1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 61 #include <sys/errno.h> 62 #include <sys/signal.h> 63 #include <sys/socket.h> 64 #include <sys/sockio.h> 65 #include <sys/isa_defs.h> 66 #include <sys/md5.h> 67 #include <sys/random.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 #include <inet/tcp_trace.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <sys/sdt.h> 105 #include <rpc/pmap_prot.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 129 * squeue_fill). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. ip_tcpopen() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 extern major_t TCP6_MAJ; 237 238 /* 239 * Values for squeue switch: 240 * 1: squeue_enter_nodrain 241 * 2: squeue_enter 242 * 3: squeue_fill 243 */ 244 int tcp_squeue_close = 2; 245 int tcp_squeue_wput = 2; 246 247 squeue_func_t tcp_squeue_close_proc; 248 squeue_func_t tcp_squeue_wput_proc; 249 250 /* 251 * This controls how tiny a write must be before we try to copy it 252 * into the the mblk on the tail of the transmit queue. Not much 253 * speedup is observed for values larger than sixteen. Zero will 254 * disable the optimisation. 255 */ 256 int tcp_tx_pull_len = 16; 257 258 /* 259 * TCP Statistics. 260 * 261 * How TCP statistics work. 262 * 263 * There are two types of statistics invoked by two macros. 264 * 265 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 266 * supposed to be used in non MT-hot paths of the code. 267 * 268 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 269 * supposed to be used for DEBUG purposes and may be used on a hot path. 270 * 271 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 272 * (use "kstat tcp" to get them). 273 * 274 * There is also additional debugging facility that marks tcp_clean_death() 275 * instances and saves them in tcp_t structure. It is triggered by 276 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 277 * tcp_clean_death() calls that counts the number of times each tag was hit. It 278 * is triggered by TCP_CLD_COUNTERS define. 279 * 280 * How to add new counters. 281 * 282 * 1) Add a field in the tcp_stat structure describing your counter. 283 * 2) Add a line in tcp_statistics with the name of the counter. 284 * 285 * IMPORTANT!! - make sure that both are in sync !! 286 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 287 * 288 * Please avoid using private counters which are not kstat-exported. 289 * 290 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 291 * in tcp_t structure. 292 * 293 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 294 */ 295 296 #ifndef TCP_DEBUG_COUNTER 297 #ifdef DEBUG 298 #define TCP_DEBUG_COUNTER 1 299 #else 300 #define TCP_DEBUG_COUNTER 0 301 #endif 302 #endif 303 304 #define TCP_CLD_COUNTERS 0 305 306 #define TCP_TAG_CLEAN_DEATH 1 307 #define TCP_MAX_CLEAN_DEATH_TAG 32 308 309 #ifdef lint 310 static int _lint_dummy_; 311 #endif 312 313 #if TCP_CLD_COUNTERS 314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 315 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 316 #elif defined(lint) 317 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 318 #else 319 #define TCP_CLD_STAT(x) 320 #endif 321 322 #if TCP_DEBUG_COUNTER 323 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 324 #elif defined(lint) 325 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(x) 328 #endif 329 330 tcp_stat_t tcp_statistics = { 331 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 332 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 333 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 334 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 335 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 336 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 337 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 338 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 339 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 340 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 341 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 342 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 343 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 344 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 345 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 346 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 347 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 348 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 349 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 350 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 351 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 352 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 353 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 354 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 356 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 357 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 358 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 359 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 360 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 361 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 362 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 363 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 364 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 365 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 366 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 367 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 368 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 369 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 370 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 371 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 372 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 373 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 374 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 375 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 376 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 377 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 378 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 379 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 380 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 381 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 382 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 383 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 384 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 385 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 386 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 387 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 388 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 389 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 390 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 391 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 392 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 399 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 400 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 401 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 402 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 403 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 404 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 405 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 406 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 407 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 408 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 409 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 410 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 411 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 412 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 413 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 414 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 415 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 416 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 417 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 418 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 419 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 420 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 421 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 422 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 423 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 424 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 425 }; 426 427 static kstat_t *tcp_kstat; 428 429 /* 430 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 431 * tcp write side. 432 */ 433 #define CALL_IP_WPUT(connp, q, mp) { \ 434 ASSERT(((q)->q_flag & QREADR) == 0); \ 435 TCP_DBGSTAT(tcp_ip_output); \ 436 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 437 } 438 439 /* Macros for timestamp comparisons */ 440 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 441 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 442 443 /* 444 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 445 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 446 * by adding three components: a time component which grows by 1 every 4096 447 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 448 * a per-connection component which grows by 125000 for every new connection; 449 * and an "extra" component that grows by a random amount centered 450 * approximately on 64000. This causes the the ISS generator to cycle every 451 * 4.89 hours if no TCP connections are made, and faster if connections are 452 * made. 453 * 454 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 455 * components: a time component which grows by 250000 every second; and 456 * a per-connection component which grows by 125000 for every new connections. 457 * 458 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 459 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 460 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 461 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 462 * password. 463 */ 464 #define ISS_INCR 250000 465 #define ISS_NSEC_SHT 12 466 467 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 468 static kmutex_t tcp_iss_key_lock; 469 static MD5_CTX tcp_iss_key; 470 static sin_t sin_null; /* Zero address for quick clears */ 471 static sin6_t sin6_null; /* Zero address for quick clears */ 472 473 /* Packet dropper for TCP IPsec policy drops. */ 474 static ipdropper_t tcp_dropper; 475 476 /* 477 * This implementation follows the 4.3BSD interpretation of the urgent 478 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 479 * incompatible changes in protocols like telnet and rlogin. 480 */ 481 #define TCP_OLD_URP_INTERPRETATION 1 482 483 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 484 (TCP_IS_DETACHED(tcp) && \ 485 (!(tcp)->tcp_hard_binding)) 486 487 /* 488 * TCP reassembly macros. We hide starting and ending sequence numbers in 489 * b_next and b_prev of messages on the reassembly queue. The messages are 490 * chained using b_cont. These macros are used in tcp_reass() so we don't 491 * have to see the ugly casts and assignments. 492 */ 493 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 494 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 495 (mblk_t *)(uintptr_t)(u)) 496 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 497 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 498 (mblk_t *)(uintptr_t)(u)) 499 500 /* 501 * Implementation of TCP Timers. 502 * ============================= 503 * 504 * INTERFACE: 505 * 506 * There are two basic functions dealing with tcp timers: 507 * 508 * timeout_id_t tcp_timeout(connp, func, time) 509 * clock_t tcp_timeout_cancel(connp, timeout_id) 510 * TCP_TIMER_RESTART(tcp, intvl) 511 * 512 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 513 * after 'time' ticks passed. The function called by timeout() must adhere to 514 * the same restrictions as a driver soft interrupt handler - it must not sleep 515 * or call other functions that might sleep. The value returned is the opaque 516 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 517 * cancel the request. The call to tcp_timeout() may fail in which case it 518 * returns zero. This is different from the timeout(9F) function which never 519 * fails. 520 * 521 * The call-back function 'func' always receives 'connp' as its single 522 * argument. It is always executed in the squeue corresponding to the tcp 523 * structure. The tcp structure is guaranteed to be present at the time the 524 * call-back is called. 525 * 526 * NOTE: The call-back function 'func' is never called if tcp is in 527 * the TCPS_CLOSED state. 528 * 529 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 530 * request. locks acquired by the call-back routine should not be held across 531 * the call to tcp_timeout_cancel() or a deadlock may result. 532 * 533 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 534 * Otherwise, it returns an integer value greater than or equal to 0. In 535 * particular, if the call-back function is already placed on the squeue, it can 536 * not be canceled. 537 * 538 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 539 * within squeue context corresponding to the tcp instance. Since the 540 * call-back is also called via the same squeue, there are no race 541 * conditions described in untimeout(9F) manual page since all calls are 542 * strictly serialized. 543 * 544 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 545 * stored in tcp_timer_tid and starts a new one using 546 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 547 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 548 * field. 549 * 550 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 551 * call-back may still be called, so it is possible tcp_timer() will be 552 * called several times. This should not be a problem since tcp_timer() 553 * should always check the tcp instance state. 554 * 555 * 556 * IMPLEMENTATION: 557 * 558 * TCP timers are implemented using three-stage process. The call to 559 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 560 * when the timer expires. The tcp_timer_callback() arranges the call of the 561 * tcp_timer_handler() function via squeue corresponding to the tcp 562 * instance. The tcp_timer_handler() calls actual requested timeout call-back 563 * and passes tcp instance as an argument to it. Information is passed between 564 * stages using the tcp_timer_t structure which contains the connp pointer, the 565 * tcp call-back to call and the timeout id returned by the timeout(9F). 566 * 567 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 568 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 569 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 570 * returns the pointer to this mblk. 571 * 572 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 573 * looks like a normal mblk without actual dblk attached to it. 574 * 575 * To optimize performance each tcp instance holds a small cache of timer 576 * mblocks. In the current implementation it caches up to two timer mblocks per 577 * tcp instance. The cache is preserved over tcp frees and is only freed when 578 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 579 * timer processing happens on a corresponding squeue, the cache manipulation 580 * does not require any locks. Experiments show that majority of timer mblocks 581 * allocations are satisfied from the tcp cache and do not involve kmem calls. 582 * 583 * The tcp_timeout() places a refhold on the connp instance which guarantees 584 * that it will be present at the time the call-back function fires. The 585 * tcp_timer_handler() drops the reference after calling the call-back, so the 586 * call-back function does not need to manipulate the references explicitly. 587 */ 588 589 typedef struct tcp_timer_s { 590 conn_t *connp; 591 void (*tcpt_proc)(void *); 592 timeout_id_t tcpt_tid; 593 } tcp_timer_t; 594 595 static kmem_cache_t *tcp_timercache; 596 kmem_cache_t *tcp_sack_info_cache; 597 kmem_cache_t *tcp_iphc_cache; 598 599 /* 600 * For scalability, we must not run a timer for every TCP connection 601 * in TIME_WAIT state. To see why, consider (for time wait interval of 602 * 4 minutes): 603 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 604 * 605 * This list is ordered by time, so you need only delete from the head 606 * until you get to entries which aren't old enough to delete yet. 607 * The list consists of only the detached TIME_WAIT connections. 608 * 609 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 610 * becomes detached TIME_WAIT (either by changing the state and already 611 * being detached or the other way around). This means that the TIME_WAIT 612 * state can be extended (up to doubled) if the connection doesn't become 613 * detached for a long time. 614 * 615 * The list manipulations (including tcp_time_wait_next/prev) 616 * are protected by the tcp_time_wait_lock. The content of the 617 * detached TIME_WAIT connections is protected by the normal perimeters. 618 */ 619 620 typedef struct tcp_squeue_priv_s { 621 kmutex_t tcp_time_wait_lock; 622 /* Protects the next 3 globals */ 623 timeout_id_t tcp_time_wait_tid; 624 tcp_t *tcp_time_wait_head; 625 tcp_t *tcp_time_wait_tail; 626 tcp_t *tcp_free_list; 627 uint_t tcp_free_list_cnt; 628 } tcp_squeue_priv_t; 629 630 /* 631 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 632 * Running it every 5 seconds seems to give the best results. 633 */ 634 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 635 636 /* 637 * To prevent memory hog, limit the number of entries in tcp_free_list 638 * to 1% of available memory / number of cpus 639 */ 640 uint_t tcp_free_list_max_cnt = 0; 641 642 #define TCP_XMIT_LOWATER 4096 643 #define TCP_XMIT_HIWATER 49152 644 #define TCP_RECV_LOWATER 2048 645 #define TCP_RECV_HIWATER 49152 646 647 /* 648 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 649 */ 650 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 651 652 #define TIDUSZ 4096 /* transport interface data unit size */ 653 654 /* 655 * Bind hash list size and has function. It has to be a power of 2 for 656 * hashing. 657 */ 658 #define TCP_BIND_FANOUT_SIZE 512 659 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 660 /* 661 * Size of listen and acceptor hash list. It has to be a power of 2 for 662 * hashing. 663 */ 664 #define TCP_FANOUT_SIZE 256 665 666 #ifdef _ILP32 667 #define TCP_ACCEPTOR_HASH(accid) \ 668 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 669 #else 670 #define TCP_ACCEPTOR_HASH(accid) \ 671 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 672 #endif /* _ILP32 */ 673 674 #define IP_ADDR_CACHE_SIZE 2048 675 #define IP_ADDR_CACHE_HASH(faddr) \ 676 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 677 678 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 679 #define TCP_HSP_HASH_SIZE 256 680 681 #define TCP_HSP_HASH(addr) \ 682 (((addr>>24) ^ (addr >>16) ^ \ 683 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 684 685 /* 686 * TCP options struct returned from tcp_parse_options. 687 */ 688 typedef struct tcp_opt_s { 689 uint32_t tcp_opt_mss; 690 uint32_t tcp_opt_wscale; 691 uint32_t tcp_opt_ts_val; 692 uint32_t tcp_opt_ts_ecr; 693 tcp_t *tcp; 694 } tcp_opt_t; 695 696 /* 697 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 698 */ 699 700 #ifdef _BIG_ENDIAN 701 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 702 (TCPOPT_TSTAMP << 8) | 10) 703 #else 704 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 705 (TCPOPT_NOP << 8) | TCPOPT_NOP) 706 #endif 707 708 /* 709 * Flags returned from tcp_parse_options. 710 */ 711 #define TCP_OPT_MSS_PRESENT 1 712 #define TCP_OPT_WSCALE_PRESENT 2 713 #define TCP_OPT_TSTAMP_PRESENT 4 714 #define TCP_OPT_SACK_OK_PRESENT 8 715 #define TCP_OPT_SACK_PRESENT 16 716 717 /* TCP option length */ 718 #define TCPOPT_NOP_LEN 1 719 #define TCPOPT_MAXSEG_LEN 4 720 #define TCPOPT_WS_LEN 3 721 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 722 #define TCPOPT_TSTAMP_LEN 10 723 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 724 #define TCPOPT_SACK_OK_LEN 2 725 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 726 #define TCPOPT_REAL_SACK_LEN 4 727 #define TCPOPT_MAX_SACK_LEN 36 728 #define TCPOPT_HEADER_LEN 2 729 730 /* TCP cwnd burst factor. */ 731 #define TCP_CWND_INFINITE 65535 732 #define TCP_CWND_SS 3 733 #define TCP_CWND_NORMAL 5 734 735 /* Maximum TCP initial cwin (start/restart). */ 736 #define TCP_MAX_INIT_CWND 8 737 738 /* 739 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 740 * either tcp_slow_start_initial or tcp_slow_start_after idle 741 * depending on the caller. If the upper layer has not used the 742 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 743 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 744 * If the upper layer has changed set the tcp_init_cwnd, just use 745 * it to calculate the tcp_cwnd. 746 */ 747 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 748 { \ 749 if ((tcp)->tcp_init_cwnd == 0) { \ 750 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 751 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 752 } else { \ 753 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 754 } \ 755 tcp->tcp_cwnd_cnt = 0; \ 756 } 757 758 /* TCP Timer control structure */ 759 typedef struct tcpt_s { 760 pfv_t tcpt_pfv; /* The routine we are to call */ 761 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 762 } tcpt_t; 763 764 /* Host Specific Parameter structure */ 765 typedef struct tcp_hsp { 766 struct tcp_hsp *tcp_hsp_next; 767 in6_addr_t tcp_hsp_addr_v6; 768 in6_addr_t tcp_hsp_subnet_v6; 769 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 770 int32_t tcp_hsp_sendspace; 771 int32_t tcp_hsp_recvspace; 772 int32_t tcp_hsp_tstamp; 773 } tcp_hsp_t; 774 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 775 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 776 777 /* 778 * Functions called directly via squeue having a prototype of edesc_t. 779 */ 780 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 781 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 782 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 783 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 784 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 785 void tcp_input(void *arg, mblk_t *mp, void *arg2); 786 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 787 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 788 void tcp_output(void *arg, mblk_t *mp, void *arg2); 789 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 790 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 791 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 792 793 794 /* Prototype for TCP functions */ 795 static void tcp_random_init(void); 796 int tcp_random(void); 797 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 798 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 799 tcp_t *eager); 800 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 801 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 802 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 803 boolean_t user_specified); 804 static void tcp_closei_local(tcp_t *tcp); 805 static void tcp_close_detached(tcp_t *tcp); 806 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 807 mblk_t *idmp, mblk_t **defermp); 808 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 809 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 810 in_port_t dstport, uint_t srcid); 811 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 812 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 813 uint32_t scope_id); 814 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 815 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 816 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 817 static char *tcp_display(tcp_t *tcp, char *, char); 818 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 819 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 820 static void tcp_eager_unlink(tcp_t *tcp); 821 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 822 int unixerr); 823 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 824 int tlierr, int unixerr); 825 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 826 cred_t *cr); 827 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 828 char *value, caddr_t cp, cred_t *cr); 829 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 830 char *value, caddr_t cp, cred_t *cr); 831 static int tcp_tpistate(tcp_t *tcp); 832 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 833 int caller_holds_lock); 834 static void tcp_bind_hash_remove(tcp_t *tcp); 835 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 836 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 837 static void tcp_acceptor_hash_remove(tcp_t *tcp); 838 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 839 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 840 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 841 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 842 static int tcp_header_init_ipv4(tcp_t *tcp); 843 static int tcp_header_init_ipv6(tcp_t *tcp); 844 int tcp_init(tcp_t *tcp, queue_t *q); 845 static int tcp_init_values(tcp_t *tcp); 846 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 847 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 848 t_scalar_t addr_length); 849 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 850 static void tcp_ip_notify(tcp_t *tcp); 851 static mblk_t *tcp_ire_mp(mblk_t *mp); 852 static void tcp_iss_init(tcp_t *tcp); 853 static void tcp_keepalive_killer(void *arg); 854 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 855 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 856 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 857 int *do_disconnectp, int *t_errorp, int *sys_errorp); 858 static boolean_t tcp_allow_connopt_set(int level, int name); 859 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 860 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 861 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 862 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 863 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 864 mblk_t *mblk); 865 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 866 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 867 uchar_t *ptr, uint_t len); 868 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 869 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 870 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 871 caddr_t cp, cred_t *cr); 872 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 873 caddr_t cp, cred_t *cr); 874 static void tcp_iss_key_init(uint8_t *phrase, int len); 875 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 876 caddr_t cp, cred_t *cr); 877 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 878 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 879 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 880 static void tcp_reinit(tcp_t *tcp); 881 static void tcp_reinit_values(tcp_t *tcp); 882 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 883 tcp_t *thisstream, cred_t *cr); 884 885 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 886 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 887 static boolean_t tcp_send_rst_chk(void); 888 static void tcp_ss_rexmit(tcp_t *tcp); 889 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 890 static void tcp_process_options(tcp_t *, tcph_t *); 891 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 892 static void tcp_rsrv(queue_t *q); 893 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 894 static int tcp_snmp_state(tcp_t *tcp); 895 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 896 cred_t *cr); 897 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 898 cred_t *cr); 899 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 900 cred_t *cr); 901 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 902 cred_t *cr); 903 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 904 cred_t *cr); 905 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 906 caddr_t cp, cred_t *cr); 907 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 908 caddr_t cp, cred_t *cr); 909 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 910 cred_t *cr); 911 static void tcp_timer(void *arg); 912 static void tcp_timer_callback(void *); 913 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 914 boolean_t random); 915 static in_port_t tcp_get_next_priv_port(const tcp_t *); 916 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 917 void tcp_wput_accept(queue_t *q, mblk_t *mp); 918 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 919 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 920 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 921 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 922 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 923 const int num_sack_blk, int *usable, uint_t *snxt, 924 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 925 const int mdt_thres); 926 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 927 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 928 const int num_sack_blk, int *usable, uint_t *snxt, 929 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 930 const int mdt_thres); 931 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 932 int num_sack_blk); 933 static void tcp_wsrv(queue_t *q); 934 static int tcp_xmit_end(tcp_t *tcp); 935 static void tcp_ack_timer(void *arg); 936 static mblk_t *tcp_ack_mp(tcp_t *tcp); 937 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 938 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 939 zoneid_t zoneid); 940 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 941 uint32_t ack, int ctl); 942 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 943 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 944 static int setmaxps(queue_t *q, int maxpsz); 945 static void tcp_set_rto(tcp_t *, time_t); 946 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 947 boolean_t, boolean_t); 948 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 949 boolean_t ipsec_mctl); 950 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 951 char *opt, int optlen); 952 static int tcp_build_hdrs(queue_t *, tcp_t *); 953 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 954 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 955 tcph_t *tcph); 956 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 957 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 958 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 959 boolean_t tcp_reserved_port_check(in_port_t); 960 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 961 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 962 static mblk_t *tcp_mdt_info_mp(mblk_t *); 963 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 964 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 965 const boolean_t, const uint32_t, const uint32_t, 966 const uint32_t, const uint32_t); 967 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 968 const uint_t, const uint_t, boolean_t *); 969 static mblk_t *tcp_lso_info_mp(mblk_t *); 970 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 971 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 972 extern mblk_t *tcp_timermp_alloc(int); 973 extern void tcp_timermp_free(tcp_t *); 974 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 975 static void tcp_stop_lingering(tcp_t *tcp); 976 static void tcp_close_linger_timeout(void *arg); 977 void tcp_ddi_init(void); 978 void tcp_ddi_destroy(void); 979 static void tcp_kstat_init(void); 980 static void tcp_kstat_fini(void); 981 static int tcp_kstat_update(kstat_t *kp, int rw); 982 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 983 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 984 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 985 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 986 tcph_t *tcph, mblk_t *idmp); 987 static squeue_func_t tcp_squeue_switch(int); 988 989 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 990 static int tcp_close(queue_t *, int); 991 static int tcpclose_accept(queue_t *); 992 static int tcp_modclose(queue_t *); 993 static void tcp_wput_mod(queue_t *, mblk_t *); 994 995 static void tcp_squeue_add(squeue_t *); 996 static boolean_t tcp_zcopy_check(tcp_t *); 997 static void tcp_zcopy_notify(tcp_t *); 998 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 999 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 1000 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 1001 1002 extern void tcp_kssl_input(tcp_t *, mblk_t *); 1003 1004 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 1005 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 1006 1007 /* 1008 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 1009 * 1010 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 1011 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 1012 * (defined in tcp.h) needs to be filled in and passed into the kernel 1013 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 1014 * structure contains the four-tuple of a TCP connection and a range of TCP 1015 * states (specified by ac_start and ac_end). The use of wildcard addresses 1016 * and ports is allowed. Connections with a matching four tuple and a state 1017 * within the specified range will be aborted. The valid states for the 1018 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1019 * inclusive. 1020 * 1021 * An application which has its connection aborted by this ioctl will receive 1022 * an error that is dependent on the connection state at the time of the abort. 1023 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1024 * though a RST packet has been received. If the connection state is equal to 1025 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1026 * and all resources associated with the connection will be freed. 1027 */ 1028 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1029 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1030 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1031 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1032 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1033 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1034 boolean_t); 1035 1036 static struct module_info tcp_rinfo = { 1037 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1038 }; 1039 1040 static struct module_info tcp_winfo = { 1041 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1042 }; 1043 1044 /* 1045 * Entry points for TCP as a module. It only allows SNMP requests 1046 * to pass through. 1047 */ 1048 struct qinit tcp_mod_rinit = { 1049 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1050 }; 1051 1052 struct qinit tcp_mod_winit = { 1053 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1054 &tcp_rinfo 1055 }; 1056 1057 /* 1058 * Entry points for TCP as a device. The normal case which supports 1059 * the TCP functionality. 1060 */ 1061 struct qinit tcp_rinit = { 1062 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1063 }; 1064 1065 struct qinit tcp_winit = { 1066 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1067 }; 1068 1069 /* Initial entry point for TCP in socket mode. */ 1070 struct qinit tcp_sock_winit = { 1071 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1072 }; 1073 1074 /* 1075 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1076 * an accept. Avoid allocating data structures since eager has already 1077 * been created. 1078 */ 1079 struct qinit tcp_acceptor_rinit = { 1080 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1081 }; 1082 1083 struct qinit tcp_acceptor_winit = { 1084 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1085 }; 1086 1087 /* 1088 * Entry points for TCP loopback (read side only) 1089 */ 1090 struct qinit tcp_loopback_rinit = { 1091 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1092 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1093 }; 1094 1095 struct streamtab tcpinfo = { 1096 &tcp_rinit, &tcp_winit 1097 }; 1098 1099 extern squeue_func_t tcp_squeue_wput_proc; 1100 extern squeue_func_t tcp_squeue_timer_proc; 1101 1102 /* Protected by tcp_g_q_lock */ 1103 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1104 kmutex_t tcp_g_q_lock; 1105 1106 /* Protected by tcp_hsp_lock */ 1107 /* 1108 * XXX The host param mechanism should go away and instead we should use 1109 * the metrics associated with the routes to determine the default sndspace 1110 * and rcvspace. 1111 */ 1112 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1113 krwlock_t tcp_hsp_lock; 1114 1115 /* 1116 * Extra privileged ports. In host byte order. 1117 * Protected by tcp_epriv_port_lock. 1118 */ 1119 #define TCP_NUM_EPRIV_PORTS 64 1120 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1121 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1122 kmutex_t tcp_epriv_port_lock; 1123 1124 /* 1125 * The smallest anonymous port in the privileged port range which TCP 1126 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1127 */ 1128 static in_port_t tcp_min_anonpriv_port = 512; 1129 1130 /* Only modified during _init and _fini thus no locking is needed. */ 1131 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1132 1133 /* Hint not protected by any lock */ 1134 static uint_t tcp_next_port_to_try; 1135 1136 1137 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1138 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1139 1140 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1141 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1142 1143 /* 1144 * TCP has a private interface for other kernel modules to reserve a 1145 * port range for them to use. Once reserved, TCP will not use any ports 1146 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1147 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1148 * has to be verified. 1149 * 1150 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1151 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1152 * range is [port a, port b] inclusive. And each port range is between 1153 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1154 * 1155 * Note that the default anonymous port range starts from 32768. There is 1156 * no port "collision" between that and the reserved port range. If there 1157 * is port collision (because the default smallest anonymous port is lowered 1158 * or some apps specifically bind to ports in the reserved port range), the 1159 * system may not be able to reserve a port range even there are enough 1160 * unbound ports as a reserved port range contains consecutive ports . 1161 */ 1162 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1163 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1164 #define TCP_SMALLEST_RESERVED_PORT 10240 1165 #define TCP_LARGEST_RESERVED_PORT 20480 1166 1167 /* Structure to represent those reserved port ranges. */ 1168 typedef struct tcp_rport_s { 1169 in_port_t lo_port; 1170 in_port_t hi_port; 1171 tcp_t **temp_tcp_array; 1172 } tcp_rport_t; 1173 1174 /* The reserved port array. */ 1175 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1176 1177 /* Locks to protect the tcp_reserved_ports array. */ 1178 static krwlock_t tcp_reserved_port_lock; 1179 1180 /* The number of ranges in the array. */ 1181 uint32_t tcp_reserved_port_array_size = 0; 1182 1183 /* 1184 * MIB-2 stuff for SNMP 1185 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1186 */ 1187 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1188 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1189 1190 boolean_t tcp_icmp_source_quench = B_FALSE; 1191 /* 1192 * Following assumes TPI alignment requirements stay along 32 bit 1193 * boundaries 1194 */ 1195 #define ROUNDUP32(x) \ 1196 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1197 1198 /* Template for response to info request. */ 1199 static struct T_info_ack tcp_g_t_info_ack = { 1200 T_INFO_ACK, /* PRIM_type */ 1201 0, /* TSDU_size */ 1202 T_INFINITE, /* ETSDU_size */ 1203 T_INVALID, /* CDATA_size */ 1204 T_INVALID, /* DDATA_size */ 1205 sizeof (sin_t), /* ADDR_size */ 1206 0, /* OPT_size - not initialized here */ 1207 TIDUSZ, /* TIDU_size */ 1208 T_COTS_ORD, /* SERV_type */ 1209 TCPS_IDLE, /* CURRENT_state */ 1210 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1211 }; 1212 1213 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1214 T_INFO_ACK, /* PRIM_type */ 1215 0, /* TSDU_size */ 1216 T_INFINITE, /* ETSDU_size */ 1217 T_INVALID, /* CDATA_size */ 1218 T_INVALID, /* DDATA_size */ 1219 sizeof (sin6_t), /* ADDR_size */ 1220 0, /* OPT_size - not initialized here */ 1221 TIDUSZ, /* TIDU_size */ 1222 T_COTS_ORD, /* SERV_type */ 1223 TCPS_IDLE, /* CURRENT_state */ 1224 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1225 }; 1226 1227 #define MS 1L 1228 #define SECONDS (1000 * MS) 1229 #define MINUTES (60 * SECONDS) 1230 #define HOURS (60 * MINUTES) 1231 #define DAYS (24 * HOURS) 1232 1233 #define PARAM_MAX (~(uint32_t)0) 1234 1235 /* Max size IP datagram is 64k - 1 */ 1236 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1237 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1238 /* Max of the above */ 1239 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1240 1241 /* Largest TCP port number */ 1242 #define TCP_MAX_PORT (64 * 1024 - 1) 1243 1244 /* 1245 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1246 * layer header. It has to be a multiple of 4. 1247 */ 1248 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1249 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1250 1251 /* 1252 * All of these are alterable, within the min/max values given, at run time. 1253 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1254 * per the TCP spec. 1255 */ 1256 /* BEGIN CSTYLED */ 1257 tcpparam_t tcp_param_arr[] = { 1258 /*min max value name */ 1259 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1260 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1261 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1262 { 1, 1024, 1, "tcp_conn_req_min" }, 1263 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1264 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1265 { 0, 10, 0, "tcp_debug" }, 1266 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1267 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1268 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1269 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1270 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1271 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1272 { 1, 255, 64, "tcp_ipv4_ttl"}, 1273 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1274 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1275 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1276 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1277 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1278 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1279 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1280 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1281 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1282 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1283 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1284 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1285 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1286 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1287 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1288 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1289 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1290 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1291 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1292 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1293 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1294 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1295 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1296 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1297 /* 1298 * Question: What default value should I set for tcp_strong_iss? 1299 */ 1300 { 0, 2, 1, "tcp_strong_iss"}, 1301 { 0, 65536, 20, "tcp_rtt_updates"}, 1302 { 0, 1, 1, "tcp_wscale_always"}, 1303 { 0, 1, 0, "tcp_tstamp_always"}, 1304 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1305 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1306 { 0, 16, 2, "tcp_deferred_acks_max"}, 1307 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1308 { 1, 4, 4, "tcp_slow_start_initial"}, 1309 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1310 { 0, 2, 2, "tcp_sack_permitted"}, 1311 { 0, 1, 0, "tcp_trace"}, 1312 { 0, 1, 1, "tcp_compression_enabled"}, 1313 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1314 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1315 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1316 { 0, 1, 0, "tcp_rev_src_routes"}, 1317 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1318 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1319 { 0, 16, 8, "tcp_local_dacks_max"}, 1320 { 0, 2, 1, "tcp_ecn_permitted"}, 1321 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1322 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1323 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1324 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1325 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1326 }; 1327 /* END CSTYLED */ 1328 1329 /* 1330 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1331 * each header fragment in the header buffer. Each parameter value has 1332 * to be a multiple of 4 (32-bit aligned). 1333 */ 1334 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1335 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1336 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1337 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1338 1339 /* 1340 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1341 * the maximum number of payload buffers associated per Multidata. 1342 */ 1343 static tcpparam_t tcp_mdt_max_pbufs_param = 1344 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1345 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1346 1347 /* Round up the value to the nearest mss. */ 1348 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1349 1350 /* 1351 * Set ECN capable transport (ECT) code point in IP header. 1352 * 1353 * Note that there are 2 ECT code points '01' and '10', which are called 1354 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1355 * point ECT(0) for TCP as described in RFC 2481. 1356 */ 1357 #define SET_ECT(tcp, iph) \ 1358 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1359 /* We need to clear the code point first. */ \ 1360 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1361 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1362 } else { \ 1363 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1364 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1365 } 1366 1367 /* 1368 * The format argument to pass to tcp_display(). 1369 * DISP_PORT_ONLY means that the returned string has only port info. 1370 * DISP_ADDR_AND_PORT means that the returned string also contains the 1371 * remote and local IP address. 1372 */ 1373 #define DISP_PORT_ONLY 1 1374 #define DISP_ADDR_AND_PORT 2 1375 1376 /* 1377 * This controls the rate some ndd info report functions can be used 1378 * by non-privileged users. It stores the last time such info is 1379 * requested. When those report functions are called again, this 1380 * is checked with the current time and compare with the ndd param 1381 * tcp_ndd_get_info_interval. 1382 */ 1383 static clock_t tcp_last_ndd_get_info_time = 0; 1384 #define NDD_TOO_QUICK_MSG \ 1385 "ndd get info rate too high for non-privileged users, try again " \ 1386 "later.\n" 1387 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1388 1389 #define IS_VMLOANED_MBLK(mp) \ 1390 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1391 1392 /* 1393 * These two variables control the rate for TCP to generate RSTs in 1394 * response to segments not belonging to any connections. We limit 1395 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1396 * each 1 second interval. This is to protect TCP against DoS attack. 1397 */ 1398 static clock_t tcp_last_rst_intrvl; 1399 static uint32_t tcp_rst_cnt; 1400 1401 /* The number of RST not sent because of the rate limit. */ 1402 static uint32_t tcp_rst_unsent; 1403 1404 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1405 boolean_t tcp_mdt_chain = B_TRUE; 1406 1407 /* 1408 * MDT threshold in the form of effective send MSS multiplier; we take 1409 * the MDT path if the amount of unsent data exceeds the threshold value 1410 * (default threshold is 1*SMSS). 1411 */ 1412 uint_t tcp_mdt_smss_threshold = 1; 1413 1414 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1415 1416 /* 1417 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1418 * tunable settable via NDD. Otherwise, the per-connection behavior is 1419 * determined dynamically during tcp_adapt_ire(), which is the default. 1420 */ 1421 boolean_t tcp_static_maxpsz = B_FALSE; 1422 1423 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1424 uint32_t tcp_random_anon_port = 1; 1425 1426 /* 1427 * To reach to an eager in Q0 which can be dropped due to an incoming 1428 * new SYN request when Q0 is full, a new doubly linked list is 1429 * introduced. This list allows to select an eager from Q0 in O(1) time. 1430 * This is needed to avoid spending too much time walking through the 1431 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1432 * this new list has to be a member of Q0. 1433 * This list is headed by listener's tcp_t. When the list is empty, 1434 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1435 * of listener's tcp_t point to listener's tcp_t itself. 1436 * 1437 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1438 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1439 * These macros do not affect the eager's membership to Q0. 1440 */ 1441 1442 1443 #define MAKE_DROPPABLE(listener, eager) \ 1444 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1445 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1446 = (eager); \ 1447 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1448 (eager)->tcp_eager_next_drop_q0 = \ 1449 (listener)->tcp_eager_next_drop_q0; \ 1450 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1451 } 1452 1453 #define MAKE_UNDROPPABLE(eager) \ 1454 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1455 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1456 = (eager)->tcp_eager_prev_drop_q0; \ 1457 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1458 = (eager)->tcp_eager_next_drop_q0; \ 1459 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1460 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1461 } 1462 1463 /* 1464 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1465 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1466 * data, TCP will not respond with an ACK. RFC 793 requires that 1467 * TCP responds with an ACK for such a bogus ACK. By not following 1468 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1469 * an attacker successfully spoofs an acceptable segment to our 1470 * peer; or when our peer is "confused." 1471 */ 1472 uint32_t tcp_drop_ack_unsent_cnt = 10; 1473 1474 /* 1475 * Hook functions to enable cluster networking 1476 * On non-clustered systems these vectors must always be NULL. 1477 */ 1478 1479 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1480 uint8_t *laddrp, in_port_t lport) = NULL; 1481 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1482 uint8_t *laddrp, in_port_t lport) = NULL; 1483 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1484 uint8_t *laddrp, in_port_t lport, 1485 uint8_t *faddrp, in_port_t fport) = NULL; 1486 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1487 uint8_t *laddrp, in_port_t lport, 1488 uint8_t *faddrp, in_port_t fport) = NULL; 1489 1490 /* 1491 * The following are defined in ip.c 1492 */ 1493 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1494 uint8_t *laddrp); 1495 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1496 uint8_t *laddrp, uint8_t *faddrp); 1497 1498 #define CL_INET_CONNECT(tcp) { \ 1499 if (cl_inet_connect != NULL) { \ 1500 /* \ 1501 * Running in cluster mode - register active connection \ 1502 * information \ 1503 */ \ 1504 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1505 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1506 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1507 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1508 (in_port_t)(tcp)->tcp_lport, \ 1509 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1510 (in_port_t)(tcp)->tcp_fport); \ 1511 } \ 1512 } else { \ 1513 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1514 &(tcp)->tcp_ip6h->ip6_src)) {\ 1515 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1516 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1517 (in_port_t)(tcp)->tcp_lport, \ 1518 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1519 (in_port_t)(tcp)->tcp_fport); \ 1520 } \ 1521 } \ 1522 } \ 1523 } 1524 1525 #define CL_INET_DISCONNECT(tcp) { \ 1526 if (cl_inet_disconnect != NULL) { \ 1527 /* \ 1528 * Running in cluster mode - deregister active \ 1529 * connection information \ 1530 */ \ 1531 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1532 if ((tcp)->tcp_ip_src != 0) { \ 1533 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1534 AF_INET, \ 1535 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1536 (in_port_t)(tcp)->tcp_lport, \ 1537 (uint8_t *) \ 1538 (&((tcp)->tcp_ipha->ipha_dst)),\ 1539 (in_port_t)(tcp)->tcp_fport); \ 1540 } \ 1541 } else { \ 1542 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1543 &(tcp)->tcp_ip_src_v6)) { \ 1544 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1545 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1546 (in_port_t)(tcp)->tcp_lport, \ 1547 (uint8_t *) \ 1548 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1549 (in_port_t)(tcp)->tcp_fport); \ 1550 } \ 1551 } \ 1552 } \ 1553 } 1554 1555 /* 1556 * Cluster networking hook for traversing current connection list. 1557 * This routine is used to extract the current list of live connections 1558 * which must continue to to be dispatched to this node. 1559 */ 1560 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1561 1562 /* 1563 * Figure out the value of window scale opton. Note that the rwnd is 1564 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1565 * We cannot find the scale value and then do a round up of tcp_rwnd 1566 * because the scale value may not be correct after that. 1567 * 1568 * Set the compiler flag to make this function inline. 1569 */ 1570 static void 1571 tcp_set_ws_value(tcp_t *tcp) 1572 { 1573 int i; 1574 uint32_t rwnd = tcp->tcp_rwnd; 1575 1576 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1577 i++, rwnd >>= 1) 1578 ; 1579 tcp->tcp_rcv_ws = i; 1580 } 1581 1582 /* 1583 * Remove a connection from the list of detached TIME_WAIT connections. 1584 * It returns B_FALSE if it can't remove the connection from the list 1585 * as the connection has already been removed from the list due to an 1586 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1587 */ 1588 static boolean_t 1589 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1590 { 1591 boolean_t locked = B_FALSE; 1592 1593 if (tcp_time_wait == NULL) { 1594 tcp_time_wait = *((tcp_squeue_priv_t **) 1595 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1596 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1597 locked = B_TRUE; 1598 } 1599 1600 if (tcp->tcp_time_wait_expire == 0) { 1601 ASSERT(tcp->tcp_time_wait_next == NULL); 1602 ASSERT(tcp->tcp_time_wait_prev == NULL); 1603 if (locked) 1604 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1605 return (B_FALSE); 1606 } 1607 ASSERT(TCP_IS_DETACHED(tcp)); 1608 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1609 1610 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1611 ASSERT(tcp->tcp_time_wait_prev == NULL); 1612 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1613 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1614 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1615 NULL; 1616 } else { 1617 tcp_time_wait->tcp_time_wait_tail = NULL; 1618 } 1619 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1620 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1621 ASSERT(tcp->tcp_time_wait_next == NULL); 1622 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1623 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1624 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1625 } else { 1626 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1627 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1628 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1629 tcp->tcp_time_wait_next; 1630 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1631 tcp->tcp_time_wait_prev; 1632 } 1633 tcp->tcp_time_wait_next = NULL; 1634 tcp->tcp_time_wait_prev = NULL; 1635 tcp->tcp_time_wait_expire = 0; 1636 1637 if (locked) 1638 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1639 return (B_TRUE); 1640 } 1641 1642 /* 1643 * Add a connection to the list of detached TIME_WAIT connections 1644 * and set its time to expire. 1645 */ 1646 static void 1647 tcp_time_wait_append(tcp_t *tcp) 1648 { 1649 tcp_squeue_priv_t *tcp_time_wait = 1650 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1651 SQPRIVATE_TCP)); 1652 1653 tcp_timers_stop(tcp); 1654 1655 /* Freed above */ 1656 ASSERT(tcp->tcp_timer_tid == 0); 1657 ASSERT(tcp->tcp_ack_tid == 0); 1658 1659 /* must have happened at the time of detaching the tcp */ 1660 ASSERT(tcp->tcp_ptpahn == NULL); 1661 ASSERT(tcp->tcp_flow_stopped == 0); 1662 ASSERT(tcp->tcp_time_wait_next == NULL); 1663 ASSERT(tcp->tcp_time_wait_prev == NULL); 1664 ASSERT(tcp->tcp_time_wait_expire == NULL); 1665 ASSERT(tcp->tcp_listener == NULL); 1666 1667 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1668 /* 1669 * The value computed below in tcp->tcp_time_wait_expire may 1670 * appear negative or wrap around. That is ok since our 1671 * interest is only in the difference between the current lbolt 1672 * value and tcp->tcp_time_wait_expire. But the value should not 1673 * be zero, since it means the tcp is not in the TIME_WAIT list. 1674 * The corresponding comparison in tcp_time_wait_collector() uses 1675 * modular arithmetic. 1676 */ 1677 tcp->tcp_time_wait_expire += 1678 drv_usectohz(tcp_time_wait_interval * 1000); 1679 if (tcp->tcp_time_wait_expire == 0) 1680 tcp->tcp_time_wait_expire = 1; 1681 1682 ASSERT(TCP_IS_DETACHED(tcp)); 1683 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1684 ASSERT(tcp->tcp_time_wait_next == NULL); 1685 ASSERT(tcp->tcp_time_wait_prev == NULL); 1686 TCP_DBGSTAT(tcp_time_wait); 1687 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1688 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1689 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1690 tcp_time_wait->tcp_time_wait_head = tcp; 1691 } else { 1692 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1693 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1694 TCPS_TIME_WAIT); 1695 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1696 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1697 } 1698 tcp_time_wait->tcp_time_wait_tail = tcp; 1699 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1700 } 1701 1702 /* ARGSUSED */ 1703 void 1704 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1705 { 1706 conn_t *connp = (conn_t *)arg; 1707 tcp_t *tcp = connp->conn_tcp; 1708 1709 ASSERT(tcp != NULL); 1710 if (tcp->tcp_state == TCPS_CLOSED) { 1711 return; 1712 } 1713 1714 ASSERT((tcp->tcp_family == AF_INET && 1715 tcp->tcp_ipversion == IPV4_VERSION) || 1716 (tcp->tcp_family == AF_INET6 && 1717 (tcp->tcp_ipversion == IPV4_VERSION || 1718 tcp->tcp_ipversion == IPV6_VERSION))); 1719 ASSERT(!tcp->tcp_listener); 1720 1721 TCP_STAT(tcp_time_wait_reap); 1722 ASSERT(TCP_IS_DETACHED(tcp)); 1723 1724 /* 1725 * Because they have no upstream client to rebind or tcp_close() 1726 * them later, we axe the connection here and now. 1727 */ 1728 tcp_close_detached(tcp); 1729 } 1730 1731 void 1732 tcp_cleanup(tcp_t *tcp) 1733 { 1734 mblk_t *mp; 1735 char *tcp_iphc; 1736 int tcp_iphc_len; 1737 int tcp_hdr_grown; 1738 tcp_sack_info_t *tcp_sack_info; 1739 conn_t *connp = tcp->tcp_connp; 1740 1741 tcp_bind_hash_remove(tcp); 1742 tcp_free(tcp); 1743 1744 /* Release any SSL context */ 1745 if (tcp->tcp_kssl_ent != NULL) { 1746 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1747 tcp->tcp_kssl_ent = NULL; 1748 } 1749 1750 if (tcp->tcp_kssl_ctx != NULL) { 1751 kssl_release_ctx(tcp->tcp_kssl_ctx); 1752 tcp->tcp_kssl_ctx = NULL; 1753 } 1754 tcp->tcp_kssl_pending = B_FALSE; 1755 1756 conn_delete_ire(connp, NULL); 1757 if (connp->conn_flags & IPCL_TCPCONN) { 1758 if (connp->conn_latch != NULL) 1759 IPLATCH_REFRELE(connp->conn_latch); 1760 if (connp->conn_policy != NULL) 1761 IPPH_REFRELE(connp->conn_policy); 1762 } 1763 1764 /* 1765 * Since we will bzero the entire structure, we need to 1766 * remove it and reinsert it in global hash list. We 1767 * know the walkers can't get to this conn because we 1768 * had set CONDEMNED flag earlier and checked reference 1769 * under conn_lock so walker won't pick it and when we 1770 * go the ipcl_globalhash_remove() below, no walker 1771 * can get to it. 1772 */ 1773 ipcl_globalhash_remove(connp); 1774 1775 /* Save some state */ 1776 mp = tcp->tcp_timercache; 1777 1778 tcp_sack_info = tcp->tcp_sack_info; 1779 tcp_iphc = tcp->tcp_iphc; 1780 tcp_iphc_len = tcp->tcp_iphc_len; 1781 tcp_hdr_grown = tcp->tcp_hdr_grown; 1782 1783 if (connp->conn_cred != NULL) 1784 crfree(connp->conn_cred); 1785 if (connp->conn_peercred != NULL) 1786 crfree(connp->conn_peercred); 1787 bzero(connp, sizeof (conn_t)); 1788 bzero(tcp, sizeof (tcp_t)); 1789 1790 /* restore the state */ 1791 tcp->tcp_timercache = mp; 1792 1793 tcp->tcp_sack_info = tcp_sack_info; 1794 tcp->tcp_iphc = tcp_iphc; 1795 tcp->tcp_iphc_len = tcp_iphc_len; 1796 tcp->tcp_hdr_grown = tcp_hdr_grown; 1797 1798 1799 tcp->tcp_connp = connp; 1800 1801 connp->conn_tcp = tcp; 1802 connp->conn_flags = IPCL_TCPCONN; 1803 connp->conn_state_flags = CONN_INCIPIENT; 1804 connp->conn_ulp = IPPROTO_TCP; 1805 connp->conn_ref = 1; 1806 1807 ipcl_globalhash_insert(connp); 1808 } 1809 1810 /* 1811 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1812 * is done forwards from the head. 1813 */ 1814 /* ARGSUSED */ 1815 void 1816 tcp_time_wait_collector(void *arg) 1817 { 1818 tcp_t *tcp; 1819 clock_t now; 1820 mblk_t *mp; 1821 conn_t *connp; 1822 kmutex_t *lock; 1823 boolean_t removed; 1824 1825 squeue_t *sqp = (squeue_t *)arg; 1826 tcp_squeue_priv_t *tcp_time_wait = 1827 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1828 1829 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1830 tcp_time_wait->tcp_time_wait_tid = 0; 1831 1832 if (tcp_time_wait->tcp_free_list != NULL && 1833 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1834 TCP_STAT(tcp_freelist_cleanup); 1835 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1836 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1837 CONN_DEC_REF(tcp->tcp_connp); 1838 } 1839 tcp_time_wait->tcp_free_list_cnt = 0; 1840 } 1841 1842 /* 1843 * In order to reap time waits reliably, we should use a 1844 * source of time that is not adjustable by the user -- hence 1845 * the call to ddi_get_lbolt(). 1846 */ 1847 now = ddi_get_lbolt(); 1848 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1849 /* 1850 * Compare times using modular arithmetic, since 1851 * lbolt can wrapover. 1852 */ 1853 if ((now - tcp->tcp_time_wait_expire) < 0) { 1854 break; 1855 } 1856 1857 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1858 ASSERT(removed); 1859 1860 connp = tcp->tcp_connp; 1861 ASSERT(connp->conn_fanout != NULL); 1862 lock = &connp->conn_fanout->connf_lock; 1863 /* 1864 * This is essentially a TW reclaim fast path optimization for 1865 * performance where the timewait collector checks under the 1866 * fanout lock (so that no one else can get access to the 1867 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1868 * the classifier hash list. If ref count is indeed 2, we can 1869 * just remove the conn under the fanout lock and avoid 1870 * cleaning up the conn under the squeue, provided that 1871 * clustering callbacks are not enabled. If clustering is 1872 * enabled, we need to make the clustering callback before 1873 * setting the CONDEMNED flag and after dropping all locks and 1874 * so we forego this optimization and fall back to the slow 1875 * path. Also please see the comments in tcp_closei_local 1876 * regarding the refcnt logic. 1877 * 1878 * Since we are holding the tcp_time_wait_lock, its better 1879 * not to block on the fanout_lock because other connections 1880 * can't add themselves to time_wait list. So we do a 1881 * tryenter instead of mutex_enter. 1882 */ 1883 if (mutex_tryenter(lock)) { 1884 mutex_enter(&connp->conn_lock); 1885 if ((connp->conn_ref == 2) && 1886 (cl_inet_disconnect == NULL)) { 1887 ipcl_hash_remove_locked(connp, 1888 connp->conn_fanout); 1889 /* 1890 * Set the CONDEMNED flag now itself so that 1891 * the refcnt cannot increase due to any 1892 * walker. But we have still not cleaned up 1893 * conn_ire_cache. This is still ok since 1894 * we are going to clean it up in tcp_cleanup 1895 * immediately and any interface unplumb 1896 * thread will wait till the ire is blown away 1897 */ 1898 connp->conn_state_flags |= CONN_CONDEMNED; 1899 mutex_exit(lock); 1900 mutex_exit(&connp->conn_lock); 1901 if (tcp_time_wait->tcp_free_list_cnt < 1902 tcp_free_list_max_cnt) { 1903 /* Add to head of tcp_free_list */ 1904 mutex_exit( 1905 &tcp_time_wait->tcp_time_wait_lock); 1906 tcp_cleanup(tcp); 1907 mutex_enter( 1908 &tcp_time_wait->tcp_time_wait_lock); 1909 tcp->tcp_time_wait_next = 1910 tcp_time_wait->tcp_free_list; 1911 tcp_time_wait->tcp_free_list = tcp; 1912 tcp_time_wait->tcp_free_list_cnt++; 1913 continue; 1914 } else { 1915 /* Do not add to tcp_free_list */ 1916 mutex_exit( 1917 &tcp_time_wait->tcp_time_wait_lock); 1918 tcp_bind_hash_remove(tcp); 1919 conn_delete_ire(tcp->tcp_connp, NULL); 1920 CONN_DEC_REF(tcp->tcp_connp); 1921 } 1922 } else { 1923 CONN_INC_REF_LOCKED(connp); 1924 mutex_exit(lock); 1925 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1926 mutex_exit(&connp->conn_lock); 1927 /* 1928 * We can reuse the closemp here since conn has 1929 * detached (otherwise we wouldn't even be in 1930 * time_wait list). tcp_closemp_used can safely 1931 * be changed without taking a lock as no other 1932 * thread can concurrently access it at this 1933 * point in the connection lifecycle. We 1934 * increment tcp_closemp_used to record any 1935 * attempt to reuse tcp_closemp while it is 1936 * still in use. 1937 */ 1938 1939 if (tcp->tcp_closemp.b_prev == NULL) 1940 tcp->tcp_closemp_used = 1; 1941 else 1942 tcp->tcp_closemp_used++; 1943 1944 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1945 mp = &tcp->tcp_closemp; 1946 squeue_fill(connp->conn_sqp, mp, 1947 tcp_timewait_output, connp, 1948 SQTAG_TCP_TIMEWAIT); 1949 } 1950 } else { 1951 mutex_enter(&connp->conn_lock); 1952 CONN_INC_REF_LOCKED(connp); 1953 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1954 mutex_exit(&connp->conn_lock); 1955 /* 1956 * We can reuse the closemp here since conn has 1957 * detached (otherwise we wouldn't even be in 1958 * time_wait list). tcp_closemp_used can safely 1959 * be changed without taking a lock as no other 1960 * thread can concurrently access it at this 1961 * point in the connection lifecycle. We 1962 * increment tcp_closemp_used to record any 1963 * attempt to reuse tcp_closemp while it is 1964 * still in use. 1965 */ 1966 1967 if (tcp->tcp_closemp.b_prev == NULL) 1968 tcp->tcp_closemp_used = 1; 1969 else 1970 tcp->tcp_closemp_used++; 1971 1972 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1973 mp = &tcp->tcp_closemp; 1974 squeue_fill(connp->conn_sqp, mp, 1975 tcp_timewait_output, connp, 0); 1976 } 1977 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1978 } 1979 1980 if (tcp_time_wait->tcp_free_list != NULL) 1981 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1982 1983 tcp_time_wait->tcp_time_wait_tid = 1984 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1985 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1986 } 1987 1988 /* 1989 * Reply to a clients T_CONN_RES TPI message. This function 1990 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1991 * on the acceptor STREAM and processed in tcp_wput_accept(). 1992 * Read the block comment on top of tcp_conn_request(). 1993 */ 1994 static void 1995 tcp_accept(tcp_t *listener, mblk_t *mp) 1996 { 1997 tcp_t *acceptor; 1998 tcp_t *eager; 1999 tcp_t *tcp; 2000 struct T_conn_res *tcr; 2001 t_uscalar_t acceptor_id; 2002 t_scalar_t seqnum; 2003 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 2004 mblk_t *ok_mp; 2005 mblk_t *mp1; 2006 2007 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 2008 tcp_err_ack(listener, mp, TPROTO, 0); 2009 return; 2010 } 2011 tcr = (struct T_conn_res *)mp->b_rptr; 2012 2013 /* 2014 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 2015 * read side queue of the streams device underneath us i.e. the 2016 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 2017 * look it up in the queue_hash. Under LP64 it sends down the 2018 * minor_t of the accepting endpoint. 2019 * 2020 * Once the acceptor/eager are modified (in tcp_accept_swap) the 2021 * fanout hash lock is held. 2022 * This prevents any thread from entering the acceptor queue from 2023 * below (since it has not been hard bound yet i.e. any inbound 2024 * packets will arrive on the listener or default tcp queue and 2025 * go through tcp_lookup). 2026 * The CONN_INC_REF will prevent the acceptor from closing. 2027 * 2028 * XXX It is still possible for a tli application to send down data 2029 * on the accepting stream while another thread calls t_accept. 2030 * This should not be a problem for well-behaved applications since 2031 * the T_OK_ACK is sent after the queue swapping is completed. 2032 * 2033 * If the accepting fd is the same as the listening fd, avoid 2034 * queue hash lookup since that will return an eager listener in a 2035 * already established state. 2036 */ 2037 acceptor_id = tcr->ACCEPTOR_id; 2038 mutex_enter(&listener->tcp_eager_lock); 2039 if (listener->tcp_acceptor_id == acceptor_id) { 2040 eager = listener->tcp_eager_next_q; 2041 /* only count how many T_CONN_INDs so don't count q0 */ 2042 if ((listener->tcp_conn_req_cnt_q != 1) || 2043 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2044 mutex_exit(&listener->tcp_eager_lock); 2045 tcp_err_ack(listener, mp, TBADF, 0); 2046 return; 2047 } 2048 if (listener->tcp_conn_req_cnt_q0 != 0) { 2049 /* Throw away all the eagers on q0. */ 2050 tcp_eager_cleanup(listener, 1); 2051 } 2052 if (listener->tcp_syn_defense) { 2053 listener->tcp_syn_defense = B_FALSE; 2054 if (listener->tcp_ip_addr_cache != NULL) { 2055 kmem_free(listener->tcp_ip_addr_cache, 2056 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2057 listener->tcp_ip_addr_cache = NULL; 2058 } 2059 } 2060 /* 2061 * Transfer tcp_conn_req_max to the eager so that when 2062 * a disconnect occurs we can revert the endpoint to the 2063 * listen state. 2064 */ 2065 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2066 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2067 /* 2068 * Get a reference on the acceptor just like the 2069 * tcp_acceptor_hash_lookup below. 2070 */ 2071 acceptor = listener; 2072 CONN_INC_REF(acceptor->tcp_connp); 2073 } else { 2074 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 2075 if (acceptor == NULL) { 2076 if (listener->tcp_debug) { 2077 (void) strlog(TCP_MOD_ID, 0, 1, 2078 SL_ERROR|SL_TRACE, 2079 "tcp_accept: did not find acceptor 0x%x\n", 2080 acceptor_id); 2081 } 2082 mutex_exit(&listener->tcp_eager_lock); 2083 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2084 return; 2085 } 2086 /* 2087 * Verify acceptor state. The acceptable states for an acceptor 2088 * include TCPS_IDLE and TCPS_BOUND. 2089 */ 2090 switch (acceptor->tcp_state) { 2091 case TCPS_IDLE: 2092 /* FALLTHRU */ 2093 case TCPS_BOUND: 2094 break; 2095 default: 2096 CONN_DEC_REF(acceptor->tcp_connp); 2097 mutex_exit(&listener->tcp_eager_lock); 2098 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2099 return; 2100 } 2101 } 2102 2103 /* The listener must be in TCPS_LISTEN */ 2104 if (listener->tcp_state != TCPS_LISTEN) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 mutex_exit(&listener->tcp_eager_lock); 2107 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2108 return; 2109 } 2110 2111 /* 2112 * Rendezvous with an eager connection request packet hanging off 2113 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2114 * tcp structure when the connection packet arrived in 2115 * tcp_conn_request(). 2116 */ 2117 seqnum = tcr->SEQ_number; 2118 eager = listener; 2119 do { 2120 eager = eager->tcp_eager_next_q; 2121 if (eager == NULL) { 2122 CONN_DEC_REF(acceptor->tcp_connp); 2123 mutex_exit(&listener->tcp_eager_lock); 2124 tcp_err_ack(listener, mp, TBADSEQ, 0); 2125 return; 2126 } 2127 } while (eager->tcp_conn_req_seqnum != seqnum); 2128 mutex_exit(&listener->tcp_eager_lock); 2129 2130 /* 2131 * At this point, both acceptor and listener have 2 ref 2132 * that they begin with. Acceptor has one additional ref 2133 * we placed in lookup while listener has 3 additional 2134 * ref for being behind the squeue (tcp_accept() is 2135 * done on listener's squeue); being in classifier hash; 2136 * and eager's ref on listener. 2137 */ 2138 ASSERT(listener->tcp_connp->conn_ref >= 5); 2139 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2140 2141 /* 2142 * The eager at this point is set in its own squeue and 2143 * could easily have been killed (tcp_accept_finish will 2144 * deal with that) because of a TH_RST so we can only 2145 * ASSERT for a single ref. 2146 */ 2147 ASSERT(eager->tcp_connp->conn_ref >= 1); 2148 2149 /* Pre allocate the stroptions mblk also */ 2150 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2151 if (opt_mp == NULL) { 2152 CONN_DEC_REF(acceptor->tcp_connp); 2153 CONN_DEC_REF(eager->tcp_connp); 2154 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2155 return; 2156 } 2157 DB_TYPE(opt_mp) = M_SETOPTS; 2158 opt_mp->b_wptr += sizeof (struct stroptions); 2159 2160 /* 2161 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2162 * from listener to acceptor. The message is chained on opt_mp 2163 * which will be sent onto eager's squeue. 2164 */ 2165 if (listener->tcp_bound_if != 0) { 2166 /* allocate optmgmt req */ 2167 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2168 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2169 sizeof (int)); 2170 if (mp1 != NULL) 2171 linkb(opt_mp, mp1); 2172 } 2173 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2174 uint_t on = 1; 2175 2176 /* allocate optmgmt req */ 2177 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2178 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2179 if (mp1 != NULL) 2180 linkb(opt_mp, mp1); 2181 } 2182 2183 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2184 if ((mp1 = copymsg(mp)) == NULL) { 2185 CONN_DEC_REF(acceptor->tcp_connp); 2186 CONN_DEC_REF(eager->tcp_connp); 2187 freemsg(opt_mp); 2188 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2189 return; 2190 } 2191 2192 tcr = (struct T_conn_res *)mp1->b_rptr; 2193 2194 /* 2195 * This is an expanded version of mi_tpi_ok_ack_alloc() 2196 * which allocates a larger mblk and appends the new 2197 * local address to the ok_ack. The address is copied by 2198 * soaccept() for getsockname(). 2199 */ 2200 { 2201 int extra; 2202 2203 extra = (eager->tcp_family == AF_INET) ? 2204 sizeof (sin_t) : sizeof (sin6_t); 2205 2206 /* 2207 * Try to re-use mp, if possible. Otherwise, allocate 2208 * an mblk and return it as ok_mp. In any case, mp 2209 * is no longer usable upon return. 2210 */ 2211 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2212 CONN_DEC_REF(acceptor->tcp_connp); 2213 CONN_DEC_REF(eager->tcp_connp); 2214 freemsg(opt_mp); 2215 /* Original mp has been freed by now, so use mp1 */ 2216 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2217 return; 2218 } 2219 2220 mp = NULL; /* We should never use mp after this point */ 2221 2222 switch (extra) { 2223 case sizeof (sin_t): { 2224 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2225 2226 ok_mp->b_wptr += extra; 2227 sin->sin_family = AF_INET; 2228 sin->sin_port = eager->tcp_lport; 2229 sin->sin_addr.s_addr = 2230 eager->tcp_ipha->ipha_src; 2231 break; 2232 } 2233 case sizeof (sin6_t): { 2234 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2235 2236 ok_mp->b_wptr += extra; 2237 sin6->sin6_family = AF_INET6; 2238 sin6->sin6_port = eager->tcp_lport; 2239 if (eager->tcp_ipversion == IPV4_VERSION) { 2240 sin6->sin6_flowinfo = 0; 2241 IN6_IPADDR_TO_V4MAPPED( 2242 eager->tcp_ipha->ipha_src, 2243 &sin6->sin6_addr); 2244 } else { 2245 ASSERT(eager->tcp_ip6h != NULL); 2246 sin6->sin6_flowinfo = 2247 eager->tcp_ip6h->ip6_vcf & 2248 ~IPV6_VERS_AND_FLOW_MASK; 2249 sin6->sin6_addr = 2250 eager->tcp_ip6h->ip6_src; 2251 } 2252 break; 2253 } 2254 default: 2255 break; 2256 } 2257 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2258 } 2259 2260 /* 2261 * If there are no options we know that the T_CONN_RES will 2262 * succeed. However, we can't send the T_OK_ACK upstream until 2263 * the tcp_accept_swap is done since it would be dangerous to 2264 * let the application start using the new fd prior to the swap. 2265 */ 2266 tcp_accept_swap(listener, acceptor, eager); 2267 2268 /* 2269 * tcp_accept_swap unlinks eager from listener but does not drop 2270 * the eager's reference on the listener. 2271 */ 2272 ASSERT(eager->tcp_listener == NULL); 2273 ASSERT(listener->tcp_connp->conn_ref >= 5); 2274 2275 /* 2276 * The eager is now associated with its own queue. Insert in 2277 * the hash so that the connection can be reused for a future 2278 * T_CONN_RES. 2279 */ 2280 tcp_acceptor_hash_insert(acceptor_id, eager); 2281 2282 /* 2283 * We now do the processing of options with T_CONN_RES. 2284 * We delay till now since we wanted to have queue to pass to 2285 * option processing routines that points back to the right 2286 * instance structure which does not happen until after 2287 * tcp_accept_swap(). 2288 * 2289 * Note: 2290 * The sanity of the logic here assumes that whatever options 2291 * are appropriate to inherit from listner=>eager are done 2292 * before this point, and whatever were to be overridden (or not) 2293 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2294 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2295 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2296 * This may not be true at this point in time but can be fixed 2297 * independently. This option processing code starts with 2298 * the instantiated acceptor instance and the final queue at 2299 * this point. 2300 */ 2301 2302 if (tcr->OPT_length != 0) { 2303 /* Options to process */ 2304 int t_error = 0; 2305 int sys_error = 0; 2306 int do_disconnect = 0; 2307 2308 if (tcp_conprim_opt_process(eager, mp1, 2309 &do_disconnect, &t_error, &sys_error) < 0) { 2310 eager->tcp_accept_error = 1; 2311 if (do_disconnect) { 2312 /* 2313 * An option failed which does not allow 2314 * connection to be accepted. 2315 * 2316 * We allow T_CONN_RES to succeed and 2317 * put a T_DISCON_IND on the eager queue. 2318 */ 2319 ASSERT(t_error == 0 && sys_error == 0); 2320 eager->tcp_send_discon_ind = 1; 2321 } else { 2322 ASSERT(t_error != 0); 2323 freemsg(ok_mp); 2324 /* 2325 * Original mp was either freed or set 2326 * to ok_mp above, so use mp1 instead. 2327 */ 2328 tcp_err_ack(listener, mp1, t_error, sys_error); 2329 goto finish; 2330 } 2331 } 2332 /* 2333 * Most likely success in setting options (except if 2334 * eager->tcp_send_discon_ind set). 2335 * mp1 option buffer represented by OPT_length/offset 2336 * potentially modified and contains results of setting 2337 * options at this point 2338 */ 2339 } 2340 2341 /* We no longer need mp1, since all options processing has passed */ 2342 freemsg(mp1); 2343 2344 putnext(listener->tcp_rq, ok_mp); 2345 2346 mutex_enter(&listener->tcp_eager_lock); 2347 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2348 tcp_t *tail; 2349 mblk_t *conn_ind; 2350 2351 /* 2352 * This path should not be executed if listener and 2353 * acceptor streams are the same. 2354 */ 2355 ASSERT(listener != acceptor); 2356 2357 tcp = listener->tcp_eager_prev_q0; 2358 /* 2359 * listener->tcp_eager_prev_q0 points to the TAIL of the 2360 * deferred T_conn_ind queue. We need to get to the head of 2361 * the queue in order to send up T_conn_ind the same order as 2362 * how the 3WHS is completed. 2363 */ 2364 while (tcp != listener) { 2365 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2366 break; 2367 else 2368 tcp = tcp->tcp_eager_prev_q0; 2369 } 2370 ASSERT(tcp != listener); 2371 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2372 ASSERT(conn_ind != NULL); 2373 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2374 2375 /* Move from q0 to q */ 2376 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2377 listener->tcp_conn_req_cnt_q0--; 2378 listener->tcp_conn_req_cnt_q++; 2379 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2380 tcp->tcp_eager_prev_q0; 2381 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2382 tcp->tcp_eager_next_q0; 2383 tcp->tcp_eager_prev_q0 = NULL; 2384 tcp->tcp_eager_next_q0 = NULL; 2385 tcp->tcp_conn_def_q0 = B_FALSE; 2386 2387 /* Make sure the tcp isn't in the list of droppables */ 2388 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2389 tcp->tcp_eager_prev_drop_q0 == NULL); 2390 2391 /* 2392 * Insert at end of the queue because sockfs sends 2393 * down T_CONN_RES in chronological order. Leaving 2394 * the older conn indications at front of the queue 2395 * helps reducing search time. 2396 */ 2397 tail = listener->tcp_eager_last_q; 2398 if (tail != NULL) 2399 tail->tcp_eager_next_q = tcp; 2400 else 2401 listener->tcp_eager_next_q = tcp; 2402 listener->tcp_eager_last_q = tcp; 2403 tcp->tcp_eager_next_q = NULL; 2404 mutex_exit(&listener->tcp_eager_lock); 2405 putnext(tcp->tcp_rq, conn_ind); 2406 } else { 2407 mutex_exit(&listener->tcp_eager_lock); 2408 } 2409 2410 /* 2411 * Done with the acceptor - free it 2412 * 2413 * Note: from this point on, no access to listener should be made 2414 * as listener can be equal to acceptor. 2415 */ 2416 finish: 2417 ASSERT(acceptor->tcp_detached); 2418 acceptor->tcp_rq = tcp_g_q; 2419 acceptor->tcp_wq = WR(tcp_g_q); 2420 (void) tcp_clean_death(acceptor, 0, 2); 2421 CONN_DEC_REF(acceptor->tcp_connp); 2422 2423 /* 2424 * In case we already received a FIN we have to make tcp_rput send 2425 * the ordrel_ind. This will also send up a window update if the window 2426 * has opened up. 2427 * 2428 * In the normal case of a successful connection acceptance 2429 * we give the O_T_BIND_REQ to the read side put procedure as an 2430 * indication that this was just accepted. This tells tcp_rput to 2431 * pass up any data queued in tcp_rcv_list. 2432 * 2433 * In the fringe case where options sent with T_CONN_RES failed and 2434 * we required, we would be indicating a T_DISCON_IND to blow 2435 * away this connection. 2436 */ 2437 2438 /* 2439 * XXX: we currently have a problem if XTI application closes the 2440 * acceptor stream in between. This problem exists in on10-gate also 2441 * and is well know but nothing can be done short of major rewrite 2442 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2443 * eager same squeue as listener (we can distinguish non socket 2444 * listeners at the time of handling a SYN in tcp_conn_request) 2445 * and do most of the work that tcp_accept_finish does here itself 2446 * and then get behind the acceptor squeue to access the acceptor 2447 * queue. 2448 */ 2449 /* 2450 * We already have a ref on tcp so no need to do one before squeue_fill 2451 */ 2452 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2453 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2454 } 2455 2456 /* 2457 * Swap information between the eager and acceptor for a TLI/XTI client. 2458 * The sockfs accept is done on the acceptor stream and control goes 2459 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2460 * called. In either case, both the eager and listener are in their own 2461 * perimeter (squeue) and the code has to deal with potential race. 2462 * 2463 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2464 */ 2465 static void 2466 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2467 { 2468 conn_t *econnp, *aconnp; 2469 2470 ASSERT(eager->tcp_rq == listener->tcp_rq); 2471 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2472 ASSERT(!eager->tcp_hard_bound); 2473 ASSERT(!TCP_IS_SOCKET(acceptor)); 2474 ASSERT(!TCP_IS_SOCKET(eager)); 2475 ASSERT(!TCP_IS_SOCKET(listener)); 2476 2477 acceptor->tcp_detached = B_TRUE; 2478 /* 2479 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2480 * the acceptor id. 2481 */ 2482 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2483 2484 /* remove eager from listen list... */ 2485 mutex_enter(&listener->tcp_eager_lock); 2486 tcp_eager_unlink(eager); 2487 ASSERT(eager->tcp_eager_next_q == NULL && 2488 eager->tcp_eager_last_q == NULL); 2489 ASSERT(eager->tcp_eager_next_q0 == NULL && 2490 eager->tcp_eager_prev_q0 == NULL); 2491 mutex_exit(&listener->tcp_eager_lock); 2492 eager->tcp_rq = acceptor->tcp_rq; 2493 eager->tcp_wq = acceptor->tcp_wq; 2494 2495 econnp = eager->tcp_connp; 2496 aconnp = acceptor->tcp_connp; 2497 2498 eager->tcp_rq->q_ptr = econnp; 2499 eager->tcp_wq->q_ptr = econnp; 2500 2501 /* 2502 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2503 * which might be a different squeue from our peer TCP instance. 2504 * For TCP Fusion, the peer expects that whenever tcp_detached is 2505 * clear, our TCP queues point to the acceptor's queues. Thus, use 2506 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2507 * above reach global visibility prior to the clearing of tcp_detached. 2508 */ 2509 membar_producer(); 2510 eager->tcp_detached = B_FALSE; 2511 2512 ASSERT(eager->tcp_ack_tid == 0); 2513 2514 econnp->conn_dev = aconnp->conn_dev; 2515 if (eager->tcp_cred != NULL) 2516 crfree(eager->tcp_cred); 2517 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2518 aconnp->conn_cred = NULL; 2519 2520 econnp->conn_zoneid = aconnp->conn_zoneid; 2521 econnp->conn_allzones = aconnp->conn_allzones; 2522 2523 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2524 aconnp->conn_mac_exempt = B_FALSE; 2525 2526 ASSERT(aconnp->conn_peercred == NULL); 2527 2528 /* Do the IPC initialization */ 2529 CONN_INC_REF(econnp); 2530 2531 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2532 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2533 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2534 econnp->conn_ulp = aconnp->conn_ulp; 2535 2536 /* Done with old IPC. Drop its ref on its connp */ 2537 CONN_DEC_REF(aconnp); 2538 } 2539 2540 2541 /* 2542 * Adapt to the information, such as rtt and rtt_sd, provided from the 2543 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2544 * 2545 * Checks for multicast and broadcast destination address. 2546 * Returns zero on failure; non-zero if ok. 2547 * 2548 * Note that the MSS calculation here is based on the info given in 2549 * the IRE. We do not do any calculation based on TCP options. They 2550 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2551 * knows which options to use. 2552 * 2553 * Note on how TCP gets its parameters for a connection. 2554 * 2555 * When a tcp_t structure is allocated, it gets all the default parameters. 2556 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2557 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2558 * default. But if there is an associated tcp_host_param, it will override 2559 * the metrics. 2560 * 2561 * An incoming SYN with a multicast or broadcast destination address, is dropped 2562 * in 1 of 2 places. 2563 * 2564 * 1. If the packet was received over the wire it is dropped in 2565 * ip_rput_process_broadcast() 2566 * 2567 * 2. If the packet was received through internal IP loopback, i.e. the packet 2568 * was generated and received on the same machine, it is dropped in 2569 * ip_wput_local() 2570 * 2571 * An incoming SYN with a multicast or broadcast source address is always 2572 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2573 * reject an attempt to connect to a broadcast or multicast (destination) 2574 * address. 2575 */ 2576 static int 2577 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2578 { 2579 tcp_hsp_t *hsp; 2580 ire_t *ire; 2581 ire_t *sire = NULL; 2582 iulp_t *ire_uinfo = NULL; 2583 uint32_t mss_max; 2584 uint32_t mss; 2585 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2586 conn_t *connp = tcp->tcp_connp; 2587 boolean_t ire_cacheable = B_FALSE; 2588 zoneid_t zoneid = connp->conn_zoneid; 2589 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2590 MATCH_IRE_SECATTR; 2591 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2592 ill_t *ill = NULL; 2593 boolean_t incoming = (ire_mp == NULL); 2594 2595 ASSERT(connp->conn_ire_cache == NULL); 2596 2597 if (tcp->tcp_ipversion == IPV4_VERSION) { 2598 2599 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2600 BUMP_MIB(&ip_mib, ipInDiscards); 2601 return (0); 2602 } 2603 /* 2604 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2605 * for the destination with the nexthop as gateway. 2606 * ire_ctable_lookup() is used because this particular 2607 * ire, if it exists, will be marked private. 2608 * If that is not available, use the interface ire 2609 * for the nexthop. 2610 * 2611 * TSol: tcp_update_label will detect label mismatches based 2612 * only on the destination's label, but that would not 2613 * detect label mismatches based on the security attributes 2614 * of routes or next hop gateway. Hence we need to pass the 2615 * label to ire_ftable_lookup below in order to locate the 2616 * right prefix (and/or) ire cache. Similarly we also need 2617 * pass the label to the ire_cache_lookup below to locate 2618 * the right ire that also matches on the label. 2619 */ 2620 if (tcp->tcp_connp->conn_nexthop_set) { 2621 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2622 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2623 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2624 if (ire == NULL) { 2625 ire = ire_ftable_lookup( 2626 tcp->tcp_connp->conn_nexthop_v4, 2627 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2628 tsl, match_flags); 2629 if (ire == NULL) 2630 return (0); 2631 } else { 2632 ire_uinfo = &ire->ire_uinfo; 2633 } 2634 } else { 2635 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2636 zoneid, tsl); 2637 if (ire != NULL) { 2638 ire_cacheable = B_TRUE; 2639 ire_uinfo = (ire_mp != NULL) ? 2640 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2641 &ire->ire_uinfo; 2642 2643 } else { 2644 if (ire_mp == NULL) { 2645 ire = ire_ftable_lookup( 2646 tcp->tcp_connp->conn_rem, 2647 0, 0, 0, NULL, &sire, zoneid, 0, 2648 tsl, (MATCH_IRE_RECURSIVE | 2649 MATCH_IRE_DEFAULT)); 2650 if (ire == NULL) 2651 return (0); 2652 ire_uinfo = (sire != NULL) ? 2653 &sire->ire_uinfo : 2654 &ire->ire_uinfo; 2655 } else { 2656 ire = (ire_t *)ire_mp->b_rptr; 2657 ire_uinfo = 2658 &((ire_t *) 2659 ire_mp->b_rptr)->ire_uinfo; 2660 } 2661 } 2662 } 2663 ASSERT(ire != NULL); 2664 2665 if ((ire->ire_src_addr == INADDR_ANY) || 2666 (ire->ire_type & IRE_BROADCAST)) { 2667 /* 2668 * ire->ire_mp is non null when ire_mp passed in is used 2669 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2670 */ 2671 if (ire->ire_mp == NULL) 2672 ire_refrele(ire); 2673 if (sire != NULL) 2674 ire_refrele(sire); 2675 return (0); 2676 } 2677 2678 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2679 ipaddr_t src_addr; 2680 2681 /* 2682 * ip_bind_connected() has stored the correct source 2683 * address in conn_src. 2684 */ 2685 src_addr = tcp->tcp_connp->conn_src; 2686 tcp->tcp_ipha->ipha_src = src_addr; 2687 /* 2688 * Copy of the src addr. in tcp_t is needed 2689 * for the lookup funcs. 2690 */ 2691 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2692 } 2693 /* 2694 * Set the fragment bit so that IP will tell us if the MTU 2695 * should change. IP tells us the latest setting of 2696 * ip_path_mtu_discovery through ire_frag_flag. 2697 */ 2698 if (ip_path_mtu_discovery) { 2699 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2700 htons(IPH_DF); 2701 } 2702 /* 2703 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2704 * for IP_NEXTHOP. No cache ire has been found for the 2705 * destination and we are working with the nexthop's 2706 * interface ire. Since we need to forward all packets 2707 * to the nexthop first, we "blindly" set tcp_localnet 2708 * to false, eventhough the destination may also be 2709 * onlink. 2710 */ 2711 if (ire_uinfo == NULL) 2712 tcp->tcp_localnet = 0; 2713 else 2714 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2715 } else { 2716 /* 2717 * For incoming connection ire_mp = NULL 2718 * For outgoing connection ire_mp != NULL 2719 * Technically we should check conn_incoming_ill 2720 * when ire_mp is NULL and conn_outgoing_ill when 2721 * ire_mp is non-NULL. But this is performance 2722 * critical path and for IPV*_BOUND_IF, outgoing 2723 * and incoming ill are always set to the same value. 2724 */ 2725 ill_t *dst_ill = NULL; 2726 ipif_t *dst_ipif = NULL; 2727 2728 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2729 2730 if (connp->conn_outgoing_ill != NULL) { 2731 /* Outgoing or incoming path */ 2732 int err; 2733 2734 dst_ill = conn_get_held_ill(connp, 2735 &connp->conn_outgoing_ill, &err); 2736 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2737 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2738 return (0); 2739 } 2740 match_flags |= MATCH_IRE_ILL; 2741 dst_ipif = dst_ill->ill_ipif; 2742 } 2743 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2744 0, 0, dst_ipif, zoneid, tsl, match_flags); 2745 2746 if (ire != NULL) { 2747 ire_cacheable = B_TRUE; 2748 ire_uinfo = (ire_mp != NULL) ? 2749 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2750 &ire->ire_uinfo; 2751 } else { 2752 if (ire_mp == NULL) { 2753 ire = ire_ftable_lookup_v6( 2754 &tcp->tcp_connp->conn_remv6, 2755 0, 0, 0, dst_ipif, &sire, zoneid, 2756 0, tsl, match_flags); 2757 if (ire == NULL) { 2758 if (dst_ill != NULL) 2759 ill_refrele(dst_ill); 2760 return (0); 2761 } 2762 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2763 &ire->ire_uinfo; 2764 } else { 2765 ire = (ire_t *)ire_mp->b_rptr; 2766 ire_uinfo = 2767 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2768 } 2769 } 2770 if (dst_ill != NULL) 2771 ill_refrele(dst_ill); 2772 2773 ASSERT(ire != NULL); 2774 ASSERT(ire_uinfo != NULL); 2775 2776 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2777 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2778 /* 2779 * ire->ire_mp is non null when ire_mp passed in is used 2780 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2781 */ 2782 if (ire->ire_mp == NULL) 2783 ire_refrele(ire); 2784 if (sire != NULL) 2785 ire_refrele(sire); 2786 return (0); 2787 } 2788 2789 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2790 in6_addr_t src_addr; 2791 2792 /* 2793 * ip_bind_connected_v6() has stored the correct source 2794 * address per IPv6 addr. selection policy in 2795 * conn_src_v6. 2796 */ 2797 src_addr = tcp->tcp_connp->conn_srcv6; 2798 2799 tcp->tcp_ip6h->ip6_src = src_addr; 2800 /* 2801 * Copy of the src addr. in tcp_t is needed 2802 * for the lookup funcs. 2803 */ 2804 tcp->tcp_ip_src_v6 = src_addr; 2805 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2806 &connp->conn_srcv6)); 2807 } 2808 tcp->tcp_localnet = 2809 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2810 } 2811 2812 /* 2813 * This allows applications to fail quickly when connections are made 2814 * to dead hosts. Hosts can be labeled dead by adding a reject route 2815 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2816 */ 2817 if ((ire->ire_flags & RTF_REJECT) && 2818 (ire->ire_flags & RTF_PRIVATE)) 2819 goto error; 2820 2821 /* 2822 * Make use of the cached rtt and rtt_sd values to calculate the 2823 * initial RTO. Note that they are already initialized in 2824 * tcp_init_values(). 2825 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2826 * IP_NEXTHOP, but instead are using the interface ire for the 2827 * nexthop, then we do not use the ire_uinfo from that ire to 2828 * do any initializations. 2829 */ 2830 if (ire_uinfo != NULL) { 2831 if (ire_uinfo->iulp_rtt != 0) { 2832 clock_t rto; 2833 2834 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2835 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2836 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2837 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2838 2839 if (rto > tcp_rexmit_interval_max) { 2840 tcp->tcp_rto = tcp_rexmit_interval_max; 2841 } else if (rto < tcp_rexmit_interval_min) { 2842 tcp->tcp_rto = tcp_rexmit_interval_min; 2843 } else { 2844 tcp->tcp_rto = rto; 2845 } 2846 } 2847 if (ire_uinfo->iulp_ssthresh != 0) 2848 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2849 else 2850 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2851 if (ire_uinfo->iulp_spipe > 0) { 2852 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2853 tcp_max_buf); 2854 if (tcp_snd_lowat_fraction != 0) 2855 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2856 tcp_snd_lowat_fraction; 2857 (void) tcp_maxpsz_set(tcp, B_TRUE); 2858 } 2859 /* 2860 * Note that up till now, acceptor always inherits receive 2861 * window from the listener. But if there is a metrics 2862 * associated with a host, we should use that instead of 2863 * inheriting it from listener. Thus we need to pass this 2864 * info back to the caller. 2865 */ 2866 if (ire_uinfo->iulp_rpipe > 0) { 2867 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2868 } 2869 2870 if (ire_uinfo->iulp_rtomax > 0) { 2871 tcp->tcp_second_timer_threshold = 2872 ire_uinfo->iulp_rtomax; 2873 } 2874 2875 /* 2876 * Use the metric option settings, iulp_tstamp_ok and 2877 * iulp_wscale_ok, only for active open. What this means 2878 * is that if the other side uses timestamp or window 2879 * scale option, TCP will also use those options. That 2880 * is for passive open. If the application sets a 2881 * large window, window scale is enabled regardless of 2882 * the value in iulp_wscale_ok. This is the behavior 2883 * since 2.6. So we keep it. 2884 * The only case left in passive open processing is the 2885 * check for SACK. 2886 * For ECN, it should probably be like SACK. But the 2887 * current value is binary, so we treat it like the other 2888 * cases. The metric only controls active open.For passive 2889 * open, the ndd param, tcp_ecn_permitted, controls the 2890 * behavior. 2891 */ 2892 if (!tcp_detached) { 2893 /* 2894 * The if check means that the following can only 2895 * be turned on by the metrics only IRE, but not off. 2896 */ 2897 if (ire_uinfo->iulp_tstamp_ok) 2898 tcp->tcp_snd_ts_ok = B_TRUE; 2899 if (ire_uinfo->iulp_wscale_ok) 2900 tcp->tcp_snd_ws_ok = B_TRUE; 2901 if (ire_uinfo->iulp_sack == 2) 2902 tcp->tcp_snd_sack_ok = B_TRUE; 2903 if (ire_uinfo->iulp_ecn_ok) 2904 tcp->tcp_ecn_ok = B_TRUE; 2905 } else { 2906 /* 2907 * Passive open. 2908 * 2909 * As above, the if check means that SACK can only be 2910 * turned on by the metric only IRE. 2911 */ 2912 if (ire_uinfo->iulp_sack > 0) { 2913 tcp->tcp_snd_sack_ok = B_TRUE; 2914 } 2915 } 2916 } 2917 2918 2919 /* 2920 * XXX: Note that currently, ire_max_frag can be as small as 68 2921 * because of PMTUd. So tcp_mss may go to negative if combined 2922 * length of all those options exceeds 28 bytes. But because 2923 * of the tcp_mss_min check below, we may not have a problem if 2924 * tcp_mss_min is of a reasonable value. The default is 1 so 2925 * the negative problem still exists. And the check defeats PMTUd. 2926 * In fact, if PMTUd finds that the MSS should be smaller than 2927 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2928 * value. 2929 * 2930 * We do not deal with that now. All those problems related to 2931 * PMTUd will be fixed later. 2932 */ 2933 ASSERT(ire->ire_max_frag != 0); 2934 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2935 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2936 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2937 mss = MIN(mss, IPV6_MIN_MTU); 2938 } 2939 } 2940 2941 /* Sanity check for MSS value. */ 2942 if (tcp->tcp_ipversion == IPV4_VERSION) 2943 mss_max = tcp_mss_max_ipv4; 2944 else 2945 mss_max = tcp_mss_max_ipv6; 2946 2947 if (tcp->tcp_ipversion == IPV6_VERSION && 2948 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2949 /* 2950 * After receiving an ICMPv6 "packet too big" message with a 2951 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2952 * will insert a 8-byte fragment header in every packet; we 2953 * reduce the MSS by that amount here. 2954 */ 2955 mss -= sizeof (ip6_frag_t); 2956 } 2957 2958 if (tcp->tcp_ipsec_overhead == 0) 2959 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2960 2961 mss -= tcp->tcp_ipsec_overhead; 2962 2963 if (mss < tcp_mss_min) 2964 mss = tcp_mss_min; 2965 if (mss > mss_max) 2966 mss = mss_max; 2967 2968 /* Note that this is the maximum MSS, excluding all options. */ 2969 tcp->tcp_mss = mss; 2970 2971 /* 2972 * Initialize the ISS here now that we have the full connection ID. 2973 * The RFC 1948 method of initial sequence number generation requires 2974 * knowledge of the full connection ID before setting the ISS. 2975 */ 2976 2977 tcp_iss_init(tcp); 2978 2979 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2980 tcp->tcp_loopback = B_TRUE; 2981 2982 if (tcp->tcp_ipversion == IPV4_VERSION) { 2983 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2984 } else { 2985 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2986 } 2987 2988 if (hsp != NULL) { 2989 /* Only modify if we're going to make them bigger */ 2990 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2991 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2992 if (tcp_snd_lowat_fraction != 0) 2993 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2994 tcp_snd_lowat_fraction; 2995 } 2996 2997 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2998 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2999 } 3000 3001 /* Copy timestamp flag only for active open */ 3002 if (!tcp_detached) 3003 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 3004 } 3005 3006 if (sire != NULL) 3007 IRE_REFRELE(sire); 3008 3009 /* 3010 * If we got an IRE_CACHE and an ILL, go through their properties; 3011 * otherwise, this is deferred until later when we have an IRE_CACHE. 3012 */ 3013 if (tcp->tcp_loopback || 3014 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 3015 /* 3016 * For incoming, see if this tcp may be MDT-capable. For 3017 * outgoing, this process has been taken care of through 3018 * tcp_rput_other. 3019 */ 3020 tcp_ire_ill_check(tcp, ire, ill, incoming); 3021 tcp->tcp_ire_ill_check_done = B_TRUE; 3022 } 3023 3024 mutex_enter(&connp->conn_lock); 3025 /* 3026 * Make sure that conn is not marked incipient 3027 * for incoming connections. A blind 3028 * removal of incipient flag is cheaper than 3029 * check and removal. 3030 */ 3031 connp->conn_state_flags &= ~CONN_INCIPIENT; 3032 3033 /* Must not cache forwarding table routes. */ 3034 if (ire_cacheable) { 3035 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3036 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3037 connp->conn_ire_cache = ire; 3038 IRE_UNTRACE_REF(ire); 3039 rw_exit(&ire->ire_bucket->irb_lock); 3040 mutex_exit(&connp->conn_lock); 3041 return (1); 3042 } 3043 rw_exit(&ire->ire_bucket->irb_lock); 3044 } 3045 mutex_exit(&connp->conn_lock); 3046 3047 if (ire->ire_mp == NULL) 3048 ire_refrele(ire); 3049 return (1); 3050 3051 error: 3052 if (ire->ire_mp == NULL) 3053 ire_refrele(ire); 3054 if (sire != NULL) 3055 ire_refrele(sire); 3056 return (0); 3057 } 3058 3059 /* 3060 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3061 * O_T_BIND_REQ/T_BIND_REQ message. 3062 */ 3063 static void 3064 tcp_bind(tcp_t *tcp, mblk_t *mp) 3065 { 3066 sin_t *sin; 3067 sin6_t *sin6; 3068 mblk_t *mp1; 3069 in_port_t requested_port; 3070 in_port_t allocated_port; 3071 struct T_bind_req *tbr; 3072 boolean_t bind_to_req_port_only; 3073 boolean_t backlog_update = B_FALSE; 3074 boolean_t user_specified; 3075 in6_addr_t v6addr; 3076 ipaddr_t v4addr; 3077 uint_t origipversion; 3078 int err; 3079 queue_t *q = tcp->tcp_wq; 3080 conn_t *connp; 3081 mlp_type_t addrtype, mlptype; 3082 zone_t *zone; 3083 cred_t *cr; 3084 in_port_t mlp_port; 3085 3086 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3087 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3088 if (tcp->tcp_debug) { 3089 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3090 "tcp_bind: bad req, len %u", 3091 (uint_t)(mp->b_wptr - mp->b_rptr)); 3092 } 3093 tcp_err_ack(tcp, mp, TPROTO, 0); 3094 return; 3095 } 3096 /* Make sure the largest address fits */ 3097 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3098 if (mp1 == NULL) { 3099 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3100 return; 3101 } 3102 mp = mp1; 3103 tbr = (struct T_bind_req *)mp->b_rptr; 3104 if (tcp->tcp_state >= TCPS_BOUND) { 3105 if ((tcp->tcp_state == TCPS_BOUND || 3106 tcp->tcp_state == TCPS_LISTEN) && 3107 tcp->tcp_conn_req_max != tbr->CONIND_number && 3108 tbr->CONIND_number > 0) { 3109 /* 3110 * Handle listen() increasing CONIND_number. 3111 * This is more "liberal" then what the TPI spec 3112 * requires but is needed to avoid a t_unbind 3113 * when handling listen() since the port number 3114 * might be "stolen" between the unbind and bind. 3115 */ 3116 backlog_update = B_TRUE; 3117 goto do_bind; 3118 } 3119 if (tcp->tcp_debug) { 3120 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3121 "tcp_bind: bad state, %d", tcp->tcp_state); 3122 } 3123 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3124 return; 3125 } 3126 origipversion = tcp->tcp_ipversion; 3127 3128 switch (tbr->ADDR_length) { 3129 case 0: /* request for a generic port */ 3130 tbr->ADDR_offset = sizeof (struct T_bind_req); 3131 if (tcp->tcp_family == AF_INET) { 3132 tbr->ADDR_length = sizeof (sin_t); 3133 sin = (sin_t *)&tbr[1]; 3134 *sin = sin_null; 3135 sin->sin_family = AF_INET; 3136 mp->b_wptr = (uchar_t *)&sin[1]; 3137 tcp->tcp_ipversion = IPV4_VERSION; 3138 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3139 } else { 3140 ASSERT(tcp->tcp_family == AF_INET6); 3141 tbr->ADDR_length = sizeof (sin6_t); 3142 sin6 = (sin6_t *)&tbr[1]; 3143 *sin6 = sin6_null; 3144 sin6->sin6_family = AF_INET6; 3145 mp->b_wptr = (uchar_t *)&sin6[1]; 3146 tcp->tcp_ipversion = IPV6_VERSION; 3147 V6_SET_ZERO(v6addr); 3148 } 3149 requested_port = 0; 3150 break; 3151 3152 case sizeof (sin_t): /* Complete IPv4 address */ 3153 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3154 sizeof (sin_t)); 3155 if (sin == NULL || !OK_32PTR((char *)sin)) { 3156 if (tcp->tcp_debug) { 3157 (void) strlog(TCP_MOD_ID, 0, 1, 3158 SL_ERROR|SL_TRACE, 3159 "tcp_bind: bad address parameter, " 3160 "offset %d, len %d", 3161 tbr->ADDR_offset, tbr->ADDR_length); 3162 } 3163 tcp_err_ack(tcp, mp, TPROTO, 0); 3164 return; 3165 } 3166 /* 3167 * With sockets sockfs will accept bogus sin_family in 3168 * bind() and replace it with the family used in the socket 3169 * call. 3170 */ 3171 if (sin->sin_family != AF_INET || 3172 tcp->tcp_family != AF_INET) { 3173 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3174 return; 3175 } 3176 requested_port = ntohs(sin->sin_port); 3177 tcp->tcp_ipversion = IPV4_VERSION; 3178 v4addr = sin->sin_addr.s_addr; 3179 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3180 break; 3181 3182 case sizeof (sin6_t): /* Complete IPv6 address */ 3183 sin6 = (sin6_t *)mi_offset_param(mp, 3184 tbr->ADDR_offset, sizeof (sin6_t)); 3185 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3186 if (tcp->tcp_debug) { 3187 (void) strlog(TCP_MOD_ID, 0, 1, 3188 SL_ERROR|SL_TRACE, 3189 "tcp_bind: bad IPv6 address parameter, " 3190 "offset %d, len %d", tbr->ADDR_offset, 3191 tbr->ADDR_length); 3192 } 3193 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3194 return; 3195 } 3196 if (sin6->sin6_family != AF_INET6 || 3197 tcp->tcp_family != AF_INET6) { 3198 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3199 return; 3200 } 3201 requested_port = ntohs(sin6->sin6_port); 3202 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3203 IPV4_VERSION : IPV6_VERSION; 3204 v6addr = sin6->sin6_addr; 3205 break; 3206 3207 default: 3208 if (tcp->tcp_debug) { 3209 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3210 "tcp_bind: bad address length, %d", 3211 tbr->ADDR_length); 3212 } 3213 tcp_err_ack(tcp, mp, TBADADDR, 0); 3214 return; 3215 } 3216 tcp->tcp_bound_source_v6 = v6addr; 3217 3218 /* Check for change in ipversion */ 3219 if (origipversion != tcp->tcp_ipversion) { 3220 ASSERT(tcp->tcp_family == AF_INET6); 3221 err = tcp->tcp_ipversion == IPV6_VERSION ? 3222 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3223 if (err) { 3224 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3225 return; 3226 } 3227 } 3228 3229 /* 3230 * Initialize family specific fields. Copy of the src addr. 3231 * in tcp_t is needed for the lookup funcs. 3232 */ 3233 if (tcp->tcp_ipversion == IPV6_VERSION) { 3234 tcp->tcp_ip6h->ip6_src = v6addr; 3235 } else { 3236 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3237 } 3238 tcp->tcp_ip_src_v6 = v6addr; 3239 3240 /* 3241 * For O_T_BIND_REQ: 3242 * Verify that the target port/addr is available, or choose 3243 * another. 3244 * For T_BIND_REQ: 3245 * Verify that the target port/addr is available or fail. 3246 * In both cases when it succeeds the tcp is inserted in the 3247 * bind hash table. This ensures that the operation is atomic 3248 * under the lock on the hash bucket. 3249 */ 3250 bind_to_req_port_only = requested_port != 0 && 3251 tbr->PRIM_type != O_T_BIND_REQ; 3252 /* 3253 * Get a valid port (within the anonymous range and should not 3254 * be a privileged one) to use if the user has not given a port. 3255 * If multiple threads are here, they may all start with 3256 * with the same initial port. But, it should be fine as long as 3257 * tcp_bindi will ensure that no two threads will be assigned 3258 * the same port. 3259 * 3260 * NOTE: XXX If a privileged process asks for an anonymous port, we 3261 * still check for ports only in the range > tcp_smallest_non_priv_port, 3262 * unless TCP_ANONPRIVBIND option is set. 3263 */ 3264 mlptype = mlptSingle; 3265 mlp_port = requested_port; 3266 if (requested_port == 0) { 3267 requested_port = tcp->tcp_anon_priv_bind ? 3268 tcp_get_next_priv_port(tcp) : 3269 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3270 if (requested_port == 0) { 3271 tcp_err_ack(tcp, mp, TNOADDR, 0); 3272 return; 3273 } 3274 user_specified = B_FALSE; 3275 3276 /* 3277 * If the user went through one of the RPC interfaces to create 3278 * this socket and RPC is MLP in this zone, then give him an 3279 * anonymous MLP. 3280 */ 3281 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3282 connp = tcp->tcp_connp; 3283 if (connp->conn_anon_mlp && is_system_labeled()) { 3284 zone = crgetzone(cr); 3285 addrtype = tsol_mlp_addr_type(zone->zone_id, 3286 IPV6_VERSION, &v6addr); 3287 if (addrtype == mlptSingle) { 3288 tcp_err_ack(tcp, mp, TNOADDR, 0); 3289 return; 3290 } 3291 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3292 PMAPPORT, addrtype); 3293 mlp_port = PMAPPORT; 3294 } 3295 } else { 3296 int i; 3297 boolean_t priv = B_FALSE; 3298 3299 /* 3300 * If the requested_port is in the well-known privileged range, 3301 * verify that the stream was opened by a privileged user. 3302 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3303 * but instead the code relies on: 3304 * - the fact that the address of the array and its size never 3305 * changes 3306 * - the atomic assignment of the elements of the array 3307 */ 3308 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3309 if (requested_port < tcp_smallest_nonpriv_port) { 3310 priv = B_TRUE; 3311 } else { 3312 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3313 if (requested_port == 3314 tcp_g_epriv_ports[i]) { 3315 priv = B_TRUE; 3316 break; 3317 } 3318 } 3319 } 3320 if (priv) { 3321 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3322 if (tcp->tcp_debug) { 3323 (void) strlog(TCP_MOD_ID, 0, 1, 3324 SL_ERROR|SL_TRACE, 3325 "tcp_bind: no priv for port %d", 3326 requested_port); 3327 } 3328 tcp_err_ack(tcp, mp, TACCES, 0); 3329 return; 3330 } 3331 } 3332 user_specified = B_TRUE; 3333 3334 connp = tcp->tcp_connp; 3335 if (is_system_labeled()) { 3336 zone = crgetzone(cr); 3337 addrtype = tsol_mlp_addr_type(zone->zone_id, 3338 IPV6_VERSION, &v6addr); 3339 if (addrtype == mlptSingle) { 3340 tcp_err_ack(tcp, mp, TNOADDR, 0); 3341 return; 3342 } 3343 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3344 requested_port, addrtype); 3345 } 3346 } 3347 3348 if (mlptype != mlptSingle) { 3349 if (secpolicy_net_bindmlp(cr) != 0) { 3350 if (tcp->tcp_debug) { 3351 (void) strlog(TCP_MOD_ID, 0, 1, 3352 SL_ERROR|SL_TRACE, 3353 "tcp_bind: no priv for multilevel port %d", 3354 requested_port); 3355 } 3356 tcp_err_ack(tcp, mp, TACCES, 0); 3357 return; 3358 } 3359 3360 /* 3361 * If we're specifically binding a shared IP address and the 3362 * port is MLP on shared addresses, then check to see if this 3363 * zone actually owns the MLP. Reject if not. 3364 */ 3365 if (mlptype == mlptShared && addrtype == mlptShared) { 3366 zoneid_t mlpzone; 3367 3368 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3369 htons(mlp_port)); 3370 if (connp->conn_zoneid != mlpzone) { 3371 if (tcp->tcp_debug) { 3372 (void) strlog(TCP_MOD_ID, 0, 1, 3373 SL_ERROR|SL_TRACE, 3374 "tcp_bind: attempt to bind port " 3375 "%d on shared addr in zone %d " 3376 "(should be %d)", 3377 mlp_port, connp->conn_zoneid, 3378 mlpzone); 3379 } 3380 tcp_err_ack(tcp, mp, TACCES, 0); 3381 return; 3382 } 3383 } 3384 3385 if (!user_specified) { 3386 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3387 requested_port, B_TRUE); 3388 if (err != 0) { 3389 if (tcp->tcp_debug) { 3390 (void) strlog(TCP_MOD_ID, 0, 1, 3391 SL_ERROR|SL_TRACE, 3392 "tcp_bind: cannot establish anon " 3393 "MLP for port %d", 3394 requested_port); 3395 } 3396 tcp_err_ack(tcp, mp, TSYSERR, err); 3397 return; 3398 } 3399 connp->conn_anon_port = B_TRUE; 3400 } 3401 connp->conn_mlp_type = mlptype; 3402 } 3403 3404 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3405 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3406 3407 if (allocated_port == 0) { 3408 connp->conn_mlp_type = mlptSingle; 3409 if (connp->conn_anon_port) { 3410 connp->conn_anon_port = B_FALSE; 3411 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3412 requested_port, B_FALSE); 3413 } 3414 if (bind_to_req_port_only) { 3415 if (tcp->tcp_debug) { 3416 (void) strlog(TCP_MOD_ID, 0, 1, 3417 SL_ERROR|SL_TRACE, 3418 "tcp_bind: requested addr busy"); 3419 } 3420 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3421 } else { 3422 /* If we are out of ports, fail the bind. */ 3423 if (tcp->tcp_debug) { 3424 (void) strlog(TCP_MOD_ID, 0, 1, 3425 SL_ERROR|SL_TRACE, 3426 "tcp_bind: out of ports?"); 3427 } 3428 tcp_err_ack(tcp, mp, TNOADDR, 0); 3429 } 3430 return; 3431 } 3432 ASSERT(tcp->tcp_state == TCPS_BOUND); 3433 do_bind: 3434 if (!backlog_update) { 3435 if (tcp->tcp_family == AF_INET) 3436 sin->sin_port = htons(allocated_port); 3437 else 3438 sin6->sin6_port = htons(allocated_port); 3439 } 3440 if (tcp->tcp_family == AF_INET) { 3441 if (tbr->CONIND_number != 0) { 3442 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3443 sizeof (sin_t)); 3444 } else { 3445 /* Just verify the local IP address */ 3446 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3447 } 3448 } else { 3449 if (tbr->CONIND_number != 0) { 3450 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3451 sizeof (sin6_t)); 3452 } else { 3453 /* Just verify the local IP address */ 3454 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3455 IPV6_ADDR_LEN); 3456 } 3457 } 3458 if (mp1 == NULL) { 3459 if (connp->conn_anon_port) { 3460 connp->conn_anon_port = B_FALSE; 3461 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3462 requested_port, B_FALSE); 3463 } 3464 connp->conn_mlp_type = mlptSingle; 3465 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3466 return; 3467 } 3468 3469 tbr->PRIM_type = T_BIND_ACK; 3470 mp->b_datap->db_type = M_PCPROTO; 3471 3472 /* Chain in the reply mp for tcp_rput() */ 3473 mp1->b_cont = mp; 3474 mp = mp1; 3475 3476 tcp->tcp_conn_req_max = tbr->CONIND_number; 3477 if (tcp->tcp_conn_req_max) { 3478 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3479 tcp->tcp_conn_req_max = tcp_conn_req_min; 3480 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3481 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3482 /* 3483 * If this is a listener, do not reset the eager list 3484 * and other stuffs. Note that we don't check if the 3485 * existing eager list meets the new tcp_conn_req_max 3486 * requirement. 3487 */ 3488 if (tcp->tcp_state != TCPS_LISTEN) { 3489 tcp->tcp_state = TCPS_LISTEN; 3490 /* Initialize the chain. Don't need the eager_lock */ 3491 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3492 tcp->tcp_eager_next_drop_q0 = tcp; 3493 tcp->tcp_eager_prev_drop_q0 = tcp; 3494 tcp->tcp_second_ctimer_threshold = 3495 tcp_ip_abort_linterval; 3496 } 3497 } 3498 3499 /* 3500 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3501 * processing continues in tcp_rput_other(). 3502 */ 3503 if (tcp->tcp_family == AF_INET6) { 3504 ASSERT(tcp->tcp_connp->conn_af_isv6); 3505 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3506 } else { 3507 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3508 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3509 } 3510 /* 3511 * If the bind cannot complete immediately 3512 * IP will arrange to call tcp_rput_other 3513 * when the bind completes. 3514 */ 3515 if (mp != NULL) { 3516 tcp_rput_other(tcp, mp); 3517 } else { 3518 /* 3519 * Bind will be resumed later. Need to ensure 3520 * that conn doesn't disappear when that happens. 3521 * This will be decremented in ip_resume_tcp_bind(). 3522 */ 3523 CONN_INC_REF(tcp->tcp_connp); 3524 } 3525 } 3526 3527 3528 /* 3529 * If the "bind_to_req_port_only" parameter is set, if the requested port 3530 * number is available, return it, If not return 0 3531 * 3532 * If "bind_to_req_port_only" parameter is not set and 3533 * If the requested port number is available, return it. If not, return 3534 * the first anonymous port we happen across. If no anonymous ports are 3535 * available, return 0. addr is the requested local address, if any. 3536 * 3537 * In either case, when succeeding update the tcp_t to record the port number 3538 * and insert it in the bind hash table. 3539 * 3540 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3541 * without setting SO_REUSEADDR. This is needed so that they 3542 * can be viewed as two independent transport protocols. 3543 */ 3544 static in_port_t 3545 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3546 int reuseaddr, boolean_t quick_connect, 3547 boolean_t bind_to_req_port_only, boolean_t user_specified) 3548 { 3549 /* number of times we have run around the loop */ 3550 int count = 0; 3551 /* maximum number of times to run around the loop */ 3552 int loopmax; 3553 conn_t *connp = tcp->tcp_connp; 3554 zoneid_t zoneid = connp->conn_zoneid; 3555 3556 /* 3557 * Lookup for free addresses is done in a loop and "loopmax" 3558 * influences how long we spin in the loop 3559 */ 3560 if (bind_to_req_port_only) { 3561 /* 3562 * If the requested port is busy, don't bother to look 3563 * for a new one. Setting loop maximum count to 1 has 3564 * that effect. 3565 */ 3566 loopmax = 1; 3567 } else { 3568 /* 3569 * If the requested port is busy, look for a free one 3570 * in the anonymous port range. 3571 * Set loopmax appropriately so that one does not look 3572 * forever in the case all of the anonymous ports are in use. 3573 */ 3574 if (tcp->tcp_anon_priv_bind) { 3575 /* 3576 * loopmax = 3577 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3578 */ 3579 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3580 } else { 3581 loopmax = (tcp_largest_anon_port - 3582 tcp_smallest_anon_port + 1); 3583 } 3584 } 3585 do { 3586 uint16_t lport; 3587 tf_t *tbf; 3588 tcp_t *ltcp; 3589 conn_t *lconnp; 3590 3591 lport = htons(port); 3592 3593 /* 3594 * Ensure that the tcp_t is not currently in the bind hash. 3595 * Hold the lock on the hash bucket to ensure that 3596 * the duplicate check plus the insertion is an atomic 3597 * operation. 3598 * 3599 * This function does an inline lookup on the bind hash list 3600 * Make sure that we access only members of tcp_t 3601 * and that we don't look at tcp_tcp, since we are not 3602 * doing a CONN_INC_REF. 3603 */ 3604 tcp_bind_hash_remove(tcp); 3605 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3606 mutex_enter(&tbf->tf_lock); 3607 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3608 ltcp = ltcp->tcp_bind_hash) { 3609 boolean_t not_socket; 3610 boolean_t exclbind; 3611 3612 if (lport != ltcp->tcp_lport) 3613 continue; 3614 3615 lconnp = ltcp->tcp_connp; 3616 3617 /* 3618 * On a labeled system, we must treat bindings to ports 3619 * on shared IP addresses by sockets with MAC exemption 3620 * privilege as being in all zones, as there's 3621 * otherwise no way to identify the right receiver. 3622 */ 3623 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3624 !lconnp->conn_mac_exempt && 3625 !connp->conn_mac_exempt) 3626 continue; 3627 3628 /* 3629 * If TCP_EXCLBIND is set for either the bound or 3630 * binding endpoint, the semantics of bind 3631 * is changed according to the following. 3632 * 3633 * spec = specified address (v4 or v6) 3634 * unspec = unspecified address (v4 or v6) 3635 * A = specified addresses are different for endpoints 3636 * 3637 * bound bind to allowed 3638 * ------------------------------------- 3639 * unspec unspec no 3640 * unspec spec no 3641 * spec unspec no 3642 * spec spec yes if A 3643 * 3644 * For labeled systems, SO_MAC_EXEMPT behaves the same 3645 * as TCP_EXCLBIND, except that zoneid is ignored. 3646 * 3647 * Note: 3648 * 3649 * 1. Because of TLI semantics, an endpoint can go 3650 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3651 * TCPS_BOUND, depending on whether it is originally 3652 * a listener or not. That is why we need to check 3653 * for states greater than or equal to TCPS_BOUND 3654 * here. 3655 * 3656 * 2. Ideally, we should only check for state equals 3657 * to TCPS_LISTEN. And the following check should be 3658 * added. 3659 * 3660 * if (ltcp->tcp_state == TCPS_LISTEN || 3661 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3662 * ... 3663 * } 3664 * 3665 * The semantics will be changed to this. If the 3666 * endpoint on the list is in state not equal to 3667 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3668 * set, let the bind succeed. 3669 * 3670 * Because of (1), we cannot do that for TLI 3671 * endpoints. But we can do that for socket endpoints. 3672 * If in future, we can change this going back 3673 * semantics, we can use the above check for TLI also. 3674 */ 3675 not_socket = !(TCP_IS_SOCKET(ltcp) && 3676 TCP_IS_SOCKET(tcp)); 3677 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3678 3679 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3680 (exclbind && (not_socket || 3681 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3682 if (V6_OR_V4_INADDR_ANY( 3683 ltcp->tcp_bound_source_v6) || 3684 V6_OR_V4_INADDR_ANY(*laddr) || 3685 IN6_ARE_ADDR_EQUAL(laddr, 3686 <cp->tcp_bound_source_v6)) { 3687 break; 3688 } 3689 continue; 3690 } 3691 3692 /* 3693 * Check ipversion to allow IPv4 and IPv6 sockets to 3694 * have disjoint port number spaces, if *_EXCLBIND 3695 * is not set and only if the application binds to a 3696 * specific port. We use the same autoassigned port 3697 * number space for IPv4 and IPv6 sockets. 3698 */ 3699 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3700 bind_to_req_port_only) 3701 continue; 3702 3703 /* 3704 * Ideally, we should make sure that the source 3705 * address, remote address, and remote port in the 3706 * four tuple for this tcp-connection is unique. 3707 * However, trying to find out the local source 3708 * address would require too much code duplication 3709 * with IP, since IP needs needs to have that code 3710 * to support userland TCP implementations. 3711 */ 3712 if (quick_connect && 3713 (ltcp->tcp_state > TCPS_LISTEN) && 3714 ((tcp->tcp_fport != ltcp->tcp_fport) || 3715 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3716 <cp->tcp_remote_v6))) 3717 continue; 3718 3719 if (!reuseaddr) { 3720 /* 3721 * No socket option SO_REUSEADDR. 3722 * If existing port is bound to 3723 * a non-wildcard IP address 3724 * and the requesting stream is 3725 * bound to a distinct 3726 * different IP addresses 3727 * (non-wildcard, also), keep 3728 * going. 3729 */ 3730 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3731 !V6_OR_V4_INADDR_ANY( 3732 ltcp->tcp_bound_source_v6) && 3733 !IN6_ARE_ADDR_EQUAL(laddr, 3734 <cp->tcp_bound_source_v6)) 3735 continue; 3736 if (ltcp->tcp_state >= TCPS_BOUND) { 3737 /* 3738 * This port is being used and 3739 * its state is >= TCPS_BOUND, 3740 * so we can't bind to it. 3741 */ 3742 break; 3743 } 3744 } else { 3745 /* 3746 * socket option SO_REUSEADDR is set on the 3747 * binding tcp_t. 3748 * 3749 * If two streams are bound to 3750 * same IP address or both addr 3751 * and bound source are wildcards 3752 * (INADDR_ANY), we want to stop 3753 * searching. 3754 * We have found a match of IP source 3755 * address and source port, which is 3756 * refused regardless of the 3757 * SO_REUSEADDR setting, so we break. 3758 */ 3759 if (IN6_ARE_ADDR_EQUAL(laddr, 3760 <cp->tcp_bound_source_v6) && 3761 (ltcp->tcp_state == TCPS_LISTEN || 3762 ltcp->tcp_state == TCPS_BOUND)) 3763 break; 3764 } 3765 } 3766 if (ltcp != NULL) { 3767 /* The port number is busy */ 3768 mutex_exit(&tbf->tf_lock); 3769 } else { 3770 /* 3771 * This port is ours. Insert in fanout and mark as 3772 * bound to prevent others from getting the port 3773 * number. 3774 */ 3775 tcp->tcp_state = TCPS_BOUND; 3776 tcp->tcp_lport = htons(port); 3777 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3778 3779 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3780 tcp->tcp_lport)] == tbf); 3781 tcp_bind_hash_insert(tbf, tcp, 1); 3782 3783 mutex_exit(&tbf->tf_lock); 3784 3785 /* 3786 * We don't want tcp_next_port_to_try to "inherit" 3787 * a port number supplied by the user in a bind. 3788 */ 3789 if (user_specified) 3790 return (port); 3791 3792 /* 3793 * This is the only place where tcp_next_port_to_try 3794 * is updated. After the update, it may or may not 3795 * be in the valid range. 3796 */ 3797 if (!tcp->tcp_anon_priv_bind) 3798 tcp_next_port_to_try = port + 1; 3799 return (port); 3800 } 3801 3802 if (tcp->tcp_anon_priv_bind) { 3803 port = tcp_get_next_priv_port(tcp); 3804 } else { 3805 if (count == 0 && user_specified) { 3806 /* 3807 * We may have to return an anonymous port. So 3808 * get one to start with. 3809 */ 3810 port = 3811 tcp_update_next_port(tcp_next_port_to_try, 3812 tcp, B_TRUE); 3813 user_specified = B_FALSE; 3814 } else { 3815 port = tcp_update_next_port(port + 1, tcp, 3816 B_FALSE); 3817 } 3818 } 3819 if (port == 0) 3820 break; 3821 3822 /* 3823 * Don't let this loop run forever in the case where 3824 * all of the anonymous ports are in use. 3825 */ 3826 } while (++count < loopmax); 3827 return (0); 3828 } 3829 3830 /* 3831 * tcp_clean_death / tcp_close_detached must not be called more than once 3832 * on a tcp. Thus every function that potentially calls tcp_clean_death 3833 * must check for the tcp state before calling tcp_clean_death. 3834 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3835 * tcp_timer_handler, all check for the tcp state. 3836 */ 3837 /* ARGSUSED */ 3838 void 3839 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3840 { 3841 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3842 3843 freemsg(mp); 3844 if (tcp->tcp_state > TCPS_BOUND) 3845 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5); 3846 } 3847 3848 /* 3849 * We are dying for some reason. Try to do it gracefully. (May be called 3850 * as writer.) 3851 * 3852 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3853 * done by a service procedure). 3854 * TBD - Should the return value distinguish between the tcp_t being 3855 * freed and it being reinitialized? 3856 */ 3857 static int 3858 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3859 { 3860 mblk_t *mp; 3861 queue_t *q; 3862 3863 TCP_CLD_STAT(tag); 3864 3865 #if TCP_TAG_CLEAN_DEATH 3866 tcp->tcp_cleandeathtag = tag; 3867 #endif 3868 3869 if (tcp->tcp_fused) 3870 tcp_unfuse(tcp); 3871 3872 if (tcp->tcp_linger_tid != 0 && 3873 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3874 tcp_stop_lingering(tcp); 3875 } 3876 3877 ASSERT(tcp != NULL); 3878 ASSERT((tcp->tcp_family == AF_INET && 3879 tcp->tcp_ipversion == IPV4_VERSION) || 3880 (tcp->tcp_family == AF_INET6 && 3881 (tcp->tcp_ipversion == IPV4_VERSION || 3882 tcp->tcp_ipversion == IPV6_VERSION))); 3883 3884 if (TCP_IS_DETACHED(tcp)) { 3885 if (tcp->tcp_hard_binding) { 3886 /* 3887 * Its an eager that we are dealing with. We close the 3888 * eager but in case a conn_ind has already gone to the 3889 * listener, let tcp_accept_finish() send a discon_ind 3890 * to the listener and drop the last reference. If the 3891 * listener doesn't even know about the eager i.e. the 3892 * conn_ind hasn't gone up, blow away the eager and drop 3893 * the last reference as well. If the conn_ind has gone 3894 * up, state should be BOUND. tcp_accept_finish 3895 * will figure out that the connection has received a 3896 * RST and will send a DISCON_IND to the application. 3897 */ 3898 tcp_closei_local(tcp); 3899 if (!tcp->tcp_tconnind_started) { 3900 CONN_DEC_REF(tcp->tcp_connp); 3901 } else { 3902 tcp->tcp_state = TCPS_BOUND; 3903 } 3904 } else { 3905 tcp_close_detached(tcp); 3906 } 3907 return (0); 3908 } 3909 3910 TCP_STAT(tcp_clean_death_nondetached); 3911 3912 /* 3913 * If T_ORDREL_IND has not been sent yet (done when service routine 3914 * is run) postpone cleaning up the endpoint until service routine 3915 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3916 * client_errno since tcp_close uses the client_errno field. 3917 */ 3918 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3919 if (err != 0) 3920 tcp->tcp_client_errno = err; 3921 3922 tcp->tcp_deferred_clean_death = B_TRUE; 3923 return (-1); 3924 } 3925 3926 q = tcp->tcp_rq; 3927 3928 /* Trash all inbound data */ 3929 flushq(q, FLUSHALL); 3930 3931 /* 3932 * If we are at least part way open and there is error 3933 * (err==0 implies no error) 3934 * notify our client by a T_DISCON_IND. 3935 */ 3936 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3937 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3938 !TCP_IS_SOCKET(tcp)) { 3939 /* 3940 * Send M_FLUSH according to TPI. Because sockets will 3941 * (and must) ignore FLUSHR we do that only for TPI 3942 * endpoints and sockets in STREAMS mode. 3943 */ 3944 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3945 } 3946 if (tcp->tcp_debug) { 3947 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3948 "tcp_clean_death: discon err %d", err); 3949 } 3950 mp = mi_tpi_discon_ind(NULL, err, 0); 3951 if (mp != NULL) { 3952 putnext(q, mp); 3953 } else { 3954 if (tcp->tcp_debug) { 3955 (void) strlog(TCP_MOD_ID, 0, 1, 3956 SL_ERROR|SL_TRACE, 3957 "tcp_clean_death, sending M_ERROR"); 3958 } 3959 (void) putnextctl1(q, M_ERROR, EPROTO); 3960 } 3961 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3962 /* SYN_SENT or SYN_RCVD */ 3963 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3964 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3965 /* ESTABLISHED or CLOSE_WAIT */ 3966 BUMP_MIB(&tcp_mib, tcpEstabResets); 3967 } 3968 } 3969 3970 tcp_reinit(tcp); 3971 return (-1); 3972 } 3973 3974 /* 3975 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3976 * to expire, stop the wait and finish the close. 3977 */ 3978 static void 3979 tcp_stop_lingering(tcp_t *tcp) 3980 { 3981 clock_t delta = 0; 3982 3983 tcp->tcp_linger_tid = 0; 3984 if (tcp->tcp_state > TCPS_LISTEN) { 3985 tcp_acceptor_hash_remove(tcp); 3986 if (tcp->tcp_flow_stopped) { 3987 tcp_clrqfull(tcp); 3988 } 3989 3990 if (tcp->tcp_timer_tid != 0) { 3991 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3992 tcp->tcp_timer_tid = 0; 3993 } 3994 /* 3995 * Need to cancel those timers which will not be used when 3996 * TCP is detached. This has to be done before the tcp_wq 3997 * is set to the global queue. 3998 */ 3999 tcp_timers_stop(tcp); 4000 4001 4002 tcp->tcp_detached = B_TRUE; 4003 tcp->tcp_rq = tcp_g_q; 4004 tcp->tcp_wq = WR(tcp_g_q); 4005 4006 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4007 tcp_time_wait_append(tcp); 4008 TCP_DBGSTAT(tcp_detach_time_wait); 4009 goto finish; 4010 } 4011 4012 /* 4013 * If delta is zero the timer event wasn't executed and was 4014 * successfully canceled. In this case we need to restart it 4015 * with the minimal delta possible. 4016 */ 4017 if (delta >= 0) { 4018 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4019 delta ? delta : 1); 4020 } 4021 } else { 4022 tcp_closei_local(tcp); 4023 CONN_DEC_REF(tcp->tcp_connp); 4024 } 4025 finish: 4026 /* Signal closing thread that it can complete close */ 4027 mutex_enter(&tcp->tcp_closelock); 4028 tcp->tcp_detached = B_TRUE; 4029 tcp->tcp_rq = tcp_g_q; 4030 tcp->tcp_wq = WR(tcp_g_q); 4031 tcp->tcp_closed = 1; 4032 cv_signal(&tcp->tcp_closecv); 4033 mutex_exit(&tcp->tcp_closelock); 4034 } 4035 4036 /* 4037 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 4038 * expires. 4039 */ 4040 static void 4041 tcp_close_linger_timeout(void *arg) 4042 { 4043 conn_t *connp = (conn_t *)arg; 4044 tcp_t *tcp = connp->conn_tcp; 4045 4046 tcp->tcp_client_errno = ETIMEDOUT; 4047 tcp_stop_lingering(tcp); 4048 } 4049 4050 static int 4051 tcp_close(queue_t *q, int flags) 4052 { 4053 conn_t *connp = Q_TO_CONN(q); 4054 tcp_t *tcp = connp->conn_tcp; 4055 mblk_t *mp = &tcp->tcp_closemp; 4056 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4057 boolean_t linger_interrupted = B_FALSE; 4058 mblk_t *bp; 4059 4060 ASSERT(WR(q)->q_next == NULL); 4061 ASSERT(connp->conn_ref >= 2); 4062 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4063 4064 /* 4065 * We are being closed as /dev/tcp or /dev/tcp6. 4066 * 4067 * Mark the conn as closing. ill_pending_mp_add will not 4068 * add any mp to the pending mp list, after this conn has 4069 * started closing. Same for sq_pending_mp_add 4070 */ 4071 mutex_enter(&connp->conn_lock); 4072 connp->conn_state_flags |= CONN_CLOSING; 4073 if (connp->conn_oper_pending_ill != NULL) 4074 conn_ioctl_cleanup_reqd = B_TRUE; 4075 CONN_INC_REF_LOCKED(connp); 4076 mutex_exit(&connp->conn_lock); 4077 tcp->tcp_closeflags = (uint8_t)flags; 4078 ASSERT(connp->conn_ref >= 3); 4079 4080 /* 4081 * tcp_closemp_used is used below without any protection of a lock 4082 * as we don't expect any one else to use it concurrently at this 4083 * point otherwise it would be a major defect, though we do 4084 * increment tcp_closemp_used to record any attempt to reuse 4085 * tcp_closemp while it is still in use. This would help debugging. 4086 */ 4087 4088 if (mp->b_prev == NULL) { 4089 tcp->tcp_closemp_used = 1; 4090 } else { 4091 tcp->tcp_closemp_used++; 4092 ASSERT(mp->b_prev == NULL); 4093 } 4094 4095 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4096 4097 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4098 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4099 4100 mutex_enter(&tcp->tcp_closelock); 4101 while (!tcp->tcp_closed) { 4102 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4103 /* 4104 * We got interrupted. Check if we are lingering, 4105 * if yes, post a message to stop and wait until 4106 * tcp_closed is set. If we aren't lingering, 4107 * just go back around. 4108 */ 4109 if (tcp->tcp_linger && 4110 tcp->tcp_lingertime > 0 && 4111 !linger_interrupted) { 4112 mutex_exit(&tcp->tcp_closelock); 4113 /* Entering squeue, bump ref count. */ 4114 CONN_INC_REF(connp); 4115 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4116 squeue_enter(connp->conn_sqp, bp, 4117 tcp_linger_interrupted, connp, 4118 SQTAG_IP_TCP_CLOSE); 4119 linger_interrupted = B_TRUE; 4120 mutex_enter(&tcp->tcp_closelock); 4121 } 4122 } 4123 } 4124 mutex_exit(&tcp->tcp_closelock); 4125 4126 /* 4127 * In the case of listener streams that have eagers in the q or q0 4128 * we wait for the eagers to drop their reference to us. tcp_rq and 4129 * tcp_wq of the eagers point to our queues. By waiting for the 4130 * refcnt to drop to 1, we are sure that the eagers have cleaned 4131 * up their queue pointers and also dropped their references to us. 4132 */ 4133 if (tcp->tcp_wait_for_eagers) { 4134 mutex_enter(&connp->conn_lock); 4135 while (connp->conn_ref != 1) { 4136 cv_wait(&connp->conn_cv, &connp->conn_lock); 4137 } 4138 mutex_exit(&connp->conn_lock); 4139 } 4140 /* 4141 * ioctl cleanup. The mp is queued in the 4142 * ill_pending_mp or in the sq_pending_mp. 4143 */ 4144 if (conn_ioctl_cleanup_reqd) 4145 conn_ioctl_cleanup(connp); 4146 4147 qprocsoff(q); 4148 inet_minor_free(ip_minor_arena, connp->conn_dev); 4149 4150 tcp->tcp_cpid = -1; 4151 4152 /* 4153 * Drop IP's reference on the conn. This is the last reference 4154 * on the connp if the state was less than established. If the 4155 * connection has gone into timewait state, then we will have 4156 * one ref for the TCP and one more ref (total of two) for the 4157 * classifier connected hash list (a timewait connections stays 4158 * in connected hash till closed). 4159 * 4160 * We can't assert the references because there might be other 4161 * transient reference places because of some walkers or queued 4162 * packets in squeue for the timewait state. 4163 */ 4164 CONN_DEC_REF(connp); 4165 q->q_ptr = WR(q)->q_ptr = NULL; 4166 return (0); 4167 } 4168 4169 static int 4170 tcpclose_accept(queue_t *q) 4171 { 4172 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4173 4174 /* 4175 * We had opened an acceptor STREAM for sockfs which is 4176 * now being closed due to some error. 4177 */ 4178 qprocsoff(q); 4179 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4180 q->q_ptr = WR(q)->q_ptr = NULL; 4181 return (0); 4182 } 4183 4184 /* 4185 * Called by tcp_close() routine via squeue when lingering is 4186 * interrupted by a signal. 4187 */ 4188 4189 /* ARGSUSED */ 4190 static void 4191 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4192 { 4193 conn_t *connp = (conn_t *)arg; 4194 tcp_t *tcp = connp->conn_tcp; 4195 4196 freeb(mp); 4197 if (tcp->tcp_linger_tid != 0 && 4198 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4199 tcp_stop_lingering(tcp); 4200 tcp->tcp_client_errno = EINTR; 4201 } 4202 } 4203 4204 /* 4205 * Called by streams close routine via squeues when our client blows off her 4206 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4207 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4208 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4209 * acked. 4210 * 4211 * NOTE: tcp_close potentially returns error when lingering. 4212 * However, the stream head currently does not pass these errors 4213 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4214 * errors to the application (from tsleep()) and not errors 4215 * like ECONNRESET caused by receiving a reset packet. 4216 */ 4217 4218 /* ARGSUSED */ 4219 static void 4220 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4221 { 4222 char *msg; 4223 conn_t *connp = (conn_t *)arg; 4224 tcp_t *tcp = connp->conn_tcp; 4225 clock_t delta = 0; 4226 4227 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4228 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4229 4230 /* Cancel any pending timeout */ 4231 if (tcp->tcp_ordrelid != 0) { 4232 if (tcp->tcp_timeout) { 4233 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4234 } 4235 tcp->tcp_ordrelid = 0; 4236 tcp->tcp_timeout = B_FALSE; 4237 } 4238 4239 mutex_enter(&tcp->tcp_eager_lock); 4240 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4241 /* Cleanup for listener */ 4242 tcp_eager_cleanup(tcp, 0); 4243 tcp->tcp_wait_for_eagers = 1; 4244 } 4245 mutex_exit(&tcp->tcp_eager_lock); 4246 4247 connp->conn_mdt_ok = B_FALSE; 4248 tcp->tcp_mdt = B_FALSE; 4249 4250 connp->conn_lso_ok = B_FALSE; 4251 tcp->tcp_lso = B_FALSE; 4252 4253 msg = NULL; 4254 switch (tcp->tcp_state) { 4255 case TCPS_CLOSED: 4256 case TCPS_IDLE: 4257 case TCPS_BOUND: 4258 case TCPS_LISTEN: 4259 break; 4260 case TCPS_SYN_SENT: 4261 msg = "tcp_close, during connect"; 4262 break; 4263 case TCPS_SYN_RCVD: 4264 /* 4265 * Close during the connect 3-way handshake 4266 * but here there may or may not be pending data 4267 * already on queue. Process almost same as in 4268 * the ESTABLISHED state. 4269 */ 4270 /* FALLTHRU */ 4271 default: 4272 if (tcp->tcp_fused) 4273 tcp_unfuse(tcp); 4274 4275 /* 4276 * If SO_LINGER has set a zero linger time, abort the 4277 * connection with a reset. 4278 */ 4279 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4280 msg = "tcp_close, zero lingertime"; 4281 break; 4282 } 4283 4284 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4285 /* 4286 * Abort connection if there is unread data queued. 4287 */ 4288 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4289 msg = "tcp_close, unread data"; 4290 break; 4291 } 4292 /* 4293 * tcp_hard_bound is now cleared thus all packets go through 4294 * tcp_lookup. This fact is used by tcp_detach below. 4295 * 4296 * We have done a qwait() above which could have possibly 4297 * drained more messages in turn causing transition to a 4298 * different state. Check whether we have to do the rest 4299 * of the processing or not. 4300 */ 4301 if (tcp->tcp_state <= TCPS_LISTEN) 4302 break; 4303 4304 /* 4305 * Transmit the FIN before detaching the tcp_t. 4306 * After tcp_detach returns this queue/perimeter 4307 * no longer owns the tcp_t thus others can modify it. 4308 */ 4309 (void) tcp_xmit_end(tcp); 4310 4311 /* 4312 * If lingering on close then wait until the fin is acked, 4313 * the SO_LINGER time passes, or a reset is sent/received. 4314 */ 4315 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4316 !(tcp->tcp_fin_acked) && 4317 tcp->tcp_state >= TCPS_ESTABLISHED) { 4318 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4319 tcp->tcp_client_errno = EWOULDBLOCK; 4320 } else if (tcp->tcp_client_errno == 0) { 4321 4322 ASSERT(tcp->tcp_linger_tid == 0); 4323 4324 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4325 tcp_close_linger_timeout, 4326 tcp->tcp_lingertime * hz); 4327 4328 /* tcp_close_linger_timeout will finish close */ 4329 if (tcp->tcp_linger_tid == 0) 4330 tcp->tcp_client_errno = ENOSR; 4331 else 4332 return; 4333 } 4334 4335 /* 4336 * Check if we need to detach or just close 4337 * the instance. 4338 */ 4339 if (tcp->tcp_state <= TCPS_LISTEN) 4340 break; 4341 } 4342 4343 /* 4344 * Make sure that no other thread will access the tcp_rq of 4345 * this instance (through lookups etc.) as tcp_rq will go 4346 * away shortly. 4347 */ 4348 tcp_acceptor_hash_remove(tcp); 4349 4350 if (tcp->tcp_flow_stopped) { 4351 tcp_clrqfull(tcp); 4352 } 4353 4354 if (tcp->tcp_timer_tid != 0) { 4355 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4356 tcp->tcp_timer_tid = 0; 4357 } 4358 /* 4359 * Need to cancel those timers which will not be used when 4360 * TCP is detached. This has to be done before the tcp_wq 4361 * is set to the global queue. 4362 */ 4363 tcp_timers_stop(tcp); 4364 4365 tcp->tcp_detached = B_TRUE; 4366 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4367 tcp_time_wait_append(tcp); 4368 TCP_DBGSTAT(tcp_detach_time_wait); 4369 ASSERT(connp->conn_ref >= 3); 4370 goto finish; 4371 } 4372 4373 /* 4374 * If delta is zero the timer event wasn't executed and was 4375 * successfully canceled. In this case we need to restart it 4376 * with the minimal delta possible. 4377 */ 4378 if (delta >= 0) 4379 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4380 delta ? delta : 1); 4381 4382 ASSERT(connp->conn_ref >= 3); 4383 goto finish; 4384 } 4385 4386 /* Detach did not complete. Still need to remove q from stream. */ 4387 if (msg) { 4388 if (tcp->tcp_state == TCPS_ESTABLISHED || 4389 tcp->tcp_state == TCPS_CLOSE_WAIT) 4390 BUMP_MIB(&tcp_mib, tcpEstabResets); 4391 if (tcp->tcp_state == TCPS_SYN_SENT || 4392 tcp->tcp_state == TCPS_SYN_RCVD) 4393 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4394 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4395 } 4396 4397 tcp_closei_local(tcp); 4398 CONN_DEC_REF(connp); 4399 ASSERT(connp->conn_ref >= 2); 4400 4401 finish: 4402 /* 4403 * Although packets are always processed on the correct 4404 * tcp's perimeter and access is serialized via squeue's, 4405 * IP still needs a queue when sending packets in time_wait 4406 * state so use WR(tcp_g_q) till ip_output() can be 4407 * changed to deal with just connp. For read side, we 4408 * could have set tcp_rq to NULL but there are some cases 4409 * in tcp_rput_data() from early days of this code which 4410 * do a putnext without checking if tcp is closed. Those 4411 * need to be identified before both tcp_rq and tcp_wq 4412 * can be set to NULL and tcp_q_q can disappear forever. 4413 */ 4414 mutex_enter(&tcp->tcp_closelock); 4415 /* 4416 * Don't change the queues in the case of a listener that has 4417 * eagers in its q or q0. It could surprise the eagers. 4418 * Instead wait for the eagers outside the squeue. 4419 */ 4420 if (!tcp->tcp_wait_for_eagers) { 4421 tcp->tcp_detached = B_TRUE; 4422 tcp->tcp_rq = tcp_g_q; 4423 tcp->tcp_wq = WR(tcp_g_q); 4424 } 4425 4426 /* Signal tcp_close() to finish closing. */ 4427 tcp->tcp_closed = 1; 4428 cv_signal(&tcp->tcp_closecv); 4429 mutex_exit(&tcp->tcp_closelock); 4430 } 4431 4432 4433 /* 4434 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4435 * Some stream heads get upset if they see these later on as anything but NULL. 4436 */ 4437 static void 4438 tcp_close_mpp(mblk_t **mpp) 4439 { 4440 mblk_t *mp; 4441 4442 if ((mp = *mpp) != NULL) { 4443 do { 4444 mp->b_next = NULL; 4445 mp->b_prev = NULL; 4446 } while ((mp = mp->b_cont) != NULL); 4447 4448 mp = *mpp; 4449 *mpp = NULL; 4450 freemsg(mp); 4451 } 4452 } 4453 4454 /* Do detached close. */ 4455 static void 4456 tcp_close_detached(tcp_t *tcp) 4457 { 4458 if (tcp->tcp_fused) 4459 tcp_unfuse(tcp); 4460 4461 /* 4462 * Clustering code serializes TCP disconnect callbacks and 4463 * cluster tcp list walks by blocking a TCP disconnect callback 4464 * if a cluster tcp list walk is in progress. This ensures 4465 * accurate accounting of TCPs in the cluster code even though 4466 * the TCP list walk itself is not atomic. 4467 */ 4468 tcp_closei_local(tcp); 4469 CONN_DEC_REF(tcp->tcp_connp); 4470 } 4471 4472 /* 4473 * Stop all TCP timers, and free the timer mblks if requested. 4474 */ 4475 void 4476 tcp_timers_stop(tcp_t *tcp) 4477 { 4478 if (tcp->tcp_timer_tid != 0) { 4479 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4480 tcp->tcp_timer_tid = 0; 4481 } 4482 if (tcp->tcp_ka_tid != 0) { 4483 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4484 tcp->tcp_ka_tid = 0; 4485 } 4486 if (tcp->tcp_ack_tid != 0) { 4487 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4488 tcp->tcp_ack_tid = 0; 4489 } 4490 if (tcp->tcp_push_tid != 0) { 4491 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4492 tcp->tcp_push_tid = 0; 4493 } 4494 } 4495 4496 /* 4497 * The tcp_t is going away. Remove it from all lists and set it 4498 * to TCPS_CLOSED. The freeing up of memory is deferred until 4499 * tcp_inactive. This is needed since a thread in tcp_rput might have 4500 * done a CONN_INC_REF on this structure before it was removed from the 4501 * hashes. 4502 */ 4503 static void 4504 tcp_closei_local(tcp_t *tcp) 4505 { 4506 ire_t *ire; 4507 conn_t *connp = tcp->tcp_connp; 4508 4509 if (!TCP_IS_SOCKET(tcp)) 4510 tcp_acceptor_hash_remove(tcp); 4511 4512 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4513 tcp->tcp_ibsegs = 0; 4514 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4515 tcp->tcp_obsegs = 0; 4516 4517 /* 4518 * If we are an eager connection hanging off a listener that 4519 * hasn't formally accepted the connection yet, get off his 4520 * list and blow off any data that we have accumulated. 4521 */ 4522 if (tcp->tcp_listener != NULL) { 4523 tcp_t *listener = tcp->tcp_listener; 4524 mutex_enter(&listener->tcp_eager_lock); 4525 /* 4526 * tcp_tconnind_started == B_TRUE means that the 4527 * conn_ind has already gone to listener. At 4528 * this point, eager will be closed but we 4529 * leave it in listeners eager list so that 4530 * if listener decides to close without doing 4531 * accept, we can clean this up. In tcp_wput_accept 4532 * we take care of the case of accept on closed 4533 * eager. 4534 */ 4535 if (!tcp->tcp_tconnind_started) { 4536 tcp_eager_unlink(tcp); 4537 mutex_exit(&listener->tcp_eager_lock); 4538 /* 4539 * We don't want to have any pointers to the 4540 * listener queue, after we have released our 4541 * reference on the listener 4542 */ 4543 tcp->tcp_rq = tcp_g_q; 4544 tcp->tcp_wq = WR(tcp_g_q); 4545 CONN_DEC_REF(listener->tcp_connp); 4546 } else { 4547 mutex_exit(&listener->tcp_eager_lock); 4548 } 4549 } 4550 4551 /* Stop all the timers */ 4552 tcp_timers_stop(tcp); 4553 4554 if (tcp->tcp_state == TCPS_LISTEN) { 4555 if (tcp->tcp_ip_addr_cache) { 4556 kmem_free((void *)tcp->tcp_ip_addr_cache, 4557 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4558 tcp->tcp_ip_addr_cache = NULL; 4559 } 4560 } 4561 if (tcp->tcp_flow_stopped) 4562 tcp_clrqfull(tcp); 4563 4564 tcp_bind_hash_remove(tcp); 4565 /* 4566 * If the tcp_time_wait_collector (which runs outside the squeue) 4567 * is trying to remove this tcp from the time wait list, we will 4568 * block in tcp_time_wait_remove while trying to acquire the 4569 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4570 * requires the ipcl_hash_remove to be ordered after the 4571 * tcp_time_wait_remove for the refcnt checks to work correctly. 4572 */ 4573 if (tcp->tcp_state == TCPS_TIME_WAIT) 4574 (void) tcp_time_wait_remove(tcp, NULL); 4575 CL_INET_DISCONNECT(tcp); 4576 ipcl_hash_remove(connp); 4577 4578 /* 4579 * Delete the cached ire in conn_ire_cache and also mark 4580 * the conn as CONDEMNED 4581 */ 4582 mutex_enter(&connp->conn_lock); 4583 connp->conn_state_flags |= CONN_CONDEMNED; 4584 ire = connp->conn_ire_cache; 4585 connp->conn_ire_cache = NULL; 4586 mutex_exit(&connp->conn_lock); 4587 if (ire != NULL) 4588 IRE_REFRELE_NOTR(ire); 4589 4590 /* Need to cleanup any pending ioctls */ 4591 ASSERT(tcp->tcp_time_wait_next == NULL); 4592 ASSERT(tcp->tcp_time_wait_prev == NULL); 4593 ASSERT(tcp->tcp_time_wait_expire == 0); 4594 tcp->tcp_state = TCPS_CLOSED; 4595 4596 /* Release any SSL context */ 4597 if (tcp->tcp_kssl_ent != NULL) { 4598 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4599 tcp->tcp_kssl_ent = NULL; 4600 } 4601 if (tcp->tcp_kssl_ctx != NULL) { 4602 kssl_release_ctx(tcp->tcp_kssl_ctx); 4603 tcp->tcp_kssl_ctx = NULL; 4604 } 4605 tcp->tcp_kssl_pending = B_FALSE; 4606 } 4607 4608 /* 4609 * tcp is dying (called from ipcl_conn_destroy and error cases). 4610 * Free the tcp_t in either case. 4611 */ 4612 void 4613 tcp_free(tcp_t *tcp) 4614 { 4615 mblk_t *mp; 4616 ip6_pkt_t *ipp; 4617 4618 ASSERT(tcp != NULL); 4619 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4620 4621 tcp->tcp_rq = NULL; 4622 tcp->tcp_wq = NULL; 4623 4624 tcp_close_mpp(&tcp->tcp_xmit_head); 4625 tcp_close_mpp(&tcp->tcp_reass_head); 4626 if (tcp->tcp_rcv_list != NULL) { 4627 /* Free b_next chain */ 4628 tcp_close_mpp(&tcp->tcp_rcv_list); 4629 } 4630 if ((mp = tcp->tcp_urp_mp) != NULL) { 4631 freemsg(mp); 4632 } 4633 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4634 freemsg(mp); 4635 } 4636 4637 if (tcp->tcp_fused_sigurg_mp != NULL) { 4638 freeb(tcp->tcp_fused_sigurg_mp); 4639 tcp->tcp_fused_sigurg_mp = NULL; 4640 } 4641 4642 if (tcp->tcp_sack_info != NULL) { 4643 if (tcp->tcp_notsack_list != NULL) { 4644 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4645 } 4646 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4647 } 4648 4649 if (tcp->tcp_hopopts != NULL) { 4650 mi_free(tcp->tcp_hopopts); 4651 tcp->tcp_hopopts = NULL; 4652 tcp->tcp_hopoptslen = 0; 4653 } 4654 ASSERT(tcp->tcp_hopoptslen == 0); 4655 if (tcp->tcp_dstopts != NULL) { 4656 mi_free(tcp->tcp_dstopts); 4657 tcp->tcp_dstopts = NULL; 4658 tcp->tcp_dstoptslen = 0; 4659 } 4660 ASSERT(tcp->tcp_dstoptslen == 0); 4661 if (tcp->tcp_rtdstopts != NULL) { 4662 mi_free(tcp->tcp_rtdstopts); 4663 tcp->tcp_rtdstopts = NULL; 4664 tcp->tcp_rtdstoptslen = 0; 4665 } 4666 ASSERT(tcp->tcp_rtdstoptslen == 0); 4667 if (tcp->tcp_rthdr != NULL) { 4668 mi_free(tcp->tcp_rthdr); 4669 tcp->tcp_rthdr = NULL; 4670 tcp->tcp_rthdrlen = 0; 4671 } 4672 ASSERT(tcp->tcp_rthdrlen == 0); 4673 4674 ipp = &tcp->tcp_sticky_ipp; 4675 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4676 IPPF_RTHDR)) 4677 ip6_pkt_free(ipp); 4678 4679 /* 4680 * Free memory associated with the tcp/ip header template. 4681 */ 4682 4683 if (tcp->tcp_iphc != NULL) 4684 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4685 4686 /* 4687 * Following is really a blowing away a union. 4688 * It happens to have exactly two members of identical size 4689 * the following code is enough. 4690 */ 4691 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4692 4693 if (tcp->tcp_tracebuf != NULL) { 4694 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4695 tcp->tcp_tracebuf = NULL; 4696 } 4697 } 4698 4699 4700 /* 4701 * Put a connection confirmation message upstream built from the 4702 * address information within 'iph' and 'tcph'. Report our success or failure. 4703 */ 4704 static boolean_t 4705 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4706 mblk_t **defermp) 4707 { 4708 sin_t sin; 4709 sin6_t sin6; 4710 mblk_t *mp; 4711 char *optp = NULL; 4712 int optlen = 0; 4713 cred_t *cr; 4714 4715 if (defermp != NULL) 4716 *defermp = NULL; 4717 4718 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4719 /* 4720 * Return in T_CONN_CON results of option negotiation through 4721 * the T_CONN_REQ. Note: If there is an real end-to-end option 4722 * negotiation, then what is received from remote end needs 4723 * to be taken into account but there is no such thing (yet?) 4724 * in our TCP/IP. 4725 * Note: We do not use mi_offset_param() here as 4726 * tcp_opts_conn_req contents do not directly come from 4727 * an application and are either generated in kernel or 4728 * from user input that was already verified. 4729 */ 4730 mp = tcp->tcp_conn.tcp_opts_conn_req; 4731 optp = (char *)(mp->b_rptr + 4732 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4733 optlen = (int) 4734 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4735 } 4736 4737 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4738 ipha_t *ipha = (ipha_t *)iphdr; 4739 4740 /* packet is IPv4 */ 4741 if (tcp->tcp_family == AF_INET) { 4742 sin = sin_null; 4743 sin.sin_addr.s_addr = ipha->ipha_src; 4744 sin.sin_port = *(uint16_t *)tcph->th_lport; 4745 sin.sin_family = AF_INET; 4746 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4747 (int)sizeof (sin_t), optp, optlen); 4748 } else { 4749 sin6 = sin6_null; 4750 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4751 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4752 sin6.sin6_family = AF_INET6; 4753 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4754 (int)sizeof (sin6_t), optp, optlen); 4755 4756 } 4757 } else { 4758 ip6_t *ip6h = (ip6_t *)iphdr; 4759 4760 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4761 ASSERT(tcp->tcp_family == AF_INET6); 4762 sin6 = sin6_null; 4763 sin6.sin6_addr = ip6h->ip6_src; 4764 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4765 sin6.sin6_family = AF_INET6; 4766 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4767 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4768 (int)sizeof (sin6_t), optp, optlen); 4769 } 4770 4771 if (!mp) 4772 return (B_FALSE); 4773 4774 if ((cr = DB_CRED(idmp)) != NULL) { 4775 mblk_setcred(mp, cr); 4776 DB_CPID(mp) = DB_CPID(idmp); 4777 } 4778 4779 if (defermp == NULL) 4780 putnext(tcp->tcp_rq, mp); 4781 else 4782 *defermp = mp; 4783 4784 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4785 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4786 return (B_TRUE); 4787 } 4788 4789 /* 4790 * Defense for the SYN attack - 4791 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4792 * one from the list of droppable eagers. This list is a subset of q0. 4793 * see comments before the definition of MAKE_DROPPABLE(). 4794 * 2. Don't drop a SYN request before its first timeout. This gives every 4795 * request at least til the first timeout to complete its 3-way handshake. 4796 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4797 * requests currently on the queue that has timed out. This will be used 4798 * as an indicator of whether an attack is under way, so that appropriate 4799 * actions can be taken. (It's incremented in tcp_timer() and decremented 4800 * either when eager goes into ESTABLISHED, or gets freed up.) 4801 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4802 * # of timeout drops back to <= q0len/32 => SYN alert off 4803 */ 4804 static boolean_t 4805 tcp_drop_q0(tcp_t *tcp) 4806 { 4807 tcp_t *eager; 4808 mblk_t *mp; 4809 4810 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4811 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4812 4813 /* Pick oldest eager from the list of droppable eagers */ 4814 eager = tcp->tcp_eager_prev_drop_q0; 4815 4816 /* If list is empty. return B_FALSE */ 4817 if (eager == tcp) { 4818 return (B_FALSE); 4819 } 4820 4821 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4822 if ((mp = allocb(0, BPRI_HI)) == NULL) 4823 return (B_FALSE); 4824 4825 /* 4826 * Take this eager out from the list of droppable eagers since we are 4827 * going to drop it. 4828 */ 4829 MAKE_UNDROPPABLE(eager); 4830 4831 if (tcp->tcp_debug) { 4832 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4833 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4834 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4835 tcp->tcp_conn_req_cnt_q0, 4836 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4837 } 4838 4839 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4840 4841 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4842 CONN_INC_REF(eager->tcp_connp); 4843 4844 /* Mark the IRE created for this SYN request temporary */ 4845 tcp_ip_ire_mark_advice(eager); 4846 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4847 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4848 4849 return (B_TRUE); 4850 } 4851 4852 int 4853 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4854 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4855 { 4856 tcp_t *ltcp = lconnp->conn_tcp; 4857 tcp_t *tcp = connp->conn_tcp; 4858 mblk_t *tpi_mp; 4859 ipha_t *ipha; 4860 ip6_t *ip6h; 4861 sin6_t sin6; 4862 in6_addr_t v6dst; 4863 int err; 4864 int ifindex = 0; 4865 cred_t *cr; 4866 4867 if (ipvers == IPV4_VERSION) { 4868 ipha = (ipha_t *)mp->b_rptr; 4869 4870 connp->conn_send = ip_output; 4871 connp->conn_recv = tcp_input; 4872 4873 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4874 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4875 4876 sin6 = sin6_null; 4877 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4878 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4879 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4880 sin6.sin6_family = AF_INET6; 4881 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4882 lconnp->conn_zoneid); 4883 if (tcp->tcp_recvdstaddr) { 4884 sin6_t sin6d; 4885 4886 sin6d = sin6_null; 4887 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4888 &sin6d.sin6_addr); 4889 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4890 sin6d.sin6_family = AF_INET; 4891 tpi_mp = mi_tpi_extconn_ind(NULL, 4892 (char *)&sin6d, sizeof (sin6_t), 4893 (char *)&tcp, 4894 (t_scalar_t)sizeof (intptr_t), 4895 (char *)&sin6d, sizeof (sin6_t), 4896 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4897 } else { 4898 tpi_mp = mi_tpi_conn_ind(NULL, 4899 (char *)&sin6, sizeof (sin6_t), 4900 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4901 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4902 } 4903 } else { 4904 ip6h = (ip6_t *)mp->b_rptr; 4905 4906 connp->conn_send = ip_output_v6; 4907 connp->conn_recv = tcp_input; 4908 4909 connp->conn_srcv6 = ip6h->ip6_dst; 4910 connp->conn_remv6 = ip6h->ip6_src; 4911 4912 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4913 ifindex = (int)DB_CKSUMSTUFF(mp); 4914 DB_CKSUMSTUFF(mp) = 0; 4915 4916 sin6 = sin6_null; 4917 sin6.sin6_addr = ip6h->ip6_src; 4918 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4919 sin6.sin6_family = AF_INET6; 4920 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4921 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4922 lconnp->conn_zoneid); 4923 4924 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4925 /* Pass up the scope_id of remote addr */ 4926 sin6.sin6_scope_id = ifindex; 4927 } else { 4928 sin6.sin6_scope_id = 0; 4929 } 4930 if (tcp->tcp_recvdstaddr) { 4931 sin6_t sin6d; 4932 4933 sin6d = sin6_null; 4934 sin6.sin6_addr = ip6h->ip6_dst; 4935 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4936 sin6d.sin6_family = AF_INET; 4937 tpi_mp = mi_tpi_extconn_ind(NULL, 4938 (char *)&sin6d, sizeof (sin6_t), 4939 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4940 (char *)&sin6d, sizeof (sin6_t), 4941 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4942 } else { 4943 tpi_mp = mi_tpi_conn_ind(NULL, 4944 (char *)&sin6, sizeof (sin6_t), 4945 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4946 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4947 } 4948 } 4949 4950 if (tpi_mp == NULL) 4951 return (ENOMEM); 4952 4953 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4954 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4955 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4956 connp->conn_fully_bound = B_FALSE; 4957 4958 if (tcp_trace) 4959 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4960 4961 /* Inherit information from the "parent" */ 4962 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4963 tcp->tcp_family = ltcp->tcp_family; 4964 tcp->tcp_wq = ltcp->tcp_wq; 4965 tcp->tcp_rq = ltcp->tcp_rq; 4966 tcp->tcp_mss = tcp_mss_def_ipv6; 4967 tcp->tcp_detached = B_TRUE; 4968 if ((err = tcp_init_values(tcp)) != 0) { 4969 freemsg(tpi_mp); 4970 return (err); 4971 } 4972 4973 if (ipvers == IPV4_VERSION) { 4974 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4975 freemsg(tpi_mp); 4976 return (err); 4977 } 4978 ASSERT(tcp->tcp_ipha != NULL); 4979 } else { 4980 /* ifindex must be already set */ 4981 ASSERT(ifindex != 0); 4982 4983 if (ltcp->tcp_bound_if != 0) { 4984 /* 4985 * Set newtcp's bound_if equal to 4986 * listener's value. If ifindex is 4987 * not the same as ltcp->tcp_bound_if, 4988 * it must be a packet for the ipmp group 4989 * of interfaces 4990 */ 4991 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4992 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4993 tcp->tcp_bound_if = ifindex; 4994 } 4995 4996 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4997 tcp->tcp_recvifindex = 0; 4998 tcp->tcp_recvhops = 0xffffffffU; 4999 ASSERT(tcp->tcp_ip6h != NULL); 5000 } 5001 5002 tcp->tcp_lport = ltcp->tcp_lport; 5003 5004 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 5005 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 5006 /* 5007 * Listener had options of some sort; eager inherits. 5008 * Free up the eager template and allocate one 5009 * of the right size. 5010 */ 5011 if (tcp->tcp_hdr_grown) { 5012 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 5013 } else { 5014 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5015 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5016 } 5017 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5018 KM_NOSLEEP); 5019 if (tcp->tcp_iphc == NULL) { 5020 tcp->tcp_iphc_len = 0; 5021 freemsg(tpi_mp); 5022 return (ENOMEM); 5023 } 5024 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5025 tcp->tcp_hdr_grown = B_TRUE; 5026 } 5027 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5028 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5029 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5030 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5031 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5032 5033 /* 5034 * Copy the IP+TCP header template from listener to eager 5035 */ 5036 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5037 if (tcp->tcp_ipversion == IPV6_VERSION) { 5038 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5039 IPPROTO_RAW) { 5040 tcp->tcp_ip6h = 5041 (ip6_t *)(tcp->tcp_iphc + 5042 sizeof (ip6i_t)); 5043 } else { 5044 tcp->tcp_ip6h = 5045 (ip6_t *)(tcp->tcp_iphc); 5046 } 5047 tcp->tcp_ipha = NULL; 5048 } else { 5049 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5050 tcp->tcp_ip6h = NULL; 5051 } 5052 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5053 tcp->tcp_ip_hdr_len); 5054 } else { 5055 /* 5056 * only valid case when ipversion of listener and 5057 * eager differ is when listener is IPv6 and 5058 * eager is IPv4. 5059 * Eager header template has been initialized to the 5060 * maximum v4 header sizes, which includes space for 5061 * TCP and IP options. 5062 */ 5063 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5064 (tcp->tcp_ipversion == IPV4_VERSION)); 5065 ASSERT(tcp->tcp_iphc_len >= 5066 TCP_MAX_COMBINED_HEADER_LENGTH); 5067 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5068 /* copy IP header fields individually */ 5069 tcp->tcp_ipha->ipha_ttl = 5070 ltcp->tcp_ip6h->ip6_hops; 5071 bcopy(ltcp->tcp_tcph->th_lport, 5072 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5073 } 5074 5075 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5076 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5077 sizeof (in_port_t)); 5078 5079 if (ltcp->tcp_lport == 0) { 5080 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5081 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5082 sizeof (in_port_t)); 5083 } 5084 5085 if (tcp->tcp_ipversion == IPV4_VERSION) { 5086 ASSERT(ipha != NULL); 5087 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5088 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5089 5090 /* Source routing option copyover (reverse it) */ 5091 if (tcp_rev_src_routes) 5092 tcp_opt_reverse(tcp, ipha); 5093 } else { 5094 ASSERT(ip6h != NULL); 5095 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5096 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5097 } 5098 5099 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5100 ASSERT(!tcp->tcp_tconnind_started); 5101 /* 5102 * If the SYN contains a credential, it's a loopback packet; attach 5103 * the credential to the TPI message. 5104 */ 5105 if ((cr = DB_CRED(idmp)) != NULL) { 5106 mblk_setcred(tpi_mp, cr); 5107 DB_CPID(tpi_mp) = DB_CPID(idmp); 5108 } 5109 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5110 5111 /* Inherit the listener's SSL protection state */ 5112 5113 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5114 kssl_hold_ent(tcp->tcp_kssl_ent); 5115 tcp->tcp_kssl_pending = B_TRUE; 5116 } 5117 5118 return (0); 5119 } 5120 5121 5122 int 5123 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5124 tcph_t *tcph, mblk_t *idmp) 5125 { 5126 tcp_t *ltcp = lconnp->conn_tcp; 5127 tcp_t *tcp = connp->conn_tcp; 5128 sin_t sin; 5129 mblk_t *tpi_mp = NULL; 5130 int err; 5131 cred_t *cr; 5132 5133 sin = sin_null; 5134 sin.sin_addr.s_addr = ipha->ipha_src; 5135 sin.sin_port = *(uint16_t *)tcph->th_lport; 5136 sin.sin_family = AF_INET; 5137 if (ltcp->tcp_recvdstaddr) { 5138 sin_t sind; 5139 5140 sind = sin_null; 5141 sind.sin_addr.s_addr = ipha->ipha_dst; 5142 sind.sin_port = *(uint16_t *)tcph->th_fport; 5143 sind.sin_family = AF_INET; 5144 tpi_mp = mi_tpi_extconn_ind(NULL, 5145 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5146 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5147 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5148 } else { 5149 tpi_mp = mi_tpi_conn_ind(NULL, 5150 (char *)&sin, sizeof (sin_t), 5151 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5152 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5153 } 5154 5155 if (tpi_mp == NULL) { 5156 return (ENOMEM); 5157 } 5158 5159 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5160 connp->conn_send = ip_output; 5161 connp->conn_recv = tcp_input; 5162 connp->conn_fully_bound = B_FALSE; 5163 5164 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5165 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5166 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5167 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5168 5169 if (tcp_trace) { 5170 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5171 } 5172 5173 /* Inherit information from the "parent" */ 5174 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5175 tcp->tcp_family = ltcp->tcp_family; 5176 tcp->tcp_wq = ltcp->tcp_wq; 5177 tcp->tcp_rq = ltcp->tcp_rq; 5178 tcp->tcp_mss = tcp_mss_def_ipv4; 5179 tcp->tcp_detached = B_TRUE; 5180 if ((err = tcp_init_values(tcp)) != 0) { 5181 freemsg(tpi_mp); 5182 return (err); 5183 } 5184 5185 /* 5186 * Let's make sure that eager tcp template has enough space to 5187 * copy IPv4 listener's tcp template. Since the conn_t structure is 5188 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5189 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5190 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5191 * extension headers or with ip6i_t struct). Note that bcopy() below 5192 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5193 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5194 */ 5195 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5196 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5197 5198 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5199 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5200 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5201 tcp->tcp_ttl = ltcp->tcp_ttl; 5202 tcp->tcp_tos = ltcp->tcp_tos; 5203 5204 /* Copy the IP+TCP header template from listener to eager */ 5205 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5206 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5207 tcp->tcp_ip6h = NULL; 5208 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5209 tcp->tcp_ip_hdr_len); 5210 5211 /* Initialize the IP addresses and Ports */ 5212 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5213 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5214 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5215 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5216 5217 /* Source routing option copyover (reverse it) */ 5218 if (tcp_rev_src_routes) 5219 tcp_opt_reverse(tcp, ipha); 5220 5221 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5222 ASSERT(!tcp->tcp_tconnind_started); 5223 5224 /* 5225 * If the SYN contains a credential, it's a loopback packet; attach 5226 * the credential to the TPI message. 5227 */ 5228 if ((cr = DB_CRED(idmp)) != NULL) { 5229 mblk_setcred(tpi_mp, cr); 5230 DB_CPID(tpi_mp) = DB_CPID(idmp); 5231 } 5232 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5233 5234 /* Inherit the listener's SSL protection state */ 5235 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5236 kssl_hold_ent(tcp->tcp_kssl_ent); 5237 tcp->tcp_kssl_pending = B_TRUE; 5238 } 5239 5240 return (0); 5241 } 5242 5243 /* 5244 * sets up conn for ipsec. 5245 * if the first mblk is M_CTL it is consumed and mpp is updated. 5246 * in case of error mpp is freed. 5247 */ 5248 conn_t * 5249 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5250 { 5251 conn_t *connp = tcp->tcp_connp; 5252 conn_t *econnp; 5253 squeue_t *new_sqp; 5254 mblk_t *first_mp = *mpp; 5255 mblk_t *mp = *mpp; 5256 boolean_t mctl_present = B_FALSE; 5257 uint_t ipvers; 5258 5259 econnp = tcp_get_conn(sqp); 5260 if (econnp == NULL) { 5261 freemsg(first_mp); 5262 return (NULL); 5263 } 5264 if (DB_TYPE(mp) == M_CTL) { 5265 if (mp->b_cont == NULL || 5266 mp->b_cont->b_datap->db_type != M_DATA) { 5267 freemsg(first_mp); 5268 return (NULL); 5269 } 5270 mp = mp->b_cont; 5271 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5272 freemsg(first_mp); 5273 return (NULL); 5274 } 5275 5276 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5277 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5278 mctl_present = B_TRUE; 5279 } else { 5280 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5281 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5282 } 5283 5284 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5285 DB_CKSUMSTART(mp) = 0; 5286 5287 ASSERT(OK_32PTR(mp->b_rptr)); 5288 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5289 if (ipvers == IPV4_VERSION) { 5290 uint16_t *up; 5291 uint32_t ports; 5292 ipha_t *ipha; 5293 5294 ipha = (ipha_t *)mp->b_rptr; 5295 up = (uint16_t *)((uchar_t *)ipha + 5296 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5297 ports = *(uint32_t *)up; 5298 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5299 ipha->ipha_dst, ipha->ipha_src, ports); 5300 } else { 5301 uint16_t *up; 5302 uint32_t ports; 5303 uint16_t ip_hdr_len; 5304 uint8_t *nexthdrp; 5305 ip6_t *ip6h; 5306 tcph_t *tcph; 5307 5308 ip6h = (ip6_t *)mp->b_rptr; 5309 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5310 ip_hdr_len = IPV6_HDR_LEN; 5311 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5312 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5313 CONN_DEC_REF(econnp); 5314 freemsg(first_mp); 5315 return (NULL); 5316 } 5317 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5318 up = (uint16_t *)tcph->th_lport; 5319 ports = *(uint32_t *)up; 5320 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5321 ip6h->ip6_dst, ip6h->ip6_src, ports); 5322 } 5323 5324 /* 5325 * The caller already ensured that there is a sqp present. 5326 */ 5327 econnp->conn_sqp = new_sqp; 5328 5329 if (connp->conn_policy != NULL) { 5330 ipsec_in_t *ii; 5331 ii = (ipsec_in_t *)(first_mp->b_rptr); 5332 ASSERT(ii->ipsec_in_policy == NULL); 5333 IPPH_REFHOLD(connp->conn_policy); 5334 ii->ipsec_in_policy = connp->conn_policy; 5335 5336 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5337 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5338 CONN_DEC_REF(econnp); 5339 freemsg(first_mp); 5340 return (NULL); 5341 } 5342 } 5343 5344 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5345 CONN_DEC_REF(econnp); 5346 freemsg(first_mp); 5347 return (NULL); 5348 } 5349 5350 /* 5351 * If we know we have some policy, pass the "IPSEC" 5352 * options size TCP uses this adjust the MSS. 5353 */ 5354 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5355 if (mctl_present) { 5356 freeb(first_mp); 5357 *mpp = mp; 5358 } 5359 5360 return (econnp); 5361 } 5362 5363 /* 5364 * tcp_get_conn/tcp_free_conn 5365 * 5366 * tcp_get_conn is used to get a clean tcp connection structure. 5367 * It tries to reuse the connections put on the freelist by the 5368 * time_wait_collector failing which it goes to kmem_cache. This 5369 * way has two benefits compared to just allocating from and 5370 * freeing to kmem_cache. 5371 * 1) The time_wait_collector can free (which includes the cleanup) 5372 * outside the squeue. So when the interrupt comes, we have a clean 5373 * connection sitting in the freelist. Obviously, this buys us 5374 * performance. 5375 * 5376 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5377 * has multiple disadvantages - tying up the squeue during alloc, and the 5378 * fact that IPSec policy initialization has to happen here which 5379 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5380 * But allocating the conn/tcp in IP land is also not the best since 5381 * we can't check the 'q' and 'q0' which are protected by squeue and 5382 * blindly allocate memory which might have to be freed here if we are 5383 * not allowed to accept the connection. By using the freelist and 5384 * putting the conn/tcp back in freelist, we don't pay a penalty for 5385 * allocating memory without checking 'q/q0' and freeing it if we can't 5386 * accept the connection. 5387 * 5388 * Care should be taken to put the conn back in the same squeue's freelist 5389 * from which it was allocated. Best results are obtained if conn is 5390 * allocated from listener's squeue and freed to the same. Time wait 5391 * collector will free up the freelist is the connection ends up sitting 5392 * there for too long. 5393 */ 5394 void * 5395 tcp_get_conn(void *arg) 5396 { 5397 tcp_t *tcp = NULL; 5398 conn_t *connp = NULL; 5399 squeue_t *sqp = (squeue_t *)arg; 5400 tcp_squeue_priv_t *tcp_time_wait; 5401 5402 tcp_time_wait = 5403 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5404 5405 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5406 tcp = tcp_time_wait->tcp_free_list; 5407 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5408 if (tcp != NULL) { 5409 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5410 tcp_time_wait->tcp_free_list_cnt--; 5411 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5412 tcp->tcp_time_wait_next = NULL; 5413 connp = tcp->tcp_connp; 5414 connp->conn_flags |= IPCL_REUSED; 5415 return ((void *)connp); 5416 } 5417 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5418 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5419 return (NULL); 5420 return ((void *)connp); 5421 } 5422 5423 /* 5424 * Update the cached label for the given tcp_t. This should be called once per 5425 * connection, and before any packets are sent or tcp_process_options is 5426 * invoked. Returns B_FALSE if the correct label could not be constructed. 5427 */ 5428 static boolean_t 5429 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5430 { 5431 conn_t *connp = tcp->tcp_connp; 5432 5433 if (tcp->tcp_ipversion == IPV4_VERSION) { 5434 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5435 int added; 5436 5437 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5438 connp->conn_mac_exempt) != 0) 5439 return (B_FALSE); 5440 5441 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5442 if (added == -1) 5443 return (B_FALSE); 5444 tcp->tcp_hdr_len += added; 5445 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5446 tcp->tcp_ip_hdr_len += added; 5447 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5448 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5449 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5450 tcp->tcp_hdr_len); 5451 if (added == -1) 5452 return (B_FALSE); 5453 tcp->tcp_hdr_len += added; 5454 tcp->tcp_tcph = (tcph_t *) 5455 ((uchar_t *)tcp->tcp_tcph + added); 5456 tcp->tcp_ip_hdr_len += added; 5457 } 5458 } else { 5459 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5460 5461 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5462 connp->conn_mac_exempt) != 0) 5463 return (B_FALSE); 5464 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5465 &tcp->tcp_label_len, optbuf) != 0) 5466 return (B_FALSE); 5467 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5468 return (B_FALSE); 5469 } 5470 5471 connp->conn_ulp_labeled = 1; 5472 5473 return (B_TRUE); 5474 } 5475 5476 /* BEGIN CSTYLED */ 5477 /* 5478 * 5479 * The sockfs ACCEPT path: 5480 * ======================= 5481 * 5482 * The eager is now established in its own perimeter as soon as SYN is 5483 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5484 * completes the accept processing on the acceptor STREAM. The sending 5485 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5486 * listener but a TLI/XTI listener completes the accept processing 5487 * on the listener perimeter. 5488 * 5489 * Common control flow for 3 way handshake: 5490 * ---------------------------------------- 5491 * 5492 * incoming SYN (listener perimeter) -> tcp_rput_data() 5493 * -> tcp_conn_request() 5494 * 5495 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5496 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5497 * 5498 * Sockfs ACCEPT Path: 5499 * ------------------- 5500 * 5501 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5502 * as STREAM entry point) 5503 * 5504 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5505 * 5506 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5507 * association (we are not behind eager's squeue but sockfs is protecting us 5508 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5509 * is changed to point at tcp_wput(). 5510 * 5511 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5512 * listener (done on listener's perimeter). 5513 * 5514 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5515 * accept. 5516 * 5517 * TLI/XTI client ACCEPT path: 5518 * --------------------------- 5519 * 5520 * soaccept() sends T_CONN_RES on the listener STREAM. 5521 * 5522 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5523 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5524 * 5525 * Locks: 5526 * ====== 5527 * 5528 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5529 * and listeners->tcp_eager_next_q. 5530 * 5531 * Referencing: 5532 * ============ 5533 * 5534 * 1) We start out in tcp_conn_request by eager placing a ref on 5535 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5536 * 5537 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5538 * doing so we place a ref on the eager. This ref is finally dropped at the 5539 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5540 * reference is dropped by the squeue framework. 5541 * 5542 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5543 * 5544 * The reference must be released by the same entity that added the reference 5545 * In the above scheme, the eager is the entity that adds and releases the 5546 * references. Note that tcp_accept_finish executes in the squeue of the eager 5547 * (albeit after it is attached to the acceptor stream). Though 1. executes 5548 * in the listener's squeue, the eager is nascent at this point and the 5549 * reference can be considered to have been added on behalf of the eager. 5550 * 5551 * Eager getting a Reset or listener closing: 5552 * ========================================== 5553 * 5554 * Once the listener and eager are linked, the listener never does the unlink. 5555 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5556 * a message on all eager perimeter. The eager then does the unlink, clears 5557 * any pointers to the listener's queue and drops the reference to the 5558 * listener. The listener waits in tcp_close outside the squeue until its 5559 * refcount has dropped to 1. This ensures that the listener has waited for 5560 * all eagers to clear their association with the listener. 5561 * 5562 * Similarly, if eager decides to go away, it can unlink itself and close. 5563 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5564 * the reference to eager is still valid because of the extra ref we put 5565 * in tcp_send_conn_ind. 5566 * 5567 * Listener can always locate the eager under the protection 5568 * of the listener->tcp_eager_lock, and then do a refhold 5569 * on the eager during the accept processing. 5570 * 5571 * The acceptor stream accesses the eager in the accept processing 5572 * based on the ref placed on eager before sending T_conn_ind. 5573 * The only entity that can negate this refhold is a listener close 5574 * which is mutually exclusive with an active acceptor stream. 5575 * 5576 * Eager's reference on the listener 5577 * =================================== 5578 * 5579 * If the accept happens (even on a closed eager) the eager drops its 5580 * reference on the listener at the start of tcp_accept_finish. If the 5581 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5582 * the reference is dropped in tcp_closei_local. If the listener closes, 5583 * the reference is dropped in tcp_eager_kill. In all cases the reference 5584 * is dropped while executing in the eager's context (squeue). 5585 */ 5586 /* END CSTYLED */ 5587 5588 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5589 5590 /* 5591 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5592 * tcp_rput_data will not see any SYN packets. 5593 */ 5594 /* ARGSUSED */ 5595 void 5596 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5597 { 5598 tcph_t *tcph; 5599 uint32_t seg_seq; 5600 tcp_t *eager; 5601 uint_t ipvers; 5602 ipha_t *ipha; 5603 ip6_t *ip6h; 5604 int err; 5605 conn_t *econnp = NULL; 5606 squeue_t *new_sqp; 5607 mblk_t *mp1; 5608 uint_t ip_hdr_len; 5609 conn_t *connp = (conn_t *)arg; 5610 tcp_t *tcp = connp->conn_tcp; 5611 ire_t *ire; 5612 cred_t *credp; 5613 5614 if (tcp->tcp_state != TCPS_LISTEN) 5615 goto error2; 5616 5617 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5618 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5621 mutex_exit(&tcp->tcp_eager_lock); 5622 TCP_STAT(tcp_listendrop); 5623 BUMP_MIB(&tcp_mib, tcpListenDrop); 5624 if (tcp->tcp_debug) { 5625 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5626 "tcp_conn_request: listen backlog (max=%d) " 5627 "overflow (%d pending) on %s", 5628 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 5634 if (tcp->tcp_conn_req_cnt_q0 >= 5635 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5636 /* 5637 * Q0 is full. Drop a pending half-open req from the queue 5638 * to make room for the new SYN req. Also mark the time we 5639 * drop a SYN. 5640 * 5641 * A more aggressive defense against SYN attack will 5642 * be to set the "tcp_syn_defense" flag now. 5643 */ 5644 TCP_STAT(tcp_listendropq0); 5645 tcp->tcp_last_rcv_lbolt = lbolt64; 5646 if (!tcp_drop_q0(tcp)) { 5647 mutex_exit(&tcp->tcp_eager_lock); 5648 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5649 if (tcp->tcp_debug) { 5650 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5651 "tcp_conn_request: listen half-open queue " 5652 "(max=%d) full (%d pending) on %s", 5653 tcp_conn_req_max_q0, 5654 tcp->tcp_conn_req_cnt_q0, 5655 tcp_display(tcp, NULL, 5656 DISP_PORT_ONLY)); 5657 } 5658 goto error2; 5659 } 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 /* 5664 * IP adds STRUIO_EAGER and ensures that the received packet is 5665 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5666 * link local address. If IPSec is enabled, db_struioflag has 5667 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5668 * otherwise an error case if neither of them is set. 5669 */ 5670 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5671 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5672 DB_CKSUMSTART(mp) = 0; 5673 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5674 econnp = (conn_t *)tcp_get_conn(arg2); 5675 if (econnp == NULL) 5676 goto error2; 5677 econnp->conn_sqp = new_sqp; 5678 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5679 /* 5680 * mp is updated in tcp_get_ipsec_conn(). 5681 */ 5682 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5683 if (econnp == NULL) { 5684 /* 5685 * mp freed by tcp_get_ipsec_conn. 5686 */ 5687 return; 5688 } 5689 } else { 5690 goto error2; 5691 } 5692 5693 ASSERT(DB_TYPE(mp) == M_DATA); 5694 5695 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5696 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5697 ASSERT(OK_32PTR(mp->b_rptr)); 5698 if (ipvers == IPV4_VERSION) { 5699 ipha = (ipha_t *)mp->b_rptr; 5700 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5701 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5702 } else { 5703 ip6h = (ip6_t *)mp->b_rptr; 5704 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5705 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5706 } 5707 5708 if (tcp->tcp_family == AF_INET) { 5709 ASSERT(ipvers == IPV4_VERSION); 5710 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5711 } else { 5712 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5713 } 5714 5715 if (err) 5716 goto error3; 5717 5718 eager = econnp->conn_tcp; 5719 5720 /* Inherit various TCP parameters from the listener */ 5721 eager->tcp_naglim = tcp->tcp_naglim; 5722 eager->tcp_first_timer_threshold = 5723 tcp->tcp_first_timer_threshold; 5724 eager->tcp_second_timer_threshold = 5725 tcp->tcp_second_timer_threshold; 5726 5727 eager->tcp_first_ctimer_threshold = 5728 tcp->tcp_first_ctimer_threshold; 5729 eager->tcp_second_ctimer_threshold = 5730 tcp->tcp_second_ctimer_threshold; 5731 5732 /* 5733 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5734 * If it does not, the eager's receive window will be set to the 5735 * listener's receive window later in this function. 5736 */ 5737 eager->tcp_rwnd = 0; 5738 5739 /* 5740 * Inherit listener's tcp_init_cwnd. Need to do this before 5741 * calling tcp_process_options() where tcp_mss_set() is called 5742 * to set the initial cwnd. 5743 */ 5744 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5745 5746 /* 5747 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5748 * zone id before the accept is completed in tcp_wput_accept(). 5749 */ 5750 econnp->conn_zoneid = connp->conn_zoneid; 5751 econnp->conn_allzones = connp->conn_allzones; 5752 5753 /* Copy nexthop information from listener to eager */ 5754 if (connp->conn_nexthop_set) { 5755 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5756 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5757 } 5758 5759 /* 5760 * TSOL: tsol_input_proc() needs the eager's cred before the 5761 * eager is accepted 5762 */ 5763 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5764 crhold(credp); 5765 5766 /* 5767 * If the caller has the process-wide flag set, then default to MAC 5768 * exempt mode. This allows read-down to unlabeled hosts. 5769 */ 5770 if (getpflags(NET_MAC_AWARE, credp) != 0) 5771 econnp->conn_mac_exempt = B_TRUE; 5772 5773 if (is_system_labeled()) { 5774 cred_t *cr; 5775 5776 if (connp->conn_mlp_type != mlptSingle) { 5777 cr = econnp->conn_peercred = DB_CRED(mp); 5778 if (cr != NULL) 5779 crhold(cr); 5780 else 5781 cr = econnp->conn_cred; 5782 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5783 econnp, cred_t *, cr) 5784 } else { 5785 cr = econnp->conn_cred; 5786 DTRACE_PROBE2(syn_accept, conn_t *, 5787 econnp, cred_t *, cr) 5788 } 5789 5790 if (!tcp_update_label(eager, cr)) { 5791 DTRACE_PROBE3( 5792 tx__ip__log__error__connrequest__tcp, 5793 char *, "eager connp(1) label on SYN mp(2) failed", 5794 conn_t *, econnp, mblk_t *, mp); 5795 goto error3; 5796 } 5797 } 5798 5799 eager->tcp_hard_binding = B_TRUE; 5800 5801 tcp_bind_hash_insert(&tcp_bind_fanout[ 5802 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5803 5804 CL_INET_CONNECT(eager); 5805 5806 /* 5807 * No need to check for multicast destination since ip will only pass 5808 * up multicasts to those that have expressed interest 5809 * TODO: what about rejecting broadcasts? 5810 * Also check that source is not a multicast or broadcast address. 5811 */ 5812 eager->tcp_state = TCPS_SYN_RCVD; 5813 5814 5815 /* 5816 * There should be no ire in the mp as we are being called after 5817 * receiving the SYN. 5818 */ 5819 ASSERT(tcp_ire_mp(mp) == NULL); 5820 5821 /* 5822 * Adapt our mss, ttl, ... according to information provided in IRE. 5823 */ 5824 5825 if (tcp_adapt_ire(eager, NULL) == 0) { 5826 /* Undo the bind_hash_insert */ 5827 tcp_bind_hash_remove(eager); 5828 goto error3; 5829 } 5830 5831 /* Process all TCP options. */ 5832 tcp_process_options(eager, tcph); 5833 5834 /* Is the other end ECN capable? */ 5835 if (tcp_ecn_permitted >= 1 && 5836 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5837 eager->tcp_ecn_ok = B_TRUE; 5838 } 5839 5840 /* 5841 * listener->tcp_rq->q_hiwat should be the default window size or a 5842 * window size changed via SO_RCVBUF option. First round up the 5843 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5844 * scale option value if needed. Call tcp_rwnd_set() to finish the 5845 * setting. 5846 * 5847 * Note if there is a rpipe metric associated with the remote host, 5848 * we should not inherit receive window size from listener. 5849 */ 5850 eager->tcp_rwnd = MSS_ROUNDUP( 5851 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5852 eager->tcp_rwnd), eager->tcp_mss); 5853 if (eager->tcp_snd_ws_ok) 5854 tcp_set_ws_value(eager); 5855 /* 5856 * Note that this is the only place tcp_rwnd_set() is called for 5857 * accepting a connection. We need to call it here instead of 5858 * after the 3-way handshake because we need to tell the other 5859 * side our rwnd in the SYN-ACK segment. 5860 */ 5861 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5862 5863 /* 5864 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5865 * via soaccept()->soinheritoptions() which essentially applies 5866 * all the listener options to the new STREAM. The options that we 5867 * need to take care of are: 5868 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5869 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5870 * SO_SNDBUF, SO_RCVBUF. 5871 * 5872 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5873 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5874 * tcp_maxpsz_set() gets called later from 5875 * tcp_accept_finish(), the option takes effect. 5876 * 5877 */ 5878 /* Set the TCP options */ 5879 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5880 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5881 eager->tcp_oobinline = tcp->tcp_oobinline; 5882 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5883 eager->tcp_broadcast = tcp->tcp_broadcast; 5884 eager->tcp_useloopback = tcp->tcp_useloopback; 5885 eager->tcp_dontroute = tcp->tcp_dontroute; 5886 eager->tcp_linger = tcp->tcp_linger; 5887 eager->tcp_lingertime = tcp->tcp_lingertime; 5888 if (tcp->tcp_ka_enabled) 5889 eager->tcp_ka_enabled = 1; 5890 5891 /* Set the IP options */ 5892 econnp->conn_broadcast = connp->conn_broadcast; 5893 econnp->conn_loopback = connp->conn_loopback; 5894 econnp->conn_dontroute = connp->conn_dontroute; 5895 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5896 5897 /* Put a ref on the listener for the eager. */ 5898 CONN_INC_REF(connp); 5899 mutex_enter(&tcp->tcp_eager_lock); 5900 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5901 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5902 tcp->tcp_eager_next_q0 = eager; 5903 eager->tcp_eager_prev_q0 = tcp; 5904 5905 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5906 eager->tcp_listener = tcp; 5907 eager->tcp_saved_listener = tcp; 5908 5909 /* 5910 * Tag this detached tcp vector for later retrieval 5911 * by our listener client in tcp_accept(). 5912 */ 5913 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5914 tcp->tcp_conn_req_cnt_q0++; 5915 if (++tcp->tcp_conn_req_seqnum == -1) { 5916 /* 5917 * -1 is "special" and defined in TPI as something 5918 * that should never be used in T_CONN_IND 5919 */ 5920 ++tcp->tcp_conn_req_seqnum; 5921 } 5922 mutex_exit(&tcp->tcp_eager_lock); 5923 5924 if (tcp->tcp_syn_defense) { 5925 /* Don't drop the SYN that comes from a good IP source */ 5926 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5927 if (addr_cache != NULL && eager->tcp_remote == 5928 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5929 eager->tcp_dontdrop = B_TRUE; 5930 } 5931 } 5932 5933 /* 5934 * We need to insert the eager in its own perimeter but as soon 5935 * as we do that, we expose the eager to the classifier and 5936 * should not touch any field outside the eager's perimeter. 5937 * So do all the work necessary before inserting the eager 5938 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5939 * will succeed but undo everything if it fails. 5940 */ 5941 seg_seq = ABE32_TO_U32(tcph->th_seq); 5942 eager->tcp_irs = seg_seq; 5943 eager->tcp_rack = seg_seq; 5944 eager->tcp_rnxt = seg_seq + 1; 5945 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5946 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5947 eager->tcp_state = TCPS_SYN_RCVD; 5948 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5949 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5950 if (mp1 == NULL) 5951 goto error1; 5952 DB_CPID(mp1) = tcp->tcp_cpid; 5953 5954 /* 5955 * We need to start the rto timer. In normal case, we start 5956 * the timer after sending the packet on the wire (or at 5957 * least believing that packet was sent by waiting for 5958 * CALL_IP_WPUT() to return). Since this is the first packet 5959 * being sent on the wire for the eager, our initial tcp_rto 5960 * is at least tcp_rexmit_interval_min which is a fairly 5961 * large value to allow the algorithm to adjust slowly to large 5962 * fluctuations of RTT during first few transmissions. 5963 * 5964 * Starting the timer first and then sending the packet in this 5965 * case shouldn't make much difference since tcp_rexmit_interval_min 5966 * is of the order of several 100ms and starting the timer 5967 * first and then sending the packet will result in difference 5968 * of few micro seconds. 5969 * 5970 * Without this optimization, we are forced to hold the fanout 5971 * lock across the ipcl_bind_insert() and sending the packet 5972 * so that we don't race against an incoming packet (maybe RST) 5973 * for this eager. 5974 */ 5975 5976 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5977 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5978 5979 5980 /* 5981 * Insert the eager in its own perimeter now. We are ready to deal 5982 * with any packets on eager. 5983 */ 5984 if (eager->tcp_ipversion == IPV4_VERSION) { 5985 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5986 goto error; 5987 } 5988 } else { 5989 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5990 goto error; 5991 } 5992 } 5993 5994 /* mark conn as fully-bound */ 5995 econnp->conn_fully_bound = B_TRUE; 5996 5997 /* Send the SYN-ACK */ 5998 tcp_send_data(eager, eager->tcp_wq, mp1); 5999 freemsg(mp); 6000 6001 return; 6002 error: 6003 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 6004 freemsg(mp1); 6005 error1: 6006 /* Undo what we did above */ 6007 mutex_enter(&tcp->tcp_eager_lock); 6008 tcp_eager_unlink(eager); 6009 mutex_exit(&tcp->tcp_eager_lock); 6010 /* Drop eager's reference on the listener */ 6011 CONN_DEC_REF(connp); 6012 6013 /* 6014 * Delete the cached ire in conn_ire_cache and also mark 6015 * the conn as CONDEMNED 6016 */ 6017 mutex_enter(&econnp->conn_lock); 6018 econnp->conn_state_flags |= CONN_CONDEMNED; 6019 ire = econnp->conn_ire_cache; 6020 econnp->conn_ire_cache = NULL; 6021 mutex_exit(&econnp->conn_lock); 6022 if (ire != NULL) 6023 IRE_REFRELE_NOTR(ire); 6024 6025 /* 6026 * tcp_accept_comm inserts the eager to the bind_hash 6027 * we need to remove it from the hash if ipcl_conn_insert 6028 * fails. 6029 */ 6030 tcp_bind_hash_remove(eager); 6031 /* Drop the eager ref placed in tcp_open_detached */ 6032 CONN_DEC_REF(econnp); 6033 6034 /* 6035 * If a connection already exists, send the mp to that connections so 6036 * that it can be appropriately dealt with. 6037 */ 6038 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 6039 if (!IPCL_IS_CONNECTED(econnp)) { 6040 /* 6041 * Something bad happened. ipcl_conn_insert() 6042 * failed because a connection already existed 6043 * in connected hash but we can't find it 6044 * anymore (someone blew it away). Just 6045 * free this message and hopefully remote 6046 * will retransmit at which time the SYN can be 6047 * treated as a new connection or dealth with 6048 * a TH_RST if a connection already exists. 6049 */ 6050 CONN_DEC_REF(econnp); 6051 freemsg(mp); 6052 } else { 6053 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6054 econnp, SQTAG_TCP_CONN_REQ); 6055 } 6056 } else { 6057 /* Nobody wants this packet */ 6058 freemsg(mp); 6059 } 6060 return; 6061 error2: 6062 freemsg(mp); 6063 return; 6064 error3: 6065 CONN_DEC_REF(econnp); 6066 freemsg(mp); 6067 } 6068 6069 /* 6070 * In an ideal case of vertical partition in NUMA architecture, its 6071 * beneficial to have the listener and all the incoming connections 6072 * tied to the same squeue. The other constraint is that incoming 6073 * connections should be tied to the squeue attached to interrupted 6074 * CPU for obvious locality reason so this leaves the listener to 6075 * be tied to the same squeue. Our only problem is that when listener 6076 * is binding, the CPU that will get interrupted by the NIC whose 6077 * IP address the listener is binding to is not even known. So 6078 * the code below allows us to change that binding at the time the 6079 * CPU is interrupted by virtue of incoming connection's squeue. 6080 * 6081 * This is usefull only in case of a listener bound to a specific IP 6082 * address. For other kind of listeners, they get bound the 6083 * very first time and there is no attempt to rebind them. 6084 */ 6085 void 6086 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6087 { 6088 conn_t *connp = (conn_t *)arg; 6089 squeue_t *sqp = (squeue_t *)arg2; 6090 squeue_t *new_sqp; 6091 uint32_t conn_flags; 6092 6093 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6094 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6095 } else { 6096 goto done; 6097 } 6098 6099 if (connp->conn_fanout == NULL) 6100 goto done; 6101 6102 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6103 mutex_enter(&connp->conn_fanout->connf_lock); 6104 mutex_enter(&connp->conn_lock); 6105 /* 6106 * No one from read or write side can access us now 6107 * except for already queued packets on this squeue. 6108 * But since we haven't changed the squeue yet, they 6109 * can't execute. If they are processed after we have 6110 * changed the squeue, they are sent back to the 6111 * correct squeue down below. 6112 * But a listner close can race with processing of 6113 * incoming SYN. If incoming SYN processing changes 6114 * the squeue then the listener close which is waiting 6115 * to enter the squeue would operate on the wrong 6116 * squeue. Hence we don't change the squeue here unless 6117 * the refcount is exactly the minimum refcount. The 6118 * minimum refcount of 4 is counted as - 1 each for 6119 * TCP and IP, 1 for being in the classifier hash, and 6120 * 1 for the mblk being processed. 6121 */ 6122 6123 if (connp->conn_ref != 4 || 6124 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6125 mutex_exit(&connp->conn_lock); 6126 mutex_exit(&connp->conn_fanout->connf_lock); 6127 goto done; 6128 } 6129 if (connp->conn_sqp != new_sqp) { 6130 while (connp->conn_sqp != new_sqp) 6131 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6132 } 6133 6134 do { 6135 conn_flags = connp->conn_flags; 6136 conn_flags |= IPCL_FULLY_BOUND; 6137 (void) cas32(&connp->conn_flags, connp->conn_flags, 6138 conn_flags); 6139 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6140 6141 mutex_exit(&connp->conn_fanout->connf_lock); 6142 mutex_exit(&connp->conn_lock); 6143 } 6144 6145 done: 6146 if (connp->conn_sqp != sqp) { 6147 CONN_INC_REF(connp); 6148 squeue_fill(connp->conn_sqp, mp, 6149 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6150 } else { 6151 tcp_conn_request(connp, mp, sqp); 6152 } 6153 } 6154 6155 /* 6156 * Successful connect request processing begins when our client passes 6157 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6158 * our T_OK_ACK reply message upstream. The control flow looks like this: 6159 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6160 * upstream <- tcp_rput() <- IP 6161 * After various error checks are completed, tcp_connect() lays 6162 * the target address and port into the composite header template, 6163 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6164 * request followed by an IRE request, and passes the three mblk message 6165 * down to IP looking like this: 6166 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6167 * Processing continues in tcp_rput() when we receive the following message: 6168 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6169 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6170 * to fire off the connection request, and then passes the T_OK_ACK mblk 6171 * upstream that we filled in below. There are, of course, numerous 6172 * error conditions along the way which truncate the processing described 6173 * above. 6174 */ 6175 static void 6176 tcp_connect(tcp_t *tcp, mblk_t *mp) 6177 { 6178 sin_t *sin; 6179 sin6_t *sin6; 6180 queue_t *q = tcp->tcp_wq; 6181 struct T_conn_req *tcr; 6182 ipaddr_t *dstaddrp; 6183 in_port_t dstport; 6184 uint_t srcid; 6185 6186 tcr = (struct T_conn_req *)mp->b_rptr; 6187 6188 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6189 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6190 tcp_err_ack(tcp, mp, TPROTO, 0); 6191 return; 6192 } 6193 6194 /* 6195 * Determine packet type based on type of address passed in 6196 * the request should contain an IPv4 or IPv6 address. 6197 * Make sure that address family matches the type of 6198 * family of the the address passed down 6199 */ 6200 switch (tcr->DEST_length) { 6201 default: 6202 tcp_err_ack(tcp, mp, TBADADDR, 0); 6203 return; 6204 6205 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6206 /* 6207 * XXX: The check for valid DEST_length was not there 6208 * in earlier releases and some buggy 6209 * TLI apps (e.g Sybase) got away with not feeding 6210 * in sin_zero part of address. 6211 * We allow that bug to keep those buggy apps humming. 6212 * Test suites require the check on DEST_length. 6213 * We construct a new mblk with valid DEST_length 6214 * free the original so the rest of the code does 6215 * not have to keep track of this special shorter 6216 * length address case. 6217 */ 6218 mblk_t *nmp; 6219 struct T_conn_req *ntcr; 6220 sin_t *nsin; 6221 6222 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6223 tcr->OPT_length, BPRI_HI); 6224 if (nmp == NULL) { 6225 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6226 return; 6227 } 6228 ntcr = (struct T_conn_req *)nmp->b_rptr; 6229 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6230 ntcr->PRIM_type = T_CONN_REQ; 6231 ntcr->DEST_length = sizeof (sin_t); 6232 ntcr->DEST_offset = sizeof (struct T_conn_req); 6233 6234 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6235 *nsin = sin_null; 6236 /* Get pointer to shorter address to copy from original mp */ 6237 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6238 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6239 if (sin == NULL || !OK_32PTR((char *)sin)) { 6240 freemsg(nmp); 6241 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6242 return; 6243 } 6244 nsin->sin_family = sin->sin_family; 6245 nsin->sin_port = sin->sin_port; 6246 nsin->sin_addr = sin->sin_addr; 6247 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6248 nmp->b_wptr = (uchar_t *)&nsin[1]; 6249 if (tcr->OPT_length != 0) { 6250 ntcr->OPT_length = tcr->OPT_length; 6251 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6252 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6253 (uchar_t *)ntcr + ntcr->OPT_offset, 6254 tcr->OPT_length); 6255 nmp->b_wptr += tcr->OPT_length; 6256 } 6257 freemsg(mp); /* original mp freed */ 6258 mp = nmp; /* re-initialize original variables */ 6259 tcr = ntcr; 6260 } 6261 /* FALLTHRU */ 6262 6263 case sizeof (sin_t): 6264 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6265 sizeof (sin_t)); 6266 if (sin == NULL || !OK_32PTR((char *)sin)) { 6267 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6268 return; 6269 } 6270 if (tcp->tcp_family != AF_INET || 6271 sin->sin_family != AF_INET) { 6272 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6273 return; 6274 } 6275 if (sin->sin_port == 0) { 6276 tcp_err_ack(tcp, mp, TBADADDR, 0); 6277 return; 6278 } 6279 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6280 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6281 return; 6282 } 6283 6284 break; 6285 6286 case sizeof (sin6_t): 6287 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6288 sizeof (sin6_t)); 6289 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6290 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6291 return; 6292 } 6293 if (tcp->tcp_family != AF_INET6 || 6294 sin6->sin6_family != AF_INET6) { 6295 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6296 return; 6297 } 6298 if (sin6->sin6_port == 0) { 6299 tcp_err_ack(tcp, mp, TBADADDR, 0); 6300 return; 6301 } 6302 break; 6303 } 6304 /* 6305 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6306 * should key on their sequence number and cut them loose. 6307 */ 6308 6309 /* 6310 * If options passed in, feed it for verification and handling 6311 */ 6312 if (tcr->OPT_length != 0) { 6313 mblk_t *ok_mp; 6314 mblk_t *discon_mp; 6315 mblk_t *conn_opts_mp; 6316 int t_error, sys_error, do_disconnect; 6317 6318 conn_opts_mp = NULL; 6319 6320 if (tcp_conprim_opt_process(tcp, mp, 6321 &do_disconnect, &t_error, &sys_error) < 0) { 6322 if (do_disconnect) { 6323 ASSERT(t_error == 0 && sys_error == 0); 6324 discon_mp = mi_tpi_discon_ind(NULL, 6325 ECONNREFUSED, 0); 6326 if (!discon_mp) { 6327 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6328 TSYSERR, ENOMEM); 6329 return; 6330 } 6331 ok_mp = mi_tpi_ok_ack_alloc(mp); 6332 if (!ok_mp) { 6333 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6334 TSYSERR, ENOMEM); 6335 return; 6336 } 6337 qreply(q, ok_mp); 6338 qreply(q, discon_mp); /* no flush! */ 6339 } else { 6340 ASSERT(t_error != 0); 6341 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6342 sys_error); 6343 } 6344 return; 6345 } 6346 /* 6347 * Success in setting options, the mp option buffer represented 6348 * by OPT_length/offset has been potentially modified and 6349 * contains results of option processing. We copy it in 6350 * another mp to save it for potentially influencing returning 6351 * it in T_CONN_CONN. 6352 */ 6353 if (tcr->OPT_length != 0) { /* there are resulting options */ 6354 conn_opts_mp = copyb(mp); 6355 if (!conn_opts_mp) { 6356 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6357 TSYSERR, ENOMEM); 6358 return; 6359 } 6360 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6361 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6362 /* 6363 * Note: 6364 * These resulting option negotiation can include any 6365 * end-to-end negotiation options but there no such 6366 * thing (yet?) in our TCP/IP. 6367 */ 6368 } 6369 } 6370 6371 /* 6372 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6373 * make sure that the template IP header in the tcp structure is an 6374 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6375 * need to this before we call tcp_bindi() so that the port lookup 6376 * code will look for ports in the correct port space (IPv4 and 6377 * IPv6 have separate port spaces). 6378 */ 6379 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6380 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6381 int err = 0; 6382 6383 err = tcp_header_init_ipv4(tcp); 6384 if (err != 0) { 6385 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6386 goto connect_failed; 6387 } 6388 if (tcp->tcp_lport != 0) 6389 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6390 } 6391 6392 switch (tcp->tcp_state) { 6393 case TCPS_IDLE: 6394 /* 6395 * We support quick connect, refer to comments in 6396 * tcp_connect_*() 6397 */ 6398 /* FALLTHRU */ 6399 case TCPS_BOUND: 6400 case TCPS_LISTEN: 6401 if (tcp->tcp_family == AF_INET6) { 6402 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6403 tcp_connect_ipv6(tcp, mp, 6404 &sin6->sin6_addr, 6405 sin6->sin6_port, sin6->sin6_flowinfo, 6406 sin6->__sin6_src_id, sin6->sin6_scope_id); 6407 return; 6408 } 6409 /* 6410 * Destination adress is mapped IPv6 address. 6411 * Source bound address should be unspecified or 6412 * IPv6 mapped address as well. 6413 */ 6414 if (!IN6_IS_ADDR_UNSPECIFIED( 6415 &tcp->tcp_bound_source_v6) && 6416 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6417 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6418 EADDRNOTAVAIL); 6419 break; 6420 } 6421 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6422 dstport = sin6->sin6_port; 6423 srcid = sin6->__sin6_src_id; 6424 } else { 6425 dstaddrp = &sin->sin_addr.s_addr; 6426 dstport = sin->sin_port; 6427 srcid = 0; 6428 } 6429 6430 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6431 return; 6432 default: 6433 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6434 break; 6435 } 6436 /* 6437 * Note: Code below is the "failure" case 6438 */ 6439 /* return error ack and blow away saved option results if any */ 6440 connect_failed: 6441 if (mp != NULL) 6442 putnext(tcp->tcp_rq, mp); 6443 else { 6444 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6445 TSYSERR, ENOMEM); 6446 } 6447 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6448 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6449 } 6450 6451 /* 6452 * Handle connect to IPv4 destinations, including connections for AF_INET6 6453 * sockets connecting to IPv4 mapped IPv6 destinations. 6454 */ 6455 static void 6456 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6457 uint_t srcid) 6458 { 6459 tcph_t *tcph; 6460 mblk_t *mp1; 6461 ipaddr_t dstaddr = *dstaddrp; 6462 int32_t oldstate; 6463 uint16_t lport; 6464 6465 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6466 6467 /* Check for attempt to connect to INADDR_ANY */ 6468 if (dstaddr == INADDR_ANY) { 6469 /* 6470 * SunOS 4.x and 4.3 BSD allow an application 6471 * to connect a TCP socket to INADDR_ANY. 6472 * When they do this, the kernel picks the 6473 * address of one interface and uses it 6474 * instead. The kernel usually ends up 6475 * picking the address of the loopback 6476 * interface. This is an undocumented feature. 6477 * However, we provide the same thing here 6478 * in order to have source and binary 6479 * compatibility with SunOS 4.x. 6480 * Update the T_CONN_REQ (sin/sin6) since it is used to 6481 * generate the T_CONN_CON. 6482 */ 6483 dstaddr = htonl(INADDR_LOOPBACK); 6484 *dstaddrp = dstaddr; 6485 } 6486 6487 /* Handle __sin6_src_id if socket not bound to an IP address */ 6488 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6489 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6490 tcp->tcp_connp->conn_zoneid); 6491 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6492 tcp->tcp_ipha->ipha_src); 6493 } 6494 6495 /* 6496 * Don't let an endpoint connect to itself. Note that 6497 * the test here does not catch the case where the 6498 * source IP addr was left unspecified by the user. In 6499 * this case, the source addr is set in tcp_adapt_ire() 6500 * using the reply to the T_BIND message that we send 6501 * down to IP here and the check is repeated in tcp_rput_other. 6502 */ 6503 if (dstaddr == tcp->tcp_ipha->ipha_src && 6504 dstport == tcp->tcp_lport) { 6505 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6506 goto failed; 6507 } 6508 6509 tcp->tcp_ipha->ipha_dst = dstaddr; 6510 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6511 6512 /* 6513 * Massage a source route if any putting the first hop 6514 * in iph_dst. Compute a starting value for the checksum which 6515 * takes into account that the original iph_dst should be 6516 * included in the checksum but that ip will include the 6517 * first hop in the source route in the tcp checksum. 6518 */ 6519 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6520 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6521 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6522 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6523 if ((int)tcp->tcp_sum < 0) 6524 tcp->tcp_sum--; 6525 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6526 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6527 (tcp->tcp_sum >> 16)); 6528 tcph = tcp->tcp_tcph; 6529 *(uint16_t *)tcph->th_fport = dstport; 6530 tcp->tcp_fport = dstport; 6531 6532 oldstate = tcp->tcp_state; 6533 /* 6534 * At this point the remote destination address and remote port fields 6535 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6536 * have to see which state tcp was in so we can take apropriate action. 6537 */ 6538 if (oldstate == TCPS_IDLE) { 6539 /* 6540 * We support a quick connect capability here, allowing 6541 * clients to transition directly from IDLE to SYN_SENT 6542 * tcp_bindi will pick an unused port, insert the connection 6543 * in the bind hash and transition to BOUND state. 6544 */ 6545 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6546 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6547 B_FALSE, B_FALSE); 6548 if (lport == 0) { 6549 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6550 goto failed; 6551 } 6552 } 6553 tcp->tcp_state = TCPS_SYN_SENT; 6554 6555 /* 6556 * TODO: allow data with connect requests 6557 * by unlinking M_DATA trailers here and 6558 * linking them in behind the T_OK_ACK mblk. 6559 * The tcp_rput() bind ack handler would then 6560 * feed them to tcp_wput_data() rather than call 6561 * tcp_timer(). 6562 */ 6563 mp = mi_tpi_ok_ack_alloc(mp); 6564 if (!mp) { 6565 tcp->tcp_state = oldstate; 6566 goto failed; 6567 } 6568 if (tcp->tcp_family == AF_INET) { 6569 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6570 sizeof (ipa_conn_t)); 6571 } else { 6572 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6573 sizeof (ipa6_conn_t)); 6574 } 6575 if (mp1) { 6576 /* Hang onto the T_OK_ACK for later. */ 6577 linkb(mp1, mp); 6578 mblk_setcred(mp1, tcp->tcp_cred); 6579 if (tcp->tcp_family == AF_INET) 6580 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6581 else { 6582 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6583 &tcp->tcp_sticky_ipp); 6584 } 6585 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6586 tcp->tcp_active_open = 1; 6587 /* 6588 * If the bind cannot complete immediately 6589 * IP will arrange to call tcp_rput_other 6590 * when the bind completes. 6591 */ 6592 if (mp1 != NULL) 6593 tcp_rput_other(tcp, mp1); 6594 return; 6595 } 6596 /* Error case */ 6597 tcp->tcp_state = oldstate; 6598 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6599 6600 failed: 6601 /* return error ack and blow away saved option results if any */ 6602 if (mp != NULL) 6603 putnext(tcp->tcp_rq, mp); 6604 else { 6605 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6606 TSYSERR, ENOMEM); 6607 } 6608 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6609 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6610 6611 } 6612 6613 /* 6614 * Handle connect to IPv6 destinations. 6615 */ 6616 static void 6617 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6618 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6619 { 6620 tcph_t *tcph; 6621 mblk_t *mp1; 6622 ip6_rthdr_t *rth; 6623 int32_t oldstate; 6624 uint16_t lport; 6625 6626 ASSERT(tcp->tcp_family == AF_INET6); 6627 6628 /* 6629 * If we're here, it means that the destination address is a native 6630 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6631 * reason why it might not be IPv6 is if the socket was bound to an 6632 * IPv4-mapped IPv6 address. 6633 */ 6634 if (tcp->tcp_ipversion != IPV6_VERSION) { 6635 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6636 goto failed; 6637 } 6638 6639 /* 6640 * Interpret a zero destination to mean loopback. 6641 * Update the T_CONN_REQ (sin/sin6) since it is used to 6642 * generate the T_CONN_CON. 6643 */ 6644 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6645 *dstaddrp = ipv6_loopback; 6646 } 6647 6648 /* Handle __sin6_src_id if socket not bound to an IP address */ 6649 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6650 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6651 tcp->tcp_connp->conn_zoneid); 6652 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6653 } 6654 6655 /* 6656 * Take care of the scope_id now and add ip6i_t 6657 * if ip6i_t is not already allocated through TCP 6658 * sticky options. At this point tcp_ip6h does not 6659 * have dst info, thus use dstaddrp. 6660 */ 6661 if (scope_id != 0 && 6662 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6663 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6664 ip6i_t *ip6i; 6665 6666 ipp->ipp_ifindex = scope_id; 6667 ip6i = (ip6i_t *)tcp->tcp_iphc; 6668 6669 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6670 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6671 /* Already allocated */ 6672 ip6i->ip6i_flags |= IP6I_IFINDEX; 6673 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6674 ipp->ipp_fields |= IPPF_SCOPE_ID; 6675 } else { 6676 int reterr; 6677 6678 ipp->ipp_fields |= IPPF_SCOPE_ID; 6679 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6680 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6681 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6682 if (reterr != 0) 6683 goto failed; 6684 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6685 } 6686 } 6687 6688 /* 6689 * Don't let an endpoint connect to itself. Note that 6690 * the test here does not catch the case where the 6691 * source IP addr was left unspecified by the user. In 6692 * this case, the source addr is set in tcp_adapt_ire() 6693 * using the reply to the T_BIND message that we send 6694 * down to IP here and the check is repeated in tcp_rput_other. 6695 */ 6696 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6697 (dstport == tcp->tcp_lport)) { 6698 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6699 goto failed; 6700 } 6701 6702 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6703 tcp->tcp_remote_v6 = *dstaddrp; 6704 tcp->tcp_ip6h->ip6_vcf = 6705 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6706 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6707 6708 6709 /* 6710 * Massage a routing header (if present) putting the first hop 6711 * in ip6_dst. Compute a starting value for the checksum which 6712 * takes into account that the original ip6_dst should be 6713 * included in the checksum but that ip will include the 6714 * first hop in the source route in the tcp checksum. 6715 */ 6716 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6717 if (rth != NULL) { 6718 6719 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6720 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6721 (tcp->tcp_sum >> 16)); 6722 } else { 6723 tcp->tcp_sum = 0; 6724 } 6725 6726 tcph = tcp->tcp_tcph; 6727 *(uint16_t *)tcph->th_fport = dstport; 6728 tcp->tcp_fport = dstport; 6729 6730 oldstate = tcp->tcp_state; 6731 /* 6732 * At this point the remote destination address and remote port fields 6733 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6734 * have to see which state tcp was in so we can take apropriate action. 6735 */ 6736 if (oldstate == TCPS_IDLE) { 6737 /* 6738 * We support a quick connect capability here, allowing 6739 * clients to transition directly from IDLE to SYN_SENT 6740 * tcp_bindi will pick an unused port, insert the connection 6741 * in the bind hash and transition to BOUND state. 6742 */ 6743 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6744 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6745 B_FALSE, B_FALSE); 6746 if (lport == 0) { 6747 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6748 goto failed; 6749 } 6750 } 6751 tcp->tcp_state = TCPS_SYN_SENT; 6752 /* 6753 * TODO: allow data with connect requests 6754 * by unlinking M_DATA trailers here and 6755 * linking them in behind the T_OK_ACK mblk. 6756 * The tcp_rput() bind ack handler would then 6757 * feed them to tcp_wput_data() rather than call 6758 * tcp_timer(). 6759 */ 6760 mp = mi_tpi_ok_ack_alloc(mp); 6761 if (!mp) { 6762 tcp->tcp_state = oldstate; 6763 goto failed; 6764 } 6765 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6766 if (mp1) { 6767 /* Hang onto the T_OK_ACK for later. */ 6768 linkb(mp1, mp); 6769 mblk_setcred(mp1, tcp->tcp_cred); 6770 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6771 &tcp->tcp_sticky_ipp); 6772 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6773 tcp->tcp_active_open = 1; 6774 /* ip_bind_v6() may return ACK or ERROR */ 6775 if (mp1 != NULL) 6776 tcp_rput_other(tcp, mp1); 6777 return; 6778 } 6779 /* Error case */ 6780 tcp->tcp_state = oldstate; 6781 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6782 6783 failed: 6784 /* return error ack and blow away saved option results if any */ 6785 if (mp != NULL) 6786 putnext(tcp->tcp_rq, mp); 6787 else { 6788 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6789 TSYSERR, ENOMEM); 6790 } 6791 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6792 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6793 } 6794 6795 /* 6796 * We need a stream q for detached closing tcp connections 6797 * to use. Our client hereby indicates that this q is the 6798 * one to use. 6799 */ 6800 static void 6801 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6802 { 6803 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6804 queue_t *q = tcp->tcp_wq; 6805 6806 mp->b_datap->db_type = M_IOCACK; 6807 iocp->ioc_count = 0; 6808 mutex_enter(&tcp_g_q_lock); 6809 if (tcp_g_q != NULL) { 6810 mutex_exit(&tcp_g_q_lock); 6811 iocp->ioc_error = EALREADY; 6812 } else { 6813 mblk_t *mp1; 6814 6815 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6816 if (mp1 == NULL) { 6817 mutex_exit(&tcp_g_q_lock); 6818 iocp->ioc_error = ENOMEM; 6819 } else { 6820 tcp_g_q = tcp->tcp_rq; 6821 mutex_exit(&tcp_g_q_lock); 6822 iocp->ioc_error = 0; 6823 iocp->ioc_rval = 0; 6824 /* 6825 * We are passing tcp_sticky_ipp as NULL 6826 * as it is not useful for tcp_default queue 6827 */ 6828 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6829 if (mp1 != NULL) 6830 tcp_rput_other(tcp, mp1); 6831 } 6832 } 6833 qreply(q, mp); 6834 } 6835 6836 /* 6837 * Our client hereby directs us to reject the connection request 6838 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6839 * of sending the appropriate RST, not an ICMP error. 6840 */ 6841 static void 6842 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6843 { 6844 tcp_t *ltcp = NULL; 6845 t_scalar_t seqnum; 6846 conn_t *connp; 6847 6848 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6849 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6850 tcp_err_ack(tcp, mp, TPROTO, 0); 6851 return; 6852 } 6853 6854 /* 6855 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6856 * when the stream is in BOUND state. Do not send a reset, 6857 * since the destination IP address is not valid, and it can 6858 * be the initialized value of all zeros (broadcast address). 6859 * 6860 * If TCP has sent down a bind request to IP and has not 6861 * received the reply, reject the request. Otherwise, TCP 6862 * will be confused. 6863 */ 6864 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6865 if (tcp->tcp_debug) { 6866 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6867 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6868 } 6869 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6870 return; 6871 } 6872 6873 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6874 6875 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6876 6877 /* 6878 * According to TPI, for non-listeners, ignore seqnum 6879 * and disconnect. 6880 * Following interpretation of -1 seqnum is historical 6881 * and implied TPI ? (TPI only states that for T_CONN_IND, 6882 * a valid seqnum should not be -1). 6883 * 6884 * -1 means disconnect everything 6885 * regardless even on a listener. 6886 */ 6887 6888 int old_state = tcp->tcp_state; 6889 6890 /* 6891 * The connection can't be on the tcp_time_wait_head list 6892 * since it is not detached. 6893 */ 6894 ASSERT(tcp->tcp_time_wait_next == NULL); 6895 ASSERT(tcp->tcp_time_wait_prev == NULL); 6896 ASSERT(tcp->tcp_time_wait_expire == 0); 6897 ltcp = NULL; 6898 /* 6899 * If it used to be a listener, check to make sure no one else 6900 * has taken the port before switching back to LISTEN state. 6901 */ 6902 if (tcp->tcp_ipversion == IPV4_VERSION) { 6903 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6904 tcp->tcp_ipha->ipha_src, 6905 tcp->tcp_connp->conn_zoneid); 6906 if (connp != NULL) 6907 ltcp = connp->conn_tcp; 6908 } else { 6909 /* Allow tcp_bound_if listeners? */ 6910 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6911 &tcp->tcp_ip6h->ip6_src, 0, 6912 tcp->tcp_connp->conn_zoneid); 6913 if (connp != NULL) 6914 ltcp = connp->conn_tcp; 6915 } 6916 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6917 tcp->tcp_state = TCPS_LISTEN; 6918 } else if (old_state > TCPS_BOUND) { 6919 tcp->tcp_conn_req_max = 0; 6920 tcp->tcp_state = TCPS_BOUND; 6921 } 6922 if (ltcp != NULL) 6923 CONN_DEC_REF(ltcp->tcp_connp); 6924 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6925 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6926 } else if (old_state == TCPS_ESTABLISHED || 6927 old_state == TCPS_CLOSE_WAIT) { 6928 BUMP_MIB(&tcp_mib, tcpEstabResets); 6929 } 6930 6931 if (tcp->tcp_fused) 6932 tcp_unfuse(tcp); 6933 6934 mutex_enter(&tcp->tcp_eager_lock); 6935 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6936 (tcp->tcp_conn_req_cnt_q != 0)) { 6937 tcp_eager_cleanup(tcp, 0); 6938 } 6939 mutex_exit(&tcp->tcp_eager_lock); 6940 6941 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6942 tcp->tcp_rnxt, TH_RST | TH_ACK); 6943 6944 tcp_reinit(tcp); 6945 6946 if (old_state >= TCPS_ESTABLISHED) { 6947 /* Send M_FLUSH according to TPI */ 6948 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6949 } 6950 mp = mi_tpi_ok_ack_alloc(mp); 6951 if (mp) 6952 putnext(tcp->tcp_rq, mp); 6953 return; 6954 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6955 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6956 return; 6957 } 6958 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6959 /* Send M_FLUSH according to TPI */ 6960 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6961 } 6962 mp = mi_tpi_ok_ack_alloc(mp); 6963 if (mp) 6964 putnext(tcp->tcp_rq, mp); 6965 } 6966 6967 /* 6968 * Diagnostic routine used to return a string associated with the tcp state. 6969 * Note that if the caller does not supply a buffer, it will use an internal 6970 * static string. This means that if multiple threads call this function at 6971 * the same time, output can be corrupted... Note also that this function 6972 * does not check the size of the supplied buffer. The caller has to make 6973 * sure that it is big enough. 6974 */ 6975 static char * 6976 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6977 { 6978 char buf1[30]; 6979 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6980 char *buf; 6981 char *cp; 6982 in6_addr_t local, remote; 6983 char local_addrbuf[INET6_ADDRSTRLEN]; 6984 char remote_addrbuf[INET6_ADDRSTRLEN]; 6985 6986 if (sup_buf != NULL) 6987 buf = sup_buf; 6988 else 6989 buf = priv_buf; 6990 6991 if (tcp == NULL) 6992 return ("NULL_TCP"); 6993 switch (tcp->tcp_state) { 6994 case TCPS_CLOSED: 6995 cp = "TCP_CLOSED"; 6996 break; 6997 case TCPS_IDLE: 6998 cp = "TCP_IDLE"; 6999 break; 7000 case TCPS_BOUND: 7001 cp = "TCP_BOUND"; 7002 break; 7003 case TCPS_LISTEN: 7004 cp = "TCP_LISTEN"; 7005 break; 7006 case TCPS_SYN_SENT: 7007 cp = "TCP_SYN_SENT"; 7008 break; 7009 case TCPS_SYN_RCVD: 7010 cp = "TCP_SYN_RCVD"; 7011 break; 7012 case TCPS_ESTABLISHED: 7013 cp = "TCP_ESTABLISHED"; 7014 break; 7015 case TCPS_CLOSE_WAIT: 7016 cp = "TCP_CLOSE_WAIT"; 7017 break; 7018 case TCPS_FIN_WAIT_1: 7019 cp = "TCP_FIN_WAIT_1"; 7020 break; 7021 case TCPS_CLOSING: 7022 cp = "TCP_CLOSING"; 7023 break; 7024 case TCPS_LAST_ACK: 7025 cp = "TCP_LAST_ACK"; 7026 break; 7027 case TCPS_FIN_WAIT_2: 7028 cp = "TCP_FIN_WAIT_2"; 7029 break; 7030 case TCPS_TIME_WAIT: 7031 cp = "TCP_TIME_WAIT"; 7032 break; 7033 default: 7034 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7035 cp = buf1; 7036 break; 7037 } 7038 switch (format) { 7039 case DISP_ADDR_AND_PORT: 7040 if (tcp->tcp_ipversion == IPV4_VERSION) { 7041 /* 7042 * Note that we use the remote address in the tcp_b 7043 * structure. This means that it will print out 7044 * the real destination address, not the next hop's 7045 * address if source routing is used. 7046 */ 7047 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7048 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7049 7050 } else { 7051 local = tcp->tcp_ip_src_v6; 7052 remote = tcp->tcp_remote_v6; 7053 } 7054 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7055 sizeof (local_addrbuf)); 7056 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7057 sizeof (remote_addrbuf)); 7058 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7059 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7060 ntohs(tcp->tcp_fport), cp); 7061 break; 7062 case DISP_PORT_ONLY: 7063 default: 7064 (void) mi_sprintf(buf, "[%u, %u] %s", 7065 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7066 break; 7067 } 7068 7069 return (buf); 7070 } 7071 7072 /* 7073 * Called via squeue to get on to eager's perimeter to send a 7074 * TH_RST. The listener wants the eager to disappear either 7075 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 7076 * being called. 7077 */ 7078 /* ARGSUSED */ 7079 void 7080 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7081 { 7082 conn_t *econnp = (conn_t *)arg; 7083 tcp_t *eager = econnp->conn_tcp; 7084 tcp_t *listener = eager->tcp_listener; 7085 7086 /* 7087 * We could be called because listener is closing. Since 7088 * the eager is using listener's queue's, its not safe. 7089 * Better use the default queue just to send the TH_RST 7090 * out. 7091 */ 7092 eager->tcp_rq = tcp_g_q; 7093 eager->tcp_wq = WR(tcp_g_q); 7094 7095 if (eager->tcp_state > TCPS_LISTEN) { 7096 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7097 eager, eager->tcp_snxt, 0, TH_RST); 7098 } 7099 7100 /* We are here because listener wants this eager gone */ 7101 if (listener != NULL) { 7102 mutex_enter(&listener->tcp_eager_lock); 7103 tcp_eager_unlink(eager); 7104 if (eager->tcp_tconnind_started) { 7105 /* 7106 * The eager has sent a conn_ind up to the 7107 * listener but listener decides to close 7108 * instead. We need to drop the extra ref 7109 * placed on eager in tcp_rput_data() before 7110 * sending the conn_ind to listener. 7111 */ 7112 CONN_DEC_REF(econnp); 7113 } 7114 mutex_exit(&listener->tcp_eager_lock); 7115 CONN_DEC_REF(listener->tcp_connp); 7116 } 7117 7118 if (eager->tcp_state > TCPS_BOUND) 7119 tcp_close_detached(eager); 7120 } 7121 7122 /* 7123 * Reset any eager connection hanging off this listener marked 7124 * with 'seqnum' and then reclaim it's resources. 7125 */ 7126 static boolean_t 7127 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7128 { 7129 tcp_t *eager; 7130 mblk_t *mp; 7131 7132 TCP_STAT(tcp_eager_blowoff_calls); 7133 eager = listener; 7134 mutex_enter(&listener->tcp_eager_lock); 7135 do { 7136 eager = eager->tcp_eager_next_q; 7137 if (eager == NULL) { 7138 mutex_exit(&listener->tcp_eager_lock); 7139 return (B_FALSE); 7140 } 7141 } while (eager->tcp_conn_req_seqnum != seqnum); 7142 7143 if (eager->tcp_closemp_used > 0) { 7144 mutex_exit(&listener->tcp_eager_lock); 7145 return (B_TRUE); 7146 } 7147 eager->tcp_closemp_used = 1; 7148 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7149 CONN_INC_REF(eager->tcp_connp); 7150 mutex_exit(&listener->tcp_eager_lock); 7151 mp = &eager->tcp_closemp; 7152 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7153 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7154 return (B_TRUE); 7155 } 7156 7157 /* 7158 * Reset any eager connection hanging off this listener 7159 * and then reclaim it's resources. 7160 */ 7161 static void 7162 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7163 { 7164 tcp_t *eager; 7165 mblk_t *mp; 7166 7167 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7168 7169 if (!q0_only) { 7170 /* First cleanup q */ 7171 TCP_STAT(tcp_eager_blowoff_q); 7172 eager = listener->tcp_eager_next_q; 7173 while (eager != NULL) { 7174 if (eager->tcp_closemp_used == 0) { 7175 eager->tcp_closemp_used = 1; 7176 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7177 CONN_INC_REF(eager->tcp_connp); 7178 mp = &eager->tcp_closemp; 7179 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7180 tcp_eager_kill, eager->tcp_connp, 7181 SQTAG_TCP_EAGER_CLEANUP); 7182 } 7183 eager = eager->tcp_eager_next_q; 7184 } 7185 } 7186 /* Then cleanup q0 */ 7187 TCP_STAT(tcp_eager_blowoff_q0); 7188 eager = listener->tcp_eager_next_q0; 7189 while (eager != listener) { 7190 if (eager->tcp_closemp_used == 0) { 7191 eager->tcp_closemp_used = 1; 7192 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7193 CONN_INC_REF(eager->tcp_connp); 7194 mp = &eager->tcp_closemp; 7195 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7196 tcp_eager_kill, eager->tcp_connp, 7197 SQTAG_TCP_EAGER_CLEANUP_Q0); 7198 } 7199 eager = eager->tcp_eager_next_q0; 7200 } 7201 } 7202 7203 /* 7204 * If we are an eager connection hanging off a listener that hasn't 7205 * formally accepted the connection yet, get off his list and blow off 7206 * any data that we have accumulated. 7207 */ 7208 static void 7209 tcp_eager_unlink(tcp_t *tcp) 7210 { 7211 tcp_t *listener = tcp->tcp_listener; 7212 7213 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7214 ASSERT(listener != NULL); 7215 if (tcp->tcp_eager_next_q0 != NULL) { 7216 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7217 7218 /* Remove the eager tcp from q0 */ 7219 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7220 tcp->tcp_eager_prev_q0; 7221 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7222 tcp->tcp_eager_next_q0; 7223 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7224 listener->tcp_conn_req_cnt_q0--; 7225 7226 tcp->tcp_eager_next_q0 = NULL; 7227 tcp->tcp_eager_prev_q0 = NULL; 7228 7229 /* 7230 * Take the eager out, if it is in the list of droppable 7231 * eagers. 7232 */ 7233 MAKE_UNDROPPABLE(tcp); 7234 7235 if (tcp->tcp_syn_rcvd_timeout != 0) { 7236 /* we have timed out before */ 7237 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7238 listener->tcp_syn_rcvd_timeout--; 7239 } 7240 } else { 7241 tcp_t **tcpp = &listener->tcp_eager_next_q; 7242 tcp_t *prev = NULL; 7243 7244 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7245 if (tcpp[0] == tcp) { 7246 if (listener->tcp_eager_last_q == tcp) { 7247 /* 7248 * If we are unlinking the last 7249 * element on the list, adjust 7250 * tail pointer. Set tail pointer 7251 * to nil when list is empty. 7252 */ 7253 ASSERT(tcp->tcp_eager_next_q == NULL); 7254 if (listener->tcp_eager_last_q == 7255 listener->tcp_eager_next_q) { 7256 listener->tcp_eager_last_q = 7257 NULL; 7258 } else { 7259 /* 7260 * We won't get here if there 7261 * is only one eager in the 7262 * list. 7263 */ 7264 ASSERT(prev != NULL); 7265 listener->tcp_eager_last_q = 7266 prev; 7267 } 7268 } 7269 tcpp[0] = tcp->tcp_eager_next_q; 7270 tcp->tcp_eager_next_q = NULL; 7271 tcp->tcp_eager_last_q = NULL; 7272 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7273 listener->tcp_conn_req_cnt_q--; 7274 break; 7275 } 7276 prev = tcpp[0]; 7277 } 7278 } 7279 tcp->tcp_listener = NULL; 7280 } 7281 7282 /* Shorthand to generate and send TPI error acks to our client */ 7283 static void 7284 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7285 { 7286 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7287 putnext(tcp->tcp_rq, mp); 7288 } 7289 7290 /* Shorthand to generate and send TPI error acks to our client */ 7291 static void 7292 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7293 int t_error, int sys_error) 7294 { 7295 struct T_error_ack *teackp; 7296 7297 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7298 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7299 teackp = (struct T_error_ack *)mp->b_rptr; 7300 teackp->ERROR_prim = primitive; 7301 teackp->TLI_error = t_error; 7302 teackp->UNIX_error = sys_error; 7303 putnext(tcp->tcp_rq, mp); 7304 } 7305 } 7306 7307 /* 7308 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7309 * but instead the code relies on: 7310 * - the fact that the address of the array and its size never changes 7311 * - the atomic assignment of the elements of the array 7312 */ 7313 /* ARGSUSED */ 7314 static int 7315 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7316 { 7317 int i; 7318 7319 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7320 if (tcp_g_epriv_ports[i] != 0) 7321 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7322 } 7323 return (0); 7324 } 7325 7326 /* 7327 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7328 * threads from changing it at the same time. 7329 */ 7330 /* ARGSUSED */ 7331 static int 7332 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7333 cred_t *cr) 7334 { 7335 long new_value; 7336 int i; 7337 7338 /* 7339 * Fail the request if the new value does not lie within the 7340 * port number limits. 7341 */ 7342 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7343 new_value <= 0 || new_value >= 65536) { 7344 return (EINVAL); 7345 } 7346 7347 mutex_enter(&tcp_epriv_port_lock); 7348 /* Check if the value is already in the list */ 7349 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7350 if (new_value == tcp_g_epriv_ports[i]) { 7351 mutex_exit(&tcp_epriv_port_lock); 7352 return (EEXIST); 7353 } 7354 } 7355 /* Find an empty slot */ 7356 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7357 if (tcp_g_epriv_ports[i] == 0) 7358 break; 7359 } 7360 if (i == tcp_g_num_epriv_ports) { 7361 mutex_exit(&tcp_epriv_port_lock); 7362 return (EOVERFLOW); 7363 } 7364 /* Set the new value */ 7365 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7366 mutex_exit(&tcp_epriv_port_lock); 7367 return (0); 7368 } 7369 7370 /* 7371 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7372 * threads from changing it at the same time. 7373 */ 7374 /* ARGSUSED */ 7375 static int 7376 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7377 cred_t *cr) 7378 { 7379 long new_value; 7380 int i; 7381 7382 /* 7383 * Fail the request if the new value does not lie within the 7384 * port number limits. 7385 */ 7386 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7387 new_value >= 65536) { 7388 return (EINVAL); 7389 } 7390 7391 mutex_enter(&tcp_epriv_port_lock); 7392 /* Check that the value is already in the list */ 7393 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7394 if (tcp_g_epriv_ports[i] == new_value) 7395 break; 7396 } 7397 if (i == tcp_g_num_epriv_ports) { 7398 mutex_exit(&tcp_epriv_port_lock); 7399 return (ESRCH); 7400 } 7401 /* Clear the value */ 7402 tcp_g_epriv_ports[i] = 0; 7403 mutex_exit(&tcp_epriv_port_lock); 7404 return (0); 7405 } 7406 7407 /* Return the TPI/TLI equivalent of our current tcp_state */ 7408 static int 7409 tcp_tpistate(tcp_t *tcp) 7410 { 7411 switch (tcp->tcp_state) { 7412 case TCPS_IDLE: 7413 return (TS_UNBND); 7414 case TCPS_LISTEN: 7415 /* 7416 * Return whether there are outstanding T_CONN_IND waiting 7417 * for the matching T_CONN_RES. Therefore don't count q0. 7418 */ 7419 if (tcp->tcp_conn_req_cnt_q > 0) 7420 return (TS_WRES_CIND); 7421 else 7422 return (TS_IDLE); 7423 case TCPS_BOUND: 7424 return (TS_IDLE); 7425 case TCPS_SYN_SENT: 7426 return (TS_WCON_CREQ); 7427 case TCPS_SYN_RCVD: 7428 /* 7429 * Note: assumption: this has to the active open SYN_RCVD. 7430 * The passive instance is detached in SYN_RCVD stage of 7431 * incoming connection processing so we cannot get request 7432 * for T_info_ack on it. 7433 */ 7434 return (TS_WACK_CRES); 7435 case TCPS_ESTABLISHED: 7436 return (TS_DATA_XFER); 7437 case TCPS_CLOSE_WAIT: 7438 return (TS_WREQ_ORDREL); 7439 case TCPS_FIN_WAIT_1: 7440 return (TS_WIND_ORDREL); 7441 case TCPS_FIN_WAIT_2: 7442 return (TS_WIND_ORDREL); 7443 7444 case TCPS_CLOSING: 7445 case TCPS_LAST_ACK: 7446 case TCPS_TIME_WAIT: 7447 case TCPS_CLOSED: 7448 /* 7449 * Following TS_WACK_DREQ7 is a rendition of "not 7450 * yet TS_IDLE" TPI state. There is no best match to any 7451 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7452 * choose a value chosen that will map to TLI/XTI level 7453 * state of TSTATECHNG (state is process of changing) which 7454 * captures what this dummy state represents. 7455 */ 7456 return (TS_WACK_DREQ7); 7457 default: 7458 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7459 tcp->tcp_state, tcp_display(tcp, NULL, 7460 DISP_PORT_ONLY)); 7461 return (TS_UNBND); 7462 } 7463 } 7464 7465 static void 7466 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7467 { 7468 if (tcp->tcp_family == AF_INET6) 7469 *tia = tcp_g_t_info_ack_v6; 7470 else 7471 *tia = tcp_g_t_info_ack; 7472 tia->CURRENT_state = tcp_tpistate(tcp); 7473 tia->OPT_size = tcp_max_optsize; 7474 if (tcp->tcp_mss == 0) { 7475 /* Not yet set - tcp_open does not set mss */ 7476 if (tcp->tcp_ipversion == IPV4_VERSION) 7477 tia->TIDU_size = tcp_mss_def_ipv4; 7478 else 7479 tia->TIDU_size = tcp_mss_def_ipv6; 7480 } else { 7481 tia->TIDU_size = tcp->tcp_mss; 7482 } 7483 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7484 } 7485 7486 /* 7487 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7488 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7489 * tcp_g_t_info_ack. The current state of the stream is copied from 7490 * tcp_state. 7491 */ 7492 static void 7493 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7494 { 7495 t_uscalar_t cap_bits1; 7496 struct T_capability_ack *tcap; 7497 7498 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7499 freemsg(mp); 7500 return; 7501 } 7502 7503 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7504 7505 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7506 mp->b_datap->db_type, T_CAPABILITY_ACK); 7507 if (mp == NULL) 7508 return; 7509 7510 tcap = (struct T_capability_ack *)mp->b_rptr; 7511 tcap->CAP_bits1 = 0; 7512 7513 if (cap_bits1 & TC1_INFO) { 7514 tcp_copy_info(&tcap->INFO_ack, tcp); 7515 tcap->CAP_bits1 |= TC1_INFO; 7516 } 7517 7518 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7519 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7520 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7521 } 7522 7523 putnext(tcp->tcp_rq, mp); 7524 } 7525 7526 /* 7527 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7528 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7529 * The current state of the stream is copied from tcp_state. 7530 */ 7531 static void 7532 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7533 { 7534 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7535 T_INFO_ACK); 7536 if (!mp) { 7537 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7538 return; 7539 } 7540 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7541 putnext(tcp->tcp_rq, mp); 7542 } 7543 7544 /* Respond to the TPI addr request */ 7545 static void 7546 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7547 { 7548 sin_t *sin; 7549 mblk_t *ackmp; 7550 struct T_addr_ack *taa; 7551 7552 /* Make it large enough for worst case */ 7553 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7554 2 * sizeof (sin6_t), 1); 7555 if (ackmp == NULL) { 7556 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7557 return; 7558 } 7559 7560 if (tcp->tcp_ipversion == IPV6_VERSION) { 7561 tcp_addr_req_ipv6(tcp, ackmp); 7562 return; 7563 } 7564 taa = (struct T_addr_ack *)ackmp->b_rptr; 7565 7566 bzero(taa, sizeof (struct T_addr_ack)); 7567 ackmp->b_wptr = (uchar_t *)&taa[1]; 7568 7569 taa->PRIM_type = T_ADDR_ACK; 7570 ackmp->b_datap->db_type = M_PCPROTO; 7571 7572 /* 7573 * Note: Following code assumes 32 bit alignment of basic 7574 * data structures like sin_t and struct T_addr_ack. 7575 */ 7576 if (tcp->tcp_state >= TCPS_BOUND) { 7577 /* 7578 * Fill in local address 7579 */ 7580 taa->LOCADDR_length = sizeof (sin_t); 7581 taa->LOCADDR_offset = sizeof (*taa); 7582 7583 sin = (sin_t *)&taa[1]; 7584 7585 /* Fill zeroes and then intialize non-zero fields */ 7586 *sin = sin_null; 7587 7588 sin->sin_family = AF_INET; 7589 7590 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7591 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7592 7593 ackmp->b_wptr = (uchar_t *)&sin[1]; 7594 7595 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7596 /* 7597 * Fill in Remote address 7598 */ 7599 taa->REMADDR_length = sizeof (sin_t); 7600 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7601 taa->LOCADDR_length); 7602 7603 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7604 *sin = sin_null; 7605 sin->sin_family = AF_INET; 7606 sin->sin_addr.s_addr = tcp->tcp_remote; 7607 sin->sin_port = tcp->tcp_fport; 7608 7609 ackmp->b_wptr = (uchar_t *)&sin[1]; 7610 } 7611 } 7612 putnext(tcp->tcp_rq, ackmp); 7613 } 7614 7615 /* Assumes that tcp_addr_req gets enough space and alignment */ 7616 static void 7617 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7618 { 7619 sin6_t *sin6; 7620 struct T_addr_ack *taa; 7621 7622 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7623 ASSERT(OK_32PTR(ackmp->b_rptr)); 7624 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7625 2 * sizeof (sin6_t)); 7626 7627 taa = (struct T_addr_ack *)ackmp->b_rptr; 7628 7629 bzero(taa, sizeof (struct T_addr_ack)); 7630 ackmp->b_wptr = (uchar_t *)&taa[1]; 7631 7632 taa->PRIM_type = T_ADDR_ACK; 7633 ackmp->b_datap->db_type = M_PCPROTO; 7634 7635 /* 7636 * Note: Following code assumes 32 bit alignment of basic 7637 * data structures like sin6_t and struct T_addr_ack. 7638 */ 7639 if (tcp->tcp_state >= TCPS_BOUND) { 7640 /* 7641 * Fill in local address 7642 */ 7643 taa->LOCADDR_length = sizeof (sin6_t); 7644 taa->LOCADDR_offset = sizeof (*taa); 7645 7646 sin6 = (sin6_t *)&taa[1]; 7647 *sin6 = sin6_null; 7648 7649 sin6->sin6_family = AF_INET6; 7650 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7651 sin6->sin6_port = tcp->tcp_lport; 7652 7653 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7654 7655 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7656 /* 7657 * Fill in Remote address 7658 */ 7659 taa->REMADDR_length = sizeof (sin6_t); 7660 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7661 taa->LOCADDR_length); 7662 7663 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7664 *sin6 = sin6_null; 7665 sin6->sin6_family = AF_INET6; 7666 sin6->sin6_flowinfo = 7667 tcp->tcp_ip6h->ip6_vcf & 7668 ~IPV6_VERS_AND_FLOW_MASK; 7669 sin6->sin6_addr = tcp->tcp_remote_v6; 7670 sin6->sin6_port = tcp->tcp_fport; 7671 7672 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7673 } 7674 } 7675 putnext(tcp->tcp_rq, ackmp); 7676 } 7677 7678 /* 7679 * Handle reinitialization of a tcp structure. 7680 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7681 */ 7682 static void 7683 tcp_reinit(tcp_t *tcp) 7684 { 7685 mblk_t *mp; 7686 int err; 7687 7688 TCP_STAT(tcp_reinit_calls); 7689 7690 /* tcp_reinit should never be called for detached tcp_t's */ 7691 ASSERT(tcp->tcp_listener == NULL); 7692 ASSERT((tcp->tcp_family == AF_INET && 7693 tcp->tcp_ipversion == IPV4_VERSION) || 7694 (tcp->tcp_family == AF_INET6 && 7695 (tcp->tcp_ipversion == IPV4_VERSION || 7696 tcp->tcp_ipversion == IPV6_VERSION))); 7697 7698 /* Cancel outstanding timers */ 7699 tcp_timers_stop(tcp); 7700 7701 /* 7702 * Reset everything in the state vector, after updating global 7703 * MIB data from instance counters. 7704 */ 7705 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7706 tcp->tcp_ibsegs = 0; 7707 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7708 tcp->tcp_obsegs = 0; 7709 7710 tcp_close_mpp(&tcp->tcp_xmit_head); 7711 if (tcp->tcp_snd_zcopy_aware) 7712 tcp_zcopy_notify(tcp); 7713 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7714 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7715 if (tcp->tcp_flow_stopped && 7716 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7717 tcp_clrqfull(tcp); 7718 } 7719 tcp_close_mpp(&tcp->tcp_reass_head); 7720 tcp->tcp_reass_tail = NULL; 7721 if (tcp->tcp_rcv_list != NULL) { 7722 /* Free b_next chain */ 7723 tcp_close_mpp(&tcp->tcp_rcv_list); 7724 tcp->tcp_rcv_last_head = NULL; 7725 tcp->tcp_rcv_last_tail = NULL; 7726 tcp->tcp_rcv_cnt = 0; 7727 } 7728 tcp->tcp_rcv_last_tail = NULL; 7729 7730 if ((mp = tcp->tcp_urp_mp) != NULL) { 7731 freemsg(mp); 7732 tcp->tcp_urp_mp = NULL; 7733 } 7734 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7735 freemsg(mp); 7736 tcp->tcp_urp_mark_mp = NULL; 7737 } 7738 if (tcp->tcp_fused_sigurg_mp != NULL) { 7739 freeb(tcp->tcp_fused_sigurg_mp); 7740 tcp->tcp_fused_sigurg_mp = NULL; 7741 } 7742 7743 /* 7744 * Following is a union with two members which are 7745 * identical types and size so the following cleanup 7746 * is enough. 7747 */ 7748 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7749 7750 CL_INET_DISCONNECT(tcp); 7751 7752 /* 7753 * The connection can't be on the tcp_time_wait_head list 7754 * since it is not detached. 7755 */ 7756 ASSERT(tcp->tcp_time_wait_next == NULL); 7757 ASSERT(tcp->tcp_time_wait_prev == NULL); 7758 ASSERT(tcp->tcp_time_wait_expire == 0); 7759 7760 if (tcp->tcp_kssl_pending) { 7761 tcp->tcp_kssl_pending = B_FALSE; 7762 7763 /* Don't reset if the initialized by bind. */ 7764 if (tcp->tcp_kssl_ent != NULL) { 7765 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7766 KSSL_NO_PROXY); 7767 } 7768 } 7769 if (tcp->tcp_kssl_ctx != NULL) { 7770 kssl_release_ctx(tcp->tcp_kssl_ctx); 7771 tcp->tcp_kssl_ctx = NULL; 7772 } 7773 7774 /* 7775 * Reset/preserve other values 7776 */ 7777 tcp_reinit_values(tcp); 7778 ipcl_hash_remove(tcp->tcp_connp); 7779 conn_delete_ire(tcp->tcp_connp, NULL); 7780 7781 if (tcp->tcp_conn_req_max != 0) { 7782 /* 7783 * This is the case when a TLI program uses the same 7784 * transport end point to accept a connection. This 7785 * makes the TCP both a listener and acceptor. When 7786 * this connection is closed, we need to set the state 7787 * back to TCPS_LISTEN. Make sure that the eager list 7788 * is reinitialized. 7789 * 7790 * Note that this stream is still bound to the four 7791 * tuples of the previous connection in IP. If a new 7792 * SYN with different foreign address comes in, IP will 7793 * not find it and will send it to the global queue. In 7794 * the global queue, TCP will do a tcp_lookup_listener() 7795 * to find this stream. This works because this stream 7796 * is only removed from connected hash. 7797 * 7798 */ 7799 tcp->tcp_state = TCPS_LISTEN; 7800 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7801 tcp->tcp_eager_next_drop_q0 = tcp; 7802 tcp->tcp_eager_prev_drop_q0 = tcp; 7803 tcp->tcp_connp->conn_recv = tcp_conn_request; 7804 if (tcp->tcp_family == AF_INET6) { 7805 ASSERT(tcp->tcp_connp->conn_af_isv6); 7806 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7807 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7808 } else { 7809 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7810 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7811 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7812 } 7813 } else { 7814 tcp->tcp_state = TCPS_BOUND; 7815 } 7816 7817 /* 7818 * Initialize to default values 7819 * Can't fail since enough header template space already allocated 7820 * at open(). 7821 */ 7822 err = tcp_init_values(tcp); 7823 ASSERT(err == 0); 7824 /* Restore state in tcp_tcph */ 7825 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7826 if (tcp->tcp_ipversion == IPV4_VERSION) 7827 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7828 else 7829 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7830 /* 7831 * Copy of the src addr. in tcp_t is needed in tcp_t 7832 * since the lookup funcs can only lookup on tcp_t 7833 */ 7834 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7835 7836 ASSERT(tcp->tcp_ptpbhn != NULL); 7837 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7838 tcp->tcp_rwnd = tcp_recv_hiwat; 7839 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7840 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7841 } 7842 7843 /* 7844 * Force values to zero that need be zero. 7845 * Do not touch values asociated with the BOUND or LISTEN state 7846 * since the connection will end up in that state after the reinit. 7847 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7848 * structure! 7849 */ 7850 static void 7851 tcp_reinit_values(tcp) 7852 tcp_t *tcp; 7853 { 7854 #ifndef lint 7855 #define DONTCARE(x) 7856 #define PRESERVE(x) 7857 #else 7858 #define DONTCARE(x) ((x) = (x)) 7859 #define PRESERVE(x) ((x) = (x)) 7860 #endif /* lint */ 7861 7862 PRESERVE(tcp->tcp_bind_hash); 7863 PRESERVE(tcp->tcp_ptpbhn); 7864 PRESERVE(tcp->tcp_acceptor_hash); 7865 PRESERVE(tcp->tcp_ptpahn); 7866 7867 /* Should be ASSERT NULL on these with new code! */ 7868 ASSERT(tcp->tcp_time_wait_next == NULL); 7869 ASSERT(tcp->tcp_time_wait_prev == NULL); 7870 ASSERT(tcp->tcp_time_wait_expire == 0); 7871 PRESERVE(tcp->tcp_state); 7872 PRESERVE(tcp->tcp_rq); 7873 PRESERVE(tcp->tcp_wq); 7874 7875 ASSERT(tcp->tcp_xmit_head == NULL); 7876 ASSERT(tcp->tcp_xmit_last == NULL); 7877 ASSERT(tcp->tcp_unsent == 0); 7878 ASSERT(tcp->tcp_xmit_tail == NULL); 7879 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7880 7881 tcp->tcp_snxt = 0; /* Displayed in mib */ 7882 tcp->tcp_suna = 0; /* Displayed in mib */ 7883 tcp->tcp_swnd = 0; 7884 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7885 7886 ASSERT(tcp->tcp_ibsegs == 0); 7887 ASSERT(tcp->tcp_obsegs == 0); 7888 7889 if (tcp->tcp_iphc != NULL) { 7890 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7891 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7892 } 7893 7894 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7895 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7896 DONTCARE(tcp->tcp_ipha); 7897 DONTCARE(tcp->tcp_ip6h); 7898 DONTCARE(tcp->tcp_ip_hdr_len); 7899 DONTCARE(tcp->tcp_tcph); 7900 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7901 tcp->tcp_valid_bits = 0; 7902 7903 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7904 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7905 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7906 tcp->tcp_last_rcv_lbolt = 0; 7907 7908 tcp->tcp_init_cwnd = 0; 7909 7910 tcp->tcp_urp_last_valid = 0; 7911 tcp->tcp_hard_binding = 0; 7912 tcp->tcp_hard_bound = 0; 7913 PRESERVE(tcp->tcp_cred); 7914 PRESERVE(tcp->tcp_cpid); 7915 PRESERVE(tcp->tcp_exclbind); 7916 7917 tcp->tcp_fin_acked = 0; 7918 tcp->tcp_fin_rcvd = 0; 7919 tcp->tcp_fin_sent = 0; 7920 tcp->tcp_ordrel_done = 0; 7921 7922 tcp->tcp_debug = 0; 7923 tcp->tcp_dontroute = 0; 7924 tcp->tcp_broadcast = 0; 7925 7926 tcp->tcp_useloopback = 0; 7927 tcp->tcp_reuseaddr = 0; 7928 tcp->tcp_oobinline = 0; 7929 tcp->tcp_dgram_errind = 0; 7930 7931 tcp->tcp_detached = 0; 7932 tcp->tcp_bind_pending = 0; 7933 tcp->tcp_unbind_pending = 0; 7934 tcp->tcp_deferred_clean_death = 0; 7935 7936 tcp->tcp_snd_ws_ok = B_FALSE; 7937 tcp->tcp_snd_ts_ok = B_FALSE; 7938 tcp->tcp_linger = 0; 7939 tcp->tcp_ka_enabled = 0; 7940 tcp->tcp_zero_win_probe = 0; 7941 7942 tcp->tcp_loopback = 0; 7943 tcp->tcp_localnet = 0; 7944 tcp->tcp_syn_defense = 0; 7945 tcp->tcp_set_timer = 0; 7946 7947 tcp->tcp_active_open = 0; 7948 ASSERT(tcp->tcp_timeout == B_FALSE); 7949 tcp->tcp_rexmit = B_FALSE; 7950 tcp->tcp_xmit_zc_clean = B_FALSE; 7951 7952 tcp->tcp_snd_sack_ok = B_FALSE; 7953 PRESERVE(tcp->tcp_recvdstaddr); 7954 tcp->tcp_hwcksum = B_FALSE; 7955 7956 tcp->tcp_ire_ill_check_done = B_FALSE; 7957 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7958 7959 tcp->tcp_mdt = B_FALSE; 7960 tcp->tcp_mdt_hdr_head = 0; 7961 tcp->tcp_mdt_hdr_tail = 0; 7962 7963 tcp->tcp_conn_def_q0 = 0; 7964 tcp->tcp_ip_forward_progress = B_FALSE; 7965 tcp->tcp_anon_priv_bind = 0; 7966 tcp->tcp_ecn_ok = B_FALSE; 7967 7968 tcp->tcp_cwr = B_FALSE; 7969 tcp->tcp_ecn_echo_on = B_FALSE; 7970 7971 if (tcp->tcp_sack_info != NULL) { 7972 if (tcp->tcp_notsack_list != NULL) { 7973 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7974 } 7975 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7976 tcp->tcp_sack_info = NULL; 7977 } 7978 7979 tcp->tcp_rcv_ws = 0; 7980 tcp->tcp_snd_ws = 0; 7981 tcp->tcp_ts_recent = 0; 7982 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7983 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7984 tcp->tcp_if_mtu = 0; 7985 7986 ASSERT(tcp->tcp_reass_head == NULL); 7987 ASSERT(tcp->tcp_reass_tail == NULL); 7988 7989 tcp->tcp_cwnd_cnt = 0; 7990 7991 ASSERT(tcp->tcp_rcv_list == NULL); 7992 ASSERT(tcp->tcp_rcv_last_head == NULL); 7993 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7994 ASSERT(tcp->tcp_rcv_cnt == 0); 7995 7996 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7997 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7998 tcp->tcp_csuna = 0; 7999 8000 tcp->tcp_rto = 0; /* Displayed in MIB */ 8001 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8002 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8003 tcp->tcp_rtt_update = 0; 8004 8005 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8006 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8007 8008 tcp->tcp_rack = 0; /* Displayed in mib */ 8009 tcp->tcp_rack_cnt = 0; 8010 tcp->tcp_rack_cur_max = 0; 8011 tcp->tcp_rack_abs_max = 0; 8012 8013 tcp->tcp_max_swnd = 0; 8014 8015 ASSERT(tcp->tcp_listener == NULL); 8016 8017 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8018 8019 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8020 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8021 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8022 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8023 8024 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8025 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8026 PRESERVE(tcp->tcp_conn_req_max); 8027 PRESERVE(tcp->tcp_conn_req_seqnum); 8028 8029 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8030 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8031 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8032 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8033 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8034 8035 tcp->tcp_lingertime = 0; 8036 8037 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8038 ASSERT(tcp->tcp_urp_mp == NULL); 8039 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8040 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8041 8042 ASSERT(tcp->tcp_eager_next_q == NULL); 8043 ASSERT(tcp->tcp_eager_last_q == NULL); 8044 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8045 tcp->tcp_eager_prev_q0 == NULL) || 8046 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8047 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8048 8049 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8050 tcp->tcp_eager_prev_drop_q0 == NULL) || 8051 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8052 8053 tcp->tcp_client_errno = 0; 8054 8055 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8056 8057 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8058 8059 PRESERVE(tcp->tcp_bound_source_v6); 8060 tcp->tcp_last_sent_len = 0; 8061 tcp->tcp_dupack_cnt = 0; 8062 8063 tcp->tcp_fport = 0; /* Displayed in MIB */ 8064 PRESERVE(tcp->tcp_lport); 8065 8066 PRESERVE(tcp->tcp_acceptor_lockp); 8067 8068 ASSERT(tcp->tcp_ordrelid == 0); 8069 PRESERVE(tcp->tcp_acceptor_id); 8070 DONTCARE(tcp->tcp_ipsec_overhead); 8071 8072 /* 8073 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8074 * in tcp structure and now tracing), Re-initialize all 8075 * members of tcp_traceinfo. 8076 */ 8077 if (tcp->tcp_tracebuf != NULL) { 8078 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8079 } 8080 8081 PRESERVE(tcp->tcp_family); 8082 if (tcp->tcp_family == AF_INET6) { 8083 tcp->tcp_ipversion = IPV6_VERSION; 8084 tcp->tcp_mss = tcp_mss_def_ipv6; 8085 } else { 8086 tcp->tcp_ipversion = IPV4_VERSION; 8087 tcp->tcp_mss = tcp_mss_def_ipv4; 8088 } 8089 8090 tcp->tcp_bound_if = 0; 8091 tcp->tcp_ipv6_recvancillary = 0; 8092 tcp->tcp_recvifindex = 0; 8093 tcp->tcp_recvhops = 0; 8094 tcp->tcp_closed = 0; 8095 tcp->tcp_cleandeathtag = 0; 8096 if (tcp->tcp_hopopts != NULL) { 8097 mi_free(tcp->tcp_hopopts); 8098 tcp->tcp_hopopts = NULL; 8099 tcp->tcp_hopoptslen = 0; 8100 } 8101 ASSERT(tcp->tcp_hopoptslen == 0); 8102 if (tcp->tcp_dstopts != NULL) { 8103 mi_free(tcp->tcp_dstopts); 8104 tcp->tcp_dstopts = NULL; 8105 tcp->tcp_dstoptslen = 0; 8106 } 8107 ASSERT(tcp->tcp_dstoptslen == 0); 8108 if (tcp->tcp_rtdstopts != NULL) { 8109 mi_free(tcp->tcp_rtdstopts); 8110 tcp->tcp_rtdstopts = NULL; 8111 tcp->tcp_rtdstoptslen = 0; 8112 } 8113 ASSERT(tcp->tcp_rtdstoptslen == 0); 8114 if (tcp->tcp_rthdr != NULL) { 8115 mi_free(tcp->tcp_rthdr); 8116 tcp->tcp_rthdr = NULL; 8117 tcp->tcp_rthdrlen = 0; 8118 } 8119 ASSERT(tcp->tcp_rthdrlen == 0); 8120 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8121 8122 /* Reset fusion-related fields */ 8123 tcp->tcp_fused = B_FALSE; 8124 tcp->tcp_unfusable = B_FALSE; 8125 tcp->tcp_fused_sigurg = B_FALSE; 8126 tcp->tcp_direct_sockfs = B_FALSE; 8127 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8128 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8129 tcp->tcp_loopback_peer = NULL; 8130 tcp->tcp_fuse_rcv_hiwater = 0; 8131 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8132 tcp->tcp_fuse_rcv_unread_cnt = 0; 8133 8134 tcp->tcp_lso = B_FALSE; 8135 8136 tcp->tcp_in_ack_unsent = 0; 8137 tcp->tcp_cork = B_FALSE; 8138 tcp->tcp_tconnind_started = B_FALSE; 8139 8140 PRESERVE(tcp->tcp_squeue_bytes); 8141 8142 ASSERT(tcp->tcp_kssl_ctx == NULL); 8143 ASSERT(!tcp->tcp_kssl_pending); 8144 PRESERVE(tcp->tcp_kssl_ent); 8145 8146 tcp->tcp_closemp_used = 0; 8147 8148 #ifdef DEBUG 8149 DONTCARE(tcp->tcmp_stk[0]); 8150 #endif 8151 8152 8153 #undef DONTCARE 8154 #undef PRESERVE 8155 } 8156 8157 /* 8158 * Allocate necessary resources and initialize state vector. 8159 * Guaranteed not to fail so that when an error is returned, 8160 * the caller doesn't need to do any additional cleanup. 8161 */ 8162 int 8163 tcp_init(tcp_t *tcp, queue_t *q) 8164 { 8165 int err; 8166 8167 tcp->tcp_rq = q; 8168 tcp->tcp_wq = WR(q); 8169 tcp->tcp_state = TCPS_IDLE; 8170 if ((err = tcp_init_values(tcp)) != 0) 8171 tcp_timers_stop(tcp); 8172 return (err); 8173 } 8174 8175 static int 8176 tcp_init_values(tcp_t *tcp) 8177 { 8178 int err; 8179 8180 ASSERT((tcp->tcp_family == AF_INET && 8181 tcp->tcp_ipversion == IPV4_VERSION) || 8182 (tcp->tcp_family == AF_INET6 && 8183 (tcp->tcp_ipversion == IPV4_VERSION || 8184 tcp->tcp_ipversion == IPV6_VERSION))); 8185 8186 /* 8187 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8188 * will be close to tcp_rexmit_interval_initial. By doing this, we 8189 * allow the algorithm to adjust slowly to large fluctuations of RTT 8190 * during first few transmissions of a connection as seen in slow 8191 * links. 8192 */ 8193 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 8194 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 8195 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8196 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8197 tcp_conn_grace_period; 8198 if (tcp->tcp_rto < tcp_rexmit_interval_min) 8199 tcp->tcp_rto = tcp_rexmit_interval_min; 8200 tcp->tcp_timer_backoff = 0; 8201 tcp->tcp_ms_we_have_waited = 0; 8202 tcp->tcp_last_recv_time = lbolt; 8203 tcp->tcp_cwnd_max = tcp_cwnd_max_; 8204 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8205 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8206 8207 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 8208 8209 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 8210 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 8211 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 8212 /* 8213 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8214 * passive open. 8215 */ 8216 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 8217 8218 tcp->tcp_naglim = tcp_naglim_def; 8219 8220 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8221 8222 tcp->tcp_mdt_hdr_head = 0; 8223 tcp->tcp_mdt_hdr_tail = 0; 8224 8225 /* Reset fusion-related fields */ 8226 tcp->tcp_fused = B_FALSE; 8227 tcp->tcp_unfusable = B_FALSE; 8228 tcp->tcp_fused_sigurg = B_FALSE; 8229 tcp->tcp_direct_sockfs = B_FALSE; 8230 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8231 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8232 tcp->tcp_loopback_peer = NULL; 8233 tcp->tcp_fuse_rcv_hiwater = 0; 8234 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8235 tcp->tcp_fuse_rcv_unread_cnt = 0; 8236 8237 /* Initialize the header template */ 8238 if (tcp->tcp_ipversion == IPV4_VERSION) { 8239 err = tcp_header_init_ipv4(tcp); 8240 } else { 8241 err = tcp_header_init_ipv6(tcp); 8242 } 8243 if (err) 8244 return (err); 8245 8246 /* 8247 * Init the window scale to the max so tcp_rwnd_set() won't pare 8248 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8249 */ 8250 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8251 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8252 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8253 8254 tcp->tcp_cork = B_FALSE; 8255 /* 8256 * Init the tcp_debug option. This value determines whether TCP 8257 * calls strlog() to print out debug messages. Doing this 8258 * initialization here means that this value is not inherited thru 8259 * tcp_reinit(). 8260 */ 8261 tcp->tcp_debug = tcp_dbg; 8262 8263 tcp->tcp_ka_interval = tcp_keepalive_interval; 8264 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8265 8266 return (0); 8267 } 8268 8269 /* 8270 * Initialize the IPv4 header. Loses any record of any IP options. 8271 */ 8272 static int 8273 tcp_header_init_ipv4(tcp_t *tcp) 8274 { 8275 tcph_t *tcph; 8276 uint32_t sum; 8277 conn_t *connp; 8278 8279 /* 8280 * This is a simple initialization. If there's 8281 * already a template, it should never be too small, 8282 * so reuse it. Otherwise, allocate space for the new one. 8283 */ 8284 if (tcp->tcp_iphc == NULL) { 8285 ASSERT(tcp->tcp_iphc_len == 0); 8286 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8287 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8288 if (tcp->tcp_iphc == NULL) { 8289 tcp->tcp_iphc_len = 0; 8290 return (ENOMEM); 8291 } 8292 } 8293 8294 /* options are gone; may need a new label */ 8295 connp = tcp->tcp_connp; 8296 connp->conn_mlp_type = mlptSingle; 8297 connp->conn_ulp_labeled = !is_system_labeled(); 8298 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8299 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8300 tcp->tcp_ip6h = NULL; 8301 tcp->tcp_ipversion = IPV4_VERSION; 8302 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8303 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8304 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8305 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8306 tcp->tcp_ipha->ipha_version_and_hdr_length 8307 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8308 tcp->tcp_ipha->ipha_ident = 0; 8309 8310 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8311 tcp->tcp_tos = 0; 8312 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8313 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8314 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8315 8316 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8317 tcp->tcp_tcph = tcph; 8318 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8319 /* 8320 * IP wants our header length in the checksum field to 8321 * allow it to perform a single pseudo-header+checksum 8322 * calculation on behalf of TCP. 8323 * Include the adjustment for a source route once IP_OPTIONS is set. 8324 */ 8325 sum = sizeof (tcph_t) + tcp->tcp_sum; 8326 sum = (sum >> 16) + (sum & 0xFFFF); 8327 U16_TO_ABE16(sum, tcph->th_sum); 8328 return (0); 8329 } 8330 8331 /* 8332 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8333 */ 8334 static int 8335 tcp_header_init_ipv6(tcp_t *tcp) 8336 { 8337 tcph_t *tcph; 8338 uint32_t sum; 8339 conn_t *connp; 8340 8341 /* 8342 * This is a simple initialization. If there's 8343 * already a template, it should never be too small, 8344 * so reuse it. Otherwise, allocate space for the new one. 8345 * Ensure that there is enough space to "downgrade" the tcp_t 8346 * to an IPv4 tcp_t. This requires having space for a full load 8347 * of IPv4 options, as well as a full load of TCP options 8348 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8349 * than a v6 header and a TCP header with a full load of TCP options 8350 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8351 * We want to avoid reallocation in the "downgraded" case when 8352 * processing outbound IPv4 options. 8353 */ 8354 if (tcp->tcp_iphc == NULL) { 8355 ASSERT(tcp->tcp_iphc_len == 0); 8356 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8357 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8358 if (tcp->tcp_iphc == NULL) { 8359 tcp->tcp_iphc_len = 0; 8360 return (ENOMEM); 8361 } 8362 } 8363 8364 /* options are gone; may need a new label */ 8365 connp = tcp->tcp_connp; 8366 connp->conn_mlp_type = mlptSingle; 8367 connp->conn_ulp_labeled = !is_system_labeled(); 8368 8369 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8370 tcp->tcp_ipversion = IPV6_VERSION; 8371 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8372 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8373 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8374 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8375 tcp->tcp_ipha = NULL; 8376 8377 /* Initialize the header template */ 8378 8379 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8380 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8381 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8382 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8383 8384 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8385 tcp->tcp_tcph = tcph; 8386 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8387 /* 8388 * IP wants our header length in the checksum field to 8389 * allow it to perform a single psuedo-header+checksum 8390 * calculation on behalf of TCP. 8391 * Include the adjustment for a source route when IPV6_RTHDR is set. 8392 */ 8393 sum = sizeof (tcph_t) + tcp->tcp_sum; 8394 sum = (sum >> 16) + (sum & 0xFFFF); 8395 U16_TO_ABE16(sum, tcph->th_sum); 8396 return (0); 8397 } 8398 8399 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8400 #define ICMP_MIN_TCP_HDR 8 8401 8402 /* 8403 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8404 * passed up by IP. The message is always received on the correct tcp_t. 8405 * Assumes that IP has pulled up everything up to and including the ICMP header. 8406 */ 8407 void 8408 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8409 { 8410 icmph_t *icmph; 8411 ipha_t *ipha; 8412 int iph_hdr_length; 8413 tcph_t *tcph; 8414 boolean_t ipsec_mctl = B_FALSE; 8415 boolean_t secure; 8416 mblk_t *first_mp = mp; 8417 uint32_t new_mss; 8418 uint32_t ratio; 8419 size_t mp_size = MBLKL(mp); 8420 uint32_t seg_seq; 8421 8422 /* Assume IP provides aligned packets - otherwise toss */ 8423 if (!OK_32PTR(mp->b_rptr)) { 8424 freemsg(mp); 8425 return; 8426 } 8427 8428 /* 8429 * Since ICMP errors are normal data marked with M_CTL when sent 8430 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8431 * packets starting with an ipsec_info_t, see ipsec_info.h. 8432 */ 8433 if ((mp_size == sizeof (ipsec_info_t)) && 8434 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8435 ASSERT(mp->b_cont != NULL); 8436 mp = mp->b_cont; 8437 /* IP should have done this */ 8438 ASSERT(OK_32PTR(mp->b_rptr)); 8439 mp_size = MBLKL(mp); 8440 ipsec_mctl = B_TRUE; 8441 } 8442 8443 /* 8444 * Verify that we have a complete outer IP header. If not, drop it. 8445 */ 8446 if (mp_size < sizeof (ipha_t)) { 8447 noticmpv4: 8448 freemsg(first_mp); 8449 return; 8450 } 8451 8452 ipha = (ipha_t *)mp->b_rptr; 8453 /* 8454 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8455 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8456 */ 8457 switch (IPH_HDR_VERSION(ipha)) { 8458 case IPV6_VERSION: 8459 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8460 return; 8461 case IPV4_VERSION: 8462 break; 8463 default: 8464 goto noticmpv4; 8465 } 8466 8467 /* Skip past the outer IP and ICMP headers */ 8468 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8469 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8470 /* 8471 * If we don't have the correct outer IP header length or if the ULP 8472 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8473 * send it upstream. 8474 */ 8475 if (iph_hdr_length < sizeof (ipha_t) || 8476 ipha->ipha_protocol != IPPROTO_ICMP || 8477 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8478 goto noticmpv4; 8479 } 8480 ipha = (ipha_t *)&icmph[1]; 8481 8482 /* Skip past the inner IP and find the ULP header */ 8483 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8484 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8485 /* 8486 * If we don't have the correct inner IP header length or if the ULP 8487 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8488 * bytes of TCP header, drop it. 8489 */ 8490 if (iph_hdr_length < sizeof (ipha_t) || 8491 ipha->ipha_protocol != IPPROTO_TCP || 8492 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8493 goto noticmpv4; 8494 } 8495 8496 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8497 if (ipsec_mctl) { 8498 secure = ipsec_in_is_secure(first_mp); 8499 } else { 8500 secure = B_FALSE; 8501 } 8502 if (secure) { 8503 /* 8504 * If we are willing to accept this in clear 8505 * we don't have to verify policy. 8506 */ 8507 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8508 if (!tcp_check_policy(tcp, first_mp, 8509 ipha, NULL, secure, ipsec_mctl)) { 8510 /* 8511 * tcp_check_policy called 8512 * ip_drop_packet() on failure. 8513 */ 8514 return; 8515 } 8516 } 8517 } 8518 } else if (ipsec_mctl) { 8519 /* 8520 * This is a hard_bound connection. IP has already 8521 * verified policy. We don't have to do it again. 8522 */ 8523 freeb(first_mp); 8524 first_mp = mp; 8525 ipsec_mctl = B_FALSE; 8526 } 8527 8528 seg_seq = ABE32_TO_U32(tcph->th_seq); 8529 /* 8530 * TCP SHOULD check that the TCP sequence number contained in 8531 * payload of the ICMP error message is within the range 8532 * SND.UNA <= SEG.SEQ < SND.NXT. 8533 */ 8534 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8535 /* 8536 * If the ICMP message is bogus, should we kill the 8537 * connection, or should we just drop the bogus ICMP 8538 * message? It would probably make more sense to just 8539 * drop the message so that if this one managed to get 8540 * in, the real connection should not suffer. 8541 */ 8542 goto noticmpv4; 8543 } 8544 8545 switch (icmph->icmph_type) { 8546 case ICMP_DEST_UNREACHABLE: 8547 switch (icmph->icmph_code) { 8548 case ICMP_FRAGMENTATION_NEEDED: 8549 /* 8550 * Reduce the MSS based on the new MTU. This will 8551 * eliminate any fragmentation locally. 8552 * N.B. There may well be some funny side-effects on 8553 * the local send policy and the remote receive policy. 8554 * Pending further research, we provide 8555 * tcp_ignore_path_mtu just in case this proves 8556 * disastrous somewhere. 8557 * 8558 * After updating the MSS, retransmit part of the 8559 * dropped segment using the new mss by calling 8560 * tcp_wput_data(). Need to adjust all those 8561 * params to make sure tcp_wput_data() work properly. 8562 */ 8563 if (tcp_ignore_path_mtu) 8564 break; 8565 8566 /* 8567 * Decrease the MSS by time stamp options 8568 * IP options and IPSEC options. tcp_hdr_len 8569 * includes time stamp option and IP option 8570 * length. 8571 */ 8572 8573 new_mss = ntohs(icmph->icmph_du_mtu) - 8574 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8575 8576 /* 8577 * Only update the MSS if the new one is 8578 * smaller than the previous one. This is 8579 * to avoid problems when getting multiple 8580 * ICMP errors for the same MTU. 8581 */ 8582 if (new_mss >= tcp->tcp_mss) 8583 break; 8584 8585 /* 8586 * Stop doing PMTU if new_mss is less than 68 8587 * or less than tcp_mss_min. 8588 * The value 68 comes from rfc 1191. 8589 */ 8590 if (new_mss < MAX(68, tcp_mss_min)) 8591 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8592 0; 8593 8594 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8595 ASSERT(ratio >= 1); 8596 tcp_mss_set(tcp, new_mss); 8597 8598 /* 8599 * Make sure we have something to 8600 * send. 8601 */ 8602 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8603 (tcp->tcp_xmit_head != NULL)) { 8604 /* 8605 * Shrink tcp_cwnd in 8606 * proportion to the old MSS/new MSS. 8607 */ 8608 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8609 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8610 (tcp->tcp_unsent == 0)) { 8611 tcp->tcp_rexmit_max = tcp->tcp_fss; 8612 } else { 8613 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8614 } 8615 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8616 tcp->tcp_rexmit = B_TRUE; 8617 tcp->tcp_dupack_cnt = 0; 8618 tcp->tcp_snd_burst = TCP_CWND_SS; 8619 tcp_ss_rexmit(tcp); 8620 } 8621 break; 8622 case ICMP_PORT_UNREACHABLE: 8623 case ICMP_PROTOCOL_UNREACHABLE: 8624 switch (tcp->tcp_state) { 8625 case TCPS_SYN_SENT: 8626 case TCPS_SYN_RCVD: 8627 /* 8628 * ICMP can snipe away incipient 8629 * TCP connections as long as 8630 * seq number is same as initial 8631 * send seq number. 8632 */ 8633 if (seg_seq == tcp->tcp_iss) { 8634 (void) tcp_clean_death(tcp, 8635 ECONNREFUSED, 6); 8636 } 8637 break; 8638 } 8639 break; 8640 case ICMP_HOST_UNREACHABLE: 8641 case ICMP_NET_UNREACHABLE: 8642 /* Record the error in case we finally time out. */ 8643 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8644 tcp->tcp_client_errno = EHOSTUNREACH; 8645 else 8646 tcp->tcp_client_errno = ENETUNREACH; 8647 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8648 if (tcp->tcp_listener != NULL && 8649 tcp->tcp_listener->tcp_syn_defense) { 8650 /* 8651 * Ditch the half-open connection if we 8652 * suspect a SYN attack is under way. 8653 */ 8654 tcp_ip_ire_mark_advice(tcp); 8655 (void) tcp_clean_death(tcp, 8656 tcp->tcp_client_errno, 7); 8657 } 8658 } 8659 break; 8660 default: 8661 break; 8662 } 8663 break; 8664 case ICMP_SOURCE_QUENCH: { 8665 /* 8666 * use a global boolean to control 8667 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8668 * The default is false. 8669 */ 8670 if (tcp_icmp_source_quench) { 8671 /* 8672 * Reduce the sending rate as if we got a 8673 * retransmit timeout 8674 */ 8675 uint32_t npkt; 8676 8677 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8678 tcp->tcp_mss; 8679 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8680 tcp->tcp_cwnd = tcp->tcp_mss; 8681 tcp->tcp_cwnd_cnt = 0; 8682 } 8683 break; 8684 } 8685 } 8686 freemsg(first_mp); 8687 } 8688 8689 /* 8690 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8691 * error messages passed up by IP. 8692 * Assumes that IP has pulled up all the extension headers as well 8693 * as the ICMPv6 header. 8694 */ 8695 static void 8696 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8697 { 8698 icmp6_t *icmp6; 8699 ip6_t *ip6h; 8700 uint16_t iph_hdr_length; 8701 tcpha_t *tcpha; 8702 uint8_t *nexthdrp; 8703 uint32_t new_mss; 8704 uint32_t ratio; 8705 boolean_t secure; 8706 mblk_t *first_mp = mp; 8707 size_t mp_size; 8708 uint32_t seg_seq; 8709 8710 /* 8711 * The caller has determined if this is an IPSEC_IN packet and 8712 * set ipsec_mctl appropriately (see tcp_icmp_error). 8713 */ 8714 if (ipsec_mctl) 8715 mp = mp->b_cont; 8716 8717 mp_size = MBLKL(mp); 8718 8719 /* 8720 * Verify that we have a complete IP header. If not, send it upstream. 8721 */ 8722 if (mp_size < sizeof (ip6_t)) { 8723 noticmpv6: 8724 freemsg(first_mp); 8725 return; 8726 } 8727 8728 /* 8729 * Verify this is an ICMPV6 packet, else send it upstream. 8730 */ 8731 ip6h = (ip6_t *)mp->b_rptr; 8732 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8733 iph_hdr_length = IPV6_HDR_LEN; 8734 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8735 &nexthdrp) || 8736 *nexthdrp != IPPROTO_ICMPV6) { 8737 goto noticmpv6; 8738 } 8739 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8740 ip6h = (ip6_t *)&icmp6[1]; 8741 /* 8742 * Verify if we have a complete ICMP and inner IP header. 8743 */ 8744 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8745 goto noticmpv6; 8746 8747 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8748 goto noticmpv6; 8749 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8750 /* 8751 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8752 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8753 * packet. 8754 */ 8755 if ((*nexthdrp != IPPROTO_TCP) || 8756 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8757 goto noticmpv6; 8758 } 8759 8760 /* 8761 * ICMP errors come on the right queue or come on 8762 * listener/global queue for detached connections and 8763 * get switched to the right queue. If it comes on the 8764 * right queue, policy check has already been done by IP 8765 * and thus free the first_mp without verifying the policy. 8766 * If it has come for a non-hard bound connection, we need 8767 * to verify policy as IP may not have done it. 8768 */ 8769 if (!tcp->tcp_hard_bound) { 8770 if (ipsec_mctl) { 8771 secure = ipsec_in_is_secure(first_mp); 8772 } else { 8773 secure = B_FALSE; 8774 } 8775 if (secure) { 8776 /* 8777 * If we are willing to accept this in clear 8778 * we don't have to verify policy. 8779 */ 8780 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8781 if (!tcp_check_policy(tcp, first_mp, 8782 NULL, ip6h, secure, ipsec_mctl)) { 8783 /* 8784 * tcp_check_policy called 8785 * ip_drop_packet() on failure. 8786 */ 8787 return; 8788 } 8789 } 8790 } 8791 } else if (ipsec_mctl) { 8792 /* 8793 * This is a hard_bound connection. IP has already 8794 * verified policy. We don't have to do it again. 8795 */ 8796 freeb(first_mp); 8797 first_mp = mp; 8798 ipsec_mctl = B_FALSE; 8799 } 8800 8801 seg_seq = ntohl(tcpha->tha_seq); 8802 /* 8803 * TCP SHOULD check that the TCP sequence number contained in 8804 * payload of the ICMP error message is within the range 8805 * SND.UNA <= SEG.SEQ < SND.NXT. 8806 */ 8807 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8808 /* 8809 * If the ICMP message is bogus, should we kill the 8810 * connection, or should we just drop the bogus ICMP 8811 * message? It would probably make more sense to just 8812 * drop the message so that if this one managed to get 8813 * in, the real connection should not suffer. 8814 */ 8815 goto noticmpv6; 8816 } 8817 8818 switch (icmp6->icmp6_type) { 8819 case ICMP6_PACKET_TOO_BIG: 8820 /* 8821 * Reduce the MSS based on the new MTU. This will 8822 * eliminate any fragmentation locally. 8823 * N.B. There may well be some funny side-effects on 8824 * the local send policy and the remote receive policy. 8825 * Pending further research, we provide 8826 * tcp_ignore_path_mtu just in case this proves 8827 * disastrous somewhere. 8828 * 8829 * After updating the MSS, retransmit part of the 8830 * dropped segment using the new mss by calling 8831 * tcp_wput_data(). Need to adjust all those 8832 * params to make sure tcp_wput_data() work properly. 8833 */ 8834 if (tcp_ignore_path_mtu) 8835 break; 8836 8837 /* 8838 * Decrease the MSS by time stamp options 8839 * IP options and IPSEC options. tcp_hdr_len 8840 * includes time stamp option and IP option 8841 * length. 8842 */ 8843 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8844 tcp->tcp_ipsec_overhead; 8845 8846 /* 8847 * Only update the MSS if the new one is 8848 * smaller than the previous one. This is 8849 * to avoid problems when getting multiple 8850 * ICMP errors for the same MTU. 8851 */ 8852 if (new_mss >= tcp->tcp_mss) 8853 break; 8854 8855 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8856 ASSERT(ratio >= 1); 8857 tcp_mss_set(tcp, new_mss); 8858 8859 /* 8860 * Make sure we have something to 8861 * send. 8862 */ 8863 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8864 (tcp->tcp_xmit_head != NULL)) { 8865 /* 8866 * Shrink tcp_cwnd in 8867 * proportion to the old MSS/new MSS. 8868 */ 8869 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8870 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8871 (tcp->tcp_unsent == 0)) { 8872 tcp->tcp_rexmit_max = tcp->tcp_fss; 8873 } else { 8874 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8875 } 8876 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8877 tcp->tcp_rexmit = B_TRUE; 8878 tcp->tcp_dupack_cnt = 0; 8879 tcp->tcp_snd_burst = TCP_CWND_SS; 8880 tcp_ss_rexmit(tcp); 8881 } 8882 break; 8883 8884 case ICMP6_DST_UNREACH: 8885 switch (icmp6->icmp6_code) { 8886 case ICMP6_DST_UNREACH_NOPORT: 8887 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8888 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8889 (seg_seq == tcp->tcp_iss)) { 8890 (void) tcp_clean_death(tcp, 8891 ECONNREFUSED, 8); 8892 } 8893 break; 8894 8895 case ICMP6_DST_UNREACH_ADMIN: 8896 case ICMP6_DST_UNREACH_NOROUTE: 8897 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8898 case ICMP6_DST_UNREACH_ADDR: 8899 /* Record the error in case we finally time out. */ 8900 tcp->tcp_client_errno = EHOSTUNREACH; 8901 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8902 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8903 (seg_seq == tcp->tcp_iss)) { 8904 if (tcp->tcp_listener != NULL && 8905 tcp->tcp_listener->tcp_syn_defense) { 8906 /* 8907 * Ditch the half-open connection if we 8908 * suspect a SYN attack is under way. 8909 */ 8910 tcp_ip_ire_mark_advice(tcp); 8911 (void) tcp_clean_death(tcp, 8912 tcp->tcp_client_errno, 9); 8913 } 8914 } 8915 8916 8917 break; 8918 default: 8919 break; 8920 } 8921 break; 8922 8923 case ICMP6_PARAM_PROB: 8924 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8925 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8926 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8927 (uchar_t *)nexthdrp) { 8928 if (tcp->tcp_state == TCPS_SYN_SENT || 8929 tcp->tcp_state == TCPS_SYN_RCVD) { 8930 (void) tcp_clean_death(tcp, 8931 ECONNREFUSED, 10); 8932 } 8933 break; 8934 } 8935 break; 8936 8937 case ICMP6_TIME_EXCEEDED: 8938 default: 8939 break; 8940 } 8941 freemsg(first_mp); 8942 } 8943 8944 /* 8945 * IP recognizes seven kinds of bind requests: 8946 * 8947 * - A zero-length address binds only to the protocol number. 8948 * 8949 * - A 4-byte address is treated as a request to 8950 * validate that the address is a valid local IPv4 8951 * address, appropriate for an application to bind to. 8952 * IP does the verification, but does not make any note 8953 * of the address at this time. 8954 * 8955 * - A 16-byte address contains is treated as a request 8956 * to validate a local IPv6 address, as the 4-byte 8957 * address case above. 8958 * 8959 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8960 * use it for the inbound fanout of packets. 8961 * 8962 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8963 * use it for the inbound fanout of packets. 8964 * 8965 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8966 * information consisting of local and remote addresses 8967 * and ports. In this case, the addresses are both 8968 * validated as appropriate for this operation, and, if 8969 * so, the information is retained for use in the 8970 * inbound fanout. 8971 * 8972 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8973 * fanout information, like the 12-byte case above. 8974 * 8975 * IP will also fill in the IRE request mblk with information 8976 * regarding our peer. In all cases, we notify IP of our protocol 8977 * type by appending a single protocol byte to the bind request. 8978 */ 8979 static mblk_t * 8980 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8981 { 8982 char *cp; 8983 mblk_t *mp; 8984 struct T_bind_req *tbr; 8985 ipa_conn_t *ac; 8986 ipa6_conn_t *ac6; 8987 sin_t *sin; 8988 sin6_t *sin6; 8989 8990 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8991 ASSERT((tcp->tcp_family == AF_INET && 8992 tcp->tcp_ipversion == IPV4_VERSION) || 8993 (tcp->tcp_family == AF_INET6 && 8994 (tcp->tcp_ipversion == IPV4_VERSION || 8995 tcp->tcp_ipversion == IPV6_VERSION))); 8996 8997 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8998 if (!mp) 8999 return (mp); 9000 mp->b_datap->db_type = M_PROTO; 9001 tbr = (struct T_bind_req *)mp->b_rptr; 9002 tbr->PRIM_type = bind_prim; 9003 tbr->ADDR_offset = sizeof (*tbr); 9004 tbr->CONIND_number = 0; 9005 tbr->ADDR_length = addr_length; 9006 cp = (char *)&tbr[1]; 9007 switch (addr_length) { 9008 case sizeof (ipa_conn_t): 9009 ASSERT(tcp->tcp_family == AF_INET); 9010 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9011 9012 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9013 if (mp->b_cont == NULL) { 9014 freemsg(mp); 9015 return (NULL); 9016 } 9017 mp->b_cont->b_wptr += sizeof (ire_t); 9018 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9019 9020 /* cp known to be 32 bit aligned */ 9021 ac = (ipa_conn_t *)cp; 9022 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9023 ac->ac_faddr = tcp->tcp_remote; 9024 ac->ac_fport = tcp->tcp_fport; 9025 ac->ac_lport = tcp->tcp_lport; 9026 tcp->tcp_hard_binding = 1; 9027 break; 9028 9029 case sizeof (ipa6_conn_t): 9030 ASSERT(tcp->tcp_family == AF_INET6); 9031 9032 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9033 if (mp->b_cont == NULL) { 9034 freemsg(mp); 9035 return (NULL); 9036 } 9037 mp->b_cont->b_wptr += sizeof (ire_t); 9038 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9039 9040 /* cp known to be 32 bit aligned */ 9041 ac6 = (ipa6_conn_t *)cp; 9042 if (tcp->tcp_ipversion == IPV4_VERSION) { 9043 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9044 &ac6->ac6_laddr); 9045 } else { 9046 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9047 } 9048 ac6->ac6_faddr = tcp->tcp_remote_v6; 9049 ac6->ac6_fport = tcp->tcp_fport; 9050 ac6->ac6_lport = tcp->tcp_lport; 9051 tcp->tcp_hard_binding = 1; 9052 break; 9053 9054 case sizeof (sin_t): 9055 /* 9056 * NOTE: IPV6_ADDR_LEN also has same size. 9057 * Use family to discriminate. 9058 */ 9059 if (tcp->tcp_family == AF_INET) { 9060 sin = (sin_t *)cp; 9061 9062 *sin = sin_null; 9063 sin->sin_family = AF_INET; 9064 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9065 sin->sin_port = tcp->tcp_lport; 9066 break; 9067 } else { 9068 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9069 } 9070 break; 9071 9072 case sizeof (sin6_t): 9073 ASSERT(tcp->tcp_family == AF_INET6); 9074 sin6 = (sin6_t *)cp; 9075 9076 *sin6 = sin6_null; 9077 sin6->sin6_family = AF_INET6; 9078 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9079 sin6->sin6_port = tcp->tcp_lport; 9080 break; 9081 9082 case IP_ADDR_LEN: 9083 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9084 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9085 break; 9086 9087 } 9088 /* Add protocol number to end */ 9089 cp[addr_length] = (char)IPPROTO_TCP; 9090 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9091 return (mp); 9092 } 9093 9094 /* 9095 * Notify IP that we are having trouble with this connection. IP should 9096 * blow the IRE away and start over. 9097 */ 9098 static void 9099 tcp_ip_notify(tcp_t *tcp) 9100 { 9101 struct iocblk *iocp; 9102 ipid_t *ipid; 9103 mblk_t *mp; 9104 9105 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9106 if (tcp->tcp_ipversion == IPV6_VERSION) 9107 return; 9108 9109 mp = mkiocb(IP_IOCTL); 9110 if (mp == NULL) 9111 return; 9112 9113 iocp = (struct iocblk *)mp->b_rptr; 9114 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9115 9116 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9117 if (!mp->b_cont) { 9118 freeb(mp); 9119 return; 9120 } 9121 9122 ipid = (ipid_t *)mp->b_cont->b_rptr; 9123 mp->b_cont->b_wptr += iocp->ioc_count; 9124 bzero(ipid, sizeof (*ipid)); 9125 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9126 ipid->ipid_ire_type = IRE_CACHE; 9127 ipid->ipid_addr_offset = sizeof (ipid_t); 9128 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9129 /* 9130 * Note: in the case of source routing we want to blow away the 9131 * route to the first source route hop. 9132 */ 9133 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9134 sizeof (tcp->tcp_ipha->ipha_dst)); 9135 9136 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9137 } 9138 9139 /* Unlink and return any mblk that looks like it contains an ire */ 9140 static mblk_t * 9141 tcp_ire_mp(mblk_t *mp) 9142 { 9143 mblk_t *prev_mp; 9144 9145 for (;;) { 9146 prev_mp = mp; 9147 mp = mp->b_cont; 9148 if (mp == NULL) 9149 break; 9150 switch (DB_TYPE(mp)) { 9151 case IRE_DB_TYPE: 9152 case IRE_DB_REQ_TYPE: 9153 if (prev_mp != NULL) 9154 prev_mp->b_cont = mp->b_cont; 9155 mp->b_cont = NULL; 9156 return (mp); 9157 default: 9158 break; 9159 } 9160 } 9161 return (mp); 9162 } 9163 9164 /* 9165 * Timer callback routine for keepalive probe. We do a fake resend of 9166 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9167 * check to see if we have heard anything from the other end for the last 9168 * RTO period. If we have, set the timer to expire for another 9169 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9170 * RTO << 1 and check again when it expires. Keep exponentially increasing 9171 * the timeout if we have not heard from the other side. If for more than 9172 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9173 * kill the connection unless the keepalive abort threshold is 0. In 9174 * that case, we will probe "forever." 9175 */ 9176 static void 9177 tcp_keepalive_killer(void *arg) 9178 { 9179 mblk_t *mp; 9180 conn_t *connp = (conn_t *)arg; 9181 tcp_t *tcp = connp->conn_tcp; 9182 int32_t firetime; 9183 int32_t idletime; 9184 int32_t ka_intrvl; 9185 9186 tcp->tcp_ka_tid = 0; 9187 9188 if (tcp->tcp_fused) 9189 return; 9190 9191 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 9192 ka_intrvl = tcp->tcp_ka_interval; 9193 9194 /* 9195 * Keepalive probe should only be sent if the application has not 9196 * done a close on the connection. 9197 */ 9198 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9199 return; 9200 } 9201 /* Timer fired too early, restart it. */ 9202 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9203 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9204 MSEC_TO_TICK(ka_intrvl)); 9205 return; 9206 } 9207 9208 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9209 /* 9210 * If we have not heard from the other side for a long 9211 * time, kill the connection unless the keepalive abort 9212 * threshold is 0. In that case, we will probe "forever." 9213 */ 9214 if (tcp->tcp_ka_abort_thres != 0 && 9215 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9216 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 9217 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9218 tcp->tcp_client_errno : ETIMEDOUT, 11); 9219 return; 9220 } 9221 9222 if (tcp->tcp_snxt == tcp->tcp_suna && 9223 idletime >= ka_intrvl) { 9224 /* Fake resend of last ACKed byte. */ 9225 mblk_t *mp1 = allocb(1, BPRI_LO); 9226 9227 if (mp1 != NULL) { 9228 *mp1->b_wptr++ = '\0'; 9229 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9230 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9231 freeb(mp1); 9232 /* 9233 * if allocation failed, fall through to start the 9234 * timer back. 9235 */ 9236 if (mp != NULL) { 9237 TCP_RECORD_TRACE(tcp, mp, 9238 TCP_TRACE_SEND_PKT); 9239 tcp_send_data(tcp, tcp->tcp_wq, mp); 9240 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9241 if (tcp->tcp_ka_last_intrvl != 0) { 9242 /* 9243 * We should probe again at least 9244 * in ka_intrvl, but not more than 9245 * tcp_rexmit_interval_max. 9246 */ 9247 firetime = MIN(ka_intrvl - 1, 9248 tcp->tcp_ka_last_intrvl << 1); 9249 if (firetime > tcp_rexmit_interval_max) 9250 firetime = 9251 tcp_rexmit_interval_max; 9252 } else { 9253 firetime = tcp->tcp_rto; 9254 } 9255 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9256 tcp_keepalive_killer, 9257 MSEC_TO_TICK(firetime)); 9258 tcp->tcp_ka_last_intrvl = firetime; 9259 return; 9260 } 9261 } 9262 } else { 9263 tcp->tcp_ka_last_intrvl = 0; 9264 } 9265 9266 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9267 if ((firetime = ka_intrvl - idletime) < 0) { 9268 firetime = ka_intrvl; 9269 } 9270 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9271 MSEC_TO_TICK(firetime)); 9272 } 9273 9274 int 9275 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9276 { 9277 queue_t *q = tcp->tcp_rq; 9278 int32_t mss = tcp->tcp_mss; 9279 int maxpsz; 9280 9281 if (TCP_IS_DETACHED(tcp)) 9282 return (mss); 9283 9284 if (tcp->tcp_fused) { 9285 maxpsz = tcp_fuse_maxpsz_set(tcp); 9286 mss = INFPSZ; 9287 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9288 /* 9289 * Set the sd_qn_maxpsz according to the socket send buffer 9290 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9291 * instruct the stream head to copyin user data into contiguous 9292 * kernel-allocated buffers without breaking it up into smaller 9293 * chunks. We round up the buffer size to the nearest SMSS. 9294 */ 9295 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9296 if (tcp->tcp_kssl_ctx == NULL) 9297 mss = INFPSZ; 9298 else 9299 mss = SSL3_MAX_RECORD_LEN; 9300 } else { 9301 /* 9302 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9303 * (and a multiple of the mss). This instructs the stream 9304 * head to break down larger than SMSS writes into SMSS- 9305 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9306 */ 9307 maxpsz = tcp->tcp_maxpsz * mss; 9308 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9309 maxpsz = tcp->tcp_xmit_hiwater/2; 9310 /* Round up to nearest mss */ 9311 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9312 } 9313 } 9314 (void) setmaxps(q, maxpsz); 9315 tcp->tcp_wq->q_maxpsz = maxpsz; 9316 9317 if (set_maxblk) 9318 (void) mi_set_sth_maxblk(q, mss); 9319 9320 return (mss); 9321 } 9322 9323 /* 9324 * Extract option values from a tcp header. We put any found values into the 9325 * tcpopt struct and return a bitmask saying which options were found. 9326 */ 9327 static int 9328 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9329 { 9330 uchar_t *endp; 9331 int len; 9332 uint32_t mss; 9333 uchar_t *up = (uchar_t *)tcph; 9334 int found = 0; 9335 int32_t sack_len; 9336 tcp_seq sack_begin, sack_end; 9337 tcp_t *tcp; 9338 9339 endp = up + TCP_HDR_LENGTH(tcph); 9340 up += TCP_MIN_HEADER_LENGTH; 9341 while (up < endp) { 9342 len = endp - up; 9343 switch (*up) { 9344 case TCPOPT_EOL: 9345 break; 9346 9347 case TCPOPT_NOP: 9348 up++; 9349 continue; 9350 9351 case TCPOPT_MAXSEG: 9352 if (len < TCPOPT_MAXSEG_LEN || 9353 up[1] != TCPOPT_MAXSEG_LEN) 9354 break; 9355 9356 mss = BE16_TO_U16(up+2); 9357 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9358 tcpopt->tcp_opt_mss = mss; 9359 found |= TCP_OPT_MSS_PRESENT; 9360 9361 up += TCPOPT_MAXSEG_LEN; 9362 continue; 9363 9364 case TCPOPT_WSCALE: 9365 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9366 break; 9367 9368 if (up[2] > TCP_MAX_WINSHIFT) 9369 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9370 else 9371 tcpopt->tcp_opt_wscale = up[2]; 9372 found |= TCP_OPT_WSCALE_PRESENT; 9373 9374 up += TCPOPT_WS_LEN; 9375 continue; 9376 9377 case TCPOPT_SACK_PERMITTED: 9378 if (len < TCPOPT_SACK_OK_LEN || 9379 up[1] != TCPOPT_SACK_OK_LEN) 9380 break; 9381 found |= TCP_OPT_SACK_OK_PRESENT; 9382 up += TCPOPT_SACK_OK_LEN; 9383 continue; 9384 9385 case TCPOPT_SACK: 9386 if (len <= 2 || up[1] <= 2 || len < up[1]) 9387 break; 9388 9389 /* If TCP is not interested in SACK blks... */ 9390 if ((tcp = tcpopt->tcp) == NULL) { 9391 up += up[1]; 9392 continue; 9393 } 9394 sack_len = up[1] - TCPOPT_HEADER_LEN; 9395 up += TCPOPT_HEADER_LEN; 9396 9397 /* 9398 * If the list is empty, allocate one and assume 9399 * nothing is sack'ed. 9400 */ 9401 ASSERT(tcp->tcp_sack_info != NULL); 9402 if (tcp->tcp_notsack_list == NULL) { 9403 tcp_notsack_update(&(tcp->tcp_notsack_list), 9404 tcp->tcp_suna, tcp->tcp_snxt, 9405 &(tcp->tcp_num_notsack_blk), 9406 &(tcp->tcp_cnt_notsack_list)); 9407 9408 /* 9409 * Make sure tcp_notsack_list is not NULL. 9410 * This happens when kmem_alloc(KM_NOSLEEP) 9411 * returns NULL. 9412 */ 9413 if (tcp->tcp_notsack_list == NULL) { 9414 up += sack_len; 9415 continue; 9416 } 9417 tcp->tcp_fack = tcp->tcp_suna; 9418 } 9419 9420 while (sack_len > 0) { 9421 if (up + 8 > endp) { 9422 up = endp; 9423 break; 9424 } 9425 sack_begin = BE32_TO_U32(up); 9426 up += 4; 9427 sack_end = BE32_TO_U32(up); 9428 up += 4; 9429 sack_len -= 8; 9430 /* 9431 * Bounds checking. Make sure the SACK 9432 * info is within tcp_suna and tcp_snxt. 9433 * If this SACK blk is out of bound, ignore 9434 * it but continue to parse the following 9435 * blks. 9436 */ 9437 if (SEQ_LEQ(sack_end, sack_begin) || 9438 SEQ_LT(sack_begin, tcp->tcp_suna) || 9439 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9440 continue; 9441 } 9442 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9443 sack_begin, sack_end, 9444 &(tcp->tcp_num_notsack_blk), 9445 &(tcp->tcp_cnt_notsack_list)); 9446 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9447 tcp->tcp_fack = sack_end; 9448 } 9449 } 9450 found |= TCP_OPT_SACK_PRESENT; 9451 continue; 9452 9453 case TCPOPT_TSTAMP: 9454 if (len < TCPOPT_TSTAMP_LEN || 9455 up[1] != TCPOPT_TSTAMP_LEN) 9456 break; 9457 9458 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9459 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9460 9461 found |= TCP_OPT_TSTAMP_PRESENT; 9462 9463 up += TCPOPT_TSTAMP_LEN; 9464 continue; 9465 9466 default: 9467 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9468 break; 9469 up += up[1]; 9470 continue; 9471 } 9472 break; 9473 } 9474 return (found); 9475 } 9476 9477 /* 9478 * Set the mss associated with a particular tcp based on its current value, 9479 * and a new one passed in. Observe minimums and maximums, and reset 9480 * other state variables that we want to view as multiples of mss. 9481 * 9482 * This function is called in various places mainly because 9483 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9484 * other side's SYN/SYN-ACK packet arrives. 9485 * 2) PMTUd may get us a new MSS. 9486 * 3) If the other side stops sending us timestamp option, we need to 9487 * increase the MSS size to use the extra bytes available. 9488 */ 9489 static void 9490 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9491 { 9492 uint32_t mss_max; 9493 9494 if (tcp->tcp_ipversion == IPV4_VERSION) 9495 mss_max = tcp_mss_max_ipv4; 9496 else 9497 mss_max = tcp_mss_max_ipv6; 9498 9499 if (mss < tcp_mss_min) 9500 mss = tcp_mss_min; 9501 if (mss > mss_max) 9502 mss = mss_max; 9503 /* 9504 * Unless naglim has been set by our client to 9505 * a non-mss value, force naglim to track mss. 9506 * This can help to aggregate small writes. 9507 */ 9508 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9509 tcp->tcp_naglim = mss; 9510 /* 9511 * TCP should be able to buffer at least 4 MSS data for obvious 9512 * performance reason. 9513 */ 9514 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9515 tcp->tcp_xmit_hiwater = mss << 2; 9516 9517 /* 9518 * Check if we need to apply the tcp_init_cwnd here. If 9519 * it is set and the MSS gets bigger (should not happen 9520 * normally), we need to adjust the resulting tcp_cwnd properly. 9521 * The new tcp_cwnd should not get bigger. 9522 */ 9523 if (tcp->tcp_init_cwnd == 0) { 9524 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9525 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9526 } else { 9527 if (tcp->tcp_mss < mss) { 9528 tcp->tcp_cwnd = MAX(1, 9529 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9530 } else { 9531 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9532 } 9533 } 9534 tcp->tcp_mss = mss; 9535 tcp->tcp_cwnd_cnt = 0; 9536 (void) tcp_maxpsz_set(tcp, B_TRUE); 9537 } 9538 9539 static int 9540 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9541 { 9542 tcp_t *tcp = NULL; 9543 conn_t *connp; 9544 int err; 9545 dev_t conn_dev; 9546 zoneid_t zoneid = getzoneid(); 9547 9548 /* 9549 * Special case for install: miniroot needs to be able to access files 9550 * via NFS as though it were always in the global zone. 9551 */ 9552 if (credp == kcred && nfs_global_client_only != 0) 9553 zoneid = GLOBAL_ZONEID; 9554 9555 if (q->q_ptr != NULL) 9556 return (0); 9557 9558 if (sflag == MODOPEN) { 9559 /* 9560 * This is a special case. The purpose of a modopen 9561 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9562 * through for MIB browsers. Everything else is failed. 9563 */ 9564 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9565 9566 if (connp == NULL) 9567 return (ENOMEM); 9568 9569 connp->conn_flags |= IPCL_TCPMOD; 9570 connp->conn_cred = credp; 9571 connp->conn_zoneid = zoneid; 9572 q->q_ptr = WR(q)->q_ptr = connp; 9573 crhold(credp); 9574 q->q_qinfo = &tcp_mod_rinit; 9575 WR(q)->q_qinfo = &tcp_mod_winit; 9576 qprocson(q); 9577 return (0); 9578 } 9579 9580 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9581 return (EBUSY); 9582 9583 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9584 9585 if (flag & SO_ACCEPTOR) { 9586 q->q_qinfo = &tcp_acceptor_rinit; 9587 q->q_ptr = (void *)conn_dev; 9588 WR(q)->q_qinfo = &tcp_acceptor_winit; 9589 WR(q)->q_ptr = (void *)conn_dev; 9590 qprocson(q); 9591 return (0); 9592 } 9593 9594 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9595 if (connp == NULL) { 9596 inet_minor_free(ip_minor_arena, conn_dev); 9597 q->q_ptr = NULL; 9598 return (ENOSR); 9599 } 9600 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9601 tcp = connp->conn_tcp; 9602 9603 q->q_ptr = WR(q)->q_ptr = connp; 9604 if (getmajor(*devp) == TCP6_MAJ) { 9605 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9606 connp->conn_send = ip_output_v6; 9607 connp->conn_af_isv6 = B_TRUE; 9608 connp->conn_pkt_isv6 = B_TRUE; 9609 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9610 tcp->tcp_ipversion = IPV6_VERSION; 9611 tcp->tcp_family = AF_INET6; 9612 tcp->tcp_mss = tcp_mss_def_ipv6; 9613 } else { 9614 connp->conn_flags |= IPCL_TCP4; 9615 connp->conn_send = ip_output; 9616 connp->conn_af_isv6 = B_FALSE; 9617 connp->conn_pkt_isv6 = B_FALSE; 9618 tcp->tcp_ipversion = IPV4_VERSION; 9619 tcp->tcp_family = AF_INET; 9620 tcp->tcp_mss = tcp_mss_def_ipv4; 9621 } 9622 9623 /* 9624 * TCP keeps a copy of cred for cache locality reasons but 9625 * we put a reference only once. If connp->conn_cred 9626 * becomes invalid, tcp_cred should also be set to NULL. 9627 */ 9628 tcp->tcp_cred = connp->conn_cred = credp; 9629 crhold(connp->conn_cred); 9630 tcp->tcp_cpid = curproc->p_pid; 9631 connp->conn_zoneid = zoneid; 9632 connp->conn_mlp_type = mlptSingle; 9633 connp->conn_ulp_labeled = !is_system_labeled(); 9634 9635 /* 9636 * If the caller has the process-wide flag set, then default to MAC 9637 * exempt mode. This allows read-down to unlabeled hosts. 9638 */ 9639 if (getpflags(NET_MAC_AWARE, credp) != 0) 9640 connp->conn_mac_exempt = B_TRUE; 9641 9642 connp->conn_dev = conn_dev; 9643 9644 ASSERT(q->q_qinfo == &tcp_rinit); 9645 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9646 9647 if (flag & SO_SOCKSTR) { 9648 /* 9649 * No need to insert a socket in tcp acceptor hash. 9650 * If it was a socket acceptor stream, we dealt with 9651 * it above. A socket listener can never accept a 9652 * connection and doesn't need acceptor_id. 9653 */ 9654 connp->conn_flags |= IPCL_SOCKET; 9655 tcp->tcp_issocket = 1; 9656 WR(q)->q_qinfo = &tcp_sock_winit; 9657 } else { 9658 #ifdef _ILP32 9659 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9660 #else 9661 tcp->tcp_acceptor_id = conn_dev; 9662 #endif /* _ILP32 */ 9663 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9664 } 9665 9666 if (tcp_trace) 9667 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9668 9669 err = tcp_init(tcp, q); 9670 if (err != 0) { 9671 inet_minor_free(ip_minor_arena, connp->conn_dev); 9672 tcp_acceptor_hash_remove(tcp); 9673 CONN_DEC_REF(connp); 9674 q->q_ptr = WR(q)->q_ptr = NULL; 9675 return (err); 9676 } 9677 9678 RD(q)->q_hiwat = tcp_recv_hiwat; 9679 tcp->tcp_rwnd = tcp_recv_hiwat; 9680 9681 /* Non-zero default values */ 9682 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9683 /* 9684 * Put the ref for TCP. Ref for IP was already put 9685 * by ipcl_conn_create. Also Make the conn_t globally 9686 * visible to walkers 9687 */ 9688 mutex_enter(&connp->conn_lock); 9689 CONN_INC_REF_LOCKED(connp); 9690 ASSERT(connp->conn_ref == 2); 9691 connp->conn_state_flags &= ~CONN_INCIPIENT; 9692 mutex_exit(&connp->conn_lock); 9693 9694 qprocson(q); 9695 return (0); 9696 } 9697 9698 /* 9699 * Some TCP options can be "set" by requesting them in the option 9700 * buffer. This is needed for XTI feature test though we do not 9701 * allow it in general. We interpret that this mechanism is more 9702 * applicable to OSI protocols and need not be allowed in general. 9703 * This routine filters out options for which it is not allowed (most) 9704 * and lets through those (few) for which it is. [ The XTI interface 9705 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9706 * ever implemented will have to be allowed here ]. 9707 */ 9708 static boolean_t 9709 tcp_allow_connopt_set(int level, int name) 9710 { 9711 9712 switch (level) { 9713 case IPPROTO_TCP: 9714 switch (name) { 9715 case TCP_NODELAY: 9716 return (B_TRUE); 9717 default: 9718 return (B_FALSE); 9719 } 9720 /*NOTREACHED*/ 9721 default: 9722 return (B_FALSE); 9723 } 9724 /*NOTREACHED*/ 9725 } 9726 9727 /* 9728 * This routine gets default values of certain options whose default 9729 * values are maintained by protocol specific code 9730 */ 9731 /* ARGSUSED */ 9732 int 9733 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9734 { 9735 int32_t *i1 = (int32_t *)ptr; 9736 9737 switch (level) { 9738 case IPPROTO_TCP: 9739 switch (name) { 9740 case TCP_NOTIFY_THRESHOLD: 9741 *i1 = tcp_ip_notify_interval; 9742 break; 9743 case TCP_ABORT_THRESHOLD: 9744 *i1 = tcp_ip_abort_interval; 9745 break; 9746 case TCP_CONN_NOTIFY_THRESHOLD: 9747 *i1 = tcp_ip_notify_cinterval; 9748 break; 9749 case TCP_CONN_ABORT_THRESHOLD: 9750 *i1 = tcp_ip_abort_cinterval; 9751 break; 9752 default: 9753 return (-1); 9754 } 9755 break; 9756 case IPPROTO_IP: 9757 switch (name) { 9758 case IP_TTL: 9759 *i1 = tcp_ipv4_ttl; 9760 break; 9761 default: 9762 return (-1); 9763 } 9764 break; 9765 case IPPROTO_IPV6: 9766 switch (name) { 9767 case IPV6_UNICAST_HOPS: 9768 *i1 = tcp_ipv6_hoplimit; 9769 break; 9770 default: 9771 return (-1); 9772 } 9773 break; 9774 default: 9775 return (-1); 9776 } 9777 return (sizeof (int)); 9778 } 9779 9780 9781 /* 9782 * TCP routine to get the values of options. 9783 */ 9784 int 9785 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9786 { 9787 int *i1 = (int *)ptr; 9788 conn_t *connp = Q_TO_CONN(q); 9789 tcp_t *tcp = connp->conn_tcp; 9790 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9791 9792 switch (level) { 9793 case SOL_SOCKET: 9794 switch (name) { 9795 case SO_LINGER: { 9796 struct linger *lgr = (struct linger *)ptr; 9797 9798 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9799 lgr->l_linger = tcp->tcp_lingertime; 9800 } 9801 return (sizeof (struct linger)); 9802 case SO_DEBUG: 9803 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9804 break; 9805 case SO_KEEPALIVE: 9806 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9807 break; 9808 case SO_DONTROUTE: 9809 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9810 break; 9811 case SO_USELOOPBACK: 9812 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9813 break; 9814 case SO_BROADCAST: 9815 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9816 break; 9817 case SO_REUSEADDR: 9818 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9819 break; 9820 case SO_OOBINLINE: 9821 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9822 break; 9823 case SO_DGRAM_ERRIND: 9824 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9825 break; 9826 case SO_TYPE: 9827 *i1 = SOCK_STREAM; 9828 break; 9829 case SO_SNDBUF: 9830 *i1 = tcp->tcp_xmit_hiwater; 9831 break; 9832 case SO_RCVBUF: 9833 *i1 = RD(q)->q_hiwat; 9834 break; 9835 case SO_SND_COPYAVOID: 9836 *i1 = tcp->tcp_snd_zcopy_on ? 9837 SO_SND_COPYAVOID : 0; 9838 break; 9839 case SO_ALLZONES: 9840 *i1 = connp->conn_allzones ? 1 : 0; 9841 break; 9842 case SO_ANON_MLP: 9843 *i1 = connp->conn_anon_mlp; 9844 break; 9845 case SO_MAC_EXEMPT: 9846 *i1 = connp->conn_mac_exempt; 9847 break; 9848 case SO_EXCLBIND: 9849 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9850 break; 9851 default: 9852 return (-1); 9853 } 9854 break; 9855 case IPPROTO_TCP: 9856 switch (name) { 9857 case TCP_NODELAY: 9858 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9859 break; 9860 case TCP_MAXSEG: 9861 *i1 = tcp->tcp_mss; 9862 break; 9863 case TCP_NOTIFY_THRESHOLD: 9864 *i1 = (int)tcp->tcp_first_timer_threshold; 9865 break; 9866 case TCP_ABORT_THRESHOLD: 9867 *i1 = tcp->tcp_second_timer_threshold; 9868 break; 9869 case TCP_CONN_NOTIFY_THRESHOLD: 9870 *i1 = tcp->tcp_first_ctimer_threshold; 9871 break; 9872 case TCP_CONN_ABORT_THRESHOLD: 9873 *i1 = tcp->tcp_second_ctimer_threshold; 9874 break; 9875 case TCP_RECVDSTADDR: 9876 *i1 = tcp->tcp_recvdstaddr; 9877 break; 9878 case TCP_ANONPRIVBIND: 9879 *i1 = tcp->tcp_anon_priv_bind; 9880 break; 9881 case TCP_EXCLBIND: 9882 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9883 break; 9884 case TCP_INIT_CWND: 9885 *i1 = tcp->tcp_init_cwnd; 9886 break; 9887 case TCP_KEEPALIVE_THRESHOLD: 9888 *i1 = tcp->tcp_ka_interval; 9889 break; 9890 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9891 *i1 = tcp->tcp_ka_abort_thres; 9892 break; 9893 case TCP_CORK: 9894 *i1 = tcp->tcp_cork; 9895 break; 9896 default: 9897 return (-1); 9898 } 9899 break; 9900 case IPPROTO_IP: 9901 if (tcp->tcp_family != AF_INET) 9902 return (-1); 9903 switch (name) { 9904 case IP_OPTIONS: 9905 case T_IP_OPTIONS: { 9906 /* 9907 * This is compatible with BSD in that in only return 9908 * the reverse source route with the final destination 9909 * as the last entry. The first 4 bytes of the option 9910 * will contain the final destination. 9911 */ 9912 int opt_len; 9913 9914 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9915 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9916 ASSERT(opt_len >= 0); 9917 /* Caller ensures enough space */ 9918 if (opt_len > 0) { 9919 /* 9920 * TODO: Do we have to handle getsockopt on an 9921 * initiator as well? 9922 */ 9923 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9924 } 9925 return (0); 9926 } 9927 case IP_TOS: 9928 case T_IP_TOS: 9929 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9930 break; 9931 case IP_TTL: 9932 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9933 break; 9934 case IP_NEXTHOP: 9935 /* Handled at IP level */ 9936 return (-EINVAL); 9937 default: 9938 return (-1); 9939 } 9940 break; 9941 case IPPROTO_IPV6: 9942 /* 9943 * IPPROTO_IPV6 options are only supported for sockets 9944 * that are using IPv6 on the wire. 9945 */ 9946 if (tcp->tcp_ipversion != IPV6_VERSION) { 9947 return (-1); 9948 } 9949 switch (name) { 9950 case IPV6_UNICAST_HOPS: 9951 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9952 break; /* goto sizeof (int) option return */ 9953 case IPV6_BOUND_IF: 9954 /* Zero if not set */ 9955 *i1 = tcp->tcp_bound_if; 9956 break; /* goto sizeof (int) option return */ 9957 case IPV6_RECVPKTINFO: 9958 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9959 *i1 = 1; 9960 else 9961 *i1 = 0; 9962 break; /* goto sizeof (int) option return */ 9963 case IPV6_RECVTCLASS: 9964 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9965 *i1 = 1; 9966 else 9967 *i1 = 0; 9968 break; /* goto sizeof (int) option return */ 9969 case IPV6_RECVHOPLIMIT: 9970 if (tcp->tcp_ipv6_recvancillary & 9971 TCP_IPV6_RECVHOPLIMIT) 9972 *i1 = 1; 9973 else 9974 *i1 = 0; 9975 break; /* goto sizeof (int) option return */ 9976 case IPV6_RECVHOPOPTS: 9977 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9978 *i1 = 1; 9979 else 9980 *i1 = 0; 9981 break; /* goto sizeof (int) option return */ 9982 case IPV6_RECVDSTOPTS: 9983 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9984 *i1 = 1; 9985 else 9986 *i1 = 0; 9987 break; /* goto sizeof (int) option return */ 9988 case _OLD_IPV6_RECVDSTOPTS: 9989 if (tcp->tcp_ipv6_recvancillary & 9990 TCP_OLD_IPV6_RECVDSTOPTS) 9991 *i1 = 1; 9992 else 9993 *i1 = 0; 9994 break; /* goto sizeof (int) option return */ 9995 case IPV6_RECVRTHDR: 9996 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9997 *i1 = 1; 9998 else 9999 *i1 = 0; 10000 break; /* goto sizeof (int) option return */ 10001 case IPV6_RECVRTHDRDSTOPTS: 10002 if (tcp->tcp_ipv6_recvancillary & 10003 TCP_IPV6_RECVRTDSTOPTS) 10004 *i1 = 1; 10005 else 10006 *i1 = 0; 10007 break; /* goto sizeof (int) option return */ 10008 case IPV6_PKTINFO: { 10009 /* XXX assumes that caller has room for max size! */ 10010 struct in6_pktinfo *pkti; 10011 10012 pkti = (struct in6_pktinfo *)ptr; 10013 if (ipp->ipp_fields & IPPF_IFINDEX) 10014 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10015 else 10016 pkti->ipi6_ifindex = 0; 10017 if (ipp->ipp_fields & IPPF_ADDR) 10018 pkti->ipi6_addr = ipp->ipp_addr; 10019 else 10020 pkti->ipi6_addr = ipv6_all_zeros; 10021 return (sizeof (struct in6_pktinfo)); 10022 } 10023 case IPV6_TCLASS: 10024 if (ipp->ipp_fields & IPPF_TCLASS) 10025 *i1 = ipp->ipp_tclass; 10026 else 10027 *i1 = IPV6_FLOW_TCLASS( 10028 IPV6_DEFAULT_VERS_AND_FLOW); 10029 break; /* goto sizeof (int) option return */ 10030 case IPV6_NEXTHOP: { 10031 sin6_t *sin6 = (sin6_t *)ptr; 10032 10033 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10034 return (0); 10035 *sin6 = sin6_null; 10036 sin6->sin6_family = AF_INET6; 10037 sin6->sin6_addr = ipp->ipp_nexthop; 10038 return (sizeof (sin6_t)); 10039 } 10040 case IPV6_HOPOPTS: 10041 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10042 return (0); 10043 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10044 return (0); 10045 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10046 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10047 if (tcp->tcp_label_len > 0) { 10048 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10049 ptr[1] = (ipp->ipp_hopoptslen - 10050 tcp->tcp_label_len + 7) / 8 - 1; 10051 } 10052 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10053 case IPV6_RTHDRDSTOPTS: 10054 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10055 return (0); 10056 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10057 return (ipp->ipp_rtdstoptslen); 10058 case IPV6_RTHDR: 10059 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10060 return (0); 10061 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10062 return (ipp->ipp_rthdrlen); 10063 case IPV6_DSTOPTS: 10064 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10065 return (0); 10066 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10067 return (ipp->ipp_dstoptslen); 10068 case IPV6_SRC_PREFERENCES: 10069 return (ip6_get_src_preferences(connp, 10070 (uint32_t *)ptr)); 10071 case IPV6_PATHMTU: { 10072 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10073 10074 if (tcp->tcp_state < TCPS_ESTABLISHED) 10075 return (-1); 10076 10077 return (ip_fill_mtuinfo(&connp->conn_remv6, 10078 connp->conn_fport, mtuinfo)); 10079 } 10080 default: 10081 return (-1); 10082 } 10083 break; 10084 default: 10085 return (-1); 10086 } 10087 return (sizeof (int)); 10088 } 10089 10090 /* 10091 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10092 * Parameters are assumed to be verified by the caller. 10093 */ 10094 /* ARGSUSED */ 10095 int 10096 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10097 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10098 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10099 { 10100 conn_t *connp = Q_TO_CONN(q); 10101 tcp_t *tcp = connp->conn_tcp; 10102 int *i1 = (int *)invalp; 10103 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10104 boolean_t checkonly; 10105 int reterr; 10106 10107 switch (optset_context) { 10108 case SETFN_OPTCOM_CHECKONLY: 10109 checkonly = B_TRUE; 10110 /* 10111 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10112 * inlen != 0 implies value supplied and 10113 * we have to "pretend" to set it. 10114 * inlen == 0 implies that there is no 10115 * value part in T_CHECK request and just validation 10116 * done elsewhere should be enough, we just return here. 10117 */ 10118 if (inlen == 0) { 10119 *outlenp = 0; 10120 return (0); 10121 } 10122 break; 10123 case SETFN_OPTCOM_NEGOTIATE: 10124 checkonly = B_FALSE; 10125 break; 10126 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10127 case SETFN_CONN_NEGOTIATE: 10128 checkonly = B_FALSE; 10129 /* 10130 * Negotiating local and "association-related" options 10131 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10132 * primitives is allowed by XTI, but we choose 10133 * to not implement this style negotiation for Internet 10134 * protocols (We interpret it is a must for OSI world but 10135 * optional for Internet protocols) for all options. 10136 * [ Will do only for the few options that enable test 10137 * suites that our XTI implementation of this feature 10138 * works for transports that do allow it ] 10139 */ 10140 if (!tcp_allow_connopt_set(level, name)) { 10141 *outlenp = 0; 10142 return (EINVAL); 10143 } 10144 break; 10145 default: 10146 /* 10147 * We should never get here 10148 */ 10149 *outlenp = 0; 10150 return (EINVAL); 10151 } 10152 10153 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10154 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10155 10156 /* 10157 * For TCP, we should have no ancillary data sent down 10158 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10159 * has to be zero. 10160 */ 10161 ASSERT(thisdg_attrs == NULL); 10162 10163 /* 10164 * For fixed length options, no sanity check 10165 * of passed in length is done. It is assumed *_optcom_req() 10166 * routines do the right thing. 10167 */ 10168 10169 switch (level) { 10170 case SOL_SOCKET: 10171 switch (name) { 10172 case SO_LINGER: { 10173 struct linger *lgr = (struct linger *)invalp; 10174 10175 if (!checkonly) { 10176 if (lgr->l_onoff) { 10177 tcp->tcp_linger = 1; 10178 tcp->tcp_lingertime = lgr->l_linger; 10179 } else { 10180 tcp->tcp_linger = 0; 10181 tcp->tcp_lingertime = 0; 10182 } 10183 /* struct copy */ 10184 *(struct linger *)outvalp = *lgr; 10185 } else { 10186 if (!lgr->l_onoff) { 10187 ((struct linger *)outvalp)->l_onoff = 0; 10188 ((struct linger *)outvalp)->l_linger = 0; 10189 } else { 10190 /* struct copy */ 10191 *(struct linger *)outvalp = *lgr; 10192 } 10193 } 10194 *outlenp = sizeof (struct linger); 10195 return (0); 10196 } 10197 case SO_DEBUG: 10198 if (!checkonly) 10199 tcp->tcp_debug = onoff; 10200 break; 10201 case SO_KEEPALIVE: 10202 if (checkonly) { 10203 /* T_CHECK case */ 10204 break; 10205 } 10206 10207 if (!onoff) { 10208 if (tcp->tcp_ka_enabled) { 10209 if (tcp->tcp_ka_tid != 0) { 10210 (void) TCP_TIMER_CANCEL(tcp, 10211 tcp->tcp_ka_tid); 10212 tcp->tcp_ka_tid = 0; 10213 } 10214 tcp->tcp_ka_enabled = 0; 10215 } 10216 break; 10217 } 10218 if (!tcp->tcp_ka_enabled) { 10219 /* Crank up the keepalive timer */ 10220 tcp->tcp_ka_last_intrvl = 0; 10221 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10222 tcp_keepalive_killer, 10223 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10224 tcp->tcp_ka_enabled = 1; 10225 } 10226 break; 10227 case SO_DONTROUTE: 10228 /* 10229 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10230 * only of interest to IP. We track them here only so 10231 * that we can report their current value. 10232 */ 10233 if (!checkonly) { 10234 tcp->tcp_dontroute = onoff; 10235 tcp->tcp_connp->conn_dontroute = onoff; 10236 } 10237 break; 10238 case SO_USELOOPBACK: 10239 if (!checkonly) { 10240 tcp->tcp_useloopback = onoff; 10241 tcp->tcp_connp->conn_loopback = onoff; 10242 } 10243 break; 10244 case SO_BROADCAST: 10245 if (!checkonly) { 10246 tcp->tcp_broadcast = onoff; 10247 tcp->tcp_connp->conn_broadcast = onoff; 10248 } 10249 break; 10250 case SO_REUSEADDR: 10251 if (!checkonly) { 10252 tcp->tcp_reuseaddr = onoff; 10253 tcp->tcp_connp->conn_reuseaddr = onoff; 10254 } 10255 break; 10256 case SO_OOBINLINE: 10257 if (!checkonly) 10258 tcp->tcp_oobinline = onoff; 10259 break; 10260 case SO_DGRAM_ERRIND: 10261 if (!checkonly) 10262 tcp->tcp_dgram_errind = onoff; 10263 break; 10264 case SO_SNDBUF: { 10265 tcp_t *peer_tcp; 10266 10267 if (*i1 > tcp_max_buf) { 10268 *outlenp = 0; 10269 return (ENOBUFS); 10270 } 10271 if (checkonly) 10272 break; 10273 10274 tcp->tcp_xmit_hiwater = *i1; 10275 if (tcp_snd_lowat_fraction != 0) 10276 tcp->tcp_xmit_lowater = 10277 tcp->tcp_xmit_hiwater / 10278 tcp_snd_lowat_fraction; 10279 (void) tcp_maxpsz_set(tcp, B_TRUE); 10280 /* 10281 * If we are flow-controlled, recheck the condition. 10282 * There are apps that increase SO_SNDBUF size when 10283 * flow-controlled (EWOULDBLOCK), and expect the flow 10284 * control condition to be lifted right away. 10285 * 10286 * For the fused tcp loopback case, in order to avoid 10287 * a race with the peer's tcp_fuse_rrw() we need to 10288 * hold its fuse_lock while accessing tcp_flow_stopped. 10289 */ 10290 peer_tcp = tcp->tcp_loopback_peer; 10291 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 10292 if (tcp->tcp_fused) 10293 mutex_enter(&peer_tcp->tcp_fuse_lock); 10294 10295 if (tcp->tcp_flow_stopped && 10296 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10297 tcp_clrqfull(tcp); 10298 } 10299 if (tcp->tcp_fused) 10300 mutex_exit(&peer_tcp->tcp_fuse_lock); 10301 break; 10302 } 10303 case SO_RCVBUF: 10304 if (*i1 > tcp_max_buf) { 10305 *outlenp = 0; 10306 return (ENOBUFS); 10307 } 10308 /* Silently ignore zero */ 10309 if (!checkonly && *i1 != 0) { 10310 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10311 (void) tcp_rwnd_set(tcp, *i1); 10312 } 10313 /* 10314 * XXX should we return the rwnd here 10315 * and tcp_opt_get ? 10316 */ 10317 break; 10318 case SO_SND_COPYAVOID: 10319 if (!checkonly) { 10320 /* we only allow enable at most once for now */ 10321 if (tcp->tcp_loopback || 10322 (!tcp->tcp_snd_zcopy_aware && 10323 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10324 *outlenp = 0; 10325 return (EOPNOTSUPP); 10326 } 10327 tcp->tcp_snd_zcopy_aware = 1; 10328 } 10329 break; 10330 case SO_ALLZONES: 10331 /* Handled at the IP level */ 10332 return (-EINVAL); 10333 case SO_ANON_MLP: 10334 if (!checkonly) { 10335 mutex_enter(&connp->conn_lock); 10336 connp->conn_anon_mlp = onoff; 10337 mutex_exit(&connp->conn_lock); 10338 } 10339 break; 10340 case SO_MAC_EXEMPT: 10341 if (secpolicy_net_mac_aware(cr) != 0 || 10342 IPCL_IS_BOUND(connp)) 10343 return (EACCES); 10344 if (!checkonly) { 10345 mutex_enter(&connp->conn_lock); 10346 connp->conn_mac_exempt = onoff; 10347 mutex_exit(&connp->conn_lock); 10348 } 10349 break; 10350 case SO_EXCLBIND: 10351 if (!checkonly) 10352 tcp->tcp_exclbind = onoff; 10353 break; 10354 default: 10355 *outlenp = 0; 10356 return (EINVAL); 10357 } 10358 break; 10359 case IPPROTO_TCP: 10360 switch (name) { 10361 case TCP_NODELAY: 10362 if (!checkonly) 10363 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10364 break; 10365 case TCP_NOTIFY_THRESHOLD: 10366 if (!checkonly) 10367 tcp->tcp_first_timer_threshold = *i1; 10368 break; 10369 case TCP_ABORT_THRESHOLD: 10370 if (!checkonly) 10371 tcp->tcp_second_timer_threshold = *i1; 10372 break; 10373 case TCP_CONN_NOTIFY_THRESHOLD: 10374 if (!checkonly) 10375 tcp->tcp_first_ctimer_threshold = *i1; 10376 break; 10377 case TCP_CONN_ABORT_THRESHOLD: 10378 if (!checkonly) 10379 tcp->tcp_second_ctimer_threshold = *i1; 10380 break; 10381 case TCP_RECVDSTADDR: 10382 if (tcp->tcp_state > TCPS_LISTEN) 10383 return (EOPNOTSUPP); 10384 if (!checkonly) 10385 tcp->tcp_recvdstaddr = onoff; 10386 break; 10387 case TCP_ANONPRIVBIND: 10388 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10389 *outlenp = 0; 10390 return (reterr); 10391 } 10392 if (!checkonly) { 10393 tcp->tcp_anon_priv_bind = onoff; 10394 } 10395 break; 10396 case TCP_EXCLBIND: 10397 if (!checkonly) 10398 tcp->tcp_exclbind = onoff; 10399 break; /* goto sizeof (int) option return */ 10400 case TCP_INIT_CWND: { 10401 uint32_t init_cwnd = *((uint32_t *)invalp); 10402 10403 if (checkonly) 10404 break; 10405 10406 /* 10407 * Only allow socket with network configuration 10408 * privilege to set the initial cwnd to be larger 10409 * than allowed by RFC 3390. 10410 */ 10411 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10412 tcp->tcp_init_cwnd = init_cwnd; 10413 break; 10414 } 10415 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10416 *outlenp = 0; 10417 return (reterr); 10418 } 10419 if (init_cwnd > TCP_MAX_INIT_CWND) { 10420 *outlenp = 0; 10421 return (EINVAL); 10422 } 10423 tcp->tcp_init_cwnd = init_cwnd; 10424 break; 10425 } 10426 case TCP_KEEPALIVE_THRESHOLD: 10427 if (checkonly) 10428 break; 10429 10430 if (*i1 < tcp_keepalive_interval_low || 10431 *i1 > tcp_keepalive_interval_high) { 10432 *outlenp = 0; 10433 return (EINVAL); 10434 } 10435 if (*i1 != tcp->tcp_ka_interval) { 10436 tcp->tcp_ka_interval = *i1; 10437 /* 10438 * Check if we need to restart the 10439 * keepalive timer. 10440 */ 10441 if (tcp->tcp_ka_tid != 0) { 10442 ASSERT(tcp->tcp_ka_enabled); 10443 (void) TCP_TIMER_CANCEL(tcp, 10444 tcp->tcp_ka_tid); 10445 tcp->tcp_ka_last_intrvl = 0; 10446 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10447 tcp_keepalive_killer, 10448 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10449 } 10450 } 10451 break; 10452 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10453 if (!checkonly) { 10454 if (*i1 < tcp_keepalive_abort_interval_low || 10455 *i1 > tcp_keepalive_abort_interval_high) { 10456 *outlenp = 0; 10457 return (EINVAL); 10458 } 10459 tcp->tcp_ka_abort_thres = *i1; 10460 } 10461 break; 10462 case TCP_CORK: 10463 if (!checkonly) { 10464 /* 10465 * if tcp->tcp_cork was set and is now 10466 * being unset, we have to make sure that 10467 * the remaining data gets sent out. Also 10468 * unset tcp->tcp_cork so that tcp_wput_data() 10469 * can send data even if it is less than mss 10470 */ 10471 if (tcp->tcp_cork && onoff == 0 && 10472 tcp->tcp_unsent > 0) { 10473 tcp->tcp_cork = B_FALSE; 10474 tcp_wput_data(tcp, NULL, B_FALSE); 10475 } 10476 tcp->tcp_cork = onoff; 10477 } 10478 break; 10479 default: 10480 *outlenp = 0; 10481 return (EINVAL); 10482 } 10483 break; 10484 case IPPROTO_IP: 10485 if (tcp->tcp_family != AF_INET) { 10486 *outlenp = 0; 10487 return (ENOPROTOOPT); 10488 } 10489 switch (name) { 10490 case IP_OPTIONS: 10491 case T_IP_OPTIONS: 10492 reterr = tcp_opt_set_header(tcp, checkonly, 10493 invalp, inlen); 10494 if (reterr) { 10495 *outlenp = 0; 10496 return (reterr); 10497 } 10498 /* OK return - copy input buffer into output buffer */ 10499 if (invalp != outvalp) { 10500 /* don't trust bcopy for identical src/dst */ 10501 bcopy(invalp, outvalp, inlen); 10502 } 10503 *outlenp = inlen; 10504 return (0); 10505 case IP_TOS: 10506 case T_IP_TOS: 10507 if (!checkonly) { 10508 tcp->tcp_ipha->ipha_type_of_service = 10509 (uchar_t)*i1; 10510 tcp->tcp_tos = (uchar_t)*i1; 10511 } 10512 break; 10513 case IP_TTL: 10514 if (!checkonly) { 10515 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10516 tcp->tcp_ttl = (uchar_t)*i1; 10517 } 10518 break; 10519 case IP_BOUND_IF: 10520 case IP_NEXTHOP: 10521 /* Handled at the IP level */ 10522 return (-EINVAL); 10523 case IP_SEC_OPT: 10524 /* 10525 * We should not allow policy setting after 10526 * we start listening for connections. 10527 */ 10528 if (tcp->tcp_state == TCPS_LISTEN) { 10529 return (EINVAL); 10530 } else { 10531 /* Handled at the IP level */ 10532 return (-EINVAL); 10533 } 10534 default: 10535 *outlenp = 0; 10536 return (EINVAL); 10537 } 10538 break; 10539 case IPPROTO_IPV6: { 10540 ip6_pkt_t *ipp; 10541 10542 /* 10543 * IPPROTO_IPV6 options are only supported for sockets 10544 * that are using IPv6 on the wire. 10545 */ 10546 if (tcp->tcp_ipversion != IPV6_VERSION) { 10547 *outlenp = 0; 10548 return (ENOPROTOOPT); 10549 } 10550 /* 10551 * Only sticky options; no ancillary data 10552 */ 10553 ASSERT(thisdg_attrs == NULL); 10554 ipp = &tcp->tcp_sticky_ipp; 10555 10556 switch (name) { 10557 case IPV6_UNICAST_HOPS: 10558 /* -1 means use default */ 10559 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10560 *outlenp = 0; 10561 return (EINVAL); 10562 } 10563 if (!checkonly) { 10564 if (*i1 == -1) { 10565 tcp->tcp_ip6h->ip6_hops = 10566 ipp->ipp_unicast_hops = 10567 (uint8_t)tcp_ipv6_hoplimit; 10568 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10569 /* Pass modified value to IP. */ 10570 *i1 = tcp->tcp_ip6h->ip6_hops; 10571 } else { 10572 tcp->tcp_ip6h->ip6_hops = 10573 ipp->ipp_unicast_hops = 10574 (uint8_t)*i1; 10575 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10576 } 10577 reterr = tcp_build_hdrs(q, tcp); 10578 if (reterr != 0) 10579 return (reterr); 10580 } 10581 break; 10582 case IPV6_BOUND_IF: 10583 if (!checkonly) { 10584 int error = 0; 10585 10586 tcp->tcp_bound_if = *i1; 10587 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10588 B_TRUE, checkonly, level, name, mblk); 10589 if (error != 0) { 10590 *outlenp = 0; 10591 return (error); 10592 } 10593 } 10594 break; 10595 /* 10596 * Set boolean switches for ancillary data delivery 10597 */ 10598 case IPV6_RECVPKTINFO: 10599 if (!checkonly) { 10600 if (onoff) 10601 tcp->tcp_ipv6_recvancillary |= 10602 TCP_IPV6_RECVPKTINFO; 10603 else 10604 tcp->tcp_ipv6_recvancillary &= 10605 ~TCP_IPV6_RECVPKTINFO; 10606 /* Force it to be sent up with the next msg */ 10607 tcp->tcp_recvifindex = 0; 10608 } 10609 break; 10610 case IPV6_RECVTCLASS: 10611 if (!checkonly) { 10612 if (onoff) 10613 tcp->tcp_ipv6_recvancillary |= 10614 TCP_IPV6_RECVTCLASS; 10615 else 10616 tcp->tcp_ipv6_recvancillary &= 10617 ~TCP_IPV6_RECVTCLASS; 10618 } 10619 break; 10620 case IPV6_RECVHOPLIMIT: 10621 if (!checkonly) { 10622 if (onoff) 10623 tcp->tcp_ipv6_recvancillary |= 10624 TCP_IPV6_RECVHOPLIMIT; 10625 else 10626 tcp->tcp_ipv6_recvancillary &= 10627 ~TCP_IPV6_RECVHOPLIMIT; 10628 /* Force it to be sent up with the next msg */ 10629 tcp->tcp_recvhops = 0xffffffffU; 10630 } 10631 break; 10632 case IPV6_RECVHOPOPTS: 10633 if (!checkonly) { 10634 if (onoff) 10635 tcp->tcp_ipv6_recvancillary |= 10636 TCP_IPV6_RECVHOPOPTS; 10637 else 10638 tcp->tcp_ipv6_recvancillary &= 10639 ~TCP_IPV6_RECVHOPOPTS; 10640 } 10641 break; 10642 case IPV6_RECVDSTOPTS: 10643 if (!checkonly) { 10644 if (onoff) 10645 tcp->tcp_ipv6_recvancillary |= 10646 TCP_IPV6_RECVDSTOPTS; 10647 else 10648 tcp->tcp_ipv6_recvancillary &= 10649 ~TCP_IPV6_RECVDSTOPTS; 10650 } 10651 break; 10652 case _OLD_IPV6_RECVDSTOPTS: 10653 if (!checkonly) { 10654 if (onoff) 10655 tcp->tcp_ipv6_recvancillary |= 10656 TCP_OLD_IPV6_RECVDSTOPTS; 10657 else 10658 tcp->tcp_ipv6_recvancillary &= 10659 ~TCP_OLD_IPV6_RECVDSTOPTS; 10660 } 10661 break; 10662 case IPV6_RECVRTHDR: 10663 if (!checkonly) { 10664 if (onoff) 10665 tcp->tcp_ipv6_recvancillary |= 10666 TCP_IPV6_RECVRTHDR; 10667 else 10668 tcp->tcp_ipv6_recvancillary &= 10669 ~TCP_IPV6_RECVRTHDR; 10670 } 10671 break; 10672 case IPV6_RECVRTHDRDSTOPTS: 10673 if (!checkonly) { 10674 if (onoff) 10675 tcp->tcp_ipv6_recvancillary |= 10676 TCP_IPV6_RECVRTDSTOPTS; 10677 else 10678 tcp->tcp_ipv6_recvancillary &= 10679 ~TCP_IPV6_RECVRTDSTOPTS; 10680 } 10681 break; 10682 case IPV6_PKTINFO: 10683 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10684 return (EINVAL); 10685 if (checkonly) 10686 break; 10687 10688 if (inlen == 0) { 10689 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10690 } else { 10691 struct in6_pktinfo *pkti; 10692 10693 pkti = (struct in6_pktinfo *)invalp; 10694 /* 10695 * RFC 3542 states that ipi6_addr must be 10696 * the unspecified address when setting the 10697 * IPV6_PKTINFO sticky socket option on a 10698 * TCP socket. 10699 */ 10700 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10701 return (EINVAL); 10702 /* 10703 * ip6_set_pktinfo() validates the source 10704 * address and interface index. 10705 */ 10706 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10707 pkti, mblk); 10708 if (reterr != 0) 10709 return (reterr); 10710 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10711 ipp->ipp_addr = pkti->ipi6_addr; 10712 if (ipp->ipp_ifindex != 0) 10713 ipp->ipp_fields |= IPPF_IFINDEX; 10714 else 10715 ipp->ipp_fields &= ~IPPF_IFINDEX; 10716 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10717 ipp->ipp_fields |= IPPF_ADDR; 10718 else 10719 ipp->ipp_fields &= ~IPPF_ADDR; 10720 } 10721 reterr = tcp_build_hdrs(q, tcp); 10722 if (reterr != 0) 10723 return (reterr); 10724 break; 10725 case IPV6_TCLASS: 10726 if (inlen != 0 && inlen != sizeof (int)) 10727 return (EINVAL); 10728 if (checkonly) 10729 break; 10730 10731 if (inlen == 0) { 10732 ipp->ipp_fields &= ~IPPF_TCLASS; 10733 } else { 10734 if (*i1 > 255 || *i1 < -1) 10735 return (EINVAL); 10736 if (*i1 == -1) { 10737 ipp->ipp_tclass = 0; 10738 *i1 = 0; 10739 } else { 10740 ipp->ipp_tclass = *i1; 10741 } 10742 ipp->ipp_fields |= IPPF_TCLASS; 10743 } 10744 reterr = tcp_build_hdrs(q, tcp); 10745 if (reterr != 0) 10746 return (reterr); 10747 break; 10748 case IPV6_NEXTHOP: 10749 /* 10750 * IP will verify that the nexthop is reachable 10751 * and fail for sticky options. 10752 */ 10753 if (inlen != 0 && inlen != sizeof (sin6_t)) 10754 return (EINVAL); 10755 if (checkonly) 10756 break; 10757 10758 if (inlen == 0) { 10759 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10760 } else { 10761 sin6_t *sin6 = (sin6_t *)invalp; 10762 10763 if (sin6->sin6_family != AF_INET6) 10764 return (EAFNOSUPPORT); 10765 if (IN6_IS_ADDR_V4MAPPED( 10766 &sin6->sin6_addr)) 10767 return (EADDRNOTAVAIL); 10768 ipp->ipp_nexthop = sin6->sin6_addr; 10769 if (!IN6_IS_ADDR_UNSPECIFIED( 10770 &ipp->ipp_nexthop)) 10771 ipp->ipp_fields |= IPPF_NEXTHOP; 10772 else 10773 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10774 } 10775 reterr = tcp_build_hdrs(q, tcp); 10776 if (reterr != 0) 10777 return (reterr); 10778 break; 10779 case IPV6_HOPOPTS: { 10780 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10781 10782 /* 10783 * Sanity checks - minimum size, size a multiple of 10784 * eight bytes, and matching size passed in. 10785 */ 10786 if (inlen != 0 && 10787 inlen != (8 * (hopts->ip6h_len + 1))) 10788 return (EINVAL); 10789 10790 if (checkonly) 10791 break; 10792 10793 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10794 (uchar_t **)&ipp->ipp_hopopts, 10795 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10796 if (reterr != 0) 10797 return (reterr); 10798 if (ipp->ipp_hopoptslen == 0) 10799 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10800 else 10801 ipp->ipp_fields |= IPPF_HOPOPTS; 10802 reterr = tcp_build_hdrs(q, tcp); 10803 if (reterr != 0) 10804 return (reterr); 10805 break; 10806 } 10807 case IPV6_RTHDRDSTOPTS: { 10808 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10809 10810 /* 10811 * Sanity checks - minimum size, size a multiple of 10812 * eight bytes, and matching size passed in. 10813 */ 10814 if (inlen != 0 && 10815 inlen != (8 * (dopts->ip6d_len + 1))) 10816 return (EINVAL); 10817 10818 if (checkonly) 10819 break; 10820 10821 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10822 (uchar_t **)&ipp->ipp_rtdstopts, 10823 &ipp->ipp_rtdstoptslen, 0); 10824 if (reterr != 0) 10825 return (reterr); 10826 if (ipp->ipp_rtdstoptslen == 0) 10827 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10828 else 10829 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10830 reterr = tcp_build_hdrs(q, tcp); 10831 if (reterr != 0) 10832 return (reterr); 10833 break; 10834 } 10835 case IPV6_DSTOPTS: { 10836 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10837 10838 /* 10839 * Sanity checks - minimum size, size a multiple of 10840 * eight bytes, and matching size passed in. 10841 */ 10842 if (inlen != 0 && 10843 inlen != (8 * (dopts->ip6d_len + 1))) 10844 return (EINVAL); 10845 10846 if (checkonly) 10847 break; 10848 10849 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10850 (uchar_t **)&ipp->ipp_dstopts, 10851 &ipp->ipp_dstoptslen, 0); 10852 if (reterr != 0) 10853 return (reterr); 10854 if (ipp->ipp_dstoptslen == 0) 10855 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10856 else 10857 ipp->ipp_fields |= IPPF_DSTOPTS; 10858 reterr = tcp_build_hdrs(q, tcp); 10859 if (reterr != 0) 10860 return (reterr); 10861 break; 10862 } 10863 case IPV6_RTHDR: { 10864 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10865 10866 /* 10867 * Sanity checks - minimum size, size a multiple of 10868 * eight bytes, and matching size passed in. 10869 */ 10870 if (inlen != 0 && 10871 inlen != (8 * (rt->ip6r_len + 1))) 10872 return (EINVAL); 10873 10874 if (checkonly) 10875 break; 10876 10877 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10878 (uchar_t **)&ipp->ipp_rthdr, 10879 &ipp->ipp_rthdrlen, 0); 10880 if (reterr != 0) 10881 return (reterr); 10882 if (ipp->ipp_rthdrlen == 0) 10883 ipp->ipp_fields &= ~IPPF_RTHDR; 10884 else 10885 ipp->ipp_fields |= IPPF_RTHDR; 10886 reterr = tcp_build_hdrs(q, tcp); 10887 if (reterr != 0) 10888 return (reterr); 10889 break; 10890 } 10891 case IPV6_V6ONLY: 10892 if (!checkonly) 10893 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10894 break; 10895 case IPV6_USE_MIN_MTU: 10896 if (inlen != sizeof (int)) 10897 return (EINVAL); 10898 10899 if (*i1 < -1 || *i1 > 1) 10900 return (EINVAL); 10901 10902 if (checkonly) 10903 break; 10904 10905 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10906 ipp->ipp_use_min_mtu = *i1; 10907 break; 10908 case IPV6_BOUND_PIF: 10909 /* Handled at the IP level */ 10910 return (-EINVAL); 10911 case IPV6_SEC_OPT: 10912 /* 10913 * We should not allow policy setting after 10914 * we start listening for connections. 10915 */ 10916 if (tcp->tcp_state == TCPS_LISTEN) { 10917 return (EINVAL); 10918 } else { 10919 /* Handled at the IP level */ 10920 return (-EINVAL); 10921 } 10922 case IPV6_SRC_PREFERENCES: 10923 if (inlen != sizeof (uint32_t)) 10924 return (EINVAL); 10925 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10926 *(uint32_t *)invalp); 10927 if (reterr != 0) { 10928 *outlenp = 0; 10929 return (reterr); 10930 } 10931 break; 10932 default: 10933 *outlenp = 0; 10934 return (EINVAL); 10935 } 10936 break; 10937 } /* end IPPROTO_IPV6 */ 10938 default: 10939 *outlenp = 0; 10940 return (EINVAL); 10941 } 10942 /* 10943 * Common case of OK return with outval same as inval 10944 */ 10945 if (invalp != outvalp) { 10946 /* don't trust bcopy for identical src/dst */ 10947 (void) bcopy(invalp, outvalp, inlen); 10948 } 10949 *outlenp = inlen; 10950 return (0); 10951 } 10952 10953 /* 10954 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10955 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10956 * headers, and the maximum size tcp header (to avoid reallocation 10957 * on the fly for additional tcp options). 10958 * Returns failure if can't allocate memory. 10959 */ 10960 static int 10961 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10962 { 10963 char *hdrs; 10964 uint_t hdrs_len; 10965 ip6i_t *ip6i; 10966 char buf[TCP_MAX_HDR_LENGTH]; 10967 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10968 in6_addr_t src, dst; 10969 10970 /* 10971 * save the existing tcp header and source/dest IP addresses 10972 */ 10973 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10974 src = tcp->tcp_ip6h->ip6_src; 10975 dst = tcp->tcp_ip6h->ip6_dst; 10976 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10977 ASSERT(hdrs_len != 0); 10978 if (hdrs_len > tcp->tcp_iphc_len) { 10979 /* Need to reallocate */ 10980 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10981 if (hdrs == NULL) 10982 return (ENOMEM); 10983 if (tcp->tcp_iphc != NULL) { 10984 if (tcp->tcp_hdr_grown) { 10985 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10986 } else { 10987 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10988 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10989 } 10990 tcp->tcp_iphc_len = 0; 10991 } 10992 ASSERT(tcp->tcp_iphc_len == 0); 10993 tcp->tcp_iphc = hdrs; 10994 tcp->tcp_iphc_len = hdrs_len; 10995 tcp->tcp_hdr_grown = B_TRUE; 10996 } 10997 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10998 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10999 11000 /* Set header fields not in ipp */ 11001 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11002 ip6i = (ip6i_t *)tcp->tcp_iphc; 11003 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11004 } else { 11005 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11006 } 11007 /* 11008 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11009 * 11010 * tcp->tcp_tcp_hdr_len doesn't change here. 11011 */ 11012 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11013 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11014 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11015 11016 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11017 11018 tcp->tcp_ip6h->ip6_src = src; 11019 tcp->tcp_ip6h->ip6_dst = dst; 11020 11021 /* 11022 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11023 * the default value for TCP. 11024 */ 11025 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11026 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 11027 11028 /* 11029 * If we're setting extension headers after a connection 11030 * has been established, and if we have a routing header 11031 * among the extension headers, call ip_massage_options_v6 to 11032 * manipulate the routing header/ip6_dst set the checksum 11033 * difference in the tcp header template. 11034 * (This happens in tcp_connect_ipv6 if the routing header 11035 * is set prior to the connect.) 11036 * Set the tcp_sum to zero first in case we've cleared a 11037 * routing header or don't have one at all. 11038 */ 11039 tcp->tcp_sum = 0; 11040 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11041 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11042 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11043 (uint8_t *)tcp->tcp_tcph); 11044 if (rth != NULL) { 11045 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11046 rth); 11047 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11048 (tcp->tcp_sum >> 16)); 11049 } 11050 } 11051 11052 /* Try to get everything in a single mblk */ 11053 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 11054 return (0); 11055 } 11056 11057 /* 11058 * Transfer any source route option from ipha to buf/dst in reversed form. 11059 */ 11060 static int 11061 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11062 { 11063 ipoptp_t opts; 11064 uchar_t *opt; 11065 uint8_t optval; 11066 uint8_t optlen; 11067 uint32_t len = 0; 11068 11069 for (optval = ipoptp_first(&opts, ipha); 11070 optval != IPOPT_EOL; 11071 optval = ipoptp_next(&opts)) { 11072 opt = opts.ipoptp_cur; 11073 optlen = opts.ipoptp_len; 11074 switch (optval) { 11075 int off1, off2; 11076 case IPOPT_SSRR: 11077 case IPOPT_LSRR: 11078 11079 /* Reverse source route */ 11080 /* 11081 * First entry should be the next to last one in the 11082 * current source route (the last entry is our 11083 * address.) 11084 * The last entry should be the final destination. 11085 */ 11086 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11087 buf[IPOPT_OLEN] = (uint8_t)optlen; 11088 off1 = IPOPT_MINOFF_SR - 1; 11089 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11090 if (off2 < 0) { 11091 /* No entries in source route */ 11092 break; 11093 } 11094 bcopy(opt + off2, dst, IP_ADDR_LEN); 11095 /* 11096 * Note: use src since ipha has not had its src 11097 * and dst reversed (it is in the state it was 11098 * received. 11099 */ 11100 bcopy(&ipha->ipha_src, buf + off2, 11101 IP_ADDR_LEN); 11102 off2 -= IP_ADDR_LEN; 11103 11104 while (off2 > 0) { 11105 bcopy(opt + off2, buf + off1, 11106 IP_ADDR_LEN); 11107 off1 += IP_ADDR_LEN; 11108 off2 -= IP_ADDR_LEN; 11109 } 11110 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11111 buf += optlen; 11112 len += optlen; 11113 break; 11114 } 11115 } 11116 done: 11117 /* Pad the resulting options */ 11118 while (len & 0x3) { 11119 *buf++ = IPOPT_EOL; 11120 len++; 11121 } 11122 return (len); 11123 } 11124 11125 11126 /* 11127 * Extract and revert a source route from ipha (if any) 11128 * and then update the relevant fields in both tcp_t and the standard header. 11129 */ 11130 static void 11131 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11132 { 11133 char buf[TCP_MAX_HDR_LENGTH]; 11134 uint_t tcph_len; 11135 int len; 11136 11137 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11138 len = IPH_HDR_LENGTH(ipha); 11139 if (len == IP_SIMPLE_HDR_LENGTH) 11140 /* Nothing to do */ 11141 return; 11142 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11143 (len & 0x3)) 11144 return; 11145 11146 tcph_len = tcp->tcp_tcp_hdr_len; 11147 bcopy(tcp->tcp_tcph, buf, tcph_len); 11148 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11149 (tcp->tcp_ipha->ipha_dst & 0xffff); 11150 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11151 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11152 len += IP_SIMPLE_HDR_LENGTH; 11153 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11154 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11155 if ((int)tcp->tcp_sum < 0) 11156 tcp->tcp_sum--; 11157 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11158 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11159 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11160 bcopy(buf, tcp->tcp_tcph, tcph_len); 11161 tcp->tcp_ip_hdr_len = len; 11162 tcp->tcp_ipha->ipha_version_and_hdr_length = 11163 (IP_VERSION << 4) | (len >> 2); 11164 len += tcph_len; 11165 tcp->tcp_hdr_len = len; 11166 } 11167 11168 /* 11169 * Copy the standard header into its new location, 11170 * lay in the new options and then update the relevant 11171 * fields in both tcp_t and the standard header. 11172 */ 11173 static int 11174 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11175 { 11176 uint_t tcph_len; 11177 uint8_t *ip_optp; 11178 tcph_t *new_tcph; 11179 11180 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11181 return (EINVAL); 11182 11183 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11184 return (EINVAL); 11185 11186 if (checkonly) { 11187 /* 11188 * do not really set, just pretend to - T_CHECK 11189 */ 11190 return (0); 11191 } 11192 11193 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11194 if (tcp->tcp_label_len > 0) { 11195 int padlen; 11196 uint8_t opt; 11197 11198 /* convert list termination to no-ops */ 11199 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11200 ip_optp += ip_optp[IPOPT_OLEN]; 11201 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11202 while (--padlen >= 0) 11203 *ip_optp++ = opt; 11204 } 11205 tcph_len = tcp->tcp_tcp_hdr_len; 11206 new_tcph = (tcph_t *)(ip_optp + len); 11207 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11208 tcp->tcp_tcph = new_tcph; 11209 bcopy(ptr, ip_optp, len); 11210 11211 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11212 11213 tcp->tcp_ip_hdr_len = len; 11214 tcp->tcp_ipha->ipha_version_and_hdr_length = 11215 (IP_VERSION << 4) | (len >> 2); 11216 tcp->tcp_hdr_len = len + tcph_len; 11217 if (!TCP_IS_DETACHED(tcp)) { 11218 /* Always allocate room for all options. */ 11219 (void) mi_set_sth_wroff(tcp->tcp_rq, 11220 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 11221 } 11222 return (0); 11223 } 11224 11225 /* Get callback routine passed to nd_load by tcp_param_register */ 11226 /* ARGSUSED */ 11227 static int 11228 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11229 { 11230 tcpparam_t *tcppa = (tcpparam_t *)cp; 11231 11232 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11233 return (0); 11234 } 11235 11236 /* 11237 * Walk through the param array specified registering each element with the 11238 * named dispatch handler. 11239 */ 11240 static boolean_t 11241 tcp_param_register(tcpparam_t *tcppa, int cnt) 11242 { 11243 for (; cnt-- > 0; tcppa++) { 11244 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11245 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11246 tcp_param_get, tcp_param_set, 11247 (caddr_t)tcppa)) { 11248 nd_free(&tcp_g_nd); 11249 return (B_FALSE); 11250 } 11251 } 11252 } 11253 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11254 tcp_param_get, tcp_param_set_aligned, 11255 (caddr_t)&tcp_wroff_xtra_param)) { 11256 nd_free(&tcp_g_nd); 11257 return (B_FALSE); 11258 } 11259 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11260 tcp_param_get, tcp_param_set_aligned, 11261 (caddr_t)&tcp_mdt_head_param)) { 11262 nd_free(&tcp_g_nd); 11263 return (B_FALSE); 11264 } 11265 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11266 tcp_param_get, tcp_param_set_aligned, 11267 (caddr_t)&tcp_mdt_tail_param)) { 11268 nd_free(&tcp_g_nd); 11269 return (B_FALSE); 11270 } 11271 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11272 tcp_param_get, tcp_param_set, 11273 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11274 nd_free(&tcp_g_nd); 11275 return (B_FALSE); 11276 } 11277 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11278 tcp_extra_priv_ports_get, NULL, NULL)) { 11279 nd_free(&tcp_g_nd); 11280 return (B_FALSE); 11281 } 11282 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11283 NULL, tcp_extra_priv_ports_add, NULL)) { 11284 nd_free(&tcp_g_nd); 11285 return (B_FALSE); 11286 } 11287 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11288 NULL, tcp_extra_priv_ports_del, NULL)) { 11289 nd_free(&tcp_g_nd); 11290 return (B_FALSE); 11291 } 11292 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11293 NULL)) { 11294 nd_free(&tcp_g_nd); 11295 return (B_FALSE); 11296 } 11297 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11298 NULL, NULL)) { 11299 nd_free(&tcp_g_nd); 11300 return (B_FALSE); 11301 } 11302 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11303 NULL, NULL)) { 11304 nd_free(&tcp_g_nd); 11305 return (B_FALSE); 11306 } 11307 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11308 NULL, NULL)) { 11309 nd_free(&tcp_g_nd); 11310 return (B_FALSE); 11311 } 11312 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11313 NULL, NULL)) { 11314 nd_free(&tcp_g_nd); 11315 return (B_FALSE); 11316 } 11317 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11318 tcp_host_param_set, NULL)) { 11319 nd_free(&tcp_g_nd); 11320 return (B_FALSE); 11321 } 11322 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11323 tcp_host_param_set_ipv6, NULL)) { 11324 nd_free(&tcp_g_nd); 11325 return (B_FALSE); 11326 } 11327 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11328 NULL)) { 11329 nd_free(&tcp_g_nd); 11330 return (B_FALSE); 11331 } 11332 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11333 tcp_reserved_port_list, NULL, NULL)) { 11334 nd_free(&tcp_g_nd); 11335 return (B_FALSE); 11336 } 11337 /* 11338 * Dummy ndd variables - only to convey obsolescence information 11339 * through printing of their name (no get or set routines) 11340 * XXX Remove in future releases ? 11341 */ 11342 if (!nd_load(&tcp_g_nd, 11343 "tcp_close_wait_interval(obsoleted - " 11344 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11345 nd_free(&tcp_g_nd); 11346 return (B_FALSE); 11347 } 11348 return (B_TRUE); 11349 } 11350 11351 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11352 /* ARGSUSED */ 11353 static int 11354 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11355 cred_t *cr) 11356 { 11357 long new_value; 11358 tcpparam_t *tcppa = (tcpparam_t *)cp; 11359 11360 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11361 new_value < tcppa->tcp_param_min || 11362 new_value > tcppa->tcp_param_max) { 11363 return (EINVAL); 11364 } 11365 /* 11366 * Need to make sure new_value is a multiple of 4. If it is not, 11367 * round it up. For future 64 bit requirement, we actually make it 11368 * a multiple of 8. 11369 */ 11370 if (new_value & 0x7) { 11371 new_value = (new_value & ~0x7) + 0x8; 11372 } 11373 tcppa->tcp_param_val = new_value; 11374 return (0); 11375 } 11376 11377 /* Set callback routine passed to nd_load by tcp_param_register */ 11378 /* ARGSUSED */ 11379 static int 11380 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11381 { 11382 long new_value; 11383 tcpparam_t *tcppa = (tcpparam_t *)cp; 11384 11385 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11386 new_value < tcppa->tcp_param_min || 11387 new_value > tcppa->tcp_param_max) { 11388 return (EINVAL); 11389 } 11390 tcppa->tcp_param_val = new_value; 11391 return (0); 11392 } 11393 11394 /* 11395 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11396 * is filled, return as much as we can. The message passed in may be 11397 * multi-part, chained using b_cont. "start" is the starting sequence 11398 * number for this piece. 11399 */ 11400 static mblk_t * 11401 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11402 { 11403 uint32_t end; 11404 mblk_t *mp1; 11405 mblk_t *mp2; 11406 mblk_t *next_mp; 11407 uint32_t u1; 11408 11409 /* Walk through all the new pieces. */ 11410 do { 11411 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11412 (uintptr_t)INT_MAX); 11413 end = start + (int)(mp->b_wptr - mp->b_rptr); 11414 next_mp = mp->b_cont; 11415 if (start == end) { 11416 /* Empty. Blast it. */ 11417 freeb(mp); 11418 continue; 11419 } 11420 mp->b_cont = NULL; 11421 TCP_REASS_SET_SEQ(mp, start); 11422 TCP_REASS_SET_END(mp, end); 11423 mp1 = tcp->tcp_reass_tail; 11424 if (!mp1) { 11425 tcp->tcp_reass_tail = mp; 11426 tcp->tcp_reass_head = mp; 11427 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11428 UPDATE_MIB(&tcp_mib, 11429 tcpInDataUnorderBytes, end - start); 11430 continue; 11431 } 11432 /* New stuff completely beyond tail? */ 11433 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11434 /* Link it on end. */ 11435 mp1->b_cont = mp; 11436 tcp->tcp_reass_tail = mp; 11437 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11438 UPDATE_MIB(&tcp_mib, 11439 tcpInDataUnorderBytes, end - start); 11440 continue; 11441 } 11442 mp1 = tcp->tcp_reass_head; 11443 u1 = TCP_REASS_SEQ(mp1); 11444 /* New stuff at the front? */ 11445 if (SEQ_LT(start, u1)) { 11446 /* Yes... Check for overlap. */ 11447 mp->b_cont = mp1; 11448 tcp->tcp_reass_head = mp; 11449 tcp_reass_elim_overlap(tcp, mp); 11450 continue; 11451 } 11452 /* 11453 * The new piece fits somewhere between the head and tail. 11454 * We find our slot, where mp1 precedes us and mp2 trails. 11455 */ 11456 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11457 u1 = TCP_REASS_SEQ(mp2); 11458 if (SEQ_LEQ(start, u1)) 11459 break; 11460 } 11461 /* Link ourselves in */ 11462 mp->b_cont = mp2; 11463 mp1->b_cont = mp; 11464 11465 /* Trim overlap with following mblk(s) first */ 11466 tcp_reass_elim_overlap(tcp, mp); 11467 11468 /* Trim overlap with preceding mblk */ 11469 tcp_reass_elim_overlap(tcp, mp1); 11470 11471 } while (start = end, mp = next_mp); 11472 mp1 = tcp->tcp_reass_head; 11473 /* Anything ready to go? */ 11474 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11475 return (NULL); 11476 /* Eat what we can off the queue */ 11477 for (;;) { 11478 mp = mp1->b_cont; 11479 end = TCP_REASS_END(mp1); 11480 TCP_REASS_SET_SEQ(mp1, 0); 11481 TCP_REASS_SET_END(mp1, 0); 11482 if (!mp) { 11483 tcp->tcp_reass_tail = NULL; 11484 break; 11485 } 11486 if (end != TCP_REASS_SEQ(mp)) { 11487 mp1->b_cont = NULL; 11488 break; 11489 } 11490 mp1 = mp; 11491 } 11492 mp1 = tcp->tcp_reass_head; 11493 tcp->tcp_reass_head = mp; 11494 return (mp1); 11495 } 11496 11497 /* Eliminate any overlap that mp may have over later mblks */ 11498 static void 11499 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11500 { 11501 uint32_t end; 11502 mblk_t *mp1; 11503 uint32_t u1; 11504 11505 end = TCP_REASS_END(mp); 11506 while ((mp1 = mp->b_cont) != NULL) { 11507 u1 = TCP_REASS_SEQ(mp1); 11508 if (!SEQ_GT(end, u1)) 11509 break; 11510 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11511 mp->b_wptr -= end - u1; 11512 TCP_REASS_SET_END(mp, u1); 11513 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11514 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11515 break; 11516 } 11517 mp->b_cont = mp1->b_cont; 11518 TCP_REASS_SET_SEQ(mp1, 0); 11519 TCP_REASS_SET_END(mp1, 0); 11520 freeb(mp1); 11521 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11522 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11523 } 11524 if (!mp1) 11525 tcp->tcp_reass_tail = mp; 11526 } 11527 11528 /* 11529 * Send up all messages queued on tcp_rcv_list. 11530 */ 11531 static uint_t 11532 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11533 { 11534 mblk_t *mp; 11535 uint_t ret = 0; 11536 uint_t thwin; 11537 #ifdef DEBUG 11538 uint_t cnt = 0; 11539 #endif 11540 /* Can't drain on an eager connection */ 11541 if (tcp->tcp_listener != NULL) 11542 return (ret); 11543 11544 /* 11545 * Handle two cases here: we are currently fused or we were 11546 * previously fused and have some urgent data to be delivered 11547 * upstream. The latter happens because we either ran out of 11548 * memory or were detached and therefore sending the SIGURG was 11549 * deferred until this point. In either case we pass control 11550 * over to tcp_fuse_rcv_drain() since it may need to complete 11551 * some work. 11552 */ 11553 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11554 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11555 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11556 &tcp->tcp_fused_sigurg_mp)) 11557 return (ret); 11558 } 11559 11560 while ((mp = tcp->tcp_rcv_list) != NULL) { 11561 tcp->tcp_rcv_list = mp->b_next; 11562 mp->b_next = NULL; 11563 #ifdef DEBUG 11564 cnt += msgdsize(mp); 11565 #endif 11566 /* Does this need SSL processing first? */ 11567 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11568 tcp_kssl_input(tcp, mp); 11569 continue; 11570 } 11571 putnext(q, mp); 11572 } 11573 ASSERT(cnt == tcp->tcp_rcv_cnt); 11574 tcp->tcp_rcv_last_head = NULL; 11575 tcp->tcp_rcv_last_tail = NULL; 11576 tcp->tcp_rcv_cnt = 0; 11577 11578 /* Learn the latest rwnd information that we sent to the other side. */ 11579 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11580 << tcp->tcp_rcv_ws; 11581 /* This is peer's calculated send window (our receive window). */ 11582 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11583 /* 11584 * Increase the receive window to max. But we need to do receiver 11585 * SWS avoidance. This means that we need to check the increase of 11586 * of receive window is at least 1 MSS. 11587 */ 11588 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11589 /* 11590 * If the window that the other side knows is less than max 11591 * deferred acks segments, send an update immediately. 11592 */ 11593 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11594 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11595 ret = TH_ACK_NEEDED; 11596 } 11597 tcp->tcp_rwnd = q->q_hiwat; 11598 } 11599 /* No need for the push timer now. */ 11600 if (tcp->tcp_push_tid != 0) { 11601 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11602 tcp->tcp_push_tid = 0; 11603 } 11604 return (ret); 11605 } 11606 11607 /* 11608 * Queue data on tcp_rcv_list which is a b_next chain. 11609 * tcp_rcv_last_head/tail is the last element of this chain. 11610 * Each element of the chain is a b_cont chain. 11611 * 11612 * M_DATA messages are added to the current element. 11613 * Other messages are added as new (b_next) elements. 11614 */ 11615 void 11616 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11617 { 11618 ASSERT(seg_len == msgdsize(mp)); 11619 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11620 11621 if (tcp->tcp_rcv_list == NULL) { 11622 ASSERT(tcp->tcp_rcv_last_head == NULL); 11623 tcp->tcp_rcv_list = mp; 11624 tcp->tcp_rcv_last_head = mp; 11625 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11626 tcp->tcp_rcv_last_tail->b_cont = mp; 11627 } else { 11628 tcp->tcp_rcv_last_head->b_next = mp; 11629 tcp->tcp_rcv_last_head = mp; 11630 } 11631 11632 while (mp->b_cont) 11633 mp = mp->b_cont; 11634 11635 tcp->tcp_rcv_last_tail = mp; 11636 tcp->tcp_rcv_cnt += seg_len; 11637 tcp->tcp_rwnd -= seg_len; 11638 } 11639 11640 /* 11641 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11642 * 11643 * This is the default entry function into TCP on the read side. TCP is 11644 * always entered via squeue i.e. using squeue's for mutual exclusion. 11645 * When classifier does a lookup to find the tcp, it also puts a reference 11646 * on the conn structure associated so the tcp is guaranteed to exist 11647 * when we come here. We still need to check the state because it might 11648 * as well has been closed. The squeue processing function i.e. squeue_enter, 11649 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11650 * CONN_DEC_REF. 11651 * 11652 * Apart from the default entry point, IP also sends packets directly to 11653 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11654 * connections. 11655 */ 11656 void 11657 tcp_input(void *arg, mblk_t *mp, void *arg2) 11658 { 11659 conn_t *connp = (conn_t *)arg; 11660 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11661 11662 /* arg2 is the sqp */ 11663 ASSERT(arg2 != NULL); 11664 ASSERT(mp != NULL); 11665 11666 /* 11667 * Don't accept any input on a closed tcp as this TCP logically does 11668 * not exist on the system. Don't proceed further with this TCP. 11669 * For eg. this packet could trigger another close of this tcp 11670 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11671 * tcp_clean_death / tcp_closei_local must be called at most once 11672 * on a TCP. In this case we need to refeed the packet into the 11673 * classifier and figure out where the packet should go. Need to 11674 * preserve the recv_ill somehow. Until we figure that out, for 11675 * now just drop the packet if we can't classify the packet. 11676 */ 11677 if (tcp->tcp_state == TCPS_CLOSED || 11678 tcp->tcp_state == TCPS_BOUND) { 11679 conn_t *new_connp; 11680 11681 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11682 if (new_connp != NULL) { 11683 tcp_reinput(new_connp, mp, arg2); 11684 return; 11685 } 11686 /* We failed to classify. For now just drop the packet */ 11687 freemsg(mp); 11688 return; 11689 } 11690 11691 if (DB_TYPE(mp) == M_DATA) 11692 tcp_rput_data(connp, mp, arg2); 11693 else 11694 tcp_rput_common(tcp, mp); 11695 } 11696 11697 /* 11698 * The read side put procedure. 11699 * The packets passed up by ip are assume to be aligned according to 11700 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11701 */ 11702 static void 11703 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11704 { 11705 /* 11706 * tcp_rput_data() does not expect M_CTL except for the case 11707 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11708 * type. Need to make sure that any other M_CTLs don't make 11709 * it to tcp_rput_data since it is not expecting any and doesn't 11710 * check for it. 11711 */ 11712 if (DB_TYPE(mp) == M_CTL) { 11713 switch (*(uint32_t *)(mp->b_rptr)) { 11714 case TCP_IOC_ABORT_CONN: 11715 /* 11716 * Handle connection abort request. 11717 */ 11718 tcp_ioctl_abort_handler(tcp, mp); 11719 return; 11720 case IPSEC_IN: 11721 /* 11722 * Only secure icmp arrive in TCP and they 11723 * don't go through data path. 11724 */ 11725 tcp_icmp_error(tcp, mp); 11726 return; 11727 case IN_PKTINFO: 11728 /* 11729 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11730 * sockets that are receiving IPv4 traffic. tcp 11731 */ 11732 ASSERT(tcp->tcp_family == AF_INET6); 11733 ASSERT(tcp->tcp_ipv6_recvancillary & 11734 TCP_IPV6_RECVPKTINFO); 11735 tcp_rput_data(tcp->tcp_connp, mp, 11736 tcp->tcp_connp->conn_sqp); 11737 return; 11738 case MDT_IOC_INFO_UPDATE: 11739 /* 11740 * Handle Multidata information update; the 11741 * following routine will free the message. 11742 */ 11743 if (tcp->tcp_connp->conn_mdt_ok) { 11744 tcp_mdt_update(tcp, 11745 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11746 B_FALSE); 11747 } 11748 freemsg(mp); 11749 return; 11750 case LSO_IOC_INFO_UPDATE: 11751 /* 11752 * Handle LSO information update; the following 11753 * routine will free the message. 11754 */ 11755 if (tcp->tcp_connp->conn_lso_ok) { 11756 tcp_lso_update(tcp, 11757 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11758 } 11759 freemsg(mp); 11760 return; 11761 default: 11762 /* 11763 * tcp_icmp_err() will process the M_CTL packets. 11764 * Non-ICMP packets, if any, will be discarded in 11765 * tcp_icmp_err(). We will process the ICMP packet 11766 * even if we are TCP_IS_DETACHED_NONEAGER as the 11767 * incoming ICMP packet may result in changing 11768 * the tcp_mss, which we would need if we have 11769 * packets to retransmit. 11770 */ 11771 tcp_icmp_error(tcp, mp); 11772 return; 11773 } 11774 } 11775 11776 /* No point processing the message if tcp is already closed */ 11777 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11778 freemsg(mp); 11779 return; 11780 } 11781 11782 tcp_rput_other(tcp, mp); 11783 } 11784 11785 11786 /* The minimum of smoothed mean deviation in RTO calculation. */ 11787 #define TCP_SD_MIN 400 11788 11789 /* 11790 * Set RTO for this connection. The formula is from Jacobson and Karels' 11791 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11792 * are the same as those in Appendix A.2 of that paper. 11793 * 11794 * m = new measurement 11795 * sa = smoothed RTT average (8 * average estimates). 11796 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11797 */ 11798 static void 11799 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11800 { 11801 long m = TICK_TO_MSEC(rtt); 11802 clock_t sa = tcp->tcp_rtt_sa; 11803 clock_t sv = tcp->tcp_rtt_sd; 11804 clock_t rto; 11805 11806 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11807 tcp->tcp_rtt_update++; 11808 11809 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11810 if (sa != 0) { 11811 /* 11812 * Update average estimator: 11813 * new rtt = 7/8 old rtt + 1/8 Error 11814 */ 11815 11816 /* m is now Error in estimate. */ 11817 m -= sa >> 3; 11818 if ((sa += m) <= 0) { 11819 /* 11820 * Don't allow the smoothed average to be negative. 11821 * We use 0 to denote reinitialization of the 11822 * variables. 11823 */ 11824 sa = 1; 11825 } 11826 11827 /* 11828 * Update deviation estimator: 11829 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11830 */ 11831 if (m < 0) 11832 m = -m; 11833 m -= sv >> 2; 11834 sv += m; 11835 } else { 11836 /* 11837 * This follows BSD's implementation. So the reinitialized 11838 * RTO is 3 * m. We cannot go less than 2 because if the 11839 * link is bandwidth dominated, doubling the window size 11840 * during slow start means doubling the RTT. We want to be 11841 * more conservative when we reinitialize our estimates. 3 11842 * is just a convenient number. 11843 */ 11844 sa = m << 3; 11845 sv = m << 1; 11846 } 11847 if (sv < TCP_SD_MIN) { 11848 /* 11849 * We do not know that if sa captures the delay ACK 11850 * effect as in a long train of segments, a receiver 11851 * does not delay its ACKs. So set the minimum of sv 11852 * to be TCP_SD_MIN, which is default to 400 ms, twice 11853 * of BSD DATO. That means the minimum of mean 11854 * deviation is 100 ms. 11855 * 11856 */ 11857 sv = TCP_SD_MIN; 11858 } 11859 tcp->tcp_rtt_sa = sa; 11860 tcp->tcp_rtt_sd = sv; 11861 /* 11862 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11863 * 11864 * Add tcp_rexmit_interval extra in case of extreme environment 11865 * where the algorithm fails to work. The default value of 11866 * tcp_rexmit_interval_extra should be 0. 11867 * 11868 * As we use a finer grained clock than BSD and update 11869 * RTO for every ACKs, add in another .25 of RTT to the 11870 * deviation of RTO to accomodate burstiness of 1/4 of 11871 * window size. 11872 */ 11873 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11874 11875 if (rto > tcp_rexmit_interval_max) { 11876 tcp->tcp_rto = tcp_rexmit_interval_max; 11877 } else if (rto < tcp_rexmit_interval_min) { 11878 tcp->tcp_rto = tcp_rexmit_interval_min; 11879 } else { 11880 tcp->tcp_rto = rto; 11881 } 11882 11883 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11884 tcp->tcp_timer_backoff = 0; 11885 } 11886 11887 /* 11888 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11889 * send queue which starts at the given seq. no. 11890 * 11891 * Parameters: 11892 * tcp_t *tcp: the tcp instance pointer. 11893 * uint32_t seq: the starting seq. no of the requested segment. 11894 * int32_t *off: after the execution, *off will be the offset to 11895 * the returned mblk which points to the requested seq no. 11896 * It is the caller's responsibility to send in a non-null off. 11897 * 11898 * Return: 11899 * A mblk_t pointer pointing to the requested segment in send queue. 11900 */ 11901 static mblk_t * 11902 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11903 { 11904 int32_t cnt; 11905 mblk_t *mp; 11906 11907 /* Defensive coding. Make sure we don't send incorrect data. */ 11908 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11909 return (NULL); 11910 11911 cnt = seq - tcp->tcp_suna; 11912 mp = tcp->tcp_xmit_head; 11913 while (cnt > 0 && mp != NULL) { 11914 cnt -= mp->b_wptr - mp->b_rptr; 11915 if (cnt < 0) { 11916 cnt += mp->b_wptr - mp->b_rptr; 11917 break; 11918 } 11919 mp = mp->b_cont; 11920 } 11921 ASSERT(mp != NULL); 11922 *off = cnt; 11923 return (mp); 11924 } 11925 11926 /* 11927 * This function handles all retransmissions if SACK is enabled for this 11928 * connection. First it calculates how many segments can be retransmitted 11929 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11930 * segments. A segment is eligible if sack_cnt for that segment is greater 11931 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11932 * all eligible segments, it checks to see if TCP can send some new segments 11933 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11934 * 11935 * Parameters: 11936 * tcp_t *tcp: the tcp structure of the connection. 11937 * uint_t *flags: in return, appropriate value will be set for 11938 * tcp_rput_data(). 11939 */ 11940 static void 11941 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11942 { 11943 notsack_blk_t *notsack_blk; 11944 int32_t usable_swnd; 11945 int32_t mss; 11946 uint32_t seg_len; 11947 mblk_t *xmit_mp; 11948 11949 ASSERT(tcp->tcp_sack_info != NULL); 11950 ASSERT(tcp->tcp_notsack_list != NULL); 11951 ASSERT(tcp->tcp_rexmit == B_FALSE); 11952 11953 /* Defensive coding in case there is a bug... */ 11954 if (tcp->tcp_notsack_list == NULL) { 11955 return; 11956 } 11957 notsack_blk = tcp->tcp_notsack_list; 11958 mss = tcp->tcp_mss; 11959 11960 /* 11961 * Limit the num of outstanding data in the network to be 11962 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11963 */ 11964 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11965 11966 /* At least retransmit 1 MSS of data. */ 11967 if (usable_swnd <= 0) { 11968 usable_swnd = mss; 11969 } 11970 11971 /* Make sure no new RTT samples will be taken. */ 11972 tcp->tcp_csuna = tcp->tcp_snxt; 11973 11974 notsack_blk = tcp->tcp_notsack_list; 11975 while (usable_swnd > 0) { 11976 mblk_t *snxt_mp, *tmp_mp; 11977 tcp_seq begin = tcp->tcp_sack_snxt; 11978 tcp_seq end; 11979 int32_t off; 11980 11981 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11982 if (SEQ_GT(notsack_blk->end, begin) && 11983 (notsack_blk->sack_cnt >= 11984 tcp_dupack_fast_retransmit)) { 11985 end = notsack_blk->end; 11986 if (SEQ_LT(begin, notsack_blk->begin)) { 11987 begin = notsack_blk->begin; 11988 } 11989 break; 11990 } 11991 } 11992 /* 11993 * All holes are filled. Manipulate tcp_cwnd to send more 11994 * if we can. Note that after the SACK recovery, tcp_cwnd is 11995 * set to tcp_cwnd_ssthresh. 11996 */ 11997 if (notsack_blk == NULL) { 11998 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11999 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12000 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12001 ASSERT(tcp->tcp_cwnd > 0); 12002 return; 12003 } else { 12004 usable_swnd = usable_swnd / mss; 12005 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12006 MAX(usable_swnd * mss, mss); 12007 *flags |= TH_XMIT_NEEDED; 12008 return; 12009 } 12010 } 12011 12012 /* 12013 * Note that we may send more than usable_swnd allows here 12014 * because of round off, but no more than 1 MSS of data. 12015 */ 12016 seg_len = end - begin; 12017 if (seg_len > mss) 12018 seg_len = mss; 12019 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12020 ASSERT(snxt_mp != NULL); 12021 /* This should not happen. Defensive coding again... */ 12022 if (snxt_mp == NULL) { 12023 return; 12024 } 12025 12026 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12027 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12028 if (xmit_mp == NULL) 12029 return; 12030 12031 usable_swnd -= seg_len; 12032 tcp->tcp_pipe += seg_len; 12033 tcp->tcp_sack_snxt = begin + seg_len; 12034 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12035 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12036 12037 /* 12038 * Update the send timestamp to avoid false retransmission. 12039 */ 12040 snxt_mp->b_prev = (mblk_t *)lbolt; 12041 12042 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12043 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 12044 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 12045 /* 12046 * Update tcp_rexmit_max to extend this SACK recovery phase. 12047 * This happens when new data sent during fast recovery is 12048 * also lost. If TCP retransmits those new data, it needs 12049 * to extend SACK recover phase to avoid starting another 12050 * fast retransmit/recovery unnecessarily. 12051 */ 12052 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12053 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12054 } 12055 } 12056 } 12057 12058 /* 12059 * This function handles policy checking at TCP level for non-hard_bound/ 12060 * detached connections. 12061 */ 12062 static boolean_t 12063 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12064 boolean_t secure, boolean_t mctl_present) 12065 { 12066 ipsec_latch_t *ipl = NULL; 12067 ipsec_action_t *act = NULL; 12068 mblk_t *data_mp; 12069 ipsec_in_t *ii; 12070 const char *reason; 12071 kstat_named_t *counter; 12072 12073 ASSERT(mctl_present || !secure); 12074 12075 ASSERT((ipha == NULL && ip6h != NULL) || 12076 (ip6h == NULL && ipha != NULL)); 12077 12078 /* 12079 * We don't necessarily have an ipsec_in_act action to verify 12080 * policy because of assymetrical policy where we have only 12081 * outbound policy and no inbound policy (possible with global 12082 * policy). 12083 */ 12084 if (!secure) { 12085 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12086 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12087 return (B_TRUE); 12088 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12089 "tcp_check_policy", ipha, ip6h, secure); 12090 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12091 &ipdrops_tcp_clear, &tcp_dropper); 12092 return (B_FALSE); 12093 } 12094 12095 /* 12096 * We have a secure packet. 12097 */ 12098 if (act == NULL) { 12099 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12100 "tcp_check_policy", ipha, ip6h, secure); 12101 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12102 &ipdrops_tcp_secure, &tcp_dropper); 12103 return (B_FALSE); 12104 } 12105 12106 /* 12107 * XXX This whole routine is currently incorrect. ipl should 12108 * be set to the latch pointer, but is currently not set, so 12109 * we initialize it to NULL to avoid picking up random garbage. 12110 */ 12111 if (ipl == NULL) 12112 return (B_TRUE); 12113 12114 data_mp = first_mp->b_cont; 12115 12116 ii = (ipsec_in_t *)first_mp->b_rptr; 12117 12118 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12119 &counter, tcp->tcp_connp)) { 12120 BUMP_MIB(&ip_mib, ipsecInSucceeded); 12121 return (B_TRUE); 12122 } 12123 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12124 "tcp inbound policy mismatch: %s, packet dropped\n", 12125 reason); 12126 BUMP_MIB(&ip_mib, ipsecInFailed); 12127 12128 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 12129 return (B_FALSE); 12130 } 12131 12132 /* 12133 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12134 * retransmission after a timeout. 12135 * 12136 * To limit the number of duplicate segments, we limit the number of segment 12137 * to be sent in one time to tcp_snd_burst, the burst variable. 12138 */ 12139 static void 12140 tcp_ss_rexmit(tcp_t *tcp) 12141 { 12142 uint32_t snxt; 12143 uint32_t smax; 12144 int32_t win; 12145 int32_t mss; 12146 int32_t off; 12147 int32_t burst = tcp->tcp_snd_burst; 12148 mblk_t *snxt_mp; 12149 12150 /* 12151 * Note that tcp_rexmit can be set even though TCP has retransmitted 12152 * all unack'ed segments. 12153 */ 12154 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12155 smax = tcp->tcp_rexmit_max; 12156 snxt = tcp->tcp_rexmit_nxt; 12157 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12158 snxt = tcp->tcp_suna; 12159 } 12160 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12161 win -= snxt - tcp->tcp_suna; 12162 mss = tcp->tcp_mss; 12163 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12164 12165 while (SEQ_LT(snxt, smax) && (win > 0) && 12166 (burst > 0) && (snxt_mp != NULL)) { 12167 mblk_t *xmit_mp; 12168 mblk_t *old_snxt_mp = snxt_mp; 12169 uint32_t cnt = mss; 12170 12171 if (win < cnt) { 12172 cnt = win; 12173 } 12174 if (SEQ_GT(snxt + cnt, smax)) { 12175 cnt = smax - snxt; 12176 } 12177 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12178 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12179 if (xmit_mp == NULL) 12180 return; 12181 12182 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12183 12184 snxt += cnt; 12185 win -= cnt; 12186 /* 12187 * Update the send timestamp to avoid false 12188 * retransmission. 12189 */ 12190 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12191 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12192 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 12193 12194 tcp->tcp_rexmit_nxt = snxt; 12195 burst--; 12196 } 12197 /* 12198 * If we have transmitted all we have at the time 12199 * we started the retranmission, we can leave 12200 * the rest of the job to tcp_wput_data(). But we 12201 * need to check the send window first. If the 12202 * win is not 0, go on with tcp_wput_data(). 12203 */ 12204 if (SEQ_LT(snxt, smax) || win == 0) { 12205 return; 12206 } 12207 } 12208 /* Only call tcp_wput_data() if there is data to be sent. */ 12209 if (tcp->tcp_unsent) { 12210 tcp_wput_data(tcp, NULL, B_FALSE); 12211 } 12212 } 12213 12214 /* 12215 * Process all TCP option in SYN segment. Note that this function should 12216 * be called after tcp_adapt_ire() is called so that the necessary info 12217 * from IRE is already set in the tcp structure. 12218 * 12219 * This function sets up the correct tcp_mss value according to the 12220 * MSS option value and our header size. It also sets up the window scale 12221 * and timestamp values, and initialize SACK info blocks. But it does not 12222 * change receive window size after setting the tcp_mss value. The caller 12223 * should do the appropriate change. 12224 */ 12225 void 12226 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12227 { 12228 int options; 12229 tcp_opt_t tcpopt; 12230 uint32_t mss_max; 12231 char *tmp_tcph; 12232 12233 tcpopt.tcp = NULL; 12234 options = tcp_parse_options(tcph, &tcpopt); 12235 12236 /* 12237 * Process MSS option. Note that MSS option value does not account 12238 * for IP or TCP options. This means that it is equal to MTU - minimum 12239 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12240 * IPv6. 12241 */ 12242 if (!(options & TCP_OPT_MSS_PRESENT)) { 12243 if (tcp->tcp_ipversion == IPV4_VERSION) 12244 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 12245 else 12246 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12247 } else { 12248 if (tcp->tcp_ipversion == IPV4_VERSION) 12249 mss_max = tcp_mss_max_ipv4; 12250 else 12251 mss_max = tcp_mss_max_ipv6; 12252 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12253 tcpopt.tcp_opt_mss = tcp_mss_min; 12254 else if (tcpopt.tcp_opt_mss > mss_max) 12255 tcpopt.tcp_opt_mss = mss_max; 12256 } 12257 12258 /* Process Window Scale option. */ 12259 if (options & TCP_OPT_WSCALE_PRESENT) { 12260 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12261 tcp->tcp_snd_ws_ok = B_TRUE; 12262 } else { 12263 tcp->tcp_snd_ws = B_FALSE; 12264 tcp->tcp_snd_ws_ok = B_FALSE; 12265 tcp->tcp_rcv_ws = B_FALSE; 12266 } 12267 12268 /* Process Timestamp option. */ 12269 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12270 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12271 tmp_tcph = (char *)tcp->tcp_tcph; 12272 12273 tcp->tcp_snd_ts_ok = B_TRUE; 12274 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12275 tcp->tcp_last_rcv_lbolt = lbolt64; 12276 ASSERT(OK_32PTR(tmp_tcph)); 12277 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12278 12279 /* Fill in our template header with basic timestamp option. */ 12280 tmp_tcph += tcp->tcp_tcp_hdr_len; 12281 tmp_tcph[0] = TCPOPT_NOP; 12282 tmp_tcph[1] = TCPOPT_NOP; 12283 tmp_tcph[2] = TCPOPT_TSTAMP; 12284 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12285 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12286 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12287 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12288 } else { 12289 tcp->tcp_snd_ts_ok = B_FALSE; 12290 } 12291 12292 /* 12293 * Process SACK options. If SACK is enabled for this connection, 12294 * then allocate the SACK info structure. Note the following ways 12295 * when tcp_snd_sack_ok is set to true. 12296 * 12297 * For active connection: in tcp_adapt_ire() called in 12298 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12299 * is checked. 12300 * 12301 * For passive connection: in tcp_adapt_ire() called in 12302 * tcp_accept_comm(). 12303 * 12304 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12305 * That check makes sure that if we did not send a SACK OK option, 12306 * we will not enable SACK for this connection even though the other 12307 * side sends us SACK OK option. For active connection, the SACK 12308 * info structure has already been allocated. So we need to free 12309 * it if SACK is disabled. 12310 */ 12311 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12312 (tcp->tcp_snd_sack_ok || 12313 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12314 /* This should be true only in the passive case. */ 12315 if (tcp->tcp_sack_info == NULL) { 12316 ASSERT(TCP_IS_DETACHED(tcp)); 12317 tcp->tcp_sack_info = 12318 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12319 } 12320 if (tcp->tcp_sack_info == NULL) { 12321 tcp->tcp_snd_sack_ok = B_FALSE; 12322 } else { 12323 tcp->tcp_snd_sack_ok = B_TRUE; 12324 if (tcp->tcp_snd_ts_ok) { 12325 tcp->tcp_max_sack_blk = 3; 12326 } else { 12327 tcp->tcp_max_sack_blk = 4; 12328 } 12329 } 12330 } else { 12331 /* 12332 * Resetting tcp_snd_sack_ok to B_FALSE so that 12333 * no SACK info will be used for this 12334 * connection. This assumes that SACK usage 12335 * permission is negotiated. This may need 12336 * to be changed once this is clarified. 12337 */ 12338 if (tcp->tcp_sack_info != NULL) { 12339 ASSERT(tcp->tcp_notsack_list == NULL); 12340 kmem_cache_free(tcp_sack_info_cache, 12341 tcp->tcp_sack_info); 12342 tcp->tcp_sack_info = NULL; 12343 } 12344 tcp->tcp_snd_sack_ok = B_FALSE; 12345 } 12346 12347 /* 12348 * Now we know the exact TCP/IP header length, subtract 12349 * that from tcp_mss to get our side's MSS. 12350 */ 12351 tcp->tcp_mss -= tcp->tcp_hdr_len; 12352 /* 12353 * Here we assume that the other side's header size will be equal to 12354 * our header size. We calculate the real MSS accordingly. Need to 12355 * take into additional stuffs IPsec puts in. 12356 * 12357 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12358 */ 12359 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12360 ((tcp->tcp_ipversion == IPV4_VERSION ? 12361 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12362 12363 /* 12364 * Set MSS to the smaller one of both ends of the connection. 12365 * We should not have called tcp_mss_set() before, but our 12366 * side of the MSS should have been set to a proper value 12367 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12368 * STREAM head parameters properly. 12369 * 12370 * If we have a larger-than-16-bit window but the other side 12371 * didn't want to do window scale, tcp_rwnd_set() will take 12372 * care of that. 12373 */ 12374 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12375 } 12376 12377 /* 12378 * Sends the T_CONN_IND to the listener. The caller calls this 12379 * functions via squeue to get inside the listener's perimeter 12380 * once the 3 way hand shake is done a T_CONN_IND needs to be 12381 * sent. As an optimization, the caller can call this directly 12382 * if listener's perimeter is same as eager's. 12383 */ 12384 /* ARGSUSED */ 12385 void 12386 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12387 { 12388 conn_t *lconnp = (conn_t *)arg; 12389 tcp_t *listener = lconnp->conn_tcp; 12390 tcp_t *tcp; 12391 struct T_conn_ind *conn_ind; 12392 ipaddr_t *addr_cache; 12393 boolean_t need_send_conn_ind = B_FALSE; 12394 12395 /* retrieve the eager */ 12396 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12397 ASSERT(conn_ind->OPT_offset != 0 && 12398 conn_ind->OPT_length == sizeof (intptr_t)); 12399 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12400 conn_ind->OPT_length); 12401 12402 /* 12403 * TLI/XTI applications will get confused by 12404 * sending eager as an option since it violates 12405 * the option semantics. So remove the eager as 12406 * option since TLI/XTI app doesn't need it anyway. 12407 */ 12408 if (!TCP_IS_SOCKET(listener)) { 12409 conn_ind->OPT_length = 0; 12410 conn_ind->OPT_offset = 0; 12411 } 12412 if (listener->tcp_state == TCPS_CLOSED || 12413 TCP_IS_DETACHED(listener)) { 12414 /* 12415 * If listener has closed, it would have caused a 12416 * a cleanup/blowoff to happen for the eager. We 12417 * just need to return. 12418 */ 12419 freemsg(mp); 12420 return; 12421 } 12422 12423 12424 /* 12425 * if the conn_req_q is full defer passing up the 12426 * T_CONN_IND until space is availabe after t_accept() 12427 * processing 12428 */ 12429 mutex_enter(&listener->tcp_eager_lock); 12430 12431 /* 12432 * Take the eager out, if it is in the list of droppable eagers 12433 * as we are here because the 3W handshake is over. 12434 */ 12435 MAKE_UNDROPPABLE(tcp); 12436 12437 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12438 tcp_t *tail; 12439 12440 /* 12441 * The eager already has an extra ref put in tcp_rput_data 12442 * so that it stays till accept comes back even though it 12443 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12444 */ 12445 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12446 listener->tcp_conn_req_cnt_q0--; 12447 listener->tcp_conn_req_cnt_q++; 12448 12449 /* Move from SYN_RCVD to ESTABLISHED list */ 12450 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12451 tcp->tcp_eager_prev_q0; 12452 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12453 tcp->tcp_eager_next_q0; 12454 tcp->tcp_eager_prev_q0 = NULL; 12455 tcp->tcp_eager_next_q0 = NULL; 12456 12457 /* 12458 * Insert at end of the queue because sockfs 12459 * sends down T_CONN_RES in chronological 12460 * order. Leaving the older conn indications 12461 * at front of the queue helps reducing search 12462 * time. 12463 */ 12464 tail = listener->tcp_eager_last_q; 12465 if (tail != NULL) 12466 tail->tcp_eager_next_q = tcp; 12467 else 12468 listener->tcp_eager_next_q = tcp; 12469 listener->tcp_eager_last_q = tcp; 12470 tcp->tcp_eager_next_q = NULL; 12471 /* 12472 * Delay sending up the T_conn_ind until we are 12473 * done with the eager. Once we have have sent up 12474 * the T_conn_ind, the accept can potentially complete 12475 * any time and release the refhold we have on the eager. 12476 */ 12477 need_send_conn_ind = B_TRUE; 12478 } else { 12479 /* 12480 * Defer connection on q0 and set deferred 12481 * connection bit true 12482 */ 12483 tcp->tcp_conn_def_q0 = B_TRUE; 12484 12485 /* take tcp out of q0 ... */ 12486 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12487 tcp->tcp_eager_next_q0; 12488 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12489 tcp->tcp_eager_prev_q0; 12490 12491 /* ... and place it at the end of q0 */ 12492 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12493 tcp->tcp_eager_next_q0 = listener; 12494 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12495 listener->tcp_eager_prev_q0 = tcp; 12496 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12497 } 12498 12499 /* we have timed out before */ 12500 if (tcp->tcp_syn_rcvd_timeout != 0) { 12501 tcp->tcp_syn_rcvd_timeout = 0; 12502 listener->tcp_syn_rcvd_timeout--; 12503 if (listener->tcp_syn_defense && 12504 listener->tcp_syn_rcvd_timeout <= 12505 (tcp_conn_req_max_q0 >> 5) && 12506 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12507 listener->tcp_last_rcv_lbolt)) { 12508 /* 12509 * Turn off the defense mode if we 12510 * believe the SYN attack is over. 12511 */ 12512 listener->tcp_syn_defense = B_FALSE; 12513 if (listener->tcp_ip_addr_cache) { 12514 kmem_free((void *)listener->tcp_ip_addr_cache, 12515 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12516 listener->tcp_ip_addr_cache = NULL; 12517 } 12518 } 12519 } 12520 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12521 if (addr_cache != NULL) { 12522 /* 12523 * We have finished a 3-way handshake with this 12524 * remote host. This proves the IP addr is good. 12525 * Cache it! 12526 */ 12527 addr_cache[IP_ADDR_CACHE_HASH( 12528 tcp->tcp_remote)] = tcp->tcp_remote; 12529 } 12530 mutex_exit(&listener->tcp_eager_lock); 12531 if (need_send_conn_ind) 12532 putnext(listener->tcp_rq, mp); 12533 } 12534 12535 mblk_t * 12536 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12537 uint_t *ifindexp, ip6_pkt_t *ippp) 12538 { 12539 in_pktinfo_t *pinfo; 12540 ip6_t *ip6h; 12541 uchar_t *rptr; 12542 mblk_t *first_mp = mp; 12543 boolean_t mctl_present = B_FALSE; 12544 uint_t ifindex = 0; 12545 ip6_pkt_t ipp; 12546 uint_t ipvers; 12547 uint_t ip_hdr_len; 12548 12549 rptr = mp->b_rptr; 12550 ASSERT(OK_32PTR(rptr)); 12551 ASSERT(tcp != NULL); 12552 ipp.ipp_fields = 0; 12553 12554 switch DB_TYPE(mp) { 12555 case M_CTL: 12556 mp = mp->b_cont; 12557 if (mp == NULL) { 12558 freemsg(first_mp); 12559 return (NULL); 12560 } 12561 if (DB_TYPE(mp) != M_DATA) { 12562 freemsg(first_mp); 12563 return (NULL); 12564 } 12565 mctl_present = B_TRUE; 12566 break; 12567 case M_DATA: 12568 break; 12569 default: 12570 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12571 freemsg(mp); 12572 return (NULL); 12573 } 12574 ipvers = IPH_HDR_VERSION(rptr); 12575 if (ipvers == IPV4_VERSION) { 12576 if (tcp == NULL) { 12577 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12578 goto done; 12579 } 12580 12581 ipp.ipp_fields |= IPPF_HOPLIMIT; 12582 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12583 12584 /* 12585 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12586 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12587 */ 12588 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12589 mctl_present) { 12590 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12591 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12592 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12593 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12594 ipp.ipp_fields |= IPPF_IFINDEX; 12595 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12596 ifindex = pinfo->in_pkt_ifindex; 12597 } 12598 freeb(first_mp); 12599 mctl_present = B_FALSE; 12600 } 12601 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12602 } else { 12603 ip6h = (ip6_t *)rptr; 12604 12605 ASSERT(ipvers == IPV6_VERSION); 12606 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12607 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12608 ipp.ipp_hoplimit = ip6h->ip6_hops; 12609 12610 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12611 uint8_t nexthdrp; 12612 12613 /* Look for ifindex information */ 12614 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12615 ip6i_t *ip6i = (ip6i_t *)ip6h; 12616 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12617 BUMP_MIB(&ip_mib, tcpInErrs); 12618 freemsg(first_mp); 12619 return (NULL); 12620 } 12621 12622 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12623 ASSERT(ip6i->ip6i_ifindex != 0); 12624 ipp.ipp_fields |= IPPF_IFINDEX; 12625 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12626 ifindex = ip6i->ip6i_ifindex; 12627 } 12628 rptr = (uchar_t *)&ip6i[1]; 12629 mp->b_rptr = rptr; 12630 if (rptr == mp->b_wptr) { 12631 mblk_t *mp1; 12632 mp1 = mp->b_cont; 12633 freeb(mp); 12634 mp = mp1; 12635 rptr = mp->b_rptr; 12636 } 12637 if (MBLKL(mp) < IPV6_HDR_LEN + 12638 sizeof (tcph_t)) { 12639 BUMP_MIB(&ip_mib, tcpInErrs); 12640 freemsg(first_mp); 12641 return (NULL); 12642 } 12643 ip6h = (ip6_t *)rptr; 12644 } 12645 12646 /* 12647 * Find any potentially interesting extension headers 12648 * as well as the length of the IPv6 + extension 12649 * headers. 12650 */ 12651 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12652 /* Verify if this is a TCP packet */ 12653 if (nexthdrp != IPPROTO_TCP) { 12654 BUMP_MIB(&ip_mib, tcpInErrs); 12655 freemsg(first_mp); 12656 return (NULL); 12657 } 12658 } else { 12659 ip_hdr_len = IPV6_HDR_LEN; 12660 } 12661 } 12662 12663 done: 12664 if (ipversp != NULL) 12665 *ipversp = ipvers; 12666 if (ip_hdr_lenp != NULL) 12667 *ip_hdr_lenp = ip_hdr_len; 12668 if (ippp != NULL) 12669 *ippp = ipp; 12670 if (ifindexp != NULL) 12671 *ifindexp = ifindex; 12672 if (mctl_present) { 12673 freeb(first_mp); 12674 } 12675 return (mp); 12676 } 12677 12678 /* 12679 * Handle M_DATA messages from IP. Its called directly from IP via 12680 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12681 * in this path. 12682 * 12683 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12684 * v4 and v6), we are called through tcp_input() and a M_CTL can 12685 * be present for options but tcp_find_pktinfo() deals with it. We 12686 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12687 * 12688 * The first argument is always the connp/tcp to which the mp belongs. 12689 * There are no exceptions to this rule. The caller has already put 12690 * a reference on this connp/tcp and once tcp_rput_data() returns, 12691 * the squeue will do the refrele. 12692 * 12693 * The TH_SYN for the listener directly go to tcp_conn_request via 12694 * squeue. 12695 * 12696 * sqp: NULL = recursive, sqp != NULL means called from squeue 12697 */ 12698 void 12699 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12700 { 12701 int32_t bytes_acked; 12702 int32_t gap; 12703 mblk_t *mp1; 12704 uint_t flags; 12705 uint32_t new_swnd = 0; 12706 uchar_t *iphdr; 12707 uchar_t *rptr; 12708 int32_t rgap; 12709 uint32_t seg_ack; 12710 int seg_len; 12711 uint_t ip_hdr_len; 12712 uint32_t seg_seq; 12713 tcph_t *tcph; 12714 int urp; 12715 tcp_opt_t tcpopt; 12716 uint_t ipvers; 12717 ip6_pkt_t ipp; 12718 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12719 uint32_t cwnd; 12720 uint32_t add; 12721 int npkt; 12722 int mss; 12723 conn_t *connp = (conn_t *)arg; 12724 squeue_t *sqp = (squeue_t *)arg2; 12725 tcp_t *tcp = connp->conn_tcp; 12726 12727 /* 12728 * RST from fused tcp loopback peer should trigger an unfuse. 12729 */ 12730 if (tcp->tcp_fused) { 12731 TCP_STAT(tcp_fusion_aborted); 12732 tcp_unfuse(tcp); 12733 } 12734 12735 iphdr = mp->b_rptr; 12736 rptr = mp->b_rptr; 12737 ASSERT(OK_32PTR(rptr)); 12738 12739 /* 12740 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12741 * processing here. For rest call tcp_find_pktinfo to fill up the 12742 * necessary information. 12743 */ 12744 if (IPCL_IS_TCP4(connp)) { 12745 ipvers = IPV4_VERSION; 12746 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12747 } else { 12748 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12749 NULL, &ipp); 12750 if (mp == NULL) { 12751 TCP_STAT(tcp_rput_v6_error); 12752 return; 12753 } 12754 iphdr = mp->b_rptr; 12755 rptr = mp->b_rptr; 12756 } 12757 ASSERT(DB_TYPE(mp) == M_DATA); 12758 12759 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12760 seg_seq = ABE32_TO_U32(tcph->th_seq); 12761 seg_ack = ABE32_TO_U32(tcph->th_ack); 12762 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12763 seg_len = (int)(mp->b_wptr - rptr) - 12764 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12765 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12766 do { 12767 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12768 (uintptr_t)INT_MAX); 12769 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12770 } while ((mp1 = mp1->b_cont) != NULL && 12771 mp1->b_datap->db_type == M_DATA); 12772 } 12773 12774 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12775 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12776 seg_len, tcph); 12777 return; 12778 } 12779 12780 if (sqp != NULL) { 12781 /* 12782 * This is the correct place to update tcp_last_recv_time. Note 12783 * that it is also updated for tcp structure that belongs to 12784 * global and listener queues which do not really need updating. 12785 * But that should not cause any harm. And it is updated for 12786 * all kinds of incoming segments, not only for data segments. 12787 */ 12788 tcp->tcp_last_recv_time = lbolt; 12789 } 12790 12791 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12792 12793 BUMP_LOCAL(tcp->tcp_ibsegs); 12794 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12795 12796 if ((flags & TH_URG) && sqp != NULL) { 12797 /* 12798 * TCP can't handle urgent pointers that arrive before 12799 * the connection has been accept()ed since it can't 12800 * buffer OOB data. Discard segment if this happens. 12801 * 12802 * Nor can it reassemble urgent pointers, so discard 12803 * if it's not the next segment expected. 12804 * 12805 * Otherwise, collapse chain into one mblk (discard if 12806 * that fails). This makes sure the headers, retransmitted 12807 * data, and new data all are in the same mblk. 12808 */ 12809 ASSERT(mp != NULL); 12810 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12811 freemsg(mp); 12812 return; 12813 } 12814 /* Update pointers into message */ 12815 iphdr = rptr = mp->b_rptr; 12816 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12817 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12818 /* 12819 * Since we can't handle any data with this urgent 12820 * pointer that is out of sequence, we expunge 12821 * the data. This allows us to still register 12822 * the urgent mark and generate the M_PCSIG, 12823 * which we can do. 12824 */ 12825 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12826 seg_len = 0; 12827 } 12828 } 12829 12830 switch (tcp->tcp_state) { 12831 case TCPS_SYN_SENT: 12832 if (flags & TH_ACK) { 12833 /* 12834 * Note that our stack cannot send data before a 12835 * connection is established, therefore the 12836 * following check is valid. Otherwise, it has 12837 * to be changed. 12838 */ 12839 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12840 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12841 freemsg(mp); 12842 if (flags & TH_RST) 12843 return; 12844 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12845 tcp, seg_ack, 0, TH_RST); 12846 return; 12847 } 12848 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12849 } 12850 if (flags & TH_RST) { 12851 freemsg(mp); 12852 if (flags & TH_ACK) 12853 (void) tcp_clean_death(tcp, 12854 ECONNREFUSED, 13); 12855 return; 12856 } 12857 if (!(flags & TH_SYN)) { 12858 freemsg(mp); 12859 return; 12860 } 12861 12862 /* Process all TCP options. */ 12863 tcp_process_options(tcp, tcph); 12864 /* 12865 * The following changes our rwnd to be a multiple of the 12866 * MIN(peer MSS, our MSS) for performance reason. 12867 */ 12868 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12869 tcp->tcp_mss)); 12870 12871 /* Is the other end ECN capable? */ 12872 if (tcp->tcp_ecn_ok) { 12873 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12874 tcp->tcp_ecn_ok = B_FALSE; 12875 } 12876 } 12877 /* 12878 * Clear ECN flags because it may interfere with later 12879 * processing. 12880 */ 12881 flags &= ~(TH_ECE|TH_CWR); 12882 12883 tcp->tcp_irs = seg_seq; 12884 tcp->tcp_rack = seg_seq; 12885 tcp->tcp_rnxt = seg_seq + 1; 12886 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12887 if (!TCP_IS_DETACHED(tcp)) { 12888 /* Allocate room for SACK options if needed. */ 12889 if (tcp->tcp_snd_sack_ok) { 12890 (void) mi_set_sth_wroff(tcp->tcp_rq, 12891 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12892 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12893 } else { 12894 (void) mi_set_sth_wroff(tcp->tcp_rq, 12895 tcp->tcp_hdr_len + 12896 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12897 } 12898 } 12899 if (flags & TH_ACK) { 12900 /* 12901 * If we can't get the confirmation upstream, pretend 12902 * we didn't even see this one. 12903 * 12904 * XXX: how can we pretend we didn't see it if we 12905 * have updated rnxt et. al. 12906 * 12907 * For loopback we defer sending up the T_CONN_CON 12908 * until after some checks below. 12909 */ 12910 mp1 = NULL; 12911 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12912 tcp->tcp_loopback ? &mp1 : NULL)) { 12913 freemsg(mp); 12914 return; 12915 } 12916 /* SYN was acked - making progress */ 12917 if (tcp->tcp_ipversion == IPV6_VERSION) 12918 tcp->tcp_ip_forward_progress = B_TRUE; 12919 12920 /* One for the SYN */ 12921 tcp->tcp_suna = tcp->tcp_iss + 1; 12922 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12923 tcp->tcp_state = TCPS_ESTABLISHED; 12924 12925 /* 12926 * If SYN was retransmitted, need to reset all 12927 * retransmission info. This is because this 12928 * segment will be treated as a dup ACK. 12929 */ 12930 if (tcp->tcp_rexmit) { 12931 tcp->tcp_rexmit = B_FALSE; 12932 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12933 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12934 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12935 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12936 tcp->tcp_ms_we_have_waited = 0; 12937 12938 /* 12939 * Set tcp_cwnd back to 1 MSS, per 12940 * recommendation from 12941 * draft-floyd-incr-init-win-01.txt, 12942 * Increasing TCP's Initial Window. 12943 */ 12944 tcp->tcp_cwnd = tcp->tcp_mss; 12945 } 12946 12947 tcp->tcp_swl1 = seg_seq; 12948 tcp->tcp_swl2 = seg_ack; 12949 12950 new_swnd = BE16_TO_U16(tcph->th_win); 12951 tcp->tcp_swnd = new_swnd; 12952 if (new_swnd > tcp->tcp_max_swnd) 12953 tcp->tcp_max_swnd = new_swnd; 12954 12955 /* 12956 * Always send the three-way handshake ack immediately 12957 * in order to make the connection complete as soon as 12958 * possible on the accepting host. 12959 */ 12960 flags |= TH_ACK_NEEDED; 12961 12962 /* 12963 * Special case for loopback. At this point we have 12964 * received SYN-ACK from the remote endpoint. In 12965 * order to ensure that both endpoints reach the 12966 * fused state prior to any data exchange, the final 12967 * ACK needs to be sent before we indicate T_CONN_CON 12968 * to the module upstream. 12969 */ 12970 if (tcp->tcp_loopback) { 12971 mblk_t *ack_mp; 12972 12973 ASSERT(!tcp->tcp_unfusable); 12974 ASSERT(mp1 != NULL); 12975 /* 12976 * For loopback, we always get a pure SYN-ACK 12977 * and only need to send back the final ACK 12978 * with no data (this is because the other 12979 * tcp is ours and we don't do T/TCP). This 12980 * final ACK triggers the passive side to 12981 * perform fusion in ESTABLISHED state. 12982 */ 12983 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12984 if (tcp->tcp_ack_tid != 0) { 12985 (void) TCP_TIMER_CANCEL(tcp, 12986 tcp->tcp_ack_tid); 12987 tcp->tcp_ack_tid = 0; 12988 } 12989 TCP_RECORD_TRACE(tcp, ack_mp, 12990 TCP_TRACE_SEND_PKT); 12991 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12992 BUMP_LOCAL(tcp->tcp_obsegs); 12993 BUMP_MIB(&tcp_mib, tcpOutAck); 12994 12995 /* Send up T_CONN_CON */ 12996 putnext(tcp->tcp_rq, mp1); 12997 12998 freemsg(mp); 12999 return; 13000 } 13001 /* 13002 * Forget fusion; we need to handle more 13003 * complex cases below. Send the deferred 13004 * T_CONN_CON message upstream and proceed 13005 * as usual. Mark this tcp as not capable 13006 * of fusion. 13007 */ 13008 TCP_STAT(tcp_fusion_unfusable); 13009 tcp->tcp_unfusable = B_TRUE; 13010 putnext(tcp->tcp_rq, mp1); 13011 } 13012 13013 /* 13014 * Check to see if there is data to be sent. If 13015 * yes, set the transmit flag. Then check to see 13016 * if received data processing needs to be done. 13017 * If not, go straight to xmit_check. This short 13018 * cut is OK as we don't support T/TCP. 13019 */ 13020 if (tcp->tcp_unsent) 13021 flags |= TH_XMIT_NEEDED; 13022 13023 if (seg_len == 0 && !(flags & TH_URG)) { 13024 freemsg(mp); 13025 goto xmit_check; 13026 } 13027 13028 flags &= ~TH_SYN; 13029 seg_seq++; 13030 break; 13031 } 13032 tcp->tcp_state = TCPS_SYN_RCVD; 13033 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13034 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13035 if (mp1) { 13036 DB_CPID(mp1) = tcp->tcp_cpid; 13037 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13038 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13039 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13040 } 13041 freemsg(mp); 13042 return; 13043 case TCPS_SYN_RCVD: 13044 if (flags & TH_ACK) { 13045 /* 13046 * In this state, a SYN|ACK packet is either bogus 13047 * because the other side must be ACKing our SYN which 13048 * indicates it has seen the ACK for their SYN and 13049 * shouldn't retransmit it or we're crossing SYNs 13050 * on active open. 13051 */ 13052 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13053 freemsg(mp); 13054 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13055 tcp, seg_ack, 0, TH_RST); 13056 return; 13057 } 13058 /* 13059 * NOTE: RFC 793 pg. 72 says this should be 13060 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13061 * but that would mean we have an ack that ignored 13062 * our SYN. 13063 */ 13064 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13065 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13066 freemsg(mp); 13067 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13068 tcp, seg_ack, 0, TH_RST); 13069 return; 13070 } 13071 } 13072 break; 13073 case TCPS_LISTEN: 13074 /* 13075 * Only a TLI listener can come through this path when a 13076 * acceptor is going back to be a listener and a packet 13077 * for the acceptor hits the classifier. For a socket 13078 * listener, this can never happen because a listener 13079 * can never accept connection on itself and hence a 13080 * socket acceptor can not go back to being a listener. 13081 */ 13082 ASSERT(!TCP_IS_SOCKET(tcp)); 13083 /*FALLTHRU*/ 13084 case TCPS_CLOSED: 13085 case TCPS_BOUND: { 13086 conn_t *new_connp; 13087 13088 new_connp = ipcl_classify(mp, connp->conn_zoneid); 13089 if (new_connp != NULL) { 13090 tcp_reinput(new_connp, mp, connp->conn_sqp); 13091 return; 13092 } 13093 /* We failed to classify. For now just drop the packet */ 13094 freemsg(mp); 13095 return; 13096 } 13097 case TCPS_IDLE: 13098 /* 13099 * Handle the case where the tcp_clean_death() has happened 13100 * on a connection (application hasn't closed yet) but a packet 13101 * was already queued on squeue before tcp_clean_death() 13102 * was processed. Calling tcp_clean_death() twice on same 13103 * connection can result in weird behaviour. 13104 */ 13105 freemsg(mp); 13106 return; 13107 default: 13108 break; 13109 } 13110 13111 /* 13112 * Already on the correct queue/perimeter. 13113 * If this is a detached connection and not an eager 13114 * connection hanging off a listener then new data 13115 * (past the FIN) will cause a reset. 13116 * We do a special check here where it 13117 * is out of the main line, rather than check 13118 * if we are detached every time we see new 13119 * data down below. 13120 */ 13121 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13122 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13123 BUMP_MIB(&tcp_mib, tcpInClosed); 13124 TCP_RECORD_TRACE(tcp, 13125 mp, TCP_TRACE_RECV_PKT); 13126 13127 freemsg(mp); 13128 /* 13129 * This could be an SSL closure alert. We're detached so just 13130 * acknowledge it this last time. 13131 */ 13132 if (tcp->tcp_kssl_ctx != NULL) { 13133 kssl_release_ctx(tcp->tcp_kssl_ctx); 13134 tcp->tcp_kssl_ctx = NULL; 13135 13136 tcp->tcp_rnxt += seg_len; 13137 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13138 flags |= TH_ACK_NEEDED; 13139 goto ack_check; 13140 } 13141 13142 tcp_xmit_ctl("new data when detached", tcp, 13143 tcp->tcp_snxt, 0, TH_RST); 13144 (void) tcp_clean_death(tcp, EPROTO, 12); 13145 return; 13146 } 13147 13148 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13149 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13150 new_swnd = BE16_TO_U16(tcph->th_win) << 13151 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13152 mss = tcp->tcp_mss; 13153 13154 if (tcp->tcp_snd_ts_ok) { 13155 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13156 /* 13157 * This segment is not acceptable. 13158 * Drop it and send back an ACK. 13159 */ 13160 freemsg(mp); 13161 flags |= TH_ACK_NEEDED; 13162 goto ack_check; 13163 } 13164 } else if (tcp->tcp_snd_sack_ok) { 13165 ASSERT(tcp->tcp_sack_info != NULL); 13166 tcpopt.tcp = tcp; 13167 /* 13168 * SACK info in already updated in tcp_parse_options. Ignore 13169 * all other TCP options... 13170 */ 13171 (void) tcp_parse_options(tcph, &tcpopt); 13172 } 13173 try_again:; 13174 gap = seg_seq - tcp->tcp_rnxt; 13175 rgap = tcp->tcp_rwnd - (gap + seg_len); 13176 /* 13177 * gap is the amount of sequence space between what we expect to see 13178 * and what we got for seg_seq. A positive value for gap means 13179 * something got lost. A negative value means we got some old stuff. 13180 */ 13181 if (gap < 0) { 13182 /* Old stuff present. Is the SYN in there? */ 13183 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13184 (seg_len != 0)) { 13185 flags &= ~TH_SYN; 13186 seg_seq++; 13187 urp--; 13188 /* Recompute the gaps after noting the SYN. */ 13189 goto try_again; 13190 } 13191 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 13192 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 13193 (seg_len > -gap ? -gap : seg_len)); 13194 /* Remove the old stuff from seg_len. */ 13195 seg_len += gap; 13196 /* 13197 * Anything left? 13198 * Make sure to check for unack'd FIN when rest of data 13199 * has been previously ack'd. 13200 */ 13201 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13202 /* 13203 * Resets are only valid if they lie within our offered 13204 * window. If the RST bit is set, we just ignore this 13205 * segment. 13206 */ 13207 if (flags & TH_RST) { 13208 freemsg(mp); 13209 return; 13210 } 13211 13212 /* 13213 * The arriving of dup data packets indicate that we 13214 * may have postponed an ack for too long, or the other 13215 * side's RTT estimate is out of shape. Start acking 13216 * more often. 13217 */ 13218 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13219 tcp->tcp_rack_cnt >= 1 && 13220 tcp->tcp_rack_abs_max > 2) { 13221 tcp->tcp_rack_abs_max--; 13222 } 13223 tcp->tcp_rack_cur_max = 1; 13224 13225 /* 13226 * This segment is "unacceptable". None of its 13227 * sequence space lies within our advertized window. 13228 * 13229 * Adjust seg_len to the original value for tracing. 13230 */ 13231 seg_len -= gap; 13232 if (tcp->tcp_debug) { 13233 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13234 "tcp_rput: unacceptable, gap %d, rgap %d, " 13235 "flags 0x%x, seg_seq %u, seg_ack %u, " 13236 "seg_len %d, rnxt %u, snxt %u, %s", 13237 gap, rgap, flags, seg_seq, seg_ack, 13238 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13239 tcp_display(tcp, NULL, 13240 DISP_ADDR_AND_PORT)); 13241 } 13242 13243 /* 13244 * Arrange to send an ACK in response to the 13245 * unacceptable segment per RFC 793 page 69. There 13246 * is only one small difference between ours and the 13247 * acceptability test in the RFC - we accept ACK-only 13248 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13249 * will be generated. 13250 * 13251 * Note that we have to ACK an ACK-only packet at least 13252 * for stacks that send 0-length keep-alives with 13253 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13254 * section 4.2.3.6. As long as we don't ever generate 13255 * an unacceptable packet in response to an incoming 13256 * packet that is unacceptable, it should not cause 13257 * "ACK wars". 13258 */ 13259 flags |= TH_ACK_NEEDED; 13260 13261 /* 13262 * Continue processing this segment in order to use the 13263 * ACK information it contains, but skip all other 13264 * sequence-number processing. Processing the ACK 13265 * information is necessary in order to 13266 * re-synchronize connections that may have lost 13267 * synchronization. 13268 * 13269 * We clear seg_len and flag fields related to 13270 * sequence number processing as they are not 13271 * to be trusted for an unacceptable segment. 13272 */ 13273 seg_len = 0; 13274 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13275 goto process_ack; 13276 } 13277 13278 /* Fix seg_seq, and chew the gap off the front. */ 13279 seg_seq = tcp->tcp_rnxt; 13280 urp += gap; 13281 do { 13282 mblk_t *mp2; 13283 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13284 (uintptr_t)UINT_MAX); 13285 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13286 if (gap > 0) { 13287 mp->b_rptr = mp->b_wptr - gap; 13288 break; 13289 } 13290 mp2 = mp; 13291 mp = mp->b_cont; 13292 freeb(mp2); 13293 } while (gap < 0); 13294 /* 13295 * If the urgent data has already been acknowledged, we 13296 * should ignore TH_URG below 13297 */ 13298 if (urp < 0) 13299 flags &= ~TH_URG; 13300 } 13301 /* 13302 * rgap is the amount of stuff received out of window. A negative 13303 * value is the amount out of window. 13304 */ 13305 if (rgap < 0) { 13306 mblk_t *mp2; 13307 13308 if (tcp->tcp_rwnd == 0) { 13309 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13310 } else { 13311 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13312 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13313 } 13314 13315 /* 13316 * seg_len does not include the FIN, so if more than 13317 * just the FIN is out of window, we act like we don't 13318 * see it. (If just the FIN is out of window, rgap 13319 * will be zero and we will go ahead and acknowledge 13320 * the FIN.) 13321 */ 13322 flags &= ~TH_FIN; 13323 13324 /* Fix seg_len and make sure there is something left. */ 13325 seg_len += rgap; 13326 if (seg_len <= 0) { 13327 /* 13328 * Resets are only valid if they lie within our offered 13329 * window. If the RST bit is set, we just ignore this 13330 * segment. 13331 */ 13332 if (flags & TH_RST) { 13333 freemsg(mp); 13334 return; 13335 } 13336 13337 /* Per RFC 793, we need to send back an ACK. */ 13338 flags |= TH_ACK_NEEDED; 13339 13340 /* 13341 * Send SIGURG as soon as possible i.e. even 13342 * if the TH_URG was delivered in a window probe 13343 * packet (which will be unacceptable). 13344 * 13345 * We generate a signal if none has been generated 13346 * for this connection or if this is a new urgent 13347 * byte. Also send a zero-length "unmarked" message 13348 * to inform SIOCATMARK that this is not the mark. 13349 * 13350 * tcp_urp_last_valid is cleared when the T_exdata_ind 13351 * is sent up. This plus the check for old data 13352 * (gap >= 0) handles the wraparound of the sequence 13353 * number space without having to always track the 13354 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13355 * this max in its rcv_up variable). 13356 * 13357 * This prevents duplicate SIGURGS due to a "late" 13358 * zero-window probe when the T_EXDATA_IND has already 13359 * been sent up. 13360 */ 13361 if ((flags & TH_URG) && 13362 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13363 tcp->tcp_urp_last))) { 13364 mp1 = allocb(0, BPRI_MED); 13365 if (mp1 == NULL) { 13366 freemsg(mp); 13367 return; 13368 } 13369 if (!TCP_IS_DETACHED(tcp) && 13370 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13371 SIGURG)) { 13372 /* Try again on the rexmit. */ 13373 freemsg(mp1); 13374 freemsg(mp); 13375 return; 13376 } 13377 /* 13378 * If the next byte would be the mark 13379 * then mark with MARKNEXT else mark 13380 * with NOTMARKNEXT. 13381 */ 13382 if (gap == 0 && urp == 0) 13383 mp1->b_flag |= MSGMARKNEXT; 13384 else 13385 mp1->b_flag |= MSGNOTMARKNEXT; 13386 freemsg(tcp->tcp_urp_mark_mp); 13387 tcp->tcp_urp_mark_mp = mp1; 13388 flags |= TH_SEND_URP_MARK; 13389 tcp->tcp_urp_last_valid = B_TRUE; 13390 tcp->tcp_urp_last = urp + seg_seq; 13391 } 13392 /* 13393 * If this is a zero window probe, continue to 13394 * process the ACK part. But we need to set seg_len 13395 * to 0 to avoid data processing. Otherwise just 13396 * drop the segment and send back an ACK. 13397 */ 13398 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13399 flags &= ~(TH_SYN | TH_URG); 13400 seg_len = 0; 13401 goto process_ack; 13402 } else { 13403 freemsg(mp); 13404 goto ack_check; 13405 } 13406 } 13407 /* Pitch out of window stuff off the end. */ 13408 rgap = seg_len; 13409 mp2 = mp; 13410 do { 13411 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13412 (uintptr_t)INT_MAX); 13413 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13414 if (rgap < 0) { 13415 mp2->b_wptr += rgap; 13416 if ((mp1 = mp2->b_cont) != NULL) { 13417 mp2->b_cont = NULL; 13418 freemsg(mp1); 13419 } 13420 break; 13421 } 13422 } while ((mp2 = mp2->b_cont) != NULL); 13423 } 13424 ok:; 13425 /* 13426 * TCP should check ECN info for segments inside the window only. 13427 * Therefore the check should be done here. 13428 */ 13429 if (tcp->tcp_ecn_ok) { 13430 if (flags & TH_CWR) { 13431 tcp->tcp_ecn_echo_on = B_FALSE; 13432 } 13433 /* 13434 * Note that both ECN_CE and CWR can be set in the 13435 * same segment. In this case, we once again turn 13436 * on ECN_ECHO. 13437 */ 13438 if (tcp->tcp_ipversion == IPV4_VERSION) { 13439 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13440 13441 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13442 tcp->tcp_ecn_echo_on = B_TRUE; 13443 } 13444 } else { 13445 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13446 13447 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13448 htonl(IPH_ECN_CE << 20)) { 13449 tcp->tcp_ecn_echo_on = B_TRUE; 13450 } 13451 } 13452 } 13453 13454 /* 13455 * Check whether we can update tcp_ts_recent. This test is 13456 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13457 * Extensions for High Performance: An Update", Internet Draft. 13458 */ 13459 if (tcp->tcp_snd_ts_ok && 13460 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13461 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13462 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13463 tcp->tcp_last_rcv_lbolt = lbolt64; 13464 } 13465 13466 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13467 /* 13468 * FIN in an out of order segment. We record this in 13469 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13470 * Clear the FIN so that any check on FIN flag will fail. 13471 * Remember that FIN also counts in the sequence number 13472 * space. So we need to ack out of order FIN only segments. 13473 */ 13474 if (flags & TH_FIN) { 13475 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13476 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13477 flags &= ~TH_FIN; 13478 flags |= TH_ACK_NEEDED; 13479 } 13480 if (seg_len > 0) { 13481 /* Fill in the SACK blk list. */ 13482 if (tcp->tcp_snd_sack_ok) { 13483 ASSERT(tcp->tcp_sack_info != NULL); 13484 tcp_sack_insert(tcp->tcp_sack_list, 13485 seg_seq, seg_seq + seg_len, 13486 &(tcp->tcp_num_sack_blk)); 13487 } 13488 13489 /* 13490 * Attempt reassembly and see if we have something 13491 * ready to go. 13492 */ 13493 mp = tcp_reass(tcp, mp, seg_seq); 13494 /* Always ack out of order packets */ 13495 flags |= TH_ACK_NEEDED | TH_PUSH; 13496 if (mp) { 13497 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13498 (uintptr_t)INT_MAX); 13499 seg_len = mp->b_cont ? msgdsize(mp) : 13500 (int)(mp->b_wptr - mp->b_rptr); 13501 seg_seq = tcp->tcp_rnxt; 13502 /* 13503 * A gap is filled and the seq num and len 13504 * of the gap match that of a previously 13505 * received FIN, put the FIN flag back in. 13506 */ 13507 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13508 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13509 flags |= TH_FIN; 13510 tcp->tcp_valid_bits &= 13511 ~TCP_OFO_FIN_VALID; 13512 } 13513 } else { 13514 /* 13515 * Keep going even with NULL mp. 13516 * There may be a useful ACK or something else 13517 * we don't want to miss. 13518 * 13519 * But TCP should not perform fast retransmit 13520 * because of the ack number. TCP uses 13521 * seg_len == 0 to determine if it is a pure 13522 * ACK. And this is not a pure ACK. 13523 */ 13524 seg_len = 0; 13525 ofo_seg = B_TRUE; 13526 } 13527 } 13528 } else if (seg_len > 0) { 13529 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13530 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13531 /* 13532 * If an out of order FIN was received before, and the seq 13533 * num and len of the new segment match that of the FIN, 13534 * put the FIN flag back in. 13535 */ 13536 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13537 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13538 flags |= TH_FIN; 13539 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13540 } 13541 } 13542 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13543 if (flags & TH_RST) { 13544 freemsg(mp); 13545 switch (tcp->tcp_state) { 13546 case TCPS_SYN_RCVD: 13547 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13548 break; 13549 case TCPS_ESTABLISHED: 13550 case TCPS_FIN_WAIT_1: 13551 case TCPS_FIN_WAIT_2: 13552 case TCPS_CLOSE_WAIT: 13553 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13554 break; 13555 case TCPS_CLOSING: 13556 case TCPS_LAST_ACK: 13557 (void) tcp_clean_death(tcp, 0, 16); 13558 break; 13559 default: 13560 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13561 (void) tcp_clean_death(tcp, ENXIO, 17); 13562 break; 13563 } 13564 return; 13565 } 13566 if (flags & TH_SYN) { 13567 /* 13568 * See RFC 793, Page 71 13569 * 13570 * The seq number must be in the window as it should 13571 * be "fixed" above. If it is outside window, it should 13572 * be already rejected. Note that we allow seg_seq to be 13573 * rnxt + rwnd because we want to accept 0 window probe. 13574 */ 13575 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13576 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13577 freemsg(mp); 13578 /* 13579 * If the ACK flag is not set, just use our snxt as the 13580 * seq number of the RST segment. 13581 */ 13582 if (!(flags & TH_ACK)) { 13583 seg_ack = tcp->tcp_snxt; 13584 } 13585 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13586 TH_RST|TH_ACK); 13587 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13588 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13589 return; 13590 } 13591 /* 13592 * urp could be -1 when the urp field in the packet is 0 13593 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13594 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13595 */ 13596 if (flags & TH_URG && urp >= 0) { 13597 if (!tcp->tcp_urp_last_valid || 13598 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13599 /* 13600 * If we haven't generated the signal yet for this 13601 * urgent pointer value, do it now. Also, send up a 13602 * zero-length M_DATA indicating whether or not this is 13603 * the mark. The latter is not needed when a 13604 * T_EXDATA_IND is sent up. However, if there are 13605 * allocation failures this code relies on the sender 13606 * retransmitting and the socket code for determining 13607 * the mark should not block waiting for the peer to 13608 * transmit. Thus, for simplicity we always send up the 13609 * mark indication. 13610 */ 13611 mp1 = allocb(0, BPRI_MED); 13612 if (mp1 == NULL) { 13613 freemsg(mp); 13614 return; 13615 } 13616 if (!TCP_IS_DETACHED(tcp) && 13617 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13618 /* Try again on the rexmit. */ 13619 freemsg(mp1); 13620 freemsg(mp); 13621 return; 13622 } 13623 /* 13624 * Mark with NOTMARKNEXT for now. 13625 * The code below will change this to MARKNEXT 13626 * if we are at the mark. 13627 * 13628 * If there are allocation failures (e.g. in dupmsg 13629 * below) the next time tcp_rput_data sees the urgent 13630 * segment it will send up the MSG*MARKNEXT message. 13631 */ 13632 mp1->b_flag |= MSGNOTMARKNEXT; 13633 freemsg(tcp->tcp_urp_mark_mp); 13634 tcp->tcp_urp_mark_mp = mp1; 13635 flags |= TH_SEND_URP_MARK; 13636 #ifdef DEBUG 13637 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13638 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13639 "last %x, %s", 13640 seg_seq, urp, tcp->tcp_urp_last, 13641 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13642 #endif /* DEBUG */ 13643 tcp->tcp_urp_last_valid = B_TRUE; 13644 tcp->tcp_urp_last = urp + seg_seq; 13645 } else if (tcp->tcp_urp_mark_mp != NULL) { 13646 /* 13647 * An allocation failure prevented the previous 13648 * tcp_rput_data from sending up the allocated 13649 * MSG*MARKNEXT message - send it up this time 13650 * around. 13651 */ 13652 flags |= TH_SEND_URP_MARK; 13653 } 13654 13655 /* 13656 * If the urgent byte is in this segment, make sure that it is 13657 * all by itself. This makes it much easier to deal with the 13658 * possibility of an allocation failure on the T_exdata_ind. 13659 * Note that seg_len is the number of bytes in the segment, and 13660 * urp is the offset into the segment of the urgent byte. 13661 * urp < seg_len means that the urgent byte is in this segment. 13662 */ 13663 if (urp < seg_len) { 13664 if (seg_len != 1) { 13665 uint32_t tmp_rnxt; 13666 /* 13667 * Break it up and feed it back in. 13668 * Re-attach the IP header. 13669 */ 13670 mp->b_rptr = iphdr; 13671 if (urp > 0) { 13672 /* 13673 * There is stuff before the urgent 13674 * byte. 13675 */ 13676 mp1 = dupmsg(mp); 13677 if (!mp1) { 13678 /* 13679 * Trim from urgent byte on. 13680 * The rest will come back. 13681 */ 13682 (void) adjmsg(mp, 13683 urp - seg_len); 13684 tcp_rput_data(connp, 13685 mp, NULL); 13686 return; 13687 } 13688 (void) adjmsg(mp1, urp - seg_len); 13689 /* Feed this piece back in. */ 13690 tmp_rnxt = tcp->tcp_rnxt; 13691 tcp_rput_data(connp, mp1, NULL); 13692 /* 13693 * If the data passed back in was not 13694 * processed (ie: bad ACK) sending 13695 * the remainder back in will cause a 13696 * loop. In this case, drop the 13697 * packet and let the sender try 13698 * sending a good packet. 13699 */ 13700 if (tmp_rnxt == tcp->tcp_rnxt) { 13701 freemsg(mp); 13702 return; 13703 } 13704 } 13705 if (urp != seg_len - 1) { 13706 uint32_t tmp_rnxt; 13707 /* 13708 * There is stuff after the urgent 13709 * byte. 13710 */ 13711 mp1 = dupmsg(mp); 13712 if (!mp1) { 13713 /* 13714 * Trim everything beyond the 13715 * urgent byte. The rest will 13716 * come back. 13717 */ 13718 (void) adjmsg(mp, 13719 urp + 1 - seg_len); 13720 tcp_rput_data(connp, 13721 mp, NULL); 13722 return; 13723 } 13724 (void) adjmsg(mp1, urp + 1 - seg_len); 13725 tmp_rnxt = tcp->tcp_rnxt; 13726 tcp_rput_data(connp, mp1, NULL); 13727 /* 13728 * If the data passed back in was not 13729 * processed (ie: bad ACK) sending 13730 * the remainder back in will cause a 13731 * loop. In this case, drop the 13732 * packet and let the sender try 13733 * sending a good packet. 13734 */ 13735 if (tmp_rnxt == tcp->tcp_rnxt) { 13736 freemsg(mp); 13737 return; 13738 } 13739 } 13740 tcp_rput_data(connp, mp, NULL); 13741 return; 13742 } 13743 /* 13744 * This segment contains only the urgent byte. We 13745 * have to allocate the T_exdata_ind, if we can. 13746 */ 13747 if (!tcp->tcp_urp_mp) { 13748 struct T_exdata_ind *tei; 13749 mp1 = allocb(sizeof (struct T_exdata_ind), 13750 BPRI_MED); 13751 if (!mp1) { 13752 /* 13753 * Sigh... It'll be back. 13754 * Generate any MSG*MARK message now. 13755 */ 13756 freemsg(mp); 13757 seg_len = 0; 13758 if (flags & TH_SEND_URP_MARK) { 13759 13760 13761 ASSERT(tcp->tcp_urp_mark_mp); 13762 tcp->tcp_urp_mark_mp->b_flag &= 13763 ~MSGNOTMARKNEXT; 13764 tcp->tcp_urp_mark_mp->b_flag |= 13765 MSGMARKNEXT; 13766 } 13767 goto ack_check; 13768 } 13769 mp1->b_datap->db_type = M_PROTO; 13770 tei = (struct T_exdata_ind *)mp1->b_rptr; 13771 tei->PRIM_type = T_EXDATA_IND; 13772 tei->MORE_flag = 0; 13773 mp1->b_wptr = (uchar_t *)&tei[1]; 13774 tcp->tcp_urp_mp = mp1; 13775 #ifdef DEBUG 13776 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13777 "tcp_rput: allocated exdata_ind %s", 13778 tcp_display(tcp, NULL, 13779 DISP_PORT_ONLY)); 13780 #endif /* DEBUG */ 13781 /* 13782 * There is no need to send a separate MSG*MARK 13783 * message since the T_EXDATA_IND will be sent 13784 * now. 13785 */ 13786 flags &= ~TH_SEND_URP_MARK; 13787 freemsg(tcp->tcp_urp_mark_mp); 13788 tcp->tcp_urp_mark_mp = NULL; 13789 } 13790 /* 13791 * Now we are all set. On the next putnext upstream, 13792 * tcp_urp_mp will be non-NULL and will get prepended 13793 * to what has to be this piece containing the urgent 13794 * byte. If for any reason we abort this segment below, 13795 * if it comes back, we will have this ready, or it 13796 * will get blown off in close. 13797 */ 13798 } else if (urp == seg_len) { 13799 /* 13800 * The urgent byte is the next byte after this sequence 13801 * number. If there is data it is marked with 13802 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13803 * since it is not needed. Otherwise, if the code 13804 * above just allocated a zero-length tcp_urp_mark_mp 13805 * message, that message is tagged with MSGMARKNEXT. 13806 * Sending up these MSGMARKNEXT messages makes 13807 * SIOCATMARK work correctly even though 13808 * the T_EXDATA_IND will not be sent up until the 13809 * urgent byte arrives. 13810 */ 13811 if (seg_len != 0) { 13812 flags |= TH_MARKNEXT_NEEDED; 13813 freemsg(tcp->tcp_urp_mark_mp); 13814 tcp->tcp_urp_mark_mp = NULL; 13815 flags &= ~TH_SEND_URP_MARK; 13816 } else if (tcp->tcp_urp_mark_mp != NULL) { 13817 flags |= TH_SEND_URP_MARK; 13818 tcp->tcp_urp_mark_mp->b_flag &= 13819 ~MSGNOTMARKNEXT; 13820 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13821 } 13822 #ifdef DEBUG 13823 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13824 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13825 seg_len, flags, 13826 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13827 #endif /* DEBUG */ 13828 } else { 13829 /* Data left until we hit mark */ 13830 #ifdef DEBUG 13831 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13832 "tcp_rput: URP %d bytes left, %s", 13833 urp - seg_len, tcp_display(tcp, NULL, 13834 DISP_PORT_ONLY)); 13835 #endif /* DEBUG */ 13836 } 13837 } 13838 13839 process_ack: 13840 if (!(flags & TH_ACK)) { 13841 freemsg(mp); 13842 goto xmit_check; 13843 } 13844 } 13845 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13846 13847 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13848 tcp->tcp_ip_forward_progress = B_TRUE; 13849 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13850 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13851 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13852 /* 3-way handshake complete - pass up the T_CONN_IND */ 13853 tcp_t *listener = tcp->tcp_listener; 13854 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13855 13856 tcp->tcp_tconnind_started = B_TRUE; 13857 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13858 /* 13859 * We are here means eager is fine but it can 13860 * get a TH_RST at any point between now and till 13861 * accept completes and disappear. We need to 13862 * ensure that reference to eager is valid after 13863 * we get out of eager's perimeter. So we do 13864 * an extra refhold. 13865 */ 13866 CONN_INC_REF(connp); 13867 13868 /* 13869 * The listener also exists because of the refhold 13870 * done in tcp_conn_request. Its possible that it 13871 * might have closed. We will check that once we 13872 * get inside listeners context. 13873 */ 13874 CONN_INC_REF(listener->tcp_connp); 13875 if (listener->tcp_connp->conn_sqp == 13876 connp->conn_sqp) { 13877 tcp_send_conn_ind(listener->tcp_connp, mp, 13878 listener->tcp_connp->conn_sqp); 13879 CONN_DEC_REF(listener->tcp_connp); 13880 } else if (!tcp->tcp_loopback) { 13881 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13882 tcp_send_conn_ind, 13883 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13884 } else { 13885 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13886 tcp_send_conn_ind, listener->tcp_connp, 13887 SQTAG_TCP_CONN_IND); 13888 } 13889 } 13890 13891 if (tcp->tcp_active_open) { 13892 /* 13893 * We are seeing the final ack in the three way 13894 * hand shake of a active open'ed connection 13895 * so we must send up a T_CONN_CON 13896 */ 13897 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13898 freemsg(mp); 13899 return; 13900 } 13901 /* 13902 * Don't fuse the loopback endpoints for 13903 * simultaneous active opens. 13904 */ 13905 if (tcp->tcp_loopback) { 13906 TCP_STAT(tcp_fusion_unfusable); 13907 tcp->tcp_unfusable = B_TRUE; 13908 } 13909 } 13910 13911 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13912 bytes_acked--; 13913 /* SYN was acked - making progress */ 13914 if (tcp->tcp_ipversion == IPV6_VERSION) 13915 tcp->tcp_ip_forward_progress = B_TRUE; 13916 13917 /* 13918 * If SYN was retransmitted, need to reset all 13919 * retransmission info as this segment will be 13920 * treated as a dup ACK. 13921 */ 13922 if (tcp->tcp_rexmit) { 13923 tcp->tcp_rexmit = B_FALSE; 13924 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13925 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13926 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13927 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13928 tcp->tcp_ms_we_have_waited = 0; 13929 tcp->tcp_cwnd = mss; 13930 } 13931 13932 /* 13933 * We set the send window to zero here. 13934 * This is needed if there is data to be 13935 * processed already on the queue. 13936 * Later (at swnd_update label), the 13937 * "new_swnd > tcp_swnd" condition is satisfied 13938 * the XMIT_NEEDED flag is set in the current 13939 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13940 * called if there is already data on queue in 13941 * this state. 13942 */ 13943 tcp->tcp_swnd = 0; 13944 13945 if (new_swnd > tcp->tcp_max_swnd) 13946 tcp->tcp_max_swnd = new_swnd; 13947 tcp->tcp_swl1 = seg_seq; 13948 tcp->tcp_swl2 = seg_ack; 13949 tcp->tcp_state = TCPS_ESTABLISHED; 13950 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13951 13952 /* Fuse when both sides are in ESTABLISHED state */ 13953 if (tcp->tcp_loopback && do_tcp_fusion) 13954 tcp_fuse(tcp, iphdr, tcph); 13955 13956 } 13957 /* This code follows 4.4BSD-Lite2 mostly. */ 13958 if (bytes_acked < 0) 13959 goto est; 13960 13961 /* 13962 * If TCP is ECN capable and the congestion experience bit is 13963 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13964 * done once per window (or more loosely, per RTT). 13965 */ 13966 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13967 tcp->tcp_cwr = B_FALSE; 13968 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13969 if (!tcp->tcp_cwr) { 13970 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13971 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13972 tcp->tcp_cwnd = npkt * mss; 13973 /* 13974 * If the cwnd is 0, use the timer to clock out 13975 * new segments. This is required by the ECN spec. 13976 */ 13977 if (npkt == 0) { 13978 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13979 /* 13980 * This makes sure that when the ACK comes 13981 * back, we will increase tcp_cwnd by 1 MSS. 13982 */ 13983 tcp->tcp_cwnd_cnt = 0; 13984 } 13985 tcp->tcp_cwr = B_TRUE; 13986 /* 13987 * This marks the end of the current window of in 13988 * flight data. That is why we don't use 13989 * tcp_suna + tcp_swnd. Only data in flight can 13990 * provide ECN info. 13991 */ 13992 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13993 tcp->tcp_ecn_cwr_sent = B_FALSE; 13994 } 13995 } 13996 13997 mp1 = tcp->tcp_xmit_head; 13998 if (bytes_acked == 0) { 13999 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14000 int dupack_cnt; 14001 14002 BUMP_MIB(&tcp_mib, tcpInDupAck); 14003 /* 14004 * Fast retransmit. When we have seen exactly three 14005 * identical ACKs while we have unacked data 14006 * outstanding we take it as a hint that our peer 14007 * dropped something. 14008 * 14009 * If TCP is retransmitting, don't do fast retransmit. 14010 */ 14011 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14012 ! tcp->tcp_rexmit) { 14013 /* Do Limited Transmit */ 14014 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14015 tcp_dupack_fast_retransmit) { 14016 /* 14017 * RFC 3042 14018 * 14019 * What we need to do is temporarily 14020 * increase tcp_cwnd so that new 14021 * data can be sent if it is allowed 14022 * by the receive window (tcp_rwnd). 14023 * tcp_wput_data() will take care of 14024 * the rest. 14025 * 14026 * If the connection is SACK capable, 14027 * only do limited xmit when there 14028 * is SACK info. 14029 * 14030 * Note how tcp_cwnd is incremented. 14031 * The first dup ACK will increase 14032 * it by 1 MSS. The second dup ACK 14033 * will increase it by 2 MSS. This 14034 * means that only 1 new segment will 14035 * be sent for each dup ACK. 14036 */ 14037 if (tcp->tcp_unsent > 0 && 14038 (!tcp->tcp_snd_sack_ok || 14039 (tcp->tcp_snd_sack_ok && 14040 tcp->tcp_notsack_list != NULL))) { 14041 tcp->tcp_cwnd += mss << 14042 (tcp->tcp_dupack_cnt - 1); 14043 flags |= TH_LIMIT_XMIT; 14044 } 14045 } else if (dupack_cnt == 14046 tcp_dupack_fast_retransmit) { 14047 14048 /* 14049 * If we have reduced tcp_ssthresh 14050 * because of ECN, do not reduce it again 14051 * unless it is already one window of data 14052 * away. After one window of data, tcp_cwr 14053 * should then be cleared. Note that 14054 * for non ECN capable connection, tcp_cwr 14055 * should always be false. 14056 * 14057 * Adjust cwnd since the duplicate 14058 * ack indicates that a packet was 14059 * dropped (due to congestion.) 14060 */ 14061 if (!tcp->tcp_cwr) { 14062 npkt = ((tcp->tcp_snxt - 14063 tcp->tcp_suna) >> 1) / mss; 14064 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14065 mss; 14066 tcp->tcp_cwnd = (npkt + 14067 tcp->tcp_dupack_cnt) * mss; 14068 } 14069 if (tcp->tcp_ecn_ok) { 14070 tcp->tcp_cwr = B_TRUE; 14071 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14072 tcp->tcp_ecn_cwr_sent = B_FALSE; 14073 } 14074 14075 /* 14076 * We do Hoe's algorithm. Refer to her 14077 * paper "Improving the Start-up Behavior 14078 * of a Congestion Control Scheme for TCP," 14079 * appeared in SIGCOMM'96. 14080 * 14081 * Save highest seq no we have sent so far. 14082 * Be careful about the invisible FIN byte. 14083 */ 14084 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14085 (tcp->tcp_unsent == 0)) { 14086 tcp->tcp_rexmit_max = tcp->tcp_fss; 14087 } else { 14088 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14089 } 14090 14091 /* 14092 * Do not allow bursty traffic during. 14093 * fast recovery. Refer to Fall and Floyd's 14094 * paper "Simulation-based Comparisons of 14095 * Tahoe, Reno and SACK TCP" (in CCR?) 14096 * This is a best current practise. 14097 */ 14098 tcp->tcp_snd_burst = TCP_CWND_SS; 14099 14100 /* 14101 * For SACK: 14102 * Calculate tcp_pipe, which is the 14103 * estimated number of bytes in 14104 * network. 14105 * 14106 * tcp_fack is the highest sack'ed seq num 14107 * TCP has received. 14108 * 14109 * tcp_pipe is explained in the above quoted 14110 * Fall and Floyd's paper. tcp_fack is 14111 * explained in Mathis and Mahdavi's 14112 * "Forward Acknowledgment: Refining TCP 14113 * Congestion Control" in SIGCOMM '96. 14114 */ 14115 if (tcp->tcp_snd_sack_ok) { 14116 ASSERT(tcp->tcp_sack_info != NULL); 14117 if (tcp->tcp_notsack_list != NULL) { 14118 tcp->tcp_pipe = tcp->tcp_snxt - 14119 tcp->tcp_fack; 14120 tcp->tcp_sack_snxt = seg_ack; 14121 flags |= TH_NEED_SACK_REXMIT; 14122 } else { 14123 /* 14124 * Always initialize tcp_pipe 14125 * even though we don't have 14126 * any SACK info. If later 14127 * we get SACK info and 14128 * tcp_pipe is not initialized, 14129 * funny things will happen. 14130 */ 14131 tcp->tcp_pipe = 14132 tcp->tcp_cwnd_ssthresh; 14133 } 14134 } else { 14135 flags |= TH_REXMIT_NEEDED; 14136 } /* tcp_snd_sack_ok */ 14137 14138 } else { 14139 /* 14140 * Here we perform congestion 14141 * avoidance, but NOT slow start. 14142 * This is known as the Fast 14143 * Recovery Algorithm. 14144 */ 14145 if (tcp->tcp_snd_sack_ok && 14146 tcp->tcp_notsack_list != NULL) { 14147 flags |= TH_NEED_SACK_REXMIT; 14148 tcp->tcp_pipe -= mss; 14149 if (tcp->tcp_pipe < 0) 14150 tcp->tcp_pipe = 0; 14151 } else { 14152 /* 14153 * We know that one more packet has 14154 * left the pipe thus we can update 14155 * cwnd. 14156 */ 14157 cwnd = tcp->tcp_cwnd + mss; 14158 if (cwnd > tcp->tcp_cwnd_max) 14159 cwnd = tcp->tcp_cwnd_max; 14160 tcp->tcp_cwnd = cwnd; 14161 if (tcp->tcp_unsent > 0) 14162 flags |= TH_XMIT_NEEDED; 14163 } 14164 } 14165 } 14166 } else if (tcp->tcp_zero_win_probe) { 14167 /* 14168 * If the window has opened, need to arrange 14169 * to send additional data. 14170 */ 14171 if (new_swnd != 0) { 14172 /* tcp_suna != tcp_snxt */ 14173 /* Packet contains a window update */ 14174 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 14175 tcp->tcp_zero_win_probe = 0; 14176 tcp->tcp_timer_backoff = 0; 14177 tcp->tcp_ms_we_have_waited = 0; 14178 14179 /* 14180 * Transmit starting with tcp_suna since 14181 * the one byte probe is not ack'ed. 14182 * If TCP has sent more than one identical 14183 * probe, tcp_rexmit will be set. That means 14184 * tcp_ss_rexmit() will send out the one 14185 * byte along with new data. Otherwise, 14186 * fake the retransmission. 14187 */ 14188 flags |= TH_XMIT_NEEDED; 14189 if (!tcp->tcp_rexmit) { 14190 tcp->tcp_rexmit = B_TRUE; 14191 tcp->tcp_dupack_cnt = 0; 14192 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14193 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14194 } 14195 } 14196 } 14197 goto swnd_update; 14198 } 14199 14200 /* 14201 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14202 * If the ACK value acks something that we have not yet sent, it might 14203 * be an old duplicate segment. Send an ACK to re-synchronize the 14204 * other side. 14205 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14206 * state is handled above, so we can always just drop the segment and 14207 * send an ACK here. 14208 * 14209 * Should we send ACKs in response to ACK only segments? 14210 */ 14211 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14212 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 14213 /* drop the received segment */ 14214 freemsg(mp); 14215 14216 /* 14217 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14218 * greater than 0, check if the number of such 14219 * bogus ACks is greater than that count. If yes, 14220 * don't send back any ACK. This prevents TCP from 14221 * getting into an ACK storm if somehow an attacker 14222 * successfully spoofs an acceptable segment to our 14223 * peer. 14224 */ 14225 if (tcp_drop_ack_unsent_cnt > 0 && 14226 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14227 TCP_STAT(tcp_in_ack_unsent_drop); 14228 return; 14229 } 14230 mp = tcp_ack_mp(tcp); 14231 if (mp != NULL) { 14232 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14233 BUMP_LOCAL(tcp->tcp_obsegs); 14234 BUMP_MIB(&tcp_mib, tcpOutAck); 14235 tcp_send_data(tcp, tcp->tcp_wq, mp); 14236 } 14237 return; 14238 } 14239 14240 /* 14241 * TCP gets a new ACK, update the notsack'ed list to delete those 14242 * blocks that are covered by this ACK. 14243 */ 14244 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14245 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14246 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14247 } 14248 14249 /* 14250 * If we got an ACK after fast retransmit, check to see 14251 * if it is a partial ACK. If it is not and the congestion 14252 * window was inflated to account for the other side's 14253 * cached packets, retract it. If it is, do Hoe's algorithm. 14254 */ 14255 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14256 ASSERT(tcp->tcp_rexmit == B_FALSE); 14257 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14258 tcp->tcp_dupack_cnt = 0; 14259 /* 14260 * Restore the orig tcp_cwnd_ssthresh after 14261 * fast retransmit phase. 14262 */ 14263 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14264 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14265 } 14266 tcp->tcp_rexmit_max = seg_ack; 14267 tcp->tcp_cwnd_cnt = 0; 14268 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14269 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14270 14271 /* 14272 * Remove all notsack info to avoid confusion with 14273 * the next fast retrasnmit/recovery phase. 14274 */ 14275 if (tcp->tcp_snd_sack_ok && 14276 tcp->tcp_notsack_list != NULL) { 14277 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14278 } 14279 } else { 14280 if (tcp->tcp_snd_sack_ok && 14281 tcp->tcp_notsack_list != NULL) { 14282 flags |= TH_NEED_SACK_REXMIT; 14283 tcp->tcp_pipe -= mss; 14284 if (tcp->tcp_pipe < 0) 14285 tcp->tcp_pipe = 0; 14286 } else { 14287 /* 14288 * Hoe's algorithm: 14289 * 14290 * Retransmit the unack'ed segment and 14291 * restart fast recovery. Note that we 14292 * need to scale back tcp_cwnd to the 14293 * original value when we started fast 14294 * recovery. This is to prevent overly 14295 * aggressive behaviour in sending new 14296 * segments. 14297 */ 14298 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14299 tcp_dupack_fast_retransmit * mss; 14300 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14301 flags |= TH_REXMIT_NEEDED; 14302 } 14303 } 14304 } else { 14305 tcp->tcp_dupack_cnt = 0; 14306 if (tcp->tcp_rexmit) { 14307 /* 14308 * TCP is retranmitting. If the ACK ack's all 14309 * outstanding data, update tcp_rexmit_max and 14310 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14311 * to the correct value. 14312 * 14313 * Note that SEQ_LEQ() is used. This is to avoid 14314 * unnecessary fast retransmit caused by dup ACKs 14315 * received when TCP does slow start retransmission 14316 * after a time out. During this phase, TCP may 14317 * send out segments which are already received. 14318 * This causes dup ACKs to be sent back. 14319 */ 14320 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14321 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14322 tcp->tcp_rexmit_nxt = seg_ack; 14323 } 14324 if (seg_ack != tcp->tcp_rexmit_max) { 14325 flags |= TH_XMIT_NEEDED; 14326 } 14327 } else { 14328 tcp->tcp_rexmit = B_FALSE; 14329 tcp->tcp_xmit_zc_clean = B_FALSE; 14330 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14331 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14332 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14333 } 14334 tcp->tcp_ms_we_have_waited = 0; 14335 } 14336 } 14337 14338 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14339 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14340 tcp->tcp_suna = seg_ack; 14341 if (tcp->tcp_zero_win_probe != 0) { 14342 tcp->tcp_zero_win_probe = 0; 14343 tcp->tcp_timer_backoff = 0; 14344 } 14345 14346 /* 14347 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14348 * Note that it cannot be the SYN being ack'ed. The code flow 14349 * will not reach here. 14350 */ 14351 if (mp1 == NULL) { 14352 goto fin_acked; 14353 } 14354 14355 /* 14356 * Update the congestion window. 14357 * 14358 * If TCP is not ECN capable or TCP is ECN capable but the 14359 * congestion experience bit is not set, increase the tcp_cwnd as 14360 * usual. 14361 */ 14362 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14363 cwnd = tcp->tcp_cwnd; 14364 add = mss; 14365 14366 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14367 /* 14368 * This is to prevent an increase of less than 1 MSS of 14369 * tcp_cwnd. With partial increase, tcp_wput_data() 14370 * may send out tinygrams in order to preserve mblk 14371 * boundaries. 14372 * 14373 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14374 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14375 * increased by 1 MSS for every RTTs. 14376 */ 14377 if (tcp->tcp_cwnd_cnt <= 0) { 14378 tcp->tcp_cwnd_cnt = cwnd + add; 14379 } else { 14380 tcp->tcp_cwnd_cnt -= add; 14381 add = 0; 14382 } 14383 } 14384 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14385 } 14386 14387 /* See if the latest urgent data has been acknowledged */ 14388 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14389 SEQ_GT(seg_ack, tcp->tcp_urg)) 14390 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14391 14392 /* Can we update the RTT estimates? */ 14393 if (tcp->tcp_snd_ts_ok) { 14394 /* Ignore zero timestamp echo-reply. */ 14395 if (tcpopt.tcp_opt_ts_ecr != 0) { 14396 tcp_set_rto(tcp, (int32_t)lbolt - 14397 (int32_t)tcpopt.tcp_opt_ts_ecr); 14398 } 14399 14400 /* If needed, restart the timer. */ 14401 if (tcp->tcp_set_timer == 1) { 14402 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14403 tcp->tcp_set_timer = 0; 14404 } 14405 /* 14406 * Update tcp_csuna in case the other side stops sending 14407 * us timestamps. 14408 */ 14409 tcp->tcp_csuna = tcp->tcp_snxt; 14410 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14411 /* 14412 * An ACK sequence we haven't seen before, so get the RTT 14413 * and update the RTO. But first check if the timestamp is 14414 * valid to use. 14415 */ 14416 if ((mp1->b_next != NULL) && 14417 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14418 tcp_set_rto(tcp, (int32_t)lbolt - 14419 (int32_t)(intptr_t)mp1->b_prev); 14420 else 14421 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14422 14423 /* Remeber the last sequence to be ACKed */ 14424 tcp->tcp_csuna = seg_ack; 14425 if (tcp->tcp_set_timer == 1) { 14426 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14427 tcp->tcp_set_timer = 0; 14428 } 14429 } else { 14430 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14431 } 14432 14433 /* Eat acknowledged bytes off the xmit queue. */ 14434 for (;;) { 14435 mblk_t *mp2; 14436 uchar_t *wptr; 14437 14438 wptr = mp1->b_wptr; 14439 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14440 bytes_acked -= (int)(wptr - mp1->b_rptr); 14441 if (bytes_acked < 0) { 14442 mp1->b_rptr = wptr + bytes_acked; 14443 /* 14444 * Set a new timestamp if all the bytes timed by the 14445 * old timestamp have been ack'ed. 14446 */ 14447 if (SEQ_GT(seg_ack, 14448 (uint32_t)(uintptr_t)(mp1->b_next))) { 14449 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14450 mp1->b_next = NULL; 14451 } 14452 break; 14453 } 14454 mp1->b_next = NULL; 14455 mp1->b_prev = NULL; 14456 mp2 = mp1; 14457 mp1 = mp1->b_cont; 14458 14459 /* 14460 * This notification is required for some zero-copy 14461 * clients to maintain a copy semantic. After the data 14462 * is ack'ed, client is safe to modify or reuse the buffer. 14463 */ 14464 if (tcp->tcp_snd_zcopy_aware && 14465 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14466 tcp_zcopy_notify(tcp); 14467 freeb(mp2); 14468 if (bytes_acked == 0) { 14469 if (mp1 == NULL) { 14470 /* Everything is ack'ed, clear the tail. */ 14471 tcp->tcp_xmit_tail = NULL; 14472 /* 14473 * Cancel the timer unless we are still 14474 * waiting for an ACK for the FIN packet. 14475 */ 14476 if (tcp->tcp_timer_tid != 0 && 14477 tcp->tcp_snxt == tcp->tcp_suna) { 14478 (void) TCP_TIMER_CANCEL(tcp, 14479 tcp->tcp_timer_tid); 14480 tcp->tcp_timer_tid = 0; 14481 } 14482 goto pre_swnd_update; 14483 } 14484 if (mp2 != tcp->tcp_xmit_tail) 14485 break; 14486 tcp->tcp_xmit_tail = mp1; 14487 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14488 (uintptr_t)INT_MAX); 14489 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14490 mp1->b_rptr); 14491 break; 14492 } 14493 if (mp1 == NULL) { 14494 /* 14495 * More was acked but there is nothing more 14496 * outstanding. This means that the FIN was 14497 * just acked or that we're talking to a clown. 14498 */ 14499 fin_acked: 14500 ASSERT(tcp->tcp_fin_sent); 14501 tcp->tcp_xmit_tail = NULL; 14502 if (tcp->tcp_fin_sent) { 14503 /* FIN was acked - making progress */ 14504 if (tcp->tcp_ipversion == IPV6_VERSION && 14505 !tcp->tcp_fin_acked) 14506 tcp->tcp_ip_forward_progress = B_TRUE; 14507 tcp->tcp_fin_acked = B_TRUE; 14508 if (tcp->tcp_linger_tid != 0 && 14509 TCP_TIMER_CANCEL(tcp, 14510 tcp->tcp_linger_tid) >= 0) { 14511 tcp_stop_lingering(tcp); 14512 } 14513 } else { 14514 /* 14515 * We should never get here because 14516 * we have already checked that the 14517 * number of bytes ack'ed should be 14518 * smaller than or equal to what we 14519 * have sent so far (it is the 14520 * acceptability check of the ACK). 14521 * We can only get here if the send 14522 * queue is corrupted. 14523 * 14524 * Terminate the connection and 14525 * panic the system. It is better 14526 * for us to panic instead of 14527 * continuing to avoid other disaster. 14528 */ 14529 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14530 tcp->tcp_rnxt, TH_RST|TH_ACK); 14531 panic("Memory corruption " 14532 "detected for connection %s.", 14533 tcp_display(tcp, NULL, 14534 DISP_ADDR_AND_PORT)); 14535 /*NOTREACHED*/ 14536 } 14537 goto pre_swnd_update; 14538 } 14539 ASSERT(mp2 != tcp->tcp_xmit_tail); 14540 } 14541 if (tcp->tcp_unsent) { 14542 flags |= TH_XMIT_NEEDED; 14543 } 14544 pre_swnd_update: 14545 tcp->tcp_xmit_head = mp1; 14546 swnd_update: 14547 /* 14548 * The following check is different from most other implementations. 14549 * For bi-directional transfer, when segments are dropped, the 14550 * "normal" check will not accept a window update in those 14551 * retransmitted segemnts. Failing to do that, TCP may send out 14552 * segments which are outside receiver's window. As TCP accepts 14553 * the ack in those retransmitted segments, if the window update in 14554 * the same segment is not accepted, TCP will incorrectly calculates 14555 * that it can send more segments. This can create a deadlock 14556 * with the receiver if its window becomes zero. 14557 */ 14558 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14559 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14560 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14561 /* 14562 * The criteria for update is: 14563 * 14564 * 1. the segment acknowledges some data. Or 14565 * 2. the segment is new, i.e. it has a higher seq num. Or 14566 * 3. the segment is not old and the advertised window is 14567 * larger than the previous advertised window. 14568 */ 14569 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14570 flags |= TH_XMIT_NEEDED; 14571 tcp->tcp_swnd = new_swnd; 14572 if (new_swnd > tcp->tcp_max_swnd) 14573 tcp->tcp_max_swnd = new_swnd; 14574 tcp->tcp_swl1 = seg_seq; 14575 tcp->tcp_swl2 = seg_ack; 14576 } 14577 est: 14578 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14579 14580 switch (tcp->tcp_state) { 14581 case TCPS_FIN_WAIT_1: 14582 if (tcp->tcp_fin_acked) { 14583 tcp->tcp_state = TCPS_FIN_WAIT_2; 14584 /* 14585 * We implement the non-standard BSD/SunOS 14586 * FIN_WAIT_2 flushing algorithm. 14587 * If there is no user attached to this 14588 * TCP endpoint, then this TCP struct 14589 * could hang around forever in FIN_WAIT_2 14590 * state if the peer forgets to send us 14591 * a FIN. To prevent this, we wait only 14592 * 2*MSL (a convenient time value) for 14593 * the FIN to arrive. If it doesn't show up, 14594 * we flush the TCP endpoint. This algorithm, 14595 * though a violation of RFC-793, has worked 14596 * for over 10 years in BSD systems. 14597 * Note: SunOS 4.x waits 675 seconds before 14598 * flushing the FIN_WAIT_2 connection. 14599 */ 14600 TCP_TIMER_RESTART(tcp, 14601 tcp_fin_wait_2_flush_interval); 14602 } 14603 break; 14604 case TCPS_FIN_WAIT_2: 14605 break; /* Shutdown hook? */ 14606 case TCPS_LAST_ACK: 14607 freemsg(mp); 14608 if (tcp->tcp_fin_acked) { 14609 (void) tcp_clean_death(tcp, 0, 19); 14610 return; 14611 } 14612 goto xmit_check; 14613 case TCPS_CLOSING: 14614 if (tcp->tcp_fin_acked) { 14615 tcp->tcp_state = TCPS_TIME_WAIT; 14616 /* 14617 * Unconditionally clear the exclusive binding 14618 * bit so this TIME-WAIT connection won't 14619 * interfere with new ones. 14620 */ 14621 tcp->tcp_exclbind = 0; 14622 if (!TCP_IS_DETACHED(tcp)) { 14623 TCP_TIMER_RESTART(tcp, 14624 tcp_time_wait_interval); 14625 } else { 14626 tcp_time_wait_append(tcp); 14627 TCP_DBGSTAT(tcp_rput_time_wait); 14628 } 14629 } 14630 /*FALLTHRU*/ 14631 case TCPS_CLOSE_WAIT: 14632 freemsg(mp); 14633 goto xmit_check; 14634 default: 14635 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14636 break; 14637 } 14638 } 14639 if (flags & TH_FIN) { 14640 /* Make sure we ack the fin */ 14641 flags |= TH_ACK_NEEDED; 14642 if (!tcp->tcp_fin_rcvd) { 14643 tcp->tcp_fin_rcvd = B_TRUE; 14644 tcp->tcp_rnxt++; 14645 tcph = tcp->tcp_tcph; 14646 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14647 14648 /* 14649 * Generate the ordrel_ind at the end unless we 14650 * are an eager guy. 14651 * In the eager case tcp_rsrv will do this when run 14652 * after tcp_accept is done. 14653 */ 14654 if (tcp->tcp_listener == NULL && 14655 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14656 flags |= TH_ORDREL_NEEDED; 14657 switch (tcp->tcp_state) { 14658 case TCPS_SYN_RCVD: 14659 case TCPS_ESTABLISHED: 14660 tcp->tcp_state = TCPS_CLOSE_WAIT; 14661 /* Keepalive? */ 14662 break; 14663 case TCPS_FIN_WAIT_1: 14664 if (!tcp->tcp_fin_acked) { 14665 tcp->tcp_state = TCPS_CLOSING; 14666 break; 14667 } 14668 /* FALLTHRU */ 14669 case TCPS_FIN_WAIT_2: 14670 tcp->tcp_state = TCPS_TIME_WAIT; 14671 /* 14672 * Unconditionally clear the exclusive binding 14673 * bit so this TIME-WAIT connection won't 14674 * interfere with new ones. 14675 */ 14676 tcp->tcp_exclbind = 0; 14677 if (!TCP_IS_DETACHED(tcp)) { 14678 TCP_TIMER_RESTART(tcp, 14679 tcp_time_wait_interval); 14680 } else { 14681 tcp_time_wait_append(tcp); 14682 TCP_DBGSTAT(tcp_rput_time_wait); 14683 } 14684 if (seg_len) { 14685 /* 14686 * implies data piggybacked on FIN. 14687 * break to handle data. 14688 */ 14689 break; 14690 } 14691 freemsg(mp); 14692 goto ack_check; 14693 } 14694 } 14695 } 14696 if (mp == NULL) 14697 goto xmit_check; 14698 if (seg_len == 0) { 14699 freemsg(mp); 14700 goto xmit_check; 14701 } 14702 if (mp->b_rptr == mp->b_wptr) { 14703 /* 14704 * The header has been consumed, so we remove the 14705 * zero-length mblk here. 14706 */ 14707 mp1 = mp; 14708 mp = mp->b_cont; 14709 freeb(mp1); 14710 } 14711 tcph = tcp->tcp_tcph; 14712 tcp->tcp_rack_cnt++; 14713 { 14714 uint32_t cur_max; 14715 14716 cur_max = tcp->tcp_rack_cur_max; 14717 if (tcp->tcp_rack_cnt >= cur_max) { 14718 /* 14719 * We have more unacked data than we should - send 14720 * an ACK now. 14721 */ 14722 flags |= TH_ACK_NEEDED; 14723 cur_max++; 14724 if (cur_max > tcp->tcp_rack_abs_max) 14725 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14726 else 14727 tcp->tcp_rack_cur_max = cur_max; 14728 } else if (TCP_IS_DETACHED(tcp)) { 14729 /* We don't have an ACK timer for detached TCP. */ 14730 flags |= TH_ACK_NEEDED; 14731 } else if (seg_len < mss) { 14732 /* 14733 * If we get a segment that is less than an mss, and we 14734 * already have unacknowledged data, and the amount 14735 * unacknowledged is not a multiple of mss, then we 14736 * better generate an ACK now. Otherwise, this may be 14737 * the tail piece of a transaction, and we would rather 14738 * wait for the response. 14739 */ 14740 uint32_t udif; 14741 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14742 (uintptr_t)INT_MAX); 14743 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14744 if (udif && (udif % mss)) 14745 flags |= TH_ACK_NEEDED; 14746 else 14747 flags |= TH_ACK_TIMER_NEEDED; 14748 } else { 14749 /* Start delayed ack timer */ 14750 flags |= TH_ACK_TIMER_NEEDED; 14751 } 14752 } 14753 tcp->tcp_rnxt += seg_len; 14754 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14755 14756 /* Update SACK list */ 14757 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14758 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14759 &(tcp->tcp_num_sack_blk)); 14760 } 14761 14762 if (tcp->tcp_urp_mp) { 14763 tcp->tcp_urp_mp->b_cont = mp; 14764 mp = tcp->tcp_urp_mp; 14765 tcp->tcp_urp_mp = NULL; 14766 /* Ready for a new signal. */ 14767 tcp->tcp_urp_last_valid = B_FALSE; 14768 #ifdef DEBUG 14769 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14770 "tcp_rput: sending exdata_ind %s", 14771 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14772 #endif /* DEBUG */ 14773 } 14774 14775 /* 14776 * Check for ancillary data changes compared to last segment. 14777 */ 14778 if (tcp->tcp_ipv6_recvancillary != 0) { 14779 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14780 if (mp == NULL) 14781 return; 14782 } 14783 14784 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14785 /* 14786 * Side queue inbound data until the accept happens. 14787 * tcp_accept/tcp_rput drains this when the accept happens. 14788 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14789 * T_EXDATA_IND) it is queued on b_next. 14790 * XXX Make urgent data use this. Requires: 14791 * Removing tcp_listener check for TH_URG 14792 * Making M_PCPROTO and MARK messages skip the eager case 14793 */ 14794 14795 if (tcp->tcp_kssl_pending) { 14796 tcp_kssl_input(tcp, mp); 14797 } else { 14798 tcp_rcv_enqueue(tcp, mp, seg_len); 14799 } 14800 } else { 14801 if (mp->b_datap->db_type != M_DATA || 14802 (flags & TH_MARKNEXT_NEEDED)) { 14803 if (tcp->tcp_rcv_list != NULL) { 14804 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14805 } 14806 ASSERT(tcp->tcp_rcv_list == NULL || 14807 tcp->tcp_fused_sigurg); 14808 if (flags & TH_MARKNEXT_NEEDED) { 14809 #ifdef DEBUG 14810 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14811 "tcp_rput: sending MSGMARKNEXT %s", 14812 tcp_display(tcp, NULL, 14813 DISP_PORT_ONLY)); 14814 #endif /* DEBUG */ 14815 mp->b_flag |= MSGMARKNEXT; 14816 flags &= ~TH_MARKNEXT_NEEDED; 14817 } 14818 14819 /* Does this need SSL processing first? */ 14820 if ((tcp->tcp_kssl_ctx != NULL) && 14821 (DB_TYPE(mp) == M_DATA)) { 14822 tcp_kssl_input(tcp, mp); 14823 } else { 14824 putnext(tcp->tcp_rq, mp); 14825 if (!canputnext(tcp->tcp_rq)) 14826 tcp->tcp_rwnd -= seg_len; 14827 } 14828 } else if ((flags & (TH_PUSH|TH_FIN)) || 14829 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14830 if (tcp->tcp_rcv_list != NULL) { 14831 /* 14832 * Enqueue the new segment first and then 14833 * call tcp_rcv_drain() to send all data 14834 * up. The other way to do this is to 14835 * send all queued data up and then call 14836 * putnext() to send the new segment up. 14837 * This way can remove the else part later 14838 * on. 14839 * 14840 * We don't this to avoid one more call to 14841 * canputnext() as tcp_rcv_drain() needs to 14842 * call canputnext(). 14843 */ 14844 tcp_rcv_enqueue(tcp, mp, seg_len); 14845 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14846 } else { 14847 /* Does this need SSL processing first? */ 14848 if ((tcp->tcp_kssl_ctx != NULL) && 14849 (DB_TYPE(mp) == M_DATA)) { 14850 tcp_kssl_input(tcp, mp); 14851 } else { 14852 putnext(tcp->tcp_rq, mp); 14853 if (!canputnext(tcp->tcp_rq)) 14854 tcp->tcp_rwnd -= seg_len; 14855 } 14856 } 14857 } else { 14858 /* 14859 * Enqueue all packets when processing an mblk 14860 * from the co queue and also enqueue normal packets. 14861 */ 14862 tcp_rcv_enqueue(tcp, mp, seg_len); 14863 } 14864 /* 14865 * Make sure the timer is running if we have data waiting 14866 * for a push bit. This provides resiliency against 14867 * implementations that do not correctly generate push bits. 14868 */ 14869 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14870 /* 14871 * The connection may be closed at this point, so don't 14872 * do anything for a detached tcp. 14873 */ 14874 if (!TCP_IS_DETACHED(tcp)) 14875 tcp->tcp_push_tid = TCP_TIMER(tcp, 14876 tcp_push_timer, 14877 MSEC_TO_TICK(tcp_push_timer_interval)); 14878 } 14879 } 14880 xmit_check: 14881 /* Is there anything left to do? */ 14882 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14883 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14884 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14885 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14886 goto done; 14887 14888 /* Any transmit work to do and a non-zero window? */ 14889 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14890 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14891 if (flags & TH_REXMIT_NEEDED) { 14892 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14893 14894 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14895 if (snd_size > mss) 14896 snd_size = mss; 14897 if (snd_size > tcp->tcp_swnd) 14898 snd_size = tcp->tcp_swnd; 14899 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14900 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14901 B_TRUE); 14902 14903 if (mp1 != NULL) { 14904 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14905 tcp->tcp_csuna = tcp->tcp_snxt; 14906 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14907 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14908 TCP_RECORD_TRACE(tcp, mp1, 14909 TCP_TRACE_SEND_PKT); 14910 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14911 } 14912 } 14913 if (flags & TH_NEED_SACK_REXMIT) { 14914 tcp_sack_rxmit(tcp, &flags); 14915 } 14916 /* 14917 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14918 * out new segment. Note that tcp_rexmit should not be 14919 * set, otherwise TH_LIMIT_XMIT should not be set. 14920 */ 14921 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14922 if (!tcp->tcp_rexmit) { 14923 tcp_wput_data(tcp, NULL, B_FALSE); 14924 } else { 14925 tcp_ss_rexmit(tcp); 14926 } 14927 } 14928 /* 14929 * Adjust tcp_cwnd back to normal value after sending 14930 * new data segments. 14931 */ 14932 if (flags & TH_LIMIT_XMIT) { 14933 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14934 /* 14935 * This will restart the timer. Restarting the 14936 * timer is used to avoid a timeout before the 14937 * limited transmitted segment's ACK gets back. 14938 */ 14939 if (tcp->tcp_xmit_head != NULL) 14940 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14941 } 14942 14943 /* Anything more to do? */ 14944 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14945 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14946 goto done; 14947 } 14948 ack_check: 14949 if (flags & TH_SEND_URP_MARK) { 14950 ASSERT(tcp->tcp_urp_mark_mp); 14951 /* 14952 * Send up any queued data and then send the mark message 14953 */ 14954 if (tcp->tcp_rcv_list != NULL) { 14955 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14956 } 14957 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14958 14959 mp1 = tcp->tcp_urp_mark_mp; 14960 tcp->tcp_urp_mark_mp = NULL; 14961 #ifdef DEBUG 14962 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14963 "tcp_rput: sending zero-length %s %s", 14964 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14965 "MSGNOTMARKNEXT"), 14966 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14967 #endif /* DEBUG */ 14968 putnext(tcp->tcp_rq, mp1); 14969 flags &= ~TH_SEND_URP_MARK; 14970 } 14971 if (flags & TH_ACK_NEEDED) { 14972 /* 14973 * Time to send an ack for some reason. 14974 */ 14975 mp1 = tcp_ack_mp(tcp); 14976 14977 if (mp1 != NULL) { 14978 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14979 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14980 BUMP_LOCAL(tcp->tcp_obsegs); 14981 BUMP_MIB(&tcp_mib, tcpOutAck); 14982 } 14983 if (tcp->tcp_ack_tid != 0) { 14984 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14985 tcp->tcp_ack_tid = 0; 14986 } 14987 } 14988 if (flags & TH_ACK_TIMER_NEEDED) { 14989 /* 14990 * Arrange for deferred ACK or push wait timeout. 14991 * Start timer if it is not already running. 14992 */ 14993 if (tcp->tcp_ack_tid == 0) { 14994 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14995 MSEC_TO_TICK(tcp->tcp_localnet ? 14996 (clock_t)tcp_local_dack_interval : 14997 (clock_t)tcp_deferred_ack_interval)); 14998 } 14999 } 15000 if (flags & TH_ORDREL_NEEDED) { 15001 /* 15002 * Send up the ordrel_ind unless we are an eager guy. 15003 * In the eager case tcp_rsrv will do this when run 15004 * after tcp_accept is done. 15005 */ 15006 ASSERT(tcp->tcp_listener == NULL); 15007 if (tcp->tcp_rcv_list != NULL) { 15008 /* 15009 * Push any mblk(s) enqueued from co processing. 15010 */ 15011 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15012 } 15013 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15014 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15015 tcp->tcp_ordrel_done = B_TRUE; 15016 putnext(tcp->tcp_rq, mp1); 15017 if (tcp->tcp_deferred_clean_death) { 15018 /* 15019 * tcp_clean_death was deferred 15020 * for T_ORDREL_IND - do it now 15021 */ 15022 (void) tcp_clean_death(tcp, 15023 tcp->tcp_client_errno, 20); 15024 tcp->tcp_deferred_clean_death = B_FALSE; 15025 } 15026 } else { 15027 /* 15028 * Run the orderly release in the 15029 * service routine. 15030 */ 15031 qenable(tcp->tcp_rq); 15032 /* 15033 * Caveat(XXX): The machine may be so 15034 * overloaded that tcp_rsrv() is not scheduled 15035 * until after the endpoint has transitioned 15036 * to TCPS_TIME_WAIT 15037 * and tcp_time_wait_interval expires. Then 15038 * tcp_timer() will blow away state in tcp_t 15039 * and T_ORDREL_IND will never be delivered 15040 * upstream. Unlikely but potentially 15041 * a problem. 15042 */ 15043 } 15044 } 15045 done: 15046 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15047 } 15048 15049 /* 15050 * This function does PAWS protection check. Returns B_TRUE if the 15051 * segment passes the PAWS test, else returns B_FALSE. 15052 */ 15053 boolean_t 15054 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15055 { 15056 uint8_t flags; 15057 int options; 15058 uint8_t *up; 15059 15060 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15061 /* 15062 * If timestamp option is aligned nicely, get values inline, 15063 * otherwise call general routine to parse. Only do that 15064 * if timestamp is the only option. 15065 */ 15066 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15067 TCPOPT_REAL_TS_LEN && 15068 OK_32PTR((up = ((uint8_t *)tcph) + 15069 TCP_MIN_HEADER_LENGTH)) && 15070 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15071 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15072 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15073 15074 options = TCP_OPT_TSTAMP_PRESENT; 15075 } else { 15076 if (tcp->tcp_snd_sack_ok) { 15077 tcpoptp->tcp = tcp; 15078 } else { 15079 tcpoptp->tcp = NULL; 15080 } 15081 options = tcp_parse_options(tcph, tcpoptp); 15082 } 15083 15084 if (options & TCP_OPT_TSTAMP_PRESENT) { 15085 /* 15086 * Do PAWS per RFC 1323 section 4.2. Accept RST 15087 * regardless of the timestamp, page 18 RFC 1323.bis. 15088 */ 15089 if ((flags & TH_RST) == 0 && 15090 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15091 tcp->tcp_ts_recent)) { 15092 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15093 PAWS_TIMEOUT)) { 15094 /* This segment is not acceptable. */ 15095 return (B_FALSE); 15096 } else { 15097 /* 15098 * Connection has been idle for 15099 * too long. Reset the timestamp 15100 * and assume the segment is valid. 15101 */ 15102 tcp->tcp_ts_recent = 15103 tcpoptp->tcp_opt_ts_val; 15104 } 15105 } 15106 } else { 15107 /* 15108 * If we don't get a timestamp on every packet, we 15109 * figure we can't really trust 'em, so we stop sending 15110 * and parsing them. 15111 */ 15112 tcp->tcp_snd_ts_ok = B_FALSE; 15113 15114 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15115 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15116 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15117 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 15118 if (tcp->tcp_snd_sack_ok) { 15119 ASSERT(tcp->tcp_sack_info != NULL); 15120 tcp->tcp_max_sack_blk = 4; 15121 } 15122 } 15123 return (B_TRUE); 15124 } 15125 15126 /* 15127 * Attach ancillary data to a received TCP segments for the 15128 * ancillary pieces requested by the application that are 15129 * different than they were in the previous data segment. 15130 * 15131 * Save the "current" values once memory allocation is ok so that 15132 * when memory allocation fails we can just wait for the next data segment. 15133 */ 15134 static mblk_t * 15135 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15136 { 15137 struct T_optdata_ind *todi; 15138 int optlen; 15139 uchar_t *optptr; 15140 struct T_opthdr *toh; 15141 uint_t addflag; /* Which pieces to add */ 15142 mblk_t *mp1; 15143 15144 optlen = 0; 15145 addflag = 0; 15146 /* If app asked for pktinfo and the index has changed ... */ 15147 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15148 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15149 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15150 optlen += sizeof (struct T_opthdr) + 15151 sizeof (struct in6_pktinfo); 15152 addflag |= TCP_IPV6_RECVPKTINFO; 15153 } 15154 /* If app asked for hoplimit and it has changed ... */ 15155 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15156 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15157 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15158 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15159 addflag |= TCP_IPV6_RECVHOPLIMIT; 15160 } 15161 /* If app asked for tclass and it has changed ... */ 15162 if ((ipp->ipp_fields & IPPF_TCLASS) && 15163 ipp->ipp_tclass != tcp->tcp_recvtclass && 15164 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15165 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15166 addflag |= TCP_IPV6_RECVTCLASS; 15167 } 15168 /* 15169 * If app asked for hopbyhop headers and it has changed ... 15170 * For security labels, note that (1) security labels can't change on 15171 * a connected socket at all, (2) we're connected to at most one peer, 15172 * (3) if anything changes, then it must be some other extra option. 15173 */ 15174 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15175 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15176 (ipp->ipp_fields & IPPF_HOPOPTS), 15177 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15178 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15179 tcp->tcp_label_len; 15180 addflag |= TCP_IPV6_RECVHOPOPTS; 15181 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15182 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15183 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15184 return (mp); 15185 } 15186 /* If app asked for dst headers before routing headers ... */ 15187 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15188 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15189 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15190 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15191 optlen += sizeof (struct T_opthdr) + 15192 ipp->ipp_rtdstoptslen; 15193 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15194 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15195 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15196 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15197 return (mp); 15198 } 15199 /* If app asked for routing headers and it has changed ... */ 15200 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15201 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15202 (ipp->ipp_fields & IPPF_RTHDR), 15203 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15204 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15205 addflag |= TCP_IPV6_RECVRTHDR; 15206 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15207 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15208 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15209 return (mp); 15210 } 15211 /* If app asked for dest headers and it has changed ... */ 15212 if ((tcp->tcp_ipv6_recvancillary & 15213 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15214 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15215 (ipp->ipp_fields & IPPF_DSTOPTS), 15216 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15217 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15218 addflag |= TCP_IPV6_RECVDSTOPTS; 15219 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15220 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15221 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15222 return (mp); 15223 } 15224 15225 if (optlen == 0) { 15226 /* Nothing to add */ 15227 return (mp); 15228 } 15229 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15230 if (mp1 == NULL) { 15231 /* 15232 * Defer sending ancillary data until the next TCP segment 15233 * arrives. 15234 */ 15235 return (mp); 15236 } 15237 mp1->b_cont = mp; 15238 mp = mp1; 15239 mp->b_wptr += sizeof (*todi) + optlen; 15240 mp->b_datap->db_type = M_PROTO; 15241 todi = (struct T_optdata_ind *)mp->b_rptr; 15242 todi->PRIM_type = T_OPTDATA_IND; 15243 todi->DATA_flag = 1; /* MORE data */ 15244 todi->OPT_length = optlen; 15245 todi->OPT_offset = sizeof (*todi); 15246 optptr = (uchar_t *)&todi[1]; 15247 /* 15248 * If app asked for pktinfo and the index has changed ... 15249 * Note that the local address never changes for the connection. 15250 */ 15251 if (addflag & TCP_IPV6_RECVPKTINFO) { 15252 struct in6_pktinfo *pkti; 15253 15254 toh = (struct T_opthdr *)optptr; 15255 toh->level = IPPROTO_IPV6; 15256 toh->name = IPV6_PKTINFO; 15257 toh->len = sizeof (*toh) + sizeof (*pkti); 15258 toh->status = 0; 15259 optptr += sizeof (*toh); 15260 pkti = (struct in6_pktinfo *)optptr; 15261 if (tcp->tcp_ipversion == IPV6_VERSION) 15262 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15263 else 15264 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15265 &pkti->ipi6_addr); 15266 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15267 optptr += sizeof (*pkti); 15268 ASSERT(OK_32PTR(optptr)); 15269 /* Save as "last" value */ 15270 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15271 } 15272 /* If app asked for hoplimit and it has changed ... */ 15273 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15274 toh = (struct T_opthdr *)optptr; 15275 toh->level = IPPROTO_IPV6; 15276 toh->name = IPV6_HOPLIMIT; 15277 toh->len = sizeof (*toh) + sizeof (uint_t); 15278 toh->status = 0; 15279 optptr += sizeof (*toh); 15280 *(uint_t *)optptr = ipp->ipp_hoplimit; 15281 optptr += sizeof (uint_t); 15282 ASSERT(OK_32PTR(optptr)); 15283 /* Save as "last" value */ 15284 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15285 } 15286 /* If app asked for tclass and it has changed ... */ 15287 if (addflag & TCP_IPV6_RECVTCLASS) { 15288 toh = (struct T_opthdr *)optptr; 15289 toh->level = IPPROTO_IPV6; 15290 toh->name = IPV6_TCLASS; 15291 toh->len = sizeof (*toh) + sizeof (uint_t); 15292 toh->status = 0; 15293 optptr += sizeof (*toh); 15294 *(uint_t *)optptr = ipp->ipp_tclass; 15295 optptr += sizeof (uint_t); 15296 ASSERT(OK_32PTR(optptr)); 15297 /* Save as "last" value */ 15298 tcp->tcp_recvtclass = ipp->ipp_tclass; 15299 } 15300 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15301 toh = (struct T_opthdr *)optptr; 15302 toh->level = IPPROTO_IPV6; 15303 toh->name = IPV6_HOPOPTS; 15304 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15305 tcp->tcp_label_len; 15306 toh->status = 0; 15307 optptr += sizeof (*toh); 15308 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15309 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15310 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15311 ASSERT(OK_32PTR(optptr)); 15312 /* Save as last value */ 15313 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15314 (ipp->ipp_fields & IPPF_HOPOPTS), 15315 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15316 } 15317 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15318 toh = (struct T_opthdr *)optptr; 15319 toh->level = IPPROTO_IPV6; 15320 toh->name = IPV6_RTHDRDSTOPTS; 15321 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15322 toh->status = 0; 15323 optptr += sizeof (*toh); 15324 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15325 optptr += ipp->ipp_rtdstoptslen; 15326 ASSERT(OK_32PTR(optptr)); 15327 /* Save as last value */ 15328 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15329 &tcp->tcp_rtdstoptslen, 15330 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15331 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15332 } 15333 if (addflag & TCP_IPV6_RECVRTHDR) { 15334 toh = (struct T_opthdr *)optptr; 15335 toh->level = IPPROTO_IPV6; 15336 toh->name = IPV6_RTHDR; 15337 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15338 toh->status = 0; 15339 optptr += sizeof (*toh); 15340 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15341 optptr += ipp->ipp_rthdrlen; 15342 ASSERT(OK_32PTR(optptr)); 15343 /* Save as last value */ 15344 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15345 (ipp->ipp_fields & IPPF_RTHDR), 15346 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15347 } 15348 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15349 toh = (struct T_opthdr *)optptr; 15350 toh->level = IPPROTO_IPV6; 15351 toh->name = IPV6_DSTOPTS; 15352 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15353 toh->status = 0; 15354 optptr += sizeof (*toh); 15355 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15356 optptr += ipp->ipp_dstoptslen; 15357 ASSERT(OK_32PTR(optptr)); 15358 /* Save as last value */ 15359 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15360 (ipp->ipp_fields & IPPF_DSTOPTS), 15361 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15362 } 15363 ASSERT(optptr == mp->b_wptr); 15364 return (mp); 15365 } 15366 15367 15368 /* 15369 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15370 * or a "bad" IRE detected by tcp_adapt_ire. 15371 * We can't tell if the failure was due to the laddr or the faddr 15372 * thus we clear out all addresses and ports. 15373 */ 15374 static void 15375 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15376 { 15377 queue_t *q = tcp->tcp_rq; 15378 tcph_t *tcph; 15379 struct T_error_ack *tea; 15380 conn_t *connp = tcp->tcp_connp; 15381 15382 15383 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15384 15385 if (mp->b_cont) { 15386 freemsg(mp->b_cont); 15387 mp->b_cont = NULL; 15388 } 15389 tea = (struct T_error_ack *)mp->b_rptr; 15390 switch (tea->PRIM_type) { 15391 case T_BIND_ACK: 15392 /* 15393 * Need to unbind with classifier since we were just told that 15394 * our bind succeeded. 15395 */ 15396 tcp->tcp_hard_bound = B_FALSE; 15397 tcp->tcp_hard_binding = B_FALSE; 15398 15399 ipcl_hash_remove(connp); 15400 /* Reuse the mblk if possible */ 15401 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15402 sizeof (*tea)); 15403 mp->b_rptr = mp->b_datap->db_base; 15404 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15405 tea = (struct T_error_ack *)mp->b_rptr; 15406 tea->PRIM_type = T_ERROR_ACK; 15407 tea->TLI_error = TSYSERR; 15408 tea->UNIX_error = error; 15409 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15410 tea->ERROR_prim = T_CONN_REQ; 15411 } else { 15412 tea->ERROR_prim = O_T_BIND_REQ; 15413 } 15414 break; 15415 15416 case T_ERROR_ACK: 15417 if (tcp->tcp_state >= TCPS_SYN_SENT) 15418 tea->ERROR_prim = T_CONN_REQ; 15419 break; 15420 default: 15421 panic("tcp_bind_failed: unexpected TPI type"); 15422 /*NOTREACHED*/ 15423 } 15424 15425 tcp->tcp_state = TCPS_IDLE; 15426 if (tcp->tcp_ipversion == IPV4_VERSION) 15427 tcp->tcp_ipha->ipha_src = 0; 15428 else 15429 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15430 /* 15431 * Copy of the src addr. in tcp_t is needed since 15432 * the lookup funcs. can only look at tcp_t 15433 */ 15434 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15435 15436 tcph = tcp->tcp_tcph; 15437 tcph->th_lport[0] = 0; 15438 tcph->th_lport[1] = 0; 15439 tcp_bind_hash_remove(tcp); 15440 bzero(&connp->u_port, sizeof (connp->u_port)); 15441 /* blow away saved option results if any */ 15442 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15443 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15444 15445 conn_delete_ire(tcp->tcp_connp, NULL); 15446 putnext(q, mp); 15447 } 15448 15449 /* 15450 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15451 * messages. 15452 */ 15453 void 15454 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15455 { 15456 mblk_t *mp1; 15457 uchar_t *rptr = mp->b_rptr; 15458 queue_t *q = tcp->tcp_rq; 15459 struct T_error_ack *tea; 15460 uint32_t mss; 15461 mblk_t *syn_mp; 15462 mblk_t *mdti; 15463 mblk_t *lsoi; 15464 int retval; 15465 mblk_t *ire_mp; 15466 15467 switch (mp->b_datap->db_type) { 15468 case M_PROTO: 15469 case M_PCPROTO: 15470 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15471 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15472 break; 15473 tea = (struct T_error_ack *)rptr; 15474 switch (tea->PRIM_type) { 15475 case T_BIND_ACK: 15476 /* 15477 * Adapt Multidata information, if any. The 15478 * following tcp_mdt_update routine will free 15479 * the message. 15480 */ 15481 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15482 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15483 b_rptr)->mdt_capab, B_TRUE); 15484 freemsg(mdti); 15485 } 15486 15487 /* 15488 * Check to update LSO information with tcp, and 15489 * tcp_lso_update routine will free the message. 15490 */ 15491 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15492 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15493 b_rptr)->lso_capab); 15494 freemsg(lsoi); 15495 } 15496 15497 /* Get the IRE, if we had requested for it */ 15498 ire_mp = tcp_ire_mp(mp); 15499 15500 if (tcp->tcp_hard_binding) { 15501 tcp->tcp_hard_binding = B_FALSE; 15502 tcp->tcp_hard_bound = B_TRUE; 15503 CL_INET_CONNECT(tcp); 15504 } else { 15505 if (ire_mp != NULL) 15506 freeb(ire_mp); 15507 goto after_syn_sent; 15508 } 15509 15510 retval = tcp_adapt_ire(tcp, ire_mp); 15511 if (ire_mp != NULL) 15512 freeb(ire_mp); 15513 if (retval == 0) { 15514 tcp_bind_failed(tcp, mp, 15515 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15516 ENETUNREACH : EADDRNOTAVAIL)); 15517 return; 15518 } 15519 /* 15520 * Don't let an endpoint connect to itself. 15521 * Also checked in tcp_connect() but that 15522 * check can't handle the case when the 15523 * local IP address is INADDR_ANY. 15524 */ 15525 if (tcp->tcp_ipversion == IPV4_VERSION) { 15526 if ((tcp->tcp_ipha->ipha_dst == 15527 tcp->tcp_ipha->ipha_src) && 15528 (BE16_EQL(tcp->tcp_tcph->th_lport, 15529 tcp->tcp_tcph->th_fport))) { 15530 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15531 return; 15532 } 15533 } else { 15534 if (IN6_ARE_ADDR_EQUAL( 15535 &tcp->tcp_ip6h->ip6_dst, 15536 &tcp->tcp_ip6h->ip6_src) && 15537 (BE16_EQL(tcp->tcp_tcph->th_lport, 15538 tcp->tcp_tcph->th_fport))) { 15539 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15540 return; 15541 } 15542 } 15543 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15544 /* 15545 * This should not be possible! Just for 15546 * defensive coding... 15547 */ 15548 if (tcp->tcp_state != TCPS_SYN_SENT) 15549 goto after_syn_sent; 15550 15551 if (is_system_labeled() && 15552 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15553 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15554 return; 15555 } 15556 15557 ASSERT(q == tcp->tcp_rq); 15558 /* 15559 * tcp_adapt_ire() does not adjust 15560 * for TCP/IP header length. 15561 */ 15562 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15563 15564 /* 15565 * Just make sure our rwnd is at 15566 * least tcp_recv_hiwat_mss * MSS 15567 * large, and round up to the nearest 15568 * MSS. 15569 * 15570 * We do the round up here because 15571 * we need to get the interface 15572 * MTU first before we can do the 15573 * round up. 15574 */ 15575 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15576 tcp_recv_hiwat_minmss * mss); 15577 q->q_hiwat = tcp->tcp_rwnd; 15578 tcp_set_ws_value(tcp); 15579 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15580 tcp->tcp_tcph->th_win); 15581 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15582 tcp->tcp_snd_ws_ok = B_TRUE; 15583 15584 /* 15585 * Set tcp_snd_ts_ok to true 15586 * so that tcp_xmit_mp will 15587 * include the timestamp 15588 * option in the SYN segment. 15589 */ 15590 if (tcp_tstamp_always || 15591 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15592 tcp->tcp_snd_ts_ok = B_TRUE; 15593 } 15594 15595 /* 15596 * tcp_snd_sack_ok can be set in 15597 * tcp_adapt_ire() if the sack metric 15598 * is set. So check it here also. 15599 */ 15600 if (tcp_sack_permitted == 2 || 15601 tcp->tcp_snd_sack_ok) { 15602 if (tcp->tcp_sack_info == NULL) { 15603 tcp->tcp_sack_info = 15604 kmem_cache_alloc(tcp_sack_info_cache, 15605 KM_SLEEP); 15606 } 15607 tcp->tcp_snd_sack_ok = B_TRUE; 15608 } 15609 15610 /* 15611 * Should we use ECN? Note that the current 15612 * default value (SunOS 5.9) of tcp_ecn_permitted 15613 * is 1. The reason for doing this is that there 15614 * are equipments out there that will drop ECN 15615 * enabled IP packets. Setting it to 1 avoids 15616 * compatibility problems. 15617 */ 15618 if (tcp_ecn_permitted == 2) 15619 tcp->tcp_ecn_ok = B_TRUE; 15620 15621 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15622 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15623 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15624 if (syn_mp) { 15625 cred_t *cr; 15626 pid_t pid; 15627 15628 /* 15629 * Obtain the credential from the 15630 * thread calling connect(); the credential 15631 * lives on in the second mblk which 15632 * originated from T_CONN_REQ and is echoed 15633 * with the T_BIND_ACK from ip. If none 15634 * can be found, default to the creator 15635 * of the socket. 15636 */ 15637 if (mp->b_cont == NULL || 15638 (cr = DB_CRED(mp->b_cont)) == NULL) { 15639 cr = tcp->tcp_cred; 15640 pid = tcp->tcp_cpid; 15641 } else { 15642 pid = DB_CPID(mp->b_cont); 15643 } 15644 15645 TCP_RECORD_TRACE(tcp, syn_mp, 15646 TCP_TRACE_SEND_PKT); 15647 mblk_setcred(syn_mp, cr); 15648 DB_CPID(syn_mp) = pid; 15649 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15650 } 15651 after_syn_sent: 15652 /* 15653 * A trailer mblk indicates a waiting client upstream. 15654 * We complete here the processing begun in 15655 * either tcp_bind() or tcp_connect() by passing 15656 * upstream the reply message they supplied. 15657 */ 15658 mp1 = mp; 15659 mp = mp->b_cont; 15660 freeb(mp1); 15661 if (mp) 15662 break; 15663 return; 15664 case T_ERROR_ACK: 15665 if (tcp->tcp_debug) { 15666 (void) strlog(TCP_MOD_ID, 0, 1, 15667 SL_TRACE|SL_ERROR, 15668 "tcp_rput_other: case T_ERROR_ACK, " 15669 "ERROR_prim == %d", 15670 tea->ERROR_prim); 15671 } 15672 switch (tea->ERROR_prim) { 15673 case O_T_BIND_REQ: 15674 case T_BIND_REQ: 15675 tcp_bind_failed(tcp, mp, 15676 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15677 ENETUNREACH : EADDRNOTAVAIL)); 15678 return; 15679 case T_UNBIND_REQ: 15680 tcp->tcp_hard_binding = B_FALSE; 15681 tcp->tcp_hard_bound = B_FALSE; 15682 if (mp->b_cont) { 15683 freemsg(mp->b_cont); 15684 mp->b_cont = NULL; 15685 } 15686 if (tcp->tcp_unbind_pending) 15687 tcp->tcp_unbind_pending = 0; 15688 else { 15689 /* From tcp_ip_unbind() - free */ 15690 freemsg(mp); 15691 return; 15692 } 15693 break; 15694 case T_SVR4_OPTMGMT_REQ: 15695 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15696 /* T_OPTMGMT_REQ generated by TCP */ 15697 printf("T_SVR4_OPTMGMT_REQ failed " 15698 "%d/%d - dropped (cnt %d)\n", 15699 tea->TLI_error, tea->UNIX_error, 15700 tcp->tcp_drop_opt_ack_cnt); 15701 freemsg(mp); 15702 tcp->tcp_drop_opt_ack_cnt--; 15703 return; 15704 } 15705 break; 15706 } 15707 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15708 tcp->tcp_drop_opt_ack_cnt > 0) { 15709 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15710 "- dropped (cnt %d)\n", 15711 tea->TLI_error, tea->UNIX_error, 15712 tcp->tcp_drop_opt_ack_cnt); 15713 freemsg(mp); 15714 tcp->tcp_drop_opt_ack_cnt--; 15715 return; 15716 } 15717 break; 15718 case T_OPTMGMT_ACK: 15719 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15720 /* T_OPTMGMT_REQ generated by TCP */ 15721 freemsg(mp); 15722 tcp->tcp_drop_opt_ack_cnt--; 15723 return; 15724 } 15725 break; 15726 default: 15727 break; 15728 } 15729 break; 15730 case M_FLUSH: 15731 if (*rptr & FLUSHR) 15732 flushq(q, FLUSHDATA); 15733 break; 15734 default: 15735 /* M_CTL will be directly sent to tcp_icmp_error() */ 15736 ASSERT(DB_TYPE(mp) != M_CTL); 15737 break; 15738 } 15739 /* 15740 * Make sure we set this bit before sending the ACK for 15741 * bind. Otherwise accept could possibly run and free 15742 * this tcp struct. 15743 */ 15744 putnext(q, mp); 15745 } 15746 15747 /* 15748 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15749 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15750 * tcp_rsrv() try again. 15751 */ 15752 static void 15753 tcp_ordrel_kick(void *arg) 15754 { 15755 conn_t *connp = (conn_t *)arg; 15756 tcp_t *tcp = connp->conn_tcp; 15757 15758 tcp->tcp_ordrelid = 0; 15759 tcp->tcp_timeout = B_FALSE; 15760 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15761 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15762 qenable(tcp->tcp_rq); 15763 } 15764 } 15765 15766 /* ARGSUSED */ 15767 static void 15768 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15769 { 15770 conn_t *connp = (conn_t *)arg; 15771 tcp_t *tcp = connp->conn_tcp; 15772 queue_t *q = tcp->tcp_rq; 15773 uint_t thwin; 15774 15775 freeb(mp); 15776 15777 TCP_STAT(tcp_rsrv_calls); 15778 15779 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15780 return; 15781 } 15782 15783 if (tcp->tcp_fused) { 15784 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15785 15786 ASSERT(tcp->tcp_fused); 15787 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15788 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15789 ASSERT(!TCP_IS_DETACHED(tcp)); 15790 ASSERT(tcp->tcp_connp->conn_sqp == 15791 peer_tcp->tcp_connp->conn_sqp); 15792 15793 /* 15794 * Normally we would not get backenabled in synchronous 15795 * streams mode, but in case this happens, we need to plug 15796 * synchronous streams during our drain to prevent a race 15797 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15798 */ 15799 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15800 if (tcp->tcp_rcv_list != NULL) 15801 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15802 15803 tcp_clrqfull(peer_tcp); 15804 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15805 TCP_STAT(tcp_fusion_backenabled); 15806 return; 15807 } 15808 15809 if (canputnext(q)) { 15810 tcp->tcp_rwnd = q->q_hiwat; 15811 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15812 << tcp->tcp_rcv_ws; 15813 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15814 /* 15815 * Send back a window update immediately if TCP is above 15816 * ESTABLISHED state and the increase of the rcv window 15817 * that the other side knows is at least 1 MSS after flow 15818 * control is lifted. 15819 */ 15820 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15821 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15822 tcp_xmit_ctl(NULL, tcp, 15823 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15824 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15825 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15826 } 15827 } 15828 /* Handle a failure to allocate a T_ORDREL_IND here */ 15829 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15830 ASSERT(tcp->tcp_listener == NULL); 15831 if (tcp->tcp_rcv_list != NULL) { 15832 (void) tcp_rcv_drain(q, tcp); 15833 } 15834 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15835 mp = mi_tpi_ordrel_ind(); 15836 if (mp) { 15837 tcp->tcp_ordrel_done = B_TRUE; 15838 putnext(q, mp); 15839 if (tcp->tcp_deferred_clean_death) { 15840 /* 15841 * tcp_clean_death was deferred for 15842 * T_ORDREL_IND - do it now 15843 */ 15844 tcp->tcp_deferred_clean_death = B_FALSE; 15845 (void) tcp_clean_death(tcp, 15846 tcp->tcp_client_errno, 22); 15847 } 15848 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15849 /* 15850 * If there isn't already a timer running 15851 * start one. Use a 4 second 15852 * timer as a fallback since it can't fail. 15853 */ 15854 tcp->tcp_timeout = B_TRUE; 15855 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15856 MSEC_TO_TICK(4000)); 15857 } 15858 } 15859 } 15860 15861 /* 15862 * The read side service routine is called mostly when we get back-enabled as a 15863 * result of flow control relief. Since we don't actually queue anything in 15864 * TCP, we have no data to send out of here. What we do is clear the receive 15865 * window, and send out a window update. 15866 * This routine is also called to drive an orderly release message upstream 15867 * if the attempt in tcp_rput failed. 15868 */ 15869 static void 15870 tcp_rsrv(queue_t *q) 15871 { 15872 conn_t *connp = Q_TO_CONN(q); 15873 tcp_t *tcp = connp->conn_tcp; 15874 mblk_t *mp; 15875 15876 /* No code does a putq on the read side */ 15877 ASSERT(q->q_first == NULL); 15878 15879 /* Nothing to do for the default queue */ 15880 if (q == tcp_g_q) { 15881 return; 15882 } 15883 15884 mp = allocb(0, BPRI_HI); 15885 if (mp == NULL) { 15886 /* 15887 * We are under memory pressure. Return for now and we 15888 * we will be called again later. 15889 */ 15890 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15891 /* 15892 * If there isn't already a timer running 15893 * start one. Use a 4 second 15894 * timer as a fallback since it can't fail. 15895 */ 15896 tcp->tcp_timeout = B_TRUE; 15897 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15898 MSEC_TO_TICK(4000)); 15899 } 15900 return; 15901 } 15902 CONN_INC_REF(connp); 15903 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15904 SQTAG_TCP_RSRV); 15905 } 15906 15907 /* 15908 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15909 * We do not allow the receive window to shrink. After setting rwnd, 15910 * set the flow control hiwat of the stream. 15911 * 15912 * This function is called in 2 cases: 15913 * 15914 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15915 * connection (passive open) and in tcp_rput_data() for active connect. 15916 * This is called after tcp_mss_set() when the desired MSS value is known. 15917 * This makes sure that our window size is a mutiple of the other side's 15918 * MSS. 15919 * 2) Handling SO_RCVBUF option. 15920 * 15921 * It is ASSUMED that the requested size is a multiple of the current MSS. 15922 * 15923 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15924 * user requests so. 15925 */ 15926 static int 15927 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15928 { 15929 uint32_t mss = tcp->tcp_mss; 15930 uint32_t old_max_rwnd; 15931 uint32_t max_transmittable_rwnd; 15932 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15933 15934 if (tcp->tcp_fused) { 15935 size_t sth_hiwat; 15936 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15937 15938 ASSERT(peer_tcp != NULL); 15939 /* 15940 * Record the stream head's high water mark for 15941 * this endpoint; this is used for flow-control 15942 * purposes in tcp_fuse_output(). 15943 */ 15944 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15945 if (!tcp_detached) 15946 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15947 15948 /* 15949 * In the fusion case, the maxpsz stream head value of 15950 * our peer is set according to its send buffer size 15951 * and our receive buffer size; since the latter may 15952 * have changed we need to update the peer's maxpsz. 15953 */ 15954 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15955 return (rwnd); 15956 } 15957 15958 if (tcp_detached) 15959 old_max_rwnd = tcp->tcp_rwnd; 15960 else 15961 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15962 15963 /* 15964 * Insist on a receive window that is at least 15965 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15966 * funny TCP interactions of Nagle algorithm, SWS avoidance 15967 * and delayed acknowledgement. 15968 */ 15969 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15970 15971 /* 15972 * If window size info has already been exchanged, TCP should not 15973 * shrink the window. Shrinking window is doable if done carefully. 15974 * We may add that support later. But so far there is not a real 15975 * need to do that. 15976 */ 15977 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15978 /* MSS may have changed, do a round up again. */ 15979 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15980 } 15981 15982 /* 15983 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15984 * can be applied even before the window scale option is decided. 15985 */ 15986 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15987 if (rwnd > max_transmittable_rwnd) { 15988 rwnd = max_transmittable_rwnd - 15989 (max_transmittable_rwnd % mss); 15990 if (rwnd < mss) 15991 rwnd = max_transmittable_rwnd; 15992 /* 15993 * If we're over the limit we may have to back down tcp_rwnd. 15994 * The increment below won't work for us. So we set all three 15995 * here and the increment below will have no effect. 15996 */ 15997 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15998 } 15999 if (tcp->tcp_localnet) { 16000 tcp->tcp_rack_abs_max = 16001 MIN(tcp_local_dacks_max, rwnd / mss / 2); 16002 } else { 16003 /* 16004 * For a remote host on a different subnet (through a router), 16005 * we ack every other packet to be conforming to RFC1122. 16006 * tcp_deferred_acks_max is default to 2. 16007 */ 16008 tcp->tcp_rack_abs_max = 16009 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 16010 } 16011 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16012 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16013 else 16014 tcp->tcp_rack_cur_max = 0; 16015 /* 16016 * Increment the current rwnd by the amount the maximum grew (we 16017 * can not overwrite it since we might be in the middle of a 16018 * connection.) 16019 */ 16020 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16021 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16022 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16023 tcp->tcp_cwnd_max = rwnd; 16024 16025 if (tcp_detached) 16026 return (rwnd); 16027 /* 16028 * We set the maximum receive window into rq->q_hiwat. 16029 * This is not actually used for flow control. 16030 */ 16031 tcp->tcp_rq->q_hiwat = rwnd; 16032 /* 16033 * Set the Stream head high water mark. This doesn't have to be 16034 * here, since we are simply using default values, but we would 16035 * prefer to choose these values algorithmically, with a likely 16036 * relationship to rwnd. 16037 */ 16038 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 16039 return (rwnd); 16040 } 16041 16042 /* 16043 * Return SNMP stuff in buffer in mpdata. 16044 */ 16045 int 16046 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16047 { 16048 mblk_t *mpdata; 16049 mblk_t *mp_conn_ctl = NULL; 16050 mblk_t *mp_conn_tail; 16051 mblk_t *mp_attr_ctl = NULL; 16052 mblk_t *mp_attr_tail; 16053 mblk_t *mp6_conn_ctl = NULL; 16054 mblk_t *mp6_conn_tail; 16055 mblk_t *mp6_attr_ctl = NULL; 16056 mblk_t *mp6_attr_tail; 16057 struct opthdr *optp; 16058 mib2_tcpConnEntry_t tce; 16059 mib2_tcp6ConnEntry_t tce6; 16060 mib2_transportMLPEntry_t mlp; 16061 connf_t *connfp; 16062 conn_t *connp; 16063 int i; 16064 boolean_t ispriv; 16065 zoneid_t zoneid; 16066 int v4_conn_idx; 16067 int v6_conn_idx; 16068 16069 if (mpctl == NULL || 16070 (mpdata = mpctl->b_cont) == NULL || 16071 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16072 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16073 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16074 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16075 freemsg(mp_conn_ctl); 16076 freemsg(mp_attr_ctl); 16077 freemsg(mp6_conn_ctl); 16078 freemsg(mp6_attr_ctl); 16079 return (0); 16080 } 16081 16082 /* build table of connections -- need count in fixed part */ 16083 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 16084 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 16085 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 16086 SET_MIB(tcp_mib.tcpMaxConn, -1); 16087 SET_MIB(tcp_mib.tcpCurrEstab, 0); 16088 16089 ispriv = 16090 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16091 zoneid = Q_TO_CONN(q)->conn_zoneid; 16092 16093 v4_conn_idx = v6_conn_idx = 0; 16094 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16095 16096 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16097 16098 connfp = &ipcl_globalhash_fanout[i]; 16099 16100 connp = NULL; 16101 16102 while ((connp = 16103 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16104 tcp_t *tcp; 16105 boolean_t needattr; 16106 16107 if (connp->conn_zoneid != zoneid) 16108 continue; /* not in this zone */ 16109 16110 tcp = connp->conn_tcp; 16111 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 16112 tcp->tcp_ibsegs = 0; 16113 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 16114 tcp->tcp_obsegs = 0; 16115 16116 tce6.tcp6ConnState = tce.tcpConnState = 16117 tcp_snmp_state(tcp); 16118 if (tce.tcpConnState == MIB2_TCP_established || 16119 tce.tcpConnState == MIB2_TCP_closeWait) 16120 BUMP_MIB(&tcp_mib, tcpCurrEstab); 16121 16122 needattr = B_FALSE; 16123 bzero(&mlp, sizeof (mlp)); 16124 if (connp->conn_mlp_type != mlptSingle) { 16125 if (connp->conn_mlp_type == mlptShared || 16126 connp->conn_mlp_type == mlptBoth) 16127 mlp.tme_flags |= MIB2_TMEF_SHARED; 16128 if (connp->conn_mlp_type == mlptPrivate || 16129 connp->conn_mlp_type == mlptBoth) 16130 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16131 needattr = B_TRUE; 16132 } 16133 if (connp->conn_peercred != NULL) { 16134 ts_label_t *tsl; 16135 16136 tsl = crgetlabel(connp->conn_peercred); 16137 mlp.tme_doi = label2doi(tsl); 16138 mlp.tme_label = *label2bslabel(tsl); 16139 needattr = B_TRUE; 16140 } 16141 16142 /* Create a message to report on IPv6 entries */ 16143 if (tcp->tcp_ipversion == IPV6_VERSION) { 16144 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16145 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16146 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16147 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16148 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16149 /* Don't want just anybody seeing these... */ 16150 if (ispriv) { 16151 tce6.tcp6ConnEntryInfo.ce_snxt = 16152 tcp->tcp_snxt; 16153 tce6.tcp6ConnEntryInfo.ce_suna = 16154 tcp->tcp_suna; 16155 tce6.tcp6ConnEntryInfo.ce_rnxt = 16156 tcp->tcp_rnxt; 16157 tce6.tcp6ConnEntryInfo.ce_rack = 16158 tcp->tcp_rack; 16159 } else { 16160 /* 16161 * Netstat, unfortunately, uses this to 16162 * get send/receive queue sizes. How to fix? 16163 * Why not compute the difference only? 16164 */ 16165 tce6.tcp6ConnEntryInfo.ce_snxt = 16166 tcp->tcp_snxt - tcp->tcp_suna; 16167 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16168 tce6.tcp6ConnEntryInfo.ce_rnxt = 16169 tcp->tcp_rnxt - tcp->tcp_rack; 16170 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16171 } 16172 16173 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16174 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16175 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16176 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16177 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16178 16179 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16180 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16181 16182 mlp.tme_connidx = v6_conn_idx++; 16183 if (needattr) 16184 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16185 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16186 } 16187 /* 16188 * Create an IPv4 table entry for IPv4 entries and also 16189 * for IPv6 entries which are bound to in6addr_any 16190 * but don't have IPV6_V6ONLY set. 16191 * (i.e. anything an IPv4 peer could connect to) 16192 */ 16193 if (tcp->tcp_ipversion == IPV4_VERSION || 16194 (tcp->tcp_state <= TCPS_LISTEN && 16195 !tcp->tcp_connp->conn_ipv6_v6only && 16196 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16197 if (tcp->tcp_ipversion == IPV6_VERSION) { 16198 tce.tcpConnRemAddress = INADDR_ANY; 16199 tce.tcpConnLocalAddress = INADDR_ANY; 16200 } else { 16201 tce.tcpConnRemAddress = 16202 tcp->tcp_remote; 16203 tce.tcpConnLocalAddress = 16204 tcp->tcp_ip_src; 16205 } 16206 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16207 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16208 /* Don't want just anybody seeing these... */ 16209 if (ispriv) { 16210 tce.tcpConnEntryInfo.ce_snxt = 16211 tcp->tcp_snxt; 16212 tce.tcpConnEntryInfo.ce_suna = 16213 tcp->tcp_suna; 16214 tce.tcpConnEntryInfo.ce_rnxt = 16215 tcp->tcp_rnxt; 16216 tce.tcpConnEntryInfo.ce_rack = 16217 tcp->tcp_rack; 16218 } else { 16219 /* 16220 * Netstat, unfortunately, uses this to 16221 * get send/receive queue sizes. How 16222 * to fix? 16223 * Why not compute the difference only? 16224 */ 16225 tce.tcpConnEntryInfo.ce_snxt = 16226 tcp->tcp_snxt - tcp->tcp_suna; 16227 tce.tcpConnEntryInfo.ce_suna = 0; 16228 tce.tcpConnEntryInfo.ce_rnxt = 16229 tcp->tcp_rnxt - tcp->tcp_rack; 16230 tce.tcpConnEntryInfo.ce_rack = 0; 16231 } 16232 16233 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16234 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16235 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16236 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16237 tce.tcpConnEntryInfo.ce_state = 16238 tcp->tcp_state; 16239 16240 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16241 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16242 16243 mlp.tme_connidx = v4_conn_idx++; 16244 if (needattr) 16245 (void) snmp_append_data2( 16246 mp_attr_ctl->b_cont, 16247 &mp_attr_tail, (char *)&mlp, 16248 sizeof (mlp)); 16249 } 16250 } 16251 } 16252 16253 /* fixed length structure for IPv4 and IPv6 counters */ 16254 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16255 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 16256 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16257 optp->level = MIB2_TCP; 16258 optp->name = 0; 16259 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16260 optp->len = msgdsize(mpdata); 16261 qreply(q, mpctl); 16262 16263 /* table of connections... */ 16264 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16265 sizeof (struct T_optmgmt_ack)]; 16266 optp->level = MIB2_TCP; 16267 optp->name = MIB2_TCP_CONN; 16268 optp->len = msgdsize(mp_conn_ctl->b_cont); 16269 qreply(q, mp_conn_ctl); 16270 16271 /* table of MLP attributes... */ 16272 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16273 sizeof (struct T_optmgmt_ack)]; 16274 optp->level = MIB2_TCP; 16275 optp->name = EXPER_XPORT_MLP; 16276 optp->len = msgdsize(mp_attr_ctl->b_cont); 16277 if (optp->len == 0) 16278 freemsg(mp_attr_ctl); 16279 else 16280 qreply(q, mp_attr_ctl); 16281 16282 /* table of IPv6 connections... */ 16283 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16284 sizeof (struct T_optmgmt_ack)]; 16285 optp->level = MIB2_TCP6; 16286 optp->name = MIB2_TCP6_CONN; 16287 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16288 qreply(q, mp6_conn_ctl); 16289 16290 /* table of IPv6 MLP attributes... */ 16291 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16292 sizeof (struct T_optmgmt_ack)]; 16293 optp->level = MIB2_TCP6; 16294 optp->name = EXPER_XPORT_MLP; 16295 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16296 if (optp->len == 0) 16297 freemsg(mp6_attr_ctl); 16298 else 16299 qreply(q, mp6_attr_ctl); 16300 return (1); 16301 } 16302 16303 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16304 /* ARGSUSED */ 16305 int 16306 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16307 { 16308 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16309 16310 switch (level) { 16311 case MIB2_TCP: 16312 switch (name) { 16313 case 13: 16314 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16315 return (0); 16316 /* TODO: delete entry defined by tce */ 16317 return (1); 16318 default: 16319 return (0); 16320 } 16321 default: 16322 return (1); 16323 } 16324 } 16325 16326 /* Translate TCP state to MIB2 TCP state. */ 16327 static int 16328 tcp_snmp_state(tcp_t *tcp) 16329 { 16330 if (tcp == NULL) 16331 return (0); 16332 16333 switch (tcp->tcp_state) { 16334 case TCPS_CLOSED: 16335 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16336 case TCPS_BOUND: 16337 return (MIB2_TCP_closed); 16338 case TCPS_LISTEN: 16339 return (MIB2_TCP_listen); 16340 case TCPS_SYN_SENT: 16341 return (MIB2_TCP_synSent); 16342 case TCPS_SYN_RCVD: 16343 return (MIB2_TCP_synReceived); 16344 case TCPS_ESTABLISHED: 16345 return (MIB2_TCP_established); 16346 case TCPS_CLOSE_WAIT: 16347 return (MIB2_TCP_closeWait); 16348 case TCPS_FIN_WAIT_1: 16349 return (MIB2_TCP_finWait1); 16350 case TCPS_CLOSING: 16351 return (MIB2_TCP_closing); 16352 case TCPS_LAST_ACK: 16353 return (MIB2_TCP_lastAck); 16354 case TCPS_FIN_WAIT_2: 16355 return (MIB2_TCP_finWait2); 16356 case TCPS_TIME_WAIT: 16357 return (MIB2_TCP_timeWait); 16358 default: 16359 return (0); 16360 } 16361 } 16362 16363 static char tcp_report_header[] = 16364 "TCP " MI_COL_HDRPAD_STR 16365 "zone dest snxt suna " 16366 "swnd rnxt rack rwnd rto mss w sw rw t " 16367 "recent [lport,fport] state"; 16368 16369 /* 16370 * TCP status report triggered via the Named Dispatch mechanism. 16371 */ 16372 /* ARGSUSED */ 16373 static void 16374 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16375 cred_t *cr) 16376 { 16377 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16378 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16379 char cflag; 16380 in6_addr_t v6dst; 16381 char buf[80]; 16382 uint_t print_len, buf_len; 16383 16384 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16385 if (buf_len <= 0) 16386 return; 16387 16388 if (hashval >= 0) 16389 (void) sprintf(hash, "%03d ", hashval); 16390 else 16391 hash[0] = '\0'; 16392 16393 /* 16394 * Note that we use the remote address in the tcp_b structure. 16395 * This means that it will print out the real destination address, 16396 * not the next hop's address if source routing is used. This 16397 * avoid the confusion on the output because user may not 16398 * know that source routing is used for a connection. 16399 */ 16400 if (tcp->tcp_ipversion == IPV4_VERSION) { 16401 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16402 } else { 16403 v6dst = tcp->tcp_remote_v6; 16404 } 16405 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16406 /* 16407 * the ispriv checks are so that normal users cannot determine 16408 * sequence number information using NDD. 16409 */ 16410 16411 if (TCP_IS_DETACHED(tcp)) 16412 cflag = '*'; 16413 else 16414 cflag = ' '; 16415 print_len = snprintf((char *)mp->b_wptr, buf_len, 16416 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16417 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16418 hash, 16419 (void *)tcp, 16420 tcp->tcp_connp->conn_zoneid, 16421 addrbuf, 16422 (ispriv) ? tcp->tcp_snxt : 0, 16423 (ispriv) ? tcp->tcp_suna : 0, 16424 tcp->tcp_swnd, 16425 (ispriv) ? tcp->tcp_rnxt : 0, 16426 (ispriv) ? tcp->tcp_rack : 0, 16427 tcp->tcp_rwnd, 16428 tcp->tcp_rto, 16429 tcp->tcp_mss, 16430 tcp->tcp_snd_ws_ok, 16431 tcp->tcp_snd_ws, 16432 tcp->tcp_rcv_ws, 16433 tcp->tcp_snd_ts_ok, 16434 tcp->tcp_ts_recent, 16435 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16436 if (print_len < buf_len) { 16437 ((mblk_t *)mp)->b_wptr += print_len; 16438 } else { 16439 ((mblk_t *)mp)->b_wptr += buf_len; 16440 } 16441 } 16442 16443 /* 16444 * TCP status report (for listeners only) triggered via the Named Dispatch 16445 * mechanism. 16446 */ 16447 /* ARGSUSED */ 16448 static void 16449 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16450 { 16451 char addrbuf[INET6_ADDRSTRLEN]; 16452 in6_addr_t v6dst; 16453 uint_t print_len, buf_len; 16454 16455 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16456 if (buf_len <= 0) 16457 return; 16458 16459 if (tcp->tcp_ipversion == IPV4_VERSION) { 16460 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16461 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16462 } else { 16463 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16464 addrbuf, sizeof (addrbuf)); 16465 } 16466 print_len = snprintf((char *)mp->b_wptr, buf_len, 16467 "%03d " 16468 MI_COL_PTRFMT_STR 16469 "%d %s %05u %08u %d/%d/%d%c\n", 16470 hashval, (void *)tcp, 16471 tcp->tcp_connp->conn_zoneid, 16472 addrbuf, 16473 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16474 tcp->tcp_conn_req_seqnum, 16475 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16476 tcp->tcp_conn_req_max, 16477 tcp->tcp_syn_defense ? '*' : ' '); 16478 if (print_len < buf_len) { 16479 ((mblk_t *)mp)->b_wptr += print_len; 16480 } else { 16481 ((mblk_t *)mp)->b_wptr += buf_len; 16482 } 16483 } 16484 16485 /* TCP status report triggered via the Named Dispatch mechanism. */ 16486 /* ARGSUSED */ 16487 static int 16488 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16489 { 16490 tcp_t *tcp; 16491 int i; 16492 conn_t *connp; 16493 connf_t *connfp; 16494 zoneid_t zoneid; 16495 16496 /* 16497 * Because of the ndd constraint, at most we can have 64K buffer 16498 * to put in all TCP info. So to be more efficient, just 16499 * allocate a 64K buffer here, assuming we need that large buffer. 16500 * This may be a problem as any user can read tcp_status. Therefore 16501 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16502 * This should be OK as normal users should not do this too often. 16503 */ 16504 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16505 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16506 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16507 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16508 return (0); 16509 } 16510 } 16511 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16512 /* The following may work even if we cannot get a large buf. */ 16513 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16514 return (0); 16515 } 16516 16517 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16518 16519 zoneid = Q_TO_CONN(q)->conn_zoneid; 16520 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16521 16522 connfp = &ipcl_globalhash_fanout[i]; 16523 16524 connp = NULL; 16525 16526 while ((connp = 16527 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16528 tcp = connp->conn_tcp; 16529 if (zoneid != GLOBAL_ZONEID && 16530 zoneid != connp->conn_zoneid) 16531 continue; 16532 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16533 cr); 16534 } 16535 16536 } 16537 16538 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16539 return (0); 16540 } 16541 16542 /* TCP status report triggered via the Named Dispatch mechanism. */ 16543 /* ARGSUSED */ 16544 static int 16545 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16546 { 16547 tf_t *tbf; 16548 tcp_t *tcp; 16549 int i; 16550 zoneid_t zoneid; 16551 16552 /* Refer to comments in tcp_status_report(). */ 16553 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16554 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16555 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16556 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16557 return (0); 16558 } 16559 } 16560 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16561 /* The following may work even if we cannot get a large buf. */ 16562 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16563 return (0); 16564 } 16565 16566 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16567 16568 zoneid = Q_TO_CONN(q)->conn_zoneid; 16569 16570 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16571 tbf = &tcp_bind_fanout[i]; 16572 mutex_enter(&tbf->tf_lock); 16573 for (tcp = tbf->tf_tcp; tcp != NULL; 16574 tcp = tcp->tcp_bind_hash) { 16575 if (zoneid != GLOBAL_ZONEID && 16576 zoneid != tcp->tcp_connp->conn_zoneid) 16577 continue; 16578 CONN_INC_REF(tcp->tcp_connp); 16579 tcp_report_item(mp->b_cont, tcp, i, 16580 Q_TO_TCP(q), cr); 16581 CONN_DEC_REF(tcp->tcp_connp); 16582 } 16583 mutex_exit(&tbf->tf_lock); 16584 } 16585 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16586 return (0); 16587 } 16588 16589 /* TCP status report triggered via the Named Dispatch mechanism. */ 16590 /* ARGSUSED */ 16591 static int 16592 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16593 { 16594 connf_t *connfp; 16595 conn_t *connp; 16596 tcp_t *tcp; 16597 int i; 16598 zoneid_t zoneid; 16599 16600 /* Refer to comments in tcp_status_report(). */ 16601 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16602 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16603 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16604 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16605 return (0); 16606 } 16607 } 16608 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16609 /* The following may work even if we cannot get a large buf. */ 16610 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16611 return (0); 16612 } 16613 16614 (void) mi_mpprintf(mp, 16615 " TCP " MI_COL_HDRPAD_STR 16616 "zone IP addr port seqnum backlog (q0/q/max)"); 16617 16618 zoneid = Q_TO_CONN(q)->conn_zoneid; 16619 16620 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16621 connfp = &ipcl_bind_fanout[i]; 16622 connp = NULL; 16623 while ((connp = 16624 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16625 tcp = connp->conn_tcp; 16626 if (zoneid != GLOBAL_ZONEID && 16627 zoneid != connp->conn_zoneid) 16628 continue; 16629 tcp_report_listener(mp->b_cont, tcp, i); 16630 } 16631 } 16632 16633 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16634 return (0); 16635 } 16636 16637 /* TCP status report triggered via the Named Dispatch mechanism. */ 16638 /* ARGSUSED */ 16639 static int 16640 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16641 { 16642 connf_t *connfp; 16643 conn_t *connp; 16644 tcp_t *tcp; 16645 int i; 16646 zoneid_t zoneid; 16647 16648 /* Refer to comments in tcp_status_report(). */ 16649 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16650 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16651 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16652 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16653 return (0); 16654 } 16655 } 16656 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16657 /* The following may work even if we cannot get a large buf. */ 16658 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16659 return (0); 16660 } 16661 16662 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16663 ipcl_conn_fanout_size); 16664 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16665 16666 zoneid = Q_TO_CONN(q)->conn_zoneid; 16667 16668 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16669 connfp = &ipcl_conn_fanout[i]; 16670 connp = NULL; 16671 while ((connp = 16672 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16673 tcp = connp->conn_tcp; 16674 if (zoneid != GLOBAL_ZONEID && 16675 zoneid != connp->conn_zoneid) 16676 continue; 16677 tcp_report_item(mp->b_cont, tcp, i, 16678 Q_TO_TCP(q), cr); 16679 } 16680 } 16681 16682 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16683 return (0); 16684 } 16685 16686 /* TCP status report triggered via the Named Dispatch mechanism. */ 16687 /* ARGSUSED */ 16688 static int 16689 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16690 { 16691 tf_t *tf; 16692 tcp_t *tcp; 16693 int i; 16694 zoneid_t zoneid; 16695 16696 /* Refer to comments in tcp_status_report(). */ 16697 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16698 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16699 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16700 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16701 return (0); 16702 } 16703 } 16704 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16705 /* The following may work even if we cannot get a large buf. */ 16706 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16707 return (0); 16708 } 16709 16710 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16711 16712 zoneid = Q_TO_CONN(q)->conn_zoneid; 16713 16714 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16715 tf = &tcp_acceptor_fanout[i]; 16716 mutex_enter(&tf->tf_lock); 16717 for (tcp = tf->tf_tcp; tcp != NULL; 16718 tcp = tcp->tcp_acceptor_hash) { 16719 if (zoneid != GLOBAL_ZONEID && 16720 zoneid != tcp->tcp_connp->conn_zoneid) 16721 continue; 16722 tcp_report_item(mp->b_cont, tcp, i, 16723 Q_TO_TCP(q), cr); 16724 } 16725 mutex_exit(&tf->tf_lock); 16726 } 16727 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16728 return (0); 16729 } 16730 16731 /* 16732 * tcp_timer is the timer service routine. It handles the retransmission, 16733 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16734 * from the state of the tcp instance what kind of action needs to be done 16735 * at the time it is called. 16736 */ 16737 static void 16738 tcp_timer(void *arg) 16739 { 16740 mblk_t *mp; 16741 clock_t first_threshold; 16742 clock_t second_threshold; 16743 clock_t ms; 16744 uint32_t mss; 16745 conn_t *connp = (conn_t *)arg; 16746 tcp_t *tcp = connp->conn_tcp; 16747 16748 tcp->tcp_timer_tid = 0; 16749 16750 if (tcp->tcp_fused) 16751 return; 16752 16753 first_threshold = tcp->tcp_first_timer_threshold; 16754 second_threshold = tcp->tcp_second_timer_threshold; 16755 switch (tcp->tcp_state) { 16756 case TCPS_IDLE: 16757 case TCPS_BOUND: 16758 case TCPS_LISTEN: 16759 return; 16760 case TCPS_SYN_RCVD: { 16761 tcp_t *listener = tcp->tcp_listener; 16762 16763 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16764 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16765 /* it's our first timeout */ 16766 tcp->tcp_syn_rcvd_timeout = 1; 16767 mutex_enter(&listener->tcp_eager_lock); 16768 listener->tcp_syn_rcvd_timeout++; 16769 if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) { 16770 /* 16771 * Make this eager available for drop if we 16772 * need to drop one to accomodate a new 16773 * incoming SYN request. 16774 */ 16775 MAKE_DROPPABLE(listener, tcp); 16776 } 16777 if (!listener->tcp_syn_defense && 16778 (listener->tcp_syn_rcvd_timeout > 16779 (tcp_conn_req_max_q0 >> 2)) && 16780 (tcp_conn_req_max_q0 > 200)) { 16781 /* We may be under attack. Put on a defense. */ 16782 listener->tcp_syn_defense = B_TRUE; 16783 cmn_err(CE_WARN, "High TCP connect timeout " 16784 "rate! System (port %d) may be under a " 16785 "SYN flood attack!", 16786 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16787 16788 listener->tcp_ip_addr_cache = kmem_zalloc( 16789 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16790 KM_NOSLEEP); 16791 } 16792 mutex_exit(&listener->tcp_eager_lock); 16793 } else if (listener != NULL) { 16794 mutex_enter(&listener->tcp_eager_lock); 16795 tcp->tcp_syn_rcvd_timeout++; 16796 if (tcp->tcp_syn_rcvd_timeout > 1 && 16797 tcp->tcp_closemp_used == 0) { 16798 /* 16799 * This is our second timeout. Put the tcp in 16800 * the list of droppable eagers to allow it to 16801 * be dropped, if needed. We don't check 16802 * whether tcp_dontdrop is set or not to 16803 * protect ourselve from a SYN attack where a 16804 * remote host can spoof itself as one of the 16805 * good IP source and continue to hold 16806 * resources too long. 16807 */ 16808 MAKE_DROPPABLE(listener, tcp); 16809 } 16810 mutex_exit(&listener->tcp_eager_lock); 16811 } 16812 } 16813 /* FALLTHRU */ 16814 case TCPS_SYN_SENT: 16815 first_threshold = tcp->tcp_first_ctimer_threshold; 16816 second_threshold = tcp->tcp_second_ctimer_threshold; 16817 break; 16818 case TCPS_ESTABLISHED: 16819 case TCPS_FIN_WAIT_1: 16820 case TCPS_CLOSING: 16821 case TCPS_CLOSE_WAIT: 16822 case TCPS_LAST_ACK: 16823 /* If we have data to rexmit */ 16824 if (tcp->tcp_suna != tcp->tcp_snxt) { 16825 clock_t time_to_wait; 16826 16827 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16828 if (!tcp->tcp_xmit_head) 16829 break; 16830 time_to_wait = lbolt - 16831 (clock_t)tcp->tcp_xmit_head->b_prev; 16832 time_to_wait = tcp->tcp_rto - 16833 TICK_TO_MSEC(time_to_wait); 16834 /* 16835 * If the timer fires too early, 1 clock tick earlier, 16836 * restart the timer. 16837 */ 16838 if (time_to_wait > msec_per_tick) { 16839 TCP_STAT(tcp_timer_fire_early); 16840 TCP_TIMER_RESTART(tcp, time_to_wait); 16841 return; 16842 } 16843 /* 16844 * When we probe zero windows, we force the swnd open. 16845 * If our peer acks with a closed window swnd will be 16846 * set to zero by tcp_rput(). As long as we are 16847 * receiving acks tcp_rput will 16848 * reset 'tcp_ms_we_have_waited' so as not to trip the 16849 * first and second interval actions. NOTE: the timer 16850 * interval is allowed to continue its exponential 16851 * backoff. 16852 */ 16853 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16854 if (tcp->tcp_debug) { 16855 (void) strlog(TCP_MOD_ID, 0, 1, 16856 SL_TRACE, "tcp_timer: zero win"); 16857 } 16858 } else { 16859 /* 16860 * After retransmission, we need to do 16861 * slow start. Set the ssthresh to one 16862 * half of current effective window and 16863 * cwnd to one MSS. Also reset 16864 * tcp_cwnd_cnt. 16865 * 16866 * Note that if tcp_ssthresh is reduced because 16867 * of ECN, do not reduce it again unless it is 16868 * already one window of data away (tcp_cwr 16869 * should then be cleared) or this is a 16870 * timeout for a retransmitted segment. 16871 */ 16872 uint32_t npkt; 16873 16874 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16875 npkt = ((tcp->tcp_timer_backoff ? 16876 tcp->tcp_cwnd_ssthresh : 16877 tcp->tcp_snxt - 16878 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16879 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16880 tcp->tcp_mss; 16881 } 16882 tcp->tcp_cwnd = tcp->tcp_mss; 16883 tcp->tcp_cwnd_cnt = 0; 16884 if (tcp->tcp_ecn_ok) { 16885 tcp->tcp_cwr = B_TRUE; 16886 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16887 tcp->tcp_ecn_cwr_sent = B_FALSE; 16888 } 16889 } 16890 break; 16891 } 16892 /* 16893 * We have something to send yet we cannot send. The 16894 * reason can be: 16895 * 16896 * 1. Zero send window: we need to do zero window probe. 16897 * 2. Zero cwnd: because of ECN, we need to "clock out 16898 * segments. 16899 * 3. SWS avoidance: receiver may have shrunk window, 16900 * reset our knowledge. 16901 * 16902 * Note that condition 2 can happen with either 1 or 16903 * 3. But 1 and 3 are exclusive. 16904 */ 16905 if (tcp->tcp_unsent != 0) { 16906 if (tcp->tcp_cwnd == 0) { 16907 /* 16908 * Set tcp_cwnd to 1 MSS so that a 16909 * new segment can be sent out. We 16910 * are "clocking out" new data when 16911 * the network is really congested. 16912 */ 16913 ASSERT(tcp->tcp_ecn_ok); 16914 tcp->tcp_cwnd = tcp->tcp_mss; 16915 } 16916 if (tcp->tcp_swnd == 0) { 16917 /* Extend window for zero window probe */ 16918 tcp->tcp_swnd++; 16919 tcp->tcp_zero_win_probe = B_TRUE; 16920 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16921 } else { 16922 /* 16923 * Handle timeout from sender SWS avoidance. 16924 * Reset our knowledge of the max send window 16925 * since the receiver might have reduced its 16926 * receive buffer. Avoid setting tcp_max_swnd 16927 * to one since that will essentially disable 16928 * the SWS checks. 16929 * 16930 * Note that since we don't have a SWS 16931 * state variable, if the timeout is set 16932 * for ECN but not for SWS, this 16933 * code will also be executed. This is 16934 * fine as tcp_max_swnd is updated 16935 * constantly and it will not affect 16936 * anything. 16937 */ 16938 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16939 } 16940 tcp_wput_data(tcp, NULL, B_FALSE); 16941 return; 16942 } 16943 /* Is there a FIN that needs to be to re retransmitted? */ 16944 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16945 !tcp->tcp_fin_acked) 16946 break; 16947 /* Nothing to do, return without restarting timer. */ 16948 TCP_STAT(tcp_timer_fire_miss); 16949 return; 16950 case TCPS_FIN_WAIT_2: 16951 /* 16952 * User closed the TCP endpoint and peer ACK'ed our FIN. 16953 * We waited some time for for peer's FIN, but it hasn't 16954 * arrived. We flush the connection now to avoid 16955 * case where the peer has rebooted. 16956 */ 16957 if (TCP_IS_DETACHED(tcp)) { 16958 (void) tcp_clean_death(tcp, 0, 23); 16959 } else { 16960 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16961 } 16962 return; 16963 case TCPS_TIME_WAIT: 16964 (void) tcp_clean_death(tcp, 0, 24); 16965 return; 16966 default: 16967 if (tcp->tcp_debug) { 16968 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16969 "tcp_timer: strange state (%d) %s", 16970 tcp->tcp_state, tcp_display(tcp, NULL, 16971 DISP_PORT_ONLY)); 16972 } 16973 return; 16974 } 16975 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16976 /* 16977 * For zero window probe, we need to send indefinitely, 16978 * unless we have not heard from the other side for some 16979 * time... 16980 */ 16981 if ((tcp->tcp_zero_win_probe == 0) || 16982 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16983 second_threshold)) { 16984 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16985 /* 16986 * If TCP is in SYN_RCVD state, send back a 16987 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16988 * should be zero in TCPS_SYN_RCVD state. 16989 */ 16990 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16991 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16992 "in SYN_RCVD", 16993 tcp, tcp->tcp_snxt, 16994 tcp->tcp_rnxt, TH_RST | TH_ACK); 16995 } 16996 (void) tcp_clean_death(tcp, 16997 tcp->tcp_client_errno ? 16998 tcp->tcp_client_errno : ETIMEDOUT, 25); 16999 return; 17000 } else { 17001 /* 17002 * Set tcp_ms_we_have_waited to second_threshold 17003 * so that in next timeout, we will do the above 17004 * check (lbolt - tcp_last_recv_time). This is 17005 * also to avoid overflow. 17006 * 17007 * We don't need to decrement tcp_timer_backoff 17008 * to avoid overflow because it will be decremented 17009 * later if new timeout value is greater than 17010 * tcp_rexmit_interval_max. In the case when 17011 * tcp_rexmit_interval_max is greater than 17012 * second_threshold, it means that we will wait 17013 * longer than second_threshold to send the next 17014 * window probe. 17015 */ 17016 tcp->tcp_ms_we_have_waited = second_threshold; 17017 } 17018 } else if (ms > first_threshold) { 17019 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17020 tcp->tcp_xmit_head != NULL) { 17021 tcp->tcp_xmit_head = 17022 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17023 } 17024 /* 17025 * We have been retransmitting for too long... The RTT 17026 * we calculated is probably incorrect. Reinitialize it. 17027 * Need to compensate for 0 tcp_rtt_sa. Reset 17028 * tcp_rtt_update so that we won't accidentally cache a 17029 * bad value. But only do this if this is not a zero 17030 * window probe. 17031 */ 17032 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17033 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17034 (tcp->tcp_rtt_sa >> 5); 17035 tcp->tcp_rtt_sa = 0; 17036 tcp_ip_notify(tcp); 17037 tcp->tcp_rtt_update = 0; 17038 } 17039 } 17040 tcp->tcp_timer_backoff++; 17041 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17042 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17043 tcp_rexmit_interval_min) { 17044 /* 17045 * This means the original RTO is tcp_rexmit_interval_min. 17046 * So we will use tcp_rexmit_interval_min as the RTO value 17047 * and do the backoff. 17048 */ 17049 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 17050 } else { 17051 ms <<= tcp->tcp_timer_backoff; 17052 } 17053 if (ms > tcp_rexmit_interval_max) { 17054 ms = tcp_rexmit_interval_max; 17055 /* 17056 * ms is at max, decrement tcp_timer_backoff to avoid 17057 * overflow. 17058 */ 17059 tcp->tcp_timer_backoff--; 17060 } 17061 tcp->tcp_ms_we_have_waited += ms; 17062 if (tcp->tcp_zero_win_probe == 0) { 17063 tcp->tcp_rto = ms; 17064 } 17065 TCP_TIMER_RESTART(tcp, ms); 17066 /* 17067 * This is after a timeout and tcp_rto is backed off. Set 17068 * tcp_set_timer to 1 so that next time RTO is updated, we will 17069 * restart the timer with a correct value. 17070 */ 17071 tcp->tcp_set_timer = 1; 17072 mss = tcp->tcp_snxt - tcp->tcp_suna; 17073 if (mss > tcp->tcp_mss) 17074 mss = tcp->tcp_mss; 17075 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17076 mss = tcp->tcp_swnd; 17077 17078 if ((mp = tcp->tcp_xmit_head) != NULL) 17079 mp->b_prev = (mblk_t *)lbolt; 17080 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17081 B_TRUE); 17082 17083 /* 17084 * When slow start after retransmission begins, start with 17085 * this seq no. tcp_rexmit_max marks the end of special slow 17086 * start phase. tcp_snd_burst controls how many segments 17087 * can be sent because of an ack. 17088 */ 17089 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17090 tcp->tcp_snd_burst = TCP_CWND_SS; 17091 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17092 (tcp->tcp_unsent == 0)) { 17093 tcp->tcp_rexmit_max = tcp->tcp_fss; 17094 } else { 17095 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17096 } 17097 tcp->tcp_rexmit = B_TRUE; 17098 tcp->tcp_dupack_cnt = 0; 17099 17100 /* 17101 * Remove all rexmit SACK blk to start from fresh. 17102 */ 17103 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17104 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17105 tcp->tcp_num_notsack_blk = 0; 17106 tcp->tcp_cnt_notsack_list = 0; 17107 } 17108 if (mp == NULL) { 17109 return; 17110 } 17111 /* Attach credentials to retransmitted initial SYNs. */ 17112 if (tcp->tcp_state == TCPS_SYN_SENT) { 17113 mblk_setcred(mp, tcp->tcp_cred); 17114 DB_CPID(mp) = tcp->tcp_cpid; 17115 } 17116 17117 tcp->tcp_csuna = tcp->tcp_snxt; 17118 BUMP_MIB(&tcp_mib, tcpRetransSegs); 17119 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 17120 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17121 tcp_send_data(tcp, tcp->tcp_wq, mp); 17122 17123 } 17124 17125 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17126 static void 17127 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17128 { 17129 conn_t *connp; 17130 17131 switch (tcp->tcp_state) { 17132 case TCPS_BOUND: 17133 case TCPS_LISTEN: 17134 break; 17135 default: 17136 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17137 return; 17138 } 17139 17140 /* 17141 * Need to clean up all the eagers since after the unbind, segments 17142 * will no longer be delivered to this listener stream. 17143 */ 17144 mutex_enter(&tcp->tcp_eager_lock); 17145 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17146 tcp_eager_cleanup(tcp, 0); 17147 } 17148 mutex_exit(&tcp->tcp_eager_lock); 17149 17150 if (tcp->tcp_ipversion == IPV4_VERSION) { 17151 tcp->tcp_ipha->ipha_src = 0; 17152 } else { 17153 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17154 } 17155 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17156 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17157 tcp_bind_hash_remove(tcp); 17158 tcp->tcp_state = TCPS_IDLE; 17159 tcp->tcp_mdt = B_FALSE; 17160 /* Send M_FLUSH according to TPI */ 17161 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17162 connp = tcp->tcp_connp; 17163 connp->conn_mdt_ok = B_FALSE; 17164 ipcl_hash_remove(connp); 17165 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17166 mp = mi_tpi_ok_ack_alloc(mp); 17167 putnext(tcp->tcp_rq, mp); 17168 } 17169 17170 /* 17171 * Don't let port fall into the privileged range. 17172 * Since the extra privileged ports can be arbitrary we also 17173 * ensure that we exclude those from consideration. 17174 * tcp_g_epriv_ports is not sorted thus we loop over it until 17175 * there are no changes. 17176 * 17177 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17178 * but instead the code relies on: 17179 * - the fact that the address of the array and its size never changes 17180 * - the atomic assignment of the elements of the array 17181 * 17182 * Returns 0 if there are no more ports available. 17183 * 17184 * TS note: skip multilevel ports. 17185 */ 17186 static in_port_t 17187 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17188 { 17189 int i; 17190 boolean_t restart = B_FALSE; 17191 17192 if (random && tcp_random_anon_port != 0) { 17193 (void) random_get_pseudo_bytes((uint8_t *)&port, 17194 sizeof (in_port_t)); 17195 /* 17196 * Unless changed by a sys admin, the smallest anon port 17197 * is 32768 and the largest anon port is 65535. It is 17198 * very likely (50%) for the random port to be smaller 17199 * than the smallest anon port. When that happens, 17200 * add port % (anon port range) to the smallest anon 17201 * port to get the random port. It should fall into the 17202 * valid anon port range. 17203 */ 17204 if (port < tcp_smallest_anon_port) { 17205 port = tcp_smallest_anon_port + 17206 port % (tcp_largest_anon_port - 17207 tcp_smallest_anon_port); 17208 } 17209 } 17210 17211 retry: 17212 if (port < tcp_smallest_anon_port) 17213 port = (in_port_t)tcp_smallest_anon_port; 17214 17215 if (port > tcp_largest_anon_port) { 17216 if (restart) 17217 return (0); 17218 restart = B_TRUE; 17219 port = (in_port_t)tcp_smallest_anon_port; 17220 } 17221 17222 if (port < tcp_smallest_nonpriv_port) 17223 port = (in_port_t)tcp_smallest_nonpriv_port; 17224 17225 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 17226 if (port == tcp_g_epriv_ports[i]) { 17227 port++; 17228 /* 17229 * Make sure whether the port is in the 17230 * valid range. 17231 */ 17232 goto retry; 17233 } 17234 } 17235 if (is_system_labeled() && 17236 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17237 IPPROTO_TCP, B_TRUE)) != 0) { 17238 port = i; 17239 goto retry; 17240 } 17241 return (port); 17242 } 17243 17244 /* 17245 * Return the next anonymous port in the privileged port range for 17246 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17247 * downwards. This is the same behavior as documented in the userland 17248 * library call rresvport(3N). 17249 * 17250 * TS note: skip multilevel ports. 17251 */ 17252 static in_port_t 17253 tcp_get_next_priv_port(const tcp_t *tcp) 17254 { 17255 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17256 in_port_t nextport; 17257 boolean_t restart = B_FALSE; 17258 17259 retry: 17260 if (next_priv_port < tcp_min_anonpriv_port || 17261 next_priv_port >= IPPORT_RESERVED) { 17262 next_priv_port = IPPORT_RESERVED - 1; 17263 if (restart) 17264 return (0); 17265 restart = B_TRUE; 17266 } 17267 if (is_system_labeled() && 17268 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17269 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17270 next_priv_port = nextport; 17271 goto retry; 17272 } 17273 return (next_priv_port--); 17274 } 17275 17276 /* The write side r/w procedure. */ 17277 17278 #if CCS_STATS 17279 struct { 17280 struct { 17281 int64_t count, bytes; 17282 } tot, hit; 17283 } wrw_stats; 17284 #endif 17285 17286 /* 17287 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17288 * messages. 17289 */ 17290 /* ARGSUSED */ 17291 static void 17292 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17293 { 17294 conn_t *connp = (conn_t *)arg; 17295 tcp_t *tcp = connp->conn_tcp; 17296 queue_t *q = tcp->tcp_wq; 17297 17298 ASSERT(DB_TYPE(mp) != M_IOCTL); 17299 /* 17300 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17301 * Once the close starts, streamhead and sockfs will not let any data 17302 * packets come down (close ensures that there are no threads using the 17303 * queue and no new threads will come down) but since qprocsoff() 17304 * hasn't happened yet, a M_FLUSH or some non data message might 17305 * get reflected back (in response to our own FLUSHRW) and get 17306 * processed after tcp_close() is done. The conn would still be valid 17307 * because a ref would have added but we need to check the state 17308 * before actually processing the packet. 17309 */ 17310 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17311 freemsg(mp); 17312 return; 17313 } 17314 17315 switch (DB_TYPE(mp)) { 17316 case M_IOCDATA: 17317 tcp_wput_iocdata(tcp, mp); 17318 break; 17319 case M_FLUSH: 17320 tcp_wput_flush(tcp, mp); 17321 break; 17322 default: 17323 CALL_IP_WPUT(connp, q, mp); 17324 break; 17325 } 17326 } 17327 17328 /* 17329 * The TCP fast path write put procedure. 17330 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17331 */ 17332 /* ARGSUSED */ 17333 void 17334 tcp_output(void *arg, mblk_t *mp, void *arg2) 17335 { 17336 int len; 17337 int hdrlen; 17338 int plen; 17339 mblk_t *mp1; 17340 uchar_t *rptr; 17341 uint32_t snxt; 17342 tcph_t *tcph; 17343 struct datab *db; 17344 uint32_t suna; 17345 uint32_t mss; 17346 ipaddr_t *dst; 17347 ipaddr_t *src; 17348 uint32_t sum; 17349 int usable; 17350 conn_t *connp = (conn_t *)arg; 17351 tcp_t *tcp = connp->conn_tcp; 17352 uint32_t msize; 17353 17354 /* 17355 * Try and ASSERT the minimum possible references on the 17356 * conn early enough. Since we are executing on write side, 17357 * the connection is obviously not detached and that means 17358 * there is a ref each for TCP and IP. Since we are behind 17359 * the squeue, the minimum references needed are 3. If the 17360 * conn is in classifier hash list, there should be an 17361 * extra ref for that (we check both the possibilities). 17362 */ 17363 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17364 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17365 17366 ASSERT(DB_TYPE(mp) == M_DATA); 17367 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17368 17369 mutex_enter(&connp->conn_lock); 17370 tcp->tcp_squeue_bytes -= msize; 17371 mutex_exit(&connp->conn_lock); 17372 17373 /* Bypass tcp protocol for fused tcp loopback */ 17374 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17375 return; 17376 17377 mss = tcp->tcp_mss; 17378 if (tcp->tcp_xmit_zc_clean) 17379 mp = tcp_zcopy_backoff(tcp, mp, 0); 17380 17381 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17382 len = (int)(mp->b_wptr - mp->b_rptr); 17383 17384 /* 17385 * Criteria for fast path: 17386 * 17387 * 1. no unsent data 17388 * 2. single mblk in request 17389 * 3. connection established 17390 * 4. data in mblk 17391 * 5. len <= mss 17392 * 6. no tcp_valid bits 17393 */ 17394 if ((tcp->tcp_unsent != 0) || 17395 (tcp->tcp_cork) || 17396 (mp->b_cont != NULL) || 17397 (tcp->tcp_state != TCPS_ESTABLISHED) || 17398 (len == 0) || 17399 (len > mss) || 17400 (tcp->tcp_valid_bits != 0)) { 17401 tcp_wput_data(tcp, mp, B_FALSE); 17402 return; 17403 } 17404 17405 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17406 ASSERT(tcp->tcp_fin_sent == 0); 17407 17408 /* queue new packet onto retransmission queue */ 17409 if (tcp->tcp_xmit_head == NULL) { 17410 tcp->tcp_xmit_head = mp; 17411 } else { 17412 tcp->tcp_xmit_last->b_cont = mp; 17413 } 17414 tcp->tcp_xmit_last = mp; 17415 tcp->tcp_xmit_tail = mp; 17416 17417 /* find out how much we can send */ 17418 /* BEGIN CSTYLED */ 17419 /* 17420 * un-acked usable 17421 * |--------------|-----------------| 17422 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17423 */ 17424 /* END CSTYLED */ 17425 17426 /* start sending from tcp_snxt */ 17427 snxt = tcp->tcp_snxt; 17428 17429 /* 17430 * Check to see if this connection has been idled for some 17431 * time and no ACK is expected. If it is, we need to slow 17432 * start again to get back the connection's "self-clock" as 17433 * described in VJ's paper. 17434 * 17435 * Refer to the comment in tcp_mss_set() for the calculation 17436 * of tcp_cwnd after idle. 17437 */ 17438 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17439 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17440 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17441 } 17442 17443 usable = tcp->tcp_swnd; /* tcp window size */ 17444 if (usable > tcp->tcp_cwnd) 17445 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17446 usable -= snxt; /* subtract stuff already sent */ 17447 suna = tcp->tcp_suna; 17448 usable += suna; 17449 /* usable can be < 0 if the congestion window is smaller */ 17450 if (len > usable) { 17451 /* Can't send complete M_DATA in one shot */ 17452 goto slow; 17453 } 17454 17455 if (tcp->tcp_flow_stopped && 17456 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17457 tcp_clrqfull(tcp); 17458 } 17459 17460 /* 17461 * determine if anything to send (Nagle). 17462 * 17463 * 1. len < tcp_mss (i.e. small) 17464 * 2. unacknowledged data present 17465 * 3. len < nagle limit 17466 * 4. last packet sent < nagle limit (previous packet sent) 17467 */ 17468 if ((len < mss) && (snxt != suna) && 17469 (len < (int)tcp->tcp_naglim) && 17470 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17471 /* 17472 * This was the first unsent packet and normally 17473 * mss < xmit_hiwater so there is no need to worry 17474 * about flow control. The next packet will go 17475 * through the flow control check in tcp_wput_data(). 17476 */ 17477 /* leftover work from above */ 17478 tcp->tcp_unsent = len; 17479 tcp->tcp_xmit_tail_unsent = len; 17480 17481 return; 17482 } 17483 17484 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17485 17486 if (snxt == suna) { 17487 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17488 } 17489 17490 /* we have always sent something */ 17491 tcp->tcp_rack_cnt = 0; 17492 17493 tcp->tcp_snxt = snxt + len; 17494 tcp->tcp_rack = tcp->tcp_rnxt; 17495 17496 if ((mp1 = dupb(mp)) == 0) 17497 goto no_memory; 17498 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17499 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17500 17501 /* adjust tcp header information */ 17502 tcph = tcp->tcp_tcph; 17503 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17504 17505 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17506 sum = (sum >> 16) + (sum & 0xFFFF); 17507 U16_TO_ABE16(sum, tcph->th_sum); 17508 17509 U32_TO_ABE32(snxt, tcph->th_seq); 17510 17511 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17512 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17513 BUMP_LOCAL(tcp->tcp_obsegs); 17514 17515 /* Update the latest receive window size in TCP header. */ 17516 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17517 tcph->th_win); 17518 17519 tcp->tcp_last_sent_len = (ushort_t)len; 17520 17521 plen = len + tcp->tcp_hdr_len; 17522 17523 if (tcp->tcp_ipversion == IPV4_VERSION) { 17524 tcp->tcp_ipha->ipha_length = htons(plen); 17525 } else { 17526 tcp->tcp_ip6h->ip6_plen = htons(plen - 17527 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17528 } 17529 17530 /* see if we need to allocate a mblk for the headers */ 17531 hdrlen = tcp->tcp_hdr_len; 17532 rptr = mp1->b_rptr - hdrlen; 17533 db = mp1->b_datap; 17534 if ((db->db_ref != 2) || rptr < db->db_base || 17535 (!OK_32PTR(rptr))) { 17536 /* NOTE: we assume allocb returns an OK_32PTR */ 17537 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17538 tcp_wroff_xtra, BPRI_MED); 17539 if (!mp) { 17540 freemsg(mp1); 17541 goto no_memory; 17542 } 17543 mp->b_cont = mp1; 17544 mp1 = mp; 17545 /* Leave room for Link Level header */ 17546 /* hdrlen = tcp->tcp_hdr_len; */ 17547 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17548 mp1->b_wptr = &rptr[hdrlen]; 17549 } 17550 mp1->b_rptr = rptr; 17551 17552 /* Fill in the timestamp option. */ 17553 if (tcp->tcp_snd_ts_ok) { 17554 U32_TO_BE32((uint32_t)lbolt, 17555 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17556 U32_TO_BE32(tcp->tcp_ts_recent, 17557 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17558 } else { 17559 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17560 } 17561 17562 /* copy header into outgoing packet */ 17563 dst = (ipaddr_t *)rptr; 17564 src = (ipaddr_t *)tcp->tcp_iphc; 17565 dst[0] = src[0]; 17566 dst[1] = src[1]; 17567 dst[2] = src[2]; 17568 dst[3] = src[3]; 17569 dst[4] = src[4]; 17570 dst[5] = src[5]; 17571 dst[6] = src[6]; 17572 dst[7] = src[7]; 17573 dst[8] = src[8]; 17574 dst[9] = src[9]; 17575 if (hdrlen -= 40) { 17576 hdrlen >>= 2; 17577 dst += 10; 17578 src += 10; 17579 do { 17580 *dst++ = *src++; 17581 } while (--hdrlen); 17582 } 17583 17584 /* 17585 * Set the ECN info in the TCP header. Note that this 17586 * is not the template header. 17587 */ 17588 if (tcp->tcp_ecn_ok) { 17589 SET_ECT(tcp, rptr); 17590 17591 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17592 if (tcp->tcp_ecn_echo_on) 17593 tcph->th_flags[0] |= TH_ECE; 17594 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17595 tcph->th_flags[0] |= TH_CWR; 17596 tcp->tcp_ecn_cwr_sent = B_TRUE; 17597 } 17598 } 17599 17600 if (tcp->tcp_ip_forward_progress) { 17601 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17602 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17603 tcp->tcp_ip_forward_progress = B_FALSE; 17604 } 17605 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17606 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17607 return; 17608 17609 /* 17610 * If we ran out of memory, we pretend to have sent the packet 17611 * and that it was lost on the wire. 17612 */ 17613 no_memory: 17614 return; 17615 17616 slow: 17617 /* leftover work from above */ 17618 tcp->tcp_unsent = len; 17619 tcp->tcp_xmit_tail_unsent = len; 17620 tcp_wput_data(tcp, NULL, B_FALSE); 17621 } 17622 17623 /* 17624 * The function called through squeue to get behind eager's perimeter to 17625 * finish the accept processing. 17626 */ 17627 /* ARGSUSED */ 17628 void 17629 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17630 { 17631 conn_t *connp = (conn_t *)arg; 17632 tcp_t *tcp = connp->conn_tcp; 17633 queue_t *q = tcp->tcp_rq; 17634 mblk_t *mp1; 17635 mblk_t *stropt_mp = mp; 17636 struct stroptions *stropt; 17637 uint_t thwin; 17638 17639 /* 17640 * Drop the eager's ref on the listener, that was placed when 17641 * this eager began life in tcp_conn_request. 17642 */ 17643 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17644 17645 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17646 /* 17647 * Someone blewoff the eager before we could finish 17648 * the accept. 17649 * 17650 * The only reason eager exists it because we put in 17651 * a ref on it when conn ind went up. We need to send 17652 * a disconnect indication up while the last reference 17653 * on the eager will be dropped by the squeue when we 17654 * return. 17655 */ 17656 ASSERT(tcp->tcp_listener == NULL); 17657 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17658 struct T_discon_ind *tdi; 17659 17660 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17661 /* 17662 * Let us reuse the incoming mblk to avoid memory 17663 * allocation failure problems. We know that the 17664 * size of the incoming mblk i.e. stroptions is greater 17665 * than sizeof T_discon_ind. So the reallocb below 17666 * can't fail. 17667 */ 17668 freemsg(mp->b_cont); 17669 mp->b_cont = NULL; 17670 ASSERT(DB_REF(mp) == 1); 17671 mp = reallocb(mp, sizeof (struct T_discon_ind), 17672 B_FALSE); 17673 ASSERT(mp != NULL); 17674 DB_TYPE(mp) = M_PROTO; 17675 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17676 tdi = (struct T_discon_ind *)mp->b_rptr; 17677 if (tcp->tcp_issocket) { 17678 tdi->DISCON_reason = ECONNREFUSED; 17679 tdi->SEQ_number = 0; 17680 } else { 17681 tdi->DISCON_reason = ENOPROTOOPT; 17682 tdi->SEQ_number = 17683 tcp->tcp_conn_req_seqnum; 17684 } 17685 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17686 putnext(q, mp); 17687 } else { 17688 freemsg(mp); 17689 } 17690 if (tcp->tcp_hard_binding) { 17691 tcp->tcp_hard_binding = B_FALSE; 17692 tcp->tcp_hard_bound = B_TRUE; 17693 } 17694 tcp->tcp_detached = B_FALSE; 17695 return; 17696 } 17697 17698 mp1 = stropt_mp->b_cont; 17699 stropt_mp->b_cont = NULL; 17700 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17701 stropt = (struct stroptions *)stropt_mp->b_rptr; 17702 17703 while (mp1 != NULL) { 17704 mp = mp1; 17705 mp1 = mp1->b_cont; 17706 mp->b_cont = NULL; 17707 tcp->tcp_drop_opt_ack_cnt++; 17708 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17709 } 17710 mp = NULL; 17711 17712 /* 17713 * For a loopback connection with tcp_direct_sockfs on, note that 17714 * we don't have to protect tcp_rcv_list yet because synchronous 17715 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17716 * possibly race with us. 17717 */ 17718 17719 /* 17720 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17721 * properly. This is the first time we know of the acceptor' 17722 * queue. So we do it here. 17723 */ 17724 if (tcp->tcp_rcv_list == NULL) { 17725 /* 17726 * Recv queue is empty, tcp_rwnd should not have changed. 17727 * That means it should be equal to the listener's tcp_rwnd. 17728 */ 17729 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17730 } else { 17731 #ifdef DEBUG 17732 uint_t cnt = 0; 17733 17734 mp1 = tcp->tcp_rcv_list; 17735 while ((mp = mp1) != NULL) { 17736 mp1 = mp->b_next; 17737 cnt += msgdsize(mp); 17738 } 17739 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17740 #endif 17741 /* There is some data, add them back to get the max. */ 17742 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17743 } 17744 17745 stropt->so_flags = SO_HIWAT; 17746 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17747 17748 stropt->so_flags |= SO_MAXBLK; 17749 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17750 17751 /* 17752 * This is the first time we run on the correct 17753 * queue after tcp_accept. So fix all the q parameters 17754 * here. 17755 */ 17756 /* Allocate room for SACK options if needed. */ 17757 stropt->so_flags |= SO_WROFF; 17758 if (tcp->tcp_fused) { 17759 ASSERT(tcp->tcp_loopback); 17760 ASSERT(tcp->tcp_loopback_peer != NULL); 17761 /* 17762 * For fused tcp loopback, set the stream head's write 17763 * offset value to zero since we won't be needing any room 17764 * for TCP/IP headers. This would also improve performance 17765 * since it would reduce the amount of work done by kmem. 17766 * Non-fused tcp loopback case is handled separately below. 17767 */ 17768 stropt->so_wroff = 0; 17769 /* 17770 * Record the stream head's high water mark for this endpoint; 17771 * this is used for flow-control purposes in tcp_fuse_output(). 17772 */ 17773 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17774 /* 17775 * Update the peer's transmit parameters according to 17776 * our recently calculated high water mark value. 17777 */ 17778 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17779 } else if (tcp->tcp_snd_sack_ok) { 17780 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17781 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17782 } else { 17783 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17784 tcp_wroff_xtra); 17785 } 17786 17787 /* 17788 * If this is endpoint is handling SSL, then reserve extra 17789 * offset and space at the end. 17790 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17791 * overriding the previous setting. The extra cost of signing and 17792 * encrypting multiple MSS-size records (12 of them with Ethernet), 17793 * instead of a single contiguous one by the stream head 17794 * largely outweighs the statistical reduction of ACKs, when 17795 * applicable. The peer will also save on decyption and verification 17796 * costs. 17797 */ 17798 if (tcp->tcp_kssl_ctx != NULL) { 17799 stropt->so_wroff += SSL3_WROFFSET; 17800 17801 stropt->so_flags |= SO_TAIL; 17802 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17803 17804 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17805 } 17806 17807 /* Send the options up */ 17808 putnext(q, stropt_mp); 17809 17810 /* 17811 * Pass up any data and/or a fin that has been received. 17812 * 17813 * Adjust receive window in case it had decreased 17814 * (because there is data <=> tcp_rcv_list != NULL) 17815 * while the connection was detached. Note that 17816 * in case the eager was flow-controlled, w/o this 17817 * code, the rwnd may never open up again! 17818 */ 17819 if (tcp->tcp_rcv_list != NULL) { 17820 /* We drain directly in case of fused tcp loopback */ 17821 if (!tcp->tcp_fused && canputnext(q)) { 17822 tcp->tcp_rwnd = q->q_hiwat; 17823 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17824 << tcp->tcp_rcv_ws; 17825 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17826 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17827 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17828 tcp_xmit_ctl(NULL, 17829 tcp, (tcp->tcp_swnd == 0) ? 17830 tcp->tcp_suna : tcp->tcp_snxt, 17831 tcp->tcp_rnxt, TH_ACK); 17832 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17833 } 17834 17835 } 17836 (void) tcp_rcv_drain(q, tcp); 17837 17838 /* 17839 * For fused tcp loopback, back-enable peer endpoint 17840 * if it's currently flow-controlled. 17841 */ 17842 if (tcp->tcp_fused && 17843 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17844 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17845 17846 ASSERT(peer_tcp != NULL); 17847 ASSERT(peer_tcp->tcp_fused); 17848 17849 tcp_clrqfull(peer_tcp); 17850 TCP_STAT(tcp_fusion_backenabled); 17851 } 17852 } 17853 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17854 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17855 mp = mi_tpi_ordrel_ind(); 17856 if (mp) { 17857 tcp->tcp_ordrel_done = B_TRUE; 17858 putnext(q, mp); 17859 if (tcp->tcp_deferred_clean_death) { 17860 /* 17861 * tcp_clean_death was deferred 17862 * for T_ORDREL_IND - do it now 17863 */ 17864 (void) tcp_clean_death(tcp, 17865 tcp->tcp_client_errno, 21); 17866 tcp->tcp_deferred_clean_death = B_FALSE; 17867 } 17868 } else { 17869 /* 17870 * Run the orderly release in the 17871 * service routine. 17872 */ 17873 qenable(q); 17874 } 17875 } 17876 if (tcp->tcp_hard_binding) { 17877 tcp->tcp_hard_binding = B_FALSE; 17878 tcp->tcp_hard_bound = B_TRUE; 17879 } 17880 17881 tcp->tcp_detached = B_FALSE; 17882 17883 /* We can enable synchronous streams now */ 17884 if (tcp->tcp_fused) { 17885 tcp_fuse_syncstr_enable_pair(tcp); 17886 } 17887 17888 if (tcp->tcp_ka_enabled) { 17889 tcp->tcp_ka_last_intrvl = 0; 17890 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17891 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17892 } 17893 17894 /* 17895 * At this point, eager is fully established and will 17896 * have the following references - 17897 * 17898 * 2 references for connection to exist (1 for TCP and 1 for IP). 17899 * 1 reference for the squeue which will be dropped by the squeue as 17900 * soon as this function returns. 17901 * There will be 1 additonal reference for being in classifier 17902 * hash list provided something bad hasn't happened. 17903 */ 17904 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17905 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17906 } 17907 17908 /* 17909 * The function called through squeue to get behind listener's perimeter to 17910 * send a deffered conn_ind. 17911 */ 17912 /* ARGSUSED */ 17913 void 17914 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17915 { 17916 conn_t *connp = (conn_t *)arg; 17917 tcp_t *listener = connp->conn_tcp; 17918 17919 if (listener->tcp_state == TCPS_CLOSED || 17920 TCP_IS_DETACHED(listener)) { 17921 /* 17922 * If listener has closed, it would have caused a 17923 * a cleanup/blowoff to happen for the eager. 17924 */ 17925 tcp_t *tcp; 17926 struct T_conn_ind *conn_ind; 17927 17928 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17929 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17930 conn_ind->OPT_length); 17931 /* 17932 * We need to drop the ref on eager that was put 17933 * tcp_rput_data() before trying to send the conn_ind 17934 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17935 * and tcp_wput_accept() is sending this deferred conn_ind but 17936 * listener is closed so we drop the ref. 17937 */ 17938 CONN_DEC_REF(tcp->tcp_connp); 17939 freemsg(mp); 17940 return; 17941 } 17942 putnext(listener->tcp_rq, mp); 17943 } 17944 17945 17946 /* 17947 * This is the STREAMS entry point for T_CONN_RES coming down on 17948 * Acceptor STREAM when sockfs listener does accept processing. 17949 * Read the block comment on top pf tcp_conn_request(). 17950 */ 17951 void 17952 tcp_wput_accept(queue_t *q, mblk_t *mp) 17953 { 17954 queue_t *rq = RD(q); 17955 struct T_conn_res *conn_res; 17956 tcp_t *eager; 17957 tcp_t *listener; 17958 struct T_ok_ack *ok; 17959 t_scalar_t PRIM_type; 17960 mblk_t *opt_mp; 17961 conn_t *econnp; 17962 17963 ASSERT(DB_TYPE(mp) == M_PROTO); 17964 17965 conn_res = (struct T_conn_res *)mp->b_rptr; 17966 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17967 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17968 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17969 if (mp != NULL) 17970 putnext(rq, mp); 17971 return; 17972 } 17973 switch (conn_res->PRIM_type) { 17974 case O_T_CONN_RES: 17975 case T_CONN_RES: 17976 /* 17977 * We pass up an err ack if allocb fails. This will 17978 * cause sockfs to issue a T_DISCON_REQ which will cause 17979 * tcp_eager_blowoff to be called. sockfs will then call 17980 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17981 * we need to do the allocb up here because we have to 17982 * make sure rq->q_qinfo->qi_qclose still points to the 17983 * correct function (tcpclose_accept) in case allocb 17984 * fails. 17985 */ 17986 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17987 if (opt_mp == NULL) { 17988 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17989 if (mp != NULL) 17990 putnext(rq, mp); 17991 return; 17992 } 17993 17994 bcopy(mp->b_rptr + conn_res->OPT_offset, 17995 &eager, conn_res->OPT_length); 17996 PRIM_type = conn_res->PRIM_type; 17997 mp->b_datap->db_type = M_PCPROTO; 17998 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17999 ok = (struct T_ok_ack *)mp->b_rptr; 18000 ok->PRIM_type = T_OK_ACK; 18001 ok->CORRECT_prim = PRIM_type; 18002 econnp = eager->tcp_connp; 18003 econnp->conn_dev = (dev_t)q->q_ptr; 18004 eager->tcp_rq = rq; 18005 eager->tcp_wq = q; 18006 rq->q_ptr = econnp; 18007 rq->q_qinfo = &tcp_rinit; 18008 q->q_ptr = econnp; 18009 q->q_qinfo = &tcp_winit; 18010 listener = eager->tcp_listener; 18011 eager->tcp_issocket = B_TRUE; 18012 18013 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18014 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18015 18016 /* Put the ref for IP */ 18017 CONN_INC_REF(econnp); 18018 18019 /* 18020 * We should have minimum of 3 references on the conn 18021 * at this point. One each for TCP and IP and one for 18022 * the T_conn_ind that was sent up when the 3-way handshake 18023 * completed. In the normal case we would also have another 18024 * reference (making a total of 4) for the conn being in the 18025 * classifier hash list. However the eager could have received 18026 * an RST subsequently and tcp_closei_local could have removed 18027 * the eager from the classifier hash list, hence we can't 18028 * assert that reference. 18029 */ 18030 ASSERT(econnp->conn_ref >= 3); 18031 18032 /* 18033 * Send the new local address also up to sockfs. There 18034 * should already be enough space in the mp that came 18035 * down from soaccept(). 18036 */ 18037 if (eager->tcp_family == AF_INET) { 18038 sin_t *sin; 18039 18040 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18041 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18042 sin = (sin_t *)mp->b_wptr; 18043 mp->b_wptr += sizeof (sin_t); 18044 sin->sin_family = AF_INET; 18045 sin->sin_port = eager->tcp_lport; 18046 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18047 } else { 18048 sin6_t *sin6; 18049 18050 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18051 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18052 sin6 = (sin6_t *)mp->b_wptr; 18053 mp->b_wptr += sizeof (sin6_t); 18054 sin6->sin6_family = AF_INET6; 18055 sin6->sin6_port = eager->tcp_lport; 18056 if (eager->tcp_ipversion == IPV4_VERSION) { 18057 sin6->sin6_flowinfo = 0; 18058 IN6_IPADDR_TO_V4MAPPED( 18059 eager->tcp_ipha->ipha_src, 18060 &sin6->sin6_addr); 18061 } else { 18062 ASSERT(eager->tcp_ip6h != NULL); 18063 sin6->sin6_flowinfo = 18064 eager->tcp_ip6h->ip6_vcf & 18065 ~IPV6_VERS_AND_FLOW_MASK; 18066 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18067 } 18068 sin6->sin6_scope_id = 0; 18069 sin6->__sin6_src_id = 0; 18070 } 18071 18072 putnext(rq, mp); 18073 18074 opt_mp->b_datap->db_type = M_SETOPTS; 18075 opt_mp->b_wptr += sizeof (struct stroptions); 18076 18077 /* 18078 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18079 * from listener to acceptor. The message is chained on the 18080 * bind_mp which tcp_rput_other will send down to IP. 18081 */ 18082 if (listener->tcp_bound_if != 0) { 18083 /* allocate optmgmt req */ 18084 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18085 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18086 sizeof (int)); 18087 if (mp != NULL) 18088 linkb(opt_mp, mp); 18089 } 18090 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18091 uint_t on = 1; 18092 18093 /* allocate optmgmt req */ 18094 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18095 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18096 if (mp != NULL) 18097 linkb(opt_mp, mp); 18098 } 18099 18100 18101 mutex_enter(&listener->tcp_eager_lock); 18102 18103 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18104 18105 tcp_t *tail; 18106 tcp_t *tcp; 18107 mblk_t *mp1; 18108 18109 tcp = listener->tcp_eager_prev_q0; 18110 /* 18111 * listener->tcp_eager_prev_q0 points to the TAIL of the 18112 * deferred T_conn_ind queue. We need to get to the head 18113 * of the queue in order to send up T_conn_ind the same 18114 * order as how the 3WHS is completed. 18115 */ 18116 while (tcp != listener) { 18117 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18118 !tcp->tcp_kssl_pending) 18119 break; 18120 else 18121 tcp = tcp->tcp_eager_prev_q0; 18122 } 18123 /* None of the pending eagers can be sent up now */ 18124 if (tcp == listener) 18125 goto no_more_eagers; 18126 18127 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18128 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18129 /* Move from q0 to q */ 18130 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18131 listener->tcp_conn_req_cnt_q0--; 18132 listener->tcp_conn_req_cnt_q++; 18133 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18134 tcp->tcp_eager_prev_q0; 18135 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18136 tcp->tcp_eager_next_q0; 18137 tcp->tcp_eager_prev_q0 = NULL; 18138 tcp->tcp_eager_next_q0 = NULL; 18139 tcp->tcp_conn_def_q0 = B_FALSE; 18140 18141 /* Make sure the tcp isn't in the list of droppables */ 18142 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18143 tcp->tcp_eager_prev_drop_q0 == NULL); 18144 18145 /* 18146 * Insert at end of the queue because sockfs sends 18147 * down T_CONN_RES in chronological order. Leaving 18148 * the older conn indications at front of the queue 18149 * helps reducing search time. 18150 */ 18151 tail = listener->tcp_eager_last_q; 18152 if (tail != NULL) { 18153 tail->tcp_eager_next_q = tcp; 18154 } else { 18155 listener->tcp_eager_next_q = tcp; 18156 } 18157 listener->tcp_eager_last_q = tcp; 18158 tcp->tcp_eager_next_q = NULL; 18159 18160 /* Need to get inside the listener perimeter */ 18161 CONN_INC_REF(listener->tcp_connp); 18162 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18163 tcp_send_pending, listener->tcp_connp, 18164 SQTAG_TCP_SEND_PENDING); 18165 } 18166 no_more_eagers: 18167 tcp_eager_unlink(eager); 18168 mutex_exit(&listener->tcp_eager_lock); 18169 18170 /* 18171 * At this point, the eager is detached from the listener 18172 * but we still have an extra refs on eager (apart from the 18173 * usual tcp references). The ref was placed in tcp_rput_data 18174 * before sending the conn_ind in tcp_send_conn_ind. 18175 * The ref will be dropped in tcp_accept_finish(). 18176 */ 18177 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18178 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18179 return; 18180 default: 18181 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18182 if (mp != NULL) 18183 putnext(rq, mp); 18184 return; 18185 } 18186 } 18187 18188 void 18189 tcp_wput(queue_t *q, mblk_t *mp) 18190 { 18191 conn_t *connp = Q_TO_CONN(q); 18192 tcp_t *tcp; 18193 void (*output_proc)(); 18194 t_scalar_t type; 18195 uchar_t *rptr; 18196 struct iocblk *iocp; 18197 uint32_t msize; 18198 18199 ASSERT(connp->conn_ref >= 2); 18200 18201 switch (DB_TYPE(mp)) { 18202 case M_DATA: 18203 tcp = connp->conn_tcp; 18204 ASSERT(tcp != NULL); 18205 18206 msize = msgdsize(mp); 18207 18208 mutex_enter(&connp->conn_lock); 18209 CONN_INC_REF_LOCKED(connp); 18210 18211 tcp->tcp_squeue_bytes += msize; 18212 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18213 mutex_exit(&connp->conn_lock); 18214 tcp_setqfull(tcp); 18215 } else 18216 mutex_exit(&connp->conn_lock); 18217 18218 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18219 tcp_output, connp, SQTAG_TCP_OUTPUT); 18220 return; 18221 case M_PROTO: 18222 case M_PCPROTO: 18223 /* 18224 * if it is a snmp message, don't get behind the squeue 18225 */ 18226 tcp = connp->conn_tcp; 18227 rptr = mp->b_rptr; 18228 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18229 type = ((union T_primitives *)rptr)->type; 18230 } else { 18231 if (tcp->tcp_debug) { 18232 (void) strlog(TCP_MOD_ID, 0, 1, 18233 SL_ERROR|SL_TRACE, 18234 "tcp_wput_proto, dropping one..."); 18235 } 18236 freemsg(mp); 18237 return; 18238 } 18239 if (type == T_SVR4_OPTMGMT_REQ) { 18240 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18241 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18242 cr)) { 18243 /* 18244 * This was a SNMP request 18245 */ 18246 return; 18247 } else { 18248 output_proc = tcp_wput_proto; 18249 } 18250 } else { 18251 output_proc = tcp_wput_proto; 18252 } 18253 break; 18254 case M_IOCTL: 18255 /* 18256 * Most ioctls can be processed right away without going via 18257 * squeues - process them right here. Those that do require 18258 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18259 * are processed by tcp_wput_ioctl(). 18260 */ 18261 iocp = (struct iocblk *)mp->b_rptr; 18262 tcp = connp->conn_tcp; 18263 18264 switch (iocp->ioc_cmd) { 18265 case TCP_IOC_ABORT_CONN: 18266 tcp_ioctl_abort_conn(q, mp); 18267 return; 18268 case TI_GETPEERNAME: 18269 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18270 iocp->ioc_error = ENOTCONN; 18271 iocp->ioc_count = 0; 18272 mp->b_datap->db_type = M_IOCACK; 18273 qreply(q, mp); 18274 return; 18275 } 18276 /* FALLTHRU */ 18277 case TI_GETMYNAME: 18278 mi_copyin(q, mp, NULL, 18279 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18280 return; 18281 case ND_SET: 18282 /* nd_getset does the necessary checks */ 18283 case ND_GET: 18284 if (!nd_getset(q, tcp_g_nd, mp)) { 18285 CALL_IP_WPUT(connp, q, mp); 18286 return; 18287 } 18288 qreply(q, mp); 18289 return; 18290 case TCP_IOC_DEFAULT_Q: 18291 /* 18292 * Wants to be the default wq. Check the credentials 18293 * first, the rest is executed via squeue. 18294 */ 18295 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18296 iocp->ioc_error = EPERM; 18297 iocp->ioc_count = 0; 18298 mp->b_datap->db_type = M_IOCACK; 18299 qreply(q, mp); 18300 return; 18301 } 18302 output_proc = tcp_wput_ioctl; 18303 break; 18304 default: 18305 output_proc = tcp_wput_ioctl; 18306 break; 18307 } 18308 break; 18309 default: 18310 output_proc = tcp_wput_nondata; 18311 break; 18312 } 18313 18314 CONN_INC_REF(connp); 18315 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18316 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18317 } 18318 18319 /* 18320 * Initial STREAMS write side put() procedure for sockets. It tries to 18321 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18322 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18323 * are handled by tcp_wput() as usual. 18324 * 18325 * All further messages will also be handled by tcp_wput() because we cannot 18326 * be sure that the above short cut is safe later. 18327 */ 18328 static void 18329 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18330 { 18331 conn_t *connp = Q_TO_CONN(wq); 18332 tcp_t *tcp = connp->conn_tcp; 18333 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18334 18335 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18336 wq->q_qinfo = &tcp_winit; 18337 18338 ASSERT(IPCL_IS_TCP(connp)); 18339 ASSERT(TCP_IS_SOCKET(tcp)); 18340 18341 if (DB_TYPE(mp) == M_PCPROTO && 18342 MBLKL(mp) == sizeof (struct T_capability_req) && 18343 car->PRIM_type == T_CAPABILITY_REQ) { 18344 tcp_capability_req(tcp, mp); 18345 return; 18346 } 18347 18348 tcp_wput(wq, mp); 18349 } 18350 18351 static boolean_t 18352 tcp_zcopy_check(tcp_t *tcp) 18353 { 18354 conn_t *connp = tcp->tcp_connp; 18355 ire_t *ire; 18356 boolean_t zc_enabled = B_FALSE; 18357 18358 if (do_tcpzcopy == 2) 18359 zc_enabled = B_TRUE; 18360 else if (tcp->tcp_ipversion == IPV4_VERSION && 18361 IPCL_IS_CONNECTED(connp) && 18362 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18363 connp->conn_dontroute == 0 && 18364 !connp->conn_nexthop_set && 18365 connp->conn_xmit_if_ill == NULL && 18366 connp->conn_nofailover_ill == NULL && 18367 do_tcpzcopy == 1) { 18368 /* 18369 * the checks above closely resemble the fast path checks 18370 * in tcp_send_data(). 18371 */ 18372 mutex_enter(&connp->conn_lock); 18373 ire = connp->conn_ire_cache; 18374 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18375 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18376 IRE_REFHOLD(ire); 18377 if (ire->ire_stq != NULL) { 18378 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18379 18380 zc_enabled = ill && (ill->ill_capabilities & 18381 ILL_CAPAB_ZEROCOPY) && 18382 (ill->ill_zerocopy_capab-> 18383 ill_zerocopy_flags != 0); 18384 } 18385 IRE_REFRELE(ire); 18386 } 18387 mutex_exit(&connp->conn_lock); 18388 } 18389 tcp->tcp_snd_zcopy_on = zc_enabled; 18390 if (!TCP_IS_DETACHED(tcp)) { 18391 if (zc_enabled) { 18392 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18393 TCP_STAT(tcp_zcopy_on); 18394 } else { 18395 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18396 TCP_STAT(tcp_zcopy_off); 18397 } 18398 } 18399 return (zc_enabled); 18400 } 18401 18402 static mblk_t * 18403 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18404 { 18405 if (do_tcpzcopy == 2) 18406 return (bp); 18407 else if (tcp->tcp_snd_zcopy_on) { 18408 tcp->tcp_snd_zcopy_on = B_FALSE; 18409 if (!TCP_IS_DETACHED(tcp)) { 18410 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18411 TCP_STAT(tcp_zcopy_disable); 18412 } 18413 } 18414 return (tcp_zcopy_backoff(tcp, bp, 0)); 18415 } 18416 18417 /* 18418 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18419 * the original desballoca'ed segmapped mblk. 18420 */ 18421 static mblk_t * 18422 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18423 { 18424 mblk_t *head, *tail, *nbp; 18425 if (IS_VMLOANED_MBLK(bp)) { 18426 TCP_STAT(tcp_zcopy_backoff); 18427 if ((head = copyb(bp)) == NULL) { 18428 /* fail to backoff; leave it for the next backoff */ 18429 tcp->tcp_xmit_zc_clean = B_FALSE; 18430 return (bp); 18431 } 18432 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18433 if (fix_xmitlist) 18434 tcp_zcopy_notify(tcp); 18435 else 18436 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18437 } 18438 nbp = bp->b_cont; 18439 if (fix_xmitlist) { 18440 head->b_prev = bp->b_prev; 18441 head->b_next = bp->b_next; 18442 if (tcp->tcp_xmit_tail == bp) 18443 tcp->tcp_xmit_tail = head; 18444 } 18445 bp->b_next = NULL; 18446 bp->b_prev = NULL; 18447 freeb(bp); 18448 } else { 18449 head = bp; 18450 nbp = bp->b_cont; 18451 } 18452 tail = head; 18453 while (nbp) { 18454 if (IS_VMLOANED_MBLK(nbp)) { 18455 TCP_STAT(tcp_zcopy_backoff); 18456 if ((tail->b_cont = copyb(nbp)) == NULL) { 18457 tcp->tcp_xmit_zc_clean = B_FALSE; 18458 tail->b_cont = nbp; 18459 return (head); 18460 } 18461 tail = tail->b_cont; 18462 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18463 if (fix_xmitlist) 18464 tcp_zcopy_notify(tcp); 18465 else 18466 tail->b_datap->db_struioflag |= 18467 STRUIO_ZCNOTIFY; 18468 } 18469 bp = nbp; 18470 nbp = nbp->b_cont; 18471 if (fix_xmitlist) { 18472 tail->b_prev = bp->b_prev; 18473 tail->b_next = bp->b_next; 18474 if (tcp->tcp_xmit_tail == bp) 18475 tcp->tcp_xmit_tail = tail; 18476 } 18477 bp->b_next = NULL; 18478 bp->b_prev = NULL; 18479 freeb(bp); 18480 } else { 18481 tail->b_cont = nbp; 18482 tail = nbp; 18483 nbp = nbp->b_cont; 18484 } 18485 } 18486 if (fix_xmitlist) { 18487 tcp->tcp_xmit_last = tail; 18488 tcp->tcp_xmit_zc_clean = B_TRUE; 18489 } 18490 return (head); 18491 } 18492 18493 static void 18494 tcp_zcopy_notify(tcp_t *tcp) 18495 { 18496 struct stdata *stp; 18497 18498 if (tcp->tcp_detached) 18499 return; 18500 stp = STREAM(tcp->tcp_rq); 18501 mutex_enter(&stp->sd_lock); 18502 stp->sd_flag |= STZCNOTIFY; 18503 cv_broadcast(&stp->sd_zcopy_wait); 18504 mutex_exit(&stp->sd_lock); 18505 } 18506 18507 static boolean_t 18508 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18509 { 18510 ire_t *ire; 18511 conn_t *connp = tcp->tcp_connp; 18512 18513 18514 mutex_enter(&connp->conn_lock); 18515 ire = connp->conn_ire_cache; 18516 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18517 18518 if ((ire != NULL) && 18519 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18520 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18521 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18522 IRE_REFHOLD(ire); 18523 mutex_exit(&connp->conn_lock); 18524 } else { 18525 boolean_t cached = B_FALSE; 18526 ts_label_t *tsl; 18527 18528 /* force a recheck later on */ 18529 tcp->tcp_ire_ill_check_done = B_FALSE; 18530 18531 TCP_DBGSTAT(tcp_ire_null1); 18532 connp->conn_ire_cache = NULL; 18533 mutex_exit(&connp->conn_lock); 18534 18535 if (ire != NULL) 18536 IRE_REFRELE_NOTR(ire); 18537 18538 tsl = crgetlabel(CONN_CRED(connp)); 18539 ire = (dst ? ire_cache_lookup(*dst, connp->conn_zoneid, tsl) : 18540 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18541 connp->conn_zoneid, tsl)); 18542 18543 if (ire == NULL) { 18544 TCP_STAT(tcp_ire_null); 18545 return (B_FALSE); 18546 } 18547 18548 IRE_REFHOLD_NOTR(ire); 18549 /* 18550 * Since we are inside the squeue, there cannot be another 18551 * thread in TCP trying to set the conn_ire_cache now. The 18552 * check for IRE_MARK_CONDEMNED ensures that an interface 18553 * unplumb thread has not yet started cleaning up the conns. 18554 * Hence we don't need to grab the conn lock. 18555 */ 18556 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18557 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18558 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18559 connp->conn_ire_cache = ire; 18560 cached = B_TRUE; 18561 } 18562 rw_exit(&ire->ire_bucket->irb_lock); 18563 } 18564 18565 /* 18566 * We can continue to use the ire but since it was 18567 * not cached, we should drop the extra reference. 18568 */ 18569 if (!cached) 18570 IRE_REFRELE_NOTR(ire); 18571 18572 /* 18573 * Rampart note: no need to select a new label here, since 18574 * labels are not allowed to change during the life of a TCP 18575 * connection. 18576 */ 18577 } 18578 18579 *irep = ire; 18580 18581 return (B_TRUE); 18582 } 18583 18584 /* 18585 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18586 * 18587 * 0 = success; 18588 * 1 = failed to find ire and ill. 18589 */ 18590 static boolean_t 18591 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18592 { 18593 ipha_t *ipha; 18594 ipaddr_t dst; 18595 ire_t *ire; 18596 ill_t *ill; 18597 conn_t *connp = tcp->tcp_connp; 18598 mblk_t *ire_fp_mp; 18599 18600 if (mp != NULL) 18601 ipha = (ipha_t *)mp->b_rptr; 18602 else 18603 ipha = tcp->tcp_ipha; 18604 dst = ipha->ipha_dst; 18605 18606 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18607 return (B_FALSE); 18608 18609 if ((ire->ire_flags & RTF_MULTIRT) || 18610 (ire->ire_stq == NULL) || 18611 (ire->ire_nce == NULL) || 18612 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18613 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18614 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18615 TCP_STAT(tcp_ip_ire_send); 18616 IRE_REFRELE(ire); 18617 return (B_FALSE); 18618 } 18619 18620 ill = ire_to_ill(ire); 18621 if (connp->conn_outgoing_ill != NULL) { 18622 ill_t *conn_outgoing_ill = NULL; 18623 /* 18624 * Choose a good ill in the group to send the packets on. 18625 */ 18626 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18627 ill = ire_to_ill(ire); 18628 } 18629 ASSERT(ill != NULL); 18630 18631 if (!tcp->tcp_ire_ill_check_done) { 18632 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18633 tcp->tcp_ire_ill_check_done = B_TRUE; 18634 } 18635 18636 *irep = ire; 18637 *illp = ill; 18638 18639 return (B_TRUE); 18640 } 18641 18642 static void 18643 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18644 { 18645 ipha_t *ipha; 18646 ipaddr_t src; 18647 ipaddr_t dst; 18648 uint32_t cksum; 18649 ire_t *ire; 18650 uint16_t *up; 18651 ill_t *ill; 18652 conn_t *connp = tcp->tcp_connp; 18653 uint32_t hcksum_txflags = 0; 18654 mblk_t *ire_fp_mp; 18655 uint_t ire_fp_mp_len; 18656 18657 ASSERT(DB_TYPE(mp) == M_DATA); 18658 18659 if (DB_CRED(mp) == NULL) 18660 mblk_setcred(mp, CONN_CRED(connp)); 18661 18662 ipha = (ipha_t *)mp->b_rptr; 18663 src = ipha->ipha_src; 18664 dst = ipha->ipha_dst; 18665 18666 /* 18667 * Drop off fast path for IPv6 and also if options are present or 18668 * we need to resolve a TS label. 18669 */ 18670 if (tcp->tcp_ipversion != IPV4_VERSION || 18671 !IPCL_IS_CONNECTED(connp) || 18672 !CONN_IS_LSO_MD_FASTPATH(connp) || 18673 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18674 !connp->conn_ulp_labeled || 18675 ipha->ipha_ident == IP_HDR_INCLUDED || 18676 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18677 IPP_ENABLED(IPP_LOCAL_OUT)) { 18678 if (tcp->tcp_snd_zcopy_aware) 18679 mp = tcp_zcopy_disable(tcp, mp); 18680 TCP_STAT(tcp_ip_send); 18681 CALL_IP_WPUT(connp, q, mp); 18682 return; 18683 } 18684 18685 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18686 if (tcp->tcp_snd_zcopy_aware) 18687 mp = tcp_zcopy_backoff(tcp, mp, 0); 18688 CALL_IP_WPUT(connp, q, mp); 18689 return; 18690 } 18691 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18692 ire_fp_mp_len = MBLKL(ire_fp_mp); 18693 18694 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18695 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18696 #ifndef _BIG_ENDIAN 18697 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18698 #endif 18699 18700 /* 18701 * Check to see if we need to re-enable LSO/MDT for this connection 18702 * because it was previously disabled due to changes in the ill; 18703 * note that by doing it here, this re-enabling only applies when 18704 * the packet is not dispatched through CALL_IP_WPUT(). 18705 * 18706 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18707 * case, since that's how we ended up here. For IPv6, we do the 18708 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18709 */ 18710 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18711 /* 18712 * Restore LSO for this connection, so that next time around 18713 * it is eligible to go through tcp_lsosend() path again. 18714 */ 18715 TCP_STAT(tcp_lso_enabled); 18716 tcp->tcp_lso = B_TRUE; 18717 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18718 "interface %s\n", (void *)connp, ill->ill_name)); 18719 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18720 /* 18721 * Restore MDT for this connection, so that next time around 18722 * it is eligible to go through tcp_multisend() path again. 18723 */ 18724 TCP_STAT(tcp_mdt_conn_resumed1); 18725 tcp->tcp_mdt = B_TRUE; 18726 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18727 "interface %s\n", (void *)connp, ill->ill_name)); 18728 } 18729 18730 if (tcp->tcp_snd_zcopy_aware) { 18731 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18732 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18733 mp = tcp_zcopy_disable(tcp, mp); 18734 /* 18735 * we shouldn't need to reset ipha as the mp containing 18736 * ipha should never be a zero-copy mp. 18737 */ 18738 } 18739 18740 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18741 ASSERT(ill->ill_hcksum_capab != NULL); 18742 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18743 } 18744 18745 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18746 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18747 18748 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18749 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18750 18751 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18752 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18753 18754 /* Software checksum? */ 18755 if (DB_CKSUMFLAGS(mp) == 0) { 18756 TCP_STAT(tcp_out_sw_cksum); 18757 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18758 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18759 } 18760 18761 ipha->ipha_fragment_offset_and_flags |= 18762 (uint32_t)htons(ire->ire_frag_flag); 18763 18764 /* Calculate IP header checksum if hardware isn't capable */ 18765 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18766 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18767 ((uint16_t *)ipha)[4]); 18768 } 18769 18770 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18771 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18772 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18773 18774 UPDATE_OB_PKT_COUNT(ire); 18775 ire->ire_last_used_time = lbolt; 18776 BUMP_MIB(&ip_mib, ipOutRequests); 18777 18778 if (ILL_DLS_CAPABLE(ill)) { 18779 /* 18780 * Send the packet directly to DLD, where it may be queued 18781 * depending on the availability of transmit resources at 18782 * the media layer. 18783 */ 18784 IP_DLS_ILL_TX(ill, ipha, mp); 18785 } else { 18786 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 18787 DTRACE_PROBE4(ip4__physical__out__start, 18788 ill_t *, NULL, ill_t *, out_ill, 18789 ipha_t *, ipha, mblk_t *, mp); 18790 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 18791 NULL, out_ill, ipha, mp, mp); 18792 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18793 if (mp != NULL) 18794 putnext(ire->ire_stq, mp); 18795 } 18796 IRE_REFRELE(ire); 18797 } 18798 18799 /* 18800 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18801 * if the receiver shrinks the window, i.e. moves the right window to the 18802 * left, the we should not send new data, but should retransmit normally the 18803 * old unacked data between suna and suna + swnd. We might has sent data 18804 * that is now outside the new window, pretend that we didn't send it. 18805 */ 18806 static void 18807 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18808 { 18809 uint32_t snxt = tcp->tcp_snxt; 18810 mblk_t *xmit_tail; 18811 int32_t offset; 18812 18813 ASSERT(shrunk_count > 0); 18814 18815 /* Pretend we didn't send the data outside the window */ 18816 snxt -= shrunk_count; 18817 18818 /* Get the mblk and the offset in it per the shrunk window */ 18819 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18820 18821 ASSERT(xmit_tail != NULL); 18822 18823 /* Reset all the values per the now shrunk window */ 18824 tcp->tcp_snxt = snxt; 18825 tcp->tcp_xmit_tail = xmit_tail; 18826 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18827 offset; 18828 tcp->tcp_unsent += shrunk_count; 18829 18830 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18831 /* 18832 * Make sure the timer is running so that we will probe a zero 18833 * window. 18834 */ 18835 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18836 } 18837 18838 18839 /* 18840 * The TCP normal data output path. 18841 * NOTE: the logic of the fast path is duplicated from this function. 18842 */ 18843 static void 18844 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18845 { 18846 int len; 18847 mblk_t *local_time; 18848 mblk_t *mp1; 18849 uint32_t snxt; 18850 int tail_unsent; 18851 int tcpstate; 18852 int usable = 0; 18853 mblk_t *xmit_tail; 18854 queue_t *q = tcp->tcp_wq; 18855 int32_t mss; 18856 int32_t num_sack_blk = 0; 18857 int32_t tcp_hdr_len; 18858 int32_t tcp_tcp_hdr_len; 18859 int mdt_thres; 18860 int rc; 18861 18862 tcpstate = tcp->tcp_state; 18863 if (mp == NULL) { 18864 /* 18865 * tcp_wput_data() with NULL mp should only be called when 18866 * there is unsent data. 18867 */ 18868 ASSERT(tcp->tcp_unsent > 0); 18869 /* Really tacky... but we need this for detached closes. */ 18870 len = tcp->tcp_unsent; 18871 goto data_null; 18872 } 18873 18874 #if CCS_STATS 18875 wrw_stats.tot.count++; 18876 wrw_stats.tot.bytes += msgdsize(mp); 18877 #endif 18878 ASSERT(mp->b_datap->db_type == M_DATA); 18879 /* 18880 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18881 * or before a connection attempt has begun. 18882 */ 18883 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18884 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18885 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18886 #ifdef DEBUG 18887 cmn_err(CE_WARN, 18888 "tcp_wput_data: data after ordrel, %s", 18889 tcp_display(tcp, NULL, 18890 DISP_ADDR_AND_PORT)); 18891 #else 18892 if (tcp->tcp_debug) { 18893 (void) strlog(TCP_MOD_ID, 0, 1, 18894 SL_TRACE|SL_ERROR, 18895 "tcp_wput_data: data after ordrel, %s\n", 18896 tcp_display(tcp, NULL, 18897 DISP_ADDR_AND_PORT)); 18898 } 18899 #endif /* DEBUG */ 18900 } 18901 if (tcp->tcp_snd_zcopy_aware && 18902 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18903 tcp_zcopy_notify(tcp); 18904 freemsg(mp); 18905 if (tcp->tcp_flow_stopped && 18906 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18907 tcp_clrqfull(tcp); 18908 } 18909 return; 18910 } 18911 18912 /* Strip empties */ 18913 for (;;) { 18914 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18915 (uintptr_t)INT_MAX); 18916 len = (int)(mp->b_wptr - mp->b_rptr); 18917 if (len > 0) 18918 break; 18919 mp1 = mp; 18920 mp = mp->b_cont; 18921 freeb(mp1); 18922 if (!mp) { 18923 return; 18924 } 18925 } 18926 18927 /* If we are the first on the list ... */ 18928 if (tcp->tcp_xmit_head == NULL) { 18929 tcp->tcp_xmit_head = mp; 18930 tcp->tcp_xmit_tail = mp; 18931 tcp->tcp_xmit_tail_unsent = len; 18932 } else { 18933 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18934 struct datab *dp; 18935 18936 mp1 = tcp->tcp_xmit_last; 18937 if (len < tcp_tx_pull_len && 18938 (dp = mp1->b_datap)->db_ref == 1 && 18939 dp->db_lim - mp1->b_wptr >= len) { 18940 ASSERT(len > 0); 18941 ASSERT(!mp1->b_cont); 18942 if (len == 1) { 18943 *mp1->b_wptr++ = *mp->b_rptr; 18944 } else { 18945 bcopy(mp->b_rptr, mp1->b_wptr, len); 18946 mp1->b_wptr += len; 18947 } 18948 if (mp1 == tcp->tcp_xmit_tail) 18949 tcp->tcp_xmit_tail_unsent += len; 18950 mp1->b_cont = mp->b_cont; 18951 if (tcp->tcp_snd_zcopy_aware && 18952 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18953 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18954 freeb(mp); 18955 mp = mp1; 18956 } else { 18957 tcp->tcp_xmit_last->b_cont = mp; 18958 } 18959 len += tcp->tcp_unsent; 18960 } 18961 18962 /* Tack on however many more positive length mblks we have */ 18963 if ((mp1 = mp->b_cont) != NULL) { 18964 do { 18965 int tlen; 18966 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18967 (uintptr_t)INT_MAX); 18968 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18969 if (tlen <= 0) { 18970 mp->b_cont = mp1->b_cont; 18971 freeb(mp1); 18972 } else { 18973 len += tlen; 18974 mp = mp1; 18975 } 18976 } while ((mp1 = mp->b_cont) != NULL); 18977 } 18978 tcp->tcp_xmit_last = mp; 18979 tcp->tcp_unsent = len; 18980 18981 if (urgent) 18982 usable = 1; 18983 18984 data_null: 18985 snxt = tcp->tcp_snxt; 18986 xmit_tail = tcp->tcp_xmit_tail; 18987 tail_unsent = tcp->tcp_xmit_tail_unsent; 18988 18989 /* 18990 * Note that tcp_mss has been adjusted to take into account the 18991 * timestamp option if applicable. Because SACK options do not 18992 * appear in every TCP segments and they are of variable lengths, 18993 * they cannot be included in tcp_mss. Thus we need to calculate 18994 * the actual segment length when we need to send a segment which 18995 * includes SACK options. 18996 */ 18997 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18998 int32_t opt_len; 18999 19000 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19001 tcp->tcp_num_sack_blk); 19002 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19003 2 + TCPOPT_HEADER_LEN; 19004 mss = tcp->tcp_mss - opt_len; 19005 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19006 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19007 } else { 19008 mss = tcp->tcp_mss; 19009 tcp_hdr_len = tcp->tcp_hdr_len; 19010 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19011 } 19012 19013 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19014 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19015 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 19016 } 19017 if (tcpstate == TCPS_SYN_RCVD) { 19018 /* 19019 * The three-way connection establishment handshake is not 19020 * complete yet. We want to queue the data for transmission 19021 * after entering ESTABLISHED state (RFC793). A jump to 19022 * "done" label effectively leaves data on the queue. 19023 */ 19024 goto done; 19025 } else { 19026 int usable_r; 19027 19028 /* 19029 * In the special case when cwnd is zero, which can only 19030 * happen if the connection is ECN capable, return now. 19031 * New segments is sent using tcp_timer(). The timer 19032 * is set in tcp_rput_data(). 19033 */ 19034 if (tcp->tcp_cwnd == 0) { 19035 /* 19036 * Note that tcp_cwnd is 0 before 3-way handshake is 19037 * finished. 19038 */ 19039 ASSERT(tcp->tcp_ecn_ok || 19040 tcp->tcp_state < TCPS_ESTABLISHED); 19041 return; 19042 } 19043 19044 /* NOTE: trouble if xmitting while SYN not acked? */ 19045 usable_r = snxt - tcp->tcp_suna; 19046 usable_r = tcp->tcp_swnd - usable_r; 19047 19048 /* 19049 * Check if the receiver has shrunk the window. If 19050 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19051 * cannot be set as there is unsent data, so FIN cannot 19052 * be sent out. Otherwise, we need to take into account 19053 * of FIN as it consumes an "invisible" sequence number. 19054 */ 19055 ASSERT(tcp->tcp_fin_sent == 0); 19056 if (usable_r < 0) { 19057 /* 19058 * The receiver has shrunk the window and we have sent 19059 * -usable_r date beyond the window, re-adjust. 19060 * 19061 * If TCP window scaling is enabled, there can be 19062 * round down error as the advertised receive window 19063 * is actually right shifted n bits. This means that 19064 * the lower n bits info is wiped out. It will look 19065 * like the window is shrunk. Do a check here to 19066 * see if the shrunk amount is actually within the 19067 * error in window calculation. If it is, just 19068 * return. Note that this check is inside the 19069 * shrunk window check. This makes sure that even 19070 * though tcp_process_shrunk_swnd() is not called, 19071 * we will stop further processing. 19072 */ 19073 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19074 tcp_process_shrunk_swnd(tcp, -usable_r); 19075 } 19076 return; 19077 } 19078 19079 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19080 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19081 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19082 19083 /* usable = MIN(usable, unsent) */ 19084 if (usable_r > len) 19085 usable_r = len; 19086 19087 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19088 if (usable_r > 0) { 19089 usable = usable_r; 19090 } else { 19091 /* Bypass all other unnecessary processing. */ 19092 goto done; 19093 } 19094 } 19095 19096 local_time = (mblk_t *)lbolt; 19097 19098 /* 19099 * "Our" Nagle Algorithm. This is not the same as in the old 19100 * BSD. This is more in line with the true intent of Nagle. 19101 * 19102 * The conditions are: 19103 * 1. The amount of unsent data (or amount of data which can be 19104 * sent, whichever is smaller) is less than Nagle limit. 19105 * 2. The last sent size is also less than Nagle limit. 19106 * 3. There is unack'ed data. 19107 * 4. Urgent pointer is not set. Send urgent data ignoring the 19108 * Nagle algorithm. This reduces the probability that urgent 19109 * bytes get "merged" together. 19110 * 5. The app has not closed the connection. This eliminates the 19111 * wait time of the receiving side waiting for the last piece of 19112 * (small) data. 19113 * 19114 * If all are satisified, exit without sending anything. Note 19115 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19116 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19117 * 4095). 19118 */ 19119 if (usable < (int)tcp->tcp_naglim && 19120 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19121 snxt != tcp->tcp_suna && 19122 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19123 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19124 goto done; 19125 } 19126 19127 if (tcp->tcp_cork) { 19128 /* 19129 * if the tcp->tcp_cork option is set, then we have to force 19130 * TCP not to send partial segment (smaller than MSS bytes). 19131 * We are calculating the usable now based on full mss and 19132 * will save the rest of remaining data for later. 19133 */ 19134 if (usable < mss) 19135 goto done; 19136 usable = (usable / mss) * mss; 19137 } 19138 19139 /* Update the latest receive window size in TCP header. */ 19140 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19141 tcp->tcp_tcph->th_win); 19142 19143 /* 19144 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19145 * 19146 * 1. Simple TCP/IP{v4,v6} (no options). 19147 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19148 * 3. If the TCP connection is in ESTABLISHED state. 19149 * 4. The TCP is not detached. 19150 * 19151 * If any of the above conditions have changed during the 19152 * connection, stop using LSO/MDT and restore the stream head 19153 * parameters accordingly. 19154 */ 19155 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19156 ((tcp->tcp_ipversion == IPV4_VERSION && 19157 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19158 (tcp->tcp_ipversion == IPV6_VERSION && 19159 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19160 tcp->tcp_state != TCPS_ESTABLISHED || 19161 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19162 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19163 IPP_ENABLED(IPP_LOCAL_OUT))) { 19164 if (tcp->tcp_lso) { 19165 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19166 tcp->tcp_lso = B_FALSE; 19167 } else { 19168 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19169 tcp->tcp_mdt = B_FALSE; 19170 } 19171 19172 /* Anything other than detached is considered pathological */ 19173 if (!TCP_IS_DETACHED(tcp)) { 19174 if (tcp->tcp_lso) 19175 TCP_STAT(tcp_lso_disabled); 19176 else 19177 TCP_STAT(tcp_mdt_conn_halted1); 19178 (void) tcp_maxpsz_set(tcp, B_TRUE); 19179 } 19180 } 19181 19182 /* Use MDT if sendable amount is greater than the threshold */ 19183 if (tcp->tcp_mdt && 19184 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19185 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19186 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19187 (tcp->tcp_valid_bits == 0 || 19188 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19189 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19190 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19191 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19192 local_time, mdt_thres); 19193 } else { 19194 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19195 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19196 local_time, INT_MAX); 19197 } 19198 19199 /* Pretend that all we were trying to send really got sent */ 19200 if (rc < 0 && tail_unsent < 0) { 19201 do { 19202 xmit_tail = xmit_tail->b_cont; 19203 xmit_tail->b_prev = local_time; 19204 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19205 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19206 tail_unsent += (int)(xmit_tail->b_wptr - 19207 xmit_tail->b_rptr); 19208 } while (tail_unsent < 0); 19209 } 19210 done:; 19211 tcp->tcp_xmit_tail = xmit_tail; 19212 tcp->tcp_xmit_tail_unsent = tail_unsent; 19213 len = tcp->tcp_snxt - snxt; 19214 if (len) { 19215 /* 19216 * If new data was sent, need to update the notsack 19217 * list, which is, afterall, data blocks that have 19218 * not been sack'ed by the receiver. New data is 19219 * not sack'ed. 19220 */ 19221 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19222 /* len is a negative value. */ 19223 tcp->tcp_pipe -= len; 19224 tcp_notsack_update(&(tcp->tcp_notsack_list), 19225 tcp->tcp_snxt, snxt, 19226 &(tcp->tcp_num_notsack_blk), 19227 &(tcp->tcp_cnt_notsack_list)); 19228 } 19229 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19230 tcp->tcp_rack = tcp->tcp_rnxt; 19231 tcp->tcp_rack_cnt = 0; 19232 if ((snxt + len) == tcp->tcp_suna) { 19233 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19234 } 19235 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19236 /* 19237 * Didn't send anything. Make sure the timer is running 19238 * so that we will probe a zero window. 19239 */ 19240 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19241 } 19242 /* Note that len is the amount we just sent but with a negative sign */ 19243 tcp->tcp_unsent += len; 19244 if (tcp->tcp_flow_stopped) { 19245 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19246 tcp_clrqfull(tcp); 19247 } 19248 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19249 tcp_setqfull(tcp); 19250 } 19251 } 19252 19253 /* 19254 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19255 * outgoing TCP header with the template header, as well as other 19256 * options such as time-stamp, ECN and/or SACK. 19257 */ 19258 static void 19259 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19260 { 19261 tcph_t *tcp_tmpl, *tcp_h; 19262 uint32_t *dst, *src; 19263 int hdrlen; 19264 19265 ASSERT(OK_32PTR(rptr)); 19266 19267 /* Template header */ 19268 tcp_tmpl = tcp->tcp_tcph; 19269 19270 /* Header of outgoing packet */ 19271 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19272 19273 /* dst and src are opaque 32-bit fields, used for copying */ 19274 dst = (uint32_t *)rptr; 19275 src = (uint32_t *)tcp->tcp_iphc; 19276 hdrlen = tcp->tcp_hdr_len; 19277 19278 /* Fill time-stamp option if needed */ 19279 if (tcp->tcp_snd_ts_ok) { 19280 U32_TO_BE32((uint32_t)now, 19281 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19282 U32_TO_BE32(tcp->tcp_ts_recent, 19283 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19284 } else { 19285 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19286 } 19287 19288 /* 19289 * Copy the template header; is this really more efficient than 19290 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19291 * but perhaps not for other scenarios. 19292 */ 19293 dst[0] = src[0]; 19294 dst[1] = src[1]; 19295 dst[2] = src[2]; 19296 dst[3] = src[3]; 19297 dst[4] = src[4]; 19298 dst[5] = src[5]; 19299 dst[6] = src[6]; 19300 dst[7] = src[7]; 19301 dst[8] = src[8]; 19302 dst[9] = src[9]; 19303 if (hdrlen -= 40) { 19304 hdrlen >>= 2; 19305 dst += 10; 19306 src += 10; 19307 do { 19308 *dst++ = *src++; 19309 } while (--hdrlen); 19310 } 19311 19312 /* 19313 * Set the ECN info in the TCP header if it is not a zero 19314 * window probe. Zero window probe is only sent in 19315 * tcp_wput_data() and tcp_timer(). 19316 */ 19317 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19318 SET_ECT(tcp, rptr); 19319 19320 if (tcp->tcp_ecn_echo_on) 19321 tcp_h->th_flags[0] |= TH_ECE; 19322 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19323 tcp_h->th_flags[0] |= TH_CWR; 19324 tcp->tcp_ecn_cwr_sent = B_TRUE; 19325 } 19326 } 19327 19328 /* Fill in SACK options */ 19329 if (num_sack_blk > 0) { 19330 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19331 sack_blk_t *tmp; 19332 int32_t i; 19333 19334 wptr[0] = TCPOPT_NOP; 19335 wptr[1] = TCPOPT_NOP; 19336 wptr[2] = TCPOPT_SACK; 19337 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19338 sizeof (sack_blk_t); 19339 wptr += TCPOPT_REAL_SACK_LEN; 19340 19341 tmp = tcp->tcp_sack_list; 19342 for (i = 0; i < num_sack_blk; i++) { 19343 U32_TO_BE32(tmp[i].begin, wptr); 19344 wptr += sizeof (tcp_seq); 19345 U32_TO_BE32(tmp[i].end, wptr); 19346 wptr += sizeof (tcp_seq); 19347 } 19348 tcp_h->th_offset_and_rsrvd[0] += 19349 ((num_sack_blk * 2 + 1) << 4); 19350 } 19351 } 19352 19353 /* 19354 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19355 * the destination address and SAP attribute, and if necessary, the 19356 * hardware checksum offload attribute to a Multidata message. 19357 */ 19358 static int 19359 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19360 const uint32_t start, const uint32_t stuff, const uint32_t end, 19361 const uint32_t flags) 19362 { 19363 /* Add global destination address & SAP attribute */ 19364 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19365 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19366 "destination address+SAP\n")); 19367 19368 if (dlmp != NULL) 19369 TCP_STAT(tcp_mdt_allocfail); 19370 return (-1); 19371 } 19372 19373 /* Add global hwcksum attribute */ 19374 if (hwcksum && 19375 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19376 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19377 "checksum attribute\n")); 19378 19379 TCP_STAT(tcp_mdt_allocfail); 19380 return (-1); 19381 } 19382 19383 return (0); 19384 } 19385 19386 /* 19387 * Smaller and private version of pdescinfo_t used specifically for TCP, 19388 * which allows for only two payload spans per packet. 19389 */ 19390 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19391 19392 /* 19393 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19394 * scheme, and returns one the following: 19395 * 19396 * -1 = failed allocation. 19397 * 0 = success; burst count reached, or usable send window is too small, 19398 * and that we'd rather wait until later before sending again. 19399 */ 19400 static int 19401 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19402 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19403 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19404 const int mdt_thres) 19405 { 19406 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19407 multidata_t *mmd; 19408 uint_t obsegs, obbytes, hdr_frag_sz; 19409 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19410 int num_burst_seg, max_pld; 19411 pdesc_t *pkt; 19412 tcp_pdescinfo_t tcp_pkt_info; 19413 pdescinfo_t *pkt_info; 19414 int pbuf_idx, pbuf_idx_nxt; 19415 int seg_len, len, spill, af; 19416 boolean_t add_buffer, zcopy, clusterwide; 19417 boolean_t buf_trunked = B_FALSE; 19418 boolean_t rconfirm = B_FALSE; 19419 boolean_t done = B_FALSE; 19420 uint32_t cksum; 19421 uint32_t hwcksum_flags; 19422 ire_t *ire = NULL; 19423 ill_t *ill; 19424 ipha_t *ipha; 19425 ip6_t *ip6h; 19426 ipaddr_t src, dst; 19427 ill_zerocopy_capab_t *zc_cap = NULL; 19428 uint16_t *up; 19429 int err; 19430 conn_t *connp; 19431 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19432 uchar_t *pld_start; 19433 19434 #ifdef _BIG_ENDIAN 19435 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19436 #else 19437 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19438 #endif 19439 19440 #define PREP_NEW_MULTIDATA() { \ 19441 mmd = NULL; \ 19442 md_mp = md_hbuf = NULL; \ 19443 cur_hdr_off = 0; \ 19444 max_pld = tcp->tcp_mdt_max_pld; \ 19445 pbuf_idx = pbuf_idx_nxt = -1; \ 19446 add_buffer = B_TRUE; \ 19447 zcopy = B_FALSE; \ 19448 } 19449 19450 #define PREP_NEW_PBUF() { \ 19451 md_pbuf = md_pbuf_nxt = NULL; \ 19452 pbuf_idx = pbuf_idx_nxt = -1; \ 19453 cur_pld_off = 0; \ 19454 first_snxt = *snxt; \ 19455 ASSERT(*tail_unsent > 0); \ 19456 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19457 } 19458 19459 ASSERT(mdt_thres >= mss); 19460 ASSERT(*usable > 0 && *usable > mdt_thres); 19461 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19462 ASSERT(!TCP_IS_DETACHED(tcp)); 19463 ASSERT(tcp->tcp_valid_bits == 0 || 19464 tcp->tcp_valid_bits == TCP_FSS_VALID); 19465 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19466 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19467 (tcp->tcp_ipversion == IPV6_VERSION && 19468 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19469 19470 connp = tcp->tcp_connp; 19471 ASSERT(connp != NULL); 19472 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19473 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19474 19475 /* 19476 * Note that tcp will only declare at most 2 payload spans per 19477 * packet, which is much lower than the maximum allowable number 19478 * of packet spans per Multidata. For this reason, we use the 19479 * privately declared and smaller descriptor info structure, in 19480 * order to save some stack space. 19481 */ 19482 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19483 19484 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19485 if (af == AF_INET) { 19486 dst = tcp->tcp_ipha->ipha_dst; 19487 src = tcp->tcp_ipha->ipha_src; 19488 ASSERT(!CLASSD(dst)); 19489 } 19490 ASSERT(af == AF_INET || 19491 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19492 19493 obsegs = obbytes = 0; 19494 num_burst_seg = tcp->tcp_snd_burst; 19495 md_mp_head = NULL; 19496 PREP_NEW_MULTIDATA(); 19497 19498 /* 19499 * Before we go on further, make sure there is an IRE that we can 19500 * use, and that the ILL supports MDT. Otherwise, there's no point 19501 * in proceeding any further, and we should just hand everything 19502 * off to the legacy path. 19503 */ 19504 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19505 goto legacy_send_no_md; 19506 19507 ASSERT(ire != NULL); 19508 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19509 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19510 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19511 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19512 /* 19513 * If we do support loopback for MDT (which requires modifications 19514 * to the receiving paths), the following assertions should go away, 19515 * and we would be sending the Multidata to loopback conn later on. 19516 */ 19517 ASSERT(!IRE_IS_LOCAL(ire)); 19518 ASSERT(ire->ire_stq != NULL); 19519 19520 ill = ire_to_ill(ire); 19521 ASSERT(ill != NULL); 19522 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19523 19524 if (!tcp->tcp_ire_ill_check_done) { 19525 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19526 tcp->tcp_ire_ill_check_done = B_TRUE; 19527 } 19528 19529 /* 19530 * If the underlying interface conditions have changed, or if the 19531 * new interface does not support MDT, go back to legacy path. 19532 */ 19533 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19534 /* don't go through this path anymore for this connection */ 19535 TCP_STAT(tcp_mdt_conn_halted2); 19536 tcp->tcp_mdt = B_FALSE; 19537 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19538 "interface %s\n", (void *)connp, ill->ill_name)); 19539 /* IRE will be released prior to returning */ 19540 goto legacy_send_no_md; 19541 } 19542 19543 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19544 zc_cap = ill->ill_zerocopy_capab; 19545 19546 /* 19547 * Check if we can take tcp fast-path. Note that "incomplete" 19548 * ire's (where the link-layer for next hop is not resolved 19549 * or where the fast-path header in nce_fp_mp is not available 19550 * yet) are sent down the legacy (slow) path. 19551 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19552 */ 19553 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19554 /* IRE will be released prior to returning */ 19555 goto legacy_send_no_md; 19556 } 19557 19558 /* go to legacy path if interface doesn't support zerocopy */ 19559 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19560 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19561 /* IRE will be released prior to returning */ 19562 goto legacy_send_no_md; 19563 } 19564 19565 /* does the interface support hardware checksum offload? */ 19566 hwcksum_flags = 0; 19567 if (ILL_HCKSUM_CAPABLE(ill) && 19568 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19569 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19570 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19571 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19572 HCKSUM_IPHDRCKSUM) 19573 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19574 19575 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19576 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19577 hwcksum_flags |= HCK_FULLCKSUM; 19578 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19579 HCKSUM_INET_PARTIAL) 19580 hwcksum_flags |= HCK_PARTIALCKSUM; 19581 } 19582 19583 /* 19584 * Each header fragment consists of the leading extra space, 19585 * followed by the TCP/IP header, and the trailing extra space. 19586 * We make sure that each header fragment begins on a 32-bit 19587 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19588 * aligned in tcp_mdt_update). 19589 */ 19590 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19591 tcp->tcp_mdt_hdr_tail), 4); 19592 19593 /* are we starting from the beginning of data block? */ 19594 if (*tail_unsent == 0) { 19595 *xmit_tail = (*xmit_tail)->b_cont; 19596 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19597 *tail_unsent = (int)MBLKL(*xmit_tail); 19598 } 19599 19600 /* 19601 * Here we create one or more Multidata messages, each made up of 19602 * one header buffer and up to N payload buffers. This entire 19603 * operation is done within two loops: 19604 * 19605 * The outer loop mostly deals with creating the Multidata message, 19606 * as well as the header buffer that gets added to it. It also 19607 * links the Multidata messages together such that all of them can 19608 * be sent down to the lower layer in a single putnext call; this 19609 * linking behavior depends on the tcp_mdt_chain tunable. 19610 * 19611 * The inner loop takes an existing Multidata message, and adds 19612 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19613 * packetizes those buffers by filling up the corresponding header 19614 * buffer fragments with the proper IP and TCP headers, and by 19615 * describing the layout of each packet in the packet descriptors 19616 * that get added to the Multidata. 19617 */ 19618 do { 19619 /* 19620 * If usable send window is too small, or data blocks in 19621 * transmit list are smaller than our threshold (i.e. app 19622 * performs large writes followed by small ones), we hand 19623 * off the control over to the legacy path. Note that we'll 19624 * get back the control once it encounters a large block. 19625 */ 19626 if (*usable < mss || (*tail_unsent <= mdt_thres && 19627 (*xmit_tail)->b_cont != NULL && 19628 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19629 /* send down what we've got so far */ 19630 if (md_mp_head != NULL) { 19631 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19632 obsegs, obbytes, &rconfirm); 19633 } 19634 /* 19635 * Pass control over to tcp_send(), but tell it to 19636 * return to us once a large-size transmission is 19637 * possible. 19638 */ 19639 TCP_STAT(tcp_mdt_legacy_small); 19640 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19641 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19642 tail_unsent, xmit_tail, local_time, 19643 mdt_thres)) <= 0) { 19644 /* burst count reached, or alloc failed */ 19645 IRE_REFRELE(ire); 19646 return (err); 19647 } 19648 19649 /* tcp_send() may have sent everything, so check */ 19650 if (*usable <= 0) { 19651 IRE_REFRELE(ire); 19652 return (0); 19653 } 19654 19655 TCP_STAT(tcp_mdt_legacy_ret); 19656 /* 19657 * We may have delivered the Multidata, so make sure 19658 * to re-initialize before the next round. 19659 */ 19660 md_mp_head = NULL; 19661 obsegs = obbytes = 0; 19662 num_burst_seg = tcp->tcp_snd_burst; 19663 PREP_NEW_MULTIDATA(); 19664 19665 /* are we starting from the beginning of data block? */ 19666 if (*tail_unsent == 0) { 19667 *xmit_tail = (*xmit_tail)->b_cont; 19668 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19669 (uintptr_t)INT_MAX); 19670 *tail_unsent = (int)MBLKL(*xmit_tail); 19671 } 19672 } 19673 19674 /* 19675 * max_pld limits the number of mblks in tcp's transmit 19676 * queue that can be added to a Multidata message. Once 19677 * this counter reaches zero, no more additional mblks 19678 * can be added to it. What happens afterwards depends 19679 * on whether or not we are set to chain the Multidata 19680 * messages. If we are to link them together, reset 19681 * max_pld to its original value (tcp_mdt_max_pld) and 19682 * prepare to create a new Multidata message which will 19683 * get linked to md_mp_head. Else, leave it alone and 19684 * let the inner loop break on its own. 19685 */ 19686 if (tcp_mdt_chain && max_pld == 0) 19687 PREP_NEW_MULTIDATA(); 19688 19689 /* adding a payload buffer; re-initialize values */ 19690 if (add_buffer) 19691 PREP_NEW_PBUF(); 19692 19693 /* 19694 * If we don't have a Multidata, either because we just 19695 * (re)entered this outer loop, or after we branched off 19696 * to tcp_send above, setup the Multidata and header 19697 * buffer to be used. 19698 */ 19699 if (md_mp == NULL) { 19700 int md_hbuflen; 19701 uint32_t start, stuff; 19702 19703 /* 19704 * Calculate Multidata header buffer size large enough 19705 * to hold all of the headers that can possibly be 19706 * sent at this moment. We'd rather over-estimate 19707 * the size than running out of space; this is okay 19708 * since this buffer is small anyway. 19709 */ 19710 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19711 19712 /* 19713 * Start and stuff offset for partial hardware 19714 * checksum offload; these are currently for IPv4. 19715 * For full checksum offload, they are set to zero. 19716 */ 19717 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19718 if (af == AF_INET) { 19719 start = IP_SIMPLE_HDR_LENGTH; 19720 stuff = IP_SIMPLE_HDR_LENGTH + 19721 TCP_CHECKSUM_OFFSET; 19722 } else { 19723 start = IPV6_HDR_LEN; 19724 stuff = IPV6_HDR_LEN + 19725 TCP_CHECKSUM_OFFSET; 19726 } 19727 } else { 19728 start = stuff = 0; 19729 } 19730 19731 /* 19732 * Create the header buffer, Multidata, as well as 19733 * any necessary attributes (destination address, 19734 * SAP and hardware checksum offload) that should 19735 * be associated with the Multidata message. 19736 */ 19737 ASSERT(cur_hdr_off == 0); 19738 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19739 ((md_hbuf->b_wptr += md_hbuflen), 19740 (mmd = mmd_alloc(md_hbuf, &md_mp, 19741 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19742 /* fastpath mblk */ 19743 ire->ire_nce->nce_res_mp, 19744 /* hardware checksum enabled */ 19745 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19746 /* hardware checksum offsets */ 19747 start, stuff, 0, 19748 /* hardware checksum flag */ 19749 hwcksum_flags) != 0)) { 19750 legacy_send: 19751 if (md_mp != NULL) { 19752 /* Unlink message from the chain */ 19753 if (md_mp_head != NULL) { 19754 err = (intptr_t)rmvb(md_mp_head, 19755 md_mp); 19756 /* 19757 * We can't assert that rmvb 19758 * did not return -1, since we 19759 * may get here before linkb 19760 * happens. We do, however, 19761 * check if we just removed the 19762 * only element in the list. 19763 */ 19764 if (err == 0) 19765 md_mp_head = NULL; 19766 } 19767 /* md_hbuf gets freed automatically */ 19768 TCP_STAT(tcp_mdt_discarded); 19769 freeb(md_mp); 19770 } else { 19771 /* Either allocb or mmd_alloc failed */ 19772 TCP_STAT(tcp_mdt_allocfail); 19773 if (md_hbuf != NULL) 19774 freeb(md_hbuf); 19775 } 19776 19777 /* send down what we've got so far */ 19778 if (md_mp_head != NULL) { 19779 tcp_multisend_data(tcp, ire, ill, 19780 md_mp_head, obsegs, obbytes, 19781 &rconfirm); 19782 } 19783 legacy_send_no_md: 19784 if (ire != NULL) 19785 IRE_REFRELE(ire); 19786 /* 19787 * Too bad; let the legacy path handle this. 19788 * We specify INT_MAX for the threshold, since 19789 * we gave up with the Multidata processings 19790 * and let the old path have it all. 19791 */ 19792 TCP_STAT(tcp_mdt_legacy_all); 19793 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19794 tcp_tcp_hdr_len, num_sack_blk, usable, 19795 snxt, tail_unsent, xmit_tail, local_time, 19796 INT_MAX)); 19797 } 19798 19799 /* link to any existing ones, if applicable */ 19800 TCP_STAT(tcp_mdt_allocd); 19801 if (md_mp_head == NULL) { 19802 md_mp_head = md_mp; 19803 } else if (tcp_mdt_chain) { 19804 TCP_STAT(tcp_mdt_linked); 19805 linkb(md_mp_head, md_mp); 19806 } 19807 } 19808 19809 ASSERT(md_mp_head != NULL); 19810 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19811 ASSERT(md_mp != NULL && mmd != NULL); 19812 ASSERT(md_hbuf != NULL); 19813 19814 /* 19815 * Packetize the transmittable portion of the data block; 19816 * each data block is essentially added to the Multidata 19817 * as a payload buffer. We also deal with adding more 19818 * than one payload buffers, which happens when the remaining 19819 * packetized portion of the current payload buffer is less 19820 * than MSS, while the next data block in transmit queue 19821 * has enough data to make up for one. This "spillover" 19822 * case essentially creates a split-packet, where portions 19823 * of the packet's payload fragments may span across two 19824 * virtually discontiguous address blocks. 19825 */ 19826 seg_len = mss; 19827 do { 19828 len = seg_len; 19829 19830 ASSERT(len > 0); 19831 ASSERT(max_pld >= 0); 19832 ASSERT(!add_buffer || cur_pld_off == 0); 19833 19834 /* 19835 * First time around for this payload buffer; note 19836 * in the case of a spillover, the following has 19837 * been done prior to adding the split-packet 19838 * descriptor to Multidata, and we don't want to 19839 * repeat the process. 19840 */ 19841 if (add_buffer) { 19842 ASSERT(mmd != NULL); 19843 ASSERT(md_pbuf == NULL); 19844 ASSERT(md_pbuf_nxt == NULL); 19845 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19846 19847 /* 19848 * Have we reached the limit? We'd get to 19849 * this case when we're not chaining the 19850 * Multidata messages together, and since 19851 * we're done, terminate this loop. 19852 */ 19853 if (max_pld == 0) 19854 break; /* done */ 19855 19856 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19857 TCP_STAT(tcp_mdt_allocfail); 19858 goto legacy_send; /* out_of_mem */ 19859 } 19860 19861 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19862 zc_cap != NULL) { 19863 if (!ip_md_zcopy_attr(mmd, NULL, 19864 zc_cap->ill_zerocopy_flags)) { 19865 freeb(md_pbuf); 19866 TCP_STAT(tcp_mdt_allocfail); 19867 /* out_of_mem */ 19868 goto legacy_send; 19869 } 19870 zcopy = B_TRUE; 19871 } 19872 19873 md_pbuf->b_rptr += base_pld_off; 19874 19875 /* 19876 * Add a payload buffer to the Multidata; this 19877 * operation must not fail, or otherwise our 19878 * logic in this routine is broken. There 19879 * is no memory allocation done by the 19880 * routine, so any returned failure simply 19881 * tells us that we've done something wrong. 19882 * 19883 * A failure tells us that either we're adding 19884 * the same payload buffer more than once, or 19885 * we're trying to add more buffers than 19886 * allowed (max_pld calculation is wrong). 19887 * None of the above cases should happen, and 19888 * we panic because either there's horrible 19889 * heap corruption, and/or programming mistake. 19890 */ 19891 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19892 if (pbuf_idx < 0) { 19893 cmn_err(CE_PANIC, "tcp_multisend: " 19894 "payload buffer logic error " 19895 "detected for tcp %p mmd %p " 19896 "pbuf %p (%d)\n", 19897 (void *)tcp, (void *)mmd, 19898 (void *)md_pbuf, pbuf_idx); 19899 } 19900 19901 ASSERT(max_pld > 0); 19902 --max_pld; 19903 add_buffer = B_FALSE; 19904 } 19905 19906 ASSERT(md_mp_head != NULL); 19907 ASSERT(md_pbuf != NULL); 19908 ASSERT(md_pbuf_nxt == NULL); 19909 ASSERT(pbuf_idx != -1); 19910 ASSERT(pbuf_idx_nxt == -1); 19911 ASSERT(*usable > 0); 19912 19913 /* 19914 * We spillover to the next payload buffer only 19915 * if all of the following is true: 19916 * 19917 * 1. There is not enough data on the current 19918 * payload buffer to make up `len', 19919 * 2. We are allowed to send `len', 19920 * 3. The next payload buffer length is large 19921 * enough to accomodate `spill'. 19922 */ 19923 if ((spill = len - *tail_unsent) > 0 && 19924 *usable >= len && 19925 MBLKL((*xmit_tail)->b_cont) >= spill && 19926 max_pld > 0) { 19927 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19928 if (md_pbuf_nxt == NULL) { 19929 TCP_STAT(tcp_mdt_allocfail); 19930 goto legacy_send; /* out_of_mem */ 19931 } 19932 19933 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19934 zc_cap != NULL) { 19935 if (!ip_md_zcopy_attr(mmd, NULL, 19936 zc_cap->ill_zerocopy_flags)) { 19937 freeb(md_pbuf_nxt); 19938 TCP_STAT(tcp_mdt_allocfail); 19939 /* out_of_mem */ 19940 goto legacy_send; 19941 } 19942 zcopy = B_TRUE; 19943 } 19944 19945 /* 19946 * See comments above on the first call to 19947 * mmd_addpldbuf for explanation on the panic. 19948 */ 19949 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19950 if (pbuf_idx_nxt < 0) { 19951 panic("tcp_multisend: " 19952 "next payload buffer logic error " 19953 "detected for tcp %p mmd %p " 19954 "pbuf %p (%d)\n", 19955 (void *)tcp, (void *)mmd, 19956 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19957 } 19958 19959 ASSERT(max_pld > 0); 19960 --max_pld; 19961 } else if (spill > 0) { 19962 /* 19963 * If there's a spillover, but the following 19964 * xmit_tail couldn't give us enough octets 19965 * to reach "len", then stop the current 19966 * Multidata creation and let the legacy 19967 * tcp_send() path take over. We don't want 19968 * to send the tiny segment as part of this 19969 * Multidata for performance reasons; instead, 19970 * we let the legacy path deal with grouping 19971 * it with the subsequent small mblks. 19972 */ 19973 if (*usable >= len && 19974 MBLKL((*xmit_tail)->b_cont) < spill) { 19975 max_pld = 0; 19976 break; /* done */ 19977 } 19978 19979 /* 19980 * We can't spillover, and we are near 19981 * the end of the current payload buffer, 19982 * so send what's left. 19983 */ 19984 ASSERT(*tail_unsent > 0); 19985 len = *tail_unsent; 19986 } 19987 19988 /* tail_unsent is negated if there is a spillover */ 19989 *tail_unsent -= len; 19990 *usable -= len; 19991 ASSERT(*usable >= 0); 19992 19993 if (*usable < mss) 19994 seg_len = *usable; 19995 /* 19996 * Sender SWS avoidance; see comments in tcp_send(); 19997 * everything else is the same, except that we only 19998 * do this here if there is no more data to be sent 19999 * following the current xmit_tail. We don't check 20000 * for 1-byte urgent data because we shouldn't get 20001 * here if TCP_URG_VALID is set. 20002 */ 20003 if (*usable > 0 && *usable < mss && 20004 ((md_pbuf_nxt == NULL && 20005 (*xmit_tail)->b_cont == NULL) || 20006 (md_pbuf_nxt != NULL && 20007 (*xmit_tail)->b_cont->b_cont == NULL)) && 20008 seg_len < (tcp->tcp_max_swnd >> 1) && 20009 (tcp->tcp_unsent - 20010 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20011 !tcp->tcp_zero_win_probe) { 20012 if ((*snxt + len) == tcp->tcp_snxt && 20013 (*snxt + len) == tcp->tcp_suna) { 20014 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20015 } 20016 done = B_TRUE; 20017 } 20018 20019 /* 20020 * Prime pump for IP's checksumming on our behalf; 20021 * include the adjustment for a source route if any. 20022 * Do this only for software/partial hardware checksum 20023 * offload, as this field gets zeroed out later for 20024 * the full hardware checksum offload case. 20025 */ 20026 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20027 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20028 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20029 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20030 } 20031 20032 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20033 *snxt += len; 20034 20035 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20036 /* 20037 * We set the PUSH bit only if TCP has no more buffered 20038 * data to be transmitted (or if sender SWS avoidance 20039 * takes place), as opposed to setting it for every 20040 * last packet in the burst. 20041 */ 20042 if (done || 20043 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20044 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20045 20046 /* 20047 * Set FIN bit if this is our last segment; snxt 20048 * already includes its length, and it will not 20049 * be adjusted after this point. 20050 */ 20051 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20052 *snxt == tcp->tcp_fss) { 20053 if (!tcp->tcp_fin_acked) { 20054 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20055 BUMP_MIB(&tcp_mib, tcpOutControl); 20056 } 20057 if (!tcp->tcp_fin_sent) { 20058 tcp->tcp_fin_sent = B_TRUE; 20059 /* 20060 * tcp state must be ESTABLISHED 20061 * in order for us to get here in 20062 * the first place. 20063 */ 20064 tcp->tcp_state = TCPS_FIN_WAIT_1; 20065 20066 /* 20067 * Upon returning from this routine, 20068 * tcp_wput_data() will set tcp_snxt 20069 * to be equal to snxt + tcp_fin_sent. 20070 * This is essentially the same as 20071 * setting it to tcp_fss + 1. 20072 */ 20073 } 20074 } 20075 20076 tcp->tcp_last_sent_len = (ushort_t)len; 20077 20078 len += tcp_hdr_len; 20079 if (tcp->tcp_ipversion == IPV4_VERSION) 20080 tcp->tcp_ipha->ipha_length = htons(len); 20081 else 20082 tcp->tcp_ip6h->ip6_plen = htons(len - 20083 ((char *)&tcp->tcp_ip6h[1] - 20084 tcp->tcp_iphc)); 20085 20086 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20087 20088 /* setup header fragment */ 20089 PDESC_HDR_ADD(pkt_info, 20090 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20091 tcp->tcp_mdt_hdr_head, /* head room */ 20092 tcp_hdr_len, /* len */ 20093 tcp->tcp_mdt_hdr_tail); /* tail room */ 20094 20095 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20096 hdr_frag_sz); 20097 ASSERT(MBLKIN(md_hbuf, 20098 (pkt_info->hdr_base - md_hbuf->b_rptr), 20099 PDESC_HDRSIZE(pkt_info))); 20100 20101 /* setup first payload fragment */ 20102 PDESC_PLD_INIT(pkt_info); 20103 PDESC_PLD_SPAN_ADD(pkt_info, 20104 pbuf_idx, /* index */ 20105 md_pbuf->b_rptr + cur_pld_off, /* start */ 20106 tcp->tcp_last_sent_len); /* len */ 20107 20108 /* create a split-packet in case of a spillover */ 20109 if (md_pbuf_nxt != NULL) { 20110 ASSERT(spill > 0); 20111 ASSERT(pbuf_idx_nxt > pbuf_idx); 20112 ASSERT(!add_buffer); 20113 20114 md_pbuf = md_pbuf_nxt; 20115 md_pbuf_nxt = NULL; 20116 pbuf_idx = pbuf_idx_nxt; 20117 pbuf_idx_nxt = -1; 20118 cur_pld_off = spill; 20119 20120 /* trim out first payload fragment */ 20121 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20122 20123 /* setup second payload fragment */ 20124 PDESC_PLD_SPAN_ADD(pkt_info, 20125 pbuf_idx, /* index */ 20126 md_pbuf->b_rptr, /* start */ 20127 spill); /* len */ 20128 20129 if ((*xmit_tail)->b_next == NULL) { 20130 /* 20131 * Store the lbolt used for RTT 20132 * estimation. We can only record one 20133 * timestamp per mblk so we do it when 20134 * we reach the end of the payload 20135 * buffer. Also we only take a new 20136 * timestamp sample when the previous 20137 * timed data from the same mblk has 20138 * been ack'ed. 20139 */ 20140 (*xmit_tail)->b_prev = local_time; 20141 (*xmit_tail)->b_next = 20142 (mblk_t *)(uintptr_t)first_snxt; 20143 } 20144 20145 first_snxt = *snxt - spill; 20146 20147 /* 20148 * Advance xmit_tail; usable could be 0 by 20149 * the time we got here, but we made sure 20150 * above that we would only spillover to 20151 * the next data block if usable includes 20152 * the spilled-over amount prior to the 20153 * subtraction. Therefore, we are sure 20154 * that xmit_tail->b_cont can't be NULL. 20155 */ 20156 ASSERT((*xmit_tail)->b_cont != NULL); 20157 *xmit_tail = (*xmit_tail)->b_cont; 20158 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20159 (uintptr_t)INT_MAX); 20160 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20161 } else { 20162 cur_pld_off += tcp->tcp_last_sent_len; 20163 } 20164 20165 /* 20166 * Fill in the header using the template header, and 20167 * add options such as time-stamp, ECN and/or SACK, 20168 * as needed. 20169 */ 20170 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20171 (clock_t)local_time, num_sack_blk); 20172 20173 /* take care of some IP header businesses */ 20174 if (af == AF_INET) { 20175 ipha = (ipha_t *)pkt_info->hdr_rptr; 20176 20177 ASSERT(OK_32PTR((uchar_t *)ipha)); 20178 ASSERT(PDESC_HDRL(pkt_info) >= 20179 IP_SIMPLE_HDR_LENGTH); 20180 ASSERT(ipha->ipha_version_and_hdr_length == 20181 IP_SIMPLE_HDR_VERSION); 20182 20183 /* 20184 * Assign ident value for current packet; see 20185 * related comments in ip_wput_ire() about the 20186 * contract private interface with clustering 20187 * group. 20188 */ 20189 clusterwide = B_FALSE; 20190 if (cl_inet_ipident != NULL) { 20191 ASSERT(cl_inet_isclusterwide != NULL); 20192 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20193 AF_INET, 20194 (uint8_t *)(uintptr_t)src)) { 20195 ipha->ipha_ident = 20196 (*cl_inet_ipident) 20197 (IPPROTO_IP, AF_INET, 20198 (uint8_t *)(uintptr_t)src, 20199 (uint8_t *)(uintptr_t)dst); 20200 clusterwide = B_TRUE; 20201 } 20202 } 20203 20204 if (!clusterwide) { 20205 ipha->ipha_ident = (uint16_t) 20206 atomic_add_32_nv( 20207 &ire->ire_ident, 1); 20208 } 20209 #ifndef _BIG_ENDIAN 20210 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20211 (ipha->ipha_ident >> 8); 20212 #endif 20213 } else { 20214 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20215 20216 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20217 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20218 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20219 ASSERT(PDESC_HDRL(pkt_info) >= 20220 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20221 TCP_CHECKSUM_SIZE)); 20222 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20223 20224 if (tcp->tcp_ip_forward_progress) { 20225 rconfirm = B_TRUE; 20226 tcp->tcp_ip_forward_progress = B_FALSE; 20227 } 20228 } 20229 20230 /* at least one payload span, and at most two */ 20231 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20232 20233 /* add the packet descriptor to Multidata */ 20234 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20235 KM_NOSLEEP)) == NULL) { 20236 /* 20237 * Any failure other than ENOMEM indicates 20238 * that we have passed in invalid pkt_info 20239 * or parameters to mmd_addpdesc, which must 20240 * not happen. 20241 * 20242 * EINVAL is a result of failure on boundary 20243 * checks against the pkt_info contents. It 20244 * should not happen, and we panic because 20245 * either there's horrible heap corruption, 20246 * and/or programming mistake. 20247 */ 20248 if (err != ENOMEM) { 20249 cmn_err(CE_PANIC, "tcp_multisend: " 20250 "pdesc logic error detected for " 20251 "tcp %p mmd %p pinfo %p (%d)\n", 20252 (void *)tcp, (void *)mmd, 20253 (void *)pkt_info, err); 20254 } 20255 TCP_STAT(tcp_mdt_addpdescfail); 20256 goto legacy_send; /* out_of_mem */ 20257 } 20258 ASSERT(pkt != NULL); 20259 20260 /* calculate IP header and TCP checksums */ 20261 if (af == AF_INET) { 20262 /* calculate pseudo-header checksum */ 20263 cksum = (dst >> 16) + (dst & 0xFFFF) + 20264 (src >> 16) + (src & 0xFFFF); 20265 20266 /* offset for TCP header checksum */ 20267 up = IPH_TCPH_CHECKSUMP(ipha, 20268 IP_SIMPLE_HDR_LENGTH); 20269 } else { 20270 up = (uint16_t *)&ip6h->ip6_src; 20271 20272 /* calculate pseudo-header checksum */ 20273 cksum = up[0] + up[1] + up[2] + up[3] + 20274 up[4] + up[5] + up[6] + up[7] + 20275 up[8] + up[9] + up[10] + up[11] + 20276 up[12] + up[13] + up[14] + up[15]; 20277 20278 /* Fold the initial sum */ 20279 cksum = (cksum & 0xffff) + (cksum >> 16); 20280 20281 up = (uint16_t *)(((uchar_t *)ip6h) + 20282 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20283 } 20284 20285 if (hwcksum_flags & HCK_FULLCKSUM) { 20286 /* clear checksum field for hardware */ 20287 *up = 0; 20288 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20289 uint32_t sum; 20290 20291 /* pseudo-header checksumming */ 20292 sum = *up + cksum + IP_TCP_CSUM_COMP; 20293 sum = (sum & 0xFFFF) + (sum >> 16); 20294 *up = (sum & 0xFFFF) + (sum >> 16); 20295 } else { 20296 /* software checksumming */ 20297 TCP_STAT(tcp_out_sw_cksum); 20298 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 20299 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20300 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20301 cksum + IP_TCP_CSUM_COMP); 20302 if (*up == 0) 20303 *up = 0xFFFF; 20304 } 20305 20306 /* IPv4 header checksum */ 20307 if (af == AF_INET) { 20308 ipha->ipha_fragment_offset_and_flags |= 20309 (uint32_t)htons(ire->ire_frag_flag); 20310 20311 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20312 ipha->ipha_hdr_checksum = 0; 20313 } else { 20314 IP_HDR_CKSUM(ipha, cksum, 20315 ((uint32_t *)ipha)[0], 20316 ((uint16_t *)ipha)[4]); 20317 } 20318 } 20319 20320 if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT|| 20321 af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) { 20322 /* build header(IP/TCP) mblk for this segment */ 20323 if ((mp = dupb(md_hbuf)) == NULL) 20324 goto legacy_send; 20325 20326 mp->b_rptr = pkt_info->hdr_rptr; 20327 mp->b_wptr = pkt_info->hdr_wptr; 20328 20329 /* build payload mblk for this segment */ 20330 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20331 freemsg(mp); 20332 goto legacy_send; 20333 } 20334 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20335 mp1->b_rptr = mp1->b_wptr - 20336 tcp->tcp_last_sent_len; 20337 linkb(mp, mp1); 20338 20339 pld_start = mp1->b_rptr; 20340 20341 if (af == AF_INET) { 20342 DTRACE_PROBE4( 20343 ip4__physical__out__start, 20344 ill_t *, NULL, 20345 ill_t *, ill, 20346 ipha_t *, ipha, 20347 mblk_t *, mp); 20348 FW_HOOKS(ip4_physical_out_event, 20349 ipv4firewall_physical_out, 20350 NULL, ill, ipha, mp, mp); 20351 DTRACE_PROBE1( 20352 ip4__physical__out__end, 20353 mblk_t *, mp); 20354 } else { 20355 DTRACE_PROBE4( 20356 ip6__physical__out_start, 20357 ill_t *, NULL, 20358 ill_t *, ill, 20359 ip6_t *, ip6h, 20360 mblk_t *, mp); 20361 FW_HOOKS6(ip6_physical_out_event, 20362 ipv6firewall_physical_out, 20363 NULL, ill, ip6h, mp, mp); 20364 DTRACE_PROBE1( 20365 ip6__physical__out__end, 20366 mblk_t *, mp); 20367 } 20368 20369 if (buf_trunked && mp != NULL) { 20370 /* 20371 * Need to pass it to normal path. 20372 */ 20373 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20374 } else if (mp == NULL || 20375 mp->b_rptr != pkt_info->hdr_rptr || 20376 mp->b_wptr != pkt_info->hdr_wptr || 20377 (mp1 = mp->b_cont) == NULL || 20378 mp1->b_rptr != pld_start || 20379 mp1->b_wptr != pld_start + 20380 tcp->tcp_last_sent_len || 20381 mp1->b_cont != NULL) { 20382 /* 20383 * Need to pass all packets of this 20384 * buffer to normal path, either when 20385 * packet is blocked, or when boundary 20386 * of header buffer or payload buffer 20387 * has been changed by FW_HOOKS[6]. 20388 */ 20389 buf_trunked = B_TRUE; 20390 if (md_mp_head != NULL) { 20391 err = (intptr_t)rmvb(md_mp_head, 20392 md_mp); 20393 if (err == 0) 20394 md_mp_head = NULL; 20395 } 20396 20397 /* send down what we've got so far */ 20398 if (md_mp_head != NULL) { 20399 tcp_multisend_data(tcp, ire, 20400 ill, md_mp_head, obsegs, 20401 obbytes, &rconfirm); 20402 } 20403 md_mp_head = NULL; 20404 20405 if (mp != NULL) 20406 CALL_IP_WPUT(tcp->tcp_connp, 20407 q, mp); 20408 20409 mp1 = fw_mp_head; 20410 do { 20411 mp = mp1; 20412 mp1 = mp1->b_next; 20413 mp->b_next = NULL; 20414 mp->b_prev = NULL; 20415 CALL_IP_WPUT(tcp->tcp_connp, 20416 q, mp); 20417 } while (mp1 != NULL); 20418 20419 fw_mp_head = NULL; 20420 } else { 20421 if (fw_mp_head == NULL) 20422 fw_mp_head = mp; 20423 else 20424 fw_mp_head->b_prev->b_next = mp; 20425 fw_mp_head->b_prev = mp; 20426 } 20427 } 20428 20429 /* advance header offset */ 20430 cur_hdr_off += hdr_frag_sz; 20431 20432 obbytes += tcp->tcp_last_sent_len; 20433 ++obsegs; 20434 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20435 *tail_unsent > 0); 20436 20437 if ((*xmit_tail)->b_next == NULL) { 20438 /* 20439 * Store the lbolt used for RTT estimation. We can only 20440 * record one timestamp per mblk so we do it when we 20441 * reach the end of the payload buffer. Also we only 20442 * take a new timestamp sample when the previous timed 20443 * data from the same mblk has been ack'ed. 20444 */ 20445 (*xmit_tail)->b_prev = local_time; 20446 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20447 } 20448 20449 ASSERT(*tail_unsent >= 0); 20450 if (*tail_unsent > 0) { 20451 /* 20452 * We got here because we broke out of the above 20453 * loop due to of one of the following cases: 20454 * 20455 * 1. len < adjusted MSS (i.e. small), 20456 * 2. Sender SWS avoidance, 20457 * 3. max_pld is zero. 20458 * 20459 * We are done for this Multidata, so trim our 20460 * last payload buffer (if any) accordingly. 20461 */ 20462 if (md_pbuf != NULL) 20463 md_pbuf->b_wptr -= *tail_unsent; 20464 } else if (*usable > 0) { 20465 *xmit_tail = (*xmit_tail)->b_cont; 20466 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20467 (uintptr_t)INT_MAX); 20468 *tail_unsent = (int)MBLKL(*xmit_tail); 20469 add_buffer = B_TRUE; 20470 } 20471 20472 while (fw_mp_head) { 20473 mp = fw_mp_head; 20474 fw_mp_head = fw_mp_head->b_next; 20475 mp->b_prev = mp->b_next = NULL; 20476 freemsg(mp); 20477 } 20478 if (buf_trunked) { 20479 TCP_STAT(tcp_mdt_discarded); 20480 freeb(md_mp); 20481 buf_trunked = B_FALSE; 20482 } 20483 } while (!done && *usable > 0 && num_burst_seg > 0 && 20484 (tcp_mdt_chain || max_pld > 0)); 20485 20486 if (md_mp_head != NULL) { 20487 /* send everything down */ 20488 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20489 &rconfirm); 20490 } 20491 20492 #undef PREP_NEW_MULTIDATA 20493 #undef PREP_NEW_PBUF 20494 #undef IPVER 20495 20496 IRE_REFRELE(ire); 20497 return (0); 20498 } 20499 20500 /* 20501 * A wrapper function for sending one or more Multidata messages down to 20502 * the module below ip; this routine does not release the reference of the 20503 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20504 */ 20505 static void 20506 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20507 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20508 { 20509 uint64_t delta; 20510 nce_t *nce; 20511 20512 ASSERT(ire != NULL && ill != NULL); 20513 ASSERT(ire->ire_stq != NULL); 20514 ASSERT(md_mp_head != NULL); 20515 ASSERT(rconfirm != NULL); 20516 20517 /* adjust MIBs and IRE timestamp */ 20518 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20519 tcp->tcp_obsegs += obsegs; 20520 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20521 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20522 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20523 20524 if (tcp->tcp_ipversion == IPV4_VERSION) { 20525 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20526 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 20527 } else { 20528 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20529 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 20530 } 20531 20532 ire->ire_ob_pkt_count += obsegs; 20533 if (ire->ire_ipif != NULL) 20534 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20535 ire->ire_last_used_time = lbolt; 20536 20537 /* send it down */ 20538 putnext(ire->ire_stq, md_mp_head); 20539 20540 /* we're done for TCP/IPv4 */ 20541 if (tcp->tcp_ipversion == IPV4_VERSION) 20542 return; 20543 20544 nce = ire->ire_nce; 20545 20546 ASSERT(nce != NULL); 20547 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20548 ASSERT(nce->nce_state != ND_INCOMPLETE); 20549 20550 /* reachability confirmation? */ 20551 if (*rconfirm) { 20552 nce->nce_last = TICK_TO_MSEC(lbolt64); 20553 if (nce->nce_state != ND_REACHABLE) { 20554 mutex_enter(&nce->nce_lock); 20555 nce->nce_state = ND_REACHABLE; 20556 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20557 mutex_exit(&nce->nce_lock); 20558 (void) untimeout(nce->nce_timeout_id); 20559 if (ip_debug > 2) { 20560 /* ip1dbg */ 20561 pr_addr_dbg("tcp_multisend_data: state " 20562 "for %s changed to REACHABLE\n", 20563 AF_INET6, &ire->ire_addr_v6); 20564 } 20565 } 20566 /* reset transport reachability confirmation */ 20567 *rconfirm = B_FALSE; 20568 } 20569 20570 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20571 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20572 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20573 20574 if (delta > (uint64_t)ill->ill_reachable_time) { 20575 mutex_enter(&nce->nce_lock); 20576 switch (nce->nce_state) { 20577 case ND_REACHABLE: 20578 case ND_STALE: 20579 /* 20580 * ND_REACHABLE is identical to ND_STALE in this 20581 * specific case. If reachable time has expired for 20582 * this neighbor (delta is greater than reachable 20583 * time), conceptually, the neighbor cache is no 20584 * longer in REACHABLE state, but already in STALE 20585 * state. So the correct transition here is to 20586 * ND_DELAY. 20587 */ 20588 nce->nce_state = ND_DELAY; 20589 mutex_exit(&nce->nce_lock); 20590 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20591 if (ip_debug > 3) { 20592 /* ip2dbg */ 20593 pr_addr_dbg("tcp_multisend_data: state " 20594 "for %s changed to DELAY\n", 20595 AF_INET6, &ire->ire_addr_v6); 20596 } 20597 break; 20598 case ND_DELAY: 20599 case ND_PROBE: 20600 mutex_exit(&nce->nce_lock); 20601 /* Timers have already started */ 20602 break; 20603 case ND_UNREACHABLE: 20604 /* 20605 * ndp timer has detected that this nce is 20606 * unreachable and initiated deleting this nce 20607 * and all its associated IREs. This is a race 20608 * where we found the ire before it was deleted 20609 * and have just sent out a packet using this 20610 * unreachable nce. 20611 */ 20612 mutex_exit(&nce->nce_lock); 20613 break; 20614 default: 20615 ASSERT(0); 20616 } 20617 } 20618 } 20619 20620 /* 20621 * Derived from tcp_send_data(). 20622 */ 20623 static void 20624 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20625 int num_lso_seg) 20626 { 20627 ipha_t *ipha; 20628 mblk_t *ire_fp_mp; 20629 uint_t ire_fp_mp_len; 20630 uint32_t hcksum_txflags = 0; 20631 ipaddr_t src; 20632 ipaddr_t dst; 20633 uint32_t cksum; 20634 uint16_t *up; 20635 20636 ASSERT(DB_TYPE(mp) == M_DATA); 20637 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20638 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20639 ASSERT(tcp->tcp_connp != NULL); 20640 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20641 20642 ipha = (ipha_t *)mp->b_rptr; 20643 src = ipha->ipha_src; 20644 dst = ipha->ipha_dst; 20645 20646 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20647 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20648 num_lso_seg); 20649 #ifndef _BIG_ENDIAN 20650 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20651 #endif 20652 if (tcp->tcp_snd_zcopy_aware) { 20653 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20654 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20655 mp = tcp_zcopy_disable(tcp, mp); 20656 } 20657 20658 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20659 ASSERT(ill->ill_hcksum_capab != NULL); 20660 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20661 } 20662 20663 /* 20664 * Since the TCP checksum should be recalculated by h/w, we can just 20665 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20666 * pseudo-header checksum for HCK_PARTIALCKSUM. 20667 * The partial pseudo-header excludes TCP length, that was calculated 20668 * in tcp_send(), so to zero *up before further processing. 20669 */ 20670 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20671 20672 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20673 *up = 0; 20674 20675 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20676 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20677 20678 /* 20679 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 20680 */ 20681 DB_LSOFLAGS(mp) |= HW_LSO; 20682 DB_LSOMSS(mp) = mss; 20683 20684 ipha->ipha_fragment_offset_and_flags |= 20685 (uint32_t)htons(ire->ire_frag_flag); 20686 20687 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20688 ire_fp_mp_len = MBLKL(ire_fp_mp); 20689 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20690 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20691 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20692 20693 UPDATE_OB_PKT_COUNT(ire); 20694 ire->ire_last_used_time = lbolt; 20695 BUMP_MIB(&ip_mib, ipOutRequests); 20696 20697 if (ILL_DLS_CAPABLE(ill)) { 20698 /* 20699 * Send the packet directly to DLD, where it may be queued 20700 * depending on the availability of transmit resources at 20701 * the media layer. 20702 */ 20703 IP_DLS_ILL_TX(ill, ipha, mp); 20704 } else { 20705 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 20706 DTRACE_PROBE4(ip4__physical__out__start, 20707 ill_t *, NULL, ill_t *, out_ill, 20708 ipha_t *, ipha, mblk_t *, mp); 20709 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 20710 NULL, out_ill, ipha, mp, mp); 20711 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20712 if (mp != NULL) 20713 putnext(ire->ire_stq, mp); 20714 } 20715 } 20716 20717 /* 20718 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20719 * scheme, and returns one of the following: 20720 * 20721 * -1 = failed allocation. 20722 * 0 = success; burst count reached, or usable send window is too small, 20723 * and that we'd rather wait until later before sending again. 20724 * 1 = success; we are called from tcp_multisend(), and both usable send 20725 * window and tail_unsent are greater than the MDT threshold, and thus 20726 * Multidata Transmit should be used instead. 20727 */ 20728 static int 20729 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20730 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20731 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20732 const int mdt_thres) 20733 { 20734 int num_burst_seg = tcp->tcp_snd_burst; 20735 ire_t *ire = NULL; 20736 ill_t *ill = NULL; 20737 mblk_t *ire_fp_mp = NULL; 20738 uint_t ire_fp_mp_len = 0; 20739 int num_lso_seg = 1; 20740 uint_t lso_usable; 20741 boolean_t do_lso_send = B_FALSE; 20742 20743 /* 20744 * Check LSO capability before any further work. And the similar check 20745 * need to be done in for(;;) loop. 20746 * LSO will be deployed when therer is more than one mss of available 20747 * data and a burst transmission is allowed. 20748 */ 20749 if (tcp->tcp_lso && 20750 (tcp->tcp_valid_bits == 0 || 20751 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20752 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20753 /* 20754 * Try to find usable IRE/ILL and do basic check to the ILL. 20755 */ 20756 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 20757 /* 20758 * Enable LSO with this transmission. 20759 * Since IRE has been hold in 20760 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 20761 * should be called before return. 20762 */ 20763 do_lso_send = B_TRUE; 20764 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20765 ire_fp_mp_len = MBLKL(ire_fp_mp); 20766 /* Round up to multiple of 4 */ 20767 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20768 } else { 20769 do_lso_send = B_FALSE; 20770 ill = NULL; 20771 } 20772 } 20773 20774 for (;;) { 20775 struct datab *db; 20776 tcph_t *tcph; 20777 uint32_t sum; 20778 mblk_t *mp, *mp1; 20779 uchar_t *rptr; 20780 int len; 20781 20782 /* 20783 * If we're called by tcp_multisend(), and the amount of 20784 * sendable data as well as the size of current xmit_tail 20785 * is beyond the MDT threshold, return to the caller and 20786 * let the large data transmit be done using MDT. 20787 */ 20788 if (*usable > 0 && *usable > mdt_thres && 20789 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20790 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20791 ASSERT(tcp->tcp_mdt); 20792 return (1); /* success; do large send */ 20793 } 20794 20795 if (num_burst_seg == 0) 20796 break; /* success; burst count reached */ 20797 20798 /* 20799 * Calculate the maximum payload length we can send in *one* 20800 * time. 20801 */ 20802 if (do_lso_send) { 20803 /* 20804 * Check whether need to do LSO any more. 20805 */ 20806 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20807 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20808 lso_usable = MIN(lso_usable, 20809 num_burst_seg * mss); 20810 20811 num_lso_seg = lso_usable / mss; 20812 if (lso_usable % mss) { 20813 num_lso_seg++; 20814 tcp->tcp_last_sent_len = (ushort_t) 20815 (lso_usable % mss); 20816 } else { 20817 tcp->tcp_last_sent_len = (ushort_t)mss; 20818 } 20819 } else { 20820 do_lso_send = B_FALSE; 20821 num_lso_seg = 1; 20822 lso_usable = mss; 20823 } 20824 } 20825 20826 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20827 20828 /* 20829 * Adjust num_burst_seg here. 20830 */ 20831 num_burst_seg -= num_lso_seg; 20832 20833 len = mss; 20834 if (len > *usable) { 20835 ASSERT(do_lso_send == B_FALSE); 20836 20837 len = *usable; 20838 if (len <= 0) { 20839 /* Terminate the loop */ 20840 break; /* success; too small */ 20841 } 20842 /* 20843 * Sender silly-window avoidance. 20844 * Ignore this if we are going to send a 20845 * zero window probe out. 20846 * 20847 * TODO: force data into microscopic window? 20848 * ==> (!pushed || (unsent > usable)) 20849 */ 20850 if (len < (tcp->tcp_max_swnd >> 1) && 20851 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20852 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20853 len == 1) && (! tcp->tcp_zero_win_probe)) { 20854 /* 20855 * If the retransmit timer is not running 20856 * we start it so that we will retransmit 20857 * in the case when the the receiver has 20858 * decremented the window. 20859 */ 20860 if (*snxt == tcp->tcp_snxt && 20861 *snxt == tcp->tcp_suna) { 20862 /* 20863 * We are not supposed to send 20864 * anything. So let's wait a little 20865 * bit longer before breaking SWS 20866 * avoidance. 20867 * 20868 * What should the value be? 20869 * Suggestion: MAX(init rexmit time, 20870 * tcp->tcp_rto) 20871 */ 20872 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20873 } 20874 break; /* success; too small */ 20875 } 20876 } 20877 20878 tcph = tcp->tcp_tcph; 20879 20880 /* 20881 * The reason to adjust len here is that we need to set flags 20882 * and calculate checksum. 20883 */ 20884 if (do_lso_send) 20885 len = lso_usable; 20886 20887 *usable -= len; /* Approximate - can be adjusted later */ 20888 if (*usable > 0) 20889 tcph->th_flags[0] = TH_ACK; 20890 else 20891 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20892 20893 /* 20894 * Prime pump for IP's checksumming on our behalf 20895 * Include the adjustment for a source route if any. 20896 */ 20897 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20898 sum = (sum >> 16) + (sum & 0xFFFF); 20899 U16_TO_ABE16(sum, tcph->th_sum); 20900 20901 U32_TO_ABE32(*snxt, tcph->th_seq); 20902 20903 /* 20904 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20905 * set. For the case when TCP_FSS_VALID is the only valid 20906 * bit (normal active close), branch off only when we think 20907 * that the FIN flag needs to be set. Note for this case, 20908 * that (snxt + len) may not reflect the actual seg_len, 20909 * as len may be further reduced in tcp_xmit_mp(). If len 20910 * gets modified, we will end up here again. 20911 */ 20912 if (tcp->tcp_valid_bits != 0 && 20913 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20914 ((*snxt + len) == tcp->tcp_fss))) { 20915 uchar_t *prev_rptr; 20916 uint32_t prev_snxt = tcp->tcp_snxt; 20917 20918 if (*tail_unsent == 0) { 20919 ASSERT((*xmit_tail)->b_cont != NULL); 20920 *xmit_tail = (*xmit_tail)->b_cont; 20921 prev_rptr = (*xmit_tail)->b_rptr; 20922 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20923 (*xmit_tail)->b_rptr); 20924 } else { 20925 prev_rptr = (*xmit_tail)->b_rptr; 20926 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20927 *tail_unsent; 20928 } 20929 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20930 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20931 /* Restore tcp_snxt so we get amount sent right. */ 20932 tcp->tcp_snxt = prev_snxt; 20933 if (prev_rptr == (*xmit_tail)->b_rptr) { 20934 /* 20935 * If the previous timestamp is still in use, 20936 * don't stomp on it. 20937 */ 20938 if ((*xmit_tail)->b_next == NULL) { 20939 (*xmit_tail)->b_prev = local_time; 20940 (*xmit_tail)->b_next = 20941 (mblk_t *)(uintptr_t)(*snxt); 20942 } 20943 } else 20944 (*xmit_tail)->b_rptr = prev_rptr; 20945 20946 if (mp == NULL) { 20947 if (ire != NULL) 20948 IRE_REFRELE(ire); 20949 return (-1); 20950 } 20951 mp1 = mp->b_cont; 20952 20953 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20954 tcp->tcp_last_sent_len = (ushort_t)len; 20955 while (mp1->b_cont) { 20956 *xmit_tail = (*xmit_tail)->b_cont; 20957 (*xmit_tail)->b_prev = local_time; 20958 (*xmit_tail)->b_next = 20959 (mblk_t *)(uintptr_t)(*snxt); 20960 mp1 = mp1->b_cont; 20961 } 20962 *snxt += len; 20963 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20964 BUMP_LOCAL(tcp->tcp_obsegs); 20965 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20966 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20967 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20968 tcp_send_data(tcp, q, mp); 20969 continue; 20970 } 20971 20972 *snxt += len; /* Adjust later if we don't send all of len */ 20973 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20974 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20975 20976 if (*tail_unsent) { 20977 /* Are the bytes above us in flight? */ 20978 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20979 if (rptr != (*xmit_tail)->b_rptr) { 20980 *tail_unsent -= len; 20981 if (len <= mss) /* LSO is unusable */ 20982 tcp->tcp_last_sent_len = (ushort_t)len; 20983 len += tcp_hdr_len; 20984 if (tcp->tcp_ipversion == IPV4_VERSION) 20985 tcp->tcp_ipha->ipha_length = htons(len); 20986 else 20987 tcp->tcp_ip6h->ip6_plen = 20988 htons(len - 20989 ((char *)&tcp->tcp_ip6h[1] - 20990 tcp->tcp_iphc)); 20991 mp = dupb(*xmit_tail); 20992 if (mp == NULL) { 20993 if (ire != NULL) 20994 IRE_REFRELE(ire); 20995 return (-1); /* out_of_mem */ 20996 } 20997 mp->b_rptr = rptr; 20998 /* 20999 * If the old timestamp is no longer in use, 21000 * sample a new timestamp now. 21001 */ 21002 if ((*xmit_tail)->b_next == NULL) { 21003 (*xmit_tail)->b_prev = local_time; 21004 (*xmit_tail)->b_next = 21005 (mblk_t *)(uintptr_t)(*snxt-len); 21006 } 21007 goto must_alloc; 21008 } 21009 } else { 21010 *xmit_tail = (*xmit_tail)->b_cont; 21011 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21012 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21013 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21014 (*xmit_tail)->b_rptr); 21015 } 21016 21017 (*xmit_tail)->b_prev = local_time; 21018 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21019 21020 *tail_unsent -= len; 21021 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21022 tcp->tcp_last_sent_len = (ushort_t)len; 21023 21024 len += tcp_hdr_len; 21025 if (tcp->tcp_ipversion == IPV4_VERSION) 21026 tcp->tcp_ipha->ipha_length = htons(len); 21027 else 21028 tcp->tcp_ip6h->ip6_plen = htons(len - 21029 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21030 21031 mp = dupb(*xmit_tail); 21032 if (mp == NULL) { 21033 if (ire != NULL) 21034 IRE_REFRELE(ire); 21035 return (-1); /* out_of_mem */ 21036 } 21037 21038 len = tcp_hdr_len; 21039 /* 21040 * There are four reasons to allocate a new hdr mblk: 21041 * 1) The bytes above us are in use by another packet 21042 * 2) We don't have good alignment 21043 * 3) The mblk is being shared 21044 * 4) We don't have enough room for a header 21045 */ 21046 rptr = mp->b_rptr - len; 21047 if (!OK_32PTR(rptr) || 21048 ((db = mp->b_datap), db->db_ref != 2) || 21049 rptr < db->db_base + ire_fp_mp_len) { 21050 /* NOTE: we assume allocb returns an OK_32PTR */ 21051 21052 must_alloc:; 21053 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21054 tcp_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21055 if (mp1 == NULL) { 21056 freemsg(mp); 21057 if (ire != NULL) 21058 IRE_REFRELE(ire); 21059 return (-1); /* out_of_mem */ 21060 } 21061 mp1->b_cont = mp; 21062 mp = mp1; 21063 /* Leave room for Link Level header */ 21064 len = tcp_hdr_len; 21065 rptr = &mp->b_rptr[tcp_wroff_xtra + ire_fp_mp_len]; 21066 mp->b_wptr = &rptr[len]; 21067 } 21068 21069 /* 21070 * Fill in the header using the template header, and add 21071 * options such as time-stamp, ECN and/or SACK, as needed. 21072 */ 21073 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21074 21075 mp->b_rptr = rptr; 21076 21077 if (*tail_unsent) { 21078 int spill = *tail_unsent; 21079 21080 mp1 = mp->b_cont; 21081 if (mp1 == NULL) 21082 mp1 = mp; 21083 21084 /* 21085 * If we're a little short, tack on more mblks until 21086 * there is no more spillover. 21087 */ 21088 while (spill < 0) { 21089 mblk_t *nmp; 21090 int nmpsz; 21091 21092 nmp = (*xmit_tail)->b_cont; 21093 nmpsz = MBLKL(nmp); 21094 21095 /* 21096 * Excess data in mblk; can we split it? 21097 * If MDT is enabled for the connection, 21098 * keep on splitting as this is a transient 21099 * send path. 21100 */ 21101 if (!do_lso_send && !tcp->tcp_mdt && 21102 (spill + nmpsz > 0)) { 21103 /* 21104 * Don't split if stream head was 21105 * told to break up larger writes 21106 * into smaller ones. 21107 */ 21108 if (tcp->tcp_maxpsz > 0) 21109 break; 21110 21111 /* 21112 * Next mblk is less than SMSS/2 21113 * rounded up to nearest 64-byte; 21114 * let it get sent as part of the 21115 * next segment. 21116 */ 21117 if (tcp->tcp_localnet && 21118 !tcp->tcp_cork && 21119 (nmpsz < roundup((mss >> 1), 64))) 21120 break; 21121 } 21122 21123 *xmit_tail = nmp; 21124 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21125 /* Stash for rtt use later */ 21126 (*xmit_tail)->b_prev = local_time; 21127 (*xmit_tail)->b_next = 21128 (mblk_t *)(uintptr_t)(*snxt - len); 21129 mp1->b_cont = dupb(*xmit_tail); 21130 mp1 = mp1->b_cont; 21131 21132 spill += nmpsz; 21133 if (mp1 == NULL) { 21134 *tail_unsent = spill; 21135 freemsg(mp); 21136 if (ire != NULL) 21137 IRE_REFRELE(ire); 21138 return (-1); /* out_of_mem */ 21139 } 21140 } 21141 21142 /* Trim back any surplus on the last mblk */ 21143 if (spill >= 0) { 21144 mp1->b_wptr -= spill; 21145 *tail_unsent = spill; 21146 } else { 21147 /* 21148 * We did not send everything we could in 21149 * order to remain within the b_cont limit. 21150 */ 21151 *usable -= spill; 21152 *snxt += spill; 21153 tcp->tcp_last_sent_len += spill; 21154 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 21155 /* 21156 * Adjust the checksum 21157 */ 21158 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21159 sum += spill; 21160 sum = (sum >> 16) + (sum & 0xFFFF); 21161 U16_TO_ABE16(sum, tcph->th_sum); 21162 if (tcp->tcp_ipversion == IPV4_VERSION) { 21163 sum = ntohs( 21164 ((ipha_t *)rptr)->ipha_length) + 21165 spill; 21166 ((ipha_t *)rptr)->ipha_length = 21167 htons(sum); 21168 } else { 21169 sum = ntohs( 21170 ((ip6_t *)rptr)->ip6_plen) + 21171 spill; 21172 ((ip6_t *)rptr)->ip6_plen = 21173 htons(sum); 21174 } 21175 *tail_unsent = 0; 21176 } 21177 } 21178 if (tcp->tcp_ip_forward_progress) { 21179 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21180 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21181 tcp->tcp_ip_forward_progress = B_FALSE; 21182 } 21183 21184 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21185 if (do_lso_send) { 21186 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21187 num_lso_seg); 21188 tcp->tcp_obsegs += num_lso_seg; 21189 21190 TCP_STAT(tcp_lso_times); 21191 TCP_STAT_UPDATE(tcp_lso_pkt_out, num_lso_seg); 21192 } else { 21193 tcp_send_data(tcp, q, mp); 21194 BUMP_LOCAL(tcp->tcp_obsegs); 21195 } 21196 } 21197 21198 if (ire != NULL) 21199 IRE_REFRELE(ire); 21200 return (0); 21201 } 21202 21203 /* Unlink and return any mblk that looks like it contains a MDT info */ 21204 static mblk_t * 21205 tcp_mdt_info_mp(mblk_t *mp) 21206 { 21207 mblk_t *prev_mp; 21208 21209 for (;;) { 21210 prev_mp = mp; 21211 /* no more to process? */ 21212 if ((mp = mp->b_cont) == NULL) 21213 break; 21214 21215 switch (DB_TYPE(mp)) { 21216 case M_CTL: 21217 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21218 continue; 21219 ASSERT(prev_mp != NULL); 21220 prev_mp->b_cont = mp->b_cont; 21221 mp->b_cont = NULL; 21222 return (mp); 21223 default: 21224 break; 21225 } 21226 } 21227 return (mp); 21228 } 21229 21230 /* MDT info update routine, called when IP notifies us about MDT */ 21231 static void 21232 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21233 { 21234 boolean_t prev_state; 21235 21236 /* 21237 * IP is telling us to abort MDT on this connection? We know 21238 * this because the capability is only turned off when IP 21239 * encounters some pathological cases, e.g. link-layer change 21240 * where the new driver doesn't support MDT, or in situation 21241 * where MDT usage on the link-layer has been switched off. 21242 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21243 * if the link-layer doesn't support MDT, and if it does, it 21244 * will indicate that the feature is to be turned on. 21245 */ 21246 prev_state = tcp->tcp_mdt; 21247 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21248 if (!tcp->tcp_mdt && !first) { 21249 TCP_STAT(tcp_mdt_conn_halted3); 21250 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21251 (void *)tcp->tcp_connp)); 21252 } 21253 21254 /* 21255 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21256 * so disable MDT otherwise. The checks are done here 21257 * and in tcp_wput_data(). 21258 */ 21259 if (tcp->tcp_mdt && 21260 (tcp->tcp_ipversion == IPV4_VERSION && 21261 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21262 (tcp->tcp_ipversion == IPV6_VERSION && 21263 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21264 tcp->tcp_mdt = B_FALSE; 21265 21266 if (tcp->tcp_mdt) { 21267 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21268 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21269 "version (%d), expected version is %d", 21270 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21271 tcp->tcp_mdt = B_FALSE; 21272 return; 21273 } 21274 21275 /* 21276 * We need the driver to be able to handle at least three 21277 * spans per packet in order for tcp MDT to be utilized. 21278 * The first is for the header portion, while the rest are 21279 * needed to handle a packet that straddles across two 21280 * virtually non-contiguous buffers; a typical tcp packet 21281 * therefore consists of only two spans. Note that we take 21282 * a zero as "don't care". 21283 */ 21284 if (mdt_capab->ill_mdt_span_limit > 0 && 21285 mdt_capab->ill_mdt_span_limit < 3) { 21286 tcp->tcp_mdt = B_FALSE; 21287 return; 21288 } 21289 21290 /* a zero means driver wants default value */ 21291 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21292 tcp_mdt_max_pbufs); 21293 if (tcp->tcp_mdt_max_pld == 0) 21294 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 21295 21296 /* ensure 32-bit alignment */ 21297 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 21298 mdt_capab->ill_mdt_hdr_head), 4); 21299 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 21300 mdt_capab->ill_mdt_hdr_tail), 4); 21301 21302 if (!first && !prev_state) { 21303 TCP_STAT(tcp_mdt_conn_resumed2); 21304 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21305 (void *)tcp->tcp_connp)); 21306 } 21307 } 21308 } 21309 21310 /* Unlink and return any mblk that looks like it contains a LSO info */ 21311 static mblk_t * 21312 tcp_lso_info_mp(mblk_t *mp) 21313 { 21314 mblk_t *prev_mp; 21315 21316 for (;;) { 21317 prev_mp = mp; 21318 /* no more to process? */ 21319 if ((mp = mp->b_cont) == NULL) 21320 break; 21321 21322 switch (DB_TYPE(mp)) { 21323 case M_CTL: 21324 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21325 continue; 21326 ASSERT(prev_mp != NULL); 21327 prev_mp->b_cont = mp->b_cont; 21328 mp->b_cont = NULL; 21329 return (mp); 21330 default: 21331 break; 21332 } 21333 } 21334 21335 return (mp); 21336 } 21337 21338 /* LSO info update routine, called when IP notifies us about LSO */ 21339 static void 21340 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21341 { 21342 /* 21343 * IP is telling us to abort LSO on this connection? We know 21344 * this because the capability is only turned off when IP 21345 * encounters some pathological cases, e.g. link-layer change 21346 * where the new NIC/driver doesn't support LSO, or in situation 21347 * where LSO usage on the link-layer has been switched off. 21348 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21349 * if the link-layer doesn't support LSO, and if it does, it 21350 * will indicate that the feature is to be turned on. 21351 */ 21352 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21353 TCP_STAT(tcp_lso_enabled); 21354 21355 /* 21356 * We currently only support LSO on simple TCP/IPv4, 21357 * so disable LSO otherwise. The checks are done here 21358 * and in tcp_wput_data(). 21359 */ 21360 if (tcp->tcp_lso && 21361 (tcp->tcp_ipversion == IPV4_VERSION && 21362 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21363 (tcp->tcp_ipversion == IPV6_VERSION)) { 21364 tcp->tcp_lso = B_FALSE; 21365 TCP_STAT(tcp_lso_disabled); 21366 } else { 21367 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21368 lso_capab->ill_lso_max); 21369 } 21370 } 21371 21372 static void 21373 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21374 { 21375 conn_t *connp = tcp->tcp_connp; 21376 21377 ASSERT(ire != NULL); 21378 21379 /* 21380 * We may be in the fastpath here, and although we essentially do 21381 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21382 * we try to keep things as brief as possible. After all, these 21383 * are only best-effort checks, and we do more thorough ones prior 21384 * to calling tcp_send()/tcp_multisend(). 21385 */ 21386 if ((ip_lso_outbound || ip_multidata_outbound) && check_lso_mdt && 21387 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21388 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21389 !(ire->ire_flags & RTF_MULTIRT) && 21390 !IPP_ENABLED(IPP_LOCAL_OUT) && 21391 CONN_IS_LSO_MD_FASTPATH(connp)) { 21392 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21393 /* Cache the result */ 21394 connp->conn_lso_ok = B_TRUE; 21395 21396 ASSERT(ill->ill_lso_capab != NULL); 21397 if (!ill->ill_lso_capab->ill_lso_on) { 21398 ill->ill_lso_capab->ill_lso_on = 1; 21399 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21400 "LSO for interface %s\n", (void *)connp, 21401 ill->ill_name)); 21402 } 21403 tcp_lso_update(tcp, ill->ill_lso_capab); 21404 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 21405 /* Cache the result */ 21406 connp->conn_mdt_ok = B_TRUE; 21407 21408 ASSERT(ill->ill_mdt_capab != NULL); 21409 if (!ill->ill_mdt_capab->ill_mdt_on) { 21410 ill->ill_mdt_capab->ill_mdt_on = 1; 21411 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21412 "MDT for interface %s\n", (void *)connp, 21413 ill->ill_name)); 21414 } 21415 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21416 } 21417 } 21418 21419 /* 21420 * The goal is to reduce the number of generated tcp segments by 21421 * setting the maxpsz multiplier to 0; this will have an affect on 21422 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21423 * into each packet, up to SMSS bytes. Doing this reduces the number 21424 * of outbound segments and incoming ACKs, thus allowing for better 21425 * network and system performance. In contrast the legacy behavior 21426 * may result in sending less than SMSS size, because the last mblk 21427 * for some packets may have more data than needed to make up SMSS, 21428 * and the legacy code refused to "split" it. 21429 * 21430 * We apply the new behavior on following situations: 21431 * 21432 * 1) Loopback connections, 21433 * 2) Connections in which the remote peer is not on local subnet, 21434 * 3) Local subnet connections over the bge interface (see below). 21435 * 21436 * Ideally, we would like this behavior to apply for interfaces other 21437 * than bge. However, doing so would negatively impact drivers which 21438 * perform dynamic mapping and unmapping of DMA resources, which are 21439 * increased by setting the maxpsz multiplier to 0 (more mblks per 21440 * packet will be generated by tcp). The bge driver does not suffer 21441 * from this, as it copies the mblks into pre-mapped buffers, and 21442 * therefore does not require more I/O resources than before. 21443 * 21444 * Otherwise, this behavior is present on all network interfaces when 21445 * the destination endpoint is non-local, since reducing the number 21446 * of packets in general is good for the network. 21447 * 21448 * TODO We need to remove this hard-coded conditional for bge once 21449 * a better "self-tuning" mechanism, or a way to comprehend 21450 * the driver transmit strategy is devised. Until the solution 21451 * is found and well understood, we live with this hack. 21452 */ 21453 if (!tcp_static_maxpsz && 21454 (tcp->tcp_loopback || !tcp->tcp_localnet || 21455 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21456 /* override the default value */ 21457 tcp->tcp_maxpsz = 0; 21458 21459 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21460 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21461 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21462 } 21463 21464 /* set the stream head parameters accordingly */ 21465 (void) tcp_maxpsz_set(tcp, B_TRUE); 21466 } 21467 21468 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21469 static void 21470 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21471 { 21472 uchar_t fval = *mp->b_rptr; 21473 mblk_t *tail; 21474 queue_t *q = tcp->tcp_wq; 21475 21476 /* TODO: How should flush interact with urgent data? */ 21477 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21478 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21479 /* 21480 * Flush only data that has not yet been put on the wire. If 21481 * we flush data that we have already transmitted, life, as we 21482 * know it, may come to an end. 21483 */ 21484 tail = tcp->tcp_xmit_tail; 21485 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21486 tcp->tcp_xmit_tail_unsent = 0; 21487 tcp->tcp_unsent = 0; 21488 if (tail->b_wptr != tail->b_rptr) 21489 tail = tail->b_cont; 21490 if (tail) { 21491 mblk_t **excess = &tcp->tcp_xmit_head; 21492 for (;;) { 21493 mblk_t *mp1 = *excess; 21494 if (mp1 == tail) 21495 break; 21496 tcp->tcp_xmit_tail = mp1; 21497 tcp->tcp_xmit_last = mp1; 21498 excess = &mp1->b_cont; 21499 } 21500 *excess = NULL; 21501 tcp_close_mpp(&tail); 21502 if (tcp->tcp_snd_zcopy_aware) 21503 tcp_zcopy_notify(tcp); 21504 } 21505 /* 21506 * We have no unsent data, so unsent must be less than 21507 * tcp_xmit_lowater, so re-enable flow. 21508 */ 21509 if (tcp->tcp_flow_stopped) { 21510 tcp_clrqfull(tcp); 21511 } 21512 } 21513 /* 21514 * TODO: you can't just flush these, you have to increase rwnd for one 21515 * thing. For another, how should urgent data interact? 21516 */ 21517 if (fval & FLUSHR) { 21518 *mp->b_rptr = fval & ~FLUSHW; 21519 /* XXX */ 21520 qreply(q, mp); 21521 return; 21522 } 21523 freemsg(mp); 21524 } 21525 21526 /* 21527 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21528 * messages. 21529 */ 21530 static void 21531 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21532 { 21533 mblk_t *mp1; 21534 STRUCT_HANDLE(strbuf, sb); 21535 uint16_t port; 21536 queue_t *q = tcp->tcp_wq; 21537 in6_addr_t v6addr; 21538 ipaddr_t v4addr; 21539 uint32_t flowinfo = 0; 21540 int addrlen; 21541 21542 /* Make sure it is one of ours. */ 21543 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21544 case TI_GETMYNAME: 21545 case TI_GETPEERNAME: 21546 break; 21547 default: 21548 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21549 return; 21550 } 21551 switch (mi_copy_state(q, mp, &mp1)) { 21552 case -1: 21553 return; 21554 case MI_COPY_CASE(MI_COPY_IN, 1): 21555 break; 21556 case MI_COPY_CASE(MI_COPY_OUT, 1): 21557 /* Copy out the strbuf. */ 21558 mi_copyout(q, mp); 21559 return; 21560 case MI_COPY_CASE(MI_COPY_OUT, 2): 21561 /* All done. */ 21562 mi_copy_done(q, mp, 0); 21563 return; 21564 default: 21565 mi_copy_done(q, mp, EPROTO); 21566 return; 21567 } 21568 /* Check alignment of the strbuf */ 21569 if (!OK_32PTR(mp1->b_rptr)) { 21570 mi_copy_done(q, mp, EINVAL); 21571 return; 21572 } 21573 21574 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21575 (void *)mp1->b_rptr); 21576 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21577 21578 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21579 mi_copy_done(q, mp, EINVAL); 21580 return; 21581 } 21582 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21583 case TI_GETMYNAME: 21584 if (tcp->tcp_family == AF_INET) { 21585 if (tcp->tcp_ipversion == IPV4_VERSION) { 21586 v4addr = tcp->tcp_ipha->ipha_src; 21587 } else { 21588 /* can't return an address in this case */ 21589 v4addr = 0; 21590 } 21591 } else { 21592 /* tcp->tcp_family == AF_INET6 */ 21593 if (tcp->tcp_ipversion == IPV4_VERSION) { 21594 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21595 &v6addr); 21596 } else { 21597 v6addr = tcp->tcp_ip6h->ip6_src; 21598 } 21599 } 21600 port = tcp->tcp_lport; 21601 break; 21602 case TI_GETPEERNAME: 21603 if (tcp->tcp_family == AF_INET) { 21604 if (tcp->tcp_ipversion == IPV4_VERSION) { 21605 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21606 v4addr); 21607 } else { 21608 /* can't return an address in this case */ 21609 v4addr = 0; 21610 } 21611 } else { 21612 /* tcp->tcp_family == AF_INET6) */ 21613 v6addr = tcp->tcp_remote_v6; 21614 if (tcp->tcp_ipversion == IPV6_VERSION) { 21615 /* 21616 * No flowinfo if tcp->tcp_ipversion is v4. 21617 * 21618 * flowinfo was already initialized to zero 21619 * where it was declared above, so only 21620 * set it if ipversion is v6. 21621 */ 21622 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21623 ~IPV6_VERS_AND_FLOW_MASK; 21624 } 21625 } 21626 port = tcp->tcp_fport; 21627 break; 21628 default: 21629 mi_copy_done(q, mp, EPROTO); 21630 return; 21631 } 21632 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21633 if (!mp1) 21634 return; 21635 21636 if (tcp->tcp_family == AF_INET) { 21637 sin_t *sin; 21638 21639 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21640 sin = (sin_t *)mp1->b_rptr; 21641 mp1->b_wptr = (uchar_t *)&sin[1]; 21642 *sin = sin_null; 21643 sin->sin_family = AF_INET; 21644 sin->sin_addr.s_addr = v4addr; 21645 sin->sin_port = port; 21646 } else { 21647 /* tcp->tcp_family == AF_INET6 */ 21648 sin6_t *sin6; 21649 21650 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21651 sin6 = (sin6_t *)mp1->b_rptr; 21652 mp1->b_wptr = (uchar_t *)&sin6[1]; 21653 *sin6 = sin6_null; 21654 sin6->sin6_family = AF_INET6; 21655 sin6->sin6_flowinfo = flowinfo; 21656 sin6->sin6_addr = v6addr; 21657 sin6->sin6_port = port; 21658 } 21659 /* Copy out the address */ 21660 mi_copyout(q, mp); 21661 } 21662 21663 /* 21664 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21665 * messages. 21666 */ 21667 /* ARGSUSED */ 21668 static void 21669 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21670 { 21671 conn_t *connp = (conn_t *)arg; 21672 tcp_t *tcp = connp->conn_tcp; 21673 queue_t *q = tcp->tcp_wq; 21674 struct iocblk *iocp; 21675 21676 ASSERT(DB_TYPE(mp) == M_IOCTL); 21677 /* 21678 * Try and ASSERT the minimum possible references on the 21679 * conn early enough. Since we are executing on write side, 21680 * the connection is obviously not detached and that means 21681 * there is a ref each for TCP and IP. Since we are behind 21682 * the squeue, the minimum references needed are 3. If the 21683 * conn is in classifier hash list, there should be an 21684 * extra ref for that (we check both the possibilities). 21685 */ 21686 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21687 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21688 21689 iocp = (struct iocblk *)mp->b_rptr; 21690 switch (iocp->ioc_cmd) { 21691 case TCP_IOC_DEFAULT_Q: 21692 /* Wants to be the default wq. */ 21693 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 21694 iocp->ioc_error = EPERM; 21695 iocp->ioc_count = 0; 21696 mp->b_datap->db_type = M_IOCACK; 21697 qreply(q, mp); 21698 return; 21699 } 21700 tcp_def_q_set(tcp, mp); 21701 return; 21702 case _SIOCSOCKFALLBACK: 21703 /* 21704 * Either sockmod is about to be popped and the socket 21705 * would now be treated as a plain stream, or a module 21706 * is about to be pushed so we could no longer use read- 21707 * side synchronous streams for fused loopback tcp. 21708 * Drain any queued data and disable direct sockfs 21709 * interface from now on. 21710 */ 21711 if (!tcp->tcp_issocket) { 21712 DB_TYPE(mp) = M_IOCNAK; 21713 iocp->ioc_error = EINVAL; 21714 } else { 21715 #ifdef _ILP32 21716 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21717 #else 21718 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21719 #endif 21720 /* 21721 * Insert this socket into the acceptor hash. 21722 * We might need it for T_CONN_RES message 21723 */ 21724 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21725 21726 if (tcp->tcp_fused) { 21727 /* 21728 * This is a fused loopback tcp; disable 21729 * read-side synchronous streams interface 21730 * and drain any queued data. It is okay 21731 * to do this for non-synchronous streams 21732 * fused tcp as well. 21733 */ 21734 tcp_fuse_disable_pair(tcp, B_FALSE); 21735 } 21736 tcp->tcp_issocket = B_FALSE; 21737 TCP_STAT(tcp_sock_fallback); 21738 21739 DB_TYPE(mp) = M_IOCACK; 21740 iocp->ioc_error = 0; 21741 } 21742 iocp->ioc_count = 0; 21743 iocp->ioc_rval = 0; 21744 qreply(q, mp); 21745 return; 21746 } 21747 CALL_IP_WPUT(connp, q, mp); 21748 } 21749 21750 /* 21751 * This routine is called by tcp_wput() to handle all TPI requests. 21752 */ 21753 /* ARGSUSED */ 21754 static void 21755 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21756 { 21757 conn_t *connp = (conn_t *)arg; 21758 tcp_t *tcp = connp->conn_tcp; 21759 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21760 uchar_t *rptr; 21761 t_scalar_t type; 21762 int len; 21763 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21764 21765 /* 21766 * Try and ASSERT the minimum possible references on the 21767 * conn early enough. Since we are executing on write side, 21768 * the connection is obviously not detached and that means 21769 * there is a ref each for TCP and IP. Since we are behind 21770 * the squeue, the minimum references needed are 3. If the 21771 * conn is in classifier hash list, there should be an 21772 * extra ref for that (we check both the possibilities). 21773 */ 21774 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21775 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21776 21777 rptr = mp->b_rptr; 21778 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21779 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21780 type = ((union T_primitives *)rptr)->type; 21781 if (type == T_EXDATA_REQ) { 21782 uint32_t msize = msgdsize(mp->b_cont); 21783 21784 len = msize - 1; 21785 if (len < 0) { 21786 freemsg(mp); 21787 return; 21788 } 21789 /* 21790 * Try to force urgent data out on the wire. 21791 * Even if we have unsent data this will 21792 * at least send the urgent flag. 21793 * XXX does not handle more flag correctly. 21794 */ 21795 len += tcp->tcp_unsent; 21796 len += tcp->tcp_snxt; 21797 tcp->tcp_urg = len; 21798 tcp->tcp_valid_bits |= TCP_URG_VALID; 21799 21800 /* Bypass tcp protocol for fused tcp loopback */ 21801 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21802 return; 21803 } else if (type != T_DATA_REQ) { 21804 goto non_urgent_data; 21805 } 21806 /* TODO: options, flags, ... from user */ 21807 /* Set length to zero for reclamation below */ 21808 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21809 freeb(mp); 21810 return; 21811 } else { 21812 if (tcp->tcp_debug) { 21813 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21814 "tcp_wput_proto, dropping one..."); 21815 } 21816 freemsg(mp); 21817 return; 21818 } 21819 21820 non_urgent_data: 21821 21822 switch ((int)tprim->type) { 21823 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21824 /* 21825 * save the kssl_ent_t from the next block, and convert this 21826 * back to a normal bind_req. 21827 */ 21828 if (mp->b_cont != NULL) { 21829 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21830 21831 if (tcp->tcp_kssl_ent != NULL) { 21832 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21833 KSSL_NO_PROXY); 21834 tcp->tcp_kssl_ent = NULL; 21835 } 21836 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21837 sizeof (kssl_ent_t)); 21838 kssl_hold_ent(tcp->tcp_kssl_ent); 21839 freemsg(mp->b_cont); 21840 mp->b_cont = NULL; 21841 } 21842 tprim->type = T_BIND_REQ; 21843 21844 /* FALLTHROUGH */ 21845 case O_T_BIND_REQ: /* bind request */ 21846 case T_BIND_REQ: /* new semantics bind request */ 21847 tcp_bind(tcp, mp); 21848 break; 21849 case T_UNBIND_REQ: /* unbind request */ 21850 tcp_unbind(tcp, mp); 21851 break; 21852 case O_T_CONN_RES: /* old connection response XXX */ 21853 case T_CONN_RES: /* connection response */ 21854 tcp_accept(tcp, mp); 21855 break; 21856 case T_CONN_REQ: /* connection request */ 21857 tcp_connect(tcp, mp); 21858 break; 21859 case T_DISCON_REQ: /* disconnect request */ 21860 tcp_disconnect(tcp, mp); 21861 break; 21862 case T_CAPABILITY_REQ: 21863 tcp_capability_req(tcp, mp); /* capability request */ 21864 break; 21865 case T_INFO_REQ: /* information request */ 21866 tcp_info_req(tcp, mp); 21867 break; 21868 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21869 /* Only IP is allowed to return meaningful value */ 21870 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21871 break; 21872 case T_OPTMGMT_REQ: 21873 /* 21874 * Note: no support for snmpcom_req() through new 21875 * T_OPTMGMT_REQ. See comments in ip.c 21876 */ 21877 /* Only IP is allowed to return meaningful value */ 21878 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21879 break; 21880 21881 case T_UNITDATA_REQ: /* unitdata request */ 21882 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21883 break; 21884 case T_ORDREL_REQ: /* orderly release req */ 21885 freemsg(mp); 21886 21887 if (tcp->tcp_fused) 21888 tcp_unfuse(tcp); 21889 21890 if (tcp_xmit_end(tcp) != 0) { 21891 /* 21892 * We were crossing FINs and got a reset from 21893 * the other side. Just ignore it. 21894 */ 21895 if (tcp->tcp_debug) { 21896 (void) strlog(TCP_MOD_ID, 0, 1, 21897 SL_ERROR|SL_TRACE, 21898 "tcp_wput_proto, T_ORDREL_REQ out of " 21899 "state %s", 21900 tcp_display(tcp, NULL, 21901 DISP_ADDR_AND_PORT)); 21902 } 21903 } 21904 break; 21905 case T_ADDR_REQ: 21906 tcp_addr_req(tcp, mp); 21907 break; 21908 default: 21909 if (tcp->tcp_debug) { 21910 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21911 "tcp_wput_proto, bogus TPI msg, type %d", 21912 tprim->type); 21913 } 21914 /* 21915 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21916 * to recover. 21917 */ 21918 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21919 break; 21920 } 21921 } 21922 21923 /* 21924 * The TCP write service routine should never be called... 21925 */ 21926 /* ARGSUSED */ 21927 static void 21928 tcp_wsrv(queue_t *q) 21929 { 21930 TCP_STAT(tcp_wsrv_called); 21931 } 21932 21933 /* Non overlapping byte exchanger */ 21934 static void 21935 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21936 { 21937 uchar_t uch; 21938 21939 while (len-- > 0) { 21940 uch = a[len]; 21941 a[len] = b[len]; 21942 b[len] = uch; 21943 } 21944 } 21945 21946 /* 21947 * Send out a control packet on the tcp connection specified. This routine 21948 * is typically called where we need a simple ACK or RST generated. 21949 */ 21950 static void 21951 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21952 { 21953 uchar_t *rptr; 21954 tcph_t *tcph; 21955 ipha_t *ipha = NULL; 21956 ip6_t *ip6h = NULL; 21957 uint32_t sum; 21958 int tcp_hdr_len; 21959 int tcp_ip_hdr_len; 21960 mblk_t *mp; 21961 21962 /* 21963 * Save sum for use in source route later. 21964 */ 21965 ASSERT(tcp != NULL); 21966 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21967 tcp_hdr_len = tcp->tcp_hdr_len; 21968 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21969 21970 /* If a text string is passed in with the request, pass it to strlog. */ 21971 if (str != NULL && tcp->tcp_debug) { 21972 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21973 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21974 str, seq, ack, ctl); 21975 } 21976 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21977 BPRI_MED); 21978 if (mp == NULL) { 21979 return; 21980 } 21981 rptr = &mp->b_rptr[tcp_wroff_xtra]; 21982 mp->b_rptr = rptr; 21983 mp->b_wptr = &rptr[tcp_hdr_len]; 21984 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21985 21986 if (tcp->tcp_ipversion == IPV4_VERSION) { 21987 ipha = (ipha_t *)rptr; 21988 ipha->ipha_length = htons(tcp_hdr_len); 21989 } else { 21990 ip6h = (ip6_t *)rptr; 21991 ASSERT(tcp != NULL); 21992 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21993 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21994 } 21995 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21996 tcph->th_flags[0] = (uint8_t)ctl; 21997 if (ctl & TH_RST) { 21998 BUMP_MIB(&tcp_mib, tcpOutRsts); 21999 BUMP_MIB(&tcp_mib, tcpOutControl); 22000 /* 22001 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22002 */ 22003 if (tcp->tcp_snd_ts_ok && 22004 tcp->tcp_state > TCPS_SYN_SENT) { 22005 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22006 *(mp->b_wptr) = TCPOPT_EOL; 22007 if (tcp->tcp_ipversion == IPV4_VERSION) { 22008 ipha->ipha_length = htons(tcp_hdr_len - 22009 TCPOPT_REAL_TS_LEN); 22010 } else { 22011 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22012 TCPOPT_REAL_TS_LEN); 22013 } 22014 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22015 sum -= TCPOPT_REAL_TS_LEN; 22016 } 22017 } 22018 if (ctl & TH_ACK) { 22019 if (tcp->tcp_snd_ts_ok) { 22020 U32_TO_BE32(lbolt, 22021 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22022 U32_TO_BE32(tcp->tcp_ts_recent, 22023 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22024 } 22025 22026 /* Update the latest receive window size in TCP header. */ 22027 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22028 tcph->th_win); 22029 tcp->tcp_rack = ack; 22030 tcp->tcp_rack_cnt = 0; 22031 BUMP_MIB(&tcp_mib, tcpOutAck); 22032 } 22033 BUMP_LOCAL(tcp->tcp_obsegs); 22034 U32_TO_BE32(seq, tcph->th_seq); 22035 U32_TO_BE32(ack, tcph->th_ack); 22036 /* 22037 * Include the adjustment for a source route if any. 22038 */ 22039 sum = (sum >> 16) + (sum & 0xFFFF); 22040 U16_TO_BE16(sum, tcph->th_sum); 22041 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22042 tcp_send_data(tcp, tcp->tcp_wq, mp); 22043 } 22044 22045 /* 22046 * If this routine returns B_TRUE, TCP can generate a RST in response 22047 * to a segment. If it returns B_FALSE, TCP should not respond. 22048 */ 22049 static boolean_t 22050 tcp_send_rst_chk(void) 22051 { 22052 clock_t now; 22053 22054 /* 22055 * TCP needs to protect itself from generating too many RSTs. 22056 * This can be a DoS attack by sending us random segments 22057 * soliciting RSTs. 22058 * 22059 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22060 * in each 1 second interval. In this way, TCP still generate 22061 * RSTs in normal cases but when under attack, the impact is 22062 * limited. 22063 */ 22064 if (tcp_rst_sent_rate_enabled != 0) { 22065 now = lbolt; 22066 /* lbolt can wrap around. */ 22067 if ((tcp_last_rst_intrvl > now) || 22068 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 22069 tcp_last_rst_intrvl = now; 22070 tcp_rst_cnt = 1; 22071 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 22072 return (B_FALSE); 22073 } 22074 } 22075 return (B_TRUE); 22076 } 22077 22078 /* 22079 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22080 */ 22081 static void 22082 tcp_ip_ire_mark_advice(tcp_t *tcp) 22083 { 22084 mblk_t *mp; 22085 ipic_t *ipic; 22086 22087 if (tcp->tcp_ipversion == IPV4_VERSION) { 22088 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22089 &ipic); 22090 } else { 22091 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22092 &ipic); 22093 } 22094 if (mp == NULL) 22095 return; 22096 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22097 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22098 } 22099 22100 /* 22101 * Return an IP advice ioctl mblk and set ipic to be the pointer 22102 * to the advice structure. 22103 */ 22104 static mblk_t * 22105 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22106 { 22107 struct iocblk *ioc; 22108 mblk_t *mp, *mp1; 22109 22110 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22111 if (mp == NULL) 22112 return (NULL); 22113 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22114 *ipic = (ipic_t *)mp->b_rptr; 22115 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22116 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22117 22118 bcopy(addr, *ipic + 1, addr_len); 22119 22120 (*ipic)->ipic_addr_length = addr_len; 22121 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22122 22123 mp1 = mkiocb(IP_IOCTL); 22124 if (mp1 == NULL) { 22125 freemsg(mp); 22126 return (NULL); 22127 } 22128 mp1->b_cont = mp; 22129 ioc = (struct iocblk *)mp1->b_rptr; 22130 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22131 22132 return (mp1); 22133 } 22134 22135 /* 22136 * Generate a reset based on an inbound packet for which there is no active 22137 * tcp state that we can find. 22138 * 22139 * IPSEC NOTE : Try to send the reply with the same protection as it came 22140 * in. We still have the ipsec_mp that the packet was attached to. Thus 22141 * the packet will go out at the same level of protection as it came in by 22142 * converting the IPSEC_IN to IPSEC_OUT. 22143 */ 22144 static void 22145 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22146 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid) 22147 { 22148 ipha_t *ipha = NULL; 22149 ip6_t *ip6h = NULL; 22150 ushort_t len; 22151 tcph_t *tcph; 22152 int i; 22153 mblk_t *ipsec_mp; 22154 boolean_t mctl_present; 22155 ipic_t *ipic; 22156 ipaddr_t v4addr; 22157 in6_addr_t v6addr; 22158 int addr_len; 22159 void *addr; 22160 queue_t *q = tcp_g_q; 22161 tcp_t *tcp = Q_TO_TCP(q); 22162 cred_t *cr; 22163 mblk_t *nmp; 22164 22165 if (!tcp_send_rst_chk()) { 22166 tcp_rst_unsent++; 22167 freemsg(mp); 22168 return; 22169 } 22170 22171 if (mp->b_datap->db_type == M_CTL) { 22172 ipsec_mp = mp; 22173 mp = mp->b_cont; 22174 mctl_present = B_TRUE; 22175 } else { 22176 ipsec_mp = mp; 22177 mctl_present = B_FALSE; 22178 } 22179 22180 if (str && q && tcp_dbg) { 22181 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22182 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22183 "flags 0x%x", 22184 str, seq, ack, ctl); 22185 } 22186 if (mp->b_datap->db_ref != 1) { 22187 mblk_t *mp1 = copyb(mp); 22188 freemsg(mp); 22189 mp = mp1; 22190 if (!mp) { 22191 if (mctl_present) 22192 freeb(ipsec_mp); 22193 return; 22194 } else { 22195 if (mctl_present) { 22196 ipsec_mp->b_cont = mp; 22197 } else { 22198 ipsec_mp = mp; 22199 } 22200 } 22201 } else if (mp->b_cont) { 22202 freemsg(mp->b_cont); 22203 mp->b_cont = NULL; 22204 } 22205 /* 22206 * We skip reversing source route here. 22207 * (for now we replace all IP options with EOL) 22208 */ 22209 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22210 ipha = (ipha_t *)mp->b_rptr; 22211 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22212 mp->b_rptr[i] = IPOPT_EOL; 22213 /* 22214 * Make sure that src address isn't flagrantly invalid. 22215 * Not all broadcast address checking for the src address 22216 * is possible, since we don't know the netmask of the src 22217 * addr. No check for destination address is done, since 22218 * IP will not pass up a packet with a broadcast dest 22219 * address to TCP. Similar checks are done below for IPv6. 22220 */ 22221 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22222 CLASSD(ipha->ipha_src)) { 22223 freemsg(ipsec_mp); 22224 BUMP_MIB(&ip_mib, ipInDiscards); 22225 return; 22226 } 22227 } else { 22228 ip6h = (ip6_t *)mp->b_rptr; 22229 22230 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22231 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22232 freemsg(ipsec_mp); 22233 BUMP_MIB(&ip6_mib, ipv6InDiscards); 22234 return; 22235 } 22236 22237 /* Remove any extension headers assuming partial overlay */ 22238 if (ip_hdr_len > IPV6_HDR_LEN) { 22239 uint8_t *to; 22240 22241 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22242 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22243 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22244 ip_hdr_len = IPV6_HDR_LEN; 22245 ip6h = (ip6_t *)mp->b_rptr; 22246 ip6h->ip6_nxt = IPPROTO_TCP; 22247 } 22248 } 22249 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22250 if (tcph->th_flags[0] & TH_RST) { 22251 freemsg(ipsec_mp); 22252 return; 22253 } 22254 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22255 len = ip_hdr_len + sizeof (tcph_t); 22256 mp->b_wptr = &mp->b_rptr[len]; 22257 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22258 ipha->ipha_length = htons(len); 22259 /* Swap addresses */ 22260 v4addr = ipha->ipha_src; 22261 ipha->ipha_src = ipha->ipha_dst; 22262 ipha->ipha_dst = v4addr; 22263 ipha->ipha_ident = 0; 22264 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 22265 addr_len = IP_ADDR_LEN; 22266 addr = &v4addr; 22267 } else { 22268 /* No ip6i_t in this case */ 22269 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22270 /* Swap addresses */ 22271 v6addr = ip6h->ip6_src; 22272 ip6h->ip6_src = ip6h->ip6_dst; 22273 ip6h->ip6_dst = v6addr; 22274 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 22275 addr_len = IPV6_ADDR_LEN; 22276 addr = &v6addr; 22277 } 22278 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22279 U32_TO_BE32(ack, tcph->th_ack); 22280 U32_TO_BE32(seq, tcph->th_seq); 22281 U16_TO_BE16(0, tcph->th_win); 22282 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22283 tcph->th_flags[0] = (uint8_t)ctl; 22284 if (ctl & TH_RST) { 22285 BUMP_MIB(&tcp_mib, tcpOutRsts); 22286 BUMP_MIB(&tcp_mib, tcpOutControl); 22287 } 22288 22289 /* IP trusts us to set up labels when required. */ 22290 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22291 crgetlabel(cr) != NULL) { 22292 int err, adjust; 22293 22294 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22295 err = tsol_check_label(cr, &mp, &adjust, 22296 tcp->tcp_connp->conn_mac_exempt); 22297 else 22298 err = tsol_check_label_v6(cr, &mp, &adjust, 22299 tcp->tcp_connp->conn_mac_exempt); 22300 if (mctl_present) 22301 ipsec_mp->b_cont = mp; 22302 else 22303 ipsec_mp = mp; 22304 if (err != 0) { 22305 freemsg(ipsec_mp); 22306 return; 22307 } 22308 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22309 ipha = (ipha_t *)mp->b_rptr; 22310 adjust += ntohs(ipha->ipha_length); 22311 ipha->ipha_length = htons(adjust); 22312 } else { 22313 ip6h = (ip6_t *)mp->b_rptr; 22314 } 22315 } 22316 22317 if (mctl_present) { 22318 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22319 22320 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22321 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22322 return; 22323 } 22324 } 22325 if (zoneid == ALL_ZONES) 22326 zoneid = GLOBAL_ZONEID; 22327 22328 /* Add the zoneid so ip_output routes it properly */ 22329 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) { 22330 freemsg(ipsec_mp); 22331 return; 22332 } 22333 ipsec_mp = nmp; 22334 22335 /* 22336 * NOTE: one might consider tracing a TCP packet here, but 22337 * this function has no active TCP state and no tcp structure 22338 * that has a trace buffer. If we traced here, we would have 22339 * to keep a local trace buffer in tcp_record_trace(). 22340 * 22341 * TSol note: The mblk that contains the incoming packet was 22342 * reused by tcp_xmit_listener_reset, so it already contains 22343 * the right credentials and we don't need to call mblk_setcred. 22344 * Also the conn's cred is not right since it is associated 22345 * with tcp_g_q. 22346 */ 22347 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22348 22349 /* 22350 * Tell IP to mark the IRE used for this destination temporary. 22351 * This way, we can limit our exposure to DoS attack because IP 22352 * creates an IRE for each destination. If there are too many, 22353 * the time to do any routing lookup will be extremely long. And 22354 * the lookup can be in interrupt context. 22355 * 22356 * Note that in normal circumstances, this marking should not 22357 * affect anything. It would be nice if only 1 message is 22358 * needed to inform IP that the IRE created for this RST should 22359 * not be added to the cache table. But there is currently 22360 * not such communication mechanism between TCP and IP. So 22361 * the best we can do now is to send the advice ioctl to IP 22362 * to mark the IRE temporary. 22363 */ 22364 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22365 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22366 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22367 } 22368 } 22369 22370 /* 22371 * Initiate closedown sequence on an active connection. (May be called as 22372 * writer.) Return value zero for OK return, non-zero for error return. 22373 */ 22374 static int 22375 tcp_xmit_end(tcp_t *tcp) 22376 { 22377 ipic_t *ipic; 22378 mblk_t *mp; 22379 22380 if (tcp->tcp_state < TCPS_SYN_RCVD || 22381 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22382 /* 22383 * Invalid state, only states TCPS_SYN_RCVD, 22384 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22385 */ 22386 return (-1); 22387 } 22388 22389 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22390 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22391 /* 22392 * If there is nothing more unsent, send the FIN now. 22393 * Otherwise, it will go out with the last segment. 22394 */ 22395 if (tcp->tcp_unsent == 0) { 22396 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22397 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22398 22399 if (mp) { 22400 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22401 tcp_send_data(tcp, tcp->tcp_wq, mp); 22402 } else { 22403 /* 22404 * Couldn't allocate msg. Pretend we got it out. 22405 * Wait for rexmit timeout. 22406 */ 22407 tcp->tcp_snxt = tcp->tcp_fss + 1; 22408 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22409 } 22410 22411 /* 22412 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22413 * changed. 22414 */ 22415 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22416 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22417 } 22418 } else { 22419 /* 22420 * If tcp->tcp_cork is set, then the data will not get sent, 22421 * so we have to check that and unset it first. 22422 */ 22423 if (tcp->tcp_cork) 22424 tcp->tcp_cork = B_FALSE; 22425 tcp_wput_data(tcp, NULL, B_FALSE); 22426 } 22427 22428 /* 22429 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22430 * is 0, don't update the cache. 22431 */ 22432 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 22433 return (0); 22434 22435 /* 22436 * NOTE: should not update if source routes i.e. if tcp_remote if 22437 * different from the destination. 22438 */ 22439 if (tcp->tcp_ipversion == IPV4_VERSION) { 22440 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22441 return (0); 22442 } 22443 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22444 &ipic); 22445 } else { 22446 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22447 &tcp->tcp_ip6h->ip6_dst))) { 22448 return (0); 22449 } 22450 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22451 &ipic); 22452 } 22453 22454 /* Record route attributes in the IRE for use by future connections. */ 22455 if (mp == NULL) 22456 return (0); 22457 22458 /* 22459 * We do not have a good algorithm to update ssthresh at this time. 22460 * So don't do any update. 22461 */ 22462 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22463 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22464 22465 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22466 return (0); 22467 } 22468 22469 /* 22470 * Generate a "no listener here" RST in response to an "unknown" segment. 22471 * Note that we are reusing the incoming mp to construct the outgoing 22472 * RST. 22473 */ 22474 void 22475 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid) 22476 { 22477 uchar_t *rptr; 22478 uint32_t seg_len; 22479 tcph_t *tcph; 22480 uint32_t seg_seq; 22481 uint32_t seg_ack; 22482 uint_t flags; 22483 mblk_t *ipsec_mp; 22484 ipha_t *ipha; 22485 ip6_t *ip6h; 22486 boolean_t mctl_present = B_FALSE; 22487 boolean_t check = B_TRUE; 22488 boolean_t policy_present; 22489 22490 TCP_STAT(tcp_no_listener); 22491 22492 ipsec_mp = mp; 22493 22494 if (mp->b_datap->db_type == M_CTL) { 22495 ipsec_in_t *ii; 22496 22497 mctl_present = B_TRUE; 22498 mp = mp->b_cont; 22499 22500 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22501 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22502 if (ii->ipsec_in_dont_check) { 22503 check = B_FALSE; 22504 if (!ii->ipsec_in_secure) { 22505 freeb(ipsec_mp); 22506 mctl_present = B_FALSE; 22507 ipsec_mp = mp; 22508 } 22509 } 22510 } 22511 22512 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22513 policy_present = ipsec_inbound_v4_policy_present; 22514 ipha = (ipha_t *)mp->b_rptr; 22515 ip6h = NULL; 22516 } else { 22517 policy_present = ipsec_inbound_v6_policy_present; 22518 ipha = NULL; 22519 ip6h = (ip6_t *)mp->b_rptr; 22520 } 22521 22522 if (check && policy_present) { 22523 /* 22524 * The conn_t parameter is NULL because we already know 22525 * nobody's home. 22526 */ 22527 ipsec_mp = ipsec_check_global_policy( 22528 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 22529 if (ipsec_mp == NULL) 22530 return; 22531 } 22532 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22533 DTRACE_PROBE2( 22534 tx__ip__log__error__nolistener__tcp, 22535 char *, "Could not reply with RST to mp(1)", 22536 mblk_t *, mp); 22537 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22538 freemsg(ipsec_mp); 22539 return; 22540 } 22541 22542 rptr = mp->b_rptr; 22543 22544 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22545 seg_seq = BE32_TO_U32(tcph->th_seq); 22546 seg_ack = BE32_TO_U32(tcph->th_ack); 22547 flags = tcph->th_flags[0]; 22548 22549 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22550 if (flags & TH_RST) { 22551 freemsg(ipsec_mp); 22552 } else if (flags & TH_ACK) { 22553 tcp_xmit_early_reset("no tcp, reset", 22554 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid); 22555 } else { 22556 if (flags & TH_SYN) { 22557 seg_len++; 22558 } else { 22559 /* 22560 * Here we violate the RFC. Note that a normal 22561 * TCP will never send a segment without the ACK 22562 * flag, except for RST or SYN segment. This 22563 * segment is neither. Just drop it on the 22564 * floor. 22565 */ 22566 freemsg(ipsec_mp); 22567 tcp_rst_unsent++; 22568 return; 22569 } 22570 22571 tcp_xmit_early_reset("no tcp, reset/ack", 22572 ipsec_mp, 0, seg_seq + seg_len, 22573 TH_RST | TH_ACK, ip_hdr_len, zoneid); 22574 } 22575 } 22576 22577 /* 22578 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22579 * ip and tcp header ready to pass down to IP. If the mp passed in is 22580 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22581 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22582 * otherwise it will dup partial mblks.) 22583 * Otherwise, an appropriate ACK packet will be generated. This 22584 * routine is not usually called to send new data for the first time. It 22585 * is mostly called out of the timer for retransmits, and to generate ACKs. 22586 * 22587 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22588 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22589 * of the original mblk chain will be returned in *offset and *end_mp. 22590 */ 22591 mblk_t * 22592 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22593 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22594 boolean_t rexmit) 22595 { 22596 int data_length; 22597 int32_t off = 0; 22598 uint_t flags; 22599 mblk_t *mp1; 22600 mblk_t *mp2; 22601 uchar_t *rptr; 22602 tcph_t *tcph; 22603 int32_t num_sack_blk = 0; 22604 int32_t sack_opt_len = 0; 22605 22606 /* Allocate for our maximum TCP header + link-level */ 22607 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22608 BPRI_MED); 22609 if (!mp1) 22610 return (NULL); 22611 data_length = 0; 22612 22613 /* 22614 * Note that tcp_mss has been adjusted to take into account the 22615 * timestamp option if applicable. Because SACK options do not 22616 * appear in every TCP segments and they are of variable lengths, 22617 * they cannot be included in tcp_mss. Thus we need to calculate 22618 * the actual segment length when we need to send a segment which 22619 * includes SACK options. 22620 */ 22621 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22622 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22623 tcp->tcp_num_sack_blk); 22624 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22625 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22626 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22627 max_to_send -= sack_opt_len; 22628 } 22629 22630 if (offset != NULL) { 22631 off = *offset; 22632 /* We use offset as an indicator that end_mp is not NULL. */ 22633 *end_mp = NULL; 22634 } 22635 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22636 /* This could be faster with cooperation from downstream */ 22637 if (mp2 != mp1 && !sendall && 22638 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22639 max_to_send) 22640 /* 22641 * Don't send the next mblk since the whole mblk 22642 * does not fit. 22643 */ 22644 break; 22645 mp2->b_cont = dupb(mp); 22646 mp2 = mp2->b_cont; 22647 if (!mp2) { 22648 freemsg(mp1); 22649 return (NULL); 22650 } 22651 mp2->b_rptr += off; 22652 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22653 (uintptr_t)INT_MAX); 22654 22655 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22656 if (data_length > max_to_send) { 22657 mp2->b_wptr -= data_length - max_to_send; 22658 data_length = max_to_send; 22659 off = mp2->b_wptr - mp->b_rptr; 22660 break; 22661 } else { 22662 off = 0; 22663 } 22664 } 22665 if (offset != NULL) { 22666 *offset = off; 22667 *end_mp = mp; 22668 } 22669 if (seg_len != NULL) { 22670 *seg_len = data_length; 22671 } 22672 22673 /* Update the latest receive window size in TCP header. */ 22674 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22675 tcp->tcp_tcph->th_win); 22676 22677 rptr = mp1->b_rptr + tcp_wroff_xtra; 22678 mp1->b_rptr = rptr; 22679 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22680 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22681 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22682 U32_TO_ABE32(seq, tcph->th_seq); 22683 22684 /* 22685 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22686 * that this function was called from tcp_wput_data. Thus, when called 22687 * to retransmit data the setting of the PUSH bit may appear some 22688 * what random in that it might get set when it should not. This 22689 * should not pose any performance issues. 22690 */ 22691 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22692 tcp->tcp_unsent == data_length)) { 22693 flags = TH_ACK | TH_PUSH; 22694 } else { 22695 flags = TH_ACK; 22696 } 22697 22698 if (tcp->tcp_ecn_ok) { 22699 if (tcp->tcp_ecn_echo_on) 22700 flags |= TH_ECE; 22701 22702 /* 22703 * Only set ECT bit and ECN_CWR if a segment contains new data. 22704 * There is no TCP flow control for non-data segments, and 22705 * only data segment is transmitted reliably. 22706 */ 22707 if (data_length > 0 && !rexmit) { 22708 SET_ECT(tcp, rptr); 22709 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22710 flags |= TH_CWR; 22711 tcp->tcp_ecn_cwr_sent = B_TRUE; 22712 } 22713 } 22714 } 22715 22716 if (tcp->tcp_valid_bits) { 22717 uint32_t u1; 22718 22719 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22720 seq == tcp->tcp_iss) { 22721 uchar_t *wptr; 22722 22723 /* 22724 * If TCP_ISS_VALID and the seq number is tcp_iss, 22725 * TCP can only be in SYN-SENT, SYN-RCVD or 22726 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22727 * our SYN is not ack'ed but the app closes this 22728 * TCP connection. 22729 */ 22730 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22731 tcp->tcp_state == TCPS_SYN_RCVD || 22732 tcp->tcp_state == TCPS_FIN_WAIT_1); 22733 22734 /* 22735 * Tack on the MSS option. It is always needed 22736 * for both active and passive open. 22737 * 22738 * MSS option value should be interface MTU - MIN 22739 * TCP/IP header according to RFC 793 as it means 22740 * the maximum segment size TCP can receive. But 22741 * to get around some broken middle boxes/end hosts 22742 * out there, we allow the option value to be the 22743 * same as the MSS option size on the peer side. 22744 * In this way, the other side will not send 22745 * anything larger than they can receive. 22746 * 22747 * Note that for SYN_SENT state, the ndd param 22748 * tcp_use_smss_as_mss_opt has no effect as we 22749 * don't know the peer's MSS option value. So 22750 * the only case we need to take care of is in 22751 * SYN_RCVD state, which is done later. 22752 */ 22753 wptr = mp1->b_wptr; 22754 wptr[0] = TCPOPT_MAXSEG; 22755 wptr[1] = TCPOPT_MAXSEG_LEN; 22756 wptr += 2; 22757 u1 = tcp->tcp_if_mtu - 22758 (tcp->tcp_ipversion == IPV4_VERSION ? 22759 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22760 TCP_MIN_HEADER_LENGTH; 22761 U16_TO_BE16(u1, wptr); 22762 mp1->b_wptr = wptr + 2; 22763 /* Update the offset to cover the additional word */ 22764 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22765 22766 /* 22767 * Note that the following way of filling in 22768 * TCP options are not optimal. Some NOPs can 22769 * be saved. But there is no need at this time 22770 * to optimize it. When it is needed, we will 22771 * do it. 22772 */ 22773 switch (tcp->tcp_state) { 22774 case TCPS_SYN_SENT: 22775 flags = TH_SYN; 22776 22777 if (tcp->tcp_snd_ts_ok) { 22778 uint32_t llbolt = (uint32_t)lbolt; 22779 22780 wptr = mp1->b_wptr; 22781 wptr[0] = TCPOPT_NOP; 22782 wptr[1] = TCPOPT_NOP; 22783 wptr[2] = TCPOPT_TSTAMP; 22784 wptr[3] = TCPOPT_TSTAMP_LEN; 22785 wptr += 4; 22786 U32_TO_BE32(llbolt, wptr); 22787 wptr += 4; 22788 ASSERT(tcp->tcp_ts_recent == 0); 22789 U32_TO_BE32(0L, wptr); 22790 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22791 tcph->th_offset_and_rsrvd[0] += 22792 (3 << 4); 22793 } 22794 22795 /* 22796 * Set up all the bits to tell other side 22797 * we are ECN capable. 22798 */ 22799 if (tcp->tcp_ecn_ok) { 22800 flags |= (TH_ECE | TH_CWR); 22801 } 22802 break; 22803 case TCPS_SYN_RCVD: 22804 flags |= TH_SYN; 22805 22806 /* 22807 * Reset the MSS option value to be SMSS 22808 * We should probably add back the bytes 22809 * for timestamp option and IPsec. We 22810 * don't do that as this is a workaround 22811 * for broken middle boxes/end hosts, it 22812 * is better for us to be more cautious. 22813 * They may not take these things into 22814 * account in their SMSS calculation. Thus 22815 * the peer's calculated SMSS may be smaller 22816 * than what it can be. This should be OK. 22817 */ 22818 if (tcp_use_smss_as_mss_opt) { 22819 u1 = tcp->tcp_mss; 22820 U16_TO_BE16(u1, wptr); 22821 } 22822 22823 /* 22824 * If the other side is ECN capable, reply 22825 * that we are also ECN capable. 22826 */ 22827 if (tcp->tcp_ecn_ok) 22828 flags |= TH_ECE; 22829 break; 22830 default: 22831 /* 22832 * The above ASSERT() makes sure that this 22833 * must be FIN-WAIT-1 state. Our SYN has 22834 * not been ack'ed so retransmit it. 22835 */ 22836 flags |= TH_SYN; 22837 break; 22838 } 22839 22840 if (tcp->tcp_snd_ws_ok) { 22841 wptr = mp1->b_wptr; 22842 wptr[0] = TCPOPT_NOP; 22843 wptr[1] = TCPOPT_WSCALE; 22844 wptr[2] = TCPOPT_WS_LEN; 22845 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22846 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22847 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22848 } 22849 22850 if (tcp->tcp_snd_sack_ok) { 22851 wptr = mp1->b_wptr; 22852 wptr[0] = TCPOPT_NOP; 22853 wptr[1] = TCPOPT_NOP; 22854 wptr[2] = TCPOPT_SACK_PERMITTED; 22855 wptr[3] = TCPOPT_SACK_OK_LEN; 22856 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22857 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22858 } 22859 22860 /* allocb() of adequate mblk assures space */ 22861 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22862 (uintptr_t)INT_MAX); 22863 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22864 /* 22865 * Get IP set to checksum on our behalf 22866 * Include the adjustment for a source route if any. 22867 */ 22868 u1 += tcp->tcp_sum; 22869 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22870 U16_TO_BE16(u1, tcph->th_sum); 22871 BUMP_MIB(&tcp_mib, tcpOutControl); 22872 } 22873 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22874 (seq + data_length) == tcp->tcp_fss) { 22875 if (!tcp->tcp_fin_acked) { 22876 flags |= TH_FIN; 22877 BUMP_MIB(&tcp_mib, tcpOutControl); 22878 } 22879 if (!tcp->tcp_fin_sent) { 22880 tcp->tcp_fin_sent = B_TRUE; 22881 switch (tcp->tcp_state) { 22882 case TCPS_SYN_RCVD: 22883 case TCPS_ESTABLISHED: 22884 tcp->tcp_state = TCPS_FIN_WAIT_1; 22885 break; 22886 case TCPS_CLOSE_WAIT: 22887 tcp->tcp_state = TCPS_LAST_ACK; 22888 break; 22889 } 22890 if (tcp->tcp_suna == tcp->tcp_snxt) 22891 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22892 tcp->tcp_snxt = tcp->tcp_fss + 1; 22893 } 22894 } 22895 /* 22896 * Note the trick here. u1 is unsigned. When tcp_urg 22897 * is smaller than seq, u1 will become a very huge value. 22898 * So the comparison will fail. Also note that tcp_urp 22899 * should be positive, see RFC 793 page 17. 22900 */ 22901 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22902 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22903 u1 < (uint32_t)(64 * 1024)) { 22904 flags |= TH_URG; 22905 BUMP_MIB(&tcp_mib, tcpOutUrg); 22906 U32_TO_ABE16(u1, tcph->th_urp); 22907 } 22908 } 22909 tcph->th_flags[0] = (uchar_t)flags; 22910 tcp->tcp_rack = tcp->tcp_rnxt; 22911 tcp->tcp_rack_cnt = 0; 22912 22913 if (tcp->tcp_snd_ts_ok) { 22914 if (tcp->tcp_state != TCPS_SYN_SENT) { 22915 uint32_t llbolt = (uint32_t)lbolt; 22916 22917 U32_TO_BE32(llbolt, 22918 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22919 U32_TO_BE32(tcp->tcp_ts_recent, 22920 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22921 } 22922 } 22923 22924 if (num_sack_blk > 0) { 22925 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22926 sack_blk_t *tmp; 22927 int32_t i; 22928 22929 wptr[0] = TCPOPT_NOP; 22930 wptr[1] = TCPOPT_NOP; 22931 wptr[2] = TCPOPT_SACK; 22932 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22933 sizeof (sack_blk_t); 22934 wptr += TCPOPT_REAL_SACK_LEN; 22935 22936 tmp = tcp->tcp_sack_list; 22937 for (i = 0; i < num_sack_blk; i++) { 22938 U32_TO_BE32(tmp[i].begin, wptr); 22939 wptr += sizeof (tcp_seq); 22940 U32_TO_BE32(tmp[i].end, wptr); 22941 wptr += sizeof (tcp_seq); 22942 } 22943 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22944 } 22945 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22946 data_length += (int)(mp1->b_wptr - rptr); 22947 if (tcp->tcp_ipversion == IPV4_VERSION) { 22948 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22949 } else { 22950 ip6_t *ip6 = (ip6_t *)(rptr + 22951 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22952 sizeof (ip6i_t) : 0)); 22953 22954 ip6->ip6_plen = htons(data_length - 22955 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22956 } 22957 22958 /* 22959 * Prime pump for IP 22960 * Include the adjustment for a source route if any. 22961 */ 22962 data_length -= tcp->tcp_ip_hdr_len; 22963 data_length += tcp->tcp_sum; 22964 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22965 U16_TO_ABE16(data_length, tcph->th_sum); 22966 if (tcp->tcp_ip_forward_progress) { 22967 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22968 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22969 tcp->tcp_ip_forward_progress = B_FALSE; 22970 } 22971 return (mp1); 22972 } 22973 22974 /* This function handles the push timeout. */ 22975 void 22976 tcp_push_timer(void *arg) 22977 { 22978 conn_t *connp = (conn_t *)arg; 22979 tcp_t *tcp = connp->conn_tcp; 22980 22981 TCP_DBGSTAT(tcp_push_timer_cnt); 22982 22983 ASSERT(tcp->tcp_listener == NULL); 22984 22985 /* 22986 * We need to plug synchronous streams during our drain to prevent 22987 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 22988 */ 22989 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 22990 tcp->tcp_push_tid = 0; 22991 if ((tcp->tcp_rcv_list != NULL) && 22992 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 22993 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22994 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 22995 } 22996 22997 /* 22998 * This function handles delayed ACK timeout. 22999 */ 23000 static void 23001 tcp_ack_timer(void *arg) 23002 { 23003 conn_t *connp = (conn_t *)arg; 23004 tcp_t *tcp = connp->conn_tcp; 23005 mblk_t *mp; 23006 23007 TCP_DBGSTAT(tcp_ack_timer_cnt); 23008 23009 tcp->tcp_ack_tid = 0; 23010 23011 if (tcp->tcp_fused) 23012 return; 23013 23014 /* 23015 * Do not send ACK if there is no outstanding unack'ed data. 23016 */ 23017 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23018 return; 23019 } 23020 23021 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23022 /* 23023 * Make sure we don't allow deferred ACKs to result in 23024 * timer-based ACKing. If we have held off an ACK 23025 * when there was more than an mss here, and the timer 23026 * goes off, we have to worry about the possibility 23027 * that the sender isn't doing slow-start, or is out 23028 * of step with us for some other reason. We fall 23029 * permanently back in the direction of 23030 * ACK-every-other-packet as suggested in RFC 1122. 23031 */ 23032 if (tcp->tcp_rack_abs_max > 2) 23033 tcp->tcp_rack_abs_max--; 23034 tcp->tcp_rack_cur_max = 2; 23035 } 23036 mp = tcp_ack_mp(tcp); 23037 23038 if (mp != NULL) { 23039 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23040 BUMP_LOCAL(tcp->tcp_obsegs); 23041 BUMP_MIB(&tcp_mib, tcpOutAck); 23042 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 23043 tcp_send_data(tcp, tcp->tcp_wq, mp); 23044 } 23045 } 23046 23047 23048 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23049 static mblk_t * 23050 tcp_ack_mp(tcp_t *tcp) 23051 { 23052 uint32_t seq_no; 23053 23054 /* 23055 * There are a few cases to be considered while setting the sequence no. 23056 * Essentially, we can come here while processing an unacceptable pkt 23057 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23058 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23059 * If we are here for a zero window probe, stick with suna. In all 23060 * other cases, we check if suna + swnd encompasses snxt and set 23061 * the sequence number to snxt, if so. If snxt falls outside the 23062 * window (the receiver probably shrunk its window), we will go with 23063 * suna + swnd, otherwise the sequence no will be unacceptable to the 23064 * receiver. 23065 */ 23066 if (tcp->tcp_zero_win_probe) { 23067 seq_no = tcp->tcp_suna; 23068 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23069 ASSERT(tcp->tcp_swnd == 0); 23070 seq_no = tcp->tcp_snxt; 23071 } else { 23072 seq_no = SEQ_GT(tcp->tcp_snxt, 23073 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23074 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23075 } 23076 23077 if (tcp->tcp_valid_bits) { 23078 /* 23079 * For the complex case where we have to send some 23080 * controls (FIN or SYN), let tcp_xmit_mp do it. 23081 */ 23082 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23083 NULL, B_FALSE)); 23084 } else { 23085 /* Generate a simple ACK */ 23086 int data_length; 23087 uchar_t *rptr; 23088 tcph_t *tcph; 23089 mblk_t *mp1; 23090 int32_t tcp_hdr_len; 23091 int32_t tcp_tcp_hdr_len; 23092 int32_t num_sack_blk = 0; 23093 int32_t sack_opt_len; 23094 23095 /* 23096 * Allocate space for TCP + IP headers 23097 * and link-level header 23098 */ 23099 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23100 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23101 tcp->tcp_num_sack_blk); 23102 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23103 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23104 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23105 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23106 } else { 23107 tcp_hdr_len = tcp->tcp_hdr_len; 23108 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23109 } 23110 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 23111 if (!mp1) 23112 return (NULL); 23113 23114 /* Update the latest receive window size in TCP header. */ 23115 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23116 tcp->tcp_tcph->th_win); 23117 /* copy in prototype TCP + IP header */ 23118 rptr = mp1->b_rptr + tcp_wroff_xtra; 23119 mp1->b_rptr = rptr; 23120 mp1->b_wptr = rptr + tcp_hdr_len; 23121 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23122 23123 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23124 23125 /* Set the TCP sequence number. */ 23126 U32_TO_ABE32(seq_no, tcph->th_seq); 23127 23128 /* Set up the TCP flag field. */ 23129 tcph->th_flags[0] = (uchar_t)TH_ACK; 23130 if (tcp->tcp_ecn_echo_on) 23131 tcph->th_flags[0] |= TH_ECE; 23132 23133 tcp->tcp_rack = tcp->tcp_rnxt; 23134 tcp->tcp_rack_cnt = 0; 23135 23136 /* fill in timestamp option if in use */ 23137 if (tcp->tcp_snd_ts_ok) { 23138 uint32_t llbolt = (uint32_t)lbolt; 23139 23140 U32_TO_BE32(llbolt, 23141 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23142 U32_TO_BE32(tcp->tcp_ts_recent, 23143 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23144 } 23145 23146 /* Fill in SACK options */ 23147 if (num_sack_blk > 0) { 23148 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23149 sack_blk_t *tmp; 23150 int32_t i; 23151 23152 wptr[0] = TCPOPT_NOP; 23153 wptr[1] = TCPOPT_NOP; 23154 wptr[2] = TCPOPT_SACK; 23155 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23156 sizeof (sack_blk_t); 23157 wptr += TCPOPT_REAL_SACK_LEN; 23158 23159 tmp = tcp->tcp_sack_list; 23160 for (i = 0; i < num_sack_blk; i++) { 23161 U32_TO_BE32(tmp[i].begin, wptr); 23162 wptr += sizeof (tcp_seq); 23163 U32_TO_BE32(tmp[i].end, wptr); 23164 wptr += sizeof (tcp_seq); 23165 } 23166 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23167 << 4); 23168 } 23169 23170 if (tcp->tcp_ipversion == IPV4_VERSION) { 23171 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23172 } else { 23173 /* Check for ip6i_t header in sticky hdrs */ 23174 ip6_t *ip6 = (ip6_t *)(rptr + 23175 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23176 sizeof (ip6i_t) : 0)); 23177 23178 ip6->ip6_plen = htons(tcp_hdr_len - 23179 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23180 } 23181 23182 /* 23183 * Prime pump for checksum calculation in IP. Include the 23184 * adjustment for a source route if any. 23185 */ 23186 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23187 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23188 U16_TO_ABE16(data_length, tcph->th_sum); 23189 23190 if (tcp->tcp_ip_forward_progress) { 23191 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23192 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23193 tcp->tcp_ip_forward_progress = B_FALSE; 23194 } 23195 return (mp1); 23196 } 23197 } 23198 23199 /* 23200 * To create a temporary tcp structure for inserting into bind hash list. 23201 * The parameter is assumed to be in network byte order, ready for use. 23202 */ 23203 /* ARGSUSED */ 23204 static tcp_t * 23205 tcp_alloc_temp_tcp(in_port_t port) 23206 { 23207 conn_t *connp; 23208 tcp_t *tcp; 23209 23210 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 23211 if (connp == NULL) 23212 return (NULL); 23213 23214 tcp = connp->conn_tcp; 23215 23216 /* 23217 * Only initialize the necessary info in those structures. Note 23218 * that since INADDR_ANY is all 0, we do not need to set 23219 * tcp_bound_source to INADDR_ANY here. 23220 */ 23221 tcp->tcp_state = TCPS_BOUND; 23222 tcp->tcp_lport = port; 23223 tcp->tcp_exclbind = 1; 23224 tcp->tcp_reserved_port = 1; 23225 23226 /* Just for place holding... */ 23227 tcp->tcp_ipversion = IPV4_VERSION; 23228 23229 return (tcp); 23230 } 23231 23232 /* 23233 * To remove a port range specified by lo_port and hi_port from the 23234 * reserved port ranges. This is one of the three public functions of 23235 * the reserved port interface. Note that a port range has to be removed 23236 * as a whole. Ports in a range cannot be removed individually. 23237 * 23238 * Params: 23239 * in_port_t lo_port: the beginning port of the reserved port range to 23240 * be deleted. 23241 * in_port_t hi_port: the ending port of the reserved port range to 23242 * be deleted. 23243 * 23244 * Return: 23245 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23246 */ 23247 boolean_t 23248 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23249 { 23250 int i, j; 23251 int size; 23252 tcp_t **temp_tcp_array; 23253 tcp_t *tcp; 23254 23255 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23256 23257 /* First make sure that the port ranage is indeed reserved. */ 23258 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23259 if (tcp_reserved_port[i].lo_port == lo_port) { 23260 hi_port = tcp_reserved_port[i].hi_port; 23261 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 23262 break; 23263 } 23264 } 23265 if (i == tcp_reserved_port_array_size) { 23266 rw_exit(&tcp_reserved_port_lock); 23267 return (B_FALSE); 23268 } 23269 23270 /* 23271 * Remove the range from the array. This simple loop is possible 23272 * because port ranges are inserted in ascending order. 23273 */ 23274 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 23275 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 23276 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 23277 tcp_reserved_port[j].temp_tcp_array = 23278 tcp_reserved_port[j+1].temp_tcp_array; 23279 } 23280 23281 /* Remove all the temporary tcp structures. */ 23282 size = hi_port - lo_port + 1; 23283 while (size > 0) { 23284 tcp = temp_tcp_array[size - 1]; 23285 ASSERT(tcp != NULL); 23286 tcp_bind_hash_remove(tcp); 23287 CONN_DEC_REF(tcp->tcp_connp); 23288 size--; 23289 } 23290 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23291 tcp_reserved_port_array_size--; 23292 rw_exit(&tcp_reserved_port_lock); 23293 return (B_TRUE); 23294 } 23295 23296 /* 23297 * Macro to remove temporary tcp structure from the bind hash list. The 23298 * first parameter is the list of tcp to be removed. The second parameter 23299 * is the number of tcps in the array. 23300 */ 23301 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 23302 { \ 23303 while ((num) > 0) { \ 23304 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23305 tf_t *tbf; \ 23306 tcp_t *tcpnext; \ 23307 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23308 mutex_enter(&tbf->tf_lock); \ 23309 tcpnext = tcp->tcp_bind_hash; \ 23310 if (tcpnext) { \ 23311 tcpnext->tcp_ptpbhn = \ 23312 tcp->tcp_ptpbhn; \ 23313 } \ 23314 *tcp->tcp_ptpbhn = tcpnext; \ 23315 mutex_exit(&tbf->tf_lock); \ 23316 kmem_free(tcp, sizeof (tcp_t)); \ 23317 (tcp_array)[(num) - 1] = NULL; \ 23318 (num)--; \ 23319 } \ 23320 } 23321 23322 /* 23323 * The public interface for other modules to call to reserve a port range 23324 * in TCP. The caller passes in how large a port range it wants. TCP 23325 * will try to find a range and return it via lo_port and hi_port. This is 23326 * used by NCA's nca_conn_init. 23327 * NCA can only be used in the global zone so this only affects the global 23328 * zone's ports. 23329 * 23330 * Params: 23331 * int size: the size of the port range to be reserved. 23332 * in_port_t *lo_port (referenced): returns the beginning port of the 23333 * reserved port range added. 23334 * in_port_t *hi_port (referenced): returns the ending port of the 23335 * reserved port range added. 23336 * 23337 * Return: 23338 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23339 */ 23340 boolean_t 23341 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23342 { 23343 tcp_t *tcp; 23344 tcp_t *tmp_tcp; 23345 tcp_t **temp_tcp_array; 23346 tf_t *tbf; 23347 in_port_t net_port; 23348 in_port_t port; 23349 int32_t cur_size; 23350 int i, j; 23351 boolean_t used; 23352 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23353 zoneid_t zoneid = GLOBAL_ZONEID; 23354 23355 /* Sanity check. */ 23356 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23357 return (B_FALSE); 23358 } 23359 23360 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23361 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23362 rw_exit(&tcp_reserved_port_lock); 23363 return (B_FALSE); 23364 } 23365 23366 /* 23367 * Find the starting port to try. Since the port ranges are ordered 23368 * in the reserved port array, we can do a simple search here. 23369 */ 23370 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23371 *hi_port = TCP_LARGEST_RESERVED_PORT; 23372 for (i = 0; i < tcp_reserved_port_array_size; 23373 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 23374 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 23375 *hi_port = tcp_reserved_port[i].lo_port - 1; 23376 break; 23377 } 23378 } 23379 /* No available port range. */ 23380 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 23381 rw_exit(&tcp_reserved_port_lock); 23382 return (B_FALSE); 23383 } 23384 23385 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23386 if (temp_tcp_array == NULL) { 23387 rw_exit(&tcp_reserved_port_lock); 23388 return (B_FALSE); 23389 } 23390 23391 /* Go thru the port range to see if some ports are already bound. */ 23392 for (port = *lo_port, cur_size = 0; 23393 cur_size < size && port <= *hi_port; 23394 cur_size++, port++) { 23395 used = B_FALSE; 23396 net_port = htons(port); 23397 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 23398 mutex_enter(&tbf->tf_lock); 23399 for (tcp = tbf->tf_tcp; tcp != NULL; 23400 tcp = tcp->tcp_bind_hash) { 23401 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23402 net_port == tcp->tcp_lport) { 23403 /* 23404 * A port is already bound. Search again 23405 * starting from port + 1. Release all 23406 * temporary tcps. 23407 */ 23408 mutex_exit(&tbf->tf_lock); 23409 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23410 *lo_port = port + 1; 23411 cur_size = -1; 23412 used = B_TRUE; 23413 break; 23414 } 23415 } 23416 if (!used) { 23417 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 23418 /* 23419 * Allocation failure. Just fail the request. 23420 * Need to remove all those temporary tcp 23421 * structures. 23422 */ 23423 mutex_exit(&tbf->tf_lock); 23424 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23425 rw_exit(&tcp_reserved_port_lock); 23426 kmem_free(temp_tcp_array, 23427 (hi_port - lo_port + 1) * 23428 sizeof (tcp_t *)); 23429 return (B_FALSE); 23430 } 23431 temp_tcp_array[cur_size] = tmp_tcp; 23432 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23433 mutex_exit(&tbf->tf_lock); 23434 } 23435 } 23436 23437 /* 23438 * The current range is not large enough. We can actually do another 23439 * search if this search is done between 2 reserved port ranges. But 23440 * for first release, we just stop here and return saying that no port 23441 * range is available. 23442 */ 23443 if (cur_size < size) { 23444 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23445 rw_exit(&tcp_reserved_port_lock); 23446 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23447 return (B_FALSE); 23448 } 23449 *hi_port = port - 1; 23450 23451 /* 23452 * Insert range into array in ascending order. Since this function 23453 * must not be called often, we choose to use the simplest method. 23454 * The above array should not consume excessive stack space as 23455 * the size must be very small. If in future releases, we find 23456 * that we should provide more reserved port ranges, this function 23457 * has to be modified to be more efficient. 23458 */ 23459 if (tcp_reserved_port_array_size == 0) { 23460 tcp_reserved_port[0].lo_port = *lo_port; 23461 tcp_reserved_port[0].hi_port = *hi_port; 23462 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 23463 } else { 23464 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 23465 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 23466 tmp_ports[j].lo_port = *lo_port; 23467 tmp_ports[j].hi_port = *hi_port; 23468 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23469 j++; 23470 } 23471 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 23472 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 23473 tmp_ports[j].temp_tcp_array = 23474 tcp_reserved_port[i].temp_tcp_array; 23475 } 23476 if (j == i) { 23477 tmp_ports[j].lo_port = *lo_port; 23478 tmp_ports[j].hi_port = *hi_port; 23479 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23480 } 23481 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 23482 } 23483 tcp_reserved_port_array_size++; 23484 rw_exit(&tcp_reserved_port_lock); 23485 return (B_TRUE); 23486 } 23487 23488 /* 23489 * Check to see if a port is in any reserved port range. 23490 * 23491 * Params: 23492 * in_port_t port: the port to be verified. 23493 * 23494 * Return: 23495 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23496 */ 23497 boolean_t 23498 tcp_reserved_port_check(in_port_t port) 23499 { 23500 int i; 23501 23502 rw_enter(&tcp_reserved_port_lock, RW_READER); 23503 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23504 if (port >= tcp_reserved_port[i].lo_port || 23505 port <= tcp_reserved_port[i].hi_port) { 23506 rw_exit(&tcp_reserved_port_lock); 23507 return (B_TRUE); 23508 } 23509 } 23510 rw_exit(&tcp_reserved_port_lock); 23511 return (B_FALSE); 23512 } 23513 23514 /* 23515 * To list all reserved port ranges. This is the function to handle 23516 * ndd tcp_reserved_port_list. 23517 */ 23518 /* ARGSUSED */ 23519 static int 23520 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23521 { 23522 int i; 23523 23524 rw_enter(&tcp_reserved_port_lock, RW_READER); 23525 if (tcp_reserved_port_array_size > 0) 23526 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23527 else 23528 (void) mi_mpprintf(mp, "No port is reserved."); 23529 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23530 (void) mi_mpprintf(mp, "%d-%d", 23531 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 23532 } 23533 rw_exit(&tcp_reserved_port_lock); 23534 return (0); 23535 } 23536 23537 /* 23538 * Hash list insertion routine for tcp_t structures. 23539 * Inserts entries with the ones bound to a specific IP address first 23540 * followed by those bound to INADDR_ANY. 23541 */ 23542 static void 23543 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23544 { 23545 tcp_t **tcpp; 23546 tcp_t *tcpnext; 23547 23548 if (tcp->tcp_ptpbhn != NULL) { 23549 ASSERT(!caller_holds_lock); 23550 tcp_bind_hash_remove(tcp); 23551 } 23552 tcpp = &tbf->tf_tcp; 23553 if (!caller_holds_lock) { 23554 mutex_enter(&tbf->tf_lock); 23555 } else { 23556 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23557 } 23558 tcpnext = tcpp[0]; 23559 if (tcpnext) { 23560 /* 23561 * If the new tcp bound to the INADDR_ANY address 23562 * and the first one in the list is not bound to 23563 * INADDR_ANY we skip all entries until we find the 23564 * first one bound to INADDR_ANY. 23565 * This makes sure that applications binding to a 23566 * specific address get preference over those binding to 23567 * INADDR_ANY. 23568 */ 23569 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23570 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23571 while ((tcpnext = tcpp[0]) != NULL && 23572 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23573 tcpp = &(tcpnext->tcp_bind_hash); 23574 if (tcpnext) 23575 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23576 } else 23577 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23578 } 23579 tcp->tcp_bind_hash = tcpnext; 23580 tcp->tcp_ptpbhn = tcpp; 23581 tcpp[0] = tcp; 23582 if (!caller_holds_lock) 23583 mutex_exit(&tbf->tf_lock); 23584 } 23585 23586 /* 23587 * Hash list removal routine for tcp_t structures. 23588 */ 23589 static void 23590 tcp_bind_hash_remove(tcp_t *tcp) 23591 { 23592 tcp_t *tcpnext; 23593 kmutex_t *lockp; 23594 23595 if (tcp->tcp_ptpbhn == NULL) 23596 return; 23597 23598 /* 23599 * Extract the lock pointer in case there are concurrent 23600 * hash_remove's for this instance. 23601 */ 23602 ASSERT(tcp->tcp_lport != 0); 23603 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23604 23605 ASSERT(lockp != NULL); 23606 mutex_enter(lockp); 23607 if (tcp->tcp_ptpbhn) { 23608 tcpnext = tcp->tcp_bind_hash; 23609 if (tcpnext) { 23610 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23611 tcp->tcp_bind_hash = NULL; 23612 } 23613 *tcp->tcp_ptpbhn = tcpnext; 23614 tcp->tcp_ptpbhn = NULL; 23615 } 23616 mutex_exit(lockp); 23617 } 23618 23619 23620 /* 23621 * Hash list lookup routine for tcp_t structures. 23622 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23623 */ 23624 static tcp_t * 23625 tcp_acceptor_hash_lookup(t_uscalar_t id) 23626 { 23627 tf_t *tf; 23628 tcp_t *tcp; 23629 23630 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23631 mutex_enter(&tf->tf_lock); 23632 for (tcp = tf->tf_tcp; tcp != NULL; 23633 tcp = tcp->tcp_acceptor_hash) { 23634 if (tcp->tcp_acceptor_id == id) { 23635 CONN_INC_REF(tcp->tcp_connp); 23636 mutex_exit(&tf->tf_lock); 23637 return (tcp); 23638 } 23639 } 23640 mutex_exit(&tf->tf_lock); 23641 return (NULL); 23642 } 23643 23644 23645 /* 23646 * Hash list insertion routine for tcp_t structures. 23647 */ 23648 void 23649 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23650 { 23651 tf_t *tf; 23652 tcp_t **tcpp; 23653 tcp_t *tcpnext; 23654 23655 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23656 23657 if (tcp->tcp_ptpahn != NULL) 23658 tcp_acceptor_hash_remove(tcp); 23659 tcpp = &tf->tf_tcp; 23660 mutex_enter(&tf->tf_lock); 23661 tcpnext = tcpp[0]; 23662 if (tcpnext) 23663 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23664 tcp->tcp_acceptor_hash = tcpnext; 23665 tcp->tcp_ptpahn = tcpp; 23666 tcpp[0] = tcp; 23667 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23668 mutex_exit(&tf->tf_lock); 23669 } 23670 23671 /* 23672 * Hash list removal routine for tcp_t structures. 23673 */ 23674 static void 23675 tcp_acceptor_hash_remove(tcp_t *tcp) 23676 { 23677 tcp_t *tcpnext; 23678 kmutex_t *lockp; 23679 23680 /* 23681 * Extract the lock pointer in case there are concurrent 23682 * hash_remove's for this instance. 23683 */ 23684 lockp = tcp->tcp_acceptor_lockp; 23685 23686 if (tcp->tcp_ptpahn == NULL) 23687 return; 23688 23689 ASSERT(lockp != NULL); 23690 mutex_enter(lockp); 23691 if (tcp->tcp_ptpahn) { 23692 tcpnext = tcp->tcp_acceptor_hash; 23693 if (tcpnext) { 23694 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23695 tcp->tcp_acceptor_hash = NULL; 23696 } 23697 *tcp->tcp_ptpahn = tcpnext; 23698 tcp->tcp_ptpahn = NULL; 23699 } 23700 mutex_exit(lockp); 23701 tcp->tcp_acceptor_lockp = NULL; 23702 } 23703 23704 /* ARGSUSED */ 23705 static int 23706 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 23707 { 23708 int error = 0; 23709 int retval; 23710 char *end; 23711 23712 tcp_hsp_t *hsp; 23713 tcp_hsp_t *hspprev; 23714 23715 ipaddr_t addr = 0; /* Address we're looking for */ 23716 in6_addr_t v6addr; /* Address we're looking for */ 23717 uint32_t hash; /* Hash of that address */ 23718 23719 /* 23720 * If the following variables are still zero after parsing the input 23721 * string, the user didn't specify them and we don't change them in 23722 * the HSP. 23723 */ 23724 23725 ipaddr_t mask = 0; /* Subnet mask */ 23726 in6_addr_t v6mask; 23727 long sendspace = 0; /* Send buffer size */ 23728 long recvspace = 0; /* Receive buffer size */ 23729 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23730 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23731 23732 rw_enter(&tcp_hsp_lock, RW_WRITER); 23733 23734 /* Parse and validate address */ 23735 if (af == AF_INET) { 23736 retval = inet_pton(af, value, &addr); 23737 if (retval == 1) 23738 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23739 } else if (af == AF_INET6) { 23740 retval = inet_pton(af, value, &v6addr); 23741 } else { 23742 error = EINVAL; 23743 goto done; 23744 } 23745 if (retval == 0) { 23746 error = EINVAL; 23747 goto done; 23748 } 23749 23750 while ((*value) && *value != ' ') 23751 value++; 23752 23753 /* Parse individual keywords, set variables if found */ 23754 while (*value) { 23755 /* Skip leading blanks */ 23756 23757 while (*value == ' ' || *value == '\t') 23758 value++; 23759 23760 /* If at end of string, we're done */ 23761 23762 if (!*value) 23763 break; 23764 23765 /* We have a word, figure out what it is */ 23766 23767 if (strncmp("mask", value, 4) == 0) { 23768 value += 4; 23769 while (*value == ' ' || *value == '\t') 23770 value++; 23771 /* Parse subnet mask */ 23772 if (af == AF_INET) { 23773 retval = inet_pton(af, value, &mask); 23774 if (retval == 1) { 23775 V4MASK_TO_V6(mask, v6mask); 23776 } 23777 } else if (af == AF_INET6) { 23778 retval = inet_pton(af, value, &v6mask); 23779 } 23780 if (retval != 1) { 23781 error = EINVAL; 23782 goto done; 23783 } 23784 while ((*value) && *value != ' ') 23785 value++; 23786 } else if (strncmp("sendspace", value, 9) == 0) { 23787 value += 9; 23788 23789 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23790 sendspace < TCP_XMIT_HIWATER || 23791 sendspace >= (1L<<30)) { 23792 error = EINVAL; 23793 goto done; 23794 } 23795 value = end; 23796 } else if (strncmp("recvspace", value, 9) == 0) { 23797 value += 9; 23798 23799 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23800 recvspace < TCP_RECV_HIWATER || 23801 recvspace >= (1L<<30)) { 23802 error = EINVAL; 23803 goto done; 23804 } 23805 value = end; 23806 } else if (strncmp("timestamp", value, 9) == 0) { 23807 value += 9; 23808 23809 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23810 timestamp < 0 || timestamp > 1) { 23811 error = EINVAL; 23812 goto done; 23813 } 23814 23815 /* 23816 * We increment timestamp so we know it's been set; 23817 * this is undone when we put it in the HSP 23818 */ 23819 timestamp++; 23820 value = end; 23821 } else if (strncmp("delete", value, 6) == 0) { 23822 value += 6; 23823 delete = B_TRUE; 23824 } else { 23825 error = EINVAL; 23826 goto done; 23827 } 23828 } 23829 23830 /* Hash address for lookup */ 23831 23832 hash = TCP_HSP_HASH(addr); 23833 23834 if (delete) { 23835 /* 23836 * Note that deletes don't return an error if the thing 23837 * we're trying to delete isn't there. 23838 */ 23839 if (tcp_hsp_hash == NULL) 23840 goto done; 23841 hsp = tcp_hsp_hash[hash]; 23842 23843 if (hsp) { 23844 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23845 &v6addr)) { 23846 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23847 mi_free((char *)hsp); 23848 } else { 23849 hspprev = hsp; 23850 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23851 if (IN6_ARE_ADDR_EQUAL( 23852 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23853 hspprev->tcp_hsp_next = 23854 hsp->tcp_hsp_next; 23855 mi_free((char *)hsp); 23856 break; 23857 } 23858 hspprev = hsp; 23859 } 23860 } 23861 } 23862 } else { 23863 /* 23864 * We're adding/modifying an HSP. If we haven't already done 23865 * so, allocate the hash table. 23866 */ 23867 23868 if (!tcp_hsp_hash) { 23869 tcp_hsp_hash = (tcp_hsp_t **) 23870 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23871 if (!tcp_hsp_hash) { 23872 error = EINVAL; 23873 goto done; 23874 } 23875 } 23876 23877 /* Get head of hash chain */ 23878 23879 hsp = tcp_hsp_hash[hash]; 23880 23881 /* Try to find pre-existing hsp on hash chain */ 23882 /* Doesn't handle CIDR prefixes. */ 23883 while (hsp) { 23884 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23885 break; 23886 hsp = hsp->tcp_hsp_next; 23887 } 23888 23889 /* 23890 * If we didn't, create one with default values and put it 23891 * at head of hash chain 23892 */ 23893 23894 if (!hsp) { 23895 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23896 if (!hsp) { 23897 error = EINVAL; 23898 goto done; 23899 } 23900 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23901 tcp_hsp_hash[hash] = hsp; 23902 } 23903 23904 /* Set values that the user asked us to change */ 23905 23906 hsp->tcp_hsp_addr_v6 = v6addr; 23907 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23908 hsp->tcp_hsp_vers = IPV4_VERSION; 23909 else 23910 hsp->tcp_hsp_vers = IPV6_VERSION; 23911 hsp->tcp_hsp_subnet_v6 = v6mask; 23912 if (sendspace > 0) 23913 hsp->tcp_hsp_sendspace = sendspace; 23914 if (recvspace > 0) 23915 hsp->tcp_hsp_recvspace = recvspace; 23916 if (timestamp > 0) 23917 hsp->tcp_hsp_tstamp = timestamp - 1; 23918 } 23919 23920 done: 23921 rw_exit(&tcp_hsp_lock); 23922 return (error); 23923 } 23924 23925 /* Set callback routine passed to nd_load by tcp_param_register. */ 23926 /* ARGSUSED */ 23927 static int 23928 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23929 { 23930 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23931 } 23932 /* ARGSUSED */ 23933 static int 23934 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23935 cred_t *cr) 23936 { 23937 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23938 } 23939 23940 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23941 /* ARGSUSED */ 23942 static int 23943 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23944 { 23945 tcp_hsp_t *hsp; 23946 int i; 23947 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23948 23949 rw_enter(&tcp_hsp_lock, RW_READER); 23950 (void) mi_mpprintf(mp, 23951 "Hash HSP " MI_COL_HDRPAD_STR 23952 "Address Subnet Mask Send Receive TStamp"); 23953 if (tcp_hsp_hash) { 23954 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23955 hsp = tcp_hsp_hash[i]; 23956 while (hsp) { 23957 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23958 (void) inet_ntop(AF_INET, 23959 &hsp->tcp_hsp_addr, 23960 addrbuf, sizeof (addrbuf)); 23961 (void) inet_ntop(AF_INET, 23962 &hsp->tcp_hsp_subnet, 23963 subnetbuf, sizeof (subnetbuf)); 23964 } else { 23965 (void) inet_ntop(AF_INET6, 23966 &hsp->tcp_hsp_addr_v6, 23967 addrbuf, sizeof (addrbuf)); 23968 (void) inet_ntop(AF_INET6, 23969 &hsp->tcp_hsp_subnet_v6, 23970 subnetbuf, sizeof (subnetbuf)); 23971 } 23972 (void) mi_mpprintf(mp, 23973 " %03d " MI_COL_PTRFMT_STR 23974 "%s %s %010d %010d %d", 23975 i, 23976 (void *)hsp, 23977 addrbuf, 23978 subnetbuf, 23979 hsp->tcp_hsp_sendspace, 23980 hsp->tcp_hsp_recvspace, 23981 hsp->tcp_hsp_tstamp); 23982 23983 hsp = hsp->tcp_hsp_next; 23984 } 23985 } 23986 } 23987 rw_exit(&tcp_hsp_lock); 23988 return (0); 23989 } 23990 23991 23992 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23993 23994 static ipaddr_t netmasks[] = { 23995 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 23996 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 23997 }; 23998 23999 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24000 24001 /* 24002 * XXX This routine should go away and instead we should use the metrics 24003 * associated with the routes to determine the default sndspace and rcvspace. 24004 */ 24005 static tcp_hsp_t * 24006 tcp_hsp_lookup(ipaddr_t addr) 24007 { 24008 tcp_hsp_t *hsp = NULL; 24009 24010 /* Quick check without acquiring the lock. */ 24011 if (tcp_hsp_hash == NULL) 24012 return (NULL); 24013 24014 rw_enter(&tcp_hsp_lock, RW_READER); 24015 24016 /* This routine finds the best-matching HSP for address addr. */ 24017 24018 if (tcp_hsp_hash) { 24019 int i; 24020 ipaddr_t srchaddr; 24021 tcp_hsp_t *hsp_net; 24022 24023 /* We do three passes: host, network, and subnet. */ 24024 24025 srchaddr = addr; 24026 24027 for (i = 1; i <= 3; i++) { 24028 /* Look for exact match on srchaddr */ 24029 24030 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24031 while (hsp) { 24032 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24033 hsp->tcp_hsp_addr == srchaddr) 24034 break; 24035 hsp = hsp->tcp_hsp_next; 24036 } 24037 ASSERT(hsp == NULL || 24038 hsp->tcp_hsp_vers == IPV4_VERSION); 24039 24040 /* 24041 * If this is the first pass: 24042 * If we found a match, great, return it. 24043 * If not, search for the network on the second pass. 24044 */ 24045 24046 if (i == 1) 24047 if (hsp) 24048 break; 24049 else 24050 { 24051 srchaddr = addr & netmask(addr); 24052 continue; 24053 } 24054 24055 /* 24056 * If this is the second pass: 24057 * If we found a match, but there's a subnet mask, 24058 * save the match but try again using the subnet 24059 * mask on the third pass. 24060 * Otherwise, return whatever we found. 24061 */ 24062 24063 if (i == 2) { 24064 if (hsp && hsp->tcp_hsp_subnet) { 24065 hsp_net = hsp; 24066 srchaddr = addr & hsp->tcp_hsp_subnet; 24067 continue; 24068 } else { 24069 break; 24070 } 24071 } 24072 24073 /* 24074 * This must be the third pass. If we didn't find 24075 * anything, return the saved network HSP instead. 24076 */ 24077 24078 if (!hsp) 24079 hsp = hsp_net; 24080 } 24081 } 24082 24083 rw_exit(&tcp_hsp_lock); 24084 return (hsp); 24085 } 24086 24087 /* 24088 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24089 * match lookup. 24090 */ 24091 static tcp_hsp_t * 24092 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 24093 { 24094 tcp_hsp_t *hsp = NULL; 24095 24096 /* Quick check without acquiring the lock. */ 24097 if (tcp_hsp_hash == NULL) 24098 return (NULL); 24099 24100 rw_enter(&tcp_hsp_lock, RW_READER); 24101 24102 /* This routine finds the best-matching HSP for address addr. */ 24103 24104 if (tcp_hsp_hash) { 24105 int i; 24106 in6_addr_t v6srchaddr; 24107 tcp_hsp_t *hsp_net; 24108 24109 /* We do three passes: host, network, and subnet. */ 24110 24111 v6srchaddr = *v6addr; 24112 24113 for (i = 1; i <= 3; i++) { 24114 /* Look for exact match on srchaddr */ 24115 24116 hsp = tcp_hsp_hash[TCP_HSP_HASH( 24117 V4_PART_OF_V6(v6srchaddr))]; 24118 while (hsp) { 24119 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24120 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24121 &v6srchaddr)) 24122 break; 24123 hsp = hsp->tcp_hsp_next; 24124 } 24125 24126 /* 24127 * If this is the first pass: 24128 * If we found a match, great, return it. 24129 * If not, search for the network on the second pass. 24130 */ 24131 24132 if (i == 1) 24133 if (hsp) 24134 break; 24135 else { 24136 /* Assume a 64 bit mask */ 24137 v6srchaddr.s6_addr32[0] = 24138 v6addr->s6_addr32[0]; 24139 v6srchaddr.s6_addr32[1] = 24140 v6addr->s6_addr32[1]; 24141 v6srchaddr.s6_addr32[2] = 0; 24142 v6srchaddr.s6_addr32[3] = 0; 24143 continue; 24144 } 24145 24146 /* 24147 * If this is the second pass: 24148 * If we found a match, but there's a subnet mask, 24149 * save the match but try again using the subnet 24150 * mask on the third pass. 24151 * Otherwise, return whatever we found. 24152 */ 24153 24154 if (i == 2) { 24155 ASSERT(hsp == NULL || 24156 hsp->tcp_hsp_vers == IPV6_VERSION); 24157 if (hsp && 24158 !IN6_IS_ADDR_UNSPECIFIED( 24159 &hsp->tcp_hsp_subnet_v6)) { 24160 hsp_net = hsp; 24161 V6_MASK_COPY(*v6addr, 24162 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24163 continue; 24164 } else { 24165 break; 24166 } 24167 } 24168 24169 /* 24170 * This must be the third pass. If we didn't find 24171 * anything, return the saved network HSP instead. 24172 */ 24173 24174 if (!hsp) 24175 hsp = hsp_net; 24176 } 24177 } 24178 24179 rw_exit(&tcp_hsp_lock); 24180 return (hsp); 24181 } 24182 24183 /* 24184 * Type three generator adapted from the random() function in 4.4 BSD: 24185 */ 24186 24187 /* 24188 * Copyright (c) 1983, 1993 24189 * The Regents of the University of California. All rights reserved. 24190 * 24191 * Redistribution and use in source and binary forms, with or without 24192 * modification, are permitted provided that the following conditions 24193 * are met: 24194 * 1. Redistributions of source code must retain the above copyright 24195 * notice, this list of conditions and the following disclaimer. 24196 * 2. Redistributions in binary form must reproduce the above copyright 24197 * notice, this list of conditions and the following disclaimer in the 24198 * documentation and/or other materials provided with the distribution. 24199 * 3. All advertising materials mentioning features or use of this software 24200 * must display the following acknowledgement: 24201 * This product includes software developed by the University of 24202 * California, Berkeley and its contributors. 24203 * 4. Neither the name of the University nor the names of its contributors 24204 * may be used to endorse or promote products derived from this software 24205 * without specific prior written permission. 24206 * 24207 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24208 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24209 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24210 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24211 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24212 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24213 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24214 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24215 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24216 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24217 * SUCH DAMAGE. 24218 */ 24219 24220 /* Type 3 -- x**31 + x**3 + 1 */ 24221 #define DEG_3 31 24222 #define SEP_3 3 24223 24224 24225 /* Protected by tcp_random_lock */ 24226 static int tcp_randtbl[DEG_3 + 1]; 24227 24228 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24229 static int *tcp_random_rptr = &tcp_randtbl[1]; 24230 24231 static int *tcp_random_state = &tcp_randtbl[1]; 24232 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24233 24234 kmutex_t tcp_random_lock; 24235 24236 void 24237 tcp_random_init(void) 24238 { 24239 int i; 24240 hrtime_t hrt; 24241 time_t wallclock; 24242 uint64_t result; 24243 24244 /* 24245 * Use high-res timer and current time for seed. Gethrtime() returns 24246 * a longlong, which may contain resolution down to nanoseconds. 24247 * The current time will either be a 32-bit or a 64-bit quantity. 24248 * XOR the two together in a 64-bit result variable. 24249 * Convert the result to a 32-bit value by multiplying the high-order 24250 * 32-bits by the low-order 32-bits. 24251 */ 24252 24253 hrt = gethrtime(); 24254 (void) drv_getparm(TIME, &wallclock); 24255 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24256 mutex_enter(&tcp_random_lock); 24257 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24258 (result & 0xffffffff); 24259 24260 for (i = 1; i < DEG_3; i++) 24261 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24262 + 12345; 24263 tcp_random_fptr = &tcp_random_state[SEP_3]; 24264 tcp_random_rptr = &tcp_random_state[0]; 24265 mutex_exit(&tcp_random_lock); 24266 for (i = 0; i < 10 * DEG_3; i++) 24267 (void) tcp_random(); 24268 } 24269 24270 /* 24271 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24272 * This range is selected to be approximately centered on TCP_ISS / 2, 24273 * and easy to compute. We get this value by generating a 32-bit random 24274 * number, selecting out the high-order 17 bits, and then adding one so 24275 * that we never return zero. 24276 */ 24277 int 24278 tcp_random(void) 24279 { 24280 int i; 24281 24282 mutex_enter(&tcp_random_lock); 24283 *tcp_random_fptr += *tcp_random_rptr; 24284 24285 /* 24286 * The high-order bits are more random than the low-order bits, 24287 * so we select out the high-order 17 bits and add one so that 24288 * we never return zero. 24289 */ 24290 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24291 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24292 tcp_random_fptr = tcp_random_state; 24293 ++tcp_random_rptr; 24294 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24295 tcp_random_rptr = tcp_random_state; 24296 24297 mutex_exit(&tcp_random_lock); 24298 return (i); 24299 } 24300 24301 /* 24302 * XXX This will go away when TPI is extended to send 24303 * info reqs to sockfs/timod ..... 24304 * Given a queue, set the max packet size for the write 24305 * side of the queue below stream head. This value is 24306 * cached on the stream head. 24307 * Returns 1 on success, 0 otherwise. 24308 */ 24309 static int 24310 setmaxps(queue_t *q, int maxpsz) 24311 { 24312 struct stdata *stp; 24313 queue_t *wq; 24314 stp = STREAM(q); 24315 24316 /* 24317 * At this point change of a queue parameter is not allowed 24318 * when a multiplexor is sitting on top. 24319 */ 24320 if (stp->sd_flag & STPLEX) 24321 return (0); 24322 24323 claimstr(stp->sd_wrq); 24324 wq = stp->sd_wrq->q_next; 24325 ASSERT(wq != NULL); 24326 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24327 releasestr(stp->sd_wrq); 24328 return (1); 24329 } 24330 24331 static int 24332 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24333 int *t_errorp, int *sys_errorp) 24334 { 24335 int error; 24336 int is_absreq_failure; 24337 t_scalar_t *opt_lenp; 24338 t_scalar_t opt_offset; 24339 int prim_type; 24340 struct T_conn_req *tcreqp; 24341 struct T_conn_res *tcresp; 24342 cred_t *cr; 24343 24344 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24345 24346 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24347 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24348 prim_type == T_CONN_RES); 24349 24350 switch (prim_type) { 24351 case T_CONN_REQ: 24352 tcreqp = (struct T_conn_req *)mp->b_rptr; 24353 opt_offset = tcreqp->OPT_offset; 24354 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24355 break; 24356 case O_T_CONN_RES: 24357 case T_CONN_RES: 24358 tcresp = (struct T_conn_res *)mp->b_rptr; 24359 opt_offset = tcresp->OPT_offset; 24360 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24361 break; 24362 } 24363 24364 *t_errorp = 0; 24365 *sys_errorp = 0; 24366 *do_disconnectp = 0; 24367 24368 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24369 opt_offset, cr, &tcp_opt_obj, 24370 NULL, &is_absreq_failure); 24371 24372 switch (error) { 24373 case 0: /* no error */ 24374 ASSERT(is_absreq_failure == 0); 24375 return (0); 24376 case ENOPROTOOPT: 24377 *t_errorp = TBADOPT; 24378 break; 24379 case EACCES: 24380 *t_errorp = TACCES; 24381 break; 24382 default: 24383 *t_errorp = TSYSERR; *sys_errorp = error; 24384 break; 24385 } 24386 if (is_absreq_failure != 0) { 24387 /* 24388 * The connection request should get the local ack 24389 * T_OK_ACK and then a T_DISCON_IND. 24390 */ 24391 *do_disconnectp = 1; 24392 } 24393 return (-1); 24394 } 24395 24396 /* 24397 * Split this function out so that if the secret changes, I'm okay. 24398 * 24399 * Initialize the tcp_iss_cookie and tcp_iss_key. 24400 */ 24401 24402 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24403 24404 static void 24405 tcp_iss_key_init(uint8_t *phrase, int len) 24406 { 24407 struct { 24408 int32_t current_time; 24409 uint32_t randnum; 24410 uint16_t pad; 24411 uint8_t ether[6]; 24412 uint8_t passwd[PASSWD_SIZE]; 24413 } tcp_iss_cookie; 24414 time_t t; 24415 24416 /* 24417 * Start with the current absolute time. 24418 */ 24419 (void) drv_getparm(TIME, &t); 24420 tcp_iss_cookie.current_time = t; 24421 24422 /* 24423 * XXX - Need a more random number per RFC 1750, not this crap. 24424 * OTOH, if what follows is pretty random, then I'm in better shape. 24425 */ 24426 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24427 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24428 24429 /* 24430 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24431 * as a good template. 24432 */ 24433 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24434 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24435 24436 /* 24437 * The pass-phrase. Normally this is supplied by user-called NDD. 24438 */ 24439 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24440 24441 /* 24442 * See 4010593 if this section becomes a problem again, 24443 * but the local ethernet address is useful here. 24444 */ 24445 (void) localetheraddr(NULL, 24446 (struct ether_addr *)&tcp_iss_cookie.ether); 24447 24448 /* 24449 * Hash 'em all together. The MD5Final is called per-connection. 24450 */ 24451 mutex_enter(&tcp_iss_key_lock); 24452 MD5Init(&tcp_iss_key); 24453 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 24454 sizeof (tcp_iss_cookie)); 24455 mutex_exit(&tcp_iss_key_lock); 24456 } 24457 24458 /* 24459 * Set the RFC 1948 pass phrase 24460 */ 24461 /* ARGSUSED */ 24462 static int 24463 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24464 cred_t *cr) 24465 { 24466 /* 24467 * Basically, value contains a new pass phrase. Pass it along! 24468 */ 24469 tcp_iss_key_init((uint8_t *)value, strlen(value)); 24470 return (0); 24471 } 24472 24473 /* ARGSUSED */ 24474 static int 24475 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24476 { 24477 bzero(buf, sizeof (tcp_sack_info_t)); 24478 return (0); 24479 } 24480 24481 /* ARGSUSED */ 24482 static int 24483 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24484 { 24485 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24486 return (0); 24487 } 24488 24489 void 24490 tcp_ddi_init(void) 24491 { 24492 int i; 24493 24494 /* Initialize locks */ 24495 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 24496 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24497 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24498 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24499 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24500 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 24501 24502 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24503 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 24504 MUTEX_DEFAULT, NULL); 24505 } 24506 24507 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24508 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 24509 MUTEX_DEFAULT, NULL); 24510 } 24511 24512 /* TCP's IPsec code calls the packet dropper. */ 24513 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 24514 24515 if (!tcp_g_nd) { 24516 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 24517 nd_free(&tcp_g_nd); 24518 } 24519 } 24520 24521 /* 24522 * Note: To really walk the device tree you need the devinfo 24523 * pointer to your device which is only available after probe/attach. 24524 * The following is safe only because it uses ddi_root_node() 24525 */ 24526 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24527 tcp_opt_obj.odb_opt_arr_cnt); 24528 24529 tcp_timercache = kmem_cache_create("tcp_timercache", 24530 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24531 NULL, NULL, NULL, NULL, NULL, 0); 24532 24533 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24534 sizeof (tcp_sack_info_t), 0, 24535 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24536 24537 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24538 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24539 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24540 24541 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24542 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24543 24544 ip_squeue_init(tcp_squeue_add); 24545 24546 /* Initialize the random number generator */ 24547 tcp_random_init(); 24548 24549 /* 24550 * Initialize RFC 1948 secret values. This will probably be reset once 24551 * by the boot scripts. 24552 * 24553 * Use NULL name, as the name is caught by the new lockstats. 24554 * 24555 * Initialize with some random, non-guessable string, like the global 24556 * T_INFO_ACK. 24557 */ 24558 24559 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24560 sizeof (tcp_g_t_info_ack)); 24561 24562 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 24563 "net", KSTAT_TYPE_NAMED, 24564 sizeof (tcp_statistics) / sizeof (kstat_named_t), 24565 KSTAT_FLAG_VIRTUAL)) != NULL) { 24566 tcp_kstat->ks_data = &tcp_statistics; 24567 kstat_install(tcp_kstat); 24568 } 24569 24570 tcp_kstat_init(); 24571 } 24572 24573 void 24574 tcp_ddi_destroy(void) 24575 { 24576 int i; 24577 24578 nd_free(&tcp_g_nd); 24579 24580 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24581 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 24582 } 24583 24584 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24585 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 24586 } 24587 24588 mutex_destroy(&tcp_iss_key_lock); 24589 rw_destroy(&tcp_hsp_lock); 24590 mutex_destroy(&tcp_g_q_lock); 24591 mutex_destroy(&tcp_random_lock); 24592 mutex_destroy(&tcp_epriv_port_lock); 24593 rw_destroy(&tcp_reserved_port_lock); 24594 24595 ip_drop_unregister(&tcp_dropper); 24596 24597 kmem_cache_destroy(tcp_timercache); 24598 kmem_cache_destroy(tcp_sack_info_cache); 24599 kmem_cache_destroy(tcp_iphc_cache); 24600 24601 tcp_kstat_fini(); 24602 } 24603 24604 /* 24605 * Generate ISS, taking into account NDD changes may happen halfway through. 24606 * (If the iss is not zero, set it.) 24607 */ 24608 24609 static void 24610 tcp_iss_init(tcp_t *tcp) 24611 { 24612 MD5_CTX context; 24613 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24614 uint32_t answer[4]; 24615 24616 tcp_iss_incr_extra += (ISS_INCR >> 1); 24617 tcp->tcp_iss = tcp_iss_incr_extra; 24618 switch (tcp_strong_iss) { 24619 case 2: 24620 mutex_enter(&tcp_iss_key_lock); 24621 context = tcp_iss_key; 24622 mutex_exit(&tcp_iss_key_lock); 24623 arg.ports = tcp->tcp_ports; 24624 if (tcp->tcp_ipversion == IPV4_VERSION) { 24625 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24626 &arg.src); 24627 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24628 &arg.dst); 24629 } else { 24630 arg.src = tcp->tcp_ip6h->ip6_src; 24631 arg.dst = tcp->tcp_ip6h->ip6_dst; 24632 } 24633 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24634 MD5Final((uchar_t *)answer, &context); 24635 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24636 /* 24637 * Now that we've hashed into a unique per-connection sequence 24638 * space, add a random increment per strong_iss == 1. So I 24639 * guess we'll have to... 24640 */ 24641 /* FALLTHRU */ 24642 case 1: 24643 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24644 break; 24645 default: 24646 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24647 break; 24648 } 24649 tcp->tcp_valid_bits = TCP_ISS_VALID; 24650 tcp->tcp_fss = tcp->tcp_iss - 1; 24651 tcp->tcp_suna = tcp->tcp_iss; 24652 tcp->tcp_snxt = tcp->tcp_iss + 1; 24653 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24654 tcp->tcp_csuna = tcp->tcp_snxt; 24655 } 24656 24657 /* 24658 * Exported routine for extracting active tcp connection status. 24659 * 24660 * This is used by the Solaris Cluster Networking software to 24661 * gather a list of connections that need to be forwarded to 24662 * specific nodes in the cluster when configuration changes occur. 24663 * 24664 * The callback is invoked for each tcp_t structure. Returning 24665 * non-zero from the callback routine terminates the search. 24666 */ 24667 int 24668 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 24669 { 24670 tcp_t *tcp; 24671 cl_tcp_info_t cl_tcpi; 24672 connf_t *connfp; 24673 conn_t *connp; 24674 int i; 24675 24676 ASSERT(callback != NULL); 24677 24678 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24679 24680 connfp = &ipcl_globalhash_fanout[i]; 24681 connp = NULL; 24682 24683 while ((connp = 24684 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24685 24686 tcp = connp->conn_tcp; 24687 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24688 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24689 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24690 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24691 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24692 /* 24693 * The macros tcp_laddr and tcp_faddr give the IPv4 24694 * addresses. They are copied implicitly below as 24695 * mapped addresses. 24696 */ 24697 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24698 if (tcp->tcp_ipversion == IPV4_VERSION) { 24699 cl_tcpi.cl_tcpi_faddr = 24700 tcp->tcp_ipha->ipha_dst; 24701 } else { 24702 cl_tcpi.cl_tcpi_faddr_v6 = 24703 tcp->tcp_ip6h->ip6_dst; 24704 } 24705 24706 /* 24707 * If the callback returns non-zero 24708 * we terminate the traversal. 24709 */ 24710 if ((*callback)(&cl_tcpi, arg) != 0) { 24711 CONN_DEC_REF(tcp->tcp_connp); 24712 return (1); 24713 } 24714 } 24715 } 24716 24717 return (0); 24718 } 24719 24720 /* 24721 * Macros used for accessing the different types of sockaddr 24722 * structures inside a tcp_ioc_abort_conn_t. 24723 */ 24724 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24725 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24726 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24727 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24728 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24729 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24730 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24731 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24732 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24733 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24734 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24735 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24736 24737 /* 24738 * Return the correct error code to mimic the behavior 24739 * of a connection reset. 24740 */ 24741 #define TCP_AC_GET_ERRCODE(state, err) { \ 24742 switch ((state)) { \ 24743 case TCPS_SYN_SENT: \ 24744 case TCPS_SYN_RCVD: \ 24745 (err) = ECONNREFUSED; \ 24746 break; \ 24747 case TCPS_ESTABLISHED: \ 24748 case TCPS_FIN_WAIT_1: \ 24749 case TCPS_FIN_WAIT_2: \ 24750 case TCPS_CLOSE_WAIT: \ 24751 (err) = ECONNRESET; \ 24752 break; \ 24753 case TCPS_CLOSING: \ 24754 case TCPS_LAST_ACK: \ 24755 case TCPS_TIME_WAIT: \ 24756 (err) = 0; \ 24757 break; \ 24758 default: \ 24759 (err) = ENXIO; \ 24760 } \ 24761 } 24762 24763 /* 24764 * Check if a tcp structure matches the info in acp. 24765 */ 24766 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24767 (((acp)->ac_local.ss_family == AF_INET) ? \ 24768 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24769 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24770 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24771 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24772 (TCP_AC_V4LPORT((acp)) == 0 || \ 24773 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24774 (TCP_AC_V4RPORT((acp)) == 0 || \ 24775 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24776 (acp)->ac_start <= (tcp)->tcp_state && \ 24777 (acp)->ac_end >= (tcp)->tcp_state) : \ 24778 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24779 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24780 &(tcp)->tcp_ip_src_v6)) && \ 24781 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24782 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24783 &(tcp)->tcp_remote_v6)) && \ 24784 (TCP_AC_V6LPORT((acp)) == 0 || \ 24785 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24786 (TCP_AC_V6RPORT((acp)) == 0 || \ 24787 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24788 (acp)->ac_start <= (tcp)->tcp_state && \ 24789 (acp)->ac_end >= (tcp)->tcp_state)) 24790 24791 #define TCP_AC_MATCH(acp, tcp) \ 24792 (((acp)->ac_zoneid == ALL_ZONES || \ 24793 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24794 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24795 24796 /* 24797 * Build a message containing a tcp_ioc_abort_conn_t structure 24798 * which is filled in with information from acp and tp. 24799 */ 24800 static mblk_t * 24801 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24802 { 24803 mblk_t *mp; 24804 tcp_ioc_abort_conn_t *tacp; 24805 24806 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24807 if (mp == NULL) 24808 return (NULL); 24809 24810 mp->b_datap->db_type = M_CTL; 24811 24812 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24813 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24814 sizeof (uint32_t)); 24815 24816 tacp->ac_start = acp->ac_start; 24817 tacp->ac_end = acp->ac_end; 24818 tacp->ac_zoneid = acp->ac_zoneid; 24819 24820 if (acp->ac_local.ss_family == AF_INET) { 24821 tacp->ac_local.ss_family = AF_INET; 24822 tacp->ac_remote.ss_family = AF_INET; 24823 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24824 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24825 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24826 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24827 } else { 24828 tacp->ac_local.ss_family = AF_INET6; 24829 tacp->ac_remote.ss_family = AF_INET6; 24830 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24831 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24832 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24833 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24834 } 24835 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24836 return (mp); 24837 } 24838 24839 /* 24840 * Print a tcp_ioc_abort_conn_t structure. 24841 */ 24842 static void 24843 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24844 { 24845 char lbuf[128]; 24846 char rbuf[128]; 24847 sa_family_t af; 24848 in_port_t lport, rport; 24849 ushort_t logflags; 24850 24851 af = acp->ac_local.ss_family; 24852 24853 if (af == AF_INET) { 24854 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24855 lbuf, 128); 24856 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24857 rbuf, 128); 24858 lport = ntohs(TCP_AC_V4LPORT(acp)); 24859 rport = ntohs(TCP_AC_V4RPORT(acp)); 24860 } else { 24861 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24862 lbuf, 128); 24863 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24864 rbuf, 128); 24865 lport = ntohs(TCP_AC_V6LPORT(acp)); 24866 rport = ntohs(TCP_AC_V6RPORT(acp)); 24867 } 24868 24869 logflags = SL_TRACE | SL_NOTE; 24870 /* 24871 * Don't print this message to the console if the operation was done 24872 * to a non-global zone. 24873 */ 24874 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24875 logflags |= SL_CONSOLE; 24876 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24877 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24878 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24879 acp->ac_start, acp->ac_end); 24880 } 24881 24882 /* 24883 * Called inside tcp_rput when a message built using 24884 * tcp_ioctl_abort_build_msg is put into a queue. 24885 * Note that when we get here there is no wildcard in acp any more. 24886 */ 24887 static void 24888 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24889 { 24890 tcp_ioc_abort_conn_t *acp; 24891 24892 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24893 if (tcp->tcp_state <= acp->ac_end) { 24894 /* 24895 * If we get here, we are already on the correct 24896 * squeue. This ioctl follows the following path 24897 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24898 * ->tcp_ioctl_abort->squeue_fill (if on a 24899 * different squeue) 24900 */ 24901 int errcode; 24902 24903 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24904 (void) tcp_clean_death(tcp, errcode, 26); 24905 } 24906 freemsg(mp); 24907 } 24908 24909 /* 24910 * Abort all matching connections on a hash chain. 24911 */ 24912 static int 24913 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24914 boolean_t exact) 24915 { 24916 int nmatch, err = 0; 24917 tcp_t *tcp; 24918 MBLKP mp, last, listhead = NULL; 24919 conn_t *tconnp; 24920 connf_t *connfp = &ipcl_conn_fanout[index]; 24921 24922 startover: 24923 nmatch = 0; 24924 24925 mutex_enter(&connfp->connf_lock); 24926 for (tconnp = connfp->connf_head; tconnp != NULL; 24927 tconnp = tconnp->conn_next) { 24928 tcp = tconnp->conn_tcp; 24929 if (TCP_AC_MATCH(acp, tcp)) { 24930 CONN_INC_REF(tcp->tcp_connp); 24931 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24932 if (mp == NULL) { 24933 err = ENOMEM; 24934 CONN_DEC_REF(tcp->tcp_connp); 24935 break; 24936 } 24937 mp->b_prev = (mblk_t *)tcp; 24938 24939 if (listhead == NULL) { 24940 listhead = mp; 24941 last = mp; 24942 } else { 24943 last->b_next = mp; 24944 last = mp; 24945 } 24946 nmatch++; 24947 if (exact) 24948 break; 24949 } 24950 24951 /* Avoid holding lock for too long. */ 24952 if (nmatch >= 500) 24953 break; 24954 } 24955 mutex_exit(&connfp->connf_lock); 24956 24957 /* Pass mp into the correct tcp */ 24958 while ((mp = listhead) != NULL) { 24959 listhead = listhead->b_next; 24960 tcp = (tcp_t *)mp->b_prev; 24961 mp->b_next = mp->b_prev = NULL; 24962 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24963 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24964 } 24965 24966 *count += nmatch; 24967 if (nmatch >= 500 && err == 0) 24968 goto startover; 24969 return (err); 24970 } 24971 24972 /* 24973 * Abort all connections that matches the attributes specified in acp. 24974 */ 24975 static int 24976 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 24977 { 24978 sa_family_t af; 24979 uint32_t ports; 24980 uint16_t *pports; 24981 int err = 0, count = 0; 24982 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24983 int index = -1; 24984 ushort_t logflags; 24985 24986 af = acp->ac_local.ss_family; 24987 24988 if (af == AF_INET) { 24989 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24990 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24991 pports = (uint16_t *)&ports; 24992 pports[1] = TCP_AC_V4LPORT(acp); 24993 pports[0] = TCP_AC_V4RPORT(acp); 24994 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24995 } 24996 } else { 24997 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24998 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24999 pports = (uint16_t *)&ports; 25000 pports[1] = TCP_AC_V6LPORT(acp); 25001 pports[0] = TCP_AC_V6RPORT(acp); 25002 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25003 } 25004 } 25005 25006 /* 25007 * For cases where remote addr, local port, and remote port are non- 25008 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25009 */ 25010 if (index != -1) { 25011 err = tcp_ioctl_abort_bucket(acp, index, 25012 &count, exact); 25013 } else { 25014 /* 25015 * loop through all entries for wildcard case 25016 */ 25017 for (index = 0; index < ipcl_conn_fanout_size; index++) { 25018 err = tcp_ioctl_abort_bucket(acp, index, 25019 &count, exact); 25020 if (err != 0) 25021 break; 25022 } 25023 } 25024 25025 logflags = SL_TRACE | SL_NOTE; 25026 /* 25027 * Don't print this message to the console if the operation was done 25028 * to a non-global zone. 25029 */ 25030 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25031 logflags |= SL_CONSOLE; 25032 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25033 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25034 if (err == 0 && count == 0) 25035 err = ENOENT; 25036 return (err); 25037 } 25038 25039 /* 25040 * Process the TCP_IOC_ABORT_CONN ioctl request. 25041 */ 25042 static void 25043 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25044 { 25045 int err; 25046 IOCP iocp; 25047 MBLKP mp1; 25048 sa_family_t laf, raf; 25049 tcp_ioc_abort_conn_t *acp; 25050 zone_t *zptr; 25051 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 25052 25053 iocp = (IOCP)mp->b_rptr; 25054 25055 if ((mp1 = mp->b_cont) == NULL || 25056 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25057 err = EINVAL; 25058 goto out; 25059 } 25060 25061 /* check permissions */ 25062 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 25063 err = EPERM; 25064 goto out; 25065 } 25066 25067 if (mp1->b_cont != NULL) { 25068 freemsg(mp1->b_cont); 25069 mp1->b_cont = NULL; 25070 } 25071 25072 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25073 laf = acp->ac_local.ss_family; 25074 raf = acp->ac_remote.ss_family; 25075 25076 /* check that a zone with the supplied zoneid exists */ 25077 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25078 zptr = zone_find_by_id(zoneid); 25079 if (zptr != NULL) { 25080 zone_rele(zptr); 25081 } else { 25082 err = EINVAL; 25083 goto out; 25084 } 25085 } 25086 25087 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25088 acp->ac_start > acp->ac_end || laf != raf || 25089 (laf != AF_INET && laf != AF_INET6)) { 25090 err = EINVAL; 25091 goto out; 25092 } 25093 25094 tcp_ioctl_abort_dump(acp); 25095 err = tcp_ioctl_abort(acp); 25096 25097 out: 25098 if (mp1 != NULL) { 25099 freemsg(mp1); 25100 mp->b_cont = NULL; 25101 } 25102 25103 if (err != 0) 25104 miocnak(q, mp, 0, err); 25105 else 25106 miocack(q, mp, 0, 0); 25107 } 25108 25109 /* 25110 * tcp_time_wait_processing() handles processing of incoming packets when 25111 * the tcp is in the TIME_WAIT state. 25112 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25113 * on the time wait list. 25114 */ 25115 void 25116 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25117 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25118 { 25119 int32_t bytes_acked; 25120 int32_t gap; 25121 int32_t rgap; 25122 tcp_opt_t tcpopt; 25123 uint_t flags; 25124 uint32_t new_swnd = 0; 25125 conn_t *connp; 25126 25127 BUMP_LOCAL(tcp->tcp_ibsegs); 25128 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25129 25130 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25131 new_swnd = BE16_TO_U16(tcph->th_win) << 25132 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25133 if (tcp->tcp_snd_ts_ok) { 25134 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25135 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25136 tcp->tcp_rnxt, TH_ACK); 25137 goto done; 25138 } 25139 } 25140 gap = seg_seq - tcp->tcp_rnxt; 25141 rgap = tcp->tcp_rwnd - (gap + seg_len); 25142 if (gap < 0) { 25143 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 25144 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 25145 (seg_len > -gap ? -gap : seg_len)); 25146 seg_len += gap; 25147 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25148 if (flags & TH_RST) { 25149 goto done; 25150 } 25151 if ((flags & TH_FIN) && seg_len == -1) { 25152 /* 25153 * When TCP receives a duplicate FIN in 25154 * TIME_WAIT state, restart the 2 MSL timer. 25155 * See page 73 in RFC 793. Make sure this TCP 25156 * is already on the TIME_WAIT list. If not, 25157 * just restart the timer. 25158 */ 25159 if (TCP_IS_DETACHED(tcp)) { 25160 if (tcp_time_wait_remove(tcp, NULL) == 25161 B_TRUE) { 25162 tcp_time_wait_append(tcp); 25163 TCP_DBGSTAT(tcp_rput_time_wait); 25164 } 25165 } else { 25166 ASSERT(tcp != NULL); 25167 TCP_TIMER_RESTART(tcp, 25168 tcp_time_wait_interval); 25169 } 25170 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25171 tcp->tcp_rnxt, TH_ACK); 25172 goto done; 25173 } 25174 flags |= TH_ACK_NEEDED; 25175 seg_len = 0; 25176 goto process_ack; 25177 } 25178 25179 /* Fix seg_seq, and chew the gap off the front. */ 25180 seg_seq = tcp->tcp_rnxt; 25181 } 25182 25183 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25184 /* 25185 * Make sure that when we accept the connection, pick 25186 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25187 * old connection. 25188 * 25189 * The next ISS generated is equal to tcp_iss_incr_extra 25190 * + ISS_INCR/2 + other components depending on the 25191 * value of tcp_strong_iss. We pre-calculate the new 25192 * ISS here and compare with tcp_snxt to determine if 25193 * we need to make adjustment to tcp_iss_incr_extra. 25194 * 25195 * The above calculation is ugly and is a 25196 * waste of CPU cycles... 25197 */ 25198 uint32_t new_iss = tcp_iss_incr_extra; 25199 int32_t adj; 25200 25201 switch (tcp_strong_iss) { 25202 case 2: { 25203 /* Add time and MD5 components. */ 25204 uint32_t answer[4]; 25205 struct { 25206 uint32_t ports; 25207 in6_addr_t src; 25208 in6_addr_t dst; 25209 } arg; 25210 MD5_CTX context; 25211 25212 mutex_enter(&tcp_iss_key_lock); 25213 context = tcp_iss_key; 25214 mutex_exit(&tcp_iss_key_lock); 25215 arg.ports = tcp->tcp_ports; 25216 /* We use MAPPED addresses in tcp_iss_init */ 25217 arg.src = tcp->tcp_ip_src_v6; 25218 if (tcp->tcp_ipversion == IPV4_VERSION) { 25219 IN6_IPADDR_TO_V4MAPPED( 25220 tcp->tcp_ipha->ipha_dst, 25221 &arg.dst); 25222 } else { 25223 arg.dst = 25224 tcp->tcp_ip6h->ip6_dst; 25225 } 25226 MD5Update(&context, (uchar_t *)&arg, 25227 sizeof (arg)); 25228 MD5Final((uchar_t *)answer, &context); 25229 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25230 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25231 break; 25232 } 25233 case 1: 25234 /* Add time component and min random (i.e. 1). */ 25235 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25236 break; 25237 default: 25238 /* Add only time component. */ 25239 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25240 break; 25241 } 25242 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25243 /* 25244 * New ISS not guaranteed to be ISS_INCR/2 25245 * ahead of the current tcp_snxt, so add the 25246 * difference to tcp_iss_incr_extra. 25247 */ 25248 tcp_iss_incr_extra += adj; 25249 } 25250 /* 25251 * If tcp_clean_death() can not perform the task now, 25252 * drop the SYN packet and let the other side re-xmit. 25253 * Otherwise pass the SYN packet back in, since the 25254 * old tcp state has been cleaned up or freed. 25255 */ 25256 if (tcp_clean_death(tcp, 0, 27) == -1) 25257 goto done; 25258 /* 25259 * We will come back to tcp_rput_data 25260 * on the global queue. Packets destined 25261 * for the global queue will be checked 25262 * with global policy. But the policy for 25263 * this packet has already been checked as 25264 * this was destined for the detached 25265 * connection. We need to bypass policy 25266 * check this time by attaching a dummy 25267 * ipsec_in with ipsec_in_dont_check set. 25268 */ 25269 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 25270 NULL) { 25271 TCP_STAT(tcp_time_wait_syn_success); 25272 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25273 return; 25274 } 25275 goto done; 25276 } 25277 25278 /* 25279 * rgap is the amount of stuff received out of window. A negative 25280 * value is the amount out of window. 25281 */ 25282 if (rgap < 0) { 25283 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 25284 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 25285 /* Fix seg_len and make sure there is something left. */ 25286 seg_len += rgap; 25287 if (seg_len <= 0) { 25288 if (flags & TH_RST) { 25289 goto done; 25290 } 25291 flags |= TH_ACK_NEEDED; 25292 seg_len = 0; 25293 goto process_ack; 25294 } 25295 } 25296 /* 25297 * Check whether we can update tcp_ts_recent. This test is 25298 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25299 * Extensions for High Performance: An Update", Internet Draft. 25300 */ 25301 if (tcp->tcp_snd_ts_ok && 25302 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25303 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25304 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25305 tcp->tcp_last_rcv_lbolt = lbolt64; 25306 } 25307 25308 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25309 /* Always ack out of order packets */ 25310 flags |= TH_ACK_NEEDED; 25311 seg_len = 0; 25312 } else if (seg_len > 0) { 25313 BUMP_MIB(&tcp_mib, tcpInClosed); 25314 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 25315 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 25316 } 25317 if (flags & TH_RST) { 25318 (void) tcp_clean_death(tcp, 0, 28); 25319 goto done; 25320 } 25321 if (flags & TH_SYN) { 25322 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25323 TH_RST|TH_ACK); 25324 /* 25325 * Do not delete the TCP structure if it is in 25326 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25327 */ 25328 goto done; 25329 } 25330 process_ack: 25331 if (flags & TH_ACK) { 25332 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25333 if (bytes_acked <= 0) { 25334 if (bytes_acked == 0 && seg_len == 0 && 25335 new_swnd == tcp->tcp_swnd) 25336 BUMP_MIB(&tcp_mib, tcpInDupAck); 25337 } else { 25338 /* Acks something not sent */ 25339 flags |= TH_ACK_NEEDED; 25340 } 25341 } 25342 if (flags & TH_ACK_NEEDED) { 25343 /* 25344 * Time to send an ack for some reason. 25345 */ 25346 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25347 tcp->tcp_rnxt, TH_ACK); 25348 } 25349 done: 25350 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25351 DB_CKSUMSTART(mp) = 0; 25352 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25353 TCP_STAT(tcp_time_wait_syn_fail); 25354 } 25355 freemsg(mp); 25356 } 25357 25358 /* 25359 * Allocate a T_SVR4_OPTMGMT_REQ. 25360 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 25361 * that tcp_rput_other can drop the acks. 25362 */ 25363 static mblk_t * 25364 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 25365 { 25366 mblk_t *mp; 25367 struct T_optmgmt_req *tor; 25368 struct opthdr *oh; 25369 uint_t size; 25370 char *optptr; 25371 25372 size = sizeof (*tor) + sizeof (*oh) + optlen; 25373 mp = allocb(size, BPRI_MED); 25374 if (mp == NULL) 25375 return (NULL); 25376 25377 mp->b_wptr += size; 25378 mp->b_datap->db_type = M_PROTO; 25379 tor = (struct T_optmgmt_req *)mp->b_rptr; 25380 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25381 tor->MGMT_flags = T_NEGOTIATE; 25382 tor->OPT_length = sizeof (*oh) + optlen; 25383 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25384 25385 oh = (struct opthdr *)&tor[1]; 25386 oh->level = level; 25387 oh->name = cmd; 25388 oh->len = optlen; 25389 if (optlen != 0) { 25390 optptr = (char *)&oh[1]; 25391 bcopy(opt, optptr, optlen); 25392 } 25393 return (mp); 25394 } 25395 25396 /* 25397 * TCP Timers Implementation. 25398 */ 25399 timeout_id_t 25400 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25401 { 25402 mblk_t *mp; 25403 tcp_timer_t *tcpt; 25404 tcp_t *tcp = connp->conn_tcp; 25405 25406 ASSERT(connp->conn_sqp != NULL); 25407 25408 TCP_DBGSTAT(tcp_timeout_calls); 25409 25410 if (tcp->tcp_timercache == NULL) { 25411 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25412 } else { 25413 TCP_DBGSTAT(tcp_timeout_cached_alloc); 25414 mp = tcp->tcp_timercache; 25415 tcp->tcp_timercache = mp->b_next; 25416 mp->b_next = NULL; 25417 ASSERT(mp->b_wptr == NULL); 25418 } 25419 25420 CONN_INC_REF(connp); 25421 tcpt = (tcp_timer_t *)mp->b_rptr; 25422 tcpt->connp = connp; 25423 tcpt->tcpt_proc = f; 25424 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 25425 return ((timeout_id_t)mp); 25426 } 25427 25428 static void 25429 tcp_timer_callback(void *arg) 25430 { 25431 mblk_t *mp = (mblk_t *)arg; 25432 tcp_timer_t *tcpt; 25433 conn_t *connp; 25434 25435 tcpt = (tcp_timer_t *)mp->b_rptr; 25436 connp = tcpt->connp; 25437 squeue_fill(connp->conn_sqp, mp, 25438 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25439 } 25440 25441 static void 25442 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25443 { 25444 tcp_timer_t *tcpt; 25445 conn_t *connp = (conn_t *)arg; 25446 tcp_t *tcp = connp->conn_tcp; 25447 25448 tcpt = (tcp_timer_t *)mp->b_rptr; 25449 ASSERT(connp == tcpt->connp); 25450 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25451 25452 /* 25453 * If the TCP has reached the closed state, don't proceed any 25454 * further. This TCP logically does not exist on the system. 25455 * tcpt_proc could for example access queues, that have already 25456 * been qprocoff'ed off. Also see comments at the start of tcp_input 25457 */ 25458 if (tcp->tcp_state != TCPS_CLOSED) { 25459 (*tcpt->tcpt_proc)(connp); 25460 } else { 25461 tcp->tcp_timer_tid = 0; 25462 } 25463 tcp_timer_free(connp->conn_tcp, mp); 25464 } 25465 25466 /* 25467 * There is potential race with untimeout and the handler firing at the same 25468 * time. The mblock may be freed by the handler while we are trying to use 25469 * it. But since both should execute on the same squeue, this race should not 25470 * occur. 25471 */ 25472 clock_t 25473 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25474 { 25475 mblk_t *mp = (mblk_t *)id; 25476 tcp_timer_t *tcpt; 25477 clock_t delta; 25478 25479 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 25480 25481 if (mp == NULL) 25482 return (-1); 25483 25484 tcpt = (tcp_timer_t *)mp->b_rptr; 25485 ASSERT(tcpt->connp == connp); 25486 25487 delta = untimeout(tcpt->tcpt_tid); 25488 25489 if (delta >= 0) { 25490 TCP_DBGSTAT(tcp_timeout_canceled); 25491 tcp_timer_free(connp->conn_tcp, mp); 25492 CONN_DEC_REF(connp); 25493 } 25494 25495 return (delta); 25496 } 25497 25498 /* 25499 * Allocate space for the timer event. The allocation looks like mblk, but it is 25500 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25501 * 25502 * Dealing with failures: If we can't allocate from the timer cache we try 25503 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25504 * points to b_rptr. 25505 * If we can't allocate anything using allocb_tryhard(), we perform a last 25506 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25507 * save the actual allocation size in b_datap. 25508 */ 25509 mblk_t * 25510 tcp_timermp_alloc(int kmflags) 25511 { 25512 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25513 kmflags & ~KM_PANIC); 25514 25515 if (mp != NULL) { 25516 mp->b_next = mp->b_prev = NULL; 25517 mp->b_rptr = (uchar_t *)(&mp[1]); 25518 mp->b_wptr = NULL; 25519 mp->b_datap = NULL; 25520 mp->b_queue = NULL; 25521 } else if (kmflags & KM_PANIC) { 25522 /* 25523 * Failed to allocate memory for the timer. Try allocating from 25524 * dblock caches. 25525 */ 25526 TCP_STAT(tcp_timermp_allocfail); 25527 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25528 if (mp == NULL) { 25529 size_t size = 0; 25530 /* 25531 * Memory is really low. Try tryhard allocation. 25532 */ 25533 TCP_STAT(tcp_timermp_allocdblfail); 25534 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25535 sizeof (tcp_timer_t), &size, kmflags); 25536 mp->b_rptr = (uchar_t *)(&mp[1]); 25537 mp->b_next = mp->b_prev = NULL; 25538 mp->b_wptr = (uchar_t *)-1; 25539 mp->b_datap = (dblk_t *)size; 25540 mp->b_queue = NULL; 25541 } 25542 ASSERT(mp->b_wptr != NULL); 25543 } 25544 TCP_DBGSTAT(tcp_timermp_alloced); 25545 25546 return (mp); 25547 } 25548 25549 /* 25550 * Free per-tcp timer cache. 25551 * It can only contain entries from tcp_timercache. 25552 */ 25553 void 25554 tcp_timermp_free(tcp_t *tcp) 25555 { 25556 mblk_t *mp; 25557 25558 while ((mp = tcp->tcp_timercache) != NULL) { 25559 ASSERT(mp->b_wptr == NULL); 25560 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25561 kmem_cache_free(tcp_timercache, mp); 25562 } 25563 } 25564 25565 /* 25566 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25567 * events there already (currently at most two events are cached). 25568 * If the event is not allocated from the timer cache, free it right away. 25569 */ 25570 static void 25571 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25572 { 25573 mblk_t *mp1 = tcp->tcp_timercache; 25574 25575 if (mp->b_wptr != NULL) { 25576 /* 25577 * This allocation is not from a timer cache, free it right 25578 * away. 25579 */ 25580 if (mp->b_wptr != (uchar_t *)-1) 25581 freeb(mp); 25582 else 25583 kmem_free(mp, (size_t)mp->b_datap); 25584 } else if (mp1 == NULL || mp1->b_next == NULL) { 25585 /* Cache this timer block for future allocations */ 25586 mp->b_rptr = (uchar_t *)(&mp[1]); 25587 mp->b_next = mp1; 25588 tcp->tcp_timercache = mp; 25589 } else { 25590 kmem_cache_free(tcp_timercache, mp); 25591 TCP_DBGSTAT(tcp_timermp_freed); 25592 } 25593 } 25594 25595 /* 25596 * End of TCP Timers implementation. 25597 */ 25598 25599 /* 25600 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25601 * on the specified backing STREAMS q. Note, the caller may make the 25602 * decision to call based on the tcp_t.tcp_flow_stopped value which 25603 * when check outside the q's lock is only an advisory check ... 25604 */ 25605 25606 void 25607 tcp_setqfull(tcp_t *tcp) 25608 { 25609 queue_t *q = tcp->tcp_wq; 25610 25611 if (!(q->q_flag & QFULL)) { 25612 mutex_enter(QLOCK(q)); 25613 if (!(q->q_flag & QFULL)) { 25614 /* still need to set QFULL */ 25615 q->q_flag |= QFULL; 25616 tcp->tcp_flow_stopped = B_TRUE; 25617 mutex_exit(QLOCK(q)); 25618 TCP_STAT(tcp_flwctl_on); 25619 } else { 25620 mutex_exit(QLOCK(q)); 25621 } 25622 } 25623 } 25624 25625 void 25626 tcp_clrqfull(tcp_t *tcp) 25627 { 25628 queue_t *q = tcp->tcp_wq; 25629 25630 if (q->q_flag & QFULL) { 25631 mutex_enter(QLOCK(q)); 25632 if (q->q_flag & QFULL) { 25633 q->q_flag &= ~QFULL; 25634 tcp->tcp_flow_stopped = B_FALSE; 25635 mutex_exit(QLOCK(q)); 25636 if (q->q_flag & QWANTW) 25637 qbackenable(q, 0); 25638 } else { 25639 mutex_exit(QLOCK(q)); 25640 } 25641 } 25642 } 25643 25644 /* 25645 * TCP Kstats implementation 25646 */ 25647 static void 25648 tcp_kstat_init(void) 25649 { 25650 tcp_named_kstat_t template = { 25651 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25652 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25653 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25654 { "maxConn", KSTAT_DATA_INT32, 0 }, 25655 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25656 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25657 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25658 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25659 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25660 { "inSegs", KSTAT_DATA_UINT32, 0 }, 25661 { "outSegs", KSTAT_DATA_UINT32, 0 }, 25662 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25663 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25664 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25665 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25666 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25667 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25668 { "outAck", KSTAT_DATA_UINT32, 0 }, 25669 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25670 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25671 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25672 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25673 { "outControl", KSTAT_DATA_UINT32, 0 }, 25674 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25675 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25676 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25677 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25678 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25679 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25680 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25681 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25682 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25683 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25684 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25685 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25686 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25687 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25688 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25689 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25690 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25691 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25692 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25693 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25694 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25695 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25696 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25697 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25698 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25699 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25700 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25701 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25702 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25703 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25704 }; 25705 25706 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 25707 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 25708 25709 if (tcp_mibkp == NULL) 25710 return; 25711 25712 template.rtoAlgorithm.value.ui32 = 4; 25713 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 25714 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 25715 template.maxConn.value.i32 = -1; 25716 25717 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 25718 25719 tcp_mibkp->ks_update = tcp_kstat_update; 25720 25721 kstat_install(tcp_mibkp); 25722 } 25723 25724 static void 25725 tcp_kstat_fini(void) 25726 { 25727 25728 if (tcp_mibkp != NULL) { 25729 kstat_delete(tcp_mibkp); 25730 tcp_mibkp = NULL; 25731 } 25732 } 25733 25734 static int 25735 tcp_kstat_update(kstat_t *kp, int rw) 25736 { 25737 tcp_named_kstat_t *tcpkp; 25738 tcp_t *tcp; 25739 connf_t *connfp; 25740 conn_t *connp; 25741 int i; 25742 25743 if (!kp || !kp->ks_data) 25744 return (EIO); 25745 25746 if (rw == KSTAT_WRITE) 25747 return (EACCES); 25748 25749 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25750 25751 tcpkp->currEstab.value.ui32 = 0; 25752 25753 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25754 connfp = &ipcl_globalhash_fanout[i]; 25755 connp = NULL; 25756 while ((connp = 25757 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25758 tcp = connp->conn_tcp; 25759 switch (tcp_snmp_state(tcp)) { 25760 case MIB2_TCP_established: 25761 case MIB2_TCP_closeWait: 25762 tcpkp->currEstab.value.ui32++; 25763 break; 25764 } 25765 } 25766 } 25767 25768 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25769 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25770 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25771 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25772 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 25773 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 25774 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25775 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25776 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25777 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25778 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25779 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25780 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25781 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25782 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25783 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25784 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25785 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25786 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25787 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25788 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25789 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25790 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25791 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25792 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25793 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25794 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25795 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25796 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25797 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25798 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25799 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25800 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25801 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25802 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25803 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25804 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25805 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25806 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25807 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25808 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25809 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25810 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25811 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25812 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25813 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25814 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25815 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25816 25817 return (0); 25818 } 25819 25820 void 25821 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25822 { 25823 uint16_t hdr_len; 25824 ipha_t *ipha; 25825 uint8_t *nexthdrp; 25826 tcph_t *tcph; 25827 25828 /* Already has an eager */ 25829 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25830 TCP_STAT(tcp_reinput_syn); 25831 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25832 connp, SQTAG_TCP_REINPUT_EAGER); 25833 return; 25834 } 25835 25836 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25837 case IPV4_VERSION: 25838 ipha = (ipha_t *)mp->b_rptr; 25839 hdr_len = IPH_HDR_LENGTH(ipha); 25840 break; 25841 case IPV6_VERSION: 25842 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25843 &hdr_len, &nexthdrp)) { 25844 CONN_DEC_REF(connp); 25845 freemsg(mp); 25846 return; 25847 } 25848 break; 25849 } 25850 25851 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25852 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25853 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25854 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25855 } 25856 25857 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25858 SQTAG_TCP_REINPUT); 25859 } 25860 25861 static squeue_func_t 25862 tcp_squeue_switch(int val) 25863 { 25864 squeue_func_t rval = squeue_fill; 25865 25866 switch (val) { 25867 case 1: 25868 rval = squeue_enter_nodrain; 25869 break; 25870 case 2: 25871 rval = squeue_enter; 25872 break; 25873 default: 25874 break; 25875 } 25876 return (rval); 25877 } 25878 25879 static void 25880 tcp_squeue_add(squeue_t *sqp) 25881 { 25882 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25883 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25884 25885 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25886 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25887 sqp, TCP_TIME_WAIT_DELAY); 25888 if (tcp_free_list_max_cnt == 0) { 25889 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25890 max_ncpus : boot_max_ncpus); 25891 25892 /* 25893 * Limit number of entries to 1% of availble memory / tcp_ncpus 25894 */ 25895 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25896 (tcp_ncpus * sizeof (tcp_t) * 100); 25897 } 25898 tcp_time_wait->tcp_free_list_cnt = 0; 25899 } 25900