xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision 3d9c56a157784839d32b49e03a3468a72c53f2dc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 
61 #include <sys/errno.h>
62 #include <sys/signal.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 #include <sys/isa_defs.h>
66 #include <sys/md5.h>
67 #include <sys/random.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/mi.h>
82 #include <inet/mib2.h>
83 #include <inet/nd.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 #include <inet/tcp_trace.h>
93 
94 #include <inet/ipclassifier.h>
95 #include <inet/ip_ire.h>
96 #include <inet/ip_ftable.h>
97 #include <inet/ip_if.h>
98 #include <inet/ipp_common.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <sys/sdt.h>
105 #include <rpc/pmap_prot.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
129  * squeue_fill). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. ip_tcpopen() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 extern major_t TCP6_MAJ;
237 
238 /*
239  * Values for squeue switch:
240  * 1: squeue_enter_nodrain
241  * 2: squeue_enter
242  * 3: squeue_fill
243  */
244 int tcp_squeue_close = 2;
245 int tcp_squeue_wput = 2;
246 
247 squeue_func_t tcp_squeue_close_proc;
248 squeue_func_t tcp_squeue_wput_proc;
249 
250 /*
251  * This controls how tiny a write must be before we try to copy it
252  * into the the mblk on the tail of the transmit queue.  Not much
253  * speedup is observed for values larger than sixteen.  Zero will
254  * disable the optimisation.
255  */
256 int tcp_tx_pull_len = 16;
257 
258 /*
259  * TCP Statistics.
260  *
261  * How TCP statistics work.
262  *
263  * There are two types of statistics invoked by two macros.
264  *
265  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
266  * supposed to be used in non MT-hot paths of the code.
267  *
268  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
269  * supposed to be used for DEBUG purposes and may be used on a hot path.
270  *
271  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
272  * (use "kstat tcp" to get them).
273  *
274  * There is also additional debugging facility that marks tcp_clean_death()
275  * instances and saves them in tcp_t structure. It is triggered by
276  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
277  * tcp_clean_death() calls that counts the number of times each tag was hit. It
278  * is triggered by TCP_CLD_COUNTERS define.
279  *
280  * How to add new counters.
281  *
282  * 1) Add a field in the tcp_stat structure describing your counter.
283  * 2) Add a line in tcp_statistics with the name of the counter.
284  *
285  *    IMPORTANT!! - make sure that both are in sync !!
286  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
287  *
288  * Please avoid using private counters which are not kstat-exported.
289  *
290  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
291  * in tcp_t structure.
292  *
293  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
294  */
295 
296 #ifndef TCP_DEBUG_COUNTER
297 #ifdef DEBUG
298 #define	TCP_DEBUG_COUNTER 1
299 #else
300 #define	TCP_DEBUG_COUNTER 0
301 #endif
302 #endif
303 
304 #define	TCP_CLD_COUNTERS 0
305 
306 #define	TCP_TAG_CLEAN_DEATH 1
307 #define	TCP_MAX_CLEAN_DEATH_TAG 32
308 
309 #ifdef lint
310 static int _lint_dummy_;
311 #endif
312 
313 #if TCP_CLD_COUNTERS
314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
315 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
316 #elif defined(lint)
317 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
318 #else
319 #define	TCP_CLD_STAT(x)
320 #endif
321 
322 #if TCP_DEBUG_COUNTER
323 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
324 #elif defined(lint)
325 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
326 #else
327 #define	TCP_DBGSTAT(x)
328 #endif
329 
330 tcp_stat_t tcp_statistics = {
331 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
332 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
333 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
334 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
335 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
336 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
337 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
338 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
339 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
340 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
341 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
342 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
343 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
344 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
345 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
346 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
347 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
348 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
349 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
350 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
351 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
352 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
353 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
354 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
355 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
356 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
357 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
358 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
359 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
360 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
361 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
362 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
363 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
364 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
365 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
366 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
367 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
368 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
369 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
370 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
371 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
372 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
373 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
374 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
375 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
376 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
377 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
378 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
379 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
380 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
381 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
382 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
383 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
384 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
385 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
386 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
387 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
388 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
389 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
390 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
391 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
392 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
399 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
400 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
401 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
402 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
403 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
404 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
405 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
406 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
407 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
408 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
409 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
410 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
411 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
412 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
413 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
414 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
415 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
416 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
417 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
418 	{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
419 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
420 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
421 	{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
422 	{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
423 	{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
424 	{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
425 };
426 
427 static kstat_t *tcp_kstat;
428 
429 /*
430  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
431  * tcp write side.
432  */
433 #define	CALL_IP_WPUT(connp, q, mp) {					\
434 	ASSERT(((q)->q_flag & QREADR) == 0);				\
435 	TCP_DBGSTAT(tcp_ip_output);					\
436 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
437 }
438 
439 /* Macros for timestamp comparisons */
440 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
441 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
442 
443 /*
444  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
445  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
446  * by adding three components: a time component which grows by 1 every 4096
447  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
448  * a per-connection component which grows by 125000 for every new connection;
449  * and an "extra" component that grows by a random amount centered
450  * approximately on 64000.  This causes the the ISS generator to cycle every
451  * 4.89 hours if no TCP connections are made, and faster if connections are
452  * made.
453  *
454  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
455  * components: a time component which grows by 250000 every second; and
456  * a per-connection component which grows by 125000 for every new connections.
457  *
458  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
459  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
460  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
461  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
462  * password.
463  */
464 #define	ISS_INCR	250000
465 #define	ISS_NSEC_SHT	12
466 
467 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
468 static kmutex_t tcp_iss_key_lock;
469 static MD5_CTX tcp_iss_key;
470 static sin_t	sin_null;	/* Zero address for quick clears */
471 static sin6_t	sin6_null;	/* Zero address for quick clears */
472 
473 /* Packet dropper for TCP IPsec policy drops. */
474 static ipdropper_t tcp_dropper;
475 
476 /*
477  * This implementation follows the 4.3BSD interpretation of the urgent
478  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
479  * incompatible changes in protocols like telnet and rlogin.
480  */
481 #define	TCP_OLD_URP_INTERPRETATION	1
482 
483 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
484 	(TCP_IS_DETACHED(tcp) && \
485 	    (!(tcp)->tcp_hard_binding))
486 
487 /*
488  * TCP reassembly macros.  We hide starting and ending sequence numbers in
489  * b_next and b_prev of messages on the reassembly queue.  The messages are
490  * chained using b_cont.  These macros are used in tcp_reass() so we don't
491  * have to see the ugly casts and assignments.
492  */
493 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
494 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
495 					(mblk_t *)(uintptr_t)(u))
496 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
497 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
498 					(mblk_t *)(uintptr_t)(u))
499 
500 /*
501  * Implementation of TCP Timers.
502  * =============================
503  *
504  * INTERFACE:
505  *
506  * There are two basic functions dealing with tcp timers:
507  *
508  *	timeout_id_t	tcp_timeout(connp, func, time)
509  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
510  *	TCP_TIMER_RESTART(tcp, intvl)
511  *
512  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
513  * after 'time' ticks passed. The function called by timeout() must adhere to
514  * the same restrictions as a driver soft interrupt handler - it must not sleep
515  * or call other functions that might sleep. The value returned is the opaque
516  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
517  * cancel the request. The call to tcp_timeout() may fail in which case it
518  * returns zero. This is different from the timeout(9F) function which never
519  * fails.
520  *
521  * The call-back function 'func' always receives 'connp' as its single
522  * argument. It is always executed in the squeue corresponding to the tcp
523  * structure. The tcp structure is guaranteed to be present at the time the
524  * call-back is called.
525  *
526  * NOTE: The call-back function 'func' is never called if tcp is in
527  * 	the TCPS_CLOSED state.
528  *
529  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
530  * request. locks acquired by the call-back routine should not be held across
531  * the call to tcp_timeout_cancel() or a deadlock may result.
532  *
533  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
534  * Otherwise, it returns an integer value greater than or equal to 0. In
535  * particular, if the call-back function is already placed on the squeue, it can
536  * not be canceled.
537  *
538  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
539  * 	within squeue context corresponding to the tcp instance. Since the
540  *	call-back is also called via the same squeue, there are no race
541  *	conditions described in untimeout(9F) manual page since all calls are
542  *	strictly serialized.
543  *
544  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
545  *	stored in tcp_timer_tid and starts a new one using
546  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
547  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
548  *	field.
549  *
550  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
551  *	call-back may still be called, so it is possible tcp_timer() will be
552  *	called several times. This should not be a problem since tcp_timer()
553  *	should always check the tcp instance state.
554  *
555  *
556  * IMPLEMENTATION:
557  *
558  * TCP timers are implemented using three-stage process. The call to
559  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
560  * when the timer expires. The tcp_timer_callback() arranges the call of the
561  * tcp_timer_handler() function via squeue corresponding to the tcp
562  * instance. The tcp_timer_handler() calls actual requested timeout call-back
563  * and passes tcp instance as an argument to it. Information is passed between
564  * stages using the tcp_timer_t structure which contains the connp pointer, the
565  * tcp call-back to call and the timeout id returned by the timeout(9F).
566  *
567  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
568  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
569  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
570  * returns the pointer to this mblk.
571  *
572  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
573  * looks like a normal mblk without actual dblk attached to it.
574  *
575  * To optimize performance each tcp instance holds a small cache of timer
576  * mblocks. In the current implementation it caches up to two timer mblocks per
577  * tcp instance. The cache is preserved over tcp frees and is only freed when
578  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
579  * timer processing happens on a corresponding squeue, the cache manipulation
580  * does not require any locks. Experiments show that majority of timer mblocks
581  * allocations are satisfied from the tcp cache and do not involve kmem calls.
582  *
583  * The tcp_timeout() places a refhold on the connp instance which guarantees
584  * that it will be present at the time the call-back function fires. The
585  * tcp_timer_handler() drops the reference after calling the call-back, so the
586  * call-back function does not need to manipulate the references explicitly.
587  */
588 
589 typedef struct tcp_timer_s {
590 	conn_t	*connp;
591 	void 	(*tcpt_proc)(void *);
592 	timeout_id_t   tcpt_tid;
593 } tcp_timer_t;
594 
595 static kmem_cache_t *tcp_timercache;
596 kmem_cache_t	*tcp_sack_info_cache;
597 kmem_cache_t	*tcp_iphc_cache;
598 
599 /*
600  * For scalability, we must not run a timer for every TCP connection
601  * in TIME_WAIT state.  To see why, consider (for time wait interval of
602  * 4 minutes):
603  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
604  *
605  * This list is ordered by time, so you need only delete from the head
606  * until you get to entries which aren't old enough to delete yet.
607  * The list consists of only the detached TIME_WAIT connections.
608  *
609  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
610  * becomes detached TIME_WAIT (either by changing the state and already
611  * being detached or the other way around). This means that the TIME_WAIT
612  * state can be extended (up to doubled) if the connection doesn't become
613  * detached for a long time.
614  *
615  * The list manipulations (including tcp_time_wait_next/prev)
616  * are protected by the tcp_time_wait_lock. The content of the
617  * detached TIME_WAIT connections is protected by the normal perimeters.
618  */
619 
620 typedef struct tcp_squeue_priv_s {
621 	kmutex_t	tcp_time_wait_lock;
622 				/* Protects the next 3 globals */
623 	timeout_id_t	tcp_time_wait_tid;
624 	tcp_t		*tcp_time_wait_head;
625 	tcp_t		*tcp_time_wait_tail;
626 	tcp_t		*tcp_free_list;
627 	uint_t		tcp_free_list_cnt;
628 } tcp_squeue_priv_t;
629 
630 /*
631  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
632  * Running it every 5 seconds seems to give the best results.
633  */
634 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
635 
636 /*
637  * To prevent memory hog, limit the number of entries in tcp_free_list
638  * to 1% of available memory / number of cpus
639  */
640 uint_t tcp_free_list_max_cnt = 0;
641 
642 #define	TCP_XMIT_LOWATER	4096
643 #define	TCP_XMIT_HIWATER	49152
644 #define	TCP_RECV_LOWATER	2048
645 #define	TCP_RECV_HIWATER	49152
646 
647 /*
648  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
649  */
650 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
651 
652 #define	TIDUSZ	4096	/* transport interface data unit size */
653 
654 /*
655  * Bind hash list size and has function.  It has to be a power of 2 for
656  * hashing.
657  */
658 #define	TCP_BIND_FANOUT_SIZE	512
659 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
660 /*
661  * Size of listen and acceptor hash list.  It has to be a power of 2 for
662  * hashing.
663  */
664 #define	TCP_FANOUT_SIZE		256
665 
666 #ifdef	_ILP32
667 #define	TCP_ACCEPTOR_HASH(accid)					\
668 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
669 #else
670 #define	TCP_ACCEPTOR_HASH(accid)					\
671 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
672 #endif	/* _ILP32 */
673 
674 #define	IP_ADDR_CACHE_SIZE	2048
675 #define	IP_ADDR_CACHE_HASH(faddr)					\
676 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
677 
678 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
679 #define	TCP_HSP_HASH_SIZE 256
680 
681 #define	TCP_HSP_HASH(addr)					\
682 	(((addr>>24) ^ (addr >>16) ^			\
683 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
684 
685 /*
686  * TCP options struct returned from tcp_parse_options.
687  */
688 typedef struct tcp_opt_s {
689 	uint32_t	tcp_opt_mss;
690 	uint32_t	tcp_opt_wscale;
691 	uint32_t	tcp_opt_ts_val;
692 	uint32_t	tcp_opt_ts_ecr;
693 	tcp_t		*tcp;
694 } tcp_opt_t;
695 
696 /*
697  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
698  */
699 
700 #ifdef _BIG_ENDIAN
701 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
702 	(TCPOPT_TSTAMP << 8) | 10)
703 #else
704 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
705 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
706 #endif
707 
708 /*
709  * Flags returned from tcp_parse_options.
710  */
711 #define	TCP_OPT_MSS_PRESENT	1
712 #define	TCP_OPT_WSCALE_PRESENT	2
713 #define	TCP_OPT_TSTAMP_PRESENT	4
714 #define	TCP_OPT_SACK_OK_PRESENT	8
715 #define	TCP_OPT_SACK_PRESENT	16
716 
717 /* TCP option length */
718 #define	TCPOPT_NOP_LEN		1
719 #define	TCPOPT_MAXSEG_LEN	4
720 #define	TCPOPT_WS_LEN		3
721 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
722 #define	TCPOPT_TSTAMP_LEN	10
723 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
724 #define	TCPOPT_SACK_OK_LEN	2
725 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
726 #define	TCPOPT_REAL_SACK_LEN	4
727 #define	TCPOPT_MAX_SACK_LEN	36
728 #define	TCPOPT_HEADER_LEN	2
729 
730 /* TCP cwnd burst factor. */
731 #define	TCP_CWND_INFINITE	65535
732 #define	TCP_CWND_SS		3
733 #define	TCP_CWND_NORMAL		5
734 
735 /* Maximum TCP initial cwin (start/restart). */
736 #define	TCP_MAX_INIT_CWND	8
737 
738 /*
739  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
740  * either tcp_slow_start_initial or tcp_slow_start_after idle
741  * depending on the caller.  If the upper layer has not used the
742  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
743  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
744  * If the upper layer has changed set the tcp_init_cwnd, just use
745  * it to calculate the tcp_cwnd.
746  */
747 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
748 {									\
749 	if ((tcp)->tcp_init_cwnd == 0) {				\
750 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
751 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
752 	} else {							\
753 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
754 	}								\
755 	tcp->tcp_cwnd_cnt = 0;						\
756 }
757 
758 /* TCP Timer control structure */
759 typedef struct tcpt_s {
760 	pfv_t	tcpt_pfv;	/* The routine we are to call */
761 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
762 } tcpt_t;
763 
764 /* Host Specific Parameter structure */
765 typedef struct tcp_hsp {
766 	struct tcp_hsp	*tcp_hsp_next;
767 	in6_addr_t	tcp_hsp_addr_v6;
768 	in6_addr_t	tcp_hsp_subnet_v6;
769 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
770 	int32_t		tcp_hsp_sendspace;
771 	int32_t		tcp_hsp_recvspace;
772 	int32_t		tcp_hsp_tstamp;
773 } tcp_hsp_t;
774 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
775 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
776 
777 /*
778  * Functions called directly via squeue having a prototype of edesc_t.
779  */
780 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
781 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
782 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
783 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
784 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
785 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
786 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
787 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
788 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
789 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
790 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
791 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
792 
793 
794 /* Prototype for TCP functions */
795 static void	tcp_random_init(void);
796 int		tcp_random(void);
797 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
798 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
799 		    tcp_t *eager);
800 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
801 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
802     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
803     boolean_t user_specified);
804 static void	tcp_closei_local(tcp_t *tcp);
805 static void	tcp_close_detached(tcp_t *tcp);
806 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
807 			mblk_t *idmp, mblk_t **defermp);
808 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
809 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
810 		    in_port_t dstport, uint_t srcid);
811 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
812 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
813 		    uint32_t scope_id);
814 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
815 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
816 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
817 static char	*tcp_display(tcp_t *tcp, char *, char);
818 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
819 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
820 static void	tcp_eager_unlink(tcp_t *tcp);
821 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
822 		    int unixerr);
823 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
824 		    int tlierr, int unixerr);
825 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
826 		    cred_t *cr);
827 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
828 		    char *value, caddr_t cp, cred_t *cr);
829 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
830 		    char *value, caddr_t cp, cred_t *cr);
831 static int	tcp_tpistate(tcp_t *tcp);
832 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
833     int caller_holds_lock);
834 static void	tcp_bind_hash_remove(tcp_t *tcp);
835 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
836 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
837 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
838 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
839 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
840 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
841 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
842 static int	tcp_header_init_ipv4(tcp_t *tcp);
843 static int	tcp_header_init_ipv6(tcp_t *tcp);
844 int		tcp_init(tcp_t *tcp, queue_t *q);
845 static int	tcp_init_values(tcp_t *tcp);
846 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
847 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
848 		    t_scalar_t addr_length);
849 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
850 static void	tcp_ip_notify(tcp_t *tcp);
851 static mblk_t	*tcp_ire_mp(mblk_t *mp);
852 static void	tcp_iss_init(tcp_t *tcp);
853 static void	tcp_keepalive_killer(void *arg);
854 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
855 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
856 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
857 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
858 static boolean_t tcp_allow_connopt_set(int level, int name);
859 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
860 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
861 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
862 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
863 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
864 		    mblk_t *mblk);
865 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
866 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
867 		    uchar_t *ptr, uint_t len);
868 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
869 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
870 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
871 		    caddr_t cp, cred_t *cr);
872 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
873 		    caddr_t cp, cred_t *cr);
874 static void	tcp_iss_key_init(uint8_t *phrase, int len);
875 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
876 		    caddr_t cp, cred_t *cr);
877 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
878 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
879 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
880 static void	tcp_reinit(tcp_t *tcp);
881 static void	tcp_reinit_values(tcp_t *tcp);
882 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
883 		    tcp_t *thisstream, cred_t *cr);
884 
885 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
886 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
887 static boolean_t tcp_send_rst_chk(void);
888 static void	tcp_ss_rexmit(tcp_t *tcp);
889 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
890 static void	tcp_process_options(tcp_t *, tcph_t *);
891 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
892 static void	tcp_rsrv(queue_t *q);
893 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
894 static int	tcp_snmp_state(tcp_t *tcp);
895 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
896 		    cred_t *cr);
897 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
898 		    cred_t *cr);
899 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
900 		    cred_t *cr);
901 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
902 		    cred_t *cr);
903 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
904 		    cred_t *cr);
905 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
906 		    caddr_t cp, cred_t *cr);
907 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
908 		    caddr_t cp, cred_t *cr);
909 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
910 		    cred_t *cr);
911 static void	tcp_timer(void *arg);
912 static void	tcp_timer_callback(void *);
913 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
914     boolean_t random);
915 static in_port_t tcp_get_next_priv_port(const tcp_t *);
916 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
917 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
918 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
919 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
920 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
921 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
922 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
923 		    const int num_sack_blk, int *usable, uint_t *snxt,
924 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
925 		    const int mdt_thres);
926 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
927 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
928 		    const int num_sack_blk, int *usable, uint_t *snxt,
929 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
930 		    const int mdt_thres);
931 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
932 		    int num_sack_blk);
933 static void	tcp_wsrv(queue_t *q);
934 static int	tcp_xmit_end(tcp_t *tcp);
935 static void	tcp_ack_timer(void *arg);
936 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
937 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
938 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
939 		    zoneid_t zoneid);
940 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
941 		    uint32_t ack, int ctl);
942 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
943 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
944 static int	setmaxps(queue_t *q, int maxpsz);
945 static void	tcp_set_rto(tcp_t *, time_t);
946 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
947 		    boolean_t, boolean_t);
948 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
949 		    boolean_t ipsec_mctl);
950 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
951 		    char *opt, int optlen);
952 static int	tcp_build_hdrs(queue_t *, tcp_t *);
953 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
954 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
955 		    tcph_t *tcph);
956 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
957 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
958 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
959 boolean_t	tcp_reserved_port_check(in_port_t);
960 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
961 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
962 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
963 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
964 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
965 		    const boolean_t, const uint32_t, const uint32_t,
966 		    const uint32_t, const uint32_t);
967 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
968 		    const uint_t, const uint_t, boolean_t *);
969 static mblk_t	*tcp_lso_info_mp(mblk_t *);
970 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
971 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
972 extern mblk_t	*tcp_timermp_alloc(int);
973 extern void	tcp_timermp_free(tcp_t *);
974 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
975 static void	tcp_stop_lingering(tcp_t *tcp);
976 static void	tcp_close_linger_timeout(void *arg);
977 void		tcp_ddi_init(void);
978 void		tcp_ddi_destroy(void);
979 static void	tcp_kstat_init(void);
980 static void	tcp_kstat_fini(void);
981 static int	tcp_kstat_update(kstat_t *kp, int rw);
982 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
983 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
984 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
985 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
986 			tcph_t *tcph, mblk_t *idmp);
987 static squeue_func_t tcp_squeue_switch(int);
988 
989 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
990 static int	tcp_close(queue_t *, int);
991 static int	tcpclose_accept(queue_t *);
992 static int	tcp_modclose(queue_t *);
993 static void	tcp_wput_mod(queue_t *, mblk_t *);
994 
995 static void	tcp_squeue_add(squeue_t *);
996 static boolean_t tcp_zcopy_check(tcp_t *);
997 static void	tcp_zcopy_notify(tcp_t *);
998 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
999 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
1000 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
1001 
1002 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
1003 
1004 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
1005 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
1006 
1007 /*
1008  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
1009  *
1010  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
1011  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
1012  * (defined in tcp.h) needs to be filled in and passed into the kernel
1013  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
1014  * structure contains the four-tuple of a TCP connection and a range of TCP
1015  * states (specified by ac_start and ac_end). The use of wildcard addresses
1016  * and ports is allowed. Connections with a matching four tuple and a state
1017  * within the specified range will be aborted. The valid states for the
1018  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1019  * inclusive.
1020  *
1021  * An application which has its connection aborted by this ioctl will receive
1022  * an error that is dependent on the connection state at the time of the abort.
1023  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1024  * though a RST packet has been received.  If the connection state is equal to
1025  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1026  * and all resources associated with the connection will be freed.
1027  */
1028 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1029 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1030 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1031 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1032 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1033 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1034     boolean_t);
1035 
1036 static struct module_info tcp_rinfo =  {
1037 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1038 };
1039 
1040 static struct module_info tcp_winfo =  {
1041 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1042 };
1043 
1044 /*
1045  * Entry points for TCP as a module. It only allows SNMP requests
1046  * to pass through.
1047  */
1048 struct qinit tcp_mod_rinit = {
1049 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1050 };
1051 
1052 struct qinit tcp_mod_winit = {
1053 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1054 	&tcp_rinfo
1055 };
1056 
1057 /*
1058  * Entry points for TCP as a device. The normal case which supports
1059  * the TCP functionality.
1060  */
1061 struct qinit tcp_rinit = {
1062 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1063 };
1064 
1065 struct qinit tcp_winit = {
1066 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1067 };
1068 
1069 /* Initial entry point for TCP in socket mode. */
1070 struct qinit tcp_sock_winit = {
1071 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1072 };
1073 
1074 /*
1075  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1076  * an accept. Avoid allocating data structures since eager has already
1077  * been created.
1078  */
1079 struct qinit tcp_acceptor_rinit = {
1080 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1081 };
1082 
1083 struct qinit tcp_acceptor_winit = {
1084 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1085 };
1086 
1087 /*
1088  * Entry points for TCP loopback (read side only)
1089  */
1090 struct qinit tcp_loopback_rinit = {
1091 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1092 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1093 };
1094 
1095 struct streamtab tcpinfo = {
1096 	&tcp_rinit, &tcp_winit
1097 };
1098 
1099 extern squeue_func_t tcp_squeue_wput_proc;
1100 extern squeue_func_t tcp_squeue_timer_proc;
1101 
1102 /* Protected by tcp_g_q_lock */
1103 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1104 kmutex_t tcp_g_q_lock;
1105 
1106 /* Protected by tcp_hsp_lock */
1107 /*
1108  * XXX The host param mechanism should go away and instead we should use
1109  * the metrics associated with the routes to determine the default sndspace
1110  * and rcvspace.
1111  */
1112 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1113 krwlock_t tcp_hsp_lock;
1114 
1115 /*
1116  * Extra privileged ports. In host byte order.
1117  * Protected by tcp_epriv_port_lock.
1118  */
1119 #define	TCP_NUM_EPRIV_PORTS	64
1120 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1121 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1122 kmutex_t tcp_epriv_port_lock;
1123 
1124 /*
1125  * The smallest anonymous port in the privileged port range which TCP
1126  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1127  */
1128 static in_port_t tcp_min_anonpriv_port = 512;
1129 
1130 /* Only modified during _init and _fini thus no locking is needed. */
1131 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1132 
1133 /* Hint not protected by any lock */
1134 static uint_t	tcp_next_port_to_try;
1135 
1136 
1137 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1138 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1139 
1140 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1141 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1142 
1143 /*
1144  * TCP has a private interface for other kernel modules to reserve a
1145  * port range for them to use.  Once reserved, TCP will not use any ports
1146  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1147  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1148  * has to be verified.
1149  *
1150  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1151  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1152  * range is [port a, port b] inclusive.  And each port range is between
1153  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1154  *
1155  * Note that the default anonymous port range starts from 32768.  There is
1156  * no port "collision" between that and the reserved port range.  If there
1157  * is port collision (because the default smallest anonymous port is lowered
1158  * or some apps specifically bind to ports in the reserved port range), the
1159  * system may not be able to reserve a port range even there are enough
1160  * unbound ports as a reserved port range contains consecutive ports .
1161  */
1162 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1163 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1164 #define	TCP_SMALLEST_RESERVED_PORT		10240
1165 #define	TCP_LARGEST_RESERVED_PORT		20480
1166 
1167 /* Structure to represent those reserved port ranges. */
1168 typedef struct tcp_rport_s {
1169 	in_port_t	lo_port;
1170 	in_port_t	hi_port;
1171 	tcp_t		**temp_tcp_array;
1172 } tcp_rport_t;
1173 
1174 /* The reserved port array. */
1175 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1176 
1177 /* Locks to protect the tcp_reserved_ports array. */
1178 static krwlock_t tcp_reserved_port_lock;
1179 
1180 /* The number of ranges in the array. */
1181 uint32_t tcp_reserved_port_array_size = 0;
1182 
1183 /*
1184  * MIB-2 stuff for SNMP
1185  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1186  */
1187 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1188 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1189 
1190 boolean_t tcp_icmp_source_quench = B_FALSE;
1191 /*
1192  * Following assumes TPI alignment requirements stay along 32 bit
1193  * boundaries
1194  */
1195 #define	ROUNDUP32(x) \
1196 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1197 
1198 /* Template for response to info request. */
1199 static struct T_info_ack tcp_g_t_info_ack = {
1200 	T_INFO_ACK,		/* PRIM_type */
1201 	0,			/* TSDU_size */
1202 	T_INFINITE,		/* ETSDU_size */
1203 	T_INVALID,		/* CDATA_size */
1204 	T_INVALID,		/* DDATA_size */
1205 	sizeof (sin_t),		/* ADDR_size */
1206 	0,			/* OPT_size - not initialized here */
1207 	TIDUSZ,			/* TIDU_size */
1208 	T_COTS_ORD,		/* SERV_type */
1209 	TCPS_IDLE,		/* CURRENT_state */
1210 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1211 };
1212 
1213 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1214 	T_INFO_ACK,		/* PRIM_type */
1215 	0,			/* TSDU_size */
1216 	T_INFINITE,		/* ETSDU_size */
1217 	T_INVALID,		/* CDATA_size */
1218 	T_INVALID,		/* DDATA_size */
1219 	sizeof (sin6_t),	/* ADDR_size */
1220 	0,			/* OPT_size - not initialized here */
1221 	TIDUSZ,		/* TIDU_size */
1222 	T_COTS_ORD,		/* SERV_type */
1223 	TCPS_IDLE,		/* CURRENT_state */
1224 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1225 };
1226 
1227 #define	MS	1L
1228 #define	SECONDS	(1000 * MS)
1229 #define	MINUTES	(60 * SECONDS)
1230 #define	HOURS	(60 * MINUTES)
1231 #define	DAYS	(24 * HOURS)
1232 
1233 #define	PARAM_MAX (~(uint32_t)0)
1234 
1235 /* Max size IP datagram is 64k - 1 */
1236 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1237 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1238 /* Max of the above */
1239 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1240 
1241 /* Largest TCP port number */
1242 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1243 
1244 /*
1245  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1246  * layer header.  It has to be a multiple of 4.
1247  */
1248 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1249 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1250 
1251 /*
1252  * All of these are alterable, within the min/max values given, at run time.
1253  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1254  * per the TCP spec.
1255  */
1256 /* BEGIN CSTYLED */
1257 tcpparam_t	tcp_param_arr[] = {
1258  /*min		max		value		name */
1259  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1260  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1261  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1262  { 1,		1024,		1,		"tcp_conn_req_min" },
1263  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1264  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1265  { 0,		10,		0,		"tcp_debug" },
1266  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1267  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1268  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1269  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1270  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1271  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1272  { 1,		255,		64,		"tcp_ipv4_ttl"},
1273  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1274  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1275  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1276  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1277  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1278  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1279  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1280  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1281  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1282  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1283  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1284  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1285  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1286  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1287  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1288  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1289  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1290  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1291  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1292  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1293  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1294  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1295  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1296  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1297 /*
1298  * Question:  What default value should I set for tcp_strong_iss?
1299  */
1300  { 0,		2,		1,		"tcp_strong_iss"},
1301  { 0,		65536,		20,		"tcp_rtt_updates"},
1302  { 0,		1,		1,		"tcp_wscale_always"},
1303  { 0,		1,		0,		"tcp_tstamp_always"},
1304  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1305  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1306  { 0,		16,		2,		"tcp_deferred_acks_max"},
1307  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1308  { 1,		4,		4,		"tcp_slow_start_initial"},
1309  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1310  { 0,		2,		2,		"tcp_sack_permitted"},
1311  { 0,		1,		0,		"tcp_trace"},
1312  { 0,		1,		1,		"tcp_compression_enabled"},
1313  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1314  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1315  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1316  { 0,		1,		0,		"tcp_rev_src_routes"},
1317  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1318  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1319  { 0,		16,		8,		"tcp_local_dacks_max"},
1320  { 0,		2,		1,		"tcp_ecn_permitted"},
1321  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1322  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1323  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1324  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1325  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1326 };
1327 /* END CSTYLED */
1328 
1329 /*
1330  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1331  * each header fragment in the header buffer.  Each parameter value has
1332  * to be a multiple of 4 (32-bit aligned).
1333  */
1334 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1335 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1336 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1337 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1338 
1339 /*
1340  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1341  * the maximum number of payload buffers associated per Multidata.
1342  */
1343 static tcpparam_t tcp_mdt_max_pbufs_param =
1344 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1345 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1346 
1347 /* Round up the value to the nearest mss. */
1348 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1349 
1350 /*
1351  * Set ECN capable transport (ECT) code point in IP header.
1352  *
1353  * Note that there are 2 ECT code points '01' and '10', which are called
1354  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1355  * point ECT(0) for TCP as described in RFC 2481.
1356  */
1357 #define	SET_ECT(tcp, iph) \
1358 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1359 		/* We need to clear the code point first. */ \
1360 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1361 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1362 	} else { \
1363 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1364 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1365 	}
1366 
1367 /*
1368  * The format argument to pass to tcp_display().
1369  * DISP_PORT_ONLY means that the returned string has only port info.
1370  * DISP_ADDR_AND_PORT means that the returned string also contains the
1371  * remote and local IP address.
1372  */
1373 #define	DISP_PORT_ONLY		1
1374 #define	DISP_ADDR_AND_PORT	2
1375 
1376 /*
1377  * This controls the rate some ndd info report functions can be used
1378  * by non-privileged users.  It stores the last time such info is
1379  * requested.  When those report functions are called again, this
1380  * is checked with the current time and compare with the ndd param
1381  * tcp_ndd_get_info_interval.
1382  */
1383 static clock_t tcp_last_ndd_get_info_time = 0;
1384 #define	NDD_TOO_QUICK_MSG \
1385 	"ndd get info rate too high for non-privileged users, try again " \
1386 	"later.\n"
1387 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1388 
1389 #define	IS_VMLOANED_MBLK(mp) \
1390 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1391 
1392 /*
1393  * These two variables control the rate for TCP to generate RSTs in
1394  * response to segments not belonging to any connections.  We limit
1395  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1396  * each 1 second interval.  This is to protect TCP against DoS attack.
1397  */
1398 static clock_t tcp_last_rst_intrvl;
1399 static uint32_t tcp_rst_cnt;
1400 
1401 /* The number of RST not sent because of the rate limit. */
1402 static uint32_t tcp_rst_unsent;
1403 
1404 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1405 boolean_t tcp_mdt_chain = B_TRUE;
1406 
1407 /*
1408  * MDT threshold in the form of effective send MSS multiplier; we take
1409  * the MDT path if the amount of unsent data exceeds the threshold value
1410  * (default threshold is 1*SMSS).
1411  */
1412 uint_t tcp_mdt_smss_threshold = 1;
1413 
1414 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1415 
1416 /*
1417  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1418  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1419  * determined dynamically during tcp_adapt_ire(), which is the default.
1420  */
1421 boolean_t tcp_static_maxpsz = B_FALSE;
1422 
1423 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1424 uint32_t tcp_random_anon_port = 1;
1425 
1426 /*
1427  * To reach to an eager in Q0 which can be dropped due to an incoming
1428  * new SYN request when Q0 is full, a new doubly linked list is
1429  * introduced. This list allows to select an eager from Q0 in O(1) time.
1430  * This is needed to avoid spending too much time walking through the
1431  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1432  * this new list has to be a member of Q0.
1433  * This list is headed by listener's tcp_t. When the list is empty,
1434  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1435  * of listener's tcp_t point to listener's tcp_t itself.
1436  *
1437  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1438  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1439  * These macros do not affect the eager's membership to Q0.
1440  */
1441 
1442 
1443 #define	MAKE_DROPPABLE(listener, eager)					\
1444 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1445 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1446 		    = (eager);						\
1447 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1448 		(eager)->tcp_eager_next_drop_q0 =			\
1449 		    (listener)->tcp_eager_next_drop_q0;			\
1450 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1451 	}
1452 
1453 #define	MAKE_UNDROPPABLE(eager)						\
1454 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1455 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1456 		    = (eager)->tcp_eager_prev_drop_q0;			\
1457 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1458 		    = (eager)->tcp_eager_next_drop_q0;			\
1459 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1460 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1461 	}
1462 
1463 /*
1464  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1465  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1466  * data, TCP will not respond with an ACK.  RFC 793 requires that
1467  * TCP responds with an ACK for such a bogus ACK.  By not following
1468  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1469  * an attacker successfully spoofs an acceptable segment to our
1470  * peer; or when our peer is "confused."
1471  */
1472 uint32_t tcp_drop_ack_unsent_cnt = 10;
1473 
1474 /*
1475  * Hook functions to enable cluster networking
1476  * On non-clustered systems these vectors must always be NULL.
1477  */
1478 
1479 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1480 			    uint8_t *laddrp, in_port_t lport) = NULL;
1481 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1482 			    uint8_t *laddrp, in_port_t lport) = NULL;
1483 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1484 			    uint8_t *laddrp, in_port_t lport,
1485 			    uint8_t *faddrp, in_port_t fport) = NULL;
1486 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1487 			    uint8_t *laddrp, in_port_t lport,
1488 			    uint8_t *faddrp, in_port_t fport) = NULL;
1489 
1490 /*
1491  * The following are defined in ip.c
1492  */
1493 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1494 				uint8_t *laddrp);
1495 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1496 				uint8_t *laddrp, uint8_t *faddrp);
1497 
1498 #define	CL_INET_CONNECT(tcp)		{			\
1499 	if (cl_inet_connect != NULL) {				\
1500 		/*						\
1501 		 * Running in cluster mode - register active connection	\
1502 		 * information						\
1503 		 */							\
1504 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1505 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1506 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1507 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1508 				    (in_port_t)(tcp)->tcp_lport,	\
1509 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1510 				    (in_port_t)(tcp)->tcp_fport);	\
1511 			}						\
1512 		} else {						\
1513 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1514 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1515 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1516 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1517 				    (in_port_t)(tcp)->tcp_lport,	\
1518 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1519 				    (in_port_t)(tcp)->tcp_fport);	\
1520 			}						\
1521 		}							\
1522 	}								\
1523 }
1524 
1525 #define	CL_INET_DISCONNECT(tcp)	{				\
1526 	if (cl_inet_disconnect != NULL) {				\
1527 		/*							\
1528 		 * Running in cluster mode - deregister active		\
1529 		 * connection information				\
1530 		 */							\
1531 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1532 			if ((tcp)->tcp_ip_src != 0) {			\
1533 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1534 				    AF_INET,				\
1535 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1536 				    (in_port_t)(tcp)->tcp_lport,	\
1537 				    (uint8_t *)				\
1538 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1539 				    (in_port_t)(tcp)->tcp_fport);	\
1540 			}						\
1541 		} else {						\
1542 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1543 			    &(tcp)->tcp_ip_src_v6)) {			\
1544 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1545 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1546 				    (in_port_t)(tcp)->tcp_lport,	\
1547 				    (uint8_t *)				\
1548 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1549 				    (in_port_t)(tcp)->tcp_fport);	\
1550 			}						\
1551 		}							\
1552 	}								\
1553 }
1554 
1555 /*
1556  * Cluster networking hook for traversing current connection list.
1557  * This routine is used to extract the current list of live connections
1558  * which must continue to to be dispatched to this node.
1559  */
1560 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1561 
1562 /*
1563  * Figure out the value of window scale opton.  Note that the rwnd is
1564  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1565  * We cannot find the scale value and then do a round up of tcp_rwnd
1566  * because the scale value may not be correct after that.
1567  *
1568  * Set the compiler flag to make this function inline.
1569  */
1570 static void
1571 tcp_set_ws_value(tcp_t *tcp)
1572 {
1573 	int i;
1574 	uint32_t rwnd = tcp->tcp_rwnd;
1575 
1576 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1577 	    i++, rwnd >>= 1)
1578 		;
1579 	tcp->tcp_rcv_ws = i;
1580 }
1581 
1582 /*
1583  * Remove a connection from the list of detached TIME_WAIT connections.
1584  * It returns B_FALSE if it can't remove the connection from the list
1585  * as the connection has already been removed from the list due to an
1586  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1587  */
1588 static boolean_t
1589 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1590 {
1591 	boolean_t	locked = B_FALSE;
1592 
1593 	if (tcp_time_wait == NULL) {
1594 		tcp_time_wait = *((tcp_squeue_priv_t **)
1595 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1596 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1597 		locked = B_TRUE;
1598 	}
1599 
1600 	if (tcp->tcp_time_wait_expire == 0) {
1601 		ASSERT(tcp->tcp_time_wait_next == NULL);
1602 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1603 		if (locked)
1604 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1605 		return (B_FALSE);
1606 	}
1607 	ASSERT(TCP_IS_DETACHED(tcp));
1608 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1609 
1610 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1611 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1612 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1613 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1614 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1615 			    NULL;
1616 		} else {
1617 			tcp_time_wait->tcp_time_wait_tail = NULL;
1618 		}
1619 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1620 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1621 		ASSERT(tcp->tcp_time_wait_next == NULL);
1622 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1623 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1624 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1625 	} else {
1626 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1627 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1628 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1629 		    tcp->tcp_time_wait_next;
1630 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1631 		    tcp->tcp_time_wait_prev;
1632 	}
1633 	tcp->tcp_time_wait_next = NULL;
1634 	tcp->tcp_time_wait_prev = NULL;
1635 	tcp->tcp_time_wait_expire = 0;
1636 
1637 	if (locked)
1638 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1639 	return (B_TRUE);
1640 }
1641 
1642 /*
1643  * Add a connection to the list of detached TIME_WAIT connections
1644  * and set its time to expire.
1645  */
1646 static void
1647 tcp_time_wait_append(tcp_t *tcp)
1648 {
1649 	tcp_squeue_priv_t *tcp_time_wait =
1650 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1651 		SQPRIVATE_TCP));
1652 
1653 	tcp_timers_stop(tcp);
1654 
1655 	/* Freed above */
1656 	ASSERT(tcp->tcp_timer_tid == 0);
1657 	ASSERT(tcp->tcp_ack_tid == 0);
1658 
1659 	/* must have happened at the time of detaching the tcp */
1660 	ASSERT(tcp->tcp_ptpahn == NULL);
1661 	ASSERT(tcp->tcp_flow_stopped == 0);
1662 	ASSERT(tcp->tcp_time_wait_next == NULL);
1663 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1664 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1665 	ASSERT(tcp->tcp_listener == NULL);
1666 
1667 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1668 	/*
1669 	 * The value computed below in tcp->tcp_time_wait_expire may
1670 	 * appear negative or wrap around. That is ok since our
1671 	 * interest is only in the difference between the current lbolt
1672 	 * value and tcp->tcp_time_wait_expire. But the value should not
1673 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1674 	 * The corresponding comparison in tcp_time_wait_collector() uses
1675 	 * modular arithmetic.
1676 	 */
1677 	tcp->tcp_time_wait_expire +=
1678 	    drv_usectohz(tcp_time_wait_interval * 1000);
1679 	if (tcp->tcp_time_wait_expire == 0)
1680 		tcp->tcp_time_wait_expire = 1;
1681 
1682 	ASSERT(TCP_IS_DETACHED(tcp));
1683 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1684 	ASSERT(tcp->tcp_time_wait_next == NULL);
1685 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1686 	TCP_DBGSTAT(tcp_time_wait);
1687 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1688 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1689 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1690 		tcp_time_wait->tcp_time_wait_head = tcp;
1691 	} else {
1692 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1693 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1694 		    TCPS_TIME_WAIT);
1695 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1696 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1697 	}
1698 	tcp_time_wait->tcp_time_wait_tail = tcp;
1699 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1700 }
1701 
1702 /* ARGSUSED */
1703 void
1704 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1705 {
1706 	conn_t	*connp = (conn_t *)arg;
1707 	tcp_t	*tcp = connp->conn_tcp;
1708 
1709 	ASSERT(tcp != NULL);
1710 	if (tcp->tcp_state == TCPS_CLOSED) {
1711 		return;
1712 	}
1713 
1714 	ASSERT((tcp->tcp_family == AF_INET &&
1715 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1716 	    (tcp->tcp_family == AF_INET6 &&
1717 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1718 	    tcp->tcp_ipversion == IPV6_VERSION)));
1719 	ASSERT(!tcp->tcp_listener);
1720 
1721 	TCP_STAT(tcp_time_wait_reap);
1722 	ASSERT(TCP_IS_DETACHED(tcp));
1723 
1724 	/*
1725 	 * Because they have no upstream client to rebind or tcp_close()
1726 	 * them later, we axe the connection here and now.
1727 	 */
1728 	tcp_close_detached(tcp);
1729 }
1730 
1731 void
1732 tcp_cleanup(tcp_t *tcp)
1733 {
1734 	mblk_t		*mp;
1735 	char		*tcp_iphc;
1736 	int		tcp_iphc_len;
1737 	int		tcp_hdr_grown;
1738 	tcp_sack_info_t	*tcp_sack_info;
1739 	conn_t		*connp = tcp->tcp_connp;
1740 
1741 	tcp_bind_hash_remove(tcp);
1742 	tcp_free(tcp);
1743 
1744 	/* Release any SSL context */
1745 	if (tcp->tcp_kssl_ent != NULL) {
1746 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1747 		tcp->tcp_kssl_ent = NULL;
1748 	}
1749 
1750 	if (tcp->tcp_kssl_ctx != NULL) {
1751 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1752 		tcp->tcp_kssl_ctx = NULL;
1753 	}
1754 	tcp->tcp_kssl_pending = B_FALSE;
1755 
1756 	conn_delete_ire(connp, NULL);
1757 	if (connp->conn_flags & IPCL_TCPCONN) {
1758 		if (connp->conn_latch != NULL)
1759 			IPLATCH_REFRELE(connp->conn_latch);
1760 		if (connp->conn_policy != NULL)
1761 			IPPH_REFRELE(connp->conn_policy);
1762 	}
1763 
1764 	/*
1765 	 * Since we will bzero the entire structure, we need to
1766 	 * remove it and reinsert it in global hash list. We
1767 	 * know the walkers can't get to this conn because we
1768 	 * had set CONDEMNED flag earlier and checked reference
1769 	 * under conn_lock so walker won't pick it and when we
1770 	 * go the ipcl_globalhash_remove() below, no walker
1771 	 * can get to it.
1772 	 */
1773 	ipcl_globalhash_remove(connp);
1774 
1775 	/* Save some state */
1776 	mp = tcp->tcp_timercache;
1777 
1778 	tcp_sack_info = tcp->tcp_sack_info;
1779 	tcp_iphc = tcp->tcp_iphc;
1780 	tcp_iphc_len = tcp->tcp_iphc_len;
1781 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1782 
1783 	if (connp->conn_cred != NULL)
1784 		crfree(connp->conn_cred);
1785 	if (connp->conn_peercred != NULL)
1786 		crfree(connp->conn_peercred);
1787 	bzero(connp, sizeof (conn_t));
1788 	bzero(tcp, sizeof (tcp_t));
1789 
1790 	/* restore the state */
1791 	tcp->tcp_timercache = mp;
1792 
1793 	tcp->tcp_sack_info = tcp_sack_info;
1794 	tcp->tcp_iphc = tcp_iphc;
1795 	tcp->tcp_iphc_len = tcp_iphc_len;
1796 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1797 
1798 
1799 	tcp->tcp_connp = connp;
1800 
1801 	connp->conn_tcp = tcp;
1802 	connp->conn_flags = IPCL_TCPCONN;
1803 	connp->conn_state_flags = CONN_INCIPIENT;
1804 	connp->conn_ulp = IPPROTO_TCP;
1805 	connp->conn_ref = 1;
1806 
1807 	ipcl_globalhash_insert(connp);
1808 }
1809 
1810 /*
1811  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1812  * is done forwards from the head.
1813  */
1814 /* ARGSUSED */
1815 void
1816 tcp_time_wait_collector(void *arg)
1817 {
1818 	tcp_t *tcp;
1819 	clock_t now;
1820 	mblk_t *mp;
1821 	conn_t *connp;
1822 	kmutex_t *lock;
1823 	boolean_t removed;
1824 
1825 	squeue_t *sqp = (squeue_t *)arg;
1826 	tcp_squeue_priv_t *tcp_time_wait =
1827 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1828 
1829 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1830 	tcp_time_wait->tcp_time_wait_tid = 0;
1831 
1832 	if (tcp_time_wait->tcp_free_list != NULL &&
1833 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1834 		TCP_STAT(tcp_freelist_cleanup);
1835 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1836 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1837 			CONN_DEC_REF(tcp->tcp_connp);
1838 		}
1839 		tcp_time_wait->tcp_free_list_cnt = 0;
1840 	}
1841 
1842 	/*
1843 	 * In order to reap time waits reliably, we should use a
1844 	 * source of time that is not adjustable by the user -- hence
1845 	 * the call to ddi_get_lbolt().
1846 	 */
1847 	now = ddi_get_lbolt();
1848 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1849 		/*
1850 		 * Compare times using modular arithmetic, since
1851 		 * lbolt can wrapover.
1852 		 */
1853 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1854 			break;
1855 		}
1856 
1857 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1858 		ASSERT(removed);
1859 
1860 		connp = tcp->tcp_connp;
1861 		ASSERT(connp->conn_fanout != NULL);
1862 		lock = &connp->conn_fanout->connf_lock;
1863 		/*
1864 		 * This is essentially a TW reclaim fast path optimization for
1865 		 * performance where the timewait collector checks under the
1866 		 * fanout lock (so that no one else can get access to the
1867 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1868 		 * the classifier hash list. If ref count is indeed 2, we can
1869 		 * just remove the conn under the fanout lock and avoid
1870 		 * cleaning up the conn under the squeue, provided that
1871 		 * clustering callbacks are not enabled. If clustering is
1872 		 * enabled, we need to make the clustering callback before
1873 		 * setting the CONDEMNED flag and after dropping all locks and
1874 		 * so we forego this optimization and fall back to the slow
1875 		 * path. Also please see the comments in tcp_closei_local
1876 		 * regarding the refcnt logic.
1877 		 *
1878 		 * Since we are holding the tcp_time_wait_lock, its better
1879 		 * not to block on the fanout_lock because other connections
1880 		 * can't add themselves to time_wait list. So we do a
1881 		 * tryenter instead of mutex_enter.
1882 		 */
1883 		if (mutex_tryenter(lock)) {
1884 			mutex_enter(&connp->conn_lock);
1885 			if ((connp->conn_ref == 2) &&
1886 			    (cl_inet_disconnect == NULL)) {
1887 				ipcl_hash_remove_locked(connp,
1888 				    connp->conn_fanout);
1889 				/*
1890 				 * Set the CONDEMNED flag now itself so that
1891 				 * the refcnt cannot increase due to any
1892 				 * walker. But we have still not cleaned up
1893 				 * conn_ire_cache. This is still ok since
1894 				 * we are going to clean it up in tcp_cleanup
1895 				 * immediately and any interface unplumb
1896 				 * thread will wait till the ire is blown away
1897 				 */
1898 				connp->conn_state_flags |= CONN_CONDEMNED;
1899 				mutex_exit(lock);
1900 				mutex_exit(&connp->conn_lock);
1901 				if (tcp_time_wait->tcp_free_list_cnt <
1902 				    tcp_free_list_max_cnt) {
1903 					/* Add to head of tcp_free_list */
1904 					mutex_exit(
1905 					    &tcp_time_wait->tcp_time_wait_lock);
1906 					tcp_cleanup(tcp);
1907 					mutex_enter(
1908 					    &tcp_time_wait->tcp_time_wait_lock);
1909 					tcp->tcp_time_wait_next =
1910 					    tcp_time_wait->tcp_free_list;
1911 					tcp_time_wait->tcp_free_list = tcp;
1912 					tcp_time_wait->tcp_free_list_cnt++;
1913 					continue;
1914 				} else {
1915 					/* Do not add to tcp_free_list */
1916 					mutex_exit(
1917 					    &tcp_time_wait->tcp_time_wait_lock);
1918 					tcp_bind_hash_remove(tcp);
1919 					conn_delete_ire(tcp->tcp_connp, NULL);
1920 					CONN_DEC_REF(tcp->tcp_connp);
1921 				}
1922 			} else {
1923 				CONN_INC_REF_LOCKED(connp);
1924 				mutex_exit(lock);
1925 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1926 				mutex_exit(&connp->conn_lock);
1927 				/*
1928 				 * We can reuse the closemp here since conn has
1929 				 * detached (otherwise we wouldn't even be in
1930 				 * time_wait list). tcp_closemp_used can safely
1931 				 * be changed without taking a lock as no other
1932 				 * thread can concurrently access it at this
1933 				 * point in the connection lifecycle. We
1934 				 * increment tcp_closemp_used to record any
1935 				 * attempt to reuse tcp_closemp while it is
1936 				 * still in use.
1937 				 */
1938 
1939 				if (tcp->tcp_closemp.b_prev == NULL)
1940 					tcp->tcp_closemp_used = 1;
1941 				else
1942 					tcp->tcp_closemp_used++;
1943 
1944 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1945 				mp = &tcp->tcp_closemp;
1946 				squeue_fill(connp->conn_sqp, mp,
1947 				    tcp_timewait_output, connp,
1948 				    SQTAG_TCP_TIMEWAIT);
1949 			}
1950 		} else {
1951 			mutex_enter(&connp->conn_lock);
1952 			CONN_INC_REF_LOCKED(connp);
1953 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1954 			mutex_exit(&connp->conn_lock);
1955 			/*
1956 			 * We can reuse the closemp here since conn has
1957 			 * detached (otherwise we wouldn't even be in
1958 			 * time_wait list). tcp_closemp_used can safely
1959 			 * be changed without taking a lock as no other
1960 			 * thread can concurrently access it at this
1961 			 * point in the connection lifecycle. We
1962 			 * increment tcp_closemp_used to record any
1963 			 * attempt to reuse tcp_closemp while it is
1964 			 * still in use.
1965 			 */
1966 
1967 			if (tcp->tcp_closemp.b_prev == NULL)
1968 				tcp->tcp_closemp_used = 1;
1969 			else
1970 				tcp->tcp_closemp_used++;
1971 
1972 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1973 			mp = &tcp->tcp_closemp;
1974 			squeue_fill(connp->conn_sqp, mp,
1975 			    tcp_timewait_output, connp, 0);
1976 		}
1977 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1978 	}
1979 
1980 	if (tcp_time_wait->tcp_free_list != NULL)
1981 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1982 
1983 	tcp_time_wait->tcp_time_wait_tid =
1984 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1985 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1986 }
1987 
1988 /*
1989  * Reply to a clients T_CONN_RES TPI message. This function
1990  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1991  * on the acceptor STREAM and processed in tcp_wput_accept().
1992  * Read the block comment on top of tcp_conn_request().
1993  */
1994 static void
1995 tcp_accept(tcp_t *listener, mblk_t *mp)
1996 {
1997 	tcp_t	*acceptor;
1998 	tcp_t	*eager;
1999 	tcp_t   *tcp;
2000 	struct T_conn_res	*tcr;
2001 	t_uscalar_t	acceptor_id;
2002 	t_scalar_t	seqnum;
2003 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
2004 	mblk_t	*ok_mp;
2005 	mblk_t	*mp1;
2006 
2007 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
2008 		tcp_err_ack(listener, mp, TPROTO, 0);
2009 		return;
2010 	}
2011 	tcr = (struct T_conn_res *)mp->b_rptr;
2012 
2013 	/*
2014 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
2015 	 * read side queue of the streams device underneath us i.e. the
2016 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
2017 	 * look it up in the queue_hash.  Under LP64 it sends down the
2018 	 * minor_t of the accepting endpoint.
2019 	 *
2020 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
2021 	 * fanout hash lock is held.
2022 	 * This prevents any thread from entering the acceptor queue from
2023 	 * below (since it has not been hard bound yet i.e. any inbound
2024 	 * packets will arrive on the listener or default tcp queue and
2025 	 * go through tcp_lookup).
2026 	 * The CONN_INC_REF will prevent the acceptor from closing.
2027 	 *
2028 	 * XXX It is still possible for a tli application to send down data
2029 	 * on the accepting stream while another thread calls t_accept.
2030 	 * This should not be a problem for well-behaved applications since
2031 	 * the T_OK_ACK is sent after the queue swapping is completed.
2032 	 *
2033 	 * If the accepting fd is the same as the listening fd, avoid
2034 	 * queue hash lookup since that will return an eager listener in a
2035 	 * already established state.
2036 	 */
2037 	acceptor_id = tcr->ACCEPTOR_id;
2038 	mutex_enter(&listener->tcp_eager_lock);
2039 	if (listener->tcp_acceptor_id == acceptor_id) {
2040 		eager = listener->tcp_eager_next_q;
2041 		/* only count how many T_CONN_INDs so don't count q0 */
2042 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2043 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2044 			mutex_exit(&listener->tcp_eager_lock);
2045 			tcp_err_ack(listener, mp, TBADF, 0);
2046 			return;
2047 		}
2048 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2049 			/* Throw away all the eagers on q0. */
2050 			tcp_eager_cleanup(listener, 1);
2051 		}
2052 		if (listener->tcp_syn_defense) {
2053 			listener->tcp_syn_defense = B_FALSE;
2054 			if (listener->tcp_ip_addr_cache != NULL) {
2055 				kmem_free(listener->tcp_ip_addr_cache,
2056 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2057 				listener->tcp_ip_addr_cache = NULL;
2058 			}
2059 		}
2060 		/*
2061 		 * Transfer tcp_conn_req_max to the eager so that when
2062 		 * a disconnect occurs we can revert the endpoint to the
2063 		 * listen state.
2064 		 */
2065 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2066 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2067 		/*
2068 		 * Get a reference on the acceptor just like the
2069 		 * tcp_acceptor_hash_lookup below.
2070 		 */
2071 		acceptor = listener;
2072 		CONN_INC_REF(acceptor->tcp_connp);
2073 	} else {
2074 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
2075 		if (acceptor == NULL) {
2076 			if (listener->tcp_debug) {
2077 				(void) strlog(TCP_MOD_ID, 0, 1,
2078 				    SL_ERROR|SL_TRACE,
2079 				    "tcp_accept: did not find acceptor 0x%x\n",
2080 				    acceptor_id);
2081 			}
2082 			mutex_exit(&listener->tcp_eager_lock);
2083 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2084 			return;
2085 		}
2086 		/*
2087 		 * Verify acceptor state. The acceptable states for an acceptor
2088 		 * include TCPS_IDLE and TCPS_BOUND.
2089 		 */
2090 		switch (acceptor->tcp_state) {
2091 		case TCPS_IDLE:
2092 			/* FALLTHRU */
2093 		case TCPS_BOUND:
2094 			break;
2095 		default:
2096 			CONN_DEC_REF(acceptor->tcp_connp);
2097 			mutex_exit(&listener->tcp_eager_lock);
2098 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2099 			return;
2100 		}
2101 	}
2102 
2103 	/* The listener must be in TCPS_LISTEN */
2104 	if (listener->tcp_state != TCPS_LISTEN) {
2105 		CONN_DEC_REF(acceptor->tcp_connp);
2106 		mutex_exit(&listener->tcp_eager_lock);
2107 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2108 		return;
2109 	}
2110 
2111 	/*
2112 	 * Rendezvous with an eager connection request packet hanging off
2113 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2114 	 * tcp structure when the connection packet arrived in
2115 	 * tcp_conn_request().
2116 	 */
2117 	seqnum = tcr->SEQ_number;
2118 	eager = listener;
2119 	do {
2120 		eager = eager->tcp_eager_next_q;
2121 		if (eager == NULL) {
2122 			CONN_DEC_REF(acceptor->tcp_connp);
2123 			mutex_exit(&listener->tcp_eager_lock);
2124 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2125 			return;
2126 		}
2127 	} while (eager->tcp_conn_req_seqnum != seqnum);
2128 	mutex_exit(&listener->tcp_eager_lock);
2129 
2130 	/*
2131 	 * At this point, both acceptor and listener have 2 ref
2132 	 * that they begin with. Acceptor has one additional ref
2133 	 * we placed in lookup while listener has 3 additional
2134 	 * ref for being behind the squeue (tcp_accept() is
2135 	 * done on listener's squeue); being in classifier hash;
2136 	 * and eager's ref on listener.
2137 	 */
2138 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2139 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2140 
2141 	/*
2142 	 * The eager at this point is set in its own squeue and
2143 	 * could easily have been killed (tcp_accept_finish will
2144 	 * deal with that) because of a TH_RST so we can only
2145 	 * ASSERT for a single ref.
2146 	 */
2147 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2148 
2149 	/* Pre allocate the stroptions mblk also */
2150 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2151 	if (opt_mp == NULL) {
2152 		CONN_DEC_REF(acceptor->tcp_connp);
2153 		CONN_DEC_REF(eager->tcp_connp);
2154 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2155 		return;
2156 	}
2157 	DB_TYPE(opt_mp) = M_SETOPTS;
2158 	opt_mp->b_wptr += sizeof (struct stroptions);
2159 
2160 	/*
2161 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2162 	 * from listener to acceptor. The message is chained on opt_mp
2163 	 * which will be sent onto eager's squeue.
2164 	 */
2165 	if (listener->tcp_bound_if != 0) {
2166 		/* allocate optmgmt req */
2167 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2168 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2169 		    sizeof (int));
2170 		if (mp1 != NULL)
2171 			linkb(opt_mp, mp1);
2172 	}
2173 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2174 		uint_t on = 1;
2175 
2176 		/* allocate optmgmt req */
2177 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2178 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2179 		if (mp1 != NULL)
2180 			linkb(opt_mp, mp1);
2181 	}
2182 
2183 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2184 	if ((mp1 = copymsg(mp)) == NULL) {
2185 		CONN_DEC_REF(acceptor->tcp_connp);
2186 		CONN_DEC_REF(eager->tcp_connp);
2187 		freemsg(opt_mp);
2188 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2189 		return;
2190 	}
2191 
2192 	tcr = (struct T_conn_res *)mp1->b_rptr;
2193 
2194 	/*
2195 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2196 	 * which allocates a larger mblk and appends the new
2197 	 * local address to the ok_ack.  The address is copied by
2198 	 * soaccept() for getsockname().
2199 	 */
2200 	{
2201 		int extra;
2202 
2203 		extra = (eager->tcp_family == AF_INET) ?
2204 		    sizeof (sin_t) : sizeof (sin6_t);
2205 
2206 		/*
2207 		 * Try to re-use mp, if possible.  Otherwise, allocate
2208 		 * an mblk and return it as ok_mp.  In any case, mp
2209 		 * is no longer usable upon return.
2210 		 */
2211 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2212 			CONN_DEC_REF(acceptor->tcp_connp);
2213 			CONN_DEC_REF(eager->tcp_connp);
2214 			freemsg(opt_mp);
2215 			/* Original mp has been freed by now, so use mp1 */
2216 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2217 			return;
2218 		}
2219 
2220 		mp = NULL;	/* We should never use mp after this point */
2221 
2222 		switch (extra) {
2223 		case sizeof (sin_t): {
2224 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2225 
2226 				ok_mp->b_wptr += extra;
2227 				sin->sin_family = AF_INET;
2228 				sin->sin_port = eager->tcp_lport;
2229 				sin->sin_addr.s_addr =
2230 				    eager->tcp_ipha->ipha_src;
2231 				break;
2232 			}
2233 		case sizeof (sin6_t): {
2234 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2235 
2236 				ok_mp->b_wptr += extra;
2237 				sin6->sin6_family = AF_INET6;
2238 				sin6->sin6_port = eager->tcp_lport;
2239 				if (eager->tcp_ipversion == IPV4_VERSION) {
2240 					sin6->sin6_flowinfo = 0;
2241 					IN6_IPADDR_TO_V4MAPPED(
2242 					    eager->tcp_ipha->ipha_src,
2243 					    &sin6->sin6_addr);
2244 				} else {
2245 					ASSERT(eager->tcp_ip6h != NULL);
2246 					sin6->sin6_flowinfo =
2247 					    eager->tcp_ip6h->ip6_vcf &
2248 					    ~IPV6_VERS_AND_FLOW_MASK;
2249 					sin6->sin6_addr =
2250 					    eager->tcp_ip6h->ip6_src;
2251 				}
2252 				break;
2253 			}
2254 		default:
2255 			break;
2256 		}
2257 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2258 	}
2259 
2260 	/*
2261 	 * If there are no options we know that the T_CONN_RES will
2262 	 * succeed. However, we can't send the T_OK_ACK upstream until
2263 	 * the tcp_accept_swap is done since it would be dangerous to
2264 	 * let the application start using the new fd prior to the swap.
2265 	 */
2266 	tcp_accept_swap(listener, acceptor, eager);
2267 
2268 	/*
2269 	 * tcp_accept_swap unlinks eager from listener but does not drop
2270 	 * the eager's reference on the listener.
2271 	 */
2272 	ASSERT(eager->tcp_listener == NULL);
2273 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2274 
2275 	/*
2276 	 * The eager is now associated with its own queue. Insert in
2277 	 * the hash so that the connection can be reused for a future
2278 	 * T_CONN_RES.
2279 	 */
2280 	tcp_acceptor_hash_insert(acceptor_id, eager);
2281 
2282 	/*
2283 	 * We now do the processing of options with T_CONN_RES.
2284 	 * We delay till now since we wanted to have queue to pass to
2285 	 * option processing routines that points back to the right
2286 	 * instance structure which does not happen until after
2287 	 * tcp_accept_swap().
2288 	 *
2289 	 * Note:
2290 	 * The sanity of the logic here assumes that whatever options
2291 	 * are appropriate to inherit from listner=>eager are done
2292 	 * before this point, and whatever were to be overridden (or not)
2293 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2294 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2295 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2296 	 * This may not be true at this point in time but can be fixed
2297 	 * independently. This option processing code starts with
2298 	 * the instantiated acceptor instance and the final queue at
2299 	 * this point.
2300 	 */
2301 
2302 	if (tcr->OPT_length != 0) {
2303 		/* Options to process */
2304 		int t_error = 0;
2305 		int sys_error = 0;
2306 		int do_disconnect = 0;
2307 
2308 		if (tcp_conprim_opt_process(eager, mp1,
2309 		    &do_disconnect, &t_error, &sys_error) < 0) {
2310 			eager->tcp_accept_error = 1;
2311 			if (do_disconnect) {
2312 				/*
2313 				 * An option failed which does not allow
2314 				 * connection to be accepted.
2315 				 *
2316 				 * We allow T_CONN_RES to succeed and
2317 				 * put a T_DISCON_IND on the eager queue.
2318 				 */
2319 				ASSERT(t_error == 0 && sys_error == 0);
2320 				eager->tcp_send_discon_ind = 1;
2321 			} else {
2322 				ASSERT(t_error != 0);
2323 				freemsg(ok_mp);
2324 				/*
2325 				 * Original mp was either freed or set
2326 				 * to ok_mp above, so use mp1 instead.
2327 				 */
2328 				tcp_err_ack(listener, mp1, t_error, sys_error);
2329 				goto finish;
2330 			}
2331 		}
2332 		/*
2333 		 * Most likely success in setting options (except if
2334 		 * eager->tcp_send_discon_ind set).
2335 		 * mp1 option buffer represented by OPT_length/offset
2336 		 * potentially modified and contains results of setting
2337 		 * options at this point
2338 		 */
2339 	}
2340 
2341 	/* We no longer need mp1, since all options processing has passed */
2342 	freemsg(mp1);
2343 
2344 	putnext(listener->tcp_rq, ok_mp);
2345 
2346 	mutex_enter(&listener->tcp_eager_lock);
2347 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2348 		tcp_t	*tail;
2349 		mblk_t	*conn_ind;
2350 
2351 		/*
2352 		 * This path should not be executed if listener and
2353 		 * acceptor streams are the same.
2354 		 */
2355 		ASSERT(listener != acceptor);
2356 
2357 		tcp = listener->tcp_eager_prev_q0;
2358 		/*
2359 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2360 		 * deferred T_conn_ind queue. We need to get to the head of
2361 		 * the queue in order to send up T_conn_ind the same order as
2362 		 * how the 3WHS is completed.
2363 		 */
2364 		while (tcp != listener) {
2365 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2366 				break;
2367 			else
2368 				tcp = tcp->tcp_eager_prev_q0;
2369 		}
2370 		ASSERT(tcp != listener);
2371 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2372 		ASSERT(conn_ind != NULL);
2373 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2374 
2375 		/* Move from q0 to q */
2376 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2377 		listener->tcp_conn_req_cnt_q0--;
2378 		listener->tcp_conn_req_cnt_q++;
2379 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2380 		    tcp->tcp_eager_prev_q0;
2381 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2382 		    tcp->tcp_eager_next_q0;
2383 		tcp->tcp_eager_prev_q0 = NULL;
2384 		tcp->tcp_eager_next_q0 = NULL;
2385 		tcp->tcp_conn_def_q0 = B_FALSE;
2386 
2387 		/* Make sure the tcp isn't in the list of droppables */
2388 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2389 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2390 
2391 		/*
2392 		 * Insert at end of the queue because sockfs sends
2393 		 * down T_CONN_RES in chronological order. Leaving
2394 		 * the older conn indications at front of the queue
2395 		 * helps reducing search time.
2396 		 */
2397 		tail = listener->tcp_eager_last_q;
2398 		if (tail != NULL)
2399 			tail->tcp_eager_next_q = tcp;
2400 		else
2401 			listener->tcp_eager_next_q = tcp;
2402 		listener->tcp_eager_last_q = tcp;
2403 		tcp->tcp_eager_next_q = NULL;
2404 		mutex_exit(&listener->tcp_eager_lock);
2405 		putnext(tcp->tcp_rq, conn_ind);
2406 	} else {
2407 		mutex_exit(&listener->tcp_eager_lock);
2408 	}
2409 
2410 	/*
2411 	 * Done with the acceptor - free it
2412 	 *
2413 	 * Note: from this point on, no access to listener should be made
2414 	 * as listener can be equal to acceptor.
2415 	 */
2416 finish:
2417 	ASSERT(acceptor->tcp_detached);
2418 	acceptor->tcp_rq = tcp_g_q;
2419 	acceptor->tcp_wq = WR(tcp_g_q);
2420 	(void) tcp_clean_death(acceptor, 0, 2);
2421 	CONN_DEC_REF(acceptor->tcp_connp);
2422 
2423 	/*
2424 	 * In case we already received a FIN we have to make tcp_rput send
2425 	 * the ordrel_ind. This will also send up a window update if the window
2426 	 * has opened up.
2427 	 *
2428 	 * In the normal case of a successful connection acceptance
2429 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2430 	 * indication that this was just accepted. This tells tcp_rput to
2431 	 * pass up any data queued in tcp_rcv_list.
2432 	 *
2433 	 * In the fringe case where options sent with T_CONN_RES failed and
2434 	 * we required, we would be indicating a T_DISCON_IND to blow
2435 	 * away this connection.
2436 	 */
2437 
2438 	/*
2439 	 * XXX: we currently have a problem if XTI application closes the
2440 	 * acceptor stream in between. This problem exists in on10-gate also
2441 	 * and is well know but nothing can be done short of major rewrite
2442 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2443 	 * eager same squeue as listener (we can distinguish non socket
2444 	 * listeners at the time of handling a SYN in tcp_conn_request)
2445 	 * and do most of the work that tcp_accept_finish does here itself
2446 	 * and then get behind the acceptor squeue to access the acceptor
2447 	 * queue.
2448 	 */
2449 	/*
2450 	 * We already have a ref on tcp so no need to do one before squeue_fill
2451 	 */
2452 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2453 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2454 }
2455 
2456 /*
2457  * Swap information between the eager and acceptor for a TLI/XTI client.
2458  * The sockfs accept is done on the acceptor stream and control goes
2459  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2460  * called. In either case, both the eager and listener are in their own
2461  * perimeter (squeue) and the code has to deal with potential race.
2462  *
2463  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2464  */
2465 static void
2466 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2467 {
2468 	conn_t	*econnp, *aconnp;
2469 
2470 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2471 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2472 	ASSERT(!eager->tcp_hard_bound);
2473 	ASSERT(!TCP_IS_SOCKET(acceptor));
2474 	ASSERT(!TCP_IS_SOCKET(eager));
2475 	ASSERT(!TCP_IS_SOCKET(listener));
2476 
2477 	acceptor->tcp_detached = B_TRUE;
2478 	/*
2479 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2480 	 * the acceptor id.
2481 	 */
2482 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2483 
2484 	/* remove eager from listen list... */
2485 	mutex_enter(&listener->tcp_eager_lock);
2486 	tcp_eager_unlink(eager);
2487 	ASSERT(eager->tcp_eager_next_q == NULL &&
2488 	    eager->tcp_eager_last_q == NULL);
2489 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2490 	    eager->tcp_eager_prev_q0 == NULL);
2491 	mutex_exit(&listener->tcp_eager_lock);
2492 	eager->tcp_rq = acceptor->tcp_rq;
2493 	eager->tcp_wq = acceptor->tcp_wq;
2494 
2495 	econnp = eager->tcp_connp;
2496 	aconnp = acceptor->tcp_connp;
2497 
2498 	eager->tcp_rq->q_ptr = econnp;
2499 	eager->tcp_wq->q_ptr = econnp;
2500 
2501 	/*
2502 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2503 	 * which might be a different squeue from our peer TCP instance.
2504 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2505 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2506 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2507 	 * above reach global visibility prior to the clearing of tcp_detached.
2508 	 */
2509 	membar_producer();
2510 	eager->tcp_detached = B_FALSE;
2511 
2512 	ASSERT(eager->tcp_ack_tid == 0);
2513 
2514 	econnp->conn_dev = aconnp->conn_dev;
2515 	if (eager->tcp_cred != NULL)
2516 		crfree(eager->tcp_cred);
2517 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2518 	aconnp->conn_cred = NULL;
2519 
2520 	econnp->conn_zoneid = aconnp->conn_zoneid;
2521 	econnp->conn_allzones = aconnp->conn_allzones;
2522 
2523 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2524 	aconnp->conn_mac_exempt = B_FALSE;
2525 
2526 	ASSERT(aconnp->conn_peercred == NULL);
2527 
2528 	/* Do the IPC initialization */
2529 	CONN_INC_REF(econnp);
2530 
2531 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2532 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2533 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2534 	econnp->conn_ulp = aconnp->conn_ulp;
2535 
2536 	/* Done with old IPC. Drop its ref on its connp */
2537 	CONN_DEC_REF(aconnp);
2538 }
2539 
2540 
2541 /*
2542  * Adapt to the information, such as rtt and rtt_sd, provided from the
2543  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2544  *
2545  * Checks for multicast and broadcast destination address.
2546  * Returns zero on failure; non-zero if ok.
2547  *
2548  * Note that the MSS calculation here is based on the info given in
2549  * the IRE.  We do not do any calculation based on TCP options.  They
2550  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2551  * knows which options to use.
2552  *
2553  * Note on how TCP gets its parameters for a connection.
2554  *
2555  * When a tcp_t structure is allocated, it gets all the default parameters.
2556  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2557  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2558  * default.  But if there is an associated tcp_host_param, it will override
2559  * the metrics.
2560  *
2561  * An incoming SYN with a multicast or broadcast destination address, is dropped
2562  * in 1 of 2 places.
2563  *
2564  * 1. If the packet was received over the wire it is dropped in
2565  * ip_rput_process_broadcast()
2566  *
2567  * 2. If the packet was received through internal IP loopback, i.e. the packet
2568  * was generated and received on the same machine, it is dropped in
2569  * ip_wput_local()
2570  *
2571  * An incoming SYN with a multicast or broadcast source address is always
2572  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2573  * reject an attempt to connect to a broadcast or multicast (destination)
2574  * address.
2575  */
2576 static int
2577 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2578 {
2579 	tcp_hsp_t	*hsp;
2580 	ire_t		*ire;
2581 	ire_t		*sire = NULL;
2582 	iulp_t		*ire_uinfo = NULL;
2583 	uint32_t	mss_max;
2584 	uint32_t	mss;
2585 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2586 	conn_t		*connp = tcp->tcp_connp;
2587 	boolean_t	ire_cacheable = B_FALSE;
2588 	zoneid_t	zoneid = connp->conn_zoneid;
2589 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2590 			    MATCH_IRE_SECATTR;
2591 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2592 	ill_t		*ill = NULL;
2593 	boolean_t	incoming = (ire_mp == NULL);
2594 
2595 	ASSERT(connp->conn_ire_cache == NULL);
2596 
2597 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2598 
2599 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2600 			BUMP_MIB(&ip_mib, ipInDiscards);
2601 			return (0);
2602 		}
2603 		/*
2604 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2605 		 * for the destination with the nexthop as gateway.
2606 		 * ire_ctable_lookup() is used because this particular
2607 		 * ire, if it exists, will be marked private.
2608 		 * If that is not available, use the interface ire
2609 		 * for the nexthop.
2610 		 *
2611 		 * TSol: tcp_update_label will detect label mismatches based
2612 		 * only on the destination's label, but that would not
2613 		 * detect label mismatches based on the security attributes
2614 		 * of routes or next hop gateway. Hence we need to pass the
2615 		 * label to ire_ftable_lookup below in order to locate the
2616 		 * right prefix (and/or) ire cache. Similarly we also need
2617 		 * pass the label to the ire_cache_lookup below to locate
2618 		 * the right ire that also matches on the label.
2619 		 */
2620 		if (tcp->tcp_connp->conn_nexthop_set) {
2621 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2622 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2623 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2624 			if (ire == NULL) {
2625 				ire = ire_ftable_lookup(
2626 				    tcp->tcp_connp->conn_nexthop_v4,
2627 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2628 				    tsl, match_flags);
2629 				if (ire == NULL)
2630 					return (0);
2631 			} else {
2632 				ire_uinfo = &ire->ire_uinfo;
2633 			}
2634 		} else {
2635 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2636 			    zoneid, tsl);
2637 			if (ire != NULL) {
2638 				ire_cacheable = B_TRUE;
2639 				ire_uinfo = (ire_mp != NULL) ?
2640 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2641 				    &ire->ire_uinfo;
2642 
2643 			} else {
2644 				if (ire_mp == NULL) {
2645 					ire = ire_ftable_lookup(
2646 					    tcp->tcp_connp->conn_rem,
2647 					    0, 0, 0, NULL, &sire, zoneid, 0,
2648 					    tsl, (MATCH_IRE_RECURSIVE |
2649 					    MATCH_IRE_DEFAULT));
2650 					if (ire == NULL)
2651 						return (0);
2652 					ire_uinfo = (sire != NULL) ?
2653 					    &sire->ire_uinfo :
2654 					    &ire->ire_uinfo;
2655 				} else {
2656 					ire = (ire_t *)ire_mp->b_rptr;
2657 					ire_uinfo =
2658 					    &((ire_t *)
2659 					    ire_mp->b_rptr)->ire_uinfo;
2660 				}
2661 			}
2662 		}
2663 		ASSERT(ire != NULL);
2664 
2665 		if ((ire->ire_src_addr == INADDR_ANY) ||
2666 		    (ire->ire_type & IRE_BROADCAST)) {
2667 			/*
2668 			 * ire->ire_mp is non null when ire_mp passed in is used
2669 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2670 			 */
2671 			if (ire->ire_mp == NULL)
2672 				ire_refrele(ire);
2673 			if (sire != NULL)
2674 				ire_refrele(sire);
2675 			return (0);
2676 		}
2677 
2678 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2679 			ipaddr_t src_addr;
2680 
2681 			/*
2682 			 * ip_bind_connected() has stored the correct source
2683 			 * address in conn_src.
2684 			 */
2685 			src_addr = tcp->tcp_connp->conn_src;
2686 			tcp->tcp_ipha->ipha_src = src_addr;
2687 			/*
2688 			 * Copy of the src addr. in tcp_t is needed
2689 			 * for the lookup funcs.
2690 			 */
2691 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2692 		}
2693 		/*
2694 		 * Set the fragment bit so that IP will tell us if the MTU
2695 		 * should change. IP tells us the latest setting of
2696 		 * ip_path_mtu_discovery through ire_frag_flag.
2697 		 */
2698 		if (ip_path_mtu_discovery) {
2699 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2700 			    htons(IPH_DF);
2701 		}
2702 		/*
2703 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2704 		 * for IP_NEXTHOP. No cache ire has been found for the
2705 		 * destination and we are working with the nexthop's
2706 		 * interface ire. Since we need to forward all packets
2707 		 * to the nexthop first, we "blindly" set tcp_localnet
2708 		 * to false, eventhough the destination may also be
2709 		 * onlink.
2710 		 */
2711 		if (ire_uinfo == NULL)
2712 			tcp->tcp_localnet = 0;
2713 		else
2714 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2715 	} else {
2716 		/*
2717 		 * For incoming connection ire_mp = NULL
2718 		 * For outgoing connection ire_mp != NULL
2719 		 * Technically we should check conn_incoming_ill
2720 		 * when ire_mp is NULL and conn_outgoing_ill when
2721 		 * ire_mp is non-NULL. But this is performance
2722 		 * critical path and for IPV*_BOUND_IF, outgoing
2723 		 * and incoming ill are always set to the same value.
2724 		 */
2725 		ill_t	*dst_ill = NULL;
2726 		ipif_t  *dst_ipif = NULL;
2727 
2728 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2729 
2730 		if (connp->conn_outgoing_ill != NULL) {
2731 			/* Outgoing or incoming path */
2732 			int   err;
2733 
2734 			dst_ill = conn_get_held_ill(connp,
2735 			    &connp->conn_outgoing_ill, &err);
2736 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2737 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2738 				return (0);
2739 			}
2740 			match_flags |= MATCH_IRE_ILL;
2741 			dst_ipif = dst_ill->ill_ipif;
2742 		}
2743 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2744 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2745 
2746 		if (ire != NULL) {
2747 			ire_cacheable = B_TRUE;
2748 			ire_uinfo = (ire_mp != NULL) ?
2749 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2750 			    &ire->ire_uinfo;
2751 		} else {
2752 			if (ire_mp == NULL) {
2753 				ire = ire_ftable_lookup_v6(
2754 				    &tcp->tcp_connp->conn_remv6,
2755 				    0, 0, 0, dst_ipif, &sire, zoneid,
2756 				    0, tsl, match_flags);
2757 				if (ire == NULL) {
2758 					if (dst_ill != NULL)
2759 						ill_refrele(dst_ill);
2760 					return (0);
2761 				}
2762 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2763 				    &ire->ire_uinfo;
2764 			} else {
2765 				ire = (ire_t *)ire_mp->b_rptr;
2766 				ire_uinfo =
2767 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2768 			}
2769 		}
2770 		if (dst_ill != NULL)
2771 			ill_refrele(dst_ill);
2772 
2773 		ASSERT(ire != NULL);
2774 		ASSERT(ire_uinfo != NULL);
2775 
2776 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2777 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2778 			/*
2779 			 * ire->ire_mp is non null when ire_mp passed in is used
2780 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2781 			 */
2782 			if (ire->ire_mp == NULL)
2783 				ire_refrele(ire);
2784 			if (sire != NULL)
2785 				ire_refrele(sire);
2786 			return (0);
2787 		}
2788 
2789 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2790 			in6_addr_t	src_addr;
2791 
2792 			/*
2793 			 * ip_bind_connected_v6() has stored the correct source
2794 			 * address per IPv6 addr. selection policy in
2795 			 * conn_src_v6.
2796 			 */
2797 			src_addr = tcp->tcp_connp->conn_srcv6;
2798 
2799 			tcp->tcp_ip6h->ip6_src = src_addr;
2800 			/*
2801 			 * Copy of the src addr. in tcp_t is needed
2802 			 * for the lookup funcs.
2803 			 */
2804 			tcp->tcp_ip_src_v6 = src_addr;
2805 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2806 			    &connp->conn_srcv6));
2807 		}
2808 		tcp->tcp_localnet =
2809 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2810 	}
2811 
2812 	/*
2813 	 * This allows applications to fail quickly when connections are made
2814 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2815 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2816 	 */
2817 	if ((ire->ire_flags & RTF_REJECT) &&
2818 	    (ire->ire_flags & RTF_PRIVATE))
2819 		goto error;
2820 
2821 	/*
2822 	 * Make use of the cached rtt and rtt_sd values to calculate the
2823 	 * initial RTO.  Note that they are already initialized in
2824 	 * tcp_init_values().
2825 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2826 	 * IP_NEXTHOP, but instead are using the interface ire for the
2827 	 * nexthop, then we do not use the ire_uinfo from that ire to
2828 	 * do any initializations.
2829 	 */
2830 	if (ire_uinfo != NULL) {
2831 		if (ire_uinfo->iulp_rtt != 0) {
2832 			clock_t	rto;
2833 
2834 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2835 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2836 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2837 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2838 
2839 			if (rto > tcp_rexmit_interval_max) {
2840 				tcp->tcp_rto = tcp_rexmit_interval_max;
2841 			} else if (rto < tcp_rexmit_interval_min) {
2842 				tcp->tcp_rto = tcp_rexmit_interval_min;
2843 			} else {
2844 				tcp->tcp_rto = rto;
2845 			}
2846 		}
2847 		if (ire_uinfo->iulp_ssthresh != 0)
2848 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2849 		else
2850 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2851 		if (ire_uinfo->iulp_spipe > 0) {
2852 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2853 			    tcp_max_buf);
2854 			if (tcp_snd_lowat_fraction != 0)
2855 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2856 				    tcp_snd_lowat_fraction;
2857 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2858 		}
2859 		/*
2860 		 * Note that up till now, acceptor always inherits receive
2861 		 * window from the listener.  But if there is a metrics
2862 		 * associated with a host, we should use that instead of
2863 		 * inheriting it from listener. Thus we need to pass this
2864 		 * info back to the caller.
2865 		 */
2866 		if (ire_uinfo->iulp_rpipe > 0) {
2867 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2868 		}
2869 
2870 		if (ire_uinfo->iulp_rtomax > 0) {
2871 			tcp->tcp_second_timer_threshold =
2872 			    ire_uinfo->iulp_rtomax;
2873 		}
2874 
2875 		/*
2876 		 * Use the metric option settings, iulp_tstamp_ok and
2877 		 * iulp_wscale_ok, only for active open. What this means
2878 		 * is that if the other side uses timestamp or window
2879 		 * scale option, TCP will also use those options. That
2880 		 * is for passive open.  If the application sets a
2881 		 * large window, window scale is enabled regardless of
2882 		 * the value in iulp_wscale_ok.  This is the behavior
2883 		 * since 2.6.  So we keep it.
2884 		 * The only case left in passive open processing is the
2885 		 * check for SACK.
2886 		 * For ECN, it should probably be like SACK.  But the
2887 		 * current value is binary, so we treat it like the other
2888 		 * cases.  The metric only controls active open.For passive
2889 		 * open, the ndd param, tcp_ecn_permitted, controls the
2890 		 * behavior.
2891 		 */
2892 		if (!tcp_detached) {
2893 			/*
2894 			 * The if check means that the following can only
2895 			 * be turned on by the metrics only IRE, but not off.
2896 			 */
2897 			if (ire_uinfo->iulp_tstamp_ok)
2898 				tcp->tcp_snd_ts_ok = B_TRUE;
2899 			if (ire_uinfo->iulp_wscale_ok)
2900 				tcp->tcp_snd_ws_ok = B_TRUE;
2901 			if (ire_uinfo->iulp_sack == 2)
2902 				tcp->tcp_snd_sack_ok = B_TRUE;
2903 			if (ire_uinfo->iulp_ecn_ok)
2904 				tcp->tcp_ecn_ok = B_TRUE;
2905 		} else {
2906 			/*
2907 			 * Passive open.
2908 			 *
2909 			 * As above, the if check means that SACK can only be
2910 			 * turned on by the metric only IRE.
2911 			 */
2912 			if (ire_uinfo->iulp_sack > 0) {
2913 				tcp->tcp_snd_sack_ok = B_TRUE;
2914 			}
2915 		}
2916 	}
2917 
2918 
2919 	/*
2920 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2921 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2922 	 * length of all those options exceeds 28 bytes.  But because
2923 	 * of the tcp_mss_min check below, we may not have a problem if
2924 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2925 	 * the negative problem still exists.  And the check defeats PMTUd.
2926 	 * In fact, if PMTUd finds that the MSS should be smaller than
2927 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2928 	 * value.
2929 	 *
2930 	 * We do not deal with that now.  All those problems related to
2931 	 * PMTUd will be fixed later.
2932 	 */
2933 	ASSERT(ire->ire_max_frag != 0);
2934 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2935 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2936 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2937 			mss = MIN(mss, IPV6_MIN_MTU);
2938 		}
2939 	}
2940 
2941 	/* Sanity check for MSS value. */
2942 	if (tcp->tcp_ipversion == IPV4_VERSION)
2943 		mss_max = tcp_mss_max_ipv4;
2944 	else
2945 		mss_max = tcp_mss_max_ipv6;
2946 
2947 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2948 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2949 		/*
2950 		 * After receiving an ICMPv6 "packet too big" message with a
2951 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2952 		 * will insert a 8-byte fragment header in every packet; we
2953 		 * reduce the MSS by that amount here.
2954 		 */
2955 		mss -= sizeof (ip6_frag_t);
2956 	}
2957 
2958 	if (tcp->tcp_ipsec_overhead == 0)
2959 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2960 
2961 	mss -= tcp->tcp_ipsec_overhead;
2962 
2963 	if (mss < tcp_mss_min)
2964 		mss = tcp_mss_min;
2965 	if (mss > mss_max)
2966 		mss = mss_max;
2967 
2968 	/* Note that this is the maximum MSS, excluding all options. */
2969 	tcp->tcp_mss = mss;
2970 
2971 	/*
2972 	 * Initialize the ISS here now that we have the full connection ID.
2973 	 * The RFC 1948 method of initial sequence number generation requires
2974 	 * knowledge of the full connection ID before setting the ISS.
2975 	 */
2976 
2977 	tcp_iss_init(tcp);
2978 
2979 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2980 		tcp->tcp_loopback = B_TRUE;
2981 
2982 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2983 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2984 	} else {
2985 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2986 	}
2987 
2988 	if (hsp != NULL) {
2989 		/* Only modify if we're going to make them bigger */
2990 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2991 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2992 			if (tcp_snd_lowat_fraction != 0)
2993 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2994 					tcp_snd_lowat_fraction;
2995 		}
2996 
2997 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2998 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2999 		}
3000 
3001 		/* Copy timestamp flag only for active open */
3002 		if (!tcp_detached)
3003 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
3004 	}
3005 
3006 	if (sire != NULL)
3007 		IRE_REFRELE(sire);
3008 
3009 	/*
3010 	 * If we got an IRE_CACHE and an ILL, go through their properties;
3011 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
3012 	 */
3013 	if (tcp->tcp_loopback ||
3014 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
3015 		/*
3016 		 * For incoming, see if this tcp may be MDT-capable.  For
3017 		 * outgoing, this process has been taken care of through
3018 		 * tcp_rput_other.
3019 		 */
3020 		tcp_ire_ill_check(tcp, ire, ill, incoming);
3021 		tcp->tcp_ire_ill_check_done = B_TRUE;
3022 	}
3023 
3024 	mutex_enter(&connp->conn_lock);
3025 	/*
3026 	 * Make sure that conn is not marked incipient
3027 	 * for incoming connections. A blind
3028 	 * removal of incipient flag is cheaper than
3029 	 * check and removal.
3030 	 */
3031 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3032 
3033 	/* Must not cache forwarding table routes. */
3034 	if (ire_cacheable) {
3035 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3036 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3037 			connp->conn_ire_cache = ire;
3038 			IRE_UNTRACE_REF(ire);
3039 			rw_exit(&ire->ire_bucket->irb_lock);
3040 			mutex_exit(&connp->conn_lock);
3041 			return (1);
3042 		}
3043 		rw_exit(&ire->ire_bucket->irb_lock);
3044 	}
3045 	mutex_exit(&connp->conn_lock);
3046 
3047 	if (ire->ire_mp == NULL)
3048 		ire_refrele(ire);
3049 	return (1);
3050 
3051 error:
3052 	if (ire->ire_mp == NULL)
3053 		ire_refrele(ire);
3054 	if (sire != NULL)
3055 		ire_refrele(sire);
3056 	return (0);
3057 }
3058 
3059 /*
3060  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
3061  * O_T_BIND_REQ/T_BIND_REQ message.
3062  */
3063 static void
3064 tcp_bind(tcp_t *tcp, mblk_t *mp)
3065 {
3066 	sin_t	*sin;
3067 	sin6_t	*sin6;
3068 	mblk_t	*mp1;
3069 	in_port_t requested_port;
3070 	in_port_t allocated_port;
3071 	struct T_bind_req *tbr;
3072 	boolean_t	bind_to_req_port_only;
3073 	boolean_t	backlog_update = B_FALSE;
3074 	boolean_t	user_specified;
3075 	in6_addr_t	v6addr;
3076 	ipaddr_t	v4addr;
3077 	uint_t	origipversion;
3078 	int	err;
3079 	queue_t *q = tcp->tcp_wq;
3080 	conn_t	*connp;
3081 	mlp_type_t addrtype, mlptype;
3082 	zone_t	*zone;
3083 	cred_t	*cr;
3084 	in_port_t mlp_port;
3085 
3086 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3087 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3088 		if (tcp->tcp_debug) {
3089 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3090 			    "tcp_bind: bad req, len %u",
3091 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3092 		}
3093 		tcp_err_ack(tcp, mp, TPROTO, 0);
3094 		return;
3095 	}
3096 	/* Make sure the largest address fits */
3097 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3098 	if (mp1 == NULL) {
3099 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3100 		return;
3101 	}
3102 	mp = mp1;
3103 	tbr = (struct T_bind_req *)mp->b_rptr;
3104 	if (tcp->tcp_state >= TCPS_BOUND) {
3105 		if ((tcp->tcp_state == TCPS_BOUND ||
3106 		    tcp->tcp_state == TCPS_LISTEN) &&
3107 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3108 		    tbr->CONIND_number > 0) {
3109 			/*
3110 			 * Handle listen() increasing CONIND_number.
3111 			 * This is more "liberal" then what the TPI spec
3112 			 * requires but is needed to avoid a t_unbind
3113 			 * when handling listen() since the port number
3114 			 * might be "stolen" between the unbind and bind.
3115 			 */
3116 			backlog_update = B_TRUE;
3117 			goto do_bind;
3118 		}
3119 		if (tcp->tcp_debug) {
3120 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3121 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3122 		}
3123 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3124 		return;
3125 	}
3126 	origipversion = tcp->tcp_ipversion;
3127 
3128 	switch (tbr->ADDR_length) {
3129 	case 0:			/* request for a generic port */
3130 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3131 		if (tcp->tcp_family == AF_INET) {
3132 			tbr->ADDR_length = sizeof (sin_t);
3133 			sin = (sin_t *)&tbr[1];
3134 			*sin = sin_null;
3135 			sin->sin_family = AF_INET;
3136 			mp->b_wptr = (uchar_t *)&sin[1];
3137 			tcp->tcp_ipversion = IPV4_VERSION;
3138 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3139 		} else {
3140 			ASSERT(tcp->tcp_family == AF_INET6);
3141 			tbr->ADDR_length = sizeof (sin6_t);
3142 			sin6 = (sin6_t *)&tbr[1];
3143 			*sin6 = sin6_null;
3144 			sin6->sin6_family = AF_INET6;
3145 			mp->b_wptr = (uchar_t *)&sin6[1];
3146 			tcp->tcp_ipversion = IPV6_VERSION;
3147 			V6_SET_ZERO(v6addr);
3148 		}
3149 		requested_port = 0;
3150 		break;
3151 
3152 	case sizeof (sin_t):	/* Complete IPv4 address */
3153 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3154 		    sizeof (sin_t));
3155 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3156 			if (tcp->tcp_debug) {
3157 				(void) strlog(TCP_MOD_ID, 0, 1,
3158 				    SL_ERROR|SL_TRACE,
3159 				    "tcp_bind: bad address parameter, "
3160 				    "offset %d, len %d",
3161 				    tbr->ADDR_offset, tbr->ADDR_length);
3162 			}
3163 			tcp_err_ack(tcp, mp, TPROTO, 0);
3164 			return;
3165 		}
3166 		/*
3167 		 * With sockets sockfs will accept bogus sin_family in
3168 		 * bind() and replace it with the family used in the socket
3169 		 * call.
3170 		 */
3171 		if (sin->sin_family != AF_INET ||
3172 		    tcp->tcp_family != AF_INET) {
3173 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3174 			return;
3175 		}
3176 		requested_port = ntohs(sin->sin_port);
3177 		tcp->tcp_ipversion = IPV4_VERSION;
3178 		v4addr = sin->sin_addr.s_addr;
3179 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3180 		break;
3181 
3182 	case sizeof (sin6_t): /* Complete IPv6 address */
3183 		sin6 = (sin6_t *)mi_offset_param(mp,
3184 		    tbr->ADDR_offset, sizeof (sin6_t));
3185 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3186 			if (tcp->tcp_debug) {
3187 				(void) strlog(TCP_MOD_ID, 0, 1,
3188 				    SL_ERROR|SL_TRACE,
3189 				    "tcp_bind: bad IPv6 address parameter, "
3190 				    "offset %d, len %d", tbr->ADDR_offset,
3191 				    tbr->ADDR_length);
3192 			}
3193 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3194 			return;
3195 		}
3196 		if (sin6->sin6_family != AF_INET6 ||
3197 		    tcp->tcp_family != AF_INET6) {
3198 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3199 			return;
3200 		}
3201 		requested_port = ntohs(sin6->sin6_port);
3202 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3203 		    IPV4_VERSION : IPV6_VERSION;
3204 		v6addr = sin6->sin6_addr;
3205 		break;
3206 
3207 	default:
3208 		if (tcp->tcp_debug) {
3209 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3210 			    "tcp_bind: bad address length, %d",
3211 			    tbr->ADDR_length);
3212 		}
3213 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3214 		return;
3215 	}
3216 	tcp->tcp_bound_source_v6 = v6addr;
3217 
3218 	/* Check for change in ipversion */
3219 	if (origipversion != tcp->tcp_ipversion) {
3220 		ASSERT(tcp->tcp_family == AF_INET6);
3221 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3222 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3223 		if (err) {
3224 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3225 			return;
3226 		}
3227 	}
3228 
3229 	/*
3230 	 * Initialize family specific fields. Copy of the src addr.
3231 	 * in tcp_t is needed for the lookup funcs.
3232 	 */
3233 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3234 		tcp->tcp_ip6h->ip6_src = v6addr;
3235 	} else {
3236 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3237 	}
3238 	tcp->tcp_ip_src_v6 = v6addr;
3239 
3240 	/*
3241 	 * For O_T_BIND_REQ:
3242 	 * Verify that the target port/addr is available, or choose
3243 	 * another.
3244 	 * For  T_BIND_REQ:
3245 	 * Verify that the target port/addr is available or fail.
3246 	 * In both cases when it succeeds the tcp is inserted in the
3247 	 * bind hash table. This ensures that the operation is atomic
3248 	 * under the lock on the hash bucket.
3249 	 */
3250 	bind_to_req_port_only = requested_port != 0 &&
3251 	    tbr->PRIM_type != O_T_BIND_REQ;
3252 	/*
3253 	 * Get a valid port (within the anonymous range and should not
3254 	 * be a privileged one) to use if the user has not given a port.
3255 	 * If multiple threads are here, they may all start with
3256 	 * with the same initial port. But, it should be fine as long as
3257 	 * tcp_bindi will ensure that no two threads will be assigned
3258 	 * the same port.
3259 	 *
3260 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3261 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3262 	 * unless TCP_ANONPRIVBIND option is set.
3263 	 */
3264 	mlptype = mlptSingle;
3265 	mlp_port = requested_port;
3266 	if (requested_port == 0) {
3267 		requested_port = tcp->tcp_anon_priv_bind ?
3268 		    tcp_get_next_priv_port(tcp) :
3269 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3270 		if (requested_port == 0) {
3271 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3272 			return;
3273 		}
3274 		user_specified = B_FALSE;
3275 
3276 		/*
3277 		 * If the user went through one of the RPC interfaces to create
3278 		 * this socket and RPC is MLP in this zone, then give him an
3279 		 * anonymous MLP.
3280 		 */
3281 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3282 		connp = tcp->tcp_connp;
3283 		if (connp->conn_anon_mlp && is_system_labeled()) {
3284 			zone = crgetzone(cr);
3285 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3286 			    IPV6_VERSION, &v6addr);
3287 			if (addrtype == mlptSingle) {
3288 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3289 				return;
3290 			}
3291 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3292 			    PMAPPORT, addrtype);
3293 			mlp_port = PMAPPORT;
3294 		}
3295 	} else {
3296 		int i;
3297 		boolean_t priv = B_FALSE;
3298 
3299 		/*
3300 		 * If the requested_port is in the well-known privileged range,
3301 		 * verify that the stream was opened by a privileged user.
3302 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3303 		 * but instead the code relies on:
3304 		 * - the fact that the address of the array and its size never
3305 		 *   changes
3306 		 * - the atomic assignment of the elements of the array
3307 		 */
3308 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3309 		if (requested_port < tcp_smallest_nonpriv_port) {
3310 			priv = B_TRUE;
3311 		} else {
3312 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3313 				if (requested_port ==
3314 				    tcp_g_epriv_ports[i]) {
3315 					priv = B_TRUE;
3316 					break;
3317 				}
3318 			}
3319 		}
3320 		if (priv) {
3321 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3322 				if (tcp->tcp_debug) {
3323 					(void) strlog(TCP_MOD_ID, 0, 1,
3324 					    SL_ERROR|SL_TRACE,
3325 					    "tcp_bind: no priv for port %d",
3326 					    requested_port);
3327 				}
3328 				tcp_err_ack(tcp, mp, TACCES, 0);
3329 				return;
3330 			}
3331 		}
3332 		user_specified = B_TRUE;
3333 
3334 		connp = tcp->tcp_connp;
3335 		if (is_system_labeled()) {
3336 			zone = crgetzone(cr);
3337 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3338 			    IPV6_VERSION, &v6addr);
3339 			if (addrtype == mlptSingle) {
3340 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3341 				return;
3342 			}
3343 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3344 			    requested_port, addrtype);
3345 		}
3346 	}
3347 
3348 	if (mlptype != mlptSingle) {
3349 		if (secpolicy_net_bindmlp(cr) != 0) {
3350 			if (tcp->tcp_debug) {
3351 				(void) strlog(TCP_MOD_ID, 0, 1,
3352 				    SL_ERROR|SL_TRACE,
3353 				    "tcp_bind: no priv for multilevel port %d",
3354 				    requested_port);
3355 			}
3356 			tcp_err_ack(tcp, mp, TACCES, 0);
3357 			return;
3358 		}
3359 
3360 		/*
3361 		 * If we're specifically binding a shared IP address and the
3362 		 * port is MLP on shared addresses, then check to see if this
3363 		 * zone actually owns the MLP.  Reject if not.
3364 		 */
3365 		if (mlptype == mlptShared && addrtype == mlptShared) {
3366 			zoneid_t mlpzone;
3367 
3368 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3369 			    htons(mlp_port));
3370 			if (connp->conn_zoneid != mlpzone) {
3371 				if (tcp->tcp_debug) {
3372 					(void) strlog(TCP_MOD_ID, 0, 1,
3373 					    SL_ERROR|SL_TRACE,
3374 					    "tcp_bind: attempt to bind port "
3375 					    "%d on shared addr in zone %d "
3376 					    "(should be %d)",
3377 					    mlp_port, connp->conn_zoneid,
3378 					    mlpzone);
3379 				}
3380 				tcp_err_ack(tcp, mp, TACCES, 0);
3381 				return;
3382 			}
3383 		}
3384 
3385 		if (!user_specified) {
3386 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3387 			    requested_port, B_TRUE);
3388 			if (err != 0) {
3389 				if (tcp->tcp_debug) {
3390 					(void) strlog(TCP_MOD_ID, 0, 1,
3391 					    SL_ERROR|SL_TRACE,
3392 					    "tcp_bind: cannot establish anon "
3393 					    "MLP for port %d",
3394 					    requested_port);
3395 				}
3396 				tcp_err_ack(tcp, mp, TSYSERR, err);
3397 				return;
3398 			}
3399 			connp->conn_anon_port = B_TRUE;
3400 		}
3401 		connp->conn_mlp_type = mlptype;
3402 	}
3403 
3404 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3405 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3406 
3407 	if (allocated_port == 0) {
3408 		connp->conn_mlp_type = mlptSingle;
3409 		if (connp->conn_anon_port) {
3410 			connp->conn_anon_port = B_FALSE;
3411 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3412 			    requested_port, B_FALSE);
3413 		}
3414 		if (bind_to_req_port_only) {
3415 			if (tcp->tcp_debug) {
3416 				(void) strlog(TCP_MOD_ID, 0, 1,
3417 				    SL_ERROR|SL_TRACE,
3418 				    "tcp_bind: requested addr busy");
3419 			}
3420 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3421 		} else {
3422 			/* If we are out of ports, fail the bind. */
3423 			if (tcp->tcp_debug) {
3424 				(void) strlog(TCP_MOD_ID, 0, 1,
3425 				    SL_ERROR|SL_TRACE,
3426 				    "tcp_bind: out of ports?");
3427 			}
3428 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3429 		}
3430 		return;
3431 	}
3432 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3433 do_bind:
3434 	if (!backlog_update) {
3435 		if (tcp->tcp_family == AF_INET)
3436 			sin->sin_port = htons(allocated_port);
3437 		else
3438 			sin6->sin6_port = htons(allocated_port);
3439 	}
3440 	if (tcp->tcp_family == AF_INET) {
3441 		if (tbr->CONIND_number != 0) {
3442 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3443 			    sizeof (sin_t));
3444 		} else {
3445 			/* Just verify the local IP address */
3446 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3447 		}
3448 	} else {
3449 		if (tbr->CONIND_number != 0) {
3450 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3451 			    sizeof (sin6_t));
3452 		} else {
3453 			/* Just verify the local IP address */
3454 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3455 			    IPV6_ADDR_LEN);
3456 		}
3457 	}
3458 	if (mp1 == NULL) {
3459 		if (connp->conn_anon_port) {
3460 			connp->conn_anon_port = B_FALSE;
3461 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3462 			    requested_port, B_FALSE);
3463 		}
3464 		connp->conn_mlp_type = mlptSingle;
3465 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3466 		return;
3467 	}
3468 
3469 	tbr->PRIM_type = T_BIND_ACK;
3470 	mp->b_datap->db_type = M_PCPROTO;
3471 
3472 	/* Chain in the reply mp for tcp_rput() */
3473 	mp1->b_cont = mp;
3474 	mp = mp1;
3475 
3476 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3477 	if (tcp->tcp_conn_req_max) {
3478 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3479 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3480 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3481 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3482 		/*
3483 		 * If this is a listener, do not reset the eager list
3484 		 * and other stuffs.  Note that we don't check if the
3485 		 * existing eager list meets the new tcp_conn_req_max
3486 		 * requirement.
3487 		 */
3488 		if (tcp->tcp_state != TCPS_LISTEN) {
3489 			tcp->tcp_state = TCPS_LISTEN;
3490 			/* Initialize the chain. Don't need the eager_lock */
3491 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3492 			tcp->tcp_eager_next_drop_q0 = tcp;
3493 			tcp->tcp_eager_prev_drop_q0 = tcp;
3494 			tcp->tcp_second_ctimer_threshold =
3495 			    tcp_ip_abort_linterval;
3496 		}
3497 	}
3498 
3499 	/*
3500 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3501 	 * processing continues in tcp_rput_other().
3502 	 */
3503 	if (tcp->tcp_family == AF_INET6) {
3504 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3505 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3506 	} else {
3507 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3508 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3509 	}
3510 	/*
3511 	 * If the bind cannot complete immediately
3512 	 * IP will arrange to call tcp_rput_other
3513 	 * when the bind completes.
3514 	 */
3515 	if (mp != NULL) {
3516 		tcp_rput_other(tcp, mp);
3517 	} else {
3518 		/*
3519 		 * Bind will be resumed later. Need to ensure
3520 		 * that conn doesn't disappear when that happens.
3521 		 * This will be decremented in ip_resume_tcp_bind().
3522 		 */
3523 		CONN_INC_REF(tcp->tcp_connp);
3524 	}
3525 }
3526 
3527 
3528 /*
3529  * If the "bind_to_req_port_only" parameter is set, if the requested port
3530  * number is available, return it, If not return 0
3531  *
3532  * If "bind_to_req_port_only" parameter is not set and
3533  * If the requested port number is available, return it.  If not, return
3534  * the first anonymous port we happen across.  If no anonymous ports are
3535  * available, return 0. addr is the requested local address, if any.
3536  *
3537  * In either case, when succeeding update the tcp_t to record the port number
3538  * and insert it in the bind hash table.
3539  *
3540  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3541  * without setting SO_REUSEADDR. This is needed so that they
3542  * can be viewed as two independent transport protocols.
3543  */
3544 static in_port_t
3545 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3546     int reuseaddr, boolean_t quick_connect,
3547     boolean_t bind_to_req_port_only, boolean_t user_specified)
3548 {
3549 	/* number of times we have run around the loop */
3550 	int count = 0;
3551 	/* maximum number of times to run around the loop */
3552 	int loopmax;
3553 	conn_t *connp = tcp->tcp_connp;
3554 	zoneid_t zoneid = connp->conn_zoneid;
3555 
3556 	/*
3557 	 * Lookup for free addresses is done in a loop and "loopmax"
3558 	 * influences how long we spin in the loop
3559 	 */
3560 	if (bind_to_req_port_only) {
3561 		/*
3562 		 * If the requested port is busy, don't bother to look
3563 		 * for a new one. Setting loop maximum count to 1 has
3564 		 * that effect.
3565 		 */
3566 		loopmax = 1;
3567 	} else {
3568 		/*
3569 		 * If the requested port is busy, look for a free one
3570 		 * in the anonymous port range.
3571 		 * Set loopmax appropriately so that one does not look
3572 		 * forever in the case all of the anonymous ports are in use.
3573 		 */
3574 		if (tcp->tcp_anon_priv_bind) {
3575 			/*
3576 			 * loopmax =
3577 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3578 			 */
3579 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3580 		} else {
3581 			loopmax = (tcp_largest_anon_port -
3582 			    tcp_smallest_anon_port + 1);
3583 		}
3584 	}
3585 	do {
3586 		uint16_t	lport;
3587 		tf_t		*tbf;
3588 		tcp_t		*ltcp;
3589 		conn_t		*lconnp;
3590 
3591 		lport = htons(port);
3592 
3593 		/*
3594 		 * Ensure that the tcp_t is not currently in the bind hash.
3595 		 * Hold the lock on the hash bucket to ensure that
3596 		 * the duplicate check plus the insertion is an atomic
3597 		 * operation.
3598 		 *
3599 		 * This function does an inline lookup on the bind hash list
3600 		 * Make sure that we access only members of tcp_t
3601 		 * and that we don't look at tcp_tcp, since we are not
3602 		 * doing a CONN_INC_REF.
3603 		 */
3604 		tcp_bind_hash_remove(tcp);
3605 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3606 		mutex_enter(&tbf->tf_lock);
3607 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3608 		    ltcp = ltcp->tcp_bind_hash) {
3609 			boolean_t not_socket;
3610 			boolean_t exclbind;
3611 
3612 			if (lport != ltcp->tcp_lport)
3613 				continue;
3614 
3615 			lconnp = ltcp->tcp_connp;
3616 
3617 			/*
3618 			 * On a labeled system, we must treat bindings to ports
3619 			 * on shared IP addresses by sockets with MAC exemption
3620 			 * privilege as being in all zones, as there's
3621 			 * otherwise no way to identify the right receiver.
3622 			 */
3623 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3624 			    !lconnp->conn_mac_exempt &&
3625 			    !connp->conn_mac_exempt)
3626 				continue;
3627 
3628 			/*
3629 			 * If TCP_EXCLBIND is set for either the bound or
3630 			 * binding endpoint, the semantics of bind
3631 			 * is changed according to the following.
3632 			 *
3633 			 * spec = specified address (v4 or v6)
3634 			 * unspec = unspecified address (v4 or v6)
3635 			 * A = specified addresses are different for endpoints
3636 			 *
3637 			 * bound	bind to		allowed
3638 			 * -------------------------------------
3639 			 * unspec	unspec		no
3640 			 * unspec	spec		no
3641 			 * spec		unspec		no
3642 			 * spec		spec		yes if A
3643 			 *
3644 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3645 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3646 			 *
3647 			 * Note:
3648 			 *
3649 			 * 1. Because of TLI semantics, an endpoint can go
3650 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3651 			 * TCPS_BOUND, depending on whether it is originally
3652 			 * a listener or not.  That is why we need to check
3653 			 * for states greater than or equal to TCPS_BOUND
3654 			 * here.
3655 			 *
3656 			 * 2. Ideally, we should only check for state equals
3657 			 * to TCPS_LISTEN. And the following check should be
3658 			 * added.
3659 			 *
3660 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3661 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3662 			 *		...
3663 			 * }
3664 			 *
3665 			 * The semantics will be changed to this.  If the
3666 			 * endpoint on the list is in state not equal to
3667 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3668 			 * set, let the bind succeed.
3669 			 *
3670 			 * Because of (1), we cannot do that for TLI
3671 			 * endpoints.  But we can do that for socket endpoints.
3672 			 * If in future, we can change this going back
3673 			 * semantics, we can use the above check for TLI also.
3674 			 */
3675 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3676 			    TCP_IS_SOCKET(tcp));
3677 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3678 
3679 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3680 			    (exclbind && (not_socket ||
3681 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3682 				if (V6_OR_V4_INADDR_ANY(
3683 				    ltcp->tcp_bound_source_v6) ||
3684 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3685 				    IN6_ARE_ADDR_EQUAL(laddr,
3686 				    &ltcp->tcp_bound_source_v6)) {
3687 					break;
3688 				}
3689 				continue;
3690 			}
3691 
3692 			/*
3693 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3694 			 * have disjoint port number spaces, if *_EXCLBIND
3695 			 * is not set and only if the application binds to a
3696 			 * specific port. We use the same autoassigned port
3697 			 * number space for IPv4 and IPv6 sockets.
3698 			 */
3699 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3700 			    bind_to_req_port_only)
3701 				continue;
3702 
3703 			/*
3704 			 * Ideally, we should make sure that the source
3705 			 * address, remote address, and remote port in the
3706 			 * four tuple for this tcp-connection is unique.
3707 			 * However, trying to find out the local source
3708 			 * address would require too much code duplication
3709 			 * with IP, since IP needs needs to have that code
3710 			 * to support userland TCP implementations.
3711 			 */
3712 			if (quick_connect &&
3713 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3714 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3715 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3716 				    &ltcp->tcp_remote_v6)))
3717 				continue;
3718 
3719 			if (!reuseaddr) {
3720 				/*
3721 				 * No socket option SO_REUSEADDR.
3722 				 * If existing port is bound to
3723 				 * a non-wildcard IP address
3724 				 * and the requesting stream is
3725 				 * bound to a distinct
3726 				 * different IP addresses
3727 				 * (non-wildcard, also), keep
3728 				 * going.
3729 				 */
3730 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3731 				    !V6_OR_V4_INADDR_ANY(
3732 				    ltcp->tcp_bound_source_v6) &&
3733 				    !IN6_ARE_ADDR_EQUAL(laddr,
3734 					&ltcp->tcp_bound_source_v6))
3735 					continue;
3736 				if (ltcp->tcp_state >= TCPS_BOUND) {
3737 					/*
3738 					 * This port is being used and
3739 					 * its state is >= TCPS_BOUND,
3740 					 * so we can't bind to it.
3741 					 */
3742 					break;
3743 				}
3744 			} else {
3745 				/*
3746 				 * socket option SO_REUSEADDR is set on the
3747 				 * binding tcp_t.
3748 				 *
3749 				 * If two streams are bound to
3750 				 * same IP address or both addr
3751 				 * and bound source are wildcards
3752 				 * (INADDR_ANY), we want to stop
3753 				 * searching.
3754 				 * We have found a match of IP source
3755 				 * address and source port, which is
3756 				 * refused regardless of the
3757 				 * SO_REUSEADDR setting, so we break.
3758 				 */
3759 				if (IN6_ARE_ADDR_EQUAL(laddr,
3760 				    &ltcp->tcp_bound_source_v6) &&
3761 				    (ltcp->tcp_state == TCPS_LISTEN ||
3762 					ltcp->tcp_state == TCPS_BOUND))
3763 					break;
3764 			}
3765 		}
3766 		if (ltcp != NULL) {
3767 			/* The port number is busy */
3768 			mutex_exit(&tbf->tf_lock);
3769 		} else {
3770 			/*
3771 			 * This port is ours. Insert in fanout and mark as
3772 			 * bound to prevent others from getting the port
3773 			 * number.
3774 			 */
3775 			tcp->tcp_state = TCPS_BOUND;
3776 			tcp->tcp_lport = htons(port);
3777 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3778 
3779 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3780 			    tcp->tcp_lport)] == tbf);
3781 			tcp_bind_hash_insert(tbf, tcp, 1);
3782 
3783 			mutex_exit(&tbf->tf_lock);
3784 
3785 			/*
3786 			 * We don't want tcp_next_port_to_try to "inherit"
3787 			 * a port number supplied by the user in a bind.
3788 			 */
3789 			if (user_specified)
3790 				return (port);
3791 
3792 			/*
3793 			 * This is the only place where tcp_next_port_to_try
3794 			 * is updated. After the update, it may or may not
3795 			 * be in the valid range.
3796 			 */
3797 			if (!tcp->tcp_anon_priv_bind)
3798 				tcp_next_port_to_try = port + 1;
3799 			return (port);
3800 		}
3801 
3802 		if (tcp->tcp_anon_priv_bind) {
3803 			port = tcp_get_next_priv_port(tcp);
3804 		} else {
3805 			if (count == 0 && user_specified) {
3806 				/*
3807 				 * We may have to return an anonymous port. So
3808 				 * get one to start with.
3809 				 */
3810 				port =
3811 				    tcp_update_next_port(tcp_next_port_to_try,
3812 					tcp, B_TRUE);
3813 				user_specified = B_FALSE;
3814 			} else {
3815 				port = tcp_update_next_port(port + 1, tcp,
3816 				    B_FALSE);
3817 			}
3818 		}
3819 		if (port == 0)
3820 			break;
3821 
3822 		/*
3823 		 * Don't let this loop run forever in the case where
3824 		 * all of the anonymous ports are in use.
3825 		 */
3826 	} while (++count < loopmax);
3827 	return (0);
3828 }
3829 
3830 /*
3831  * tcp_clean_death / tcp_close_detached must not be called more than once
3832  * on a tcp. Thus every function that potentially calls tcp_clean_death
3833  * must check for the tcp state before calling tcp_clean_death.
3834  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3835  * tcp_timer_handler, all check for the tcp state.
3836  */
3837 /* ARGSUSED */
3838 void
3839 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3840 {
3841 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3842 
3843 	freemsg(mp);
3844 	if (tcp->tcp_state > TCPS_BOUND)
3845 	    (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5);
3846 }
3847 
3848 /*
3849  * We are dying for some reason.  Try to do it gracefully.  (May be called
3850  * as writer.)
3851  *
3852  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3853  * done by a service procedure).
3854  * TBD - Should the return value distinguish between the tcp_t being
3855  * freed and it being reinitialized?
3856  */
3857 static int
3858 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3859 {
3860 	mblk_t	*mp;
3861 	queue_t	*q;
3862 
3863 	TCP_CLD_STAT(tag);
3864 
3865 #if TCP_TAG_CLEAN_DEATH
3866 	tcp->tcp_cleandeathtag = tag;
3867 #endif
3868 
3869 	if (tcp->tcp_fused)
3870 		tcp_unfuse(tcp);
3871 
3872 	if (tcp->tcp_linger_tid != 0 &&
3873 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3874 		tcp_stop_lingering(tcp);
3875 	}
3876 
3877 	ASSERT(tcp != NULL);
3878 	ASSERT((tcp->tcp_family == AF_INET &&
3879 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3880 	    (tcp->tcp_family == AF_INET6 &&
3881 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3882 	    tcp->tcp_ipversion == IPV6_VERSION)));
3883 
3884 	if (TCP_IS_DETACHED(tcp)) {
3885 		if (tcp->tcp_hard_binding) {
3886 			/*
3887 			 * Its an eager that we are dealing with. We close the
3888 			 * eager but in case a conn_ind has already gone to the
3889 			 * listener, let tcp_accept_finish() send a discon_ind
3890 			 * to the listener and drop the last reference. If the
3891 			 * listener doesn't even know about the eager i.e. the
3892 			 * conn_ind hasn't gone up, blow away the eager and drop
3893 			 * the last reference as well. If the conn_ind has gone
3894 			 * up, state should be BOUND. tcp_accept_finish
3895 			 * will figure out that the connection has received a
3896 			 * RST and will send a DISCON_IND to the application.
3897 			 */
3898 			tcp_closei_local(tcp);
3899 			if (!tcp->tcp_tconnind_started) {
3900 				CONN_DEC_REF(tcp->tcp_connp);
3901 			} else {
3902 				tcp->tcp_state = TCPS_BOUND;
3903 			}
3904 		} else {
3905 			tcp_close_detached(tcp);
3906 		}
3907 		return (0);
3908 	}
3909 
3910 	TCP_STAT(tcp_clean_death_nondetached);
3911 
3912 	/*
3913 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3914 	 * is run) postpone cleaning up the endpoint until service routine
3915 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3916 	 * client_errno since tcp_close uses the client_errno field.
3917 	 */
3918 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3919 		if (err != 0)
3920 			tcp->tcp_client_errno = err;
3921 
3922 		tcp->tcp_deferred_clean_death = B_TRUE;
3923 		return (-1);
3924 	}
3925 
3926 	q = tcp->tcp_rq;
3927 
3928 	/* Trash all inbound data */
3929 	flushq(q, FLUSHALL);
3930 
3931 	/*
3932 	 * If we are at least part way open and there is error
3933 	 * (err==0 implies no error)
3934 	 * notify our client by a T_DISCON_IND.
3935 	 */
3936 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3937 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3938 		    !TCP_IS_SOCKET(tcp)) {
3939 			/*
3940 			 * Send M_FLUSH according to TPI. Because sockets will
3941 			 * (and must) ignore FLUSHR we do that only for TPI
3942 			 * endpoints and sockets in STREAMS mode.
3943 			 */
3944 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3945 		}
3946 		if (tcp->tcp_debug) {
3947 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3948 			    "tcp_clean_death: discon err %d", err);
3949 		}
3950 		mp = mi_tpi_discon_ind(NULL, err, 0);
3951 		if (mp != NULL) {
3952 			putnext(q, mp);
3953 		} else {
3954 			if (tcp->tcp_debug) {
3955 				(void) strlog(TCP_MOD_ID, 0, 1,
3956 				    SL_ERROR|SL_TRACE,
3957 				    "tcp_clean_death, sending M_ERROR");
3958 			}
3959 			(void) putnextctl1(q, M_ERROR, EPROTO);
3960 		}
3961 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3962 			/* SYN_SENT or SYN_RCVD */
3963 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3964 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3965 			/* ESTABLISHED or CLOSE_WAIT */
3966 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3967 		}
3968 	}
3969 
3970 	tcp_reinit(tcp);
3971 	return (-1);
3972 }
3973 
3974 /*
3975  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3976  * to expire, stop the wait and finish the close.
3977  */
3978 static void
3979 tcp_stop_lingering(tcp_t *tcp)
3980 {
3981 	clock_t	delta = 0;
3982 
3983 	tcp->tcp_linger_tid = 0;
3984 	if (tcp->tcp_state > TCPS_LISTEN) {
3985 		tcp_acceptor_hash_remove(tcp);
3986 		if (tcp->tcp_flow_stopped) {
3987 			tcp_clrqfull(tcp);
3988 		}
3989 
3990 		if (tcp->tcp_timer_tid != 0) {
3991 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3992 			tcp->tcp_timer_tid = 0;
3993 		}
3994 		/*
3995 		 * Need to cancel those timers which will not be used when
3996 		 * TCP is detached.  This has to be done before the tcp_wq
3997 		 * is set to the global queue.
3998 		 */
3999 		tcp_timers_stop(tcp);
4000 
4001 
4002 		tcp->tcp_detached = B_TRUE;
4003 		tcp->tcp_rq = tcp_g_q;
4004 		tcp->tcp_wq = WR(tcp_g_q);
4005 
4006 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4007 			tcp_time_wait_append(tcp);
4008 			TCP_DBGSTAT(tcp_detach_time_wait);
4009 			goto finish;
4010 		}
4011 
4012 		/*
4013 		 * If delta is zero the timer event wasn't executed and was
4014 		 * successfully canceled. In this case we need to restart it
4015 		 * with the minimal delta possible.
4016 		 */
4017 		if (delta >= 0) {
4018 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4019 			    delta ? delta : 1);
4020 		}
4021 	} else {
4022 		tcp_closei_local(tcp);
4023 		CONN_DEC_REF(tcp->tcp_connp);
4024 	}
4025 finish:
4026 	/* Signal closing thread that it can complete close */
4027 	mutex_enter(&tcp->tcp_closelock);
4028 	tcp->tcp_detached = B_TRUE;
4029 	tcp->tcp_rq = tcp_g_q;
4030 	tcp->tcp_wq = WR(tcp_g_q);
4031 	tcp->tcp_closed = 1;
4032 	cv_signal(&tcp->tcp_closecv);
4033 	mutex_exit(&tcp->tcp_closelock);
4034 }
4035 
4036 /*
4037  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
4038  * expires.
4039  */
4040 static void
4041 tcp_close_linger_timeout(void *arg)
4042 {
4043 	conn_t	*connp = (conn_t *)arg;
4044 	tcp_t 	*tcp = connp->conn_tcp;
4045 
4046 	tcp->tcp_client_errno = ETIMEDOUT;
4047 	tcp_stop_lingering(tcp);
4048 }
4049 
4050 static int
4051 tcp_close(queue_t *q, int flags)
4052 {
4053 	conn_t		*connp = Q_TO_CONN(q);
4054 	tcp_t		*tcp = connp->conn_tcp;
4055 	mblk_t 		*mp = &tcp->tcp_closemp;
4056 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4057 	boolean_t	linger_interrupted = B_FALSE;
4058 	mblk_t		*bp;
4059 
4060 	ASSERT(WR(q)->q_next == NULL);
4061 	ASSERT(connp->conn_ref >= 2);
4062 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
4063 
4064 	/*
4065 	 * We are being closed as /dev/tcp or /dev/tcp6.
4066 	 *
4067 	 * Mark the conn as closing. ill_pending_mp_add will not
4068 	 * add any mp to the pending mp list, after this conn has
4069 	 * started closing. Same for sq_pending_mp_add
4070 	 */
4071 	mutex_enter(&connp->conn_lock);
4072 	connp->conn_state_flags |= CONN_CLOSING;
4073 	if (connp->conn_oper_pending_ill != NULL)
4074 		conn_ioctl_cleanup_reqd = B_TRUE;
4075 	CONN_INC_REF_LOCKED(connp);
4076 	mutex_exit(&connp->conn_lock);
4077 	tcp->tcp_closeflags = (uint8_t)flags;
4078 	ASSERT(connp->conn_ref >= 3);
4079 
4080 	/*
4081 	 * tcp_closemp_used is used below without any protection of a lock
4082 	 * as we don't expect any one else to use it concurrently at this
4083 	 * point otherwise it would be a major defect, though we do
4084 	 * increment tcp_closemp_used to record any attempt to reuse
4085 	 * tcp_closemp while it is still in use. This would help debugging.
4086 	 */
4087 
4088 	if (mp->b_prev == NULL) {
4089 		tcp->tcp_closemp_used = 1;
4090 	} else {
4091 		tcp->tcp_closemp_used++;
4092 		ASSERT(mp->b_prev == NULL);
4093 	}
4094 
4095 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4096 
4097 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4098 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4099 
4100 	mutex_enter(&tcp->tcp_closelock);
4101 	while (!tcp->tcp_closed) {
4102 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4103 			/*
4104 			 * We got interrupted. Check if we are lingering,
4105 			 * if yes, post a message to stop and wait until
4106 			 * tcp_closed is set. If we aren't lingering,
4107 			 * just go back around.
4108 			 */
4109 			if (tcp->tcp_linger &&
4110 			    tcp->tcp_lingertime > 0 &&
4111 			    !linger_interrupted) {
4112 				mutex_exit(&tcp->tcp_closelock);
4113 				/* Entering squeue, bump ref count. */
4114 				CONN_INC_REF(connp);
4115 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4116 				squeue_enter(connp->conn_sqp, bp,
4117 				    tcp_linger_interrupted, connp,
4118 				    SQTAG_IP_TCP_CLOSE);
4119 				linger_interrupted = B_TRUE;
4120 				mutex_enter(&tcp->tcp_closelock);
4121 			}
4122 		}
4123 	}
4124 	mutex_exit(&tcp->tcp_closelock);
4125 
4126 	/*
4127 	 * In the case of listener streams that have eagers in the q or q0
4128 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4129 	 * tcp_wq of the eagers point to our queues. By waiting for the
4130 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4131 	 * up their queue pointers and also dropped their references to us.
4132 	 */
4133 	if (tcp->tcp_wait_for_eagers) {
4134 		mutex_enter(&connp->conn_lock);
4135 		while (connp->conn_ref != 1) {
4136 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4137 		}
4138 		mutex_exit(&connp->conn_lock);
4139 	}
4140 	/*
4141 	 * ioctl cleanup. The mp is queued in the
4142 	 * ill_pending_mp or in the sq_pending_mp.
4143 	 */
4144 	if (conn_ioctl_cleanup_reqd)
4145 		conn_ioctl_cleanup(connp);
4146 
4147 	qprocsoff(q);
4148 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4149 
4150 	tcp->tcp_cpid = -1;
4151 
4152 	/*
4153 	 * Drop IP's reference on the conn. This is the last reference
4154 	 * on the connp if the state was less than established. If the
4155 	 * connection has gone into timewait state, then we will have
4156 	 * one ref for the TCP and one more ref (total of two) for the
4157 	 * classifier connected hash list (a timewait connections stays
4158 	 * in connected hash till closed).
4159 	 *
4160 	 * We can't assert the references because there might be other
4161 	 * transient reference places because of some walkers or queued
4162 	 * packets in squeue for the timewait state.
4163 	 */
4164 	CONN_DEC_REF(connp);
4165 	q->q_ptr = WR(q)->q_ptr = NULL;
4166 	return (0);
4167 }
4168 
4169 static int
4170 tcpclose_accept(queue_t *q)
4171 {
4172 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4173 
4174 	/*
4175 	 * We had opened an acceptor STREAM for sockfs which is
4176 	 * now being closed due to some error.
4177 	 */
4178 	qprocsoff(q);
4179 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4180 	q->q_ptr = WR(q)->q_ptr = NULL;
4181 	return (0);
4182 }
4183 
4184 /*
4185  * Called by tcp_close() routine via squeue when lingering is
4186  * interrupted by a signal.
4187  */
4188 
4189 /* ARGSUSED */
4190 static void
4191 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4192 {
4193 	conn_t	*connp = (conn_t *)arg;
4194 	tcp_t	*tcp = connp->conn_tcp;
4195 
4196 	freeb(mp);
4197 	if (tcp->tcp_linger_tid != 0 &&
4198 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4199 		tcp_stop_lingering(tcp);
4200 		tcp->tcp_client_errno = EINTR;
4201 	}
4202 }
4203 
4204 /*
4205  * Called by streams close routine via squeues when our client blows off her
4206  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4207  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4208  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4209  * acked.
4210  *
4211  * NOTE: tcp_close potentially returns error when lingering.
4212  * However, the stream head currently does not pass these errors
4213  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4214  * errors to the application (from tsleep()) and not errors
4215  * like ECONNRESET caused by receiving a reset packet.
4216  */
4217 
4218 /* ARGSUSED */
4219 static void
4220 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4221 {
4222 	char	*msg;
4223 	conn_t	*connp = (conn_t *)arg;
4224 	tcp_t	*tcp = connp->conn_tcp;
4225 	clock_t	delta = 0;
4226 
4227 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4228 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4229 
4230 	/* Cancel any pending timeout */
4231 	if (tcp->tcp_ordrelid != 0) {
4232 		if (tcp->tcp_timeout) {
4233 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4234 		}
4235 		tcp->tcp_ordrelid = 0;
4236 		tcp->tcp_timeout = B_FALSE;
4237 	}
4238 
4239 	mutex_enter(&tcp->tcp_eager_lock);
4240 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4241 		/* Cleanup for listener */
4242 		tcp_eager_cleanup(tcp, 0);
4243 		tcp->tcp_wait_for_eagers = 1;
4244 	}
4245 	mutex_exit(&tcp->tcp_eager_lock);
4246 
4247 	connp->conn_mdt_ok = B_FALSE;
4248 	tcp->tcp_mdt = B_FALSE;
4249 
4250 	connp->conn_lso_ok = B_FALSE;
4251 	tcp->tcp_lso = B_FALSE;
4252 
4253 	msg = NULL;
4254 	switch (tcp->tcp_state) {
4255 	case TCPS_CLOSED:
4256 	case TCPS_IDLE:
4257 	case TCPS_BOUND:
4258 	case TCPS_LISTEN:
4259 		break;
4260 	case TCPS_SYN_SENT:
4261 		msg = "tcp_close, during connect";
4262 		break;
4263 	case TCPS_SYN_RCVD:
4264 		/*
4265 		 * Close during the connect 3-way handshake
4266 		 * but here there may or may not be pending data
4267 		 * already on queue. Process almost same as in
4268 		 * the ESTABLISHED state.
4269 		 */
4270 		/* FALLTHRU */
4271 	default:
4272 		if (tcp->tcp_fused)
4273 			tcp_unfuse(tcp);
4274 
4275 		/*
4276 		 * If SO_LINGER has set a zero linger time, abort the
4277 		 * connection with a reset.
4278 		 */
4279 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4280 			msg = "tcp_close, zero lingertime";
4281 			break;
4282 		}
4283 
4284 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4285 		/*
4286 		 * Abort connection if there is unread data queued.
4287 		 */
4288 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4289 			msg = "tcp_close, unread data";
4290 			break;
4291 		}
4292 		/*
4293 		 * tcp_hard_bound is now cleared thus all packets go through
4294 		 * tcp_lookup. This fact is used by tcp_detach below.
4295 		 *
4296 		 * We have done a qwait() above which could have possibly
4297 		 * drained more messages in turn causing transition to a
4298 		 * different state. Check whether we have to do the rest
4299 		 * of the processing or not.
4300 		 */
4301 		if (tcp->tcp_state <= TCPS_LISTEN)
4302 			break;
4303 
4304 		/*
4305 		 * Transmit the FIN before detaching the tcp_t.
4306 		 * After tcp_detach returns this queue/perimeter
4307 		 * no longer owns the tcp_t thus others can modify it.
4308 		 */
4309 		(void) tcp_xmit_end(tcp);
4310 
4311 		/*
4312 		 * If lingering on close then wait until the fin is acked,
4313 		 * the SO_LINGER time passes, or a reset is sent/received.
4314 		 */
4315 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4316 		    !(tcp->tcp_fin_acked) &&
4317 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4318 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4319 				tcp->tcp_client_errno = EWOULDBLOCK;
4320 			} else if (tcp->tcp_client_errno == 0) {
4321 
4322 				ASSERT(tcp->tcp_linger_tid == 0);
4323 
4324 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4325 				    tcp_close_linger_timeout,
4326 				    tcp->tcp_lingertime * hz);
4327 
4328 				/* tcp_close_linger_timeout will finish close */
4329 				if (tcp->tcp_linger_tid == 0)
4330 					tcp->tcp_client_errno = ENOSR;
4331 				else
4332 					return;
4333 			}
4334 
4335 			/*
4336 			 * Check if we need to detach or just close
4337 			 * the instance.
4338 			 */
4339 			if (tcp->tcp_state <= TCPS_LISTEN)
4340 				break;
4341 		}
4342 
4343 		/*
4344 		 * Make sure that no other thread will access the tcp_rq of
4345 		 * this instance (through lookups etc.) as tcp_rq will go
4346 		 * away shortly.
4347 		 */
4348 		tcp_acceptor_hash_remove(tcp);
4349 
4350 		if (tcp->tcp_flow_stopped) {
4351 			tcp_clrqfull(tcp);
4352 		}
4353 
4354 		if (tcp->tcp_timer_tid != 0) {
4355 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4356 			tcp->tcp_timer_tid = 0;
4357 		}
4358 		/*
4359 		 * Need to cancel those timers which will not be used when
4360 		 * TCP is detached.  This has to be done before the tcp_wq
4361 		 * is set to the global queue.
4362 		 */
4363 		tcp_timers_stop(tcp);
4364 
4365 		tcp->tcp_detached = B_TRUE;
4366 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4367 			tcp_time_wait_append(tcp);
4368 			TCP_DBGSTAT(tcp_detach_time_wait);
4369 			ASSERT(connp->conn_ref >= 3);
4370 			goto finish;
4371 		}
4372 
4373 		/*
4374 		 * If delta is zero the timer event wasn't executed and was
4375 		 * successfully canceled. In this case we need to restart it
4376 		 * with the minimal delta possible.
4377 		 */
4378 		if (delta >= 0)
4379 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4380 			    delta ? delta : 1);
4381 
4382 		ASSERT(connp->conn_ref >= 3);
4383 		goto finish;
4384 	}
4385 
4386 	/* Detach did not complete. Still need to remove q from stream. */
4387 	if (msg) {
4388 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4389 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4390 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4391 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4392 		    tcp->tcp_state == TCPS_SYN_RCVD)
4393 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4394 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4395 	}
4396 
4397 	tcp_closei_local(tcp);
4398 	CONN_DEC_REF(connp);
4399 	ASSERT(connp->conn_ref >= 2);
4400 
4401 finish:
4402 	/*
4403 	 * Although packets are always processed on the correct
4404 	 * tcp's perimeter and access is serialized via squeue's,
4405 	 * IP still needs a queue when sending packets in time_wait
4406 	 * state so use WR(tcp_g_q) till ip_output() can be
4407 	 * changed to deal with just connp. For read side, we
4408 	 * could have set tcp_rq to NULL but there are some cases
4409 	 * in tcp_rput_data() from early days of this code which
4410 	 * do a putnext without checking if tcp is closed. Those
4411 	 * need to be identified before both tcp_rq and tcp_wq
4412 	 * can be set to NULL and tcp_q_q can disappear forever.
4413 	 */
4414 	mutex_enter(&tcp->tcp_closelock);
4415 	/*
4416 	 * Don't change the queues in the case of a listener that has
4417 	 * eagers in its q or q0. It could surprise the eagers.
4418 	 * Instead wait for the eagers outside the squeue.
4419 	 */
4420 	if (!tcp->tcp_wait_for_eagers) {
4421 		tcp->tcp_detached = B_TRUE;
4422 		tcp->tcp_rq = tcp_g_q;
4423 		tcp->tcp_wq = WR(tcp_g_q);
4424 	}
4425 
4426 	/* Signal tcp_close() to finish closing. */
4427 	tcp->tcp_closed = 1;
4428 	cv_signal(&tcp->tcp_closecv);
4429 	mutex_exit(&tcp->tcp_closelock);
4430 }
4431 
4432 
4433 /*
4434  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4435  * Some stream heads get upset if they see these later on as anything but NULL.
4436  */
4437 static void
4438 tcp_close_mpp(mblk_t **mpp)
4439 {
4440 	mblk_t	*mp;
4441 
4442 	if ((mp = *mpp) != NULL) {
4443 		do {
4444 			mp->b_next = NULL;
4445 			mp->b_prev = NULL;
4446 		} while ((mp = mp->b_cont) != NULL);
4447 
4448 		mp = *mpp;
4449 		*mpp = NULL;
4450 		freemsg(mp);
4451 	}
4452 }
4453 
4454 /* Do detached close. */
4455 static void
4456 tcp_close_detached(tcp_t *tcp)
4457 {
4458 	if (tcp->tcp_fused)
4459 		tcp_unfuse(tcp);
4460 
4461 	/*
4462 	 * Clustering code serializes TCP disconnect callbacks and
4463 	 * cluster tcp list walks by blocking a TCP disconnect callback
4464 	 * if a cluster tcp list walk is in progress. This ensures
4465 	 * accurate accounting of TCPs in the cluster code even though
4466 	 * the TCP list walk itself is not atomic.
4467 	 */
4468 	tcp_closei_local(tcp);
4469 	CONN_DEC_REF(tcp->tcp_connp);
4470 }
4471 
4472 /*
4473  * Stop all TCP timers, and free the timer mblks if requested.
4474  */
4475 void
4476 tcp_timers_stop(tcp_t *tcp)
4477 {
4478 	if (tcp->tcp_timer_tid != 0) {
4479 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4480 		tcp->tcp_timer_tid = 0;
4481 	}
4482 	if (tcp->tcp_ka_tid != 0) {
4483 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4484 		tcp->tcp_ka_tid = 0;
4485 	}
4486 	if (tcp->tcp_ack_tid != 0) {
4487 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4488 		tcp->tcp_ack_tid = 0;
4489 	}
4490 	if (tcp->tcp_push_tid != 0) {
4491 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4492 		tcp->tcp_push_tid = 0;
4493 	}
4494 }
4495 
4496 /*
4497  * The tcp_t is going away. Remove it from all lists and set it
4498  * to TCPS_CLOSED. The freeing up of memory is deferred until
4499  * tcp_inactive. This is needed since a thread in tcp_rput might have
4500  * done a CONN_INC_REF on this structure before it was removed from the
4501  * hashes.
4502  */
4503 static void
4504 tcp_closei_local(tcp_t *tcp)
4505 {
4506 	ire_t 	*ire;
4507 	conn_t	*connp = tcp->tcp_connp;
4508 
4509 	if (!TCP_IS_SOCKET(tcp))
4510 		tcp_acceptor_hash_remove(tcp);
4511 
4512 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4513 	tcp->tcp_ibsegs = 0;
4514 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4515 	tcp->tcp_obsegs = 0;
4516 
4517 	/*
4518 	 * If we are an eager connection hanging off a listener that
4519 	 * hasn't formally accepted the connection yet, get off his
4520 	 * list and blow off any data that we have accumulated.
4521 	 */
4522 	if (tcp->tcp_listener != NULL) {
4523 		tcp_t	*listener = tcp->tcp_listener;
4524 		mutex_enter(&listener->tcp_eager_lock);
4525 		/*
4526 		 * tcp_tconnind_started == B_TRUE means that the
4527 		 * conn_ind has already gone to listener. At
4528 		 * this point, eager will be closed but we
4529 		 * leave it in listeners eager list so that
4530 		 * if listener decides to close without doing
4531 		 * accept, we can clean this up. In tcp_wput_accept
4532 		 * we take care of the case of accept on closed
4533 		 * eager.
4534 		 */
4535 		if (!tcp->tcp_tconnind_started) {
4536 			tcp_eager_unlink(tcp);
4537 			mutex_exit(&listener->tcp_eager_lock);
4538 			/*
4539 			 * We don't want to have any pointers to the
4540 			 * listener queue, after we have released our
4541 			 * reference on the listener
4542 			 */
4543 			tcp->tcp_rq = tcp_g_q;
4544 			tcp->tcp_wq = WR(tcp_g_q);
4545 			CONN_DEC_REF(listener->tcp_connp);
4546 		} else {
4547 			mutex_exit(&listener->tcp_eager_lock);
4548 		}
4549 	}
4550 
4551 	/* Stop all the timers */
4552 	tcp_timers_stop(tcp);
4553 
4554 	if (tcp->tcp_state == TCPS_LISTEN) {
4555 		if (tcp->tcp_ip_addr_cache) {
4556 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4557 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4558 			tcp->tcp_ip_addr_cache = NULL;
4559 		}
4560 	}
4561 	if (tcp->tcp_flow_stopped)
4562 		tcp_clrqfull(tcp);
4563 
4564 	tcp_bind_hash_remove(tcp);
4565 	/*
4566 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4567 	 * is trying to remove this tcp from the time wait list, we will
4568 	 * block in tcp_time_wait_remove while trying to acquire the
4569 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4570 	 * requires the ipcl_hash_remove to be ordered after the
4571 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4572 	 */
4573 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4574 		(void) tcp_time_wait_remove(tcp, NULL);
4575 	CL_INET_DISCONNECT(tcp);
4576 	ipcl_hash_remove(connp);
4577 
4578 	/*
4579 	 * Delete the cached ire in conn_ire_cache and also mark
4580 	 * the conn as CONDEMNED
4581 	 */
4582 	mutex_enter(&connp->conn_lock);
4583 	connp->conn_state_flags |= CONN_CONDEMNED;
4584 	ire = connp->conn_ire_cache;
4585 	connp->conn_ire_cache = NULL;
4586 	mutex_exit(&connp->conn_lock);
4587 	if (ire != NULL)
4588 		IRE_REFRELE_NOTR(ire);
4589 
4590 	/* Need to cleanup any pending ioctls */
4591 	ASSERT(tcp->tcp_time_wait_next == NULL);
4592 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4593 	ASSERT(tcp->tcp_time_wait_expire == 0);
4594 	tcp->tcp_state = TCPS_CLOSED;
4595 
4596 	/* Release any SSL context */
4597 	if (tcp->tcp_kssl_ent != NULL) {
4598 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4599 		tcp->tcp_kssl_ent = NULL;
4600 	}
4601 	if (tcp->tcp_kssl_ctx != NULL) {
4602 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4603 		tcp->tcp_kssl_ctx = NULL;
4604 	}
4605 	tcp->tcp_kssl_pending = B_FALSE;
4606 }
4607 
4608 /*
4609  * tcp is dying (called from ipcl_conn_destroy and error cases).
4610  * Free the tcp_t in either case.
4611  */
4612 void
4613 tcp_free(tcp_t *tcp)
4614 {
4615 	mblk_t	*mp;
4616 	ip6_pkt_t	*ipp;
4617 
4618 	ASSERT(tcp != NULL);
4619 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4620 
4621 	tcp->tcp_rq = NULL;
4622 	tcp->tcp_wq = NULL;
4623 
4624 	tcp_close_mpp(&tcp->tcp_xmit_head);
4625 	tcp_close_mpp(&tcp->tcp_reass_head);
4626 	if (tcp->tcp_rcv_list != NULL) {
4627 		/* Free b_next chain */
4628 		tcp_close_mpp(&tcp->tcp_rcv_list);
4629 	}
4630 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4631 		freemsg(mp);
4632 	}
4633 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4634 		freemsg(mp);
4635 	}
4636 
4637 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4638 		freeb(tcp->tcp_fused_sigurg_mp);
4639 		tcp->tcp_fused_sigurg_mp = NULL;
4640 	}
4641 
4642 	if (tcp->tcp_sack_info != NULL) {
4643 		if (tcp->tcp_notsack_list != NULL) {
4644 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4645 		}
4646 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4647 	}
4648 
4649 	if (tcp->tcp_hopopts != NULL) {
4650 		mi_free(tcp->tcp_hopopts);
4651 		tcp->tcp_hopopts = NULL;
4652 		tcp->tcp_hopoptslen = 0;
4653 	}
4654 	ASSERT(tcp->tcp_hopoptslen == 0);
4655 	if (tcp->tcp_dstopts != NULL) {
4656 		mi_free(tcp->tcp_dstopts);
4657 		tcp->tcp_dstopts = NULL;
4658 		tcp->tcp_dstoptslen = 0;
4659 	}
4660 	ASSERT(tcp->tcp_dstoptslen == 0);
4661 	if (tcp->tcp_rtdstopts != NULL) {
4662 		mi_free(tcp->tcp_rtdstopts);
4663 		tcp->tcp_rtdstopts = NULL;
4664 		tcp->tcp_rtdstoptslen = 0;
4665 	}
4666 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4667 	if (tcp->tcp_rthdr != NULL) {
4668 		mi_free(tcp->tcp_rthdr);
4669 		tcp->tcp_rthdr = NULL;
4670 		tcp->tcp_rthdrlen = 0;
4671 	}
4672 	ASSERT(tcp->tcp_rthdrlen == 0);
4673 
4674 	ipp = &tcp->tcp_sticky_ipp;
4675 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4676 	    IPPF_RTHDR))
4677 		ip6_pkt_free(ipp);
4678 
4679 	/*
4680 	 * Free memory associated with the tcp/ip header template.
4681 	 */
4682 
4683 	if (tcp->tcp_iphc != NULL)
4684 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4685 
4686 	/*
4687 	 * Following is really a blowing away a union.
4688 	 * It happens to have exactly two members of identical size
4689 	 * the following code is enough.
4690 	 */
4691 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4692 
4693 	if (tcp->tcp_tracebuf != NULL) {
4694 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4695 		tcp->tcp_tracebuf = NULL;
4696 	}
4697 }
4698 
4699 
4700 /*
4701  * Put a connection confirmation message upstream built from the
4702  * address information within 'iph' and 'tcph'.  Report our success or failure.
4703  */
4704 static boolean_t
4705 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4706     mblk_t **defermp)
4707 {
4708 	sin_t	sin;
4709 	sin6_t	sin6;
4710 	mblk_t	*mp;
4711 	char	*optp = NULL;
4712 	int	optlen = 0;
4713 	cred_t	*cr;
4714 
4715 	if (defermp != NULL)
4716 		*defermp = NULL;
4717 
4718 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4719 		/*
4720 		 * Return in T_CONN_CON results of option negotiation through
4721 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4722 		 * negotiation, then what is received from remote end needs
4723 		 * to be taken into account but there is no such thing (yet?)
4724 		 * in our TCP/IP.
4725 		 * Note: We do not use mi_offset_param() here as
4726 		 * tcp_opts_conn_req contents do not directly come from
4727 		 * an application and are either generated in kernel or
4728 		 * from user input that was already verified.
4729 		 */
4730 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4731 		optp = (char *)(mp->b_rptr +
4732 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4733 		optlen = (int)
4734 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4735 	}
4736 
4737 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4738 		ipha_t *ipha = (ipha_t *)iphdr;
4739 
4740 		/* packet is IPv4 */
4741 		if (tcp->tcp_family == AF_INET) {
4742 			sin = sin_null;
4743 			sin.sin_addr.s_addr = ipha->ipha_src;
4744 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4745 			sin.sin_family = AF_INET;
4746 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4747 			    (int)sizeof (sin_t), optp, optlen);
4748 		} else {
4749 			sin6 = sin6_null;
4750 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4751 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4752 			sin6.sin6_family = AF_INET6;
4753 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4754 			    (int)sizeof (sin6_t), optp, optlen);
4755 
4756 		}
4757 	} else {
4758 		ip6_t	*ip6h = (ip6_t *)iphdr;
4759 
4760 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4761 		ASSERT(tcp->tcp_family == AF_INET6);
4762 		sin6 = sin6_null;
4763 		sin6.sin6_addr = ip6h->ip6_src;
4764 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4765 		sin6.sin6_family = AF_INET6;
4766 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4767 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4768 		    (int)sizeof (sin6_t), optp, optlen);
4769 	}
4770 
4771 	if (!mp)
4772 		return (B_FALSE);
4773 
4774 	if ((cr = DB_CRED(idmp)) != NULL) {
4775 		mblk_setcred(mp, cr);
4776 		DB_CPID(mp) = DB_CPID(idmp);
4777 	}
4778 
4779 	if (defermp == NULL)
4780 		putnext(tcp->tcp_rq, mp);
4781 	else
4782 		*defermp = mp;
4783 
4784 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4785 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4786 	return (B_TRUE);
4787 }
4788 
4789 /*
4790  * Defense for the SYN attack -
4791  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4792  *    one from the list of droppable eagers. This list is a subset of q0.
4793  *    see comments before the definition of MAKE_DROPPABLE().
4794  * 2. Don't drop a SYN request before its first timeout. This gives every
4795  *    request at least til the first timeout to complete its 3-way handshake.
4796  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4797  *    requests currently on the queue that has timed out. This will be used
4798  *    as an indicator of whether an attack is under way, so that appropriate
4799  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4800  *    either when eager goes into ESTABLISHED, or gets freed up.)
4801  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4802  *    # of timeout drops back to <= q0len/32 => SYN alert off
4803  */
4804 static boolean_t
4805 tcp_drop_q0(tcp_t *tcp)
4806 {
4807 	tcp_t	*eager;
4808 	mblk_t	*mp;
4809 
4810 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4811 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4812 
4813 	/* Pick oldest eager from the list of droppable eagers */
4814 	eager = tcp->tcp_eager_prev_drop_q0;
4815 
4816 	/* If list is empty. return B_FALSE */
4817 	if (eager == tcp) {
4818 		return (B_FALSE);
4819 	}
4820 
4821 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4822 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4823 		return (B_FALSE);
4824 
4825 	/*
4826 	 * Take this eager out from the list of droppable eagers since we are
4827 	 * going to drop it.
4828 	 */
4829 	MAKE_UNDROPPABLE(eager);
4830 
4831 	if (tcp->tcp_debug) {
4832 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4833 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4834 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4835 		    tcp->tcp_conn_req_cnt_q0,
4836 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4837 	}
4838 
4839 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4840 
4841 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4842 	CONN_INC_REF(eager->tcp_connp);
4843 
4844 	/* Mark the IRE created for this SYN request temporary */
4845 	tcp_ip_ire_mark_advice(eager);
4846 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4847 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4848 
4849 	return (B_TRUE);
4850 }
4851 
4852 int
4853 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4854     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4855 {
4856 	tcp_t 		*ltcp = lconnp->conn_tcp;
4857 	tcp_t		*tcp = connp->conn_tcp;
4858 	mblk_t		*tpi_mp;
4859 	ipha_t		*ipha;
4860 	ip6_t		*ip6h;
4861 	sin6_t 		sin6;
4862 	in6_addr_t 	v6dst;
4863 	int		err;
4864 	int		ifindex = 0;
4865 	cred_t		*cr;
4866 
4867 	if (ipvers == IPV4_VERSION) {
4868 		ipha = (ipha_t *)mp->b_rptr;
4869 
4870 		connp->conn_send = ip_output;
4871 		connp->conn_recv = tcp_input;
4872 
4873 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4874 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4875 
4876 		sin6 = sin6_null;
4877 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4878 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4879 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4880 		sin6.sin6_family = AF_INET6;
4881 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4882 		    lconnp->conn_zoneid);
4883 		if (tcp->tcp_recvdstaddr) {
4884 			sin6_t	sin6d;
4885 
4886 			sin6d = sin6_null;
4887 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4888 			    &sin6d.sin6_addr);
4889 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4890 			sin6d.sin6_family = AF_INET;
4891 			tpi_mp = mi_tpi_extconn_ind(NULL,
4892 			    (char *)&sin6d, sizeof (sin6_t),
4893 			    (char *)&tcp,
4894 			    (t_scalar_t)sizeof (intptr_t),
4895 			    (char *)&sin6d, sizeof (sin6_t),
4896 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4897 		} else {
4898 			tpi_mp = mi_tpi_conn_ind(NULL,
4899 			    (char *)&sin6, sizeof (sin6_t),
4900 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4901 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4902 		}
4903 	} else {
4904 		ip6h = (ip6_t *)mp->b_rptr;
4905 
4906 		connp->conn_send = ip_output_v6;
4907 		connp->conn_recv = tcp_input;
4908 
4909 		connp->conn_srcv6 = ip6h->ip6_dst;
4910 		connp->conn_remv6 = ip6h->ip6_src;
4911 
4912 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4913 		ifindex = (int)DB_CKSUMSTUFF(mp);
4914 		DB_CKSUMSTUFF(mp) = 0;
4915 
4916 		sin6 = sin6_null;
4917 		sin6.sin6_addr = ip6h->ip6_src;
4918 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4919 		sin6.sin6_family = AF_INET6;
4920 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4921 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4922 		    lconnp->conn_zoneid);
4923 
4924 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4925 			/* Pass up the scope_id of remote addr */
4926 			sin6.sin6_scope_id = ifindex;
4927 		} else {
4928 			sin6.sin6_scope_id = 0;
4929 		}
4930 		if (tcp->tcp_recvdstaddr) {
4931 			sin6_t	sin6d;
4932 
4933 			sin6d = sin6_null;
4934 			sin6.sin6_addr = ip6h->ip6_dst;
4935 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4936 			sin6d.sin6_family = AF_INET;
4937 			tpi_mp = mi_tpi_extconn_ind(NULL,
4938 			    (char *)&sin6d, sizeof (sin6_t),
4939 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4940 			    (char *)&sin6d, sizeof (sin6_t),
4941 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4942 		} else {
4943 			tpi_mp = mi_tpi_conn_ind(NULL,
4944 			    (char *)&sin6, sizeof (sin6_t),
4945 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4946 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4947 		}
4948 	}
4949 
4950 	if (tpi_mp == NULL)
4951 		return (ENOMEM);
4952 
4953 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4954 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4955 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4956 	connp->conn_fully_bound = B_FALSE;
4957 
4958 	if (tcp_trace)
4959 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4960 
4961 	/* Inherit information from the "parent" */
4962 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4963 	tcp->tcp_family = ltcp->tcp_family;
4964 	tcp->tcp_wq = ltcp->tcp_wq;
4965 	tcp->tcp_rq = ltcp->tcp_rq;
4966 	tcp->tcp_mss = tcp_mss_def_ipv6;
4967 	tcp->tcp_detached = B_TRUE;
4968 	if ((err = tcp_init_values(tcp)) != 0) {
4969 		freemsg(tpi_mp);
4970 		return (err);
4971 	}
4972 
4973 	if (ipvers == IPV4_VERSION) {
4974 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4975 			freemsg(tpi_mp);
4976 			return (err);
4977 		}
4978 		ASSERT(tcp->tcp_ipha != NULL);
4979 	} else {
4980 		/* ifindex must be already set */
4981 		ASSERT(ifindex != 0);
4982 
4983 		if (ltcp->tcp_bound_if != 0) {
4984 			/*
4985 			 * Set newtcp's bound_if equal to
4986 			 * listener's value. If ifindex is
4987 			 * not the same as ltcp->tcp_bound_if,
4988 			 * it must be a packet for the ipmp group
4989 			 * of interfaces
4990 			 */
4991 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4992 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4993 			tcp->tcp_bound_if = ifindex;
4994 		}
4995 
4996 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4997 		tcp->tcp_recvifindex = 0;
4998 		tcp->tcp_recvhops = 0xffffffffU;
4999 		ASSERT(tcp->tcp_ip6h != NULL);
5000 	}
5001 
5002 	tcp->tcp_lport = ltcp->tcp_lport;
5003 
5004 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
5005 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
5006 			/*
5007 			 * Listener had options of some sort; eager inherits.
5008 			 * Free up the eager template and allocate one
5009 			 * of the right size.
5010 			 */
5011 			if (tcp->tcp_hdr_grown) {
5012 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
5013 			} else {
5014 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5015 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
5016 			}
5017 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5018 			    KM_NOSLEEP);
5019 			if (tcp->tcp_iphc == NULL) {
5020 				tcp->tcp_iphc_len = 0;
5021 				freemsg(tpi_mp);
5022 				return (ENOMEM);
5023 			}
5024 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5025 			tcp->tcp_hdr_grown = B_TRUE;
5026 		}
5027 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5028 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5029 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5030 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5031 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5032 
5033 		/*
5034 		 * Copy the IP+TCP header template from listener to eager
5035 		 */
5036 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5037 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5038 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5039 			    IPPROTO_RAW) {
5040 				tcp->tcp_ip6h =
5041 				    (ip6_t *)(tcp->tcp_iphc +
5042 					sizeof (ip6i_t));
5043 			} else {
5044 				tcp->tcp_ip6h =
5045 				    (ip6_t *)(tcp->tcp_iphc);
5046 			}
5047 			tcp->tcp_ipha = NULL;
5048 		} else {
5049 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5050 			tcp->tcp_ip6h = NULL;
5051 		}
5052 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5053 		    tcp->tcp_ip_hdr_len);
5054 	} else {
5055 		/*
5056 		 * only valid case when ipversion of listener and
5057 		 * eager differ is when listener is IPv6 and
5058 		 * eager is IPv4.
5059 		 * Eager header template has been initialized to the
5060 		 * maximum v4 header sizes, which includes space for
5061 		 * TCP and IP options.
5062 		 */
5063 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5064 		    (tcp->tcp_ipversion == IPV4_VERSION));
5065 		ASSERT(tcp->tcp_iphc_len >=
5066 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5067 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5068 		/* copy IP header fields individually */
5069 		tcp->tcp_ipha->ipha_ttl =
5070 		    ltcp->tcp_ip6h->ip6_hops;
5071 		bcopy(ltcp->tcp_tcph->th_lport,
5072 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5073 	}
5074 
5075 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5076 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5077 	    sizeof (in_port_t));
5078 
5079 	if (ltcp->tcp_lport == 0) {
5080 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5081 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5082 		    sizeof (in_port_t));
5083 	}
5084 
5085 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5086 		ASSERT(ipha != NULL);
5087 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5088 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5089 
5090 		/* Source routing option copyover (reverse it) */
5091 		if (tcp_rev_src_routes)
5092 			tcp_opt_reverse(tcp, ipha);
5093 	} else {
5094 		ASSERT(ip6h != NULL);
5095 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5096 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5097 	}
5098 
5099 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5100 	ASSERT(!tcp->tcp_tconnind_started);
5101 	/*
5102 	 * If the SYN contains a credential, it's a loopback packet; attach
5103 	 * the credential to the TPI message.
5104 	 */
5105 	if ((cr = DB_CRED(idmp)) != NULL) {
5106 		mblk_setcred(tpi_mp, cr);
5107 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5108 	}
5109 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5110 
5111 	/* Inherit the listener's SSL protection state */
5112 
5113 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5114 		kssl_hold_ent(tcp->tcp_kssl_ent);
5115 		tcp->tcp_kssl_pending = B_TRUE;
5116 	}
5117 
5118 	return (0);
5119 }
5120 
5121 
5122 int
5123 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5124     tcph_t *tcph, mblk_t *idmp)
5125 {
5126 	tcp_t 		*ltcp = lconnp->conn_tcp;
5127 	tcp_t		*tcp = connp->conn_tcp;
5128 	sin_t		sin;
5129 	mblk_t		*tpi_mp = NULL;
5130 	int		err;
5131 	cred_t		*cr;
5132 
5133 	sin = sin_null;
5134 	sin.sin_addr.s_addr = ipha->ipha_src;
5135 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5136 	sin.sin_family = AF_INET;
5137 	if (ltcp->tcp_recvdstaddr) {
5138 		sin_t	sind;
5139 
5140 		sind = sin_null;
5141 		sind.sin_addr.s_addr = ipha->ipha_dst;
5142 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5143 		sind.sin_family = AF_INET;
5144 		tpi_mp = mi_tpi_extconn_ind(NULL,
5145 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5146 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5147 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5148 	} else {
5149 		tpi_mp = mi_tpi_conn_ind(NULL,
5150 		    (char *)&sin, sizeof (sin_t),
5151 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5152 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5153 	}
5154 
5155 	if (tpi_mp == NULL) {
5156 		return (ENOMEM);
5157 	}
5158 
5159 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5160 	connp->conn_send = ip_output;
5161 	connp->conn_recv = tcp_input;
5162 	connp->conn_fully_bound = B_FALSE;
5163 
5164 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5165 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5166 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5167 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5168 
5169 	if (tcp_trace) {
5170 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5171 	}
5172 
5173 	/* Inherit information from the "parent" */
5174 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5175 	tcp->tcp_family = ltcp->tcp_family;
5176 	tcp->tcp_wq = ltcp->tcp_wq;
5177 	tcp->tcp_rq = ltcp->tcp_rq;
5178 	tcp->tcp_mss = tcp_mss_def_ipv4;
5179 	tcp->tcp_detached = B_TRUE;
5180 	if ((err = tcp_init_values(tcp)) != 0) {
5181 		freemsg(tpi_mp);
5182 		return (err);
5183 	}
5184 
5185 	/*
5186 	 * Let's make sure that eager tcp template has enough space to
5187 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5188 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5189 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5190 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5191 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5192 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5193 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5194 	 */
5195 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5196 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5197 
5198 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5199 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5200 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5201 	tcp->tcp_ttl = ltcp->tcp_ttl;
5202 	tcp->tcp_tos = ltcp->tcp_tos;
5203 
5204 	/* Copy the IP+TCP header template from listener to eager */
5205 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5206 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5207 	tcp->tcp_ip6h = NULL;
5208 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5209 	    tcp->tcp_ip_hdr_len);
5210 
5211 	/* Initialize the IP addresses and Ports */
5212 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5213 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5214 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5215 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5216 
5217 	/* Source routing option copyover (reverse it) */
5218 	if (tcp_rev_src_routes)
5219 		tcp_opt_reverse(tcp, ipha);
5220 
5221 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5222 	ASSERT(!tcp->tcp_tconnind_started);
5223 
5224 	/*
5225 	 * If the SYN contains a credential, it's a loopback packet; attach
5226 	 * the credential to the TPI message.
5227 	 */
5228 	if ((cr = DB_CRED(idmp)) != NULL) {
5229 		mblk_setcred(tpi_mp, cr);
5230 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5231 	}
5232 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5233 
5234 	/* Inherit the listener's SSL protection state */
5235 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5236 		kssl_hold_ent(tcp->tcp_kssl_ent);
5237 		tcp->tcp_kssl_pending = B_TRUE;
5238 	}
5239 
5240 	return (0);
5241 }
5242 
5243 /*
5244  * sets up conn for ipsec.
5245  * if the first mblk is M_CTL it is consumed and mpp is updated.
5246  * in case of error mpp is freed.
5247  */
5248 conn_t *
5249 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5250 {
5251 	conn_t 		*connp = tcp->tcp_connp;
5252 	conn_t 		*econnp;
5253 	squeue_t 	*new_sqp;
5254 	mblk_t 		*first_mp = *mpp;
5255 	mblk_t		*mp = *mpp;
5256 	boolean_t	mctl_present = B_FALSE;
5257 	uint_t		ipvers;
5258 
5259 	econnp = tcp_get_conn(sqp);
5260 	if (econnp == NULL) {
5261 		freemsg(first_mp);
5262 		return (NULL);
5263 	}
5264 	if (DB_TYPE(mp) == M_CTL) {
5265 		if (mp->b_cont == NULL ||
5266 		    mp->b_cont->b_datap->db_type != M_DATA) {
5267 			freemsg(first_mp);
5268 			return (NULL);
5269 		}
5270 		mp = mp->b_cont;
5271 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5272 			freemsg(first_mp);
5273 			return (NULL);
5274 		}
5275 
5276 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5277 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5278 		mctl_present = B_TRUE;
5279 	} else {
5280 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5281 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5282 	}
5283 
5284 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5285 	DB_CKSUMSTART(mp) = 0;
5286 
5287 	ASSERT(OK_32PTR(mp->b_rptr));
5288 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5289 	if (ipvers == IPV4_VERSION) {
5290 		uint16_t  	*up;
5291 		uint32_t	ports;
5292 		ipha_t		*ipha;
5293 
5294 		ipha = (ipha_t *)mp->b_rptr;
5295 		up = (uint16_t *)((uchar_t *)ipha +
5296 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5297 		ports = *(uint32_t *)up;
5298 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5299 		    ipha->ipha_dst, ipha->ipha_src, ports);
5300 	} else {
5301 		uint16_t  	*up;
5302 		uint32_t	ports;
5303 		uint16_t	ip_hdr_len;
5304 		uint8_t		*nexthdrp;
5305 		ip6_t 		*ip6h;
5306 		tcph_t		*tcph;
5307 
5308 		ip6h = (ip6_t *)mp->b_rptr;
5309 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5310 			ip_hdr_len = IPV6_HDR_LEN;
5311 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5312 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5313 			CONN_DEC_REF(econnp);
5314 			freemsg(first_mp);
5315 			return (NULL);
5316 		}
5317 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5318 		up = (uint16_t *)tcph->th_lport;
5319 		ports = *(uint32_t *)up;
5320 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5321 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5322 	}
5323 
5324 	/*
5325 	 * The caller already ensured that there is a sqp present.
5326 	 */
5327 	econnp->conn_sqp = new_sqp;
5328 
5329 	if (connp->conn_policy != NULL) {
5330 		ipsec_in_t *ii;
5331 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5332 		ASSERT(ii->ipsec_in_policy == NULL);
5333 		IPPH_REFHOLD(connp->conn_policy);
5334 		ii->ipsec_in_policy = connp->conn_policy;
5335 
5336 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5337 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5338 			CONN_DEC_REF(econnp);
5339 			freemsg(first_mp);
5340 			return (NULL);
5341 		}
5342 	}
5343 
5344 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5345 		CONN_DEC_REF(econnp);
5346 		freemsg(first_mp);
5347 		return (NULL);
5348 	}
5349 
5350 	/*
5351 	 * If we know we have some policy, pass the "IPSEC"
5352 	 * options size TCP uses this adjust the MSS.
5353 	 */
5354 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5355 	if (mctl_present) {
5356 		freeb(first_mp);
5357 		*mpp = mp;
5358 	}
5359 
5360 	return (econnp);
5361 }
5362 
5363 /*
5364  * tcp_get_conn/tcp_free_conn
5365  *
5366  * tcp_get_conn is used to get a clean tcp connection structure.
5367  * It tries to reuse the connections put on the freelist by the
5368  * time_wait_collector failing which it goes to kmem_cache. This
5369  * way has two benefits compared to just allocating from and
5370  * freeing to kmem_cache.
5371  * 1) The time_wait_collector can free (which includes the cleanup)
5372  * outside the squeue. So when the interrupt comes, we have a clean
5373  * connection sitting in the freelist. Obviously, this buys us
5374  * performance.
5375  *
5376  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5377  * has multiple disadvantages - tying up the squeue during alloc, and the
5378  * fact that IPSec policy initialization has to happen here which
5379  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5380  * But allocating the conn/tcp in IP land is also not the best since
5381  * we can't check the 'q' and 'q0' which are protected by squeue and
5382  * blindly allocate memory which might have to be freed here if we are
5383  * not allowed to accept the connection. By using the freelist and
5384  * putting the conn/tcp back in freelist, we don't pay a penalty for
5385  * allocating memory without checking 'q/q0' and freeing it if we can't
5386  * accept the connection.
5387  *
5388  * Care should be taken to put the conn back in the same squeue's freelist
5389  * from which it was allocated. Best results are obtained if conn is
5390  * allocated from listener's squeue and freed to the same. Time wait
5391  * collector will free up the freelist is the connection ends up sitting
5392  * there for too long.
5393  */
5394 void *
5395 tcp_get_conn(void *arg)
5396 {
5397 	tcp_t			*tcp = NULL;
5398 	conn_t			*connp = NULL;
5399 	squeue_t		*sqp = (squeue_t *)arg;
5400 	tcp_squeue_priv_t 	*tcp_time_wait;
5401 
5402 	tcp_time_wait =
5403 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5404 
5405 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5406 	tcp = tcp_time_wait->tcp_free_list;
5407 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5408 	if (tcp != NULL) {
5409 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5410 		tcp_time_wait->tcp_free_list_cnt--;
5411 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5412 		tcp->tcp_time_wait_next = NULL;
5413 		connp = tcp->tcp_connp;
5414 		connp->conn_flags |= IPCL_REUSED;
5415 		return ((void *)connp);
5416 	}
5417 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5418 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5419 		return (NULL);
5420 	return ((void *)connp);
5421 }
5422 
5423 /*
5424  * Update the cached label for the given tcp_t.  This should be called once per
5425  * connection, and before any packets are sent or tcp_process_options is
5426  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5427  */
5428 static boolean_t
5429 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5430 {
5431 	conn_t *connp = tcp->tcp_connp;
5432 
5433 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5434 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5435 		int added;
5436 
5437 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5438 		    connp->conn_mac_exempt) != 0)
5439 			return (B_FALSE);
5440 
5441 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5442 		if (added == -1)
5443 			return (B_FALSE);
5444 		tcp->tcp_hdr_len += added;
5445 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5446 		tcp->tcp_ip_hdr_len += added;
5447 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5448 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5449 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5450 			    tcp->tcp_hdr_len);
5451 			if (added == -1)
5452 				return (B_FALSE);
5453 			tcp->tcp_hdr_len += added;
5454 			tcp->tcp_tcph = (tcph_t *)
5455 			    ((uchar_t *)tcp->tcp_tcph + added);
5456 			tcp->tcp_ip_hdr_len += added;
5457 		}
5458 	} else {
5459 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5460 
5461 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5462 		    connp->conn_mac_exempt) != 0)
5463 			return (B_FALSE);
5464 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5465 		    &tcp->tcp_label_len, optbuf) != 0)
5466 			return (B_FALSE);
5467 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5468 			return (B_FALSE);
5469 	}
5470 
5471 	connp->conn_ulp_labeled = 1;
5472 
5473 	return (B_TRUE);
5474 }
5475 
5476 /* BEGIN CSTYLED */
5477 /*
5478  *
5479  * The sockfs ACCEPT path:
5480  * =======================
5481  *
5482  * The eager is now established in its own perimeter as soon as SYN is
5483  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5484  * completes the accept processing on the acceptor STREAM. The sending
5485  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5486  * listener but a TLI/XTI listener completes the accept processing
5487  * on the listener perimeter.
5488  *
5489  * Common control flow for 3 way handshake:
5490  * ----------------------------------------
5491  *
5492  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5493  *					-> tcp_conn_request()
5494  *
5495  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5496  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5497  *
5498  * Sockfs ACCEPT Path:
5499  * -------------------
5500  *
5501  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5502  * as STREAM entry point)
5503  *
5504  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5505  *
5506  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5507  * association (we are not behind eager's squeue but sockfs is protecting us
5508  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5509  * is changed to point at tcp_wput().
5510  *
5511  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5512  * listener (done on listener's perimeter).
5513  *
5514  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5515  * accept.
5516  *
5517  * TLI/XTI client ACCEPT path:
5518  * ---------------------------
5519  *
5520  * soaccept() sends T_CONN_RES on the listener STREAM.
5521  *
5522  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5523  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5524  *
5525  * Locks:
5526  * ======
5527  *
5528  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5529  * and listeners->tcp_eager_next_q.
5530  *
5531  * Referencing:
5532  * ============
5533  *
5534  * 1) We start out in tcp_conn_request by eager placing a ref on
5535  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5536  *
5537  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5538  * doing so we place a ref on the eager. This ref is finally dropped at the
5539  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5540  * reference is dropped by the squeue framework.
5541  *
5542  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5543  *
5544  * The reference must be released by the same entity that added the reference
5545  * In the above scheme, the eager is the entity that adds and releases the
5546  * references. Note that tcp_accept_finish executes in the squeue of the eager
5547  * (albeit after it is attached to the acceptor stream). Though 1. executes
5548  * in the listener's squeue, the eager is nascent at this point and the
5549  * reference can be considered to have been added on behalf of the eager.
5550  *
5551  * Eager getting a Reset or listener closing:
5552  * ==========================================
5553  *
5554  * Once the listener and eager are linked, the listener never does the unlink.
5555  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5556  * a message on all eager perimeter. The eager then does the unlink, clears
5557  * any pointers to the listener's queue and drops the reference to the
5558  * listener. The listener waits in tcp_close outside the squeue until its
5559  * refcount has dropped to 1. This ensures that the listener has waited for
5560  * all eagers to clear their association with the listener.
5561  *
5562  * Similarly, if eager decides to go away, it can unlink itself and close.
5563  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5564  * the reference to eager is still valid because of the extra ref we put
5565  * in tcp_send_conn_ind.
5566  *
5567  * Listener can always locate the eager under the protection
5568  * of the listener->tcp_eager_lock, and then do a refhold
5569  * on the eager during the accept processing.
5570  *
5571  * The acceptor stream accesses the eager in the accept processing
5572  * based on the ref placed on eager before sending T_conn_ind.
5573  * The only entity that can negate this refhold is a listener close
5574  * which is mutually exclusive with an active acceptor stream.
5575  *
5576  * Eager's reference on the listener
5577  * ===================================
5578  *
5579  * If the accept happens (even on a closed eager) the eager drops its
5580  * reference on the listener at the start of tcp_accept_finish. If the
5581  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5582  * the reference is dropped in tcp_closei_local. If the listener closes,
5583  * the reference is dropped in tcp_eager_kill. In all cases the reference
5584  * is dropped while executing in the eager's context (squeue).
5585  */
5586 /* END CSTYLED */
5587 
5588 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5589 
5590 /*
5591  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5592  * tcp_rput_data will not see any SYN packets.
5593  */
5594 /* ARGSUSED */
5595 void
5596 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5597 {
5598 	tcph_t		*tcph;
5599 	uint32_t	seg_seq;
5600 	tcp_t		*eager;
5601 	uint_t		ipvers;
5602 	ipha_t		*ipha;
5603 	ip6_t		*ip6h;
5604 	int		err;
5605 	conn_t		*econnp = NULL;
5606 	squeue_t	*new_sqp;
5607 	mblk_t		*mp1;
5608 	uint_t 		ip_hdr_len;
5609 	conn_t		*connp = (conn_t *)arg;
5610 	tcp_t		*tcp = connp->conn_tcp;
5611 	ire_t		*ire;
5612 	cred_t		*credp;
5613 
5614 	if (tcp->tcp_state != TCPS_LISTEN)
5615 		goto error2;
5616 
5617 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5618 
5619 	mutex_enter(&tcp->tcp_eager_lock);
5620 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5621 		mutex_exit(&tcp->tcp_eager_lock);
5622 		TCP_STAT(tcp_listendrop);
5623 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5624 		if (tcp->tcp_debug) {
5625 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5626 			    "tcp_conn_request: listen backlog (max=%d) "
5627 			    "overflow (%d pending) on %s",
5628 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5629 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5630 		}
5631 		goto error2;
5632 	}
5633 
5634 	if (tcp->tcp_conn_req_cnt_q0 >=
5635 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5636 		/*
5637 		 * Q0 is full. Drop a pending half-open req from the queue
5638 		 * to make room for the new SYN req. Also mark the time we
5639 		 * drop a SYN.
5640 		 *
5641 		 * A more aggressive defense against SYN attack will
5642 		 * be to set the "tcp_syn_defense" flag now.
5643 		 */
5644 		TCP_STAT(tcp_listendropq0);
5645 		tcp->tcp_last_rcv_lbolt = lbolt64;
5646 		if (!tcp_drop_q0(tcp)) {
5647 			mutex_exit(&tcp->tcp_eager_lock);
5648 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5649 			if (tcp->tcp_debug) {
5650 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5651 				    "tcp_conn_request: listen half-open queue "
5652 				    "(max=%d) full (%d pending) on %s",
5653 				    tcp_conn_req_max_q0,
5654 				    tcp->tcp_conn_req_cnt_q0,
5655 				    tcp_display(tcp, NULL,
5656 				    DISP_PORT_ONLY));
5657 			}
5658 			goto error2;
5659 		}
5660 	}
5661 	mutex_exit(&tcp->tcp_eager_lock);
5662 
5663 	/*
5664 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5665 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5666 	 * link local address.  If IPSec is enabled, db_struioflag has
5667 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5668 	 * otherwise an error case if neither of them is set.
5669 	 */
5670 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5671 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5672 		DB_CKSUMSTART(mp) = 0;
5673 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5674 		econnp = (conn_t *)tcp_get_conn(arg2);
5675 		if (econnp == NULL)
5676 			goto error2;
5677 		econnp->conn_sqp = new_sqp;
5678 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5679 		/*
5680 		 * mp is updated in tcp_get_ipsec_conn().
5681 		 */
5682 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5683 		if (econnp == NULL) {
5684 			/*
5685 			 * mp freed by tcp_get_ipsec_conn.
5686 			 */
5687 			return;
5688 		}
5689 	} else {
5690 		goto error2;
5691 	}
5692 
5693 	ASSERT(DB_TYPE(mp) == M_DATA);
5694 
5695 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5696 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5697 	ASSERT(OK_32PTR(mp->b_rptr));
5698 	if (ipvers == IPV4_VERSION) {
5699 		ipha = (ipha_t *)mp->b_rptr;
5700 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5701 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5702 	} else {
5703 		ip6h = (ip6_t *)mp->b_rptr;
5704 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5705 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5706 	}
5707 
5708 	if (tcp->tcp_family == AF_INET) {
5709 		ASSERT(ipvers == IPV4_VERSION);
5710 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5711 	} else {
5712 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5713 	}
5714 
5715 	if (err)
5716 		goto error3;
5717 
5718 	eager = econnp->conn_tcp;
5719 
5720 	/* Inherit various TCP parameters from the listener */
5721 	eager->tcp_naglim = tcp->tcp_naglim;
5722 	eager->tcp_first_timer_threshold =
5723 	    tcp->tcp_first_timer_threshold;
5724 	eager->tcp_second_timer_threshold =
5725 	    tcp->tcp_second_timer_threshold;
5726 
5727 	eager->tcp_first_ctimer_threshold =
5728 	    tcp->tcp_first_ctimer_threshold;
5729 	eager->tcp_second_ctimer_threshold =
5730 	    tcp->tcp_second_ctimer_threshold;
5731 
5732 	/*
5733 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5734 	 * If it does not, the eager's receive window will be set to the
5735 	 * listener's receive window later in this function.
5736 	 */
5737 	eager->tcp_rwnd = 0;
5738 
5739 	/*
5740 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5741 	 * calling tcp_process_options() where tcp_mss_set() is called
5742 	 * to set the initial cwnd.
5743 	 */
5744 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5745 
5746 	/*
5747 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5748 	 * zone id before the accept is completed in tcp_wput_accept().
5749 	 */
5750 	econnp->conn_zoneid = connp->conn_zoneid;
5751 	econnp->conn_allzones = connp->conn_allzones;
5752 
5753 	/* Copy nexthop information from listener to eager */
5754 	if (connp->conn_nexthop_set) {
5755 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5756 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5757 	}
5758 
5759 	/*
5760 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5761 	 * eager is accepted
5762 	 */
5763 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5764 	crhold(credp);
5765 
5766 	/*
5767 	 * If the caller has the process-wide flag set, then default to MAC
5768 	 * exempt mode.  This allows read-down to unlabeled hosts.
5769 	 */
5770 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5771 		econnp->conn_mac_exempt = B_TRUE;
5772 
5773 	if (is_system_labeled()) {
5774 		cred_t *cr;
5775 
5776 		if (connp->conn_mlp_type != mlptSingle) {
5777 			cr = econnp->conn_peercred = DB_CRED(mp);
5778 			if (cr != NULL)
5779 				crhold(cr);
5780 			else
5781 				cr = econnp->conn_cred;
5782 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5783 			    econnp, cred_t *, cr)
5784 		} else {
5785 			cr = econnp->conn_cred;
5786 			DTRACE_PROBE2(syn_accept, conn_t *,
5787 			    econnp, cred_t *, cr)
5788 		}
5789 
5790 		if (!tcp_update_label(eager, cr)) {
5791 			DTRACE_PROBE3(
5792 			    tx__ip__log__error__connrequest__tcp,
5793 			    char *, "eager connp(1) label on SYN mp(2) failed",
5794 			    conn_t *, econnp, mblk_t *, mp);
5795 			goto error3;
5796 		}
5797 	}
5798 
5799 	eager->tcp_hard_binding = B_TRUE;
5800 
5801 	tcp_bind_hash_insert(&tcp_bind_fanout[
5802 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5803 
5804 	CL_INET_CONNECT(eager);
5805 
5806 	/*
5807 	 * No need to check for multicast destination since ip will only pass
5808 	 * up multicasts to those that have expressed interest
5809 	 * TODO: what about rejecting broadcasts?
5810 	 * Also check that source is not a multicast or broadcast address.
5811 	 */
5812 	eager->tcp_state = TCPS_SYN_RCVD;
5813 
5814 
5815 	/*
5816 	 * There should be no ire in the mp as we are being called after
5817 	 * receiving the SYN.
5818 	 */
5819 	ASSERT(tcp_ire_mp(mp) == NULL);
5820 
5821 	/*
5822 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5823 	 */
5824 
5825 	if (tcp_adapt_ire(eager, NULL) == 0) {
5826 		/* Undo the bind_hash_insert */
5827 		tcp_bind_hash_remove(eager);
5828 		goto error3;
5829 	}
5830 
5831 	/* Process all TCP options. */
5832 	tcp_process_options(eager, tcph);
5833 
5834 	/* Is the other end ECN capable? */
5835 	if (tcp_ecn_permitted >= 1 &&
5836 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5837 		eager->tcp_ecn_ok = B_TRUE;
5838 	}
5839 
5840 	/*
5841 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5842 	 * window size changed via SO_RCVBUF option.  First round up the
5843 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5844 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5845 	 * setting.
5846 	 *
5847 	 * Note if there is a rpipe metric associated with the remote host,
5848 	 * we should not inherit receive window size from listener.
5849 	 */
5850 	eager->tcp_rwnd = MSS_ROUNDUP(
5851 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5852 	    eager->tcp_rwnd), eager->tcp_mss);
5853 	if (eager->tcp_snd_ws_ok)
5854 		tcp_set_ws_value(eager);
5855 	/*
5856 	 * Note that this is the only place tcp_rwnd_set() is called for
5857 	 * accepting a connection.  We need to call it here instead of
5858 	 * after the 3-way handshake because we need to tell the other
5859 	 * side our rwnd in the SYN-ACK segment.
5860 	 */
5861 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5862 
5863 	/*
5864 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5865 	 * via soaccept()->soinheritoptions() which essentially applies
5866 	 * all the listener options to the new STREAM. The options that we
5867 	 * need to take care of are:
5868 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5869 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5870 	 * SO_SNDBUF, SO_RCVBUF.
5871 	 *
5872 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5873 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5874 	 *		tcp_maxpsz_set() gets called later from
5875 	 *		tcp_accept_finish(), the option takes effect.
5876 	 *
5877 	 */
5878 	/* Set the TCP options */
5879 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5880 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5881 	eager->tcp_oobinline = tcp->tcp_oobinline;
5882 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5883 	eager->tcp_broadcast = tcp->tcp_broadcast;
5884 	eager->tcp_useloopback = tcp->tcp_useloopback;
5885 	eager->tcp_dontroute = tcp->tcp_dontroute;
5886 	eager->tcp_linger = tcp->tcp_linger;
5887 	eager->tcp_lingertime = tcp->tcp_lingertime;
5888 	if (tcp->tcp_ka_enabled)
5889 		eager->tcp_ka_enabled = 1;
5890 
5891 	/* Set the IP options */
5892 	econnp->conn_broadcast = connp->conn_broadcast;
5893 	econnp->conn_loopback = connp->conn_loopback;
5894 	econnp->conn_dontroute = connp->conn_dontroute;
5895 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5896 
5897 	/* Put a ref on the listener for the eager. */
5898 	CONN_INC_REF(connp);
5899 	mutex_enter(&tcp->tcp_eager_lock);
5900 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5901 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5902 	tcp->tcp_eager_next_q0 = eager;
5903 	eager->tcp_eager_prev_q0 = tcp;
5904 
5905 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5906 	eager->tcp_listener = tcp;
5907 	eager->tcp_saved_listener = tcp;
5908 
5909 	/*
5910 	 * Tag this detached tcp vector for later retrieval
5911 	 * by our listener client in tcp_accept().
5912 	 */
5913 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5914 	tcp->tcp_conn_req_cnt_q0++;
5915 	if (++tcp->tcp_conn_req_seqnum == -1) {
5916 		/*
5917 		 * -1 is "special" and defined in TPI as something
5918 		 * that should never be used in T_CONN_IND
5919 		 */
5920 		++tcp->tcp_conn_req_seqnum;
5921 	}
5922 	mutex_exit(&tcp->tcp_eager_lock);
5923 
5924 	if (tcp->tcp_syn_defense) {
5925 		/* Don't drop the SYN that comes from a good IP source */
5926 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5927 		if (addr_cache != NULL && eager->tcp_remote ==
5928 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5929 			eager->tcp_dontdrop = B_TRUE;
5930 		}
5931 	}
5932 
5933 	/*
5934 	 * We need to insert the eager in its own perimeter but as soon
5935 	 * as we do that, we expose the eager to the classifier and
5936 	 * should not touch any field outside the eager's perimeter.
5937 	 * So do all the work necessary before inserting the eager
5938 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5939 	 * will succeed but undo everything if it fails.
5940 	 */
5941 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5942 	eager->tcp_irs = seg_seq;
5943 	eager->tcp_rack = seg_seq;
5944 	eager->tcp_rnxt = seg_seq + 1;
5945 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5946 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5947 	eager->tcp_state = TCPS_SYN_RCVD;
5948 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5949 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5950 	if (mp1 == NULL)
5951 		goto error1;
5952 	DB_CPID(mp1) = tcp->tcp_cpid;
5953 
5954 	/*
5955 	 * We need to start the rto timer. In normal case, we start
5956 	 * the timer after sending the packet on the wire (or at
5957 	 * least believing that packet was sent by waiting for
5958 	 * CALL_IP_WPUT() to return). Since this is the first packet
5959 	 * being sent on the wire for the eager, our initial tcp_rto
5960 	 * is at least tcp_rexmit_interval_min which is a fairly
5961 	 * large value to allow the algorithm to adjust slowly to large
5962 	 * fluctuations of RTT during first few transmissions.
5963 	 *
5964 	 * Starting the timer first and then sending the packet in this
5965 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5966 	 * is of the order of several 100ms and starting the timer
5967 	 * first and then sending the packet will result in difference
5968 	 * of few micro seconds.
5969 	 *
5970 	 * Without this optimization, we are forced to hold the fanout
5971 	 * lock across the ipcl_bind_insert() and sending the packet
5972 	 * so that we don't race against an incoming packet (maybe RST)
5973 	 * for this eager.
5974 	 */
5975 
5976 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5977 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5978 
5979 
5980 	/*
5981 	 * Insert the eager in its own perimeter now. We are ready to deal
5982 	 * with any packets on eager.
5983 	 */
5984 	if (eager->tcp_ipversion == IPV4_VERSION) {
5985 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5986 			goto error;
5987 		}
5988 	} else {
5989 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5990 			goto error;
5991 		}
5992 	}
5993 
5994 	/* mark conn as fully-bound */
5995 	econnp->conn_fully_bound = B_TRUE;
5996 
5997 	/* Send the SYN-ACK */
5998 	tcp_send_data(eager, eager->tcp_wq, mp1);
5999 	freemsg(mp);
6000 
6001 	return;
6002 error:
6003 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
6004 	freemsg(mp1);
6005 error1:
6006 	/* Undo what we did above */
6007 	mutex_enter(&tcp->tcp_eager_lock);
6008 	tcp_eager_unlink(eager);
6009 	mutex_exit(&tcp->tcp_eager_lock);
6010 	/* Drop eager's reference on the listener */
6011 	CONN_DEC_REF(connp);
6012 
6013 	/*
6014 	 * Delete the cached ire in conn_ire_cache and also mark
6015 	 * the conn as CONDEMNED
6016 	 */
6017 	mutex_enter(&econnp->conn_lock);
6018 	econnp->conn_state_flags |= CONN_CONDEMNED;
6019 	ire = econnp->conn_ire_cache;
6020 	econnp->conn_ire_cache = NULL;
6021 	mutex_exit(&econnp->conn_lock);
6022 	if (ire != NULL)
6023 		IRE_REFRELE_NOTR(ire);
6024 
6025 	/*
6026 	 * tcp_accept_comm inserts the eager to the bind_hash
6027 	 * we need to remove it from the hash if ipcl_conn_insert
6028 	 * fails.
6029 	 */
6030 	tcp_bind_hash_remove(eager);
6031 	/* Drop the eager ref placed in tcp_open_detached */
6032 	CONN_DEC_REF(econnp);
6033 
6034 	/*
6035 	 * If a connection already exists, send the mp to that connections so
6036 	 * that it can be appropriately dealt with.
6037 	 */
6038 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
6039 		if (!IPCL_IS_CONNECTED(econnp)) {
6040 			/*
6041 			 * Something bad happened. ipcl_conn_insert()
6042 			 * failed because a connection already existed
6043 			 * in connected hash but we can't find it
6044 			 * anymore (someone blew it away). Just
6045 			 * free this message and hopefully remote
6046 			 * will retransmit at which time the SYN can be
6047 			 * treated as a new connection or dealth with
6048 			 * a TH_RST if a connection already exists.
6049 			 */
6050 			CONN_DEC_REF(econnp);
6051 			freemsg(mp);
6052 		} else {
6053 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6054 			    econnp, SQTAG_TCP_CONN_REQ);
6055 		}
6056 	} else {
6057 		/* Nobody wants this packet */
6058 		freemsg(mp);
6059 	}
6060 	return;
6061 error2:
6062 	freemsg(mp);
6063 	return;
6064 error3:
6065 	CONN_DEC_REF(econnp);
6066 	freemsg(mp);
6067 }
6068 
6069 /*
6070  * In an ideal case of vertical partition in NUMA architecture, its
6071  * beneficial to have the listener and all the incoming connections
6072  * tied to the same squeue. The other constraint is that incoming
6073  * connections should be tied to the squeue attached to interrupted
6074  * CPU for obvious locality reason so this leaves the listener to
6075  * be tied to the same squeue. Our only problem is that when listener
6076  * is binding, the CPU that will get interrupted by the NIC whose
6077  * IP address the listener is binding to is not even known. So
6078  * the code below allows us to change that binding at the time the
6079  * CPU is interrupted by virtue of incoming connection's squeue.
6080  *
6081  * This is usefull only in case of a listener bound to a specific IP
6082  * address. For other kind of listeners, they get bound the
6083  * very first time and there is no attempt to rebind them.
6084  */
6085 void
6086 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6087 {
6088 	conn_t		*connp = (conn_t *)arg;
6089 	squeue_t	*sqp = (squeue_t *)arg2;
6090 	squeue_t	*new_sqp;
6091 	uint32_t	conn_flags;
6092 
6093 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6094 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6095 	} else {
6096 		goto done;
6097 	}
6098 
6099 	if (connp->conn_fanout == NULL)
6100 		goto done;
6101 
6102 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6103 		mutex_enter(&connp->conn_fanout->connf_lock);
6104 		mutex_enter(&connp->conn_lock);
6105 		/*
6106 		 * No one from read or write side can access us now
6107 		 * except for already queued packets on this squeue.
6108 		 * But since we haven't changed the squeue yet, they
6109 		 * can't execute. If they are processed after we have
6110 		 * changed the squeue, they are sent back to the
6111 		 * correct squeue down below.
6112 		 * But a listner close can race with processing of
6113 		 * incoming SYN. If incoming SYN processing changes
6114 		 * the squeue then the listener close which is waiting
6115 		 * to enter the squeue would operate on the wrong
6116 		 * squeue. Hence we don't change the squeue here unless
6117 		 * the refcount is exactly the minimum refcount. The
6118 		 * minimum refcount of 4 is counted as - 1 each for
6119 		 * TCP and IP, 1 for being in the classifier hash, and
6120 		 * 1 for the mblk being processed.
6121 		 */
6122 
6123 		if (connp->conn_ref != 4 ||
6124 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6125 			mutex_exit(&connp->conn_lock);
6126 			mutex_exit(&connp->conn_fanout->connf_lock);
6127 			goto done;
6128 		}
6129 		if (connp->conn_sqp != new_sqp) {
6130 			while (connp->conn_sqp != new_sqp)
6131 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6132 		}
6133 
6134 		do {
6135 			conn_flags = connp->conn_flags;
6136 			conn_flags |= IPCL_FULLY_BOUND;
6137 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6138 			    conn_flags);
6139 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6140 
6141 		mutex_exit(&connp->conn_fanout->connf_lock);
6142 		mutex_exit(&connp->conn_lock);
6143 	}
6144 
6145 done:
6146 	if (connp->conn_sqp != sqp) {
6147 		CONN_INC_REF(connp);
6148 		squeue_fill(connp->conn_sqp, mp,
6149 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6150 	} else {
6151 		tcp_conn_request(connp, mp, sqp);
6152 	}
6153 }
6154 
6155 /*
6156  * Successful connect request processing begins when our client passes
6157  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6158  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6159  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6160  *   upstream <- tcp_rput()                <- IP
6161  * After various error checks are completed, tcp_connect() lays
6162  * the target address and port into the composite header template,
6163  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6164  * request followed by an IRE request, and passes the three mblk message
6165  * down to IP looking like this:
6166  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6167  * Processing continues in tcp_rput() when we receive the following message:
6168  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6169  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6170  * to fire off the connection request, and then passes the T_OK_ACK mblk
6171  * upstream that we filled in below.  There are, of course, numerous
6172  * error conditions along the way which truncate the processing described
6173  * above.
6174  */
6175 static void
6176 tcp_connect(tcp_t *tcp, mblk_t *mp)
6177 {
6178 	sin_t		*sin;
6179 	sin6_t		*sin6;
6180 	queue_t		*q = tcp->tcp_wq;
6181 	struct T_conn_req	*tcr;
6182 	ipaddr_t	*dstaddrp;
6183 	in_port_t	dstport;
6184 	uint_t		srcid;
6185 
6186 	tcr = (struct T_conn_req *)mp->b_rptr;
6187 
6188 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6189 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6190 		tcp_err_ack(tcp, mp, TPROTO, 0);
6191 		return;
6192 	}
6193 
6194 	/*
6195 	 * Determine packet type based on type of address passed in
6196 	 * the request should contain an IPv4 or IPv6 address.
6197 	 * Make sure that address family matches the type of
6198 	 * family of the the address passed down
6199 	 */
6200 	switch (tcr->DEST_length) {
6201 	default:
6202 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6203 		return;
6204 
6205 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6206 		/*
6207 		 * XXX: The check for valid DEST_length was not there
6208 		 * in earlier releases and some buggy
6209 		 * TLI apps (e.g Sybase) got away with not feeding
6210 		 * in sin_zero part of address.
6211 		 * We allow that bug to keep those buggy apps humming.
6212 		 * Test suites require the check on DEST_length.
6213 		 * We construct a new mblk with valid DEST_length
6214 		 * free the original so the rest of the code does
6215 		 * not have to keep track of this special shorter
6216 		 * length address case.
6217 		 */
6218 		mblk_t *nmp;
6219 		struct T_conn_req *ntcr;
6220 		sin_t *nsin;
6221 
6222 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6223 		    tcr->OPT_length, BPRI_HI);
6224 		if (nmp == NULL) {
6225 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6226 			return;
6227 		}
6228 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6229 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6230 		ntcr->PRIM_type = T_CONN_REQ;
6231 		ntcr->DEST_length = sizeof (sin_t);
6232 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6233 
6234 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6235 		*nsin = sin_null;
6236 		/* Get pointer to shorter address to copy from original mp */
6237 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6238 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6239 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6240 			freemsg(nmp);
6241 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6242 			return;
6243 		}
6244 		nsin->sin_family = sin->sin_family;
6245 		nsin->sin_port = sin->sin_port;
6246 		nsin->sin_addr = sin->sin_addr;
6247 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6248 		nmp->b_wptr = (uchar_t *)&nsin[1];
6249 		if (tcr->OPT_length != 0) {
6250 			ntcr->OPT_length = tcr->OPT_length;
6251 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6252 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6253 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6254 			    tcr->OPT_length);
6255 			nmp->b_wptr += tcr->OPT_length;
6256 		}
6257 		freemsg(mp);	/* original mp freed */
6258 		mp = nmp;	/* re-initialize original variables */
6259 		tcr = ntcr;
6260 	}
6261 	/* FALLTHRU */
6262 
6263 	case sizeof (sin_t):
6264 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6265 		    sizeof (sin_t));
6266 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6267 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6268 			return;
6269 		}
6270 		if (tcp->tcp_family != AF_INET ||
6271 		    sin->sin_family != AF_INET) {
6272 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6273 			return;
6274 		}
6275 		if (sin->sin_port == 0) {
6276 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6277 			return;
6278 		}
6279 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6280 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6281 			return;
6282 		}
6283 
6284 		break;
6285 
6286 	case sizeof (sin6_t):
6287 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6288 		    sizeof (sin6_t));
6289 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6290 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6291 			return;
6292 		}
6293 		if (tcp->tcp_family != AF_INET6 ||
6294 		    sin6->sin6_family != AF_INET6) {
6295 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6296 			return;
6297 		}
6298 		if (sin6->sin6_port == 0) {
6299 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6300 			return;
6301 		}
6302 		break;
6303 	}
6304 	/*
6305 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6306 	 * should key on their sequence number and cut them loose.
6307 	 */
6308 
6309 	/*
6310 	 * If options passed in, feed it for verification and handling
6311 	 */
6312 	if (tcr->OPT_length != 0) {
6313 		mblk_t	*ok_mp;
6314 		mblk_t	*discon_mp;
6315 		mblk_t  *conn_opts_mp;
6316 		int t_error, sys_error, do_disconnect;
6317 
6318 		conn_opts_mp = NULL;
6319 
6320 		if (tcp_conprim_opt_process(tcp, mp,
6321 			&do_disconnect, &t_error, &sys_error) < 0) {
6322 			if (do_disconnect) {
6323 				ASSERT(t_error == 0 && sys_error == 0);
6324 				discon_mp = mi_tpi_discon_ind(NULL,
6325 				    ECONNREFUSED, 0);
6326 				if (!discon_mp) {
6327 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6328 					    TSYSERR, ENOMEM);
6329 					return;
6330 				}
6331 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6332 				if (!ok_mp) {
6333 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6334 					    TSYSERR, ENOMEM);
6335 					return;
6336 				}
6337 				qreply(q, ok_mp);
6338 				qreply(q, discon_mp); /* no flush! */
6339 			} else {
6340 				ASSERT(t_error != 0);
6341 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6342 				    sys_error);
6343 			}
6344 			return;
6345 		}
6346 		/*
6347 		 * Success in setting options, the mp option buffer represented
6348 		 * by OPT_length/offset has been potentially modified and
6349 		 * contains results of option processing. We copy it in
6350 		 * another mp to save it for potentially influencing returning
6351 		 * it in T_CONN_CONN.
6352 		 */
6353 		if (tcr->OPT_length != 0) { /* there are resulting options */
6354 			conn_opts_mp = copyb(mp);
6355 			if (!conn_opts_mp) {
6356 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6357 				    TSYSERR, ENOMEM);
6358 				return;
6359 			}
6360 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6361 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6362 			/*
6363 			 * Note:
6364 			 * These resulting option negotiation can include any
6365 			 * end-to-end negotiation options but there no such
6366 			 * thing (yet?) in our TCP/IP.
6367 			 */
6368 		}
6369 	}
6370 
6371 	/*
6372 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6373 	 * make sure that the template IP header in the tcp structure is an
6374 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6375 	 * need to this before we call tcp_bindi() so that the port lookup
6376 	 * code will look for ports in the correct port space (IPv4 and
6377 	 * IPv6 have separate port spaces).
6378 	 */
6379 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6380 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6381 		int err = 0;
6382 
6383 		err = tcp_header_init_ipv4(tcp);
6384 		if (err != 0) {
6385 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6386 			goto connect_failed;
6387 		}
6388 		if (tcp->tcp_lport != 0)
6389 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6390 	}
6391 
6392 	switch (tcp->tcp_state) {
6393 	case TCPS_IDLE:
6394 		/*
6395 		 * We support quick connect, refer to comments in
6396 		 * tcp_connect_*()
6397 		 */
6398 		/* FALLTHRU */
6399 	case TCPS_BOUND:
6400 	case TCPS_LISTEN:
6401 		if (tcp->tcp_family == AF_INET6) {
6402 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6403 				tcp_connect_ipv6(tcp, mp,
6404 				    &sin6->sin6_addr,
6405 				    sin6->sin6_port, sin6->sin6_flowinfo,
6406 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6407 				return;
6408 			}
6409 			/*
6410 			 * Destination adress is mapped IPv6 address.
6411 			 * Source bound address should be unspecified or
6412 			 * IPv6 mapped address as well.
6413 			 */
6414 			if (!IN6_IS_ADDR_UNSPECIFIED(
6415 			    &tcp->tcp_bound_source_v6) &&
6416 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6417 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6418 				    EADDRNOTAVAIL);
6419 				break;
6420 			}
6421 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6422 			dstport = sin6->sin6_port;
6423 			srcid = sin6->__sin6_src_id;
6424 		} else {
6425 			dstaddrp = &sin->sin_addr.s_addr;
6426 			dstport = sin->sin_port;
6427 			srcid = 0;
6428 		}
6429 
6430 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6431 		return;
6432 	default:
6433 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6434 		break;
6435 	}
6436 	/*
6437 	 * Note: Code below is the "failure" case
6438 	 */
6439 	/* return error ack and blow away saved option results if any */
6440 connect_failed:
6441 	if (mp != NULL)
6442 		putnext(tcp->tcp_rq, mp);
6443 	else {
6444 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6445 		    TSYSERR, ENOMEM);
6446 	}
6447 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6448 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6449 }
6450 
6451 /*
6452  * Handle connect to IPv4 destinations, including connections for AF_INET6
6453  * sockets connecting to IPv4 mapped IPv6 destinations.
6454  */
6455 static void
6456 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6457     uint_t srcid)
6458 {
6459 	tcph_t	*tcph;
6460 	mblk_t	*mp1;
6461 	ipaddr_t dstaddr = *dstaddrp;
6462 	int32_t	oldstate;
6463 	uint16_t lport;
6464 
6465 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6466 
6467 	/* Check for attempt to connect to INADDR_ANY */
6468 	if (dstaddr == INADDR_ANY)  {
6469 		/*
6470 		 * SunOS 4.x and 4.3 BSD allow an application
6471 		 * to connect a TCP socket to INADDR_ANY.
6472 		 * When they do this, the kernel picks the
6473 		 * address of one interface and uses it
6474 		 * instead.  The kernel usually ends up
6475 		 * picking the address of the loopback
6476 		 * interface.  This is an undocumented feature.
6477 		 * However, we provide the same thing here
6478 		 * in order to have source and binary
6479 		 * compatibility with SunOS 4.x.
6480 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6481 		 * generate the T_CONN_CON.
6482 		 */
6483 		dstaddr = htonl(INADDR_LOOPBACK);
6484 		*dstaddrp = dstaddr;
6485 	}
6486 
6487 	/* Handle __sin6_src_id if socket not bound to an IP address */
6488 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6489 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6490 		    tcp->tcp_connp->conn_zoneid);
6491 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6492 		    tcp->tcp_ipha->ipha_src);
6493 	}
6494 
6495 	/*
6496 	 * Don't let an endpoint connect to itself.  Note that
6497 	 * the test here does not catch the case where the
6498 	 * source IP addr was left unspecified by the user. In
6499 	 * this case, the source addr is set in tcp_adapt_ire()
6500 	 * using the reply to the T_BIND message that we send
6501 	 * down to IP here and the check is repeated in tcp_rput_other.
6502 	 */
6503 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6504 	    dstport == tcp->tcp_lport) {
6505 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6506 		goto failed;
6507 	}
6508 
6509 	tcp->tcp_ipha->ipha_dst = dstaddr;
6510 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6511 
6512 	/*
6513 	 * Massage a source route if any putting the first hop
6514 	 * in iph_dst. Compute a starting value for the checksum which
6515 	 * takes into account that the original iph_dst should be
6516 	 * included in the checksum but that ip will include the
6517 	 * first hop in the source route in the tcp checksum.
6518 	 */
6519 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6520 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6521 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6522 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6523 	if ((int)tcp->tcp_sum < 0)
6524 		tcp->tcp_sum--;
6525 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6526 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6527 	    (tcp->tcp_sum >> 16));
6528 	tcph = tcp->tcp_tcph;
6529 	*(uint16_t *)tcph->th_fport = dstport;
6530 	tcp->tcp_fport = dstport;
6531 
6532 	oldstate = tcp->tcp_state;
6533 	/*
6534 	 * At this point the remote destination address and remote port fields
6535 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6536 	 * have to see which state tcp was in so we can take apropriate action.
6537 	 */
6538 	if (oldstate == TCPS_IDLE) {
6539 		/*
6540 		 * We support a quick connect capability here, allowing
6541 		 * clients to transition directly from IDLE to SYN_SENT
6542 		 * tcp_bindi will pick an unused port, insert the connection
6543 		 * in the bind hash and transition to BOUND state.
6544 		 */
6545 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6546 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6547 		    B_FALSE, B_FALSE);
6548 		if (lport == 0) {
6549 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6550 			goto failed;
6551 		}
6552 	}
6553 	tcp->tcp_state = TCPS_SYN_SENT;
6554 
6555 	/*
6556 	 * TODO: allow data with connect requests
6557 	 * by unlinking M_DATA trailers here and
6558 	 * linking them in behind the T_OK_ACK mblk.
6559 	 * The tcp_rput() bind ack handler would then
6560 	 * feed them to tcp_wput_data() rather than call
6561 	 * tcp_timer().
6562 	 */
6563 	mp = mi_tpi_ok_ack_alloc(mp);
6564 	if (!mp) {
6565 		tcp->tcp_state = oldstate;
6566 		goto failed;
6567 	}
6568 	if (tcp->tcp_family == AF_INET) {
6569 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6570 		    sizeof (ipa_conn_t));
6571 	} else {
6572 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6573 		    sizeof (ipa6_conn_t));
6574 	}
6575 	if (mp1) {
6576 		/* Hang onto the T_OK_ACK for later. */
6577 		linkb(mp1, mp);
6578 		mblk_setcred(mp1, tcp->tcp_cred);
6579 		if (tcp->tcp_family == AF_INET)
6580 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6581 		else {
6582 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6583 			    &tcp->tcp_sticky_ipp);
6584 		}
6585 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6586 		tcp->tcp_active_open = 1;
6587 		/*
6588 		 * If the bind cannot complete immediately
6589 		 * IP will arrange to call tcp_rput_other
6590 		 * when the bind completes.
6591 		 */
6592 		if (mp1 != NULL)
6593 			tcp_rput_other(tcp, mp1);
6594 		return;
6595 	}
6596 	/* Error case */
6597 	tcp->tcp_state = oldstate;
6598 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6599 
6600 failed:
6601 	/* return error ack and blow away saved option results if any */
6602 	if (mp != NULL)
6603 		putnext(tcp->tcp_rq, mp);
6604 	else {
6605 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6606 		    TSYSERR, ENOMEM);
6607 	}
6608 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6609 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6610 
6611 }
6612 
6613 /*
6614  * Handle connect to IPv6 destinations.
6615  */
6616 static void
6617 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6618     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6619 {
6620 	tcph_t	*tcph;
6621 	mblk_t	*mp1;
6622 	ip6_rthdr_t *rth;
6623 	int32_t  oldstate;
6624 	uint16_t lport;
6625 
6626 	ASSERT(tcp->tcp_family == AF_INET6);
6627 
6628 	/*
6629 	 * If we're here, it means that the destination address is a native
6630 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6631 	 * reason why it might not be IPv6 is if the socket was bound to an
6632 	 * IPv4-mapped IPv6 address.
6633 	 */
6634 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6635 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6636 		goto failed;
6637 	}
6638 
6639 	/*
6640 	 * Interpret a zero destination to mean loopback.
6641 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6642 	 * generate the T_CONN_CON.
6643 	 */
6644 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6645 		*dstaddrp = ipv6_loopback;
6646 	}
6647 
6648 	/* Handle __sin6_src_id if socket not bound to an IP address */
6649 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6650 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6651 		    tcp->tcp_connp->conn_zoneid);
6652 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6653 	}
6654 
6655 	/*
6656 	 * Take care of the scope_id now and add ip6i_t
6657 	 * if ip6i_t is not already allocated through TCP
6658 	 * sticky options. At this point tcp_ip6h does not
6659 	 * have dst info, thus use dstaddrp.
6660 	 */
6661 	if (scope_id != 0 &&
6662 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6663 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6664 		ip6i_t  *ip6i;
6665 
6666 		ipp->ipp_ifindex = scope_id;
6667 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6668 
6669 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6670 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6671 			/* Already allocated */
6672 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6673 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6674 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6675 		} else {
6676 			int reterr;
6677 
6678 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6679 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6680 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6681 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6682 			if (reterr != 0)
6683 				goto failed;
6684 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6685 		}
6686 	}
6687 
6688 	/*
6689 	 * Don't let an endpoint connect to itself.  Note that
6690 	 * the test here does not catch the case where the
6691 	 * source IP addr was left unspecified by the user. In
6692 	 * this case, the source addr is set in tcp_adapt_ire()
6693 	 * using the reply to the T_BIND message that we send
6694 	 * down to IP here and the check is repeated in tcp_rput_other.
6695 	 */
6696 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6697 	    (dstport == tcp->tcp_lport)) {
6698 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6699 		goto failed;
6700 	}
6701 
6702 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6703 	tcp->tcp_remote_v6 = *dstaddrp;
6704 	tcp->tcp_ip6h->ip6_vcf =
6705 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6706 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6707 
6708 
6709 	/*
6710 	 * Massage a routing header (if present) putting the first hop
6711 	 * in ip6_dst. Compute a starting value for the checksum which
6712 	 * takes into account that the original ip6_dst should be
6713 	 * included in the checksum but that ip will include the
6714 	 * first hop in the source route in the tcp checksum.
6715 	 */
6716 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6717 	if (rth != NULL) {
6718 
6719 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6720 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6721 		    (tcp->tcp_sum >> 16));
6722 	} else {
6723 		tcp->tcp_sum = 0;
6724 	}
6725 
6726 	tcph = tcp->tcp_tcph;
6727 	*(uint16_t *)tcph->th_fport = dstport;
6728 	tcp->tcp_fport = dstport;
6729 
6730 	oldstate = tcp->tcp_state;
6731 	/*
6732 	 * At this point the remote destination address and remote port fields
6733 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6734 	 * have to see which state tcp was in so we can take apropriate action.
6735 	 */
6736 	if (oldstate == TCPS_IDLE) {
6737 		/*
6738 		 * We support a quick connect capability here, allowing
6739 		 * clients to transition directly from IDLE to SYN_SENT
6740 		 * tcp_bindi will pick an unused port, insert the connection
6741 		 * in the bind hash and transition to BOUND state.
6742 		 */
6743 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6744 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6745 		    B_FALSE, B_FALSE);
6746 		if (lport == 0) {
6747 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6748 			goto failed;
6749 		}
6750 	}
6751 	tcp->tcp_state = TCPS_SYN_SENT;
6752 	/*
6753 	 * TODO: allow data with connect requests
6754 	 * by unlinking M_DATA trailers here and
6755 	 * linking them in behind the T_OK_ACK mblk.
6756 	 * The tcp_rput() bind ack handler would then
6757 	 * feed them to tcp_wput_data() rather than call
6758 	 * tcp_timer().
6759 	 */
6760 	mp = mi_tpi_ok_ack_alloc(mp);
6761 	if (!mp) {
6762 		tcp->tcp_state = oldstate;
6763 		goto failed;
6764 	}
6765 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6766 	if (mp1) {
6767 		/* Hang onto the T_OK_ACK for later. */
6768 		linkb(mp1, mp);
6769 		mblk_setcred(mp1, tcp->tcp_cred);
6770 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6771 		    &tcp->tcp_sticky_ipp);
6772 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6773 		tcp->tcp_active_open = 1;
6774 		/* ip_bind_v6() may return ACK or ERROR */
6775 		if (mp1 != NULL)
6776 			tcp_rput_other(tcp, mp1);
6777 		return;
6778 	}
6779 	/* Error case */
6780 	tcp->tcp_state = oldstate;
6781 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6782 
6783 failed:
6784 	/* return error ack and blow away saved option results if any */
6785 	if (mp != NULL)
6786 		putnext(tcp->tcp_rq, mp);
6787 	else {
6788 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6789 		    TSYSERR, ENOMEM);
6790 	}
6791 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6792 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6793 }
6794 
6795 /*
6796  * We need a stream q for detached closing tcp connections
6797  * to use.  Our client hereby indicates that this q is the
6798  * one to use.
6799  */
6800 static void
6801 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6802 {
6803 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6804 	queue_t	*q = tcp->tcp_wq;
6805 
6806 	mp->b_datap->db_type = M_IOCACK;
6807 	iocp->ioc_count = 0;
6808 	mutex_enter(&tcp_g_q_lock);
6809 	if (tcp_g_q != NULL) {
6810 		mutex_exit(&tcp_g_q_lock);
6811 		iocp->ioc_error = EALREADY;
6812 	} else {
6813 		mblk_t *mp1;
6814 
6815 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6816 		if (mp1 == NULL) {
6817 			mutex_exit(&tcp_g_q_lock);
6818 			iocp->ioc_error = ENOMEM;
6819 		} else {
6820 			tcp_g_q = tcp->tcp_rq;
6821 			mutex_exit(&tcp_g_q_lock);
6822 			iocp->ioc_error = 0;
6823 			iocp->ioc_rval = 0;
6824 			/*
6825 			 * We are passing tcp_sticky_ipp as NULL
6826 			 * as it is not useful for tcp_default queue
6827 			 */
6828 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6829 			if (mp1 != NULL)
6830 				tcp_rput_other(tcp, mp1);
6831 		}
6832 	}
6833 	qreply(q, mp);
6834 }
6835 
6836 /*
6837  * Our client hereby directs us to reject the connection request
6838  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6839  * of sending the appropriate RST, not an ICMP error.
6840  */
6841 static void
6842 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6843 {
6844 	tcp_t	*ltcp = NULL;
6845 	t_scalar_t seqnum;
6846 	conn_t	*connp;
6847 
6848 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6849 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6850 		tcp_err_ack(tcp, mp, TPROTO, 0);
6851 		return;
6852 	}
6853 
6854 	/*
6855 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6856 	 * when the stream is in BOUND state. Do not send a reset,
6857 	 * since the destination IP address is not valid, and it can
6858 	 * be the initialized value of all zeros (broadcast address).
6859 	 *
6860 	 * If TCP has sent down a bind request to IP and has not
6861 	 * received the reply, reject the request.  Otherwise, TCP
6862 	 * will be confused.
6863 	 */
6864 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6865 		if (tcp->tcp_debug) {
6866 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6867 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6868 		}
6869 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6870 		return;
6871 	}
6872 
6873 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6874 
6875 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6876 
6877 		/*
6878 		 * According to TPI, for non-listeners, ignore seqnum
6879 		 * and disconnect.
6880 		 * Following interpretation of -1 seqnum is historical
6881 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6882 		 * a valid seqnum should not be -1).
6883 		 *
6884 		 *	-1 means disconnect everything
6885 		 *	regardless even on a listener.
6886 		 */
6887 
6888 		int old_state = tcp->tcp_state;
6889 
6890 		/*
6891 		 * The connection can't be on the tcp_time_wait_head list
6892 		 * since it is not detached.
6893 		 */
6894 		ASSERT(tcp->tcp_time_wait_next == NULL);
6895 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6896 		ASSERT(tcp->tcp_time_wait_expire == 0);
6897 		ltcp = NULL;
6898 		/*
6899 		 * If it used to be a listener, check to make sure no one else
6900 		 * has taken the port before switching back to LISTEN state.
6901 		 */
6902 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6903 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6904 			    tcp->tcp_ipha->ipha_src,
6905 			    tcp->tcp_connp->conn_zoneid);
6906 			if (connp != NULL)
6907 				ltcp = connp->conn_tcp;
6908 		} else {
6909 			/* Allow tcp_bound_if listeners? */
6910 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6911 			    &tcp->tcp_ip6h->ip6_src, 0,
6912 			    tcp->tcp_connp->conn_zoneid);
6913 			if (connp != NULL)
6914 				ltcp = connp->conn_tcp;
6915 		}
6916 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6917 			tcp->tcp_state = TCPS_LISTEN;
6918 		} else if (old_state > TCPS_BOUND) {
6919 			tcp->tcp_conn_req_max = 0;
6920 			tcp->tcp_state = TCPS_BOUND;
6921 		}
6922 		if (ltcp != NULL)
6923 			CONN_DEC_REF(ltcp->tcp_connp);
6924 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6925 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6926 		} else if (old_state == TCPS_ESTABLISHED ||
6927 		    old_state == TCPS_CLOSE_WAIT) {
6928 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6929 		}
6930 
6931 		if (tcp->tcp_fused)
6932 			tcp_unfuse(tcp);
6933 
6934 		mutex_enter(&tcp->tcp_eager_lock);
6935 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6936 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6937 			tcp_eager_cleanup(tcp, 0);
6938 		}
6939 		mutex_exit(&tcp->tcp_eager_lock);
6940 
6941 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6942 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6943 
6944 		tcp_reinit(tcp);
6945 
6946 		if (old_state >= TCPS_ESTABLISHED) {
6947 			/* Send M_FLUSH according to TPI */
6948 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6949 		}
6950 		mp = mi_tpi_ok_ack_alloc(mp);
6951 		if (mp)
6952 			putnext(tcp->tcp_rq, mp);
6953 		return;
6954 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6955 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6956 		return;
6957 	}
6958 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6959 		/* Send M_FLUSH according to TPI */
6960 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6961 	}
6962 	mp = mi_tpi_ok_ack_alloc(mp);
6963 	if (mp)
6964 		putnext(tcp->tcp_rq, mp);
6965 }
6966 
6967 /*
6968  * Diagnostic routine used to return a string associated with the tcp state.
6969  * Note that if the caller does not supply a buffer, it will use an internal
6970  * static string.  This means that if multiple threads call this function at
6971  * the same time, output can be corrupted...  Note also that this function
6972  * does not check the size of the supplied buffer.  The caller has to make
6973  * sure that it is big enough.
6974  */
6975 static char *
6976 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6977 {
6978 	char		buf1[30];
6979 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6980 	char		*buf;
6981 	char		*cp;
6982 	in6_addr_t	local, remote;
6983 	char		local_addrbuf[INET6_ADDRSTRLEN];
6984 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6985 
6986 	if (sup_buf != NULL)
6987 		buf = sup_buf;
6988 	else
6989 		buf = priv_buf;
6990 
6991 	if (tcp == NULL)
6992 		return ("NULL_TCP");
6993 	switch (tcp->tcp_state) {
6994 	case TCPS_CLOSED:
6995 		cp = "TCP_CLOSED";
6996 		break;
6997 	case TCPS_IDLE:
6998 		cp = "TCP_IDLE";
6999 		break;
7000 	case TCPS_BOUND:
7001 		cp = "TCP_BOUND";
7002 		break;
7003 	case TCPS_LISTEN:
7004 		cp = "TCP_LISTEN";
7005 		break;
7006 	case TCPS_SYN_SENT:
7007 		cp = "TCP_SYN_SENT";
7008 		break;
7009 	case TCPS_SYN_RCVD:
7010 		cp = "TCP_SYN_RCVD";
7011 		break;
7012 	case TCPS_ESTABLISHED:
7013 		cp = "TCP_ESTABLISHED";
7014 		break;
7015 	case TCPS_CLOSE_WAIT:
7016 		cp = "TCP_CLOSE_WAIT";
7017 		break;
7018 	case TCPS_FIN_WAIT_1:
7019 		cp = "TCP_FIN_WAIT_1";
7020 		break;
7021 	case TCPS_CLOSING:
7022 		cp = "TCP_CLOSING";
7023 		break;
7024 	case TCPS_LAST_ACK:
7025 		cp = "TCP_LAST_ACK";
7026 		break;
7027 	case TCPS_FIN_WAIT_2:
7028 		cp = "TCP_FIN_WAIT_2";
7029 		break;
7030 	case TCPS_TIME_WAIT:
7031 		cp = "TCP_TIME_WAIT";
7032 		break;
7033 	default:
7034 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7035 		cp = buf1;
7036 		break;
7037 	}
7038 	switch (format) {
7039 	case DISP_ADDR_AND_PORT:
7040 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7041 			/*
7042 			 * Note that we use the remote address in the tcp_b
7043 			 * structure.  This means that it will print out
7044 			 * the real destination address, not the next hop's
7045 			 * address if source routing is used.
7046 			 */
7047 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7048 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7049 
7050 		} else {
7051 			local = tcp->tcp_ip_src_v6;
7052 			remote = tcp->tcp_remote_v6;
7053 		}
7054 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7055 		    sizeof (local_addrbuf));
7056 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7057 		    sizeof (remote_addrbuf));
7058 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7059 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7060 		    ntohs(tcp->tcp_fport), cp);
7061 		break;
7062 	case DISP_PORT_ONLY:
7063 	default:
7064 		(void) mi_sprintf(buf, "[%u, %u] %s",
7065 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7066 		break;
7067 	}
7068 
7069 	return (buf);
7070 }
7071 
7072 /*
7073  * Called via squeue to get on to eager's perimeter to send a
7074  * TH_RST. The listener wants the eager to disappear either
7075  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
7076  * being called.
7077  */
7078 /* ARGSUSED */
7079 void
7080 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7081 {
7082 	conn_t	*econnp = (conn_t *)arg;
7083 	tcp_t	*eager = econnp->conn_tcp;
7084 	tcp_t	*listener = eager->tcp_listener;
7085 
7086 	/*
7087 	 * We could be called because listener is closing. Since
7088 	 * the eager is using listener's queue's, its not safe.
7089 	 * Better use the default queue just to send the TH_RST
7090 	 * out.
7091 	 */
7092 	eager->tcp_rq = tcp_g_q;
7093 	eager->tcp_wq = WR(tcp_g_q);
7094 
7095 	if (eager->tcp_state > TCPS_LISTEN) {
7096 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7097 		    eager, eager->tcp_snxt, 0, TH_RST);
7098 	}
7099 
7100 	/* We are here because listener wants this eager gone */
7101 	if (listener != NULL) {
7102 		mutex_enter(&listener->tcp_eager_lock);
7103 		tcp_eager_unlink(eager);
7104 		if (eager->tcp_tconnind_started) {
7105 			/*
7106 			 * The eager has sent a conn_ind up to the
7107 			 * listener but listener decides to close
7108 			 * instead. We need to drop the extra ref
7109 			 * placed on eager in tcp_rput_data() before
7110 			 * sending the conn_ind to listener.
7111 			 */
7112 			CONN_DEC_REF(econnp);
7113 		}
7114 		mutex_exit(&listener->tcp_eager_lock);
7115 		CONN_DEC_REF(listener->tcp_connp);
7116 	}
7117 
7118 	if (eager->tcp_state > TCPS_BOUND)
7119 		tcp_close_detached(eager);
7120 }
7121 
7122 /*
7123  * Reset any eager connection hanging off this listener marked
7124  * with 'seqnum' and then reclaim it's resources.
7125  */
7126 static boolean_t
7127 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7128 {
7129 	tcp_t	*eager;
7130 	mblk_t 	*mp;
7131 
7132 	TCP_STAT(tcp_eager_blowoff_calls);
7133 	eager = listener;
7134 	mutex_enter(&listener->tcp_eager_lock);
7135 	do {
7136 		eager = eager->tcp_eager_next_q;
7137 		if (eager == NULL) {
7138 			mutex_exit(&listener->tcp_eager_lock);
7139 			return (B_FALSE);
7140 		}
7141 	} while (eager->tcp_conn_req_seqnum != seqnum);
7142 
7143 	if (eager->tcp_closemp_used > 0) {
7144 		mutex_exit(&listener->tcp_eager_lock);
7145 		return (B_TRUE);
7146 	}
7147 	eager->tcp_closemp_used = 1;
7148 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7149 	CONN_INC_REF(eager->tcp_connp);
7150 	mutex_exit(&listener->tcp_eager_lock);
7151 	mp = &eager->tcp_closemp;
7152 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7153 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7154 	return (B_TRUE);
7155 }
7156 
7157 /*
7158  * Reset any eager connection hanging off this listener
7159  * and then reclaim it's resources.
7160  */
7161 static void
7162 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7163 {
7164 	tcp_t	*eager;
7165 	mblk_t	*mp;
7166 
7167 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7168 
7169 	if (!q0_only) {
7170 		/* First cleanup q */
7171 		TCP_STAT(tcp_eager_blowoff_q);
7172 		eager = listener->tcp_eager_next_q;
7173 		while (eager != NULL) {
7174 			if (eager->tcp_closemp_used == 0) {
7175 				eager->tcp_closemp_used = 1;
7176 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7177 				CONN_INC_REF(eager->tcp_connp);
7178 				mp = &eager->tcp_closemp;
7179 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7180 				    tcp_eager_kill, eager->tcp_connp,
7181 				    SQTAG_TCP_EAGER_CLEANUP);
7182 			}
7183 			eager = eager->tcp_eager_next_q;
7184 		}
7185 	}
7186 	/* Then cleanup q0 */
7187 	TCP_STAT(tcp_eager_blowoff_q0);
7188 	eager = listener->tcp_eager_next_q0;
7189 	while (eager != listener) {
7190 		if (eager->tcp_closemp_used == 0) {
7191 			eager->tcp_closemp_used = 1;
7192 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7193 			CONN_INC_REF(eager->tcp_connp);
7194 			mp = &eager->tcp_closemp;
7195 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7196 			    tcp_eager_kill, eager->tcp_connp,
7197 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7198 		}
7199 		eager = eager->tcp_eager_next_q0;
7200 	}
7201 }
7202 
7203 /*
7204  * If we are an eager connection hanging off a listener that hasn't
7205  * formally accepted the connection yet, get off his list and blow off
7206  * any data that we have accumulated.
7207  */
7208 static void
7209 tcp_eager_unlink(tcp_t *tcp)
7210 {
7211 	tcp_t	*listener = tcp->tcp_listener;
7212 
7213 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7214 	ASSERT(listener != NULL);
7215 	if (tcp->tcp_eager_next_q0 != NULL) {
7216 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7217 
7218 		/* Remove the eager tcp from q0 */
7219 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7220 		    tcp->tcp_eager_prev_q0;
7221 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7222 		    tcp->tcp_eager_next_q0;
7223 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7224 		listener->tcp_conn_req_cnt_q0--;
7225 
7226 		tcp->tcp_eager_next_q0 = NULL;
7227 		tcp->tcp_eager_prev_q0 = NULL;
7228 
7229 		/*
7230 		 * Take the eager out, if it is in the list of droppable
7231 		 * eagers.
7232 		 */
7233 		MAKE_UNDROPPABLE(tcp);
7234 
7235 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7236 			/* we have timed out before */
7237 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7238 			listener->tcp_syn_rcvd_timeout--;
7239 		}
7240 	} else {
7241 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7242 		tcp_t	*prev = NULL;
7243 
7244 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7245 			if (tcpp[0] == tcp) {
7246 				if (listener->tcp_eager_last_q == tcp) {
7247 					/*
7248 					 * If we are unlinking the last
7249 					 * element on the list, adjust
7250 					 * tail pointer. Set tail pointer
7251 					 * to nil when list is empty.
7252 					 */
7253 					ASSERT(tcp->tcp_eager_next_q == NULL);
7254 					if (listener->tcp_eager_last_q ==
7255 					    listener->tcp_eager_next_q) {
7256 						listener->tcp_eager_last_q =
7257 						NULL;
7258 					} else {
7259 						/*
7260 						 * We won't get here if there
7261 						 * is only one eager in the
7262 						 * list.
7263 						 */
7264 						ASSERT(prev != NULL);
7265 						listener->tcp_eager_last_q =
7266 						    prev;
7267 					}
7268 				}
7269 				tcpp[0] = tcp->tcp_eager_next_q;
7270 				tcp->tcp_eager_next_q = NULL;
7271 				tcp->tcp_eager_last_q = NULL;
7272 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7273 				listener->tcp_conn_req_cnt_q--;
7274 				break;
7275 			}
7276 			prev = tcpp[0];
7277 		}
7278 	}
7279 	tcp->tcp_listener = NULL;
7280 }
7281 
7282 /* Shorthand to generate and send TPI error acks to our client */
7283 static void
7284 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7285 {
7286 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7287 		putnext(tcp->tcp_rq, mp);
7288 }
7289 
7290 /* Shorthand to generate and send TPI error acks to our client */
7291 static void
7292 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7293     int t_error, int sys_error)
7294 {
7295 	struct T_error_ack	*teackp;
7296 
7297 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7298 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7299 		teackp = (struct T_error_ack *)mp->b_rptr;
7300 		teackp->ERROR_prim = primitive;
7301 		teackp->TLI_error = t_error;
7302 		teackp->UNIX_error = sys_error;
7303 		putnext(tcp->tcp_rq, mp);
7304 	}
7305 }
7306 
7307 /*
7308  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7309  * but instead the code relies on:
7310  * - the fact that the address of the array and its size never changes
7311  * - the atomic assignment of the elements of the array
7312  */
7313 /* ARGSUSED */
7314 static int
7315 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7316 {
7317 	int i;
7318 
7319 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7320 		if (tcp_g_epriv_ports[i] != 0)
7321 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7322 	}
7323 	return (0);
7324 }
7325 
7326 /*
7327  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7328  * threads from changing it at the same time.
7329  */
7330 /* ARGSUSED */
7331 static int
7332 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7333     cred_t *cr)
7334 {
7335 	long	new_value;
7336 	int	i;
7337 
7338 	/*
7339 	 * Fail the request if the new value does not lie within the
7340 	 * port number limits.
7341 	 */
7342 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7343 	    new_value <= 0 || new_value >= 65536) {
7344 		return (EINVAL);
7345 	}
7346 
7347 	mutex_enter(&tcp_epriv_port_lock);
7348 	/* Check if the value is already in the list */
7349 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7350 		if (new_value == tcp_g_epriv_ports[i]) {
7351 			mutex_exit(&tcp_epriv_port_lock);
7352 			return (EEXIST);
7353 		}
7354 	}
7355 	/* Find an empty slot */
7356 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7357 		if (tcp_g_epriv_ports[i] == 0)
7358 			break;
7359 	}
7360 	if (i == tcp_g_num_epriv_ports) {
7361 		mutex_exit(&tcp_epriv_port_lock);
7362 		return (EOVERFLOW);
7363 	}
7364 	/* Set the new value */
7365 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7366 	mutex_exit(&tcp_epriv_port_lock);
7367 	return (0);
7368 }
7369 
7370 /*
7371  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7372  * threads from changing it at the same time.
7373  */
7374 /* ARGSUSED */
7375 static int
7376 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7377     cred_t *cr)
7378 {
7379 	long	new_value;
7380 	int	i;
7381 
7382 	/*
7383 	 * Fail the request if the new value does not lie within the
7384 	 * port number limits.
7385 	 */
7386 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7387 	    new_value >= 65536) {
7388 		return (EINVAL);
7389 	}
7390 
7391 	mutex_enter(&tcp_epriv_port_lock);
7392 	/* Check that the value is already in the list */
7393 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7394 		if (tcp_g_epriv_ports[i] == new_value)
7395 			break;
7396 	}
7397 	if (i == tcp_g_num_epriv_ports) {
7398 		mutex_exit(&tcp_epriv_port_lock);
7399 		return (ESRCH);
7400 	}
7401 	/* Clear the value */
7402 	tcp_g_epriv_ports[i] = 0;
7403 	mutex_exit(&tcp_epriv_port_lock);
7404 	return (0);
7405 }
7406 
7407 /* Return the TPI/TLI equivalent of our current tcp_state */
7408 static int
7409 tcp_tpistate(tcp_t *tcp)
7410 {
7411 	switch (tcp->tcp_state) {
7412 	case TCPS_IDLE:
7413 		return (TS_UNBND);
7414 	case TCPS_LISTEN:
7415 		/*
7416 		 * Return whether there are outstanding T_CONN_IND waiting
7417 		 * for the matching T_CONN_RES. Therefore don't count q0.
7418 		 */
7419 		if (tcp->tcp_conn_req_cnt_q > 0)
7420 			return (TS_WRES_CIND);
7421 		else
7422 			return (TS_IDLE);
7423 	case TCPS_BOUND:
7424 		return (TS_IDLE);
7425 	case TCPS_SYN_SENT:
7426 		return (TS_WCON_CREQ);
7427 	case TCPS_SYN_RCVD:
7428 		/*
7429 		 * Note: assumption: this has to the active open SYN_RCVD.
7430 		 * The passive instance is detached in SYN_RCVD stage of
7431 		 * incoming connection processing so we cannot get request
7432 		 * for T_info_ack on it.
7433 		 */
7434 		return (TS_WACK_CRES);
7435 	case TCPS_ESTABLISHED:
7436 		return (TS_DATA_XFER);
7437 	case TCPS_CLOSE_WAIT:
7438 		return (TS_WREQ_ORDREL);
7439 	case TCPS_FIN_WAIT_1:
7440 		return (TS_WIND_ORDREL);
7441 	case TCPS_FIN_WAIT_2:
7442 		return (TS_WIND_ORDREL);
7443 
7444 	case TCPS_CLOSING:
7445 	case TCPS_LAST_ACK:
7446 	case TCPS_TIME_WAIT:
7447 	case TCPS_CLOSED:
7448 		/*
7449 		 * Following TS_WACK_DREQ7 is a rendition of "not
7450 		 * yet TS_IDLE" TPI state. There is no best match to any
7451 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7452 		 * choose a value chosen that will map to TLI/XTI level
7453 		 * state of TSTATECHNG (state is process of changing) which
7454 		 * captures what this dummy state represents.
7455 		 */
7456 		return (TS_WACK_DREQ7);
7457 	default:
7458 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7459 		    tcp->tcp_state, tcp_display(tcp, NULL,
7460 		    DISP_PORT_ONLY));
7461 		return (TS_UNBND);
7462 	}
7463 }
7464 
7465 static void
7466 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7467 {
7468 	if (tcp->tcp_family == AF_INET6)
7469 		*tia = tcp_g_t_info_ack_v6;
7470 	else
7471 		*tia = tcp_g_t_info_ack;
7472 	tia->CURRENT_state = tcp_tpistate(tcp);
7473 	tia->OPT_size = tcp_max_optsize;
7474 	if (tcp->tcp_mss == 0) {
7475 		/* Not yet set - tcp_open does not set mss */
7476 		if (tcp->tcp_ipversion == IPV4_VERSION)
7477 			tia->TIDU_size = tcp_mss_def_ipv4;
7478 		else
7479 			tia->TIDU_size = tcp_mss_def_ipv6;
7480 	} else {
7481 		tia->TIDU_size = tcp->tcp_mss;
7482 	}
7483 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7484 }
7485 
7486 /*
7487  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7488  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7489  * tcp_g_t_info_ack.  The current state of the stream is copied from
7490  * tcp_state.
7491  */
7492 static void
7493 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7494 {
7495 	t_uscalar_t		cap_bits1;
7496 	struct T_capability_ack	*tcap;
7497 
7498 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7499 		freemsg(mp);
7500 		return;
7501 	}
7502 
7503 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7504 
7505 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7506 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7507 	if (mp == NULL)
7508 		return;
7509 
7510 	tcap = (struct T_capability_ack *)mp->b_rptr;
7511 	tcap->CAP_bits1 = 0;
7512 
7513 	if (cap_bits1 & TC1_INFO) {
7514 		tcp_copy_info(&tcap->INFO_ack, tcp);
7515 		tcap->CAP_bits1 |= TC1_INFO;
7516 	}
7517 
7518 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7519 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7520 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7521 	}
7522 
7523 	putnext(tcp->tcp_rq, mp);
7524 }
7525 
7526 /*
7527  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7528  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7529  * The current state of the stream is copied from tcp_state.
7530  */
7531 static void
7532 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7533 {
7534 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7535 	    T_INFO_ACK);
7536 	if (!mp) {
7537 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7538 		return;
7539 	}
7540 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7541 	putnext(tcp->tcp_rq, mp);
7542 }
7543 
7544 /* Respond to the TPI addr request */
7545 static void
7546 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7547 {
7548 	sin_t	*sin;
7549 	mblk_t	*ackmp;
7550 	struct T_addr_ack *taa;
7551 
7552 	/* Make it large enough for worst case */
7553 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7554 	    2 * sizeof (sin6_t), 1);
7555 	if (ackmp == NULL) {
7556 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7557 		return;
7558 	}
7559 
7560 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7561 		tcp_addr_req_ipv6(tcp, ackmp);
7562 		return;
7563 	}
7564 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7565 
7566 	bzero(taa, sizeof (struct T_addr_ack));
7567 	ackmp->b_wptr = (uchar_t *)&taa[1];
7568 
7569 	taa->PRIM_type = T_ADDR_ACK;
7570 	ackmp->b_datap->db_type = M_PCPROTO;
7571 
7572 	/*
7573 	 * Note: Following code assumes 32 bit alignment of basic
7574 	 * data structures like sin_t and struct T_addr_ack.
7575 	 */
7576 	if (tcp->tcp_state >= TCPS_BOUND) {
7577 		/*
7578 		 * Fill in local address
7579 		 */
7580 		taa->LOCADDR_length = sizeof (sin_t);
7581 		taa->LOCADDR_offset = sizeof (*taa);
7582 
7583 		sin = (sin_t *)&taa[1];
7584 
7585 		/* Fill zeroes and then intialize non-zero fields */
7586 		*sin = sin_null;
7587 
7588 		sin->sin_family = AF_INET;
7589 
7590 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7591 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7592 
7593 		ackmp->b_wptr = (uchar_t *)&sin[1];
7594 
7595 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7596 			/*
7597 			 * Fill in Remote address
7598 			 */
7599 			taa->REMADDR_length = sizeof (sin_t);
7600 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7601 						taa->LOCADDR_length);
7602 
7603 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7604 			*sin = sin_null;
7605 			sin->sin_family = AF_INET;
7606 			sin->sin_addr.s_addr = tcp->tcp_remote;
7607 			sin->sin_port = tcp->tcp_fport;
7608 
7609 			ackmp->b_wptr = (uchar_t *)&sin[1];
7610 		}
7611 	}
7612 	putnext(tcp->tcp_rq, ackmp);
7613 }
7614 
7615 /* Assumes that tcp_addr_req gets enough space and alignment */
7616 static void
7617 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7618 {
7619 	sin6_t	*sin6;
7620 	struct T_addr_ack *taa;
7621 
7622 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7623 	ASSERT(OK_32PTR(ackmp->b_rptr));
7624 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7625 	    2 * sizeof (sin6_t));
7626 
7627 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7628 
7629 	bzero(taa, sizeof (struct T_addr_ack));
7630 	ackmp->b_wptr = (uchar_t *)&taa[1];
7631 
7632 	taa->PRIM_type = T_ADDR_ACK;
7633 	ackmp->b_datap->db_type = M_PCPROTO;
7634 
7635 	/*
7636 	 * Note: Following code assumes 32 bit alignment of basic
7637 	 * data structures like sin6_t and struct T_addr_ack.
7638 	 */
7639 	if (tcp->tcp_state >= TCPS_BOUND) {
7640 		/*
7641 		 * Fill in local address
7642 		 */
7643 		taa->LOCADDR_length = sizeof (sin6_t);
7644 		taa->LOCADDR_offset = sizeof (*taa);
7645 
7646 		sin6 = (sin6_t *)&taa[1];
7647 		*sin6 = sin6_null;
7648 
7649 		sin6->sin6_family = AF_INET6;
7650 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7651 		sin6->sin6_port = tcp->tcp_lport;
7652 
7653 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7654 
7655 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7656 			/*
7657 			 * Fill in Remote address
7658 			 */
7659 			taa->REMADDR_length = sizeof (sin6_t);
7660 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7661 						taa->LOCADDR_length);
7662 
7663 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7664 			*sin6 = sin6_null;
7665 			sin6->sin6_family = AF_INET6;
7666 			sin6->sin6_flowinfo =
7667 			    tcp->tcp_ip6h->ip6_vcf &
7668 			    ~IPV6_VERS_AND_FLOW_MASK;
7669 			sin6->sin6_addr = tcp->tcp_remote_v6;
7670 			sin6->sin6_port = tcp->tcp_fport;
7671 
7672 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7673 		}
7674 	}
7675 	putnext(tcp->tcp_rq, ackmp);
7676 }
7677 
7678 /*
7679  * Handle reinitialization of a tcp structure.
7680  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7681  */
7682 static void
7683 tcp_reinit(tcp_t *tcp)
7684 {
7685 	mblk_t	*mp;
7686 	int 	err;
7687 
7688 	TCP_STAT(tcp_reinit_calls);
7689 
7690 	/* tcp_reinit should never be called for detached tcp_t's */
7691 	ASSERT(tcp->tcp_listener == NULL);
7692 	ASSERT((tcp->tcp_family == AF_INET &&
7693 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7694 	    (tcp->tcp_family == AF_INET6 &&
7695 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7696 	    tcp->tcp_ipversion == IPV6_VERSION)));
7697 
7698 	/* Cancel outstanding timers */
7699 	tcp_timers_stop(tcp);
7700 
7701 	/*
7702 	 * Reset everything in the state vector, after updating global
7703 	 * MIB data from instance counters.
7704 	 */
7705 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7706 	tcp->tcp_ibsegs = 0;
7707 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7708 	tcp->tcp_obsegs = 0;
7709 
7710 	tcp_close_mpp(&tcp->tcp_xmit_head);
7711 	if (tcp->tcp_snd_zcopy_aware)
7712 		tcp_zcopy_notify(tcp);
7713 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7714 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7715 	if (tcp->tcp_flow_stopped &&
7716 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7717 		tcp_clrqfull(tcp);
7718 	}
7719 	tcp_close_mpp(&tcp->tcp_reass_head);
7720 	tcp->tcp_reass_tail = NULL;
7721 	if (tcp->tcp_rcv_list != NULL) {
7722 		/* Free b_next chain */
7723 		tcp_close_mpp(&tcp->tcp_rcv_list);
7724 		tcp->tcp_rcv_last_head = NULL;
7725 		tcp->tcp_rcv_last_tail = NULL;
7726 		tcp->tcp_rcv_cnt = 0;
7727 	}
7728 	tcp->tcp_rcv_last_tail = NULL;
7729 
7730 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7731 		freemsg(mp);
7732 		tcp->tcp_urp_mp = NULL;
7733 	}
7734 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7735 		freemsg(mp);
7736 		tcp->tcp_urp_mark_mp = NULL;
7737 	}
7738 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7739 		freeb(tcp->tcp_fused_sigurg_mp);
7740 		tcp->tcp_fused_sigurg_mp = NULL;
7741 	}
7742 
7743 	/*
7744 	 * Following is a union with two members which are
7745 	 * identical types and size so the following cleanup
7746 	 * is enough.
7747 	 */
7748 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7749 
7750 	CL_INET_DISCONNECT(tcp);
7751 
7752 	/*
7753 	 * The connection can't be on the tcp_time_wait_head list
7754 	 * since it is not detached.
7755 	 */
7756 	ASSERT(tcp->tcp_time_wait_next == NULL);
7757 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7758 	ASSERT(tcp->tcp_time_wait_expire == 0);
7759 
7760 	if (tcp->tcp_kssl_pending) {
7761 		tcp->tcp_kssl_pending = B_FALSE;
7762 
7763 		/* Don't reset if the initialized by bind. */
7764 		if (tcp->tcp_kssl_ent != NULL) {
7765 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7766 			    KSSL_NO_PROXY);
7767 		}
7768 	}
7769 	if (tcp->tcp_kssl_ctx != NULL) {
7770 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7771 		tcp->tcp_kssl_ctx = NULL;
7772 	}
7773 
7774 	/*
7775 	 * Reset/preserve other values
7776 	 */
7777 	tcp_reinit_values(tcp);
7778 	ipcl_hash_remove(tcp->tcp_connp);
7779 	conn_delete_ire(tcp->tcp_connp, NULL);
7780 
7781 	if (tcp->tcp_conn_req_max != 0) {
7782 		/*
7783 		 * This is the case when a TLI program uses the same
7784 		 * transport end point to accept a connection.  This
7785 		 * makes the TCP both a listener and acceptor.  When
7786 		 * this connection is closed, we need to set the state
7787 		 * back to TCPS_LISTEN.  Make sure that the eager list
7788 		 * is reinitialized.
7789 		 *
7790 		 * Note that this stream is still bound to the four
7791 		 * tuples of the previous connection in IP.  If a new
7792 		 * SYN with different foreign address comes in, IP will
7793 		 * not find it and will send it to the global queue.  In
7794 		 * the global queue, TCP will do a tcp_lookup_listener()
7795 		 * to find this stream.  This works because this stream
7796 		 * is only removed from connected hash.
7797 		 *
7798 		 */
7799 		tcp->tcp_state = TCPS_LISTEN;
7800 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7801 		tcp->tcp_eager_next_drop_q0 = tcp;
7802 		tcp->tcp_eager_prev_drop_q0 = tcp;
7803 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7804 		if (tcp->tcp_family == AF_INET6) {
7805 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7806 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7807 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7808 		} else {
7809 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7810 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7811 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7812 		}
7813 	} else {
7814 		tcp->tcp_state = TCPS_BOUND;
7815 	}
7816 
7817 	/*
7818 	 * Initialize to default values
7819 	 * Can't fail since enough header template space already allocated
7820 	 * at open().
7821 	 */
7822 	err = tcp_init_values(tcp);
7823 	ASSERT(err == 0);
7824 	/* Restore state in tcp_tcph */
7825 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7826 	if (tcp->tcp_ipversion == IPV4_VERSION)
7827 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7828 	else
7829 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7830 	/*
7831 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7832 	 * since the lookup funcs can only lookup on tcp_t
7833 	 */
7834 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7835 
7836 	ASSERT(tcp->tcp_ptpbhn != NULL);
7837 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7838 	tcp->tcp_rwnd = tcp_recv_hiwat;
7839 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7840 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7841 }
7842 
7843 /*
7844  * Force values to zero that need be zero.
7845  * Do not touch values asociated with the BOUND or LISTEN state
7846  * since the connection will end up in that state after the reinit.
7847  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7848  * structure!
7849  */
7850 static void
7851 tcp_reinit_values(tcp)
7852 	tcp_t *tcp;
7853 {
7854 #ifndef	lint
7855 #define	DONTCARE(x)
7856 #define	PRESERVE(x)
7857 #else
7858 #define	DONTCARE(x)	((x) = (x))
7859 #define	PRESERVE(x)	((x) = (x))
7860 #endif	/* lint */
7861 
7862 	PRESERVE(tcp->tcp_bind_hash);
7863 	PRESERVE(tcp->tcp_ptpbhn);
7864 	PRESERVE(tcp->tcp_acceptor_hash);
7865 	PRESERVE(tcp->tcp_ptpahn);
7866 
7867 	/* Should be ASSERT NULL on these with new code! */
7868 	ASSERT(tcp->tcp_time_wait_next == NULL);
7869 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7870 	ASSERT(tcp->tcp_time_wait_expire == 0);
7871 	PRESERVE(tcp->tcp_state);
7872 	PRESERVE(tcp->tcp_rq);
7873 	PRESERVE(tcp->tcp_wq);
7874 
7875 	ASSERT(tcp->tcp_xmit_head == NULL);
7876 	ASSERT(tcp->tcp_xmit_last == NULL);
7877 	ASSERT(tcp->tcp_unsent == 0);
7878 	ASSERT(tcp->tcp_xmit_tail == NULL);
7879 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7880 
7881 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7882 	tcp->tcp_suna = 0;			/* Displayed in mib */
7883 	tcp->tcp_swnd = 0;
7884 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7885 
7886 	ASSERT(tcp->tcp_ibsegs == 0);
7887 	ASSERT(tcp->tcp_obsegs == 0);
7888 
7889 	if (tcp->tcp_iphc != NULL) {
7890 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7891 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7892 	}
7893 
7894 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7895 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7896 	DONTCARE(tcp->tcp_ipha);
7897 	DONTCARE(tcp->tcp_ip6h);
7898 	DONTCARE(tcp->tcp_ip_hdr_len);
7899 	DONTCARE(tcp->tcp_tcph);
7900 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7901 	tcp->tcp_valid_bits = 0;
7902 
7903 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7904 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7905 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7906 	tcp->tcp_last_rcv_lbolt = 0;
7907 
7908 	tcp->tcp_init_cwnd = 0;
7909 
7910 	tcp->tcp_urp_last_valid = 0;
7911 	tcp->tcp_hard_binding = 0;
7912 	tcp->tcp_hard_bound = 0;
7913 	PRESERVE(tcp->tcp_cred);
7914 	PRESERVE(tcp->tcp_cpid);
7915 	PRESERVE(tcp->tcp_exclbind);
7916 
7917 	tcp->tcp_fin_acked = 0;
7918 	tcp->tcp_fin_rcvd = 0;
7919 	tcp->tcp_fin_sent = 0;
7920 	tcp->tcp_ordrel_done = 0;
7921 
7922 	tcp->tcp_debug = 0;
7923 	tcp->tcp_dontroute = 0;
7924 	tcp->tcp_broadcast = 0;
7925 
7926 	tcp->tcp_useloopback = 0;
7927 	tcp->tcp_reuseaddr = 0;
7928 	tcp->tcp_oobinline = 0;
7929 	tcp->tcp_dgram_errind = 0;
7930 
7931 	tcp->tcp_detached = 0;
7932 	tcp->tcp_bind_pending = 0;
7933 	tcp->tcp_unbind_pending = 0;
7934 	tcp->tcp_deferred_clean_death = 0;
7935 
7936 	tcp->tcp_snd_ws_ok = B_FALSE;
7937 	tcp->tcp_snd_ts_ok = B_FALSE;
7938 	tcp->tcp_linger = 0;
7939 	tcp->tcp_ka_enabled = 0;
7940 	tcp->tcp_zero_win_probe = 0;
7941 
7942 	tcp->tcp_loopback = 0;
7943 	tcp->tcp_localnet = 0;
7944 	tcp->tcp_syn_defense = 0;
7945 	tcp->tcp_set_timer = 0;
7946 
7947 	tcp->tcp_active_open = 0;
7948 	ASSERT(tcp->tcp_timeout == B_FALSE);
7949 	tcp->tcp_rexmit = B_FALSE;
7950 	tcp->tcp_xmit_zc_clean = B_FALSE;
7951 
7952 	tcp->tcp_snd_sack_ok = B_FALSE;
7953 	PRESERVE(tcp->tcp_recvdstaddr);
7954 	tcp->tcp_hwcksum = B_FALSE;
7955 
7956 	tcp->tcp_ire_ill_check_done = B_FALSE;
7957 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7958 
7959 	tcp->tcp_mdt = B_FALSE;
7960 	tcp->tcp_mdt_hdr_head = 0;
7961 	tcp->tcp_mdt_hdr_tail = 0;
7962 
7963 	tcp->tcp_conn_def_q0 = 0;
7964 	tcp->tcp_ip_forward_progress = B_FALSE;
7965 	tcp->tcp_anon_priv_bind = 0;
7966 	tcp->tcp_ecn_ok = B_FALSE;
7967 
7968 	tcp->tcp_cwr = B_FALSE;
7969 	tcp->tcp_ecn_echo_on = B_FALSE;
7970 
7971 	if (tcp->tcp_sack_info != NULL) {
7972 		if (tcp->tcp_notsack_list != NULL) {
7973 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7974 		}
7975 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7976 		tcp->tcp_sack_info = NULL;
7977 	}
7978 
7979 	tcp->tcp_rcv_ws = 0;
7980 	tcp->tcp_snd_ws = 0;
7981 	tcp->tcp_ts_recent = 0;
7982 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7983 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7984 	tcp->tcp_if_mtu = 0;
7985 
7986 	ASSERT(tcp->tcp_reass_head == NULL);
7987 	ASSERT(tcp->tcp_reass_tail == NULL);
7988 
7989 	tcp->tcp_cwnd_cnt = 0;
7990 
7991 	ASSERT(tcp->tcp_rcv_list == NULL);
7992 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7993 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7994 	ASSERT(tcp->tcp_rcv_cnt == 0);
7995 
7996 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7997 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7998 	tcp->tcp_csuna = 0;
7999 
8000 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8001 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8002 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8003 	tcp->tcp_rtt_update = 0;
8004 
8005 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8006 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8007 
8008 	tcp->tcp_rack = 0;			/* Displayed in mib */
8009 	tcp->tcp_rack_cnt = 0;
8010 	tcp->tcp_rack_cur_max = 0;
8011 	tcp->tcp_rack_abs_max = 0;
8012 
8013 	tcp->tcp_max_swnd = 0;
8014 
8015 	ASSERT(tcp->tcp_listener == NULL);
8016 
8017 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8018 
8019 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8020 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8021 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8022 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8023 
8024 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8025 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8026 	PRESERVE(tcp->tcp_conn_req_max);
8027 	PRESERVE(tcp->tcp_conn_req_seqnum);
8028 
8029 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8030 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8031 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8032 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8033 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8034 
8035 	tcp->tcp_lingertime = 0;
8036 
8037 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8038 	ASSERT(tcp->tcp_urp_mp == NULL);
8039 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8040 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8041 
8042 	ASSERT(tcp->tcp_eager_next_q == NULL);
8043 	ASSERT(tcp->tcp_eager_last_q == NULL);
8044 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8045 	    tcp->tcp_eager_prev_q0 == NULL) ||
8046 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8047 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8048 
8049 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8050 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8051 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8052 
8053 	tcp->tcp_client_errno = 0;
8054 
8055 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8056 
8057 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8058 
8059 	PRESERVE(tcp->tcp_bound_source_v6);
8060 	tcp->tcp_last_sent_len = 0;
8061 	tcp->tcp_dupack_cnt = 0;
8062 
8063 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8064 	PRESERVE(tcp->tcp_lport);
8065 
8066 	PRESERVE(tcp->tcp_acceptor_lockp);
8067 
8068 	ASSERT(tcp->tcp_ordrelid == 0);
8069 	PRESERVE(tcp->tcp_acceptor_id);
8070 	DONTCARE(tcp->tcp_ipsec_overhead);
8071 
8072 	/*
8073 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8074 	 * in tcp structure and now tracing), Re-initialize all
8075 	 * members of tcp_traceinfo.
8076 	 */
8077 	if (tcp->tcp_tracebuf != NULL) {
8078 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8079 	}
8080 
8081 	PRESERVE(tcp->tcp_family);
8082 	if (tcp->tcp_family == AF_INET6) {
8083 		tcp->tcp_ipversion = IPV6_VERSION;
8084 		tcp->tcp_mss = tcp_mss_def_ipv6;
8085 	} else {
8086 		tcp->tcp_ipversion = IPV4_VERSION;
8087 		tcp->tcp_mss = tcp_mss_def_ipv4;
8088 	}
8089 
8090 	tcp->tcp_bound_if = 0;
8091 	tcp->tcp_ipv6_recvancillary = 0;
8092 	tcp->tcp_recvifindex = 0;
8093 	tcp->tcp_recvhops = 0;
8094 	tcp->tcp_closed = 0;
8095 	tcp->tcp_cleandeathtag = 0;
8096 	if (tcp->tcp_hopopts != NULL) {
8097 		mi_free(tcp->tcp_hopopts);
8098 		tcp->tcp_hopopts = NULL;
8099 		tcp->tcp_hopoptslen = 0;
8100 	}
8101 	ASSERT(tcp->tcp_hopoptslen == 0);
8102 	if (tcp->tcp_dstopts != NULL) {
8103 		mi_free(tcp->tcp_dstopts);
8104 		tcp->tcp_dstopts = NULL;
8105 		tcp->tcp_dstoptslen = 0;
8106 	}
8107 	ASSERT(tcp->tcp_dstoptslen == 0);
8108 	if (tcp->tcp_rtdstopts != NULL) {
8109 		mi_free(tcp->tcp_rtdstopts);
8110 		tcp->tcp_rtdstopts = NULL;
8111 		tcp->tcp_rtdstoptslen = 0;
8112 	}
8113 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8114 	if (tcp->tcp_rthdr != NULL) {
8115 		mi_free(tcp->tcp_rthdr);
8116 		tcp->tcp_rthdr = NULL;
8117 		tcp->tcp_rthdrlen = 0;
8118 	}
8119 	ASSERT(tcp->tcp_rthdrlen == 0);
8120 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8121 
8122 	/* Reset fusion-related fields */
8123 	tcp->tcp_fused = B_FALSE;
8124 	tcp->tcp_unfusable = B_FALSE;
8125 	tcp->tcp_fused_sigurg = B_FALSE;
8126 	tcp->tcp_direct_sockfs = B_FALSE;
8127 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8128 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8129 	tcp->tcp_loopback_peer = NULL;
8130 	tcp->tcp_fuse_rcv_hiwater = 0;
8131 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8132 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8133 
8134 	tcp->tcp_lso = B_FALSE;
8135 
8136 	tcp->tcp_in_ack_unsent = 0;
8137 	tcp->tcp_cork = B_FALSE;
8138 	tcp->tcp_tconnind_started = B_FALSE;
8139 
8140 	PRESERVE(tcp->tcp_squeue_bytes);
8141 
8142 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8143 	ASSERT(!tcp->tcp_kssl_pending);
8144 	PRESERVE(tcp->tcp_kssl_ent);
8145 
8146 	tcp->tcp_closemp_used = 0;
8147 
8148 #ifdef DEBUG
8149 	DONTCARE(tcp->tcmp_stk[0]);
8150 #endif
8151 
8152 
8153 #undef	DONTCARE
8154 #undef	PRESERVE
8155 }
8156 
8157 /*
8158  * Allocate necessary resources and initialize state vector.
8159  * Guaranteed not to fail so that when an error is returned,
8160  * the caller doesn't need to do any additional cleanup.
8161  */
8162 int
8163 tcp_init(tcp_t *tcp, queue_t *q)
8164 {
8165 	int	err;
8166 
8167 	tcp->tcp_rq = q;
8168 	tcp->tcp_wq = WR(q);
8169 	tcp->tcp_state = TCPS_IDLE;
8170 	if ((err = tcp_init_values(tcp)) != 0)
8171 		tcp_timers_stop(tcp);
8172 	return (err);
8173 }
8174 
8175 static int
8176 tcp_init_values(tcp_t *tcp)
8177 {
8178 	int	err;
8179 
8180 	ASSERT((tcp->tcp_family == AF_INET &&
8181 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8182 	    (tcp->tcp_family == AF_INET6 &&
8183 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8184 	    tcp->tcp_ipversion == IPV6_VERSION)));
8185 
8186 	/*
8187 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8188 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8189 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8190 	 * during first few transmissions of a connection as seen in slow
8191 	 * links.
8192 	 */
8193 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
8194 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
8195 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8196 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8197 	    tcp_conn_grace_period;
8198 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
8199 		tcp->tcp_rto = tcp_rexmit_interval_min;
8200 	tcp->tcp_timer_backoff = 0;
8201 	tcp->tcp_ms_we_have_waited = 0;
8202 	tcp->tcp_last_recv_time = lbolt;
8203 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
8204 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8205 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8206 
8207 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
8208 
8209 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
8210 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
8211 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
8212 	/*
8213 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8214 	 * passive open.
8215 	 */
8216 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
8217 
8218 	tcp->tcp_naglim = tcp_naglim_def;
8219 
8220 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8221 
8222 	tcp->tcp_mdt_hdr_head = 0;
8223 	tcp->tcp_mdt_hdr_tail = 0;
8224 
8225 	/* Reset fusion-related fields */
8226 	tcp->tcp_fused = B_FALSE;
8227 	tcp->tcp_unfusable = B_FALSE;
8228 	tcp->tcp_fused_sigurg = B_FALSE;
8229 	tcp->tcp_direct_sockfs = B_FALSE;
8230 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8231 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8232 	tcp->tcp_loopback_peer = NULL;
8233 	tcp->tcp_fuse_rcv_hiwater = 0;
8234 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8235 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8236 
8237 	/* Initialize the header template */
8238 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8239 		err = tcp_header_init_ipv4(tcp);
8240 	} else {
8241 		err = tcp_header_init_ipv6(tcp);
8242 	}
8243 	if (err)
8244 		return (err);
8245 
8246 	/*
8247 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8248 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8249 	 */
8250 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8251 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8252 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8253 
8254 	tcp->tcp_cork = B_FALSE;
8255 	/*
8256 	 * Init the tcp_debug option.  This value determines whether TCP
8257 	 * calls strlog() to print out debug messages.  Doing this
8258 	 * initialization here means that this value is not inherited thru
8259 	 * tcp_reinit().
8260 	 */
8261 	tcp->tcp_debug = tcp_dbg;
8262 
8263 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8264 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8265 
8266 	return (0);
8267 }
8268 
8269 /*
8270  * Initialize the IPv4 header. Loses any record of any IP options.
8271  */
8272 static int
8273 tcp_header_init_ipv4(tcp_t *tcp)
8274 {
8275 	tcph_t		*tcph;
8276 	uint32_t	sum;
8277 	conn_t		*connp;
8278 
8279 	/*
8280 	 * This is a simple initialization. If there's
8281 	 * already a template, it should never be too small,
8282 	 * so reuse it.  Otherwise, allocate space for the new one.
8283 	 */
8284 	if (tcp->tcp_iphc == NULL) {
8285 		ASSERT(tcp->tcp_iphc_len == 0);
8286 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8287 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8288 		if (tcp->tcp_iphc == NULL) {
8289 			tcp->tcp_iphc_len = 0;
8290 			return (ENOMEM);
8291 		}
8292 	}
8293 
8294 	/* options are gone; may need a new label */
8295 	connp = tcp->tcp_connp;
8296 	connp->conn_mlp_type = mlptSingle;
8297 	connp->conn_ulp_labeled = !is_system_labeled();
8298 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8299 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8300 	tcp->tcp_ip6h = NULL;
8301 	tcp->tcp_ipversion = IPV4_VERSION;
8302 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8303 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8304 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8305 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8306 	tcp->tcp_ipha->ipha_version_and_hdr_length
8307 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8308 	tcp->tcp_ipha->ipha_ident = 0;
8309 
8310 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8311 	tcp->tcp_tos = 0;
8312 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8313 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8314 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8315 
8316 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8317 	tcp->tcp_tcph = tcph;
8318 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8319 	/*
8320 	 * IP wants our header length in the checksum field to
8321 	 * allow it to perform a single pseudo-header+checksum
8322 	 * calculation on behalf of TCP.
8323 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8324 	 */
8325 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8326 	sum = (sum >> 16) + (sum & 0xFFFF);
8327 	U16_TO_ABE16(sum, tcph->th_sum);
8328 	return (0);
8329 }
8330 
8331 /*
8332  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8333  */
8334 static int
8335 tcp_header_init_ipv6(tcp_t *tcp)
8336 {
8337 	tcph_t	*tcph;
8338 	uint32_t	sum;
8339 	conn_t	*connp;
8340 
8341 	/*
8342 	 * This is a simple initialization. If there's
8343 	 * already a template, it should never be too small,
8344 	 * so reuse it. Otherwise, allocate space for the new one.
8345 	 * Ensure that there is enough space to "downgrade" the tcp_t
8346 	 * to an IPv4 tcp_t. This requires having space for a full load
8347 	 * of IPv4 options, as well as a full load of TCP options
8348 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8349 	 * than a v6 header and a TCP header with a full load of TCP options
8350 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8351 	 * We want to avoid reallocation in the "downgraded" case when
8352 	 * processing outbound IPv4 options.
8353 	 */
8354 	if (tcp->tcp_iphc == NULL) {
8355 		ASSERT(tcp->tcp_iphc_len == 0);
8356 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8357 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8358 		if (tcp->tcp_iphc == NULL) {
8359 			tcp->tcp_iphc_len = 0;
8360 			return (ENOMEM);
8361 		}
8362 	}
8363 
8364 	/* options are gone; may need a new label */
8365 	connp = tcp->tcp_connp;
8366 	connp->conn_mlp_type = mlptSingle;
8367 	connp->conn_ulp_labeled = !is_system_labeled();
8368 
8369 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8370 	tcp->tcp_ipversion = IPV6_VERSION;
8371 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8372 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8373 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8374 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8375 	tcp->tcp_ipha = NULL;
8376 
8377 	/* Initialize the header template */
8378 
8379 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8380 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8381 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8382 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8383 
8384 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8385 	tcp->tcp_tcph = tcph;
8386 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8387 	/*
8388 	 * IP wants our header length in the checksum field to
8389 	 * allow it to perform a single psuedo-header+checksum
8390 	 * calculation on behalf of TCP.
8391 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8392 	 */
8393 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8394 	sum = (sum >> 16) + (sum & 0xFFFF);
8395 	U16_TO_ABE16(sum, tcph->th_sum);
8396 	return (0);
8397 }
8398 
8399 /* At minimum we need 8 bytes in the TCP header for the lookup */
8400 #define	ICMP_MIN_TCP_HDR	8
8401 
8402 /*
8403  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8404  * passed up by IP. The message is always received on the correct tcp_t.
8405  * Assumes that IP has pulled up everything up to and including the ICMP header.
8406  */
8407 void
8408 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8409 {
8410 	icmph_t *icmph;
8411 	ipha_t	*ipha;
8412 	int	iph_hdr_length;
8413 	tcph_t	*tcph;
8414 	boolean_t ipsec_mctl = B_FALSE;
8415 	boolean_t secure;
8416 	mblk_t *first_mp = mp;
8417 	uint32_t new_mss;
8418 	uint32_t ratio;
8419 	size_t mp_size = MBLKL(mp);
8420 	uint32_t seg_seq;
8421 
8422 	/* Assume IP provides aligned packets - otherwise toss */
8423 	if (!OK_32PTR(mp->b_rptr)) {
8424 		freemsg(mp);
8425 		return;
8426 	}
8427 
8428 	/*
8429 	 * Since ICMP errors are normal data marked with M_CTL when sent
8430 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8431 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8432 	 */
8433 	if ((mp_size == sizeof (ipsec_info_t)) &&
8434 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8435 		ASSERT(mp->b_cont != NULL);
8436 		mp = mp->b_cont;
8437 		/* IP should have done this */
8438 		ASSERT(OK_32PTR(mp->b_rptr));
8439 		mp_size = MBLKL(mp);
8440 		ipsec_mctl = B_TRUE;
8441 	}
8442 
8443 	/*
8444 	 * Verify that we have a complete outer IP header. If not, drop it.
8445 	 */
8446 	if (mp_size < sizeof (ipha_t)) {
8447 noticmpv4:
8448 		freemsg(first_mp);
8449 		return;
8450 	}
8451 
8452 	ipha = (ipha_t *)mp->b_rptr;
8453 	/*
8454 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8455 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8456 	 */
8457 	switch (IPH_HDR_VERSION(ipha)) {
8458 	case IPV6_VERSION:
8459 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8460 		return;
8461 	case IPV4_VERSION:
8462 		break;
8463 	default:
8464 		goto noticmpv4;
8465 	}
8466 
8467 	/* Skip past the outer IP and ICMP headers */
8468 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8469 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8470 	/*
8471 	 * If we don't have the correct outer IP header length or if the ULP
8472 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8473 	 * send it upstream.
8474 	 */
8475 	if (iph_hdr_length < sizeof (ipha_t) ||
8476 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8477 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8478 		goto noticmpv4;
8479 	}
8480 	ipha = (ipha_t *)&icmph[1];
8481 
8482 	/* Skip past the inner IP and find the ULP header */
8483 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8484 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8485 	/*
8486 	 * If we don't have the correct inner IP header length or if the ULP
8487 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8488 	 * bytes of TCP header, drop it.
8489 	 */
8490 	if (iph_hdr_length < sizeof (ipha_t) ||
8491 	    ipha->ipha_protocol != IPPROTO_TCP ||
8492 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8493 		goto noticmpv4;
8494 	}
8495 
8496 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8497 		if (ipsec_mctl) {
8498 			secure = ipsec_in_is_secure(first_mp);
8499 		} else {
8500 			secure = B_FALSE;
8501 		}
8502 		if (secure) {
8503 			/*
8504 			 * If we are willing to accept this in clear
8505 			 * we don't have to verify policy.
8506 			 */
8507 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8508 				if (!tcp_check_policy(tcp, first_mp,
8509 				    ipha, NULL, secure, ipsec_mctl)) {
8510 					/*
8511 					 * tcp_check_policy called
8512 					 * ip_drop_packet() on failure.
8513 					 */
8514 					return;
8515 				}
8516 			}
8517 		}
8518 	} else if (ipsec_mctl) {
8519 		/*
8520 		 * This is a hard_bound connection. IP has already
8521 		 * verified policy. We don't have to do it again.
8522 		 */
8523 		freeb(first_mp);
8524 		first_mp = mp;
8525 		ipsec_mctl = B_FALSE;
8526 	}
8527 
8528 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8529 	/*
8530 	 * TCP SHOULD check that the TCP sequence number contained in
8531 	 * payload of the ICMP error message is within the range
8532 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8533 	 */
8534 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8535 		/*
8536 		 * If the ICMP message is bogus, should we kill the
8537 		 * connection, or should we just drop the bogus ICMP
8538 		 * message? It would probably make more sense to just
8539 		 * drop the message so that if this one managed to get
8540 		 * in, the real connection should not suffer.
8541 		 */
8542 		goto noticmpv4;
8543 	}
8544 
8545 	switch (icmph->icmph_type) {
8546 	case ICMP_DEST_UNREACHABLE:
8547 		switch (icmph->icmph_code) {
8548 		case ICMP_FRAGMENTATION_NEEDED:
8549 			/*
8550 			 * Reduce the MSS based on the new MTU.  This will
8551 			 * eliminate any fragmentation locally.
8552 			 * N.B.  There may well be some funny side-effects on
8553 			 * the local send policy and the remote receive policy.
8554 			 * Pending further research, we provide
8555 			 * tcp_ignore_path_mtu just in case this proves
8556 			 * disastrous somewhere.
8557 			 *
8558 			 * After updating the MSS, retransmit part of the
8559 			 * dropped segment using the new mss by calling
8560 			 * tcp_wput_data().  Need to adjust all those
8561 			 * params to make sure tcp_wput_data() work properly.
8562 			 */
8563 			if (tcp_ignore_path_mtu)
8564 				break;
8565 
8566 			/*
8567 			 * Decrease the MSS by time stamp options
8568 			 * IP options and IPSEC options. tcp_hdr_len
8569 			 * includes time stamp option and IP option
8570 			 * length.
8571 			 */
8572 
8573 			new_mss = ntohs(icmph->icmph_du_mtu) -
8574 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8575 
8576 			/*
8577 			 * Only update the MSS if the new one is
8578 			 * smaller than the previous one.  This is
8579 			 * to avoid problems when getting multiple
8580 			 * ICMP errors for the same MTU.
8581 			 */
8582 			if (new_mss >= tcp->tcp_mss)
8583 				break;
8584 
8585 			/*
8586 			 * Stop doing PMTU if new_mss is less than 68
8587 			 * or less than tcp_mss_min.
8588 			 * The value 68 comes from rfc 1191.
8589 			 */
8590 			if (new_mss < MAX(68, tcp_mss_min))
8591 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8592 				    0;
8593 
8594 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8595 			ASSERT(ratio >= 1);
8596 			tcp_mss_set(tcp, new_mss);
8597 
8598 			/*
8599 			 * Make sure we have something to
8600 			 * send.
8601 			 */
8602 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8603 			    (tcp->tcp_xmit_head != NULL)) {
8604 				/*
8605 				 * Shrink tcp_cwnd in
8606 				 * proportion to the old MSS/new MSS.
8607 				 */
8608 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8609 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8610 				    (tcp->tcp_unsent == 0)) {
8611 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8612 				} else {
8613 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8614 				}
8615 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8616 				tcp->tcp_rexmit = B_TRUE;
8617 				tcp->tcp_dupack_cnt = 0;
8618 				tcp->tcp_snd_burst = TCP_CWND_SS;
8619 				tcp_ss_rexmit(tcp);
8620 			}
8621 			break;
8622 		case ICMP_PORT_UNREACHABLE:
8623 		case ICMP_PROTOCOL_UNREACHABLE:
8624 			switch (tcp->tcp_state) {
8625 			case TCPS_SYN_SENT:
8626 			case TCPS_SYN_RCVD:
8627 				/*
8628 				 * ICMP can snipe away incipient
8629 				 * TCP connections as long as
8630 				 * seq number is same as initial
8631 				 * send seq number.
8632 				 */
8633 				if (seg_seq == tcp->tcp_iss) {
8634 					(void) tcp_clean_death(tcp,
8635 					    ECONNREFUSED, 6);
8636 				}
8637 				break;
8638 			}
8639 			break;
8640 		case ICMP_HOST_UNREACHABLE:
8641 		case ICMP_NET_UNREACHABLE:
8642 			/* Record the error in case we finally time out. */
8643 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8644 				tcp->tcp_client_errno = EHOSTUNREACH;
8645 			else
8646 				tcp->tcp_client_errno = ENETUNREACH;
8647 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8648 				if (tcp->tcp_listener != NULL &&
8649 				    tcp->tcp_listener->tcp_syn_defense) {
8650 					/*
8651 					 * Ditch the half-open connection if we
8652 					 * suspect a SYN attack is under way.
8653 					 */
8654 					tcp_ip_ire_mark_advice(tcp);
8655 					(void) tcp_clean_death(tcp,
8656 					    tcp->tcp_client_errno, 7);
8657 				}
8658 			}
8659 			break;
8660 		default:
8661 			break;
8662 		}
8663 		break;
8664 	case ICMP_SOURCE_QUENCH: {
8665 		/*
8666 		 * use a global boolean to control
8667 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8668 		 * The default is false.
8669 		 */
8670 		if (tcp_icmp_source_quench) {
8671 			/*
8672 			 * Reduce the sending rate as if we got a
8673 			 * retransmit timeout
8674 			 */
8675 			uint32_t npkt;
8676 
8677 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8678 			    tcp->tcp_mss;
8679 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8680 			tcp->tcp_cwnd = tcp->tcp_mss;
8681 			tcp->tcp_cwnd_cnt = 0;
8682 		}
8683 		break;
8684 	}
8685 	}
8686 	freemsg(first_mp);
8687 }
8688 
8689 /*
8690  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8691  * error messages passed up by IP.
8692  * Assumes that IP has pulled up all the extension headers as well
8693  * as the ICMPv6 header.
8694  */
8695 static void
8696 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8697 {
8698 	icmp6_t *icmp6;
8699 	ip6_t	*ip6h;
8700 	uint16_t	iph_hdr_length;
8701 	tcpha_t	*tcpha;
8702 	uint8_t	*nexthdrp;
8703 	uint32_t new_mss;
8704 	uint32_t ratio;
8705 	boolean_t secure;
8706 	mblk_t *first_mp = mp;
8707 	size_t mp_size;
8708 	uint32_t seg_seq;
8709 
8710 	/*
8711 	 * The caller has determined if this is an IPSEC_IN packet and
8712 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8713 	 */
8714 	if (ipsec_mctl)
8715 		mp = mp->b_cont;
8716 
8717 	mp_size = MBLKL(mp);
8718 
8719 	/*
8720 	 * Verify that we have a complete IP header. If not, send it upstream.
8721 	 */
8722 	if (mp_size < sizeof (ip6_t)) {
8723 noticmpv6:
8724 		freemsg(first_mp);
8725 		return;
8726 	}
8727 
8728 	/*
8729 	 * Verify this is an ICMPV6 packet, else send it upstream.
8730 	 */
8731 	ip6h = (ip6_t *)mp->b_rptr;
8732 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8733 		iph_hdr_length = IPV6_HDR_LEN;
8734 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8735 	    &nexthdrp) ||
8736 	    *nexthdrp != IPPROTO_ICMPV6) {
8737 		goto noticmpv6;
8738 	}
8739 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8740 	ip6h = (ip6_t *)&icmp6[1];
8741 	/*
8742 	 * Verify if we have a complete ICMP and inner IP header.
8743 	 */
8744 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8745 		goto noticmpv6;
8746 
8747 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8748 		goto noticmpv6;
8749 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8750 	/*
8751 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8752 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8753 	 * packet.
8754 	 */
8755 	if ((*nexthdrp != IPPROTO_TCP) ||
8756 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8757 		goto noticmpv6;
8758 	}
8759 
8760 	/*
8761 	 * ICMP errors come on the right queue or come on
8762 	 * listener/global queue for detached connections and
8763 	 * get switched to the right queue. If it comes on the
8764 	 * right queue, policy check has already been done by IP
8765 	 * and thus free the first_mp without verifying the policy.
8766 	 * If it has come for a non-hard bound connection, we need
8767 	 * to verify policy as IP may not have done it.
8768 	 */
8769 	if (!tcp->tcp_hard_bound) {
8770 		if (ipsec_mctl) {
8771 			secure = ipsec_in_is_secure(first_mp);
8772 		} else {
8773 			secure = B_FALSE;
8774 		}
8775 		if (secure) {
8776 			/*
8777 			 * If we are willing to accept this in clear
8778 			 * we don't have to verify policy.
8779 			 */
8780 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8781 				if (!tcp_check_policy(tcp, first_mp,
8782 				    NULL, ip6h, secure, ipsec_mctl)) {
8783 					/*
8784 					 * tcp_check_policy called
8785 					 * ip_drop_packet() on failure.
8786 					 */
8787 					return;
8788 				}
8789 			}
8790 		}
8791 	} else if (ipsec_mctl) {
8792 		/*
8793 		 * This is a hard_bound connection. IP has already
8794 		 * verified policy. We don't have to do it again.
8795 		 */
8796 		freeb(first_mp);
8797 		first_mp = mp;
8798 		ipsec_mctl = B_FALSE;
8799 	}
8800 
8801 	seg_seq = ntohl(tcpha->tha_seq);
8802 	/*
8803 	 * TCP SHOULD check that the TCP sequence number contained in
8804 	 * payload of the ICMP error message is within the range
8805 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8806 	 */
8807 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8808 		/*
8809 		 * If the ICMP message is bogus, should we kill the
8810 		 * connection, or should we just drop the bogus ICMP
8811 		 * message? It would probably make more sense to just
8812 		 * drop the message so that if this one managed to get
8813 		 * in, the real connection should not suffer.
8814 		 */
8815 		goto noticmpv6;
8816 	}
8817 
8818 	switch (icmp6->icmp6_type) {
8819 	case ICMP6_PACKET_TOO_BIG:
8820 		/*
8821 		 * Reduce the MSS based on the new MTU.  This will
8822 		 * eliminate any fragmentation locally.
8823 		 * N.B.  There may well be some funny side-effects on
8824 		 * the local send policy and the remote receive policy.
8825 		 * Pending further research, we provide
8826 		 * tcp_ignore_path_mtu just in case this proves
8827 		 * disastrous somewhere.
8828 		 *
8829 		 * After updating the MSS, retransmit part of the
8830 		 * dropped segment using the new mss by calling
8831 		 * tcp_wput_data().  Need to adjust all those
8832 		 * params to make sure tcp_wput_data() work properly.
8833 		 */
8834 		if (tcp_ignore_path_mtu)
8835 			break;
8836 
8837 		/*
8838 		 * Decrease the MSS by time stamp options
8839 		 * IP options and IPSEC options. tcp_hdr_len
8840 		 * includes time stamp option and IP option
8841 		 * length.
8842 		 */
8843 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8844 			    tcp->tcp_ipsec_overhead;
8845 
8846 		/*
8847 		 * Only update the MSS if the new one is
8848 		 * smaller than the previous one.  This is
8849 		 * to avoid problems when getting multiple
8850 		 * ICMP errors for the same MTU.
8851 		 */
8852 		if (new_mss >= tcp->tcp_mss)
8853 			break;
8854 
8855 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8856 		ASSERT(ratio >= 1);
8857 		tcp_mss_set(tcp, new_mss);
8858 
8859 		/*
8860 		 * Make sure we have something to
8861 		 * send.
8862 		 */
8863 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8864 		    (tcp->tcp_xmit_head != NULL)) {
8865 			/*
8866 			 * Shrink tcp_cwnd in
8867 			 * proportion to the old MSS/new MSS.
8868 			 */
8869 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8870 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8871 			    (tcp->tcp_unsent == 0)) {
8872 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8873 			} else {
8874 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8875 			}
8876 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8877 			tcp->tcp_rexmit = B_TRUE;
8878 			tcp->tcp_dupack_cnt = 0;
8879 			tcp->tcp_snd_burst = TCP_CWND_SS;
8880 			tcp_ss_rexmit(tcp);
8881 		}
8882 		break;
8883 
8884 	case ICMP6_DST_UNREACH:
8885 		switch (icmp6->icmp6_code) {
8886 		case ICMP6_DST_UNREACH_NOPORT:
8887 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8888 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8889 			    (seg_seq == tcp->tcp_iss)) {
8890 				(void) tcp_clean_death(tcp,
8891 				    ECONNREFUSED, 8);
8892 			}
8893 			break;
8894 
8895 		case ICMP6_DST_UNREACH_ADMIN:
8896 		case ICMP6_DST_UNREACH_NOROUTE:
8897 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8898 		case ICMP6_DST_UNREACH_ADDR:
8899 			/* Record the error in case we finally time out. */
8900 			tcp->tcp_client_errno = EHOSTUNREACH;
8901 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8902 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8903 			    (seg_seq == tcp->tcp_iss)) {
8904 				if (tcp->tcp_listener != NULL &&
8905 				    tcp->tcp_listener->tcp_syn_defense) {
8906 					/*
8907 					 * Ditch the half-open connection if we
8908 					 * suspect a SYN attack is under way.
8909 					 */
8910 					tcp_ip_ire_mark_advice(tcp);
8911 					(void) tcp_clean_death(tcp,
8912 					    tcp->tcp_client_errno, 9);
8913 				}
8914 			}
8915 
8916 
8917 			break;
8918 		default:
8919 			break;
8920 		}
8921 		break;
8922 
8923 	case ICMP6_PARAM_PROB:
8924 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8925 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8926 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8927 		    (uchar_t *)nexthdrp) {
8928 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8929 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8930 				(void) tcp_clean_death(tcp,
8931 				    ECONNREFUSED, 10);
8932 			}
8933 			break;
8934 		}
8935 		break;
8936 
8937 	case ICMP6_TIME_EXCEEDED:
8938 	default:
8939 		break;
8940 	}
8941 	freemsg(first_mp);
8942 }
8943 
8944 /*
8945  * IP recognizes seven kinds of bind requests:
8946  *
8947  * - A zero-length address binds only to the protocol number.
8948  *
8949  * - A 4-byte address is treated as a request to
8950  * validate that the address is a valid local IPv4
8951  * address, appropriate for an application to bind to.
8952  * IP does the verification, but does not make any note
8953  * of the address at this time.
8954  *
8955  * - A 16-byte address contains is treated as a request
8956  * to validate a local IPv6 address, as the 4-byte
8957  * address case above.
8958  *
8959  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8960  * use it for the inbound fanout of packets.
8961  *
8962  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8963  * use it for the inbound fanout of packets.
8964  *
8965  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8966  * information consisting of local and remote addresses
8967  * and ports.  In this case, the addresses are both
8968  * validated as appropriate for this operation, and, if
8969  * so, the information is retained for use in the
8970  * inbound fanout.
8971  *
8972  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8973  * fanout information, like the 12-byte case above.
8974  *
8975  * IP will also fill in the IRE request mblk with information
8976  * regarding our peer.  In all cases, we notify IP of our protocol
8977  * type by appending a single protocol byte to the bind request.
8978  */
8979 static mblk_t *
8980 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8981 {
8982 	char	*cp;
8983 	mblk_t	*mp;
8984 	struct T_bind_req *tbr;
8985 	ipa_conn_t	*ac;
8986 	ipa6_conn_t	*ac6;
8987 	sin_t		*sin;
8988 	sin6_t		*sin6;
8989 
8990 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8991 	ASSERT((tcp->tcp_family == AF_INET &&
8992 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8993 	    (tcp->tcp_family == AF_INET6 &&
8994 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8995 	    tcp->tcp_ipversion == IPV6_VERSION)));
8996 
8997 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
8998 	if (!mp)
8999 		return (mp);
9000 	mp->b_datap->db_type = M_PROTO;
9001 	tbr = (struct T_bind_req *)mp->b_rptr;
9002 	tbr->PRIM_type = bind_prim;
9003 	tbr->ADDR_offset = sizeof (*tbr);
9004 	tbr->CONIND_number = 0;
9005 	tbr->ADDR_length = addr_length;
9006 	cp = (char *)&tbr[1];
9007 	switch (addr_length) {
9008 	case sizeof (ipa_conn_t):
9009 		ASSERT(tcp->tcp_family == AF_INET);
9010 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9011 
9012 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9013 		if (mp->b_cont == NULL) {
9014 			freemsg(mp);
9015 			return (NULL);
9016 		}
9017 		mp->b_cont->b_wptr += sizeof (ire_t);
9018 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9019 
9020 		/* cp known to be 32 bit aligned */
9021 		ac = (ipa_conn_t *)cp;
9022 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9023 		ac->ac_faddr = tcp->tcp_remote;
9024 		ac->ac_fport = tcp->tcp_fport;
9025 		ac->ac_lport = tcp->tcp_lport;
9026 		tcp->tcp_hard_binding = 1;
9027 		break;
9028 
9029 	case sizeof (ipa6_conn_t):
9030 		ASSERT(tcp->tcp_family == AF_INET6);
9031 
9032 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9033 		if (mp->b_cont == NULL) {
9034 			freemsg(mp);
9035 			return (NULL);
9036 		}
9037 		mp->b_cont->b_wptr += sizeof (ire_t);
9038 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9039 
9040 		/* cp known to be 32 bit aligned */
9041 		ac6 = (ipa6_conn_t *)cp;
9042 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9043 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9044 			    &ac6->ac6_laddr);
9045 		} else {
9046 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9047 		}
9048 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9049 		ac6->ac6_fport = tcp->tcp_fport;
9050 		ac6->ac6_lport = tcp->tcp_lport;
9051 		tcp->tcp_hard_binding = 1;
9052 		break;
9053 
9054 	case sizeof (sin_t):
9055 		/*
9056 		 * NOTE: IPV6_ADDR_LEN also has same size.
9057 		 * Use family to discriminate.
9058 		 */
9059 		if (tcp->tcp_family == AF_INET) {
9060 			sin = (sin_t *)cp;
9061 
9062 			*sin = sin_null;
9063 			sin->sin_family = AF_INET;
9064 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9065 			sin->sin_port = tcp->tcp_lport;
9066 			break;
9067 		} else {
9068 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9069 		}
9070 		break;
9071 
9072 	case sizeof (sin6_t):
9073 		ASSERT(tcp->tcp_family == AF_INET6);
9074 		sin6 = (sin6_t *)cp;
9075 
9076 		*sin6 = sin6_null;
9077 		sin6->sin6_family = AF_INET6;
9078 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9079 		sin6->sin6_port = tcp->tcp_lport;
9080 		break;
9081 
9082 	case IP_ADDR_LEN:
9083 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9084 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9085 		break;
9086 
9087 	}
9088 	/* Add protocol number to end */
9089 	cp[addr_length] = (char)IPPROTO_TCP;
9090 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9091 	return (mp);
9092 }
9093 
9094 /*
9095  * Notify IP that we are having trouble with this connection.  IP should
9096  * blow the IRE away and start over.
9097  */
9098 static void
9099 tcp_ip_notify(tcp_t *tcp)
9100 {
9101 	struct iocblk	*iocp;
9102 	ipid_t	*ipid;
9103 	mblk_t	*mp;
9104 
9105 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9106 	if (tcp->tcp_ipversion == IPV6_VERSION)
9107 		return;
9108 
9109 	mp = mkiocb(IP_IOCTL);
9110 	if (mp == NULL)
9111 		return;
9112 
9113 	iocp = (struct iocblk *)mp->b_rptr;
9114 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9115 
9116 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9117 	if (!mp->b_cont) {
9118 		freeb(mp);
9119 		return;
9120 	}
9121 
9122 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9123 	mp->b_cont->b_wptr += iocp->ioc_count;
9124 	bzero(ipid, sizeof (*ipid));
9125 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9126 	ipid->ipid_ire_type = IRE_CACHE;
9127 	ipid->ipid_addr_offset = sizeof (ipid_t);
9128 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9129 	/*
9130 	 * Note: in the case of source routing we want to blow away the
9131 	 * route to the first source route hop.
9132 	 */
9133 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9134 	    sizeof (tcp->tcp_ipha->ipha_dst));
9135 
9136 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9137 }
9138 
9139 /* Unlink and return any mblk that looks like it contains an ire */
9140 static mblk_t *
9141 tcp_ire_mp(mblk_t *mp)
9142 {
9143 	mblk_t	*prev_mp;
9144 
9145 	for (;;) {
9146 		prev_mp = mp;
9147 		mp = mp->b_cont;
9148 		if (mp == NULL)
9149 			break;
9150 		switch (DB_TYPE(mp)) {
9151 		case IRE_DB_TYPE:
9152 		case IRE_DB_REQ_TYPE:
9153 			if (prev_mp != NULL)
9154 				prev_mp->b_cont = mp->b_cont;
9155 			mp->b_cont = NULL;
9156 			return (mp);
9157 		default:
9158 			break;
9159 		}
9160 	}
9161 	return (mp);
9162 }
9163 
9164 /*
9165  * Timer callback routine for keepalive probe.  We do a fake resend of
9166  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9167  * check to see if we have heard anything from the other end for the last
9168  * RTO period.  If we have, set the timer to expire for another
9169  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9170  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9171  * the timeout if we have not heard from the other side.  If for more than
9172  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9173  * kill the connection unless the keepalive abort threshold is 0.  In
9174  * that case, we will probe "forever."
9175  */
9176 static void
9177 tcp_keepalive_killer(void *arg)
9178 {
9179 	mblk_t	*mp;
9180 	conn_t	*connp = (conn_t *)arg;
9181 	tcp_t  	*tcp = connp->conn_tcp;
9182 	int32_t	firetime;
9183 	int32_t	idletime;
9184 	int32_t	ka_intrvl;
9185 
9186 	tcp->tcp_ka_tid = 0;
9187 
9188 	if (tcp->tcp_fused)
9189 		return;
9190 
9191 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
9192 	ka_intrvl = tcp->tcp_ka_interval;
9193 
9194 	/*
9195 	 * Keepalive probe should only be sent if the application has not
9196 	 * done a close on the connection.
9197 	 */
9198 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9199 		return;
9200 	}
9201 	/* Timer fired too early, restart it. */
9202 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9203 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9204 		    MSEC_TO_TICK(ka_intrvl));
9205 		return;
9206 	}
9207 
9208 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9209 	/*
9210 	 * If we have not heard from the other side for a long
9211 	 * time, kill the connection unless the keepalive abort
9212 	 * threshold is 0.  In that case, we will probe "forever."
9213 	 */
9214 	if (tcp->tcp_ka_abort_thres != 0 &&
9215 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9216 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
9217 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9218 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9219 		return;
9220 	}
9221 
9222 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9223 	    idletime >= ka_intrvl) {
9224 		/* Fake resend of last ACKed byte. */
9225 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9226 
9227 		if (mp1 != NULL) {
9228 			*mp1->b_wptr++ = '\0';
9229 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9230 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9231 			freeb(mp1);
9232 			/*
9233 			 * if allocation failed, fall through to start the
9234 			 * timer back.
9235 			 */
9236 			if (mp != NULL) {
9237 				TCP_RECORD_TRACE(tcp, mp,
9238 				    TCP_TRACE_SEND_PKT);
9239 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9240 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9241 				if (tcp->tcp_ka_last_intrvl != 0) {
9242 					/*
9243 					 * We should probe again at least
9244 					 * in ka_intrvl, but not more than
9245 					 * tcp_rexmit_interval_max.
9246 					 */
9247 					firetime = MIN(ka_intrvl - 1,
9248 					    tcp->tcp_ka_last_intrvl << 1);
9249 					if (firetime > tcp_rexmit_interval_max)
9250 						firetime =
9251 						    tcp_rexmit_interval_max;
9252 				} else {
9253 					firetime = tcp->tcp_rto;
9254 				}
9255 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9256 				    tcp_keepalive_killer,
9257 				    MSEC_TO_TICK(firetime));
9258 				tcp->tcp_ka_last_intrvl = firetime;
9259 				return;
9260 			}
9261 		}
9262 	} else {
9263 		tcp->tcp_ka_last_intrvl = 0;
9264 	}
9265 
9266 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9267 	if ((firetime = ka_intrvl - idletime) < 0) {
9268 		firetime = ka_intrvl;
9269 	}
9270 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9271 	    MSEC_TO_TICK(firetime));
9272 }
9273 
9274 int
9275 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9276 {
9277 	queue_t	*q = tcp->tcp_rq;
9278 	int32_t	mss = tcp->tcp_mss;
9279 	int	maxpsz;
9280 
9281 	if (TCP_IS_DETACHED(tcp))
9282 		return (mss);
9283 
9284 	if (tcp->tcp_fused) {
9285 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9286 		mss = INFPSZ;
9287 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9288 		/*
9289 		 * Set the sd_qn_maxpsz according to the socket send buffer
9290 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9291 		 * instruct the stream head to copyin user data into contiguous
9292 		 * kernel-allocated buffers without breaking it up into smaller
9293 		 * chunks.  We round up the buffer size to the nearest SMSS.
9294 		 */
9295 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9296 		if (tcp->tcp_kssl_ctx == NULL)
9297 			mss = INFPSZ;
9298 		else
9299 			mss = SSL3_MAX_RECORD_LEN;
9300 	} else {
9301 		/*
9302 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9303 		 * (and a multiple of the mss).  This instructs the stream
9304 		 * head to break down larger than SMSS writes into SMSS-
9305 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9306 		 */
9307 		maxpsz = tcp->tcp_maxpsz * mss;
9308 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9309 			maxpsz = tcp->tcp_xmit_hiwater/2;
9310 			/* Round up to nearest mss */
9311 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9312 		}
9313 	}
9314 	(void) setmaxps(q, maxpsz);
9315 	tcp->tcp_wq->q_maxpsz = maxpsz;
9316 
9317 	if (set_maxblk)
9318 		(void) mi_set_sth_maxblk(q, mss);
9319 
9320 	return (mss);
9321 }
9322 
9323 /*
9324  * Extract option values from a tcp header.  We put any found values into the
9325  * tcpopt struct and return a bitmask saying which options were found.
9326  */
9327 static int
9328 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9329 {
9330 	uchar_t		*endp;
9331 	int		len;
9332 	uint32_t	mss;
9333 	uchar_t		*up = (uchar_t *)tcph;
9334 	int		found = 0;
9335 	int32_t		sack_len;
9336 	tcp_seq		sack_begin, sack_end;
9337 	tcp_t		*tcp;
9338 
9339 	endp = up + TCP_HDR_LENGTH(tcph);
9340 	up += TCP_MIN_HEADER_LENGTH;
9341 	while (up < endp) {
9342 		len = endp - up;
9343 		switch (*up) {
9344 		case TCPOPT_EOL:
9345 			break;
9346 
9347 		case TCPOPT_NOP:
9348 			up++;
9349 			continue;
9350 
9351 		case TCPOPT_MAXSEG:
9352 			if (len < TCPOPT_MAXSEG_LEN ||
9353 			    up[1] != TCPOPT_MAXSEG_LEN)
9354 				break;
9355 
9356 			mss = BE16_TO_U16(up+2);
9357 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9358 			tcpopt->tcp_opt_mss = mss;
9359 			found |= TCP_OPT_MSS_PRESENT;
9360 
9361 			up += TCPOPT_MAXSEG_LEN;
9362 			continue;
9363 
9364 		case TCPOPT_WSCALE:
9365 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9366 				break;
9367 
9368 			if (up[2] > TCP_MAX_WINSHIFT)
9369 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9370 			else
9371 				tcpopt->tcp_opt_wscale = up[2];
9372 			found |= TCP_OPT_WSCALE_PRESENT;
9373 
9374 			up += TCPOPT_WS_LEN;
9375 			continue;
9376 
9377 		case TCPOPT_SACK_PERMITTED:
9378 			if (len < TCPOPT_SACK_OK_LEN ||
9379 			    up[1] != TCPOPT_SACK_OK_LEN)
9380 				break;
9381 			found |= TCP_OPT_SACK_OK_PRESENT;
9382 			up += TCPOPT_SACK_OK_LEN;
9383 			continue;
9384 
9385 		case TCPOPT_SACK:
9386 			if (len <= 2 || up[1] <= 2 || len < up[1])
9387 				break;
9388 
9389 			/* If TCP is not interested in SACK blks... */
9390 			if ((tcp = tcpopt->tcp) == NULL) {
9391 				up += up[1];
9392 				continue;
9393 			}
9394 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9395 			up += TCPOPT_HEADER_LEN;
9396 
9397 			/*
9398 			 * If the list is empty, allocate one and assume
9399 			 * nothing is sack'ed.
9400 			 */
9401 			ASSERT(tcp->tcp_sack_info != NULL);
9402 			if (tcp->tcp_notsack_list == NULL) {
9403 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9404 				    tcp->tcp_suna, tcp->tcp_snxt,
9405 				    &(tcp->tcp_num_notsack_blk),
9406 				    &(tcp->tcp_cnt_notsack_list));
9407 
9408 				/*
9409 				 * Make sure tcp_notsack_list is not NULL.
9410 				 * This happens when kmem_alloc(KM_NOSLEEP)
9411 				 * returns NULL.
9412 				 */
9413 				if (tcp->tcp_notsack_list == NULL) {
9414 					up += sack_len;
9415 					continue;
9416 				}
9417 				tcp->tcp_fack = tcp->tcp_suna;
9418 			}
9419 
9420 			while (sack_len > 0) {
9421 				if (up + 8 > endp) {
9422 					up = endp;
9423 					break;
9424 				}
9425 				sack_begin = BE32_TO_U32(up);
9426 				up += 4;
9427 				sack_end = BE32_TO_U32(up);
9428 				up += 4;
9429 				sack_len -= 8;
9430 				/*
9431 				 * Bounds checking.  Make sure the SACK
9432 				 * info is within tcp_suna and tcp_snxt.
9433 				 * If this SACK blk is out of bound, ignore
9434 				 * it but continue to parse the following
9435 				 * blks.
9436 				 */
9437 				if (SEQ_LEQ(sack_end, sack_begin) ||
9438 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9439 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9440 					continue;
9441 				}
9442 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9443 				    sack_begin, sack_end,
9444 				    &(tcp->tcp_num_notsack_blk),
9445 				    &(tcp->tcp_cnt_notsack_list));
9446 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9447 					tcp->tcp_fack = sack_end;
9448 				}
9449 			}
9450 			found |= TCP_OPT_SACK_PRESENT;
9451 			continue;
9452 
9453 		case TCPOPT_TSTAMP:
9454 			if (len < TCPOPT_TSTAMP_LEN ||
9455 			    up[1] != TCPOPT_TSTAMP_LEN)
9456 				break;
9457 
9458 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9459 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9460 
9461 			found |= TCP_OPT_TSTAMP_PRESENT;
9462 
9463 			up += TCPOPT_TSTAMP_LEN;
9464 			continue;
9465 
9466 		default:
9467 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9468 				break;
9469 			up += up[1];
9470 			continue;
9471 		}
9472 		break;
9473 	}
9474 	return (found);
9475 }
9476 
9477 /*
9478  * Set the mss associated with a particular tcp based on its current value,
9479  * and a new one passed in. Observe minimums and maximums, and reset
9480  * other state variables that we want to view as multiples of mss.
9481  *
9482  * This function is called in various places mainly because
9483  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9484  *    other side's SYN/SYN-ACK packet arrives.
9485  * 2) PMTUd may get us a new MSS.
9486  * 3) If the other side stops sending us timestamp option, we need to
9487  *    increase the MSS size to use the extra bytes available.
9488  */
9489 static void
9490 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9491 {
9492 	uint32_t	mss_max;
9493 
9494 	if (tcp->tcp_ipversion == IPV4_VERSION)
9495 		mss_max = tcp_mss_max_ipv4;
9496 	else
9497 		mss_max = tcp_mss_max_ipv6;
9498 
9499 	if (mss < tcp_mss_min)
9500 		mss = tcp_mss_min;
9501 	if (mss > mss_max)
9502 		mss = mss_max;
9503 	/*
9504 	 * Unless naglim has been set by our client to
9505 	 * a non-mss value, force naglim to track mss.
9506 	 * This can help to aggregate small writes.
9507 	 */
9508 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9509 		tcp->tcp_naglim = mss;
9510 	/*
9511 	 * TCP should be able to buffer at least 4 MSS data for obvious
9512 	 * performance reason.
9513 	 */
9514 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9515 		tcp->tcp_xmit_hiwater = mss << 2;
9516 
9517 	/*
9518 	 * Check if we need to apply the tcp_init_cwnd here.  If
9519 	 * it is set and the MSS gets bigger (should not happen
9520 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9521 	 * The new tcp_cwnd should not get bigger.
9522 	 */
9523 	if (tcp->tcp_init_cwnd == 0) {
9524 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9525 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9526 	} else {
9527 		if (tcp->tcp_mss < mss) {
9528 			tcp->tcp_cwnd = MAX(1,
9529 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9530 		} else {
9531 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9532 		}
9533 	}
9534 	tcp->tcp_mss = mss;
9535 	tcp->tcp_cwnd_cnt = 0;
9536 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9537 }
9538 
9539 static int
9540 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9541 {
9542 	tcp_t		*tcp = NULL;
9543 	conn_t		*connp;
9544 	int		err;
9545 	dev_t		conn_dev;
9546 	zoneid_t	zoneid = getzoneid();
9547 
9548 	/*
9549 	 * Special case for install: miniroot needs to be able to access files
9550 	 * via NFS as though it were always in the global zone.
9551 	 */
9552 	if (credp == kcred && nfs_global_client_only != 0)
9553 		zoneid = GLOBAL_ZONEID;
9554 
9555 	if (q->q_ptr != NULL)
9556 		return (0);
9557 
9558 	if (sflag == MODOPEN) {
9559 		/*
9560 		 * This is a special case. The purpose of a modopen
9561 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9562 		 * through for MIB browsers. Everything else is failed.
9563 		 */
9564 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9565 
9566 		if (connp == NULL)
9567 			return (ENOMEM);
9568 
9569 		connp->conn_flags |= IPCL_TCPMOD;
9570 		connp->conn_cred = credp;
9571 		connp->conn_zoneid = zoneid;
9572 		q->q_ptr = WR(q)->q_ptr = connp;
9573 		crhold(credp);
9574 		q->q_qinfo = &tcp_mod_rinit;
9575 		WR(q)->q_qinfo = &tcp_mod_winit;
9576 		qprocson(q);
9577 		return (0);
9578 	}
9579 
9580 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9581 		return (EBUSY);
9582 
9583 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9584 
9585 	if (flag & SO_ACCEPTOR) {
9586 		q->q_qinfo = &tcp_acceptor_rinit;
9587 		q->q_ptr = (void *)conn_dev;
9588 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9589 		WR(q)->q_ptr = (void *)conn_dev;
9590 		qprocson(q);
9591 		return (0);
9592 	}
9593 
9594 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9595 	if (connp == NULL) {
9596 		inet_minor_free(ip_minor_arena, conn_dev);
9597 		q->q_ptr = NULL;
9598 		return (ENOSR);
9599 	}
9600 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9601 	tcp = connp->conn_tcp;
9602 
9603 	q->q_ptr = WR(q)->q_ptr = connp;
9604 	if (getmajor(*devp) == TCP6_MAJ) {
9605 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9606 		connp->conn_send = ip_output_v6;
9607 		connp->conn_af_isv6 = B_TRUE;
9608 		connp->conn_pkt_isv6 = B_TRUE;
9609 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9610 		tcp->tcp_ipversion = IPV6_VERSION;
9611 		tcp->tcp_family = AF_INET6;
9612 		tcp->tcp_mss = tcp_mss_def_ipv6;
9613 	} else {
9614 		connp->conn_flags |= IPCL_TCP4;
9615 		connp->conn_send = ip_output;
9616 		connp->conn_af_isv6 = B_FALSE;
9617 		connp->conn_pkt_isv6 = B_FALSE;
9618 		tcp->tcp_ipversion = IPV4_VERSION;
9619 		tcp->tcp_family = AF_INET;
9620 		tcp->tcp_mss = tcp_mss_def_ipv4;
9621 	}
9622 
9623 	/*
9624 	 * TCP keeps a copy of cred for cache locality reasons but
9625 	 * we put a reference only once. If connp->conn_cred
9626 	 * becomes invalid, tcp_cred should also be set to NULL.
9627 	 */
9628 	tcp->tcp_cred = connp->conn_cred = credp;
9629 	crhold(connp->conn_cred);
9630 	tcp->tcp_cpid = curproc->p_pid;
9631 	connp->conn_zoneid = zoneid;
9632 	connp->conn_mlp_type = mlptSingle;
9633 	connp->conn_ulp_labeled = !is_system_labeled();
9634 
9635 	/*
9636 	 * If the caller has the process-wide flag set, then default to MAC
9637 	 * exempt mode.  This allows read-down to unlabeled hosts.
9638 	 */
9639 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9640 		connp->conn_mac_exempt = B_TRUE;
9641 
9642 	connp->conn_dev = conn_dev;
9643 
9644 	ASSERT(q->q_qinfo == &tcp_rinit);
9645 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9646 
9647 	if (flag & SO_SOCKSTR) {
9648 		/*
9649 		 * No need to insert a socket in tcp acceptor hash.
9650 		 * If it was a socket acceptor stream, we dealt with
9651 		 * it above. A socket listener can never accept a
9652 		 * connection and doesn't need acceptor_id.
9653 		 */
9654 		connp->conn_flags |= IPCL_SOCKET;
9655 		tcp->tcp_issocket = 1;
9656 		WR(q)->q_qinfo = &tcp_sock_winit;
9657 	} else {
9658 #ifdef	_ILP32
9659 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9660 #else
9661 		tcp->tcp_acceptor_id = conn_dev;
9662 #endif	/* _ILP32 */
9663 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9664 	}
9665 
9666 	if (tcp_trace)
9667 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9668 
9669 	err = tcp_init(tcp, q);
9670 	if (err != 0) {
9671 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9672 		tcp_acceptor_hash_remove(tcp);
9673 		CONN_DEC_REF(connp);
9674 		q->q_ptr = WR(q)->q_ptr = NULL;
9675 		return (err);
9676 	}
9677 
9678 	RD(q)->q_hiwat = tcp_recv_hiwat;
9679 	tcp->tcp_rwnd = tcp_recv_hiwat;
9680 
9681 	/* Non-zero default values */
9682 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9683 	/*
9684 	 * Put the ref for TCP. Ref for IP was already put
9685 	 * by ipcl_conn_create. Also Make the conn_t globally
9686 	 * visible to walkers
9687 	 */
9688 	mutex_enter(&connp->conn_lock);
9689 	CONN_INC_REF_LOCKED(connp);
9690 	ASSERT(connp->conn_ref == 2);
9691 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9692 	mutex_exit(&connp->conn_lock);
9693 
9694 	qprocson(q);
9695 	return (0);
9696 }
9697 
9698 /*
9699  * Some TCP options can be "set" by requesting them in the option
9700  * buffer. This is needed for XTI feature test though we do not
9701  * allow it in general. We interpret that this mechanism is more
9702  * applicable to OSI protocols and need not be allowed in general.
9703  * This routine filters out options for which it is not allowed (most)
9704  * and lets through those (few) for which it is. [ The XTI interface
9705  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9706  * ever implemented will have to be allowed here ].
9707  */
9708 static boolean_t
9709 tcp_allow_connopt_set(int level, int name)
9710 {
9711 
9712 	switch (level) {
9713 	case IPPROTO_TCP:
9714 		switch (name) {
9715 		case TCP_NODELAY:
9716 			return (B_TRUE);
9717 		default:
9718 			return (B_FALSE);
9719 		}
9720 		/*NOTREACHED*/
9721 	default:
9722 		return (B_FALSE);
9723 	}
9724 	/*NOTREACHED*/
9725 }
9726 
9727 /*
9728  * This routine gets default values of certain options whose default
9729  * values are maintained by protocol specific code
9730  */
9731 /* ARGSUSED */
9732 int
9733 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9734 {
9735 	int32_t	*i1 = (int32_t *)ptr;
9736 
9737 	switch (level) {
9738 	case IPPROTO_TCP:
9739 		switch (name) {
9740 		case TCP_NOTIFY_THRESHOLD:
9741 			*i1 = tcp_ip_notify_interval;
9742 			break;
9743 		case TCP_ABORT_THRESHOLD:
9744 			*i1 = tcp_ip_abort_interval;
9745 			break;
9746 		case TCP_CONN_NOTIFY_THRESHOLD:
9747 			*i1 = tcp_ip_notify_cinterval;
9748 			break;
9749 		case TCP_CONN_ABORT_THRESHOLD:
9750 			*i1 = tcp_ip_abort_cinterval;
9751 			break;
9752 		default:
9753 			return (-1);
9754 		}
9755 		break;
9756 	case IPPROTO_IP:
9757 		switch (name) {
9758 		case IP_TTL:
9759 			*i1 = tcp_ipv4_ttl;
9760 			break;
9761 		default:
9762 			return (-1);
9763 		}
9764 		break;
9765 	case IPPROTO_IPV6:
9766 		switch (name) {
9767 		case IPV6_UNICAST_HOPS:
9768 			*i1 = tcp_ipv6_hoplimit;
9769 			break;
9770 		default:
9771 			return (-1);
9772 		}
9773 		break;
9774 	default:
9775 		return (-1);
9776 	}
9777 	return (sizeof (int));
9778 }
9779 
9780 
9781 /*
9782  * TCP routine to get the values of options.
9783  */
9784 int
9785 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9786 {
9787 	int		*i1 = (int *)ptr;
9788 	conn_t		*connp = Q_TO_CONN(q);
9789 	tcp_t		*tcp = connp->conn_tcp;
9790 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9791 
9792 	switch (level) {
9793 	case SOL_SOCKET:
9794 		switch (name) {
9795 		case SO_LINGER:	{
9796 			struct linger *lgr = (struct linger *)ptr;
9797 
9798 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9799 			lgr->l_linger = tcp->tcp_lingertime;
9800 			}
9801 			return (sizeof (struct linger));
9802 		case SO_DEBUG:
9803 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9804 			break;
9805 		case SO_KEEPALIVE:
9806 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9807 			break;
9808 		case SO_DONTROUTE:
9809 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9810 			break;
9811 		case SO_USELOOPBACK:
9812 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9813 			break;
9814 		case SO_BROADCAST:
9815 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9816 			break;
9817 		case SO_REUSEADDR:
9818 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9819 			break;
9820 		case SO_OOBINLINE:
9821 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9822 			break;
9823 		case SO_DGRAM_ERRIND:
9824 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9825 			break;
9826 		case SO_TYPE:
9827 			*i1 = SOCK_STREAM;
9828 			break;
9829 		case SO_SNDBUF:
9830 			*i1 = tcp->tcp_xmit_hiwater;
9831 			break;
9832 		case SO_RCVBUF:
9833 			*i1 = RD(q)->q_hiwat;
9834 			break;
9835 		case SO_SND_COPYAVOID:
9836 			*i1 = tcp->tcp_snd_zcopy_on ?
9837 			    SO_SND_COPYAVOID : 0;
9838 			break;
9839 		case SO_ALLZONES:
9840 			*i1 = connp->conn_allzones ? 1 : 0;
9841 			break;
9842 		case SO_ANON_MLP:
9843 			*i1 = connp->conn_anon_mlp;
9844 			break;
9845 		case SO_MAC_EXEMPT:
9846 			*i1 = connp->conn_mac_exempt;
9847 			break;
9848 		case SO_EXCLBIND:
9849 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9850 			break;
9851 		default:
9852 			return (-1);
9853 		}
9854 		break;
9855 	case IPPROTO_TCP:
9856 		switch (name) {
9857 		case TCP_NODELAY:
9858 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9859 			break;
9860 		case TCP_MAXSEG:
9861 			*i1 = tcp->tcp_mss;
9862 			break;
9863 		case TCP_NOTIFY_THRESHOLD:
9864 			*i1 = (int)tcp->tcp_first_timer_threshold;
9865 			break;
9866 		case TCP_ABORT_THRESHOLD:
9867 			*i1 = tcp->tcp_second_timer_threshold;
9868 			break;
9869 		case TCP_CONN_NOTIFY_THRESHOLD:
9870 			*i1 = tcp->tcp_first_ctimer_threshold;
9871 			break;
9872 		case TCP_CONN_ABORT_THRESHOLD:
9873 			*i1 = tcp->tcp_second_ctimer_threshold;
9874 			break;
9875 		case TCP_RECVDSTADDR:
9876 			*i1 = tcp->tcp_recvdstaddr;
9877 			break;
9878 		case TCP_ANONPRIVBIND:
9879 			*i1 = tcp->tcp_anon_priv_bind;
9880 			break;
9881 		case TCP_EXCLBIND:
9882 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9883 			break;
9884 		case TCP_INIT_CWND:
9885 			*i1 = tcp->tcp_init_cwnd;
9886 			break;
9887 		case TCP_KEEPALIVE_THRESHOLD:
9888 			*i1 = tcp->tcp_ka_interval;
9889 			break;
9890 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9891 			*i1 = tcp->tcp_ka_abort_thres;
9892 			break;
9893 		case TCP_CORK:
9894 			*i1 = tcp->tcp_cork;
9895 			break;
9896 		default:
9897 			return (-1);
9898 		}
9899 		break;
9900 	case IPPROTO_IP:
9901 		if (tcp->tcp_family != AF_INET)
9902 			return (-1);
9903 		switch (name) {
9904 		case IP_OPTIONS:
9905 		case T_IP_OPTIONS: {
9906 			/*
9907 			 * This is compatible with BSD in that in only return
9908 			 * the reverse source route with the final destination
9909 			 * as the last entry. The first 4 bytes of the option
9910 			 * will contain the final destination.
9911 			 */
9912 			int	opt_len;
9913 
9914 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9915 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9916 			ASSERT(opt_len >= 0);
9917 			/* Caller ensures enough space */
9918 			if (opt_len > 0) {
9919 				/*
9920 				 * TODO: Do we have to handle getsockopt on an
9921 				 * initiator as well?
9922 				 */
9923 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9924 			}
9925 			return (0);
9926 			}
9927 		case IP_TOS:
9928 		case T_IP_TOS:
9929 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9930 			break;
9931 		case IP_TTL:
9932 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9933 			break;
9934 		case IP_NEXTHOP:
9935 			/* Handled at IP level */
9936 			return (-EINVAL);
9937 		default:
9938 			return (-1);
9939 		}
9940 		break;
9941 	case IPPROTO_IPV6:
9942 		/*
9943 		 * IPPROTO_IPV6 options are only supported for sockets
9944 		 * that are using IPv6 on the wire.
9945 		 */
9946 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9947 			return (-1);
9948 		}
9949 		switch (name) {
9950 		case IPV6_UNICAST_HOPS:
9951 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9952 			break;	/* goto sizeof (int) option return */
9953 		case IPV6_BOUND_IF:
9954 			/* Zero if not set */
9955 			*i1 = tcp->tcp_bound_if;
9956 			break;	/* goto sizeof (int) option return */
9957 		case IPV6_RECVPKTINFO:
9958 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9959 				*i1 = 1;
9960 			else
9961 				*i1 = 0;
9962 			break;	/* goto sizeof (int) option return */
9963 		case IPV6_RECVTCLASS:
9964 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9965 				*i1 = 1;
9966 			else
9967 				*i1 = 0;
9968 			break;	/* goto sizeof (int) option return */
9969 		case IPV6_RECVHOPLIMIT:
9970 			if (tcp->tcp_ipv6_recvancillary &
9971 			    TCP_IPV6_RECVHOPLIMIT)
9972 				*i1 = 1;
9973 			else
9974 				*i1 = 0;
9975 			break;	/* goto sizeof (int) option return */
9976 		case IPV6_RECVHOPOPTS:
9977 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9978 				*i1 = 1;
9979 			else
9980 				*i1 = 0;
9981 			break;	/* goto sizeof (int) option return */
9982 		case IPV6_RECVDSTOPTS:
9983 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9984 				*i1 = 1;
9985 			else
9986 				*i1 = 0;
9987 			break;	/* goto sizeof (int) option return */
9988 		case _OLD_IPV6_RECVDSTOPTS:
9989 			if (tcp->tcp_ipv6_recvancillary &
9990 			    TCP_OLD_IPV6_RECVDSTOPTS)
9991 				*i1 = 1;
9992 			else
9993 				*i1 = 0;
9994 			break;	/* goto sizeof (int) option return */
9995 		case IPV6_RECVRTHDR:
9996 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9997 				*i1 = 1;
9998 			else
9999 				*i1 = 0;
10000 			break;	/* goto sizeof (int) option return */
10001 		case IPV6_RECVRTHDRDSTOPTS:
10002 			if (tcp->tcp_ipv6_recvancillary &
10003 			    TCP_IPV6_RECVRTDSTOPTS)
10004 				*i1 = 1;
10005 			else
10006 				*i1 = 0;
10007 			break;	/* goto sizeof (int) option return */
10008 		case IPV6_PKTINFO: {
10009 			/* XXX assumes that caller has room for max size! */
10010 			struct in6_pktinfo *pkti;
10011 
10012 			pkti = (struct in6_pktinfo *)ptr;
10013 			if (ipp->ipp_fields & IPPF_IFINDEX)
10014 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10015 			else
10016 				pkti->ipi6_ifindex = 0;
10017 			if (ipp->ipp_fields & IPPF_ADDR)
10018 				pkti->ipi6_addr = ipp->ipp_addr;
10019 			else
10020 				pkti->ipi6_addr = ipv6_all_zeros;
10021 			return (sizeof (struct in6_pktinfo));
10022 		}
10023 		case IPV6_TCLASS:
10024 			if (ipp->ipp_fields & IPPF_TCLASS)
10025 				*i1 = ipp->ipp_tclass;
10026 			else
10027 				*i1 = IPV6_FLOW_TCLASS(
10028 				    IPV6_DEFAULT_VERS_AND_FLOW);
10029 			break;	/* goto sizeof (int) option return */
10030 		case IPV6_NEXTHOP: {
10031 			sin6_t *sin6 = (sin6_t *)ptr;
10032 
10033 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10034 				return (0);
10035 			*sin6 = sin6_null;
10036 			sin6->sin6_family = AF_INET6;
10037 			sin6->sin6_addr = ipp->ipp_nexthop;
10038 			return (sizeof (sin6_t));
10039 		}
10040 		case IPV6_HOPOPTS:
10041 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10042 				return (0);
10043 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10044 				return (0);
10045 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10046 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10047 			if (tcp->tcp_label_len > 0) {
10048 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10049 				ptr[1] = (ipp->ipp_hopoptslen -
10050 				    tcp->tcp_label_len + 7) / 8 - 1;
10051 			}
10052 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10053 		case IPV6_RTHDRDSTOPTS:
10054 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10055 				return (0);
10056 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10057 			return (ipp->ipp_rtdstoptslen);
10058 		case IPV6_RTHDR:
10059 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10060 				return (0);
10061 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10062 			return (ipp->ipp_rthdrlen);
10063 		case IPV6_DSTOPTS:
10064 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10065 				return (0);
10066 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10067 			return (ipp->ipp_dstoptslen);
10068 		case IPV6_SRC_PREFERENCES:
10069 			return (ip6_get_src_preferences(connp,
10070 			    (uint32_t *)ptr));
10071 		case IPV6_PATHMTU: {
10072 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10073 
10074 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10075 				return (-1);
10076 
10077 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10078 				connp->conn_fport, mtuinfo));
10079 		}
10080 		default:
10081 			return (-1);
10082 		}
10083 		break;
10084 	default:
10085 		return (-1);
10086 	}
10087 	return (sizeof (int));
10088 }
10089 
10090 /*
10091  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10092  * Parameters are assumed to be verified by the caller.
10093  */
10094 /* ARGSUSED */
10095 int
10096 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10097     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10098     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10099 {
10100 	conn_t	*connp = Q_TO_CONN(q);
10101 	tcp_t	*tcp = connp->conn_tcp;
10102 	int	*i1 = (int *)invalp;
10103 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10104 	boolean_t checkonly;
10105 	int	reterr;
10106 
10107 	switch (optset_context) {
10108 	case SETFN_OPTCOM_CHECKONLY:
10109 		checkonly = B_TRUE;
10110 		/*
10111 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10112 		 * inlen != 0 implies value supplied and
10113 		 * 	we have to "pretend" to set it.
10114 		 * inlen == 0 implies that there is no
10115 		 * 	value part in T_CHECK request and just validation
10116 		 * done elsewhere should be enough, we just return here.
10117 		 */
10118 		if (inlen == 0) {
10119 			*outlenp = 0;
10120 			return (0);
10121 		}
10122 		break;
10123 	case SETFN_OPTCOM_NEGOTIATE:
10124 		checkonly = B_FALSE;
10125 		break;
10126 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10127 	case SETFN_CONN_NEGOTIATE:
10128 		checkonly = B_FALSE;
10129 		/*
10130 		 * Negotiating local and "association-related" options
10131 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10132 		 * primitives is allowed by XTI, but we choose
10133 		 * to not implement this style negotiation for Internet
10134 		 * protocols (We interpret it is a must for OSI world but
10135 		 * optional for Internet protocols) for all options.
10136 		 * [ Will do only for the few options that enable test
10137 		 * suites that our XTI implementation of this feature
10138 		 * works for transports that do allow it ]
10139 		 */
10140 		if (!tcp_allow_connopt_set(level, name)) {
10141 			*outlenp = 0;
10142 			return (EINVAL);
10143 		}
10144 		break;
10145 	default:
10146 		/*
10147 		 * We should never get here
10148 		 */
10149 		*outlenp = 0;
10150 		return (EINVAL);
10151 	}
10152 
10153 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10154 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10155 
10156 	/*
10157 	 * For TCP, we should have no ancillary data sent down
10158 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10159 	 * has to be zero.
10160 	 */
10161 	ASSERT(thisdg_attrs == NULL);
10162 
10163 	/*
10164 	 * For fixed length options, no sanity check
10165 	 * of passed in length is done. It is assumed *_optcom_req()
10166 	 * routines do the right thing.
10167 	 */
10168 
10169 	switch (level) {
10170 	case SOL_SOCKET:
10171 		switch (name) {
10172 		case SO_LINGER: {
10173 			struct linger *lgr = (struct linger *)invalp;
10174 
10175 			if (!checkonly) {
10176 				if (lgr->l_onoff) {
10177 					tcp->tcp_linger = 1;
10178 					tcp->tcp_lingertime = lgr->l_linger;
10179 				} else {
10180 					tcp->tcp_linger = 0;
10181 					tcp->tcp_lingertime = 0;
10182 				}
10183 				/* struct copy */
10184 				*(struct linger *)outvalp = *lgr;
10185 			} else {
10186 				if (!lgr->l_onoff) {
10187 				    ((struct linger *)outvalp)->l_onoff = 0;
10188 				    ((struct linger *)outvalp)->l_linger = 0;
10189 				} else {
10190 				    /* struct copy */
10191 				    *(struct linger *)outvalp = *lgr;
10192 				}
10193 			}
10194 			*outlenp = sizeof (struct linger);
10195 			return (0);
10196 		}
10197 		case SO_DEBUG:
10198 			if (!checkonly)
10199 				tcp->tcp_debug = onoff;
10200 			break;
10201 		case SO_KEEPALIVE:
10202 			if (checkonly) {
10203 				/* T_CHECK case */
10204 				break;
10205 			}
10206 
10207 			if (!onoff) {
10208 				if (tcp->tcp_ka_enabled) {
10209 					if (tcp->tcp_ka_tid != 0) {
10210 						(void) TCP_TIMER_CANCEL(tcp,
10211 						    tcp->tcp_ka_tid);
10212 						tcp->tcp_ka_tid = 0;
10213 					}
10214 					tcp->tcp_ka_enabled = 0;
10215 				}
10216 				break;
10217 			}
10218 			if (!tcp->tcp_ka_enabled) {
10219 				/* Crank up the keepalive timer */
10220 				tcp->tcp_ka_last_intrvl = 0;
10221 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10222 				    tcp_keepalive_killer,
10223 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10224 				tcp->tcp_ka_enabled = 1;
10225 			}
10226 			break;
10227 		case SO_DONTROUTE:
10228 			/*
10229 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10230 			 * only of interest to IP.  We track them here only so
10231 			 * that we can report their current value.
10232 			 */
10233 			if (!checkonly) {
10234 				tcp->tcp_dontroute = onoff;
10235 				tcp->tcp_connp->conn_dontroute = onoff;
10236 			}
10237 			break;
10238 		case SO_USELOOPBACK:
10239 			if (!checkonly) {
10240 				tcp->tcp_useloopback = onoff;
10241 				tcp->tcp_connp->conn_loopback = onoff;
10242 			}
10243 			break;
10244 		case SO_BROADCAST:
10245 			if (!checkonly) {
10246 				tcp->tcp_broadcast = onoff;
10247 				tcp->tcp_connp->conn_broadcast = onoff;
10248 			}
10249 			break;
10250 		case SO_REUSEADDR:
10251 			if (!checkonly) {
10252 				tcp->tcp_reuseaddr = onoff;
10253 				tcp->tcp_connp->conn_reuseaddr = onoff;
10254 			}
10255 			break;
10256 		case SO_OOBINLINE:
10257 			if (!checkonly)
10258 				tcp->tcp_oobinline = onoff;
10259 			break;
10260 		case SO_DGRAM_ERRIND:
10261 			if (!checkonly)
10262 				tcp->tcp_dgram_errind = onoff;
10263 			break;
10264 		case SO_SNDBUF: {
10265 			tcp_t *peer_tcp;
10266 
10267 			if (*i1 > tcp_max_buf) {
10268 				*outlenp = 0;
10269 				return (ENOBUFS);
10270 			}
10271 			if (checkonly)
10272 				break;
10273 
10274 			tcp->tcp_xmit_hiwater = *i1;
10275 			if (tcp_snd_lowat_fraction != 0)
10276 				tcp->tcp_xmit_lowater =
10277 				    tcp->tcp_xmit_hiwater /
10278 				    tcp_snd_lowat_fraction;
10279 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10280 			/*
10281 			 * If we are flow-controlled, recheck the condition.
10282 			 * There are apps that increase SO_SNDBUF size when
10283 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10284 			 * control condition to be lifted right away.
10285 			 *
10286 			 * For the fused tcp loopback case, in order to avoid
10287 			 * a race with the peer's tcp_fuse_rrw() we need to
10288 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10289 			 */
10290 			peer_tcp = tcp->tcp_loopback_peer;
10291 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10292 			if (tcp->tcp_fused)
10293 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10294 
10295 			if (tcp->tcp_flow_stopped &&
10296 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10297 				tcp_clrqfull(tcp);
10298 			}
10299 			if (tcp->tcp_fused)
10300 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10301 			break;
10302 		}
10303 		case SO_RCVBUF:
10304 			if (*i1 > tcp_max_buf) {
10305 				*outlenp = 0;
10306 				return (ENOBUFS);
10307 			}
10308 			/* Silently ignore zero */
10309 			if (!checkonly && *i1 != 0) {
10310 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10311 				(void) tcp_rwnd_set(tcp, *i1);
10312 			}
10313 			/*
10314 			 * XXX should we return the rwnd here
10315 			 * and tcp_opt_get ?
10316 			 */
10317 			break;
10318 		case SO_SND_COPYAVOID:
10319 			if (!checkonly) {
10320 				/* we only allow enable at most once for now */
10321 				if (tcp->tcp_loopback ||
10322 				    (!tcp->tcp_snd_zcopy_aware &&
10323 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10324 					*outlenp = 0;
10325 					return (EOPNOTSUPP);
10326 				}
10327 				tcp->tcp_snd_zcopy_aware = 1;
10328 			}
10329 			break;
10330 		case SO_ALLZONES:
10331 			/* Handled at the IP level */
10332 			return (-EINVAL);
10333 		case SO_ANON_MLP:
10334 			if (!checkonly) {
10335 				mutex_enter(&connp->conn_lock);
10336 				connp->conn_anon_mlp = onoff;
10337 				mutex_exit(&connp->conn_lock);
10338 			}
10339 			break;
10340 		case SO_MAC_EXEMPT:
10341 			if (secpolicy_net_mac_aware(cr) != 0 ||
10342 			    IPCL_IS_BOUND(connp))
10343 				return (EACCES);
10344 			if (!checkonly) {
10345 				mutex_enter(&connp->conn_lock);
10346 				connp->conn_mac_exempt = onoff;
10347 				mutex_exit(&connp->conn_lock);
10348 			}
10349 			break;
10350 		case SO_EXCLBIND:
10351 			if (!checkonly)
10352 				tcp->tcp_exclbind = onoff;
10353 			break;
10354 		default:
10355 			*outlenp = 0;
10356 			return (EINVAL);
10357 		}
10358 		break;
10359 	case IPPROTO_TCP:
10360 		switch (name) {
10361 		case TCP_NODELAY:
10362 			if (!checkonly)
10363 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10364 			break;
10365 		case TCP_NOTIFY_THRESHOLD:
10366 			if (!checkonly)
10367 				tcp->tcp_first_timer_threshold = *i1;
10368 			break;
10369 		case TCP_ABORT_THRESHOLD:
10370 			if (!checkonly)
10371 				tcp->tcp_second_timer_threshold = *i1;
10372 			break;
10373 		case TCP_CONN_NOTIFY_THRESHOLD:
10374 			if (!checkonly)
10375 				tcp->tcp_first_ctimer_threshold = *i1;
10376 			break;
10377 		case TCP_CONN_ABORT_THRESHOLD:
10378 			if (!checkonly)
10379 				tcp->tcp_second_ctimer_threshold = *i1;
10380 			break;
10381 		case TCP_RECVDSTADDR:
10382 			if (tcp->tcp_state > TCPS_LISTEN)
10383 				return (EOPNOTSUPP);
10384 			if (!checkonly)
10385 				tcp->tcp_recvdstaddr = onoff;
10386 			break;
10387 		case TCP_ANONPRIVBIND:
10388 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10389 				*outlenp = 0;
10390 				return (reterr);
10391 			}
10392 			if (!checkonly) {
10393 				tcp->tcp_anon_priv_bind = onoff;
10394 			}
10395 			break;
10396 		case TCP_EXCLBIND:
10397 			if (!checkonly)
10398 				tcp->tcp_exclbind = onoff;
10399 			break;	/* goto sizeof (int) option return */
10400 		case TCP_INIT_CWND: {
10401 			uint32_t init_cwnd = *((uint32_t *)invalp);
10402 
10403 			if (checkonly)
10404 				break;
10405 
10406 			/*
10407 			 * Only allow socket with network configuration
10408 			 * privilege to set the initial cwnd to be larger
10409 			 * than allowed by RFC 3390.
10410 			 */
10411 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10412 				tcp->tcp_init_cwnd = init_cwnd;
10413 				break;
10414 			}
10415 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10416 				*outlenp = 0;
10417 				return (reterr);
10418 			}
10419 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10420 				*outlenp = 0;
10421 				return (EINVAL);
10422 			}
10423 			tcp->tcp_init_cwnd = init_cwnd;
10424 			break;
10425 		}
10426 		case TCP_KEEPALIVE_THRESHOLD:
10427 			if (checkonly)
10428 				break;
10429 
10430 			if (*i1 < tcp_keepalive_interval_low ||
10431 			    *i1 > tcp_keepalive_interval_high) {
10432 				*outlenp = 0;
10433 				return (EINVAL);
10434 			}
10435 			if (*i1 != tcp->tcp_ka_interval) {
10436 				tcp->tcp_ka_interval = *i1;
10437 				/*
10438 				 * Check if we need to restart the
10439 				 * keepalive timer.
10440 				 */
10441 				if (tcp->tcp_ka_tid != 0) {
10442 					ASSERT(tcp->tcp_ka_enabled);
10443 					(void) TCP_TIMER_CANCEL(tcp,
10444 					    tcp->tcp_ka_tid);
10445 					tcp->tcp_ka_last_intrvl = 0;
10446 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10447 					    tcp_keepalive_killer,
10448 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10449 				}
10450 			}
10451 			break;
10452 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10453 			if (!checkonly) {
10454 				if (*i1 < tcp_keepalive_abort_interval_low ||
10455 				    *i1 > tcp_keepalive_abort_interval_high) {
10456 					*outlenp = 0;
10457 					return (EINVAL);
10458 				}
10459 				tcp->tcp_ka_abort_thres = *i1;
10460 			}
10461 			break;
10462 		case TCP_CORK:
10463 			if (!checkonly) {
10464 				/*
10465 				 * if tcp->tcp_cork was set and is now
10466 				 * being unset, we have to make sure that
10467 				 * the remaining data gets sent out. Also
10468 				 * unset tcp->tcp_cork so that tcp_wput_data()
10469 				 * can send data even if it is less than mss
10470 				 */
10471 				if (tcp->tcp_cork && onoff == 0 &&
10472 				    tcp->tcp_unsent > 0) {
10473 					tcp->tcp_cork = B_FALSE;
10474 					tcp_wput_data(tcp, NULL, B_FALSE);
10475 				}
10476 				tcp->tcp_cork = onoff;
10477 			}
10478 			break;
10479 		default:
10480 			*outlenp = 0;
10481 			return (EINVAL);
10482 		}
10483 		break;
10484 	case IPPROTO_IP:
10485 		if (tcp->tcp_family != AF_INET) {
10486 			*outlenp = 0;
10487 			return (ENOPROTOOPT);
10488 		}
10489 		switch (name) {
10490 		case IP_OPTIONS:
10491 		case T_IP_OPTIONS:
10492 			reterr = tcp_opt_set_header(tcp, checkonly,
10493 			    invalp, inlen);
10494 			if (reterr) {
10495 				*outlenp = 0;
10496 				return (reterr);
10497 			}
10498 			/* OK return - copy input buffer into output buffer */
10499 			if (invalp != outvalp) {
10500 				/* don't trust bcopy for identical src/dst */
10501 				bcopy(invalp, outvalp, inlen);
10502 			}
10503 			*outlenp = inlen;
10504 			return (0);
10505 		case IP_TOS:
10506 		case T_IP_TOS:
10507 			if (!checkonly) {
10508 				tcp->tcp_ipha->ipha_type_of_service =
10509 				    (uchar_t)*i1;
10510 				tcp->tcp_tos = (uchar_t)*i1;
10511 			}
10512 			break;
10513 		case IP_TTL:
10514 			if (!checkonly) {
10515 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10516 				tcp->tcp_ttl = (uchar_t)*i1;
10517 			}
10518 			break;
10519 		case IP_BOUND_IF:
10520 		case IP_NEXTHOP:
10521 			/* Handled at the IP level */
10522 			return (-EINVAL);
10523 		case IP_SEC_OPT:
10524 			/*
10525 			 * We should not allow policy setting after
10526 			 * we start listening for connections.
10527 			 */
10528 			if (tcp->tcp_state == TCPS_LISTEN) {
10529 				return (EINVAL);
10530 			} else {
10531 				/* Handled at the IP level */
10532 				return (-EINVAL);
10533 			}
10534 		default:
10535 			*outlenp = 0;
10536 			return (EINVAL);
10537 		}
10538 		break;
10539 	case IPPROTO_IPV6: {
10540 		ip6_pkt_t		*ipp;
10541 
10542 		/*
10543 		 * IPPROTO_IPV6 options are only supported for sockets
10544 		 * that are using IPv6 on the wire.
10545 		 */
10546 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10547 			*outlenp = 0;
10548 			return (ENOPROTOOPT);
10549 		}
10550 		/*
10551 		 * Only sticky options; no ancillary data
10552 		 */
10553 		ASSERT(thisdg_attrs == NULL);
10554 		ipp = &tcp->tcp_sticky_ipp;
10555 
10556 		switch (name) {
10557 		case IPV6_UNICAST_HOPS:
10558 			/* -1 means use default */
10559 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10560 				*outlenp = 0;
10561 				return (EINVAL);
10562 			}
10563 			if (!checkonly) {
10564 				if (*i1 == -1) {
10565 					tcp->tcp_ip6h->ip6_hops =
10566 					    ipp->ipp_unicast_hops =
10567 					    (uint8_t)tcp_ipv6_hoplimit;
10568 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10569 					/* Pass modified value to IP. */
10570 					*i1 = tcp->tcp_ip6h->ip6_hops;
10571 				} else {
10572 					tcp->tcp_ip6h->ip6_hops =
10573 					    ipp->ipp_unicast_hops =
10574 					    (uint8_t)*i1;
10575 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10576 				}
10577 				reterr = tcp_build_hdrs(q, tcp);
10578 				if (reterr != 0)
10579 					return (reterr);
10580 			}
10581 			break;
10582 		case IPV6_BOUND_IF:
10583 			if (!checkonly) {
10584 				int error = 0;
10585 
10586 				tcp->tcp_bound_if = *i1;
10587 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10588 				    B_TRUE, checkonly, level, name, mblk);
10589 				if (error != 0) {
10590 					*outlenp = 0;
10591 					return (error);
10592 				}
10593 			}
10594 			break;
10595 		/*
10596 		 * Set boolean switches for ancillary data delivery
10597 		 */
10598 		case IPV6_RECVPKTINFO:
10599 			if (!checkonly) {
10600 				if (onoff)
10601 					tcp->tcp_ipv6_recvancillary |=
10602 					    TCP_IPV6_RECVPKTINFO;
10603 				else
10604 					tcp->tcp_ipv6_recvancillary &=
10605 					    ~TCP_IPV6_RECVPKTINFO;
10606 				/* Force it to be sent up with the next msg */
10607 				tcp->tcp_recvifindex = 0;
10608 			}
10609 			break;
10610 		case IPV6_RECVTCLASS:
10611 			if (!checkonly) {
10612 				if (onoff)
10613 					tcp->tcp_ipv6_recvancillary |=
10614 					    TCP_IPV6_RECVTCLASS;
10615 				else
10616 					tcp->tcp_ipv6_recvancillary &=
10617 					    ~TCP_IPV6_RECVTCLASS;
10618 			}
10619 			break;
10620 		case IPV6_RECVHOPLIMIT:
10621 			if (!checkonly) {
10622 				if (onoff)
10623 					tcp->tcp_ipv6_recvancillary |=
10624 					    TCP_IPV6_RECVHOPLIMIT;
10625 				else
10626 					tcp->tcp_ipv6_recvancillary &=
10627 					    ~TCP_IPV6_RECVHOPLIMIT;
10628 				/* Force it to be sent up with the next msg */
10629 				tcp->tcp_recvhops = 0xffffffffU;
10630 			}
10631 			break;
10632 		case IPV6_RECVHOPOPTS:
10633 			if (!checkonly) {
10634 				if (onoff)
10635 					tcp->tcp_ipv6_recvancillary |=
10636 					    TCP_IPV6_RECVHOPOPTS;
10637 				else
10638 					tcp->tcp_ipv6_recvancillary &=
10639 					    ~TCP_IPV6_RECVHOPOPTS;
10640 			}
10641 			break;
10642 		case IPV6_RECVDSTOPTS:
10643 			if (!checkonly) {
10644 				if (onoff)
10645 					tcp->tcp_ipv6_recvancillary |=
10646 					    TCP_IPV6_RECVDSTOPTS;
10647 				else
10648 					tcp->tcp_ipv6_recvancillary &=
10649 					    ~TCP_IPV6_RECVDSTOPTS;
10650 			}
10651 			break;
10652 		case _OLD_IPV6_RECVDSTOPTS:
10653 			if (!checkonly) {
10654 				if (onoff)
10655 					tcp->tcp_ipv6_recvancillary |=
10656 					    TCP_OLD_IPV6_RECVDSTOPTS;
10657 				else
10658 					tcp->tcp_ipv6_recvancillary &=
10659 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10660 			}
10661 			break;
10662 		case IPV6_RECVRTHDR:
10663 			if (!checkonly) {
10664 				if (onoff)
10665 					tcp->tcp_ipv6_recvancillary |=
10666 					    TCP_IPV6_RECVRTHDR;
10667 				else
10668 					tcp->tcp_ipv6_recvancillary &=
10669 					    ~TCP_IPV6_RECVRTHDR;
10670 			}
10671 			break;
10672 		case IPV6_RECVRTHDRDSTOPTS:
10673 			if (!checkonly) {
10674 				if (onoff)
10675 					tcp->tcp_ipv6_recvancillary |=
10676 					    TCP_IPV6_RECVRTDSTOPTS;
10677 				else
10678 					tcp->tcp_ipv6_recvancillary &=
10679 					    ~TCP_IPV6_RECVRTDSTOPTS;
10680 			}
10681 			break;
10682 		case IPV6_PKTINFO:
10683 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10684 				return (EINVAL);
10685 			if (checkonly)
10686 				break;
10687 
10688 			if (inlen == 0) {
10689 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10690 			} else {
10691 				struct in6_pktinfo *pkti;
10692 
10693 				pkti = (struct in6_pktinfo *)invalp;
10694 				/*
10695 				 * RFC 3542 states that ipi6_addr must be
10696 				 * the unspecified address when setting the
10697 				 * IPV6_PKTINFO sticky socket option on a
10698 				 * TCP socket.
10699 				 */
10700 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10701 					return (EINVAL);
10702 				/*
10703 				 * ip6_set_pktinfo() validates the source
10704 				 * address and interface index.
10705 				 */
10706 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10707 				    pkti, mblk);
10708 				if (reterr != 0)
10709 					return (reterr);
10710 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10711 				ipp->ipp_addr = pkti->ipi6_addr;
10712 				if (ipp->ipp_ifindex != 0)
10713 					ipp->ipp_fields |= IPPF_IFINDEX;
10714 				else
10715 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10716 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10717 					ipp->ipp_fields |= IPPF_ADDR;
10718 				else
10719 					ipp->ipp_fields &= ~IPPF_ADDR;
10720 			}
10721 			reterr = tcp_build_hdrs(q, tcp);
10722 			if (reterr != 0)
10723 				return (reterr);
10724 			break;
10725 		case IPV6_TCLASS:
10726 			if (inlen != 0 && inlen != sizeof (int))
10727 				return (EINVAL);
10728 			if (checkonly)
10729 				break;
10730 
10731 			if (inlen == 0) {
10732 				ipp->ipp_fields &= ~IPPF_TCLASS;
10733 			} else {
10734 				if (*i1 > 255 || *i1 < -1)
10735 					return (EINVAL);
10736 				if (*i1 == -1) {
10737 					ipp->ipp_tclass = 0;
10738 					*i1 = 0;
10739 				} else {
10740 					ipp->ipp_tclass = *i1;
10741 				}
10742 				ipp->ipp_fields |= IPPF_TCLASS;
10743 			}
10744 			reterr = tcp_build_hdrs(q, tcp);
10745 			if (reterr != 0)
10746 				return (reterr);
10747 			break;
10748 		case IPV6_NEXTHOP:
10749 			/*
10750 			 * IP will verify that the nexthop is reachable
10751 			 * and fail for sticky options.
10752 			 */
10753 			if (inlen != 0 && inlen != sizeof (sin6_t))
10754 				return (EINVAL);
10755 			if (checkonly)
10756 				break;
10757 
10758 			if (inlen == 0) {
10759 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10760 			} else {
10761 				sin6_t *sin6 = (sin6_t *)invalp;
10762 
10763 				if (sin6->sin6_family != AF_INET6)
10764 					return (EAFNOSUPPORT);
10765 				if (IN6_IS_ADDR_V4MAPPED(
10766 				    &sin6->sin6_addr))
10767 					return (EADDRNOTAVAIL);
10768 				ipp->ipp_nexthop = sin6->sin6_addr;
10769 				if (!IN6_IS_ADDR_UNSPECIFIED(
10770 				    &ipp->ipp_nexthop))
10771 					ipp->ipp_fields |= IPPF_NEXTHOP;
10772 				else
10773 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10774 			}
10775 			reterr = tcp_build_hdrs(q, tcp);
10776 			if (reterr != 0)
10777 				return (reterr);
10778 			break;
10779 		case IPV6_HOPOPTS: {
10780 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10781 
10782 			/*
10783 			 * Sanity checks - minimum size, size a multiple of
10784 			 * eight bytes, and matching size passed in.
10785 			 */
10786 			if (inlen != 0 &&
10787 			    inlen != (8 * (hopts->ip6h_len + 1)))
10788 				return (EINVAL);
10789 
10790 			if (checkonly)
10791 				break;
10792 
10793 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10794 			    (uchar_t **)&ipp->ipp_hopopts,
10795 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10796 			if (reterr != 0)
10797 				return (reterr);
10798 			if (ipp->ipp_hopoptslen == 0)
10799 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10800 			else
10801 				ipp->ipp_fields |= IPPF_HOPOPTS;
10802 			reterr = tcp_build_hdrs(q, tcp);
10803 			if (reterr != 0)
10804 				return (reterr);
10805 			break;
10806 		}
10807 		case IPV6_RTHDRDSTOPTS: {
10808 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10809 
10810 			/*
10811 			 * Sanity checks - minimum size, size a multiple of
10812 			 * eight bytes, and matching size passed in.
10813 			 */
10814 			if (inlen != 0 &&
10815 			    inlen != (8 * (dopts->ip6d_len + 1)))
10816 				return (EINVAL);
10817 
10818 			if (checkonly)
10819 				break;
10820 
10821 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10822 			    (uchar_t **)&ipp->ipp_rtdstopts,
10823 			    &ipp->ipp_rtdstoptslen, 0);
10824 			if (reterr != 0)
10825 				return (reterr);
10826 			if (ipp->ipp_rtdstoptslen == 0)
10827 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10828 			else
10829 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10830 			reterr = tcp_build_hdrs(q, tcp);
10831 			if (reterr != 0)
10832 				return (reterr);
10833 			break;
10834 		}
10835 		case IPV6_DSTOPTS: {
10836 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10837 
10838 			/*
10839 			 * Sanity checks - minimum size, size a multiple of
10840 			 * eight bytes, and matching size passed in.
10841 			 */
10842 			if (inlen != 0 &&
10843 			    inlen != (8 * (dopts->ip6d_len + 1)))
10844 				return (EINVAL);
10845 
10846 			if (checkonly)
10847 				break;
10848 
10849 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10850 			    (uchar_t **)&ipp->ipp_dstopts,
10851 			    &ipp->ipp_dstoptslen, 0);
10852 			if (reterr != 0)
10853 				return (reterr);
10854 			if (ipp->ipp_dstoptslen == 0)
10855 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10856 			else
10857 				ipp->ipp_fields |= IPPF_DSTOPTS;
10858 			reterr = tcp_build_hdrs(q, tcp);
10859 			if (reterr != 0)
10860 				return (reterr);
10861 			break;
10862 		}
10863 		case IPV6_RTHDR: {
10864 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10865 
10866 			/*
10867 			 * Sanity checks - minimum size, size a multiple of
10868 			 * eight bytes, and matching size passed in.
10869 			 */
10870 			if (inlen != 0 &&
10871 			    inlen != (8 * (rt->ip6r_len + 1)))
10872 				return (EINVAL);
10873 
10874 			if (checkonly)
10875 				break;
10876 
10877 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10878 			    (uchar_t **)&ipp->ipp_rthdr,
10879 			    &ipp->ipp_rthdrlen, 0);
10880 			if (reterr != 0)
10881 				return (reterr);
10882 			if (ipp->ipp_rthdrlen == 0)
10883 				ipp->ipp_fields &= ~IPPF_RTHDR;
10884 			else
10885 				ipp->ipp_fields |= IPPF_RTHDR;
10886 			reterr = tcp_build_hdrs(q, tcp);
10887 			if (reterr != 0)
10888 				return (reterr);
10889 			break;
10890 		}
10891 		case IPV6_V6ONLY:
10892 			if (!checkonly)
10893 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10894 			break;
10895 		case IPV6_USE_MIN_MTU:
10896 			if (inlen != sizeof (int))
10897 				return (EINVAL);
10898 
10899 			if (*i1 < -1 || *i1 > 1)
10900 				return (EINVAL);
10901 
10902 			if (checkonly)
10903 				break;
10904 
10905 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10906 			ipp->ipp_use_min_mtu = *i1;
10907 			break;
10908 		case IPV6_BOUND_PIF:
10909 			/* Handled at the IP level */
10910 			return (-EINVAL);
10911 		case IPV6_SEC_OPT:
10912 			/*
10913 			 * We should not allow policy setting after
10914 			 * we start listening for connections.
10915 			 */
10916 			if (tcp->tcp_state == TCPS_LISTEN) {
10917 				return (EINVAL);
10918 			} else {
10919 				/* Handled at the IP level */
10920 				return (-EINVAL);
10921 			}
10922 		case IPV6_SRC_PREFERENCES:
10923 			if (inlen != sizeof (uint32_t))
10924 				return (EINVAL);
10925 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10926 			    *(uint32_t *)invalp);
10927 			if (reterr != 0) {
10928 				*outlenp = 0;
10929 				return (reterr);
10930 			}
10931 			break;
10932 		default:
10933 			*outlenp = 0;
10934 			return (EINVAL);
10935 		}
10936 		break;
10937 	}		/* end IPPROTO_IPV6 */
10938 	default:
10939 		*outlenp = 0;
10940 		return (EINVAL);
10941 	}
10942 	/*
10943 	 * Common case of OK return with outval same as inval
10944 	 */
10945 	if (invalp != outvalp) {
10946 		/* don't trust bcopy for identical src/dst */
10947 		(void) bcopy(invalp, outvalp, inlen);
10948 	}
10949 	*outlenp = inlen;
10950 	return (0);
10951 }
10952 
10953 /*
10954  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10955  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10956  * headers, and the maximum size tcp header (to avoid reallocation
10957  * on the fly for additional tcp options).
10958  * Returns failure if can't allocate memory.
10959  */
10960 static int
10961 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10962 {
10963 	char	*hdrs;
10964 	uint_t	hdrs_len;
10965 	ip6i_t	*ip6i;
10966 	char	buf[TCP_MAX_HDR_LENGTH];
10967 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10968 	in6_addr_t src, dst;
10969 
10970 	/*
10971 	 * save the existing tcp header and source/dest IP addresses
10972 	 */
10973 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10974 	src = tcp->tcp_ip6h->ip6_src;
10975 	dst = tcp->tcp_ip6h->ip6_dst;
10976 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10977 	ASSERT(hdrs_len != 0);
10978 	if (hdrs_len > tcp->tcp_iphc_len) {
10979 		/* Need to reallocate */
10980 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10981 		if (hdrs == NULL)
10982 			return (ENOMEM);
10983 		if (tcp->tcp_iphc != NULL) {
10984 			if (tcp->tcp_hdr_grown) {
10985 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10986 			} else {
10987 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10988 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10989 			}
10990 			tcp->tcp_iphc_len = 0;
10991 		}
10992 		ASSERT(tcp->tcp_iphc_len == 0);
10993 		tcp->tcp_iphc = hdrs;
10994 		tcp->tcp_iphc_len = hdrs_len;
10995 		tcp->tcp_hdr_grown = B_TRUE;
10996 	}
10997 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10998 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10999 
11000 	/* Set header fields not in ipp */
11001 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11002 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11003 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11004 	} else {
11005 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11006 	}
11007 	/*
11008 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11009 	 *
11010 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11011 	 */
11012 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11013 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11014 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11015 
11016 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11017 
11018 	tcp->tcp_ip6h->ip6_src = src;
11019 	tcp->tcp_ip6h->ip6_dst = dst;
11020 
11021 	/*
11022 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11023 	 * the default value for TCP.
11024 	 */
11025 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11026 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
11027 
11028 	/*
11029 	 * If we're setting extension headers after a connection
11030 	 * has been established, and if we have a routing header
11031 	 * among the extension headers, call ip_massage_options_v6 to
11032 	 * manipulate the routing header/ip6_dst set the checksum
11033 	 * difference in the tcp header template.
11034 	 * (This happens in tcp_connect_ipv6 if the routing header
11035 	 * is set prior to the connect.)
11036 	 * Set the tcp_sum to zero first in case we've cleared a
11037 	 * routing header or don't have one at all.
11038 	 */
11039 	tcp->tcp_sum = 0;
11040 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11041 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11042 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11043 		    (uint8_t *)tcp->tcp_tcph);
11044 		if (rth != NULL) {
11045 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11046 			    rth);
11047 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11048 			    (tcp->tcp_sum >> 16));
11049 		}
11050 	}
11051 
11052 	/* Try to get everything in a single mblk */
11053 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
11054 	return (0);
11055 }
11056 
11057 /*
11058  * Transfer any source route option from ipha to buf/dst in reversed form.
11059  */
11060 static int
11061 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11062 {
11063 	ipoptp_t	opts;
11064 	uchar_t		*opt;
11065 	uint8_t		optval;
11066 	uint8_t		optlen;
11067 	uint32_t	len = 0;
11068 
11069 	for (optval = ipoptp_first(&opts, ipha);
11070 	    optval != IPOPT_EOL;
11071 	    optval = ipoptp_next(&opts)) {
11072 		opt = opts.ipoptp_cur;
11073 		optlen = opts.ipoptp_len;
11074 		switch (optval) {
11075 			int	off1, off2;
11076 		case IPOPT_SSRR:
11077 		case IPOPT_LSRR:
11078 
11079 			/* Reverse source route */
11080 			/*
11081 			 * First entry should be the next to last one in the
11082 			 * current source route (the last entry is our
11083 			 * address.)
11084 			 * The last entry should be the final destination.
11085 			 */
11086 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11087 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11088 			off1 = IPOPT_MINOFF_SR - 1;
11089 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11090 			if (off2 < 0) {
11091 				/* No entries in source route */
11092 				break;
11093 			}
11094 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11095 			/*
11096 			 * Note: use src since ipha has not had its src
11097 			 * and dst reversed (it is in the state it was
11098 			 * received.
11099 			 */
11100 			bcopy(&ipha->ipha_src, buf + off2,
11101 			    IP_ADDR_LEN);
11102 			off2 -= IP_ADDR_LEN;
11103 
11104 			while (off2 > 0) {
11105 				bcopy(opt + off2, buf + off1,
11106 				    IP_ADDR_LEN);
11107 				off1 += IP_ADDR_LEN;
11108 				off2 -= IP_ADDR_LEN;
11109 			}
11110 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11111 			buf += optlen;
11112 			len += optlen;
11113 			break;
11114 		}
11115 	}
11116 done:
11117 	/* Pad the resulting options */
11118 	while (len & 0x3) {
11119 		*buf++ = IPOPT_EOL;
11120 		len++;
11121 	}
11122 	return (len);
11123 }
11124 
11125 
11126 /*
11127  * Extract and revert a source route from ipha (if any)
11128  * and then update the relevant fields in both tcp_t and the standard header.
11129  */
11130 static void
11131 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11132 {
11133 	char	buf[TCP_MAX_HDR_LENGTH];
11134 	uint_t	tcph_len;
11135 	int	len;
11136 
11137 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11138 	len = IPH_HDR_LENGTH(ipha);
11139 	if (len == IP_SIMPLE_HDR_LENGTH)
11140 		/* Nothing to do */
11141 		return;
11142 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11143 	    (len & 0x3))
11144 		return;
11145 
11146 	tcph_len = tcp->tcp_tcp_hdr_len;
11147 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11148 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11149 		(tcp->tcp_ipha->ipha_dst & 0xffff);
11150 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11151 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11152 	len += IP_SIMPLE_HDR_LENGTH;
11153 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11154 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11155 	if ((int)tcp->tcp_sum < 0)
11156 		tcp->tcp_sum--;
11157 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11158 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11159 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11160 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11161 	tcp->tcp_ip_hdr_len = len;
11162 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11163 	    (IP_VERSION << 4) | (len >> 2);
11164 	len += tcph_len;
11165 	tcp->tcp_hdr_len = len;
11166 }
11167 
11168 /*
11169  * Copy the standard header into its new location,
11170  * lay in the new options and then update the relevant
11171  * fields in both tcp_t and the standard header.
11172  */
11173 static int
11174 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11175 {
11176 	uint_t	tcph_len;
11177 	uint8_t	*ip_optp;
11178 	tcph_t	*new_tcph;
11179 
11180 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11181 		return (EINVAL);
11182 
11183 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11184 		return (EINVAL);
11185 
11186 	if (checkonly) {
11187 		/*
11188 		 * do not really set, just pretend to - T_CHECK
11189 		 */
11190 		return (0);
11191 	}
11192 
11193 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11194 	if (tcp->tcp_label_len > 0) {
11195 		int padlen;
11196 		uint8_t opt;
11197 
11198 		/* convert list termination to no-ops */
11199 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11200 		ip_optp += ip_optp[IPOPT_OLEN];
11201 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11202 		while (--padlen >= 0)
11203 			*ip_optp++ = opt;
11204 	}
11205 	tcph_len = tcp->tcp_tcp_hdr_len;
11206 	new_tcph = (tcph_t *)(ip_optp + len);
11207 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11208 	tcp->tcp_tcph = new_tcph;
11209 	bcopy(ptr, ip_optp, len);
11210 
11211 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11212 
11213 	tcp->tcp_ip_hdr_len = len;
11214 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11215 	    (IP_VERSION << 4) | (len >> 2);
11216 	tcp->tcp_hdr_len = len + tcph_len;
11217 	if (!TCP_IS_DETACHED(tcp)) {
11218 		/* Always allocate room for all options. */
11219 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11220 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
11221 	}
11222 	return (0);
11223 }
11224 
11225 /* Get callback routine passed to nd_load by tcp_param_register */
11226 /* ARGSUSED */
11227 static int
11228 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11229 {
11230 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11231 
11232 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11233 	return (0);
11234 }
11235 
11236 /*
11237  * Walk through the param array specified registering each element with the
11238  * named dispatch handler.
11239  */
11240 static boolean_t
11241 tcp_param_register(tcpparam_t *tcppa, int cnt)
11242 {
11243 	for (; cnt-- > 0; tcppa++) {
11244 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11245 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11246 			    tcp_param_get, tcp_param_set,
11247 			    (caddr_t)tcppa)) {
11248 				nd_free(&tcp_g_nd);
11249 				return (B_FALSE);
11250 			}
11251 		}
11252 	}
11253 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11254 	    tcp_param_get, tcp_param_set_aligned,
11255 	    (caddr_t)&tcp_wroff_xtra_param)) {
11256 		nd_free(&tcp_g_nd);
11257 		return (B_FALSE);
11258 	}
11259 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11260 	    tcp_param_get, tcp_param_set_aligned,
11261 	    (caddr_t)&tcp_mdt_head_param)) {
11262 		nd_free(&tcp_g_nd);
11263 		return (B_FALSE);
11264 	}
11265 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11266 	    tcp_param_get, tcp_param_set_aligned,
11267 	    (caddr_t)&tcp_mdt_tail_param)) {
11268 		nd_free(&tcp_g_nd);
11269 		return (B_FALSE);
11270 	}
11271 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11272 	    tcp_param_get, tcp_param_set,
11273 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11274 		nd_free(&tcp_g_nd);
11275 		return (B_FALSE);
11276 	}
11277 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11278 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11279 		nd_free(&tcp_g_nd);
11280 		return (B_FALSE);
11281 	}
11282 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11283 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11284 		nd_free(&tcp_g_nd);
11285 		return (B_FALSE);
11286 	}
11287 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11288 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11289 		nd_free(&tcp_g_nd);
11290 		return (B_FALSE);
11291 	}
11292 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11293 	    NULL)) {
11294 		nd_free(&tcp_g_nd);
11295 		return (B_FALSE);
11296 	}
11297 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11298 	    NULL, NULL)) {
11299 		nd_free(&tcp_g_nd);
11300 		return (B_FALSE);
11301 	}
11302 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11303 	    NULL, NULL)) {
11304 		nd_free(&tcp_g_nd);
11305 		return (B_FALSE);
11306 	}
11307 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11308 	    NULL, NULL)) {
11309 		nd_free(&tcp_g_nd);
11310 		return (B_FALSE);
11311 	}
11312 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11313 	    NULL, NULL)) {
11314 		nd_free(&tcp_g_nd);
11315 		return (B_FALSE);
11316 	}
11317 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11318 	    tcp_host_param_set, NULL)) {
11319 		nd_free(&tcp_g_nd);
11320 		return (B_FALSE);
11321 	}
11322 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11323 	    tcp_host_param_set_ipv6, NULL)) {
11324 		nd_free(&tcp_g_nd);
11325 		return (B_FALSE);
11326 	}
11327 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11328 	    NULL)) {
11329 		nd_free(&tcp_g_nd);
11330 		return (B_FALSE);
11331 	}
11332 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11333 	    tcp_reserved_port_list, NULL, NULL)) {
11334 		nd_free(&tcp_g_nd);
11335 		return (B_FALSE);
11336 	}
11337 	/*
11338 	 * Dummy ndd variables - only to convey obsolescence information
11339 	 * through printing of their name (no get or set routines)
11340 	 * XXX Remove in future releases ?
11341 	 */
11342 	if (!nd_load(&tcp_g_nd,
11343 	    "tcp_close_wait_interval(obsoleted - "
11344 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11345 		nd_free(&tcp_g_nd);
11346 		return (B_FALSE);
11347 	}
11348 	return (B_TRUE);
11349 }
11350 
11351 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11352 /* ARGSUSED */
11353 static int
11354 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11355     cred_t *cr)
11356 {
11357 	long new_value;
11358 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11359 
11360 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11361 	    new_value < tcppa->tcp_param_min ||
11362 	    new_value > tcppa->tcp_param_max) {
11363 		return (EINVAL);
11364 	}
11365 	/*
11366 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11367 	 * round it up.  For future 64 bit requirement, we actually make it
11368 	 * a multiple of 8.
11369 	 */
11370 	if (new_value & 0x7) {
11371 		new_value = (new_value & ~0x7) + 0x8;
11372 	}
11373 	tcppa->tcp_param_val = new_value;
11374 	return (0);
11375 }
11376 
11377 /* Set callback routine passed to nd_load by tcp_param_register */
11378 /* ARGSUSED */
11379 static int
11380 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11381 {
11382 	long	new_value;
11383 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11384 
11385 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11386 	    new_value < tcppa->tcp_param_min ||
11387 	    new_value > tcppa->tcp_param_max) {
11388 		return (EINVAL);
11389 	}
11390 	tcppa->tcp_param_val = new_value;
11391 	return (0);
11392 }
11393 
11394 /*
11395  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11396  * is filled, return as much as we can.  The message passed in may be
11397  * multi-part, chained using b_cont.  "start" is the starting sequence
11398  * number for this piece.
11399  */
11400 static mblk_t *
11401 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11402 {
11403 	uint32_t	end;
11404 	mblk_t		*mp1;
11405 	mblk_t		*mp2;
11406 	mblk_t		*next_mp;
11407 	uint32_t	u1;
11408 
11409 	/* Walk through all the new pieces. */
11410 	do {
11411 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11412 		    (uintptr_t)INT_MAX);
11413 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11414 		next_mp = mp->b_cont;
11415 		if (start == end) {
11416 			/* Empty.  Blast it. */
11417 			freeb(mp);
11418 			continue;
11419 		}
11420 		mp->b_cont = NULL;
11421 		TCP_REASS_SET_SEQ(mp, start);
11422 		TCP_REASS_SET_END(mp, end);
11423 		mp1 = tcp->tcp_reass_tail;
11424 		if (!mp1) {
11425 			tcp->tcp_reass_tail = mp;
11426 			tcp->tcp_reass_head = mp;
11427 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11428 			UPDATE_MIB(&tcp_mib,
11429 			    tcpInDataUnorderBytes, end - start);
11430 			continue;
11431 		}
11432 		/* New stuff completely beyond tail? */
11433 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11434 			/* Link it on end. */
11435 			mp1->b_cont = mp;
11436 			tcp->tcp_reass_tail = mp;
11437 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11438 			UPDATE_MIB(&tcp_mib,
11439 			    tcpInDataUnorderBytes, end - start);
11440 			continue;
11441 		}
11442 		mp1 = tcp->tcp_reass_head;
11443 		u1 = TCP_REASS_SEQ(mp1);
11444 		/* New stuff at the front? */
11445 		if (SEQ_LT(start, u1)) {
11446 			/* Yes... Check for overlap. */
11447 			mp->b_cont = mp1;
11448 			tcp->tcp_reass_head = mp;
11449 			tcp_reass_elim_overlap(tcp, mp);
11450 			continue;
11451 		}
11452 		/*
11453 		 * The new piece fits somewhere between the head and tail.
11454 		 * We find our slot, where mp1 precedes us and mp2 trails.
11455 		 */
11456 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11457 			u1 = TCP_REASS_SEQ(mp2);
11458 			if (SEQ_LEQ(start, u1))
11459 				break;
11460 		}
11461 		/* Link ourselves in */
11462 		mp->b_cont = mp2;
11463 		mp1->b_cont = mp;
11464 
11465 		/* Trim overlap with following mblk(s) first */
11466 		tcp_reass_elim_overlap(tcp, mp);
11467 
11468 		/* Trim overlap with preceding mblk */
11469 		tcp_reass_elim_overlap(tcp, mp1);
11470 
11471 	} while (start = end, mp = next_mp);
11472 	mp1 = tcp->tcp_reass_head;
11473 	/* Anything ready to go? */
11474 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11475 		return (NULL);
11476 	/* Eat what we can off the queue */
11477 	for (;;) {
11478 		mp = mp1->b_cont;
11479 		end = TCP_REASS_END(mp1);
11480 		TCP_REASS_SET_SEQ(mp1, 0);
11481 		TCP_REASS_SET_END(mp1, 0);
11482 		if (!mp) {
11483 			tcp->tcp_reass_tail = NULL;
11484 			break;
11485 		}
11486 		if (end != TCP_REASS_SEQ(mp)) {
11487 			mp1->b_cont = NULL;
11488 			break;
11489 		}
11490 		mp1 = mp;
11491 	}
11492 	mp1 = tcp->tcp_reass_head;
11493 	tcp->tcp_reass_head = mp;
11494 	return (mp1);
11495 }
11496 
11497 /* Eliminate any overlap that mp may have over later mblks */
11498 static void
11499 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11500 {
11501 	uint32_t	end;
11502 	mblk_t		*mp1;
11503 	uint32_t	u1;
11504 
11505 	end = TCP_REASS_END(mp);
11506 	while ((mp1 = mp->b_cont) != NULL) {
11507 		u1 = TCP_REASS_SEQ(mp1);
11508 		if (!SEQ_GT(end, u1))
11509 			break;
11510 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11511 			mp->b_wptr -= end - u1;
11512 			TCP_REASS_SET_END(mp, u1);
11513 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11514 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11515 			break;
11516 		}
11517 		mp->b_cont = mp1->b_cont;
11518 		TCP_REASS_SET_SEQ(mp1, 0);
11519 		TCP_REASS_SET_END(mp1, 0);
11520 		freeb(mp1);
11521 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11522 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11523 	}
11524 	if (!mp1)
11525 		tcp->tcp_reass_tail = mp;
11526 }
11527 
11528 /*
11529  * Send up all messages queued on tcp_rcv_list.
11530  */
11531 static uint_t
11532 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11533 {
11534 	mblk_t *mp;
11535 	uint_t ret = 0;
11536 	uint_t thwin;
11537 #ifdef DEBUG
11538 	uint_t cnt = 0;
11539 #endif
11540 	/* Can't drain on an eager connection */
11541 	if (tcp->tcp_listener != NULL)
11542 		return (ret);
11543 
11544 	/*
11545 	 * Handle two cases here: we are currently fused or we were
11546 	 * previously fused and have some urgent data to be delivered
11547 	 * upstream.  The latter happens because we either ran out of
11548 	 * memory or were detached and therefore sending the SIGURG was
11549 	 * deferred until this point.  In either case we pass control
11550 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11551 	 * some work.
11552 	 */
11553 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11554 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11555 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11556 		    &tcp->tcp_fused_sigurg_mp))
11557 			return (ret);
11558 	}
11559 
11560 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11561 		tcp->tcp_rcv_list = mp->b_next;
11562 		mp->b_next = NULL;
11563 #ifdef DEBUG
11564 		cnt += msgdsize(mp);
11565 #endif
11566 		/* Does this need SSL processing first? */
11567 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11568 			tcp_kssl_input(tcp, mp);
11569 			continue;
11570 		}
11571 		putnext(q, mp);
11572 	}
11573 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11574 	tcp->tcp_rcv_last_head = NULL;
11575 	tcp->tcp_rcv_last_tail = NULL;
11576 	tcp->tcp_rcv_cnt = 0;
11577 
11578 	/* Learn the latest rwnd information that we sent to the other side. */
11579 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11580 	    << tcp->tcp_rcv_ws;
11581 	/* This is peer's calculated send window (our receive window). */
11582 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11583 	/*
11584 	 * Increase the receive window to max.  But we need to do receiver
11585 	 * SWS avoidance.  This means that we need to check the increase of
11586 	 * of receive window is at least 1 MSS.
11587 	 */
11588 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11589 		/*
11590 		 * If the window that the other side knows is less than max
11591 		 * deferred acks segments, send an update immediately.
11592 		 */
11593 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11594 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11595 			ret = TH_ACK_NEEDED;
11596 		}
11597 		tcp->tcp_rwnd = q->q_hiwat;
11598 	}
11599 	/* No need for the push timer now. */
11600 	if (tcp->tcp_push_tid != 0) {
11601 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11602 		tcp->tcp_push_tid = 0;
11603 	}
11604 	return (ret);
11605 }
11606 
11607 /*
11608  * Queue data on tcp_rcv_list which is a b_next chain.
11609  * tcp_rcv_last_head/tail is the last element of this chain.
11610  * Each element of the chain is a b_cont chain.
11611  *
11612  * M_DATA messages are added to the current element.
11613  * Other messages are added as new (b_next) elements.
11614  */
11615 void
11616 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11617 {
11618 	ASSERT(seg_len == msgdsize(mp));
11619 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11620 
11621 	if (tcp->tcp_rcv_list == NULL) {
11622 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11623 		tcp->tcp_rcv_list = mp;
11624 		tcp->tcp_rcv_last_head = mp;
11625 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11626 		tcp->tcp_rcv_last_tail->b_cont = mp;
11627 	} else {
11628 		tcp->tcp_rcv_last_head->b_next = mp;
11629 		tcp->tcp_rcv_last_head = mp;
11630 	}
11631 
11632 	while (mp->b_cont)
11633 		mp = mp->b_cont;
11634 
11635 	tcp->tcp_rcv_last_tail = mp;
11636 	tcp->tcp_rcv_cnt += seg_len;
11637 	tcp->tcp_rwnd -= seg_len;
11638 }
11639 
11640 /*
11641  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11642  *
11643  * This is the default entry function into TCP on the read side. TCP is
11644  * always entered via squeue i.e. using squeue's for mutual exclusion.
11645  * When classifier does a lookup to find the tcp, it also puts a reference
11646  * on the conn structure associated so the tcp is guaranteed to exist
11647  * when we come here. We still need to check the state because it might
11648  * as well has been closed. The squeue processing function i.e. squeue_enter,
11649  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11650  * CONN_DEC_REF.
11651  *
11652  * Apart from the default entry point, IP also sends packets directly to
11653  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11654  * connections.
11655  */
11656 void
11657 tcp_input(void *arg, mblk_t *mp, void *arg2)
11658 {
11659 	conn_t	*connp = (conn_t *)arg;
11660 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11661 
11662 	/* arg2 is the sqp */
11663 	ASSERT(arg2 != NULL);
11664 	ASSERT(mp != NULL);
11665 
11666 	/*
11667 	 * Don't accept any input on a closed tcp as this TCP logically does
11668 	 * not exist on the system. Don't proceed further with this TCP.
11669 	 * For eg. this packet could trigger another close of this tcp
11670 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11671 	 * tcp_clean_death / tcp_closei_local must be called at most once
11672 	 * on a TCP. In this case we need to refeed the packet into the
11673 	 * classifier and figure out where the packet should go. Need to
11674 	 * preserve the recv_ill somehow. Until we figure that out, for
11675 	 * now just drop the packet if we can't classify the packet.
11676 	 */
11677 	if (tcp->tcp_state == TCPS_CLOSED ||
11678 	    tcp->tcp_state == TCPS_BOUND) {
11679 		conn_t	*new_connp;
11680 
11681 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11682 		if (new_connp != NULL) {
11683 			tcp_reinput(new_connp, mp, arg2);
11684 			return;
11685 		}
11686 		/* We failed to classify. For now just drop the packet */
11687 		freemsg(mp);
11688 		return;
11689 	}
11690 
11691 	if (DB_TYPE(mp) == M_DATA)
11692 		tcp_rput_data(connp, mp, arg2);
11693 	else
11694 		tcp_rput_common(tcp, mp);
11695 }
11696 
11697 /*
11698  * The read side put procedure.
11699  * The packets passed up by ip are assume to be aligned according to
11700  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11701  */
11702 static void
11703 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11704 {
11705 	/*
11706 	 * tcp_rput_data() does not expect M_CTL except for the case
11707 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11708 	 * type. Need to make sure that any other M_CTLs don't make
11709 	 * it to tcp_rput_data since it is not expecting any and doesn't
11710 	 * check for it.
11711 	 */
11712 	if (DB_TYPE(mp) == M_CTL) {
11713 		switch (*(uint32_t *)(mp->b_rptr)) {
11714 		case TCP_IOC_ABORT_CONN:
11715 			/*
11716 			 * Handle connection abort request.
11717 			 */
11718 			tcp_ioctl_abort_handler(tcp, mp);
11719 			return;
11720 		case IPSEC_IN:
11721 			/*
11722 			 * Only secure icmp arrive in TCP and they
11723 			 * don't go through data path.
11724 			 */
11725 			tcp_icmp_error(tcp, mp);
11726 			return;
11727 		case IN_PKTINFO:
11728 			/*
11729 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11730 			 * sockets that are receiving IPv4 traffic. tcp
11731 			 */
11732 			ASSERT(tcp->tcp_family == AF_INET6);
11733 			ASSERT(tcp->tcp_ipv6_recvancillary &
11734 			    TCP_IPV6_RECVPKTINFO);
11735 			tcp_rput_data(tcp->tcp_connp, mp,
11736 			    tcp->tcp_connp->conn_sqp);
11737 			return;
11738 		case MDT_IOC_INFO_UPDATE:
11739 			/*
11740 			 * Handle Multidata information update; the
11741 			 * following routine will free the message.
11742 			 */
11743 			if (tcp->tcp_connp->conn_mdt_ok) {
11744 				tcp_mdt_update(tcp,
11745 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11746 				    B_FALSE);
11747 			}
11748 			freemsg(mp);
11749 			return;
11750 		case LSO_IOC_INFO_UPDATE:
11751 			/*
11752 			 * Handle LSO information update; the following
11753 			 * routine will free the message.
11754 			 */
11755 			if (tcp->tcp_connp->conn_lso_ok) {
11756 				tcp_lso_update(tcp,
11757 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11758 			}
11759 			freemsg(mp);
11760 			return;
11761 		default:
11762 			/*
11763 			 * tcp_icmp_err() will process the M_CTL packets.
11764 			 * Non-ICMP packets, if any, will be discarded in
11765 			 * tcp_icmp_err(). We will process the ICMP packet
11766 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11767 			 * incoming ICMP packet may result in changing
11768 			 * the tcp_mss, which we would need if we have
11769 			 * packets to retransmit.
11770 			 */
11771 			tcp_icmp_error(tcp, mp);
11772 			return;
11773 		}
11774 	}
11775 
11776 	/* No point processing the message if tcp is already closed */
11777 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11778 		freemsg(mp);
11779 		return;
11780 	}
11781 
11782 	tcp_rput_other(tcp, mp);
11783 }
11784 
11785 
11786 /* The minimum of smoothed mean deviation in RTO calculation. */
11787 #define	TCP_SD_MIN	400
11788 
11789 /*
11790  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11791  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11792  * are the same as those in Appendix A.2 of that paper.
11793  *
11794  * m = new measurement
11795  * sa = smoothed RTT average (8 * average estimates).
11796  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11797  */
11798 static void
11799 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11800 {
11801 	long m = TICK_TO_MSEC(rtt);
11802 	clock_t sa = tcp->tcp_rtt_sa;
11803 	clock_t sv = tcp->tcp_rtt_sd;
11804 	clock_t rto;
11805 
11806 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11807 	tcp->tcp_rtt_update++;
11808 
11809 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11810 	if (sa != 0) {
11811 		/*
11812 		 * Update average estimator:
11813 		 *	new rtt = 7/8 old rtt + 1/8 Error
11814 		 */
11815 
11816 		/* m is now Error in estimate. */
11817 		m -= sa >> 3;
11818 		if ((sa += m) <= 0) {
11819 			/*
11820 			 * Don't allow the smoothed average to be negative.
11821 			 * We use 0 to denote reinitialization of the
11822 			 * variables.
11823 			 */
11824 			sa = 1;
11825 		}
11826 
11827 		/*
11828 		 * Update deviation estimator:
11829 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11830 		 */
11831 		if (m < 0)
11832 			m = -m;
11833 		m -= sv >> 2;
11834 		sv += m;
11835 	} else {
11836 		/*
11837 		 * This follows BSD's implementation.  So the reinitialized
11838 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11839 		 * link is bandwidth dominated, doubling the window size
11840 		 * during slow start means doubling the RTT.  We want to be
11841 		 * more conservative when we reinitialize our estimates.  3
11842 		 * is just a convenient number.
11843 		 */
11844 		sa = m << 3;
11845 		sv = m << 1;
11846 	}
11847 	if (sv < TCP_SD_MIN) {
11848 		/*
11849 		 * We do not know that if sa captures the delay ACK
11850 		 * effect as in a long train of segments, a receiver
11851 		 * does not delay its ACKs.  So set the minimum of sv
11852 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11853 		 * of BSD DATO.  That means the minimum of mean
11854 		 * deviation is 100 ms.
11855 		 *
11856 		 */
11857 		sv = TCP_SD_MIN;
11858 	}
11859 	tcp->tcp_rtt_sa = sa;
11860 	tcp->tcp_rtt_sd = sv;
11861 	/*
11862 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11863 	 *
11864 	 * Add tcp_rexmit_interval extra in case of extreme environment
11865 	 * where the algorithm fails to work.  The default value of
11866 	 * tcp_rexmit_interval_extra should be 0.
11867 	 *
11868 	 * As we use a finer grained clock than BSD and update
11869 	 * RTO for every ACKs, add in another .25 of RTT to the
11870 	 * deviation of RTO to accomodate burstiness of 1/4 of
11871 	 * window size.
11872 	 */
11873 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11874 
11875 	if (rto > tcp_rexmit_interval_max) {
11876 		tcp->tcp_rto = tcp_rexmit_interval_max;
11877 	} else if (rto < tcp_rexmit_interval_min) {
11878 		tcp->tcp_rto = tcp_rexmit_interval_min;
11879 	} else {
11880 		tcp->tcp_rto = rto;
11881 	}
11882 
11883 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11884 	tcp->tcp_timer_backoff = 0;
11885 }
11886 
11887 /*
11888  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11889  * send queue which starts at the given seq. no.
11890  *
11891  * Parameters:
11892  *	tcp_t *tcp: the tcp instance pointer.
11893  *	uint32_t seq: the starting seq. no of the requested segment.
11894  *	int32_t *off: after the execution, *off will be the offset to
11895  *		the returned mblk which points to the requested seq no.
11896  *		It is the caller's responsibility to send in a non-null off.
11897  *
11898  * Return:
11899  *	A mblk_t pointer pointing to the requested segment in send queue.
11900  */
11901 static mblk_t *
11902 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11903 {
11904 	int32_t	cnt;
11905 	mblk_t	*mp;
11906 
11907 	/* Defensive coding.  Make sure we don't send incorrect data. */
11908 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11909 		return (NULL);
11910 
11911 	cnt = seq - tcp->tcp_suna;
11912 	mp = tcp->tcp_xmit_head;
11913 	while (cnt > 0 && mp != NULL) {
11914 		cnt -= mp->b_wptr - mp->b_rptr;
11915 		if (cnt < 0) {
11916 			cnt += mp->b_wptr - mp->b_rptr;
11917 			break;
11918 		}
11919 		mp = mp->b_cont;
11920 	}
11921 	ASSERT(mp != NULL);
11922 	*off = cnt;
11923 	return (mp);
11924 }
11925 
11926 /*
11927  * This function handles all retransmissions if SACK is enabled for this
11928  * connection.  First it calculates how many segments can be retransmitted
11929  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11930  * segments.  A segment is eligible if sack_cnt for that segment is greater
11931  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11932  * all eligible segments, it checks to see if TCP can send some new segments
11933  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11934  *
11935  * Parameters:
11936  *	tcp_t *tcp: the tcp structure of the connection.
11937  *	uint_t *flags: in return, appropriate value will be set for
11938  *	tcp_rput_data().
11939  */
11940 static void
11941 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11942 {
11943 	notsack_blk_t	*notsack_blk;
11944 	int32_t		usable_swnd;
11945 	int32_t		mss;
11946 	uint32_t	seg_len;
11947 	mblk_t		*xmit_mp;
11948 
11949 	ASSERT(tcp->tcp_sack_info != NULL);
11950 	ASSERT(tcp->tcp_notsack_list != NULL);
11951 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11952 
11953 	/* Defensive coding in case there is a bug... */
11954 	if (tcp->tcp_notsack_list == NULL) {
11955 		return;
11956 	}
11957 	notsack_blk = tcp->tcp_notsack_list;
11958 	mss = tcp->tcp_mss;
11959 
11960 	/*
11961 	 * Limit the num of outstanding data in the network to be
11962 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11963 	 */
11964 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11965 
11966 	/* At least retransmit 1 MSS of data. */
11967 	if (usable_swnd <= 0) {
11968 		usable_swnd = mss;
11969 	}
11970 
11971 	/* Make sure no new RTT samples will be taken. */
11972 	tcp->tcp_csuna = tcp->tcp_snxt;
11973 
11974 	notsack_blk = tcp->tcp_notsack_list;
11975 	while (usable_swnd > 0) {
11976 		mblk_t		*snxt_mp, *tmp_mp;
11977 		tcp_seq		begin = tcp->tcp_sack_snxt;
11978 		tcp_seq		end;
11979 		int32_t		off;
11980 
11981 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11982 			if (SEQ_GT(notsack_blk->end, begin) &&
11983 			    (notsack_blk->sack_cnt >=
11984 			    tcp_dupack_fast_retransmit)) {
11985 				end = notsack_blk->end;
11986 				if (SEQ_LT(begin, notsack_blk->begin)) {
11987 					begin = notsack_blk->begin;
11988 				}
11989 				break;
11990 			}
11991 		}
11992 		/*
11993 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11994 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11995 		 * set to tcp_cwnd_ssthresh.
11996 		 */
11997 		if (notsack_blk == NULL) {
11998 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11999 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12000 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12001 				ASSERT(tcp->tcp_cwnd > 0);
12002 				return;
12003 			} else {
12004 				usable_swnd = usable_swnd / mss;
12005 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12006 				    MAX(usable_swnd * mss, mss);
12007 				*flags |= TH_XMIT_NEEDED;
12008 				return;
12009 			}
12010 		}
12011 
12012 		/*
12013 		 * Note that we may send more than usable_swnd allows here
12014 		 * because of round off, but no more than 1 MSS of data.
12015 		 */
12016 		seg_len = end - begin;
12017 		if (seg_len > mss)
12018 			seg_len = mss;
12019 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12020 		ASSERT(snxt_mp != NULL);
12021 		/* This should not happen.  Defensive coding again... */
12022 		if (snxt_mp == NULL) {
12023 			return;
12024 		}
12025 
12026 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12027 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12028 		if (xmit_mp == NULL)
12029 			return;
12030 
12031 		usable_swnd -= seg_len;
12032 		tcp->tcp_pipe += seg_len;
12033 		tcp->tcp_sack_snxt = begin + seg_len;
12034 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12035 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12036 
12037 		/*
12038 		 * Update the send timestamp to avoid false retransmission.
12039 		 */
12040 		snxt_mp->b_prev = (mblk_t *)lbolt;
12041 
12042 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
12043 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
12044 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
12045 		/*
12046 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12047 		 * This happens when new data sent during fast recovery is
12048 		 * also lost.  If TCP retransmits those new data, it needs
12049 		 * to extend SACK recover phase to avoid starting another
12050 		 * fast retransmit/recovery unnecessarily.
12051 		 */
12052 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12053 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12054 		}
12055 	}
12056 }
12057 
12058 /*
12059  * This function handles policy checking at TCP level for non-hard_bound/
12060  * detached connections.
12061  */
12062 static boolean_t
12063 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12064     boolean_t secure, boolean_t mctl_present)
12065 {
12066 	ipsec_latch_t *ipl = NULL;
12067 	ipsec_action_t *act = NULL;
12068 	mblk_t *data_mp;
12069 	ipsec_in_t *ii;
12070 	const char *reason;
12071 	kstat_named_t *counter;
12072 
12073 	ASSERT(mctl_present || !secure);
12074 
12075 	ASSERT((ipha == NULL && ip6h != NULL) ||
12076 	    (ip6h == NULL && ipha != NULL));
12077 
12078 	/*
12079 	 * We don't necessarily have an ipsec_in_act action to verify
12080 	 * policy because of assymetrical policy where we have only
12081 	 * outbound policy and no inbound policy (possible with global
12082 	 * policy).
12083 	 */
12084 	if (!secure) {
12085 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12086 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12087 			return (B_TRUE);
12088 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12089 		    "tcp_check_policy", ipha, ip6h, secure);
12090 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12091 		    &ipdrops_tcp_clear, &tcp_dropper);
12092 		return (B_FALSE);
12093 	}
12094 
12095 	/*
12096 	 * We have a secure packet.
12097 	 */
12098 	if (act == NULL) {
12099 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12100 		    "tcp_check_policy", ipha, ip6h, secure);
12101 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12102 		    &ipdrops_tcp_secure, &tcp_dropper);
12103 		return (B_FALSE);
12104 	}
12105 
12106 	/*
12107 	 * XXX This whole routine is currently incorrect.  ipl should
12108 	 * be set to the latch pointer, but is currently not set, so
12109 	 * we initialize it to NULL to avoid picking up random garbage.
12110 	 */
12111 	if (ipl == NULL)
12112 		return (B_TRUE);
12113 
12114 	data_mp = first_mp->b_cont;
12115 
12116 	ii = (ipsec_in_t *)first_mp->b_rptr;
12117 
12118 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12119 	    &counter, tcp->tcp_connp)) {
12120 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
12121 		return (B_TRUE);
12122 	}
12123 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12124 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12125 	    reason);
12126 	BUMP_MIB(&ip_mib, ipsecInFailed);
12127 
12128 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
12129 	return (B_FALSE);
12130 }
12131 
12132 /*
12133  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12134  * retransmission after a timeout.
12135  *
12136  * To limit the number of duplicate segments, we limit the number of segment
12137  * to be sent in one time to tcp_snd_burst, the burst variable.
12138  */
12139 static void
12140 tcp_ss_rexmit(tcp_t *tcp)
12141 {
12142 	uint32_t	snxt;
12143 	uint32_t	smax;
12144 	int32_t		win;
12145 	int32_t		mss;
12146 	int32_t		off;
12147 	int32_t		burst = tcp->tcp_snd_burst;
12148 	mblk_t		*snxt_mp;
12149 
12150 	/*
12151 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12152 	 * all unack'ed segments.
12153 	 */
12154 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12155 		smax = tcp->tcp_rexmit_max;
12156 		snxt = tcp->tcp_rexmit_nxt;
12157 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12158 			snxt = tcp->tcp_suna;
12159 		}
12160 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12161 		win -= snxt - tcp->tcp_suna;
12162 		mss = tcp->tcp_mss;
12163 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12164 
12165 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12166 		    (burst > 0) && (snxt_mp != NULL)) {
12167 			mblk_t	*xmit_mp;
12168 			mblk_t	*old_snxt_mp = snxt_mp;
12169 			uint32_t cnt = mss;
12170 
12171 			if (win < cnt) {
12172 				cnt = win;
12173 			}
12174 			if (SEQ_GT(snxt + cnt, smax)) {
12175 				cnt = smax - snxt;
12176 			}
12177 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12178 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12179 			if (xmit_mp == NULL)
12180 				return;
12181 
12182 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12183 
12184 			snxt += cnt;
12185 			win -= cnt;
12186 			/*
12187 			 * Update the send timestamp to avoid false
12188 			 * retransmission.
12189 			 */
12190 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12191 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
12192 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
12193 
12194 			tcp->tcp_rexmit_nxt = snxt;
12195 			burst--;
12196 		}
12197 		/*
12198 		 * If we have transmitted all we have at the time
12199 		 * we started the retranmission, we can leave
12200 		 * the rest of the job to tcp_wput_data().  But we
12201 		 * need to check the send window first.  If the
12202 		 * win is not 0, go on with tcp_wput_data().
12203 		 */
12204 		if (SEQ_LT(snxt, smax) || win == 0) {
12205 			return;
12206 		}
12207 	}
12208 	/* Only call tcp_wput_data() if there is data to be sent. */
12209 	if (tcp->tcp_unsent) {
12210 		tcp_wput_data(tcp, NULL, B_FALSE);
12211 	}
12212 }
12213 
12214 /*
12215  * Process all TCP option in SYN segment.  Note that this function should
12216  * be called after tcp_adapt_ire() is called so that the necessary info
12217  * from IRE is already set in the tcp structure.
12218  *
12219  * This function sets up the correct tcp_mss value according to the
12220  * MSS option value and our header size.  It also sets up the window scale
12221  * and timestamp values, and initialize SACK info blocks.  But it does not
12222  * change receive window size after setting the tcp_mss value.  The caller
12223  * should do the appropriate change.
12224  */
12225 void
12226 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12227 {
12228 	int options;
12229 	tcp_opt_t tcpopt;
12230 	uint32_t mss_max;
12231 	char *tmp_tcph;
12232 
12233 	tcpopt.tcp = NULL;
12234 	options = tcp_parse_options(tcph, &tcpopt);
12235 
12236 	/*
12237 	 * Process MSS option.  Note that MSS option value does not account
12238 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12239 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12240 	 * IPv6.
12241 	 */
12242 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12243 		if (tcp->tcp_ipversion == IPV4_VERSION)
12244 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
12245 		else
12246 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12247 	} else {
12248 		if (tcp->tcp_ipversion == IPV4_VERSION)
12249 			mss_max = tcp_mss_max_ipv4;
12250 		else
12251 			mss_max = tcp_mss_max_ipv6;
12252 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12253 			tcpopt.tcp_opt_mss = tcp_mss_min;
12254 		else if (tcpopt.tcp_opt_mss > mss_max)
12255 			tcpopt.tcp_opt_mss = mss_max;
12256 	}
12257 
12258 	/* Process Window Scale option. */
12259 	if (options & TCP_OPT_WSCALE_PRESENT) {
12260 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12261 		tcp->tcp_snd_ws_ok = B_TRUE;
12262 	} else {
12263 		tcp->tcp_snd_ws = B_FALSE;
12264 		tcp->tcp_snd_ws_ok = B_FALSE;
12265 		tcp->tcp_rcv_ws = B_FALSE;
12266 	}
12267 
12268 	/* Process Timestamp option. */
12269 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12270 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12271 		tmp_tcph = (char *)tcp->tcp_tcph;
12272 
12273 		tcp->tcp_snd_ts_ok = B_TRUE;
12274 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12275 		tcp->tcp_last_rcv_lbolt = lbolt64;
12276 		ASSERT(OK_32PTR(tmp_tcph));
12277 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12278 
12279 		/* Fill in our template header with basic timestamp option. */
12280 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12281 		tmp_tcph[0] = TCPOPT_NOP;
12282 		tmp_tcph[1] = TCPOPT_NOP;
12283 		tmp_tcph[2] = TCPOPT_TSTAMP;
12284 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12285 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12286 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12287 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12288 	} else {
12289 		tcp->tcp_snd_ts_ok = B_FALSE;
12290 	}
12291 
12292 	/*
12293 	 * Process SACK options.  If SACK is enabled for this connection,
12294 	 * then allocate the SACK info structure.  Note the following ways
12295 	 * when tcp_snd_sack_ok is set to true.
12296 	 *
12297 	 * For active connection: in tcp_adapt_ire() called in
12298 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12299 	 * is checked.
12300 	 *
12301 	 * For passive connection: in tcp_adapt_ire() called in
12302 	 * tcp_accept_comm().
12303 	 *
12304 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12305 	 * That check makes sure that if we did not send a SACK OK option,
12306 	 * we will not enable SACK for this connection even though the other
12307 	 * side sends us SACK OK option.  For active connection, the SACK
12308 	 * info structure has already been allocated.  So we need to free
12309 	 * it if SACK is disabled.
12310 	 */
12311 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12312 	    (tcp->tcp_snd_sack_ok ||
12313 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12314 		/* This should be true only in the passive case. */
12315 		if (tcp->tcp_sack_info == NULL) {
12316 			ASSERT(TCP_IS_DETACHED(tcp));
12317 			tcp->tcp_sack_info =
12318 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12319 		}
12320 		if (tcp->tcp_sack_info == NULL) {
12321 			tcp->tcp_snd_sack_ok = B_FALSE;
12322 		} else {
12323 			tcp->tcp_snd_sack_ok = B_TRUE;
12324 			if (tcp->tcp_snd_ts_ok) {
12325 				tcp->tcp_max_sack_blk = 3;
12326 			} else {
12327 				tcp->tcp_max_sack_blk = 4;
12328 			}
12329 		}
12330 	} else {
12331 		/*
12332 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12333 		 * no SACK info will be used for this
12334 		 * connection.  This assumes that SACK usage
12335 		 * permission is negotiated.  This may need
12336 		 * to be changed once this is clarified.
12337 		 */
12338 		if (tcp->tcp_sack_info != NULL) {
12339 			ASSERT(tcp->tcp_notsack_list == NULL);
12340 			kmem_cache_free(tcp_sack_info_cache,
12341 			    tcp->tcp_sack_info);
12342 			tcp->tcp_sack_info = NULL;
12343 		}
12344 		tcp->tcp_snd_sack_ok = B_FALSE;
12345 	}
12346 
12347 	/*
12348 	 * Now we know the exact TCP/IP header length, subtract
12349 	 * that from tcp_mss to get our side's MSS.
12350 	 */
12351 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12352 	/*
12353 	 * Here we assume that the other side's header size will be equal to
12354 	 * our header size.  We calculate the real MSS accordingly.  Need to
12355 	 * take into additional stuffs IPsec puts in.
12356 	 *
12357 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12358 	 */
12359 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12360 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12361 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12362 
12363 	/*
12364 	 * Set MSS to the smaller one of both ends of the connection.
12365 	 * We should not have called tcp_mss_set() before, but our
12366 	 * side of the MSS should have been set to a proper value
12367 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12368 	 * STREAM head parameters properly.
12369 	 *
12370 	 * If we have a larger-than-16-bit window but the other side
12371 	 * didn't want to do window scale, tcp_rwnd_set() will take
12372 	 * care of that.
12373 	 */
12374 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12375 }
12376 
12377 /*
12378  * Sends the T_CONN_IND to the listener. The caller calls this
12379  * functions via squeue to get inside the listener's perimeter
12380  * once the 3 way hand shake is done a T_CONN_IND needs to be
12381  * sent. As an optimization, the caller can call this directly
12382  * if listener's perimeter is same as eager's.
12383  */
12384 /* ARGSUSED */
12385 void
12386 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12387 {
12388 	conn_t			*lconnp = (conn_t *)arg;
12389 	tcp_t			*listener = lconnp->conn_tcp;
12390 	tcp_t			*tcp;
12391 	struct T_conn_ind	*conn_ind;
12392 	ipaddr_t 		*addr_cache;
12393 	boolean_t		need_send_conn_ind = B_FALSE;
12394 
12395 	/* retrieve the eager */
12396 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12397 	ASSERT(conn_ind->OPT_offset != 0 &&
12398 	    conn_ind->OPT_length == sizeof (intptr_t));
12399 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12400 		conn_ind->OPT_length);
12401 
12402 	/*
12403 	 * TLI/XTI applications will get confused by
12404 	 * sending eager as an option since it violates
12405 	 * the option semantics. So remove the eager as
12406 	 * option since TLI/XTI app doesn't need it anyway.
12407 	 */
12408 	if (!TCP_IS_SOCKET(listener)) {
12409 		conn_ind->OPT_length = 0;
12410 		conn_ind->OPT_offset = 0;
12411 	}
12412 	if (listener->tcp_state == TCPS_CLOSED ||
12413 	    TCP_IS_DETACHED(listener)) {
12414 		/*
12415 		 * If listener has closed, it would have caused a
12416 		 * a cleanup/blowoff to happen for the eager. We
12417 		 * just need to return.
12418 		 */
12419 		freemsg(mp);
12420 		return;
12421 	}
12422 
12423 
12424 	/*
12425 	 * if the conn_req_q is full defer passing up the
12426 	 * T_CONN_IND until space is availabe after t_accept()
12427 	 * processing
12428 	 */
12429 	mutex_enter(&listener->tcp_eager_lock);
12430 
12431 	/*
12432 	 * Take the eager out, if it is in the list of droppable eagers
12433 	 * as we are here because the 3W handshake is over.
12434 	 */
12435 	MAKE_UNDROPPABLE(tcp);
12436 
12437 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12438 		tcp_t *tail;
12439 
12440 		/*
12441 		 * The eager already has an extra ref put in tcp_rput_data
12442 		 * so that it stays till accept comes back even though it
12443 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12444 		 */
12445 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12446 		listener->tcp_conn_req_cnt_q0--;
12447 		listener->tcp_conn_req_cnt_q++;
12448 
12449 		/* Move from SYN_RCVD to ESTABLISHED list  */
12450 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12451 		    tcp->tcp_eager_prev_q0;
12452 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12453 		    tcp->tcp_eager_next_q0;
12454 		tcp->tcp_eager_prev_q0 = NULL;
12455 		tcp->tcp_eager_next_q0 = NULL;
12456 
12457 		/*
12458 		 * Insert at end of the queue because sockfs
12459 		 * sends down T_CONN_RES in chronological
12460 		 * order. Leaving the older conn indications
12461 		 * at front of the queue helps reducing search
12462 		 * time.
12463 		 */
12464 		tail = listener->tcp_eager_last_q;
12465 		if (tail != NULL)
12466 			tail->tcp_eager_next_q = tcp;
12467 		else
12468 			listener->tcp_eager_next_q = tcp;
12469 		listener->tcp_eager_last_q = tcp;
12470 		tcp->tcp_eager_next_q = NULL;
12471 		/*
12472 		 * Delay sending up the T_conn_ind until we are
12473 		 * done with the eager. Once we have have sent up
12474 		 * the T_conn_ind, the accept can potentially complete
12475 		 * any time and release the refhold we have on the eager.
12476 		 */
12477 		need_send_conn_ind = B_TRUE;
12478 	} else {
12479 		/*
12480 		 * Defer connection on q0 and set deferred
12481 		 * connection bit true
12482 		 */
12483 		tcp->tcp_conn_def_q0 = B_TRUE;
12484 
12485 		/* take tcp out of q0 ... */
12486 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12487 		    tcp->tcp_eager_next_q0;
12488 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12489 		    tcp->tcp_eager_prev_q0;
12490 
12491 		/* ... and place it at the end of q0 */
12492 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12493 		tcp->tcp_eager_next_q0 = listener;
12494 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12495 		listener->tcp_eager_prev_q0 = tcp;
12496 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12497 	}
12498 
12499 	/* we have timed out before */
12500 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12501 		tcp->tcp_syn_rcvd_timeout = 0;
12502 		listener->tcp_syn_rcvd_timeout--;
12503 		if (listener->tcp_syn_defense &&
12504 		    listener->tcp_syn_rcvd_timeout <=
12505 		    (tcp_conn_req_max_q0 >> 5) &&
12506 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12507 			listener->tcp_last_rcv_lbolt)) {
12508 			/*
12509 			 * Turn off the defense mode if we
12510 			 * believe the SYN attack is over.
12511 			 */
12512 			listener->tcp_syn_defense = B_FALSE;
12513 			if (listener->tcp_ip_addr_cache) {
12514 				kmem_free((void *)listener->tcp_ip_addr_cache,
12515 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12516 				listener->tcp_ip_addr_cache = NULL;
12517 			}
12518 		}
12519 	}
12520 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12521 	if (addr_cache != NULL) {
12522 		/*
12523 		 * We have finished a 3-way handshake with this
12524 		 * remote host. This proves the IP addr is good.
12525 		 * Cache it!
12526 		 */
12527 		addr_cache[IP_ADDR_CACHE_HASH(
12528 			tcp->tcp_remote)] = tcp->tcp_remote;
12529 	}
12530 	mutex_exit(&listener->tcp_eager_lock);
12531 	if (need_send_conn_ind)
12532 		putnext(listener->tcp_rq, mp);
12533 }
12534 
12535 mblk_t *
12536 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12537     uint_t *ifindexp, ip6_pkt_t *ippp)
12538 {
12539 	in_pktinfo_t	*pinfo;
12540 	ip6_t		*ip6h;
12541 	uchar_t		*rptr;
12542 	mblk_t		*first_mp = mp;
12543 	boolean_t	mctl_present = B_FALSE;
12544 	uint_t 		ifindex = 0;
12545 	ip6_pkt_t	ipp;
12546 	uint_t		ipvers;
12547 	uint_t		ip_hdr_len;
12548 
12549 	rptr = mp->b_rptr;
12550 	ASSERT(OK_32PTR(rptr));
12551 	ASSERT(tcp != NULL);
12552 	ipp.ipp_fields = 0;
12553 
12554 	switch DB_TYPE(mp) {
12555 	case M_CTL:
12556 		mp = mp->b_cont;
12557 		if (mp == NULL) {
12558 			freemsg(first_mp);
12559 			return (NULL);
12560 		}
12561 		if (DB_TYPE(mp) != M_DATA) {
12562 			freemsg(first_mp);
12563 			return (NULL);
12564 		}
12565 		mctl_present = B_TRUE;
12566 		break;
12567 	case M_DATA:
12568 		break;
12569 	default:
12570 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12571 		freemsg(mp);
12572 		return (NULL);
12573 	}
12574 	ipvers = IPH_HDR_VERSION(rptr);
12575 	if (ipvers == IPV4_VERSION) {
12576 		if (tcp == NULL) {
12577 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12578 			goto done;
12579 		}
12580 
12581 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12582 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12583 
12584 		/*
12585 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12586 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12587 		 */
12588 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12589 		    mctl_present) {
12590 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12591 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12592 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12593 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12594 				ipp.ipp_fields |= IPPF_IFINDEX;
12595 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12596 				ifindex = pinfo->in_pkt_ifindex;
12597 			}
12598 			freeb(first_mp);
12599 			mctl_present = B_FALSE;
12600 		}
12601 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12602 	} else {
12603 		ip6h = (ip6_t *)rptr;
12604 
12605 		ASSERT(ipvers == IPV6_VERSION);
12606 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12607 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12608 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12609 
12610 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12611 			uint8_t	nexthdrp;
12612 
12613 			/* Look for ifindex information */
12614 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12615 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12616 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12617 					BUMP_MIB(&ip_mib, tcpInErrs);
12618 					freemsg(first_mp);
12619 					return (NULL);
12620 				}
12621 
12622 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12623 					ASSERT(ip6i->ip6i_ifindex != 0);
12624 					ipp.ipp_fields |= IPPF_IFINDEX;
12625 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12626 					ifindex = ip6i->ip6i_ifindex;
12627 				}
12628 				rptr = (uchar_t *)&ip6i[1];
12629 				mp->b_rptr = rptr;
12630 				if (rptr == mp->b_wptr) {
12631 					mblk_t *mp1;
12632 					mp1 = mp->b_cont;
12633 					freeb(mp);
12634 					mp = mp1;
12635 					rptr = mp->b_rptr;
12636 				}
12637 				if (MBLKL(mp) < IPV6_HDR_LEN +
12638 				    sizeof (tcph_t)) {
12639 					BUMP_MIB(&ip_mib, tcpInErrs);
12640 					freemsg(first_mp);
12641 					return (NULL);
12642 				}
12643 				ip6h = (ip6_t *)rptr;
12644 			}
12645 
12646 			/*
12647 			 * Find any potentially interesting extension headers
12648 			 * as well as the length of the IPv6 + extension
12649 			 * headers.
12650 			 */
12651 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12652 			/* Verify if this is a TCP packet */
12653 			if (nexthdrp != IPPROTO_TCP) {
12654 				BUMP_MIB(&ip_mib, tcpInErrs);
12655 				freemsg(first_mp);
12656 				return (NULL);
12657 			}
12658 		} else {
12659 			ip_hdr_len = IPV6_HDR_LEN;
12660 		}
12661 	}
12662 
12663 done:
12664 	if (ipversp != NULL)
12665 		*ipversp = ipvers;
12666 	if (ip_hdr_lenp != NULL)
12667 		*ip_hdr_lenp = ip_hdr_len;
12668 	if (ippp != NULL)
12669 		*ippp = ipp;
12670 	if (ifindexp != NULL)
12671 		*ifindexp = ifindex;
12672 	if (mctl_present) {
12673 		freeb(first_mp);
12674 	}
12675 	return (mp);
12676 }
12677 
12678 /*
12679  * Handle M_DATA messages from IP. Its called directly from IP via
12680  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12681  * in this path.
12682  *
12683  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12684  * v4 and v6), we are called through tcp_input() and a M_CTL can
12685  * be present for options but tcp_find_pktinfo() deals with it. We
12686  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12687  *
12688  * The first argument is always the connp/tcp to which the mp belongs.
12689  * There are no exceptions to this rule. The caller has already put
12690  * a reference on this connp/tcp and once tcp_rput_data() returns,
12691  * the squeue will do the refrele.
12692  *
12693  * The TH_SYN for the listener directly go to tcp_conn_request via
12694  * squeue.
12695  *
12696  * sqp: NULL = recursive, sqp != NULL means called from squeue
12697  */
12698 void
12699 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12700 {
12701 	int32_t		bytes_acked;
12702 	int32_t		gap;
12703 	mblk_t		*mp1;
12704 	uint_t		flags;
12705 	uint32_t	new_swnd = 0;
12706 	uchar_t		*iphdr;
12707 	uchar_t		*rptr;
12708 	int32_t		rgap;
12709 	uint32_t	seg_ack;
12710 	int		seg_len;
12711 	uint_t		ip_hdr_len;
12712 	uint32_t	seg_seq;
12713 	tcph_t		*tcph;
12714 	int		urp;
12715 	tcp_opt_t	tcpopt;
12716 	uint_t		ipvers;
12717 	ip6_pkt_t	ipp;
12718 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12719 	uint32_t	cwnd;
12720 	uint32_t	add;
12721 	int		npkt;
12722 	int		mss;
12723 	conn_t		*connp = (conn_t *)arg;
12724 	squeue_t	*sqp = (squeue_t *)arg2;
12725 	tcp_t		*tcp = connp->conn_tcp;
12726 
12727 	/*
12728 	 * RST from fused tcp loopback peer should trigger an unfuse.
12729 	 */
12730 	if (tcp->tcp_fused) {
12731 		TCP_STAT(tcp_fusion_aborted);
12732 		tcp_unfuse(tcp);
12733 	}
12734 
12735 	iphdr = mp->b_rptr;
12736 	rptr = mp->b_rptr;
12737 	ASSERT(OK_32PTR(rptr));
12738 
12739 	/*
12740 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12741 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12742 	 * necessary information.
12743 	 */
12744 	if (IPCL_IS_TCP4(connp)) {
12745 		ipvers = IPV4_VERSION;
12746 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12747 	} else {
12748 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12749 		    NULL, &ipp);
12750 		if (mp == NULL) {
12751 			TCP_STAT(tcp_rput_v6_error);
12752 			return;
12753 		}
12754 		iphdr = mp->b_rptr;
12755 		rptr = mp->b_rptr;
12756 	}
12757 	ASSERT(DB_TYPE(mp) == M_DATA);
12758 
12759 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12760 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12761 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12762 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12763 	seg_len = (int)(mp->b_wptr - rptr) -
12764 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12765 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12766 		do {
12767 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12768 			    (uintptr_t)INT_MAX);
12769 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12770 		} while ((mp1 = mp1->b_cont) != NULL &&
12771 		    mp1->b_datap->db_type == M_DATA);
12772 	}
12773 
12774 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12775 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12776 		    seg_len, tcph);
12777 		return;
12778 	}
12779 
12780 	if (sqp != NULL) {
12781 		/*
12782 		 * This is the correct place to update tcp_last_recv_time. Note
12783 		 * that it is also updated for tcp structure that belongs to
12784 		 * global and listener queues which do not really need updating.
12785 		 * But that should not cause any harm.  And it is updated for
12786 		 * all kinds of incoming segments, not only for data segments.
12787 		 */
12788 		tcp->tcp_last_recv_time = lbolt;
12789 	}
12790 
12791 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12792 
12793 	BUMP_LOCAL(tcp->tcp_ibsegs);
12794 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12795 
12796 	if ((flags & TH_URG) && sqp != NULL) {
12797 		/*
12798 		 * TCP can't handle urgent pointers that arrive before
12799 		 * the connection has been accept()ed since it can't
12800 		 * buffer OOB data.  Discard segment if this happens.
12801 		 *
12802 		 * Nor can it reassemble urgent pointers, so discard
12803 		 * if it's not the next segment expected.
12804 		 *
12805 		 * Otherwise, collapse chain into one mblk (discard if
12806 		 * that fails).  This makes sure the headers, retransmitted
12807 		 * data, and new data all are in the same mblk.
12808 		 */
12809 		ASSERT(mp != NULL);
12810 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12811 			freemsg(mp);
12812 			return;
12813 		}
12814 		/* Update pointers into message */
12815 		iphdr = rptr = mp->b_rptr;
12816 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12817 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12818 			/*
12819 			 * Since we can't handle any data with this urgent
12820 			 * pointer that is out of sequence, we expunge
12821 			 * the data.  This allows us to still register
12822 			 * the urgent mark and generate the M_PCSIG,
12823 			 * which we can do.
12824 			 */
12825 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12826 			seg_len = 0;
12827 		}
12828 	}
12829 
12830 	switch (tcp->tcp_state) {
12831 	case TCPS_SYN_SENT:
12832 		if (flags & TH_ACK) {
12833 			/*
12834 			 * Note that our stack cannot send data before a
12835 			 * connection is established, therefore the
12836 			 * following check is valid.  Otherwise, it has
12837 			 * to be changed.
12838 			 */
12839 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12840 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12841 				freemsg(mp);
12842 				if (flags & TH_RST)
12843 					return;
12844 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12845 				    tcp, seg_ack, 0, TH_RST);
12846 				return;
12847 			}
12848 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12849 		}
12850 		if (flags & TH_RST) {
12851 			freemsg(mp);
12852 			if (flags & TH_ACK)
12853 				(void) tcp_clean_death(tcp,
12854 				    ECONNREFUSED, 13);
12855 			return;
12856 		}
12857 		if (!(flags & TH_SYN)) {
12858 			freemsg(mp);
12859 			return;
12860 		}
12861 
12862 		/* Process all TCP options. */
12863 		tcp_process_options(tcp, tcph);
12864 		/*
12865 		 * The following changes our rwnd to be a multiple of the
12866 		 * MIN(peer MSS, our MSS) for performance reason.
12867 		 */
12868 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12869 		    tcp->tcp_mss));
12870 
12871 		/* Is the other end ECN capable? */
12872 		if (tcp->tcp_ecn_ok) {
12873 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12874 				tcp->tcp_ecn_ok = B_FALSE;
12875 			}
12876 		}
12877 		/*
12878 		 * Clear ECN flags because it may interfere with later
12879 		 * processing.
12880 		 */
12881 		flags &= ~(TH_ECE|TH_CWR);
12882 
12883 		tcp->tcp_irs = seg_seq;
12884 		tcp->tcp_rack = seg_seq;
12885 		tcp->tcp_rnxt = seg_seq + 1;
12886 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12887 		if (!TCP_IS_DETACHED(tcp)) {
12888 			/* Allocate room for SACK options if needed. */
12889 			if (tcp->tcp_snd_sack_ok) {
12890 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12891 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12892 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12893 			} else {
12894 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12895 				    tcp->tcp_hdr_len +
12896 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12897 			}
12898 		}
12899 		if (flags & TH_ACK) {
12900 			/*
12901 			 * If we can't get the confirmation upstream, pretend
12902 			 * we didn't even see this one.
12903 			 *
12904 			 * XXX: how can we pretend we didn't see it if we
12905 			 * have updated rnxt et. al.
12906 			 *
12907 			 * For loopback we defer sending up the T_CONN_CON
12908 			 * until after some checks below.
12909 			 */
12910 			mp1 = NULL;
12911 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12912 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12913 				freemsg(mp);
12914 				return;
12915 			}
12916 			/* SYN was acked - making progress */
12917 			if (tcp->tcp_ipversion == IPV6_VERSION)
12918 				tcp->tcp_ip_forward_progress = B_TRUE;
12919 
12920 			/* One for the SYN */
12921 			tcp->tcp_suna = tcp->tcp_iss + 1;
12922 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12923 			tcp->tcp_state = TCPS_ESTABLISHED;
12924 
12925 			/*
12926 			 * If SYN was retransmitted, need to reset all
12927 			 * retransmission info.  This is because this
12928 			 * segment will be treated as a dup ACK.
12929 			 */
12930 			if (tcp->tcp_rexmit) {
12931 				tcp->tcp_rexmit = B_FALSE;
12932 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12933 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12934 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12935 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12936 				tcp->tcp_ms_we_have_waited = 0;
12937 
12938 				/*
12939 				 * Set tcp_cwnd back to 1 MSS, per
12940 				 * recommendation from
12941 				 * draft-floyd-incr-init-win-01.txt,
12942 				 * Increasing TCP's Initial Window.
12943 				 */
12944 				tcp->tcp_cwnd = tcp->tcp_mss;
12945 			}
12946 
12947 			tcp->tcp_swl1 = seg_seq;
12948 			tcp->tcp_swl2 = seg_ack;
12949 
12950 			new_swnd = BE16_TO_U16(tcph->th_win);
12951 			tcp->tcp_swnd = new_swnd;
12952 			if (new_swnd > tcp->tcp_max_swnd)
12953 				tcp->tcp_max_swnd = new_swnd;
12954 
12955 			/*
12956 			 * Always send the three-way handshake ack immediately
12957 			 * in order to make the connection complete as soon as
12958 			 * possible on the accepting host.
12959 			 */
12960 			flags |= TH_ACK_NEEDED;
12961 
12962 			/*
12963 			 * Special case for loopback.  At this point we have
12964 			 * received SYN-ACK from the remote endpoint.  In
12965 			 * order to ensure that both endpoints reach the
12966 			 * fused state prior to any data exchange, the final
12967 			 * ACK needs to be sent before we indicate T_CONN_CON
12968 			 * to the module upstream.
12969 			 */
12970 			if (tcp->tcp_loopback) {
12971 				mblk_t *ack_mp;
12972 
12973 				ASSERT(!tcp->tcp_unfusable);
12974 				ASSERT(mp1 != NULL);
12975 				/*
12976 				 * For loopback, we always get a pure SYN-ACK
12977 				 * and only need to send back the final ACK
12978 				 * with no data (this is because the other
12979 				 * tcp is ours and we don't do T/TCP).  This
12980 				 * final ACK triggers the passive side to
12981 				 * perform fusion in ESTABLISHED state.
12982 				 */
12983 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12984 					if (tcp->tcp_ack_tid != 0) {
12985 						(void) TCP_TIMER_CANCEL(tcp,
12986 						    tcp->tcp_ack_tid);
12987 						tcp->tcp_ack_tid = 0;
12988 					}
12989 					TCP_RECORD_TRACE(tcp, ack_mp,
12990 					    TCP_TRACE_SEND_PKT);
12991 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12992 					BUMP_LOCAL(tcp->tcp_obsegs);
12993 					BUMP_MIB(&tcp_mib, tcpOutAck);
12994 
12995 					/* Send up T_CONN_CON */
12996 					putnext(tcp->tcp_rq, mp1);
12997 
12998 					freemsg(mp);
12999 					return;
13000 				}
13001 				/*
13002 				 * Forget fusion; we need to handle more
13003 				 * complex cases below.  Send the deferred
13004 				 * T_CONN_CON message upstream and proceed
13005 				 * as usual.  Mark this tcp as not capable
13006 				 * of fusion.
13007 				 */
13008 				TCP_STAT(tcp_fusion_unfusable);
13009 				tcp->tcp_unfusable = B_TRUE;
13010 				putnext(tcp->tcp_rq, mp1);
13011 			}
13012 
13013 			/*
13014 			 * Check to see if there is data to be sent.  If
13015 			 * yes, set the transmit flag.  Then check to see
13016 			 * if received data processing needs to be done.
13017 			 * If not, go straight to xmit_check.  This short
13018 			 * cut is OK as we don't support T/TCP.
13019 			 */
13020 			if (tcp->tcp_unsent)
13021 				flags |= TH_XMIT_NEEDED;
13022 
13023 			if (seg_len == 0 && !(flags & TH_URG)) {
13024 				freemsg(mp);
13025 				goto xmit_check;
13026 			}
13027 
13028 			flags &= ~TH_SYN;
13029 			seg_seq++;
13030 			break;
13031 		}
13032 		tcp->tcp_state = TCPS_SYN_RCVD;
13033 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13034 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13035 		if (mp1) {
13036 			DB_CPID(mp1) = tcp->tcp_cpid;
13037 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13038 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13039 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13040 		}
13041 		freemsg(mp);
13042 		return;
13043 	case TCPS_SYN_RCVD:
13044 		if (flags & TH_ACK) {
13045 			/*
13046 			 * In this state, a SYN|ACK packet is either bogus
13047 			 * because the other side must be ACKing our SYN which
13048 			 * indicates it has seen the ACK for their SYN and
13049 			 * shouldn't retransmit it or we're crossing SYNs
13050 			 * on active open.
13051 			 */
13052 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13053 				freemsg(mp);
13054 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13055 				    tcp, seg_ack, 0, TH_RST);
13056 				return;
13057 			}
13058 			/*
13059 			 * NOTE: RFC 793 pg. 72 says this should be
13060 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13061 			 * but that would mean we have an ack that ignored
13062 			 * our SYN.
13063 			 */
13064 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13065 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13066 				freemsg(mp);
13067 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13068 				    tcp, seg_ack, 0, TH_RST);
13069 				return;
13070 			}
13071 		}
13072 		break;
13073 	case TCPS_LISTEN:
13074 		/*
13075 		 * Only a TLI listener can come through this path when a
13076 		 * acceptor is going back to be a listener and a packet
13077 		 * for the acceptor hits the classifier. For a socket
13078 		 * listener, this can never happen because a listener
13079 		 * can never accept connection on itself and hence a
13080 		 * socket acceptor can not go back to being a listener.
13081 		 */
13082 		ASSERT(!TCP_IS_SOCKET(tcp));
13083 		/*FALLTHRU*/
13084 	case TCPS_CLOSED:
13085 	case TCPS_BOUND: {
13086 		conn_t	*new_connp;
13087 
13088 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
13089 		if (new_connp != NULL) {
13090 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13091 			return;
13092 		}
13093 		/* We failed to classify. For now just drop the packet */
13094 		freemsg(mp);
13095 		return;
13096 	}
13097 	case TCPS_IDLE:
13098 		/*
13099 		 * Handle the case where the tcp_clean_death() has happened
13100 		 * on a connection (application hasn't closed yet) but a packet
13101 		 * was already queued on squeue before tcp_clean_death()
13102 		 * was processed. Calling tcp_clean_death() twice on same
13103 		 * connection can result in weird behaviour.
13104 		 */
13105 		freemsg(mp);
13106 		return;
13107 	default:
13108 		break;
13109 	}
13110 
13111 	/*
13112 	 * Already on the correct queue/perimeter.
13113 	 * If this is a detached connection and not an eager
13114 	 * connection hanging off a listener then new data
13115 	 * (past the FIN) will cause a reset.
13116 	 * We do a special check here where it
13117 	 * is out of the main line, rather than check
13118 	 * if we are detached every time we see new
13119 	 * data down below.
13120 	 */
13121 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13122 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13123 		BUMP_MIB(&tcp_mib, tcpInClosed);
13124 		TCP_RECORD_TRACE(tcp,
13125 		    mp, TCP_TRACE_RECV_PKT);
13126 
13127 		freemsg(mp);
13128 		/*
13129 		 * This could be an SSL closure alert. We're detached so just
13130 		 * acknowledge it this last time.
13131 		 */
13132 		if (tcp->tcp_kssl_ctx != NULL) {
13133 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13134 			tcp->tcp_kssl_ctx = NULL;
13135 
13136 			tcp->tcp_rnxt += seg_len;
13137 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13138 			flags |= TH_ACK_NEEDED;
13139 			goto ack_check;
13140 		}
13141 
13142 		tcp_xmit_ctl("new data when detached", tcp,
13143 		    tcp->tcp_snxt, 0, TH_RST);
13144 		(void) tcp_clean_death(tcp, EPROTO, 12);
13145 		return;
13146 	}
13147 
13148 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13149 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13150 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13151 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13152 	mss = tcp->tcp_mss;
13153 
13154 	if (tcp->tcp_snd_ts_ok) {
13155 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13156 			/*
13157 			 * This segment is not acceptable.
13158 			 * Drop it and send back an ACK.
13159 			 */
13160 			freemsg(mp);
13161 			flags |= TH_ACK_NEEDED;
13162 			goto ack_check;
13163 		}
13164 	} else if (tcp->tcp_snd_sack_ok) {
13165 		ASSERT(tcp->tcp_sack_info != NULL);
13166 		tcpopt.tcp = tcp;
13167 		/*
13168 		 * SACK info in already updated in tcp_parse_options.  Ignore
13169 		 * all other TCP options...
13170 		 */
13171 		(void) tcp_parse_options(tcph, &tcpopt);
13172 	}
13173 try_again:;
13174 	gap = seg_seq - tcp->tcp_rnxt;
13175 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13176 	/*
13177 	 * gap is the amount of sequence space between what we expect to see
13178 	 * and what we got for seg_seq.  A positive value for gap means
13179 	 * something got lost.  A negative value means we got some old stuff.
13180 	 */
13181 	if (gap < 0) {
13182 		/* Old stuff present.  Is the SYN in there? */
13183 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13184 		    (seg_len != 0)) {
13185 			flags &= ~TH_SYN;
13186 			seg_seq++;
13187 			urp--;
13188 			/* Recompute the gaps after noting the SYN. */
13189 			goto try_again;
13190 		}
13191 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
13192 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
13193 		    (seg_len > -gap ? -gap : seg_len));
13194 		/* Remove the old stuff from seg_len. */
13195 		seg_len += gap;
13196 		/*
13197 		 * Anything left?
13198 		 * Make sure to check for unack'd FIN when rest of data
13199 		 * has been previously ack'd.
13200 		 */
13201 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13202 			/*
13203 			 * Resets are only valid if they lie within our offered
13204 			 * window.  If the RST bit is set, we just ignore this
13205 			 * segment.
13206 			 */
13207 			if (flags & TH_RST) {
13208 				freemsg(mp);
13209 				return;
13210 			}
13211 
13212 			/*
13213 			 * The arriving of dup data packets indicate that we
13214 			 * may have postponed an ack for too long, or the other
13215 			 * side's RTT estimate is out of shape. Start acking
13216 			 * more often.
13217 			 */
13218 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13219 			    tcp->tcp_rack_cnt >= 1 &&
13220 			    tcp->tcp_rack_abs_max > 2) {
13221 				tcp->tcp_rack_abs_max--;
13222 			}
13223 			tcp->tcp_rack_cur_max = 1;
13224 
13225 			/*
13226 			 * This segment is "unacceptable".  None of its
13227 			 * sequence space lies within our advertized window.
13228 			 *
13229 			 * Adjust seg_len to the original value for tracing.
13230 			 */
13231 			seg_len -= gap;
13232 			if (tcp->tcp_debug) {
13233 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13234 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13235 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13236 				    "seg_len %d, rnxt %u, snxt %u, %s",
13237 				    gap, rgap, flags, seg_seq, seg_ack,
13238 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13239 				    tcp_display(tcp, NULL,
13240 				    DISP_ADDR_AND_PORT));
13241 			}
13242 
13243 			/*
13244 			 * Arrange to send an ACK in response to the
13245 			 * unacceptable segment per RFC 793 page 69. There
13246 			 * is only one small difference between ours and the
13247 			 * acceptability test in the RFC - we accept ACK-only
13248 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13249 			 * will be generated.
13250 			 *
13251 			 * Note that we have to ACK an ACK-only packet at least
13252 			 * for stacks that send 0-length keep-alives with
13253 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13254 			 * section 4.2.3.6. As long as we don't ever generate
13255 			 * an unacceptable packet in response to an incoming
13256 			 * packet that is unacceptable, it should not cause
13257 			 * "ACK wars".
13258 			 */
13259 			flags |=  TH_ACK_NEEDED;
13260 
13261 			/*
13262 			 * Continue processing this segment in order to use the
13263 			 * ACK information it contains, but skip all other
13264 			 * sequence-number processing.	Processing the ACK
13265 			 * information is necessary in order to
13266 			 * re-synchronize connections that may have lost
13267 			 * synchronization.
13268 			 *
13269 			 * We clear seg_len and flag fields related to
13270 			 * sequence number processing as they are not
13271 			 * to be trusted for an unacceptable segment.
13272 			 */
13273 			seg_len = 0;
13274 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13275 			goto process_ack;
13276 		}
13277 
13278 		/* Fix seg_seq, and chew the gap off the front. */
13279 		seg_seq = tcp->tcp_rnxt;
13280 		urp += gap;
13281 		do {
13282 			mblk_t	*mp2;
13283 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13284 			    (uintptr_t)UINT_MAX);
13285 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13286 			if (gap > 0) {
13287 				mp->b_rptr = mp->b_wptr - gap;
13288 				break;
13289 			}
13290 			mp2 = mp;
13291 			mp = mp->b_cont;
13292 			freeb(mp2);
13293 		} while (gap < 0);
13294 		/*
13295 		 * If the urgent data has already been acknowledged, we
13296 		 * should ignore TH_URG below
13297 		 */
13298 		if (urp < 0)
13299 			flags &= ~TH_URG;
13300 	}
13301 	/*
13302 	 * rgap is the amount of stuff received out of window.  A negative
13303 	 * value is the amount out of window.
13304 	 */
13305 	if (rgap < 0) {
13306 		mblk_t	*mp2;
13307 
13308 		if (tcp->tcp_rwnd == 0) {
13309 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13310 		} else {
13311 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13312 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13313 		}
13314 
13315 		/*
13316 		 * seg_len does not include the FIN, so if more than
13317 		 * just the FIN is out of window, we act like we don't
13318 		 * see it.  (If just the FIN is out of window, rgap
13319 		 * will be zero and we will go ahead and acknowledge
13320 		 * the FIN.)
13321 		 */
13322 		flags &= ~TH_FIN;
13323 
13324 		/* Fix seg_len and make sure there is something left. */
13325 		seg_len += rgap;
13326 		if (seg_len <= 0) {
13327 			/*
13328 			 * Resets are only valid if they lie within our offered
13329 			 * window.  If the RST bit is set, we just ignore this
13330 			 * segment.
13331 			 */
13332 			if (flags & TH_RST) {
13333 				freemsg(mp);
13334 				return;
13335 			}
13336 
13337 			/* Per RFC 793, we need to send back an ACK. */
13338 			flags |= TH_ACK_NEEDED;
13339 
13340 			/*
13341 			 * Send SIGURG as soon as possible i.e. even
13342 			 * if the TH_URG was delivered in a window probe
13343 			 * packet (which will be unacceptable).
13344 			 *
13345 			 * We generate a signal if none has been generated
13346 			 * for this connection or if this is a new urgent
13347 			 * byte. Also send a zero-length "unmarked" message
13348 			 * to inform SIOCATMARK that this is not the mark.
13349 			 *
13350 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13351 			 * is sent up. This plus the check for old data
13352 			 * (gap >= 0) handles the wraparound of the sequence
13353 			 * number space without having to always track the
13354 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13355 			 * this max in its rcv_up variable).
13356 			 *
13357 			 * This prevents duplicate SIGURGS due to a "late"
13358 			 * zero-window probe when the T_EXDATA_IND has already
13359 			 * been sent up.
13360 			 */
13361 			if ((flags & TH_URG) &&
13362 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13363 			    tcp->tcp_urp_last))) {
13364 				mp1 = allocb(0, BPRI_MED);
13365 				if (mp1 == NULL) {
13366 					freemsg(mp);
13367 					return;
13368 				}
13369 				if (!TCP_IS_DETACHED(tcp) &&
13370 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13371 				    SIGURG)) {
13372 					/* Try again on the rexmit. */
13373 					freemsg(mp1);
13374 					freemsg(mp);
13375 					return;
13376 				}
13377 				/*
13378 				 * If the next byte would be the mark
13379 				 * then mark with MARKNEXT else mark
13380 				 * with NOTMARKNEXT.
13381 				 */
13382 				if (gap == 0 && urp == 0)
13383 					mp1->b_flag |= MSGMARKNEXT;
13384 				else
13385 					mp1->b_flag |= MSGNOTMARKNEXT;
13386 				freemsg(tcp->tcp_urp_mark_mp);
13387 				tcp->tcp_urp_mark_mp = mp1;
13388 				flags |= TH_SEND_URP_MARK;
13389 				tcp->tcp_urp_last_valid = B_TRUE;
13390 				tcp->tcp_urp_last = urp + seg_seq;
13391 			}
13392 			/*
13393 			 * If this is a zero window probe, continue to
13394 			 * process the ACK part.  But we need to set seg_len
13395 			 * to 0 to avoid data processing.  Otherwise just
13396 			 * drop the segment and send back an ACK.
13397 			 */
13398 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13399 				flags &= ~(TH_SYN | TH_URG);
13400 				seg_len = 0;
13401 				goto process_ack;
13402 			} else {
13403 				freemsg(mp);
13404 				goto ack_check;
13405 			}
13406 		}
13407 		/* Pitch out of window stuff off the end. */
13408 		rgap = seg_len;
13409 		mp2 = mp;
13410 		do {
13411 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13412 			    (uintptr_t)INT_MAX);
13413 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13414 			if (rgap < 0) {
13415 				mp2->b_wptr += rgap;
13416 				if ((mp1 = mp2->b_cont) != NULL) {
13417 					mp2->b_cont = NULL;
13418 					freemsg(mp1);
13419 				}
13420 				break;
13421 			}
13422 		} while ((mp2 = mp2->b_cont) != NULL);
13423 	}
13424 ok:;
13425 	/*
13426 	 * TCP should check ECN info for segments inside the window only.
13427 	 * Therefore the check should be done here.
13428 	 */
13429 	if (tcp->tcp_ecn_ok) {
13430 		if (flags & TH_CWR) {
13431 			tcp->tcp_ecn_echo_on = B_FALSE;
13432 		}
13433 		/*
13434 		 * Note that both ECN_CE and CWR can be set in the
13435 		 * same segment.  In this case, we once again turn
13436 		 * on ECN_ECHO.
13437 		 */
13438 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13439 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13440 
13441 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13442 				tcp->tcp_ecn_echo_on = B_TRUE;
13443 			}
13444 		} else {
13445 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13446 
13447 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13448 			    htonl(IPH_ECN_CE << 20)) {
13449 				tcp->tcp_ecn_echo_on = B_TRUE;
13450 			}
13451 		}
13452 	}
13453 
13454 	/*
13455 	 * Check whether we can update tcp_ts_recent.  This test is
13456 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13457 	 * Extensions for High Performance: An Update", Internet Draft.
13458 	 */
13459 	if (tcp->tcp_snd_ts_ok &&
13460 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13461 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13462 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13463 		tcp->tcp_last_rcv_lbolt = lbolt64;
13464 	}
13465 
13466 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13467 		/*
13468 		 * FIN in an out of order segment.  We record this in
13469 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13470 		 * Clear the FIN so that any check on FIN flag will fail.
13471 		 * Remember that FIN also counts in the sequence number
13472 		 * space.  So we need to ack out of order FIN only segments.
13473 		 */
13474 		if (flags & TH_FIN) {
13475 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13476 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13477 			flags &= ~TH_FIN;
13478 			flags |= TH_ACK_NEEDED;
13479 		}
13480 		if (seg_len > 0) {
13481 			/* Fill in the SACK blk list. */
13482 			if (tcp->tcp_snd_sack_ok) {
13483 				ASSERT(tcp->tcp_sack_info != NULL);
13484 				tcp_sack_insert(tcp->tcp_sack_list,
13485 				    seg_seq, seg_seq + seg_len,
13486 				    &(tcp->tcp_num_sack_blk));
13487 			}
13488 
13489 			/*
13490 			 * Attempt reassembly and see if we have something
13491 			 * ready to go.
13492 			 */
13493 			mp = tcp_reass(tcp, mp, seg_seq);
13494 			/* Always ack out of order packets */
13495 			flags |= TH_ACK_NEEDED | TH_PUSH;
13496 			if (mp) {
13497 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13498 				    (uintptr_t)INT_MAX);
13499 				seg_len = mp->b_cont ? msgdsize(mp) :
13500 					(int)(mp->b_wptr - mp->b_rptr);
13501 				seg_seq = tcp->tcp_rnxt;
13502 				/*
13503 				 * A gap is filled and the seq num and len
13504 				 * of the gap match that of a previously
13505 				 * received FIN, put the FIN flag back in.
13506 				 */
13507 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13508 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13509 					flags |= TH_FIN;
13510 					tcp->tcp_valid_bits &=
13511 					    ~TCP_OFO_FIN_VALID;
13512 				}
13513 			} else {
13514 				/*
13515 				 * Keep going even with NULL mp.
13516 				 * There may be a useful ACK or something else
13517 				 * we don't want to miss.
13518 				 *
13519 				 * But TCP should not perform fast retransmit
13520 				 * because of the ack number.  TCP uses
13521 				 * seg_len == 0 to determine if it is a pure
13522 				 * ACK.  And this is not a pure ACK.
13523 				 */
13524 				seg_len = 0;
13525 				ofo_seg = B_TRUE;
13526 			}
13527 		}
13528 	} else if (seg_len > 0) {
13529 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13530 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13531 		/*
13532 		 * If an out of order FIN was received before, and the seq
13533 		 * num and len of the new segment match that of the FIN,
13534 		 * put the FIN flag back in.
13535 		 */
13536 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13537 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13538 			flags |= TH_FIN;
13539 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13540 		}
13541 	}
13542 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13543 	if (flags & TH_RST) {
13544 		freemsg(mp);
13545 		switch (tcp->tcp_state) {
13546 		case TCPS_SYN_RCVD:
13547 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13548 			break;
13549 		case TCPS_ESTABLISHED:
13550 		case TCPS_FIN_WAIT_1:
13551 		case TCPS_FIN_WAIT_2:
13552 		case TCPS_CLOSE_WAIT:
13553 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13554 			break;
13555 		case TCPS_CLOSING:
13556 		case TCPS_LAST_ACK:
13557 			(void) tcp_clean_death(tcp, 0, 16);
13558 			break;
13559 		default:
13560 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13561 			(void) tcp_clean_death(tcp, ENXIO, 17);
13562 			break;
13563 		}
13564 		return;
13565 	}
13566 	if (flags & TH_SYN) {
13567 		/*
13568 		 * See RFC 793, Page 71
13569 		 *
13570 		 * The seq number must be in the window as it should
13571 		 * be "fixed" above.  If it is outside window, it should
13572 		 * be already rejected.  Note that we allow seg_seq to be
13573 		 * rnxt + rwnd because we want to accept 0 window probe.
13574 		 */
13575 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13576 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13577 		freemsg(mp);
13578 		/*
13579 		 * If the ACK flag is not set, just use our snxt as the
13580 		 * seq number of the RST segment.
13581 		 */
13582 		if (!(flags & TH_ACK)) {
13583 			seg_ack = tcp->tcp_snxt;
13584 		}
13585 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13586 		    TH_RST|TH_ACK);
13587 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13588 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13589 		return;
13590 	}
13591 	/*
13592 	 * urp could be -1 when the urp field in the packet is 0
13593 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13594 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13595 	 */
13596 	if (flags & TH_URG && urp >= 0) {
13597 		if (!tcp->tcp_urp_last_valid ||
13598 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13599 			/*
13600 			 * If we haven't generated the signal yet for this
13601 			 * urgent pointer value, do it now.  Also, send up a
13602 			 * zero-length M_DATA indicating whether or not this is
13603 			 * the mark. The latter is not needed when a
13604 			 * T_EXDATA_IND is sent up. However, if there are
13605 			 * allocation failures this code relies on the sender
13606 			 * retransmitting and the socket code for determining
13607 			 * the mark should not block waiting for the peer to
13608 			 * transmit. Thus, for simplicity we always send up the
13609 			 * mark indication.
13610 			 */
13611 			mp1 = allocb(0, BPRI_MED);
13612 			if (mp1 == NULL) {
13613 				freemsg(mp);
13614 				return;
13615 			}
13616 			if (!TCP_IS_DETACHED(tcp) &&
13617 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13618 				/* Try again on the rexmit. */
13619 				freemsg(mp1);
13620 				freemsg(mp);
13621 				return;
13622 			}
13623 			/*
13624 			 * Mark with NOTMARKNEXT for now.
13625 			 * The code below will change this to MARKNEXT
13626 			 * if we are at the mark.
13627 			 *
13628 			 * If there are allocation failures (e.g. in dupmsg
13629 			 * below) the next time tcp_rput_data sees the urgent
13630 			 * segment it will send up the MSG*MARKNEXT message.
13631 			 */
13632 			mp1->b_flag |= MSGNOTMARKNEXT;
13633 			freemsg(tcp->tcp_urp_mark_mp);
13634 			tcp->tcp_urp_mark_mp = mp1;
13635 			flags |= TH_SEND_URP_MARK;
13636 #ifdef DEBUG
13637 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13638 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13639 			    "last %x, %s",
13640 			    seg_seq, urp, tcp->tcp_urp_last,
13641 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13642 #endif /* DEBUG */
13643 			tcp->tcp_urp_last_valid = B_TRUE;
13644 			tcp->tcp_urp_last = urp + seg_seq;
13645 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13646 			/*
13647 			 * An allocation failure prevented the previous
13648 			 * tcp_rput_data from sending up the allocated
13649 			 * MSG*MARKNEXT message - send it up this time
13650 			 * around.
13651 			 */
13652 			flags |= TH_SEND_URP_MARK;
13653 		}
13654 
13655 		/*
13656 		 * If the urgent byte is in this segment, make sure that it is
13657 		 * all by itself.  This makes it much easier to deal with the
13658 		 * possibility of an allocation failure on the T_exdata_ind.
13659 		 * Note that seg_len is the number of bytes in the segment, and
13660 		 * urp is the offset into the segment of the urgent byte.
13661 		 * urp < seg_len means that the urgent byte is in this segment.
13662 		 */
13663 		if (urp < seg_len) {
13664 			if (seg_len != 1) {
13665 				uint32_t  tmp_rnxt;
13666 				/*
13667 				 * Break it up and feed it back in.
13668 				 * Re-attach the IP header.
13669 				 */
13670 				mp->b_rptr = iphdr;
13671 				if (urp > 0) {
13672 					/*
13673 					 * There is stuff before the urgent
13674 					 * byte.
13675 					 */
13676 					mp1 = dupmsg(mp);
13677 					if (!mp1) {
13678 						/*
13679 						 * Trim from urgent byte on.
13680 						 * The rest will come back.
13681 						 */
13682 						(void) adjmsg(mp,
13683 						    urp - seg_len);
13684 						tcp_rput_data(connp,
13685 						    mp, NULL);
13686 						return;
13687 					}
13688 					(void) adjmsg(mp1, urp - seg_len);
13689 					/* Feed this piece back in. */
13690 					tmp_rnxt = tcp->tcp_rnxt;
13691 					tcp_rput_data(connp, mp1, NULL);
13692 					/*
13693 					 * If the data passed back in was not
13694 					 * processed (ie: bad ACK) sending
13695 					 * the remainder back in will cause a
13696 					 * loop. In this case, drop the
13697 					 * packet and let the sender try
13698 					 * sending a good packet.
13699 					 */
13700 					if (tmp_rnxt == tcp->tcp_rnxt) {
13701 						freemsg(mp);
13702 						return;
13703 					}
13704 				}
13705 				if (urp != seg_len - 1) {
13706 					uint32_t  tmp_rnxt;
13707 					/*
13708 					 * There is stuff after the urgent
13709 					 * byte.
13710 					 */
13711 					mp1 = dupmsg(mp);
13712 					if (!mp1) {
13713 						/*
13714 						 * Trim everything beyond the
13715 						 * urgent byte.  The rest will
13716 						 * come back.
13717 						 */
13718 						(void) adjmsg(mp,
13719 						    urp + 1 - seg_len);
13720 						tcp_rput_data(connp,
13721 						    mp, NULL);
13722 						return;
13723 					}
13724 					(void) adjmsg(mp1, urp + 1 - seg_len);
13725 					tmp_rnxt = tcp->tcp_rnxt;
13726 					tcp_rput_data(connp, mp1, NULL);
13727 					/*
13728 					 * If the data passed back in was not
13729 					 * processed (ie: bad ACK) sending
13730 					 * the remainder back in will cause a
13731 					 * loop. In this case, drop the
13732 					 * packet and let the sender try
13733 					 * sending a good packet.
13734 					 */
13735 					if (tmp_rnxt == tcp->tcp_rnxt) {
13736 						freemsg(mp);
13737 						return;
13738 					}
13739 				}
13740 				tcp_rput_data(connp, mp, NULL);
13741 				return;
13742 			}
13743 			/*
13744 			 * This segment contains only the urgent byte.  We
13745 			 * have to allocate the T_exdata_ind, if we can.
13746 			 */
13747 			if (!tcp->tcp_urp_mp) {
13748 				struct T_exdata_ind *tei;
13749 				mp1 = allocb(sizeof (struct T_exdata_ind),
13750 				    BPRI_MED);
13751 				if (!mp1) {
13752 					/*
13753 					 * Sigh... It'll be back.
13754 					 * Generate any MSG*MARK message now.
13755 					 */
13756 					freemsg(mp);
13757 					seg_len = 0;
13758 					if (flags & TH_SEND_URP_MARK) {
13759 
13760 
13761 						ASSERT(tcp->tcp_urp_mark_mp);
13762 						tcp->tcp_urp_mark_mp->b_flag &=
13763 							~MSGNOTMARKNEXT;
13764 						tcp->tcp_urp_mark_mp->b_flag |=
13765 							MSGMARKNEXT;
13766 					}
13767 					goto ack_check;
13768 				}
13769 				mp1->b_datap->db_type = M_PROTO;
13770 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13771 				tei->PRIM_type = T_EXDATA_IND;
13772 				tei->MORE_flag = 0;
13773 				mp1->b_wptr = (uchar_t *)&tei[1];
13774 				tcp->tcp_urp_mp = mp1;
13775 #ifdef DEBUG
13776 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13777 				    "tcp_rput: allocated exdata_ind %s",
13778 				    tcp_display(tcp, NULL,
13779 				    DISP_PORT_ONLY));
13780 #endif /* DEBUG */
13781 				/*
13782 				 * There is no need to send a separate MSG*MARK
13783 				 * message since the T_EXDATA_IND will be sent
13784 				 * now.
13785 				 */
13786 				flags &= ~TH_SEND_URP_MARK;
13787 				freemsg(tcp->tcp_urp_mark_mp);
13788 				tcp->tcp_urp_mark_mp = NULL;
13789 			}
13790 			/*
13791 			 * Now we are all set.  On the next putnext upstream,
13792 			 * tcp_urp_mp will be non-NULL and will get prepended
13793 			 * to what has to be this piece containing the urgent
13794 			 * byte.  If for any reason we abort this segment below,
13795 			 * if it comes back, we will have this ready, or it
13796 			 * will get blown off in close.
13797 			 */
13798 		} else if (urp == seg_len) {
13799 			/*
13800 			 * The urgent byte is the next byte after this sequence
13801 			 * number. If there is data it is marked with
13802 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13803 			 * since it is not needed. Otherwise, if the code
13804 			 * above just allocated a zero-length tcp_urp_mark_mp
13805 			 * message, that message is tagged with MSGMARKNEXT.
13806 			 * Sending up these MSGMARKNEXT messages makes
13807 			 * SIOCATMARK work correctly even though
13808 			 * the T_EXDATA_IND will not be sent up until the
13809 			 * urgent byte arrives.
13810 			 */
13811 			if (seg_len != 0) {
13812 				flags |= TH_MARKNEXT_NEEDED;
13813 				freemsg(tcp->tcp_urp_mark_mp);
13814 				tcp->tcp_urp_mark_mp = NULL;
13815 				flags &= ~TH_SEND_URP_MARK;
13816 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13817 				flags |= TH_SEND_URP_MARK;
13818 				tcp->tcp_urp_mark_mp->b_flag &=
13819 					~MSGNOTMARKNEXT;
13820 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13821 			}
13822 #ifdef DEBUG
13823 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13824 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13825 			    seg_len, flags,
13826 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13827 #endif /* DEBUG */
13828 		} else {
13829 			/* Data left until we hit mark */
13830 #ifdef DEBUG
13831 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13832 			    "tcp_rput: URP %d bytes left, %s",
13833 			    urp - seg_len, tcp_display(tcp, NULL,
13834 			    DISP_PORT_ONLY));
13835 #endif /* DEBUG */
13836 		}
13837 	}
13838 
13839 process_ack:
13840 	if (!(flags & TH_ACK)) {
13841 		freemsg(mp);
13842 		goto xmit_check;
13843 	}
13844 	}
13845 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13846 
13847 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13848 		tcp->tcp_ip_forward_progress = B_TRUE;
13849 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13850 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13851 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13852 			/* 3-way handshake complete - pass up the T_CONN_IND */
13853 			tcp_t	*listener = tcp->tcp_listener;
13854 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13855 
13856 			tcp->tcp_tconnind_started = B_TRUE;
13857 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13858 			/*
13859 			 * We are here means eager is fine but it can
13860 			 * get a TH_RST at any point between now and till
13861 			 * accept completes and disappear. We need to
13862 			 * ensure that reference to eager is valid after
13863 			 * we get out of eager's perimeter. So we do
13864 			 * an extra refhold.
13865 			 */
13866 			CONN_INC_REF(connp);
13867 
13868 			/*
13869 			 * The listener also exists because of the refhold
13870 			 * done in tcp_conn_request. Its possible that it
13871 			 * might have closed. We will check that once we
13872 			 * get inside listeners context.
13873 			 */
13874 			CONN_INC_REF(listener->tcp_connp);
13875 			if (listener->tcp_connp->conn_sqp ==
13876 			    connp->conn_sqp) {
13877 				tcp_send_conn_ind(listener->tcp_connp, mp,
13878 				    listener->tcp_connp->conn_sqp);
13879 				CONN_DEC_REF(listener->tcp_connp);
13880 			} else if (!tcp->tcp_loopback) {
13881 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13882 				    tcp_send_conn_ind,
13883 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13884 			} else {
13885 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13886 				    tcp_send_conn_ind, listener->tcp_connp,
13887 				    SQTAG_TCP_CONN_IND);
13888 			}
13889 		}
13890 
13891 		if (tcp->tcp_active_open) {
13892 			/*
13893 			 * We are seeing the final ack in the three way
13894 			 * hand shake of a active open'ed connection
13895 			 * so we must send up a T_CONN_CON
13896 			 */
13897 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13898 				freemsg(mp);
13899 				return;
13900 			}
13901 			/*
13902 			 * Don't fuse the loopback endpoints for
13903 			 * simultaneous active opens.
13904 			 */
13905 			if (tcp->tcp_loopback) {
13906 				TCP_STAT(tcp_fusion_unfusable);
13907 				tcp->tcp_unfusable = B_TRUE;
13908 			}
13909 		}
13910 
13911 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13912 		bytes_acked--;
13913 		/* SYN was acked - making progress */
13914 		if (tcp->tcp_ipversion == IPV6_VERSION)
13915 			tcp->tcp_ip_forward_progress = B_TRUE;
13916 
13917 		/*
13918 		 * If SYN was retransmitted, need to reset all
13919 		 * retransmission info as this segment will be
13920 		 * treated as a dup ACK.
13921 		 */
13922 		if (tcp->tcp_rexmit) {
13923 			tcp->tcp_rexmit = B_FALSE;
13924 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13925 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13926 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13927 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13928 			tcp->tcp_ms_we_have_waited = 0;
13929 			tcp->tcp_cwnd = mss;
13930 		}
13931 
13932 		/*
13933 		 * We set the send window to zero here.
13934 		 * This is needed if there is data to be
13935 		 * processed already on the queue.
13936 		 * Later (at swnd_update label), the
13937 		 * "new_swnd > tcp_swnd" condition is satisfied
13938 		 * the XMIT_NEEDED flag is set in the current
13939 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13940 		 * called if there is already data on queue in
13941 		 * this state.
13942 		 */
13943 		tcp->tcp_swnd = 0;
13944 
13945 		if (new_swnd > tcp->tcp_max_swnd)
13946 			tcp->tcp_max_swnd = new_swnd;
13947 		tcp->tcp_swl1 = seg_seq;
13948 		tcp->tcp_swl2 = seg_ack;
13949 		tcp->tcp_state = TCPS_ESTABLISHED;
13950 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13951 
13952 		/* Fuse when both sides are in ESTABLISHED state */
13953 		if (tcp->tcp_loopback && do_tcp_fusion)
13954 			tcp_fuse(tcp, iphdr, tcph);
13955 
13956 	}
13957 	/* This code follows 4.4BSD-Lite2 mostly. */
13958 	if (bytes_acked < 0)
13959 		goto est;
13960 
13961 	/*
13962 	 * If TCP is ECN capable and the congestion experience bit is
13963 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13964 	 * done once per window (or more loosely, per RTT).
13965 	 */
13966 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13967 		tcp->tcp_cwr = B_FALSE;
13968 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13969 		if (!tcp->tcp_cwr) {
13970 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13971 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13972 			tcp->tcp_cwnd = npkt * mss;
13973 			/*
13974 			 * If the cwnd is 0, use the timer to clock out
13975 			 * new segments.  This is required by the ECN spec.
13976 			 */
13977 			if (npkt == 0) {
13978 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13979 				/*
13980 				 * This makes sure that when the ACK comes
13981 				 * back, we will increase tcp_cwnd by 1 MSS.
13982 				 */
13983 				tcp->tcp_cwnd_cnt = 0;
13984 			}
13985 			tcp->tcp_cwr = B_TRUE;
13986 			/*
13987 			 * This marks the end of the current window of in
13988 			 * flight data.  That is why we don't use
13989 			 * tcp_suna + tcp_swnd.  Only data in flight can
13990 			 * provide ECN info.
13991 			 */
13992 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13993 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13994 		}
13995 	}
13996 
13997 	mp1 = tcp->tcp_xmit_head;
13998 	if (bytes_acked == 0) {
13999 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14000 			int dupack_cnt;
14001 
14002 			BUMP_MIB(&tcp_mib, tcpInDupAck);
14003 			/*
14004 			 * Fast retransmit.  When we have seen exactly three
14005 			 * identical ACKs while we have unacked data
14006 			 * outstanding we take it as a hint that our peer
14007 			 * dropped something.
14008 			 *
14009 			 * If TCP is retransmitting, don't do fast retransmit.
14010 			 */
14011 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14012 			    ! tcp->tcp_rexmit) {
14013 				/* Do Limited Transmit */
14014 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14015 				    tcp_dupack_fast_retransmit) {
14016 					/*
14017 					 * RFC 3042
14018 					 *
14019 					 * What we need to do is temporarily
14020 					 * increase tcp_cwnd so that new
14021 					 * data can be sent if it is allowed
14022 					 * by the receive window (tcp_rwnd).
14023 					 * tcp_wput_data() will take care of
14024 					 * the rest.
14025 					 *
14026 					 * If the connection is SACK capable,
14027 					 * only do limited xmit when there
14028 					 * is SACK info.
14029 					 *
14030 					 * Note how tcp_cwnd is incremented.
14031 					 * The first dup ACK will increase
14032 					 * it by 1 MSS.  The second dup ACK
14033 					 * will increase it by 2 MSS.  This
14034 					 * means that only 1 new segment will
14035 					 * be sent for each dup ACK.
14036 					 */
14037 					if (tcp->tcp_unsent > 0 &&
14038 					    (!tcp->tcp_snd_sack_ok ||
14039 					    (tcp->tcp_snd_sack_ok &&
14040 					    tcp->tcp_notsack_list != NULL))) {
14041 						tcp->tcp_cwnd += mss <<
14042 						    (tcp->tcp_dupack_cnt - 1);
14043 						flags |= TH_LIMIT_XMIT;
14044 					}
14045 				} else if (dupack_cnt ==
14046 				    tcp_dupack_fast_retransmit) {
14047 
14048 				/*
14049 				 * If we have reduced tcp_ssthresh
14050 				 * because of ECN, do not reduce it again
14051 				 * unless it is already one window of data
14052 				 * away.  After one window of data, tcp_cwr
14053 				 * should then be cleared.  Note that
14054 				 * for non ECN capable connection, tcp_cwr
14055 				 * should always be false.
14056 				 *
14057 				 * Adjust cwnd since the duplicate
14058 				 * ack indicates that a packet was
14059 				 * dropped (due to congestion.)
14060 				 */
14061 				if (!tcp->tcp_cwr) {
14062 					npkt = ((tcp->tcp_snxt -
14063 					    tcp->tcp_suna) >> 1) / mss;
14064 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14065 					    mss;
14066 					tcp->tcp_cwnd = (npkt +
14067 					    tcp->tcp_dupack_cnt) * mss;
14068 				}
14069 				if (tcp->tcp_ecn_ok) {
14070 					tcp->tcp_cwr = B_TRUE;
14071 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14072 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14073 				}
14074 
14075 				/*
14076 				 * We do Hoe's algorithm.  Refer to her
14077 				 * paper "Improving the Start-up Behavior
14078 				 * of a Congestion Control Scheme for TCP,"
14079 				 * appeared in SIGCOMM'96.
14080 				 *
14081 				 * Save highest seq no we have sent so far.
14082 				 * Be careful about the invisible FIN byte.
14083 				 */
14084 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14085 				    (tcp->tcp_unsent == 0)) {
14086 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14087 				} else {
14088 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14089 				}
14090 
14091 				/*
14092 				 * Do not allow bursty traffic during.
14093 				 * fast recovery.  Refer to Fall and Floyd's
14094 				 * paper "Simulation-based Comparisons of
14095 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14096 				 * This is a best current practise.
14097 				 */
14098 				tcp->tcp_snd_burst = TCP_CWND_SS;
14099 
14100 				/*
14101 				 * For SACK:
14102 				 * Calculate tcp_pipe, which is the
14103 				 * estimated number of bytes in
14104 				 * network.
14105 				 *
14106 				 * tcp_fack is the highest sack'ed seq num
14107 				 * TCP has received.
14108 				 *
14109 				 * tcp_pipe is explained in the above quoted
14110 				 * Fall and Floyd's paper.  tcp_fack is
14111 				 * explained in Mathis and Mahdavi's
14112 				 * "Forward Acknowledgment: Refining TCP
14113 				 * Congestion Control" in SIGCOMM '96.
14114 				 */
14115 				if (tcp->tcp_snd_sack_ok) {
14116 					ASSERT(tcp->tcp_sack_info != NULL);
14117 					if (tcp->tcp_notsack_list != NULL) {
14118 						tcp->tcp_pipe = tcp->tcp_snxt -
14119 						    tcp->tcp_fack;
14120 						tcp->tcp_sack_snxt = seg_ack;
14121 						flags |= TH_NEED_SACK_REXMIT;
14122 					} else {
14123 						/*
14124 						 * Always initialize tcp_pipe
14125 						 * even though we don't have
14126 						 * any SACK info.  If later
14127 						 * we get SACK info and
14128 						 * tcp_pipe is not initialized,
14129 						 * funny things will happen.
14130 						 */
14131 						tcp->tcp_pipe =
14132 						    tcp->tcp_cwnd_ssthresh;
14133 					}
14134 				} else {
14135 					flags |= TH_REXMIT_NEEDED;
14136 				} /* tcp_snd_sack_ok */
14137 
14138 				} else {
14139 					/*
14140 					 * Here we perform congestion
14141 					 * avoidance, but NOT slow start.
14142 					 * This is known as the Fast
14143 					 * Recovery Algorithm.
14144 					 */
14145 					if (tcp->tcp_snd_sack_ok &&
14146 					    tcp->tcp_notsack_list != NULL) {
14147 						flags |= TH_NEED_SACK_REXMIT;
14148 						tcp->tcp_pipe -= mss;
14149 						if (tcp->tcp_pipe < 0)
14150 							tcp->tcp_pipe = 0;
14151 					} else {
14152 					/*
14153 					 * We know that one more packet has
14154 					 * left the pipe thus we can update
14155 					 * cwnd.
14156 					 */
14157 					cwnd = tcp->tcp_cwnd + mss;
14158 					if (cwnd > tcp->tcp_cwnd_max)
14159 						cwnd = tcp->tcp_cwnd_max;
14160 					tcp->tcp_cwnd = cwnd;
14161 					if (tcp->tcp_unsent > 0)
14162 						flags |= TH_XMIT_NEEDED;
14163 					}
14164 				}
14165 			}
14166 		} else if (tcp->tcp_zero_win_probe) {
14167 			/*
14168 			 * If the window has opened, need to arrange
14169 			 * to send additional data.
14170 			 */
14171 			if (new_swnd != 0) {
14172 				/* tcp_suna != tcp_snxt */
14173 				/* Packet contains a window update */
14174 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
14175 				tcp->tcp_zero_win_probe = 0;
14176 				tcp->tcp_timer_backoff = 0;
14177 				tcp->tcp_ms_we_have_waited = 0;
14178 
14179 				/*
14180 				 * Transmit starting with tcp_suna since
14181 				 * the one byte probe is not ack'ed.
14182 				 * If TCP has sent more than one identical
14183 				 * probe, tcp_rexmit will be set.  That means
14184 				 * tcp_ss_rexmit() will send out the one
14185 				 * byte along with new data.  Otherwise,
14186 				 * fake the retransmission.
14187 				 */
14188 				flags |= TH_XMIT_NEEDED;
14189 				if (!tcp->tcp_rexmit) {
14190 					tcp->tcp_rexmit = B_TRUE;
14191 					tcp->tcp_dupack_cnt = 0;
14192 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14193 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14194 				}
14195 			}
14196 		}
14197 		goto swnd_update;
14198 	}
14199 
14200 	/*
14201 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14202 	 * If the ACK value acks something that we have not yet sent, it might
14203 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14204 	 * other side.
14205 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14206 	 * state is handled above, so we can always just drop the segment and
14207 	 * send an ACK here.
14208 	 *
14209 	 * Should we send ACKs in response to ACK only segments?
14210 	 */
14211 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14212 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
14213 		/* drop the received segment */
14214 		freemsg(mp);
14215 
14216 		/*
14217 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14218 		 * greater than 0, check if the number of such
14219 		 * bogus ACks is greater than that count.  If yes,
14220 		 * don't send back any ACK.  This prevents TCP from
14221 		 * getting into an ACK storm if somehow an attacker
14222 		 * successfully spoofs an acceptable segment to our
14223 		 * peer.
14224 		 */
14225 		if (tcp_drop_ack_unsent_cnt > 0 &&
14226 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14227 			TCP_STAT(tcp_in_ack_unsent_drop);
14228 			return;
14229 		}
14230 		mp = tcp_ack_mp(tcp);
14231 		if (mp != NULL) {
14232 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14233 			BUMP_LOCAL(tcp->tcp_obsegs);
14234 			BUMP_MIB(&tcp_mib, tcpOutAck);
14235 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14236 		}
14237 		return;
14238 	}
14239 
14240 	/*
14241 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14242 	 * blocks that are covered by this ACK.
14243 	 */
14244 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14245 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14246 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14247 	}
14248 
14249 	/*
14250 	 * If we got an ACK after fast retransmit, check to see
14251 	 * if it is a partial ACK.  If it is not and the congestion
14252 	 * window was inflated to account for the other side's
14253 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14254 	 */
14255 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14256 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14257 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14258 			tcp->tcp_dupack_cnt = 0;
14259 			/*
14260 			 * Restore the orig tcp_cwnd_ssthresh after
14261 			 * fast retransmit phase.
14262 			 */
14263 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14264 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14265 			}
14266 			tcp->tcp_rexmit_max = seg_ack;
14267 			tcp->tcp_cwnd_cnt = 0;
14268 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14269 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14270 
14271 			/*
14272 			 * Remove all notsack info to avoid confusion with
14273 			 * the next fast retrasnmit/recovery phase.
14274 			 */
14275 			if (tcp->tcp_snd_sack_ok &&
14276 			    tcp->tcp_notsack_list != NULL) {
14277 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14278 			}
14279 		} else {
14280 			if (tcp->tcp_snd_sack_ok &&
14281 			    tcp->tcp_notsack_list != NULL) {
14282 				flags |= TH_NEED_SACK_REXMIT;
14283 				tcp->tcp_pipe -= mss;
14284 				if (tcp->tcp_pipe < 0)
14285 					tcp->tcp_pipe = 0;
14286 			} else {
14287 				/*
14288 				 * Hoe's algorithm:
14289 				 *
14290 				 * Retransmit the unack'ed segment and
14291 				 * restart fast recovery.  Note that we
14292 				 * need to scale back tcp_cwnd to the
14293 				 * original value when we started fast
14294 				 * recovery.  This is to prevent overly
14295 				 * aggressive behaviour in sending new
14296 				 * segments.
14297 				 */
14298 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14299 					tcp_dupack_fast_retransmit * mss;
14300 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14301 				flags |= TH_REXMIT_NEEDED;
14302 			}
14303 		}
14304 	} else {
14305 		tcp->tcp_dupack_cnt = 0;
14306 		if (tcp->tcp_rexmit) {
14307 			/*
14308 			 * TCP is retranmitting.  If the ACK ack's all
14309 			 * outstanding data, update tcp_rexmit_max and
14310 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14311 			 * to the correct value.
14312 			 *
14313 			 * Note that SEQ_LEQ() is used.  This is to avoid
14314 			 * unnecessary fast retransmit caused by dup ACKs
14315 			 * received when TCP does slow start retransmission
14316 			 * after a time out.  During this phase, TCP may
14317 			 * send out segments which are already received.
14318 			 * This causes dup ACKs to be sent back.
14319 			 */
14320 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14321 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14322 					tcp->tcp_rexmit_nxt = seg_ack;
14323 				}
14324 				if (seg_ack != tcp->tcp_rexmit_max) {
14325 					flags |= TH_XMIT_NEEDED;
14326 				}
14327 			} else {
14328 				tcp->tcp_rexmit = B_FALSE;
14329 				tcp->tcp_xmit_zc_clean = B_FALSE;
14330 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14331 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14332 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14333 			}
14334 			tcp->tcp_ms_we_have_waited = 0;
14335 		}
14336 	}
14337 
14338 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14339 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14340 	tcp->tcp_suna = seg_ack;
14341 	if (tcp->tcp_zero_win_probe != 0) {
14342 		tcp->tcp_zero_win_probe = 0;
14343 		tcp->tcp_timer_backoff = 0;
14344 	}
14345 
14346 	/*
14347 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14348 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14349 	 * will not reach here.
14350 	 */
14351 	if (mp1 == NULL) {
14352 		goto fin_acked;
14353 	}
14354 
14355 	/*
14356 	 * Update the congestion window.
14357 	 *
14358 	 * If TCP is not ECN capable or TCP is ECN capable but the
14359 	 * congestion experience bit is not set, increase the tcp_cwnd as
14360 	 * usual.
14361 	 */
14362 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14363 		cwnd = tcp->tcp_cwnd;
14364 		add = mss;
14365 
14366 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14367 			/*
14368 			 * This is to prevent an increase of less than 1 MSS of
14369 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14370 			 * may send out tinygrams in order to preserve mblk
14371 			 * boundaries.
14372 			 *
14373 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14374 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14375 			 * increased by 1 MSS for every RTTs.
14376 			 */
14377 			if (tcp->tcp_cwnd_cnt <= 0) {
14378 				tcp->tcp_cwnd_cnt = cwnd + add;
14379 			} else {
14380 				tcp->tcp_cwnd_cnt -= add;
14381 				add = 0;
14382 			}
14383 		}
14384 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14385 	}
14386 
14387 	/* See if the latest urgent data has been acknowledged */
14388 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14389 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14390 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14391 
14392 	/* Can we update the RTT estimates? */
14393 	if (tcp->tcp_snd_ts_ok) {
14394 		/* Ignore zero timestamp echo-reply. */
14395 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14396 			tcp_set_rto(tcp, (int32_t)lbolt -
14397 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14398 		}
14399 
14400 		/* If needed, restart the timer. */
14401 		if (tcp->tcp_set_timer == 1) {
14402 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14403 			tcp->tcp_set_timer = 0;
14404 		}
14405 		/*
14406 		 * Update tcp_csuna in case the other side stops sending
14407 		 * us timestamps.
14408 		 */
14409 		tcp->tcp_csuna = tcp->tcp_snxt;
14410 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14411 		/*
14412 		 * An ACK sequence we haven't seen before, so get the RTT
14413 		 * and update the RTO. But first check if the timestamp is
14414 		 * valid to use.
14415 		 */
14416 		if ((mp1->b_next != NULL) &&
14417 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14418 			tcp_set_rto(tcp, (int32_t)lbolt -
14419 			    (int32_t)(intptr_t)mp1->b_prev);
14420 		else
14421 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14422 
14423 		/* Remeber the last sequence to be ACKed */
14424 		tcp->tcp_csuna = seg_ack;
14425 		if (tcp->tcp_set_timer == 1) {
14426 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14427 			tcp->tcp_set_timer = 0;
14428 		}
14429 	} else {
14430 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14431 	}
14432 
14433 	/* Eat acknowledged bytes off the xmit queue. */
14434 	for (;;) {
14435 		mblk_t	*mp2;
14436 		uchar_t	*wptr;
14437 
14438 		wptr = mp1->b_wptr;
14439 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14440 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14441 		if (bytes_acked < 0) {
14442 			mp1->b_rptr = wptr + bytes_acked;
14443 			/*
14444 			 * Set a new timestamp if all the bytes timed by the
14445 			 * old timestamp have been ack'ed.
14446 			 */
14447 			if (SEQ_GT(seg_ack,
14448 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14449 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14450 				mp1->b_next = NULL;
14451 			}
14452 			break;
14453 		}
14454 		mp1->b_next = NULL;
14455 		mp1->b_prev = NULL;
14456 		mp2 = mp1;
14457 		mp1 = mp1->b_cont;
14458 
14459 		/*
14460 		 * This notification is required for some zero-copy
14461 		 * clients to maintain a copy semantic. After the data
14462 		 * is ack'ed, client is safe to modify or reuse the buffer.
14463 		 */
14464 		if (tcp->tcp_snd_zcopy_aware &&
14465 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14466 			tcp_zcopy_notify(tcp);
14467 		freeb(mp2);
14468 		if (bytes_acked == 0) {
14469 			if (mp1 == NULL) {
14470 				/* Everything is ack'ed, clear the tail. */
14471 				tcp->tcp_xmit_tail = NULL;
14472 				/*
14473 				 * Cancel the timer unless we are still
14474 				 * waiting for an ACK for the FIN packet.
14475 				 */
14476 				if (tcp->tcp_timer_tid != 0 &&
14477 				    tcp->tcp_snxt == tcp->tcp_suna) {
14478 					(void) TCP_TIMER_CANCEL(tcp,
14479 					    tcp->tcp_timer_tid);
14480 					tcp->tcp_timer_tid = 0;
14481 				}
14482 				goto pre_swnd_update;
14483 			}
14484 			if (mp2 != tcp->tcp_xmit_tail)
14485 				break;
14486 			tcp->tcp_xmit_tail = mp1;
14487 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14488 			    (uintptr_t)INT_MAX);
14489 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14490 			    mp1->b_rptr);
14491 			break;
14492 		}
14493 		if (mp1 == NULL) {
14494 			/*
14495 			 * More was acked but there is nothing more
14496 			 * outstanding.  This means that the FIN was
14497 			 * just acked or that we're talking to a clown.
14498 			 */
14499 fin_acked:
14500 			ASSERT(tcp->tcp_fin_sent);
14501 			tcp->tcp_xmit_tail = NULL;
14502 			if (tcp->tcp_fin_sent) {
14503 				/* FIN was acked - making progress */
14504 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14505 				    !tcp->tcp_fin_acked)
14506 					tcp->tcp_ip_forward_progress = B_TRUE;
14507 				tcp->tcp_fin_acked = B_TRUE;
14508 				if (tcp->tcp_linger_tid != 0 &&
14509 				    TCP_TIMER_CANCEL(tcp,
14510 					tcp->tcp_linger_tid) >= 0) {
14511 					tcp_stop_lingering(tcp);
14512 				}
14513 			} else {
14514 				/*
14515 				 * We should never get here because
14516 				 * we have already checked that the
14517 				 * number of bytes ack'ed should be
14518 				 * smaller than or equal to what we
14519 				 * have sent so far (it is the
14520 				 * acceptability check of the ACK).
14521 				 * We can only get here if the send
14522 				 * queue is corrupted.
14523 				 *
14524 				 * Terminate the connection and
14525 				 * panic the system.  It is better
14526 				 * for us to panic instead of
14527 				 * continuing to avoid other disaster.
14528 				 */
14529 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14530 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14531 				panic("Memory corruption "
14532 				    "detected for connection %s.",
14533 				    tcp_display(tcp, NULL,
14534 					DISP_ADDR_AND_PORT));
14535 				/*NOTREACHED*/
14536 			}
14537 			goto pre_swnd_update;
14538 		}
14539 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14540 	}
14541 	if (tcp->tcp_unsent) {
14542 		flags |= TH_XMIT_NEEDED;
14543 	}
14544 pre_swnd_update:
14545 	tcp->tcp_xmit_head = mp1;
14546 swnd_update:
14547 	/*
14548 	 * The following check is different from most other implementations.
14549 	 * For bi-directional transfer, when segments are dropped, the
14550 	 * "normal" check will not accept a window update in those
14551 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14552 	 * segments which are outside receiver's window.  As TCP accepts
14553 	 * the ack in those retransmitted segments, if the window update in
14554 	 * the same segment is not accepted, TCP will incorrectly calculates
14555 	 * that it can send more segments.  This can create a deadlock
14556 	 * with the receiver if its window becomes zero.
14557 	 */
14558 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14559 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14560 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14561 		/*
14562 		 * The criteria for update is:
14563 		 *
14564 		 * 1. the segment acknowledges some data.  Or
14565 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14566 		 * 3. the segment is not old and the advertised window is
14567 		 * larger than the previous advertised window.
14568 		 */
14569 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14570 			flags |= TH_XMIT_NEEDED;
14571 		tcp->tcp_swnd = new_swnd;
14572 		if (new_swnd > tcp->tcp_max_swnd)
14573 			tcp->tcp_max_swnd = new_swnd;
14574 		tcp->tcp_swl1 = seg_seq;
14575 		tcp->tcp_swl2 = seg_ack;
14576 	}
14577 est:
14578 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14579 
14580 		switch (tcp->tcp_state) {
14581 		case TCPS_FIN_WAIT_1:
14582 			if (tcp->tcp_fin_acked) {
14583 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14584 				/*
14585 				 * We implement the non-standard BSD/SunOS
14586 				 * FIN_WAIT_2 flushing algorithm.
14587 				 * If there is no user attached to this
14588 				 * TCP endpoint, then this TCP struct
14589 				 * could hang around forever in FIN_WAIT_2
14590 				 * state if the peer forgets to send us
14591 				 * a FIN.  To prevent this, we wait only
14592 				 * 2*MSL (a convenient time value) for
14593 				 * the FIN to arrive.  If it doesn't show up,
14594 				 * we flush the TCP endpoint.  This algorithm,
14595 				 * though a violation of RFC-793, has worked
14596 				 * for over 10 years in BSD systems.
14597 				 * Note: SunOS 4.x waits 675 seconds before
14598 				 * flushing the FIN_WAIT_2 connection.
14599 				 */
14600 				TCP_TIMER_RESTART(tcp,
14601 				    tcp_fin_wait_2_flush_interval);
14602 			}
14603 			break;
14604 		case TCPS_FIN_WAIT_2:
14605 			break;	/* Shutdown hook? */
14606 		case TCPS_LAST_ACK:
14607 			freemsg(mp);
14608 			if (tcp->tcp_fin_acked) {
14609 				(void) tcp_clean_death(tcp, 0, 19);
14610 				return;
14611 			}
14612 			goto xmit_check;
14613 		case TCPS_CLOSING:
14614 			if (tcp->tcp_fin_acked) {
14615 				tcp->tcp_state = TCPS_TIME_WAIT;
14616 				/*
14617 				 * Unconditionally clear the exclusive binding
14618 				 * bit so this TIME-WAIT connection won't
14619 				 * interfere with new ones.
14620 				 */
14621 				tcp->tcp_exclbind = 0;
14622 				if (!TCP_IS_DETACHED(tcp)) {
14623 					TCP_TIMER_RESTART(tcp,
14624 					    tcp_time_wait_interval);
14625 				} else {
14626 					tcp_time_wait_append(tcp);
14627 					TCP_DBGSTAT(tcp_rput_time_wait);
14628 				}
14629 			}
14630 			/*FALLTHRU*/
14631 		case TCPS_CLOSE_WAIT:
14632 			freemsg(mp);
14633 			goto xmit_check;
14634 		default:
14635 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14636 			break;
14637 		}
14638 	}
14639 	if (flags & TH_FIN) {
14640 		/* Make sure we ack the fin */
14641 		flags |= TH_ACK_NEEDED;
14642 		if (!tcp->tcp_fin_rcvd) {
14643 			tcp->tcp_fin_rcvd = B_TRUE;
14644 			tcp->tcp_rnxt++;
14645 			tcph = tcp->tcp_tcph;
14646 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14647 
14648 			/*
14649 			 * Generate the ordrel_ind at the end unless we
14650 			 * are an eager guy.
14651 			 * In the eager case tcp_rsrv will do this when run
14652 			 * after tcp_accept is done.
14653 			 */
14654 			if (tcp->tcp_listener == NULL &&
14655 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14656 				flags |= TH_ORDREL_NEEDED;
14657 			switch (tcp->tcp_state) {
14658 			case TCPS_SYN_RCVD:
14659 			case TCPS_ESTABLISHED:
14660 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14661 				/* Keepalive? */
14662 				break;
14663 			case TCPS_FIN_WAIT_1:
14664 				if (!tcp->tcp_fin_acked) {
14665 					tcp->tcp_state = TCPS_CLOSING;
14666 					break;
14667 				}
14668 				/* FALLTHRU */
14669 			case TCPS_FIN_WAIT_2:
14670 				tcp->tcp_state = TCPS_TIME_WAIT;
14671 				/*
14672 				 * Unconditionally clear the exclusive binding
14673 				 * bit so this TIME-WAIT connection won't
14674 				 * interfere with new ones.
14675 				 */
14676 				tcp->tcp_exclbind = 0;
14677 				if (!TCP_IS_DETACHED(tcp)) {
14678 					TCP_TIMER_RESTART(tcp,
14679 					    tcp_time_wait_interval);
14680 				} else {
14681 					tcp_time_wait_append(tcp);
14682 					TCP_DBGSTAT(tcp_rput_time_wait);
14683 				}
14684 				if (seg_len) {
14685 					/*
14686 					 * implies data piggybacked on FIN.
14687 					 * break to handle data.
14688 					 */
14689 					break;
14690 				}
14691 				freemsg(mp);
14692 				goto ack_check;
14693 			}
14694 		}
14695 	}
14696 	if (mp == NULL)
14697 		goto xmit_check;
14698 	if (seg_len == 0) {
14699 		freemsg(mp);
14700 		goto xmit_check;
14701 	}
14702 	if (mp->b_rptr == mp->b_wptr) {
14703 		/*
14704 		 * The header has been consumed, so we remove the
14705 		 * zero-length mblk here.
14706 		 */
14707 		mp1 = mp;
14708 		mp = mp->b_cont;
14709 		freeb(mp1);
14710 	}
14711 	tcph = tcp->tcp_tcph;
14712 	tcp->tcp_rack_cnt++;
14713 	{
14714 		uint32_t cur_max;
14715 
14716 		cur_max = tcp->tcp_rack_cur_max;
14717 		if (tcp->tcp_rack_cnt >= cur_max) {
14718 			/*
14719 			 * We have more unacked data than we should - send
14720 			 * an ACK now.
14721 			 */
14722 			flags |= TH_ACK_NEEDED;
14723 			cur_max++;
14724 			if (cur_max > tcp->tcp_rack_abs_max)
14725 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14726 			else
14727 				tcp->tcp_rack_cur_max = cur_max;
14728 		} else if (TCP_IS_DETACHED(tcp)) {
14729 			/* We don't have an ACK timer for detached TCP. */
14730 			flags |= TH_ACK_NEEDED;
14731 		} else if (seg_len < mss) {
14732 			/*
14733 			 * If we get a segment that is less than an mss, and we
14734 			 * already have unacknowledged data, and the amount
14735 			 * unacknowledged is not a multiple of mss, then we
14736 			 * better generate an ACK now.  Otherwise, this may be
14737 			 * the tail piece of a transaction, and we would rather
14738 			 * wait for the response.
14739 			 */
14740 			uint32_t udif;
14741 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14742 			    (uintptr_t)INT_MAX);
14743 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14744 			if (udif && (udif % mss))
14745 				flags |= TH_ACK_NEEDED;
14746 			else
14747 				flags |= TH_ACK_TIMER_NEEDED;
14748 		} else {
14749 			/* Start delayed ack timer */
14750 			flags |= TH_ACK_TIMER_NEEDED;
14751 		}
14752 	}
14753 	tcp->tcp_rnxt += seg_len;
14754 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14755 
14756 	/* Update SACK list */
14757 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14758 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14759 		    &(tcp->tcp_num_sack_blk));
14760 	}
14761 
14762 	if (tcp->tcp_urp_mp) {
14763 		tcp->tcp_urp_mp->b_cont = mp;
14764 		mp = tcp->tcp_urp_mp;
14765 		tcp->tcp_urp_mp = NULL;
14766 		/* Ready for a new signal. */
14767 		tcp->tcp_urp_last_valid = B_FALSE;
14768 #ifdef DEBUG
14769 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14770 		    "tcp_rput: sending exdata_ind %s",
14771 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14772 #endif /* DEBUG */
14773 	}
14774 
14775 	/*
14776 	 * Check for ancillary data changes compared to last segment.
14777 	 */
14778 	if (tcp->tcp_ipv6_recvancillary != 0) {
14779 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14780 		if (mp == NULL)
14781 			return;
14782 	}
14783 
14784 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14785 		/*
14786 		 * Side queue inbound data until the accept happens.
14787 		 * tcp_accept/tcp_rput drains this when the accept happens.
14788 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14789 		 * T_EXDATA_IND) it is queued on b_next.
14790 		 * XXX Make urgent data use this. Requires:
14791 		 *	Removing tcp_listener check for TH_URG
14792 		 *	Making M_PCPROTO and MARK messages skip the eager case
14793 		 */
14794 
14795 		if (tcp->tcp_kssl_pending) {
14796 			tcp_kssl_input(tcp, mp);
14797 		} else {
14798 			tcp_rcv_enqueue(tcp, mp, seg_len);
14799 		}
14800 	} else {
14801 		if (mp->b_datap->db_type != M_DATA ||
14802 		    (flags & TH_MARKNEXT_NEEDED)) {
14803 			if (tcp->tcp_rcv_list != NULL) {
14804 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14805 			}
14806 			ASSERT(tcp->tcp_rcv_list == NULL ||
14807 			    tcp->tcp_fused_sigurg);
14808 			if (flags & TH_MARKNEXT_NEEDED) {
14809 #ifdef DEBUG
14810 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14811 				    "tcp_rput: sending MSGMARKNEXT %s",
14812 				    tcp_display(tcp, NULL,
14813 				    DISP_PORT_ONLY));
14814 #endif /* DEBUG */
14815 				mp->b_flag |= MSGMARKNEXT;
14816 				flags &= ~TH_MARKNEXT_NEEDED;
14817 			}
14818 
14819 			/* Does this need SSL processing first? */
14820 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14821 			    (DB_TYPE(mp) == M_DATA)) {
14822 				tcp_kssl_input(tcp, mp);
14823 			} else {
14824 				putnext(tcp->tcp_rq, mp);
14825 				if (!canputnext(tcp->tcp_rq))
14826 					tcp->tcp_rwnd -= seg_len;
14827 			}
14828 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14829 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14830 			if (tcp->tcp_rcv_list != NULL) {
14831 				/*
14832 				 * Enqueue the new segment first and then
14833 				 * call tcp_rcv_drain() to send all data
14834 				 * up.  The other way to do this is to
14835 				 * send all queued data up and then call
14836 				 * putnext() to send the new segment up.
14837 				 * This way can remove the else part later
14838 				 * on.
14839 				 *
14840 				 * We don't this to avoid one more call to
14841 				 * canputnext() as tcp_rcv_drain() needs to
14842 				 * call canputnext().
14843 				 */
14844 				tcp_rcv_enqueue(tcp, mp, seg_len);
14845 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14846 			} else {
14847 				/* Does this need SSL processing first? */
14848 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14849 				    (DB_TYPE(mp) == M_DATA)) {
14850 					tcp_kssl_input(tcp, mp);
14851 				} else {
14852 					putnext(tcp->tcp_rq, mp);
14853 					if (!canputnext(tcp->tcp_rq))
14854 						tcp->tcp_rwnd -= seg_len;
14855 				}
14856 			}
14857 		} else {
14858 			/*
14859 			 * Enqueue all packets when processing an mblk
14860 			 * from the co queue and also enqueue normal packets.
14861 			 */
14862 			tcp_rcv_enqueue(tcp, mp, seg_len);
14863 		}
14864 		/*
14865 		 * Make sure the timer is running if we have data waiting
14866 		 * for a push bit. This provides resiliency against
14867 		 * implementations that do not correctly generate push bits.
14868 		 */
14869 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14870 			/*
14871 			 * The connection may be closed at this point, so don't
14872 			 * do anything for a detached tcp.
14873 			 */
14874 			if (!TCP_IS_DETACHED(tcp))
14875 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14876 				    tcp_push_timer,
14877 				    MSEC_TO_TICK(tcp_push_timer_interval));
14878 		}
14879 	}
14880 xmit_check:
14881 	/* Is there anything left to do? */
14882 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14883 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14884 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14885 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14886 		goto done;
14887 
14888 	/* Any transmit work to do and a non-zero window? */
14889 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14890 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14891 		if (flags & TH_REXMIT_NEEDED) {
14892 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14893 
14894 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14895 			if (snd_size > mss)
14896 				snd_size = mss;
14897 			if (snd_size > tcp->tcp_swnd)
14898 				snd_size = tcp->tcp_swnd;
14899 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14900 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14901 			    B_TRUE);
14902 
14903 			if (mp1 != NULL) {
14904 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14905 				tcp->tcp_csuna = tcp->tcp_snxt;
14906 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14907 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14908 				TCP_RECORD_TRACE(tcp, mp1,
14909 				    TCP_TRACE_SEND_PKT);
14910 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14911 			}
14912 		}
14913 		if (flags & TH_NEED_SACK_REXMIT) {
14914 			tcp_sack_rxmit(tcp, &flags);
14915 		}
14916 		/*
14917 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14918 		 * out new segment.  Note that tcp_rexmit should not be
14919 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14920 		 */
14921 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14922 			if (!tcp->tcp_rexmit) {
14923 				tcp_wput_data(tcp, NULL, B_FALSE);
14924 			} else {
14925 				tcp_ss_rexmit(tcp);
14926 			}
14927 		}
14928 		/*
14929 		 * Adjust tcp_cwnd back to normal value after sending
14930 		 * new data segments.
14931 		 */
14932 		if (flags & TH_LIMIT_XMIT) {
14933 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14934 			/*
14935 			 * This will restart the timer.  Restarting the
14936 			 * timer is used to avoid a timeout before the
14937 			 * limited transmitted segment's ACK gets back.
14938 			 */
14939 			if (tcp->tcp_xmit_head != NULL)
14940 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14941 		}
14942 
14943 		/* Anything more to do? */
14944 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14945 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14946 			goto done;
14947 	}
14948 ack_check:
14949 	if (flags & TH_SEND_URP_MARK) {
14950 		ASSERT(tcp->tcp_urp_mark_mp);
14951 		/*
14952 		 * Send up any queued data and then send the mark message
14953 		 */
14954 		if (tcp->tcp_rcv_list != NULL) {
14955 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14956 		}
14957 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14958 
14959 		mp1 = tcp->tcp_urp_mark_mp;
14960 		tcp->tcp_urp_mark_mp = NULL;
14961 #ifdef DEBUG
14962 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14963 		    "tcp_rput: sending zero-length %s %s",
14964 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14965 		    "MSGNOTMARKNEXT"),
14966 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14967 #endif /* DEBUG */
14968 		putnext(tcp->tcp_rq, mp1);
14969 		flags &= ~TH_SEND_URP_MARK;
14970 	}
14971 	if (flags & TH_ACK_NEEDED) {
14972 		/*
14973 		 * Time to send an ack for some reason.
14974 		 */
14975 		mp1 = tcp_ack_mp(tcp);
14976 
14977 		if (mp1 != NULL) {
14978 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14979 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14980 			BUMP_LOCAL(tcp->tcp_obsegs);
14981 			BUMP_MIB(&tcp_mib, tcpOutAck);
14982 		}
14983 		if (tcp->tcp_ack_tid != 0) {
14984 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14985 			tcp->tcp_ack_tid = 0;
14986 		}
14987 	}
14988 	if (flags & TH_ACK_TIMER_NEEDED) {
14989 		/*
14990 		 * Arrange for deferred ACK or push wait timeout.
14991 		 * Start timer if it is not already running.
14992 		 */
14993 		if (tcp->tcp_ack_tid == 0) {
14994 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14995 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14996 			    (clock_t)tcp_local_dack_interval :
14997 			    (clock_t)tcp_deferred_ack_interval));
14998 		}
14999 	}
15000 	if (flags & TH_ORDREL_NEEDED) {
15001 		/*
15002 		 * Send up the ordrel_ind unless we are an eager guy.
15003 		 * In the eager case tcp_rsrv will do this when run
15004 		 * after tcp_accept is done.
15005 		 */
15006 		ASSERT(tcp->tcp_listener == NULL);
15007 		if (tcp->tcp_rcv_list != NULL) {
15008 			/*
15009 			 * Push any mblk(s) enqueued from co processing.
15010 			 */
15011 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15012 		}
15013 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15014 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15015 			tcp->tcp_ordrel_done = B_TRUE;
15016 			putnext(tcp->tcp_rq, mp1);
15017 			if (tcp->tcp_deferred_clean_death) {
15018 				/*
15019 				 * tcp_clean_death was deferred
15020 				 * for T_ORDREL_IND - do it now
15021 				 */
15022 				(void) tcp_clean_death(tcp,
15023 				    tcp->tcp_client_errno, 20);
15024 				tcp->tcp_deferred_clean_death =	B_FALSE;
15025 			}
15026 		} else {
15027 			/*
15028 			 * Run the orderly release in the
15029 			 * service routine.
15030 			 */
15031 			qenable(tcp->tcp_rq);
15032 			/*
15033 			 * Caveat(XXX): The machine may be so
15034 			 * overloaded that tcp_rsrv() is not scheduled
15035 			 * until after the endpoint has transitioned
15036 			 * to TCPS_TIME_WAIT
15037 			 * and tcp_time_wait_interval expires. Then
15038 			 * tcp_timer() will blow away state in tcp_t
15039 			 * and T_ORDREL_IND will never be delivered
15040 			 * upstream. Unlikely but potentially
15041 			 * a problem.
15042 			 */
15043 		}
15044 	}
15045 done:
15046 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15047 }
15048 
15049 /*
15050  * This function does PAWS protection check. Returns B_TRUE if the
15051  * segment passes the PAWS test, else returns B_FALSE.
15052  */
15053 boolean_t
15054 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15055 {
15056 	uint8_t	flags;
15057 	int	options;
15058 	uint8_t *up;
15059 
15060 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15061 	/*
15062 	 * If timestamp option is aligned nicely, get values inline,
15063 	 * otherwise call general routine to parse.  Only do that
15064 	 * if timestamp is the only option.
15065 	 */
15066 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15067 	    TCPOPT_REAL_TS_LEN &&
15068 	    OK_32PTR((up = ((uint8_t *)tcph) +
15069 	    TCP_MIN_HEADER_LENGTH)) &&
15070 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15071 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15072 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15073 
15074 		options = TCP_OPT_TSTAMP_PRESENT;
15075 	} else {
15076 		if (tcp->tcp_snd_sack_ok) {
15077 			tcpoptp->tcp = tcp;
15078 		} else {
15079 			tcpoptp->tcp = NULL;
15080 		}
15081 		options = tcp_parse_options(tcph, tcpoptp);
15082 	}
15083 
15084 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15085 		/*
15086 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15087 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15088 		 */
15089 		if ((flags & TH_RST) == 0 &&
15090 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15091 		    tcp->tcp_ts_recent)) {
15092 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15093 			    PAWS_TIMEOUT)) {
15094 				/* This segment is not acceptable. */
15095 				return (B_FALSE);
15096 			} else {
15097 				/*
15098 				 * Connection has been idle for
15099 				 * too long.  Reset the timestamp
15100 				 * and assume the segment is valid.
15101 				 */
15102 				tcp->tcp_ts_recent =
15103 				    tcpoptp->tcp_opt_ts_val;
15104 			}
15105 		}
15106 	} else {
15107 		/*
15108 		 * If we don't get a timestamp on every packet, we
15109 		 * figure we can't really trust 'em, so we stop sending
15110 		 * and parsing them.
15111 		 */
15112 		tcp->tcp_snd_ts_ok = B_FALSE;
15113 
15114 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15115 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15116 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15117 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
15118 		if (tcp->tcp_snd_sack_ok) {
15119 			ASSERT(tcp->tcp_sack_info != NULL);
15120 			tcp->tcp_max_sack_blk = 4;
15121 		}
15122 	}
15123 	return (B_TRUE);
15124 }
15125 
15126 /*
15127  * Attach ancillary data to a received TCP segments for the
15128  * ancillary pieces requested by the application that are
15129  * different than they were in the previous data segment.
15130  *
15131  * Save the "current" values once memory allocation is ok so that
15132  * when memory allocation fails we can just wait for the next data segment.
15133  */
15134 static mblk_t *
15135 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15136 {
15137 	struct T_optdata_ind *todi;
15138 	int optlen;
15139 	uchar_t *optptr;
15140 	struct T_opthdr *toh;
15141 	uint_t addflag;	/* Which pieces to add */
15142 	mblk_t *mp1;
15143 
15144 	optlen = 0;
15145 	addflag = 0;
15146 	/* If app asked for pktinfo and the index has changed ... */
15147 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15148 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15149 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15150 		optlen += sizeof (struct T_opthdr) +
15151 		    sizeof (struct in6_pktinfo);
15152 		addflag |= TCP_IPV6_RECVPKTINFO;
15153 	}
15154 	/* If app asked for hoplimit and it has changed ... */
15155 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15156 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15157 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15158 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15159 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15160 	}
15161 	/* If app asked for tclass and it has changed ... */
15162 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15163 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15164 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15165 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15166 		addflag |= TCP_IPV6_RECVTCLASS;
15167 	}
15168 	/*
15169 	 * If app asked for hopbyhop headers and it has changed ...
15170 	 * For security labels, note that (1) security labels can't change on
15171 	 * a connected socket at all, (2) we're connected to at most one peer,
15172 	 * (3) if anything changes, then it must be some other extra option.
15173 	 */
15174 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15175 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15176 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15177 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15178 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15179 		    tcp->tcp_label_len;
15180 		addflag |= TCP_IPV6_RECVHOPOPTS;
15181 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15182 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15183 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15184 			return (mp);
15185 	}
15186 	/* If app asked for dst headers before routing headers ... */
15187 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15188 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15189 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
15190 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15191 		optlen += sizeof (struct T_opthdr) +
15192 		    ipp->ipp_rtdstoptslen;
15193 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15194 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15195 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15196 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15197 			return (mp);
15198 	}
15199 	/* If app asked for routing headers and it has changed ... */
15200 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15201 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15202 	    (ipp->ipp_fields & IPPF_RTHDR),
15203 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15204 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15205 		addflag |= TCP_IPV6_RECVRTHDR;
15206 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15207 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15208 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15209 			return (mp);
15210 	}
15211 	/* If app asked for dest headers and it has changed ... */
15212 	if ((tcp->tcp_ipv6_recvancillary &
15213 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15214 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15215 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15216 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15217 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15218 		addflag |= TCP_IPV6_RECVDSTOPTS;
15219 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15220 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15221 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15222 			return (mp);
15223 	}
15224 
15225 	if (optlen == 0) {
15226 		/* Nothing to add */
15227 		return (mp);
15228 	}
15229 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15230 	if (mp1 == NULL) {
15231 		/*
15232 		 * Defer sending ancillary data until the next TCP segment
15233 		 * arrives.
15234 		 */
15235 		return (mp);
15236 	}
15237 	mp1->b_cont = mp;
15238 	mp = mp1;
15239 	mp->b_wptr += sizeof (*todi) + optlen;
15240 	mp->b_datap->db_type = M_PROTO;
15241 	todi = (struct T_optdata_ind *)mp->b_rptr;
15242 	todi->PRIM_type = T_OPTDATA_IND;
15243 	todi->DATA_flag = 1;	/* MORE data */
15244 	todi->OPT_length = optlen;
15245 	todi->OPT_offset = sizeof (*todi);
15246 	optptr = (uchar_t *)&todi[1];
15247 	/*
15248 	 * If app asked for pktinfo and the index has changed ...
15249 	 * Note that the local address never changes for the connection.
15250 	 */
15251 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15252 		struct in6_pktinfo *pkti;
15253 
15254 		toh = (struct T_opthdr *)optptr;
15255 		toh->level = IPPROTO_IPV6;
15256 		toh->name = IPV6_PKTINFO;
15257 		toh->len = sizeof (*toh) + sizeof (*pkti);
15258 		toh->status = 0;
15259 		optptr += sizeof (*toh);
15260 		pkti = (struct in6_pktinfo *)optptr;
15261 		if (tcp->tcp_ipversion == IPV6_VERSION)
15262 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15263 		else
15264 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15265 			    &pkti->ipi6_addr);
15266 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15267 		optptr += sizeof (*pkti);
15268 		ASSERT(OK_32PTR(optptr));
15269 		/* Save as "last" value */
15270 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15271 	}
15272 	/* If app asked for hoplimit and it has changed ... */
15273 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15274 		toh = (struct T_opthdr *)optptr;
15275 		toh->level = IPPROTO_IPV6;
15276 		toh->name = IPV6_HOPLIMIT;
15277 		toh->len = sizeof (*toh) + sizeof (uint_t);
15278 		toh->status = 0;
15279 		optptr += sizeof (*toh);
15280 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15281 		optptr += sizeof (uint_t);
15282 		ASSERT(OK_32PTR(optptr));
15283 		/* Save as "last" value */
15284 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15285 	}
15286 	/* If app asked for tclass and it has changed ... */
15287 	if (addflag & TCP_IPV6_RECVTCLASS) {
15288 		toh = (struct T_opthdr *)optptr;
15289 		toh->level = IPPROTO_IPV6;
15290 		toh->name = IPV6_TCLASS;
15291 		toh->len = sizeof (*toh) + sizeof (uint_t);
15292 		toh->status = 0;
15293 		optptr += sizeof (*toh);
15294 		*(uint_t *)optptr = ipp->ipp_tclass;
15295 		optptr += sizeof (uint_t);
15296 		ASSERT(OK_32PTR(optptr));
15297 		/* Save as "last" value */
15298 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15299 	}
15300 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15301 		toh = (struct T_opthdr *)optptr;
15302 		toh->level = IPPROTO_IPV6;
15303 		toh->name = IPV6_HOPOPTS;
15304 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15305 		    tcp->tcp_label_len;
15306 		toh->status = 0;
15307 		optptr += sizeof (*toh);
15308 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15309 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15310 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15311 		ASSERT(OK_32PTR(optptr));
15312 		/* Save as last value */
15313 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15314 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15315 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15316 	}
15317 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15318 		toh = (struct T_opthdr *)optptr;
15319 		toh->level = IPPROTO_IPV6;
15320 		toh->name = IPV6_RTHDRDSTOPTS;
15321 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15322 		toh->status = 0;
15323 		optptr += sizeof (*toh);
15324 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15325 		optptr += ipp->ipp_rtdstoptslen;
15326 		ASSERT(OK_32PTR(optptr));
15327 		/* Save as last value */
15328 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15329 		    &tcp->tcp_rtdstoptslen,
15330 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15331 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15332 	}
15333 	if (addflag & TCP_IPV6_RECVRTHDR) {
15334 		toh = (struct T_opthdr *)optptr;
15335 		toh->level = IPPROTO_IPV6;
15336 		toh->name = IPV6_RTHDR;
15337 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15338 		toh->status = 0;
15339 		optptr += sizeof (*toh);
15340 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15341 		optptr += ipp->ipp_rthdrlen;
15342 		ASSERT(OK_32PTR(optptr));
15343 		/* Save as last value */
15344 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15345 		    (ipp->ipp_fields & IPPF_RTHDR),
15346 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15347 	}
15348 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15349 		toh = (struct T_opthdr *)optptr;
15350 		toh->level = IPPROTO_IPV6;
15351 		toh->name = IPV6_DSTOPTS;
15352 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15353 		toh->status = 0;
15354 		optptr += sizeof (*toh);
15355 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15356 		optptr += ipp->ipp_dstoptslen;
15357 		ASSERT(OK_32PTR(optptr));
15358 		/* Save as last value */
15359 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15360 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15361 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15362 	}
15363 	ASSERT(optptr == mp->b_wptr);
15364 	return (mp);
15365 }
15366 
15367 
15368 /*
15369  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15370  * or a "bad" IRE detected by tcp_adapt_ire.
15371  * We can't tell if the failure was due to the laddr or the faddr
15372  * thus we clear out all addresses and ports.
15373  */
15374 static void
15375 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15376 {
15377 	queue_t	*q = tcp->tcp_rq;
15378 	tcph_t	*tcph;
15379 	struct T_error_ack *tea;
15380 	conn_t	*connp = tcp->tcp_connp;
15381 
15382 
15383 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15384 
15385 	if (mp->b_cont) {
15386 		freemsg(mp->b_cont);
15387 		mp->b_cont = NULL;
15388 	}
15389 	tea = (struct T_error_ack *)mp->b_rptr;
15390 	switch (tea->PRIM_type) {
15391 	case T_BIND_ACK:
15392 		/*
15393 		 * Need to unbind with classifier since we were just told that
15394 		 * our bind succeeded.
15395 		 */
15396 		tcp->tcp_hard_bound = B_FALSE;
15397 		tcp->tcp_hard_binding = B_FALSE;
15398 
15399 		ipcl_hash_remove(connp);
15400 		/* Reuse the mblk if possible */
15401 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15402 			sizeof (*tea));
15403 		mp->b_rptr = mp->b_datap->db_base;
15404 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15405 		tea = (struct T_error_ack *)mp->b_rptr;
15406 		tea->PRIM_type = T_ERROR_ACK;
15407 		tea->TLI_error = TSYSERR;
15408 		tea->UNIX_error = error;
15409 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15410 			tea->ERROR_prim = T_CONN_REQ;
15411 		} else {
15412 			tea->ERROR_prim = O_T_BIND_REQ;
15413 		}
15414 		break;
15415 
15416 	case T_ERROR_ACK:
15417 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15418 			tea->ERROR_prim = T_CONN_REQ;
15419 		break;
15420 	default:
15421 		panic("tcp_bind_failed: unexpected TPI type");
15422 		/*NOTREACHED*/
15423 	}
15424 
15425 	tcp->tcp_state = TCPS_IDLE;
15426 	if (tcp->tcp_ipversion == IPV4_VERSION)
15427 		tcp->tcp_ipha->ipha_src = 0;
15428 	else
15429 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15430 	/*
15431 	 * Copy of the src addr. in tcp_t is needed since
15432 	 * the lookup funcs. can only look at tcp_t
15433 	 */
15434 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15435 
15436 	tcph = tcp->tcp_tcph;
15437 	tcph->th_lport[0] = 0;
15438 	tcph->th_lport[1] = 0;
15439 	tcp_bind_hash_remove(tcp);
15440 	bzero(&connp->u_port, sizeof (connp->u_port));
15441 	/* blow away saved option results if any */
15442 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15443 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15444 
15445 	conn_delete_ire(tcp->tcp_connp, NULL);
15446 	putnext(q, mp);
15447 }
15448 
15449 /*
15450  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15451  * messages.
15452  */
15453 void
15454 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15455 {
15456 	mblk_t	*mp1;
15457 	uchar_t	*rptr = mp->b_rptr;
15458 	queue_t	*q = tcp->tcp_rq;
15459 	struct T_error_ack *tea;
15460 	uint32_t mss;
15461 	mblk_t *syn_mp;
15462 	mblk_t *mdti;
15463 	mblk_t *lsoi;
15464 	int	retval;
15465 	mblk_t *ire_mp;
15466 
15467 	switch (mp->b_datap->db_type) {
15468 	case M_PROTO:
15469 	case M_PCPROTO:
15470 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15471 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15472 			break;
15473 		tea = (struct T_error_ack *)rptr;
15474 		switch (tea->PRIM_type) {
15475 		case T_BIND_ACK:
15476 			/*
15477 			 * Adapt Multidata information, if any.  The
15478 			 * following tcp_mdt_update routine will free
15479 			 * the message.
15480 			 */
15481 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15482 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15483 				    b_rptr)->mdt_capab, B_TRUE);
15484 				freemsg(mdti);
15485 			}
15486 
15487 			/*
15488 			 * Check to update LSO information with tcp, and
15489 			 * tcp_lso_update routine will free the message.
15490 			 */
15491 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15492 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15493 				    b_rptr)->lso_capab);
15494 				freemsg(lsoi);
15495 			}
15496 
15497 			/* Get the IRE, if we had requested for it */
15498 			ire_mp = tcp_ire_mp(mp);
15499 
15500 			if (tcp->tcp_hard_binding) {
15501 				tcp->tcp_hard_binding = B_FALSE;
15502 				tcp->tcp_hard_bound = B_TRUE;
15503 				CL_INET_CONNECT(tcp);
15504 			} else {
15505 				if (ire_mp != NULL)
15506 					freeb(ire_mp);
15507 				goto after_syn_sent;
15508 			}
15509 
15510 			retval = tcp_adapt_ire(tcp, ire_mp);
15511 			if (ire_mp != NULL)
15512 				freeb(ire_mp);
15513 			if (retval == 0) {
15514 				tcp_bind_failed(tcp, mp,
15515 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15516 				    ENETUNREACH : EADDRNOTAVAIL));
15517 				return;
15518 			}
15519 			/*
15520 			 * Don't let an endpoint connect to itself.
15521 			 * Also checked in tcp_connect() but that
15522 			 * check can't handle the case when the
15523 			 * local IP address is INADDR_ANY.
15524 			 */
15525 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15526 				if ((tcp->tcp_ipha->ipha_dst ==
15527 				    tcp->tcp_ipha->ipha_src) &&
15528 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15529 				    tcp->tcp_tcph->th_fport))) {
15530 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15531 					return;
15532 				}
15533 			} else {
15534 				if (IN6_ARE_ADDR_EQUAL(
15535 				    &tcp->tcp_ip6h->ip6_dst,
15536 				    &tcp->tcp_ip6h->ip6_src) &&
15537 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15538 				    tcp->tcp_tcph->th_fport))) {
15539 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15540 					return;
15541 				}
15542 			}
15543 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15544 			/*
15545 			 * This should not be possible!  Just for
15546 			 * defensive coding...
15547 			 */
15548 			if (tcp->tcp_state != TCPS_SYN_SENT)
15549 				goto after_syn_sent;
15550 
15551 			if (is_system_labeled() &&
15552 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15553 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15554 				return;
15555 			}
15556 
15557 			ASSERT(q == tcp->tcp_rq);
15558 			/*
15559 			 * tcp_adapt_ire() does not adjust
15560 			 * for TCP/IP header length.
15561 			 */
15562 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15563 
15564 			/*
15565 			 * Just make sure our rwnd is at
15566 			 * least tcp_recv_hiwat_mss * MSS
15567 			 * large, and round up to the nearest
15568 			 * MSS.
15569 			 *
15570 			 * We do the round up here because
15571 			 * we need to get the interface
15572 			 * MTU first before we can do the
15573 			 * round up.
15574 			 */
15575 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15576 			    tcp_recv_hiwat_minmss * mss);
15577 			q->q_hiwat = tcp->tcp_rwnd;
15578 			tcp_set_ws_value(tcp);
15579 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15580 			    tcp->tcp_tcph->th_win);
15581 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15582 				tcp->tcp_snd_ws_ok = B_TRUE;
15583 
15584 			/*
15585 			 * Set tcp_snd_ts_ok to true
15586 			 * so that tcp_xmit_mp will
15587 			 * include the timestamp
15588 			 * option in the SYN segment.
15589 			 */
15590 			if (tcp_tstamp_always ||
15591 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15592 				tcp->tcp_snd_ts_ok = B_TRUE;
15593 			}
15594 
15595 			/*
15596 			 * tcp_snd_sack_ok can be set in
15597 			 * tcp_adapt_ire() if the sack metric
15598 			 * is set.  So check it here also.
15599 			 */
15600 			if (tcp_sack_permitted == 2 ||
15601 			    tcp->tcp_snd_sack_ok) {
15602 				if (tcp->tcp_sack_info == NULL) {
15603 					tcp->tcp_sack_info =
15604 					kmem_cache_alloc(tcp_sack_info_cache,
15605 					    KM_SLEEP);
15606 				}
15607 				tcp->tcp_snd_sack_ok = B_TRUE;
15608 			}
15609 
15610 			/*
15611 			 * Should we use ECN?  Note that the current
15612 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15613 			 * is 1.  The reason for doing this is that there
15614 			 * are equipments out there that will drop ECN
15615 			 * enabled IP packets.  Setting it to 1 avoids
15616 			 * compatibility problems.
15617 			 */
15618 			if (tcp_ecn_permitted == 2)
15619 				tcp->tcp_ecn_ok = B_TRUE;
15620 
15621 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15622 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15623 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15624 			if (syn_mp) {
15625 				cred_t *cr;
15626 				pid_t pid;
15627 
15628 				/*
15629 				 * Obtain the credential from the
15630 				 * thread calling connect(); the credential
15631 				 * lives on in the second mblk which
15632 				 * originated from T_CONN_REQ and is echoed
15633 				 * with the T_BIND_ACK from ip.  If none
15634 				 * can be found, default to the creator
15635 				 * of the socket.
15636 				 */
15637 				if (mp->b_cont == NULL ||
15638 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15639 					cr = tcp->tcp_cred;
15640 					pid = tcp->tcp_cpid;
15641 				} else {
15642 					pid = DB_CPID(mp->b_cont);
15643 				}
15644 
15645 				TCP_RECORD_TRACE(tcp, syn_mp,
15646 				    TCP_TRACE_SEND_PKT);
15647 				mblk_setcred(syn_mp, cr);
15648 				DB_CPID(syn_mp) = pid;
15649 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15650 			}
15651 		after_syn_sent:
15652 			/*
15653 			 * A trailer mblk indicates a waiting client upstream.
15654 			 * We complete here the processing begun in
15655 			 * either tcp_bind() or tcp_connect() by passing
15656 			 * upstream the reply message they supplied.
15657 			 */
15658 			mp1 = mp;
15659 			mp = mp->b_cont;
15660 			freeb(mp1);
15661 			if (mp)
15662 				break;
15663 			return;
15664 		case T_ERROR_ACK:
15665 			if (tcp->tcp_debug) {
15666 				(void) strlog(TCP_MOD_ID, 0, 1,
15667 				    SL_TRACE|SL_ERROR,
15668 				    "tcp_rput_other: case T_ERROR_ACK, "
15669 				    "ERROR_prim == %d",
15670 				    tea->ERROR_prim);
15671 			}
15672 			switch (tea->ERROR_prim) {
15673 			case O_T_BIND_REQ:
15674 			case T_BIND_REQ:
15675 				tcp_bind_failed(tcp, mp,
15676 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15677 				    ENETUNREACH : EADDRNOTAVAIL));
15678 				return;
15679 			case T_UNBIND_REQ:
15680 				tcp->tcp_hard_binding = B_FALSE;
15681 				tcp->tcp_hard_bound = B_FALSE;
15682 				if (mp->b_cont) {
15683 					freemsg(mp->b_cont);
15684 					mp->b_cont = NULL;
15685 				}
15686 				if (tcp->tcp_unbind_pending)
15687 					tcp->tcp_unbind_pending = 0;
15688 				else {
15689 					/* From tcp_ip_unbind() - free */
15690 					freemsg(mp);
15691 					return;
15692 				}
15693 				break;
15694 			case T_SVR4_OPTMGMT_REQ:
15695 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15696 					/* T_OPTMGMT_REQ generated by TCP */
15697 					printf("T_SVR4_OPTMGMT_REQ failed "
15698 					    "%d/%d - dropped (cnt %d)\n",
15699 					    tea->TLI_error, tea->UNIX_error,
15700 					    tcp->tcp_drop_opt_ack_cnt);
15701 					freemsg(mp);
15702 					tcp->tcp_drop_opt_ack_cnt--;
15703 					return;
15704 				}
15705 				break;
15706 			}
15707 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15708 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15709 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15710 				    "- dropped (cnt %d)\n",
15711 				    tea->TLI_error, tea->UNIX_error,
15712 				    tcp->tcp_drop_opt_ack_cnt);
15713 				freemsg(mp);
15714 				tcp->tcp_drop_opt_ack_cnt--;
15715 				return;
15716 			}
15717 			break;
15718 		case T_OPTMGMT_ACK:
15719 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15720 				/* T_OPTMGMT_REQ generated by TCP */
15721 				freemsg(mp);
15722 				tcp->tcp_drop_opt_ack_cnt--;
15723 				return;
15724 			}
15725 			break;
15726 		default:
15727 			break;
15728 		}
15729 		break;
15730 	case M_FLUSH:
15731 		if (*rptr & FLUSHR)
15732 			flushq(q, FLUSHDATA);
15733 		break;
15734 	default:
15735 		/* M_CTL will be directly sent to tcp_icmp_error() */
15736 		ASSERT(DB_TYPE(mp) != M_CTL);
15737 		break;
15738 	}
15739 	/*
15740 	 * Make sure we set this bit before sending the ACK for
15741 	 * bind. Otherwise accept could possibly run and free
15742 	 * this tcp struct.
15743 	 */
15744 	putnext(q, mp);
15745 }
15746 
15747 /*
15748  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15749  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15750  * tcp_rsrv() try again.
15751  */
15752 static void
15753 tcp_ordrel_kick(void *arg)
15754 {
15755 	conn_t 	*connp = (conn_t *)arg;
15756 	tcp_t	*tcp = connp->conn_tcp;
15757 
15758 	tcp->tcp_ordrelid = 0;
15759 	tcp->tcp_timeout = B_FALSE;
15760 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15761 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15762 		qenable(tcp->tcp_rq);
15763 	}
15764 }
15765 
15766 /* ARGSUSED */
15767 static void
15768 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15769 {
15770 	conn_t	*connp = (conn_t *)arg;
15771 	tcp_t	*tcp = connp->conn_tcp;
15772 	queue_t	*q = tcp->tcp_rq;
15773 	uint_t	thwin;
15774 
15775 	freeb(mp);
15776 
15777 	TCP_STAT(tcp_rsrv_calls);
15778 
15779 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15780 		return;
15781 	}
15782 
15783 	if (tcp->tcp_fused) {
15784 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15785 
15786 		ASSERT(tcp->tcp_fused);
15787 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15788 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15789 		ASSERT(!TCP_IS_DETACHED(tcp));
15790 		ASSERT(tcp->tcp_connp->conn_sqp ==
15791 		    peer_tcp->tcp_connp->conn_sqp);
15792 
15793 		/*
15794 		 * Normally we would not get backenabled in synchronous
15795 		 * streams mode, but in case this happens, we need to plug
15796 		 * synchronous streams during our drain to prevent a race
15797 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15798 		 */
15799 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15800 		if (tcp->tcp_rcv_list != NULL)
15801 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15802 
15803 		tcp_clrqfull(peer_tcp);
15804 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15805 		TCP_STAT(tcp_fusion_backenabled);
15806 		return;
15807 	}
15808 
15809 	if (canputnext(q)) {
15810 		tcp->tcp_rwnd = q->q_hiwat;
15811 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15812 		    << tcp->tcp_rcv_ws;
15813 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15814 		/*
15815 		 * Send back a window update immediately if TCP is above
15816 		 * ESTABLISHED state and the increase of the rcv window
15817 		 * that the other side knows is at least 1 MSS after flow
15818 		 * control is lifted.
15819 		 */
15820 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15821 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15822 			tcp_xmit_ctl(NULL, tcp,
15823 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15824 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15825 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15826 		}
15827 	}
15828 	/* Handle a failure to allocate a T_ORDREL_IND here */
15829 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15830 		ASSERT(tcp->tcp_listener == NULL);
15831 		if (tcp->tcp_rcv_list != NULL) {
15832 			(void) tcp_rcv_drain(q, tcp);
15833 		}
15834 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15835 		mp = mi_tpi_ordrel_ind();
15836 		if (mp) {
15837 			tcp->tcp_ordrel_done = B_TRUE;
15838 			putnext(q, mp);
15839 			if (tcp->tcp_deferred_clean_death) {
15840 				/*
15841 				 * tcp_clean_death was deferred for
15842 				 * T_ORDREL_IND - do it now
15843 				 */
15844 				tcp->tcp_deferred_clean_death = B_FALSE;
15845 				(void) tcp_clean_death(tcp,
15846 				    tcp->tcp_client_errno, 22);
15847 			}
15848 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15849 			/*
15850 			 * If there isn't already a timer running
15851 			 * start one.  Use a 4 second
15852 			 * timer as a fallback since it can't fail.
15853 			 */
15854 			tcp->tcp_timeout = B_TRUE;
15855 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15856 			    MSEC_TO_TICK(4000));
15857 		}
15858 	}
15859 }
15860 
15861 /*
15862  * The read side service routine is called mostly when we get back-enabled as a
15863  * result of flow control relief.  Since we don't actually queue anything in
15864  * TCP, we have no data to send out of here.  What we do is clear the receive
15865  * window, and send out a window update.
15866  * This routine is also called to drive an orderly release message upstream
15867  * if the attempt in tcp_rput failed.
15868  */
15869 static void
15870 tcp_rsrv(queue_t *q)
15871 {
15872 	conn_t *connp = Q_TO_CONN(q);
15873 	tcp_t	*tcp = connp->conn_tcp;
15874 	mblk_t	*mp;
15875 
15876 	/* No code does a putq on the read side */
15877 	ASSERT(q->q_first == NULL);
15878 
15879 	/* Nothing to do for the default queue */
15880 	if (q == tcp_g_q) {
15881 		return;
15882 	}
15883 
15884 	mp = allocb(0, BPRI_HI);
15885 	if (mp == NULL) {
15886 		/*
15887 		 * We are under memory pressure. Return for now and we
15888 		 * we will be called again later.
15889 		 */
15890 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15891 			/*
15892 			 * If there isn't already a timer running
15893 			 * start one.  Use a 4 second
15894 			 * timer as a fallback since it can't fail.
15895 			 */
15896 			tcp->tcp_timeout = B_TRUE;
15897 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15898 			    MSEC_TO_TICK(4000));
15899 		}
15900 		return;
15901 	}
15902 	CONN_INC_REF(connp);
15903 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15904 	    SQTAG_TCP_RSRV);
15905 }
15906 
15907 /*
15908  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15909  * We do not allow the receive window to shrink.  After setting rwnd,
15910  * set the flow control hiwat of the stream.
15911  *
15912  * This function is called in 2 cases:
15913  *
15914  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15915  *    connection (passive open) and in tcp_rput_data() for active connect.
15916  *    This is called after tcp_mss_set() when the desired MSS value is known.
15917  *    This makes sure that our window size is a mutiple of the other side's
15918  *    MSS.
15919  * 2) Handling SO_RCVBUF option.
15920  *
15921  * It is ASSUMED that the requested size is a multiple of the current MSS.
15922  *
15923  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15924  * user requests so.
15925  */
15926 static int
15927 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15928 {
15929 	uint32_t	mss = tcp->tcp_mss;
15930 	uint32_t	old_max_rwnd;
15931 	uint32_t	max_transmittable_rwnd;
15932 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15933 
15934 	if (tcp->tcp_fused) {
15935 		size_t sth_hiwat;
15936 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15937 
15938 		ASSERT(peer_tcp != NULL);
15939 		/*
15940 		 * Record the stream head's high water mark for
15941 		 * this endpoint; this is used for flow-control
15942 		 * purposes in tcp_fuse_output().
15943 		 */
15944 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15945 		if (!tcp_detached)
15946 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15947 
15948 		/*
15949 		 * In the fusion case, the maxpsz stream head value of
15950 		 * our peer is set according to its send buffer size
15951 		 * and our receive buffer size; since the latter may
15952 		 * have changed we need to update the peer's maxpsz.
15953 		 */
15954 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15955 		return (rwnd);
15956 	}
15957 
15958 	if (tcp_detached)
15959 		old_max_rwnd = tcp->tcp_rwnd;
15960 	else
15961 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15962 
15963 	/*
15964 	 * Insist on a receive window that is at least
15965 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15966 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15967 	 * and delayed acknowledgement.
15968 	 */
15969 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15970 
15971 	/*
15972 	 * If window size info has already been exchanged, TCP should not
15973 	 * shrink the window.  Shrinking window is doable if done carefully.
15974 	 * We may add that support later.  But so far there is not a real
15975 	 * need to do that.
15976 	 */
15977 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15978 		/* MSS may have changed, do a round up again. */
15979 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15980 	}
15981 
15982 	/*
15983 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15984 	 * can be applied even before the window scale option is decided.
15985 	 */
15986 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15987 	if (rwnd > max_transmittable_rwnd) {
15988 		rwnd = max_transmittable_rwnd -
15989 		    (max_transmittable_rwnd % mss);
15990 		if (rwnd < mss)
15991 			rwnd = max_transmittable_rwnd;
15992 		/*
15993 		 * If we're over the limit we may have to back down tcp_rwnd.
15994 		 * The increment below won't work for us. So we set all three
15995 		 * here and the increment below will have no effect.
15996 		 */
15997 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15998 	}
15999 	if (tcp->tcp_localnet) {
16000 		tcp->tcp_rack_abs_max =
16001 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
16002 	} else {
16003 		/*
16004 		 * For a remote host on a different subnet (through a router),
16005 		 * we ack every other packet to be conforming to RFC1122.
16006 		 * tcp_deferred_acks_max is default to 2.
16007 		 */
16008 		tcp->tcp_rack_abs_max =
16009 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
16010 	}
16011 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16012 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16013 	else
16014 		tcp->tcp_rack_cur_max = 0;
16015 	/*
16016 	 * Increment the current rwnd by the amount the maximum grew (we
16017 	 * can not overwrite it since we might be in the middle of a
16018 	 * connection.)
16019 	 */
16020 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16021 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16022 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16023 		tcp->tcp_cwnd_max = rwnd;
16024 
16025 	if (tcp_detached)
16026 		return (rwnd);
16027 	/*
16028 	 * We set the maximum receive window into rq->q_hiwat.
16029 	 * This is not actually used for flow control.
16030 	 */
16031 	tcp->tcp_rq->q_hiwat = rwnd;
16032 	/*
16033 	 * Set the Stream head high water mark. This doesn't have to be
16034 	 * here, since we are simply using default values, but we would
16035 	 * prefer to choose these values algorithmically, with a likely
16036 	 * relationship to rwnd.
16037 	 */
16038 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
16039 	return (rwnd);
16040 }
16041 
16042 /*
16043  * Return SNMP stuff in buffer in mpdata.
16044  */
16045 int
16046 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16047 {
16048 	mblk_t			*mpdata;
16049 	mblk_t			*mp_conn_ctl = NULL;
16050 	mblk_t			*mp_conn_tail;
16051 	mblk_t			*mp_attr_ctl = NULL;
16052 	mblk_t			*mp_attr_tail;
16053 	mblk_t			*mp6_conn_ctl = NULL;
16054 	mblk_t			*mp6_conn_tail;
16055 	mblk_t			*mp6_attr_ctl = NULL;
16056 	mblk_t			*mp6_attr_tail;
16057 	struct opthdr		*optp;
16058 	mib2_tcpConnEntry_t	tce;
16059 	mib2_tcp6ConnEntry_t	tce6;
16060 	mib2_transportMLPEntry_t mlp;
16061 	connf_t			*connfp;
16062 	conn_t			*connp;
16063 	int			i;
16064 	boolean_t 		ispriv;
16065 	zoneid_t 		zoneid;
16066 	int			v4_conn_idx;
16067 	int			v6_conn_idx;
16068 
16069 	if (mpctl == NULL ||
16070 	    (mpdata = mpctl->b_cont) == NULL ||
16071 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16072 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16073 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16074 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16075 		freemsg(mp_conn_ctl);
16076 		freemsg(mp_attr_ctl);
16077 		freemsg(mp6_conn_ctl);
16078 		freemsg(mp6_attr_ctl);
16079 		return (0);
16080 	}
16081 
16082 	/* build table of connections -- need count in fixed part */
16083 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
16084 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
16085 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
16086 	SET_MIB(tcp_mib.tcpMaxConn, -1);
16087 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
16088 
16089 	ispriv =
16090 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16091 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16092 
16093 	v4_conn_idx = v6_conn_idx = 0;
16094 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16095 
16096 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16097 
16098 		connfp = &ipcl_globalhash_fanout[i];
16099 
16100 		connp = NULL;
16101 
16102 		while ((connp =
16103 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16104 			tcp_t *tcp;
16105 			boolean_t needattr;
16106 
16107 			if (connp->conn_zoneid != zoneid)
16108 				continue;	/* not in this zone */
16109 
16110 			tcp = connp->conn_tcp;
16111 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
16112 			tcp->tcp_ibsegs = 0;
16113 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
16114 			tcp->tcp_obsegs = 0;
16115 
16116 			tce6.tcp6ConnState = tce.tcpConnState =
16117 			    tcp_snmp_state(tcp);
16118 			if (tce.tcpConnState == MIB2_TCP_established ||
16119 			    tce.tcpConnState == MIB2_TCP_closeWait)
16120 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
16121 
16122 			needattr = B_FALSE;
16123 			bzero(&mlp, sizeof (mlp));
16124 			if (connp->conn_mlp_type != mlptSingle) {
16125 				if (connp->conn_mlp_type == mlptShared ||
16126 				    connp->conn_mlp_type == mlptBoth)
16127 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16128 				if (connp->conn_mlp_type == mlptPrivate ||
16129 				    connp->conn_mlp_type == mlptBoth)
16130 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16131 				needattr = B_TRUE;
16132 			}
16133 			if (connp->conn_peercred != NULL) {
16134 				ts_label_t *tsl;
16135 
16136 				tsl = crgetlabel(connp->conn_peercred);
16137 				mlp.tme_doi = label2doi(tsl);
16138 				mlp.tme_label = *label2bslabel(tsl);
16139 				needattr = B_TRUE;
16140 			}
16141 
16142 			/* Create a message to report on IPv6 entries */
16143 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16144 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16145 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16146 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16147 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16148 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16149 			/* Don't want just anybody seeing these... */
16150 			if (ispriv) {
16151 				tce6.tcp6ConnEntryInfo.ce_snxt =
16152 				    tcp->tcp_snxt;
16153 				tce6.tcp6ConnEntryInfo.ce_suna =
16154 				    tcp->tcp_suna;
16155 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16156 				    tcp->tcp_rnxt;
16157 				tce6.tcp6ConnEntryInfo.ce_rack =
16158 				    tcp->tcp_rack;
16159 			} else {
16160 				/*
16161 				 * Netstat, unfortunately, uses this to
16162 				 * get send/receive queue sizes.  How to fix?
16163 				 * Why not compute the difference only?
16164 				 */
16165 				tce6.tcp6ConnEntryInfo.ce_snxt =
16166 				    tcp->tcp_snxt - tcp->tcp_suna;
16167 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16168 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16169 				    tcp->tcp_rnxt - tcp->tcp_rack;
16170 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16171 			}
16172 
16173 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16174 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16175 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16176 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16177 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16178 
16179 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16180 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16181 
16182 			mlp.tme_connidx = v6_conn_idx++;
16183 			if (needattr)
16184 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16185 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16186 			}
16187 			/*
16188 			 * Create an IPv4 table entry for IPv4 entries and also
16189 			 * for IPv6 entries which are bound to in6addr_any
16190 			 * but don't have IPV6_V6ONLY set.
16191 			 * (i.e. anything an IPv4 peer could connect to)
16192 			 */
16193 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16194 			    (tcp->tcp_state <= TCPS_LISTEN &&
16195 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16196 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16197 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16198 					tce.tcpConnRemAddress = INADDR_ANY;
16199 					tce.tcpConnLocalAddress = INADDR_ANY;
16200 				} else {
16201 					tce.tcpConnRemAddress =
16202 					    tcp->tcp_remote;
16203 					tce.tcpConnLocalAddress =
16204 					    tcp->tcp_ip_src;
16205 				}
16206 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16207 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16208 				/* Don't want just anybody seeing these... */
16209 				if (ispriv) {
16210 					tce.tcpConnEntryInfo.ce_snxt =
16211 					    tcp->tcp_snxt;
16212 					tce.tcpConnEntryInfo.ce_suna =
16213 					    tcp->tcp_suna;
16214 					tce.tcpConnEntryInfo.ce_rnxt =
16215 					    tcp->tcp_rnxt;
16216 					tce.tcpConnEntryInfo.ce_rack =
16217 					    tcp->tcp_rack;
16218 				} else {
16219 					/*
16220 					 * Netstat, unfortunately, uses this to
16221 					 * get send/receive queue sizes.  How
16222 					 * to fix?
16223 					 * Why not compute the difference only?
16224 					 */
16225 					tce.tcpConnEntryInfo.ce_snxt =
16226 					    tcp->tcp_snxt - tcp->tcp_suna;
16227 					tce.tcpConnEntryInfo.ce_suna = 0;
16228 					tce.tcpConnEntryInfo.ce_rnxt =
16229 					    tcp->tcp_rnxt - tcp->tcp_rack;
16230 					tce.tcpConnEntryInfo.ce_rack = 0;
16231 				}
16232 
16233 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16234 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16235 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16236 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16237 				tce.tcpConnEntryInfo.ce_state =
16238 				    tcp->tcp_state;
16239 
16240 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16241 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16242 
16243 				mlp.tme_connidx = v4_conn_idx++;
16244 				if (needattr)
16245 					(void) snmp_append_data2(
16246 					    mp_attr_ctl->b_cont,
16247 					    &mp_attr_tail, (char *)&mlp,
16248 					    sizeof (mlp));
16249 			}
16250 		}
16251 	}
16252 
16253 	/* fixed length structure for IPv4 and IPv6 counters */
16254 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16255 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
16256 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16257 	optp->level = MIB2_TCP;
16258 	optp->name = 0;
16259 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16260 	optp->len = msgdsize(mpdata);
16261 	qreply(q, mpctl);
16262 
16263 	/* table of connections... */
16264 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16265 	    sizeof (struct T_optmgmt_ack)];
16266 	optp->level = MIB2_TCP;
16267 	optp->name = MIB2_TCP_CONN;
16268 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16269 	qreply(q, mp_conn_ctl);
16270 
16271 	/* table of MLP attributes... */
16272 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16273 	    sizeof (struct T_optmgmt_ack)];
16274 	optp->level = MIB2_TCP;
16275 	optp->name = EXPER_XPORT_MLP;
16276 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16277 	if (optp->len == 0)
16278 		freemsg(mp_attr_ctl);
16279 	else
16280 		qreply(q, mp_attr_ctl);
16281 
16282 	/* table of IPv6 connections... */
16283 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16284 	    sizeof (struct T_optmgmt_ack)];
16285 	optp->level = MIB2_TCP6;
16286 	optp->name = MIB2_TCP6_CONN;
16287 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16288 	qreply(q, mp6_conn_ctl);
16289 
16290 	/* table of IPv6 MLP attributes... */
16291 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16292 	    sizeof (struct T_optmgmt_ack)];
16293 	optp->level = MIB2_TCP6;
16294 	optp->name = EXPER_XPORT_MLP;
16295 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16296 	if (optp->len == 0)
16297 		freemsg(mp6_attr_ctl);
16298 	else
16299 		qreply(q, mp6_attr_ctl);
16300 	return (1);
16301 }
16302 
16303 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16304 /* ARGSUSED */
16305 int
16306 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16307 {
16308 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16309 
16310 	switch (level) {
16311 	case MIB2_TCP:
16312 		switch (name) {
16313 		case 13:
16314 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16315 				return (0);
16316 			/* TODO: delete entry defined by tce */
16317 			return (1);
16318 		default:
16319 			return (0);
16320 		}
16321 	default:
16322 		return (1);
16323 	}
16324 }
16325 
16326 /* Translate TCP state to MIB2 TCP state. */
16327 static int
16328 tcp_snmp_state(tcp_t *tcp)
16329 {
16330 	if (tcp == NULL)
16331 		return (0);
16332 
16333 	switch (tcp->tcp_state) {
16334 	case TCPS_CLOSED:
16335 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16336 	case TCPS_BOUND:
16337 		return (MIB2_TCP_closed);
16338 	case TCPS_LISTEN:
16339 		return (MIB2_TCP_listen);
16340 	case TCPS_SYN_SENT:
16341 		return (MIB2_TCP_synSent);
16342 	case TCPS_SYN_RCVD:
16343 		return (MIB2_TCP_synReceived);
16344 	case TCPS_ESTABLISHED:
16345 		return (MIB2_TCP_established);
16346 	case TCPS_CLOSE_WAIT:
16347 		return (MIB2_TCP_closeWait);
16348 	case TCPS_FIN_WAIT_1:
16349 		return (MIB2_TCP_finWait1);
16350 	case TCPS_CLOSING:
16351 		return (MIB2_TCP_closing);
16352 	case TCPS_LAST_ACK:
16353 		return (MIB2_TCP_lastAck);
16354 	case TCPS_FIN_WAIT_2:
16355 		return (MIB2_TCP_finWait2);
16356 	case TCPS_TIME_WAIT:
16357 		return (MIB2_TCP_timeWait);
16358 	default:
16359 		return (0);
16360 	}
16361 }
16362 
16363 static char tcp_report_header[] =
16364 	"TCP     " MI_COL_HDRPAD_STR
16365 	"zone dest            snxt     suna     "
16366 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16367 	"recent   [lport,fport] state";
16368 
16369 /*
16370  * TCP status report triggered via the Named Dispatch mechanism.
16371  */
16372 /* ARGSUSED */
16373 static void
16374 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16375     cred_t *cr)
16376 {
16377 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16378 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16379 	char cflag;
16380 	in6_addr_t	v6dst;
16381 	char buf[80];
16382 	uint_t print_len, buf_len;
16383 
16384 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16385 	if (buf_len <= 0)
16386 		return;
16387 
16388 	if (hashval >= 0)
16389 		(void) sprintf(hash, "%03d ", hashval);
16390 	else
16391 		hash[0] = '\0';
16392 
16393 	/*
16394 	 * Note that we use the remote address in the tcp_b  structure.
16395 	 * This means that it will print out the real destination address,
16396 	 * not the next hop's address if source routing is used.  This
16397 	 * avoid the confusion on the output because user may not
16398 	 * know that source routing is used for a connection.
16399 	 */
16400 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16401 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16402 	} else {
16403 		v6dst = tcp->tcp_remote_v6;
16404 	}
16405 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16406 	/*
16407 	 * the ispriv checks are so that normal users cannot determine
16408 	 * sequence number information using NDD.
16409 	 */
16410 
16411 	if (TCP_IS_DETACHED(tcp))
16412 		cflag = '*';
16413 	else
16414 		cflag = ' ';
16415 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16416 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16417 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16418 	    hash,
16419 	    (void *)tcp,
16420 	    tcp->tcp_connp->conn_zoneid,
16421 	    addrbuf,
16422 	    (ispriv) ? tcp->tcp_snxt : 0,
16423 	    (ispriv) ? tcp->tcp_suna : 0,
16424 	    tcp->tcp_swnd,
16425 	    (ispriv) ? tcp->tcp_rnxt : 0,
16426 	    (ispriv) ? tcp->tcp_rack : 0,
16427 	    tcp->tcp_rwnd,
16428 	    tcp->tcp_rto,
16429 	    tcp->tcp_mss,
16430 	    tcp->tcp_snd_ws_ok,
16431 	    tcp->tcp_snd_ws,
16432 	    tcp->tcp_rcv_ws,
16433 	    tcp->tcp_snd_ts_ok,
16434 	    tcp->tcp_ts_recent,
16435 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16436 	if (print_len < buf_len) {
16437 		((mblk_t *)mp)->b_wptr += print_len;
16438 	} else {
16439 		((mblk_t *)mp)->b_wptr += buf_len;
16440 	}
16441 }
16442 
16443 /*
16444  * TCP status report (for listeners only) triggered via the Named Dispatch
16445  * mechanism.
16446  */
16447 /* ARGSUSED */
16448 static void
16449 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16450 {
16451 	char addrbuf[INET6_ADDRSTRLEN];
16452 	in6_addr_t	v6dst;
16453 	uint_t print_len, buf_len;
16454 
16455 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16456 	if (buf_len <= 0)
16457 		return;
16458 
16459 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16460 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16461 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16462 	} else {
16463 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16464 		    addrbuf, sizeof (addrbuf));
16465 	}
16466 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16467 	    "%03d "
16468 	    MI_COL_PTRFMT_STR
16469 	    "%d %s %05u %08u %d/%d/%d%c\n",
16470 	    hashval, (void *)tcp,
16471 	    tcp->tcp_connp->conn_zoneid,
16472 	    addrbuf,
16473 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16474 	    tcp->tcp_conn_req_seqnum,
16475 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16476 	    tcp->tcp_conn_req_max,
16477 	    tcp->tcp_syn_defense ? '*' : ' ');
16478 	if (print_len < buf_len) {
16479 		((mblk_t *)mp)->b_wptr += print_len;
16480 	} else {
16481 		((mblk_t *)mp)->b_wptr += buf_len;
16482 	}
16483 }
16484 
16485 /* TCP status report triggered via the Named Dispatch mechanism. */
16486 /* ARGSUSED */
16487 static int
16488 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16489 {
16490 	tcp_t	*tcp;
16491 	int	i;
16492 	conn_t	*connp;
16493 	connf_t	*connfp;
16494 	zoneid_t zoneid;
16495 
16496 	/*
16497 	 * Because of the ndd constraint, at most we can have 64K buffer
16498 	 * to put in all TCP info.  So to be more efficient, just
16499 	 * allocate a 64K buffer here, assuming we need that large buffer.
16500 	 * This may be a problem as any user can read tcp_status.  Therefore
16501 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16502 	 * This should be OK as normal users should not do this too often.
16503 	 */
16504 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16505 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16506 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16507 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16508 			return (0);
16509 		}
16510 	}
16511 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16512 		/* The following may work even if we cannot get a large buf. */
16513 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16514 		return (0);
16515 	}
16516 
16517 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16518 
16519 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16520 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16521 
16522 		connfp = &ipcl_globalhash_fanout[i];
16523 
16524 		connp = NULL;
16525 
16526 		while ((connp =
16527 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16528 			tcp = connp->conn_tcp;
16529 			if (zoneid != GLOBAL_ZONEID &&
16530 			    zoneid != connp->conn_zoneid)
16531 				continue;
16532 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16533 			    cr);
16534 		}
16535 
16536 	}
16537 
16538 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16539 	return (0);
16540 }
16541 
16542 /* TCP status report triggered via the Named Dispatch mechanism. */
16543 /* ARGSUSED */
16544 static int
16545 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16546 {
16547 	tf_t	*tbf;
16548 	tcp_t	*tcp;
16549 	int	i;
16550 	zoneid_t zoneid;
16551 
16552 	/* Refer to comments in tcp_status_report(). */
16553 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16554 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16555 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16556 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16557 			return (0);
16558 		}
16559 	}
16560 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16561 		/* The following may work even if we cannot get a large buf. */
16562 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16563 		return (0);
16564 	}
16565 
16566 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16567 
16568 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16569 
16570 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16571 		tbf = &tcp_bind_fanout[i];
16572 		mutex_enter(&tbf->tf_lock);
16573 		for (tcp = tbf->tf_tcp; tcp != NULL;
16574 		    tcp = tcp->tcp_bind_hash) {
16575 			if (zoneid != GLOBAL_ZONEID &&
16576 			    zoneid != tcp->tcp_connp->conn_zoneid)
16577 				continue;
16578 			CONN_INC_REF(tcp->tcp_connp);
16579 			tcp_report_item(mp->b_cont, tcp, i,
16580 			    Q_TO_TCP(q), cr);
16581 			CONN_DEC_REF(tcp->tcp_connp);
16582 		}
16583 		mutex_exit(&tbf->tf_lock);
16584 	}
16585 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16586 	return (0);
16587 }
16588 
16589 /* TCP status report triggered via the Named Dispatch mechanism. */
16590 /* ARGSUSED */
16591 static int
16592 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16593 {
16594 	connf_t	*connfp;
16595 	conn_t	*connp;
16596 	tcp_t	*tcp;
16597 	int	i;
16598 	zoneid_t zoneid;
16599 
16600 	/* Refer to comments in tcp_status_report(). */
16601 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16602 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16603 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16604 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16605 			return (0);
16606 		}
16607 	}
16608 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16609 		/* The following may work even if we cannot get a large buf. */
16610 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16611 		return (0);
16612 	}
16613 
16614 	(void) mi_mpprintf(mp,
16615 	    "    TCP    " MI_COL_HDRPAD_STR
16616 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16617 
16618 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16619 
16620 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16621 		connfp =  &ipcl_bind_fanout[i];
16622 		connp = NULL;
16623 		while ((connp =
16624 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16625 			tcp = connp->conn_tcp;
16626 			if (zoneid != GLOBAL_ZONEID &&
16627 			    zoneid != connp->conn_zoneid)
16628 				continue;
16629 			tcp_report_listener(mp->b_cont, tcp, i);
16630 		}
16631 	}
16632 
16633 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16634 	return (0);
16635 }
16636 
16637 /* TCP status report triggered via the Named Dispatch mechanism. */
16638 /* ARGSUSED */
16639 static int
16640 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16641 {
16642 	connf_t	*connfp;
16643 	conn_t	*connp;
16644 	tcp_t	*tcp;
16645 	int	i;
16646 	zoneid_t zoneid;
16647 
16648 	/* Refer to comments in tcp_status_report(). */
16649 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16650 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16651 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16652 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16653 			return (0);
16654 		}
16655 	}
16656 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16657 		/* The following may work even if we cannot get a large buf. */
16658 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16659 		return (0);
16660 	}
16661 
16662 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16663 	    ipcl_conn_fanout_size);
16664 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16665 
16666 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16667 
16668 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16669 		connfp =  &ipcl_conn_fanout[i];
16670 		connp = NULL;
16671 		while ((connp =
16672 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16673 			tcp = connp->conn_tcp;
16674 			if (zoneid != GLOBAL_ZONEID &&
16675 			    zoneid != connp->conn_zoneid)
16676 				continue;
16677 			tcp_report_item(mp->b_cont, tcp, i,
16678 			    Q_TO_TCP(q), cr);
16679 		}
16680 	}
16681 
16682 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16683 	return (0);
16684 }
16685 
16686 /* TCP status report triggered via the Named Dispatch mechanism. */
16687 /* ARGSUSED */
16688 static int
16689 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16690 {
16691 	tf_t	*tf;
16692 	tcp_t	*tcp;
16693 	int	i;
16694 	zoneid_t zoneid;
16695 
16696 	/* Refer to comments in tcp_status_report(). */
16697 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16698 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16699 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16700 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16701 			return (0);
16702 		}
16703 	}
16704 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16705 		/* The following may work even if we cannot get a large buf. */
16706 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16707 		return (0);
16708 	}
16709 
16710 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16711 
16712 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16713 
16714 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16715 		tf = &tcp_acceptor_fanout[i];
16716 		mutex_enter(&tf->tf_lock);
16717 		for (tcp = tf->tf_tcp; tcp != NULL;
16718 		    tcp = tcp->tcp_acceptor_hash) {
16719 			if (zoneid != GLOBAL_ZONEID &&
16720 			    zoneid != tcp->tcp_connp->conn_zoneid)
16721 				continue;
16722 			tcp_report_item(mp->b_cont, tcp, i,
16723 			    Q_TO_TCP(q), cr);
16724 		}
16725 		mutex_exit(&tf->tf_lock);
16726 	}
16727 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16728 	return (0);
16729 }
16730 
16731 /*
16732  * tcp_timer is the timer service routine.  It handles the retransmission,
16733  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16734  * from the state of the tcp instance what kind of action needs to be done
16735  * at the time it is called.
16736  */
16737 static void
16738 tcp_timer(void *arg)
16739 {
16740 	mblk_t		*mp;
16741 	clock_t		first_threshold;
16742 	clock_t		second_threshold;
16743 	clock_t		ms;
16744 	uint32_t	mss;
16745 	conn_t		*connp = (conn_t *)arg;
16746 	tcp_t		*tcp = connp->conn_tcp;
16747 
16748 	tcp->tcp_timer_tid = 0;
16749 
16750 	if (tcp->tcp_fused)
16751 		return;
16752 
16753 	first_threshold =  tcp->tcp_first_timer_threshold;
16754 	second_threshold = tcp->tcp_second_timer_threshold;
16755 	switch (tcp->tcp_state) {
16756 	case TCPS_IDLE:
16757 	case TCPS_BOUND:
16758 	case TCPS_LISTEN:
16759 		return;
16760 	case TCPS_SYN_RCVD: {
16761 		tcp_t	*listener = tcp->tcp_listener;
16762 
16763 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16764 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16765 			/* it's our first timeout */
16766 			tcp->tcp_syn_rcvd_timeout = 1;
16767 			mutex_enter(&listener->tcp_eager_lock);
16768 			listener->tcp_syn_rcvd_timeout++;
16769 			if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) {
16770 				/*
16771 				 * Make this eager available for drop if we
16772 				 * need to drop one to accomodate a new
16773 				 * incoming SYN request.
16774 				 */
16775 				MAKE_DROPPABLE(listener, tcp);
16776 			}
16777 			if (!listener->tcp_syn_defense &&
16778 			    (listener->tcp_syn_rcvd_timeout >
16779 			    (tcp_conn_req_max_q0 >> 2)) &&
16780 			    (tcp_conn_req_max_q0 > 200)) {
16781 				/* We may be under attack. Put on a defense. */
16782 				listener->tcp_syn_defense = B_TRUE;
16783 				cmn_err(CE_WARN, "High TCP connect timeout "
16784 				    "rate! System (port %d) may be under a "
16785 				    "SYN flood attack!",
16786 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16787 
16788 				listener->tcp_ip_addr_cache = kmem_zalloc(
16789 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16790 				    KM_NOSLEEP);
16791 			}
16792 			mutex_exit(&listener->tcp_eager_lock);
16793 		} else if (listener != NULL) {
16794 			mutex_enter(&listener->tcp_eager_lock);
16795 			tcp->tcp_syn_rcvd_timeout++;
16796 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16797 			    tcp->tcp_closemp_used == 0) {
16798 				/*
16799 				 * This is our second timeout. Put the tcp in
16800 				 * the list of droppable eagers to allow it to
16801 				 * be dropped, if needed. We don't check
16802 				 * whether tcp_dontdrop is set or not to
16803 				 * protect ourselve from a SYN attack where a
16804 				 * remote host can spoof itself as one of the
16805 				 * good IP source and continue to hold
16806 				 * resources too long.
16807 				 */
16808 				MAKE_DROPPABLE(listener, tcp);
16809 			}
16810 			mutex_exit(&listener->tcp_eager_lock);
16811 		}
16812 	}
16813 		/* FALLTHRU */
16814 	case TCPS_SYN_SENT:
16815 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16816 		second_threshold = tcp->tcp_second_ctimer_threshold;
16817 		break;
16818 	case TCPS_ESTABLISHED:
16819 	case TCPS_FIN_WAIT_1:
16820 	case TCPS_CLOSING:
16821 	case TCPS_CLOSE_WAIT:
16822 	case TCPS_LAST_ACK:
16823 		/* If we have data to rexmit */
16824 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16825 			clock_t	time_to_wait;
16826 
16827 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16828 			if (!tcp->tcp_xmit_head)
16829 				break;
16830 			time_to_wait = lbolt -
16831 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16832 			time_to_wait = tcp->tcp_rto -
16833 			    TICK_TO_MSEC(time_to_wait);
16834 			/*
16835 			 * If the timer fires too early, 1 clock tick earlier,
16836 			 * restart the timer.
16837 			 */
16838 			if (time_to_wait > msec_per_tick) {
16839 				TCP_STAT(tcp_timer_fire_early);
16840 				TCP_TIMER_RESTART(tcp, time_to_wait);
16841 				return;
16842 			}
16843 			/*
16844 			 * When we probe zero windows, we force the swnd open.
16845 			 * If our peer acks with a closed window swnd will be
16846 			 * set to zero by tcp_rput(). As long as we are
16847 			 * receiving acks tcp_rput will
16848 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16849 			 * first and second interval actions.  NOTE: the timer
16850 			 * interval is allowed to continue its exponential
16851 			 * backoff.
16852 			 */
16853 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16854 				if (tcp->tcp_debug) {
16855 					(void) strlog(TCP_MOD_ID, 0, 1,
16856 					    SL_TRACE, "tcp_timer: zero win");
16857 				}
16858 			} else {
16859 				/*
16860 				 * After retransmission, we need to do
16861 				 * slow start.  Set the ssthresh to one
16862 				 * half of current effective window and
16863 				 * cwnd to one MSS.  Also reset
16864 				 * tcp_cwnd_cnt.
16865 				 *
16866 				 * Note that if tcp_ssthresh is reduced because
16867 				 * of ECN, do not reduce it again unless it is
16868 				 * already one window of data away (tcp_cwr
16869 				 * should then be cleared) or this is a
16870 				 * timeout for a retransmitted segment.
16871 				 */
16872 				uint32_t npkt;
16873 
16874 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16875 					npkt = ((tcp->tcp_timer_backoff ?
16876 					    tcp->tcp_cwnd_ssthresh :
16877 					    tcp->tcp_snxt -
16878 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16879 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16880 					    tcp->tcp_mss;
16881 				}
16882 				tcp->tcp_cwnd = tcp->tcp_mss;
16883 				tcp->tcp_cwnd_cnt = 0;
16884 				if (tcp->tcp_ecn_ok) {
16885 					tcp->tcp_cwr = B_TRUE;
16886 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16887 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16888 				}
16889 			}
16890 			break;
16891 		}
16892 		/*
16893 		 * We have something to send yet we cannot send.  The
16894 		 * reason can be:
16895 		 *
16896 		 * 1. Zero send window: we need to do zero window probe.
16897 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16898 		 * segments.
16899 		 * 3. SWS avoidance: receiver may have shrunk window,
16900 		 * reset our knowledge.
16901 		 *
16902 		 * Note that condition 2 can happen with either 1 or
16903 		 * 3.  But 1 and 3 are exclusive.
16904 		 */
16905 		if (tcp->tcp_unsent != 0) {
16906 			if (tcp->tcp_cwnd == 0) {
16907 				/*
16908 				 * Set tcp_cwnd to 1 MSS so that a
16909 				 * new segment can be sent out.  We
16910 				 * are "clocking out" new data when
16911 				 * the network is really congested.
16912 				 */
16913 				ASSERT(tcp->tcp_ecn_ok);
16914 				tcp->tcp_cwnd = tcp->tcp_mss;
16915 			}
16916 			if (tcp->tcp_swnd == 0) {
16917 				/* Extend window for zero window probe */
16918 				tcp->tcp_swnd++;
16919 				tcp->tcp_zero_win_probe = B_TRUE;
16920 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16921 			} else {
16922 				/*
16923 				 * Handle timeout from sender SWS avoidance.
16924 				 * Reset our knowledge of the max send window
16925 				 * since the receiver might have reduced its
16926 				 * receive buffer.  Avoid setting tcp_max_swnd
16927 				 * to one since that will essentially disable
16928 				 * the SWS checks.
16929 				 *
16930 				 * Note that since we don't have a SWS
16931 				 * state variable, if the timeout is set
16932 				 * for ECN but not for SWS, this
16933 				 * code will also be executed.  This is
16934 				 * fine as tcp_max_swnd is updated
16935 				 * constantly and it will not affect
16936 				 * anything.
16937 				 */
16938 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16939 			}
16940 			tcp_wput_data(tcp, NULL, B_FALSE);
16941 			return;
16942 		}
16943 		/* Is there a FIN that needs to be to re retransmitted? */
16944 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16945 		    !tcp->tcp_fin_acked)
16946 			break;
16947 		/* Nothing to do, return without restarting timer. */
16948 		TCP_STAT(tcp_timer_fire_miss);
16949 		return;
16950 	case TCPS_FIN_WAIT_2:
16951 		/*
16952 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16953 		 * We waited some time for for peer's FIN, but it hasn't
16954 		 * arrived.  We flush the connection now to avoid
16955 		 * case where the peer has rebooted.
16956 		 */
16957 		if (TCP_IS_DETACHED(tcp)) {
16958 			(void) tcp_clean_death(tcp, 0, 23);
16959 		} else {
16960 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16961 		}
16962 		return;
16963 	case TCPS_TIME_WAIT:
16964 		(void) tcp_clean_death(tcp, 0, 24);
16965 		return;
16966 	default:
16967 		if (tcp->tcp_debug) {
16968 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16969 			    "tcp_timer: strange state (%d) %s",
16970 			    tcp->tcp_state, tcp_display(tcp, NULL,
16971 			    DISP_PORT_ONLY));
16972 		}
16973 		return;
16974 	}
16975 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16976 		/*
16977 		 * For zero window probe, we need to send indefinitely,
16978 		 * unless we have not heard from the other side for some
16979 		 * time...
16980 		 */
16981 		if ((tcp->tcp_zero_win_probe == 0) ||
16982 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16983 		    second_threshold)) {
16984 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16985 			/*
16986 			 * If TCP is in SYN_RCVD state, send back a
16987 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16988 			 * should be zero in TCPS_SYN_RCVD state.
16989 			 */
16990 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16991 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16992 				    "in SYN_RCVD",
16993 				    tcp, tcp->tcp_snxt,
16994 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16995 			}
16996 			(void) tcp_clean_death(tcp,
16997 			    tcp->tcp_client_errno ?
16998 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16999 			return;
17000 		} else {
17001 			/*
17002 			 * Set tcp_ms_we_have_waited to second_threshold
17003 			 * so that in next timeout, we will do the above
17004 			 * check (lbolt - tcp_last_recv_time).  This is
17005 			 * also to avoid overflow.
17006 			 *
17007 			 * We don't need to decrement tcp_timer_backoff
17008 			 * to avoid overflow because it will be decremented
17009 			 * later if new timeout value is greater than
17010 			 * tcp_rexmit_interval_max.  In the case when
17011 			 * tcp_rexmit_interval_max is greater than
17012 			 * second_threshold, it means that we will wait
17013 			 * longer than second_threshold to send the next
17014 			 * window probe.
17015 			 */
17016 			tcp->tcp_ms_we_have_waited = second_threshold;
17017 		}
17018 	} else if (ms > first_threshold) {
17019 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17020 		    tcp->tcp_xmit_head != NULL) {
17021 			tcp->tcp_xmit_head =
17022 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17023 		}
17024 		/*
17025 		 * We have been retransmitting for too long...  The RTT
17026 		 * we calculated is probably incorrect.  Reinitialize it.
17027 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17028 		 * tcp_rtt_update so that we won't accidentally cache a
17029 		 * bad value.  But only do this if this is not a zero
17030 		 * window probe.
17031 		 */
17032 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17033 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17034 			    (tcp->tcp_rtt_sa >> 5);
17035 			tcp->tcp_rtt_sa = 0;
17036 			tcp_ip_notify(tcp);
17037 			tcp->tcp_rtt_update = 0;
17038 		}
17039 	}
17040 	tcp->tcp_timer_backoff++;
17041 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17042 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17043 	    tcp_rexmit_interval_min) {
17044 		/*
17045 		 * This means the original RTO is tcp_rexmit_interval_min.
17046 		 * So we will use tcp_rexmit_interval_min as the RTO value
17047 		 * and do the backoff.
17048 		 */
17049 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
17050 	} else {
17051 		ms <<= tcp->tcp_timer_backoff;
17052 	}
17053 	if (ms > tcp_rexmit_interval_max) {
17054 		ms = tcp_rexmit_interval_max;
17055 		/*
17056 		 * ms is at max, decrement tcp_timer_backoff to avoid
17057 		 * overflow.
17058 		 */
17059 		tcp->tcp_timer_backoff--;
17060 	}
17061 	tcp->tcp_ms_we_have_waited += ms;
17062 	if (tcp->tcp_zero_win_probe == 0) {
17063 		tcp->tcp_rto = ms;
17064 	}
17065 	TCP_TIMER_RESTART(tcp, ms);
17066 	/*
17067 	 * This is after a timeout and tcp_rto is backed off.  Set
17068 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17069 	 * restart the timer with a correct value.
17070 	 */
17071 	tcp->tcp_set_timer = 1;
17072 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17073 	if (mss > tcp->tcp_mss)
17074 		mss = tcp->tcp_mss;
17075 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17076 		mss = tcp->tcp_swnd;
17077 
17078 	if ((mp = tcp->tcp_xmit_head) != NULL)
17079 		mp->b_prev = (mblk_t *)lbolt;
17080 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17081 	    B_TRUE);
17082 
17083 	/*
17084 	 * When slow start after retransmission begins, start with
17085 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17086 	 * start phase.  tcp_snd_burst controls how many segments
17087 	 * can be sent because of an ack.
17088 	 */
17089 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17090 	tcp->tcp_snd_burst = TCP_CWND_SS;
17091 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17092 	    (tcp->tcp_unsent == 0)) {
17093 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17094 	} else {
17095 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17096 	}
17097 	tcp->tcp_rexmit = B_TRUE;
17098 	tcp->tcp_dupack_cnt = 0;
17099 
17100 	/*
17101 	 * Remove all rexmit SACK blk to start from fresh.
17102 	 */
17103 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17104 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17105 		tcp->tcp_num_notsack_blk = 0;
17106 		tcp->tcp_cnt_notsack_list = 0;
17107 	}
17108 	if (mp == NULL) {
17109 		return;
17110 	}
17111 	/* Attach credentials to retransmitted initial SYNs. */
17112 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17113 		mblk_setcred(mp, tcp->tcp_cred);
17114 		DB_CPID(mp) = tcp->tcp_cpid;
17115 	}
17116 
17117 	tcp->tcp_csuna = tcp->tcp_snxt;
17118 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
17119 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
17120 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17121 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17122 
17123 }
17124 
17125 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17126 static void
17127 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17128 {
17129 	conn_t	*connp;
17130 
17131 	switch (tcp->tcp_state) {
17132 	case TCPS_BOUND:
17133 	case TCPS_LISTEN:
17134 		break;
17135 	default:
17136 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17137 		return;
17138 	}
17139 
17140 	/*
17141 	 * Need to clean up all the eagers since after the unbind, segments
17142 	 * will no longer be delivered to this listener stream.
17143 	 */
17144 	mutex_enter(&tcp->tcp_eager_lock);
17145 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17146 		tcp_eager_cleanup(tcp, 0);
17147 	}
17148 	mutex_exit(&tcp->tcp_eager_lock);
17149 
17150 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17151 		tcp->tcp_ipha->ipha_src = 0;
17152 	} else {
17153 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17154 	}
17155 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17156 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17157 	tcp_bind_hash_remove(tcp);
17158 	tcp->tcp_state = TCPS_IDLE;
17159 	tcp->tcp_mdt = B_FALSE;
17160 	/* Send M_FLUSH according to TPI */
17161 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17162 	connp = tcp->tcp_connp;
17163 	connp->conn_mdt_ok = B_FALSE;
17164 	ipcl_hash_remove(connp);
17165 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17166 	mp = mi_tpi_ok_ack_alloc(mp);
17167 	putnext(tcp->tcp_rq, mp);
17168 }
17169 
17170 /*
17171  * Don't let port fall into the privileged range.
17172  * Since the extra privileged ports can be arbitrary we also
17173  * ensure that we exclude those from consideration.
17174  * tcp_g_epriv_ports is not sorted thus we loop over it until
17175  * there are no changes.
17176  *
17177  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17178  * but instead the code relies on:
17179  * - the fact that the address of the array and its size never changes
17180  * - the atomic assignment of the elements of the array
17181  *
17182  * Returns 0 if there are no more ports available.
17183  *
17184  * TS note: skip multilevel ports.
17185  */
17186 static in_port_t
17187 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17188 {
17189 	int i;
17190 	boolean_t restart = B_FALSE;
17191 
17192 	if (random && tcp_random_anon_port != 0) {
17193 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17194 		    sizeof (in_port_t));
17195 		/*
17196 		 * Unless changed by a sys admin, the smallest anon port
17197 		 * is 32768 and the largest anon port is 65535.  It is
17198 		 * very likely (50%) for the random port to be smaller
17199 		 * than the smallest anon port.  When that happens,
17200 		 * add port % (anon port range) to the smallest anon
17201 		 * port to get the random port.  It should fall into the
17202 		 * valid anon port range.
17203 		 */
17204 		if (port < tcp_smallest_anon_port) {
17205 			port = tcp_smallest_anon_port +
17206 			    port % (tcp_largest_anon_port -
17207 				tcp_smallest_anon_port);
17208 		}
17209 	}
17210 
17211 retry:
17212 	if (port < tcp_smallest_anon_port)
17213 		port = (in_port_t)tcp_smallest_anon_port;
17214 
17215 	if (port > tcp_largest_anon_port) {
17216 		if (restart)
17217 			return (0);
17218 		restart = B_TRUE;
17219 		port = (in_port_t)tcp_smallest_anon_port;
17220 	}
17221 
17222 	if (port < tcp_smallest_nonpriv_port)
17223 		port = (in_port_t)tcp_smallest_nonpriv_port;
17224 
17225 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
17226 		if (port == tcp_g_epriv_ports[i]) {
17227 			port++;
17228 			/*
17229 			 * Make sure whether the port is in the
17230 			 * valid range.
17231 			 */
17232 			goto retry;
17233 		}
17234 	}
17235 	if (is_system_labeled() &&
17236 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17237 	    IPPROTO_TCP, B_TRUE)) != 0) {
17238 		port = i;
17239 		goto retry;
17240 	}
17241 	return (port);
17242 }
17243 
17244 /*
17245  * Return the next anonymous port in the privileged port range for
17246  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17247  * downwards.  This is the same behavior as documented in the userland
17248  * library call rresvport(3N).
17249  *
17250  * TS note: skip multilevel ports.
17251  */
17252 static in_port_t
17253 tcp_get_next_priv_port(const tcp_t *tcp)
17254 {
17255 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17256 	in_port_t nextport;
17257 	boolean_t restart = B_FALSE;
17258 
17259 retry:
17260 	if (next_priv_port < tcp_min_anonpriv_port ||
17261 	    next_priv_port >= IPPORT_RESERVED) {
17262 		next_priv_port = IPPORT_RESERVED - 1;
17263 		if (restart)
17264 			return (0);
17265 		restart = B_TRUE;
17266 	}
17267 	if (is_system_labeled() &&
17268 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17269 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17270 		next_priv_port = nextport;
17271 		goto retry;
17272 	}
17273 	return (next_priv_port--);
17274 }
17275 
17276 /* The write side r/w procedure. */
17277 
17278 #if CCS_STATS
17279 struct {
17280 	struct {
17281 		int64_t count, bytes;
17282 	} tot, hit;
17283 } wrw_stats;
17284 #endif
17285 
17286 /*
17287  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17288  * messages.
17289  */
17290 /* ARGSUSED */
17291 static void
17292 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17293 {
17294 	conn_t	*connp = (conn_t *)arg;
17295 	tcp_t	*tcp = connp->conn_tcp;
17296 	queue_t	*q = tcp->tcp_wq;
17297 
17298 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17299 	/*
17300 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17301 	 * Once the close starts, streamhead and sockfs will not let any data
17302 	 * packets come down (close ensures that there are no threads using the
17303 	 * queue and no new threads will come down) but since qprocsoff()
17304 	 * hasn't happened yet, a M_FLUSH or some non data message might
17305 	 * get reflected back (in response to our own FLUSHRW) and get
17306 	 * processed after tcp_close() is done. The conn would still be valid
17307 	 * because a ref would have added but we need to check the state
17308 	 * before actually processing the packet.
17309 	 */
17310 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17311 		freemsg(mp);
17312 		return;
17313 	}
17314 
17315 	switch (DB_TYPE(mp)) {
17316 	case M_IOCDATA:
17317 		tcp_wput_iocdata(tcp, mp);
17318 		break;
17319 	case M_FLUSH:
17320 		tcp_wput_flush(tcp, mp);
17321 		break;
17322 	default:
17323 		CALL_IP_WPUT(connp, q, mp);
17324 		break;
17325 	}
17326 }
17327 
17328 /*
17329  * The TCP fast path write put procedure.
17330  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17331  */
17332 /* ARGSUSED */
17333 void
17334 tcp_output(void *arg, mblk_t *mp, void *arg2)
17335 {
17336 	int		len;
17337 	int		hdrlen;
17338 	int		plen;
17339 	mblk_t		*mp1;
17340 	uchar_t		*rptr;
17341 	uint32_t	snxt;
17342 	tcph_t		*tcph;
17343 	struct datab	*db;
17344 	uint32_t	suna;
17345 	uint32_t	mss;
17346 	ipaddr_t	*dst;
17347 	ipaddr_t	*src;
17348 	uint32_t	sum;
17349 	int		usable;
17350 	conn_t		*connp = (conn_t *)arg;
17351 	tcp_t		*tcp = connp->conn_tcp;
17352 	uint32_t	msize;
17353 
17354 	/*
17355 	 * Try and ASSERT the minimum possible references on the
17356 	 * conn early enough. Since we are executing on write side,
17357 	 * the connection is obviously not detached and that means
17358 	 * there is a ref each for TCP and IP. Since we are behind
17359 	 * the squeue, the minimum references needed are 3. If the
17360 	 * conn is in classifier hash list, there should be an
17361 	 * extra ref for that (we check both the possibilities).
17362 	 */
17363 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17364 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17365 
17366 	ASSERT(DB_TYPE(mp) == M_DATA);
17367 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17368 
17369 	mutex_enter(&connp->conn_lock);
17370 	tcp->tcp_squeue_bytes -= msize;
17371 	mutex_exit(&connp->conn_lock);
17372 
17373 	/* Bypass tcp protocol for fused tcp loopback */
17374 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17375 		return;
17376 
17377 	mss = tcp->tcp_mss;
17378 	if (tcp->tcp_xmit_zc_clean)
17379 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17380 
17381 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17382 	len = (int)(mp->b_wptr - mp->b_rptr);
17383 
17384 	/*
17385 	 * Criteria for fast path:
17386 	 *
17387 	 *   1. no unsent data
17388 	 *   2. single mblk in request
17389 	 *   3. connection established
17390 	 *   4. data in mblk
17391 	 *   5. len <= mss
17392 	 *   6. no tcp_valid bits
17393 	 */
17394 	if ((tcp->tcp_unsent != 0) ||
17395 	    (tcp->tcp_cork) ||
17396 	    (mp->b_cont != NULL) ||
17397 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17398 	    (len == 0) ||
17399 	    (len > mss) ||
17400 	    (tcp->tcp_valid_bits != 0)) {
17401 		tcp_wput_data(tcp, mp, B_FALSE);
17402 		return;
17403 	}
17404 
17405 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17406 	ASSERT(tcp->tcp_fin_sent == 0);
17407 
17408 	/* queue new packet onto retransmission queue */
17409 	if (tcp->tcp_xmit_head == NULL) {
17410 		tcp->tcp_xmit_head = mp;
17411 	} else {
17412 		tcp->tcp_xmit_last->b_cont = mp;
17413 	}
17414 	tcp->tcp_xmit_last = mp;
17415 	tcp->tcp_xmit_tail = mp;
17416 
17417 	/* find out how much we can send */
17418 	/* BEGIN CSTYLED */
17419 	/*
17420 	 *    un-acked           usable
17421 	 *  |--------------|-----------------|
17422 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17423 	 */
17424 	/* END CSTYLED */
17425 
17426 	/* start sending from tcp_snxt */
17427 	snxt = tcp->tcp_snxt;
17428 
17429 	/*
17430 	 * Check to see if this connection has been idled for some
17431 	 * time and no ACK is expected.  If it is, we need to slow
17432 	 * start again to get back the connection's "self-clock" as
17433 	 * described in VJ's paper.
17434 	 *
17435 	 * Refer to the comment in tcp_mss_set() for the calculation
17436 	 * of tcp_cwnd after idle.
17437 	 */
17438 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17439 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17440 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17441 	}
17442 
17443 	usable = tcp->tcp_swnd;		/* tcp window size */
17444 	if (usable > tcp->tcp_cwnd)
17445 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17446 	usable -= snxt;		/* subtract stuff already sent */
17447 	suna = tcp->tcp_suna;
17448 	usable += suna;
17449 	/* usable can be < 0 if the congestion window is smaller */
17450 	if (len > usable) {
17451 		/* Can't send complete M_DATA in one shot */
17452 		goto slow;
17453 	}
17454 
17455 	if (tcp->tcp_flow_stopped &&
17456 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17457 		tcp_clrqfull(tcp);
17458 	}
17459 
17460 	/*
17461 	 * determine if anything to send (Nagle).
17462 	 *
17463 	 *   1. len < tcp_mss (i.e. small)
17464 	 *   2. unacknowledged data present
17465 	 *   3. len < nagle limit
17466 	 *   4. last packet sent < nagle limit (previous packet sent)
17467 	 */
17468 	if ((len < mss) && (snxt != suna) &&
17469 	    (len < (int)tcp->tcp_naglim) &&
17470 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17471 		/*
17472 		 * This was the first unsent packet and normally
17473 		 * mss < xmit_hiwater so there is no need to worry
17474 		 * about flow control. The next packet will go
17475 		 * through the flow control check in tcp_wput_data().
17476 		 */
17477 		/* leftover work from above */
17478 		tcp->tcp_unsent = len;
17479 		tcp->tcp_xmit_tail_unsent = len;
17480 
17481 		return;
17482 	}
17483 
17484 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17485 
17486 	if (snxt == suna) {
17487 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17488 	}
17489 
17490 	/* we have always sent something */
17491 	tcp->tcp_rack_cnt = 0;
17492 
17493 	tcp->tcp_snxt = snxt + len;
17494 	tcp->tcp_rack = tcp->tcp_rnxt;
17495 
17496 	if ((mp1 = dupb(mp)) == 0)
17497 		goto no_memory;
17498 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17499 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17500 
17501 	/* adjust tcp header information */
17502 	tcph = tcp->tcp_tcph;
17503 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17504 
17505 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17506 	sum = (sum >> 16) + (sum & 0xFFFF);
17507 	U16_TO_ABE16(sum, tcph->th_sum);
17508 
17509 	U32_TO_ABE32(snxt, tcph->th_seq);
17510 
17511 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17512 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17513 	BUMP_LOCAL(tcp->tcp_obsegs);
17514 
17515 	/* Update the latest receive window size in TCP header. */
17516 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17517 	    tcph->th_win);
17518 
17519 	tcp->tcp_last_sent_len = (ushort_t)len;
17520 
17521 	plen = len + tcp->tcp_hdr_len;
17522 
17523 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17524 		tcp->tcp_ipha->ipha_length = htons(plen);
17525 	} else {
17526 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17527 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17528 	}
17529 
17530 	/* see if we need to allocate a mblk for the headers */
17531 	hdrlen = tcp->tcp_hdr_len;
17532 	rptr = mp1->b_rptr - hdrlen;
17533 	db = mp1->b_datap;
17534 	if ((db->db_ref != 2) || rptr < db->db_base ||
17535 	    (!OK_32PTR(rptr))) {
17536 		/* NOTE: we assume allocb returns an OK_32PTR */
17537 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17538 		    tcp_wroff_xtra, BPRI_MED);
17539 		if (!mp) {
17540 			freemsg(mp1);
17541 			goto no_memory;
17542 		}
17543 		mp->b_cont = mp1;
17544 		mp1 = mp;
17545 		/* Leave room for Link Level header */
17546 		/* hdrlen = tcp->tcp_hdr_len; */
17547 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17548 		mp1->b_wptr = &rptr[hdrlen];
17549 	}
17550 	mp1->b_rptr = rptr;
17551 
17552 	/* Fill in the timestamp option. */
17553 	if (tcp->tcp_snd_ts_ok) {
17554 		U32_TO_BE32((uint32_t)lbolt,
17555 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17556 		U32_TO_BE32(tcp->tcp_ts_recent,
17557 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17558 	} else {
17559 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17560 	}
17561 
17562 	/* copy header into outgoing packet */
17563 	dst = (ipaddr_t *)rptr;
17564 	src = (ipaddr_t *)tcp->tcp_iphc;
17565 	dst[0] = src[0];
17566 	dst[1] = src[1];
17567 	dst[2] = src[2];
17568 	dst[3] = src[3];
17569 	dst[4] = src[4];
17570 	dst[5] = src[5];
17571 	dst[6] = src[6];
17572 	dst[7] = src[7];
17573 	dst[8] = src[8];
17574 	dst[9] = src[9];
17575 	if (hdrlen -= 40) {
17576 		hdrlen >>= 2;
17577 		dst += 10;
17578 		src += 10;
17579 		do {
17580 			*dst++ = *src++;
17581 		} while (--hdrlen);
17582 	}
17583 
17584 	/*
17585 	 * Set the ECN info in the TCP header.  Note that this
17586 	 * is not the template header.
17587 	 */
17588 	if (tcp->tcp_ecn_ok) {
17589 		SET_ECT(tcp, rptr);
17590 
17591 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17592 		if (tcp->tcp_ecn_echo_on)
17593 			tcph->th_flags[0] |= TH_ECE;
17594 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17595 			tcph->th_flags[0] |= TH_CWR;
17596 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17597 		}
17598 	}
17599 
17600 	if (tcp->tcp_ip_forward_progress) {
17601 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17602 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17603 		tcp->tcp_ip_forward_progress = B_FALSE;
17604 	}
17605 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17606 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17607 	return;
17608 
17609 	/*
17610 	 * If we ran out of memory, we pretend to have sent the packet
17611 	 * and that it was lost on the wire.
17612 	 */
17613 no_memory:
17614 	return;
17615 
17616 slow:
17617 	/* leftover work from above */
17618 	tcp->tcp_unsent = len;
17619 	tcp->tcp_xmit_tail_unsent = len;
17620 	tcp_wput_data(tcp, NULL, B_FALSE);
17621 }
17622 
17623 /*
17624  * The function called through squeue to get behind eager's perimeter to
17625  * finish the accept processing.
17626  */
17627 /* ARGSUSED */
17628 void
17629 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17630 {
17631 	conn_t			*connp = (conn_t *)arg;
17632 	tcp_t			*tcp = connp->conn_tcp;
17633 	queue_t			*q = tcp->tcp_rq;
17634 	mblk_t			*mp1;
17635 	mblk_t			*stropt_mp = mp;
17636 	struct  stroptions	*stropt;
17637 	uint_t			thwin;
17638 
17639 	/*
17640 	 * Drop the eager's ref on the listener, that was placed when
17641 	 * this eager began life in tcp_conn_request.
17642 	 */
17643 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17644 
17645 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17646 		/*
17647 		 * Someone blewoff the eager before we could finish
17648 		 * the accept.
17649 		 *
17650 		 * The only reason eager exists it because we put in
17651 		 * a ref on it when conn ind went up. We need to send
17652 		 * a disconnect indication up while the last reference
17653 		 * on the eager will be dropped by the squeue when we
17654 		 * return.
17655 		 */
17656 		ASSERT(tcp->tcp_listener == NULL);
17657 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17658 			struct	T_discon_ind	*tdi;
17659 
17660 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17661 			/*
17662 			 * Let us reuse the incoming mblk to avoid memory
17663 			 * allocation failure problems. We know that the
17664 			 * size of the incoming mblk i.e. stroptions is greater
17665 			 * than sizeof T_discon_ind. So the reallocb below
17666 			 * can't fail.
17667 			 */
17668 			freemsg(mp->b_cont);
17669 			mp->b_cont = NULL;
17670 			ASSERT(DB_REF(mp) == 1);
17671 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17672 			    B_FALSE);
17673 			ASSERT(mp != NULL);
17674 			DB_TYPE(mp) = M_PROTO;
17675 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17676 			tdi = (struct T_discon_ind *)mp->b_rptr;
17677 			if (tcp->tcp_issocket) {
17678 				tdi->DISCON_reason = ECONNREFUSED;
17679 				tdi->SEQ_number = 0;
17680 			} else {
17681 				tdi->DISCON_reason = ENOPROTOOPT;
17682 				tdi->SEQ_number =
17683 				    tcp->tcp_conn_req_seqnum;
17684 			}
17685 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17686 			putnext(q, mp);
17687 		} else {
17688 			freemsg(mp);
17689 		}
17690 		if (tcp->tcp_hard_binding) {
17691 			tcp->tcp_hard_binding = B_FALSE;
17692 			tcp->tcp_hard_bound = B_TRUE;
17693 		}
17694 		tcp->tcp_detached = B_FALSE;
17695 		return;
17696 	}
17697 
17698 	mp1 = stropt_mp->b_cont;
17699 	stropt_mp->b_cont = NULL;
17700 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17701 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17702 
17703 	while (mp1 != NULL) {
17704 		mp = mp1;
17705 		mp1 = mp1->b_cont;
17706 		mp->b_cont = NULL;
17707 		tcp->tcp_drop_opt_ack_cnt++;
17708 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17709 	}
17710 	mp = NULL;
17711 
17712 	/*
17713 	 * For a loopback connection with tcp_direct_sockfs on, note that
17714 	 * we don't have to protect tcp_rcv_list yet because synchronous
17715 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17716 	 * possibly race with us.
17717 	 */
17718 
17719 	/*
17720 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17721 	 * properly.  This is the first time we know of the acceptor'
17722 	 * queue.  So we do it here.
17723 	 */
17724 	if (tcp->tcp_rcv_list == NULL) {
17725 		/*
17726 		 * Recv queue is empty, tcp_rwnd should not have changed.
17727 		 * That means it should be equal to the listener's tcp_rwnd.
17728 		 */
17729 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17730 	} else {
17731 #ifdef DEBUG
17732 		uint_t cnt = 0;
17733 
17734 		mp1 = tcp->tcp_rcv_list;
17735 		while ((mp = mp1) != NULL) {
17736 			mp1 = mp->b_next;
17737 			cnt += msgdsize(mp);
17738 		}
17739 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17740 #endif
17741 		/* There is some data, add them back to get the max. */
17742 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17743 	}
17744 
17745 	stropt->so_flags = SO_HIWAT;
17746 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17747 
17748 	stropt->so_flags |= SO_MAXBLK;
17749 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17750 
17751 	/*
17752 	 * This is the first time we run on the correct
17753 	 * queue after tcp_accept. So fix all the q parameters
17754 	 * here.
17755 	 */
17756 	/* Allocate room for SACK options if needed. */
17757 	stropt->so_flags |= SO_WROFF;
17758 	if (tcp->tcp_fused) {
17759 		ASSERT(tcp->tcp_loopback);
17760 		ASSERT(tcp->tcp_loopback_peer != NULL);
17761 		/*
17762 		 * For fused tcp loopback, set the stream head's write
17763 		 * offset value to zero since we won't be needing any room
17764 		 * for TCP/IP headers.  This would also improve performance
17765 		 * since it would reduce the amount of work done by kmem.
17766 		 * Non-fused tcp loopback case is handled separately below.
17767 		 */
17768 		stropt->so_wroff = 0;
17769 		/*
17770 		 * Record the stream head's high water mark for this endpoint;
17771 		 * this is used for flow-control purposes in tcp_fuse_output().
17772 		 */
17773 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17774 		/*
17775 		 * Update the peer's transmit parameters according to
17776 		 * our recently calculated high water mark value.
17777 		 */
17778 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17779 	} else if (tcp->tcp_snd_sack_ok) {
17780 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17781 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17782 	} else {
17783 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17784 		    tcp_wroff_xtra);
17785 	}
17786 
17787 	/*
17788 	 * If this is endpoint is handling SSL, then reserve extra
17789 	 * offset and space at the end.
17790 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17791 	 * overriding the previous setting. The extra cost of signing and
17792 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17793 	 * instead of a single contiguous one by the stream head
17794 	 * largely outweighs the statistical reduction of ACKs, when
17795 	 * applicable. The peer will also save on decyption and verification
17796 	 * costs.
17797 	 */
17798 	if (tcp->tcp_kssl_ctx != NULL) {
17799 		stropt->so_wroff += SSL3_WROFFSET;
17800 
17801 		stropt->so_flags |= SO_TAIL;
17802 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17803 
17804 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17805 	}
17806 
17807 	/* Send the options up */
17808 	putnext(q, stropt_mp);
17809 
17810 	/*
17811 	 * Pass up any data and/or a fin that has been received.
17812 	 *
17813 	 * Adjust receive window in case it had decreased
17814 	 * (because there is data <=> tcp_rcv_list != NULL)
17815 	 * while the connection was detached. Note that
17816 	 * in case the eager was flow-controlled, w/o this
17817 	 * code, the rwnd may never open up again!
17818 	 */
17819 	if (tcp->tcp_rcv_list != NULL) {
17820 		/* We drain directly in case of fused tcp loopback */
17821 		if (!tcp->tcp_fused && canputnext(q)) {
17822 			tcp->tcp_rwnd = q->q_hiwat;
17823 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17824 			    << tcp->tcp_rcv_ws;
17825 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17826 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17827 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17828 				tcp_xmit_ctl(NULL,
17829 				    tcp, (tcp->tcp_swnd == 0) ?
17830 				    tcp->tcp_suna : tcp->tcp_snxt,
17831 				    tcp->tcp_rnxt, TH_ACK);
17832 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17833 			}
17834 
17835 		}
17836 		(void) tcp_rcv_drain(q, tcp);
17837 
17838 		/*
17839 		 * For fused tcp loopback, back-enable peer endpoint
17840 		 * if it's currently flow-controlled.
17841 		 */
17842 		if (tcp->tcp_fused &&
17843 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17844 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17845 
17846 			ASSERT(peer_tcp != NULL);
17847 			ASSERT(peer_tcp->tcp_fused);
17848 
17849 			tcp_clrqfull(peer_tcp);
17850 			TCP_STAT(tcp_fusion_backenabled);
17851 		}
17852 	}
17853 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17854 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17855 		mp = mi_tpi_ordrel_ind();
17856 		if (mp) {
17857 			tcp->tcp_ordrel_done = B_TRUE;
17858 			putnext(q, mp);
17859 			if (tcp->tcp_deferred_clean_death) {
17860 				/*
17861 				 * tcp_clean_death was deferred
17862 				 * for T_ORDREL_IND - do it now
17863 				 */
17864 				(void) tcp_clean_death(tcp,
17865 				    tcp->tcp_client_errno, 21);
17866 				tcp->tcp_deferred_clean_death = B_FALSE;
17867 			}
17868 		} else {
17869 			/*
17870 			 * Run the orderly release in the
17871 			 * service routine.
17872 			 */
17873 			qenable(q);
17874 		}
17875 	}
17876 	if (tcp->tcp_hard_binding) {
17877 		tcp->tcp_hard_binding = B_FALSE;
17878 		tcp->tcp_hard_bound = B_TRUE;
17879 	}
17880 
17881 	tcp->tcp_detached = B_FALSE;
17882 
17883 	/* We can enable synchronous streams now */
17884 	if (tcp->tcp_fused) {
17885 		tcp_fuse_syncstr_enable_pair(tcp);
17886 	}
17887 
17888 	if (tcp->tcp_ka_enabled) {
17889 		tcp->tcp_ka_last_intrvl = 0;
17890 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17891 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17892 	}
17893 
17894 	/*
17895 	 * At this point, eager is fully established and will
17896 	 * have the following references -
17897 	 *
17898 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17899 	 * 1 reference for the squeue which will be dropped by the squeue as
17900 	 *	soon as this function returns.
17901 	 * There will be 1 additonal reference for being in classifier
17902 	 *	hash list provided something bad hasn't happened.
17903 	 */
17904 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17905 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17906 }
17907 
17908 /*
17909  * The function called through squeue to get behind listener's perimeter to
17910  * send a deffered conn_ind.
17911  */
17912 /* ARGSUSED */
17913 void
17914 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17915 {
17916 	conn_t	*connp = (conn_t *)arg;
17917 	tcp_t *listener = connp->conn_tcp;
17918 
17919 	if (listener->tcp_state == TCPS_CLOSED ||
17920 	    TCP_IS_DETACHED(listener)) {
17921 		/*
17922 		 * If listener has closed, it would have caused a
17923 		 * a cleanup/blowoff to happen for the eager.
17924 		 */
17925 		tcp_t *tcp;
17926 		struct T_conn_ind	*conn_ind;
17927 
17928 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17929 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17930 		    conn_ind->OPT_length);
17931 		/*
17932 		 * We need to drop the ref on eager that was put
17933 		 * tcp_rput_data() before trying to send the conn_ind
17934 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17935 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17936 		 * listener is closed so we drop the ref.
17937 		 */
17938 		CONN_DEC_REF(tcp->tcp_connp);
17939 		freemsg(mp);
17940 		return;
17941 	}
17942 	putnext(listener->tcp_rq, mp);
17943 }
17944 
17945 
17946 /*
17947  * This is the STREAMS entry point for T_CONN_RES coming down on
17948  * Acceptor STREAM when  sockfs listener does accept processing.
17949  * Read the block comment on top pf tcp_conn_request().
17950  */
17951 void
17952 tcp_wput_accept(queue_t *q, mblk_t *mp)
17953 {
17954 	queue_t *rq = RD(q);
17955 	struct T_conn_res *conn_res;
17956 	tcp_t *eager;
17957 	tcp_t *listener;
17958 	struct T_ok_ack *ok;
17959 	t_scalar_t PRIM_type;
17960 	mblk_t *opt_mp;
17961 	conn_t *econnp;
17962 
17963 	ASSERT(DB_TYPE(mp) == M_PROTO);
17964 
17965 	conn_res = (struct T_conn_res *)mp->b_rptr;
17966 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17967 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17968 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17969 		if (mp != NULL)
17970 			putnext(rq, mp);
17971 		return;
17972 	}
17973 	switch (conn_res->PRIM_type) {
17974 	case O_T_CONN_RES:
17975 	case T_CONN_RES:
17976 		/*
17977 		 * We pass up an err ack if allocb fails. This will
17978 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17979 		 * tcp_eager_blowoff to be called. sockfs will then call
17980 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17981 		 * we need to do the allocb up here because we have to
17982 		 * make sure rq->q_qinfo->qi_qclose still points to the
17983 		 * correct function (tcpclose_accept) in case allocb
17984 		 * fails.
17985 		 */
17986 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17987 		if (opt_mp == NULL) {
17988 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17989 			if (mp != NULL)
17990 				putnext(rq, mp);
17991 			return;
17992 		}
17993 
17994 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17995 		    &eager, conn_res->OPT_length);
17996 		PRIM_type = conn_res->PRIM_type;
17997 		mp->b_datap->db_type = M_PCPROTO;
17998 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17999 		ok = (struct T_ok_ack *)mp->b_rptr;
18000 		ok->PRIM_type = T_OK_ACK;
18001 		ok->CORRECT_prim = PRIM_type;
18002 		econnp = eager->tcp_connp;
18003 		econnp->conn_dev = (dev_t)q->q_ptr;
18004 		eager->tcp_rq = rq;
18005 		eager->tcp_wq = q;
18006 		rq->q_ptr = econnp;
18007 		rq->q_qinfo = &tcp_rinit;
18008 		q->q_ptr = econnp;
18009 		q->q_qinfo = &tcp_winit;
18010 		listener = eager->tcp_listener;
18011 		eager->tcp_issocket = B_TRUE;
18012 
18013 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18014 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18015 
18016 		/* Put the ref for IP */
18017 		CONN_INC_REF(econnp);
18018 
18019 		/*
18020 		 * We should have minimum of 3 references on the conn
18021 		 * at this point. One each for TCP and IP and one for
18022 		 * the T_conn_ind that was sent up when the 3-way handshake
18023 		 * completed. In the normal case we would also have another
18024 		 * reference (making a total of 4) for the conn being in the
18025 		 * classifier hash list. However the eager could have received
18026 		 * an RST subsequently and tcp_closei_local could have removed
18027 		 * the eager from the classifier hash list, hence we can't
18028 		 * assert that reference.
18029 		 */
18030 		ASSERT(econnp->conn_ref >= 3);
18031 
18032 		/*
18033 		 * Send the new local address also up to sockfs. There
18034 		 * should already be enough space in the mp that came
18035 		 * down from soaccept().
18036 		 */
18037 		if (eager->tcp_family == AF_INET) {
18038 			sin_t *sin;
18039 
18040 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18041 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18042 			sin = (sin_t *)mp->b_wptr;
18043 			mp->b_wptr += sizeof (sin_t);
18044 			sin->sin_family = AF_INET;
18045 			sin->sin_port = eager->tcp_lport;
18046 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18047 		} else {
18048 			sin6_t *sin6;
18049 
18050 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18051 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18052 			sin6 = (sin6_t *)mp->b_wptr;
18053 			mp->b_wptr += sizeof (sin6_t);
18054 			sin6->sin6_family = AF_INET6;
18055 			sin6->sin6_port = eager->tcp_lport;
18056 			if (eager->tcp_ipversion == IPV4_VERSION) {
18057 				sin6->sin6_flowinfo = 0;
18058 				IN6_IPADDR_TO_V4MAPPED(
18059 					eager->tcp_ipha->ipha_src,
18060 					    &sin6->sin6_addr);
18061 			} else {
18062 				ASSERT(eager->tcp_ip6h != NULL);
18063 				sin6->sin6_flowinfo =
18064 				    eager->tcp_ip6h->ip6_vcf &
18065 				    ~IPV6_VERS_AND_FLOW_MASK;
18066 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18067 			}
18068 			sin6->sin6_scope_id = 0;
18069 			sin6->__sin6_src_id = 0;
18070 		}
18071 
18072 		putnext(rq, mp);
18073 
18074 		opt_mp->b_datap->db_type = M_SETOPTS;
18075 		opt_mp->b_wptr += sizeof (struct stroptions);
18076 
18077 		/*
18078 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18079 		 * from listener to acceptor. The message is chained on the
18080 		 * bind_mp which tcp_rput_other will send down to IP.
18081 		 */
18082 		if (listener->tcp_bound_if != 0) {
18083 			/* allocate optmgmt req */
18084 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18085 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18086 			    sizeof (int));
18087 			if (mp != NULL)
18088 				linkb(opt_mp, mp);
18089 		}
18090 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18091 			uint_t on = 1;
18092 
18093 			/* allocate optmgmt req */
18094 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18095 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18096 			if (mp != NULL)
18097 				linkb(opt_mp, mp);
18098 		}
18099 
18100 
18101 		mutex_enter(&listener->tcp_eager_lock);
18102 
18103 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18104 
18105 			tcp_t *tail;
18106 			tcp_t *tcp;
18107 			mblk_t *mp1;
18108 
18109 			tcp = listener->tcp_eager_prev_q0;
18110 			/*
18111 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18112 			 * deferred T_conn_ind queue. We need to get to the head
18113 			 * of the queue in order to send up T_conn_ind the same
18114 			 * order as how the 3WHS is completed.
18115 			 */
18116 			while (tcp != listener) {
18117 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18118 				    !tcp->tcp_kssl_pending)
18119 					break;
18120 				else
18121 					tcp = tcp->tcp_eager_prev_q0;
18122 			}
18123 			/* None of the pending eagers can be sent up now */
18124 			if (tcp == listener)
18125 				goto no_more_eagers;
18126 
18127 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18128 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18129 			/* Move from q0 to q */
18130 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18131 			listener->tcp_conn_req_cnt_q0--;
18132 			listener->tcp_conn_req_cnt_q++;
18133 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18134 			    tcp->tcp_eager_prev_q0;
18135 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18136 			    tcp->tcp_eager_next_q0;
18137 			tcp->tcp_eager_prev_q0 = NULL;
18138 			tcp->tcp_eager_next_q0 = NULL;
18139 			tcp->tcp_conn_def_q0 = B_FALSE;
18140 
18141 			/* Make sure the tcp isn't in the list of droppables */
18142 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18143 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18144 
18145 			/*
18146 			 * Insert at end of the queue because sockfs sends
18147 			 * down T_CONN_RES in chronological order. Leaving
18148 			 * the older conn indications at front of the queue
18149 			 * helps reducing search time.
18150 			 */
18151 			tail = listener->tcp_eager_last_q;
18152 			if (tail != NULL) {
18153 				tail->tcp_eager_next_q = tcp;
18154 			} else {
18155 				listener->tcp_eager_next_q = tcp;
18156 			}
18157 			listener->tcp_eager_last_q = tcp;
18158 			tcp->tcp_eager_next_q = NULL;
18159 
18160 			/* Need to get inside the listener perimeter */
18161 			CONN_INC_REF(listener->tcp_connp);
18162 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18163 			    tcp_send_pending, listener->tcp_connp,
18164 			    SQTAG_TCP_SEND_PENDING);
18165 		}
18166 no_more_eagers:
18167 		tcp_eager_unlink(eager);
18168 		mutex_exit(&listener->tcp_eager_lock);
18169 
18170 		/*
18171 		 * At this point, the eager is detached from the listener
18172 		 * but we still have an extra refs on eager (apart from the
18173 		 * usual tcp references). The ref was placed in tcp_rput_data
18174 		 * before sending the conn_ind in tcp_send_conn_ind.
18175 		 * The ref will be dropped in tcp_accept_finish().
18176 		 */
18177 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18178 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18179 		return;
18180 	default:
18181 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18182 		if (mp != NULL)
18183 			putnext(rq, mp);
18184 		return;
18185 	}
18186 }
18187 
18188 void
18189 tcp_wput(queue_t *q, mblk_t *mp)
18190 {
18191 	conn_t	*connp = Q_TO_CONN(q);
18192 	tcp_t	*tcp;
18193 	void (*output_proc)();
18194 	t_scalar_t type;
18195 	uchar_t *rptr;
18196 	struct iocblk	*iocp;
18197 	uint32_t	msize;
18198 
18199 	ASSERT(connp->conn_ref >= 2);
18200 
18201 	switch (DB_TYPE(mp)) {
18202 	case M_DATA:
18203 		tcp = connp->conn_tcp;
18204 		ASSERT(tcp != NULL);
18205 
18206 		msize = msgdsize(mp);
18207 
18208 		mutex_enter(&connp->conn_lock);
18209 		CONN_INC_REF_LOCKED(connp);
18210 
18211 		tcp->tcp_squeue_bytes += msize;
18212 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18213 			mutex_exit(&connp->conn_lock);
18214 			tcp_setqfull(tcp);
18215 		} else
18216 			mutex_exit(&connp->conn_lock);
18217 
18218 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18219 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18220 		return;
18221 	case M_PROTO:
18222 	case M_PCPROTO:
18223 		/*
18224 		 * if it is a snmp message, don't get behind the squeue
18225 		 */
18226 		tcp = connp->conn_tcp;
18227 		rptr = mp->b_rptr;
18228 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18229 			type = ((union T_primitives *)rptr)->type;
18230 		} else {
18231 			if (tcp->tcp_debug) {
18232 				(void) strlog(TCP_MOD_ID, 0, 1,
18233 				    SL_ERROR|SL_TRACE,
18234 				    "tcp_wput_proto, dropping one...");
18235 			}
18236 			freemsg(mp);
18237 			return;
18238 		}
18239 		if (type == T_SVR4_OPTMGMT_REQ) {
18240 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18241 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18242 			    cr)) {
18243 				/*
18244 				 * This was a SNMP request
18245 				 */
18246 				return;
18247 			} else {
18248 				output_proc = tcp_wput_proto;
18249 			}
18250 		} else {
18251 			output_proc = tcp_wput_proto;
18252 		}
18253 		break;
18254 	case M_IOCTL:
18255 		/*
18256 		 * Most ioctls can be processed right away without going via
18257 		 * squeues - process them right here. Those that do require
18258 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18259 		 * are processed by tcp_wput_ioctl().
18260 		 */
18261 		iocp = (struct iocblk *)mp->b_rptr;
18262 		tcp = connp->conn_tcp;
18263 
18264 		switch (iocp->ioc_cmd) {
18265 		case TCP_IOC_ABORT_CONN:
18266 			tcp_ioctl_abort_conn(q, mp);
18267 			return;
18268 		case TI_GETPEERNAME:
18269 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18270 				iocp->ioc_error = ENOTCONN;
18271 				iocp->ioc_count = 0;
18272 				mp->b_datap->db_type = M_IOCACK;
18273 				qreply(q, mp);
18274 				return;
18275 			}
18276 			/* FALLTHRU */
18277 		case TI_GETMYNAME:
18278 			mi_copyin(q, mp, NULL,
18279 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18280 			return;
18281 		case ND_SET:
18282 			/* nd_getset does the necessary checks */
18283 		case ND_GET:
18284 			if (!nd_getset(q, tcp_g_nd, mp)) {
18285 				CALL_IP_WPUT(connp, q, mp);
18286 				return;
18287 			}
18288 			qreply(q, mp);
18289 			return;
18290 		case TCP_IOC_DEFAULT_Q:
18291 			/*
18292 			 * Wants to be the default wq. Check the credentials
18293 			 * first, the rest is executed via squeue.
18294 			 */
18295 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18296 				iocp->ioc_error = EPERM;
18297 				iocp->ioc_count = 0;
18298 				mp->b_datap->db_type = M_IOCACK;
18299 				qreply(q, mp);
18300 				return;
18301 			}
18302 			output_proc = tcp_wput_ioctl;
18303 			break;
18304 		default:
18305 			output_proc = tcp_wput_ioctl;
18306 			break;
18307 		}
18308 		break;
18309 	default:
18310 		output_proc = tcp_wput_nondata;
18311 		break;
18312 	}
18313 
18314 	CONN_INC_REF(connp);
18315 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18316 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18317 }
18318 
18319 /*
18320  * Initial STREAMS write side put() procedure for sockets. It tries to
18321  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18322  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18323  * are handled by tcp_wput() as usual.
18324  *
18325  * All further messages will also be handled by tcp_wput() because we cannot
18326  * be sure that the above short cut is safe later.
18327  */
18328 static void
18329 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18330 {
18331 	conn_t			*connp = Q_TO_CONN(wq);
18332 	tcp_t			*tcp = connp->conn_tcp;
18333 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18334 
18335 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18336 	wq->q_qinfo = &tcp_winit;
18337 
18338 	ASSERT(IPCL_IS_TCP(connp));
18339 	ASSERT(TCP_IS_SOCKET(tcp));
18340 
18341 	if (DB_TYPE(mp) == M_PCPROTO &&
18342 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18343 	    car->PRIM_type == T_CAPABILITY_REQ) {
18344 		tcp_capability_req(tcp, mp);
18345 		return;
18346 	}
18347 
18348 	tcp_wput(wq, mp);
18349 }
18350 
18351 static boolean_t
18352 tcp_zcopy_check(tcp_t *tcp)
18353 {
18354 	conn_t	*connp = tcp->tcp_connp;
18355 	ire_t	*ire;
18356 	boolean_t	zc_enabled = B_FALSE;
18357 
18358 	if (do_tcpzcopy == 2)
18359 		zc_enabled = B_TRUE;
18360 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18361 	    IPCL_IS_CONNECTED(connp) &&
18362 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18363 	    connp->conn_dontroute == 0 &&
18364 	    !connp->conn_nexthop_set &&
18365 	    connp->conn_xmit_if_ill == NULL &&
18366 	    connp->conn_nofailover_ill == NULL &&
18367 	    do_tcpzcopy == 1) {
18368 		/*
18369 		 * the checks above  closely resemble the fast path checks
18370 		 * in tcp_send_data().
18371 		 */
18372 		mutex_enter(&connp->conn_lock);
18373 		ire = connp->conn_ire_cache;
18374 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18375 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18376 			IRE_REFHOLD(ire);
18377 			if (ire->ire_stq != NULL) {
18378 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18379 
18380 				zc_enabled = ill && (ill->ill_capabilities &
18381 				    ILL_CAPAB_ZEROCOPY) &&
18382 				    (ill->ill_zerocopy_capab->
18383 				    ill_zerocopy_flags != 0);
18384 			}
18385 			IRE_REFRELE(ire);
18386 		}
18387 		mutex_exit(&connp->conn_lock);
18388 	}
18389 	tcp->tcp_snd_zcopy_on = zc_enabled;
18390 	if (!TCP_IS_DETACHED(tcp)) {
18391 		if (zc_enabled) {
18392 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18393 			TCP_STAT(tcp_zcopy_on);
18394 		} else {
18395 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18396 			TCP_STAT(tcp_zcopy_off);
18397 		}
18398 	}
18399 	return (zc_enabled);
18400 }
18401 
18402 static mblk_t *
18403 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18404 {
18405 	if (do_tcpzcopy == 2)
18406 		return (bp);
18407 	else if (tcp->tcp_snd_zcopy_on) {
18408 		tcp->tcp_snd_zcopy_on = B_FALSE;
18409 		if (!TCP_IS_DETACHED(tcp)) {
18410 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18411 			TCP_STAT(tcp_zcopy_disable);
18412 		}
18413 	}
18414 	return (tcp_zcopy_backoff(tcp, bp, 0));
18415 }
18416 
18417 /*
18418  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18419  * the original desballoca'ed segmapped mblk.
18420  */
18421 static mblk_t *
18422 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18423 {
18424 	mblk_t *head, *tail, *nbp;
18425 	if (IS_VMLOANED_MBLK(bp)) {
18426 		TCP_STAT(tcp_zcopy_backoff);
18427 		if ((head = copyb(bp)) == NULL) {
18428 			/* fail to backoff; leave it for the next backoff */
18429 			tcp->tcp_xmit_zc_clean = B_FALSE;
18430 			return (bp);
18431 		}
18432 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18433 			if (fix_xmitlist)
18434 				tcp_zcopy_notify(tcp);
18435 			else
18436 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18437 		}
18438 		nbp = bp->b_cont;
18439 		if (fix_xmitlist) {
18440 			head->b_prev = bp->b_prev;
18441 			head->b_next = bp->b_next;
18442 			if (tcp->tcp_xmit_tail == bp)
18443 				tcp->tcp_xmit_tail = head;
18444 		}
18445 		bp->b_next = NULL;
18446 		bp->b_prev = NULL;
18447 		freeb(bp);
18448 	} else {
18449 		head = bp;
18450 		nbp = bp->b_cont;
18451 	}
18452 	tail = head;
18453 	while (nbp) {
18454 		if (IS_VMLOANED_MBLK(nbp)) {
18455 			TCP_STAT(tcp_zcopy_backoff);
18456 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18457 				tcp->tcp_xmit_zc_clean = B_FALSE;
18458 				tail->b_cont = nbp;
18459 				return (head);
18460 			}
18461 			tail = tail->b_cont;
18462 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18463 				if (fix_xmitlist)
18464 					tcp_zcopy_notify(tcp);
18465 				else
18466 					tail->b_datap->db_struioflag |=
18467 					    STRUIO_ZCNOTIFY;
18468 			}
18469 			bp = nbp;
18470 			nbp = nbp->b_cont;
18471 			if (fix_xmitlist) {
18472 				tail->b_prev = bp->b_prev;
18473 				tail->b_next = bp->b_next;
18474 				if (tcp->tcp_xmit_tail == bp)
18475 					tcp->tcp_xmit_tail = tail;
18476 			}
18477 			bp->b_next = NULL;
18478 			bp->b_prev = NULL;
18479 			freeb(bp);
18480 		} else {
18481 			tail->b_cont = nbp;
18482 			tail = nbp;
18483 			nbp = nbp->b_cont;
18484 		}
18485 	}
18486 	if (fix_xmitlist) {
18487 		tcp->tcp_xmit_last = tail;
18488 		tcp->tcp_xmit_zc_clean = B_TRUE;
18489 	}
18490 	return (head);
18491 }
18492 
18493 static void
18494 tcp_zcopy_notify(tcp_t *tcp)
18495 {
18496 	struct stdata	*stp;
18497 
18498 	if (tcp->tcp_detached)
18499 		return;
18500 	stp = STREAM(tcp->tcp_rq);
18501 	mutex_enter(&stp->sd_lock);
18502 	stp->sd_flag |= STZCNOTIFY;
18503 	cv_broadcast(&stp->sd_zcopy_wait);
18504 	mutex_exit(&stp->sd_lock);
18505 }
18506 
18507 static boolean_t
18508 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18509 {
18510 	ire_t *ire;
18511 	conn_t *connp = tcp->tcp_connp;
18512 
18513 
18514 	mutex_enter(&connp->conn_lock);
18515 	ire = connp->conn_ire_cache;
18516 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18517 
18518 	if ((ire != NULL) &&
18519 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18520 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18521 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18522 		IRE_REFHOLD(ire);
18523 		mutex_exit(&connp->conn_lock);
18524 	} else {
18525 		boolean_t cached = B_FALSE;
18526 		ts_label_t *tsl;
18527 
18528 		/* force a recheck later on */
18529 		tcp->tcp_ire_ill_check_done = B_FALSE;
18530 
18531 		TCP_DBGSTAT(tcp_ire_null1);
18532 		connp->conn_ire_cache = NULL;
18533 		mutex_exit(&connp->conn_lock);
18534 
18535 		if (ire != NULL)
18536 			IRE_REFRELE_NOTR(ire);
18537 
18538 		tsl = crgetlabel(CONN_CRED(connp));
18539 		ire = (dst ? ire_cache_lookup(*dst, connp->conn_zoneid, tsl) :
18540 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18541 		    connp->conn_zoneid, tsl));
18542 
18543 		if (ire == NULL) {
18544 			TCP_STAT(tcp_ire_null);
18545 			return (B_FALSE);
18546 		}
18547 
18548 		IRE_REFHOLD_NOTR(ire);
18549 		/*
18550 		 * Since we are inside the squeue, there cannot be another
18551 		 * thread in TCP trying to set the conn_ire_cache now.  The
18552 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18553 		 * unplumb thread has not yet started cleaning up the conns.
18554 		 * Hence we don't need to grab the conn lock.
18555 		 */
18556 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18557 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18558 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18559 				connp->conn_ire_cache = ire;
18560 				cached = B_TRUE;
18561 			}
18562 			rw_exit(&ire->ire_bucket->irb_lock);
18563 		}
18564 
18565 		/*
18566 		 * We can continue to use the ire but since it was
18567 		 * not cached, we should drop the extra reference.
18568 		 */
18569 		if (!cached)
18570 			IRE_REFRELE_NOTR(ire);
18571 
18572 		/*
18573 		 * Rampart note: no need to select a new label here, since
18574 		 * labels are not allowed to change during the life of a TCP
18575 		 * connection.
18576 		 */
18577 	}
18578 
18579 	*irep = ire;
18580 
18581 	return (B_TRUE);
18582 }
18583 
18584 /*
18585  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18586  *
18587  * 0 = success;
18588  * 1 = failed to find ire and ill.
18589  */
18590 static boolean_t
18591 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18592 {
18593 	ipha_t		*ipha;
18594 	ipaddr_t	dst;
18595 	ire_t		*ire;
18596 	ill_t		*ill;
18597 	conn_t		*connp = tcp->tcp_connp;
18598 	mblk_t		*ire_fp_mp;
18599 
18600 	if (mp != NULL)
18601 		ipha = (ipha_t *)mp->b_rptr;
18602 	else
18603 		ipha = tcp->tcp_ipha;
18604 	dst = ipha->ipha_dst;
18605 
18606 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18607 		return (B_FALSE);
18608 
18609 	if ((ire->ire_flags & RTF_MULTIRT) ||
18610 	    (ire->ire_stq == NULL) ||
18611 	    (ire->ire_nce == NULL) ||
18612 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18613 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18614 		MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18615 		TCP_STAT(tcp_ip_ire_send);
18616 		IRE_REFRELE(ire);
18617 		return (B_FALSE);
18618 	}
18619 
18620 	ill = ire_to_ill(ire);
18621 	if (connp->conn_outgoing_ill != NULL) {
18622 		ill_t *conn_outgoing_ill = NULL;
18623 		/*
18624 		 * Choose a good ill in the group to send the packets on.
18625 		 */
18626 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18627 		ill = ire_to_ill(ire);
18628 	}
18629 	ASSERT(ill != NULL);
18630 
18631 	if (!tcp->tcp_ire_ill_check_done) {
18632 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18633 		tcp->tcp_ire_ill_check_done = B_TRUE;
18634 	}
18635 
18636 	*irep = ire;
18637 	*illp = ill;
18638 
18639 	return (B_TRUE);
18640 }
18641 
18642 static void
18643 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18644 {
18645 	ipha_t		*ipha;
18646 	ipaddr_t	src;
18647 	ipaddr_t	dst;
18648 	uint32_t	cksum;
18649 	ire_t		*ire;
18650 	uint16_t	*up;
18651 	ill_t		*ill;
18652 	conn_t		*connp = tcp->tcp_connp;
18653 	uint32_t	hcksum_txflags = 0;
18654 	mblk_t		*ire_fp_mp;
18655 	uint_t		ire_fp_mp_len;
18656 
18657 	ASSERT(DB_TYPE(mp) == M_DATA);
18658 
18659 	if (DB_CRED(mp) == NULL)
18660 		mblk_setcred(mp, CONN_CRED(connp));
18661 
18662 	ipha = (ipha_t *)mp->b_rptr;
18663 	src = ipha->ipha_src;
18664 	dst = ipha->ipha_dst;
18665 
18666 	/*
18667 	 * Drop off fast path for IPv6 and also if options are present or
18668 	 * we need to resolve a TS label.
18669 	 */
18670 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18671 	    !IPCL_IS_CONNECTED(connp) ||
18672 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18673 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18674 	    !connp->conn_ulp_labeled ||
18675 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18676 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18677 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18678 		if (tcp->tcp_snd_zcopy_aware)
18679 			mp = tcp_zcopy_disable(tcp, mp);
18680 		TCP_STAT(tcp_ip_send);
18681 		CALL_IP_WPUT(connp, q, mp);
18682 		return;
18683 	}
18684 
18685 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18686 		if (tcp->tcp_snd_zcopy_aware)
18687 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18688 		CALL_IP_WPUT(connp, q, mp);
18689 		return;
18690 	}
18691 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18692 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18693 
18694 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18695 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18696 #ifndef _BIG_ENDIAN
18697 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18698 #endif
18699 
18700 	/*
18701 	 * Check to see if we need to re-enable LSO/MDT for this connection
18702 	 * because it was previously disabled due to changes in the ill;
18703 	 * note that by doing it here, this re-enabling only applies when
18704 	 * the packet is not dispatched through CALL_IP_WPUT().
18705 	 *
18706 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18707 	 * case, since that's how we ended up here.  For IPv6, we do the
18708 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18709 	 */
18710 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18711 		/*
18712 		 * Restore LSO for this connection, so that next time around
18713 		 * it is eligible to go through tcp_lsosend() path again.
18714 		 */
18715 		TCP_STAT(tcp_lso_enabled);
18716 		tcp->tcp_lso = B_TRUE;
18717 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18718 		    "interface %s\n", (void *)connp, ill->ill_name));
18719 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18720 		/*
18721 		 * Restore MDT for this connection, so that next time around
18722 		 * it is eligible to go through tcp_multisend() path again.
18723 		 */
18724 		TCP_STAT(tcp_mdt_conn_resumed1);
18725 		tcp->tcp_mdt = B_TRUE;
18726 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18727 		    "interface %s\n", (void *)connp, ill->ill_name));
18728 	}
18729 
18730 	if (tcp->tcp_snd_zcopy_aware) {
18731 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18732 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18733 			mp = tcp_zcopy_disable(tcp, mp);
18734 		/*
18735 		 * we shouldn't need to reset ipha as the mp containing
18736 		 * ipha should never be a zero-copy mp.
18737 		 */
18738 	}
18739 
18740 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18741 		ASSERT(ill->ill_hcksum_capab != NULL);
18742 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18743 	}
18744 
18745 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18746 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18747 
18748 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18749 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18750 
18751 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18752 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18753 
18754 	/* Software checksum? */
18755 	if (DB_CKSUMFLAGS(mp) == 0) {
18756 		TCP_STAT(tcp_out_sw_cksum);
18757 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18758 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18759 	}
18760 
18761 	ipha->ipha_fragment_offset_and_flags |=
18762 	    (uint32_t)htons(ire->ire_frag_flag);
18763 
18764 	/* Calculate IP header checksum if hardware isn't capable */
18765 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18766 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18767 		    ((uint16_t *)ipha)[4]);
18768 	}
18769 
18770 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18771 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18772 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18773 
18774 	UPDATE_OB_PKT_COUNT(ire);
18775 	ire->ire_last_used_time = lbolt;
18776 	BUMP_MIB(&ip_mib, ipOutRequests);
18777 
18778 	if (ILL_DLS_CAPABLE(ill)) {
18779 		/*
18780 		 * Send the packet directly to DLD, where it may be queued
18781 		 * depending on the availability of transmit resources at
18782 		 * the media layer.
18783 		 */
18784 		IP_DLS_ILL_TX(ill, ipha, mp);
18785 	} else {
18786 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
18787 		DTRACE_PROBE4(ip4__physical__out__start,
18788 		    ill_t *, NULL, ill_t *, out_ill,
18789 		    ipha_t *, ipha, mblk_t *, mp);
18790 		FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
18791 		    NULL, out_ill, ipha, mp, mp);
18792 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18793 		if (mp != NULL)
18794 			putnext(ire->ire_stq, mp);
18795 	}
18796 	IRE_REFRELE(ire);
18797 }
18798 
18799 /*
18800  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18801  * if the receiver shrinks the window, i.e. moves the right window to the
18802  * left, the we should not send new data, but should retransmit normally the
18803  * old unacked data between suna and suna + swnd. We might has sent data
18804  * that is now outside the new window, pretend that we didn't send  it.
18805  */
18806 static void
18807 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18808 {
18809 	uint32_t	snxt = tcp->tcp_snxt;
18810 	mblk_t		*xmit_tail;
18811 	int32_t		offset;
18812 
18813 	ASSERT(shrunk_count > 0);
18814 
18815 	/* Pretend we didn't send the data outside the window */
18816 	snxt -= shrunk_count;
18817 
18818 	/* Get the mblk and the offset in it per the shrunk window */
18819 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18820 
18821 	ASSERT(xmit_tail != NULL);
18822 
18823 	/* Reset all the values per the now shrunk window */
18824 	tcp->tcp_snxt = snxt;
18825 	tcp->tcp_xmit_tail = xmit_tail;
18826 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18827 	    offset;
18828 	tcp->tcp_unsent += shrunk_count;
18829 
18830 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18831 		/*
18832 		 * Make sure the timer is running so that we will probe a zero
18833 		 * window.
18834 		 */
18835 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18836 }
18837 
18838 
18839 /*
18840  * The TCP normal data output path.
18841  * NOTE: the logic of the fast path is duplicated from this function.
18842  */
18843 static void
18844 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18845 {
18846 	int		len;
18847 	mblk_t		*local_time;
18848 	mblk_t		*mp1;
18849 	uint32_t	snxt;
18850 	int		tail_unsent;
18851 	int		tcpstate;
18852 	int		usable = 0;
18853 	mblk_t		*xmit_tail;
18854 	queue_t		*q = tcp->tcp_wq;
18855 	int32_t		mss;
18856 	int32_t		num_sack_blk = 0;
18857 	int32_t		tcp_hdr_len;
18858 	int32_t		tcp_tcp_hdr_len;
18859 	int		mdt_thres;
18860 	int		rc;
18861 
18862 	tcpstate = tcp->tcp_state;
18863 	if (mp == NULL) {
18864 		/*
18865 		 * tcp_wput_data() with NULL mp should only be called when
18866 		 * there is unsent data.
18867 		 */
18868 		ASSERT(tcp->tcp_unsent > 0);
18869 		/* Really tacky... but we need this for detached closes. */
18870 		len = tcp->tcp_unsent;
18871 		goto data_null;
18872 	}
18873 
18874 #if CCS_STATS
18875 	wrw_stats.tot.count++;
18876 	wrw_stats.tot.bytes += msgdsize(mp);
18877 #endif
18878 	ASSERT(mp->b_datap->db_type == M_DATA);
18879 	/*
18880 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18881 	 * or before a connection attempt has begun.
18882 	 */
18883 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18884 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18885 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18886 #ifdef DEBUG
18887 			cmn_err(CE_WARN,
18888 			    "tcp_wput_data: data after ordrel, %s",
18889 			    tcp_display(tcp, NULL,
18890 			    DISP_ADDR_AND_PORT));
18891 #else
18892 			if (tcp->tcp_debug) {
18893 				(void) strlog(TCP_MOD_ID, 0, 1,
18894 				    SL_TRACE|SL_ERROR,
18895 				    "tcp_wput_data: data after ordrel, %s\n",
18896 				    tcp_display(tcp, NULL,
18897 				    DISP_ADDR_AND_PORT));
18898 			}
18899 #endif /* DEBUG */
18900 		}
18901 		if (tcp->tcp_snd_zcopy_aware &&
18902 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18903 			tcp_zcopy_notify(tcp);
18904 		freemsg(mp);
18905 		if (tcp->tcp_flow_stopped &&
18906 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18907 			tcp_clrqfull(tcp);
18908 		}
18909 		return;
18910 	}
18911 
18912 	/* Strip empties */
18913 	for (;;) {
18914 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18915 		    (uintptr_t)INT_MAX);
18916 		len = (int)(mp->b_wptr - mp->b_rptr);
18917 		if (len > 0)
18918 			break;
18919 		mp1 = mp;
18920 		mp = mp->b_cont;
18921 		freeb(mp1);
18922 		if (!mp) {
18923 			return;
18924 		}
18925 	}
18926 
18927 	/* If we are the first on the list ... */
18928 	if (tcp->tcp_xmit_head == NULL) {
18929 		tcp->tcp_xmit_head = mp;
18930 		tcp->tcp_xmit_tail = mp;
18931 		tcp->tcp_xmit_tail_unsent = len;
18932 	} else {
18933 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18934 		struct datab *dp;
18935 
18936 		mp1 = tcp->tcp_xmit_last;
18937 		if (len < tcp_tx_pull_len &&
18938 		    (dp = mp1->b_datap)->db_ref == 1 &&
18939 		    dp->db_lim - mp1->b_wptr >= len) {
18940 			ASSERT(len > 0);
18941 			ASSERT(!mp1->b_cont);
18942 			if (len == 1) {
18943 				*mp1->b_wptr++ = *mp->b_rptr;
18944 			} else {
18945 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18946 				mp1->b_wptr += len;
18947 			}
18948 			if (mp1 == tcp->tcp_xmit_tail)
18949 				tcp->tcp_xmit_tail_unsent += len;
18950 			mp1->b_cont = mp->b_cont;
18951 			if (tcp->tcp_snd_zcopy_aware &&
18952 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18953 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18954 			freeb(mp);
18955 			mp = mp1;
18956 		} else {
18957 			tcp->tcp_xmit_last->b_cont = mp;
18958 		}
18959 		len += tcp->tcp_unsent;
18960 	}
18961 
18962 	/* Tack on however many more positive length mblks we have */
18963 	if ((mp1 = mp->b_cont) != NULL) {
18964 		do {
18965 			int tlen;
18966 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18967 			    (uintptr_t)INT_MAX);
18968 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18969 			if (tlen <= 0) {
18970 				mp->b_cont = mp1->b_cont;
18971 				freeb(mp1);
18972 			} else {
18973 				len += tlen;
18974 				mp = mp1;
18975 			}
18976 		} while ((mp1 = mp->b_cont) != NULL);
18977 	}
18978 	tcp->tcp_xmit_last = mp;
18979 	tcp->tcp_unsent = len;
18980 
18981 	if (urgent)
18982 		usable = 1;
18983 
18984 data_null:
18985 	snxt = tcp->tcp_snxt;
18986 	xmit_tail = tcp->tcp_xmit_tail;
18987 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18988 
18989 	/*
18990 	 * Note that tcp_mss has been adjusted to take into account the
18991 	 * timestamp option if applicable.  Because SACK options do not
18992 	 * appear in every TCP segments and they are of variable lengths,
18993 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18994 	 * the actual segment length when we need to send a segment which
18995 	 * includes SACK options.
18996 	 */
18997 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18998 		int32_t	opt_len;
18999 
19000 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19001 		    tcp->tcp_num_sack_blk);
19002 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19003 		    2 + TCPOPT_HEADER_LEN;
19004 		mss = tcp->tcp_mss - opt_len;
19005 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19006 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19007 	} else {
19008 		mss = tcp->tcp_mss;
19009 		tcp_hdr_len = tcp->tcp_hdr_len;
19010 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19011 	}
19012 
19013 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19014 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19015 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
19016 	}
19017 	if (tcpstate == TCPS_SYN_RCVD) {
19018 		/*
19019 		 * The three-way connection establishment handshake is not
19020 		 * complete yet. We want to queue the data for transmission
19021 		 * after entering ESTABLISHED state (RFC793). A jump to
19022 		 * "done" label effectively leaves data on the queue.
19023 		 */
19024 		goto done;
19025 	} else {
19026 		int usable_r;
19027 
19028 		/*
19029 		 * In the special case when cwnd is zero, which can only
19030 		 * happen if the connection is ECN capable, return now.
19031 		 * New segments is sent using tcp_timer().  The timer
19032 		 * is set in tcp_rput_data().
19033 		 */
19034 		if (tcp->tcp_cwnd == 0) {
19035 			/*
19036 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19037 			 * finished.
19038 			 */
19039 			ASSERT(tcp->tcp_ecn_ok ||
19040 			    tcp->tcp_state < TCPS_ESTABLISHED);
19041 			return;
19042 		}
19043 
19044 		/* NOTE: trouble if xmitting while SYN not acked? */
19045 		usable_r = snxt - tcp->tcp_suna;
19046 		usable_r = tcp->tcp_swnd - usable_r;
19047 
19048 		/*
19049 		 * Check if the receiver has shrunk the window.  If
19050 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19051 		 * cannot be set as there is unsent data, so FIN cannot
19052 		 * be sent out.  Otherwise, we need to take into account
19053 		 * of FIN as it consumes an "invisible" sequence number.
19054 		 */
19055 		ASSERT(tcp->tcp_fin_sent == 0);
19056 		if (usable_r < 0) {
19057 			/*
19058 			 * The receiver has shrunk the window and we have sent
19059 			 * -usable_r date beyond the window, re-adjust.
19060 			 *
19061 			 * If TCP window scaling is enabled, there can be
19062 			 * round down error as the advertised receive window
19063 			 * is actually right shifted n bits.  This means that
19064 			 * the lower n bits info is wiped out.  It will look
19065 			 * like the window is shrunk.  Do a check here to
19066 			 * see if the shrunk amount is actually within the
19067 			 * error in window calculation.  If it is, just
19068 			 * return.  Note that this check is inside the
19069 			 * shrunk window check.  This makes sure that even
19070 			 * though tcp_process_shrunk_swnd() is not called,
19071 			 * we will stop further processing.
19072 			 */
19073 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19074 				tcp_process_shrunk_swnd(tcp, -usable_r);
19075 			}
19076 			return;
19077 		}
19078 
19079 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19080 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19081 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19082 
19083 		/* usable = MIN(usable, unsent) */
19084 		if (usable_r > len)
19085 			usable_r = len;
19086 
19087 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19088 		if (usable_r > 0) {
19089 			usable = usable_r;
19090 		} else {
19091 			/* Bypass all other unnecessary processing. */
19092 			goto done;
19093 		}
19094 	}
19095 
19096 	local_time = (mblk_t *)lbolt;
19097 
19098 	/*
19099 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19100 	 * BSD.  This is more in line with the true intent of Nagle.
19101 	 *
19102 	 * The conditions are:
19103 	 * 1. The amount of unsent data (or amount of data which can be
19104 	 *    sent, whichever is smaller) is less than Nagle limit.
19105 	 * 2. The last sent size is also less than Nagle limit.
19106 	 * 3. There is unack'ed data.
19107 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19108 	 *    Nagle algorithm.  This reduces the probability that urgent
19109 	 *    bytes get "merged" together.
19110 	 * 5. The app has not closed the connection.  This eliminates the
19111 	 *    wait time of the receiving side waiting for the last piece of
19112 	 *    (small) data.
19113 	 *
19114 	 * If all are satisified, exit without sending anything.  Note
19115 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19116 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19117 	 * 4095).
19118 	 */
19119 	if (usable < (int)tcp->tcp_naglim &&
19120 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19121 	    snxt != tcp->tcp_suna &&
19122 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19123 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19124 		goto done;
19125 	}
19126 
19127 	if (tcp->tcp_cork) {
19128 		/*
19129 		 * if the tcp->tcp_cork option is set, then we have to force
19130 		 * TCP not to send partial segment (smaller than MSS bytes).
19131 		 * We are calculating the usable now based on full mss and
19132 		 * will save the rest of remaining data for later.
19133 		 */
19134 		if (usable < mss)
19135 			goto done;
19136 		usable = (usable / mss) * mss;
19137 	}
19138 
19139 	/* Update the latest receive window size in TCP header. */
19140 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19141 	    tcp->tcp_tcph->th_win);
19142 
19143 	/*
19144 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19145 	 *
19146 	 * 1. Simple TCP/IP{v4,v6} (no options).
19147 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19148 	 * 3. If the TCP connection is in ESTABLISHED state.
19149 	 * 4. The TCP is not detached.
19150 	 *
19151 	 * If any of the above conditions have changed during the
19152 	 * connection, stop using LSO/MDT and restore the stream head
19153 	 * parameters accordingly.
19154 	 */
19155 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19156 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19157 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19158 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19159 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19160 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19161 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19162 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19163 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
19164 		if (tcp->tcp_lso) {
19165 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19166 			tcp->tcp_lso = B_FALSE;
19167 		} else {
19168 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19169 			tcp->tcp_mdt = B_FALSE;
19170 		}
19171 
19172 		/* Anything other than detached is considered pathological */
19173 		if (!TCP_IS_DETACHED(tcp)) {
19174 			if (tcp->tcp_lso)
19175 				TCP_STAT(tcp_lso_disabled);
19176 			else
19177 				TCP_STAT(tcp_mdt_conn_halted1);
19178 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19179 		}
19180 	}
19181 
19182 	/* Use MDT if sendable amount is greater than the threshold */
19183 	if (tcp->tcp_mdt &&
19184 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19185 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19186 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19187 	    (tcp->tcp_valid_bits == 0 ||
19188 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19189 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19190 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19191 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19192 		    local_time, mdt_thres);
19193 	} else {
19194 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19195 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19196 		    local_time, INT_MAX);
19197 	}
19198 
19199 	/* Pretend that all we were trying to send really got sent */
19200 	if (rc < 0 && tail_unsent < 0) {
19201 		do {
19202 			xmit_tail = xmit_tail->b_cont;
19203 			xmit_tail->b_prev = local_time;
19204 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19205 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19206 			tail_unsent += (int)(xmit_tail->b_wptr -
19207 			    xmit_tail->b_rptr);
19208 		} while (tail_unsent < 0);
19209 	}
19210 done:;
19211 	tcp->tcp_xmit_tail = xmit_tail;
19212 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19213 	len = tcp->tcp_snxt - snxt;
19214 	if (len) {
19215 		/*
19216 		 * If new data was sent, need to update the notsack
19217 		 * list, which is, afterall, data blocks that have
19218 		 * not been sack'ed by the receiver.  New data is
19219 		 * not sack'ed.
19220 		 */
19221 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19222 			/* len is a negative value. */
19223 			tcp->tcp_pipe -= len;
19224 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19225 			    tcp->tcp_snxt, snxt,
19226 			    &(tcp->tcp_num_notsack_blk),
19227 			    &(tcp->tcp_cnt_notsack_list));
19228 		}
19229 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19230 		tcp->tcp_rack = tcp->tcp_rnxt;
19231 		tcp->tcp_rack_cnt = 0;
19232 		if ((snxt + len) == tcp->tcp_suna) {
19233 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19234 		}
19235 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19236 		/*
19237 		 * Didn't send anything. Make sure the timer is running
19238 		 * so that we will probe a zero window.
19239 		 */
19240 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19241 	}
19242 	/* Note that len is the amount we just sent but with a negative sign */
19243 	tcp->tcp_unsent += len;
19244 	if (tcp->tcp_flow_stopped) {
19245 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19246 			tcp_clrqfull(tcp);
19247 		}
19248 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19249 		tcp_setqfull(tcp);
19250 	}
19251 }
19252 
19253 /*
19254  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19255  * outgoing TCP header with the template header, as well as other
19256  * options such as time-stamp, ECN and/or SACK.
19257  */
19258 static void
19259 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19260 {
19261 	tcph_t *tcp_tmpl, *tcp_h;
19262 	uint32_t *dst, *src;
19263 	int hdrlen;
19264 
19265 	ASSERT(OK_32PTR(rptr));
19266 
19267 	/* Template header */
19268 	tcp_tmpl = tcp->tcp_tcph;
19269 
19270 	/* Header of outgoing packet */
19271 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19272 
19273 	/* dst and src are opaque 32-bit fields, used for copying */
19274 	dst = (uint32_t *)rptr;
19275 	src = (uint32_t *)tcp->tcp_iphc;
19276 	hdrlen = tcp->tcp_hdr_len;
19277 
19278 	/* Fill time-stamp option if needed */
19279 	if (tcp->tcp_snd_ts_ok) {
19280 		U32_TO_BE32((uint32_t)now,
19281 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19282 		U32_TO_BE32(tcp->tcp_ts_recent,
19283 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19284 	} else {
19285 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19286 	}
19287 
19288 	/*
19289 	 * Copy the template header; is this really more efficient than
19290 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19291 	 * but perhaps not for other scenarios.
19292 	 */
19293 	dst[0] = src[0];
19294 	dst[1] = src[1];
19295 	dst[2] = src[2];
19296 	dst[3] = src[3];
19297 	dst[4] = src[4];
19298 	dst[5] = src[5];
19299 	dst[6] = src[6];
19300 	dst[7] = src[7];
19301 	dst[8] = src[8];
19302 	dst[9] = src[9];
19303 	if (hdrlen -= 40) {
19304 		hdrlen >>= 2;
19305 		dst += 10;
19306 		src += 10;
19307 		do {
19308 			*dst++ = *src++;
19309 		} while (--hdrlen);
19310 	}
19311 
19312 	/*
19313 	 * Set the ECN info in the TCP header if it is not a zero
19314 	 * window probe.  Zero window probe is only sent in
19315 	 * tcp_wput_data() and tcp_timer().
19316 	 */
19317 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19318 		SET_ECT(tcp, rptr);
19319 
19320 		if (tcp->tcp_ecn_echo_on)
19321 			tcp_h->th_flags[0] |= TH_ECE;
19322 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19323 			tcp_h->th_flags[0] |= TH_CWR;
19324 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19325 		}
19326 	}
19327 
19328 	/* Fill in SACK options */
19329 	if (num_sack_blk > 0) {
19330 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19331 		sack_blk_t *tmp;
19332 		int32_t	i;
19333 
19334 		wptr[0] = TCPOPT_NOP;
19335 		wptr[1] = TCPOPT_NOP;
19336 		wptr[2] = TCPOPT_SACK;
19337 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19338 		    sizeof (sack_blk_t);
19339 		wptr += TCPOPT_REAL_SACK_LEN;
19340 
19341 		tmp = tcp->tcp_sack_list;
19342 		for (i = 0; i < num_sack_blk; i++) {
19343 			U32_TO_BE32(tmp[i].begin, wptr);
19344 			wptr += sizeof (tcp_seq);
19345 			U32_TO_BE32(tmp[i].end, wptr);
19346 			wptr += sizeof (tcp_seq);
19347 		}
19348 		tcp_h->th_offset_and_rsrvd[0] +=
19349 		    ((num_sack_blk * 2 + 1) << 4);
19350 	}
19351 }
19352 
19353 /*
19354  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19355  * the destination address and SAP attribute, and if necessary, the
19356  * hardware checksum offload attribute to a Multidata message.
19357  */
19358 static int
19359 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19360     const uint32_t start, const uint32_t stuff, const uint32_t end,
19361     const uint32_t flags)
19362 {
19363 	/* Add global destination address & SAP attribute */
19364 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19365 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19366 		    "destination address+SAP\n"));
19367 
19368 		if (dlmp != NULL)
19369 			TCP_STAT(tcp_mdt_allocfail);
19370 		return (-1);
19371 	}
19372 
19373 	/* Add global hwcksum attribute */
19374 	if (hwcksum &&
19375 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19376 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19377 		    "checksum attribute\n"));
19378 
19379 		TCP_STAT(tcp_mdt_allocfail);
19380 		return (-1);
19381 	}
19382 
19383 	return (0);
19384 }
19385 
19386 /*
19387  * Smaller and private version of pdescinfo_t used specifically for TCP,
19388  * which allows for only two payload spans per packet.
19389  */
19390 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19391 
19392 /*
19393  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19394  * scheme, and returns one the following:
19395  *
19396  * -1 = failed allocation.
19397  *  0 = success; burst count reached, or usable send window is too small,
19398  *      and that we'd rather wait until later before sending again.
19399  */
19400 static int
19401 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19402     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19403     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19404     const int mdt_thres)
19405 {
19406 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19407 	multidata_t	*mmd;
19408 	uint_t		obsegs, obbytes, hdr_frag_sz;
19409 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19410 	int		num_burst_seg, max_pld;
19411 	pdesc_t		*pkt;
19412 	tcp_pdescinfo_t	tcp_pkt_info;
19413 	pdescinfo_t	*pkt_info;
19414 	int		pbuf_idx, pbuf_idx_nxt;
19415 	int		seg_len, len, spill, af;
19416 	boolean_t	add_buffer, zcopy, clusterwide;
19417 	boolean_t	buf_trunked = B_FALSE;
19418 	boolean_t	rconfirm = B_FALSE;
19419 	boolean_t	done = B_FALSE;
19420 	uint32_t	cksum;
19421 	uint32_t	hwcksum_flags;
19422 	ire_t		*ire = NULL;
19423 	ill_t		*ill;
19424 	ipha_t		*ipha;
19425 	ip6_t		*ip6h;
19426 	ipaddr_t	src, dst;
19427 	ill_zerocopy_capab_t *zc_cap = NULL;
19428 	uint16_t	*up;
19429 	int		err;
19430 	conn_t		*connp;
19431 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19432 	uchar_t		*pld_start;
19433 
19434 #ifdef	_BIG_ENDIAN
19435 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19436 #else
19437 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19438 #endif
19439 
19440 #define	PREP_NEW_MULTIDATA() {			\
19441 	mmd = NULL;				\
19442 	md_mp = md_hbuf = NULL;			\
19443 	cur_hdr_off = 0;			\
19444 	max_pld = tcp->tcp_mdt_max_pld;		\
19445 	pbuf_idx = pbuf_idx_nxt = -1;		\
19446 	add_buffer = B_TRUE;			\
19447 	zcopy = B_FALSE;			\
19448 }
19449 
19450 #define	PREP_NEW_PBUF() {			\
19451 	md_pbuf = md_pbuf_nxt = NULL;		\
19452 	pbuf_idx = pbuf_idx_nxt = -1;		\
19453 	cur_pld_off = 0;			\
19454 	first_snxt = *snxt;			\
19455 	ASSERT(*tail_unsent > 0);		\
19456 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19457 }
19458 
19459 	ASSERT(mdt_thres >= mss);
19460 	ASSERT(*usable > 0 && *usable > mdt_thres);
19461 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19462 	ASSERT(!TCP_IS_DETACHED(tcp));
19463 	ASSERT(tcp->tcp_valid_bits == 0 ||
19464 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19465 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19466 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19467 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19468 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19469 
19470 	connp = tcp->tcp_connp;
19471 	ASSERT(connp != NULL);
19472 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19473 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19474 
19475 	/*
19476 	 * Note that tcp will only declare at most 2 payload spans per
19477 	 * packet, which is much lower than the maximum allowable number
19478 	 * of packet spans per Multidata.  For this reason, we use the
19479 	 * privately declared and smaller descriptor info structure, in
19480 	 * order to save some stack space.
19481 	 */
19482 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19483 
19484 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19485 	if (af == AF_INET) {
19486 		dst = tcp->tcp_ipha->ipha_dst;
19487 		src = tcp->tcp_ipha->ipha_src;
19488 		ASSERT(!CLASSD(dst));
19489 	}
19490 	ASSERT(af == AF_INET ||
19491 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19492 
19493 	obsegs = obbytes = 0;
19494 	num_burst_seg = tcp->tcp_snd_burst;
19495 	md_mp_head = NULL;
19496 	PREP_NEW_MULTIDATA();
19497 
19498 	/*
19499 	 * Before we go on further, make sure there is an IRE that we can
19500 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19501 	 * in proceeding any further, and we should just hand everything
19502 	 * off to the legacy path.
19503 	 */
19504 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19505 		goto legacy_send_no_md;
19506 
19507 	ASSERT(ire != NULL);
19508 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19509 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19510 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19511 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19512 	/*
19513 	 * If we do support loopback for MDT (which requires modifications
19514 	 * to the receiving paths), the following assertions should go away,
19515 	 * and we would be sending the Multidata to loopback conn later on.
19516 	 */
19517 	ASSERT(!IRE_IS_LOCAL(ire));
19518 	ASSERT(ire->ire_stq != NULL);
19519 
19520 	ill = ire_to_ill(ire);
19521 	ASSERT(ill != NULL);
19522 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19523 
19524 	if (!tcp->tcp_ire_ill_check_done) {
19525 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19526 		tcp->tcp_ire_ill_check_done = B_TRUE;
19527 	}
19528 
19529 	/*
19530 	 * If the underlying interface conditions have changed, or if the
19531 	 * new interface does not support MDT, go back to legacy path.
19532 	 */
19533 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19534 		/* don't go through this path anymore for this connection */
19535 		TCP_STAT(tcp_mdt_conn_halted2);
19536 		tcp->tcp_mdt = B_FALSE;
19537 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19538 		    "interface %s\n", (void *)connp, ill->ill_name));
19539 		/* IRE will be released prior to returning */
19540 		goto legacy_send_no_md;
19541 	}
19542 
19543 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19544 		zc_cap = ill->ill_zerocopy_capab;
19545 
19546 	/*
19547 	 * Check if we can take tcp fast-path. Note that "incomplete"
19548 	 * ire's (where the link-layer for next hop is not resolved
19549 	 * or where the fast-path header in nce_fp_mp is not available
19550 	 * yet) are sent down the legacy (slow) path.
19551 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19552 	 */
19553 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19554 		/* IRE will be released prior to returning */
19555 		goto legacy_send_no_md;
19556 	}
19557 
19558 	/* go to legacy path if interface doesn't support zerocopy */
19559 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19560 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19561 		/* IRE will be released prior to returning */
19562 		goto legacy_send_no_md;
19563 	}
19564 
19565 	/* does the interface support hardware checksum offload? */
19566 	hwcksum_flags = 0;
19567 	if (ILL_HCKSUM_CAPABLE(ill) &&
19568 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19569 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19570 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19571 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19572 		    HCKSUM_IPHDRCKSUM)
19573 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19574 
19575 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19576 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19577 			hwcksum_flags |= HCK_FULLCKSUM;
19578 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19579 		    HCKSUM_INET_PARTIAL)
19580 			hwcksum_flags |= HCK_PARTIALCKSUM;
19581 	}
19582 
19583 	/*
19584 	 * Each header fragment consists of the leading extra space,
19585 	 * followed by the TCP/IP header, and the trailing extra space.
19586 	 * We make sure that each header fragment begins on a 32-bit
19587 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19588 	 * aligned in tcp_mdt_update).
19589 	 */
19590 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19591 	    tcp->tcp_mdt_hdr_tail), 4);
19592 
19593 	/* are we starting from the beginning of data block? */
19594 	if (*tail_unsent == 0) {
19595 		*xmit_tail = (*xmit_tail)->b_cont;
19596 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19597 		*tail_unsent = (int)MBLKL(*xmit_tail);
19598 	}
19599 
19600 	/*
19601 	 * Here we create one or more Multidata messages, each made up of
19602 	 * one header buffer and up to N payload buffers.  This entire
19603 	 * operation is done within two loops:
19604 	 *
19605 	 * The outer loop mostly deals with creating the Multidata message,
19606 	 * as well as the header buffer that gets added to it.  It also
19607 	 * links the Multidata messages together such that all of them can
19608 	 * be sent down to the lower layer in a single putnext call; this
19609 	 * linking behavior depends on the tcp_mdt_chain tunable.
19610 	 *
19611 	 * The inner loop takes an existing Multidata message, and adds
19612 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19613 	 * packetizes those buffers by filling up the corresponding header
19614 	 * buffer fragments with the proper IP and TCP headers, and by
19615 	 * describing the layout of each packet in the packet descriptors
19616 	 * that get added to the Multidata.
19617 	 */
19618 	do {
19619 		/*
19620 		 * If usable send window is too small, or data blocks in
19621 		 * transmit list are smaller than our threshold (i.e. app
19622 		 * performs large writes followed by small ones), we hand
19623 		 * off the control over to the legacy path.  Note that we'll
19624 		 * get back the control once it encounters a large block.
19625 		 */
19626 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19627 		    (*xmit_tail)->b_cont != NULL &&
19628 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19629 			/* send down what we've got so far */
19630 			if (md_mp_head != NULL) {
19631 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19632 				    obsegs, obbytes, &rconfirm);
19633 			}
19634 			/*
19635 			 * Pass control over to tcp_send(), but tell it to
19636 			 * return to us once a large-size transmission is
19637 			 * possible.
19638 			 */
19639 			TCP_STAT(tcp_mdt_legacy_small);
19640 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19641 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19642 			    tail_unsent, xmit_tail, local_time,
19643 			    mdt_thres)) <= 0) {
19644 				/* burst count reached, or alloc failed */
19645 				IRE_REFRELE(ire);
19646 				return (err);
19647 			}
19648 
19649 			/* tcp_send() may have sent everything, so check */
19650 			if (*usable <= 0) {
19651 				IRE_REFRELE(ire);
19652 				return (0);
19653 			}
19654 
19655 			TCP_STAT(tcp_mdt_legacy_ret);
19656 			/*
19657 			 * We may have delivered the Multidata, so make sure
19658 			 * to re-initialize before the next round.
19659 			 */
19660 			md_mp_head = NULL;
19661 			obsegs = obbytes = 0;
19662 			num_burst_seg = tcp->tcp_snd_burst;
19663 			PREP_NEW_MULTIDATA();
19664 
19665 			/* are we starting from the beginning of data block? */
19666 			if (*tail_unsent == 0) {
19667 				*xmit_tail = (*xmit_tail)->b_cont;
19668 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19669 				    (uintptr_t)INT_MAX);
19670 				*tail_unsent = (int)MBLKL(*xmit_tail);
19671 			}
19672 		}
19673 
19674 		/*
19675 		 * max_pld limits the number of mblks in tcp's transmit
19676 		 * queue that can be added to a Multidata message.  Once
19677 		 * this counter reaches zero, no more additional mblks
19678 		 * can be added to it.  What happens afterwards depends
19679 		 * on whether or not we are set to chain the Multidata
19680 		 * messages.  If we are to link them together, reset
19681 		 * max_pld to its original value (tcp_mdt_max_pld) and
19682 		 * prepare to create a new Multidata message which will
19683 		 * get linked to md_mp_head.  Else, leave it alone and
19684 		 * let the inner loop break on its own.
19685 		 */
19686 		if (tcp_mdt_chain && max_pld == 0)
19687 			PREP_NEW_MULTIDATA();
19688 
19689 		/* adding a payload buffer; re-initialize values */
19690 		if (add_buffer)
19691 			PREP_NEW_PBUF();
19692 
19693 		/*
19694 		 * If we don't have a Multidata, either because we just
19695 		 * (re)entered this outer loop, or after we branched off
19696 		 * to tcp_send above, setup the Multidata and header
19697 		 * buffer to be used.
19698 		 */
19699 		if (md_mp == NULL) {
19700 			int md_hbuflen;
19701 			uint32_t start, stuff;
19702 
19703 			/*
19704 			 * Calculate Multidata header buffer size large enough
19705 			 * to hold all of the headers that can possibly be
19706 			 * sent at this moment.  We'd rather over-estimate
19707 			 * the size than running out of space; this is okay
19708 			 * since this buffer is small anyway.
19709 			 */
19710 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19711 
19712 			/*
19713 			 * Start and stuff offset for partial hardware
19714 			 * checksum offload; these are currently for IPv4.
19715 			 * For full checksum offload, they are set to zero.
19716 			 */
19717 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19718 				if (af == AF_INET) {
19719 					start = IP_SIMPLE_HDR_LENGTH;
19720 					stuff = IP_SIMPLE_HDR_LENGTH +
19721 					    TCP_CHECKSUM_OFFSET;
19722 				} else {
19723 					start = IPV6_HDR_LEN;
19724 					stuff = IPV6_HDR_LEN +
19725 					    TCP_CHECKSUM_OFFSET;
19726 				}
19727 			} else {
19728 				start = stuff = 0;
19729 			}
19730 
19731 			/*
19732 			 * Create the header buffer, Multidata, as well as
19733 			 * any necessary attributes (destination address,
19734 			 * SAP and hardware checksum offload) that should
19735 			 * be associated with the Multidata message.
19736 			 */
19737 			ASSERT(cur_hdr_off == 0);
19738 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19739 			    ((md_hbuf->b_wptr += md_hbuflen),
19740 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19741 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19742 			    /* fastpath mblk */
19743 			    ire->ire_nce->nce_res_mp,
19744 			    /* hardware checksum enabled */
19745 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19746 			    /* hardware checksum offsets */
19747 			    start, stuff, 0,
19748 			    /* hardware checksum flag */
19749 			    hwcksum_flags) != 0)) {
19750 legacy_send:
19751 				if (md_mp != NULL) {
19752 					/* Unlink message from the chain */
19753 					if (md_mp_head != NULL) {
19754 						err = (intptr_t)rmvb(md_mp_head,
19755 						    md_mp);
19756 						/*
19757 						 * We can't assert that rmvb
19758 						 * did not return -1, since we
19759 						 * may get here before linkb
19760 						 * happens.  We do, however,
19761 						 * check if we just removed the
19762 						 * only element in the list.
19763 						 */
19764 						if (err == 0)
19765 							md_mp_head = NULL;
19766 					}
19767 					/* md_hbuf gets freed automatically */
19768 					TCP_STAT(tcp_mdt_discarded);
19769 					freeb(md_mp);
19770 				} else {
19771 					/* Either allocb or mmd_alloc failed */
19772 					TCP_STAT(tcp_mdt_allocfail);
19773 					if (md_hbuf != NULL)
19774 						freeb(md_hbuf);
19775 				}
19776 
19777 				/* send down what we've got so far */
19778 				if (md_mp_head != NULL) {
19779 					tcp_multisend_data(tcp, ire, ill,
19780 					    md_mp_head, obsegs, obbytes,
19781 					    &rconfirm);
19782 				}
19783 legacy_send_no_md:
19784 				if (ire != NULL)
19785 					IRE_REFRELE(ire);
19786 				/*
19787 				 * Too bad; let the legacy path handle this.
19788 				 * We specify INT_MAX for the threshold, since
19789 				 * we gave up with the Multidata processings
19790 				 * and let the old path have it all.
19791 				 */
19792 				TCP_STAT(tcp_mdt_legacy_all);
19793 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19794 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19795 				    snxt, tail_unsent, xmit_tail, local_time,
19796 				    INT_MAX));
19797 			}
19798 
19799 			/* link to any existing ones, if applicable */
19800 			TCP_STAT(tcp_mdt_allocd);
19801 			if (md_mp_head == NULL) {
19802 				md_mp_head = md_mp;
19803 			} else if (tcp_mdt_chain) {
19804 				TCP_STAT(tcp_mdt_linked);
19805 				linkb(md_mp_head, md_mp);
19806 			}
19807 		}
19808 
19809 		ASSERT(md_mp_head != NULL);
19810 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19811 		ASSERT(md_mp != NULL && mmd != NULL);
19812 		ASSERT(md_hbuf != NULL);
19813 
19814 		/*
19815 		 * Packetize the transmittable portion of the data block;
19816 		 * each data block is essentially added to the Multidata
19817 		 * as a payload buffer.  We also deal with adding more
19818 		 * than one payload buffers, which happens when the remaining
19819 		 * packetized portion of the current payload buffer is less
19820 		 * than MSS, while the next data block in transmit queue
19821 		 * has enough data to make up for one.  This "spillover"
19822 		 * case essentially creates a split-packet, where portions
19823 		 * of the packet's payload fragments may span across two
19824 		 * virtually discontiguous address blocks.
19825 		 */
19826 		seg_len = mss;
19827 		do {
19828 			len = seg_len;
19829 
19830 			ASSERT(len > 0);
19831 			ASSERT(max_pld >= 0);
19832 			ASSERT(!add_buffer || cur_pld_off == 0);
19833 
19834 			/*
19835 			 * First time around for this payload buffer; note
19836 			 * in the case of a spillover, the following has
19837 			 * been done prior to adding the split-packet
19838 			 * descriptor to Multidata, and we don't want to
19839 			 * repeat the process.
19840 			 */
19841 			if (add_buffer) {
19842 				ASSERT(mmd != NULL);
19843 				ASSERT(md_pbuf == NULL);
19844 				ASSERT(md_pbuf_nxt == NULL);
19845 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19846 
19847 				/*
19848 				 * Have we reached the limit?  We'd get to
19849 				 * this case when we're not chaining the
19850 				 * Multidata messages together, and since
19851 				 * we're done, terminate this loop.
19852 				 */
19853 				if (max_pld == 0)
19854 					break; /* done */
19855 
19856 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19857 					TCP_STAT(tcp_mdt_allocfail);
19858 					goto legacy_send; /* out_of_mem */
19859 				}
19860 
19861 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19862 				    zc_cap != NULL) {
19863 					if (!ip_md_zcopy_attr(mmd, NULL,
19864 					    zc_cap->ill_zerocopy_flags)) {
19865 						freeb(md_pbuf);
19866 						TCP_STAT(tcp_mdt_allocfail);
19867 						/* out_of_mem */
19868 						goto legacy_send;
19869 					}
19870 					zcopy = B_TRUE;
19871 				}
19872 
19873 				md_pbuf->b_rptr += base_pld_off;
19874 
19875 				/*
19876 				 * Add a payload buffer to the Multidata; this
19877 				 * operation must not fail, or otherwise our
19878 				 * logic in this routine is broken.  There
19879 				 * is no memory allocation done by the
19880 				 * routine, so any returned failure simply
19881 				 * tells us that we've done something wrong.
19882 				 *
19883 				 * A failure tells us that either we're adding
19884 				 * the same payload buffer more than once, or
19885 				 * we're trying to add more buffers than
19886 				 * allowed (max_pld calculation is wrong).
19887 				 * None of the above cases should happen, and
19888 				 * we panic because either there's horrible
19889 				 * heap corruption, and/or programming mistake.
19890 				 */
19891 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19892 				if (pbuf_idx < 0) {
19893 					cmn_err(CE_PANIC, "tcp_multisend: "
19894 					    "payload buffer logic error "
19895 					    "detected for tcp %p mmd %p "
19896 					    "pbuf %p (%d)\n",
19897 					    (void *)tcp, (void *)mmd,
19898 					    (void *)md_pbuf, pbuf_idx);
19899 				}
19900 
19901 				ASSERT(max_pld > 0);
19902 				--max_pld;
19903 				add_buffer = B_FALSE;
19904 			}
19905 
19906 			ASSERT(md_mp_head != NULL);
19907 			ASSERT(md_pbuf != NULL);
19908 			ASSERT(md_pbuf_nxt == NULL);
19909 			ASSERT(pbuf_idx != -1);
19910 			ASSERT(pbuf_idx_nxt == -1);
19911 			ASSERT(*usable > 0);
19912 
19913 			/*
19914 			 * We spillover to the next payload buffer only
19915 			 * if all of the following is true:
19916 			 *
19917 			 *   1. There is not enough data on the current
19918 			 *	payload buffer to make up `len',
19919 			 *   2. We are allowed to send `len',
19920 			 *   3. The next payload buffer length is large
19921 			 *	enough to accomodate `spill'.
19922 			 */
19923 			if ((spill = len - *tail_unsent) > 0 &&
19924 			    *usable >= len &&
19925 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19926 			    max_pld > 0) {
19927 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19928 				if (md_pbuf_nxt == NULL) {
19929 					TCP_STAT(tcp_mdt_allocfail);
19930 					goto legacy_send; /* out_of_mem */
19931 				}
19932 
19933 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19934 				    zc_cap != NULL) {
19935 					if (!ip_md_zcopy_attr(mmd, NULL,
19936 					    zc_cap->ill_zerocopy_flags)) {
19937 						freeb(md_pbuf_nxt);
19938 						TCP_STAT(tcp_mdt_allocfail);
19939 						/* out_of_mem */
19940 						goto legacy_send;
19941 					}
19942 					zcopy = B_TRUE;
19943 				}
19944 
19945 				/*
19946 				 * See comments above on the first call to
19947 				 * mmd_addpldbuf for explanation on the panic.
19948 				 */
19949 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19950 				if (pbuf_idx_nxt < 0) {
19951 					panic("tcp_multisend: "
19952 					    "next payload buffer logic error "
19953 					    "detected for tcp %p mmd %p "
19954 					    "pbuf %p (%d)\n",
19955 					    (void *)tcp, (void *)mmd,
19956 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19957 				}
19958 
19959 				ASSERT(max_pld > 0);
19960 				--max_pld;
19961 			} else if (spill > 0) {
19962 				/*
19963 				 * If there's a spillover, but the following
19964 				 * xmit_tail couldn't give us enough octets
19965 				 * to reach "len", then stop the current
19966 				 * Multidata creation and let the legacy
19967 				 * tcp_send() path take over.  We don't want
19968 				 * to send the tiny segment as part of this
19969 				 * Multidata for performance reasons; instead,
19970 				 * we let the legacy path deal with grouping
19971 				 * it with the subsequent small mblks.
19972 				 */
19973 				if (*usable >= len &&
19974 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19975 					max_pld = 0;
19976 					break;	/* done */
19977 				}
19978 
19979 				/*
19980 				 * We can't spillover, and we are near
19981 				 * the end of the current payload buffer,
19982 				 * so send what's left.
19983 				 */
19984 				ASSERT(*tail_unsent > 0);
19985 				len = *tail_unsent;
19986 			}
19987 
19988 			/* tail_unsent is negated if there is a spillover */
19989 			*tail_unsent -= len;
19990 			*usable -= len;
19991 			ASSERT(*usable >= 0);
19992 
19993 			if (*usable < mss)
19994 				seg_len = *usable;
19995 			/*
19996 			 * Sender SWS avoidance; see comments in tcp_send();
19997 			 * everything else is the same, except that we only
19998 			 * do this here if there is no more data to be sent
19999 			 * following the current xmit_tail.  We don't check
20000 			 * for 1-byte urgent data because we shouldn't get
20001 			 * here if TCP_URG_VALID is set.
20002 			 */
20003 			if (*usable > 0 && *usable < mss &&
20004 			    ((md_pbuf_nxt == NULL &&
20005 			    (*xmit_tail)->b_cont == NULL) ||
20006 			    (md_pbuf_nxt != NULL &&
20007 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20008 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20009 			    (tcp->tcp_unsent -
20010 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20011 			    !tcp->tcp_zero_win_probe) {
20012 				if ((*snxt + len) == tcp->tcp_snxt &&
20013 				    (*snxt + len) == tcp->tcp_suna) {
20014 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20015 				}
20016 				done = B_TRUE;
20017 			}
20018 
20019 			/*
20020 			 * Prime pump for IP's checksumming on our behalf;
20021 			 * include the adjustment for a source route if any.
20022 			 * Do this only for software/partial hardware checksum
20023 			 * offload, as this field gets zeroed out later for
20024 			 * the full hardware checksum offload case.
20025 			 */
20026 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20027 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20028 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20029 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20030 			}
20031 
20032 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20033 			*snxt += len;
20034 
20035 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20036 			/*
20037 			 * We set the PUSH bit only if TCP has no more buffered
20038 			 * data to be transmitted (or if sender SWS avoidance
20039 			 * takes place), as opposed to setting it for every
20040 			 * last packet in the burst.
20041 			 */
20042 			if (done ||
20043 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20044 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20045 
20046 			/*
20047 			 * Set FIN bit if this is our last segment; snxt
20048 			 * already includes its length, and it will not
20049 			 * be adjusted after this point.
20050 			 */
20051 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20052 			    *snxt == tcp->tcp_fss) {
20053 				if (!tcp->tcp_fin_acked) {
20054 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20055 					BUMP_MIB(&tcp_mib, tcpOutControl);
20056 				}
20057 				if (!tcp->tcp_fin_sent) {
20058 					tcp->tcp_fin_sent = B_TRUE;
20059 					/*
20060 					 * tcp state must be ESTABLISHED
20061 					 * in order for us to get here in
20062 					 * the first place.
20063 					 */
20064 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20065 
20066 					/*
20067 					 * Upon returning from this routine,
20068 					 * tcp_wput_data() will set tcp_snxt
20069 					 * to be equal to snxt + tcp_fin_sent.
20070 					 * This is essentially the same as
20071 					 * setting it to tcp_fss + 1.
20072 					 */
20073 				}
20074 			}
20075 
20076 			tcp->tcp_last_sent_len = (ushort_t)len;
20077 
20078 			len += tcp_hdr_len;
20079 			if (tcp->tcp_ipversion == IPV4_VERSION)
20080 				tcp->tcp_ipha->ipha_length = htons(len);
20081 			else
20082 				tcp->tcp_ip6h->ip6_plen = htons(len -
20083 				    ((char *)&tcp->tcp_ip6h[1] -
20084 				    tcp->tcp_iphc));
20085 
20086 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20087 
20088 			/* setup header fragment */
20089 			PDESC_HDR_ADD(pkt_info,
20090 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20091 			    tcp->tcp_mdt_hdr_head,		/* head room */
20092 			    tcp_hdr_len,			/* len */
20093 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20094 
20095 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20096 			    hdr_frag_sz);
20097 			ASSERT(MBLKIN(md_hbuf,
20098 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20099 			    PDESC_HDRSIZE(pkt_info)));
20100 
20101 			/* setup first payload fragment */
20102 			PDESC_PLD_INIT(pkt_info);
20103 			PDESC_PLD_SPAN_ADD(pkt_info,
20104 			    pbuf_idx,				/* index */
20105 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20106 			    tcp->tcp_last_sent_len);		/* len */
20107 
20108 			/* create a split-packet in case of a spillover */
20109 			if (md_pbuf_nxt != NULL) {
20110 				ASSERT(spill > 0);
20111 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20112 				ASSERT(!add_buffer);
20113 
20114 				md_pbuf = md_pbuf_nxt;
20115 				md_pbuf_nxt = NULL;
20116 				pbuf_idx = pbuf_idx_nxt;
20117 				pbuf_idx_nxt = -1;
20118 				cur_pld_off = spill;
20119 
20120 				/* trim out first payload fragment */
20121 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20122 
20123 				/* setup second payload fragment */
20124 				PDESC_PLD_SPAN_ADD(pkt_info,
20125 				    pbuf_idx,			/* index */
20126 				    md_pbuf->b_rptr,		/* start */
20127 				    spill);			/* len */
20128 
20129 				if ((*xmit_tail)->b_next == NULL) {
20130 					/*
20131 					 * Store the lbolt used for RTT
20132 					 * estimation. We can only record one
20133 					 * timestamp per mblk so we do it when
20134 					 * we reach the end of the payload
20135 					 * buffer.  Also we only take a new
20136 					 * timestamp sample when the previous
20137 					 * timed data from the same mblk has
20138 					 * been ack'ed.
20139 					 */
20140 					(*xmit_tail)->b_prev = local_time;
20141 					(*xmit_tail)->b_next =
20142 					    (mblk_t *)(uintptr_t)first_snxt;
20143 				}
20144 
20145 				first_snxt = *snxt - spill;
20146 
20147 				/*
20148 				 * Advance xmit_tail; usable could be 0 by
20149 				 * the time we got here, but we made sure
20150 				 * above that we would only spillover to
20151 				 * the next data block if usable includes
20152 				 * the spilled-over amount prior to the
20153 				 * subtraction.  Therefore, we are sure
20154 				 * that xmit_tail->b_cont can't be NULL.
20155 				 */
20156 				ASSERT((*xmit_tail)->b_cont != NULL);
20157 				*xmit_tail = (*xmit_tail)->b_cont;
20158 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20159 				    (uintptr_t)INT_MAX);
20160 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20161 			} else {
20162 				cur_pld_off += tcp->tcp_last_sent_len;
20163 			}
20164 
20165 			/*
20166 			 * Fill in the header using the template header, and
20167 			 * add options such as time-stamp, ECN and/or SACK,
20168 			 * as needed.
20169 			 */
20170 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20171 			    (clock_t)local_time, num_sack_blk);
20172 
20173 			/* take care of some IP header businesses */
20174 			if (af == AF_INET) {
20175 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20176 
20177 				ASSERT(OK_32PTR((uchar_t *)ipha));
20178 				ASSERT(PDESC_HDRL(pkt_info) >=
20179 				    IP_SIMPLE_HDR_LENGTH);
20180 				ASSERT(ipha->ipha_version_and_hdr_length ==
20181 				    IP_SIMPLE_HDR_VERSION);
20182 
20183 				/*
20184 				 * Assign ident value for current packet; see
20185 				 * related comments in ip_wput_ire() about the
20186 				 * contract private interface with clustering
20187 				 * group.
20188 				 */
20189 				clusterwide = B_FALSE;
20190 				if (cl_inet_ipident != NULL) {
20191 					ASSERT(cl_inet_isclusterwide != NULL);
20192 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20193 					    AF_INET,
20194 					    (uint8_t *)(uintptr_t)src)) {
20195 						ipha->ipha_ident =
20196 						    (*cl_inet_ipident)
20197 						    (IPPROTO_IP, AF_INET,
20198 						    (uint8_t *)(uintptr_t)src,
20199 						    (uint8_t *)(uintptr_t)dst);
20200 						clusterwide = B_TRUE;
20201 					}
20202 				}
20203 
20204 				if (!clusterwide) {
20205 					ipha->ipha_ident = (uint16_t)
20206 					    atomic_add_32_nv(
20207 						&ire->ire_ident, 1);
20208 				}
20209 #ifndef _BIG_ENDIAN
20210 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20211 				    (ipha->ipha_ident >> 8);
20212 #endif
20213 			} else {
20214 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20215 
20216 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20217 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20218 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20219 				ASSERT(PDESC_HDRL(pkt_info) >=
20220 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20221 				    TCP_CHECKSUM_SIZE));
20222 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20223 
20224 				if (tcp->tcp_ip_forward_progress) {
20225 					rconfirm = B_TRUE;
20226 					tcp->tcp_ip_forward_progress = B_FALSE;
20227 				}
20228 			}
20229 
20230 			/* at least one payload span, and at most two */
20231 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20232 
20233 			/* add the packet descriptor to Multidata */
20234 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20235 			    KM_NOSLEEP)) == NULL) {
20236 				/*
20237 				 * Any failure other than ENOMEM indicates
20238 				 * that we have passed in invalid pkt_info
20239 				 * or parameters to mmd_addpdesc, which must
20240 				 * not happen.
20241 				 *
20242 				 * EINVAL is a result of failure on boundary
20243 				 * checks against the pkt_info contents.  It
20244 				 * should not happen, and we panic because
20245 				 * either there's horrible heap corruption,
20246 				 * and/or programming mistake.
20247 				 */
20248 				if (err != ENOMEM) {
20249 					cmn_err(CE_PANIC, "tcp_multisend: "
20250 					    "pdesc logic error detected for "
20251 					    "tcp %p mmd %p pinfo %p (%d)\n",
20252 					    (void *)tcp, (void *)mmd,
20253 					    (void *)pkt_info, err);
20254 				}
20255 				TCP_STAT(tcp_mdt_addpdescfail);
20256 				goto legacy_send; /* out_of_mem */
20257 			}
20258 			ASSERT(pkt != NULL);
20259 
20260 			/* calculate IP header and TCP checksums */
20261 			if (af == AF_INET) {
20262 				/* calculate pseudo-header checksum */
20263 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20264 				    (src >> 16) + (src & 0xFFFF);
20265 
20266 				/* offset for TCP header checksum */
20267 				up = IPH_TCPH_CHECKSUMP(ipha,
20268 				    IP_SIMPLE_HDR_LENGTH);
20269 			} else {
20270 				up = (uint16_t *)&ip6h->ip6_src;
20271 
20272 				/* calculate pseudo-header checksum */
20273 				cksum = up[0] + up[1] + up[2] + up[3] +
20274 				    up[4] + up[5] + up[6] + up[7] +
20275 				    up[8] + up[9] + up[10] + up[11] +
20276 				    up[12] + up[13] + up[14] + up[15];
20277 
20278 				/* Fold the initial sum */
20279 				cksum = (cksum & 0xffff) + (cksum >> 16);
20280 
20281 				up = (uint16_t *)(((uchar_t *)ip6h) +
20282 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20283 			}
20284 
20285 			if (hwcksum_flags & HCK_FULLCKSUM) {
20286 				/* clear checksum field for hardware */
20287 				*up = 0;
20288 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20289 				uint32_t sum;
20290 
20291 				/* pseudo-header checksumming */
20292 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20293 				sum = (sum & 0xFFFF) + (sum >> 16);
20294 				*up = (sum & 0xFFFF) + (sum >> 16);
20295 			} else {
20296 				/* software checksumming */
20297 				TCP_STAT(tcp_out_sw_cksum);
20298 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
20299 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20300 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20301 				    cksum + IP_TCP_CSUM_COMP);
20302 				if (*up == 0)
20303 					*up = 0xFFFF;
20304 			}
20305 
20306 			/* IPv4 header checksum */
20307 			if (af == AF_INET) {
20308 				ipha->ipha_fragment_offset_and_flags |=
20309 				    (uint32_t)htons(ire->ire_frag_flag);
20310 
20311 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20312 					ipha->ipha_hdr_checksum = 0;
20313 				} else {
20314 					IP_HDR_CKSUM(ipha, cksum,
20315 					    ((uint32_t *)ipha)[0],
20316 					    ((uint16_t *)ipha)[4]);
20317 				}
20318 			}
20319 
20320 			if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT||
20321 			    af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) {
20322 				/* build header(IP/TCP) mblk for this segment */
20323 				if ((mp = dupb(md_hbuf)) == NULL)
20324 					goto legacy_send;
20325 
20326 				mp->b_rptr = pkt_info->hdr_rptr;
20327 				mp->b_wptr = pkt_info->hdr_wptr;
20328 
20329 				/* build payload mblk for this segment */
20330 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20331 					freemsg(mp);
20332 					goto legacy_send;
20333 				}
20334 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20335 				mp1->b_rptr = mp1->b_wptr -
20336 				    tcp->tcp_last_sent_len;
20337 				linkb(mp, mp1);
20338 
20339 				pld_start = mp1->b_rptr;
20340 
20341 				if (af == AF_INET) {
20342 					DTRACE_PROBE4(
20343 					    ip4__physical__out__start,
20344 					    ill_t *, NULL,
20345 					    ill_t *, ill,
20346 					    ipha_t *, ipha,
20347 					    mblk_t *, mp);
20348 					FW_HOOKS(ip4_physical_out_event,
20349 					    ipv4firewall_physical_out,
20350 					    NULL, ill, ipha, mp, mp);
20351 					DTRACE_PROBE1(
20352 					    ip4__physical__out__end,
20353 					    mblk_t *, mp);
20354 				} else {
20355 					DTRACE_PROBE4(
20356 					    ip6__physical__out_start,
20357 					    ill_t *, NULL,
20358 					    ill_t *, ill,
20359 					    ip6_t *, ip6h,
20360 					    mblk_t *, mp);
20361 					FW_HOOKS6(ip6_physical_out_event,
20362 					    ipv6firewall_physical_out,
20363 					    NULL, ill, ip6h, mp, mp);
20364 					DTRACE_PROBE1(
20365 					    ip6__physical__out__end,
20366 					    mblk_t *, mp);
20367 				}
20368 
20369 				if (buf_trunked && mp != NULL) {
20370 					/*
20371 					 * Need to pass it to normal path.
20372 					 */
20373 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20374 				} else if (mp == NULL ||
20375 				    mp->b_rptr != pkt_info->hdr_rptr ||
20376 				    mp->b_wptr != pkt_info->hdr_wptr ||
20377 				    (mp1 = mp->b_cont) == NULL ||
20378 				    mp1->b_rptr != pld_start ||
20379 				    mp1->b_wptr != pld_start +
20380 				    tcp->tcp_last_sent_len ||
20381 				    mp1->b_cont != NULL) {
20382 					/*
20383 					 * Need to pass all packets of this
20384 					 * buffer to normal path, either when
20385 					 * packet is blocked, or when boundary
20386 					 * of header buffer or payload buffer
20387 					 * has been changed by FW_HOOKS[6].
20388 					 */
20389 					buf_trunked = B_TRUE;
20390 					if (md_mp_head != NULL) {
20391 						err = (intptr_t)rmvb(md_mp_head,
20392 						    md_mp);
20393 						if (err == 0)
20394 							md_mp_head = NULL;
20395 					}
20396 
20397 					/* send down what we've got so far */
20398 					if (md_mp_head != NULL) {
20399 						tcp_multisend_data(tcp, ire,
20400 						    ill, md_mp_head, obsegs,
20401 						    obbytes, &rconfirm);
20402 					}
20403 					md_mp_head = NULL;
20404 
20405 					if (mp != NULL)
20406 						CALL_IP_WPUT(tcp->tcp_connp,
20407 						    q, mp);
20408 
20409 					mp1 = fw_mp_head;
20410 					do {
20411 						mp = mp1;
20412 						mp1 = mp1->b_next;
20413 						mp->b_next = NULL;
20414 						mp->b_prev = NULL;
20415 						CALL_IP_WPUT(tcp->tcp_connp,
20416 						    q, mp);
20417 					} while (mp1 != NULL);
20418 
20419 					fw_mp_head = NULL;
20420 				} else {
20421 					if (fw_mp_head == NULL)
20422 						fw_mp_head = mp;
20423 					else
20424 						fw_mp_head->b_prev->b_next = mp;
20425 					fw_mp_head->b_prev = mp;
20426 				}
20427 			}
20428 
20429 			/* advance header offset */
20430 			cur_hdr_off += hdr_frag_sz;
20431 
20432 			obbytes += tcp->tcp_last_sent_len;
20433 			++obsegs;
20434 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20435 		    *tail_unsent > 0);
20436 
20437 		if ((*xmit_tail)->b_next == NULL) {
20438 			/*
20439 			 * Store the lbolt used for RTT estimation. We can only
20440 			 * record one timestamp per mblk so we do it when we
20441 			 * reach the end of the payload buffer. Also we only
20442 			 * take a new timestamp sample when the previous timed
20443 			 * data from the same mblk has been ack'ed.
20444 			 */
20445 			(*xmit_tail)->b_prev = local_time;
20446 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20447 		}
20448 
20449 		ASSERT(*tail_unsent >= 0);
20450 		if (*tail_unsent > 0) {
20451 			/*
20452 			 * We got here because we broke out of the above
20453 			 * loop due to of one of the following cases:
20454 			 *
20455 			 *   1. len < adjusted MSS (i.e. small),
20456 			 *   2. Sender SWS avoidance,
20457 			 *   3. max_pld is zero.
20458 			 *
20459 			 * We are done for this Multidata, so trim our
20460 			 * last payload buffer (if any) accordingly.
20461 			 */
20462 			if (md_pbuf != NULL)
20463 				md_pbuf->b_wptr -= *tail_unsent;
20464 		} else if (*usable > 0) {
20465 			*xmit_tail = (*xmit_tail)->b_cont;
20466 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20467 			    (uintptr_t)INT_MAX);
20468 			*tail_unsent = (int)MBLKL(*xmit_tail);
20469 			add_buffer = B_TRUE;
20470 		}
20471 
20472 		while (fw_mp_head) {
20473 			mp = fw_mp_head;
20474 			fw_mp_head = fw_mp_head->b_next;
20475 			mp->b_prev = mp->b_next = NULL;
20476 			freemsg(mp);
20477 		}
20478 		if (buf_trunked) {
20479 			TCP_STAT(tcp_mdt_discarded);
20480 			freeb(md_mp);
20481 			buf_trunked = B_FALSE;
20482 		}
20483 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20484 	    (tcp_mdt_chain || max_pld > 0));
20485 
20486 	if (md_mp_head != NULL) {
20487 		/* send everything down */
20488 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20489 		    &rconfirm);
20490 	}
20491 
20492 #undef PREP_NEW_MULTIDATA
20493 #undef PREP_NEW_PBUF
20494 #undef IPVER
20495 
20496 	IRE_REFRELE(ire);
20497 	return (0);
20498 }
20499 
20500 /*
20501  * A wrapper function for sending one or more Multidata messages down to
20502  * the module below ip; this routine does not release the reference of the
20503  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20504  */
20505 static void
20506 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20507     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20508 {
20509 	uint64_t delta;
20510 	nce_t *nce;
20511 
20512 	ASSERT(ire != NULL && ill != NULL);
20513 	ASSERT(ire->ire_stq != NULL);
20514 	ASSERT(md_mp_head != NULL);
20515 	ASSERT(rconfirm != NULL);
20516 
20517 	/* adjust MIBs and IRE timestamp */
20518 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20519 	tcp->tcp_obsegs += obsegs;
20520 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20521 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20522 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20523 
20524 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20525 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20526 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20527 	} else {
20528 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20529 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20530 	}
20531 
20532 	ire->ire_ob_pkt_count += obsegs;
20533 	if (ire->ire_ipif != NULL)
20534 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20535 	ire->ire_last_used_time = lbolt;
20536 
20537 	/* send it down */
20538 	putnext(ire->ire_stq, md_mp_head);
20539 
20540 	/* we're done for TCP/IPv4 */
20541 	if (tcp->tcp_ipversion == IPV4_VERSION)
20542 		return;
20543 
20544 	nce = ire->ire_nce;
20545 
20546 	ASSERT(nce != NULL);
20547 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20548 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20549 
20550 	/* reachability confirmation? */
20551 	if (*rconfirm) {
20552 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20553 		if (nce->nce_state != ND_REACHABLE) {
20554 			mutex_enter(&nce->nce_lock);
20555 			nce->nce_state = ND_REACHABLE;
20556 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20557 			mutex_exit(&nce->nce_lock);
20558 			(void) untimeout(nce->nce_timeout_id);
20559 			if (ip_debug > 2) {
20560 				/* ip1dbg */
20561 				pr_addr_dbg("tcp_multisend_data: state "
20562 				    "for %s changed to REACHABLE\n",
20563 				    AF_INET6, &ire->ire_addr_v6);
20564 			}
20565 		}
20566 		/* reset transport reachability confirmation */
20567 		*rconfirm = B_FALSE;
20568 	}
20569 
20570 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20571 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20572 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20573 
20574 	if (delta > (uint64_t)ill->ill_reachable_time) {
20575 		mutex_enter(&nce->nce_lock);
20576 		switch (nce->nce_state) {
20577 		case ND_REACHABLE:
20578 		case ND_STALE:
20579 			/*
20580 			 * ND_REACHABLE is identical to ND_STALE in this
20581 			 * specific case. If reachable time has expired for
20582 			 * this neighbor (delta is greater than reachable
20583 			 * time), conceptually, the neighbor cache is no
20584 			 * longer in REACHABLE state, but already in STALE
20585 			 * state.  So the correct transition here is to
20586 			 * ND_DELAY.
20587 			 */
20588 			nce->nce_state = ND_DELAY;
20589 			mutex_exit(&nce->nce_lock);
20590 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20591 			if (ip_debug > 3) {
20592 				/* ip2dbg */
20593 				pr_addr_dbg("tcp_multisend_data: state "
20594 				    "for %s changed to DELAY\n",
20595 				    AF_INET6, &ire->ire_addr_v6);
20596 			}
20597 			break;
20598 		case ND_DELAY:
20599 		case ND_PROBE:
20600 			mutex_exit(&nce->nce_lock);
20601 			/* Timers have already started */
20602 			break;
20603 		case ND_UNREACHABLE:
20604 			/*
20605 			 * ndp timer has detected that this nce is
20606 			 * unreachable and initiated deleting this nce
20607 			 * and all its associated IREs. This is a race
20608 			 * where we found the ire before it was deleted
20609 			 * and have just sent out a packet using this
20610 			 * unreachable nce.
20611 			 */
20612 			mutex_exit(&nce->nce_lock);
20613 			break;
20614 		default:
20615 			ASSERT(0);
20616 		}
20617 	}
20618 }
20619 
20620 /*
20621  * Derived from tcp_send_data().
20622  */
20623 static void
20624 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20625     int num_lso_seg)
20626 {
20627 	ipha_t		*ipha;
20628 	mblk_t		*ire_fp_mp;
20629 	uint_t		ire_fp_mp_len;
20630 	uint32_t	hcksum_txflags = 0;
20631 	ipaddr_t	src;
20632 	ipaddr_t	dst;
20633 	uint32_t	cksum;
20634 	uint16_t	*up;
20635 
20636 	ASSERT(DB_TYPE(mp) == M_DATA);
20637 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20638 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20639 	ASSERT(tcp->tcp_connp != NULL);
20640 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20641 
20642 	ipha = (ipha_t *)mp->b_rptr;
20643 	src = ipha->ipha_src;
20644 	dst = ipha->ipha_dst;
20645 
20646 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20647 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20648 	    num_lso_seg);
20649 #ifndef _BIG_ENDIAN
20650 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20651 #endif
20652 	if (tcp->tcp_snd_zcopy_aware) {
20653 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20654 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20655 			mp = tcp_zcopy_disable(tcp, mp);
20656 	}
20657 
20658 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20659 		ASSERT(ill->ill_hcksum_capab != NULL);
20660 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20661 	}
20662 
20663 	/*
20664 	 * Since the TCP checksum should be recalculated by h/w, we can just
20665 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20666 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20667 	 * The partial pseudo-header excludes TCP length, that was calculated
20668 	 * in tcp_send(), so to zero *up before further processing.
20669 	 */
20670 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20671 
20672 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20673 	*up = 0;
20674 
20675 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20676 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20677 
20678 	/*
20679 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
20680 	 */
20681 	DB_LSOFLAGS(mp) |= HW_LSO;
20682 	DB_LSOMSS(mp) = mss;
20683 
20684 	ipha->ipha_fragment_offset_and_flags |=
20685 	    (uint32_t)htons(ire->ire_frag_flag);
20686 
20687 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20688 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20689 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20690 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20691 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20692 
20693 	UPDATE_OB_PKT_COUNT(ire);
20694 	ire->ire_last_used_time = lbolt;
20695 	BUMP_MIB(&ip_mib, ipOutRequests);
20696 
20697 	if (ILL_DLS_CAPABLE(ill)) {
20698 		/*
20699 		 * Send the packet directly to DLD, where it may be queued
20700 		 * depending on the availability of transmit resources at
20701 		 * the media layer.
20702 		 */
20703 		IP_DLS_ILL_TX(ill, ipha, mp);
20704 	} else {
20705 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
20706 		DTRACE_PROBE4(ip4__physical__out__start,
20707 		    ill_t *, NULL, ill_t *, out_ill,
20708 		    ipha_t *, ipha, mblk_t *, mp);
20709 		FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
20710 		    NULL, out_ill, ipha, mp, mp);
20711 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20712 		if (mp != NULL)
20713 			putnext(ire->ire_stq, mp);
20714 	}
20715 }
20716 
20717 /*
20718  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20719  * scheme, and returns one of the following:
20720  *
20721  * -1 = failed allocation.
20722  *  0 = success; burst count reached, or usable send window is too small,
20723  *      and that we'd rather wait until later before sending again.
20724  *  1 = success; we are called from tcp_multisend(), and both usable send
20725  *      window and tail_unsent are greater than the MDT threshold, and thus
20726  *      Multidata Transmit should be used instead.
20727  */
20728 static int
20729 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20730     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20731     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20732     const int mdt_thres)
20733 {
20734 	int num_burst_seg = tcp->tcp_snd_burst;
20735 	ire_t		*ire = NULL;
20736 	ill_t		*ill = NULL;
20737 	mblk_t		*ire_fp_mp = NULL;
20738 	uint_t		ire_fp_mp_len = 0;
20739 	int		num_lso_seg = 1;
20740 	uint_t		lso_usable;
20741 	boolean_t	do_lso_send = B_FALSE;
20742 
20743 	/*
20744 	 * Check LSO capability before any further work. And the similar check
20745 	 * need to be done in for(;;) loop.
20746 	 * LSO will be deployed when therer is more than one mss of available
20747 	 * data and a burst transmission is allowed.
20748 	 */
20749 	if (tcp->tcp_lso &&
20750 	    (tcp->tcp_valid_bits == 0 ||
20751 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20752 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20753 		/*
20754 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20755 		 */
20756 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
20757 			/*
20758 			 * Enable LSO with this transmission.
20759 			 * Since IRE has been hold in
20760 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
20761 			 * should be called before return.
20762 			 */
20763 			do_lso_send = B_TRUE;
20764 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
20765 			ire_fp_mp_len = MBLKL(ire_fp_mp);
20766 			/* Round up to multiple of 4 */
20767 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
20768 		} else {
20769 			do_lso_send = B_FALSE;
20770 			ill = NULL;
20771 		}
20772 	}
20773 
20774 	for (;;) {
20775 		struct datab	*db;
20776 		tcph_t		*tcph;
20777 		uint32_t	sum;
20778 		mblk_t		*mp, *mp1;
20779 		uchar_t		*rptr;
20780 		int		len;
20781 
20782 		/*
20783 		 * If we're called by tcp_multisend(), and the amount of
20784 		 * sendable data as well as the size of current xmit_tail
20785 		 * is beyond the MDT threshold, return to the caller and
20786 		 * let the large data transmit be done using MDT.
20787 		 */
20788 		if (*usable > 0 && *usable > mdt_thres &&
20789 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20790 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20791 			ASSERT(tcp->tcp_mdt);
20792 			return (1);	/* success; do large send */
20793 		}
20794 
20795 		if (num_burst_seg == 0)
20796 			break;		/* success; burst count reached */
20797 
20798 		/*
20799 		 * Calculate the maximum payload length we can send in *one*
20800 		 * time.
20801 		 */
20802 		if (do_lso_send) {
20803 			/*
20804 			 * Check whether need to do LSO any more.
20805 			 */
20806 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20807 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
20808 				lso_usable = MIN(lso_usable,
20809 				    num_burst_seg * mss);
20810 
20811 				num_lso_seg = lso_usable / mss;
20812 				if (lso_usable % mss) {
20813 					num_lso_seg++;
20814 					tcp->tcp_last_sent_len = (ushort_t)
20815 					    (lso_usable % mss);
20816 				} else {
20817 					tcp->tcp_last_sent_len = (ushort_t)mss;
20818 				}
20819 			} else {
20820 				do_lso_send = B_FALSE;
20821 				num_lso_seg = 1;
20822 				lso_usable = mss;
20823 			}
20824 		}
20825 
20826 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
20827 
20828 		/*
20829 		 * Adjust num_burst_seg here.
20830 		 */
20831 		num_burst_seg -= num_lso_seg;
20832 
20833 		len = mss;
20834 		if (len > *usable) {
20835 			ASSERT(do_lso_send == B_FALSE);
20836 
20837 			len = *usable;
20838 			if (len <= 0) {
20839 				/* Terminate the loop */
20840 				break;	/* success; too small */
20841 			}
20842 			/*
20843 			 * Sender silly-window avoidance.
20844 			 * Ignore this if we are going to send a
20845 			 * zero window probe out.
20846 			 *
20847 			 * TODO: force data into microscopic window?
20848 			 *	==> (!pushed || (unsent > usable))
20849 			 */
20850 			if (len < (tcp->tcp_max_swnd >> 1) &&
20851 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20852 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20853 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20854 				/*
20855 				 * If the retransmit timer is not running
20856 				 * we start it so that we will retransmit
20857 				 * in the case when the the receiver has
20858 				 * decremented the window.
20859 				 */
20860 				if (*snxt == tcp->tcp_snxt &&
20861 				    *snxt == tcp->tcp_suna) {
20862 					/*
20863 					 * We are not supposed to send
20864 					 * anything.  So let's wait a little
20865 					 * bit longer before breaking SWS
20866 					 * avoidance.
20867 					 *
20868 					 * What should the value be?
20869 					 * Suggestion: MAX(init rexmit time,
20870 					 * tcp->tcp_rto)
20871 					 */
20872 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20873 				}
20874 				break;	/* success; too small */
20875 			}
20876 		}
20877 
20878 		tcph = tcp->tcp_tcph;
20879 
20880 		/*
20881 		 * The reason to adjust len here is that we need to set flags
20882 		 * and calculate checksum.
20883 		 */
20884 		if (do_lso_send)
20885 			len = lso_usable;
20886 
20887 		*usable -= len; /* Approximate - can be adjusted later */
20888 		if (*usable > 0)
20889 			tcph->th_flags[0] = TH_ACK;
20890 		else
20891 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20892 
20893 		/*
20894 		 * Prime pump for IP's checksumming on our behalf
20895 		 * Include the adjustment for a source route if any.
20896 		 */
20897 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20898 		sum = (sum >> 16) + (sum & 0xFFFF);
20899 		U16_TO_ABE16(sum, tcph->th_sum);
20900 
20901 		U32_TO_ABE32(*snxt, tcph->th_seq);
20902 
20903 		/*
20904 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20905 		 * set.  For the case when TCP_FSS_VALID is the only valid
20906 		 * bit (normal active close), branch off only when we think
20907 		 * that the FIN flag needs to be set.  Note for this case,
20908 		 * that (snxt + len) may not reflect the actual seg_len,
20909 		 * as len may be further reduced in tcp_xmit_mp().  If len
20910 		 * gets modified, we will end up here again.
20911 		 */
20912 		if (tcp->tcp_valid_bits != 0 &&
20913 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20914 		    ((*snxt + len) == tcp->tcp_fss))) {
20915 			uchar_t		*prev_rptr;
20916 			uint32_t	prev_snxt = tcp->tcp_snxt;
20917 
20918 			if (*tail_unsent == 0) {
20919 				ASSERT((*xmit_tail)->b_cont != NULL);
20920 				*xmit_tail = (*xmit_tail)->b_cont;
20921 				prev_rptr = (*xmit_tail)->b_rptr;
20922 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20923 				    (*xmit_tail)->b_rptr);
20924 			} else {
20925 				prev_rptr = (*xmit_tail)->b_rptr;
20926 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20927 				    *tail_unsent;
20928 			}
20929 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20930 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20931 			/* Restore tcp_snxt so we get amount sent right. */
20932 			tcp->tcp_snxt = prev_snxt;
20933 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20934 				/*
20935 				 * If the previous timestamp is still in use,
20936 				 * don't stomp on it.
20937 				 */
20938 				if ((*xmit_tail)->b_next == NULL) {
20939 					(*xmit_tail)->b_prev = local_time;
20940 					(*xmit_tail)->b_next =
20941 					    (mblk_t *)(uintptr_t)(*snxt);
20942 				}
20943 			} else
20944 				(*xmit_tail)->b_rptr = prev_rptr;
20945 
20946 			if (mp == NULL) {
20947 				if (ire != NULL)
20948 					IRE_REFRELE(ire);
20949 				return (-1);
20950 			}
20951 			mp1 = mp->b_cont;
20952 
20953 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
20954 				tcp->tcp_last_sent_len = (ushort_t)len;
20955 			while (mp1->b_cont) {
20956 				*xmit_tail = (*xmit_tail)->b_cont;
20957 				(*xmit_tail)->b_prev = local_time;
20958 				(*xmit_tail)->b_next =
20959 				    (mblk_t *)(uintptr_t)(*snxt);
20960 				mp1 = mp1->b_cont;
20961 			}
20962 			*snxt += len;
20963 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20964 			BUMP_LOCAL(tcp->tcp_obsegs);
20965 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20966 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20967 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20968 			tcp_send_data(tcp, q, mp);
20969 			continue;
20970 		}
20971 
20972 		*snxt += len;	/* Adjust later if we don't send all of len */
20973 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20974 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20975 
20976 		if (*tail_unsent) {
20977 			/* Are the bytes above us in flight? */
20978 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20979 			if (rptr != (*xmit_tail)->b_rptr) {
20980 				*tail_unsent -= len;
20981 				if (len <= mss) /* LSO is unusable */
20982 					tcp->tcp_last_sent_len = (ushort_t)len;
20983 				len += tcp_hdr_len;
20984 				if (tcp->tcp_ipversion == IPV4_VERSION)
20985 					tcp->tcp_ipha->ipha_length = htons(len);
20986 				else
20987 					tcp->tcp_ip6h->ip6_plen =
20988 					    htons(len -
20989 					    ((char *)&tcp->tcp_ip6h[1] -
20990 					    tcp->tcp_iphc));
20991 				mp = dupb(*xmit_tail);
20992 				if (mp == NULL) {
20993 					if (ire != NULL)
20994 						IRE_REFRELE(ire);
20995 					return (-1);	/* out_of_mem */
20996 				}
20997 				mp->b_rptr = rptr;
20998 				/*
20999 				 * If the old timestamp is no longer in use,
21000 				 * sample a new timestamp now.
21001 				 */
21002 				if ((*xmit_tail)->b_next == NULL) {
21003 					(*xmit_tail)->b_prev = local_time;
21004 					(*xmit_tail)->b_next =
21005 					    (mblk_t *)(uintptr_t)(*snxt-len);
21006 				}
21007 				goto must_alloc;
21008 			}
21009 		} else {
21010 			*xmit_tail = (*xmit_tail)->b_cont;
21011 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21012 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21013 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21014 			    (*xmit_tail)->b_rptr);
21015 		}
21016 
21017 		(*xmit_tail)->b_prev = local_time;
21018 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21019 
21020 		*tail_unsent -= len;
21021 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21022 			tcp->tcp_last_sent_len = (ushort_t)len;
21023 
21024 		len += tcp_hdr_len;
21025 		if (tcp->tcp_ipversion == IPV4_VERSION)
21026 			tcp->tcp_ipha->ipha_length = htons(len);
21027 		else
21028 			tcp->tcp_ip6h->ip6_plen = htons(len -
21029 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21030 
21031 		mp = dupb(*xmit_tail);
21032 		if (mp == NULL) {
21033 			if (ire != NULL)
21034 				IRE_REFRELE(ire);
21035 			return (-1);	/* out_of_mem */
21036 		}
21037 
21038 		len = tcp_hdr_len;
21039 		/*
21040 		 * There are four reasons to allocate a new hdr mblk:
21041 		 *  1) The bytes above us are in use by another packet
21042 		 *  2) We don't have good alignment
21043 		 *  3) The mblk is being shared
21044 		 *  4) We don't have enough room for a header
21045 		 */
21046 		rptr = mp->b_rptr - len;
21047 		if (!OK_32PTR(rptr) ||
21048 		    ((db = mp->b_datap), db->db_ref != 2) ||
21049 		    rptr < db->db_base + ire_fp_mp_len) {
21050 			/* NOTE: we assume allocb returns an OK_32PTR */
21051 
21052 		must_alloc:;
21053 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21054 			    tcp_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21055 			if (mp1 == NULL) {
21056 				freemsg(mp);
21057 				if (ire != NULL)
21058 					IRE_REFRELE(ire);
21059 				return (-1);	/* out_of_mem */
21060 			}
21061 			mp1->b_cont = mp;
21062 			mp = mp1;
21063 			/* Leave room for Link Level header */
21064 			len = tcp_hdr_len;
21065 			rptr = &mp->b_rptr[tcp_wroff_xtra + ire_fp_mp_len];
21066 			mp->b_wptr = &rptr[len];
21067 		}
21068 
21069 		/*
21070 		 * Fill in the header using the template header, and add
21071 		 * options such as time-stamp, ECN and/or SACK, as needed.
21072 		 */
21073 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21074 
21075 		mp->b_rptr = rptr;
21076 
21077 		if (*tail_unsent) {
21078 			int spill = *tail_unsent;
21079 
21080 			mp1 = mp->b_cont;
21081 			if (mp1 == NULL)
21082 				mp1 = mp;
21083 
21084 			/*
21085 			 * If we're a little short, tack on more mblks until
21086 			 * there is no more spillover.
21087 			 */
21088 			while (spill < 0) {
21089 				mblk_t *nmp;
21090 				int nmpsz;
21091 
21092 				nmp = (*xmit_tail)->b_cont;
21093 				nmpsz = MBLKL(nmp);
21094 
21095 				/*
21096 				 * Excess data in mblk; can we split it?
21097 				 * If MDT is enabled for the connection,
21098 				 * keep on splitting as this is a transient
21099 				 * send path.
21100 				 */
21101 				if (!do_lso_send && !tcp->tcp_mdt &&
21102 				    (spill + nmpsz > 0)) {
21103 					/*
21104 					 * Don't split if stream head was
21105 					 * told to break up larger writes
21106 					 * into smaller ones.
21107 					 */
21108 					if (tcp->tcp_maxpsz > 0)
21109 						break;
21110 
21111 					/*
21112 					 * Next mblk is less than SMSS/2
21113 					 * rounded up to nearest 64-byte;
21114 					 * let it get sent as part of the
21115 					 * next segment.
21116 					 */
21117 					if (tcp->tcp_localnet &&
21118 					    !tcp->tcp_cork &&
21119 					    (nmpsz < roundup((mss >> 1), 64)))
21120 						break;
21121 				}
21122 
21123 				*xmit_tail = nmp;
21124 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21125 				/* Stash for rtt use later */
21126 				(*xmit_tail)->b_prev = local_time;
21127 				(*xmit_tail)->b_next =
21128 				    (mblk_t *)(uintptr_t)(*snxt - len);
21129 				mp1->b_cont = dupb(*xmit_tail);
21130 				mp1 = mp1->b_cont;
21131 
21132 				spill += nmpsz;
21133 				if (mp1 == NULL) {
21134 					*tail_unsent = spill;
21135 					freemsg(mp);
21136 					if (ire != NULL)
21137 						IRE_REFRELE(ire);
21138 					return (-1);	/* out_of_mem */
21139 				}
21140 			}
21141 
21142 			/* Trim back any surplus on the last mblk */
21143 			if (spill >= 0) {
21144 				mp1->b_wptr -= spill;
21145 				*tail_unsent = spill;
21146 			} else {
21147 				/*
21148 				 * We did not send everything we could in
21149 				 * order to remain within the b_cont limit.
21150 				 */
21151 				*usable -= spill;
21152 				*snxt += spill;
21153 				tcp->tcp_last_sent_len += spill;
21154 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
21155 				/*
21156 				 * Adjust the checksum
21157 				 */
21158 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21159 				sum += spill;
21160 				sum = (sum >> 16) + (sum & 0xFFFF);
21161 				U16_TO_ABE16(sum, tcph->th_sum);
21162 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21163 					sum = ntohs(
21164 					    ((ipha_t *)rptr)->ipha_length) +
21165 					    spill;
21166 					((ipha_t *)rptr)->ipha_length =
21167 					    htons(sum);
21168 				} else {
21169 					sum = ntohs(
21170 					    ((ip6_t *)rptr)->ip6_plen) +
21171 					    spill;
21172 					((ip6_t *)rptr)->ip6_plen =
21173 					    htons(sum);
21174 				}
21175 				*tail_unsent = 0;
21176 			}
21177 		}
21178 		if (tcp->tcp_ip_forward_progress) {
21179 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21180 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21181 			tcp->tcp_ip_forward_progress = B_FALSE;
21182 		}
21183 
21184 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21185 		if (do_lso_send) {
21186 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21187 			    num_lso_seg);
21188 			tcp->tcp_obsegs += num_lso_seg;
21189 
21190 			TCP_STAT(tcp_lso_times);
21191 			TCP_STAT_UPDATE(tcp_lso_pkt_out, num_lso_seg);
21192 		} else {
21193 			tcp_send_data(tcp, q, mp);
21194 			BUMP_LOCAL(tcp->tcp_obsegs);
21195 		}
21196 	}
21197 
21198 	if (ire != NULL)
21199 		IRE_REFRELE(ire);
21200 	return (0);
21201 }
21202 
21203 /* Unlink and return any mblk that looks like it contains a MDT info */
21204 static mblk_t *
21205 tcp_mdt_info_mp(mblk_t *mp)
21206 {
21207 	mblk_t	*prev_mp;
21208 
21209 	for (;;) {
21210 		prev_mp = mp;
21211 		/* no more to process? */
21212 		if ((mp = mp->b_cont) == NULL)
21213 			break;
21214 
21215 		switch (DB_TYPE(mp)) {
21216 		case M_CTL:
21217 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21218 				continue;
21219 			ASSERT(prev_mp != NULL);
21220 			prev_mp->b_cont = mp->b_cont;
21221 			mp->b_cont = NULL;
21222 			return (mp);
21223 		default:
21224 			break;
21225 		}
21226 	}
21227 	return (mp);
21228 }
21229 
21230 /* MDT info update routine, called when IP notifies us about MDT */
21231 static void
21232 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21233 {
21234 	boolean_t prev_state;
21235 
21236 	/*
21237 	 * IP is telling us to abort MDT on this connection?  We know
21238 	 * this because the capability is only turned off when IP
21239 	 * encounters some pathological cases, e.g. link-layer change
21240 	 * where the new driver doesn't support MDT, or in situation
21241 	 * where MDT usage on the link-layer has been switched off.
21242 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21243 	 * if the link-layer doesn't support MDT, and if it does, it
21244 	 * will indicate that the feature is to be turned on.
21245 	 */
21246 	prev_state = tcp->tcp_mdt;
21247 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21248 	if (!tcp->tcp_mdt && !first) {
21249 		TCP_STAT(tcp_mdt_conn_halted3);
21250 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21251 		    (void *)tcp->tcp_connp));
21252 	}
21253 
21254 	/*
21255 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21256 	 * so disable MDT otherwise.  The checks are done here
21257 	 * and in tcp_wput_data().
21258 	 */
21259 	if (tcp->tcp_mdt &&
21260 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21261 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21262 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21263 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21264 		tcp->tcp_mdt = B_FALSE;
21265 
21266 	if (tcp->tcp_mdt) {
21267 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21268 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21269 			    "version (%d), expected version is %d",
21270 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21271 			tcp->tcp_mdt = B_FALSE;
21272 			return;
21273 		}
21274 
21275 		/*
21276 		 * We need the driver to be able to handle at least three
21277 		 * spans per packet in order for tcp MDT to be utilized.
21278 		 * The first is for the header portion, while the rest are
21279 		 * needed to handle a packet that straddles across two
21280 		 * virtually non-contiguous buffers; a typical tcp packet
21281 		 * therefore consists of only two spans.  Note that we take
21282 		 * a zero as "don't care".
21283 		 */
21284 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21285 		    mdt_capab->ill_mdt_span_limit < 3) {
21286 			tcp->tcp_mdt = B_FALSE;
21287 			return;
21288 		}
21289 
21290 		/* a zero means driver wants default value */
21291 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21292 		    tcp_mdt_max_pbufs);
21293 		if (tcp->tcp_mdt_max_pld == 0)
21294 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
21295 
21296 		/* ensure 32-bit alignment */
21297 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
21298 		    mdt_capab->ill_mdt_hdr_head), 4);
21299 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
21300 		    mdt_capab->ill_mdt_hdr_tail), 4);
21301 
21302 		if (!first && !prev_state) {
21303 			TCP_STAT(tcp_mdt_conn_resumed2);
21304 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21305 			    (void *)tcp->tcp_connp));
21306 		}
21307 	}
21308 }
21309 
21310 /* Unlink and return any mblk that looks like it contains a LSO info */
21311 static mblk_t *
21312 tcp_lso_info_mp(mblk_t *mp)
21313 {
21314 	mblk_t	*prev_mp;
21315 
21316 	for (;;) {
21317 		prev_mp = mp;
21318 		/* no more to process? */
21319 		if ((mp = mp->b_cont) == NULL)
21320 			break;
21321 
21322 		switch (DB_TYPE(mp)) {
21323 		case M_CTL:
21324 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21325 				continue;
21326 			ASSERT(prev_mp != NULL);
21327 			prev_mp->b_cont = mp->b_cont;
21328 			mp->b_cont = NULL;
21329 			return (mp);
21330 		default:
21331 			break;
21332 		}
21333 	}
21334 
21335 	return (mp);
21336 }
21337 
21338 /* LSO info update routine, called when IP notifies us about LSO */
21339 static void
21340 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21341 {
21342 	/*
21343 	 * IP is telling us to abort LSO on this connection?  We know
21344 	 * this because the capability is only turned off when IP
21345 	 * encounters some pathological cases, e.g. link-layer change
21346 	 * where the new NIC/driver doesn't support LSO, or in situation
21347 	 * where LSO usage on the link-layer has been switched off.
21348 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21349 	 * if the link-layer doesn't support LSO, and if it does, it
21350 	 * will indicate that the feature is to be turned on.
21351 	 */
21352 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21353 	TCP_STAT(tcp_lso_enabled);
21354 
21355 	/*
21356 	 * We currently only support LSO on simple TCP/IPv4,
21357 	 * so disable LSO otherwise.  The checks are done here
21358 	 * and in tcp_wput_data().
21359 	 */
21360 	if (tcp->tcp_lso &&
21361 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21362 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21363 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21364 		tcp->tcp_lso = B_FALSE;
21365 		TCP_STAT(tcp_lso_disabled);
21366 	} else {
21367 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21368 		    lso_capab->ill_lso_max);
21369 	}
21370 }
21371 
21372 static void
21373 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21374 {
21375 	conn_t *connp = tcp->tcp_connp;
21376 
21377 	ASSERT(ire != NULL);
21378 
21379 	/*
21380 	 * We may be in the fastpath here, and although we essentially do
21381 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21382 	 * we try to keep things as brief as possible.  After all, these
21383 	 * are only best-effort checks, and we do more thorough ones prior
21384 	 * to calling tcp_send()/tcp_multisend().
21385 	 */
21386 	if ((ip_lso_outbound || ip_multidata_outbound) && check_lso_mdt &&
21387 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21388 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21389 	    !(ire->ire_flags & RTF_MULTIRT) &&
21390 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
21391 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21392 		if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21393 			/* Cache the result */
21394 			connp->conn_lso_ok = B_TRUE;
21395 
21396 			ASSERT(ill->ill_lso_capab != NULL);
21397 			if (!ill->ill_lso_capab->ill_lso_on) {
21398 				ill->ill_lso_capab->ill_lso_on = 1;
21399 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21400 				    "LSO for interface %s\n", (void *)connp,
21401 				    ill->ill_name));
21402 			}
21403 			tcp_lso_update(tcp, ill->ill_lso_capab);
21404 		} else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) {
21405 			/* Cache the result */
21406 			connp->conn_mdt_ok = B_TRUE;
21407 
21408 			ASSERT(ill->ill_mdt_capab != NULL);
21409 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21410 				ill->ill_mdt_capab->ill_mdt_on = 1;
21411 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21412 				    "MDT for interface %s\n", (void *)connp,
21413 				    ill->ill_name));
21414 			}
21415 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21416 		}
21417 	}
21418 
21419 	/*
21420 	 * The goal is to reduce the number of generated tcp segments by
21421 	 * setting the maxpsz multiplier to 0; this will have an affect on
21422 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21423 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21424 	 * of outbound segments and incoming ACKs, thus allowing for better
21425 	 * network and system performance.  In contrast the legacy behavior
21426 	 * may result in sending less than SMSS size, because the last mblk
21427 	 * for some packets may have more data than needed to make up SMSS,
21428 	 * and the legacy code refused to "split" it.
21429 	 *
21430 	 * We apply the new behavior on following situations:
21431 	 *
21432 	 *   1) Loopback connections,
21433 	 *   2) Connections in which the remote peer is not on local subnet,
21434 	 *   3) Local subnet connections over the bge interface (see below).
21435 	 *
21436 	 * Ideally, we would like this behavior to apply for interfaces other
21437 	 * than bge.  However, doing so would negatively impact drivers which
21438 	 * perform dynamic mapping and unmapping of DMA resources, which are
21439 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21440 	 * packet will be generated by tcp).  The bge driver does not suffer
21441 	 * from this, as it copies the mblks into pre-mapped buffers, and
21442 	 * therefore does not require more I/O resources than before.
21443 	 *
21444 	 * Otherwise, this behavior is present on all network interfaces when
21445 	 * the destination endpoint is non-local, since reducing the number
21446 	 * of packets in general is good for the network.
21447 	 *
21448 	 * TODO We need to remove this hard-coded conditional for bge once
21449 	 *	a better "self-tuning" mechanism, or a way to comprehend
21450 	 *	the driver transmit strategy is devised.  Until the solution
21451 	 *	is found and well understood, we live with this hack.
21452 	 */
21453 	if (!tcp_static_maxpsz &&
21454 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21455 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21456 		/* override the default value */
21457 		tcp->tcp_maxpsz = 0;
21458 
21459 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21460 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21461 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21462 	}
21463 
21464 	/* set the stream head parameters accordingly */
21465 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21466 }
21467 
21468 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21469 static void
21470 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21471 {
21472 	uchar_t	fval = *mp->b_rptr;
21473 	mblk_t	*tail;
21474 	queue_t	*q = tcp->tcp_wq;
21475 
21476 	/* TODO: How should flush interact with urgent data? */
21477 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21478 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21479 		/*
21480 		 * Flush only data that has not yet been put on the wire.  If
21481 		 * we flush data that we have already transmitted, life, as we
21482 		 * know it, may come to an end.
21483 		 */
21484 		tail = tcp->tcp_xmit_tail;
21485 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21486 		tcp->tcp_xmit_tail_unsent = 0;
21487 		tcp->tcp_unsent = 0;
21488 		if (tail->b_wptr != tail->b_rptr)
21489 			tail = tail->b_cont;
21490 		if (tail) {
21491 			mblk_t **excess = &tcp->tcp_xmit_head;
21492 			for (;;) {
21493 				mblk_t *mp1 = *excess;
21494 				if (mp1 == tail)
21495 					break;
21496 				tcp->tcp_xmit_tail = mp1;
21497 				tcp->tcp_xmit_last = mp1;
21498 				excess = &mp1->b_cont;
21499 			}
21500 			*excess = NULL;
21501 			tcp_close_mpp(&tail);
21502 			if (tcp->tcp_snd_zcopy_aware)
21503 				tcp_zcopy_notify(tcp);
21504 		}
21505 		/*
21506 		 * We have no unsent data, so unsent must be less than
21507 		 * tcp_xmit_lowater, so re-enable flow.
21508 		 */
21509 		if (tcp->tcp_flow_stopped) {
21510 			tcp_clrqfull(tcp);
21511 		}
21512 	}
21513 	/*
21514 	 * TODO: you can't just flush these, you have to increase rwnd for one
21515 	 * thing.  For another, how should urgent data interact?
21516 	 */
21517 	if (fval & FLUSHR) {
21518 		*mp->b_rptr = fval & ~FLUSHW;
21519 		/* XXX */
21520 		qreply(q, mp);
21521 		return;
21522 	}
21523 	freemsg(mp);
21524 }
21525 
21526 /*
21527  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21528  * messages.
21529  */
21530 static void
21531 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21532 {
21533 	mblk_t	*mp1;
21534 	STRUCT_HANDLE(strbuf, sb);
21535 	uint16_t port;
21536 	queue_t 	*q = tcp->tcp_wq;
21537 	in6_addr_t	v6addr;
21538 	ipaddr_t	v4addr;
21539 	uint32_t	flowinfo = 0;
21540 	int		addrlen;
21541 
21542 	/* Make sure it is one of ours. */
21543 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21544 	case TI_GETMYNAME:
21545 	case TI_GETPEERNAME:
21546 		break;
21547 	default:
21548 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21549 		return;
21550 	}
21551 	switch (mi_copy_state(q, mp, &mp1)) {
21552 	case -1:
21553 		return;
21554 	case MI_COPY_CASE(MI_COPY_IN, 1):
21555 		break;
21556 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21557 		/* Copy out the strbuf. */
21558 		mi_copyout(q, mp);
21559 		return;
21560 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21561 		/* All done. */
21562 		mi_copy_done(q, mp, 0);
21563 		return;
21564 	default:
21565 		mi_copy_done(q, mp, EPROTO);
21566 		return;
21567 	}
21568 	/* Check alignment of the strbuf */
21569 	if (!OK_32PTR(mp1->b_rptr)) {
21570 		mi_copy_done(q, mp, EINVAL);
21571 		return;
21572 	}
21573 
21574 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21575 	    (void *)mp1->b_rptr);
21576 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21577 
21578 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21579 		mi_copy_done(q, mp, EINVAL);
21580 		return;
21581 	}
21582 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21583 	case TI_GETMYNAME:
21584 		if (tcp->tcp_family == AF_INET) {
21585 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21586 				v4addr = tcp->tcp_ipha->ipha_src;
21587 			} else {
21588 				/* can't return an address in this case */
21589 				v4addr = 0;
21590 			}
21591 		} else {
21592 			/* tcp->tcp_family == AF_INET6 */
21593 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21594 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21595 				    &v6addr);
21596 			} else {
21597 				v6addr = tcp->tcp_ip6h->ip6_src;
21598 			}
21599 		}
21600 		port = tcp->tcp_lport;
21601 		break;
21602 	case TI_GETPEERNAME:
21603 		if (tcp->tcp_family == AF_INET) {
21604 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21605 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21606 				    v4addr);
21607 			} else {
21608 				/* can't return an address in this case */
21609 				v4addr = 0;
21610 			}
21611 		} else {
21612 			/* tcp->tcp_family == AF_INET6) */
21613 			v6addr = tcp->tcp_remote_v6;
21614 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21615 				/*
21616 				 * No flowinfo if tcp->tcp_ipversion is v4.
21617 				 *
21618 				 * flowinfo was already initialized to zero
21619 				 * where it was declared above, so only
21620 				 * set it if ipversion is v6.
21621 				 */
21622 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21623 				    ~IPV6_VERS_AND_FLOW_MASK;
21624 			}
21625 		}
21626 		port = tcp->tcp_fport;
21627 		break;
21628 	default:
21629 		mi_copy_done(q, mp, EPROTO);
21630 		return;
21631 	}
21632 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21633 	if (!mp1)
21634 		return;
21635 
21636 	if (tcp->tcp_family == AF_INET) {
21637 		sin_t *sin;
21638 
21639 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21640 		sin = (sin_t *)mp1->b_rptr;
21641 		mp1->b_wptr = (uchar_t *)&sin[1];
21642 		*sin = sin_null;
21643 		sin->sin_family = AF_INET;
21644 		sin->sin_addr.s_addr = v4addr;
21645 		sin->sin_port = port;
21646 	} else {
21647 		/* tcp->tcp_family == AF_INET6 */
21648 		sin6_t *sin6;
21649 
21650 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21651 		sin6 = (sin6_t *)mp1->b_rptr;
21652 		mp1->b_wptr = (uchar_t *)&sin6[1];
21653 		*sin6 = sin6_null;
21654 		sin6->sin6_family = AF_INET6;
21655 		sin6->sin6_flowinfo = flowinfo;
21656 		sin6->sin6_addr = v6addr;
21657 		sin6->sin6_port = port;
21658 	}
21659 	/* Copy out the address */
21660 	mi_copyout(q, mp);
21661 }
21662 
21663 /*
21664  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21665  * messages.
21666  */
21667 /* ARGSUSED */
21668 static void
21669 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21670 {
21671 	conn_t 	*connp = (conn_t *)arg;
21672 	tcp_t	*tcp = connp->conn_tcp;
21673 	queue_t	*q = tcp->tcp_wq;
21674 	struct iocblk	*iocp;
21675 
21676 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21677 	/*
21678 	 * Try and ASSERT the minimum possible references on the
21679 	 * conn early enough. Since we are executing on write side,
21680 	 * the connection is obviously not detached and that means
21681 	 * there is a ref each for TCP and IP. Since we are behind
21682 	 * the squeue, the minimum references needed are 3. If the
21683 	 * conn is in classifier hash list, there should be an
21684 	 * extra ref for that (we check both the possibilities).
21685 	 */
21686 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21687 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21688 
21689 	iocp = (struct iocblk *)mp->b_rptr;
21690 	switch (iocp->ioc_cmd) {
21691 	case TCP_IOC_DEFAULT_Q:
21692 		/* Wants to be the default wq. */
21693 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
21694 			iocp->ioc_error = EPERM;
21695 			iocp->ioc_count = 0;
21696 			mp->b_datap->db_type = M_IOCACK;
21697 			qreply(q, mp);
21698 			return;
21699 		}
21700 		tcp_def_q_set(tcp, mp);
21701 		return;
21702 	case _SIOCSOCKFALLBACK:
21703 		/*
21704 		 * Either sockmod is about to be popped and the socket
21705 		 * would now be treated as a plain stream, or a module
21706 		 * is about to be pushed so we could no longer use read-
21707 		 * side synchronous streams for fused loopback tcp.
21708 		 * Drain any queued data and disable direct sockfs
21709 		 * interface from now on.
21710 		 */
21711 		if (!tcp->tcp_issocket) {
21712 			DB_TYPE(mp) = M_IOCNAK;
21713 			iocp->ioc_error = EINVAL;
21714 		} else {
21715 #ifdef	_ILP32
21716 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21717 #else
21718 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21719 #endif
21720 			/*
21721 			 * Insert this socket into the acceptor hash.
21722 			 * We might need it for T_CONN_RES message
21723 			 */
21724 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21725 
21726 			if (tcp->tcp_fused) {
21727 				/*
21728 				 * This is a fused loopback tcp; disable
21729 				 * read-side synchronous streams interface
21730 				 * and drain any queued data.  It is okay
21731 				 * to do this for non-synchronous streams
21732 				 * fused tcp as well.
21733 				 */
21734 				tcp_fuse_disable_pair(tcp, B_FALSE);
21735 			}
21736 			tcp->tcp_issocket = B_FALSE;
21737 			TCP_STAT(tcp_sock_fallback);
21738 
21739 			DB_TYPE(mp) = M_IOCACK;
21740 			iocp->ioc_error = 0;
21741 		}
21742 		iocp->ioc_count = 0;
21743 		iocp->ioc_rval = 0;
21744 		qreply(q, mp);
21745 		return;
21746 	}
21747 	CALL_IP_WPUT(connp, q, mp);
21748 }
21749 
21750 /*
21751  * This routine is called by tcp_wput() to handle all TPI requests.
21752  */
21753 /* ARGSUSED */
21754 static void
21755 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21756 {
21757 	conn_t 	*connp = (conn_t *)arg;
21758 	tcp_t	*tcp = connp->conn_tcp;
21759 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21760 	uchar_t *rptr;
21761 	t_scalar_t type;
21762 	int len;
21763 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21764 
21765 	/*
21766 	 * Try and ASSERT the minimum possible references on the
21767 	 * conn early enough. Since we are executing on write side,
21768 	 * the connection is obviously not detached and that means
21769 	 * there is a ref each for TCP and IP. Since we are behind
21770 	 * the squeue, the minimum references needed are 3. If the
21771 	 * conn is in classifier hash list, there should be an
21772 	 * extra ref for that (we check both the possibilities).
21773 	 */
21774 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21775 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21776 
21777 	rptr = mp->b_rptr;
21778 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21779 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21780 		type = ((union T_primitives *)rptr)->type;
21781 		if (type == T_EXDATA_REQ) {
21782 			uint32_t msize = msgdsize(mp->b_cont);
21783 
21784 			len = msize - 1;
21785 			if (len < 0) {
21786 				freemsg(mp);
21787 				return;
21788 			}
21789 			/*
21790 			 * Try to force urgent data out on the wire.
21791 			 * Even if we have unsent data this will
21792 			 * at least send the urgent flag.
21793 			 * XXX does not handle more flag correctly.
21794 			 */
21795 			len += tcp->tcp_unsent;
21796 			len += tcp->tcp_snxt;
21797 			tcp->tcp_urg = len;
21798 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21799 
21800 			/* Bypass tcp protocol for fused tcp loopback */
21801 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21802 				return;
21803 		} else if (type != T_DATA_REQ) {
21804 			goto non_urgent_data;
21805 		}
21806 		/* TODO: options, flags, ... from user */
21807 		/* Set length to zero for reclamation below */
21808 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21809 		freeb(mp);
21810 		return;
21811 	} else {
21812 		if (tcp->tcp_debug) {
21813 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21814 			    "tcp_wput_proto, dropping one...");
21815 		}
21816 		freemsg(mp);
21817 		return;
21818 	}
21819 
21820 non_urgent_data:
21821 
21822 	switch ((int)tprim->type) {
21823 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21824 		/*
21825 		 * save the kssl_ent_t from the next block, and convert this
21826 		 * back to a normal bind_req.
21827 		 */
21828 		if (mp->b_cont != NULL) {
21829 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21830 
21831 			if (tcp->tcp_kssl_ent != NULL) {
21832 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21833 				    KSSL_NO_PROXY);
21834 				tcp->tcp_kssl_ent = NULL;
21835 			}
21836 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21837 			    sizeof (kssl_ent_t));
21838 			kssl_hold_ent(tcp->tcp_kssl_ent);
21839 			freemsg(mp->b_cont);
21840 			mp->b_cont = NULL;
21841 		}
21842 		tprim->type = T_BIND_REQ;
21843 
21844 	/* FALLTHROUGH */
21845 	case O_T_BIND_REQ:	/* bind request */
21846 	case T_BIND_REQ:	/* new semantics bind request */
21847 		tcp_bind(tcp, mp);
21848 		break;
21849 	case T_UNBIND_REQ:	/* unbind request */
21850 		tcp_unbind(tcp, mp);
21851 		break;
21852 	case O_T_CONN_RES:	/* old connection response XXX */
21853 	case T_CONN_RES:	/* connection response */
21854 		tcp_accept(tcp, mp);
21855 		break;
21856 	case T_CONN_REQ:	/* connection request */
21857 		tcp_connect(tcp, mp);
21858 		break;
21859 	case T_DISCON_REQ:	/* disconnect request */
21860 		tcp_disconnect(tcp, mp);
21861 		break;
21862 	case T_CAPABILITY_REQ:
21863 		tcp_capability_req(tcp, mp);	/* capability request */
21864 		break;
21865 	case T_INFO_REQ:	/* information request */
21866 		tcp_info_req(tcp, mp);
21867 		break;
21868 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21869 		/* Only IP is allowed to return meaningful value */
21870 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21871 		break;
21872 	case T_OPTMGMT_REQ:
21873 		/*
21874 		 * Note:  no support for snmpcom_req() through new
21875 		 * T_OPTMGMT_REQ. See comments in ip.c
21876 		 */
21877 		/* Only IP is allowed to return meaningful value */
21878 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21879 		break;
21880 
21881 	case T_UNITDATA_REQ:	/* unitdata request */
21882 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21883 		break;
21884 	case T_ORDREL_REQ:	/* orderly release req */
21885 		freemsg(mp);
21886 
21887 		if (tcp->tcp_fused)
21888 			tcp_unfuse(tcp);
21889 
21890 		if (tcp_xmit_end(tcp) != 0) {
21891 			/*
21892 			 * We were crossing FINs and got a reset from
21893 			 * the other side. Just ignore it.
21894 			 */
21895 			if (tcp->tcp_debug) {
21896 				(void) strlog(TCP_MOD_ID, 0, 1,
21897 				    SL_ERROR|SL_TRACE,
21898 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21899 				    "state %s",
21900 				    tcp_display(tcp, NULL,
21901 				    DISP_ADDR_AND_PORT));
21902 			}
21903 		}
21904 		break;
21905 	case T_ADDR_REQ:
21906 		tcp_addr_req(tcp, mp);
21907 		break;
21908 	default:
21909 		if (tcp->tcp_debug) {
21910 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21911 			    "tcp_wput_proto, bogus TPI msg, type %d",
21912 			    tprim->type);
21913 		}
21914 		/*
21915 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21916 		 * to recover.
21917 		 */
21918 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21919 		break;
21920 	}
21921 }
21922 
21923 /*
21924  * The TCP write service routine should never be called...
21925  */
21926 /* ARGSUSED */
21927 static void
21928 tcp_wsrv(queue_t *q)
21929 {
21930 	TCP_STAT(tcp_wsrv_called);
21931 }
21932 
21933 /* Non overlapping byte exchanger */
21934 static void
21935 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21936 {
21937 	uchar_t	uch;
21938 
21939 	while (len-- > 0) {
21940 		uch = a[len];
21941 		a[len] = b[len];
21942 		b[len] = uch;
21943 	}
21944 }
21945 
21946 /*
21947  * Send out a control packet on the tcp connection specified.  This routine
21948  * is typically called where we need a simple ACK or RST generated.
21949  */
21950 static void
21951 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21952 {
21953 	uchar_t		*rptr;
21954 	tcph_t		*tcph;
21955 	ipha_t		*ipha = NULL;
21956 	ip6_t		*ip6h = NULL;
21957 	uint32_t	sum;
21958 	int		tcp_hdr_len;
21959 	int		tcp_ip_hdr_len;
21960 	mblk_t		*mp;
21961 
21962 	/*
21963 	 * Save sum for use in source route later.
21964 	 */
21965 	ASSERT(tcp != NULL);
21966 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21967 	tcp_hdr_len = tcp->tcp_hdr_len;
21968 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21969 
21970 	/* If a text string is passed in with the request, pass it to strlog. */
21971 	if (str != NULL && tcp->tcp_debug) {
21972 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21973 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21974 		    str, seq, ack, ctl);
21975 	}
21976 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21977 	    BPRI_MED);
21978 	if (mp == NULL) {
21979 		return;
21980 	}
21981 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21982 	mp->b_rptr = rptr;
21983 	mp->b_wptr = &rptr[tcp_hdr_len];
21984 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21985 
21986 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21987 		ipha = (ipha_t *)rptr;
21988 		ipha->ipha_length = htons(tcp_hdr_len);
21989 	} else {
21990 		ip6h = (ip6_t *)rptr;
21991 		ASSERT(tcp != NULL);
21992 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21993 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21994 	}
21995 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21996 	tcph->th_flags[0] = (uint8_t)ctl;
21997 	if (ctl & TH_RST) {
21998 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21999 		BUMP_MIB(&tcp_mib, tcpOutControl);
22000 		/*
22001 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22002 		 */
22003 		if (tcp->tcp_snd_ts_ok &&
22004 		    tcp->tcp_state > TCPS_SYN_SENT) {
22005 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22006 			*(mp->b_wptr) = TCPOPT_EOL;
22007 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22008 				ipha->ipha_length = htons(tcp_hdr_len -
22009 				    TCPOPT_REAL_TS_LEN);
22010 			} else {
22011 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22012 				    TCPOPT_REAL_TS_LEN);
22013 			}
22014 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22015 			sum -= TCPOPT_REAL_TS_LEN;
22016 		}
22017 	}
22018 	if (ctl & TH_ACK) {
22019 		if (tcp->tcp_snd_ts_ok) {
22020 			U32_TO_BE32(lbolt,
22021 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22022 			U32_TO_BE32(tcp->tcp_ts_recent,
22023 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22024 		}
22025 
22026 		/* Update the latest receive window size in TCP header. */
22027 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22028 		    tcph->th_win);
22029 		tcp->tcp_rack = ack;
22030 		tcp->tcp_rack_cnt = 0;
22031 		BUMP_MIB(&tcp_mib, tcpOutAck);
22032 	}
22033 	BUMP_LOCAL(tcp->tcp_obsegs);
22034 	U32_TO_BE32(seq, tcph->th_seq);
22035 	U32_TO_BE32(ack, tcph->th_ack);
22036 	/*
22037 	 * Include the adjustment for a source route if any.
22038 	 */
22039 	sum = (sum >> 16) + (sum & 0xFFFF);
22040 	U16_TO_BE16(sum, tcph->th_sum);
22041 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22042 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22043 }
22044 
22045 /*
22046  * If this routine returns B_TRUE, TCP can generate a RST in response
22047  * to a segment.  If it returns B_FALSE, TCP should not respond.
22048  */
22049 static boolean_t
22050 tcp_send_rst_chk(void)
22051 {
22052 	clock_t	now;
22053 
22054 	/*
22055 	 * TCP needs to protect itself from generating too many RSTs.
22056 	 * This can be a DoS attack by sending us random segments
22057 	 * soliciting RSTs.
22058 	 *
22059 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22060 	 * in each 1 second interval.  In this way, TCP still generate
22061 	 * RSTs in normal cases but when under attack, the impact is
22062 	 * limited.
22063 	 */
22064 	if (tcp_rst_sent_rate_enabled != 0) {
22065 		now = lbolt;
22066 		/* lbolt can wrap around. */
22067 		if ((tcp_last_rst_intrvl > now) ||
22068 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
22069 			tcp_last_rst_intrvl = now;
22070 			tcp_rst_cnt = 1;
22071 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
22072 			return (B_FALSE);
22073 		}
22074 	}
22075 	return (B_TRUE);
22076 }
22077 
22078 /*
22079  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22080  */
22081 static void
22082 tcp_ip_ire_mark_advice(tcp_t *tcp)
22083 {
22084 	mblk_t *mp;
22085 	ipic_t *ipic;
22086 
22087 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22088 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22089 		    &ipic);
22090 	} else {
22091 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22092 		    &ipic);
22093 	}
22094 	if (mp == NULL)
22095 		return;
22096 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22097 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22098 }
22099 
22100 /*
22101  * Return an IP advice ioctl mblk and set ipic to be the pointer
22102  * to the advice structure.
22103  */
22104 static mblk_t *
22105 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22106 {
22107 	struct iocblk *ioc;
22108 	mblk_t *mp, *mp1;
22109 
22110 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22111 	if (mp == NULL)
22112 		return (NULL);
22113 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22114 	*ipic = (ipic_t *)mp->b_rptr;
22115 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22116 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22117 
22118 	bcopy(addr, *ipic + 1, addr_len);
22119 
22120 	(*ipic)->ipic_addr_length = addr_len;
22121 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22122 
22123 	mp1 = mkiocb(IP_IOCTL);
22124 	if (mp1 == NULL) {
22125 		freemsg(mp);
22126 		return (NULL);
22127 	}
22128 	mp1->b_cont = mp;
22129 	ioc = (struct iocblk *)mp1->b_rptr;
22130 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22131 
22132 	return (mp1);
22133 }
22134 
22135 /*
22136  * Generate a reset based on an inbound packet for which there is no active
22137  * tcp state that we can find.
22138  *
22139  * IPSEC NOTE : Try to send the reply with the same protection as it came
22140  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22141  * the packet will go out at the same level of protection as it came in by
22142  * converting the IPSEC_IN to IPSEC_OUT.
22143  */
22144 static void
22145 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22146     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid)
22147 {
22148 	ipha_t		*ipha = NULL;
22149 	ip6_t		*ip6h = NULL;
22150 	ushort_t	len;
22151 	tcph_t		*tcph;
22152 	int		i;
22153 	mblk_t		*ipsec_mp;
22154 	boolean_t	mctl_present;
22155 	ipic_t		*ipic;
22156 	ipaddr_t	v4addr;
22157 	in6_addr_t	v6addr;
22158 	int		addr_len;
22159 	void		*addr;
22160 	queue_t		*q = tcp_g_q;
22161 	tcp_t		*tcp = Q_TO_TCP(q);
22162 	cred_t		*cr;
22163 	mblk_t		*nmp;
22164 
22165 	if (!tcp_send_rst_chk()) {
22166 		tcp_rst_unsent++;
22167 		freemsg(mp);
22168 		return;
22169 	}
22170 
22171 	if (mp->b_datap->db_type == M_CTL) {
22172 		ipsec_mp = mp;
22173 		mp = mp->b_cont;
22174 		mctl_present = B_TRUE;
22175 	} else {
22176 		ipsec_mp = mp;
22177 		mctl_present = B_FALSE;
22178 	}
22179 
22180 	if (str && q && tcp_dbg) {
22181 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22182 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22183 		    "flags 0x%x",
22184 		    str, seq, ack, ctl);
22185 	}
22186 	if (mp->b_datap->db_ref != 1) {
22187 		mblk_t *mp1 = copyb(mp);
22188 		freemsg(mp);
22189 		mp = mp1;
22190 		if (!mp) {
22191 			if (mctl_present)
22192 				freeb(ipsec_mp);
22193 			return;
22194 		} else {
22195 			if (mctl_present) {
22196 				ipsec_mp->b_cont = mp;
22197 			} else {
22198 				ipsec_mp = mp;
22199 			}
22200 		}
22201 	} else if (mp->b_cont) {
22202 		freemsg(mp->b_cont);
22203 		mp->b_cont = NULL;
22204 	}
22205 	/*
22206 	 * We skip reversing source route here.
22207 	 * (for now we replace all IP options with EOL)
22208 	 */
22209 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22210 		ipha = (ipha_t *)mp->b_rptr;
22211 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22212 			mp->b_rptr[i] = IPOPT_EOL;
22213 		/*
22214 		 * Make sure that src address isn't flagrantly invalid.
22215 		 * Not all broadcast address checking for the src address
22216 		 * is possible, since we don't know the netmask of the src
22217 		 * addr.  No check for destination address is done, since
22218 		 * IP will not pass up a packet with a broadcast dest
22219 		 * address to TCP.  Similar checks are done below for IPv6.
22220 		 */
22221 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22222 		    CLASSD(ipha->ipha_src)) {
22223 			freemsg(ipsec_mp);
22224 			BUMP_MIB(&ip_mib, ipInDiscards);
22225 			return;
22226 		}
22227 	} else {
22228 		ip6h = (ip6_t *)mp->b_rptr;
22229 
22230 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22231 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22232 			freemsg(ipsec_mp);
22233 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
22234 			return;
22235 		}
22236 
22237 		/* Remove any extension headers assuming partial overlay */
22238 		if (ip_hdr_len > IPV6_HDR_LEN) {
22239 			uint8_t *to;
22240 
22241 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22242 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22243 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22244 			ip_hdr_len = IPV6_HDR_LEN;
22245 			ip6h = (ip6_t *)mp->b_rptr;
22246 			ip6h->ip6_nxt = IPPROTO_TCP;
22247 		}
22248 	}
22249 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22250 	if (tcph->th_flags[0] & TH_RST) {
22251 		freemsg(ipsec_mp);
22252 		return;
22253 	}
22254 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22255 	len = ip_hdr_len + sizeof (tcph_t);
22256 	mp->b_wptr = &mp->b_rptr[len];
22257 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22258 		ipha->ipha_length = htons(len);
22259 		/* Swap addresses */
22260 		v4addr = ipha->ipha_src;
22261 		ipha->ipha_src = ipha->ipha_dst;
22262 		ipha->ipha_dst = v4addr;
22263 		ipha->ipha_ident = 0;
22264 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
22265 		addr_len = IP_ADDR_LEN;
22266 		addr = &v4addr;
22267 	} else {
22268 		/* No ip6i_t in this case */
22269 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22270 		/* Swap addresses */
22271 		v6addr = ip6h->ip6_src;
22272 		ip6h->ip6_src = ip6h->ip6_dst;
22273 		ip6h->ip6_dst = v6addr;
22274 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
22275 		addr_len = IPV6_ADDR_LEN;
22276 		addr = &v6addr;
22277 	}
22278 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22279 	U32_TO_BE32(ack, tcph->th_ack);
22280 	U32_TO_BE32(seq, tcph->th_seq);
22281 	U16_TO_BE16(0, tcph->th_win);
22282 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22283 	tcph->th_flags[0] = (uint8_t)ctl;
22284 	if (ctl & TH_RST) {
22285 		BUMP_MIB(&tcp_mib, tcpOutRsts);
22286 		BUMP_MIB(&tcp_mib, tcpOutControl);
22287 	}
22288 
22289 	/* IP trusts us to set up labels when required. */
22290 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22291 	    crgetlabel(cr) != NULL) {
22292 		int err, adjust;
22293 
22294 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22295 			err = tsol_check_label(cr, &mp, &adjust,
22296 			    tcp->tcp_connp->conn_mac_exempt);
22297 		else
22298 			err = tsol_check_label_v6(cr, &mp, &adjust,
22299 			    tcp->tcp_connp->conn_mac_exempt);
22300 		if (mctl_present)
22301 			ipsec_mp->b_cont = mp;
22302 		else
22303 			ipsec_mp = mp;
22304 		if (err != 0) {
22305 			freemsg(ipsec_mp);
22306 			return;
22307 		}
22308 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22309 			ipha = (ipha_t *)mp->b_rptr;
22310 			adjust += ntohs(ipha->ipha_length);
22311 			ipha->ipha_length = htons(adjust);
22312 		} else {
22313 			ip6h = (ip6_t *)mp->b_rptr;
22314 		}
22315 	}
22316 
22317 	if (mctl_present) {
22318 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22319 
22320 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22321 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22322 			return;
22323 		}
22324 	}
22325 	if (zoneid == ALL_ZONES)
22326 		zoneid = GLOBAL_ZONEID;
22327 
22328 	/* Add the zoneid so ip_output routes it properly */
22329 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) {
22330 		freemsg(ipsec_mp);
22331 		return;
22332 	}
22333 	ipsec_mp = nmp;
22334 
22335 	/*
22336 	 * NOTE:  one might consider tracing a TCP packet here, but
22337 	 * this function has no active TCP state and no tcp structure
22338 	 * that has a trace buffer.  If we traced here, we would have
22339 	 * to keep a local trace buffer in tcp_record_trace().
22340 	 *
22341 	 * TSol note: The mblk that contains the incoming packet was
22342 	 * reused by tcp_xmit_listener_reset, so it already contains
22343 	 * the right credentials and we don't need to call mblk_setcred.
22344 	 * Also the conn's cred is not right since it is associated
22345 	 * with tcp_g_q.
22346 	 */
22347 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22348 
22349 	/*
22350 	 * Tell IP to mark the IRE used for this destination temporary.
22351 	 * This way, we can limit our exposure to DoS attack because IP
22352 	 * creates an IRE for each destination.  If there are too many,
22353 	 * the time to do any routing lookup will be extremely long.  And
22354 	 * the lookup can be in interrupt context.
22355 	 *
22356 	 * Note that in normal circumstances, this marking should not
22357 	 * affect anything.  It would be nice if only 1 message is
22358 	 * needed to inform IP that the IRE created for this RST should
22359 	 * not be added to the cache table.  But there is currently
22360 	 * not such communication mechanism between TCP and IP.  So
22361 	 * the best we can do now is to send the advice ioctl to IP
22362 	 * to mark the IRE temporary.
22363 	 */
22364 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22365 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22366 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22367 	}
22368 }
22369 
22370 /*
22371  * Initiate closedown sequence on an active connection.  (May be called as
22372  * writer.)  Return value zero for OK return, non-zero for error return.
22373  */
22374 static int
22375 tcp_xmit_end(tcp_t *tcp)
22376 {
22377 	ipic_t	*ipic;
22378 	mblk_t	*mp;
22379 
22380 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22381 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22382 		/*
22383 		 * Invalid state, only states TCPS_SYN_RCVD,
22384 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22385 		 */
22386 		return (-1);
22387 	}
22388 
22389 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22390 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22391 	/*
22392 	 * If there is nothing more unsent, send the FIN now.
22393 	 * Otherwise, it will go out with the last segment.
22394 	 */
22395 	if (tcp->tcp_unsent == 0) {
22396 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22397 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22398 
22399 		if (mp) {
22400 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22401 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22402 		} else {
22403 			/*
22404 			 * Couldn't allocate msg.  Pretend we got it out.
22405 			 * Wait for rexmit timeout.
22406 			 */
22407 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22408 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22409 		}
22410 
22411 		/*
22412 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22413 		 * changed.
22414 		 */
22415 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22416 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22417 		}
22418 	} else {
22419 		/*
22420 		 * If tcp->tcp_cork is set, then the data will not get sent,
22421 		 * so we have to check that and unset it first.
22422 		 */
22423 		if (tcp->tcp_cork)
22424 			tcp->tcp_cork = B_FALSE;
22425 		tcp_wput_data(tcp, NULL, B_FALSE);
22426 	}
22427 
22428 	/*
22429 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22430 	 * is 0, don't update the cache.
22431 	 */
22432 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
22433 		return (0);
22434 
22435 	/*
22436 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22437 	 * different from the destination.
22438 	 */
22439 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22440 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22441 			return (0);
22442 		}
22443 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22444 		    &ipic);
22445 	} else {
22446 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22447 		    &tcp->tcp_ip6h->ip6_dst))) {
22448 			return (0);
22449 		}
22450 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22451 		    &ipic);
22452 	}
22453 
22454 	/* Record route attributes in the IRE for use by future connections. */
22455 	if (mp == NULL)
22456 		return (0);
22457 
22458 	/*
22459 	 * We do not have a good algorithm to update ssthresh at this time.
22460 	 * So don't do any update.
22461 	 */
22462 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22463 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22464 
22465 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22466 	return (0);
22467 }
22468 
22469 /*
22470  * Generate a "no listener here" RST in response to an "unknown" segment.
22471  * Note that we are reusing the incoming mp to construct the outgoing
22472  * RST.
22473  */
22474 void
22475 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid)
22476 {
22477 	uchar_t		*rptr;
22478 	uint32_t	seg_len;
22479 	tcph_t		*tcph;
22480 	uint32_t	seg_seq;
22481 	uint32_t	seg_ack;
22482 	uint_t		flags;
22483 	mblk_t		*ipsec_mp;
22484 	ipha_t 		*ipha;
22485 	ip6_t 		*ip6h;
22486 	boolean_t	mctl_present = B_FALSE;
22487 	boolean_t	check = B_TRUE;
22488 	boolean_t	policy_present;
22489 
22490 	TCP_STAT(tcp_no_listener);
22491 
22492 	ipsec_mp = mp;
22493 
22494 	if (mp->b_datap->db_type == M_CTL) {
22495 		ipsec_in_t *ii;
22496 
22497 		mctl_present = B_TRUE;
22498 		mp = mp->b_cont;
22499 
22500 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22501 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22502 		if (ii->ipsec_in_dont_check) {
22503 			check = B_FALSE;
22504 			if (!ii->ipsec_in_secure) {
22505 				freeb(ipsec_mp);
22506 				mctl_present = B_FALSE;
22507 				ipsec_mp = mp;
22508 			}
22509 		}
22510 	}
22511 
22512 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22513 		policy_present = ipsec_inbound_v4_policy_present;
22514 		ipha = (ipha_t *)mp->b_rptr;
22515 		ip6h = NULL;
22516 	} else {
22517 		policy_present = ipsec_inbound_v6_policy_present;
22518 		ipha = NULL;
22519 		ip6h = (ip6_t *)mp->b_rptr;
22520 	}
22521 
22522 	if (check && policy_present) {
22523 		/*
22524 		 * The conn_t parameter is NULL because we already know
22525 		 * nobody's home.
22526 		 */
22527 		ipsec_mp = ipsec_check_global_policy(
22528 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
22529 		if (ipsec_mp == NULL)
22530 			return;
22531 	}
22532 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22533 		DTRACE_PROBE2(
22534 		    tx__ip__log__error__nolistener__tcp,
22535 		    char *, "Could not reply with RST to mp(1)",
22536 		    mblk_t *, mp);
22537 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22538 		freemsg(ipsec_mp);
22539 		return;
22540 	}
22541 
22542 	rptr = mp->b_rptr;
22543 
22544 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22545 	seg_seq = BE32_TO_U32(tcph->th_seq);
22546 	seg_ack = BE32_TO_U32(tcph->th_ack);
22547 	flags = tcph->th_flags[0];
22548 
22549 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22550 	if (flags & TH_RST) {
22551 		freemsg(ipsec_mp);
22552 	} else if (flags & TH_ACK) {
22553 		tcp_xmit_early_reset("no tcp, reset",
22554 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid);
22555 	} else {
22556 		if (flags & TH_SYN) {
22557 			seg_len++;
22558 		} else {
22559 			/*
22560 			 * Here we violate the RFC.  Note that a normal
22561 			 * TCP will never send a segment without the ACK
22562 			 * flag, except for RST or SYN segment.  This
22563 			 * segment is neither.  Just drop it on the
22564 			 * floor.
22565 			 */
22566 			freemsg(ipsec_mp);
22567 			tcp_rst_unsent++;
22568 			return;
22569 		}
22570 
22571 		tcp_xmit_early_reset("no tcp, reset/ack",
22572 		    ipsec_mp, 0, seg_seq + seg_len,
22573 		    TH_RST | TH_ACK, ip_hdr_len, zoneid);
22574 	}
22575 }
22576 
22577 /*
22578  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22579  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22580  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22581  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22582  * otherwise it will dup partial mblks.)
22583  * Otherwise, an appropriate ACK packet will be generated.  This
22584  * routine is not usually called to send new data for the first time.  It
22585  * is mostly called out of the timer for retransmits, and to generate ACKs.
22586  *
22587  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22588  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22589  * of the original mblk chain will be returned in *offset and *end_mp.
22590  */
22591 mblk_t *
22592 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22593     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22594     boolean_t rexmit)
22595 {
22596 	int	data_length;
22597 	int32_t	off = 0;
22598 	uint_t	flags;
22599 	mblk_t	*mp1;
22600 	mblk_t	*mp2;
22601 	uchar_t	*rptr;
22602 	tcph_t	*tcph;
22603 	int32_t	num_sack_blk = 0;
22604 	int32_t	sack_opt_len = 0;
22605 
22606 	/* Allocate for our maximum TCP header + link-level */
22607 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
22608 	    BPRI_MED);
22609 	if (!mp1)
22610 		return (NULL);
22611 	data_length = 0;
22612 
22613 	/*
22614 	 * Note that tcp_mss has been adjusted to take into account the
22615 	 * timestamp option if applicable.  Because SACK options do not
22616 	 * appear in every TCP segments and they are of variable lengths,
22617 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22618 	 * the actual segment length when we need to send a segment which
22619 	 * includes SACK options.
22620 	 */
22621 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22622 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22623 		    tcp->tcp_num_sack_blk);
22624 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22625 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22626 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22627 			max_to_send -= sack_opt_len;
22628 	}
22629 
22630 	if (offset != NULL) {
22631 		off = *offset;
22632 		/* We use offset as an indicator that end_mp is not NULL. */
22633 		*end_mp = NULL;
22634 	}
22635 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22636 		/* This could be faster with cooperation from downstream */
22637 		if (mp2 != mp1 && !sendall &&
22638 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22639 		    max_to_send)
22640 			/*
22641 			 * Don't send the next mblk since the whole mblk
22642 			 * does not fit.
22643 			 */
22644 			break;
22645 		mp2->b_cont = dupb(mp);
22646 		mp2 = mp2->b_cont;
22647 		if (!mp2) {
22648 			freemsg(mp1);
22649 			return (NULL);
22650 		}
22651 		mp2->b_rptr += off;
22652 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22653 		    (uintptr_t)INT_MAX);
22654 
22655 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22656 		if (data_length > max_to_send) {
22657 			mp2->b_wptr -= data_length - max_to_send;
22658 			data_length = max_to_send;
22659 			off = mp2->b_wptr - mp->b_rptr;
22660 			break;
22661 		} else {
22662 			off = 0;
22663 		}
22664 	}
22665 	if (offset != NULL) {
22666 		*offset = off;
22667 		*end_mp = mp;
22668 	}
22669 	if (seg_len != NULL) {
22670 		*seg_len = data_length;
22671 	}
22672 
22673 	/* Update the latest receive window size in TCP header. */
22674 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22675 	    tcp->tcp_tcph->th_win);
22676 
22677 	rptr = mp1->b_rptr + tcp_wroff_xtra;
22678 	mp1->b_rptr = rptr;
22679 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22680 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22681 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22682 	U32_TO_ABE32(seq, tcph->th_seq);
22683 
22684 	/*
22685 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22686 	 * that this function was called from tcp_wput_data. Thus, when called
22687 	 * to retransmit data the setting of the PUSH bit may appear some
22688 	 * what random in that it might get set when it should not. This
22689 	 * should not pose any performance issues.
22690 	 */
22691 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22692 	    tcp->tcp_unsent == data_length)) {
22693 		flags = TH_ACK | TH_PUSH;
22694 	} else {
22695 		flags = TH_ACK;
22696 	}
22697 
22698 	if (tcp->tcp_ecn_ok) {
22699 		if (tcp->tcp_ecn_echo_on)
22700 			flags |= TH_ECE;
22701 
22702 		/*
22703 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22704 		 * There is no TCP flow control for non-data segments, and
22705 		 * only data segment is transmitted reliably.
22706 		 */
22707 		if (data_length > 0 && !rexmit) {
22708 			SET_ECT(tcp, rptr);
22709 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22710 				flags |= TH_CWR;
22711 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22712 			}
22713 		}
22714 	}
22715 
22716 	if (tcp->tcp_valid_bits) {
22717 		uint32_t u1;
22718 
22719 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22720 		    seq == tcp->tcp_iss) {
22721 			uchar_t	*wptr;
22722 
22723 			/*
22724 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22725 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22726 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22727 			 * our SYN is not ack'ed but the app closes this
22728 			 * TCP connection.
22729 			 */
22730 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22731 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22732 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22733 
22734 			/*
22735 			 * Tack on the MSS option.  It is always needed
22736 			 * for both active and passive open.
22737 			 *
22738 			 * MSS option value should be interface MTU - MIN
22739 			 * TCP/IP header according to RFC 793 as it means
22740 			 * the maximum segment size TCP can receive.  But
22741 			 * to get around some broken middle boxes/end hosts
22742 			 * out there, we allow the option value to be the
22743 			 * same as the MSS option size on the peer side.
22744 			 * In this way, the other side will not send
22745 			 * anything larger than they can receive.
22746 			 *
22747 			 * Note that for SYN_SENT state, the ndd param
22748 			 * tcp_use_smss_as_mss_opt has no effect as we
22749 			 * don't know the peer's MSS option value. So
22750 			 * the only case we need to take care of is in
22751 			 * SYN_RCVD state, which is done later.
22752 			 */
22753 			wptr = mp1->b_wptr;
22754 			wptr[0] = TCPOPT_MAXSEG;
22755 			wptr[1] = TCPOPT_MAXSEG_LEN;
22756 			wptr += 2;
22757 			u1 = tcp->tcp_if_mtu -
22758 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22759 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22760 			    TCP_MIN_HEADER_LENGTH;
22761 			U16_TO_BE16(u1, wptr);
22762 			mp1->b_wptr = wptr + 2;
22763 			/* Update the offset to cover the additional word */
22764 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22765 
22766 			/*
22767 			 * Note that the following way of filling in
22768 			 * TCP options are not optimal.  Some NOPs can
22769 			 * be saved.  But there is no need at this time
22770 			 * to optimize it.  When it is needed, we will
22771 			 * do it.
22772 			 */
22773 			switch (tcp->tcp_state) {
22774 			case TCPS_SYN_SENT:
22775 				flags = TH_SYN;
22776 
22777 				if (tcp->tcp_snd_ts_ok) {
22778 					uint32_t llbolt = (uint32_t)lbolt;
22779 
22780 					wptr = mp1->b_wptr;
22781 					wptr[0] = TCPOPT_NOP;
22782 					wptr[1] = TCPOPT_NOP;
22783 					wptr[2] = TCPOPT_TSTAMP;
22784 					wptr[3] = TCPOPT_TSTAMP_LEN;
22785 					wptr += 4;
22786 					U32_TO_BE32(llbolt, wptr);
22787 					wptr += 4;
22788 					ASSERT(tcp->tcp_ts_recent == 0);
22789 					U32_TO_BE32(0L, wptr);
22790 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22791 					tcph->th_offset_and_rsrvd[0] +=
22792 					    (3 << 4);
22793 				}
22794 
22795 				/*
22796 				 * Set up all the bits to tell other side
22797 				 * we are ECN capable.
22798 				 */
22799 				if (tcp->tcp_ecn_ok) {
22800 					flags |= (TH_ECE | TH_CWR);
22801 				}
22802 				break;
22803 			case TCPS_SYN_RCVD:
22804 				flags |= TH_SYN;
22805 
22806 				/*
22807 				 * Reset the MSS option value to be SMSS
22808 				 * We should probably add back the bytes
22809 				 * for timestamp option and IPsec.  We
22810 				 * don't do that as this is a workaround
22811 				 * for broken middle boxes/end hosts, it
22812 				 * is better for us to be more cautious.
22813 				 * They may not take these things into
22814 				 * account in their SMSS calculation.  Thus
22815 				 * the peer's calculated SMSS may be smaller
22816 				 * than what it can be.  This should be OK.
22817 				 */
22818 				if (tcp_use_smss_as_mss_opt) {
22819 					u1 = tcp->tcp_mss;
22820 					U16_TO_BE16(u1, wptr);
22821 				}
22822 
22823 				/*
22824 				 * If the other side is ECN capable, reply
22825 				 * that we are also ECN capable.
22826 				 */
22827 				if (tcp->tcp_ecn_ok)
22828 					flags |= TH_ECE;
22829 				break;
22830 			default:
22831 				/*
22832 				 * The above ASSERT() makes sure that this
22833 				 * must be FIN-WAIT-1 state.  Our SYN has
22834 				 * not been ack'ed so retransmit it.
22835 				 */
22836 				flags |= TH_SYN;
22837 				break;
22838 			}
22839 
22840 			if (tcp->tcp_snd_ws_ok) {
22841 				wptr = mp1->b_wptr;
22842 				wptr[0] =  TCPOPT_NOP;
22843 				wptr[1] =  TCPOPT_WSCALE;
22844 				wptr[2] =  TCPOPT_WS_LEN;
22845 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22846 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22847 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22848 			}
22849 
22850 			if (tcp->tcp_snd_sack_ok) {
22851 				wptr = mp1->b_wptr;
22852 				wptr[0] = TCPOPT_NOP;
22853 				wptr[1] = TCPOPT_NOP;
22854 				wptr[2] = TCPOPT_SACK_PERMITTED;
22855 				wptr[3] = TCPOPT_SACK_OK_LEN;
22856 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22857 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22858 			}
22859 
22860 			/* allocb() of adequate mblk assures space */
22861 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22862 			    (uintptr_t)INT_MAX);
22863 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22864 			/*
22865 			 * Get IP set to checksum on our behalf
22866 			 * Include the adjustment for a source route if any.
22867 			 */
22868 			u1 += tcp->tcp_sum;
22869 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22870 			U16_TO_BE16(u1, tcph->th_sum);
22871 			BUMP_MIB(&tcp_mib, tcpOutControl);
22872 		}
22873 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22874 		    (seq + data_length) == tcp->tcp_fss) {
22875 			if (!tcp->tcp_fin_acked) {
22876 				flags |= TH_FIN;
22877 				BUMP_MIB(&tcp_mib, tcpOutControl);
22878 			}
22879 			if (!tcp->tcp_fin_sent) {
22880 				tcp->tcp_fin_sent = B_TRUE;
22881 				switch (tcp->tcp_state) {
22882 				case TCPS_SYN_RCVD:
22883 				case TCPS_ESTABLISHED:
22884 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22885 					break;
22886 				case TCPS_CLOSE_WAIT:
22887 					tcp->tcp_state = TCPS_LAST_ACK;
22888 					break;
22889 				}
22890 				if (tcp->tcp_suna == tcp->tcp_snxt)
22891 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22892 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22893 			}
22894 		}
22895 		/*
22896 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22897 		 * is smaller than seq, u1 will become a very huge value.
22898 		 * So the comparison will fail.  Also note that tcp_urp
22899 		 * should be positive, see RFC 793 page 17.
22900 		 */
22901 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22902 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22903 		    u1 < (uint32_t)(64 * 1024)) {
22904 			flags |= TH_URG;
22905 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22906 			U32_TO_ABE16(u1, tcph->th_urp);
22907 		}
22908 	}
22909 	tcph->th_flags[0] = (uchar_t)flags;
22910 	tcp->tcp_rack = tcp->tcp_rnxt;
22911 	tcp->tcp_rack_cnt = 0;
22912 
22913 	if (tcp->tcp_snd_ts_ok) {
22914 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22915 			uint32_t llbolt = (uint32_t)lbolt;
22916 
22917 			U32_TO_BE32(llbolt,
22918 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22919 			U32_TO_BE32(tcp->tcp_ts_recent,
22920 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22921 		}
22922 	}
22923 
22924 	if (num_sack_blk > 0) {
22925 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22926 		sack_blk_t *tmp;
22927 		int32_t	i;
22928 
22929 		wptr[0] = TCPOPT_NOP;
22930 		wptr[1] = TCPOPT_NOP;
22931 		wptr[2] = TCPOPT_SACK;
22932 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22933 		    sizeof (sack_blk_t);
22934 		wptr += TCPOPT_REAL_SACK_LEN;
22935 
22936 		tmp = tcp->tcp_sack_list;
22937 		for (i = 0; i < num_sack_blk; i++) {
22938 			U32_TO_BE32(tmp[i].begin, wptr);
22939 			wptr += sizeof (tcp_seq);
22940 			U32_TO_BE32(tmp[i].end, wptr);
22941 			wptr += sizeof (tcp_seq);
22942 		}
22943 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22944 	}
22945 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22946 	data_length += (int)(mp1->b_wptr - rptr);
22947 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22948 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22949 	} else {
22950 		ip6_t *ip6 = (ip6_t *)(rptr +
22951 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22952 		    sizeof (ip6i_t) : 0));
22953 
22954 		ip6->ip6_plen = htons(data_length -
22955 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22956 	}
22957 
22958 	/*
22959 	 * Prime pump for IP
22960 	 * Include the adjustment for a source route if any.
22961 	 */
22962 	data_length -= tcp->tcp_ip_hdr_len;
22963 	data_length += tcp->tcp_sum;
22964 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22965 	U16_TO_ABE16(data_length, tcph->th_sum);
22966 	if (tcp->tcp_ip_forward_progress) {
22967 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22968 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22969 		tcp->tcp_ip_forward_progress = B_FALSE;
22970 	}
22971 	return (mp1);
22972 }
22973 
22974 /* This function handles the push timeout. */
22975 void
22976 tcp_push_timer(void *arg)
22977 {
22978 	conn_t	*connp = (conn_t *)arg;
22979 	tcp_t *tcp = connp->conn_tcp;
22980 
22981 	TCP_DBGSTAT(tcp_push_timer_cnt);
22982 
22983 	ASSERT(tcp->tcp_listener == NULL);
22984 
22985 	/*
22986 	 * We need to plug synchronous streams during our drain to prevent
22987 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22988 	 */
22989 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22990 	tcp->tcp_push_tid = 0;
22991 	if ((tcp->tcp_rcv_list != NULL) &&
22992 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22993 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22994 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22995 }
22996 
22997 /*
22998  * This function handles delayed ACK timeout.
22999  */
23000 static void
23001 tcp_ack_timer(void *arg)
23002 {
23003 	conn_t	*connp = (conn_t *)arg;
23004 	tcp_t *tcp = connp->conn_tcp;
23005 	mblk_t *mp;
23006 
23007 	TCP_DBGSTAT(tcp_ack_timer_cnt);
23008 
23009 	tcp->tcp_ack_tid = 0;
23010 
23011 	if (tcp->tcp_fused)
23012 		return;
23013 
23014 	/*
23015 	 * Do not send ACK if there is no outstanding unack'ed data.
23016 	 */
23017 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23018 		return;
23019 	}
23020 
23021 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23022 		/*
23023 		 * Make sure we don't allow deferred ACKs to result in
23024 		 * timer-based ACKing.  If we have held off an ACK
23025 		 * when there was more than an mss here, and the timer
23026 		 * goes off, we have to worry about the possibility
23027 		 * that the sender isn't doing slow-start, or is out
23028 		 * of step with us for some other reason.  We fall
23029 		 * permanently back in the direction of
23030 		 * ACK-every-other-packet as suggested in RFC 1122.
23031 		 */
23032 		if (tcp->tcp_rack_abs_max > 2)
23033 			tcp->tcp_rack_abs_max--;
23034 		tcp->tcp_rack_cur_max = 2;
23035 	}
23036 	mp = tcp_ack_mp(tcp);
23037 
23038 	if (mp != NULL) {
23039 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23040 		BUMP_LOCAL(tcp->tcp_obsegs);
23041 		BUMP_MIB(&tcp_mib, tcpOutAck);
23042 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
23043 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23044 	}
23045 }
23046 
23047 
23048 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23049 static mblk_t *
23050 tcp_ack_mp(tcp_t *tcp)
23051 {
23052 	uint32_t	seq_no;
23053 
23054 	/*
23055 	 * There are a few cases to be considered while setting the sequence no.
23056 	 * Essentially, we can come here while processing an unacceptable pkt
23057 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23058 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23059 	 * If we are here for a zero window probe, stick with suna. In all
23060 	 * other cases, we check if suna + swnd encompasses snxt and set
23061 	 * the sequence number to snxt, if so. If snxt falls outside the
23062 	 * window (the receiver probably shrunk its window), we will go with
23063 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23064 	 * receiver.
23065 	 */
23066 	if (tcp->tcp_zero_win_probe) {
23067 		seq_no = tcp->tcp_suna;
23068 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23069 		ASSERT(tcp->tcp_swnd == 0);
23070 		seq_no = tcp->tcp_snxt;
23071 	} else {
23072 		seq_no = SEQ_GT(tcp->tcp_snxt,
23073 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23074 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23075 	}
23076 
23077 	if (tcp->tcp_valid_bits) {
23078 		/*
23079 		 * For the complex case where we have to send some
23080 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23081 		 */
23082 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23083 		    NULL, B_FALSE));
23084 	} else {
23085 		/* Generate a simple ACK */
23086 		int	data_length;
23087 		uchar_t	*rptr;
23088 		tcph_t	*tcph;
23089 		mblk_t	*mp1;
23090 		int32_t	tcp_hdr_len;
23091 		int32_t	tcp_tcp_hdr_len;
23092 		int32_t	num_sack_blk = 0;
23093 		int32_t sack_opt_len;
23094 
23095 		/*
23096 		 * Allocate space for TCP + IP headers
23097 		 * and link-level header
23098 		 */
23099 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23100 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23101 			    tcp->tcp_num_sack_blk);
23102 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23103 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23104 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23105 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23106 		} else {
23107 			tcp_hdr_len = tcp->tcp_hdr_len;
23108 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23109 		}
23110 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
23111 		if (!mp1)
23112 			return (NULL);
23113 
23114 		/* Update the latest receive window size in TCP header. */
23115 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23116 		    tcp->tcp_tcph->th_win);
23117 		/* copy in prototype TCP + IP header */
23118 		rptr = mp1->b_rptr + tcp_wroff_xtra;
23119 		mp1->b_rptr = rptr;
23120 		mp1->b_wptr = rptr + tcp_hdr_len;
23121 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23122 
23123 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23124 
23125 		/* Set the TCP sequence number. */
23126 		U32_TO_ABE32(seq_no, tcph->th_seq);
23127 
23128 		/* Set up the TCP flag field. */
23129 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23130 		if (tcp->tcp_ecn_echo_on)
23131 			tcph->th_flags[0] |= TH_ECE;
23132 
23133 		tcp->tcp_rack = tcp->tcp_rnxt;
23134 		tcp->tcp_rack_cnt = 0;
23135 
23136 		/* fill in timestamp option if in use */
23137 		if (tcp->tcp_snd_ts_ok) {
23138 			uint32_t llbolt = (uint32_t)lbolt;
23139 
23140 			U32_TO_BE32(llbolt,
23141 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23142 			U32_TO_BE32(tcp->tcp_ts_recent,
23143 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23144 		}
23145 
23146 		/* Fill in SACK options */
23147 		if (num_sack_blk > 0) {
23148 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23149 			sack_blk_t *tmp;
23150 			int32_t	i;
23151 
23152 			wptr[0] = TCPOPT_NOP;
23153 			wptr[1] = TCPOPT_NOP;
23154 			wptr[2] = TCPOPT_SACK;
23155 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23156 			    sizeof (sack_blk_t);
23157 			wptr += TCPOPT_REAL_SACK_LEN;
23158 
23159 			tmp = tcp->tcp_sack_list;
23160 			for (i = 0; i < num_sack_blk; i++) {
23161 				U32_TO_BE32(tmp[i].begin, wptr);
23162 				wptr += sizeof (tcp_seq);
23163 				U32_TO_BE32(tmp[i].end, wptr);
23164 				wptr += sizeof (tcp_seq);
23165 			}
23166 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23167 			    << 4);
23168 		}
23169 
23170 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23171 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23172 		} else {
23173 			/* Check for ip6i_t header in sticky hdrs */
23174 			ip6_t *ip6 = (ip6_t *)(rptr +
23175 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23176 			    sizeof (ip6i_t) : 0));
23177 
23178 			ip6->ip6_plen = htons(tcp_hdr_len -
23179 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23180 		}
23181 
23182 		/*
23183 		 * Prime pump for checksum calculation in IP.  Include the
23184 		 * adjustment for a source route if any.
23185 		 */
23186 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23187 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23188 		U16_TO_ABE16(data_length, tcph->th_sum);
23189 
23190 		if (tcp->tcp_ip_forward_progress) {
23191 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23192 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23193 			tcp->tcp_ip_forward_progress = B_FALSE;
23194 		}
23195 		return (mp1);
23196 	}
23197 }
23198 
23199 /*
23200  * To create a temporary tcp structure for inserting into bind hash list.
23201  * The parameter is assumed to be in network byte order, ready for use.
23202  */
23203 /* ARGSUSED */
23204 static tcp_t *
23205 tcp_alloc_temp_tcp(in_port_t port)
23206 {
23207 	conn_t	*connp;
23208 	tcp_t	*tcp;
23209 
23210 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
23211 	if (connp == NULL)
23212 		return (NULL);
23213 
23214 	tcp = connp->conn_tcp;
23215 
23216 	/*
23217 	 * Only initialize the necessary info in those structures.  Note
23218 	 * that since INADDR_ANY is all 0, we do not need to set
23219 	 * tcp_bound_source to INADDR_ANY here.
23220 	 */
23221 	tcp->tcp_state = TCPS_BOUND;
23222 	tcp->tcp_lport = port;
23223 	tcp->tcp_exclbind = 1;
23224 	tcp->tcp_reserved_port = 1;
23225 
23226 	/* Just for place holding... */
23227 	tcp->tcp_ipversion = IPV4_VERSION;
23228 
23229 	return (tcp);
23230 }
23231 
23232 /*
23233  * To remove a port range specified by lo_port and hi_port from the
23234  * reserved port ranges.  This is one of the three public functions of
23235  * the reserved port interface.  Note that a port range has to be removed
23236  * as a whole.  Ports in a range cannot be removed individually.
23237  *
23238  * Params:
23239  *	in_port_t lo_port: the beginning port of the reserved port range to
23240  *		be deleted.
23241  *	in_port_t hi_port: the ending port of the reserved port range to
23242  *		be deleted.
23243  *
23244  * Return:
23245  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23246  */
23247 boolean_t
23248 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23249 {
23250 	int	i, j;
23251 	int	size;
23252 	tcp_t	**temp_tcp_array;
23253 	tcp_t	*tcp;
23254 
23255 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
23256 
23257 	/* First make sure that the port ranage is indeed reserved. */
23258 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23259 		if (tcp_reserved_port[i].lo_port == lo_port) {
23260 			hi_port = tcp_reserved_port[i].hi_port;
23261 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
23262 			break;
23263 		}
23264 	}
23265 	if (i == tcp_reserved_port_array_size) {
23266 		rw_exit(&tcp_reserved_port_lock);
23267 		return (B_FALSE);
23268 	}
23269 
23270 	/*
23271 	 * Remove the range from the array.  This simple loop is possible
23272 	 * because port ranges are inserted in ascending order.
23273 	 */
23274 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
23275 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
23276 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
23277 		tcp_reserved_port[j].temp_tcp_array =
23278 		    tcp_reserved_port[j+1].temp_tcp_array;
23279 	}
23280 
23281 	/* Remove all the temporary tcp structures. */
23282 	size = hi_port - lo_port + 1;
23283 	while (size > 0) {
23284 		tcp = temp_tcp_array[size - 1];
23285 		ASSERT(tcp != NULL);
23286 		tcp_bind_hash_remove(tcp);
23287 		CONN_DEC_REF(tcp->tcp_connp);
23288 		size--;
23289 	}
23290 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23291 	tcp_reserved_port_array_size--;
23292 	rw_exit(&tcp_reserved_port_lock);
23293 	return (B_TRUE);
23294 }
23295 
23296 /*
23297  * Macro to remove temporary tcp structure from the bind hash list.  The
23298  * first parameter is the list of tcp to be removed.  The second parameter
23299  * is the number of tcps in the array.
23300  */
23301 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
23302 { \
23303 	while ((num) > 0) { \
23304 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23305 		tf_t *tbf; \
23306 		tcp_t *tcpnext; \
23307 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23308 		mutex_enter(&tbf->tf_lock); \
23309 		tcpnext = tcp->tcp_bind_hash; \
23310 		if (tcpnext) { \
23311 			tcpnext->tcp_ptpbhn = \
23312 				tcp->tcp_ptpbhn; \
23313 		} \
23314 		*tcp->tcp_ptpbhn = tcpnext; \
23315 		mutex_exit(&tbf->tf_lock); \
23316 		kmem_free(tcp, sizeof (tcp_t)); \
23317 		(tcp_array)[(num) - 1] = NULL; \
23318 		(num)--; \
23319 	} \
23320 }
23321 
23322 /*
23323  * The public interface for other modules to call to reserve a port range
23324  * in TCP.  The caller passes in how large a port range it wants.  TCP
23325  * will try to find a range and return it via lo_port and hi_port.  This is
23326  * used by NCA's nca_conn_init.
23327  * NCA can only be used in the global zone so this only affects the global
23328  * zone's ports.
23329  *
23330  * Params:
23331  *	int size: the size of the port range to be reserved.
23332  *	in_port_t *lo_port (referenced): returns the beginning port of the
23333  *		reserved port range added.
23334  *	in_port_t *hi_port (referenced): returns the ending port of the
23335  *		reserved port range added.
23336  *
23337  * Return:
23338  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23339  */
23340 boolean_t
23341 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23342 {
23343 	tcp_t		*tcp;
23344 	tcp_t		*tmp_tcp;
23345 	tcp_t		**temp_tcp_array;
23346 	tf_t		*tbf;
23347 	in_port_t	net_port;
23348 	in_port_t	port;
23349 	int32_t		cur_size;
23350 	int		i, j;
23351 	boolean_t	used;
23352 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23353 	zoneid_t	zoneid = GLOBAL_ZONEID;
23354 
23355 	/* Sanity check. */
23356 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23357 		return (B_FALSE);
23358 	}
23359 
23360 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
23361 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23362 		rw_exit(&tcp_reserved_port_lock);
23363 		return (B_FALSE);
23364 	}
23365 
23366 	/*
23367 	 * Find the starting port to try.  Since the port ranges are ordered
23368 	 * in the reserved port array, we can do a simple search here.
23369 	 */
23370 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23371 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23372 	for (i = 0; i < tcp_reserved_port_array_size;
23373 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
23374 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
23375 			*hi_port = tcp_reserved_port[i].lo_port - 1;
23376 			break;
23377 		}
23378 	}
23379 	/* No available port range. */
23380 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
23381 		rw_exit(&tcp_reserved_port_lock);
23382 		return (B_FALSE);
23383 	}
23384 
23385 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23386 	if (temp_tcp_array == NULL) {
23387 		rw_exit(&tcp_reserved_port_lock);
23388 		return (B_FALSE);
23389 	}
23390 
23391 	/* Go thru the port range to see if some ports are already bound. */
23392 	for (port = *lo_port, cur_size = 0;
23393 	    cur_size < size && port <= *hi_port;
23394 	    cur_size++, port++) {
23395 		used = B_FALSE;
23396 		net_port = htons(port);
23397 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
23398 		mutex_enter(&tbf->tf_lock);
23399 		for (tcp = tbf->tf_tcp; tcp != NULL;
23400 		    tcp = tcp->tcp_bind_hash) {
23401 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23402 			    net_port == tcp->tcp_lport) {
23403 				/*
23404 				 * A port is already bound.  Search again
23405 				 * starting from port + 1.  Release all
23406 				 * temporary tcps.
23407 				 */
23408 				mutex_exit(&tbf->tf_lock);
23409 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23410 				*lo_port = port + 1;
23411 				cur_size = -1;
23412 				used = B_TRUE;
23413 				break;
23414 			}
23415 		}
23416 		if (!used) {
23417 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
23418 				/*
23419 				 * Allocation failure.  Just fail the request.
23420 				 * Need to remove all those temporary tcp
23421 				 * structures.
23422 				 */
23423 				mutex_exit(&tbf->tf_lock);
23424 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23425 				rw_exit(&tcp_reserved_port_lock);
23426 				kmem_free(temp_tcp_array,
23427 				    (hi_port - lo_port + 1) *
23428 				    sizeof (tcp_t *));
23429 				return (B_FALSE);
23430 			}
23431 			temp_tcp_array[cur_size] = tmp_tcp;
23432 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23433 			mutex_exit(&tbf->tf_lock);
23434 		}
23435 	}
23436 
23437 	/*
23438 	 * The current range is not large enough.  We can actually do another
23439 	 * search if this search is done between 2 reserved port ranges.  But
23440 	 * for first release, we just stop here and return saying that no port
23441 	 * range is available.
23442 	 */
23443 	if (cur_size < size) {
23444 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23445 		rw_exit(&tcp_reserved_port_lock);
23446 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23447 		return (B_FALSE);
23448 	}
23449 	*hi_port = port - 1;
23450 
23451 	/*
23452 	 * Insert range into array in ascending order.  Since this function
23453 	 * must not be called often, we choose to use the simplest method.
23454 	 * The above array should not consume excessive stack space as
23455 	 * the size must be very small.  If in future releases, we find
23456 	 * that we should provide more reserved port ranges, this function
23457 	 * has to be modified to be more efficient.
23458 	 */
23459 	if (tcp_reserved_port_array_size == 0) {
23460 		tcp_reserved_port[0].lo_port = *lo_port;
23461 		tcp_reserved_port[0].hi_port = *hi_port;
23462 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
23463 	} else {
23464 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
23465 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
23466 				tmp_ports[j].lo_port = *lo_port;
23467 				tmp_ports[j].hi_port = *hi_port;
23468 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23469 				j++;
23470 			}
23471 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
23472 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
23473 			tmp_ports[j].temp_tcp_array =
23474 			    tcp_reserved_port[i].temp_tcp_array;
23475 		}
23476 		if (j == i) {
23477 			tmp_ports[j].lo_port = *lo_port;
23478 			tmp_ports[j].hi_port = *hi_port;
23479 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23480 		}
23481 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
23482 	}
23483 	tcp_reserved_port_array_size++;
23484 	rw_exit(&tcp_reserved_port_lock);
23485 	return (B_TRUE);
23486 }
23487 
23488 /*
23489  * Check to see if a port is in any reserved port range.
23490  *
23491  * Params:
23492  *	in_port_t port: the port to be verified.
23493  *
23494  * Return:
23495  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23496  */
23497 boolean_t
23498 tcp_reserved_port_check(in_port_t port)
23499 {
23500 	int i;
23501 
23502 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23503 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23504 		if (port >= tcp_reserved_port[i].lo_port ||
23505 		    port <= tcp_reserved_port[i].hi_port) {
23506 			rw_exit(&tcp_reserved_port_lock);
23507 			return (B_TRUE);
23508 		}
23509 	}
23510 	rw_exit(&tcp_reserved_port_lock);
23511 	return (B_FALSE);
23512 }
23513 
23514 /*
23515  * To list all reserved port ranges.  This is the function to handle
23516  * ndd tcp_reserved_port_list.
23517  */
23518 /* ARGSUSED */
23519 static int
23520 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23521 {
23522 	int i;
23523 
23524 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23525 	if (tcp_reserved_port_array_size > 0)
23526 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23527 	else
23528 		(void) mi_mpprintf(mp, "No port is reserved.");
23529 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23530 		(void) mi_mpprintf(mp, "%d-%d",
23531 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
23532 	}
23533 	rw_exit(&tcp_reserved_port_lock);
23534 	return (0);
23535 }
23536 
23537 /*
23538  * Hash list insertion routine for tcp_t structures.
23539  * Inserts entries with the ones bound to a specific IP address first
23540  * followed by those bound to INADDR_ANY.
23541  */
23542 static void
23543 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23544 {
23545 	tcp_t	**tcpp;
23546 	tcp_t	*tcpnext;
23547 
23548 	if (tcp->tcp_ptpbhn != NULL) {
23549 		ASSERT(!caller_holds_lock);
23550 		tcp_bind_hash_remove(tcp);
23551 	}
23552 	tcpp = &tbf->tf_tcp;
23553 	if (!caller_holds_lock) {
23554 		mutex_enter(&tbf->tf_lock);
23555 	} else {
23556 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23557 	}
23558 	tcpnext = tcpp[0];
23559 	if (tcpnext) {
23560 		/*
23561 		 * If the new tcp bound to the INADDR_ANY address
23562 		 * and the first one in the list is not bound to
23563 		 * INADDR_ANY we skip all entries until we find the
23564 		 * first one bound to INADDR_ANY.
23565 		 * This makes sure that applications binding to a
23566 		 * specific address get preference over those binding to
23567 		 * INADDR_ANY.
23568 		 */
23569 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23570 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23571 			while ((tcpnext = tcpp[0]) != NULL &&
23572 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23573 				tcpp = &(tcpnext->tcp_bind_hash);
23574 			if (tcpnext)
23575 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23576 		} else
23577 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23578 	}
23579 	tcp->tcp_bind_hash = tcpnext;
23580 	tcp->tcp_ptpbhn = tcpp;
23581 	tcpp[0] = tcp;
23582 	if (!caller_holds_lock)
23583 		mutex_exit(&tbf->tf_lock);
23584 }
23585 
23586 /*
23587  * Hash list removal routine for tcp_t structures.
23588  */
23589 static void
23590 tcp_bind_hash_remove(tcp_t *tcp)
23591 {
23592 	tcp_t	*tcpnext;
23593 	kmutex_t *lockp;
23594 
23595 	if (tcp->tcp_ptpbhn == NULL)
23596 		return;
23597 
23598 	/*
23599 	 * Extract the lock pointer in case there are concurrent
23600 	 * hash_remove's for this instance.
23601 	 */
23602 	ASSERT(tcp->tcp_lport != 0);
23603 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23604 
23605 	ASSERT(lockp != NULL);
23606 	mutex_enter(lockp);
23607 	if (tcp->tcp_ptpbhn) {
23608 		tcpnext = tcp->tcp_bind_hash;
23609 		if (tcpnext) {
23610 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23611 			tcp->tcp_bind_hash = NULL;
23612 		}
23613 		*tcp->tcp_ptpbhn = tcpnext;
23614 		tcp->tcp_ptpbhn = NULL;
23615 	}
23616 	mutex_exit(lockp);
23617 }
23618 
23619 
23620 /*
23621  * Hash list lookup routine for tcp_t structures.
23622  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23623  */
23624 static tcp_t *
23625 tcp_acceptor_hash_lookup(t_uscalar_t id)
23626 {
23627 	tf_t	*tf;
23628 	tcp_t	*tcp;
23629 
23630 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23631 	mutex_enter(&tf->tf_lock);
23632 	for (tcp = tf->tf_tcp; tcp != NULL;
23633 	    tcp = tcp->tcp_acceptor_hash) {
23634 		if (tcp->tcp_acceptor_id == id) {
23635 			CONN_INC_REF(tcp->tcp_connp);
23636 			mutex_exit(&tf->tf_lock);
23637 			return (tcp);
23638 		}
23639 	}
23640 	mutex_exit(&tf->tf_lock);
23641 	return (NULL);
23642 }
23643 
23644 
23645 /*
23646  * Hash list insertion routine for tcp_t structures.
23647  */
23648 void
23649 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23650 {
23651 	tf_t	*tf;
23652 	tcp_t	**tcpp;
23653 	tcp_t	*tcpnext;
23654 
23655 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23656 
23657 	if (tcp->tcp_ptpahn != NULL)
23658 		tcp_acceptor_hash_remove(tcp);
23659 	tcpp = &tf->tf_tcp;
23660 	mutex_enter(&tf->tf_lock);
23661 	tcpnext = tcpp[0];
23662 	if (tcpnext)
23663 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23664 	tcp->tcp_acceptor_hash = tcpnext;
23665 	tcp->tcp_ptpahn = tcpp;
23666 	tcpp[0] = tcp;
23667 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23668 	mutex_exit(&tf->tf_lock);
23669 }
23670 
23671 /*
23672  * Hash list removal routine for tcp_t structures.
23673  */
23674 static void
23675 tcp_acceptor_hash_remove(tcp_t *tcp)
23676 {
23677 	tcp_t	*tcpnext;
23678 	kmutex_t *lockp;
23679 
23680 	/*
23681 	 * Extract the lock pointer in case there are concurrent
23682 	 * hash_remove's for this instance.
23683 	 */
23684 	lockp = tcp->tcp_acceptor_lockp;
23685 
23686 	if (tcp->tcp_ptpahn == NULL)
23687 		return;
23688 
23689 	ASSERT(lockp != NULL);
23690 	mutex_enter(lockp);
23691 	if (tcp->tcp_ptpahn) {
23692 		tcpnext = tcp->tcp_acceptor_hash;
23693 		if (tcpnext) {
23694 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23695 			tcp->tcp_acceptor_hash = NULL;
23696 		}
23697 		*tcp->tcp_ptpahn = tcpnext;
23698 		tcp->tcp_ptpahn = NULL;
23699 	}
23700 	mutex_exit(lockp);
23701 	tcp->tcp_acceptor_lockp = NULL;
23702 }
23703 
23704 /* ARGSUSED */
23705 static int
23706 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
23707 {
23708 	int error = 0;
23709 	int retval;
23710 	char *end;
23711 
23712 	tcp_hsp_t *hsp;
23713 	tcp_hsp_t *hspprev;
23714 
23715 	ipaddr_t addr = 0;		/* Address we're looking for */
23716 	in6_addr_t v6addr;		/* Address we're looking for */
23717 	uint32_t hash;			/* Hash of that address */
23718 
23719 	/*
23720 	 * If the following variables are still zero after parsing the input
23721 	 * string, the user didn't specify them and we don't change them in
23722 	 * the HSP.
23723 	 */
23724 
23725 	ipaddr_t mask = 0;		/* Subnet mask */
23726 	in6_addr_t v6mask;
23727 	long sendspace = 0;		/* Send buffer size */
23728 	long recvspace = 0;		/* Receive buffer size */
23729 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
23730 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
23731 
23732 	rw_enter(&tcp_hsp_lock, RW_WRITER);
23733 
23734 	/* Parse and validate address */
23735 	if (af == AF_INET) {
23736 		retval = inet_pton(af, value, &addr);
23737 		if (retval == 1)
23738 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23739 	} else if (af == AF_INET6) {
23740 		retval = inet_pton(af, value, &v6addr);
23741 	} else {
23742 		error = EINVAL;
23743 		goto done;
23744 	}
23745 	if (retval == 0) {
23746 		error = EINVAL;
23747 		goto done;
23748 	}
23749 
23750 	while ((*value) && *value != ' ')
23751 		value++;
23752 
23753 	/* Parse individual keywords, set variables if found */
23754 	while (*value) {
23755 		/* Skip leading blanks */
23756 
23757 		while (*value == ' ' || *value == '\t')
23758 			value++;
23759 
23760 		/* If at end of string, we're done */
23761 
23762 		if (!*value)
23763 			break;
23764 
23765 		/* We have a word, figure out what it is */
23766 
23767 		if (strncmp("mask", value, 4) == 0) {
23768 			value += 4;
23769 			while (*value == ' ' || *value == '\t')
23770 				value++;
23771 			/* Parse subnet mask */
23772 			if (af == AF_INET) {
23773 				retval = inet_pton(af, value, &mask);
23774 				if (retval == 1) {
23775 					V4MASK_TO_V6(mask, v6mask);
23776 				}
23777 			} else if (af == AF_INET6) {
23778 				retval = inet_pton(af, value, &v6mask);
23779 			}
23780 			if (retval != 1) {
23781 				error = EINVAL;
23782 				goto done;
23783 			}
23784 			while ((*value) && *value != ' ')
23785 				value++;
23786 		} else if (strncmp("sendspace", value, 9) == 0) {
23787 			value += 9;
23788 
23789 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23790 			    sendspace < TCP_XMIT_HIWATER ||
23791 			    sendspace >= (1L<<30)) {
23792 				error = EINVAL;
23793 				goto done;
23794 			}
23795 			value = end;
23796 		} else if (strncmp("recvspace", value, 9) == 0) {
23797 			value += 9;
23798 
23799 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23800 			    recvspace < TCP_RECV_HIWATER ||
23801 			    recvspace >= (1L<<30)) {
23802 				error = EINVAL;
23803 				goto done;
23804 			}
23805 			value = end;
23806 		} else if (strncmp("timestamp", value, 9) == 0) {
23807 			value += 9;
23808 
23809 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23810 			    timestamp < 0 || timestamp > 1) {
23811 				error = EINVAL;
23812 				goto done;
23813 			}
23814 
23815 			/*
23816 			 * We increment timestamp so we know it's been set;
23817 			 * this is undone when we put it in the HSP
23818 			 */
23819 			timestamp++;
23820 			value = end;
23821 		} else if (strncmp("delete", value, 6) == 0) {
23822 			value += 6;
23823 			delete = B_TRUE;
23824 		} else {
23825 			error = EINVAL;
23826 			goto done;
23827 		}
23828 	}
23829 
23830 	/* Hash address for lookup */
23831 
23832 	hash = TCP_HSP_HASH(addr);
23833 
23834 	if (delete) {
23835 		/*
23836 		 * Note that deletes don't return an error if the thing
23837 		 * we're trying to delete isn't there.
23838 		 */
23839 		if (tcp_hsp_hash == NULL)
23840 			goto done;
23841 		hsp = tcp_hsp_hash[hash];
23842 
23843 		if (hsp) {
23844 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23845 			    &v6addr)) {
23846 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23847 				mi_free((char *)hsp);
23848 			} else {
23849 				hspprev = hsp;
23850 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23851 					if (IN6_ARE_ADDR_EQUAL(
23852 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23853 						hspprev->tcp_hsp_next =
23854 						    hsp->tcp_hsp_next;
23855 						mi_free((char *)hsp);
23856 						break;
23857 					}
23858 					hspprev = hsp;
23859 				}
23860 			}
23861 		}
23862 	} else {
23863 		/*
23864 		 * We're adding/modifying an HSP.  If we haven't already done
23865 		 * so, allocate the hash table.
23866 		 */
23867 
23868 		if (!tcp_hsp_hash) {
23869 			tcp_hsp_hash = (tcp_hsp_t **)
23870 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23871 			if (!tcp_hsp_hash) {
23872 				error = EINVAL;
23873 				goto done;
23874 			}
23875 		}
23876 
23877 		/* Get head of hash chain */
23878 
23879 		hsp = tcp_hsp_hash[hash];
23880 
23881 		/* Try to find pre-existing hsp on hash chain */
23882 		/* Doesn't handle CIDR prefixes. */
23883 		while (hsp) {
23884 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23885 				break;
23886 			hsp = hsp->tcp_hsp_next;
23887 		}
23888 
23889 		/*
23890 		 * If we didn't, create one with default values and put it
23891 		 * at head of hash chain
23892 		 */
23893 
23894 		if (!hsp) {
23895 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23896 			if (!hsp) {
23897 				error = EINVAL;
23898 				goto done;
23899 			}
23900 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23901 			tcp_hsp_hash[hash] = hsp;
23902 		}
23903 
23904 		/* Set values that the user asked us to change */
23905 
23906 		hsp->tcp_hsp_addr_v6 = v6addr;
23907 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23908 			hsp->tcp_hsp_vers = IPV4_VERSION;
23909 		else
23910 			hsp->tcp_hsp_vers = IPV6_VERSION;
23911 		hsp->tcp_hsp_subnet_v6 = v6mask;
23912 		if (sendspace > 0)
23913 			hsp->tcp_hsp_sendspace = sendspace;
23914 		if (recvspace > 0)
23915 			hsp->tcp_hsp_recvspace = recvspace;
23916 		if (timestamp > 0)
23917 			hsp->tcp_hsp_tstamp = timestamp - 1;
23918 	}
23919 
23920 done:
23921 	rw_exit(&tcp_hsp_lock);
23922 	return (error);
23923 }
23924 
23925 /* Set callback routine passed to nd_load by tcp_param_register. */
23926 /* ARGSUSED */
23927 static int
23928 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23929 {
23930 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23931 }
23932 /* ARGSUSED */
23933 static int
23934 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23935     cred_t *cr)
23936 {
23937 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23938 }
23939 
23940 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23941 /* ARGSUSED */
23942 static int
23943 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23944 {
23945 	tcp_hsp_t *hsp;
23946 	int i;
23947 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23948 
23949 	rw_enter(&tcp_hsp_lock, RW_READER);
23950 	(void) mi_mpprintf(mp,
23951 	    "Hash HSP     " MI_COL_HDRPAD_STR
23952 	    "Address         Subnet Mask     Send       Receive    TStamp");
23953 	if (tcp_hsp_hash) {
23954 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23955 			hsp = tcp_hsp_hash[i];
23956 			while (hsp) {
23957 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23958 					(void) inet_ntop(AF_INET,
23959 					    &hsp->tcp_hsp_addr,
23960 					    addrbuf, sizeof (addrbuf));
23961 					(void) inet_ntop(AF_INET,
23962 					    &hsp->tcp_hsp_subnet,
23963 					    subnetbuf, sizeof (subnetbuf));
23964 				} else {
23965 					(void) inet_ntop(AF_INET6,
23966 					    &hsp->tcp_hsp_addr_v6,
23967 					    addrbuf, sizeof (addrbuf));
23968 					(void) inet_ntop(AF_INET6,
23969 					    &hsp->tcp_hsp_subnet_v6,
23970 					    subnetbuf, sizeof (subnetbuf));
23971 				}
23972 				(void) mi_mpprintf(mp,
23973 				    " %03d " MI_COL_PTRFMT_STR
23974 				    "%s %s %010d %010d      %d",
23975 				    i,
23976 				    (void *)hsp,
23977 				    addrbuf,
23978 				    subnetbuf,
23979 				    hsp->tcp_hsp_sendspace,
23980 				    hsp->tcp_hsp_recvspace,
23981 				    hsp->tcp_hsp_tstamp);
23982 
23983 				hsp = hsp->tcp_hsp_next;
23984 			}
23985 		}
23986 	}
23987 	rw_exit(&tcp_hsp_lock);
23988 	return (0);
23989 }
23990 
23991 
23992 /* Data for fast netmask macro used by tcp_hsp_lookup */
23993 
23994 static ipaddr_t netmasks[] = {
23995 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23996 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23997 };
23998 
23999 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24000 
24001 /*
24002  * XXX This routine should go away and instead we should use the metrics
24003  * associated with the routes to determine the default sndspace and rcvspace.
24004  */
24005 static tcp_hsp_t *
24006 tcp_hsp_lookup(ipaddr_t addr)
24007 {
24008 	tcp_hsp_t *hsp = NULL;
24009 
24010 	/* Quick check without acquiring the lock. */
24011 	if (tcp_hsp_hash == NULL)
24012 		return (NULL);
24013 
24014 	rw_enter(&tcp_hsp_lock, RW_READER);
24015 
24016 	/* This routine finds the best-matching HSP for address addr. */
24017 
24018 	if (tcp_hsp_hash) {
24019 		int i;
24020 		ipaddr_t srchaddr;
24021 		tcp_hsp_t *hsp_net;
24022 
24023 		/* We do three passes: host, network, and subnet. */
24024 
24025 		srchaddr = addr;
24026 
24027 		for (i = 1; i <= 3; i++) {
24028 			/* Look for exact match on srchaddr */
24029 
24030 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
24031 			while (hsp) {
24032 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24033 				    hsp->tcp_hsp_addr == srchaddr)
24034 					break;
24035 				hsp = hsp->tcp_hsp_next;
24036 			}
24037 			ASSERT(hsp == NULL ||
24038 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24039 
24040 			/*
24041 			 * If this is the first pass:
24042 			 *   If we found a match, great, return it.
24043 			 *   If not, search for the network on the second pass.
24044 			 */
24045 
24046 			if (i == 1)
24047 				if (hsp)
24048 					break;
24049 				else
24050 				{
24051 					srchaddr = addr & netmask(addr);
24052 					continue;
24053 				}
24054 
24055 			/*
24056 			 * If this is the second pass:
24057 			 *   If we found a match, but there's a subnet mask,
24058 			 *    save the match but try again using the subnet
24059 			 *    mask on the third pass.
24060 			 *   Otherwise, return whatever we found.
24061 			 */
24062 
24063 			if (i == 2) {
24064 				if (hsp && hsp->tcp_hsp_subnet) {
24065 					hsp_net = hsp;
24066 					srchaddr = addr & hsp->tcp_hsp_subnet;
24067 					continue;
24068 				} else {
24069 					break;
24070 				}
24071 			}
24072 
24073 			/*
24074 			 * This must be the third pass.  If we didn't find
24075 			 * anything, return the saved network HSP instead.
24076 			 */
24077 
24078 			if (!hsp)
24079 				hsp = hsp_net;
24080 		}
24081 	}
24082 
24083 	rw_exit(&tcp_hsp_lock);
24084 	return (hsp);
24085 }
24086 
24087 /*
24088  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24089  * match lookup.
24090  */
24091 static tcp_hsp_t *
24092 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
24093 {
24094 	tcp_hsp_t *hsp = NULL;
24095 
24096 	/* Quick check without acquiring the lock. */
24097 	if (tcp_hsp_hash == NULL)
24098 		return (NULL);
24099 
24100 	rw_enter(&tcp_hsp_lock, RW_READER);
24101 
24102 	/* This routine finds the best-matching HSP for address addr. */
24103 
24104 	if (tcp_hsp_hash) {
24105 		int i;
24106 		in6_addr_t v6srchaddr;
24107 		tcp_hsp_t *hsp_net;
24108 
24109 		/* We do three passes: host, network, and subnet. */
24110 
24111 		v6srchaddr = *v6addr;
24112 
24113 		for (i = 1; i <= 3; i++) {
24114 			/* Look for exact match on srchaddr */
24115 
24116 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
24117 			    V4_PART_OF_V6(v6srchaddr))];
24118 			while (hsp) {
24119 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24120 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24121 				    &v6srchaddr))
24122 					break;
24123 				hsp = hsp->tcp_hsp_next;
24124 			}
24125 
24126 			/*
24127 			 * If this is the first pass:
24128 			 *   If we found a match, great, return it.
24129 			 *   If not, search for the network on the second pass.
24130 			 */
24131 
24132 			if (i == 1)
24133 				if (hsp)
24134 					break;
24135 				else {
24136 					/* Assume a 64 bit mask */
24137 					v6srchaddr.s6_addr32[0] =
24138 					    v6addr->s6_addr32[0];
24139 					v6srchaddr.s6_addr32[1] =
24140 					    v6addr->s6_addr32[1];
24141 					v6srchaddr.s6_addr32[2] = 0;
24142 					v6srchaddr.s6_addr32[3] = 0;
24143 					continue;
24144 				}
24145 
24146 			/*
24147 			 * If this is the second pass:
24148 			 *   If we found a match, but there's a subnet mask,
24149 			 *    save the match but try again using the subnet
24150 			 *    mask on the third pass.
24151 			 *   Otherwise, return whatever we found.
24152 			 */
24153 
24154 			if (i == 2) {
24155 				ASSERT(hsp == NULL ||
24156 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24157 				if (hsp &&
24158 				    !IN6_IS_ADDR_UNSPECIFIED(
24159 				    &hsp->tcp_hsp_subnet_v6)) {
24160 					hsp_net = hsp;
24161 					V6_MASK_COPY(*v6addr,
24162 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24163 					continue;
24164 				} else {
24165 					break;
24166 				}
24167 			}
24168 
24169 			/*
24170 			 * This must be the third pass.  If we didn't find
24171 			 * anything, return the saved network HSP instead.
24172 			 */
24173 
24174 			if (!hsp)
24175 				hsp = hsp_net;
24176 		}
24177 	}
24178 
24179 	rw_exit(&tcp_hsp_lock);
24180 	return (hsp);
24181 }
24182 
24183 /*
24184  * Type three generator adapted from the random() function in 4.4 BSD:
24185  */
24186 
24187 /*
24188  * Copyright (c) 1983, 1993
24189  *	The Regents of the University of California.  All rights reserved.
24190  *
24191  * Redistribution and use in source and binary forms, with or without
24192  * modification, are permitted provided that the following conditions
24193  * are met:
24194  * 1. Redistributions of source code must retain the above copyright
24195  *    notice, this list of conditions and the following disclaimer.
24196  * 2. Redistributions in binary form must reproduce the above copyright
24197  *    notice, this list of conditions and the following disclaimer in the
24198  *    documentation and/or other materials provided with the distribution.
24199  * 3. All advertising materials mentioning features or use of this software
24200  *    must display the following acknowledgement:
24201  *	This product includes software developed by the University of
24202  *	California, Berkeley and its contributors.
24203  * 4. Neither the name of the University nor the names of its contributors
24204  *    may be used to endorse or promote products derived from this software
24205  *    without specific prior written permission.
24206  *
24207  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24208  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24209  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24210  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24211  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24212  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24213  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24214  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24215  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24216  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24217  * SUCH DAMAGE.
24218  */
24219 
24220 /* Type 3 -- x**31 + x**3 + 1 */
24221 #define	DEG_3		31
24222 #define	SEP_3		3
24223 
24224 
24225 /* Protected by tcp_random_lock */
24226 static int tcp_randtbl[DEG_3 + 1];
24227 
24228 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24229 static int *tcp_random_rptr = &tcp_randtbl[1];
24230 
24231 static int *tcp_random_state = &tcp_randtbl[1];
24232 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24233 
24234 kmutex_t tcp_random_lock;
24235 
24236 void
24237 tcp_random_init(void)
24238 {
24239 	int i;
24240 	hrtime_t hrt;
24241 	time_t wallclock;
24242 	uint64_t result;
24243 
24244 	/*
24245 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24246 	 * a longlong, which may contain resolution down to nanoseconds.
24247 	 * The current time will either be a 32-bit or a 64-bit quantity.
24248 	 * XOR the two together in a 64-bit result variable.
24249 	 * Convert the result to a 32-bit value by multiplying the high-order
24250 	 * 32-bits by the low-order 32-bits.
24251 	 */
24252 
24253 	hrt = gethrtime();
24254 	(void) drv_getparm(TIME, &wallclock);
24255 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24256 	mutex_enter(&tcp_random_lock);
24257 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24258 	    (result & 0xffffffff);
24259 
24260 	for (i = 1; i < DEG_3; i++)
24261 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24262 			+ 12345;
24263 	tcp_random_fptr = &tcp_random_state[SEP_3];
24264 	tcp_random_rptr = &tcp_random_state[0];
24265 	mutex_exit(&tcp_random_lock);
24266 	for (i = 0; i < 10 * DEG_3; i++)
24267 		(void) tcp_random();
24268 }
24269 
24270 /*
24271  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24272  * This range is selected to be approximately centered on TCP_ISS / 2,
24273  * and easy to compute. We get this value by generating a 32-bit random
24274  * number, selecting out the high-order 17 bits, and then adding one so
24275  * that we never return zero.
24276  */
24277 int
24278 tcp_random(void)
24279 {
24280 	int i;
24281 
24282 	mutex_enter(&tcp_random_lock);
24283 	*tcp_random_fptr += *tcp_random_rptr;
24284 
24285 	/*
24286 	 * The high-order bits are more random than the low-order bits,
24287 	 * so we select out the high-order 17 bits and add one so that
24288 	 * we never return zero.
24289 	 */
24290 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24291 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24292 		tcp_random_fptr = tcp_random_state;
24293 		++tcp_random_rptr;
24294 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24295 		tcp_random_rptr = tcp_random_state;
24296 
24297 	mutex_exit(&tcp_random_lock);
24298 	return (i);
24299 }
24300 
24301 /*
24302  * XXX This will go away when TPI is extended to send
24303  * info reqs to sockfs/timod .....
24304  * Given a queue, set the max packet size for the write
24305  * side of the queue below stream head.  This value is
24306  * cached on the stream head.
24307  * Returns 1 on success, 0 otherwise.
24308  */
24309 static int
24310 setmaxps(queue_t *q, int maxpsz)
24311 {
24312 	struct stdata	*stp;
24313 	queue_t		*wq;
24314 	stp = STREAM(q);
24315 
24316 	/*
24317 	 * At this point change of a queue parameter is not allowed
24318 	 * when a multiplexor is sitting on top.
24319 	 */
24320 	if (stp->sd_flag & STPLEX)
24321 		return (0);
24322 
24323 	claimstr(stp->sd_wrq);
24324 	wq = stp->sd_wrq->q_next;
24325 	ASSERT(wq != NULL);
24326 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24327 	releasestr(stp->sd_wrq);
24328 	return (1);
24329 }
24330 
24331 static int
24332 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24333     int *t_errorp, int *sys_errorp)
24334 {
24335 	int error;
24336 	int is_absreq_failure;
24337 	t_scalar_t *opt_lenp;
24338 	t_scalar_t opt_offset;
24339 	int prim_type;
24340 	struct T_conn_req *tcreqp;
24341 	struct T_conn_res *tcresp;
24342 	cred_t *cr;
24343 
24344 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24345 
24346 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24347 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24348 	    prim_type == T_CONN_RES);
24349 
24350 	switch (prim_type) {
24351 	case T_CONN_REQ:
24352 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24353 		opt_offset = tcreqp->OPT_offset;
24354 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24355 		break;
24356 	case O_T_CONN_RES:
24357 	case T_CONN_RES:
24358 		tcresp = (struct T_conn_res *)mp->b_rptr;
24359 		opt_offset = tcresp->OPT_offset;
24360 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24361 		break;
24362 	}
24363 
24364 	*t_errorp = 0;
24365 	*sys_errorp = 0;
24366 	*do_disconnectp = 0;
24367 
24368 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24369 	    opt_offset, cr, &tcp_opt_obj,
24370 	    NULL, &is_absreq_failure);
24371 
24372 	switch (error) {
24373 	case  0:		/* no error */
24374 		ASSERT(is_absreq_failure == 0);
24375 		return (0);
24376 	case ENOPROTOOPT:
24377 		*t_errorp = TBADOPT;
24378 		break;
24379 	case EACCES:
24380 		*t_errorp = TACCES;
24381 		break;
24382 	default:
24383 		*t_errorp = TSYSERR; *sys_errorp = error;
24384 		break;
24385 	}
24386 	if (is_absreq_failure != 0) {
24387 		/*
24388 		 * The connection request should get the local ack
24389 		 * T_OK_ACK and then a T_DISCON_IND.
24390 		 */
24391 		*do_disconnectp = 1;
24392 	}
24393 	return (-1);
24394 }
24395 
24396 /*
24397  * Split this function out so that if the secret changes, I'm okay.
24398  *
24399  * Initialize the tcp_iss_cookie and tcp_iss_key.
24400  */
24401 
24402 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24403 
24404 static void
24405 tcp_iss_key_init(uint8_t *phrase, int len)
24406 {
24407 	struct {
24408 		int32_t current_time;
24409 		uint32_t randnum;
24410 		uint16_t pad;
24411 		uint8_t ether[6];
24412 		uint8_t passwd[PASSWD_SIZE];
24413 	} tcp_iss_cookie;
24414 	time_t t;
24415 
24416 	/*
24417 	 * Start with the current absolute time.
24418 	 */
24419 	(void) drv_getparm(TIME, &t);
24420 	tcp_iss_cookie.current_time = t;
24421 
24422 	/*
24423 	 * XXX - Need a more random number per RFC 1750, not this crap.
24424 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24425 	 */
24426 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24427 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24428 
24429 	/*
24430 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24431 	 * as a good template.
24432 	 */
24433 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24434 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24435 
24436 	/*
24437 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24438 	 */
24439 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24440 
24441 	/*
24442 	 * See 4010593 if this section becomes a problem again,
24443 	 * but the local ethernet address is useful here.
24444 	 */
24445 	(void) localetheraddr(NULL,
24446 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24447 
24448 	/*
24449 	 * Hash 'em all together.  The MD5Final is called per-connection.
24450 	 */
24451 	mutex_enter(&tcp_iss_key_lock);
24452 	MD5Init(&tcp_iss_key);
24453 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
24454 	    sizeof (tcp_iss_cookie));
24455 	mutex_exit(&tcp_iss_key_lock);
24456 }
24457 
24458 /*
24459  * Set the RFC 1948 pass phrase
24460  */
24461 /* ARGSUSED */
24462 static int
24463 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24464     cred_t *cr)
24465 {
24466 	/*
24467 	 * Basically, value contains a new pass phrase.  Pass it along!
24468 	 */
24469 	tcp_iss_key_init((uint8_t *)value, strlen(value));
24470 	return (0);
24471 }
24472 
24473 /* ARGSUSED */
24474 static int
24475 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24476 {
24477 	bzero(buf, sizeof (tcp_sack_info_t));
24478 	return (0);
24479 }
24480 
24481 /* ARGSUSED */
24482 static int
24483 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24484 {
24485 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24486 	return (0);
24487 }
24488 
24489 void
24490 tcp_ddi_init(void)
24491 {
24492 	int i;
24493 
24494 	/* Initialize locks */
24495 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
24496 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24497 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24498 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24499 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24500 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
24501 
24502 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24503 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
24504 		    MUTEX_DEFAULT, NULL);
24505 	}
24506 
24507 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24508 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
24509 		    MUTEX_DEFAULT, NULL);
24510 	}
24511 
24512 	/* TCP's IPsec code calls the packet dropper. */
24513 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
24514 
24515 	if (!tcp_g_nd) {
24516 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
24517 			nd_free(&tcp_g_nd);
24518 		}
24519 	}
24520 
24521 	/*
24522 	 * Note: To really walk the device tree you need the devinfo
24523 	 * pointer to your device which is only available after probe/attach.
24524 	 * The following is safe only because it uses ddi_root_node()
24525 	 */
24526 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24527 	    tcp_opt_obj.odb_opt_arr_cnt);
24528 
24529 	tcp_timercache = kmem_cache_create("tcp_timercache",
24530 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24531 	    NULL, NULL, NULL, NULL, NULL, 0);
24532 
24533 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24534 	    sizeof (tcp_sack_info_t), 0,
24535 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24536 
24537 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24538 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24539 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24540 
24541 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24542 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24543 
24544 	ip_squeue_init(tcp_squeue_add);
24545 
24546 	/* Initialize the random number generator */
24547 	tcp_random_init();
24548 
24549 	/*
24550 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24551 	 * by the boot scripts.
24552 	 *
24553 	 * Use NULL name, as the name is caught by the new lockstats.
24554 	 *
24555 	 * Initialize with some random, non-guessable string, like the global
24556 	 * T_INFO_ACK.
24557 	 */
24558 
24559 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24560 	    sizeof (tcp_g_t_info_ack));
24561 
24562 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
24563 		"net", KSTAT_TYPE_NAMED,
24564 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
24565 		KSTAT_FLAG_VIRTUAL)) != NULL) {
24566 		tcp_kstat->ks_data = &tcp_statistics;
24567 		kstat_install(tcp_kstat);
24568 	}
24569 
24570 	tcp_kstat_init();
24571 }
24572 
24573 void
24574 tcp_ddi_destroy(void)
24575 {
24576 	int i;
24577 
24578 	nd_free(&tcp_g_nd);
24579 
24580 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24581 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
24582 	}
24583 
24584 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24585 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
24586 	}
24587 
24588 	mutex_destroy(&tcp_iss_key_lock);
24589 	rw_destroy(&tcp_hsp_lock);
24590 	mutex_destroy(&tcp_g_q_lock);
24591 	mutex_destroy(&tcp_random_lock);
24592 	mutex_destroy(&tcp_epriv_port_lock);
24593 	rw_destroy(&tcp_reserved_port_lock);
24594 
24595 	ip_drop_unregister(&tcp_dropper);
24596 
24597 	kmem_cache_destroy(tcp_timercache);
24598 	kmem_cache_destroy(tcp_sack_info_cache);
24599 	kmem_cache_destroy(tcp_iphc_cache);
24600 
24601 	tcp_kstat_fini();
24602 }
24603 
24604 /*
24605  * Generate ISS, taking into account NDD changes may happen halfway through.
24606  * (If the iss is not zero, set it.)
24607  */
24608 
24609 static void
24610 tcp_iss_init(tcp_t *tcp)
24611 {
24612 	MD5_CTX context;
24613 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24614 	uint32_t answer[4];
24615 
24616 	tcp_iss_incr_extra += (ISS_INCR >> 1);
24617 	tcp->tcp_iss = tcp_iss_incr_extra;
24618 	switch (tcp_strong_iss) {
24619 	case 2:
24620 		mutex_enter(&tcp_iss_key_lock);
24621 		context = tcp_iss_key;
24622 		mutex_exit(&tcp_iss_key_lock);
24623 		arg.ports = tcp->tcp_ports;
24624 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24625 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24626 			    &arg.src);
24627 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24628 			    &arg.dst);
24629 		} else {
24630 			arg.src = tcp->tcp_ip6h->ip6_src;
24631 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24632 		}
24633 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24634 		MD5Final((uchar_t *)answer, &context);
24635 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24636 		/*
24637 		 * Now that we've hashed into a unique per-connection sequence
24638 		 * space, add a random increment per strong_iss == 1.  So I
24639 		 * guess we'll have to...
24640 		 */
24641 		/* FALLTHRU */
24642 	case 1:
24643 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24644 		break;
24645 	default:
24646 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24647 		break;
24648 	}
24649 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24650 	tcp->tcp_fss = tcp->tcp_iss - 1;
24651 	tcp->tcp_suna = tcp->tcp_iss;
24652 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24653 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24654 	tcp->tcp_csuna = tcp->tcp_snxt;
24655 }
24656 
24657 /*
24658  * Exported routine for extracting active tcp connection status.
24659  *
24660  * This is used by the Solaris Cluster Networking software to
24661  * gather a list of connections that need to be forwarded to
24662  * specific nodes in the cluster when configuration changes occur.
24663  *
24664  * The callback is invoked for each tcp_t structure. Returning
24665  * non-zero from the callback routine terminates the search.
24666  */
24667 int
24668 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
24669 {
24670 	tcp_t *tcp;
24671 	cl_tcp_info_t	cl_tcpi;
24672 	connf_t	*connfp;
24673 	conn_t	*connp;
24674 	int	i;
24675 
24676 	ASSERT(callback != NULL);
24677 
24678 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24679 
24680 		connfp = &ipcl_globalhash_fanout[i];
24681 		connp = NULL;
24682 
24683 		while ((connp =
24684 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24685 
24686 			tcp = connp->conn_tcp;
24687 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24688 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24689 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24690 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24691 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24692 			/*
24693 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24694 			 * addresses. They are copied implicitly below as
24695 			 * mapped addresses.
24696 			 */
24697 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24698 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24699 				cl_tcpi.cl_tcpi_faddr =
24700 				    tcp->tcp_ipha->ipha_dst;
24701 			} else {
24702 				cl_tcpi.cl_tcpi_faddr_v6 =
24703 				    tcp->tcp_ip6h->ip6_dst;
24704 			}
24705 
24706 			/*
24707 			 * If the callback returns non-zero
24708 			 * we terminate the traversal.
24709 			 */
24710 			if ((*callback)(&cl_tcpi, arg) != 0) {
24711 				CONN_DEC_REF(tcp->tcp_connp);
24712 				return (1);
24713 			}
24714 		}
24715 	}
24716 
24717 	return (0);
24718 }
24719 
24720 /*
24721  * Macros used for accessing the different types of sockaddr
24722  * structures inside a tcp_ioc_abort_conn_t.
24723  */
24724 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24725 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24726 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24727 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24728 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24729 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24730 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24731 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24732 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24733 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24734 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24735 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24736 
24737 /*
24738  * Return the correct error code to mimic the behavior
24739  * of a connection reset.
24740  */
24741 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24742 		switch ((state)) {		\
24743 		case TCPS_SYN_SENT:		\
24744 		case TCPS_SYN_RCVD:		\
24745 			(err) = ECONNREFUSED;	\
24746 			break;			\
24747 		case TCPS_ESTABLISHED:		\
24748 		case TCPS_FIN_WAIT_1:		\
24749 		case TCPS_FIN_WAIT_2:		\
24750 		case TCPS_CLOSE_WAIT:		\
24751 			(err) = ECONNRESET;	\
24752 			break;			\
24753 		case TCPS_CLOSING:		\
24754 		case TCPS_LAST_ACK:		\
24755 		case TCPS_TIME_WAIT:		\
24756 			(err) = 0;		\
24757 			break;			\
24758 		default:			\
24759 			(err) = ENXIO;		\
24760 		}				\
24761 	}
24762 
24763 /*
24764  * Check if a tcp structure matches the info in acp.
24765  */
24766 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24767 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24768 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24769 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24770 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24771 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24772 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24773 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24774 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24775 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24776 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24777 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24778 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24779 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24780 	&(tcp)->tcp_ip_src_v6)) &&				\
24781 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24782 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24783 	&(tcp)->tcp_remote_v6)) &&				\
24784 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24785 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24786 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24787 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24788 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24789 	(acp)->ac_end >= (tcp)->tcp_state))
24790 
24791 #define	TCP_AC_MATCH(acp, tcp)					\
24792 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24793 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24794 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24795 
24796 /*
24797  * Build a message containing a tcp_ioc_abort_conn_t structure
24798  * which is filled in with information from acp and tp.
24799  */
24800 static mblk_t *
24801 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24802 {
24803 	mblk_t *mp;
24804 	tcp_ioc_abort_conn_t *tacp;
24805 
24806 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24807 	if (mp == NULL)
24808 		return (NULL);
24809 
24810 	mp->b_datap->db_type = M_CTL;
24811 
24812 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24813 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24814 		sizeof (uint32_t));
24815 
24816 	tacp->ac_start = acp->ac_start;
24817 	tacp->ac_end = acp->ac_end;
24818 	tacp->ac_zoneid = acp->ac_zoneid;
24819 
24820 	if (acp->ac_local.ss_family == AF_INET) {
24821 		tacp->ac_local.ss_family = AF_INET;
24822 		tacp->ac_remote.ss_family = AF_INET;
24823 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24824 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24825 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24826 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24827 	} else {
24828 		tacp->ac_local.ss_family = AF_INET6;
24829 		tacp->ac_remote.ss_family = AF_INET6;
24830 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24831 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24832 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24833 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24834 	}
24835 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24836 	return (mp);
24837 }
24838 
24839 /*
24840  * Print a tcp_ioc_abort_conn_t structure.
24841  */
24842 static void
24843 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24844 {
24845 	char lbuf[128];
24846 	char rbuf[128];
24847 	sa_family_t af;
24848 	in_port_t lport, rport;
24849 	ushort_t logflags;
24850 
24851 	af = acp->ac_local.ss_family;
24852 
24853 	if (af == AF_INET) {
24854 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24855 				lbuf, 128);
24856 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24857 				rbuf, 128);
24858 		lport = ntohs(TCP_AC_V4LPORT(acp));
24859 		rport = ntohs(TCP_AC_V4RPORT(acp));
24860 	} else {
24861 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24862 				lbuf, 128);
24863 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24864 				rbuf, 128);
24865 		lport = ntohs(TCP_AC_V6LPORT(acp));
24866 		rport = ntohs(TCP_AC_V6RPORT(acp));
24867 	}
24868 
24869 	logflags = SL_TRACE | SL_NOTE;
24870 	/*
24871 	 * Don't print this message to the console if the operation was done
24872 	 * to a non-global zone.
24873 	 */
24874 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24875 		logflags |= SL_CONSOLE;
24876 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24877 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24878 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24879 		acp->ac_start, acp->ac_end);
24880 }
24881 
24882 /*
24883  * Called inside tcp_rput when a message built using
24884  * tcp_ioctl_abort_build_msg is put into a queue.
24885  * Note that when we get here there is no wildcard in acp any more.
24886  */
24887 static void
24888 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24889 {
24890 	tcp_ioc_abort_conn_t *acp;
24891 
24892 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24893 	if (tcp->tcp_state <= acp->ac_end) {
24894 		/*
24895 		 * If we get here, we are already on the correct
24896 		 * squeue. This ioctl follows the following path
24897 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24898 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24899 		 * different squeue)
24900 		 */
24901 		int errcode;
24902 
24903 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24904 		(void) tcp_clean_death(tcp, errcode, 26);
24905 	}
24906 	freemsg(mp);
24907 }
24908 
24909 /*
24910  * Abort all matching connections on a hash chain.
24911  */
24912 static int
24913 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24914     boolean_t exact)
24915 {
24916 	int nmatch, err = 0;
24917 	tcp_t *tcp;
24918 	MBLKP mp, last, listhead = NULL;
24919 	conn_t	*tconnp;
24920 	connf_t	*connfp = &ipcl_conn_fanout[index];
24921 
24922 startover:
24923 	nmatch = 0;
24924 
24925 	mutex_enter(&connfp->connf_lock);
24926 	for (tconnp = connfp->connf_head; tconnp != NULL;
24927 	    tconnp = tconnp->conn_next) {
24928 		tcp = tconnp->conn_tcp;
24929 		if (TCP_AC_MATCH(acp, tcp)) {
24930 			CONN_INC_REF(tcp->tcp_connp);
24931 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24932 			if (mp == NULL) {
24933 				err = ENOMEM;
24934 				CONN_DEC_REF(tcp->tcp_connp);
24935 				break;
24936 			}
24937 			mp->b_prev = (mblk_t *)tcp;
24938 
24939 			if (listhead == NULL) {
24940 				listhead = mp;
24941 				last = mp;
24942 			} else {
24943 				last->b_next = mp;
24944 				last = mp;
24945 			}
24946 			nmatch++;
24947 			if (exact)
24948 				break;
24949 		}
24950 
24951 		/* Avoid holding lock for too long. */
24952 		if (nmatch >= 500)
24953 			break;
24954 	}
24955 	mutex_exit(&connfp->connf_lock);
24956 
24957 	/* Pass mp into the correct tcp */
24958 	while ((mp = listhead) != NULL) {
24959 		listhead = listhead->b_next;
24960 		tcp = (tcp_t *)mp->b_prev;
24961 		mp->b_next = mp->b_prev = NULL;
24962 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24963 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24964 	}
24965 
24966 	*count += nmatch;
24967 	if (nmatch >= 500 && err == 0)
24968 		goto startover;
24969 	return (err);
24970 }
24971 
24972 /*
24973  * Abort all connections that matches the attributes specified in acp.
24974  */
24975 static int
24976 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24977 {
24978 	sa_family_t af;
24979 	uint32_t  ports;
24980 	uint16_t *pports;
24981 	int err = 0, count = 0;
24982 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24983 	int index = -1;
24984 	ushort_t logflags;
24985 
24986 	af = acp->ac_local.ss_family;
24987 
24988 	if (af == AF_INET) {
24989 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24990 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24991 			pports = (uint16_t *)&ports;
24992 			pports[1] = TCP_AC_V4LPORT(acp);
24993 			pports[0] = TCP_AC_V4RPORT(acp);
24994 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24995 		}
24996 	} else {
24997 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24998 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24999 			pports = (uint16_t *)&ports;
25000 			pports[1] = TCP_AC_V6LPORT(acp);
25001 			pports[0] = TCP_AC_V6RPORT(acp);
25002 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25003 		}
25004 	}
25005 
25006 	/*
25007 	 * For cases where remote addr, local port, and remote port are non-
25008 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25009 	 */
25010 	if (index != -1) {
25011 		err = tcp_ioctl_abort_bucket(acp, index,
25012 			    &count, exact);
25013 	} else {
25014 		/*
25015 		 * loop through all entries for wildcard case
25016 		 */
25017 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
25018 			err = tcp_ioctl_abort_bucket(acp, index,
25019 			    &count, exact);
25020 			if (err != 0)
25021 				break;
25022 		}
25023 	}
25024 
25025 	logflags = SL_TRACE | SL_NOTE;
25026 	/*
25027 	 * Don't print this message to the console if the operation was done
25028 	 * to a non-global zone.
25029 	 */
25030 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25031 		logflags |= SL_CONSOLE;
25032 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25033 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25034 	if (err == 0 && count == 0)
25035 		err = ENOENT;
25036 	return (err);
25037 }
25038 
25039 /*
25040  * Process the TCP_IOC_ABORT_CONN ioctl request.
25041  */
25042 static void
25043 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25044 {
25045 	int	err;
25046 	IOCP    iocp;
25047 	MBLKP   mp1;
25048 	sa_family_t laf, raf;
25049 	tcp_ioc_abort_conn_t *acp;
25050 	zone_t *zptr;
25051 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
25052 
25053 	iocp = (IOCP)mp->b_rptr;
25054 
25055 	if ((mp1 = mp->b_cont) == NULL ||
25056 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25057 		err = EINVAL;
25058 		goto out;
25059 	}
25060 
25061 	/* check permissions */
25062 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
25063 		err = EPERM;
25064 		goto out;
25065 	}
25066 
25067 	if (mp1->b_cont != NULL) {
25068 		freemsg(mp1->b_cont);
25069 		mp1->b_cont = NULL;
25070 	}
25071 
25072 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25073 	laf = acp->ac_local.ss_family;
25074 	raf = acp->ac_remote.ss_family;
25075 
25076 	/* check that a zone with the supplied zoneid exists */
25077 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25078 		zptr = zone_find_by_id(zoneid);
25079 		if (zptr != NULL) {
25080 			zone_rele(zptr);
25081 		} else {
25082 			err = EINVAL;
25083 			goto out;
25084 		}
25085 	}
25086 
25087 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25088 	    acp->ac_start > acp->ac_end || laf != raf ||
25089 	    (laf != AF_INET && laf != AF_INET6)) {
25090 		err = EINVAL;
25091 		goto out;
25092 	}
25093 
25094 	tcp_ioctl_abort_dump(acp);
25095 	err = tcp_ioctl_abort(acp);
25096 
25097 out:
25098 	if (mp1 != NULL) {
25099 		freemsg(mp1);
25100 		mp->b_cont = NULL;
25101 	}
25102 
25103 	if (err != 0)
25104 		miocnak(q, mp, 0, err);
25105 	else
25106 		miocack(q, mp, 0, 0);
25107 }
25108 
25109 /*
25110  * tcp_time_wait_processing() handles processing of incoming packets when
25111  * the tcp is in the TIME_WAIT state.
25112  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25113  * on the time wait list.
25114  */
25115 void
25116 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25117     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25118 {
25119 	int32_t		bytes_acked;
25120 	int32_t		gap;
25121 	int32_t		rgap;
25122 	tcp_opt_t	tcpopt;
25123 	uint_t		flags;
25124 	uint32_t	new_swnd = 0;
25125 	conn_t		*connp;
25126 
25127 	BUMP_LOCAL(tcp->tcp_ibsegs);
25128 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25129 
25130 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25131 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25132 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25133 	if (tcp->tcp_snd_ts_ok) {
25134 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25135 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25136 			    tcp->tcp_rnxt, TH_ACK);
25137 			goto done;
25138 		}
25139 	}
25140 	gap = seg_seq - tcp->tcp_rnxt;
25141 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25142 	if (gap < 0) {
25143 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
25144 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
25145 		    (seg_len > -gap ? -gap : seg_len));
25146 		seg_len += gap;
25147 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25148 			if (flags & TH_RST) {
25149 				goto done;
25150 			}
25151 			if ((flags & TH_FIN) && seg_len == -1) {
25152 				/*
25153 				 * When TCP receives a duplicate FIN in
25154 				 * TIME_WAIT state, restart the 2 MSL timer.
25155 				 * See page 73 in RFC 793. Make sure this TCP
25156 				 * is already on the TIME_WAIT list. If not,
25157 				 * just restart the timer.
25158 				 */
25159 				if (TCP_IS_DETACHED(tcp)) {
25160 					if (tcp_time_wait_remove(tcp, NULL) ==
25161 					    B_TRUE) {
25162 						tcp_time_wait_append(tcp);
25163 						TCP_DBGSTAT(tcp_rput_time_wait);
25164 					}
25165 				} else {
25166 					ASSERT(tcp != NULL);
25167 					TCP_TIMER_RESTART(tcp,
25168 					    tcp_time_wait_interval);
25169 				}
25170 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25171 				    tcp->tcp_rnxt, TH_ACK);
25172 				goto done;
25173 			}
25174 			flags |=  TH_ACK_NEEDED;
25175 			seg_len = 0;
25176 			goto process_ack;
25177 		}
25178 
25179 		/* Fix seg_seq, and chew the gap off the front. */
25180 		seg_seq = tcp->tcp_rnxt;
25181 	}
25182 
25183 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25184 		/*
25185 		 * Make sure that when we accept the connection, pick
25186 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25187 		 * old connection.
25188 		 *
25189 		 * The next ISS generated is equal to tcp_iss_incr_extra
25190 		 * + ISS_INCR/2 + other components depending on the
25191 		 * value of tcp_strong_iss.  We pre-calculate the new
25192 		 * ISS here and compare with tcp_snxt to determine if
25193 		 * we need to make adjustment to tcp_iss_incr_extra.
25194 		 *
25195 		 * The above calculation is ugly and is a
25196 		 * waste of CPU cycles...
25197 		 */
25198 		uint32_t new_iss = tcp_iss_incr_extra;
25199 		int32_t adj;
25200 
25201 		switch (tcp_strong_iss) {
25202 		case 2: {
25203 			/* Add time and MD5 components. */
25204 			uint32_t answer[4];
25205 			struct {
25206 				uint32_t ports;
25207 				in6_addr_t src;
25208 				in6_addr_t dst;
25209 			} arg;
25210 			MD5_CTX context;
25211 
25212 			mutex_enter(&tcp_iss_key_lock);
25213 			context = tcp_iss_key;
25214 			mutex_exit(&tcp_iss_key_lock);
25215 			arg.ports = tcp->tcp_ports;
25216 			/* We use MAPPED addresses in tcp_iss_init */
25217 			arg.src = tcp->tcp_ip_src_v6;
25218 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25219 				IN6_IPADDR_TO_V4MAPPED(
25220 					tcp->tcp_ipha->ipha_dst,
25221 					    &arg.dst);
25222 			} else {
25223 				arg.dst =
25224 				    tcp->tcp_ip6h->ip6_dst;
25225 			}
25226 			MD5Update(&context, (uchar_t *)&arg,
25227 			    sizeof (arg));
25228 			MD5Final((uchar_t *)answer, &context);
25229 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25230 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25231 			break;
25232 		}
25233 		case 1:
25234 			/* Add time component and min random (i.e. 1). */
25235 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25236 			break;
25237 		default:
25238 			/* Add only time component. */
25239 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25240 			break;
25241 		}
25242 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25243 			/*
25244 			 * New ISS not guaranteed to be ISS_INCR/2
25245 			 * ahead of the current tcp_snxt, so add the
25246 			 * difference to tcp_iss_incr_extra.
25247 			 */
25248 			tcp_iss_incr_extra += adj;
25249 		}
25250 		/*
25251 		 * If tcp_clean_death() can not perform the task now,
25252 		 * drop the SYN packet and let the other side re-xmit.
25253 		 * Otherwise pass the SYN packet back in, since the
25254 		 * old tcp state has been cleaned up or freed.
25255 		 */
25256 		if (tcp_clean_death(tcp, 0, 27) == -1)
25257 			goto done;
25258 		/*
25259 		 * We will come back to tcp_rput_data
25260 		 * on the global queue. Packets destined
25261 		 * for the global queue will be checked
25262 		 * with global policy. But the policy for
25263 		 * this packet has already been checked as
25264 		 * this was destined for the detached
25265 		 * connection. We need to bypass policy
25266 		 * check this time by attaching a dummy
25267 		 * ipsec_in with ipsec_in_dont_check set.
25268 		 */
25269 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
25270 		    NULL) {
25271 			TCP_STAT(tcp_time_wait_syn_success);
25272 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25273 			return;
25274 		}
25275 		goto done;
25276 	}
25277 
25278 	/*
25279 	 * rgap is the amount of stuff received out of window.  A negative
25280 	 * value is the amount out of window.
25281 	 */
25282 	if (rgap < 0) {
25283 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
25284 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
25285 		/* Fix seg_len and make sure there is something left. */
25286 		seg_len += rgap;
25287 		if (seg_len <= 0) {
25288 			if (flags & TH_RST) {
25289 				goto done;
25290 			}
25291 			flags |=  TH_ACK_NEEDED;
25292 			seg_len = 0;
25293 			goto process_ack;
25294 		}
25295 	}
25296 	/*
25297 	 * Check whether we can update tcp_ts_recent.  This test is
25298 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25299 	 * Extensions for High Performance: An Update", Internet Draft.
25300 	 */
25301 	if (tcp->tcp_snd_ts_ok &&
25302 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25303 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25304 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25305 		tcp->tcp_last_rcv_lbolt = lbolt64;
25306 	}
25307 
25308 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25309 		/* Always ack out of order packets */
25310 		flags |= TH_ACK_NEEDED;
25311 		seg_len = 0;
25312 	} else if (seg_len > 0) {
25313 		BUMP_MIB(&tcp_mib, tcpInClosed);
25314 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
25315 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
25316 	}
25317 	if (flags & TH_RST) {
25318 		(void) tcp_clean_death(tcp, 0, 28);
25319 		goto done;
25320 	}
25321 	if (flags & TH_SYN) {
25322 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25323 		    TH_RST|TH_ACK);
25324 		/*
25325 		 * Do not delete the TCP structure if it is in
25326 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25327 		 */
25328 		goto done;
25329 	}
25330 process_ack:
25331 	if (flags & TH_ACK) {
25332 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25333 		if (bytes_acked <= 0) {
25334 			if (bytes_acked == 0 && seg_len == 0 &&
25335 			    new_swnd == tcp->tcp_swnd)
25336 				BUMP_MIB(&tcp_mib, tcpInDupAck);
25337 		} else {
25338 			/* Acks something not sent */
25339 			flags |= TH_ACK_NEEDED;
25340 		}
25341 	}
25342 	if (flags & TH_ACK_NEEDED) {
25343 		/*
25344 		 * Time to send an ack for some reason.
25345 		 */
25346 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25347 		    tcp->tcp_rnxt, TH_ACK);
25348 	}
25349 done:
25350 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25351 		DB_CKSUMSTART(mp) = 0;
25352 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25353 		TCP_STAT(tcp_time_wait_syn_fail);
25354 	}
25355 	freemsg(mp);
25356 }
25357 
25358 /*
25359  * Allocate a T_SVR4_OPTMGMT_REQ.
25360  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
25361  * that tcp_rput_other can drop the acks.
25362  */
25363 static mblk_t *
25364 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
25365 {
25366 	mblk_t *mp;
25367 	struct T_optmgmt_req *tor;
25368 	struct opthdr *oh;
25369 	uint_t size;
25370 	char *optptr;
25371 
25372 	size = sizeof (*tor) + sizeof (*oh) + optlen;
25373 	mp = allocb(size, BPRI_MED);
25374 	if (mp == NULL)
25375 		return (NULL);
25376 
25377 	mp->b_wptr += size;
25378 	mp->b_datap->db_type = M_PROTO;
25379 	tor = (struct T_optmgmt_req *)mp->b_rptr;
25380 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
25381 	tor->MGMT_flags = T_NEGOTIATE;
25382 	tor->OPT_length = sizeof (*oh) + optlen;
25383 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
25384 
25385 	oh = (struct opthdr *)&tor[1];
25386 	oh->level = level;
25387 	oh->name = cmd;
25388 	oh->len = optlen;
25389 	if (optlen != 0) {
25390 		optptr = (char *)&oh[1];
25391 		bcopy(opt, optptr, optlen);
25392 	}
25393 	return (mp);
25394 }
25395 
25396 /*
25397  * TCP Timers Implementation.
25398  */
25399 timeout_id_t
25400 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25401 {
25402 	mblk_t *mp;
25403 	tcp_timer_t *tcpt;
25404 	tcp_t *tcp = connp->conn_tcp;
25405 
25406 	ASSERT(connp->conn_sqp != NULL);
25407 
25408 	TCP_DBGSTAT(tcp_timeout_calls);
25409 
25410 	if (tcp->tcp_timercache == NULL) {
25411 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25412 	} else {
25413 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
25414 		mp = tcp->tcp_timercache;
25415 		tcp->tcp_timercache = mp->b_next;
25416 		mp->b_next = NULL;
25417 		ASSERT(mp->b_wptr == NULL);
25418 	}
25419 
25420 	CONN_INC_REF(connp);
25421 	tcpt = (tcp_timer_t *)mp->b_rptr;
25422 	tcpt->connp = connp;
25423 	tcpt->tcpt_proc = f;
25424 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
25425 	return ((timeout_id_t)mp);
25426 }
25427 
25428 static void
25429 tcp_timer_callback(void *arg)
25430 {
25431 	mblk_t *mp = (mblk_t *)arg;
25432 	tcp_timer_t *tcpt;
25433 	conn_t	*connp;
25434 
25435 	tcpt = (tcp_timer_t *)mp->b_rptr;
25436 	connp = tcpt->connp;
25437 	squeue_fill(connp->conn_sqp, mp,
25438 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
25439 }
25440 
25441 static void
25442 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25443 {
25444 	tcp_timer_t *tcpt;
25445 	conn_t *connp = (conn_t *)arg;
25446 	tcp_t *tcp = connp->conn_tcp;
25447 
25448 	tcpt = (tcp_timer_t *)mp->b_rptr;
25449 	ASSERT(connp == tcpt->connp);
25450 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25451 
25452 	/*
25453 	 * If the TCP has reached the closed state, don't proceed any
25454 	 * further. This TCP logically does not exist on the system.
25455 	 * tcpt_proc could for example access queues, that have already
25456 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25457 	 */
25458 	if (tcp->tcp_state != TCPS_CLOSED) {
25459 		(*tcpt->tcpt_proc)(connp);
25460 	} else {
25461 		tcp->tcp_timer_tid = 0;
25462 	}
25463 	tcp_timer_free(connp->conn_tcp, mp);
25464 }
25465 
25466 /*
25467  * There is potential race with untimeout and the handler firing at the same
25468  * time. The mblock may be freed by the handler while we are trying to use
25469  * it. But since both should execute on the same squeue, this race should not
25470  * occur.
25471  */
25472 clock_t
25473 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25474 {
25475 	mblk_t	*mp = (mblk_t *)id;
25476 	tcp_timer_t *tcpt;
25477 	clock_t delta;
25478 
25479 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
25480 
25481 	if (mp == NULL)
25482 		return (-1);
25483 
25484 	tcpt = (tcp_timer_t *)mp->b_rptr;
25485 	ASSERT(tcpt->connp == connp);
25486 
25487 	delta = untimeout(tcpt->tcpt_tid);
25488 
25489 	if (delta >= 0) {
25490 		TCP_DBGSTAT(tcp_timeout_canceled);
25491 		tcp_timer_free(connp->conn_tcp, mp);
25492 		CONN_DEC_REF(connp);
25493 	}
25494 
25495 	return (delta);
25496 }
25497 
25498 /*
25499  * Allocate space for the timer event. The allocation looks like mblk, but it is
25500  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25501  *
25502  * Dealing with failures: If we can't allocate from the timer cache we try
25503  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25504  * points to b_rptr.
25505  * If we can't allocate anything using allocb_tryhard(), we perform a last
25506  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25507  * save the actual allocation size in b_datap.
25508  */
25509 mblk_t *
25510 tcp_timermp_alloc(int kmflags)
25511 {
25512 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25513 	    kmflags & ~KM_PANIC);
25514 
25515 	if (mp != NULL) {
25516 		mp->b_next = mp->b_prev = NULL;
25517 		mp->b_rptr = (uchar_t *)(&mp[1]);
25518 		mp->b_wptr = NULL;
25519 		mp->b_datap = NULL;
25520 		mp->b_queue = NULL;
25521 	} else if (kmflags & KM_PANIC) {
25522 		/*
25523 		 * Failed to allocate memory for the timer. Try allocating from
25524 		 * dblock caches.
25525 		 */
25526 		TCP_STAT(tcp_timermp_allocfail);
25527 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25528 		if (mp == NULL) {
25529 			size_t size = 0;
25530 			/*
25531 			 * Memory is really low. Try tryhard allocation.
25532 			 */
25533 			TCP_STAT(tcp_timermp_allocdblfail);
25534 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25535 			    sizeof (tcp_timer_t), &size, kmflags);
25536 			mp->b_rptr = (uchar_t *)(&mp[1]);
25537 			mp->b_next = mp->b_prev = NULL;
25538 			mp->b_wptr = (uchar_t *)-1;
25539 			mp->b_datap = (dblk_t *)size;
25540 			mp->b_queue = NULL;
25541 		}
25542 		ASSERT(mp->b_wptr != NULL);
25543 	}
25544 	TCP_DBGSTAT(tcp_timermp_alloced);
25545 
25546 	return (mp);
25547 }
25548 
25549 /*
25550  * Free per-tcp timer cache.
25551  * It can only contain entries from tcp_timercache.
25552  */
25553 void
25554 tcp_timermp_free(tcp_t *tcp)
25555 {
25556 	mblk_t *mp;
25557 
25558 	while ((mp = tcp->tcp_timercache) != NULL) {
25559 		ASSERT(mp->b_wptr == NULL);
25560 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
25561 		kmem_cache_free(tcp_timercache, mp);
25562 	}
25563 }
25564 
25565 /*
25566  * Free timer event. Put it on the per-tcp timer cache if there is not too many
25567  * events there already (currently at most two events are cached).
25568  * If the event is not allocated from the timer cache, free it right away.
25569  */
25570 static void
25571 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25572 {
25573 	mblk_t *mp1 = tcp->tcp_timercache;
25574 
25575 	if (mp->b_wptr != NULL) {
25576 		/*
25577 		 * This allocation is not from a timer cache, free it right
25578 		 * away.
25579 		 */
25580 		if (mp->b_wptr != (uchar_t *)-1)
25581 			freeb(mp);
25582 		else
25583 			kmem_free(mp, (size_t)mp->b_datap);
25584 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25585 		/* Cache this timer block for future allocations */
25586 		mp->b_rptr = (uchar_t *)(&mp[1]);
25587 		mp->b_next = mp1;
25588 		tcp->tcp_timercache = mp;
25589 	} else {
25590 		kmem_cache_free(tcp_timercache, mp);
25591 		TCP_DBGSTAT(tcp_timermp_freed);
25592 	}
25593 }
25594 
25595 /*
25596  * End of TCP Timers implementation.
25597  */
25598 
25599 /*
25600  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
25601  * on the specified backing STREAMS q. Note, the caller may make the
25602  * decision to call based on the tcp_t.tcp_flow_stopped value which
25603  * when check outside the q's lock is only an advisory check ...
25604  */
25605 
25606 void
25607 tcp_setqfull(tcp_t *tcp)
25608 {
25609 	queue_t *q = tcp->tcp_wq;
25610 
25611 	if (!(q->q_flag & QFULL)) {
25612 		mutex_enter(QLOCK(q));
25613 		if (!(q->q_flag & QFULL)) {
25614 			/* still need to set QFULL */
25615 			q->q_flag |= QFULL;
25616 			tcp->tcp_flow_stopped = B_TRUE;
25617 			mutex_exit(QLOCK(q));
25618 			TCP_STAT(tcp_flwctl_on);
25619 		} else {
25620 			mutex_exit(QLOCK(q));
25621 		}
25622 	}
25623 }
25624 
25625 void
25626 tcp_clrqfull(tcp_t *tcp)
25627 {
25628 	queue_t *q = tcp->tcp_wq;
25629 
25630 	if (q->q_flag & QFULL) {
25631 		mutex_enter(QLOCK(q));
25632 		if (q->q_flag & QFULL) {
25633 			q->q_flag &= ~QFULL;
25634 			tcp->tcp_flow_stopped = B_FALSE;
25635 			mutex_exit(QLOCK(q));
25636 			if (q->q_flag & QWANTW)
25637 				qbackenable(q, 0);
25638 		} else {
25639 			mutex_exit(QLOCK(q));
25640 		}
25641 	}
25642 }
25643 
25644 /*
25645  * TCP Kstats implementation
25646  */
25647 static void
25648 tcp_kstat_init(void)
25649 {
25650 	tcp_named_kstat_t template = {
25651 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25652 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25653 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25654 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25655 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25656 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25657 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25658 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25659 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25660 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
25661 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
25662 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25663 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25664 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25665 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25666 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25667 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25668 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25669 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25670 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25671 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25672 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25673 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25674 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25675 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25676 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25677 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25678 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25679 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25680 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25681 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25682 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25683 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25684 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25685 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25686 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25687 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25688 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25689 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25690 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25691 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25692 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25693 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25694 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25695 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25696 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25697 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25698 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25699 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25700 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25701 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25702 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25703 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25704 	};
25705 
25706 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
25707 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
25708 
25709 	if (tcp_mibkp == NULL)
25710 		return;
25711 
25712 	template.rtoAlgorithm.value.ui32 = 4;
25713 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
25714 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
25715 	template.maxConn.value.i32 = -1;
25716 
25717 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
25718 
25719 	tcp_mibkp->ks_update = tcp_kstat_update;
25720 
25721 	kstat_install(tcp_mibkp);
25722 }
25723 
25724 static void
25725 tcp_kstat_fini(void)
25726 {
25727 
25728 	if (tcp_mibkp != NULL) {
25729 		kstat_delete(tcp_mibkp);
25730 		tcp_mibkp = NULL;
25731 	}
25732 }
25733 
25734 static int
25735 tcp_kstat_update(kstat_t *kp, int rw)
25736 {
25737 	tcp_named_kstat_t	*tcpkp;
25738 	tcp_t			*tcp;
25739 	connf_t			*connfp;
25740 	conn_t			*connp;
25741 	int 			i;
25742 
25743 	if (!kp || !kp->ks_data)
25744 		return (EIO);
25745 
25746 	if (rw == KSTAT_WRITE)
25747 		return (EACCES);
25748 
25749 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25750 
25751 	tcpkp->currEstab.value.ui32 = 0;
25752 
25753 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25754 		connfp = &ipcl_globalhash_fanout[i];
25755 		connp = NULL;
25756 		while ((connp =
25757 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25758 			tcp = connp->conn_tcp;
25759 			switch (tcp_snmp_state(tcp)) {
25760 			case MIB2_TCP_established:
25761 			case MIB2_TCP_closeWait:
25762 				tcpkp->currEstab.value.ui32++;
25763 				break;
25764 			}
25765 		}
25766 	}
25767 
25768 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25769 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25770 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25771 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25772 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
25773 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
25774 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25775 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25776 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25777 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25778 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25779 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25780 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25781 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25782 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25783 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25784 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25785 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25786 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25787 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25788 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25789 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25790 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25791 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25792 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25793 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25794 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25795 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25796 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25797 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25798 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25799 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25800 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25801 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25802 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25803 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25804 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25805 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25806 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25807 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25808 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25809 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25810 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25811 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25812 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25813 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25814 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25815 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25816 
25817 	return (0);
25818 }
25819 
25820 void
25821 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25822 {
25823 	uint16_t	hdr_len;
25824 	ipha_t		*ipha;
25825 	uint8_t		*nexthdrp;
25826 	tcph_t		*tcph;
25827 
25828 	/* Already has an eager */
25829 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25830 		TCP_STAT(tcp_reinput_syn);
25831 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25832 		    connp, SQTAG_TCP_REINPUT_EAGER);
25833 		return;
25834 	}
25835 
25836 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25837 	case IPV4_VERSION:
25838 		ipha = (ipha_t *)mp->b_rptr;
25839 		hdr_len = IPH_HDR_LENGTH(ipha);
25840 		break;
25841 	case IPV6_VERSION:
25842 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25843 		    &hdr_len, &nexthdrp)) {
25844 			CONN_DEC_REF(connp);
25845 			freemsg(mp);
25846 			return;
25847 		}
25848 		break;
25849 	}
25850 
25851 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25852 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25853 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25854 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25855 	}
25856 
25857 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25858 	    SQTAG_TCP_REINPUT);
25859 }
25860 
25861 static squeue_func_t
25862 tcp_squeue_switch(int val)
25863 {
25864 	squeue_func_t rval = squeue_fill;
25865 
25866 	switch (val) {
25867 	case 1:
25868 		rval = squeue_enter_nodrain;
25869 		break;
25870 	case 2:
25871 		rval = squeue_enter;
25872 		break;
25873 	default:
25874 		break;
25875 	}
25876 	return (rval);
25877 }
25878 
25879 static void
25880 tcp_squeue_add(squeue_t *sqp)
25881 {
25882 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25883 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25884 
25885 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25886 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25887 	    sqp, TCP_TIME_WAIT_DELAY);
25888 	if (tcp_free_list_max_cnt == 0) {
25889 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25890 			max_ncpus : boot_max_ncpus);
25891 
25892 		/*
25893 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25894 		 */
25895 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25896 			(tcp_ncpus * sizeof (tcp_t) * 100);
25897 	}
25898 	tcp_time_wait->tcp_free_list_cnt = 0;
25899 }
25900