xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision 516aa12c0e0be4dde28b9fc2b3d928230a8e4c42)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsun.h>
30 #include <sys/strsubr.h>
31 #include <sys/stropts.h>
32 #include <sys/strlog.h>
33 #define	_SUN_TPI_VERSION 2
34 #include <sys/tihdr.h>
35 #include <sys/timod.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/suntpi.h>
39 #include <sys/xti_inet.h>
40 #include <sys/cmn_err.h>
41 #include <sys/debug.h>
42 #include <sys/sdt.h>
43 #include <sys/vtrace.h>
44 #include <sys/kmem.h>
45 #include <sys/ethernet.h>
46 #include <sys/cpuvar.h>
47 #include <sys/dlpi.h>
48 #include <sys/pattr.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/zone.h>
52 #include <sys/sunldi.h>
53 
54 #include <sys/errno.h>
55 #include <sys/signal.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sockio.h>
59 #include <sys/isa_defs.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/uio.h>
63 #include <sys/systm.h>
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <netinet/ip6.h>
67 #include <netinet/icmp6.h>
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <inet/ipsec_impl.h>
71 
72 #include <inet/common.h>
73 #include <inet/ip.h>
74 #include <inet/ip_impl.h>
75 #include <inet/ip6.h>
76 #include <inet/ip_ndp.h>
77 #include <inet/proto_set.h>
78 #include <inet/mib2.h>
79 #include <inet/optcom.h>
80 #include <inet/snmpcom.h>
81 #include <inet/kstatcom.h>
82 #include <inet/tcp.h>
83 #include <inet/tcp_impl.h>
84 #include <inet/tcp_cluster.h>
85 #include <inet/udp_impl.h>
86 #include <net/pfkeyv2.h>
87 #include <inet/ipdrop.h>
88 
89 #include <inet/ipclassifier.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_if.h>
93 #include <inet/ipp_common.h>
94 #include <inet/ip_rts.h>
95 #include <inet/ip_netinfo.h>
96 #include <sys/squeue_impl.h>
97 #include <sys/squeue.h>
98 #include <sys/tsol/label.h>
99 #include <sys/tsol/tnet.h>
100 #include <rpc/pmap_prot.h>
101 #include <sys/callo.h>
102 
103 /*
104  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
105  *
106  * (Read the detailed design doc in PSARC case directory)
107  *
108  * The entire tcp state is contained in tcp_t and conn_t structure
109  * which are allocated in tandem using ipcl_conn_create() and passing
110  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
111  * the references on the tcp_t. The tcp_t structure is never compressed
112  * and packets always land on the correct TCP perimeter from the time
113  * eager is created till the time tcp_t dies (as such the old mentat
114  * TCP global queue is not used for detached state and no IPSEC checking
115  * is required). The global queue is still allocated to send out resets
116  * for connection which have no listeners and IP directly calls
117  * tcp_xmit_listeners_reset() which does any policy check.
118  *
119  * Protection and Synchronisation mechanism:
120  *
121  * The tcp data structure does not use any kind of lock for protecting
122  * its state but instead uses 'squeues' for mutual exclusion from various
123  * read and write side threads. To access a tcp member, the thread should
124  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
125  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
126  * can pass any tcp function having prototype of edesc_t as argument
127  * (different from traditional STREAMs model where packets come in only
128  * designated entry points). The list of functions that can be directly
129  * called via squeue are listed before the usual function prototype.
130  *
131  * Referencing:
132  *
133  * TCP is MT-Hot and we use a reference based scheme to make sure that the
134  * tcp structure doesn't disappear when its needed. When the application
135  * creates an outgoing connection or accepts an incoming connection, we
136  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
137  * The IP reference is just a symbolic reference since ip_tcpclose()
138  * looks at tcp structure after tcp_close_output() returns which could
139  * have dropped the last TCP reference. So as long as the connection is
140  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
141  * conn_t. The classifier puts its own reference when the connection is
142  * inserted in listen or connected hash. Anytime a thread needs to enter
143  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
144  * on write side or by doing a classify on read side and then puts a
145  * reference on the conn before doing squeue_enter/tryenter/fill. For
146  * read side, the classifier itself puts the reference under fanout lock
147  * to make sure that tcp can't disappear before it gets processed. The
148  * squeue will drop this reference automatically so the called function
149  * doesn't have to do a DEC_REF.
150  *
151  * Opening a new connection:
152  *
153  * The outgoing connection open is pretty simple. tcp_open() does the
154  * work in creating the conn/tcp structure and initializing it. The
155  * squeue assignment is done based on the CPU the application
156  * is running on. So for outbound connections, processing is always done
157  * on application CPU which might be different from the incoming CPU
158  * being interrupted by the NIC. An optimal way would be to figure out
159  * the NIC <-> CPU binding at listen time, and assign the outgoing
160  * connection to the squeue attached to the CPU that will be interrupted
161  * for incoming packets (we know the NIC based on the bind IP address).
162  * This might seem like a problem if more data is going out but the
163  * fact is that in most cases the transmit is ACK driven transmit where
164  * the outgoing data normally sits on TCP's xmit queue waiting to be
165  * transmitted.
166  *
167  * Accepting a connection:
168  *
169  * This is a more interesting case because of various races involved in
170  * establishing a eager in its own perimeter. Read the meta comment on
171  * top of tcp_input_listener(). But briefly, the squeue is picked by
172  * ip_fanout based on the ring or the sender (if loopback).
173  *
174  * Closing a connection:
175  *
176  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
177  * via squeue to do the close and mark the tcp as detached if the connection
178  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
179  * reference but tcp_close() drop IP's reference always. So if tcp was
180  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
181  * and 1 because it is in classifier's connected hash. This is the condition
182  * we use to determine that its OK to clean up the tcp outside of squeue
183  * when time wait expires (check the ref under fanout and conn_lock and
184  * if it is 2, remove it from fanout hash and kill it).
185  *
186  * Although close just drops the necessary references and marks the
187  * tcp_detached state, tcp_close needs to know the tcp_detached has been
188  * set (under squeue) before letting the STREAM go away (because a
189  * inbound packet might attempt to go up the STREAM while the close
190  * has happened and tcp_detached is not set). So a special lock and
191  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
192  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
193  * tcp_detached.
194  *
195  * Special provisions and fast paths:
196  *
197  * We make special provisions for sockfs by marking tcp_issocket
198  * whenever we have only sockfs on top of TCP. This allows us to skip
199  * putting the tcp in acceptor hash since a sockfs listener can never
200  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
201  * since eager has already been allocated and the accept now happens
202  * on acceptor STREAM. There is a big blob of comment on top of
203  * tcp_input_listener explaining the new accept. When socket is POP'd,
204  * sockfs sends us an ioctl to mark the fact and we go back to old
205  * behaviour. Once tcp_issocket is unset, its never set for the
206  * life of that connection.
207  *
208  * IPsec notes :
209  *
210  * Since a packet is always executed on the correct TCP perimeter
211  * all IPsec processing is defered to IP including checking new
212  * connections and setting IPSEC policies for new connection. The
213  * only exception is tcp_xmit_listeners_reset() which is called
214  * directly from IP and needs to policy check to see if TH_RST
215  * can be sent out.
216  */
217 
218 /*
219  * Values for squeue switch:
220  * 1: SQ_NODRAIN
221  * 2: SQ_PROCESS
222  * 3: SQ_FILL
223  */
224 int tcp_squeue_wput = 2;	/* /etc/systems */
225 int tcp_squeue_flag;
226 
227 /*
228  * To prevent memory hog, limit the number of entries in tcp_free_list
229  * to 1% of available memory / number of cpus
230  */
231 uint_t tcp_free_list_max_cnt = 0;
232 
233 #define	TCP_XMIT_LOWATER	4096
234 #define	TCP_XMIT_HIWATER	49152
235 #define	TCP_RECV_LOWATER	2048
236 #define	TCP_RECV_HIWATER	128000
237 
238 #define	TIDUSZ	4096	/* transport interface data unit size */
239 
240 /*
241  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
242  */
243 #define	TCP_ACCEPTOR_FANOUT_SIZE		256
244 
245 #ifdef	_ILP32
246 #define	TCP_ACCEPTOR_HASH(accid)					\
247 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
248 #else
249 #define	TCP_ACCEPTOR_HASH(accid)					\
250 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
251 #endif	/* _ILP32 */
252 
253 /* Minimum number of connections per listener. */
254 static uint32_t tcp_min_conn_listener = 2;
255 
256 uint32_t tcp_early_abort = 30;
257 
258 /* TCP Timer control structure */
259 typedef struct tcpt_s {
260 	pfv_t	tcpt_pfv;	/* The routine we are to call */
261 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
262 } tcpt_t;
263 
264 /*
265  * Functions called directly via squeue having a prototype of edesc_t.
266  */
267 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
268     ip_recv_attr_t *ira);
269 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
270     ip_recv_attr_t *ira);
271 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
272     ip_recv_attr_t *dummy);
273 
274 
275 /* Prototype for TCP functions */
276 static void	tcp_random_init(void);
277 int		tcp_random(void);
278 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
279 		    in_port_t dstport, uint_t srcid);
280 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
281 		    in_port_t dstport, uint32_t flowinfo,
282 		    uint_t srcid, uint32_t scope_id);
283 static void	tcp_iss_init(tcp_t *tcp);
284 static void	tcp_reinit(tcp_t *tcp);
285 static void	tcp_reinit_values(tcp_t *tcp);
286 
287 static void	tcp_wsrv(queue_t *q);
288 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
289 static void	tcp_update_zcopy(tcp_t *tcp);
290 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
291     ixa_notify_arg_t);
292 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
293 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
294 
295 static int	tcp_squeue_switch(int);
296 
297 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
298 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
299 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
300 
301 static void	tcp_squeue_add(squeue_t *);
302 
303 struct module_info tcp_rinfo =  {
304 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
305 };
306 
307 static struct module_info tcp_winfo =  {
308 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
309 };
310 
311 /*
312  * Entry points for TCP as a device. The normal case which supports
313  * the TCP functionality.
314  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
315  */
316 struct qinit tcp_rinitv4 = {
317 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
318 };
319 
320 struct qinit tcp_rinitv6 = {
321 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
322 };
323 
324 struct qinit tcp_winit = {
325 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
326 };
327 
328 /* Initial entry point for TCP in socket mode. */
329 struct qinit tcp_sock_winit = {
330 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
331 };
332 
333 /* TCP entry point during fallback */
334 struct qinit tcp_fallback_sock_winit = {
335 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
336 };
337 
338 /*
339  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
340  * an accept. Avoid allocating data structures since eager has already
341  * been created.
342  */
343 struct qinit tcp_acceptor_rinit = {
344 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
345 };
346 
347 struct qinit tcp_acceptor_winit = {
348 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
349 };
350 
351 /* For AF_INET aka /dev/tcp */
352 struct streamtab tcpinfov4 = {
353 	&tcp_rinitv4, &tcp_winit
354 };
355 
356 /* For AF_INET6 aka /dev/tcp6 */
357 struct streamtab tcpinfov6 = {
358 	&tcp_rinitv6, &tcp_winit
359 };
360 
361 /*
362  * Following assumes TPI alignment requirements stay along 32 bit
363  * boundaries
364  */
365 #define	ROUNDUP32(x) \
366 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
367 
368 /* Template for response to info request. */
369 struct T_info_ack tcp_g_t_info_ack = {
370 	T_INFO_ACK,		/* PRIM_type */
371 	0,			/* TSDU_size */
372 	T_INFINITE,		/* ETSDU_size */
373 	T_INVALID,		/* CDATA_size */
374 	T_INVALID,		/* DDATA_size */
375 	sizeof (sin_t),		/* ADDR_size */
376 	0,			/* OPT_size - not initialized here */
377 	TIDUSZ,			/* TIDU_size */
378 	T_COTS_ORD,		/* SERV_type */
379 	TCPS_IDLE,		/* CURRENT_state */
380 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
381 };
382 
383 struct T_info_ack tcp_g_t_info_ack_v6 = {
384 	T_INFO_ACK,		/* PRIM_type */
385 	0,			/* TSDU_size */
386 	T_INFINITE,		/* ETSDU_size */
387 	T_INVALID,		/* CDATA_size */
388 	T_INVALID,		/* DDATA_size */
389 	sizeof (sin6_t),	/* ADDR_size */
390 	0,			/* OPT_size - not initialized here */
391 	TIDUSZ,		/* TIDU_size */
392 	T_COTS_ORD,		/* SERV_type */
393 	TCPS_IDLE,		/* CURRENT_state */
394 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
395 };
396 
397 /*
398  * TCP tunables related declarations. Definitions are in tcp_tunables.c
399  */
400 extern mod_prop_info_t tcp_propinfo_tbl[];
401 extern int tcp_propinfo_count;
402 
403 #define	MB	(1024 * 1024)
404 
405 #define	IS_VMLOANED_MBLK(mp) \
406 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
407 
408 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
409 
410 /*
411  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
412  * tunable settable via NDD.  Otherwise, the per-connection behavior is
413  * determined dynamically during tcp_set_destination(), which is the default.
414  */
415 boolean_t tcp_static_maxpsz = B_FALSE;
416 
417 /*
418  * If the receive buffer size is changed, this function is called to update
419  * the upper socket layer on the new delayed receive wake up threshold.
420  */
421 static void
422 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
423 {
424 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
425 
426 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
427 		conn_t *connp = tcp->tcp_connp;
428 		struct sock_proto_props sopp;
429 
430 		/*
431 		 * only increase rcvthresh upto default_threshold
432 		 */
433 		if (new_rcvthresh > default_threshold)
434 			new_rcvthresh = default_threshold;
435 
436 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
437 		sopp.sopp_rcvthresh = new_rcvthresh;
438 
439 		(*connp->conn_upcalls->su_set_proto_props)
440 		    (connp->conn_upper_handle, &sopp);
441 	}
442 }
443 
444 /*
445  * Figure out the value of window scale opton.  Note that the rwnd is
446  * ASSUMED to be rounded up to the nearest MSS before the calculation.
447  * We cannot find the scale value and then do a round up of tcp_rwnd
448  * because the scale value may not be correct after that.
449  *
450  * Set the compiler flag to make this function inline.
451  */
452 void
453 tcp_set_ws_value(tcp_t *tcp)
454 {
455 	int i;
456 	uint32_t rwnd = tcp->tcp_rwnd;
457 
458 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
459 	    i++, rwnd >>= 1)
460 		;
461 	tcp->tcp_rcv_ws = i;
462 }
463 
464 /*
465  * Remove cached/latched IPsec references.
466  */
467 void
468 tcp_ipsec_cleanup(tcp_t *tcp)
469 {
470 	conn_t		*connp = tcp->tcp_connp;
471 
472 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
473 
474 	if (connp->conn_latch != NULL) {
475 		IPLATCH_REFRELE(connp->conn_latch);
476 		connp->conn_latch = NULL;
477 	}
478 	if (connp->conn_latch_in_policy != NULL) {
479 		IPPOL_REFRELE(connp->conn_latch_in_policy);
480 		connp->conn_latch_in_policy = NULL;
481 	}
482 	if (connp->conn_latch_in_action != NULL) {
483 		IPACT_REFRELE(connp->conn_latch_in_action);
484 		connp->conn_latch_in_action = NULL;
485 	}
486 	if (connp->conn_policy != NULL) {
487 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
488 		connp->conn_policy = NULL;
489 	}
490 }
491 
492 /*
493  * Cleaup before placing on free list.
494  * Disassociate from the netstack/tcp_stack_t since the freelist
495  * is per squeue and not per netstack.
496  */
497 void
498 tcp_cleanup(tcp_t *tcp)
499 {
500 	mblk_t		*mp;
501 	conn_t		*connp = tcp->tcp_connp;
502 	tcp_stack_t	*tcps = tcp->tcp_tcps;
503 	netstack_t	*ns = tcps->tcps_netstack;
504 	mblk_t		*tcp_rsrv_mp;
505 
506 	tcp_bind_hash_remove(tcp);
507 
508 	/* Cleanup that which needs the netstack first */
509 	tcp_ipsec_cleanup(tcp);
510 	ixa_cleanup(connp->conn_ixa);
511 
512 	if (connp->conn_ht_iphc != NULL) {
513 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
514 		connp->conn_ht_iphc = NULL;
515 		connp->conn_ht_iphc_allocated = 0;
516 		connp->conn_ht_iphc_len = 0;
517 		connp->conn_ht_ulp = NULL;
518 		connp->conn_ht_ulp_len = 0;
519 		tcp->tcp_ipha = NULL;
520 		tcp->tcp_ip6h = NULL;
521 		tcp->tcp_tcpha = NULL;
522 	}
523 
524 	/* We clear any IP_OPTIONS and extension headers */
525 	ip_pkt_free(&connp->conn_xmit_ipp);
526 
527 	tcp_free(tcp);
528 
529 	/*
530 	 * Since we will bzero the entire structure, we need to
531 	 * remove it and reinsert it in global hash list. We
532 	 * know the walkers can't get to this conn because we
533 	 * had set CONDEMNED flag earlier and checked reference
534 	 * under conn_lock so walker won't pick it and when we
535 	 * go the ipcl_globalhash_remove() below, no walker
536 	 * can get to it.
537 	 */
538 	ipcl_globalhash_remove(connp);
539 
540 	/* Save some state */
541 	mp = tcp->tcp_timercache;
542 
543 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
544 
545 	if (connp->conn_cred != NULL) {
546 		crfree(connp->conn_cred);
547 		connp->conn_cred = NULL;
548 	}
549 	ipcl_conn_cleanup(connp);
550 	connp->conn_flags = IPCL_TCPCONN;
551 
552 	/*
553 	 * Now it is safe to decrement the reference counts.
554 	 * This might be the last reference on the netstack
555 	 * in which case it will cause the freeing of the IP Instance.
556 	 */
557 	connp->conn_netstack = NULL;
558 	connp->conn_ixa->ixa_ipst = NULL;
559 	netstack_rele(ns);
560 	ASSERT(tcps != NULL);
561 	tcp->tcp_tcps = NULL;
562 
563 	bzero(tcp, sizeof (tcp_t));
564 
565 	/* restore the state */
566 	tcp->tcp_timercache = mp;
567 
568 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
569 
570 	tcp->tcp_connp = connp;
571 
572 	ASSERT(connp->conn_tcp == tcp);
573 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
574 	connp->conn_state_flags = CONN_INCIPIENT;
575 	ASSERT(connp->conn_proto == IPPROTO_TCP);
576 	ASSERT(connp->conn_ref == 1);
577 }
578 
579 /*
580  * Adapt to the information, such as rtt and rtt_sd, provided from the
581  * DCE and IRE maintained by IP.
582  *
583  * Checks for multicast and broadcast destination address.
584  * Returns zero if ok; an errno on failure.
585  *
586  * Note that the MSS calculation here is based on the info given in
587  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
588  * will be handled in tcp_input_data() when TCP knows which options to use.
589  *
590  * Note on how TCP gets its parameters for a connection.
591  *
592  * When a tcp_t structure is allocated, it gets all the default parameters.
593  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
594  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
595  * default.
596  *
597  * An incoming SYN with a multicast or broadcast destination address is dropped
598  * in ip_fanout_v4/v6.
599  *
600  * An incoming SYN with a multicast or broadcast source address is always
601  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
602  * conn_connect.
603  * The same logic in tcp_set_destination also serves to
604  * reject an attempt to connect to a broadcast or multicast (destination)
605  * address.
606  */
607 int
608 tcp_set_destination(tcp_t *tcp)
609 {
610 	uint32_t	mss_max;
611 	uint32_t	mss;
612 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
613 	conn_t		*connp = tcp->tcp_connp;
614 	tcp_stack_t	*tcps = tcp->tcp_tcps;
615 	iulp_t		uinfo;
616 	int		error;
617 	uint32_t	flags;
618 
619 	flags = IPDF_LSO | IPDF_ZCOPY;
620 	/*
621 	 * Make sure we have a dce for the destination to avoid dce_ident
622 	 * contention for connected sockets.
623 	 */
624 	flags |= IPDF_UNIQUE_DCE;
625 
626 	if (!tcps->tcps_ignore_path_mtu)
627 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
628 
629 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
630 	mutex_enter(&connp->conn_lock);
631 	error = conn_connect(connp, &uinfo, flags);
632 	mutex_exit(&connp->conn_lock);
633 	if (error != 0)
634 		return (error);
635 
636 	error = tcp_build_hdrs(tcp);
637 	if (error != 0)
638 		return (error);
639 
640 	tcp->tcp_localnet = uinfo.iulp_localnet;
641 
642 	if (uinfo.iulp_rtt != 0) {
643 		clock_t	rto;
644 
645 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
646 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
647 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
648 		    tcps->tcps_rexmit_interval_extra +
649 		    (tcp->tcp_rtt_sa >> 5);
650 
651 		TCP_SET_RTO(tcp, rto);
652 	}
653 	if (uinfo.iulp_ssthresh != 0)
654 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
655 	else
656 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
657 	if (uinfo.iulp_spipe > 0) {
658 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
659 		    tcps->tcps_max_buf);
660 		if (tcps->tcps_snd_lowat_fraction != 0) {
661 			connp->conn_sndlowat = connp->conn_sndbuf /
662 			    tcps->tcps_snd_lowat_fraction;
663 		}
664 		(void) tcp_maxpsz_set(tcp, B_TRUE);
665 	}
666 	/*
667 	 * Note that up till now, acceptor always inherits receive
668 	 * window from the listener.  But if there is a metrics
669 	 * associated with a host, we should use that instead of
670 	 * inheriting it from listener. Thus we need to pass this
671 	 * info back to the caller.
672 	 */
673 	if (uinfo.iulp_rpipe > 0) {
674 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
675 		    tcps->tcps_max_buf);
676 	}
677 
678 	if (uinfo.iulp_rtomax > 0) {
679 		tcp->tcp_second_timer_threshold =
680 		    uinfo.iulp_rtomax;
681 	}
682 
683 	/*
684 	 * Use the metric option settings, iulp_tstamp_ok and
685 	 * iulp_wscale_ok, only for active open. What this means
686 	 * is that if the other side uses timestamp or window
687 	 * scale option, TCP will also use those options. That
688 	 * is for passive open.  If the application sets a
689 	 * large window, window scale is enabled regardless of
690 	 * the value in iulp_wscale_ok.  This is the behavior
691 	 * since 2.6.  So we keep it.
692 	 * The only case left in passive open processing is the
693 	 * check for SACK.
694 	 * For ECN, it should probably be like SACK.  But the
695 	 * current value is binary, so we treat it like the other
696 	 * cases.  The metric only controls active open.For passive
697 	 * open, the ndd param, tcp_ecn_permitted, controls the
698 	 * behavior.
699 	 */
700 	if (!tcp_detached) {
701 		/*
702 		 * The if check means that the following can only
703 		 * be turned on by the metrics only IRE, but not off.
704 		 */
705 		if (uinfo.iulp_tstamp_ok)
706 			tcp->tcp_snd_ts_ok = B_TRUE;
707 		if (uinfo.iulp_wscale_ok)
708 			tcp->tcp_snd_ws_ok = B_TRUE;
709 		if (uinfo.iulp_sack == 2)
710 			tcp->tcp_snd_sack_ok = B_TRUE;
711 		if (uinfo.iulp_ecn_ok)
712 			tcp->tcp_ecn_ok = B_TRUE;
713 	} else {
714 		/*
715 		 * Passive open.
716 		 *
717 		 * As above, the if check means that SACK can only be
718 		 * turned on by the metric only IRE.
719 		 */
720 		if (uinfo.iulp_sack > 0) {
721 			tcp->tcp_snd_sack_ok = B_TRUE;
722 		}
723 	}
724 
725 	/*
726 	 * XXX Note that currently, iulp_mtu can be as small as 68
727 	 * because of PMTUd.  So tcp_mss may go to negative if combined
728 	 * length of all those options exceeds 28 bytes.  But because
729 	 * of the tcp_mss_min check below, we may not have a problem if
730 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
731 	 * the negative problem still exists.  And the check defeats PMTUd.
732 	 * In fact, if PMTUd finds that the MSS should be smaller than
733 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
734 	 * value.
735 	 *
736 	 * We do not deal with that now.  All those problems related to
737 	 * PMTUd will be fixed later.
738 	 */
739 	ASSERT(uinfo.iulp_mtu != 0);
740 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
741 
742 	/* Sanity check for MSS value. */
743 	if (connp->conn_ipversion == IPV4_VERSION)
744 		mss_max = tcps->tcps_mss_max_ipv4;
745 	else
746 		mss_max = tcps->tcps_mss_max_ipv6;
747 
748 	if (tcp->tcp_ipsec_overhead == 0)
749 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
750 
751 	mss -= tcp->tcp_ipsec_overhead;
752 
753 	if (mss < tcps->tcps_mss_min)
754 		mss = tcps->tcps_mss_min;
755 	if (mss > mss_max)
756 		mss = mss_max;
757 
758 	/* Note that this is the maximum MSS, excluding all options. */
759 	tcp->tcp_mss = mss;
760 
761 	/*
762 	 * Update the tcp connection with LSO capability.
763 	 */
764 	tcp_update_lso(tcp, connp->conn_ixa);
765 
766 	/*
767 	 * Initialize the ISS here now that we have the full connection ID.
768 	 * The RFC 1948 method of initial sequence number generation requires
769 	 * knowledge of the full connection ID before setting the ISS.
770 	 */
771 	tcp_iss_init(tcp);
772 
773 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
774 
775 	/*
776 	 * Make sure that conn is not marked incipient
777 	 * for incoming connections. A blind
778 	 * removal of incipient flag is cheaper than
779 	 * check and removal.
780 	 */
781 	mutex_enter(&connp->conn_lock);
782 	connp->conn_state_flags &= ~CONN_INCIPIENT;
783 	mutex_exit(&connp->conn_lock);
784 	return (0);
785 }
786 
787 /*
788  * tcp_clean_death / tcp_close_detached must not be called more than once
789  * on a tcp. Thus every function that potentially calls tcp_clean_death
790  * must check for the tcp state before calling tcp_clean_death.
791  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
792  * tcp_timer_handler, all check for the tcp state.
793  */
794 /* ARGSUSED */
795 void
796 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
797     ip_recv_attr_t *dummy)
798 {
799 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
800 
801 	freemsg(mp);
802 	if (tcp->tcp_state > TCPS_BOUND)
803 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
804 }
805 
806 /*
807  * We are dying for some reason.  Try to do it gracefully.  (May be called
808  * as writer.)
809  *
810  * Return -1 if the structure was not cleaned up (if the cleanup had to be
811  * done by a service procedure).
812  * TBD - Should the return value distinguish between the tcp_t being
813  * freed and it being reinitialized?
814  */
815 int
816 tcp_clean_death(tcp_t *tcp, int err)
817 {
818 	mblk_t	*mp;
819 	queue_t	*q;
820 	conn_t	*connp = tcp->tcp_connp;
821 	tcp_stack_t	*tcps = tcp->tcp_tcps;
822 
823 	if (tcp->tcp_fused)
824 		tcp_unfuse(tcp);
825 
826 	if (tcp->tcp_linger_tid != 0 &&
827 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
828 		tcp_stop_lingering(tcp);
829 	}
830 
831 	ASSERT(tcp != NULL);
832 	ASSERT((connp->conn_family == AF_INET &&
833 	    connp->conn_ipversion == IPV4_VERSION) ||
834 	    (connp->conn_family == AF_INET6 &&
835 	    (connp->conn_ipversion == IPV4_VERSION ||
836 	    connp->conn_ipversion == IPV6_VERSION)));
837 
838 	if (TCP_IS_DETACHED(tcp)) {
839 		if (tcp->tcp_hard_binding) {
840 			/*
841 			 * Its an eager that we are dealing with. We close the
842 			 * eager but in case a conn_ind has already gone to the
843 			 * listener, let tcp_accept_finish() send a discon_ind
844 			 * to the listener and drop the last reference. If the
845 			 * listener doesn't even know about the eager i.e. the
846 			 * conn_ind hasn't gone up, blow away the eager and drop
847 			 * the last reference as well. If the conn_ind has gone
848 			 * up, state should be BOUND. tcp_accept_finish
849 			 * will figure out that the connection has received a
850 			 * RST and will send a DISCON_IND to the application.
851 			 */
852 			tcp_closei_local(tcp);
853 			if (!tcp->tcp_tconnind_started) {
854 				CONN_DEC_REF(connp);
855 			} else {
856 				tcp->tcp_state = TCPS_BOUND;
857 				DTRACE_TCP6(state__change, void, NULL,
858 				    ip_xmit_attr_t *, connp->conn_ixa,
859 				    void, NULL, tcp_t *, tcp, void, NULL,
860 				    int32_t, TCPS_CLOSED);
861 			}
862 		} else {
863 			tcp_close_detached(tcp);
864 		}
865 		return (0);
866 	}
867 
868 	TCP_STAT(tcps, tcp_clean_death_nondetached);
869 
870 	/*
871 	 * The connection is dead.  Decrement listener connection counter if
872 	 * necessary.
873 	 */
874 	if (tcp->tcp_listen_cnt != NULL)
875 		TCP_DECR_LISTEN_CNT(tcp);
876 
877 	/*
878 	 * When a connection is moved to TIME_WAIT state, the connection
879 	 * counter is already decremented.  So no need to decrement here
880 	 * again.  See SET_TIME_WAIT() macro.
881 	 */
882 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
883 	    tcp->tcp_state < TCPS_TIME_WAIT) {
884 		TCPS_CONN_DEC(tcps);
885 	}
886 
887 	q = connp->conn_rq;
888 
889 	/* Trash all inbound data */
890 	if (!IPCL_IS_NONSTR(connp)) {
891 		ASSERT(q != NULL);
892 		flushq(q, FLUSHALL);
893 	}
894 
895 	/*
896 	 * If we are at least part way open and there is error
897 	 * (err==0 implies no error)
898 	 * notify our client by a T_DISCON_IND.
899 	 */
900 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
901 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
902 		    !TCP_IS_SOCKET(tcp)) {
903 			/*
904 			 * Send M_FLUSH according to TPI. Because sockets will
905 			 * (and must) ignore FLUSHR we do that only for TPI
906 			 * endpoints and sockets in STREAMS mode.
907 			 */
908 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
909 		}
910 		if (connp->conn_debug) {
911 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
912 			    "tcp_clean_death: discon err %d", err);
913 		}
914 		if (IPCL_IS_NONSTR(connp)) {
915 			/* Direct socket, use upcall */
916 			(*connp->conn_upcalls->su_disconnected)(
917 			    connp->conn_upper_handle, tcp->tcp_connid, err);
918 		} else {
919 			mp = mi_tpi_discon_ind(NULL, err, 0);
920 			if (mp != NULL) {
921 				putnext(q, mp);
922 			} else {
923 				if (connp->conn_debug) {
924 					(void) strlog(TCP_MOD_ID, 0, 1,
925 					    SL_ERROR|SL_TRACE,
926 					    "tcp_clean_death, sending M_ERROR");
927 				}
928 				(void) putnextctl1(q, M_ERROR, EPROTO);
929 			}
930 		}
931 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
932 			/* SYN_SENT or SYN_RCVD */
933 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
934 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
935 			/* ESTABLISHED or CLOSE_WAIT */
936 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
937 		}
938 	}
939 
940 	/*
941 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
942 	 * an upper handle is obtained when the SYN-ACK comes in. So it
943 	 * should receive the 'disconnected' upcall, but tcp_reinit should
944 	 * not be called since this is an eager.
945 	 */
946 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
947 		tcp_closei_local(tcp);
948 		tcp->tcp_state = TCPS_BOUND;
949 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
950 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
951 		    int32_t, TCPS_CLOSED);
952 		return (0);
953 	}
954 
955 	tcp_reinit(tcp);
956 	if (IPCL_IS_NONSTR(connp))
957 		(void) tcp_do_unbind(connp);
958 
959 	return (-1);
960 }
961 
962 /*
963  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
964  * to expire, stop the wait and finish the close.
965  */
966 void
967 tcp_stop_lingering(tcp_t *tcp)
968 {
969 	clock_t	delta = 0;
970 	tcp_stack_t	*tcps = tcp->tcp_tcps;
971 	conn_t		*connp = tcp->tcp_connp;
972 
973 	tcp->tcp_linger_tid = 0;
974 	if (tcp->tcp_state > TCPS_LISTEN) {
975 		tcp_acceptor_hash_remove(tcp);
976 		mutex_enter(&tcp->tcp_non_sq_lock);
977 		if (tcp->tcp_flow_stopped) {
978 			tcp_clrqfull(tcp);
979 		}
980 		mutex_exit(&tcp->tcp_non_sq_lock);
981 
982 		if (tcp->tcp_timer_tid != 0) {
983 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
984 			tcp->tcp_timer_tid = 0;
985 		}
986 		/*
987 		 * Need to cancel those timers which will not be used when
988 		 * TCP is detached.  This has to be done before the conn_wq
989 		 * is cleared.
990 		 */
991 		tcp_timers_stop(tcp);
992 
993 		tcp->tcp_detached = B_TRUE;
994 		connp->conn_rq = NULL;
995 		connp->conn_wq = NULL;
996 
997 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
998 			tcp_time_wait_append(tcp);
999 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1000 			goto finish;
1001 		}
1002 
1003 		/*
1004 		 * If delta is zero the timer event wasn't executed and was
1005 		 * successfully canceled. In this case we need to restart it
1006 		 * with the minimal delta possible.
1007 		 */
1008 		if (delta >= 0) {
1009 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1010 			    delta ? delta : 1);
1011 		}
1012 	} else {
1013 		tcp_closei_local(tcp);
1014 		CONN_DEC_REF(connp);
1015 	}
1016 finish:
1017 	tcp->tcp_detached = B_TRUE;
1018 	connp->conn_rq = NULL;
1019 	connp->conn_wq = NULL;
1020 
1021 	/* Signal closing thread that it can complete close */
1022 	mutex_enter(&tcp->tcp_closelock);
1023 	tcp->tcp_closed = 1;
1024 	cv_signal(&tcp->tcp_closecv);
1025 	mutex_exit(&tcp->tcp_closelock);
1026 
1027 	/* If we have an upper handle (socket), release it */
1028 	if (IPCL_IS_NONSTR(connp)) {
1029 		ASSERT(connp->conn_upper_handle != NULL);
1030 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1031 		connp->conn_upper_handle = NULL;
1032 		connp->conn_upcalls = NULL;
1033 	}
1034 }
1035 
1036 void
1037 tcp_close_common(conn_t *connp, int flags)
1038 {
1039 	tcp_t		*tcp = connp->conn_tcp;
1040 	mblk_t 		*mp = &tcp->tcp_closemp;
1041 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1042 	mblk_t		*bp;
1043 
1044 	ASSERT(connp->conn_ref >= 2);
1045 
1046 	/*
1047 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1048 	 * add any mp to the pending mp list, after this conn has
1049 	 * started closing.
1050 	 */
1051 	mutex_enter(&connp->conn_lock);
1052 	connp->conn_state_flags |= CONN_CLOSING;
1053 	if (connp->conn_oper_pending_ill != NULL)
1054 		conn_ioctl_cleanup_reqd = B_TRUE;
1055 	CONN_INC_REF_LOCKED(connp);
1056 	mutex_exit(&connp->conn_lock);
1057 	tcp->tcp_closeflags = (uint8_t)flags;
1058 	ASSERT(connp->conn_ref >= 3);
1059 
1060 	/*
1061 	 * tcp_closemp_used is used below without any protection of a lock
1062 	 * as we don't expect any one else to use it concurrently at this
1063 	 * point otherwise it would be a major defect.
1064 	 */
1065 
1066 	if (mp->b_prev == NULL)
1067 		tcp->tcp_closemp_used = B_TRUE;
1068 	else
1069 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1070 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1071 
1072 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1073 
1074 	/*
1075 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1076 	 * are re-written by tcp_close_output().
1077 	 */
1078 	if (conn_ioctl_cleanup_reqd)
1079 		conn_ioctl_cleanup(connp);
1080 
1081 	/*
1082 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1083 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1084 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1085 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1086 	 * was still in flight at the time, we wait for it here. See comments
1087 	 * for CONN_INC_IOCTLREF in ip.h for details.
1088 	 */
1089 	mutex_enter(&connp->conn_lock);
1090 	while (connp->conn_ioctlref > 0)
1091 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1092 	ASSERT(connp->conn_ioctlref == 0);
1093 	ASSERT(connp->conn_oper_pending_ill == NULL);
1094 	mutex_exit(&connp->conn_lock);
1095 
1096 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1097 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1098 
1099 	/*
1100 	 * For non-STREAMS sockets, the normal case is that the conn makes
1101 	 * an upcall when it's finally closed, so there is no need to wait
1102 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1103 	 * so it can properly deal with the thread being interrupted.
1104 	 */
1105 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1106 		goto nowait;
1107 
1108 	mutex_enter(&tcp->tcp_closelock);
1109 	while (!tcp->tcp_closed) {
1110 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1111 			/*
1112 			 * The cv_wait_sig() was interrupted. We now do the
1113 			 * following:
1114 			 *
1115 			 * 1) If the endpoint was lingering, we allow this
1116 			 * to be interrupted by cancelling the linger timeout
1117 			 * and closing normally.
1118 			 *
1119 			 * 2) Revert to calling cv_wait()
1120 			 *
1121 			 * We revert to using cv_wait() to avoid an
1122 			 * infinite loop which can occur if the calling
1123 			 * thread is higher priority than the squeue worker
1124 			 * thread and is bound to the same cpu.
1125 			 */
1126 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1127 				mutex_exit(&tcp->tcp_closelock);
1128 				/* Entering squeue, bump ref count. */
1129 				CONN_INC_REF(connp);
1130 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1131 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1132 				    tcp_linger_interrupted, connp, NULL,
1133 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1134 				mutex_enter(&tcp->tcp_closelock);
1135 			}
1136 			break;
1137 		}
1138 	}
1139 	while (!tcp->tcp_closed)
1140 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1141 	mutex_exit(&tcp->tcp_closelock);
1142 
1143 	/*
1144 	 * In the case of listener streams that have eagers in the q or q0
1145 	 * we wait for the eagers to drop their reference to us. conn_rq and
1146 	 * conn_wq of the eagers point to our queues. By waiting for the
1147 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1148 	 * up their queue pointers and also dropped their references to us.
1149 	 *
1150 	 * For non-STREAMS sockets we do not have to wait here; the
1151 	 * listener will instead make a su_closed upcall when the last
1152 	 * reference is dropped.
1153 	 */
1154 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1155 		mutex_enter(&connp->conn_lock);
1156 		while (connp->conn_ref != 1) {
1157 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1158 		}
1159 		mutex_exit(&connp->conn_lock);
1160 	}
1161 
1162 nowait:
1163 	connp->conn_cpid = NOPID;
1164 }
1165 
1166 /*
1167  * Called by tcp_close() routine via squeue when lingering is
1168  * interrupted by a signal.
1169  */
1170 
1171 /* ARGSUSED */
1172 static void
1173 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1174 {
1175 	conn_t	*connp = (conn_t *)arg;
1176 	tcp_t	*tcp = connp->conn_tcp;
1177 
1178 	freeb(mp);
1179 	if (tcp->tcp_linger_tid != 0 &&
1180 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1181 		tcp_stop_lingering(tcp);
1182 		tcp->tcp_client_errno = EINTR;
1183 	}
1184 }
1185 
1186 /*
1187  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1188  * Some stream heads get upset if they see these later on as anything but NULL.
1189  */
1190 void
1191 tcp_close_mpp(mblk_t **mpp)
1192 {
1193 	mblk_t	*mp;
1194 
1195 	if ((mp = *mpp) != NULL) {
1196 		do {
1197 			mp->b_next = NULL;
1198 			mp->b_prev = NULL;
1199 		} while ((mp = mp->b_cont) != NULL);
1200 
1201 		mp = *mpp;
1202 		*mpp = NULL;
1203 		freemsg(mp);
1204 	}
1205 }
1206 
1207 /* Do detached close. */
1208 void
1209 tcp_close_detached(tcp_t *tcp)
1210 {
1211 	if (tcp->tcp_fused)
1212 		tcp_unfuse(tcp);
1213 
1214 	/*
1215 	 * Clustering code serializes TCP disconnect callbacks and
1216 	 * cluster tcp list walks by blocking a TCP disconnect callback
1217 	 * if a cluster tcp list walk is in progress. This ensures
1218 	 * accurate accounting of TCPs in the cluster code even though
1219 	 * the TCP list walk itself is not atomic.
1220 	 */
1221 	tcp_closei_local(tcp);
1222 	CONN_DEC_REF(tcp->tcp_connp);
1223 }
1224 
1225 /*
1226  * The tcp_t is going away. Remove it from all lists and set it
1227  * to TCPS_CLOSED. The freeing up of memory is deferred until
1228  * tcp_inactive. This is needed since a thread in tcp_rput might have
1229  * done a CONN_INC_REF on this structure before it was removed from the
1230  * hashes.
1231  */
1232 void
1233 tcp_closei_local(tcp_t *tcp)
1234 {
1235 	conn_t		*connp = tcp->tcp_connp;
1236 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1237 	int32_t		oldstate;
1238 
1239 	if (!TCP_IS_SOCKET(tcp))
1240 		tcp_acceptor_hash_remove(tcp);
1241 
1242 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1243 	tcp->tcp_ibsegs = 0;
1244 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1245 	tcp->tcp_obsegs = 0;
1246 
1247 	/*
1248 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1249 	 * SYN with sequence number outside the TIME-WAIT connection's
1250 	 * window.  So we need to check for TIME-WAIT state here as the
1251 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1252 	 * macro
1253 	 */
1254 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1255 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1256 		TCPS_CONN_DEC(tcps);
1257 	}
1258 
1259 	/*
1260 	 * If we are an eager connection hanging off a listener that
1261 	 * hasn't formally accepted the connection yet, get off his
1262 	 * list and blow off any data that we have accumulated.
1263 	 */
1264 	if (tcp->tcp_listener != NULL) {
1265 		tcp_t	*listener = tcp->tcp_listener;
1266 		mutex_enter(&listener->tcp_eager_lock);
1267 		/*
1268 		 * tcp_tconnind_started == B_TRUE means that the
1269 		 * conn_ind has already gone to listener. At
1270 		 * this point, eager will be closed but we
1271 		 * leave it in listeners eager list so that
1272 		 * if listener decides to close without doing
1273 		 * accept, we can clean this up. In tcp_tli_accept
1274 		 * we take care of the case of accept on closed
1275 		 * eager.
1276 		 */
1277 		if (!tcp->tcp_tconnind_started) {
1278 			tcp_eager_unlink(tcp);
1279 			mutex_exit(&listener->tcp_eager_lock);
1280 			/*
1281 			 * We don't want to have any pointers to the
1282 			 * listener queue, after we have released our
1283 			 * reference on the listener
1284 			 */
1285 			ASSERT(tcp->tcp_detached);
1286 			connp->conn_rq = NULL;
1287 			connp->conn_wq = NULL;
1288 			CONN_DEC_REF(listener->tcp_connp);
1289 		} else {
1290 			mutex_exit(&listener->tcp_eager_lock);
1291 		}
1292 	}
1293 
1294 	/* Stop all the timers */
1295 	tcp_timers_stop(tcp);
1296 
1297 	if (tcp->tcp_state == TCPS_LISTEN) {
1298 		if (tcp->tcp_ip_addr_cache) {
1299 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1300 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1301 			tcp->tcp_ip_addr_cache = NULL;
1302 		}
1303 	}
1304 
1305 	/* Decrement listerner connection counter if necessary. */
1306 	if (tcp->tcp_listen_cnt != NULL)
1307 		TCP_DECR_LISTEN_CNT(tcp);
1308 
1309 	mutex_enter(&tcp->tcp_non_sq_lock);
1310 	if (tcp->tcp_flow_stopped)
1311 		tcp_clrqfull(tcp);
1312 	mutex_exit(&tcp->tcp_non_sq_lock);
1313 
1314 	tcp_bind_hash_remove(tcp);
1315 	/*
1316 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1317 	 * is trying to remove this tcp from the time wait list, we will
1318 	 * block in tcp_time_wait_remove while trying to acquire the
1319 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1320 	 * requires the ipcl_hash_remove to be ordered after the
1321 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1322 	 */
1323 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1324 		(void) tcp_time_wait_remove(tcp, NULL);
1325 	CL_INET_DISCONNECT(connp);
1326 	ipcl_hash_remove(connp);
1327 	oldstate = tcp->tcp_state;
1328 	tcp->tcp_state = TCPS_CLOSED;
1329 	/* Need to probe before ixa_cleanup() is called */
1330 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1331 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1332 	    int32_t, oldstate);
1333 	ixa_cleanup(connp->conn_ixa);
1334 
1335 	/*
1336 	 * Mark the conn as CONDEMNED
1337 	 */
1338 	mutex_enter(&connp->conn_lock);
1339 	connp->conn_state_flags |= CONN_CONDEMNED;
1340 	mutex_exit(&connp->conn_lock);
1341 
1342 	ASSERT(tcp->tcp_time_wait_next == NULL);
1343 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1344 	ASSERT(tcp->tcp_time_wait_expire == 0);
1345 
1346 	tcp_ipsec_cleanup(tcp);
1347 }
1348 
1349 /*
1350  * tcp is dying (called from ipcl_conn_destroy and error cases).
1351  * Free the tcp_t in either case.
1352  */
1353 void
1354 tcp_free(tcp_t *tcp)
1355 {
1356 	mblk_t		*mp;
1357 	conn_t		*connp = tcp->tcp_connp;
1358 
1359 	ASSERT(tcp != NULL);
1360 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1361 
1362 	connp->conn_rq = NULL;
1363 	connp->conn_wq = NULL;
1364 
1365 	tcp_close_mpp(&tcp->tcp_xmit_head);
1366 	tcp_close_mpp(&tcp->tcp_reass_head);
1367 	if (tcp->tcp_rcv_list != NULL) {
1368 		/* Free b_next chain */
1369 		tcp_close_mpp(&tcp->tcp_rcv_list);
1370 	}
1371 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1372 		freemsg(mp);
1373 	}
1374 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1375 		freemsg(mp);
1376 	}
1377 
1378 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1379 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1380 		freeb(tcp->tcp_fused_sigurg_mp);
1381 		tcp->tcp_fused_sigurg_mp = NULL;
1382 	}
1383 
1384 	if (tcp->tcp_ordrel_mp != NULL) {
1385 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1386 		freeb(tcp->tcp_ordrel_mp);
1387 		tcp->tcp_ordrel_mp = NULL;
1388 	}
1389 
1390 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1391 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1392 
1393 	if (tcp->tcp_hopopts != NULL) {
1394 		mi_free(tcp->tcp_hopopts);
1395 		tcp->tcp_hopopts = NULL;
1396 		tcp->tcp_hopoptslen = 0;
1397 	}
1398 	ASSERT(tcp->tcp_hopoptslen == 0);
1399 	if (tcp->tcp_dstopts != NULL) {
1400 		mi_free(tcp->tcp_dstopts);
1401 		tcp->tcp_dstopts = NULL;
1402 		tcp->tcp_dstoptslen = 0;
1403 	}
1404 	ASSERT(tcp->tcp_dstoptslen == 0);
1405 	if (tcp->tcp_rthdrdstopts != NULL) {
1406 		mi_free(tcp->tcp_rthdrdstopts);
1407 		tcp->tcp_rthdrdstopts = NULL;
1408 		tcp->tcp_rthdrdstoptslen = 0;
1409 	}
1410 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1411 	if (tcp->tcp_rthdr != NULL) {
1412 		mi_free(tcp->tcp_rthdr);
1413 		tcp->tcp_rthdr = NULL;
1414 		tcp->tcp_rthdrlen = 0;
1415 	}
1416 	ASSERT(tcp->tcp_rthdrlen == 0);
1417 
1418 	/*
1419 	 * Following is really a blowing away a union.
1420 	 * It happens to have exactly two members of identical size
1421 	 * the following code is enough.
1422 	 */
1423 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1424 
1425 	/*
1426 	 * If this is a non-STREAM socket still holding on to an upper
1427 	 * handle, release it. As a result of fallback we might also see
1428 	 * STREAMS based conns with upper handles, in which case there is
1429 	 * nothing to do other than clearing the field.
1430 	 */
1431 	if (connp->conn_upper_handle != NULL) {
1432 		if (IPCL_IS_NONSTR(connp)) {
1433 			(*connp->conn_upcalls->su_closed)(
1434 			    connp->conn_upper_handle);
1435 			tcp->tcp_detached = B_TRUE;
1436 		}
1437 		connp->conn_upper_handle = NULL;
1438 		connp->conn_upcalls = NULL;
1439 	}
1440 }
1441 
1442 /*
1443  * tcp_get_conn/tcp_free_conn
1444  *
1445  * tcp_get_conn is used to get a clean tcp connection structure.
1446  * It tries to reuse the connections put on the freelist by the
1447  * time_wait_collector failing which it goes to kmem_cache. This
1448  * way has two benefits compared to just allocating from and
1449  * freeing to kmem_cache.
1450  * 1) The time_wait_collector can free (which includes the cleanup)
1451  * outside the squeue. So when the interrupt comes, we have a clean
1452  * connection sitting in the freelist. Obviously, this buys us
1453  * performance.
1454  *
1455  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1456  * has multiple disadvantages - tying up the squeue during alloc.
1457  * But allocating the conn/tcp in IP land is also not the best since
1458  * we can't check the 'q' and 'q0' which are protected by squeue and
1459  * blindly allocate memory which might have to be freed here if we are
1460  * not allowed to accept the connection. By using the freelist and
1461  * putting the conn/tcp back in freelist, we don't pay a penalty for
1462  * allocating memory without checking 'q/q0' and freeing it if we can't
1463  * accept the connection.
1464  *
1465  * Care should be taken to put the conn back in the same squeue's freelist
1466  * from which it was allocated. Best results are obtained if conn is
1467  * allocated from listener's squeue and freed to the same. Time wait
1468  * collector will free up the freelist is the connection ends up sitting
1469  * there for too long.
1470  */
1471 void *
1472 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1473 {
1474 	tcp_t			*tcp = NULL;
1475 	conn_t			*connp = NULL;
1476 	squeue_t		*sqp = (squeue_t *)arg;
1477 	tcp_squeue_priv_t 	*tcp_time_wait;
1478 	netstack_t		*ns;
1479 	mblk_t			*tcp_rsrv_mp = NULL;
1480 
1481 	tcp_time_wait =
1482 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1483 
1484 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1485 	tcp = tcp_time_wait->tcp_free_list;
1486 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1487 	if (tcp != NULL) {
1488 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1489 		tcp_time_wait->tcp_free_list_cnt--;
1490 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1491 		tcp->tcp_time_wait_next = NULL;
1492 		connp = tcp->tcp_connp;
1493 		connp->conn_flags |= IPCL_REUSED;
1494 
1495 		ASSERT(tcp->tcp_tcps == NULL);
1496 		ASSERT(connp->conn_netstack == NULL);
1497 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1498 		ns = tcps->tcps_netstack;
1499 		netstack_hold(ns);
1500 		connp->conn_netstack = ns;
1501 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1502 		tcp->tcp_tcps = tcps;
1503 		ipcl_globalhash_insert(connp);
1504 
1505 		connp->conn_ixa->ixa_notify_cookie = tcp;
1506 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1507 		connp->conn_recv = tcp_input_data;
1508 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1509 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1510 		return ((void *)connp);
1511 	}
1512 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1513 	/*
1514 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1515 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1516 	 */
1517 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1518 	if (tcp_rsrv_mp == NULL)
1519 		return (NULL);
1520 
1521 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1522 	    tcps->tcps_netstack)) == NULL) {
1523 		freeb(tcp_rsrv_mp);
1524 		return (NULL);
1525 	}
1526 
1527 	tcp = connp->conn_tcp;
1528 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1529 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1530 
1531 	tcp->tcp_tcps = tcps;
1532 
1533 	connp->conn_recv = tcp_input_data;
1534 	connp->conn_recvicmp = tcp_icmp_input;
1535 	connp->conn_verifyicmp = tcp_verifyicmp;
1536 
1537 	/*
1538 	 * Register tcp_notify to listen to capability changes detected by IP.
1539 	 * This upcall is made in the context of the call to conn_ip_output
1540 	 * thus it is inside the squeue.
1541 	 */
1542 	connp->conn_ixa->ixa_notify = tcp_notify;
1543 	connp->conn_ixa->ixa_notify_cookie = tcp;
1544 
1545 	return ((void *)connp);
1546 }
1547 
1548 /*
1549  * Handle connect to IPv4 destinations, including connections for AF_INET6
1550  * sockets connecting to IPv4 mapped IPv6 destinations.
1551  * Returns zero if OK, a positive errno, or a negative TLI error.
1552  */
1553 static int
1554 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1555     uint_t srcid)
1556 {
1557 	ipaddr_t 	dstaddr = *dstaddrp;
1558 	uint16_t 	lport;
1559 	conn_t		*connp = tcp->tcp_connp;
1560 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1561 	int		error;
1562 
1563 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1564 
1565 	/* Check for attempt to connect to INADDR_ANY */
1566 	if (dstaddr == INADDR_ANY)  {
1567 		/*
1568 		 * SunOS 4.x and 4.3 BSD allow an application
1569 		 * to connect a TCP socket to INADDR_ANY.
1570 		 * When they do this, the kernel picks the
1571 		 * address of one interface and uses it
1572 		 * instead.  The kernel usually ends up
1573 		 * picking the address of the loopback
1574 		 * interface.  This is an undocumented feature.
1575 		 * However, we provide the same thing here
1576 		 * in order to have source and binary
1577 		 * compatibility with SunOS 4.x.
1578 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1579 		 * generate the T_CONN_CON.
1580 		 */
1581 		dstaddr = htonl(INADDR_LOOPBACK);
1582 		*dstaddrp = dstaddr;
1583 	}
1584 
1585 	/* Handle __sin6_src_id if socket not bound to an IP address */
1586 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1587 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1588 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1589 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1590 	}
1591 
1592 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1593 	connp->conn_fport = dstport;
1594 
1595 	/*
1596 	 * At this point the remote destination address and remote port fields
1597 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1598 	 * have to see which state tcp was in so we can take appropriate action.
1599 	 */
1600 	if (tcp->tcp_state == TCPS_IDLE) {
1601 		/*
1602 		 * We support a quick connect capability here, allowing
1603 		 * clients to transition directly from IDLE to SYN_SENT
1604 		 * tcp_bindi will pick an unused port, insert the connection
1605 		 * in the bind hash and transition to BOUND state.
1606 		 */
1607 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1608 		    tcp, B_TRUE);
1609 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1610 		    B_FALSE, B_FALSE);
1611 		if (lport == 0)
1612 			return (-TNOADDR);
1613 	}
1614 
1615 	/*
1616 	 * Lookup the route to determine a source address and the uinfo.
1617 	 * Setup TCP parameters based on the metrics/DCE.
1618 	 */
1619 	error = tcp_set_destination(tcp);
1620 	if (error != 0)
1621 		return (error);
1622 
1623 	/*
1624 	 * Don't let an endpoint connect to itself.
1625 	 */
1626 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1627 	    connp->conn_fport == connp->conn_lport)
1628 		return (-TBADADDR);
1629 
1630 	tcp->tcp_state = TCPS_SYN_SENT;
1631 
1632 	return (ipcl_conn_insert_v4(connp));
1633 }
1634 
1635 /*
1636  * Handle connect to IPv6 destinations.
1637  * Returns zero if OK, a positive errno, or a negative TLI error.
1638  */
1639 static int
1640 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1641     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1642 {
1643 	uint16_t 	lport;
1644 	conn_t		*connp = tcp->tcp_connp;
1645 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1646 	int		error;
1647 
1648 	ASSERT(connp->conn_family == AF_INET6);
1649 
1650 	/*
1651 	 * If we're here, it means that the destination address is a native
1652 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1653 	 * reason why it might not be IPv6 is if the socket was bound to an
1654 	 * IPv4-mapped IPv6 address.
1655 	 */
1656 	if (connp->conn_ipversion != IPV6_VERSION)
1657 		return (-TBADADDR);
1658 
1659 	/*
1660 	 * Interpret a zero destination to mean loopback.
1661 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1662 	 * generate the T_CONN_CON.
1663 	 */
1664 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1665 		*dstaddrp = ipv6_loopback;
1666 
1667 	/* Handle __sin6_src_id if socket not bound to an IP address */
1668 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1669 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1670 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1671 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1672 	}
1673 
1674 	/*
1675 	 * Take care of the scope_id now.
1676 	 */
1677 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1678 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1679 		connp->conn_ixa->ixa_scopeid = scope_id;
1680 	} else {
1681 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1682 	}
1683 
1684 	connp->conn_flowinfo = flowinfo;
1685 	connp->conn_faddr_v6 = *dstaddrp;
1686 	connp->conn_fport = dstport;
1687 
1688 	/*
1689 	 * At this point the remote destination address and remote port fields
1690 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1691 	 * have to see which state tcp was in so we can take appropriate action.
1692 	 */
1693 	if (tcp->tcp_state == TCPS_IDLE) {
1694 		/*
1695 		 * We support a quick connect capability here, allowing
1696 		 * clients to transition directly from IDLE to SYN_SENT
1697 		 * tcp_bindi will pick an unused port, insert the connection
1698 		 * in the bind hash and transition to BOUND state.
1699 		 */
1700 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1701 		    tcp, B_TRUE);
1702 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1703 		    B_FALSE, B_FALSE);
1704 		if (lport == 0)
1705 			return (-TNOADDR);
1706 	}
1707 
1708 	/*
1709 	 * Lookup the route to determine a source address and the uinfo.
1710 	 * Setup TCP parameters based on the metrics/DCE.
1711 	 */
1712 	error = tcp_set_destination(tcp);
1713 	if (error != 0)
1714 		return (error);
1715 
1716 	/*
1717 	 * Don't let an endpoint connect to itself.
1718 	 */
1719 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1720 	    connp->conn_fport == connp->conn_lport)
1721 		return (-TBADADDR);
1722 
1723 	tcp->tcp_state = TCPS_SYN_SENT;
1724 
1725 	return (ipcl_conn_insert_v6(connp));
1726 }
1727 
1728 /*
1729  * Disconnect
1730  * Note that unlike other functions this returns a positive tli error
1731  * when it fails; it never returns an errno.
1732  */
1733 static int
1734 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1735 {
1736 	conn_t		*lconnp;
1737 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1738 	conn_t		*connp = tcp->tcp_connp;
1739 
1740 	/*
1741 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1742 	 * when the stream is in BOUND state. Do not send a reset,
1743 	 * since the destination IP address is not valid, and it can
1744 	 * be the initialized value of all zeros (broadcast address).
1745 	 */
1746 	if (tcp->tcp_state <= TCPS_BOUND) {
1747 		if (connp->conn_debug) {
1748 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1749 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1750 		}
1751 		return (TOUTSTATE);
1752 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1753 		TCPS_CONN_DEC(tcps);
1754 	}
1755 
1756 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1757 
1758 		/*
1759 		 * According to TPI, for non-listeners, ignore seqnum
1760 		 * and disconnect.
1761 		 * Following interpretation of -1 seqnum is historical
1762 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1763 		 * a valid seqnum should not be -1).
1764 		 *
1765 		 *	-1 means disconnect everything
1766 		 *	regardless even on a listener.
1767 		 */
1768 
1769 		int old_state = tcp->tcp_state;
1770 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1771 
1772 		/*
1773 		 * The connection can't be on the tcp_time_wait_head list
1774 		 * since it is not detached.
1775 		 */
1776 		ASSERT(tcp->tcp_time_wait_next == NULL);
1777 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1778 		ASSERT(tcp->tcp_time_wait_expire == 0);
1779 		/*
1780 		 * If it used to be a listener, check to make sure no one else
1781 		 * has taken the port before switching back to LISTEN state.
1782 		 */
1783 		if (connp->conn_ipversion == IPV4_VERSION) {
1784 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1785 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1786 		} else {
1787 			uint_t ifindex = 0;
1788 
1789 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1790 				ifindex = connp->conn_ixa->ixa_scopeid;
1791 
1792 			/* Allow conn_bound_if listeners? */
1793 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1794 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1795 			    ipst);
1796 		}
1797 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1798 			tcp->tcp_state = TCPS_LISTEN;
1799 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1800 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1801 			    NULL, int32_t, old_state);
1802 		} else if (old_state > TCPS_BOUND) {
1803 			tcp->tcp_conn_req_max = 0;
1804 			tcp->tcp_state = TCPS_BOUND;
1805 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1806 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1807 			    NULL, int32_t, old_state);
1808 
1809 			/*
1810 			 * If this end point is not going to become a listener,
1811 			 * decrement the listener connection count if
1812 			 * necessary.  Note that we do not do this if it is
1813 			 * going to be a listner (the above if case) since
1814 			 * then it may remove the counter struct.
1815 			 */
1816 			if (tcp->tcp_listen_cnt != NULL)
1817 				TCP_DECR_LISTEN_CNT(tcp);
1818 		}
1819 		if (lconnp != NULL)
1820 			CONN_DEC_REF(lconnp);
1821 		switch (old_state) {
1822 		case TCPS_SYN_SENT:
1823 		case TCPS_SYN_RCVD:
1824 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1825 			break;
1826 		case TCPS_ESTABLISHED:
1827 		case TCPS_CLOSE_WAIT:
1828 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1829 			break;
1830 		}
1831 
1832 		if (tcp->tcp_fused)
1833 			tcp_unfuse(tcp);
1834 
1835 		mutex_enter(&tcp->tcp_eager_lock);
1836 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1837 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1838 			tcp_eager_cleanup(tcp, 0);
1839 		}
1840 		mutex_exit(&tcp->tcp_eager_lock);
1841 
1842 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1843 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1844 
1845 		tcp_reinit(tcp);
1846 
1847 		return (0);
1848 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1849 		return (TBADSEQ);
1850 	}
1851 	return (0);
1852 }
1853 
1854 /*
1855  * Our client hereby directs us to reject the connection request
1856  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1857  * of sending the appropriate RST, not an ICMP error.
1858  */
1859 void
1860 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1861 {
1862 	t_scalar_t seqnum;
1863 	int	error;
1864 	conn_t	*connp = tcp->tcp_connp;
1865 
1866 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1867 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1868 		tcp_err_ack(tcp, mp, TPROTO, 0);
1869 		return;
1870 	}
1871 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1872 	error = tcp_disconnect_common(tcp, seqnum);
1873 	if (error != 0)
1874 		tcp_err_ack(tcp, mp, error, 0);
1875 	else {
1876 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1877 			/* Send M_FLUSH according to TPI */
1878 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1879 		}
1880 		mp = mi_tpi_ok_ack_alloc(mp);
1881 		if (mp != NULL)
1882 			putnext(connp->conn_rq, mp);
1883 	}
1884 }
1885 
1886 /*
1887  * Handle reinitialization of a tcp structure.
1888  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1889  */
1890 static void
1891 tcp_reinit(tcp_t *tcp)
1892 {
1893 	mblk_t		*mp;
1894 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1895 	conn_t		*connp  = tcp->tcp_connp;
1896 	int32_t		oldstate;
1897 
1898 	/* tcp_reinit should never be called for detached tcp_t's */
1899 	ASSERT(tcp->tcp_listener == NULL);
1900 	ASSERT((connp->conn_family == AF_INET &&
1901 	    connp->conn_ipversion == IPV4_VERSION) ||
1902 	    (connp->conn_family == AF_INET6 &&
1903 	    (connp->conn_ipversion == IPV4_VERSION ||
1904 	    connp->conn_ipversion == IPV6_VERSION)));
1905 
1906 	/* Cancel outstanding timers */
1907 	tcp_timers_stop(tcp);
1908 
1909 	/*
1910 	 * Reset everything in the state vector, after updating global
1911 	 * MIB data from instance counters.
1912 	 */
1913 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1914 	tcp->tcp_ibsegs = 0;
1915 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1916 	tcp->tcp_obsegs = 0;
1917 
1918 	tcp_close_mpp(&tcp->tcp_xmit_head);
1919 	if (tcp->tcp_snd_zcopy_aware)
1920 		tcp_zcopy_notify(tcp);
1921 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1922 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1923 	mutex_enter(&tcp->tcp_non_sq_lock);
1924 	if (tcp->tcp_flow_stopped &&
1925 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1926 		tcp_clrqfull(tcp);
1927 	}
1928 	mutex_exit(&tcp->tcp_non_sq_lock);
1929 	tcp_close_mpp(&tcp->tcp_reass_head);
1930 	tcp->tcp_reass_tail = NULL;
1931 	if (tcp->tcp_rcv_list != NULL) {
1932 		/* Free b_next chain */
1933 		tcp_close_mpp(&tcp->tcp_rcv_list);
1934 		tcp->tcp_rcv_last_head = NULL;
1935 		tcp->tcp_rcv_last_tail = NULL;
1936 		tcp->tcp_rcv_cnt = 0;
1937 	}
1938 	tcp->tcp_rcv_last_tail = NULL;
1939 
1940 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1941 		freemsg(mp);
1942 		tcp->tcp_urp_mp = NULL;
1943 	}
1944 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1945 		freemsg(mp);
1946 		tcp->tcp_urp_mark_mp = NULL;
1947 	}
1948 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1949 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1950 		freeb(tcp->tcp_fused_sigurg_mp);
1951 		tcp->tcp_fused_sigurg_mp = NULL;
1952 	}
1953 	if (tcp->tcp_ordrel_mp != NULL) {
1954 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1955 		freeb(tcp->tcp_ordrel_mp);
1956 		tcp->tcp_ordrel_mp = NULL;
1957 	}
1958 
1959 	/*
1960 	 * Following is a union with two members which are
1961 	 * identical types and size so the following cleanup
1962 	 * is enough.
1963 	 */
1964 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1965 
1966 	CL_INET_DISCONNECT(connp);
1967 
1968 	/*
1969 	 * The connection can't be on the tcp_time_wait_head list
1970 	 * since it is not detached.
1971 	 */
1972 	ASSERT(tcp->tcp_time_wait_next == NULL);
1973 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1974 	ASSERT(tcp->tcp_time_wait_expire == 0);
1975 
1976 	/*
1977 	 * Reset/preserve other values
1978 	 */
1979 	tcp_reinit_values(tcp);
1980 	ipcl_hash_remove(connp);
1981 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1982 	ixa_cleanup(connp->conn_ixa);
1983 	tcp_ipsec_cleanup(tcp);
1984 
1985 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1986 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1987 	oldstate = tcp->tcp_state;
1988 
1989 	if (tcp->tcp_conn_req_max != 0) {
1990 		/*
1991 		 * This is the case when a TLI program uses the same
1992 		 * transport end point to accept a connection.  This
1993 		 * makes the TCP both a listener and acceptor.  When
1994 		 * this connection is closed, we need to set the state
1995 		 * back to TCPS_LISTEN.  Make sure that the eager list
1996 		 * is reinitialized.
1997 		 *
1998 		 * Note that this stream is still bound to the four
1999 		 * tuples of the previous connection in IP.  If a new
2000 		 * SYN with different foreign address comes in, IP will
2001 		 * not find it and will send it to the global queue.  In
2002 		 * the global queue, TCP will do a tcp_lookup_listener()
2003 		 * to find this stream.  This works because this stream
2004 		 * is only removed from connected hash.
2005 		 *
2006 		 */
2007 		tcp->tcp_state = TCPS_LISTEN;
2008 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2009 		tcp->tcp_eager_next_drop_q0 = tcp;
2010 		tcp->tcp_eager_prev_drop_q0 = tcp;
2011 		/*
2012 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2013 		 * to pick a good squeue for the listener when the first SYN
2014 		 * arrives. tcp_input_listener_unbound sets it to
2015 		 * tcp_input_listener on that first SYN.
2016 		 */
2017 		connp->conn_recv = tcp_input_listener_unbound;
2018 
2019 		connp->conn_proto = IPPROTO_TCP;
2020 		connp->conn_faddr_v6 = ipv6_all_zeros;
2021 		connp->conn_fport = 0;
2022 
2023 		(void) ipcl_bind_insert(connp);
2024 	} else {
2025 		tcp->tcp_state = TCPS_BOUND;
2026 	}
2027 
2028 	/*
2029 	 * Initialize to default values
2030 	 */
2031 	tcp_init_values(tcp, NULL);
2032 
2033 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2034 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2035 	    int32_t, oldstate);
2036 
2037 	ASSERT(tcp->tcp_ptpbhn != NULL);
2038 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2039 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2040 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2041 }
2042 
2043 /*
2044  * Force values to zero that need be zero.
2045  * Do not touch values asociated with the BOUND or LISTEN state
2046  * since the connection will end up in that state after the reinit.
2047  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2048  * structure!
2049  */
2050 static void
2051 tcp_reinit_values(tcp)
2052 	tcp_t *tcp;
2053 {
2054 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2055 	conn_t		*connp = tcp->tcp_connp;
2056 
2057 #ifndef	lint
2058 #define	DONTCARE(x)
2059 #define	PRESERVE(x)
2060 #else
2061 #define	DONTCARE(x)	((x) = (x))
2062 #define	PRESERVE(x)	((x) = (x))
2063 #endif	/* lint */
2064 
2065 	PRESERVE(tcp->tcp_bind_hash_port);
2066 	PRESERVE(tcp->tcp_bind_hash);
2067 	PRESERVE(tcp->tcp_ptpbhn);
2068 	PRESERVE(tcp->tcp_acceptor_hash);
2069 	PRESERVE(tcp->tcp_ptpahn);
2070 
2071 	/* Should be ASSERT NULL on these with new code! */
2072 	ASSERT(tcp->tcp_time_wait_next == NULL);
2073 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2074 	ASSERT(tcp->tcp_time_wait_expire == 0);
2075 	PRESERVE(tcp->tcp_state);
2076 	PRESERVE(connp->conn_rq);
2077 	PRESERVE(connp->conn_wq);
2078 
2079 	ASSERT(tcp->tcp_xmit_head == NULL);
2080 	ASSERT(tcp->tcp_xmit_last == NULL);
2081 	ASSERT(tcp->tcp_unsent == 0);
2082 	ASSERT(tcp->tcp_xmit_tail == NULL);
2083 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2084 
2085 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2086 	tcp->tcp_suna = 0;			/* Displayed in mib */
2087 	tcp->tcp_swnd = 0;
2088 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2089 
2090 	ASSERT(tcp->tcp_ibsegs == 0);
2091 	ASSERT(tcp->tcp_obsegs == 0);
2092 
2093 	if (connp->conn_ht_iphc != NULL) {
2094 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2095 		connp->conn_ht_iphc = NULL;
2096 		connp->conn_ht_iphc_allocated = 0;
2097 		connp->conn_ht_iphc_len = 0;
2098 		connp->conn_ht_ulp = NULL;
2099 		connp->conn_ht_ulp_len = 0;
2100 		tcp->tcp_ipha = NULL;
2101 		tcp->tcp_ip6h = NULL;
2102 		tcp->tcp_tcpha = NULL;
2103 	}
2104 
2105 	/* We clear any IP_OPTIONS and extension headers */
2106 	ip_pkt_free(&connp->conn_xmit_ipp);
2107 
2108 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2109 	DONTCARE(tcp->tcp_ipha);
2110 	DONTCARE(tcp->tcp_ip6h);
2111 	DONTCARE(tcp->tcp_tcpha);
2112 	tcp->tcp_valid_bits = 0;
2113 
2114 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2115 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2116 	tcp->tcp_last_rcv_lbolt = 0;
2117 
2118 	tcp->tcp_init_cwnd = 0;
2119 
2120 	tcp->tcp_urp_last_valid = 0;
2121 	tcp->tcp_hard_binding = 0;
2122 
2123 	tcp->tcp_fin_acked = 0;
2124 	tcp->tcp_fin_rcvd = 0;
2125 	tcp->tcp_fin_sent = 0;
2126 	tcp->tcp_ordrel_done = 0;
2127 
2128 	tcp->tcp_detached = 0;
2129 
2130 	tcp->tcp_snd_ws_ok = B_FALSE;
2131 	tcp->tcp_snd_ts_ok = B_FALSE;
2132 	tcp->tcp_zero_win_probe = 0;
2133 
2134 	tcp->tcp_loopback = 0;
2135 	tcp->tcp_localnet = 0;
2136 	tcp->tcp_syn_defense = 0;
2137 	tcp->tcp_set_timer = 0;
2138 
2139 	tcp->tcp_active_open = 0;
2140 	tcp->tcp_rexmit = B_FALSE;
2141 	tcp->tcp_xmit_zc_clean = B_FALSE;
2142 
2143 	tcp->tcp_snd_sack_ok = B_FALSE;
2144 	tcp->tcp_hwcksum = B_FALSE;
2145 
2146 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2147 
2148 	tcp->tcp_conn_def_q0 = 0;
2149 	tcp->tcp_ip_forward_progress = B_FALSE;
2150 	tcp->tcp_ecn_ok = B_FALSE;
2151 
2152 	tcp->tcp_cwr = B_FALSE;
2153 	tcp->tcp_ecn_echo_on = B_FALSE;
2154 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2155 
2156 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2157 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2158 
2159 	tcp->tcp_rcv_ws = 0;
2160 	tcp->tcp_snd_ws = 0;
2161 	tcp->tcp_ts_recent = 0;
2162 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2163 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2164 	tcp->tcp_initial_pmtu = 0;
2165 
2166 	ASSERT(tcp->tcp_reass_head == NULL);
2167 	ASSERT(tcp->tcp_reass_tail == NULL);
2168 
2169 	tcp->tcp_cwnd_cnt = 0;
2170 
2171 	ASSERT(tcp->tcp_rcv_list == NULL);
2172 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2173 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2174 	ASSERT(tcp->tcp_rcv_cnt == 0);
2175 
2176 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2177 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2178 	tcp->tcp_csuna = 0;
2179 
2180 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2181 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2182 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2183 	tcp->tcp_rtt_update = 0;
2184 
2185 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2186 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2187 
2188 	tcp->tcp_rack = 0;			/* Displayed in mib */
2189 	tcp->tcp_rack_cnt = 0;
2190 	tcp->tcp_rack_cur_max = 0;
2191 	tcp->tcp_rack_abs_max = 0;
2192 
2193 	tcp->tcp_max_swnd = 0;
2194 
2195 	ASSERT(tcp->tcp_listener == NULL);
2196 
2197 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2198 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2199 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2200 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2201 
2202 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2203 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2204 	PRESERVE(tcp->tcp_conn_req_max);
2205 	PRESERVE(tcp->tcp_conn_req_seqnum);
2206 
2207 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2208 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2209 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2210 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2211 
2212 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2213 	ASSERT(tcp->tcp_urp_mp == NULL);
2214 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2215 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2216 
2217 	ASSERT(tcp->tcp_eager_next_q == NULL);
2218 	ASSERT(tcp->tcp_eager_last_q == NULL);
2219 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2220 	    tcp->tcp_eager_prev_q0 == NULL) ||
2221 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2222 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2223 
2224 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2225 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2226 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2227 
2228 	tcp->tcp_client_errno = 0;
2229 
2230 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2231 
2232 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2233 
2234 	PRESERVE(connp->conn_bound_addr_v6);
2235 	tcp->tcp_last_sent_len = 0;
2236 	tcp->tcp_dupack_cnt = 0;
2237 
2238 	connp->conn_fport = 0;			/* Displayed in MIB */
2239 	PRESERVE(connp->conn_lport);
2240 
2241 	PRESERVE(tcp->tcp_acceptor_lockp);
2242 
2243 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2244 	PRESERVE(tcp->tcp_acceptor_id);
2245 	DONTCARE(tcp->tcp_ipsec_overhead);
2246 
2247 	PRESERVE(connp->conn_family);
2248 	/* Remove any remnants of mapped address binding */
2249 	if (connp->conn_family == AF_INET6) {
2250 		connp->conn_ipversion = IPV6_VERSION;
2251 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2252 	} else {
2253 		connp->conn_ipversion = IPV4_VERSION;
2254 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2255 	}
2256 
2257 	connp->conn_bound_if = 0;
2258 	connp->conn_recv_ancillary.crb_all = 0;
2259 	tcp->tcp_recvifindex = 0;
2260 	tcp->tcp_recvhops = 0;
2261 	tcp->tcp_closed = 0;
2262 	if (tcp->tcp_hopopts != NULL) {
2263 		mi_free(tcp->tcp_hopopts);
2264 		tcp->tcp_hopopts = NULL;
2265 		tcp->tcp_hopoptslen = 0;
2266 	}
2267 	ASSERT(tcp->tcp_hopoptslen == 0);
2268 	if (tcp->tcp_dstopts != NULL) {
2269 		mi_free(tcp->tcp_dstopts);
2270 		tcp->tcp_dstopts = NULL;
2271 		tcp->tcp_dstoptslen = 0;
2272 	}
2273 	ASSERT(tcp->tcp_dstoptslen == 0);
2274 	if (tcp->tcp_rthdrdstopts != NULL) {
2275 		mi_free(tcp->tcp_rthdrdstopts);
2276 		tcp->tcp_rthdrdstopts = NULL;
2277 		tcp->tcp_rthdrdstoptslen = 0;
2278 	}
2279 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2280 	if (tcp->tcp_rthdr != NULL) {
2281 		mi_free(tcp->tcp_rthdr);
2282 		tcp->tcp_rthdr = NULL;
2283 		tcp->tcp_rthdrlen = 0;
2284 	}
2285 	ASSERT(tcp->tcp_rthdrlen == 0);
2286 
2287 	/* Reset fusion-related fields */
2288 	tcp->tcp_fused = B_FALSE;
2289 	tcp->tcp_unfusable = B_FALSE;
2290 	tcp->tcp_fused_sigurg = B_FALSE;
2291 	tcp->tcp_loopback_peer = NULL;
2292 
2293 	tcp->tcp_lso = B_FALSE;
2294 
2295 	tcp->tcp_in_ack_unsent = 0;
2296 	tcp->tcp_cork = B_FALSE;
2297 	tcp->tcp_tconnind_started = B_FALSE;
2298 
2299 	PRESERVE(tcp->tcp_squeue_bytes);
2300 
2301 	tcp->tcp_closemp_used = B_FALSE;
2302 
2303 	PRESERVE(tcp->tcp_rsrv_mp);
2304 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2305 
2306 #ifdef DEBUG
2307 	DONTCARE(tcp->tcmp_stk[0]);
2308 #endif
2309 
2310 	PRESERVE(tcp->tcp_connid);
2311 
2312 	ASSERT(tcp->tcp_listen_cnt == NULL);
2313 	ASSERT(tcp->tcp_reass_tid == 0);
2314 
2315 #undef	DONTCARE
2316 #undef	PRESERVE
2317 }
2318 
2319 /*
2320  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2321  * NULL, certain values will be inheritted from it.
2322  */
2323 void
2324 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2325 {
2326 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2327 	conn_t		*connp = tcp->tcp_connp;
2328 	clock_t		rto;
2329 
2330 	ASSERT((connp->conn_family == AF_INET &&
2331 	    connp->conn_ipversion == IPV4_VERSION) ||
2332 	    (connp->conn_family == AF_INET6 &&
2333 	    (connp->conn_ipversion == IPV4_VERSION ||
2334 	    connp->conn_ipversion == IPV6_VERSION)));
2335 
2336 	if (parent == NULL) {
2337 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2338 
2339 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2340 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2341 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2342 
2343 		tcp->tcp_first_ctimer_threshold =
2344 		    tcps->tcps_ip_notify_cinterval;
2345 		tcp->tcp_second_ctimer_threshold =
2346 		    tcps->tcps_ip_abort_cinterval;
2347 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2348 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2349 
2350 		tcp->tcp_fin_wait_2_flush_interval =
2351 		    tcps->tcps_fin_wait_2_flush_interval;
2352 
2353 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2354 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2355 
2356 		/*
2357 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2358 		 * if parent is NULL.  But we need to inherit it from parent.
2359 		 */
2360 	} else {
2361 		/* Inherit various TCP parameters from the parent. */
2362 		tcp->tcp_naglim = parent->tcp_naglim;
2363 
2364 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2365 		tcp->tcp_rto_min = parent->tcp_rto_min;
2366 		tcp->tcp_rto_max = parent->tcp_rto_max;
2367 
2368 		tcp->tcp_first_ctimer_threshold =
2369 		    parent->tcp_first_ctimer_threshold;
2370 		tcp->tcp_second_ctimer_threshold =
2371 		    parent->tcp_second_ctimer_threshold;
2372 		tcp->tcp_first_timer_threshold =
2373 		    parent->tcp_first_timer_threshold;
2374 		tcp->tcp_second_timer_threshold =
2375 		    parent->tcp_second_timer_threshold;
2376 
2377 		tcp->tcp_fin_wait_2_flush_interval =
2378 		    parent->tcp_fin_wait_2_flush_interval;
2379 
2380 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2381 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2382 
2383 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2384 	}
2385 
2386 	/*
2387 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2388 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2389 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2390 	 * during first few transmissions of a connection as seen in slow
2391 	 * links.
2392 	 */
2393 	tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2394 	tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2395 	rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2396 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2397 	    tcps->tcps_conn_grace_period;
2398 	TCP_SET_RTO(tcp, rto);
2399 
2400 	tcp->tcp_timer_backoff = 0;
2401 	tcp->tcp_ms_we_have_waited = 0;
2402 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2403 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2404 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2405 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
2406 
2407 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2408 
2409 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2410 
2411 	/* Reset fusion-related fields */
2412 	tcp->tcp_fused = B_FALSE;
2413 	tcp->tcp_unfusable = B_FALSE;
2414 	tcp->tcp_fused_sigurg = B_FALSE;
2415 	tcp->tcp_loopback_peer = NULL;
2416 
2417 	/* We rebuild the header template on the next connect/conn_request */
2418 
2419 	connp->conn_mlp_type = mlptSingle;
2420 
2421 	/*
2422 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2423 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2424 	 */
2425 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2426 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2427 
2428 	tcp->tcp_cork = B_FALSE;
2429 	/*
2430 	 * Init the tcp_debug option if it wasn't already set.  This value
2431 	 * determines whether TCP
2432 	 * calls strlog() to print out debug messages.  Doing this
2433 	 * initialization here means that this value is not inherited thru
2434 	 * tcp_reinit().
2435 	 */
2436 	if (!connp->conn_debug)
2437 		connp->conn_debug = tcps->tcps_dbg;
2438 }
2439 
2440 /*
2441  * Update the TCP connection according to change of PMTU.
2442  *
2443  * Path MTU might have changed by either increase or decrease, so need to
2444  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2445  * or negative MSS, since tcp_mss_set() will do it.
2446  */
2447 void
2448 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2449 {
2450 	uint32_t	pmtu;
2451 	int32_t		mss;
2452 	conn_t		*connp = tcp->tcp_connp;
2453 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2454 	iaflags_t	ixaflags;
2455 
2456 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2457 		return;
2458 
2459 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2460 		return;
2461 
2462 	/*
2463 	 * Always call ip_get_pmtu() to make sure that IP has updated
2464 	 * ixa_flags properly.
2465 	 */
2466 	pmtu = ip_get_pmtu(ixa);
2467 	ixaflags = ixa->ixa_flags;
2468 
2469 	/*
2470 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2471 	 * IPsec overhead if applied. Make sure to use the most recent
2472 	 * IPsec information.
2473 	 */
2474 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2475 
2476 	/*
2477 	 * Nothing to change, so just return.
2478 	 */
2479 	if (mss == tcp->tcp_mss)
2480 		return;
2481 
2482 	/*
2483 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2484 	 */
2485 	if (mss > tcp->tcp_mss && decrease_only)
2486 		return;
2487 
2488 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2489 
2490 	/*
2491 	 * Update ixa_fragsize and ixa_pmtu.
2492 	 */
2493 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2494 
2495 	/*
2496 	 * Adjust MSS and all relevant variables.
2497 	 */
2498 	tcp_mss_set(tcp, mss);
2499 
2500 	/*
2501 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2502 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2503 	 * has a (potentially different) min size we do the same. Make sure to
2504 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2505 	 * fragment the packet.
2506 	 *
2507 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2508 	 * when IPv6 fragmentation is needed.
2509 	 */
2510 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2511 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2512 
2513 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2514 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2515 
2516 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2517 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2518 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2519 	}
2520 	ixa->ixa_flags = ixaflags;
2521 }
2522 
2523 int
2524 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2525 {
2526 	conn_t	*connp = tcp->tcp_connp;
2527 	queue_t	*q = connp->conn_rq;
2528 	int32_t	mss = tcp->tcp_mss;
2529 	int	maxpsz;
2530 
2531 	if (TCP_IS_DETACHED(tcp))
2532 		return (mss);
2533 	if (tcp->tcp_fused) {
2534 		maxpsz = tcp_fuse_maxpsz(tcp);
2535 		mss = INFPSZ;
2536 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2537 		/*
2538 		 * Set the sd_qn_maxpsz according to the socket send buffer
2539 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2540 		 * instruct the stream head to copyin user data into contiguous
2541 		 * kernel-allocated buffers without breaking it up into smaller
2542 		 * chunks.  We round up the buffer size to the nearest SMSS.
2543 		 */
2544 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2545 		mss = INFPSZ;
2546 	} else {
2547 		/*
2548 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2549 		 * (and a multiple of the mss).  This instructs the stream
2550 		 * head to break down larger than SMSS writes into SMSS-
2551 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2552 		 */
2553 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2554 		if (maxpsz > connp->conn_sndbuf / 2) {
2555 			maxpsz = connp->conn_sndbuf / 2;
2556 			/* Round up to nearest mss */
2557 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2558 		}
2559 	}
2560 
2561 	(void) proto_set_maxpsz(q, connp, maxpsz);
2562 	if (!(IPCL_IS_NONSTR(connp)))
2563 		connp->conn_wq->q_maxpsz = maxpsz;
2564 	if (set_maxblk)
2565 		(void) proto_set_tx_maxblk(q, connp, mss);
2566 	return (mss);
2567 }
2568 
2569 /* For /dev/tcp aka AF_INET open */
2570 static int
2571 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2572 {
2573 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2574 }
2575 
2576 /* For /dev/tcp6 aka AF_INET6 open */
2577 static int
2578 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2579 {
2580 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2581 }
2582 
2583 conn_t *
2584 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2585     int *errorp)
2586 {
2587 	tcp_t		*tcp = NULL;
2588 	conn_t		*connp;
2589 	zoneid_t	zoneid;
2590 	tcp_stack_t	*tcps;
2591 	squeue_t	*sqp;
2592 
2593 	ASSERT(errorp != NULL);
2594 	/*
2595 	 * Find the proper zoneid and netstack.
2596 	 */
2597 	/*
2598 	 * Special case for install: miniroot needs to be able to
2599 	 * access files via NFS as though it were always in the
2600 	 * global zone.
2601 	 */
2602 	if (credp == kcred && nfs_global_client_only != 0) {
2603 		zoneid = GLOBAL_ZONEID;
2604 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2605 		    netstack_tcp;
2606 		ASSERT(tcps != NULL);
2607 	} else {
2608 		netstack_t *ns;
2609 		int err;
2610 
2611 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2612 			*errorp = err;
2613 			return (NULL);
2614 		}
2615 
2616 		ns = netstack_find_by_cred(credp);
2617 		ASSERT(ns != NULL);
2618 		tcps = ns->netstack_tcp;
2619 		ASSERT(tcps != NULL);
2620 
2621 		/*
2622 		 * For exclusive stacks we set the zoneid to zero
2623 		 * to make TCP operate as if in the global zone.
2624 		 */
2625 		if (tcps->tcps_netstack->netstack_stackid !=
2626 		    GLOBAL_NETSTACKID)
2627 			zoneid = GLOBAL_ZONEID;
2628 		else
2629 			zoneid = crgetzoneid(credp);
2630 	}
2631 
2632 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2633 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2634 	/*
2635 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2636 	 * so we drop it by one.
2637 	 */
2638 	netstack_rele(tcps->tcps_netstack);
2639 	if (connp == NULL) {
2640 		*errorp = ENOSR;
2641 		return (NULL);
2642 	}
2643 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2644 
2645 	connp->conn_sqp = sqp;
2646 	connp->conn_initial_sqp = connp->conn_sqp;
2647 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2648 	tcp = connp->conn_tcp;
2649 
2650 	/*
2651 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2652 	 * to do the following checks when necessary:
2653 	 *
2654 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2655 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2656 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2657 	 */
2658 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2659 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2660 
2661 	if (!tcps->tcps_dev_flow_ctl)
2662 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2663 
2664 	if (isv6) {
2665 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2666 		connp->conn_ipversion = IPV6_VERSION;
2667 		connp->conn_family = AF_INET6;
2668 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2669 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2670 	} else {
2671 		connp->conn_ipversion = IPV4_VERSION;
2672 		connp->conn_family = AF_INET;
2673 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2674 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2675 	}
2676 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2677 
2678 	crhold(credp);
2679 	connp->conn_cred = credp;
2680 	connp->conn_cpid = curproc->p_pid;
2681 	connp->conn_open_time = ddi_get_lbolt64();
2682 
2683 	/* Cache things in the ixa without any refhold */
2684 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2685 	connp->conn_ixa->ixa_cred = credp;
2686 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2687 
2688 	connp->conn_zoneid = zoneid;
2689 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2690 	connp->conn_ixa->ixa_zoneid = zoneid;
2691 	connp->conn_mlp_type = mlptSingle;
2692 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2693 	ASSERT(tcp->tcp_tcps == tcps);
2694 
2695 	/*
2696 	 * If the caller has the process-wide flag set, then default to MAC
2697 	 * exempt mode.  This allows read-down to unlabeled hosts.
2698 	 */
2699 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2700 		connp->conn_mac_mode = CONN_MAC_AWARE;
2701 
2702 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2703 
2704 	if (issocket) {
2705 		tcp->tcp_issocket = 1;
2706 	}
2707 
2708 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2709 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2710 	connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2711 	connp->conn_so_type = SOCK_STREAM;
2712 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2713 	    tcps->tcps_wroff_xtra;
2714 
2715 	SOCK_CONNID_INIT(tcp->tcp_connid);
2716 	/* DTrace ignores this - it isn't a tcp:::state-change */
2717 	tcp->tcp_state = TCPS_IDLE;
2718 	tcp_init_values(tcp, NULL);
2719 	return (connp);
2720 }
2721 
2722 static int
2723 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2724     boolean_t isv6)
2725 {
2726 	tcp_t		*tcp = NULL;
2727 	conn_t		*connp = NULL;
2728 	int		err;
2729 	vmem_t		*minor_arena = NULL;
2730 	dev_t		conn_dev;
2731 	boolean_t	issocket;
2732 
2733 	if (q->q_ptr != NULL)
2734 		return (0);
2735 
2736 	if (sflag == MODOPEN)
2737 		return (EINVAL);
2738 
2739 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2740 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2741 		minor_arena = ip_minor_arena_la;
2742 	} else {
2743 		/*
2744 		 * Either minor numbers in the large arena were exhausted
2745 		 * or a non socket application is doing the open.
2746 		 * Try to allocate from the small arena.
2747 		 */
2748 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2749 			return (EBUSY);
2750 		}
2751 		minor_arena = ip_minor_arena_sa;
2752 	}
2753 
2754 	ASSERT(minor_arena != NULL);
2755 
2756 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2757 
2758 	if (flag & SO_FALLBACK) {
2759 		/*
2760 		 * Non streams socket needs a stream to fallback to
2761 		 */
2762 		RD(q)->q_ptr = (void *)conn_dev;
2763 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2764 		WR(q)->q_ptr = (void *)minor_arena;
2765 		qprocson(q);
2766 		return (0);
2767 	} else if (flag & SO_ACCEPTOR) {
2768 		q->q_qinfo = &tcp_acceptor_rinit;
2769 		/*
2770 		 * the conn_dev and minor_arena will be subsequently used by
2771 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2772 		 * the minor device number for this connection from the q_ptr.
2773 		 */
2774 		RD(q)->q_ptr = (void *)conn_dev;
2775 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2776 		WR(q)->q_ptr = (void *)minor_arena;
2777 		qprocson(q);
2778 		return (0);
2779 	}
2780 
2781 	issocket = flag & SO_SOCKSTR;
2782 	connp = tcp_create_common(credp, isv6, issocket, &err);
2783 
2784 	if (connp == NULL) {
2785 		inet_minor_free(minor_arena, conn_dev);
2786 		q->q_ptr = WR(q)->q_ptr = NULL;
2787 		return (err);
2788 	}
2789 
2790 	connp->conn_rq = q;
2791 	connp->conn_wq = WR(q);
2792 	q->q_ptr = WR(q)->q_ptr = connp;
2793 
2794 	connp->conn_dev = conn_dev;
2795 	connp->conn_minor_arena = minor_arena;
2796 
2797 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2798 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2799 
2800 	tcp = connp->conn_tcp;
2801 
2802 	if (issocket) {
2803 		WR(q)->q_qinfo = &tcp_sock_winit;
2804 	} else {
2805 #ifdef  _ILP32
2806 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2807 #else
2808 		tcp->tcp_acceptor_id = conn_dev;
2809 #endif  /* _ILP32 */
2810 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2811 	}
2812 
2813 	/*
2814 	 * Put the ref for TCP. Ref for IP was already put
2815 	 * by ipcl_conn_create. Also Make the conn_t globally
2816 	 * visible to walkers
2817 	 */
2818 	mutex_enter(&connp->conn_lock);
2819 	CONN_INC_REF_LOCKED(connp);
2820 	ASSERT(connp->conn_ref == 2);
2821 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2822 	mutex_exit(&connp->conn_lock);
2823 
2824 	qprocson(q);
2825 	return (0);
2826 }
2827 
2828 /*
2829  * Build/update the tcp header template (in conn_ht_iphc) based on
2830  * conn_xmit_ipp. The headers include ip6_t, any extension
2831  * headers, and the maximum size tcp header (to avoid reallocation
2832  * on the fly for additional tcp options).
2833  *
2834  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2835  * Returns failure if can't allocate memory.
2836  */
2837 int
2838 tcp_build_hdrs(tcp_t *tcp)
2839 {
2840 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2841 	conn_t		*connp = tcp->tcp_connp;
2842 	char		buf[TCP_MAX_HDR_LENGTH];
2843 	uint_t		buflen;
2844 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2845 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2846 	tcpha_t		*tcpha;
2847 	uint32_t	cksum;
2848 	int		error;
2849 
2850 	/*
2851 	 * We might be called after the connection is set up, and we might
2852 	 * have TS options already in the TCP header. Thus we  save any
2853 	 * existing tcp header.
2854 	 */
2855 	buflen = connp->conn_ht_ulp_len;
2856 	if (buflen != 0) {
2857 		bcopy(connp->conn_ht_ulp, buf, buflen);
2858 		extralen -= buflen - ulplen;
2859 		ulplen = buflen;
2860 	}
2861 
2862 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2863 	mutex_enter(&connp->conn_lock);
2864 	error = conn_build_hdr_template(connp, ulplen, extralen,
2865 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2866 	mutex_exit(&connp->conn_lock);
2867 	if (error != 0)
2868 		return (error);
2869 
2870 	/*
2871 	 * Any routing header/option has been massaged. The checksum difference
2872 	 * is stored in conn_sum for later use.
2873 	 */
2874 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2875 	tcp->tcp_tcpha = tcpha;
2876 
2877 	/* restore any old tcp header */
2878 	if (buflen != 0) {
2879 		bcopy(buf, connp->conn_ht_ulp, buflen);
2880 	} else {
2881 		tcpha->tha_sum = 0;
2882 		tcpha->tha_urp = 0;
2883 		tcpha->tha_ack = 0;
2884 		tcpha->tha_offset_and_reserved = (5 << 4);
2885 		tcpha->tha_lport = connp->conn_lport;
2886 		tcpha->tha_fport = connp->conn_fport;
2887 	}
2888 
2889 	/*
2890 	 * IP wants our header length in the checksum field to
2891 	 * allow it to perform a single pseudo-header+checksum
2892 	 * calculation on behalf of TCP.
2893 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2894 	 */
2895 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2896 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2897 	ASSERT(cksum < 0x10000);
2898 	tcpha->tha_sum = htons(cksum);
2899 
2900 	if (connp->conn_ipversion == IPV4_VERSION)
2901 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2902 	else
2903 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2904 
2905 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2906 	    connp->conn_wroff) {
2907 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2908 		    tcps->tcps_wroff_xtra;
2909 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2910 		    connp->conn_wroff);
2911 	}
2912 	return (0);
2913 }
2914 
2915 /*
2916  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2917  * We do not allow the receive window to shrink.  After setting rwnd,
2918  * set the flow control hiwat of the stream.
2919  *
2920  * This function is called in 2 cases:
2921  *
2922  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2923  *    connection (passive open) and in tcp_input_data() for active connect.
2924  *    This is called after tcp_mss_set() when the desired MSS value is known.
2925  *    This makes sure that our window size is a mutiple of the other side's
2926  *    MSS.
2927  * 2) Handling SO_RCVBUF option.
2928  *
2929  * It is ASSUMED that the requested size is a multiple of the current MSS.
2930  *
2931  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2932  * user requests so.
2933  */
2934 int
2935 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2936 {
2937 	uint32_t	mss = tcp->tcp_mss;
2938 	uint32_t	old_max_rwnd;
2939 	uint32_t	max_transmittable_rwnd;
2940 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2941 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2942 	conn_t		*connp = tcp->tcp_connp;
2943 
2944 	/*
2945 	 * Insist on a receive window that is at least
2946 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2947 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2948 	 * and delayed acknowledgement.
2949 	 */
2950 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2951 
2952 	if (tcp->tcp_fused) {
2953 		size_t sth_hiwat;
2954 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2955 
2956 		ASSERT(peer_tcp != NULL);
2957 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2958 		if (!tcp_detached) {
2959 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2960 			    sth_hiwat);
2961 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2962 		}
2963 
2964 		/* Caller could have changed tcp_rwnd; update tha_win */
2965 		if (tcp->tcp_tcpha != NULL) {
2966 			tcp->tcp_tcpha->tha_win =
2967 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2968 		}
2969 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2970 			tcp->tcp_cwnd_max = rwnd;
2971 
2972 		/*
2973 		 * In the fusion case, the maxpsz stream head value of
2974 		 * our peer is set according to its send buffer size
2975 		 * and our receive buffer size; since the latter may
2976 		 * have changed we need to update the peer's maxpsz.
2977 		 */
2978 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2979 		return (sth_hiwat);
2980 	}
2981 
2982 	if (tcp_detached)
2983 		old_max_rwnd = tcp->tcp_rwnd;
2984 	else
2985 		old_max_rwnd = connp->conn_rcvbuf;
2986 
2987 
2988 	/*
2989 	 * If window size info has already been exchanged, TCP should not
2990 	 * shrink the window.  Shrinking window is doable if done carefully.
2991 	 * We may add that support later.  But so far there is not a real
2992 	 * need to do that.
2993 	 */
2994 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
2995 		/* MSS may have changed, do a round up again. */
2996 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
2997 	}
2998 
2999 	/*
3000 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3001 	 * can be applied even before the window scale option is decided.
3002 	 */
3003 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3004 	if (rwnd > max_transmittable_rwnd) {
3005 		rwnd = max_transmittable_rwnd -
3006 		    (max_transmittable_rwnd % mss);
3007 		if (rwnd < mss)
3008 			rwnd = max_transmittable_rwnd;
3009 		/*
3010 		 * If we're over the limit we may have to back down tcp_rwnd.
3011 		 * The increment below won't work for us. So we set all three
3012 		 * here and the increment below will have no effect.
3013 		 */
3014 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3015 	}
3016 	if (tcp->tcp_localnet) {
3017 		tcp->tcp_rack_abs_max =
3018 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3019 	} else {
3020 		/*
3021 		 * For a remote host on a different subnet (through a router),
3022 		 * we ack every other packet to be conforming to RFC1122.
3023 		 * tcp_deferred_acks_max is default to 2.
3024 		 */
3025 		tcp->tcp_rack_abs_max =
3026 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3027 	}
3028 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3029 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3030 	else
3031 		tcp->tcp_rack_cur_max = 0;
3032 	/*
3033 	 * Increment the current rwnd by the amount the maximum grew (we
3034 	 * can not overwrite it since we might be in the middle of a
3035 	 * connection.)
3036 	 */
3037 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3038 	connp->conn_rcvbuf = rwnd;
3039 
3040 	/* Are we already connected? */
3041 	if (tcp->tcp_tcpha != NULL) {
3042 		tcp->tcp_tcpha->tha_win =
3043 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3044 	}
3045 
3046 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3047 		tcp->tcp_cwnd_max = rwnd;
3048 
3049 	if (tcp_detached)
3050 		return (rwnd);
3051 
3052 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3053 
3054 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3055 	return (rwnd);
3056 }
3057 
3058 int
3059 tcp_do_unbind(conn_t *connp)
3060 {
3061 	tcp_t *tcp = connp->conn_tcp;
3062 	int32_t oldstate;
3063 
3064 	switch (tcp->tcp_state) {
3065 	case TCPS_BOUND:
3066 	case TCPS_LISTEN:
3067 		break;
3068 	default:
3069 		return (-TOUTSTATE);
3070 	}
3071 
3072 	/*
3073 	 * Need to clean up all the eagers since after the unbind, segments
3074 	 * will no longer be delivered to this listener stream.
3075 	 */
3076 	mutex_enter(&tcp->tcp_eager_lock);
3077 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3078 		tcp_eager_cleanup(tcp, 0);
3079 	}
3080 	mutex_exit(&tcp->tcp_eager_lock);
3081 
3082 	/* Clean up the listener connection counter if necessary. */
3083 	if (tcp->tcp_listen_cnt != NULL)
3084 		TCP_DECR_LISTEN_CNT(tcp);
3085 	connp->conn_laddr_v6 = ipv6_all_zeros;
3086 	connp->conn_saddr_v6 = ipv6_all_zeros;
3087 	tcp_bind_hash_remove(tcp);
3088 	oldstate = tcp->tcp_state;
3089 	tcp->tcp_state = TCPS_IDLE;
3090 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3091 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3092 	    int32_t, oldstate);
3093 
3094 	ip_unbind(connp);
3095 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3096 
3097 	return (0);
3098 }
3099 
3100 /*
3101  * Collect protocol properties to send to the upper handle.
3102  */
3103 void
3104 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3105 {
3106 	conn_t *connp = tcp->tcp_connp;
3107 
3108 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3109 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3110 
3111 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3112 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3113 	    connp->conn_rcvbuf;
3114 	/*
3115 	 * Determine what write offset value to use depending on SACK and
3116 	 * whether the endpoint is fused or not.
3117 	 */
3118 	if (tcp->tcp_fused) {
3119 		ASSERT(tcp->tcp_loopback);
3120 		ASSERT(tcp->tcp_loopback_peer != NULL);
3121 		/*
3122 		 * For fused tcp loopback, set the stream head's write
3123 		 * offset value to zero since we won't be needing any room
3124 		 * for TCP/IP headers.  This would also improve performance
3125 		 * since it would reduce the amount of work done by kmem.
3126 		 * Non-fused tcp loopback case is handled separately below.
3127 		 */
3128 		sopp->sopp_wroff = 0;
3129 		/*
3130 		 * Update the peer's transmit parameters according to
3131 		 * our recently calculated high water mark value.
3132 		 */
3133 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3134 	} else if (tcp->tcp_snd_sack_ok) {
3135 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3136 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3137 	} else {
3138 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3139 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3140 	}
3141 
3142 	if (tcp->tcp_loopback) {
3143 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3144 		sopp->sopp_loopback = B_TRUE;
3145 	}
3146 }
3147 
3148 /*
3149  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3150  */
3151 boolean_t
3152 tcp_zcopy_check(tcp_t *tcp)
3153 {
3154 	conn_t		*connp = tcp->tcp_connp;
3155 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3156 	boolean_t	zc_enabled = B_FALSE;
3157 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3158 
3159 	if (do_tcpzcopy == 2)
3160 		zc_enabled = B_TRUE;
3161 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3162 		zc_enabled = B_TRUE;
3163 
3164 	tcp->tcp_snd_zcopy_on = zc_enabled;
3165 	if (!TCP_IS_DETACHED(tcp)) {
3166 		if (zc_enabled) {
3167 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3168 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3169 			    ZCVMSAFE);
3170 			TCP_STAT(tcps, tcp_zcopy_on);
3171 		} else {
3172 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3173 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3174 			    ZCVMUNSAFE);
3175 			TCP_STAT(tcps, tcp_zcopy_off);
3176 		}
3177 	}
3178 	return (zc_enabled);
3179 }
3180 
3181 /*
3182  * Backoff from a zero-copy message by copying data to a new allocated
3183  * message and freeing the original desballoca'ed segmapped message.
3184  *
3185  * This function is called by following two callers:
3186  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3187  *    the origial desballoca'ed message and notify sockfs. This is in re-
3188  *    transmit state.
3189  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3190  *    to be copied to new message.
3191  */
3192 mblk_t *
3193 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3194 {
3195 	mblk_t		*nbp;
3196 	mblk_t		*head = NULL;
3197 	mblk_t		*tail = NULL;
3198 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3199 
3200 	ASSERT(bp != NULL);
3201 	while (bp != NULL) {
3202 		if (IS_VMLOANED_MBLK(bp)) {
3203 			TCP_STAT(tcps, tcp_zcopy_backoff);
3204 			if ((nbp = copyb(bp)) == NULL) {
3205 				tcp->tcp_xmit_zc_clean = B_FALSE;
3206 				if (tail != NULL)
3207 					tail->b_cont = bp;
3208 				return ((head == NULL) ? bp : head);
3209 			}
3210 
3211 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3212 				if (fix_xmitlist)
3213 					tcp_zcopy_notify(tcp);
3214 				else
3215 					nbp->b_datap->db_struioflag |=
3216 					    STRUIO_ZCNOTIFY;
3217 			}
3218 			nbp->b_cont = bp->b_cont;
3219 
3220 			/*
3221 			 * Copy saved information and adjust tcp_xmit_tail
3222 			 * if needed.
3223 			 */
3224 			if (fix_xmitlist) {
3225 				nbp->b_prev = bp->b_prev;
3226 				nbp->b_next = bp->b_next;
3227 
3228 				if (tcp->tcp_xmit_tail == bp)
3229 					tcp->tcp_xmit_tail = nbp;
3230 			}
3231 
3232 			/* Free the original message. */
3233 			bp->b_prev = NULL;
3234 			bp->b_next = NULL;
3235 			freeb(bp);
3236 
3237 			bp = nbp;
3238 		}
3239 
3240 		if (head == NULL) {
3241 			head = bp;
3242 		}
3243 		if (tail == NULL) {
3244 			tail = bp;
3245 		} else {
3246 			tail->b_cont = bp;
3247 			tail = bp;
3248 		}
3249 
3250 		/* Move forward. */
3251 		bp = bp->b_cont;
3252 	}
3253 
3254 	if (fix_xmitlist) {
3255 		tcp->tcp_xmit_last = tail;
3256 		tcp->tcp_xmit_zc_clean = B_TRUE;
3257 	}
3258 
3259 	return (head);
3260 }
3261 
3262 void
3263 tcp_zcopy_notify(tcp_t *tcp)
3264 {
3265 	struct stdata	*stp;
3266 	conn_t		*connp;
3267 
3268 	if (tcp->tcp_detached)
3269 		return;
3270 	connp = tcp->tcp_connp;
3271 	if (IPCL_IS_NONSTR(connp)) {
3272 		(*connp->conn_upcalls->su_zcopy_notify)
3273 		    (connp->conn_upper_handle);
3274 		return;
3275 	}
3276 	stp = STREAM(connp->conn_rq);
3277 	mutex_enter(&stp->sd_lock);
3278 	stp->sd_flag |= STZCNOTIFY;
3279 	cv_broadcast(&stp->sd_zcopy_wait);
3280 	mutex_exit(&stp->sd_lock);
3281 }
3282 
3283 /*
3284  * Update the TCP connection according to change of LSO capability.
3285  */
3286 static void
3287 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3288 {
3289 	/*
3290 	 * We check against IPv4 header length to preserve the old behavior
3291 	 * of only enabling LSO when there are no IP options.
3292 	 * But this restriction might not be necessary at all. Before removing
3293 	 * it, need to verify how LSO is handled for source routing case, with
3294 	 * which IP does software checksum.
3295 	 *
3296 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3297 	 */
3298 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3299 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3300 		return;
3301 
3302 	/*
3303 	 * Either the LSO capability newly became usable, or it has changed.
3304 	 */
3305 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3306 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3307 
3308 		ASSERT(lsoc->ill_lso_max > 0);
3309 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3310 
3311 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3312 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3313 
3314 		/*
3315 		 * If LSO to be enabled, notify the STREAM header with larger
3316 		 * data block.
3317 		 */
3318 		if (!tcp->tcp_lso)
3319 			tcp->tcp_maxpsz_multiplier = 0;
3320 
3321 		tcp->tcp_lso = B_TRUE;
3322 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3323 	} else { /* LSO capability is not usable any more. */
3324 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3325 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3326 
3327 		/*
3328 		 * If LSO to be disabled, notify the STREAM header with smaller
3329 		 * data block. And need to restore fragsize to PMTU.
3330 		 */
3331 		if (tcp->tcp_lso) {
3332 			tcp->tcp_maxpsz_multiplier =
3333 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3334 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3335 			tcp->tcp_lso = B_FALSE;
3336 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3337 		}
3338 	}
3339 
3340 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3341 }
3342 
3343 /*
3344  * Update the TCP connection according to change of ZEROCOPY capability.
3345  */
3346 static void
3347 tcp_update_zcopy(tcp_t *tcp)
3348 {
3349 	conn_t		*connp = tcp->tcp_connp;
3350 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3351 
3352 	if (tcp->tcp_snd_zcopy_on) {
3353 		tcp->tcp_snd_zcopy_on = B_FALSE;
3354 		if (!TCP_IS_DETACHED(tcp)) {
3355 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3356 			    ZCVMUNSAFE);
3357 			TCP_STAT(tcps, tcp_zcopy_off);
3358 		}
3359 	} else {
3360 		tcp->tcp_snd_zcopy_on = B_TRUE;
3361 		if (!TCP_IS_DETACHED(tcp)) {
3362 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3363 			    ZCVMSAFE);
3364 			TCP_STAT(tcps, tcp_zcopy_on);
3365 		}
3366 	}
3367 }
3368 
3369 /*
3370  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3371  * so it's safe to update the TCP connection.
3372  */
3373 /* ARGSUSED1 */
3374 static void
3375 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3376     ixa_notify_arg_t narg)
3377 {
3378 	tcp_t		*tcp = (tcp_t *)arg;
3379 	conn_t		*connp = tcp->tcp_connp;
3380 
3381 	switch (ntype) {
3382 	case IXAN_LSO:
3383 		tcp_update_lso(tcp, connp->conn_ixa);
3384 		break;
3385 	case IXAN_PMTU:
3386 		tcp_update_pmtu(tcp, B_FALSE);
3387 		break;
3388 	case IXAN_ZCOPY:
3389 		tcp_update_zcopy(tcp);
3390 		break;
3391 	default:
3392 		break;
3393 	}
3394 }
3395 
3396 /*
3397  * The TCP write service routine should never be called...
3398  */
3399 /* ARGSUSED */
3400 static void
3401 tcp_wsrv(queue_t *q)
3402 {
3403 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3404 
3405 	TCP_STAT(tcps, tcp_wsrv_called);
3406 }
3407 
3408 /*
3409  * Hash list lookup routine for tcp_t structures.
3410  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3411  */
3412 tcp_t *
3413 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3414 {
3415 	tf_t	*tf;
3416 	tcp_t	*tcp;
3417 
3418 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3419 	mutex_enter(&tf->tf_lock);
3420 	for (tcp = tf->tf_tcp; tcp != NULL;
3421 	    tcp = tcp->tcp_acceptor_hash) {
3422 		if (tcp->tcp_acceptor_id == id) {
3423 			CONN_INC_REF(tcp->tcp_connp);
3424 			mutex_exit(&tf->tf_lock);
3425 			return (tcp);
3426 		}
3427 	}
3428 	mutex_exit(&tf->tf_lock);
3429 	return (NULL);
3430 }
3431 
3432 /*
3433  * Hash list insertion routine for tcp_t structures.
3434  */
3435 void
3436 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3437 {
3438 	tf_t	*tf;
3439 	tcp_t	**tcpp;
3440 	tcp_t	*tcpnext;
3441 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3442 
3443 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3444 
3445 	if (tcp->tcp_ptpahn != NULL)
3446 		tcp_acceptor_hash_remove(tcp);
3447 	tcpp = &tf->tf_tcp;
3448 	mutex_enter(&tf->tf_lock);
3449 	tcpnext = tcpp[0];
3450 	if (tcpnext)
3451 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3452 	tcp->tcp_acceptor_hash = tcpnext;
3453 	tcp->tcp_ptpahn = tcpp;
3454 	tcpp[0] = tcp;
3455 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3456 	mutex_exit(&tf->tf_lock);
3457 }
3458 
3459 /*
3460  * Hash list removal routine for tcp_t structures.
3461  */
3462 void
3463 tcp_acceptor_hash_remove(tcp_t *tcp)
3464 {
3465 	tcp_t	*tcpnext;
3466 	kmutex_t *lockp;
3467 
3468 	/*
3469 	 * Extract the lock pointer in case there are concurrent
3470 	 * hash_remove's for this instance.
3471 	 */
3472 	lockp = tcp->tcp_acceptor_lockp;
3473 
3474 	if (tcp->tcp_ptpahn == NULL)
3475 		return;
3476 
3477 	ASSERT(lockp != NULL);
3478 	mutex_enter(lockp);
3479 	if (tcp->tcp_ptpahn) {
3480 		tcpnext = tcp->tcp_acceptor_hash;
3481 		if (tcpnext) {
3482 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3483 			tcp->tcp_acceptor_hash = NULL;
3484 		}
3485 		*tcp->tcp_ptpahn = tcpnext;
3486 		tcp->tcp_ptpahn = NULL;
3487 	}
3488 	mutex_exit(lockp);
3489 	tcp->tcp_acceptor_lockp = NULL;
3490 }
3491 
3492 /*
3493  * Type three generator adapted from the random() function in 4.4 BSD:
3494  */
3495 
3496 /*
3497  * Copyright (c) 1983, 1993
3498  *	The Regents of the University of California.  All rights reserved.
3499  *
3500  * Redistribution and use in source and binary forms, with or without
3501  * modification, are permitted provided that the following conditions
3502  * are met:
3503  * 1. Redistributions of source code must retain the above copyright
3504  *    notice, this list of conditions and the following disclaimer.
3505  * 2. Redistributions in binary form must reproduce the above copyright
3506  *    notice, this list of conditions and the following disclaimer in the
3507  *    documentation and/or other materials provided with the distribution.
3508  * 3. All advertising materials mentioning features or use of this software
3509  *    must display the following acknowledgement:
3510  *	This product includes software developed by the University of
3511  *	California, Berkeley and its contributors.
3512  * 4. Neither the name of the University nor the names of its contributors
3513  *    may be used to endorse or promote products derived from this software
3514  *    without specific prior written permission.
3515  *
3516  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3517  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3518  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3519  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3520  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3521  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3522  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3523  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3524  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3525  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3526  * SUCH DAMAGE.
3527  */
3528 
3529 /* Type 3 -- x**31 + x**3 + 1 */
3530 #define	DEG_3		31
3531 #define	SEP_3		3
3532 
3533 
3534 /* Protected by tcp_random_lock */
3535 static int tcp_randtbl[DEG_3 + 1];
3536 
3537 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3538 static int *tcp_random_rptr = &tcp_randtbl[1];
3539 
3540 static int *tcp_random_state = &tcp_randtbl[1];
3541 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3542 
3543 kmutex_t tcp_random_lock;
3544 
3545 void
3546 tcp_random_init(void)
3547 {
3548 	int i;
3549 	hrtime_t hrt;
3550 	time_t wallclock;
3551 	uint64_t result;
3552 
3553 	/*
3554 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3555 	 * a longlong, which may contain resolution down to nanoseconds.
3556 	 * The current time will either be a 32-bit or a 64-bit quantity.
3557 	 * XOR the two together in a 64-bit result variable.
3558 	 * Convert the result to a 32-bit value by multiplying the high-order
3559 	 * 32-bits by the low-order 32-bits.
3560 	 */
3561 
3562 	hrt = gethrtime();
3563 	(void) drv_getparm(TIME, &wallclock);
3564 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3565 	mutex_enter(&tcp_random_lock);
3566 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3567 	    (result & 0xffffffff);
3568 
3569 	for (i = 1; i < DEG_3; i++)
3570 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3571 		    + 12345;
3572 	tcp_random_fptr = &tcp_random_state[SEP_3];
3573 	tcp_random_rptr = &tcp_random_state[0];
3574 	mutex_exit(&tcp_random_lock);
3575 	for (i = 0; i < 10 * DEG_3; i++)
3576 		(void) tcp_random();
3577 }
3578 
3579 /*
3580  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3581  * This range is selected to be approximately centered on TCP_ISS / 2,
3582  * and easy to compute. We get this value by generating a 32-bit random
3583  * number, selecting out the high-order 17 bits, and then adding one so
3584  * that we never return zero.
3585  */
3586 int
3587 tcp_random(void)
3588 {
3589 	int i;
3590 
3591 	mutex_enter(&tcp_random_lock);
3592 	*tcp_random_fptr += *tcp_random_rptr;
3593 
3594 	/*
3595 	 * The high-order bits are more random than the low-order bits,
3596 	 * so we select out the high-order 17 bits and add one so that
3597 	 * we never return zero.
3598 	 */
3599 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3600 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3601 		tcp_random_fptr = tcp_random_state;
3602 		++tcp_random_rptr;
3603 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3604 		tcp_random_rptr = tcp_random_state;
3605 
3606 	mutex_exit(&tcp_random_lock);
3607 	return (i);
3608 }
3609 
3610 /*
3611  * Split this function out so that if the secret changes, I'm okay.
3612  *
3613  * Initialize the tcp_iss_cookie and tcp_iss_key.
3614  */
3615 
3616 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3617 
3618 void
3619 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3620 {
3621 	struct {
3622 		int32_t current_time;
3623 		uint32_t randnum;
3624 		uint16_t pad;
3625 		uint8_t ether[6];
3626 		uint8_t passwd[PASSWD_SIZE];
3627 	} tcp_iss_cookie;
3628 	time_t t;
3629 
3630 	/*
3631 	 * Start with the current absolute time.
3632 	 */
3633 	(void) drv_getparm(TIME, &t);
3634 	tcp_iss_cookie.current_time = t;
3635 
3636 	/*
3637 	 * XXX - Need a more random number per RFC 1750, not this crap.
3638 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3639 	 */
3640 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3641 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3642 
3643 	/*
3644 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3645 	 * as a good template.
3646 	 */
3647 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3648 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3649 
3650 	/*
3651 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3652 	 */
3653 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3654 
3655 	/*
3656 	 * See 4010593 if this section becomes a problem again,
3657 	 * but the local ethernet address is useful here.
3658 	 */
3659 	(void) localetheraddr(NULL,
3660 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3661 
3662 	/*
3663 	 * Hash 'em all together.  The MD5Final is called per-connection.
3664 	 */
3665 	mutex_enter(&tcps->tcps_iss_key_lock);
3666 	MD5Init(&tcps->tcps_iss_key);
3667 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3668 	    sizeof (tcp_iss_cookie));
3669 	mutex_exit(&tcps->tcps_iss_key_lock);
3670 }
3671 
3672 /*
3673  * Called by IP when IP is loaded into the kernel
3674  */
3675 void
3676 tcp_ddi_g_init(void)
3677 {
3678 	tcp_timercache = kmem_cache_create("tcp_timercache",
3679 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3680 	    NULL, NULL, NULL, NULL, NULL, 0);
3681 
3682 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3683 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3684 
3685 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3686 
3687 	/* Initialize the random number generator */
3688 	tcp_random_init();
3689 
3690 	/* A single callback independently of how many netstacks we have */
3691 	ip_squeue_init(tcp_squeue_add);
3692 
3693 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3694 
3695 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3696 
3697 	/*
3698 	 * We want to be informed each time a stack is created or
3699 	 * destroyed in the kernel, so we can maintain the
3700 	 * set of tcp_stack_t's.
3701 	 */
3702 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3703 
3704 	mutex_enter(&cpu_lock);
3705 	register_cpu_setup_func(tcp_cpu_update, NULL);
3706 	mutex_exit(&cpu_lock);
3707 }
3708 
3709 
3710 #define	INET_NAME	"ip"
3711 
3712 /*
3713  * Initialize the TCP stack instance.
3714  */
3715 static void *
3716 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3717 {
3718 	tcp_stack_t	*tcps;
3719 	int		i;
3720 	int		error = 0;
3721 	major_t		major;
3722 	size_t		arrsz;
3723 
3724 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3725 	tcps->tcps_netstack = ns;
3726 
3727 	/* Initialize locks */
3728 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3729 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3730 
3731 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3732 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3733 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3734 	tcps->tcps_min_anonpriv_port = 512;
3735 
3736 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3737 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3738 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3739 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3740 
3741 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3742 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3743 		    MUTEX_DEFAULT, NULL);
3744 	}
3745 
3746 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3747 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3748 		    MUTEX_DEFAULT, NULL);
3749 	}
3750 
3751 	/* TCP's IPsec code calls the packet dropper. */
3752 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3753 
3754 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3755 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3756 	    KM_SLEEP);
3757 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3758 
3759 	/*
3760 	 * Note: To really walk the device tree you need the devinfo
3761 	 * pointer to your device which is only available after probe/attach.
3762 	 * The following is safe only because it uses ddi_root_node()
3763 	 */
3764 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3765 	    tcp_opt_obj.odb_opt_arr_cnt);
3766 
3767 	/*
3768 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3769 	 * by the boot scripts.
3770 	 *
3771 	 * Use NULL name, as the name is caught by the new lockstats.
3772 	 *
3773 	 * Initialize with some random, non-guessable string, like the global
3774 	 * T_INFO_ACK.
3775 	 */
3776 
3777 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3778 	    sizeof (tcp_g_t_info_ack), tcps);
3779 
3780 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3781 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3782 
3783 	major = mod_name_to_major(INET_NAME);
3784 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3785 	ASSERT(error == 0);
3786 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3787 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3788 	cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
3789 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3790 
3791 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3792 	tcps->tcps_reclaim = B_FALSE;
3793 	tcps->tcps_reclaim_tid = 0;
3794 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3795 
3796 	/*
3797 	 * ncpus is the current number of CPUs, which can be bigger than
3798 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3799 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3800 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3801 	 * there are many CPUs as we will be adding them 1 by 1.
3802 	 *
3803 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3804 	 * are not freed until the stack is going away.  So there is no need
3805 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3806 	 */
3807 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3808 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3809 	    KM_SLEEP);
3810 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3811 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3812 		    KM_SLEEP);
3813 	}
3814 
3815 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3816 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3817 	    offsetof(tcp_listener_t, tl_link));
3818 
3819 	return (tcps);
3820 }
3821 
3822 /*
3823  * Called when the IP module is about to be unloaded.
3824  */
3825 void
3826 tcp_ddi_g_destroy(void)
3827 {
3828 	mutex_enter(&cpu_lock);
3829 	unregister_cpu_setup_func(tcp_cpu_update, NULL);
3830 	mutex_exit(&cpu_lock);
3831 
3832 	tcp_g_kstat_fini(tcp_g_kstat);
3833 	tcp_g_kstat = NULL;
3834 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3835 
3836 	mutex_destroy(&tcp_random_lock);
3837 
3838 	kmem_cache_destroy(tcp_timercache);
3839 	kmem_cache_destroy(tcp_notsack_blk_cache);
3840 
3841 	netstack_unregister(NS_TCP);
3842 }
3843 
3844 /*
3845  * Free the TCP stack instance.
3846  */
3847 static void
3848 tcp_stack_fini(netstackid_t stackid, void *arg)
3849 {
3850 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3851 	int i;
3852 
3853 	freeb(tcps->tcps_ixa_cleanup_mp);
3854 	tcps->tcps_ixa_cleanup_mp = NULL;
3855 	cv_destroy(&tcps->tcps_ixa_cleanup_cv);
3856 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3857 
3858 	/*
3859 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3860 	 * the timer.
3861 	 */
3862 	mutex_enter(&tcps->tcps_reclaim_lock);
3863 	tcps->tcps_reclaim = B_FALSE;
3864 	mutex_exit(&tcps->tcps_reclaim_lock);
3865 	if (tcps->tcps_reclaim_tid != 0)
3866 		(void) untimeout(tcps->tcps_reclaim_tid);
3867 	mutex_destroy(&tcps->tcps_reclaim_lock);
3868 
3869 	tcp_listener_conf_cleanup(tcps);
3870 
3871 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3872 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3873 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3874 
3875 	kmem_free(tcps->tcps_propinfo_tbl,
3876 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3877 	tcps->tcps_propinfo_tbl = NULL;
3878 
3879 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3880 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3881 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3882 	}
3883 
3884 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3885 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3886 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3887 	}
3888 
3889 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3890 	tcps->tcps_bind_fanout = NULL;
3891 
3892 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3893 	    TCP_ACCEPTOR_FANOUT_SIZE);
3894 	tcps->tcps_acceptor_fanout = NULL;
3895 
3896 	mutex_destroy(&tcps->tcps_iss_key_lock);
3897 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3898 
3899 	ip_drop_unregister(&tcps->tcps_dropper);
3900 
3901 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3902 	tcps->tcps_kstat = NULL;
3903 
3904 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3905 	tcps->tcps_mibkp = NULL;
3906 
3907 	ldi_ident_release(tcps->tcps_ldi_ident);
3908 	kmem_free(tcps, sizeof (*tcps));
3909 }
3910 
3911 /*
3912  * Generate ISS, taking into account NDD changes may happen halfway through.
3913  * (If the iss is not zero, set it.)
3914  */
3915 
3916 static void
3917 tcp_iss_init(tcp_t *tcp)
3918 {
3919 	MD5_CTX context;
3920 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3921 	uint32_t answer[4];
3922 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3923 	conn_t		*connp = tcp->tcp_connp;
3924 
3925 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
3926 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3927 	switch (tcps->tcps_strong_iss) {
3928 	case 2:
3929 		mutex_enter(&tcps->tcps_iss_key_lock);
3930 		context = tcps->tcps_iss_key;
3931 		mutex_exit(&tcps->tcps_iss_key_lock);
3932 		arg.ports = connp->conn_ports;
3933 		arg.src = connp->conn_laddr_v6;
3934 		arg.dst = connp->conn_faddr_v6;
3935 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3936 		MD5Final((uchar_t *)answer, &context);
3937 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3938 		/*
3939 		 * Now that we've hashed into a unique per-connection sequence
3940 		 * space, add a random increment per strong_iss == 1.  So I
3941 		 * guess we'll have to...
3942 		 */
3943 		/* FALLTHRU */
3944 	case 1:
3945 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3946 		break;
3947 	default:
3948 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
3949 		break;
3950 	}
3951 	tcp->tcp_valid_bits = TCP_ISS_VALID;
3952 	tcp->tcp_fss = tcp->tcp_iss - 1;
3953 	tcp->tcp_suna = tcp->tcp_iss;
3954 	tcp->tcp_snxt = tcp->tcp_iss + 1;
3955 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3956 	tcp->tcp_csuna = tcp->tcp_snxt;
3957 }
3958 
3959 /*
3960  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3961  * on the specified backing STREAMS q. Note, the caller may make the
3962  * decision to call based on the tcp_t.tcp_flow_stopped value which
3963  * when check outside the q's lock is only an advisory check ...
3964  */
3965 void
3966 tcp_setqfull(tcp_t *tcp)
3967 {
3968 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3969 	conn_t	*connp = tcp->tcp_connp;
3970 
3971 	if (tcp->tcp_closed)
3972 		return;
3973 
3974 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
3975 	if (tcp->tcp_flow_stopped)
3976 		TCP_STAT(tcps, tcp_flwctl_on);
3977 }
3978 
3979 void
3980 tcp_clrqfull(tcp_t *tcp)
3981 {
3982 	conn_t  *connp = tcp->tcp_connp;
3983 
3984 	if (tcp->tcp_closed)
3985 		return;
3986 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
3987 }
3988 
3989 static int
3990 tcp_squeue_switch(int val)
3991 {
3992 	int rval = SQ_FILL;
3993 
3994 	switch (val) {
3995 	case 1:
3996 		rval = SQ_NODRAIN;
3997 		break;
3998 	case 2:
3999 		rval = SQ_PROCESS;
4000 		break;
4001 	default:
4002 		break;
4003 	}
4004 	return (rval);
4005 }
4006 
4007 /*
4008  * This is called once for each squeue - globally for all stack
4009  * instances.
4010  */
4011 static void
4012 tcp_squeue_add(squeue_t *sqp)
4013 {
4014 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4015 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4016 
4017 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4018 	if (tcp_free_list_max_cnt == 0) {
4019 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4020 		    max_ncpus : boot_max_ncpus);
4021 
4022 		/*
4023 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4024 		 */
4025 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4026 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4027 	}
4028 	tcp_time_wait->tcp_free_list_cnt = 0;
4029 }
4030 /*
4031  * Return unix error is tli error is TSYSERR, otherwise return a negative
4032  * tli error.
4033  */
4034 int
4035 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4036     boolean_t bind_to_req_port_only)
4037 {
4038 	int error;
4039 	tcp_t *tcp = connp->conn_tcp;
4040 
4041 	if (tcp->tcp_state >= TCPS_BOUND) {
4042 		if (connp->conn_debug) {
4043 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4044 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4045 		}
4046 		return (-TOUTSTATE);
4047 	}
4048 
4049 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4050 	if (error != 0)
4051 		return (error);
4052 
4053 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4054 	tcp->tcp_conn_req_max = 0;
4055 	return (0);
4056 }
4057 
4058 /*
4059  * If the return value from this function is positive, it's a UNIX error.
4060  * Otherwise, if it's negative, then the absolute value is a TLI error.
4061  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4062  */
4063 int
4064 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4065     cred_t *cr, pid_t pid)
4066 {
4067 	tcp_t		*tcp = connp->conn_tcp;
4068 	sin_t		*sin = (sin_t *)sa;
4069 	sin6_t		*sin6 = (sin6_t *)sa;
4070 	ipaddr_t	*dstaddrp;
4071 	in_port_t	dstport;
4072 	uint_t		srcid;
4073 	int		error;
4074 	uint32_t	mss;
4075 	mblk_t		*syn_mp;
4076 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4077 	int32_t		oldstate;
4078 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4079 
4080 	oldstate = tcp->tcp_state;
4081 
4082 	switch (len) {
4083 	default:
4084 		/*
4085 		 * Should never happen
4086 		 */
4087 		return (EINVAL);
4088 
4089 	case sizeof (sin_t):
4090 		sin = (sin_t *)sa;
4091 		if (sin->sin_port == 0) {
4092 			return (-TBADADDR);
4093 		}
4094 		if (connp->conn_ipv6_v6only) {
4095 			return (EAFNOSUPPORT);
4096 		}
4097 		break;
4098 
4099 	case sizeof (sin6_t):
4100 		sin6 = (sin6_t *)sa;
4101 		if (sin6->sin6_port == 0) {
4102 			return (-TBADADDR);
4103 		}
4104 		break;
4105 	}
4106 	/*
4107 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4108 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4109 	 * need to this before we call tcp_bindi() so that the port lookup
4110 	 * code will look for ports in the correct port space (IPv4 and
4111 	 * IPv6 have separate port spaces).
4112 	 */
4113 	if (connp->conn_family == AF_INET6 &&
4114 	    connp->conn_ipversion == IPV6_VERSION &&
4115 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4116 		if (connp->conn_ipv6_v6only)
4117 			return (EADDRNOTAVAIL);
4118 
4119 		connp->conn_ipversion = IPV4_VERSION;
4120 	}
4121 
4122 	switch (tcp->tcp_state) {
4123 	case TCPS_LISTEN:
4124 		/*
4125 		 * Listening sockets are not allowed to issue connect().
4126 		 */
4127 		if (IPCL_IS_NONSTR(connp))
4128 			return (EOPNOTSUPP);
4129 		/* FALLTHRU */
4130 	case TCPS_IDLE:
4131 		/*
4132 		 * We support quick connect, refer to comments in
4133 		 * tcp_connect_*()
4134 		 */
4135 		/* FALLTHRU */
4136 	case TCPS_BOUND:
4137 		break;
4138 	default:
4139 		return (-TOUTSTATE);
4140 	}
4141 
4142 	/*
4143 	 * We update our cred/cpid based on the caller of connect
4144 	 */
4145 	if (connp->conn_cred != cr) {
4146 		crhold(cr);
4147 		crfree(connp->conn_cred);
4148 		connp->conn_cred = cr;
4149 	}
4150 	connp->conn_cpid = pid;
4151 
4152 	/* Cache things in the ixa without any refhold */
4153 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4154 	ixa->ixa_cred = cr;
4155 	ixa->ixa_cpid = pid;
4156 	if (is_system_labeled()) {
4157 		/* We need to restart with a label based on the cred */
4158 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4159 	}
4160 
4161 	if (connp->conn_family == AF_INET6) {
4162 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4163 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4164 			    sin6->sin6_port, sin6->sin6_flowinfo,
4165 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4166 		} else {
4167 			/*
4168 			 * Destination adress is mapped IPv6 address.
4169 			 * Source bound address should be unspecified or
4170 			 * IPv6 mapped address as well.
4171 			 */
4172 			if (!IN6_IS_ADDR_UNSPECIFIED(
4173 			    &connp->conn_bound_addr_v6) &&
4174 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4175 				return (EADDRNOTAVAIL);
4176 			}
4177 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4178 			dstport = sin6->sin6_port;
4179 			srcid = sin6->__sin6_src_id;
4180 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4181 			    srcid);
4182 		}
4183 	} else {
4184 		dstaddrp = &sin->sin_addr.s_addr;
4185 		dstport = sin->sin_port;
4186 		srcid = 0;
4187 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4188 	}
4189 
4190 	if (error != 0)
4191 		goto connect_failed;
4192 
4193 	CL_INET_CONNECT(connp, B_TRUE, error);
4194 	if (error != 0)
4195 		goto connect_failed;
4196 
4197 	/* connect succeeded */
4198 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4199 	tcp->tcp_active_open = 1;
4200 
4201 	/*
4202 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4203 	 */
4204 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4205 
4206 	/*
4207 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4208 	 * to the nearest MSS.
4209 	 *
4210 	 * We do the round up here because we need to get the interface MTU
4211 	 * first before we can do the round up.
4212 	 */
4213 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4214 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4215 	    tcps->tcps_recv_hiwat_minmss * mss);
4216 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4217 	tcp_set_ws_value(tcp);
4218 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4219 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4220 		tcp->tcp_snd_ws_ok = B_TRUE;
4221 
4222 	/*
4223 	 * Set tcp_snd_ts_ok to true
4224 	 * so that tcp_xmit_mp will
4225 	 * include the timestamp
4226 	 * option in the SYN segment.
4227 	 */
4228 	if (tcps->tcps_tstamp_always ||
4229 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4230 		tcp->tcp_snd_ts_ok = B_TRUE;
4231 	}
4232 
4233 	/*
4234 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4235 	 * the SACK metric is set.  So here we just check the per stack SACK
4236 	 * permitted param.
4237 	 */
4238 	if (tcps->tcps_sack_permitted == 2) {
4239 		ASSERT(tcp->tcp_num_sack_blk == 0);
4240 		ASSERT(tcp->tcp_notsack_list == NULL);
4241 		tcp->tcp_snd_sack_ok = B_TRUE;
4242 	}
4243 
4244 	/*
4245 	 * Should we use ECN?  Note that the current
4246 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4247 	 * is 1.  The reason for doing this is that there
4248 	 * are equipments out there that will drop ECN
4249 	 * enabled IP packets.  Setting it to 1 avoids
4250 	 * compatibility problems.
4251 	 */
4252 	if (tcps->tcps_ecn_permitted == 2)
4253 		tcp->tcp_ecn_ok = B_TRUE;
4254 
4255 	/* Trace change from BOUND -> SYN_SENT here */
4256 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4257 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4258 	    int32_t, TCPS_BOUND);
4259 
4260 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4261 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4262 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4263 	if (syn_mp != NULL) {
4264 		/*
4265 		 * We must bump the generation before sending the syn
4266 		 * to ensure that we use the right generation in case
4267 		 * this thread issues a "connected" up call.
4268 		 */
4269 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4270 		/*
4271 		 * DTrace sending the first SYN as a
4272 		 * tcp:::connect-request event.
4273 		 */
4274 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4275 		    ip_xmit_attr_t *, connp->conn_ixa,
4276 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4277 		    tcph_t *,
4278 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4279 		tcp_send_data(tcp, syn_mp);
4280 	}
4281 
4282 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4283 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4284 	return (0);
4285 
4286 connect_failed:
4287 	connp->conn_faddr_v6 = ipv6_all_zeros;
4288 	connp->conn_fport = 0;
4289 	tcp->tcp_state = oldstate;
4290 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4291 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4292 	return (error);
4293 }
4294 
4295 int
4296 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4297     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4298 {
4299 	tcp_t		*tcp = connp->conn_tcp;
4300 	int		error = 0;
4301 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4302 	int32_t		oldstate;
4303 
4304 	/* All Solaris components should pass a cred for this operation. */
4305 	ASSERT(cr != NULL);
4306 
4307 	if (tcp->tcp_state >= TCPS_BOUND) {
4308 		if ((tcp->tcp_state == TCPS_BOUND ||
4309 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4310 			/*
4311 			 * Handle listen() increasing backlog.
4312 			 * This is more "liberal" then what the TPI spec
4313 			 * requires but is needed to avoid a t_unbind
4314 			 * when handling listen() since the port number
4315 			 * might be "stolen" between the unbind and bind.
4316 			 */
4317 			goto do_listen;
4318 		}
4319 		if (connp->conn_debug) {
4320 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4321 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4322 		}
4323 		return (-TOUTSTATE);
4324 	} else {
4325 		if (sa == NULL) {
4326 			sin6_t	addr;
4327 			sin_t *sin;
4328 			sin6_t *sin6;
4329 
4330 			ASSERT(IPCL_IS_NONSTR(connp));
4331 			/* Do an implicit bind: Request for a generic port. */
4332 			if (connp->conn_family == AF_INET) {
4333 				len = sizeof (sin_t);
4334 				sin = (sin_t *)&addr;
4335 				*sin = sin_null;
4336 				sin->sin_family = AF_INET;
4337 			} else {
4338 				ASSERT(connp->conn_family == AF_INET6);
4339 				len = sizeof (sin6_t);
4340 				sin6 = (sin6_t *)&addr;
4341 				*sin6 = sin6_null;
4342 				sin6->sin6_family = AF_INET6;
4343 			}
4344 			sa = (struct sockaddr *)&addr;
4345 		}
4346 
4347 		error = tcp_bind_check(connp, sa, len, cr,
4348 		    bind_to_req_port_only);
4349 		if (error)
4350 			return (error);
4351 		/* Fall through and do the fanout insertion */
4352 	}
4353 
4354 do_listen:
4355 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4356 	tcp->tcp_conn_req_max = backlog;
4357 	if (tcp->tcp_conn_req_max) {
4358 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4359 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4360 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4361 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4362 		/*
4363 		 * If this is a listener, do not reset the eager list
4364 		 * and other stuffs.  Note that we don't check if the
4365 		 * existing eager list meets the new tcp_conn_req_max
4366 		 * requirement.
4367 		 */
4368 		if (tcp->tcp_state != TCPS_LISTEN) {
4369 			tcp->tcp_state = TCPS_LISTEN;
4370 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4371 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4372 			    void, NULL, int32_t, TCPS_BOUND);
4373 			/* Initialize the chain. Don't need the eager_lock */
4374 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4375 			tcp->tcp_eager_next_drop_q0 = tcp;
4376 			tcp->tcp_eager_prev_drop_q0 = tcp;
4377 			tcp->tcp_second_ctimer_threshold =
4378 			    tcps->tcps_ip_abort_linterval;
4379 		}
4380 	}
4381 
4382 	/*
4383 	 * We need to make sure that the conn_recv is set to a non-null
4384 	 * value before we insert the conn into the classifier table.
4385 	 * This is to avoid a race with an incoming packet which does an
4386 	 * ipcl_classify().
4387 	 * We initially set it to tcp_input_listener_unbound to try to
4388 	 * pick a good squeue for the listener when the first SYN arrives.
4389 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4390 	 * first SYN.
4391 	 */
4392 	connp->conn_recv = tcp_input_listener_unbound;
4393 
4394 	/* Insert the listener in the classifier table */
4395 	error = ip_laddr_fanout_insert(connp);
4396 	if (error != 0) {
4397 		/* Undo the bind - release the port number */
4398 		oldstate = tcp->tcp_state;
4399 		tcp->tcp_state = TCPS_IDLE;
4400 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4401 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4402 		    int32_t, oldstate);
4403 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4404 
4405 		connp->conn_laddr_v6 = ipv6_all_zeros;
4406 		connp->conn_saddr_v6 = ipv6_all_zeros;
4407 		connp->conn_ports = 0;
4408 
4409 		if (connp->conn_anon_port) {
4410 			zone_t		*zone;
4411 
4412 			zone = crgetzone(cr);
4413 			connp->conn_anon_port = B_FALSE;
4414 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4415 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4416 		}
4417 		connp->conn_mlp_type = mlptSingle;
4418 
4419 		tcp_bind_hash_remove(tcp);
4420 		return (error);
4421 	} else {
4422 		/*
4423 		 * If there is a connection limit, allocate and initialize
4424 		 * the counter struct.  Note that since listen can be called
4425 		 * multiple times, the struct may have been allready allocated.
4426 		 */
4427 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4428 		    tcp->tcp_listen_cnt == NULL) {
4429 			tcp_listen_cnt_t *tlc;
4430 			uint32_t ratio;
4431 
4432 			ratio = tcp_find_listener_conf(tcps,
4433 			    ntohs(connp->conn_lport));
4434 			if (ratio != 0) {
4435 				uint32_t mem_ratio, tot_buf;
4436 
4437 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4438 				    KM_SLEEP);
4439 				/*
4440 				 * Calculate the connection limit based on
4441 				 * the configured ratio and maxusers.  Maxusers
4442 				 * are calculated based on memory size,
4443 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4444 				 * and conn_sndbuf may change after a
4445 				 * connection is accepted.  So what we have
4446 				 * is only an approximation.
4447 				 */
4448 				if ((tot_buf = connp->conn_rcvbuf +
4449 				    connp->conn_sndbuf) < MB) {
4450 					mem_ratio = MB / tot_buf;
4451 					tlc->tlc_max = maxusers / ratio *
4452 					    mem_ratio;
4453 				} else {
4454 					mem_ratio = tot_buf / MB;
4455 					tlc->tlc_max = maxusers / ratio /
4456 					    mem_ratio;
4457 				}
4458 				/* At least we should allow two connections! */
4459 				if (tlc->tlc_max <= tcp_min_conn_listener)
4460 					tlc->tlc_max = tcp_min_conn_listener;
4461 				tlc->tlc_cnt = 1;
4462 				tlc->tlc_drop = 0;
4463 				tcp->tcp_listen_cnt = tlc;
4464 			}
4465 		}
4466 	}
4467 	return (error);
4468 }
4469