1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/zone.h> 58 59 #include <sys/errno.h> 60 #include <sys/signal.h> 61 #include <sys/socket.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <netinet/in.h> 67 #include <netinet/tcp.h> 68 #include <netinet/ip6.h> 69 #include <netinet/icmp6.h> 70 #include <net/if.h> 71 #include <net/route.h> 72 #include <inet/ipsec_impl.h> 73 74 #include <inet/common.h> 75 #include <inet/ip.h> 76 #include <inet/ip_impl.h> 77 #include <inet/ip6.h> 78 #include <inet/ip_ndp.h> 79 #include <inet/mi.h> 80 #include <inet/mib2.h> 81 #include <inet/nd.h> 82 #include <inet/optcom.h> 83 #include <inet/snmpcom.h> 84 #include <inet/kstatcom.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/ipdrop.h> 90 #include <inet/tcp_trace.h> 91 92 #include <inet/ipclassifier.h> 93 #include <inet/ip_ire.h> 94 #include <inet/ip_if.h> 95 #include <inet/ipp_common.h> 96 #include <sys/squeue.h> 97 98 /* 99 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 100 * 101 * (Read the detailed design doc in PSARC case directory) 102 * 103 * The entire tcp state is contained in tcp_t and conn_t structure 104 * which are allocated in tandem using ipcl_conn_create() and passing 105 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 106 * the references on the tcp_t. The tcp_t structure is never compressed 107 * and packets always land on the correct TCP perimeter from the time 108 * eager is created till the time tcp_t dies (as such the old mentat 109 * TCP global queue is not used for detached state and no IPSEC checking 110 * is required). The global queue is still allocated to send out resets 111 * for connection which have no listeners and IP directly calls 112 * tcp_xmit_listeners_reset() which does any policy check. 113 * 114 * Protection and Synchronisation mechanism: 115 * 116 * The tcp data structure does not use any kind of lock for protecting 117 * its state but instead uses 'squeues' for mutual exclusion from various 118 * read and write side threads. To access a tcp member, the thread should 119 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 120 * squeue_fill). Since the squeues allow a direct function call, caller 121 * can pass any tcp function having prototype of edesc_t as argument 122 * (different from traditional STREAMs model where packets come in only 123 * designated entry points). The list of functions that can be directly 124 * called via squeue are listed before the usual function prototype. 125 * 126 * Referencing: 127 * 128 * TCP is MT-Hot and we use a reference based scheme to make sure that the 129 * tcp structure doesn't disappear when its needed. When the application 130 * creates an outgoing connection or accepts an incoming connection, we 131 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 132 * The IP reference is just a symbolic reference since ip_tcpclose() 133 * looks at tcp structure after tcp_close_output() returns which could 134 * have dropped the last TCP reference. So as long as the connection is 135 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 136 * conn_t. The classifier puts its own reference when the connection is 137 * inserted in listen or connected hash. Anytime a thread needs to enter 138 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 139 * on write side or by doing a classify on read side and then puts a 140 * reference on the conn before doing squeue_enter/tryenter/fill. For 141 * read side, the classifier itself puts the reference under fanout lock 142 * to make sure that tcp can't disappear before it gets processed. The 143 * squeue will drop this reference automatically so the called function 144 * doesn't have to do a DEC_REF. 145 * 146 * Opening a new connection: 147 * 148 * The outgoing connection open is pretty simple. ip_tcpopen() does the 149 * work in creating the conn/tcp structure and initializing it. The 150 * squeue assignment is done based on the CPU the application 151 * is running on. So for outbound connections, processing is always done 152 * on application CPU which might be different from the incoming CPU 153 * being interrupted by the NIC. An optimal way would be to figure out 154 * the NIC <-> CPU binding at listen time, and assign the outgoing 155 * connection to the squeue attached to the CPU that will be interrupted 156 * for incoming packets (we know the NIC based on the bind IP address). 157 * This might seem like a problem if more data is going out but the 158 * fact is that in most cases the transmit is ACK driven transmit where 159 * the outgoing data normally sits on TCP's xmit queue waiting to be 160 * transmitted. 161 * 162 * Accepting a connection: 163 * 164 * This is a more interesting case because of various races involved in 165 * establishing a eager in its own perimeter. Read the meta comment on 166 * top of tcp_conn_request(). But briefly, the squeue is picked by 167 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 168 * 169 * Closing a connection: 170 * 171 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 172 * via squeue to do the close and mark the tcp as detached if the connection 173 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 174 * reference but tcp_close() drop IP's reference always. So if tcp was 175 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 176 * and 1 because it is in classifier's connected hash. This is the condition 177 * we use to determine that its OK to clean up the tcp outside of squeue 178 * when time wait expires (check the ref under fanout and conn_lock and 179 * if it is 2, remove it from fanout hash and kill it). 180 * 181 * Although close just drops the necessary references and marks the 182 * tcp_detached state, tcp_close needs to know the tcp_detached has been 183 * set (under squeue) before letting the STREAM go away (because a 184 * inbound packet might attempt to go up the STREAM while the close 185 * has happened and tcp_detached is not set). So a special lock and 186 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 187 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 188 * tcp_detached. 189 * 190 * Special provisions and fast paths: 191 * 192 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 193 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 194 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 195 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 196 * check to send packets directly to tcp_rput_data via squeue. Everyone 197 * else comes through tcp_input() on the read side. 198 * 199 * We also make special provisions for sockfs by marking tcp_issocket 200 * whenever we have only sockfs on top of TCP. This allows us to skip 201 * putting the tcp in acceptor hash since a sockfs listener can never 202 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 203 * since eager has already been allocated and the accept now happens 204 * on acceptor STREAM. There is a big blob of comment on top of 205 * tcp_conn_request explaining the new accept. When socket is POP'd, 206 * sockfs sends us an ioctl to mark the fact and we go back to old 207 * behaviour. Once tcp_issocket is unset, its never set for the 208 * life of that connection. 209 * 210 * IPsec notes : 211 * 212 * Since a packet is always executed on the correct TCP perimeter 213 * all IPsec processing is defered to IP including checking new 214 * connections and setting IPSEC policies for new connection. The 215 * only exception is tcp_xmit_listeners_reset() which is called 216 * directly from IP and needs to policy check to see if TH_RST 217 * can be sent out. 218 */ 219 220 221 extern major_t TCP6_MAJ; 222 223 /* 224 * Values for squeue switch: 225 * 1: squeue_enter_nodrain 226 * 2: squeue_enter 227 * 3: squeue_fill 228 */ 229 int tcp_squeue_close = 2; 230 int tcp_squeue_wput = 2; 231 232 squeue_func_t tcp_squeue_close_proc; 233 squeue_func_t tcp_squeue_wput_proc; 234 235 /* 236 * This controls how tiny a write must be before we try to copy it 237 * into the the mblk on the tail of the transmit queue. Not much 238 * speedup is observed for values larger than sixteen. Zero will 239 * disable the optimisation. 240 */ 241 int tcp_tx_pull_len = 16; 242 243 /* 244 * TCP Statistics. 245 * 246 * How TCP statistics work. 247 * 248 * There are two types of statistics invoked by two macros. 249 * 250 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 251 * supposed to be used in non MT-hot paths of the code. 252 * 253 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 254 * supposed to be used for DEBUG purposes and may be used on a hot path. 255 * 256 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 257 * (use "kstat tcp" to get them). 258 * 259 * There is also additional debugging facility that marks tcp_clean_death() 260 * instances and saves them in tcp_t structure. It is triggered by 261 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 262 * tcp_clean_death() calls that counts the number of times each tag was hit. It 263 * is triggered by TCP_CLD_COUNTERS define. 264 * 265 * How to add new counters. 266 * 267 * 1) Add a field in the tcp_stat structure describing your counter. 268 * 2) Add a line in tcp_statistics with the name of the counter. 269 * 270 * IMPORTANT!! - make sure that both are in sync !! 271 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 272 * 273 * Please avoid using private counters which are not kstat-exported. 274 * 275 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 276 * in tcp_t structure. 277 * 278 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 279 */ 280 281 #ifndef TCP_DEBUG_COUNTER 282 #ifdef DEBUG 283 #define TCP_DEBUG_COUNTER 1 284 #else 285 #define TCP_DEBUG_COUNTER 0 286 #endif 287 #endif 288 289 #define TCP_CLD_COUNTERS 0 290 291 #define TCP_TAG_CLEAN_DEATH 1 292 #define TCP_MAX_CLEAN_DEATH_TAG 32 293 294 #ifdef lint 295 static int _lint_dummy_; 296 #endif 297 298 #if TCP_CLD_COUNTERS 299 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 300 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 301 #elif defined(lint) 302 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 303 #else 304 #define TCP_CLD_STAT(x) 305 #endif 306 307 #if TCP_DEBUG_COUNTER 308 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 311 #else 312 #define TCP_DBGSTAT(x) 313 #endif 314 315 tcp_stat_t tcp_statistics = { 316 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 317 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 318 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 319 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 320 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 321 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 322 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 323 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 324 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 325 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 326 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 327 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 328 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 329 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 330 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 331 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 332 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 333 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 334 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 335 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 336 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 337 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 338 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 339 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 340 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 341 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 342 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 343 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 344 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 345 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 346 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 347 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 348 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 349 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 350 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 351 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 352 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 353 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 354 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 355 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 356 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 357 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 358 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 359 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 360 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 361 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 362 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 363 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 364 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 365 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 366 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 367 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 368 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 369 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 370 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 371 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 372 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 373 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 374 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 375 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 376 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 377 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 378 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 379 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 380 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 381 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 382 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 383 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 384 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 385 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 386 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 387 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 388 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 389 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 390 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 391 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 392 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 394 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 395 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 396 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 397 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 398 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 399 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 400 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 401 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 402 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 403 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 404 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 405 }; 406 407 static kstat_t *tcp_kstat; 408 409 /* 410 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 411 * tcp write side. 412 */ 413 #define CALL_IP_WPUT(connp, q, mp) { \ 414 ASSERT(((q)->q_flag & QREADR) == 0); \ 415 TCP_DBGSTAT(tcp_ip_output); \ 416 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 417 } 418 419 /* Macros for timestamp comparisons */ 420 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 421 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 422 423 /* 424 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 425 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 426 * by adding three components: a time component which grows by 1 every 4096 427 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 428 * a per-connection component which grows by 125000 for every new connection; 429 * and an "extra" component that grows by a random amount centered 430 * approximately on 64000. This causes the the ISS generator to cycle every 431 * 4.89 hours if no TCP connections are made, and faster if connections are 432 * made. 433 * 434 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 435 * components: a time component which grows by 250000 every second; and 436 * a per-connection component which grows by 125000 for every new connections. 437 * 438 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 439 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 440 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 441 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 442 * password. 443 */ 444 #define ISS_INCR 250000 445 #define ISS_NSEC_SHT 12 446 447 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 448 static kmutex_t tcp_iss_key_lock; 449 static MD5_CTX tcp_iss_key; 450 static sin_t sin_null; /* Zero address for quick clears */ 451 static sin6_t sin6_null; /* Zero address for quick clears */ 452 453 /* Packet dropper for TCP IPsec policy drops. */ 454 static ipdropper_t tcp_dropper; 455 456 /* 457 * This implementation follows the 4.3BSD interpretation of the urgent 458 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 459 * incompatible changes in protocols like telnet and rlogin. 460 */ 461 #define TCP_OLD_URP_INTERPRETATION 1 462 463 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 464 (TCP_IS_DETACHED(tcp) && \ 465 (!(tcp)->tcp_hard_binding)) 466 467 /* 468 * TCP reassembly macros. We hide starting and ending sequence numbers in 469 * b_next and b_prev of messages on the reassembly queue. The messages are 470 * chained using b_cont. These macros are used in tcp_reass() so we don't 471 * have to see the ugly casts and assignments. 472 */ 473 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 474 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 475 (mblk_t *)(uintptr_t)(u)) 476 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 477 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 478 (mblk_t *)(uintptr_t)(u)) 479 480 /* 481 * Implementation of TCP Timers. 482 * ============================= 483 * 484 * INTERFACE: 485 * 486 * There are two basic functions dealing with tcp timers: 487 * 488 * timeout_id_t tcp_timeout(connp, func, time) 489 * clock_t tcp_timeout_cancel(connp, timeout_id) 490 * TCP_TIMER_RESTART(tcp, intvl) 491 * 492 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 493 * after 'time' ticks passed. The function called by timeout() must adhere to 494 * the same restrictions as a driver soft interrupt handler - it must not sleep 495 * or call other functions that might sleep. The value returned is the opaque 496 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 497 * cancel the request. The call to tcp_timeout() may fail in which case it 498 * returns zero. This is different from the timeout(9F) function which never 499 * fails. 500 * 501 * The call-back function 'func' always receives 'connp' as its single 502 * argument. It is always executed in the squeue corresponding to the tcp 503 * structure. The tcp structure is guaranteed to be present at the time the 504 * call-back is called. 505 * 506 * NOTE: The call-back function 'func' is never called if tcp is in 507 * the TCPS_CLOSED state. 508 * 509 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 510 * request. locks acquired by the call-back routine should not be held across 511 * the call to tcp_timeout_cancel() or a deadlock may result. 512 * 513 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 514 * Otherwise, it returns an integer value greater than or equal to 0. In 515 * particular, if the call-back function is already placed on the squeue, it can 516 * not be canceled. 517 * 518 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 519 * within squeue context corresponding to the tcp instance. Since the 520 * call-back is also called via the same squeue, there are no race 521 * conditions described in untimeout(9F) manual page since all calls are 522 * strictly serialized. 523 * 524 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 525 * stored in tcp_timer_tid and starts a new one using 526 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 527 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 528 * field. 529 * 530 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 531 * call-back may still be called, so it is possible tcp_timer() will be 532 * called several times. This should not be a problem since tcp_timer() 533 * should always check the tcp instance state. 534 * 535 * 536 * IMPLEMENTATION: 537 * 538 * TCP timers are implemented using three-stage process. The call to 539 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 540 * when the timer expires. The tcp_timer_callback() arranges the call of the 541 * tcp_timer_handler() function via squeue corresponding to the tcp 542 * instance. The tcp_timer_handler() calls actual requested timeout call-back 543 * and passes tcp instance as an argument to it. Information is passed between 544 * stages using the tcp_timer_t structure which contains the connp pointer, the 545 * tcp call-back to call and the timeout id returned by the timeout(9F). 546 * 547 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 548 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 549 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 550 * returns the pointer to this mblk. 551 * 552 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 553 * looks like a normal mblk without actual dblk attached to it. 554 * 555 * To optimize performance each tcp instance holds a small cache of timer 556 * mblocks. In the current implementation it caches up to two timer mblocks per 557 * tcp instance. The cache is preserved over tcp frees and is only freed when 558 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 559 * timer processing happens on a corresponding squeue, the cache manipulation 560 * does not require any locks. Experiments show that majority of timer mblocks 561 * allocations are satisfied from the tcp cache and do not involve kmem calls. 562 * 563 * The tcp_timeout() places a refhold on the connp instance which guarantees 564 * that it will be present at the time the call-back function fires. The 565 * tcp_timer_handler() drops the reference after calling the call-back, so the 566 * call-back function does not need to manipulate the references explicitly. 567 */ 568 569 typedef struct tcp_timer_s { 570 conn_t *connp; 571 void (*tcpt_proc)(void *); 572 timeout_id_t tcpt_tid; 573 } tcp_timer_t; 574 575 static kmem_cache_t *tcp_timercache; 576 kmem_cache_t *tcp_sack_info_cache; 577 kmem_cache_t *tcp_iphc_cache; 578 579 /* 580 * For scalability, we must not run a timer for every TCP connection 581 * in TIME_WAIT state. To see why, consider (for time wait interval of 582 * 4 minutes): 583 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 584 * 585 * This list is ordered by time, so you need only delete from the head 586 * until you get to entries which aren't old enough to delete yet. 587 * The list consists of only the detached TIME_WAIT connections. 588 * 589 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 590 * becomes detached TIME_WAIT (either by changing the state and already 591 * being detached or the other way around). This means that the TIME_WAIT 592 * state can be extended (up to doubled) if the connection doesn't become 593 * detached for a long time. 594 * 595 * The list manipulations (including tcp_time_wait_next/prev) 596 * are protected by the tcp_time_wait_lock. The content of the 597 * detached TIME_WAIT connections is protected by the normal perimeters. 598 */ 599 600 typedef struct tcp_squeue_priv_s { 601 kmutex_t tcp_time_wait_lock; 602 /* Protects the next 3 globals */ 603 timeout_id_t tcp_time_wait_tid; 604 tcp_t *tcp_time_wait_head; 605 tcp_t *tcp_time_wait_tail; 606 tcp_t *tcp_free_list; 607 } tcp_squeue_priv_t; 608 609 /* 610 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 611 * Running it every 5 seconds seems to give the best results. 612 */ 613 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 614 615 616 #define TCP_XMIT_LOWATER 4096 617 #define TCP_XMIT_HIWATER 49152 618 #define TCP_RECV_LOWATER 2048 619 #define TCP_RECV_HIWATER 49152 620 621 /* 622 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 623 */ 624 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 625 626 #define TIDUSZ 4096 /* transport interface data unit size */ 627 628 /* 629 * Bind hash list size and has function. It has to be a power of 2 for 630 * hashing. 631 */ 632 #define TCP_BIND_FANOUT_SIZE 512 633 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 634 /* 635 * Size of listen and acceptor hash list. It has to be a power of 2 for 636 * hashing. 637 */ 638 #define TCP_FANOUT_SIZE 256 639 640 #ifdef _ILP32 641 #define TCP_ACCEPTOR_HASH(accid) \ 642 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 643 #else 644 #define TCP_ACCEPTOR_HASH(accid) \ 645 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 646 #endif /* _ILP32 */ 647 648 #define IP_ADDR_CACHE_SIZE 2048 649 #define IP_ADDR_CACHE_HASH(faddr) \ 650 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 651 652 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 653 #define TCP_HSP_HASH_SIZE 256 654 655 #define TCP_HSP_HASH(addr) \ 656 (((addr>>24) ^ (addr >>16) ^ \ 657 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 658 659 /* 660 * TCP options struct returned from tcp_parse_options. 661 */ 662 typedef struct tcp_opt_s { 663 uint32_t tcp_opt_mss; 664 uint32_t tcp_opt_wscale; 665 uint32_t tcp_opt_ts_val; 666 uint32_t tcp_opt_ts_ecr; 667 tcp_t *tcp; 668 } tcp_opt_t; 669 670 /* 671 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 672 */ 673 674 #ifdef _BIG_ENDIAN 675 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 676 (TCPOPT_TSTAMP << 8) | 10) 677 #else 678 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 679 (TCPOPT_NOP << 8) | TCPOPT_NOP) 680 #endif 681 682 /* 683 * Flags returned from tcp_parse_options. 684 */ 685 #define TCP_OPT_MSS_PRESENT 1 686 #define TCP_OPT_WSCALE_PRESENT 2 687 #define TCP_OPT_TSTAMP_PRESENT 4 688 #define TCP_OPT_SACK_OK_PRESENT 8 689 #define TCP_OPT_SACK_PRESENT 16 690 691 /* TCP option length */ 692 #define TCPOPT_NOP_LEN 1 693 #define TCPOPT_MAXSEG_LEN 4 694 #define TCPOPT_WS_LEN 3 695 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 696 #define TCPOPT_TSTAMP_LEN 10 697 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 698 #define TCPOPT_SACK_OK_LEN 2 699 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 700 #define TCPOPT_REAL_SACK_LEN 4 701 #define TCPOPT_MAX_SACK_LEN 36 702 #define TCPOPT_HEADER_LEN 2 703 704 /* TCP cwnd burst factor. */ 705 #define TCP_CWND_INFINITE 65535 706 #define TCP_CWND_SS 3 707 #define TCP_CWND_NORMAL 5 708 709 /* Maximum TCP initial cwin (start/restart). */ 710 #define TCP_MAX_INIT_CWND 8 711 712 /* 713 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 714 * either tcp_slow_start_initial or tcp_slow_start_after idle 715 * depending on the caller. If the upper layer has not used the 716 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 717 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 718 * If the upper layer has changed set the tcp_init_cwnd, just use 719 * it to calculate the tcp_cwnd. 720 */ 721 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 722 { \ 723 if ((tcp)->tcp_init_cwnd == 0) { \ 724 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 725 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 726 } else { \ 727 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 728 } \ 729 tcp->tcp_cwnd_cnt = 0; \ 730 } 731 732 /* TCP Timer control structure */ 733 typedef struct tcpt_s { 734 pfv_t tcpt_pfv; /* The routine we are to call */ 735 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 736 } tcpt_t; 737 738 /* Host Specific Parameter structure */ 739 typedef struct tcp_hsp { 740 struct tcp_hsp *tcp_hsp_next; 741 in6_addr_t tcp_hsp_addr_v6; 742 in6_addr_t tcp_hsp_subnet_v6; 743 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 744 int32_t tcp_hsp_sendspace; 745 int32_t tcp_hsp_recvspace; 746 int32_t tcp_hsp_tstamp; 747 } tcp_hsp_t; 748 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 749 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 750 751 /* 752 * Functions called directly via squeue having a prototype of edesc_t. 753 */ 754 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 755 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 756 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 757 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 758 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 759 void tcp_input(void *arg, mblk_t *mp, void *arg2); 760 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 761 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 762 static void tcp_output(void *arg, mblk_t *mp, void *arg2); 763 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 764 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 765 766 767 /* Prototype for TCP functions */ 768 static void tcp_random_init(void); 769 int tcp_random(void); 770 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 771 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 772 tcp_t *eager); 773 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 774 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 775 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 776 boolean_t user_specified); 777 static void tcp_closei_local(tcp_t *tcp); 778 static void tcp_close_detached(tcp_t *tcp); 779 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 780 mblk_t *idmp, mblk_t **defermp); 781 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 782 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 783 in_port_t dstport, uint_t srcid); 784 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 785 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 786 uint32_t scope_id); 787 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 788 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 789 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 790 static char *tcp_display(tcp_t *tcp, char *, char); 791 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 792 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 793 static void tcp_eager_unlink(tcp_t *tcp); 794 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 795 int unixerr); 796 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 797 int tlierr, int unixerr); 798 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 799 cred_t *cr); 800 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 801 char *value, caddr_t cp, cred_t *cr); 802 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 803 char *value, caddr_t cp, cred_t *cr); 804 static int tcp_tpistate(tcp_t *tcp); 805 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 806 int caller_holds_lock); 807 static void tcp_bind_hash_remove(tcp_t *tcp); 808 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 809 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 810 static void tcp_acceptor_hash_remove(tcp_t *tcp); 811 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 812 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 813 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 814 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 815 static int tcp_header_init_ipv4(tcp_t *tcp); 816 static int tcp_header_init_ipv6(tcp_t *tcp); 817 int tcp_init(tcp_t *tcp, queue_t *q); 818 static int tcp_init_values(tcp_t *tcp); 819 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 820 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 821 t_scalar_t addr_length); 822 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 823 static void tcp_ip_notify(tcp_t *tcp); 824 static mblk_t *tcp_ire_mp(mblk_t *mp); 825 static void tcp_iss_init(tcp_t *tcp); 826 static void tcp_keepalive_killer(void *arg); 827 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 828 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 829 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 830 int *do_disconnectp, int *t_errorp, int *sys_errorp); 831 static boolean_t tcp_allow_connopt_set(int level, int name); 832 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 833 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 834 static int tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr); 835 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 836 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 837 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 838 mblk_t *mblk); 839 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 840 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 841 uchar_t *ptr, uint_t len); 842 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 843 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 844 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 845 caddr_t cp, cred_t *cr); 846 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static void tcp_iss_key_init(uint8_t *phrase, int len); 849 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 850 caddr_t cp, cred_t *cr); 851 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 852 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 853 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 854 static void tcp_reinit(tcp_t *tcp); 855 static void tcp_reinit_values(tcp_t *tcp); 856 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 857 tcp_t *thisstream, cred_t *cr); 858 859 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 860 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 861 static boolean_t tcp_send_rst_chk(void); 862 static void tcp_ss_rexmit(tcp_t *tcp); 863 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 864 static void tcp_process_options(tcp_t *, tcph_t *); 865 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 866 static void tcp_rsrv(queue_t *q); 867 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 868 static int tcp_snmp_state(tcp_t *tcp); 869 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 870 cred_t *cr); 871 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 872 cred_t *cr); 873 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 874 cred_t *cr); 875 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 876 cred_t *cr); 877 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 878 cred_t *cr); 879 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 880 caddr_t cp, cred_t *cr); 881 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 882 caddr_t cp, cred_t *cr); 883 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 884 cred_t *cr); 885 static void tcp_timer(void *arg); 886 static void tcp_timer_callback(void *); 887 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random); 888 static in_port_t tcp_get_next_priv_port(void); 889 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 890 void tcp_wput_accept(queue_t *q, mblk_t *mp); 891 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 892 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 893 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 894 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 895 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 896 const int num_sack_blk, int *usable, uint_t *snxt, 897 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 898 const int mdt_thres); 899 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 900 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 901 const int num_sack_blk, int *usable, uint_t *snxt, 902 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 903 const int mdt_thres); 904 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 905 int num_sack_blk); 906 static void tcp_wsrv(queue_t *q); 907 static int tcp_xmit_end(tcp_t *tcp); 908 void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len); 909 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 910 int32_t *offset, mblk_t **end_mp, uint32_t seq, 911 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 912 static void tcp_ack_timer(void *arg); 913 static mblk_t *tcp_ack_mp(tcp_t *tcp); 914 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 915 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 916 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 917 uint32_t ack, int ctl); 918 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 919 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 920 static int setmaxps(queue_t *q, int maxpsz); 921 static void tcp_set_rto(tcp_t *, time_t); 922 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 923 boolean_t, boolean_t); 924 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 925 boolean_t ipsec_mctl); 926 static boolean_t tcp_cmpbuf(void *a, uint_t alen, 927 boolean_t b_valid, void *b, uint_t blen); 928 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, 929 boolean_t src_valid, void *src, uint_t srclen); 930 static void tcp_savebuf(void **dstp, uint_t *dstlenp, 931 boolean_t src_valid, void *src, uint_t srclen); 932 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 933 char *opt, int optlen); 934 static int tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *); 935 static int tcp_build_hdrs(queue_t *, tcp_t *); 936 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 937 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 938 tcph_t *tcph); 939 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 940 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 941 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 942 boolean_t tcp_reserved_port_check(in_port_t); 943 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 944 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 945 static mblk_t *tcp_mdt_info_mp(mblk_t *); 946 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 947 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 948 const boolean_t, const uint32_t, const uint32_t, 949 const uint32_t, const uint32_t); 950 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 951 const uint_t, const uint_t, boolean_t *); 952 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 953 extern mblk_t *tcp_timermp_alloc(int); 954 extern void tcp_timermp_free(tcp_t *); 955 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 956 static void tcp_stop_lingering(tcp_t *tcp); 957 static void tcp_close_linger_timeout(void *arg); 958 void tcp_ddi_init(void); 959 void tcp_ddi_destroy(void); 960 static void tcp_kstat_init(void); 961 static void tcp_kstat_fini(void); 962 static int tcp_kstat_update(kstat_t *kp, int rw); 963 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 964 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 965 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 966 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 967 tcph_t *tcph, mblk_t *idmp); 968 static squeue_func_t tcp_squeue_switch(int); 969 970 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 971 static int tcp_close(queue_t *, int); 972 static int tcpclose_accept(queue_t *); 973 static int tcp_modclose(queue_t *); 974 static void tcp_wput_mod(queue_t *, mblk_t *); 975 976 static void tcp_squeue_add(squeue_t *); 977 static boolean_t tcp_zcopy_check(tcp_t *); 978 static void tcp_zcopy_notify(tcp_t *); 979 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 980 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 981 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 982 983 /* 984 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 985 * 986 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 987 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 988 * (defined in tcp.h) needs to be filled in and passed into the kernel 989 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 990 * structure contains the four-tuple of a TCP connection and a range of TCP 991 * states (specified by ac_start and ac_end). The use of wildcard addresses 992 * and ports is allowed. Connections with a matching four tuple and a state 993 * within the specified range will be aborted. The valid states for the 994 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 995 * inclusive. 996 * 997 * An application which has its connection aborted by this ioctl will receive 998 * an error that is dependent on the connection state at the time of the abort. 999 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1000 * though a RST packet has been received. If the connection state is equal to 1001 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1002 * and all resources associated with the connection will be freed. 1003 */ 1004 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1005 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1006 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1007 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1008 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1009 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1010 boolean_t); 1011 1012 static struct module_info tcp_rinfo = { 1013 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1014 }; 1015 1016 static struct module_info tcp_winfo = { 1017 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1018 }; 1019 1020 /* 1021 * Entry points for TCP as a module. It only allows SNMP requests 1022 * to pass through. 1023 */ 1024 struct qinit tcp_mod_rinit = { 1025 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1026 }; 1027 1028 struct qinit tcp_mod_winit = { 1029 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1030 &tcp_rinfo 1031 }; 1032 1033 /* 1034 * Entry points for TCP as a device. The normal case which supports 1035 * the TCP functionality. 1036 */ 1037 struct qinit tcp_rinit = { 1038 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1039 }; 1040 1041 struct qinit tcp_winit = { 1042 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1043 }; 1044 1045 /* Initial entry point for TCP in socket mode. */ 1046 struct qinit tcp_sock_winit = { 1047 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1048 }; 1049 1050 /* 1051 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1052 * an accept. Avoid allocating data structures since eager has already 1053 * been created. 1054 */ 1055 struct qinit tcp_acceptor_rinit = { 1056 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1057 }; 1058 1059 struct qinit tcp_acceptor_winit = { 1060 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1061 }; 1062 1063 /* 1064 * Entry points for TCP loopback (read side only) 1065 */ 1066 struct qinit tcp_loopback_rinit = { 1067 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1068 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1069 }; 1070 1071 struct streamtab tcpinfo = { 1072 &tcp_rinit, &tcp_winit 1073 }; 1074 1075 extern squeue_func_t tcp_squeue_wput_proc; 1076 extern squeue_func_t tcp_squeue_timer_proc; 1077 1078 /* Protected by tcp_g_q_lock */ 1079 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1080 kmutex_t tcp_g_q_lock; 1081 1082 /* Protected by tcp_hsp_lock */ 1083 /* 1084 * XXX The host param mechanism should go away and instead we should use 1085 * the metrics associated with the routes to determine the default sndspace 1086 * and rcvspace. 1087 */ 1088 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1089 krwlock_t tcp_hsp_lock; 1090 1091 /* 1092 * Extra privileged ports. In host byte order. 1093 * Protected by tcp_epriv_port_lock. 1094 */ 1095 #define TCP_NUM_EPRIV_PORTS 64 1096 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1097 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1098 kmutex_t tcp_epriv_port_lock; 1099 1100 /* 1101 * The smallest anonymous port in the priviledged port range which TCP 1102 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1103 */ 1104 static in_port_t tcp_min_anonpriv_port = 512; 1105 1106 /* Only modified during _init and _fini thus no locking is needed. */ 1107 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1108 1109 /* Hint not protected by any lock */ 1110 static uint_t tcp_next_port_to_try; 1111 1112 1113 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1114 static tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1115 1116 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1117 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1118 1119 /* 1120 * TCP has a private interface for other kernel modules to reserve a 1121 * port range for them to use. Once reserved, TCP will not use any ports 1122 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1123 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1124 * has to be verified. 1125 * 1126 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1127 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1128 * range is [port a, port b] inclusive. And each port range is between 1129 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1130 * 1131 * Note that the default anonymous port range starts from 32768. There is 1132 * no port "collision" between that and the reserved port range. If there 1133 * is port collision (because the default smallest anonymous port is lowered 1134 * or some apps specifically bind to ports in the reserved port range), the 1135 * system may not be able to reserve a port range even there are enough 1136 * unbound ports as a reserved port range contains consecutive ports . 1137 */ 1138 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1139 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1140 #define TCP_SMALLEST_RESERVED_PORT 10240 1141 #define TCP_LARGEST_RESERVED_PORT 20480 1142 1143 /* Structure to represent those reserved port ranges. */ 1144 typedef struct tcp_rport_s { 1145 in_port_t lo_port; 1146 in_port_t hi_port; 1147 tcp_t **temp_tcp_array; 1148 } tcp_rport_t; 1149 1150 /* The reserved port array. */ 1151 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1152 1153 /* Locks to protect the tcp_reserved_ports array. */ 1154 static krwlock_t tcp_reserved_port_lock; 1155 1156 /* The number of ranges in the array. */ 1157 uint32_t tcp_reserved_port_array_size = 0; 1158 1159 /* 1160 * MIB-2 stuff for SNMP 1161 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1162 */ 1163 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1164 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1165 1166 boolean_t tcp_icmp_source_quench = B_FALSE; 1167 /* 1168 * Following assumes TPI alignment requirements stay along 32 bit 1169 * boundaries 1170 */ 1171 #define ROUNDUP32(x) \ 1172 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1173 1174 /* Template for response to info request. */ 1175 static struct T_info_ack tcp_g_t_info_ack = { 1176 T_INFO_ACK, /* PRIM_type */ 1177 0, /* TSDU_size */ 1178 T_INFINITE, /* ETSDU_size */ 1179 T_INVALID, /* CDATA_size */ 1180 T_INVALID, /* DDATA_size */ 1181 sizeof (sin_t), /* ADDR_size */ 1182 0, /* OPT_size - not initialized here */ 1183 TIDUSZ, /* TIDU_size */ 1184 T_COTS_ORD, /* SERV_type */ 1185 TCPS_IDLE, /* CURRENT_state */ 1186 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1187 }; 1188 1189 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1190 T_INFO_ACK, /* PRIM_type */ 1191 0, /* TSDU_size */ 1192 T_INFINITE, /* ETSDU_size */ 1193 T_INVALID, /* CDATA_size */ 1194 T_INVALID, /* DDATA_size */ 1195 sizeof (sin6_t), /* ADDR_size */ 1196 0, /* OPT_size - not initialized here */ 1197 TIDUSZ, /* TIDU_size */ 1198 T_COTS_ORD, /* SERV_type */ 1199 TCPS_IDLE, /* CURRENT_state */ 1200 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1201 }; 1202 1203 #define MS 1L 1204 #define SECONDS (1000 * MS) 1205 #define MINUTES (60 * SECONDS) 1206 #define HOURS (60 * MINUTES) 1207 #define DAYS (24 * HOURS) 1208 1209 #define PARAM_MAX (~(uint32_t)0) 1210 1211 /* Max size IP datagram is 64k - 1 */ 1212 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1213 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1214 /* Max of the above */ 1215 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1216 1217 /* Largest TCP port number */ 1218 #define TCP_MAX_PORT (64 * 1024 - 1) 1219 1220 /* 1221 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1222 * layer header. It has to be a multiple of 4. 1223 */ 1224 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1225 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1226 1227 /* 1228 * All of these are alterable, within the min/max values given, at run time. 1229 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1230 * per the TCP spec. 1231 */ 1232 /* BEGIN CSTYLED */ 1233 tcpparam_t tcp_param_arr[] = { 1234 /*min max value name */ 1235 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1236 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1237 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1238 { 1, 1024, 1, "tcp_conn_req_min" }, 1239 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1240 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1241 { 0, 10, 0, "tcp_debug" }, 1242 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1243 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1244 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1245 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1246 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1247 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1248 { 1, 255, 64, "tcp_ipv4_ttl"}, 1249 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1250 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1251 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1252 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1253 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1254 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1255 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1256 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1257 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1258 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1259 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1260 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1261 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1262 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1263 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1264 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1265 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1266 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1267 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1268 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1269 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1270 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1271 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1272 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1273 /* 1274 * Question: What default value should I set for tcp_strong_iss? 1275 */ 1276 { 0, 2, 1, "tcp_strong_iss"}, 1277 { 0, 65536, 20, "tcp_rtt_updates"}, 1278 { 0, 1, 1, "tcp_wscale_always"}, 1279 { 0, 1, 0, "tcp_tstamp_always"}, 1280 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1281 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1282 { 0, 16, 2, "tcp_deferred_acks_max"}, 1283 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1284 { 1, 4, 4, "tcp_slow_start_initial"}, 1285 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1286 { 0, 2, 2, "tcp_sack_permitted"}, 1287 { 0, 1, 0, "tcp_trace"}, 1288 { 0, 1, 1, "tcp_compression_enabled"}, 1289 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1290 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1291 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1292 { 0, 1, 0, "tcp_rev_src_routes"}, 1293 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1294 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1295 { 0, 16, 8, "tcp_local_dacks_max"}, 1296 { 0, 2, 1, "tcp_ecn_permitted"}, 1297 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1298 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1299 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1300 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1301 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1302 }; 1303 /* END CSTYLED */ 1304 1305 /* 1306 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1307 * each header fragment in the header buffer. Each parameter value has 1308 * to be a multiple of 4 (32-bit aligned). 1309 */ 1310 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1311 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1312 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1313 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1314 1315 /* 1316 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1317 * the maximum number of payload buffers associated per Multidata. 1318 */ 1319 static tcpparam_t tcp_mdt_max_pbufs_param = 1320 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1321 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1322 1323 /* Round up the value to the nearest mss. */ 1324 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1325 1326 /* 1327 * Set ECN capable transport (ECT) code point in IP header. 1328 * 1329 * Note that there are 2 ECT code points '01' and '10', which are called 1330 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1331 * point ECT(0) for TCP as described in RFC 2481. 1332 */ 1333 #define SET_ECT(tcp, iph) \ 1334 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1335 /* We need to clear the code point first. */ \ 1336 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1337 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1338 } else { \ 1339 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1340 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1341 } 1342 1343 /* 1344 * The format argument to pass to tcp_display(). 1345 * DISP_PORT_ONLY means that the returned string has only port info. 1346 * DISP_ADDR_AND_PORT means that the returned string also contains the 1347 * remote and local IP address. 1348 */ 1349 #define DISP_PORT_ONLY 1 1350 #define DISP_ADDR_AND_PORT 2 1351 1352 /* 1353 * This controls the rate some ndd info report functions can be used 1354 * by non-priviledged users. It stores the last time such info is 1355 * requested. When those report functions are called again, this 1356 * is checked with the current time and compare with the ndd param 1357 * tcp_ndd_get_info_interval. 1358 */ 1359 static clock_t tcp_last_ndd_get_info_time = 0; 1360 #define NDD_TOO_QUICK_MSG \ 1361 "ndd get info rate too high for non-priviledged users, try again " \ 1362 "later.\n" 1363 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1364 1365 #define IS_VMLOANED_MBLK(mp) \ 1366 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1367 1368 /* 1369 * These two variables control the rate for TCP to generate RSTs in 1370 * response to segments not belonging to any connections. We limit 1371 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1372 * each 1 second interval. This is to protect TCP against DoS attack. 1373 */ 1374 static clock_t tcp_last_rst_intrvl; 1375 static uint32_t tcp_rst_cnt; 1376 1377 /* The number of RST not sent because of the rate limit. */ 1378 static uint32_t tcp_rst_unsent; 1379 1380 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1381 boolean_t tcp_mdt_chain = B_TRUE; 1382 1383 /* 1384 * MDT threshold in the form of effective send MSS multiplier; we take 1385 * the MDT path if the amount of unsent data exceeds the threshold value 1386 * (default threshold is 1*SMSS). 1387 */ 1388 uint_t tcp_mdt_smss_threshold = 1; 1389 1390 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1391 1392 /* 1393 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1394 * tunable settable via NDD. Otherwise, the per-connection behavior is 1395 * determined dynamically during tcp_adapt_ire(), which is the default. 1396 */ 1397 boolean_t tcp_static_maxpsz = B_FALSE; 1398 1399 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1400 uint32_t tcp_random_anon_port = 1; 1401 1402 /* 1403 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1404 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1405 * data, TCP will not respond with an ACK. RFC 793 requires that 1406 * TCP responds with an ACK for such a bogus ACK. By not following 1407 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1408 * an attacker successfully spoofs an acceptable segment to our 1409 * peer; or when our peer is "confused." 1410 */ 1411 uint32_t tcp_drop_ack_unsent_cnt = 10; 1412 1413 /* 1414 * Hook functions to enable cluster networking 1415 * On non-clustered systems these vectors must always be NULL. 1416 */ 1417 1418 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1419 uint8_t *laddrp, in_port_t lport) = NULL; 1420 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1421 uint8_t *laddrp, in_port_t lport) = NULL; 1422 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1423 uint8_t *laddrp, in_port_t lport, 1424 uint8_t *faddrp, in_port_t fport) = NULL; 1425 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1426 uint8_t *laddrp, in_port_t lport, 1427 uint8_t *faddrp, in_port_t fport) = NULL; 1428 1429 /* 1430 * The following are defined in ip.c 1431 */ 1432 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1433 uint8_t *laddrp); 1434 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1435 uint8_t *laddrp, uint8_t *faddrp); 1436 1437 #define CL_INET_CONNECT(tcp) { \ 1438 if (cl_inet_connect != NULL) { \ 1439 /* \ 1440 * Running in cluster mode - register active connection \ 1441 * information \ 1442 */ \ 1443 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1444 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1445 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1446 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1447 (in_port_t)(tcp)->tcp_lport, \ 1448 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1449 (in_port_t)(tcp)->tcp_fport); \ 1450 } \ 1451 } else { \ 1452 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1453 &(tcp)->tcp_ip6h->ip6_src)) {\ 1454 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1455 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1456 (in_port_t)(tcp)->tcp_lport, \ 1457 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1458 (in_port_t)(tcp)->tcp_fport); \ 1459 } \ 1460 } \ 1461 } \ 1462 } 1463 1464 #define CL_INET_DISCONNECT(tcp) { \ 1465 if (cl_inet_disconnect != NULL) { \ 1466 /* \ 1467 * Running in cluster mode - deregister active \ 1468 * connection information \ 1469 */ \ 1470 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1471 if ((tcp)->tcp_ip_src != 0) { \ 1472 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1473 AF_INET, \ 1474 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1475 (in_port_t)(tcp)->tcp_lport, \ 1476 (uint8_t *) \ 1477 (&((tcp)->tcp_ipha->ipha_dst)),\ 1478 (in_port_t)(tcp)->tcp_fport); \ 1479 } \ 1480 } else { \ 1481 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1482 &(tcp)->tcp_ip_src_v6)) { \ 1483 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1484 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1485 (in_port_t)(tcp)->tcp_lport, \ 1486 (uint8_t *) \ 1487 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1488 (in_port_t)(tcp)->tcp_fport); \ 1489 } \ 1490 } \ 1491 } \ 1492 } 1493 1494 /* 1495 * Cluster networking hook for traversing current connection list. 1496 * This routine is used to extract the current list of live connections 1497 * which must continue to to be dispatched to this node. 1498 */ 1499 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1500 1501 /* 1502 * Figure out the value of window scale opton. Note that the rwnd is 1503 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1504 * We cannot find the scale value and then do a round up of tcp_rwnd 1505 * because the scale value may not be correct after that. 1506 * 1507 * Set the compiler flag to make this function inline. 1508 */ 1509 static void 1510 tcp_set_ws_value(tcp_t *tcp) 1511 { 1512 int i; 1513 uint32_t rwnd = tcp->tcp_rwnd; 1514 1515 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1516 i++, rwnd >>= 1) 1517 ; 1518 tcp->tcp_rcv_ws = i; 1519 } 1520 1521 /* 1522 * Remove a connection from the list of detached TIME_WAIT connections. 1523 */ 1524 static void 1525 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1526 { 1527 boolean_t locked = B_FALSE; 1528 1529 if (tcp_time_wait == NULL) { 1530 tcp_time_wait = *((tcp_squeue_priv_t **) 1531 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1532 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1533 locked = B_TRUE; 1534 } 1535 1536 if (tcp->tcp_time_wait_expire == 0) { 1537 ASSERT(tcp->tcp_time_wait_next == NULL); 1538 ASSERT(tcp->tcp_time_wait_prev == NULL); 1539 if (locked) 1540 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1541 return; 1542 } 1543 ASSERT(TCP_IS_DETACHED(tcp)); 1544 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1545 1546 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1547 ASSERT(tcp->tcp_time_wait_prev == NULL); 1548 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1549 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1550 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1551 NULL; 1552 } else { 1553 tcp_time_wait->tcp_time_wait_tail = NULL; 1554 } 1555 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1556 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1557 ASSERT(tcp->tcp_time_wait_next == NULL); 1558 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1559 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1560 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1561 } else { 1562 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1563 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1564 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1565 tcp->tcp_time_wait_next; 1566 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1567 tcp->tcp_time_wait_prev; 1568 } 1569 tcp->tcp_time_wait_next = NULL; 1570 tcp->tcp_time_wait_prev = NULL; 1571 tcp->tcp_time_wait_expire = 0; 1572 1573 if (locked) 1574 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1575 } 1576 1577 /* 1578 * Add a connection to the list of detached TIME_WAIT connections 1579 * and set its time to expire. 1580 */ 1581 static void 1582 tcp_time_wait_append(tcp_t *tcp) 1583 { 1584 tcp_squeue_priv_t *tcp_time_wait = 1585 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1586 SQPRIVATE_TCP)); 1587 1588 tcp_timers_stop(tcp); 1589 1590 /* Freed above */ 1591 ASSERT(tcp->tcp_timer_tid == 0); 1592 ASSERT(tcp->tcp_ack_tid == 0); 1593 1594 /* must have happened at the time of detaching the tcp */ 1595 ASSERT(tcp->tcp_ptpahn == NULL); 1596 ASSERT(tcp->tcp_flow_stopped == 0); 1597 ASSERT(tcp->tcp_time_wait_next == NULL); 1598 ASSERT(tcp->tcp_time_wait_prev == NULL); 1599 ASSERT(tcp->tcp_time_wait_expire == NULL); 1600 ASSERT(tcp->tcp_listener == NULL); 1601 1602 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1603 /* 1604 * The value computed below in tcp->tcp_time_wait_expire may 1605 * appear negative or wrap around. That is ok since our 1606 * interest is only in the difference between the current lbolt 1607 * value and tcp->tcp_time_wait_expire. But the value should not 1608 * be zero, since it means the tcp is not in the TIME_WAIT list. 1609 * The corresponding comparison in tcp_time_wait_collector() uses 1610 * modular arithmetic. 1611 */ 1612 tcp->tcp_time_wait_expire += 1613 drv_usectohz(tcp_time_wait_interval * 1000); 1614 if (tcp->tcp_time_wait_expire == 0) 1615 tcp->tcp_time_wait_expire = 1; 1616 1617 ASSERT(TCP_IS_DETACHED(tcp)); 1618 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1619 ASSERT(tcp->tcp_time_wait_next == NULL); 1620 ASSERT(tcp->tcp_time_wait_prev == NULL); 1621 TCP_DBGSTAT(tcp_time_wait); 1622 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1623 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1624 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1625 tcp_time_wait->tcp_time_wait_head = tcp; 1626 } else { 1627 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1628 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1629 TCPS_TIME_WAIT); 1630 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1631 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1632 } 1633 tcp_time_wait->tcp_time_wait_tail = tcp; 1634 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1635 } 1636 1637 /* ARGSUSED */ 1638 void 1639 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1640 { 1641 conn_t *connp = (conn_t *)arg; 1642 tcp_t *tcp = connp->conn_tcp; 1643 1644 ASSERT(tcp != NULL); 1645 if (tcp->tcp_state == TCPS_CLOSED) { 1646 return; 1647 } 1648 1649 ASSERT((tcp->tcp_family == AF_INET && 1650 tcp->tcp_ipversion == IPV4_VERSION) || 1651 (tcp->tcp_family == AF_INET6 && 1652 (tcp->tcp_ipversion == IPV4_VERSION || 1653 tcp->tcp_ipversion == IPV6_VERSION))); 1654 ASSERT(!tcp->tcp_listener); 1655 1656 TCP_STAT(tcp_time_wait_reap); 1657 ASSERT(TCP_IS_DETACHED(tcp)); 1658 1659 /* 1660 * Because they have no upstream client to rebind or tcp_close() 1661 * them later, we axe the connection here and now. 1662 */ 1663 tcp_close_detached(tcp); 1664 } 1665 1666 void 1667 tcp_cleanup(tcp_t *tcp) 1668 { 1669 mblk_t *mp; 1670 char *tcp_iphc; 1671 int tcp_iphc_len; 1672 int tcp_hdr_grown; 1673 tcp_sack_info_t *tcp_sack_info; 1674 conn_t *connp = tcp->tcp_connp; 1675 1676 tcp_bind_hash_remove(tcp); 1677 tcp_free(tcp); 1678 1679 conn_delete_ire(connp, NULL); 1680 if (connp->conn_flags & IPCL_TCPCONN) { 1681 if (connp->conn_latch != NULL) 1682 IPLATCH_REFRELE(connp->conn_latch); 1683 if (connp->conn_policy != NULL) 1684 IPPH_REFRELE(connp->conn_policy); 1685 } 1686 1687 /* 1688 * Since we will bzero the entire structure, we need to 1689 * remove it and reinsert it in global hash list. We 1690 * know the walkers can't get to this conn because we 1691 * had set CONDEMNED flag earlier and checked reference 1692 * under conn_lock so walker won't pick it and when we 1693 * go the ipcl_globalhash_remove() below, no walker 1694 * can get to it. 1695 */ 1696 ipcl_globalhash_remove(connp); 1697 1698 /* Save some state */ 1699 mp = tcp->tcp_timercache; 1700 1701 tcp_sack_info = tcp->tcp_sack_info; 1702 tcp_iphc = tcp->tcp_iphc; 1703 tcp_iphc_len = tcp->tcp_iphc_len; 1704 tcp_hdr_grown = tcp->tcp_hdr_grown; 1705 1706 bzero(connp, sizeof (conn_t)); 1707 bzero(tcp, sizeof (tcp_t)); 1708 1709 /* restore the state */ 1710 tcp->tcp_timercache = mp; 1711 1712 tcp->tcp_sack_info = tcp_sack_info; 1713 tcp->tcp_iphc = tcp_iphc; 1714 tcp->tcp_iphc_len = tcp_iphc_len; 1715 tcp->tcp_hdr_grown = tcp_hdr_grown; 1716 1717 1718 tcp->tcp_connp = connp; 1719 1720 connp->conn_tcp = tcp; 1721 connp->conn_flags = IPCL_TCPCONN; 1722 connp->conn_state_flags = CONN_INCIPIENT; 1723 connp->conn_ulp = IPPROTO_TCP; 1724 connp->conn_ref = 1; 1725 1726 ipcl_globalhash_insert(connp); 1727 } 1728 1729 /* 1730 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1731 * is done forwards from the head. 1732 */ 1733 /* ARGSUSED */ 1734 void 1735 tcp_time_wait_collector(void *arg) 1736 { 1737 tcp_t *tcp; 1738 clock_t now; 1739 mblk_t *mp; 1740 conn_t *connp; 1741 kmutex_t *lock; 1742 1743 squeue_t *sqp = (squeue_t *)arg; 1744 tcp_squeue_priv_t *tcp_time_wait = 1745 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1746 1747 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1748 tcp_time_wait->tcp_time_wait_tid = 0; 1749 1750 if (tcp_time_wait->tcp_free_list != NULL && 1751 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1752 TCP_STAT(tcp_freelist_cleanup); 1753 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1754 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1755 CONN_DEC_REF(tcp->tcp_connp); 1756 } 1757 } 1758 1759 /* 1760 * In order to reap time waits reliably, we should use a 1761 * source of time that is not adjustable by the user -- hence 1762 * the call to ddi_get_lbolt(). 1763 */ 1764 now = ddi_get_lbolt(); 1765 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1766 /* 1767 * Compare times using modular arithmetic, since 1768 * lbolt can wrapover. 1769 */ 1770 if ((now - tcp->tcp_time_wait_expire) < 0) { 1771 break; 1772 } 1773 1774 tcp_time_wait_remove(tcp, tcp_time_wait); 1775 1776 connp = tcp->tcp_connp; 1777 ASSERT(connp->conn_fanout != NULL); 1778 lock = &connp->conn_fanout->connf_lock; 1779 /* 1780 * This is essentially a TW reclaim fast path optimization for 1781 * performance where the timewait collector checks under the 1782 * fanout lock (so that no one else can get access to the 1783 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1784 * the classifier hash list. If ref count is indeed 2, we can 1785 * just remove the conn under the fanout lock and avoid 1786 * cleaning up the conn under the squeue, provided that 1787 * clustering callbacks are not enabled. If clustering is 1788 * enabled, we need to make the clustering callback before 1789 * setting the CONDEMNED flag and after dropping all locks and 1790 * so we forego this optimization and fall back to the slow 1791 * path. Also please see the comments in tcp_closei_local 1792 * regarding the refcnt logic. 1793 * 1794 * Since we are holding the tcp_time_wait_lock, its better 1795 * not to block on the fanout_lock because other connections 1796 * can't add themselves to time_wait list. So we do a 1797 * tryenter instead of mutex_enter. 1798 */ 1799 if (mutex_tryenter(lock)) { 1800 mutex_enter(&connp->conn_lock); 1801 if ((connp->conn_ref == 2) && 1802 (cl_inet_disconnect == NULL)) { 1803 ipcl_hash_remove_locked(connp, 1804 connp->conn_fanout); 1805 /* 1806 * Set the CONDEMNED flag now itself so that 1807 * the refcnt cannot increase due to any 1808 * walker. But we have still not cleaned up 1809 * conn_ire_cache. This is still ok since 1810 * we are going to clean it up in tcp_cleanup 1811 * immediately and any interface unplumb 1812 * thread will wait till the ire is blown away 1813 */ 1814 connp->conn_state_flags |= CONN_CONDEMNED; 1815 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1816 mutex_exit(lock); 1817 mutex_exit(&connp->conn_lock); 1818 tcp_cleanup(tcp); 1819 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1820 tcp->tcp_time_wait_next = 1821 tcp_time_wait->tcp_free_list; 1822 tcp_time_wait->tcp_free_list = tcp; 1823 continue; 1824 } else { 1825 CONN_INC_REF_LOCKED(connp); 1826 mutex_exit(lock); 1827 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1828 mutex_exit(&connp->conn_lock); 1829 /* 1830 * We can reuse the closemp here since conn has 1831 * detached (otherwise we wouldn't even be in 1832 * time_wait list). 1833 */ 1834 mp = &tcp->tcp_closemp; 1835 squeue_fill(connp->conn_sqp, mp, 1836 tcp_timewait_output, connp, 1837 SQTAG_TCP_TIMEWAIT); 1838 } 1839 } else { 1840 mutex_enter(&connp->conn_lock); 1841 CONN_INC_REF_LOCKED(connp); 1842 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1843 mutex_exit(&connp->conn_lock); 1844 /* 1845 * We can reuse the closemp here since conn has 1846 * detached (otherwise we wouldn't even be in 1847 * time_wait list). 1848 */ 1849 mp = &tcp->tcp_closemp; 1850 squeue_fill(connp->conn_sqp, mp, 1851 tcp_timewait_output, connp, 0); 1852 } 1853 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1854 } 1855 1856 if (tcp_time_wait->tcp_free_list != NULL) 1857 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1858 1859 tcp_time_wait->tcp_time_wait_tid = 1860 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1861 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1862 } 1863 1864 /* 1865 * Reply to a clients T_CONN_RES TPI message. This function 1866 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1867 * on the acceptor STREAM and processed in tcp_wput_accept(). 1868 * Read the block comment on top of tcp_conn_request(). 1869 */ 1870 static void 1871 tcp_accept(tcp_t *listener, mblk_t *mp) 1872 { 1873 tcp_t *acceptor; 1874 tcp_t *eager; 1875 tcp_t *tcp; 1876 struct T_conn_res *tcr; 1877 t_uscalar_t acceptor_id; 1878 t_scalar_t seqnum; 1879 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1880 mblk_t *ok_mp; 1881 mblk_t *mp1; 1882 1883 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1884 tcp_err_ack(listener, mp, TPROTO, 0); 1885 return; 1886 } 1887 tcr = (struct T_conn_res *)mp->b_rptr; 1888 1889 /* 1890 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1891 * read side queue of the streams device underneath us i.e. the 1892 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1893 * look it up in the queue_hash. Under LP64 it sends down the 1894 * minor_t of the accepting endpoint. 1895 * 1896 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1897 * fanout hash lock is held. 1898 * This prevents any thread from entering the acceptor queue from 1899 * below (since it has not been hard bound yet i.e. any inbound 1900 * packets will arrive on the listener or default tcp queue and 1901 * go through tcp_lookup). 1902 * The CONN_INC_REF will prevent the acceptor from closing. 1903 * 1904 * XXX It is still possible for a tli application to send down data 1905 * on the accepting stream while another thread calls t_accept. 1906 * This should not be a problem for well-behaved applications since 1907 * the T_OK_ACK is sent after the queue swapping is completed. 1908 * 1909 * If the accepting fd is the same as the listening fd, avoid 1910 * queue hash lookup since that will return an eager listener in a 1911 * already established state. 1912 */ 1913 acceptor_id = tcr->ACCEPTOR_id; 1914 mutex_enter(&listener->tcp_eager_lock); 1915 if (listener->tcp_acceptor_id == acceptor_id) { 1916 eager = listener->tcp_eager_next_q; 1917 /* only count how many T_CONN_INDs so don't count q0 */ 1918 if ((listener->tcp_conn_req_cnt_q != 1) || 1919 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1920 mutex_exit(&listener->tcp_eager_lock); 1921 tcp_err_ack(listener, mp, TBADF, 0); 1922 return; 1923 } 1924 if (listener->tcp_conn_req_cnt_q0 != 0) { 1925 /* Throw away all the eagers on q0. */ 1926 tcp_eager_cleanup(listener, 1); 1927 } 1928 if (listener->tcp_syn_defense) { 1929 listener->tcp_syn_defense = B_FALSE; 1930 if (listener->tcp_ip_addr_cache != NULL) { 1931 kmem_free(listener->tcp_ip_addr_cache, 1932 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1933 listener->tcp_ip_addr_cache = NULL; 1934 } 1935 } 1936 /* 1937 * Transfer tcp_conn_req_max to the eager so that when 1938 * a disconnect occurs we can revert the endpoint to the 1939 * listen state. 1940 */ 1941 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1942 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1943 /* 1944 * Get a reference on the acceptor just like the 1945 * tcp_acceptor_hash_lookup below. 1946 */ 1947 acceptor = listener; 1948 CONN_INC_REF(acceptor->tcp_connp); 1949 } else { 1950 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1951 if (acceptor == NULL) { 1952 if (listener->tcp_debug) { 1953 (void) strlog(TCP_MOD_ID, 0, 1, 1954 SL_ERROR|SL_TRACE, 1955 "tcp_accept: did not find acceptor 0x%x\n", 1956 acceptor_id); 1957 } 1958 mutex_exit(&listener->tcp_eager_lock); 1959 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1960 return; 1961 } 1962 /* 1963 * Verify acceptor state. The acceptable states for an acceptor 1964 * include TCPS_IDLE and TCPS_BOUND. 1965 */ 1966 switch (acceptor->tcp_state) { 1967 case TCPS_IDLE: 1968 /* FALLTHRU */ 1969 case TCPS_BOUND: 1970 break; 1971 default: 1972 CONN_DEC_REF(acceptor->tcp_connp); 1973 mutex_exit(&listener->tcp_eager_lock); 1974 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1975 return; 1976 } 1977 } 1978 1979 /* The listener must be in TCPS_LISTEN */ 1980 if (listener->tcp_state != TCPS_LISTEN) { 1981 CONN_DEC_REF(acceptor->tcp_connp); 1982 mutex_exit(&listener->tcp_eager_lock); 1983 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1984 return; 1985 } 1986 1987 /* 1988 * Rendezvous with an eager connection request packet hanging off 1989 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 1990 * tcp structure when the connection packet arrived in 1991 * tcp_conn_request(). 1992 */ 1993 seqnum = tcr->SEQ_number; 1994 eager = listener; 1995 do { 1996 eager = eager->tcp_eager_next_q; 1997 if (eager == NULL) { 1998 CONN_DEC_REF(acceptor->tcp_connp); 1999 mutex_exit(&listener->tcp_eager_lock); 2000 tcp_err_ack(listener, mp, TBADSEQ, 0); 2001 return; 2002 } 2003 } while (eager->tcp_conn_req_seqnum != seqnum); 2004 mutex_exit(&listener->tcp_eager_lock); 2005 2006 /* 2007 * At this point, both acceptor and listener have 2 ref 2008 * that they begin with. Acceptor has one additional ref 2009 * we placed in lookup while listener has 3 additional 2010 * ref for being behind the squeue (tcp_accept() is 2011 * done on listener's squeue); being in classifier hash; 2012 * and eager's ref on listener. 2013 */ 2014 ASSERT(listener->tcp_connp->conn_ref >= 5); 2015 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2016 2017 /* 2018 * The eager at this point is set in its own squeue and 2019 * could easily have been killed (tcp_accept_finish will 2020 * deal with that) because of a TH_RST so we can only 2021 * ASSERT for a single ref. 2022 */ 2023 ASSERT(eager->tcp_connp->conn_ref >= 1); 2024 2025 /* Pre allocate the stroptions mblk also */ 2026 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2027 if (opt_mp == NULL) { 2028 CONN_DEC_REF(acceptor->tcp_connp); 2029 CONN_DEC_REF(eager->tcp_connp); 2030 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2031 return; 2032 } 2033 DB_TYPE(opt_mp) = M_SETOPTS; 2034 opt_mp->b_wptr += sizeof (struct stroptions); 2035 2036 /* 2037 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2038 * from listener to acceptor. The message is chained on opt_mp 2039 * which will be sent onto eager's squeue. 2040 */ 2041 if (listener->tcp_bound_if != 0) { 2042 /* allocate optmgmt req */ 2043 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2044 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2045 sizeof (int)); 2046 if (mp1 != NULL) 2047 linkb(opt_mp, mp1); 2048 } 2049 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2050 uint_t on = 1; 2051 2052 /* allocate optmgmt req */ 2053 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2054 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2055 if (mp1 != NULL) 2056 linkb(opt_mp, mp1); 2057 } 2058 2059 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2060 if ((mp1 = copymsg(mp)) == NULL) { 2061 CONN_DEC_REF(acceptor->tcp_connp); 2062 CONN_DEC_REF(eager->tcp_connp); 2063 freemsg(opt_mp); 2064 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2065 return; 2066 } 2067 2068 tcr = (struct T_conn_res *)mp1->b_rptr; 2069 2070 /* 2071 * This is an expanded version of mi_tpi_ok_ack_alloc() 2072 * which allocates a larger mblk and appends the new 2073 * local address to the ok_ack. The address is copied by 2074 * soaccept() for getsockname(). 2075 */ 2076 { 2077 int extra; 2078 2079 extra = (eager->tcp_family == AF_INET) ? 2080 sizeof (sin_t) : sizeof (sin6_t); 2081 2082 /* 2083 * Try to re-use mp, if possible. Otherwise, allocate 2084 * an mblk and return it as ok_mp. In any case, mp 2085 * is no longer usable upon return. 2086 */ 2087 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2088 CONN_DEC_REF(acceptor->tcp_connp); 2089 CONN_DEC_REF(eager->tcp_connp); 2090 freemsg(opt_mp); 2091 /* Original mp has been freed by now, so use mp1 */ 2092 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2093 return; 2094 } 2095 2096 mp = NULL; /* We should never use mp after this point */ 2097 2098 switch (extra) { 2099 case sizeof (sin_t): { 2100 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2101 2102 ok_mp->b_wptr += extra; 2103 sin->sin_family = AF_INET; 2104 sin->sin_port = eager->tcp_lport; 2105 sin->sin_addr.s_addr = 2106 eager->tcp_ipha->ipha_src; 2107 break; 2108 } 2109 case sizeof (sin6_t): { 2110 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2111 2112 ok_mp->b_wptr += extra; 2113 sin6->sin6_family = AF_INET6; 2114 sin6->sin6_port = eager->tcp_lport; 2115 if (eager->tcp_ipversion == IPV4_VERSION) { 2116 sin6->sin6_flowinfo = 0; 2117 IN6_IPADDR_TO_V4MAPPED( 2118 eager->tcp_ipha->ipha_src, 2119 &sin6->sin6_addr); 2120 } else { 2121 ASSERT(eager->tcp_ip6h != NULL); 2122 sin6->sin6_flowinfo = 2123 eager->tcp_ip6h->ip6_vcf & 2124 ~IPV6_VERS_AND_FLOW_MASK; 2125 sin6->sin6_addr = 2126 eager->tcp_ip6h->ip6_src; 2127 } 2128 break; 2129 } 2130 default: 2131 break; 2132 } 2133 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2134 } 2135 2136 /* 2137 * If there are no options we know that the T_CONN_RES will 2138 * succeed. However, we can't send the T_OK_ACK upstream until 2139 * the tcp_accept_swap is done since it would be dangerous to 2140 * let the application start using the new fd prior to the swap. 2141 */ 2142 tcp_accept_swap(listener, acceptor, eager); 2143 2144 /* 2145 * tcp_accept_swap unlinks eager from listener but does not drop 2146 * the eager's reference on the listener. 2147 */ 2148 ASSERT(eager->tcp_listener == NULL); 2149 ASSERT(listener->tcp_connp->conn_ref >= 5); 2150 2151 /* 2152 * The eager is now associated with its own queue. Insert in 2153 * the hash so that the connection can be reused for a future 2154 * T_CONN_RES. 2155 */ 2156 tcp_acceptor_hash_insert(acceptor_id, eager); 2157 2158 /* 2159 * We now do the processing of options with T_CONN_RES. 2160 * We delay till now since we wanted to have queue to pass to 2161 * option processing routines that points back to the right 2162 * instance structure which does not happen until after 2163 * tcp_accept_swap(). 2164 * 2165 * Note: 2166 * The sanity of the logic here assumes that whatever options 2167 * are appropriate to inherit from listner=>eager are done 2168 * before this point, and whatever were to be overridden (or not) 2169 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2170 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2171 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2172 * This may not be true at this point in time but can be fixed 2173 * independently. This option processing code starts with 2174 * the instantiated acceptor instance and the final queue at 2175 * this point. 2176 */ 2177 2178 if (tcr->OPT_length != 0) { 2179 /* Options to process */ 2180 int t_error = 0; 2181 int sys_error = 0; 2182 int do_disconnect = 0; 2183 2184 if (tcp_conprim_opt_process(eager, mp1, 2185 &do_disconnect, &t_error, &sys_error) < 0) { 2186 eager->tcp_accept_error = 1; 2187 if (do_disconnect) { 2188 /* 2189 * An option failed which does not allow 2190 * connection to be accepted. 2191 * 2192 * We allow T_CONN_RES to succeed and 2193 * put a T_DISCON_IND on the eager queue. 2194 */ 2195 ASSERT(t_error == 0 && sys_error == 0); 2196 eager->tcp_send_discon_ind = 1; 2197 } else { 2198 ASSERT(t_error != 0); 2199 freemsg(ok_mp); 2200 /* 2201 * Original mp was either freed or set 2202 * to ok_mp above, so use mp1 instead. 2203 */ 2204 tcp_err_ack(listener, mp1, t_error, sys_error); 2205 goto finish; 2206 } 2207 } 2208 /* 2209 * Most likely success in setting options (except if 2210 * eager->tcp_send_discon_ind set). 2211 * mp1 option buffer represented by OPT_length/offset 2212 * potentially modified and contains results of setting 2213 * options at this point 2214 */ 2215 } 2216 2217 /* We no longer need mp1, since all options processing has passed */ 2218 freemsg(mp1); 2219 2220 putnext(listener->tcp_rq, ok_mp); 2221 2222 mutex_enter(&listener->tcp_eager_lock); 2223 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2224 tcp_t *tail; 2225 mblk_t *conn_ind; 2226 2227 /* 2228 * This path should not be executed if listener and 2229 * acceptor streams are the same. 2230 */ 2231 ASSERT(listener != acceptor); 2232 2233 tcp = listener->tcp_eager_prev_q0; 2234 /* 2235 * listener->tcp_eager_prev_q0 points to the TAIL of the 2236 * deferred T_conn_ind queue. We need to get to the head of 2237 * the queue in order to send up T_conn_ind the same order as 2238 * how the 3WHS is completed. 2239 */ 2240 while (tcp != listener) { 2241 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2242 break; 2243 else 2244 tcp = tcp->tcp_eager_prev_q0; 2245 } 2246 ASSERT(tcp != listener); 2247 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2248 ASSERT(conn_ind != NULL); 2249 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2250 2251 /* Move from q0 to q */ 2252 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2253 listener->tcp_conn_req_cnt_q0--; 2254 listener->tcp_conn_req_cnt_q++; 2255 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2256 tcp->tcp_eager_prev_q0; 2257 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2258 tcp->tcp_eager_next_q0; 2259 tcp->tcp_eager_prev_q0 = NULL; 2260 tcp->tcp_eager_next_q0 = NULL; 2261 tcp->tcp_conn_def_q0 = B_FALSE; 2262 2263 /* 2264 * Insert at end of the queue because sockfs sends 2265 * down T_CONN_RES in chronological order. Leaving 2266 * the older conn indications at front of the queue 2267 * helps reducing search time. 2268 */ 2269 tail = listener->tcp_eager_last_q; 2270 if (tail != NULL) 2271 tail->tcp_eager_next_q = tcp; 2272 else 2273 listener->tcp_eager_next_q = tcp; 2274 listener->tcp_eager_last_q = tcp; 2275 tcp->tcp_eager_next_q = NULL; 2276 mutex_exit(&listener->tcp_eager_lock); 2277 putnext(tcp->tcp_rq, conn_ind); 2278 } else { 2279 mutex_exit(&listener->tcp_eager_lock); 2280 } 2281 2282 /* 2283 * Done with the acceptor - free it 2284 * 2285 * Note: from this point on, no access to listener should be made 2286 * as listener can be equal to acceptor. 2287 */ 2288 finish: 2289 ASSERT(acceptor->tcp_detached); 2290 acceptor->tcp_rq = tcp_g_q; 2291 acceptor->tcp_wq = WR(tcp_g_q); 2292 (void) tcp_clean_death(acceptor, 0, 2); 2293 CONN_DEC_REF(acceptor->tcp_connp); 2294 2295 /* 2296 * In case we already received a FIN we have to make tcp_rput send 2297 * the ordrel_ind. This will also send up a window update if the window 2298 * has opened up. 2299 * 2300 * In the normal case of a successful connection acceptance 2301 * we give the O_T_BIND_REQ to the read side put procedure as an 2302 * indication that this was just accepted. This tells tcp_rput to 2303 * pass up any data queued in tcp_rcv_list. 2304 * 2305 * In the fringe case where options sent with T_CONN_RES failed and 2306 * we required, we would be indicating a T_DISCON_IND to blow 2307 * away this connection. 2308 */ 2309 2310 /* 2311 * XXX: we currently have a problem if XTI application closes the 2312 * acceptor stream in between. This problem exists in on10-gate also 2313 * and is well know but nothing can be done short of major rewrite 2314 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2315 * eager same squeue as listener (we can distinguish non socket 2316 * listeners at the time of handling a SYN in tcp_conn_request) 2317 * and do most of the work that tcp_accept_finish does here itself 2318 * and then get behind the acceptor squeue to access the acceptor 2319 * queue. 2320 */ 2321 /* 2322 * We already have a ref on tcp so no need to do one before squeue_fill 2323 */ 2324 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2325 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2326 } 2327 2328 /* 2329 * Swap information between the eager and acceptor for a TLI/XTI client. 2330 * The sockfs accept is done on the acceptor stream and control goes 2331 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2332 * called. In either case, both the eager and listener are in their own 2333 * perimeter (squeue) and the code has to deal with potential race. 2334 * 2335 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2336 */ 2337 static void 2338 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2339 { 2340 conn_t *econnp, *aconnp; 2341 2342 ASSERT(eager->tcp_rq == listener->tcp_rq); 2343 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2344 ASSERT(!eager->tcp_hard_bound); 2345 ASSERT(!TCP_IS_SOCKET(acceptor)); 2346 ASSERT(!TCP_IS_SOCKET(eager)); 2347 ASSERT(!TCP_IS_SOCKET(listener)); 2348 2349 acceptor->tcp_detached = B_TRUE; 2350 /* 2351 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2352 * the acceptor id. 2353 */ 2354 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2355 2356 /* remove eager from listen list... */ 2357 mutex_enter(&listener->tcp_eager_lock); 2358 tcp_eager_unlink(eager); 2359 ASSERT(eager->tcp_eager_next_q == NULL && 2360 eager->tcp_eager_last_q == NULL); 2361 ASSERT(eager->tcp_eager_next_q0 == NULL && 2362 eager->tcp_eager_prev_q0 == NULL); 2363 mutex_exit(&listener->tcp_eager_lock); 2364 eager->tcp_rq = acceptor->tcp_rq; 2365 eager->tcp_wq = acceptor->tcp_wq; 2366 2367 econnp = eager->tcp_connp; 2368 aconnp = acceptor->tcp_connp; 2369 2370 eager->tcp_rq->q_ptr = econnp; 2371 eager->tcp_wq->q_ptr = econnp; 2372 eager->tcp_detached = B_FALSE; 2373 2374 ASSERT(eager->tcp_ack_tid == 0); 2375 2376 econnp->conn_dev = aconnp->conn_dev; 2377 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2378 econnp->conn_zoneid = aconnp->conn_zoneid; 2379 aconnp->conn_cred = NULL; 2380 2381 /* Do the IPC initialization */ 2382 CONN_INC_REF(econnp); 2383 2384 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2385 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2386 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2387 econnp->conn_ulp = aconnp->conn_ulp; 2388 2389 /* Done with old IPC. Drop its ref on its connp */ 2390 CONN_DEC_REF(aconnp); 2391 } 2392 2393 2394 /* 2395 * Adapt to the information, such as rtt and rtt_sd, provided from the 2396 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2397 * 2398 * Checks for multicast and broadcast destination address. 2399 * Returns zero on failure; non-zero if ok. 2400 * 2401 * Note that the MSS calculation here is based on the info given in 2402 * the IRE. We do not do any calculation based on TCP options. They 2403 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2404 * knows which options to use. 2405 * 2406 * Note on how TCP gets its parameters for a connection. 2407 * 2408 * When a tcp_t structure is allocated, it gets all the default parameters. 2409 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2410 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2411 * default. But if there is an associated tcp_host_param, it will override 2412 * the metrics. 2413 * 2414 * An incoming SYN with a multicast or broadcast destination address, is dropped 2415 * in 1 of 2 places. 2416 * 2417 * 1. If the packet was received over the wire it is dropped in 2418 * ip_rput_process_broadcast() 2419 * 2420 * 2. If the packet was received through internal IP loopback, i.e. the packet 2421 * was generated and received on the same machine, it is dropped in 2422 * ip_wput_local() 2423 * 2424 * An incoming SYN with a multicast or broadcast source address is always 2425 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2426 * reject an attempt to connect to a broadcast or multicast (destination) 2427 * address. 2428 */ 2429 static int 2430 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2431 { 2432 tcp_hsp_t *hsp; 2433 ire_t *ire; 2434 ire_t *sire = NULL; 2435 iulp_t *ire_uinfo; 2436 uint32_t mss_max; 2437 uint32_t mss; 2438 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2439 conn_t *connp = tcp->tcp_connp; 2440 boolean_t ire_cacheable = B_FALSE; 2441 zoneid_t zoneid = connp->conn_zoneid; 2442 ill_t *ill = NULL; 2443 boolean_t incoming = (ire_mp == NULL); 2444 2445 ASSERT(connp->conn_ire_cache == NULL); 2446 2447 if (tcp->tcp_ipversion == IPV4_VERSION) { 2448 2449 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2450 BUMP_MIB(&ip_mib, ipInDiscards); 2451 return (0); 2452 } 2453 2454 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, zoneid); 2455 if (ire != NULL) { 2456 ire_cacheable = B_TRUE; 2457 ire_uinfo = (ire_mp != NULL) ? 2458 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2459 &ire->ire_uinfo; 2460 2461 } else { 2462 if (ire_mp == NULL) { 2463 ire = ire_ftable_lookup( 2464 tcp->tcp_connp->conn_rem, 2465 0, 0, 0, NULL, &sire, zoneid, 0, 2466 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 2467 if (ire == NULL) 2468 return (0); 2469 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2470 &ire->ire_uinfo; 2471 } else { 2472 ire = (ire_t *)ire_mp->b_rptr; 2473 ire_uinfo = 2474 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2475 } 2476 } 2477 ASSERT(ire != NULL); 2478 ASSERT(ire_uinfo != NULL); 2479 2480 if ((ire->ire_src_addr == INADDR_ANY) || 2481 (ire->ire_type & IRE_BROADCAST)) { 2482 /* 2483 * ire->ire_mp is non null when ire_mp passed in is used 2484 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2485 */ 2486 if (ire->ire_mp == NULL) 2487 ire_refrele(ire); 2488 if (sire != NULL) 2489 ire_refrele(sire); 2490 return (0); 2491 } 2492 2493 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2494 ipaddr_t src_addr; 2495 2496 /* 2497 * ip_bind_connected() has stored the correct source 2498 * address in conn_src. 2499 */ 2500 src_addr = tcp->tcp_connp->conn_src; 2501 tcp->tcp_ipha->ipha_src = src_addr; 2502 /* 2503 * Copy of the src addr. in tcp_t is needed 2504 * for the lookup funcs. 2505 */ 2506 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2507 } 2508 /* 2509 * Set the fragment bit so that IP will tell us if the MTU 2510 * should change. IP tells us the latest setting of 2511 * ip_path_mtu_discovery through ire_frag_flag. 2512 */ 2513 if (ip_path_mtu_discovery) { 2514 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2515 htons(IPH_DF); 2516 } 2517 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2518 } else { 2519 /* 2520 * For incoming connection ire_mp = NULL 2521 * For outgoing connection ire_mp != NULL 2522 * Technically we should check conn_incoming_ill 2523 * when ire_mp is NULL and conn_outgoing_ill when 2524 * ire_mp is non-NULL. But this is performance 2525 * critical path and for IPV*_BOUND_IF, outgoing 2526 * and incoming ill are always set to the same value. 2527 */ 2528 ill_t *dst_ill = NULL; 2529 ipif_t *dst_ipif = NULL; 2530 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT; 2531 2532 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2533 2534 if (connp->conn_outgoing_ill != NULL) { 2535 /* Outgoing or incoming path */ 2536 int err; 2537 2538 dst_ill = conn_get_held_ill(connp, 2539 &connp->conn_outgoing_ill, &err); 2540 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2541 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2542 return (0); 2543 } 2544 match_flags |= MATCH_IRE_ILL; 2545 dst_ipif = dst_ill->ill_ipif; 2546 } 2547 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2548 0, 0, dst_ipif, zoneid, match_flags); 2549 2550 if (ire != NULL) { 2551 ire_cacheable = B_TRUE; 2552 ire_uinfo = (ire_mp != NULL) ? 2553 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2554 &ire->ire_uinfo; 2555 } else { 2556 if (ire_mp == NULL) { 2557 ire = ire_ftable_lookup_v6( 2558 &tcp->tcp_connp->conn_remv6, 2559 0, 0, 0, dst_ipif, &sire, zoneid, 2560 0, match_flags); 2561 if (ire == NULL) { 2562 if (dst_ill != NULL) 2563 ill_refrele(dst_ill); 2564 return (0); 2565 } 2566 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2567 &ire->ire_uinfo; 2568 } else { 2569 ire = (ire_t *)ire_mp->b_rptr; 2570 ire_uinfo = 2571 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2572 } 2573 } 2574 if (dst_ill != NULL) 2575 ill_refrele(dst_ill); 2576 2577 ASSERT(ire != NULL); 2578 ASSERT(ire_uinfo != NULL); 2579 2580 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2581 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2582 /* 2583 * ire->ire_mp is non null when ire_mp passed in is used 2584 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2585 */ 2586 if (ire->ire_mp == NULL) 2587 ire_refrele(ire); 2588 if (sire != NULL) 2589 ire_refrele(sire); 2590 return (0); 2591 } 2592 2593 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2594 in6_addr_t src_addr; 2595 2596 /* 2597 * ip_bind_connected_v6() has stored the correct source 2598 * address per IPv6 addr. selection policy in 2599 * conn_src_v6. 2600 */ 2601 src_addr = tcp->tcp_connp->conn_srcv6; 2602 2603 tcp->tcp_ip6h->ip6_src = src_addr; 2604 /* 2605 * Copy of the src addr. in tcp_t is needed 2606 * for the lookup funcs. 2607 */ 2608 tcp->tcp_ip_src_v6 = src_addr; 2609 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2610 &connp->conn_srcv6)); 2611 } 2612 tcp->tcp_localnet = 2613 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2614 } 2615 2616 /* 2617 * This allows applications to fail quickly when connections are made 2618 * to dead hosts. Hosts can be labeled dead by adding a reject route 2619 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2620 */ 2621 if ((ire->ire_flags & RTF_REJECT) && 2622 (ire->ire_flags & RTF_PRIVATE)) 2623 goto error; 2624 2625 /* 2626 * Make use of the cached rtt and rtt_sd values to calculate the 2627 * initial RTO. Note that they are already initialized in 2628 * tcp_init_values(). 2629 */ 2630 if (ire_uinfo->iulp_rtt != 0) { 2631 clock_t rto; 2632 2633 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2634 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2635 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2636 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2637 2638 if (rto > tcp_rexmit_interval_max) { 2639 tcp->tcp_rto = tcp_rexmit_interval_max; 2640 } else if (rto < tcp_rexmit_interval_min) { 2641 tcp->tcp_rto = tcp_rexmit_interval_min; 2642 } else { 2643 tcp->tcp_rto = rto; 2644 } 2645 } 2646 if (ire_uinfo->iulp_ssthresh != 0) 2647 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2648 else 2649 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2650 if (ire_uinfo->iulp_spipe > 0) { 2651 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2652 tcp_max_buf); 2653 if (tcp_snd_lowat_fraction != 0) 2654 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2655 tcp_snd_lowat_fraction; 2656 (void) tcp_maxpsz_set(tcp, B_TRUE); 2657 } 2658 /* 2659 * Note that up till now, acceptor always inherits receive 2660 * window from the listener. But if there is a metrics associated 2661 * with a host, we should use that instead of inheriting it from 2662 * listener. Thus we need to pass this info back to the caller. 2663 */ 2664 if (ire_uinfo->iulp_rpipe > 0) { 2665 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2666 } else { 2667 /* 2668 * For passive open, set tcp_rwnd to 0 so that the caller 2669 * knows that there is no rpipe metric for this connection. 2670 */ 2671 if (tcp_detached) 2672 tcp->tcp_rwnd = 0; 2673 } 2674 if (ire_uinfo->iulp_rtomax > 0) { 2675 tcp->tcp_second_timer_threshold = ire_uinfo->iulp_rtomax; 2676 } 2677 2678 /* 2679 * Use the metric option settings, iulp_tstamp_ok and iulp_wscale_ok, 2680 * only for active open. What this means is that if the other side 2681 * uses timestamp or window scale option, TCP will also use those 2682 * options. That is for passive open. If the application sets a 2683 * large window, window scale is enabled regardless of the value in 2684 * iulp_wscale_ok. This is the behavior since 2.6. So we keep it. 2685 * The only case left in passive open processing is the check for SACK. 2686 * 2687 * For ECN, it should probably be like SACK. But the current 2688 * value is binary, so we treat it like the other cases. The 2689 * metric only controls active open. For passive open, the ndd 2690 * param, tcp_ecn_permitted, controls the behavior. 2691 */ 2692 if (!tcp_detached) { 2693 /* 2694 * The if check means that the following can only be turned 2695 * on by the metrics only IRE, but not off. 2696 */ 2697 if (ire_uinfo->iulp_tstamp_ok) 2698 tcp->tcp_snd_ts_ok = B_TRUE; 2699 if (ire_uinfo->iulp_wscale_ok) 2700 tcp->tcp_snd_ws_ok = B_TRUE; 2701 if (ire_uinfo->iulp_sack == 2) 2702 tcp->tcp_snd_sack_ok = B_TRUE; 2703 if (ire_uinfo->iulp_ecn_ok) 2704 tcp->tcp_ecn_ok = B_TRUE; 2705 } else { 2706 /* 2707 * Passive open. 2708 * 2709 * As above, the if check means that SACK can only be 2710 * turned on by the metric only IRE. 2711 */ 2712 if (ire_uinfo->iulp_sack > 0) { 2713 tcp->tcp_snd_sack_ok = B_TRUE; 2714 } 2715 } 2716 2717 /* 2718 * XXX: Note that currently, ire_max_frag can be as small as 68 2719 * because of PMTUd. So tcp_mss may go to negative if combined 2720 * length of all those options exceeds 28 bytes. But because 2721 * of the tcp_mss_min check below, we may not have a problem if 2722 * tcp_mss_min is of a reasonable value. The default is 1 so 2723 * the negative problem still exists. And the check defeats PMTUd. 2724 * In fact, if PMTUd finds that the MSS should be smaller than 2725 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2726 * value. 2727 * 2728 * We do not deal with that now. All those problems related to 2729 * PMTUd will be fixed later. 2730 */ 2731 ASSERT(ire->ire_max_frag != 0); 2732 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2733 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2734 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2735 mss = MIN(mss, IPV6_MIN_MTU); 2736 } 2737 } 2738 2739 /* Sanity check for MSS value. */ 2740 if (tcp->tcp_ipversion == IPV4_VERSION) 2741 mss_max = tcp_mss_max_ipv4; 2742 else 2743 mss_max = tcp_mss_max_ipv6; 2744 2745 if (tcp->tcp_ipversion == IPV6_VERSION && 2746 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2747 /* 2748 * After receiving an ICMPv6 "packet too big" message with a 2749 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2750 * will insert a 8-byte fragment header in every packet; we 2751 * reduce the MSS by that amount here. 2752 */ 2753 mss -= sizeof (ip6_frag_t); 2754 } 2755 2756 if (tcp->tcp_ipsec_overhead == 0) 2757 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2758 2759 mss -= tcp->tcp_ipsec_overhead; 2760 2761 if (mss < tcp_mss_min) 2762 mss = tcp_mss_min; 2763 if (mss > mss_max) 2764 mss = mss_max; 2765 2766 /* Note that this is the maximum MSS, excluding all options. */ 2767 tcp->tcp_mss = mss; 2768 2769 /* 2770 * Initialize the ISS here now that we have the full connection ID. 2771 * The RFC 1948 method of initial sequence number generation requires 2772 * knowledge of the full connection ID before setting the ISS. 2773 */ 2774 2775 tcp_iss_init(tcp); 2776 2777 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2778 tcp->tcp_loopback = B_TRUE; 2779 2780 if (tcp->tcp_ipversion == IPV4_VERSION) { 2781 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2782 } else { 2783 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2784 } 2785 2786 if (hsp != NULL) { 2787 /* Only modify if we're going to make them bigger */ 2788 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2789 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2790 if (tcp_snd_lowat_fraction != 0) 2791 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2792 tcp_snd_lowat_fraction; 2793 } 2794 2795 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2796 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2797 } 2798 2799 /* Copy timestamp flag only for active open */ 2800 if (!tcp_detached) 2801 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2802 } 2803 2804 if (sire != NULL) 2805 IRE_REFRELE(sire); 2806 2807 /* 2808 * If we got an IRE_CACHE and an ILL, go through their properties; 2809 * otherwise, this is deferred until later when we have an IRE_CACHE. 2810 */ 2811 if (tcp->tcp_loopback || 2812 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2813 /* 2814 * For incoming, see if this tcp may be MDT-capable. For 2815 * outgoing, this process has been taken care of through 2816 * tcp_rput_other. 2817 */ 2818 tcp_ire_ill_check(tcp, ire, ill, incoming); 2819 tcp->tcp_ire_ill_check_done = B_TRUE; 2820 } 2821 2822 mutex_enter(&connp->conn_lock); 2823 /* 2824 * Make sure that conn is not marked incipient 2825 * for incoming connections. A blind 2826 * removal of incipient flag is cheaper than 2827 * check and removal. 2828 */ 2829 connp->conn_state_flags &= ~CONN_INCIPIENT; 2830 2831 /* Must not cache forwarding table routes. */ 2832 if (ire_cacheable) { 2833 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2834 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2835 connp->conn_ire_cache = ire; 2836 IRE_UNTRACE_REF(ire); 2837 rw_exit(&ire->ire_bucket->irb_lock); 2838 mutex_exit(&connp->conn_lock); 2839 return (1); 2840 } 2841 rw_exit(&ire->ire_bucket->irb_lock); 2842 } 2843 mutex_exit(&connp->conn_lock); 2844 2845 if (ire->ire_mp == NULL) 2846 ire_refrele(ire); 2847 return (1); 2848 2849 error: 2850 if (ire->ire_mp == NULL) 2851 ire_refrele(ire); 2852 if (sire != NULL) 2853 ire_refrele(sire); 2854 return (0); 2855 } 2856 2857 /* 2858 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2859 * O_T_BIND_REQ/T_BIND_REQ message. 2860 */ 2861 static void 2862 tcp_bind(tcp_t *tcp, mblk_t *mp) 2863 { 2864 sin_t *sin; 2865 sin6_t *sin6; 2866 mblk_t *mp1; 2867 in_port_t requested_port; 2868 in_port_t allocated_port; 2869 struct T_bind_req *tbr; 2870 boolean_t bind_to_req_port_only; 2871 boolean_t backlog_update = B_FALSE; 2872 boolean_t user_specified; 2873 in6_addr_t v6addr; 2874 ipaddr_t v4addr; 2875 uint_t origipversion; 2876 int err; 2877 queue_t *q = tcp->tcp_wq; 2878 2879 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2880 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2881 if (tcp->tcp_debug) { 2882 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2883 "tcp_bind: bad req, len %u", 2884 (uint_t)(mp->b_wptr - mp->b_rptr)); 2885 } 2886 tcp_err_ack(tcp, mp, TPROTO, 0); 2887 return; 2888 } 2889 /* Make sure the largest address fits */ 2890 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 2891 if (mp1 == NULL) { 2892 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2893 return; 2894 } 2895 mp = mp1; 2896 tbr = (struct T_bind_req *)mp->b_rptr; 2897 if (tcp->tcp_state >= TCPS_BOUND) { 2898 if ((tcp->tcp_state == TCPS_BOUND || 2899 tcp->tcp_state == TCPS_LISTEN) && 2900 tcp->tcp_conn_req_max != tbr->CONIND_number && 2901 tbr->CONIND_number > 0) { 2902 /* 2903 * Handle listen() increasing CONIND_number. 2904 * This is more "liberal" then what the TPI spec 2905 * requires but is needed to avoid a t_unbind 2906 * when handling listen() since the port number 2907 * might be "stolen" between the unbind and bind. 2908 */ 2909 backlog_update = B_TRUE; 2910 goto do_bind; 2911 } 2912 if (tcp->tcp_debug) { 2913 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2914 "tcp_bind: bad state, %d", tcp->tcp_state); 2915 } 2916 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 2917 return; 2918 } 2919 origipversion = tcp->tcp_ipversion; 2920 2921 switch (tbr->ADDR_length) { 2922 case 0: /* request for a generic port */ 2923 tbr->ADDR_offset = sizeof (struct T_bind_req); 2924 if (tcp->tcp_family == AF_INET) { 2925 tbr->ADDR_length = sizeof (sin_t); 2926 sin = (sin_t *)&tbr[1]; 2927 *sin = sin_null; 2928 sin->sin_family = AF_INET; 2929 mp->b_wptr = (uchar_t *)&sin[1]; 2930 tcp->tcp_ipversion = IPV4_VERSION; 2931 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 2932 } else { 2933 ASSERT(tcp->tcp_family == AF_INET6); 2934 tbr->ADDR_length = sizeof (sin6_t); 2935 sin6 = (sin6_t *)&tbr[1]; 2936 *sin6 = sin6_null; 2937 sin6->sin6_family = AF_INET6; 2938 mp->b_wptr = (uchar_t *)&sin6[1]; 2939 tcp->tcp_ipversion = IPV6_VERSION; 2940 V6_SET_ZERO(v6addr); 2941 } 2942 requested_port = 0; 2943 break; 2944 2945 case sizeof (sin_t): /* Complete IPv4 address */ 2946 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 2947 sizeof (sin_t)); 2948 if (sin == NULL || !OK_32PTR((char *)sin)) { 2949 if (tcp->tcp_debug) { 2950 (void) strlog(TCP_MOD_ID, 0, 1, 2951 SL_ERROR|SL_TRACE, 2952 "tcp_bind: bad address parameter, " 2953 "offset %d, len %d", 2954 tbr->ADDR_offset, tbr->ADDR_length); 2955 } 2956 tcp_err_ack(tcp, mp, TPROTO, 0); 2957 return; 2958 } 2959 /* 2960 * With sockets sockfs will accept bogus sin_family in 2961 * bind() and replace it with the family used in the socket 2962 * call. 2963 */ 2964 if (sin->sin_family != AF_INET || 2965 tcp->tcp_family != AF_INET) { 2966 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 2967 return; 2968 } 2969 requested_port = ntohs(sin->sin_port); 2970 tcp->tcp_ipversion = IPV4_VERSION; 2971 v4addr = sin->sin_addr.s_addr; 2972 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 2973 break; 2974 2975 case sizeof (sin6_t): /* Complete IPv6 address */ 2976 sin6 = (sin6_t *)mi_offset_param(mp, 2977 tbr->ADDR_offset, sizeof (sin6_t)); 2978 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 2979 if (tcp->tcp_debug) { 2980 (void) strlog(TCP_MOD_ID, 0, 1, 2981 SL_ERROR|SL_TRACE, 2982 "tcp_bind: bad IPv6 address parameter, " 2983 "offset %d, len %d", tbr->ADDR_offset, 2984 tbr->ADDR_length); 2985 } 2986 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2987 return; 2988 } 2989 if (sin6->sin6_family != AF_INET6 || 2990 tcp->tcp_family != AF_INET6) { 2991 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 2992 return; 2993 } 2994 requested_port = ntohs(sin6->sin6_port); 2995 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 2996 IPV4_VERSION : IPV6_VERSION; 2997 v6addr = sin6->sin6_addr; 2998 break; 2999 3000 default: 3001 if (tcp->tcp_debug) { 3002 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3003 "tcp_bind: bad address length, %d", 3004 tbr->ADDR_length); 3005 } 3006 tcp_err_ack(tcp, mp, TBADADDR, 0); 3007 return; 3008 } 3009 tcp->tcp_bound_source_v6 = v6addr; 3010 3011 /* Check for change in ipversion */ 3012 if (origipversion != tcp->tcp_ipversion) { 3013 ASSERT(tcp->tcp_family == AF_INET6); 3014 err = tcp->tcp_ipversion == IPV6_VERSION ? 3015 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3016 if (err) { 3017 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3018 return; 3019 } 3020 } 3021 3022 /* 3023 * Initialize family specific fields. Copy of the src addr. 3024 * in tcp_t is needed for the lookup funcs. 3025 */ 3026 if (tcp->tcp_ipversion == IPV6_VERSION) { 3027 tcp->tcp_ip6h->ip6_src = v6addr; 3028 } else { 3029 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3030 } 3031 tcp->tcp_ip_src_v6 = v6addr; 3032 3033 /* 3034 * For O_T_BIND_REQ: 3035 * Verify that the target port/addr is available, or choose 3036 * another. 3037 * For T_BIND_REQ: 3038 * Verify that the target port/addr is available or fail. 3039 * In both cases when it succeeds the tcp is inserted in the 3040 * bind hash table. This ensures that the operation is atomic 3041 * under the lock on the hash bucket. 3042 */ 3043 bind_to_req_port_only = requested_port != 0 && 3044 tbr->PRIM_type != O_T_BIND_REQ; 3045 /* 3046 * Get a valid port (within the anonymous range and should not 3047 * be a privileged one) to use if the user has not given a port. 3048 * If multiple threads are here, they may all start with 3049 * with the same initial port. But, it should be fine as long as 3050 * tcp_bindi will ensure that no two threads will be assigned 3051 * the same port. 3052 * 3053 * NOTE: XXX If a privileged process asks for an anonymous port, we 3054 * still check for ports only in the range > tcp_smallest_non_priv_port, 3055 * unless TCP_ANONPRIVBIND option is set. 3056 */ 3057 if (requested_port == 0) { 3058 requested_port = tcp->tcp_anon_priv_bind ? 3059 tcp_get_next_priv_port() : 3060 tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 3061 user_specified = B_FALSE; 3062 } else { 3063 int i; 3064 boolean_t priv = B_FALSE; 3065 /* 3066 * If the requested_port is in the well-known privileged range, 3067 * verify that the stream was opened by a privileged user. 3068 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3069 * but instead the code relies on: 3070 * - the fact that the address of the array and its size never 3071 * changes 3072 * - the atomic assignment of the elements of the array 3073 */ 3074 if (requested_port < tcp_smallest_nonpriv_port) { 3075 priv = B_TRUE; 3076 } else { 3077 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3078 if (requested_port == 3079 tcp_g_epriv_ports[i]) { 3080 priv = B_TRUE; 3081 break; 3082 } 3083 } 3084 } 3085 if (priv) { 3086 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 3087 3088 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3089 if (tcp->tcp_debug) { 3090 (void) strlog(TCP_MOD_ID, 0, 1, 3091 SL_ERROR|SL_TRACE, 3092 "tcp_bind: no priv for port %d", 3093 requested_port); 3094 } 3095 tcp_err_ack(tcp, mp, TACCES, 0); 3096 return; 3097 } 3098 } 3099 user_specified = B_TRUE; 3100 } 3101 3102 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3103 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3104 3105 if (allocated_port == 0) { 3106 if (bind_to_req_port_only) { 3107 if (tcp->tcp_debug) { 3108 (void) strlog(TCP_MOD_ID, 0, 1, 3109 SL_ERROR|SL_TRACE, 3110 "tcp_bind: requested addr busy"); 3111 } 3112 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3113 } else { 3114 /* If we are out of ports, fail the bind. */ 3115 if (tcp->tcp_debug) { 3116 (void) strlog(TCP_MOD_ID, 0, 1, 3117 SL_ERROR|SL_TRACE, 3118 "tcp_bind: out of ports?"); 3119 } 3120 tcp_err_ack(tcp, mp, TNOADDR, 0); 3121 } 3122 return; 3123 } 3124 ASSERT(tcp->tcp_state == TCPS_BOUND); 3125 do_bind: 3126 if (!backlog_update) { 3127 if (tcp->tcp_family == AF_INET) 3128 sin->sin_port = htons(allocated_port); 3129 else 3130 sin6->sin6_port = htons(allocated_port); 3131 } 3132 if (tcp->tcp_family == AF_INET) { 3133 if (tbr->CONIND_number != 0) { 3134 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3135 sizeof (sin_t)); 3136 } else { 3137 /* Just verify the local IP address */ 3138 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3139 } 3140 } else { 3141 if (tbr->CONIND_number != 0) { 3142 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3143 sizeof (sin6_t)); 3144 } else { 3145 /* Just verify the local IP address */ 3146 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3147 IPV6_ADDR_LEN); 3148 } 3149 } 3150 if (!mp1) { 3151 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3152 return; 3153 } 3154 3155 tbr->PRIM_type = T_BIND_ACK; 3156 mp->b_datap->db_type = M_PCPROTO; 3157 3158 /* Chain in the reply mp for tcp_rput() */ 3159 mp1->b_cont = mp; 3160 mp = mp1; 3161 3162 tcp->tcp_conn_req_max = tbr->CONIND_number; 3163 if (tcp->tcp_conn_req_max) { 3164 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3165 tcp->tcp_conn_req_max = tcp_conn_req_min; 3166 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3167 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3168 /* 3169 * If this is a listener, do not reset the eager list 3170 * and other stuffs. Note that we don't check if the 3171 * existing eager list meets the new tcp_conn_req_max 3172 * requirement. 3173 */ 3174 if (tcp->tcp_state != TCPS_LISTEN) { 3175 tcp->tcp_state = TCPS_LISTEN; 3176 /* Initialize the chain. Don't need the eager_lock */ 3177 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3178 tcp->tcp_second_ctimer_threshold = 3179 tcp_ip_abort_linterval; 3180 } 3181 } 3182 3183 /* 3184 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3185 * processing continues in tcp_rput_other(). 3186 */ 3187 if (tcp->tcp_family == AF_INET6) { 3188 ASSERT(tcp->tcp_connp->conn_af_isv6); 3189 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3190 } else { 3191 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3192 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3193 } 3194 /* 3195 * If the bind cannot complete immediately 3196 * IP will arrange to call tcp_rput_other 3197 * when the bind completes. 3198 */ 3199 if (mp != NULL) { 3200 tcp_rput_other(tcp, mp); 3201 } else { 3202 /* 3203 * Bind will be resumed later. Need to ensure 3204 * that conn doesn't disappear when that happens. 3205 * This will be decremented in ip_resume_tcp_bind(). 3206 */ 3207 CONN_INC_REF(tcp->tcp_connp); 3208 } 3209 } 3210 3211 3212 /* 3213 * If the "bind_to_req_port_only" parameter is set, if the requested port 3214 * number is available, return it, If not return 0 3215 * 3216 * If "bind_to_req_port_only" parameter is not set and 3217 * If the requested port number is available, return it. If not, return 3218 * the first anonymous port we happen across. If no anonymous ports are 3219 * available, return 0. addr is the requested local address, if any. 3220 * 3221 * In either case, when succeeding update the tcp_t to record the port number 3222 * and insert it in the bind hash table. 3223 * 3224 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3225 * without setting SO_REUSEADDR. This is needed so that they 3226 * can be viewed as two independent transport protocols. 3227 */ 3228 static in_port_t 3229 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3230 int reuseaddr, boolean_t quick_connect, 3231 boolean_t bind_to_req_port_only, boolean_t user_specified) 3232 { 3233 /* number of times we have run around the loop */ 3234 int count = 0; 3235 /* maximum number of times to run around the loop */ 3236 int loopmax; 3237 zoneid_t zoneid = tcp->tcp_connp->conn_zoneid; 3238 3239 /* 3240 * Lookup for free addresses is done in a loop and "loopmax" 3241 * influences how long we spin in the loop 3242 */ 3243 if (bind_to_req_port_only) { 3244 /* 3245 * If the requested port is busy, don't bother to look 3246 * for a new one. Setting loop maximum count to 1 has 3247 * that effect. 3248 */ 3249 loopmax = 1; 3250 } else { 3251 /* 3252 * If the requested port is busy, look for a free one 3253 * in the anonymous port range. 3254 * Set loopmax appropriately so that one does not look 3255 * forever in the case all of the anonymous ports are in use. 3256 */ 3257 if (tcp->tcp_anon_priv_bind) { 3258 /* 3259 * loopmax = 3260 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3261 */ 3262 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3263 } else { 3264 loopmax = (tcp_largest_anon_port - 3265 tcp_smallest_anon_port + 1); 3266 } 3267 } 3268 do { 3269 uint16_t lport; 3270 tf_t *tbf; 3271 tcp_t *ltcp; 3272 3273 lport = htons(port); 3274 3275 /* 3276 * Ensure that the tcp_t is not currently in the bind hash. 3277 * Hold the lock on the hash bucket to ensure that 3278 * the duplicate check plus the insertion is an atomic 3279 * operation. 3280 * 3281 * This function does an inline lookup on the bind hash list 3282 * Make sure that we access only members of tcp_t 3283 * and that we don't look at tcp_tcp, since we are not 3284 * doing a CONN_INC_REF. 3285 */ 3286 tcp_bind_hash_remove(tcp); 3287 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3288 mutex_enter(&tbf->tf_lock); 3289 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3290 ltcp = ltcp->tcp_bind_hash) { 3291 if (lport != ltcp->tcp_lport || 3292 ltcp->tcp_connp->conn_zoneid != zoneid) { 3293 continue; 3294 } 3295 3296 /* 3297 * If TCP_EXCLBIND is set for either the bound or 3298 * binding endpoint, the semantics of bind 3299 * is changed according to the following. 3300 * 3301 * spec = specified address (v4 or v6) 3302 * unspec = unspecified address (v4 or v6) 3303 * A = specified addresses are different for endpoints 3304 * 3305 * bound bind to allowed 3306 * ------------------------------------- 3307 * unspec unspec no 3308 * unspec spec no 3309 * spec unspec no 3310 * spec spec yes if A 3311 * 3312 * Note: 3313 * 3314 * 1. Because of TLI semantics, an endpoint can go 3315 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3316 * TCPS_BOUND, depending on whether it is originally 3317 * a listener or not. That is why we need to check 3318 * for states greater than or equal to TCPS_BOUND 3319 * here. 3320 * 3321 * 2. Ideally, we should only check for state equals 3322 * to TCPS_LISTEN. And the following check should be 3323 * added. 3324 * 3325 * if (ltcp->tcp_state == TCPS_LISTEN || 3326 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3327 * ... 3328 * } 3329 * 3330 * The semantics will be changed to this. If the 3331 * endpoint on the list is in state not equal to 3332 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3333 * set, let the bind succeed. 3334 * 3335 * But because of (1), we cannot do that now. If 3336 * in future, we can change this going back semantics, 3337 * we can add the above check. 3338 */ 3339 if (ltcp->tcp_exclbind || tcp->tcp_exclbind) { 3340 if (V6_OR_V4_INADDR_ANY( 3341 ltcp->tcp_bound_source_v6) || 3342 V6_OR_V4_INADDR_ANY(*laddr) || 3343 IN6_ARE_ADDR_EQUAL(laddr, 3344 <cp->tcp_bound_source_v6)) { 3345 break; 3346 } 3347 continue; 3348 } 3349 3350 /* 3351 * Check ipversion to allow IPv4 and IPv6 sockets to 3352 * have disjoint port number spaces, if *_EXCLBIND 3353 * is not set and only if the application binds to a 3354 * specific port. We use the same autoassigned port 3355 * number space for IPv4 and IPv6 sockets. 3356 */ 3357 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3358 bind_to_req_port_only) 3359 continue; 3360 3361 /* 3362 * Ideally, we should make sure that the source 3363 * address, remote address, and remote port in the 3364 * four tuple for this tcp-connection is unique. 3365 * However, trying to find out the local source 3366 * address would require too much code duplication 3367 * with IP, since IP needs needs to have that code 3368 * to support userland TCP implementations. 3369 */ 3370 if (quick_connect && 3371 (ltcp->tcp_state > TCPS_LISTEN) && 3372 ((tcp->tcp_fport != ltcp->tcp_fport) || 3373 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3374 <cp->tcp_remote_v6))) 3375 continue; 3376 3377 if (!reuseaddr) { 3378 /* 3379 * No socket option SO_REUSEADDR. 3380 * If existing port is bound to 3381 * a non-wildcard IP address 3382 * and the requesting stream is 3383 * bound to a distinct 3384 * different IP addresses 3385 * (non-wildcard, also), keep 3386 * going. 3387 */ 3388 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3389 !V6_OR_V4_INADDR_ANY( 3390 ltcp->tcp_bound_source_v6) && 3391 !IN6_ARE_ADDR_EQUAL(laddr, 3392 <cp->tcp_bound_source_v6)) 3393 continue; 3394 if (ltcp->tcp_state >= TCPS_BOUND) { 3395 /* 3396 * This port is being used and 3397 * its state is >= TCPS_BOUND, 3398 * so we can't bind to it. 3399 */ 3400 break; 3401 } 3402 } else { 3403 /* 3404 * socket option SO_REUSEADDR is set on the 3405 * binding tcp_t. 3406 * 3407 * If two streams are bound to 3408 * same IP address or both addr 3409 * and bound source are wildcards 3410 * (INADDR_ANY), we want to stop 3411 * searching. 3412 * We have found a match of IP source 3413 * address and source port, which is 3414 * refused regardless of the 3415 * SO_REUSEADDR setting, so we break. 3416 */ 3417 if (IN6_ARE_ADDR_EQUAL(laddr, 3418 <cp->tcp_bound_source_v6) && 3419 (ltcp->tcp_state == TCPS_LISTEN || 3420 ltcp->tcp_state == TCPS_BOUND)) 3421 break; 3422 } 3423 } 3424 if (ltcp != NULL) { 3425 /* The port number is busy */ 3426 mutex_exit(&tbf->tf_lock); 3427 } else { 3428 /* 3429 * This port is ours. Insert in fanout and mark as 3430 * bound to prevent others from getting the port 3431 * number. 3432 */ 3433 tcp->tcp_state = TCPS_BOUND; 3434 tcp->tcp_lport = htons(port); 3435 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3436 3437 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3438 tcp->tcp_lport)] == tbf); 3439 tcp_bind_hash_insert(tbf, tcp, 1); 3440 3441 mutex_exit(&tbf->tf_lock); 3442 3443 /* 3444 * We don't want tcp_next_port_to_try to "inherit" 3445 * a port number supplied by the user in a bind. 3446 */ 3447 if (user_specified) 3448 return (port); 3449 3450 /* 3451 * This is the only place where tcp_next_port_to_try 3452 * is updated. After the update, it may or may not 3453 * be in the valid range. 3454 */ 3455 if (!tcp->tcp_anon_priv_bind) 3456 tcp_next_port_to_try = port + 1; 3457 return (port); 3458 } 3459 3460 if (tcp->tcp_anon_priv_bind) { 3461 port = tcp_get_next_priv_port(); 3462 } else { 3463 if (count == 0 && user_specified) { 3464 /* 3465 * We may have to return an anonymous port. So 3466 * get one to start with. 3467 */ 3468 port = 3469 tcp_update_next_port(tcp_next_port_to_try, 3470 B_TRUE); 3471 user_specified = B_FALSE; 3472 } else { 3473 port = tcp_update_next_port(port + 1, B_FALSE); 3474 } 3475 } 3476 3477 /* 3478 * Don't let this loop run forever in the case where 3479 * all of the anonymous ports are in use. 3480 */ 3481 } while (++count < loopmax); 3482 return (0); 3483 } 3484 3485 /* 3486 * We are dying for some reason. Try to do it gracefully. (May be called 3487 * as writer.) 3488 * 3489 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3490 * done by a service procedure). 3491 * TBD - Should the return value distinguish between the tcp_t being 3492 * freed and it being reinitialized? 3493 */ 3494 static int 3495 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3496 { 3497 mblk_t *mp; 3498 queue_t *q; 3499 3500 TCP_CLD_STAT(tag); 3501 3502 #if TCP_TAG_CLEAN_DEATH 3503 tcp->tcp_cleandeathtag = tag; 3504 #endif 3505 3506 if (tcp->tcp_linger_tid != 0 && 3507 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3508 tcp_stop_lingering(tcp); 3509 } 3510 3511 ASSERT(tcp != NULL); 3512 ASSERT((tcp->tcp_family == AF_INET && 3513 tcp->tcp_ipversion == IPV4_VERSION) || 3514 (tcp->tcp_family == AF_INET6 && 3515 (tcp->tcp_ipversion == IPV4_VERSION || 3516 tcp->tcp_ipversion == IPV6_VERSION))); 3517 3518 if (TCP_IS_DETACHED(tcp)) { 3519 if (tcp->tcp_hard_binding) { 3520 /* 3521 * Its an eager that we are dealing with. We close the 3522 * eager but in case a conn_ind has already gone to the 3523 * listener, let tcp_accept_finish() send a discon_ind 3524 * to the listener and drop the last reference. If the 3525 * listener doesn't even know about the eager i.e. the 3526 * conn_ind hasn't gone up, blow away the eager and drop 3527 * the last reference as well. If the conn_ind has gone 3528 * up, state should be BOUND. tcp_accept_finish 3529 * will figure out that the connection has received a 3530 * RST and will send a DISCON_IND to the application. 3531 */ 3532 tcp_closei_local(tcp); 3533 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3534 CONN_DEC_REF(tcp->tcp_connp); 3535 } else { 3536 tcp->tcp_state = TCPS_BOUND; 3537 } 3538 } else { 3539 tcp_close_detached(tcp); 3540 } 3541 return (0); 3542 } 3543 3544 TCP_STAT(tcp_clean_death_nondetached); 3545 3546 /* 3547 * If T_ORDREL_IND has not been sent yet (done when service routine 3548 * is run) postpone cleaning up the endpoint until service routine 3549 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3550 * client_errno since tcp_close uses the client_errno field. 3551 */ 3552 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3553 if (err != 0) 3554 tcp->tcp_client_errno = err; 3555 3556 tcp->tcp_deferred_clean_death = B_TRUE; 3557 return (-1); 3558 } 3559 3560 q = tcp->tcp_rq; 3561 3562 /* Trash all inbound data */ 3563 flushq(q, FLUSHALL); 3564 3565 /* 3566 * If we are at least part way open and there is error 3567 * (err==0 implies no error) 3568 * notify our client by a T_DISCON_IND. 3569 */ 3570 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3571 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3572 !TCP_IS_SOCKET(tcp)) { 3573 /* 3574 * Send M_FLUSH according to TPI. Because sockets will 3575 * (and must) ignore FLUSHR we do that only for TPI 3576 * endpoints and sockets in STREAMS mode. 3577 */ 3578 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3579 } 3580 if (tcp->tcp_debug) { 3581 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3582 "tcp_clean_death: discon err %d", err); 3583 } 3584 mp = mi_tpi_discon_ind(NULL, err, 0); 3585 if (mp != NULL) { 3586 putnext(q, mp); 3587 } else { 3588 if (tcp->tcp_debug) { 3589 (void) strlog(TCP_MOD_ID, 0, 1, 3590 SL_ERROR|SL_TRACE, 3591 "tcp_clean_death, sending M_ERROR"); 3592 } 3593 (void) putnextctl1(q, M_ERROR, EPROTO); 3594 } 3595 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3596 /* SYN_SENT or SYN_RCVD */ 3597 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3598 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3599 /* ESTABLISHED or CLOSE_WAIT */ 3600 BUMP_MIB(&tcp_mib, tcpEstabResets); 3601 } 3602 } 3603 3604 tcp_reinit(tcp); 3605 return (-1); 3606 } 3607 3608 /* 3609 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3610 * to expire, stop the wait and finish the close. 3611 */ 3612 static void 3613 tcp_stop_lingering(tcp_t *tcp) 3614 { 3615 clock_t delta = 0; 3616 3617 tcp->tcp_linger_tid = 0; 3618 if (tcp->tcp_state > TCPS_LISTEN) { 3619 tcp_acceptor_hash_remove(tcp); 3620 if (tcp->tcp_flow_stopped) { 3621 tcp_clrqfull(tcp); 3622 } 3623 3624 if (tcp->tcp_timer_tid != 0) { 3625 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3626 tcp->tcp_timer_tid = 0; 3627 } 3628 /* 3629 * Need to cancel those timers which will not be used when 3630 * TCP is detached. This has to be done before the tcp_wq 3631 * is set to the global queue. 3632 */ 3633 tcp_timers_stop(tcp); 3634 3635 3636 tcp->tcp_detached = B_TRUE; 3637 tcp->tcp_rq = tcp_g_q; 3638 tcp->tcp_wq = WR(tcp_g_q); 3639 3640 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3641 tcp_time_wait_append(tcp); 3642 TCP_DBGSTAT(tcp_detach_time_wait); 3643 goto finish; 3644 } 3645 3646 /* 3647 * If delta is zero the timer event wasn't executed and was 3648 * successfully canceled. In this case we need to restart it 3649 * with the minimal delta possible. 3650 */ 3651 if (delta >= 0) { 3652 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3653 delta ? delta : 1); 3654 } 3655 } else { 3656 tcp_closei_local(tcp); 3657 CONN_DEC_REF(tcp->tcp_connp); 3658 } 3659 finish: 3660 /* Signal closing thread that it can complete close */ 3661 mutex_enter(&tcp->tcp_closelock); 3662 tcp->tcp_detached = B_TRUE; 3663 tcp->tcp_rq = tcp_g_q; 3664 tcp->tcp_wq = WR(tcp_g_q); 3665 tcp->tcp_closed = 1; 3666 cv_signal(&tcp->tcp_closecv); 3667 mutex_exit(&tcp->tcp_closelock); 3668 } 3669 3670 /* 3671 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3672 * expires. 3673 */ 3674 static void 3675 tcp_close_linger_timeout(void *arg) 3676 { 3677 conn_t *connp = (conn_t *)arg; 3678 tcp_t *tcp = connp->conn_tcp; 3679 3680 tcp->tcp_client_errno = ETIMEDOUT; 3681 tcp_stop_lingering(tcp); 3682 } 3683 3684 static int 3685 tcp_close(queue_t *q, int flags) 3686 { 3687 conn_t *connp = Q_TO_CONN(q); 3688 tcp_t *tcp = connp->conn_tcp; 3689 mblk_t *mp = &tcp->tcp_closemp; 3690 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3691 3692 ASSERT(WR(q)->q_next == NULL); 3693 ASSERT(connp->conn_ref >= 2); 3694 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3695 3696 /* 3697 * We are being closed as /dev/tcp or /dev/tcp6. 3698 * 3699 * Mark the conn as closing. ill_pending_mp_add will not 3700 * add any mp to the pending mp list, after this conn has 3701 * started closing. Same for sq_pending_mp_add 3702 */ 3703 mutex_enter(&connp->conn_lock); 3704 connp->conn_state_flags |= CONN_CLOSING; 3705 if (connp->conn_oper_pending_ill != NULL) 3706 conn_ioctl_cleanup_reqd = B_TRUE; 3707 CONN_INC_REF_LOCKED(connp); 3708 mutex_exit(&connp->conn_lock); 3709 tcp->tcp_closeflags = (uint8_t)flags; 3710 ASSERT(connp->conn_ref >= 3); 3711 3712 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3713 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3714 3715 mutex_enter(&tcp->tcp_closelock); 3716 while (!tcp->tcp_closed) 3717 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3718 mutex_exit(&tcp->tcp_closelock); 3719 /* 3720 * In the case of listener streams that have eagers in the q or q0 3721 * we wait for the eagers to drop their reference to us. tcp_rq and 3722 * tcp_wq of the eagers point to our queues. By waiting for the 3723 * refcnt to drop to 1, we are sure that the eagers have cleaned 3724 * up their queue pointers and also dropped their references to us. 3725 */ 3726 if (tcp->tcp_wait_for_eagers) { 3727 mutex_enter(&connp->conn_lock); 3728 while (connp->conn_ref != 1) { 3729 cv_wait(&connp->conn_cv, &connp->conn_lock); 3730 } 3731 mutex_exit(&connp->conn_lock); 3732 } 3733 /* 3734 * ioctl cleanup. The mp is queued in the 3735 * ill_pending_mp or in the sq_pending_mp. 3736 */ 3737 if (conn_ioctl_cleanup_reqd) 3738 conn_ioctl_cleanup(connp); 3739 3740 qprocsoff(q); 3741 inet_minor_free(ip_minor_arena, connp->conn_dev); 3742 3743 ASSERT(connp->conn_cred != NULL); 3744 crfree(connp->conn_cred); 3745 tcp->tcp_cred = connp->conn_cred = NULL; 3746 tcp->tcp_cpid = -1; 3747 3748 /* 3749 * Drop IP's reference on the conn. This is the last reference 3750 * on the connp if the state was less than established. If the 3751 * connection has gone into timewait state, then we will have 3752 * one ref for the TCP and one more ref (total of two) for the 3753 * classifier connected hash list (a timewait connections stays 3754 * in connected hash till closed). 3755 * 3756 * We can't assert the references because there might be other 3757 * transient reference places because of some walkers or queued 3758 * packets in squeue for the timewait state. 3759 */ 3760 CONN_DEC_REF(connp); 3761 q->q_ptr = WR(q)->q_ptr = NULL; 3762 return (0); 3763 } 3764 3765 static int 3766 tcpclose_accept(queue_t *q) 3767 { 3768 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3769 3770 /* 3771 * We had opened an acceptor STREAM for sockfs which is 3772 * now being closed due to some error. 3773 */ 3774 qprocsoff(q); 3775 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 3776 q->q_ptr = WR(q)->q_ptr = NULL; 3777 return (0); 3778 } 3779 3780 3781 /* 3782 * Called by streams close routine via squeues when our client blows off her 3783 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3784 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3785 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3786 * acked. 3787 * 3788 * NOTE: tcp_close potentially returns error when lingering. 3789 * However, the stream head currently does not pass these errors 3790 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3791 * errors to the application (from tsleep()) and not errors 3792 * like ECONNRESET caused by receiving a reset packet. 3793 */ 3794 3795 /* ARGSUSED */ 3796 static void 3797 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3798 { 3799 char *msg; 3800 conn_t *connp = (conn_t *)arg; 3801 tcp_t *tcp = connp->conn_tcp; 3802 clock_t delta = 0; 3803 3804 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3805 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3806 3807 /* Cancel any pending timeout */ 3808 if (tcp->tcp_ordrelid != 0) { 3809 if (tcp->tcp_timeout) { 3810 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 3811 } 3812 tcp->tcp_ordrelid = 0; 3813 tcp->tcp_timeout = B_FALSE; 3814 } 3815 3816 mutex_enter(&tcp->tcp_eager_lock); 3817 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3818 /* Cleanup for listener */ 3819 tcp_eager_cleanup(tcp, 0); 3820 tcp->tcp_wait_for_eagers = 1; 3821 } 3822 mutex_exit(&tcp->tcp_eager_lock); 3823 3824 connp->conn_mdt_ok = B_FALSE; 3825 tcp->tcp_mdt = B_FALSE; 3826 3827 msg = NULL; 3828 switch (tcp->tcp_state) { 3829 case TCPS_CLOSED: 3830 case TCPS_IDLE: 3831 case TCPS_BOUND: 3832 case TCPS_LISTEN: 3833 break; 3834 case TCPS_SYN_SENT: 3835 msg = "tcp_close, during connect"; 3836 break; 3837 case TCPS_SYN_RCVD: 3838 /* 3839 * Close during the connect 3-way handshake 3840 * but here there may or may not be pending data 3841 * already on queue. Process almost same as in 3842 * the ESTABLISHED state. 3843 */ 3844 /* FALLTHRU */ 3845 default: 3846 if (tcp->tcp_fused) 3847 tcp_unfuse(tcp); 3848 3849 /* 3850 * If SO_LINGER has set a zero linger time, abort the 3851 * connection with a reset. 3852 */ 3853 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3854 msg = "tcp_close, zero lingertime"; 3855 break; 3856 } 3857 3858 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3859 /* 3860 * Abort connection if there is unread data queued. 3861 */ 3862 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3863 msg = "tcp_close, unread data"; 3864 break; 3865 } 3866 /* 3867 * tcp_hard_bound is now cleared thus all packets go through 3868 * tcp_lookup. This fact is used by tcp_detach below. 3869 * 3870 * We have done a qwait() above which could have possibly 3871 * drained more messages in turn causing transition to a 3872 * different state. Check whether we have to do the rest 3873 * of the processing or not. 3874 */ 3875 if (tcp->tcp_state <= TCPS_LISTEN) 3876 break; 3877 3878 /* 3879 * Transmit the FIN before detaching the tcp_t. 3880 * After tcp_detach returns this queue/perimeter 3881 * no longer owns the tcp_t thus others can modify it. 3882 */ 3883 (void) tcp_xmit_end(tcp); 3884 3885 /* 3886 * If lingering on close then wait until the fin is acked, 3887 * the SO_LINGER time passes, or a reset is sent/received. 3888 */ 3889 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3890 !(tcp->tcp_fin_acked) && 3891 tcp->tcp_state >= TCPS_ESTABLISHED) { 3892 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3893 tcp->tcp_client_errno = EWOULDBLOCK; 3894 } else if (tcp->tcp_client_errno == 0) { 3895 3896 ASSERT(tcp->tcp_linger_tid == 0); 3897 3898 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3899 tcp_close_linger_timeout, 3900 tcp->tcp_lingertime * hz); 3901 3902 /* tcp_close_linger_timeout will finish close */ 3903 if (tcp->tcp_linger_tid == 0) 3904 tcp->tcp_client_errno = ENOSR; 3905 else 3906 return; 3907 } 3908 3909 /* 3910 * Check if we need to detach or just close 3911 * the instance. 3912 */ 3913 if (tcp->tcp_state <= TCPS_LISTEN) 3914 break; 3915 } 3916 3917 /* 3918 * Make sure that no other thread will access the tcp_rq of 3919 * this instance (through lookups etc.) as tcp_rq will go 3920 * away shortly. 3921 */ 3922 tcp_acceptor_hash_remove(tcp); 3923 3924 if (tcp->tcp_flow_stopped) { 3925 tcp_clrqfull(tcp); 3926 } 3927 3928 if (tcp->tcp_timer_tid != 0) { 3929 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3930 tcp->tcp_timer_tid = 0; 3931 } 3932 /* 3933 * Need to cancel those timers which will not be used when 3934 * TCP is detached. This has to be done before the tcp_wq 3935 * is set to the global queue. 3936 */ 3937 tcp_timers_stop(tcp); 3938 3939 tcp->tcp_detached = B_TRUE; 3940 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3941 tcp_time_wait_append(tcp); 3942 TCP_DBGSTAT(tcp_detach_time_wait); 3943 ASSERT(connp->conn_ref >= 3); 3944 goto finish; 3945 } 3946 3947 /* 3948 * If delta is zero the timer event wasn't executed and was 3949 * successfully canceled. In this case we need to restart it 3950 * with the minimal delta possible. 3951 */ 3952 if (delta >= 0) 3953 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3954 delta ? delta : 1); 3955 3956 ASSERT(connp->conn_ref >= 3); 3957 goto finish; 3958 } 3959 3960 /* Detach did not complete. Still need to remove q from stream. */ 3961 if (msg) { 3962 if (tcp->tcp_state == TCPS_ESTABLISHED || 3963 tcp->tcp_state == TCPS_CLOSE_WAIT) 3964 BUMP_MIB(&tcp_mib, tcpEstabResets); 3965 if (tcp->tcp_state == TCPS_SYN_SENT || 3966 tcp->tcp_state == TCPS_SYN_RCVD) 3967 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3968 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3969 } 3970 3971 tcp_closei_local(tcp); 3972 CONN_DEC_REF(connp); 3973 ASSERT(connp->conn_ref >= 2); 3974 3975 finish: 3976 /* 3977 * Although packets are always processed on the correct 3978 * tcp's perimeter and access is serialized via squeue's, 3979 * IP still needs a queue when sending packets in time_wait 3980 * state so use WR(tcp_g_q) till ip_output() can be 3981 * changed to deal with just connp. For read side, we 3982 * could have set tcp_rq to NULL but there are some cases 3983 * in tcp_rput_data() from early days of this code which 3984 * do a putnext without checking if tcp is closed. Those 3985 * need to be identified before both tcp_rq and tcp_wq 3986 * can be set to NULL and tcp_q_q can disappear forever. 3987 */ 3988 mutex_enter(&tcp->tcp_closelock); 3989 /* 3990 * Don't change the queues in the case of a listener that has 3991 * eagers in its q or q0. It could surprise the eagers. 3992 * Instead wait for the eagers outside the squeue. 3993 */ 3994 if (!tcp->tcp_wait_for_eagers) { 3995 tcp->tcp_detached = B_TRUE; 3996 tcp->tcp_rq = tcp_g_q; 3997 tcp->tcp_wq = WR(tcp_g_q); 3998 } 3999 /* Signal tcp_close() to finish closing. */ 4000 tcp->tcp_closed = 1; 4001 cv_signal(&tcp->tcp_closecv); 4002 mutex_exit(&tcp->tcp_closelock); 4003 } 4004 4005 4006 /* 4007 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4008 * Some stream heads get upset if they see these later on as anything but NULL. 4009 */ 4010 static void 4011 tcp_close_mpp(mblk_t **mpp) 4012 { 4013 mblk_t *mp; 4014 4015 if ((mp = *mpp) != NULL) { 4016 do { 4017 mp->b_next = NULL; 4018 mp->b_prev = NULL; 4019 } while ((mp = mp->b_cont) != NULL); 4020 4021 mp = *mpp; 4022 *mpp = NULL; 4023 freemsg(mp); 4024 } 4025 } 4026 4027 /* Do detached close. */ 4028 static void 4029 tcp_close_detached(tcp_t *tcp) 4030 { 4031 if (tcp->tcp_fused) 4032 tcp_unfuse(tcp); 4033 4034 /* 4035 * Clustering code serializes TCP disconnect callbacks and 4036 * cluster tcp list walks by blocking a TCP disconnect callback 4037 * if a cluster tcp list walk is in progress. This ensures 4038 * accurate accounting of TCPs in the cluster code even though 4039 * the TCP list walk itself is not atomic. 4040 */ 4041 tcp_closei_local(tcp); 4042 CONN_DEC_REF(tcp->tcp_connp); 4043 } 4044 4045 /* 4046 * Stop all TCP timers, and free the timer mblks if requested. 4047 */ 4048 void 4049 tcp_timers_stop(tcp_t *tcp) 4050 { 4051 if (tcp->tcp_timer_tid != 0) { 4052 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4053 tcp->tcp_timer_tid = 0; 4054 } 4055 if (tcp->tcp_ka_tid != 0) { 4056 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4057 tcp->tcp_ka_tid = 0; 4058 } 4059 if (tcp->tcp_ack_tid != 0) { 4060 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4061 tcp->tcp_ack_tid = 0; 4062 } 4063 if (tcp->tcp_push_tid != 0) { 4064 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4065 tcp->tcp_push_tid = 0; 4066 } 4067 } 4068 4069 /* 4070 * The tcp_t is going away. Remove it from all lists and set it 4071 * to TCPS_CLOSED. The freeing up of memory is deferred until 4072 * tcp_inactive. This is needed since a thread in tcp_rput might have 4073 * done a CONN_INC_REF on this structure before it was removed from the 4074 * hashes. 4075 */ 4076 static void 4077 tcp_closei_local(tcp_t *tcp) 4078 { 4079 ire_t *ire; 4080 conn_t *connp = tcp->tcp_connp; 4081 4082 if (!TCP_IS_SOCKET(tcp)) 4083 tcp_acceptor_hash_remove(tcp); 4084 4085 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4086 tcp->tcp_ibsegs = 0; 4087 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4088 tcp->tcp_obsegs = 0; 4089 /* 4090 * If we are an eager connection hanging off a listener that 4091 * hasn't formally accepted the connection yet, get off his 4092 * list and blow off any data that we have accumulated. 4093 */ 4094 if (tcp->tcp_listener != NULL) { 4095 tcp_t *listener = tcp->tcp_listener; 4096 mutex_enter(&listener->tcp_eager_lock); 4097 /* 4098 * tcp_eager_conn_ind == NULL means that the 4099 * conn_ind has already gone to listener. At 4100 * this point, eager will be closed but we 4101 * leave it in listeners eager list so that 4102 * if listener decides to close without doing 4103 * accept, we can clean this up. In tcp_wput_accept 4104 * we take case of the case of accept on closed 4105 * eager. 4106 */ 4107 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4108 tcp_eager_unlink(tcp); 4109 mutex_exit(&listener->tcp_eager_lock); 4110 /* 4111 * We don't want to have any pointers to the 4112 * listener queue, after we have released our 4113 * reference on the listener 4114 */ 4115 tcp->tcp_rq = tcp_g_q; 4116 tcp->tcp_wq = WR(tcp_g_q); 4117 CONN_DEC_REF(listener->tcp_connp); 4118 } else { 4119 mutex_exit(&listener->tcp_eager_lock); 4120 } 4121 } 4122 4123 /* Stop all the timers */ 4124 tcp_timers_stop(tcp); 4125 4126 if (tcp->tcp_state == TCPS_LISTEN) { 4127 if (tcp->tcp_ip_addr_cache) { 4128 kmem_free((void *)tcp->tcp_ip_addr_cache, 4129 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4130 tcp->tcp_ip_addr_cache = NULL; 4131 } 4132 } 4133 if (tcp->tcp_flow_stopped) 4134 tcp_clrqfull(tcp); 4135 4136 tcp_bind_hash_remove(tcp); 4137 /* 4138 * If the tcp_time_wait_collector (which runs outside the squeue) 4139 * is trying to remove this tcp from the time wait list, we will 4140 * block in tcp_time_wait_remove while trying to acquire the 4141 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4142 * requires the ipcl_hash_remove to be ordered after the 4143 * tcp_time_wait_remove for the refcnt checks to work correctly. 4144 */ 4145 if (tcp->tcp_state == TCPS_TIME_WAIT) 4146 tcp_time_wait_remove(tcp, NULL); 4147 CL_INET_DISCONNECT(tcp); 4148 ipcl_hash_remove(connp); 4149 4150 /* 4151 * Delete the cached ire in conn_ire_cache and also mark 4152 * the conn as CONDEMNED 4153 */ 4154 mutex_enter(&connp->conn_lock); 4155 connp->conn_state_flags |= CONN_CONDEMNED; 4156 ire = connp->conn_ire_cache; 4157 connp->conn_ire_cache = NULL; 4158 mutex_exit(&connp->conn_lock); 4159 if (ire != NULL) 4160 IRE_REFRELE_NOTR(ire); 4161 4162 /* Need to cleanup any pending ioctls */ 4163 ASSERT(tcp->tcp_time_wait_next == NULL); 4164 ASSERT(tcp->tcp_time_wait_prev == NULL); 4165 ASSERT(tcp->tcp_time_wait_expire == 0); 4166 tcp->tcp_state = TCPS_CLOSED; 4167 } 4168 4169 /* 4170 * tcp is dying (called from ipcl_conn_destroy and error cases). 4171 * Free the tcp_t in either case. 4172 */ 4173 void 4174 tcp_free(tcp_t *tcp) 4175 { 4176 mblk_t *mp; 4177 ip6_pkt_t *ipp; 4178 4179 ASSERT(tcp != NULL); 4180 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4181 4182 tcp->tcp_rq = NULL; 4183 tcp->tcp_wq = NULL; 4184 4185 tcp_close_mpp(&tcp->tcp_xmit_head); 4186 tcp_close_mpp(&tcp->tcp_reass_head); 4187 if (tcp->tcp_rcv_list != NULL) { 4188 /* Free b_next chain */ 4189 tcp_close_mpp(&tcp->tcp_rcv_list); 4190 } 4191 if ((mp = tcp->tcp_urp_mp) != NULL) { 4192 freemsg(mp); 4193 } 4194 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4195 freemsg(mp); 4196 } 4197 4198 if (tcp->tcp_fused_sigurg_mp != NULL) { 4199 freeb(tcp->tcp_fused_sigurg_mp); 4200 tcp->tcp_fused_sigurg_mp = NULL; 4201 } 4202 4203 if (tcp->tcp_sack_info != NULL) { 4204 if (tcp->tcp_notsack_list != NULL) { 4205 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4206 } 4207 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4208 } 4209 4210 if (tcp->tcp_hopopts != NULL) { 4211 mi_free(tcp->tcp_hopopts); 4212 tcp->tcp_hopopts = NULL; 4213 tcp->tcp_hopoptslen = 0; 4214 } 4215 ASSERT(tcp->tcp_hopoptslen == 0); 4216 if (tcp->tcp_dstopts != NULL) { 4217 mi_free(tcp->tcp_dstopts); 4218 tcp->tcp_dstopts = NULL; 4219 tcp->tcp_dstoptslen = 0; 4220 } 4221 ASSERT(tcp->tcp_dstoptslen == 0); 4222 if (tcp->tcp_rtdstopts != NULL) { 4223 mi_free(tcp->tcp_rtdstopts); 4224 tcp->tcp_rtdstopts = NULL; 4225 tcp->tcp_rtdstoptslen = 0; 4226 } 4227 ASSERT(tcp->tcp_rtdstoptslen == 0); 4228 if (tcp->tcp_rthdr != NULL) { 4229 mi_free(tcp->tcp_rthdr); 4230 tcp->tcp_rthdr = NULL; 4231 tcp->tcp_rthdrlen = 0; 4232 } 4233 ASSERT(tcp->tcp_rthdrlen == 0); 4234 4235 ipp = &tcp->tcp_sticky_ipp; 4236 if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4237 IPPF_DSTOPTS | IPPF_RTHDR)) != 0) { 4238 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 4239 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 4240 ipp->ipp_hopopts = NULL; 4241 ipp->ipp_hopoptslen = 0; 4242 } 4243 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 4244 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 4245 ipp->ipp_rtdstopts = NULL; 4246 ipp->ipp_rtdstoptslen = 0; 4247 } 4248 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 4249 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 4250 ipp->ipp_dstopts = NULL; 4251 ipp->ipp_dstoptslen = 0; 4252 } 4253 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 4254 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 4255 ipp->ipp_rthdr = NULL; 4256 ipp->ipp_rthdrlen = 0; 4257 } 4258 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4259 IPPF_DSTOPTS | IPPF_RTHDR); 4260 } 4261 4262 /* 4263 * Free memory associated with the tcp/ip header template. 4264 */ 4265 4266 if (tcp->tcp_iphc != NULL) 4267 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4268 4269 /* 4270 * Following is really a blowing away a union. 4271 * It happens to have exactly two members of identical size 4272 * the following code is enough. 4273 */ 4274 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4275 4276 if (tcp->tcp_tracebuf != NULL) { 4277 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4278 tcp->tcp_tracebuf = NULL; 4279 } 4280 } 4281 4282 4283 /* 4284 * Put a connection confirmation message upstream built from the 4285 * address information within 'iph' and 'tcph'. Report our success or failure. 4286 */ 4287 static boolean_t 4288 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4289 mblk_t **defermp) 4290 { 4291 sin_t sin; 4292 sin6_t sin6; 4293 mblk_t *mp; 4294 char *optp = NULL; 4295 int optlen = 0; 4296 cred_t *cr; 4297 4298 if (defermp != NULL) 4299 *defermp = NULL; 4300 4301 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4302 /* 4303 * Return in T_CONN_CON results of option negotiation through 4304 * the T_CONN_REQ. Note: If there is an real end-to-end option 4305 * negotiation, then what is received from remote end needs 4306 * to be taken into account but there is no such thing (yet?) 4307 * in our TCP/IP. 4308 * Note: We do not use mi_offset_param() here as 4309 * tcp_opts_conn_req contents do not directly come from 4310 * an application and are either generated in kernel or 4311 * from user input that was already verified. 4312 */ 4313 mp = tcp->tcp_conn.tcp_opts_conn_req; 4314 optp = (char *)(mp->b_rptr + 4315 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4316 optlen = (int) 4317 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4318 } 4319 4320 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4321 ipha_t *ipha = (ipha_t *)iphdr; 4322 4323 /* packet is IPv4 */ 4324 if (tcp->tcp_family == AF_INET) { 4325 sin = sin_null; 4326 sin.sin_addr.s_addr = ipha->ipha_src; 4327 sin.sin_port = *(uint16_t *)tcph->th_lport; 4328 sin.sin_family = AF_INET; 4329 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4330 (int)sizeof (sin_t), optp, optlen); 4331 } else { 4332 sin6 = sin6_null; 4333 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4334 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4335 sin6.sin6_family = AF_INET6; 4336 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4337 (int)sizeof (sin6_t), optp, optlen); 4338 4339 } 4340 } else { 4341 ip6_t *ip6h = (ip6_t *)iphdr; 4342 4343 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4344 ASSERT(tcp->tcp_family == AF_INET6); 4345 sin6 = sin6_null; 4346 sin6.sin6_addr = ip6h->ip6_src; 4347 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4348 sin6.sin6_family = AF_INET6; 4349 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4350 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4351 (int)sizeof (sin6_t), optp, optlen); 4352 } 4353 4354 if (!mp) 4355 return (B_FALSE); 4356 4357 if ((cr = DB_CRED(idmp)) != NULL) { 4358 mblk_setcred(mp, cr); 4359 DB_CPID(mp) = DB_CPID(idmp); 4360 } 4361 4362 if (defermp == NULL) 4363 putnext(tcp->tcp_rq, mp); 4364 else 4365 *defermp = mp; 4366 4367 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4368 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4369 return (B_TRUE); 4370 } 4371 4372 /* 4373 * Defense for the SYN attack - 4374 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4375 * one that doesn't have the dontdrop bit set. 4376 * 2. Don't drop a SYN request before its first timeout. This gives every 4377 * request at least til the first timeout to complete its 3-way handshake. 4378 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4379 * requests currently on the queue that has timed out. This will be used 4380 * as an indicator of whether an attack is under way, so that appropriate 4381 * actions can be taken. (It's incremented in tcp_timer() and decremented 4382 * either when eager goes into ESTABLISHED, or gets freed up.) 4383 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4384 * # of timeout drops back to <= q0len/32 => SYN alert off 4385 */ 4386 static boolean_t 4387 tcp_drop_q0(tcp_t *tcp) 4388 { 4389 tcp_t *eager; 4390 4391 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4392 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4393 /* 4394 * New one is added after next_q0 so prev_q0 points to the oldest 4395 * Also do not drop any established connections that are deferred on 4396 * q0 due to q being full 4397 */ 4398 4399 eager = tcp->tcp_eager_prev_q0; 4400 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4401 eager = eager->tcp_eager_prev_q0; 4402 if (eager == tcp) { 4403 eager = tcp->tcp_eager_prev_q0; 4404 break; 4405 } 4406 } 4407 if (eager->tcp_syn_rcvd_timeout == 0) 4408 return (B_FALSE); 4409 4410 if (tcp->tcp_debug) { 4411 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4412 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4413 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4414 tcp->tcp_conn_req_cnt_q0, 4415 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4416 } 4417 4418 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4419 4420 /* 4421 * need to do refhold here because the selected eager could 4422 * be removed by someone else if we release the eager lock. 4423 */ 4424 CONN_INC_REF(eager->tcp_connp); 4425 mutex_exit(&tcp->tcp_eager_lock); 4426 4427 /* Mark the IRE created for this SYN request temporary */ 4428 tcp_ip_ire_mark_advice(eager); 4429 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4430 CONN_DEC_REF(eager->tcp_connp); 4431 4432 mutex_enter(&tcp->tcp_eager_lock); 4433 return (B_TRUE); 4434 } 4435 4436 int 4437 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4438 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4439 { 4440 tcp_t *ltcp = lconnp->conn_tcp; 4441 tcp_t *tcp = connp->conn_tcp; 4442 mblk_t *tpi_mp; 4443 ipha_t *ipha; 4444 ip6_t *ip6h; 4445 sin6_t sin6; 4446 in6_addr_t v6dst; 4447 int err; 4448 int ifindex = 0; 4449 cred_t *cr; 4450 4451 if (ipvers == IPV4_VERSION) { 4452 ipha = (ipha_t *)mp->b_rptr; 4453 4454 connp->conn_send = ip_output; 4455 connp->conn_recv = tcp_input; 4456 4457 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4458 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4459 4460 sin6 = sin6_null; 4461 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4462 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4463 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4464 sin6.sin6_family = AF_INET6; 4465 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4466 lconnp->conn_zoneid); 4467 if (tcp->tcp_recvdstaddr) { 4468 sin6_t sin6d; 4469 4470 sin6d = sin6_null; 4471 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4472 &sin6d.sin6_addr); 4473 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4474 sin6d.sin6_family = AF_INET; 4475 tpi_mp = mi_tpi_extconn_ind(NULL, 4476 (char *)&sin6d, sizeof (sin6_t), 4477 (char *)&tcp, 4478 (t_scalar_t)sizeof (intptr_t), 4479 (char *)&sin6d, sizeof (sin6_t), 4480 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4481 } else { 4482 tpi_mp = mi_tpi_conn_ind(NULL, 4483 (char *)&sin6, sizeof (sin6_t), 4484 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4485 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4486 } 4487 } else { 4488 ip6h = (ip6_t *)mp->b_rptr; 4489 4490 connp->conn_send = ip_output_v6; 4491 connp->conn_recv = tcp_input; 4492 4493 connp->conn_srcv6 = ip6h->ip6_dst; 4494 connp->conn_remv6 = ip6h->ip6_src; 4495 4496 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4497 ifindex = (int)DB_CKSUMSTUFF(mp); 4498 DB_CKSUMSTUFF(mp) = 0; 4499 4500 sin6 = sin6_null; 4501 sin6.sin6_addr = ip6h->ip6_src; 4502 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4503 sin6.sin6_family = AF_INET6; 4504 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4505 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4506 lconnp->conn_zoneid); 4507 4508 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4509 /* Pass up the scope_id of remote addr */ 4510 sin6.sin6_scope_id = ifindex; 4511 } else { 4512 sin6.sin6_scope_id = 0; 4513 } 4514 if (tcp->tcp_recvdstaddr) { 4515 sin6_t sin6d; 4516 4517 sin6d = sin6_null; 4518 sin6.sin6_addr = ip6h->ip6_dst; 4519 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4520 sin6d.sin6_family = AF_INET; 4521 tpi_mp = mi_tpi_extconn_ind(NULL, 4522 (char *)&sin6d, sizeof (sin6_t), 4523 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4524 (char *)&sin6d, sizeof (sin6_t), 4525 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4526 } else { 4527 tpi_mp = mi_tpi_conn_ind(NULL, 4528 (char *)&sin6, sizeof (sin6_t), 4529 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4530 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4531 } 4532 } 4533 4534 if (tpi_mp == NULL) 4535 return (ENOMEM); 4536 4537 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4538 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4539 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4540 connp->conn_fully_bound = B_FALSE; 4541 4542 if (tcp_trace) 4543 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4544 4545 /* Inherit information from the "parent" */ 4546 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4547 tcp->tcp_family = ltcp->tcp_family; 4548 tcp->tcp_wq = ltcp->tcp_wq; 4549 tcp->tcp_rq = ltcp->tcp_rq; 4550 tcp->tcp_mss = tcp_mss_def_ipv6; 4551 tcp->tcp_detached = B_TRUE; 4552 if ((err = tcp_init_values(tcp)) != 0) { 4553 freemsg(tpi_mp); 4554 return (err); 4555 } 4556 4557 if (ipvers == IPV4_VERSION) { 4558 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4559 freemsg(tpi_mp); 4560 return (err); 4561 } 4562 ASSERT(tcp->tcp_ipha != NULL); 4563 } else { 4564 /* ifindex must be already set */ 4565 ASSERT(ifindex != 0); 4566 4567 if (ltcp->tcp_bound_if != 0) { 4568 /* 4569 * Set newtcp's bound_if equal to 4570 * listener's value. If ifindex is 4571 * not the same as ltcp->tcp_bound_if, 4572 * it must be a packet for the ipmp group 4573 * of interfaces 4574 */ 4575 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4576 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4577 tcp->tcp_bound_if = ifindex; 4578 } 4579 4580 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4581 tcp->tcp_recvifindex = 0; 4582 tcp->tcp_recvhops = 0xffffffffU; 4583 ASSERT(tcp->tcp_ip6h != NULL); 4584 } 4585 4586 tcp->tcp_lport = ltcp->tcp_lport; 4587 4588 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4589 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4590 /* 4591 * Listener had options of some sort; eager inherits. 4592 * Free up the eager template and allocate one 4593 * of the right size. 4594 */ 4595 if (tcp->tcp_hdr_grown) { 4596 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4597 } else { 4598 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4599 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4600 } 4601 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4602 KM_NOSLEEP); 4603 if (tcp->tcp_iphc == NULL) { 4604 tcp->tcp_iphc_len = 0; 4605 freemsg(tpi_mp); 4606 return (ENOMEM); 4607 } 4608 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4609 tcp->tcp_hdr_grown = B_TRUE; 4610 } 4611 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4612 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4613 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4614 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4615 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4616 4617 /* 4618 * Copy the IP+TCP header template from listener to eager 4619 */ 4620 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4621 if (tcp->tcp_ipversion == IPV6_VERSION) { 4622 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4623 IPPROTO_RAW) { 4624 tcp->tcp_ip6h = 4625 (ip6_t *)(tcp->tcp_iphc + 4626 sizeof (ip6i_t)); 4627 } else { 4628 tcp->tcp_ip6h = 4629 (ip6_t *)(tcp->tcp_iphc); 4630 } 4631 tcp->tcp_ipha = NULL; 4632 } else { 4633 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4634 tcp->tcp_ip6h = NULL; 4635 } 4636 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4637 tcp->tcp_ip_hdr_len); 4638 } else { 4639 /* 4640 * only valid case when ipversion of listener and 4641 * eager differ is when listener is IPv6 and 4642 * eager is IPv4. 4643 * Eager header template has been initialized to the 4644 * maximum v4 header sizes, which includes space for 4645 * TCP and IP options. 4646 */ 4647 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4648 (tcp->tcp_ipversion == IPV4_VERSION)); 4649 ASSERT(tcp->tcp_iphc_len >= 4650 TCP_MAX_COMBINED_HEADER_LENGTH); 4651 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4652 /* copy IP header fields individually */ 4653 tcp->tcp_ipha->ipha_ttl = 4654 ltcp->tcp_ip6h->ip6_hops; 4655 bcopy(ltcp->tcp_tcph->th_lport, 4656 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4657 } 4658 4659 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4660 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4661 sizeof (in_port_t)); 4662 4663 if (ltcp->tcp_lport == 0) { 4664 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4665 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4666 sizeof (in_port_t)); 4667 } 4668 4669 if (tcp->tcp_ipversion == IPV4_VERSION) { 4670 ASSERT(ipha != NULL); 4671 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4672 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4673 4674 /* Source routing option copyover (reverse it) */ 4675 if (tcp_rev_src_routes) 4676 tcp_opt_reverse(tcp, ipha); 4677 } else { 4678 ASSERT(ip6h != NULL); 4679 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4680 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4681 } 4682 4683 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4684 /* 4685 * If the SYN contains a credential, it's a loopback packet; attach 4686 * the credential to the TPI message. 4687 */ 4688 if ((cr = DB_CRED(idmp)) != NULL) { 4689 mblk_setcred(tpi_mp, cr); 4690 DB_CPID(tpi_mp) = DB_CPID(idmp); 4691 } 4692 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4693 4694 return (0); 4695 } 4696 4697 4698 int 4699 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4700 tcph_t *tcph, mblk_t *idmp) 4701 { 4702 tcp_t *ltcp = lconnp->conn_tcp; 4703 tcp_t *tcp = connp->conn_tcp; 4704 sin_t sin; 4705 mblk_t *tpi_mp = NULL; 4706 int err; 4707 cred_t *cr; 4708 4709 sin = sin_null; 4710 sin.sin_addr.s_addr = ipha->ipha_src; 4711 sin.sin_port = *(uint16_t *)tcph->th_lport; 4712 sin.sin_family = AF_INET; 4713 if (ltcp->tcp_recvdstaddr) { 4714 sin_t sind; 4715 4716 sind = sin_null; 4717 sind.sin_addr.s_addr = ipha->ipha_dst; 4718 sind.sin_port = *(uint16_t *)tcph->th_fport; 4719 sind.sin_family = AF_INET; 4720 tpi_mp = mi_tpi_extconn_ind(NULL, 4721 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4722 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4723 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4724 } else { 4725 tpi_mp = mi_tpi_conn_ind(NULL, 4726 (char *)&sin, sizeof (sin_t), 4727 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4728 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4729 } 4730 4731 if (tpi_mp == NULL) { 4732 return (ENOMEM); 4733 } 4734 4735 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4736 connp->conn_send = ip_output; 4737 connp->conn_recv = tcp_input; 4738 connp->conn_fully_bound = B_FALSE; 4739 4740 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4741 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4742 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4743 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4744 4745 if (tcp_trace) { 4746 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4747 } 4748 4749 /* Inherit information from the "parent" */ 4750 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4751 tcp->tcp_family = ltcp->tcp_family; 4752 tcp->tcp_wq = ltcp->tcp_wq; 4753 tcp->tcp_rq = ltcp->tcp_rq; 4754 tcp->tcp_mss = tcp_mss_def_ipv4; 4755 tcp->tcp_detached = B_TRUE; 4756 if ((err = tcp_init_values(tcp)) != 0) { 4757 freemsg(tpi_mp); 4758 return (err); 4759 } 4760 4761 /* 4762 * Let's make sure that eager tcp template has enough space to 4763 * copy IPv4 listener's tcp template. Since the conn_t structure is 4764 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4765 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4766 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4767 * extension headers or with ip6i_t struct). Note that bcopy() below 4768 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4769 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4770 */ 4771 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4772 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4773 4774 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4775 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4776 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4777 tcp->tcp_ttl = ltcp->tcp_ttl; 4778 tcp->tcp_tos = ltcp->tcp_tos; 4779 4780 /* Copy the IP+TCP header template from listener to eager */ 4781 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4782 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4783 tcp->tcp_ip6h = NULL; 4784 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4785 tcp->tcp_ip_hdr_len); 4786 4787 /* Initialize the IP addresses and Ports */ 4788 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4789 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4790 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4791 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4792 4793 /* Source routing option copyover (reverse it) */ 4794 if (tcp_rev_src_routes) 4795 tcp_opt_reverse(tcp, ipha); 4796 4797 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4798 4799 /* 4800 * If the SYN contains a credential, it's a loopback packet; attach 4801 * the credential to the TPI message. 4802 */ 4803 if ((cr = DB_CRED(idmp)) != NULL) { 4804 mblk_setcred(tpi_mp, cr); 4805 DB_CPID(tpi_mp) = DB_CPID(idmp); 4806 } 4807 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4808 4809 return (0); 4810 } 4811 4812 /* 4813 * sets up conn for ipsec. 4814 * if the first mblk is M_CTL it is consumed and mpp is updated. 4815 * in case of error mpp is freed. 4816 */ 4817 conn_t * 4818 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4819 { 4820 conn_t *connp = tcp->tcp_connp; 4821 conn_t *econnp; 4822 squeue_t *new_sqp; 4823 mblk_t *first_mp = *mpp; 4824 mblk_t *mp = *mpp; 4825 boolean_t mctl_present = B_FALSE; 4826 uint_t ipvers; 4827 4828 econnp = tcp_get_conn(sqp); 4829 if (econnp == NULL) { 4830 freemsg(first_mp); 4831 return (NULL); 4832 } 4833 if (DB_TYPE(mp) == M_CTL) { 4834 if (mp->b_cont == NULL || 4835 mp->b_cont->b_datap->db_type != M_DATA) { 4836 freemsg(first_mp); 4837 return (NULL); 4838 } 4839 mp = mp->b_cont; 4840 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4841 freemsg(first_mp); 4842 return (NULL); 4843 } 4844 4845 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4846 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4847 mctl_present = B_TRUE; 4848 } else { 4849 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4850 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4851 } 4852 4853 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4854 DB_CKSUMSTART(mp) = 0; 4855 4856 ASSERT(OK_32PTR(mp->b_rptr)); 4857 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4858 if (ipvers == IPV4_VERSION) { 4859 uint16_t *up; 4860 uint32_t ports; 4861 ipha_t *ipha; 4862 4863 ipha = (ipha_t *)mp->b_rptr; 4864 up = (uint16_t *)((uchar_t *)ipha + 4865 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4866 ports = *(uint32_t *)up; 4867 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4868 ipha->ipha_dst, ipha->ipha_src, ports); 4869 } else { 4870 uint16_t *up; 4871 uint32_t ports; 4872 uint16_t ip_hdr_len; 4873 uint8_t *nexthdrp; 4874 ip6_t *ip6h; 4875 tcph_t *tcph; 4876 4877 ip6h = (ip6_t *)mp->b_rptr; 4878 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4879 ip_hdr_len = IPV6_HDR_LEN; 4880 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4881 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4882 CONN_DEC_REF(econnp); 4883 freemsg(first_mp); 4884 return (NULL); 4885 } 4886 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4887 up = (uint16_t *)tcph->th_lport; 4888 ports = *(uint32_t *)up; 4889 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4890 ip6h->ip6_dst, ip6h->ip6_src, ports); 4891 } 4892 4893 /* 4894 * The caller already ensured that there is a sqp present. 4895 */ 4896 econnp->conn_sqp = new_sqp; 4897 4898 if (connp->conn_policy != NULL) { 4899 ipsec_in_t *ii; 4900 ii = (ipsec_in_t *)(first_mp->b_rptr); 4901 ASSERT(ii->ipsec_in_policy == NULL); 4902 IPPH_REFHOLD(connp->conn_policy); 4903 ii->ipsec_in_policy = connp->conn_policy; 4904 4905 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4906 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4907 CONN_DEC_REF(econnp); 4908 freemsg(first_mp); 4909 return (NULL); 4910 } 4911 } 4912 4913 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4914 CONN_DEC_REF(econnp); 4915 freemsg(first_mp); 4916 return (NULL); 4917 } 4918 4919 /* 4920 * If we know we have some policy, pass the "IPSEC" 4921 * options size TCP uses this adjust the MSS. 4922 */ 4923 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4924 if (mctl_present) { 4925 freeb(first_mp); 4926 *mpp = mp; 4927 } 4928 4929 return (econnp); 4930 } 4931 4932 /* 4933 * tcp_get_conn/tcp_free_conn 4934 * 4935 * tcp_get_conn is used to get a clean tcp connection structure. 4936 * It tries to reuse the connections put on the freelist by the 4937 * time_wait_collector failing which it goes to kmem_cache. This 4938 * way has two benefits compared to just allocating from and 4939 * freeing to kmem_cache. 4940 * 1) The time_wait_collector can free (which includes the cleanup) 4941 * outside the squeue. So when the interrupt comes, we have a clean 4942 * connection sitting in the freelist. Obviously, this buys us 4943 * performance. 4944 * 4945 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 4946 * has multiple disadvantages - tying up the squeue during alloc, and the 4947 * fact that IPSec policy initialization has to happen here which 4948 * requires us sending a M_CTL and checking for it i.e. real ugliness. 4949 * But allocating the conn/tcp in IP land is also not the best since 4950 * we can't check the 'q' and 'q0' which are protected by squeue and 4951 * blindly allocate memory which might have to be freed here if we are 4952 * not allowed to accept the connection. By using the freelist and 4953 * putting the conn/tcp back in freelist, we don't pay a penalty for 4954 * allocating memory without checking 'q/q0' and freeing it if we can't 4955 * accept the connection. 4956 * 4957 * Care should be taken to put the conn back in the same squeue's freelist 4958 * from which it was allocated. Best results are obtained if conn is 4959 * allocated from listener's squeue and freed to the same. Time wait 4960 * collector will free up the freelist is the connection ends up sitting 4961 * there for too long. 4962 */ 4963 void * 4964 tcp_get_conn(void *arg) 4965 { 4966 tcp_t *tcp = NULL; 4967 conn_t *connp = NULL; 4968 squeue_t *sqp = (squeue_t *)arg; 4969 tcp_squeue_priv_t *tcp_time_wait; 4970 4971 tcp_time_wait = 4972 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4973 4974 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4975 tcp = tcp_time_wait->tcp_free_list; 4976 if (tcp != NULL) { 4977 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4978 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4979 tcp->tcp_time_wait_next = NULL; 4980 connp = tcp->tcp_connp; 4981 connp->conn_flags |= IPCL_REUSED; 4982 return ((void *)connp); 4983 } 4984 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4985 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 4986 return (NULL); 4987 return ((void *)connp); 4988 } 4989 4990 /* BEGIN CSTYLED */ 4991 /* 4992 * 4993 * The sockfs ACCEPT path: 4994 * ======================= 4995 * 4996 * The eager is now established in its own perimeter as soon as SYN is 4997 * received in tcp_conn_request(). When sockfs receives conn_ind, it 4998 * completes the accept processing on the acceptor STREAM. The sending 4999 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5000 * listener but a TLI/XTI listener completes the accept processing 5001 * on the listener perimeter. 5002 * 5003 * Common control flow for 3 way handshake: 5004 * ---------------------------------------- 5005 * 5006 * incoming SYN (listener perimeter) -> tcp_rput_data() 5007 * -> tcp_conn_request() 5008 * 5009 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5010 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5011 * 5012 * Sockfs ACCEPT Path: 5013 * ------------------- 5014 * 5015 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5016 * as STREAM entry point) 5017 * 5018 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5019 * 5020 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5021 * association (we are not behind eager's squeue but sockfs is protecting us 5022 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5023 * is changed to point at tcp_wput(). 5024 * 5025 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5026 * listener (done on listener's perimeter). 5027 * 5028 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5029 * accept. 5030 * 5031 * TLI/XTI client ACCEPT path: 5032 * --------------------------- 5033 * 5034 * soaccept() sends T_CONN_RES on the listener STREAM. 5035 * 5036 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5037 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5038 * 5039 * Locks: 5040 * ====== 5041 * 5042 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5043 * and listeners->tcp_eager_next_q. 5044 * 5045 * Referencing: 5046 * ============ 5047 * 5048 * 1) We start out in tcp_conn_request by eager placing a ref on 5049 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5050 * 5051 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5052 * doing so we place a ref on the eager. This ref is finally dropped at the 5053 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5054 * reference is dropped by the squeue framework. 5055 * 5056 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5057 * 5058 * The reference must be released by the same entity that added the reference 5059 * In the above scheme, the eager is the entity that adds and releases the 5060 * references. Note that tcp_accept_finish executes in the squeue of the eager 5061 * (albeit after it is attached to the acceptor stream). Though 1. executes 5062 * in the listener's squeue, the eager is nascent at this point and the 5063 * reference can be considered to have been added on behalf of the eager. 5064 * 5065 * Eager getting a Reset or listener closing: 5066 * ========================================== 5067 * 5068 * Once the listener and eager are linked, the listener never does the unlink. 5069 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5070 * a message on all eager perimeter. The eager then does the unlink, clears 5071 * any pointers to the listener's queue and drops the reference to the 5072 * listener. The listener waits in tcp_close outside the squeue until its 5073 * refcount has dropped to 1. This ensures that the listener has waited for 5074 * all eagers to clear their association with the listener. 5075 * 5076 * Similarly, if eager decides to go away, it can unlink itself and close. 5077 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5078 * the reference to eager is still valid because of the extra ref we put 5079 * in tcp_send_conn_ind. 5080 * 5081 * Listener can always locate the eager under the protection 5082 * of the listener->tcp_eager_lock, and then do a refhold 5083 * on the eager during the accept processing. 5084 * 5085 * The acceptor stream accesses the eager in the accept processing 5086 * based on the ref placed on eager before sending T_conn_ind. 5087 * The only entity that can negate this refhold is a listener close 5088 * which is mutually exclusive with an active acceptor stream. 5089 * 5090 * Eager's reference on the listener 5091 * =================================== 5092 * 5093 * If the accept happens (even on a closed eager) the eager drops its 5094 * reference on the listener at the start of tcp_accept_finish. If the 5095 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5096 * the reference is dropped in tcp_closei_local. If the listener closes, 5097 * the reference is dropped in tcp_eager_kill. In all cases the reference 5098 * is dropped while executing in the eager's context (squeue). 5099 */ 5100 /* END CSTYLED */ 5101 5102 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5103 5104 /* 5105 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5106 * tcp_rput_data will not see any SYN packets. 5107 */ 5108 /* ARGSUSED */ 5109 void 5110 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5111 { 5112 tcph_t *tcph; 5113 uint32_t seg_seq; 5114 tcp_t *eager; 5115 uint_t ipvers; 5116 ipha_t *ipha; 5117 ip6_t *ip6h; 5118 int err; 5119 conn_t *econnp = NULL; 5120 squeue_t *new_sqp; 5121 mblk_t *mp1; 5122 uint_t ip_hdr_len; 5123 conn_t *connp = (conn_t *)arg; 5124 tcp_t *tcp = connp->conn_tcp; 5125 ire_t *ire; 5126 5127 if (tcp->tcp_state != TCPS_LISTEN) 5128 goto error2; 5129 5130 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5131 5132 mutex_enter(&tcp->tcp_eager_lock); 5133 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5134 mutex_exit(&tcp->tcp_eager_lock); 5135 TCP_STAT(tcp_listendrop); 5136 BUMP_MIB(&tcp_mib, tcpListenDrop); 5137 if (tcp->tcp_debug) { 5138 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5139 "tcp_conn_request: listen backlog (max=%d) " 5140 "overflow (%d pending) on %s", 5141 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5142 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5143 } 5144 goto error2; 5145 } 5146 5147 if (tcp->tcp_conn_req_cnt_q0 >= 5148 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5149 /* 5150 * Q0 is full. Drop a pending half-open req from the queue 5151 * to make room for the new SYN req. Also mark the time we 5152 * drop a SYN. 5153 * 5154 * A more aggressive defense against SYN attack will 5155 * be to set the "tcp_syn_defense" flag now. 5156 */ 5157 TCP_STAT(tcp_listendropq0); 5158 tcp->tcp_last_rcv_lbolt = lbolt64; 5159 if (!tcp_drop_q0(tcp)) { 5160 mutex_exit(&tcp->tcp_eager_lock); 5161 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5162 if (tcp->tcp_debug) { 5163 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5164 "tcp_conn_request: listen half-open queue " 5165 "(max=%d) full (%d pending) on %s", 5166 tcp_conn_req_max_q0, 5167 tcp->tcp_conn_req_cnt_q0, 5168 tcp_display(tcp, NULL, 5169 DISP_PORT_ONLY)); 5170 } 5171 goto error2; 5172 } 5173 } 5174 mutex_exit(&tcp->tcp_eager_lock); 5175 5176 /* 5177 * IP adds STRUIO_EAGER and ensures that the received packet is 5178 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5179 * link local address. If IPSec is enabled, db_struioflag has 5180 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5181 * otherwise an error case if neither of them is set. 5182 */ 5183 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5184 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5185 DB_CKSUMSTART(mp) = 0; 5186 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5187 econnp = (conn_t *)tcp_get_conn(arg2); 5188 if (econnp == NULL) 5189 goto error2; 5190 econnp->conn_sqp = new_sqp; 5191 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5192 /* 5193 * mp is updated in tcp_get_ipsec_conn(). 5194 */ 5195 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5196 if (econnp == NULL) { 5197 /* 5198 * mp freed by tcp_get_ipsec_conn. 5199 */ 5200 return; 5201 } 5202 } else { 5203 goto error2; 5204 } 5205 5206 ASSERT(DB_TYPE(mp) == M_DATA); 5207 5208 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5209 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5210 ASSERT(OK_32PTR(mp->b_rptr)); 5211 if (ipvers == IPV4_VERSION) { 5212 ipha = (ipha_t *)mp->b_rptr; 5213 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5214 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5215 } else { 5216 ip6h = (ip6_t *)mp->b_rptr; 5217 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5218 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5219 } 5220 5221 if (tcp->tcp_family == AF_INET) { 5222 ASSERT(ipvers == IPV4_VERSION); 5223 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5224 } else { 5225 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5226 } 5227 5228 if (err) 5229 goto error3; 5230 5231 eager = econnp->conn_tcp; 5232 5233 /* Inherit various TCP parameters from the listener */ 5234 eager->tcp_naglim = tcp->tcp_naglim; 5235 eager->tcp_first_timer_threshold = 5236 tcp->tcp_first_timer_threshold; 5237 eager->tcp_second_timer_threshold = 5238 tcp->tcp_second_timer_threshold; 5239 5240 eager->tcp_first_ctimer_threshold = 5241 tcp->tcp_first_ctimer_threshold; 5242 eager->tcp_second_ctimer_threshold = 5243 tcp->tcp_second_ctimer_threshold; 5244 5245 /* 5246 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5247 * zone id before the accept is completed in tcp_wput_accept(). 5248 */ 5249 econnp->conn_zoneid = connp->conn_zoneid; 5250 5251 eager->tcp_hard_binding = B_TRUE; 5252 5253 tcp_bind_hash_insert(&tcp_bind_fanout[ 5254 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5255 5256 CL_INET_CONNECT(eager); 5257 5258 /* 5259 * No need to check for multicast destination since ip will only pass 5260 * up multicasts to those that have expressed interest 5261 * TODO: what about rejecting broadcasts? 5262 * Also check that source is not a multicast or broadcast address. 5263 */ 5264 eager->tcp_state = TCPS_SYN_RCVD; 5265 5266 5267 /* 5268 * There should be no ire in the mp as we are being called after 5269 * receiving the SYN. 5270 */ 5271 ASSERT(tcp_ire_mp(mp) == NULL); 5272 5273 /* 5274 * Adapt our mss, ttl, ... according to information provided in IRE. 5275 */ 5276 5277 if (tcp_adapt_ire(eager, NULL) == 0) { 5278 /* Undo the bind_hash_insert */ 5279 tcp_bind_hash_remove(eager); 5280 goto error3; 5281 } 5282 5283 /* Process all TCP options. */ 5284 tcp_process_options(eager, tcph); 5285 5286 /* Is the other end ECN capable? */ 5287 if (tcp_ecn_permitted >= 1 && 5288 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5289 eager->tcp_ecn_ok = B_TRUE; 5290 } 5291 5292 /* 5293 * listener->tcp_rq->q_hiwat should be the default window size or a 5294 * window size changed via SO_RCVBUF option. First round up the 5295 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5296 * scale option value if needed. Call tcp_rwnd_set() to finish the 5297 * setting. 5298 * 5299 * Note if there is a rpipe metric associated with the remote host, 5300 * we should not inherit receive window size from listener. 5301 */ 5302 eager->tcp_rwnd = MSS_ROUNDUP( 5303 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5304 eager->tcp_rwnd), eager->tcp_mss); 5305 if (eager->tcp_snd_ws_ok) 5306 tcp_set_ws_value(eager); 5307 /* 5308 * Note that this is the only place tcp_rwnd_set() is called for 5309 * accepting a connection. We need to call it here instead of 5310 * after the 3-way handshake because we need to tell the other 5311 * side our rwnd in the SYN-ACK segment. 5312 */ 5313 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5314 5315 /* 5316 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5317 * via soaccept()->soinheritoptions() which essentially applies 5318 * all the listener options to the new STREAM. The options that we 5319 * need to take care of are: 5320 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5321 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5322 * SO_SNDBUF, SO_RCVBUF. 5323 * 5324 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5325 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5326 * tcp_maxpsz_set() gets called later from 5327 * tcp_accept_finish(), the option takes effect. 5328 * 5329 */ 5330 /* Set the TCP options */ 5331 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5332 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5333 eager->tcp_oobinline = tcp->tcp_oobinline; 5334 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5335 eager->tcp_broadcast = tcp->tcp_broadcast; 5336 eager->tcp_useloopback = tcp->tcp_useloopback; 5337 eager->tcp_dontroute = tcp->tcp_dontroute; 5338 eager->tcp_linger = tcp->tcp_linger; 5339 eager->tcp_lingertime = tcp->tcp_lingertime; 5340 if (tcp->tcp_ka_enabled) 5341 eager->tcp_ka_enabled = 1; 5342 5343 /* Set the IP options */ 5344 econnp->conn_broadcast = connp->conn_broadcast; 5345 econnp->conn_loopback = connp->conn_loopback; 5346 econnp->conn_dontroute = connp->conn_dontroute; 5347 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5348 5349 /* Put a ref on the listener for the eager. */ 5350 CONN_INC_REF(connp); 5351 mutex_enter(&tcp->tcp_eager_lock); 5352 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5353 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5354 tcp->tcp_eager_next_q0 = eager; 5355 eager->tcp_eager_prev_q0 = tcp; 5356 5357 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5358 eager->tcp_listener = tcp; 5359 eager->tcp_saved_listener = tcp; 5360 5361 /* 5362 * Tag this detached tcp vector for later retrieval 5363 * by our listener client in tcp_accept(). 5364 */ 5365 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5366 tcp->tcp_conn_req_cnt_q0++; 5367 if (++tcp->tcp_conn_req_seqnum == -1) { 5368 /* 5369 * -1 is "special" and defined in TPI as something 5370 * that should never be used in T_CONN_IND 5371 */ 5372 ++tcp->tcp_conn_req_seqnum; 5373 } 5374 mutex_exit(&tcp->tcp_eager_lock); 5375 5376 if (tcp->tcp_syn_defense) { 5377 /* Don't drop the SYN that comes from a good IP source */ 5378 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5379 if (addr_cache != NULL && eager->tcp_remote == 5380 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5381 eager->tcp_dontdrop = B_TRUE; 5382 } 5383 } 5384 5385 /* 5386 * We need to insert the eager in its own perimeter but as soon 5387 * as we do that, we expose the eager to the classifier and 5388 * should not touch any field outside the eager's perimeter. 5389 * So do all the work necessary before inserting the eager 5390 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5391 * will succeed but undo everything if it fails. 5392 */ 5393 seg_seq = ABE32_TO_U32(tcph->th_seq); 5394 eager->tcp_irs = seg_seq; 5395 eager->tcp_rack = seg_seq; 5396 eager->tcp_rnxt = seg_seq + 1; 5397 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5398 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5399 eager->tcp_state = TCPS_SYN_RCVD; 5400 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5401 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5402 if (mp1 == NULL) 5403 goto error1; 5404 mblk_setcred(mp1, tcp->tcp_cred); 5405 DB_CPID(mp1) = tcp->tcp_cpid; 5406 5407 /* 5408 * We need to start the rto timer. In normal case, we start 5409 * the timer after sending the packet on the wire (or at 5410 * least believing that packet was sent by waiting for 5411 * CALL_IP_WPUT() to return). Since this is the first packet 5412 * being sent on the wire for the eager, our initial tcp_rto 5413 * is at least tcp_rexmit_interval_min which is a fairly 5414 * large value to allow the algorithm to adjust slowly to large 5415 * fluctuations of RTT during first few transmissions. 5416 * 5417 * Starting the timer first and then sending the packet in this 5418 * case shouldn't make much difference since tcp_rexmit_interval_min 5419 * is of the order of several 100ms and starting the timer 5420 * first and then sending the packet will result in difference 5421 * of few micro seconds. 5422 * 5423 * Without this optimization, we are forced to hold the fanout 5424 * lock across the ipcl_bind_insert() and sending the packet 5425 * so that we don't race against an incoming packet (maybe RST) 5426 * for this eager. 5427 */ 5428 5429 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5430 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5431 5432 5433 /* 5434 * Insert the eager in its own perimeter now. We are ready to deal 5435 * with any packets on eager. 5436 */ 5437 if (eager->tcp_ipversion == IPV4_VERSION) { 5438 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5439 goto error; 5440 } 5441 } else { 5442 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5443 goto error; 5444 } 5445 } 5446 5447 /* mark conn as fully-bound */ 5448 econnp->conn_fully_bound = B_TRUE; 5449 5450 /* Send the SYN-ACK */ 5451 tcp_send_data(eager, eager->tcp_wq, mp1); 5452 freemsg(mp); 5453 5454 return; 5455 error: 5456 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5457 freemsg(mp1); 5458 error1: 5459 /* Undo what we did above */ 5460 mutex_enter(&tcp->tcp_eager_lock); 5461 tcp_eager_unlink(eager); 5462 mutex_exit(&tcp->tcp_eager_lock); 5463 /* Drop eager's reference on the listener */ 5464 CONN_DEC_REF(connp); 5465 5466 /* 5467 * Delete the cached ire in conn_ire_cache and also mark 5468 * the conn as CONDEMNED 5469 */ 5470 mutex_enter(&econnp->conn_lock); 5471 econnp->conn_state_flags |= CONN_CONDEMNED; 5472 ire = econnp->conn_ire_cache; 5473 econnp->conn_ire_cache = NULL; 5474 mutex_exit(&econnp->conn_lock); 5475 if (ire != NULL) 5476 IRE_REFRELE_NOTR(ire); 5477 5478 /* 5479 * tcp_accept_comm inserts the eager to the bind_hash 5480 * we need to remove it from the hash if ipcl_conn_insert 5481 * fails. 5482 */ 5483 tcp_bind_hash_remove(eager); 5484 /* Drop the eager ref placed in tcp_open_detached */ 5485 CONN_DEC_REF(econnp); 5486 5487 /* 5488 * If a connection already exists, send the mp to that connections so 5489 * that it can be appropriately dealt with. 5490 */ 5491 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5492 if (!IPCL_IS_CONNECTED(econnp)) { 5493 /* 5494 * Something bad happened. ipcl_conn_insert() 5495 * failed because a connection already existed 5496 * in connected hash but we can't find it 5497 * anymore (someone blew it away). Just 5498 * free this message and hopefully remote 5499 * will retransmit at which time the SYN can be 5500 * treated as a new connection or dealth with 5501 * a TH_RST if a connection already exists. 5502 */ 5503 freemsg(mp); 5504 } else { 5505 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5506 econnp, SQTAG_TCP_CONN_REQ); 5507 } 5508 } else { 5509 /* Nobody wants this packet */ 5510 freemsg(mp); 5511 } 5512 return; 5513 error2: 5514 freemsg(mp); 5515 return; 5516 error3: 5517 CONN_DEC_REF(econnp); 5518 freemsg(mp); 5519 } 5520 5521 /* 5522 * In an ideal case of vertical partition in NUMA architecture, its 5523 * beneficial to have the listener and all the incoming connections 5524 * tied to the same squeue. The other constraint is that incoming 5525 * connections should be tied to the squeue attached to interrupted 5526 * CPU for obvious locality reason so this leaves the listener to 5527 * be tied to the same squeue. Our only problem is that when listener 5528 * is binding, the CPU that will get interrupted by the NIC whose 5529 * IP address the listener is binding to is not even known. So 5530 * the code below allows us to change that binding at the time the 5531 * CPU is interrupted by virtue of incoming connection's squeue. 5532 * 5533 * This is usefull only in case of a listener bound to a specific IP 5534 * address. For other kind of listeners, they get bound the 5535 * very first time and there is no attempt to rebind them. 5536 */ 5537 void 5538 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5539 { 5540 conn_t *connp = (conn_t *)arg; 5541 squeue_t *sqp = (squeue_t *)arg2; 5542 squeue_t *new_sqp; 5543 uint32_t conn_flags; 5544 5545 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5546 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5547 } else { 5548 goto done; 5549 } 5550 5551 if (connp->conn_fanout == NULL) 5552 goto done; 5553 5554 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5555 mutex_enter(&connp->conn_fanout->connf_lock); 5556 mutex_enter(&connp->conn_lock); 5557 /* 5558 * No one from read or write side can access us now 5559 * except for already queued packets on this squeue. 5560 * But since we haven't changed the squeue yet, they 5561 * can't execute. If they are processed after we have 5562 * changed the squeue, they are sent back to the 5563 * correct squeue down below. 5564 */ 5565 if (connp->conn_sqp != new_sqp) { 5566 while (connp->conn_sqp != new_sqp) 5567 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5568 } 5569 5570 do { 5571 conn_flags = connp->conn_flags; 5572 conn_flags |= IPCL_FULLY_BOUND; 5573 (void) cas32(&connp->conn_flags, connp->conn_flags, 5574 conn_flags); 5575 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5576 5577 mutex_exit(&connp->conn_fanout->connf_lock); 5578 mutex_exit(&connp->conn_lock); 5579 } 5580 5581 done: 5582 if (connp->conn_sqp != sqp) { 5583 CONN_INC_REF(connp); 5584 squeue_fill(connp->conn_sqp, mp, 5585 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 5586 } else { 5587 tcp_conn_request(connp, mp, sqp); 5588 } 5589 } 5590 5591 /* 5592 * Successful connect request processing begins when our client passes 5593 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5594 * our T_OK_ACK reply message upstream. The control flow looks like this: 5595 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 5596 * upstream <- tcp_rput() <- IP 5597 * After various error checks are completed, tcp_connect() lays 5598 * the target address and port into the composite header template, 5599 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5600 * request followed by an IRE request, and passes the three mblk message 5601 * down to IP looking like this: 5602 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5603 * Processing continues in tcp_rput() when we receive the following message: 5604 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5605 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5606 * to fire off the connection request, and then passes the T_OK_ACK mblk 5607 * upstream that we filled in below. There are, of course, numerous 5608 * error conditions along the way which truncate the processing described 5609 * above. 5610 */ 5611 static void 5612 tcp_connect(tcp_t *tcp, mblk_t *mp) 5613 { 5614 sin_t *sin; 5615 sin6_t *sin6; 5616 queue_t *q = tcp->tcp_wq; 5617 struct T_conn_req *tcr; 5618 ipaddr_t *dstaddrp; 5619 in_port_t dstport; 5620 uint_t srcid; 5621 5622 tcr = (struct T_conn_req *)mp->b_rptr; 5623 5624 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5625 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5626 tcp_err_ack(tcp, mp, TPROTO, 0); 5627 return; 5628 } 5629 5630 /* 5631 * Determine packet type based on type of address passed in 5632 * the request should contain an IPv4 or IPv6 address. 5633 * Make sure that address family matches the type of 5634 * family of the the address passed down 5635 */ 5636 switch (tcr->DEST_length) { 5637 default: 5638 tcp_err_ack(tcp, mp, TBADADDR, 0); 5639 return; 5640 5641 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5642 /* 5643 * XXX: The check for valid DEST_length was not there 5644 * in earlier releases and some buggy 5645 * TLI apps (e.g Sybase) got away with not feeding 5646 * in sin_zero part of address. 5647 * We allow that bug to keep those buggy apps humming. 5648 * Test suites require the check on DEST_length. 5649 * We construct a new mblk with valid DEST_length 5650 * free the original so the rest of the code does 5651 * not have to keep track of this special shorter 5652 * length address case. 5653 */ 5654 mblk_t *nmp; 5655 struct T_conn_req *ntcr; 5656 sin_t *nsin; 5657 5658 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5659 tcr->OPT_length, BPRI_HI); 5660 if (nmp == NULL) { 5661 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5662 return; 5663 } 5664 ntcr = (struct T_conn_req *)nmp->b_rptr; 5665 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5666 ntcr->PRIM_type = T_CONN_REQ; 5667 ntcr->DEST_length = sizeof (sin_t); 5668 ntcr->DEST_offset = sizeof (struct T_conn_req); 5669 5670 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5671 *nsin = sin_null; 5672 /* Get pointer to shorter address to copy from original mp */ 5673 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5674 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5675 if (sin == NULL || !OK_32PTR((char *)sin)) { 5676 freemsg(nmp); 5677 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5678 return; 5679 } 5680 nsin->sin_family = sin->sin_family; 5681 nsin->sin_port = sin->sin_port; 5682 nsin->sin_addr = sin->sin_addr; 5683 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5684 nmp->b_wptr = (uchar_t *)&nsin[1]; 5685 if (tcr->OPT_length != 0) { 5686 ntcr->OPT_length = tcr->OPT_length; 5687 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5688 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5689 (uchar_t *)ntcr + ntcr->OPT_offset, 5690 tcr->OPT_length); 5691 nmp->b_wptr += tcr->OPT_length; 5692 } 5693 freemsg(mp); /* original mp freed */ 5694 mp = nmp; /* re-initialize original variables */ 5695 tcr = ntcr; 5696 } 5697 /* FALLTHRU */ 5698 5699 case sizeof (sin_t): 5700 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5701 sizeof (sin_t)); 5702 if (sin == NULL || !OK_32PTR((char *)sin)) { 5703 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5704 return; 5705 } 5706 if (tcp->tcp_family != AF_INET || 5707 sin->sin_family != AF_INET) { 5708 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5709 return; 5710 } 5711 if (sin->sin_port == 0) { 5712 tcp_err_ack(tcp, mp, TBADADDR, 0); 5713 return; 5714 } 5715 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 5716 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5717 return; 5718 } 5719 5720 break; 5721 5722 case sizeof (sin6_t): 5723 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 5724 sizeof (sin6_t)); 5725 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 5726 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5727 return; 5728 } 5729 if (tcp->tcp_family != AF_INET6 || 5730 sin6->sin6_family != AF_INET6) { 5731 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5732 return; 5733 } 5734 if (sin6->sin6_port == 0) { 5735 tcp_err_ack(tcp, mp, TBADADDR, 0); 5736 return; 5737 } 5738 break; 5739 } 5740 /* 5741 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5742 * should key on their sequence number and cut them loose. 5743 */ 5744 5745 /* 5746 * If options passed in, feed it for verification and handling 5747 */ 5748 if (tcr->OPT_length != 0) { 5749 mblk_t *ok_mp; 5750 mblk_t *discon_mp; 5751 mblk_t *conn_opts_mp; 5752 int t_error, sys_error, do_disconnect; 5753 5754 conn_opts_mp = NULL; 5755 5756 if (tcp_conprim_opt_process(tcp, mp, 5757 &do_disconnect, &t_error, &sys_error) < 0) { 5758 if (do_disconnect) { 5759 ASSERT(t_error == 0 && sys_error == 0); 5760 discon_mp = mi_tpi_discon_ind(NULL, 5761 ECONNREFUSED, 0); 5762 if (!discon_mp) { 5763 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5764 TSYSERR, ENOMEM); 5765 return; 5766 } 5767 ok_mp = mi_tpi_ok_ack_alloc(mp); 5768 if (!ok_mp) { 5769 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5770 TSYSERR, ENOMEM); 5771 return; 5772 } 5773 qreply(q, ok_mp); 5774 qreply(q, discon_mp); /* no flush! */ 5775 } else { 5776 ASSERT(t_error != 0); 5777 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5778 sys_error); 5779 } 5780 return; 5781 } 5782 /* 5783 * Success in setting options, the mp option buffer represented 5784 * by OPT_length/offset has been potentially modified and 5785 * contains results of option processing. We copy it in 5786 * another mp to save it for potentially influencing returning 5787 * it in T_CONN_CONN. 5788 */ 5789 if (tcr->OPT_length != 0) { /* there are resulting options */ 5790 conn_opts_mp = copyb(mp); 5791 if (!conn_opts_mp) { 5792 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5793 TSYSERR, ENOMEM); 5794 return; 5795 } 5796 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5797 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5798 /* 5799 * Note: 5800 * These resulting option negotiation can include any 5801 * end-to-end negotiation options but there no such 5802 * thing (yet?) in our TCP/IP. 5803 */ 5804 } 5805 } 5806 5807 /* 5808 * If we're connecting to an IPv4-mapped IPv6 address, we need to 5809 * make sure that the template IP header in the tcp structure is an 5810 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 5811 * need to this before we call tcp_bindi() so that the port lookup 5812 * code will look for ports in the correct port space (IPv4 and 5813 * IPv6 have separate port spaces). 5814 */ 5815 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 5816 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5817 int err = 0; 5818 5819 err = tcp_header_init_ipv4(tcp); 5820 if (err != 0) { 5821 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 5822 goto connect_failed; 5823 } 5824 if (tcp->tcp_lport != 0) 5825 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 5826 } 5827 5828 switch (tcp->tcp_state) { 5829 case TCPS_IDLE: 5830 /* 5831 * We support quick connect, refer to comments in 5832 * tcp_connect_*() 5833 */ 5834 /* FALLTHRU */ 5835 case TCPS_BOUND: 5836 case TCPS_LISTEN: 5837 if (tcp->tcp_family == AF_INET6) { 5838 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5839 tcp_connect_ipv6(tcp, mp, 5840 &sin6->sin6_addr, 5841 sin6->sin6_port, sin6->sin6_flowinfo, 5842 sin6->__sin6_src_id, sin6->sin6_scope_id); 5843 return; 5844 } 5845 /* 5846 * Destination adress is mapped IPv6 address. 5847 * Source bound address should be unspecified or 5848 * IPv6 mapped address as well. 5849 */ 5850 if (!IN6_IS_ADDR_UNSPECIFIED( 5851 &tcp->tcp_bound_source_v6) && 5852 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 5853 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 5854 EADDRNOTAVAIL); 5855 break; 5856 } 5857 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 5858 dstport = sin6->sin6_port; 5859 srcid = sin6->__sin6_src_id; 5860 } else { 5861 dstaddrp = &sin->sin_addr.s_addr; 5862 dstport = sin->sin_port; 5863 srcid = 0; 5864 } 5865 5866 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 5867 return; 5868 default: 5869 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 5870 break; 5871 } 5872 /* 5873 * Note: Code below is the "failure" case 5874 */ 5875 /* return error ack and blow away saved option results if any */ 5876 connect_failed: 5877 if (mp != NULL) 5878 putnext(tcp->tcp_rq, mp); 5879 else { 5880 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5881 TSYSERR, ENOMEM); 5882 } 5883 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 5884 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 5885 } 5886 5887 /* 5888 * Handle connect to IPv4 destinations, including connections for AF_INET6 5889 * sockets connecting to IPv4 mapped IPv6 destinations. 5890 */ 5891 static void 5892 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 5893 uint_t srcid) 5894 { 5895 tcph_t *tcph; 5896 mblk_t *mp1; 5897 ipaddr_t dstaddr = *dstaddrp; 5898 int32_t oldstate; 5899 uint16_t lport; 5900 5901 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 5902 5903 /* Check for attempt to connect to INADDR_ANY */ 5904 if (dstaddr == INADDR_ANY) { 5905 /* 5906 * SunOS 4.x and 4.3 BSD allow an application 5907 * to connect a TCP socket to INADDR_ANY. 5908 * When they do this, the kernel picks the 5909 * address of one interface and uses it 5910 * instead. The kernel usually ends up 5911 * picking the address of the loopback 5912 * interface. This is an undocumented feature. 5913 * However, we provide the same thing here 5914 * in order to have source and binary 5915 * compatibility with SunOS 4.x. 5916 * Update the T_CONN_REQ (sin/sin6) since it is used to 5917 * generate the T_CONN_CON. 5918 */ 5919 dstaddr = htonl(INADDR_LOOPBACK); 5920 *dstaddrp = dstaddr; 5921 } 5922 5923 /* Handle __sin6_src_id if socket not bound to an IP address */ 5924 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 5925 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 5926 tcp->tcp_connp->conn_zoneid); 5927 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 5928 tcp->tcp_ipha->ipha_src); 5929 } 5930 5931 /* 5932 * Don't let an endpoint connect to itself. Note that 5933 * the test here does not catch the case where the 5934 * source IP addr was left unspecified by the user. In 5935 * this case, the source addr is set in tcp_adapt_ire() 5936 * using the reply to the T_BIND message that we send 5937 * down to IP here and the check is repeated in tcp_rput_other. 5938 */ 5939 if (dstaddr == tcp->tcp_ipha->ipha_src && 5940 dstport == tcp->tcp_lport) { 5941 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 5942 goto failed; 5943 } 5944 5945 tcp->tcp_ipha->ipha_dst = dstaddr; 5946 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 5947 5948 /* 5949 * Massage a source route if any putting the first hop 5950 * in iph_dst. Compute a starting value for the checksum which 5951 * takes into account that the original iph_dst should be 5952 * included in the checksum but that ip will include the 5953 * first hop in the source route in the tcp checksum. 5954 */ 5955 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 5956 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 5957 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 5958 (tcp->tcp_ipha->ipha_dst & 0xffff)); 5959 if ((int)tcp->tcp_sum < 0) 5960 tcp->tcp_sum--; 5961 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 5962 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 5963 (tcp->tcp_sum >> 16)); 5964 tcph = tcp->tcp_tcph; 5965 *(uint16_t *)tcph->th_fport = dstport; 5966 tcp->tcp_fport = dstport; 5967 5968 oldstate = tcp->tcp_state; 5969 /* 5970 * At this point the remote destination address and remote port fields 5971 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5972 * have to see which state tcp was in so we can take apropriate action. 5973 */ 5974 if (oldstate == TCPS_IDLE) { 5975 /* 5976 * We support a quick connect capability here, allowing 5977 * clients to transition directly from IDLE to SYN_SENT 5978 * tcp_bindi will pick an unused port, insert the connection 5979 * in the bind hash and transition to BOUND state. 5980 */ 5981 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 5982 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 5983 B_FALSE, B_FALSE); 5984 if (lport == 0) { 5985 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 5986 goto failed; 5987 } 5988 } 5989 tcp->tcp_state = TCPS_SYN_SENT; 5990 5991 /* 5992 * TODO: allow data with connect requests 5993 * by unlinking M_DATA trailers here and 5994 * linking them in behind the T_OK_ACK mblk. 5995 * The tcp_rput() bind ack handler would then 5996 * feed them to tcp_wput_data() rather than call 5997 * tcp_timer(). 5998 */ 5999 mp = mi_tpi_ok_ack_alloc(mp); 6000 if (!mp) { 6001 tcp->tcp_state = oldstate; 6002 goto failed; 6003 } 6004 if (tcp->tcp_family == AF_INET) { 6005 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6006 sizeof (ipa_conn_t)); 6007 } else { 6008 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6009 sizeof (ipa6_conn_t)); 6010 } 6011 if (mp1) { 6012 /* Hang onto the T_OK_ACK for later. */ 6013 linkb(mp1, mp); 6014 if (tcp->tcp_family == AF_INET) 6015 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6016 else { 6017 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6018 &tcp->tcp_sticky_ipp); 6019 } 6020 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6021 tcp->tcp_active_open = 1; 6022 /* 6023 * If the bind cannot complete immediately 6024 * IP will arrange to call tcp_rput_other 6025 * when the bind completes. 6026 */ 6027 if (mp1 != NULL) 6028 tcp_rput_other(tcp, mp1); 6029 return; 6030 } 6031 /* Error case */ 6032 tcp->tcp_state = oldstate; 6033 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6034 6035 failed: 6036 /* return error ack and blow away saved option results if any */ 6037 if (mp != NULL) 6038 putnext(tcp->tcp_rq, mp); 6039 else { 6040 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6041 TSYSERR, ENOMEM); 6042 } 6043 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6044 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6045 6046 } 6047 6048 /* 6049 * Handle connect to IPv6 destinations. 6050 */ 6051 static void 6052 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6053 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6054 { 6055 tcph_t *tcph; 6056 mblk_t *mp1; 6057 ip6_rthdr_t *rth; 6058 int32_t oldstate; 6059 uint16_t lport; 6060 6061 ASSERT(tcp->tcp_family == AF_INET6); 6062 6063 /* 6064 * If we're here, it means that the destination address is a native 6065 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6066 * reason why it might not be IPv6 is if the socket was bound to an 6067 * IPv4-mapped IPv6 address. 6068 */ 6069 if (tcp->tcp_ipversion != IPV6_VERSION) { 6070 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6071 goto failed; 6072 } 6073 6074 /* 6075 * Interpret a zero destination to mean loopback. 6076 * Update the T_CONN_REQ (sin/sin6) since it is used to 6077 * generate the T_CONN_CON. 6078 */ 6079 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6080 *dstaddrp = ipv6_loopback; 6081 } 6082 6083 /* Handle __sin6_src_id if socket not bound to an IP address */ 6084 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6085 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6086 tcp->tcp_connp->conn_zoneid); 6087 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6088 } 6089 6090 /* 6091 * Take care of the scope_id now and add ip6i_t 6092 * if ip6i_t is not already allocated through TCP 6093 * sticky options. At this point tcp_ip6h does not 6094 * have dst info, thus use dstaddrp. 6095 */ 6096 if (scope_id != 0 && 6097 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6098 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6099 ip6i_t *ip6i; 6100 6101 ipp->ipp_ifindex = scope_id; 6102 ip6i = (ip6i_t *)tcp->tcp_iphc; 6103 6104 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6105 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6106 /* Already allocated */ 6107 ip6i->ip6i_flags |= IP6I_IFINDEX; 6108 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6109 ipp->ipp_fields |= IPPF_SCOPE_ID; 6110 } else { 6111 int reterr; 6112 6113 ipp->ipp_fields |= IPPF_SCOPE_ID; 6114 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6115 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6116 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6117 if (reterr != 0) 6118 goto failed; 6119 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6120 } 6121 } 6122 6123 /* 6124 * Don't let an endpoint connect to itself. Note that 6125 * the test here does not catch the case where the 6126 * source IP addr was left unspecified by the user. In 6127 * this case, the source addr is set in tcp_adapt_ire() 6128 * using the reply to the T_BIND message that we send 6129 * down to IP here and the check is repeated in tcp_rput_other. 6130 */ 6131 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6132 (dstport == tcp->tcp_lport)) { 6133 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6134 goto failed; 6135 } 6136 6137 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6138 tcp->tcp_remote_v6 = *dstaddrp; 6139 tcp->tcp_ip6h->ip6_vcf = 6140 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6141 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6142 6143 6144 /* 6145 * Massage a routing header (if present) putting the first hop 6146 * in ip6_dst. Compute a starting value for the checksum which 6147 * takes into account that the original ip6_dst should be 6148 * included in the checksum but that ip will include the 6149 * first hop in the source route in the tcp checksum. 6150 */ 6151 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6152 if (rth != NULL) { 6153 6154 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6155 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6156 (tcp->tcp_sum >> 16)); 6157 } else { 6158 tcp->tcp_sum = 0; 6159 } 6160 6161 tcph = tcp->tcp_tcph; 6162 *(uint16_t *)tcph->th_fport = dstport; 6163 tcp->tcp_fport = dstport; 6164 6165 oldstate = tcp->tcp_state; 6166 /* 6167 * At this point the remote destination address and remote port fields 6168 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6169 * have to see which state tcp was in so we can take apropriate action. 6170 */ 6171 if (oldstate == TCPS_IDLE) { 6172 /* 6173 * We support a quick connect capability here, allowing 6174 * clients to transition directly from IDLE to SYN_SENT 6175 * tcp_bindi will pick an unused port, insert the connection 6176 * in the bind hash and transition to BOUND state. 6177 */ 6178 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6179 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6180 B_FALSE, B_FALSE); 6181 if (lport == 0) { 6182 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6183 goto failed; 6184 } 6185 } 6186 tcp->tcp_state = TCPS_SYN_SENT; 6187 /* 6188 * TODO: allow data with connect requests 6189 * by unlinking M_DATA trailers here and 6190 * linking them in behind the T_OK_ACK mblk. 6191 * The tcp_rput() bind ack handler would then 6192 * feed them to tcp_wput_data() rather than call 6193 * tcp_timer(). 6194 */ 6195 mp = mi_tpi_ok_ack_alloc(mp); 6196 if (!mp) { 6197 tcp->tcp_state = oldstate; 6198 goto failed; 6199 } 6200 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6201 if (mp1) { 6202 /* Hang onto the T_OK_ACK for later. */ 6203 linkb(mp1, mp); 6204 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6205 &tcp->tcp_sticky_ipp); 6206 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6207 tcp->tcp_active_open = 1; 6208 /* ip_bind_v6() may return ACK or ERROR */ 6209 if (mp1 != NULL) 6210 tcp_rput_other(tcp, mp1); 6211 return; 6212 } 6213 /* Error case */ 6214 tcp->tcp_state = oldstate; 6215 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6216 6217 failed: 6218 /* return error ack and blow away saved option results if any */ 6219 if (mp != NULL) 6220 putnext(tcp->tcp_rq, mp); 6221 else { 6222 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6223 TSYSERR, ENOMEM); 6224 } 6225 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6226 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6227 } 6228 6229 /* 6230 * We need a stream q for detached closing tcp connections 6231 * to use. Our client hereby indicates that this q is the 6232 * one to use. 6233 */ 6234 static void 6235 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6236 { 6237 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6238 queue_t *q = tcp->tcp_wq; 6239 6240 mp->b_datap->db_type = M_IOCACK; 6241 iocp->ioc_count = 0; 6242 mutex_enter(&tcp_g_q_lock); 6243 if (tcp_g_q != NULL) { 6244 mutex_exit(&tcp_g_q_lock); 6245 iocp->ioc_error = EALREADY; 6246 } else { 6247 mblk_t *mp1; 6248 6249 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6250 if (mp1 == NULL) { 6251 mutex_exit(&tcp_g_q_lock); 6252 iocp->ioc_error = ENOMEM; 6253 } else { 6254 tcp_g_q = tcp->tcp_rq; 6255 mutex_exit(&tcp_g_q_lock); 6256 iocp->ioc_error = 0; 6257 iocp->ioc_rval = 0; 6258 /* 6259 * We are passing tcp_sticky_ipp as NULL 6260 * as it is not useful for tcp_default queue 6261 */ 6262 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6263 if (mp1 != NULL) 6264 tcp_rput_other(tcp, mp1); 6265 } 6266 } 6267 qreply(q, mp); 6268 } 6269 6270 /* 6271 * Our client hereby directs us to reject the connection request 6272 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6273 * of sending the appropriate RST, not an ICMP error. 6274 */ 6275 static void 6276 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6277 { 6278 tcp_t *ltcp = NULL; 6279 t_scalar_t seqnum; 6280 conn_t *connp; 6281 6282 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6283 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6284 tcp_err_ack(tcp, mp, TPROTO, 0); 6285 return; 6286 } 6287 6288 /* 6289 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6290 * when the stream is in BOUND state. Do not send a reset, 6291 * since the destination IP address is not valid, and it can 6292 * be the initialized value of all zeros (broadcast address). 6293 * 6294 * If TCP has sent down a bind request to IP and has not 6295 * received the reply, reject the request. Otherwise, TCP 6296 * will be confused. 6297 */ 6298 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6299 if (tcp->tcp_debug) { 6300 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6301 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6302 } 6303 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6304 return; 6305 } 6306 6307 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6308 6309 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6310 6311 /* 6312 * According to TPI, for non-listeners, ignore seqnum 6313 * and disconnect. 6314 * Following interpretation of -1 seqnum is historical 6315 * and implied TPI ? (TPI only states that for T_CONN_IND, 6316 * a valid seqnum should not be -1). 6317 * 6318 * -1 means disconnect everything 6319 * regardless even on a listener. 6320 */ 6321 6322 int old_state = tcp->tcp_state; 6323 6324 /* 6325 * The connection can't be on the tcp_time_wait_head list 6326 * since it is not detached. 6327 */ 6328 ASSERT(tcp->tcp_time_wait_next == NULL); 6329 ASSERT(tcp->tcp_time_wait_prev == NULL); 6330 ASSERT(tcp->tcp_time_wait_expire == 0); 6331 ltcp = NULL; 6332 /* 6333 * If it used to be a listener, check to make sure no one else 6334 * has taken the port before switching back to LISTEN state. 6335 */ 6336 if (tcp->tcp_ipversion == IPV4_VERSION) { 6337 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6338 tcp->tcp_ipha->ipha_src, 6339 tcp->tcp_connp->conn_zoneid); 6340 if (connp != NULL) 6341 ltcp = connp->conn_tcp; 6342 } else { 6343 /* Allow tcp_bound_if listeners? */ 6344 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6345 &tcp->tcp_ip6h->ip6_src, 0, 6346 tcp->tcp_connp->conn_zoneid); 6347 if (connp != NULL) 6348 ltcp = connp->conn_tcp; 6349 } 6350 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6351 tcp->tcp_state = TCPS_LISTEN; 6352 } else if (old_state > TCPS_BOUND) { 6353 tcp->tcp_conn_req_max = 0; 6354 tcp->tcp_state = TCPS_BOUND; 6355 } 6356 if (ltcp != NULL) 6357 CONN_DEC_REF(ltcp->tcp_connp); 6358 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6359 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6360 } else if (old_state == TCPS_ESTABLISHED || 6361 old_state == TCPS_CLOSE_WAIT) { 6362 BUMP_MIB(&tcp_mib, tcpEstabResets); 6363 } 6364 6365 if (tcp->tcp_fused) 6366 tcp_unfuse(tcp); 6367 6368 mutex_enter(&tcp->tcp_eager_lock); 6369 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6370 (tcp->tcp_conn_req_cnt_q != 0)) { 6371 tcp_eager_cleanup(tcp, 0); 6372 } 6373 mutex_exit(&tcp->tcp_eager_lock); 6374 6375 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6376 tcp->tcp_rnxt, TH_RST | TH_ACK); 6377 6378 tcp_reinit(tcp); 6379 6380 if (old_state >= TCPS_ESTABLISHED) { 6381 /* Send M_FLUSH according to TPI */ 6382 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6383 } 6384 mp = mi_tpi_ok_ack_alloc(mp); 6385 if (mp) 6386 putnext(tcp->tcp_rq, mp); 6387 return; 6388 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6389 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6390 return; 6391 } 6392 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6393 /* Send M_FLUSH according to TPI */ 6394 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6395 } 6396 mp = mi_tpi_ok_ack_alloc(mp); 6397 if (mp) 6398 putnext(tcp->tcp_rq, mp); 6399 } 6400 6401 /* 6402 * Diagnostic routine used to return a string associated with the tcp state. 6403 * Note that if the caller does not supply a buffer, it will use an internal 6404 * static string. This means that if multiple threads call this function at 6405 * the same time, output can be corrupted... Note also that this function 6406 * does not check the size of the supplied buffer. The caller has to make 6407 * sure that it is big enough. 6408 */ 6409 static char * 6410 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6411 { 6412 char buf1[30]; 6413 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6414 char *buf; 6415 char *cp; 6416 in6_addr_t local, remote; 6417 char local_addrbuf[INET6_ADDRSTRLEN]; 6418 char remote_addrbuf[INET6_ADDRSTRLEN]; 6419 6420 if (sup_buf != NULL) 6421 buf = sup_buf; 6422 else 6423 buf = priv_buf; 6424 6425 if (tcp == NULL) 6426 return ("NULL_TCP"); 6427 switch (tcp->tcp_state) { 6428 case TCPS_CLOSED: 6429 cp = "TCP_CLOSED"; 6430 break; 6431 case TCPS_IDLE: 6432 cp = "TCP_IDLE"; 6433 break; 6434 case TCPS_BOUND: 6435 cp = "TCP_BOUND"; 6436 break; 6437 case TCPS_LISTEN: 6438 cp = "TCP_LISTEN"; 6439 break; 6440 case TCPS_SYN_SENT: 6441 cp = "TCP_SYN_SENT"; 6442 break; 6443 case TCPS_SYN_RCVD: 6444 cp = "TCP_SYN_RCVD"; 6445 break; 6446 case TCPS_ESTABLISHED: 6447 cp = "TCP_ESTABLISHED"; 6448 break; 6449 case TCPS_CLOSE_WAIT: 6450 cp = "TCP_CLOSE_WAIT"; 6451 break; 6452 case TCPS_FIN_WAIT_1: 6453 cp = "TCP_FIN_WAIT_1"; 6454 break; 6455 case TCPS_CLOSING: 6456 cp = "TCP_CLOSING"; 6457 break; 6458 case TCPS_LAST_ACK: 6459 cp = "TCP_LAST_ACK"; 6460 break; 6461 case TCPS_FIN_WAIT_2: 6462 cp = "TCP_FIN_WAIT_2"; 6463 break; 6464 case TCPS_TIME_WAIT: 6465 cp = "TCP_TIME_WAIT"; 6466 break; 6467 default: 6468 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6469 cp = buf1; 6470 break; 6471 } 6472 switch (format) { 6473 case DISP_ADDR_AND_PORT: 6474 if (tcp->tcp_ipversion == IPV4_VERSION) { 6475 /* 6476 * Note that we use the remote address in the tcp_b 6477 * structure. This means that it will print out 6478 * the real destination address, not the next hop's 6479 * address if source routing is used. 6480 */ 6481 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6482 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6483 6484 } else { 6485 local = tcp->tcp_ip_src_v6; 6486 remote = tcp->tcp_remote_v6; 6487 } 6488 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6489 sizeof (local_addrbuf)); 6490 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6491 sizeof (remote_addrbuf)); 6492 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6493 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6494 ntohs(tcp->tcp_fport), cp); 6495 break; 6496 case DISP_PORT_ONLY: 6497 default: 6498 (void) mi_sprintf(buf, "[%u, %u] %s", 6499 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6500 break; 6501 } 6502 6503 return (buf); 6504 } 6505 6506 /* 6507 * Called via squeue to get on to eager's perimeter to send a 6508 * TH_RST. The listener wants the eager to disappear either 6509 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6510 * being called. 6511 */ 6512 /* ARGSUSED */ 6513 void 6514 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6515 { 6516 conn_t *econnp = (conn_t *)arg; 6517 tcp_t *eager = econnp->conn_tcp; 6518 tcp_t *listener = eager->tcp_listener; 6519 6520 /* 6521 * We could be called because listener is closing. Since 6522 * the eager is using listener's queue's, its not safe. 6523 * Better use the default queue just to send the TH_RST 6524 * out. 6525 */ 6526 eager->tcp_rq = tcp_g_q; 6527 eager->tcp_wq = WR(tcp_g_q); 6528 6529 if (eager->tcp_state > TCPS_LISTEN) { 6530 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6531 eager, eager->tcp_snxt, 0, TH_RST); 6532 } 6533 6534 /* We are here because listener wants this eager gone */ 6535 if (listener != NULL) { 6536 mutex_enter(&listener->tcp_eager_lock); 6537 tcp_eager_unlink(eager); 6538 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6539 /* 6540 * The eager has sent a conn_ind up to the 6541 * listener but listener decides to close 6542 * instead. We need to drop the extra ref 6543 * placed on eager in tcp_rput_data() before 6544 * sending the conn_ind to listener. 6545 */ 6546 CONN_DEC_REF(econnp); 6547 } 6548 mutex_exit(&listener->tcp_eager_lock); 6549 CONN_DEC_REF(listener->tcp_connp); 6550 } 6551 6552 if (eager->tcp_state > TCPS_BOUND) 6553 tcp_close_detached(eager); 6554 } 6555 6556 /* 6557 * Reset any eager connection hanging off this listener marked 6558 * with 'seqnum' and then reclaim it's resources. 6559 */ 6560 static boolean_t 6561 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6562 { 6563 tcp_t *eager; 6564 mblk_t *mp; 6565 6566 TCP_STAT(tcp_eager_blowoff_calls); 6567 eager = listener; 6568 mutex_enter(&listener->tcp_eager_lock); 6569 do { 6570 eager = eager->tcp_eager_next_q; 6571 if (eager == NULL) { 6572 mutex_exit(&listener->tcp_eager_lock); 6573 return (B_FALSE); 6574 } 6575 } while (eager->tcp_conn_req_seqnum != seqnum); 6576 CONN_INC_REF(eager->tcp_connp); 6577 mutex_exit(&listener->tcp_eager_lock); 6578 mp = &eager->tcp_closemp; 6579 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6580 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 6581 return (B_TRUE); 6582 } 6583 6584 /* 6585 * Reset any eager connection hanging off this listener 6586 * and then reclaim it's resources. 6587 */ 6588 static void 6589 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6590 { 6591 tcp_t *eager; 6592 mblk_t *mp; 6593 6594 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6595 6596 if (!q0_only) { 6597 /* First cleanup q */ 6598 TCP_STAT(tcp_eager_blowoff_q); 6599 eager = listener->tcp_eager_next_q; 6600 while (eager != NULL) { 6601 CONN_INC_REF(eager->tcp_connp); 6602 mp = &eager->tcp_closemp; 6603 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6604 tcp_eager_kill, eager->tcp_connp, 6605 SQTAG_TCP_EAGER_CLEANUP); 6606 eager = eager->tcp_eager_next_q; 6607 } 6608 } 6609 /* Then cleanup q0 */ 6610 TCP_STAT(tcp_eager_blowoff_q0); 6611 eager = listener->tcp_eager_next_q0; 6612 while (eager != listener) { 6613 CONN_INC_REF(eager->tcp_connp); 6614 mp = &eager->tcp_closemp; 6615 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6616 tcp_eager_kill, eager->tcp_connp, 6617 SQTAG_TCP_EAGER_CLEANUP_Q0); 6618 eager = eager->tcp_eager_next_q0; 6619 } 6620 } 6621 6622 /* 6623 * If we are an eager connection hanging off a listener that hasn't 6624 * formally accepted the connection yet, get off his list and blow off 6625 * any data that we have accumulated. 6626 */ 6627 static void 6628 tcp_eager_unlink(tcp_t *tcp) 6629 { 6630 tcp_t *listener = tcp->tcp_listener; 6631 6632 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6633 ASSERT(listener != NULL); 6634 if (tcp->tcp_eager_next_q0 != NULL) { 6635 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6636 6637 /* Remove the eager tcp from q0 */ 6638 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6639 tcp->tcp_eager_prev_q0; 6640 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6641 tcp->tcp_eager_next_q0; 6642 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6643 listener->tcp_conn_req_cnt_q0--; 6644 6645 tcp->tcp_eager_next_q0 = NULL; 6646 tcp->tcp_eager_prev_q0 = NULL; 6647 6648 if (tcp->tcp_syn_rcvd_timeout != 0) { 6649 /* we have timed out before */ 6650 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6651 listener->tcp_syn_rcvd_timeout--; 6652 } 6653 } else { 6654 tcp_t **tcpp = &listener->tcp_eager_next_q; 6655 tcp_t *prev = NULL; 6656 6657 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6658 if (tcpp[0] == tcp) { 6659 if (listener->tcp_eager_last_q == tcp) { 6660 /* 6661 * If we are unlinking the last 6662 * element on the list, adjust 6663 * tail pointer. Set tail pointer 6664 * to nil when list is empty. 6665 */ 6666 ASSERT(tcp->tcp_eager_next_q == NULL); 6667 if (listener->tcp_eager_last_q == 6668 listener->tcp_eager_next_q) { 6669 listener->tcp_eager_last_q = 6670 NULL; 6671 } else { 6672 /* 6673 * We won't get here if there 6674 * is only one eager in the 6675 * list. 6676 */ 6677 ASSERT(prev != NULL); 6678 listener->tcp_eager_last_q = 6679 prev; 6680 } 6681 } 6682 tcpp[0] = tcp->tcp_eager_next_q; 6683 tcp->tcp_eager_next_q = NULL; 6684 tcp->tcp_eager_last_q = NULL; 6685 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6686 listener->tcp_conn_req_cnt_q--; 6687 break; 6688 } 6689 prev = tcpp[0]; 6690 } 6691 } 6692 tcp->tcp_listener = NULL; 6693 } 6694 6695 /* Shorthand to generate and send TPI error acks to our client */ 6696 static void 6697 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6698 { 6699 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6700 putnext(tcp->tcp_rq, mp); 6701 } 6702 6703 /* Shorthand to generate and send TPI error acks to our client */ 6704 static void 6705 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6706 int t_error, int sys_error) 6707 { 6708 struct T_error_ack *teackp; 6709 6710 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6711 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6712 teackp = (struct T_error_ack *)mp->b_rptr; 6713 teackp->ERROR_prim = primitive; 6714 teackp->TLI_error = t_error; 6715 teackp->UNIX_error = sys_error; 6716 putnext(tcp->tcp_rq, mp); 6717 } 6718 } 6719 6720 /* 6721 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6722 * but instead the code relies on: 6723 * - the fact that the address of the array and its size never changes 6724 * - the atomic assignment of the elements of the array 6725 */ 6726 /* ARGSUSED */ 6727 static int 6728 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6729 { 6730 int i; 6731 6732 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6733 if (tcp_g_epriv_ports[i] != 0) 6734 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 6735 } 6736 return (0); 6737 } 6738 6739 /* 6740 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6741 * threads from changing it at the same time. 6742 */ 6743 /* ARGSUSED */ 6744 static int 6745 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6746 cred_t *cr) 6747 { 6748 long new_value; 6749 int i; 6750 6751 /* 6752 * Fail the request if the new value does not lie within the 6753 * port number limits. 6754 */ 6755 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6756 new_value <= 0 || new_value >= 65536) { 6757 return (EINVAL); 6758 } 6759 6760 mutex_enter(&tcp_epriv_port_lock); 6761 /* Check if the value is already in the list */ 6762 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6763 if (new_value == tcp_g_epriv_ports[i]) { 6764 mutex_exit(&tcp_epriv_port_lock); 6765 return (EEXIST); 6766 } 6767 } 6768 /* Find an empty slot */ 6769 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6770 if (tcp_g_epriv_ports[i] == 0) 6771 break; 6772 } 6773 if (i == tcp_g_num_epriv_ports) { 6774 mutex_exit(&tcp_epriv_port_lock); 6775 return (EOVERFLOW); 6776 } 6777 /* Set the new value */ 6778 tcp_g_epriv_ports[i] = (uint16_t)new_value; 6779 mutex_exit(&tcp_epriv_port_lock); 6780 return (0); 6781 } 6782 6783 /* 6784 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6785 * threads from changing it at the same time. 6786 */ 6787 /* ARGSUSED */ 6788 static int 6789 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6790 cred_t *cr) 6791 { 6792 long new_value; 6793 int i; 6794 6795 /* 6796 * Fail the request if the new value does not lie within the 6797 * port number limits. 6798 */ 6799 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6800 new_value >= 65536) { 6801 return (EINVAL); 6802 } 6803 6804 mutex_enter(&tcp_epriv_port_lock); 6805 /* Check that the value is already in the list */ 6806 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6807 if (tcp_g_epriv_ports[i] == new_value) 6808 break; 6809 } 6810 if (i == tcp_g_num_epriv_ports) { 6811 mutex_exit(&tcp_epriv_port_lock); 6812 return (ESRCH); 6813 } 6814 /* Clear the value */ 6815 tcp_g_epriv_ports[i] = 0; 6816 mutex_exit(&tcp_epriv_port_lock); 6817 return (0); 6818 } 6819 6820 /* Return the TPI/TLI equivalent of our current tcp_state */ 6821 static int 6822 tcp_tpistate(tcp_t *tcp) 6823 { 6824 switch (tcp->tcp_state) { 6825 case TCPS_IDLE: 6826 return (TS_UNBND); 6827 case TCPS_LISTEN: 6828 /* 6829 * Return whether there are outstanding T_CONN_IND waiting 6830 * for the matching T_CONN_RES. Therefore don't count q0. 6831 */ 6832 if (tcp->tcp_conn_req_cnt_q > 0) 6833 return (TS_WRES_CIND); 6834 else 6835 return (TS_IDLE); 6836 case TCPS_BOUND: 6837 return (TS_IDLE); 6838 case TCPS_SYN_SENT: 6839 return (TS_WCON_CREQ); 6840 case TCPS_SYN_RCVD: 6841 /* 6842 * Note: assumption: this has to the active open SYN_RCVD. 6843 * The passive instance is detached in SYN_RCVD stage of 6844 * incoming connection processing so we cannot get request 6845 * for T_info_ack on it. 6846 */ 6847 return (TS_WACK_CRES); 6848 case TCPS_ESTABLISHED: 6849 return (TS_DATA_XFER); 6850 case TCPS_CLOSE_WAIT: 6851 return (TS_WREQ_ORDREL); 6852 case TCPS_FIN_WAIT_1: 6853 return (TS_WIND_ORDREL); 6854 case TCPS_FIN_WAIT_2: 6855 return (TS_WIND_ORDREL); 6856 6857 case TCPS_CLOSING: 6858 case TCPS_LAST_ACK: 6859 case TCPS_TIME_WAIT: 6860 case TCPS_CLOSED: 6861 /* 6862 * Following TS_WACK_DREQ7 is a rendition of "not 6863 * yet TS_IDLE" TPI state. There is no best match to any 6864 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6865 * choose a value chosen that will map to TLI/XTI level 6866 * state of TSTATECHNG (state is process of changing) which 6867 * captures what this dummy state represents. 6868 */ 6869 return (TS_WACK_DREQ7); 6870 default: 6871 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6872 tcp->tcp_state, tcp_display(tcp, NULL, 6873 DISP_PORT_ONLY)); 6874 return (TS_UNBND); 6875 } 6876 } 6877 6878 static void 6879 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6880 { 6881 if (tcp->tcp_family == AF_INET6) 6882 *tia = tcp_g_t_info_ack_v6; 6883 else 6884 *tia = tcp_g_t_info_ack; 6885 tia->CURRENT_state = tcp_tpistate(tcp); 6886 tia->OPT_size = tcp_max_optsize; 6887 if (tcp->tcp_mss == 0) { 6888 /* Not yet set - tcp_open does not set mss */ 6889 if (tcp->tcp_ipversion == IPV4_VERSION) 6890 tia->TIDU_size = tcp_mss_def_ipv4; 6891 else 6892 tia->TIDU_size = tcp_mss_def_ipv6; 6893 } else { 6894 tia->TIDU_size = tcp->tcp_mss; 6895 } 6896 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6897 } 6898 6899 /* 6900 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6901 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6902 * tcp_g_t_info_ack. The current state of the stream is copied from 6903 * tcp_state. 6904 */ 6905 static void 6906 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6907 { 6908 t_uscalar_t cap_bits1; 6909 struct T_capability_ack *tcap; 6910 6911 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6912 freemsg(mp); 6913 return; 6914 } 6915 6916 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6917 6918 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6919 mp->b_datap->db_type, T_CAPABILITY_ACK); 6920 if (mp == NULL) 6921 return; 6922 6923 tcap = (struct T_capability_ack *)mp->b_rptr; 6924 tcap->CAP_bits1 = 0; 6925 6926 if (cap_bits1 & TC1_INFO) { 6927 tcp_copy_info(&tcap->INFO_ack, tcp); 6928 tcap->CAP_bits1 |= TC1_INFO; 6929 } 6930 6931 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6932 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6933 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6934 } 6935 6936 putnext(tcp->tcp_rq, mp); 6937 } 6938 6939 /* 6940 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6941 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6942 * The current state of the stream is copied from tcp_state. 6943 */ 6944 static void 6945 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6946 { 6947 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6948 T_INFO_ACK); 6949 if (!mp) { 6950 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6951 return; 6952 } 6953 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6954 putnext(tcp->tcp_rq, mp); 6955 } 6956 6957 /* Respond to the TPI addr request */ 6958 static void 6959 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6960 { 6961 sin_t *sin; 6962 mblk_t *ackmp; 6963 struct T_addr_ack *taa; 6964 6965 /* Make it large enough for worst case */ 6966 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6967 2 * sizeof (sin6_t), 1); 6968 if (ackmp == NULL) { 6969 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6970 return; 6971 } 6972 6973 if (tcp->tcp_ipversion == IPV6_VERSION) { 6974 tcp_addr_req_ipv6(tcp, ackmp); 6975 return; 6976 } 6977 taa = (struct T_addr_ack *)ackmp->b_rptr; 6978 6979 bzero(taa, sizeof (struct T_addr_ack)); 6980 ackmp->b_wptr = (uchar_t *)&taa[1]; 6981 6982 taa->PRIM_type = T_ADDR_ACK; 6983 ackmp->b_datap->db_type = M_PCPROTO; 6984 6985 /* 6986 * Note: Following code assumes 32 bit alignment of basic 6987 * data structures like sin_t and struct T_addr_ack. 6988 */ 6989 if (tcp->tcp_state >= TCPS_BOUND) { 6990 /* 6991 * Fill in local address 6992 */ 6993 taa->LOCADDR_length = sizeof (sin_t); 6994 taa->LOCADDR_offset = sizeof (*taa); 6995 6996 sin = (sin_t *)&taa[1]; 6997 6998 /* Fill zeroes and then intialize non-zero fields */ 6999 *sin = sin_null; 7000 7001 sin->sin_family = AF_INET; 7002 7003 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7004 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7005 7006 ackmp->b_wptr = (uchar_t *)&sin[1]; 7007 7008 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7009 /* 7010 * Fill in Remote address 7011 */ 7012 taa->REMADDR_length = sizeof (sin_t); 7013 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7014 taa->LOCADDR_length); 7015 7016 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7017 *sin = sin_null; 7018 sin->sin_family = AF_INET; 7019 sin->sin_addr.s_addr = tcp->tcp_remote; 7020 sin->sin_port = tcp->tcp_fport; 7021 7022 ackmp->b_wptr = (uchar_t *)&sin[1]; 7023 } 7024 } 7025 putnext(tcp->tcp_rq, ackmp); 7026 } 7027 7028 /* Assumes that tcp_addr_req gets enough space and alignment */ 7029 static void 7030 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7031 { 7032 sin6_t *sin6; 7033 struct T_addr_ack *taa; 7034 7035 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7036 ASSERT(OK_32PTR(ackmp->b_rptr)); 7037 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7038 2 * sizeof (sin6_t)); 7039 7040 taa = (struct T_addr_ack *)ackmp->b_rptr; 7041 7042 bzero(taa, sizeof (struct T_addr_ack)); 7043 ackmp->b_wptr = (uchar_t *)&taa[1]; 7044 7045 taa->PRIM_type = T_ADDR_ACK; 7046 ackmp->b_datap->db_type = M_PCPROTO; 7047 7048 /* 7049 * Note: Following code assumes 32 bit alignment of basic 7050 * data structures like sin6_t and struct T_addr_ack. 7051 */ 7052 if (tcp->tcp_state >= TCPS_BOUND) { 7053 /* 7054 * Fill in local address 7055 */ 7056 taa->LOCADDR_length = sizeof (sin6_t); 7057 taa->LOCADDR_offset = sizeof (*taa); 7058 7059 sin6 = (sin6_t *)&taa[1]; 7060 *sin6 = sin6_null; 7061 7062 sin6->sin6_family = AF_INET6; 7063 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7064 sin6->sin6_port = tcp->tcp_lport; 7065 7066 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7067 7068 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7069 /* 7070 * Fill in Remote address 7071 */ 7072 taa->REMADDR_length = sizeof (sin6_t); 7073 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7074 taa->LOCADDR_length); 7075 7076 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7077 *sin6 = sin6_null; 7078 sin6->sin6_family = AF_INET6; 7079 sin6->sin6_flowinfo = 7080 tcp->tcp_ip6h->ip6_vcf & 7081 ~IPV6_VERS_AND_FLOW_MASK; 7082 sin6->sin6_addr = tcp->tcp_remote_v6; 7083 sin6->sin6_port = tcp->tcp_fport; 7084 7085 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7086 } 7087 } 7088 putnext(tcp->tcp_rq, ackmp); 7089 } 7090 7091 /* 7092 * Handle reinitialization of a tcp structure. 7093 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7094 */ 7095 static void 7096 tcp_reinit(tcp_t *tcp) 7097 { 7098 mblk_t *mp; 7099 int err; 7100 7101 TCP_STAT(tcp_reinit_calls); 7102 7103 /* tcp_reinit should never be called for detached tcp_t's */ 7104 ASSERT(tcp->tcp_listener == NULL); 7105 ASSERT((tcp->tcp_family == AF_INET && 7106 tcp->tcp_ipversion == IPV4_VERSION) || 7107 (tcp->tcp_family == AF_INET6 && 7108 (tcp->tcp_ipversion == IPV4_VERSION || 7109 tcp->tcp_ipversion == IPV6_VERSION))); 7110 7111 /* Cancel outstanding timers */ 7112 tcp_timers_stop(tcp); 7113 7114 /* 7115 * Reset everything in the state vector, after updating global 7116 * MIB data from instance counters. 7117 */ 7118 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7119 tcp->tcp_ibsegs = 0; 7120 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7121 tcp->tcp_obsegs = 0; 7122 7123 tcp_close_mpp(&tcp->tcp_xmit_head); 7124 if (tcp->tcp_snd_zcopy_aware) 7125 tcp_zcopy_notify(tcp); 7126 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7127 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7128 if (tcp->tcp_flow_stopped && 7129 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7130 tcp_clrqfull(tcp); 7131 } 7132 tcp_close_mpp(&tcp->tcp_reass_head); 7133 tcp->tcp_reass_tail = NULL; 7134 if (tcp->tcp_rcv_list != NULL) { 7135 /* Free b_next chain */ 7136 tcp_close_mpp(&tcp->tcp_rcv_list); 7137 tcp->tcp_rcv_last_head = NULL; 7138 tcp->tcp_rcv_last_tail = NULL; 7139 tcp->tcp_rcv_cnt = 0; 7140 } 7141 tcp->tcp_rcv_last_tail = NULL; 7142 7143 if ((mp = tcp->tcp_urp_mp) != NULL) { 7144 freemsg(mp); 7145 tcp->tcp_urp_mp = NULL; 7146 } 7147 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7148 freemsg(mp); 7149 tcp->tcp_urp_mark_mp = NULL; 7150 } 7151 if (tcp->tcp_fused_sigurg_mp != NULL) { 7152 freeb(tcp->tcp_fused_sigurg_mp); 7153 tcp->tcp_fused_sigurg_mp = NULL; 7154 } 7155 7156 /* 7157 * Following is a union with two members which are 7158 * identical types and size so the following cleanup 7159 * is enough. 7160 */ 7161 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7162 7163 CL_INET_DISCONNECT(tcp); 7164 7165 /* 7166 * The connection can't be on the tcp_time_wait_head list 7167 * since it is not detached. 7168 */ 7169 ASSERT(tcp->tcp_time_wait_next == NULL); 7170 ASSERT(tcp->tcp_time_wait_prev == NULL); 7171 ASSERT(tcp->tcp_time_wait_expire == 0); 7172 7173 /* 7174 * Reset/preserve other values 7175 */ 7176 tcp_reinit_values(tcp); 7177 ipcl_hash_remove(tcp->tcp_connp); 7178 conn_delete_ire(tcp->tcp_connp, NULL); 7179 7180 if (tcp->tcp_conn_req_max != 0) { 7181 /* 7182 * This is the case when a TLI program uses the same 7183 * transport end point to accept a connection. This 7184 * makes the TCP both a listener and acceptor. When 7185 * this connection is closed, we need to set the state 7186 * back to TCPS_LISTEN. Make sure that the eager list 7187 * is reinitialized. 7188 * 7189 * Note that this stream is still bound to the four 7190 * tuples of the previous connection in IP. If a new 7191 * SYN with different foreign address comes in, IP will 7192 * not find it and will send it to the global queue. In 7193 * the global queue, TCP will do a tcp_lookup_listener() 7194 * to find this stream. This works because this stream 7195 * is only removed from connected hash. 7196 * 7197 */ 7198 tcp->tcp_state = TCPS_LISTEN; 7199 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7200 tcp->tcp_connp->conn_recv = tcp_conn_request; 7201 if (tcp->tcp_family == AF_INET6) { 7202 ASSERT(tcp->tcp_connp->conn_af_isv6); 7203 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7204 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7205 } else { 7206 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7207 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7208 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7209 } 7210 } else { 7211 tcp->tcp_state = TCPS_BOUND; 7212 } 7213 7214 /* 7215 * Initialize to default values 7216 * Can't fail since enough header template space already allocated 7217 * at open(). 7218 */ 7219 err = tcp_init_values(tcp); 7220 ASSERT(err == 0); 7221 /* Restore state in tcp_tcph */ 7222 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7223 if (tcp->tcp_ipversion == IPV4_VERSION) 7224 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7225 else 7226 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7227 /* 7228 * Copy of the src addr. in tcp_t is needed in tcp_t 7229 * since the lookup funcs can only lookup on tcp_t 7230 */ 7231 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7232 7233 ASSERT(tcp->tcp_ptpbhn != NULL); 7234 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7235 tcp->tcp_rwnd = tcp_recv_hiwat; 7236 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7237 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7238 } 7239 7240 /* 7241 * Force values to zero that need be zero. 7242 * Do not touch values asociated with the BOUND or LISTEN state 7243 * since the connection will end up in that state after the reinit. 7244 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7245 * structure! 7246 */ 7247 static void 7248 tcp_reinit_values(tcp) 7249 tcp_t *tcp; 7250 { 7251 #ifndef lint 7252 #define DONTCARE(x) 7253 #define PRESERVE(x) 7254 #else 7255 #define DONTCARE(x) ((x) = (x)) 7256 #define PRESERVE(x) ((x) = (x)) 7257 #endif /* lint */ 7258 7259 PRESERVE(tcp->tcp_bind_hash); 7260 PRESERVE(tcp->tcp_ptpbhn); 7261 PRESERVE(tcp->tcp_acceptor_hash); 7262 PRESERVE(tcp->tcp_ptpahn); 7263 7264 /* Should be ASSERT NULL on these with new code! */ 7265 ASSERT(tcp->tcp_time_wait_next == NULL); 7266 ASSERT(tcp->tcp_time_wait_prev == NULL); 7267 ASSERT(tcp->tcp_time_wait_expire == 0); 7268 PRESERVE(tcp->tcp_state); 7269 PRESERVE(tcp->tcp_rq); 7270 PRESERVE(tcp->tcp_wq); 7271 7272 ASSERT(tcp->tcp_xmit_head == NULL); 7273 ASSERT(tcp->tcp_xmit_last == NULL); 7274 ASSERT(tcp->tcp_unsent == 0); 7275 ASSERT(tcp->tcp_xmit_tail == NULL); 7276 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7277 7278 tcp->tcp_snxt = 0; /* Displayed in mib */ 7279 tcp->tcp_suna = 0; /* Displayed in mib */ 7280 tcp->tcp_swnd = 0; 7281 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7282 7283 ASSERT(tcp->tcp_ibsegs == 0); 7284 ASSERT(tcp->tcp_obsegs == 0); 7285 7286 if (tcp->tcp_iphc != NULL) { 7287 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7288 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7289 } 7290 7291 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7292 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7293 DONTCARE(tcp->tcp_ipha); 7294 DONTCARE(tcp->tcp_ip6h); 7295 DONTCARE(tcp->tcp_ip_hdr_len); 7296 DONTCARE(tcp->tcp_tcph); 7297 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7298 tcp->tcp_valid_bits = 0; 7299 7300 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7301 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7302 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7303 tcp->tcp_last_rcv_lbolt = 0; 7304 7305 tcp->tcp_init_cwnd = 0; 7306 7307 tcp->tcp_urp_last_valid = 0; 7308 tcp->tcp_hard_binding = 0; 7309 tcp->tcp_hard_bound = 0; 7310 PRESERVE(tcp->tcp_cred); 7311 PRESERVE(tcp->tcp_cpid); 7312 PRESERVE(tcp->tcp_exclbind); 7313 7314 tcp->tcp_fin_acked = 0; 7315 tcp->tcp_fin_rcvd = 0; 7316 tcp->tcp_fin_sent = 0; 7317 tcp->tcp_ordrel_done = 0; 7318 7319 tcp->tcp_debug = 0; 7320 tcp->tcp_dontroute = 0; 7321 tcp->tcp_broadcast = 0; 7322 7323 tcp->tcp_useloopback = 0; 7324 tcp->tcp_reuseaddr = 0; 7325 tcp->tcp_oobinline = 0; 7326 tcp->tcp_dgram_errind = 0; 7327 7328 tcp->tcp_detached = 0; 7329 tcp->tcp_bind_pending = 0; 7330 tcp->tcp_unbind_pending = 0; 7331 tcp->tcp_deferred_clean_death = 0; 7332 7333 tcp->tcp_snd_ws_ok = B_FALSE; 7334 tcp->tcp_snd_ts_ok = B_FALSE; 7335 tcp->tcp_linger = 0; 7336 tcp->tcp_ka_enabled = 0; 7337 tcp->tcp_zero_win_probe = 0; 7338 7339 tcp->tcp_loopback = 0; 7340 tcp->tcp_localnet = 0; 7341 tcp->tcp_syn_defense = 0; 7342 tcp->tcp_set_timer = 0; 7343 7344 tcp->tcp_active_open = 0; 7345 ASSERT(tcp->tcp_timeout == B_FALSE); 7346 tcp->tcp_rexmit = B_FALSE; 7347 tcp->tcp_xmit_zc_clean = B_FALSE; 7348 7349 tcp->tcp_snd_sack_ok = B_FALSE; 7350 PRESERVE(tcp->tcp_recvdstaddr); 7351 tcp->tcp_hwcksum = B_FALSE; 7352 7353 tcp->tcp_ire_ill_check_done = B_FALSE; 7354 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7355 7356 tcp->tcp_mdt = B_FALSE; 7357 tcp->tcp_mdt_hdr_head = 0; 7358 tcp->tcp_mdt_hdr_tail = 0; 7359 7360 tcp->tcp_conn_def_q0 = 0; 7361 tcp->tcp_ip_forward_progress = B_FALSE; 7362 tcp->tcp_anon_priv_bind = 0; 7363 tcp->tcp_ecn_ok = B_FALSE; 7364 7365 tcp->tcp_cwr = B_FALSE; 7366 tcp->tcp_ecn_echo_on = B_FALSE; 7367 7368 if (tcp->tcp_sack_info != NULL) { 7369 if (tcp->tcp_notsack_list != NULL) { 7370 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7371 } 7372 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7373 tcp->tcp_sack_info = NULL; 7374 } 7375 7376 tcp->tcp_rcv_ws = 0; 7377 tcp->tcp_snd_ws = 0; 7378 tcp->tcp_ts_recent = 0; 7379 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7380 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7381 tcp->tcp_if_mtu = 0; 7382 7383 ASSERT(tcp->tcp_reass_head == NULL); 7384 ASSERT(tcp->tcp_reass_tail == NULL); 7385 7386 tcp->tcp_cwnd_cnt = 0; 7387 7388 ASSERT(tcp->tcp_rcv_list == NULL); 7389 ASSERT(tcp->tcp_rcv_last_head == NULL); 7390 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7391 ASSERT(tcp->tcp_rcv_cnt == 0); 7392 7393 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7394 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7395 tcp->tcp_csuna = 0; 7396 7397 tcp->tcp_rto = 0; /* Displayed in MIB */ 7398 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7399 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7400 tcp->tcp_rtt_update = 0; 7401 7402 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7403 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7404 7405 tcp->tcp_rack = 0; /* Displayed in mib */ 7406 tcp->tcp_rack_cnt = 0; 7407 tcp->tcp_rack_cur_max = 0; 7408 tcp->tcp_rack_abs_max = 0; 7409 7410 tcp->tcp_max_swnd = 0; 7411 7412 ASSERT(tcp->tcp_listener == NULL); 7413 7414 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7415 7416 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7417 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7418 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7419 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7420 7421 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7422 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7423 PRESERVE(tcp->tcp_conn_req_max); 7424 PRESERVE(tcp->tcp_conn_req_seqnum); 7425 7426 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7427 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7428 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7429 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7430 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7431 7432 tcp->tcp_lingertime = 0; 7433 7434 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7435 ASSERT(tcp->tcp_urp_mp == NULL); 7436 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7437 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7438 7439 ASSERT(tcp->tcp_eager_next_q == NULL); 7440 ASSERT(tcp->tcp_eager_last_q == NULL); 7441 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7442 tcp->tcp_eager_prev_q0 == NULL) || 7443 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7444 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7445 7446 tcp->tcp_client_errno = 0; 7447 7448 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7449 7450 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7451 7452 PRESERVE(tcp->tcp_bound_source_v6); 7453 tcp->tcp_last_sent_len = 0; 7454 tcp->tcp_dupack_cnt = 0; 7455 7456 tcp->tcp_fport = 0; /* Displayed in MIB */ 7457 PRESERVE(tcp->tcp_lport); 7458 7459 PRESERVE(tcp->tcp_acceptor_lockp); 7460 7461 ASSERT(tcp->tcp_ordrelid == 0); 7462 PRESERVE(tcp->tcp_acceptor_id); 7463 DONTCARE(tcp->tcp_ipsec_overhead); 7464 7465 /* 7466 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7467 * in tcp structure and now tracing), Re-initialize all 7468 * members of tcp_traceinfo. 7469 */ 7470 if (tcp->tcp_tracebuf != NULL) { 7471 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7472 } 7473 7474 PRESERVE(tcp->tcp_family); 7475 if (tcp->tcp_family == AF_INET6) { 7476 tcp->tcp_ipversion = IPV6_VERSION; 7477 tcp->tcp_mss = tcp_mss_def_ipv6; 7478 } else { 7479 tcp->tcp_ipversion = IPV4_VERSION; 7480 tcp->tcp_mss = tcp_mss_def_ipv4; 7481 } 7482 7483 tcp->tcp_bound_if = 0; 7484 tcp->tcp_ipv6_recvancillary = 0; 7485 tcp->tcp_recvifindex = 0; 7486 tcp->tcp_recvhops = 0; 7487 tcp->tcp_closed = 0; 7488 tcp->tcp_cleandeathtag = 0; 7489 if (tcp->tcp_hopopts != NULL) { 7490 mi_free(tcp->tcp_hopopts); 7491 tcp->tcp_hopopts = NULL; 7492 tcp->tcp_hopoptslen = 0; 7493 } 7494 ASSERT(tcp->tcp_hopoptslen == 0); 7495 if (tcp->tcp_dstopts != NULL) { 7496 mi_free(tcp->tcp_dstopts); 7497 tcp->tcp_dstopts = NULL; 7498 tcp->tcp_dstoptslen = 0; 7499 } 7500 ASSERT(tcp->tcp_dstoptslen == 0); 7501 if (tcp->tcp_rtdstopts != NULL) { 7502 mi_free(tcp->tcp_rtdstopts); 7503 tcp->tcp_rtdstopts = NULL; 7504 tcp->tcp_rtdstoptslen = 0; 7505 } 7506 ASSERT(tcp->tcp_rtdstoptslen == 0); 7507 if (tcp->tcp_rthdr != NULL) { 7508 mi_free(tcp->tcp_rthdr); 7509 tcp->tcp_rthdr = NULL; 7510 tcp->tcp_rthdrlen = 0; 7511 } 7512 ASSERT(tcp->tcp_rthdrlen == 0); 7513 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7514 7515 /* Reset fusion-related fields */ 7516 tcp->tcp_fused = B_FALSE; 7517 tcp->tcp_unfusable = B_FALSE; 7518 tcp->tcp_fused_sigurg = B_FALSE; 7519 tcp->tcp_direct_sockfs = B_FALSE; 7520 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7521 tcp->tcp_loopback_peer = NULL; 7522 tcp->tcp_fuse_rcv_hiwater = 0; 7523 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7524 tcp->tcp_fuse_rcv_unread_cnt = 0; 7525 7526 tcp->tcp_in_ack_unsent = 0; 7527 tcp->tcp_cork = B_FALSE; 7528 7529 PRESERVE(tcp->tcp_squeue_bytes); 7530 7531 #undef DONTCARE 7532 #undef PRESERVE 7533 } 7534 7535 /* 7536 * Allocate necessary resources and initialize state vector. 7537 * Guaranteed not to fail so that when an error is returned, 7538 * the caller doesn't need to do any additional cleanup. 7539 */ 7540 int 7541 tcp_init(tcp_t *tcp, queue_t *q) 7542 { 7543 int err; 7544 7545 tcp->tcp_rq = q; 7546 tcp->tcp_wq = WR(q); 7547 tcp->tcp_state = TCPS_IDLE; 7548 if ((err = tcp_init_values(tcp)) != 0) 7549 tcp_timers_stop(tcp); 7550 return (err); 7551 } 7552 7553 static int 7554 tcp_init_values(tcp_t *tcp) 7555 { 7556 int err; 7557 7558 ASSERT((tcp->tcp_family == AF_INET && 7559 tcp->tcp_ipversion == IPV4_VERSION) || 7560 (tcp->tcp_family == AF_INET6 && 7561 (tcp->tcp_ipversion == IPV4_VERSION || 7562 tcp->tcp_ipversion == IPV6_VERSION))); 7563 7564 /* 7565 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7566 * will be close to tcp_rexmit_interval_initial. By doing this, we 7567 * allow the algorithm to adjust slowly to large fluctuations of RTT 7568 * during first few transmissions of a connection as seen in slow 7569 * links. 7570 */ 7571 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 7572 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 7573 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7574 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7575 tcp_conn_grace_period; 7576 if (tcp->tcp_rto < tcp_rexmit_interval_min) 7577 tcp->tcp_rto = tcp_rexmit_interval_min; 7578 tcp->tcp_timer_backoff = 0; 7579 tcp->tcp_ms_we_have_waited = 0; 7580 tcp->tcp_last_recv_time = lbolt; 7581 tcp->tcp_cwnd_max = tcp_cwnd_max_; 7582 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7583 7584 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 7585 7586 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 7587 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 7588 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 7589 /* 7590 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7591 * passive open. 7592 */ 7593 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 7594 7595 tcp->tcp_naglim = tcp_naglim_def; 7596 7597 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7598 7599 tcp->tcp_mdt_hdr_head = 0; 7600 tcp->tcp_mdt_hdr_tail = 0; 7601 7602 /* Reset fusion-related fields */ 7603 tcp->tcp_fused = B_FALSE; 7604 tcp->tcp_unfusable = B_FALSE; 7605 tcp->tcp_fused_sigurg = B_FALSE; 7606 tcp->tcp_direct_sockfs = B_FALSE; 7607 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7608 tcp->tcp_loopback_peer = NULL; 7609 tcp->tcp_fuse_rcv_hiwater = 0; 7610 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7611 tcp->tcp_fuse_rcv_unread_cnt = 0; 7612 7613 /* Initialize the header template */ 7614 if (tcp->tcp_ipversion == IPV4_VERSION) { 7615 err = tcp_header_init_ipv4(tcp); 7616 } else { 7617 err = tcp_header_init_ipv6(tcp); 7618 } 7619 if (err) 7620 return (err); 7621 7622 /* 7623 * Init the window scale to the max so tcp_rwnd_set() won't pare 7624 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7625 */ 7626 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7627 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 7628 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 7629 7630 tcp->tcp_cork = B_FALSE; 7631 /* 7632 * Init the tcp_debug option. This value determines whether TCP 7633 * calls strlog() to print out debug messages. Doing this 7634 * initialization here means that this value is not inherited thru 7635 * tcp_reinit(). 7636 */ 7637 tcp->tcp_debug = tcp_dbg; 7638 7639 tcp->tcp_ka_interval = tcp_keepalive_interval; 7640 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 7641 7642 return (0); 7643 } 7644 7645 /* 7646 * Initialize the IPv4 header. Loses any record of any IP options. 7647 */ 7648 static int 7649 tcp_header_init_ipv4(tcp_t *tcp) 7650 { 7651 tcph_t *tcph; 7652 uint32_t sum; 7653 7654 /* 7655 * This is a simple initialization. If there's 7656 * already a template, it should never be too small, 7657 * so reuse it. Otherwise, allocate space for the new one. 7658 */ 7659 if (tcp->tcp_iphc == NULL) { 7660 ASSERT(tcp->tcp_iphc_len == 0); 7661 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7662 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7663 if (tcp->tcp_iphc == NULL) { 7664 tcp->tcp_iphc_len = 0; 7665 return (ENOMEM); 7666 } 7667 } 7668 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7669 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 7670 tcp->tcp_ip6h = NULL; 7671 tcp->tcp_ipversion = IPV4_VERSION; 7672 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 7673 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7674 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 7675 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 7676 tcp->tcp_ipha->ipha_version_and_hdr_length 7677 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 7678 tcp->tcp_ipha->ipha_ident = 0; 7679 7680 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 7681 tcp->tcp_tos = 0; 7682 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7683 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 7684 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 7685 7686 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 7687 tcp->tcp_tcph = tcph; 7688 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7689 /* 7690 * IP wants our header length in the checksum field to 7691 * allow it to perform a single pseudo-header+checksum 7692 * calculation on behalf of TCP. 7693 * Include the adjustment for a source route once IP_OPTIONS is set. 7694 */ 7695 sum = sizeof (tcph_t) + tcp->tcp_sum; 7696 sum = (sum >> 16) + (sum & 0xFFFF); 7697 U16_TO_ABE16(sum, tcph->th_sum); 7698 return (0); 7699 } 7700 7701 /* 7702 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 7703 */ 7704 static int 7705 tcp_header_init_ipv6(tcp_t *tcp) 7706 { 7707 tcph_t *tcph; 7708 uint32_t sum; 7709 7710 /* 7711 * This is a simple initialization. If there's 7712 * already a template, it should never be too small, 7713 * so reuse it. Otherwise, allocate space for the new one. 7714 * Ensure that there is enough space to "downgrade" the tcp_t 7715 * to an IPv4 tcp_t. This requires having space for a full load 7716 * of IPv4 options, as well as a full load of TCP options 7717 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 7718 * than a v6 header and a TCP header with a full load of TCP options 7719 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 7720 * We want to avoid reallocation in the "downgraded" case when 7721 * processing outbound IPv4 options. 7722 */ 7723 if (tcp->tcp_iphc == NULL) { 7724 ASSERT(tcp->tcp_iphc_len == 0); 7725 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7726 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7727 if (tcp->tcp_iphc == NULL) { 7728 tcp->tcp_iphc_len = 0; 7729 return (ENOMEM); 7730 } 7731 } 7732 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7733 tcp->tcp_ipversion = IPV6_VERSION; 7734 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 7735 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7736 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 7737 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 7738 tcp->tcp_ipha = NULL; 7739 7740 /* Initialize the header template */ 7741 7742 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7743 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 7744 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 7745 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 7746 7747 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 7748 tcp->tcp_tcph = tcph; 7749 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7750 /* 7751 * IP wants our header length in the checksum field to 7752 * allow it to perform a single psuedo-header+checksum 7753 * calculation on behalf of TCP. 7754 * Include the adjustment for a source route when IPV6_RTHDR is set. 7755 */ 7756 sum = sizeof (tcph_t) + tcp->tcp_sum; 7757 sum = (sum >> 16) + (sum & 0xFFFF); 7758 U16_TO_ABE16(sum, tcph->th_sum); 7759 return (0); 7760 } 7761 7762 /* At minimum we need 4 bytes in the TCP header for the lookup */ 7763 #define ICMP_MIN_TCP_HDR 4 7764 7765 /* 7766 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 7767 * passed up by IP. The message is always received on the correct tcp_t. 7768 * Assumes that IP has pulled up everything up to and including the ICMP header. 7769 */ 7770 void 7771 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 7772 { 7773 icmph_t *icmph; 7774 ipha_t *ipha; 7775 int iph_hdr_length; 7776 tcph_t *tcph; 7777 boolean_t ipsec_mctl = B_FALSE; 7778 boolean_t secure; 7779 mblk_t *first_mp = mp; 7780 uint32_t new_mss; 7781 uint32_t ratio; 7782 size_t mp_size = MBLKL(mp); 7783 uint32_t seg_ack; 7784 uint32_t seg_seq; 7785 7786 /* Assume IP provides aligned packets - otherwise toss */ 7787 if (!OK_32PTR(mp->b_rptr)) { 7788 freemsg(mp); 7789 return; 7790 } 7791 7792 /* 7793 * Since ICMP errors are normal data marked with M_CTL when sent 7794 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 7795 * packets starting with an ipsec_info_t, see ipsec_info.h. 7796 */ 7797 if ((mp_size == sizeof (ipsec_info_t)) && 7798 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 7799 ASSERT(mp->b_cont != NULL); 7800 mp = mp->b_cont; 7801 /* IP should have done this */ 7802 ASSERT(OK_32PTR(mp->b_rptr)); 7803 mp_size = MBLKL(mp); 7804 ipsec_mctl = B_TRUE; 7805 } 7806 7807 /* 7808 * Verify that we have a complete outer IP header. If not, drop it. 7809 */ 7810 if (mp_size < sizeof (ipha_t)) { 7811 noticmpv4: 7812 freemsg(first_mp); 7813 return; 7814 } 7815 7816 ipha = (ipha_t *)mp->b_rptr; 7817 /* 7818 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 7819 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 7820 */ 7821 switch (IPH_HDR_VERSION(ipha)) { 7822 case IPV6_VERSION: 7823 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 7824 return; 7825 case IPV4_VERSION: 7826 break; 7827 default: 7828 goto noticmpv4; 7829 } 7830 7831 /* Skip past the outer IP and ICMP headers */ 7832 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7833 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7834 /* 7835 * If we don't have the correct outer IP header length or if the ULP 7836 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 7837 * send it upstream. 7838 */ 7839 if (iph_hdr_length < sizeof (ipha_t) || 7840 ipha->ipha_protocol != IPPROTO_ICMP || 7841 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7842 goto noticmpv4; 7843 } 7844 ipha = (ipha_t *)&icmph[1]; 7845 7846 /* Skip past the inner IP and find the ULP header */ 7847 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7848 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 7849 /* 7850 * If we don't have the correct inner IP header length or if the ULP 7851 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7852 * bytes of TCP header, drop it. 7853 */ 7854 if (iph_hdr_length < sizeof (ipha_t) || 7855 ipha->ipha_protocol != IPPROTO_TCP || 7856 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7857 goto noticmpv4; 7858 } 7859 7860 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 7861 if (ipsec_mctl) { 7862 secure = ipsec_in_is_secure(first_mp); 7863 } else { 7864 secure = B_FALSE; 7865 } 7866 if (secure) { 7867 /* 7868 * If we are willing to accept this in clear 7869 * we don't have to verify policy. 7870 */ 7871 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 7872 if (!tcp_check_policy(tcp, first_mp, 7873 ipha, NULL, secure, ipsec_mctl)) { 7874 /* 7875 * tcp_check_policy called 7876 * ip_drop_packet() on failure. 7877 */ 7878 return; 7879 } 7880 } 7881 } 7882 } else if (ipsec_mctl) { 7883 /* 7884 * This is a hard_bound connection. IP has already 7885 * verified policy. We don't have to do it again. 7886 */ 7887 freeb(first_mp); 7888 first_mp = mp; 7889 ipsec_mctl = B_FALSE; 7890 } 7891 7892 seg_ack = ABE32_TO_U32(tcph->th_ack); 7893 seg_seq = ABE32_TO_U32(tcph->th_seq); 7894 /* 7895 * TCP SHOULD check that the TCP sequence number contained in 7896 * payload of the ICMP error message is within the range 7897 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 7898 */ 7899 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 7900 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 7901 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 7902 /* 7903 * If the ICMP message is bogus, should we kill the 7904 * connection, or should we just drop the bogus ICMP 7905 * message? It would probably make more sense to just 7906 * drop the message so that if this one managed to get 7907 * in, the real connection should not suffer. 7908 */ 7909 goto noticmpv4; 7910 } 7911 7912 switch (icmph->icmph_type) { 7913 case ICMP_DEST_UNREACHABLE: 7914 switch (icmph->icmph_code) { 7915 case ICMP_FRAGMENTATION_NEEDED: 7916 /* 7917 * Reduce the MSS based on the new MTU. This will 7918 * eliminate any fragmentation locally. 7919 * N.B. There may well be some funny side-effects on 7920 * the local send policy and the remote receive policy. 7921 * Pending further research, we provide 7922 * tcp_ignore_path_mtu just in case this proves 7923 * disastrous somewhere. 7924 * 7925 * After updating the MSS, retransmit part of the 7926 * dropped segment using the new mss by calling 7927 * tcp_wput_data(). Need to adjust all those 7928 * params to make sure tcp_wput_data() work properly. 7929 */ 7930 if (tcp_ignore_path_mtu) 7931 break; 7932 7933 /* 7934 * Decrease the MSS by time stamp options 7935 * IP options and IPSEC options. tcp_hdr_len 7936 * includes time stamp option and IP option 7937 * length. 7938 */ 7939 7940 new_mss = ntohs(icmph->icmph_du_mtu) - 7941 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 7942 7943 /* 7944 * Only update the MSS if the new one is 7945 * smaller than the previous one. This is 7946 * to avoid problems when getting multiple 7947 * ICMP errors for the same MTU. 7948 */ 7949 if (new_mss >= tcp->tcp_mss) 7950 break; 7951 7952 /* 7953 * Stop doing PMTU if new_mss is less than 68 7954 * or less than tcp_mss_min. 7955 * The value 68 comes from rfc 1191. 7956 */ 7957 if (new_mss < MAX(68, tcp_mss_min)) 7958 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 7959 0; 7960 7961 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 7962 ASSERT(ratio >= 1); 7963 tcp_mss_set(tcp, new_mss); 7964 7965 /* 7966 * Make sure we have something to 7967 * send. 7968 */ 7969 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 7970 (tcp->tcp_xmit_head != NULL)) { 7971 /* 7972 * Shrink tcp_cwnd in 7973 * proportion to the old MSS/new MSS. 7974 */ 7975 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 7976 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 7977 (tcp->tcp_unsent == 0)) { 7978 tcp->tcp_rexmit_max = tcp->tcp_fss; 7979 } else { 7980 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7981 } 7982 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7983 tcp->tcp_rexmit = B_TRUE; 7984 tcp->tcp_dupack_cnt = 0; 7985 tcp->tcp_snd_burst = TCP_CWND_SS; 7986 tcp_ss_rexmit(tcp); 7987 } 7988 break; 7989 case ICMP_PORT_UNREACHABLE: 7990 case ICMP_PROTOCOL_UNREACHABLE: 7991 switch (tcp->tcp_state) { 7992 case TCPS_SYN_SENT: 7993 case TCPS_SYN_RCVD: 7994 /* 7995 * ICMP can snipe away incipient 7996 * TCP connections as long as 7997 * seq number is same as initial 7998 * send seq number. 7999 */ 8000 if (seg_seq == tcp->tcp_iss) { 8001 (void) tcp_clean_death(tcp, 8002 ECONNREFUSED, 6); 8003 } 8004 break; 8005 } 8006 break; 8007 case ICMP_HOST_UNREACHABLE: 8008 case ICMP_NET_UNREACHABLE: 8009 /* Record the error in case we finally time out. */ 8010 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8011 tcp->tcp_client_errno = EHOSTUNREACH; 8012 else 8013 tcp->tcp_client_errno = ENETUNREACH; 8014 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8015 if (tcp->tcp_listener != NULL && 8016 tcp->tcp_listener->tcp_syn_defense) { 8017 /* 8018 * Ditch the half-open connection if we 8019 * suspect a SYN attack is under way. 8020 */ 8021 tcp_ip_ire_mark_advice(tcp); 8022 (void) tcp_clean_death(tcp, 8023 tcp->tcp_client_errno, 7); 8024 } 8025 } 8026 break; 8027 default: 8028 break; 8029 } 8030 break; 8031 case ICMP_SOURCE_QUENCH: { 8032 /* 8033 * use a global boolean to control 8034 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8035 * The default is false. 8036 */ 8037 if (tcp_icmp_source_quench) { 8038 /* 8039 * Reduce the sending rate as if we got a 8040 * retransmit timeout 8041 */ 8042 uint32_t npkt; 8043 8044 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8045 tcp->tcp_mss; 8046 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8047 tcp->tcp_cwnd = tcp->tcp_mss; 8048 tcp->tcp_cwnd_cnt = 0; 8049 } 8050 break; 8051 } 8052 } 8053 freemsg(first_mp); 8054 } 8055 8056 /* 8057 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8058 * error messages passed up by IP. 8059 * Assumes that IP has pulled up all the extension headers as well 8060 * as the ICMPv6 header. 8061 */ 8062 static void 8063 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8064 { 8065 icmp6_t *icmp6; 8066 ip6_t *ip6h; 8067 uint16_t iph_hdr_length; 8068 tcpha_t *tcpha; 8069 uint8_t *nexthdrp; 8070 uint32_t new_mss; 8071 uint32_t ratio; 8072 boolean_t secure; 8073 mblk_t *first_mp = mp; 8074 size_t mp_size; 8075 uint32_t seg_ack; 8076 uint32_t seg_seq; 8077 8078 /* 8079 * The caller has determined if this is an IPSEC_IN packet and 8080 * set ipsec_mctl appropriately (see tcp_icmp_error). 8081 */ 8082 if (ipsec_mctl) 8083 mp = mp->b_cont; 8084 8085 mp_size = MBLKL(mp); 8086 8087 /* 8088 * Verify that we have a complete IP header. If not, send it upstream. 8089 */ 8090 if (mp_size < sizeof (ip6_t)) { 8091 noticmpv6: 8092 freemsg(first_mp); 8093 return; 8094 } 8095 8096 /* 8097 * Verify this is an ICMPV6 packet, else send it upstream. 8098 */ 8099 ip6h = (ip6_t *)mp->b_rptr; 8100 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8101 iph_hdr_length = IPV6_HDR_LEN; 8102 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8103 &nexthdrp) || 8104 *nexthdrp != IPPROTO_ICMPV6) { 8105 goto noticmpv6; 8106 } 8107 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8108 ip6h = (ip6_t *)&icmp6[1]; 8109 /* 8110 * Verify if we have a complete ICMP and inner IP header. 8111 */ 8112 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8113 goto noticmpv6; 8114 8115 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8116 goto noticmpv6; 8117 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8118 /* 8119 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8120 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8121 * packet. 8122 */ 8123 if ((*nexthdrp != IPPROTO_TCP) || 8124 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8125 goto noticmpv6; 8126 } 8127 8128 /* 8129 * ICMP errors come on the right queue or come on 8130 * listener/global queue for detached connections and 8131 * get switched to the right queue. If it comes on the 8132 * right queue, policy check has already been done by IP 8133 * and thus free the first_mp without verifying the policy. 8134 * If it has come for a non-hard bound connection, we need 8135 * to verify policy as IP may not have done it. 8136 */ 8137 if (!tcp->tcp_hard_bound) { 8138 if (ipsec_mctl) { 8139 secure = ipsec_in_is_secure(first_mp); 8140 } else { 8141 secure = B_FALSE; 8142 } 8143 if (secure) { 8144 /* 8145 * If we are willing to accept this in clear 8146 * we don't have to verify policy. 8147 */ 8148 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8149 if (!tcp_check_policy(tcp, first_mp, 8150 NULL, ip6h, secure, ipsec_mctl)) { 8151 /* 8152 * tcp_check_policy called 8153 * ip_drop_packet() on failure. 8154 */ 8155 return; 8156 } 8157 } 8158 } 8159 } else if (ipsec_mctl) { 8160 /* 8161 * This is a hard_bound connection. IP has already 8162 * verified policy. We don't have to do it again. 8163 */ 8164 freeb(first_mp); 8165 first_mp = mp; 8166 ipsec_mctl = B_FALSE; 8167 } 8168 8169 seg_ack = ntohl(tcpha->tha_ack); 8170 seg_seq = ntohl(tcpha->tha_seq); 8171 /* 8172 * TCP SHOULD check that the TCP sequence number contained in 8173 * payload of the ICMP error message is within the range 8174 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8175 */ 8176 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8177 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8178 /* 8179 * If the ICMP message is bogus, should we kill the 8180 * connection, or should we just drop the bogus ICMP 8181 * message? It would probably make more sense to just 8182 * drop the message so that if this one managed to get 8183 * in, the real connection should not suffer. 8184 */ 8185 goto noticmpv6; 8186 } 8187 8188 switch (icmp6->icmp6_type) { 8189 case ICMP6_PACKET_TOO_BIG: 8190 /* 8191 * Reduce the MSS based on the new MTU. This will 8192 * eliminate any fragmentation locally. 8193 * N.B. There may well be some funny side-effects on 8194 * the local send policy and the remote receive policy. 8195 * Pending further research, we provide 8196 * tcp_ignore_path_mtu just in case this proves 8197 * disastrous somewhere. 8198 * 8199 * After updating the MSS, retransmit part of the 8200 * dropped segment using the new mss by calling 8201 * tcp_wput_data(). Need to adjust all those 8202 * params to make sure tcp_wput_data() work properly. 8203 */ 8204 if (tcp_ignore_path_mtu) 8205 break; 8206 8207 /* 8208 * Decrease the MSS by time stamp options 8209 * IP options and IPSEC options. tcp_hdr_len 8210 * includes time stamp option and IP option 8211 * length. 8212 */ 8213 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8214 tcp->tcp_ipsec_overhead; 8215 8216 /* 8217 * Only update the MSS if the new one is 8218 * smaller than the previous one. This is 8219 * to avoid problems when getting multiple 8220 * ICMP errors for the same MTU. 8221 */ 8222 if (new_mss >= tcp->tcp_mss) 8223 break; 8224 8225 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8226 ASSERT(ratio >= 1); 8227 tcp_mss_set(tcp, new_mss); 8228 8229 /* 8230 * Make sure we have something to 8231 * send. 8232 */ 8233 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8234 (tcp->tcp_xmit_head != NULL)) { 8235 /* 8236 * Shrink tcp_cwnd in 8237 * proportion to the old MSS/new MSS. 8238 */ 8239 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8240 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8241 (tcp->tcp_unsent == 0)) { 8242 tcp->tcp_rexmit_max = tcp->tcp_fss; 8243 } else { 8244 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8245 } 8246 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8247 tcp->tcp_rexmit = B_TRUE; 8248 tcp->tcp_dupack_cnt = 0; 8249 tcp->tcp_snd_burst = TCP_CWND_SS; 8250 tcp_ss_rexmit(tcp); 8251 } 8252 break; 8253 8254 case ICMP6_DST_UNREACH: 8255 switch (icmp6->icmp6_code) { 8256 case ICMP6_DST_UNREACH_NOPORT: 8257 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8258 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8259 (tcpha->tha_seq == tcp->tcp_iss)) { 8260 (void) tcp_clean_death(tcp, 8261 ECONNREFUSED, 8); 8262 } 8263 break; 8264 8265 case ICMP6_DST_UNREACH_ADMIN: 8266 case ICMP6_DST_UNREACH_NOROUTE: 8267 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8268 case ICMP6_DST_UNREACH_ADDR: 8269 /* Record the error in case we finally time out. */ 8270 tcp->tcp_client_errno = EHOSTUNREACH; 8271 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8272 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8273 (tcpha->tha_seq == tcp->tcp_iss)) { 8274 if (tcp->tcp_listener != NULL && 8275 tcp->tcp_listener->tcp_syn_defense) { 8276 /* 8277 * Ditch the half-open connection if we 8278 * suspect a SYN attack is under way. 8279 */ 8280 tcp_ip_ire_mark_advice(tcp); 8281 (void) tcp_clean_death(tcp, 8282 tcp->tcp_client_errno, 9); 8283 } 8284 } 8285 8286 8287 break; 8288 default: 8289 break; 8290 } 8291 break; 8292 8293 case ICMP6_PARAM_PROB: 8294 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8295 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8296 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8297 (uchar_t *)nexthdrp) { 8298 if (tcp->tcp_state == TCPS_SYN_SENT || 8299 tcp->tcp_state == TCPS_SYN_RCVD) { 8300 (void) tcp_clean_death(tcp, 8301 ECONNREFUSED, 10); 8302 } 8303 break; 8304 } 8305 break; 8306 8307 case ICMP6_TIME_EXCEEDED: 8308 default: 8309 break; 8310 } 8311 freemsg(first_mp); 8312 } 8313 8314 /* 8315 * IP recognizes seven kinds of bind requests: 8316 * 8317 * - A zero-length address binds only to the protocol number. 8318 * 8319 * - A 4-byte address is treated as a request to 8320 * validate that the address is a valid local IPv4 8321 * address, appropriate for an application to bind to. 8322 * IP does the verification, but does not make any note 8323 * of the address at this time. 8324 * 8325 * - A 16-byte address contains is treated as a request 8326 * to validate a local IPv6 address, as the 4-byte 8327 * address case above. 8328 * 8329 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8330 * use it for the inbound fanout of packets. 8331 * 8332 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8333 * use it for the inbound fanout of packets. 8334 * 8335 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8336 * information consisting of local and remote addresses 8337 * and ports. In this case, the addresses are both 8338 * validated as appropriate for this operation, and, if 8339 * so, the information is retained for use in the 8340 * inbound fanout. 8341 * 8342 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8343 * fanout information, like the 12-byte case above. 8344 * 8345 * IP will also fill in the IRE request mblk with information 8346 * regarding our peer. In all cases, we notify IP of our protocol 8347 * type by appending a single protocol byte to the bind request. 8348 */ 8349 static mblk_t * 8350 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8351 { 8352 char *cp; 8353 mblk_t *mp; 8354 struct T_bind_req *tbr; 8355 ipa_conn_t *ac; 8356 ipa6_conn_t *ac6; 8357 sin_t *sin; 8358 sin6_t *sin6; 8359 8360 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8361 ASSERT((tcp->tcp_family == AF_INET && 8362 tcp->tcp_ipversion == IPV4_VERSION) || 8363 (tcp->tcp_family == AF_INET6 && 8364 (tcp->tcp_ipversion == IPV4_VERSION || 8365 tcp->tcp_ipversion == IPV6_VERSION))); 8366 8367 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8368 if (!mp) 8369 return (mp); 8370 mp->b_datap->db_type = M_PROTO; 8371 tbr = (struct T_bind_req *)mp->b_rptr; 8372 tbr->PRIM_type = bind_prim; 8373 tbr->ADDR_offset = sizeof (*tbr); 8374 tbr->CONIND_number = 0; 8375 tbr->ADDR_length = addr_length; 8376 cp = (char *)&tbr[1]; 8377 switch (addr_length) { 8378 case sizeof (ipa_conn_t): 8379 ASSERT(tcp->tcp_family == AF_INET); 8380 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8381 8382 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8383 if (mp->b_cont == NULL) { 8384 freemsg(mp); 8385 return (NULL); 8386 } 8387 mp->b_cont->b_wptr += sizeof (ire_t); 8388 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8389 8390 /* cp known to be 32 bit aligned */ 8391 ac = (ipa_conn_t *)cp; 8392 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8393 ac->ac_faddr = tcp->tcp_remote; 8394 ac->ac_fport = tcp->tcp_fport; 8395 ac->ac_lport = tcp->tcp_lport; 8396 tcp->tcp_hard_binding = 1; 8397 break; 8398 8399 case sizeof (ipa6_conn_t): 8400 ASSERT(tcp->tcp_family == AF_INET6); 8401 8402 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8403 if (mp->b_cont == NULL) { 8404 freemsg(mp); 8405 return (NULL); 8406 } 8407 mp->b_cont->b_wptr += sizeof (ire_t); 8408 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8409 8410 /* cp known to be 32 bit aligned */ 8411 ac6 = (ipa6_conn_t *)cp; 8412 if (tcp->tcp_ipversion == IPV4_VERSION) { 8413 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8414 &ac6->ac6_laddr); 8415 } else { 8416 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8417 } 8418 ac6->ac6_faddr = tcp->tcp_remote_v6; 8419 ac6->ac6_fport = tcp->tcp_fport; 8420 ac6->ac6_lport = tcp->tcp_lport; 8421 tcp->tcp_hard_binding = 1; 8422 break; 8423 8424 case sizeof (sin_t): 8425 /* 8426 * NOTE: IPV6_ADDR_LEN also has same size. 8427 * Use family to discriminate. 8428 */ 8429 if (tcp->tcp_family == AF_INET) { 8430 sin = (sin_t *)cp; 8431 8432 *sin = sin_null; 8433 sin->sin_family = AF_INET; 8434 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8435 sin->sin_port = tcp->tcp_lport; 8436 break; 8437 } else { 8438 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8439 } 8440 break; 8441 8442 case sizeof (sin6_t): 8443 ASSERT(tcp->tcp_family == AF_INET6); 8444 sin6 = (sin6_t *)cp; 8445 8446 *sin6 = sin6_null; 8447 sin6->sin6_family = AF_INET6; 8448 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8449 sin6->sin6_port = tcp->tcp_lport; 8450 break; 8451 8452 case IP_ADDR_LEN: 8453 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8454 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8455 break; 8456 8457 } 8458 /* Add protocol number to end */ 8459 cp[addr_length] = (char)IPPROTO_TCP; 8460 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8461 return (mp); 8462 } 8463 8464 /* 8465 * Notify IP that we are having trouble with this connection. IP should 8466 * blow the IRE away and start over. 8467 */ 8468 static void 8469 tcp_ip_notify(tcp_t *tcp) 8470 { 8471 struct iocblk *iocp; 8472 ipid_t *ipid; 8473 mblk_t *mp; 8474 8475 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8476 if (tcp->tcp_ipversion == IPV6_VERSION) 8477 return; 8478 8479 mp = mkiocb(IP_IOCTL); 8480 if (mp == NULL) 8481 return; 8482 8483 iocp = (struct iocblk *)mp->b_rptr; 8484 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8485 8486 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8487 if (!mp->b_cont) { 8488 freeb(mp); 8489 return; 8490 } 8491 8492 ipid = (ipid_t *)mp->b_cont->b_rptr; 8493 mp->b_cont->b_wptr += iocp->ioc_count; 8494 bzero(ipid, sizeof (*ipid)); 8495 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8496 ipid->ipid_ire_type = IRE_CACHE; 8497 ipid->ipid_addr_offset = sizeof (ipid_t); 8498 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8499 /* 8500 * Note: in the case of source routing we want to blow away the 8501 * route to the first source route hop. 8502 */ 8503 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8504 sizeof (tcp->tcp_ipha->ipha_dst)); 8505 8506 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8507 } 8508 8509 /* Unlink and return any mblk that looks like it contains an ire */ 8510 static mblk_t * 8511 tcp_ire_mp(mblk_t *mp) 8512 { 8513 mblk_t *prev_mp; 8514 8515 for (;;) { 8516 prev_mp = mp; 8517 mp = mp->b_cont; 8518 if (mp == NULL) 8519 break; 8520 switch (DB_TYPE(mp)) { 8521 case IRE_DB_TYPE: 8522 case IRE_DB_REQ_TYPE: 8523 if (prev_mp != NULL) 8524 prev_mp->b_cont = mp->b_cont; 8525 mp->b_cont = NULL; 8526 return (mp); 8527 default: 8528 break; 8529 } 8530 } 8531 return (mp); 8532 } 8533 8534 /* 8535 * Timer callback routine for keepalive probe. We do a fake resend of 8536 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8537 * check to see if we have heard anything from the other end for the last 8538 * RTO period. If we have, set the timer to expire for another 8539 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8540 * RTO << 1 and check again when it expires. Keep exponentially increasing 8541 * the timeout if we have not heard from the other side. If for more than 8542 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8543 * kill the connection unless the keepalive abort threshold is 0. In 8544 * that case, we will probe "forever." 8545 */ 8546 static void 8547 tcp_keepalive_killer(void *arg) 8548 { 8549 mblk_t *mp; 8550 conn_t *connp = (conn_t *)arg; 8551 tcp_t *tcp = connp->conn_tcp; 8552 int32_t firetime; 8553 int32_t idletime; 8554 int32_t ka_intrvl; 8555 8556 tcp->tcp_ka_tid = 0; 8557 8558 if (tcp->tcp_fused) 8559 return; 8560 8561 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 8562 ka_intrvl = tcp->tcp_ka_interval; 8563 8564 /* 8565 * Keepalive probe should only be sent if the application has not 8566 * done a close on the connection. 8567 */ 8568 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8569 return; 8570 } 8571 /* Timer fired too early, restart it. */ 8572 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8573 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8574 MSEC_TO_TICK(ka_intrvl)); 8575 return; 8576 } 8577 8578 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8579 /* 8580 * If we have not heard from the other side for a long 8581 * time, kill the connection unless the keepalive abort 8582 * threshold is 0. In that case, we will probe "forever." 8583 */ 8584 if (tcp->tcp_ka_abort_thres != 0 && 8585 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8586 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 8587 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8588 tcp->tcp_client_errno : ETIMEDOUT, 11); 8589 return; 8590 } 8591 8592 if (tcp->tcp_snxt == tcp->tcp_suna && 8593 idletime >= ka_intrvl) { 8594 /* Fake resend of last ACKed byte. */ 8595 mblk_t *mp1 = allocb(1, BPRI_LO); 8596 8597 if (mp1 != NULL) { 8598 *mp1->b_wptr++ = '\0'; 8599 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8600 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8601 freeb(mp1); 8602 /* 8603 * if allocation failed, fall through to start the 8604 * timer back. 8605 */ 8606 if (mp != NULL) { 8607 TCP_RECORD_TRACE(tcp, mp, 8608 TCP_TRACE_SEND_PKT); 8609 tcp_send_data(tcp, tcp->tcp_wq, mp); 8610 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 8611 if (tcp->tcp_ka_last_intrvl != 0) { 8612 /* 8613 * We should probe again at least 8614 * in ka_intrvl, but not more than 8615 * tcp_rexmit_interval_max. 8616 */ 8617 firetime = MIN(ka_intrvl - 1, 8618 tcp->tcp_ka_last_intrvl << 1); 8619 if (firetime > tcp_rexmit_interval_max) 8620 firetime = 8621 tcp_rexmit_interval_max; 8622 } else { 8623 firetime = tcp->tcp_rto; 8624 } 8625 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8626 tcp_keepalive_killer, 8627 MSEC_TO_TICK(firetime)); 8628 tcp->tcp_ka_last_intrvl = firetime; 8629 return; 8630 } 8631 } 8632 } else { 8633 tcp->tcp_ka_last_intrvl = 0; 8634 } 8635 8636 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8637 if ((firetime = ka_intrvl - idletime) < 0) { 8638 firetime = ka_intrvl; 8639 } 8640 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8641 MSEC_TO_TICK(firetime)); 8642 } 8643 8644 int 8645 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8646 { 8647 queue_t *q = tcp->tcp_rq; 8648 int32_t mss = tcp->tcp_mss; 8649 int maxpsz; 8650 8651 if (TCP_IS_DETACHED(tcp)) 8652 return (mss); 8653 8654 if (tcp->tcp_fused) { 8655 maxpsz = tcp_fuse_maxpsz_set(tcp); 8656 mss = INFPSZ; 8657 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 8658 /* 8659 * Set the sd_qn_maxpsz according to the socket send buffer 8660 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8661 * instruct the stream head to copyin user data into contiguous 8662 * kernel-allocated buffers without breaking it up into smaller 8663 * chunks. We round up the buffer size to the nearest SMSS. 8664 */ 8665 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8666 mss = INFPSZ; 8667 } else { 8668 /* 8669 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8670 * (and a multiple of the mss). This instructs the stream 8671 * head to break down larger than SMSS writes into SMSS- 8672 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8673 */ 8674 maxpsz = tcp->tcp_maxpsz * mss; 8675 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8676 maxpsz = tcp->tcp_xmit_hiwater/2; 8677 /* Round up to nearest mss */ 8678 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8679 } 8680 } 8681 (void) setmaxps(q, maxpsz); 8682 tcp->tcp_wq->q_maxpsz = maxpsz; 8683 8684 if (set_maxblk) 8685 (void) mi_set_sth_maxblk(q, mss); 8686 8687 return (mss); 8688 } 8689 8690 /* 8691 * Extract option values from a tcp header. We put any found values into the 8692 * tcpopt struct and return a bitmask saying which options were found. 8693 */ 8694 static int 8695 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8696 { 8697 uchar_t *endp; 8698 int len; 8699 uint32_t mss; 8700 uchar_t *up = (uchar_t *)tcph; 8701 int found = 0; 8702 int32_t sack_len; 8703 tcp_seq sack_begin, sack_end; 8704 tcp_t *tcp; 8705 8706 endp = up + TCP_HDR_LENGTH(tcph); 8707 up += TCP_MIN_HEADER_LENGTH; 8708 while (up < endp) { 8709 len = endp - up; 8710 switch (*up) { 8711 case TCPOPT_EOL: 8712 break; 8713 8714 case TCPOPT_NOP: 8715 up++; 8716 continue; 8717 8718 case TCPOPT_MAXSEG: 8719 if (len < TCPOPT_MAXSEG_LEN || 8720 up[1] != TCPOPT_MAXSEG_LEN) 8721 break; 8722 8723 mss = BE16_TO_U16(up+2); 8724 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8725 tcpopt->tcp_opt_mss = mss; 8726 found |= TCP_OPT_MSS_PRESENT; 8727 8728 up += TCPOPT_MAXSEG_LEN; 8729 continue; 8730 8731 case TCPOPT_WSCALE: 8732 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8733 break; 8734 8735 if (up[2] > TCP_MAX_WINSHIFT) 8736 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8737 else 8738 tcpopt->tcp_opt_wscale = up[2]; 8739 found |= TCP_OPT_WSCALE_PRESENT; 8740 8741 up += TCPOPT_WS_LEN; 8742 continue; 8743 8744 case TCPOPT_SACK_PERMITTED: 8745 if (len < TCPOPT_SACK_OK_LEN || 8746 up[1] != TCPOPT_SACK_OK_LEN) 8747 break; 8748 found |= TCP_OPT_SACK_OK_PRESENT; 8749 up += TCPOPT_SACK_OK_LEN; 8750 continue; 8751 8752 case TCPOPT_SACK: 8753 if (len <= 2 || up[1] <= 2 || len < up[1]) 8754 break; 8755 8756 /* If TCP is not interested in SACK blks... */ 8757 if ((tcp = tcpopt->tcp) == NULL) { 8758 up += up[1]; 8759 continue; 8760 } 8761 sack_len = up[1] - TCPOPT_HEADER_LEN; 8762 up += TCPOPT_HEADER_LEN; 8763 8764 /* 8765 * If the list is empty, allocate one and assume 8766 * nothing is sack'ed. 8767 */ 8768 ASSERT(tcp->tcp_sack_info != NULL); 8769 if (tcp->tcp_notsack_list == NULL) { 8770 tcp_notsack_update(&(tcp->tcp_notsack_list), 8771 tcp->tcp_suna, tcp->tcp_snxt, 8772 &(tcp->tcp_num_notsack_blk), 8773 &(tcp->tcp_cnt_notsack_list)); 8774 8775 /* 8776 * Make sure tcp_notsack_list is not NULL. 8777 * This happens when kmem_alloc(KM_NOSLEEP) 8778 * returns NULL. 8779 */ 8780 if (tcp->tcp_notsack_list == NULL) { 8781 up += sack_len; 8782 continue; 8783 } 8784 tcp->tcp_fack = tcp->tcp_suna; 8785 } 8786 8787 while (sack_len > 0) { 8788 if (up + 8 > endp) { 8789 up = endp; 8790 break; 8791 } 8792 sack_begin = BE32_TO_U32(up); 8793 up += 4; 8794 sack_end = BE32_TO_U32(up); 8795 up += 4; 8796 sack_len -= 8; 8797 /* 8798 * Bounds checking. Make sure the SACK 8799 * info is within tcp_suna and tcp_snxt. 8800 * If this SACK blk is out of bound, ignore 8801 * it but continue to parse the following 8802 * blks. 8803 */ 8804 if (SEQ_LEQ(sack_end, sack_begin) || 8805 SEQ_LT(sack_begin, tcp->tcp_suna) || 8806 SEQ_GT(sack_end, tcp->tcp_snxt)) { 8807 continue; 8808 } 8809 tcp_notsack_insert(&(tcp->tcp_notsack_list), 8810 sack_begin, sack_end, 8811 &(tcp->tcp_num_notsack_blk), 8812 &(tcp->tcp_cnt_notsack_list)); 8813 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 8814 tcp->tcp_fack = sack_end; 8815 } 8816 } 8817 found |= TCP_OPT_SACK_PRESENT; 8818 continue; 8819 8820 case TCPOPT_TSTAMP: 8821 if (len < TCPOPT_TSTAMP_LEN || 8822 up[1] != TCPOPT_TSTAMP_LEN) 8823 break; 8824 8825 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 8826 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 8827 8828 found |= TCP_OPT_TSTAMP_PRESENT; 8829 8830 up += TCPOPT_TSTAMP_LEN; 8831 continue; 8832 8833 default: 8834 if (len <= 1 || len < (int)up[1] || up[1] == 0) 8835 break; 8836 up += up[1]; 8837 continue; 8838 } 8839 break; 8840 } 8841 return (found); 8842 } 8843 8844 /* 8845 * Set the mss associated with a particular tcp based on its current value, 8846 * and a new one passed in. Observe minimums and maximums, and reset 8847 * other state variables that we want to view as multiples of mss. 8848 * 8849 * This function is called in various places mainly because 8850 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 8851 * other side's SYN/SYN-ACK packet arrives. 8852 * 2) PMTUd may get us a new MSS. 8853 * 3) If the other side stops sending us timestamp option, we need to 8854 * increase the MSS size to use the extra bytes available. 8855 */ 8856 static void 8857 tcp_mss_set(tcp_t *tcp, uint32_t mss) 8858 { 8859 uint32_t mss_max; 8860 8861 if (tcp->tcp_ipversion == IPV4_VERSION) 8862 mss_max = tcp_mss_max_ipv4; 8863 else 8864 mss_max = tcp_mss_max_ipv6; 8865 8866 if (mss < tcp_mss_min) 8867 mss = tcp_mss_min; 8868 if (mss > mss_max) 8869 mss = mss_max; 8870 /* 8871 * Unless naglim has been set by our client to 8872 * a non-mss value, force naglim to track mss. 8873 * This can help to aggregate small writes. 8874 */ 8875 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 8876 tcp->tcp_naglim = mss; 8877 /* 8878 * TCP should be able to buffer at least 4 MSS data for obvious 8879 * performance reason. 8880 */ 8881 if ((mss << 2) > tcp->tcp_xmit_hiwater) 8882 tcp->tcp_xmit_hiwater = mss << 2; 8883 8884 /* 8885 * Check if we need to apply the tcp_init_cwnd here. If 8886 * it is set and the MSS gets bigger (should not happen 8887 * normally), we need to adjust the resulting tcp_cwnd properly. 8888 * The new tcp_cwnd should not get bigger. 8889 */ 8890 if (tcp->tcp_init_cwnd == 0) { 8891 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 8892 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 8893 } else { 8894 if (tcp->tcp_mss < mss) { 8895 tcp->tcp_cwnd = MAX(1, 8896 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 8897 } else { 8898 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 8899 } 8900 } 8901 tcp->tcp_mss = mss; 8902 tcp->tcp_cwnd_cnt = 0; 8903 (void) tcp_maxpsz_set(tcp, B_TRUE); 8904 } 8905 8906 static int 8907 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8908 { 8909 tcp_t *tcp = NULL; 8910 conn_t *connp; 8911 int err; 8912 dev_t conn_dev; 8913 zoneid_t zoneid = getzoneid(); 8914 8915 if (q->q_ptr != NULL) 8916 return (0); 8917 8918 if (sflag == MODOPEN) { 8919 /* 8920 * This is a special case. The purpose of a modopen 8921 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 8922 * through for MIB browsers. Everything else is failed. 8923 */ 8924 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 8925 8926 if (connp == NULL) 8927 return (ENOMEM); 8928 8929 connp->conn_flags |= IPCL_TCPMOD; 8930 connp->conn_cred = credp; 8931 connp->conn_zoneid = zoneid; 8932 q->q_ptr = WR(q)->q_ptr = connp; 8933 crhold(credp); 8934 q->q_qinfo = &tcp_mod_rinit; 8935 WR(q)->q_qinfo = &tcp_mod_winit; 8936 qprocson(q); 8937 return (0); 8938 } 8939 8940 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 8941 return (EBUSY); 8942 8943 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 8944 8945 if (flag & SO_ACCEPTOR) { 8946 q->q_qinfo = &tcp_acceptor_rinit; 8947 q->q_ptr = (void *)conn_dev; 8948 WR(q)->q_qinfo = &tcp_acceptor_winit; 8949 WR(q)->q_ptr = (void *)conn_dev; 8950 qprocson(q); 8951 return (0); 8952 } 8953 8954 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 8955 if (connp == NULL) { 8956 inet_minor_free(ip_minor_arena, conn_dev); 8957 q->q_ptr = NULL; 8958 return (ENOSR); 8959 } 8960 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 8961 tcp = connp->conn_tcp; 8962 8963 q->q_ptr = WR(q)->q_ptr = connp; 8964 if (getmajor(*devp) == TCP6_MAJ) { 8965 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 8966 connp->conn_send = ip_output_v6; 8967 connp->conn_af_isv6 = B_TRUE; 8968 connp->conn_pkt_isv6 = B_TRUE; 8969 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8970 tcp->tcp_ipversion = IPV6_VERSION; 8971 tcp->tcp_family = AF_INET6; 8972 tcp->tcp_mss = tcp_mss_def_ipv6; 8973 } else { 8974 connp->conn_flags |= IPCL_TCP4; 8975 connp->conn_send = ip_output; 8976 connp->conn_af_isv6 = B_FALSE; 8977 connp->conn_pkt_isv6 = B_FALSE; 8978 tcp->tcp_ipversion = IPV4_VERSION; 8979 tcp->tcp_family = AF_INET; 8980 tcp->tcp_mss = tcp_mss_def_ipv4; 8981 } 8982 8983 /* 8984 * TCP keeps a copy of cred for cache locality reasons but 8985 * we put a reference only once. If connp->conn_cred 8986 * becomes invalid, tcp_cred should also be set to NULL. 8987 */ 8988 tcp->tcp_cred = connp->conn_cred = credp; 8989 crhold(connp->conn_cred); 8990 tcp->tcp_cpid = curproc->p_pid; 8991 connp->conn_zoneid = zoneid; 8992 8993 connp->conn_dev = conn_dev; 8994 8995 ASSERT(q->q_qinfo == &tcp_rinit); 8996 ASSERT(WR(q)->q_qinfo == &tcp_winit); 8997 8998 if (flag & SO_SOCKSTR) { 8999 /* 9000 * No need to insert a socket in tcp acceptor hash. 9001 * If it was a socket acceptor stream, we dealt with 9002 * it above. A socket listener can never accept a 9003 * connection and doesn't need acceptor_id. 9004 */ 9005 connp->conn_flags |= IPCL_SOCKET; 9006 tcp->tcp_issocket = 1; 9007 WR(q)->q_qinfo = &tcp_sock_winit; 9008 } else { 9009 #ifdef _ILP32 9010 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9011 #else 9012 tcp->tcp_acceptor_id = conn_dev; 9013 #endif /* _ILP32 */ 9014 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9015 } 9016 9017 if (tcp_trace) 9018 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9019 9020 err = tcp_init(tcp, q); 9021 if (err != 0) { 9022 inet_minor_free(ip_minor_arena, connp->conn_dev); 9023 tcp_acceptor_hash_remove(tcp); 9024 CONN_DEC_REF(connp); 9025 q->q_ptr = WR(q)->q_ptr = NULL; 9026 return (err); 9027 } 9028 9029 RD(q)->q_hiwat = tcp_recv_hiwat; 9030 tcp->tcp_rwnd = tcp_recv_hiwat; 9031 9032 /* Non-zero default values */ 9033 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9034 /* 9035 * Put the ref for TCP. Ref for IP was already put 9036 * by ipcl_conn_create. Also Make the conn_t globally 9037 * visible to walkers 9038 */ 9039 mutex_enter(&connp->conn_lock); 9040 CONN_INC_REF_LOCKED(connp); 9041 ASSERT(connp->conn_ref == 2); 9042 connp->conn_state_flags &= ~CONN_INCIPIENT; 9043 mutex_exit(&connp->conn_lock); 9044 9045 qprocson(q); 9046 return (0); 9047 } 9048 9049 /* 9050 * Some TCP options can be "set" by requesting them in the option 9051 * buffer. This is needed for XTI feature test though we do not 9052 * allow it in general. We interpret that this mechanism is more 9053 * applicable to OSI protocols and need not be allowed in general. 9054 * This routine filters out options for which it is not allowed (most) 9055 * and lets through those (few) for which it is. [ The XTI interface 9056 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9057 * ever implemented will have to be allowed here ]. 9058 */ 9059 static boolean_t 9060 tcp_allow_connopt_set(int level, int name) 9061 { 9062 9063 switch (level) { 9064 case IPPROTO_TCP: 9065 switch (name) { 9066 case TCP_NODELAY: 9067 return (B_TRUE); 9068 default: 9069 return (B_FALSE); 9070 } 9071 /*NOTREACHED*/ 9072 default: 9073 return (B_FALSE); 9074 } 9075 /*NOTREACHED*/ 9076 } 9077 9078 /* 9079 * This routine gets default values of certain options whose default 9080 * values are maintained by protocol specific code 9081 */ 9082 /* ARGSUSED */ 9083 int 9084 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9085 { 9086 int32_t *i1 = (int32_t *)ptr; 9087 9088 switch (level) { 9089 case IPPROTO_TCP: 9090 switch (name) { 9091 case TCP_NOTIFY_THRESHOLD: 9092 *i1 = tcp_ip_notify_interval; 9093 break; 9094 case TCP_ABORT_THRESHOLD: 9095 *i1 = tcp_ip_abort_interval; 9096 break; 9097 case TCP_CONN_NOTIFY_THRESHOLD: 9098 *i1 = tcp_ip_notify_cinterval; 9099 break; 9100 case TCP_CONN_ABORT_THRESHOLD: 9101 *i1 = tcp_ip_abort_cinterval; 9102 break; 9103 default: 9104 return (-1); 9105 } 9106 break; 9107 case IPPROTO_IP: 9108 switch (name) { 9109 case IP_TTL: 9110 *i1 = tcp_ipv4_ttl; 9111 break; 9112 default: 9113 return (-1); 9114 } 9115 break; 9116 case IPPROTO_IPV6: 9117 switch (name) { 9118 case IPV6_UNICAST_HOPS: 9119 *i1 = tcp_ipv6_hoplimit; 9120 break; 9121 default: 9122 return (-1); 9123 } 9124 break; 9125 default: 9126 return (-1); 9127 } 9128 return (sizeof (int)); 9129 } 9130 9131 9132 /* 9133 * TCP routine to get the values of options. 9134 */ 9135 int 9136 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9137 { 9138 int *i1 = (int *)ptr; 9139 conn_t *connp = Q_TO_CONN(q); 9140 tcp_t *tcp = connp->conn_tcp; 9141 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9142 9143 switch (level) { 9144 case SOL_SOCKET: 9145 switch (name) { 9146 case SO_LINGER: { 9147 struct linger *lgr = (struct linger *)ptr; 9148 9149 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9150 lgr->l_linger = tcp->tcp_lingertime; 9151 } 9152 return (sizeof (struct linger)); 9153 case SO_DEBUG: 9154 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9155 break; 9156 case SO_KEEPALIVE: 9157 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9158 break; 9159 case SO_DONTROUTE: 9160 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9161 break; 9162 case SO_USELOOPBACK: 9163 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9164 break; 9165 case SO_BROADCAST: 9166 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9167 break; 9168 case SO_REUSEADDR: 9169 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9170 break; 9171 case SO_OOBINLINE: 9172 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9173 break; 9174 case SO_DGRAM_ERRIND: 9175 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9176 break; 9177 case SO_TYPE: 9178 *i1 = SOCK_STREAM; 9179 break; 9180 case SO_SNDBUF: 9181 *i1 = tcp->tcp_xmit_hiwater; 9182 break; 9183 case SO_RCVBUF: 9184 *i1 = RD(q)->q_hiwat; 9185 break; 9186 case SO_SND_COPYAVOID: 9187 *i1 = tcp->tcp_snd_zcopy_on ? 9188 SO_SND_COPYAVOID : 0; 9189 break; 9190 default: 9191 return (-1); 9192 } 9193 break; 9194 case IPPROTO_TCP: 9195 switch (name) { 9196 case TCP_NODELAY: 9197 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9198 break; 9199 case TCP_MAXSEG: 9200 *i1 = tcp->tcp_mss; 9201 break; 9202 case TCP_NOTIFY_THRESHOLD: 9203 *i1 = (int)tcp->tcp_first_timer_threshold; 9204 break; 9205 case TCP_ABORT_THRESHOLD: 9206 *i1 = tcp->tcp_second_timer_threshold; 9207 break; 9208 case TCP_CONN_NOTIFY_THRESHOLD: 9209 *i1 = tcp->tcp_first_ctimer_threshold; 9210 break; 9211 case TCP_CONN_ABORT_THRESHOLD: 9212 *i1 = tcp->tcp_second_ctimer_threshold; 9213 break; 9214 case TCP_RECVDSTADDR: 9215 *i1 = tcp->tcp_recvdstaddr; 9216 break; 9217 case TCP_ANONPRIVBIND: 9218 *i1 = tcp->tcp_anon_priv_bind; 9219 break; 9220 case TCP_EXCLBIND: 9221 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9222 break; 9223 case TCP_INIT_CWND: 9224 *i1 = tcp->tcp_init_cwnd; 9225 break; 9226 case TCP_KEEPALIVE_THRESHOLD: 9227 *i1 = tcp->tcp_ka_interval; 9228 break; 9229 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9230 *i1 = tcp->tcp_ka_abort_thres; 9231 break; 9232 case TCP_CORK: 9233 *i1 = tcp->tcp_cork; 9234 break; 9235 default: 9236 return (-1); 9237 } 9238 break; 9239 case IPPROTO_IP: 9240 if (tcp->tcp_family != AF_INET) 9241 return (-1); 9242 switch (name) { 9243 case IP_OPTIONS: 9244 case T_IP_OPTIONS: { 9245 /* 9246 * This is compatible with BSD in that in only return 9247 * the reverse source route with the final destination 9248 * as the last entry. The first 4 bytes of the option 9249 * will contain the final destination. 9250 */ 9251 char *opt_ptr; 9252 int opt_len; 9253 opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 9254 opt_len = (char *)tcp->tcp_tcph - opt_ptr; 9255 /* Caller ensures enough space */ 9256 if (opt_len > 0) { 9257 /* 9258 * TODO: Do we have to handle getsockopt on an 9259 * initiator as well? 9260 */ 9261 return (tcp_opt_get_user(tcp->tcp_ipha, ptr)); 9262 } 9263 return (0); 9264 } 9265 case IP_TOS: 9266 case T_IP_TOS: 9267 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9268 break; 9269 case IP_TTL: 9270 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9271 break; 9272 default: 9273 return (-1); 9274 } 9275 break; 9276 case IPPROTO_IPV6: 9277 /* 9278 * IPPROTO_IPV6 options are only supported for sockets 9279 * that are using IPv6 on the wire. 9280 */ 9281 if (tcp->tcp_ipversion != IPV6_VERSION) { 9282 return (-1); 9283 } 9284 switch (name) { 9285 case IPV6_UNICAST_HOPS: 9286 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9287 break; /* goto sizeof (int) option return */ 9288 case IPV6_BOUND_IF: 9289 /* Zero if not set */ 9290 *i1 = tcp->tcp_bound_if; 9291 break; /* goto sizeof (int) option return */ 9292 case IPV6_RECVPKTINFO: 9293 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9294 *i1 = 1; 9295 else 9296 *i1 = 0; 9297 break; /* goto sizeof (int) option return */ 9298 case IPV6_RECVTCLASS: 9299 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9300 *i1 = 1; 9301 else 9302 *i1 = 0; 9303 break; /* goto sizeof (int) option return */ 9304 case IPV6_RECVHOPLIMIT: 9305 if (tcp->tcp_ipv6_recvancillary & 9306 TCP_IPV6_RECVHOPLIMIT) 9307 *i1 = 1; 9308 else 9309 *i1 = 0; 9310 break; /* goto sizeof (int) option return */ 9311 case IPV6_RECVHOPOPTS: 9312 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9313 *i1 = 1; 9314 else 9315 *i1 = 0; 9316 break; /* goto sizeof (int) option return */ 9317 case IPV6_RECVDSTOPTS: 9318 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9319 *i1 = 1; 9320 else 9321 *i1 = 0; 9322 break; /* goto sizeof (int) option return */ 9323 case _OLD_IPV6_RECVDSTOPTS: 9324 if (tcp->tcp_ipv6_recvancillary & 9325 TCP_OLD_IPV6_RECVDSTOPTS) 9326 *i1 = 1; 9327 else 9328 *i1 = 0; 9329 break; /* goto sizeof (int) option return */ 9330 case IPV6_RECVRTHDR: 9331 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9332 *i1 = 1; 9333 else 9334 *i1 = 0; 9335 break; /* goto sizeof (int) option return */ 9336 case IPV6_RECVRTHDRDSTOPTS: 9337 if (tcp->tcp_ipv6_recvancillary & 9338 TCP_IPV6_RECVRTDSTOPTS) 9339 *i1 = 1; 9340 else 9341 *i1 = 0; 9342 break; /* goto sizeof (int) option return */ 9343 case IPV6_PKTINFO: { 9344 /* XXX assumes that caller has room for max size! */ 9345 struct in6_pktinfo *pkti; 9346 9347 pkti = (struct in6_pktinfo *)ptr; 9348 if (ipp->ipp_fields & IPPF_IFINDEX) 9349 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9350 else 9351 pkti->ipi6_ifindex = 0; 9352 if (ipp->ipp_fields & IPPF_ADDR) 9353 pkti->ipi6_addr = ipp->ipp_addr; 9354 else 9355 pkti->ipi6_addr = ipv6_all_zeros; 9356 return (sizeof (struct in6_pktinfo)); 9357 } 9358 case IPV6_TCLASS: 9359 if (ipp->ipp_fields & IPPF_TCLASS) 9360 *i1 = ipp->ipp_tclass; 9361 else 9362 *i1 = IPV6_FLOW_TCLASS( 9363 IPV6_DEFAULT_VERS_AND_FLOW); 9364 break; /* goto sizeof (int) option return */ 9365 case IPV6_NEXTHOP: { 9366 sin6_t *sin6 = (sin6_t *)ptr; 9367 9368 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9369 return (0); 9370 *sin6 = sin6_null; 9371 sin6->sin6_family = AF_INET6; 9372 sin6->sin6_addr = ipp->ipp_nexthop; 9373 return (sizeof (sin6_t)); 9374 } 9375 case IPV6_HOPOPTS: 9376 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9377 return (0); 9378 bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); 9379 return (ipp->ipp_hopoptslen); 9380 case IPV6_RTHDRDSTOPTS: 9381 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9382 return (0); 9383 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9384 return (ipp->ipp_rtdstoptslen); 9385 case IPV6_RTHDR: 9386 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9387 return (0); 9388 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9389 return (ipp->ipp_rthdrlen); 9390 case IPV6_DSTOPTS: 9391 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9392 return (0); 9393 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9394 return (ipp->ipp_dstoptslen); 9395 case IPV6_SRC_PREFERENCES: 9396 return (ip6_get_src_preferences(connp, 9397 (uint32_t *)ptr)); 9398 case IPV6_PATHMTU: { 9399 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9400 9401 if (tcp->tcp_state < TCPS_ESTABLISHED) 9402 return (-1); 9403 9404 return (ip_fill_mtuinfo(&connp->conn_remv6, 9405 connp->conn_fport, mtuinfo)); 9406 } 9407 default: 9408 return (-1); 9409 } 9410 break; 9411 default: 9412 return (-1); 9413 } 9414 return (sizeof (int)); 9415 } 9416 9417 /* 9418 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9419 * Parameters are assumed to be verified by the caller. 9420 */ 9421 /* ARGSUSED */ 9422 int 9423 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9424 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9425 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9426 { 9427 tcp_t *tcp = Q_TO_TCP(q); 9428 int *i1 = (int *)invalp; 9429 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9430 boolean_t checkonly; 9431 int reterr; 9432 9433 switch (optset_context) { 9434 case SETFN_OPTCOM_CHECKONLY: 9435 checkonly = B_TRUE; 9436 /* 9437 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9438 * inlen != 0 implies value supplied and 9439 * we have to "pretend" to set it. 9440 * inlen == 0 implies that there is no 9441 * value part in T_CHECK request and just validation 9442 * done elsewhere should be enough, we just return here. 9443 */ 9444 if (inlen == 0) { 9445 *outlenp = 0; 9446 return (0); 9447 } 9448 break; 9449 case SETFN_OPTCOM_NEGOTIATE: 9450 checkonly = B_FALSE; 9451 break; 9452 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9453 case SETFN_CONN_NEGOTIATE: 9454 checkonly = B_FALSE; 9455 /* 9456 * Negotiating local and "association-related" options 9457 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9458 * primitives is allowed by XTI, but we choose 9459 * to not implement this style negotiation for Internet 9460 * protocols (We interpret it is a must for OSI world but 9461 * optional for Internet protocols) for all options. 9462 * [ Will do only for the few options that enable test 9463 * suites that our XTI implementation of this feature 9464 * works for transports that do allow it ] 9465 */ 9466 if (!tcp_allow_connopt_set(level, name)) { 9467 *outlenp = 0; 9468 return (EINVAL); 9469 } 9470 break; 9471 default: 9472 /* 9473 * We should never get here 9474 */ 9475 *outlenp = 0; 9476 return (EINVAL); 9477 } 9478 9479 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9480 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9481 9482 /* 9483 * For TCP, we should have no ancillary data sent down 9484 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9485 * has to be zero. 9486 */ 9487 ASSERT(thisdg_attrs == NULL); 9488 9489 /* 9490 * For fixed length options, no sanity check 9491 * of passed in length is done. It is assumed *_optcom_req() 9492 * routines do the right thing. 9493 */ 9494 9495 switch (level) { 9496 case SOL_SOCKET: 9497 switch (name) { 9498 case SO_LINGER: { 9499 struct linger *lgr = (struct linger *)invalp; 9500 9501 if (!checkonly) { 9502 if (lgr->l_onoff) { 9503 tcp->tcp_linger = 1; 9504 tcp->tcp_lingertime = lgr->l_linger; 9505 } else { 9506 tcp->tcp_linger = 0; 9507 tcp->tcp_lingertime = 0; 9508 } 9509 /* struct copy */ 9510 *(struct linger *)outvalp = *lgr; 9511 } else { 9512 if (!lgr->l_onoff) { 9513 ((struct linger *)outvalp)->l_onoff = 0; 9514 ((struct linger *)outvalp)->l_linger = 0; 9515 } else { 9516 /* struct copy */ 9517 *(struct linger *)outvalp = *lgr; 9518 } 9519 } 9520 *outlenp = sizeof (struct linger); 9521 return (0); 9522 } 9523 case SO_DEBUG: 9524 if (!checkonly) 9525 tcp->tcp_debug = onoff; 9526 break; 9527 case SO_KEEPALIVE: 9528 if (checkonly) { 9529 /* T_CHECK case */ 9530 break; 9531 } 9532 9533 if (!onoff) { 9534 if (tcp->tcp_ka_enabled) { 9535 if (tcp->tcp_ka_tid != 0) { 9536 (void) TCP_TIMER_CANCEL(tcp, 9537 tcp->tcp_ka_tid); 9538 tcp->tcp_ka_tid = 0; 9539 } 9540 tcp->tcp_ka_enabled = 0; 9541 } 9542 break; 9543 } 9544 if (!tcp->tcp_ka_enabled) { 9545 /* Crank up the keepalive timer */ 9546 tcp->tcp_ka_last_intrvl = 0; 9547 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9548 tcp_keepalive_killer, 9549 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9550 tcp->tcp_ka_enabled = 1; 9551 } 9552 break; 9553 case SO_DONTROUTE: 9554 /* 9555 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are 9556 * only of interest to IP. We track them here only so 9557 * that we can report their current value. 9558 */ 9559 if (!checkonly) { 9560 tcp->tcp_dontroute = onoff; 9561 tcp->tcp_connp->conn_dontroute = onoff; 9562 } 9563 break; 9564 case SO_USELOOPBACK: 9565 if (!checkonly) { 9566 tcp->tcp_useloopback = onoff; 9567 tcp->tcp_connp->conn_loopback = onoff; 9568 } 9569 break; 9570 case SO_BROADCAST: 9571 if (!checkonly) { 9572 tcp->tcp_broadcast = onoff; 9573 tcp->tcp_connp->conn_broadcast = onoff; 9574 } 9575 break; 9576 case SO_REUSEADDR: 9577 if (!checkonly) { 9578 tcp->tcp_reuseaddr = onoff; 9579 tcp->tcp_connp->conn_reuseaddr = onoff; 9580 } 9581 break; 9582 case SO_OOBINLINE: 9583 if (!checkonly) 9584 tcp->tcp_oobinline = onoff; 9585 break; 9586 case SO_DGRAM_ERRIND: 9587 if (!checkonly) 9588 tcp->tcp_dgram_errind = onoff; 9589 break; 9590 case SO_SNDBUF: { 9591 tcp_t *peer_tcp; 9592 9593 if (*i1 > tcp_max_buf) { 9594 *outlenp = 0; 9595 return (ENOBUFS); 9596 } 9597 if (checkonly) 9598 break; 9599 9600 tcp->tcp_xmit_hiwater = *i1; 9601 if (tcp_snd_lowat_fraction != 0) 9602 tcp->tcp_xmit_lowater = 9603 tcp->tcp_xmit_hiwater / 9604 tcp_snd_lowat_fraction; 9605 (void) tcp_maxpsz_set(tcp, B_TRUE); 9606 /* 9607 * If we are flow-controlled, recheck the condition. 9608 * There are apps that increase SO_SNDBUF size when 9609 * flow-controlled (EWOULDBLOCK), and expect the flow 9610 * control condition to be lifted right away. 9611 * 9612 * For the fused tcp loopback case, in order to avoid 9613 * a race with the peer's tcp_fuse_rrw() we need to 9614 * hold its fuse_lock while accessing tcp_flow_stopped. 9615 */ 9616 peer_tcp = tcp->tcp_loopback_peer; 9617 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 9618 if (tcp->tcp_fused) 9619 mutex_enter(&peer_tcp->tcp_fuse_lock); 9620 9621 if (tcp->tcp_flow_stopped && 9622 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 9623 tcp_clrqfull(tcp); 9624 } 9625 if (tcp->tcp_fused) 9626 mutex_exit(&peer_tcp->tcp_fuse_lock); 9627 break; 9628 } 9629 case SO_RCVBUF: 9630 if (*i1 > tcp_max_buf) { 9631 *outlenp = 0; 9632 return (ENOBUFS); 9633 } 9634 /* Silently ignore zero */ 9635 if (!checkonly && *i1 != 0) { 9636 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 9637 (void) tcp_rwnd_set(tcp, *i1); 9638 } 9639 /* 9640 * XXX should we return the rwnd here 9641 * and tcp_opt_get ? 9642 */ 9643 break; 9644 case SO_SND_COPYAVOID: 9645 if (!checkonly) { 9646 /* we only allow enable at most once for now */ 9647 if (tcp->tcp_loopback || 9648 (!tcp->tcp_snd_zcopy_aware && 9649 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 9650 *outlenp = 0; 9651 return (EOPNOTSUPP); 9652 } 9653 tcp->tcp_snd_zcopy_aware = 1; 9654 } 9655 break; 9656 default: 9657 *outlenp = 0; 9658 return (EINVAL); 9659 } 9660 break; 9661 case IPPROTO_TCP: 9662 switch (name) { 9663 case TCP_NODELAY: 9664 if (!checkonly) 9665 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 9666 break; 9667 case TCP_NOTIFY_THRESHOLD: 9668 if (!checkonly) 9669 tcp->tcp_first_timer_threshold = *i1; 9670 break; 9671 case TCP_ABORT_THRESHOLD: 9672 if (!checkonly) 9673 tcp->tcp_second_timer_threshold = *i1; 9674 break; 9675 case TCP_CONN_NOTIFY_THRESHOLD: 9676 if (!checkonly) 9677 tcp->tcp_first_ctimer_threshold = *i1; 9678 break; 9679 case TCP_CONN_ABORT_THRESHOLD: 9680 if (!checkonly) 9681 tcp->tcp_second_ctimer_threshold = *i1; 9682 break; 9683 case TCP_RECVDSTADDR: 9684 if (tcp->tcp_state > TCPS_LISTEN) 9685 return (EOPNOTSUPP); 9686 if (!checkonly) 9687 tcp->tcp_recvdstaddr = onoff; 9688 break; 9689 case TCP_ANONPRIVBIND: 9690 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 9691 *outlenp = 0; 9692 return (reterr); 9693 } 9694 if (!checkonly) { 9695 tcp->tcp_anon_priv_bind = onoff; 9696 } 9697 break; 9698 case TCP_EXCLBIND: 9699 if (!checkonly) 9700 tcp->tcp_exclbind = onoff; 9701 break; /* goto sizeof (int) option return */ 9702 case TCP_INIT_CWND: { 9703 uint32_t init_cwnd = *((uint32_t *)invalp); 9704 9705 if (checkonly) 9706 break; 9707 9708 /* 9709 * Only allow socket with network configuration 9710 * privilege to set the initial cwnd to be larger 9711 * than allowed by RFC 3390. 9712 */ 9713 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 9714 tcp->tcp_init_cwnd = init_cwnd; 9715 break; 9716 } 9717 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 9718 *outlenp = 0; 9719 return (reterr); 9720 } 9721 if (init_cwnd > TCP_MAX_INIT_CWND) { 9722 *outlenp = 0; 9723 return (EINVAL); 9724 } 9725 tcp->tcp_init_cwnd = init_cwnd; 9726 break; 9727 } 9728 case TCP_KEEPALIVE_THRESHOLD: 9729 if (checkonly) 9730 break; 9731 9732 if (*i1 < tcp_keepalive_interval_low || 9733 *i1 > tcp_keepalive_interval_high) { 9734 *outlenp = 0; 9735 return (EINVAL); 9736 } 9737 if (*i1 != tcp->tcp_ka_interval) { 9738 tcp->tcp_ka_interval = *i1; 9739 /* 9740 * Check if we need to restart the 9741 * keepalive timer. 9742 */ 9743 if (tcp->tcp_ka_tid != 0) { 9744 ASSERT(tcp->tcp_ka_enabled); 9745 (void) TCP_TIMER_CANCEL(tcp, 9746 tcp->tcp_ka_tid); 9747 tcp->tcp_ka_last_intrvl = 0; 9748 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9749 tcp_keepalive_killer, 9750 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9751 } 9752 } 9753 break; 9754 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9755 if (!checkonly) { 9756 if (*i1 < tcp_keepalive_abort_interval_low || 9757 *i1 > tcp_keepalive_abort_interval_high) { 9758 *outlenp = 0; 9759 return (EINVAL); 9760 } 9761 tcp->tcp_ka_abort_thres = *i1; 9762 } 9763 break; 9764 case TCP_CORK: 9765 if (!checkonly) { 9766 /* 9767 * if tcp->tcp_cork was set and is now 9768 * being unset, we have to make sure that 9769 * the remaining data gets sent out. Also 9770 * unset tcp->tcp_cork so that tcp_wput_data() 9771 * can send data even if it is less than mss 9772 */ 9773 if (tcp->tcp_cork && onoff == 0 && 9774 tcp->tcp_unsent > 0) { 9775 tcp->tcp_cork = B_FALSE; 9776 tcp_wput_data(tcp, NULL, B_FALSE); 9777 } 9778 tcp->tcp_cork = onoff; 9779 } 9780 break; 9781 default: 9782 *outlenp = 0; 9783 return (EINVAL); 9784 } 9785 break; 9786 case IPPROTO_IP: 9787 if (tcp->tcp_family != AF_INET) { 9788 *outlenp = 0; 9789 return (ENOPROTOOPT); 9790 } 9791 switch (name) { 9792 case IP_OPTIONS: 9793 case T_IP_OPTIONS: 9794 reterr = tcp_opt_set_header(tcp, checkonly, 9795 invalp, inlen); 9796 if (reterr) { 9797 *outlenp = 0; 9798 return (reterr); 9799 } 9800 /* OK return - copy input buffer into output buffer */ 9801 if (invalp != outvalp) { 9802 /* don't trust bcopy for identical src/dst */ 9803 bcopy(invalp, outvalp, inlen); 9804 } 9805 *outlenp = inlen; 9806 return (0); 9807 case IP_TOS: 9808 case T_IP_TOS: 9809 if (!checkonly) { 9810 tcp->tcp_ipha->ipha_type_of_service = 9811 (uchar_t)*i1; 9812 tcp->tcp_tos = (uchar_t)*i1; 9813 } 9814 break; 9815 case IP_TTL: 9816 if (!checkonly) { 9817 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 9818 tcp->tcp_ttl = (uchar_t)*i1; 9819 } 9820 break; 9821 case IP_BOUND_IF: 9822 /* Handled at the IP level */ 9823 return (-EINVAL); 9824 case IP_SEC_OPT: 9825 /* 9826 * We should not allow policy setting after 9827 * we start listening for connections. 9828 */ 9829 if (tcp->tcp_state == TCPS_LISTEN) { 9830 return (EINVAL); 9831 } else { 9832 /* Handled at the IP level */ 9833 return (-EINVAL); 9834 } 9835 default: 9836 *outlenp = 0; 9837 return (EINVAL); 9838 } 9839 break; 9840 case IPPROTO_IPV6: { 9841 ip6_pkt_t *ipp; 9842 9843 /* 9844 * IPPROTO_IPV6 options are only supported for sockets 9845 * that are using IPv6 on the wire. 9846 */ 9847 if (tcp->tcp_ipversion != IPV6_VERSION) { 9848 *outlenp = 0; 9849 return (ENOPROTOOPT); 9850 } 9851 /* 9852 * Only sticky options; no ancillary data 9853 */ 9854 ASSERT(thisdg_attrs == NULL); 9855 ipp = &tcp->tcp_sticky_ipp; 9856 9857 switch (name) { 9858 case IPV6_UNICAST_HOPS: 9859 /* -1 means use default */ 9860 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 9861 *outlenp = 0; 9862 return (EINVAL); 9863 } 9864 if (!checkonly) { 9865 if (*i1 == -1) { 9866 tcp->tcp_ip6h->ip6_hops = 9867 ipp->ipp_unicast_hops = 9868 (uint8_t)tcp_ipv6_hoplimit; 9869 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 9870 /* Pass modified value to IP. */ 9871 *i1 = tcp->tcp_ip6h->ip6_hops; 9872 } else { 9873 tcp->tcp_ip6h->ip6_hops = 9874 ipp->ipp_unicast_hops = 9875 (uint8_t)*i1; 9876 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 9877 } 9878 reterr = tcp_build_hdrs(q, tcp); 9879 if (reterr != 0) 9880 return (reterr); 9881 } 9882 break; 9883 case IPV6_BOUND_IF: 9884 if (!checkonly) { 9885 int error = 0; 9886 9887 tcp->tcp_bound_if = *i1; 9888 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 9889 B_TRUE, checkonly, level, name, mblk); 9890 if (error != 0) { 9891 *outlenp = 0; 9892 return (error); 9893 } 9894 } 9895 break; 9896 /* 9897 * Set boolean switches for ancillary data delivery 9898 */ 9899 case IPV6_RECVPKTINFO: 9900 if (!checkonly) { 9901 if (onoff) 9902 tcp->tcp_ipv6_recvancillary |= 9903 TCP_IPV6_RECVPKTINFO; 9904 else 9905 tcp->tcp_ipv6_recvancillary &= 9906 ~TCP_IPV6_RECVPKTINFO; 9907 /* Force it to be sent up with the next msg */ 9908 tcp->tcp_recvifindex = 0; 9909 } 9910 break; 9911 case IPV6_RECVTCLASS: 9912 if (!checkonly) { 9913 if (onoff) 9914 tcp->tcp_ipv6_recvancillary |= 9915 TCP_IPV6_RECVTCLASS; 9916 else 9917 tcp->tcp_ipv6_recvancillary &= 9918 ~TCP_IPV6_RECVTCLASS; 9919 } 9920 break; 9921 case IPV6_RECVHOPLIMIT: 9922 if (!checkonly) { 9923 if (onoff) 9924 tcp->tcp_ipv6_recvancillary |= 9925 TCP_IPV6_RECVHOPLIMIT; 9926 else 9927 tcp->tcp_ipv6_recvancillary &= 9928 ~TCP_IPV6_RECVHOPLIMIT; 9929 /* Force it to be sent up with the next msg */ 9930 tcp->tcp_recvhops = 0xffffffffU; 9931 } 9932 break; 9933 case IPV6_RECVHOPOPTS: 9934 if (!checkonly) { 9935 if (onoff) 9936 tcp->tcp_ipv6_recvancillary |= 9937 TCP_IPV6_RECVHOPOPTS; 9938 else 9939 tcp->tcp_ipv6_recvancillary &= 9940 ~TCP_IPV6_RECVHOPOPTS; 9941 } 9942 break; 9943 case IPV6_RECVDSTOPTS: 9944 if (!checkonly) { 9945 if (onoff) 9946 tcp->tcp_ipv6_recvancillary |= 9947 TCP_IPV6_RECVDSTOPTS; 9948 else 9949 tcp->tcp_ipv6_recvancillary &= 9950 ~TCP_IPV6_RECVDSTOPTS; 9951 } 9952 break; 9953 case _OLD_IPV6_RECVDSTOPTS: 9954 if (!checkonly) { 9955 if (onoff) 9956 tcp->tcp_ipv6_recvancillary |= 9957 TCP_OLD_IPV6_RECVDSTOPTS; 9958 else 9959 tcp->tcp_ipv6_recvancillary &= 9960 ~TCP_OLD_IPV6_RECVDSTOPTS; 9961 } 9962 break; 9963 case IPV6_RECVRTHDR: 9964 if (!checkonly) { 9965 if (onoff) 9966 tcp->tcp_ipv6_recvancillary |= 9967 TCP_IPV6_RECVRTHDR; 9968 else 9969 tcp->tcp_ipv6_recvancillary &= 9970 ~TCP_IPV6_RECVRTHDR; 9971 } 9972 break; 9973 case IPV6_RECVRTHDRDSTOPTS: 9974 if (!checkonly) { 9975 if (onoff) 9976 tcp->tcp_ipv6_recvancillary |= 9977 TCP_IPV6_RECVRTDSTOPTS; 9978 else 9979 tcp->tcp_ipv6_recvancillary &= 9980 ~TCP_IPV6_RECVRTDSTOPTS; 9981 } 9982 break; 9983 case IPV6_PKTINFO: 9984 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 9985 return (EINVAL); 9986 if (checkonly) 9987 break; 9988 9989 if (inlen == 0) { 9990 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 9991 } else { 9992 struct in6_pktinfo *pkti; 9993 9994 pkti = (struct in6_pktinfo *)invalp; 9995 /* 9996 * RFC 3542 states that ipi6_addr must be 9997 * the unspecified address when setting the 9998 * IPV6_PKTINFO sticky socket option on a 9999 * TCP socket. 10000 */ 10001 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10002 return (EINVAL); 10003 /* 10004 * ip6_set_pktinfo() validates the source 10005 * address and interface index. 10006 */ 10007 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10008 pkti, mblk); 10009 if (reterr != 0) 10010 return (reterr); 10011 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10012 ipp->ipp_addr = pkti->ipi6_addr; 10013 if (ipp->ipp_ifindex != 0) 10014 ipp->ipp_fields |= IPPF_IFINDEX; 10015 else 10016 ipp->ipp_fields &= ~IPPF_IFINDEX; 10017 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10018 ipp->ipp_fields |= IPPF_ADDR; 10019 else 10020 ipp->ipp_fields &= ~IPPF_ADDR; 10021 } 10022 reterr = tcp_build_hdrs(q, tcp); 10023 if (reterr != 0) 10024 return (reterr); 10025 break; 10026 case IPV6_TCLASS: 10027 if (inlen != 0 && inlen != sizeof (int)) 10028 return (EINVAL); 10029 if (checkonly) 10030 break; 10031 10032 if (inlen == 0) { 10033 ipp->ipp_fields &= ~IPPF_TCLASS; 10034 } else { 10035 if (*i1 > 255 || *i1 < -1) 10036 return (EINVAL); 10037 if (*i1 == -1) { 10038 ipp->ipp_tclass = 0; 10039 *i1 = 0; 10040 } else { 10041 ipp->ipp_tclass = *i1; 10042 } 10043 ipp->ipp_fields |= IPPF_TCLASS; 10044 } 10045 reterr = tcp_build_hdrs(q, tcp); 10046 if (reterr != 0) 10047 return (reterr); 10048 break; 10049 case IPV6_NEXTHOP: 10050 /* 10051 * IP will verify that the nexthop is reachable 10052 * and fail for sticky options. 10053 */ 10054 if (inlen != 0 && inlen != sizeof (sin6_t)) 10055 return (EINVAL); 10056 if (checkonly) 10057 break; 10058 10059 if (inlen == 0) { 10060 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10061 } else { 10062 sin6_t *sin6 = (sin6_t *)invalp; 10063 10064 if (sin6->sin6_family != AF_INET6) 10065 return (EAFNOSUPPORT); 10066 if (IN6_IS_ADDR_V4MAPPED( 10067 &sin6->sin6_addr)) 10068 return (EADDRNOTAVAIL); 10069 ipp->ipp_nexthop = sin6->sin6_addr; 10070 if (!IN6_IS_ADDR_UNSPECIFIED( 10071 &ipp->ipp_nexthop)) 10072 ipp->ipp_fields |= IPPF_NEXTHOP; 10073 else 10074 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10075 } 10076 reterr = tcp_build_hdrs(q, tcp); 10077 if (reterr != 0) 10078 return (reterr); 10079 break; 10080 case IPV6_HOPOPTS: { 10081 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10082 /* 10083 * Sanity checks - minimum size, size a multiple of 10084 * eight bytes, and matching size passed in. 10085 */ 10086 if (inlen != 0 && 10087 inlen != (8 * (hopts->ip6h_len + 1))) 10088 return (EINVAL); 10089 10090 if (checkonly) 10091 break; 10092 10093 if (inlen == 0) { 10094 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 10095 kmem_free(ipp->ipp_hopopts, 10096 ipp->ipp_hopoptslen); 10097 ipp->ipp_hopopts = NULL; 10098 ipp->ipp_hopoptslen = 0; 10099 } 10100 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10101 } else { 10102 reterr = tcp_pkt_set(invalp, inlen, 10103 (uchar_t **)&ipp->ipp_hopopts, 10104 &ipp->ipp_hopoptslen); 10105 if (reterr != 0) 10106 return (reterr); 10107 ipp->ipp_fields |= IPPF_HOPOPTS; 10108 } 10109 reterr = tcp_build_hdrs(q, tcp); 10110 if (reterr != 0) 10111 return (reterr); 10112 break; 10113 } 10114 case IPV6_RTHDRDSTOPTS: { 10115 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10116 10117 /* 10118 * Sanity checks - minimum size, size a multiple of 10119 * eight bytes, and matching size passed in. 10120 */ 10121 if (inlen != 0 && 10122 inlen != (8 * (dopts->ip6d_len + 1))) 10123 return (EINVAL); 10124 10125 if (checkonly) 10126 break; 10127 10128 if (inlen == 0) { 10129 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 10130 kmem_free(ipp->ipp_rtdstopts, 10131 ipp->ipp_rtdstoptslen); 10132 ipp->ipp_rtdstopts = NULL; 10133 ipp->ipp_rtdstoptslen = 0; 10134 } 10135 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10136 } else { 10137 reterr = tcp_pkt_set(invalp, inlen, 10138 (uchar_t **)&ipp->ipp_rtdstopts, 10139 &ipp->ipp_rtdstoptslen); 10140 if (reterr != 0) 10141 return (reterr); 10142 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10143 } 10144 reterr = tcp_build_hdrs(q, tcp); 10145 if (reterr != 0) 10146 return (reterr); 10147 break; 10148 } 10149 case IPV6_DSTOPTS: { 10150 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10151 10152 /* 10153 * Sanity checks - minimum size, size a multiple of 10154 * eight bytes, and matching size passed in. 10155 */ 10156 if (inlen != 0 && 10157 inlen != (8 * (dopts->ip6d_len + 1))) 10158 return (EINVAL); 10159 10160 if (checkonly) 10161 break; 10162 10163 if (inlen == 0) { 10164 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 10165 kmem_free(ipp->ipp_dstopts, 10166 ipp->ipp_dstoptslen); 10167 ipp->ipp_dstopts = NULL; 10168 ipp->ipp_dstoptslen = 0; 10169 } 10170 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10171 } else { 10172 reterr = tcp_pkt_set(invalp, inlen, 10173 (uchar_t **)&ipp->ipp_dstopts, 10174 &ipp->ipp_dstoptslen); 10175 if (reterr != 0) 10176 return (reterr); 10177 ipp->ipp_fields |= IPPF_DSTOPTS; 10178 } 10179 reterr = tcp_build_hdrs(q, tcp); 10180 if (reterr != 0) 10181 return (reterr); 10182 break; 10183 } 10184 case IPV6_RTHDR: { 10185 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10186 10187 /* 10188 * Sanity checks - minimum size, size a multiple of 10189 * eight bytes, and matching size passed in. 10190 */ 10191 if (inlen != 0 && 10192 inlen != (8 * (rt->ip6r_len + 1))) 10193 return (EINVAL); 10194 10195 if (checkonly) 10196 break; 10197 10198 if (inlen == 0) { 10199 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 10200 kmem_free(ipp->ipp_rthdr, 10201 ipp->ipp_rthdrlen); 10202 ipp->ipp_rthdr = NULL; 10203 ipp->ipp_rthdrlen = 0; 10204 } 10205 ipp->ipp_fields &= ~IPPF_RTHDR; 10206 } else { 10207 reterr = tcp_pkt_set(invalp, inlen, 10208 (uchar_t **)&ipp->ipp_rthdr, 10209 &ipp->ipp_rthdrlen); 10210 if (reterr != 0) 10211 return (reterr); 10212 ipp->ipp_fields |= IPPF_RTHDR; 10213 } 10214 reterr = tcp_build_hdrs(q, tcp); 10215 if (reterr != 0) 10216 return (reterr); 10217 break; 10218 } 10219 case IPV6_V6ONLY: 10220 if (!checkonly) 10221 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10222 break; 10223 case IPV6_USE_MIN_MTU: 10224 if (inlen != sizeof (int)) 10225 return (EINVAL); 10226 10227 if (*i1 < -1 || *i1 > 1) 10228 return (EINVAL); 10229 10230 if (checkonly) 10231 break; 10232 10233 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10234 ipp->ipp_use_min_mtu = *i1; 10235 break; 10236 case IPV6_BOUND_PIF: 10237 /* Handled at the IP level */ 10238 return (-EINVAL); 10239 case IPV6_SEC_OPT: 10240 /* 10241 * We should not allow policy setting after 10242 * we start listening for connections. 10243 */ 10244 if (tcp->tcp_state == TCPS_LISTEN) { 10245 return (EINVAL); 10246 } else { 10247 /* Handled at the IP level */ 10248 return (-EINVAL); 10249 } 10250 case IPV6_SRC_PREFERENCES: 10251 if (inlen != sizeof (uint32_t)) 10252 return (EINVAL); 10253 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10254 *(uint32_t *)invalp); 10255 if (reterr != 0) { 10256 *outlenp = 0; 10257 return (reterr); 10258 } 10259 break; 10260 default: 10261 *outlenp = 0; 10262 return (EINVAL); 10263 } 10264 break; 10265 } /* end IPPROTO_IPV6 */ 10266 default: 10267 *outlenp = 0; 10268 return (EINVAL); 10269 } 10270 /* 10271 * Common case of OK return with outval same as inval 10272 */ 10273 if (invalp != outvalp) { 10274 /* don't trust bcopy for identical src/dst */ 10275 (void) bcopy(invalp, outvalp, inlen); 10276 } 10277 *outlenp = inlen; 10278 return (0); 10279 } 10280 10281 /* 10282 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10283 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10284 * headers, and the maximum size tcp header (to avoid reallocation 10285 * on the fly for additional tcp options). 10286 * Returns failure if can't allocate memory. 10287 */ 10288 static int 10289 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10290 { 10291 char *hdrs; 10292 uint_t hdrs_len; 10293 ip6i_t *ip6i; 10294 char buf[TCP_MAX_HDR_LENGTH]; 10295 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10296 in6_addr_t src, dst; 10297 10298 /* 10299 * save the existing tcp header and source/dest IP addresses 10300 */ 10301 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10302 src = tcp->tcp_ip6h->ip6_src; 10303 dst = tcp->tcp_ip6h->ip6_dst; 10304 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10305 ASSERT(hdrs_len != 0); 10306 if (hdrs_len > tcp->tcp_iphc_len) { 10307 /* Need to reallocate */ 10308 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10309 if (hdrs == NULL) 10310 return (ENOMEM); 10311 if (tcp->tcp_iphc != NULL) { 10312 if (tcp->tcp_hdr_grown) { 10313 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10314 } else { 10315 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10316 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10317 } 10318 tcp->tcp_iphc_len = 0; 10319 } 10320 ASSERT(tcp->tcp_iphc_len == 0); 10321 tcp->tcp_iphc = hdrs; 10322 tcp->tcp_iphc_len = hdrs_len; 10323 tcp->tcp_hdr_grown = B_TRUE; 10324 } 10325 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10326 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10327 10328 /* Set header fields not in ipp */ 10329 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10330 ip6i = (ip6i_t *)tcp->tcp_iphc; 10331 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10332 } else { 10333 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10334 } 10335 /* 10336 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10337 * 10338 * tcp->tcp_tcp_hdr_len doesn't change here. 10339 */ 10340 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10341 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10342 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10343 10344 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10345 10346 tcp->tcp_ip6h->ip6_src = src; 10347 tcp->tcp_ip6h->ip6_dst = dst; 10348 10349 /* 10350 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10351 * the default value for TCP. 10352 */ 10353 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10354 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10355 10356 /* 10357 * If we're setting extension headers after a connection 10358 * has been established, and if we have a routing header 10359 * among the extension headers, call ip_massage_options_v6 to 10360 * manipulate the routing header/ip6_dst set the checksum 10361 * difference in the tcp header template. 10362 * (This happens in tcp_connect_ipv6 if the routing header 10363 * is set prior to the connect.) 10364 * Set the tcp_sum to zero first in case we've cleared a 10365 * routing header or don't have one at all. 10366 */ 10367 tcp->tcp_sum = 0; 10368 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10369 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10370 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10371 (uint8_t *)tcp->tcp_tcph); 10372 if (rth != NULL) { 10373 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10374 rth); 10375 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10376 (tcp->tcp_sum >> 16)); 10377 } 10378 } 10379 10380 /* Try to get everything in a single mblk */ 10381 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10382 return (0); 10383 } 10384 10385 /* 10386 * Set optbuf and optlen for the option. 10387 * Allocate memory (if not already present). 10388 * Otherwise just point optbuf and optlen at invalp and inlen. 10389 * Returns failure if memory can not be allocated. 10390 */ 10391 static int 10392 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp) 10393 { 10394 uchar_t *optbuf; 10395 10396 if (inlen == *optlenp) { 10397 /* Unchanged length - no need to realocate */ 10398 bcopy(invalp, *optbufp, inlen); 10399 return (0); 10400 } 10401 if (inlen != 0) { 10402 /* Allocate new buffer before free */ 10403 optbuf = kmem_alloc(inlen, KM_NOSLEEP); 10404 if (optbuf == NULL) 10405 return (ENOMEM); 10406 } else { 10407 optbuf = NULL; 10408 } 10409 /* Free old buffer */ 10410 if (*optlenp != 0) 10411 kmem_free(*optbufp, *optlenp); 10412 10413 bcopy(invalp, optbuf, inlen); 10414 *optbufp = optbuf; 10415 *optlenp = inlen; 10416 return (0); 10417 } 10418 10419 10420 /* 10421 * Use the outgoing IP header to create an IP_OPTIONS option the way 10422 * it was passed down from the application. 10423 */ 10424 static int 10425 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf) 10426 { 10427 ipoptp_t opts; 10428 uchar_t *opt; 10429 uint8_t optval; 10430 uint8_t optlen; 10431 uint32_t len = 0; 10432 uchar_t *buf1 = buf; 10433 10434 buf += IP_ADDR_LEN; /* Leave room for final destination */ 10435 len += IP_ADDR_LEN; 10436 bzero(buf1, IP_ADDR_LEN); 10437 10438 for (optval = ipoptp_first(&opts, ipha); 10439 optval != IPOPT_EOL; 10440 optval = ipoptp_next(&opts)) { 10441 opt = opts.ipoptp_cur; 10442 optlen = opts.ipoptp_len; 10443 switch (optval) { 10444 int off; 10445 case IPOPT_SSRR: 10446 case IPOPT_LSRR: 10447 10448 /* 10449 * Insert ipha_dst as the first entry in the source 10450 * route and move down the entries on step. 10451 * The last entry gets placed at buf1. 10452 */ 10453 buf[IPOPT_OPTVAL] = optval; 10454 buf[IPOPT_OLEN] = optlen; 10455 buf[IPOPT_OFFSET] = optlen; 10456 10457 off = optlen - IP_ADDR_LEN; 10458 if (off < 0) { 10459 /* No entries in source route */ 10460 break; 10461 } 10462 /* Last entry in source route */ 10463 bcopy(opt + off, buf1, IP_ADDR_LEN); 10464 off -= IP_ADDR_LEN; 10465 10466 while (off > 0) { 10467 bcopy(opt + off, 10468 buf + off + IP_ADDR_LEN, 10469 IP_ADDR_LEN); 10470 off -= IP_ADDR_LEN; 10471 } 10472 /* ipha_dst into first slot */ 10473 bcopy(&ipha->ipha_dst, 10474 buf + off + IP_ADDR_LEN, 10475 IP_ADDR_LEN); 10476 buf += optlen; 10477 len += optlen; 10478 break; 10479 default: 10480 bcopy(opt, buf, optlen); 10481 buf += optlen; 10482 len += optlen; 10483 break; 10484 } 10485 } 10486 done: 10487 /* Pad the resulting options */ 10488 while (len & 0x3) { 10489 *buf++ = IPOPT_EOL; 10490 len++; 10491 } 10492 return (len); 10493 } 10494 10495 /* 10496 * Transfer any source route option from ipha to buf/dst in reversed form. 10497 */ 10498 static int 10499 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10500 { 10501 ipoptp_t opts; 10502 uchar_t *opt; 10503 uint8_t optval; 10504 uint8_t optlen; 10505 uint32_t len = 0; 10506 10507 for (optval = ipoptp_first(&opts, ipha); 10508 optval != IPOPT_EOL; 10509 optval = ipoptp_next(&opts)) { 10510 opt = opts.ipoptp_cur; 10511 optlen = opts.ipoptp_len; 10512 switch (optval) { 10513 int off1, off2; 10514 case IPOPT_SSRR: 10515 case IPOPT_LSRR: 10516 10517 /* Reverse source route */ 10518 /* 10519 * First entry should be the next to last one in the 10520 * current source route (the last entry is our 10521 * address.) 10522 * The last entry should be the final destination. 10523 */ 10524 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10525 buf[IPOPT_OLEN] = (uint8_t)optlen; 10526 off1 = IPOPT_MINOFF_SR - 1; 10527 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10528 if (off2 < 0) { 10529 /* No entries in source route */ 10530 break; 10531 } 10532 bcopy(opt + off2, dst, IP_ADDR_LEN); 10533 /* 10534 * Note: use src since ipha has not had its src 10535 * and dst reversed (it is in the state it was 10536 * received. 10537 */ 10538 bcopy(&ipha->ipha_src, buf + off2, 10539 IP_ADDR_LEN); 10540 off2 -= IP_ADDR_LEN; 10541 10542 while (off2 > 0) { 10543 bcopy(opt + off2, buf + off1, 10544 IP_ADDR_LEN); 10545 off1 += IP_ADDR_LEN; 10546 off2 -= IP_ADDR_LEN; 10547 } 10548 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10549 buf += optlen; 10550 len += optlen; 10551 break; 10552 } 10553 } 10554 done: 10555 /* Pad the resulting options */ 10556 while (len & 0x3) { 10557 *buf++ = IPOPT_EOL; 10558 len++; 10559 } 10560 return (len); 10561 } 10562 10563 10564 /* 10565 * Extract and revert a source route from ipha (if any) 10566 * and then update the relevant fields in both tcp_t and the standard header. 10567 */ 10568 static void 10569 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10570 { 10571 char buf[TCP_MAX_HDR_LENGTH]; 10572 uint_t tcph_len; 10573 int len; 10574 10575 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10576 len = IPH_HDR_LENGTH(ipha); 10577 if (len == IP_SIMPLE_HDR_LENGTH) 10578 /* Nothing to do */ 10579 return; 10580 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10581 (len & 0x3)) 10582 return; 10583 10584 tcph_len = tcp->tcp_tcp_hdr_len; 10585 bcopy(tcp->tcp_tcph, buf, tcph_len); 10586 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10587 (tcp->tcp_ipha->ipha_dst & 0xffff); 10588 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10589 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10590 len += IP_SIMPLE_HDR_LENGTH; 10591 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10592 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10593 if ((int)tcp->tcp_sum < 0) 10594 tcp->tcp_sum--; 10595 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10596 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10597 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10598 bcopy(buf, tcp->tcp_tcph, tcph_len); 10599 tcp->tcp_ip_hdr_len = len; 10600 tcp->tcp_ipha->ipha_version_and_hdr_length = 10601 (IP_VERSION << 4) | (len >> 2); 10602 len += tcph_len; 10603 tcp->tcp_hdr_len = len; 10604 } 10605 10606 /* 10607 * Copy the standard header into its new location, 10608 * lay in the new options and then update the relevant 10609 * fields in both tcp_t and the standard header. 10610 */ 10611 static int 10612 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 10613 { 10614 uint_t tcph_len; 10615 char *ip_optp; 10616 tcph_t *new_tcph; 10617 10618 if (checkonly) { 10619 /* 10620 * do not really set, just pretend to - T_CHECK 10621 */ 10622 if (len != 0) { 10623 /* 10624 * there is value supplied, validate it as if 10625 * for a real set operation. 10626 */ 10627 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10628 return (EINVAL); 10629 } 10630 return (0); 10631 } 10632 10633 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10634 return (EINVAL); 10635 10636 ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10637 tcph_len = tcp->tcp_tcp_hdr_len; 10638 new_tcph = (tcph_t *)(ip_optp + len); 10639 ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len); 10640 tcp->tcp_tcph = new_tcph; 10641 bcopy(ptr, ip_optp, len); 10642 10643 len += IP_SIMPLE_HDR_LENGTH; 10644 10645 tcp->tcp_ip_hdr_len = len; 10646 tcp->tcp_ipha->ipha_version_and_hdr_length = 10647 (IP_VERSION << 4) | (len >> 2); 10648 len += tcph_len; 10649 tcp->tcp_hdr_len = len; 10650 if (!TCP_IS_DETACHED(tcp)) { 10651 /* Always allocate room for all options. */ 10652 (void) mi_set_sth_wroff(tcp->tcp_rq, 10653 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 10654 } 10655 return (0); 10656 } 10657 10658 /* Get callback routine passed to nd_load by tcp_param_register */ 10659 /* ARGSUSED */ 10660 static int 10661 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 10662 { 10663 tcpparam_t *tcppa = (tcpparam_t *)cp; 10664 10665 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 10666 return (0); 10667 } 10668 10669 /* 10670 * Walk through the param array specified registering each element with the 10671 * named dispatch handler. 10672 */ 10673 static boolean_t 10674 tcp_param_register(tcpparam_t *tcppa, int cnt) 10675 { 10676 for (; cnt-- > 0; tcppa++) { 10677 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 10678 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 10679 tcp_param_get, tcp_param_set, 10680 (caddr_t)tcppa)) { 10681 nd_free(&tcp_g_nd); 10682 return (B_FALSE); 10683 } 10684 } 10685 } 10686 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 10687 tcp_param_get, tcp_param_set_aligned, 10688 (caddr_t)&tcp_wroff_xtra_param)) { 10689 nd_free(&tcp_g_nd); 10690 return (B_FALSE); 10691 } 10692 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 10693 tcp_param_get, tcp_param_set_aligned, 10694 (caddr_t)&tcp_mdt_head_param)) { 10695 nd_free(&tcp_g_nd); 10696 return (B_FALSE); 10697 } 10698 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 10699 tcp_param_get, tcp_param_set_aligned, 10700 (caddr_t)&tcp_mdt_tail_param)) { 10701 nd_free(&tcp_g_nd); 10702 return (B_FALSE); 10703 } 10704 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 10705 tcp_param_get, tcp_param_set, 10706 (caddr_t)&tcp_mdt_max_pbufs_param)) { 10707 nd_free(&tcp_g_nd); 10708 return (B_FALSE); 10709 } 10710 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 10711 tcp_extra_priv_ports_get, NULL, NULL)) { 10712 nd_free(&tcp_g_nd); 10713 return (B_FALSE); 10714 } 10715 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 10716 NULL, tcp_extra_priv_ports_add, NULL)) { 10717 nd_free(&tcp_g_nd); 10718 return (B_FALSE); 10719 } 10720 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 10721 NULL, tcp_extra_priv_ports_del, NULL)) { 10722 nd_free(&tcp_g_nd); 10723 return (B_FALSE); 10724 } 10725 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 10726 NULL)) { 10727 nd_free(&tcp_g_nd); 10728 return (B_FALSE); 10729 } 10730 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 10731 NULL, NULL)) { 10732 nd_free(&tcp_g_nd); 10733 return (B_FALSE); 10734 } 10735 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 10736 NULL, NULL)) { 10737 nd_free(&tcp_g_nd); 10738 return (B_FALSE); 10739 } 10740 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 10741 NULL, NULL)) { 10742 nd_free(&tcp_g_nd); 10743 return (B_FALSE); 10744 } 10745 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 10746 NULL, NULL)) { 10747 nd_free(&tcp_g_nd); 10748 return (B_FALSE); 10749 } 10750 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 10751 tcp_host_param_set, NULL)) { 10752 nd_free(&tcp_g_nd); 10753 return (B_FALSE); 10754 } 10755 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 10756 tcp_host_param_set_ipv6, NULL)) { 10757 nd_free(&tcp_g_nd); 10758 return (B_FALSE); 10759 } 10760 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 10761 NULL)) { 10762 nd_free(&tcp_g_nd); 10763 return (B_FALSE); 10764 } 10765 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 10766 tcp_reserved_port_list, NULL, NULL)) { 10767 nd_free(&tcp_g_nd); 10768 return (B_FALSE); 10769 } 10770 /* 10771 * Dummy ndd variables - only to convey obsolescence information 10772 * through printing of their name (no get or set routines) 10773 * XXX Remove in future releases ? 10774 */ 10775 if (!nd_load(&tcp_g_nd, 10776 "tcp_close_wait_interval(obsoleted - " 10777 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 10778 nd_free(&tcp_g_nd); 10779 return (B_FALSE); 10780 } 10781 return (B_TRUE); 10782 } 10783 10784 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 10785 /* ARGSUSED */ 10786 static int 10787 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 10788 cred_t *cr) 10789 { 10790 long new_value; 10791 tcpparam_t *tcppa = (tcpparam_t *)cp; 10792 10793 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10794 new_value < tcppa->tcp_param_min || 10795 new_value > tcppa->tcp_param_max) { 10796 return (EINVAL); 10797 } 10798 /* 10799 * Need to make sure new_value is a multiple of 4. If it is not, 10800 * round it up. For future 64 bit requirement, we actually make it 10801 * a multiple of 8. 10802 */ 10803 if (new_value & 0x7) { 10804 new_value = (new_value & ~0x7) + 0x8; 10805 } 10806 tcppa->tcp_param_val = new_value; 10807 return (0); 10808 } 10809 10810 /* Set callback routine passed to nd_load by tcp_param_register */ 10811 /* ARGSUSED */ 10812 static int 10813 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 10814 { 10815 long new_value; 10816 tcpparam_t *tcppa = (tcpparam_t *)cp; 10817 10818 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10819 new_value < tcppa->tcp_param_min || 10820 new_value > tcppa->tcp_param_max) { 10821 return (EINVAL); 10822 } 10823 tcppa->tcp_param_val = new_value; 10824 return (0); 10825 } 10826 10827 /* 10828 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 10829 * is filled, return as much as we can. The message passed in may be 10830 * multi-part, chained using b_cont. "start" is the starting sequence 10831 * number for this piece. 10832 */ 10833 static mblk_t * 10834 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 10835 { 10836 uint32_t end; 10837 mblk_t *mp1; 10838 mblk_t *mp2; 10839 mblk_t *next_mp; 10840 uint32_t u1; 10841 10842 /* Walk through all the new pieces. */ 10843 do { 10844 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10845 (uintptr_t)INT_MAX); 10846 end = start + (int)(mp->b_wptr - mp->b_rptr); 10847 next_mp = mp->b_cont; 10848 if (start == end) { 10849 /* Empty. Blast it. */ 10850 freeb(mp); 10851 continue; 10852 } 10853 mp->b_cont = NULL; 10854 TCP_REASS_SET_SEQ(mp, start); 10855 TCP_REASS_SET_END(mp, end); 10856 mp1 = tcp->tcp_reass_tail; 10857 if (!mp1) { 10858 tcp->tcp_reass_tail = mp; 10859 tcp->tcp_reass_head = mp; 10860 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 10861 UPDATE_MIB(&tcp_mib, 10862 tcpInDataUnorderBytes, end - start); 10863 continue; 10864 } 10865 /* New stuff completely beyond tail? */ 10866 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 10867 /* Link it on end. */ 10868 mp1->b_cont = mp; 10869 tcp->tcp_reass_tail = mp; 10870 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 10871 UPDATE_MIB(&tcp_mib, 10872 tcpInDataUnorderBytes, end - start); 10873 continue; 10874 } 10875 mp1 = tcp->tcp_reass_head; 10876 u1 = TCP_REASS_SEQ(mp1); 10877 /* New stuff at the front? */ 10878 if (SEQ_LT(start, u1)) { 10879 /* Yes... Check for overlap. */ 10880 mp->b_cont = mp1; 10881 tcp->tcp_reass_head = mp; 10882 tcp_reass_elim_overlap(tcp, mp); 10883 continue; 10884 } 10885 /* 10886 * The new piece fits somewhere between the head and tail. 10887 * We find our slot, where mp1 precedes us and mp2 trails. 10888 */ 10889 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 10890 u1 = TCP_REASS_SEQ(mp2); 10891 if (SEQ_LEQ(start, u1)) 10892 break; 10893 } 10894 /* Link ourselves in */ 10895 mp->b_cont = mp2; 10896 mp1->b_cont = mp; 10897 10898 /* Trim overlap with following mblk(s) first */ 10899 tcp_reass_elim_overlap(tcp, mp); 10900 10901 /* Trim overlap with preceding mblk */ 10902 tcp_reass_elim_overlap(tcp, mp1); 10903 10904 } while (start = end, mp = next_mp); 10905 mp1 = tcp->tcp_reass_head; 10906 /* Anything ready to go? */ 10907 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 10908 return (NULL); 10909 /* Eat what we can off the queue */ 10910 for (;;) { 10911 mp = mp1->b_cont; 10912 end = TCP_REASS_END(mp1); 10913 TCP_REASS_SET_SEQ(mp1, 0); 10914 TCP_REASS_SET_END(mp1, 0); 10915 if (!mp) { 10916 tcp->tcp_reass_tail = NULL; 10917 break; 10918 } 10919 if (end != TCP_REASS_SEQ(mp)) { 10920 mp1->b_cont = NULL; 10921 break; 10922 } 10923 mp1 = mp; 10924 } 10925 mp1 = tcp->tcp_reass_head; 10926 tcp->tcp_reass_head = mp; 10927 return (mp1); 10928 } 10929 10930 /* Eliminate any overlap that mp may have over later mblks */ 10931 static void 10932 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 10933 { 10934 uint32_t end; 10935 mblk_t *mp1; 10936 uint32_t u1; 10937 10938 end = TCP_REASS_END(mp); 10939 while ((mp1 = mp->b_cont) != NULL) { 10940 u1 = TCP_REASS_SEQ(mp1); 10941 if (!SEQ_GT(end, u1)) 10942 break; 10943 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 10944 mp->b_wptr -= end - u1; 10945 TCP_REASS_SET_END(mp, u1); 10946 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 10947 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 10948 break; 10949 } 10950 mp->b_cont = mp1->b_cont; 10951 TCP_REASS_SET_SEQ(mp1, 0); 10952 TCP_REASS_SET_END(mp1, 0); 10953 freeb(mp1); 10954 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 10955 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 10956 } 10957 if (!mp1) 10958 tcp->tcp_reass_tail = mp; 10959 } 10960 10961 /* 10962 * Send up all messages queued on tcp_rcv_list. 10963 */ 10964 static uint_t 10965 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 10966 { 10967 mblk_t *mp; 10968 uint_t ret = 0; 10969 uint_t thwin; 10970 #ifdef DEBUG 10971 uint_t cnt = 0; 10972 #endif 10973 /* Can't drain on an eager connection */ 10974 if (tcp->tcp_listener != NULL) 10975 return (ret); 10976 10977 /* 10978 * Handle two cases here: we are currently fused or we were 10979 * previously fused and have some urgent data to be delivered 10980 * upstream. The latter happens because we either ran out of 10981 * memory or were detached and therefore sending the SIGURG was 10982 * deferred until this point. In either case we pass control 10983 * over to tcp_fuse_rcv_drain() since it may need to complete 10984 * some work. 10985 */ 10986 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 10987 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 10988 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 10989 &tcp->tcp_fused_sigurg_mp)) 10990 return (ret); 10991 } 10992 10993 while ((mp = tcp->tcp_rcv_list) != NULL) { 10994 tcp->tcp_rcv_list = mp->b_next; 10995 mp->b_next = NULL; 10996 #ifdef DEBUG 10997 cnt += msgdsize(mp); 10998 #endif 10999 putnext(q, mp); 11000 } 11001 ASSERT(cnt == tcp->tcp_rcv_cnt); 11002 tcp->tcp_rcv_last_head = NULL; 11003 tcp->tcp_rcv_last_tail = NULL; 11004 tcp->tcp_rcv_cnt = 0; 11005 11006 /* Learn the latest rwnd information that we sent to the other side. */ 11007 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11008 << tcp->tcp_rcv_ws; 11009 /* This is peer's calculated send window (our receive window). */ 11010 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11011 /* 11012 * Increase the receive window to max. But we need to do receiver 11013 * SWS avoidance. This means that we need to check the increase of 11014 * of receive window is at least 1 MSS. 11015 */ 11016 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11017 /* 11018 * If the window that the other side knows is less than max 11019 * deferred acks segments, send an update immediately. 11020 */ 11021 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11022 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11023 ret = TH_ACK_NEEDED; 11024 } 11025 tcp->tcp_rwnd = q->q_hiwat; 11026 } 11027 /* No need for the push timer now. */ 11028 if (tcp->tcp_push_tid != 0) { 11029 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11030 tcp->tcp_push_tid = 0; 11031 } 11032 return (ret); 11033 } 11034 11035 /* 11036 * Queue data on tcp_rcv_list which is a b_next chain. 11037 * tcp_rcv_last_head/tail is the last element of this chain. 11038 * Each element of the chain is a b_cont chain. 11039 * 11040 * M_DATA messages are added to the current element. 11041 * Other messages are added as new (b_next) elements. 11042 */ 11043 void 11044 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11045 { 11046 ASSERT(seg_len == msgdsize(mp)); 11047 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11048 11049 if (tcp->tcp_rcv_list == NULL) { 11050 ASSERT(tcp->tcp_rcv_last_head == NULL); 11051 tcp->tcp_rcv_list = mp; 11052 tcp->tcp_rcv_last_head = mp; 11053 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11054 tcp->tcp_rcv_last_tail->b_cont = mp; 11055 } else { 11056 tcp->tcp_rcv_last_head->b_next = mp; 11057 tcp->tcp_rcv_last_head = mp; 11058 } 11059 11060 while (mp->b_cont) 11061 mp = mp->b_cont; 11062 11063 tcp->tcp_rcv_last_tail = mp; 11064 tcp->tcp_rcv_cnt += seg_len; 11065 tcp->tcp_rwnd -= seg_len; 11066 } 11067 11068 /* 11069 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11070 * 11071 * This is the default entry function into TCP on the read side. TCP is 11072 * always entered via squeue i.e. using squeue's for mutual exclusion. 11073 * When classifier does a lookup to find the tcp, it also puts a reference 11074 * on the conn structure associated so the tcp is guaranteed to exist 11075 * when we come here. We still need to check the state because it might 11076 * as well has been closed. The squeue processing function i.e. squeue_enter, 11077 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11078 * CONN_DEC_REF. 11079 * 11080 * Apart from the default entry point, IP also sends packets directly to 11081 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11082 * connections. 11083 */ 11084 void 11085 tcp_input(void *arg, mblk_t *mp, void *arg2) 11086 { 11087 conn_t *connp = (conn_t *)arg; 11088 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11089 11090 /* arg2 is the sqp */ 11091 ASSERT(arg2 != NULL); 11092 ASSERT(mp != NULL); 11093 11094 /* 11095 * Don't accept any input on a closed tcp as this TCP logically does 11096 * not exist on the system. Don't proceed further with this TCP. 11097 * For eg. this packet could trigger another close of this tcp 11098 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11099 * tcp_clean_death / tcp_closei_local must be called at most once 11100 * on a TCP. In this case we need to refeed the packet into the 11101 * classifier and figure out where the packet should go. Need to 11102 * preserve the recv_ill somehow. Until we figure that out, for 11103 * now just drop the packet if we can't classify the packet. 11104 */ 11105 if (tcp->tcp_state == TCPS_CLOSED || 11106 tcp->tcp_state == TCPS_BOUND) { 11107 conn_t *new_connp; 11108 11109 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11110 if (new_connp != NULL) { 11111 tcp_reinput(new_connp, mp, arg2); 11112 return; 11113 } 11114 /* We failed to classify. For now just drop the packet */ 11115 freemsg(mp); 11116 return; 11117 } 11118 11119 if (DB_TYPE(mp) == M_DATA) 11120 tcp_rput_data(connp, mp, arg2); 11121 else 11122 tcp_rput_common(tcp, mp); 11123 } 11124 11125 /* 11126 * The read side put procedure. 11127 * The packets passed up by ip are assume to be aligned according to 11128 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11129 */ 11130 static void 11131 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11132 { 11133 /* 11134 * tcp_rput_data() does not expect M_CTL except for the case 11135 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11136 * type. Need to make sure that any other M_CTLs don't make 11137 * it to tcp_rput_data since it is not expecting any and doesn't 11138 * check for it. 11139 */ 11140 if (DB_TYPE(mp) == M_CTL) { 11141 switch (*(uint32_t *)(mp->b_rptr)) { 11142 case TCP_IOC_ABORT_CONN: 11143 /* 11144 * Handle connection abort request. 11145 */ 11146 tcp_ioctl_abort_handler(tcp, mp); 11147 return; 11148 case IPSEC_IN: 11149 /* 11150 * Only secure icmp arrive in TCP and they 11151 * don't go through data path. 11152 */ 11153 tcp_icmp_error(tcp, mp); 11154 return; 11155 case IN_PKTINFO: 11156 /* 11157 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11158 * sockets that are receiving IPv4 traffic. tcp 11159 */ 11160 ASSERT(tcp->tcp_family == AF_INET6); 11161 ASSERT(tcp->tcp_ipv6_recvancillary & 11162 TCP_IPV6_RECVPKTINFO); 11163 tcp_rput_data(tcp->tcp_connp, mp, 11164 tcp->tcp_connp->conn_sqp); 11165 return; 11166 case MDT_IOC_INFO_UPDATE: 11167 /* 11168 * Handle Multidata information update; the 11169 * following routine will free the message. 11170 */ 11171 if (tcp->tcp_connp->conn_mdt_ok) { 11172 tcp_mdt_update(tcp, 11173 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11174 B_FALSE); 11175 } 11176 freemsg(mp); 11177 return; 11178 default: 11179 break; 11180 } 11181 } 11182 11183 /* No point processing the message if tcp is already closed */ 11184 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11185 freemsg(mp); 11186 return; 11187 } 11188 11189 tcp_rput_other(tcp, mp); 11190 } 11191 11192 11193 /* The minimum of smoothed mean deviation in RTO calculation. */ 11194 #define TCP_SD_MIN 400 11195 11196 /* 11197 * Set RTO for this connection. The formula is from Jacobson and Karels' 11198 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11199 * are the same as those in Appendix A.2 of that paper. 11200 * 11201 * m = new measurement 11202 * sa = smoothed RTT average (8 * average estimates). 11203 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11204 */ 11205 static void 11206 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11207 { 11208 long m = TICK_TO_MSEC(rtt); 11209 clock_t sa = tcp->tcp_rtt_sa; 11210 clock_t sv = tcp->tcp_rtt_sd; 11211 clock_t rto; 11212 11213 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11214 tcp->tcp_rtt_update++; 11215 11216 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11217 if (sa != 0) { 11218 /* 11219 * Update average estimator: 11220 * new rtt = 7/8 old rtt + 1/8 Error 11221 */ 11222 11223 /* m is now Error in estimate. */ 11224 m -= sa >> 3; 11225 if ((sa += m) <= 0) { 11226 /* 11227 * Don't allow the smoothed average to be negative. 11228 * We use 0 to denote reinitialization of the 11229 * variables. 11230 */ 11231 sa = 1; 11232 } 11233 11234 /* 11235 * Update deviation estimator: 11236 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11237 */ 11238 if (m < 0) 11239 m = -m; 11240 m -= sv >> 2; 11241 sv += m; 11242 } else { 11243 /* 11244 * This follows BSD's implementation. So the reinitialized 11245 * RTO is 3 * m. We cannot go less than 2 because if the 11246 * link is bandwidth dominated, doubling the window size 11247 * during slow start means doubling the RTT. We want to be 11248 * more conservative when we reinitialize our estimates. 3 11249 * is just a convenient number. 11250 */ 11251 sa = m << 3; 11252 sv = m << 1; 11253 } 11254 if (sv < TCP_SD_MIN) { 11255 /* 11256 * We do not know that if sa captures the delay ACK 11257 * effect as in a long train of segments, a receiver 11258 * does not delay its ACKs. So set the minimum of sv 11259 * to be TCP_SD_MIN, which is default to 400 ms, twice 11260 * of BSD DATO. That means the minimum of mean 11261 * deviation is 100 ms. 11262 * 11263 */ 11264 sv = TCP_SD_MIN; 11265 } 11266 tcp->tcp_rtt_sa = sa; 11267 tcp->tcp_rtt_sd = sv; 11268 /* 11269 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11270 * 11271 * Add tcp_rexmit_interval extra in case of extreme environment 11272 * where the algorithm fails to work. The default value of 11273 * tcp_rexmit_interval_extra should be 0. 11274 * 11275 * As we use a finer grained clock than BSD and update 11276 * RTO for every ACKs, add in another .25 of RTT to the 11277 * deviation of RTO to accomodate burstiness of 1/4 of 11278 * window size. 11279 */ 11280 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11281 11282 if (rto > tcp_rexmit_interval_max) { 11283 tcp->tcp_rto = tcp_rexmit_interval_max; 11284 } else if (rto < tcp_rexmit_interval_min) { 11285 tcp->tcp_rto = tcp_rexmit_interval_min; 11286 } else { 11287 tcp->tcp_rto = rto; 11288 } 11289 11290 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11291 tcp->tcp_timer_backoff = 0; 11292 } 11293 11294 /* 11295 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11296 * send queue which starts at the given seq. no. 11297 * 11298 * Parameters: 11299 * tcp_t *tcp: the tcp instance pointer. 11300 * uint32_t seq: the starting seq. no of the requested segment. 11301 * int32_t *off: after the execution, *off will be the offset to 11302 * the returned mblk which points to the requested seq no. 11303 * It is the caller's responsibility to send in a non-null off. 11304 * 11305 * Return: 11306 * A mblk_t pointer pointing to the requested segment in send queue. 11307 */ 11308 static mblk_t * 11309 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11310 { 11311 int32_t cnt; 11312 mblk_t *mp; 11313 11314 /* Defensive coding. Make sure we don't send incorrect data. */ 11315 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11316 return (NULL); 11317 11318 cnt = seq - tcp->tcp_suna; 11319 mp = tcp->tcp_xmit_head; 11320 while (cnt > 0 && mp != NULL) { 11321 cnt -= mp->b_wptr - mp->b_rptr; 11322 if (cnt < 0) { 11323 cnt += mp->b_wptr - mp->b_rptr; 11324 break; 11325 } 11326 mp = mp->b_cont; 11327 } 11328 ASSERT(mp != NULL); 11329 *off = cnt; 11330 return (mp); 11331 } 11332 11333 /* 11334 * This function handles all retransmissions if SACK is enabled for this 11335 * connection. First it calculates how many segments can be retransmitted 11336 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11337 * segments. A segment is eligible if sack_cnt for that segment is greater 11338 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11339 * all eligible segments, it checks to see if TCP can send some new segments 11340 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11341 * 11342 * Parameters: 11343 * tcp_t *tcp: the tcp structure of the connection. 11344 * uint_t *flags: in return, appropriate value will be set for 11345 * tcp_rput_data(). 11346 */ 11347 static void 11348 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11349 { 11350 notsack_blk_t *notsack_blk; 11351 int32_t usable_swnd; 11352 int32_t mss; 11353 uint32_t seg_len; 11354 mblk_t *xmit_mp; 11355 11356 ASSERT(tcp->tcp_sack_info != NULL); 11357 ASSERT(tcp->tcp_notsack_list != NULL); 11358 ASSERT(tcp->tcp_rexmit == B_FALSE); 11359 11360 /* Defensive coding in case there is a bug... */ 11361 if (tcp->tcp_notsack_list == NULL) { 11362 return; 11363 } 11364 notsack_blk = tcp->tcp_notsack_list; 11365 mss = tcp->tcp_mss; 11366 11367 /* 11368 * Limit the num of outstanding data in the network to be 11369 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11370 */ 11371 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11372 11373 /* At least retransmit 1 MSS of data. */ 11374 if (usable_swnd <= 0) { 11375 usable_swnd = mss; 11376 } 11377 11378 /* Make sure no new RTT samples will be taken. */ 11379 tcp->tcp_csuna = tcp->tcp_snxt; 11380 11381 notsack_blk = tcp->tcp_notsack_list; 11382 while (usable_swnd > 0) { 11383 mblk_t *snxt_mp, *tmp_mp; 11384 tcp_seq begin = tcp->tcp_sack_snxt; 11385 tcp_seq end; 11386 int32_t off; 11387 11388 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11389 if (SEQ_GT(notsack_blk->end, begin) && 11390 (notsack_blk->sack_cnt >= 11391 tcp_dupack_fast_retransmit)) { 11392 end = notsack_blk->end; 11393 if (SEQ_LT(begin, notsack_blk->begin)) { 11394 begin = notsack_blk->begin; 11395 } 11396 break; 11397 } 11398 } 11399 /* 11400 * All holes are filled. Manipulate tcp_cwnd to send more 11401 * if we can. Note that after the SACK recovery, tcp_cwnd is 11402 * set to tcp_cwnd_ssthresh. 11403 */ 11404 if (notsack_blk == NULL) { 11405 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11406 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11407 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11408 ASSERT(tcp->tcp_cwnd > 0); 11409 return; 11410 } else { 11411 usable_swnd = usable_swnd / mss; 11412 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11413 MAX(usable_swnd * mss, mss); 11414 *flags |= TH_XMIT_NEEDED; 11415 return; 11416 } 11417 } 11418 11419 /* 11420 * Note that we may send more than usable_swnd allows here 11421 * because of round off, but no more than 1 MSS of data. 11422 */ 11423 seg_len = end - begin; 11424 if (seg_len > mss) 11425 seg_len = mss; 11426 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11427 ASSERT(snxt_mp != NULL); 11428 /* This should not happen. Defensive coding again... */ 11429 if (snxt_mp == NULL) { 11430 return; 11431 } 11432 11433 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11434 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11435 if (xmit_mp == NULL) 11436 return; 11437 11438 usable_swnd -= seg_len; 11439 tcp->tcp_pipe += seg_len; 11440 tcp->tcp_sack_snxt = begin + seg_len; 11441 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11442 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11443 11444 /* 11445 * Update the send timestamp to avoid false retransmission. 11446 */ 11447 snxt_mp->b_prev = (mblk_t *)lbolt; 11448 11449 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11450 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11451 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11452 /* 11453 * Update tcp_rexmit_max to extend this SACK recovery phase. 11454 * This happens when new data sent during fast recovery is 11455 * also lost. If TCP retransmits those new data, it needs 11456 * to extend SACK recover phase to avoid starting another 11457 * fast retransmit/recovery unnecessarily. 11458 */ 11459 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11460 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11461 } 11462 } 11463 } 11464 11465 /* 11466 * This function handles policy checking at TCP level for non-hard_bound/ 11467 * detached connections. 11468 */ 11469 static boolean_t 11470 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11471 boolean_t secure, boolean_t mctl_present) 11472 { 11473 ipsec_latch_t *ipl = NULL; 11474 ipsec_action_t *act = NULL; 11475 mblk_t *data_mp; 11476 ipsec_in_t *ii; 11477 const char *reason; 11478 kstat_named_t *counter; 11479 11480 ASSERT(mctl_present || !secure); 11481 11482 ASSERT((ipha == NULL && ip6h != NULL) || 11483 (ip6h == NULL && ipha != NULL)); 11484 11485 /* 11486 * We don't necessarily have an ipsec_in_act action to verify 11487 * policy because of assymetrical policy where we have only 11488 * outbound policy and no inbound policy (possible with global 11489 * policy). 11490 */ 11491 if (!secure) { 11492 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11493 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11494 return (B_TRUE); 11495 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11496 "tcp_check_policy", ipha, ip6h, secure); 11497 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11498 &ipdrops_tcp_clear, &tcp_dropper); 11499 return (B_FALSE); 11500 } 11501 11502 /* 11503 * We have a secure packet. 11504 */ 11505 if (act == NULL) { 11506 ipsec_log_policy_failure(tcp->tcp_wq, 11507 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11508 secure); 11509 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11510 &ipdrops_tcp_secure, &tcp_dropper); 11511 return (B_FALSE); 11512 } 11513 11514 /* 11515 * XXX This whole routine is currently incorrect. ipl should 11516 * be set to the latch pointer, but is currently not set, so 11517 * we initialize it to NULL to avoid picking up random garbage. 11518 */ 11519 if (ipl == NULL) 11520 return (B_TRUE); 11521 11522 data_mp = first_mp->b_cont; 11523 11524 ii = (ipsec_in_t *)first_mp->b_rptr; 11525 11526 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11527 &counter)) { 11528 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11529 return (B_TRUE); 11530 } 11531 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11532 "tcp inbound policy mismatch: %s, packet dropped\n", 11533 reason); 11534 BUMP_MIB(&ip_mib, ipsecInFailed); 11535 11536 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11537 return (B_FALSE); 11538 } 11539 11540 /* 11541 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11542 * retransmission after a timeout. 11543 * 11544 * To limit the number of duplicate segments, we limit the number of segment 11545 * to be sent in one time to tcp_snd_burst, the burst variable. 11546 */ 11547 static void 11548 tcp_ss_rexmit(tcp_t *tcp) 11549 { 11550 uint32_t snxt; 11551 uint32_t smax; 11552 int32_t win; 11553 int32_t mss; 11554 int32_t off; 11555 int32_t burst = tcp->tcp_snd_burst; 11556 mblk_t *snxt_mp; 11557 11558 /* 11559 * Note that tcp_rexmit can be set even though TCP has retransmitted 11560 * all unack'ed segments. 11561 */ 11562 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11563 smax = tcp->tcp_rexmit_max; 11564 snxt = tcp->tcp_rexmit_nxt; 11565 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11566 snxt = tcp->tcp_suna; 11567 } 11568 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11569 win -= snxt - tcp->tcp_suna; 11570 mss = tcp->tcp_mss; 11571 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11572 11573 while (SEQ_LT(snxt, smax) && (win > 0) && 11574 (burst > 0) && (snxt_mp != NULL)) { 11575 mblk_t *xmit_mp; 11576 mblk_t *old_snxt_mp = snxt_mp; 11577 uint32_t cnt = mss; 11578 11579 if (win < cnt) { 11580 cnt = win; 11581 } 11582 if (SEQ_GT(snxt + cnt, smax)) { 11583 cnt = smax - snxt; 11584 } 11585 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11586 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11587 if (xmit_mp == NULL) 11588 return; 11589 11590 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11591 11592 snxt += cnt; 11593 win -= cnt; 11594 /* 11595 * Update the send timestamp to avoid false 11596 * retransmission. 11597 */ 11598 old_snxt_mp->b_prev = (mblk_t *)lbolt; 11599 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11600 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 11601 11602 tcp->tcp_rexmit_nxt = snxt; 11603 burst--; 11604 } 11605 /* 11606 * If we have transmitted all we have at the time 11607 * we started the retranmission, we can leave 11608 * the rest of the job to tcp_wput_data(). But we 11609 * need to check the send window first. If the 11610 * win is not 0, go on with tcp_wput_data(). 11611 */ 11612 if (SEQ_LT(snxt, smax) || win == 0) { 11613 return; 11614 } 11615 } 11616 /* Only call tcp_wput_data() if there is data to be sent. */ 11617 if (tcp->tcp_unsent) { 11618 tcp_wput_data(tcp, NULL, B_FALSE); 11619 } 11620 } 11621 11622 /* 11623 * Process all TCP option in SYN segment. Note that this function should 11624 * be called after tcp_adapt_ire() is called so that the necessary info 11625 * from IRE is already set in the tcp structure. 11626 * 11627 * This function sets up the correct tcp_mss value according to the 11628 * MSS option value and our header size. It also sets up the window scale 11629 * and timestamp values, and initialize SACK info blocks. But it does not 11630 * change receive window size after setting the tcp_mss value. The caller 11631 * should do the appropriate change. 11632 */ 11633 void 11634 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 11635 { 11636 int options; 11637 tcp_opt_t tcpopt; 11638 uint32_t mss_max; 11639 char *tmp_tcph; 11640 11641 tcpopt.tcp = NULL; 11642 options = tcp_parse_options(tcph, &tcpopt); 11643 11644 /* 11645 * Process MSS option. Note that MSS option value does not account 11646 * for IP or TCP options. This means that it is equal to MTU - minimum 11647 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 11648 * IPv6. 11649 */ 11650 if (!(options & TCP_OPT_MSS_PRESENT)) { 11651 if (tcp->tcp_ipversion == IPV4_VERSION) 11652 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 11653 else 11654 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 11655 } else { 11656 if (tcp->tcp_ipversion == IPV4_VERSION) 11657 mss_max = tcp_mss_max_ipv4; 11658 else 11659 mss_max = tcp_mss_max_ipv6; 11660 if (tcpopt.tcp_opt_mss < tcp_mss_min) 11661 tcpopt.tcp_opt_mss = tcp_mss_min; 11662 else if (tcpopt.tcp_opt_mss > mss_max) 11663 tcpopt.tcp_opt_mss = mss_max; 11664 } 11665 11666 /* Process Window Scale option. */ 11667 if (options & TCP_OPT_WSCALE_PRESENT) { 11668 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 11669 tcp->tcp_snd_ws_ok = B_TRUE; 11670 } else { 11671 tcp->tcp_snd_ws = B_FALSE; 11672 tcp->tcp_snd_ws_ok = B_FALSE; 11673 tcp->tcp_rcv_ws = B_FALSE; 11674 } 11675 11676 /* Process Timestamp option. */ 11677 if ((options & TCP_OPT_TSTAMP_PRESENT) && 11678 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 11679 tmp_tcph = (char *)tcp->tcp_tcph; 11680 11681 tcp->tcp_snd_ts_ok = B_TRUE; 11682 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 11683 tcp->tcp_last_rcv_lbolt = lbolt64; 11684 ASSERT(OK_32PTR(tmp_tcph)); 11685 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 11686 11687 /* Fill in our template header with basic timestamp option. */ 11688 tmp_tcph += tcp->tcp_tcp_hdr_len; 11689 tmp_tcph[0] = TCPOPT_NOP; 11690 tmp_tcph[1] = TCPOPT_NOP; 11691 tmp_tcph[2] = TCPOPT_TSTAMP; 11692 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 11693 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11694 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11695 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 11696 } else { 11697 tcp->tcp_snd_ts_ok = B_FALSE; 11698 } 11699 11700 /* 11701 * Process SACK options. If SACK is enabled for this connection, 11702 * then allocate the SACK info structure. Note the following ways 11703 * when tcp_snd_sack_ok is set to true. 11704 * 11705 * For active connection: in tcp_adapt_ire() called in 11706 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 11707 * is checked. 11708 * 11709 * For passive connection: in tcp_adapt_ire() called in 11710 * tcp_accept_comm(). 11711 * 11712 * That's the reason why the extra TCP_IS_DETACHED() check is there. 11713 * That check makes sure that if we did not send a SACK OK option, 11714 * we will not enable SACK for this connection even though the other 11715 * side sends us SACK OK option. For active connection, the SACK 11716 * info structure has already been allocated. So we need to free 11717 * it if SACK is disabled. 11718 */ 11719 if ((options & TCP_OPT_SACK_OK_PRESENT) && 11720 (tcp->tcp_snd_sack_ok || 11721 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 11722 /* This should be true only in the passive case. */ 11723 if (tcp->tcp_sack_info == NULL) { 11724 ASSERT(TCP_IS_DETACHED(tcp)); 11725 tcp->tcp_sack_info = 11726 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 11727 } 11728 if (tcp->tcp_sack_info == NULL) { 11729 tcp->tcp_snd_sack_ok = B_FALSE; 11730 } else { 11731 tcp->tcp_snd_sack_ok = B_TRUE; 11732 if (tcp->tcp_snd_ts_ok) { 11733 tcp->tcp_max_sack_blk = 3; 11734 } else { 11735 tcp->tcp_max_sack_blk = 4; 11736 } 11737 } 11738 } else { 11739 /* 11740 * Resetting tcp_snd_sack_ok to B_FALSE so that 11741 * no SACK info will be used for this 11742 * connection. This assumes that SACK usage 11743 * permission is negotiated. This may need 11744 * to be changed once this is clarified. 11745 */ 11746 if (tcp->tcp_sack_info != NULL) { 11747 ASSERT(tcp->tcp_notsack_list == NULL); 11748 kmem_cache_free(tcp_sack_info_cache, 11749 tcp->tcp_sack_info); 11750 tcp->tcp_sack_info = NULL; 11751 } 11752 tcp->tcp_snd_sack_ok = B_FALSE; 11753 } 11754 11755 /* 11756 * Now we know the exact TCP/IP header length, subtract 11757 * that from tcp_mss to get our side's MSS. 11758 */ 11759 tcp->tcp_mss -= tcp->tcp_hdr_len; 11760 /* 11761 * Here we assume that the other side's header size will be equal to 11762 * our header size. We calculate the real MSS accordingly. Need to 11763 * take into additional stuffs IPsec puts in. 11764 * 11765 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 11766 */ 11767 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 11768 ((tcp->tcp_ipversion == IPV4_VERSION ? 11769 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 11770 11771 /* 11772 * Set MSS to the smaller one of both ends of the connection. 11773 * We should not have called tcp_mss_set() before, but our 11774 * side of the MSS should have been set to a proper value 11775 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 11776 * STREAM head parameters properly. 11777 * 11778 * If we have a larger-than-16-bit window but the other side 11779 * didn't want to do window scale, tcp_rwnd_set() will take 11780 * care of that. 11781 */ 11782 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 11783 } 11784 11785 /* 11786 * Sends the T_CONN_IND to the listener. The caller calls this 11787 * functions via squeue to get inside the listener's perimeter 11788 * once the 3 way hand shake is done a T_CONN_IND needs to be 11789 * sent. As an optimization, the caller can call this directly 11790 * if listener's perimeter is same as eager's. 11791 */ 11792 /* ARGSUSED */ 11793 void 11794 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 11795 { 11796 conn_t *lconnp = (conn_t *)arg; 11797 tcp_t *listener = lconnp->conn_tcp; 11798 tcp_t *tcp; 11799 struct T_conn_ind *conn_ind; 11800 ipaddr_t *addr_cache; 11801 boolean_t need_send_conn_ind = B_FALSE; 11802 11803 /* retrieve the eager */ 11804 conn_ind = (struct T_conn_ind *)mp->b_rptr; 11805 ASSERT(conn_ind->OPT_offset != 0 && 11806 conn_ind->OPT_length == sizeof (intptr_t)); 11807 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 11808 conn_ind->OPT_length); 11809 11810 /* 11811 * TLI/XTI applications will get confused by 11812 * sending eager as an option since it violates 11813 * the option semantics. So remove the eager as 11814 * option since TLI/XTI app doesn't need it anyway. 11815 */ 11816 if (!TCP_IS_SOCKET(listener)) { 11817 conn_ind->OPT_length = 0; 11818 conn_ind->OPT_offset = 0; 11819 } 11820 if (listener->tcp_state == TCPS_CLOSED || 11821 TCP_IS_DETACHED(listener)) { 11822 /* 11823 * If listener has closed, it would have caused a 11824 * a cleanup/blowoff to happen for the eager. We 11825 * just need to return. 11826 */ 11827 freemsg(mp); 11828 return; 11829 } 11830 11831 11832 /* 11833 * if the conn_req_q is full defer passing up the 11834 * T_CONN_IND until space is availabe after t_accept() 11835 * processing 11836 */ 11837 mutex_enter(&listener->tcp_eager_lock); 11838 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 11839 tcp_t *tail; 11840 11841 /* 11842 * The eager already has an extra ref put in tcp_rput_data 11843 * so that it stays till accept comes back even though it 11844 * might get into TCPS_CLOSED as a result of a TH_RST etc. 11845 */ 11846 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 11847 listener->tcp_conn_req_cnt_q0--; 11848 listener->tcp_conn_req_cnt_q++; 11849 11850 /* Move from SYN_RCVD to ESTABLISHED list */ 11851 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 11852 tcp->tcp_eager_prev_q0; 11853 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 11854 tcp->tcp_eager_next_q0; 11855 tcp->tcp_eager_prev_q0 = NULL; 11856 tcp->tcp_eager_next_q0 = NULL; 11857 11858 /* 11859 * Insert at end of the queue because sockfs 11860 * sends down T_CONN_RES in chronological 11861 * order. Leaving the older conn indications 11862 * at front of the queue helps reducing search 11863 * time. 11864 */ 11865 tail = listener->tcp_eager_last_q; 11866 if (tail != NULL) 11867 tail->tcp_eager_next_q = tcp; 11868 else 11869 listener->tcp_eager_next_q = tcp; 11870 listener->tcp_eager_last_q = tcp; 11871 tcp->tcp_eager_next_q = NULL; 11872 /* 11873 * Delay sending up the T_conn_ind until we are 11874 * done with the eager. Once we have have sent up 11875 * the T_conn_ind, the accept can potentially complete 11876 * any time and release the refhold we have on the eager. 11877 */ 11878 need_send_conn_ind = B_TRUE; 11879 } else { 11880 /* 11881 * Defer connection on q0 and set deferred 11882 * connection bit true 11883 */ 11884 tcp->tcp_conn_def_q0 = B_TRUE; 11885 11886 /* take tcp out of q0 ... */ 11887 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 11888 tcp->tcp_eager_next_q0; 11889 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 11890 tcp->tcp_eager_prev_q0; 11891 11892 /* ... and place it at the end of q0 */ 11893 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 11894 tcp->tcp_eager_next_q0 = listener; 11895 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 11896 listener->tcp_eager_prev_q0 = tcp; 11897 tcp->tcp_conn.tcp_eager_conn_ind = mp; 11898 } 11899 11900 /* we have timed out before */ 11901 if (tcp->tcp_syn_rcvd_timeout != 0) { 11902 tcp->tcp_syn_rcvd_timeout = 0; 11903 listener->tcp_syn_rcvd_timeout--; 11904 if (listener->tcp_syn_defense && 11905 listener->tcp_syn_rcvd_timeout <= 11906 (tcp_conn_req_max_q0 >> 5) && 11907 10*MINUTES < TICK_TO_MSEC(lbolt64 - 11908 listener->tcp_last_rcv_lbolt)) { 11909 /* 11910 * Turn off the defense mode if we 11911 * believe the SYN attack is over. 11912 */ 11913 listener->tcp_syn_defense = B_FALSE; 11914 if (listener->tcp_ip_addr_cache) { 11915 kmem_free((void *)listener->tcp_ip_addr_cache, 11916 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 11917 listener->tcp_ip_addr_cache = NULL; 11918 } 11919 } 11920 } 11921 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 11922 if (addr_cache != NULL) { 11923 /* 11924 * We have finished a 3-way handshake with this 11925 * remote host. This proves the IP addr is good. 11926 * Cache it! 11927 */ 11928 addr_cache[IP_ADDR_CACHE_HASH( 11929 tcp->tcp_remote)] = tcp->tcp_remote; 11930 } 11931 mutex_exit(&listener->tcp_eager_lock); 11932 if (need_send_conn_ind) 11933 putnext(listener->tcp_rq, mp); 11934 } 11935 11936 mblk_t * 11937 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 11938 uint_t *ifindexp, ip6_pkt_t *ippp) 11939 { 11940 in_pktinfo_t *pinfo; 11941 ip6_t *ip6h; 11942 uchar_t *rptr; 11943 mblk_t *first_mp = mp; 11944 boolean_t mctl_present = B_FALSE; 11945 uint_t ifindex = 0; 11946 ip6_pkt_t ipp; 11947 uint_t ipvers; 11948 uint_t ip_hdr_len; 11949 11950 rptr = mp->b_rptr; 11951 ASSERT(OK_32PTR(rptr)); 11952 ASSERT(tcp != NULL); 11953 ipp.ipp_fields = 0; 11954 11955 switch DB_TYPE(mp) { 11956 case M_CTL: 11957 mp = mp->b_cont; 11958 if (mp == NULL) { 11959 freemsg(first_mp); 11960 return (NULL); 11961 } 11962 if (DB_TYPE(mp) != M_DATA) { 11963 freemsg(first_mp); 11964 return (NULL); 11965 } 11966 mctl_present = B_TRUE; 11967 break; 11968 case M_DATA: 11969 break; 11970 default: 11971 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 11972 freemsg(mp); 11973 return (NULL); 11974 } 11975 ipvers = IPH_HDR_VERSION(rptr); 11976 if (ipvers == IPV4_VERSION) { 11977 if (tcp == NULL) { 11978 ip_hdr_len = IPH_HDR_LENGTH(rptr); 11979 goto done; 11980 } 11981 11982 ipp.ipp_fields |= IPPF_HOPLIMIT; 11983 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 11984 11985 /* 11986 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 11987 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 11988 */ 11989 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 11990 mctl_present) { 11991 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 11992 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 11993 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 11994 (pinfo->in_pkt_flags & IPF_RECVIF)) { 11995 ipp.ipp_fields |= IPPF_IFINDEX; 11996 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 11997 ifindex = pinfo->in_pkt_ifindex; 11998 } 11999 freeb(first_mp); 12000 mctl_present = B_FALSE; 12001 } 12002 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12003 } else { 12004 ip6h = (ip6_t *)rptr; 12005 12006 ASSERT(ipvers == IPV6_VERSION); 12007 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12008 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12009 ipp.ipp_hoplimit = ip6h->ip6_hops; 12010 12011 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12012 uint8_t nexthdrp; 12013 12014 /* Look for ifindex information */ 12015 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12016 ip6i_t *ip6i = (ip6i_t *)ip6h; 12017 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12018 BUMP_MIB(&ip_mib, tcpInErrs); 12019 freemsg(first_mp); 12020 return (NULL); 12021 } 12022 12023 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12024 ASSERT(ip6i->ip6i_ifindex != 0); 12025 ipp.ipp_fields |= IPPF_IFINDEX; 12026 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12027 ifindex = ip6i->ip6i_ifindex; 12028 } 12029 rptr = (uchar_t *)&ip6i[1]; 12030 mp->b_rptr = rptr; 12031 if (rptr == mp->b_wptr) { 12032 mblk_t *mp1; 12033 mp1 = mp->b_cont; 12034 freeb(mp); 12035 mp = mp1; 12036 rptr = mp->b_rptr; 12037 } 12038 if (MBLKL(mp) < IPV6_HDR_LEN + 12039 sizeof (tcph_t)) { 12040 BUMP_MIB(&ip_mib, tcpInErrs); 12041 freemsg(first_mp); 12042 return (NULL); 12043 } 12044 ip6h = (ip6_t *)rptr; 12045 } 12046 12047 /* 12048 * Find any potentially interesting extension headers 12049 * as well as the length of the IPv6 + extension 12050 * headers. 12051 */ 12052 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12053 /* Verify if this is a TCP packet */ 12054 if (nexthdrp != IPPROTO_TCP) { 12055 BUMP_MIB(&ip_mib, tcpInErrs); 12056 freemsg(first_mp); 12057 return (NULL); 12058 } 12059 } else { 12060 ip_hdr_len = IPV6_HDR_LEN; 12061 } 12062 } 12063 12064 done: 12065 if (ipversp != NULL) 12066 *ipversp = ipvers; 12067 if (ip_hdr_lenp != NULL) 12068 *ip_hdr_lenp = ip_hdr_len; 12069 if (ippp != NULL) 12070 *ippp = ipp; 12071 if (ifindexp != NULL) 12072 *ifindexp = ifindex; 12073 if (mctl_present) { 12074 freeb(first_mp); 12075 } 12076 return (mp); 12077 } 12078 12079 /* 12080 * Handle M_DATA messages from IP. Its called directly from IP via 12081 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12082 * in this path. 12083 * 12084 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12085 * v4 and v6), we are called through tcp_input() and a M_CTL can 12086 * be present for options but tcp_find_pktinfo() deals with it. We 12087 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12088 * 12089 * The first argument is always the connp/tcp to which the mp belongs. 12090 * There are no exceptions to this rule. The caller has already put 12091 * a reference on this connp/tcp and once tcp_rput_data() returns, 12092 * the squeue will do the refrele. 12093 * 12094 * The TH_SYN for the listener directly go to tcp_conn_request via 12095 * squeue. 12096 * 12097 * sqp: NULL = recursive, sqp != NULL means called from squeue 12098 */ 12099 void 12100 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12101 { 12102 int32_t bytes_acked; 12103 int32_t gap; 12104 mblk_t *mp1; 12105 uint_t flags; 12106 uint32_t new_swnd = 0; 12107 uchar_t *iphdr; 12108 uchar_t *rptr; 12109 int32_t rgap; 12110 uint32_t seg_ack; 12111 int seg_len; 12112 uint_t ip_hdr_len; 12113 uint32_t seg_seq; 12114 tcph_t *tcph; 12115 int urp; 12116 tcp_opt_t tcpopt; 12117 uint_t ipvers; 12118 ip6_pkt_t ipp; 12119 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12120 uint32_t cwnd; 12121 uint32_t add; 12122 int npkt; 12123 int mss; 12124 conn_t *connp = (conn_t *)arg; 12125 squeue_t *sqp = (squeue_t *)arg2; 12126 tcp_t *tcp = connp->conn_tcp; 12127 12128 /* 12129 * RST from fused tcp loopback peer should trigger an unfuse. 12130 */ 12131 if (tcp->tcp_fused) { 12132 TCP_STAT(tcp_fusion_aborted); 12133 tcp_unfuse(tcp); 12134 } 12135 12136 iphdr = mp->b_rptr; 12137 rptr = mp->b_rptr; 12138 ASSERT(OK_32PTR(rptr)); 12139 12140 /* 12141 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12142 * processing here. For rest call tcp_find_pktinfo to fill up the 12143 * necessary information. 12144 */ 12145 if (IPCL_IS_TCP4(connp)) { 12146 ipvers = IPV4_VERSION; 12147 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12148 } else { 12149 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12150 NULL, &ipp); 12151 if (mp == NULL) { 12152 TCP_STAT(tcp_rput_v6_error); 12153 return; 12154 } 12155 iphdr = mp->b_rptr; 12156 rptr = mp->b_rptr; 12157 } 12158 ASSERT(DB_TYPE(mp) == M_DATA); 12159 12160 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12161 seg_seq = ABE32_TO_U32(tcph->th_seq); 12162 seg_ack = ABE32_TO_U32(tcph->th_ack); 12163 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12164 seg_len = (int)(mp->b_wptr - rptr) - 12165 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12166 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12167 do { 12168 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12169 (uintptr_t)INT_MAX); 12170 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12171 } while ((mp1 = mp1->b_cont) != NULL && 12172 mp1->b_datap->db_type == M_DATA); 12173 } 12174 12175 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12176 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12177 seg_len, tcph); 12178 return; 12179 } 12180 12181 if (sqp != NULL) { 12182 /* 12183 * This is the correct place to update tcp_last_recv_time. Note 12184 * that it is also updated for tcp structure that belongs to 12185 * global and listener queues which do not really need updating. 12186 * But that should not cause any harm. And it is updated for 12187 * all kinds of incoming segments, not only for data segments. 12188 */ 12189 tcp->tcp_last_recv_time = lbolt; 12190 } 12191 12192 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12193 12194 BUMP_LOCAL(tcp->tcp_ibsegs); 12195 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12196 12197 if ((flags & TH_URG) && sqp != NULL) { 12198 /* 12199 * TCP can't handle urgent pointers that arrive before 12200 * the connection has been accept()ed since it can't 12201 * buffer OOB data. Discard segment if this happens. 12202 * 12203 * Nor can it reassemble urgent pointers, so discard 12204 * if it's not the next segment expected. 12205 * 12206 * Otherwise, collapse chain into one mblk (discard if 12207 * that fails). This makes sure the headers, retransmitted 12208 * data, and new data all are in the same mblk. 12209 */ 12210 ASSERT(mp != NULL); 12211 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12212 freemsg(mp); 12213 return; 12214 } 12215 /* Update pointers into message */ 12216 iphdr = rptr = mp->b_rptr; 12217 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12218 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12219 /* 12220 * Since we can't handle any data with this urgent 12221 * pointer that is out of sequence, we expunge 12222 * the data. This allows us to still register 12223 * the urgent mark and generate the M_PCSIG, 12224 * which we can do. 12225 */ 12226 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12227 seg_len = 0; 12228 } 12229 } 12230 12231 switch (tcp->tcp_state) { 12232 case TCPS_SYN_SENT: 12233 if (flags & TH_ACK) { 12234 /* 12235 * Note that our stack cannot send data before a 12236 * connection is established, therefore the 12237 * following check is valid. Otherwise, it has 12238 * to be changed. 12239 */ 12240 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12241 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12242 freemsg(mp); 12243 if (flags & TH_RST) 12244 return; 12245 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12246 tcp, seg_ack, 0, TH_RST); 12247 return; 12248 } 12249 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12250 } 12251 if (flags & TH_RST) { 12252 freemsg(mp); 12253 if (flags & TH_ACK) 12254 (void) tcp_clean_death(tcp, 12255 ECONNREFUSED, 13); 12256 return; 12257 } 12258 if (!(flags & TH_SYN)) { 12259 freemsg(mp); 12260 return; 12261 } 12262 12263 /* Process all TCP options. */ 12264 tcp_process_options(tcp, tcph); 12265 /* 12266 * The following changes our rwnd to be a multiple of the 12267 * MIN(peer MSS, our MSS) for performance reason. 12268 */ 12269 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12270 tcp->tcp_mss)); 12271 12272 /* Is the other end ECN capable? */ 12273 if (tcp->tcp_ecn_ok) { 12274 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12275 tcp->tcp_ecn_ok = B_FALSE; 12276 } 12277 } 12278 /* 12279 * Clear ECN flags because it may interfere with later 12280 * processing. 12281 */ 12282 flags &= ~(TH_ECE|TH_CWR); 12283 12284 tcp->tcp_irs = seg_seq; 12285 tcp->tcp_rack = seg_seq; 12286 tcp->tcp_rnxt = seg_seq + 1; 12287 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12288 if (!TCP_IS_DETACHED(tcp)) { 12289 /* Allocate room for SACK options if needed. */ 12290 if (tcp->tcp_snd_sack_ok) { 12291 (void) mi_set_sth_wroff(tcp->tcp_rq, 12292 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12293 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12294 } else { 12295 (void) mi_set_sth_wroff(tcp->tcp_rq, 12296 tcp->tcp_hdr_len + 12297 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12298 } 12299 } 12300 if (flags & TH_ACK) { 12301 /* 12302 * If we can't get the confirmation upstream, pretend 12303 * we didn't even see this one. 12304 * 12305 * XXX: how can we pretend we didn't see it if we 12306 * have updated rnxt et. al. 12307 * 12308 * For loopback we defer sending up the T_CONN_CON 12309 * until after some checks below. 12310 */ 12311 mp1 = NULL; 12312 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12313 tcp->tcp_loopback ? &mp1 : NULL)) { 12314 freemsg(mp); 12315 return; 12316 } 12317 /* SYN was acked - making progress */ 12318 if (tcp->tcp_ipversion == IPV6_VERSION) 12319 tcp->tcp_ip_forward_progress = B_TRUE; 12320 12321 /* One for the SYN */ 12322 tcp->tcp_suna = tcp->tcp_iss + 1; 12323 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12324 tcp->tcp_state = TCPS_ESTABLISHED; 12325 12326 /* 12327 * If SYN was retransmitted, need to reset all 12328 * retransmission info. This is because this 12329 * segment will be treated as a dup ACK. 12330 */ 12331 if (tcp->tcp_rexmit) { 12332 tcp->tcp_rexmit = B_FALSE; 12333 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12334 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12335 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12336 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12337 tcp->tcp_ms_we_have_waited = 0; 12338 12339 /* 12340 * Set tcp_cwnd back to 1 MSS, per 12341 * recommendation from 12342 * draft-floyd-incr-init-win-01.txt, 12343 * Increasing TCP's Initial Window. 12344 */ 12345 tcp->tcp_cwnd = tcp->tcp_mss; 12346 } 12347 12348 tcp->tcp_swl1 = seg_seq; 12349 tcp->tcp_swl2 = seg_ack; 12350 12351 new_swnd = BE16_TO_U16(tcph->th_win); 12352 tcp->tcp_swnd = new_swnd; 12353 if (new_swnd > tcp->tcp_max_swnd) 12354 tcp->tcp_max_swnd = new_swnd; 12355 12356 /* 12357 * Always send the three-way handshake ack immediately 12358 * in order to make the connection complete as soon as 12359 * possible on the accepting host. 12360 */ 12361 flags |= TH_ACK_NEEDED; 12362 12363 /* 12364 * Special case for loopback. At this point we have 12365 * received SYN-ACK from the remote endpoint. In 12366 * order to ensure that both endpoints reach the 12367 * fused state prior to any data exchange, the final 12368 * ACK needs to be sent before we indicate T_CONN_CON 12369 * to the module upstream. 12370 */ 12371 if (tcp->tcp_loopback) { 12372 mblk_t *ack_mp; 12373 12374 ASSERT(!tcp->tcp_unfusable); 12375 ASSERT(mp1 != NULL); 12376 /* 12377 * For loopback, we always get a pure SYN-ACK 12378 * and only need to send back the final ACK 12379 * with no data (this is because the other 12380 * tcp is ours and we don't do T/TCP). This 12381 * final ACK triggers the passive side to 12382 * perform fusion in ESTABLISHED state. 12383 */ 12384 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12385 if (tcp->tcp_ack_tid != 0) { 12386 (void) TCP_TIMER_CANCEL(tcp, 12387 tcp->tcp_ack_tid); 12388 tcp->tcp_ack_tid = 0; 12389 } 12390 TCP_RECORD_TRACE(tcp, ack_mp, 12391 TCP_TRACE_SEND_PKT); 12392 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12393 BUMP_LOCAL(tcp->tcp_obsegs); 12394 BUMP_MIB(&tcp_mib, tcpOutAck); 12395 12396 /* Send up T_CONN_CON */ 12397 putnext(tcp->tcp_rq, mp1); 12398 12399 freemsg(mp); 12400 return; 12401 } 12402 /* 12403 * Forget fusion; we need to handle more 12404 * complex cases below. Send the deferred 12405 * T_CONN_CON message upstream and proceed 12406 * as usual. Mark this tcp as not capable 12407 * of fusion. 12408 */ 12409 TCP_STAT(tcp_fusion_unfusable); 12410 tcp->tcp_unfusable = B_TRUE; 12411 putnext(tcp->tcp_rq, mp1); 12412 } 12413 12414 /* 12415 * Check to see if there is data to be sent. If 12416 * yes, set the transmit flag. Then check to see 12417 * if received data processing needs to be done. 12418 * If not, go straight to xmit_check. This short 12419 * cut is OK as we don't support T/TCP. 12420 */ 12421 if (tcp->tcp_unsent) 12422 flags |= TH_XMIT_NEEDED; 12423 12424 if (seg_len == 0 && !(flags & TH_URG)) { 12425 freemsg(mp); 12426 goto xmit_check; 12427 } 12428 12429 flags &= ~TH_SYN; 12430 seg_seq++; 12431 break; 12432 } 12433 tcp->tcp_state = TCPS_SYN_RCVD; 12434 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12435 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12436 if (mp1) { 12437 mblk_setcred(mp1, tcp->tcp_cred); 12438 DB_CPID(mp1) = tcp->tcp_cpid; 12439 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12440 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12441 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12442 } 12443 freemsg(mp); 12444 return; 12445 case TCPS_SYN_RCVD: 12446 if (flags & TH_ACK) { 12447 /* 12448 * In this state, a SYN|ACK packet is either bogus 12449 * because the other side must be ACKing our SYN which 12450 * indicates it has seen the ACK for their SYN and 12451 * shouldn't retransmit it or we're crossing SYNs 12452 * on active open. 12453 */ 12454 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12455 freemsg(mp); 12456 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12457 tcp, seg_ack, 0, TH_RST); 12458 return; 12459 } 12460 /* 12461 * NOTE: RFC 793 pg. 72 says this should be 12462 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12463 * but that would mean we have an ack that ignored 12464 * our SYN. 12465 */ 12466 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12467 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12468 freemsg(mp); 12469 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12470 tcp, seg_ack, 0, TH_RST); 12471 return; 12472 } 12473 } 12474 break; 12475 case TCPS_LISTEN: 12476 /* 12477 * Only a TLI listener can come through this path when a 12478 * acceptor is going back to be a listener and a packet 12479 * for the acceptor hits the classifier. For a socket 12480 * listener, this can never happen because a listener 12481 * can never accept connection on itself and hence a 12482 * socket acceptor can not go back to being a listener. 12483 */ 12484 ASSERT(!TCP_IS_SOCKET(tcp)); 12485 /*FALLTHRU*/ 12486 case TCPS_CLOSED: 12487 case TCPS_BOUND: { 12488 conn_t *new_connp; 12489 12490 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12491 if (new_connp != NULL) { 12492 tcp_reinput(new_connp, mp, connp->conn_sqp); 12493 return; 12494 } 12495 /* We failed to classify. For now just drop the packet */ 12496 freemsg(mp); 12497 return; 12498 } 12499 case TCPS_IDLE: 12500 /* 12501 * Handle the case where the tcp_clean_death() has happened 12502 * on a connection (application hasn't closed yet) but a packet 12503 * was already queued on squeue before tcp_clean_death() 12504 * was processed. Calling tcp_clean_death() twice on same 12505 * connection can result in weird behaviour. 12506 */ 12507 freemsg(mp); 12508 return; 12509 default: 12510 break; 12511 } 12512 12513 /* 12514 * Already on the correct queue/perimeter. 12515 * If this is a detached connection and not an eager 12516 * connection hanging off a listener then new data 12517 * (past the FIN) will cause a reset. 12518 * We do a special check here where it 12519 * is out of the main line, rather than check 12520 * if we are detached every time we see new 12521 * data down below. 12522 */ 12523 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12524 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12525 BUMP_MIB(&tcp_mib, tcpInClosed); 12526 TCP_RECORD_TRACE(tcp, 12527 mp, TCP_TRACE_RECV_PKT); 12528 freemsg(mp); 12529 tcp_xmit_ctl("new data when detached", tcp, 12530 tcp->tcp_snxt, 0, TH_RST); 12531 (void) tcp_clean_death(tcp, EPROTO, 12); 12532 return; 12533 } 12534 12535 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12536 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12537 new_swnd = BE16_TO_U16(tcph->th_win) << 12538 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12539 mss = tcp->tcp_mss; 12540 12541 if (tcp->tcp_snd_ts_ok) { 12542 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12543 /* 12544 * This segment is not acceptable. 12545 * Drop it and send back an ACK. 12546 */ 12547 freemsg(mp); 12548 flags |= TH_ACK_NEEDED; 12549 goto ack_check; 12550 } 12551 } else if (tcp->tcp_snd_sack_ok) { 12552 ASSERT(tcp->tcp_sack_info != NULL); 12553 tcpopt.tcp = tcp; 12554 /* 12555 * SACK info in already updated in tcp_parse_options. Ignore 12556 * all other TCP options... 12557 */ 12558 (void) tcp_parse_options(tcph, &tcpopt); 12559 } 12560 try_again:; 12561 gap = seg_seq - tcp->tcp_rnxt; 12562 rgap = tcp->tcp_rwnd - (gap + seg_len); 12563 /* 12564 * gap is the amount of sequence space between what we expect to see 12565 * and what we got for seg_seq. A positive value for gap means 12566 * something got lost. A negative value means we got some old stuff. 12567 */ 12568 if (gap < 0) { 12569 /* Old stuff present. Is the SYN in there? */ 12570 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12571 (seg_len != 0)) { 12572 flags &= ~TH_SYN; 12573 seg_seq++; 12574 urp--; 12575 /* Recompute the gaps after noting the SYN. */ 12576 goto try_again; 12577 } 12578 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12579 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12580 (seg_len > -gap ? -gap : seg_len)); 12581 /* Remove the old stuff from seg_len. */ 12582 seg_len += gap; 12583 /* 12584 * Anything left? 12585 * Make sure to check for unack'd FIN when rest of data 12586 * has been previously ack'd. 12587 */ 12588 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 12589 /* 12590 * Resets are only valid if they lie within our offered 12591 * window. If the RST bit is set, we just ignore this 12592 * segment. 12593 */ 12594 if (flags & TH_RST) { 12595 freemsg(mp); 12596 return; 12597 } 12598 12599 /* 12600 * The arriving of dup data packets indicate that we 12601 * may have postponed an ack for too long, or the other 12602 * side's RTT estimate is out of shape. Start acking 12603 * more often. 12604 */ 12605 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 12606 tcp->tcp_rack_cnt >= 1 && 12607 tcp->tcp_rack_abs_max > 2) { 12608 tcp->tcp_rack_abs_max--; 12609 } 12610 tcp->tcp_rack_cur_max = 1; 12611 12612 /* 12613 * This segment is "unacceptable". None of its 12614 * sequence space lies within our advertized window. 12615 * 12616 * Adjust seg_len to the original value for tracing. 12617 */ 12618 seg_len -= gap; 12619 if (tcp->tcp_debug) { 12620 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12621 "tcp_rput: unacceptable, gap %d, rgap %d, " 12622 "flags 0x%x, seg_seq %u, seg_ack %u, " 12623 "seg_len %d, rnxt %u, snxt %u, %s", 12624 gap, rgap, flags, seg_seq, seg_ack, 12625 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 12626 tcp_display(tcp, NULL, 12627 DISP_ADDR_AND_PORT)); 12628 } 12629 12630 /* 12631 * Arrange to send an ACK in response to the 12632 * unacceptable segment per RFC 793 page 69. There 12633 * is only one small difference between ours and the 12634 * acceptability test in the RFC - we accept ACK-only 12635 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 12636 * will be generated. 12637 * 12638 * Note that we have to ACK an ACK-only packet at least 12639 * for stacks that send 0-length keep-alives with 12640 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 12641 * section 4.2.3.6. As long as we don't ever generate 12642 * an unacceptable packet in response to an incoming 12643 * packet that is unacceptable, it should not cause 12644 * "ACK wars". 12645 */ 12646 flags |= TH_ACK_NEEDED; 12647 12648 /* 12649 * Continue processing this segment in order to use the 12650 * ACK information it contains, but skip all other 12651 * sequence-number processing. Processing the ACK 12652 * information is necessary in order to 12653 * re-synchronize connections that may have lost 12654 * synchronization. 12655 * 12656 * We clear seg_len and flag fields related to 12657 * sequence number processing as they are not 12658 * to be trusted for an unacceptable segment. 12659 */ 12660 seg_len = 0; 12661 flags &= ~(TH_SYN | TH_FIN | TH_URG); 12662 goto process_ack; 12663 } 12664 12665 /* Fix seg_seq, and chew the gap off the front. */ 12666 seg_seq = tcp->tcp_rnxt; 12667 urp += gap; 12668 do { 12669 mblk_t *mp2; 12670 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12671 (uintptr_t)UINT_MAX); 12672 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 12673 if (gap > 0) { 12674 mp->b_rptr = mp->b_wptr - gap; 12675 break; 12676 } 12677 mp2 = mp; 12678 mp = mp->b_cont; 12679 freeb(mp2); 12680 } while (gap < 0); 12681 /* 12682 * If the urgent data has already been acknowledged, we 12683 * should ignore TH_URG below 12684 */ 12685 if (urp < 0) 12686 flags &= ~TH_URG; 12687 } 12688 /* 12689 * rgap is the amount of stuff received out of window. A negative 12690 * value is the amount out of window. 12691 */ 12692 if (rgap < 0) { 12693 mblk_t *mp2; 12694 12695 if (tcp->tcp_rwnd == 0) { 12696 BUMP_MIB(&tcp_mib, tcpInWinProbe); 12697 } else { 12698 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 12699 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 12700 } 12701 12702 /* 12703 * seg_len does not include the FIN, so if more than 12704 * just the FIN is out of window, we act like we don't 12705 * see it. (If just the FIN is out of window, rgap 12706 * will be zero and we will go ahead and acknowledge 12707 * the FIN.) 12708 */ 12709 flags &= ~TH_FIN; 12710 12711 /* Fix seg_len and make sure there is something left. */ 12712 seg_len += rgap; 12713 if (seg_len <= 0) { 12714 /* 12715 * Resets are only valid if they lie within our offered 12716 * window. If the RST bit is set, we just ignore this 12717 * segment. 12718 */ 12719 if (flags & TH_RST) { 12720 freemsg(mp); 12721 return; 12722 } 12723 12724 /* Per RFC 793, we need to send back an ACK. */ 12725 flags |= TH_ACK_NEEDED; 12726 12727 /* 12728 * Send SIGURG as soon as possible i.e. even 12729 * if the TH_URG was delivered in a window probe 12730 * packet (which will be unacceptable). 12731 * 12732 * We generate a signal if none has been generated 12733 * for this connection or if this is a new urgent 12734 * byte. Also send a zero-length "unmarked" message 12735 * to inform SIOCATMARK that this is not the mark. 12736 * 12737 * tcp_urp_last_valid is cleared when the T_exdata_ind 12738 * is sent up. This plus the check for old data 12739 * (gap >= 0) handles the wraparound of the sequence 12740 * number space without having to always track the 12741 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 12742 * this max in its rcv_up variable). 12743 * 12744 * This prevents duplicate SIGURGS due to a "late" 12745 * zero-window probe when the T_EXDATA_IND has already 12746 * been sent up. 12747 */ 12748 if ((flags & TH_URG) && 12749 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 12750 tcp->tcp_urp_last))) { 12751 mp1 = allocb(0, BPRI_MED); 12752 if (mp1 == NULL) { 12753 freemsg(mp); 12754 return; 12755 } 12756 if (!TCP_IS_DETACHED(tcp) && 12757 !putnextctl1(tcp->tcp_rq, M_PCSIG, 12758 SIGURG)) { 12759 /* Try again on the rexmit. */ 12760 freemsg(mp1); 12761 freemsg(mp); 12762 return; 12763 } 12764 /* 12765 * If the next byte would be the mark 12766 * then mark with MARKNEXT else mark 12767 * with NOTMARKNEXT. 12768 */ 12769 if (gap == 0 && urp == 0) 12770 mp1->b_flag |= MSGMARKNEXT; 12771 else 12772 mp1->b_flag |= MSGNOTMARKNEXT; 12773 freemsg(tcp->tcp_urp_mark_mp); 12774 tcp->tcp_urp_mark_mp = mp1; 12775 flags |= TH_SEND_URP_MARK; 12776 tcp->tcp_urp_last_valid = B_TRUE; 12777 tcp->tcp_urp_last = urp + seg_seq; 12778 } 12779 /* 12780 * If this is a zero window probe, continue to 12781 * process the ACK part. But we need to set seg_len 12782 * to 0 to avoid data processing. Otherwise just 12783 * drop the segment and send back an ACK. 12784 */ 12785 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 12786 flags &= ~(TH_SYN | TH_URG); 12787 seg_len = 0; 12788 goto process_ack; 12789 } else { 12790 freemsg(mp); 12791 goto ack_check; 12792 } 12793 } 12794 /* Pitch out of window stuff off the end. */ 12795 rgap = seg_len; 12796 mp2 = mp; 12797 do { 12798 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 12799 (uintptr_t)INT_MAX); 12800 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 12801 if (rgap < 0) { 12802 mp2->b_wptr += rgap; 12803 if ((mp1 = mp2->b_cont) != NULL) { 12804 mp2->b_cont = NULL; 12805 freemsg(mp1); 12806 } 12807 break; 12808 } 12809 } while ((mp2 = mp2->b_cont) != NULL); 12810 } 12811 ok:; 12812 /* 12813 * TCP should check ECN info for segments inside the window only. 12814 * Therefore the check should be done here. 12815 */ 12816 if (tcp->tcp_ecn_ok) { 12817 if (flags & TH_CWR) { 12818 tcp->tcp_ecn_echo_on = B_FALSE; 12819 } 12820 /* 12821 * Note that both ECN_CE and CWR can be set in the 12822 * same segment. In this case, we once again turn 12823 * on ECN_ECHO. 12824 */ 12825 if (tcp->tcp_ipversion == IPV4_VERSION) { 12826 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 12827 12828 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 12829 tcp->tcp_ecn_echo_on = B_TRUE; 12830 } 12831 } else { 12832 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 12833 12834 if ((vcf & htonl(IPH_ECN_CE << 20)) == 12835 htonl(IPH_ECN_CE << 20)) { 12836 tcp->tcp_ecn_echo_on = B_TRUE; 12837 } 12838 } 12839 } 12840 12841 /* 12842 * Check whether we can update tcp_ts_recent. This test is 12843 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 12844 * Extensions for High Performance: An Update", Internet Draft. 12845 */ 12846 if (tcp->tcp_snd_ts_ok && 12847 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 12848 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 12849 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12850 tcp->tcp_last_rcv_lbolt = lbolt64; 12851 } 12852 12853 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 12854 /* 12855 * FIN in an out of order segment. We record this in 12856 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 12857 * Clear the FIN so that any check on FIN flag will fail. 12858 * Remember that FIN also counts in the sequence number 12859 * space. So we need to ack out of order FIN only segments. 12860 */ 12861 if (flags & TH_FIN) { 12862 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 12863 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 12864 flags &= ~TH_FIN; 12865 flags |= TH_ACK_NEEDED; 12866 } 12867 if (seg_len > 0) { 12868 /* Fill in the SACK blk list. */ 12869 if (tcp->tcp_snd_sack_ok) { 12870 ASSERT(tcp->tcp_sack_info != NULL); 12871 tcp_sack_insert(tcp->tcp_sack_list, 12872 seg_seq, seg_seq + seg_len, 12873 &(tcp->tcp_num_sack_blk)); 12874 } 12875 12876 /* 12877 * Attempt reassembly and see if we have something 12878 * ready to go. 12879 */ 12880 mp = tcp_reass(tcp, mp, seg_seq); 12881 /* Always ack out of order packets */ 12882 flags |= TH_ACK_NEEDED | TH_PUSH; 12883 if (mp) { 12884 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12885 (uintptr_t)INT_MAX); 12886 seg_len = mp->b_cont ? msgdsize(mp) : 12887 (int)(mp->b_wptr - mp->b_rptr); 12888 seg_seq = tcp->tcp_rnxt; 12889 /* 12890 * A gap is filled and the seq num and len 12891 * of the gap match that of a previously 12892 * received FIN, put the FIN flag back in. 12893 */ 12894 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 12895 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 12896 flags |= TH_FIN; 12897 tcp->tcp_valid_bits &= 12898 ~TCP_OFO_FIN_VALID; 12899 } 12900 } else { 12901 /* 12902 * Keep going even with NULL mp. 12903 * There may be a useful ACK or something else 12904 * we don't want to miss. 12905 * 12906 * But TCP should not perform fast retransmit 12907 * because of the ack number. TCP uses 12908 * seg_len == 0 to determine if it is a pure 12909 * ACK. And this is not a pure ACK. 12910 */ 12911 seg_len = 0; 12912 ofo_seg = B_TRUE; 12913 } 12914 } 12915 } else if (seg_len > 0) { 12916 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 12917 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 12918 /* 12919 * If an out of order FIN was received before, and the seq 12920 * num and len of the new segment match that of the FIN, 12921 * put the FIN flag back in. 12922 */ 12923 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 12924 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 12925 flags |= TH_FIN; 12926 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 12927 } 12928 } 12929 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 12930 if (flags & TH_RST) { 12931 freemsg(mp); 12932 switch (tcp->tcp_state) { 12933 case TCPS_SYN_RCVD: 12934 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 12935 break; 12936 case TCPS_ESTABLISHED: 12937 case TCPS_FIN_WAIT_1: 12938 case TCPS_FIN_WAIT_2: 12939 case TCPS_CLOSE_WAIT: 12940 (void) tcp_clean_death(tcp, ECONNRESET, 15); 12941 break; 12942 case TCPS_CLOSING: 12943 case TCPS_LAST_ACK: 12944 (void) tcp_clean_death(tcp, 0, 16); 12945 break; 12946 default: 12947 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12948 (void) tcp_clean_death(tcp, ENXIO, 17); 12949 break; 12950 } 12951 return; 12952 } 12953 if (flags & TH_SYN) { 12954 /* 12955 * See RFC 793, Page 71 12956 * 12957 * The seq number must be in the window as it should 12958 * be "fixed" above. If it is outside window, it should 12959 * be already rejected. Note that we allow seg_seq to be 12960 * rnxt + rwnd because we want to accept 0 window probe. 12961 */ 12962 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 12963 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 12964 freemsg(mp); 12965 /* 12966 * If the ACK flag is not set, just use our snxt as the 12967 * seq number of the RST segment. 12968 */ 12969 if (!(flags & TH_ACK)) { 12970 seg_ack = tcp->tcp_snxt; 12971 } 12972 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 12973 TH_RST|TH_ACK); 12974 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12975 (void) tcp_clean_death(tcp, ECONNRESET, 18); 12976 return; 12977 } 12978 /* 12979 * urp could be -1 when the urp field in the packet is 0 12980 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 12981 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 12982 */ 12983 if (flags & TH_URG && urp >= 0) { 12984 if (!tcp->tcp_urp_last_valid || 12985 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 12986 /* 12987 * If we haven't generated the signal yet for this 12988 * urgent pointer value, do it now. Also, send up a 12989 * zero-length M_DATA indicating whether or not this is 12990 * the mark. The latter is not needed when a 12991 * T_EXDATA_IND is sent up. However, if there are 12992 * allocation failures this code relies on the sender 12993 * retransmitting and the socket code for determining 12994 * the mark should not block waiting for the peer to 12995 * transmit. Thus, for simplicity we always send up the 12996 * mark indication. 12997 */ 12998 mp1 = allocb(0, BPRI_MED); 12999 if (mp1 == NULL) { 13000 freemsg(mp); 13001 return; 13002 } 13003 if (!TCP_IS_DETACHED(tcp) && 13004 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13005 /* Try again on the rexmit. */ 13006 freemsg(mp1); 13007 freemsg(mp); 13008 return; 13009 } 13010 /* 13011 * Mark with NOTMARKNEXT for now. 13012 * The code below will change this to MARKNEXT 13013 * if we are at the mark. 13014 * 13015 * If there are allocation failures (e.g. in dupmsg 13016 * below) the next time tcp_rput_data sees the urgent 13017 * segment it will send up the MSG*MARKNEXT message. 13018 */ 13019 mp1->b_flag |= MSGNOTMARKNEXT; 13020 freemsg(tcp->tcp_urp_mark_mp); 13021 tcp->tcp_urp_mark_mp = mp1; 13022 flags |= TH_SEND_URP_MARK; 13023 #ifdef DEBUG 13024 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13025 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13026 "last %x, %s", 13027 seg_seq, urp, tcp->tcp_urp_last, 13028 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13029 #endif /* DEBUG */ 13030 tcp->tcp_urp_last_valid = B_TRUE; 13031 tcp->tcp_urp_last = urp + seg_seq; 13032 } else if (tcp->tcp_urp_mark_mp != NULL) { 13033 /* 13034 * An allocation failure prevented the previous 13035 * tcp_rput_data from sending up the allocated 13036 * MSG*MARKNEXT message - send it up this time 13037 * around. 13038 */ 13039 flags |= TH_SEND_URP_MARK; 13040 } 13041 13042 /* 13043 * If the urgent byte is in this segment, make sure that it is 13044 * all by itself. This makes it much easier to deal with the 13045 * possibility of an allocation failure on the T_exdata_ind. 13046 * Note that seg_len is the number of bytes in the segment, and 13047 * urp is the offset into the segment of the urgent byte. 13048 * urp < seg_len means that the urgent byte is in this segment. 13049 */ 13050 if (urp < seg_len) { 13051 if (seg_len != 1) { 13052 uint32_t tmp_rnxt; 13053 /* 13054 * Break it up and feed it back in. 13055 * Re-attach the IP header. 13056 */ 13057 mp->b_rptr = iphdr; 13058 if (urp > 0) { 13059 /* 13060 * There is stuff before the urgent 13061 * byte. 13062 */ 13063 mp1 = dupmsg(mp); 13064 if (!mp1) { 13065 /* 13066 * Trim from urgent byte on. 13067 * The rest will come back. 13068 */ 13069 (void) adjmsg(mp, 13070 urp - seg_len); 13071 tcp_rput_data(connp, 13072 mp, NULL); 13073 return; 13074 } 13075 (void) adjmsg(mp1, urp - seg_len); 13076 /* Feed this piece back in. */ 13077 tmp_rnxt = tcp->tcp_rnxt; 13078 tcp_rput_data(connp, mp1, NULL); 13079 /* 13080 * If the data passed back in was not 13081 * processed (ie: bad ACK) sending 13082 * the remainder back in will cause a 13083 * loop. In this case, drop the 13084 * packet and let the sender try 13085 * sending a good packet. 13086 */ 13087 if (tmp_rnxt == tcp->tcp_rnxt) { 13088 freemsg(mp); 13089 return; 13090 } 13091 } 13092 if (urp != seg_len - 1) { 13093 uint32_t tmp_rnxt; 13094 /* 13095 * There is stuff after the urgent 13096 * byte. 13097 */ 13098 mp1 = dupmsg(mp); 13099 if (!mp1) { 13100 /* 13101 * Trim everything beyond the 13102 * urgent byte. The rest will 13103 * come back. 13104 */ 13105 (void) adjmsg(mp, 13106 urp + 1 - seg_len); 13107 tcp_rput_data(connp, 13108 mp, NULL); 13109 return; 13110 } 13111 (void) adjmsg(mp1, urp + 1 - seg_len); 13112 tmp_rnxt = tcp->tcp_rnxt; 13113 tcp_rput_data(connp, mp1, NULL); 13114 /* 13115 * If the data passed back in was not 13116 * processed (ie: bad ACK) sending 13117 * the remainder back in will cause a 13118 * loop. In this case, drop the 13119 * packet and let the sender try 13120 * sending a good packet. 13121 */ 13122 if (tmp_rnxt == tcp->tcp_rnxt) { 13123 freemsg(mp); 13124 return; 13125 } 13126 } 13127 tcp_rput_data(connp, mp, NULL); 13128 return; 13129 } 13130 /* 13131 * This segment contains only the urgent byte. We 13132 * have to allocate the T_exdata_ind, if we can. 13133 */ 13134 if (!tcp->tcp_urp_mp) { 13135 struct T_exdata_ind *tei; 13136 mp1 = allocb(sizeof (struct T_exdata_ind), 13137 BPRI_MED); 13138 if (!mp1) { 13139 /* 13140 * Sigh... It'll be back. 13141 * Generate any MSG*MARK message now. 13142 */ 13143 freemsg(mp); 13144 seg_len = 0; 13145 if (flags & TH_SEND_URP_MARK) { 13146 13147 13148 ASSERT(tcp->tcp_urp_mark_mp); 13149 tcp->tcp_urp_mark_mp->b_flag &= 13150 ~MSGNOTMARKNEXT; 13151 tcp->tcp_urp_mark_mp->b_flag |= 13152 MSGMARKNEXT; 13153 } 13154 goto ack_check; 13155 } 13156 mp1->b_datap->db_type = M_PROTO; 13157 tei = (struct T_exdata_ind *)mp1->b_rptr; 13158 tei->PRIM_type = T_EXDATA_IND; 13159 tei->MORE_flag = 0; 13160 mp1->b_wptr = (uchar_t *)&tei[1]; 13161 tcp->tcp_urp_mp = mp1; 13162 #ifdef DEBUG 13163 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13164 "tcp_rput: allocated exdata_ind %s", 13165 tcp_display(tcp, NULL, 13166 DISP_PORT_ONLY)); 13167 #endif /* DEBUG */ 13168 /* 13169 * There is no need to send a separate MSG*MARK 13170 * message since the T_EXDATA_IND will be sent 13171 * now. 13172 */ 13173 flags &= ~TH_SEND_URP_MARK; 13174 freemsg(tcp->tcp_urp_mark_mp); 13175 tcp->tcp_urp_mark_mp = NULL; 13176 } 13177 /* 13178 * Now we are all set. On the next putnext upstream, 13179 * tcp_urp_mp will be non-NULL and will get prepended 13180 * to what has to be this piece containing the urgent 13181 * byte. If for any reason we abort this segment below, 13182 * if it comes back, we will have this ready, or it 13183 * will get blown off in close. 13184 */ 13185 } else if (urp == seg_len) { 13186 /* 13187 * The urgent byte is the next byte after this sequence 13188 * number. If there is data it is marked with 13189 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13190 * since it is not needed. Otherwise, if the code 13191 * above just allocated a zero-length tcp_urp_mark_mp 13192 * message, that message is tagged with MSGMARKNEXT. 13193 * Sending up these MSGMARKNEXT messages makes 13194 * SIOCATMARK work correctly even though 13195 * the T_EXDATA_IND will not be sent up until the 13196 * urgent byte arrives. 13197 */ 13198 if (seg_len != 0) { 13199 flags |= TH_MARKNEXT_NEEDED; 13200 freemsg(tcp->tcp_urp_mark_mp); 13201 tcp->tcp_urp_mark_mp = NULL; 13202 flags &= ~TH_SEND_URP_MARK; 13203 } else if (tcp->tcp_urp_mark_mp != NULL) { 13204 flags |= TH_SEND_URP_MARK; 13205 tcp->tcp_urp_mark_mp->b_flag &= 13206 ~MSGNOTMARKNEXT; 13207 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13208 } 13209 #ifdef DEBUG 13210 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13211 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13212 seg_len, flags, 13213 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13214 #endif /* DEBUG */ 13215 } else { 13216 /* Data left until we hit mark */ 13217 #ifdef DEBUG 13218 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13219 "tcp_rput: URP %d bytes left, %s", 13220 urp - seg_len, tcp_display(tcp, NULL, 13221 DISP_PORT_ONLY)); 13222 #endif /* DEBUG */ 13223 } 13224 } 13225 13226 process_ack: 13227 if (!(flags & TH_ACK)) { 13228 freemsg(mp); 13229 goto xmit_check; 13230 } 13231 } 13232 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13233 13234 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13235 tcp->tcp_ip_forward_progress = B_TRUE; 13236 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13237 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 13238 /* 3-way handshake complete - pass up the T_CONN_IND */ 13239 tcp_t *listener = tcp->tcp_listener; 13240 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13241 13242 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13243 /* 13244 * We are here means eager is fine but it can 13245 * get a TH_RST at any point between now and till 13246 * accept completes and disappear. We need to 13247 * ensure that reference to eager is valid after 13248 * we get out of eager's perimeter. So we do 13249 * an extra refhold. 13250 */ 13251 CONN_INC_REF(connp); 13252 13253 /* 13254 * The listener also exists because of the refhold 13255 * done in tcp_conn_request. Its possible that it 13256 * might have closed. We will check that once we 13257 * get inside listeners context. 13258 */ 13259 CONN_INC_REF(listener->tcp_connp); 13260 if (listener->tcp_connp->conn_sqp == 13261 connp->conn_sqp) { 13262 tcp_send_conn_ind(listener->tcp_connp, mp, 13263 listener->tcp_connp->conn_sqp); 13264 CONN_DEC_REF(listener->tcp_connp); 13265 } else if (!tcp->tcp_loopback) { 13266 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13267 tcp_send_conn_ind, 13268 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13269 } else { 13270 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13271 tcp_send_conn_ind, listener->tcp_connp, 13272 SQTAG_TCP_CONN_IND); 13273 } 13274 } 13275 13276 if (tcp->tcp_active_open) { 13277 /* 13278 * We are seeing the final ack in the three way 13279 * hand shake of a active open'ed connection 13280 * so we must send up a T_CONN_CON 13281 */ 13282 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13283 freemsg(mp); 13284 return; 13285 } 13286 /* 13287 * Don't fuse the loopback endpoints for 13288 * simultaneous active opens. 13289 */ 13290 if (tcp->tcp_loopback) { 13291 TCP_STAT(tcp_fusion_unfusable); 13292 tcp->tcp_unfusable = B_TRUE; 13293 } 13294 } 13295 13296 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13297 bytes_acked--; 13298 /* SYN was acked - making progress */ 13299 if (tcp->tcp_ipversion == IPV6_VERSION) 13300 tcp->tcp_ip_forward_progress = B_TRUE; 13301 13302 /* 13303 * If SYN was retransmitted, need to reset all 13304 * retransmission info as this segment will be 13305 * treated as a dup ACK. 13306 */ 13307 if (tcp->tcp_rexmit) { 13308 tcp->tcp_rexmit = B_FALSE; 13309 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13310 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13311 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13312 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13313 tcp->tcp_ms_we_have_waited = 0; 13314 tcp->tcp_cwnd = mss; 13315 } 13316 13317 /* 13318 * We set the send window to zero here. 13319 * This is needed if there is data to be 13320 * processed already on the queue. 13321 * Later (at swnd_update label), the 13322 * "new_swnd > tcp_swnd" condition is satisfied 13323 * the XMIT_NEEDED flag is set in the current 13324 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13325 * called if there is already data on queue in 13326 * this state. 13327 */ 13328 tcp->tcp_swnd = 0; 13329 13330 if (new_swnd > tcp->tcp_max_swnd) 13331 tcp->tcp_max_swnd = new_swnd; 13332 tcp->tcp_swl1 = seg_seq; 13333 tcp->tcp_swl2 = seg_ack; 13334 tcp->tcp_state = TCPS_ESTABLISHED; 13335 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13336 13337 /* Fuse when both sides are in ESTABLISHED state */ 13338 if (tcp->tcp_loopback && do_tcp_fusion) 13339 tcp_fuse(tcp, iphdr, tcph); 13340 13341 } 13342 /* This code follows 4.4BSD-Lite2 mostly. */ 13343 if (bytes_acked < 0) 13344 goto est; 13345 13346 /* 13347 * If TCP is ECN capable and the congestion experience bit is 13348 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13349 * done once per window (or more loosely, per RTT). 13350 */ 13351 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13352 tcp->tcp_cwr = B_FALSE; 13353 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13354 if (!tcp->tcp_cwr) { 13355 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13356 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13357 tcp->tcp_cwnd = npkt * mss; 13358 /* 13359 * If the cwnd is 0, use the timer to clock out 13360 * new segments. This is required by the ECN spec. 13361 */ 13362 if (npkt == 0) { 13363 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13364 /* 13365 * This makes sure that when the ACK comes 13366 * back, we will increase tcp_cwnd by 1 MSS. 13367 */ 13368 tcp->tcp_cwnd_cnt = 0; 13369 } 13370 tcp->tcp_cwr = B_TRUE; 13371 /* 13372 * This marks the end of the current window of in 13373 * flight data. That is why we don't use 13374 * tcp_suna + tcp_swnd. Only data in flight can 13375 * provide ECN info. 13376 */ 13377 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13378 tcp->tcp_ecn_cwr_sent = B_FALSE; 13379 } 13380 } 13381 13382 mp1 = tcp->tcp_xmit_head; 13383 if (bytes_acked == 0) { 13384 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13385 int dupack_cnt; 13386 13387 BUMP_MIB(&tcp_mib, tcpInDupAck); 13388 /* 13389 * Fast retransmit. When we have seen exactly three 13390 * identical ACKs while we have unacked data 13391 * outstanding we take it as a hint that our peer 13392 * dropped something. 13393 * 13394 * If TCP is retransmitting, don't do fast retransmit. 13395 */ 13396 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13397 ! tcp->tcp_rexmit) { 13398 /* Do Limited Transmit */ 13399 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13400 tcp_dupack_fast_retransmit) { 13401 /* 13402 * RFC 3042 13403 * 13404 * What we need to do is temporarily 13405 * increase tcp_cwnd so that new 13406 * data can be sent if it is allowed 13407 * by the receive window (tcp_rwnd). 13408 * tcp_wput_data() will take care of 13409 * the rest. 13410 * 13411 * If the connection is SACK capable, 13412 * only do limited xmit when there 13413 * is SACK info. 13414 * 13415 * Note how tcp_cwnd is incremented. 13416 * The first dup ACK will increase 13417 * it by 1 MSS. The second dup ACK 13418 * will increase it by 2 MSS. This 13419 * means that only 1 new segment will 13420 * be sent for each dup ACK. 13421 */ 13422 if (tcp->tcp_unsent > 0 && 13423 (!tcp->tcp_snd_sack_ok || 13424 (tcp->tcp_snd_sack_ok && 13425 tcp->tcp_notsack_list != NULL))) { 13426 tcp->tcp_cwnd += mss << 13427 (tcp->tcp_dupack_cnt - 1); 13428 flags |= TH_LIMIT_XMIT; 13429 } 13430 } else if (dupack_cnt == 13431 tcp_dupack_fast_retransmit) { 13432 13433 /* 13434 * If we have reduced tcp_ssthresh 13435 * because of ECN, do not reduce it again 13436 * unless it is already one window of data 13437 * away. After one window of data, tcp_cwr 13438 * should then be cleared. Note that 13439 * for non ECN capable connection, tcp_cwr 13440 * should always be false. 13441 * 13442 * Adjust cwnd since the duplicate 13443 * ack indicates that a packet was 13444 * dropped (due to congestion.) 13445 */ 13446 if (!tcp->tcp_cwr) { 13447 npkt = ((tcp->tcp_snxt - 13448 tcp->tcp_suna) >> 1) / mss; 13449 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13450 mss; 13451 tcp->tcp_cwnd = (npkt + 13452 tcp->tcp_dupack_cnt) * mss; 13453 } 13454 if (tcp->tcp_ecn_ok) { 13455 tcp->tcp_cwr = B_TRUE; 13456 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13457 tcp->tcp_ecn_cwr_sent = B_FALSE; 13458 } 13459 13460 /* 13461 * We do Hoe's algorithm. Refer to her 13462 * paper "Improving the Start-up Behavior 13463 * of a Congestion Control Scheme for TCP," 13464 * appeared in SIGCOMM'96. 13465 * 13466 * Save highest seq no we have sent so far. 13467 * Be careful about the invisible FIN byte. 13468 */ 13469 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13470 (tcp->tcp_unsent == 0)) { 13471 tcp->tcp_rexmit_max = tcp->tcp_fss; 13472 } else { 13473 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13474 } 13475 13476 /* 13477 * Do not allow bursty traffic during. 13478 * fast recovery. Refer to Fall and Floyd's 13479 * paper "Simulation-based Comparisons of 13480 * Tahoe, Reno and SACK TCP" (in CCR?) 13481 * This is a best current practise. 13482 */ 13483 tcp->tcp_snd_burst = TCP_CWND_SS; 13484 13485 /* 13486 * For SACK: 13487 * Calculate tcp_pipe, which is the 13488 * estimated number of bytes in 13489 * network. 13490 * 13491 * tcp_fack is the highest sack'ed seq num 13492 * TCP has received. 13493 * 13494 * tcp_pipe is explained in the above quoted 13495 * Fall and Floyd's paper. tcp_fack is 13496 * explained in Mathis and Mahdavi's 13497 * "Forward Acknowledgment: Refining TCP 13498 * Congestion Control" in SIGCOMM '96. 13499 */ 13500 if (tcp->tcp_snd_sack_ok) { 13501 ASSERT(tcp->tcp_sack_info != NULL); 13502 if (tcp->tcp_notsack_list != NULL) { 13503 tcp->tcp_pipe = tcp->tcp_snxt - 13504 tcp->tcp_fack; 13505 tcp->tcp_sack_snxt = seg_ack; 13506 flags |= TH_NEED_SACK_REXMIT; 13507 } else { 13508 /* 13509 * Always initialize tcp_pipe 13510 * even though we don't have 13511 * any SACK info. If later 13512 * we get SACK info and 13513 * tcp_pipe is not initialized, 13514 * funny things will happen. 13515 */ 13516 tcp->tcp_pipe = 13517 tcp->tcp_cwnd_ssthresh; 13518 } 13519 } else { 13520 flags |= TH_REXMIT_NEEDED; 13521 } /* tcp_snd_sack_ok */ 13522 13523 } else { 13524 /* 13525 * Here we perform congestion 13526 * avoidance, but NOT slow start. 13527 * This is known as the Fast 13528 * Recovery Algorithm. 13529 */ 13530 if (tcp->tcp_snd_sack_ok && 13531 tcp->tcp_notsack_list != NULL) { 13532 flags |= TH_NEED_SACK_REXMIT; 13533 tcp->tcp_pipe -= mss; 13534 if (tcp->tcp_pipe < 0) 13535 tcp->tcp_pipe = 0; 13536 } else { 13537 /* 13538 * We know that one more packet has 13539 * left the pipe thus we can update 13540 * cwnd. 13541 */ 13542 cwnd = tcp->tcp_cwnd + mss; 13543 if (cwnd > tcp->tcp_cwnd_max) 13544 cwnd = tcp->tcp_cwnd_max; 13545 tcp->tcp_cwnd = cwnd; 13546 if (tcp->tcp_unsent > 0) 13547 flags |= TH_XMIT_NEEDED; 13548 } 13549 } 13550 } 13551 } else if (tcp->tcp_zero_win_probe) { 13552 /* 13553 * If the window has opened, need to arrange 13554 * to send additional data. 13555 */ 13556 if (new_swnd != 0) { 13557 /* tcp_suna != tcp_snxt */ 13558 /* Packet contains a window update */ 13559 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13560 tcp->tcp_zero_win_probe = 0; 13561 tcp->tcp_timer_backoff = 0; 13562 tcp->tcp_ms_we_have_waited = 0; 13563 13564 /* 13565 * Transmit starting with tcp_suna since 13566 * the one byte probe is not ack'ed. 13567 * If TCP has sent more than one identical 13568 * probe, tcp_rexmit will be set. That means 13569 * tcp_ss_rexmit() will send out the one 13570 * byte along with new data. Otherwise, 13571 * fake the retransmission. 13572 */ 13573 flags |= TH_XMIT_NEEDED; 13574 if (!tcp->tcp_rexmit) { 13575 tcp->tcp_rexmit = B_TRUE; 13576 tcp->tcp_dupack_cnt = 0; 13577 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13578 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13579 } 13580 } 13581 } 13582 goto swnd_update; 13583 } 13584 13585 /* 13586 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 13587 * If the ACK value acks something that we have not yet sent, it might 13588 * be an old duplicate segment. Send an ACK to re-synchronize the 13589 * other side. 13590 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 13591 * state is handled above, so we can always just drop the segment and 13592 * send an ACK here. 13593 * 13594 * Should we send ACKs in response to ACK only segments? 13595 */ 13596 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13597 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 13598 /* drop the received segment */ 13599 freemsg(mp); 13600 13601 /* 13602 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 13603 * greater than 0, check if the number of such 13604 * bogus ACks is greater than that count. If yes, 13605 * don't send back any ACK. This prevents TCP from 13606 * getting into an ACK storm if somehow an attacker 13607 * successfully spoofs an acceptable segment to our 13608 * peer. 13609 */ 13610 if (tcp_drop_ack_unsent_cnt > 0 && 13611 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 13612 TCP_STAT(tcp_in_ack_unsent_drop); 13613 return; 13614 } 13615 mp = tcp_ack_mp(tcp); 13616 if (mp != NULL) { 13617 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 13618 BUMP_LOCAL(tcp->tcp_obsegs); 13619 BUMP_MIB(&tcp_mib, tcpOutAck); 13620 tcp_send_data(tcp, tcp->tcp_wq, mp); 13621 } 13622 return; 13623 } 13624 13625 /* 13626 * TCP gets a new ACK, update the notsack'ed list to delete those 13627 * blocks that are covered by this ACK. 13628 */ 13629 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 13630 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 13631 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 13632 } 13633 13634 /* 13635 * If we got an ACK after fast retransmit, check to see 13636 * if it is a partial ACK. If it is not and the congestion 13637 * window was inflated to account for the other side's 13638 * cached packets, retract it. If it is, do Hoe's algorithm. 13639 */ 13640 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 13641 ASSERT(tcp->tcp_rexmit == B_FALSE); 13642 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 13643 tcp->tcp_dupack_cnt = 0; 13644 /* 13645 * Restore the orig tcp_cwnd_ssthresh after 13646 * fast retransmit phase. 13647 */ 13648 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 13649 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 13650 } 13651 tcp->tcp_rexmit_max = seg_ack; 13652 tcp->tcp_cwnd_cnt = 0; 13653 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13654 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13655 13656 /* 13657 * Remove all notsack info to avoid confusion with 13658 * the next fast retrasnmit/recovery phase. 13659 */ 13660 if (tcp->tcp_snd_sack_ok && 13661 tcp->tcp_notsack_list != NULL) { 13662 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 13663 } 13664 } else { 13665 if (tcp->tcp_snd_sack_ok && 13666 tcp->tcp_notsack_list != NULL) { 13667 flags |= TH_NEED_SACK_REXMIT; 13668 tcp->tcp_pipe -= mss; 13669 if (tcp->tcp_pipe < 0) 13670 tcp->tcp_pipe = 0; 13671 } else { 13672 /* 13673 * Hoe's algorithm: 13674 * 13675 * Retransmit the unack'ed segment and 13676 * restart fast recovery. Note that we 13677 * need to scale back tcp_cwnd to the 13678 * original value when we started fast 13679 * recovery. This is to prevent overly 13680 * aggressive behaviour in sending new 13681 * segments. 13682 */ 13683 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 13684 tcp_dupack_fast_retransmit * mss; 13685 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 13686 flags |= TH_REXMIT_NEEDED; 13687 } 13688 } 13689 } else { 13690 tcp->tcp_dupack_cnt = 0; 13691 if (tcp->tcp_rexmit) { 13692 /* 13693 * TCP is retranmitting. If the ACK ack's all 13694 * outstanding data, update tcp_rexmit_max and 13695 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 13696 * to the correct value. 13697 * 13698 * Note that SEQ_LEQ() is used. This is to avoid 13699 * unnecessary fast retransmit caused by dup ACKs 13700 * received when TCP does slow start retransmission 13701 * after a time out. During this phase, TCP may 13702 * send out segments which are already received. 13703 * This causes dup ACKs to be sent back. 13704 */ 13705 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 13706 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 13707 tcp->tcp_rexmit_nxt = seg_ack; 13708 } 13709 if (seg_ack != tcp->tcp_rexmit_max) { 13710 flags |= TH_XMIT_NEEDED; 13711 } 13712 } else { 13713 tcp->tcp_rexmit = B_FALSE; 13714 tcp->tcp_xmit_zc_clean = B_FALSE; 13715 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13716 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13717 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13718 } 13719 tcp->tcp_ms_we_have_waited = 0; 13720 } 13721 } 13722 13723 BUMP_MIB(&tcp_mib, tcpInAckSegs); 13724 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 13725 tcp->tcp_suna = seg_ack; 13726 if (tcp->tcp_zero_win_probe != 0) { 13727 tcp->tcp_zero_win_probe = 0; 13728 tcp->tcp_timer_backoff = 0; 13729 } 13730 13731 /* 13732 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 13733 * Note that it cannot be the SYN being ack'ed. The code flow 13734 * will not reach here. 13735 */ 13736 if (mp1 == NULL) { 13737 goto fin_acked; 13738 } 13739 13740 /* 13741 * Update the congestion window. 13742 * 13743 * If TCP is not ECN capable or TCP is ECN capable but the 13744 * congestion experience bit is not set, increase the tcp_cwnd as 13745 * usual. 13746 */ 13747 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 13748 cwnd = tcp->tcp_cwnd; 13749 add = mss; 13750 13751 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 13752 /* 13753 * This is to prevent an increase of less than 1 MSS of 13754 * tcp_cwnd. With partial increase, tcp_wput_data() 13755 * may send out tinygrams in order to preserve mblk 13756 * boundaries. 13757 * 13758 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 13759 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 13760 * increased by 1 MSS for every RTTs. 13761 */ 13762 if (tcp->tcp_cwnd_cnt <= 0) { 13763 tcp->tcp_cwnd_cnt = cwnd + add; 13764 } else { 13765 tcp->tcp_cwnd_cnt -= add; 13766 add = 0; 13767 } 13768 } 13769 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 13770 } 13771 13772 /* See if the latest urgent data has been acknowledged */ 13773 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 13774 SEQ_GT(seg_ack, tcp->tcp_urg)) 13775 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 13776 13777 /* Can we update the RTT estimates? */ 13778 if (tcp->tcp_snd_ts_ok) { 13779 /* Ignore zero timestamp echo-reply. */ 13780 if (tcpopt.tcp_opt_ts_ecr != 0) { 13781 tcp_set_rto(tcp, (int32_t)lbolt - 13782 (int32_t)tcpopt.tcp_opt_ts_ecr); 13783 } 13784 13785 /* If needed, restart the timer. */ 13786 if (tcp->tcp_set_timer == 1) { 13787 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13788 tcp->tcp_set_timer = 0; 13789 } 13790 /* 13791 * Update tcp_csuna in case the other side stops sending 13792 * us timestamps. 13793 */ 13794 tcp->tcp_csuna = tcp->tcp_snxt; 13795 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 13796 /* 13797 * An ACK sequence we haven't seen before, so get the RTT 13798 * and update the RTO. But first check if the timestamp is 13799 * valid to use. 13800 */ 13801 if ((mp1->b_next != NULL) && 13802 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 13803 tcp_set_rto(tcp, (int32_t)lbolt - 13804 (int32_t)(intptr_t)mp1->b_prev); 13805 else 13806 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13807 13808 /* Remeber the last sequence to be ACKed */ 13809 tcp->tcp_csuna = seg_ack; 13810 if (tcp->tcp_set_timer == 1) { 13811 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13812 tcp->tcp_set_timer = 0; 13813 } 13814 } else { 13815 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13816 } 13817 13818 /* Eat acknowledged bytes off the xmit queue. */ 13819 for (;;) { 13820 mblk_t *mp2; 13821 uchar_t *wptr; 13822 13823 wptr = mp1->b_wptr; 13824 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 13825 bytes_acked -= (int)(wptr - mp1->b_rptr); 13826 if (bytes_acked < 0) { 13827 mp1->b_rptr = wptr + bytes_acked; 13828 /* 13829 * Set a new timestamp if all the bytes timed by the 13830 * old timestamp have been ack'ed. 13831 */ 13832 if (SEQ_GT(seg_ack, 13833 (uint32_t)(uintptr_t)(mp1->b_next))) { 13834 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 13835 mp1->b_next = NULL; 13836 } 13837 break; 13838 } 13839 mp1->b_next = NULL; 13840 mp1->b_prev = NULL; 13841 mp2 = mp1; 13842 mp1 = mp1->b_cont; 13843 13844 /* 13845 * This notification is required for some zero-copy 13846 * clients to maintain a copy semantic. After the data 13847 * is ack'ed, client is safe to modify or reuse the buffer. 13848 */ 13849 if (tcp->tcp_snd_zcopy_aware && 13850 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 13851 tcp_zcopy_notify(tcp); 13852 freeb(mp2); 13853 if (bytes_acked == 0) { 13854 if (mp1 == NULL) { 13855 /* Everything is ack'ed, clear the tail. */ 13856 tcp->tcp_xmit_tail = NULL; 13857 /* 13858 * Cancel the timer unless we are still 13859 * waiting for an ACK for the FIN packet. 13860 */ 13861 if (tcp->tcp_timer_tid != 0 && 13862 tcp->tcp_snxt == tcp->tcp_suna) { 13863 (void) TCP_TIMER_CANCEL(tcp, 13864 tcp->tcp_timer_tid); 13865 tcp->tcp_timer_tid = 0; 13866 } 13867 goto pre_swnd_update; 13868 } 13869 if (mp2 != tcp->tcp_xmit_tail) 13870 break; 13871 tcp->tcp_xmit_tail = mp1; 13872 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13873 (uintptr_t)INT_MAX); 13874 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 13875 mp1->b_rptr); 13876 break; 13877 } 13878 if (mp1 == NULL) { 13879 /* 13880 * More was acked but there is nothing more 13881 * outstanding. This means that the FIN was 13882 * just acked or that we're talking to a clown. 13883 */ 13884 fin_acked: 13885 ASSERT(tcp->tcp_fin_sent); 13886 tcp->tcp_xmit_tail = NULL; 13887 if (tcp->tcp_fin_sent) { 13888 /* FIN was acked - making progress */ 13889 if (tcp->tcp_ipversion == IPV6_VERSION && 13890 !tcp->tcp_fin_acked) 13891 tcp->tcp_ip_forward_progress = B_TRUE; 13892 tcp->tcp_fin_acked = B_TRUE; 13893 if (tcp->tcp_linger_tid != 0 && 13894 TCP_TIMER_CANCEL(tcp, 13895 tcp->tcp_linger_tid) >= 0) { 13896 tcp_stop_lingering(tcp); 13897 } 13898 } else { 13899 /* 13900 * We should never get here because 13901 * we have already checked that the 13902 * number of bytes ack'ed should be 13903 * smaller than or equal to what we 13904 * have sent so far (it is the 13905 * acceptability check of the ACK). 13906 * We can only get here if the send 13907 * queue is corrupted. 13908 * 13909 * Terminate the connection and 13910 * panic the system. It is better 13911 * for us to panic instead of 13912 * continuing to avoid other disaster. 13913 */ 13914 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 13915 tcp->tcp_rnxt, TH_RST|TH_ACK); 13916 panic("Memory corruption " 13917 "detected for connection %s.", 13918 tcp_display(tcp, NULL, 13919 DISP_ADDR_AND_PORT)); 13920 /*NOTREACHED*/ 13921 } 13922 goto pre_swnd_update; 13923 } 13924 ASSERT(mp2 != tcp->tcp_xmit_tail); 13925 } 13926 if (tcp->tcp_unsent) { 13927 flags |= TH_XMIT_NEEDED; 13928 } 13929 pre_swnd_update: 13930 tcp->tcp_xmit_head = mp1; 13931 swnd_update: 13932 /* 13933 * The following check is different from most other implementations. 13934 * For bi-directional transfer, when segments are dropped, the 13935 * "normal" check will not accept a window update in those 13936 * retransmitted segemnts. Failing to do that, TCP may send out 13937 * segments which are outside receiver's window. As TCP accepts 13938 * the ack in those retransmitted segments, if the window update in 13939 * the same segment is not accepted, TCP will incorrectly calculates 13940 * that it can send more segments. This can create a deadlock 13941 * with the receiver if its window becomes zero. 13942 */ 13943 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 13944 SEQ_LT(tcp->tcp_swl1, seg_seq) || 13945 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 13946 /* 13947 * The criteria for update is: 13948 * 13949 * 1. the segment acknowledges some data. Or 13950 * 2. the segment is new, i.e. it has a higher seq num. Or 13951 * 3. the segment is not old and the advertised window is 13952 * larger than the previous advertised window. 13953 */ 13954 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 13955 flags |= TH_XMIT_NEEDED; 13956 tcp->tcp_swnd = new_swnd; 13957 if (new_swnd > tcp->tcp_max_swnd) 13958 tcp->tcp_max_swnd = new_swnd; 13959 tcp->tcp_swl1 = seg_seq; 13960 tcp->tcp_swl2 = seg_ack; 13961 } 13962 est: 13963 if (tcp->tcp_state > TCPS_ESTABLISHED) { 13964 switch (tcp->tcp_state) { 13965 case TCPS_FIN_WAIT_1: 13966 if (tcp->tcp_fin_acked) { 13967 tcp->tcp_state = TCPS_FIN_WAIT_2; 13968 /* 13969 * We implement the non-standard BSD/SunOS 13970 * FIN_WAIT_2 flushing algorithm. 13971 * If there is no user attached to this 13972 * TCP endpoint, then this TCP struct 13973 * could hang around forever in FIN_WAIT_2 13974 * state if the peer forgets to send us 13975 * a FIN. To prevent this, we wait only 13976 * 2*MSL (a convenient time value) for 13977 * the FIN to arrive. If it doesn't show up, 13978 * we flush the TCP endpoint. This algorithm, 13979 * though a violation of RFC-793, has worked 13980 * for over 10 years in BSD systems. 13981 * Note: SunOS 4.x waits 675 seconds before 13982 * flushing the FIN_WAIT_2 connection. 13983 */ 13984 TCP_TIMER_RESTART(tcp, 13985 tcp_fin_wait_2_flush_interval); 13986 } 13987 break; 13988 case TCPS_FIN_WAIT_2: 13989 break; /* Shutdown hook? */ 13990 case TCPS_LAST_ACK: 13991 freemsg(mp); 13992 if (tcp->tcp_fin_acked) { 13993 (void) tcp_clean_death(tcp, 0, 19); 13994 return; 13995 } 13996 goto xmit_check; 13997 case TCPS_CLOSING: 13998 if (tcp->tcp_fin_acked) { 13999 tcp->tcp_state = TCPS_TIME_WAIT; 14000 if (!TCP_IS_DETACHED(tcp)) { 14001 TCP_TIMER_RESTART(tcp, 14002 tcp_time_wait_interval); 14003 } else { 14004 tcp_time_wait_append(tcp); 14005 TCP_DBGSTAT(tcp_rput_time_wait); 14006 } 14007 } 14008 /*FALLTHRU*/ 14009 case TCPS_CLOSE_WAIT: 14010 freemsg(mp); 14011 goto xmit_check; 14012 default: 14013 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14014 break; 14015 } 14016 } 14017 if (flags & TH_FIN) { 14018 /* Make sure we ack the fin */ 14019 flags |= TH_ACK_NEEDED; 14020 if (!tcp->tcp_fin_rcvd) { 14021 tcp->tcp_fin_rcvd = B_TRUE; 14022 tcp->tcp_rnxt++; 14023 tcph = tcp->tcp_tcph; 14024 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14025 14026 /* 14027 * Generate the ordrel_ind at the end unless we 14028 * are an eager guy. 14029 * In the eager case tcp_rsrv will do this when run 14030 * after tcp_accept is done. 14031 */ 14032 if (tcp->tcp_listener == NULL && 14033 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14034 flags |= TH_ORDREL_NEEDED; 14035 switch (tcp->tcp_state) { 14036 case TCPS_SYN_RCVD: 14037 case TCPS_ESTABLISHED: 14038 tcp->tcp_state = TCPS_CLOSE_WAIT; 14039 /* Keepalive? */ 14040 break; 14041 case TCPS_FIN_WAIT_1: 14042 if (!tcp->tcp_fin_acked) { 14043 tcp->tcp_state = TCPS_CLOSING; 14044 break; 14045 } 14046 /* FALLTHRU */ 14047 case TCPS_FIN_WAIT_2: 14048 tcp->tcp_state = TCPS_TIME_WAIT; 14049 if (!TCP_IS_DETACHED(tcp)) { 14050 TCP_TIMER_RESTART(tcp, 14051 tcp_time_wait_interval); 14052 } else { 14053 tcp_time_wait_append(tcp); 14054 TCP_DBGSTAT(tcp_rput_time_wait); 14055 } 14056 if (seg_len) { 14057 /* 14058 * implies data piggybacked on FIN. 14059 * break to handle data. 14060 */ 14061 break; 14062 } 14063 freemsg(mp); 14064 goto ack_check; 14065 } 14066 } 14067 } 14068 if (mp == NULL) 14069 goto xmit_check; 14070 if (seg_len == 0) { 14071 freemsg(mp); 14072 goto xmit_check; 14073 } 14074 if (mp->b_rptr == mp->b_wptr) { 14075 /* 14076 * The header has been consumed, so we remove the 14077 * zero-length mblk here. 14078 */ 14079 mp1 = mp; 14080 mp = mp->b_cont; 14081 freeb(mp1); 14082 } 14083 tcph = tcp->tcp_tcph; 14084 tcp->tcp_rack_cnt++; 14085 { 14086 uint32_t cur_max; 14087 14088 cur_max = tcp->tcp_rack_cur_max; 14089 if (tcp->tcp_rack_cnt >= cur_max) { 14090 /* 14091 * We have more unacked data than we should - send 14092 * an ACK now. 14093 */ 14094 flags |= TH_ACK_NEEDED; 14095 cur_max++; 14096 if (cur_max > tcp->tcp_rack_abs_max) 14097 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14098 else 14099 tcp->tcp_rack_cur_max = cur_max; 14100 } else if (TCP_IS_DETACHED(tcp)) { 14101 /* We don't have an ACK timer for detached TCP. */ 14102 flags |= TH_ACK_NEEDED; 14103 } else if (seg_len < mss) { 14104 /* 14105 * If we get a segment that is less than an mss, and we 14106 * already have unacknowledged data, and the amount 14107 * unacknowledged is not a multiple of mss, then we 14108 * better generate an ACK now. Otherwise, this may be 14109 * the tail piece of a transaction, and we would rather 14110 * wait for the response. 14111 */ 14112 uint32_t udif; 14113 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14114 (uintptr_t)INT_MAX); 14115 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14116 if (udif && (udif % mss)) 14117 flags |= TH_ACK_NEEDED; 14118 else 14119 flags |= TH_ACK_TIMER_NEEDED; 14120 } else { 14121 /* Start delayed ack timer */ 14122 flags |= TH_ACK_TIMER_NEEDED; 14123 } 14124 } 14125 tcp->tcp_rnxt += seg_len; 14126 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14127 14128 /* Update SACK list */ 14129 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14130 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14131 &(tcp->tcp_num_sack_blk)); 14132 } 14133 14134 if (tcp->tcp_urp_mp) { 14135 tcp->tcp_urp_mp->b_cont = mp; 14136 mp = tcp->tcp_urp_mp; 14137 tcp->tcp_urp_mp = NULL; 14138 /* Ready for a new signal. */ 14139 tcp->tcp_urp_last_valid = B_FALSE; 14140 #ifdef DEBUG 14141 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14142 "tcp_rput: sending exdata_ind %s", 14143 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14144 #endif /* DEBUG */ 14145 } 14146 14147 /* 14148 * Check for ancillary data changes compared to last segment. 14149 */ 14150 if (tcp->tcp_ipv6_recvancillary != 0) { 14151 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14152 if (mp == NULL) 14153 return; 14154 } 14155 14156 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14157 /* 14158 * Side queue inbound data until the accept happens. 14159 * tcp_accept/tcp_rput drains this when the accept happens. 14160 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14161 * T_EXDATA_IND) it is queued on b_next. 14162 * XXX Make urgent data use this. Requires: 14163 * Removing tcp_listener check for TH_URG 14164 * Making M_PCPROTO and MARK messages skip the eager case 14165 */ 14166 tcp_rcv_enqueue(tcp, mp, seg_len); 14167 } else { 14168 if (mp->b_datap->db_type != M_DATA || 14169 (flags & TH_MARKNEXT_NEEDED)) { 14170 if (tcp->tcp_rcv_list != NULL) { 14171 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14172 } 14173 ASSERT(tcp->tcp_rcv_list == NULL || 14174 tcp->tcp_fused_sigurg); 14175 if (flags & TH_MARKNEXT_NEEDED) { 14176 #ifdef DEBUG 14177 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14178 "tcp_rput: sending MSGMARKNEXT %s", 14179 tcp_display(tcp, NULL, 14180 DISP_PORT_ONLY)); 14181 #endif /* DEBUG */ 14182 mp->b_flag |= MSGMARKNEXT; 14183 flags &= ~TH_MARKNEXT_NEEDED; 14184 } 14185 putnext(tcp->tcp_rq, mp); 14186 if (!canputnext(tcp->tcp_rq)) 14187 tcp->tcp_rwnd -= seg_len; 14188 } else if (((flags & (TH_PUSH|TH_FIN)) || 14189 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) && 14190 (sqp != NULL)) { 14191 if (tcp->tcp_rcv_list != NULL) { 14192 /* 14193 * Enqueue the new segment first and then 14194 * call tcp_rcv_drain() to send all data 14195 * up. The other way to do this is to 14196 * send all queued data up and then call 14197 * putnext() to send the new segment up. 14198 * This way can remove the else part later 14199 * on. 14200 * 14201 * We don't this to avoid one more call to 14202 * canputnext() as tcp_rcv_drain() needs to 14203 * call canputnext(). 14204 */ 14205 tcp_rcv_enqueue(tcp, mp, seg_len); 14206 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14207 } else { 14208 putnext(tcp->tcp_rq, mp); 14209 if (!canputnext(tcp->tcp_rq)) 14210 tcp->tcp_rwnd -= seg_len; 14211 } 14212 } else { 14213 /* 14214 * Enqueue all packets when processing an mblk 14215 * from the co queue and also enqueue normal packets. 14216 */ 14217 tcp_rcv_enqueue(tcp, mp, seg_len); 14218 } 14219 /* 14220 * Make sure the timer is running if we have data waiting 14221 * for a push bit. This provides resiliency against 14222 * implementations that do not correctly generate push bits. 14223 */ 14224 if ((sqp != NULL) && tcp->tcp_rcv_list != NULL && 14225 tcp->tcp_push_tid == 0) { 14226 /* 14227 * The connection may be closed at this point, so don't 14228 * do anything for a detached tcp. 14229 */ 14230 if (!TCP_IS_DETACHED(tcp)) 14231 tcp->tcp_push_tid = TCP_TIMER(tcp, 14232 tcp_push_timer, 14233 MSEC_TO_TICK(tcp_push_timer_interval)); 14234 } 14235 } 14236 xmit_check: 14237 /* Is there anything left to do? */ 14238 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14239 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14240 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14241 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14242 goto done; 14243 14244 /* Any transmit work to do and a non-zero window? */ 14245 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14246 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14247 if (flags & TH_REXMIT_NEEDED) { 14248 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14249 14250 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14251 if (snd_size > mss) 14252 snd_size = mss; 14253 if (snd_size > tcp->tcp_swnd) 14254 snd_size = tcp->tcp_swnd; 14255 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14256 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14257 B_TRUE); 14258 14259 if (mp1 != NULL) { 14260 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14261 tcp->tcp_csuna = tcp->tcp_snxt; 14262 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14263 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14264 TCP_RECORD_TRACE(tcp, mp1, 14265 TCP_TRACE_SEND_PKT); 14266 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14267 } 14268 } 14269 if (flags & TH_NEED_SACK_REXMIT) { 14270 tcp_sack_rxmit(tcp, &flags); 14271 } 14272 /* 14273 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14274 * out new segment. Note that tcp_rexmit should not be 14275 * set, otherwise TH_LIMIT_XMIT should not be set. 14276 */ 14277 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14278 if (!tcp->tcp_rexmit) { 14279 tcp_wput_data(tcp, NULL, B_FALSE); 14280 } else { 14281 tcp_ss_rexmit(tcp); 14282 } 14283 } 14284 /* 14285 * Adjust tcp_cwnd back to normal value after sending 14286 * new data segments. 14287 */ 14288 if (flags & TH_LIMIT_XMIT) { 14289 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14290 /* 14291 * This will restart the timer. Restarting the 14292 * timer is used to avoid a timeout before the 14293 * limited transmitted segment's ACK gets back. 14294 */ 14295 if (tcp->tcp_xmit_head != NULL) 14296 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14297 } 14298 14299 /* Anything more to do? */ 14300 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14301 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14302 goto done; 14303 } 14304 ack_check: 14305 if (flags & TH_SEND_URP_MARK) { 14306 ASSERT(tcp->tcp_urp_mark_mp); 14307 /* 14308 * Send up any queued data and then send the mark message 14309 */ 14310 if (tcp->tcp_rcv_list != NULL) { 14311 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14312 } 14313 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14314 14315 mp1 = tcp->tcp_urp_mark_mp; 14316 tcp->tcp_urp_mark_mp = NULL; 14317 #ifdef DEBUG 14318 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14319 "tcp_rput: sending zero-length %s %s", 14320 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14321 "MSGNOTMARKNEXT"), 14322 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14323 #endif /* DEBUG */ 14324 putnext(tcp->tcp_rq, mp1); 14325 flags &= ~TH_SEND_URP_MARK; 14326 } 14327 if (flags & TH_ACK_NEEDED) { 14328 /* 14329 * Time to send an ack for some reason. 14330 */ 14331 mp1 = tcp_ack_mp(tcp); 14332 14333 if (mp1 != NULL) { 14334 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14335 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14336 BUMP_LOCAL(tcp->tcp_obsegs); 14337 BUMP_MIB(&tcp_mib, tcpOutAck); 14338 } 14339 if (tcp->tcp_ack_tid != 0) { 14340 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14341 tcp->tcp_ack_tid = 0; 14342 } 14343 } 14344 if (flags & TH_ACK_TIMER_NEEDED) { 14345 /* 14346 * Arrange for deferred ACK or push wait timeout. 14347 * Start timer if it is not already running. 14348 */ 14349 if (tcp->tcp_ack_tid == 0) { 14350 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14351 MSEC_TO_TICK(tcp->tcp_localnet ? 14352 (clock_t)tcp_local_dack_interval : 14353 (clock_t)tcp_deferred_ack_interval)); 14354 } 14355 } 14356 if (flags & TH_ORDREL_NEEDED) { 14357 /* 14358 * Send up the ordrel_ind unless we are an eager guy. 14359 * In the eager case tcp_rsrv will do this when run 14360 * after tcp_accept is done. 14361 */ 14362 ASSERT(tcp->tcp_listener == NULL); 14363 if (tcp->tcp_rcv_list != NULL) { 14364 /* 14365 * Push any mblk(s) enqueued from co processing. 14366 */ 14367 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14368 } 14369 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14370 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14371 tcp->tcp_ordrel_done = B_TRUE; 14372 putnext(tcp->tcp_rq, mp1); 14373 if (tcp->tcp_deferred_clean_death) { 14374 /* 14375 * tcp_clean_death was deferred 14376 * for T_ORDREL_IND - do it now 14377 */ 14378 (void) tcp_clean_death(tcp, 14379 tcp->tcp_client_errno, 20); 14380 tcp->tcp_deferred_clean_death = B_FALSE; 14381 } 14382 } else { 14383 /* 14384 * Run the orderly release in the 14385 * service routine. 14386 */ 14387 qenable(tcp->tcp_rq); 14388 /* 14389 * Caveat(XXX): The machine may be so 14390 * overloaded that tcp_rsrv() is not scheduled 14391 * until after the endpoint has transitioned 14392 * to TCPS_TIME_WAIT 14393 * and tcp_time_wait_interval expires. Then 14394 * tcp_timer() will blow away state in tcp_t 14395 * and T_ORDREL_IND will never be delivered 14396 * upstream. Unlikely but potentially 14397 * a problem. 14398 */ 14399 } 14400 } 14401 done: 14402 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14403 } 14404 14405 /* 14406 * This function does PAWS protection check. Returns B_TRUE if the 14407 * segment passes the PAWS test, else returns B_FALSE. 14408 */ 14409 boolean_t 14410 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14411 { 14412 uint8_t flags; 14413 int options; 14414 uint8_t *up; 14415 14416 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14417 /* 14418 * If timestamp option is aligned nicely, get values inline, 14419 * otherwise call general routine to parse. Only do that 14420 * if timestamp is the only option. 14421 */ 14422 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14423 TCPOPT_REAL_TS_LEN && 14424 OK_32PTR((up = ((uint8_t *)tcph) + 14425 TCP_MIN_HEADER_LENGTH)) && 14426 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14427 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14428 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14429 14430 options = TCP_OPT_TSTAMP_PRESENT; 14431 } else { 14432 if (tcp->tcp_snd_sack_ok) { 14433 tcpoptp->tcp = tcp; 14434 } else { 14435 tcpoptp->tcp = NULL; 14436 } 14437 options = tcp_parse_options(tcph, tcpoptp); 14438 } 14439 14440 if (options & TCP_OPT_TSTAMP_PRESENT) { 14441 /* 14442 * Do PAWS per RFC 1323 section 4.2. Accept RST 14443 * regardless of the timestamp, page 18 RFC 1323.bis. 14444 */ 14445 if ((flags & TH_RST) == 0 && 14446 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14447 tcp->tcp_ts_recent)) { 14448 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14449 PAWS_TIMEOUT)) { 14450 /* This segment is not acceptable. */ 14451 return (B_FALSE); 14452 } else { 14453 /* 14454 * Connection has been idle for 14455 * too long. Reset the timestamp 14456 * and assume the segment is valid. 14457 */ 14458 tcp->tcp_ts_recent = 14459 tcpoptp->tcp_opt_ts_val; 14460 } 14461 } 14462 } else { 14463 /* 14464 * If we don't get a timestamp on every packet, we 14465 * figure we can't really trust 'em, so we stop sending 14466 * and parsing them. 14467 */ 14468 tcp->tcp_snd_ts_ok = B_FALSE; 14469 14470 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14471 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14472 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14473 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14474 if (tcp->tcp_snd_sack_ok) { 14475 ASSERT(tcp->tcp_sack_info != NULL); 14476 tcp->tcp_max_sack_blk = 4; 14477 } 14478 } 14479 return (B_TRUE); 14480 } 14481 14482 /* 14483 * Attach ancillary data to a received TCP segments for the 14484 * ancillary pieces requested by the application that are 14485 * different than they were in the previous data segment. 14486 * 14487 * Save the "current" values once memory allocation is ok so that 14488 * when memory allocation fails we can just wait for the next data segment. 14489 */ 14490 static mblk_t * 14491 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14492 { 14493 struct T_optdata_ind *todi; 14494 int optlen; 14495 uchar_t *optptr; 14496 struct T_opthdr *toh; 14497 uint_t addflag; /* Which pieces to add */ 14498 mblk_t *mp1; 14499 14500 optlen = 0; 14501 addflag = 0; 14502 /* If app asked for pktinfo and the index has changed ... */ 14503 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14504 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14505 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14506 optlen += sizeof (struct T_opthdr) + 14507 sizeof (struct in6_pktinfo); 14508 addflag |= TCP_IPV6_RECVPKTINFO; 14509 } 14510 /* If app asked for hoplimit and it has changed ... */ 14511 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14512 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14513 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14514 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14515 addflag |= TCP_IPV6_RECVHOPLIMIT; 14516 } 14517 /* If app asked for tclass and it has changed ... */ 14518 if ((ipp->ipp_fields & IPPF_TCLASS) && 14519 ipp->ipp_tclass != tcp->tcp_recvtclass && 14520 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14521 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14522 addflag |= TCP_IPV6_RECVTCLASS; 14523 } 14524 /* If app asked for hopbyhop headers and it has changed ... */ 14525 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14526 tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14527 (ipp->ipp_fields & IPPF_HOPOPTS), 14528 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14529 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 14530 addflag |= TCP_IPV6_RECVHOPOPTS; 14531 if (!tcp_allocbuf((void **)&tcp->tcp_hopopts, 14532 &tcp->tcp_hopoptslen, 14533 (ipp->ipp_fields & IPPF_HOPOPTS), 14534 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14535 return (mp); 14536 } 14537 /* If app asked for dst headers before routing headers ... */ 14538 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14539 tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14540 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14541 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14542 optlen += sizeof (struct T_opthdr) + 14543 ipp->ipp_rtdstoptslen; 14544 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14545 if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts, 14546 &tcp->tcp_rtdstoptslen, 14547 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14548 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14549 return (mp); 14550 } 14551 /* If app asked for routing headers and it has changed ... */ 14552 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 14553 tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 14554 (ipp->ipp_fields & IPPF_RTHDR), 14555 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 14556 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 14557 addflag |= TCP_IPV6_RECVRTHDR; 14558 if (!tcp_allocbuf((void **)&tcp->tcp_rthdr, 14559 &tcp->tcp_rthdrlen, 14560 (ipp->ipp_fields & IPPF_RTHDR), 14561 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 14562 return (mp); 14563 } 14564 /* If app asked for dest headers and it has changed ... */ 14565 if ((tcp->tcp_ipv6_recvancillary & 14566 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 14567 tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 14568 (ipp->ipp_fields & IPPF_DSTOPTS), 14569 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 14570 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 14571 addflag |= TCP_IPV6_RECVDSTOPTS; 14572 if (!tcp_allocbuf((void **)&tcp->tcp_dstopts, 14573 &tcp->tcp_dstoptslen, 14574 (ipp->ipp_fields & IPPF_DSTOPTS), 14575 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 14576 return (mp); 14577 } 14578 14579 if (optlen == 0) { 14580 /* Nothing to add */ 14581 return (mp); 14582 } 14583 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 14584 if (mp1 == NULL) { 14585 /* 14586 * Defer sending ancillary data until the next TCP segment 14587 * arrives. 14588 */ 14589 return (mp); 14590 } 14591 mp1->b_cont = mp; 14592 mp = mp1; 14593 mp->b_wptr += sizeof (*todi) + optlen; 14594 mp->b_datap->db_type = M_PROTO; 14595 todi = (struct T_optdata_ind *)mp->b_rptr; 14596 todi->PRIM_type = T_OPTDATA_IND; 14597 todi->DATA_flag = 1; /* MORE data */ 14598 todi->OPT_length = optlen; 14599 todi->OPT_offset = sizeof (*todi); 14600 optptr = (uchar_t *)&todi[1]; 14601 /* 14602 * If app asked for pktinfo and the index has changed ... 14603 * Note that the local address never changes for the connection. 14604 */ 14605 if (addflag & TCP_IPV6_RECVPKTINFO) { 14606 struct in6_pktinfo *pkti; 14607 14608 toh = (struct T_opthdr *)optptr; 14609 toh->level = IPPROTO_IPV6; 14610 toh->name = IPV6_PKTINFO; 14611 toh->len = sizeof (*toh) + sizeof (*pkti); 14612 toh->status = 0; 14613 optptr += sizeof (*toh); 14614 pkti = (struct in6_pktinfo *)optptr; 14615 if (tcp->tcp_ipversion == IPV6_VERSION) 14616 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 14617 else 14618 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 14619 &pkti->ipi6_addr); 14620 pkti->ipi6_ifindex = ipp->ipp_ifindex; 14621 optptr += sizeof (*pkti); 14622 ASSERT(OK_32PTR(optptr)); 14623 /* Save as "last" value */ 14624 tcp->tcp_recvifindex = ipp->ipp_ifindex; 14625 } 14626 /* If app asked for hoplimit and it has changed ... */ 14627 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 14628 toh = (struct T_opthdr *)optptr; 14629 toh->level = IPPROTO_IPV6; 14630 toh->name = IPV6_HOPLIMIT; 14631 toh->len = sizeof (*toh) + sizeof (uint_t); 14632 toh->status = 0; 14633 optptr += sizeof (*toh); 14634 *(uint_t *)optptr = ipp->ipp_hoplimit; 14635 optptr += sizeof (uint_t); 14636 ASSERT(OK_32PTR(optptr)); 14637 /* Save as "last" value */ 14638 tcp->tcp_recvhops = ipp->ipp_hoplimit; 14639 } 14640 /* If app asked for tclass and it has changed ... */ 14641 if (addflag & TCP_IPV6_RECVTCLASS) { 14642 toh = (struct T_opthdr *)optptr; 14643 toh->level = IPPROTO_IPV6; 14644 toh->name = IPV6_TCLASS; 14645 toh->len = sizeof (*toh) + sizeof (uint_t); 14646 toh->status = 0; 14647 optptr += sizeof (*toh); 14648 *(uint_t *)optptr = ipp->ipp_tclass; 14649 optptr += sizeof (uint_t); 14650 ASSERT(OK_32PTR(optptr)); 14651 /* Save as "last" value */ 14652 tcp->tcp_recvtclass = ipp->ipp_tclass; 14653 } 14654 if (addflag & TCP_IPV6_RECVHOPOPTS) { 14655 toh = (struct T_opthdr *)optptr; 14656 toh->level = IPPROTO_IPV6; 14657 toh->name = IPV6_HOPOPTS; 14658 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 14659 toh->status = 0; 14660 optptr += sizeof (*toh); 14661 bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 14662 optptr += ipp->ipp_hopoptslen; 14663 ASSERT(OK_32PTR(optptr)); 14664 /* Save as last value */ 14665 tcp_savebuf((void **)&tcp->tcp_hopopts, 14666 &tcp->tcp_hopoptslen, 14667 (ipp->ipp_fields & IPPF_HOPOPTS), 14668 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14669 } 14670 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 14671 toh = (struct T_opthdr *)optptr; 14672 toh->level = IPPROTO_IPV6; 14673 toh->name = IPV6_RTHDRDSTOPTS; 14674 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 14675 toh->status = 0; 14676 optptr += sizeof (*toh); 14677 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 14678 optptr += ipp->ipp_rtdstoptslen; 14679 ASSERT(OK_32PTR(optptr)); 14680 /* Save as last value */ 14681 tcp_savebuf((void **)&tcp->tcp_rtdstopts, 14682 &tcp->tcp_rtdstoptslen, 14683 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14684 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 14685 } 14686 if (addflag & TCP_IPV6_RECVRTHDR) { 14687 toh = (struct T_opthdr *)optptr; 14688 toh->level = IPPROTO_IPV6; 14689 toh->name = IPV6_RTHDR; 14690 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 14691 toh->status = 0; 14692 optptr += sizeof (*toh); 14693 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 14694 optptr += ipp->ipp_rthdrlen; 14695 ASSERT(OK_32PTR(optptr)); 14696 /* Save as last value */ 14697 tcp_savebuf((void **)&tcp->tcp_rthdr, 14698 &tcp->tcp_rthdrlen, 14699 (ipp->ipp_fields & IPPF_RTHDR), 14700 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14701 } 14702 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 14703 toh = (struct T_opthdr *)optptr; 14704 toh->level = IPPROTO_IPV6; 14705 toh->name = IPV6_DSTOPTS; 14706 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 14707 toh->status = 0; 14708 optptr += sizeof (*toh); 14709 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 14710 optptr += ipp->ipp_dstoptslen; 14711 ASSERT(OK_32PTR(optptr)); 14712 /* Save as last value */ 14713 tcp_savebuf((void **)&tcp->tcp_dstopts, 14714 &tcp->tcp_dstoptslen, 14715 (ipp->ipp_fields & IPPF_DSTOPTS), 14716 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14717 } 14718 ASSERT(optptr == mp->b_wptr); 14719 return (mp); 14720 } 14721 14722 14723 /* 14724 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 14725 * or a "bad" IRE detected by tcp_adapt_ire. 14726 * We can't tell if the failure was due to the laddr or the faddr 14727 * thus we clear out all addresses and ports. 14728 */ 14729 static void 14730 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 14731 { 14732 queue_t *q = tcp->tcp_rq; 14733 tcph_t *tcph; 14734 struct T_error_ack *tea; 14735 conn_t *connp = tcp->tcp_connp; 14736 14737 14738 ASSERT(mp->b_datap->db_type == M_PCPROTO); 14739 14740 if (mp->b_cont) { 14741 freemsg(mp->b_cont); 14742 mp->b_cont = NULL; 14743 } 14744 tea = (struct T_error_ack *)mp->b_rptr; 14745 switch (tea->PRIM_type) { 14746 case T_BIND_ACK: 14747 /* 14748 * Need to unbind with classifier since we were just told that 14749 * our bind succeeded. 14750 */ 14751 tcp->tcp_hard_bound = B_FALSE; 14752 tcp->tcp_hard_binding = B_FALSE; 14753 14754 ipcl_hash_remove(connp); 14755 /* Reuse the mblk if possible */ 14756 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 14757 sizeof (*tea)); 14758 mp->b_rptr = mp->b_datap->db_base; 14759 mp->b_wptr = mp->b_rptr + sizeof (*tea); 14760 tea = (struct T_error_ack *)mp->b_rptr; 14761 tea->PRIM_type = T_ERROR_ACK; 14762 tea->TLI_error = TSYSERR; 14763 tea->UNIX_error = error; 14764 if (tcp->tcp_state >= TCPS_SYN_SENT) { 14765 tea->ERROR_prim = T_CONN_REQ; 14766 } else { 14767 tea->ERROR_prim = O_T_BIND_REQ; 14768 } 14769 break; 14770 14771 case T_ERROR_ACK: 14772 if (tcp->tcp_state >= TCPS_SYN_SENT) 14773 tea->ERROR_prim = T_CONN_REQ; 14774 break; 14775 default: 14776 panic("tcp_bind_failed: unexpected TPI type"); 14777 /*NOTREACHED*/ 14778 } 14779 14780 tcp->tcp_state = TCPS_IDLE; 14781 if (tcp->tcp_ipversion == IPV4_VERSION) 14782 tcp->tcp_ipha->ipha_src = 0; 14783 else 14784 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 14785 /* 14786 * Copy of the src addr. in tcp_t is needed since 14787 * the lookup funcs. can only look at tcp_t 14788 */ 14789 V6_SET_ZERO(tcp->tcp_ip_src_v6); 14790 14791 tcph = tcp->tcp_tcph; 14792 tcph->th_lport[0] = 0; 14793 tcph->th_lport[1] = 0; 14794 tcp_bind_hash_remove(tcp); 14795 bzero(&connp->u_port, sizeof (connp->u_port)); 14796 /* blow away saved option results if any */ 14797 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 14798 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 14799 14800 conn_delete_ire(tcp->tcp_connp, NULL); 14801 putnext(q, mp); 14802 } 14803 14804 /* 14805 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 14806 * messages. 14807 */ 14808 void 14809 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 14810 { 14811 mblk_t *mp1; 14812 uchar_t *rptr = mp->b_rptr; 14813 queue_t *q = tcp->tcp_rq; 14814 struct T_error_ack *tea; 14815 uint32_t mss; 14816 mblk_t *syn_mp; 14817 mblk_t *mdti; 14818 int retval; 14819 mblk_t *ire_mp; 14820 14821 switch (mp->b_datap->db_type) { 14822 case M_PROTO: 14823 case M_PCPROTO: 14824 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 14825 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 14826 break; 14827 tea = (struct T_error_ack *)rptr; 14828 switch (tea->PRIM_type) { 14829 case T_BIND_ACK: 14830 /* 14831 * Adapt Multidata information, if any. The 14832 * following tcp_mdt_update routine will free 14833 * the message. 14834 */ 14835 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 14836 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 14837 b_rptr)->mdt_capab, B_TRUE); 14838 freemsg(mdti); 14839 } 14840 14841 /* Get the IRE, if we had requested for it */ 14842 ire_mp = tcp_ire_mp(mp); 14843 14844 if (tcp->tcp_hard_binding) { 14845 tcp->tcp_hard_binding = B_FALSE; 14846 tcp->tcp_hard_bound = B_TRUE; 14847 CL_INET_CONNECT(tcp); 14848 } else { 14849 if (ire_mp != NULL) 14850 freeb(ire_mp); 14851 goto after_syn_sent; 14852 } 14853 14854 retval = tcp_adapt_ire(tcp, ire_mp); 14855 if (ire_mp != NULL) 14856 freeb(ire_mp); 14857 if (retval == 0) { 14858 tcp_bind_failed(tcp, mp, 14859 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 14860 ENETUNREACH : EADDRNOTAVAIL)); 14861 return; 14862 } 14863 /* 14864 * Don't let an endpoint connect to itself. 14865 * Also checked in tcp_connect() but that 14866 * check can't handle the case when the 14867 * local IP address is INADDR_ANY. 14868 */ 14869 if (tcp->tcp_ipversion == IPV4_VERSION) { 14870 if ((tcp->tcp_ipha->ipha_dst == 14871 tcp->tcp_ipha->ipha_src) && 14872 (BE16_EQL(tcp->tcp_tcph->th_lport, 14873 tcp->tcp_tcph->th_fport))) { 14874 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 14875 return; 14876 } 14877 } else { 14878 if (IN6_ARE_ADDR_EQUAL( 14879 &tcp->tcp_ip6h->ip6_dst, 14880 &tcp->tcp_ip6h->ip6_src) && 14881 (BE16_EQL(tcp->tcp_tcph->th_lport, 14882 tcp->tcp_tcph->th_fport))) { 14883 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 14884 return; 14885 } 14886 } 14887 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 14888 /* 14889 * This should not be possible! Just for 14890 * defensive coding... 14891 */ 14892 if (tcp->tcp_state != TCPS_SYN_SENT) 14893 goto after_syn_sent; 14894 14895 ASSERT(q == tcp->tcp_rq); 14896 /* 14897 * tcp_adapt_ire() does not adjust 14898 * for TCP/IP header length. 14899 */ 14900 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 14901 14902 /* 14903 * Just make sure our rwnd is at 14904 * least tcp_recv_hiwat_mss * MSS 14905 * large, and round up to the nearest 14906 * MSS. 14907 * 14908 * We do the round up here because 14909 * we need to get the interface 14910 * MTU first before we can do the 14911 * round up. 14912 */ 14913 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 14914 tcp_recv_hiwat_minmss * mss); 14915 q->q_hiwat = tcp->tcp_rwnd; 14916 tcp_set_ws_value(tcp); 14917 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 14918 tcp->tcp_tcph->th_win); 14919 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 14920 tcp->tcp_snd_ws_ok = B_TRUE; 14921 14922 /* 14923 * Set tcp_snd_ts_ok to true 14924 * so that tcp_xmit_mp will 14925 * include the timestamp 14926 * option in the SYN segment. 14927 */ 14928 if (tcp_tstamp_always || 14929 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 14930 tcp->tcp_snd_ts_ok = B_TRUE; 14931 } 14932 14933 /* 14934 * tcp_snd_sack_ok can be set in 14935 * tcp_adapt_ire() if the sack metric 14936 * is set. So check it here also. 14937 */ 14938 if (tcp_sack_permitted == 2 || 14939 tcp->tcp_snd_sack_ok) { 14940 if (tcp->tcp_sack_info == NULL) { 14941 tcp->tcp_sack_info = 14942 kmem_cache_alloc(tcp_sack_info_cache, 14943 KM_SLEEP); 14944 } 14945 tcp->tcp_snd_sack_ok = B_TRUE; 14946 } 14947 14948 /* 14949 * Should we use ECN? Note that the current 14950 * default value (SunOS 5.9) of tcp_ecn_permitted 14951 * is 1. The reason for doing this is that there 14952 * are equipments out there that will drop ECN 14953 * enabled IP packets. Setting it to 1 avoids 14954 * compatibility problems. 14955 */ 14956 if (tcp_ecn_permitted == 2) 14957 tcp->tcp_ecn_ok = B_TRUE; 14958 14959 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14960 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 14961 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 14962 if (syn_mp) { 14963 cred_t *cr; 14964 pid_t pid; 14965 14966 /* 14967 * Obtain the credential from the 14968 * thread calling connect(); the credential 14969 * lives on in the second mblk which 14970 * originated from T_CONN_REQ and is echoed 14971 * with the T_BIND_ACK from ip. If none 14972 * can be found, default to the creator 14973 * of the socket. 14974 */ 14975 if (mp->b_cont == NULL || 14976 (cr = DB_CRED(mp->b_cont)) == NULL) { 14977 cr = tcp->tcp_cred; 14978 pid = tcp->tcp_cpid; 14979 } else { 14980 pid = DB_CPID(mp->b_cont); 14981 } 14982 14983 TCP_RECORD_TRACE(tcp, syn_mp, 14984 TCP_TRACE_SEND_PKT); 14985 mblk_setcred(syn_mp, cr); 14986 DB_CPID(syn_mp) = pid; 14987 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 14988 } 14989 after_syn_sent: 14990 /* 14991 * A trailer mblk indicates a waiting client upstream. 14992 * We complete here the processing begun in 14993 * either tcp_bind() or tcp_connect() by passing 14994 * upstream the reply message they supplied. 14995 */ 14996 mp1 = mp; 14997 mp = mp->b_cont; 14998 freeb(mp1); 14999 if (mp) 15000 break; 15001 return; 15002 case T_ERROR_ACK: 15003 if (tcp->tcp_debug) { 15004 (void) strlog(TCP_MOD_ID, 0, 1, 15005 SL_TRACE|SL_ERROR, 15006 "tcp_rput_other: case T_ERROR_ACK, " 15007 "ERROR_prim == %d", 15008 tea->ERROR_prim); 15009 } 15010 switch (tea->ERROR_prim) { 15011 case O_T_BIND_REQ: 15012 case T_BIND_REQ: 15013 tcp_bind_failed(tcp, mp, 15014 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15015 ENETUNREACH : EADDRNOTAVAIL)); 15016 return; 15017 case T_UNBIND_REQ: 15018 tcp->tcp_hard_binding = B_FALSE; 15019 tcp->tcp_hard_bound = B_FALSE; 15020 if (mp->b_cont) { 15021 freemsg(mp->b_cont); 15022 mp->b_cont = NULL; 15023 } 15024 if (tcp->tcp_unbind_pending) 15025 tcp->tcp_unbind_pending = 0; 15026 else { 15027 /* From tcp_ip_unbind() - free */ 15028 freemsg(mp); 15029 return; 15030 } 15031 break; 15032 case T_SVR4_OPTMGMT_REQ: 15033 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15034 /* T_OPTMGMT_REQ generated by TCP */ 15035 printf("T_SVR4_OPTMGMT_REQ failed " 15036 "%d/%d - dropped (cnt %d)\n", 15037 tea->TLI_error, tea->UNIX_error, 15038 tcp->tcp_drop_opt_ack_cnt); 15039 freemsg(mp); 15040 tcp->tcp_drop_opt_ack_cnt--; 15041 return; 15042 } 15043 break; 15044 } 15045 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15046 tcp->tcp_drop_opt_ack_cnt > 0) { 15047 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15048 "- dropped (cnt %d)\n", 15049 tea->TLI_error, tea->UNIX_error, 15050 tcp->tcp_drop_opt_ack_cnt); 15051 freemsg(mp); 15052 tcp->tcp_drop_opt_ack_cnt--; 15053 return; 15054 } 15055 break; 15056 case T_OPTMGMT_ACK: 15057 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15058 /* T_OPTMGMT_REQ generated by TCP */ 15059 freemsg(mp); 15060 tcp->tcp_drop_opt_ack_cnt--; 15061 return; 15062 } 15063 break; 15064 default: 15065 break; 15066 } 15067 break; 15068 case M_CTL: 15069 /* 15070 * ICMP messages. 15071 */ 15072 tcp_icmp_error(tcp, mp); 15073 return; 15074 case M_FLUSH: 15075 if (*rptr & FLUSHR) 15076 flushq(q, FLUSHDATA); 15077 break; 15078 default: 15079 break; 15080 } 15081 /* 15082 * Make sure we set this bit before sending the ACK for 15083 * bind. Otherwise accept could possibly run and free 15084 * this tcp struct. 15085 */ 15086 putnext(q, mp); 15087 } 15088 15089 /* 15090 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15091 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15092 * tcp_rsrv() try again. 15093 */ 15094 static void 15095 tcp_ordrel_kick(void *arg) 15096 { 15097 conn_t *connp = (conn_t *)arg; 15098 tcp_t *tcp = connp->conn_tcp; 15099 15100 tcp->tcp_ordrelid = 0; 15101 tcp->tcp_timeout = B_FALSE; 15102 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15103 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15104 qenable(tcp->tcp_rq); 15105 } 15106 } 15107 15108 /* ARGSUSED */ 15109 static void 15110 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15111 { 15112 conn_t *connp = (conn_t *)arg; 15113 tcp_t *tcp = connp->conn_tcp; 15114 queue_t *q = tcp->tcp_rq; 15115 uint_t thwin; 15116 15117 freeb(mp); 15118 15119 TCP_STAT(tcp_rsrv_calls); 15120 15121 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15122 return; 15123 } 15124 15125 if (tcp->tcp_fused) { 15126 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15127 15128 ASSERT(tcp->tcp_fused); 15129 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15130 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15131 ASSERT(!TCP_IS_DETACHED(tcp)); 15132 ASSERT(tcp->tcp_connp->conn_sqp == 15133 peer_tcp->tcp_connp->conn_sqp); 15134 15135 /* 15136 * Normally we would not get backenabled in synchronous 15137 * streams mode, but in case this happens, we need to stop 15138 * synchronous streams temporarily to prevent a race with 15139 * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access 15140 * tcp_rcv_list here because those entry points will return 15141 * right away when synchronous streams is stopped. 15142 */ 15143 TCP_FUSE_SYNCSTR_STOP(tcp); 15144 if (tcp->tcp_rcv_list != NULL) 15145 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15146 15147 tcp_clrqfull(peer_tcp); 15148 TCP_FUSE_SYNCSTR_RESUME(tcp); 15149 TCP_STAT(tcp_fusion_backenabled); 15150 return; 15151 } 15152 15153 if (canputnext(q)) { 15154 tcp->tcp_rwnd = q->q_hiwat; 15155 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15156 << tcp->tcp_rcv_ws; 15157 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15158 /* 15159 * Send back a window update immediately if TCP is above 15160 * ESTABLISHED state and the increase of the rcv window 15161 * that the other side knows is at least 1 MSS after flow 15162 * control is lifted. 15163 */ 15164 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15165 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15166 tcp_xmit_ctl(NULL, tcp, 15167 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15168 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15169 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15170 } 15171 } 15172 /* Handle a failure to allocate a T_ORDREL_IND here */ 15173 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15174 ASSERT(tcp->tcp_listener == NULL); 15175 if (tcp->tcp_rcv_list != NULL) { 15176 (void) tcp_rcv_drain(q, tcp); 15177 } 15178 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15179 mp = mi_tpi_ordrel_ind(); 15180 if (mp) { 15181 tcp->tcp_ordrel_done = B_TRUE; 15182 putnext(q, mp); 15183 if (tcp->tcp_deferred_clean_death) { 15184 /* 15185 * tcp_clean_death was deferred for 15186 * T_ORDREL_IND - do it now 15187 */ 15188 tcp->tcp_deferred_clean_death = B_FALSE; 15189 (void) tcp_clean_death(tcp, 15190 tcp->tcp_client_errno, 22); 15191 } 15192 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15193 /* 15194 * If there isn't already a timer running 15195 * start one. Use a 4 second 15196 * timer as a fallback since it can't fail. 15197 */ 15198 tcp->tcp_timeout = B_TRUE; 15199 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15200 MSEC_TO_TICK(4000)); 15201 } 15202 } 15203 } 15204 15205 /* 15206 * The read side service routine is called mostly when we get back-enabled as a 15207 * result of flow control relief. Since we don't actually queue anything in 15208 * TCP, we have no data to send out of here. What we do is clear the receive 15209 * window, and send out a window update. 15210 * This routine is also called to drive an orderly release message upstream 15211 * if the attempt in tcp_rput failed. 15212 */ 15213 static void 15214 tcp_rsrv(queue_t *q) 15215 { 15216 conn_t *connp = Q_TO_CONN(q); 15217 tcp_t *tcp = connp->conn_tcp; 15218 mblk_t *mp; 15219 15220 /* No code does a putq on the read side */ 15221 ASSERT(q->q_first == NULL); 15222 15223 /* Nothing to do for the default queue */ 15224 if (q == tcp_g_q) { 15225 return; 15226 } 15227 15228 mp = allocb(0, BPRI_HI); 15229 if (mp == NULL) { 15230 /* 15231 * We are under memory pressure. Return for now and we 15232 * we will be called again later. 15233 */ 15234 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15235 /* 15236 * If there isn't already a timer running 15237 * start one. Use a 4 second 15238 * timer as a fallback since it can't fail. 15239 */ 15240 tcp->tcp_timeout = B_TRUE; 15241 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15242 MSEC_TO_TICK(4000)); 15243 } 15244 return; 15245 } 15246 CONN_INC_REF(connp); 15247 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15248 SQTAG_TCP_RSRV); 15249 } 15250 15251 /* 15252 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15253 * We do not allow the receive window to shrink. After setting rwnd, 15254 * set the flow control hiwat of the stream. 15255 * 15256 * This function is called in 2 cases: 15257 * 15258 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15259 * connection (passive open) and in tcp_rput_data() for active connect. 15260 * This is called after tcp_mss_set() when the desired MSS value is known. 15261 * This makes sure that our window size is a mutiple of the other side's 15262 * MSS. 15263 * 2) Handling SO_RCVBUF option. 15264 * 15265 * It is ASSUMED that the requested size is a multiple of the current MSS. 15266 * 15267 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15268 * user requests so. 15269 */ 15270 static int 15271 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15272 { 15273 uint32_t mss = tcp->tcp_mss; 15274 uint32_t old_max_rwnd; 15275 uint32_t max_transmittable_rwnd; 15276 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15277 15278 if (tcp->tcp_fused) { 15279 size_t sth_hiwat; 15280 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15281 15282 ASSERT(peer_tcp != NULL); 15283 /* 15284 * Record the stream head's high water mark for 15285 * this endpoint; this is used for flow-control 15286 * purposes in tcp_fuse_output(). 15287 */ 15288 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15289 if (!tcp_detached) 15290 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15291 15292 /* 15293 * In the fusion case, the maxpsz stream head value of 15294 * our peer is set according to its send buffer size 15295 * and our receive buffer size; since the latter may 15296 * have changed we need to update the peer's maxpsz. 15297 */ 15298 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15299 return (rwnd); 15300 } 15301 15302 if (tcp_detached) 15303 old_max_rwnd = tcp->tcp_rwnd; 15304 else 15305 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15306 15307 /* 15308 * Insist on a receive window that is at least 15309 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15310 * funny TCP interactions of Nagle algorithm, SWS avoidance 15311 * and delayed acknowledgement. 15312 */ 15313 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15314 15315 /* 15316 * If window size info has already been exchanged, TCP should not 15317 * shrink the window. Shrinking window is doable if done carefully. 15318 * We may add that support later. But so far there is not a real 15319 * need to do that. 15320 */ 15321 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15322 /* MSS may have changed, do a round up again. */ 15323 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15324 } 15325 15326 /* 15327 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15328 * can be applied even before the window scale option is decided. 15329 */ 15330 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15331 if (rwnd > max_transmittable_rwnd) { 15332 rwnd = max_transmittable_rwnd - 15333 (max_transmittable_rwnd % mss); 15334 if (rwnd < mss) 15335 rwnd = max_transmittable_rwnd; 15336 /* 15337 * If we're over the limit we may have to back down tcp_rwnd. 15338 * The increment below won't work for us. So we set all three 15339 * here and the increment below will have no effect. 15340 */ 15341 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15342 } 15343 if (tcp->tcp_localnet) { 15344 tcp->tcp_rack_abs_max = 15345 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15346 } else { 15347 /* 15348 * For a remote host on a different subnet (through a router), 15349 * we ack every other packet to be conforming to RFC1122. 15350 * tcp_deferred_acks_max is default to 2. 15351 */ 15352 tcp->tcp_rack_abs_max = 15353 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15354 } 15355 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15356 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15357 else 15358 tcp->tcp_rack_cur_max = 0; 15359 /* 15360 * Increment the current rwnd by the amount the maximum grew (we 15361 * can not overwrite it since we might be in the middle of a 15362 * connection.) 15363 */ 15364 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15365 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15366 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15367 tcp->tcp_cwnd_max = rwnd; 15368 15369 if (tcp_detached) 15370 return (rwnd); 15371 /* 15372 * We set the maximum receive window into rq->q_hiwat. 15373 * This is not actually used for flow control. 15374 */ 15375 tcp->tcp_rq->q_hiwat = rwnd; 15376 /* 15377 * Set the Stream head high water mark. This doesn't have to be 15378 * here, since we are simply using default values, but we would 15379 * prefer to choose these values algorithmically, with a likely 15380 * relationship to rwnd. 15381 */ 15382 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15383 return (rwnd); 15384 } 15385 15386 /* 15387 * Return SNMP stuff in buffer in mpdata. 15388 */ 15389 int 15390 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15391 { 15392 mblk_t *mpdata; 15393 mblk_t *mp_conn_ctl = NULL; 15394 mblk_t *mp_conn_data; 15395 mblk_t *mp6_conn_ctl = NULL; 15396 mblk_t *mp6_conn_data; 15397 mblk_t *mp_conn_tail = NULL; 15398 mblk_t *mp6_conn_tail = NULL; 15399 struct opthdr *optp; 15400 mib2_tcpConnEntry_t tce; 15401 mib2_tcp6ConnEntry_t tce6; 15402 connf_t *connfp; 15403 conn_t *connp; 15404 int i; 15405 boolean_t ispriv; 15406 zoneid_t zoneid; 15407 15408 if (mpctl == NULL || 15409 (mpdata = mpctl->b_cont) == NULL || 15410 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15411 (mp6_conn_ctl = copymsg(mpctl)) == NULL) { 15412 if (mp_conn_ctl != NULL) 15413 freemsg(mp_conn_ctl); 15414 if (mp6_conn_ctl != NULL) 15415 freemsg(mp6_conn_ctl); 15416 return (0); 15417 } 15418 15419 /* build table of connections -- need count in fixed part */ 15420 mp_conn_data = mp_conn_ctl->b_cont; 15421 mp6_conn_data = mp6_conn_ctl->b_cont; 15422 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15423 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15424 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15425 SET_MIB(tcp_mib.tcpMaxConn, -1); 15426 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15427 15428 ispriv = 15429 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15430 zoneid = Q_TO_CONN(q)->conn_zoneid; 15431 15432 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15433 15434 connfp = &ipcl_globalhash_fanout[i]; 15435 15436 connp = NULL; 15437 15438 while ((connp = 15439 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15440 tcp_t *tcp; 15441 15442 if (connp->conn_zoneid != zoneid) 15443 continue; /* not in this zone */ 15444 15445 tcp = connp->conn_tcp; 15446 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15447 tcp->tcp_ibsegs = 0; 15448 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15449 tcp->tcp_obsegs = 0; 15450 15451 tce6.tcp6ConnState = tce.tcpConnState = 15452 tcp_snmp_state(tcp); 15453 if (tce.tcpConnState == MIB2_TCP_established || 15454 tce.tcpConnState == MIB2_TCP_closeWait) 15455 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15456 15457 /* Create a message to report on IPv6 entries */ 15458 if (tcp->tcp_ipversion == IPV6_VERSION) { 15459 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15460 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15461 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15462 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15463 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15464 /* Don't want just anybody seeing these... */ 15465 if (ispriv) { 15466 tce6.tcp6ConnEntryInfo.ce_snxt = 15467 tcp->tcp_snxt; 15468 tce6.tcp6ConnEntryInfo.ce_suna = 15469 tcp->tcp_suna; 15470 tce6.tcp6ConnEntryInfo.ce_rnxt = 15471 tcp->tcp_rnxt; 15472 tce6.tcp6ConnEntryInfo.ce_rack = 15473 tcp->tcp_rack; 15474 } else { 15475 /* 15476 * Netstat, unfortunately, uses this to 15477 * get send/receive queue sizes. How to fix? 15478 * Why not compute the difference only? 15479 */ 15480 tce6.tcp6ConnEntryInfo.ce_snxt = 15481 tcp->tcp_snxt - tcp->tcp_suna; 15482 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15483 tce6.tcp6ConnEntryInfo.ce_rnxt = 15484 tcp->tcp_rnxt - tcp->tcp_rack; 15485 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15486 } 15487 15488 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15489 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15490 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15491 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15492 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15493 (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, 15494 (char *)&tce6, sizeof (tce6)); 15495 } 15496 /* 15497 * Create an IPv4 table entry for IPv4 entries and also 15498 * for IPv6 entries which are bound to in6addr_any 15499 * but don't have IPV6_V6ONLY set. 15500 * (i.e. anything an IPv4 peer could connect to) 15501 */ 15502 if (tcp->tcp_ipversion == IPV4_VERSION || 15503 (tcp->tcp_state <= TCPS_LISTEN && 15504 !tcp->tcp_connp->conn_ipv6_v6only && 15505 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15506 if (tcp->tcp_ipversion == IPV6_VERSION) { 15507 tce.tcpConnRemAddress = INADDR_ANY; 15508 tce.tcpConnLocalAddress = INADDR_ANY; 15509 } else { 15510 tce.tcpConnRemAddress = 15511 tcp->tcp_remote; 15512 tce.tcpConnLocalAddress = 15513 tcp->tcp_ip_src; 15514 } 15515 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 15516 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 15517 /* Don't want just anybody seeing these... */ 15518 if (ispriv) { 15519 tce.tcpConnEntryInfo.ce_snxt = 15520 tcp->tcp_snxt; 15521 tce.tcpConnEntryInfo.ce_suna = 15522 tcp->tcp_suna; 15523 tce.tcpConnEntryInfo.ce_rnxt = 15524 tcp->tcp_rnxt; 15525 tce.tcpConnEntryInfo.ce_rack = 15526 tcp->tcp_rack; 15527 } else { 15528 /* 15529 * Netstat, unfortunately, uses this to 15530 * get send/receive queue sizes. How 15531 * to fix? 15532 * Why not compute the difference only? 15533 */ 15534 tce.tcpConnEntryInfo.ce_snxt = 15535 tcp->tcp_snxt - tcp->tcp_suna; 15536 tce.tcpConnEntryInfo.ce_suna = 0; 15537 tce.tcpConnEntryInfo.ce_rnxt = 15538 tcp->tcp_rnxt - tcp->tcp_rack; 15539 tce.tcpConnEntryInfo.ce_rack = 0; 15540 } 15541 15542 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15543 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15544 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 15545 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 15546 tce.tcpConnEntryInfo.ce_state = 15547 tcp->tcp_state; 15548 (void) snmp_append_data2(mp_conn_data, 15549 &mp_conn_tail, (char *)&tce, sizeof (tce)); 15550 } 15551 } 15552 } 15553 15554 /* fixed length structure for IPv4 and IPv6 counters */ 15555 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 15556 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 15557 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 15558 optp->level = MIB2_TCP; 15559 optp->name = 0; 15560 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 15561 optp->len = msgdsize(mpdata); 15562 qreply(q, mpctl); 15563 15564 /* table of connections... */ 15565 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 15566 sizeof (struct T_optmgmt_ack)]; 15567 optp->level = MIB2_TCP; 15568 optp->name = MIB2_TCP_CONN; 15569 optp->len = msgdsize(mp_conn_data); 15570 qreply(q, mp_conn_ctl); 15571 15572 /* table of IPv6 connections... */ 15573 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 15574 sizeof (struct T_optmgmt_ack)]; 15575 optp->level = MIB2_TCP6; 15576 optp->name = MIB2_TCP6_CONN; 15577 optp->len = msgdsize(mp6_conn_data); 15578 qreply(q, mp6_conn_ctl); 15579 return (1); 15580 } 15581 15582 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 15583 /* ARGSUSED */ 15584 int 15585 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 15586 { 15587 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 15588 15589 switch (level) { 15590 case MIB2_TCP: 15591 switch (name) { 15592 case 13: 15593 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 15594 return (0); 15595 /* TODO: delete entry defined by tce */ 15596 return (1); 15597 default: 15598 return (0); 15599 } 15600 default: 15601 return (1); 15602 } 15603 } 15604 15605 /* Translate TCP state to MIB2 TCP state. */ 15606 static int 15607 tcp_snmp_state(tcp_t *tcp) 15608 { 15609 if (tcp == NULL) 15610 return (0); 15611 15612 switch (tcp->tcp_state) { 15613 case TCPS_CLOSED: 15614 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 15615 case TCPS_BOUND: 15616 return (MIB2_TCP_closed); 15617 case TCPS_LISTEN: 15618 return (MIB2_TCP_listen); 15619 case TCPS_SYN_SENT: 15620 return (MIB2_TCP_synSent); 15621 case TCPS_SYN_RCVD: 15622 return (MIB2_TCP_synReceived); 15623 case TCPS_ESTABLISHED: 15624 return (MIB2_TCP_established); 15625 case TCPS_CLOSE_WAIT: 15626 return (MIB2_TCP_closeWait); 15627 case TCPS_FIN_WAIT_1: 15628 return (MIB2_TCP_finWait1); 15629 case TCPS_CLOSING: 15630 return (MIB2_TCP_closing); 15631 case TCPS_LAST_ACK: 15632 return (MIB2_TCP_lastAck); 15633 case TCPS_FIN_WAIT_2: 15634 return (MIB2_TCP_finWait2); 15635 case TCPS_TIME_WAIT: 15636 return (MIB2_TCP_timeWait); 15637 default: 15638 return (0); 15639 } 15640 } 15641 15642 static char tcp_report_header[] = 15643 "TCP " MI_COL_HDRPAD_STR 15644 "zone dest snxt suna " 15645 "swnd rnxt rack rwnd rto mss w sw rw t " 15646 "recent [lport,fport] state"; 15647 15648 /* 15649 * TCP status report triggered via the Named Dispatch mechanism. 15650 */ 15651 /* ARGSUSED */ 15652 static void 15653 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 15654 cred_t *cr) 15655 { 15656 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 15657 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 15658 char cflag; 15659 in6_addr_t v6dst; 15660 char buf[80]; 15661 uint_t print_len, buf_len; 15662 15663 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15664 if (buf_len <= 0) 15665 return; 15666 15667 if (hashval >= 0) 15668 (void) sprintf(hash, "%03d ", hashval); 15669 else 15670 hash[0] = '\0'; 15671 15672 /* 15673 * Note that we use the remote address in the tcp_b structure. 15674 * This means that it will print out the real destination address, 15675 * not the next hop's address if source routing is used. This 15676 * avoid the confusion on the output because user may not 15677 * know that source routing is used for a connection. 15678 */ 15679 if (tcp->tcp_ipversion == IPV4_VERSION) { 15680 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 15681 } else { 15682 v6dst = tcp->tcp_remote_v6; 15683 } 15684 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15685 /* 15686 * the ispriv checks are so that normal users cannot determine 15687 * sequence number information using NDD. 15688 */ 15689 15690 if (TCP_IS_DETACHED(tcp)) 15691 cflag = '*'; 15692 else 15693 cflag = ' '; 15694 print_len = snprintf((char *)mp->b_wptr, buf_len, 15695 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 15696 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 15697 hash, 15698 (void *)tcp, 15699 tcp->tcp_connp->conn_zoneid, 15700 addrbuf, 15701 (ispriv) ? tcp->tcp_snxt : 0, 15702 (ispriv) ? tcp->tcp_suna : 0, 15703 tcp->tcp_swnd, 15704 (ispriv) ? tcp->tcp_rnxt : 0, 15705 (ispriv) ? tcp->tcp_rack : 0, 15706 tcp->tcp_rwnd, 15707 tcp->tcp_rto, 15708 tcp->tcp_mss, 15709 tcp->tcp_snd_ws_ok, 15710 tcp->tcp_snd_ws, 15711 tcp->tcp_rcv_ws, 15712 tcp->tcp_snd_ts_ok, 15713 tcp->tcp_ts_recent, 15714 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 15715 if (print_len < buf_len) { 15716 ((mblk_t *)mp)->b_wptr += print_len; 15717 } else { 15718 ((mblk_t *)mp)->b_wptr += buf_len; 15719 } 15720 } 15721 15722 /* 15723 * TCP status report (for listeners only) triggered via the Named Dispatch 15724 * mechanism. 15725 */ 15726 /* ARGSUSED */ 15727 static void 15728 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 15729 { 15730 char addrbuf[INET6_ADDRSTRLEN]; 15731 in6_addr_t v6dst; 15732 uint_t print_len, buf_len; 15733 15734 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15735 if (buf_len <= 0) 15736 return; 15737 15738 if (tcp->tcp_ipversion == IPV4_VERSION) { 15739 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 15740 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15741 } else { 15742 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 15743 addrbuf, sizeof (addrbuf)); 15744 } 15745 print_len = snprintf((char *)mp->b_wptr, buf_len, 15746 "%03d " 15747 MI_COL_PTRFMT_STR 15748 "%d %s %05u %08u %d/%d/%d%c\n", 15749 hashval, (void *)tcp, 15750 tcp->tcp_connp->conn_zoneid, 15751 addrbuf, 15752 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 15753 tcp->tcp_conn_req_seqnum, 15754 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 15755 tcp->tcp_conn_req_max, 15756 tcp->tcp_syn_defense ? '*' : ' '); 15757 if (print_len < buf_len) { 15758 ((mblk_t *)mp)->b_wptr += print_len; 15759 } else { 15760 ((mblk_t *)mp)->b_wptr += buf_len; 15761 } 15762 } 15763 15764 /* TCP status report triggered via the Named Dispatch mechanism. */ 15765 /* ARGSUSED */ 15766 static int 15767 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15768 { 15769 tcp_t *tcp; 15770 int i; 15771 conn_t *connp; 15772 connf_t *connfp; 15773 zoneid_t zoneid; 15774 15775 /* 15776 * Because of the ndd constraint, at most we can have 64K buffer 15777 * to put in all TCP info. So to be more efficient, just 15778 * allocate a 64K buffer here, assuming we need that large buffer. 15779 * This may be a problem as any user can read tcp_status. Therefore 15780 * we limit the rate of doing this using tcp_ndd_get_info_interval. 15781 * This should be OK as normal users should not do this too often. 15782 */ 15783 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15784 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15785 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15786 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15787 return (0); 15788 } 15789 } 15790 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15791 /* The following may work even if we cannot get a large buf. */ 15792 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15793 return (0); 15794 } 15795 15796 (void) mi_mpprintf(mp, "%s", tcp_report_header); 15797 15798 zoneid = Q_TO_CONN(q)->conn_zoneid; 15799 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15800 15801 connfp = &ipcl_globalhash_fanout[i]; 15802 15803 connp = NULL; 15804 15805 while ((connp = 15806 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15807 tcp = connp->conn_tcp; 15808 if (zoneid != GLOBAL_ZONEID && 15809 zoneid != connp->conn_zoneid) 15810 continue; 15811 tcp_report_item(mp->b_cont, tcp, -1, tcp, 15812 cr); 15813 } 15814 15815 } 15816 15817 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15818 return (0); 15819 } 15820 15821 /* TCP status report triggered via the Named Dispatch mechanism. */ 15822 /* ARGSUSED */ 15823 static int 15824 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15825 { 15826 tf_t *tbf; 15827 tcp_t *tcp; 15828 int i; 15829 zoneid_t zoneid; 15830 15831 /* Refer to comments in tcp_status_report(). */ 15832 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15833 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15834 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15835 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15836 return (0); 15837 } 15838 } 15839 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15840 /* The following may work even if we cannot get a large buf. */ 15841 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15842 return (0); 15843 } 15844 15845 (void) mi_mpprintf(mp, " %s", tcp_report_header); 15846 15847 zoneid = Q_TO_CONN(q)->conn_zoneid; 15848 15849 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 15850 tbf = &tcp_bind_fanout[i]; 15851 mutex_enter(&tbf->tf_lock); 15852 for (tcp = tbf->tf_tcp; tcp != NULL; 15853 tcp = tcp->tcp_bind_hash) { 15854 if (zoneid != GLOBAL_ZONEID && 15855 zoneid != tcp->tcp_connp->conn_zoneid) 15856 continue; 15857 CONN_INC_REF(tcp->tcp_connp); 15858 tcp_report_item(mp->b_cont, tcp, i, 15859 Q_TO_TCP(q), cr); 15860 CONN_DEC_REF(tcp->tcp_connp); 15861 } 15862 mutex_exit(&tbf->tf_lock); 15863 } 15864 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15865 return (0); 15866 } 15867 15868 /* TCP status report triggered via the Named Dispatch mechanism. */ 15869 /* ARGSUSED */ 15870 static int 15871 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15872 { 15873 connf_t *connfp; 15874 conn_t *connp; 15875 tcp_t *tcp; 15876 int i; 15877 zoneid_t zoneid; 15878 15879 /* Refer to comments in tcp_status_report(). */ 15880 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15881 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15882 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15883 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15884 return (0); 15885 } 15886 } 15887 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15888 /* The following may work even if we cannot get a large buf. */ 15889 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15890 return (0); 15891 } 15892 15893 (void) mi_mpprintf(mp, 15894 " TCP " MI_COL_HDRPAD_STR 15895 "zone IP addr port seqnum backlog (q0/q/max)"); 15896 15897 zoneid = Q_TO_CONN(q)->conn_zoneid; 15898 15899 for (i = 0; i < ipcl_bind_fanout_size; i++) { 15900 connfp = &ipcl_bind_fanout[i]; 15901 connp = NULL; 15902 while ((connp = 15903 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15904 tcp = connp->conn_tcp; 15905 if (zoneid != GLOBAL_ZONEID && 15906 zoneid != connp->conn_zoneid) 15907 continue; 15908 tcp_report_listener(mp->b_cont, tcp, i); 15909 } 15910 } 15911 15912 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15913 return (0); 15914 } 15915 15916 /* TCP status report triggered via the Named Dispatch mechanism. */ 15917 /* ARGSUSED */ 15918 static int 15919 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15920 { 15921 connf_t *connfp; 15922 conn_t *connp; 15923 tcp_t *tcp; 15924 int i; 15925 zoneid_t zoneid; 15926 15927 /* Refer to comments in tcp_status_report(). */ 15928 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15929 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15930 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15931 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15932 return (0); 15933 } 15934 } 15935 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15936 /* The following may work even if we cannot get a large buf. */ 15937 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15938 return (0); 15939 } 15940 15941 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 15942 ipcl_conn_fanout_size); 15943 (void) mi_mpprintf(mp, " %s", tcp_report_header); 15944 15945 zoneid = Q_TO_CONN(q)->conn_zoneid; 15946 15947 for (i = 0; i < ipcl_conn_fanout_size; i++) { 15948 connfp = &ipcl_conn_fanout[i]; 15949 connp = NULL; 15950 while ((connp = 15951 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15952 tcp = connp->conn_tcp; 15953 if (zoneid != GLOBAL_ZONEID && 15954 zoneid != connp->conn_zoneid) 15955 continue; 15956 tcp_report_item(mp->b_cont, tcp, i, 15957 Q_TO_TCP(q), cr); 15958 } 15959 } 15960 15961 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15962 return (0); 15963 } 15964 15965 /* TCP status report triggered via the Named Dispatch mechanism. */ 15966 /* ARGSUSED */ 15967 static int 15968 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15969 { 15970 tf_t *tf; 15971 tcp_t *tcp; 15972 int i; 15973 zoneid_t zoneid; 15974 15975 /* Refer to comments in tcp_status_report(). */ 15976 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15977 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15978 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15979 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15980 return (0); 15981 } 15982 } 15983 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15984 /* The following may work even if we cannot get a large buf. */ 15985 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15986 return (0); 15987 } 15988 15989 (void) mi_mpprintf(mp, " %s", tcp_report_header); 15990 15991 zoneid = Q_TO_CONN(q)->conn_zoneid; 15992 15993 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 15994 tf = &tcp_acceptor_fanout[i]; 15995 mutex_enter(&tf->tf_lock); 15996 for (tcp = tf->tf_tcp; tcp != NULL; 15997 tcp = tcp->tcp_acceptor_hash) { 15998 if (zoneid != GLOBAL_ZONEID && 15999 zoneid != tcp->tcp_connp->conn_zoneid) 16000 continue; 16001 tcp_report_item(mp->b_cont, tcp, i, 16002 Q_TO_TCP(q), cr); 16003 } 16004 mutex_exit(&tf->tf_lock); 16005 } 16006 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16007 return (0); 16008 } 16009 16010 /* 16011 * tcp_timer is the timer service routine. It handles the retransmission, 16012 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16013 * from the state of the tcp instance what kind of action needs to be done 16014 * at the time it is called. 16015 */ 16016 static void 16017 tcp_timer(void *arg) 16018 { 16019 mblk_t *mp; 16020 clock_t first_threshold; 16021 clock_t second_threshold; 16022 clock_t ms; 16023 uint32_t mss; 16024 conn_t *connp = (conn_t *)arg; 16025 tcp_t *tcp = connp->conn_tcp; 16026 16027 tcp->tcp_timer_tid = 0; 16028 16029 if (tcp->tcp_fused) 16030 return; 16031 16032 first_threshold = tcp->tcp_first_timer_threshold; 16033 second_threshold = tcp->tcp_second_timer_threshold; 16034 switch (tcp->tcp_state) { 16035 case TCPS_IDLE: 16036 case TCPS_BOUND: 16037 case TCPS_LISTEN: 16038 return; 16039 case TCPS_SYN_RCVD: { 16040 tcp_t *listener = tcp->tcp_listener; 16041 16042 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16043 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16044 /* it's our first timeout */ 16045 tcp->tcp_syn_rcvd_timeout = 1; 16046 mutex_enter(&listener->tcp_eager_lock); 16047 listener->tcp_syn_rcvd_timeout++; 16048 if (!listener->tcp_syn_defense && 16049 (listener->tcp_syn_rcvd_timeout > 16050 (tcp_conn_req_max_q0 >> 2)) && 16051 (tcp_conn_req_max_q0 > 200)) { 16052 /* We may be under attack. Put on a defense. */ 16053 listener->tcp_syn_defense = B_TRUE; 16054 cmn_err(CE_WARN, "High TCP connect timeout " 16055 "rate! System (port %d) may be under a " 16056 "SYN flood attack!", 16057 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16058 16059 listener->tcp_ip_addr_cache = kmem_zalloc( 16060 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16061 KM_NOSLEEP); 16062 } 16063 mutex_exit(&listener->tcp_eager_lock); 16064 } 16065 } 16066 /* FALLTHRU */ 16067 case TCPS_SYN_SENT: 16068 first_threshold = tcp->tcp_first_ctimer_threshold; 16069 second_threshold = tcp->tcp_second_ctimer_threshold; 16070 break; 16071 case TCPS_ESTABLISHED: 16072 case TCPS_FIN_WAIT_1: 16073 case TCPS_CLOSING: 16074 case TCPS_CLOSE_WAIT: 16075 case TCPS_LAST_ACK: 16076 /* If we have data to rexmit */ 16077 if (tcp->tcp_suna != tcp->tcp_snxt) { 16078 clock_t time_to_wait; 16079 16080 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16081 if (!tcp->tcp_xmit_head) 16082 break; 16083 time_to_wait = lbolt - 16084 (clock_t)tcp->tcp_xmit_head->b_prev; 16085 time_to_wait = tcp->tcp_rto - 16086 TICK_TO_MSEC(time_to_wait); 16087 /* 16088 * If the timer fires too early, 1 clock tick earlier, 16089 * restart the timer. 16090 */ 16091 if (time_to_wait > msec_per_tick) { 16092 TCP_STAT(tcp_timer_fire_early); 16093 TCP_TIMER_RESTART(tcp, time_to_wait); 16094 return; 16095 } 16096 /* 16097 * When we probe zero windows, we force the swnd open. 16098 * If our peer acks with a closed window swnd will be 16099 * set to zero by tcp_rput(). As long as we are 16100 * receiving acks tcp_rput will 16101 * reset 'tcp_ms_we_have_waited' so as not to trip the 16102 * first and second interval actions. NOTE: the timer 16103 * interval is allowed to continue its exponential 16104 * backoff. 16105 */ 16106 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16107 if (tcp->tcp_debug) { 16108 (void) strlog(TCP_MOD_ID, 0, 1, 16109 SL_TRACE, "tcp_timer: zero win"); 16110 } 16111 } else { 16112 /* 16113 * After retransmission, we need to do 16114 * slow start. Set the ssthresh to one 16115 * half of current effective window and 16116 * cwnd to one MSS. Also reset 16117 * tcp_cwnd_cnt. 16118 * 16119 * Note that if tcp_ssthresh is reduced because 16120 * of ECN, do not reduce it again unless it is 16121 * already one window of data away (tcp_cwr 16122 * should then be cleared) or this is a 16123 * timeout for a retransmitted segment. 16124 */ 16125 uint32_t npkt; 16126 16127 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16128 npkt = ((tcp->tcp_timer_backoff ? 16129 tcp->tcp_cwnd_ssthresh : 16130 tcp->tcp_snxt - 16131 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16132 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16133 tcp->tcp_mss; 16134 } 16135 tcp->tcp_cwnd = tcp->tcp_mss; 16136 tcp->tcp_cwnd_cnt = 0; 16137 if (tcp->tcp_ecn_ok) { 16138 tcp->tcp_cwr = B_TRUE; 16139 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16140 tcp->tcp_ecn_cwr_sent = B_FALSE; 16141 } 16142 } 16143 break; 16144 } 16145 /* 16146 * We have something to send yet we cannot send. The 16147 * reason can be: 16148 * 16149 * 1. Zero send window: we need to do zero window probe. 16150 * 2. Zero cwnd: because of ECN, we need to "clock out 16151 * segments. 16152 * 3. SWS avoidance: receiver may have shrunk window, 16153 * reset our knowledge. 16154 * 16155 * Note that condition 2 can happen with either 1 or 16156 * 3. But 1 and 3 are exclusive. 16157 */ 16158 if (tcp->tcp_unsent != 0) { 16159 if (tcp->tcp_cwnd == 0) { 16160 /* 16161 * Set tcp_cwnd to 1 MSS so that a 16162 * new segment can be sent out. We 16163 * are "clocking out" new data when 16164 * the network is really congested. 16165 */ 16166 ASSERT(tcp->tcp_ecn_ok); 16167 tcp->tcp_cwnd = tcp->tcp_mss; 16168 } 16169 if (tcp->tcp_swnd == 0) { 16170 /* Extend window for zero window probe */ 16171 tcp->tcp_swnd++; 16172 tcp->tcp_zero_win_probe = B_TRUE; 16173 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16174 } else { 16175 /* 16176 * Handle timeout from sender SWS avoidance. 16177 * Reset our knowledge of the max send window 16178 * since the receiver might have reduced its 16179 * receive buffer. Avoid setting tcp_max_swnd 16180 * to one since that will essentially disable 16181 * the SWS checks. 16182 * 16183 * Note that since we don't have a SWS 16184 * state variable, if the timeout is set 16185 * for ECN but not for SWS, this 16186 * code will also be executed. This is 16187 * fine as tcp_max_swnd is updated 16188 * constantly and it will not affect 16189 * anything. 16190 */ 16191 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16192 } 16193 tcp_wput_data(tcp, NULL, B_FALSE); 16194 return; 16195 } 16196 /* Is there a FIN that needs to be to re retransmitted? */ 16197 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16198 !tcp->tcp_fin_acked) 16199 break; 16200 /* Nothing to do, return without restarting timer. */ 16201 TCP_STAT(tcp_timer_fire_miss); 16202 return; 16203 case TCPS_FIN_WAIT_2: 16204 /* 16205 * User closed the TCP endpoint and peer ACK'ed our FIN. 16206 * We waited some time for for peer's FIN, but it hasn't 16207 * arrived. We flush the connection now to avoid 16208 * case where the peer has rebooted. 16209 */ 16210 if (TCP_IS_DETACHED(tcp)) { 16211 (void) tcp_clean_death(tcp, 0, 23); 16212 } else { 16213 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16214 } 16215 return; 16216 case TCPS_TIME_WAIT: 16217 (void) tcp_clean_death(tcp, 0, 24); 16218 return; 16219 default: 16220 if (tcp->tcp_debug) { 16221 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16222 "tcp_timer: strange state (%d) %s", 16223 tcp->tcp_state, tcp_display(tcp, NULL, 16224 DISP_PORT_ONLY)); 16225 } 16226 return; 16227 } 16228 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16229 /* 16230 * For zero window probe, we need to send indefinitely, 16231 * unless we have not heard from the other side for some 16232 * time... 16233 */ 16234 if ((tcp->tcp_zero_win_probe == 0) || 16235 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16236 second_threshold)) { 16237 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16238 /* 16239 * If TCP is in SYN_RCVD state, send back a 16240 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16241 * should be zero in TCPS_SYN_RCVD state. 16242 */ 16243 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16244 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16245 "in SYN_RCVD", 16246 tcp, tcp->tcp_snxt, 16247 tcp->tcp_rnxt, TH_RST | TH_ACK); 16248 } 16249 (void) tcp_clean_death(tcp, 16250 tcp->tcp_client_errno ? 16251 tcp->tcp_client_errno : ETIMEDOUT, 25); 16252 return; 16253 } else { 16254 /* 16255 * Set tcp_ms_we_have_waited to second_threshold 16256 * so that in next timeout, we will do the above 16257 * check (lbolt - tcp_last_recv_time). This is 16258 * also to avoid overflow. 16259 * 16260 * We don't need to decrement tcp_timer_backoff 16261 * to avoid overflow because it will be decremented 16262 * later if new timeout value is greater than 16263 * tcp_rexmit_interval_max. In the case when 16264 * tcp_rexmit_interval_max is greater than 16265 * second_threshold, it means that we will wait 16266 * longer than second_threshold to send the next 16267 * window probe. 16268 */ 16269 tcp->tcp_ms_we_have_waited = second_threshold; 16270 } 16271 } else if (ms > first_threshold) { 16272 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16273 tcp->tcp_xmit_head != NULL) { 16274 tcp->tcp_xmit_head = 16275 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16276 } 16277 /* 16278 * We have been retransmitting for too long... The RTT 16279 * we calculated is probably incorrect. Reinitialize it. 16280 * Need to compensate for 0 tcp_rtt_sa. Reset 16281 * tcp_rtt_update so that we won't accidentally cache a 16282 * bad value. But only do this if this is not a zero 16283 * window probe. 16284 */ 16285 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16286 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16287 (tcp->tcp_rtt_sa >> 5); 16288 tcp->tcp_rtt_sa = 0; 16289 tcp_ip_notify(tcp); 16290 tcp->tcp_rtt_update = 0; 16291 } 16292 } 16293 tcp->tcp_timer_backoff++; 16294 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16295 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16296 tcp_rexmit_interval_min) { 16297 /* 16298 * This means the original RTO is tcp_rexmit_interval_min. 16299 * So we will use tcp_rexmit_interval_min as the RTO value 16300 * and do the backoff. 16301 */ 16302 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16303 } else { 16304 ms <<= tcp->tcp_timer_backoff; 16305 } 16306 if (ms > tcp_rexmit_interval_max) { 16307 ms = tcp_rexmit_interval_max; 16308 /* 16309 * ms is at max, decrement tcp_timer_backoff to avoid 16310 * overflow. 16311 */ 16312 tcp->tcp_timer_backoff--; 16313 } 16314 tcp->tcp_ms_we_have_waited += ms; 16315 if (tcp->tcp_zero_win_probe == 0) { 16316 tcp->tcp_rto = ms; 16317 } 16318 TCP_TIMER_RESTART(tcp, ms); 16319 /* 16320 * This is after a timeout and tcp_rto is backed off. Set 16321 * tcp_set_timer to 1 so that next time RTO is updated, we will 16322 * restart the timer with a correct value. 16323 */ 16324 tcp->tcp_set_timer = 1; 16325 mss = tcp->tcp_snxt - tcp->tcp_suna; 16326 if (mss > tcp->tcp_mss) 16327 mss = tcp->tcp_mss; 16328 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16329 mss = tcp->tcp_swnd; 16330 16331 if ((mp = tcp->tcp_xmit_head) != NULL) 16332 mp->b_prev = (mblk_t *)lbolt; 16333 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16334 B_TRUE); 16335 16336 /* 16337 * When slow start after retransmission begins, start with 16338 * this seq no. tcp_rexmit_max marks the end of special slow 16339 * start phase. tcp_snd_burst controls how many segments 16340 * can be sent because of an ack. 16341 */ 16342 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16343 tcp->tcp_snd_burst = TCP_CWND_SS; 16344 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16345 (tcp->tcp_unsent == 0)) { 16346 tcp->tcp_rexmit_max = tcp->tcp_fss; 16347 } else { 16348 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16349 } 16350 tcp->tcp_rexmit = B_TRUE; 16351 tcp->tcp_dupack_cnt = 0; 16352 16353 /* 16354 * Remove all rexmit SACK blk to start from fresh. 16355 */ 16356 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16357 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16358 tcp->tcp_num_notsack_blk = 0; 16359 tcp->tcp_cnt_notsack_list = 0; 16360 } 16361 if (mp == NULL) { 16362 return; 16363 } 16364 /* Attach credentials to retransmitted initial SYNs. */ 16365 if (tcp->tcp_state == TCPS_SYN_SENT) { 16366 mblk_setcred(mp, tcp->tcp_cred); 16367 DB_CPID(mp) = tcp->tcp_cpid; 16368 } 16369 16370 tcp->tcp_csuna = tcp->tcp_snxt; 16371 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16372 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16373 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16374 tcp_send_data(tcp, tcp->tcp_wq, mp); 16375 16376 } 16377 16378 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16379 static void 16380 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16381 { 16382 conn_t *connp; 16383 16384 switch (tcp->tcp_state) { 16385 case TCPS_BOUND: 16386 case TCPS_LISTEN: 16387 break; 16388 default: 16389 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16390 return; 16391 } 16392 16393 /* 16394 * Need to clean up all the eagers since after the unbind, segments 16395 * will no longer be delivered to this listener stream. 16396 */ 16397 mutex_enter(&tcp->tcp_eager_lock); 16398 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16399 tcp_eager_cleanup(tcp, 0); 16400 } 16401 mutex_exit(&tcp->tcp_eager_lock); 16402 16403 if (tcp->tcp_ipversion == IPV4_VERSION) { 16404 tcp->tcp_ipha->ipha_src = 0; 16405 } else { 16406 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16407 } 16408 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16409 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16410 tcp_bind_hash_remove(tcp); 16411 tcp->tcp_state = TCPS_IDLE; 16412 tcp->tcp_mdt = B_FALSE; 16413 /* Send M_FLUSH according to TPI */ 16414 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16415 connp = tcp->tcp_connp; 16416 connp->conn_mdt_ok = B_FALSE; 16417 ipcl_hash_remove(connp); 16418 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16419 mp = mi_tpi_ok_ack_alloc(mp); 16420 putnext(tcp->tcp_rq, mp); 16421 } 16422 16423 /* 16424 * Don't let port fall into the privileged range. 16425 * Since the extra privileged ports can be arbitrary we also 16426 * ensure that we exclude those from consideration. 16427 * tcp_g_epriv_ports is not sorted thus we loop over it until 16428 * there are no changes. 16429 * 16430 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16431 * but instead the code relies on: 16432 * - the fact that the address of the array and its size never changes 16433 * - the atomic assignment of the elements of the array 16434 */ 16435 static in_port_t 16436 tcp_update_next_port(in_port_t port, boolean_t random) 16437 { 16438 int i; 16439 16440 if (random && tcp_random_anon_port != 0) { 16441 (void) random_get_pseudo_bytes((uint8_t *)&port, 16442 sizeof (in_port_t)); 16443 /* 16444 * Unless changed by a sys admin, the smallest anon port 16445 * is 32768 and the largest anon port is 65535. It is 16446 * very likely (50%) for the random port to be smaller 16447 * than the smallest anon port. When that happens, 16448 * add port % (anon port range) to the smallest anon 16449 * port to get the random port. It should fall into the 16450 * valid anon port range. 16451 */ 16452 if (port < tcp_smallest_anon_port) { 16453 port = tcp_smallest_anon_port + 16454 port % (tcp_largest_anon_port - 16455 tcp_smallest_anon_port); 16456 } 16457 } 16458 16459 retry: 16460 if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port) 16461 port = (in_port_t)tcp_smallest_anon_port; 16462 16463 if (port < tcp_smallest_nonpriv_port) 16464 port = (in_port_t)tcp_smallest_nonpriv_port; 16465 16466 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16467 if (port == tcp_g_epriv_ports[i]) { 16468 port++; 16469 /* 16470 * Make sure whether the port is in the 16471 * valid range. 16472 * 16473 * XXX Note that if tcp_g_epriv_ports contains 16474 * all the anonymous ports this will be an 16475 * infinite loop. 16476 */ 16477 goto retry; 16478 } 16479 } 16480 return (port); 16481 } 16482 16483 /* 16484 * Return the next anonymous port in the priviledged port range for 16485 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16486 * downwards. This is the same behavior as documented in the userland 16487 * library call rresvport(3N). 16488 */ 16489 static in_port_t 16490 tcp_get_next_priv_port(void) 16491 { 16492 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16493 16494 if (next_priv_port < tcp_min_anonpriv_port) { 16495 next_priv_port = IPPORT_RESERVED - 1; 16496 } 16497 return (next_priv_port--); 16498 } 16499 16500 /* The write side r/w procedure. */ 16501 16502 #if CCS_STATS 16503 struct { 16504 struct { 16505 int64_t count, bytes; 16506 } tot, hit; 16507 } wrw_stats; 16508 #endif 16509 16510 /* 16511 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16512 * messages. 16513 */ 16514 /* ARGSUSED */ 16515 static void 16516 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16517 { 16518 conn_t *connp = (conn_t *)arg; 16519 tcp_t *tcp = connp->conn_tcp; 16520 queue_t *q = tcp->tcp_wq; 16521 16522 ASSERT(DB_TYPE(mp) != M_IOCTL); 16523 /* 16524 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16525 * Once the close starts, streamhead and sockfs will not let any data 16526 * packets come down (close ensures that there are no threads using the 16527 * queue and no new threads will come down) but since qprocsoff() 16528 * hasn't happened yet, a M_FLUSH or some non data message might 16529 * get reflected back (in response to our own FLUSHRW) and get 16530 * processed after tcp_close() is done. The conn would still be valid 16531 * because a ref would have added but we need to check the state 16532 * before actually processing the packet. 16533 */ 16534 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16535 freemsg(mp); 16536 return; 16537 } 16538 16539 switch (DB_TYPE(mp)) { 16540 case M_IOCDATA: 16541 tcp_wput_iocdata(tcp, mp); 16542 break; 16543 case M_FLUSH: 16544 tcp_wput_flush(tcp, mp); 16545 break; 16546 default: 16547 CALL_IP_WPUT(connp, q, mp); 16548 break; 16549 } 16550 } 16551 16552 /* 16553 * The TCP fast path write put procedure. 16554 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16555 */ 16556 /* ARGSUSED */ 16557 static void 16558 tcp_output(void *arg, mblk_t *mp, void *arg2) 16559 { 16560 int len; 16561 int hdrlen; 16562 int plen; 16563 mblk_t *mp1; 16564 uchar_t *rptr; 16565 uint32_t snxt; 16566 tcph_t *tcph; 16567 struct datab *db; 16568 uint32_t suna; 16569 uint32_t mss; 16570 ipaddr_t *dst; 16571 ipaddr_t *src; 16572 uint32_t sum; 16573 int usable; 16574 conn_t *connp = (conn_t *)arg; 16575 tcp_t *tcp = connp->conn_tcp; 16576 uint32_t msize; 16577 16578 /* 16579 * Try and ASSERT the minimum possible references on the 16580 * conn early enough. Since we are executing on write side, 16581 * the connection is obviously not detached and that means 16582 * there is a ref each for TCP and IP. Since we are behind 16583 * the squeue, the minimum references needed are 3. If the 16584 * conn is in classifier hash list, there should be an 16585 * extra ref for that (we check both the possibilities). 16586 */ 16587 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16588 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16589 16590 /* Bypass tcp protocol for fused tcp loopback */ 16591 if (tcp->tcp_fused) { 16592 msize = msgdsize(mp); 16593 mutex_enter(&connp->conn_lock); 16594 tcp->tcp_squeue_bytes -= msize; 16595 mutex_exit(&connp->conn_lock); 16596 16597 if (tcp_fuse_output(tcp, mp, msize)) 16598 return; 16599 } 16600 16601 mss = tcp->tcp_mss; 16602 if (tcp->tcp_xmit_zc_clean) 16603 mp = tcp_zcopy_backoff(tcp, mp, 0); 16604 16605 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16606 len = (int)(mp->b_wptr - mp->b_rptr); 16607 16608 /* 16609 * Criteria for fast path: 16610 * 16611 * 1. no unsent data 16612 * 2. single mblk in request 16613 * 3. connection established 16614 * 4. data in mblk 16615 * 5. len <= mss 16616 * 6. no tcp_valid bits 16617 */ 16618 if ((tcp->tcp_unsent != 0) || 16619 (tcp->tcp_cork) || 16620 (mp->b_cont != NULL) || 16621 (tcp->tcp_state != TCPS_ESTABLISHED) || 16622 (len == 0) || 16623 (len > mss) || 16624 (tcp->tcp_valid_bits != 0)) { 16625 msize = msgdsize(mp); 16626 mutex_enter(&connp->conn_lock); 16627 tcp->tcp_squeue_bytes -= msize; 16628 mutex_exit(&connp->conn_lock); 16629 16630 tcp_wput_data(tcp, mp, B_FALSE); 16631 return; 16632 } 16633 16634 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16635 ASSERT(tcp->tcp_fin_sent == 0); 16636 16637 mutex_enter(&connp->conn_lock); 16638 tcp->tcp_squeue_bytes -= len; 16639 mutex_exit(&connp->conn_lock); 16640 16641 /* queue new packet onto retransmission queue */ 16642 if (tcp->tcp_xmit_head == NULL) { 16643 tcp->tcp_xmit_head = mp; 16644 } else { 16645 tcp->tcp_xmit_last->b_cont = mp; 16646 } 16647 tcp->tcp_xmit_last = mp; 16648 tcp->tcp_xmit_tail = mp; 16649 16650 /* find out how much we can send */ 16651 /* BEGIN CSTYLED */ 16652 /* 16653 * un-acked usable 16654 * |--------------|-----------------| 16655 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16656 */ 16657 /* END CSTYLED */ 16658 16659 /* start sending from tcp_snxt */ 16660 snxt = tcp->tcp_snxt; 16661 16662 /* 16663 * Check to see if this connection has been idled for some 16664 * time and no ACK is expected. If it is, we need to slow 16665 * start again to get back the connection's "self-clock" as 16666 * described in VJ's paper. 16667 * 16668 * Refer to the comment in tcp_mss_set() for the calculation 16669 * of tcp_cwnd after idle. 16670 */ 16671 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16672 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16673 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 16674 } 16675 16676 usable = tcp->tcp_swnd; /* tcp window size */ 16677 if (usable > tcp->tcp_cwnd) 16678 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16679 usable -= snxt; /* subtract stuff already sent */ 16680 suna = tcp->tcp_suna; 16681 usable += suna; 16682 /* usable can be < 0 if the congestion window is smaller */ 16683 if (len > usable) { 16684 /* Can't send complete M_DATA in one shot */ 16685 goto slow; 16686 } 16687 16688 if (tcp->tcp_flow_stopped && 16689 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16690 tcp_clrqfull(tcp); 16691 } 16692 16693 /* 16694 * determine if anything to send (Nagle). 16695 * 16696 * 1. len < tcp_mss (i.e. small) 16697 * 2. unacknowledged data present 16698 * 3. len < nagle limit 16699 * 4. last packet sent < nagle limit (previous packet sent) 16700 */ 16701 if ((len < mss) && (snxt != suna) && 16702 (len < (int)tcp->tcp_naglim) && 16703 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16704 /* 16705 * This was the first unsent packet and normally 16706 * mss < xmit_hiwater so there is no need to worry 16707 * about flow control. The next packet will go 16708 * through the flow control check in tcp_wput_data(). 16709 */ 16710 /* leftover work from above */ 16711 tcp->tcp_unsent = len; 16712 tcp->tcp_xmit_tail_unsent = len; 16713 16714 return; 16715 } 16716 16717 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 16718 16719 if (snxt == suna) { 16720 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16721 } 16722 16723 /* we have always sent something */ 16724 tcp->tcp_rack_cnt = 0; 16725 16726 tcp->tcp_snxt = snxt + len; 16727 tcp->tcp_rack = tcp->tcp_rnxt; 16728 16729 if ((mp1 = dupb(mp)) == 0) 16730 goto no_memory; 16731 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 16732 mp->b_next = (mblk_t *)(uintptr_t)snxt; 16733 16734 /* adjust tcp header information */ 16735 tcph = tcp->tcp_tcph; 16736 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 16737 16738 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 16739 sum = (sum >> 16) + (sum & 0xFFFF); 16740 U16_TO_ABE16(sum, tcph->th_sum); 16741 16742 U32_TO_ABE32(snxt, tcph->th_seq); 16743 16744 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 16745 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 16746 BUMP_LOCAL(tcp->tcp_obsegs); 16747 16748 /* Update the latest receive window size in TCP header. */ 16749 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 16750 tcph->th_win); 16751 16752 tcp->tcp_last_sent_len = (ushort_t)len; 16753 16754 plen = len + tcp->tcp_hdr_len; 16755 16756 if (tcp->tcp_ipversion == IPV4_VERSION) { 16757 tcp->tcp_ipha->ipha_length = htons(plen); 16758 } else { 16759 tcp->tcp_ip6h->ip6_plen = htons(plen - 16760 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 16761 } 16762 16763 /* see if we need to allocate a mblk for the headers */ 16764 hdrlen = tcp->tcp_hdr_len; 16765 rptr = mp1->b_rptr - hdrlen; 16766 db = mp1->b_datap; 16767 if ((db->db_ref != 2) || rptr < db->db_base || 16768 (!OK_32PTR(rptr))) { 16769 /* NOTE: we assume allocb returns an OK_32PTR */ 16770 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 16771 tcp_wroff_xtra, BPRI_MED); 16772 if (!mp) { 16773 freemsg(mp1); 16774 goto no_memory; 16775 } 16776 mp->b_cont = mp1; 16777 mp1 = mp; 16778 /* Leave room for Link Level header */ 16779 /* hdrlen = tcp->tcp_hdr_len; */ 16780 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 16781 mp1->b_wptr = &rptr[hdrlen]; 16782 } 16783 mp1->b_rptr = rptr; 16784 16785 /* Fill in the timestamp option. */ 16786 if (tcp->tcp_snd_ts_ok) { 16787 U32_TO_BE32((uint32_t)lbolt, 16788 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 16789 U32_TO_BE32(tcp->tcp_ts_recent, 16790 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 16791 } else { 16792 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 16793 } 16794 16795 /* copy header into outgoing packet */ 16796 dst = (ipaddr_t *)rptr; 16797 src = (ipaddr_t *)tcp->tcp_iphc; 16798 dst[0] = src[0]; 16799 dst[1] = src[1]; 16800 dst[2] = src[2]; 16801 dst[3] = src[3]; 16802 dst[4] = src[4]; 16803 dst[5] = src[5]; 16804 dst[6] = src[6]; 16805 dst[7] = src[7]; 16806 dst[8] = src[8]; 16807 dst[9] = src[9]; 16808 if (hdrlen -= 40) { 16809 hdrlen >>= 2; 16810 dst += 10; 16811 src += 10; 16812 do { 16813 *dst++ = *src++; 16814 } while (--hdrlen); 16815 } 16816 16817 /* 16818 * Set the ECN info in the TCP header. Note that this 16819 * is not the template header. 16820 */ 16821 if (tcp->tcp_ecn_ok) { 16822 SET_ECT(tcp, rptr); 16823 16824 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 16825 if (tcp->tcp_ecn_echo_on) 16826 tcph->th_flags[0] |= TH_ECE; 16827 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16828 tcph->th_flags[0] |= TH_CWR; 16829 tcp->tcp_ecn_cwr_sent = B_TRUE; 16830 } 16831 } 16832 16833 if (tcp->tcp_ip_forward_progress) { 16834 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 16835 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 16836 tcp->tcp_ip_forward_progress = B_FALSE; 16837 } 16838 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 16839 tcp_send_data(tcp, tcp->tcp_wq, mp1); 16840 return; 16841 16842 /* 16843 * If we ran out of memory, we pretend to have sent the packet 16844 * and that it was lost on the wire. 16845 */ 16846 no_memory: 16847 return; 16848 16849 slow: 16850 /* leftover work from above */ 16851 tcp->tcp_unsent = len; 16852 tcp->tcp_xmit_tail_unsent = len; 16853 tcp_wput_data(tcp, NULL, B_FALSE); 16854 } 16855 16856 /* 16857 * The function called through squeue to get behind eager's perimeter to 16858 * finish the accept processing. 16859 */ 16860 /* ARGSUSED */ 16861 void 16862 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 16863 { 16864 conn_t *connp = (conn_t *)arg; 16865 tcp_t *tcp = connp->conn_tcp; 16866 queue_t *q = tcp->tcp_rq; 16867 mblk_t *mp1; 16868 mblk_t *stropt_mp = mp; 16869 struct stroptions *stropt; 16870 uint_t thwin; 16871 16872 /* 16873 * Drop the eager's ref on the listener, that was placed when 16874 * this eager began life in tcp_conn_request. 16875 */ 16876 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 16877 16878 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 16879 /* 16880 * Someone blewoff the eager before we could finish 16881 * the accept. 16882 * 16883 * The only reason eager exists it because we put in 16884 * a ref on it when conn ind went up. We need to send 16885 * a disconnect indication up while the last reference 16886 * on the eager will be dropped by the squeue when we 16887 * return. 16888 */ 16889 ASSERT(tcp->tcp_listener == NULL); 16890 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 16891 struct T_discon_ind *tdi; 16892 16893 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 16894 /* 16895 * Let us reuse the incoming mblk to avoid memory 16896 * allocation failure problems. We know that the 16897 * size of the incoming mblk i.e. stroptions is greater 16898 * than sizeof T_discon_ind. So the reallocb below 16899 * can't fail. 16900 */ 16901 freemsg(mp->b_cont); 16902 mp->b_cont = NULL; 16903 ASSERT(DB_REF(mp) == 1); 16904 mp = reallocb(mp, sizeof (struct T_discon_ind), 16905 B_FALSE); 16906 ASSERT(mp != NULL); 16907 DB_TYPE(mp) = M_PROTO; 16908 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 16909 tdi = (struct T_discon_ind *)mp->b_rptr; 16910 if (tcp->tcp_issocket) { 16911 tdi->DISCON_reason = ECONNREFUSED; 16912 tdi->SEQ_number = 0; 16913 } else { 16914 tdi->DISCON_reason = ENOPROTOOPT; 16915 tdi->SEQ_number = 16916 tcp->tcp_conn_req_seqnum; 16917 } 16918 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 16919 putnext(q, mp); 16920 } else { 16921 freemsg(mp); 16922 } 16923 if (tcp->tcp_hard_binding) { 16924 tcp->tcp_hard_binding = B_FALSE; 16925 tcp->tcp_hard_bound = B_TRUE; 16926 } 16927 tcp->tcp_detached = B_FALSE; 16928 return; 16929 } 16930 16931 mp1 = stropt_mp->b_cont; 16932 stropt_mp->b_cont = NULL; 16933 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 16934 stropt = (struct stroptions *)stropt_mp->b_rptr; 16935 16936 while (mp1 != NULL) { 16937 mp = mp1; 16938 mp1 = mp1->b_cont; 16939 mp->b_cont = NULL; 16940 tcp->tcp_drop_opt_ack_cnt++; 16941 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 16942 } 16943 mp = NULL; 16944 16945 /* 16946 * For a loopback connection with tcp_direct_sockfs on, note that 16947 * we don't have to protect tcp_rcv_list yet because synchronous 16948 * streams has not yet been enabled and tcp_fuse_rrw() cannot 16949 * possibly race with us. 16950 */ 16951 16952 /* 16953 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 16954 * properly. This is the first time we know of the acceptor' 16955 * queue. So we do it here. 16956 */ 16957 if (tcp->tcp_rcv_list == NULL) { 16958 /* 16959 * Recv queue is empty, tcp_rwnd should not have changed. 16960 * That means it should be equal to the listener's tcp_rwnd. 16961 */ 16962 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 16963 } else { 16964 #ifdef DEBUG 16965 uint_t cnt = 0; 16966 16967 mp1 = tcp->tcp_rcv_list; 16968 while ((mp = mp1) != NULL) { 16969 mp1 = mp->b_next; 16970 cnt += msgdsize(mp); 16971 } 16972 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 16973 #endif 16974 /* There is some data, add them back to get the max. */ 16975 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 16976 } 16977 16978 stropt->so_flags = SO_HIWAT; 16979 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 16980 16981 stropt->so_flags |= SO_MAXBLK; 16982 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 16983 16984 /* 16985 * This is the first time we run on the correct 16986 * queue after tcp_accept. So fix all the q parameters 16987 * here. 16988 */ 16989 /* Allocate room for SACK options if needed. */ 16990 stropt->so_flags |= SO_WROFF; 16991 if (tcp->tcp_fused) { 16992 ASSERT(tcp->tcp_loopback); 16993 ASSERT(tcp->tcp_loopback_peer != NULL); 16994 /* 16995 * For fused tcp loopback, set the stream head's write 16996 * offset value to zero since we won't be needing any room 16997 * for TCP/IP headers. This would also improve performance 16998 * since it would reduce the amount of work done by kmem. 16999 * Non-fused tcp loopback case is handled separately below. 17000 */ 17001 stropt->so_wroff = 0; 17002 /* 17003 * Record the stream head's high water mark for this endpoint; 17004 * this is used for flow-control purposes in tcp_fuse_output(). 17005 */ 17006 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17007 /* 17008 * Update the peer's transmit parameters according to 17009 * our recently calculated high water mark value. 17010 */ 17011 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17012 } else if (tcp->tcp_snd_sack_ok) { 17013 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17014 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17015 } else { 17016 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17017 tcp_wroff_xtra); 17018 } 17019 17020 /* Send the options up */ 17021 putnext(q, stropt_mp); 17022 17023 /* 17024 * Pass up any data and/or a fin that has been received. 17025 * 17026 * Adjust receive window in case it had decreased 17027 * (because there is data <=> tcp_rcv_list != NULL) 17028 * while the connection was detached. Note that 17029 * in case the eager was flow-controlled, w/o this 17030 * code, the rwnd may never open up again! 17031 */ 17032 if (tcp->tcp_rcv_list != NULL) { 17033 /* We drain directly in case of fused tcp loopback */ 17034 if (!tcp->tcp_fused && canputnext(q)) { 17035 tcp->tcp_rwnd = q->q_hiwat; 17036 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17037 << tcp->tcp_rcv_ws; 17038 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17039 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17040 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17041 tcp_xmit_ctl(NULL, 17042 tcp, (tcp->tcp_swnd == 0) ? 17043 tcp->tcp_suna : tcp->tcp_snxt, 17044 tcp->tcp_rnxt, TH_ACK); 17045 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17046 } 17047 17048 } 17049 (void) tcp_rcv_drain(q, tcp); 17050 17051 /* 17052 * For fused tcp loopback, back-enable peer endpoint 17053 * if it's currently flow-controlled. 17054 */ 17055 if (tcp->tcp_fused && 17056 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17057 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17058 17059 ASSERT(peer_tcp != NULL); 17060 ASSERT(peer_tcp->tcp_fused); 17061 17062 tcp_clrqfull(peer_tcp); 17063 TCP_STAT(tcp_fusion_backenabled); 17064 } 17065 } 17066 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17067 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17068 mp = mi_tpi_ordrel_ind(); 17069 if (mp) { 17070 tcp->tcp_ordrel_done = B_TRUE; 17071 putnext(q, mp); 17072 if (tcp->tcp_deferred_clean_death) { 17073 /* 17074 * tcp_clean_death was deferred 17075 * for T_ORDREL_IND - do it now 17076 */ 17077 (void) tcp_clean_death(tcp, 17078 tcp->tcp_client_errno, 21); 17079 tcp->tcp_deferred_clean_death = B_FALSE; 17080 } 17081 } else { 17082 /* 17083 * Run the orderly release in the 17084 * service routine. 17085 */ 17086 qenable(q); 17087 } 17088 } 17089 if (tcp->tcp_hard_binding) { 17090 tcp->tcp_hard_binding = B_FALSE; 17091 tcp->tcp_hard_bound = B_TRUE; 17092 } 17093 17094 tcp->tcp_detached = B_FALSE; 17095 17096 /* We can enable synchronous streams now */ 17097 if (tcp->tcp_fused) { 17098 tcp_fuse_syncstr_enable_pair(tcp); 17099 } 17100 17101 if (tcp->tcp_ka_enabled) { 17102 tcp->tcp_ka_last_intrvl = 0; 17103 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17104 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17105 } 17106 17107 /* 17108 * At this point, eager is fully established and will 17109 * have the following references - 17110 * 17111 * 2 references for connection to exist (1 for TCP and 1 for IP). 17112 * 1 reference for the squeue which will be dropped by the squeue as 17113 * soon as this function returns. 17114 * There will be 1 additonal reference for being in classifier 17115 * hash list provided something bad hasn't happened. 17116 */ 17117 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17118 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17119 } 17120 17121 /* 17122 * The function called through squeue to get behind listener's perimeter to 17123 * send a deffered conn_ind. 17124 */ 17125 /* ARGSUSED */ 17126 void 17127 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17128 { 17129 conn_t *connp = (conn_t *)arg; 17130 tcp_t *listener = connp->conn_tcp; 17131 17132 if (listener->tcp_state == TCPS_CLOSED || 17133 TCP_IS_DETACHED(listener)) { 17134 /* 17135 * If listener has closed, it would have caused a 17136 * a cleanup/blowoff to happen for the eager. 17137 */ 17138 tcp_t *tcp; 17139 struct T_conn_ind *conn_ind; 17140 17141 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17142 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17143 conn_ind->OPT_length); 17144 /* 17145 * We need to drop the ref on eager that was put 17146 * tcp_rput_data() before trying to send the conn_ind 17147 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17148 * and tcp_wput_accept() is sending this deferred conn_ind but 17149 * listener is closed so we drop the ref. 17150 */ 17151 CONN_DEC_REF(tcp->tcp_connp); 17152 freemsg(mp); 17153 return; 17154 } 17155 putnext(listener->tcp_rq, mp); 17156 } 17157 17158 17159 /* 17160 * This is the STREAMS entry point for T_CONN_RES coming down on 17161 * Acceptor STREAM when sockfs listener does accept processing. 17162 * Read the block comment on top pf tcp_conn_request(). 17163 */ 17164 void 17165 tcp_wput_accept(queue_t *q, mblk_t *mp) 17166 { 17167 queue_t *rq = RD(q); 17168 struct T_conn_res *conn_res; 17169 tcp_t *eager; 17170 tcp_t *listener; 17171 struct T_ok_ack *ok; 17172 t_scalar_t PRIM_type; 17173 mblk_t *opt_mp; 17174 conn_t *econnp; 17175 17176 ASSERT(DB_TYPE(mp) == M_PROTO); 17177 17178 conn_res = (struct T_conn_res *)mp->b_rptr; 17179 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17180 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17181 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17182 if (mp != NULL) 17183 putnext(rq, mp); 17184 return; 17185 } 17186 switch (conn_res->PRIM_type) { 17187 case O_T_CONN_RES: 17188 case T_CONN_RES: 17189 /* 17190 * We pass up an err ack if allocb fails. This will 17191 * cause sockfs to issue a T_DISCON_REQ which will cause 17192 * tcp_eager_blowoff to be called. sockfs will then call 17193 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17194 * we need to do the allocb up here because we have to 17195 * make sure rq->q_qinfo->qi_qclose still points to the 17196 * correct function (tcpclose_accept) in case allocb 17197 * fails. 17198 */ 17199 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17200 if (opt_mp == NULL) { 17201 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17202 if (mp != NULL) 17203 putnext(rq, mp); 17204 return; 17205 } 17206 17207 bcopy(mp->b_rptr + conn_res->OPT_offset, 17208 &eager, conn_res->OPT_length); 17209 PRIM_type = conn_res->PRIM_type; 17210 mp->b_datap->db_type = M_PCPROTO; 17211 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17212 ok = (struct T_ok_ack *)mp->b_rptr; 17213 ok->PRIM_type = T_OK_ACK; 17214 ok->CORRECT_prim = PRIM_type; 17215 econnp = eager->tcp_connp; 17216 econnp->conn_dev = (dev_t)q->q_ptr; 17217 eager->tcp_rq = rq; 17218 eager->tcp_wq = q; 17219 rq->q_ptr = econnp; 17220 rq->q_qinfo = &tcp_rinit; 17221 q->q_ptr = econnp; 17222 q->q_qinfo = &tcp_winit; 17223 listener = eager->tcp_listener; 17224 eager->tcp_issocket = B_TRUE; 17225 eager->tcp_cred = econnp->conn_cred = 17226 listener->tcp_connp->conn_cred; 17227 crhold(econnp->conn_cred); 17228 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17229 17230 /* Put the ref for IP */ 17231 CONN_INC_REF(econnp); 17232 17233 /* 17234 * We should have minimum of 3 references on the conn 17235 * at this point. One each for TCP and IP and one for 17236 * the T_conn_ind that was sent up when the 3-way handshake 17237 * completed. In the normal case we would also have another 17238 * reference (making a total of 4) for the conn being in the 17239 * classifier hash list. However the eager could have received 17240 * an RST subsequently and tcp_closei_local could have removed 17241 * the eager from the classifier hash list, hence we can't 17242 * assert that reference. 17243 */ 17244 ASSERT(econnp->conn_ref >= 3); 17245 17246 /* 17247 * Send the new local address also up to sockfs. There 17248 * should already be enough space in the mp that came 17249 * down from soaccept(). 17250 */ 17251 if (eager->tcp_family == AF_INET) { 17252 sin_t *sin; 17253 17254 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17255 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17256 sin = (sin_t *)mp->b_wptr; 17257 mp->b_wptr += sizeof (sin_t); 17258 sin->sin_family = AF_INET; 17259 sin->sin_port = eager->tcp_lport; 17260 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17261 } else { 17262 sin6_t *sin6; 17263 17264 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17265 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17266 sin6 = (sin6_t *)mp->b_wptr; 17267 mp->b_wptr += sizeof (sin6_t); 17268 sin6->sin6_family = AF_INET6; 17269 sin6->sin6_port = eager->tcp_lport; 17270 if (eager->tcp_ipversion == IPV4_VERSION) { 17271 sin6->sin6_flowinfo = 0; 17272 IN6_IPADDR_TO_V4MAPPED( 17273 eager->tcp_ipha->ipha_src, 17274 &sin6->sin6_addr); 17275 } else { 17276 ASSERT(eager->tcp_ip6h != NULL); 17277 sin6->sin6_flowinfo = 17278 eager->tcp_ip6h->ip6_vcf & 17279 ~IPV6_VERS_AND_FLOW_MASK; 17280 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17281 } 17282 sin6->sin6_scope_id = 0; 17283 sin6->__sin6_src_id = 0; 17284 } 17285 17286 putnext(rq, mp); 17287 17288 opt_mp->b_datap->db_type = M_SETOPTS; 17289 opt_mp->b_wptr += sizeof (struct stroptions); 17290 17291 /* 17292 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17293 * from listener to acceptor. The message is chained on the 17294 * bind_mp which tcp_rput_other will send down to IP. 17295 */ 17296 if (listener->tcp_bound_if != 0) { 17297 /* allocate optmgmt req */ 17298 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17299 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17300 sizeof (int)); 17301 if (mp != NULL) 17302 linkb(opt_mp, mp); 17303 } 17304 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17305 uint_t on = 1; 17306 17307 /* allocate optmgmt req */ 17308 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17309 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17310 if (mp != NULL) 17311 linkb(opt_mp, mp); 17312 } 17313 17314 17315 mutex_enter(&listener->tcp_eager_lock); 17316 17317 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17318 17319 tcp_t *tail; 17320 tcp_t *tcp; 17321 mblk_t *mp1; 17322 17323 tcp = listener->tcp_eager_prev_q0; 17324 /* 17325 * listener->tcp_eager_prev_q0 points to the TAIL of the 17326 * deferred T_conn_ind queue. We need to get to the head 17327 * of the queue in order to send up T_conn_ind the same 17328 * order as how the 3WHS is completed. 17329 */ 17330 while (tcp != listener) { 17331 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 17332 break; 17333 else 17334 tcp = tcp->tcp_eager_prev_q0; 17335 } 17336 ASSERT(tcp != listener); 17337 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17338 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17339 /* Move from q0 to q */ 17340 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17341 listener->tcp_conn_req_cnt_q0--; 17342 listener->tcp_conn_req_cnt_q++; 17343 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17344 tcp->tcp_eager_prev_q0; 17345 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17346 tcp->tcp_eager_next_q0; 17347 tcp->tcp_eager_prev_q0 = NULL; 17348 tcp->tcp_eager_next_q0 = NULL; 17349 tcp->tcp_conn_def_q0 = B_FALSE; 17350 17351 /* 17352 * Insert at end of the queue because sockfs sends 17353 * down T_CONN_RES in chronological order. Leaving 17354 * the older conn indications at front of the queue 17355 * helps reducing search time. 17356 */ 17357 tail = listener->tcp_eager_last_q; 17358 if (tail != NULL) { 17359 tail->tcp_eager_next_q = tcp; 17360 } else { 17361 listener->tcp_eager_next_q = tcp; 17362 } 17363 listener->tcp_eager_last_q = tcp; 17364 tcp->tcp_eager_next_q = NULL; 17365 17366 /* Need to get inside the listener perimeter */ 17367 CONN_INC_REF(listener->tcp_connp); 17368 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17369 tcp_send_pending, listener->tcp_connp, 17370 SQTAG_TCP_SEND_PENDING); 17371 } 17372 tcp_eager_unlink(eager); 17373 mutex_exit(&listener->tcp_eager_lock); 17374 17375 /* 17376 * At this point, the eager is detached from the listener 17377 * but we still have an extra refs on eager (apart from the 17378 * usual tcp references). The ref was placed in tcp_rput_data 17379 * before sending the conn_ind in tcp_send_conn_ind. 17380 * The ref will be dropped in tcp_accept_finish(). 17381 */ 17382 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17383 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17384 return; 17385 default: 17386 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17387 if (mp != NULL) 17388 putnext(rq, mp); 17389 return; 17390 } 17391 } 17392 17393 void 17394 tcp_wput(queue_t *q, mblk_t *mp) 17395 { 17396 conn_t *connp = Q_TO_CONN(q); 17397 tcp_t *tcp; 17398 void (*output_proc)(); 17399 t_scalar_t type; 17400 uchar_t *rptr; 17401 struct iocblk *iocp; 17402 uint32_t msize; 17403 17404 ASSERT(connp->conn_ref >= 2); 17405 17406 switch (DB_TYPE(mp)) { 17407 case M_DATA: 17408 tcp = connp->conn_tcp; 17409 ASSERT(tcp != NULL); 17410 17411 msize = msgdsize(mp); 17412 17413 mutex_enter(&connp->conn_lock); 17414 CONN_INC_REF_LOCKED(connp); 17415 17416 tcp->tcp_squeue_bytes += msize; 17417 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17418 mutex_exit(&connp->conn_lock); 17419 tcp_setqfull(tcp); 17420 } else 17421 mutex_exit(&connp->conn_lock); 17422 17423 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17424 tcp_output, connp, SQTAG_TCP_OUTPUT); 17425 return; 17426 case M_PROTO: 17427 case M_PCPROTO: 17428 /* 17429 * if it is a snmp message, don't get behind the squeue 17430 */ 17431 tcp = connp->conn_tcp; 17432 rptr = mp->b_rptr; 17433 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17434 type = ((union T_primitives *)rptr)->type; 17435 } else { 17436 if (tcp->tcp_debug) { 17437 (void) strlog(TCP_MOD_ID, 0, 1, 17438 SL_ERROR|SL_TRACE, 17439 "tcp_wput_proto, dropping one..."); 17440 } 17441 freemsg(mp); 17442 return; 17443 } 17444 if (type == T_SVR4_OPTMGMT_REQ) { 17445 cred_t *cr = DB_CREDDEF(mp, 17446 tcp->tcp_cred); 17447 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 17448 cr)) { 17449 /* 17450 * This was a SNMP request 17451 */ 17452 return; 17453 } else { 17454 output_proc = tcp_wput_proto; 17455 } 17456 } else { 17457 output_proc = tcp_wput_proto; 17458 } 17459 break; 17460 case M_IOCTL: 17461 /* 17462 * Most ioctls can be processed right away without going via 17463 * squeues - process them right here. Those that do require 17464 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 17465 * are processed by tcp_wput_ioctl(). 17466 */ 17467 iocp = (struct iocblk *)mp->b_rptr; 17468 tcp = connp->conn_tcp; 17469 17470 switch (iocp->ioc_cmd) { 17471 case TCP_IOC_ABORT_CONN: 17472 tcp_ioctl_abort_conn(q, mp); 17473 return; 17474 case TI_GETPEERNAME: 17475 if (tcp->tcp_state < TCPS_SYN_RCVD) { 17476 iocp->ioc_error = ENOTCONN; 17477 iocp->ioc_count = 0; 17478 mp->b_datap->db_type = M_IOCACK; 17479 qreply(q, mp); 17480 return; 17481 } 17482 /* FALLTHRU */ 17483 case TI_GETMYNAME: 17484 mi_copyin(q, mp, NULL, 17485 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 17486 return; 17487 case ND_SET: 17488 /* nd_getset does the necessary checks */ 17489 case ND_GET: 17490 if (!nd_getset(q, tcp_g_nd, mp)) { 17491 CALL_IP_WPUT(connp, q, mp); 17492 return; 17493 } 17494 qreply(q, mp); 17495 return; 17496 case TCP_IOC_DEFAULT_Q: 17497 /* 17498 * Wants to be the default wq. Check the credentials 17499 * first, the rest is executed via squeue. 17500 */ 17501 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 17502 iocp->ioc_error = EPERM; 17503 iocp->ioc_count = 0; 17504 mp->b_datap->db_type = M_IOCACK; 17505 qreply(q, mp); 17506 return; 17507 } 17508 output_proc = tcp_wput_ioctl; 17509 break; 17510 default: 17511 output_proc = tcp_wput_ioctl; 17512 break; 17513 } 17514 break; 17515 default: 17516 output_proc = tcp_wput_nondata; 17517 break; 17518 } 17519 17520 CONN_INC_REF(connp); 17521 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17522 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 17523 } 17524 17525 /* 17526 * Initial STREAMS write side put() procedure for sockets. It tries to 17527 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 17528 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 17529 * are handled by tcp_wput() as usual. 17530 * 17531 * All further messages will also be handled by tcp_wput() because we cannot 17532 * be sure that the above short cut is safe later. 17533 */ 17534 static void 17535 tcp_wput_sock(queue_t *wq, mblk_t *mp) 17536 { 17537 conn_t *connp = Q_TO_CONN(wq); 17538 tcp_t *tcp = connp->conn_tcp; 17539 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 17540 17541 ASSERT(wq->q_qinfo == &tcp_sock_winit); 17542 wq->q_qinfo = &tcp_winit; 17543 17544 ASSERT(IPCL_IS_TCP(connp)); 17545 ASSERT(TCP_IS_SOCKET(tcp)); 17546 17547 if (DB_TYPE(mp) == M_PCPROTO && 17548 MBLKL(mp) == sizeof (struct T_capability_req) && 17549 car->PRIM_type == T_CAPABILITY_REQ) { 17550 tcp_capability_req(tcp, mp); 17551 return; 17552 } 17553 17554 tcp_wput(wq, mp); 17555 } 17556 17557 static boolean_t 17558 tcp_zcopy_check(tcp_t *tcp) 17559 { 17560 conn_t *connp = tcp->tcp_connp; 17561 ire_t *ire; 17562 boolean_t zc_enabled = B_FALSE; 17563 17564 if (do_tcpzcopy == 2) 17565 zc_enabled = B_TRUE; 17566 else if (tcp->tcp_ipversion == IPV4_VERSION && 17567 IPCL_IS_CONNECTED(connp) && 17568 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 17569 connp->conn_dontroute == 0 && 17570 connp->conn_xmit_if_ill == NULL && 17571 connp->conn_nofailover_ill == NULL && 17572 do_tcpzcopy == 1) { 17573 /* 17574 * the checks above closely resemble the fast path checks 17575 * in tcp_send_data(). 17576 */ 17577 mutex_enter(&connp->conn_lock); 17578 ire = connp->conn_ire_cache; 17579 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17580 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17581 IRE_REFHOLD(ire); 17582 if (ire->ire_stq != NULL) { 17583 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 17584 17585 zc_enabled = ill && (ill->ill_capabilities & 17586 ILL_CAPAB_ZEROCOPY) && 17587 (ill->ill_zerocopy_capab-> 17588 ill_zerocopy_flags != 0); 17589 } 17590 IRE_REFRELE(ire); 17591 } 17592 mutex_exit(&connp->conn_lock); 17593 } 17594 tcp->tcp_snd_zcopy_on = zc_enabled; 17595 if (!TCP_IS_DETACHED(tcp)) { 17596 if (zc_enabled) { 17597 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 17598 TCP_STAT(tcp_zcopy_on); 17599 } else { 17600 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17601 TCP_STAT(tcp_zcopy_off); 17602 } 17603 } 17604 return (zc_enabled); 17605 } 17606 17607 static mblk_t * 17608 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 17609 { 17610 if (do_tcpzcopy == 2) 17611 return (bp); 17612 else if (tcp->tcp_snd_zcopy_on) { 17613 tcp->tcp_snd_zcopy_on = B_FALSE; 17614 if (!TCP_IS_DETACHED(tcp)) { 17615 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17616 TCP_STAT(tcp_zcopy_disable); 17617 } 17618 } 17619 return (tcp_zcopy_backoff(tcp, bp, 0)); 17620 } 17621 17622 /* 17623 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 17624 * the original desballoca'ed segmapped mblk. 17625 */ 17626 static mblk_t * 17627 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 17628 { 17629 mblk_t *head, *tail, *nbp; 17630 if (IS_VMLOANED_MBLK(bp)) { 17631 TCP_STAT(tcp_zcopy_backoff); 17632 if ((head = copyb(bp)) == NULL) { 17633 /* fail to backoff; leave it for the next backoff */ 17634 tcp->tcp_xmit_zc_clean = B_FALSE; 17635 return (bp); 17636 } 17637 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17638 if (fix_xmitlist) 17639 tcp_zcopy_notify(tcp); 17640 else 17641 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 17642 } 17643 nbp = bp->b_cont; 17644 if (fix_xmitlist) { 17645 head->b_prev = bp->b_prev; 17646 head->b_next = bp->b_next; 17647 if (tcp->tcp_xmit_tail == bp) 17648 tcp->tcp_xmit_tail = head; 17649 } 17650 bp->b_next = NULL; 17651 bp->b_prev = NULL; 17652 freeb(bp); 17653 } else { 17654 head = bp; 17655 nbp = bp->b_cont; 17656 } 17657 tail = head; 17658 while (nbp) { 17659 if (IS_VMLOANED_MBLK(nbp)) { 17660 TCP_STAT(tcp_zcopy_backoff); 17661 if ((tail->b_cont = copyb(nbp)) == NULL) { 17662 tcp->tcp_xmit_zc_clean = B_FALSE; 17663 tail->b_cont = nbp; 17664 return (head); 17665 } 17666 tail = tail->b_cont; 17667 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17668 if (fix_xmitlist) 17669 tcp_zcopy_notify(tcp); 17670 else 17671 tail->b_datap->db_struioflag |= 17672 STRUIO_ZCNOTIFY; 17673 } 17674 bp = nbp; 17675 nbp = nbp->b_cont; 17676 if (fix_xmitlist) { 17677 tail->b_prev = bp->b_prev; 17678 tail->b_next = bp->b_next; 17679 if (tcp->tcp_xmit_tail == bp) 17680 tcp->tcp_xmit_tail = tail; 17681 } 17682 bp->b_next = NULL; 17683 bp->b_prev = NULL; 17684 freeb(bp); 17685 } else { 17686 tail->b_cont = nbp; 17687 tail = nbp; 17688 nbp = nbp->b_cont; 17689 } 17690 } 17691 if (fix_xmitlist) { 17692 tcp->tcp_xmit_last = tail; 17693 tcp->tcp_xmit_zc_clean = B_TRUE; 17694 } 17695 return (head); 17696 } 17697 17698 static void 17699 tcp_zcopy_notify(tcp_t *tcp) 17700 { 17701 struct stdata *stp; 17702 17703 if (tcp->tcp_detached) 17704 return; 17705 stp = STREAM(tcp->tcp_rq); 17706 mutex_enter(&stp->sd_lock); 17707 stp->sd_flag |= STZCNOTIFY; 17708 cv_broadcast(&stp->sd_zcopy_wait); 17709 mutex_exit(&stp->sd_lock); 17710 } 17711 17712 static void 17713 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 17714 { 17715 ipha_t *ipha; 17716 ipaddr_t src; 17717 ipaddr_t dst; 17718 uint32_t cksum; 17719 ire_t *ire; 17720 uint16_t *up; 17721 ill_t *ill; 17722 conn_t *connp = tcp->tcp_connp; 17723 uint32_t hcksum_txflags = 0; 17724 mblk_t *ire_fp_mp; 17725 uint_t ire_fp_mp_len; 17726 17727 ASSERT(DB_TYPE(mp) == M_DATA); 17728 17729 ipha = (ipha_t *)mp->b_rptr; 17730 src = ipha->ipha_src; 17731 dst = ipha->ipha_dst; 17732 17733 /* 17734 * Drop off slow path for IPv6 and also if options are present. 17735 */ 17736 if (tcp->tcp_ipversion != IPV4_VERSION || 17737 !IPCL_IS_CONNECTED(connp) || 17738 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 17739 connp->conn_dontroute || 17740 connp->conn_xmit_if_ill != NULL || 17741 connp->conn_nofailover_ill != NULL || 17742 ipha->ipha_ident == IP_HDR_INCLUDED || 17743 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 17744 IPP_ENABLED(IPP_LOCAL_OUT)) { 17745 if (tcp->tcp_snd_zcopy_aware) 17746 mp = tcp_zcopy_disable(tcp, mp); 17747 TCP_STAT(tcp_ip_send); 17748 CALL_IP_WPUT(connp, q, mp); 17749 return; 17750 } 17751 17752 mutex_enter(&connp->conn_lock); 17753 ire = connp->conn_ire_cache; 17754 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17755 if (ire != NULL && ire->ire_addr == dst && 17756 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17757 IRE_REFHOLD(ire); 17758 mutex_exit(&connp->conn_lock); 17759 } else { 17760 boolean_t cached = B_FALSE; 17761 17762 /* force a recheck later on */ 17763 tcp->tcp_ire_ill_check_done = B_FALSE; 17764 17765 TCP_DBGSTAT(tcp_ire_null1); 17766 connp->conn_ire_cache = NULL; 17767 mutex_exit(&connp->conn_lock); 17768 if (ire != NULL) 17769 IRE_REFRELE_NOTR(ire); 17770 ire = ire_cache_lookup(dst, connp->conn_zoneid); 17771 if (ire == NULL) { 17772 if (tcp->tcp_snd_zcopy_aware) 17773 mp = tcp_zcopy_backoff(tcp, mp, 0); 17774 TCP_STAT(tcp_ire_null); 17775 CALL_IP_WPUT(connp, q, mp); 17776 return; 17777 } 17778 IRE_REFHOLD_NOTR(ire); 17779 /* 17780 * Since we are inside the squeue, there cannot be another 17781 * thread in TCP trying to set the conn_ire_cache now. The 17782 * check for IRE_MARK_CONDEMNED ensures that an interface 17783 * unplumb thread has not yet started cleaning up the conns. 17784 * Hence we don't need to grab the conn lock. 17785 */ 17786 if (!(connp->conn_state_flags & CONN_CLOSING)) { 17787 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 17788 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17789 connp->conn_ire_cache = ire; 17790 cached = B_TRUE; 17791 } 17792 rw_exit(&ire->ire_bucket->irb_lock); 17793 } 17794 17795 /* 17796 * We can continue to use the ire but since it was 17797 * not cached, we should drop the extra reference. 17798 */ 17799 if (!cached) 17800 IRE_REFRELE_NOTR(ire); 17801 } 17802 17803 if (ire->ire_flags & RTF_MULTIRT || 17804 ire->ire_stq == NULL || 17805 ire->ire_max_frag < ntohs(ipha->ipha_length) || 17806 (ire_fp_mp = ire->ire_fp_mp) == NULL || 17807 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 17808 if (tcp->tcp_snd_zcopy_aware) 17809 mp = tcp_zcopy_disable(tcp, mp); 17810 TCP_STAT(tcp_ip_ire_send); 17811 IRE_REFRELE(ire); 17812 CALL_IP_WPUT(connp, q, mp); 17813 return; 17814 } 17815 17816 ill = ire_to_ill(ire); 17817 if (connp->conn_outgoing_ill != NULL) { 17818 ill_t *conn_outgoing_ill = NULL; 17819 /* 17820 * Choose a good ill in the group to send the packets on. 17821 */ 17822 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 17823 ill = ire_to_ill(ire); 17824 } 17825 ASSERT(ill != NULL); 17826 17827 if (!tcp->tcp_ire_ill_check_done) { 17828 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 17829 tcp->tcp_ire_ill_check_done = B_TRUE; 17830 } 17831 17832 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 17833 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 17834 #ifndef _BIG_ENDIAN 17835 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 17836 #endif 17837 17838 /* 17839 * Check to see if we need to re-enable MDT for this connection 17840 * because it was previously disabled due to changes in the ill; 17841 * note that by doing it here, this re-enabling only applies when 17842 * the packet is not dispatched through CALL_IP_WPUT(). 17843 * 17844 * That means for IPv4, it is worth re-enabling MDT for the fastpath 17845 * case, since that's how we ended up here. For IPv6, we do the 17846 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 17847 */ 17848 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 17849 /* 17850 * Restore MDT for this connection, so that next time around 17851 * it is eligible to go through tcp_multisend() path again. 17852 */ 17853 TCP_STAT(tcp_mdt_conn_resumed1); 17854 tcp->tcp_mdt = B_TRUE; 17855 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 17856 "interface %s\n", (void *)connp, ill->ill_name)); 17857 } 17858 17859 if (tcp->tcp_snd_zcopy_aware) { 17860 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 17861 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 17862 mp = tcp_zcopy_disable(tcp, mp); 17863 /* 17864 * we shouldn't need to reset ipha as the mp containing 17865 * ipha should never be a zero-copy mp. 17866 */ 17867 } 17868 17869 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 17870 ASSERT(ill->ill_hcksum_capab != NULL); 17871 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 17872 } 17873 17874 /* pseudo-header checksum (do it in parts for IP header checksum) */ 17875 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 17876 17877 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 17878 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 17879 17880 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 17881 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 17882 17883 /* Software checksum? */ 17884 if (DB_CKSUMFLAGS(mp) == 0) { 17885 TCP_STAT(tcp_out_sw_cksum); 17886 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 17887 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 17888 } 17889 17890 ipha->ipha_fragment_offset_and_flags |= 17891 (uint32_t)htons(ire->ire_frag_flag); 17892 17893 /* Calculate IP header checksum if hardware isn't capable */ 17894 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 17895 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 17896 ((uint16_t *)ipha)[4]); 17897 } 17898 17899 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 17900 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 17901 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 17902 17903 UPDATE_OB_PKT_COUNT(ire); 17904 ire->ire_last_used_time = lbolt; 17905 BUMP_MIB(&ip_mib, ipOutRequests); 17906 17907 if (ILL_POLL_CAPABLE(ill)) { 17908 /* 17909 * Send the packet directly to DLD, where it may be queued 17910 * depending on the availability of transmit resources at 17911 * the media layer. 17912 */ 17913 IP_POLL_ILL_TX(ill, mp); 17914 } else { 17915 putnext(ire->ire_stq, mp); 17916 } 17917 IRE_REFRELE(ire); 17918 } 17919 17920 /* 17921 * This handles the case when the receiver has shrunk its win. Per RFC 1122 17922 * if the receiver shrinks the window, i.e. moves the right window to the 17923 * left, the we should not send new data, but should retransmit normally the 17924 * old unacked data between suna and suna + swnd. We might has sent data 17925 * that is now outside the new window, pretend that we didn't send it. 17926 */ 17927 static void 17928 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 17929 { 17930 uint32_t snxt = tcp->tcp_snxt; 17931 mblk_t *xmit_tail; 17932 int32_t offset; 17933 17934 ASSERT(shrunk_count > 0); 17935 17936 /* Pretend we didn't send the data outside the window */ 17937 snxt -= shrunk_count; 17938 17939 /* Get the mblk and the offset in it per the shrunk window */ 17940 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 17941 17942 ASSERT(xmit_tail != NULL); 17943 17944 /* Reset all the values per the now shrunk window */ 17945 tcp->tcp_snxt = snxt; 17946 tcp->tcp_xmit_tail = xmit_tail; 17947 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 17948 offset; 17949 tcp->tcp_unsent += shrunk_count; 17950 17951 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 17952 /* 17953 * Make sure the timer is running so that we will probe a zero 17954 * window. 17955 */ 17956 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17957 } 17958 17959 17960 /* 17961 * The TCP normal data output path. 17962 * NOTE: the logic of the fast path is duplicated from this function. 17963 */ 17964 static void 17965 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 17966 { 17967 int len; 17968 mblk_t *local_time; 17969 mblk_t *mp1; 17970 uint32_t snxt; 17971 int tail_unsent; 17972 int tcpstate; 17973 int usable = 0; 17974 mblk_t *xmit_tail; 17975 queue_t *q = tcp->tcp_wq; 17976 int32_t mss; 17977 int32_t num_sack_blk = 0; 17978 int32_t tcp_hdr_len; 17979 int32_t tcp_tcp_hdr_len; 17980 int mdt_thres; 17981 int rc; 17982 17983 tcpstate = tcp->tcp_state; 17984 if (mp == NULL) { 17985 /* 17986 * tcp_wput_data() with NULL mp should only be called when 17987 * there is unsent data. 17988 */ 17989 ASSERT(tcp->tcp_unsent > 0); 17990 /* Really tacky... but we need this for detached closes. */ 17991 len = tcp->tcp_unsent; 17992 goto data_null; 17993 } 17994 17995 #if CCS_STATS 17996 wrw_stats.tot.count++; 17997 wrw_stats.tot.bytes += msgdsize(mp); 17998 #endif 17999 ASSERT(mp->b_datap->db_type == M_DATA); 18000 /* 18001 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18002 * or before a connection attempt has begun. 18003 */ 18004 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18005 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18006 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18007 #ifdef DEBUG 18008 cmn_err(CE_WARN, 18009 "tcp_wput_data: data after ordrel, %s", 18010 tcp_display(tcp, NULL, 18011 DISP_ADDR_AND_PORT)); 18012 #else 18013 if (tcp->tcp_debug) { 18014 (void) strlog(TCP_MOD_ID, 0, 1, 18015 SL_TRACE|SL_ERROR, 18016 "tcp_wput_data: data after ordrel, %s\n", 18017 tcp_display(tcp, NULL, 18018 DISP_ADDR_AND_PORT)); 18019 } 18020 #endif /* DEBUG */ 18021 } 18022 if (tcp->tcp_snd_zcopy_aware && 18023 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18024 tcp_zcopy_notify(tcp); 18025 freemsg(mp); 18026 if (tcp->tcp_flow_stopped && 18027 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18028 tcp_clrqfull(tcp); 18029 } 18030 return; 18031 } 18032 18033 /* Strip empties */ 18034 for (;;) { 18035 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18036 (uintptr_t)INT_MAX); 18037 len = (int)(mp->b_wptr - mp->b_rptr); 18038 if (len > 0) 18039 break; 18040 mp1 = mp; 18041 mp = mp->b_cont; 18042 freeb(mp1); 18043 if (!mp) { 18044 return; 18045 } 18046 } 18047 18048 /* If we are the first on the list ... */ 18049 if (tcp->tcp_xmit_head == NULL) { 18050 tcp->tcp_xmit_head = mp; 18051 tcp->tcp_xmit_tail = mp; 18052 tcp->tcp_xmit_tail_unsent = len; 18053 } else { 18054 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18055 struct datab *dp; 18056 18057 mp1 = tcp->tcp_xmit_last; 18058 if (len < tcp_tx_pull_len && 18059 (dp = mp1->b_datap)->db_ref == 1 && 18060 dp->db_lim - mp1->b_wptr >= len) { 18061 ASSERT(len > 0); 18062 ASSERT(!mp1->b_cont); 18063 if (len == 1) { 18064 *mp1->b_wptr++ = *mp->b_rptr; 18065 } else { 18066 bcopy(mp->b_rptr, mp1->b_wptr, len); 18067 mp1->b_wptr += len; 18068 } 18069 if (mp1 == tcp->tcp_xmit_tail) 18070 tcp->tcp_xmit_tail_unsent += len; 18071 mp1->b_cont = mp->b_cont; 18072 if (tcp->tcp_snd_zcopy_aware && 18073 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18074 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18075 freeb(mp); 18076 mp = mp1; 18077 } else { 18078 tcp->tcp_xmit_last->b_cont = mp; 18079 } 18080 len += tcp->tcp_unsent; 18081 } 18082 18083 /* Tack on however many more positive length mblks we have */ 18084 if ((mp1 = mp->b_cont) != NULL) { 18085 do { 18086 int tlen; 18087 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18088 (uintptr_t)INT_MAX); 18089 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18090 if (tlen <= 0) { 18091 mp->b_cont = mp1->b_cont; 18092 freeb(mp1); 18093 } else { 18094 len += tlen; 18095 mp = mp1; 18096 } 18097 } while ((mp1 = mp->b_cont) != NULL); 18098 } 18099 tcp->tcp_xmit_last = mp; 18100 tcp->tcp_unsent = len; 18101 18102 if (urgent) 18103 usable = 1; 18104 18105 data_null: 18106 snxt = tcp->tcp_snxt; 18107 xmit_tail = tcp->tcp_xmit_tail; 18108 tail_unsent = tcp->tcp_xmit_tail_unsent; 18109 18110 /* 18111 * Note that tcp_mss has been adjusted to take into account the 18112 * timestamp option if applicable. Because SACK options do not 18113 * appear in every TCP segments and they are of variable lengths, 18114 * they cannot be included in tcp_mss. Thus we need to calculate 18115 * the actual segment length when we need to send a segment which 18116 * includes SACK options. 18117 */ 18118 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18119 int32_t opt_len; 18120 18121 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18122 tcp->tcp_num_sack_blk); 18123 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18124 2 + TCPOPT_HEADER_LEN; 18125 mss = tcp->tcp_mss - opt_len; 18126 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18127 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18128 } else { 18129 mss = tcp->tcp_mss; 18130 tcp_hdr_len = tcp->tcp_hdr_len; 18131 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18132 } 18133 18134 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18135 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18136 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18137 } 18138 if (tcpstate == TCPS_SYN_RCVD) { 18139 /* 18140 * The three-way connection establishment handshake is not 18141 * complete yet. We want to queue the data for transmission 18142 * after entering ESTABLISHED state (RFC793). A jump to 18143 * "done" label effectively leaves data on the queue. 18144 */ 18145 goto done; 18146 } else { 18147 int usable_r = tcp->tcp_swnd; 18148 18149 /* 18150 * In the special case when cwnd is zero, which can only 18151 * happen if the connection is ECN capable, return now. 18152 * New segments is sent using tcp_timer(). The timer 18153 * is set in tcp_rput_data(). 18154 */ 18155 if (tcp->tcp_cwnd == 0) { 18156 /* 18157 * Note that tcp_cwnd is 0 before 3-way handshake is 18158 * finished. 18159 */ 18160 ASSERT(tcp->tcp_ecn_ok || 18161 tcp->tcp_state < TCPS_ESTABLISHED); 18162 return; 18163 } 18164 18165 /* NOTE: trouble if xmitting while SYN not acked? */ 18166 usable_r -= snxt; 18167 usable_r += tcp->tcp_suna; 18168 18169 /* 18170 * Check if the receiver has shrunk the window. If 18171 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18172 * cannot be set as there is unsent data, so FIN cannot 18173 * be sent out. Otherwise, we need to take into account 18174 * of FIN as it consumes an "invisible" sequence number. 18175 */ 18176 ASSERT(tcp->tcp_fin_sent == 0); 18177 if (usable_r < 0) { 18178 /* 18179 * The receiver has shrunk the window and we have sent 18180 * -usable_r date beyond the window, re-adjust. 18181 * 18182 * If TCP window scaling is enabled, there can be 18183 * round down error as the advertised receive window 18184 * is actually right shifted n bits. This means that 18185 * the lower n bits info is wiped out. It will look 18186 * like the window is shrunk. Do a check here to 18187 * see if the shrunk amount is actually within the 18188 * error in window calculation. If it is, just 18189 * return. Note that this check is inside the 18190 * shrunk window check. This makes sure that even 18191 * though tcp_process_shrunk_swnd() is not called, 18192 * we will stop further processing. 18193 */ 18194 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18195 tcp_process_shrunk_swnd(tcp, -usable_r); 18196 } 18197 return; 18198 } 18199 18200 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18201 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18202 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18203 18204 /* usable = MIN(usable, unsent) */ 18205 if (usable_r > len) 18206 usable_r = len; 18207 18208 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18209 if (usable_r > 0) { 18210 usable = usable_r; 18211 } else { 18212 /* Bypass all other unnecessary processing. */ 18213 goto done; 18214 } 18215 } 18216 18217 local_time = (mblk_t *)lbolt; 18218 18219 /* 18220 * "Our" Nagle Algorithm. This is not the same as in the old 18221 * BSD. This is more in line with the true intent of Nagle. 18222 * 18223 * The conditions are: 18224 * 1. The amount of unsent data (or amount of data which can be 18225 * sent, whichever is smaller) is less than Nagle limit. 18226 * 2. The last sent size is also less than Nagle limit. 18227 * 3. There is unack'ed data. 18228 * 4. Urgent pointer is not set. Send urgent data ignoring the 18229 * Nagle algorithm. This reduces the probability that urgent 18230 * bytes get "merged" together. 18231 * 5. The app has not closed the connection. This eliminates the 18232 * wait time of the receiving side waiting for the last piece of 18233 * (small) data. 18234 * 18235 * If all are satisified, exit without sending anything. Note 18236 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18237 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18238 * 4095). 18239 */ 18240 if (usable < (int)tcp->tcp_naglim && 18241 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18242 snxt != tcp->tcp_suna && 18243 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18244 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18245 goto done; 18246 } 18247 18248 if (tcp->tcp_cork) { 18249 /* 18250 * if the tcp->tcp_cork option is set, then we have to force 18251 * TCP not to send partial segment (smaller than MSS bytes). 18252 * We are calculating the usable now based on full mss and 18253 * will save the rest of remaining data for later. 18254 */ 18255 if (usable < mss) 18256 goto done; 18257 usable = (usable / mss) * mss; 18258 } 18259 18260 /* Update the latest receive window size in TCP header. */ 18261 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18262 tcp->tcp_tcph->th_win); 18263 18264 /* 18265 * Determine if it's worthwhile to attempt MDT, based on: 18266 * 18267 * 1. Simple TCP/IP{v4,v6} (no options). 18268 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18269 * 3. If the TCP connection is in ESTABLISHED state. 18270 * 4. The TCP is not detached. 18271 * 18272 * If any of the above conditions have changed during the 18273 * connection, stop using MDT and restore the stream head 18274 * parameters accordingly. 18275 */ 18276 if (tcp->tcp_mdt && 18277 ((tcp->tcp_ipversion == IPV4_VERSION && 18278 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18279 (tcp->tcp_ipversion == IPV6_VERSION && 18280 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18281 tcp->tcp_state != TCPS_ESTABLISHED || 18282 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18283 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18284 IPP_ENABLED(IPP_LOCAL_OUT))) { 18285 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18286 tcp->tcp_mdt = B_FALSE; 18287 18288 /* Anything other than detached is considered pathological */ 18289 if (!TCP_IS_DETACHED(tcp)) { 18290 TCP_STAT(tcp_mdt_conn_halted1); 18291 (void) tcp_maxpsz_set(tcp, B_TRUE); 18292 } 18293 } 18294 18295 /* Use MDT if sendable amount is greater than the threshold */ 18296 if (tcp->tcp_mdt && 18297 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18298 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18299 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18300 (tcp->tcp_valid_bits == 0 || 18301 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18302 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18303 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18304 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18305 local_time, mdt_thres); 18306 } else { 18307 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18308 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18309 local_time, INT_MAX); 18310 } 18311 18312 /* Pretend that all we were trying to send really got sent */ 18313 if (rc < 0 && tail_unsent < 0) { 18314 do { 18315 xmit_tail = xmit_tail->b_cont; 18316 xmit_tail->b_prev = local_time; 18317 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18318 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18319 tail_unsent += (int)(xmit_tail->b_wptr - 18320 xmit_tail->b_rptr); 18321 } while (tail_unsent < 0); 18322 } 18323 done:; 18324 tcp->tcp_xmit_tail = xmit_tail; 18325 tcp->tcp_xmit_tail_unsent = tail_unsent; 18326 len = tcp->tcp_snxt - snxt; 18327 if (len) { 18328 /* 18329 * If new data was sent, need to update the notsack 18330 * list, which is, afterall, data blocks that have 18331 * not been sack'ed by the receiver. New data is 18332 * not sack'ed. 18333 */ 18334 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18335 /* len is a negative value. */ 18336 tcp->tcp_pipe -= len; 18337 tcp_notsack_update(&(tcp->tcp_notsack_list), 18338 tcp->tcp_snxt, snxt, 18339 &(tcp->tcp_num_notsack_blk), 18340 &(tcp->tcp_cnt_notsack_list)); 18341 } 18342 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18343 tcp->tcp_rack = tcp->tcp_rnxt; 18344 tcp->tcp_rack_cnt = 0; 18345 if ((snxt + len) == tcp->tcp_suna) { 18346 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18347 } 18348 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18349 /* 18350 * Didn't send anything. Make sure the timer is running 18351 * so that we will probe a zero window. 18352 */ 18353 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18354 } 18355 /* Note that len is the amount we just sent but with a negative sign */ 18356 tcp->tcp_unsent += len; 18357 if (tcp->tcp_flow_stopped) { 18358 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18359 tcp_clrqfull(tcp); 18360 } 18361 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18362 tcp_setqfull(tcp); 18363 } 18364 } 18365 18366 /* 18367 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18368 * outgoing TCP header with the template header, as well as other 18369 * options such as time-stamp, ECN and/or SACK. 18370 */ 18371 static void 18372 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18373 { 18374 tcph_t *tcp_tmpl, *tcp_h; 18375 uint32_t *dst, *src; 18376 int hdrlen; 18377 18378 ASSERT(OK_32PTR(rptr)); 18379 18380 /* Template header */ 18381 tcp_tmpl = tcp->tcp_tcph; 18382 18383 /* Header of outgoing packet */ 18384 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18385 18386 /* dst and src are opaque 32-bit fields, used for copying */ 18387 dst = (uint32_t *)rptr; 18388 src = (uint32_t *)tcp->tcp_iphc; 18389 hdrlen = tcp->tcp_hdr_len; 18390 18391 /* Fill time-stamp option if needed */ 18392 if (tcp->tcp_snd_ts_ok) { 18393 U32_TO_BE32((uint32_t)now, 18394 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18395 U32_TO_BE32(tcp->tcp_ts_recent, 18396 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18397 } else { 18398 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18399 } 18400 18401 /* 18402 * Copy the template header; is this really more efficient than 18403 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18404 * but perhaps not for other scenarios. 18405 */ 18406 dst[0] = src[0]; 18407 dst[1] = src[1]; 18408 dst[2] = src[2]; 18409 dst[3] = src[3]; 18410 dst[4] = src[4]; 18411 dst[5] = src[5]; 18412 dst[6] = src[6]; 18413 dst[7] = src[7]; 18414 dst[8] = src[8]; 18415 dst[9] = src[9]; 18416 if (hdrlen -= 40) { 18417 hdrlen >>= 2; 18418 dst += 10; 18419 src += 10; 18420 do { 18421 *dst++ = *src++; 18422 } while (--hdrlen); 18423 } 18424 18425 /* 18426 * Set the ECN info in the TCP header if it is not a zero 18427 * window probe. Zero window probe is only sent in 18428 * tcp_wput_data() and tcp_timer(). 18429 */ 18430 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 18431 SET_ECT(tcp, rptr); 18432 18433 if (tcp->tcp_ecn_echo_on) 18434 tcp_h->th_flags[0] |= TH_ECE; 18435 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18436 tcp_h->th_flags[0] |= TH_CWR; 18437 tcp->tcp_ecn_cwr_sent = B_TRUE; 18438 } 18439 } 18440 18441 /* Fill in SACK options */ 18442 if (num_sack_blk > 0) { 18443 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 18444 sack_blk_t *tmp; 18445 int32_t i; 18446 18447 wptr[0] = TCPOPT_NOP; 18448 wptr[1] = TCPOPT_NOP; 18449 wptr[2] = TCPOPT_SACK; 18450 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18451 sizeof (sack_blk_t); 18452 wptr += TCPOPT_REAL_SACK_LEN; 18453 18454 tmp = tcp->tcp_sack_list; 18455 for (i = 0; i < num_sack_blk; i++) { 18456 U32_TO_BE32(tmp[i].begin, wptr); 18457 wptr += sizeof (tcp_seq); 18458 U32_TO_BE32(tmp[i].end, wptr); 18459 wptr += sizeof (tcp_seq); 18460 } 18461 tcp_h->th_offset_and_rsrvd[0] += 18462 ((num_sack_blk * 2 + 1) << 4); 18463 } 18464 } 18465 18466 /* 18467 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 18468 * the destination address and SAP attribute, and if necessary, the 18469 * hardware checksum offload attribute to a Multidata message. 18470 */ 18471 static int 18472 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 18473 const uint32_t start, const uint32_t stuff, const uint32_t end, 18474 const uint32_t flags) 18475 { 18476 /* Add global destination address & SAP attribute */ 18477 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 18478 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 18479 "destination address+SAP\n")); 18480 18481 if (dlmp != NULL) 18482 TCP_STAT(tcp_mdt_allocfail); 18483 return (-1); 18484 } 18485 18486 /* Add global hwcksum attribute */ 18487 if (hwcksum && 18488 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 18489 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 18490 "checksum attribute\n")); 18491 18492 TCP_STAT(tcp_mdt_allocfail); 18493 return (-1); 18494 } 18495 18496 return (0); 18497 } 18498 18499 /* 18500 * Smaller and private version of pdescinfo_t used specifically for TCP, 18501 * which allows for only two payload spans per packet. 18502 */ 18503 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 18504 18505 /* 18506 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 18507 * scheme, and returns one the following: 18508 * 18509 * -1 = failed allocation. 18510 * 0 = success; burst count reached, or usable send window is too small, 18511 * and that we'd rather wait until later before sending again. 18512 */ 18513 static int 18514 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 18515 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 18516 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 18517 const int mdt_thres) 18518 { 18519 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 18520 multidata_t *mmd; 18521 uint_t obsegs, obbytes, hdr_frag_sz; 18522 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 18523 int num_burst_seg, max_pld; 18524 pdesc_t *pkt; 18525 tcp_pdescinfo_t tcp_pkt_info; 18526 pdescinfo_t *pkt_info; 18527 int pbuf_idx, pbuf_idx_nxt; 18528 int seg_len, len, spill, af; 18529 boolean_t add_buffer, zcopy, clusterwide; 18530 boolean_t rconfirm = B_FALSE; 18531 boolean_t done = B_FALSE; 18532 uint32_t cksum; 18533 uint32_t hwcksum_flags; 18534 ire_t *ire; 18535 ill_t *ill; 18536 ipha_t *ipha; 18537 ip6_t *ip6h; 18538 ipaddr_t src, dst; 18539 ill_zerocopy_capab_t *zc_cap = NULL; 18540 uint16_t *up; 18541 int err; 18542 18543 #ifdef _BIG_ENDIAN 18544 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 18545 #else 18546 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 18547 #endif 18548 18549 #define PREP_NEW_MULTIDATA() { \ 18550 mmd = NULL; \ 18551 md_mp = md_hbuf = NULL; \ 18552 cur_hdr_off = 0; \ 18553 max_pld = tcp->tcp_mdt_max_pld; \ 18554 pbuf_idx = pbuf_idx_nxt = -1; \ 18555 add_buffer = B_TRUE; \ 18556 zcopy = B_FALSE; \ 18557 } 18558 18559 #define PREP_NEW_PBUF() { \ 18560 md_pbuf = md_pbuf_nxt = NULL; \ 18561 pbuf_idx = pbuf_idx_nxt = -1; \ 18562 cur_pld_off = 0; \ 18563 first_snxt = *snxt; \ 18564 ASSERT(*tail_unsent > 0); \ 18565 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 18566 } 18567 18568 ASSERT(mdt_thres >= mss); 18569 ASSERT(*usable > 0 && *usable > mdt_thres); 18570 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 18571 ASSERT(!TCP_IS_DETACHED(tcp)); 18572 ASSERT(tcp->tcp_valid_bits == 0 || 18573 tcp->tcp_valid_bits == TCP_FSS_VALID); 18574 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 18575 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 18576 (tcp->tcp_ipversion == IPV6_VERSION && 18577 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 18578 ASSERT(tcp->tcp_connp != NULL); 18579 ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp)); 18580 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp)); 18581 18582 /* 18583 * Note that tcp will only declare at most 2 payload spans per 18584 * packet, which is much lower than the maximum allowable number 18585 * of packet spans per Multidata. For this reason, we use the 18586 * privately declared and smaller descriptor info structure, in 18587 * order to save some stack space. 18588 */ 18589 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 18590 18591 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 18592 if (af == AF_INET) { 18593 dst = tcp->tcp_ipha->ipha_dst; 18594 src = tcp->tcp_ipha->ipha_src; 18595 ASSERT(!CLASSD(dst)); 18596 } 18597 ASSERT(af == AF_INET || 18598 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 18599 18600 obsegs = obbytes = 0; 18601 num_burst_seg = tcp->tcp_snd_burst; 18602 md_mp_head = NULL; 18603 PREP_NEW_MULTIDATA(); 18604 18605 /* 18606 * Before we go on further, make sure there is an IRE that we can 18607 * use, and that the ILL supports MDT. Otherwise, there's no point 18608 * in proceeding any further, and we should just hand everything 18609 * off to the legacy path. 18610 */ 18611 mutex_enter(&tcp->tcp_connp->conn_lock); 18612 ire = tcp->tcp_connp->conn_ire_cache; 18613 ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT)); 18614 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 18615 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 18616 &tcp->tcp_ip6h->ip6_dst))) && 18617 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18618 IRE_REFHOLD(ire); 18619 mutex_exit(&tcp->tcp_connp->conn_lock); 18620 } else { 18621 boolean_t cached = B_FALSE; 18622 18623 /* force a recheck later on */ 18624 tcp->tcp_ire_ill_check_done = B_FALSE; 18625 18626 TCP_DBGSTAT(tcp_ire_null1); 18627 tcp->tcp_connp->conn_ire_cache = NULL; 18628 mutex_exit(&tcp->tcp_connp->conn_lock); 18629 18630 /* Release the old ire */ 18631 if (ire != NULL) 18632 IRE_REFRELE_NOTR(ire); 18633 18634 ire = (af == AF_INET) ? 18635 ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) : 18636 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18637 tcp->tcp_connp->conn_zoneid); 18638 18639 if (ire == NULL) { 18640 TCP_STAT(tcp_ire_null); 18641 goto legacy_send_no_md; 18642 } 18643 18644 IRE_REFHOLD_NOTR(ire); 18645 /* 18646 * Since we are inside the squeue, there cannot be another 18647 * thread in TCP trying to set the conn_ire_cache now. The 18648 * check for IRE_MARK_CONDEMNED ensures that an interface 18649 * unplumb thread has not yet started cleaning up the conns. 18650 * Hence we don't need to grab the conn lock. 18651 */ 18652 if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) { 18653 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18654 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18655 tcp->tcp_connp->conn_ire_cache = ire; 18656 cached = B_TRUE; 18657 } 18658 rw_exit(&ire->ire_bucket->irb_lock); 18659 } 18660 18661 /* 18662 * We can continue to use the ire but since it was not 18663 * cached, we should drop the extra reference. 18664 */ 18665 if (!cached) 18666 IRE_REFRELE_NOTR(ire); 18667 } 18668 18669 ASSERT(ire != NULL); 18670 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 18671 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 18672 ASSERT(af == AF_INET || ire->ire_nce != NULL); 18673 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18674 /* 18675 * If we do support loopback for MDT (which requires modifications 18676 * to the receiving paths), the following assertions should go away, 18677 * and we would be sending the Multidata to loopback conn later on. 18678 */ 18679 ASSERT(!IRE_IS_LOCAL(ire)); 18680 ASSERT(ire->ire_stq != NULL); 18681 18682 ill = ire_to_ill(ire); 18683 ASSERT(ill != NULL); 18684 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 18685 18686 if (!tcp->tcp_ire_ill_check_done) { 18687 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18688 tcp->tcp_ire_ill_check_done = B_TRUE; 18689 } 18690 18691 /* 18692 * If the underlying interface conditions have changed, or if the 18693 * new interface does not support MDT, go back to legacy path. 18694 */ 18695 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 18696 /* don't go through this path anymore for this connection */ 18697 TCP_STAT(tcp_mdt_conn_halted2); 18698 tcp->tcp_mdt = B_FALSE; 18699 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 18700 "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name)); 18701 /* IRE will be released prior to returning */ 18702 goto legacy_send_no_md; 18703 } 18704 18705 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 18706 zc_cap = ill->ill_zerocopy_capab; 18707 18708 /* go to legacy path if interface doesn't support zerocopy */ 18709 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 18710 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 18711 /* IRE will be released prior to returning */ 18712 goto legacy_send_no_md; 18713 } 18714 18715 /* does the interface support hardware checksum offload? */ 18716 hwcksum_flags = 0; 18717 if (ILL_HCKSUM_CAPABLE(ill) && 18718 (ill->ill_hcksum_capab->ill_hcksum_txflags & 18719 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 18720 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 18721 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18722 HCKSUM_IPHDRCKSUM) 18723 hwcksum_flags = HCK_IPV4_HDRCKSUM; 18724 18725 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18726 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 18727 hwcksum_flags |= HCK_FULLCKSUM; 18728 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18729 HCKSUM_INET_PARTIAL) 18730 hwcksum_flags |= HCK_PARTIALCKSUM; 18731 } 18732 18733 /* 18734 * Each header fragment consists of the leading extra space, 18735 * followed by the TCP/IP header, and the trailing extra space. 18736 * We make sure that each header fragment begins on a 32-bit 18737 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 18738 * aligned in tcp_mdt_update). 18739 */ 18740 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 18741 tcp->tcp_mdt_hdr_tail), 4); 18742 18743 /* are we starting from the beginning of data block? */ 18744 if (*tail_unsent == 0) { 18745 *xmit_tail = (*xmit_tail)->b_cont; 18746 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 18747 *tail_unsent = (int)MBLKL(*xmit_tail); 18748 } 18749 18750 /* 18751 * Here we create one or more Multidata messages, each made up of 18752 * one header buffer and up to N payload buffers. This entire 18753 * operation is done within two loops: 18754 * 18755 * The outer loop mostly deals with creating the Multidata message, 18756 * as well as the header buffer that gets added to it. It also 18757 * links the Multidata messages together such that all of them can 18758 * be sent down to the lower layer in a single putnext call; this 18759 * linking behavior depends on the tcp_mdt_chain tunable. 18760 * 18761 * The inner loop takes an existing Multidata message, and adds 18762 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 18763 * packetizes those buffers by filling up the corresponding header 18764 * buffer fragments with the proper IP and TCP headers, and by 18765 * describing the layout of each packet in the packet descriptors 18766 * that get added to the Multidata. 18767 */ 18768 do { 18769 /* 18770 * If usable send window is too small, or data blocks in 18771 * transmit list are smaller than our threshold (i.e. app 18772 * performs large writes followed by small ones), we hand 18773 * off the control over to the legacy path. Note that we'll 18774 * get back the control once it encounters a large block. 18775 */ 18776 if (*usable < mss || (*tail_unsent <= mdt_thres && 18777 (*xmit_tail)->b_cont != NULL && 18778 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 18779 /* send down what we've got so far */ 18780 if (md_mp_head != NULL) { 18781 tcp_multisend_data(tcp, ire, ill, md_mp_head, 18782 obsegs, obbytes, &rconfirm); 18783 } 18784 /* 18785 * Pass control over to tcp_send(), but tell it to 18786 * return to us once a large-size transmission is 18787 * possible. 18788 */ 18789 TCP_STAT(tcp_mdt_legacy_small); 18790 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 18791 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 18792 tail_unsent, xmit_tail, local_time, 18793 mdt_thres)) <= 0) { 18794 /* burst count reached, or alloc failed */ 18795 IRE_REFRELE(ire); 18796 return (err); 18797 } 18798 18799 /* tcp_send() may have sent everything, so check */ 18800 if (*usable <= 0) { 18801 IRE_REFRELE(ire); 18802 return (0); 18803 } 18804 18805 TCP_STAT(tcp_mdt_legacy_ret); 18806 /* 18807 * We may have delivered the Multidata, so make sure 18808 * to re-initialize before the next round. 18809 */ 18810 md_mp_head = NULL; 18811 obsegs = obbytes = 0; 18812 num_burst_seg = tcp->tcp_snd_burst; 18813 PREP_NEW_MULTIDATA(); 18814 18815 /* are we starting from the beginning of data block? */ 18816 if (*tail_unsent == 0) { 18817 *xmit_tail = (*xmit_tail)->b_cont; 18818 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 18819 (uintptr_t)INT_MAX); 18820 *tail_unsent = (int)MBLKL(*xmit_tail); 18821 } 18822 } 18823 18824 /* 18825 * max_pld limits the number of mblks in tcp's transmit 18826 * queue that can be added to a Multidata message. Once 18827 * this counter reaches zero, no more additional mblks 18828 * can be added to it. What happens afterwards depends 18829 * on whether or not we are set to chain the Multidata 18830 * messages. If we are to link them together, reset 18831 * max_pld to its original value (tcp_mdt_max_pld) and 18832 * prepare to create a new Multidata message which will 18833 * get linked to md_mp_head. Else, leave it alone and 18834 * let the inner loop break on its own. 18835 */ 18836 if (tcp_mdt_chain && max_pld == 0) 18837 PREP_NEW_MULTIDATA(); 18838 18839 /* adding a payload buffer; re-initialize values */ 18840 if (add_buffer) 18841 PREP_NEW_PBUF(); 18842 18843 /* 18844 * If we don't have a Multidata, either because we just 18845 * (re)entered this outer loop, or after we branched off 18846 * to tcp_send above, setup the Multidata and header 18847 * buffer to be used. 18848 */ 18849 if (md_mp == NULL) { 18850 int md_hbuflen; 18851 uint32_t start, stuff; 18852 18853 /* 18854 * Calculate Multidata header buffer size large enough 18855 * to hold all of the headers that can possibly be 18856 * sent at this moment. We'd rather over-estimate 18857 * the size than running out of space; this is okay 18858 * since this buffer is small anyway. 18859 */ 18860 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 18861 18862 /* 18863 * Start and stuff offset for partial hardware 18864 * checksum offload; these are currently for IPv4. 18865 * For full checksum offload, they are set to zero. 18866 */ 18867 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 18868 if (af == AF_INET) { 18869 start = IP_SIMPLE_HDR_LENGTH; 18870 stuff = IP_SIMPLE_HDR_LENGTH + 18871 TCP_CHECKSUM_OFFSET; 18872 } else { 18873 start = IPV6_HDR_LEN; 18874 stuff = IPV6_HDR_LEN + 18875 TCP_CHECKSUM_OFFSET; 18876 } 18877 } else { 18878 start = stuff = 0; 18879 } 18880 18881 /* 18882 * Create the header buffer, Multidata, as well as 18883 * any necessary attributes (destination address, 18884 * SAP and hardware checksum offload) that should 18885 * be associated with the Multidata message. 18886 */ 18887 ASSERT(cur_hdr_off == 0); 18888 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 18889 ((md_hbuf->b_wptr += md_hbuflen), 18890 (mmd = mmd_alloc(md_hbuf, &md_mp, 18891 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 18892 /* fastpath mblk */ 18893 (af == AF_INET) ? ire->ire_dlureq_mp : 18894 ire->ire_nce->nce_res_mp, 18895 /* hardware checksum enabled */ 18896 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 18897 /* hardware checksum offsets */ 18898 start, stuff, 0, 18899 /* hardware checksum flag */ 18900 hwcksum_flags) != 0)) { 18901 legacy_send: 18902 if (md_mp != NULL) { 18903 /* Unlink message from the chain */ 18904 if (md_mp_head != NULL) { 18905 err = (intptr_t)rmvb(md_mp_head, 18906 md_mp); 18907 /* 18908 * We can't assert that rmvb 18909 * did not return -1, since we 18910 * may get here before linkb 18911 * happens. We do, however, 18912 * check if we just removed the 18913 * only element in the list. 18914 */ 18915 if (err == 0) 18916 md_mp_head = NULL; 18917 } 18918 /* md_hbuf gets freed automatically */ 18919 TCP_STAT(tcp_mdt_discarded); 18920 freeb(md_mp); 18921 } else { 18922 /* Either allocb or mmd_alloc failed */ 18923 TCP_STAT(tcp_mdt_allocfail); 18924 if (md_hbuf != NULL) 18925 freeb(md_hbuf); 18926 } 18927 18928 /* send down what we've got so far */ 18929 if (md_mp_head != NULL) { 18930 tcp_multisend_data(tcp, ire, ill, 18931 md_mp_head, obsegs, obbytes, 18932 &rconfirm); 18933 } 18934 legacy_send_no_md: 18935 if (ire != NULL) 18936 IRE_REFRELE(ire); 18937 /* 18938 * Too bad; let the legacy path handle this. 18939 * We specify INT_MAX for the threshold, since 18940 * we gave up with the Multidata processings 18941 * and let the old path have it all. 18942 */ 18943 TCP_STAT(tcp_mdt_legacy_all); 18944 return (tcp_send(q, tcp, mss, tcp_hdr_len, 18945 tcp_tcp_hdr_len, num_sack_blk, usable, 18946 snxt, tail_unsent, xmit_tail, local_time, 18947 INT_MAX)); 18948 } 18949 18950 /* link to any existing ones, if applicable */ 18951 TCP_STAT(tcp_mdt_allocd); 18952 if (md_mp_head == NULL) { 18953 md_mp_head = md_mp; 18954 } else if (tcp_mdt_chain) { 18955 TCP_STAT(tcp_mdt_linked); 18956 linkb(md_mp_head, md_mp); 18957 } 18958 } 18959 18960 ASSERT(md_mp_head != NULL); 18961 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 18962 ASSERT(md_mp != NULL && mmd != NULL); 18963 ASSERT(md_hbuf != NULL); 18964 18965 /* 18966 * Packetize the transmittable portion of the data block; 18967 * each data block is essentially added to the Multidata 18968 * as a payload buffer. We also deal with adding more 18969 * than one payload buffers, which happens when the remaining 18970 * packetized portion of the current payload buffer is less 18971 * than MSS, while the next data block in transmit queue 18972 * has enough data to make up for one. This "spillover" 18973 * case essentially creates a split-packet, where portions 18974 * of the packet's payload fragments may span across two 18975 * virtually discontiguous address blocks. 18976 */ 18977 seg_len = mss; 18978 do { 18979 len = seg_len; 18980 18981 ASSERT(len > 0); 18982 ASSERT(max_pld >= 0); 18983 ASSERT(!add_buffer || cur_pld_off == 0); 18984 18985 /* 18986 * First time around for this payload buffer; note 18987 * in the case of a spillover, the following has 18988 * been done prior to adding the split-packet 18989 * descriptor to Multidata, and we don't want to 18990 * repeat the process. 18991 */ 18992 if (add_buffer) { 18993 ASSERT(mmd != NULL); 18994 ASSERT(md_pbuf == NULL); 18995 ASSERT(md_pbuf_nxt == NULL); 18996 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 18997 18998 /* 18999 * Have we reached the limit? We'd get to 19000 * this case when we're not chaining the 19001 * Multidata messages together, and since 19002 * we're done, terminate this loop. 19003 */ 19004 if (max_pld == 0) 19005 break; /* done */ 19006 19007 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19008 TCP_STAT(tcp_mdt_allocfail); 19009 goto legacy_send; /* out_of_mem */ 19010 } 19011 19012 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19013 zc_cap != NULL) { 19014 if (!ip_md_zcopy_attr(mmd, NULL, 19015 zc_cap->ill_zerocopy_flags)) { 19016 freeb(md_pbuf); 19017 TCP_STAT(tcp_mdt_allocfail); 19018 /* out_of_mem */ 19019 goto legacy_send; 19020 } 19021 zcopy = B_TRUE; 19022 } 19023 19024 md_pbuf->b_rptr += base_pld_off; 19025 19026 /* 19027 * Add a payload buffer to the Multidata; this 19028 * operation must not fail, or otherwise our 19029 * logic in this routine is broken. There 19030 * is no memory allocation done by the 19031 * routine, so any returned failure simply 19032 * tells us that we've done something wrong. 19033 * 19034 * A failure tells us that either we're adding 19035 * the same payload buffer more than once, or 19036 * we're trying to add more buffers than 19037 * allowed (max_pld calculation is wrong). 19038 * None of the above cases should happen, and 19039 * we panic because either there's horrible 19040 * heap corruption, and/or programming mistake. 19041 */ 19042 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19043 if (pbuf_idx < 0) { 19044 cmn_err(CE_PANIC, "tcp_multisend: " 19045 "payload buffer logic error " 19046 "detected for tcp %p mmd %p " 19047 "pbuf %p (%d)\n", 19048 (void *)tcp, (void *)mmd, 19049 (void *)md_pbuf, pbuf_idx); 19050 } 19051 19052 ASSERT(max_pld > 0); 19053 --max_pld; 19054 add_buffer = B_FALSE; 19055 } 19056 19057 ASSERT(md_mp_head != NULL); 19058 ASSERT(md_pbuf != NULL); 19059 ASSERT(md_pbuf_nxt == NULL); 19060 ASSERT(pbuf_idx != -1); 19061 ASSERT(pbuf_idx_nxt == -1); 19062 ASSERT(*usable > 0); 19063 19064 /* 19065 * We spillover to the next payload buffer only 19066 * if all of the following is true: 19067 * 19068 * 1. There is not enough data on the current 19069 * payload buffer to make up `len', 19070 * 2. We are allowed to send `len', 19071 * 3. The next payload buffer length is large 19072 * enough to accomodate `spill'. 19073 */ 19074 if ((spill = len - *tail_unsent) > 0 && 19075 *usable >= len && 19076 MBLKL((*xmit_tail)->b_cont) >= spill && 19077 max_pld > 0) { 19078 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19079 if (md_pbuf_nxt == NULL) { 19080 TCP_STAT(tcp_mdt_allocfail); 19081 goto legacy_send; /* out_of_mem */ 19082 } 19083 19084 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19085 zc_cap != NULL) { 19086 if (!ip_md_zcopy_attr(mmd, NULL, 19087 zc_cap->ill_zerocopy_flags)) { 19088 freeb(md_pbuf_nxt); 19089 TCP_STAT(tcp_mdt_allocfail); 19090 /* out_of_mem */ 19091 goto legacy_send; 19092 } 19093 zcopy = B_TRUE; 19094 } 19095 19096 /* 19097 * See comments above on the first call to 19098 * mmd_addpldbuf for explanation on the panic. 19099 */ 19100 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19101 if (pbuf_idx_nxt < 0) { 19102 panic("tcp_multisend: " 19103 "next payload buffer logic error " 19104 "detected for tcp %p mmd %p " 19105 "pbuf %p (%d)\n", 19106 (void *)tcp, (void *)mmd, 19107 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19108 } 19109 19110 ASSERT(max_pld > 0); 19111 --max_pld; 19112 } else if (spill > 0) { 19113 /* 19114 * If there's a spillover, but the following 19115 * xmit_tail couldn't give us enough octets 19116 * to reach "len", then stop the current 19117 * Multidata creation and let the legacy 19118 * tcp_send() path take over. We don't want 19119 * to send the tiny segment as part of this 19120 * Multidata for performance reasons; instead, 19121 * we let the legacy path deal with grouping 19122 * it with the subsequent small mblks. 19123 */ 19124 if (*usable >= len && 19125 MBLKL((*xmit_tail)->b_cont) < spill) { 19126 max_pld = 0; 19127 break; /* done */ 19128 } 19129 19130 /* 19131 * We can't spillover, and we are near 19132 * the end of the current payload buffer, 19133 * so send what's left. 19134 */ 19135 ASSERT(*tail_unsent > 0); 19136 len = *tail_unsent; 19137 } 19138 19139 /* tail_unsent is negated if there is a spillover */ 19140 *tail_unsent -= len; 19141 *usable -= len; 19142 ASSERT(*usable >= 0); 19143 19144 if (*usable < mss) 19145 seg_len = *usable; 19146 /* 19147 * Sender SWS avoidance; see comments in tcp_send(); 19148 * everything else is the same, except that we only 19149 * do this here if there is no more data to be sent 19150 * following the current xmit_tail. We don't check 19151 * for 1-byte urgent data because we shouldn't get 19152 * here if TCP_URG_VALID is set. 19153 */ 19154 if (*usable > 0 && *usable < mss && 19155 ((md_pbuf_nxt == NULL && 19156 (*xmit_tail)->b_cont == NULL) || 19157 (md_pbuf_nxt != NULL && 19158 (*xmit_tail)->b_cont->b_cont == NULL)) && 19159 seg_len < (tcp->tcp_max_swnd >> 1) && 19160 (tcp->tcp_unsent - 19161 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19162 !tcp->tcp_zero_win_probe) { 19163 if ((*snxt + len) == tcp->tcp_snxt && 19164 (*snxt + len) == tcp->tcp_suna) { 19165 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19166 } 19167 done = B_TRUE; 19168 } 19169 19170 /* 19171 * Prime pump for IP's checksumming on our behalf; 19172 * include the adjustment for a source route if any. 19173 * Do this only for software/partial hardware checksum 19174 * offload, as this field gets zeroed out later for 19175 * the full hardware checksum offload case. 19176 */ 19177 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19178 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19179 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19180 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19181 } 19182 19183 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19184 *snxt += len; 19185 19186 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19187 /* 19188 * We set the PUSH bit only if TCP has no more buffered 19189 * data to be transmitted (or if sender SWS avoidance 19190 * takes place), as opposed to setting it for every 19191 * last packet in the burst. 19192 */ 19193 if (done || 19194 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19195 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19196 19197 /* 19198 * Set FIN bit if this is our last segment; snxt 19199 * already includes its length, and it will not 19200 * be adjusted after this point. 19201 */ 19202 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19203 *snxt == tcp->tcp_fss) { 19204 if (!tcp->tcp_fin_acked) { 19205 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19206 BUMP_MIB(&tcp_mib, tcpOutControl); 19207 } 19208 if (!tcp->tcp_fin_sent) { 19209 tcp->tcp_fin_sent = B_TRUE; 19210 /* 19211 * tcp state must be ESTABLISHED 19212 * in order for us to get here in 19213 * the first place. 19214 */ 19215 tcp->tcp_state = TCPS_FIN_WAIT_1; 19216 19217 /* 19218 * Upon returning from this routine, 19219 * tcp_wput_data() will set tcp_snxt 19220 * to be equal to snxt + tcp_fin_sent. 19221 * This is essentially the same as 19222 * setting it to tcp_fss + 1. 19223 */ 19224 } 19225 } 19226 19227 tcp->tcp_last_sent_len = (ushort_t)len; 19228 19229 len += tcp_hdr_len; 19230 if (tcp->tcp_ipversion == IPV4_VERSION) 19231 tcp->tcp_ipha->ipha_length = htons(len); 19232 else 19233 tcp->tcp_ip6h->ip6_plen = htons(len - 19234 ((char *)&tcp->tcp_ip6h[1] - 19235 tcp->tcp_iphc)); 19236 19237 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19238 19239 /* setup header fragment */ 19240 PDESC_HDR_ADD(pkt_info, 19241 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19242 tcp->tcp_mdt_hdr_head, /* head room */ 19243 tcp_hdr_len, /* len */ 19244 tcp->tcp_mdt_hdr_tail); /* tail room */ 19245 19246 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19247 hdr_frag_sz); 19248 ASSERT(MBLKIN(md_hbuf, 19249 (pkt_info->hdr_base - md_hbuf->b_rptr), 19250 PDESC_HDRSIZE(pkt_info))); 19251 19252 /* setup first payload fragment */ 19253 PDESC_PLD_INIT(pkt_info); 19254 PDESC_PLD_SPAN_ADD(pkt_info, 19255 pbuf_idx, /* index */ 19256 md_pbuf->b_rptr + cur_pld_off, /* start */ 19257 tcp->tcp_last_sent_len); /* len */ 19258 19259 /* create a split-packet in case of a spillover */ 19260 if (md_pbuf_nxt != NULL) { 19261 ASSERT(spill > 0); 19262 ASSERT(pbuf_idx_nxt > pbuf_idx); 19263 ASSERT(!add_buffer); 19264 19265 md_pbuf = md_pbuf_nxt; 19266 md_pbuf_nxt = NULL; 19267 pbuf_idx = pbuf_idx_nxt; 19268 pbuf_idx_nxt = -1; 19269 cur_pld_off = spill; 19270 19271 /* trim out first payload fragment */ 19272 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19273 19274 /* setup second payload fragment */ 19275 PDESC_PLD_SPAN_ADD(pkt_info, 19276 pbuf_idx, /* index */ 19277 md_pbuf->b_rptr, /* start */ 19278 spill); /* len */ 19279 19280 if ((*xmit_tail)->b_next == NULL) { 19281 /* 19282 * Store the lbolt used for RTT 19283 * estimation. We can only record one 19284 * timestamp per mblk so we do it when 19285 * we reach the end of the payload 19286 * buffer. Also we only take a new 19287 * timestamp sample when the previous 19288 * timed data from the same mblk has 19289 * been ack'ed. 19290 */ 19291 (*xmit_tail)->b_prev = local_time; 19292 (*xmit_tail)->b_next = 19293 (mblk_t *)(uintptr_t)first_snxt; 19294 } 19295 19296 first_snxt = *snxt - spill; 19297 19298 /* 19299 * Advance xmit_tail; usable could be 0 by 19300 * the time we got here, but we made sure 19301 * above that we would only spillover to 19302 * the next data block if usable includes 19303 * the spilled-over amount prior to the 19304 * subtraction. Therefore, we are sure 19305 * that xmit_tail->b_cont can't be NULL. 19306 */ 19307 ASSERT((*xmit_tail)->b_cont != NULL); 19308 *xmit_tail = (*xmit_tail)->b_cont; 19309 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19310 (uintptr_t)INT_MAX); 19311 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19312 } else { 19313 cur_pld_off += tcp->tcp_last_sent_len; 19314 } 19315 19316 /* 19317 * Fill in the header using the template header, and 19318 * add options such as time-stamp, ECN and/or SACK, 19319 * as needed. 19320 */ 19321 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19322 (clock_t)local_time, num_sack_blk); 19323 19324 /* take care of some IP header businesses */ 19325 if (af == AF_INET) { 19326 ipha = (ipha_t *)pkt_info->hdr_rptr; 19327 19328 ASSERT(OK_32PTR((uchar_t *)ipha)); 19329 ASSERT(PDESC_HDRL(pkt_info) >= 19330 IP_SIMPLE_HDR_LENGTH); 19331 ASSERT(ipha->ipha_version_and_hdr_length == 19332 IP_SIMPLE_HDR_VERSION); 19333 19334 /* 19335 * Assign ident value for current packet; see 19336 * related comments in ip_wput_ire() about the 19337 * contract private interface with clustering 19338 * group. 19339 */ 19340 clusterwide = B_FALSE; 19341 if (cl_inet_ipident != NULL) { 19342 ASSERT(cl_inet_isclusterwide != NULL); 19343 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19344 AF_INET, 19345 (uint8_t *)(uintptr_t)src)) { 19346 ipha->ipha_ident = 19347 (*cl_inet_ipident) 19348 (IPPROTO_IP, AF_INET, 19349 (uint8_t *)(uintptr_t)src, 19350 (uint8_t *)(uintptr_t)dst); 19351 clusterwide = B_TRUE; 19352 } 19353 } 19354 19355 if (!clusterwide) { 19356 ipha->ipha_ident = (uint16_t) 19357 atomic_add_32_nv( 19358 &ire->ire_ident, 1); 19359 } 19360 #ifndef _BIG_ENDIAN 19361 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19362 (ipha->ipha_ident >> 8); 19363 #endif 19364 } else { 19365 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19366 19367 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19368 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19369 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19370 ASSERT(PDESC_HDRL(pkt_info) >= 19371 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19372 TCP_CHECKSUM_SIZE)); 19373 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19374 19375 if (tcp->tcp_ip_forward_progress) { 19376 rconfirm = B_TRUE; 19377 tcp->tcp_ip_forward_progress = B_FALSE; 19378 } 19379 } 19380 19381 /* at least one payload span, and at most two */ 19382 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19383 19384 /* add the packet descriptor to Multidata */ 19385 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19386 KM_NOSLEEP)) == NULL) { 19387 /* 19388 * Any failure other than ENOMEM indicates 19389 * that we have passed in invalid pkt_info 19390 * or parameters to mmd_addpdesc, which must 19391 * not happen. 19392 * 19393 * EINVAL is a result of failure on boundary 19394 * checks against the pkt_info contents. It 19395 * should not happen, and we panic because 19396 * either there's horrible heap corruption, 19397 * and/or programming mistake. 19398 */ 19399 if (err != ENOMEM) { 19400 cmn_err(CE_PANIC, "tcp_multisend: " 19401 "pdesc logic error detected for " 19402 "tcp %p mmd %p pinfo %p (%d)\n", 19403 (void *)tcp, (void *)mmd, 19404 (void *)pkt_info, err); 19405 } 19406 TCP_STAT(tcp_mdt_addpdescfail); 19407 goto legacy_send; /* out_of_mem */ 19408 } 19409 ASSERT(pkt != NULL); 19410 19411 /* calculate IP header and TCP checksums */ 19412 if (af == AF_INET) { 19413 /* calculate pseudo-header checksum */ 19414 cksum = (dst >> 16) + (dst & 0xFFFF) + 19415 (src >> 16) + (src & 0xFFFF); 19416 19417 /* offset for TCP header checksum */ 19418 up = IPH_TCPH_CHECKSUMP(ipha, 19419 IP_SIMPLE_HDR_LENGTH); 19420 } else { 19421 up = (uint16_t *)&ip6h->ip6_src; 19422 19423 /* calculate pseudo-header checksum */ 19424 cksum = up[0] + up[1] + up[2] + up[3] + 19425 up[4] + up[5] + up[6] + up[7] + 19426 up[8] + up[9] + up[10] + up[11] + 19427 up[12] + up[13] + up[14] + up[15]; 19428 19429 /* Fold the initial sum */ 19430 cksum = (cksum & 0xffff) + (cksum >> 16); 19431 19432 up = (uint16_t *)(((uchar_t *)ip6h) + 19433 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 19434 } 19435 19436 if (hwcksum_flags & HCK_FULLCKSUM) { 19437 /* clear checksum field for hardware */ 19438 *up = 0; 19439 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 19440 uint32_t sum; 19441 19442 /* pseudo-header checksumming */ 19443 sum = *up + cksum + IP_TCP_CSUM_COMP; 19444 sum = (sum & 0xFFFF) + (sum >> 16); 19445 *up = (sum & 0xFFFF) + (sum >> 16); 19446 } else { 19447 /* software checksumming */ 19448 TCP_STAT(tcp_out_sw_cksum); 19449 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 19450 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 19451 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 19452 cksum + IP_TCP_CSUM_COMP); 19453 if (*up == 0) 19454 *up = 0xFFFF; 19455 } 19456 19457 /* IPv4 header checksum */ 19458 if (af == AF_INET) { 19459 ipha->ipha_fragment_offset_and_flags |= 19460 (uint32_t)htons(ire->ire_frag_flag); 19461 19462 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 19463 ipha->ipha_hdr_checksum = 0; 19464 } else { 19465 IP_HDR_CKSUM(ipha, cksum, 19466 ((uint32_t *)ipha)[0], 19467 ((uint16_t *)ipha)[4]); 19468 } 19469 } 19470 19471 /* advance header offset */ 19472 cur_hdr_off += hdr_frag_sz; 19473 19474 obbytes += tcp->tcp_last_sent_len; 19475 ++obsegs; 19476 } while (!done && *usable > 0 && --num_burst_seg > 0 && 19477 *tail_unsent > 0); 19478 19479 if ((*xmit_tail)->b_next == NULL) { 19480 /* 19481 * Store the lbolt used for RTT estimation. We can only 19482 * record one timestamp per mblk so we do it when we 19483 * reach the end of the payload buffer. Also we only 19484 * take a new timestamp sample when the previous timed 19485 * data from the same mblk has been ack'ed. 19486 */ 19487 (*xmit_tail)->b_prev = local_time; 19488 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 19489 } 19490 19491 ASSERT(*tail_unsent >= 0); 19492 if (*tail_unsent > 0) { 19493 /* 19494 * We got here because we broke out of the above 19495 * loop due to of one of the following cases: 19496 * 19497 * 1. len < adjusted MSS (i.e. small), 19498 * 2. Sender SWS avoidance, 19499 * 3. max_pld is zero. 19500 * 19501 * We are done for this Multidata, so trim our 19502 * last payload buffer (if any) accordingly. 19503 */ 19504 if (md_pbuf != NULL) 19505 md_pbuf->b_wptr -= *tail_unsent; 19506 } else if (*usable > 0) { 19507 *xmit_tail = (*xmit_tail)->b_cont; 19508 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19509 (uintptr_t)INT_MAX); 19510 *tail_unsent = (int)MBLKL(*xmit_tail); 19511 add_buffer = B_TRUE; 19512 } 19513 } while (!done && *usable > 0 && num_burst_seg > 0 && 19514 (tcp_mdt_chain || max_pld > 0)); 19515 19516 /* send everything down */ 19517 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 19518 &rconfirm); 19519 19520 #undef PREP_NEW_MULTIDATA 19521 #undef PREP_NEW_PBUF 19522 #undef IPVER 19523 19524 IRE_REFRELE(ire); 19525 return (0); 19526 } 19527 19528 /* 19529 * A wrapper function for sending one or more Multidata messages down to 19530 * the module below ip; this routine does not release the reference of the 19531 * IRE (caller does that). This routine is analogous to tcp_send_data(). 19532 */ 19533 static void 19534 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 19535 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 19536 { 19537 uint64_t delta; 19538 nce_t *nce; 19539 19540 ASSERT(ire != NULL && ill != NULL); 19541 ASSERT(ire->ire_stq != NULL); 19542 ASSERT(md_mp_head != NULL); 19543 ASSERT(rconfirm != NULL); 19544 19545 /* adjust MIBs and IRE timestamp */ 19546 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 19547 tcp->tcp_obsegs += obsegs; 19548 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 19549 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 19550 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 19551 19552 if (tcp->tcp_ipversion == IPV4_VERSION) { 19553 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 19554 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 19555 } else { 19556 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 19557 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 19558 } 19559 19560 ire->ire_ob_pkt_count += obsegs; 19561 if (ire->ire_ipif != NULL) 19562 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 19563 ire->ire_last_used_time = lbolt; 19564 19565 /* send it down */ 19566 putnext(ire->ire_stq, md_mp_head); 19567 19568 /* we're done for TCP/IPv4 */ 19569 if (tcp->tcp_ipversion == IPV4_VERSION) 19570 return; 19571 19572 nce = ire->ire_nce; 19573 19574 ASSERT(nce != NULL); 19575 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 19576 ASSERT(nce->nce_state != ND_INCOMPLETE); 19577 19578 /* reachability confirmation? */ 19579 if (*rconfirm) { 19580 nce->nce_last = TICK_TO_MSEC(lbolt64); 19581 if (nce->nce_state != ND_REACHABLE) { 19582 mutex_enter(&nce->nce_lock); 19583 nce->nce_state = ND_REACHABLE; 19584 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 19585 mutex_exit(&nce->nce_lock); 19586 (void) untimeout(nce->nce_timeout_id); 19587 if (ip_debug > 2) { 19588 /* ip1dbg */ 19589 pr_addr_dbg("tcp_multisend_data: state " 19590 "for %s changed to REACHABLE\n", 19591 AF_INET6, &ire->ire_addr_v6); 19592 } 19593 } 19594 /* reset transport reachability confirmation */ 19595 *rconfirm = B_FALSE; 19596 } 19597 19598 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 19599 ip1dbg(("tcp_multisend_data: delta = %" PRId64 19600 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 19601 19602 if (delta > (uint64_t)ill->ill_reachable_time) { 19603 mutex_enter(&nce->nce_lock); 19604 switch (nce->nce_state) { 19605 case ND_REACHABLE: 19606 case ND_STALE: 19607 /* 19608 * ND_REACHABLE is identical to ND_STALE in this 19609 * specific case. If reachable time has expired for 19610 * this neighbor (delta is greater than reachable 19611 * time), conceptually, the neighbor cache is no 19612 * longer in REACHABLE state, but already in STALE 19613 * state. So the correct transition here is to 19614 * ND_DELAY. 19615 */ 19616 nce->nce_state = ND_DELAY; 19617 mutex_exit(&nce->nce_lock); 19618 NDP_RESTART_TIMER(nce, delay_first_probe_time); 19619 if (ip_debug > 3) { 19620 /* ip2dbg */ 19621 pr_addr_dbg("tcp_multisend_data: state " 19622 "for %s changed to DELAY\n", 19623 AF_INET6, &ire->ire_addr_v6); 19624 } 19625 break; 19626 case ND_DELAY: 19627 case ND_PROBE: 19628 mutex_exit(&nce->nce_lock); 19629 /* Timers have already started */ 19630 break; 19631 case ND_UNREACHABLE: 19632 /* 19633 * ndp timer has detected that this nce is 19634 * unreachable and initiated deleting this nce 19635 * and all its associated IREs. This is a race 19636 * where we found the ire before it was deleted 19637 * and have just sent out a packet using this 19638 * unreachable nce. 19639 */ 19640 mutex_exit(&nce->nce_lock); 19641 break; 19642 default: 19643 ASSERT(0); 19644 } 19645 } 19646 } 19647 19648 /* 19649 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 19650 * scheme, and returns one of the following: 19651 * 19652 * -1 = failed allocation. 19653 * 0 = success; burst count reached, or usable send window is too small, 19654 * and that we'd rather wait until later before sending again. 19655 * 1 = success; we are called from tcp_multisend(), and both usable send 19656 * window and tail_unsent are greater than the MDT threshold, and thus 19657 * Multidata Transmit should be used instead. 19658 */ 19659 static int 19660 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19661 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19662 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19663 const int mdt_thres) 19664 { 19665 int num_burst_seg = tcp->tcp_snd_burst; 19666 19667 for (;;) { 19668 struct datab *db; 19669 tcph_t *tcph; 19670 uint32_t sum; 19671 mblk_t *mp, *mp1; 19672 uchar_t *rptr; 19673 int len; 19674 19675 /* 19676 * If we're called by tcp_multisend(), and the amount of 19677 * sendable data as well as the size of current xmit_tail 19678 * is beyond the MDT threshold, return to the caller and 19679 * let the large data transmit be done using MDT. 19680 */ 19681 if (*usable > 0 && *usable > mdt_thres && 19682 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 19683 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 19684 ASSERT(tcp->tcp_mdt); 19685 return (1); /* success; do large send */ 19686 } 19687 19688 if (num_burst_seg-- == 0) 19689 break; /* success; burst count reached */ 19690 19691 len = mss; 19692 if (len > *usable) { 19693 len = *usable; 19694 if (len <= 0) { 19695 /* Terminate the loop */ 19696 break; /* success; too small */ 19697 } 19698 /* 19699 * Sender silly-window avoidance. 19700 * Ignore this if we are going to send a 19701 * zero window probe out. 19702 * 19703 * TODO: force data into microscopic window? 19704 * ==> (!pushed || (unsent > usable)) 19705 */ 19706 if (len < (tcp->tcp_max_swnd >> 1) && 19707 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 19708 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 19709 len == 1) && (! tcp->tcp_zero_win_probe)) { 19710 /* 19711 * If the retransmit timer is not running 19712 * we start it so that we will retransmit 19713 * in the case when the the receiver has 19714 * decremented the window. 19715 */ 19716 if (*snxt == tcp->tcp_snxt && 19717 *snxt == tcp->tcp_suna) { 19718 /* 19719 * We are not supposed to send 19720 * anything. So let's wait a little 19721 * bit longer before breaking SWS 19722 * avoidance. 19723 * 19724 * What should the value be? 19725 * Suggestion: MAX(init rexmit time, 19726 * tcp->tcp_rto) 19727 */ 19728 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19729 } 19730 break; /* success; too small */ 19731 } 19732 } 19733 19734 tcph = tcp->tcp_tcph; 19735 19736 *usable -= len; /* Approximate - can be adjusted later */ 19737 if (*usable > 0) 19738 tcph->th_flags[0] = TH_ACK; 19739 else 19740 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 19741 19742 /* 19743 * Prime pump for IP's checksumming on our behalf 19744 * Include the adjustment for a source route if any. 19745 */ 19746 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19747 sum = (sum >> 16) + (sum & 0xFFFF); 19748 U16_TO_ABE16(sum, tcph->th_sum); 19749 19750 U32_TO_ABE32(*snxt, tcph->th_seq); 19751 19752 /* 19753 * Branch off to tcp_xmit_mp() if any of the VALID bits is 19754 * set. For the case when TCP_FSS_VALID is the only valid 19755 * bit (normal active close), branch off only when we think 19756 * that the FIN flag needs to be set. Note for this case, 19757 * that (snxt + len) may not reflect the actual seg_len, 19758 * as len may be further reduced in tcp_xmit_mp(). If len 19759 * gets modified, we will end up here again. 19760 */ 19761 if (tcp->tcp_valid_bits != 0 && 19762 (tcp->tcp_valid_bits != TCP_FSS_VALID || 19763 ((*snxt + len) == tcp->tcp_fss))) { 19764 uchar_t *prev_rptr; 19765 uint32_t prev_snxt = tcp->tcp_snxt; 19766 19767 if (*tail_unsent == 0) { 19768 ASSERT((*xmit_tail)->b_cont != NULL); 19769 *xmit_tail = (*xmit_tail)->b_cont; 19770 prev_rptr = (*xmit_tail)->b_rptr; 19771 *tail_unsent = (int)((*xmit_tail)->b_wptr - 19772 (*xmit_tail)->b_rptr); 19773 } else { 19774 prev_rptr = (*xmit_tail)->b_rptr; 19775 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 19776 *tail_unsent; 19777 } 19778 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 19779 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 19780 /* Restore tcp_snxt so we get amount sent right. */ 19781 tcp->tcp_snxt = prev_snxt; 19782 if (prev_rptr == (*xmit_tail)->b_rptr) { 19783 /* 19784 * If the previous timestamp is still in use, 19785 * don't stomp on it. 19786 */ 19787 if ((*xmit_tail)->b_next == NULL) { 19788 (*xmit_tail)->b_prev = local_time; 19789 (*xmit_tail)->b_next = 19790 (mblk_t *)(uintptr_t)(*snxt); 19791 } 19792 } else 19793 (*xmit_tail)->b_rptr = prev_rptr; 19794 19795 if (mp == NULL) 19796 return (-1); 19797 mp1 = mp->b_cont; 19798 19799 tcp->tcp_last_sent_len = (ushort_t)len; 19800 while (mp1->b_cont) { 19801 *xmit_tail = (*xmit_tail)->b_cont; 19802 (*xmit_tail)->b_prev = local_time; 19803 (*xmit_tail)->b_next = 19804 (mblk_t *)(uintptr_t)(*snxt); 19805 mp1 = mp1->b_cont; 19806 } 19807 *snxt += len; 19808 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 19809 BUMP_LOCAL(tcp->tcp_obsegs); 19810 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 19811 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 19812 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 19813 tcp_send_data(tcp, q, mp); 19814 continue; 19815 } 19816 19817 *snxt += len; /* Adjust later if we don't send all of len */ 19818 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 19819 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 19820 19821 if (*tail_unsent) { 19822 /* Are the bytes above us in flight? */ 19823 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 19824 if (rptr != (*xmit_tail)->b_rptr) { 19825 *tail_unsent -= len; 19826 tcp->tcp_last_sent_len = (ushort_t)len; 19827 len += tcp_hdr_len; 19828 if (tcp->tcp_ipversion == IPV4_VERSION) 19829 tcp->tcp_ipha->ipha_length = htons(len); 19830 else 19831 tcp->tcp_ip6h->ip6_plen = 19832 htons(len - 19833 ((char *)&tcp->tcp_ip6h[1] - 19834 tcp->tcp_iphc)); 19835 mp = dupb(*xmit_tail); 19836 if (!mp) 19837 return (-1); /* out_of_mem */ 19838 mp->b_rptr = rptr; 19839 /* 19840 * If the old timestamp is no longer in use, 19841 * sample a new timestamp now. 19842 */ 19843 if ((*xmit_tail)->b_next == NULL) { 19844 (*xmit_tail)->b_prev = local_time; 19845 (*xmit_tail)->b_next = 19846 (mblk_t *)(uintptr_t)(*snxt-len); 19847 } 19848 goto must_alloc; 19849 } 19850 } else { 19851 *xmit_tail = (*xmit_tail)->b_cont; 19852 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 19853 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 19854 *tail_unsent = (int)((*xmit_tail)->b_wptr - 19855 (*xmit_tail)->b_rptr); 19856 } 19857 19858 (*xmit_tail)->b_prev = local_time; 19859 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 19860 19861 *tail_unsent -= len; 19862 tcp->tcp_last_sent_len = (ushort_t)len; 19863 19864 len += tcp_hdr_len; 19865 if (tcp->tcp_ipversion == IPV4_VERSION) 19866 tcp->tcp_ipha->ipha_length = htons(len); 19867 else 19868 tcp->tcp_ip6h->ip6_plen = htons(len - 19869 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 19870 19871 mp = dupb(*xmit_tail); 19872 if (!mp) 19873 return (-1); /* out_of_mem */ 19874 19875 len = tcp_hdr_len; 19876 /* 19877 * There are four reasons to allocate a new hdr mblk: 19878 * 1) The bytes above us are in use by another packet 19879 * 2) We don't have good alignment 19880 * 3) The mblk is being shared 19881 * 4) We don't have enough room for a header 19882 */ 19883 rptr = mp->b_rptr - len; 19884 if (!OK_32PTR(rptr) || 19885 ((db = mp->b_datap), db->db_ref != 2) || 19886 rptr < db->db_base) { 19887 /* NOTE: we assume allocb returns an OK_32PTR */ 19888 19889 must_alloc:; 19890 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 19891 tcp_wroff_xtra, BPRI_MED); 19892 if (!mp1) { 19893 freemsg(mp); 19894 return (-1); /* out_of_mem */ 19895 } 19896 mp1->b_cont = mp; 19897 mp = mp1; 19898 /* Leave room for Link Level header */ 19899 len = tcp_hdr_len; 19900 rptr = &mp->b_rptr[tcp_wroff_xtra]; 19901 mp->b_wptr = &rptr[len]; 19902 } 19903 19904 /* 19905 * Fill in the header using the template header, and add 19906 * options such as time-stamp, ECN and/or SACK, as needed. 19907 */ 19908 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 19909 19910 mp->b_rptr = rptr; 19911 19912 if (*tail_unsent) { 19913 int spill = *tail_unsent; 19914 19915 mp1 = mp->b_cont; 19916 if (!mp1) 19917 mp1 = mp; 19918 19919 /* 19920 * If we're a little short, tack on more mblks until 19921 * there is no more spillover. 19922 */ 19923 while (spill < 0) { 19924 mblk_t *nmp; 19925 int nmpsz; 19926 19927 nmp = (*xmit_tail)->b_cont; 19928 nmpsz = MBLKL(nmp); 19929 19930 /* 19931 * Excess data in mblk; can we split it? 19932 * If MDT is enabled for the connection, 19933 * keep on splitting as this is a transient 19934 * send path. 19935 */ 19936 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 19937 /* 19938 * Don't split if stream head was 19939 * told to break up larger writes 19940 * into smaller ones. 19941 */ 19942 if (tcp->tcp_maxpsz > 0) 19943 break; 19944 19945 /* 19946 * Next mblk is less than SMSS/2 19947 * rounded up to nearest 64-byte; 19948 * let it get sent as part of the 19949 * next segment. 19950 */ 19951 if (tcp->tcp_localnet && 19952 !tcp->tcp_cork && 19953 (nmpsz < roundup((mss >> 1), 64))) 19954 break; 19955 } 19956 19957 *xmit_tail = nmp; 19958 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 19959 /* Stash for rtt use later */ 19960 (*xmit_tail)->b_prev = local_time; 19961 (*xmit_tail)->b_next = 19962 (mblk_t *)(uintptr_t)(*snxt - len); 19963 mp1->b_cont = dupb(*xmit_tail); 19964 mp1 = mp1->b_cont; 19965 19966 spill += nmpsz; 19967 if (mp1 == NULL) { 19968 *tail_unsent = spill; 19969 freemsg(mp); 19970 return (-1); /* out_of_mem */ 19971 } 19972 } 19973 19974 /* Trim back any surplus on the last mblk */ 19975 if (spill >= 0) { 19976 mp1->b_wptr -= spill; 19977 *tail_unsent = spill; 19978 } else { 19979 /* 19980 * We did not send everything we could in 19981 * order to remain within the b_cont limit. 19982 */ 19983 *usable -= spill; 19984 *snxt += spill; 19985 tcp->tcp_last_sent_len += spill; 19986 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 19987 /* 19988 * Adjust the checksum 19989 */ 19990 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19991 sum += spill; 19992 sum = (sum >> 16) + (sum & 0xFFFF); 19993 U16_TO_ABE16(sum, tcph->th_sum); 19994 if (tcp->tcp_ipversion == IPV4_VERSION) { 19995 sum = ntohs( 19996 ((ipha_t *)rptr)->ipha_length) + 19997 spill; 19998 ((ipha_t *)rptr)->ipha_length = 19999 htons(sum); 20000 } else { 20001 sum = ntohs( 20002 ((ip6_t *)rptr)->ip6_plen) + 20003 spill; 20004 ((ip6_t *)rptr)->ip6_plen = 20005 htons(sum); 20006 } 20007 *tail_unsent = 0; 20008 } 20009 } 20010 if (tcp->tcp_ip_forward_progress) { 20011 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20012 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20013 tcp->tcp_ip_forward_progress = B_FALSE; 20014 } 20015 20016 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20017 tcp_send_data(tcp, q, mp); 20018 BUMP_LOCAL(tcp->tcp_obsegs); 20019 } 20020 20021 return (0); 20022 } 20023 20024 /* Unlink and return any mblk that looks like it contains a MDT info */ 20025 static mblk_t * 20026 tcp_mdt_info_mp(mblk_t *mp) 20027 { 20028 mblk_t *prev_mp; 20029 20030 for (;;) { 20031 prev_mp = mp; 20032 /* no more to process? */ 20033 if ((mp = mp->b_cont) == NULL) 20034 break; 20035 20036 switch (DB_TYPE(mp)) { 20037 case M_CTL: 20038 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20039 continue; 20040 ASSERT(prev_mp != NULL); 20041 prev_mp->b_cont = mp->b_cont; 20042 mp->b_cont = NULL; 20043 return (mp); 20044 default: 20045 break; 20046 } 20047 } 20048 return (mp); 20049 } 20050 20051 /* MDT info update routine, called when IP notifies us about MDT */ 20052 static void 20053 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20054 { 20055 boolean_t prev_state; 20056 20057 /* 20058 * IP is telling us to abort MDT on this connection? We know 20059 * this because the capability is only turned off when IP 20060 * encounters some pathological cases, e.g. link-layer change 20061 * where the new driver doesn't support MDT, or in situation 20062 * where MDT usage on the link-layer has been switched off. 20063 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20064 * if the link-layer doesn't support MDT, and if it does, it 20065 * will indicate that the feature is to be turned on. 20066 */ 20067 prev_state = tcp->tcp_mdt; 20068 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20069 if (!tcp->tcp_mdt && !first) { 20070 TCP_STAT(tcp_mdt_conn_halted3); 20071 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20072 (void *)tcp->tcp_connp)); 20073 } 20074 20075 /* 20076 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20077 * so disable MDT otherwise. The checks are done here 20078 * and in tcp_wput_data(). 20079 */ 20080 if (tcp->tcp_mdt && 20081 (tcp->tcp_ipversion == IPV4_VERSION && 20082 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20083 (tcp->tcp_ipversion == IPV6_VERSION && 20084 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20085 tcp->tcp_mdt = B_FALSE; 20086 20087 if (tcp->tcp_mdt) { 20088 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20089 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20090 "version (%d), expected version is %d", 20091 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20092 tcp->tcp_mdt = B_FALSE; 20093 return; 20094 } 20095 20096 /* 20097 * We need the driver to be able to handle at least three 20098 * spans per packet in order for tcp MDT to be utilized. 20099 * The first is for the header portion, while the rest are 20100 * needed to handle a packet that straddles across two 20101 * virtually non-contiguous buffers; a typical tcp packet 20102 * therefore consists of only two spans. Note that we take 20103 * a zero as "don't care". 20104 */ 20105 if (mdt_capab->ill_mdt_span_limit > 0 && 20106 mdt_capab->ill_mdt_span_limit < 3) { 20107 tcp->tcp_mdt = B_FALSE; 20108 return; 20109 } 20110 20111 /* a zero means driver wants default value */ 20112 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20113 tcp_mdt_max_pbufs); 20114 if (tcp->tcp_mdt_max_pld == 0) 20115 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20116 20117 /* ensure 32-bit alignment */ 20118 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20119 mdt_capab->ill_mdt_hdr_head), 4); 20120 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20121 mdt_capab->ill_mdt_hdr_tail), 4); 20122 20123 if (!first && !prev_state) { 20124 TCP_STAT(tcp_mdt_conn_resumed2); 20125 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20126 (void *)tcp->tcp_connp)); 20127 } 20128 } 20129 } 20130 20131 static void 20132 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20133 { 20134 conn_t *connp = tcp->tcp_connp; 20135 20136 ASSERT(ire != NULL); 20137 20138 /* 20139 * We may be in the fastpath here, and although we essentially do 20140 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20141 * we try to keep things as brief as possible. After all, these 20142 * are only best-effort checks, and we do more thorough ones prior 20143 * to calling tcp_multisend(). 20144 */ 20145 if (ip_multidata_outbound && check_mdt && 20146 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20147 ill != NULL && ILL_MDT_CAPABLE(ill) && 20148 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20149 !(ire->ire_flags & RTF_MULTIRT) && 20150 !IPP_ENABLED(IPP_LOCAL_OUT) && 20151 CONN_IS_MD_FASTPATH(connp)) { 20152 /* Remember the result */ 20153 connp->conn_mdt_ok = B_TRUE; 20154 20155 ASSERT(ill->ill_mdt_capab != NULL); 20156 if (!ill->ill_mdt_capab->ill_mdt_on) { 20157 /* 20158 * If MDT has been previously turned off in the past, 20159 * and we currently can do MDT (due to IPQoS policy 20160 * removal, etc.) then enable it for this interface. 20161 */ 20162 ill->ill_mdt_capab->ill_mdt_on = 1; 20163 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20164 "interface %s\n", (void *)connp, ill->ill_name)); 20165 } 20166 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20167 } 20168 20169 /* 20170 * The goal is to reduce the number of generated tcp segments by 20171 * setting the maxpsz multiplier to 0; this will have an affect on 20172 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20173 * into each packet, up to SMSS bytes. Doing this reduces the number 20174 * of outbound segments and incoming ACKs, thus allowing for better 20175 * network and system performance. In contrast the legacy behavior 20176 * may result in sending less than SMSS size, because the last mblk 20177 * for some packets may have more data than needed to make up SMSS, 20178 * and the legacy code refused to "split" it. 20179 * 20180 * We apply the new behavior on following situations: 20181 * 20182 * 1) Loopback connections, 20183 * 2) Connections in which the remote peer is not on local subnet, 20184 * 3) Local subnet connections over the bge interface (see below). 20185 * 20186 * Ideally, we would like this behavior to apply for interfaces other 20187 * than bge. However, doing so would negatively impact drivers which 20188 * perform dynamic mapping and unmapping of DMA resources, which are 20189 * increased by setting the maxpsz multiplier to 0 (more mblks per 20190 * packet will be generated by tcp). The bge driver does not suffer 20191 * from this, as it copies the mblks into pre-mapped buffers, and 20192 * therefore does not require more I/O resources than before. 20193 * 20194 * Otherwise, this behavior is present on all network interfaces when 20195 * the destination endpoint is non-local, since reducing the number 20196 * of packets in general is good for the network. 20197 * 20198 * TODO We need to remove this hard-coded conditional for bge once 20199 * a better "self-tuning" mechanism, or a way to comprehend 20200 * the driver transmit strategy is devised. Until the solution 20201 * is found and well understood, we live with this hack. 20202 */ 20203 if (!tcp_static_maxpsz && 20204 (tcp->tcp_loopback || !tcp->tcp_localnet || 20205 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20206 /* override the default value */ 20207 tcp->tcp_maxpsz = 0; 20208 20209 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20210 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20211 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20212 } 20213 20214 /* set the stream head parameters accordingly */ 20215 (void) tcp_maxpsz_set(tcp, B_TRUE); 20216 } 20217 20218 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20219 static void 20220 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20221 { 20222 uchar_t fval = *mp->b_rptr; 20223 mblk_t *tail; 20224 queue_t *q = tcp->tcp_wq; 20225 20226 /* TODO: How should flush interact with urgent data? */ 20227 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20228 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20229 /* 20230 * Flush only data that has not yet been put on the wire. If 20231 * we flush data that we have already transmitted, life, as we 20232 * know it, may come to an end. 20233 */ 20234 tail = tcp->tcp_xmit_tail; 20235 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20236 tcp->tcp_xmit_tail_unsent = 0; 20237 tcp->tcp_unsent = 0; 20238 if (tail->b_wptr != tail->b_rptr) 20239 tail = tail->b_cont; 20240 if (tail) { 20241 mblk_t **excess = &tcp->tcp_xmit_head; 20242 for (;;) { 20243 mblk_t *mp1 = *excess; 20244 if (mp1 == tail) 20245 break; 20246 tcp->tcp_xmit_tail = mp1; 20247 tcp->tcp_xmit_last = mp1; 20248 excess = &mp1->b_cont; 20249 } 20250 *excess = NULL; 20251 tcp_close_mpp(&tail); 20252 if (tcp->tcp_snd_zcopy_aware) 20253 tcp_zcopy_notify(tcp); 20254 } 20255 /* 20256 * We have no unsent data, so unsent must be less than 20257 * tcp_xmit_lowater, so re-enable flow. 20258 */ 20259 if (tcp->tcp_flow_stopped) { 20260 tcp_clrqfull(tcp); 20261 } 20262 } 20263 /* 20264 * TODO: you can't just flush these, you have to increase rwnd for one 20265 * thing. For another, how should urgent data interact? 20266 */ 20267 if (fval & FLUSHR) { 20268 *mp->b_rptr = fval & ~FLUSHW; 20269 /* XXX */ 20270 qreply(q, mp); 20271 return; 20272 } 20273 freemsg(mp); 20274 } 20275 20276 /* 20277 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 20278 * messages. 20279 */ 20280 static void 20281 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 20282 { 20283 mblk_t *mp1; 20284 STRUCT_HANDLE(strbuf, sb); 20285 uint16_t port; 20286 queue_t *q = tcp->tcp_wq; 20287 in6_addr_t v6addr; 20288 ipaddr_t v4addr; 20289 uint32_t flowinfo = 0; 20290 int addrlen; 20291 20292 /* Make sure it is one of ours. */ 20293 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20294 case TI_GETMYNAME: 20295 case TI_GETPEERNAME: 20296 break; 20297 default: 20298 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20299 return; 20300 } 20301 switch (mi_copy_state(q, mp, &mp1)) { 20302 case -1: 20303 return; 20304 case MI_COPY_CASE(MI_COPY_IN, 1): 20305 break; 20306 case MI_COPY_CASE(MI_COPY_OUT, 1): 20307 /* Copy out the strbuf. */ 20308 mi_copyout(q, mp); 20309 return; 20310 case MI_COPY_CASE(MI_COPY_OUT, 2): 20311 /* All done. */ 20312 mi_copy_done(q, mp, 0); 20313 return; 20314 default: 20315 mi_copy_done(q, mp, EPROTO); 20316 return; 20317 } 20318 /* Check alignment of the strbuf */ 20319 if (!OK_32PTR(mp1->b_rptr)) { 20320 mi_copy_done(q, mp, EINVAL); 20321 return; 20322 } 20323 20324 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 20325 (void *)mp1->b_rptr); 20326 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 20327 20328 if (STRUCT_FGET(sb, maxlen) < addrlen) { 20329 mi_copy_done(q, mp, EINVAL); 20330 return; 20331 } 20332 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20333 case TI_GETMYNAME: 20334 if (tcp->tcp_family == AF_INET) { 20335 if (tcp->tcp_ipversion == IPV4_VERSION) { 20336 v4addr = tcp->tcp_ipha->ipha_src; 20337 } else { 20338 /* can't return an address in this case */ 20339 v4addr = 0; 20340 } 20341 } else { 20342 /* tcp->tcp_family == AF_INET6 */ 20343 if (tcp->tcp_ipversion == IPV4_VERSION) { 20344 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 20345 &v6addr); 20346 } else { 20347 v6addr = tcp->tcp_ip6h->ip6_src; 20348 } 20349 } 20350 port = tcp->tcp_lport; 20351 break; 20352 case TI_GETPEERNAME: 20353 if (tcp->tcp_family == AF_INET) { 20354 if (tcp->tcp_ipversion == IPV4_VERSION) { 20355 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 20356 v4addr); 20357 } else { 20358 /* can't return an address in this case */ 20359 v4addr = 0; 20360 } 20361 } else { 20362 /* tcp->tcp_family == AF_INET6) */ 20363 v6addr = tcp->tcp_remote_v6; 20364 if (tcp->tcp_ipversion == IPV6_VERSION) { 20365 /* 20366 * No flowinfo if tcp->tcp_ipversion is v4. 20367 * 20368 * flowinfo was already initialized to zero 20369 * where it was declared above, so only 20370 * set it if ipversion is v6. 20371 */ 20372 flowinfo = tcp->tcp_ip6h->ip6_vcf & 20373 ~IPV6_VERS_AND_FLOW_MASK; 20374 } 20375 } 20376 port = tcp->tcp_fport; 20377 break; 20378 default: 20379 mi_copy_done(q, mp, EPROTO); 20380 return; 20381 } 20382 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 20383 if (!mp1) 20384 return; 20385 20386 if (tcp->tcp_family == AF_INET) { 20387 sin_t *sin; 20388 20389 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 20390 sin = (sin_t *)mp1->b_rptr; 20391 mp1->b_wptr = (uchar_t *)&sin[1]; 20392 *sin = sin_null; 20393 sin->sin_family = AF_INET; 20394 sin->sin_addr.s_addr = v4addr; 20395 sin->sin_port = port; 20396 } else { 20397 /* tcp->tcp_family == AF_INET6 */ 20398 sin6_t *sin6; 20399 20400 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 20401 sin6 = (sin6_t *)mp1->b_rptr; 20402 mp1->b_wptr = (uchar_t *)&sin6[1]; 20403 *sin6 = sin6_null; 20404 sin6->sin6_family = AF_INET6; 20405 sin6->sin6_flowinfo = flowinfo; 20406 sin6->sin6_addr = v6addr; 20407 sin6->sin6_port = port; 20408 } 20409 /* Copy out the address */ 20410 mi_copyout(q, mp); 20411 } 20412 20413 /* 20414 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 20415 * messages. 20416 */ 20417 /* ARGSUSED */ 20418 static void 20419 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 20420 { 20421 conn_t *connp = (conn_t *)arg; 20422 tcp_t *tcp = connp->conn_tcp; 20423 queue_t *q = tcp->tcp_wq; 20424 struct iocblk *iocp; 20425 20426 ASSERT(DB_TYPE(mp) == M_IOCTL); 20427 /* 20428 * Try and ASSERT the minimum possible references on the 20429 * conn early enough. Since we are executing on write side, 20430 * the connection is obviously not detached and that means 20431 * there is a ref each for TCP and IP. Since we are behind 20432 * the squeue, the minimum references needed are 3. If the 20433 * conn is in classifier hash list, there should be an 20434 * extra ref for that (we check both the possibilities). 20435 */ 20436 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20437 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20438 20439 iocp = (struct iocblk *)mp->b_rptr; 20440 switch (iocp->ioc_cmd) { 20441 case TCP_IOC_DEFAULT_Q: 20442 /* Wants to be the default wq. */ 20443 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 20444 iocp->ioc_error = EPERM; 20445 iocp->ioc_count = 0; 20446 mp->b_datap->db_type = M_IOCACK; 20447 qreply(q, mp); 20448 return; 20449 } 20450 tcp_def_q_set(tcp, mp); 20451 return; 20452 case _SIOCSOCKFALLBACK: 20453 /* 20454 * Either sockmod is about to be popped and the socket 20455 * would now be treated as a plain stream, or a module 20456 * is about to be pushed so we could no longer use read- 20457 * side synchronous streams for fused loopback tcp. 20458 * Drain any queued data and disable direct sockfs 20459 * interface from now on. 20460 */ 20461 if (!tcp->tcp_issocket) { 20462 DB_TYPE(mp) = M_IOCNAK; 20463 iocp->ioc_error = EINVAL; 20464 } else { 20465 #ifdef _ILP32 20466 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 20467 #else 20468 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 20469 #endif 20470 /* 20471 * Insert this socket into the acceptor hash. 20472 * We might need it for T_CONN_RES message 20473 */ 20474 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 20475 20476 if (tcp->tcp_fused) { 20477 /* 20478 * This is a fused loopback tcp; disable 20479 * read-side synchronous streams interface 20480 * and drain any queued data. It is okay 20481 * to do this for non-synchronous streams 20482 * fused tcp as well. 20483 */ 20484 tcp_fuse_disable_pair(tcp, B_FALSE); 20485 } 20486 tcp->tcp_issocket = B_FALSE; 20487 TCP_STAT(tcp_sock_fallback); 20488 20489 DB_TYPE(mp) = M_IOCACK; 20490 iocp->ioc_error = 0; 20491 } 20492 iocp->ioc_count = 0; 20493 iocp->ioc_rval = 0; 20494 qreply(q, mp); 20495 return; 20496 } 20497 CALL_IP_WPUT(connp, q, mp); 20498 } 20499 20500 /* 20501 * This routine is called by tcp_wput() to handle all TPI requests. 20502 */ 20503 /* ARGSUSED */ 20504 static void 20505 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 20506 { 20507 conn_t *connp = (conn_t *)arg; 20508 tcp_t *tcp = connp->conn_tcp; 20509 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 20510 uchar_t *rptr; 20511 t_scalar_t type; 20512 int len; 20513 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 20514 20515 /* 20516 * Try and ASSERT the minimum possible references on the 20517 * conn early enough. Since we are executing on write side, 20518 * the connection is obviously not detached and that means 20519 * there is a ref each for TCP and IP. Since we are behind 20520 * the squeue, the minimum references needed are 3. If the 20521 * conn is in classifier hash list, there should be an 20522 * extra ref for that (we check both the possibilities). 20523 */ 20524 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20525 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20526 20527 rptr = mp->b_rptr; 20528 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 20529 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 20530 type = ((union T_primitives *)rptr)->type; 20531 if (type == T_EXDATA_REQ) { 20532 uint32_t msize = msgdsize(mp->b_cont); 20533 20534 len = msize - 1; 20535 if (len < 0) { 20536 freemsg(mp); 20537 return; 20538 } 20539 /* 20540 * Try to force urgent data out on the wire. 20541 * Even if we have unsent data this will 20542 * at least send the urgent flag. 20543 * XXX does not handle more flag correctly. 20544 */ 20545 len += tcp->tcp_unsent; 20546 len += tcp->tcp_snxt; 20547 tcp->tcp_urg = len; 20548 tcp->tcp_valid_bits |= TCP_URG_VALID; 20549 20550 /* Bypass tcp protocol for fused tcp loopback */ 20551 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 20552 return; 20553 } else if (type != T_DATA_REQ) { 20554 goto non_urgent_data; 20555 } 20556 /* TODO: options, flags, ... from user */ 20557 /* Set length to zero for reclamation below */ 20558 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 20559 freeb(mp); 20560 return; 20561 } else { 20562 if (tcp->tcp_debug) { 20563 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20564 "tcp_wput_proto, dropping one..."); 20565 } 20566 freemsg(mp); 20567 return; 20568 } 20569 20570 non_urgent_data: 20571 20572 switch ((int)tprim->type) { 20573 case O_T_BIND_REQ: /* bind request */ 20574 case T_BIND_REQ: /* new semantics bind request */ 20575 tcp_bind(tcp, mp); 20576 break; 20577 case T_UNBIND_REQ: /* unbind request */ 20578 tcp_unbind(tcp, mp); 20579 break; 20580 case O_T_CONN_RES: /* old connection response XXX */ 20581 case T_CONN_RES: /* connection response */ 20582 tcp_accept(tcp, mp); 20583 break; 20584 case T_CONN_REQ: /* connection request */ 20585 tcp_connect(tcp, mp); 20586 break; 20587 case T_DISCON_REQ: /* disconnect request */ 20588 tcp_disconnect(tcp, mp); 20589 break; 20590 case T_CAPABILITY_REQ: 20591 tcp_capability_req(tcp, mp); /* capability request */ 20592 break; 20593 case T_INFO_REQ: /* information request */ 20594 tcp_info_req(tcp, mp); 20595 break; 20596 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 20597 /* Only IP is allowed to return meaningful value */ 20598 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20599 break; 20600 case T_OPTMGMT_REQ: 20601 /* 20602 * Note: no support for snmpcom_req() through new 20603 * T_OPTMGMT_REQ. See comments in ip.c 20604 */ 20605 /* Only IP is allowed to return meaningful value */ 20606 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20607 break; 20608 20609 case T_UNITDATA_REQ: /* unitdata request */ 20610 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20611 break; 20612 case T_ORDREL_REQ: /* orderly release req */ 20613 freemsg(mp); 20614 20615 if (tcp->tcp_fused) 20616 tcp_unfuse(tcp); 20617 20618 if (tcp_xmit_end(tcp) != 0) { 20619 /* 20620 * We were crossing FINs and got a reset from 20621 * the other side. Just ignore it. 20622 */ 20623 if (tcp->tcp_debug) { 20624 (void) strlog(TCP_MOD_ID, 0, 1, 20625 SL_ERROR|SL_TRACE, 20626 "tcp_wput_proto, T_ORDREL_REQ out of " 20627 "state %s", 20628 tcp_display(tcp, NULL, 20629 DISP_ADDR_AND_PORT)); 20630 } 20631 } 20632 break; 20633 case T_ADDR_REQ: 20634 tcp_addr_req(tcp, mp); 20635 break; 20636 default: 20637 if (tcp->tcp_debug) { 20638 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20639 "tcp_wput_proto, bogus TPI msg, type %d", 20640 tprim->type); 20641 } 20642 /* 20643 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 20644 * to recover. 20645 */ 20646 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20647 break; 20648 } 20649 } 20650 20651 /* 20652 * The TCP write service routine should never be called... 20653 */ 20654 /* ARGSUSED */ 20655 static void 20656 tcp_wsrv(queue_t *q) 20657 { 20658 TCP_STAT(tcp_wsrv_called); 20659 } 20660 20661 /* Non overlapping byte exchanger */ 20662 static void 20663 tcp_xchg(uchar_t *a, uchar_t *b, int len) 20664 { 20665 uchar_t uch; 20666 20667 while (len-- > 0) { 20668 uch = a[len]; 20669 a[len] = b[len]; 20670 b[len] = uch; 20671 } 20672 } 20673 20674 /* 20675 * Send out a control packet on the tcp connection specified. This routine 20676 * is typically called where we need a simple ACK or RST generated. 20677 */ 20678 static void 20679 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 20680 { 20681 uchar_t *rptr; 20682 tcph_t *tcph; 20683 ipha_t *ipha = NULL; 20684 ip6_t *ip6h = NULL; 20685 uint32_t sum; 20686 int tcp_hdr_len; 20687 int tcp_ip_hdr_len; 20688 mblk_t *mp; 20689 20690 /* 20691 * Save sum for use in source route later. 20692 */ 20693 ASSERT(tcp != NULL); 20694 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 20695 tcp_hdr_len = tcp->tcp_hdr_len; 20696 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 20697 20698 /* If a text string is passed in with the request, pass it to strlog. */ 20699 if (str != NULL && tcp->tcp_debug) { 20700 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 20701 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 20702 str, seq, ack, ctl); 20703 } 20704 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 20705 BPRI_MED); 20706 if (mp == NULL) { 20707 return; 20708 } 20709 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20710 mp->b_rptr = rptr; 20711 mp->b_wptr = &rptr[tcp_hdr_len]; 20712 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 20713 20714 if (tcp->tcp_ipversion == IPV4_VERSION) { 20715 ipha = (ipha_t *)rptr; 20716 ipha->ipha_length = htons(tcp_hdr_len); 20717 } else { 20718 ip6h = (ip6_t *)rptr; 20719 ASSERT(tcp != NULL); 20720 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 20721 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20722 } 20723 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 20724 tcph->th_flags[0] = (uint8_t)ctl; 20725 if (ctl & TH_RST) { 20726 BUMP_MIB(&tcp_mib, tcpOutRsts); 20727 BUMP_MIB(&tcp_mib, tcpOutControl); 20728 /* 20729 * Don't send TSopt w/ TH_RST packets per RFC 1323. 20730 */ 20731 if (tcp->tcp_snd_ts_ok && 20732 tcp->tcp_state > TCPS_SYN_SENT) { 20733 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 20734 *(mp->b_wptr) = TCPOPT_EOL; 20735 if (tcp->tcp_ipversion == IPV4_VERSION) { 20736 ipha->ipha_length = htons(tcp_hdr_len - 20737 TCPOPT_REAL_TS_LEN); 20738 } else { 20739 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 20740 TCPOPT_REAL_TS_LEN); 20741 } 20742 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 20743 sum -= TCPOPT_REAL_TS_LEN; 20744 } 20745 } 20746 if (ctl & TH_ACK) { 20747 if (tcp->tcp_snd_ts_ok) { 20748 U32_TO_BE32(lbolt, 20749 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 20750 U32_TO_BE32(tcp->tcp_ts_recent, 20751 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 20752 } 20753 20754 /* Update the latest receive window size in TCP header. */ 20755 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 20756 tcph->th_win); 20757 tcp->tcp_rack = ack; 20758 tcp->tcp_rack_cnt = 0; 20759 BUMP_MIB(&tcp_mib, tcpOutAck); 20760 } 20761 BUMP_LOCAL(tcp->tcp_obsegs); 20762 U32_TO_BE32(seq, tcph->th_seq); 20763 U32_TO_BE32(ack, tcph->th_ack); 20764 /* 20765 * Include the adjustment for a source route if any. 20766 */ 20767 sum = (sum >> 16) + (sum & 0xFFFF); 20768 U16_TO_BE16(sum, tcph->th_sum); 20769 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20770 tcp_send_data(tcp, tcp->tcp_wq, mp); 20771 } 20772 20773 /* 20774 * If this routine returns B_TRUE, TCP can generate a RST in response 20775 * to a segment. If it returns B_FALSE, TCP should not respond. 20776 */ 20777 static boolean_t 20778 tcp_send_rst_chk(void) 20779 { 20780 clock_t now; 20781 20782 /* 20783 * TCP needs to protect itself from generating too many RSTs. 20784 * This can be a DoS attack by sending us random segments 20785 * soliciting RSTs. 20786 * 20787 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 20788 * in each 1 second interval. In this way, TCP still generate 20789 * RSTs in normal cases but when under attack, the impact is 20790 * limited. 20791 */ 20792 if (tcp_rst_sent_rate_enabled != 0) { 20793 now = lbolt; 20794 /* lbolt can wrap around. */ 20795 if ((tcp_last_rst_intrvl > now) || 20796 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 20797 tcp_last_rst_intrvl = now; 20798 tcp_rst_cnt = 1; 20799 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 20800 return (B_FALSE); 20801 } 20802 } 20803 return (B_TRUE); 20804 } 20805 20806 /* 20807 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 20808 */ 20809 static void 20810 tcp_ip_ire_mark_advice(tcp_t *tcp) 20811 { 20812 mblk_t *mp; 20813 ipic_t *ipic; 20814 20815 if (tcp->tcp_ipversion == IPV4_VERSION) { 20816 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 20817 &ipic); 20818 } else { 20819 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 20820 &ipic); 20821 } 20822 if (mp == NULL) 20823 return; 20824 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 20825 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 20826 } 20827 20828 /* 20829 * Return an IP advice ioctl mblk and set ipic to be the pointer 20830 * to the advice structure. 20831 */ 20832 static mblk_t * 20833 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 20834 { 20835 struct iocblk *ioc; 20836 mblk_t *mp, *mp1; 20837 20838 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 20839 if (mp == NULL) 20840 return (NULL); 20841 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 20842 *ipic = (ipic_t *)mp->b_rptr; 20843 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 20844 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 20845 20846 bcopy(addr, *ipic + 1, addr_len); 20847 20848 (*ipic)->ipic_addr_length = addr_len; 20849 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 20850 20851 mp1 = mkiocb(IP_IOCTL); 20852 if (mp1 == NULL) { 20853 freemsg(mp); 20854 return (NULL); 20855 } 20856 mp1->b_cont = mp; 20857 ioc = (struct iocblk *)mp1->b_rptr; 20858 ioc->ioc_count = sizeof (ipic_t) + addr_len; 20859 20860 return (mp1); 20861 } 20862 20863 /* 20864 * Generate a reset based on an inbound packet for which there is no active 20865 * tcp state that we can find. 20866 * 20867 * IPSEC NOTE : Try to send the reply with the same protection as it came 20868 * in. We still have the ipsec_mp that the packet was attached to. Thus 20869 * the packet will go out at the same level of protection as it came in by 20870 * converting the IPSEC_IN to IPSEC_OUT. 20871 */ 20872 static void 20873 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 20874 uint32_t ack, int ctl, uint_t ip_hdr_len) 20875 { 20876 ipha_t *ipha = NULL; 20877 ip6_t *ip6h = NULL; 20878 ushort_t len; 20879 tcph_t *tcph; 20880 int i; 20881 mblk_t *ipsec_mp; 20882 boolean_t mctl_present; 20883 ipic_t *ipic; 20884 ipaddr_t v4addr; 20885 in6_addr_t v6addr; 20886 int addr_len; 20887 void *addr; 20888 queue_t *q = tcp_g_q; 20889 tcp_t *tcp = Q_TO_TCP(q); 20890 20891 if (!tcp_send_rst_chk()) { 20892 tcp_rst_unsent++; 20893 freemsg(mp); 20894 return; 20895 } 20896 20897 if (mp->b_datap->db_type == M_CTL) { 20898 ipsec_mp = mp; 20899 mp = mp->b_cont; 20900 mctl_present = B_TRUE; 20901 } else { 20902 ipsec_mp = mp; 20903 mctl_present = B_FALSE; 20904 } 20905 20906 if (str && q && tcp_dbg) { 20907 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 20908 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 20909 "flags 0x%x", 20910 str, seq, ack, ctl); 20911 } 20912 if (mp->b_datap->db_ref != 1) { 20913 mblk_t *mp1 = copyb(mp); 20914 freemsg(mp); 20915 mp = mp1; 20916 if (!mp) { 20917 if (mctl_present) 20918 freeb(ipsec_mp); 20919 return; 20920 } else { 20921 if (mctl_present) { 20922 ipsec_mp->b_cont = mp; 20923 } else { 20924 ipsec_mp = mp; 20925 } 20926 } 20927 } else if (mp->b_cont) { 20928 freemsg(mp->b_cont); 20929 mp->b_cont = NULL; 20930 } 20931 /* 20932 * We skip reversing source route here. 20933 * (for now we replace all IP options with EOL) 20934 */ 20935 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 20936 ipha = (ipha_t *)mp->b_rptr; 20937 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 20938 mp->b_rptr[i] = IPOPT_EOL; 20939 /* 20940 * Make sure that src address isn't flagrantly invalid. 20941 * Not all broadcast address checking for the src address 20942 * is possible, since we don't know the netmask of the src 20943 * addr. No check for destination address is done, since 20944 * IP will not pass up a packet with a broadcast dest 20945 * address to TCP. Similar checks are done below for IPv6. 20946 */ 20947 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 20948 CLASSD(ipha->ipha_src)) { 20949 freemsg(ipsec_mp); 20950 BUMP_MIB(&ip_mib, ipInDiscards); 20951 return; 20952 } 20953 } else { 20954 ip6h = (ip6_t *)mp->b_rptr; 20955 20956 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 20957 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 20958 freemsg(ipsec_mp); 20959 BUMP_MIB(&ip6_mib, ipv6InDiscards); 20960 return; 20961 } 20962 20963 /* Remove any extension headers assuming partial overlay */ 20964 if (ip_hdr_len > IPV6_HDR_LEN) { 20965 uint8_t *to; 20966 20967 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 20968 ovbcopy(ip6h, to, IPV6_HDR_LEN); 20969 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 20970 ip_hdr_len = IPV6_HDR_LEN; 20971 ip6h = (ip6_t *)mp->b_rptr; 20972 ip6h->ip6_nxt = IPPROTO_TCP; 20973 } 20974 } 20975 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 20976 if (tcph->th_flags[0] & TH_RST) { 20977 freemsg(ipsec_mp); 20978 return; 20979 } 20980 tcph->th_offset_and_rsrvd[0] = (5 << 4); 20981 len = ip_hdr_len + sizeof (tcph_t); 20982 mp->b_wptr = &mp->b_rptr[len]; 20983 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 20984 ipha->ipha_length = htons(len); 20985 /* Swap addresses */ 20986 v4addr = ipha->ipha_src; 20987 ipha->ipha_src = ipha->ipha_dst; 20988 ipha->ipha_dst = v4addr; 20989 ipha->ipha_ident = 0; 20990 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 20991 addr_len = IP_ADDR_LEN; 20992 addr = &v4addr; 20993 } else { 20994 /* No ip6i_t in this case */ 20995 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 20996 /* Swap addresses */ 20997 v6addr = ip6h->ip6_src; 20998 ip6h->ip6_src = ip6h->ip6_dst; 20999 ip6h->ip6_dst = v6addr; 21000 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21001 addr_len = IPV6_ADDR_LEN; 21002 addr = &v6addr; 21003 } 21004 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21005 U32_TO_BE32(ack, tcph->th_ack); 21006 U32_TO_BE32(seq, tcph->th_seq); 21007 U16_TO_BE16(0, tcph->th_win); 21008 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21009 tcph->th_flags[0] = (uint8_t)ctl; 21010 if (ctl & TH_RST) { 21011 BUMP_MIB(&tcp_mib, tcpOutRsts); 21012 BUMP_MIB(&tcp_mib, tcpOutControl); 21013 } 21014 if (mctl_present) { 21015 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21016 21017 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21018 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21019 return; 21020 } 21021 } 21022 /* 21023 * NOTE: one might consider tracing a TCP packet here, but 21024 * this function has no active TCP state nd no tcp structure 21025 * which has trace buffer. If we traced here, we would have 21026 * to keep a local trace buffer in tcp_record_trace(). 21027 */ 21028 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21029 21030 /* 21031 * Tell IP to mark the IRE used for this destination temporary. 21032 * This way, we can limit our exposure to DoS attack because IP 21033 * creates an IRE for each destination. If there are too many, 21034 * the time to do any routing lookup will be extremely long. And 21035 * the lookup can be in interrupt context. 21036 * 21037 * Note that in normal circumstances, this marking should not 21038 * affect anything. It would be nice if only 1 message is 21039 * needed to inform IP that the IRE created for this RST should 21040 * not be added to the cache table. But there is currently 21041 * not such communication mechanism between TCP and IP. So 21042 * the best we can do now is to send the advice ioctl to IP 21043 * to mark the IRE temporary. 21044 */ 21045 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21046 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21047 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21048 } 21049 } 21050 21051 /* 21052 * Initiate closedown sequence on an active connection. (May be called as 21053 * writer.) Return value zero for OK return, non-zero for error return. 21054 */ 21055 static int 21056 tcp_xmit_end(tcp_t *tcp) 21057 { 21058 ipic_t *ipic; 21059 mblk_t *mp; 21060 21061 if (tcp->tcp_state < TCPS_SYN_RCVD || 21062 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21063 /* 21064 * Invalid state, only states TCPS_SYN_RCVD, 21065 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21066 */ 21067 return (-1); 21068 } 21069 21070 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21071 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21072 /* 21073 * If there is nothing more unsent, send the FIN now. 21074 * Otherwise, it will go out with the last segment. 21075 */ 21076 if (tcp->tcp_unsent == 0) { 21077 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21078 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21079 21080 if (mp) { 21081 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21082 tcp_send_data(tcp, tcp->tcp_wq, mp); 21083 } else { 21084 /* 21085 * Couldn't allocate msg. Pretend we got it out. 21086 * Wait for rexmit timeout. 21087 */ 21088 tcp->tcp_snxt = tcp->tcp_fss + 1; 21089 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21090 } 21091 21092 /* 21093 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21094 * changed. 21095 */ 21096 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21097 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21098 } 21099 } else { 21100 /* 21101 * If tcp->tcp_cork is set, then the data will not get sent, 21102 * so we have to check that and unset it first. 21103 */ 21104 if (tcp->tcp_cork) 21105 tcp->tcp_cork = B_FALSE; 21106 tcp_wput_data(tcp, NULL, B_FALSE); 21107 } 21108 21109 /* 21110 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21111 * is 0, don't update the cache. 21112 */ 21113 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21114 return (0); 21115 21116 /* 21117 * NOTE: should not update if source routes i.e. if tcp_remote if 21118 * different from the destination. 21119 */ 21120 if (tcp->tcp_ipversion == IPV4_VERSION) { 21121 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21122 return (0); 21123 } 21124 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21125 &ipic); 21126 } else { 21127 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21128 &tcp->tcp_ip6h->ip6_dst))) { 21129 return (0); 21130 } 21131 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21132 &ipic); 21133 } 21134 21135 /* Record route attributes in the IRE for use by future connections. */ 21136 if (mp == NULL) 21137 return (0); 21138 21139 /* 21140 * We do not have a good algorithm to update ssthresh at this time. 21141 * So don't do any update. 21142 */ 21143 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21144 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21145 21146 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21147 return (0); 21148 } 21149 21150 /* 21151 * Generate a "no listener here" RST in response to an "unknown" segment. 21152 * Note that we are reusing the incoming mp to construct the outgoing 21153 * RST. 21154 */ 21155 void 21156 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 21157 { 21158 uchar_t *rptr; 21159 uint32_t seg_len; 21160 tcph_t *tcph; 21161 uint32_t seg_seq; 21162 uint32_t seg_ack; 21163 uint_t flags; 21164 mblk_t *ipsec_mp; 21165 ipha_t *ipha; 21166 ip6_t *ip6h; 21167 boolean_t mctl_present = B_FALSE; 21168 boolean_t check = B_TRUE; 21169 boolean_t policy_present; 21170 21171 TCP_STAT(tcp_no_listener); 21172 21173 ipsec_mp = mp; 21174 21175 if (mp->b_datap->db_type == M_CTL) { 21176 ipsec_in_t *ii; 21177 21178 mctl_present = B_TRUE; 21179 mp = mp->b_cont; 21180 21181 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21182 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21183 if (ii->ipsec_in_dont_check) { 21184 check = B_FALSE; 21185 if (!ii->ipsec_in_secure) { 21186 freeb(ipsec_mp); 21187 mctl_present = B_FALSE; 21188 ipsec_mp = mp; 21189 } 21190 } 21191 } 21192 21193 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21194 policy_present = ipsec_inbound_v4_policy_present; 21195 ipha = (ipha_t *)mp->b_rptr; 21196 ip6h = NULL; 21197 } else { 21198 policy_present = ipsec_inbound_v6_policy_present; 21199 ipha = NULL; 21200 ip6h = (ip6_t *)mp->b_rptr; 21201 } 21202 21203 if (check && policy_present) { 21204 /* 21205 * The conn_t parameter is NULL because we already know 21206 * nobody's home. 21207 */ 21208 ipsec_mp = ipsec_check_global_policy( 21209 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 21210 if (ipsec_mp == NULL) 21211 return; 21212 } 21213 21214 21215 rptr = mp->b_rptr; 21216 21217 tcph = (tcph_t *)&rptr[ip_hdr_len]; 21218 seg_seq = BE32_TO_U32(tcph->th_seq); 21219 seg_ack = BE32_TO_U32(tcph->th_ack); 21220 flags = tcph->th_flags[0]; 21221 21222 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 21223 if (flags & TH_RST) { 21224 freemsg(ipsec_mp); 21225 } else if (flags & TH_ACK) { 21226 tcp_xmit_early_reset("no tcp, reset", 21227 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 21228 } else { 21229 if (flags & TH_SYN) { 21230 seg_len++; 21231 } else { 21232 /* 21233 * Here we violate the RFC. Note that a normal 21234 * TCP will never send a segment without the ACK 21235 * flag, except for RST or SYN segment. This 21236 * segment is neither. Just drop it on the 21237 * floor. 21238 */ 21239 freemsg(ipsec_mp); 21240 tcp_rst_unsent++; 21241 return; 21242 } 21243 21244 tcp_xmit_early_reset("no tcp, reset/ack", 21245 ipsec_mp, 0, seg_seq + seg_len, 21246 TH_RST | TH_ACK, ip_hdr_len); 21247 } 21248 } 21249 21250 /* 21251 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 21252 * ip and tcp header ready to pass down to IP. If the mp passed in is 21253 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 21254 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 21255 * otherwise it will dup partial mblks.) 21256 * Otherwise, an appropriate ACK packet will be generated. This 21257 * routine is not usually called to send new data for the first time. It 21258 * is mostly called out of the timer for retransmits, and to generate ACKs. 21259 * 21260 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 21261 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 21262 * of the original mblk chain will be returned in *offset and *end_mp. 21263 */ 21264 static mblk_t * 21265 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 21266 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 21267 boolean_t rexmit) 21268 { 21269 int data_length; 21270 int32_t off = 0; 21271 uint_t flags; 21272 mblk_t *mp1; 21273 mblk_t *mp2; 21274 uchar_t *rptr; 21275 tcph_t *tcph; 21276 int32_t num_sack_blk = 0; 21277 int32_t sack_opt_len = 0; 21278 21279 /* Allocate for our maximum TCP header + link-level */ 21280 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21281 BPRI_MED); 21282 if (!mp1) 21283 return (NULL); 21284 data_length = 0; 21285 21286 /* 21287 * Note that tcp_mss has been adjusted to take into account the 21288 * timestamp option if applicable. Because SACK options do not 21289 * appear in every TCP segments and they are of variable lengths, 21290 * they cannot be included in tcp_mss. Thus we need to calculate 21291 * the actual segment length when we need to send a segment which 21292 * includes SACK options. 21293 */ 21294 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21295 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21296 tcp->tcp_num_sack_blk); 21297 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21298 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21299 if (max_to_send + sack_opt_len > tcp->tcp_mss) 21300 max_to_send -= sack_opt_len; 21301 } 21302 21303 if (offset != NULL) { 21304 off = *offset; 21305 /* We use offset as an indicator that end_mp is not NULL. */ 21306 *end_mp = NULL; 21307 } 21308 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 21309 /* This could be faster with cooperation from downstream */ 21310 if (mp2 != mp1 && !sendall && 21311 data_length + (int)(mp->b_wptr - mp->b_rptr) > 21312 max_to_send) 21313 /* 21314 * Don't send the next mblk since the whole mblk 21315 * does not fit. 21316 */ 21317 break; 21318 mp2->b_cont = dupb(mp); 21319 mp2 = mp2->b_cont; 21320 if (!mp2) { 21321 freemsg(mp1); 21322 return (NULL); 21323 } 21324 mp2->b_rptr += off; 21325 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 21326 (uintptr_t)INT_MAX); 21327 21328 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 21329 if (data_length > max_to_send) { 21330 mp2->b_wptr -= data_length - max_to_send; 21331 data_length = max_to_send; 21332 off = mp2->b_wptr - mp->b_rptr; 21333 break; 21334 } else { 21335 off = 0; 21336 } 21337 } 21338 if (offset != NULL) { 21339 *offset = off; 21340 *end_mp = mp; 21341 } 21342 if (seg_len != NULL) { 21343 *seg_len = data_length; 21344 } 21345 21346 /* Update the latest receive window size in TCP header. */ 21347 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21348 tcp->tcp_tcph->th_win); 21349 21350 rptr = mp1->b_rptr + tcp_wroff_xtra; 21351 mp1->b_rptr = rptr; 21352 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 21353 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21354 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21355 U32_TO_ABE32(seq, tcph->th_seq); 21356 21357 /* 21358 * Use tcp_unsent to determine if the PUSH bit should be used assumes 21359 * that this function was called from tcp_wput_data. Thus, when called 21360 * to retransmit data the setting of the PUSH bit may appear some 21361 * what random in that it might get set when it should not. This 21362 * should not pose any performance issues. 21363 */ 21364 if (data_length != 0 && (tcp->tcp_unsent == 0 || 21365 tcp->tcp_unsent == data_length)) { 21366 flags = TH_ACK | TH_PUSH; 21367 } else { 21368 flags = TH_ACK; 21369 } 21370 21371 if (tcp->tcp_ecn_ok) { 21372 if (tcp->tcp_ecn_echo_on) 21373 flags |= TH_ECE; 21374 21375 /* 21376 * Only set ECT bit and ECN_CWR if a segment contains new data. 21377 * There is no TCP flow control for non-data segments, and 21378 * only data segment is transmitted reliably. 21379 */ 21380 if (data_length > 0 && !rexmit) { 21381 SET_ECT(tcp, rptr); 21382 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 21383 flags |= TH_CWR; 21384 tcp->tcp_ecn_cwr_sent = B_TRUE; 21385 } 21386 } 21387 } 21388 21389 if (tcp->tcp_valid_bits) { 21390 uint32_t u1; 21391 21392 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 21393 seq == tcp->tcp_iss) { 21394 uchar_t *wptr; 21395 21396 /* 21397 * If TCP_ISS_VALID and the seq number is tcp_iss, 21398 * TCP can only be in SYN-SENT, SYN-RCVD or 21399 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 21400 * our SYN is not ack'ed but the app closes this 21401 * TCP connection. 21402 */ 21403 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 21404 tcp->tcp_state == TCPS_SYN_RCVD || 21405 tcp->tcp_state == TCPS_FIN_WAIT_1); 21406 21407 /* 21408 * Tack on the MSS option. It is always needed 21409 * for both active and passive open. 21410 * 21411 * MSS option value should be interface MTU - MIN 21412 * TCP/IP header according to RFC 793 as it means 21413 * the maximum segment size TCP can receive. But 21414 * to get around some broken middle boxes/end hosts 21415 * out there, we allow the option value to be the 21416 * same as the MSS option size on the peer side. 21417 * In this way, the other side will not send 21418 * anything larger than they can receive. 21419 * 21420 * Note that for SYN_SENT state, the ndd param 21421 * tcp_use_smss_as_mss_opt has no effect as we 21422 * don't know the peer's MSS option value. So 21423 * the only case we need to take care of is in 21424 * SYN_RCVD state, which is done later. 21425 */ 21426 wptr = mp1->b_wptr; 21427 wptr[0] = TCPOPT_MAXSEG; 21428 wptr[1] = TCPOPT_MAXSEG_LEN; 21429 wptr += 2; 21430 u1 = tcp->tcp_if_mtu - 21431 (tcp->tcp_ipversion == IPV4_VERSION ? 21432 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 21433 TCP_MIN_HEADER_LENGTH; 21434 U16_TO_BE16(u1, wptr); 21435 mp1->b_wptr = wptr + 2; 21436 /* Update the offset to cover the additional word */ 21437 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21438 21439 /* 21440 * Note that the following way of filling in 21441 * TCP options are not optimal. Some NOPs can 21442 * be saved. But there is no need at this time 21443 * to optimize it. When it is needed, we will 21444 * do it. 21445 */ 21446 switch (tcp->tcp_state) { 21447 case TCPS_SYN_SENT: 21448 flags = TH_SYN; 21449 21450 if (tcp->tcp_snd_ts_ok) { 21451 uint32_t llbolt = (uint32_t)lbolt; 21452 21453 wptr = mp1->b_wptr; 21454 wptr[0] = TCPOPT_NOP; 21455 wptr[1] = TCPOPT_NOP; 21456 wptr[2] = TCPOPT_TSTAMP; 21457 wptr[3] = TCPOPT_TSTAMP_LEN; 21458 wptr += 4; 21459 U32_TO_BE32(llbolt, wptr); 21460 wptr += 4; 21461 ASSERT(tcp->tcp_ts_recent == 0); 21462 U32_TO_BE32(0L, wptr); 21463 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 21464 tcph->th_offset_and_rsrvd[0] += 21465 (3 << 4); 21466 } 21467 21468 /* 21469 * Set up all the bits to tell other side 21470 * we are ECN capable. 21471 */ 21472 if (tcp->tcp_ecn_ok) { 21473 flags |= (TH_ECE | TH_CWR); 21474 } 21475 break; 21476 case TCPS_SYN_RCVD: 21477 flags |= TH_SYN; 21478 21479 /* 21480 * Reset the MSS option value to be SMSS 21481 * We should probably add back the bytes 21482 * for timestamp option and IPsec. We 21483 * don't do that as this is a workaround 21484 * for broken middle boxes/end hosts, it 21485 * is better for us to be more cautious. 21486 * They may not take these things into 21487 * account in their SMSS calculation. Thus 21488 * the peer's calculated SMSS may be smaller 21489 * than what it can be. This should be OK. 21490 */ 21491 if (tcp_use_smss_as_mss_opt) { 21492 u1 = tcp->tcp_mss; 21493 U16_TO_BE16(u1, wptr); 21494 } 21495 21496 /* 21497 * If the other side is ECN capable, reply 21498 * that we are also ECN capable. 21499 */ 21500 if (tcp->tcp_ecn_ok) 21501 flags |= TH_ECE; 21502 break; 21503 default: 21504 /* 21505 * The above ASSERT() makes sure that this 21506 * must be FIN-WAIT-1 state. Our SYN has 21507 * not been ack'ed so retransmit it. 21508 */ 21509 flags |= TH_SYN; 21510 break; 21511 } 21512 21513 if (tcp->tcp_snd_ws_ok) { 21514 wptr = mp1->b_wptr; 21515 wptr[0] = TCPOPT_NOP; 21516 wptr[1] = TCPOPT_WSCALE; 21517 wptr[2] = TCPOPT_WS_LEN; 21518 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 21519 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 21520 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21521 } 21522 21523 if (tcp->tcp_snd_sack_ok) { 21524 wptr = mp1->b_wptr; 21525 wptr[0] = TCPOPT_NOP; 21526 wptr[1] = TCPOPT_NOP; 21527 wptr[2] = TCPOPT_SACK_PERMITTED; 21528 wptr[3] = TCPOPT_SACK_OK_LEN; 21529 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 21530 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21531 } 21532 21533 /* allocb() of adequate mblk assures space */ 21534 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 21535 (uintptr_t)INT_MAX); 21536 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 21537 /* 21538 * Get IP set to checksum on our behalf 21539 * Include the adjustment for a source route if any. 21540 */ 21541 u1 += tcp->tcp_sum; 21542 u1 = (u1 >> 16) + (u1 & 0xFFFF); 21543 U16_TO_BE16(u1, tcph->th_sum); 21544 BUMP_MIB(&tcp_mib, tcpOutControl); 21545 } 21546 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 21547 (seq + data_length) == tcp->tcp_fss) { 21548 if (!tcp->tcp_fin_acked) { 21549 flags |= TH_FIN; 21550 BUMP_MIB(&tcp_mib, tcpOutControl); 21551 } 21552 if (!tcp->tcp_fin_sent) { 21553 tcp->tcp_fin_sent = B_TRUE; 21554 switch (tcp->tcp_state) { 21555 case TCPS_SYN_RCVD: 21556 case TCPS_ESTABLISHED: 21557 tcp->tcp_state = TCPS_FIN_WAIT_1; 21558 break; 21559 case TCPS_CLOSE_WAIT: 21560 tcp->tcp_state = TCPS_LAST_ACK; 21561 break; 21562 } 21563 if (tcp->tcp_suna == tcp->tcp_snxt) 21564 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21565 tcp->tcp_snxt = tcp->tcp_fss + 1; 21566 } 21567 } 21568 /* 21569 * Note the trick here. u1 is unsigned. When tcp_urg 21570 * is smaller than seq, u1 will become a very huge value. 21571 * So the comparison will fail. Also note that tcp_urp 21572 * should be positive, see RFC 793 page 17. 21573 */ 21574 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 21575 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 21576 u1 < (uint32_t)(64 * 1024)) { 21577 flags |= TH_URG; 21578 BUMP_MIB(&tcp_mib, tcpOutUrg); 21579 U32_TO_ABE16(u1, tcph->th_urp); 21580 } 21581 } 21582 tcph->th_flags[0] = (uchar_t)flags; 21583 tcp->tcp_rack = tcp->tcp_rnxt; 21584 tcp->tcp_rack_cnt = 0; 21585 21586 if (tcp->tcp_snd_ts_ok) { 21587 if (tcp->tcp_state != TCPS_SYN_SENT) { 21588 uint32_t llbolt = (uint32_t)lbolt; 21589 21590 U32_TO_BE32(llbolt, 21591 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21592 U32_TO_BE32(tcp->tcp_ts_recent, 21593 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21594 } 21595 } 21596 21597 if (num_sack_blk > 0) { 21598 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 21599 sack_blk_t *tmp; 21600 int32_t i; 21601 21602 wptr[0] = TCPOPT_NOP; 21603 wptr[1] = TCPOPT_NOP; 21604 wptr[2] = TCPOPT_SACK; 21605 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 21606 sizeof (sack_blk_t); 21607 wptr += TCPOPT_REAL_SACK_LEN; 21608 21609 tmp = tcp->tcp_sack_list; 21610 for (i = 0; i < num_sack_blk; i++) { 21611 U32_TO_BE32(tmp[i].begin, wptr); 21612 wptr += sizeof (tcp_seq); 21613 U32_TO_BE32(tmp[i].end, wptr); 21614 wptr += sizeof (tcp_seq); 21615 } 21616 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 21617 } 21618 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21619 data_length += (int)(mp1->b_wptr - rptr); 21620 if (tcp->tcp_ipversion == IPV4_VERSION) { 21621 ((ipha_t *)rptr)->ipha_length = htons(data_length); 21622 } else { 21623 ip6_t *ip6 = (ip6_t *)(rptr + 21624 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 21625 sizeof (ip6i_t) : 0)); 21626 21627 ip6->ip6_plen = htons(data_length - 21628 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21629 } 21630 21631 /* 21632 * Prime pump for IP 21633 * Include the adjustment for a source route if any. 21634 */ 21635 data_length -= tcp->tcp_ip_hdr_len; 21636 data_length += tcp->tcp_sum; 21637 data_length = (data_length >> 16) + (data_length & 0xFFFF); 21638 U16_TO_ABE16(data_length, tcph->th_sum); 21639 if (tcp->tcp_ip_forward_progress) { 21640 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21641 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 21642 tcp->tcp_ip_forward_progress = B_FALSE; 21643 } 21644 return (mp1); 21645 } 21646 21647 /* This function handles the push timeout. */ 21648 void 21649 tcp_push_timer(void *arg) 21650 { 21651 conn_t *connp = (conn_t *)arg; 21652 tcp_t *tcp = connp->conn_tcp; 21653 21654 TCP_DBGSTAT(tcp_push_timer_cnt); 21655 21656 ASSERT(tcp->tcp_listener == NULL); 21657 21658 /* 21659 * We need to stop synchronous streams temporarily to prevent a race 21660 * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access 21661 * tcp_rcv_list here because those entry points will return right 21662 * away when synchronous streams is stopped. 21663 */ 21664 TCP_FUSE_SYNCSTR_STOP(tcp); 21665 tcp->tcp_push_tid = 0; 21666 if ((tcp->tcp_rcv_list != NULL) && 21667 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 21668 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21669 TCP_FUSE_SYNCSTR_RESUME(tcp); 21670 } 21671 21672 /* 21673 * This function handles delayed ACK timeout. 21674 */ 21675 static void 21676 tcp_ack_timer(void *arg) 21677 { 21678 conn_t *connp = (conn_t *)arg; 21679 tcp_t *tcp = connp->conn_tcp; 21680 mblk_t *mp; 21681 21682 TCP_DBGSTAT(tcp_ack_timer_cnt); 21683 21684 tcp->tcp_ack_tid = 0; 21685 21686 if (tcp->tcp_fused) 21687 return; 21688 21689 /* 21690 * Do not send ACK if there is no outstanding unack'ed data. 21691 */ 21692 if (tcp->tcp_rnxt == tcp->tcp_rack) { 21693 return; 21694 } 21695 21696 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 21697 /* 21698 * Make sure we don't allow deferred ACKs to result in 21699 * timer-based ACKing. If we have held off an ACK 21700 * when there was more than an mss here, and the timer 21701 * goes off, we have to worry about the possibility 21702 * that the sender isn't doing slow-start, or is out 21703 * of step with us for some other reason. We fall 21704 * permanently back in the direction of 21705 * ACK-every-other-packet as suggested in RFC 1122. 21706 */ 21707 if (tcp->tcp_rack_abs_max > 2) 21708 tcp->tcp_rack_abs_max--; 21709 tcp->tcp_rack_cur_max = 2; 21710 } 21711 mp = tcp_ack_mp(tcp); 21712 21713 if (mp != NULL) { 21714 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21715 BUMP_LOCAL(tcp->tcp_obsegs); 21716 BUMP_MIB(&tcp_mib, tcpOutAck); 21717 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 21718 tcp_send_data(tcp, tcp->tcp_wq, mp); 21719 } 21720 } 21721 21722 21723 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 21724 static mblk_t * 21725 tcp_ack_mp(tcp_t *tcp) 21726 { 21727 uint32_t seq_no; 21728 21729 /* 21730 * There are a few cases to be considered while setting the sequence no. 21731 * Essentially, we can come here while processing an unacceptable pkt 21732 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 21733 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 21734 * If we are here for a zero window probe, stick with suna. In all 21735 * other cases, we check if suna + swnd encompasses snxt and set 21736 * the sequence number to snxt, if so. If snxt falls outside the 21737 * window (the receiver probably shrunk its window), we will go with 21738 * suna + swnd, otherwise the sequence no will be unacceptable to the 21739 * receiver. 21740 */ 21741 if (tcp->tcp_zero_win_probe) { 21742 seq_no = tcp->tcp_suna; 21743 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 21744 ASSERT(tcp->tcp_swnd == 0); 21745 seq_no = tcp->tcp_snxt; 21746 } else { 21747 seq_no = SEQ_GT(tcp->tcp_snxt, 21748 (tcp->tcp_suna + tcp->tcp_swnd)) ? 21749 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 21750 } 21751 21752 if (tcp->tcp_valid_bits) { 21753 /* 21754 * For the complex case where we have to send some 21755 * controls (FIN or SYN), let tcp_xmit_mp do it. 21756 */ 21757 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 21758 NULL, B_FALSE)); 21759 } else { 21760 /* Generate a simple ACK */ 21761 int data_length; 21762 uchar_t *rptr; 21763 tcph_t *tcph; 21764 mblk_t *mp1; 21765 int32_t tcp_hdr_len; 21766 int32_t tcp_tcp_hdr_len; 21767 int32_t num_sack_blk = 0; 21768 int32_t sack_opt_len; 21769 21770 /* 21771 * Allocate space for TCP + IP headers 21772 * and link-level header 21773 */ 21774 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21775 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21776 tcp->tcp_num_sack_blk); 21777 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21778 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21779 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 21780 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 21781 } else { 21782 tcp_hdr_len = tcp->tcp_hdr_len; 21783 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 21784 } 21785 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 21786 if (!mp1) 21787 return (NULL); 21788 21789 /* Update the latest receive window size in TCP header. */ 21790 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21791 tcp->tcp_tcph->th_win); 21792 /* copy in prototype TCP + IP header */ 21793 rptr = mp1->b_rptr + tcp_wroff_xtra; 21794 mp1->b_rptr = rptr; 21795 mp1->b_wptr = rptr + tcp_hdr_len; 21796 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21797 21798 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21799 21800 /* Set the TCP sequence number. */ 21801 U32_TO_ABE32(seq_no, tcph->th_seq); 21802 21803 /* Set up the TCP flag field. */ 21804 tcph->th_flags[0] = (uchar_t)TH_ACK; 21805 if (tcp->tcp_ecn_echo_on) 21806 tcph->th_flags[0] |= TH_ECE; 21807 21808 tcp->tcp_rack = tcp->tcp_rnxt; 21809 tcp->tcp_rack_cnt = 0; 21810 21811 /* fill in timestamp option if in use */ 21812 if (tcp->tcp_snd_ts_ok) { 21813 uint32_t llbolt = (uint32_t)lbolt; 21814 21815 U32_TO_BE32(llbolt, 21816 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21817 U32_TO_BE32(tcp->tcp_ts_recent, 21818 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21819 } 21820 21821 /* Fill in SACK options */ 21822 if (num_sack_blk > 0) { 21823 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 21824 sack_blk_t *tmp; 21825 int32_t i; 21826 21827 wptr[0] = TCPOPT_NOP; 21828 wptr[1] = TCPOPT_NOP; 21829 wptr[2] = TCPOPT_SACK; 21830 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 21831 sizeof (sack_blk_t); 21832 wptr += TCPOPT_REAL_SACK_LEN; 21833 21834 tmp = tcp->tcp_sack_list; 21835 for (i = 0; i < num_sack_blk; i++) { 21836 U32_TO_BE32(tmp[i].begin, wptr); 21837 wptr += sizeof (tcp_seq); 21838 U32_TO_BE32(tmp[i].end, wptr); 21839 wptr += sizeof (tcp_seq); 21840 } 21841 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 21842 << 4); 21843 } 21844 21845 if (tcp->tcp_ipversion == IPV4_VERSION) { 21846 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 21847 } else { 21848 /* Check for ip6i_t header in sticky hdrs */ 21849 ip6_t *ip6 = (ip6_t *)(rptr + 21850 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 21851 sizeof (ip6i_t) : 0)); 21852 21853 ip6->ip6_plen = htons(tcp_hdr_len - 21854 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21855 } 21856 21857 /* 21858 * Prime pump for checksum calculation in IP. Include the 21859 * adjustment for a source route if any. 21860 */ 21861 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 21862 data_length = (data_length >> 16) + (data_length & 0xFFFF); 21863 U16_TO_ABE16(data_length, tcph->th_sum); 21864 21865 if (tcp->tcp_ip_forward_progress) { 21866 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21867 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 21868 tcp->tcp_ip_forward_progress = B_FALSE; 21869 } 21870 return (mp1); 21871 } 21872 } 21873 21874 /* 21875 * To create a temporary tcp structure for inserting into bind hash list. 21876 * The parameter is assumed to be in network byte order, ready for use. 21877 */ 21878 /* ARGSUSED */ 21879 static tcp_t * 21880 tcp_alloc_temp_tcp(in_port_t port) 21881 { 21882 conn_t *connp; 21883 tcp_t *tcp; 21884 21885 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 21886 if (connp == NULL) 21887 return (NULL); 21888 21889 tcp = connp->conn_tcp; 21890 21891 /* 21892 * Only initialize the necessary info in those structures. Note 21893 * that since INADDR_ANY is all 0, we do not need to set 21894 * tcp_bound_source to INADDR_ANY here. 21895 */ 21896 tcp->tcp_state = TCPS_BOUND; 21897 tcp->tcp_lport = port; 21898 tcp->tcp_exclbind = 1; 21899 tcp->tcp_reserved_port = 1; 21900 21901 /* Just for place holding... */ 21902 tcp->tcp_ipversion = IPV4_VERSION; 21903 21904 return (tcp); 21905 } 21906 21907 /* 21908 * To remove a port range specified by lo_port and hi_port from the 21909 * reserved port ranges. This is one of the three public functions of 21910 * the reserved port interface. Note that a port range has to be removed 21911 * as a whole. Ports in a range cannot be removed individually. 21912 * 21913 * Params: 21914 * in_port_t lo_port: the beginning port of the reserved port range to 21915 * be deleted. 21916 * in_port_t hi_port: the ending port of the reserved port range to 21917 * be deleted. 21918 * 21919 * Return: 21920 * B_TRUE if the deletion is successful, B_FALSE otherwise. 21921 */ 21922 boolean_t 21923 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 21924 { 21925 int i, j; 21926 int size; 21927 tcp_t **temp_tcp_array; 21928 tcp_t *tcp; 21929 21930 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 21931 21932 /* First make sure that the port ranage is indeed reserved. */ 21933 for (i = 0; i < tcp_reserved_port_array_size; i++) { 21934 if (tcp_reserved_port[i].lo_port == lo_port) { 21935 hi_port = tcp_reserved_port[i].hi_port; 21936 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 21937 break; 21938 } 21939 } 21940 if (i == tcp_reserved_port_array_size) { 21941 rw_exit(&tcp_reserved_port_lock); 21942 return (B_FALSE); 21943 } 21944 21945 /* 21946 * Remove the range from the array. This simple loop is possible 21947 * because port ranges are inserted in ascending order. 21948 */ 21949 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 21950 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 21951 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 21952 tcp_reserved_port[j].temp_tcp_array = 21953 tcp_reserved_port[j+1].temp_tcp_array; 21954 } 21955 21956 /* Remove all the temporary tcp structures. */ 21957 size = hi_port - lo_port + 1; 21958 while (size > 0) { 21959 tcp = temp_tcp_array[size - 1]; 21960 ASSERT(tcp != NULL); 21961 tcp_bind_hash_remove(tcp); 21962 CONN_DEC_REF(tcp->tcp_connp); 21963 size--; 21964 } 21965 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 21966 tcp_reserved_port_array_size--; 21967 rw_exit(&tcp_reserved_port_lock); 21968 return (B_TRUE); 21969 } 21970 21971 /* 21972 * Macro to remove temporary tcp structure from the bind hash list. The 21973 * first parameter is the list of tcp to be removed. The second parameter 21974 * is the number of tcps in the array. 21975 */ 21976 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 21977 { \ 21978 while ((num) > 0) { \ 21979 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 21980 tf_t *tbf; \ 21981 tcp_t *tcpnext; \ 21982 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 21983 mutex_enter(&tbf->tf_lock); \ 21984 tcpnext = tcp->tcp_bind_hash; \ 21985 if (tcpnext) { \ 21986 tcpnext->tcp_ptpbhn = \ 21987 tcp->tcp_ptpbhn; \ 21988 } \ 21989 *tcp->tcp_ptpbhn = tcpnext; \ 21990 mutex_exit(&tbf->tf_lock); \ 21991 kmem_free(tcp, sizeof (tcp_t)); \ 21992 (tcp_array)[(num) - 1] = NULL; \ 21993 (num)--; \ 21994 } \ 21995 } 21996 21997 /* 21998 * The public interface for other modules to call to reserve a port range 21999 * in TCP. The caller passes in how large a port range it wants. TCP 22000 * will try to find a range and return it via lo_port and hi_port. This is 22001 * used by NCA's nca_conn_init. 22002 * NCA can only be used in the global zone so this only affects the global 22003 * zone's ports. 22004 * 22005 * Params: 22006 * int size: the size of the port range to be reserved. 22007 * in_port_t *lo_port (referenced): returns the beginning port of the 22008 * reserved port range added. 22009 * in_port_t *hi_port (referenced): returns the ending port of the 22010 * reserved port range added. 22011 * 22012 * Return: 22013 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22014 */ 22015 boolean_t 22016 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22017 { 22018 tcp_t *tcp; 22019 tcp_t *tmp_tcp; 22020 tcp_t **temp_tcp_array; 22021 tf_t *tbf; 22022 in_port_t net_port; 22023 in_port_t port; 22024 int32_t cur_size; 22025 int i, j; 22026 boolean_t used; 22027 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22028 zoneid_t zoneid = GLOBAL_ZONEID; 22029 22030 /* Sanity check. */ 22031 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22032 return (B_FALSE); 22033 } 22034 22035 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22036 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22037 rw_exit(&tcp_reserved_port_lock); 22038 return (B_FALSE); 22039 } 22040 22041 /* 22042 * Find the starting port to try. Since the port ranges are ordered 22043 * in the reserved port array, we can do a simple search here. 22044 */ 22045 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22046 *hi_port = TCP_LARGEST_RESERVED_PORT; 22047 for (i = 0; i < tcp_reserved_port_array_size; 22048 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22049 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22050 *hi_port = tcp_reserved_port[i].lo_port - 1; 22051 break; 22052 } 22053 } 22054 /* No available port range. */ 22055 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22056 rw_exit(&tcp_reserved_port_lock); 22057 return (B_FALSE); 22058 } 22059 22060 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22061 if (temp_tcp_array == NULL) { 22062 rw_exit(&tcp_reserved_port_lock); 22063 return (B_FALSE); 22064 } 22065 22066 /* Go thru the port range to see if some ports are already bound. */ 22067 for (port = *lo_port, cur_size = 0; 22068 cur_size < size && port <= *hi_port; 22069 cur_size++, port++) { 22070 used = B_FALSE; 22071 net_port = htons(port); 22072 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22073 mutex_enter(&tbf->tf_lock); 22074 for (tcp = tbf->tf_tcp; tcp != NULL; 22075 tcp = tcp->tcp_bind_hash) { 22076 if (zoneid == tcp->tcp_connp->conn_zoneid && 22077 net_port == tcp->tcp_lport) { 22078 /* 22079 * A port is already bound. Search again 22080 * starting from port + 1. Release all 22081 * temporary tcps. 22082 */ 22083 mutex_exit(&tbf->tf_lock); 22084 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22085 *lo_port = port + 1; 22086 cur_size = -1; 22087 used = B_TRUE; 22088 break; 22089 } 22090 } 22091 if (!used) { 22092 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22093 /* 22094 * Allocation failure. Just fail the request. 22095 * Need to remove all those temporary tcp 22096 * structures. 22097 */ 22098 mutex_exit(&tbf->tf_lock); 22099 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22100 rw_exit(&tcp_reserved_port_lock); 22101 kmem_free(temp_tcp_array, 22102 (hi_port - lo_port + 1) * 22103 sizeof (tcp_t *)); 22104 return (B_FALSE); 22105 } 22106 temp_tcp_array[cur_size] = tmp_tcp; 22107 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22108 mutex_exit(&tbf->tf_lock); 22109 } 22110 } 22111 22112 /* 22113 * The current range is not large enough. We can actually do another 22114 * search if this search is done between 2 reserved port ranges. But 22115 * for first release, we just stop here and return saying that no port 22116 * range is available. 22117 */ 22118 if (cur_size < size) { 22119 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22120 rw_exit(&tcp_reserved_port_lock); 22121 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22122 return (B_FALSE); 22123 } 22124 *hi_port = port - 1; 22125 22126 /* 22127 * Insert range into array in ascending order. Since this function 22128 * must not be called often, we choose to use the simplest method. 22129 * The above array should not consume excessive stack space as 22130 * the size must be very small. If in future releases, we find 22131 * that we should provide more reserved port ranges, this function 22132 * has to be modified to be more efficient. 22133 */ 22134 if (tcp_reserved_port_array_size == 0) { 22135 tcp_reserved_port[0].lo_port = *lo_port; 22136 tcp_reserved_port[0].hi_port = *hi_port; 22137 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22138 } else { 22139 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22140 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22141 tmp_ports[j].lo_port = *lo_port; 22142 tmp_ports[j].hi_port = *hi_port; 22143 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22144 j++; 22145 } 22146 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22147 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22148 tmp_ports[j].temp_tcp_array = 22149 tcp_reserved_port[i].temp_tcp_array; 22150 } 22151 if (j == i) { 22152 tmp_ports[j].lo_port = *lo_port; 22153 tmp_ports[j].hi_port = *hi_port; 22154 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22155 } 22156 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22157 } 22158 tcp_reserved_port_array_size++; 22159 rw_exit(&tcp_reserved_port_lock); 22160 return (B_TRUE); 22161 } 22162 22163 /* 22164 * Check to see if a port is in any reserved port range. 22165 * 22166 * Params: 22167 * in_port_t port: the port to be verified. 22168 * 22169 * Return: 22170 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22171 */ 22172 boolean_t 22173 tcp_reserved_port_check(in_port_t port) 22174 { 22175 int i; 22176 22177 rw_enter(&tcp_reserved_port_lock, RW_READER); 22178 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22179 if (port >= tcp_reserved_port[i].lo_port || 22180 port <= tcp_reserved_port[i].hi_port) { 22181 rw_exit(&tcp_reserved_port_lock); 22182 return (B_TRUE); 22183 } 22184 } 22185 rw_exit(&tcp_reserved_port_lock); 22186 return (B_FALSE); 22187 } 22188 22189 /* 22190 * To list all reserved port ranges. This is the function to handle 22191 * ndd tcp_reserved_port_list. 22192 */ 22193 /* ARGSUSED */ 22194 static int 22195 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22196 { 22197 int i; 22198 22199 rw_enter(&tcp_reserved_port_lock, RW_READER); 22200 if (tcp_reserved_port_array_size > 0) 22201 (void) mi_mpprintf(mp, "The following ports are reserved:"); 22202 else 22203 (void) mi_mpprintf(mp, "No port is reserved."); 22204 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22205 (void) mi_mpprintf(mp, "%d-%d", 22206 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 22207 } 22208 rw_exit(&tcp_reserved_port_lock); 22209 return (0); 22210 } 22211 22212 /* 22213 * Hash list insertion routine for tcp_t structures. 22214 * Inserts entries with the ones bound to a specific IP address first 22215 * followed by those bound to INADDR_ANY. 22216 */ 22217 static void 22218 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 22219 { 22220 tcp_t **tcpp; 22221 tcp_t *tcpnext; 22222 22223 if (tcp->tcp_ptpbhn != NULL) { 22224 ASSERT(!caller_holds_lock); 22225 tcp_bind_hash_remove(tcp); 22226 } 22227 tcpp = &tbf->tf_tcp; 22228 if (!caller_holds_lock) { 22229 mutex_enter(&tbf->tf_lock); 22230 } else { 22231 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 22232 } 22233 tcpnext = tcpp[0]; 22234 if (tcpnext) { 22235 /* 22236 * If the new tcp bound to the INADDR_ANY address 22237 * and the first one in the list is not bound to 22238 * INADDR_ANY we skip all entries until we find the 22239 * first one bound to INADDR_ANY. 22240 * This makes sure that applications binding to a 22241 * specific address get preference over those binding to 22242 * INADDR_ANY. 22243 */ 22244 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 22245 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 22246 while ((tcpnext = tcpp[0]) != NULL && 22247 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 22248 tcpp = &(tcpnext->tcp_bind_hash); 22249 if (tcpnext) 22250 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22251 } else 22252 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22253 } 22254 tcp->tcp_bind_hash = tcpnext; 22255 tcp->tcp_ptpbhn = tcpp; 22256 tcpp[0] = tcp; 22257 if (!caller_holds_lock) 22258 mutex_exit(&tbf->tf_lock); 22259 } 22260 22261 /* 22262 * Hash list removal routine for tcp_t structures. 22263 */ 22264 static void 22265 tcp_bind_hash_remove(tcp_t *tcp) 22266 { 22267 tcp_t *tcpnext; 22268 kmutex_t *lockp; 22269 22270 if (tcp->tcp_ptpbhn == NULL) 22271 return; 22272 22273 /* 22274 * Extract the lock pointer in case there are concurrent 22275 * hash_remove's for this instance. 22276 */ 22277 ASSERT(tcp->tcp_lport != 0); 22278 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 22279 22280 ASSERT(lockp != NULL); 22281 mutex_enter(lockp); 22282 if (tcp->tcp_ptpbhn) { 22283 tcpnext = tcp->tcp_bind_hash; 22284 if (tcpnext) { 22285 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 22286 tcp->tcp_bind_hash = NULL; 22287 } 22288 *tcp->tcp_ptpbhn = tcpnext; 22289 tcp->tcp_ptpbhn = NULL; 22290 } 22291 mutex_exit(lockp); 22292 } 22293 22294 22295 /* 22296 * Hash list lookup routine for tcp_t structures. 22297 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 22298 */ 22299 static tcp_t * 22300 tcp_acceptor_hash_lookup(t_uscalar_t id) 22301 { 22302 tf_t *tf; 22303 tcp_t *tcp; 22304 22305 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22306 mutex_enter(&tf->tf_lock); 22307 for (tcp = tf->tf_tcp; tcp != NULL; 22308 tcp = tcp->tcp_acceptor_hash) { 22309 if (tcp->tcp_acceptor_id == id) { 22310 CONN_INC_REF(tcp->tcp_connp); 22311 mutex_exit(&tf->tf_lock); 22312 return (tcp); 22313 } 22314 } 22315 mutex_exit(&tf->tf_lock); 22316 return (NULL); 22317 } 22318 22319 22320 /* 22321 * Hash list insertion routine for tcp_t structures. 22322 */ 22323 void 22324 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 22325 { 22326 tf_t *tf; 22327 tcp_t **tcpp; 22328 tcp_t *tcpnext; 22329 22330 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22331 22332 if (tcp->tcp_ptpahn != NULL) 22333 tcp_acceptor_hash_remove(tcp); 22334 tcpp = &tf->tf_tcp; 22335 mutex_enter(&tf->tf_lock); 22336 tcpnext = tcpp[0]; 22337 if (tcpnext) 22338 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 22339 tcp->tcp_acceptor_hash = tcpnext; 22340 tcp->tcp_ptpahn = tcpp; 22341 tcpp[0] = tcp; 22342 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 22343 mutex_exit(&tf->tf_lock); 22344 } 22345 22346 /* 22347 * Hash list removal routine for tcp_t structures. 22348 */ 22349 static void 22350 tcp_acceptor_hash_remove(tcp_t *tcp) 22351 { 22352 tcp_t *tcpnext; 22353 kmutex_t *lockp; 22354 22355 /* 22356 * Extract the lock pointer in case there are concurrent 22357 * hash_remove's for this instance. 22358 */ 22359 lockp = tcp->tcp_acceptor_lockp; 22360 22361 if (tcp->tcp_ptpahn == NULL) 22362 return; 22363 22364 ASSERT(lockp != NULL); 22365 mutex_enter(lockp); 22366 if (tcp->tcp_ptpahn) { 22367 tcpnext = tcp->tcp_acceptor_hash; 22368 if (tcpnext) { 22369 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 22370 tcp->tcp_acceptor_hash = NULL; 22371 } 22372 *tcp->tcp_ptpahn = tcpnext; 22373 tcp->tcp_ptpahn = NULL; 22374 } 22375 mutex_exit(lockp); 22376 tcp->tcp_acceptor_lockp = NULL; 22377 } 22378 22379 /* ARGSUSED */ 22380 static int 22381 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 22382 { 22383 int error = 0; 22384 int retval; 22385 char *end; 22386 22387 tcp_hsp_t *hsp; 22388 tcp_hsp_t *hspprev; 22389 22390 ipaddr_t addr = 0; /* Address we're looking for */ 22391 in6_addr_t v6addr; /* Address we're looking for */ 22392 uint32_t hash; /* Hash of that address */ 22393 22394 /* 22395 * If the following variables are still zero after parsing the input 22396 * string, the user didn't specify them and we don't change them in 22397 * the HSP. 22398 */ 22399 22400 ipaddr_t mask = 0; /* Subnet mask */ 22401 in6_addr_t v6mask; 22402 long sendspace = 0; /* Send buffer size */ 22403 long recvspace = 0; /* Receive buffer size */ 22404 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 22405 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 22406 22407 rw_enter(&tcp_hsp_lock, RW_WRITER); 22408 22409 /* Parse and validate address */ 22410 if (af == AF_INET) { 22411 retval = inet_pton(af, value, &addr); 22412 if (retval == 1) 22413 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 22414 } else if (af == AF_INET6) { 22415 retval = inet_pton(af, value, &v6addr); 22416 } else { 22417 error = EINVAL; 22418 goto done; 22419 } 22420 if (retval == 0) { 22421 error = EINVAL; 22422 goto done; 22423 } 22424 22425 while ((*value) && *value != ' ') 22426 value++; 22427 22428 /* Parse individual keywords, set variables if found */ 22429 while (*value) { 22430 /* Skip leading blanks */ 22431 22432 while (*value == ' ' || *value == '\t') 22433 value++; 22434 22435 /* If at end of string, we're done */ 22436 22437 if (!*value) 22438 break; 22439 22440 /* We have a word, figure out what it is */ 22441 22442 if (strncmp("mask", value, 4) == 0) { 22443 value += 4; 22444 while (*value == ' ' || *value == '\t') 22445 value++; 22446 /* Parse subnet mask */ 22447 if (af == AF_INET) { 22448 retval = inet_pton(af, value, &mask); 22449 if (retval == 1) { 22450 V4MASK_TO_V6(mask, v6mask); 22451 } 22452 } else if (af == AF_INET6) { 22453 retval = inet_pton(af, value, &v6mask); 22454 } 22455 if (retval != 1) { 22456 error = EINVAL; 22457 goto done; 22458 } 22459 while ((*value) && *value != ' ') 22460 value++; 22461 } else if (strncmp("sendspace", value, 9) == 0) { 22462 value += 9; 22463 22464 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 22465 sendspace < TCP_XMIT_HIWATER || 22466 sendspace >= (1L<<30)) { 22467 error = EINVAL; 22468 goto done; 22469 } 22470 value = end; 22471 } else if (strncmp("recvspace", value, 9) == 0) { 22472 value += 9; 22473 22474 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 22475 recvspace < TCP_RECV_HIWATER || 22476 recvspace >= (1L<<30)) { 22477 error = EINVAL; 22478 goto done; 22479 } 22480 value = end; 22481 } else if (strncmp("timestamp", value, 9) == 0) { 22482 value += 9; 22483 22484 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 22485 timestamp < 0 || timestamp > 1) { 22486 error = EINVAL; 22487 goto done; 22488 } 22489 22490 /* 22491 * We increment timestamp so we know it's been set; 22492 * this is undone when we put it in the HSP 22493 */ 22494 timestamp++; 22495 value = end; 22496 } else if (strncmp("delete", value, 6) == 0) { 22497 value += 6; 22498 delete = B_TRUE; 22499 } else { 22500 error = EINVAL; 22501 goto done; 22502 } 22503 } 22504 22505 /* Hash address for lookup */ 22506 22507 hash = TCP_HSP_HASH(addr); 22508 22509 if (delete) { 22510 /* 22511 * Note that deletes don't return an error if the thing 22512 * we're trying to delete isn't there. 22513 */ 22514 if (tcp_hsp_hash == NULL) 22515 goto done; 22516 hsp = tcp_hsp_hash[hash]; 22517 22518 if (hsp) { 22519 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22520 &v6addr)) { 22521 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 22522 mi_free((char *)hsp); 22523 } else { 22524 hspprev = hsp; 22525 while ((hsp = hsp->tcp_hsp_next) != NULL) { 22526 if (IN6_ARE_ADDR_EQUAL( 22527 &hsp->tcp_hsp_addr_v6, &v6addr)) { 22528 hspprev->tcp_hsp_next = 22529 hsp->tcp_hsp_next; 22530 mi_free((char *)hsp); 22531 break; 22532 } 22533 hspprev = hsp; 22534 } 22535 } 22536 } 22537 } else { 22538 /* 22539 * We're adding/modifying an HSP. If we haven't already done 22540 * so, allocate the hash table. 22541 */ 22542 22543 if (!tcp_hsp_hash) { 22544 tcp_hsp_hash = (tcp_hsp_t **) 22545 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 22546 if (!tcp_hsp_hash) { 22547 error = EINVAL; 22548 goto done; 22549 } 22550 } 22551 22552 /* Get head of hash chain */ 22553 22554 hsp = tcp_hsp_hash[hash]; 22555 22556 /* Try to find pre-existing hsp on hash chain */ 22557 /* Doesn't handle CIDR prefixes. */ 22558 while (hsp) { 22559 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 22560 break; 22561 hsp = hsp->tcp_hsp_next; 22562 } 22563 22564 /* 22565 * If we didn't, create one with default values and put it 22566 * at head of hash chain 22567 */ 22568 22569 if (!hsp) { 22570 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 22571 if (!hsp) { 22572 error = EINVAL; 22573 goto done; 22574 } 22575 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 22576 tcp_hsp_hash[hash] = hsp; 22577 } 22578 22579 /* Set values that the user asked us to change */ 22580 22581 hsp->tcp_hsp_addr_v6 = v6addr; 22582 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 22583 hsp->tcp_hsp_vers = IPV4_VERSION; 22584 else 22585 hsp->tcp_hsp_vers = IPV6_VERSION; 22586 hsp->tcp_hsp_subnet_v6 = v6mask; 22587 if (sendspace > 0) 22588 hsp->tcp_hsp_sendspace = sendspace; 22589 if (recvspace > 0) 22590 hsp->tcp_hsp_recvspace = recvspace; 22591 if (timestamp > 0) 22592 hsp->tcp_hsp_tstamp = timestamp - 1; 22593 } 22594 22595 done: 22596 rw_exit(&tcp_hsp_lock); 22597 return (error); 22598 } 22599 22600 /* Set callback routine passed to nd_load by tcp_param_register. */ 22601 /* ARGSUSED */ 22602 static int 22603 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 22604 { 22605 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 22606 } 22607 /* ARGSUSED */ 22608 static int 22609 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22610 cred_t *cr) 22611 { 22612 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 22613 } 22614 22615 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 22616 /* ARGSUSED */ 22617 static int 22618 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22619 { 22620 tcp_hsp_t *hsp; 22621 int i; 22622 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 22623 22624 rw_enter(&tcp_hsp_lock, RW_READER); 22625 (void) mi_mpprintf(mp, 22626 "Hash HSP " MI_COL_HDRPAD_STR 22627 "Address Subnet Mask Send Receive TStamp"); 22628 if (tcp_hsp_hash) { 22629 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 22630 hsp = tcp_hsp_hash[i]; 22631 while (hsp) { 22632 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 22633 (void) inet_ntop(AF_INET, 22634 &hsp->tcp_hsp_addr, 22635 addrbuf, sizeof (addrbuf)); 22636 (void) inet_ntop(AF_INET, 22637 &hsp->tcp_hsp_subnet, 22638 subnetbuf, sizeof (subnetbuf)); 22639 } else { 22640 (void) inet_ntop(AF_INET6, 22641 &hsp->tcp_hsp_addr_v6, 22642 addrbuf, sizeof (addrbuf)); 22643 (void) inet_ntop(AF_INET6, 22644 &hsp->tcp_hsp_subnet_v6, 22645 subnetbuf, sizeof (subnetbuf)); 22646 } 22647 (void) mi_mpprintf(mp, 22648 " %03d " MI_COL_PTRFMT_STR 22649 "%s %s %010d %010d %d", 22650 i, 22651 (void *)hsp, 22652 addrbuf, 22653 subnetbuf, 22654 hsp->tcp_hsp_sendspace, 22655 hsp->tcp_hsp_recvspace, 22656 hsp->tcp_hsp_tstamp); 22657 22658 hsp = hsp->tcp_hsp_next; 22659 } 22660 } 22661 } 22662 rw_exit(&tcp_hsp_lock); 22663 return (0); 22664 } 22665 22666 22667 /* Data for fast netmask macro used by tcp_hsp_lookup */ 22668 22669 static ipaddr_t netmasks[] = { 22670 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 22671 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 22672 }; 22673 22674 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 22675 22676 /* 22677 * XXX This routine should go away and instead we should use the metrics 22678 * associated with the routes to determine the default sndspace and rcvspace. 22679 */ 22680 static tcp_hsp_t * 22681 tcp_hsp_lookup(ipaddr_t addr) 22682 { 22683 tcp_hsp_t *hsp = NULL; 22684 22685 /* Quick check without acquiring the lock. */ 22686 if (tcp_hsp_hash == NULL) 22687 return (NULL); 22688 22689 rw_enter(&tcp_hsp_lock, RW_READER); 22690 22691 /* This routine finds the best-matching HSP for address addr. */ 22692 22693 if (tcp_hsp_hash) { 22694 int i; 22695 ipaddr_t srchaddr; 22696 tcp_hsp_t *hsp_net; 22697 22698 /* We do three passes: host, network, and subnet. */ 22699 22700 srchaddr = addr; 22701 22702 for (i = 1; i <= 3; i++) { 22703 /* Look for exact match on srchaddr */ 22704 22705 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 22706 while (hsp) { 22707 if (hsp->tcp_hsp_vers == IPV4_VERSION && 22708 hsp->tcp_hsp_addr == srchaddr) 22709 break; 22710 hsp = hsp->tcp_hsp_next; 22711 } 22712 ASSERT(hsp == NULL || 22713 hsp->tcp_hsp_vers == IPV4_VERSION); 22714 22715 /* 22716 * If this is the first pass: 22717 * If we found a match, great, return it. 22718 * If not, search for the network on the second pass. 22719 */ 22720 22721 if (i == 1) 22722 if (hsp) 22723 break; 22724 else 22725 { 22726 srchaddr = addr & netmask(addr); 22727 continue; 22728 } 22729 22730 /* 22731 * If this is the second pass: 22732 * If we found a match, but there's a subnet mask, 22733 * save the match but try again using the subnet 22734 * mask on the third pass. 22735 * Otherwise, return whatever we found. 22736 */ 22737 22738 if (i == 2) { 22739 if (hsp && hsp->tcp_hsp_subnet) { 22740 hsp_net = hsp; 22741 srchaddr = addr & hsp->tcp_hsp_subnet; 22742 continue; 22743 } else { 22744 break; 22745 } 22746 } 22747 22748 /* 22749 * This must be the third pass. If we didn't find 22750 * anything, return the saved network HSP instead. 22751 */ 22752 22753 if (!hsp) 22754 hsp = hsp_net; 22755 } 22756 } 22757 22758 rw_exit(&tcp_hsp_lock); 22759 return (hsp); 22760 } 22761 22762 /* 22763 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 22764 * match lookup. 22765 */ 22766 static tcp_hsp_t * 22767 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 22768 { 22769 tcp_hsp_t *hsp = NULL; 22770 22771 /* Quick check without acquiring the lock. */ 22772 if (tcp_hsp_hash == NULL) 22773 return (NULL); 22774 22775 rw_enter(&tcp_hsp_lock, RW_READER); 22776 22777 /* This routine finds the best-matching HSP for address addr. */ 22778 22779 if (tcp_hsp_hash) { 22780 int i; 22781 in6_addr_t v6srchaddr; 22782 tcp_hsp_t *hsp_net; 22783 22784 /* We do three passes: host, network, and subnet. */ 22785 22786 v6srchaddr = *v6addr; 22787 22788 for (i = 1; i <= 3; i++) { 22789 /* Look for exact match on srchaddr */ 22790 22791 hsp = tcp_hsp_hash[TCP_HSP_HASH( 22792 V4_PART_OF_V6(v6srchaddr))]; 22793 while (hsp) { 22794 if (hsp->tcp_hsp_vers == IPV6_VERSION && 22795 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22796 &v6srchaddr)) 22797 break; 22798 hsp = hsp->tcp_hsp_next; 22799 } 22800 22801 /* 22802 * If this is the first pass: 22803 * If we found a match, great, return it. 22804 * If not, search for the network on the second pass. 22805 */ 22806 22807 if (i == 1) 22808 if (hsp) 22809 break; 22810 else { 22811 /* Assume a 64 bit mask */ 22812 v6srchaddr.s6_addr32[0] = 22813 v6addr->s6_addr32[0]; 22814 v6srchaddr.s6_addr32[1] = 22815 v6addr->s6_addr32[1]; 22816 v6srchaddr.s6_addr32[2] = 0; 22817 v6srchaddr.s6_addr32[3] = 0; 22818 continue; 22819 } 22820 22821 /* 22822 * If this is the second pass: 22823 * If we found a match, but there's a subnet mask, 22824 * save the match but try again using the subnet 22825 * mask on the third pass. 22826 * Otherwise, return whatever we found. 22827 */ 22828 22829 if (i == 2) { 22830 ASSERT(hsp == NULL || 22831 hsp->tcp_hsp_vers == IPV6_VERSION); 22832 if (hsp && 22833 !IN6_IS_ADDR_UNSPECIFIED( 22834 &hsp->tcp_hsp_subnet_v6)) { 22835 hsp_net = hsp; 22836 V6_MASK_COPY(*v6addr, 22837 hsp->tcp_hsp_subnet_v6, v6srchaddr); 22838 continue; 22839 } else { 22840 break; 22841 } 22842 } 22843 22844 /* 22845 * This must be the third pass. If we didn't find 22846 * anything, return the saved network HSP instead. 22847 */ 22848 22849 if (!hsp) 22850 hsp = hsp_net; 22851 } 22852 } 22853 22854 rw_exit(&tcp_hsp_lock); 22855 return (hsp); 22856 } 22857 22858 /* 22859 * Type three generator adapted from the random() function in 4.4 BSD: 22860 */ 22861 22862 /* 22863 * Copyright (c) 1983, 1993 22864 * The Regents of the University of California. All rights reserved. 22865 * 22866 * Redistribution and use in source and binary forms, with or without 22867 * modification, are permitted provided that the following conditions 22868 * are met: 22869 * 1. Redistributions of source code must retain the above copyright 22870 * notice, this list of conditions and the following disclaimer. 22871 * 2. Redistributions in binary form must reproduce the above copyright 22872 * notice, this list of conditions and the following disclaimer in the 22873 * documentation and/or other materials provided with the distribution. 22874 * 3. All advertising materials mentioning features or use of this software 22875 * must display the following acknowledgement: 22876 * This product includes software developed by the University of 22877 * California, Berkeley and its contributors. 22878 * 4. Neither the name of the University nor the names of its contributors 22879 * may be used to endorse or promote products derived from this software 22880 * without specific prior written permission. 22881 * 22882 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22883 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22884 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22885 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22886 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22887 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22888 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22889 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22890 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22891 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 22892 * SUCH DAMAGE. 22893 */ 22894 22895 /* Type 3 -- x**31 + x**3 + 1 */ 22896 #define DEG_3 31 22897 #define SEP_3 3 22898 22899 22900 /* Protected by tcp_random_lock */ 22901 static int tcp_randtbl[DEG_3 + 1]; 22902 22903 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 22904 static int *tcp_random_rptr = &tcp_randtbl[1]; 22905 22906 static int *tcp_random_state = &tcp_randtbl[1]; 22907 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 22908 22909 kmutex_t tcp_random_lock; 22910 22911 void 22912 tcp_random_init(void) 22913 { 22914 int i; 22915 hrtime_t hrt; 22916 time_t wallclock; 22917 uint64_t result; 22918 22919 /* 22920 * Use high-res timer and current time for seed. Gethrtime() returns 22921 * a longlong, which may contain resolution down to nanoseconds. 22922 * The current time will either be a 32-bit or a 64-bit quantity. 22923 * XOR the two together in a 64-bit result variable. 22924 * Convert the result to a 32-bit value by multiplying the high-order 22925 * 32-bits by the low-order 32-bits. 22926 */ 22927 22928 hrt = gethrtime(); 22929 (void) drv_getparm(TIME, &wallclock); 22930 result = (uint64_t)wallclock ^ (uint64_t)hrt; 22931 mutex_enter(&tcp_random_lock); 22932 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 22933 (result & 0xffffffff); 22934 22935 for (i = 1; i < DEG_3; i++) 22936 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 22937 + 12345; 22938 tcp_random_fptr = &tcp_random_state[SEP_3]; 22939 tcp_random_rptr = &tcp_random_state[0]; 22940 mutex_exit(&tcp_random_lock); 22941 for (i = 0; i < 10 * DEG_3; i++) 22942 (void) tcp_random(); 22943 } 22944 22945 /* 22946 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 22947 * This range is selected to be approximately centered on TCP_ISS / 2, 22948 * and easy to compute. We get this value by generating a 32-bit random 22949 * number, selecting out the high-order 17 bits, and then adding one so 22950 * that we never return zero. 22951 */ 22952 int 22953 tcp_random(void) 22954 { 22955 int i; 22956 22957 mutex_enter(&tcp_random_lock); 22958 *tcp_random_fptr += *tcp_random_rptr; 22959 22960 /* 22961 * The high-order bits are more random than the low-order bits, 22962 * so we select out the high-order 17 bits and add one so that 22963 * we never return zero. 22964 */ 22965 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 22966 if (++tcp_random_fptr >= tcp_random_end_ptr) { 22967 tcp_random_fptr = tcp_random_state; 22968 ++tcp_random_rptr; 22969 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 22970 tcp_random_rptr = tcp_random_state; 22971 22972 mutex_exit(&tcp_random_lock); 22973 return (i); 22974 } 22975 22976 /* 22977 * XXX This will go away when TPI is extended to send 22978 * info reqs to sockfs/timod ..... 22979 * Given a queue, set the max packet size for the write 22980 * side of the queue below stream head. This value is 22981 * cached on the stream head. 22982 * Returns 1 on success, 0 otherwise. 22983 */ 22984 static int 22985 setmaxps(queue_t *q, int maxpsz) 22986 { 22987 struct stdata *stp; 22988 queue_t *wq; 22989 stp = STREAM(q); 22990 22991 /* 22992 * At this point change of a queue parameter is not allowed 22993 * when a multiplexor is sitting on top. 22994 */ 22995 if (stp->sd_flag & STPLEX) 22996 return (0); 22997 22998 claimstr(stp->sd_wrq); 22999 wq = stp->sd_wrq->q_next; 23000 ASSERT(wq != NULL); 23001 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23002 releasestr(stp->sd_wrq); 23003 return (1); 23004 } 23005 23006 static int 23007 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23008 int *t_errorp, int *sys_errorp) 23009 { 23010 int error; 23011 int is_absreq_failure; 23012 t_scalar_t *opt_lenp; 23013 t_scalar_t opt_offset; 23014 int prim_type; 23015 struct T_conn_req *tcreqp; 23016 struct T_conn_res *tcresp; 23017 cred_t *cr; 23018 23019 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23020 23021 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23022 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23023 prim_type == T_CONN_RES); 23024 23025 switch (prim_type) { 23026 case T_CONN_REQ: 23027 tcreqp = (struct T_conn_req *)mp->b_rptr; 23028 opt_offset = tcreqp->OPT_offset; 23029 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23030 break; 23031 case O_T_CONN_RES: 23032 case T_CONN_RES: 23033 tcresp = (struct T_conn_res *)mp->b_rptr; 23034 opt_offset = tcresp->OPT_offset; 23035 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23036 break; 23037 } 23038 23039 *t_errorp = 0; 23040 *sys_errorp = 0; 23041 *do_disconnectp = 0; 23042 23043 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23044 opt_offset, cr, &tcp_opt_obj, 23045 NULL, &is_absreq_failure); 23046 23047 switch (error) { 23048 case 0: /* no error */ 23049 ASSERT(is_absreq_failure == 0); 23050 return (0); 23051 case ENOPROTOOPT: 23052 *t_errorp = TBADOPT; 23053 break; 23054 case EACCES: 23055 *t_errorp = TACCES; 23056 break; 23057 default: 23058 *t_errorp = TSYSERR; *sys_errorp = error; 23059 break; 23060 } 23061 if (is_absreq_failure != 0) { 23062 /* 23063 * The connection request should get the local ack 23064 * T_OK_ACK and then a T_DISCON_IND. 23065 */ 23066 *do_disconnectp = 1; 23067 } 23068 return (-1); 23069 } 23070 23071 /* 23072 * Split this function out so that if the secret changes, I'm okay. 23073 * 23074 * Initialize the tcp_iss_cookie and tcp_iss_key. 23075 */ 23076 23077 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23078 23079 static void 23080 tcp_iss_key_init(uint8_t *phrase, int len) 23081 { 23082 struct { 23083 int32_t current_time; 23084 uint32_t randnum; 23085 uint16_t pad; 23086 uint8_t ether[6]; 23087 uint8_t passwd[PASSWD_SIZE]; 23088 } tcp_iss_cookie; 23089 time_t t; 23090 23091 /* 23092 * Start with the current absolute time. 23093 */ 23094 (void) drv_getparm(TIME, &t); 23095 tcp_iss_cookie.current_time = t; 23096 23097 /* 23098 * XXX - Need a more random number per RFC 1750, not this crap. 23099 * OTOH, if what follows is pretty random, then I'm in better shape. 23100 */ 23101 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23102 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23103 23104 /* 23105 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23106 * as a good template. 23107 */ 23108 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23109 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23110 23111 /* 23112 * The pass-phrase. Normally this is supplied by user-called NDD. 23113 */ 23114 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23115 23116 /* 23117 * See 4010593 if this section becomes a problem again, 23118 * but the local ethernet address is useful here. 23119 */ 23120 (void) localetheraddr(NULL, 23121 (struct ether_addr *)&tcp_iss_cookie.ether); 23122 23123 /* 23124 * Hash 'em all together. The MD5Final is called per-connection. 23125 */ 23126 mutex_enter(&tcp_iss_key_lock); 23127 MD5Init(&tcp_iss_key); 23128 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23129 sizeof (tcp_iss_cookie)); 23130 mutex_exit(&tcp_iss_key_lock); 23131 } 23132 23133 /* 23134 * Set the RFC 1948 pass phrase 23135 */ 23136 /* ARGSUSED */ 23137 static int 23138 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23139 cred_t *cr) 23140 { 23141 /* 23142 * Basically, value contains a new pass phrase. Pass it along! 23143 */ 23144 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23145 return (0); 23146 } 23147 23148 /* ARGSUSED */ 23149 static int 23150 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23151 { 23152 bzero(buf, sizeof (tcp_sack_info_t)); 23153 return (0); 23154 } 23155 23156 /* ARGSUSED */ 23157 static int 23158 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23159 { 23160 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23161 return (0); 23162 } 23163 23164 void 23165 tcp_ddi_init(void) 23166 { 23167 int i; 23168 23169 /* Initialize locks */ 23170 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23171 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23172 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23173 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23174 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23175 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23176 23177 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23178 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23179 MUTEX_DEFAULT, NULL); 23180 } 23181 23182 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23183 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23184 MUTEX_DEFAULT, NULL); 23185 } 23186 23187 /* TCP's IPsec code calls the packet dropper. */ 23188 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23189 23190 if (!tcp_g_nd) { 23191 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23192 nd_free(&tcp_g_nd); 23193 } 23194 } 23195 23196 /* 23197 * Note: To really walk the device tree you need the devinfo 23198 * pointer to your device which is only available after probe/attach. 23199 * The following is safe only because it uses ddi_root_node() 23200 */ 23201 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23202 tcp_opt_obj.odb_opt_arr_cnt); 23203 23204 tcp_timercache = kmem_cache_create("tcp_timercache", 23205 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23206 NULL, NULL, NULL, NULL, NULL, 0); 23207 23208 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23209 sizeof (tcp_sack_info_t), 0, 23210 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23211 23212 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23213 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23214 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23215 23216 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 23217 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 23218 23219 ip_squeue_init(tcp_squeue_add); 23220 23221 /* Initialize the random number generator */ 23222 tcp_random_init(); 23223 23224 /* 23225 * Initialize RFC 1948 secret values. This will probably be reset once 23226 * by the boot scripts. 23227 * 23228 * Use NULL name, as the name is caught by the new lockstats. 23229 * 23230 * Initialize with some random, non-guessable string, like the global 23231 * T_INFO_ACK. 23232 */ 23233 23234 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23235 sizeof (tcp_g_t_info_ack)); 23236 23237 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 23238 "net", KSTAT_TYPE_NAMED, 23239 sizeof (tcp_statistics) / sizeof (kstat_named_t), 23240 KSTAT_FLAG_VIRTUAL)) != NULL) { 23241 tcp_kstat->ks_data = &tcp_statistics; 23242 kstat_install(tcp_kstat); 23243 } 23244 23245 tcp_kstat_init(); 23246 } 23247 23248 void 23249 tcp_ddi_destroy(void) 23250 { 23251 int i; 23252 23253 nd_free(&tcp_g_nd); 23254 23255 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23256 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 23257 } 23258 23259 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23260 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 23261 } 23262 23263 mutex_destroy(&tcp_iss_key_lock); 23264 rw_destroy(&tcp_hsp_lock); 23265 mutex_destroy(&tcp_g_q_lock); 23266 mutex_destroy(&tcp_random_lock); 23267 mutex_destroy(&tcp_epriv_port_lock); 23268 rw_destroy(&tcp_reserved_port_lock); 23269 23270 ip_drop_unregister(&tcp_dropper); 23271 23272 kmem_cache_destroy(tcp_timercache); 23273 kmem_cache_destroy(tcp_sack_info_cache); 23274 kmem_cache_destroy(tcp_iphc_cache); 23275 23276 tcp_kstat_fini(); 23277 } 23278 23279 /* 23280 * Generate ISS, taking into account NDD changes may happen halfway through. 23281 * (If the iss is not zero, set it.) 23282 */ 23283 23284 static void 23285 tcp_iss_init(tcp_t *tcp) 23286 { 23287 MD5_CTX context; 23288 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 23289 uint32_t answer[4]; 23290 23291 tcp_iss_incr_extra += (ISS_INCR >> 1); 23292 tcp->tcp_iss = tcp_iss_incr_extra; 23293 switch (tcp_strong_iss) { 23294 case 2: 23295 mutex_enter(&tcp_iss_key_lock); 23296 context = tcp_iss_key; 23297 mutex_exit(&tcp_iss_key_lock); 23298 arg.ports = tcp->tcp_ports; 23299 if (tcp->tcp_ipversion == IPV4_VERSION) { 23300 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 23301 &arg.src); 23302 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 23303 &arg.dst); 23304 } else { 23305 arg.src = tcp->tcp_ip6h->ip6_src; 23306 arg.dst = tcp->tcp_ip6h->ip6_dst; 23307 } 23308 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 23309 MD5Final((uchar_t *)answer, &context); 23310 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 23311 /* 23312 * Now that we've hashed into a unique per-connection sequence 23313 * space, add a random increment per strong_iss == 1. So I 23314 * guess we'll have to... 23315 */ 23316 /* FALLTHRU */ 23317 case 1: 23318 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 23319 break; 23320 default: 23321 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23322 break; 23323 } 23324 tcp->tcp_valid_bits = TCP_ISS_VALID; 23325 tcp->tcp_fss = tcp->tcp_iss - 1; 23326 tcp->tcp_suna = tcp->tcp_iss; 23327 tcp->tcp_snxt = tcp->tcp_iss + 1; 23328 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23329 tcp->tcp_csuna = tcp->tcp_snxt; 23330 } 23331 23332 /* 23333 * Exported routine for extracting active tcp connection status. 23334 * 23335 * This is used by the Solaris Cluster Networking software to 23336 * gather a list of connections that need to be forwarded to 23337 * specific nodes in the cluster when configuration changes occur. 23338 * 23339 * The callback is invoked for each tcp_t structure. Returning 23340 * non-zero from the callback routine terminates the search. 23341 */ 23342 int 23343 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 23344 { 23345 tcp_t *tcp; 23346 cl_tcp_info_t cl_tcpi; 23347 connf_t *connfp; 23348 conn_t *connp; 23349 int i; 23350 23351 ASSERT(callback != NULL); 23352 23353 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 23354 23355 connfp = &ipcl_globalhash_fanout[i]; 23356 connp = NULL; 23357 23358 while ((connp = 23359 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 23360 23361 tcp = connp->conn_tcp; 23362 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 23363 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 23364 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 23365 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 23366 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 23367 /* 23368 * The macros tcp_laddr and tcp_faddr give the IPv4 23369 * addresses. They are copied implicitly below as 23370 * mapped addresses. 23371 */ 23372 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 23373 if (tcp->tcp_ipversion == IPV4_VERSION) { 23374 cl_tcpi.cl_tcpi_faddr = 23375 tcp->tcp_ipha->ipha_dst; 23376 } else { 23377 cl_tcpi.cl_tcpi_faddr_v6 = 23378 tcp->tcp_ip6h->ip6_dst; 23379 } 23380 23381 /* 23382 * If the callback returns non-zero 23383 * we terminate the traversal. 23384 */ 23385 if ((*callback)(&cl_tcpi, arg) != 0) { 23386 CONN_DEC_REF(tcp->tcp_connp); 23387 return (1); 23388 } 23389 } 23390 } 23391 23392 return (0); 23393 } 23394 23395 /* 23396 * Macros used for accessing the different types of sockaddr 23397 * structures inside a tcp_ioc_abort_conn_t. 23398 */ 23399 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 23400 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 23401 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 23402 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 23403 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 23404 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 23405 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 23406 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 23407 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 23408 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 23409 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 23410 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 23411 23412 /* 23413 * Return the correct error code to mimic the behavior 23414 * of a connection reset. 23415 */ 23416 #define TCP_AC_GET_ERRCODE(state, err) { \ 23417 switch ((state)) { \ 23418 case TCPS_SYN_SENT: \ 23419 case TCPS_SYN_RCVD: \ 23420 (err) = ECONNREFUSED; \ 23421 break; \ 23422 case TCPS_ESTABLISHED: \ 23423 case TCPS_FIN_WAIT_1: \ 23424 case TCPS_FIN_WAIT_2: \ 23425 case TCPS_CLOSE_WAIT: \ 23426 (err) = ECONNRESET; \ 23427 break; \ 23428 case TCPS_CLOSING: \ 23429 case TCPS_LAST_ACK: \ 23430 case TCPS_TIME_WAIT: \ 23431 (err) = 0; \ 23432 break; \ 23433 default: \ 23434 (err) = ENXIO; \ 23435 } \ 23436 } 23437 23438 /* 23439 * Check if a tcp structure matches the info in acp. 23440 */ 23441 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 23442 (((acp)->ac_local.ss_family == AF_INET) ? \ 23443 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 23444 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 23445 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 23446 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 23447 (TCP_AC_V4LPORT((acp)) == 0 || \ 23448 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 23449 (TCP_AC_V4RPORT((acp)) == 0 || \ 23450 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 23451 (acp)->ac_start <= (tcp)->tcp_state && \ 23452 (acp)->ac_end >= (tcp)->tcp_state) : \ 23453 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 23454 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 23455 &(tcp)->tcp_ip_src_v6)) && \ 23456 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 23457 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 23458 &(tcp)->tcp_remote_v6)) && \ 23459 (TCP_AC_V6LPORT((acp)) == 0 || \ 23460 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 23461 (TCP_AC_V6RPORT((acp)) == 0 || \ 23462 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 23463 (acp)->ac_start <= (tcp)->tcp_state && \ 23464 (acp)->ac_end >= (tcp)->tcp_state)) 23465 23466 #define TCP_AC_MATCH(acp, tcp) \ 23467 (((acp)->ac_zoneid == ALL_ZONES || \ 23468 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 23469 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 23470 23471 /* 23472 * Build a message containing a tcp_ioc_abort_conn_t structure 23473 * which is filled in with information from acp and tp. 23474 */ 23475 static mblk_t * 23476 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 23477 { 23478 mblk_t *mp; 23479 tcp_ioc_abort_conn_t *tacp; 23480 23481 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 23482 if (mp == NULL) 23483 return (NULL); 23484 23485 mp->b_datap->db_type = M_CTL; 23486 23487 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 23488 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 23489 sizeof (uint32_t)); 23490 23491 tacp->ac_start = acp->ac_start; 23492 tacp->ac_end = acp->ac_end; 23493 tacp->ac_zoneid = acp->ac_zoneid; 23494 23495 if (acp->ac_local.ss_family == AF_INET) { 23496 tacp->ac_local.ss_family = AF_INET; 23497 tacp->ac_remote.ss_family = AF_INET; 23498 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 23499 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 23500 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 23501 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 23502 } else { 23503 tacp->ac_local.ss_family = AF_INET6; 23504 tacp->ac_remote.ss_family = AF_INET6; 23505 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 23506 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 23507 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 23508 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 23509 } 23510 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 23511 return (mp); 23512 } 23513 23514 /* 23515 * Print a tcp_ioc_abort_conn_t structure. 23516 */ 23517 static void 23518 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 23519 { 23520 char lbuf[128]; 23521 char rbuf[128]; 23522 sa_family_t af; 23523 in_port_t lport, rport; 23524 ushort_t logflags; 23525 23526 af = acp->ac_local.ss_family; 23527 23528 if (af == AF_INET) { 23529 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 23530 lbuf, 128); 23531 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 23532 rbuf, 128); 23533 lport = ntohs(TCP_AC_V4LPORT(acp)); 23534 rport = ntohs(TCP_AC_V4RPORT(acp)); 23535 } else { 23536 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 23537 lbuf, 128); 23538 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 23539 rbuf, 128); 23540 lport = ntohs(TCP_AC_V6LPORT(acp)); 23541 rport = ntohs(TCP_AC_V6RPORT(acp)); 23542 } 23543 23544 logflags = SL_TRACE | SL_NOTE; 23545 /* 23546 * Don't print this message to the console if the operation was done 23547 * to a non-global zone. 23548 */ 23549 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23550 logflags |= SL_CONSOLE; 23551 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 23552 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 23553 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 23554 acp->ac_start, acp->ac_end); 23555 } 23556 23557 /* 23558 * Called inside tcp_rput when a message built using 23559 * tcp_ioctl_abort_build_msg is put into a queue. 23560 * Note that when we get here there is no wildcard in acp any more. 23561 */ 23562 static void 23563 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 23564 { 23565 tcp_ioc_abort_conn_t *acp; 23566 23567 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 23568 if (tcp->tcp_state <= acp->ac_end) { 23569 /* 23570 * If we get here, we are already on the correct 23571 * squeue. This ioctl follows the following path 23572 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 23573 * ->tcp_ioctl_abort->squeue_fill (if on a 23574 * different squeue) 23575 */ 23576 int errcode; 23577 23578 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 23579 (void) tcp_clean_death(tcp, errcode, 26); 23580 } 23581 freemsg(mp); 23582 } 23583 23584 /* 23585 * Abort all matching connections on a hash chain. 23586 */ 23587 static int 23588 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 23589 boolean_t exact) 23590 { 23591 int nmatch, err = 0; 23592 tcp_t *tcp; 23593 MBLKP mp, last, listhead = NULL; 23594 conn_t *tconnp; 23595 connf_t *connfp = &ipcl_conn_fanout[index]; 23596 23597 startover: 23598 nmatch = 0; 23599 23600 mutex_enter(&connfp->connf_lock); 23601 for (tconnp = connfp->connf_head; tconnp != NULL; 23602 tconnp = tconnp->conn_next) { 23603 tcp = tconnp->conn_tcp; 23604 if (TCP_AC_MATCH(acp, tcp)) { 23605 CONN_INC_REF(tcp->tcp_connp); 23606 mp = tcp_ioctl_abort_build_msg(acp, tcp); 23607 if (mp == NULL) { 23608 err = ENOMEM; 23609 CONN_DEC_REF(tcp->tcp_connp); 23610 break; 23611 } 23612 mp->b_prev = (mblk_t *)tcp; 23613 23614 if (listhead == NULL) { 23615 listhead = mp; 23616 last = mp; 23617 } else { 23618 last->b_next = mp; 23619 last = mp; 23620 } 23621 nmatch++; 23622 if (exact) 23623 break; 23624 } 23625 23626 /* Avoid holding lock for too long. */ 23627 if (nmatch >= 500) 23628 break; 23629 } 23630 mutex_exit(&connfp->connf_lock); 23631 23632 /* Pass mp into the correct tcp */ 23633 while ((mp = listhead) != NULL) { 23634 listhead = listhead->b_next; 23635 tcp = (tcp_t *)mp->b_prev; 23636 mp->b_next = mp->b_prev = NULL; 23637 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 23638 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 23639 } 23640 23641 *count += nmatch; 23642 if (nmatch >= 500 && err == 0) 23643 goto startover; 23644 return (err); 23645 } 23646 23647 /* 23648 * Abort all connections that matches the attributes specified in acp. 23649 */ 23650 static int 23651 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 23652 { 23653 sa_family_t af; 23654 uint32_t ports; 23655 uint16_t *pports; 23656 int err = 0, count = 0; 23657 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 23658 int index = -1; 23659 ushort_t logflags; 23660 23661 af = acp->ac_local.ss_family; 23662 23663 if (af == AF_INET) { 23664 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 23665 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 23666 pports = (uint16_t *)&ports; 23667 pports[1] = TCP_AC_V4LPORT(acp); 23668 pports[0] = TCP_AC_V4RPORT(acp); 23669 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 23670 } 23671 } else { 23672 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 23673 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 23674 pports = (uint16_t *)&ports; 23675 pports[1] = TCP_AC_V6LPORT(acp); 23676 pports[0] = TCP_AC_V6RPORT(acp); 23677 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 23678 } 23679 } 23680 23681 /* 23682 * For cases where remote addr, local port, and remote port are non- 23683 * wildcards, tcp_ioctl_abort_bucket will only be called once. 23684 */ 23685 if (index != -1) { 23686 err = tcp_ioctl_abort_bucket(acp, index, 23687 &count, exact); 23688 } else { 23689 /* 23690 * loop through all entries for wildcard case 23691 */ 23692 for (index = 0; index < ipcl_conn_fanout_size; index++) { 23693 err = tcp_ioctl_abort_bucket(acp, index, 23694 &count, exact); 23695 if (err != 0) 23696 break; 23697 } 23698 } 23699 23700 logflags = SL_TRACE | SL_NOTE; 23701 /* 23702 * Don't print this message to the console if the operation was done 23703 * to a non-global zone. 23704 */ 23705 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23706 logflags |= SL_CONSOLE; 23707 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 23708 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 23709 if (err == 0 && count == 0) 23710 err = ENOENT; 23711 return (err); 23712 } 23713 23714 /* 23715 * Process the TCP_IOC_ABORT_CONN ioctl request. 23716 */ 23717 static void 23718 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 23719 { 23720 int err; 23721 IOCP iocp; 23722 MBLKP mp1; 23723 sa_family_t laf, raf; 23724 tcp_ioc_abort_conn_t *acp; 23725 zone_t *zptr; 23726 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 23727 23728 iocp = (IOCP)mp->b_rptr; 23729 23730 if ((mp1 = mp->b_cont) == NULL || 23731 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 23732 err = EINVAL; 23733 goto out; 23734 } 23735 23736 /* check permissions */ 23737 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 23738 err = EPERM; 23739 goto out; 23740 } 23741 23742 if (mp1->b_cont != NULL) { 23743 freemsg(mp1->b_cont); 23744 mp1->b_cont = NULL; 23745 } 23746 23747 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 23748 laf = acp->ac_local.ss_family; 23749 raf = acp->ac_remote.ss_family; 23750 23751 /* check that a zone with the supplied zoneid exists */ 23752 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 23753 zptr = zone_find_by_id(zoneid); 23754 if (zptr != NULL) { 23755 zone_rele(zptr); 23756 } else { 23757 err = EINVAL; 23758 goto out; 23759 } 23760 } 23761 23762 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 23763 acp->ac_start > acp->ac_end || laf != raf || 23764 (laf != AF_INET && laf != AF_INET6)) { 23765 err = EINVAL; 23766 goto out; 23767 } 23768 23769 tcp_ioctl_abort_dump(acp); 23770 err = tcp_ioctl_abort(acp); 23771 23772 out: 23773 if (mp1 != NULL) { 23774 freemsg(mp1); 23775 mp->b_cont = NULL; 23776 } 23777 23778 if (err != 0) 23779 miocnak(q, mp, 0, err); 23780 else 23781 miocack(q, mp, 0, 0); 23782 } 23783 23784 /* 23785 * tcp_time_wait_processing() handles processing of incoming packets when 23786 * the tcp is in the TIME_WAIT state. 23787 * A TIME_WAIT tcp that has an associated open TCP stream is never put 23788 * on the time wait list. 23789 */ 23790 void 23791 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 23792 uint32_t seg_ack, int seg_len, tcph_t *tcph) 23793 { 23794 int32_t bytes_acked; 23795 int32_t gap; 23796 int32_t rgap; 23797 tcp_opt_t tcpopt; 23798 uint_t flags; 23799 uint32_t new_swnd = 0; 23800 conn_t *connp; 23801 23802 BUMP_LOCAL(tcp->tcp_ibsegs); 23803 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 23804 23805 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 23806 new_swnd = BE16_TO_U16(tcph->th_win) << 23807 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 23808 if (tcp->tcp_snd_ts_ok) { 23809 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 23810 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 23811 tcp->tcp_rnxt, TH_ACK); 23812 goto done; 23813 } 23814 } 23815 gap = seg_seq - tcp->tcp_rnxt; 23816 rgap = tcp->tcp_rwnd - (gap + seg_len); 23817 if (gap < 0) { 23818 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 23819 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 23820 (seg_len > -gap ? -gap : seg_len)); 23821 seg_len += gap; 23822 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 23823 if (flags & TH_RST) { 23824 goto done; 23825 } 23826 if ((flags & TH_FIN) && seg_len == -1) { 23827 /* 23828 * When TCP receives a duplicate FIN in 23829 * TIME_WAIT state, restart the 2 MSL timer. 23830 * See page 73 in RFC 793. Make sure this TCP 23831 * is already on the TIME_WAIT list. If not, 23832 * just restart the timer. 23833 */ 23834 if (TCP_IS_DETACHED(tcp)) { 23835 tcp_time_wait_remove(tcp, NULL); 23836 tcp_time_wait_append(tcp); 23837 TCP_DBGSTAT(tcp_rput_time_wait); 23838 } else { 23839 ASSERT(tcp != NULL); 23840 TCP_TIMER_RESTART(tcp, 23841 tcp_time_wait_interval); 23842 } 23843 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 23844 tcp->tcp_rnxt, TH_ACK); 23845 goto done; 23846 } 23847 flags |= TH_ACK_NEEDED; 23848 seg_len = 0; 23849 goto process_ack; 23850 } 23851 23852 /* Fix seg_seq, and chew the gap off the front. */ 23853 seg_seq = tcp->tcp_rnxt; 23854 } 23855 23856 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 23857 /* 23858 * Make sure that when we accept the connection, pick 23859 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 23860 * old connection. 23861 * 23862 * The next ISS generated is equal to tcp_iss_incr_extra 23863 * + ISS_INCR/2 + other components depending on the 23864 * value of tcp_strong_iss. We pre-calculate the new 23865 * ISS here and compare with tcp_snxt to determine if 23866 * we need to make adjustment to tcp_iss_incr_extra. 23867 * 23868 * The above calculation is ugly and is a 23869 * waste of CPU cycles... 23870 */ 23871 uint32_t new_iss = tcp_iss_incr_extra; 23872 int32_t adj; 23873 23874 switch (tcp_strong_iss) { 23875 case 2: { 23876 /* Add time and MD5 components. */ 23877 uint32_t answer[4]; 23878 struct { 23879 uint32_t ports; 23880 in6_addr_t src; 23881 in6_addr_t dst; 23882 } arg; 23883 MD5_CTX context; 23884 23885 mutex_enter(&tcp_iss_key_lock); 23886 context = tcp_iss_key; 23887 mutex_exit(&tcp_iss_key_lock); 23888 arg.ports = tcp->tcp_ports; 23889 /* We use MAPPED addresses in tcp_iss_init */ 23890 arg.src = tcp->tcp_ip_src_v6; 23891 if (tcp->tcp_ipversion == IPV4_VERSION) { 23892 IN6_IPADDR_TO_V4MAPPED( 23893 tcp->tcp_ipha->ipha_dst, 23894 &arg.dst); 23895 } else { 23896 arg.dst = 23897 tcp->tcp_ip6h->ip6_dst; 23898 } 23899 MD5Update(&context, (uchar_t *)&arg, 23900 sizeof (arg)); 23901 MD5Final((uchar_t *)answer, &context); 23902 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 23903 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 23904 break; 23905 } 23906 case 1: 23907 /* Add time component and min random (i.e. 1). */ 23908 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 23909 break; 23910 default: 23911 /* Add only time component. */ 23912 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23913 break; 23914 } 23915 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 23916 /* 23917 * New ISS not guaranteed to be ISS_INCR/2 23918 * ahead of the current tcp_snxt, so add the 23919 * difference to tcp_iss_incr_extra. 23920 */ 23921 tcp_iss_incr_extra += adj; 23922 } 23923 /* 23924 * If tcp_clean_death() can not perform the task now, 23925 * drop the SYN packet and let the other side re-xmit. 23926 * Otherwise pass the SYN packet back in, since the 23927 * old tcp state has been cleaned up or freed. 23928 */ 23929 if (tcp_clean_death(tcp, 0, 27) == -1) 23930 goto done; 23931 /* 23932 * We will come back to tcp_rput_data 23933 * on the global queue. Packets destined 23934 * for the global queue will be checked 23935 * with global policy. But the policy for 23936 * this packet has already been checked as 23937 * this was destined for the detached 23938 * connection. We need to bypass policy 23939 * check this time by attaching a dummy 23940 * ipsec_in with ipsec_in_dont_check set. 23941 */ 23942 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 23943 NULL) { 23944 TCP_STAT(tcp_time_wait_syn_success); 23945 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 23946 return; 23947 } 23948 goto done; 23949 } 23950 23951 /* 23952 * rgap is the amount of stuff received out of window. A negative 23953 * value is the amount out of window. 23954 */ 23955 if (rgap < 0) { 23956 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 23957 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 23958 /* Fix seg_len and make sure there is something left. */ 23959 seg_len += rgap; 23960 if (seg_len <= 0) { 23961 if (flags & TH_RST) { 23962 goto done; 23963 } 23964 flags |= TH_ACK_NEEDED; 23965 seg_len = 0; 23966 goto process_ack; 23967 } 23968 } 23969 /* 23970 * Check whether we can update tcp_ts_recent. This test is 23971 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 23972 * Extensions for High Performance: An Update", Internet Draft. 23973 */ 23974 if (tcp->tcp_snd_ts_ok && 23975 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 23976 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 23977 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 23978 tcp->tcp_last_rcv_lbolt = lbolt64; 23979 } 23980 23981 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 23982 /* Always ack out of order packets */ 23983 flags |= TH_ACK_NEEDED; 23984 seg_len = 0; 23985 } else if (seg_len > 0) { 23986 BUMP_MIB(&tcp_mib, tcpInClosed); 23987 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 23988 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 23989 } 23990 if (flags & TH_RST) { 23991 (void) tcp_clean_death(tcp, 0, 28); 23992 goto done; 23993 } 23994 if (flags & TH_SYN) { 23995 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 23996 TH_RST|TH_ACK); 23997 /* 23998 * Do not delete the TCP structure if it is in 23999 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24000 */ 24001 goto done; 24002 } 24003 process_ack: 24004 if (flags & TH_ACK) { 24005 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24006 if (bytes_acked <= 0) { 24007 if (bytes_acked == 0 && seg_len == 0 && 24008 new_swnd == tcp->tcp_swnd) 24009 BUMP_MIB(&tcp_mib, tcpInDupAck); 24010 } else { 24011 /* Acks something not sent */ 24012 flags |= TH_ACK_NEEDED; 24013 } 24014 } 24015 if (flags & TH_ACK_NEEDED) { 24016 /* 24017 * Time to send an ack for some reason. 24018 */ 24019 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24020 tcp->tcp_rnxt, TH_ACK); 24021 } 24022 done: 24023 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24024 DB_CKSUMSTART(mp) = 0; 24025 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24026 TCP_STAT(tcp_time_wait_syn_fail); 24027 } 24028 freemsg(mp); 24029 } 24030 24031 /* 24032 * Return zero if the buffers are identical in length and content. 24033 * This is used for comparing extension header buffers. 24034 * Note that an extension header would be declared different 24035 * even if all that changed was the next header value in that header i.e. 24036 * what really changed is the next extension header. 24037 */ 24038 static boolean_t 24039 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen) 24040 { 24041 if (!b_valid) 24042 blen = 0; 24043 24044 if (alen != blen) 24045 return (B_TRUE); 24046 if (alen == 0) 24047 return (B_FALSE); /* Both zero length */ 24048 return (bcmp(a, b, alen)); 24049 } 24050 24051 /* 24052 * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok. 24053 * Return B_FALSE if memory allocation fails - don't change any state! 24054 */ 24055 static boolean_t 24056 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24057 void *src, uint_t srclen) 24058 { 24059 void *dst; 24060 24061 if (!src_valid) 24062 srclen = 0; 24063 24064 ASSERT(*dstlenp == 0); 24065 if (src != NULL && srclen != 0) { 24066 dst = mi_alloc(srclen, BPRI_MED); 24067 if (dst == NULL) 24068 return (B_FALSE); 24069 } else { 24070 dst = NULL; 24071 } 24072 if (*dstp != NULL) { 24073 mi_free(*dstp); 24074 *dstp = NULL; 24075 *dstlenp = 0; 24076 } 24077 *dstp = dst; 24078 if (dst != NULL) 24079 *dstlenp = srclen; 24080 else 24081 *dstlenp = 0; 24082 return (B_TRUE); 24083 } 24084 24085 /* 24086 * Replace what is in *dst, *dstlen with the source. 24087 * Assumes tcp_allocbuf has already been called. 24088 */ 24089 static void 24090 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24091 void *src, uint_t srclen) 24092 { 24093 if (!src_valid) 24094 srclen = 0; 24095 24096 ASSERT(*dstlenp == srclen); 24097 if (src != NULL && srclen != 0) { 24098 bcopy(src, *dstp, srclen); 24099 } 24100 } 24101 24102 /* 24103 * Allocate a T_SVR4_OPTMGMT_REQ. 24104 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24105 * that tcp_rput_other can drop the acks. 24106 */ 24107 static mblk_t * 24108 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24109 { 24110 mblk_t *mp; 24111 struct T_optmgmt_req *tor; 24112 struct opthdr *oh; 24113 uint_t size; 24114 char *optptr; 24115 24116 size = sizeof (*tor) + sizeof (*oh) + optlen; 24117 mp = allocb(size, BPRI_MED); 24118 if (mp == NULL) 24119 return (NULL); 24120 24121 mp->b_wptr += size; 24122 mp->b_datap->db_type = M_PROTO; 24123 tor = (struct T_optmgmt_req *)mp->b_rptr; 24124 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24125 tor->MGMT_flags = T_NEGOTIATE; 24126 tor->OPT_length = sizeof (*oh) + optlen; 24127 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24128 24129 oh = (struct opthdr *)&tor[1]; 24130 oh->level = level; 24131 oh->name = cmd; 24132 oh->len = optlen; 24133 if (optlen != 0) { 24134 optptr = (char *)&oh[1]; 24135 bcopy(opt, optptr, optlen); 24136 } 24137 return (mp); 24138 } 24139 24140 /* 24141 * TCP Timers Implementation. 24142 */ 24143 timeout_id_t 24144 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24145 { 24146 mblk_t *mp; 24147 tcp_timer_t *tcpt; 24148 tcp_t *tcp = connp->conn_tcp; 24149 24150 ASSERT(connp->conn_sqp != NULL); 24151 24152 TCP_DBGSTAT(tcp_timeout_calls); 24153 24154 if (tcp->tcp_timercache == NULL) { 24155 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24156 } else { 24157 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24158 mp = tcp->tcp_timercache; 24159 tcp->tcp_timercache = mp->b_next; 24160 mp->b_next = NULL; 24161 ASSERT(mp->b_wptr == NULL); 24162 } 24163 24164 CONN_INC_REF(connp); 24165 tcpt = (tcp_timer_t *)mp->b_rptr; 24166 tcpt->connp = connp; 24167 tcpt->tcpt_proc = f; 24168 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24169 return ((timeout_id_t)mp); 24170 } 24171 24172 static void 24173 tcp_timer_callback(void *arg) 24174 { 24175 mblk_t *mp = (mblk_t *)arg; 24176 tcp_timer_t *tcpt; 24177 conn_t *connp; 24178 24179 tcpt = (tcp_timer_t *)mp->b_rptr; 24180 connp = tcpt->connp; 24181 squeue_fill(connp->conn_sqp, mp, 24182 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24183 } 24184 24185 static void 24186 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24187 { 24188 tcp_timer_t *tcpt; 24189 conn_t *connp = (conn_t *)arg; 24190 tcp_t *tcp = connp->conn_tcp; 24191 24192 tcpt = (tcp_timer_t *)mp->b_rptr; 24193 ASSERT(connp == tcpt->connp); 24194 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24195 24196 /* 24197 * If the TCP has reached the closed state, don't proceed any 24198 * further. This TCP logically does not exist on the system. 24199 * tcpt_proc could for example access queues, that have already 24200 * been qprocoff'ed off. Also see comments at the start of tcp_input 24201 */ 24202 if (tcp->tcp_state != TCPS_CLOSED) { 24203 (*tcpt->tcpt_proc)(connp); 24204 } else { 24205 tcp->tcp_timer_tid = 0; 24206 } 24207 tcp_timer_free(connp->conn_tcp, mp); 24208 } 24209 24210 /* 24211 * There is potential race with untimeout and the handler firing at the same 24212 * time. The mblock may be freed by the handler while we are trying to use 24213 * it. But since both should execute on the same squeue, this race should not 24214 * occur. 24215 */ 24216 clock_t 24217 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24218 { 24219 mblk_t *mp = (mblk_t *)id; 24220 tcp_timer_t *tcpt; 24221 clock_t delta; 24222 24223 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24224 24225 if (mp == NULL) 24226 return (-1); 24227 24228 tcpt = (tcp_timer_t *)mp->b_rptr; 24229 ASSERT(tcpt->connp == connp); 24230 24231 delta = untimeout(tcpt->tcpt_tid); 24232 24233 if (delta >= 0) { 24234 TCP_DBGSTAT(tcp_timeout_canceled); 24235 tcp_timer_free(connp->conn_tcp, mp); 24236 CONN_DEC_REF(connp); 24237 } 24238 24239 return (delta); 24240 } 24241 24242 /* 24243 * Allocate space for the timer event. The allocation looks like mblk, but it is 24244 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24245 * 24246 * Dealing with failures: If we can't allocate from the timer cache we try 24247 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24248 * points to b_rptr. 24249 * If we can't allocate anything using allocb_tryhard(), we perform a last 24250 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24251 * save the actual allocation size in b_datap. 24252 */ 24253 mblk_t * 24254 tcp_timermp_alloc(int kmflags) 24255 { 24256 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24257 kmflags & ~KM_PANIC); 24258 24259 if (mp != NULL) { 24260 mp->b_next = mp->b_prev = NULL; 24261 mp->b_rptr = (uchar_t *)(&mp[1]); 24262 mp->b_wptr = NULL; 24263 mp->b_datap = NULL; 24264 mp->b_queue = NULL; 24265 } else if (kmflags & KM_PANIC) { 24266 /* 24267 * Failed to allocate memory for the timer. Try allocating from 24268 * dblock caches. 24269 */ 24270 TCP_STAT(tcp_timermp_allocfail); 24271 mp = allocb_tryhard(sizeof (tcp_timer_t)); 24272 if (mp == NULL) { 24273 size_t size = 0; 24274 /* 24275 * Memory is really low. Try tryhard allocation. 24276 */ 24277 TCP_STAT(tcp_timermp_allocdblfail); 24278 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 24279 sizeof (tcp_timer_t), &size, kmflags); 24280 mp->b_rptr = (uchar_t *)(&mp[1]); 24281 mp->b_next = mp->b_prev = NULL; 24282 mp->b_wptr = (uchar_t *)-1; 24283 mp->b_datap = (dblk_t *)size; 24284 mp->b_queue = NULL; 24285 } 24286 ASSERT(mp->b_wptr != NULL); 24287 } 24288 TCP_DBGSTAT(tcp_timermp_alloced); 24289 24290 return (mp); 24291 } 24292 24293 /* 24294 * Free per-tcp timer cache. 24295 * It can only contain entries from tcp_timercache. 24296 */ 24297 void 24298 tcp_timermp_free(tcp_t *tcp) 24299 { 24300 mblk_t *mp; 24301 24302 while ((mp = tcp->tcp_timercache) != NULL) { 24303 ASSERT(mp->b_wptr == NULL); 24304 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 24305 kmem_cache_free(tcp_timercache, mp); 24306 } 24307 } 24308 24309 /* 24310 * Free timer event. Put it on the per-tcp timer cache if there is not too many 24311 * events there already (currently at most two events are cached). 24312 * If the event is not allocated from the timer cache, free it right away. 24313 */ 24314 static void 24315 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 24316 { 24317 mblk_t *mp1 = tcp->tcp_timercache; 24318 24319 if (mp->b_wptr != NULL) { 24320 /* 24321 * This allocation is not from a timer cache, free it right 24322 * away. 24323 */ 24324 if (mp->b_wptr != (uchar_t *)-1) 24325 freeb(mp); 24326 else 24327 kmem_free(mp, (size_t)mp->b_datap); 24328 } else if (mp1 == NULL || mp1->b_next == NULL) { 24329 /* Cache this timer block for future allocations */ 24330 mp->b_rptr = (uchar_t *)(&mp[1]); 24331 mp->b_next = mp1; 24332 tcp->tcp_timercache = mp; 24333 } else { 24334 kmem_cache_free(tcp_timercache, mp); 24335 TCP_DBGSTAT(tcp_timermp_freed); 24336 } 24337 } 24338 24339 /* 24340 * End of TCP Timers implementation. 24341 */ 24342 24343 /* 24344 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 24345 * on the specified backing STREAMS q. Note, the caller may make the 24346 * decision to call based on the tcp_t.tcp_flow_stopped value which 24347 * when check outside the q's lock is only an advisory check ... 24348 */ 24349 24350 void 24351 tcp_setqfull(tcp_t *tcp) 24352 { 24353 queue_t *q = tcp->tcp_wq; 24354 24355 if (!(q->q_flag & QFULL)) { 24356 mutex_enter(QLOCK(q)); 24357 if (!(q->q_flag & QFULL)) { 24358 /* still need to set QFULL */ 24359 q->q_flag |= QFULL; 24360 tcp->tcp_flow_stopped = B_TRUE; 24361 mutex_exit(QLOCK(q)); 24362 TCP_STAT(tcp_flwctl_on); 24363 } else { 24364 mutex_exit(QLOCK(q)); 24365 } 24366 } 24367 } 24368 24369 void 24370 tcp_clrqfull(tcp_t *tcp) 24371 { 24372 queue_t *q = tcp->tcp_wq; 24373 24374 if (q->q_flag & QFULL) { 24375 mutex_enter(QLOCK(q)); 24376 if (q->q_flag & QFULL) { 24377 q->q_flag &= ~QFULL; 24378 tcp->tcp_flow_stopped = B_FALSE; 24379 mutex_exit(QLOCK(q)); 24380 if (q->q_flag & QWANTW) 24381 qbackenable(q, 0); 24382 } else { 24383 mutex_exit(QLOCK(q)); 24384 } 24385 } 24386 } 24387 24388 /* 24389 * TCP Kstats implementation 24390 */ 24391 static void 24392 tcp_kstat_init(void) 24393 { 24394 tcp_named_kstat_t template = { 24395 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 24396 { "rtoMin", KSTAT_DATA_INT32, 0 }, 24397 { "rtoMax", KSTAT_DATA_INT32, 0 }, 24398 { "maxConn", KSTAT_DATA_INT32, 0 }, 24399 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 24400 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 24401 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 24402 { "estabResets", KSTAT_DATA_UINT32, 0 }, 24403 { "currEstab", KSTAT_DATA_UINT32, 0 }, 24404 { "inSegs", KSTAT_DATA_UINT32, 0 }, 24405 { "outSegs", KSTAT_DATA_UINT32, 0 }, 24406 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 24407 { "connTableSize", KSTAT_DATA_INT32, 0 }, 24408 { "outRsts", KSTAT_DATA_UINT32, 0 }, 24409 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 24410 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 24411 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 24412 { "outAck", KSTAT_DATA_UINT32, 0 }, 24413 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 24414 { "outUrg", KSTAT_DATA_UINT32, 0 }, 24415 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 24416 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 24417 { "outControl", KSTAT_DATA_UINT32, 0 }, 24418 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 24419 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 24420 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 24421 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 24422 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 24423 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 24424 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 24425 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 24426 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 24427 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 24428 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 24429 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 24430 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 24431 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 24432 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 24433 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 24434 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 24435 { "inClosed", KSTAT_DATA_UINT32, 0 }, 24436 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 24437 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 24438 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 24439 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 24440 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 24441 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 24442 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 24443 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 24444 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 24445 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 24446 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 24447 { "connTableSize6", KSTAT_DATA_INT32, 0 } 24448 }; 24449 24450 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 24451 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 24452 24453 if (tcp_mibkp == NULL) 24454 return; 24455 24456 template.rtoAlgorithm.value.ui32 = 4; 24457 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 24458 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 24459 template.maxConn.value.i32 = -1; 24460 24461 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 24462 24463 tcp_mibkp->ks_update = tcp_kstat_update; 24464 24465 kstat_install(tcp_mibkp); 24466 } 24467 24468 static void 24469 tcp_kstat_fini(void) 24470 { 24471 24472 if (tcp_mibkp != NULL) { 24473 kstat_delete(tcp_mibkp); 24474 tcp_mibkp = NULL; 24475 } 24476 } 24477 24478 static int 24479 tcp_kstat_update(kstat_t *kp, int rw) 24480 { 24481 tcp_named_kstat_t *tcpkp; 24482 tcp_t *tcp; 24483 connf_t *connfp; 24484 conn_t *connp; 24485 int i; 24486 24487 if (!kp || !kp->ks_data) 24488 return (EIO); 24489 24490 if (rw == KSTAT_WRITE) 24491 return (EACCES); 24492 24493 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 24494 24495 tcpkp->currEstab.value.ui32 = 0; 24496 24497 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24498 connfp = &ipcl_globalhash_fanout[i]; 24499 connp = NULL; 24500 while ((connp = 24501 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24502 tcp = connp->conn_tcp; 24503 switch (tcp_snmp_state(tcp)) { 24504 case MIB2_TCP_established: 24505 case MIB2_TCP_closeWait: 24506 tcpkp->currEstab.value.ui32++; 24507 break; 24508 } 24509 } 24510 } 24511 24512 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 24513 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 24514 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 24515 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 24516 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 24517 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 24518 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 24519 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 24520 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 24521 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 24522 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 24523 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 24524 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 24525 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 24526 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 24527 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 24528 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 24529 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 24530 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 24531 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 24532 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 24533 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 24534 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 24535 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 24536 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 24537 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 24538 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 24539 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 24540 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 24541 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 24542 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 24543 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 24544 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 24545 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 24546 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 24547 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 24548 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 24549 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 24550 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 24551 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 24552 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 24553 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 24554 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 24555 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 24556 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 24557 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 24558 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 24559 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 24560 24561 return (0); 24562 } 24563 24564 void 24565 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 24566 { 24567 uint16_t hdr_len; 24568 ipha_t *ipha; 24569 uint8_t *nexthdrp; 24570 tcph_t *tcph; 24571 24572 /* Already has an eager */ 24573 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24574 TCP_STAT(tcp_reinput_syn); 24575 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 24576 connp, SQTAG_TCP_REINPUT_EAGER); 24577 return; 24578 } 24579 24580 switch (IPH_HDR_VERSION(mp->b_rptr)) { 24581 case IPV4_VERSION: 24582 ipha = (ipha_t *)mp->b_rptr; 24583 hdr_len = IPH_HDR_LENGTH(ipha); 24584 break; 24585 case IPV6_VERSION: 24586 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 24587 &hdr_len, &nexthdrp)) { 24588 CONN_DEC_REF(connp); 24589 freemsg(mp); 24590 return; 24591 } 24592 break; 24593 } 24594 24595 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 24596 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 24597 mp->b_datap->db_struioflag |= STRUIO_EAGER; 24598 DB_CKSUMSTART(mp) = (intptr_t)sqp; 24599 } 24600 24601 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 24602 SQTAG_TCP_REINPUT); 24603 } 24604 24605 static squeue_func_t 24606 tcp_squeue_switch(int val) 24607 { 24608 squeue_func_t rval = squeue_fill; 24609 24610 switch (val) { 24611 case 1: 24612 rval = squeue_enter_nodrain; 24613 break; 24614 case 2: 24615 rval = squeue_enter; 24616 break; 24617 default: 24618 break; 24619 } 24620 return (rval); 24621 } 24622 24623 static void 24624 tcp_squeue_add(squeue_t *sqp) 24625 { 24626 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 24627 sizeof (tcp_squeue_priv_t), KM_SLEEP); 24628 24629 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 24630 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 24631 sqp, TCP_TIME_WAIT_DELAY); 24632 } 24633