940 
15941 		if (peer_tcp > tcp) {
15942 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15943 			mutex_enter(&tcp->tcp_non_sq_lock);
15944 		} else {
15945 			mutex_enter(&tcp->tcp_non_sq_lock);
15946 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15947 		}
15948 
15949 		if (peer_tcp->tcp_flow_stopped &&
15950 		    (TCP_UNSENT_BYTES(peer_tcp) <=
15951 		    peer_tcp->tcp_xmit_lowater)) {
15952 			tcp_clrqfull(peer_tcp);
15953 		}
15954 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
15955 		mutex_exit(&tcp->tcp_non_sq_lock);
15956 
15957 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15958 		TCP_STAT(tcps, tcp_fusion_backenabled);
15959 		return;
15960 	}
15961 
15962 	if (canputnext(q)) {
15963 		tcp->tcp_rwnd = q->q_hiwat;
15964 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15965 		    << tcp->tcp_rcv_ws;
15966 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15967 		/*
15968 		 * Send back a window update immediately if TCP is above
15969 		 * ESTABLISHED state and the increase of the rcv window
15970 		 * that the other side knows is at least 1 MSS after flow
15971 		 * control is lifted.
15972 		 */
15973 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15974 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15975 			tcp_xmit_ctl(NULL, tcp,
15976 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15977 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15978 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
15979 		}
15980 	}
15981 	/* Handle a failure to allocate a T_ORDREL_IND here */
15982 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15983 		ASSERT(tcp->tcp_listener == NULL);
15984 		if (tcp->tcp_rcv_list != NULL) {
15985 			(void) tcp_rcv_drain(q, tcp);
15986 		}
15987 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15988 		mp = mi_tpi_ordrel_ind();
15989 		if (mp) {
15990 			tcp->tcp_ordrel_done = B_TRUE;
15991 			putnext(q, mp);
15992 			if (tcp->tcp_deferred_clean_death) {
15993 				/*
15994 				 * tcp_clean_death was deferred for
15995 				 * T_ORDREL_IND - do it now
15996 				 */
15997 				tcp->tcp_deferred_clean_death = B_FALSE;
15998 				(void) tcp_clean_death(tcp,
15999 				    tcp->tcp_client_errno, 22);
16000 			}
16001 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16002 			/*
16003 			 * If there isn't already a timer running
16004 			 * start one.  Use a 4 second
16005 			 * timer as a fallback since it can't fail.
16006 			 */
16007 			tcp->tcp_timeout = B_TRUE;
16008 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16009 			    MSEC_TO_TICK(4000));
16010 		}
16011 	}
16012 }
16013 
16014 /*
16015  * The read side service routine is called mostly when we get back-enabled as a
16016  * result of flow control relief.  Since we don't actually queue anything in
16017  * TCP, we have no data to send out of here.  What we do is clear the receive
16018  * window, and send out a window update.
16019  * This routine is also called to drive an orderly release message upstream
16020  * if the attempt in tcp_rput failed.
16021  */
16022 static void
16023 tcp_rsrv(queue_t *q)
16024 {
16025 	conn_t *connp = Q_TO_CONN(q);
16026 	tcp_t	*tcp = connp->conn_tcp;
16027 	mblk_t	*mp;
16028 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16029 
16030 	/* No code does a putq on the read side */
16031 	ASSERT(q->q_first == NULL);
16032 
16033 	/* Nothing to do for the default queue */
16034 	if (q == tcps->tcps_g_q) {
16035 		return;
16036 	}
16037 
16038 	mp = allocb(0, BPRI_HI);
16039 	if (mp == NULL) {
16040 		/*
16041 		 * We are under memory pressure. Return for now and we
16042 		 * we will be called again later.
16043 		 */
16044 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16045 			/*
16046 			 * If there isn't already a timer running
16047 			 * start one.  Use a 4 second
16048 			 * timer as a fallback since it can't fail.
16049 			 */
16050 			tcp->tcp_timeout = B_TRUE;
16051 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16052 			    MSEC_TO_TICK(4000));
16053 		}
16054 		return;
16055 	}
16056 	CONN_INC_REF(connp);
16057 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16058 	    SQTAG_TCP_RSRV);
16059 }
16060 
16061 /*
16062  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16063  * We do not allow the receive window to shrink.  After setting rwnd,
16064  * set the flow control hiwat of the stream.
16065  *
16066  * This function is called in 2 cases:
16067  *
16068  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16069  *    connection (passive open) and in tcp_rput_data() for active connect.
16070  *    This is called after tcp_mss_set() when the desired MSS value is known.
16071  *    This makes sure that our window size is a mutiple of the other side's
16072  *    MSS.
16073  * 2) Handling SO_RCVBUF option.
16074  *
16075  * It is ASSUMED that the requested size is a multiple of the current MSS.
16076  *
16077  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16078  * user requests so.
16079  */
16080 static int
16081 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16082 {
16083 	uint32_t	mss = tcp->tcp_mss;
16084 	uint32_t	old_max_rwnd;
16085 	uint32_t	max_transmittable_rwnd;
16086 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16087 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16088 
16089 	if (tcp->tcp_fused) {
16090 		size_t sth_hiwat;
16091 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16092 
16093 		ASSERT(peer_tcp != NULL);
16094 		/*
16095 		 * Record the stream head's high water mark for
16096 		 * this endpoint; this is used for flow-control
16097 		 * purposes in tcp_fuse_output().
16098 		 */
16099 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16100 		if (!tcp_detached)
16101 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16102 
16103 		/*
16104 		 * In the fusion case, the maxpsz stream head value of
16105 		 * our peer is set according to its send buffer size
16106 		 * and our receive buffer size; since the latter may
16107 		 * have changed we need to update the peer's maxpsz.
16108 		 */
16109 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16110 		return (rwnd);
16111 	}
16112 
16113 	if (tcp_detached)
16114 		old_max_rwnd = tcp->tcp_rwnd;
16115 	else
16116 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16117 
16118 	/*
16119 	 * Insist on a receive window that is at least
16120 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16121 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16122 	 * and delayed acknowledgement.
16123 	 */
16124 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16125 
16126 	/*
16127 	 * If window size info has already been exchanged, TCP should not
16128 	 * shrink the window.  Shrinking window is doable if done carefully.
16129 	 * We may add that support later.  But so far there is not a real
16130 	 * need to do that.
16131 	 */
16132 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16133 		/* MSS may have changed, do a round up again. */
16134 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16135 	}
16136 
16137 	/*
16138 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16139 	 * can be applied even before the window scale option is decided.
16140 	 */
16141 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16142 	if (rwnd > max_transmittable_rwnd) {
16143 		rwnd = max_transmittable_rwnd -
16144 		    (max_transmittable_rwnd % mss);
16145 		if (rwnd < mss)
16146 			rwnd = max_transmittable_rwnd;
16147 		/*
16148 		 * If we're over the limit we may have to back down tcp_rwnd.
16149 		 * The increment below won't work for us. So we set all three
16150 		 * here and the increment below will have no effect.
16151 		 */
16152 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16153 	}
16154 	if (tcp->tcp_localnet) {
16155 		tcp->tcp_rack_abs_max =
16156 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16157 	} else {
16158 		/*
16159 		 * For a remote host on a different subnet (through a router),
16160 		 * we ack every other packet to be conforming to RFC1122.
16161 		 * tcp_deferred_acks_max is default to 2.
16162 		 */
16163 		tcp->tcp_rack_abs_max =
16164 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16165 	}
16166 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16167 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16168 	else
16169 		tcp->tcp_rack_cur_max = 0;
16170 	/*
16171 	 * Increment the current rwnd by the amount the maximum grew (we
16172 	 * can not overwrite it since we might be in the middle of a
16173 	 * connection.)
16174 	 */
16175 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16176 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16177 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16178 		tcp->tcp_cwnd_max = rwnd;
16179 
16180 	if (tcp_detached)
16181 		return (rwnd);
16182 	/*
16183 	 * We set the maximum receive window into rq->q_hiwat.
16184 	 * This is not actually used for flow control.
16185 	 */
16186 	tcp->tcp_rq->q_hiwat = rwnd;
16187 	/*
16188 	 * Set the Stream head high water mark. This doesn't have to be
16189 	 * here, since we are simply using default values, but we would
16190 	 * prefer to choose these values algorithmically, with a likely
16191 	 * relationship to rwnd.
16192 	 */
16193 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16194 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16195 	return (rwnd);
16196 }
16197 
16198 /*
16199  * Return SNMP stuff in buffer in mpdata.
16200  */
16201 int
16202 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16203 {
16204 	mblk_t			*mpdata;
16205 	mblk_t			*mp_conn_ctl = NULL;
16206 	mblk_t			*mp_conn_tail;
16207 	mblk_t			*mp_attr_ctl = NULL;
16208 	mblk_t			*mp_attr_tail;
16209 	mblk_t			*mp6_conn_ctl = NULL;
16210 	mblk_t			*mp6_conn_tail;
16211 	mblk_t			*mp6_attr_ctl = NULL;
16212 	mblk_t			*mp6_attr_tail;
16213 	struct opthdr		*optp;
16214 	mib2_tcpConnEntry_t	tce;
16215 	mib2_tcp6ConnEntry_t	tce6;
16216 	mib2_transportMLPEntry_t mlp;
16217 	connf_t			*connfp;
16218 	conn_t			*connp;
16219 	int			i;
16220 	boolean_t 		ispriv;
16221 	zoneid_t 		zoneid;
16222 	int			v4_conn_idx;
16223 	int			v6_conn_idx;
16224 	tcp_stack_t		*tcps = Q_TO_TCP(q)->tcp_tcps;
16225 	ip_stack_t	*ipst;
16226 
16227 	if (mpctl == NULL ||
16228 	    (mpdata = mpctl->b_cont) == NULL ||
16229 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16230 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16231 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16232 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16233 		freemsg(mp_conn_ctl);
16234 		freemsg(mp_attr_ctl);
16235 		freemsg(mp6_conn_ctl);
16236 		freemsg(mp6_attr_ctl);
16237 		return (0);
16238 	}
16239 
16240 	/* build table of connections -- need count in fixed part */
16241 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16242 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16243 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16244 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16245 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16246 
16247 	ispriv =
16248 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16249 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16250 
16251 	v4_conn_idx = v6_conn_idx = 0;
16252 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16253 
16254 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16255 		ipst = tcps->tcps_netstack->netstack_ip;
16256 
16257 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16258 
16259 		connp = NULL;
16260 
16261 		while ((connp =
16262 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16263 			tcp_t *tcp;
16264 			boolean_t needattr;
16265 
16266 			if (connp->conn_zoneid != zoneid)
16267 				continue;	/* not in this zone */
16268 
16269 			tcp = connp->conn_tcp;
16270 			UPDATE_MIB(&tcps->tcps_mib,
16271 			    tcpHCInSegs, tcp->tcp_ibsegs);
16272 			tcp->tcp_ibsegs = 0;
16273 			UPDATE_MIB(&tcps->tcps_mib,
16274 			    tcpHCOutSegs, tcp->tcp_obsegs);
16275 			tcp->tcp_obsegs = 0;
16276 
16277 			tce6.tcp6ConnState = tce.tcpConnState =
16278 			    tcp_snmp_state(tcp);
16279 			if (tce.tcpConnState == MIB2_TCP_established ||
16280 			    tce.tcpConnState == MIB2_TCP_closeWait)
16281 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16282 
16283 			needattr = B_FALSE;
16284 			bzero(&mlp, sizeof (mlp));
16285 			if (connp->conn_mlp_type != mlptSingle) {
16286 				if (connp->conn_mlp_type == mlptShared ||
16287 				    connp->conn_mlp_type == mlptBoth)
16288 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16289 				if (connp->conn_mlp_type == mlptPrivate ||
16290 				    connp->conn_mlp_type == mlptBoth)
16291 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16292 				needattr = B_TRUE;
16293 			}
16294 			if (connp->conn_peercred != NULL) {
16295 				ts_label_t *tsl;
16296 
16297 				tsl = crgetlabel(connp->conn_peercred);
16298 				mlp.tme_doi = label2doi(tsl);
16299 				mlp.tme_label = *label2bslabel(tsl);
16300 				needattr = B_TRUE;
16301 			}
16302 
16303 			/* Create a message to report on IPv6 entries */
16304 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16305 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16306 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16307 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16308 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16309 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16310 			/* Don't want just anybody seeing these... */
16311 			if (ispriv) {
16312 				tce6.tcp6ConnEntryInfo.ce_snxt =
16313 				    tcp->tcp_snxt;
16314 				tce6.tcp6ConnEntryInfo.ce_suna =
16315 				    tcp->tcp_suna;
16316 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16317 				    tcp->tcp_rnxt;
16318 				tce6.tcp6ConnEntryInfo.ce_rack =
16319 				    tcp->tcp_rack;
16320 			} else {
16321 				/*
16322 				 * Netstat, unfortunately, uses this to
16323 				 * get send/receive queue sizes.  How to fix?
16324 				 * Why not compute the difference only?
16325 				 */
16326 				tce6.tcp6ConnEntryInfo.ce_snxt =
16327 				    tcp->tcp_snxt - tcp->tcp_suna;
16328 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16329 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16330 				    tcp->tcp_rnxt - tcp->tcp_rack;
16331 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16332 			}
16333 
16334 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16335 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16336 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16337 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16338 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16339 
16340 			tce6.tcp6ConnCreationProcess =
16341 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16342 			    tcp->tcp_cpid;
16343 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16344 
16345 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16346 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16347 
16348 			mlp.tme_connidx = v6_conn_idx++;
16349 			if (needattr)
16350 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16351 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16352 			}
16353 			/*
16354 			 * Create an IPv4 table entry for IPv4 entries and also
16355 			 * for IPv6 entries which are bound to in6addr_any
16356 			 * but don't have IPV6_V6ONLY set.
16357 			 * (i.e. anything an IPv4 peer could connect to)
16358 			 */
16359 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16360 			    (tcp->tcp_state <= TCPS_LISTEN &&
16361 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16362 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16363 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16364 					tce.tcpConnRemAddress = INADDR_ANY;
16365 					tce.tcpConnLocalAddress = INADDR_ANY;
16366 				} else {
16367 					tce.tcpConnRemAddress =
16368 					    tcp->tcp_remote;
16369 					tce.tcpConnLocalAddress =
16370 					    tcp->tcp_ip_src;
16371 				}
16372 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16373 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16374 				/* Don't want just anybody seeing these... */
16375 				if (ispriv) {
16376 					tce.tcpConnEntryInfo.ce_snxt =
16377 					    tcp->tcp_snxt;
16378 					tce.tcpConnEntryInfo.ce_suna =
16379 					    tcp->tcp_suna;
16380 					tce.tcpConnEntryInfo.ce_rnxt =
16381 					    tcp->tcp_rnxt;
16382 					tce.tcpConnEntryInfo.ce_rack =
16383 					    tcp->tcp_rack;
16384 				} else {
16385 					/*
16386 					 * Netstat, unfortunately, uses this to
16387 					 * get send/receive queue sizes.  How
16388 					 * to fix?
16389 					 * Why not compute the difference only?
16390 					 */
16391 					tce.tcpConnEntryInfo.ce_snxt =
16392 					    tcp->tcp_snxt - tcp->tcp_suna;
16393 					tce.tcpConnEntryInfo.ce_suna = 0;
16394 					tce.tcpConnEntryInfo.ce_rnxt =
16395 					    tcp->tcp_rnxt - tcp->tcp_rack;
16396 					tce.tcpConnEntryInfo.ce_rack = 0;
16397 				}
16398 
16399 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16400 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16401 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16402 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16403 				tce.tcpConnEntryInfo.ce_state =
16404 				    tcp->tcp_state;
16405 
16406 				tce.tcpConnCreationProcess =
16407 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16408 				    tcp->tcp_cpid;
16409 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16410 
16411 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16412 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16413 
16414 				mlp.tme_connidx = v4_conn_idx++;
16415 				if (needattr)
16416 					(void) snmp_append_data2(
16417 					    mp_attr_ctl->b_cont,
16418 					    &mp_attr_tail, (char *)&mlp,
16419 					    sizeof (mlp));
16420 			}
16421 		}
16422 	}
16423 
16424 	/* fixed length structure for IPv4 and IPv6 counters */
16425 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16426 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16427 	    sizeof (mib2_tcp6ConnEntry_t));
16428 	/* synchronize 32- and 64-bit counters */
16429 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16430 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16431 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16432 	optp->level = MIB2_TCP;
16433 	optp->name = 0;
16434 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16435 	    sizeof (tcps->tcps_mib));
16436 	optp->len = msgdsize(mpdata);
16437 	qreply(q, mpctl);
16438 
16439 	/* table of connections... */
16440 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16441 	    sizeof (struct T_optmgmt_ack)];
16442 	optp->level = MIB2_TCP;
16443 	optp->name = MIB2_TCP_CONN;
16444 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16445 	qreply(q, mp_conn_ctl);
16446 
16447 	/* table of MLP attributes... */
16448 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16449 	    sizeof (struct T_optmgmt_ack)];
16450 	optp->level = MIB2_TCP;
16451 	optp->name = EXPER_XPORT_MLP;
16452 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16453 	if (optp->len == 0)
16454 		freemsg(mp_attr_ctl);
16455 	else
16456 		qreply(q, mp_attr_ctl);
16457 
16458 	/* table of IPv6 connections... */
16459 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16460 	    sizeof (struct T_optmgmt_ack)];
16461 	optp->level = MIB2_TCP6;
16462 	optp->name = MIB2_TCP6_CONN;
16463 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16464 	qreply(q, mp6_conn_ctl);
16465 
16466 	/* table of IPv6 MLP attributes... */
16467 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16468 	    sizeof (struct T_optmgmt_ack)];
16469 	optp->level = MIB2_TCP6;
16470 	optp->name = EXPER_XPORT_MLP;
16471 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16472 	if (optp->len == 0)
16473 		freemsg(mp6_attr_ctl);
16474 	else
16475 		qreply(q, mp6_attr_ctl);
16476 	return (1);
16477 }
16478 
16479 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16480 /* ARGSUSED */
16481 int
16482 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16483 {
16484 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16485 
16486 	switch (level) {
16487 	case MIB2_TCP:
16488 		switch (name) {
16489 		case 13:
16490 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16491 				return (0);
16492 			/* TODO: delete entry defined by tce */
16493 			return (1);
16494 		default:
16495 			return (0);
16496 		}
16497 	default:
16498 		return (1);
16499 	}
16500 }
16501 
16502 /* Translate TCP state to MIB2 TCP state. */
16503 static int
16504 tcp_snmp_state(tcp_t *tcp)
16505 {
16506 	if (tcp == NULL)
16507 		return (0);
16508 
16509 	switch (tcp->tcp_state) {
16510 	case TCPS_CLOSED:
16511 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16512 	case TCPS_BOUND:
16513 		return (MIB2_TCP_closed);
16514 	case TCPS_LISTEN:
16515 		return (MIB2_TCP_listen);
16516 	case TCPS_SYN_SENT:
16517 		return (MIB2_TCP_synSent);
16518 	case TCPS_SYN_RCVD:
16519 		return (MIB2_TCP_synReceived);
16520 	case TCPS_ESTABLISHED:
16521 		return (MIB2_TCP_established);
16522 	case TCPS_CLOSE_WAIT:
16523 		return (MIB2_TCP_closeWait);
16524 	case TCPS_FIN_WAIT_1:
16525 		return (MIB2_TCP_finWait1);
16526 	case TCPS_CLOSING:
16527 		return (MIB2_TCP_closing);
16528 	case TCPS_LAST_ACK:
16529 		return (MIB2_TCP_lastAck);
16530 	case TCPS_FIN_WAIT_2:
16531 		return (MIB2_TCP_finWait2);
16532 	case TCPS_TIME_WAIT:
16533 		return (MIB2_TCP_timeWait);
16534 	default:
16535 		return (0);
16536 	}
16537 }
16538 
16539 static char tcp_report_header[] =
16540 	"TCP     " MI_COL_HDRPAD_STR
16541 	"zone dest            snxt     suna     "
16542 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16543 	"recent   [lport,fport] state";
16544 
16545 /*
16546  * TCP status report triggered via the Named Dispatch mechanism.
16547  */
16548 /* ARGSUSED */
16549 static void
16550 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16551     cred_t *cr)
16552 {
16553 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16554 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16555 	char cflag;
16556 	in6_addr_t	v6dst;
16557 	char buf[80];
16558 	uint_t print_len, buf_len;
16559 
16560 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16561 	if (buf_len <= 0)
16562 		return;
16563 
16564 	if (hashval >= 0)
16565 		(void) sprintf(hash, "%03d ", hashval);
16566 	else
16567 		hash[0] = '\0';
16568 
16569 	/*
16570 	 * Note that we use the remote address in the tcp_b  structure.
16571 	 * This means that it will print out the real destination address,
16572 	 * not the next hop's address if source routing is used.  This
16573 	 * avoid the confusion on the output because user may not
16574 	 * know that source routing is used for a connection.
16575 	 */
16576 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16577 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16578 	} else {
16579 		v6dst = tcp->tcp_remote_v6;
16580 	}
16581 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16582 	/*
16583 	 * the ispriv checks are so that normal users cannot determine
16584 	 * sequence number information using NDD.
16585 	 */
16586 
16587 	if (TCP_IS_DETACHED(tcp))
16588 		cflag = '*';
16589 	else
16590 		cflag = ' ';
16591 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16592 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16593 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16594 	    hash,
16595 	    (void *)tcp,
16596 	    tcp->tcp_connp->conn_zoneid,
16597 	    addrbuf,
16598 	    (ispriv) ? tcp->tcp_snxt : 0,
16599 	    (ispriv) ? tcp->tcp_suna : 0,
16600 	    tcp->tcp_swnd,
16601 	    (ispriv) ? tcp->tcp_rnxt : 0,
16602 	    (ispriv) ? tcp->tcp_rack : 0,
16603 	    tcp->tcp_rwnd,
16604 	    tcp->tcp_rto,
16605 	    tcp->tcp_mss,
16606 	    tcp->tcp_snd_ws_ok,
16607 	    tcp->tcp_snd_ws,
16608 	    tcp->tcp_rcv_ws,
16609 	    tcp->tcp_snd_ts_ok,
16610 	    tcp->tcp_ts_recent,
16611 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16612 	if (print_len < buf_len) {
16613 		((mblk_t *)mp)->b_wptr += print_len;
16614 	} else {
16615 		((mblk_t *)mp)->b_wptr += buf_len;
16616 	}
16617 }
16618 
16619 /*
16620  * TCP status report (for listeners only) triggered via the Named Dispatch
16621  * mechanism.
16622  */
16623 /* ARGSUSED */
16624 static void
16625 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16626 {
16627 	char addrbuf[INET6_ADDRSTRLEN];
16628 	in6_addr_t	v6dst;
16629 	uint_t print_len, buf_len;
16630 
16631 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16632 	if (buf_len <= 0)
16633 		return;
16634 
16635 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16636 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16637 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16638 	} else {
16639 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16640 		    addrbuf, sizeof (addrbuf));
16641 	}
16642 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16643 	    "%03d "
16644 	    MI_COL_PTRFMT_STR
16645 	    "%d %s %05u %08u %d/%d/%d%c\n",
16646 	    hashval, (void *)tcp,
16647 	    tcp->tcp_connp->conn_zoneid,
16648 	    addrbuf,
16649 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16650 	    tcp->tcp_conn_req_seqnum,
16651 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16652 	    tcp->tcp_conn_req_max,
16653 	    tcp->tcp_syn_defense ? '*' : ' ');
16654 	if (print_len < buf_len) {
16655 		((mblk_t *)mp)->b_wptr += print_len;
16656 	} else {
16657 		((mblk_t *)mp)->b_wptr += buf_len;
16658 	}
16659 }
16660 
16661 /* TCP status report triggered via the Named Dispatch mechanism. */
16662 /* ARGSUSED */
16663 static int
16664 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16665 {
16666 	tcp_t	*tcp;
16667 	int	i;
16668 	conn_t	*connp;
16669 	connf_t	*connfp;
16670 	zoneid_t zoneid;
16671 	tcp_stack_t *tcps;
16672 	ip_stack_t *ipst;
16673 
16674 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16675 	tcps = Q_TO_TCP(q)->tcp_tcps;
16676 
16677 	/*
16678 	 * Because of the ndd constraint, at most we can have 64K buffer
16679 	 * to put in all TCP info.  So to be more efficient, just
16680 	 * allocate a 64K buffer here, assuming we need that large buffer.
16681 	 * This may be a problem as any user can read tcp_status.  Therefore
16682 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16683 	 * This should be OK as normal users should not do this too often.
16684 	 */
16685 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16686 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16687 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16688 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16689 			return (0);
16690 		}
16691 	}
16692 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16693 		/* The following may work even if we cannot get a large buf. */
16694 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16695 		return (0);
16696 	}
16697 
16698 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16699 
16700 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16701 
16702 		ipst = tcps->tcps_netstack->netstack_ip;
16703 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16704 
16705 		connp = NULL;
16706 
16707 		while ((connp =
16708 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16709 			tcp = connp->conn_tcp;
16710 			if (zoneid != GLOBAL_ZONEID &&
16711 			    zoneid != connp->conn_zoneid)
16712 				continue;
16713 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16714 			    cr);
16715 		}
16716 
16717 	}
16718 
16719 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16720 	return (0);
16721 }
16722 
16723 /* TCP status report triggered via the Named Dispatch mechanism. */
16724 /* ARGSUSED */
16725 static int
16726 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16727 {
16728 	tf_t	*tbf;
16729 	tcp_t	*tcp;
16730 	int	i;
16731 	zoneid_t zoneid;
16732 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16733 
16734 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16735 
16736 	/* Refer to comments in tcp_status_report(). */
16737 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16738 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16739 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16740 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16741 			return (0);
16742 		}
16743 	}
16744 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16745 		/* The following may work even if we cannot get a large buf. */
16746 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16747 		return (0);
16748 	}
16749 
16750 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16751 
16752 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16753 		tbf = &tcps->tcps_bind_fanout[i];
16754 		mutex_enter(&tbf->tf_lock);
16755 		for (tcp = tbf->tf_tcp; tcp != NULL;
16756 		    tcp = tcp->tcp_bind_hash) {
16757 			if (zoneid != GLOBAL_ZONEID &&
16758 			    zoneid != tcp->tcp_connp->conn_zoneid)
16759 				continue;
16760 			CONN_INC_REF(tcp->tcp_connp);
16761 			tcp_report_item(mp->b_cont, tcp, i,
16762 			    Q_TO_TCP(q), cr);
16763 			CONN_DEC_REF(tcp->tcp_connp);
16764 		}
16765 		mutex_exit(&tbf->tf_lock);
16766 	}
16767 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16768 	return (0);
16769 }
16770 
16771 /* TCP status report triggered via the Named Dispatch mechanism. */
16772 /* ARGSUSED */
16773 static int
16774 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16775 {
16776 	connf_t	*connfp;
16777 	conn_t	*connp;
16778 	tcp_t	*tcp;
16779 	int	i;
16780 	zoneid_t zoneid;
16781 	tcp_stack_t *tcps;
16782 	ip_stack_t	*ipst;
16783 
16784 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16785 	tcps = Q_TO_TCP(q)->tcp_tcps;
16786 
16787 	/* Refer to comments in tcp_status_report(). */
16788 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16789 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16790 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16791 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16792 			return (0);
16793 		}
16794 	}
16795 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16796 		/* The following may work even if we cannot get a large buf. */
16797 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16798 		return (0);
16799 	}
16800 
16801 	(void) mi_mpprintf(mp,
16802 	    "    TCP    " MI_COL_HDRPAD_STR
16803 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16804 
16805 	ipst = tcps->tcps_netstack->netstack_ip;
16806 
16807 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16808 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16809 		connp = NULL;
16810 		while ((connp =
16811 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16812 			tcp = connp->conn_tcp;
16813 			if (zoneid != GLOBAL_ZONEID &&
16814 			    zoneid != connp->conn_zoneid)
16815 				continue;
16816 			tcp_report_listener(mp->b_cont, tcp, i);
16817 		}
16818 	}
16819 
16820 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16821 	return (0);
16822 }
16823 
16824 /* TCP status report triggered via the Named Dispatch mechanism. */
16825 /* ARGSUSED */
16826 static int
16827 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16828 {
16829 	connf_t	*connfp;
16830 	conn_t	*connp;
16831 	tcp_t	*tcp;
16832 	int	i;
16833 	zoneid_t zoneid;
16834 	tcp_stack_t *tcps;
16835 	ip_stack_t *ipst;
16836 
16837 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16838 	tcps = Q_TO_TCP(q)->tcp_tcps;
16839 	ipst = tcps->tcps_netstack->netstack_ip;
16840 
16841 	/* Refer to comments in tcp_status_report(). */
16842 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16843 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16844 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16845 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16846 			return (0);
16847 		}
16848 	}
16849 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16850 		/* The following may work even if we cannot get a large buf. */
16851 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16852 		return (0);
16853 	}
16854 
16855 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16856 	    ipst->ips_ipcl_conn_fanout_size);
16857 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16858 
16859 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16860 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16861 		connp = NULL;
16862 		while ((connp =
16863 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16864 			tcp = connp->conn_tcp;
16865 			if (zoneid != GLOBAL_ZONEID &&
16866 			    zoneid != connp->conn_zoneid)
16867 				continue;
16868 			tcp_report_item(mp->b_cont, tcp, i,
16869 			    Q_TO_TCP(q), cr);
16870 		}
16871 	}
16872 
16873 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16874 	return (0);
16875 }
16876 
16877 /* TCP status report triggered via the Named Dispatch mechanism. */
16878 /* ARGSUSED */
16879 static int
16880 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16881 {
16882 	tf_t	*tf;
16883 	tcp_t	*tcp;
16884 	int	i;
16885 	zoneid_t zoneid;
16886 	tcp_stack_t	*tcps;
16887 
16888 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16889 	tcps = Q_TO_TCP(q)->tcp_tcps;
16890 
16891 	/* Refer to comments in tcp_status_report(). */
16892 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16893 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16894 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16895 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16896 			return (0);
16897 		}
16898 	}
16899 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16900 		/* The following may work even if we cannot get a large buf. */
16901 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16902 		return (0);
16903 	}
16904 
16905 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16906 
16907 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16908 		tf = &tcps->tcps_acceptor_fanout[i];
16909 		mutex_enter(&tf->tf_lock);
16910 		for (tcp = tf->tf_tcp; tcp != NULL;
16911 		    tcp = tcp->tcp_acceptor_hash) {
16912 			if (zoneid != GLOBAL_ZONEID &&
16913 			    zoneid != tcp->tcp_connp->conn_zoneid)
16914 				continue;
16915 			tcp_report_item(mp->b_cont, tcp, i,
16916 			    Q_TO_TCP(q), cr);
16917 		}
16918 		mutex_exit(&tf->tf_lock);
16919 	}
16920 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16921 	return (0);
16922 }
16923 
16924 /*
16925  * tcp_timer is the timer service routine.  It handles the retransmission,
16926  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16927  * from the state of the tcp instance what kind of action needs to be done
16928  * at the time it is called.
16929  */
16930 static void
16931 tcp_timer(void *arg)
16932 {
16933 	mblk_t		*mp;
16934 	clock_t		first_threshold;
16935 	clock_t		second_threshold;
16936 	clock_t		ms;
16937 	uint32_t	mss;
16938 	conn_t		*connp = (conn_t *)arg;
16939 	tcp_t		*tcp = connp->conn_tcp;
16940 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16941 
16942 	tcp->tcp_timer_tid = 0;
16943 
16944 	if (tcp->tcp_fused)
16945 		return;
16946 
16947 	first_threshold =  tcp->tcp_first_timer_threshold;
16948 	second_threshold = tcp->tcp_second_timer_threshold;
16949 	switch (tcp->tcp_state) {
16950 	case TCPS_IDLE:
16951 	case TCPS_BOUND:
16952 	case TCPS_LISTEN:
16953 		return;
16954 	case TCPS_SYN_RCVD: {
16955 		tcp_t	*listener = tcp->tcp_listener;
16956 
16957 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16958 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16959 			/* it's our first timeout */
16960 			tcp->tcp_syn_rcvd_timeout = 1;
16961 			mutex_enter(&listener->tcp_eager_lock);
16962 			listener->tcp_syn_rcvd_timeout++;
16963 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16964 				/*
16965 				 * Make this eager available for drop if we
16966 				 * need to drop one to accomodate a new
16967 				 * incoming SYN request.
16968 				 */
16969 				MAKE_DROPPABLE(listener, tcp);
16970 			}
16971 			if (!listener->tcp_syn_defense &&
16972 			    (listener->tcp_syn_rcvd_timeout >
16973 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16974 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16975 				/* We may be under attack. Put on a defense. */
16976 				listener->tcp_syn_defense = B_TRUE;
16977 				cmn_err(CE_WARN, "High TCP connect timeout "
16978 				    "rate! System (port %d) may be under a "
16979 				    "SYN flood attack!",
16980 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16981 
16982 				listener->tcp_ip_addr_cache = kmem_zalloc(
16983 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16984 				    KM_NOSLEEP);
16985 			}
16986 			mutex_exit(&listener->tcp_eager_lock);
16987 		} else if (listener != NULL) {
16988 			mutex_enter(&listener->tcp_eager_lock);
16989 			tcp->tcp_syn_rcvd_timeout++;
16990 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16991 			    !tcp->tcp_closemp_used) {
16992 				/*
16993 				 * This is our second timeout. Put the tcp in
16994 				 * the list of droppable eagers to allow it to
16995 				 * be dropped, if needed. We don't check
16996 				 * whether tcp_dontdrop is set or not to
16997 				 * protect ourselve from a SYN attack where a
16998 				 * remote host can spoof itself as one of the
16999 				 * good IP source and continue to hold
17000 				 * resources too long.
17001 				 */
17002 				MAKE_DROPPABLE(listener, tcp);
17003 			}
17004 			mutex_exit(&listener->tcp_eager_lock);
17005 		}
17006 	}
17007 		/* FALLTHRU */
17008 	case TCPS_SYN_SENT:
17009 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17010 		second_threshold = tcp->tcp_second_ctimer_threshold;
17011 		break;
17012 	case TCPS_ESTABLISHED:
17013 	case TCPS_FIN_WAIT_1:
17014 	case TCPS_CLOSING:
17015 	case TCPS_CLOSE_WAIT:
17016 	case TCPS_LAST_ACK:
17017 		/* If we have data to rexmit */
17018 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17019 			clock_t	time_to_wait;
17020 
17021 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17022 			if (!tcp->tcp_xmit_head)
17023 				break;
17024 			time_to_wait = lbolt -
17025 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17026 			time_to_wait = tcp->tcp_rto -
17027 			    TICK_TO_MSEC(time_to_wait);
17028 			/*
17029 			 * If the timer fires too early, 1 clock tick earlier,
17030 			 * restart the timer.
17031 			 */
17032 			if (time_to_wait > msec_per_tick) {
17033 				TCP_STAT(tcps, tcp_timer_fire_early);
17034 				TCP_TIMER_RESTART(tcp, time_to_wait);
17035 				return;
17036 			}
17037 			/*
17038 			 * When we probe zero windows, we force the swnd open.
17039 			 * If our peer acks with a closed window swnd will be
17040 			 * set to zero by tcp_rput(). As long as we are
17041 			 * receiving acks tcp_rput will
17042 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17043 			 * first and second interval actions.  NOTE: the timer
17044 			 * interval is allowed to continue its exponential
17045 			 * backoff.
17046 			 */
17047 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17048 				if (tcp->tcp_debug) {
17049 					(void) strlog(TCP_MOD_ID, 0, 1,
17050 					    SL_TRACE, "tcp_timer: zero win");
17051 				}
17052 			} else {
17053 				/*
17054 				 * After retransmission, we need to do
17055 				 * slow start.  Set the ssthresh to one
17056 				 * half of current effective window and
17057 				 * cwnd to one MSS.  Also reset
17058 				 * tcp_cwnd_cnt.
17059 				 *
17060 				 * Note that if tcp_ssthresh is reduced because
17061 				 * of ECN, do not reduce it again unless it is
17062 				 * already one window of data away (tcp_cwr
17063 				 * should then be cleared) or this is a
17064 				 * timeout for a retransmitted segment.
17065 				 */
17066 				uint32_t npkt;
17067 
17068 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17069 					npkt = ((tcp->tcp_timer_backoff ?
17070 					    tcp->tcp_cwnd_ssthresh :
17071 					    tcp->tcp_snxt -
17072 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17073 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17074 					    tcp->tcp_mss;
17075 				}
17076 				tcp->tcp_cwnd = tcp->tcp_mss;
17077 				tcp->tcp_cwnd_cnt = 0;
17078 				if (tcp->tcp_ecn_ok) {
17079 					tcp->tcp_cwr = B_TRUE;
17080 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17081 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17082 				}
17083 			}
17084 			break;
17085 		}
17086 		/*
17087 		 * We have something to send yet we cannot send.  The
17088 		 * reason can be:
17089 		 *
17090 		 * 1. Zero send window: we need to do zero window probe.
17091 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17092 		 * segments.
17093 		 * 3. SWS avoidance: receiver may have shrunk window,
17094 		 * reset our knowledge.
17095 		 *
17096 		 * Note that condition 2 can happen with either 1 or
17097 		 * 3.  But 1 and 3 are exclusive.
17098 		 */
17099 		if (tcp->tcp_unsent != 0) {
17100 			if (tcp->tcp_cwnd == 0) {
17101 				/*
17102 				 * Set tcp_cwnd to 1 MSS so that a
17103 				 * new segment can be sent out.  We
17104 				 * are "clocking out" new data when
17105 				 * the network is really congested.
17106 				 */
17107 				ASSERT(tcp->tcp_ecn_ok);
17108 				tcp->tcp_cwnd = tcp->tcp_mss;
17109 			}
17110 			if (tcp->tcp_swnd == 0) {
17111 				/* Extend window for zero window probe */
17112 				tcp->tcp_swnd++;
17113 				tcp->tcp_zero_win_probe = B_TRUE;
17114 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17115 			} else {
17116 				/*
17117 				 * Handle timeout from sender SWS avoidance.
17118 				 * Reset our knowledge of the max send window
17119 				 * since the receiver might have reduced its
17120 				 * receive buffer.  Avoid setting tcp_max_swnd
17121 				 * to one since that will essentially disable
17122 				 * the SWS checks.
17123 				 *
17124 				 * Note that since we don't have a SWS
17125 				 * state variable, if the timeout is set
17126 				 * for ECN but not for SWS, this
17127 				 * code will also be executed.  This is
17128 				 * fine as tcp_max_swnd is updated
17129 				 * constantly and it will not affect
17130 				 * anything.
17131 				 */
17132 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17133 			}
17134 			tcp_wput_data(tcp, NULL, B_FALSE);
17135 			return;
17136 		}
17137 		/* Is there a FIN that needs to be to re retransmitted? */
17138 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17139 		    !tcp->tcp_fin_acked)
17140 			break;
17141 		/* Nothing to do, return without restarting timer. */
17142 		TCP_STAT(tcps, tcp_timer_fire_miss);
17143 		return;
17144 	case TCPS_FIN_WAIT_2:
17145 		/*
17146 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17147 		 * We waited some time for for peer's FIN, but it hasn't
17148 		 * arrived.  We flush the connection now to avoid
17149 		 * case where the peer has rebooted.
17150 		 */
17151 		if (TCP_IS_DETACHED(tcp)) {
17152 			(void) tcp_clean_death(tcp, 0, 23);
17153 		} else {
17154 			TCP_TIMER_RESTART(tcp,
17155 			    tcps->tcps_fin_wait_2_flush_interval);
17156 		}
17157 		return;
17158 	case TCPS_TIME_WAIT:
17159 		(void) tcp_clean_death(tcp, 0, 24);
17160 		return;
17161 	default:
17162 		if (tcp->tcp_debug) {
17163 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17164 			    "tcp_timer: strange state (%d) %s",
17165 			    tcp->tcp_state, tcp_display(tcp, NULL,
17166 			    DISP_PORT_ONLY));
17167 		}
17168 		return;
17169 	}
17170 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17171 		/*
17172 		 * For zero window probe, we need to send indefinitely,
17173 		 * unless we have not heard from the other side for some
17174 		 * time...
17175 		 */
17176 		if ((tcp->tcp_zero_win_probe == 0) ||
17177 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17178 		    second_threshold)) {
17179 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17180 			/*
17181 			 * If TCP is in SYN_RCVD state, send back a
17182 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17183 			 * should be zero in TCPS_SYN_RCVD state.
17184 			 */
17185 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17186 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17187 				    "in SYN_RCVD",
17188 				    tcp, tcp->tcp_snxt,
17189 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17190 			}
17191 			(void) tcp_clean_death(tcp,
17192 			    tcp->tcp_client_errno ?
17193 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17194 			return;
17195 		} else {
17196 			/*
17197 			 * Set tcp_ms_we_have_waited to second_threshold
17198 			 * so that in next timeout, we will do the above
17199 			 * check (lbolt - tcp_last_recv_time).  This is
17200 			 * also to avoid overflow.
17201 			 *
17202 			 * We don't need to decrement tcp_timer_backoff
17203 			 * to avoid overflow because it will be decremented
17204 			 * later if new timeout value is greater than
17205 			 * tcp_rexmit_interval_max.  In the case when
17206 			 * tcp_rexmit_interval_max is greater than
17207 			 * second_threshold, it means that we will wait
17208 			 * longer than second_threshold to send the next
17209 			 * window probe.
17210 			 */
17211 			tcp->tcp_ms_we_have_waited = second_threshold;
17212 		}
17213 	} else if (ms > first_threshold) {
17214 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17215 		    tcp->tcp_xmit_head != NULL) {
17216 			tcp->tcp_xmit_head =
17217 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17218 		}
17219 		/*
17220 		 * We have been retransmitting for too long...  The RTT
17221 		 * we calculated is probably incorrect.  Reinitialize it.
17222 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17223 		 * tcp_rtt_update so that we won't accidentally cache a
17224 		 * bad value.  But only do this if this is not a zero
17225 		 * window probe.
17226 		 */
17227 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17228 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17229 			    (tcp->tcp_rtt_sa >> 5);
17230 			tcp->tcp_rtt_sa = 0;
17231 			tcp_ip_notify(tcp);
17232 			tcp->tcp_rtt_update = 0;
17233 		}
17234 	}
17235 	tcp->tcp_timer_backoff++;
17236 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17237 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17238 	    tcps->tcps_rexmit_interval_min) {
17239 		/*
17240 		 * This means the original RTO is tcp_rexmit_interval_min.
17241 		 * So we will use tcp_rexmit_interval_min as the RTO value
17242 		 * and do the backoff.
17243 		 */
17244 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17245 	} else {
17246 		ms <<= tcp->tcp_timer_backoff;
17247 	}
17248 	if (ms > tcps->tcps_rexmit_interval_max) {
17249 		ms = tcps->tcps_rexmit_interval_max;
17250 		/*
17251 		 * ms is at max, decrement tcp_timer_backoff to avoid
17252 		 * overflow.
17253 		 */
17254 		tcp->tcp_timer_backoff--;
17255 	}
17256 	tcp->tcp_ms_we_have_waited += ms;
17257 	if (tcp->tcp_zero_win_probe == 0) {
17258 		tcp->tcp_rto = ms;
17259 	}
17260 	TCP_TIMER_RESTART(tcp, ms);
17261 	/*
17262 	 * This is after a timeout and tcp_rto is backed off.  Set
17263 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17264 	 * restart the timer with a correct value.
17265 	 */
17266 	tcp->tcp_set_timer = 1;
17267 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17268 	if (mss > tcp->tcp_mss)
17269 		mss = tcp->tcp_mss;
17270 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17271 		mss = tcp->tcp_swnd;
17272 
17273 	if ((mp = tcp->tcp_xmit_head) != NULL)
17274 		mp->b_prev = (mblk_t *)lbolt;
17275 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17276 	    B_TRUE);
17277 
17278 	/*
17279 	 * When slow start after retransmission begins, start with
17280 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17281 	 * start phase.  tcp_snd_burst controls how many segments
17282 	 * can be sent because of an ack.
17283 	 */
17284 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17285 	tcp->tcp_snd_burst = TCP_CWND_SS;
17286 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17287 	    (tcp->tcp_unsent == 0)) {
17288 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17289 	} else {
17290 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17291 	}
17292 	tcp->tcp_rexmit = B_TRUE;
17293 	tcp->tcp_dupack_cnt = 0;
17294 
17295 	/*
17296 	 * Remove all rexmit SACK blk to start from fresh.
17297 	 */
17298 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17299 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17300 		tcp->tcp_num_notsack_blk = 0;
17301 		tcp->tcp_cnt_notsack_list = 0;
17302 	}
17303 	if (mp == NULL) {
17304 		return;
17305 	}
17306 	/* Attach credentials to retransmitted initial SYNs. */
17307 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17308 		mblk_setcred(mp, tcp->tcp_cred);
17309 		DB_CPID(mp) = tcp->tcp_cpid;
17310 	}
17311 
17312 	tcp->tcp_csuna = tcp->tcp_snxt;
17313 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17314 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17315 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17316 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17317 
17318 }
17319 
17320 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17321 static void
17322 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17323 {
17324 	conn_t	*connp;
17325 
17326 	switch (tcp->tcp_state) {
17327 	case TCPS_BOUND:
17328 	case TCPS_LISTEN:
17329 		break;
17330 	default:
17331 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17332 		return;
17333 	}
17334 
17335 	/*
17336 	 * Need to clean up all the eagers since after the unbind, segments
17337 	 * will no longer be delivered to this listener stream.
17338 	 */
17339 	mutex_enter(&tcp->tcp_eager_lock);
17340 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17341 		tcp_eager_cleanup(tcp, 0);
17342 	}
17343 	mutex_exit(&tcp->tcp_eager_lock);
17344 
17345 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17346 		tcp->tcp_ipha->ipha_src = 0;
17347 	} else {
17348 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17349 	}
17350 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17351 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17352 	tcp_bind_hash_remove(tcp);
17353 	tcp->tcp_state = TCPS_IDLE;
17354 	tcp->tcp_mdt = B_FALSE;
17355 	/* Send M_FLUSH according to TPI */
17356 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17357 	connp = tcp->tcp_connp;
17358 	connp->conn_mdt_ok = B_FALSE;
17359 	ipcl_hash_remove(connp);
17360 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17361 	mp = mi_tpi_ok_ack_alloc(mp);
17362 	putnext(tcp->tcp_rq, mp);
17363 }
17364 
17365 /*
17366  * Don't let port fall into the privileged range.
17367  * Since the extra privileged ports can be arbitrary we also
17368  * ensure that we exclude those from consideration.
17369  * tcp_g_epriv_ports is not sorted thus we loop over it until
17370  * there are no changes.
17371  *
17372  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17373  * but instead the code relies on:
17374  * - the fact that the address of the array and its size never changes
17375  * - the atomic assignment of the elements of the array
17376  *
17377  * Returns 0 if there are no more ports available.
17378  *
17379  * TS note: skip multilevel ports.
17380  */
17381 static in_port_t
17382 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17383 {
17384 	int i;
17385 	boolean_t restart = B_FALSE;
17386 	tcp_stack_t *tcps = tcp->tcp_tcps;
17387 
17388 	if (random && tcp_random_anon_port != 0) {
17389 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17390 		    sizeof (in_port_t));
17391 		/*
17392 		 * Unless changed by a sys admin, the smallest anon port
17393 		 * is 32768 and the largest anon port is 65535.  It is
17394 		 * very likely (50%) for the random port to be smaller
17395 		 * than the smallest anon port.  When that happens,
17396 		 * add port % (anon port range) to the smallest anon
17397 		 * port to get the random port.  It should fall into the
17398 		 * valid anon port range.
17399 		 */
17400 		if (port < tcps->tcps_smallest_anon_port) {
17401 			port = tcps->tcps_smallest_anon_port +
17402 			    port % (tcps->tcps_largest_anon_port -
17403 			    tcps->tcps_smallest_anon_port);
17404 		}
17405 	}
17406 
17407 retry:
17408 	if (port < tcps->tcps_smallest_anon_port)
17409 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17410 
17411 	if (port > tcps->tcps_largest_anon_port) {
17412 		if (restart)
17413 			return (0);
17414 		restart = B_TRUE;
17415 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17416 	}
17417 
17418 	if (port < tcps->tcps_smallest_nonpriv_port)
17419 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17420 
17421 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17422 		if (port == tcps->tcps_g_epriv_ports[i]) {
17423 			port++;
17424 			/*
17425 			 * Make sure whether the port is in the
17426 			 * valid range.
17427 			 */
17428 			goto retry;
17429 		}
17430 	}
17431 	if (is_system_labeled() &&
17432 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17433 	    IPPROTO_TCP, B_TRUE)) != 0) {
17434 		port = i;
17435 		goto retry;
17436 	}
17437 	return (port);
17438 }
17439 
17440 /*
17441  * Return the next anonymous port in the privileged port range for
17442  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17443  * downwards.  This is the same behavior as documented in the userland
17444  * library call rresvport(3N).
17445  *
17446  * TS note: skip multilevel ports.
17447  */
17448 static in_port_t
17449 tcp_get_next_priv_port(const tcp_t *tcp)
17450 {
17451 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17452 	in_port_t nextport;
17453 	boolean_t restart = B_FALSE;
17454 	tcp_stack_t *tcps = tcp->tcp_tcps;
17455 retry:
17456 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17457 	    next_priv_port >= IPPORT_RESERVED) {
17458 		next_priv_port = IPPORT_RESERVED - 1;
17459 		if (restart)
17460 			return (0);
17461 		restart = B_TRUE;
17462 	}
17463 	if (is_system_labeled() &&
17464 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17465 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17466 		next_priv_port = nextport;
17467 		goto retry;
17468 	}
17469 	return (next_priv_port--);
17470 }
17471 
17472 /* The write side r/w procedure. */
17473 
17474 #if CCS_STATS
17475 struct {
17476 	struct {
17477 		int64_t count, bytes;
17478 	} tot, hit;
17479 } wrw_stats;
17480 #endif
17481 
17482 /*
17483  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17484  * messages.
17485  */
17486 /* ARGSUSED */
17487 static void
17488 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17489 {
17490 	conn_t	*connp = (conn_t *)arg;
17491 	tcp_t	*tcp = connp->conn_tcp;
17492 	queue_t	*q = tcp->tcp_wq;
17493 
17494 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17495 	/*
17496 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17497 	 * Once the close starts, streamhead and sockfs will not let any data
17498 	 * packets come down (close ensures that there are no threads using the
17499 	 * queue and no new threads will come down) but since qprocsoff()
17500 	 * hasn't happened yet, a M_FLUSH or some non data message might
17501 	 * get reflected back (in response to our own FLUSHRW) and get
17502 	 * processed after tcp_close() is done. The conn would still be valid
17503 	 * because a ref would have added but we need to check the state
17504 	 * before actually processing the packet.
17505 	 */
17506 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17507 		freemsg(mp);
17508 		return;
17509 	}
17510 
17511 	switch (DB_TYPE(mp)) {
17512 	case M_IOCDATA:
17513 		tcp_wput_iocdata(tcp, mp);
17514 		break;
17515 	case M_FLUSH:
17516 		tcp_wput_flush(tcp, mp);
17517 		break;
17518 	default:
17519 		CALL_IP_WPUT(connp, q, mp);
17520 		break;
17521 	}
17522 }
17523 
17524 /*
17525  * The TCP fast path write put procedure.
17526  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17527  */
17528 /* ARGSUSED */
17529 void
17530 tcp_output(void *arg, mblk_t *mp, void *arg2)
17531 {
17532 	int		len;
17533 	int		hdrlen;
17534 	int		plen;
17535 	mblk_t		*mp1;
17536 	uchar_t		*rptr;
17537 	uint32_t	snxt;
17538 	tcph_t		*tcph;
17539 	struct datab	*db;
17540 	uint32_t	suna;
17541 	uint32_t	mss;
17542 	ipaddr_t	*dst;
17543 	ipaddr_t	*src;
17544 	uint32_t	sum;
17545 	int		usable;
17546 	conn_t		*connp = (conn_t *)arg;
17547 	tcp_t		*tcp = connp->conn_tcp;
17548 	uint32_t	msize;
17549 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17550 
17551 	/*
17552 	 * Try and ASSERT the minimum possible references on the
17553 	 * conn early enough. Since we are executing on write side,
17554 	 * the connection is obviously not detached and that means
17555 	 * there is a ref each for TCP and IP. Since we are behind
17556 	 * the squeue, the minimum references needed are 3. If the
17557 	 * conn is in classifier hash list, there should be an
17558 	 * extra ref for that (we check both the possibilities).
17559 	 */
17560 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17561 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17562 
17563 	ASSERT(DB_TYPE(mp) == M_DATA);
17564 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17565 
17566 	mutex_enter(&tcp->tcp_non_sq_lock);
17567 	tcp->tcp_squeue_bytes -= msize;
17568 	mutex_exit(&tcp->tcp_non_sq_lock);
17569 
17570 	/* Bypass tcp protocol for fused tcp loopback */
17571 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17572 		return;
17573 
17574 	mss = tcp->tcp_mss;
17575 	if (tcp->tcp_xmit_zc_clean)
17576 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17577 
17578 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17579 	len = (int)(mp->b_wptr - mp->b_rptr);
17580 
17581 	/*
17582 	 * Criteria for fast path:
17583 	 *
17584 	 *   1. no unsent data
17585 	 *   2. single mblk in request
17586 	 *   3. connection established
17587 	 *   4. data in mblk
17588 	 *   5. len <= mss
17589 	 *   6. no tcp_valid bits
17590 	 */
17591 	if ((tcp->tcp_unsent != 0) ||
17592 	    (tcp->tcp_cork) ||
17593 	    (mp->b_cont != NULL) ||
17594 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17595 	    (len == 0) ||
17596 	    (len > mss) ||
17597 	    (tcp->tcp_valid_bits != 0)) {
17598 		tcp_wput_data(tcp, mp, B_FALSE);
17599 		return;
17600 	}
17601 
17602 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17603 	ASSERT(tcp->tcp_fin_sent == 0);
17604 
17605 	/* queue new packet onto retransmission queue */
17606 	if (tcp->tcp_xmit_head == NULL) {
17607 		tcp->tcp_xmit_head = mp;
17608 	} else {
17609 		tcp->tcp_xmit_last->b_cont = mp;
17610 	}
17611 	tcp->tcp_xmit_last = mp;
17612 	tcp->tcp_xmit_tail = mp;
17613 
17614 	/* find out how much we can send */
17615 	/* BEGIN CSTYLED */
17616 	/*
17617 	 *    un-acked           usable
17618 	 *  |--------------|-----------------|
17619 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17620 	 */
17621 	/* END CSTYLED */
17622 
17623 	/* start sending from tcp_snxt */
17624 	snxt = tcp->tcp_snxt;
17625 
17626 	/*
17627 	 * Check to see if this connection has been idled for some
17628 	 * time and no ACK is expected.  If it is, we need to slow
17629 	 * start again to get back the connection's "self-clock" as
17630 	 * described in VJ's paper.
17631 	 *
17632 	 * Refer to the comment in tcp_mss_set() for the calculation
17633 	 * of tcp_cwnd after idle.
17634 	 */
17635 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17636 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17637 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17638 	}
17639 
17640 	usable = tcp->tcp_swnd;		/* tcp window size */
17641 	if (usable > tcp->tcp_cwnd)
17642 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17643 	usable -= snxt;		/* subtract stuff already sent */
17644 	suna = tcp->tcp_suna;
17645 	usable += suna;
17646 	/* usable can be < 0 if the congestion window is smaller */
17647 	if (len > usable) {
17648 		/* Can't send complete M_DATA in one shot */
17649 		goto slow;
17650 	}
17651 
17652 	mutex_enter(&tcp->tcp_non_sq_lock);
17653 	if (tcp->tcp_flow_stopped &&
17654 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17655 		tcp_clrqfull(tcp);
17656 	}
17657 	mutex_exit(&tcp->tcp_non_sq_lock);
17658 
17659 	/*
17660 	 * determine if anything to send (Nagle).
17661 	 *
17662 	 *   1. len < tcp_mss (i.e. small)
17663 	 *   2. unacknowledged data present
17664 	 *   3. len < nagle limit
17665 	 *   4. last packet sent < nagle limit (previous packet sent)
17666 	 */
17667 	if ((len < mss) && (snxt != suna) &&
17668 	    (len < (int)tcp->tcp_naglim) &&
17669 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17670 		/*
17671 		 * This was the first unsent packet and normally
17672 		 * mss < xmit_hiwater so there is no need to worry
17673 		 * about flow control. The next packet will go
17674 		 * through the flow control check in tcp_wput_data().
17675 		 */
17676 		/* leftover work from above */
17677 		tcp->tcp_unsent = len;
17678 		tcp->tcp_xmit_tail_unsent = len;
17679 
17680 		return;
17681 	}
17682 
17683 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17684 
17685 	if (snxt == suna) {
17686 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17687 	}
17688 
17689 	/* we have always sent something */
17690 	tcp->tcp_rack_cnt = 0;
17691 
17692 	tcp->tcp_snxt = snxt + len;
17693 	tcp->tcp_rack = tcp->tcp_rnxt;
17694 
17695 	if ((mp1 = dupb(mp)) == 0)
17696 		goto no_memory;
17697 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17698 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17699 
17700 	/* adjust tcp header information */
17701 	tcph = tcp->tcp_tcph;
17702 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17703 
17704 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17705 	sum = (sum >> 16) + (sum & 0xFFFF);
17706 	U16_TO_ABE16(sum, tcph->th_sum);
17707 
17708 	U32_TO_ABE32(snxt, tcph->th_seq);
17709 
17710 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17711 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17712 	BUMP_LOCAL(tcp->tcp_obsegs);
17713 
17714 	/* Update the latest receive window size in TCP header. */
17715 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17716 	    tcph->th_win);
17717 
17718 	tcp->tcp_last_sent_len = (ushort_t)len;
17719 
17720 	plen = len + tcp->tcp_hdr_len;
17721 
17722 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17723 		tcp->tcp_ipha->ipha_length = htons(plen);
17724 	} else {
17725 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17726 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17727 	}
17728 
17729 	/* see if we need to allocate a mblk for the headers */
17730 	hdrlen = tcp->tcp_hdr_len;
17731 	rptr = mp1->b_rptr - hdrlen;
17732 	db = mp1->b_datap;
17733 	if ((db->db_ref != 2) || rptr < db->db_base ||
17734 	    (!OK_32PTR(rptr))) {
17735 		/* NOTE: we assume allocb returns an OK_32PTR */
17736 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17737 		    tcps->tcps_wroff_xtra, BPRI_MED);
17738 		if (!mp) {
17739 			freemsg(mp1);
17740 			goto no_memory;
17741 		}
17742 		mp->b_cont = mp1;
17743 		mp1 = mp;
17744 		/* Leave room for Link Level header */
17745 		/* hdrlen = tcp->tcp_hdr_len; */
17746 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17747 		mp1->b_wptr = &rptr[hdrlen];
17748 	}
17749 	mp1->b_rptr = rptr;
17750 
17751 	/* Fill in the timestamp option. */
17752 	if (tcp->tcp_snd_ts_ok) {
17753 		U32_TO_BE32((uint32_t)lbolt,
17754 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17755 		U32_TO_BE32(tcp->tcp_ts_recent,
17756 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17757 	} else {
17758 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17759 	}
17760 
17761 	/* copy header into outgoing packet */
17762 	dst = (ipaddr_t *)rptr;
17763 	src = (ipaddr_t *)tcp->tcp_iphc;
17764 	dst[0] = src[0];
17765 	dst[1] = src[1];
17766 	dst[2] = src[2];
17767 	dst[3] = src[3];
17768 	dst[4] = src[4];
17769 	dst[5] = src[5];
17770 	dst[6] = src[6];
17771 	dst[7] = src[7];
17772 	dst[8] = src[8];
17773 	dst[9] = src[9];
17774 	if (hdrlen -= 40) {
17775 		hdrlen >>= 2;
17776 		dst += 10;
17777 		src += 10;
17778 		do {
17779 			*dst++ = *src++;
17780 		} while (--hdrlen);
17781 	}
17782 
17783 	/*
17784 	 * Set the ECN info in the TCP header.  Note that this
17785 	 * is not the template header.
17786 	 */
17787 	if (tcp->tcp_ecn_ok) {
17788 		SET_ECT(tcp, rptr);
17789 
17790 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17791 		if (tcp->tcp_ecn_echo_on)
17792 			tcph->th_flags[0] |= TH_ECE;
17793 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17794 			tcph->th_flags[0] |= TH_CWR;
17795 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17796 		}
17797 	}
17798 
17799 	if (tcp->tcp_ip_forward_progress) {
17800 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17801 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17802 		tcp->tcp_ip_forward_progress = B_FALSE;
17803 	}
17804 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17805 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17806 	return;
17807 
17808 	/*
17809 	 * If we ran out of memory, we pretend to have sent the packet
17810 	 * and that it was lost on the wire.
17811 	 */
17812 no_memory:
17813 	return;
17814 
17815 slow:
17816 	/* leftover work from above */
17817 	tcp->tcp_unsent = len;
17818 	tcp->tcp_xmit_tail_unsent = len;
17819 	tcp_wput_data(tcp, NULL, B_FALSE);
17820 }
17821 
17822 /*
17823  * The function called through squeue to get behind eager's perimeter to
17824  * finish the accept processing.
17825  */
17826 /* ARGSUSED */
17827 void
17828 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17829 {
17830 	conn_t			*connp = (conn_t *)arg;
17831 	tcp_t			*tcp = connp->conn_tcp;
17832 	queue_t			*q = tcp->tcp_rq;
17833 	mblk_t			*mp1;
17834 	mblk_t			*stropt_mp = mp;
17835 	struct  stroptions	*stropt;
17836 	uint_t			thwin;
17837 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17838 
17839 	/*
17840 	 * Drop the eager's ref on the listener, that was placed when
17841 	 * this eager began life in tcp_conn_request.
17842 	 */
17843 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17844 
17845 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17846 		/*
17847 		 * Someone blewoff the eager before we could finish
17848 		 * the accept.
17849 		 *
17850 		 * The only reason eager exists it because we put in
17851 		 * a ref on it when conn ind went up. We need to send
17852 		 * a disconnect indication up while the last reference
17853 		 * on the eager will be dropped by the squeue when we
17854 		 * return.
17855 		 */
17856 		ASSERT(tcp->tcp_listener == NULL);
17857 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17858 			struct	T_discon_ind	*tdi;
17859 
17860 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17861 			/*
17862 			 * Let us reuse the incoming mblk to avoid memory
17863 			 * allocation failure problems. We know that the
17864 			 * size of the incoming mblk i.e. stroptions is greater
17865 			 * than sizeof T_discon_ind. So the reallocb below
17866 			 * can't fail.
17867 			 */
17868 			freemsg(mp->b_cont);
17869 			mp->b_cont = NULL;
17870 			ASSERT(DB_REF(mp) == 1);
17871 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17872 			    B_FALSE);
17873 			ASSERT(mp != NULL);
17874 			DB_TYPE(mp) = M_PROTO;
17875 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17876 			tdi = (struct T_discon_ind *)mp->b_rptr;
17877 			if (tcp->tcp_issocket) {
17878 				tdi->DISCON_reason = ECONNREFUSED;
17879 				tdi->SEQ_number = 0;
17880 			} else {
17881 				tdi->DISCON_reason = ENOPROTOOPT;
17882 				tdi->SEQ_number =
17883 				    tcp->tcp_conn_req_seqnum;
17884 			}
17885 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17886 			putnext(q, mp);
17887 		} else {
17888 			freemsg(mp);
17889 		}
17890 		if (tcp->tcp_hard_binding) {
17891 			tcp->tcp_hard_binding = B_FALSE;
17892 			tcp->tcp_hard_bound = B_TRUE;
17893 		}
17894 		tcp->tcp_detached = B_FALSE;
17895 		return;
17896 	}
17897 
17898 	mp1 = stropt_mp->b_cont;
17899 	stropt_mp->b_cont = NULL;
17900 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17901 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17902 
17903 	while (mp1 != NULL) {
17904 		mp = mp1;
17905 		mp1 = mp1->b_cont;
17906 		mp->b_cont = NULL;
17907 		tcp->tcp_drop_opt_ack_cnt++;
17908 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17909 	}
17910 	mp = NULL;
17911 
17912 	/*
17913 	 * For a loopback connection with tcp_direct_sockfs on, note that
17914 	 * we don't have to protect tcp_rcv_list yet because synchronous
17915 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17916 	 * possibly race with us.
17917 	 */
17918 
17919 	/*
17920 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17921 	 * properly.  This is the first time we know of the acceptor'
17922 	 * queue.  So we do it here.
17923 	 */
17924 	if (tcp->tcp_rcv_list == NULL) {
17925 		/*
17926 		 * Recv queue is empty, tcp_rwnd should not have changed.
17927 		 * That means it should be equal to the listener's tcp_rwnd.
17928 		 */
17929 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17930 	} else {
17931 #ifdef DEBUG
17932 		uint_t cnt = 0;
17933 
17934 		mp1 = tcp->tcp_rcv_list;
17935 		while ((mp = mp1) != NULL) {
17936 			mp1 = mp->b_next;
17937 			cnt += msgdsize(mp);
17938 		}
17939 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17940 #endif
17941 		/* There is some data, add them back to get the max. */
17942 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17943 	}
17944 
17945 	stropt->so_flags = SO_HIWAT;
17946 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
17947 
17948 	stropt->so_flags |= SO_MAXBLK;
17949 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17950 
17951 	/*
17952 	 * This is the first time we run on the correct
17953 	 * queue after tcp_accept. So fix all the q parameters
17954 	 * here.
17955 	 */
17956 	/* Allocate room for SACK options if needed. */
17957 	stropt->so_flags |= SO_WROFF;
17958 	if (tcp->tcp_fused) {
17959 		ASSERT(tcp->tcp_loopback);
17960 		ASSERT(tcp->tcp_loopback_peer != NULL);
17961 		/*
17962 		 * For fused tcp loopback, set the stream head's write
17963 		 * offset value to zero since we won't be needing any room
17964 		 * for TCP/IP headers.  This would also improve performance
17965 		 * since it would reduce the amount of work done by kmem.
17966 		 * Non-fused tcp loopback case is handled separately below.
17967 		 */
17968 		stropt->so_wroff = 0;
17969 		/*
17970 		 * Record the stream head's high water mark for this endpoint;
17971 		 * this is used for flow-control purposes in tcp_fuse_output().
17972 		 */
17973 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17974 		/*
17975 		 * Update the peer's transmit parameters according to
17976 		 * our recently calculated high water mark value.
17977 		 */
17978 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17979 	} else if (tcp->tcp_snd_sack_ok) {
17980 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17981 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17982 	} else {
17983 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17984 		    tcps->tcps_wroff_xtra);
17985 	}
17986 
17987 	/*
17988 	 * If this is endpoint is handling SSL, then reserve extra
17989 	 * offset and space at the end.
17990 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17991 	 * overriding the previous setting. The extra cost of signing and
17992 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17993 	 * instead of a single contiguous one by the stream head
17994 	 * largely outweighs the statistical reduction of ACKs, when
17995 	 * applicable. The peer will also save on decyption and verification
17996 	 * costs.
17997 	 */
17998 	if (tcp->tcp_kssl_ctx != NULL) {
17999 		stropt->so_wroff += SSL3_WROFFSET;
18000 
18001 		stropt->so_flags |= SO_TAIL;
18002 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18003 
18004 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18005 	}
18006 
18007 	/* Send the options up */
18008 	putnext(q, stropt_mp);
18009 
18010 	/*
18011 	 * Pass up any data and/or a fin that has been received.
18012 	 *
18013 	 * Adjust receive window in case it had decreased
18014 	 * (because there is data <=> tcp_rcv_list != NULL)
18015 	 * while the connection was detached. Note that
18016 	 * in case the eager was flow-controlled, w/o this
18017 	 * code, the rwnd may never open up again!
18018 	 */
18019 	if (tcp->tcp_rcv_list != NULL) {
18020 		/* We drain directly in case of fused tcp loopback */
18021 		if (!tcp->tcp_fused && canputnext(q)) {
18022 			tcp->tcp_rwnd = q->q_hiwat;
18023 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18024 			    << tcp->tcp_rcv_ws;
18025 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18026 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18027 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18028 				tcp_xmit_ctl(NULL,
18029 				    tcp, (tcp->tcp_swnd == 0) ?
18030 				    tcp->tcp_suna : tcp->tcp_snxt,
18031 				    tcp->tcp_rnxt, TH_ACK);
18032 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18033 			}
18034 
18035 		}
18036 		(void) tcp_rcv_drain(q, tcp);
18037 
18038 		/*
18039 		 * For fused tcp loopback, back-enable peer endpoint
18040 		 * if it's currently flow-controlled.
18041 		 */
18042 		if (tcp->tcp_fused) {
18043 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18044 
18045 			ASSERT(peer_tcp != NULL);
18046 			ASSERT(peer_tcp->tcp_fused);
18047 			/*
18048 			 * In order to change the peer's tcp_flow_stopped,
18049 			 * we need to take locks for both end points. The
18050 			 * highest address is taken first.
18051 			 */
18052 			if (peer_tcp > tcp) {
18053 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18054 				mutex_enter(&tcp->tcp_non_sq_lock);
18055 			} else {
18056 				mutex_enter(&tcp->tcp_non_sq_lock);
18057 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18058 			}
18059 			if (peer_tcp->tcp_flow_stopped) {
18060 				tcp_clrqfull(peer_tcp);
18061 				TCP_STAT(tcps, tcp_fusion_backenabled);
18062 			}
18063 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18064 			mutex_exit(&tcp->tcp_non_sq_lock);
18065 		}
18066 	}
18067 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18068 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18069 		mp = mi_tpi_ordrel_ind();
18070 		if (mp) {
18071 			tcp->tcp_ordrel_done = B_TRUE;
18072 			putnext(q, mp);
18073 			if (tcp->tcp_deferred_clean_death) {
18074 				/*
18075 				 * tcp_clean_death was deferred
18076 				 * for T_ORDREL_IND - do it now
18077 				 */
18078 				(void) tcp_clean_death(tcp,
18079 				    tcp->tcp_client_errno, 21);
18080 				tcp->tcp_deferred_clean_death = B_FALSE;
18081 			}
18082 		} else {
18083 			/*
18084 			 * Run the orderly release in the
18085 			 * service routine.
18086 			 */
18087 			qenable(q);
18088 		}
18089 	}
18090 	if (tcp->tcp_hard_binding) {
18091 		tcp->tcp_hard_binding = B_FALSE;
18092 		tcp->tcp_hard_bound = B_TRUE;
18093 	}
18094 
18095 	tcp->tcp_detached = B_FALSE;
18096 
18097 	/* We can enable synchronous streams now */
18098 	if (tcp->tcp_fused) {
18099 		tcp_fuse_syncstr_enable_pair(tcp);
18100 	}
18101 
18102 	if (tcp->tcp_ka_enabled) {
18103 		tcp->tcp_ka_last_intrvl = 0;
18104 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18105 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18106 	}
18107 
18108 	/*
18109 	 * At this point, eager is fully established and will
18110 	 * have the following references -
18111 	 *
18112 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18113 	 * 1 reference for the squeue which will be dropped by the squeue as
18114 	 *	soon as this function returns.
18115 	 * There will be 1 additonal reference for being in classifier
18116 	 *	hash list provided something bad hasn't happened.
18117 	 */
18118 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18119 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18120 }
18121 
18122 /*
18123  * The function called through squeue to get behind listener's perimeter to
18124  * send a deffered conn_ind.
18125  */
18126 /* ARGSUSED */
18127 void
18128 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18129 {
18130 	conn_t	*connp = (conn_t *)arg;
18131 	tcp_t *listener = connp->conn_tcp;
18132 
18133 	if (listener->tcp_state == TCPS_CLOSED ||
18134 	    TCP_IS_DETACHED(listener)) {
18135 		/*
18136 		 * If listener has closed, it would have caused a
18137 		 * a cleanup/blowoff to happen for the eager.
18138 		 */
18139 		tcp_t *tcp;
18140 		struct T_conn_ind	*conn_ind;
18141 
18142 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18143 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18144 		    conn_ind->OPT_length);
18145 		/*
18146 		 * We need to drop the ref on eager that was put
18147 		 * tcp_rput_data() before trying to send the conn_ind
18148 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18149 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18150 		 * listener is closed so we drop the ref.
18151 		 */
18152 		CONN_DEC_REF(tcp->tcp_connp);
18153 		freemsg(mp);
18154 		return;
18155 	}
18156 	putnext(listener->tcp_rq, mp);
18157 }
18158 
18159 
18160 /*
18161  * This is the STREAMS entry point for T_CONN_RES coming down on
18162  * Acceptor STREAM when  sockfs listener does accept processing.
18163  * Read the block comment on top of tcp_conn_request().
18164  */
18165 void
18166 tcp_wput_accept(queue_t *q, mblk_t *mp)
18167 {
18168 	queue_t *rq = RD(q);
18169 	struct T_conn_res *conn_res;
18170 	tcp_t *eager;
18171 	tcp_t *listener;
18172 	struct T_ok_ack *ok;
18173 	t_scalar_t PRIM_type;
18174 	mblk_t *opt_mp;
18175 	conn_t *econnp;
18176 
18177 	ASSERT(DB_TYPE(mp) == M_PROTO);
18178 
18179 	conn_res = (struct T_conn_res *)mp->b_rptr;
18180 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18181 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18182 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18183 		if (mp != NULL)
18184 			putnext(rq, mp);
18185 		return;
18186 	}
18187 	switch (conn_res->PRIM_type) {
18188 	case O_T_CONN_RES:
18189 	case T_CONN_RES:
18190 		/*
18191 		 * We pass up an err ack if allocb fails. This will
18192 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18193 		 * tcp_eager_blowoff to be called. sockfs will then call
18194 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18195 		 * we need to do the allocb up here because we have to
18196 		 * make sure rq->q_qinfo->qi_qclose still points to the
18197 		 * correct function (tcpclose_accept) in case allocb
18198 		 * fails.
18199 		 */
18200 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18201 		if (opt_mp == NULL) {
18202 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18203 			if (mp != NULL)
18204 				putnext(rq, mp);
18205 			return;
18206 		}
18207 
18208 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18209 		    &eager, conn_res->OPT_length);
18210 		PRIM_type = conn_res->PRIM_type;
18211 		mp->b_datap->db_type = M_PCPROTO;
18212 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18213 		ok = (struct T_ok_ack *)mp->b_rptr;
18214 		ok->PRIM_type = T_OK_ACK;
18215 		ok->CORRECT_prim = PRIM_type;
18216 		econnp = eager->tcp_connp;
18217 		econnp->conn_dev = (dev_t)q->q_ptr;
18218 		eager->tcp_rq = rq;
18219 		eager->tcp_wq = q;
18220 		rq->q_ptr = econnp;
18221 		rq->q_qinfo = &tcp_rinit;
18222 		q->q_ptr = econnp;
18223 		q->q_qinfo = &tcp_winit;
18224 		listener = eager->tcp_listener;
18225 		eager->tcp_issocket = B_TRUE;
18226 
18227 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18228 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18229 		ASSERT(econnp->conn_netstack ==
18230 		    listener->tcp_connp->conn_netstack);
18231 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18232 
18233 		/* Put the ref for IP */
18234 		CONN_INC_REF(econnp);
18235 
18236 		/*
18237 		 * We should have minimum of 3 references on the conn
18238 		 * at this point. One each for TCP and IP and one for
18239 		 * the T_conn_ind that was sent up when the 3-way handshake
18240 		 * completed. In the normal case we would also have another
18241 		 * reference (making a total of 4) for the conn being in the
18242 		 * classifier hash list. However the eager could have received
18243 		 * an RST subsequently and tcp_closei_local could have removed
18244 		 * the eager from the classifier hash list, hence we can't
18245 		 * assert that reference.
18246 		 */
18247 		ASSERT(econnp->conn_ref >= 3);
18248 
18249 		/*
18250 		 * Send the new local address also up to sockfs. There
18251 		 * should already be enough space in the mp that came
18252 		 * down from soaccept().
18253 		 */
18254 		if (eager->tcp_family == AF_INET) {
18255 			sin_t *sin;
18256 
18257 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18258 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18259 			sin = (sin_t *)mp->b_wptr;
18260 			mp->b_wptr += sizeof (sin_t);
18261 			sin->sin_family = AF_INET;
18262 			sin->sin_port = eager->tcp_lport;
18263 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18264 		} else {
18265 			sin6_t *sin6;
18266 
18267 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18268 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18269 			sin6 = (sin6_t *)mp->b_wptr;
18270 			mp->b_wptr += sizeof (sin6_t);
18271 			sin6->sin6_family = AF_INET6;
18272 			sin6->sin6_port = eager->tcp_lport;
18273 			if (eager->tcp_ipversion == IPV4_VERSION) {
18274 				sin6->sin6_flowinfo = 0;
18275 				IN6_IPADDR_TO_V4MAPPED(
18276 					eager->tcp_ipha->ipha_src,
18277 					    &sin6->sin6_addr);
18278 			} else {
18279 				ASSERT(eager->tcp_ip6h != NULL);
18280 				sin6->sin6_flowinfo =
18281 				    eager->tcp_ip6h->ip6_vcf &
18282 				    ~IPV6_VERS_AND_FLOW_MASK;
18283 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18284 			}
18285 			sin6->sin6_scope_id = 0;
18286 			sin6->__sin6_src_id = 0;
18287 		}
18288 
18289 		putnext(rq, mp);
18290 
18291 		opt_mp->b_datap->db_type = M_SETOPTS;
18292 		opt_mp->b_wptr += sizeof (struct stroptions);
18293 
18294 		/*
18295 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18296 		 * from listener to acceptor. The message is chained on the
18297 		 * bind_mp which tcp_rput_other will send down to IP.
18298 		 */
18299 		if (listener->tcp_bound_if != 0) {
18300 			/* allocate optmgmt req */
18301 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18302 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18303 			    sizeof (int));
18304 			if (mp != NULL)
18305 				linkb(opt_mp, mp);
18306 		}
18307 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18308 			uint_t on = 1;
18309 
18310 			/* allocate optmgmt req */
18311 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18312 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18313 			if (mp != NULL)
18314 				linkb(opt_mp, mp);
18315 		}
18316 
18317 
18318 		mutex_enter(&listener->tcp_eager_lock);
18319 
18320 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18321 
18322 			tcp_t *tail;
18323 			tcp_t *tcp;
18324 			mblk_t *mp1;
18325 
18326 			tcp = listener->tcp_eager_prev_q0;
18327 			/*
18328 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18329 			 * deferred T_conn_ind queue. We need to get to the head
18330 			 * of the queue in order to send up T_conn_ind the same
18331 			 * order as how the 3WHS is completed.
18332 			 */
18333 			while (tcp != listener) {
18334 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18335 				    !tcp->tcp_kssl_pending)
18336 					break;
18337 				else
18338 					tcp = tcp->tcp_eager_prev_q0;
18339 			}
18340 			/* None of the pending eagers can be sent up now */
18341 			if (tcp == listener)
18342 				goto no_more_eagers;
18343 
18344 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18345 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18346 			/* Move from q0 to q */
18347 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18348 			listener->tcp_conn_req_cnt_q0--;
18349 			listener->tcp_conn_req_cnt_q++;
18350 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18351 			    tcp->tcp_eager_prev_q0;
18352 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18353 			    tcp->tcp_eager_next_q0;
18354 			tcp->tcp_eager_prev_q0 = NULL;
18355 			tcp->tcp_eager_next_q0 = NULL;
18356 			tcp->tcp_conn_def_q0 = B_FALSE;
18357 
18358 			/* Make sure the tcp isn't in the list of droppables */
18359 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18360 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18361 
18362 			/*
18363 			 * Insert at end of the queue because sockfs sends
18364 			 * down T_CONN_RES in chronological order. Leaving
18365 			 * the older conn indications at front of the queue
18366 			 * helps reducing search time.
18367 			 */
18368 			tail = listener->tcp_eager_last_q;
18369 			if (tail != NULL) {
18370 				tail->tcp_eager_next_q = tcp;
18371 			} else {
18372 				listener->tcp_eager_next_q = tcp;
18373 			}
18374 			listener->tcp_eager_last_q = tcp;
18375 			tcp->tcp_eager_next_q = NULL;
18376 
18377 			/* Need to get inside the listener perimeter */
18378 			CONN_INC_REF(listener->tcp_connp);
18379 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18380 			    tcp_send_pending, listener->tcp_connp,
18381 			    SQTAG_TCP_SEND_PENDING);
18382 		}
18383 no_more_eagers:
18384 		tcp_eager_unlink(eager);
18385 		mutex_exit(&listener->tcp_eager_lock);
18386 
18387 		/*
18388 		 * At this point, the eager is detached from the listener
18389 		 * but we still have an extra refs on eager (apart from the
18390 		 * usual tcp references). The ref was placed in tcp_rput_data
18391 		 * before sending the conn_ind in tcp_send_conn_ind.
18392 		 * The ref will be dropped in tcp_accept_finish().
18393 		 */
18394 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18395 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18396 		return;
18397 	default:
18398 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18399 		if (mp != NULL)
18400 			putnext(rq, mp);
18401 		return;
18402 	}
18403 }
18404 
18405 void
18406 tcp_wput(queue_t *q, mblk_t *mp)
18407 {
18408 	conn_t	*connp = Q_TO_CONN(q);
18409 	tcp_t	*tcp;
18410 	void (*output_proc)();
18411 	t_scalar_t type;
18412 	uchar_t *rptr;
18413 	struct iocblk	*iocp;
18414 	uint32_t	msize;
18415 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18416 
18417 	ASSERT(connp->conn_ref >= 2);
18418 
18419 	switch (DB_TYPE(mp)) {
18420 	case M_DATA:
18421 		tcp = connp->conn_tcp;
18422 		ASSERT(tcp != NULL);
18423 
18424 		msize = msgdsize(mp);
18425 
18426 		mutex_enter(&tcp->tcp_non_sq_lock);
18427 		tcp->tcp_squeue_bytes += msize;
18428 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18429 			tcp_setqfull(tcp);
18430 		}
18431 		mutex_exit(&tcp->tcp_non_sq_lock);
18432 
18433 		CONN_INC_REF(connp);
18434 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18435 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18436 		return;
18437 	case M_PROTO:
18438 	case M_PCPROTO:
18439 		/*
18440 		 * if it is a snmp message, don't get behind the squeue
18441 		 */
18442 		tcp = connp->conn_tcp;
18443 		rptr = mp->b_rptr;
18444 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18445 			type = ((union T_primitives *)rptr)->type;
18446 		} else {
18447 			if (tcp->tcp_debug) {
18448 				(void) strlog(TCP_MOD_ID, 0, 1,
18449 				    SL_ERROR|SL_TRACE,
18450 				    "tcp_wput_proto, dropping one...");
18451 			}
18452 			freemsg(mp);
18453 			return;
18454 		}
18455 		if (type == T_SVR4_OPTMGMT_REQ) {
18456 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18457 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18458 			    cr)) {
18459 				/*
18460 				 * This was a SNMP request
18461 				 */
18462 				return;
18463 			} else {
18464 				output_proc = tcp_wput_proto;
18465 			}
18466 		} else {
18467 			output_proc = tcp_wput_proto;
18468 		}
18469 		break;
18470 	case M_IOCTL:
18471 		/*
18472 		 * Most ioctls can be processed right away without going via
18473 		 * squeues - process them right here. Those that do require
18474 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18475 		 * are processed by tcp_wput_ioctl().
18476 		 */
18477 		iocp = (struct iocblk *)mp->b_rptr;
18478 		tcp = connp->conn_tcp;
18479 
18480 		switch (iocp->ioc_cmd) {
18481 		case TCP_IOC_ABORT_CONN:
18482 			tcp_ioctl_abort_conn(q, mp);
18483 			return;
18484 		case TI_GETPEERNAME:
18485 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18486 				iocp->ioc_error = ENOTCONN;
18487 				iocp->ioc_count = 0;
18488 				mp->b_datap->db_type = M_IOCACK;
18489 				qreply(q, mp);
18490 				return;
18491 			}
18492 			/* FALLTHRU */
18493 		case TI_GETMYNAME:
18494 			mi_copyin(q, mp, NULL,
18495 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18496 			return;
18497 		case ND_SET:
18498 			/* nd_getset does the necessary checks */
18499 		case ND_GET:
18500 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18501 				CALL_IP_WPUT(connp, q, mp);
18502 				return;
18503 			}
18504 			qreply(q, mp);
18505 			return;
18506 		case TCP_IOC_DEFAULT_Q:
18507 			/*
18508 			 * Wants to be the default wq. Check the credentials
18509 			 * first, the rest is executed via squeue.
18510 			 */
18511 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18512 				iocp->ioc_error = EPERM;
18513 				iocp->ioc_count = 0;
18514 				mp->b_datap->db_type = M_IOCACK;
18515 				qreply(q, mp);
18516 				return;
18517 			}
18518 			output_proc = tcp_wput_ioctl;
18519 			break;
18520 		default:
18521 			output_proc = tcp_wput_ioctl;
18522 			break;
18523 		}
18524 		break;
18525 	default:
18526 		output_proc = tcp_wput_nondata;
18527 		break;
18528 	}
18529 
18530 	CONN_INC_REF(connp);
18531 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18532 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18533 }
18534 
18535 /*
18536  * Initial STREAMS write side put() procedure for sockets. It tries to
18537  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18538  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18539  * are handled by tcp_wput() as usual.
18540  *
18541  * All further messages will also be handled by tcp_wput() because we cannot
18542  * be sure that the above short cut is safe later.
18543  */
18544 static void
18545 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18546 {
18547 	conn_t			*connp = Q_TO_CONN(wq);
18548 	tcp_t			*tcp = connp->conn_tcp;
18549 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18550 
18551 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18552 	wq->q_qinfo = &tcp_winit;
18553 
18554 	ASSERT(IPCL_IS_TCP(connp));
18555 	ASSERT(TCP_IS_SOCKET(tcp));
18556 
18557 	if (DB_TYPE(mp) == M_PCPROTO &&
18558 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18559 	    car->PRIM_type == T_CAPABILITY_REQ) {
18560 		tcp_capability_req(tcp, mp);
18561 		return;
18562 	}
18563 
18564 	tcp_wput(wq, mp);
18565 }
18566 
18567 static boolean_t
18568 tcp_zcopy_check(tcp_t *tcp)
18569 {
18570 	conn_t	*connp = tcp->tcp_connp;
18571 	ire_t	*ire;
18572 	boolean_t	zc_enabled = B_FALSE;
18573 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18574 
18575 	if (do_tcpzcopy == 2)
18576 		zc_enabled = B_TRUE;
18577 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18578 	    IPCL_IS_CONNECTED(connp) &&
18579 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18580 	    connp->conn_dontroute == 0 &&
18581 	    !connp->conn_nexthop_set &&
18582 	    connp->conn_xmit_if_ill == NULL &&
18583 	    connp->conn_nofailover_ill == NULL &&
18584 	    do_tcpzcopy == 1) {
18585 		/*
18586 		 * the checks above  closely resemble the fast path checks
18587 		 * in tcp_send_data().
18588 		 */
18589 		mutex_enter(&connp->conn_lock);
18590 		ire = connp->conn_ire_cache;
18591 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18592 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18593 			IRE_REFHOLD(ire);
18594 			if (ire->ire_stq != NULL) {
18595 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18596 
18597 				zc_enabled = ill && (ill->ill_capabilities &
18598 				    ILL_CAPAB_ZEROCOPY) &&
18599 				    (ill->ill_zerocopy_capab->
18600 				    ill_zerocopy_flags != 0);
18601 			}
18602 			IRE_REFRELE(ire);
18603 		}
18604 		mutex_exit(&connp->conn_lock);
18605 	}
18606 	tcp->tcp_snd_zcopy_on = zc_enabled;
18607 	if (!TCP_IS_DETACHED(tcp)) {
18608 		if (zc_enabled) {
18609 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18610 			TCP_STAT(tcps, tcp_zcopy_on);
18611 		} else {
18612 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18613 			TCP_STAT(tcps, tcp_zcopy_off);
18614 		}
18615 	}
18616 	return (zc_enabled);
18617 }
18618 
18619 static mblk_t *
18620 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18621 {
18622 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18623 
18624 	if (do_tcpzcopy == 2)
18625 		return (bp);
18626 	else if (tcp->tcp_snd_zcopy_on) {
18627 		tcp->tcp_snd_zcopy_on = B_FALSE;
18628 		if (!TCP_IS_DETACHED(tcp)) {
18629 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18630 			TCP_STAT(tcps, tcp_zcopy_disable);
18631 		}
18632 	}
18633 	return (tcp_zcopy_backoff(tcp, bp, 0));
18634 }
18635 
18636 /*
18637  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18638  * the original desballoca'ed segmapped mblk.
18639  */
18640 static mblk_t *
18641 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18642 {
18643 	mblk_t *head, *tail, *nbp;
18644 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18645 
18646 	if (IS_VMLOANED_MBLK(bp)) {
18647 		TCP_STAT(tcps, tcp_zcopy_backoff);
18648 		if ((head = copyb(bp)) == NULL) {
18649 			/* fail to backoff; leave it for the next backoff */
18650 			tcp->tcp_xmit_zc_clean = B_FALSE;
18651 			return (bp);
18652 		}
18653 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18654 			if (fix_xmitlist)
18655 				tcp_zcopy_notify(tcp);
18656 			else
18657 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18658 		}
18659 		nbp = bp->b_cont;
18660 		if (fix_xmitlist) {
18661 			head->b_prev = bp->b_prev;
18662 			head->b_next = bp->b_next;
18663 			if (tcp->tcp_xmit_tail == bp)
18664 				tcp->tcp_xmit_tail = head;
18665 		}
18666 		bp->b_next = NULL;
18667 		bp->b_prev = NULL;
18668 		freeb(bp);
18669 	} else {
18670 		head = bp;
18671 		nbp = bp->b_cont;
18672 	}
18673 	tail = head;
18674 	while (nbp) {
18675 		if (IS_VMLOANED_MBLK(nbp)) {
18676 			TCP_STAT(tcps, tcp_zcopy_backoff);
18677 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18678 				tcp->tcp_xmit_zc_clean = B_FALSE;
18679 				tail->b_cont = nbp;
18680 				return (head);
18681 			}
18682 			tail = tail->b_cont;
18683 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18684 				if (fix_xmitlist)
18685 					tcp_zcopy_notify(tcp);
18686 				else
18687 					tail->b_datap->db_struioflag |=
18688 					    STRUIO_ZCNOTIFY;
18689 			}
18690 			bp = nbp;
18691 			nbp = nbp->b_cont;
18692 			if (fix_xmitlist) {
18693 				tail->b_prev = bp->b_prev;
18694 				tail->b_next = bp->b_next;
18695 				if (tcp->tcp_xmit_tail == bp)
18696 					tcp->tcp_xmit_tail = tail;
18697 			}
18698 			bp->b_next = NULL;
18699 			bp->b_prev = NULL;
18700 			freeb(bp);
18701 		} else {
18702 			tail->b_cont = nbp;
18703 			tail = nbp;
18704 			nbp = nbp->b_cont;
18705 		}
18706 	}
18707 	if (fix_xmitlist) {
18708 		tcp->tcp_xmit_last = tail;
18709 		tcp->tcp_xmit_zc_clean = B_TRUE;
18710 	}
18711 	return (head);
18712 }
18713 
18714 static void
18715 tcp_zcopy_notify(tcp_t *tcp)
18716 {
18717 	struct stdata	*stp;
18718 
18719 	if (tcp->tcp_detached)
18720 		return;
18721 	stp = STREAM(tcp->tcp_rq);
18722 	mutex_enter(&stp->sd_lock);
18723 	stp->sd_flag |= STZCNOTIFY;
18724 	cv_broadcast(&stp->sd_zcopy_wait);
18725 	mutex_exit(&stp->sd_lock);
18726 }
18727 
18728 static boolean_t
18729 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18730 {
18731 	ire_t	*ire;
18732 	conn_t	*connp = tcp->tcp_connp;
18733 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18734 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18735 
18736 	mutex_enter(&connp->conn_lock);
18737 	ire = connp->conn_ire_cache;
18738 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18739 
18740 	if ((ire != NULL) &&
18741 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18742 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18743 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18744 		IRE_REFHOLD(ire);
18745 		mutex_exit(&connp->conn_lock);
18746 	} else {
18747 		boolean_t cached = B_FALSE;
18748 		ts_label_t *tsl;
18749 
18750 		/* force a recheck later on */
18751 		tcp->tcp_ire_ill_check_done = B_FALSE;
18752 
18753 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18754 		connp->conn_ire_cache = NULL;
18755 		mutex_exit(&connp->conn_lock);
18756 
18757 		if (ire != NULL)
18758 			IRE_REFRELE_NOTR(ire);
18759 
18760 		tsl = crgetlabel(CONN_CRED(connp));
18761 		ire = (dst ?
18762 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18763 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18764 		    connp->conn_zoneid, tsl, ipst));
18765 
18766 		if (ire == NULL) {
18767 			TCP_STAT(tcps, tcp_ire_null);
18768 			return (B_FALSE);
18769 		}
18770 
18771 		IRE_REFHOLD_NOTR(ire);
18772 		/*
18773 		 * Since we are inside the squeue, there cannot be another
18774 		 * thread in TCP trying to set the conn_ire_cache now.  The
18775 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18776 		 * unplumb thread has not yet started cleaning up the conns.
18777 		 * Hence we don't need to grab the conn lock.
18778 		 */
18779 		if (CONN_CACHE_IRE(connp)) {
18780 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18781 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18782 				TCP_CHECK_IREINFO(tcp, ire);
18783 				connp->conn_ire_cache = ire;
18784 				cached = B_TRUE;
18785 			}
18786 			rw_exit(&ire->ire_bucket->irb_lock);
18787 		}
18788 
18789 		/*
18790 		 * We can continue to use the ire but since it was
18791 		 * not cached, we should drop the extra reference.
18792 		 */
18793 		if (!cached)
18794 			IRE_REFRELE_NOTR(ire);
18795 
18796 		/*
18797 		 * Rampart note: no need to select a new label here, since
18798 		 * labels are not allowed to change during the life of a TCP
18799 		 * connection.
18800 		 */
18801 	}
18802 
18803 	*irep = ire;
18804 
18805 	return (B_TRUE);
18806 }
18807 
18808 /*
18809  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18810  *
18811  * 0 = success;
18812  * 1 = failed to find ire and ill.
18813  */
18814 static boolean_t
18815 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18816 {
18817 	ipha_t		*ipha;
18818 	ipaddr_t	dst;
18819 	ire_t		*ire;
18820 	ill_t		*ill;
18821 	conn_t		*connp = tcp->tcp_connp;
18822 	mblk_t		*ire_fp_mp;
18823 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18824 
18825 	if (mp != NULL)
18826 		ipha = (ipha_t *)mp->b_rptr;
18827 	else
18828 		ipha = tcp->tcp_ipha;
18829 	dst = ipha->ipha_dst;
18830 
18831 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18832 		return (B_FALSE);
18833 
18834 	if ((ire->ire_flags & RTF_MULTIRT) ||
18835 	    (ire->ire_stq == NULL) ||
18836 	    (ire->ire_nce == NULL) ||
18837 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18838 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18839 		MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18840 		TCP_STAT(tcps, tcp_ip_ire_send);
18841 		IRE_REFRELE(ire);
18842 		return (B_FALSE);
18843 	}
18844 
18845 	ill = ire_to_ill(ire);
18846 	if (connp->conn_outgoing_ill != NULL) {
18847 		ill_t *conn_outgoing_ill = NULL;
18848 		/*
18849 		 * Choose a good ill in the group to send the packets on.
18850 		 */
18851 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18852 		ill = ire_to_ill(ire);
18853 	}
18854 	ASSERT(ill != NULL);
18855 
18856 	if (!tcp->tcp_ire_ill_check_done) {
18857 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18858 		tcp->tcp_ire_ill_check_done = B_TRUE;
18859 	}
18860 
18861 	*irep = ire;
18862 	*illp = ill;
18863 
18864 	return (B_TRUE);
18865 }
18866 
18867 static void
18868 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18869 {
18870 	ipha_t		*ipha;
18871 	ipaddr_t	src;
18872 	ipaddr_t	dst;
18873 	uint32_t	cksum;
18874 	ire_t		*ire;
18875 	uint16_t	*up;
18876 	ill_t		*ill;
18877 	conn_t		*connp = tcp->tcp_connp;
18878 	uint32_t	hcksum_txflags = 0;
18879 	mblk_t		*ire_fp_mp;
18880 	uint_t		ire_fp_mp_len;
18881 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18882 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18883 
18884 	ASSERT(DB_TYPE(mp) == M_DATA);
18885 
18886 	if (DB_CRED(mp) == NULL)
18887 		mblk_setcred(mp, CONN_CRED(connp));
18888 
18889 	ipha = (ipha_t *)mp->b_rptr;
18890 	src = ipha->ipha_src;
18891 	dst = ipha->ipha_dst;
18892 
18893 	/*
18894 	 * Drop off fast path for IPv6 and also if options are present or
18895 	 * we need to resolve a TS label.
18896 	 */
18897 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18898 	    !IPCL_IS_CONNECTED(connp) ||
18899 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18900 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18901 	    !connp->conn_ulp_labeled ||
18902 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18903 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18904 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18905 		if (tcp->tcp_snd_zcopy_aware)
18906 			mp = tcp_zcopy_disable(tcp, mp);
18907 		TCP_STAT(tcps, tcp_ip_send);
18908 		CALL_IP_WPUT(connp, q, mp);
18909 		return;
18910 	}
18911 
18912 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18913 		if (tcp->tcp_snd_zcopy_aware)
18914 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18915 		CALL_IP_WPUT(connp, q, mp);
18916 		return;
18917 	}
18918 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18919 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18920 
18921 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18922 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18923 #ifndef _BIG_ENDIAN
18924 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18925 #endif
18926 
18927 	/*
18928 	 * Check to see if we need to re-enable LSO/MDT for this connection
18929 	 * because it was previously disabled due to changes in the ill;
18930 	 * note that by doing it here, this re-enabling only applies when
18931 	 * the packet is not dispatched through CALL_IP_WPUT().
18932 	 *
18933 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18934 	 * case, since that's how we ended up here.  For IPv6, we do the
18935 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18936 	 */
18937 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18938 		/*
18939 		 * Restore LSO for this connection, so that next time around
18940 		 * it is eligible to go through tcp_lsosend() path again.
18941 		 */
18942 		TCP_STAT(tcps, tcp_lso_enabled);
18943 		tcp->tcp_lso = B_TRUE;
18944 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18945 		    "interface %s\n", (void *)connp, ill->ill_name));
18946 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18947 		/*
18948 		 * Restore MDT for this connection, so that next time around
18949 		 * it is eligible to go through tcp_multisend() path again.
18950 		 */
18951 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18952 		tcp->tcp_mdt = B_TRUE;
18953 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18954 		    "interface %s\n", (void *)connp, ill->ill_name));
18955 	}
18956 
18957 	if (tcp->tcp_snd_zcopy_aware) {
18958 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18959 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18960 			mp = tcp_zcopy_disable(tcp, mp);
18961 		/*
18962 		 * we shouldn't need to reset ipha as the mp containing
18963 		 * ipha should never be a zero-copy mp.
18964 		 */
18965 	}
18966 
18967 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18968 		ASSERT(ill->ill_hcksum_capab != NULL);
18969 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18970 	}
18971 
18972 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18973 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18974 
18975 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18976 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18977 
18978 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18979 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18980 
18981 	/* Software checksum? */
18982 	if (DB_CKSUMFLAGS(mp) == 0) {
18983 		TCP_STAT(tcps, tcp_out_sw_cksum);
18984 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18985 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18986 	}
18987 
18988 	ipha->ipha_fragment_offset_and_flags |=
18989 	    (uint32_t)htons(ire->ire_frag_flag);
18990 
18991 	/* Calculate IP header checksum if hardware isn't capable */
18992 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18993 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18994 		    ((uint16_t *)ipha)[4]);
18995 	}
18996 
18997 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18998 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18999 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19000 
19001 	UPDATE_OB_PKT_COUNT(ire);
19002 	ire->ire_last_used_time = lbolt;
19003 
19004 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19005 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19006 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19007 	    ntohs(ipha->ipha_length));
19008 
19009 	if (ILL_DLS_CAPABLE(ill)) {
19010 		/*
19011 		 * Send the packet directly to DLD, where it may be queued
19012 		 * depending on the availability of transmit resources at
19013 		 * the media layer.
19014 		 */
19015 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19016 	} else {
19017 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19018 		DTRACE_PROBE4(ip4__physical__out__start,
19019 		    ill_t *, NULL, ill_t *, out_ill,
19020 		    ipha_t *, ipha, mblk_t *, mp);
19021 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19022 		    ipst->ips_ipv4firewall_physical_out,
19023 		    NULL, out_ill, ipha, mp, mp, ipst);
19024 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19025 		if (mp != NULL)
19026 			putnext(ire->ire_stq, mp);
19027 	}
19028 	IRE_REFRELE(ire);
19029 }
19030 
19031 /*
19032  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19033  * if the receiver shrinks the window, i.e. moves the right window to the
19034  * left, the we should not send new data, but should retransmit normally the
19035  * old unacked data between suna and suna + swnd. We might has sent data
19036  * that is now outside the new window, pretend that we didn't send  it.
19037  */
19038 static void
19039 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19040 {
19041 	uint32_t	snxt = tcp->tcp_snxt;
19042 	mblk_t		*xmit_tail;
19043 	int32_t		offset;
19044 
19045 	ASSERT(shrunk_count > 0);
19046 
19047 	/* Pretend we didn't send the data outside the window */
19048 	snxt -= shrunk_count;
19049 
19050 	/* Get the mblk and the offset in it per the shrunk window */
19051 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19052 
19053 	ASSERT(xmit_tail != NULL);
19054 
19055 	/* Reset all the values per the now shrunk window */
19056 	tcp->tcp_snxt = snxt;
19057 	tcp->tcp_xmit_tail = xmit_tail;
19058 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19059 	    offset;
19060 	tcp->tcp_unsent += shrunk_count;
19061 
19062 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19063 		/*
19064 		 * Make sure the timer is running so that we will probe a zero
19065 		 * window.
19066 		 */
19067 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19068 }
19069 
19070 
19071 /*
19072  * The TCP normal data output path.
19073  * NOTE: the logic of the fast path is duplicated from this function.
19074  */
19075 static void
19076 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19077 {
19078 	int		len;
19079 	mblk_t		*local_time;
19080 	mblk_t		*mp1;
19081 	uint32_t	snxt;
19082 	int		tail_unsent;
19083 	int		tcpstate;
19084 	int		usable = 0;
19085 	mblk_t		*xmit_tail;
19086 	queue_t		*q = tcp->tcp_wq;
19087 	int32_t		mss;
19088 	int32_t		num_sack_blk = 0;
19089 	int32_t		tcp_hdr_len;
19090 	int32_t		tcp_tcp_hdr_len;
19091 	int		mdt_thres;
19092 	int		rc;
19093 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19094 	ip_stack_t	*ipst;
19095 
19096 	tcpstate = tcp->tcp_state;
19097 	if (mp == NULL) {
19098 		/*
19099 		 * tcp_wput_data() with NULL mp should only be called when
19100 		 * there is unsent data.
19101 		 */
19102 		ASSERT(tcp->tcp_unsent > 0);
19103 		/* Really tacky... but we need this for detached closes. */
19104 		len = tcp->tcp_unsent;
19105 		goto data_null;
19106 	}
19107 
19108 #if CCS_STATS
19109 	wrw_stats.tot.count++;
19110 	wrw_stats.tot.bytes += msgdsize(mp);
19111 #endif
19112 	ASSERT(mp->b_datap->db_type == M_DATA);
19113 	/*
19114 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19115 	 * or before a connection attempt has begun.
19116 	 */
19117 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19118 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19119 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19120 #ifdef DEBUG
19121 			cmn_err(CE_WARN,
19122 			    "tcp_wput_data: data after ordrel, %s",
19123 			    tcp_display(tcp, NULL,
19124 			    DISP_ADDR_AND_PORT));
19125 #else
19126 			if (tcp->tcp_debug) {
19127 				(void) strlog(TCP_MOD_ID, 0, 1,
19128 				    SL_TRACE|SL_ERROR,
19129 				    "tcp_wput_data: data after ordrel, %s\n",
19130 				    tcp_display(tcp, NULL,
19131 				    DISP_ADDR_AND_PORT));
19132 			}
19133 #endif /* DEBUG */
19134 		}
19135 		if (tcp->tcp_snd_zcopy_aware &&
19136 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19137 			tcp_zcopy_notify(tcp);
19138 		freemsg(mp);
19139 		mutex_enter(&tcp->tcp_non_sq_lock);
19140 		if (tcp->tcp_flow_stopped &&
19141 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19142 			tcp_clrqfull(tcp);
19143 		}
19144 		mutex_exit(&tcp->tcp_non_sq_lock);
19145 		return;
19146 	}
19147 
19148 	/* Strip empties */
19149 	for (;;) {
19150 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19151 		    (uintptr_t)INT_MAX);
19152 		len = (int)(mp->b_wptr - mp->b_rptr);
19153 		if (len > 0)
19154 			break;
19155 		mp1 = mp;
19156 		mp = mp->b_cont;
19157 		freeb(mp1);
19158 		if (!mp) {
19159 			return;
19160 		}
19161 	}
19162 
19163 	/* If we are the first on the list ... */
19164 	if (tcp->tcp_xmit_head == NULL) {
19165 		tcp->tcp_xmit_head = mp;
19166 		tcp->tcp_xmit_tail = mp;
19167 		tcp->tcp_xmit_tail_unsent = len;
19168 	} else {
19169 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19170 		struct datab *dp;
19171 
19172 		mp1 = tcp->tcp_xmit_last;
19173 		if (len < tcp_tx_pull_len &&
19174 		    (dp = mp1->b_datap)->db_ref == 1 &&
19175 		    dp->db_lim - mp1->b_wptr >= len) {
19176 			ASSERT(len > 0);
19177 			ASSERT(!mp1->b_cont);
19178 			if (len == 1) {
19179 				*mp1->b_wptr++ = *mp->b_rptr;
19180 			} else {
19181 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19182 				mp1->b_wptr += len;
19183 			}
19184 			if (mp1 == tcp->tcp_xmit_tail)
19185 				tcp->tcp_xmit_tail_unsent += len;
19186 			mp1->b_cont = mp->b_cont;
19187 			if (tcp->tcp_snd_zcopy_aware &&
19188 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19189 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19190 			freeb(mp);
19191 			mp = mp1;
19192 		} else {
19193 			tcp->tcp_xmit_last->b_cont = mp;
19194 		}
19195 		len += tcp->tcp_unsent;
19196 	}
19197 
19198 	/* Tack on however many more positive length mblks we have */
19199 	if ((mp1 = mp->b_cont) != NULL) {
19200 		do {
19201 			int tlen;
19202 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19203 			    (uintptr_t)INT_MAX);
19204 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19205 			if (tlen <= 0) {
19206 				mp->b_cont = mp1->b_cont;
19207 				freeb(mp1);
19208 			} else {
19209 				len += tlen;
19210 				mp = mp1;
19211 			}
19212 		} while ((mp1 = mp->b_cont) != NULL);
19213 	}
19214 	tcp->tcp_xmit_last = mp;
19215 	tcp->tcp_unsent = len;
19216 
19217 	if (urgent)
19218 		usable = 1;
19219 
19220 data_null:
19221 	snxt = tcp->tcp_snxt;
19222 	xmit_tail = tcp->tcp_xmit_tail;
19223 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19224 
19225 	/*
19226 	 * Note that tcp_mss has been adjusted to take into account the
19227 	 * timestamp option if applicable.  Because SACK options do not
19228 	 * appear in every TCP segments and they are of variable lengths,
19229 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19230 	 * the actual segment length when we need to send a segment which
19231 	 * includes SACK options.
19232 	 */
19233 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19234 		int32_t	opt_len;
19235 
19236 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19237 		    tcp->tcp_num_sack_blk);
19238 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19239 		    2 + TCPOPT_HEADER_LEN;
19240 		mss = tcp->tcp_mss - opt_len;
19241 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19242 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19243 	} else {
19244 		mss = tcp->tcp_mss;
19245 		tcp_hdr_len = tcp->tcp_hdr_len;
19246 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19247 	}
19248 
19249 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19250 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19251 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19252 	}
19253 	if (tcpstate == TCPS_SYN_RCVD) {
19254 		/*
19255 		 * The three-way connection establishment handshake is not
19256 		 * complete yet. We want to queue the data for transmission
19257 		 * after entering ESTABLISHED state (RFC793). A jump to
19258 		 * "done" label effectively leaves data on the queue.
19259 		 */
19260 		goto done;
19261 	} else {
19262 		int usable_r;
19263 
19264 		/*
19265 		 * In the special case when cwnd is zero, which can only
19266 		 * happen if the connection is ECN capable, return now.
19267 		 * New segments is sent using tcp_timer().  The timer
19268 		 * is set in tcp_rput_data().
19269 		 */
19270 		if (tcp->tcp_cwnd == 0) {
19271 			/*
19272 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19273 			 * finished.
19274 			 */
19275 			ASSERT(tcp->tcp_ecn_ok ||
19276 			    tcp->tcp_state < TCPS_ESTABLISHED);
19277 			return;
19278 		}
19279 
19280 		/* NOTE: trouble if xmitting while SYN not acked? */
19281 		usable_r = snxt - tcp->tcp_suna;
19282 		usable_r = tcp->tcp_swnd - usable_r;
19283 
19284 		/*
19285 		 * Check if the receiver has shrunk the window.  If
19286 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19287 		 * cannot be set as there is unsent data, so FIN cannot
19288 		 * be sent out.  Otherwise, we need to take into account
19289 		 * of FIN as it consumes an "invisible" sequence number.
19290 		 */
19291 		ASSERT(tcp->tcp_fin_sent == 0);
19292 		if (usable_r < 0) {
19293 			/*
19294 			 * The receiver has shrunk the window and we have sent
19295 			 * -usable_r date beyond the window, re-adjust.
19296 			 *
19297 			 * If TCP window scaling is enabled, there can be
19298 			 * round down error as the advertised receive window
19299 			 * is actually right shifted n bits.  This means that
19300 			 * the lower n bits info is wiped out.  It will look
19301 			 * like the window is shrunk.  Do a check here to
19302 			 * see if the shrunk amount is actually within the
19303 			 * error in window calculation.  If it is, just
19304 			 * return.  Note that this check is inside the
19305 			 * shrunk window check.  This makes sure that even
19306 			 * though tcp_process_shrunk_swnd() is not called,
19307 			 * we will stop further processing.
19308 			 */
19309 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19310 				tcp_process_shrunk_swnd(tcp, -usable_r);
19311 			}
19312 			return;
19313 		}
19314 
19315 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19316 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19317 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19318 
19319 		/* usable = MIN(usable, unsent) */
19320 		if (usable_r > len)
19321 			usable_r = len;
19322 
19323 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19324 		if (usable_r > 0) {
19325 			usable = usable_r;
19326 		} else {
19327 			/* Bypass all other unnecessary processing. */
19328 			goto done;
19329 		}
19330 	}
19331 
19332 	local_time = (mblk_t *)lbolt;
19333 
19334 	/*
19335 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19336 	 * BSD.  This is more in line with the true intent of Nagle.
19337 	 *
19338 	 * The conditions are:
19339 	 * 1. The amount of unsent data (or amount of data which can be
19340 	 *    sent, whichever is smaller) is less than Nagle limit.
19341 	 * 2. The last sent size is also less than Nagle limit.
19342 	 * 3. There is unack'ed data.
19343 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19344 	 *    Nagle algorithm.  This reduces the probability that urgent
19345 	 *    bytes get "merged" together.
19346 	 * 5. The app has not closed the connection.  This eliminates the
19347 	 *    wait time of the receiving side waiting for the last piece of
19348 	 *    (small) data.
19349 	 *
19350 	 * If all are satisified, exit without sending anything.  Note
19351 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19352 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19353 	 * 4095).
19354 	 */
19355 	if (usable < (int)tcp->tcp_naglim &&
19356 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19357 	    snxt != tcp->tcp_suna &&
19358 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19359 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19360 		goto done;
19361 	}
19362 
19363 	if (tcp->tcp_cork) {
19364 		/*
19365 		 * if the tcp->tcp_cork option is set, then we have to force
19366 		 * TCP not to send partial segment (smaller than MSS bytes).
19367 		 * We are calculating the usable now based on full mss and
19368 		 * will save the rest of remaining data for later.
19369 		 */
19370 		if (usable < mss)
19371 			goto done;
19372 		usable = (usable / mss) * mss;
19373 	}
19374 
19375 	/* Update the latest receive window size in TCP header. */
19376 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19377 	    tcp->tcp_tcph->th_win);
19378 
19379 	/*
19380 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19381 	 *
19382 	 * 1. Simple TCP/IP{v4,v6} (no options).
19383 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19384 	 * 3. If the TCP connection is in ESTABLISHED state.
19385 	 * 4. The TCP is not detached.
19386 	 *
19387 	 * If any of the above conditions have changed during the
19388 	 * connection, stop using LSO/MDT and restore the stream head
19389 	 * parameters accordingly.
19390 	 */
19391 	ipst = tcps->tcps_netstack->netstack_ip;
19392 
19393 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19394 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19395 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19396 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19397 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19398 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19399 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19400 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19401 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19402 		if (tcp->tcp_lso) {
19403 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19404 			tcp->tcp_lso = B_FALSE;
19405 		} else {
19406 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19407 			tcp->tcp_mdt = B_FALSE;
19408 		}
19409 
19410 		/* Anything other than detached is considered pathological */
19411 		if (!TCP_IS_DETACHED(tcp)) {
19412 			if (tcp->tcp_lso)
19413 				TCP_STAT(tcps, tcp_lso_disabled);
19414 			else
19415 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19416 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19417 		}
19418 	}
19419 
19420 	/* Use MDT if sendable amount is greater than the threshold */
19421 	if (tcp->tcp_mdt &&
19422 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19423 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19424 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19425 	    (tcp->tcp_valid_bits == 0 ||
19426 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19427 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19428 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19429 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19430 		    local_time, mdt_thres);
19431 	} else {
19432 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19433 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19434 		    local_time, INT_MAX);
19435 	}
19436 
19437 	/* Pretend that all we were trying to send really got sent */
19438 	if (rc < 0 && tail_unsent < 0) {
19439 		do {
19440 			xmit_tail = xmit_tail->b_cont;
19441 			xmit_tail->b_prev = local_time;
19442 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19443 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19444 			tail_unsent += (int)(xmit_tail->b_wptr -
19445 			    xmit_tail->b_rptr);
19446 		} while (tail_unsent < 0);
19447 	}
19448 done:;
19449 	tcp->tcp_xmit_tail = xmit_tail;
19450 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19451 	len = tcp->tcp_snxt - snxt;
19452 	if (len) {
19453 		/*
19454 		 * If new data was sent, need to update the notsack
19455 		 * list, which is, afterall, data blocks that have
19456 		 * not been sack'ed by the receiver.  New data is
19457 		 * not sack'ed.
19458 		 */
19459 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19460 			/* len is a negative value. */
19461 			tcp->tcp_pipe -= len;
19462 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19463 			    tcp->tcp_snxt, snxt,
19464 			    &(tcp->tcp_num_notsack_blk),
19465 			    &(tcp->tcp_cnt_notsack_list));
19466 		}
19467 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19468 		tcp->tcp_rack = tcp->tcp_rnxt;
19469 		tcp->tcp_rack_cnt = 0;
19470 		if ((snxt + len) == tcp->tcp_suna) {
19471 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19472 		}
19473 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19474 		/*
19475 		 * Didn't send anything. Make sure the timer is running
19476 		 * so that we will probe a zero window.
19477 		 */
19478 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19479 	}
19480 	/* Note that len is the amount we just sent but with a negative sign */
19481 	tcp->tcp_unsent += len;
19482 	mutex_enter(&tcp->tcp_non_sq_lock);
19483 	if (tcp->tcp_flow_stopped) {
19484 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19485 			tcp_clrqfull(tcp);
19486 		}
19487 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19488 		tcp_setqfull(tcp);
19489 	}
19490 	mutex_exit(&tcp->tcp_non_sq_lock);
19491 }
19492 
19493 /*
19494  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19495  * outgoing TCP header with the template header, as well as other
19496  * options such as time-stamp, ECN and/or SACK.
19497  */
19498 static void
19499 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19500 {
19501 	tcph_t *tcp_tmpl, *tcp_h;
19502 	uint32_t *dst, *src;
19503 	int hdrlen;
19504 
19505 	ASSERT(OK_32PTR(rptr));
19506 
19507 	/* Template header */
19508 	tcp_tmpl = tcp->tcp_tcph;
19509 
19510 	/* Header of outgoing packet */
19511 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19512 
19513 	/* dst and src are opaque 32-bit fields, used for copying */
19514 	dst = (uint32_t *)rptr;
19515 	src = (uint32_t *)tcp->tcp_iphc;
19516 	hdrlen = tcp->tcp_hdr_len;
19517 
19518 	/* Fill time-stamp option if needed */
19519 	if (tcp->tcp_snd_ts_ok) {
19520 		U32_TO_BE32((uint32_t)now,
19521 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19522 		U32_TO_BE32(tcp->tcp_ts_recent,
19523 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19524 	} else {
19525 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19526 	}
19527 
19528 	/*
19529 	 * Copy the template header; is this really more efficient than
19530 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19531 	 * but perhaps not for other scenarios.
19532 	 */
19533 	dst[0] = src[0];
19534 	dst[1] = src[1];
19535 	dst[2] = src[2];
19536 	dst[3] = src[3];
19537 	dst[4] = src[4];
19538 	dst[5] = src[5];
19539 	dst[6] = src[6];
19540 	dst[7] = src[7];
19541 	dst[8] = src[8];
19542 	dst[9] = src[9];
19543 	if (hdrlen -= 40) {
19544 		hdrlen >>= 2;
19545 		dst += 10;
19546 		src += 10;
19547 		do {
19548 			*dst++ = *src++;
19549 		} while (--hdrlen);
19550 	}
19551 
19552 	/*
19553 	 * Set the ECN info in the TCP header if it is not a zero
19554 	 * window probe.  Zero window probe is only sent in
19555 	 * tcp_wput_data() and tcp_timer().
19556 	 */
19557 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19558 		SET_ECT(tcp, rptr);
19559 
19560 		if (tcp->tcp_ecn_echo_on)
19561 			tcp_h->th_flags[0] |= TH_ECE;
19562 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19563 			tcp_h->th_flags[0] |= TH_CWR;
19564 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19565 		}
19566 	}
19567 
19568 	/* Fill in SACK options */
19569 	if (num_sack_blk > 0) {
19570 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19571 		sack_blk_t *tmp;
19572 		int32_t	i;
19573 
19574 		wptr[0] = TCPOPT_NOP;
19575 		wptr[1] = TCPOPT_NOP;
19576 		wptr[2] = TCPOPT_SACK;
19577 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19578 		    sizeof (sack_blk_t);
19579 		wptr += TCPOPT_REAL_SACK_LEN;
19580 
19581 		tmp = tcp->tcp_sack_list;
19582 		for (i = 0; i < num_sack_blk; i++) {
19583 			U32_TO_BE32(tmp[i].begin, wptr);
19584 			wptr += sizeof (tcp_seq);
19585 			U32_TO_BE32(tmp[i].end, wptr);
19586 			wptr += sizeof (tcp_seq);
19587 		}
19588 		tcp_h->th_offset_and_rsrvd[0] +=
19589 		    ((num_sack_blk * 2 + 1) << 4);
19590 	}
19591 }
19592 
19593 /*
19594  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19595  * the destination address and SAP attribute, and if necessary, the
19596  * hardware checksum offload attribute to a Multidata message.
19597  */
19598 static int
19599 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19600     const uint32_t start, const uint32_t stuff, const uint32_t end,
19601     const uint32_t flags, tcp_stack_t *tcps)
19602 {
19603 	/* Add global destination address & SAP attribute */
19604 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19605 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19606 		    "destination address+SAP\n"));
19607 
19608 		if (dlmp != NULL)
19609 			TCP_STAT(tcps, tcp_mdt_allocfail);
19610 		return (-1);
19611 	}
19612 
19613 	/* Add global hwcksum attribute */
19614 	if (hwcksum &&
19615 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19616 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19617 		    "checksum attribute\n"));
19618 
19619 		TCP_STAT(tcps, tcp_mdt_allocfail);
19620 		return (-1);
19621 	}
19622 
19623 	return (0);
19624 }
19625 
19626 /*
19627  * Smaller and private version of pdescinfo_t used specifically for TCP,
19628  * which allows for only two payload spans per packet.
19629  */
19630 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19631 
19632 /*
19633  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19634  * scheme, and returns one the following:
19635  *
19636  * -1 = failed allocation.
19637  *  0 = success; burst count reached, or usable send window is too small,
19638  *      and that we'd rather wait until later before sending again.
19639  */
19640 static int
19641 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19642     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19643     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19644     const int mdt_thres)
19645 {
19646 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19647 	multidata_t	*mmd;
19648 	uint_t		obsegs, obbytes, hdr_frag_sz;
19649 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19650 	int		num_burst_seg, max_pld;
19651 	pdesc_t		*pkt;
19652 	tcp_pdescinfo_t	tcp_pkt_info;
19653 	pdescinfo_t	*pkt_info;
19654 	int		pbuf_idx, pbuf_idx_nxt;
19655 	int		seg_len, len, spill, af;
19656 	boolean_t	add_buffer, zcopy, clusterwide;
19657 	boolean_t	buf_trunked = B_FALSE;
19658 	boolean_t	rconfirm = B_FALSE;
19659 	boolean_t	done = B_FALSE;
19660 	uint32_t	cksum;
19661 	uint32_t	hwcksum_flags;
19662 	ire_t		*ire = NULL;
19663 	ill_t		*ill;
19664 	ipha_t		*ipha;
19665 	ip6_t		*ip6h;
19666 	ipaddr_t	src, dst;
19667 	ill_zerocopy_capab_t *zc_cap = NULL;
19668 	uint16_t	*up;
19669 	int		err;
19670 	conn_t		*connp;
19671 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19672 	uchar_t		*pld_start;
19673 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19674 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19675 
19676 #ifdef	_BIG_ENDIAN
19677 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19678 #else
19679 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19680 #endif
19681 
19682 #define	PREP_NEW_MULTIDATA() {			\
19683 	mmd = NULL;				\
19684 	md_mp = md_hbuf = NULL;			\
19685 	cur_hdr_off = 0;			\
19686 	max_pld = tcp->tcp_mdt_max_pld;		\
19687 	pbuf_idx = pbuf_idx_nxt = -1;		\
19688 	add_buffer = B_TRUE;			\
19689 	zcopy = B_FALSE;			\
19690 }
19691 
19692 #define	PREP_NEW_PBUF() {			\
19693 	md_pbuf = md_pbuf_nxt = NULL;		\
19694 	pbuf_idx = pbuf_idx_nxt = -1;		\
19695 	cur_pld_off = 0;			\
19696 	first_snxt = *snxt;			\
19697 	ASSERT(*tail_unsent > 0);		\
19698 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19699 }
19700 
19701 	ASSERT(mdt_thres >= mss);
19702 	ASSERT(*usable > 0 && *usable > mdt_thres);
19703 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19704 	ASSERT(!TCP_IS_DETACHED(tcp));
19705 	ASSERT(tcp->tcp_valid_bits == 0 ||
19706 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19707 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19708 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19709 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19710 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19711 
19712 	connp = tcp->tcp_connp;
19713 	ASSERT(connp != NULL);
19714 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19715 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19716 
19717 	/*
19718 	 * Note that tcp will only declare at most 2 payload spans per
19719 	 * packet, which is much lower than the maximum allowable number
19720 	 * of packet spans per Multidata.  For this reason, we use the
19721 	 * privately declared and smaller descriptor info structure, in
19722 	 * order to save some stack space.
19723 	 */
19724 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19725 
19726 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19727 	if (af == AF_INET) {
19728 		dst = tcp->tcp_ipha->ipha_dst;
19729 		src = tcp->tcp_ipha->ipha_src;
19730 		ASSERT(!CLASSD(dst));
19731 	}
19732 	ASSERT(af == AF_INET ||
19733 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19734 
19735 	obsegs = obbytes = 0;
19736 	num_burst_seg = tcp->tcp_snd_burst;
19737 	md_mp_head = NULL;
19738 	PREP_NEW_MULTIDATA();
19739 
19740 	/*
19741 	 * Before we go on further, make sure there is an IRE that we can
19742 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19743 	 * in proceeding any further, and we should just hand everything
19744 	 * off to the legacy path.
19745 	 */
19746 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19747 		goto legacy_send_no_md;
19748 
19749 	ASSERT(ire != NULL);
19750 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19751 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19752 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19753 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19754 	/*
19755 	 * If we do support loopback for MDT (which requires modifications
19756 	 * to the receiving paths), the following assertions should go away,
19757 	 * and we would be sending the Multidata to loopback conn later on.
19758 	 */
19759 	ASSERT(!IRE_IS_LOCAL(ire));
19760 	ASSERT(ire->ire_stq != NULL);
19761 
19762 	ill = ire_to_ill(ire);
19763 	ASSERT(ill != NULL);
19764 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19765 
19766 	if (!tcp->tcp_ire_ill_check_done) {
19767 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19768 		tcp->tcp_ire_ill_check_done = B_TRUE;
19769 	}
19770 
19771 	/*
19772 	 * If the underlying interface conditions have changed, or if the
19773 	 * new interface does not support MDT, go back to legacy path.
19774 	 */
19775 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19776 		/* don't go through this path anymore for this connection */
19777 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19778 		tcp->tcp_mdt = B_FALSE;
19779 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19780 		    "interface %s\n", (void *)connp, ill->ill_name));
19781 		/* IRE will be released prior to returning */
19782 		goto legacy_send_no_md;
19783 	}
19784 
19785 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19786 		zc_cap = ill->ill_zerocopy_capab;
19787 
19788 	/*
19789 	 * Check if we can take tcp fast-path. Note that "incomplete"
19790 	 * ire's (where the link-layer for next hop is not resolved
19791 	 * or where the fast-path header in nce_fp_mp is not available
19792 	 * yet) are sent down the legacy (slow) path.
19793 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19794 	 */
19795 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19796 		/* IRE will be released prior to returning */
19797 		goto legacy_send_no_md;
19798 	}
19799 
19800 	/* go to legacy path if interface doesn't support zerocopy */
19801 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19802 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19803 		/* IRE will be released prior to returning */
19804 		goto legacy_send_no_md;
19805 	}
19806 
19807 	/* does the interface support hardware checksum offload? */
19808 	hwcksum_flags = 0;
19809 	if (ILL_HCKSUM_CAPABLE(ill) &&
19810 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19811 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19812 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19813 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19814 		    HCKSUM_IPHDRCKSUM)
19815 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19816 
19817 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19818 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19819 			hwcksum_flags |= HCK_FULLCKSUM;
19820 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19821 		    HCKSUM_INET_PARTIAL)
19822 			hwcksum_flags |= HCK_PARTIALCKSUM;
19823 	}
19824 
19825 	/*
19826 	 * Each header fragment consists of the leading extra space,
19827 	 * followed by the TCP/IP header, and the trailing extra space.
19828 	 * We make sure that each header fragment begins on a 32-bit
19829 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19830 	 * aligned in tcp_mdt_update).
19831 	 */
19832 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19833 	    tcp->tcp_mdt_hdr_tail), 4);
19834 
19835 	/* are we starting from the beginning of data block? */
19836 	if (*tail_unsent == 0) {
19837 		*xmit_tail = (*xmit_tail)->b_cont;
19838 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19839 		*tail_unsent = (int)MBLKL(*xmit_tail);
19840 	}
19841 
19842 	/*
19843 	 * Here we create one or more Multidata messages, each made up of
19844 	 * one header buffer and up to N payload buffers.  This entire
19845 	 * operation is done within two loops:
19846 	 *
19847 	 * The outer loop mostly deals with creating the Multidata message,
19848 	 * as well as the header buffer that gets added to it.  It also
19849 	 * links the Multidata messages together such that all of them can
19850 	 * be sent down to the lower layer in a single putnext call; this
19851 	 * linking behavior depends on the tcp_mdt_chain tunable.
19852 	 *
19853 	 * The inner loop takes an existing Multidata message, and adds
19854 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19855 	 * packetizes those buffers by filling up the corresponding header
19856 	 * buffer fragments with the proper IP and TCP headers, and by
19857 	 * describing the layout of each packet in the packet descriptors
19858 	 * that get added to the Multidata.
19859 	 */
19860 	do {
19861 		/*
19862 		 * If usable send window is too small, or data blocks in
19863 		 * transmit list are smaller than our threshold (i.e. app
19864 		 * performs large writes followed by small ones), we hand
19865 		 * off the control over to the legacy path.  Note that we'll
19866 		 * get back the control once it encounters a large block.
19867 		 */
19868 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19869 		    (*xmit_tail)->b_cont != NULL &&
19870 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19871 			/* send down what we've got so far */
19872 			if (md_mp_head != NULL) {
19873 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19874 				    obsegs, obbytes, &rconfirm);
19875 			}
19876 			/*
19877 			 * Pass control over to tcp_send(), but tell it to
19878 			 * return to us once a large-size transmission is
19879 			 * possible.
19880 			 */
19881 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19882 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19883 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19884 			    tail_unsent, xmit_tail, local_time,
19885 			    mdt_thres)) <= 0) {
19886 				/* burst count reached, or alloc failed */
19887 				IRE_REFRELE(ire);
19888 				return (err);
19889 			}
19890 
19891 			/* tcp_send() may have sent everything, so check */
19892 			if (*usable <= 0) {
19893 				IRE_REFRELE(ire);
19894 				return (0);
19895 			}
19896 
19897 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19898 			/*
19899 			 * We may have delivered the Multidata, so make sure
19900 			 * to re-initialize before the next round.
19901 			 */
19902 			md_mp_head = NULL;
19903 			obsegs = obbytes = 0;
19904 			num_burst_seg = tcp->tcp_snd_burst;
19905 			PREP_NEW_MULTIDATA();
19906 
19907 			/* are we starting from the beginning of data block? */
19908 			if (*tail_unsent == 0) {
19909 				*xmit_tail = (*xmit_tail)->b_cont;
19910 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19911 				    (uintptr_t)INT_MAX);
19912 				*tail_unsent = (int)MBLKL(*xmit_tail);
19913 			}
19914 		}
19915 
19916 		/*
19917 		 * max_pld limits the number of mblks in tcp's transmit
19918 		 * queue that can be added to a Multidata message.  Once
19919 		 * this counter reaches zero, no more additional mblks
19920 		 * can be added to it.  What happens afterwards depends
19921 		 * on whether or not we are set to chain the Multidata
19922 		 * messages.  If we are to link them together, reset
19923 		 * max_pld to its original value (tcp_mdt_max_pld) and
19924 		 * prepare to create a new Multidata message which will
19925 		 * get linked to md_mp_head.  Else, leave it alone and
19926 		 * let the inner loop break on its own.
19927 		 */
19928 		if (tcp_mdt_chain && max_pld == 0)
19929 			PREP_NEW_MULTIDATA();
19930 
19931 		/* adding a payload buffer; re-initialize values */
19932 		if (add_buffer)
19933 			PREP_NEW_PBUF();
19934 
19935 		/*
19936 		 * If we don't have a Multidata, either because we just
19937 		 * (re)entered this outer loop, or after we branched off
19938 		 * to tcp_send above, setup the Multidata and header
19939 		 * buffer to be used.
19940 		 */
19941 		if (md_mp == NULL) {
19942 			int md_hbuflen;
19943 			uint32_t start, stuff;
19944 
19945 			/*
19946 			 * Calculate Multidata header buffer size large enough
19947 			 * to hold all of the headers that can possibly be
19948 			 * sent at this moment.  We'd rather over-estimate
19949 			 * the size than running out of space; this is okay
19950 			 * since this buffer is small anyway.
19951 			 */
19952 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19953 
19954 			/*
19955 			 * Start and stuff offset for partial hardware
19956 			 * checksum offload; these are currently for IPv4.
19957 			 * For full checksum offload, they are set to zero.
19958 			 */
19959 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19960 				if (af == AF_INET) {
19961 					start = IP_SIMPLE_HDR_LENGTH;
19962 					stuff = IP_SIMPLE_HDR_LENGTH +
19963 					    TCP_CHECKSUM_OFFSET;
19964 				} else {
19965 					start = IPV6_HDR_LEN;
19966 					stuff = IPV6_HDR_LEN +
19967 					    TCP_CHECKSUM_OFFSET;
19968 				}
19969 			} else {
19970 				start = stuff = 0;
19971 			}
19972 
19973 			/*
19974 			 * Create the header buffer, Multidata, as well as
19975 			 * any necessary attributes (destination address,
19976 			 * SAP and hardware checksum offload) that should
19977 			 * be associated with the Multidata message.
19978 			 */
19979 			ASSERT(cur_hdr_off == 0);
19980 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19981 			    ((md_hbuf->b_wptr += md_hbuflen),
19982 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19983 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19984 			    /* fastpath mblk */
19985 			    ire->ire_nce->nce_res_mp,
19986 			    /* hardware checksum enabled */
19987 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19988 			    /* hardware checksum offsets */
19989 			    start, stuff, 0,
19990 			    /* hardware checksum flag */
19991 			    hwcksum_flags, tcps) != 0)) {
19992 legacy_send:
19993 				if (md_mp != NULL) {
19994 					/* Unlink message from the chain */
19995 					if (md_mp_head != NULL) {
19996 						err = (intptr_t)rmvb(md_mp_head,
19997 						    md_mp);
19998 						/*
19999 						 * We can't assert that rmvb
20000 						 * did not return -1, since we
20001 						 * may get here before linkb
20002 						 * happens.  We do, however,
20003 						 * check if we just removed the
20004 						 * only element in the list.
20005 						 */
20006 						if (err == 0)
20007 							md_mp_head = NULL;
20008 					}
20009 					/* md_hbuf gets freed automatically */
20010 					TCP_STAT(tcps, tcp_mdt_discarded);
20011 					freeb(md_mp);
20012 				} else {
20013 					/* Either allocb or mmd_alloc failed */
20014 					TCP_STAT(tcps, tcp_mdt_allocfail);
20015 					if (md_hbuf != NULL)
20016 						freeb(md_hbuf);
20017 				}
20018 
20019 				/* send down what we've got so far */
20020 				if (md_mp_head != NULL) {
20021 					tcp_multisend_data(tcp, ire, ill,
20022 					    md_mp_head, obsegs, obbytes,
20023 					    &rconfirm);
20024 				}
20025 legacy_send_no_md:
20026 				if (ire != NULL)
20027 					IRE_REFRELE(ire);
20028 				/*
20029 				 * Too bad; let the legacy path handle this.
20030 				 * We specify INT_MAX for the threshold, since
20031 				 * we gave up with the Multidata processings
20032 				 * and let the old path have it all.
20033 				 */
20034 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20035 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20036 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20037 				    snxt, tail_unsent, xmit_tail, local_time,
20038 				    INT_MAX));
20039 			}
20040 
20041 			/* link to any existing ones, if applicable */
20042 			TCP_STAT(tcps, tcp_mdt_allocd);
20043 			if (md_mp_head == NULL) {
20044 				md_mp_head = md_mp;
20045 			} else if (tcp_mdt_chain) {
20046 				TCP_STAT(tcps, tcp_mdt_linked);
20047 				linkb(md_mp_head, md_mp);
20048 			}
20049 		}
20050 
20051 		ASSERT(md_mp_head != NULL);
20052 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20053 		ASSERT(md_mp != NULL && mmd != NULL);
20054 		ASSERT(md_hbuf != NULL);
20055 
20056 		/*
20057 		 * Packetize the transmittable portion of the data block;
20058 		 * each data block is essentially added to the Multidata
20059 		 * as a payload buffer.  We also deal with adding more
20060 		 * than one payload buffers, which happens when the remaining
20061 		 * packetized portion of the current payload buffer is less
20062 		 * than MSS, while the next data block in transmit queue
20063 		 * has enough data to make up for one.  This "spillover"
20064 		 * case essentially creates a split-packet, where portions
20065 		 * of the packet's payload fragments may span across two
20066 		 * virtually discontiguous address blocks.
20067 		 */
20068 		seg_len = mss;
20069 		do {
20070 			len = seg_len;
20071 
20072 			ASSERT(len > 0);
20073 			ASSERT(max_pld >= 0);
20074 			ASSERT(!add_buffer || cur_pld_off == 0);
20075 
20076 			/*
20077 			 * First time around for this payload buffer; note
20078 			 * in the case of a spillover, the following has
20079 			 * been done prior to adding the split-packet
20080 			 * descriptor to Multidata, and we don't want to
20081 			 * repeat the process.
20082 			 */
20083 			if (add_buffer) {
20084 				ASSERT(mmd != NULL);
20085 				ASSERT(md_pbuf == NULL);
20086 				ASSERT(md_pbuf_nxt == NULL);
20087 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20088 
20089 				/*
20090 				 * Have we reached the limit?  We'd get to
20091 				 * this case when we're not chaining the
20092 				 * Multidata messages together, and since
20093 				 * we're done, terminate this loop.
20094 				 */
20095 				if (max_pld == 0)
20096 					break; /* done */
20097 
20098 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20099 					TCP_STAT(tcps, tcp_mdt_allocfail);
20100 					goto legacy_send; /* out_of_mem */
20101 				}
20102 
20103 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20104 				    zc_cap != NULL) {
20105 					if (!ip_md_zcopy_attr(mmd, NULL,
20106 					    zc_cap->ill_zerocopy_flags)) {
20107 						freeb(md_pbuf);
20108 						TCP_STAT(tcps,
20109 						    tcp_mdt_allocfail);
20110 						/* out_of_mem */
20111 						goto legacy_send;
20112 					}
20113 					zcopy = B_TRUE;
20114 				}
20115 
20116 				md_pbuf->b_rptr += base_pld_off;
20117 
20118 				/*
20119 				 * Add a payload buffer to the Multidata; this
20120 				 * operation must not fail, or otherwise our
20121 				 * logic in this routine is broken.  There
20122 				 * is no memory allocation done by the
20123 				 * routine, so any returned failure simply
20124 				 * tells us that we've done something wrong.
20125 				 *
20126 				 * A failure tells us that either we're adding
20127 				 * the same payload buffer more than once, or
20128 				 * we're trying to add more buffers than
20129 				 * allowed (max_pld calculation is wrong).
20130 				 * None of the above cases should happen, and
20131 				 * we panic because either there's horrible
20132 				 * heap corruption, and/or programming mistake.
20133 				 */
20134 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20135 				if (pbuf_idx < 0) {
20136 					cmn_err(CE_PANIC, "tcp_multisend: "
20137 					    "payload buffer logic error "
20138 					    "detected for tcp %p mmd %p "
20139 					    "pbuf %p (%d)\n",
20140 					    (void *)tcp, (void *)mmd,
20141 					    (void *)md_pbuf, pbuf_idx);
20142 				}
20143 
20144 				ASSERT(max_pld > 0);
20145 				--max_pld;
20146 				add_buffer = B_FALSE;
20147 			}
20148 
20149 			ASSERT(md_mp_head != NULL);
20150 			ASSERT(md_pbuf != NULL);
20151 			ASSERT(md_pbuf_nxt == NULL);
20152 			ASSERT(pbuf_idx != -1);
20153 			ASSERT(pbuf_idx_nxt == -1);
20154 			ASSERT(*usable > 0);
20155 
20156 			/*
20157 			 * We spillover to the next payload buffer only
20158 			 * if all of the following is true:
20159 			 *
20160 			 *   1. There is not enough data on the current
20161 			 *	payload buffer to make up `len',
20162 			 *   2. We are allowed to send `len',
20163 			 *   3. The next payload buffer length is large
20164 			 *	enough to accomodate `spill'.
20165 			 */
20166 			if ((spill = len - *tail_unsent) > 0 &&
20167 			    *usable >= len &&
20168 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20169 			    max_pld > 0) {
20170 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20171 				if (md_pbuf_nxt == NULL) {
20172 					TCP_STAT(tcps, tcp_mdt_allocfail);
20173 					goto legacy_send; /* out_of_mem */
20174 				}
20175 
20176 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20177 				    zc_cap != NULL) {
20178 					if (!ip_md_zcopy_attr(mmd, NULL,
20179 					    zc_cap->ill_zerocopy_flags)) {
20180 						freeb(md_pbuf_nxt);
20181 						TCP_STAT(tcps,
20182 						    tcp_mdt_allocfail);
20183 						/* out_of_mem */
20184 						goto legacy_send;
20185 					}
20186 					zcopy = B_TRUE;
20187 				}
20188 
20189 				/*
20190 				 * See comments above on the first call to
20191 				 * mmd_addpldbuf for explanation on the panic.
20192 				 */
20193 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20194 				if (pbuf_idx_nxt < 0) {
20195 					panic("tcp_multisend: "
20196 					    "next payload buffer logic error "
20197 					    "detected for tcp %p mmd %p "
20198 					    "pbuf %p (%d)\n",
20199 					    (void *)tcp, (void *)mmd,
20200 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20201 				}
20202 
20203 				ASSERT(max_pld > 0);
20204 				--max_pld;
20205 			} else if (spill > 0) {
20206 				/*
20207 				 * If there's a spillover, but the following
20208 				 * xmit_tail couldn't give us enough octets
20209 				 * to reach "len", then stop the current
20210 				 * Multidata creation and let the legacy
20211 				 * tcp_send() path take over.  We don't want
20212 				 * to send the tiny segment as part of this
20213 				 * Multidata for performance reasons; instead,
20214 				 * we let the legacy path deal with grouping
20215 				 * it with the subsequent small mblks.
20216 				 */
20217 				if (*usable >= len &&
20218 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20219 					max_pld = 0;
20220 					break;	/* done */
20221 				}
20222 
20223 				/*
20224 				 * We can't spillover, and we are near
20225 				 * the end of the current payload buffer,
20226 				 * so send what's left.
20227 				 */
20228 				ASSERT(*tail_unsent > 0);
20229 				len = *tail_unsent;
20230 			}
20231 
20232 			/* tail_unsent is negated if there is a spillover */
20233 			*tail_unsent -= len;
20234 			*usable -= len;
20235 			ASSERT(*usable >= 0);
20236 
20237 			if (*usable < mss)
20238 				seg_len = *usable;
20239 			/*
20240 			 * Sender SWS avoidance; see comments in tcp_send();
20241 			 * everything else is the same, except that we only
20242 			 * do this here if there is no more data to be sent
20243 			 * following the current xmit_tail.  We don't check
20244 			 * for 1-byte urgent data because we shouldn't get
20245 			 * here if TCP_URG_VALID is set.
20246 			 */
20247 			if (*usable > 0 && *usable < mss &&
20248 			    ((md_pbuf_nxt == NULL &&
20249 			    (*xmit_tail)->b_cont == NULL) ||
20250 			    (md_pbuf_nxt != NULL &&
20251 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20252 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20253 			    (tcp->tcp_unsent -
20254 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20255 			    !tcp->tcp_zero_win_probe) {
20256 				if ((*snxt + len) == tcp->tcp_snxt &&
20257 				    (*snxt + len) == tcp->tcp_suna) {
20258 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20259 				}
20260 				done = B_TRUE;
20261 			}
20262 
20263 			/*
20264 			 * Prime pump for IP's checksumming on our behalf;
20265 			 * include the adjustment for a source route if any.
20266 			 * Do this only for software/partial hardware checksum
20267 			 * offload, as this field gets zeroed out later for
20268 			 * the full hardware checksum offload case.
20269 			 */
20270 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20271 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20272 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20273 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20274 			}
20275 
20276 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20277 			*snxt += len;
20278 
20279 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20280 			/*
20281 			 * We set the PUSH bit only if TCP has no more buffered
20282 			 * data to be transmitted (or if sender SWS avoidance
20283 			 * takes place), as opposed to setting it for every
20284 			 * last packet in the burst.
20285 			 */
20286 			if (done ||
20287 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20288 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20289 
20290 			/*
20291 			 * Set FIN bit if this is our last segment; snxt
20292 			 * already includes its length, and it will not
20293 			 * be adjusted after this point.
20294 			 */
20295 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20296 			    *snxt == tcp->tcp_fss) {
20297 				if (!tcp->tcp_fin_acked) {
20298 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20299 					BUMP_MIB(&tcps->tcps_mib,
20300 					    tcpOutControl);
20301 				}
20302 				if (!tcp->tcp_fin_sent) {
20303 					tcp->tcp_fin_sent = B_TRUE;
20304 					/*
20305 					 * tcp state must be ESTABLISHED
20306 					 * in order for us to get here in
20307 					 * the first place.
20308 					 */
20309 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20310 
20311 					/*
20312 					 * Upon returning from this routine,
20313 					 * tcp_wput_data() will set tcp_snxt
20314 					 * to be equal to snxt + tcp_fin_sent.
20315 					 * This is essentially the same as
20316 					 * setting it to tcp_fss + 1.
20317 					 */
20318 				}
20319 			}
20320 
20321 			tcp->tcp_last_sent_len = (ushort_t)len;
20322 
20323 			len += tcp_hdr_len;
20324 			if (tcp->tcp_ipversion == IPV4_VERSION)
20325 				tcp->tcp_ipha->ipha_length = htons(len);
20326 			else
20327 				tcp->tcp_ip6h->ip6_plen = htons(len -
20328 				    ((char *)&tcp->tcp_ip6h[1] -
20329 				    tcp->tcp_iphc));
20330 
20331 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20332 
20333 			/* setup header fragment */
20334 			PDESC_HDR_ADD(pkt_info,
20335 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20336 			    tcp->tcp_mdt_hdr_head,		/* head room */
20337 			    tcp_hdr_len,			/* len */
20338 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20339 
20340 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20341 			    hdr_frag_sz);
20342 			ASSERT(MBLKIN(md_hbuf,
20343 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20344 			    PDESC_HDRSIZE(pkt_info)));
20345 
20346 			/* setup first payload fragment */
20347 			PDESC_PLD_INIT(pkt_info);
20348 			PDESC_PLD_SPAN_ADD(pkt_info,
20349 			    pbuf_idx,				/* index */
20350 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20351 			    tcp->tcp_last_sent_len);		/* len */
20352 
20353 			/* create a split-packet in case of a spillover */
20354 			if (md_pbuf_nxt != NULL) {
20355 				ASSERT(spill > 0);
20356 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20357 				ASSERT(!add_buffer);
20358 
20359 				md_pbuf = md_pbuf_nxt;
20360 				md_pbuf_nxt = NULL;
20361 				pbuf_idx = pbuf_idx_nxt;
20362 				pbuf_idx_nxt = -1;
20363 				cur_pld_off = spill;
20364 
20365 				/* trim out first payload fragment */
20366 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20367 
20368 				/* setup second payload fragment */
20369 				PDESC_PLD_SPAN_ADD(pkt_info,
20370 				    pbuf_idx,			/* index */
20371 				    md_pbuf->b_rptr,		/* start */
20372 				    spill);			/* len */
20373 
20374 				if ((*xmit_tail)->b_next == NULL) {
20375 					/*
20376 					 * Store the lbolt used for RTT
20377 					 * estimation. We can only record one
20378 					 * timestamp per mblk so we do it when
20379 					 * we reach the end of the payload
20380 					 * buffer.  Also we only take a new
20381 					 * timestamp sample when the previous
20382 					 * timed data from the same mblk has
20383 					 * been ack'ed.
20384 					 */
20385 					(*xmit_tail)->b_prev = local_time;
20386 					(*xmit_tail)->b_next =
20387 					    (mblk_t *)(uintptr_t)first_snxt;
20388 				}
20389 
20390 				first_snxt = *snxt - spill;
20391 
20392 				/*
20393 				 * Advance xmit_tail; usable could be 0 by
20394 				 * the time we got here, but we made sure
20395 				 * above that we would only spillover to
20396 				 * the next data block if usable includes
20397 				 * the spilled-over amount prior to the
20398 				 * subtraction.  Therefore, we are sure
20399 				 * that xmit_tail->b_cont can't be NULL.
20400 				 */
20401 				ASSERT((*xmit_tail)->b_cont != NULL);
20402 				*xmit_tail = (*xmit_tail)->b_cont;
20403 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20404 				    (uintptr_t)INT_MAX);
20405 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20406 			} else {
20407 				cur_pld_off += tcp->tcp_last_sent_len;
20408 			}
20409 
20410 			/*
20411 			 * Fill in the header using the template header, and
20412 			 * add options such as time-stamp, ECN and/or SACK,
20413 			 * as needed.
20414 			 */
20415 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20416 			    (clock_t)local_time, num_sack_blk);
20417 
20418 			/* take care of some IP header businesses */
20419 			if (af == AF_INET) {
20420 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20421 
20422 				ASSERT(OK_32PTR((uchar_t *)ipha));
20423 				ASSERT(PDESC_HDRL(pkt_info) >=
20424 				    IP_SIMPLE_HDR_LENGTH);
20425 				ASSERT(ipha->ipha_version_and_hdr_length ==
20426 				    IP_SIMPLE_HDR_VERSION);
20427 
20428 				/*
20429 				 * Assign ident value for current packet; see
20430 				 * related comments in ip_wput_ire() about the
20431 				 * contract private interface with clustering
20432 				 * group.
20433 				 */
20434 				clusterwide = B_FALSE;
20435 				if (cl_inet_ipident != NULL) {
20436 					ASSERT(cl_inet_isclusterwide != NULL);
20437 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20438 					    AF_INET,
20439 					    (uint8_t *)(uintptr_t)src)) {
20440 						ipha->ipha_ident =
20441 						    (*cl_inet_ipident)
20442 						    (IPPROTO_IP, AF_INET,
20443 						    (uint8_t *)(uintptr_t)src,
20444 						    (uint8_t *)(uintptr_t)dst);
20445 						clusterwide = B_TRUE;
20446 					}
20447 				}
20448 
20449 				if (!clusterwide) {
20450 					ipha->ipha_ident = (uint16_t)
20451 					    atomic_add_32_nv(
20452 						&ire->ire_ident, 1);
20453 				}
20454 #ifndef _BIG_ENDIAN
20455 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20456 				    (ipha->ipha_ident >> 8);
20457 #endif
20458 			} else {
20459 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20460 
20461 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20462 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20463 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20464 				ASSERT(PDESC_HDRL(pkt_info) >=
20465 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20466 				    TCP_CHECKSUM_SIZE));
20467 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20468 
20469 				if (tcp->tcp_ip_forward_progress) {
20470 					rconfirm = B_TRUE;
20471 					tcp->tcp_ip_forward_progress = B_FALSE;
20472 				}
20473 			}
20474 
20475 			/* at least one payload span, and at most two */
20476 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20477 
20478 			/* add the packet descriptor to Multidata */
20479 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20480 			    KM_NOSLEEP)) == NULL) {
20481 				/*
20482 				 * Any failure other than ENOMEM indicates
20483 				 * that we have passed in invalid pkt_info
20484 				 * or parameters to mmd_addpdesc, which must
20485 				 * not happen.
20486 				 *
20487 				 * EINVAL is a result of failure on boundary
20488 				 * checks against the pkt_info contents.  It
20489 				 * should not happen, and we panic because
20490 				 * either there's horrible heap corruption,
20491 				 * and/or programming mistake.
20492 				 */
20493 				if (err != ENOMEM) {
20494 					cmn_err(CE_PANIC, "tcp_multisend: "
20495 					    "pdesc logic error detected for "
20496 					    "tcp %p mmd %p pinfo %p (%d)\n",
20497 					    (void *)tcp, (void *)mmd,
20498 					    (void *)pkt_info, err);
20499 				}
20500 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20501 				goto legacy_send; /* out_of_mem */
20502 			}
20503 			ASSERT(pkt != NULL);
20504 
20505 			/* calculate IP header and TCP checksums */
20506 			if (af == AF_INET) {
20507 				/* calculate pseudo-header checksum */
20508 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20509 				    (src >> 16) + (src & 0xFFFF);
20510 
20511 				/* offset for TCP header checksum */
20512 				up = IPH_TCPH_CHECKSUMP(ipha,
20513 				    IP_SIMPLE_HDR_LENGTH);
20514 			} else {
20515 				up = (uint16_t *)&ip6h->ip6_src;
20516 
20517 				/* calculate pseudo-header checksum */
20518 				cksum = up[0] + up[1] + up[2] + up[3] +
20519 				    up[4] + up[5] + up[6] + up[7] +
20520 				    up[8] + up[9] + up[10] + up[11] +
20521 				    up[12] + up[13] + up[14] + up[15];
20522 
20523 				/* Fold the initial sum */
20524 				cksum = (cksum & 0xffff) + (cksum >> 16);
20525 
20526 				up = (uint16_t *)(((uchar_t *)ip6h) +
20527 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20528 			}
20529 
20530 			if (hwcksum_flags & HCK_FULLCKSUM) {
20531 				/* clear checksum field for hardware */
20532 				*up = 0;
20533 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20534 				uint32_t sum;
20535 
20536 				/* pseudo-header checksumming */
20537 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20538 				sum = (sum & 0xFFFF) + (sum >> 16);
20539 				*up = (sum & 0xFFFF) + (sum >> 16);
20540 			} else {
20541 				/* software checksumming */
20542 				TCP_STAT(tcps, tcp_out_sw_cksum);
20543 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20544 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20545 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20546 				    cksum + IP_TCP_CSUM_COMP);
20547 				if (*up == 0)
20548 					*up = 0xFFFF;
20549 			}
20550 
20551 			/* IPv4 header checksum */
20552 			if (af == AF_INET) {
20553 				ipha->ipha_fragment_offset_and_flags |=
20554 				    (uint32_t)htons(ire->ire_frag_flag);
20555 
20556 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20557 					ipha->ipha_hdr_checksum = 0;
20558 				} else {
20559 					IP_HDR_CKSUM(ipha, cksum,
20560 					    ((uint32_t *)ipha)[0],
20561 					    ((uint16_t *)ipha)[4]);
20562 				}
20563 			}
20564 
20565 			if (af == AF_INET &&
20566 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20567 			    af == AF_INET6 &&
20568 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20569 				/* build header(IP/TCP) mblk for this segment */
20570 				if ((mp = dupb(md_hbuf)) == NULL)
20571 					goto legacy_send;
20572 
20573 				mp->b_rptr = pkt_info->hdr_rptr;
20574 				mp->b_wptr = pkt_info->hdr_wptr;
20575 
20576 				/* build payload mblk for this segment */
20577 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20578 					freemsg(mp);
20579 					goto legacy_send;
20580 				}
20581 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20582 				mp1->b_rptr = mp1->b_wptr -
20583 				    tcp->tcp_last_sent_len;
20584 				linkb(mp, mp1);
20585 
20586 				pld_start = mp1->b_rptr;
20587 
20588 				if (af == AF_INET) {
20589 					DTRACE_PROBE4(
20590 					    ip4__physical__out__start,
20591 					    ill_t *, NULL,
20592 					    ill_t *, ill,
20593 					    ipha_t *, ipha,
20594 					    mblk_t *, mp);
20595 					FW_HOOKS(
20596 					    ipst->ips_ip4_physical_out_event,
20597 					    ipst->ips_ipv4firewall_physical_out,
20598 					    NULL, ill, ipha, mp, mp, ipst);
20599 					DTRACE_PROBE1(
20600 					    ip4__physical__out__end,
20601 					    mblk_t *, mp);
20602 				} else {
20603 					DTRACE_PROBE4(
20604 					    ip6__physical__out_start,
20605 					    ill_t *, NULL,
20606 					    ill_t *, ill,
20607 					    ip6_t *, ip6h,
20608 					    mblk_t *, mp);
20609 					FW_HOOKS6(
20610 					    ipst->ips_ip6_physical_out_event,
20611 					    ipst->ips_ipv6firewall_physical_out,
20612 					    NULL, ill, ip6h, mp, mp, ipst);
20613 					DTRACE_PROBE1(
20614 					    ip6__physical__out__end,
20615 					    mblk_t *, mp);
20616 				}
20617 
20618 				if (buf_trunked && mp != NULL) {
20619 					/*
20620 					 * Need to pass it to normal path.
20621 					 */
20622 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20623 				} else if (mp == NULL ||
20624 				    mp->b_rptr != pkt_info->hdr_rptr ||
20625 				    mp->b_wptr != pkt_info->hdr_wptr ||
20626 				    (mp1 = mp->b_cont) == NULL ||
20627 				    mp1->b_rptr != pld_start ||
20628 				    mp1->b_wptr != pld_start +
20629 				    tcp->tcp_last_sent_len ||
20630 				    mp1->b_cont != NULL) {
20631 					/*
20632 					 * Need to pass all packets of this
20633 					 * buffer to normal path, either when
20634 					 * packet is blocked, or when boundary
20635 					 * of header buffer or payload buffer
20636 					 * has been changed by FW_HOOKS[6].
20637 					 */
20638 					buf_trunked = B_TRUE;
20639 					if (md_mp_head != NULL) {
20640 						err = (intptr_t)rmvb(md_mp_head,
20641 						    md_mp);
20642 						if (err == 0)
20643 							md_mp_head = NULL;
20644 					}
20645 
20646 					/* send down what we've got so far */
20647 					if (md_mp_head != NULL) {
20648 						tcp_multisend_data(tcp, ire,
20649 						    ill, md_mp_head, obsegs,
20650 						    obbytes, &rconfirm);
20651 					}
20652 					md_mp_head = NULL;
20653 
20654 					if (mp != NULL)
20655 						CALL_IP_WPUT(tcp->tcp_connp,
20656 						    q, mp);
20657 
20658 					mp1 = fw_mp_head;
20659 					do {
20660 						mp = mp1;
20661 						mp1 = mp1->b_next;
20662 						mp->b_next = NULL;
20663 						mp->b_prev = NULL;
20664 						CALL_IP_WPUT(tcp->tcp_connp,
20665 						    q, mp);
20666 					} while (mp1 != NULL);
20667 
20668 					fw_mp_head = NULL;
20669 				} else {
20670 					if (fw_mp_head == NULL)
20671 						fw_mp_head = mp;
20672 					else
20673 						fw_mp_head->b_prev->b_next = mp;
20674 					fw_mp_head->b_prev = mp;
20675 				}
20676 			}
20677 
20678 			/* advance header offset */
20679 			cur_hdr_off += hdr_frag_sz;
20680 
20681 			obbytes += tcp->tcp_last_sent_len;
20682 			++obsegs;
20683 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20684 		    *tail_unsent > 0);
20685 
20686 		if ((*xmit_tail)->b_next == NULL) {
20687 			/*
20688 			 * Store the lbolt used for RTT estimation. We can only
20689 			 * record one timestamp per mblk so we do it when we
20690 			 * reach the end of the payload buffer. Also we only
20691 			 * take a new timestamp sample when the previous timed
20692 			 * data from the same mblk has been ack'ed.
20693 			 */
20694 			(*xmit_tail)->b_prev = local_time;
20695 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20696 		}
20697 
20698 		ASSERT(*tail_unsent >= 0);
20699 		if (*tail_unsent > 0) {
20700 			/*
20701 			 * We got here because we broke out of the above
20702 			 * loop due to of one of the following cases:
20703 			 *
20704 			 *   1. len < adjusted MSS (i.e. small),
20705 			 *   2. Sender SWS avoidance,
20706 			 *   3. max_pld is zero.
20707 			 *
20708 			 * We are done for this Multidata, so trim our
20709 			 * last payload buffer (if any) accordingly.
20710 			 */
20711 			if (md_pbuf != NULL)
20712 				md_pbuf->b_wptr -= *tail_unsent;
20713 		} else if (*usable > 0) {
20714 			*xmit_tail = (*xmit_tail)->b_cont;
20715 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20716 			    (uintptr_t)INT_MAX);
20717 			*tail_unsent = (int)MBLKL(*xmit_tail);
20718 			add_buffer = B_TRUE;
20719 		}
20720 
20721 		while (fw_mp_head) {
20722 			mp = fw_mp_head;
20723 			fw_mp_head = fw_mp_head->b_next;
20724 			mp->b_prev = mp->b_next = NULL;
20725 			freemsg(mp);
20726 		}
20727 		if (buf_trunked) {
20728 			TCP_STAT(tcps, tcp_mdt_discarded);
20729 			freeb(md_mp);
20730 			buf_trunked = B_FALSE;
20731 		}
20732 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20733 	    (tcp_mdt_chain || max_pld > 0));
20734 
20735 	if (md_mp_head != NULL) {
20736 		/* send everything down */
20737 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20738 		    &rconfirm);
20739 	}
20740 
20741 #undef PREP_NEW_MULTIDATA
20742 #undef PREP_NEW_PBUF
20743 #undef IPVER
20744 
20745 	IRE_REFRELE(ire);
20746 	return (0);
20747 }
20748 
20749 /*
20750  * A wrapper function for sending one or more Multidata messages down to
20751  * the module below ip; this routine does not release the reference of the
20752  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20753  */
20754 static void
20755 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20756     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20757 {
20758 	uint64_t delta;
20759 	nce_t *nce;
20760 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20761 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20762 
20763 	ASSERT(ire != NULL && ill != NULL);
20764 	ASSERT(ire->ire_stq != NULL);
20765 	ASSERT(md_mp_head != NULL);
20766 	ASSERT(rconfirm != NULL);
20767 
20768 	/* adjust MIBs and IRE timestamp */
20769 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20770 	tcp->tcp_obsegs += obsegs;
20771 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20772 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20773 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20774 
20775 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20776 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20777 	} else {
20778 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20779 	}
20780 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20781 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20782 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20783 
20784 	ire->ire_ob_pkt_count += obsegs;
20785 	if (ire->ire_ipif != NULL)
20786 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20787 	ire->ire_last_used_time = lbolt;
20788 
20789 	/* send it down */
20790 	putnext(ire->ire_stq, md_mp_head);
20791 
20792 	/* we're done for TCP/IPv4 */
20793 	if (tcp->tcp_ipversion == IPV4_VERSION)
20794 		return;
20795 
20796 	nce = ire->ire_nce;
20797 
20798 	ASSERT(nce != NULL);
20799 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20800 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20801 
20802 	/* reachability confirmation? */
20803 	if (*rconfirm) {
20804 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20805 		if (nce->nce_state != ND_REACHABLE) {
20806 			mutex_enter(&nce->nce_lock);
20807 			nce->nce_state = ND_REACHABLE;
20808 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20809 			mutex_exit(&nce->nce_lock);
20810 			(void) untimeout(nce->nce_timeout_id);
20811 			if (ip_debug > 2) {
20812 				/* ip1dbg */
20813 				pr_addr_dbg("tcp_multisend_data: state "
20814 				    "for %s changed to REACHABLE\n",
20815 				    AF_INET6, &ire->ire_addr_v6);
20816 			}
20817 		}
20818 		/* reset transport reachability confirmation */
20819 		*rconfirm = B_FALSE;
20820 	}
20821 
20822 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20823 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20824 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20825 
20826 	if (delta > (uint64_t)ill->ill_reachable_time) {
20827 		mutex_enter(&nce->nce_lock);
20828 		switch (nce->nce_state) {
20829 		case ND_REACHABLE:
20830 		case ND_STALE:
20831 			/*
20832 			 * ND_REACHABLE is identical to ND_STALE in this
20833 			 * specific case. If reachable time has expired for
20834 			 * this neighbor (delta is greater than reachable
20835 			 * time), conceptually, the neighbor cache is no
20836 			 * longer in REACHABLE state, but already in STALE
20837 			 * state.  So the correct transition here is to
20838 			 * ND_DELAY.
20839 			 */
20840 			nce->nce_state = ND_DELAY;
20841 			mutex_exit(&nce->nce_lock);
20842 			NDP_RESTART_TIMER(nce,
20843 			    ipst->ips_delay_first_probe_time);
20844 			if (ip_debug > 3) {
20845 				/* ip2dbg */
20846 				pr_addr_dbg("tcp_multisend_data: state "
20847 				    "for %s changed to DELAY\n",
20848 				    AF_INET6, &ire->ire_addr_v6);
20849 			}
20850 			break;
20851 		case ND_DELAY:
20852 		case ND_PROBE:
20853 			mutex_exit(&nce->nce_lock);
20854 			/* Timers have already started */
20855 			break;
20856 		case ND_UNREACHABLE:
20857 			/*
20858 			 * ndp timer has detected that this nce is
20859 			 * unreachable and initiated deleting this nce
20860 			 * and all its associated IREs. This is a race
20861 			 * where we found the ire before it was deleted
20862 			 * and have just sent out a packet using this
20863 			 * unreachable nce.
20864 			 */
20865 			mutex_exit(&nce->nce_lock);
20866 			break;
20867 		default:
20868 			ASSERT(0);
20869 		}
20870 	}
20871 }
20872 
20873 /*
20874  * Derived from tcp_send_data().
20875  */
20876 static void
20877 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20878     int num_lso_seg)
20879 {
20880 	ipha_t		*ipha;
20881 	mblk_t		*ire_fp_mp;
20882 	uint_t		ire_fp_mp_len;
20883 	uint32_t	hcksum_txflags = 0;
20884 	ipaddr_t	src;
20885 	ipaddr_t	dst;
20886 	uint32_t	cksum;
20887 	uint16_t	*up;
20888 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20889 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20890 
20891 	ASSERT(DB_TYPE(mp) == M_DATA);
20892 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20893 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20894 	ASSERT(tcp->tcp_connp != NULL);
20895 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20896 
20897 	ipha = (ipha_t *)mp->b_rptr;
20898 	src = ipha->ipha_src;
20899 	dst = ipha->ipha_dst;
20900 
20901 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20902 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20903 	    num_lso_seg);
20904 #ifndef _BIG_ENDIAN
20905 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20906 #endif
20907 	if (tcp->tcp_snd_zcopy_aware) {
20908 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20909 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20910 			mp = tcp_zcopy_disable(tcp, mp);
20911 	}
20912 
20913 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20914 		ASSERT(ill->ill_hcksum_capab != NULL);
20915 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20916 	}
20917 
20918 	/*
20919 	 * Since the TCP checksum should be recalculated by h/w, we can just
20920 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20921 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20922 	 * The partial pseudo-header excludes TCP length, that was calculated
20923 	 * in tcp_send(), so to zero *up before further processing.
20924 	 */
20925 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20926 
20927 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20928 	*up = 0;
20929 
20930 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20931 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20932 
20933 	/*
20934 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
20935 	 */
20936 	DB_LSOFLAGS(mp) |= HW_LSO;
20937 	DB_LSOMSS(mp) = mss;
20938 
20939 	ipha->ipha_fragment_offset_and_flags |=
20940 	    (uint32_t)htons(ire->ire_frag_flag);
20941 
20942 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20943 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20944 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20945 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20946 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20947 
20948 	UPDATE_OB_PKT_COUNT(ire);
20949 	ire->ire_last_used_time = lbolt;
20950 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20951 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20952 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20953 	    ntohs(ipha->ipha_length));
20954 
20955 	if (ILL_DLS_CAPABLE(ill)) {
20956 		/*
20957 		 * Send the packet directly to DLD, where it may be queued
20958 		 * depending on the availability of transmit resources at
20959 		 * the media layer.
20960 		 */
20961 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
20962 	} else {
20963 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
20964 		DTRACE_PROBE4(ip4__physical__out__start,
20965 		    ill_t *, NULL, ill_t *, out_ill,
20966 		    ipha_t *, ipha, mblk_t *, mp);
20967 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
20968 		    ipst->ips_ipv4firewall_physical_out,
20969 		    NULL, out_ill, ipha, mp, mp, ipst);
20970 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20971 		if (mp != NULL)
20972 			putnext(ire->ire_stq, mp);
20973 	}
20974 }
20975 
20976 /*
20977  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20978  * scheme, and returns one of the following:
20979  *
20980  * -1 = failed allocation.
20981  *  0 = success; burst count reached, or usable send window is too small,
20982  *      and that we'd rather wait until later before sending again.
20983  *  1 = success; we are called from tcp_multisend(), and both usable send
20984  *      window and tail_unsent are greater than the MDT threshold, and thus
20985  *      Multidata Transmit should be used instead.
20986  */
20987 static int
20988 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20989     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20990     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20991     const int mdt_thres)
20992 {
20993 	int num_burst_seg = tcp->tcp_snd_burst;
20994 	ire_t		*ire = NULL;
20995 	ill_t		*ill = NULL;
20996 	mblk_t		*ire_fp_mp = NULL;
20997 	uint_t		ire_fp_mp_len = 0;
20998 	int		num_lso_seg = 1;
20999 	uint_t		lso_usable;
21000 	boolean_t	do_lso_send = B_FALSE;
21001 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21002 
21003 	/*
21004 	 * Check LSO capability before any further work. And the similar check
21005 	 * need to be done in for(;;) loop.
21006 	 * LSO will be deployed when therer is more than one mss of available
21007 	 * data and a burst transmission is allowed.
21008 	 */
21009 	if (tcp->tcp_lso &&
21010 	    (tcp->tcp_valid_bits == 0 ||
21011 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21012 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21013 		/*
21014 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21015 		 */
21016 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21017 			/*
21018 			 * Enable LSO with this transmission.
21019 			 * Since IRE has been hold in
21020 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21021 			 * should be called before return.
21022 			 */
21023 			do_lso_send = B_TRUE;
21024 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21025 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21026 			/* Round up to multiple of 4 */
21027 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21028 		} else {
21029 			do_lso_send = B_FALSE;
21030 			ill = NULL;
21031 		}
21032 	}
21033 
21034 	for (;;) {
21035 		struct datab	*db;
21036 		tcph_t		*tcph;
21037 		uint32_t	sum;
21038 		mblk_t		*mp, *mp1;
21039 		uchar_t		*rptr;
21040 		int		len;
21041 
21042 		/*
21043 		 * If we're called by tcp_multisend(), and the amount of
21044 		 * sendable data as well as the size of current xmit_tail
21045 		 * is beyond the MDT threshold, return to the caller and
21046 		 * let the large data transmit be done using MDT.
21047 		 */
21048 		if (*usable > 0 && *usable > mdt_thres &&
21049 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21050 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21051 			ASSERT(tcp->tcp_mdt);
21052 			return (1);	/* success; do large send */
21053 		}
21054 
21055 		if (num_burst_seg == 0)
21056 			break;		/* success; burst count reached */
21057 
21058 		/*
21059 		 * Calculate the maximum payload length we can send in *one*
21060 		 * time.
21061 		 */
21062 		if (do_lso_send) {
21063 			/*
21064 			 * Check whether need to do LSO any more.
21065 			 */
21066 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21067 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21068 				lso_usable = MIN(lso_usable,
21069 				    num_burst_seg * mss);
21070 
21071 				num_lso_seg = lso_usable / mss;
21072 				if (lso_usable % mss) {
21073 					num_lso_seg++;
21074 					tcp->tcp_last_sent_len = (ushort_t)
21075 					    (lso_usable % mss);
21076 				} else {
21077 					tcp->tcp_last_sent_len = (ushort_t)mss;
21078 				}
21079 			} else {
21080 				do_lso_send = B_FALSE;
21081 				num_lso_seg = 1;
21082 				lso_usable = mss;
21083 			}
21084 		}
21085 
21086 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21087 
21088 		/*
21089 		 * Adjust num_burst_seg here.
21090 		 */
21091 		num_burst_seg -= num_lso_seg;
21092 
21093 		len = mss;
21094 		if (len > *usable) {
21095 			ASSERT(do_lso_send == B_FALSE);
21096 
21097 			len = *usable;
21098 			if (len <= 0) {
21099 				/* Terminate the loop */
21100 				break;	/* success; too small */
21101 			}
21102 			/*
21103 			 * Sender silly-window avoidance.
21104 			 * Ignore this if we are going to send a
21105 			 * zero window probe out.
21106 			 *
21107 			 * TODO: force data into microscopic window?
21108 			 *	==> (!pushed || (unsent > usable))
21109 			 */
21110 			if (len < (tcp->tcp_max_swnd >> 1) &&
21111 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21112 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21113 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21114 				/*
21115 				 * If the retransmit timer is not running
21116 				 * we start it so that we will retransmit
21117 				 * in the case when the the receiver has
21118 				 * decremented the window.
21119 				 */
21120 				if (*snxt == tcp->tcp_snxt &&
21121 				    *snxt == tcp->tcp_suna) {
21122 					/*
21123 					 * We are not supposed to send
21124 					 * anything.  So let's wait a little
21125 					 * bit longer before breaking SWS
21126 					 * avoidance.
21127 					 *
21128 					 * What should the value be?
21129 					 * Suggestion: MAX(init rexmit time,
21130 					 * tcp->tcp_rto)
21131 					 */
21132 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21133 				}
21134 				break;	/* success; too small */
21135 			}
21136 		}
21137 
21138 		tcph = tcp->tcp_tcph;
21139 
21140 		/*
21141 		 * The reason to adjust len here is that we need to set flags
21142 		 * and calculate checksum.
21143 		 */
21144 		if (do_lso_send)
21145 			len = lso_usable;
21146 
21147 		*usable -= len; /* Approximate - can be adjusted later */
21148 		if (*usable > 0)
21149 			tcph->th_flags[0] = TH_ACK;
21150 		else
21151 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21152 
21153 		/*
21154 		 * Prime pump for IP's checksumming on our behalf
21155 		 * Include the adjustment for a source route if any.
21156 		 */
21157 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21158 		sum = (sum >> 16) + (sum & 0xFFFF);
21159 		U16_TO_ABE16(sum, tcph->th_sum);
21160 
21161 		U32_TO_ABE32(*snxt, tcph->th_seq);
21162 
21163 		/*
21164 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21165 		 * set.  For the case when TCP_FSS_VALID is the only valid
21166 		 * bit (normal active close), branch off only when we think
21167 		 * that the FIN flag needs to be set.  Note for this case,
21168 		 * that (snxt + len) may not reflect the actual seg_len,
21169 		 * as len may be further reduced in tcp_xmit_mp().  If len
21170 		 * gets modified, we will end up here again.
21171 		 */
21172 		if (tcp->tcp_valid_bits != 0 &&
21173 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21174 		    ((*snxt + len) == tcp->tcp_fss))) {
21175 			uchar_t		*prev_rptr;
21176 			uint32_t	prev_snxt = tcp->tcp_snxt;
21177 
21178 			if (*tail_unsent == 0) {
21179 				ASSERT((*xmit_tail)->b_cont != NULL);
21180 				*xmit_tail = (*xmit_tail)->b_cont;
21181 				prev_rptr = (*xmit_tail)->b_rptr;
21182 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21183 				    (*xmit_tail)->b_rptr);
21184 			} else {
21185 				prev_rptr = (*xmit_tail)->b_rptr;
21186 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21187 				    *tail_unsent;
21188 			}
21189 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21190 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21191 			/* Restore tcp_snxt so we get amount sent right. */
21192 			tcp->tcp_snxt = prev_snxt;
21193 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21194 				/*
21195 				 * If the previous timestamp is still in use,
21196 				 * don't stomp on it.
21197 				 */
21198 				if ((*xmit_tail)->b_next == NULL) {
21199 					(*xmit_tail)->b_prev = local_time;
21200 					(*xmit_tail)->b_next =
21201 					    (mblk_t *)(uintptr_t)(*snxt);
21202 				}
21203 			} else
21204 				(*xmit_tail)->b_rptr = prev_rptr;
21205 
21206 			if (mp == NULL) {
21207 				if (ire != NULL)
21208 					IRE_REFRELE(ire);
21209 				return (-1);
21210 			}
21211 			mp1 = mp->b_cont;
21212 
21213 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21214 				tcp->tcp_last_sent_len = (ushort_t)len;
21215 			while (mp1->b_cont) {
21216 				*xmit_tail = (*xmit_tail)->b_cont;
21217 				(*xmit_tail)->b_prev = local_time;
21218 				(*xmit_tail)->b_next =
21219 				    (mblk_t *)(uintptr_t)(*snxt);
21220 				mp1 = mp1->b_cont;
21221 			}
21222 			*snxt += len;
21223 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21224 			BUMP_LOCAL(tcp->tcp_obsegs);
21225 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21226 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21227 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21228 			tcp_send_data(tcp, q, mp);
21229 			continue;
21230 		}
21231 
21232 		*snxt += len;	/* Adjust later if we don't send all of len */
21233 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21234 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21235 
21236 		if (*tail_unsent) {
21237 			/* Are the bytes above us in flight? */
21238 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21239 			if (rptr != (*xmit_tail)->b_rptr) {
21240 				*tail_unsent -= len;
21241 				if (len <= mss) /* LSO is unusable */
21242 					tcp->tcp_last_sent_len = (ushort_t)len;
21243 				len += tcp_hdr_len;
21244 				if (tcp->tcp_ipversion == IPV4_VERSION)
21245 					tcp->tcp_ipha->ipha_length = htons(len);
21246 				else
21247 					tcp->tcp_ip6h->ip6_plen =
21248 					    htons(len -
21249 					    ((char *)&tcp->tcp_ip6h[1] -
21250 					    tcp->tcp_iphc));
21251 				mp = dupb(*xmit_tail);
21252 				if (mp == NULL) {
21253 					if (ire != NULL)
21254 						IRE_REFRELE(ire);
21255 					return (-1);	/* out_of_mem */
21256 				}
21257 				mp->b_rptr = rptr;
21258 				/*
21259 				 * If the old timestamp is no longer in use,
21260 				 * sample a new timestamp now.
21261 				 */
21262 				if ((*xmit_tail)->b_next == NULL) {
21263 					(*xmit_tail)->b_prev = local_time;
21264 					(*xmit_tail)->b_next =
21265 					    (mblk_t *)(uintptr_t)(*snxt-len);
21266 				}
21267 				goto must_alloc;
21268 			}
21269 		} else {
21270 			*xmit_tail = (*xmit_tail)->b_cont;
21271 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21272 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21273 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21274 			    (*xmit_tail)->b_rptr);
21275 		}
21276 
21277 		(*xmit_tail)->b_prev = local_time;
21278 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21279 
21280 		*tail_unsent -= len;
21281 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21282 			tcp->tcp_last_sent_len = (ushort_t)len;
21283 
21284 		len += tcp_hdr_len;
21285 		if (tcp->tcp_ipversion == IPV4_VERSION)
21286 			tcp->tcp_ipha->ipha_length = htons(len);
21287 		else
21288 			tcp->tcp_ip6h->ip6_plen = htons(len -
21289 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21290 
21291 		mp = dupb(*xmit_tail);
21292 		if (mp == NULL) {
21293 			if (ire != NULL)
21294 				IRE_REFRELE(ire);
21295 			return (-1);	/* out_of_mem */
21296 		}
21297 
21298 		len = tcp_hdr_len;
21299 		/*
21300 		 * There are four reasons to allocate a new hdr mblk:
21301 		 *  1) The bytes above us are in use by another packet
21302 		 *  2) We don't have good alignment
21303 		 *  3) The mblk is being shared
21304 		 *  4) We don't have enough room for a header
21305 		 */
21306 		rptr = mp->b_rptr - len;
21307 		if (!OK_32PTR(rptr) ||
21308 		    ((db = mp->b_datap), db->db_ref != 2) ||
21309 		    rptr < db->db_base + ire_fp_mp_len) {
21310 			/* NOTE: we assume allocb returns an OK_32PTR */
21311 
21312 		must_alloc:;
21313 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21314 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21315 			if (mp1 == NULL) {
21316 				freemsg(mp);
21317 				if (ire != NULL)
21318 					IRE_REFRELE(ire);
21319 				return (-1);	/* out_of_mem */
21320 			}
21321 			mp1->b_cont = mp;
21322 			mp = mp1;
21323 			/* Leave room for Link Level header */
21324 			len = tcp_hdr_len;
21325 			rptr =
21326 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21327 			mp->b_wptr = &rptr[len];
21328 		}
21329 
21330 		/*
21331 		 * Fill in the header using the template header, and add
21332 		 * options such as time-stamp, ECN and/or SACK, as needed.
21333 		 */
21334 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21335 
21336 		mp->b_rptr = rptr;
21337 
21338 		if (*tail_unsent) {
21339 			int spill = *tail_unsent;
21340 
21341 			mp1 = mp->b_cont;
21342 			if (mp1 == NULL)
21343 				mp1 = mp;
21344 
21345 			/*
21346 			 * If we're a little short, tack on more mblks until
21347 			 * there is no more spillover.
21348 			 */
21349 			while (spill < 0) {
21350 				mblk_t *nmp;
21351 				int nmpsz;
21352 
21353 				nmp = (*xmit_tail)->b_cont;
21354 				nmpsz = MBLKL(nmp);
21355 
21356 				/*
21357 				 * Excess data in mblk; can we split it?
21358 				 * If MDT is enabled for the connection,
21359 				 * keep on splitting as this is a transient
21360 				 * send path.
21361 				 */
21362 				if (!do_lso_send && !tcp->tcp_mdt &&
21363 				    (spill + nmpsz > 0)) {
21364 					/*
21365 					 * Don't split if stream head was
21366 					 * told to break up larger writes
21367 					 * into smaller ones.
21368 					 */
21369 					if (tcp->tcp_maxpsz > 0)
21370 						break;
21371 
21372 					/*
21373 					 * Next mblk is less than SMSS/2
21374 					 * rounded up to nearest 64-byte;
21375 					 * let it get sent as part of the
21376 					 * next segment.
21377 					 */
21378 					if (tcp->tcp_localnet &&
21379 					    !tcp->tcp_cork &&
21380 					    (nmpsz < roundup((mss >> 1), 64)))
21381 						break;
21382 				}
21383 
21384 				*xmit_tail = nmp;
21385 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21386 				/* Stash for rtt use later */
21387 				(*xmit_tail)->b_prev = local_time;
21388 				(*xmit_tail)->b_next =
21389 				    (mblk_t *)(uintptr_t)(*snxt - len);
21390 				mp1->b_cont = dupb(*xmit_tail);
21391 				mp1 = mp1->b_cont;
21392 
21393 				spill += nmpsz;
21394 				if (mp1 == NULL) {
21395 					*tail_unsent = spill;
21396 					freemsg(mp);
21397 					if (ire != NULL)
21398 						IRE_REFRELE(ire);
21399 					return (-1);	/* out_of_mem */
21400 				}
21401 			}
21402 
21403 			/* Trim back any surplus on the last mblk */
21404 			if (spill >= 0) {
21405 				mp1->b_wptr -= spill;
21406 				*tail_unsent = spill;
21407 			} else {
21408 				/*
21409 				 * We did not send everything we could in
21410 				 * order to remain within the b_cont limit.
21411 				 */
21412 				*usable -= spill;
21413 				*snxt += spill;
21414 				tcp->tcp_last_sent_len += spill;
21415 				UPDATE_MIB(&tcps->tcps_mib,
21416 				    tcpOutDataBytes, spill);
21417 				/*
21418 				 * Adjust the checksum
21419 				 */
21420 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21421 				sum += spill;
21422 				sum = (sum >> 16) + (sum & 0xFFFF);
21423 				U16_TO_ABE16(sum, tcph->th_sum);
21424 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21425 					sum = ntohs(
21426 					    ((ipha_t *)rptr)->ipha_length) +
21427 					    spill;
21428 					((ipha_t *)rptr)->ipha_length =
21429 					    htons(sum);
21430 				} else {
21431 					sum = ntohs(
21432 					    ((ip6_t *)rptr)->ip6_plen) +
21433 					    spill;
21434 					((ip6_t *)rptr)->ip6_plen =
21435 					    htons(sum);
21436 				}
21437 				*tail_unsent = 0;
21438 			}
21439 		}
21440 		if (tcp->tcp_ip_forward_progress) {
21441 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21442 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21443 			tcp->tcp_ip_forward_progress = B_FALSE;
21444 		}
21445 
21446 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21447 		if (do_lso_send) {
21448 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21449 			    num_lso_seg);
21450 			tcp->tcp_obsegs += num_lso_seg;
21451 
21452 			TCP_STAT(tcps, tcp_lso_times);
21453 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21454 		} else {
21455 			tcp_send_data(tcp, q, mp);
21456 			BUMP_LOCAL(tcp->tcp_obsegs);
21457 		}
21458 	}
21459 
21460 	if (ire != NULL)
21461 		IRE_REFRELE(ire);
21462 	return (0);
21463 }
21464 
21465 /* Unlink and return any mblk that looks like it contains a MDT info */
21466 static mblk_t *
21467 tcp_mdt_info_mp(mblk_t *mp)
21468 {
21469 	mblk_t	*prev_mp;
21470 
21471 	for (;;) {
21472 		prev_mp = mp;
21473 		/* no more to process? */
21474 		if ((mp = mp->b_cont) == NULL)
21475 			break;
21476 
21477 		switch (DB_TYPE(mp)) {
21478 		case M_CTL:
21479 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21480 				continue;
21481 			ASSERT(prev_mp != NULL);
21482 			prev_mp->b_cont = mp->b_cont;
21483 			mp->b_cont = NULL;
21484 			return (mp);
21485 		default:
21486 			break;
21487 		}
21488 	}
21489 	return (mp);
21490 }
21491 
21492 /* MDT info update routine, called when IP notifies us about MDT */
21493 static void
21494 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21495 {
21496 	boolean_t prev_state;
21497 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21498 
21499 	/*
21500 	 * IP is telling us to abort MDT on this connection?  We know
21501 	 * this because the capability is only turned off when IP
21502 	 * encounters some pathological cases, e.g. link-layer change
21503 	 * where the new driver doesn't support MDT, or in situation
21504 	 * where MDT usage on the link-layer has been switched off.
21505 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21506 	 * if the link-layer doesn't support MDT, and if it does, it
21507 	 * will indicate that the feature is to be turned on.
21508 	 */
21509 	prev_state = tcp->tcp_mdt;
21510 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21511 	if (!tcp->tcp_mdt && !first) {
21512 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21513 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21514 		    (void *)tcp->tcp_connp));
21515 	}
21516 
21517 	/*
21518 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21519 	 * so disable MDT otherwise.  The checks are done here
21520 	 * and in tcp_wput_data().
21521 	 */
21522 	if (tcp->tcp_mdt &&
21523 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21524 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21525 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21526 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21527 		tcp->tcp_mdt = B_FALSE;
21528 
21529 	if (tcp->tcp_mdt) {
21530 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21531 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21532 			    "version (%d), expected version is %d",
21533 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21534 			tcp->tcp_mdt = B_FALSE;
21535 			return;
21536 		}
21537 
21538 		/*
21539 		 * We need the driver to be able to handle at least three
21540 		 * spans per packet in order for tcp MDT to be utilized.
21541 		 * The first is for the header portion, while the rest are
21542 		 * needed to handle a packet that straddles across two
21543 		 * virtually non-contiguous buffers; a typical tcp packet
21544 		 * therefore consists of only two spans.  Note that we take
21545 		 * a zero as "don't care".
21546 		 */
21547 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21548 		    mdt_capab->ill_mdt_span_limit < 3) {
21549 			tcp->tcp_mdt = B_FALSE;
21550 			return;
21551 		}
21552 
21553 		/* a zero means driver wants default value */
21554 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21555 		    tcps->tcps_mdt_max_pbufs);
21556 		if (tcp->tcp_mdt_max_pld == 0)
21557 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21558 
21559 		/* ensure 32-bit alignment */
21560 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21561 		    mdt_capab->ill_mdt_hdr_head), 4);
21562 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21563 		    mdt_capab->ill_mdt_hdr_tail), 4);
21564 
21565 		if (!first && !prev_state) {
21566 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21567 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21568 			    (void *)tcp->tcp_connp));
21569 		}
21570 	}
21571 }
21572 
21573 /* Unlink and return any mblk that looks like it contains a LSO info */
21574 static mblk_t *
21575 tcp_lso_info_mp(mblk_t *mp)
21576 {
21577 	mblk_t	*prev_mp;
21578 
21579 	for (;;) {
21580 		prev_mp = mp;
21581 		/* no more to process? */
21582 		if ((mp = mp->b_cont) == NULL)
21583 			break;
21584 
21585 		switch (DB_TYPE(mp)) {
21586 		case M_CTL:
21587 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21588 				continue;
21589 			ASSERT(prev_mp != NULL);
21590 			prev_mp->b_cont = mp->b_cont;
21591 			mp->b_cont = NULL;
21592 			return (mp);
21593 		default:
21594 			break;
21595 		}
21596 	}
21597 
21598 	return (mp);
21599 }
21600 
21601 /* LSO info update routine, called when IP notifies us about LSO */
21602 static void
21603 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21604 {
21605 	tcp_stack_t *tcps = tcp->tcp_tcps;
21606 
21607 	/*
21608 	 * IP is telling us to abort LSO on this connection?  We know
21609 	 * this because the capability is only turned off when IP
21610 	 * encounters some pathological cases, e.g. link-layer change
21611 	 * where the new NIC/driver doesn't support LSO, or in situation
21612 	 * where LSO usage on the link-layer has been switched off.
21613 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21614 	 * if the link-layer doesn't support LSO, and if it does, it
21615 	 * will indicate that the feature is to be turned on.
21616 	 */
21617 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21618 	TCP_STAT(tcps, tcp_lso_enabled);
21619 
21620 	/*
21621 	 * We currently only support LSO on simple TCP/IPv4,
21622 	 * so disable LSO otherwise.  The checks are done here
21623 	 * and in tcp_wput_data().
21624 	 */
21625 	if (tcp->tcp_lso &&
21626 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21627 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21628 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21629 		tcp->tcp_lso = B_FALSE;
21630 		TCP_STAT(tcps, tcp_lso_disabled);
21631 	} else {
21632 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21633 		    lso_capab->ill_lso_max);
21634 	}
21635 }
21636 
21637 static void
21638 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21639 {
21640 	conn_t *connp = tcp->tcp_connp;
21641 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21642 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21643 
21644 	ASSERT(ire != NULL);
21645 
21646 	/*
21647 	 * We may be in the fastpath here, and although we essentially do
21648 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21649 	 * we try to keep things as brief as possible.  After all, these
21650 	 * are only best-effort checks, and we do more thorough ones prior
21651 	 * to calling tcp_send()/tcp_multisend().
21652 	 */
21653 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21654 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21655 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21656 	    !(ire->ire_flags & RTF_MULTIRT) &&
21657 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21658 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21659 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21660 			/* Cache the result */
21661 			connp->conn_lso_ok = B_TRUE;
21662 
21663 			ASSERT(ill->ill_lso_capab != NULL);
21664 			if (!ill->ill_lso_capab->ill_lso_on) {
21665 				ill->ill_lso_capab->ill_lso_on = 1;
21666 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21667 				    "LSO for interface %s\n", (void *)connp,
21668 				    ill->ill_name));
21669 			}
21670 			tcp_lso_update(tcp, ill->ill_lso_capab);
21671 		} else if (ipst->ips_ip_multidata_outbound &&
21672 		    ILL_MDT_CAPABLE(ill)) {
21673 			/* Cache the result */
21674 			connp->conn_mdt_ok = B_TRUE;
21675 
21676 			ASSERT(ill->ill_mdt_capab != NULL);
21677 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21678 				ill->ill_mdt_capab->ill_mdt_on = 1;
21679 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21680 				    "MDT for interface %s\n", (void *)connp,
21681 				    ill->ill_name));
21682 			}
21683 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21684 		}
21685 	}
21686 
21687 	/*
21688 	 * The goal is to reduce the number of generated tcp segments by
21689 	 * setting the maxpsz multiplier to 0; this will have an affect on
21690 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21691 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21692 	 * of outbound segments and incoming ACKs, thus allowing for better
21693 	 * network and system performance.  In contrast the legacy behavior
21694 	 * may result in sending less than SMSS size, because the last mblk
21695 	 * for some packets may have more data than needed to make up SMSS,
21696 	 * and the legacy code refused to "split" it.
21697 	 *
21698 	 * We apply the new behavior on following situations:
21699 	 *
21700 	 *   1) Loopback connections,
21701 	 *   2) Connections in which the remote peer is not on local subnet,
21702 	 *   3) Local subnet connections over the bge interface (see below).
21703 	 *
21704 	 * Ideally, we would like this behavior to apply for interfaces other
21705 	 * than bge.  However, doing so would negatively impact drivers which
21706 	 * perform dynamic mapping and unmapping of DMA resources, which are
21707 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21708 	 * packet will be generated by tcp).  The bge driver does not suffer
21709 	 * from this, as it copies the mblks into pre-mapped buffers, and
21710 	 * therefore does not require more I/O resources than before.
21711 	 *
21712 	 * Otherwise, this behavior is present on all network interfaces when
21713 	 * the destination endpoint is non-local, since reducing the number
21714 	 * of packets in general is good for the network.
21715 	 *
21716 	 * TODO We need to remove this hard-coded conditional for bge once
21717 	 *	a better "self-tuning" mechanism, or a way to comprehend
21718 	 *	the driver transmit strategy is devised.  Until the solution
21719 	 *	is found and well understood, we live with this hack.
21720 	 */
21721 	if (!tcp_static_maxpsz &&
21722 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21723 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21724 		/* override the default value */
21725 		tcp->tcp_maxpsz = 0;
21726 
21727 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21728 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21729 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21730 	}
21731 
21732 	/* set the stream head parameters accordingly */
21733 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21734 }
21735 
21736 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21737 static void
21738 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21739 {
21740 	uchar_t	fval = *mp->b_rptr;
21741 	mblk_t	*tail;
21742 	queue_t	*q = tcp->tcp_wq;
21743 
21744 	/* TODO: How should flush interact with urgent data? */
21745 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21746 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21747 		/*
21748 		 * Flush only data that has not yet been put on the wire.  If
21749 		 * we flush data that we have already transmitted, life, as we
21750 		 * know it, may come to an end.
21751 		 */
21752 		tail = tcp->tcp_xmit_tail;
21753 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21754 		tcp->tcp_xmit_tail_unsent = 0;
21755 		tcp->tcp_unsent = 0;
21756 		if (tail->b_wptr != tail->b_rptr)
21757 			tail = tail->b_cont;
21758 		if (tail) {
21759 			mblk_t **excess = &tcp->tcp_xmit_head;
21760 			for (;;) {
21761 				mblk_t *mp1 = *excess;
21762 				if (mp1 == tail)
21763 					break;
21764 				tcp->tcp_xmit_tail = mp1;
21765 				tcp->tcp_xmit_last = mp1;
21766 				excess = &mp1->b_cont;
21767 			}
21768 			*excess = NULL;
21769 			tcp_close_mpp(&tail);
21770 			if (tcp->tcp_snd_zcopy_aware)
21771 				tcp_zcopy_notify(tcp);
21772 		}
21773 		/*
21774 		 * We have no unsent data, so unsent must be less than
21775 		 * tcp_xmit_lowater, so re-enable flow.
21776 		 */
21777 		mutex_enter(&tcp->tcp_non_sq_lock);
21778 		if (tcp->tcp_flow_stopped) {
21779 			tcp_clrqfull(tcp);
21780 		}
21781 		mutex_exit(&tcp->tcp_non_sq_lock);
21782 	}
21783 	/*
21784 	 * TODO: you can't just flush these, you have to increase rwnd for one
21785 	 * thing.  For another, how should urgent data interact?
21786 	 */
21787 	if (fval & FLUSHR) {
21788 		*mp->b_rptr = fval & ~FLUSHW;
21789 		/* XXX */
21790 		qreply(q, mp);
21791 		return;
21792 	}
21793 	freemsg(mp);
21794 }
21795 
21796 /*
21797  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21798  * messages.
21799  */
21800 static void
21801 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21802 {
21803 	mblk_t	*mp1;
21804 	STRUCT_HANDLE(strbuf, sb);
21805 	uint16_t port;
21806 	queue_t 	*q = tcp->tcp_wq;
21807 	in6_addr_t	v6addr;
21808 	ipaddr_t	v4addr;
21809 	uint32_t	flowinfo = 0;
21810 	int		addrlen;
21811 
21812 	/* Make sure it is one of ours. */
21813 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21814 	case TI_GETMYNAME:
21815 	case TI_GETPEERNAME:
21816 		break;
21817 	default:
21818 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21819 		return;
21820 	}
21821 	switch (mi_copy_state(q, mp, &mp1)) {
21822 	case -1:
21823 		return;
21824 	case MI_COPY_CASE(MI_COPY_IN, 1):
21825 		break;
21826 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21827 		/* Copy out the strbuf. */
21828 		mi_copyout(q, mp);
21829 		return;
21830 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21831 		/* All done. */
21832 		mi_copy_done(q, mp, 0);
21833 		return;
21834 	default:
21835 		mi_copy_done(q, mp, EPROTO);
21836 		return;
21837 	}
21838 	/* Check alignment of the strbuf */
21839 	if (!OK_32PTR(mp1->b_rptr)) {
21840 		mi_copy_done(q, mp, EINVAL);
21841 		return;
21842 	}
21843 
21844 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21845 	    (void *)mp1->b_rptr);
21846 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21847 
21848 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21849 		mi_copy_done(q, mp, EINVAL);
21850 		return;
21851 	}
21852 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21853 	case TI_GETMYNAME:
21854 		if (tcp->tcp_family == AF_INET) {
21855 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21856 				v4addr = tcp->tcp_ipha->ipha_src;
21857 			} else {
21858 				/* can't return an address in this case */
21859 				v4addr = 0;
21860 			}
21861 		} else {
21862 			/* tcp->tcp_family == AF_INET6 */
21863 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21864 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21865 				    &v6addr);
21866 			} else {
21867 				v6addr = tcp->tcp_ip6h->ip6_src;
21868 			}
21869 		}
21870 		port = tcp->tcp_lport;
21871 		break;
21872 	case TI_GETPEERNAME:
21873 		if (tcp->tcp_family == AF_INET) {
21874 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21875 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21876 				    v4addr);
21877 			} else {
21878 				/* can't return an address in this case */
21879 				v4addr = 0;
21880 			}
21881 		} else {
21882 			/* tcp->tcp_family == AF_INET6) */
21883 			v6addr = tcp->tcp_remote_v6;
21884 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21885 				/*
21886 				 * No flowinfo if tcp->tcp_ipversion is v4.
21887 				 *
21888 				 * flowinfo was already initialized to zero
21889 				 * where it was declared above, so only
21890 				 * set it if ipversion is v6.
21891 				 */
21892 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21893 				    ~IPV6_VERS_AND_FLOW_MASK;
21894 			}
21895 		}
21896 		port = tcp->tcp_fport;
21897 		break;
21898 	default:
21899 		mi_copy_done(q, mp, EPROTO);
21900 		return;
21901 	}
21902 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21903 	if (!mp1)
21904 		return;
21905 
21906 	if (tcp->tcp_family == AF_INET) {
21907 		sin_t *sin;
21908 
21909 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21910 		sin = (sin_t *)mp1->b_rptr;
21911 		mp1->b_wptr = (uchar_t *)&sin[1];
21912 		*sin = sin_null;
21913 		sin->sin_family = AF_INET;
21914 		sin->sin_addr.s_addr = v4addr;
21915 		sin->sin_port = port;
21916 	} else {
21917 		/* tcp->tcp_family == AF_INET6 */
21918 		sin6_t *sin6;
21919 
21920 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21921 		sin6 = (sin6_t *)mp1->b_rptr;
21922 		mp1->b_wptr = (uchar_t *)&sin6[1];
21923 		*sin6 = sin6_null;
21924 		sin6->sin6_family = AF_INET6;
21925 		sin6->sin6_flowinfo = flowinfo;
21926 		sin6->sin6_addr = v6addr;
21927 		sin6->sin6_port = port;
21928 	}
21929 	/* Copy out the address */
21930 	mi_copyout(q, mp);
21931 }
21932 
21933 /*
21934  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21935  * messages.
21936  */
21937 /* ARGSUSED */
21938 static void
21939 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21940 {
21941 	conn_t 	*connp = (conn_t *)arg;
21942 	tcp_t	*tcp = connp->conn_tcp;
21943 	queue_t	*q = tcp->tcp_wq;
21944 	struct iocblk	*iocp;
21945 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21946 
21947 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21948 	/*
21949 	 * Try and ASSERT the minimum possible references on the
21950 	 * conn early enough. Since we are executing on write side,
21951 	 * the connection is obviously not detached and that means
21952 	 * there is a ref each for TCP and IP. Since we are behind
21953 	 * the squeue, the minimum references needed are 3. If the
21954 	 * conn is in classifier hash list, there should be an
21955 	 * extra ref for that (we check both the possibilities).
21956 	 */
21957 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21958 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21959 
21960 	iocp = (struct iocblk *)mp->b_rptr;
21961 	switch (iocp->ioc_cmd) {
21962 	case TCP_IOC_DEFAULT_Q:
21963 		/* Wants to be the default wq. */
21964 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21965 			iocp->ioc_error = EPERM;
21966 			iocp->ioc_count = 0;
21967 			mp->b_datap->db_type = M_IOCACK;
21968 			qreply(q, mp);
21969 			return;
21970 		}
21971 		tcp_def_q_set(tcp, mp);
21972 		return;
21973 	case _SIOCSOCKFALLBACK:
21974 		/*
21975 		 * Either sockmod is about to be popped and the socket
21976 		 * would now be treated as a plain stream, or a module
21977 		 * is about to be pushed so we could no longer use read-
21978 		 * side synchronous streams for fused loopback tcp.
21979 		 * Drain any queued data and disable direct sockfs
21980 		 * interface from now on.
21981 		 */
21982 		if (!tcp->tcp_issocket) {
21983 			DB_TYPE(mp) = M_IOCNAK;
21984 			iocp->ioc_error = EINVAL;
21985 		} else {
21986 #ifdef	_ILP32
21987 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21988 #else
21989 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21990 #endif
21991 			/*
21992 			 * Insert this socket into the acceptor hash.
21993 			 * We might need it for T_CONN_RES message
21994 			 */
21995 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21996 
21997 			if (tcp->tcp_fused) {
21998 				/*
21999 				 * This is a fused loopback tcp; disable
22000 				 * read-side synchronous streams interface
22001 				 * and drain any queued data.  It is okay
22002 				 * to do this for non-synchronous streams
22003 				 * fused tcp as well.
22004 				 */
22005 				tcp_fuse_disable_pair(tcp, B_FALSE);
22006 			}
22007 			tcp->tcp_issocket = B_FALSE;
22008 			TCP_STAT(tcps, tcp_sock_fallback);
22009 
22010 			DB_TYPE(mp) = M_IOCACK;
22011 			iocp->ioc_error = 0;
22012 		}
22013 		iocp->ioc_count = 0;
22014 		iocp->ioc_rval = 0;
22015 		qreply(q, mp);
22016 		return;
22017 	}
22018 	CALL_IP_WPUT(connp, q, mp);
22019 }
22020 
22021 /*
22022  * This routine is called by tcp_wput() to handle all TPI requests.
22023  */
22024 /* ARGSUSED */
22025 static void
22026 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22027 {
22028 	conn_t 	*connp = (conn_t *)arg;
22029 	tcp_t	*tcp = connp->conn_tcp;
22030 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22031 	uchar_t *rptr;
22032 	t_scalar_t type;
22033 	int len;
22034 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22035 
22036 	/*
22037 	 * Try and ASSERT the minimum possible references on the
22038 	 * conn early enough. Since we are executing on write side,
22039 	 * the connection is obviously not detached and that means
22040 	 * there is a ref each for TCP and IP. Since we are behind
22041 	 * the squeue, the minimum references needed are 3. If the
22042 	 * conn is in classifier hash list, there should be an
22043 	 * extra ref for that (we check both the possibilities).
22044 	 */
22045 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22046 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22047 
22048 	rptr = mp->b_rptr;
22049 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22050 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22051 		type = ((union T_primitives *)rptr)->type;
22052 		if (type == T_EXDATA_REQ) {
22053 			uint32_t msize = msgdsize(mp->b_cont);
22054 
22055 			len = msize - 1;
22056 			if (len < 0) {
22057 				freemsg(mp);
22058 				return;
22059 			}
22060 			/*
22061 			 * Try to force urgent data out on the wire.
22062 			 * Even if we have unsent data this will
22063 			 * at least send the urgent flag.
22064 			 * XXX does not handle more flag correctly.
22065 			 */
22066 			len += tcp->tcp_unsent;
22067 			len += tcp->tcp_snxt;
22068 			tcp->tcp_urg = len;
22069 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22070 
22071 			/* Bypass tcp protocol for fused tcp loopback */
22072 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22073 				return;
22074 		} else if (type != T_DATA_REQ) {
22075 			goto non_urgent_data;
22076 		}
22077 		/* TODO: options, flags, ... from user */
22078 		/* Set length to zero for reclamation below */
22079 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22080 		freeb(mp);
22081 		return;
22082 	} else {
22083 		if (tcp->tcp_debug) {
22084 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22085 			    "tcp_wput_proto, dropping one...");
22086 		}
22087 		freemsg(mp);
22088 		return;
22089 	}
22090 
22091 non_urgent_data:
22092 
22093 	switch ((int)tprim->type) {
22094 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22095 		/*
22096 		 * save the kssl_ent_t from the next block, and convert this
22097 		 * back to a normal bind_req.
22098 		 */
22099 		if (mp->b_cont != NULL) {
22100 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22101 
22102 			if (tcp->tcp_kssl_ent != NULL) {
22103 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22104 				    KSSL_NO_PROXY);
22105 				tcp->tcp_kssl_ent = NULL;
22106 			}
22107 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22108 			    sizeof (kssl_ent_t));
22109 			kssl_hold_ent(tcp->tcp_kssl_ent);
22110 			freemsg(mp->b_cont);
22111 			mp->b_cont = NULL;
22112 		}
22113 		tprim->type = T_BIND_REQ;
22114 
22115 	/* FALLTHROUGH */
22116 	case O_T_BIND_REQ:	/* bind request */
22117 	case T_BIND_REQ:	/* new semantics bind request */
22118 		tcp_bind(tcp, mp);
22119 		break;
22120 	case T_UNBIND_REQ:	/* unbind request */
22121 		tcp_unbind(tcp, mp);
22122 		break;
22123 	case O_T_CONN_RES:	/* old connection response XXX */
22124 	case T_CONN_RES:	/* connection response */
22125 		tcp_accept(tcp, mp);
22126 		break;
22127 	case T_CONN_REQ:	/* connection request */
22128 		tcp_connect(tcp, mp);
22129 		break;
22130 	case T_DISCON_REQ:	/* disconnect request */
22131 		tcp_disconnect(tcp, mp);
22132 		break;
22133 	case T_CAPABILITY_REQ:
22134 		tcp_capability_req(tcp, mp);	/* capability request */
22135 		break;
22136 	case T_INFO_REQ:	/* information request */
22137 		tcp_info_req(tcp, mp);
22138 		break;
22139 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22140 		/* Only IP is allowed to return meaningful value */
22141 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
22142 		break;
22143 	case T_OPTMGMT_REQ:
22144 		/*
22145 		 * Note:  no support for snmpcom_req() through new
22146 		 * T_OPTMGMT_REQ. See comments in ip.c
22147 		 */
22148 		/* Only IP is allowed to return meaningful value */
22149 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
22150 		break;
22151 
22152 	case T_UNITDATA_REQ:	/* unitdata request */
22153 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22154 		break;
22155 	case T_ORDREL_REQ:	/* orderly release req */
22156 		freemsg(mp);
22157 
22158 		if (tcp->tcp_fused)
22159 			tcp_unfuse(tcp);
22160 
22161 		if (tcp_xmit_end(tcp) != 0) {
22162 			/*
22163 			 * We were crossing FINs and got a reset from
22164 			 * the other side. Just ignore it.
22165 			 */
22166 			if (tcp->tcp_debug) {
22167 				(void) strlog(TCP_MOD_ID, 0, 1,
22168 				    SL_ERROR|SL_TRACE,
22169 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22170 				    "state %s",
22171 				    tcp_display(tcp, NULL,
22172 				    DISP_ADDR_AND_PORT));
22173 			}
22174 		}
22175 		break;
22176 	case T_ADDR_REQ:
22177 		tcp_addr_req(tcp, mp);
22178 		break;
22179 	default:
22180 		if (tcp->tcp_debug) {
22181 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22182 			    "tcp_wput_proto, bogus TPI msg, type %d",
22183 			    tprim->type);
22184 		}
22185 		/*
22186 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22187 		 * to recover.
22188 		 */
22189 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22190 		break;
22191 	}
22192 }
22193 
22194 /*
22195  * The TCP write service routine should never be called...
22196  */
22197 /* ARGSUSED */
22198 static void
22199 tcp_wsrv(queue_t *q)
22200 {
22201 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22202 
22203 	TCP_STAT(tcps, tcp_wsrv_called);
22204 }
22205 
22206 /* Non overlapping byte exchanger */
22207 static void
22208 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22209 {
22210 	uchar_t	uch;
22211 
22212 	while (len-- > 0) {
22213 		uch = a[len];
22214 		a[len] = b[len];
22215 		b[len] = uch;
22216 	}
22217 }
22218 
22219 /*
22220  * Send out a control packet on the tcp connection specified.  This routine
22221  * is typically called where we need a simple ACK or RST generated.
22222  */
22223 static void
22224 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22225 {
22226 	uchar_t		*rptr;
22227 	tcph_t		*tcph;
22228 	ipha_t		*ipha = NULL;
22229 	ip6_t		*ip6h = NULL;
22230 	uint32_t	sum;
22231 	int		tcp_hdr_len;
22232 	int		tcp_ip_hdr_len;
22233 	mblk_t		*mp;
22234 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22235 
22236 	/*
22237 	 * Save sum for use in source route later.
22238 	 */
22239 	ASSERT(tcp != NULL);
22240 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22241 	tcp_hdr_len = tcp->tcp_hdr_len;
22242 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22243 
22244 	/* If a text string is passed in with the request, pass it to strlog. */
22245 	if (str != NULL && tcp->tcp_debug) {
22246 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22247 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22248 		    str, seq, ack, ctl);
22249 	}
22250 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22251 	    BPRI_MED);
22252 	if (mp == NULL) {
22253 		return;
22254 	}
22255 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22256 	mp->b_rptr = rptr;
22257 	mp->b_wptr = &rptr[tcp_hdr_len];
22258 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22259 
22260 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22261 		ipha = (ipha_t *)rptr;
22262 		ipha->ipha_length = htons(tcp_hdr_len);
22263 	} else {
22264 		ip6h = (ip6_t *)rptr;
22265 		ASSERT(tcp != NULL);
22266 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22267 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22268 	}
22269 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22270 	tcph->th_flags[0] = (uint8_t)ctl;
22271 	if (ctl & TH_RST) {
22272 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22273 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22274 		/*
22275 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22276 		 */
22277 		if (tcp->tcp_snd_ts_ok &&
22278 		    tcp->tcp_state > TCPS_SYN_SENT) {
22279 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22280 			*(mp->b_wptr) = TCPOPT_EOL;
22281 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22282 				ipha->ipha_length = htons(tcp_hdr_len -
22283 				    TCPOPT_REAL_TS_LEN);
22284 			} else {
22285 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22286 				    TCPOPT_REAL_TS_LEN);
22287 			}
22288 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22289 			sum -= TCPOPT_REAL_TS_LEN;
22290 		}
22291 	}
22292 	if (ctl & TH_ACK) {
22293 		if (tcp->tcp_snd_ts_ok) {
22294 			U32_TO_BE32(lbolt,
22295 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22296 			U32_TO_BE32(tcp->tcp_ts_recent,
22297 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22298 		}
22299 
22300 		/* Update the latest receive window size in TCP header. */
22301 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22302 		    tcph->th_win);
22303 		tcp->tcp_rack = ack;
22304 		tcp->tcp_rack_cnt = 0;
22305 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22306 	}
22307 	BUMP_LOCAL(tcp->tcp_obsegs);
22308 	U32_TO_BE32(seq, tcph->th_seq);
22309 	U32_TO_BE32(ack, tcph->th_ack);
22310 	/*
22311 	 * Include the adjustment for a source route if any.
22312 	 */
22313 	sum = (sum >> 16) + (sum & 0xFFFF);
22314 	U16_TO_BE16(sum, tcph->th_sum);
22315 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22316 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22317 }
22318 
22319 /*
22320  * If this routine returns B_TRUE, TCP can generate a RST in response
22321  * to a segment.  If it returns B_FALSE, TCP should not respond.
22322  */
22323 static boolean_t
22324 tcp_send_rst_chk(tcp_stack_t *tcps)
22325 {
22326 	clock_t	now;
22327 
22328 	/*
22329 	 * TCP needs to protect itself from generating too many RSTs.
22330 	 * This can be a DoS attack by sending us random segments
22331 	 * soliciting RSTs.
22332 	 *
22333 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22334 	 * in each 1 second interval.  In this way, TCP still generate
22335 	 * RSTs in normal cases but when under attack, the impact is
22336 	 * limited.
22337 	 */
22338 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22339 		now = lbolt;
22340 		/* lbolt can wrap around. */
22341 		if ((tcps->tcps_last_rst_intrvl > now) ||
22342 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22343 		    1*SECONDS)) {
22344 			tcps->tcps_last_rst_intrvl = now;
22345 			tcps->tcps_rst_cnt = 1;
22346 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22347 			return (B_FALSE);
22348 		}
22349 	}
22350 	return (B_TRUE);
22351 }
22352 
22353 /*
22354  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22355  */
22356 static void
22357 tcp_ip_ire_mark_advice(tcp_t *tcp)
22358 {
22359 	mblk_t *mp;
22360 	ipic_t *ipic;
22361 
22362 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22363 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22364 		    &ipic);
22365 	} else {
22366 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22367 		    &ipic);
22368 	}
22369 	if (mp == NULL)
22370 		return;
22371 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22372 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22373 }
22374 
22375 /*
22376  * Return an IP advice ioctl mblk and set ipic to be the pointer
22377  * to the advice structure.
22378  */
22379 static mblk_t *
22380 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22381 {
22382 	struct iocblk *ioc;
22383 	mblk_t *mp, *mp1;
22384 
22385 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22386 	if (mp == NULL)
22387 		return (NULL);
22388 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22389 	*ipic = (ipic_t *)mp->b_rptr;
22390 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22391 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22392 
22393 	bcopy(addr, *ipic + 1, addr_len);
22394 
22395 	(*ipic)->ipic_addr_length = addr_len;
22396 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22397 
22398 	mp1 = mkiocb(IP_IOCTL);
22399 	if (mp1 == NULL) {
22400 		freemsg(mp);
22401 		return (NULL);
22402 	}
22403 	mp1->b_cont = mp;
22404 	ioc = (struct iocblk *)mp1->b_rptr;
22405 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22406 
22407 	return (mp1);
22408 }
22409 
22410 /*
22411  * Generate a reset based on an inbound packet for which there is no active
22412  * tcp state that we can find.
22413  *
22414  * IPSEC NOTE : Try to send the reply with the same protection as it came
22415  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22416  * the packet will go out at the same level of protection as it came in by
22417  * converting the IPSEC_IN to IPSEC_OUT.
22418  */
22419 static void
22420 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22421     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22422     tcp_stack_t *tcps)
22423 {
22424 	ipha_t		*ipha = NULL;
22425 	ip6_t		*ip6h = NULL;
22426 	ushort_t	len;
22427 	tcph_t		*tcph;
22428 	int		i;
22429 	mblk_t		*ipsec_mp;
22430 	boolean_t	mctl_present;
22431 	ipic_t		*ipic;
22432 	ipaddr_t	v4addr;
22433 	in6_addr_t	v6addr;
22434 	int		addr_len;
22435 	void		*addr;
22436 	queue_t		*q = tcps->tcps_g_q;
22437 	tcp_t		*tcp;
22438 	cred_t		*cr;
22439 	mblk_t		*nmp;
22440 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22441 
22442 	if (tcps->tcps_g_q == NULL) {
22443 		/*
22444 		 * For non-zero stackids the default queue isn't created
22445 		 * until the first open, thus there can be a need to send
22446 		 * a reset before then. But we can't do that, hence we just
22447 		 * drop the packet. Later during boot, when the default queue
22448 		 * has been setup, a retransmitted packet from the peer
22449 		 * will result in a reset.
22450 		 */
22451 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22452 		    GLOBAL_NETSTACKID);
22453 		freemsg(mp);
22454 		return;
22455 	}
22456 
22457 	tcp = Q_TO_TCP(q);
22458 
22459 	if (!tcp_send_rst_chk(tcps)) {
22460 		tcps->tcps_rst_unsent++;
22461 		freemsg(mp);
22462 		return;
22463 	}
22464 
22465 	if (mp->b_datap->db_type == M_CTL) {
22466 		ipsec_mp = mp;
22467 		mp = mp->b_cont;
22468 		mctl_present = B_TRUE;
22469 	} else {
22470 		ipsec_mp = mp;
22471 		mctl_present = B_FALSE;
22472 	}
22473 
22474 	if (str && q && tcps->tcps_dbg) {
22475 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22476 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22477 		    "flags 0x%x",
22478 		    str, seq, ack, ctl);
22479 	}
22480 	if (mp->b_datap->db_ref != 1) {
22481 		mblk_t *mp1 = copyb(mp);
22482 		freemsg(mp);
22483 		mp = mp1;
22484 		if (!mp) {
22485 			if (mctl_present)
22486 				freeb(ipsec_mp);
22487 			return;
22488 		} else {
22489 			if (mctl_present) {
22490 				ipsec_mp->b_cont = mp;
22491 			} else {
22492 				ipsec_mp = mp;
22493 			}
22494 		}
22495 	} else if (mp->b_cont) {
22496 		freemsg(mp->b_cont);
22497 		mp->b_cont = NULL;
22498 	}
22499 	/*
22500 	 * We skip reversing source route here.
22501 	 * (for now we replace all IP options with EOL)
22502 	 */
22503 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22504 		ipha = (ipha_t *)mp->b_rptr;
22505 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22506 			mp->b_rptr[i] = IPOPT_EOL;
22507 		/*
22508 		 * Make sure that src address isn't flagrantly invalid.
22509 		 * Not all broadcast address checking for the src address
22510 		 * is possible, since we don't know the netmask of the src
22511 		 * addr.  No check for destination address is done, since
22512 		 * IP will not pass up a packet with a broadcast dest
22513 		 * address to TCP.  Similar checks are done below for IPv6.
22514 		 */
22515 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22516 		    CLASSD(ipha->ipha_src)) {
22517 			freemsg(ipsec_mp);
22518 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22519 			return;
22520 		}
22521 	} else {
22522 		ip6h = (ip6_t *)mp->b_rptr;
22523 
22524 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22525 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22526 			freemsg(ipsec_mp);
22527 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22528 			return;
22529 		}
22530 
22531 		/* Remove any extension headers assuming partial overlay */
22532 		if (ip_hdr_len > IPV6_HDR_LEN) {
22533 			uint8_t *to;
22534 
22535 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22536 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22537 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22538 			ip_hdr_len = IPV6_HDR_LEN;
22539 			ip6h = (ip6_t *)mp->b_rptr;
22540 			ip6h->ip6_nxt = IPPROTO_TCP;
22541 		}
22542 	}
22543 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22544 	if (tcph->th_flags[0] & TH_RST) {
22545 		freemsg(ipsec_mp);
22546 		return;
22547 	}
22548 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22549 	len = ip_hdr_len + sizeof (tcph_t);
22550 	mp->b_wptr = &mp->b_rptr[len];
22551 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22552 		ipha->ipha_length = htons(len);
22553 		/* Swap addresses */
22554 		v4addr = ipha->ipha_src;
22555 		ipha->ipha_src = ipha->ipha_dst;
22556 		ipha->ipha_dst = v4addr;
22557 		ipha->ipha_ident = 0;
22558 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22559 		addr_len = IP_ADDR_LEN;
22560 		addr = &v4addr;
22561 	} else {
22562 		/* No ip6i_t in this case */
22563 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22564 		/* Swap addresses */
22565 		v6addr = ip6h->ip6_src;
22566 		ip6h->ip6_src = ip6h->ip6_dst;
22567 		ip6h->ip6_dst = v6addr;
22568 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22569 		addr_len = IPV6_ADDR_LEN;
22570 		addr = &v6addr;
22571 	}
22572 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22573 	U32_TO_BE32(ack, tcph->th_ack);
22574 	U32_TO_BE32(seq, tcph->th_seq);
22575 	U16_TO_BE16(0, tcph->th_win);
22576 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22577 	tcph->th_flags[0] = (uint8_t)ctl;
22578 	if (ctl & TH_RST) {
22579 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22580 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22581 	}
22582 
22583 	/* IP trusts us to set up labels when required. */
22584 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22585 	    crgetlabel(cr) != NULL) {
22586 		int err, adjust;
22587 
22588 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22589 			err = tsol_check_label(cr, &mp, &adjust,
22590 			    tcp->tcp_connp->conn_mac_exempt,
22591 			    tcps->tcps_netstack->netstack_ip);
22592 		else
22593 			err = tsol_check_label_v6(cr, &mp, &adjust,
22594 			    tcp->tcp_connp->conn_mac_exempt,
22595 			    tcps->tcps_netstack->netstack_ip);
22596 		if (mctl_present)
22597 			ipsec_mp->b_cont = mp;
22598 		else
22599 			ipsec_mp = mp;
22600 		if (err != 0) {
22601 			freemsg(ipsec_mp);
22602 			return;
22603 		}
22604 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22605 			ipha = (ipha_t *)mp->b_rptr;
22606 			adjust += ntohs(ipha->ipha_length);
22607 			ipha->ipha_length = htons(adjust);
22608 		} else {
22609 			ip6h = (ip6_t *)mp->b_rptr;
22610 		}
22611 	}
22612 
22613 	if (mctl_present) {
22614 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22615 
22616 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22617 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22618 			return;
22619 		}
22620 	}
22621 	if (zoneid == ALL_ZONES)
22622 		zoneid = GLOBAL_ZONEID;
22623 
22624 	/* Add the zoneid so ip_output routes it properly */
22625 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22626 		freemsg(ipsec_mp);
22627 		return;
22628 	}
22629 	ipsec_mp = nmp;
22630 
22631 	/*
22632 	 * NOTE:  one might consider tracing a TCP packet here, but
22633 	 * this function has no active TCP state and no tcp structure
22634 	 * that has a trace buffer.  If we traced here, we would have
22635 	 * to keep a local trace buffer in tcp_record_trace().
22636 	 *
22637 	 * TSol note: The mblk that contains the incoming packet was
22638 	 * reused by tcp_xmit_listener_reset, so it already contains
22639 	 * the right credentials and we don't need to call mblk_setcred.
22640 	 * Also the conn's cred is not right since it is associated
22641 	 * with tcps_g_q.
22642 	 */
22643 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22644 
22645 	/*
22646 	 * Tell IP to mark the IRE used for this destination temporary.
22647 	 * This way, we can limit our exposure to DoS attack because IP
22648 	 * creates an IRE for each destination.  If there are too many,
22649 	 * the time to do any routing lookup will be extremely long.  And
22650 	 * the lookup can be in interrupt context.
22651 	 *
22652 	 * Note that in normal circumstances, this marking should not
22653 	 * affect anything.  It would be nice if only 1 message is
22654 	 * needed to inform IP that the IRE created for this RST should
22655 	 * not be added to the cache table.  But there is currently
22656 	 * not such communication mechanism between TCP and IP.  So
22657 	 * the best we can do now is to send the advice ioctl to IP
22658 	 * to mark the IRE temporary.
22659 	 */
22660 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22661 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22662 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22663 	}
22664 }
22665 
22666 /*
22667  * Initiate closedown sequence on an active connection.  (May be called as
22668  * writer.)  Return value zero for OK return, non-zero for error return.
22669  */
22670 static int
22671 tcp_xmit_end(tcp_t *tcp)
22672 {
22673 	ipic_t	*ipic;
22674 	mblk_t	*mp;
22675 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22676 
22677 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22678 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22679 		/*
22680 		 * Invalid state, only states TCPS_SYN_RCVD,
22681 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22682 		 */
22683 		return (-1);
22684 	}
22685 
22686 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22687 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22688 	/*
22689 	 * If there is nothing more unsent, send the FIN now.
22690 	 * Otherwise, it will go out with the last segment.
22691 	 */
22692 	if (tcp->tcp_unsent == 0) {
22693 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22694 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22695 
22696 		if (mp) {
22697 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22698 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22699 		} else {
22700 			/*
22701 			 * Couldn't allocate msg.  Pretend we got it out.
22702 			 * Wait for rexmit timeout.
22703 			 */
22704 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22705 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22706 		}
22707 
22708 		/*
22709 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22710 		 * changed.
22711 		 */
22712 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22713 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22714 		}
22715 	} else {
22716 		/*
22717 		 * If tcp->tcp_cork is set, then the data will not get sent,
22718 		 * so we have to check that and unset it first.
22719 		 */
22720 		if (tcp->tcp_cork)
22721 			tcp->tcp_cork = B_FALSE;
22722 		tcp_wput_data(tcp, NULL, B_FALSE);
22723 	}
22724 
22725 	/*
22726 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22727 	 * is 0, don't update the cache.
22728 	 */
22729 	if (tcps->tcps_rtt_updates == 0 ||
22730 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22731 		return (0);
22732 
22733 	/*
22734 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22735 	 * different from the destination.
22736 	 */
22737 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22738 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22739 			return (0);
22740 		}
22741 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22742 		    &ipic);
22743 	} else {
22744 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22745 		    &tcp->tcp_ip6h->ip6_dst))) {
22746 			return (0);
22747 		}
22748 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22749 		    &ipic);
22750 	}
22751 
22752 	/* Record route attributes in the IRE for use by future connections. */
22753 	if (mp == NULL)
22754 		return (0);
22755 
22756 	/*
22757 	 * We do not have a good algorithm to update ssthresh at this time.
22758 	 * So don't do any update.
22759 	 */
22760 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22761 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22762 
22763 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22764 	return (0);
22765 }
22766 
22767 /*
22768  * Generate a "no listener here" RST in response to an "unknown" segment.
22769  * Note that we are reusing the incoming mp to construct the outgoing
22770  * RST.
22771  */
22772 void
22773 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22774     tcp_stack_t *tcps)
22775 {
22776 	uchar_t		*rptr;
22777 	uint32_t	seg_len;
22778 	tcph_t		*tcph;
22779 	uint32_t	seg_seq;
22780 	uint32_t	seg_ack;
22781 	uint_t		flags;
22782 	mblk_t		*ipsec_mp;
22783 	ipha_t 		*ipha;
22784 	ip6_t 		*ip6h;
22785 	boolean_t	mctl_present = B_FALSE;
22786 	boolean_t	check = B_TRUE;
22787 	boolean_t	policy_present;
22788 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22789 
22790 	TCP_STAT(tcps, tcp_no_listener);
22791 
22792 	ipsec_mp = mp;
22793 
22794 	if (mp->b_datap->db_type == M_CTL) {
22795 		ipsec_in_t *ii;
22796 
22797 		mctl_present = B_TRUE;
22798 		mp = mp->b_cont;
22799 
22800 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22801 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22802 		if (ii->ipsec_in_dont_check) {
22803 			check = B_FALSE;
22804 			if (!ii->ipsec_in_secure) {
22805 				freeb(ipsec_mp);
22806 				mctl_present = B_FALSE;
22807 				ipsec_mp = mp;
22808 			}
22809 		}
22810 	}
22811 
22812 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22813 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22814 		ipha = (ipha_t *)mp->b_rptr;
22815 		ip6h = NULL;
22816 	} else {
22817 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22818 		ipha = NULL;
22819 		ip6h = (ip6_t *)mp->b_rptr;
22820 	}
22821 
22822 	if (check && policy_present) {
22823 		/*
22824 		 * The conn_t parameter is NULL because we already know
22825 		 * nobody's home.
22826 		 */
22827 		ipsec_mp = ipsec_check_global_policy(
22828 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22829 		    tcps->tcps_netstack);
22830 		if (ipsec_mp == NULL)
22831 			return;
22832 	}
22833 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22834 		DTRACE_PROBE2(
22835 		    tx__ip__log__error__nolistener__tcp,
22836 		    char *, "Could not reply with RST to mp(1)",
22837 		    mblk_t *, mp);
22838 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22839 		freemsg(ipsec_mp);
22840 		return;
22841 	}
22842 
22843 	rptr = mp->b_rptr;
22844 
22845 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22846 	seg_seq = BE32_TO_U32(tcph->th_seq);
22847 	seg_ack = BE32_TO_U32(tcph->th_ack);
22848 	flags = tcph->th_flags[0];
22849 
22850 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22851 	if (flags & TH_RST) {
22852 		freemsg(ipsec_mp);
22853 	} else if (flags & TH_ACK) {
22854 		tcp_xmit_early_reset("no tcp, reset",
22855 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps);
22856 	} else {
22857 		if (flags & TH_SYN) {
22858 			seg_len++;
22859 		} else {
22860 			/*
22861 			 * Here we violate the RFC.  Note that a normal
22862 			 * TCP will never send a segment without the ACK
22863 			 * flag, except for RST or SYN segment.  This
22864 			 * segment is neither.  Just drop it on the
22865 			 * floor.
22866 			 */
22867 			freemsg(ipsec_mp);
22868 			tcps->tcps_rst_unsent++;
22869 			return;
22870 		}
22871 
22872 		tcp_xmit_early_reset("no tcp, reset/ack",
22873 		    ipsec_mp, 0, seg_seq + seg_len,
22874 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps);
22875 	}
22876 }
22877 
22878 /*
22879  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22880  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22881  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22882  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22883  * otherwise it will dup partial mblks.)
22884  * Otherwise, an appropriate ACK packet will be generated.  This
22885  * routine is not usually called to send new data for the first time.  It
22886  * is mostly called out of the timer for retransmits, and to generate ACKs.
22887  *
22888  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22889  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22890  * of the original mblk chain will be returned in *offset and *end_mp.
22891  */
22892 mblk_t *
22893 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22894     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22895     boolean_t rexmit)
22896 {
22897 	int	data_length;
22898 	int32_t	off = 0;
22899 	uint_t	flags;
22900 	mblk_t	*mp1;
22901 	mblk_t	*mp2;
22902 	uchar_t	*rptr;
22903 	tcph_t	*tcph;
22904 	int32_t	num_sack_blk = 0;
22905 	int32_t	sack_opt_len = 0;
22906 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22907 
22908 	/* Allocate for our maximum TCP header + link-level */
22909 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22910 	    tcps->tcps_wroff_xtra, BPRI_MED);
22911 	if (!mp1)
22912 		return (NULL);
22913 	data_length = 0;
22914 
22915 	/*
22916 	 * Note that tcp_mss has been adjusted to take into account the
22917 	 * timestamp option if applicable.  Because SACK options do not
22918 	 * appear in every TCP segments and they are of variable lengths,
22919 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22920 	 * the actual segment length when we need to send a segment which
22921 	 * includes SACK options.
22922 	 */
22923 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22924 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22925 		    tcp->tcp_num_sack_blk);
22926 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22927 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22928 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22929 			max_to_send -= sack_opt_len;
22930 	}
22931 
22932 	if (offset != NULL) {
22933 		off = *offset;
22934 		/* We use offset as an indicator that end_mp is not NULL. */
22935 		*end_mp = NULL;
22936 	}
22937 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22938 		/* This could be faster with cooperation from downstream */
22939 		if (mp2 != mp1 && !sendall &&
22940 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22941 		    max_to_send)
22942 			/*
22943 			 * Don't send the next mblk since the whole mblk
22944 			 * does not fit.
22945 			 */
22946 			break;
22947 		mp2->b_cont = dupb(mp);
22948 		mp2 = mp2->b_cont;
22949 		if (!mp2) {
22950 			freemsg(mp1);
22951 			return (NULL);
22952 		}
22953 		mp2->b_rptr += off;
22954 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22955 		    (uintptr_t)INT_MAX);
22956 
22957 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22958 		if (data_length > max_to_send) {
22959 			mp2->b_wptr -= data_length - max_to_send;
22960 			data_length = max_to_send;
22961 			off = mp2->b_wptr - mp->b_rptr;
22962 			break;
22963 		} else {
22964 			off = 0;
22965 		}
22966 	}
22967 	if (offset != NULL) {
22968 		*offset = off;
22969 		*end_mp = mp;
22970 	}
22971 	if (seg_len != NULL) {
22972 		*seg_len = data_length;
22973 	}
22974 
22975 	/* Update the latest receive window size in TCP header. */
22976 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22977 	    tcp->tcp_tcph->th_win);
22978 
22979 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22980 	mp1->b_rptr = rptr;
22981 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22982 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22983 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22984 	U32_TO_ABE32(seq, tcph->th_seq);
22985 
22986 	/*
22987 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22988 	 * that this function was called from tcp_wput_data. Thus, when called
22989 	 * to retransmit data the setting of the PUSH bit may appear some
22990 	 * what random in that it might get set when it should not. This
22991 	 * should not pose any performance issues.
22992 	 */
22993 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22994 	    tcp->tcp_unsent == data_length)) {
22995 		flags = TH_ACK | TH_PUSH;
22996 	} else {
22997 		flags = TH_ACK;
22998 	}
22999 
23000 	if (tcp->tcp_ecn_ok) {
23001 		if (tcp->tcp_ecn_echo_on)
23002 			flags |= TH_ECE;
23003 
23004 		/*
23005 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23006 		 * There is no TCP flow control for non-data segments, and
23007 		 * only data segment is transmitted reliably.
23008 		 */
23009 		if (data_length > 0 && !rexmit) {
23010 			SET_ECT(tcp, rptr);
23011 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23012 				flags |= TH_CWR;
23013 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23014 			}
23015 		}
23016 	}
23017 
23018 	if (tcp->tcp_valid_bits) {
23019 		uint32_t u1;
23020 
23021 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23022 		    seq == tcp->tcp_iss) {
23023 			uchar_t	*wptr;
23024 
23025 			/*
23026 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23027 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23028 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23029 			 * our SYN is not ack'ed but the app closes this
23030 			 * TCP connection.
23031 			 */
23032 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23033 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23034 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23035 
23036 			/*
23037 			 * Tack on the MSS option.  It is always needed
23038 			 * for both active and passive open.
23039 			 *
23040 			 * MSS option value should be interface MTU - MIN
23041 			 * TCP/IP header according to RFC 793 as it means
23042 			 * the maximum segment size TCP can receive.  But
23043 			 * to get around some broken middle boxes/end hosts
23044 			 * out there, we allow the option value to be the
23045 			 * same as the MSS option size on the peer side.
23046 			 * In this way, the other side will not send
23047 			 * anything larger than they can receive.
23048 			 *
23049 			 * Note that for SYN_SENT state, the ndd param
23050 			 * tcp_use_smss_as_mss_opt has no effect as we
23051 			 * don't know the peer's MSS option value. So
23052 			 * the only case we need to take care of is in
23053 			 * SYN_RCVD state, which is done later.
23054 			 */
23055 			wptr = mp1->b_wptr;
23056 			wptr[0] = TCPOPT_MAXSEG;
23057 			wptr[1] = TCPOPT_MAXSEG_LEN;
23058 			wptr += 2;
23059 			u1 = tcp->tcp_if_mtu -
23060 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23061 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23062 			    TCP_MIN_HEADER_LENGTH;
23063 			U16_TO_BE16(u1, wptr);
23064 			mp1->b_wptr = wptr + 2;
23065 			/* Update the offset to cover the additional word */
23066 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23067 
23068 			/*
23069 			 * Note that the following way of filling in
23070 			 * TCP options are not optimal.  Some NOPs can
23071 			 * be saved.  But there is no need at this time
23072 			 * to optimize it.  When it is needed, we will
23073 			 * do it.
23074 			 */
23075 			switch (tcp->tcp_state) {
23076 			case TCPS_SYN_SENT:
23077 				flags = TH_SYN;
23078 
23079 				if (tcp->tcp_snd_ts_ok) {
23080 					uint32_t llbolt = (uint32_t)lbolt;
23081 
23082 					wptr = mp1->b_wptr;
23083 					wptr[0] = TCPOPT_NOP;
23084 					wptr[1] = TCPOPT_NOP;
23085 					wptr[2] = TCPOPT_TSTAMP;
23086 					wptr[3] = TCPOPT_TSTAMP_LEN;
23087 					wptr += 4;
23088 					U32_TO_BE32(llbolt, wptr);
23089 					wptr += 4;
23090 					ASSERT(tcp->tcp_ts_recent == 0);
23091 					U32_TO_BE32(0L, wptr);
23092 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23093 					tcph->th_offset_and_rsrvd[0] +=
23094 					    (3 << 4);
23095 				}
23096 
23097 				/*
23098 				 * Set up all the bits to tell other side
23099 				 * we are ECN capable.
23100 				 */
23101 				if (tcp->tcp_ecn_ok) {
23102 					flags |= (TH_ECE | TH_CWR);
23103 				}
23104 				break;
23105 			case TCPS_SYN_RCVD:
23106 				flags |= TH_SYN;
23107 
23108 				/*
23109 				 * Reset the MSS option value to be SMSS
23110 				 * We should probably add back the bytes
23111 				 * for timestamp option and IPsec.  We
23112 				 * don't do that as this is a workaround
23113 				 * for broken middle boxes/end hosts, it
23114 				 * is better for us to be more cautious.
23115 				 * They may not take these things into
23116 				 * account in their SMSS calculation.  Thus
23117 				 * the peer's calculated SMSS may be smaller
23118 				 * than what it can be.  This should be OK.
23119 				 */
23120 				if (tcps->tcps_use_smss_as_mss_opt) {
23121 					u1 = tcp->tcp_mss;
23122 					U16_TO_BE16(u1, wptr);
23123 				}
23124 
23125 				/*
23126 				 * If the other side is ECN capable, reply
23127 				 * that we are also ECN capable.
23128 				 */
23129 				if (tcp->tcp_ecn_ok)
23130 					flags |= TH_ECE;
23131 				break;
23132 			default:
23133 				/*
23134 				 * The above ASSERT() makes sure that this
23135 				 * must be FIN-WAIT-1 state.  Our SYN has
23136 				 * not been ack'ed so retransmit it.
23137 				 */
23138 				flags |= TH_SYN;
23139 				break;
23140 			}
23141 
23142 			if (tcp->tcp_snd_ws_ok) {
23143 				wptr = mp1->b_wptr;
23144 				wptr[0] =  TCPOPT_NOP;
23145 				wptr[1] =  TCPOPT_WSCALE;
23146 				wptr[2] =  TCPOPT_WS_LEN;
23147 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23148 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23149 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23150 			}
23151 
23152 			if (tcp->tcp_snd_sack_ok) {
23153 				wptr = mp1->b_wptr;
23154 				wptr[0] = TCPOPT_NOP;
23155 				wptr[1] = TCPOPT_NOP;
23156 				wptr[2] = TCPOPT_SACK_PERMITTED;
23157 				wptr[3] = TCPOPT_SACK_OK_LEN;
23158 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23159 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23160 			}
23161 
23162 			/* allocb() of adequate mblk assures space */
23163 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23164 			    (uintptr_t)INT_MAX);
23165 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23166 			/*
23167 			 * Get IP set to checksum on our behalf
23168 			 * Include the adjustment for a source route if any.
23169 			 */
23170 			u1 += tcp->tcp_sum;
23171 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23172 			U16_TO_BE16(u1, tcph->th_sum);
23173 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23174 		}
23175 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23176 		    (seq + data_length) == tcp->tcp_fss) {
23177 			if (!tcp->tcp_fin_acked) {
23178 				flags |= TH_FIN;
23179 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23180 			}
23181 			if (!tcp->tcp_fin_sent) {
23182 				tcp->tcp_fin_sent = B_TRUE;
23183 				switch (tcp->tcp_state) {
23184 				case TCPS_SYN_RCVD:
23185 				case TCPS_ESTABLISHED:
23186 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23187 					break;
23188 				case TCPS_CLOSE_WAIT:
23189 					tcp->tcp_state = TCPS_LAST_ACK;
23190 					break;
23191 				}
23192 				if (tcp->tcp_suna == tcp->tcp_snxt)
23193 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23194 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23195 			}
23196 		}
23197 		/*
23198 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23199 		 * is smaller than seq, u1 will become a very huge value.
23200 		 * So the comparison will fail.  Also note that tcp_urp
23201 		 * should be positive, see RFC 793 page 17.
23202 		 */
23203 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23204 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23205 		    u1 < (uint32_t)(64 * 1024)) {
23206 			flags |= TH_URG;
23207 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23208 			U32_TO_ABE16(u1, tcph->th_urp);
23209 		}
23210 	}
23211 	tcph->th_flags[0] = (uchar_t)flags;
23212 	tcp->tcp_rack = tcp->tcp_rnxt;
23213 	tcp->tcp_rack_cnt = 0;
23214 
23215 	if (tcp->tcp_snd_ts_ok) {
23216 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23217 			uint32_t llbolt = (uint32_t)lbolt;
23218 
23219 			U32_TO_BE32(llbolt,
23220 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23221 			U32_TO_BE32(tcp->tcp_ts_recent,
23222 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23223 		}
23224 	}
23225 
23226 	if (num_sack_blk > 0) {
23227 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23228 		sack_blk_t *tmp;
23229 		int32_t	i;
23230 
23231 		wptr[0] = TCPOPT_NOP;
23232 		wptr[1] = TCPOPT_NOP;
23233 		wptr[2] = TCPOPT_SACK;
23234 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23235 		    sizeof (sack_blk_t);
23236 		wptr += TCPOPT_REAL_SACK_LEN;
23237 
23238 		tmp = tcp->tcp_sack_list;
23239 		for (i = 0; i < num_sack_blk; i++) {
23240 			U32_TO_BE32(tmp[i].begin, wptr);
23241 			wptr += sizeof (tcp_seq);
23242 			U32_TO_BE32(tmp[i].end, wptr);
23243 			wptr += sizeof (tcp_seq);
23244 		}
23245 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23246 	}
23247 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23248 	data_length += (int)(mp1->b_wptr - rptr);
23249 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23250 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23251 	} else {
23252 		ip6_t *ip6 = (ip6_t *)(rptr +
23253 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23254 		    sizeof (ip6i_t) : 0));
23255 
23256 		ip6->ip6_plen = htons(data_length -
23257 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23258 	}
23259 
23260 	/*
23261 	 * Prime pump for IP
23262 	 * Include the adjustment for a source route if any.
23263 	 */
23264 	data_length -= tcp->tcp_ip_hdr_len;
23265 	data_length += tcp->tcp_sum;
23266 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23267 	U16_TO_ABE16(data_length, tcph->th_sum);
23268 	if (tcp->tcp_ip_forward_progress) {
23269 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23270 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23271 		tcp->tcp_ip_forward_progress = B_FALSE;
23272 	}
23273 	return (mp1);
23274 }
23275 
23276 /* This function handles the push timeout. */
23277 void
23278 tcp_push_timer(void *arg)
23279 {
23280 	conn_t	*connp = (conn_t *)arg;
23281 	tcp_t *tcp = connp->conn_tcp;
23282 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23283 
23284 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23285 
23286 	ASSERT(tcp->tcp_listener == NULL);
23287 
23288 	/*
23289 	 * We need to plug synchronous streams during our drain to prevent
23290 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23291 	 */
23292 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23293 	tcp->tcp_push_tid = 0;
23294 	if ((tcp->tcp_rcv_list != NULL) &&
23295 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23296 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23297 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23298 }
23299 
23300 /*
23301  * This function handles delayed ACK timeout.
23302  */
23303 static void
23304 tcp_ack_timer(void *arg)
23305 {
23306 	conn_t	*connp = (conn_t *)arg;
23307 	tcp_t *tcp = connp->conn_tcp;
23308 	mblk_t *mp;
23309 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23310 
23311 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23312 
23313 	tcp->tcp_ack_tid = 0;
23314 
23315 	if (tcp->tcp_fused)
23316 		return;
23317 
23318 	/*
23319 	 * Do not send ACK if there is no outstanding unack'ed data.
23320 	 */
23321 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23322 		return;
23323 	}
23324 
23325 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23326 		/*
23327 		 * Make sure we don't allow deferred ACKs to result in
23328 		 * timer-based ACKing.  If we have held off an ACK
23329 		 * when there was more than an mss here, and the timer
23330 		 * goes off, we have to worry about the possibility
23331 		 * that the sender isn't doing slow-start, or is out
23332 		 * of step with us for some other reason.  We fall
23333 		 * permanently back in the direction of
23334 		 * ACK-every-other-packet as suggested in RFC 1122.
23335 		 */
23336 		if (tcp->tcp_rack_abs_max > 2)
23337 			tcp->tcp_rack_abs_max--;
23338 		tcp->tcp_rack_cur_max = 2;
23339 	}
23340 	mp = tcp_ack_mp(tcp);
23341 
23342 	if (mp != NULL) {
23343 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23344 		BUMP_LOCAL(tcp->tcp_obsegs);
23345 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23346 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23347 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23348 	}
23349 }
23350 
23351 
23352 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23353 static mblk_t *
23354 tcp_ack_mp(tcp_t *tcp)
23355 {
23356 	uint32_t	seq_no;
23357 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23358 
23359 	/*
23360 	 * There are a few cases to be considered while setting the sequence no.
23361 	 * Essentially, we can come here while processing an unacceptable pkt
23362 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23363 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23364 	 * If we are here for a zero window probe, stick with suna. In all
23365 	 * other cases, we check if suna + swnd encompasses snxt and set
23366 	 * the sequence number to snxt, if so. If snxt falls outside the
23367 	 * window (the receiver probably shrunk its window), we will go with
23368 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23369 	 * receiver.
23370 	 */
23371 	if (tcp->tcp_zero_win_probe) {
23372 		seq_no = tcp->tcp_suna;
23373 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23374 		ASSERT(tcp->tcp_swnd == 0);
23375 		seq_no = tcp->tcp_snxt;
23376 	} else {
23377 		seq_no = SEQ_GT(tcp->tcp_snxt,
23378 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23379 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23380 	}
23381 
23382 	if (tcp->tcp_valid_bits) {
23383 		/*
23384 		 * For the complex case where we have to send some
23385 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23386 		 */
23387 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23388 		    NULL, B_FALSE));
23389 	} else {
23390 		/* Generate a simple ACK */
23391 		int	data_length;
23392 		uchar_t	*rptr;
23393 		tcph_t	*tcph;
23394 		mblk_t	*mp1;
23395 		int32_t	tcp_hdr_len;
23396 		int32_t	tcp_tcp_hdr_len;
23397 		int32_t	num_sack_blk = 0;
23398 		int32_t sack_opt_len;
23399 
23400 		/*
23401 		 * Allocate space for TCP + IP headers
23402 		 * and link-level header
23403 		 */
23404 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23405 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23406 			    tcp->tcp_num_sack_blk);
23407 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23408 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23409 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23410 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23411 		} else {
23412 			tcp_hdr_len = tcp->tcp_hdr_len;
23413 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23414 		}
23415 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23416 		if (!mp1)
23417 			return (NULL);
23418 
23419 		/* Update the latest receive window size in TCP header. */
23420 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23421 		    tcp->tcp_tcph->th_win);
23422 		/* copy in prototype TCP + IP header */
23423 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23424 		mp1->b_rptr = rptr;
23425 		mp1->b_wptr = rptr + tcp_hdr_len;
23426 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23427 
23428 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23429 
23430 		/* Set the TCP sequence number. */
23431 		U32_TO_ABE32(seq_no, tcph->th_seq);
23432 
23433 		/* Set up the TCP flag field. */
23434 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23435 		if (tcp->tcp_ecn_echo_on)
23436 			tcph->th_flags[0] |= TH_ECE;
23437 
23438 		tcp->tcp_rack = tcp->tcp_rnxt;
23439 		tcp->tcp_rack_cnt = 0;
23440 
23441 		/* fill in timestamp option if in use */
23442 		if (tcp->tcp_snd_ts_ok) {
23443 			uint32_t llbolt = (uint32_t)lbolt;
23444 
23445 			U32_TO_BE32(llbolt,
23446 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23447 			U32_TO_BE32(tcp->tcp_ts_recent,
23448 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23449 		}
23450 
23451 		/* Fill in SACK options */
23452 		if (num_sack_blk > 0) {
23453 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23454 			sack_blk_t *tmp;
23455 			int32_t	i;
23456 
23457 			wptr[0] = TCPOPT_NOP;
23458 			wptr[1] = TCPOPT_NOP;
23459 			wptr[2] = TCPOPT_SACK;
23460 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23461 			    sizeof (sack_blk_t);
23462 			wptr += TCPOPT_REAL_SACK_LEN;
23463 
23464 			tmp = tcp->tcp_sack_list;
23465 			for (i = 0; i < num_sack_blk; i++) {
23466 				U32_TO_BE32(tmp[i].begin, wptr);
23467 				wptr += sizeof (tcp_seq);
23468 				U32_TO_BE32(tmp[i].end, wptr);
23469 				wptr += sizeof (tcp_seq);
23470 			}
23471 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23472 			    << 4);
23473 		}
23474 
23475 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23476 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23477 		} else {
23478 			/* Check for ip6i_t header in sticky hdrs */
23479 			ip6_t *ip6 = (ip6_t *)(rptr +
23480 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23481 			    sizeof (ip6i_t) : 0));
23482 
23483 			ip6->ip6_plen = htons(tcp_hdr_len -
23484 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23485 		}
23486 
23487 		/*
23488 		 * Prime pump for checksum calculation in IP.  Include the
23489 		 * adjustment for a source route if any.
23490 		 */
23491 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23492 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23493 		U16_TO_ABE16(data_length, tcph->th_sum);
23494 
23495 		if (tcp->tcp_ip_forward_progress) {
23496 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23497 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23498 			tcp->tcp_ip_forward_progress = B_FALSE;
23499 		}
23500 		return (mp1);
23501 	}
23502 }
23503 
23504 /*
23505  * To create a temporary tcp structure for inserting into bind hash list.
23506  * The parameter is assumed to be in network byte order, ready for use.
23507  */
23508 /* ARGSUSED */
23509 static tcp_t *
23510 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23511 {
23512 	conn_t	*connp;
23513 	tcp_t	*tcp;
23514 
23515 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23516 	if (connp == NULL)
23517 		return (NULL);
23518 
23519 	tcp = connp->conn_tcp;
23520 	tcp->tcp_tcps = tcps;
23521 	TCPS_REFHOLD(tcps);
23522 
23523 	/*
23524 	 * Only initialize the necessary info in those structures.  Note
23525 	 * that since INADDR_ANY is all 0, we do not need to set
23526 	 * tcp_bound_source to INADDR_ANY here.
23527 	 */
23528 	tcp->tcp_state = TCPS_BOUND;
23529 	tcp->tcp_lport = port;
23530 	tcp->tcp_exclbind = 1;
23531 	tcp->tcp_reserved_port = 1;
23532 
23533 	/* Just for place holding... */
23534 	tcp->tcp_ipversion = IPV4_VERSION;
23535 
23536 	return (tcp);
23537 }
23538 
23539 /*
23540  * To remove a port range specified by lo_port and hi_port from the
23541  * reserved port ranges.  This is one of the three public functions of
23542  * the reserved port interface.  Note that a port range has to be removed
23543  * as a whole.  Ports in a range cannot be removed individually.
23544  *
23545  * Params:
23546  *	in_port_t lo_port: the beginning port of the reserved port range to
23547  *		be deleted.
23548  *	in_port_t hi_port: the ending port of the reserved port range to
23549  *		be deleted.
23550  *
23551  * Return:
23552  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23553  *
23554  * Assumes that nca is only for zoneid=0
23555  */
23556 boolean_t
23557 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23558 {
23559 	int	i, j;
23560 	int	size;
23561 	tcp_t	**temp_tcp_array;
23562 	tcp_t	*tcp;
23563 	tcp_stack_t	*tcps;
23564 
23565 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23566 	ASSERT(tcps != NULL);
23567 
23568 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23569 
23570 	/* First make sure that the port ranage is indeed reserved. */
23571 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23572 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23573 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23574 			temp_tcp_array =
23575 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23576 			break;
23577 		}
23578 	}
23579 	if (i == tcps->tcps_reserved_port_array_size) {
23580 		rw_exit(&tcps->tcps_reserved_port_lock);
23581 		netstack_rele(tcps->tcps_netstack);
23582 		return (B_FALSE);
23583 	}
23584 
23585 	/*
23586 	 * Remove the range from the array.  This simple loop is possible
23587 	 * because port ranges are inserted in ascending order.
23588 	 */
23589 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23590 		tcps->tcps_reserved_port[j].lo_port =
23591 		    tcps->tcps_reserved_port[j+1].lo_port;
23592 		tcps->tcps_reserved_port[j].hi_port =
23593 		    tcps->tcps_reserved_port[j+1].hi_port;
23594 		tcps->tcps_reserved_port[j].temp_tcp_array =
23595 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23596 	}
23597 
23598 	/* Remove all the temporary tcp structures. */
23599 	size = hi_port - lo_port + 1;
23600 	while (size > 0) {
23601 		tcp = temp_tcp_array[size - 1];
23602 		ASSERT(tcp != NULL);
23603 		tcp_bind_hash_remove(tcp);
23604 		CONN_DEC_REF(tcp->tcp_connp);
23605 		size--;
23606 	}
23607 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23608 	tcps->tcps_reserved_port_array_size--;
23609 	rw_exit(&tcps->tcps_reserved_port_lock);
23610 	netstack_rele(tcps->tcps_netstack);
23611 	return (B_TRUE);
23612 }
23613 
23614 /*
23615  * Macro to remove temporary tcp structure from the bind hash list.  The
23616  * first parameter is the list of tcp to be removed.  The second parameter
23617  * is the number of tcps in the array.
23618  */
23619 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23620 { \
23621 	while ((num) > 0) { \
23622 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23623 		tf_t *tbf; \
23624 		tcp_t *tcpnext; \
23625 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23626 		mutex_enter(&tbf->tf_lock); \
23627 		tcpnext = tcp->tcp_bind_hash; \
23628 		if (tcpnext) { \
23629 			tcpnext->tcp_ptpbhn = \
23630 				tcp->tcp_ptpbhn; \
23631 		} \
23632 		*tcp->tcp_ptpbhn = tcpnext; \
23633 		mutex_exit(&tbf->tf_lock); \
23634 		kmem_free(tcp, sizeof (tcp_t)); \
23635 		(tcp_array)[(num) - 1] = NULL; \
23636 		(num)--; \
23637 	} \
23638 }
23639 
23640 /*
23641  * The public interface for other modules to call to reserve a port range
23642  * in TCP.  The caller passes in how large a port range it wants.  TCP
23643  * will try to find a range and return it via lo_port and hi_port.  This is
23644  * used by NCA's nca_conn_init.
23645  * NCA can only be used in the global zone so this only affects the global
23646  * zone's ports.
23647  *
23648  * Params:
23649  *	int size: the size of the port range to be reserved.
23650  *	in_port_t *lo_port (referenced): returns the beginning port of the
23651  *		reserved port range added.
23652  *	in_port_t *hi_port (referenced): returns the ending port of the
23653  *		reserved port range added.
23654  *
23655  * Return:
23656  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23657  *
23658  * Assumes that nca is only for zoneid=0
23659  */
23660 boolean_t
23661 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23662 {
23663 	tcp_t		*tcp;
23664 	tcp_t		*tmp_tcp;
23665 	tcp_t		**temp_tcp_array;
23666 	tf_t		*tbf;
23667 	in_port_t	net_port;
23668 	in_port_t	port;
23669 	int32_t		cur_size;
23670 	int		i, j;
23671 	boolean_t	used;
23672 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23673 	zoneid_t	zoneid = GLOBAL_ZONEID;
23674 	tcp_stack_t	*tcps;
23675 
23676 	/* Sanity check. */
23677 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23678 		return (B_FALSE);
23679 	}
23680 
23681 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23682 	ASSERT(tcps != NULL);
23683 
23684 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23685 	if (tcps->tcps_reserved_port_array_size ==
23686 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23687 		rw_exit(&tcps->tcps_reserved_port_lock);
23688 		netstack_rele(tcps->tcps_netstack);
23689 		return (B_FALSE);
23690 	}
23691 
23692 	/*
23693 	 * Find the starting port to try.  Since the port ranges are ordered
23694 	 * in the reserved port array, we can do a simple search here.
23695 	 */
23696 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23697 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23698 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23699 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23700 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23701 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23702 			break;
23703 		}
23704 	}
23705 	/* No available port range. */
23706 	if (i == tcps->tcps_reserved_port_array_size &&
23707 	    *hi_port - *lo_port < size) {
23708 		rw_exit(&tcps->tcps_reserved_port_lock);
23709 		netstack_rele(tcps->tcps_netstack);
23710 		return (B_FALSE);
23711 	}
23712 
23713 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23714 	if (temp_tcp_array == NULL) {
23715 		rw_exit(&tcps->tcps_reserved_port_lock);
23716 		netstack_rele(tcps->tcps_netstack);
23717 		return (B_FALSE);
23718 	}
23719 
23720 	/* Go thru the port range to see if some ports are already bound. */
23721 	for (port = *lo_port, cur_size = 0;
23722 	    cur_size < size && port <= *hi_port;
23723 	    cur_size++, port++) {
23724 		used = B_FALSE;
23725 		net_port = htons(port);
23726 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23727 		mutex_enter(&tbf->tf_lock);
23728 		for (tcp = tbf->tf_tcp; tcp != NULL;
23729 		    tcp = tcp->tcp_bind_hash) {
23730 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23731 			    net_port == tcp->tcp_lport) {
23732 				/*
23733 				 * A port is already bound.  Search again
23734 				 * starting from port + 1.  Release all
23735 				 * temporary tcps.
23736 				 */
23737 				mutex_exit(&tbf->tf_lock);
23738 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23739 				    tcps);
23740 				*lo_port = port + 1;
23741 				cur_size = -1;
23742 				used = B_TRUE;
23743 				break;
23744 			}
23745 		}
23746 		if (!used) {
23747 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23748 			    NULL) {
23749 				/*
23750 				 * Allocation failure.  Just fail the request.
23751 				 * Need to remove all those temporary tcp
23752 				 * structures.
23753 				 */
23754 				mutex_exit(&tbf->tf_lock);
23755 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23756 				    tcps);
23757 				rw_exit(&tcps->tcps_reserved_port_lock);
23758 				kmem_free(temp_tcp_array,
23759 				    (hi_port - lo_port + 1) *
23760 				    sizeof (tcp_t *));
23761 				netstack_rele(tcps->tcps_netstack);
23762 				return (B_FALSE);
23763 			}
23764 			temp_tcp_array[cur_size] = tmp_tcp;
23765 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23766 			mutex_exit(&tbf->tf_lock);
23767 		}
23768 	}
23769 
23770 	/*
23771 	 * The current range is not large enough.  We can actually do another
23772 	 * search if this search is done between 2 reserved port ranges.  But
23773 	 * for first release, we just stop here and return saying that no port
23774 	 * range is available.
23775 	 */
23776 	if (cur_size < size) {
23777 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23778 		rw_exit(&tcps->tcps_reserved_port_lock);
23779 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23780 		netstack_rele(tcps->tcps_netstack);
23781 		return (B_FALSE);
23782 	}
23783 	*hi_port = port - 1;
23784 
23785 	/*
23786 	 * Insert range into array in ascending order.  Since this function
23787 	 * must not be called often, we choose to use the simplest method.
23788 	 * The above array should not consume excessive stack space as
23789 	 * the size must be very small.  If in future releases, we find
23790 	 * that we should provide more reserved port ranges, this function
23791 	 * has to be modified to be more efficient.
23792 	 */
23793 	if (tcps->tcps_reserved_port_array_size == 0) {
23794 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23795 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23796 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23797 	} else {
23798 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23799 		    i++, j++) {
23800 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23801 			    i == j) {
23802 				tmp_ports[j].lo_port = *lo_port;
23803 				tmp_ports[j].hi_port = *hi_port;
23804 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23805 				j++;
23806 			}
23807 			tmp_ports[j].lo_port =
23808 			    tcps->tcps_reserved_port[i].lo_port;
23809 			tmp_ports[j].hi_port =
23810 			    tcps->tcps_reserved_port[i].hi_port;
23811 			tmp_ports[j].temp_tcp_array =
23812 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23813 		}
23814 		if (j == i) {
23815 			tmp_ports[j].lo_port = *lo_port;
23816 			tmp_ports[j].hi_port = *hi_port;
23817 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23818 		}
23819 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23820 	}
23821 	tcps->tcps_reserved_port_array_size++;
23822 	rw_exit(&tcps->tcps_reserved_port_lock);
23823 	netstack_rele(tcps->tcps_netstack);
23824 	return (B_TRUE);
23825 }
23826 
23827 /*
23828  * Check to see if a port is in any reserved port range.
23829  *
23830  * Params:
23831  *	in_port_t port: the port to be verified.
23832  *
23833  * Return:
23834  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23835  */
23836 boolean_t
23837 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23838 {
23839 	int i;
23840 
23841 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23842 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23843 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23844 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23845 			rw_exit(&tcps->tcps_reserved_port_lock);
23846 			return (B_TRUE);
23847 		}
23848 	}
23849 	rw_exit(&tcps->tcps_reserved_port_lock);
23850 	return (B_FALSE);
23851 }
23852 
23853 /*
23854  * To list all reserved port ranges.  This is the function to handle
23855  * ndd tcp_reserved_port_list.
23856  */
23857 /* ARGSUSED */
23858 static int
23859 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23860 {
23861 	int i;
23862 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23863 
23864 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23865 	if (tcps->tcps_reserved_port_array_size > 0)
23866 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23867 	else
23868 		(void) mi_mpprintf(mp, "No port is reserved.");
23869 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23870 		(void) mi_mpprintf(mp, "%d-%d",
23871 		    tcps->tcps_reserved_port[i].lo_port,
23872 		    tcps->tcps_reserved_port[i].hi_port);
23873 	}
23874 	rw_exit(&tcps->tcps_reserved_port_lock);
23875 	return (0);
23876 }
23877 
23878 /*
23879  * Hash list insertion routine for tcp_t structures.
23880  * Inserts entries with the ones bound to a specific IP address first
23881  * followed by those bound to INADDR_ANY.
23882  */
23883 static void
23884 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23885 {
23886 	tcp_t	**tcpp;
23887 	tcp_t	*tcpnext;
23888 
23889 	if (tcp->tcp_ptpbhn != NULL) {
23890 		ASSERT(!caller_holds_lock);
23891 		tcp_bind_hash_remove(tcp);
23892 	}
23893 	tcpp = &tbf->tf_tcp;
23894 	if (!caller_holds_lock) {
23895 		mutex_enter(&tbf->tf_lock);
23896 	} else {
23897 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23898 	}
23899 	tcpnext = tcpp[0];
23900 	if (tcpnext) {
23901 		/*
23902 		 * If the new tcp bound to the INADDR_ANY address
23903 		 * and the first one in the list is not bound to
23904 		 * INADDR_ANY we skip all entries until we find the
23905 		 * first one bound to INADDR_ANY.
23906 		 * This makes sure that applications binding to a
23907 		 * specific address get preference over those binding to
23908 		 * INADDR_ANY.
23909 		 */
23910 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23911 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23912 			while ((tcpnext = tcpp[0]) != NULL &&
23913 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23914 				tcpp = &(tcpnext->tcp_bind_hash);
23915 			if (tcpnext)
23916 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23917 		} else
23918 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23919 	}
23920 	tcp->tcp_bind_hash = tcpnext;
23921 	tcp->tcp_ptpbhn = tcpp;
23922 	tcpp[0] = tcp;
23923 	if (!caller_holds_lock)
23924 		mutex_exit(&tbf->tf_lock);
23925 }
23926 
23927 /*
23928  * Hash list removal routine for tcp_t structures.
23929  */
23930 static void
23931 tcp_bind_hash_remove(tcp_t *tcp)
23932 {
23933 	tcp_t	*tcpnext;
23934 	kmutex_t *lockp;
23935 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23936 
23937 	if (tcp->tcp_ptpbhn == NULL)
23938 		return;
23939 
23940 	/*
23941 	 * Extract the lock pointer in case there are concurrent
23942 	 * hash_remove's for this instance.
23943 	 */
23944 	ASSERT(tcp->tcp_lport != 0);
23945 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23946 
23947 	ASSERT(lockp != NULL);
23948 	mutex_enter(lockp);
23949 	if (tcp->tcp_ptpbhn) {
23950 		tcpnext = tcp->tcp_bind_hash;
23951 		if (tcpnext) {
23952 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23953 			tcp->tcp_bind_hash = NULL;
23954 		}
23955 		*tcp->tcp_ptpbhn = tcpnext;
23956 		tcp->tcp_ptpbhn = NULL;
23957 	}
23958 	mutex_exit(lockp);
23959 }
23960 
23961 
23962 /*
23963  * Hash list lookup routine for tcp_t structures.
23964  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23965  */
23966 static tcp_t *
23967 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23968 {
23969 	tf_t	*tf;
23970 	tcp_t	*tcp;
23971 
23972 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23973 	mutex_enter(&tf->tf_lock);
23974 	for (tcp = tf->tf_tcp; tcp != NULL;
23975 	    tcp = tcp->tcp_acceptor_hash) {
23976 		if (tcp->tcp_acceptor_id == id) {
23977 			CONN_INC_REF(tcp->tcp_connp);
23978 			mutex_exit(&tf->tf_lock);
23979 			return (tcp);
23980 		}
23981 	}
23982 	mutex_exit(&tf->tf_lock);
23983 	return (NULL);
23984 }
23985 
23986 
23987 /*
23988  * Hash list insertion routine for tcp_t structures.
23989  */
23990 void
23991 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23992 {
23993 	tf_t	*tf;
23994 	tcp_t	**tcpp;
23995 	tcp_t	*tcpnext;
23996 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23997 
23998 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23999 
24000 	if (tcp->tcp_ptpahn != NULL)
24001 		tcp_acceptor_hash_remove(tcp);
24002 	tcpp = &tf->tf_tcp;
24003 	mutex_enter(&tf->tf_lock);
24004 	tcpnext = tcpp[0];
24005 	if (tcpnext)
24006 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24007 	tcp->tcp_acceptor_hash = tcpnext;
24008 	tcp->tcp_ptpahn = tcpp;
24009 	tcpp[0] = tcp;
24010 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24011 	mutex_exit(&tf->tf_lock);
24012 }
24013 
24014 /*
24015  * Hash list removal routine for tcp_t structures.
24016  */
24017 static void
24018 tcp_acceptor_hash_remove(tcp_t *tcp)
24019 {
24020 	tcp_t	*tcpnext;
24021 	kmutex_t *lockp;
24022 
24023 	/*
24024 	 * Extract the lock pointer in case there are concurrent
24025 	 * hash_remove's for this instance.
24026 	 */
24027 	lockp = tcp->tcp_acceptor_lockp;
24028 
24029 	if (tcp->tcp_ptpahn == NULL)
24030 		return;
24031 
24032 	ASSERT(lockp != NULL);
24033 	mutex_enter(lockp);
24034 	if (tcp->tcp_ptpahn) {
24035 		tcpnext = tcp->tcp_acceptor_hash;
24036 		if (tcpnext) {
24037 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24038 			tcp->tcp_acceptor_hash = NULL;
24039 		}
24040 		*tcp->tcp_ptpahn = tcpnext;
24041 		tcp->tcp_ptpahn = NULL;
24042 	}
24043 	mutex_exit(lockp);
24044 	tcp->tcp_acceptor_lockp = NULL;
24045 }
24046 
24047 /* ARGSUSED */
24048 static int
24049 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24050 {
24051 	int error = 0;
24052 	int retval;
24053 	char *end;
24054 	tcp_hsp_t *hsp;
24055 	tcp_hsp_t *hspprev;
24056 	ipaddr_t addr = 0;		/* Address we're looking for */
24057 	in6_addr_t v6addr;		/* Address we're looking for */
24058 	uint32_t hash;			/* Hash of that address */
24059 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24060 
24061 	/*
24062 	 * If the following variables are still zero after parsing the input
24063 	 * string, the user didn't specify them and we don't change them in
24064 	 * the HSP.
24065 	 */
24066 
24067 	ipaddr_t mask = 0;		/* Subnet mask */
24068 	in6_addr_t v6mask;
24069 	long sendspace = 0;		/* Send buffer size */
24070 	long recvspace = 0;		/* Receive buffer size */
24071 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24072 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24073 
24074 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24075 
24076 	/* Parse and validate address */
24077 	if (af == AF_INET) {
24078 		retval = inet_pton(af, value, &addr);
24079 		if (retval == 1)
24080 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24081 	} else if (af == AF_INET6) {
24082 		retval = inet_pton(af, value, &v6addr);
24083 	} else {
24084 		error = EINVAL;
24085 		goto done;
24086 	}
24087 	if (retval == 0) {
24088 		error = EINVAL;
24089 		goto done;
24090 	}
24091 
24092 	while ((*value) && *value != ' ')
24093 		value++;
24094 
24095 	/* Parse individual keywords, set variables if found */
24096 	while (*value) {
24097 		/* Skip leading blanks */
24098 
24099 		while (*value == ' ' || *value == '\t')
24100 			value++;
24101 
24102 		/* If at end of string, we're done */
24103 
24104 		if (!*value)
24105 			break;
24106 
24107 		/* We have a word, figure out what it is */
24108 
24109 		if (strncmp("mask", value, 4) == 0) {
24110 			value += 4;
24111 			while (*value == ' ' || *value == '\t')
24112 				value++;
24113 			/* Parse subnet mask */
24114 			if (af == AF_INET) {
24115 				retval = inet_pton(af, value, &mask);
24116 				if (retval == 1) {
24117 					V4MASK_TO_V6(mask, v6mask);
24118 				}
24119 			} else if (af == AF_INET6) {
24120 				retval = inet_pton(af, value, &v6mask);
24121 			}
24122 			if (retval != 1) {
24123 				error = EINVAL;
24124 				goto done;
24125 			}
24126 			while ((*value) && *value != ' ')
24127 				value++;
24128 		} else if (strncmp("sendspace", value, 9) == 0) {
24129 			value += 9;
24130 
24131 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24132 			    sendspace < TCP_XMIT_HIWATER ||
24133 			    sendspace >= (1L<<30)) {
24134 				error = EINVAL;
24135 				goto done;
24136 			}
24137 			value = end;
24138 		} else if (strncmp("recvspace", value, 9) == 0) {
24139 			value += 9;
24140 
24141 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24142 			    recvspace < TCP_RECV_HIWATER ||
24143 			    recvspace >= (1L<<30)) {
24144 				error = EINVAL;
24145 				goto done;
24146 			}
24147 			value = end;
24148 		} else if (strncmp("timestamp", value, 9) == 0) {
24149 			value += 9;
24150 
24151 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24152 			    timestamp < 0 || timestamp > 1) {
24153 				error = EINVAL;
24154 				goto done;
24155 			}
24156 
24157 			/*
24158 			 * We increment timestamp so we know it's been set;
24159 			 * this is undone when we put it in the HSP
24160 			 */
24161 			timestamp++;
24162 			value = end;
24163 		} else if (strncmp("delete", value, 6) == 0) {
24164 			value += 6;
24165 			delete = B_TRUE;
24166 		} else {
24167 			error = EINVAL;
24168 			goto done;
24169 		}
24170 	}
24171 
24172 	/* Hash address for lookup */
24173 
24174 	hash = TCP_HSP_HASH(addr);
24175 
24176 	if (delete) {
24177 		/*
24178 		 * Note that deletes don't return an error if the thing
24179 		 * we're trying to delete isn't there.
24180 		 */
24181 		if (tcps->tcps_hsp_hash == NULL)
24182 			goto done;
24183 		hsp = tcps->tcps_hsp_hash[hash];
24184 
24185 		if (hsp) {
24186 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24187 			    &v6addr)) {
24188 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24189 				mi_free((char *)hsp);
24190 			} else {
24191 				hspprev = hsp;
24192 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24193 					if (IN6_ARE_ADDR_EQUAL(
24194 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24195 						hspprev->tcp_hsp_next =
24196 						    hsp->tcp_hsp_next;
24197 						mi_free((char *)hsp);
24198 						break;
24199 					}
24200 					hspprev = hsp;
24201 				}
24202 			}
24203 		}
24204 	} else {
24205 		/*
24206 		 * We're adding/modifying an HSP.  If we haven't already done
24207 		 * so, allocate the hash table.
24208 		 */
24209 
24210 		if (!tcps->tcps_hsp_hash) {
24211 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24212 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24213 			if (!tcps->tcps_hsp_hash) {
24214 				error = EINVAL;
24215 				goto done;
24216 			}
24217 		}
24218 
24219 		/* Get head of hash chain */
24220 
24221 		hsp = tcps->tcps_hsp_hash[hash];
24222 
24223 		/* Try to find pre-existing hsp on hash chain */
24224 		/* Doesn't handle CIDR prefixes. */
24225 		while (hsp) {
24226 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24227 				break;
24228 			hsp = hsp->tcp_hsp_next;
24229 		}
24230 
24231 		/*
24232 		 * If we didn't, create one with default values and put it
24233 		 * at head of hash chain
24234 		 */
24235 
24236 		if (!hsp) {
24237 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24238 			if (!hsp) {
24239 				error = EINVAL;
24240 				goto done;
24241 			}
24242 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24243 			tcps->tcps_hsp_hash[hash] = hsp;
24244 		}
24245 
24246 		/* Set values that the user asked us to change */
24247 
24248 		hsp->tcp_hsp_addr_v6 = v6addr;
24249 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24250 			hsp->tcp_hsp_vers = IPV4_VERSION;
24251 		else
24252 			hsp->tcp_hsp_vers = IPV6_VERSION;
24253 		hsp->tcp_hsp_subnet_v6 = v6mask;
24254 		if (sendspace > 0)
24255 			hsp->tcp_hsp_sendspace = sendspace;
24256 		if (recvspace > 0)
24257 			hsp->tcp_hsp_recvspace = recvspace;
24258 		if (timestamp > 0)
24259 			hsp->tcp_hsp_tstamp = timestamp - 1;
24260 	}
24261 
24262 done:
24263 	rw_exit(&tcps->tcps_hsp_lock);
24264 	return (error);
24265 }
24266 
24267 /* Set callback routine passed to nd_load by tcp_param_register. */
24268 /* ARGSUSED */
24269 static int
24270 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24271 {
24272 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24273 }
24274 /* ARGSUSED */
24275 static int
24276 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24277     cred_t *cr)
24278 {
24279 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24280 }
24281 
24282 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24283 /* ARGSUSED */
24284 static int
24285 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24286 {
24287 	tcp_hsp_t *hsp;
24288 	int i;
24289 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24290 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24291 
24292 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24293 	(void) mi_mpprintf(mp,
24294 	    "Hash HSP     " MI_COL_HDRPAD_STR
24295 	    "Address         Subnet Mask     Send       Receive    TStamp");
24296 	if (tcps->tcps_hsp_hash) {
24297 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24298 			hsp = tcps->tcps_hsp_hash[i];
24299 			while (hsp) {
24300 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24301 					(void) inet_ntop(AF_INET,
24302 					    &hsp->tcp_hsp_addr,
24303 					    addrbuf, sizeof (addrbuf));
24304 					(void) inet_ntop(AF_INET,
24305 					    &hsp->tcp_hsp_subnet,
24306 					    subnetbuf, sizeof (subnetbuf));
24307 				} else {
24308 					(void) inet_ntop(AF_INET6,
24309 					    &hsp->tcp_hsp_addr_v6,
24310 					    addrbuf, sizeof (addrbuf));
24311 					(void) inet_ntop(AF_INET6,
24312 					    &hsp->tcp_hsp_subnet_v6,
24313 					    subnetbuf, sizeof (subnetbuf));
24314 				}
24315 				(void) mi_mpprintf(mp,
24316 				    " %03d " MI_COL_PTRFMT_STR
24317 				    "%s %s %010d %010d      %d",
24318 				    i,
24319 				    (void *)hsp,
24320 				    addrbuf,
24321 				    subnetbuf,
24322 				    hsp->tcp_hsp_sendspace,
24323 				    hsp->tcp_hsp_recvspace,
24324 				    hsp->tcp_hsp_tstamp);
24325 
24326 				hsp = hsp->tcp_hsp_next;
24327 			}
24328 		}
24329 	}
24330 	rw_exit(&tcps->tcps_hsp_lock);
24331 	return (0);
24332 }
24333 
24334 
24335 /* Data for fast netmask macro used by tcp_hsp_lookup */
24336 
24337 static ipaddr_t netmasks[] = {
24338 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24339 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24340 };
24341 
24342 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24343 
24344 /*
24345  * XXX This routine should go away and instead we should use the metrics
24346  * associated with the routes to determine the default sndspace and rcvspace.
24347  */
24348 static tcp_hsp_t *
24349 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24350 {
24351 	tcp_hsp_t *hsp = NULL;
24352 
24353 	/* Quick check without acquiring the lock. */
24354 	if (tcps->tcps_hsp_hash == NULL)
24355 		return (NULL);
24356 
24357 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24358 
24359 	/* This routine finds the best-matching HSP for address addr. */
24360 
24361 	if (tcps->tcps_hsp_hash) {
24362 		int i;
24363 		ipaddr_t srchaddr;
24364 		tcp_hsp_t *hsp_net;
24365 
24366 		/* We do three passes: host, network, and subnet. */
24367 
24368 		srchaddr = addr;
24369 
24370 		for (i = 1; i <= 3; i++) {
24371 			/* Look for exact match on srchaddr */
24372 
24373 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24374 			while (hsp) {
24375 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24376 				    hsp->tcp_hsp_addr == srchaddr)
24377 					break;
24378 				hsp = hsp->tcp_hsp_next;
24379 			}
24380 			ASSERT(hsp == NULL ||
24381 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24382 
24383 			/*
24384 			 * If this is the first pass:
24385 			 *   If we found a match, great, return it.
24386 			 *   If not, search for the network on the second pass.
24387 			 */
24388 
24389 			if (i == 1)
24390 				if (hsp)
24391 					break;
24392 				else
24393 				{
24394 					srchaddr = addr & netmask(addr);
24395 					continue;
24396 				}
24397 
24398 			/*
24399 			 * If this is the second pass:
24400 			 *   If we found a match, but there's a subnet mask,
24401 			 *    save the match but try again using the subnet
24402 			 *    mask on the third pass.
24403 			 *   Otherwise, return whatever we found.
24404 			 */
24405 
24406 			if (i == 2) {
24407 				if (hsp && hsp->tcp_hsp_subnet) {
24408 					hsp_net = hsp;
24409 					srchaddr = addr & hsp->tcp_hsp_subnet;
24410 					continue;
24411 				} else {
24412 					break;
24413 				}
24414 			}
24415 
24416 			/*
24417 			 * This must be the third pass.  If we didn't find
24418 			 * anything, return the saved network HSP instead.
24419 			 */
24420 
24421 			if (!hsp)
24422 				hsp = hsp_net;
24423 		}
24424 	}
24425 
24426 	rw_exit(&tcps->tcps_hsp_lock);
24427 	return (hsp);
24428 }
24429 
24430 /*
24431  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24432  * match lookup.
24433  */
24434 static tcp_hsp_t *
24435 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24436 {
24437 	tcp_hsp_t *hsp = NULL;
24438 
24439 	/* Quick check without acquiring the lock. */
24440 	if (tcps->tcps_hsp_hash == NULL)
24441 		return (NULL);
24442 
24443 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24444 
24445 	/* This routine finds the best-matching HSP for address addr. */
24446 
24447 	if (tcps->tcps_hsp_hash) {
24448 		int i;
24449 		in6_addr_t v6srchaddr;
24450 		tcp_hsp_t *hsp_net;
24451 
24452 		/* We do three passes: host, network, and subnet. */
24453 
24454 		v6srchaddr = *v6addr;
24455 
24456 		for (i = 1; i <= 3; i++) {
24457 			/* Look for exact match on srchaddr */
24458 
24459 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24460 			    V4_PART_OF_V6(v6srchaddr))];
24461 			while (hsp) {
24462 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24463 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24464 				    &v6srchaddr))
24465 					break;
24466 				hsp = hsp->tcp_hsp_next;
24467 			}
24468 
24469 			/*
24470 			 * If this is the first pass:
24471 			 *   If we found a match, great, return it.
24472 			 *   If not, search for the network on the second pass.
24473 			 */
24474 
24475 			if (i == 1)
24476 				if (hsp)
24477 					break;
24478 				else {
24479 					/* Assume a 64 bit mask */
24480 					v6srchaddr.s6_addr32[0] =
24481 					    v6addr->s6_addr32[0];
24482 					v6srchaddr.s6_addr32[1] =
24483 					    v6addr->s6_addr32[1];
24484 					v6srchaddr.s6_addr32[2] = 0;
24485 					v6srchaddr.s6_addr32[3] = 0;
24486 					continue;
24487 				}
24488 
24489 			/*
24490 			 * If this is the second pass:
24491 			 *   If we found a match, but there's a subnet mask,
24492 			 *    save the match but try again using the subnet
24493 			 *    mask on the third pass.
24494 			 *   Otherwise, return whatever we found.
24495 			 */
24496 
24497 			if (i == 2) {
24498 				ASSERT(hsp == NULL ||
24499 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24500 				if (hsp &&
24501 				    !IN6_IS_ADDR_UNSPECIFIED(
24502 				    &hsp->tcp_hsp_subnet_v6)) {
24503 					hsp_net = hsp;
24504 					V6_MASK_COPY(*v6addr,
24505 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24506 					continue;
24507 				} else {
24508 					break;
24509 				}
24510 			}
24511 
24512 			/*
24513 			 * This must be the third pass.  If we didn't find
24514 			 * anything, return the saved network HSP instead.
24515 			 */
24516 
24517 			if (!hsp)
24518 				hsp = hsp_net;
24519 		}
24520 	}
24521 
24522 	rw_exit(&tcps->tcps_hsp_lock);
24523 	return (hsp);
24524 }
24525 
24526 /*
24527  * Type three generator adapted from the random() function in 4.4 BSD:
24528  */
24529 
24530 /*
24531  * Copyright (c) 1983, 1993
24532  *	The Regents of the University of California.  All rights reserved.
24533  *
24534  * Redistribution and use in source and binary forms, with or without
24535  * modification, are permitted provided that the following conditions
24536  * are met:
24537  * 1. Redistributions of source code must retain the above copyright
24538  *    notice, this list of conditions and the following disclaimer.
24539  * 2. Redistributions in binary form must reproduce the above copyright
24540  *    notice, this list of conditions and the following disclaimer in the
24541  *    documentation and/or other materials provided with the distribution.
24542  * 3. All advertising materials mentioning features or use of this software
24543  *    must display the following acknowledgement:
24544  *	This product includes software developed by the University of
24545  *	California, Berkeley and its contributors.
24546  * 4. Neither the name of the University nor the names of its contributors
24547  *    may be used to endorse or promote products derived from this software
24548  *    without specific prior written permission.
24549  *
24550  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24551  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24552  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24553  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24554  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24555  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24556  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24557  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24558  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24559  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24560  * SUCH DAMAGE.
24561  */
24562 
24563 /* Type 3 -- x**31 + x**3 + 1 */
24564 #define	DEG_3		31
24565 #define	SEP_3		3
24566 
24567 
24568 /* Protected by tcp_random_lock */
24569 static int tcp_randtbl[DEG_3 + 1];
24570 
24571 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24572 static int *tcp_random_rptr = &tcp_randtbl[1];
24573 
24574 static int *tcp_random_state = &tcp_randtbl[1];
24575 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24576 
24577 kmutex_t tcp_random_lock;
24578 
24579 void
24580 tcp_random_init(void)
24581 {
24582 	int i;
24583 	hrtime_t hrt;
24584 	time_t wallclock;
24585 	uint64_t result;
24586 
24587 	/*
24588 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24589 	 * a longlong, which may contain resolution down to nanoseconds.
24590 	 * The current time will either be a 32-bit or a 64-bit quantity.
24591 	 * XOR the two together in a 64-bit result variable.
24592 	 * Convert the result to a 32-bit value by multiplying the high-order
24593 	 * 32-bits by the low-order 32-bits.
24594 	 */
24595 
24596 	hrt = gethrtime();
24597 	(void) drv_getparm(TIME, &wallclock);
24598 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24599 	mutex_enter(&tcp_random_lock);
24600 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24601 	    (result & 0xffffffff);
24602 
24603 	for (i = 1; i < DEG_3; i++)
24604 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24605 			+ 12345;
24606 	tcp_random_fptr = &tcp_random_state[SEP_3];
24607 	tcp_random_rptr = &tcp_random_state[0];
24608 	mutex_exit(&tcp_random_lock);
24609 	for (i = 0; i < 10 * DEG_3; i++)
24610 		(void) tcp_random();
24611 }
24612 
24613 /*
24614  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24615  * This range is selected to be approximately centered on TCP_ISS / 2,
24616  * and easy to compute. We get this value by generating a 32-bit random
24617  * number, selecting out the high-order 17 bits, and then adding one so
24618  * that we never return zero.
24619  */
24620 int
24621 tcp_random(void)
24622 {
24623 	int i;
24624 
24625 	mutex_enter(&tcp_random_lock);
24626 	*tcp_random_fptr += *tcp_random_rptr;
24627 
24628 	/*
24629 	 * The high-order bits are more random than the low-order bits,
24630 	 * so we select out the high-order 17 bits and add one so that
24631 	 * we never return zero.
24632 	 */
24633 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24634 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24635 		tcp_random_fptr = tcp_random_state;
24636 		++tcp_random_rptr;
24637 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24638 		tcp_random_rptr = tcp_random_state;
24639 
24640 	mutex_exit(&tcp_random_lock);
24641 	return (i);
24642 }
24643 
24644 /*
24645  * XXX This will go away when TPI is extended to send
24646  * info reqs to sockfs/timod .....
24647  * Given a queue, set the max packet size for the write
24648  * side of the queue below stream head.  This value is
24649  * cached on the stream head.
24650  * Returns 1 on success, 0 otherwise.
24651  */
24652 static int
24653 setmaxps(queue_t *q, int maxpsz)
24654 {
24655 	struct stdata	*stp;
24656 	queue_t		*wq;
24657 	stp = STREAM(q);
24658 
24659 	/*
24660 	 * At this point change of a queue parameter is not allowed
24661 	 * when a multiplexor is sitting on top.
24662 	 */
24663 	if (stp->sd_flag & STPLEX)
24664 		return (0);
24665 
24666 	claimstr(stp->sd_wrq);
24667 	wq = stp->sd_wrq->q_next;
24668 	ASSERT(wq != NULL);
24669 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24670 	releasestr(stp->sd_wrq);
24671 	return (1);
24672 }
24673 
24674 static int
24675 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24676     int *t_errorp, int *sys_errorp)
24677 {
24678 	int error;
24679 	int is_absreq_failure;
24680 	t_scalar_t *opt_lenp;
24681 	t_scalar_t opt_offset;
24682 	int prim_type;
24683 	struct T_conn_req *tcreqp;
24684 	struct T_conn_res *tcresp;
24685 	cred_t *cr;
24686 
24687 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24688 
24689 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24690 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24691 	    prim_type == T_CONN_RES);
24692 
24693 	switch (prim_type) {
24694 	case T_CONN_REQ:
24695 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24696 		opt_offset = tcreqp->OPT_offset;
24697 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24698 		break;
24699 	case O_T_CONN_RES:
24700 	case T_CONN_RES:
24701 		tcresp = (struct T_conn_res *)mp->b_rptr;
24702 		opt_offset = tcresp->OPT_offset;
24703 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24704 		break;
24705 	}
24706 
24707 	*t_errorp = 0;
24708 	*sys_errorp = 0;
24709 	*do_disconnectp = 0;
24710 
24711 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24712 	    opt_offset, cr, &tcp_opt_obj,
24713 	    NULL, &is_absreq_failure);
24714 
24715 	switch (error) {
24716 	case  0:		/* no error */
24717 		ASSERT(is_absreq_failure == 0);
24718 		return (0);
24719 	case ENOPROTOOPT:
24720 		*t_errorp = TBADOPT;
24721 		break;
24722 	case EACCES:
24723 		*t_errorp = TACCES;
24724 		break;
24725 	default:
24726 		*t_errorp = TSYSERR; *sys_errorp = error;
24727 		break;
24728 	}
24729 	if (is_absreq_failure != 0) {
24730 		/*
24731 		 * The connection request should get the local ack
24732 		 * T_OK_ACK and then a T_DISCON_IND.
24733 		 */
24734 		*do_disconnectp = 1;
24735 	}
24736 	return (-1);
24737 }
24738 
24739 /*
24740  * Split this function out so that if the secret changes, I'm okay.
24741  *
24742  * Initialize the tcp_iss_cookie and tcp_iss_key.
24743  */
24744 
24745 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24746 
24747 static void
24748 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24749 {
24750 	struct {
24751 		int32_t current_time;
24752 		uint32_t randnum;
24753 		uint16_t pad;
24754 		uint8_t ether[6];
24755 		uint8_t passwd[PASSWD_SIZE];
24756 	} tcp_iss_cookie;
24757 	time_t t;
24758 
24759 	/*
24760 	 * Start with the current absolute time.
24761 	 */
24762 	(void) drv_getparm(TIME, &t);
24763 	tcp_iss_cookie.current_time = t;
24764 
24765 	/*
24766 	 * XXX - Need a more random number per RFC 1750, not this crap.
24767 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24768 	 */
24769 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24770 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24771 
24772 	/*
24773 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24774 	 * as a good template.
24775 	 */
24776 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24777 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24778 
24779 	/*
24780 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24781 	 */
24782 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24783 
24784 	/*
24785 	 * See 4010593 if this section becomes a problem again,
24786 	 * but the local ethernet address is useful here.
24787 	 */
24788 	(void) localetheraddr(NULL,
24789 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24790 
24791 	/*
24792 	 * Hash 'em all together.  The MD5Final is called per-connection.
24793 	 */
24794 	mutex_enter(&tcps->tcps_iss_key_lock);
24795 	MD5Init(&tcps->tcps_iss_key);
24796 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24797 	    sizeof (tcp_iss_cookie));
24798 	mutex_exit(&tcps->tcps_iss_key_lock);
24799 }
24800 
24801 /*
24802  * Set the RFC 1948 pass phrase
24803  */
24804 /* ARGSUSED */
24805 static int
24806 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24807     cred_t *cr)
24808 {
24809 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24810 
24811 	/*
24812 	 * Basically, value contains a new pass phrase.  Pass it along!
24813 	 */
24814 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24815 	return (0);
24816 }
24817 
24818 /* ARGSUSED */
24819 static int
24820 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24821 {
24822 	bzero(buf, sizeof (tcp_sack_info_t));
24823 	return (0);
24824 }
24825 
24826 /* ARGSUSED */
24827 static int
24828 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24829 {
24830 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24831 	return (0);
24832 }
24833 
24834 /*
24835  * Make sure we wait until the default queue is setup, yet allow
24836  * tcp_g_q_create() to open a TCP stream.
24837  * We need to allow tcp_g_q_create() do do an open
24838  * of tcp, hence we compare curhread.
24839  * All others have to wait until the tcps_g_q has been
24840  * setup.
24841  */
24842 void
24843 tcp_g_q_setup(tcp_stack_t *tcps)
24844 {
24845 	mutex_enter(&tcps->tcps_g_q_lock);
24846 	if (tcps->tcps_g_q != NULL) {
24847 		mutex_exit(&tcps->tcps_g_q_lock);
24848 		return;
24849 	}
24850 	if (tcps->tcps_g_q_creator == NULL) {
24851 		/* This thread will set it up */
24852 		tcps->tcps_g_q_creator = curthread;
24853 		mutex_exit(&tcps->tcps_g_q_lock);
24854 		tcp_g_q_create(tcps);
24855 		mutex_enter(&tcps->tcps_g_q_lock);
24856 		ASSERT(tcps->tcps_g_q_creator == curthread);
24857 		tcps->tcps_g_q_creator = NULL;
24858 		cv_signal(&tcps->tcps_g_q_cv);
24859 		ASSERT(tcps->tcps_g_q != NULL);
24860 		mutex_exit(&tcps->tcps_g_q_lock);
24861 		return;
24862 	}
24863 	/* Everybody but the creator has to wait */
24864 	if (tcps->tcps_g_q_creator != curthread) {
24865 		while (tcps->tcps_g_q == NULL)
24866 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24867 	}
24868 	mutex_exit(&tcps->tcps_g_q_lock);
24869 }
24870 
24871 major_t IP_MAJ;
24872 #define	IP	"ip"
24873 
24874 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24875 
24876 /*
24877  * Create a default tcp queue here instead of in strplumb
24878  */
24879 void
24880 tcp_g_q_create(tcp_stack_t *tcps)
24881 {
24882 	int error;
24883 	ldi_handle_t	lh = NULL;
24884 	ldi_ident_t	li = NULL;
24885 	int		rval;
24886 	cred_t		*cr;
24887 
24888 #ifdef NS_DEBUG
24889 	(void) printf("tcp_g_q_create()\n");
24890 #endif
24891 
24892 	ASSERT(tcps->tcps_g_q_creator == curthread);
24893 
24894 	error = ldi_ident_from_major(IP_MAJ, &li);
24895 	if (error) {
24896 #ifdef DEBUG
24897 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24898 		    error);
24899 #endif
24900 		return;
24901 	}
24902 
24903 	cr = zone_get_kcred(netstackid_to_zoneid(
24904 				tcps->tcps_netstack->netstack_stackid));
24905 	ASSERT(cr != NULL);
24906 	/*
24907 	 * We set the tcp default queue to IPv6 because IPv4 falls
24908 	 * back to IPv6 when it can't find a client, but
24909 	 * IPv6 does not fall back to IPv4.
24910 	 */
24911 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24912 	if (error) {
24913 #ifdef DEBUG
24914 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24915 		    error);
24916 #endif
24917 		goto out;
24918 	}
24919 
24920 	/*
24921 	 * This ioctl causes the tcp framework to cache a pointer to
24922 	 * this stream, so we don't want to close the stream after
24923 	 * this operation.
24924 	 * Use the kernel credentials that are for the zone we're in.
24925 	 */
24926 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24927 	    (intptr_t)0, FKIOCTL, cr, &rval);
24928 	if (error) {
24929 #ifdef DEBUG
24930 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24931 		    "error %d\n", error);
24932 #endif
24933 		goto out;
24934 	}
24935 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24936 	lh = NULL;
24937 out:
24938 	/* Close layered handles */
24939 	if (li)
24940 		ldi_ident_release(li);
24941 	/* Keep cred around until _inactive needs it */
24942 	tcps->tcps_g_q_cr = cr;
24943 }
24944 
24945 /*
24946  * We keep tcp_g_q set until all other tcp_t's in the zone
24947  * has gone away, and then when tcp_g_q_inactive() is called
24948  * we clear it.
24949  */
24950 void
24951 tcp_g_q_destroy(tcp_stack_t *tcps)
24952 {
24953 #ifdef NS_DEBUG
24954 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24955 	    tcps->tcps_netstack->netstack_stackid);
24956 #endif
24957 
24958 	if (tcps->tcps_g_q == NULL) {
24959 		return;	/* Nothing to cleanup */
24960 	}
24961 	/*
24962 	 * Drop reference corresponding to the default queue.
24963 	 * This reference was added from tcp_open when the default queue
24964 	 * was created, hence we compensate for this extra drop in
24965 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24966 	 * the default queue was the last one to be open, in which
24967 	 * case, then tcp_g_q_inactive will be
24968 	 * called as a result of the refrele.
24969 	 */
24970 	TCPS_REFRELE(tcps);
24971 }
24972 
24973 /*
24974  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24975  * Run by tcp_q_q_inactive using a taskq.
24976  */
24977 static void
24978 tcp_g_q_close(void *arg)
24979 {
24980 	tcp_stack_t *tcps = arg;
24981 	int error;
24982 	ldi_handle_t	lh = NULL;
24983 	ldi_ident_t	li = NULL;
24984 	cred_t		*cr;
24985 
24986 #ifdef NS_DEBUG
24987 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24988 	    tcps->tcps_netstack->netstack_stackid,
24989 	    tcps->tcps_netstack->netstack_refcnt);
24990 #endif
24991 	lh = tcps->tcps_g_q_lh;
24992 	if (lh == NULL)
24993 		return;	/* Nothing to cleanup */
24994 
24995 	ASSERT(tcps->tcps_refcnt == 1);
24996 	ASSERT(tcps->tcps_g_q != NULL);
24997 
24998 	error = ldi_ident_from_major(IP_MAJ, &li);
24999 	if (error) {
25000 #ifdef DEBUG
25001 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25002 		    error);
25003 #endif
25004 		return;
25005 	}
25006 
25007 	cr = tcps->tcps_g_q_cr;
25008 	tcps->tcps_g_q_cr = NULL;
25009 	ASSERT(cr != NULL);
25010 
25011 	/*
25012 	 * Make sure we can break the recursion when tcp_close decrements
25013 	 * the reference count causing g_q_inactive to be called again.
25014 	 */
25015 	tcps->tcps_g_q_lh = NULL;
25016 
25017 	/* close the default queue */
25018 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25019 	/*
25020 	 * At this point in time tcps and the rest of netstack_t might
25021 	 * have been deleted.
25022 	 */
25023 	tcps = NULL;
25024 
25025 	/* Close layered handles */
25026 	ldi_ident_release(li);
25027 	crfree(cr);
25028 }
25029 
25030 /*
25031  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25032  *
25033  * Have to ensure that the ldi routines are not used by an
25034  * interrupt thread by using a taskq.
25035  */
25036 void
25037 tcp_g_q_inactive(tcp_stack_t *tcps)
25038 {
25039 	if (tcps->tcps_g_q_lh == NULL)
25040 		return;	/* Nothing to cleanup */
25041 
25042 	ASSERT(tcps->tcps_refcnt == 0);
25043 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25044 
25045 	if (servicing_interrupt()) {
25046 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25047 			    (void *) tcps, TQ_SLEEP);
25048 	} else {
25049 		tcp_g_q_close(tcps);
25050 	}
25051 }
25052 
25053 /*
25054  * Called by IP when IP is loaded into the kernel
25055  */
25056 void
25057 tcp_ddi_g_init(void)
25058 {
25059 	IP_MAJ = ddi_name_to_major(IP);
25060 
25061 	tcp_timercache = kmem_cache_create("tcp_timercache",
25062 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25063 	    NULL, NULL, NULL, NULL, NULL, 0);
25064 
25065 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25066 	    sizeof (tcp_sack_info_t), 0,
25067 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25068 
25069 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25070 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25071 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25072 
25073 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25074 
25075 	/* Initialize the random number generator */
25076 	tcp_random_init();
25077 
25078 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25079 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25080 
25081 	/* A single callback independently of how many netstacks we have */
25082 	ip_squeue_init(tcp_squeue_add);
25083 
25084 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25085 
25086 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25087 	    TASKQ_PREPOPULATE);
25088 
25089 	/*
25090 	 * We want to be informed each time a stack is created or
25091 	 * destroyed in the kernel, so we can maintain the
25092 	 * set of tcp_stack_t's.
25093 	 */
25094 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25095 	    tcp_stack_fini);
25096 }
25097 
25098 
25099 /*
25100  * Initialize the TCP stack instance.
25101  */
25102 static void *
25103 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25104 {
25105 	tcp_stack_t	*tcps;
25106 	tcpparam_t	*pa;
25107 	int		i;
25108 
25109 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25110 	tcps->tcps_netstack = ns;
25111 
25112 	/* Initialize locks */
25113 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25114 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25115 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25116 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25117 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25118 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25119 
25120 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25121 	tcps->tcps_g_epriv_ports[0] = 2049;
25122 	tcps->tcps_g_epriv_ports[1] = 4045;
25123 	tcps->tcps_min_anonpriv_port = 512;
25124 
25125 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25126 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25127 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25128 	    TCP_FANOUT_SIZE, KM_SLEEP);
25129 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25130 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25131 
25132 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25133 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25134 		    MUTEX_DEFAULT, NULL);
25135 	}
25136 
25137 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25138 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25139 		    MUTEX_DEFAULT, NULL);
25140 	}
25141 
25142 	/* TCP's IPsec code calls the packet dropper. */
25143 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25144 
25145 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25146 	tcps->tcps_params = pa;
25147 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25148 
25149 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25150 	    A_CNT(lcl_tcp_param_arr), tcps);
25151 
25152 	/*
25153 	 * Note: To really walk the device tree you need the devinfo
25154 	 * pointer to your device which is only available after probe/attach.
25155 	 * The following is safe only because it uses ddi_root_node()
25156 	 */
25157 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25158 	    tcp_opt_obj.odb_opt_arr_cnt);
25159 
25160 	/*
25161 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25162 	 * by the boot scripts.
25163 	 *
25164 	 * Use NULL name, as the name is caught by the new lockstats.
25165 	 *
25166 	 * Initialize with some random, non-guessable string, like the global
25167 	 * T_INFO_ACK.
25168 	 */
25169 
25170 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25171 	    sizeof (tcp_g_t_info_ack), tcps);
25172 
25173 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25174 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25175 
25176 	return (tcps);
25177 }
25178 
25179 /*
25180  * Called when the IP module is about to be unloaded.
25181  */
25182 void
25183 tcp_ddi_g_destroy(void)
25184 {
25185 	tcp_g_kstat_fini(tcp_g_kstat);
25186 	tcp_g_kstat = NULL;
25187 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25188 
25189 	mutex_destroy(&tcp_random_lock);
25190 
25191 	kmem_cache_destroy(tcp_timercache);
25192 	kmem_cache_destroy(tcp_sack_info_cache);
25193 	kmem_cache_destroy(tcp_iphc_cache);
25194 
25195 	netstack_unregister(NS_TCP);
25196 	taskq_destroy(tcp_taskq);
25197 }
25198 
25199 /*
25200  * Shut down the TCP stack instance.
25201  */
25202 /* ARGSUSED */
25203 static void
25204 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25205 {
25206 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25207 
25208 	tcp_g_q_destroy(tcps);
25209 }
25210 
25211 /*
25212  * Free the TCP stack instance.
25213  */
25214 static void
25215 tcp_stack_fini(netstackid_t stackid, void *arg)
25216 {
25217 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25218 	int i;
25219 
25220 	nd_free(&tcps->tcps_g_nd);
25221 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25222 	tcps->tcps_params = NULL;
25223 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25224 	tcps->tcps_wroff_xtra_param = NULL;
25225 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25226 	tcps->tcps_mdt_head_param = NULL;
25227 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25228 	tcps->tcps_mdt_tail_param = NULL;
25229 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25230 	tcps->tcps_mdt_max_pbufs_param = NULL;
25231 
25232 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25233 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25234 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25235 	}
25236 
25237 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25238 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25239 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25240 	}
25241 
25242 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25243 	tcps->tcps_bind_fanout = NULL;
25244 
25245 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25246 	tcps->tcps_acceptor_fanout = NULL;
25247 
25248 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25249 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25250 	tcps->tcps_reserved_port = NULL;
25251 
25252 	mutex_destroy(&tcps->tcps_iss_key_lock);
25253 	rw_destroy(&tcps->tcps_hsp_lock);
25254 	mutex_destroy(&tcps->tcps_g_q_lock);
25255 	cv_destroy(&tcps->tcps_g_q_cv);
25256 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25257 	rw_destroy(&tcps->tcps_reserved_port_lock);
25258 
25259 	ip_drop_unregister(&tcps->tcps_dropper);
25260 
25261 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25262 	tcps->tcps_kstat = NULL;
25263 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25264 
25265 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25266 	tcps->tcps_mibkp = NULL;
25267 
25268 	kmem_free(tcps, sizeof (*tcps));
25269 }
25270 
25271 /*
25272  * Generate ISS, taking into account NDD changes may happen halfway through.
25273  * (If the iss is not zero, set it.)
25274  */
25275 
25276 static void
25277 tcp_iss_init(tcp_t *tcp)
25278 {
25279 	MD5_CTX context;
25280 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25281 	uint32_t answer[4];
25282 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25283 
25284 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25285 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25286 	switch (tcps->tcps_strong_iss) {
25287 	case 2:
25288 		mutex_enter(&tcps->tcps_iss_key_lock);
25289 		context = tcps->tcps_iss_key;
25290 		mutex_exit(&tcps->tcps_iss_key_lock);
25291 		arg.ports = tcp->tcp_ports;
25292 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25293 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25294 			    &arg.src);
25295 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25296 			    &arg.dst);
25297 		} else {
25298 			arg.src = tcp->tcp_ip6h->ip6_src;
25299 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25300 		}
25301 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25302 		MD5Final((uchar_t *)answer, &context);
25303 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25304 		/*
25305 		 * Now that we've hashed into a unique per-connection sequence
25306 		 * space, add a random increment per strong_iss == 1.  So I
25307 		 * guess we'll have to...
25308 		 */
25309 		/* FALLTHRU */
25310 	case 1:
25311 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25312 		break;
25313 	default:
25314 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25315 		break;
25316 	}
25317 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25318 	tcp->tcp_fss = tcp->tcp_iss - 1;
25319 	tcp->tcp_suna = tcp->tcp_iss;
25320 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25321 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25322 	tcp->tcp_csuna = tcp->tcp_snxt;
25323 }
25324 
25325 /*
25326  * Exported routine for extracting active tcp connection status.
25327  *
25328  * This is used by the Solaris Cluster Networking software to
25329  * gather a list of connections that need to be forwarded to
25330  * specific nodes in the cluster when configuration changes occur.
25331  *
25332  * The callback is invoked for each tcp_t structure. Returning
25333  * non-zero from the callback routine terminates the search.
25334  */
25335 int
25336 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25337     void *arg)
25338 {
25339 	netstack_handle_t nh;
25340 	netstack_t *ns;
25341 	int ret = 0;
25342 
25343 	netstack_next_init(&nh);
25344 	while ((ns = netstack_next(&nh)) != NULL) {
25345 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25346 		    ns->netstack_tcp);
25347 		netstack_rele(ns);
25348 	}
25349 	netstack_next_fini(&nh);
25350 	return (ret);
25351 }
25352 
25353 static int
25354 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25355     tcp_stack_t *tcps)
25356 {
25357 	tcp_t *tcp;
25358 	cl_tcp_info_t	cl_tcpi;
25359 	connf_t	*connfp;
25360 	conn_t	*connp;
25361 	int	i;
25362 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25363 
25364 	ASSERT(callback != NULL);
25365 
25366 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25367 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25368 		connp = NULL;
25369 
25370 		while ((connp =
25371 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25372 
25373 			tcp = connp->conn_tcp;
25374 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25375 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25376 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25377 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25378 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25379 			/*
25380 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25381 			 * addresses. They are copied implicitly below as
25382 			 * mapped addresses.
25383 			 */
25384 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25385 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25386 				cl_tcpi.cl_tcpi_faddr =
25387 				    tcp->tcp_ipha->ipha_dst;
25388 			} else {
25389 				cl_tcpi.cl_tcpi_faddr_v6 =
25390 				    tcp->tcp_ip6h->ip6_dst;
25391 			}
25392 
25393 			/*
25394 			 * If the callback returns non-zero
25395 			 * we terminate the traversal.
25396 			 */
25397 			if ((*callback)(&cl_tcpi, arg) != 0) {
25398 				CONN_DEC_REF(tcp->tcp_connp);
25399 				return (1);
25400 			}
25401 		}
25402 	}
25403 
25404 	return (0);
25405 }
25406 
25407 /*
25408  * Macros used for accessing the different types of sockaddr
25409  * structures inside a tcp_ioc_abort_conn_t.
25410  */
25411 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25412 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25413 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25414 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25415 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25416 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25417 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25418 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25419 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25420 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25421 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25422 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25423 
25424 /*
25425  * Return the correct error code to mimic the behavior
25426  * of a connection reset.
25427  */
25428 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25429 		switch ((state)) {		\
25430 		case TCPS_SYN_SENT:		\
25431 		case TCPS_SYN_RCVD:		\
25432 			(err) = ECONNREFUSED;	\
25433 			break;			\
25434 		case TCPS_ESTABLISHED:		\
25435 		case TCPS_FIN_WAIT_1:		\
25436 		case TCPS_FIN_WAIT_2:		\
25437 		case TCPS_CLOSE_WAIT:		\
25438 			(err) = ECONNRESET;	\
25439 			break;			\
25440 		case TCPS_CLOSING:		\
25441 		case TCPS_LAST_ACK:		\
25442 		case TCPS_TIME_WAIT:		\
25443 			(err) = 0;		\
25444 			break;			\
25445 		default:			\
25446 			(err) = ENXIO;		\
25447 		}				\
25448 	}
25449 
25450 /*
25451  * Check if a tcp structure matches the info in acp.
25452  */
25453 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25454 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25455 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25456 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25457 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25458 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25459 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25460 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25461 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25462 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25463 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25464 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25465 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25466 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25467 	&(tcp)->tcp_ip_src_v6)) &&				\
25468 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25469 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25470 	&(tcp)->tcp_remote_v6)) &&				\
25471 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25472 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25473 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25474 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25475 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25476 	(acp)->ac_end >= (tcp)->tcp_state))
25477 
25478 #define	TCP_AC_MATCH(acp, tcp)					\
25479 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25480 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25481 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25482 
25483 /*
25484  * Build a message containing a tcp_ioc_abort_conn_t structure
25485  * which is filled in with information from acp and tp.
25486  */
25487 static mblk_t *
25488 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25489 {
25490 	mblk_t *mp;
25491 	tcp_ioc_abort_conn_t *tacp;
25492 
25493 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25494 	if (mp == NULL)
25495 		return (NULL);
25496 
25497 	mp->b_datap->db_type = M_CTL;
25498 
25499 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25500 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25501 		sizeof (uint32_t));
25502 
25503 	tacp->ac_start = acp->ac_start;
25504 	tacp->ac_end = acp->ac_end;
25505 	tacp->ac_zoneid = acp->ac_zoneid;
25506 
25507 	if (acp->ac_local.ss_family == AF_INET) {
25508 		tacp->ac_local.ss_family = AF_INET;
25509 		tacp->ac_remote.ss_family = AF_INET;
25510 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25511 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25512 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25513 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25514 	} else {
25515 		tacp->ac_local.ss_family = AF_INET6;
25516 		tacp->ac_remote.ss_family = AF_INET6;
25517 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25518 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25519 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25520 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25521 	}
25522 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25523 	return (mp);
25524 }
25525 
25526 /*
25527  * Print a tcp_ioc_abort_conn_t structure.
25528  */
25529 static void
25530 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25531 {
25532 	char lbuf[128];
25533 	char rbuf[128];
25534 	sa_family_t af;
25535 	in_port_t lport, rport;
25536 	ushort_t logflags;
25537 
25538 	af = acp->ac_local.ss_family;
25539 
25540 	if (af == AF_INET) {
25541 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25542 				lbuf, 128);
25543 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25544 				rbuf, 128);
25545 		lport = ntohs(TCP_AC_V4LPORT(acp));
25546 		rport = ntohs(TCP_AC_V4RPORT(acp));
25547 	} else {
25548 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25549 				lbuf, 128);
25550 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25551 				rbuf, 128);
25552 		lport = ntohs(TCP_AC_V6LPORT(acp));
25553 		rport = ntohs(TCP_AC_V6RPORT(acp));
25554 	}
25555 
25556 	logflags = SL_TRACE | SL_NOTE;
25557 	/*
25558 	 * Don't print this message to the console if the operation was done
25559 	 * to a non-global zone.
25560 	 */
25561 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25562 		logflags |= SL_CONSOLE;
25563 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25564 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25565 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25566 		acp->ac_start, acp->ac_end);
25567 }
25568 
25569 /*
25570  * Called inside tcp_rput when a message built using
25571  * tcp_ioctl_abort_build_msg is put into a queue.
25572  * Note that when we get here there is no wildcard in acp any more.
25573  */
25574 static void
25575 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25576 {
25577 	tcp_ioc_abort_conn_t *acp;
25578 
25579 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25580 	if (tcp->tcp_state <= acp->ac_end) {
25581 		/*
25582 		 * If we get here, we are already on the correct
25583 		 * squeue. This ioctl follows the following path
25584 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25585 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25586 		 * different squeue)
25587 		 */
25588 		int errcode;
25589 
25590 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25591 		(void) tcp_clean_death(tcp, errcode, 26);
25592 	}
25593 	freemsg(mp);
25594 }
25595 
25596 /*
25597  * Abort all matching connections on a hash chain.
25598  */
25599 static int
25600 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25601     boolean_t exact, tcp_stack_t *tcps)
25602 {
25603 	int nmatch, err = 0;
25604 	tcp_t *tcp;
25605 	MBLKP mp, last, listhead = NULL;
25606 	conn_t	*tconnp;
25607 	connf_t	*connfp;
25608 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25609 
25610 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25611 
25612 startover:
25613 	nmatch = 0;
25614 
25615 	mutex_enter(&connfp->connf_lock);
25616 	for (tconnp = connfp->connf_head; tconnp != NULL;
25617 	    tconnp = tconnp->conn_next) {
25618 		tcp = tconnp->conn_tcp;
25619 		if (TCP_AC_MATCH(acp, tcp)) {
25620 			CONN_INC_REF(tcp->tcp_connp);
25621 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25622 			if (mp == NULL) {
25623 				err = ENOMEM;
25624 				CONN_DEC_REF(tcp->tcp_connp);
25625 				break;
25626 			}
25627 			mp->b_prev = (mblk_t *)tcp;
25628 
25629 			if (listhead == NULL) {
25630 				listhead = mp;
25631 				last = mp;
25632 			} else {
25633 				last->b_next = mp;
25634 				last = mp;
25635 			}
25636 			nmatch++;
25637 			if (exact)
25638 				break;
25639 		}
25640 
25641 		/* Avoid holding lock for too long. */
25642 		if (nmatch >= 500)
25643 			break;
25644 	}
25645 	mutex_exit(&connfp->connf_lock);
25646 
25647 	/* Pass mp into the correct tcp */
25648 	while ((mp = listhead) != NULL) {
25649 		listhead = listhead->b_next;
25650 		tcp = (tcp_t *)mp->b_prev;
25651 		mp->b_next = mp->b_prev = NULL;
25652 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25653 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25654 	}
25655 
25656 	*count += nmatch;
25657 	if (nmatch >= 500 && err == 0)
25658 		goto startover;
25659 	return (err);
25660 }
25661 
25662 /*
25663  * Abort all connections that matches the attributes specified in acp.
25664  */
25665 static int
25666 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25667 {
25668 	sa_family_t af;
25669 	uint32_t  ports;
25670 	uint16_t *pports;
25671 	int err = 0, count = 0;
25672 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25673 	int index = -1;
25674 	ushort_t logflags;
25675 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25676 
25677 	af = acp->ac_local.ss_family;
25678 
25679 	if (af == AF_INET) {
25680 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25681 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25682 			pports = (uint16_t *)&ports;
25683 			pports[1] = TCP_AC_V4LPORT(acp);
25684 			pports[0] = TCP_AC_V4RPORT(acp);
25685 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25686 		}
25687 	} else {
25688 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25689 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25690 			pports = (uint16_t *)&ports;
25691 			pports[1] = TCP_AC_V6LPORT(acp);
25692 			pports[0] = TCP_AC_V6RPORT(acp);
25693 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25694 		}
25695 	}
25696 
25697 	/*
25698 	 * For cases where remote addr, local port, and remote port are non-
25699 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25700 	 */
25701 	if (index != -1) {
25702 		err = tcp_ioctl_abort_bucket(acp, index,
25703 			    &count, exact, tcps);
25704 	} else {
25705 		/*
25706 		 * loop through all entries for wildcard case
25707 		 */
25708 		for (index = 0;
25709 		    index < ipst->ips_ipcl_conn_fanout_size;
25710 		    index++) {
25711 			err = tcp_ioctl_abort_bucket(acp, index,
25712 			    &count, exact, tcps);
25713 			if (err != 0)
25714 				break;
25715 		}
25716 	}
25717 
25718 	logflags = SL_TRACE | SL_NOTE;
25719 	/*
25720 	 * Don't print this message to the console if the operation was done
25721 	 * to a non-global zone.
25722 	 */
25723 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25724 		logflags |= SL_CONSOLE;
25725 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25726 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25727 	if (err == 0 && count == 0)
25728 		err = ENOENT;
25729 	return (err);
25730 }
25731 
25732 /*
25733  * Process the TCP_IOC_ABORT_CONN ioctl request.
25734  */
25735 static void
25736 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25737 {
25738 	int	err;
25739 	IOCP    iocp;
25740 	MBLKP   mp1;
25741 	sa_family_t laf, raf;
25742 	tcp_ioc_abort_conn_t *acp;
25743 	zone_t		*zptr;
25744 	conn_t		*connp = Q_TO_CONN(q);
25745 	zoneid_t	zoneid = connp->conn_zoneid;
25746 	tcp_t		*tcp = connp->conn_tcp;
25747 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25748 
25749 	iocp = (IOCP)mp->b_rptr;
25750 
25751 	if ((mp1 = mp->b_cont) == NULL ||
25752 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25753 		err = EINVAL;
25754 		goto out;
25755 	}
25756 
25757 	/* check permissions */
25758 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25759 		err = EPERM;
25760 		goto out;
25761 	}
25762 
25763 	if (mp1->b_cont != NULL) {
25764 		freemsg(mp1->b_cont);
25765 		mp1->b_cont = NULL;
25766 	}
25767 
25768 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25769 	laf = acp->ac_local.ss_family;
25770 	raf = acp->ac_remote.ss_family;
25771 
25772 	/* check that a zone with the supplied zoneid exists */
25773 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25774 		zptr = zone_find_by_id(zoneid);
25775 		if (zptr != NULL) {
25776 			zone_rele(zptr);
25777 		} else {
25778 			err = EINVAL;
25779 			goto out;
25780 		}
25781 	}
25782 
25783 	/*
25784 	 * For exclusive stacks we set the zoneid to zero
25785 	 * to make TCP operate as if in the global zone.
25786 	 */
25787 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25788 		acp->ac_zoneid = GLOBAL_ZONEID;
25789 
25790 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25791 	    acp->ac_start > acp->ac_end || laf != raf ||
25792 	    (laf != AF_INET && laf != AF_INET6)) {
25793 		err = EINVAL;
25794 		goto out;
25795 	}
25796 
25797 	tcp_ioctl_abort_dump(acp);
25798 	err = tcp_ioctl_abort(acp, tcps);
25799 
25800 out:
25801 	if (mp1 != NULL) {
25802 		freemsg(mp1);
25803 		mp->b_cont = NULL;
25804 	}
25805 
25806 	if (err != 0)
25807 		miocnak(q, mp, 0, err);
25808 	else
25809 		miocack(q, mp, 0, 0);
25810 }
25811 
25812 /*
25813  * tcp_time_wait_processing() handles processing of incoming packets when
25814  * the tcp is in the TIME_WAIT state.
25815  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25816  * on the time wait list.
25817  */
25818 void
25819 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25820     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25821 {
25822 	int32_t		bytes_acked;
25823 	int32_t		gap;
25824 	int32_t		rgap;
25825 	tcp_opt_t	tcpopt;
25826 	uint_t		flags;
25827 	uint32_t	new_swnd = 0;
25828 	conn_t		*connp;
25829 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25830 
25831 	BUMP_LOCAL(tcp->tcp_ibsegs);
25832 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25833 
25834 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25835 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25836 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25837 	if (tcp->tcp_snd_ts_ok) {
25838 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25839 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25840 			    tcp->tcp_rnxt, TH_ACK);
25841 			goto done;
25842 		}
25843 	}
25844 	gap = seg_seq - tcp->tcp_rnxt;
25845 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25846 	if (gap < 0) {
25847 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25848 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25849 		    (seg_len > -gap ? -gap : seg_len));
25850 		seg_len += gap;
25851 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25852 			if (flags & TH_RST) {
25853 				goto done;
25854 			}
25855 			if ((flags & TH_FIN) && seg_len == -1) {
25856 				/*
25857 				 * When TCP receives a duplicate FIN in
25858 				 * TIME_WAIT state, restart the 2 MSL timer.
25859 				 * See page 73 in RFC 793. Make sure this TCP
25860 				 * is already on the TIME_WAIT list. If not,
25861 				 * just restart the timer.
25862 				 */
25863 				if (TCP_IS_DETACHED(tcp)) {
25864 					if (tcp_time_wait_remove(tcp, NULL) ==
25865 					    B_TRUE) {
25866 						tcp_time_wait_append(tcp);
25867 						TCP_DBGSTAT(tcps,
25868 						    tcp_rput_time_wait);
25869 					}
25870 				} else {
25871 					ASSERT(tcp != NULL);
25872 					TCP_TIMER_RESTART(tcp,
25873 					    tcps->tcps_time_wait_interval);
25874 				}
25875 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25876 				    tcp->tcp_rnxt, TH_ACK);
25877 				goto done;
25878 			}
25879 			flags |=  TH_ACK_NEEDED;
25880 			seg_len = 0;
25881 			goto process_ack;
25882 		}
25883 
25884 		/* Fix seg_seq, and chew the gap off the front. */
25885 		seg_seq = tcp->tcp_rnxt;
25886 	}
25887 
25888 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25889 		/*
25890 		 * Make sure that when we accept the connection, pick
25891 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25892 		 * old connection.
25893 		 *
25894 		 * The next ISS generated is equal to tcp_iss_incr_extra
25895 		 * + ISS_INCR/2 + other components depending on the
25896 		 * value of tcp_strong_iss.  We pre-calculate the new
25897 		 * ISS here and compare with tcp_snxt to determine if
25898 		 * we need to make adjustment to tcp_iss_incr_extra.
25899 		 *
25900 		 * The above calculation is ugly and is a
25901 		 * waste of CPU cycles...
25902 		 */
25903 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25904 		int32_t adj;
25905 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25906 
25907 		switch (tcps->tcps_strong_iss) {
25908 		case 2: {
25909 			/* Add time and MD5 components. */
25910 			uint32_t answer[4];
25911 			struct {
25912 				uint32_t ports;
25913 				in6_addr_t src;
25914 				in6_addr_t dst;
25915 			} arg;
25916 			MD5_CTX context;
25917 
25918 			mutex_enter(&tcps->tcps_iss_key_lock);
25919 			context = tcps->tcps_iss_key;
25920 			mutex_exit(&tcps->tcps_iss_key_lock);
25921 			arg.ports = tcp->tcp_ports;
25922 			/* We use MAPPED addresses in tcp_iss_init */
25923 			arg.src = tcp->tcp_ip_src_v6;
25924 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25925 				IN6_IPADDR_TO_V4MAPPED(
25926 					tcp->tcp_ipha->ipha_dst,
25927 					    &arg.dst);
25928 			} else {
25929 				arg.dst =
25930 				    tcp->tcp_ip6h->ip6_dst;
25931 			}
25932 			MD5Update(&context, (uchar_t *)&arg,
25933 			    sizeof (arg));
25934 			MD5Final((uchar_t *)answer, &context);
25935 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25936 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25937 			break;
25938 		}
25939 		case 1:
25940 			/* Add time component and min random (i.e. 1). */
25941 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25942 			break;
25943 		default:
25944 			/* Add only time component. */
25945 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25946 			break;
25947 		}
25948 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25949 			/*
25950 			 * New ISS not guaranteed to be ISS_INCR/2
25951 			 * ahead of the current tcp_snxt, so add the
25952 			 * difference to tcp_iss_incr_extra.
25953 			 */
25954 			tcps->tcps_iss_incr_extra += adj;
25955 		}
25956 		/*
25957 		 * If tcp_clean_death() can not perform the task now,
25958 		 * drop the SYN packet and let the other side re-xmit.
25959 		 * Otherwise pass the SYN packet back in, since the
25960 		 * old tcp state has been cleaned up or freed.
25961 		 */
25962 		if (tcp_clean_death(tcp, 0, 27) == -1)
25963 			goto done;
25964 		/*
25965 		 * We will come back to tcp_rput_data
25966 		 * on the global queue. Packets destined
25967 		 * for the global queue will be checked
25968 		 * with global policy. But the policy for
25969 		 * this packet has already been checked as
25970 		 * this was destined for the detached
25971 		 * connection. We need to bypass policy
25972 		 * check this time by attaching a dummy
25973 		 * ipsec_in with ipsec_in_dont_check set.
25974 		 */
25975 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25976 		if (connp != NULL) {
25977 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25978 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25979 			return;
25980 		}
25981 		goto done;
25982 	}
25983 
25984 	/*
25985 	 * rgap is the amount of stuff received out of window.  A negative
25986 	 * value is the amount out of window.
25987 	 */
25988 	if (rgap < 0) {
25989 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25990 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25991 		/* Fix seg_len and make sure there is something left. */
25992 		seg_len += rgap;
25993 		if (seg_len <= 0) {
25994 			if (flags & TH_RST) {
25995 				goto done;
25996 			}
25997 			flags |=  TH_ACK_NEEDED;
25998 			seg_len = 0;
25999 			goto process_ack;
26000 		}
26001 	}
26002 	/*
26003 	 * Check whether we can update tcp_ts_recent.  This test is
26004 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26005 	 * Extensions for High Performance: An Update", Internet Draft.
26006 	 */
26007 	if (tcp->tcp_snd_ts_ok &&
26008 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26009 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26010 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26011 		tcp->tcp_last_rcv_lbolt = lbolt64;
26012 	}
26013 
26014 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26015 		/* Always ack out of order packets */
26016 		flags |= TH_ACK_NEEDED;
26017 		seg_len = 0;
26018 	} else if (seg_len > 0) {
26019 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26020 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26021 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26022 	}
26023 	if (flags & TH_RST) {
26024 		(void) tcp_clean_death(tcp, 0, 28);
26025 		goto done;
26026 	}
26027 	if (flags & TH_SYN) {
26028 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26029 		    TH_RST|TH_ACK);
26030 		/*
26031 		 * Do not delete the TCP structure if it is in
26032 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26033 		 */
26034 		goto done;
26035 	}
26036 process_ack:
26037 	if (flags & TH_ACK) {
26038 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26039 		if (bytes_acked <= 0) {
26040 			if (bytes_acked == 0 && seg_len == 0 &&
26041 			    new_swnd == tcp->tcp_swnd)
26042 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26043 		} else {
26044 			/* Acks something not sent */
26045 			flags |= TH_ACK_NEEDED;
26046 		}
26047 	}
26048 	if (flags & TH_ACK_NEEDED) {
26049 		/*
26050 		 * Time to send an ack for some reason.
26051 		 */
26052 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26053 		    tcp->tcp_rnxt, TH_ACK);
26054 	}
26055 done:
26056 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26057 		DB_CKSUMSTART(mp) = 0;
26058 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26059 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26060 	}
26061 	freemsg(mp);
26062 }
26063 
26064 /*
26065  * Allocate a T_SVR4_OPTMGMT_REQ.
26066  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26067  * that tcp_rput_other can drop the acks.
26068  */
26069 static mblk_t *
26070 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26071 {
26072 	mblk_t *mp;
26073 	struct T_optmgmt_req *tor;
26074 	struct opthdr *oh;
26075 	uint_t size;
26076 	char *optptr;
26077 
26078 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26079 	mp = allocb(size, BPRI_MED);
26080 	if (mp == NULL)
26081 		return (NULL);
26082 
26083 	mp->b_wptr += size;
26084 	mp->b_datap->db_type = M_PROTO;
26085 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26086 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26087 	tor->MGMT_flags = T_NEGOTIATE;
26088 	tor->OPT_length = sizeof (*oh) + optlen;
26089 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26090 
26091 	oh = (struct opthdr *)&tor[1];
26092 	oh->level = level;
26093 	oh->name = cmd;
26094 	oh->len = optlen;
26095 	if (optlen != 0) {
26096 		optptr = (char *)&oh[1];
26097 		bcopy(opt, optptr, optlen);
26098 	}
26099 	return (mp);
26100 }
26101 
26102 /*
26103  * TCP Timers Implementation.
26104  */
26105 timeout_id_t
26106 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26107 {
26108 	mblk_t *mp;
26109 	tcp_timer_t *tcpt;
26110 	tcp_t *tcp = connp->conn_tcp;
26111 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26112 
26113 	ASSERT(connp->conn_sqp != NULL);
26114 
26115 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26116 
26117 	if (tcp->tcp_timercache == NULL) {
26118 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26119 	} else {
26120 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26121 		mp = tcp->tcp_timercache;
26122 		tcp->tcp_timercache = mp->b_next;
26123 		mp->b_next = NULL;
26124 		ASSERT(mp->b_wptr == NULL);
26125 	}
26126 
26127 	CONN_INC_REF(connp);
26128 	tcpt = (tcp_timer_t *)mp->b_rptr;
26129 	tcpt->connp = connp;
26130 	tcpt->tcpt_proc = f;
26131 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26132 	return ((timeout_id_t)mp);
26133 }
26134 
26135 static void
26136 tcp_timer_callback(void *arg)
26137 {
26138 	mblk_t *mp = (mblk_t *)arg;
26139 	tcp_timer_t *tcpt;
26140 	conn_t	*connp;
26141 
26142 	tcpt = (tcp_timer_t *)mp->b_rptr;
26143 	connp = tcpt->connp;
26144 	squeue_fill(connp->conn_sqp, mp,
26145 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26146 }
26147 
26148 static void
26149 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26150 {
26151 	tcp_timer_t *tcpt;
26152 	conn_t *connp = (conn_t *)arg;
26153 	tcp_t *tcp = connp->conn_tcp;
26154 
26155 	tcpt = (tcp_timer_t *)mp->b_rptr;
26156 	ASSERT(connp == tcpt->connp);
26157 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26158 
26159 	/*
26160 	 * If the TCP has reached the closed state, don't proceed any
26161 	 * further. This TCP logically does not exist on the system.
26162 	 * tcpt_proc could for example access queues, that have already
26163 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26164 	 */
26165 	if (tcp->tcp_state != TCPS_CLOSED) {
26166 		(*tcpt->tcpt_proc)(connp);
26167 	} else {
26168 		tcp->tcp_timer_tid = 0;
26169 	}
26170 	tcp_timer_free(connp->conn_tcp, mp);
26171 }
26172 
26173 /*
26174  * There is potential race with untimeout and the handler firing at the same
26175  * time. The mblock may be freed by the handler while we are trying to use
26176  * it. But since both should execute on the same squeue, this race should not
26177  * occur.
26178  */
26179 clock_t
26180 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26181 {
26182 	mblk_t	*mp = (mblk_t *)id;
26183 	tcp_timer_t *tcpt;
26184 	clock_t delta;
26185 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26186 
26187 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26188 
26189 	if (mp == NULL)
26190 		return (-1);
26191 
26192 	tcpt = (tcp_timer_t *)mp->b_rptr;
26193 	ASSERT(tcpt->connp == connp);
26194 
26195 	delta = untimeout(tcpt->tcpt_tid);
26196 
26197 	if (delta >= 0) {
26198 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26199 		tcp_timer_free(connp->conn_tcp, mp);
26200 		CONN_DEC_REF(connp);
26201 	}
26202 
26203 	return (delta);
26204 }
26205 
26206 /*
26207  * Allocate space for the timer event. The allocation looks like mblk, but it is
26208  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26209  *
26210  * Dealing with failures: If we can't allocate from the timer cache we try
26211  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26212  * points to b_rptr.
26213  * If we can't allocate anything using allocb_tryhard(), we perform a last
26214  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26215  * save the actual allocation size in b_datap.
26216  */
26217 mblk_t *
26218 tcp_timermp_alloc(int kmflags)
26219 {
26220 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26221 	    kmflags & ~KM_PANIC);
26222 
26223 	if (mp != NULL) {
26224 		mp->b_next = mp->b_prev = NULL;
26225 		mp->b_rptr = (uchar_t *)(&mp[1]);
26226 		mp->b_wptr = NULL;
26227 		mp->b_datap = NULL;
26228 		mp->b_queue = NULL;
26229 		mp->b_cont = NULL;
26230 	} else if (kmflags & KM_PANIC) {
26231 		/*
26232 		 * Failed to allocate memory for the timer. Try allocating from
26233 		 * dblock caches.
26234 		 */
26235 		/* ipclassifier calls this from a constructor - hence no tcps */
26236 		TCP_G_STAT(tcp_timermp_allocfail);
26237 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26238 		if (mp == NULL) {
26239 			size_t size = 0;
26240 			/*
26241 			 * Memory is really low. Try tryhard allocation.
26242 			 *
26243 			 * ipclassifier calls this from a constructor -
26244 			 * hence no tcps
26245 			 */
26246 			TCP_G_STAT(tcp_timermp_allocdblfail);
26247 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26248 			    sizeof (tcp_timer_t), &size, kmflags);
26249 			mp->b_rptr = (uchar_t *)(&mp[1]);
26250 			mp->b_next = mp->b_prev = NULL;
26251 			mp->b_wptr = (uchar_t *)-1;
26252 			mp->b_datap = (dblk_t *)size;
26253 			mp->b_queue = NULL;
26254 			mp->b_cont = NULL;
26255 		}
26256 		ASSERT(mp->b_wptr != NULL);
26257 	}
26258 	/* ipclassifier calls this from a constructor - hence no tcps */
26259 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26260 
26261 	return (mp);
26262 }
26263 
26264 /*
26265  * Free per-tcp timer cache.
26266  * It can only contain entries from tcp_timercache.
26267  */
26268 void
26269 tcp_timermp_free(tcp_t *tcp)
26270 {
26271 	mblk_t *mp;
26272 
26273 	while ((mp = tcp->tcp_timercache) != NULL) {
26274 		ASSERT(mp->b_wptr == NULL);
26275 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26276 		kmem_cache_free(tcp_timercache, mp);
26277 	}
26278 }
26279 
26280 /*
26281  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26282  * events there already (currently at most two events are cached).
26283  * If the event is not allocated from the timer cache, free it right away.
26284  */
26285 static void
26286 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26287 {
26288 	mblk_t *mp1 = tcp->tcp_timercache;
26289 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26290 
26291 	if (mp->b_wptr != NULL) {
26292 		/*
26293 		 * This allocation is not from a timer cache, free it right
26294 		 * away.
26295 		 */
26296 		if (mp->b_wptr != (uchar_t *)-1)
26297 			freeb(mp);
26298 		else
26299 			kmem_free(mp, (size_t)mp->b_datap);
26300 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26301 		/* Cache this timer block for future allocations */
26302 		mp->b_rptr = (uchar_t *)(&mp[1]);
26303 		mp->b_next = mp1;
26304 		tcp->tcp_timercache = mp;
26305 	} else {
26306 		kmem_cache_free(tcp_timercache, mp);
26307 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26308 	}
26309 }
26310 
26311 /*
26312  * End of TCP Timers implementation.
26313  */
26314 
26315 /*
26316  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26317  * on the specified backing STREAMS q. Note, the caller may make the
26318  * decision to call based on the tcp_t.tcp_flow_stopped value which
26319  * when check outside the q's lock is only an advisory check ...
26320  */
26321 
26322 void
26323 tcp_setqfull(tcp_t *tcp)
26324 {
26325 	queue_t *q = tcp->tcp_wq;
26326 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26327 
26328 	if (!(q->q_flag & QFULL)) {
26329 		mutex_enter(QLOCK(q));
26330 		if (!(q->q_flag & QFULL)) {
26331 			/* still need to set QFULL */
26332 			q->q_flag |= QFULL;
26333 			tcp->tcp_flow_stopped = B_TRUE;
26334 			mutex_exit(QLOCK(q));
26335 			TCP_STAT(tcps, tcp_flwctl_on);
26336 		} else {
26337 			mutex_exit(QLOCK(q));
26338 		}
26339 	}
26340 }
26341 
26342 void
26343 tcp_clrqfull(tcp_t *tcp)
26344 {
26345 	queue_t *q = tcp->tcp_wq;
26346 
26347 	if (q->q_flag & QFULL) {
26348 		mutex_enter(QLOCK(q));
26349 		if (q->q_flag & QFULL) {
26350 			q->q_flag &= ~QFULL;
26351 			tcp->tcp_flow_stopped = B_FALSE;
26352 			mutex_exit(QLOCK(q));
26353 			if (q->q_flag & QWANTW)
26354 				qbackenable(q, 0);
26355 		} else {
26356 			mutex_exit(QLOCK(q));
26357 		}
26358 	}
26359 }
26360 
26361 
26362 /*
26363  * kstats related to squeues i.e. not per IP instance
26364  */
26365 static void *
26366 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26367 {
26368 	kstat_t *ksp;
26369 
26370 	tcp_g_stat_t template = {
26371 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26372 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26373 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26374 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26375 	};
26376 
26377 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26378 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26379 	    KSTAT_FLAG_VIRTUAL);
26380 
26381 	if (ksp == NULL)
26382 		return (NULL);
26383 
26384 	bcopy(&template, tcp_g_statp, sizeof (template));
26385 	ksp->ks_data = (void *)tcp_g_statp;
26386 
26387 	kstat_install(ksp);
26388 	return (ksp);
26389 }
26390 
26391 static void
26392 tcp_g_kstat_fini(kstat_t *ksp)
26393 {
26394 	if (ksp != NULL) {
26395 		kstat_delete(ksp);
26396 	}
26397 }
26398 
26399 
26400 static void *
26401 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26402 {
26403 	kstat_t *ksp;
26404 
26405 	tcp_stat_t template = {
26406 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26407 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26408 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26409 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26410 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26411 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26412 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26413 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26414 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26415 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26416 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26417 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26418 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26419 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26420 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26421 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26422 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26423 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26424 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26425 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26426 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26427 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26428 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26429 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26430 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26431 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26432 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26433 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26434 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26435 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26436 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26437 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26438 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26439 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26440 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26441 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26442 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26443 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26444 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26445 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26446 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26447 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26448 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26449 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26450 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26451 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26452 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26453 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26454 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26455 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26456 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26457 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26458 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26459 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26460 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26461 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26462 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26463 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26464 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26465 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26466 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26467 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26468 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26469 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26470 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26471 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26472 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26473 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26474 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26475 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26476 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26477 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26478 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26479 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26480 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26481 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26482 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26483 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26484 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26485 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26486 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26487 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26488 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26489 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26490 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26491 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26492 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26493 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26494 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26495 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26496 	};
26497 
26498 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26499 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26500 	    KSTAT_FLAG_VIRTUAL, stackid);
26501 
26502 	if (ksp == NULL)
26503 		return (NULL);
26504 
26505 	bcopy(&template, tcps_statisticsp, sizeof (template));
26506 	ksp->ks_data = (void *)tcps_statisticsp;
26507 	ksp->ks_private = (void *)(uintptr_t)stackid;
26508 
26509 	kstat_install(ksp);
26510 	return (ksp);
26511 }
26512 
26513 static void
26514 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26515 {
26516 	if (ksp != NULL) {
26517 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26518 		kstat_delete_netstack(ksp, stackid);
26519 	}
26520 }
26521 
26522 /*
26523  * TCP Kstats implementation
26524  */
26525 static void *
26526 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26527 {
26528 	kstat_t	*ksp;
26529 
26530 	tcp_named_kstat_t template = {
26531 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26532 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26533 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26534 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26535 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26536 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26537 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26538 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26539 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26540 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26541 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26542 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26543 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26544 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26545 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26546 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26547 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26548 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26549 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26550 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26551 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26552 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26553 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26554 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26555 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26556 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26557 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26558 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26559 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26560 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26561 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26562 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26563 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26564 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26565 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26566 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26567 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26568 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26569 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26570 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26571 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26572 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26573 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26574 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26575 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26576 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26577 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26578 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26579 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26580 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26581 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26582 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26583 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26584 	};
26585 
26586 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26587 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26588 
26589 	if (ksp == NULL)
26590 		return (NULL);
26591 
26592 	template.rtoAlgorithm.value.ui32 = 4;
26593 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26594 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26595 	template.maxConn.value.i32 = -1;
26596 
26597 	bcopy(&template, ksp->ks_data, sizeof (template));
26598 	ksp->ks_update = tcp_kstat_update;
26599 	ksp->ks_private = (void *)(uintptr_t)stackid;
26600 
26601 	kstat_install(ksp);
26602 	return (ksp);
26603 }
26604 
26605 static void
26606 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26607 {
26608 	if (ksp != NULL) {
26609 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26610 		kstat_delete_netstack(ksp, stackid);
26611 	}
26612 }
26613 
26614 static int
26615 tcp_kstat_update(kstat_t *kp, int rw)
26616 {
26617 	tcp_named_kstat_t *tcpkp;
26618 	tcp_t		*tcp;
26619 	connf_t		*connfp;
26620 	conn_t		*connp;
26621 	int 		i;
26622 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26623 	netstack_t	*ns;
26624 	tcp_stack_t	*tcps;
26625 	ip_stack_t	*ipst;
26626 
26627 	if ((kp == NULL) || (kp->ks_data == NULL))
26628 		return (EIO);
26629 
26630 	if (rw == KSTAT_WRITE)
26631 		return (EACCES);
26632 
26633 	ns = netstack_find_by_stackid(stackid);
26634 	if (ns == NULL)
26635 		return (-1);
26636 	tcps = ns->netstack_tcp;
26637 	if (tcps == NULL) {
26638 		netstack_rele(ns);
26639 		return (-1);
26640 	}
26641 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26642 
26643 	tcpkp->currEstab.value.ui32 = 0;
26644 
26645 	ipst = ns->netstack_ip;
26646 
26647 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26648 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26649 		connp = NULL;
26650 		while ((connp =
26651 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26652 			tcp = connp->conn_tcp;
26653 			switch (tcp_snmp_state(tcp)) {
26654 			case MIB2_TCP_established:
26655 			case MIB2_TCP_closeWait:
26656 				tcpkp->currEstab.value.ui32++;
26657 				break;
26658 			}
26659 		}
26660 	}
26661 
26662 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26663 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26664 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26665 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26666 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26667 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26668 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26669 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26670 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26671 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26672 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26673 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26674 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26675 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26676 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26677 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26678 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26679 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26680 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26681 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26682 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26683 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26684 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26685 	tcpkp->inDataInorderSegs.value.ui32 =
26686 	    tcps->tcps_mib.tcpInDataInorderSegs;
26687 	tcpkp->inDataInorderBytes.value.ui32 =
26688 	    tcps->tcps_mib.tcpInDataInorderBytes;
26689 	tcpkp->inDataUnorderSegs.value.ui32 =
26690 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26691 	tcpkp->inDataUnorderBytes.value.ui32 =
26692 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26693 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26694 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26695 	tcpkp->inDataPartDupSegs.value.ui32 =
26696 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26697 	tcpkp->inDataPartDupBytes.value.ui32 =
26698 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26699 	tcpkp->inDataPastWinSegs.value.ui32 =
26700 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26701 	tcpkp->inDataPastWinBytes.value.ui32 =
26702 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26703 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26704 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26705 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26706 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26707 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26708 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26709 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26710 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26711 	tcpkp->timKeepaliveProbe.value.ui32 =
26712 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26713 	tcpkp->timKeepaliveDrop.value.ui32 =
26714 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26715 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26716 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26717 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26718 	tcpkp->outSackRetransSegs.value.ui32 =
26719 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26720 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26721 
26722 	netstack_rele(ns);
26723 	return (0);
26724 }
26725 
26726 void
26727 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26728 {
26729 	uint16_t	hdr_len;
26730 	ipha_t		*ipha;
26731 	uint8_t		*nexthdrp;
26732 	tcph_t		*tcph;
26733 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26734 
26735 	/* Already has an eager */
26736 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26737 		TCP_STAT(tcps, tcp_reinput_syn);
26738 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26739 		    connp, SQTAG_TCP_REINPUT_EAGER);
26740 		return;
26741 	}
26742 
26743 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26744 	case IPV4_VERSION:
26745 		ipha = (ipha_t *)mp->b_rptr;
26746 		hdr_len = IPH_HDR_LENGTH(ipha);
26747 		break;
26748 	case IPV6_VERSION:
26749 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26750 		    &hdr_len, &nexthdrp)) {
26751 			CONN_DEC_REF(connp);
26752 			freemsg(mp);
26753 			return;
26754 		}
26755 		break;
26756 	}
26757 
26758 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26759 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26760 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26761 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26762 	}
26763 
26764 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26765 	    SQTAG_TCP_REINPUT);
26766 }
26767 
26768 static squeue_func_t
26769 tcp_squeue_switch(int val)
26770 {
26771 	squeue_func_t rval = squeue_fill;
26772 
26773 	switch (val) {
26774 	case 1:
26775 		rval = squeue_enter_nodrain;
26776 		break;
26777 	case 2:
26778 		rval = squeue_enter;
26779 		break;
26780 	default:
26781 		break;
26782 	}
26783 	return (rval);
26784 }
26785 
26786 /*
26787  * This is called once for each squeue - globally for all stack
26788  * instances.
26789  */
26790 static void
26791 tcp_squeue_add(squeue_t *sqp)
26792 {
26793 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26794 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
26795 
26796 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26797 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26798 	    sqp, TCP_TIME_WAIT_DELAY);
26799 	if (tcp_free_list_max_cnt == 0) {
26800 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26801 			max_ncpus : boot_max_ncpus);
26802 
26803 		/*
26804 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26805 		 */
26806 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26807 			(tcp_ncpus * sizeof (tcp_t) * 100);
26808 	}
26809 	tcp_time_wait->tcp_free_list_cnt = 0;
26810 }
26811