1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 #include <sys/sunldi.h> 61 62 #include <sys/errno.h> 63 #include <sys/signal.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/isa_defs.h> 67 #include <sys/md5.h> 68 #include <sys/random.h> 69 #include <sys/sodirect.h> 70 #include <sys/uio.h> 71 #include <netinet/in.h> 72 #include <netinet/tcp.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <net/if.h> 76 #include <net/route.h> 77 #include <inet/ipsec_impl.h> 78 79 #include <inet/common.h> 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip_ndp.h> 84 #include <inet/mi.h> 85 #include <inet/mib2.h> 86 #include <inet/nd.h> 87 #include <inet/optcom.h> 88 #include <inet/snmpcom.h> 89 #include <inet/kstatcom.h> 90 #include <inet/tcp.h> 91 #include <inet/tcp_impl.h> 92 #include <net/pfkeyv2.h> 93 #include <inet/ipsec_info.h> 94 #include <inet/ipdrop.h> 95 #include <inet/tcp_trace.h> 96 97 #include <inet/ipclassifier.h> 98 #include <inet/ip_ire.h> 99 #include <inet/ip_ftable.h> 100 #include <inet/ip_if.h> 101 #include <inet/ipp_common.h> 102 #include <inet/ip_netinfo.h> 103 #include <sys/squeue.h> 104 #include <inet/kssl/ksslapi.h> 105 #include <sys/tsol/label.h> 106 #include <sys/tsol/tnet.h> 107 #include <rpc/pmap_prot.h> 108 109 /* 110 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 111 * 112 * (Read the detailed design doc in PSARC case directory) 113 * 114 * The entire tcp state is contained in tcp_t and conn_t structure 115 * which are allocated in tandem using ipcl_conn_create() and passing 116 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 117 * the references on the tcp_t. The tcp_t structure is never compressed 118 * and packets always land on the correct TCP perimeter from the time 119 * eager is created till the time tcp_t dies (as such the old mentat 120 * TCP global queue is not used for detached state and no IPSEC checking 121 * is required). The global queue is still allocated to send out resets 122 * for connection which have no listeners and IP directly calls 123 * tcp_xmit_listeners_reset() which does any policy check. 124 * 125 * Protection and Synchronisation mechanism: 126 * 127 * The tcp data structure does not use any kind of lock for protecting 128 * its state but instead uses 'squeues' for mutual exclusion from various 129 * read and write side threads. To access a tcp member, the thread should 130 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 131 * squeue_fill). Since the squeues allow a direct function call, caller 132 * can pass any tcp function having prototype of edesc_t as argument 133 * (different from traditional STREAMs model where packets come in only 134 * designated entry points). The list of functions that can be directly 135 * called via squeue are listed before the usual function prototype. 136 * 137 * Referencing: 138 * 139 * TCP is MT-Hot and we use a reference based scheme to make sure that the 140 * tcp structure doesn't disappear when its needed. When the application 141 * creates an outgoing connection or accepts an incoming connection, we 142 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 143 * The IP reference is just a symbolic reference since ip_tcpclose() 144 * looks at tcp structure after tcp_close_output() returns which could 145 * have dropped the last TCP reference. So as long as the connection is 146 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 147 * conn_t. The classifier puts its own reference when the connection is 148 * inserted in listen or connected hash. Anytime a thread needs to enter 149 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 150 * on write side or by doing a classify on read side and then puts a 151 * reference on the conn before doing squeue_enter/tryenter/fill. For 152 * read side, the classifier itself puts the reference under fanout lock 153 * to make sure that tcp can't disappear before it gets processed. The 154 * squeue will drop this reference automatically so the called function 155 * doesn't have to do a DEC_REF. 156 * 157 * Opening a new connection: 158 * 159 * The outgoing connection open is pretty simple. tcp_open() does the 160 * work in creating the conn/tcp structure and initializing it. The 161 * squeue assignment is done based on the CPU the application 162 * is running on. So for outbound connections, processing is always done 163 * on application CPU which might be different from the incoming CPU 164 * being interrupted by the NIC. An optimal way would be to figure out 165 * the NIC <-> CPU binding at listen time, and assign the outgoing 166 * connection to the squeue attached to the CPU that will be interrupted 167 * for incoming packets (we know the NIC based on the bind IP address). 168 * This might seem like a problem if more data is going out but the 169 * fact is that in most cases the transmit is ACK driven transmit where 170 * the outgoing data normally sits on TCP's xmit queue waiting to be 171 * transmitted. 172 * 173 * Accepting a connection: 174 * 175 * This is a more interesting case because of various races involved in 176 * establishing a eager in its own perimeter. Read the meta comment on 177 * top of tcp_conn_request(). But briefly, the squeue is picked by 178 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 179 * 180 * Closing a connection: 181 * 182 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 183 * via squeue to do the close and mark the tcp as detached if the connection 184 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 185 * reference but tcp_close() drop IP's reference always. So if tcp was 186 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 187 * and 1 because it is in classifier's connected hash. This is the condition 188 * we use to determine that its OK to clean up the tcp outside of squeue 189 * when time wait expires (check the ref under fanout and conn_lock and 190 * if it is 2, remove it from fanout hash and kill it). 191 * 192 * Although close just drops the necessary references and marks the 193 * tcp_detached state, tcp_close needs to know the tcp_detached has been 194 * set (under squeue) before letting the STREAM go away (because a 195 * inbound packet might attempt to go up the STREAM while the close 196 * has happened and tcp_detached is not set). So a special lock and 197 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 198 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 199 * tcp_detached. 200 * 201 * Special provisions and fast paths: 202 * 203 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 204 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 205 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 206 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 207 * check to send packets directly to tcp_rput_data via squeue. Everyone 208 * else comes through tcp_input() on the read side. 209 * 210 * We also make special provisions for sockfs by marking tcp_issocket 211 * whenever we have only sockfs on top of TCP. This allows us to skip 212 * putting the tcp in acceptor hash since a sockfs listener can never 213 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 214 * since eager has already been allocated and the accept now happens 215 * on acceptor STREAM. There is a big blob of comment on top of 216 * tcp_conn_request explaining the new accept. When socket is POP'd, 217 * sockfs sends us an ioctl to mark the fact and we go back to old 218 * behaviour. Once tcp_issocket is unset, its never set for the 219 * life of that connection. 220 * 221 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 222 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 223 * directly to the socket (sodirect) and start an asynchronous copyout 224 * to a user-land receive-side buffer (uioa) when a blocking socket read 225 * (e.g. read, recv, ...) is pending. 226 * 227 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 228 * NULL so points to an sodirect_t and if marked enabled then we enqueue 229 * all mblk_t's directly to the socket. 230 * 231 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 232 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 233 * copyout will be started directly to the user-land uio buffer. Also, as we 234 * have a pending read, TCP's push logic can take into account the number of 235 * bytes to be received and only awake the blocked read()er when the uioa_t 236 * byte count has been satisfied. 237 * 238 * IPsec notes : 239 * 240 * Since a packet is always executed on the correct TCP perimeter 241 * all IPsec processing is defered to IP including checking new 242 * connections and setting IPSEC policies for new connection. The 243 * only exception is tcp_xmit_listeners_reset() which is called 244 * directly from IP and needs to policy check to see if TH_RST 245 * can be sent out. 246 * 247 * PFHooks notes : 248 * 249 * For mdt case, one meta buffer contains multiple packets. Mblks for every 250 * packet are assembled and passed to the hooks. When packets are blocked, 251 * or boundary of any packet is changed, the mdt processing is stopped, and 252 * packets of the meta buffer are send to the IP path one by one. 253 */ 254 255 /* 256 * Values for squeue switch: 257 * 1: squeue_enter_nodrain 258 * 2: squeue_enter 259 * 3: squeue_fill 260 */ 261 int tcp_squeue_close = 2; /* Setable in /etc/system */ 262 int tcp_squeue_wput = 2; 263 264 squeue_func_t tcp_squeue_close_proc; 265 squeue_func_t tcp_squeue_wput_proc; 266 267 /* 268 * Macros for sodirect: 269 * 270 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 271 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 272 * if it exists and is enabled, else to NULL. Note, in the current 273 * sodirect implementation the sod_lock must not be held across any 274 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 275 * will result as sod_lock is the streamhead stdata.sd_lock. 276 * 277 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 278 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 279 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 280 * being used when sodirect code paths should be. 281 */ 282 283 #define SOD_PTR_ENTER(tcp, sodp) \ 284 (sodp) = (tcp)->tcp_sodirect; \ 285 \ 286 if ((sodp) != NULL) { \ 287 mutex_enter((sodp)->sod_lock); \ 288 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 289 mutex_exit((sodp)->sod_lock); \ 290 (sodp) = NULL; \ 291 } \ 292 } 293 294 #define SOD_NOT_ENABLED(tcp) \ 295 ((tcp)->tcp_sodirect == NULL || \ 296 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 297 298 /* 299 * This controls how tiny a write must be before we try to copy it 300 * into the the mblk on the tail of the transmit queue. Not much 301 * speedup is observed for values larger than sixteen. Zero will 302 * disable the optimisation. 303 */ 304 int tcp_tx_pull_len = 16; 305 306 /* 307 * TCP Statistics. 308 * 309 * How TCP statistics work. 310 * 311 * There are two types of statistics invoked by two macros. 312 * 313 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 314 * supposed to be used in non MT-hot paths of the code. 315 * 316 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 317 * supposed to be used for DEBUG purposes and may be used on a hot path. 318 * 319 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 320 * (use "kstat tcp" to get them). 321 * 322 * There is also additional debugging facility that marks tcp_clean_death() 323 * instances and saves them in tcp_t structure. It is triggered by 324 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 325 * tcp_clean_death() calls that counts the number of times each tag was hit. It 326 * is triggered by TCP_CLD_COUNTERS define. 327 * 328 * How to add new counters. 329 * 330 * 1) Add a field in the tcp_stat structure describing your counter. 331 * 2) Add a line in the template in tcp_kstat2_init() with the name 332 * of the counter. 333 * 334 * IMPORTANT!! - make sure that both are in sync !! 335 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 336 * 337 * Please avoid using private counters which are not kstat-exported. 338 * 339 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 340 * in tcp_t structure. 341 * 342 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 343 */ 344 345 #ifndef TCP_DEBUG_COUNTER 346 #ifdef DEBUG 347 #define TCP_DEBUG_COUNTER 1 348 #else 349 #define TCP_DEBUG_COUNTER 0 350 #endif 351 #endif 352 353 #define TCP_CLD_COUNTERS 0 354 355 #define TCP_TAG_CLEAN_DEATH 1 356 #define TCP_MAX_CLEAN_DEATH_TAG 32 357 358 #ifdef lint 359 static int _lint_dummy_; 360 #endif 361 362 #if TCP_CLD_COUNTERS 363 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 364 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 365 #elif defined(lint) 366 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 367 #else 368 #define TCP_CLD_STAT(x) 369 #endif 370 371 #if TCP_DEBUG_COUNTER 372 #define TCP_DBGSTAT(tcps, x) \ 373 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 374 #define TCP_G_DBGSTAT(x) \ 375 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 376 #elif defined(lint) 377 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 378 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 379 #else 380 #define TCP_DBGSTAT(tcps, x) 381 #define TCP_G_DBGSTAT(x) 382 #endif 383 384 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 385 386 tcp_g_stat_t tcp_g_statistics; 387 kstat_t *tcp_g_kstat; 388 389 /* 390 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 391 * tcp write side. 392 */ 393 #define CALL_IP_WPUT(connp, q, mp) { \ 394 tcp_stack_t *tcps; \ 395 \ 396 tcps = connp->conn_netstack->netstack_tcp; \ 397 ASSERT(((q)->q_flag & QREADR) == 0); \ 398 TCP_DBGSTAT(tcps, tcp_ip_output); \ 399 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 400 } 401 402 /* Macros for timestamp comparisons */ 403 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 404 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 405 406 /* 407 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 408 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 409 * by adding three components: a time component which grows by 1 every 4096 410 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 411 * a per-connection component which grows by 125000 for every new connection; 412 * and an "extra" component that grows by a random amount centered 413 * approximately on 64000. This causes the the ISS generator to cycle every 414 * 4.89 hours if no TCP connections are made, and faster if connections are 415 * made. 416 * 417 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 418 * components: a time component which grows by 250000 every second; and 419 * a per-connection component which grows by 125000 for every new connections. 420 * 421 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 422 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 423 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 424 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 425 * password. 426 */ 427 #define ISS_INCR 250000 428 #define ISS_NSEC_SHT 12 429 430 static sin_t sin_null; /* Zero address for quick clears */ 431 static sin6_t sin6_null; /* Zero address for quick clears */ 432 433 /* 434 * This implementation follows the 4.3BSD interpretation of the urgent 435 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 436 * incompatible changes in protocols like telnet and rlogin. 437 */ 438 #define TCP_OLD_URP_INTERPRETATION 1 439 440 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 441 (TCP_IS_DETACHED(tcp) && \ 442 (!(tcp)->tcp_hard_binding)) 443 444 /* 445 * TCP reassembly macros. We hide starting and ending sequence numbers in 446 * b_next and b_prev of messages on the reassembly queue. The messages are 447 * chained using b_cont. These macros are used in tcp_reass() so we don't 448 * have to see the ugly casts and assignments. 449 */ 450 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 451 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 452 (mblk_t *)(uintptr_t)(u)) 453 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 454 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 455 (mblk_t *)(uintptr_t)(u)) 456 457 /* 458 * Implementation of TCP Timers. 459 * ============================= 460 * 461 * INTERFACE: 462 * 463 * There are two basic functions dealing with tcp timers: 464 * 465 * timeout_id_t tcp_timeout(connp, func, time) 466 * clock_t tcp_timeout_cancel(connp, timeout_id) 467 * TCP_TIMER_RESTART(tcp, intvl) 468 * 469 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 470 * after 'time' ticks passed. The function called by timeout() must adhere to 471 * the same restrictions as a driver soft interrupt handler - it must not sleep 472 * or call other functions that might sleep. The value returned is the opaque 473 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 474 * cancel the request. The call to tcp_timeout() may fail in which case it 475 * returns zero. This is different from the timeout(9F) function which never 476 * fails. 477 * 478 * The call-back function 'func' always receives 'connp' as its single 479 * argument. It is always executed in the squeue corresponding to the tcp 480 * structure. The tcp structure is guaranteed to be present at the time the 481 * call-back is called. 482 * 483 * NOTE: The call-back function 'func' is never called if tcp is in 484 * the TCPS_CLOSED state. 485 * 486 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 487 * request. locks acquired by the call-back routine should not be held across 488 * the call to tcp_timeout_cancel() or a deadlock may result. 489 * 490 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 491 * Otherwise, it returns an integer value greater than or equal to 0. In 492 * particular, if the call-back function is already placed on the squeue, it can 493 * not be canceled. 494 * 495 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 496 * within squeue context corresponding to the tcp instance. Since the 497 * call-back is also called via the same squeue, there are no race 498 * conditions described in untimeout(9F) manual page since all calls are 499 * strictly serialized. 500 * 501 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 502 * stored in tcp_timer_tid and starts a new one using 503 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 504 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 505 * field. 506 * 507 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 508 * call-back may still be called, so it is possible tcp_timer() will be 509 * called several times. This should not be a problem since tcp_timer() 510 * should always check the tcp instance state. 511 * 512 * 513 * IMPLEMENTATION: 514 * 515 * TCP timers are implemented using three-stage process. The call to 516 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 517 * when the timer expires. The tcp_timer_callback() arranges the call of the 518 * tcp_timer_handler() function via squeue corresponding to the tcp 519 * instance. The tcp_timer_handler() calls actual requested timeout call-back 520 * and passes tcp instance as an argument to it. Information is passed between 521 * stages using the tcp_timer_t structure which contains the connp pointer, the 522 * tcp call-back to call and the timeout id returned by the timeout(9F). 523 * 524 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 525 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 526 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 527 * returns the pointer to this mblk. 528 * 529 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 530 * looks like a normal mblk without actual dblk attached to it. 531 * 532 * To optimize performance each tcp instance holds a small cache of timer 533 * mblocks. In the current implementation it caches up to two timer mblocks per 534 * tcp instance. The cache is preserved over tcp frees and is only freed when 535 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 536 * timer processing happens on a corresponding squeue, the cache manipulation 537 * does not require any locks. Experiments show that majority of timer mblocks 538 * allocations are satisfied from the tcp cache and do not involve kmem calls. 539 * 540 * The tcp_timeout() places a refhold on the connp instance which guarantees 541 * that it will be present at the time the call-back function fires. The 542 * tcp_timer_handler() drops the reference after calling the call-back, so the 543 * call-back function does not need to manipulate the references explicitly. 544 */ 545 546 typedef struct tcp_timer_s { 547 conn_t *connp; 548 void (*tcpt_proc)(void *); 549 timeout_id_t tcpt_tid; 550 } tcp_timer_t; 551 552 static kmem_cache_t *tcp_timercache; 553 kmem_cache_t *tcp_sack_info_cache; 554 kmem_cache_t *tcp_iphc_cache; 555 556 /* 557 * For scalability, we must not run a timer for every TCP connection 558 * in TIME_WAIT state. To see why, consider (for time wait interval of 559 * 4 minutes): 560 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 561 * 562 * This list is ordered by time, so you need only delete from the head 563 * until you get to entries which aren't old enough to delete yet. 564 * The list consists of only the detached TIME_WAIT connections. 565 * 566 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 567 * becomes detached TIME_WAIT (either by changing the state and already 568 * being detached or the other way around). This means that the TIME_WAIT 569 * state can be extended (up to doubled) if the connection doesn't become 570 * detached for a long time. 571 * 572 * The list manipulations (including tcp_time_wait_next/prev) 573 * are protected by the tcp_time_wait_lock. The content of the 574 * detached TIME_WAIT connections is protected by the normal perimeters. 575 * 576 * This list is per squeue and squeues are shared across the tcp_stack_t's. 577 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 578 * and conn_netstack. 579 * The tcp_t's that are added to tcp_free_list are disassociated and 580 * have NULL tcp_tcps and conn_netstack pointers. 581 */ 582 typedef struct tcp_squeue_priv_s { 583 kmutex_t tcp_time_wait_lock; 584 timeout_id_t tcp_time_wait_tid; 585 tcp_t *tcp_time_wait_head; 586 tcp_t *tcp_time_wait_tail; 587 tcp_t *tcp_free_list; 588 uint_t tcp_free_list_cnt; 589 } tcp_squeue_priv_t; 590 591 /* 592 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 593 * Running it every 5 seconds seems to give the best results. 594 */ 595 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 596 597 /* 598 * To prevent memory hog, limit the number of entries in tcp_free_list 599 * to 1% of available memory / number of cpus 600 */ 601 uint_t tcp_free_list_max_cnt = 0; 602 603 #define TCP_XMIT_LOWATER 4096 604 #define TCP_XMIT_HIWATER 49152 605 #define TCP_RECV_LOWATER 2048 606 #define TCP_RECV_HIWATER 49152 607 608 /* 609 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 610 */ 611 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 612 613 #define TIDUSZ 4096 /* transport interface data unit size */ 614 615 /* 616 * Bind hash list size and has function. It has to be a power of 2 for 617 * hashing. 618 */ 619 #define TCP_BIND_FANOUT_SIZE 512 620 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 621 /* 622 * Size of listen and acceptor hash list. It has to be a power of 2 for 623 * hashing. 624 */ 625 #define TCP_FANOUT_SIZE 256 626 627 #ifdef _ILP32 628 #define TCP_ACCEPTOR_HASH(accid) \ 629 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 630 #else 631 #define TCP_ACCEPTOR_HASH(accid) \ 632 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 633 #endif /* _ILP32 */ 634 635 #define IP_ADDR_CACHE_SIZE 2048 636 #define IP_ADDR_CACHE_HASH(faddr) \ 637 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 638 639 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 640 #define TCP_HSP_HASH_SIZE 256 641 642 #define TCP_HSP_HASH(addr) \ 643 (((addr>>24) ^ (addr >>16) ^ \ 644 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 645 646 /* 647 * TCP options struct returned from tcp_parse_options. 648 */ 649 typedef struct tcp_opt_s { 650 uint32_t tcp_opt_mss; 651 uint32_t tcp_opt_wscale; 652 uint32_t tcp_opt_ts_val; 653 uint32_t tcp_opt_ts_ecr; 654 tcp_t *tcp; 655 } tcp_opt_t; 656 657 /* 658 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 659 */ 660 661 #ifdef _BIG_ENDIAN 662 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 663 (TCPOPT_TSTAMP << 8) | 10) 664 #else 665 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 666 (TCPOPT_NOP << 8) | TCPOPT_NOP) 667 #endif 668 669 /* 670 * Flags returned from tcp_parse_options. 671 */ 672 #define TCP_OPT_MSS_PRESENT 1 673 #define TCP_OPT_WSCALE_PRESENT 2 674 #define TCP_OPT_TSTAMP_PRESENT 4 675 #define TCP_OPT_SACK_OK_PRESENT 8 676 #define TCP_OPT_SACK_PRESENT 16 677 678 /* TCP option length */ 679 #define TCPOPT_NOP_LEN 1 680 #define TCPOPT_MAXSEG_LEN 4 681 #define TCPOPT_WS_LEN 3 682 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 683 #define TCPOPT_TSTAMP_LEN 10 684 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 685 #define TCPOPT_SACK_OK_LEN 2 686 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 687 #define TCPOPT_REAL_SACK_LEN 4 688 #define TCPOPT_MAX_SACK_LEN 36 689 #define TCPOPT_HEADER_LEN 2 690 691 /* TCP cwnd burst factor. */ 692 #define TCP_CWND_INFINITE 65535 693 #define TCP_CWND_SS 3 694 #define TCP_CWND_NORMAL 5 695 696 /* Maximum TCP initial cwin (start/restart). */ 697 #define TCP_MAX_INIT_CWND 8 698 699 /* 700 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 701 * either tcp_slow_start_initial or tcp_slow_start_after idle 702 * depending on the caller. If the upper layer has not used the 703 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 704 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 705 * If the upper layer has changed set the tcp_init_cwnd, just use 706 * it to calculate the tcp_cwnd. 707 */ 708 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 709 { \ 710 if ((tcp)->tcp_init_cwnd == 0) { \ 711 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 712 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 713 } else { \ 714 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 715 } \ 716 tcp->tcp_cwnd_cnt = 0; \ 717 } 718 719 /* TCP Timer control structure */ 720 typedef struct tcpt_s { 721 pfv_t tcpt_pfv; /* The routine we are to call */ 722 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 723 } tcpt_t; 724 725 /* Host Specific Parameter structure */ 726 typedef struct tcp_hsp { 727 struct tcp_hsp *tcp_hsp_next; 728 in6_addr_t tcp_hsp_addr_v6; 729 in6_addr_t tcp_hsp_subnet_v6; 730 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 731 int32_t tcp_hsp_sendspace; 732 int32_t tcp_hsp_recvspace; 733 int32_t tcp_hsp_tstamp; 734 } tcp_hsp_t; 735 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 736 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 737 738 /* 739 * Functions called directly via squeue having a prototype of edesc_t. 740 */ 741 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 742 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 743 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 744 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 745 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 746 void tcp_input(void *arg, mblk_t *mp, void *arg2); 747 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 748 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 749 void tcp_output(void *arg, mblk_t *mp, void *arg2); 750 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 751 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 752 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 753 754 755 /* Prototype for TCP functions */ 756 static void tcp_random_init(void); 757 int tcp_random(void); 758 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 759 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 760 tcp_t *eager); 761 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 762 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 763 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 764 boolean_t user_specified); 765 static void tcp_closei_local(tcp_t *tcp); 766 static void tcp_close_detached(tcp_t *tcp); 767 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 768 mblk_t *idmp, mblk_t **defermp); 769 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 770 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 771 in_port_t dstport, uint_t srcid); 772 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 773 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 774 uint32_t scope_id); 775 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 776 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 777 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 778 static char *tcp_display(tcp_t *tcp, char *, char); 779 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 780 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 781 static void tcp_eager_unlink(tcp_t *tcp); 782 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 783 int unixerr); 784 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 785 int tlierr, int unixerr); 786 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 787 cred_t *cr); 788 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 789 char *value, caddr_t cp, cred_t *cr); 790 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 791 char *value, caddr_t cp, cred_t *cr); 792 static int tcp_tpistate(tcp_t *tcp); 793 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 794 int caller_holds_lock); 795 static void tcp_bind_hash_remove(tcp_t *tcp); 796 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 797 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 798 static void tcp_acceptor_hash_remove(tcp_t *tcp); 799 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 800 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 801 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 802 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 803 void tcp_g_q_setup(tcp_stack_t *); 804 void tcp_g_q_create(tcp_stack_t *); 805 void tcp_g_q_destroy(tcp_stack_t *); 806 static int tcp_header_init_ipv4(tcp_t *tcp); 807 static int tcp_header_init_ipv6(tcp_t *tcp); 808 int tcp_init(tcp_t *tcp, queue_t *q); 809 static int tcp_init_values(tcp_t *tcp); 810 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 811 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 812 t_scalar_t addr_length); 813 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 814 static void tcp_ip_notify(tcp_t *tcp); 815 static mblk_t *tcp_ire_mp(mblk_t *mp); 816 static void tcp_iss_init(tcp_t *tcp); 817 static void tcp_keepalive_killer(void *arg); 818 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 819 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 820 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 821 int *do_disconnectp, int *t_errorp, int *sys_errorp); 822 static boolean_t tcp_allow_connopt_set(int level, int name); 823 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 824 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 825 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 826 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 827 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 828 mblk_t *mblk); 829 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 830 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 831 uchar_t *ptr, uint_t len); 832 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 833 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 834 tcp_stack_t *); 835 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 836 caddr_t cp, cred_t *cr); 837 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 838 caddr_t cp, cred_t *cr); 839 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 840 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 841 caddr_t cp, cred_t *cr); 842 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 843 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 844 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 845 static void tcp_reinit(tcp_t *tcp); 846 static void tcp_reinit_values(tcp_t *tcp); 847 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 848 tcp_t *thisstream, cred_t *cr); 849 850 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 851 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 852 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 853 static void tcp_ss_rexmit(tcp_t *tcp); 854 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 855 static void tcp_process_options(tcp_t *, tcph_t *); 856 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 857 static void tcp_rsrv(queue_t *q); 858 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 859 static int tcp_snmp_state(tcp_t *tcp); 860 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 861 cred_t *cr); 862 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 863 cred_t *cr); 864 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 865 cred_t *cr); 866 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 867 cred_t *cr); 868 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 869 cred_t *cr); 870 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 871 caddr_t cp, cred_t *cr); 872 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 873 caddr_t cp, cred_t *cr); 874 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 875 cred_t *cr); 876 static void tcp_timer(void *arg); 877 static void tcp_timer_callback(void *); 878 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 879 boolean_t random); 880 static in_port_t tcp_get_next_priv_port(const tcp_t *); 881 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 882 void tcp_wput_accept(queue_t *q, mblk_t *mp); 883 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 884 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 885 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 886 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 887 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 888 const int num_sack_blk, int *usable, uint_t *snxt, 889 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 890 const int mdt_thres); 891 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 892 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 893 const int num_sack_blk, int *usable, uint_t *snxt, 894 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 895 const int mdt_thres); 896 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 897 int num_sack_blk); 898 static void tcp_wsrv(queue_t *q); 899 static int tcp_xmit_end(tcp_t *tcp); 900 static void tcp_ack_timer(void *arg); 901 static mblk_t *tcp_ack_mp(tcp_t *tcp); 902 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 903 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 904 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 905 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 906 uint32_t ack, int ctl); 907 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 908 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 909 static int setmaxps(queue_t *q, int maxpsz); 910 static void tcp_set_rto(tcp_t *, time_t); 911 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 912 boolean_t, boolean_t); 913 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 914 boolean_t ipsec_mctl); 915 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 916 char *opt, int optlen); 917 static int tcp_build_hdrs(queue_t *, tcp_t *); 918 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 919 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 920 tcph_t *tcph); 921 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 922 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 923 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 924 boolean_t tcp_reserved_port_check(in_port_t, tcp_stack_t *); 925 static tcp_t *tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *); 926 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 927 static mblk_t *tcp_mdt_info_mp(mblk_t *); 928 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 929 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 930 const boolean_t, const uint32_t, const uint32_t, 931 const uint32_t, const uint32_t, tcp_stack_t *); 932 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 933 const uint_t, const uint_t, boolean_t *); 934 static mblk_t *tcp_lso_info_mp(mblk_t *); 935 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 936 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 937 extern mblk_t *tcp_timermp_alloc(int); 938 extern void tcp_timermp_free(tcp_t *); 939 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 940 static void tcp_stop_lingering(tcp_t *tcp); 941 static void tcp_close_linger_timeout(void *arg); 942 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 943 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 944 static void tcp_stack_fini(netstackid_t stackid, void *arg); 945 static void *tcp_g_kstat_init(tcp_g_stat_t *); 946 static void tcp_g_kstat_fini(kstat_t *); 947 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 948 static void tcp_kstat_fini(netstackid_t, kstat_t *); 949 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 950 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 951 static int tcp_kstat_update(kstat_t *kp, int rw); 952 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 953 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 954 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 955 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 956 tcph_t *tcph, mblk_t *idmp); 957 static squeue_func_t tcp_squeue_switch(int); 958 959 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 960 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 961 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 962 static int tcp_close(queue_t *, int); 963 static int tcpclose_accept(queue_t *); 964 965 static void tcp_squeue_add(squeue_t *); 966 static boolean_t tcp_zcopy_check(tcp_t *); 967 static void tcp_zcopy_notify(tcp_t *); 968 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 969 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 970 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 971 972 extern void tcp_kssl_input(tcp_t *, mblk_t *); 973 974 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 975 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 976 977 /* 978 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 979 * 980 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 981 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 982 * (defined in tcp.h) needs to be filled in and passed into the kernel 983 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 984 * structure contains the four-tuple of a TCP connection and a range of TCP 985 * states (specified by ac_start and ac_end). The use of wildcard addresses 986 * and ports is allowed. Connections with a matching four tuple and a state 987 * within the specified range will be aborted. The valid states for the 988 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 989 * inclusive. 990 * 991 * An application which has its connection aborted by this ioctl will receive 992 * an error that is dependent on the connection state at the time of the abort. 993 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 994 * though a RST packet has been received. If the connection state is equal to 995 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 996 * and all resources associated with the connection will be freed. 997 */ 998 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 999 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1000 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1001 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 1002 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1003 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1004 boolean_t, tcp_stack_t *); 1005 1006 static struct module_info tcp_rinfo = { 1007 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1008 }; 1009 1010 static struct module_info tcp_winfo = { 1011 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1012 }; 1013 1014 /* 1015 * Entry points for TCP as a device. The normal case which supports 1016 * the TCP functionality. 1017 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1018 */ 1019 struct qinit tcp_rinitv4 = { 1020 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo 1021 }; 1022 1023 struct qinit tcp_rinitv6 = { 1024 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo 1025 }; 1026 1027 struct qinit tcp_winit = { 1028 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1029 }; 1030 1031 /* Initial entry point for TCP in socket mode. */ 1032 struct qinit tcp_sock_winit = { 1033 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1034 }; 1035 1036 /* 1037 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1038 * an accept. Avoid allocating data structures since eager has already 1039 * been created. 1040 */ 1041 struct qinit tcp_acceptor_rinit = { 1042 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1043 }; 1044 1045 struct qinit tcp_acceptor_winit = { 1046 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1047 }; 1048 1049 /* 1050 * Entry points for TCP loopback (read side only) 1051 * The open routine is only used for reopens, thus no need to 1052 * have a separate one for tcp_openv6. 1053 */ 1054 struct qinit tcp_loopback_rinit = { 1055 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0, 1056 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1057 }; 1058 1059 /* For AF_INET aka /dev/tcp */ 1060 struct streamtab tcpinfov4 = { 1061 &tcp_rinitv4, &tcp_winit 1062 }; 1063 1064 /* For AF_INET6 aka /dev/tcp6 */ 1065 struct streamtab tcpinfov6 = { 1066 &tcp_rinitv6, &tcp_winit 1067 }; 1068 1069 /* 1070 * Have to ensure that tcp_g_q_close is not done by an 1071 * interrupt thread. 1072 */ 1073 static taskq_t *tcp_taskq; 1074 1075 /* 1076 * TCP has a private interface for other kernel modules to reserve a 1077 * port range for them to use. Once reserved, TCP will not use any ports 1078 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1079 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1080 * has to be verified. 1081 * 1082 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1083 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1084 * range is [port a, port b] inclusive. And each port range is between 1085 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1086 * 1087 * Note that the default anonymous port range starts from 32768. There is 1088 * no port "collision" between that and the reserved port range. If there 1089 * is port collision (because the default smallest anonymous port is lowered 1090 * or some apps specifically bind to ports in the reserved port range), the 1091 * system may not be able to reserve a port range even there are enough 1092 * unbound ports as a reserved port range contains consecutive ports . 1093 */ 1094 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1095 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1096 #define TCP_SMALLEST_RESERVED_PORT 10240 1097 #define TCP_LARGEST_RESERVED_PORT 20480 1098 1099 /* Structure to represent those reserved port ranges. */ 1100 typedef struct tcp_rport_s { 1101 in_port_t lo_port; 1102 in_port_t hi_port; 1103 tcp_t **temp_tcp_array; 1104 } tcp_rport_t; 1105 1106 /* Setable only in /etc/system. Move to ndd? */ 1107 boolean_t tcp_icmp_source_quench = B_FALSE; 1108 1109 /* 1110 * Following assumes TPI alignment requirements stay along 32 bit 1111 * boundaries 1112 */ 1113 #define ROUNDUP32(x) \ 1114 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1115 1116 /* Template for response to info request. */ 1117 static struct T_info_ack tcp_g_t_info_ack = { 1118 T_INFO_ACK, /* PRIM_type */ 1119 0, /* TSDU_size */ 1120 T_INFINITE, /* ETSDU_size */ 1121 T_INVALID, /* CDATA_size */ 1122 T_INVALID, /* DDATA_size */ 1123 sizeof (sin_t), /* ADDR_size */ 1124 0, /* OPT_size - not initialized here */ 1125 TIDUSZ, /* TIDU_size */ 1126 T_COTS_ORD, /* SERV_type */ 1127 TCPS_IDLE, /* CURRENT_state */ 1128 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1129 }; 1130 1131 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1132 T_INFO_ACK, /* PRIM_type */ 1133 0, /* TSDU_size */ 1134 T_INFINITE, /* ETSDU_size */ 1135 T_INVALID, /* CDATA_size */ 1136 T_INVALID, /* DDATA_size */ 1137 sizeof (sin6_t), /* ADDR_size */ 1138 0, /* OPT_size - not initialized here */ 1139 TIDUSZ, /* TIDU_size */ 1140 T_COTS_ORD, /* SERV_type */ 1141 TCPS_IDLE, /* CURRENT_state */ 1142 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1143 }; 1144 1145 #define MS 1L 1146 #define SECONDS (1000 * MS) 1147 #define MINUTES (60 * SECONDS) 1148 #define HOURS (60 * MINUTES) 1149 #define DAYS (24 * HOURS) 1150 1151 #define PARAM_MAX (~(uint32_t)0) 1152 1153 /* Max size IP datagram is 64k - 1 */ 1154 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1155 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1156 /* Max of the above */ 1157 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1158 1159 /* Largest TCP port number */ 1160 #define TCP_MAX_PORT (64 * 1024 - 1) 1161 1162 /* 1163 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1164 * layer header. It has to be a multiple of 4. 1165 */ 1166 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1167 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1168 1169 /* 1170 * All of these are alterable, within the min/max values given, at run time. 1171 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1172 * per the TCP spec. 1173 */ 1174 /* BEGIN CSTYLED */ 1175 static tcpparam_t lcl_tcp_param_arr[] = { 1176 /*min max value name */ 1177 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1178 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1179 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1180 { 1, 1024, 1, "tcp_conn_req_min" }, 1181 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1182 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1183 { 0, 10, 0, "tcp_debug" }, 1184 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1185 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1186 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1187 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1188 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1189 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1190 { 1, 255, 64, "tcp_ipv4_ttl"}, 1191 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1192 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1193 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1194 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1195 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1196 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1197 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1198 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1199 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1200 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1201 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1202 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1203 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1204 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1205 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1206 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1207 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1208 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1209 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1210 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1211 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1212 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1213 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1214 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1215 /* 1216 * Question: What default value should I set for tcp_strong_iss? 1217 */ 1218 { 0, 2, 1, "tcp_strong_iss"}, 1219 { 0, 65536, 20, "tcp_rtt_updates"}, 1220 { 0, 1, 1, "tcp_wscale_always"}, 1221 { 0, 1, 0, "tcp_tstamp_always"}, 1222 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1223 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1224 { 0, 16, 2, "tcp_deferred_acks_max"}, 1225 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1226 { 1, 4, 4, "tcp_slow_start_initial"}, 1227 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1228 { 0, 2, 2, "tcp_sack_permitted"}, 1229 { 0, 1, 0, "tcp_trace"}, 1230 { 0, 1, 1, "tcp_compression_enabled"}, 1231 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1232 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1233 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1234 { 0, 1, 0, "tcp_rev_src_routes"}, 1235 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1236 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1237 { 0, 16, 8, "tcp_local_dacks_max"}, 1238 { 0, 2, 1, "tcp_ecn_permitted"}, 1239 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1240 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1241 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1242 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1243 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1244 }; 1245 /* END CSTYLED */ 1246 1247 /* 1248 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1249 * each header fragment in the header buffer. Each parameter value has 1250 * to be a multiple of 4 (32-bit aligned). 1251 */ 1252 static tcpparam_t lcl_tcp_mdt_head_param = 1253 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1254 static tcpparam_t lcl_tcp_mdt_tail_param = 1255 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1256 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1257 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1258 1259 /* 1260 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1261 * the maximum number of payload buffers associated per Multidata. 1262 */ 1263 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1264 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1265 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1266 1267 /* Round up the value to the nearest mss. */ 1268 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1269 1270 /* 1271 * Set ECN capable transport (ECT) code point in IP header. 1272 * 1273 * Note that there are 2 ECT code points '01' and '10', which are called 1274 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1275 * point ECT(0) for TCP as described in RFC 2481. 1276 */ 1277 #define SET_ECT(tcp, iph) \ 1278 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1279 /* We need to clear the code point first. */ \ 1280 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1281 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1282 } else { \ 1283 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1284 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1285 } 1286 1287 /* 1288 * The format argument to pass to tcp_display(). 1289 * DISP_PORT_ONLY means that the returned string has only port info. 1290 * DISP_ADDR_AND_PORT means that the returned string also contains the 1291 * remote and local IP address. 1292 */ 1293 #define DISP_PORT_ONLY 1 1294 #define DISP_ADDR_AND_PORT 2 1295 1296 #define NDD_TOO_QUICK_MSG \ 1297 "ndd get info rate too high for non-privileged users, try again " \ 1298 "later.\n" 1299 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1300 1301 #define IS_VMLOANED_MBLK(mp) \ 1302 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1303 1304 1305 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1306 boolean_t tcp_mdt_chain = B_TRUE; 1307 1308 /* 1309 * MDT threshold in the form of effective send MSS multiplier; we take 1310 * the MDT path if the amount of unsent data exceeds the threshold value 1311 * (default threshold is 1*SMSS). 1312 */ 1313 uint_t tcp_mdt_smss_threshold = 1; 1314 1315 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1316 1317 /* 1318 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1319 * tunable settable via NDD. Otherwise, the per-connection behavior is 1320 * determined dynamically during tcp_adapt_ire(), which is the default. 1321 */ 1322 boolean_t tcp_static_maxpsz = B_FALSE; 1323 1324 /* Setable in /etc/system */ 1325 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1326 uint32_t tcp_random_anon_port = 1; 1327 1328 /* 1329 * To reach to an eager in Q0 which can be dropped due to an incoming 1330 * new SYN request when Q0 is full, a new doubly linked list is 1331 * introduced. This list allows to select an eager from Q0 in O(1) time. 1332 * This is needed to avoid spending too much time walking through the 1333 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1334 * this new list has to be a member of Q0. 1335 * This list is headed by listener's tcp_t. When the list is empty, 1336 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1337 * of listener's tcp_t point to listener's tcp_t itself. 1338 * 1339 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1340 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1341 * These macros do not affect the eager's membership to Q0. 1342 */ 1343 1344 1345 #define MAKE_DROPPABLE(listener, eager) \ 1346 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1347 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1348 = (eager); \ 1349 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1350 (eager)->tcp_eager_next_drop_q0 = \ 1351 (listener)->tcp_eager_next_drop_q0; \ 1352 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1353 } 1354 1355 #define MAKE_UNDROPPABLE(eager) \ 1356 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1357 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1358 = (eager)->tcp_eager_prev_drop_q0; \ 1359 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1360 = (eager)->tcp_eager_next_drop_q0; \ 1361 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1362 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1363 } 1364 1365 /* 1366 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1367 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1368 * data, TCP will not respond with an ACK. RFC 793 requires that 1369 * TCP responds with an ACK for such a bogus ACK. By not following 1370 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1371 * an attacker successfully spoofs an acceptable segment to our 1372 * peer; or when our peer is "confused." 1373 */ 1374 uint32_t tcp_drop_ack_unsent_cnt = 10; 1375 1376 /* 1377 * Hook functions to enable cluster networking 1378 * On non-clustered systems these vectors must always be NULL. 1379 */ 1380 1381 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1382 uint8_t *laddrp, in_port_t lport) = NULL; 1383 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1384 uint8_t *laddrp, in_port_t lport) = NULL; 1385 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1386 uint8_t *laddrp, in_port_t lport, 1387 uint8_t *faddrp, in_port_t fport) = NULL; 1388 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1389 uint8_t *laddrp, in_port_t lport, 1390 uint8_t *faddrp, in_port_t fport) = NULL; 1391 1392 /* 1393 * The following are defined in ip.c 1394 */ 1395 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1396 uint8_t *laddrp); 1397 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1398 uint8_t *laddrp, uint8_t *faddrp); 1399 1400 #define CL_INET_CONNECT(tcp) { \ 1401 if (cl_inet_connect != NULL) { \ 1402 /* \ 1403 * Running in cluster mode - register active connection \ 1404 * information \ 1405 */ \ 1406 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1407 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1408 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1409 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1410 (in_port_t)(tcp)->tcp_lport, \ 1411 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1412 (in_port_t)(tcp)->tcp_fport); \ 1413 } \ 1414 } else { \ 1415 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1416 &(tcp)->tcp_ip6h->ip6_src)) {\ 1417 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1418 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1419 (in_port_t)(tcp)->tcp_lport, \ 1420 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1421 (in_port_t)(tcp)->tcp_fport); \ 1422 } \ 1423 } \ 1424 } \ 1425 } 1426 1427 #define CL_INET_DISCONNECT(tcp) { \ 1428 if (cl_inet_disconnect != NULL) { \ 1429 /* \ 1430 * Running in cluster mode - deregister active \ 1431 * connection information \ 1432 */ \ 1433 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1434 if ((tcp)->tcp_ip_src != 0) { \ 1435 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1436 AF_INET, \ 1437 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1438 (in_port_t)(tcp)->tcp_lport, \ 1439 (uint8_t *) \ 1440 (&((tcp)->tcp_ipha->ipha_dst)),\ 1441 (in_port_t)(tcp)->tcp_fport); \ 1442 } \ 1443 } else { \ 1444 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1445 &(tcp)->tcp_ip_src_v6)) { \ 1446 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1447 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1448 (in_port_t)(tcp)->tcp_lport, \ 1449 (uint8_t *) \ 1450 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1451 (in_port_t)(tcp)->tcp_fport); \ 1452 } \ 1453 } \ 1454 } \ 1455 } 1456 1457 /* 1458 * Cluster networking hook for traversing current connection list. 1459 * This routine is used to extract the current list of live connections 1460 * which must continue to to be dispatched to this node. 1461 */ 1462 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1463 1464 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1465 void *arg, tcp_stack_t *tcps); 1466 1467 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1468 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1469 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1470 ip6_t *, ip6h, int, 0); 1471 1472 /* 1473 * Figure out the value of window scale opton. Note that the rwnd is 1474 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1475 * We cannot find the scale value and then do a round up of tcp_rwnd 1476 * because the scale value may not be correct after that. 1477 * 1478 * Set the compiler flag to make this function inline. 1479 */ 1480 static void 1481 tcp_set_ws_value(tcp_t *tcp) 1482 { 1483 int i; 1484 uint32_t rwnd = tcp->tcp_rwnd; 1485 1486 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1487 i++, rwnd >>= 1) 1488 ; 1489 tcp->tcp_rcv_ws = i; 1490 } 1491 1492 /* 1493 * Remove a connection from the list of detached TIME_WAIT connections. 1494 * It returns B_FALSE if it can't remove the connection from the list 1495 * as the connection has already been removed from the list due to an 1496 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1497 */ 1498 static boolean_t 1499 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1500 { 1501 boolean_t locked = B_FALSE; 1502 1503 if (tcp_time_wait == NULL) { 1504 tcp_time_wait = *((tcp_squeue_priv_t **) 1505 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1506 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1507 locked = B_TRUE; 1508 } else { 1509 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1510 } 1511 1512 if (tcp->tcp_time_wait_expire == 0) { 1513 ASSERT(tcp->tcp_time_wait_next == NULL); 1514 ASSERT(tcp->tcp_time_wait_prev == NULL); 1515 if (locked) 1516 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1517 return (B_FALSE); 1518 } 1519 ASSERT(TCP_IS_DETACHED(tcp)); 1520 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1521 1522 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1523 ASSERT(tcp->tcp_time_wait_prev == NULL); 1524 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1525 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1526 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1527 NULL; 1528 } else { 1529 tcp_time_wait->tcp_time_wait_tail = NULL; 1530 } 1531 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1532 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1533 ASSERT(tcp->tcp_time_wait_next == NULL); 1534 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1535 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1536 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1537 } else { 1538 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1539 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1540 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1541 tcp->tcp_time_wait_next; 1542 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1543 tcp->tcp_time_wait_prev; 1544 } 1545 tcp->tcp_time_wait_next = NULL; 1546 tcp->tcp_time_wait_prev = NULL; 1547 tcp->tcp_time_wait_expire = 0; 1548 1549 if (locked) 1550 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1551 return (B_TRUE); 1552 } 1553 1554 /* 1555 * Add a connection to the list of detached TIME_WAIT connections 1556 * and set its time to expire. 1557 */ 1558 static void 1559 tcp_time_wait_append(tcp_t *tcp) 1560 { 1561 tcp_stack_t *tcps = tcp->tcp_tcps; 1562 tcp_squeue_priv_t *tcp_time_wait = 1563 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1564 SQPRIVATE_TCP)); 1565 1566 tcp_timers_stop(tcp); 1567 1568 /* Freed above */ 1569 ASSERT(tcp->tcp_timer_tid == 0); 1570 ASSERT(tcp->tcp_ack_tid == 0); 1571 1572 /* must have happened at the time of detaching the tcp */ 1573 ASSERT(tcp->tcp_ptpahn == NULL); 1574 ASSERT(tcp->tcp_flow_stopped == 0); 1575 ASSERT(tcp->tcp_time_wait_next == NULL); 1576 ASSERT(tcp->tcp_time_wait_prev == NULL); 1577 ASSERT(tcp->tcp_time_wait_expire == NULL); 1578 ASSERT(tcp->tcp_listener == NULL); 1579 1580 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1581 /* 1582 * The value computed below in tcp->tcp_time_wait_expire may 1583 * appear negative or wrap around. That is ok since our 1584 * interest is only in the difference between the current lbolt 1585 * value and tcp->tcp_time_wait_expire. But the value should not 1586 * be zero, since it means the tcp is not in the TIME_WAIT list. 1587 * The corresponding comparison in tcp_time_wait_collector() uses 1588 * modular arithmetic. 1589 */ 1590 tcp->tcp_time_wait_expire += 1591 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1592 if (tcp->tcp_time_wait_expire == 0) 1593 tcp->tcp_time_wait_expire = 1; 1594 1595 ASSERT(TCP_IS_DETACHED(tcp)); 1596 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1597 ASSERT(tcp->tcp_time_wait_next == NULL); 1598 ASSERT(tcp->tcp_time_wait_prev == NULL); 1599 TCP_DBGSTAT(tcps, tcp_time_wait); 1600 1601 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1602 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1603 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1604 tcp_time_wait->tcp_time_wait_head = tcp; 1605 } else { 1606 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1607 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1608 TCPS_TIME_WAIT); 1609 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1610 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1611 } 1612 tcp_time_wait->tcp_time_wait_tail = tcp; 1613 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1614 } 1615 1616 /* ARGSUSED */ 1617 void 1618 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1619 { 1620 conn_t *connp = (conn_t *)arg; 1621 tcp_t *tcp = connp->conn_tcp; 1622 tcp_stack_t *tcps = tcp->tcp_tcps; 1623 1624 ASSERT(tcp != NULL); 1625 if (tcp->tcp_state == TCPS_CLOSED) { 1626 return; 1627 } 1628 1629 ASSERT((tcp->tcp_family == AF_INET && 1630 tcp->tcp_ipversion == IPV4_VERSION) || 1631 (tcp->tcp_family == AF_INET6 && 1632 (tcp->tcp_ipversion == IPV4_VERSION || 1633 tcp->tcp_ipversion == IPV6_VERSION))); 1634 ASSERT(!tcp->tcp_listener); 1635 1636 TCP_STAT(tcps, tcp_time_wait_reap); 1637 ASSERT(TCP_IS_DETACHED(tcp)); 1638 1639 /* 1640 * Because they have no upstream client to rebind or tcp_close() 1641 * them later, we axe the connection here and now. 1642 */ 1643 tcp_close_detached(tcp); 1644 } 1645 1646 /* 1647 * Remove cached/latched IPsec references. 1648 */ 1649 void 1650 tcp_ipsec_cleanup(tcp_t *tcp) 1651 { 1652 conn_t *connp = tcp->tcp_connp; 1653 1654 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1655 1656 if (connp->conn_latch != NULL) { 1657 IPLATCH_REFRELE(connp->conn_latch, 1658 connp->conn_netstack); 1659 connp->conn_latch = NULL; 1660 } 1661 if (connp->conn_policy != NULL) { 1662 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1663 connp->conn_policy = NULL; 1664 } 1665 } 1666 1667 /* 1668 * Cleaup before placing on free list. 1669 * Disassociate from the netstack/tcp_stack_t since the freelist 1670 * is per squeue and not per netstack. 1671 */ 1672 void 1673 tcp_cleanup(tcp_t *tcp) 1674 { 1675 mblk_t *mp; 1676 char *tcp_iphc; 1677 int tcp_iphc_len; 1678 int tcp_hdr_grown; 1679 tcp_sack_info_t *tcp_sack_info; 1680 conn_t *connp = tcp->tcp_connp; 1681 tcp_stack_t *tcps = tcp->tcp_tcps; 1682 netstack_t *ns = tcps->tcps_netstack; 1683 1684 tcp_bind_hash_remove(tcp); 1685 1686 /* Cleanup that which needs the netstack first */ 1687 tcp_ipsec_cleanup(tcp); 1688 1689 tcp_free(tcp); 1690 1691 /* Release any SSL context */ 1692 if (tcp->tcp_kssl_ent != NULL) { 1693 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1694 tcp->tcp_kssl_ent = NULL; 1695 } 1696 1697 if (tcp->tcp_kssl_ctx != NULL) { 1698 kssl_release_ctx(tcp->tcp_kssl_ctx); 1699 tcp->tcp_kssl_ctx = NULL; 1700 } 1701 tcp->tcp_kssl_pending = B_FALSE; 1702 1703 conn_delete_ire(connp, NULL); 1704 1705 /* 1706 * Since we will bzero the entire structure, we need to 1707 * remove it and reinsert it in global hash list. We 1708 * know the walkers can't get to this conn because we 1709 * had set CONDEMNED flag earlier and checked reference 1710 * under conn_lock so walker won't pick it and when we 1711 * go the ipcl_globalhash_remove() below, no walker 1712 * can get to it. 1713 */ 1714 ipcl_globalhash_remove(connp); 1715 1716 /* 1717 * Now it is safe to decrement the reference counts. 1718 * This might be the last reference on the netstack and TCPS 1719 * in which case it will cause the tcp_g_q_close and 1720 * the freeing of the IP Instance. 1721 */ 1722 connp->conn_netstack = NULL; 1723 netstack_rele(ns); 1724 ASSERT(tcps != NULL); 1725 tcp->tcp_tcps = NULL; 1726 TCPS_REFRELE(tcps); 1727 1728 /* Save some state */ 1729 mp = tcp->tcp_timercache; 1730 1731 tcp_sack_info = tcp->tcp_sack_info; 1732 tcp_iphc = tcp->tcp_iphc; 1733 tcp_iphc_len = tcp->tcp_iphc_len; 1734 tcp_hdr_grown = tcp->tcp_hdr_grown; 1735 1736 if (connp->conn_cred != NULL) { 1737 crfree(connp->conn_cred); 1738 connp->conn_cred = NULL; 1739 } 1740 if (connp->conn_peercred != NULL) { 1741 crfree(connp->conn_peercred); 1742 connp->conn_peercred = NULL; 1743 } 1744 ipcl_conn_cleanup(connp); 1745 connp->conn_flags = IPCL_TCPCONN; 1746 bzero(tcp, sizeof (tcp_t)); 1747 1748 /* restore the state */ 1749 tcp->tcp_timercache = mp; 1750 1751 tcp->tcp_sack_info = tcp_sack_info; 1752 tcp->tcp_iphc = tcp_iphc; 1753 tcp->tcp_iphc_len = tcp_iphc_len; 1754 tcp->tcp_hdr_grown = tcp_hdr_grown; 1755 1756 tcp->tcp_connp = connp; 1757 1758 ASSERT(connp->conn_tcp == tcp); 1759 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1760 connp->conn_state_flags = CONN_INCIPIENT; 1761 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1762 ASSERT(connp->conn_ref == 1); 1763 } 1764 1765 /* 1766 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1767 * is done forwards from the head. 1768 * This walks all stack instances since 1769 * tcp_time_wait remains global across all stacks. 1770 */ 1771 /* ARGSUSED */ 1772 void 1773 tcp_time_wait_collector(void *arg) 1774 { 1775 tcp_t *tcp; 1776 clock_t now; 1777 mblk_t *mp; 1778 conn_t *connp; 1779 kmutex_t *lock; 1780 boolean_t removed; 1781 1782 squeue_t *sqp = (squeue_t *)arg; 1783 tcp_squeue_priv_t *tcp_time_wait = 1784 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1785 1786 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1787 tcp_time_wait->tcp_time_wait_tid = 0; 1788 1789 if (tcp_time_wait->tcp_free_list != NULL && 1790 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1791 TCP_G_STAT(tcp_freelist_cleanup); 1792 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1793 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1794 tcp->tcp_time_wait_next = NULL; 1795 tcp_time_wait->tcp_free_list_cnt--; 1796 ASSERT(tcp->tcp_tcps == NULL); 1797 CONN_DEC_REF(tcp->tcp_connp); 1798 } 1799 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1800 } 1801 1802 /* 1803 * In order to reap time waits reliably, we should use a 1804 * source of time that is not adjustable by the user -- hence 1805 * the call to ddi_get_lbolt(). 1806 */ 1807 now = ddi_get_lbolt(); 1808 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1809 /* 1810 * Compare times using modular arithmetic, since 1811 * lbolt can wrapover. 1812 */ 1813 if ((now - tcp->tcp_time_wait_expire) < 0) { 1814 break; 1815 } 1816 1817 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1818 ASSERT(removed); 1819 1820 connp = tcp->tcp_connp; 1821 ASSERT(connp->conn_fanout != NULL); 1822 lock = &connp->conn_fanout->connf_lock; 1823 /* 1824 * This is essentially a TW reclaim fast path optimization for 1825 * performance where the timewait collector checks under the 1826 * fanout lock (so that no one else can get access to the 1827 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1828 * the classifier hash list. If ref count is indeed 2, we can 1829 * just remove the conn under the fanout lock and avoid 1830 * cleaning up the conn under the squeue, provided that 1831 * clustering callbacks are not enabled. If clustering is 1832 * enabled, we need to make the clustering callback before 1833 * setting the CONDEMNED flag and after dropping all locks and 1834 * so we forego this optimization and fall back to the slow 1835 * path. Also please see the comments in tcp_closei_local 1836 * regarding the refcnt logic. 1837 * 1838 * Since we are holding the tcp_time_wait_lock, its better 1839 * not to block on the fanout_lock because other connections 1840 * can't add themselves to time_wait list. So we do a 1841 * tryenter instead of mutex_enter. 1842 */ 1843 if (mutex_tryenter(lock)) { 1844 mutex_enter(&connp->conn_lock); 1845 if ((connp->conn_ref == 2) && 1846 (cl_inet_disconnect == NULL)) { 1847 ipcl_hash_remove_locked(connp, 1848 connp->conn_fanout); 1849 /* 1850 * Set the CONDEMNED flag now itself so that 1851 * the refcnt cannot increase due to any 1852 * walker. But we have still not cleaned up 1853 * conn_ire_cache. This is still ok since 1854 * we are going to clean it up in tcp_cleanup 1855 * immediately and any interface unplumb 1856 * thread will wait till the ire is blown away 1857 */ 1858 connp->conn_state_flags |= CONN_CONDEMNED; 1859 mutex_exit(lock); 1860 mutex_exit(&connp->conn_lock); 1861 if (tcp_time_wait->tcp_free_list_cnt < 1862 tcp_free_list_max_cnt) { 1863 /* Add to head of tcp_free_list */ 1864 mutex_exit( 1865 &tcp_time_wait->tcp_time_wait_lock); 1866 tcp_cleanup(tcp); 1867 ASSERT(connp->conn_latch == NULL); 1868 ASSERT(connp->conn_policy == NULL); 1869 ASSERT(tcp->tcp_tcps == NULL); 1870 ASSERT(connp->conn_netstack == NULL); 1871 1872 mutex_enter( 1873 &tcp_time_wait->tcp_time_wait_lock); 1874 tcp->tcp_time_wait_next = 1875 tcp_time_wait->tcp_free_list; 1876 tcp_time_wait->tcp_free_list = tcp; 1877 tcp_time_wait->tcp_free_list_cnt++; 1878 continue; 1879 } else { 1880 /* Do not add to tcp_free_list */ 1881 mutex_exit( 1882 &tcp_time_wait->tcp_time_wait_lock); 1883 tcp_bind_hash_remove(tcp); 1884 conn_delete_ire(tcp->tcp_connp, NULL); 1885 tcp_ipsec_cleanup(tcp); 1886 CONN_DEC_REF(tcp->tcp_connp); 1887 } 1888 } else { 1889 CONN_INC_REF_LOCKED(connp); 1890 mutex_exit(lock); 1891 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1892 mutex_exit(&connp->conn_lock); 1893 /* 1894 * We can reuse the closemp here since conn has 1895 * detached (otherwise we wouldn't even be in 1896 * time_wait list). tcp_closemp_used can safely 1897 * be changed without taking a lock as no other 1898 * thread can concurrently access it at this 1899 * point in the connection lifecycle. 1900 */ 1901 1902 if (tcp->tcp_closemp.b_prev == NULL) 1903 tcp->tcp_closemp_used = B_TRUE; 1904 else 1905 cmn_err(CE_PANIC, 1906 "tcp_timewait_collector: " 1907 "concurrent use of tcp_closemp: " 1908 "connp %p tcp %p\n", (void *)connp, 1909 (void *)tcp); 1910 1911 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1912 mp = &tcp->tcp_closemp; 1913 squeue_fill(connp->conn_sqp, mp, 1914 tcp_timewait_output, connp, 1915 SQTAG_TCP_TIMEWAIT); 1916 } 1917 } else { 1918 mutex_enter(&connp->conn_lock); 1919 CONN_INC_REF_LOCKED(connp); 1920 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1921 mutex_exit(&connp->conn_lock); 1922 /* 1923 * We can reuse the closemp here since conn has 1924 * detached (otherwise we wouldn't even be in 1925 * time_wait list). tcp_closemp_used can safely 1926 * be changed without taking a lock as no other 1927 * thread can concurrently access it at this 1928 * point in the connection lifecycle. 1929 */ 1930 1931 if (tcp->tcp_closemp.b_prev == NULL) 1932 tcp->tcp_closemp_used = B_TRUE; 1933 else 1934 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1935 "concurrent use of tcp_closemp: " 1936 "connp %p tcp %p\n", (void *)connp, 1937 (void *)tcp); 1938 1939 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1940 mp = &tcp->tcp_closemp; 1941 squeue_fill(connp->conn_sqp, mp, 1942 tcp_timewait_output, connp, 0); 1943 } 1944 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1945 } 1946 1947 if (tcp_time_wait->tcp_free_list != NULL) 1948 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1949 1950 tcp_time_wait->tcp_time_wait_tid = 1951 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1952 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1953 } 1954 /* 1955 * Reply to a clients T_CONN_RES TPI message. This function 1956 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1957 * on the acceptor STREAM and processed in tcp_wput_accept(). 1958 * Read the block comment on top of tcp_conn_request(). 1959 */ 1960 static void 1961 tcp_accept(tcp_t *listener, mblk_t *mp) 1962 { 1963 tcp_t *acceptor; 1964 tcp_t *eager; 1965 tcp_t *tcp; 1966 struct T_conn_res *tcr; 1967 t_uscalar_t acceptor_id; 1968 t_scalar_t seqnum; 1969 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1970 mblk_t *ok_mp; 1971 mblk_t *mp1; 1972 tcp_stack_t *tcps = listener->tcp_tcps; 1973 1974 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1975 tcp_err_ack(listener, mp, TPROTO, 0); 1976 return; 1977 } 1978 tcr = (struct T_conn_res *)mp->b_rptr; 1979 1980 /* 1981 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1982 * read side queue of the streams device underneath us i.e. the 1983 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1984 * look it up in the queue_hash. Under LP64 it sends down the 1985 * minor_t of the accepting endpoint. 1986 * 1987 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1988 * fanout hash lock is held. 1989 * This prevents any thread from entering the acceptor queue from 1990 * below (since it has not been hard bound yet i.e. any inbound 1991 * packets will arrive on the listener or default tcp queue and 1992 * go through tcp_lookup). 1993 * The CONN_INC_REF will prevent the acceptor from closing. 1994 * 1995 * XXX It is still possible for a tli application to send down data 1996 * on the accepting stream while another thread calls t_accept. 1997 * This should not be a problem for well-behaved applications since 1998 * the T_OK_ACK is sent after the queue swapping is completed. 1999 * 2000 * If the accepting fd is the same as the listening fd, avoid 2001 * queue hash lookup since that will return an eager listener in a 2002 * already established state. 2003 */ 2004 acceptor_id = tcr->ACCEPTOR_id; 2005 mutex_enter(&listener->tcp_eager_lock); 2006 if (listener->tcp_acceptor_id == acceptor_id) { 2007 eager = listener->tcp_eager_next_q; 2008 /* only count how many T_CONN_INDs so don't count q0 */ 2009 if ((listener->tcp_conn_req_cnt_q != 1) || 2010 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2011 mutex_exit(&listener->tcp_eager_lock); 2012 tcp_err_ack(listener, mp, TBADF, 0); 2013 return; 2014 } 2015 if (listener->tcp_conn_req_cnt_q0 != 0) { 2016 /* Throw away all the eagers on q0. */ 2017 tcp_eager_cleanup(listener, 1); 2018 } 2019 if (listener->tcp_syn_defense) { 2020 listener->tcp_syn_defense = B_FALSE; 2021 if (listener->tcp_ip_addr_cache != NULL) { 2022 kmem_free(listener->tcp_ip_addr_cache, 2023 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2024 listener->tcp_ip_addr_cache = NULL; 2025 } 2026 } 2027 /* 2028 * Transfer tcp_conn_req_max to the eager so that when 2029 * a disconnect occurs we can revert the endpoint to the 2030 * listen state. 2031 */ 2032 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2033 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2034 /* 2035 * Get a reference on the acceptor just like the 2036 * tcp_acceptor_hash_lookup below. 2037 */ 2038 acceptor = listener; 2039 CONN_INC_REF(acceptor->tcp_connp); 2040 } else { 2041 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 2042 if (acceptor == NULL) { 2043 if (listener->tcp_debug) { 2044 (void) strlog(TCP_MOD_ID, 0, 1, 2045 SL_ERROR|SL_TRACE, 2046 "tcp_accept: did not find acceptor 0x%x\n", 2047 acceptor_id); 2048 } 2049 mutex_exit(&listener->tcp_eager_lock); 2050 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2051 return; 2052 } 2053 /* 2054 * Verify acceptor state. The acceptable states for an acceptor 2055 * include TCPS_IDLE and TCPS_BOUND. 2056 */ 2057 switch (acceptor->tcp_state) { 2058 case TCPS_IDLE: 2059 /* FALLTHRU */ 2060 case TCPS_BOUND: 2061 break; 2062 default: 2063 CONN_DEC_REF(acceptor->tcp_connp); 2064 mutex_exit(&listener->tcp_eager_lock); 2065 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2066 return; 2067 } 2068 } 2069 2070 /* The listener must be in TCPS_LISTEN */ 2071 if (listener->tcp_state != TCPS_LISTEN) { 2072 CONN_DEC_REF(acceptor->tcp_connp); 2073 mutex_exit(&listener->tcp_eager_lock); 2074 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2075 return; 2076 } 2077 2078 /* 2079 * Rendezvous with an eager connection request packet hanging off 2080 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2081 * tcp structure when the connection packet arrived in 2082 * tcp_conn_request(). 2083 */ 2084 seqnum = tcr->SEQ_number; 2085 eager = listener; 2086 do { 2087 eager = eager->tcp_eager_next_q; 2088 if (eager == NULL) { 2089 CONN_DEC_REF(acceptor->tcp_connp); 2090 mutex_exit(&listener->tcp_eager_lock); 2091 tcp_err_ack(listener, mp, TBADSEQ, 0); 2092 return; 2093 } 2094 } while (eager->tcp_conn_req_seqnum != seqnum); 2095 mutex_exit(&listener->tcp_eager_lock); 2096 2097 /* 2098 * At this point, both acceptor and listener have 2 ref 2099 * that they begin with. Acceptor has one additional ref 2100 * we placed in lookup while listener has 3 additional 2101 * ref for being behind the squeue (tcp_accept() is 2102 * done on listener's squeue); being in classifier hash; 2103 * and eager's ref on listener. 2104 */ 2105 ASSERT(listener->tcp_connp->conn_ref >= 5); 2106 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2107 2108 /* 2109 * The eager at this point is set in its own squeue and 2110 * could easily have been killed (tcp_accept_finish will 2111 * deal with that) because of a TH_RST so we can only 2112 * ASSERT for a single ref. 2113 */ 2114 ASSERT(eager->tcp_connp->conn_ref >= 1); 2115 2116 /* Pre allocate the stroptions mblk also */ 2117 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2118 if (opt_mp == NULL) { 2119 CONN_DEC_REF(acceptor->tcp_connp); 2120 CONN_DEC_REF(eager->tcp_connp); 2121 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2122 return; 2123 } 2124 DB_TYPE(opt_mp) = M_SETOPTS; 2125 opt_mp->b_wptr += sizeof (struct stroptions); 2126 2127 /* 2128 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2129 * from listener to acceptor. The message is chained on opt_mp 2130 * which will be sent onto eager's squeue. 2131 */ 2132 if (listener->tcp_bound_if != 0) { 2133 /* allocate optmgmt req */ 2134 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2135 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2136 sizeof (int)); 2137 if (mp1 != NULL) 2138 linkb(opt_mp, mp1); 2139 } 2140 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2141 uint_t on = 1; 2142 2143 /* allocate optmgmt req */ 2144 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2145 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2146 if (mp1 != NULL) 2147 linkb(opt_mp, mp1); 2148 } 2149 2150 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2151 if ((mp1 = copymsg(mp)) == NULL) { 2152 CONN_DEC_REF(acceptor->tcp_connp); 2153 CONN_DEC_REF(eager->tcp_connp); 2154 freemsg(opt_mp); 2155 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2156 return; 2157 } 2158 2159 tcr = (struct T_conn_res *)mp1->b_rptr; 2160 2161 /* 2162 * This is an expanded version of mi_tpi_ok_ack_alloc() 2163 * which allocates a larger mblk and appends the new 2164 * local address to the ok_ack. The address is copied by 2165 * soaccept() for getsockname(). 2166 */ 2167 { 2168 int extra; 2169 2170 extra = (eager->tcp_family == AF_INET) ? 2171 sizeof (sin_t) : sizeof (sin6_t); 2172 2173 /* 2174 * Try to re-use mp, if possible. Otherwise, allocate 2175 * an mblk and return it as ok_mp. In any case, mp 2176 * is no longer usable upon return. 2177 */ 2178 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2179 CONN_DEC_REF(acceptor->tcp_connp); 2180 CONN_DEC_REF(eager->tcp_connp); 2181 freemsg(opt_mp); 2182 /* Original mp has been freed by now, so use mp1 */ 2183 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2184 return; 2185 } 2186 2187 mp = NULL; /* We should never use mp after this point */ 2188 2189 switch (extra) { 2190 case sizeof (sin_t): { 2191 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2192 2193 ok_mp->b_wptr += extra; 2194 sin->sin_family = AF_INET; 2195 sin->sin_port = eager->tcp_lport; 2196 sin->sin_addr.s_addr = 2197 eager->tcp_ipha->ipha_src; 2198 break; 2199 } 2200 case sizeof (sin6_t): { 2201 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2202 2203 ok_mp->b_wptr += extra; 2204 sin6->sin6_family = AF_INET6; 2205 sin6->sin6_port = eager->tcp_lport; 2206 if (eager->tcp_ipversion == IPV4_VERSION) { 2207 sin6->sin6_flowinfo = 0; 2208 IN6_IPADDR_TO_V4MAPPED( 2209 eager->tcp_ipha->ipha_src, 2210 &sin6->sin6_addr); 2211 } else { 2212 ASSERT(eager->tcp_ip6h != NULL); 2213 sin6->sin6_flowinfo = 2214 eager->tcp_ip6h->ip6_vcf & 2215 ~IPV6_VERS_AND_FLOW_MASK; 2216 sin6->sin6_addr = 2217 eager->tcp_ip6h->ip6_src; 2218 } 2219 sin6->sin6_scope_id = 0; 2220 sin6->__sin6_src_id = 0; 2221 break; 2222 } 2223 default: 2224 break; 2225 } 2226 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2227 } 2228 2229 /* 2230 * If there are no options we know that the T_CONN_RES will 2231 * succeed. However, we can't send the T_OK_ACK upstream until 2232 * the tcp_accept_swap is done since it would be dangerous to 2233 * let the application start using the new fd prior to the swap. 2234 */ 2235 tcp_accept_swap(listener, acceptor, eager); 2236 2237 /* 2238 * tcp_accept_swap unlinks eager from listener but does not drop 2239 * the eager's reference on the listener. 2240 */ 2241 ASSERT(eager->tcp_listener == NULL); 2242 ASSERT(listener->tcp_connp->conn_ref >= 5); 2243 2244 /* 2245 * The eager is now associated with its own queue. Insert in 2246 * the hash so that the connection can be reused for a future 2247 * T_CONN_RES. 2248 */ 2249 tcp_acceptor_hash_insert(acceptor_id, eager); 2250 2251 /* 2252 * We now do the processing of options with T_CONN_RES. 2253 * We delay till now since we wanted to have queue to pass to 2254 * option processing routines that points back to the right 2255 * instance structure which does not happen until after 2256 * tcp_accept_swap(). 2257 * 2258 * Note: 2259 * The sanity of the logic here assumes that whatever options 2260 * are appropriate to inherit from listner=>eager are done 2261 * before this point, and whatever were to be overridden (or not) 2262 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2263 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2264 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2265 * This may not be true at this point in time but can be fixed 2266 * independently. This option processing code starts with 2267 * the instantiated acceptor instance and the final queue at 2268 * this point. 2269 */ 2270 2271 if (tcr->OPT_length != 0) { 2272 /* Options to process */ 2273 int t_error = 0; 2274 int sys_error = 0; 2275 int do_disconnect = 0; 2276 2277 if (tcp_conprim_opt_process(eager, mp1, 2278 &do_disconnect, &t_error, &sys_error) < 0) { 2279 eager->tcp_accept_error = 1; 2280 if (do_disconnect) { 2281 /* 2282 * An option failed which does not allow 2283 * connection to be accepted. 2284 * 2285 * We allow T_CONN_RES to succeed and 2286 * put a T_DISCON_IND on the eager queue. 2287 */ 2288 ASSERT(t_error == 0 && sys_error == 0); 2289 eager->tcp_send_discon_ind = 1; 2290 } else { 2291 ASSERT(t_error != 0); 2292 freemsg(ok_mp); 2293 /* 2294 * Original mp was either freed or set 2295 * to ok_mp above, so use mp1 instead. 2296 */ 2297 tcp_err_ack(listener, mp1, t_error, sys_error); 2298 goto finish; 2299 } 2300 } 2301 /* 2302 * Most likely success in setting options (except if 2303 * eager->tcp_send_discon_ind set). 2304 * mp1 option buffer represented by OPT_length/offset 2305 * potentially modified and contains results of setting 2306 * options at this point 2307 */ 2308 } 2309 2310 /* We no longer need mp1, since all options processing has passed */ 2311 freemsg(mp1); 2312 2313 putnext(listener->tcp_rq, ok_mp); 2314 2315 mutex_enter(&listener->tcp_eager_lock); 2316 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2317 tcp_t *tail; 2318 mblk_t *conn_ind; 2319 2320 /* 2321 * This path should not be executed if listener and 2322 * acceptor streams are the same. 2323 */ 2324 ASSERT(listener != acceptor); 2325 2326 tcp = listener->tcp_eager_prev_q0; 2327 /* 2328 * listener->tcp_eager_prev_q0 points to the TAIL of the 2329 * deferred T_conn_ind queue. We need to get to the head of 2330 * the queue in order to send up T_conn_ind the same order as 2331 * how the 3WHS is completed. 2332 */ 2333 while (tcp != listener) { 2334 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2335 break; 2336 else 2337 tcp = tcp->tcp_eager_prev_q0; 2338 } 2339 ASSERT(tcp != listener); 2340 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2341 ASSERT(conn_ind != NULL); 2342 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2343 2344 /* Move from q0 to q */ 2345 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2346 listener->tcp_conn_req_cnt_q0--; 2347 listener->tcp_conn_req_cnt_q++; 2348 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2349 tcp->tcp_eager_prev_q0; 2350 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2351 tcp->tcp_eager_next_q0; 2352 tcp->tcp_eager_prev_q0 = NULL; 2353 tcp->tcp_eager_next_q0 = NULL; 2354 tcp->tcp_conn_def_q0 = B_FALSE; 2355 2356 /* Make sure the tcp isn't in the list of droppables */ 2357 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2358 tcp->tcp_eager_prev_drop_q0 == NULL); 2359 2360 /* 2361 * Insert at end of the queue because sockfs sends 2362 * down T_CONN_RES in chronological order. Leaving 2363 * the older conn indications at front of the queue 2364 * helps reducing search time. 2365 */ 2366 tail = listener->tcp_eager_last_q; 2367 if (tail != NULL) 2368 tail->tcp_eager_next_q = tcp; 2369 else 2370 listener->tcp_eager_next_q = tcp; 2371 listener->tcp_eager_last_q = tcp; 2372 tcp->tcp_eager_next_q = NULL; 2373 mutex_exit(&listener->tcp_eager_lock); 2374 putnext(tcp->tcp_rq, conn_ind); 2375 } else { 2376 mutex_exit(&listener->tcp_eager_lock); 2377 } 2378 2379 /* 2380 * Done with the acceptor - free it 2381 * 2382 * Note: from this point on, no access to listener should be made 2383 * as listener can be equal to acceptor. 2384 */ 2385 finish: 2386 ASSERT(acceptor->tcp_detached); 2387 ASSERT(tcps->tcps_g_q != NULL); 2388 acceptor->tcp_rq = tcps->tcps_g_q; 2389 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2390 (void) tcp_clean_death(acceptor, 0, 2); 2391 CONN_DEC_REF(acceptor->tcp_connp); 2392 2393 /* 2394 * In case we already received a FIN we have to make tcp_rput send 2395 * the ordrel_ind. This will also send up a window update if the window 2396 * has opened up. 2397 * 2398 * In the normal case of a successful connection acceptance 2399 * we give the O_T_BIND_REQ to the read side put procedure as an 2400 * indication that this was just accepted. This tells tcp_rput to 2401 * pass up any data queued in tcp_rcv_list. 2402 * 2403 * In the fringe case where options sent with T_CONN_RES failed and 2404 * we required, we would be indicating a T_DISCON_IND to blow 2405 * away this connection. 2406 */ 2407 2408 /* 2409 * XXX: we currently have a problem if XTI application closes the 2410 * acceptor stream in between. This problem exists in on10-gate also 2411 * and is well know but nothing can be done short of major rewrite 2412 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2413 * eager same squeue as listener (we can distinguish non socket 2414 * listeners at the time of handling a SYN in tcp_conn_request) 2415 * and do most of the work that tcp_accept_finish does here itself 2416 * and then get behind the acceptor squeue to access the acceptor 2417 * queue. 2418 */ 2419 /* 2420 * We already have a ref on tcp so no need to do one before squeue_fill 2421 */ 2422 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2423 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2424 } 2425 2426 /* 2427 * Swap information between the eager and acceptor for a TLI/XTI client. 2428 * The sockfs accept is done on the acceptor stream and control goes 2429 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2430 * called. In either case, both the eager and listener are in their own 2431 * perimeter (squeue) and the code has to deal with potential race. 2432 * 2433 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2434 */ 2435 static void 2436 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2437 { 2438 conn_t *econnp, *aconnp; 2439 2440 ASSERT(eager->tcp_rq == listener->tcp_rq); 2441 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2442 ASSERT(!eager->tcp_hard_bound); 2443 ASSERT(!TCP_IS_SOCKET(acceptor)); 2444 ASSERT(!TCP_IS_SOCKET(eager)); 2445 ASSERT(!TCP_IS_SOCKET(listener)); 2446 2447 acceptor->tcp_detached = B_TRUE; 2448 /* 2449 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2450 * the acceptor id. 2451 */ 2452 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2453 2454 /* remove eager from listen list... */ 2455 mutex_enter(&listener->tcp_eager_lock); 2456 tcp_eager_unlink(eager); 2457 ASSERT(eager->tcp_eager_next_q == NULL && 2458 eager->tcp_eager_last_q == NULL); 2459 ASSERT(eager->tcp_eager_next_q0 == NULL && 2460 eager->tcp_eager_prev_q0 == NULL); 2461 mutex_exit(&listener->tcp_eager_lock); 2462 eager->tcp_rq = acceptor->tcp_rq; 2463 eager->tcp_wq = acceptor->tcp_wq; 2464 2465 econnp = eager->tcp_connp; 2466 aconnp = acceptor->tcp_connp; 2467 2468 eager->tcp_rq->q_ptr = econnp; 2469 eager->tcp_wq->q_ptr = econnp; 2470 2471 /* 2472 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2473 * which might be a different squeue from our peer TCP instance. 2474 * For TCP Fusion, the peer expects that whenever tcp_detached is 2475 * clear, our TCP queues point to the acceptor's queues. Thus, use 2476 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2477 * above reach global visibility prior to the clearing of tcp_detached. 2478 */ 2479 membar_producer(); 2480 eager->tcp_detached = B_FALSE; 2481 2482 ASSERT(eager->tcp_ack_tid == 0); 2483 2484 econnp->conn_dev = aconnp->conn_dev; 2485 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2486 ASSERT(econnp->conn_minor_arena != NULL); 2487 if (eager->tcp_cred != NULL) 2488 crfree(eager->tcp_cred); 2489 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2490 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2491 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2492 2493 aconnp->conn_cred = NULL; 2494 2495 econnp->conn_zoneid = aconnp->conn_zoneid; 2496 econnp->conn_allzones = aconnp->conn_allzones; 2497 2498 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2499 aconnp->conn_mac_exempt = B_FALSE; 2500 2501 ASSERT(aconnp->conn_peercred == NULL); 2502 2503 /* Do the IPC initialization */ 2504 CONN_INC_REF(econnp); 2505 2506 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2507 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2508 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2509 2510 /* Done with old IPC. Drop its ref on its connp */ 2511 CONN_DEC_REF(aconnp); 2512 } 2513 2514 2515 /* 2516 * Adapt to the information, such as rtt and rtt_sd, provided from the 2517 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2518 * 2519 * Checks for multicast and broadcast destination address. 2520 * Returns zero on failure; non-zero if ok. 2521 * 2522 * Note that the MSS calculation here is based on the info given in 2523 * the IRE. We do not do any calculation based on TCP options. They 2524 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2525 * knows which options to use. 2526 * 2527 * Note on how TCP gets its parameters for a connection. 2528 * 2529 * When a tcp_t structure is allocated, it gets all the default parameters. 2530 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2531 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2532 * default. But if there is an associated tcp_host_param, it will override 2533 * the metrics. 2534 * 2535 * An incoming SYN with a multicast or broadcast destination address, is dropped 2536 * in 1 of 2 places. 2537 * 2538 * 1. If the packet was received over the wire it is dropped in 2539 * ip_rput_process_broadcast() 2540 * 2541 * 2. If the packet was received through internal IP loopback, i.e. the packet 2542 * was generated and received on the same machine, it is dropped in 2543 * ip_wput_local() 2544 * 2545 * An incoming SYN with a multicast or broadcast source address is always 2546 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2547 * reject an attempt to connect to a broadcast or multicast (destination) 2548 * address. 2549 */ 2550 static int 2551 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2552 { 2553 tcp_hsp_t *hsp; 2554 ire_t *ire; 2555 ire_t *sire = NULL; 2556 iulp_t *ire_uinfo = NULL; 2557 uint32_t mss_max; 2558 uint32_t mss; 2559 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2560 conn_t *connp = tcp->tcp_connp; 2561 boolean_t ire_cacheable = B_FALSE; 2562 zoneid_t zoneid = connp->conn_zoneid; 2563 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2564 MATCH_IRE_SECATTR; 2565 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2566 ill_t *ill = NULL; 2567 boolean_t incoming = (ire_mp == NULL); 2568 tcp_stack_t *tcps = tcp->tcp_tcps; 2569 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2570 2571 ASSERT(connp->conn_ire_cache == NULL); 2572 2573 if (tcp->tcp_ipversion == IPV4_VERSION) { 2574 2575 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2576 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2577 return (0); 2578 } 2579 /* 2580 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2581 * for the destination with the nexthop as gateway. 2582 * ire_ctable_lookup() is used because this particular 2583 * ire, if it exists, will be marked private. 2584 * If that is not available, use the interface ire 2585 * for the nexthop. 2586 * 2587 * TSol: tcp_update_label will detect label mismatches based 2588 * only on the destination's label, but that would not 2589 * detect label mismatches based on the security attributes 2590 * of routes or next hop gateway. Hence we need to pass the 2591 * label to ire_ftable_lookup below in order to locate the 2592 * right prefix (and/or) ire cache. Similarly we also need 2593 * pass the label to the ire_cache_lookup below to locate 2594 * the right ire that also matches on the label. 2595 */ 2596 if (tcp->tcp_connp->conn_nexthop_set) { 2597 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2598 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2599 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2600 ipst); 2601 if (ire == NULL) { 2602 ire = ire_ftable_lookup( 2603 tcp->tcp_connp->conn_nexthop_v4, 2604 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2605 tsl, match_flags, ipst); 2606 if (ire == NULL) 2607 return (0); 2608 } else { 2609 ire_uinfo = &ire->ire_uinfo; 2610 } 2611 } else { 2612 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2613 zoneid, tsl, ipst); 2614 if (ire != NULL) { 2615 ire_cacheable = B_TRUE; 2616 ire_uinfo = (ire_mp != NULL) ? 2617 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2618 &ire->ire_uinfo; 2619 2620 } else { 2621 if (ire_mp == NULL) { 2622 ire = ire_ftable_lookup( 2623 tcp->tcp_connp->conn_rem, 2624 0, 0, 0, NULL, &sire, zoneid, 0, 2625 tsl, (MATCH_IRE_RECURSIVE | 2626 MATCH_IRE_DEFAULT), ipst); 2627 if (ire == NULL) 2628 return (0); 2629 ire_uinfo = (sire != NULL) ? 2630 &sire->ire_uinfo : 2631 &ire->ire_uinfo; 2632 } else { 2633 ire = (ire_t *)ire_mp->b_rptr; 2634 ire_uinfo = 2635 &((ire_t *) 2636 ire_mp->b_rptr)->ire_uinfo; 2637 } 2638 } 2639 } 2640 ASSERT(ire != NULL); 2641 2642 if ((ire->ire_src_addr == INADDR_ANY) || 2643 (ire->ire_type & IRE_BROADCAST)) { 2644 /* 2645 * ire->ire_mp is non null when ire_mp passed in is used 2646 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2647 */ 2648 if (ire->ire_mp == NULL) 2649 ire_refrele(ire); 2650 if (sire != NULL) 2651 ire_refrele(sire); 2652 return (0); 2653 } 2654 2655 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2656 ipaddr_t src_addr; 2657 2658 /* 2659 * ip_bind_connected() has stored the correct source 2660 * address in conn_src. 2661 */ 2662 src_addr = tcp->tcp_connp->conn_src; 2663 tcp->tcp_ipha->ipha_src = src_addr; 2664 /* 2665 * Copy of the src addr. in tcp_t is needed 2666 * for the lookup funcs. 2667 */ 2668 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2669 } 2670 /* 2671 * Set the fragment bit so that IP will tell us if the MTU 2672 * should change. IP tells us the latest setting of 2673 * ip_path_mtu_discovery through ire_frag_flag. 2674 */ 2675 if (ipst->ips_ip_path_mtu_discovery) { 2676 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2677 htons(IPH_DF); 2678 } 2679 /* 2680 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2681 * for IP_NEXTHOP. No cache ire has been found for the 2682 * destination and we are working with the nexthop's 2683 * interface ire. Since we need to forward all packets 2684 * to the nexthop first, we "blindly" set tcp_localnet 2685 * to false, eventhough the destination may also be 2686 * onlink. 2687 */ 2688 if (ire_uinfo == NULL) 2689 tcp->tcp_localnet = 0; 2690 else 2691 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2692 } else { 2693 /* 2694 * For incoming connection ire_mp = NULL 2695 * For outgoing connection ire_mp != NULL 2696 * Technically we should check conn_incoming_ill 2697 * when ire_mp is NULL and conn_outgoing_ill when 2698 * ire_mp is non-NULL. But this is performance 2699 * critical path and for IPV*_BOUND_IF, outgoing 2700 * and incoming ill are always set to the same value. 2701 */ 2702 ill_t *dst_ill = NULL; 2703 ipif_t *dst_ipif = NULL; 2704 2705 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2706 2707 if (connp->conn_outgoing_ill != NULL) { 2708 /* Outgoing or incoming path */ 2709 int err; 2710 2711 dst_ill = conn_get_held_ill(connp, 2712 &connp->conn_outgoing_ill, &err); 2713 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2714 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2715 return (0); 2716 } 2717 match_flags |= MATCH_IRE_ILL; 2718 dst_ipif = dst_ill->ill_ipif; 2719 } 2720 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2721 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2722 2723 if (ire != NULL) { 2724 ire_cacheable = B_TRUE; 2725 ire_uinfo = (ire_mp != NULL) ? 2726 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2727 &ire->ire_uinfo; 2728 } else { 2729 if (ire_mp == NULL) { 2730 ire = ire_ftable_lookup_v6( 2731 &tcp->tcp_connp->conn_remv6, 2732 0, 0, 0, dst_ipif, &sire, zoneid, 2733 0, tsl, match_flags, ipst); 2734 if (ire == NULL) { 2735 if (dst_ill != NULL) 2736 ill_refrele(dst_ill); 2737 return (0); 2738 } 2739 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2740 &ire->ire_uinfo; 2741 } else { 2742 ire = (ire_t *)ire_mp->b_rptr; 2743 ire_uinfo = 2744 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2745 } 2746 } 2747 if (dst_ill != NULL) 2748 ill_refrele(dst_ill); 2749 2750 ASSERT(ire != NULL); 2751 ASSERT(ire_uinfo != NULL); 2752 2753 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2754 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2755 /* 2756 * ire->ire_mp is non null when ire_mp passed in is used 2757 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2758 */ 2759 if (ire->ire_mp == NULL) 2760 ire_refrele(ire); 2761 if (sire != NULL) 2762 ire_refrele(sire); 2763 return (0); 2764 } 2765 2766 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2767 in6_addr_t src_addr; 2768 2769 /* 2770 * ip_bind_connected_v6() has stored the correct source 2771 * address per IPv6 addr. selection policy in 2772 * conn_src_v6. 2773 */ 2774 src_addr = tcp->tcp_connp->conn_srcv6; 2775 2776 tcp->tcp_ip6h->ip6_src = src_addr; 2777 /* 2778 * Copy of the src addr. in tcp_t is needed 2779 * for the lookup funcs. 2780 */ 2781 tcp->tcp_ip_src_v6 = src_addr; 2782 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2783 &connp->conn_srcv6)); 2784 } 2785 tcp->tcp_localnet = 2786 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2787 } 2788 2789 /* 2790 * This allows applications to fail quickly when connections are made 2791 * to dead hosts. Hosts can be labeled dead by adding a reject route 2792 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2793 */ 2794 if ((ire->ire_flags & RTF_REJECT) && 2795 (ire->ire_flags & RTF_PRIVATE)) 2796 goto error; 2797 2798 /* 2799 * Make use of the cached rtt and rtt_sd values to calculate the 2800 * initial RTO. Note that they are already initialized in 2801 * tcp_init_values(). 2802 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2803 * IP_NEXTHOP, but instead are using the interface ire for the 2804 * nexthop, then we do not use the ire_uinfo from that ire to 2805 * do any initializations. 2806 */ 2807 if (ire_uinfo != NULL) { 2808 if (ire_uinfo->iulp_rtt != 0) { 2809 clock_t rto; 2810 2811 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2812 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2813 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2814 tcps->tcps_rexmit_interval_extra + 2815 (tcp->tcp_rtt_sa >> 5); 2816 2817 if (rto > tcps->tcps_rexmit_interval_max) { 2818 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2819 } else if (rto < tcps->tcps_rexmit_interval_min) { 2820 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2821 } else { 2822 tcp->tcp_rto = rto; 2823 } 2824 } 2825 if (ire_uinfo->iulp_ssthresh != 0) 2826 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2827 else 2828 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2829 if (ire_uinfo->iulp_spipe > 0) { 2830 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2831 tcps->tcps_max_buf); 2832 if (tcps->tcps_snd_lowat_fraction != 0) 2833 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2834 tcps->tcps_snd_lowat_fraction; 2835 (void) tcp_maxpsz_set(tcp, B_TRUE); 2836 } 2837 /* 2838 * Note that up till now, acceptor always inherits receive 2839 * window from the listener. But if there is a metrics 2840 * associated with a host, we should use that instead of 2841 * inheriting it from listener. Thus we need to pass this 2842 * info back to the caller. 2843 */ 2844 if (ire_uinfo->iulp_rpipe > 0) { 2845 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2846 tcps->tcps_max_buf); 2847 } 2848 2849 if (ire_uinfo->iulp_rtomax > 0) { 2850 tcp->tcp_second_timer_threshold = 2851 ire_uinfo->iulp_rtomax; 2852 } 2853 2854 /* 2855 * Use the metric option settings, iulp_tstamp_ok and 2856 * iulp_wscale_ok, only for active open. What this means 2857 * is that if the other side uses timestamp or window 2858 * scale option, TCP will also use those options. That 2859 * is for passive open. If the application sets a 2860 * large window, window scale is enabled regardless of 2861 * the value in iulp_wscale_ok. This is the behavior 2862 * since 2.6. So we keep it. 2863 * The only case left in passive open processing is the 2864 * check for SACK. 2865 * For ECN, it should probably be like SACK. But the 2866 * current value is binary, so we treat it like the other 2867 * cases. The metric only controls active open.For passive 2868 * open, the ndd param, tcp_ecn_permitted, controls the 2869 * behavior. 2870 */ 2871 if (!tcp_detached) { 2872 /* 2873 * The if check means that the following can only 2874 * be turned on by the metrics only IRE, but not off. 2875 */ 2876 if (ire_uinfo->iulp_tstamp_ok) 2877 tcp->tcp_snd_ts_ok = B_TRUE; 2878 if (ire_uinfo->iulp_wscale_ok) 2879 tcp->tcp_snd_ws_ok = B_TRUE; 2880 if (ire_uinfo->iulp_sack == 2) 2881 tcp->tcp_snd_sack_ok = B_TRUE; 2882 if (ire_uinfo->iulp_ecn_ok) 2883 tcp->tcp_ecn_ok = B_TRUE; 2884 } else { 2885 /* 2886 * Passive open. 2887 * 2888 * As above, the if check means that SACK can only be 2889 * turned on by the metric only IRE. 2890 */ 2891 if (ire_uinfo->iulp_sack > 0) { 2892 tcp->tcp_snd_sack_ok = B_TRUE; 2893 } 2894 } 2895 } 2896 2897 2898 /* 2899 * XXX: Note that currently, ire_max_frag can be as small as 68 2900 * because of PMTUd. So tcp_mss may go to negative if combined 2901 * length of all those options exceeds 28 bytes. But because 2902 * of the tcp_mss_min check below, we may not have a problem if 2903 * tcp_mss_min is of a reasonable value. The default is 1 so 2904 * the negative problem still exists. And the check defeats PMTUd. 2905 * In fact, if PMTUd finds that the MSS should be smaller than 2906 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2907 * value. 2908 * 2909 * We do not deal with that now. All those problems related to 2910 * PMTUd will be fixed later. 2911 */ 2912 ASSERT(ire->ire_max_frag != 0); 2913 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2914 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2915 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2916 mss = MIN(mss, IPV6_MIN_MTU); 2917 } 2918 } 2919 2920 /* Sanity check for MSS value. */ 2921 if (tcp->tcp_ipversion == IPV4_VERSION) 2922 mss_max = tcps->tcps_mss_max_ipv4; 2923 else 2924 mss_max = tcps->tcps_mss_max_ipv6; 2925 2926 if (tcp->tcp_ipversion == IPV6_VERSION && 2927 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2928 /* 2929 * After receiving an ICMPv6 "packet too big" message with a 2930 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2931 * will insert a 8-byte fragment header in every packet; we 2932 * reduce the MSS by that amount here. 2933 */ 2934 mss -= sizeof (ip6_frag_t); 2935 } 2936 2937 if (tcp->tcp_ipsec_overhead == 0) 2938 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2939 2940 mss -= tcp->tcp_ipsec_overhead; 2941 2942 if (mss < tcps->tcps_mss_min) 2943 mss = tcps->tcps_mss_min; 2944 if (mss > mss_max) 2945 mss = mss_max; 2946 2947 /* Note that this is the maximum MSS, excluding all options. */ 2948 tcp->tcp_mss = mss; 2949 2950 /* 2951 * Initialize the ISS here now that we have the full connection ID. 2952 * The RFC 1948 method of initial sequence number generation requires 2953 * knowledge of the full connection ID before setting the ISS. 2954 */ 2955 2956 tcp_iss_init(tcp); 2957 2958 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2959 tcp->tcp_loopback = B_TRUE; 2960 2961 if (tcp->tcp_ipversion == IPV4_VERSION) { 2962 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2963 } else { 2964 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2965 } 2966 2967 if (hsp != NULL) { 2968 /* Only modify if we're going to make them bigger */ 2969 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2970 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2971 if (tcps->tcps_snd_lowat_fraction != 0) 2972 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2973 tcps->tcps_snd_lowat_fraction; 2974 } 2975 2976 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2977 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2978 } 2979 2980 /* Copy timestamp flag only for active open */ 2981 if (!tcp_detached) 2982 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2983 } 2984 2985 if (sire != NULL) 2986 IRE_REFRELE(sire); 2987 2988 /* 2989 * If we got an IRE_CACHE and an ILL, go through their properties; 2990 * otherwise, this is deferred until later when we have an IRE_CACHE. 2991 */ 2992 if (tcp->tcp_loopback || 2993 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2994 /* 2995 * For incoming, see if this tcp may be MDT-capable. For 2996 * outgoing, this process has been taken care of through 2997 * tcp_rput_other. 2998 */ 2999 tcp_ire_ill_check(tcp, ire, ill, incoming); 3000 tcp->tcp_ire_ill_check_done = B_TRUE; 3001 } 3002 3003 mutex_enter(&connp->conn_lock); 3004 /* 3005 * Make sure that conn is not marked incipient 3006 * for incoming connections. A blind 3007 * removal of incipient flag is cheaper than 3008 * check and removal. 3009 */ 3010 connp->conn_state_flags &= ~CONN_INCIPIENT; 3011 3012 /* 3013 * Must not cache forwarding table routes 3014 * or recache an IRE after the conn_t has 3015 * had conn_ire_cache cleared and is flagged 3016 * unusable, (see the CONN_CACHE_IRE() macro). 3017 */ 3018 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 3019 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3020 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3021 connp->conn_ire_cache = ire; 3022 IRE_UNTRACE_REF(ire); 3023 rw_exit(&ire->ire_bucket->irb_lock); 3024 mutex_exit(&connp->conn_lock); 3025 return (1); 3026 } 3027 rw_exit(&ire->ire_bucket->irb_lock); 3028 } 3029 mutex_exit(&connp->conn_lock); 3030 3031 if (ire->ire_mp == NULL) 3032 ire_refrele(ire); 3033 return (1); 3034 3035 error: 3036 if (ire->ire_mp == NULL) 3037 ire_refrele(ire); 3038 if (sire != NULL) 3039 ire_refrele(sire); 3040 return (0); 3041 } 3042 3043 /* 3044 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3045 * O_T_BIND_REQ/T_BIND_REQ message. 3046 */ 3047 static void 3048 tcp_bind(tcp_t *tcp, mblk_t *mp) 3049 { 3050 sin_t *sin; 3051 sin6_t *sin6; 3052 mblk_t *mp1; 3053 in_port_t requested_port; 3054 in_port_t allocated_port; 3055 struct T_bind_req *tbr; 3056 boolean_t bind_to_req_port_only; 3057 boolean_t backlog_update = B_FALSE; 3058 boolean_t user_specified; 3059 in6_addr_t v6addr; 3060 ipaddr_t v4addr; 3061 uint_t origipversion; 3062 int err; 3063 queue_t *q = tcp->tcp_wq; 3064 conn_t *connp = tcp->tcp_connp; 3065 mlp_type_t addrtype, mlptype; 3066 zone_t *zone; 3067 cred_t *cr; 3068 in_port_t mlp_port; 3069 tcp_stack_t *tcps = tcp->tcp_tcps; 3070 3071 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3072 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3073 if (tcp->tcp_debug) { 3074 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3075 "tcp_bind: bad req, len %u", 3076 (uint_t)(mp->b_wptr - mp->b_rptr)); 3077 } 3078 tcp_err_ack(tcp, mp, TPROTO, 0); 3079 return; 3080 } 3081 /* Make sure the largest address fits */ 3082 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3083 if (mp1 == NULL) { 3084 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3085 return; 3086 } 3087 mp = mp1; 3088 tbr = (struct T_bind_req *)mp->b_rptr; 3089 if (tcp->tcp_state >= TCPS_BOUND) { 3090 if ((tcp->tcp_state == TCPS_BOUND || 3091 tcp->tcp_state == TCPS_LISTEN) && 3092 tcp->tcp_conn_req_max != tbr->CONIND_number && 3093 tbr->CONIND_number > 0) { 3094 /* 3095 * Handle listen() increasing CONIND_number. 3096 * This is more "liberal" then what the TPI spec 3097 * requires but is needed to avoid a t_unbind 3098 * when handling listen() since the port number 3099 * might be "stolen" between the unbind and bind. 3100 */ 3101 backlog_update = B_TRUE; 3102 goto do_bind; 3103 } 3104 if (tcp->tcp_debug) { 3105 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3106 "tcp_bind: bad state, %d", tcp->tcp_state); 3107 } 3108 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3109 return; 3110 } 3111 origipversion = tcp->tcp_ipversion; 3112 3113 switch (tbr->ADDR_length) { 3114 case 0: /* request for a generic port */ 3115 tbr->ADDR_offset = sizeof (struct T_bind_req); 3116 if (tcp->tcp_family == AF_INET) { 3117 tbr->ADDR_length = sizeof (sin_t); 3118 sin = (sin_t *)&tbr[1]; 3119 *sin = sin_null; 3120 sin->sin_family = AF_INET; 3121 mp->b_wptr = (uchar_t *)&sin[1]; 3122 tcp->tcp_ipversion = IPV4_VERSION; 3123 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3124 } else { 3125 ASSERT(tcp->tcp_family == AF_INET6); 3126 tbr->ADDR_length = sizeof (sin6_t); 3127 sin6 = (sin6_t *)&tbr[1]; 3128 *sin6 = sin6_null; 3129 sin6->sin6_family = AF_INET6; 3130 mp->b_wptr = (uchar_t *)&sin6[1]; 3131 tcp->tcp_ipversion = IPV6_VERSION; 3132 V6_SET_ZERO(v6addr); 3133 } 3134 requested_port = 0; 3135 break; 3136 3137 case sizeof (sin_t): /* Complete IPv4 address */ 3138 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3139 sizeof (sin_t)); 3140 if (sin == NULL || !OK_32PTR((char *)sin)) { 3141 if (tcp->tcp_debug) { 3142 (void) strlog(TCP_MOD_ID, 0, 1, 3143 SL_ERROR|SL_TRACE, 3144 "tcp_bind: bad address parameter, " 3145 "offset %d, len %d", 3146 tbr->ADDR_offset, tbr->ADDR_length); 3147 } 3148 tcp_err_ack(tcp, mp, TPROTO, 0); 3149 return; 3150 } 3151 /* 3152 * With sockets sockfs will accept bogus sin_family in 3153 * bind() and replace it with the family used in the socket 3154 * call. 3155 */ 3156 if (sin->sin_family != AF_INET || 3157 tcp->tcp_family != AF_INET) { 3158 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3159 return; 3160 } 3161 requested_port = ntohs(sin->sin_port); 3162 tcp->tcp_ipversion = IPV4_VERSION; 3163 v4addr = sin->sin_addr.s_addr; 3164 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3165 break; 3166 3167 case sizeof (sin6_t): /* Complete IPv6 address */ 3168 sin6 = (sin6_t *)mi_offset_param(mp, 3169 tbr->ADDR_offset, sizeof (sin6_t)); 3170 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3171 if (tcp->tcp_debug) { 3172 (void) strlog(TCP_MOD_ID, 0, 1, 3173 SL_ERROR|SL_TRACE, 3174 "tcp_bind: bad IPv6 address parameter, " 3175 "offset %d, len %d", tbr->ADDR_offset, 3176 tbr->ADDR_length); 3177 } 3178 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3179 return; 3180 } 3181 if (sin6->sin6_family != AF_INET6 || 3182 tcp->tcp_family != AF_INET6) { 3183 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3184 return; 3185 } 3186 requested_port = ntohs(sin6->sin6_port); 3187 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3188 IPV4_VERSION : IPV6_VERSION; 3189 v6addr = sin6->sin6_addr; 3190 break; 3191 3192 default: 3193 if (tcp->tcp_debug) { 3194 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3195 "tcp_bind: bad address length, %d", 3196 tbr->ADDR_length); 3197 } 3198 tcp_err_ack(tcp, mp, TBADADDR, 0); 3199 return; 3200 } 3201 tcp->tcp_bound_source_v6 = v6addr; 3202 3203 /* Check for change in ipversion */ 3204 if (origipversion != tcp->tcp_ipversion) { 3205 ASSERT(tcp->tcp_family == AF_INET6); 3206 err = tcp->tcp_ipversion == IPV6_VERSION ? 3207 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3208 if (err) { 3209 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3210 return; 3211 } 3212 } 3213 3214 /* 3215 * Initialize family specific fields. Copy of the src addr. 3216 * in tcp_t is needed for the lookup funcs. 3217 */ 3218 if (tcp->tcp_ipversion == IPV6_VERSION) { 3219 tcp->tcp_ip6h->ip6_src = v6addr; 3220 } else { 3221 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3222 } 3223 tcp->tcp_ip_src_v6 = v6addr; 3224 3225 /* 3226 * For O_T_BIND_REQ: 3227 * Verify that the target port/addr is available, or choose 3228 * another. 3229 * For T_BIND_REQ: 3230 * Verify that the target port/addr is available or fail. 3231 * In both cases when it succeeds the tcp is inserted in the 3232 * bind hash table. This ensures that the operation is atomic 3233 * under the lock on the hash bucket. 3234 */ 3235 bind_to_req_port_only = requested_port != 0 && 3236 tbr->PRIM_type != O_T_BIND_REQ; 3237 /* 3238 * Get a valid port (within the anonymous range and should not 3239 * be a privileged one) to use if the user has not given a port. 3240 * If multiple threads are here, they may all start with 3241 * with the same initial port. But, it should be fine as long as 3242 * tcp_bindi will ensure that no two threads will be assigned 3243 * the same port. 3244 * 3245 * NOTE: XXX If a privileged process asks for an anonymous port, we 3246 * still check for ports only in the range > tcp_smallest_non_priv_port, 3247 * unless TCP_ANONPRIVBIND option is set. 3248 */ 3249 mlptype = mlptSingle; 3250 mlp_port = requested_port; 3251 if (requested_port == 0) { 3252 requested_port = tcp->tcp_anon_priv_bind ? 3253 tcp_get_next_priv_port(tcp) : 3254 tcp_update_next_port(tcps->tcps_next_port_to_try, 3255 tcp, B_TRUE); 3256 if (requested_port == 0) { 3257 tcp_err_ack(tcp, mp, TNOADDR, 0); 3258 return; 3259 } 3260 user_specified = B_FALSE; 3261 3262 /* 3263 * If the user went through one of the RPC interfaces to create 3264 * this socket and RPC is MLP in this zone, then give him an 3265 * anonymous MLP. 3266 */ 3267 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3268 if (connp->conn_anon_mlp && is_system_labeled()) { 3269 zone = crgetzone(cr); 3270 addrtype = tsol_mlp_addr_type(zone->zone_id, 3271 IPV6_VERSION, &v6addr, 3272 tcps->tcps_netstack->netstack_ip); 3273 if (addrtype == mlptSingle) { 3274 tcp_err_ack(tcp, mp, TNOADDR, 0); 3275 return; 3276 } 3277 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3278 PMAPPORT, addrtype); 3279 mlp_port = PMAPPORT; 3280 } 3281 } else { 3282 int i; 3283 boolean_t priv = B_FALSE; 3284 3285 /* 3286 * If the requested_port is in the well-known privileged range, 3287 * verify that the stream was opened by a privileged user. 3288 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3289 * but instead the code relies on: 3290 * - the fact that the address of the array and its size never 3291 * changes 3292 * - the atomic assignment of the elements of the array 3293 */ 3294 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3295 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3296 priv = B_TRUE; 3297 } else { 3298 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3299 if (requested_port == 3300 tcps->tcps_g_epriv_ports[i]) { 3301 priv = B_TRUE; 3302 break; 3303 } 3304 } 3305 } 3306 if (priv) { 3307 if (secpolicy_net_privaddr(cr, requested_port, 3308 IPPROTO_TCP) != 0) { 3309 if (tcp->tcp_debug) { 3310 (void) strlog(TCP_MOD_ID, 0, 1, 3311 SL_ERROR|SL_TRACE, 3312 "tcp_bind: no priv for port %d", 3313 requested_port); 3314 } 3315 tcp_err_ack(tcp, mp, TACCES, 0); 3316 return; 3317 } 3318 } 3319 user_specified = B_TRUE; 3320 3321 if (is_system_labeled()) { 3322 zone = crgetzone(cr); 3323 addrtype = tsol_mlp_addr_type(zone->zone_id, 3324 IPV6_VERSION, &v6addr, 3325 tcps->tcps_netstack->netstack_ip); 3326 if (addrtype == mlptSingle) { 3327 tcp_err_ack(tcp, mp, TNOADDR, 0); 3328 return; 3329 } 3330 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3331 requested_port, addrtype); 3332 } 3333 } 3334 3335 if (mlptype != mlptSingle) { 3336 if (secpolicy_net_bindmlp(cr) != 0) { 3337 if (tcp->tcp_debug) { 3338 (void) strlog(TCP_MOD_ID, 0, 1, 3339 SL_ERROR|SL_TRACE, 3340 "tcp_bind: no priv for multilevel port %d", 3341 requested_port); 3342 } 3343 tcp_err_ack(tcp, mp, TACCES, 0); 3344 return; 3345 } 3346 3347 /* 3348 * If we're specifically binding a shared IP address and the 3349 * port is MLP on shared addresses, then check to see if this 3350 * zone actually owns the MLP. Reject if not. 3351 */ 3352 if (mlptype == mlptShared && addrtype == mlptShared) { 3353 /* 3354 * No need to handle exclusive-stack zones since 3355 * ALL_ZONES only applies to the shared stack. 3356 */ 3357 zoneid_t mlpzone; 3358 3359 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3360 htons(mlp_port)); 3361 if (connp->conn_zoneid != mlpzone) { 3362 if (tcp->tcp_debug) { 3363 (void) strlog(TCP_MOD_ID, 0, 1, 3364 SL_ERROR|SL_TRACE, 3365 "tcp_bind: attempt to bind port " 3366 "%d on shared addr in zone %d " 3367 "(should be %d)", 3368 mlp_port, connp->conn_zoneid, 3369 mlpzone); 3370 } 3371 tcp_err_ack(tcp, mp, TACCES, 0); 3372 return; 3373 } 3374 } 3375 3376 if (!user_specified) { 3377 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3378 requested_port, B_TRUE); 3379 if (err != 0) { 3380 if (tcp->tcp_debug) { 3381 (void) strlog(TCP_MOD_ID, 0, 1, 3382 SL_ERROR|SL_TRACE, 3383 "tcp_bind: cannot establish anon " 3384 "MLP for port %d", 3385 requested_port); 3386 } 3387 tcp_err_ack(tcp, mp, TSYSERR, err); 3388 return; 3389 } 3390 connp->conn_anon_port = B_TRUE; 3391 } 3392 connp->conn_mlp_type = mlptype; 3393 } 3394 3395 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3396 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3397 3398 if (allocated_port == 0) { 3399 connp->conn_mlp_type = mlptSingle; 3400 if (connp->conn_anon_port) { 3401 connp->conn_anon_port = B_FALSE; 3402 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3403 requested_port, B_FALSE); 3404 } 3405 if (bind_to_req_port_only) { 3406 if (tcp->tcp_debug) { 3407 (void) strlog(TCP_MOD_ID, 0, 1, 3408 SL_ERROR|SL_TRACE, 3409 "tcp_bind: requested addr busy"); 3410 } 3411 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3412 } else { 3413 /* If we are out of ports, fail the bind. */ 3414 if (tcp->tcp_debug) { 3415 (void) strlog(TCP_MOD_ID, 0, 1, 3416 SL_ERROR|SL_TRACE, 3417 "tcp_bind: out of ports?"); 3418 } 3419 tcp_err_ack(tcp, mp, TNOADDR, 0); 3420 } 3421 return; 3422 } 3423 ASSERT(tcp->tcp_state == TCPS_BOUND); 3424 do_bind: 3425 if (!backlog_update) { 3426 if (tcp->tcp_family == AF_INET) 3427 sin->sin_port = htons(allocated_port); 3428 else 3429 sin6->sin6_port = htons(allocated_port); 3430 } 3431 if (tcp->tcp_family == AF_INET) { 3432 if (tbr->CONIND_number != 0) { 3433 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3434 sizeof (sin_t)); 3435 } else { 3436 /* Just verify the local IP address */ 3437 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3438 } 3439 } else { 3440 if (tbr->CONIND_number != 0) { 3441 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3442 sizeof (sin6_t)); 3443 } else { 3444 /* Just verify the local IP address */ 3445 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3446 IPV6_ADDR_LEN); 3447 } 3448 } 3449 if (mp1 == NULL) { 3450 if (connp->conn_anon_port) { 3451 connp->conn_anon_port = B_FALSE; 3452 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3453 requested_port, B_FALSE); 3454 } 3455 connp->conn_mlp_type = mlptSingle; 3456 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3457 return; 3458 } 3459 3460 tbr->PRIM_type = T_BIND_ACK; 3461 mp->b_datap->db_type = M_PCPROTO; 3462 3463 /* Chain in the reply mp for tcp_rput() */ 3464 mp1->b_cont = mp; 3465 mp = mp1; 3466 3467 tcp->tcp_conn_req_max = tbr->CONIND_number; 3468 if (tcp->tcp_conn_req_max) { 3469 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3470 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3471 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3472 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3473 /* 3474 * If this is a listener, do not reset the eager list 3475 * and other stuffs. Note that we don't check if the 3476 * existing eager list meets the new tcp_conn_req_max 3477 * requirement. 3478 */ 3479 if (tcp->tcp_state != TCPS_LISTEN) { 3480 tcp->tcp_state = TCPS_LISTEN; 3481 /* Initialize the chain. Don't need the eager_lock */ 3482 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3483 tcp->tcp_eager_next_drop_q0 = tcp; 3484 tcp->tcp_eager_prev_drop_q0 = tcp; 3485 tcp->tcp_second_ctimer_threshold = 3486 tcps->tcps_ip_abort_linterval; 3487 } 3488 } 3489 3490 /* 3491 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3492 * processing continues in tcp_rput_other(). 3493 * 3494 * We need to make sure that the conn_recv is set to a non-null 3495 * value before we insert the conn into the classifier table. 3496 * This is to avoid a race with an incoming packet which does an 3497 * ipcl_classify(). 3498 */ 3499 connp->conn_recv = tcp_conn_request; 3500 if (tcp->tcp_family == AF_INET6) { 3501 ASSERT(tcp->tcp_connp->conn_af_isv6); 3502 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3503 } else { 3504 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3505 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3506 } 3507 /* 3508 * If the bind cannot complete immediately 3509 * IP will arrange to call tcp_rput_other 3510 * when the bind completes. 3511 */ 3512 if (mp != NULL) { 3513 tcp_rput_other(tcp, mp); 3514 } else { 3515 /* 3516 * Bind will be resumed later. Need to ensure 3517 * that conn doesn't disappear when that happens. 3518 * This will be decremented in ip_resume_tcp_bind(). 3519 */ 3520 CONN_INC_REF(tcp->tcp_connp); 3521 } 3522 } 3523 3524 3525 /* 3526 * If the "bind_to_req_port_only" parameter is set, if the requested port 3527 * number is available, return it, If not return 0 3528 * 3529 * If "bind_to_req_port_only" parameter is not set and 3530 * If the requested port number is available, return it. If not, return 3531 * the first anonymous port we happen across. If no anonymous ports are 3532 * available, return 0. addr is the requested local address, if any. 3533 * 3534 * In either case, when succeeding update the tcp_t to record the port number 3535 * and insert it in the bind hash table. 3536 * 3537 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3538 * without setting SO_REUSEADDR. This is needed so that they 3539 * can be viewed as two independent transport protocols. 3540 */ 3541 static in_port_t 3542 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3543 int reuseaddr, boolean_t quick_connect, 3544 boolean_t bind_to_req_port_only, boolean_t user_specified) 3545 { 3546 /* number of times we have run around the loop */ 3547 int count = 0; 3548 /* maximum number of times to run around the loop */ 3549 int loopmax; 3550 conn_t *connp = tcp->tcp_connp; 3551 zoneid_t zoneid = connp->conn_zoneid; 3552 tcp_stack_t *tcps = tcp->tcp_tcps; 3553 3554 /* 3555 * Lookup for free addresses is done in a loop and "loopmax" 3556 * influences how long we spin in the loop 3557 */ 3558 if (bind_to_req_port_only) { 3559 /* 3560 * If the requested port is busy, don't bother to look 3561 * for a new one. Setting loop maximum count to 1 has 3562 * that effect. 3563 */ 3564 loopmax = 1; 3565 } else { 3566 /* 3567 * If the requested port is busy, look for a free one 3568 * in the anonymous port range. 3569 * Set loopmax appropriately so that one does not look 3570 * forever in the case all of the anonymous ports are in use. 3571 */ 3572 if (tcp->tcp_anon_priv_bind) { 3573 /* 3574 * loopmax = 3575 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3576 */ 3577 loopmax = IPPORT_RESERVED - 3578 tcps->tcps_min_anonpriv_port; 3579 } else { 3580 loopmax = (tcps->tcps_largest_anon_port - 3581 tcps->tcps_smallest_anon_port + 1); 3582 } 3583 } 3584 do { 3585 uint16_t lport; 3586 tf_t *tbf; 3587 tcp_t *ltcp; 3588 conn_t *lconnp; 3589 3590 lport = htons(port); 3591 3592 /* 3593 * Ensure that the tcp_t is not currently in the bind hash. 3594 * Hold the lock on the hash bucket to ensure that 3595 * the duplicate check plus the insertion is an atomic 3596 * operation. 3597 * 3598 * This function does an inline lookup on the bind hash list 3599 * Make sure that we access only members of tcp_t 3600 * and that we don't look at tcp_tcp, since we are not 3601 * doing a CONN_INC_REF. 3602 */ 3603 tcp_bind_hash_remove(tcp); 3604 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3605 mutex_enter(&tbf->tf_lock); 3606 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3607 ltcp = ltcp->tcp_bind_hash) { 3608 boolean_t not_socket; 3609 boolean_t exclbind; 3610 3611 if (lport != ltcp->tcp_lport) 3612 continue; 3613 3614 lconnp = ltcp->tcp_connp; 3615 3616 /* 3617 * On a labeled system, we must treat bindings to ports 3618 * on shared IP addresses by sockets with MAC exemption 3619 * privilege as being in all zones, as there's 3620 * otherwise no way to identify the right receiver. 3621 */ 3622 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3623 IPCL_ZONE_MATCH(connp, 3624 ltcp->tcp_connp->conn_zoneid)) && 3625 !lconnp->conn_mac_exempt && 3626 !connp->conn_mac_exempt) 3627 continue; 3628 3629 /* 3630 * If TCP_EXCLBIND is set for either the bound or 3631 * binding endpoint, the semantics of bind 3632 * is changed according to the following. 3633 * 3634 * spec = specified address (v4 or v6) 3635 * unspec = unspecified address (v4 or v6) 3636 * A = specified addresses are different for endpoints 3637 * 3638 * bound bind to allowed 3639 * ------------------------------------- 3640 * unspec unspec no 3641 * unspec spec no 3642 * spec unspec no 3643 * spec spec yes if A 3644 * 3645 * For labeled systems, SO_MAC_EXEMPT behaves the same 3646 * as TCP_EXCLBIND, except that zoneid is ignored. 3647 * 3648 * Note: 3649 * 3650 * 1. Because of TLI semantics, an endpoint can go 3651 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3652 * TCPS_BOUND, depending on whether it is originally 3653 * a listener or not. That is why we need to check 3654 * for states greater than or equal to TCPS_BOUND 3655 * here. 3656 * 3657 * 2. Ideally, we should only check for state equals 3658 * to TCPS_LISTEN. And the following check should be 3659 * added. 3660 * 3661 * if (ltcp->tcp_state == TCPS_LISTEN || 3662 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3663 * ... 3664 * } 3665 * 3666 * The semantics will be changed to this. If the 3667 * endpoint on the list is in state not equal to 3668 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3669 * set, let the bind succeed. 3670 * 3671 * Because of (1), we cannot do that for TLI 3672 * endpoints. But we can do that for socket endpoints. 3673 * If in future, we can change this going back 3674 * semantics, we can use the above check for TLI also. 3675 */ 3676 not_socket = !(TCP_IS_SOCKET(ltcp) && 3677 TCP_IS_SOCKET(tcp)); 3678 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3679 3680 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3681 (exclbind && (not_socket || 3682 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3683 if (V6_OR_V4_INADDR_ANY( 3684 ltcp->tcp_bound_source_v6) || 3685 V6_OR_V4_INADDR_ANY(*laddr) || 3686 IN6_ARE_ADDR_EQUAL(laddr, 3687 <cp->tcp_bound_source_v6)) { 3688 break; 3689 } 3690 continue; 3691 } 3692 3693 /* 3694 * Check ipversion to allow IPv4 and IPv6 sockets to 3695 * have disjoint port number spaces, if *_EXCLBIND 3696 * is not set and only if the application binds to a 3697 * specific port. We use the same autoassigned port 3698 * number space for IPv4 and IPv6 sockets. 3699 */ 3700 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3701 bind_to_req_port_only) 3702 continue; 3703 3704 /* 3705 * Ideally, we should make sure that the source 3706 * address, remote address, and remote port in the 3707 * four tuple for this tcp-connection is unique. 3708 * However, trying to find out the local source 3709 * address would require too much code duplication 3710 * with IP, since IP needs needs to have that code 3711 * to support userland TCP implementations. 3712 */ 3713 if (quick_connect && 3714 (ltcp->tcp_state > TCPS_LISTEN) && 3715 ((tcp->tcp_fport != ltcp->tcp_fport) || 3716 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3717 <cp->tcp_remote_v6))) 3718 continue; 3719 3720 if (!reuseaddr) { 3721 /* 3722 * No socket option SO_REUSEADDR. 3723 * If existing port is bound to 3724 * a non-wildcard IP address 3725 * and the requesting stream is 3726 * bound to a distinct 3727 * different IP addresses 3728 * (non-wildcard, also), keep 3729 * going. 3730 */ 3731 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3732 !V6_OR_V4_INADDR_ANY( 3733 ltcp->tcp_bound_source_v6) && 3734 !IN6_ARE_ADDR_EQUAL(laddr, 3735 <cp->tcp_bound_source_v6)) 3736 continue; 3737 if (ltcp->tcp_state >= TCPS_BOUND) { 3738 /* 3739 * This port is being used and 3740 * its state is >= TCPS_BOUND, 3741 * so we can't bind to it. 3742 */ 3743 break; 3744 } 3745 } else { 3746 /* 3747 * socket option SO_REUSEADDR is set on the 3748 * binding tcp_t. 3749 * 3750 * If two streams are bound to 3751 * same IP address or both addr 3752 * and bound source are wildcards 3753 * (INADDR_ANY), we want to stop 3754 * searching. 3755 * We have found a match of IP source 3756 * address and source port, which is 3757 * refused regardless of the 3758 * SO_REUSEADDR setting, so we break. 3759 */ 3760 if (IN6_ARE_ADDR_EQUAL(laddr, 3761 <cp->tcp_bound_source_v6) && 3762 (ltcp->tcp_state == TCPS_LISTEN || 3763 ltcp->tcp_state == TCPS_BOUND)) 3764 break; 3765 } 3766 } 3767 if (ltcp != NULL) { 3768 /* The port number is busy */ 3769 mutex_exit(&tbf->tf_lock); 3770 } else { 3771 /* 3772 * This port is ours. Insert in fanout and mark as 3773 * bound to prevent others from getting the port 3774 * number. 3775 */ 3776 tcp->tcp_state = TCPS_BOUND; 3777 tcp->tcp_lport = htons(port); 3778 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3779 3780 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3781 tcp->tcp_lport)] == tbf); 3782 tcp_bind_hash_insert(tbf, tcp, 1); 3783 3784 mutex_exit(&tbf->tf_lock); 3785 3786 /* 3787 * We don't want tcp_next_port_to_try to "inherit" 3788 * a port number supplied by the user in a bind. 3789 */ 3790 if (user_specified) 3791 return (port); 3792 3793 /* 3794 * This is the only place where tcp_next_port_to_try 3795 * is updated. After the update, it may or may not 3796 * be in the valid range. 3797 */ 3798 if (!tcp->tcp_anon_priv_bind) 3799 tcps->tcps_next_port_to_try = port + 1; 3800 return (port); 3801 } 3802 3803 if (tcp->tcp_anon_priv_bind) { 3804 port = tcp_get_next_priv_port(tcp); 3805 } else { 3806 if (count == 0 && user_specified) { 3807 /* 3808 * We may have to return an anonymous port. So 3809 * get one to start with. 3810 */ 3811 port = 3812 tcp_update_next_port( 3813 tcps->tcps_next_port_to_try, 3814 tcp, B_TRUE); 3815 user_specified = B_FALSE; 3816 } else { 3817 port = tcp_update_next_port(port + 1, tcp, 3818 B_FALSE); 3819 } 3820 } 3821 if (port == 0) 3822 break; 3823 3824 /* 3825 * Don't let this loop run forever in the case where 3826 * all of the anonymous ports are in use. 3827 */ 3828 } while (++count < loopmax); 3829 return (0); 3830 } 3831 3832 /* 3833 * tcp_clean_death / tcp_close_detached must not be called more than once 3834 * on a tcp. Thus every function that potentially calls tcp_clean_death 3835 * must check for the tcp state before calling tcp_clean_death. 3836 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3837 * tcp_timer_handler, all check for the tcp state. 3838 */ 3839 /* ARGSUSED */ 3840 void 3841 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3842 { 3843 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3844 3845 freemsg(mp); 3846 if (tcp->tcp_state > TCPS_BOUND) 3847 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3848 ETIMEDOUT, 5); 3849 } 3850 3851 /* 3852 * We are dying for some reason. Try to do it gracefully. (May be called 3853 * as writer.) 3854 * 3855 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3856 * done by a service procedure). 3857 * TBD - Should the return value distinguish between the tcp_t being 3858 * freed and it being reinitialized? 3859 */ 3860 static int 3861 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3862 { 3863 mblk_t *mp; 3864 queue_t *q; 3865 tcp_stack_t *tcps = tcp->tcp_tcps; 3866 sodirect_t *sodp; 3867 3868 TCP_CLD_STAT(tag); 3869 3870 #if TCP_TAG_CLEAN_DEATH 3871 tcp->tcp_cleandeathtag = tag; 3872 #endif 3873 3874 if (tcp->tcp_fused) 3875 tcp_unfuse(tcp); 3876 3877 if (tcp->tcp_linger_tid != 0 && 3878 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3879 tcp_stop_lingering(tcp); 3880 } 3881 3882 ASSERT(tcp != NULL); 3883 ASSERT((tcp->tcp_family == AF_INET && 3884 tcp->tcp_ipversion == IPV4_VERSION) || 3885 (tcp->tcp_family == AF_INET6 && 3886 (tcp->tcp_ipversion == IPV4_VERSION || 3887 tcp->tcp_ipversion == IPV6_VERSION))); 3888 3889 if (TCP_IS_DETACHED(tcp)) { 3890 if (tcp->tcp_hard_binding) { 3891 /* 3892 * Its an eager that we are dealing with. We close the 3893 * eager but in case a conn_ind has already gone to the 3894 * listener, let tcp_accept_finish() send a discon_ind 3895 * to the listener and drop the last reference. If the 3896 * listener doesn't even know about the eager i.e. the 3897 * conn_ind hasn't gone up, blow away the eager and drop 3898 * the last reference as well. If the conn_ind has gone 3899 * up, state should be BOUND. tcp_accept_finish 3900 * will figure out that the connection has received a 3901 * RST and will send a DISCON_IND to the application. 3902 */ 3903 tcp_closei_local(tcp); 3904 if (!tcp->tcp_tconnind_started) { 3905 CONN_DEC_REF(tcp->tcp_connp); 3906 } else { 3907 tcp->tcp_state = TCPS_BOUND; 3908 } 3909 } else { 3910 tcp_close_detached(tcp); 3911 } 3912 return (0); 3913 } 3914 3915 TCP_STAT(tcps, tcp_clean_death_nondetached); 3916 3917 /* 3918 * If T_ORDREL_IND has not been sent yet (done when service routine 3919 * is run) postpone cleaning up the endpoint until service routine 3920 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3921 * client_errno since tcp_close uses the client_errno field. 3922 */ 3923 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3924 if (err != 0) 3925 tcp->tcp_client_errno = err; 3926 3927 tcp->tcp_deferred_clean_death = B_TRUE; 3928 return (-1); 3929 } 3930 3931 /* If sodirect, not anymore */ 3932 SOD_PTR_ENTER(tcp, sodp); 3933 if (sodp != NULL) { 3934 tcp->tcp_sodirect = NULL; 3935 mutex_exit(sodp->sod_lock); 3936 } 3937 3938 q = tcp->tcp_rq; 3939 3940 /* Trash all inbound data */ 3941 flushq(q, FLUSHALL); 3942 3943 /* 3944 * If we are at least part way open and there is error 3945 * (err==0 implies no error) 3946 * notify our client by a T_DISCON_IND. 3947 */ 3948 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3949 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3950 !TCP_IS_SOCKET(tcp)) { 3951 /* 3952 * Send M_FLUSH according to TPI. Because sockets will 3953 * (and must) ignore FLUSHR we do that only for TPI 3954 * endpoints and sockets in STREAMS mode. 3955 */ 3956 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3957 } 3958 if (tcp->tcp_debug) { 3959 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3960 "tcp_clean_death: discon err %d", err); 3961 } 3962 mp = mi_tpi_discon_ind(NULL, err, 0); 3963 if (mp != NULL) { 3964 putnext(q, mp); 3965 } else { 3966 if (tcp->tcp_debug) { 3967 (void) strlog(TCP_MOD_ID, 0, 1, 3968 SL_ERROR|SL_TRACE, 3969 "tcp_clean_death, sending M_ERROR"); 3970 } 3971 (void) putnextctl1(q, M_ERROR, EPROTO); 3972 } 3973 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3974 /* SYN_SENT or SYN_RCVD */ 3975 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3976 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3977 /* ESTABLISHED or CLOSE_WAIT */ 3978 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3979 } 3980 } 3981 3982 tcp_reinit(tcp); 3983 return (-1); 3984 } 3985 3986 /* 3987 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3988 * to expire, stop the wait and finish the close. 3989 */ 3990 static void 3991 tcp_stop_lingering(tcp_t *tcp) 3992 { 3993 clock_t delta = 0; 3994 tcp_stack_t *tcps = tcp->tcp_tcps; 3995 3996 tcp->tcp_linger_tid = 0; 3997 if (tcp->tcp_state > TCPS_LISTEN) { 3998 tcp_acceptor_hash_remove(tcp); 3999 mutex_enter(&tcp->tcp_non_sq_lock); 4000 if (tcp->tcp_flow_stopped) { 4001 tcp_clrqfull(tcp); 4002 } 4003 mutex_exit(&tcp->tcp_non_sq_lock); 4004 4005 if (tcp->tcp_timer_tid != 0) { 4006 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4007 tcp->tcp_timer_tid = 0; 4008 } 4009 /* 4010 * Need to cancel those timers which will not be used when 4011 * TCP is detached. This has to be done before the tcp_wq 4012 * is set to the global queue. 4013 */ 4014 tcp_timers_stop(tcp); 4015 4016 4017 tcp->tcp_detached = B_TRUE; 4018 ASSERT(tcps->tcps_g_q != NULL); 4019 tcp->tcp_rq = tcps->tcps_g_q; 4020 tcp->tcp_wq = WR(tcps->tcps_g_q); 4021 4022 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4023 tcp_time_wait_append(tcp); 4024 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4025 goto finish; 4026 } 4027 4028 /* 4029 * If delta is zero the timer event wasn't executed and was 4030 * successfully canceled. In this case we need to restart it 4031 * with the minimal delta possible. 4032 */ 4033 if (delta >= 0) { 4034 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4035 delta ? delta : 1); 4036 } 4037 } else { 4038 tcp_closei_local(tcp); 4039 CONN_DEC_REF(tcp->tcp_connp); 4040 } 4041 finish: 4042 /* Signal closing thread that it can complete close */ 4043 mutex_enter(&tcp->tcp_closelock); 4044 tcp->tcp_detached = B_TRUE; 4045 ASSERT(tcps->tcps_g_q != NULL); 4046 tcp->tcp_rq = tcps->tcps_g_q; 4047 tcp->tcp_wq = WR(tcps->tcps_g_q); 4048 tcp->tcp_closed = 1; 4049 cv_signal(&tcp->tcp_closecv); 4050 mutex_exit(&tcp->tcp_closelock); 4051 } 4052 4053 /* 4054 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 4055 * expires. 4056 */ 4057 static void 4058 tcp_close_linger_timeout(void *arg) 4059 { 4060 conn_t *connp = (conn_t *)arg; 4061 tcp_t *tcp = connp->conn_tcp; 4062 4063 tcp->tcp_client_errno = ETIMEDOUT; 4064 tcp_stop_lingering(tcp); 4065 } 4066 4067 static int 4068 tcp_close(queue_t *q, int flags) 4069 { 4070 conn_t *connp = Q_TO_CONN(q); 4071 tcp_t *tcp = connp->conn_tcp; 4072 mblk_t *mp = &tcp->tcp_closemp; 4073 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4074 mblk_t *bp; 4075 4076 ASSERT(WR(q)->q_next == NULL); 4077 ASSERT(connp->conn_ref >= 2); 4078 4079 /* 4080 * We are being closed as /dev/tcp or /dev/tcp6. 4081 * 4082 * Mark the conn as closing. ill_pending_mp_add will not 4083 * add any mp to the pending mp list, after this conn has 4084 * started closing. Same for sq_pending_mp_add 4085 */ 4086 mutex_enter(&connp->conn_lock); 4087 connp->conn_state_flags |= CONN_CLOSING; 4088 if (connp->conn_oper_pending_ill != NULL) 4089 conn_ioctl_cleanup_reqd = B_TRUE; 4090 CONN_INC_REF_LOCKED(connp); 4091 mutex_exit(&connp->conn_lock); 4092 tcp->tcp_closeflags = (uint8_t)flags; 4093 ASSERT(connp->conn_ref >= 3); 4094 4095 /* 4096 * tcp_closemp_used is used below without any protection of a lock 4097 * as we don't expect any one else to use it concurrently at this 4098 * point otherwise it would be a major defect. 4099 */ 4100 4101 if (mp->b_prev == NULL) 4102 tcp->tcp_closemp_used = B_TRUE; 4103 else 4104 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4105 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4106 4107 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4108 4109 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4110 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4111 4112 mutex_enter(&tcp->tcp_closelock); 4113 while (!tcp->tcp_closed) { 4114 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4115 /* 4116 * The cv_wait_sig() was interrupted. We now do the 4117 * following: 4118 * 4119 * 1) If the endpoint was lingering, we allow this 4120 * to be interrupted by cancelling the linger timeout 4121 * and closing normally. 4122 * 4123 * 2) Revert to calling cv_wait() 4124 * 4125 * We revert to using cv_wait() to avoid an 4126 * infinite loop which can occur if the calling 4127 * thread is higher priority than the squeue worker 4128 * thread and is bound to the same cpu. 4129 */ 4130 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 4131 mutex_exit(&tcp->tcp_closelock); 4132 /* Entering squeue, bump ref count. */ 4133 CONN_INC_REF(connp); 4134 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4135 squeue_enter(connp->conn_sqp, bp, 4136 tcp_linger_interrupted, connp, 4137 SQTAG_IP_TCP_CLOSE); 4138 mutex_enter(&tcp->tcp_closelock); 4139 } 4140 break; 4141 } 4142 } 4143 while (!tcp->tcp_closed) 4144 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4145 mutex_exit(&tcp->tcp_closelock); 4146 4147 /* 4148 * In the case of listener streams that have eagers in the q or q0 4149 * we wait for the eagers to drop their reference to us. tcp_rq and 4150 * tcp_wq of the eagers point to our queues. By waiting for the 4151 * refcnt to drop to 1, we are sure that the eagers have cleaned 4152 * up their queue pointers and also dropped their references to us. 4153 */ 4154 if (tcp->tcp_wait_for_eagers) { 4155 mutex_enter(&connp->conn_lock); 4156 while (connp->conn_ref != 1) { 4157 cv_wait(&connp->conn_cv, &connp->conn_lock); 4158 } 4159 mutex_exit(&connp->conn_lock); 4160 } 4161 /* 4162 * ioctl cleanup. The mp is queued in the 4163 * ill_pending_mp or in the sq_pending_mp. 4164 */ 4165 if (conn_ioctl_cleanup_reqd) 4166 conn_ioctl_cleanup(connp); 4167 4168 qprocsoff(q); 4169 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4170 4171 tcp->tcp_cpid = -1; 4172 4173 /* 4174 * Drop IP's reference on the conn. This is the last reference 4175 * on the connp if the state was less than established. If the 4176 * connection has gone into timewait state, then we will have 4177 * one ref for the TCP and one more ref (total of two) for the 4178 * classifier connected hash list (a timewait connections stays 4179 * in connected hash till closed). 4180 * 4181 * We can't assert the references because there might be other 4182 * transient reference places because of some walkers or queued 4183 * packets in squeue for the timewait state. 4184 */ 4185 CONN_DEC_REF(connp); 4186 q->q_ptr = WR(q)->q_ptr = NULL; 4187 return (0); 4188 } 4189 4190 static int 4191 tcpclose_accept(queue_t *q) 4192 { 4193 vmem_t *minor_arena; 4194 dev_t conn_dev; 4195 4196 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4197 4198 /* 4199 * We had opened an acceptor STREAM for sockfs which is 4200 * now being closed due to some error. 4201 */ 4202 qprocsoff(q); 4203 4204 minor_arena = (vmem_t *)WR(q)->q_ptr; 4205 conn_dev = (dev_t)RD(q)->q_ptr; 4206 ASSERT(minor_arena != NULL); 4207 ASSERT(conn_dev != 0); 4208 inet_minor_free(minor_arena, conn_dev); 4209 q->q_ptr = WR(q)->q_ptr = NULL; 4210 return (0); 4211 } 4212 4213 /* 4214 * Called by tcp_close() routine via squeue when lingering is 4215 * interrupted by a signal. 4216 */ 4217 4218 /* ARGSUSED */ 4219 static void 4220 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4221 { 4222 conn_t *connp = (conn_t *)arg; 4223 tcp_t *tcp = connp->conn_tcp; 4224 4225 freeb(mp); 4226 if (tcp->tcp_linger_tid != 0 && 4227 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4228 tcp_stop_lingering(tcp); 4229 tcp->tcp_client_errno = EINTR; 4230 } 4231 } 4232 4233 /* 4234 * Called by streams close routine via squeues when our client blows off her 4235 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4236 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4237 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4238 * acked. 4239 * 4240 * NOTE: tcp_close potentially returns error when lingering. 4241 * However, the stream head currently does not pass these errors 4242 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4243 * errors to the application (from tsleep()) and not errors 4244 * like ECONNRESET caused by receiving a reset packet. 4245 */ 4246 4247 /* ARGSUSED */ 4248 static void 4249 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4250 { 4251 char *msg; 4252 conn_t *connp = (conn_t *)arg; 4253 tcp_t *tcp = connp->conn_tcp; 4254 clock_t delta = 0; 4255 tcp_stack_t *tcps = tcp->tcp_tcps; 4256 4257 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4258 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4259 4260 /* Cancel any pending timeout */ 4261 if (tcp->tcp_ordrelid != 0) { 4262 if (tcp->tcp_timeout) { 4263 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4264 } 4265 tcp->tcp_ordrelid = 0; 4266 tcp->tcp_timeout = B_FALSE; 4267 } 4268 4269 mutex_enter(&tcp->tcp_eager_lock); 4270 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4271 /* Cleanup for listener */ 4272 tcp_eager_cleanup(tcp, 0); 4273 tcp->tcp_wait_for_eagers = 1; 4274 } 4275 mutex_exit(&tcp->tcp_eager_lock); 4276 4277 connp->conn_mdt_ok = B_FALSE; 4278 tcp->tcp_mdt = B_FALSE; 4279 4280 connp->conn_lso_ok = B_FALSE; 4281 tcp->tcp_lso = B_FALSE; 4282 4283 msg = NULL; 4284 switch (tcp->tcp_state) { 4285 case TCPS_CLOSED: 4286 case TCPS_IDLE: 4287 case TCPS_BOUND: 4288 case TCPS_LISTEN: 4289 break; 4290 case TCPS_SYN_SENT: 4291 msg = "tcp_close, during connect"; 4292 break; 4293 case TCPS_SYN_RCVD: 4294 /* 4295 * Close during the connect 3-way handshake 4296 * but here there may or may not be pending data 4297 * already on queue. Process almost same as in 4298 * the ESTABLISHED state. 4299 */ 4300 /* FALLTHRU */ 4301 default: 4302 if (tcp->tcp_sodirect != NULL) { 4303 /* Ok, no more sodirect */ 4304 tcp->tcp_sodirect = NULL; 4305 } 4306 4307 if (tcp->tcp_fused) 4308 tcp_unfuse(tcp); 4309 4310 /* 4311 * If SO_LINGER has set a zero linger time, abort the 4312 * connection with a reset. 4313 */ 4314 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4315 msg = "tcp_close, zero lingertime"; 4316 break; 4317 } 4318 4319 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4320 /* 4321 * Abort connection if there is unread data queued. 4322 */ 4323 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4324 msg = "tcp_close, unread data"; 4325 break; 4326 } 4327 /* 4328 * tcp_hard_bound is now cleared thus all packets go through 4329 * tcp_lookup. This fact is used by tcp_detach below. 4330 * 4331 * We have done a qwait() above which could have possibly 4332 * drained more messages in turn causing transition to a 4333 * different state. Check whether we have to do the rest 4334 * of the processing or not. 4335 */ 4336 if (tcp->tcp_state <= TCPS_LISTEN) 4337 break; 4338 4339 /* 4340 * Transmit the FIN before detaching the tcp_t. 4341 * After tcp_detach returns this queue/perimeter 4342 * no longer owns the tcp_t thus others can modify it. 4343 */ 4344 (void) tcp_xmit_end(tcp); 4345 4346 /* 4347 * If lingering on close then wait until the fin is acked, 4348 * the SO_LINGER time passes, or a reset is sent/received. 4349 */ 4350 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4351 !(tcp->tcp_fin_acked) && 4352 tcp->tcp_state >= TCPS_ESTABLISHED) { 4353 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4354 tcp->tcp_client_errno = EWOULDBLOCK; 4355 } else if (tcp->tcp_client_errno == 0) { 4356 4357 ASSERT(tcp->tcp_linger_tid == 0); 4358 4359 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4360 tcp_close_linger_timeout, 4361 tcp->tcp_lingertime * hz); 4362 4363 /* tcp_close_linger_timeout will finish close */ 4364 if (tcp->tcp_linger_tid == 0) 4365 tcp->tcp_client_errno = ENOSR; 4366 else 4367 return; 4368 } 4369 4370 /* 4371 * Check if we need to detach or just close 4372 * the instance. 4373 */ 4374 if (tcp->tcp_state <= TCPS_LISTEN) 4375 break; 4376 } 4377 4378 /* 4379 * Make sure that no other thread will access the tcp_rq of 4380 * this instance (through lookups etc.) as tcp_rq will go 4381 * away shortly. 4382 */ 4383 tcp_acceptor_hash_remove(tcp); 4384 4385 mutex_enter(&tcp->tcp_non_sq_lock); 4386 if (tcp->tcp_flow_stopped) { 4387 tcp_clrqfull(tcp); 4388 } 4389 mutex_exit(&tcp->tcp_non_sq_lock); 4390 4391 if (tcp->tcp_timer_tid != 0) { 4392 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4393 tcp->tcp_timer_tid = 0; 4394 } 4395 /* 4396 * Need to cancel those timers which will not be used when 4397 * TCP is detached. This has to be done before the tcp_wq 4398 * is set to the global queue. 4399 */ 4400 tcp_timers_stop(tcp); 4401 4402 tcp->tcp_detached = B_TRUE; 4403 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4404 tcp_time_wait_append(tcp); 4405 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4406 ASSERT(connp->conn_ref >= 3); 4407 goto finish; 4408 } 4409 4410 /* 4411 * If delta is zero the timer event wasn't executed and was 4412 * successfully canceled. In this case we need to restart it 4413 * with the minimal delta possible. 4414 */ 4415 if (delta >= 0) 4416 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4417 delta ? delta : 1); 4418 4419 ASSERT(connp->conn_ref >= 3); 4420 goto finish; 4421 } 4422 4423 /* Detach did not complete. Still need to remove q from stream. */ 4424 if (msg) { 4425 if (tcp->tcp_state == TCPS_ESTABLISHED || 4426 tcp->tcp_state == TCPS_CLOSE_WAIT) 4427 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4428 if (tcp->tcp_state == TCPS_SYN_SENT || 4429 tcp->tcp_state == TCPS_SYN_RCVD) 4430 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4431 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4432 } 4433 4434 tcp_closei_local(tcp); 4435 CONN_DEC_REF(connp); 4436 ASSERT(connp->conn_ref >= 2); 4437 4438 finish: 4439 /* 4440 * Although packets are always processed on the correct 4441 * tcp's perimeter and access is serialized via squeue's, 4442 * IP still needs a queue when sending packets in time_wait 4443 * state so use WR(tcps_g_q) till ip_output() can be 4444 * changed to deal with just connp. For read side, we 4445 * could have set tcp_rq to NULL but there are some cases 4446 * in tcp_rput_data() from early days of this code which 4447 * do a putnext without checking if tcp is closed. Those 4448 * need to be identified before both tcp_rq and tcp_wq 4449 * can be set to NULL and tcps_g_q can disappear forever. 4450 */ 4451 mutex_enter(&tcp->tcp_closelock); 4452 /* 4453 * Don't change the queues in the case of a listener that has 4454 * eagers in its q or q0. It could surprise the eagers. 4455 * Instead wait for the eagers outside the squeue. 4456 */ 4457 if (!tcp->tcp_wait_for_eagers) { 4458 tcp->tcp_detached = B_TRUE; 4459 /* 4460 * When default queue is closing we set tcps_g_q to NULL 4461 * after the close is done. 4462 */ 4463 ASSERT(tcps->tcps_g_q != NULL); 4464 tcp->tcp_rq = tcps->tcps_g_q; 4465 tcp->tcp_wq = WR(tcps->tcps_g_q); 4466 } 4467 4468 /* Signal tcp_close() to finish closing. */ 4469 tcp->tcp_closed = 1; 4470 cv_signal(&tcp->tcp_closecv); 4471 mutex_exit(&tcp->tcp_closelock); 4472 } 4473 4474 4475 /* 4476 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4477 * Some stream heads get upset if they see these later on as anything but NULL. 4478 */ 4479 static void 4480 tcp_close_mpp(mblk_t **mpp) 4481 { 4482 mblk_t *mp; 4483 4484 if ((mp = *mpp) != NULL) { 4485 do { 4486 mp->b_next = NULL; 4487 mp->b_prev = NULL; 4488 } while ((mp = mp->b_cont) != NULL); 4489 4490 mp = *mpp; 4491 *mpp = NULL; 4492 freemsg(mp); 4493 } 4494 } 4495 4496 /* Do detached close. */ 4497 static void 4498 tcp_close_detached(tcp_t *tcp) 4499 { 4500 if (tcp->tcp_fused) 4501 tcp_unfuse(tcp); 4502 4503 /* 4504 * Clustering code serializes TCP disconnect callbacks and 4505 * cluster tcp list walks by blocking a TCP disconnect callback 4506 * if a cluster tcp list walk is in progress. This ensures 4507 * accurate accounting of TCPs in the cluster code even though 4508 * the TCP list walk itself is not atomic. 4509 */ 4510 tcp_closei_local(tcp); 4511 CONN_DEC_REF(tcp->tcp_connp); 4512 } 4513 4514 /* 4515 * Stop all TCP timers, and free the timer mblks if requested. 4516 */ 4517 void 4518 tcp_timers_stop(tcp_t *tcp) 4519 { 4520 if (tcp->tcp_timer_tid != 0) { 4521 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4522 tcp->tcp_timer_tid = 0; 4523 } 4524 if (tcp->tcp_ka_tid != 0) { 4525 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4526 tcp->tcp_ka_tid = 0; 4527 } 4528 if (tcp->tcp_ack_tid != 0) { 4529 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4530 tcp->tcp_ack_tid = 0; 4531 } 4532 if (tcp->tcp_push_tid != 0) { 4533 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4534 tcp->tcp_push_tid = 0; 4535 } 4536 } 4537 4538 /* 4539 * The tcp_t is going away. Remove it from all lists and set it 4540 * to TCPS_CLOSED. The freeing up of memory is deferred until 4541 * tcp_inactive. This is needed since a thread in tcp_rput might have 4542 * done a CONN_INC_REF on this structure before it was removed from the 4543 * hashes. 4544 */ 4545 static void 4546 tcp_closei_local(tcp_t *tcp) 4547 { 4548 ire_t *ire; 4549 conn_t *connp = tcp->tcp_connp; 4550 tcp_stack_t *tcps = tcp->tcp_tcps; 4551 4552 if (!TCP_IS_SOCKET(tcp)) 4553 tcp_acceptor_hash_remove(tcp); 4554 4555 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4556 tcp->tcp_ibsegs = 0; 4557 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4558 tcp->tcp_obsegs = 0; 4559 4560 /* 4561 * If we are an eager connection hanging off a listener that 4562 * hasn't formally accepted the connection yet, get off his 4563 * list and blow off any data that we have accumulated. 4564 */ 4565 if (tcp->tcp_listener != NULL) { 4566 tcp_t *listener = tcp->tcp_listener; 4567 mutex_enter(&listener->tcp_eager_lock); 4568 /* 4569 * tcp_tconnind_started == B_TRUE means that the 4570 * conn_ind has already gone to listener. At 4571 * this point, eager will be closed but we 4572 * leave it in listeners eager list so that 4573 * if listener decides to close without doing 4574 * accept, we can clean this up. In tcp_wput_accept 4575 * we take care of the case of accept on closed 4576 * eager. 4577 */ 4578 if (!tcp->tcp_tconnind_started) { 4579 tcp_eager_unlink(tcp); 4580 mutex_exit(&listener->tcp_eager_lock); 4581 /* 4582 * We don't want to have any pointers to the 4583 * listener queue, after we have released our 4584 * reference on the listener 4585 */ 4586 ASSERT(tcps->tcps_g_q != NULL); 4587 tcp->tcp_rq = tcps->tcps_g_q; 4588 tcp->tcp_wq = WR(tcps->tcps_g_q); 4589 CONN_DEC_REF(listener->tcp_connp); 4590 } else { 4591 mutex_exit(&listener->tcp_eager_lock); 4592 } 4593 } 4594 4595 /* Stop all the timers */ 4596 tcp_timers_stop(tcp); 4597 4598 if (tcp->tcp_state == TCPS_LISTEN) { 4599 if (tcp->tcp_ip_addr_cache) { 4600 kmem_free((void *)tcp->tcp_ip_addr_cache, 4601 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4602 tcp->tcp_ip_addr_cache = NULL; 4603 } 4604 } 4605 mutex_enter(&tcp->tcp_non_sq_lock); 4606 if (tcp->tcp_flow_stopped) 4607 tcp_clrqfull(tcp); 4608 mutex_exit(&tcp->tcp_non_sq_lock); 4609 4610 tcp_bind_hash_remove(tcp); 4611 /* 4612 * If the tcp_time_wait_collector (which runs outside the squeue) 4613 * is trying to remove this tcp from the time wait list, we will 4614 * block in tcp_time_wait_remove while trying to acquire the 4615 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4616 * requires the ipcl_hash_remove to be ordered after the 4617 * tcp_time_wait_remove for the refcnt checks to work correctly. 4618 */ 4619 if (tcp->tcp_state == TCPS_TIME_WAIT) 4620 (void) tcp_time_wait_remove(tcp, NULL); 4621 CL_INET_DISCONNECT(tcp); 4622 ipcl_hash_remove(connp); 4623 4624 /* 4625 * Delete the cached ire in conn_ire_cache and also mark 4626 * the conn as CONDEMNED 4627 */ 4628 mutex_enter(&connp->conn_lock); 4629 connp->conn_state_flags |= CONN_CONDEMNED; 4630 ire = connp->conn_ire_cache; 4631 connp->conn_ire_cache = NULL; 4632 mutex_exit(&connp->conn_lock); 4633 if (ire != NULL) 4634 IRE_REFRELE_NOTR(ire); 4635 4636 /* Need to cleanup any pending ioctls */ 4637 ASSERT(tcp->tcp_time_wait_next == NULL); 4638 ASSERT(tcp->tcp_time_wait_prev == NULL); 4639 ASSERT(tcp->tcp_time_wait_expire == 0); 4640 tcp->tcp_state = TCPS_CLOSED; 4641 4642 /* Release any SSL context */ 4643 if (tcp->tcp_kssl_ent != NULL) { 4644 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4645 tcp->tcp_kssl_ent = NULL; 4646 } 4647 if (tcp->tcp_kssl_ctx != NULL) { 4648 kssl_release_ctx(tcp->tcp_kssl_ctx); 4649 tcp->tcp_kssl_ctx = NULL; 4650 } 4651 tcp->tcp_kssl_pending = B_FALSE; 4652 4653 tcp_ipsec_cleanup(tcp); 4654 } 4655 4656 /* 4657 * tcp is dying (called from ipcl_conn_destroy and error cases). 4658 * Free the tcp_t in either case. 4659 */ 4660 void 4661 tcp_free(tcp_t *tcp) 4662 { 4663 mblk_t *mp; 4664 ip6_pkt_t *ipp; 4665 4666 ASSERT(tcp != NULL); 4667 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4668 4669 tcp->tcp_rq = NULL; 4670 tcp->tcp_wq = NULL; 4671 4672 tcp_close_mpp(&tcp->tcp_xmit_head); 4673 tcp_close_mpp(&tcp->tcp_reass_head); 4674 if (tcp->tcp_rcv_list != NULL) { 4675 /* Free b_next chain */ 4676 tcp_close_mpp(&tcp->tcp_rcv_list); 4677 } 4678 if ((mp = tcp->tcp_urp_mp) != NULL) { 4679 freemsg(mp); 4680 } 4681 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4682 freemsg(mp); 4683 } 4684 4685 if (tcp->tcp_fused_sigurg_mp != NULL) { 4686 freeb(tcp->tcp_fused_sigurg_mp); 4687 tcp->tcp_fused_sigurg_mp = NULL; 4688 } 4689 4690 if (tcp->tcp_sack_info != NULL) { 4691 if (tcp->tcp_notsack_list != NULL) { 4692 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4693 } 4694 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4695 } 4696 4697 if (tcp->tcp_hopopts != NULL) { 4698 mi_free(tcp->tcp_hopopts); 4699 tcp->tcp_hopopts = NULL; 4700 tcp->tcp_hopoptslen = 0; 4701 } 4702 ASSERT(tcp->tcp_hopoptslen == 0); 4703 if (tcp->tcp_dstopts != NULL) { 4704 mi_free(tcp->tcp_dstopts); 4705 tcp->tcp_dstopts = NULL; 4706 tcp->tcp_dstoptslen = 0; 4707 } 4708 ASSERT(tcp->tcp_dstoptslen == 0); 4709 if (tcp->tcp_rtdstopts != NULL) { 4710 mi_free(tcp->tcp_rtdstopts); 4711 tcp->tcp_rtdstopts = NULL; 4712 tcp->tcp_rtdstoptslen = 0; 4713 } 4714 ASSERT(tcp->tcp_rtdstoptslen == 0); 4715 if (tcp->tcp_rthdr != NULL) { 4716 mi_free(tcp->tcp_rthdr); 4717 tcp->tcp_rthdr = NULL; 4718 tcp->tcp_rthdrlen = 0; 4719 } 4720 ASSERT(tcp->tcp_rthdrlen == 0); 4721 4722 ipp = &tcp->tcp_sticky_ipp; 4723 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4724 IPPF_RTHDR)) 4725 ip6_pkt_free(ipp); 4726 4727 /* 4728 * Free memory associated with the tcp/ip header template. 4729 */ 4730 4731 if (tcp->tcp_iphc != NULL) 4732 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4733 4734 /* 4735 * Following is really a blowing away a union. 4736 * It happens to have exactly two members of identical size 4737 * the following code is enough. 4738 */ 4739 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4740 4741 if (tcp->tcp_tracebuf != NULL) { 4742 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4743 tcp->tcp_tracebuf = NULL; 4744 } 4745 } 4746 4747 4748 /* 4749 * Put a connection confirmation message upstream built from the 4750 * address information within 'iph' and 'tcph'. Report our success or failure. 4751 */ 4752 static boolean_t 4753 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4754 mblk_t **defermp) 4755 { 4756 sin_t sin; 4757 sin6_t sin6; 4758 mblk_t *mp; 4759 char *optp = NULL; 4760 int optlen = 0; 4761 cred_t *cr; 4762 4763 if (defermp != NULL) 4764 *defermp = NULL; 4765 4766 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4767 /* 4768 * Return in T_CONN_CON results of option negotiation through 4769 * the T_CONN_REQ. Note: If there is an real end-to-end option 4770 * negotiation, then what is received from remote end needs 4771 * to be taken into account but there is no such thing (yet?) 4772 * in our TCP/IP. 4773 * Note: We do not use mi_offset_param() here as 4774 * tcp_opts_conn_req contents do not directly come from 4775 * an application and are either generated in kernel or 4776 * from user input that was already verified. 4777 */ 4778 mp = tcp->tcp_conn.tcp_opts_conn_req; 4779 optp = (char *)(mp->b_rptr + 4780 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4781 optlen = (int) 4782 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4783 } 4784 4785 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4786 ipha_t *ipha = (ipha_t *)iphdr; 4787 4788 /* packet is IPv4 */ 4789 if (tcp->tcp_family == AF_INET) { 4790 sin = sin_null; 4791 sin.sin_addr.s_addr = ipha->ipha_src; 4792 sin.sin_port = *(uint16_t *)tcph->th_lport; 4793 sin.sin_family = AF_INET; 4794 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4795 (int)sizeof (sin_t), optp, optlen); 4796 } else { 4797 sin6 = sin6_null; 4798 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4799 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4800 sin6.sin6_family = AF_INET6; 4801 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4802 (int)sizeof (sin6_t), optp, optlen); 4803 4804 } 4805 } else { 4806 ip6_t *ip6h = (ip6_t *)iphdr; 4807 4808 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4809 ASSERT(tcp->tcp_family == AF_INET6); 4810 sin6 = sin6_null; 4811 sin6.sin6_addr = ip6h->ip6_src; 4812 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4813 sin6.sin6_family = AF_INET6; 4814 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4815 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4816 (int)sizeof (sin6_t), optp, optlen); 4817 } 4818 4819 if (!mp) 4820 return (B_FALSE); 4821 4822 if ((cr = DB_CRED(idmp)) != NULL) { 4823 mblk_setcred(mp, cr); 4824 DB_CPID(mp) = DB_CPID(idmp); 4825 } 4826 4827 if (defermp == NULL) 4828 putnext(tcp->tcp_rq, mp); 4829 else 4830 *defermp = mp; 4831 4832 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4833 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4834 return (B_TRUE); 4835 } 4836 4837 /* 4838 * Defense for the SYN attack - 4839 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4840 * one from the list of droppable eagers. This list is a subset of q0. 4841 * see comments before the definition of MAKE_DROPPABLE(). 4842 * 2. Don't drop a SYN request before its first timeout. This gives every 4843 * request at least til the first timeout to complete its 3-way handshake. 4844 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4845 * requests currently on the queue that has timed out. This will be used 4846 * as an indicator of whether an attack is under way, so that appropriate 4847 * actions can be taken. (It's incremented in tcp_timer() and decremented 4848 * either when eager goes into ESTABLISHED, or gets freed up.) 4849 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4850 * # of timeout drops back to <= q0len/32 => SYN alert off 4851 */ 4852 static boolean_t 4853 tcp_drop_q0(tcp_t *tcp) 4854 { 4855 tcp_t *eager; 4856 mblk_t *mp; 4857 tcp_stack_t *tcps = tcp->tcp_tcps; 4858 4859 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4860 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4861 4862 /* Pick oldest eager from the list of droppable eagers */ 4863 eager = tcp->tcp_eager_prev_drop_q0; 4864 4865 /* If list is empty. return B_FALSE */ 4866 if (eager == tcp) { 4867 return (B_FALSE); 4868 } 4869 4870 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4871 if ((mp = allocb(0, BPRI_HI)) == NULL) 4872 return (B_FALSE); 4873 4874 /* 4875 * Take this eager out from the list of droppable eagers since we are 4876 * going to drop it. 4877 */ 4878 MAKE_UNDROPPABLE(eager); 4879 4880 if (tcp->tcp_debug) { 4881 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4882 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4883 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4884 tcp->tcp_conn_req_cnt_q0, 4885 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4886 } 4887 4888 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4889 4890 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4891 CONN_INC_REF(eager->tcp_connp); 4892 4893 /* Mark the IRE created for this SYN request temporary */ 4894 tcp_ip_ire_mark_advice(eager); 4895 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4896 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4897 4898 return (B_TRUE); 4899 } 4900 4901 int 4902 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4903 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4904 { 4905 tcp_t *ltcp = lconnp->conn_tcp; 4906 tcp_t *tcp = connp->conn_tcp; 4907 mblk_t *tpi_mp; 4908 ipha_t *ipha; 4909 ip6_t *ip6h; 4910 sin6_t sin6; 4911 in6_addr_t v6dst; 4912 int err; 4913 int ifindex = 0; 4914 cred_t *cr; 4915 tcp_stack_t *tcps = tcp->tcp_tcps; 4916 4917 if (ipvers == IPV4_VERSION) { 4918 ipha = (ipha_t *)mp->b_rptr; 4919 4920 connp->conn_send = ip_output; 4921 connp->conn_recv = tcp_input; 4922 4923 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4924 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4925 4926 sin6 = sin6_null; 4927 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4928 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4929 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4930 sin6.sin6_family = AF_INET6; 4931 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4932 lconnp->conn_zoneid, tcps->tcps_netstack); 4933 if (tcp->tcp_recvdstaddr) { 4934 sin6_t sin6d; 4935 4936 sin6d = sin6_null; 4937 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4938 &sin6d.sin6_addr); 4939 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4940 sin6d.sin6_family = AF_INET; 4941 tpi_mp = mi_tpi_extconn_ind(NULL, 4942 (char *)&sin6d, sizeof (sin6_t), 4943 (char *)&tcp, 4944 (t_scalar_t)sizeof (intptr_t), 4945 (char *)&sin6d, sizeof (sin6_t), 4946 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4947 } else { 4948 tpi_mp = mi_tpi_conn_ind(NULL, 4949 (char *)&sin6, sizeof (sin6_t), 4950 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4951 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4952 } 4953 } else { 4954 ip6h = (ip6_t *)mp->b_rptr; 4955 4956 connp->conn_send = ip_output_v6; 4957 connp->conn_recv = tcp_input; 4958 4959 connp->conn_srcv6 = ip6h->ip6_dst; 4960 connp->conn_remv6 = ip6h->ip6_src; 4961 4962 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4963 ifindex = (int)DB_CKSUMSTUFF(mp); 4964 DB_CKSUMSTUFF(mp) = 0; 4965 4966 sin6 = sin6_null; 4967 sin6.sin6_addr = ip6h->ip6_src; 4968 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4969 sin6.sin6_family = AF_INET6; 4970 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4971 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4972 lconnp->conn_zoneid, tcps->tcps_netstack); 4973 4974 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4975 /* Pass up the scope_id of remote addr */ 4976 sin6.sin6_scope_id = ifindex; 4977 } else { 4978 sin6.sin6_scope_id = 0; 4979 } 4980 if (tcp->tcp_recvdstaddr) { 4981 sin6_t sin6d; 4982 4983 sin6d = sin6_null; 4984 sin6.sin6_addr = ip6h->ip6_dst; 4985 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4986 sin6d.sin6_family = AF_INET; 4987 tpi_mp = mi_tpi_extconn_ind(NULL, 4988 (char *)&sin6d, sizeof (sin6_t), 4989 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4990 (char *)&sin6d, sizeof (sin6_t), 4991 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4992 } else { 4993 tpi_mp = mi_tpi_conn_ind(NULL, 4994 (char *)&sin6, sizeof (sin6_t), 4995 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4996 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4997 } 4998 } 4999 5000 if (tpi_mp == NULL) 5001 return (ENOMEM); 5002 5003 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5004 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5005 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 5006 connp->conn_fully_bound = B_FALSE; 5007 5008 if (tcps->tcps_trace) 5009 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5010 5011 /* Inherit information from the "parent" */ 5012 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5013 tcp->tcp_family = ltcp->tcp_family; 5014 tcp->tcp_wq = ltcp->tcp_wq; 5015 tcp->tcp_rq = ltcp->tcp_rq; 5016 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 5017 tcp->tcp_detached = B_TRUE; 5018 if ((err = tcp_init_values(tcp)) != 0) { 5019 freemsg(tpi_mp); 5020 return (err); 5021 } 5022 5023 if (ipvers == IPV4_VERSION) { 5024 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 5025 freemsg(tpi_mp); 5026 return (err); 5027 } 5028 ASSERT(tcp->tcp_ipha != NULL); 5029 } else { 5030 /* ifindex must be already set */ 5031 ASSERT(ifindex != 0); 5032 5033 if (ltcp->tcp_bound_if != 0) { 5034 /* 5035 * Set newtcp's bound_if equal to 5036 * listener's value. If ifindex is 5037 * not the same as ltcp->tcp_bound_if, 5038 * it must be a packet for the ipmp group 5039 * of interfaces 5040 */ 5041 tcp->tcp_bound_if = ltcp->tcp_bound_if; 5042 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 5043 tcp->tcp_bound_if = ifindex; 5044 } 5045 5046 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 5047 tcp->tcp_recvifindex = 0; 5048 tcp->tcp_recvhops = 0xffffffffU; 5049 ASSERT(tcp->tcp_ip6h != NULL); 5050 } 5051 5052 tcp->tcp_lport = ltcp->tcp_lport; 5053 5054 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 5055 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 5056 /* 5057 * Listener had options of some sort; eager inherits. 5058 * Free up the eager template and allocate one 5059 * of the right size. 5060 */ 5061 if (tcp->tcp_hdr_grown) { 5062 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 5063 } else { 5064 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5065 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5066 } 5067 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5068 KM_NOSLEEP); 5069 if (tcp->tcp_iphc == NULL) { 5070 tcp->tcp_iphc_len = 0; 5071 freemsg(tpi_mp); 5072 return (ENOMEM); 5073 } 5074 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5075 tcp->tcp_hdr_grown = B_TRUE; 5076 } 5077 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5078 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5079 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5080 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5081 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5082 5083 /* 5084 * Copy the IP+TCP header template from listener to eager 5085 */ 5086 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5087 if (tcp->tcp_ipversion == IPV6_VERSION) { 5088 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5089 IPPROTO_RAW) { 5090 tcp->tcp_ip6h = 5091 (ip6_t *)(tcp->tcp_iphc + 5092 sizeof (ip6i_t)); 5093 } else { 5094 tcp->tcp_ip6h = 5095 (ip6_t *)(tcp->tcp_iphc); 5096 } 5097 tcp->tcp_ipha = NULL; 5098 } else { 5099 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5100 tcp->tcp_ip6h = NULL; 5101 } 5102 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5103 tcp->tcp_ip_hdr_len); 5104 } else { 5105 /* 5106 * only valid case when ipversion of listener and 5107 * eager differ is when listener is IPv6 and 5108 * eager is IPv4. 5109 * Eager header template has been initialized to the 5110 * maximum v4 header sizes, which includes space for 5111 * TCP and IP options. 5112 */ 5113 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5114 (tcp->tcp_ipversion == IPV4_VERSION)); 5115 ASSERT(tcp->tcp_iphc_len >= 5116 TCP_MAX_COMBINED_HEADER_LENGTH); 5117 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5118 /* copy IP header fields individually */ 5119 tcp->tcp_ipha->ipha_ttl = 5120 ltcp->tcp_ip6h->ip6_hops; 5121 bcopy(ltcp->tcp_tcph->th_lport, 5122 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5123 } 5124 5125 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5126 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5127 sizeof (in_port_t)); 5128 5129 if (ltcp->tcp_lport == 0) { 5130 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5131 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5132 sizeof (in_port_t)); 5133 } 5134 5135 if (tcp->tcp_ipversion == IPV4_VERSION) { 5136 ASSERT(ipha != NULL); 5137 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5138 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5139 5140 /* Source routing option copyover (reverse it) */ 5141 if (tcps->tcps_rev_src_routes) 5142 tcp_opt_reverse(tcp, ipha); 5143 } else { 5144 ASSERT(ip6h != NULL); 5145 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5146 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5147 } 5148 5149 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5150 ASSERT(!tcp->tcp_tconnind_started); 5151 /* 5152 * If the SYN contains a credential, it's a loopback packet; attach 5153 * the credential to the TPI message. 5154 */ 5155 if ((cr = DB_CRED(idmp)) != NULL) { 5156 mblk_setcred(tpi_mp, cr); 5157 DB_CPID(tpi_mp) = DB_CPID(idmp); 5158 } 5159 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5160 5161 /* Inherit the listener's SSL protection state */ 5162 5163 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5164 kssl_hold_ent(tcp->tcp_kssl_ent); 5165 tcp->tcp_kssl_pending = B_TRUE; 5166 } 5167 5168 return (0); 5169 } 5170 5171 5172 int 5173 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5174 tcph_t *tcph, mblk_t *idmp) 5175 { 5176 tcp_t *ltcp = lconnp->conn_tcp; 5177 tcp_t *tcp = connp->conn_tcp; 5178 sin_t sin; 5179 mblk_t *tpi_mp = NULL; 5180 int err; 5181 cred_t *cr; 5182 tcp_stack_t *tcps = tcp->tcp_tcps; 5183 5184 sin = sin_null; 5185 sin.sin_addr.s_addr = ipha->ipha_src; 5186 sin.sin_port = *(uint16_t *)tcph->th_lport; 5187 sin.sin_family = AF_INET; 5188 if (ltcp->tcp_recvdstaddr) { 5189 sin_t sind; 5190 5191 sind = sin_null; 5192 sind.sin_addr.s_addr = ipha->ipha_dst; 5193 sind.sin_port = *(uint16_t *)tcph->th_fport; 5194 sind.sin_family = AF_INET; 5195 tpi_mp = mi_tpi_extconn_ind(NULL, 5196 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5197 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5198 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5199 } else { 5200 tpi_mp = mi_tpi_conn_ind(NULL, 5201 (char *)&sin, sizeof (sin_t), 5202 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5203 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5204 } 5205 5206 if (tpi_mp == NULL) { 5207 return (ENOMEM); 5208 } 5209 5210 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5211 connp->conn_send = ip_output; 5212 connp->conn_recv = tcp_input; 5213 connp->conn_fully_bound = B_FALSE; 5214 5215 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5216 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5217 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5218 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5219 5220 if (tcps->tcps_trace) { 5221 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5222 } 5223 5224 /* Inherit information from the "parent" */ 5225 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5226 tcp->tcp_family = ltcp->tcp_family; 5227 tcp->tcp_wq = ltcp->tcp_wq; 5228 tcp->tcp_rq = ltcp->tcp_rq; 5229 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5230 tcp->tcp_detached = B_TRUE; 5231 if ((err = tcp_init_values(tcp)) != 0) { 5232 freemsg(tpi_mp); 5233 return (err); 5234 } 5235 5236 /* 5237 * Let's make sure that eager tcp template has enough space to 5238 * copy IPv4 listener's tcp template. Since the conn_t structure is 5239 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5240 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5241 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5242 * extension headers or with ip6i_t struct). Note that bcopy() below 5243 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5244 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5245 */ 5246 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5247 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5248 5249 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5250 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5251 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5252 tcp->tcp_ttl = ltcp->tcp_ttl; 5253 tcp->tcp_tos = ltcp->tcp_tos; 5254 5255 /* Copy the IP+TCP header template from listener to eager */ 5256 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5257 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5258 tcp->tcp_ip6h = NULL; 5259 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5260 tcp->tcp_ip_hdr_len); 5261 5262 /* Initialize the IP addresses and Ports */ 5263 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5264 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5265 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5266 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5267 5268 /* Source routing option copyover (reverse it) */ 5269 if (tcps->tcps_rev_src_routes) 5270 tcp_opt_reverse(tcp, ipha); 5271 5272 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5273 ASSERT(!tcp->tcp_tconnind_started); 5274 5275 /* 5276 * If the SYN contains a credential, it's a loopback packet; attach 5277 * the credential to the TPI message. 5278 */ 5279 if ((cr = DB_CRED(idmp)) != NULL) { 5280 mblk_setcred(tpi_mp, cr); 5281 DB_CPID(tpi_mp) = DB_CPID(idmp); 5282 } 5283 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5284 5285 /* Inherit the listener's SSL protection state */ 5286 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5287 kssl_hold_ent(tcp->tcp_kssl_ent); 5288 tcp->tcp_kssl_pending = B_TRUE; 5289 } 5290 5291 return (0); 5292 } 5293 5294 /* 5295 * sets up conn for ipsec. 5296 * if the first mblk is M_CTL it is consumed and mpp is updated. 5297 * in case of error mpp is freed. 5298 */ 5299 conn_t * 5300 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5301 { 5302 conn_t *connp = tcp->tcp_connp; 5303 conn_t *econnp; 5304 squeue_t *new_sqp; 5305 mblk_t *first_mp = *mpp; 5306 mblk_t *mp = *mpp; 5307 boolean_t mctl_present = B_FALSE; 5308 uint_t ipvers; 5309 5310 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5311 if (econnp == NULL) { 5312 freemsg(first_mp); 5313 return (NULL); 5314 } 5315 if (DB_TYPE(mp) == M_CTL) { 5316 if (mp->b_cont == NULL || 5317 mp->b_cont->b_datap->db_type != M_DATA) { 5318 freemsg(first_mp); 5319 return (NULL); 5320 } 5321 mp = mp->b_cont; 5322 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5323 freemsg(first_mp); 5324 return (NULL); 5325 } 5326 5327 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5328 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5329 mctl_present = B_TRUE; 5330 } else { 5331 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5332 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5333 } 5334 5335 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5336 DB_CKSUMSTART(mp) = 0; 5337 5338 ASSERT(OK_32PTR(mp->b_rptr)); 5339 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5340 if (ipvers == IPV4_VERSION) { 5341 uint16_t *up; 5342 uint32_t ports; 5343 ipha_t *ipha; 5344 5345 ipha = (ipha_t *)mp->b_rptr; 5346 up = (uint16_t *)((uchar_t *)ipha + 5347 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5348 ports = *(uint32_t *)up; 5349 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5350 ipha->ipha_dst, ipha->ipha_src, ports); 5351 } else { 5352 uint16_t *up; 5353 uint32_t ports; 5354 uint16_t ip_hdr_len; 5355 uint8_t *nexthdrp; 5356 ip6_t *ip6h; 5357 tcph_t *tcph; 5358 5359 ip6h = (ip6_t *)mp->b_rptr; 5360 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5361 ip_hdr_len = IPV6_HDR_LEN; 5362 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5363 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5364 CONN_DEC_REF(econnp); 5365 freemsg(first_mp); 5366 return (NULL); 5367 } 5368 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5369 up = (uint16_t *)tcph->th_lport; 5370 ports = *(uint32_t *)up; 5371 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5372 ip6h->ip6_dst, ip6h->ip6_src, ports); 5373 } 5374 5375 /* 5376 * The caller already ensured that there is a sqp present. 5377 */ 5378 econnp->conn_sqp = new_sqp; 5379 5380 if (connp->conn_policy != NULL) { 5381 ipsec_in_t *ii; 5382 ii = (ipsec_in_t *)(first_mp->b_rptr); 5383 ASSERT(ii->ipsec_in_policy == NULL); 5384 IPPH_REFHOLD(connp->conn_policy); 5385 ii->ipsec_in_policy = connp->conn_policy; 5386 5387 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5388 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5389 CONN_DEC_REF(econnp); 5390 freemsg(first_mp); 5391 return (NULL); 5392 } 5393 } 5394 5395 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5396 CONN_DEC_REF(econnp); 5397 freemsg(first_mp); 5398 return (NULL); 5399 } 5400 5401 /* 5402 * If we know we have some policy, pass the "IPSEC" 5403 * options size TCP uses this adjust the MSS. 5404 */ 5405 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5406 if (mctl_present) { 5407 freeb(first_mp); 5408 *mpp = mp; 5409 } 5410 5411 return (econnp); 5412 } 5413 5414 /* 5415 * tcp_get_conn/tcp_free_conn 5416 * 5417 * tcp_get_conn is used to get a clean tcp connection structure. 5418 * It tries to reuse the connections put on the freelist by the 5419 * time_wait_collector failing which it goes to kmem_cache. This 5420 * way has two benefits compared to just allocating from and 5421 * freeing to kmem_cache. 5422 * 1) The time_wait_collector can free (which includes the cleanup) 5423 * outside the squeue. So when the interrupt comes, we have a clean 5424 * connection sitting in the freelist. Obviously, this buys us 5425 * performance. 5426 * 5427 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5428 * has multiple disadvantages - tying up the squeue during alloc, and the 5429 * fact that IPSec policy initialization has to happen here which 5430 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5431 * But allocating the conn/tcp in IP land is also not the best since 5432 * we can't check the 'q' and 'q0' which are protected by squeue and 5433 * blindly allocate memory which might have to be freed here if we are 5434 * not allowed to accept the connection. By using the freelist and 5435 * putting the conn/tcp back in freelist, we don't pay a penalty for 5436 * allocating memory without checking 'q/q0' and freeing it if we can't 5437 * accept the connection. 5438 * 5439 * Care should be taken to put the conn back in the same squeue's freelist 5440 * from which it was allocated. Best results are obtained if conn is 5441 * allocated from listener's squeue and freed to the same. Time wait 5442 * collector will free up the freelist is the connection ends up sitting 5443 * there for too long. 5444 */ 5445 void * 5446 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5447 { 5448 tcp_t *tcp = NULL; 5449 conn_t *connp = NULL; 5450 squeue_t *sqp = (squeue_t *)arg; 5451 tcp_squeue_priv_t *tcp_time_wait; 5452 netstack_t *ns; 5453 5454 tcp_time_wait = 5455 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5456 5457 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5458 tcp = tcp_time_wait->tcp_free_list; 5459 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5460 if (tcp != NULL) { 5461 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5462 tcp_time_wait->tcp_free_list_cnt--; 5463 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5464 tcp->tcp_time_wait_next = NULL; 5465 connp = tcp->tcp_connp; 5466 connp->conn_flags |= IPCL_REUSED; 5467 5468 ASSERT(tcp->tcp_tcps == NULL); 5469 ASSERT(connp->conn_netstack == NULL); 5470 ns = tcps->tcps_netstack; 5471 netstack_hold(ns); 5472 connp->conn_netstack = ns; 5473 tcp->tcp_tcps = tcps; 5474 TCPS_REFHOLD(tcps); 5475 ipcl_globalhash_insert(connp); 5476 return ((void *)connp); 5477 } 5478 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5479 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5480 tcps->tcps_netstack)) == NULL) 5481 return (NULL); 5482 tcp = connp->conn_tcp; 5483 tcp->tcp_tcps = tcps; 5484 TCPS_REFHOLD(tcps); 5485 return ((void *)connp); 5486 } 5487 5488 /* 5489 * Update the cached label for the given tcp_t. This should be called once per 5490 * connection, and before any packets are sent or tcp_process_options is 5491 * invoked. Returns B_FALSE if the correct label could not be constructed. 5492 */ 5493 static boolean_t 5494 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5495 { 5496 conn_t *connp = tcp->tcp_connp; 5497 5498 if (tcp->tcp_ipversion == IPV4_VERSION) { 5499 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5500 int added; 5501 5502 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5503 connp->conn_mac_exempt, 5504 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5505 return (B_FALSE); 5506 5507 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5508 if (added == -1) 5509 return (B_FALSE); 5510 tcp->tcp_hdr_len += added; 5511 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5512 tcp->tcp_ip_hdr_len += added; 5513 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5514 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5515 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5516 tcp->tcp_hdr_len); 5517 if (added == -1) 5518 return (B_FALSE); 5519 tcp->tcp_hdr_len += added; 5520 tcp->tcp_tcph = (tcph_t *) 5521 ((uchar_t *)tcp->tcp_tcph + added); 5522 tcp->tcp_ip_hdr_len += added; 5523 } 5524 } else { 5525 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5526 5527 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5528 connp->conn_mac_exempt, 5529 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5530 return (B_FALSE); 5531 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5532 &tcp->tcp_label_len, optbuf) != 0) 5533 return (B_FALSE); 5534 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5535 return (B_FALSE); 5536 } 5537 5538 connp->conn_ulp_labeled = 1; 5539 5540 return (B_TRUE); 5541 } 5542 5543 /* BEGIN CSTYLED */ 5544 /* 5545 * 5546 * The sockfs ACCEPT path: 5547 * ======================= 5548 * 5549 * The eager is now established in its own perimeter as soon as SYN is 5550 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5551 * completes the accept processing on the acceptor STREAM. The sending 5552 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5553 * listener but a TLI/XTI listener completes the accept processing 5554 * on the listener perimeter. 5555 * 5556 * Common control flow for 3 way handshake: 5557 * ---------------------------------------- 5558 * 5559 * incoming SYN (listener perimeter) -> tcp_rput_data() 5560 * -> tcp_conn_request() 5561 * 5562 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5563 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5564 * 5565 * Sockfs ACCEPT Path: 5566 * ------------------- 5567 * 5568 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5569 * as STREAM entry point) 5570 * 5571 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5572 * 5573 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5574 * association (we are not behind eager's squeue but sockfs is protecting us 5575 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5576 * is changed to point at tcp_wput(). 5577 * 5578 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5579 * listener (done on listener's perimeter). 5580 * 5581 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5582 * accept. 5583 * 5584 * TLI/XTI client ACCEPT path: 5585 * --------------------------- 5586 * 5587 * soaccept() sends T_CONN_RES on the listener STREAM. 5588 * 5589 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5590 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5591 * 5592 * Locks: 5593 * ====== 5594 * 5595 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5596 * and listeners->tcp_eager_next_q. 5597 * 5598 * Referencing: 5599 * ============ 5600 * 5601 * 1) We start out in tcp_conn_request by eager placing a ref on 5602 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5603 * 5604 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5605 * doing so we place a ref on the eager. This ref is finally dropped at the 5606 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5607 * reference is dropped by the squeue framework. 5608 * 5609 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5610 * 5611 * The reference must be released by the same entity that added the reference 5612 * In the above scheme, the eager is the entity that adds and releases the 5613 * references. Note that tcp_accept_finish executes in the squeue of the eager 5614 * (albeit after it is attached to the acceptor stream). Though 1. executes 5615 * in the listener's squeue, the eager is nascent at this point and the 5616 * reference can be considered to have been added on behalf of the eager. 5617 * 5618 * Eager getting a Reset or listener closing: 5619 * ========================================== 5620 * 5621 * Once the listener and eager are linked, the listener never does the unlink. 5622 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5623 * a message on all eager perimeter. The eager then does the unlink, clears 5624 * any pointers to the listener's queue and drops the reference to the 5625 * listener. The listener waits in tcp_close outside the squeue until its 5626 * refcount has dropped to 1. This ensures that the listener has waited for 5627 * all eagers to clear their association with the listener. 5628 * 5629 * Similarly, if eager decides to go away, it can unlink itself and close. 5630 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5631 * the reference to eager is still valid because of the extra ref we put 5632 * in tcp_send_conn_ind. 5633 * 5634 * Listener can always locate the eager under the protection 5635 * of the listener->tcp_eager_lock, and then do a refhold 5636 * on the eager during the accept processing. 5637 * 5638 * The acceptor stream accesses the eager in the accept processing 5639 * based on the ref placed on eager before sending T_conn_ind. 5640 * The only entity that can negate this refhold is a listener close 5641 * which is mutually exclusive with an active acceptor stream. 5642 * 5643 * Eager's reference on the listener 5644 * =================================== 5645 * 5646 * If the accept happens (even on a closed eager) the eager drops its 5647 * reference on the listener at the start of tcp_accept_finish. If the 5648 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5649 * the reference is dropped in tcp_closei_local. If the listener closes, 5650 * the reference is dropped in tcp_eager_kill. In all cases the reference 5651 * is dropped while executing in the eager's context (squeue). 5652 */ 5653 /* END CSTYLED */ 5654 5655 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5656 5657 /* 5658 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5659 * tcp_rput_data will not see any SYN packets. 5660 */ 5661 /* ARGSUSED */ 5662 void 5663 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5664 { 5665 tcph_t *tcph; 5666 uint32_t seg_seq; 5667 tcp_t *eager; 5668 uint_t ipvers; 5669 ipha_t *ipha; 5670 ip6_t *ip6h; 5671 int err; 5672 conn_t *econnp = NULL; 5673 squeue_t *new_sqp; 5674 mblk_t *mp1; 5675 uint_t ip_hdr_len; 5676 conn_t *connp = (conn_t *)arg; 5677 tcp_t *tcp = connp->conn_tcp; 5678 cred_t *credp; 5679 tcp_stack_t *tcps = tcp->tcp_tcps; 5680 ip_stack_t *ipst; 5681 5682 if (tcp->tcp_state != TCPS_LISTEN) 5683 goto error2; 5684 5685 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5686 5687 mutex_enter(&tcp->tcp_eager_lock); 5688 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5689 mutex_exit(&tcp->tcp_eager_lock); 5690 TCP_STAT(tcps, tcp_listendrop); 5691 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5692 if (tcp->tcp_debug) { 5693 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5694 "tcp_conn_request: listen backlog (max=%d) " 5695 "overflow (%d pending) on %s", 5696 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5697 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5698 } 5699 goto error2; 5700 } 5701 5702 if (tcp->tcp_conn_req_cnt_q0 >= 5703 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5704 /* 5705 * Q0 is full. Drop a pending half-open req from the queue 5706 * to make room for the new SYN req. Also mark the time we 5707 * drop a SYN. 5708 * 5709 * A more aggressive defense against SYN attack will 5710 * be to set the "tcp_syn_defense" flag now. 5711 */ 5712 TCP_STAT(tcps, tcp_listendropq0); 5713 tcp->tcp_last_rcv_lbolt = lbolt64; 5714 if (!tcp_drop_q0(tcp)) { 5715 mutex_exit(&tcp->tcp_eager_lock); 5716 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5717 if (tcp->tcp_debug) { 5718 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5719 "tcp_conn_request: listen half-open queue " 5720 "(max=%d) full (%d pending) on %s", 5721 tcps->tcps_conn_req_max_q0, 5722 tcp->tcp_conn_req_cnt_q0, 5723 tcp_display(tcp, NULL, 5724 DISP_PORT_ONLY)); 5725 } 5726 goto error2; 5727 } 5728 } 5729 mutex_exit(&tcp->tcp_eager_lock); 5730 5731 /* 5732 * IP adds STRUIO_EAGER and ensures that the received packet is 5733 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5734 * link local address. If IPSec is enabled, db_struioflag has 5735 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5736 * otherwise an error case if neither of them is set. 5737 */ 5738 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5739 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5740 DB_CKSUMSTART(mp) = 0; 5741 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5742 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5743 if (econnp == NULL) 5744 goto error2; 5745 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5746 econnp->conn_sqp = new_sqp; 5747 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5748 /* 5749 * mp is updated in tcp_get_ipsec_conn(). 5750 */ 5751 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5752 if (econnp == NULL) { 5753 /* 5754 * mp freed by tcp_get_ipsec_conn. 5755 */ 5756 return; 5757 } 5758 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5759 } else { 5760 goto error2; 5761 } 5762 5763 ASSERT(DB_TYPE(mp) == M_DATA); 5764 5765 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5766 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5767 ASSERT(OK_32PTR(mp->b_rptr)); 5768 if (ipvers == IPV4_VERSION) { 5769 ipha = (ipha_t *)mp->b_rptr; 5770 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5771 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5772 } else { 5773 ip6h = (ip6_t *)mp->b_rptr; 5774 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5775 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5776 } 5777 5778 if (tcp->tcp_family == AF_INET) { 5779 ASSERT(ipvers == IPV4_VERSION); 5780 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5781 } else { 5782 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5783 } 5784 5785 if (err) 5786 goto error3; 5787 5788 eager = econnp->conn_tcp; 5789 5790 /* Inherit various TCP parameters from the listener */ 5791 eager->tcp_naglim = tcp->tcp_naglim; 5792 eager->tcp_first_timer_threshold = 5793 tcp->tcp_first_timer_threshold; 5794 eager->tcp_second_timer_threshold = 5795 tcp->tcp_second_timer_threshold; 5796 5797 eager->tcp_first_ctimer_threshold = 5798 tcp->tcp_first_ctimer_threshold; 5799 eager->tcp_second_ctimer_threshold = 5800 tcp->tcp_second_ctimer_threshold; 5801 5802 /* 5803 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5804 * If it does not, the eager's receive window will be set to the 5805 * listener's receive window later in this function. 5806 */ 5807 eager->tcp_rwnd = 0; 5808 5809 /* 5810 * Inherit listener's tcp_init_cwnd. Need to do this before 5811 * calling tcp_process_options() where tcp_mss_set() is called 5812 * to set the initial cwnd. 5813 */ 5814 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5815 5816 /* 5817 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5818 * zone id before the accept is completed in tcp_wput_accept(). 5819 */ 5820 econnp->conn_zoneid = connp->conn_zoneid; 5821 econnp->conn_allzones = connp->conn_allzones; 5822 5823 /* Copy nexthop information from listener to eager */ 5824 if (connp->conn_nexthop_set) { 5825 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5826 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5827 } 5828 5829 /* 5830 * TSOL: tsol_input_proc() needs the eager's cred before the 5831 * eager is accepted 5832 */ 5833 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5834 crhold(credp); 5835 5836 /* 5837 * If the caller has the process-wide flag set, then default to MAC 5838 * exempt mode. This allows read-down to unlabeled hosts. 5839 */ 5840 if (getpflags(NET_MAC_AWARE, credp) != 0) 5841 econnp->conn_mac_exempt = B_TRUE; 5842 5843 if (is_system_labeled()) { 5844 cred_t *cr; 5845 5846 if (connp->conn_mlp_type != mlptSingle) { 5847 cr = econnp->conn_peercred = DB_CRED(mp); 5848 if (cr != NULL) 5849 crhold(cr); 5850 else 5851 cr = econnp->conn_cred; 5852 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5853 econnp, cred_t *, cr) 5854 } else { 5855 cr = econnp->conn_cred; 5856 DTRACE_PROBE2(syn_accept, conn_t *, 5857 econnp, cred_t *, cr) 5858 } 5859 5860 if (!tcp_update_label(eager, cr)) { 5861 DTRACE_PROBE3( 5862 tx__ip__log__error__connrequest__tcp, 5863 char *, "eager connp(1) label on SYN mp(2) failed", 5864 conn_t *, econnp, mblk_t *, mp); 5865 goto error3; 5866 } 5867 } 5868 5869 eager->tcp_hard_binding = B_TRUE; 5870 5871 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5872 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5873 5874 CL_INET_CONNECT(eager); 5875 5876 /* 5877 * No need to check for multicast destination since ip will only pass 5878 * up multicasts to those that have expressed interest 5879 * TODO: what about rejecting broadcasts? 5880 * Also check that source is not a multicast or broadcast address. 5881 */ 5882 eager->tcp_state = TCPS_SYN_RCVD; 5883 5884 5885 /* 5886 * There should be no ire in the mp as we are being called after 5887 * receiving the SYN. 5888 */ 5889 ASSERT(tcp_ire_mp(mp) == NULL); 5890 5891 /* 5892 * Adapt our mss, ttl, ... according to information provided in IRE. 5893 */ 5894 5895 if (tcp_adapt_ire(eager, NULL) == 0) { 5896 /* Undo the bind_hash_insert */ 5897 tcp_bind_hash_remove(eager); 5898 goto error3; 5899 } 5900 5901 /* Process all TCP options. */ 5902 tcp_process_options(eager, tcph); 5903 5904 /* Is the other end ECN capable? */ 5905 if (tcps->tcps_ecn_permitted >= 1 && 5906 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5907 eager->tcp_ecn_ok = B_TRUE; 5908 } 5909 5910 /* 5911 * listener->tcp_rq->q_hiwat should be the default window size or a 5912 * window size changed via SO_RCVBUF option. First round up the 5913 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5914 * scale option value if needed. Call tcp_rwnd_set() to finish the 5915 * setting. 5916 * 5917 * Note if there is a rpipe metric associated with the remote host, 5918 * we should not inherit receive window size from listener. 5919 */ 5920 eager->tcp_rwnd = MSS_ROUNDUP( 5921 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5922 eager->tcp_rwnd), eager->tcp_mss); 5923 if (eager->tcp_snd_ws_ok) 5924 tcp_set_ws_value(eager); 5925 /* 5926 * Note that this is the only place tcp_rwnd_set() is called for 5927 * accepting a connection. We need to call it here instead of 5928 * after the 3-way handshake because we need to tell the other 5929 * side our rwnd in the SYN-ACK segment. 5930 */ 5931 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5932 5933 /* 5934 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5935 * via soaccept()->soinheritoptions() which essentially applies 5936 * all the listener options to the new STREAM. The options that we 5937 * need to take care of are: 5938 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5939 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5940 * SO_SNDBUF, SO_RCVBUF. 5941 * 5942 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5943 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5944 * tcp_maxpsz_set() gets called later from 5945 * tcp_accept_finish(), the option takes effect. 5946 * 5947 */ 5948 /* Set the TCP options */ 5949 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5950 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5951 eager->tcp_oobinline = tcp->tcp_oobinline; 5952 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5953 eager->tcp_broadcast = tcp->tcp_broadcast; 5954 eager->tcp_useloopback = tcp->tcp_useloopback; 5955 eager->tcp_dontroute = tcp->tcp_dontroute; 5956 eager->tcp_linger = tcp->tcp_linger; 5957 eager->tcp_lingertime = tcp->tcp_lingertime; 5958 if (tcp->tcp_ka_enabled) 5959 eager->tcp_ka_enabled = 1; 5960 5961 /* Set the IP options */ 5962 econnp->conn_broadcast = connp->conn_broadcast; 5963 econnp->conn_loopback = connp->conn_loopback; 5964 econnp->conn_dontroute = connp->conn_dontroute; 5965 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5966 5967 /* Put a ref on the listener for the eager. */ 5968 CONN_INC_REF(connp); 5969 mutex_enter(&tcp->tcp_eager_lock); 5970 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5971 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5972 tcp->tcp_eager_next_q0 = eager; 5973 eager->tcp_eager_prev_q0 = tcp; 5974 5975 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5976 eager->tcp_listener = tcp; 5977 eager->tcp_saved_listener = tcp; 5978 5979 /* 5980 * Tag this detached tcp vector for later retrieval 5981 * by our listener client in tcp_accept(). 5982 */ 5983 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5984 tcp->tcp_conn_req_cnt_q0++; 5985 if (++tcp->tcp_conn_req_seqnum == -1) { 5986 /* 5987 * -1 is "special" and defined in TPI as something 5988 * that should never be used in T_CONN_IND 5989 */ 5990 ++tcp->tcp_conn_req_seqnum; 5991 } 5992 mutex_exit(&tcp->tcp_eager_lock); 5993 5994 if (tcp->tcp_syn_defense) { 5995 /* Don't drop the SYN that comes from a good IP source */ 5996 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5997 if (addr_cache != NULL && eager->tcp_remote == 5998 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5999 eager->tcp_dontdrop = B_TRUE; 6000 } 6001 } 6002 6003 /* 6004 * We need to insert the eager in its own perimeter but as soon 6005 * as we do that, we expose the eager to the classifier and 6006 * should not touch any field outside the eager's perimeter. 6007 * So do all the work necessary before inserting the eager 6008 * in its own perimeter. Be optimistic that ipcl_conn_insert() 6009 * will succeed but undo everything if it fails. 6010 */ 6011 seg_seq = ABE32_TO_U32(tcph->th_seq); 6012 eager->tcp_irs = seg_seq; 6013 eager->tcp_rack = seg_seq; 6014 eager->tcp_rnxt = seg_seq + 1; 6015 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 6016 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 6017 eager->tcp_state = TCPS_SYN_RCVD; 6018 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 6019 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 6020 if (mp1 == NULL) { 6021 /* 6022 * Increment the ref count as we are going to 6023 * enqueueing an mp in squeue 6024 */ 6025 CONN_INC_REF(econnp); 6026 goto error; 6027 } 6028 DB_CPID(mp1) = tcp->tcp_cpid; 6029 eager->tcp_cpid = tcp->tcp_cpid; 6030 eager->tcp_open_time = lbolt64; 6031 6032 /* 6033 * We need to start the rto timer. In normal case, we start 6034 * the timer after sending the packet on the wire (or at 6035 * least believing that packet was sent by waiting for 6036 * CALL_IP_WPUT() to return). Since this is the first packet 6037 * being sent on the wire for the eager, our initial tcp_rto 6038 * is at least tcp_rexmit_interval_min which is a fairly 6039 * large value to allow the algorithm to adjust slowly to large 6040 * fluctuations of RTT during first few transmissions. 6041 * 6042 * Starting the timer first and then sending the packet in this 6043 * case shouldn't make much difference since tcp_rexmit_interval_min 6044 * is of the order of several 100ms and starting the timer 6045 * first and then sending the packet will result in difference 6046 * of few micro seconds. 6047 * 6048 * Without this optimization, we are forced to hold the fanout 6049 * lock across the ipcl_bind_insert() and sending the packet 6050 * so that we don't race against an incoming packet (maybe RST) 6051 * for this eager. 6052 * 6053 * It is necessary to acquire an extra reference on the eager 6054 * at this point and hold it until after tcp_send_data() to 6055 * ensure against an eager close race. 6056 */ 6057 6058 CONN_INC_REF(eager->tcp_connp); 6059 6060 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 6061 TCP_TIMER_RESTART(eager, eager->tcp_rto); 6062 6063 6064 /* 6065 * Insert the eager in its own perimeter now. We are ready to deal 6066 * with any packets on eager. 6067 */ 6068 if (eager->tcp_ipversion == IPV4_VERSION) { 6069 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6070 goto error; 6071 } 6072 } else { 6073 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6074 goto error; 6075 } 6076 } 6077 6078 /* mark conn as fully-bound */ 6079 econnp->conn_fully_bound = B_TRUE; 6080 6081 /* Send the SYN-ACK */ 6082 tcp_send_data(eager, eager->tcp_wq, mp1); 6083 CONN_DEC_REF(eager->tcp_connp); 6084 freemsg(mp); 6085 6086 return; 6087 error: 6088 freemsg(mp1); 6089 eager->tcp_closemp_used = B_TRUE; 6090 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6091 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 6092 econnp, SQTAG_TCP_CONN_REQ_2); 6093 6094 /* 6095 * If a connection already exists, send the mp to that connections so 6096 * that it can be appropriately dealt with. 6097 */ 6098 ipst = tcps->tcps_netstack->netstack_ip; 6099 6100 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6101 if (!IPCL_IS_CONNECTED(econnp)) { 6102 /* 6103 * Something bad happened. ipcl_conn_insert() 6104 * failed because a connection already existed 6105 * in connected hash but we can't find it 6106 * anymore (someone blew it away). Just 6107 * free this message and hopefully remote 6108 * will retransmit at which time the SYN can be 6109 * treated as a new connection or dealth with 6110 * a TH_RST if a connection already exists. 6111 */ 6112 CONN_DEC_REF(econnp); 6113 freemsg(mp); 6114 } else { 6115 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6116 econnp, SQTAG_TCP_CONN_REQ_1); 6117 } 6118 } else { 6119 /* Nobody wants this packet */ 6120 freemsg(mp); 6121 } 6122 return; 6123 error3: 6124 CONN_DEC_REF(econnp); 6125 error2: 6126 freemsg(mp); 6127 } 6128 6129 /* 6130 * In an ideal case of vertical partition in NUMA architecture, its 6131 * beneficial to have the listener and all the incoming connections 6132 * tied to the same squeue. The other constraint is that incoming 6133 * connections should be tied to the squeue attached to interrupted 6134 * CPU for obvious locality reason so this leaves the listener to 6135 * be tied to the same squeue. Our only problem is that when listener 6136 * is binding, the CPU that will get interrupted by the NIC whose 6137 * IP address the listener is binding to is not even known. So 6138 * the code below allows us to change that binding at the time the 6139 * CPU is interrupted by virtue of incoming connection's squeue. 6140 * 6141 * This is usefull only in case of a listener bound to a specific IP 6142 * address. For other kind of listeners, they get bound the 6143 * very first time and there is no attempt to rebind them. 6144 */ 6145 void 6146 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6147 { 6148 conn_t *connp = (conn_t *)arg; 6149 squeue_t *sqp = (squeue_t *)arg2; 6150 squeue_t *new_sqp; 6151 uint32_t conn_flags; 6152 6153 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6154 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6155 } else { 6156 goto done; 6157 } 6158 6159 if (connp->conn_fanout == NULL) 6160 goto done; 6161 6162 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6163 mutex_enter(&connp->conn_fanout->connf_lock); 6164 mutex_enter(&connp->conn_lock); 6165 /* 6166 * No one from read or write side can access us now 6167 * except for already queued packets on this squeue. 6168 * But since we haven't changed the squeue yet, they 6169 * can't execute. If they are processed after we have 6170 * changed the squeue, they are sent back to the 6171 * correct squeue down below. 6172 * But a listner close can race with processing of 6173 * incoming SYN. If incoming SYN processing changes 6174 * the squeue then the listener close which is waiting 6175 * to enter the squeue would operate on the wrong 6176 * squeue. Hence we don't change the squeue here unless 6177 * the refcount is exactly the minimum refcount. The 6178 * minimum refcount of 4 is counted as - 1 each for 6179 * TCP and IP, 1 for being in the classifier hash, and 6180 * 1 for the mblk being processed. 6181 */ 6182 6183 if (connp->conn_ref != 4 || 6184 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6185 mutex_exit(&connp->conn_lock); 6186 mutex_exit(&connp->conn_fanout->connf_lock); 6187 goto done; 6188 } 6189 if (connp->conn_sqp != new_sqp) { 6190 while (connp->conn_sqp != new_sqp) 6191 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6192 } 6193 6194 do { 6195 conn_flags = connp->conn_flags; 6196 conn_flags |= IPCL_FULLY_BOUND; 6197 (void) cas32(&connp->conn_flags, connp->conn_flags, 6198 conn_flags); 6199 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6200 6201 mutex_exit(&connp->conn_fanout->connf_lock); 6202 mutex_exit(&connp->conn_lock); 6203 } 6204 6205 done: 6206 if (connp->conn_sqp != sqp) { 6207 CONN_INC_REF(connp); 6208 squeue_fill(connp->conn_sqp, mp, 6209 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6210 } else { 6211 tcp_conn_request(connp, mp, sqp); 6212 } 6213 } 6214 6215 /* 6216 * Successful connect request processing begins when our client passes 6217 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6218 * our T_OK_ACK reply message upstream. The control flow looks like this: 6219 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6220 * upstream <- tcp_rput() <- IP 6221 * After various error checks are completed, tcp_connect() lays 6222 * the target address and port into the composite header template, 6223 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6224 * request followed by an IRE request, and passes the three mblk message 6225 * down to IP looking like this: 6226 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6227 * Processing continues in tcp_rput() when we receive the following message: 6228 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6229 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6230 * to fire off the connection request, and then passes the T_OK_ACK mblk 6231 * upstream that we filled in below. There are, of course, numerous 6232 * error conditions along the way which truncate the processing described 6233 * above. 6234 */ 6235 static void 6236 tcp_connect(tcp_t *tcp, mblk_t *mp) 6237 { 6238 sin_t *sin; 6239 sin6_t *sin6; 6240 queue_t *q = tcp->tcp_wq; 6241 struct T_conn_req *tcr; 6242 ipaddr_t *dstaddrp; 6243 in_port_t dstport; 6244 uint_t srcid; 6245 6246 tcr = (struct T_conn_req *)mp->b_rptr; 6247 6248 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6249 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6250 tcp_err_ack(tcp, mp, TPROTO, 0); 6251 return; 6252 } 6253 6254 /* 6255 * Determine packet type based on type of address passed in 6256 * the request should contain an IPv4 or IPv6 address. 6257 * Make sure that address family matches the type of 6258 * family of the the address passed down 6259 */ 6260 switch (tcr->DEST_length) { 6261 default: 6262 tcp_err_ack(tcp, mp, TBADADDR, 0); 6263 return; 6264 6265 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6266 /* 6267 * XXX: The check for valid DEST_length was not there 6268 * in earlier releases and some buggy 6269 * TLI apps (e.g Sybase) got away with not feeding 6270 * in sin_zero part of address. 6271 * We allow that bug to keep those buggy apps humming. 6272 * Test suites require the check on DEST_length. 6273 * We construct a new mblk with valid DEST_length 6274 * free the original so the rest of the code does 6275 * not have to keep track of this special shorter 6276 * length address case. 6277 */ 6278 mblk_t *nmp; 6279 struct T_conn_req *ntcr; 6280 sin_t *nsin; 6281 6282 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6283 tcr->OPT_length, BPRI_HI); 6284 if (nmp == NULL) { 6285 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6286 return; 6287 } 6288 ntcr = (struct T_conn_req *)nmp->b_rptr; 6289 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6290 ntcr->PRIM_type = T_CONN_REQ; 6291 ntcr->DEST_length = sizeof (sin_t); 6292 ntcr->DEST_offset = sizeof (struct T_conn_req); 6293 6294 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6295 *nsin = sin_null; 6296 /* Get pointer to shorter address to copy from original mp */ 6297 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6298 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6299 if (sin == NULL || !OK_32PTR((char *)sin)) { 6300 freemsg(nmp); 6301 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6302 return; 6303 } 6304 nsin->sin_family = sin->sin_family; 6305 nsin->sin_port = sin->sin_port; 6306 nsin->sin_addr = sin->sin_addr; 6307 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6308 nmp->b_wptr = (uchar_t *)&nsin[1]; 6309 if (tcr->OPT_length != 0) { 6310 ntcr->OPT_length = tcr->OPT_length; 6311 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6312 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6313 (uchar_t *)ntcr + ntcr->OPT_offset, 6314 tcr->OPT_length); 6315 nmp->b_wptr += tcr->OPT_length; 6316 } 6317 freemsg(mp); /* original mp freed */ 6318 mp = nmp; /* re-initialize original variables */ 6319 tcr = ntcr; 6320 } 6321 /* FALLTHRU */ 6322 6323 case sizeof (sin_t): 6324 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6325 sizeof (sin_t)); 6326 if (sin == NULL || !OK_32PTR((char *)sin)) { 6327 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6328 return; 6329 } 6330 if (tcp->tcp_family != AF_INET || 6331 sin->sin_family != AF_INET) { 6332 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6333 return; 6334 } 6335 if (sin->sin_port == 0) { 6336 tcp_err_ack(tcp, mp, TBADADDR, 0); 6337 return; 6338 } 6339 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6340 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6341 return; 6342 } 6343 6344 break; 6345 6346 case sizeof (sin6_t): 6347 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6348 sizeof (sin6_t)); 6349 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6350 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6351 return; 6352 } 6353 if (tcp->tcp_family != AF_INET6 || 6354 sin6->sin6_family != AF_INET6) { 6355 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6356 return; 6357 } 6358 if (sin6->sin6_port == 0) { 6359 tcp_err_ack(tcp, mp, TBADADDR, 0); 6360 return; 6361 } 6362 break; 6363 } 6364 /* 6365 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6366 * should key on their sequence number and cut them loose. 6367 */ 6368 6369 /* 6370 * If options passed in, feed it for verification and handling 6371 */ 6372 if (tcr->OPT_length != 0) { 6373 mblk_t *ok_mp; 6374 mblk_t *discon_mp; 6375 mblk_t *conn_opts_mp; 6376 int t_error, sys_error, do_disconnect; 6377 6378 conn_opts_mp = NULL; 6379 6380 if (tcp_conprim_opt_process(tcp, mp, 6381 &do_disconnect, &t_error, &sys_error) < 0) { 6382 if (do_disconnect) { 6383 ASSERT(t_error == 0 && sys_error == 0); 6384 discon_mp = mi_tpi_discon_ind(NULL, 6385 ECONNREFUSED, 0); 6386 if (!discon_mp) { 6387 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6388 TSYSERR, ENOMEM); 6389 return; 6390 } 6391 ok_mp = mi_tpi_ok_ack_alloc(mp); 6392 if (!ok_mp) { 6393 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6394 TSYSERR, ENOMEM); 6395 return; 6396 } 6397 qreply(q, ok_mp); 6398 qreply(q, discon_mp); /* no flush! */ 6399 } else { 6400 ASSERT(t_error != 0); 6401 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6402 sys_error); 6403 } 6404 return; 6405 } 6406 /* 6407 * Success in setting options, the mp option buffer represented 6408 * by OPT_length/offset has been potentially modified and 6409 * contains results of option processing. We copy it in 6410 * another mp to save it for potentially influencing returning 6411 * it in T_CONN_CONN. 6412 */ 6413 if (tcr->OPT_length != 0) { /* there are resulting options */ 6414 conn_opts_mp = copyb(mp); 6415 if (!conn_opts_mp) { 6416 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6417 TSYSERR, ENOMEM); 6418 return; 6419 } 6420 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6421 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6422 /* 6423 * Note: 6424 * These resulting option negotiation can include any 6425 * end-to-end negotiation options but there no such 6426 * thing (yet?) in our TCP/IP. 6427 */ 6428 } 6429 } 6430 6431 /* 6432 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6433 * make sure that the template IP header in the tcp structure is an 6434 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6435 * need to this before we call tcp_bindi() so that the port lookup 6436 * code will look for ports in the correct port space (IPv4 and 6437 * IPv6 have separate port spaces). 6438 */ 6439 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6440 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6441 int err = 0; 6442 6443 err = tcp_header_init_ipv4(tcp); 6444 if (err != 0) { 6445 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6446 goto connect_failed; 6447 } 6448 if (tcp->tcp_lport != 0) 6449 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6450 } 6451 6452 if (tcp->tcp_issocket) { 6453 /* 6454 * TCP is _D_SODIRECT and sockfs is directly above so save 6455 * the shared sonode sodirect_t pointer (if any) to enable 6456 * TCP sodirect. 6457 */ 6458 tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq); 6459 } 6460 6461 switch (tcp->tcp_state) { 6462 case TCPS_IDLE: 6463 /* 6464 * We support quick connect, refer to comments in 6465 * tcp_connect_*() 6466 */ 6467 /* FALLTHRU */ 6468 case TCPS_BOUND: 6469 case TCPS_LISTEN: 6470 if (tcp->tcp_family == AF_INET6) { 6471 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6472 tcp_connect_ipv6(tcp, mp, 6473 &sin6->sin6_addr, 6474 sin6->sin6_port, sin6->sin6_flowinfo, 6475 sin6->__sin6_src_id, sin6->sin6_scope_id); 6476 return; 6477 } 6478 /* 6479 * Destination adress is mapped IPv6 address. 6480 * Source bound address should be unspecified or 6481 * IPv6 mapped address as well. 6482 */ 6483 if (!IN6_IS_ADDR_UNSPECIFIED( 6484 &tcp->tcp_bound_source_v6) && 6485 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6486 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6487 EADDRNOTAVAIL); 6488 break; 6489 } 6490 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6491 dstport = sin6->sin6_port; 6492 srcid = sin6->__sin6_src_id; 6493 } else { 6494 dstaddrp = &sin->sin_addr.s_addr; 6495 dstport = sin->sin_port; 6496 srcid = 0; 6497 } 6498 6499 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6500 return; 6501 default: 6502 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6503 break; 6504 } 6505 /* 6506 * Note: Code below is the "failure" case 6507 */ 6508 /* return error ack and blow away saved option results if any */ 6509 connect_failed: 6510 if (mp != NULL) 6511 putnext(tcp->tcp_rq, mp); 6512 else { 6513 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6514 TSYSERR, ENOMEM); 6515 } 6516 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6517 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6518 } 6519 6520 /* 6521 * Handle connect to IPv4 destinations, including connections for AF_INET6 6522 * sockets connecting to IPv4 mapped IPv6 destinations. 6523 */ 6524 static void 6525 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6526 uint_t srcid) 6527 { 6528 tcph_t *tcph; 6529 mblk_t *mp1; 6530 ipaddr_t dstaddr = *dstaddrp; 6531 int32_t oldstate; 6532 uint16_t lport; 6533 tcp_stack_t *tcps = tcp->tcp_tcps; 6534 6535 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6536 6537 /* Check for attempt to connect to INADDR_ANY */ 6538 if (dstaddr == INADDR_ANY) { 6539 /* 6540 * SunOS 4.x and 4.3 BSD allow an application 6541 * to connect a TCP socket to INADDR_ANY. 6542 * When they do this, the kernel picks the 6543 * address of one interface and uses it 6544 * instead. The kernel usually ends up 6545 * picking the address of the loopback 6546 * interface. This is an undocumented feature. 6547 * However, we provide the same thing here 6548 * in order to have source and binary 6549 * compatibility with SunOS 4.x. 6550 * Update the T_CONN_REQ (sin/sin6) since it is used to 6551 * generate the T_CONN_CON. 6552 */ 6553 dstaddr = htonl(INADDR_LOOPBACK); 6554 *dstaddrp = dstaddr; 6555 } 6556 6557 /* Handle __sin6_src_id if socket not bound to an IP address */ 6558 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6559 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6560 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6561 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6562 tcp->tcp_ipha->ipha_src); 6563 } 6564 6565 /* 6566 * Don't let an endpoint connect to itself. Note that 6567 * the test here does not catch the case where the 6568 * source IP addr was left unspecified by the user. In 6569 * this case, the source addr is set in tcp_adapt_ire() 6570 * using the reply to the T_BIND message that we send 6571 * down to IP here and the check is repeated in tcp_rput_other. 6572 */ 6573 if (dstaddr == tcp->tcp_ipha->ipha_src && 6574 dstport == tcp->tcp_lport) { 6575 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6576 goto failed; 6577 } 6578 6579 tcp->tcp_ipha->ipha_dst = dstaddr; 6580 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6581 6582 /* 6583 * Massage a source route if any putting the first hop 6584 * in iph_dst. Compute a starting value for the checksum which 6585 * takes into account that the original iph_dst should be 6586 * included in the checksum but that ip will include the 6587 * first hop in the source route in the tcp checksum. 6588 */ 6589 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6590 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6591 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6592 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6593 if ((int)tcp->tcp_sum < 0) 6594 tcp->tcp_sum--; 6595 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6596 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6597 (tcp->tcp_sum >> 16)); 6598 tcph = tcp->tcp_tcph; 6599 *(uint16_t *)tcph->th_fport = dstport; 6600 tcp->tcp_fport = dstport; 6601 6602 oldstate = tcp->tcp_state; 6603 /* 6604 * At this point the remote destination address and remote port fields 6605 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6606 * have to see which state tcp was in so we can take apropriate action. 6607 */ 6608 if (oldstate == TCPS_IDLE) { 6609 /* 6610 * We support a quick connect capability here, allowing 6611 * clients to transition directly from IDLE to SYN_SENT 6612 * tcp_bindi will pick an unused port, insert the connection 6613 * in the bind hash and transition to BOUND state. 6614 */ 6615 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6616 tcp, B_TRUE); 6617 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6618 B_FALSE, B_FALSE); 6619 if (lport == 0) { 6620 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6621 goto failed; 6622 } 6623 } 6624 tcp->tcp_state = TCPS_SYN_SENT; 6625 6626 /* 6627 * TODO: allow data with connect requests 6628 * by unlinking M_DATA trailers here and 6629 * linking them in behind the T_OK_ACK mblk. 6630 * The tcp_rput() bind ack handler would then 6631 * feed them to tcp_wput_data() rather than call 6632 * tcp_timer(). 6633 */ 6634 mp = mi_tpi_ok_ack_alloc(mp); 6635 if (!mp) { 6636 tcp->tcp_state = oldstate; 6637 goto failed; 6638 } 6639 if (tcp->tcp_family == AF_INET) { 6640 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6641 sizeof (ipa_conn_t)); 6642 } else { 6643 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6644 sizeof (ipa6_conn_t)); 6645 } 6646 if (mp1) { 6647 /* 6648 * We need to make sure that the conn_recv is set to a non-null 6649 * value before we insert the conn_t into the classifier table. 6650 * This is to avoid a race with an incoming packet which does 6651 * an ipcl_classify(). 6652 */ 6653 tcp->tcp_connp->conn_recv = tcp_input; 6654 6655 /* Hang onto the T_OK_ACK for later. */ 6656 linkb(mp1, mp); 6657 mblk_setcred(mp1, tcp->tcp_cred); 6658 if (tcp->tcp_family == AF_INET) 6659 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6660 else { 6661 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6662 &tcp->tcp_sticky_ipp); 6663 } 6664 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6665 tcp->tcp_active_open = 1; 6666 /* 6667 * If the bind cannot complete immediately 6668 * IP will arrange to call tcp_rput_other 6669 * when the bind completes. 6670 */ 6671 if (mp1 != NULL) 6672 tcp_rput_other(tcp, mp1); 6673 return; 6674 } 6675 /* Error case */ 6676 tcp->tcp_state = oldstate; 6677 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6678 6679 failed: 6680 /* return error ack and blow away saved option results if any */ 6681 if (mp != NULL) 6682 putnext(tcp->tcp_rq, mp); 6683 else { 6684 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6685 TSYSERR, ENOMEM); 6686 } 6687 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6688 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6689 6690 } 6691 6692 /* 6693 * Handle connect to IPv6 destinations. 6694 */ 6695 static void 6696 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6697 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6698 { 6699 tcph_t *tcph; 6700 mblk_t *mp1; 6701 ip6_rthdr_t *rth; 6702 int32_t oldstate; 6703 uint16_t lport; 6704 tcp_stack_t *tcps = tcp->tcp_tcps; 6705 6706 ASSERT(tcp->tcp_family == AF_INET6); 6707 6708 /* 6709 * If we're here, it means that the destination address is a native 6710 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6711 * reason why it might not be IPv6 is if the socket was bound to an 6712 * IPv4-mapped IPv6 address. 6713 */ 6714 if (tcp->tcp_ipversion != IPV6_VERSION) { 6715 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6716 goto failed; 6717 } 6718 6719 /* 6720 * Interpret a zero destination to mean loopback. 6721 * Update the T_CONN_REQ (sin/sin6) since it is used to 6722 * generate the T_CONN_CON. 6723 */ 6724 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6725 *dstaddrp = ipv6_loopback; 6726 } 6727 6728 /* Handle __sin6_src_id if socket not bound to an IP address */ 6729 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6730 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6731 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6732 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6733 } 6734 6735 /* 6736 * Take care of the scope_id now and add ip6i_t 6737 * if ip6i_t is not already allocated through TCP 6738 * sticky options. At this point tcp_ip6h does not 6739 * have dst info, thus use dstaddrp. 6740 */ 6741 if (scope_id != 0 && 6742 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6743 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6744 ip6i_t *ip6i; 6745 6746 ipp->ipp_ifindex = scope_id; 6747 ip6i = (ip6i_t *)tcp->tcp_iphc; 6748 6749 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6750 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6751 /* Already allocated */ 6752 ip6i->ip6i_flags |= IP6I_IFINDEX; 6753 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6754 ipp->ipp_fields |= IPPF_SCOPE_ID; 6755 } else { 6756 int reterr; 6757 6758 ipp->ipp_fields |= IPPF_SCOPE_ID; 6759 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6760 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6761 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6762 if (reterr != 0) 6763 goto failed; 6764 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6765 } 6766 } 6767 6768 /* 6769 * Don't let an endpoint connect to itself. Note that 6770 * the test here does not catch the case where the 6771 * source IP addr was left unspecified by the user. In 6772 * this case, the source addr is set in tcp_adapt_ire() 6773 * using the reply to the T_BIND message that we send 6774 * down to IP here and the check is repeated in tcp_rput_other. 6775 */ 6776 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6777 (dstport == tcp->tcp_lport)) { 6778 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6779 goto failed; 6780 } 6781 6782 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6783 tcp->tcp_remote_v6 = *dstaddrp; 6784 tcp->tcp_ip6h->ip6_vcf = 6785 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6786 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6787 6788 6789 /* 6790 * Massage a routing header (if present) putting the first hop 6791 * in ip6_dst. Compute a starting value for the checksum which 6792 * takes into account that the original ip6_dst should be 6793 * included in the checksum but that ip will include the 6794 * first hop in the source route in the tcp checksum. 6795 */ 6796 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6797 if (rth != NULL) { 6798 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6799 tcps->tcps_netstack); 6800 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6801 (tcp->tcp_sum >> 16)); 6802 } else { 6803 tcp->tcp_sum = 0; 6804 } 6805 6806 tcph = tcp->tcp_tcph; 6807 *(uint16_t *)tcph->th_fport = dstport; 6808 tcp->tcp_fport = dstport; 6809 6810 oldstate = tcp->tcp_state; 6811 /* 6812 * At this point the remote destination address and remote port fields 6813 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6814 * have to see which state tcp was in so we can take apropriate action. 6815 */ 6816 if (oldstate == TCPS_IDLE) { 6817 /* 6818 * We support a quick connect capability here, allowing 6819 * clients to transition directly from IDLE to SYN_SENT 6820 * tcp_bindi will pick an unused port, insert the connection 6821 * in the bind hash and transition to BOUND state. 6822 */ 6823 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6824 tcp, B_TRUE); 6825 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6826 B_FALSE, B_FALSE); 6827 if (lport == 0) { 6828 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6829 goto failed; 6830 } 6831 } 6832 tcp->tcp_state = TCPS_SYN_SENT; 6833 /* 6834 * TODO: allow data with connect requests 6835 * by unlinking M_DATA trailers here and 6836 * linking them in behind the T_OK_ACK mblk. 6837 * The tcp_rput() bind ack handler would then 6838 * feed them to tcp_wput_data() rather than call 6839 * tcp_timer(). 6840 */ 6841 mp = mi_tpi_ok_ack_alloc(mp); 6842 if (!mp) { 6843 tcp->tcp_state = oldstate; 6844 goto failed; 6845 } 6846 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6847 if (mp1) { 6848 /* 6849 * We need to make sure that the conn_recv is set to a non-null 6850 * value before we insert the conn_t into the classifier table. 6851 * This is to avoid a race with an incoming packet which does 6852 * an ipcl_classify(). 6853 */ 6854 tcp->tcp_connp->conn_recv = tcp_input; 6855 6856 /* Hang onto the T_OK_ACK for later. */ 6857 linkb(mp1, mp); 6858 mblk_setcred(mp1, tcp->tcp_cred); 6859 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6860 &tcp->tcp_sticky_ipp); 6861 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6862 tcp->tcp_active_open = 1; 6863 /* ip_bind_v6() may return ACK or ERROR */ 6864 if (mp1 != NULL) 6865 tcp_rput_other(tcp, mp1); 6866 return; 6867 } 6868 /* Error case */ 6869 tcp->tcp_state = oldstate; 6870 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6871 6872 failed: 6873 /* return error ack and blow away saved option results if any */ 6874 if (mp != NULL) 6875 putnext(tcp->tcp_rq, mp); 6876 else { 6877 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6878 TSYSERR, ENOMEM); 6879 } 6880 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6881 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6882 } 6883 6884 /* 6885 * We need a stream q for detached closing tcp connections 6886 * to use. Our client hereby indicates that this q is the 6887 * one to use. 6888 */ 6889 static void 6890 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6891 { 6892 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6893 queue_t *q = tcp->tcp_wq; 6894 tcp_stack_t *tcps = tcp->tcp_tcps; 6895 6896 #ifdef NS_DEBUG 6897 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6898 tcps->tcps_netstack->netstack_stackid); 6899 #endif 6900 mp->b_datap->db_type = M_IOCACK; 6901 iocp->ioc_count = 0; 6902 mutex_enter(&tcps->tcps_g_q_lock); 6903 if (tcps->tcps_g_q != NULL) { 6904 mutex_exit(&tcps->tcps_g_q_lock); 6905 iocp->ioc_error = EALREADY; 6906 } else { 6907 mblk_t *mp1; 6908 6909 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6910 if (mp1 == NULL) { 6911 mutex_exit(&tcps->tcps_g_q_lock); 6912 iocp->ioc_error = ENOMEM; 6913 } else { 6914 tcps->tcps_g_q = tcp->tcp_rq; 6915 mutex_exit(&tcps->tcps_g_q_lock); 6916 iocp->ioc_error = 0; 6917 iocp->ioc_rval = 0; 6918 /* 6919 * We are passing tcp_sticky_ipp as NULL 6920 * as it is not useful for tcp_default queue 6921 * 6922 * Set conn_recv just in case. 6923 */ 6924 tcp->tcp_connp->conn_recv = tcp_conn_request; 6925 6926 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6927 if (mp1 != NULL) 6928 tcp_rput_other(tcp, mp1); 6929 } 6930 } 6931 qreply(q, mp); 6932 } 6933 6934 /* 6935 * Our client hereby directs us to reject the connection request 6936 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6937 * of sending the appropriate RST, not an ICMP error. 6938 */ 6939 static void 6940 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6941 { 6942 tcp_t *ltcp = NULL; 6943 t_scalar_t seqnum; 6944 conn_t *connp; 6945 tcp_stack_t *tcps = tcp->tcp_tcps; 6946 6947 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6948 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6949 tcp_err_ack(tcp, mp, TPROTO, 0); 6950 return; 6951 } 6952 6953 /* 6954 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6955 * when the stream is in BOUND state. Do not send a reset, 6956 * since the destination IP address is not valid, and it can 6957 * be the initialized value of all zeros (broadcast address). 6958 * 6959 * If TCP has sent down a bind request to IP and has not 6960 * received the reply, reject the request. Otherwise, TCP 6961 * will be confused. 6962 */ 6963 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6964 if (tcp->tcp_debug) { 6965 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6966 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6967 } 6968 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6969 return; 6970 } 6971 6972 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6973 6974 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6975 6976 /* 6977 * According to TPI, for non-listeners, ignore seqnum 6978 * and disconnect. 6979 * Following interpretation of -1 seqnum is historical 6980 * and implied TPI ? (TPI only states that for T_CONN_IND, 6981 * a valid seqnum should not be -1). 6982 * 6983 * -1 means disconnect everything 6984 * regardless even on a listener. 6985 */ 6986 6987 int old_state = tcp->tcp_state; 6988 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6989 6990 /* 6991 * The connection can't be on the tcp_time_wait_head list 6992 * since it is not detached. 6993 */ 6994 ASSERT(tcp->tcp_time_wait_next == NULL); 6995 ASSERT(tcp->tcp_time_wait_prev == NULL); 6996 ASSERT(tcp->tcp_time_wait_expire == 0); 6997 ltcp = NULL; 6998 /* 6999 * If it used to be a listener, check to make sure no one else 7000 * has taken the port before switching back to LISTEN state. 7001 */ 7002 if (tcp->tcp_ipversion == IPV4_VERSION) { 7003 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 7004 tcp->tcp_ipha->ipha_src, 7005 tcp->tcp_connp->conn_zoneid, ipst); 7006 if (connp != NULL) 7007 ltcp = connp->conn_tcp; 7008 } else { 7009 /* Allow tcp_bound_if listeners? */ 7010 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 7011 &tcp->tcp_ip6h->ip6_src, 0, 7012 tcp->tcp_connp->conn_zoneid, ipst); 7013 if (connp != NULL) 7014 ltcp = connp->conn_tcp; 7015 } 7016 if (tcp->tcp_conn_req_max && ltcp == NULL) { 7017 tcp->tcp_state = TCPS_LISTEN; 7018 } else if (old_state > TCPS_BOUND) { 7019 tcp->tcp_conn_req_max = 0; 7020 tcp->tcp_state = TCPS_BOUND; 7021 } 7022 if (ltcp != NULL) 7023 CONN_DEC_REF(ltcp->tcp_connp); 7024 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 7025 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 7026 } else if (old_state == TCPS_ESTABLISHED || 7027 old_state == TCPS_CLOSE_WAIT) { 7028 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 7029 } 7030 7031 if (tcp->tcp_fused) 7032 tcp_unfuse(tcp); 7033 7034 mutex_enter(&tcp->tcp_eager_lock); 7035 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 7036 (tcp->tcp_conn_req_cnt_q != 0)) { 7037 tcp_eager_cleanup(tcp, 0); 7038 } 7039 mutex_exit(&tcp->tcp_eager_lock); 7040 7041 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 7042 tcp->tcp_rnxt, TH_RST | TH_ACK); 7043 7044 tcp_reinit(tcp); 7045 7046 if (old_state >= TCPS_ESTABLISHED) { 7047 /* Send M_FLUSH according to TPI */ 7048 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7049 } 7050 mp = mi_tpi_ok_ack_alloc(mp); 7051 if (mp) 7052 putnext(tcp->tcp_rq, mp); 7053 return; 7054 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 7055 tcp_err_ack(tcp, mp, TBADSEQ, 0); 7056 return; 7057 } 7058 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 7059 /* Send M_FLUSH according to TPI */ 7060 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7061 } 7062 mp = mi_tpi_ok_ack_alloc(mp); 7063 if (mp) 7064 putnext(tcp->tcp_rq, mp); 7065 } 7066 7067 /* 7068 * Diagnostic routine used to return a string associated with the tcp state. 7069 * Note that if the caller does not supply a buffer, it will use an internal 7070 * static string. This means that if multiple threads call this function at 7071 * the same time, output can be corrupted... Note also that this function 7072 * does not check the size of the supplied buffer. The caller has to make 7073 * sure that it is big enough. 7074 */ 7075 static char * 7076 tcp_display(tcp_t *tcp, char *sup_buf, char format) 7077 { 7078 char buf1[30]; 7079 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7080 char *buf; 7081 char *cp; 7082 in6_addr_t local, remote; 7083 char local_addrbuf[INET6_ADDRSTRLEN]; 7084 char remote_addrbuf[INET6_ADDRSTRLEN]; 7085 7086 if (sup_buf != NULL) 7087 buf = sup_buf; 7088 else 7089 buf = priv_buf; 7090 7091 if (tcp == NULL) 7092 return ("NULL_TCP"); 7093 switch (tcp->tcp_state) { 7094 case TCPS_CLOSED: 7095 cp = "TCP_CLOSED"; 7096 break; 7097 case TCPS_IDLE: 7098 cp = "TCP_IDLE"; 7099 break; 7100 case TCPS_BOUND: 7101 cp = "TCP_BOUND"; 7102 break; 7103 case TCPS_LISTEN: 7104 cp = "TCP_LISTEN"; 7105 break; 7106 case TCPS_SYN_SENT: 7107 cp = "TCP_SYN_SENT"; 7108 break; 7109 case TCPS_SYN_RCVD: 7110 cp = "TCP_SYN_RCVD"; 7111 break; 7112 case TCPS_ESTABLISHED: 7113 cp = "TCP_ESTABLISHED"; 7114 break; 7115 case TCPS_CLOSE_WAIT: 7116 cp = "TCP_CLOSE_WAIT"; 7117 break; 7118 case TCPS_FIN_WAIT_1: 7119 cp = "TCP_FIN_WAIT_1"; 7120 break; 7121 case TCPS_CLOSING: 7122 cp = "TCP_CLOSING"; 7123 break; 7124 case TCPS_LAST_ACK: 7125 cp = "TCP_LAST_ACK"; 7126 break; 7127 case TCPS_FIN_WAIT_2: 7128 cp = "TCP_FIN_WAIT_2"; 7129 break; 7130 case TCPS_TIME_WAIT: 7131 cp = "TCP_TIME_WAIT"; 7132 break; 7133 default: 7134 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7135 cp = buf1; 7136 break; 7137 } 7138 switch (format) { 7139 case DISP_ADDR_AND_PORT: 7140 if (tcp->tcp_ipversion == IPV4_VERSION) { 7141 /* 7142 * Note that we use the remote address in the tcp_b 7143 * structure. This means that it will print out 7144 * the real destination address, not the next hop's 7145 * address if source routing is used. 7146 */ 7147 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7148 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7149 7150 } else { 7151 local = tcp->tcp_ip_src_v6; 7152 remote = tcp->tcp_remote_v6; 7153 } 7154 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7155 sizeof (local_addrbuf)); 7156 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7157 sizeof (remote_addrbuf)); 7158 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7159 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7160 ntohs(tcp->tcp_fport), cp); 7161 break; 7162 case DISP_PORT_ONLY: 7163 default: 7164 (void) mi_sprintf(buf, "[%u, %u] %s", 7165 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7166 break; 7167 } 7168 7169 return (buf); 7170 } 7171 7172 /* 7173 * Called via squeue to get on to eager's perimeter. It sends a 7174 * TH_RST if eager is in the fanout table. The listener wants the 7175 * eager to disappear either by means of tcp_eager_blowoff() or 7176 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7177 * called (via squeue) if the eager cannot be inserted in the 7178 * fanout table in tcp_conn_request(). 7179 */ 7180 /* ARGSUSED */ 7181 void 7182 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7183 { 7184 conn_t *econnp = (conn_t *)arg; 7185 tcp_t *eager = econnp->conn_tcp; 7186 tcp_t *listener = eager->tcp_listener; 7187 tcp_stack_t *tcps = eager->tcp_tcps; 7188 7189 /* 7190 * We could be called because listener is closing. Since 7191 * the eager is using listener's queue's, its not safe. 7192 * Better use the default queue just to send the TH_RST 7193 * out. 7194 */ 7195 ASSERT(tcps->tcps_g_q != NULL); 7196 eager->tcp_rq = tcps->tcps_g_q; 7197 eager->tcp_wq = WR(tcps->tcps_g_q); 7198 7199 /* 7200 * An eager's conn_fanout will be NULL if it's a duplicate 7201 * for an existing 4-tuples in the conn fanout table. 7202 * We don't want to send an RST out in such case. 7203 */ 7204 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7205 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7206 eager, eager->tcp_snxt, 0, TH_RST); 7207 } 7208 7209 /* We are here because listener wants this eager gone */ 7210 if (listener != NULL) { 7211 mutex_enter(&listener->tcp_eager_lock); 7212 tcp_eager_unlink(eager); 7213 if (eager->tcp_tconnind_started) { 7214 /* 7215 * The eager has sent a conn_ind up to the 7216 * listener but listener decides to close 7217 * instead. We need to drop the extra ref 7218 * placed on eager in tcp_rput_data() before 7219 * sending the conn_ind to listener. 7220 */ 7221 CONN_DEC_REF(econnp); 7222 } 7223 mutex_exit(&listener->tcp_eager_lock); 7224 CONN_DEC_REF(listener->tcp_connp); 7225 } 7226 7227 if (eager->tcp_state > TCPS_BOUND) 7228 tcp_close_detached(eager); 7229 } 7230 7231 /* 7232 * Reset any eager connection hanging off this listener marked 7233 * with 'seqnum' and then reclaim it's resources. 7234 */ 7235 static boolean_t 7236 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7237 { 7238 tcp_t *eager; 7239 mblk_t *mp; 7240 tcp_stack_t *tcps = listener->tcp_tcps; 7241 7242 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7243 eager = listener; 7244 mutex_enter(&listener->tcp_eager_lock); 7245 do { 7246 eager = eager->tcp_eager_next_q; 7247 if (eager == NULL) { 7248 mutex_exit(&listener->tcp_eager_lock); 7249 return (B_FALSE); 7250 } 7251 } while (eager->tcp_conn_req_seqnum != seqnum); 7252 7253 if (eager->tcp_closemp_used) { 7254 mutex_exit(&listener->tcp_eager_lock); 7255 return (B_TRUE); 7256 } 7257 eager->tcp_closemp_used = B_TRUE; 7258 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7259 CONN_INC_REF(eager->tcp_connp); 7260 mutex_exit(&listener->tcp_eager_lock); 7261 mp = &eager->tcp_closemp; 7262 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7263 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7264 return (B_TRUE); 7265 } 7266 7267 /* 7268 * Reset any eager connection hanging off this listener 7269 * and then reclaim it's resources. 7270 */ 7271 static void 7272 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7273 { 7274 tcp_t *eager; 7275 mblk_t *mp; 7276 tcp_stack_t *tcps = listener->tcp_tcps; 7277 7278 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7279 7280 if (!q0_only) { 7281 /* First cleanup q */ 7282 TCP_STAT(tcps, tcp_eager_blowoff_q); 7283 eager = listener->tcp_eager_next_q; 7284 while (eager != NULL) { 7285 if (!eager->tcp_closemp_used) { 7286 eager->tcp_closemp_used = B_TRUE; 7287 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7288 CONN_INC_REF(eager->tcp_connp); 7289 mp = &eager->tcp_closemp; 7290 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7291 tcp_eager_kill, eager->tcp_connp, 7292 SQTAG_TCP_EAGER_CLEANUP); 7293 } 7294 eager = eager->tcp_eager_next_q; 7295 } 7296 } 7297 /* Then cleanup q0 */ 7298 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7299 eager = listener->tcp_eager_next_q0; 7300 while (eager != listener) { 7301 if (!eager->tcp_closemp_used) { 7302 eager->tcp_closemp_used = B_TRUE; 7303 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7304 CONN_INC_REF(eager->tcp_connp); 7305 mp = &eager->tcp_closemp; 7306 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7307 tcp_eager_kill, eager->tcp_connp, 7308 SQTAG_TCP_EAGER_CLEANUP_Q0); 7309 } 7310 eager = eager->tcp_eager_next_q0; 7311 } 7312 } 7313 7314 /* 7315 * If we are an eager connection hanging off a listener that hasn't 7316 * formally accepted the connection yet, get off his list and blow off 7317 * any data that we have accumulated. 7318 */ 7319 static void 7320 tcp_eager_unlink(tcp_t *tcp) 7321 { 7322 tcp_t *listener = tcp->tcp_listener; 7323 7324 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7325 ASSERT(listener != NULL); 7326 if (tcp->tcp_eager_next_q0 != NULL) { 7327 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7328 7329 /* Remove the eager tcp from q0 */ 7330 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7331 tcp->tcp_eager_prev_q0; 7332 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7333 tcp->tcp_eager_next_q0; 7334 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7335 listener->tcp_conn_req_cnt_q0--; 7336 7337 tcp->tcp_eager_next_q0 = NULL; 7338 tcp->tcp_eager_prev_q0 = NULL; 7339 7340 /* 7341 * Take the eager out, if it is in the list of droppable 7342 * eagers. 7343 */ 7344 MAKE_UNDROPPABLE(tcp); 7345 7346 if (tcp->tcp_syn_rcvd_timeout != 0) { 7347 /* we have timed out before */ 7348 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7349 listener->tcp_syn_rcvd_timeout--; 7350 } 7351 } else { 7352 tcp_t **tcpp = &listener->tcp_eager_next_q; 7353 tcp_t *prev = NULL; 7354 7355 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7356 if (tcpp[0] == tcp) { 7357 if (listener->tcp_eager_last_q == tcp) { 7358 /* 7359 * If we are unlinking the last 7360 * element on the list, adjust 7361 * tail pointer. Set tail pointer 7362 * to nil when list is empty. 7363 */ 7364 ASSERT(tcp->tcp_eager_next_q == NULL); 7365 if (listener->tcp_eager_last_q == 7366 listener->tcp_eager_next_q) { 7367 listener->tcp_eager_last_q = 7368 NULL; 7369 } else { 7370 /* 7371 * We won't get here if there 7372 * is only one eager in the 7373 * list. 7374 */ 7375 ASSERT(prev != NULL); 7376 listener->tcp_eager_last_q = 7377 prev; 7378 } 7379 } 7380 tcpp[0] = tcp->tcp_eager_next_q; 7381 tcp->tcp_eager_next_q = NULL; 7382 tcp->tcp_eager_last_q = NULL; 7383 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7384 listener->tcp_conn_req_cnt_q--; 7385 break; 7386 } 7387 prev = tcpp[0]; 7388 } 7389 } 7390 tcp->tcp_listener = NULL; 7391 } 7392 7393 /* Shorthand to generate and send TPI error acks to our client */ 7394 static void 7395 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7396 { 7397 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7398 putnext(tcp->tcp_rq, mp); 7399 } 7400 7401 /* Shorthand to generate and send TPI error acks to our client */ 7402 static void 7403 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7404 int t_error, int sys_error) 7405 { 7406 struct T_error_ack *teackp; 7407 7408 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7409 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7410 teackp = (struct T_error_ack *)mp->b_rptr; 7411 teackp->ERROR_prim = primitive; 7412 teackp->TLI_error = t_error; 7413 teackp->UNIX_error = sys_error; 7414 putnext(tcp->tcp_rq, mp); 7415 } 7416 } 7417 7418 /* 7419 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7420 * but instead the code relies on: 7421 * - the fact that the address of the array and its size never changes 7422 * - the atomic assignment of the elements of the array 7423 */ 7424 /* ARGSUSED */ 7425 static int 7426 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7427 { 7428 int i; 7429 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7430 7431 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7432 if (tcps->tcps_g_epriv_ports[i] != 0) 7433 (void) mi_mpprintf(mp, "%d ", 7434 tcps->tcps_g_epriv_ports[i]); 7435 } 7436 return (0); 7437 } 7438 7439 /* 7440 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7441 * threads from changing it at the same time. 7442 */ 7443 /* ARGSUSED */ 7444 static int 7445 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7446 cred_t *cr) 7447 { 7448 long new_value; 7449 int i; 7450 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7451 7452 /* 7453 * Fail the request if the new value does not lie within the 7454 * port number limits. 7455 */ 7456 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7457 new_value <= 0 || new_value >= 65536) { 7458 return (EINVAL); 7459 } 7460 7461 mutex_enter(&tcps->tcps_epriv_port_lock); 7462 /* Check if the value is already in the list */ 7463 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7464 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7465 mutex_exit(&tcps->tcps_epriv_port_lock); 7466 return (EEXIST); 7467 } 7468 } 7469 /* Find an empty slot */ 7470 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7471 if (tcps->tcps_g_epriv_ports[i] == 0) 7472 break; 7473 } 7474 if (i == tcps->tcps_g_num_epriv_ports) { 7475 mutex_exit(&tcps->tcps_epriv_port_lock); 7476 return (EOVERFLOW); 7477 } 7478 /* Set the new value */ 7479 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7480 mutex_exit(&tcps->tcps_epriv_port_lock); 7481 return (0); 7482 } 7483 7484 /* 7485 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7486 * threads from changing it at the same time. 7487 */ 7488 /* ARGSUSED */ 7489 static int 7490 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7491 cred_t *cr) 7492 { 7493 long new_value; 7494 int i; 7495 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7496 7497 /* 7498 * Fail the request if the new value does not lie within the 7499 * port number limits. 7500 */ 7501 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7502 new_value >= 65536) { 7503 return (EINVAL); 7504 } 7505 7506 mutex_enter(&tcps->tcps_epriv_port_lock); 7507 /* Check that the value is already in the list */ 7508 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7509 if (tcps->tcps_g_epriv_ports[i] == new_value) 7510 break; 7511 } 7512 if (i == tcps->tcps_g_num_epriv_ports) { 7513 mutex_exit(&tcps->tcps_epriv_port_lock); 7514 return (ESRCH); 7515 } 7516 /* Clear the value */ 7517 tcps->tcps_g_epriv_ports[i] = 0; 7518 mutex_exit(&tcps->tcps_epriv_port_lock); 7519 return (0); 7520 } 7521 7522 /* Return the TPI/TLI equivalent of our current tcp_state */ 7523 static int 7524 tcp_tpistate(tcp_t *tcp) 7525 { 7526 switch (tcp->tcp_state) { 7527 case TCPS_IDLE: 7528 return (TS_UNBND); 7529 case TCPS_LISTEN: 7530 /* 7531 * Return whether there are outstanding T_CONN_IND waiting 7532 * for the matching T_CONN_RES. Therefore don't count q0. 7533 */ 7534 if (tcp->tcp_conn_req_cnt_q > 0) 7535 return (TS_WRES_CIND); 7536 else 7537 return (TS_IDLE); 7538 case TCPS_BOUND: 7539 return (TS_IDLE); 7540 case TCPS_SYN_SENT: 7541 return (TS_WCON_CREQ); 7542 case TCPS_SYN_RCVD: 7543 /* 7544 * Note: assumption: this has to the active open SYN_RCVD. 7545 * The passive instance is detached in SYN_RCVD stage of 7546 * incoming connection processing so we cannot get request 7547 * for T_info_ack on it. 7548 */ 7549 return (TS_WACK_CRES); 7550 case TCPS_ESTABLISHED: 7551 return (TS_DATA_XFER); 7552 case TCPS_CLOSE_WAIT: 7553 return (TS_WREQ_ORDREL); 7554 case TCPS_FIN_WAIT_1: 7555 return (TS_WIND_ORDREL); 7556 case TCPS_FIN_WAIT_2: 7557 return (TS_WIND_ORDREL); 7558 7559 case TCPS_CLOSING: 7560 case TCPS_LAST_ACK: 7561 case TCPS_TIME_WAIT: 7562 case TCPS_CLOSED: 7563 /* 7564 * Following TS_WACK_DREQ7 is a rendition of "not 7565 * yet TS_IDLE" TPI state. There is no best match to any 7566 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7567 * choose a value chosen that will map to TLI/XTI level 7568 * state of TSTATECHNG (state is process of changing) which 7569 * captures what this dummy state represents. 7570 */ 7571 return (TS_WACK_DREQ7); 7572 default: 7573 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7574 tcp->tcp_state, tcp_display(tcp, NULL, 7575 DISP_PORT_ONLY)); 7576 return (TS_UNBND); 7577 } 7578 } 7579 7580 static void 7581 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7582 { 7583 tcp_stack_t *tcps = tcp->tcp_tcps; 7584 7585 if (tcp->tcp_family == AF_INET6) 7586 *tia = tcp_g_t_info_ack_v6; 7587 else 7588 *tia = tcp_g_t_info_ack; 7589 tia->CURRENT_state = tcp_tpistate(tcp); 7590 tia->OPT_size = tcp_max_optsize; 7591 if (tcp->tcp_mss == 0) { 7592 /* Not yet set - tcp_open does not set mss */ 7593 if (tcp->tcp_ipversion == IPV4_VERSION) 7594 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7595 else 7596 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7597 } else { 7598 tia->TIDU_size = tcp->tcp_mss; 7599 } 7600 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7601 } 7602 7603 /* 7604 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7605 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7606 * tcp_g_t_info_ack. The current state of the stream is copied from 7607 * tcp_state. 7608 */ 7609 static void 7610 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7611 { 7612 t_uscalar_t cap_bits1; 7613 struct T_capability_ack *tcap; 7614 7615 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7616 freemsg(mp); 7617 return; 7618 } 7619 7620 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7621 7622 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7623 mp->b_datap->db_type, T_CAPABILITY_ACK); 7624 if (mp == NULL) 7625 return; 7626 7627 tcap = (struct T_capability_ack *)mp->b_rptr; 7628 tcap->CAP_bits1 = 0; 7629 7630 if (cap_bits1 & TC1_INFO) { 7631 tcp_copy_info(&tcap->INFO_ack, tcp); 7632 tcap->CAP_bits1 |= TC1_INFO; 7633 } 7634 7635 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7636 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7637 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7638 } 7639 7640 putnext(tcp->tcp_rq, mp); 7641 } 7642 7643 /* 7644 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7645 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7646 * The current state of the stream is copied from tcp_state. 7647 */ 7648 static void 7649 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7650 { 7651 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7652 T_INFO_ACK); 7653 if (!mp) { 7654 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7655 return; 7656 } 7657 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7658 putnext(tcp->tcp_rq, mp); 7659 } 7660 7661 /* Respond to the TPI addr request */ 7662 static void 7663 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7664 { 7665 sin_t *sin; 7666 mblk_t *ackmp; 7667 struct T_addr_ack *taa; 7668 7669 /* Make it large enough for worst case */ 7670 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7671 2 * sizeof (sin6_t), 1); 7672 if (ackmp == NULL) { 7673 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7674 return; 7675 } 7676 7677 if (tcp->tcp_ipversion == IPV6_VERSION) { 7678 tcp_addr_req_ipv6(tcp, ackmp); 7679 return; 7680 } 7681 taa = (struct T_addr_ack *)ackmp->b_rptr; 7682 7683 bzero(taa, sizeof (struct T_addr_ack)); 7684 ackmp->b_wptr = (uchar_t *)&taa[1]; 7685 7686 taa->PRIM_type = T_ADDR_ACK; 7687 ackmp->b_datap->db_type = M_PCPROTO; 7688 7689 /* 7690 * Note: Following code assumes 32 bit alignment of basic 7691 * data structures like sin_t and struct T_addr_ack. 7692 */ 7693 if (tcp->tcp_state >= TCPS_BOUND) { 7694 /* 7695 * Fill in local address 7696 */ 7697 taa->LOCADDR_length = sizeof (sin_t); 7698 taa->LOCADDR_offset = sizeof (*taa); 7699 7700 sin = (sin_t *)&taa[1]; 7701 7702 /* Fill zeroes and then intialize non-zero fields */ 7703 *sin = sin_null; 7704 7705 sin->sin_family = AF_INET; 7706 7707 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7708 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7709 7710 ackmp->b_wptr = (uchar_t *)&sin[1]; 7711 7712 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7713 /* 7714 * Fill in Remote address 7715 */ 7716 taa->REMADDR_length = sizeof (sin_t); 7717 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7718 taa->LOCADDR_length); 7719 7720 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7721 *sin = sin_null; 7722 sin->sin_family = AF_INET; 7723 sin->sin_addr.s_addr = tcp->tcp_remote; 7724 sin->sin_port = tcp->tcp_fport; 7725 7726 ackmp->b_wptr = (uchar_t *)&sin[1]; 7727 } 7728 } 7729 putnext(tcp->tcp_rq, ackmp); 7730 } 7731 7732 /* Assumes that tcp_addr_req gets enough space and alignment */ 7733 static void 7734 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7735 { 7736 sin6_t *sin6; 7737 struct T_addr_ack *taa; 7738 7739 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7740 ASSERT(OK_32PTR(ackmp->b_rptr)); 7741 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7742 2 * sizeof (sin6_t)); 7743 7744 taa = (struct T_addr_ack *)ackmp->b_rptr; 7745 7746 bzero(taa, sizeof (struct T_addr_ack)); 7747 ackmp->b_wptr = (uchar_t *)&taa[1]; 7748 7749 taa->PRIM_type = T_ADDR_ACK; 7750 ackmp->b_datap->db_type = M_PCPROTO; 7751 7752 /* 7753 * Note: Following code assumes 32 bit alignment of basic 7754 * data structures like sin6_t and struct T_addr_ack. 7755 */ 7756 if (tcp->tcp_state >= TCPS_BOUND) { 7757 /* 7758 * Fill in local address 7759 */ 7760 taa->LOCADDR_length = sizeof (sin6_t); 7761 taa->LOCADDR_offset = sizeof (*taa); 7762 7763 sin6 = (sin6_t *)&taa[1]; 7764 *sin6 = sin6_null; 7765 7766 sin6->sin6_family = AF_INET6; 7767 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7768 sin6->sin6_port = tcp->tcp_lport; 7769 7770 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7771 7772 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7773 /* 7774 * Fill in Remote address 7775 */ 7776 taa->REMADDR_length = sizeof (sin6_t); 7777 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7778 taa->LOCADDR_length); 7779 7780 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7781 *sin6 = sin6_null; 7782 sin6->sin6_family = AF_INET6; 7783 sin6->sin6_flowinfo = 7784 tcp->tcp_ip6h->ip6_vcf & 7785 ~IPV6_VERS_AND_FLOW_MASK; 7786 sin6->sin6_addr = tcp->tcp_remote_v6; 7787 sin6->sin6_port = tcp->tcp_fport; 7788 7789 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7790 } 7791 } 7792 putnext(tcp->tcp_rq, ackmp); 7793 } 7794 7795 /* 7796 * Handle reinitialization of a tcp structure. 7797 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7798 */ 7799 static void 7800 tcp_reinit(tcp_t *tcp) 7801 { 7802 mblk_t *mp; 7803 int err; 7804 tcp_stack_t *tcps = tcp->tcp_tcps; 7805 7806 TCP_STAT(tcps, tcp_reinit_calls); 7807 7808 /* tcp_reinit should never be called for detached tcp_t's */ 7809 ASSERT(tcp->tcp_listener == NULL); 7810 ASSERT((tcp->tcp_family == AF_INET && 7811 tcp->tcp_ipversion == IPV4_VERSION) || 7812 (tcp->tcp_family == AF_INET6 && 7813 (tcp->tcp_ipversion == IPV4_VERSION || 7814 tcp->tcp_ipversion == IPV6_VERSION))); 7815 7816 /* Cancel outstanding timers */ 7817 tcp_timers_stop(tcp); 7818 7819 /* 7820 * Reset everything in the state vector, after updating global 7821 * MIB data from instance counters. 7822 */ 7823 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7824 tcp->tcp_ibsegs = 0; 7825 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7826 tcp->tcp_obsegs = 0; 7827 7828 tcp_close_mpp(&tcp->tcp_xmit_head); 7829 if (tcp->tcp_snd_zcopy_aware) 7830 tcp_zcopy_notify(tcp); 7831 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7832 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7833 mutex_enter(&tcp->tcp_non_sq_lock); 7834 if (tcp->tcp_flow_stopped && 7835 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7836 tcp_clrqfull(tcp); 7837 } 7838 mutex_exit(&tcp->tcp_non_sq_lock); 7839 tcp_close_mpp(&tcp->tcp_reass_head); 7840 tcp->tcp_reass_tail = NULL; 7841 if (tcp->tcp_rcv_list != NULL) { 7842 /* Free b_next chain */ 7843 tcp_close_mpp(&tcp->tcp_rcv_list); 7844 tcp->tcp_rcv_last_head = NULL; 7845 tcp->tcp_rcv_last_tail = NULL; 7846 tcp->tcp_rcv_cnt = 0; 7847 } 7848 tcp->tcp_rcv_last_tail = NULL; 7849 7850 if ((mp = tcp->tcp_urp_mp) != NULL) { 7851 freemsg(mp); 7852 tcp->tcp_urp_mp = NULL; 7853 } 7854 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7855 freemsg(mp); 7856 tcp->tcp_urp_mark_mp = NULL; 7857 } 7858 if (tcp->tcp_fused_sigurg_mp != NULL) { 7859 freeb(tcp->tcp_fused_sigurg_mp); 7860 tcp->tcp_fused_sigurg_mp = NULL; 7861 } 7862 7863 /* 7864 * Following is a union with two members which are 7865 * identical types and size so the following cleanup 7866 * is enough. 7867 */ 7868 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7869 7870 CL_INET_DISCONNECT(tcp); 7871 7872 /* 7873 * The connection can't be on the tcp_time_wait_head list 7874 * since it is not detached. 7875 */ 7876 ASSERT(tcp->tcp_time_wait_next == NULL); 7877 ASSERT(tcp->tcp_time_wait_prev == NULL); 7878 ASSERT(tcp->tcp_time_wait_expire == 0); 7879 7880 if (tcp->tcp_kssl_pending) { 7881 tcp->tcp_kssl_pending = B_FALSE; 7882 7883 /* Don't reset if the initialized by bind. */ 7884 if (tcp->tcp_kssl_ent != NULL) { 7885 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7886 KSSL_NO_PROXY); 7887 } 7888 } 7889 if (tcp->tcp_kssl_ctx != NULL) { 7890 kssl_release_ctx(tcp->tcp_kssl_ctx); 7891 tcp->tcp_kssl_ctx = NULL; 7892 } 7893 7894 /* 7895 * Reset/preserve other values 7896 */ 7897 tcp_reinit_values(tcp); 7898 ipcl_hash_remove(tcp->tcp_connp); 7899 conn_delete_ire(tcp->tcp_connp, NULL); 7900 tcp_ipsec_cleanup(tcp); 7901 7902 if (tcp->tcp_conn_req_max != 0) { 7903 /* 7904 * This is the case when a TLI program uses the same 7905 * transport end point to accept a connection. This 7906 * makes the TCP both a listener and acceptor. When 7907 * this connection is closed, we need to set the state 7908 * back to TCPS_LISTEN. Make sure that the eager list 7909 * is reinitialized. 7910 * 7911 * Note that this stream is still bound to the four 7912 * tuples of the previous connection in IP. If a new 7913 * SYN with different foreign address comes in, IP will 7914 * not find it and will send it to the global queue. In 7915 * the global queue, TCP will do a tcp_lookup_listener() 7916 * to find this stream. This works because this stream 7917 * is only removed from connected hash. 7918 * 7919 */ 7920 tcp->tcp_state = TCPS_LISTEN; 7921 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7922 tcp->tcp_eager_next_drop_q0 = tcp; 7923 tcp->tcp_eager_prev_drop_q0 = tcp; 7924 tcp->tcp_connp->conn_recv = tcp_conn_request; 7925 if (tcp->tcp_family == AF_INET6) { 7926 ASSERT(tcp->tcp_connp->conn_af_isv6); 7927 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7928 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7929 } else { 7930 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7931 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7932 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7933 } 7934 } else { 7935 tcp->tcp_state = TCPS_BOUND; 7936 } 7937 7938 /* 7939 * Initialize to default values 7940 * Can't fail since enough header template space already allocated 7941 * at open(). 7942 */ 7943 err = tcp_init_values(tcp); 7944 ASSERT(err == 0); 7945 /* Restore state in tcp_tcph */ 7946 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7947 if (tcp->tcp_ipversion == IPV4_VERSION) 7948 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7949 else 7950 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7951 /* 7952 * Copy of the src addr. in tcp_t is needed in tcp_t 7953 * since the lookup funcs can only lookup on tcp_t 7954 */ 7955 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7956 7957 ASSERT(tcp->tcp_ptpbhn != NULL); 7958 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7959 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7960 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7961 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7962 } 7963 7964 /* 7965 * Force values to zero that need be zero. 7966 * Do not touch values asociated with the BOUND or LISTEN state 7967 * since the connection will end up in that state after the reinit. 7968 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7969 * structure! 7970 */ 7971 static void 7972 tcp_reinit_values(tcp) 7973 tcp_t *tcp; 7974 { 7975 tcp_stack_t *tcps = tcp->tcp_tcps; 7976 7977 #ifndef lint 7978 #define DONTCARE(x) 7979 #define PRESERVE(x) 7980 #else 7981 #define DONTCARE(x) ((x) = (x)) 7982 #define PRESERVE(x) ((x) = (x)) 7983 #endif /* lint */ 7984 7985 PRESERVE(tcp->tcp_bind_hash); 7986 PRESERVE(tcp->tcp_ptpbhn); 7987 PRESERVE(tcp->tcp_acceptor_hash); 7988 PRESERVE(tcp->tcp_ptpahn); 7989 7990 /* Should be ASSERT NULL on these with new code! */ 7991 ASSERT(tcp->tcp_time_wait_next == NULL); 7992 ASSERT(tcp->tcp_time_wait_prev == NULL); 7993 ASSERT(tcp->tcp_time_wait_expire == 0); 7994 PRESERVE(tcp->tcp_state); 7995 PRESERVE(tcp->tcp_rq); 7996 PRESERVE(tcp->tcp_wq); 7997 7998 ASSERT(tcp->tcp_xmit_head == NULL); 7999 ASSERT(tcp->tcp_xmit_last == NULL); 8000 ASSERT(tcp->tcp_unsent == 0); 8001 ASSERT(tcp->tcp_xmit_tail == NULL); 8002 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 8003 8004 tcp->tcp_snxt = 0; /* Displayed in mib */ 8005 tcp->tcp_suna = 0; /* Displayed in mib */ 8006 tcp->tcp_swnd = 0; 8007 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 8008 8009 ASSERT(tcp->tcp_ibsegs == 0); 8010 ASSERT(tcp->tcp_obsegs == 0); 8011 8012 if (tcp->tcp_iphc != NULL) { 8013 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8014 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 8015 } 8016 8017 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 8018 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 8019 DONTCARE(tcp->tcp_ipha); 8020 DONTCARE(tcp->tcp_ip6h); 8021 DONTCARE(tcp->tcp_ip_hdr_len); 8022 DONTCARE(tcp->tcp_tcph); 8023 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 8024 tcp->tcp_valid_bits = 0; 8025 8026 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 8027 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 8028 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 8029 tcp->tcp_last_rcv_lbolt = 0; 8030 8031 tcp->tcp_init_cwnd = 0; 8032 8033 tcp->tcp_urp_last_valid = 0; 8034 tcp->tcp_hard_binding = 0; 8035 tcp->tcp_hard_bound = 0; 8036 PRESERVE(tcp->tcp_cred); 8037 PRESERVE(tcp->tcp_cpid); 8038 PRESERVE(tcp->tcp_open_time); 8039 PRESERVE(tcp->tcp_exclbind); 8040 8041 tcp->tcp_fin_acked = 0; 8042 tcp->tcp_fin_rcvd = 0; 8043 tcp->tcp_fin_sent = 0; 8044 tcp->tcp_ordrel_done = 0; 8045 8046 tcp->tcp_debug = 0; 8047 tcp->tcp_dontroute = 0; 8048 tcp->tcp_broadcast = 0; 8049 8050 tcp->tcp_useloopback = 0; 8051 tcp->tcp_reuseaddr = 0; 8052 tcp->tcp_oobinline = 0; 8053 tcp->tcp_dgram_errind = 0; 8054 8055 tcp->tcp_detached = 0; 8056 tcp->tcp_bind_pending = 0; 8057 tcp->tcp_unbind_pending = 0; 8058 tcp->tcp_deferred_clean_death = 0; 8059 8060 tcp->tcp_snd_ws_ok = B_FALSE; 8061 tcp->tcp_snd_ts_ok = B_FALSE; 8062 tcp->tcp_linger = 0; 8063 tcp->tcp_ka_enabled = 0; 8064 tcp->tcp_zero_win_probe = 0; 8065 8066 tcp->tcp_loopback = 0; 8067 tcp->tcp_localnet = 0; 8068 tcp->tcp_syn_defense = 0; 8069 tcp->tcp_set_timer = 0; 8070 8071 tcp->tcp_active_open = 0; 8072 ASSERT(tcp->tcp_timeout == B_FALSE); 8073 tcp->tcp_rexmit = B_FALSE; 8074 tcp->tcp_xmit_zc_clean = B_FALSE; 8075 8076 tcp->tcp_snd_sack_ok = B_FALSE; 8077 PRESERVE(tcp->tcp_recvdstaddr); 8078 tcp->tcp_hwcksum = B_FALSE; 8079 8080 tcp->tcp_ire_ill_check_done = B_FALSE; 8081 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8082 8083 tcp->tcp_mdt = B_FALSE; 8084 tcp->tcp_mdt_hdr_head = 0; 8085 tcp->tcp_mdt_hdr_tail = 0; 8086 8087 tcp->tcp_conn_def_q0 = 0; 8088 tcp->tcp_ip_forward_progress = B_FALSE; 8089 tcp->tcp_anon_priv_bind = 0; 8090 tcp->tcp_ecn_ok = B_FALSE; 8091 8092 tcp->tcp_cwr = B_FALSE; 8093 tcp->tcp_ecn_echo_on = B_FALSE; 8094 8095 if (tcp->tcp_sack_info != NULL) { 8096 if (tcp->tcp_notsack_list != NULL) { 8097 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8098 } 8099 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8100 tcp->tcp_sack_info = NULL; 8101 } 8102 8103 tcp->tcp_rcv_ws = 0; 8104 tcp->tcp_snd_ws = 0; 8105 tcp->tcp_ts_recent = 0; 8106 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8107 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8108 tcp->tcp_if_mtu = 0; 8109 8110 ASSERT(tcp->tcp_reass_head == NULL); 8111 ASSERT(tcp->tcp_reass_tail == NULL); 8112 8113 tcp->tcp_cwnd_cnt = 0; 8114 8115 ASSERT(tcp->tcp_rcv_list == NULL); 8116 ASSERT(tcp->tcp_rcv_last_head == NULL); 8117 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8118 ASSERT(tcp->tcp_rcv_cnt == 0); 8119 8120 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8121 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8122 tcp->tcp_csuna = 0; 8123 8124 tcp->tcp_rto = 0; /* Displayed in MIB */ 8125 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8126 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8127 tcp->tcp_rtt_update = 0; 8128 8129 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8130 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8131 8132 tcp->tcp_rack = 0; /* Displayed in mib */ 8133 tcp->tcp_rack_cnt = 0; 8134 tcp->tcp_rack_cur_max = 0; 8135 tcp->tcp_rack_abs_max = 0; 8136 8137 tcp->tcp_max_swnd = 0; 8138 8139 ASSERT(tcp->tcp_listener == NULL); 8140 8141 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8142 8143 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8144 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8145 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8146 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8147 8148 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8149 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8150 PRESERVE(tcp->tcp_conn_req_max); 8151 PRESERVE(tcp->tcp_conn_req_seqnum); 8152 8153 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8154 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8155 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8156 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8157 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8158 8159 tcp->tcp_lingertime = 0; 8160 8161 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8162 ASSERT(tcp->tcp_urp_mp == NULL); 8163 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8164 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8165 8166 ASSERT(tcp->tcp_eager_next_q == NULL); 8167 ASSERT(tcp->tcp_eager_last_q == NULL); 8168 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8169 tcp->tcp_eager_prev_q0 == NULL) || 8170 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8171 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8172 8173 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8174 tcp->tcp_eager_prev_drop_q0 == NULL) || 8175 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8176 8177 tcp->tcp_client_errno = 0; 8178 8179 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8180 8181 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8182 8183 PRESERVE(tcp->tcp_bound_source_v6); 8184 tcp->tcp_last_sent_len = 0; 8185 tcp->tcp_dupack_cnt = 0; 8186 8187 tcp->tcp_fport = 0; /* Displayed in MIB */ 8188 PRESERVE(tcp->tcp_lport); 8189 8190 PRESERVE(tcp->tcp_acceptor_lockp); 8191 8192 ASSERT(tcp->tcp_ordrelid == 0); 8193 PRESERVE(tcp->tcp_acceptor_id); 8194 DONTCARE(tcp->tcp_ipsec_overhead); 8195 8196 /* 8197 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8198 * in tcp structure and now tracing), Re-initialize all 8199 * members of tcp_traceinfo. 8200 */ 8201 if (tcp->tcp_tracebuf != NULL) { 8202 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8203 } 8204 8205 PRESERVE(tcp->tcp_family); 8206 if (tcp->tcp_family == AF_INET6) { 8207 tcp->tcp_ipversion = IPV6_VERSION; 8208 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8209 } else { 8210 tcp->tcp_ipversion = IPV4_VERSION; 8211 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8212 } 8213 8214 tcp->tcp_bound_if = 0; 8215 tcp->tcp_ipv6_recvancillary = 0; 8216 tcp->tcp_recvifindex = 0; 8217 tcp->tcp_recvhops = 0; 8218 tcp->tcp_closed = 0; 8219 tcp->tcp_cleandeathtag = 0; 8220 if (tcp->tcp_hopopts != NULL) { 8221 mi_free(tcp->tcp_hopopts); 8222 tcp->tcp_hopopts = NULL; 8223 tcp->tcp_hopoptslen = 0; 8224 } 8225 ASSERT(tcp->tcp_hopoptslen == 0); 8226 if (tcp->tcp_dstopts != NULL) { 8227 mi_free(tcp->tcp_dstopts); 8228 tcp->tcp_dstopts = NULL; 8229 tcp->tcp_dstoptslen = 0; 8230 } 8231 ASSERT(tcp->tcp_dstoptslen == 0); 8232 if (tcp->tcp_rtdstopts != NULL) { 8233 mi_free(tcp->tcp_rtdstopts); 8234 tcp->tcp_rtdstopts = NULL; 8235 tcp->tcp_rtdstoptslen = 0; 8236 } 8237 ASSERT(tcp->tcp_rtdstoptslen == 0); 8238 if (tcp->tcp_rthdr != NULL) { 8239 mi_free(tcp->tcp_rthdr); 8240 tcp->tcp_rthdr = NULL; 8241 tcp->tcp_rthdrlen = 0; 8242 } 8243 ASSERT(tcp->tcp_rthdrlen == 0); 8244 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8245 8246 /* Reset fusion-related fields */ 8247 tcp->tcp_fused = B_FALSE; 8248 tcp->tcp_unfusable = B_FALSE; 8249 tcp->tcp_fused_sigurg = B_FALSE; 8250 tcp->tcp_direct_sockfs = B_FALSE; 8251 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8252 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8253 tcp->tcp_loopback_peer = NULL; 8254 tcp->tcp_fuse_rcv_hiwater = 0; 8255 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8256 tcp->tcp_fuse_rcv_unread_cnt = 0; 8257 8258 tcp->tcp_lso = B_FALSE; 8259 8260 tcp->tcp_in_ack_unsent = 0; 8261 tcp->tcp_cork = B_FALSE; 8262 tcp->tcp_tconnind_started = B_FALSE; 8263 8264 PRESERVE(tcp->tcp_squeue_bytes); 8265 8266 ASSERT(tcp->tcp_kssl_ctx == NULL); 8267 ASSERT(!tcp->tcp_kssl_pending); 8268 PRESERVE(tcp->tcp_kssl_ent); 8269 8270 /* Sodirect */ 8271 tcp->tcp_sodirect = NULL; 8272 8273 tcp->tcp_closemp_used = B_FALSE; 8274 8275 #ifdef DEBUG 8276 DONTCARE(tcp->tcmp_stk[0]); 8277 #endif 8278 8279 8280 #undef DONTCARE 8281 #undef PRESERVE 8282 } 8283 8284 /* 8285 * Allocate necessary resources and initialize state vector. 8286 * Guaranteed not to fail so that when an error is returned, 8287 * the caller doesn't need to do any additional cleanup. 8288 */ 8289 int 8290 tcp_init(tcp_t *tcp, queue_t *q) 8291 { 8292 int err; 8293 8294 tcp->tcp_rq = q; 8295 tcp->tcp_wq = WR(q); 8296 tcp->tcp_state = TCPS_IDLE; 8297 if ((err = tcp_init_values(tcp)) != 0) 8298 tcp_timers_stop(tcp); 8299 return (err); 8300 } 8301 8302 static int 8303 tcp_init_values(tcp_t *tcp) 8304 { 8305 int err; 8306 tcp_stack_t *tcps = tcp->tcp_tcps; 8307 8308 ASSERT((tcp->tcp_family == AF_INET && 8309 tcp->tcp_ipversion == IPV4_VERSION) || 8310 (tcp->tcp_family == AF_INET6 && 8311 (tcp->tcp_ipversion == IPV4_VERSION || 8312 tcp->tcp_ipversion == IPV6_VERSION))); 8313 8314 /* 8315 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8316 * will be close to tcp_rexmit_interval_initial. By doing this, we 8317 * allow the algorithm to adjust slowly to large fluctuations of RTT 8318 * during first few transmissions of a connection as seen in slow 8319 * links. 8320 */ 8321 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8322 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8323 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8324 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8325 tcps->tcps_conn_grace_period; 8326 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8327 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8328 tcp->tcp_timer_backoff = 0; 8329 tcp->tcp_ms_we_have_waited = 0; 8330 tcp->tcp_last_recv_time = lbolt; 8331 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8332 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8333 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8334 8335 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8336 8337 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8338 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8339 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8340 /* 8341 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8342 * passive open. 8343 */ 8344 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8345 8346 tcp->tcp_naglim = tcps->tcps_naglim_def; 8347 8348 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8349 8350 tcp->tcp_mdt_hdr_head = 0; 8351 tcp->tcp_mdt_hdr_tail = 0; 8352 8353 /* Reset fusion-related fields */ 8354 tcp->tcp_fused = B_FALSE; 8355 tcp->tcp_unfusable = B_FALSE; 8356 tcp->tcp_fused_sigurg = B_FALSE; 8357 tcp->tcp_direct_sockfs = B_FALSE; 8358 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8359 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8360 tcp->tcp_loopback_peer = NULL; 8361 tcp->tcp_fuse_rcv_hiwater = 0; 8362 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8363 tcp->tcp_fuse_rcv_unread_cnt = 0; 8364 8365 /* Sodirect */ 8366 tcp->tcp_sodirect = NULL; 8367 8368 /* Initialize the header template */ 8369 if (tcp->tcp_ipversion == IPV4_VERSION) { 8370 err = tcp_header_init_ipv4(tcp); 8371 } else { 8372 err = tcp_header_init_ipv6(tcp); 8373 } 8374 if (err) 8375 return (err); 8376 8377 /* 8378 * Init the window scale to the max so tcp_rwnd_set() won't pare 8379 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8380 */ 8381 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8382 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8383 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8384 8385 tcp->tcp_cork = B_FALSE; 8386 /* 8387 * Init the tcp_debug option. This value determines whether TCP 8388 * calls strlog() to print out debug messages. Doing this 8389 * initialization here means that this value is not inherited thru 8390 * tcp_reinit(). 8391 */ 8392 tcp->tcp_debug = tcps->tcps_dbg; 8393 8394 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8395 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8396 8397 return (0); 8398 } 8399 8400 /* 8401 * Initialize the IPv4 header. Loses any record of any IP options. 8402 */ 8403 static int 8404 tcp_header_init_ipv4(tcp_t *tcp) 8405 { 8406 tcph_t *tcph; 8407 uint32_t sum; 8408 conn_t *connp; 8409 tcp_stack_t *tcps = tcp->tcp_tcps; 8410 8411 /* 8412 * This is a simple initialization. If there's 8413 * already a template, it should never be too small, 8414 * so reuse it. Otherwise, allocate space for the new one. 8415 */ 8416 if (tcp->tcp_iphc == NULL) { 8417 ASSERT(tcp->tcp_iphc_len == 0); 8418 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8419 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8420 if (tcp->tcp_iphc == NULL) { 8421 tcp->tcp_iphc_len = 0; 8422 return (ENOMEM); 8423 } 8424 } 8425 8426 /* options are gone; may need a new label */ 8427 connp = tcp->tcp_connp; 8428 connp->conn_mlp_type = mlptSingle; 8429 connp->conn_ulp_labeled = !is_system_labeled(); 8430 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8431 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8432 tcp->tcp_ip6h = NULL; 8433 tcp->tcp_ipversion = IPV4_VERSION; 8434 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8435 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8436 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8437 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8438 tcp->tcp_ipha->ipha_version_and_hdr_length 8439 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8440 tcp->tcp_ipha->ipha_ident = 0; 8441 8442 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8443 tcp->tcp_tos = 0; 8444 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8445 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8446 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8447 8448 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8449 tcp->tcp_tcph = tcph; 8450 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8451 /* 8452 * IP wants our header length in the checksum field to 8453 * allow it to perform a single pseudo-header+checksum 8454 * calculation on behalf of TCP. 8455 * Include the adjustment for a source route once IP_OPTIONS is set. 8456 */ 8457 sum = sizeof (tcph_t) + tcp->tcp_sum; 8458 sum = (sum >> 16) + (sum & 0xFFFF); 8459 U16_TO_ABE16(sum, tcph->th_sum); 8460 return (0); 8461 } 8462 8463 /* 8464 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8465 */ 8466 static int 8467 tcp_header_init_ipv6(tcp_t *tcp) 8468 { 8469 tcph_t *tcph; 8470 uint32_t sum; 8471 conn_t *connp; 8472 tcp_stack_t *tcps = tcp->tcp_tcps; 8473 8474 /* 8475 * This is a simple initialization. If there's 8476 * already a template, it should never be too small, 8477 * so reuse it. Otherwise, allocate space for the new one. 8478 * Ensure that there is enough space to "downgrade" the tcp_t 8479 * to an IPv4 tcp_t. This requires having space for a full load 8480 * of IPv4 options, as well as a full load of TCP options 8481 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8482 * than a v6 header and a TCP header with a full load of TCP options 8483 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8484 * We want to avoid reallocation in the "downgraded" case when 8485 * processing outbound IPv4 options. 8486 */ 8487 if (tcp->tcp_iphc == NULL) { 8488 ASSERT(tcp->tcp_iphc_len == 0); 8489 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8490 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8491 if (tcp->tcp_iphc == NULL) { 8492 tcp->tcp_iphc_len = 0; 8493 return (ENOMEM); 8494 } 8495 } 8496 8497 /* options are gone; may need a new label */ 8498 connp = tcp->tcp_connp; 8499 connp->conn_mlp_type = mlptSingle; 8500 connp->conn_ulp_labeled = !is_system_labeled(); 8501 8502 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8503 tcp->tcp_ipversion = IPV6_VERSION; 8504 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8505 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8506 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8507 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8508 tcp->tcp_ipha = NULL; 8509 8510 /* Initialize the header template */ 8511 8512 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8513 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8514 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8515 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8516 8517 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8518 tcp->tcp_tcph = tcph; 8519 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8520 /* 8521 * IP wants our header length in the checksum field to 8522 * allow it to perform a single psuedo-header+checksum 8523 * calculation on behalf of TCP. 8524 * Include the adjustment for a source route when IPV6_RTHDR is set. 8525 */ 8526 sum = sizeof (tcph_t) + tcp->tcp_sum; 8527 sum = (sum >> 16) + (sum & 0xFFFF); 8528 U16_TO_ABE16(sum, tcph->th_sum); 8529 return (0); 8530 } 8531 8532 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8533 #define ICMP_MIN_TCP_HDR 8 8534 8535 /* 8536 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8537 * passed up by IP. The message is always received on the correct tcp_t. 8538 * Assumes that IP has pulled up everything up to and including the ICMP header. 8539 */ 8540 void 8541 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8542 { 8543 icmph_t *icmph; 8544 ipha_t *ipha; 8545 int iph_hdr_length; 8546 tcph_t *tcph; 8547 boolean_t ipsec_mctl = B_FALSE; 8548 boolean_t secure; 8549 mblk_t *first_mp = mp; 8550 uint32_t new_mss; 8551 uint32_t ratio; 8552 size_t mp_size = MBLKL(mp); 8553 uint32_t seg_seq; 8554 tcp_stack_t *tcps = tcp->tcp_tcps; 8555 8556 /* Assume IP provides aligned packets - otherwise toss */ 8557 if (!OK_32PTR(mp->b_rptr)) { 8558 freemsg(mp); 8559 return; 8560 } 8561 8562 /* 8563 * Since ICMP errors are normal data marked with M_CTL when sent 8564 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8565 * packets starting with an ipsec_info_t, see ipsec_info.h. 8566 */ 8567 if ((mp_size == sizeof (ipsec_info_t)) && 8568 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8569 ASSERT(mp->b_cont != NULL); 8570 mp = mp->b_cont; 8571 /* IP should have done this */ 8572 ASSERT(OK_32PTR(mp->b_rptr)); 8573 mp_size = MBLKL(mp); 8574 ipsec_mctl = B_TRUE; 8575 } 8576 8577 /* 8578 * Verify that we have a complete outer IP header. If not, drop it. 8579 */ 8580 if (mp_size < sizeof (ipha_t)) { 8581 noticmpv4: 8582 freemsg(first_mp); 8583 return; 8584 } 8585 8586 ipha = (ipha_t *)mp->b_rptr; 8587 /* 8588 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8589 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8590 */ 8591 switch (IPH_HDR_VERSION(ipha)) { 8592 case IPV6_VERSION: 8593 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8594 return; 8595 case IPV4_VERSION: 8596 break; 8597 default: 8598 goto noticmpv4; 8599 } 8600 8601 /* Skip past the outer IP and ICMP headers */ 8602 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8603 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8604 /* 8605 * If we don't have the correct outer IP header length or if the ULP 8606 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8607 * send it upstream. 8608 */ 8609 if (iph_hdr_length < sizeof (ipha_t) || 8610 ipha->ipha_protocol != IPPROTO_ICMP || 8611 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8612 goto noticmpv4; 8613 } 8614 ipha = (ipha_t *)&icmph[1]; 8615 8616 /* Skip past the inner IP and find the ULP header */ 8617 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8618 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8619 /* 8620 * If we don't have the correct inner IP header length or if the ULP 8621 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8622 * bytes of TCP header, drop it. 8623 */ 8624 if (iph_hdr_length < sizeof (ipha_t) || 8625 ipha->ipha_protocol != IPPROTO_TCP || 8626 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8627 goto noticmpv4; 8628 } 8629 8630 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8631 if (ipsec_mctl) { 8632 secure = ipsec_in_is_secure(first_mp); 8633 } else { 8634 secure = B_FALSE; 8635 } 8636 if (secure) { 8637 /* 8638 * If we are willing to accept this in clear 8639 * we don't have to verify policy. 8640 */ 8641 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8642 if (!tcp_check_policy(tcp, first_mp, 8643 ipha, NULL, secure, ipsec_mctl)) { 8644 /* 8645 * tcp_check_policy called 8646 * ip_drop_packet() on failure. 8647 */ 8648 return; 8649 } 8650 } 8651 } 8652 } else if (ipsec_mctl) { 8653 /* 8654 * This is a hard_bound connection. IP has already 8655 * verified policy. We don't have to do it again. 8656 */ 8657 freeb(first_mp); 8658 first_mp = mp; 8659 ipsec_mctl = B_FALSE; 8660 } 8661 8662 seg_seq = ABE32_TO_U32(tcph->th_seq); 8663 /* 8664 * TCP SHOULD check that the TCP sequence number contained in 8665 * payload of the ICMP error message is within the range 8666 * SND.UNA <= SEG.SEQ < SND.NXT. 8667 */ 8668 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8669 /* 8670 * If the ICMP message is bogus, should we kill the 8671 * connection, or should we just drop the bogus ICMP 8672 * message? It would probably make more sense to just 8673 * drop the message so that if this one managed to get 8674 * in, the real connection should not suffer. 8675 */ 8676 goto noticmpv4; 8677 } 8678 8679 switch (icmph->icmph_type) { 8680 case ICMP_DEST_UNREACHABLE: 8681 switch (icmph->icmph_code) { 8682 case ICMP_FRAGMENTATION_NEEDED: 8683 /* 8684 * Reduce the MSS based on the new MTU. This will 8685 * eliminate any fragmentation locally. 8686 * N.B. There may well be some funny side-effects on 8687 * the local send policy and the remote receive policy. 8688 * Pending further research, we provide 8689 * tcp_ignore_path_mtu just in case this proves 8690 * disastrous somewhere. 8691 * 8692 * After updating the MSS, retransmit part of the 8693 * dropped segment using the new mss by calling 8694 * tcp_wput_data(). Need to adjust all those 8695 * params to make sure tcp_wput_data() work properly. 8696 */ 8697 if (tcps->tcps_ignore_path_mtu) 8698 break; 8699 8700 /* 8701 * Decrease the MSS by time stamp options 8702 * IP options and IPSEC options. tcp_hdr_len 8703 * includes time stamp option and IP option 8704 * length. 8705 */ 8706 8707 new_mss = ntohs(icmph->icmph_du_mtu) - 8708 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8709 8710 /* 8711 * Only update the MSS if the new one is 8712 * smaller than the previous one. This is 8713 * to avoid problems when getting multiple 8714 * ICMP errors for the same MTU. 8715 */ 8716 if (new_mss >= tcp->tcp_mss) 8717 break; 8718 8719 /* 8720 * Stop doing PMTU if new_mss is less than 68 8721 * or less than tcp_mss_min. 8722 * The value 68 comes from rfc 1191. 8723 */ 8724 if (new_mss < MAX(68, tcps->tcps_mss_min)) 8725 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8726 0; 8727 8728 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8729 ASSERT(ratio >= 1); 8730 tcp_mss_set(tcp, new_mss, B_TRUE); 8731 8732 /* 8733 * Make sure we have something to 8734 * send. 8735 */ 8736 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8737 (tcp->tcp_xmit_head != NULL)) { 8738 /* 8739 * Shrink tcp_cwnd in 8740 * proportion to the old MSS/new MSS. 8741 */ 8742 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8743 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8744 (tcp->tcp_unsent == 0)) { 8745 tcp->tcp_rexmit_max = tcp->tcp_fss; 8746 } else { 8747 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8748 } 8749 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8750 tcp->tcp_rexmit = B_TRUE; 8751 tcp->tcp_dupack_cnt = 0; 8752 tcp->tcp_snd_burst = TCP_CWND_SS; 8753 tcp_ss_rexmit(tcp); 8754 } 8755 break; 8756 case ICMP_PORT_UNREACHABLE: 8757 case ICMP_PROTOCOL_UNREACHABLE: 8758 switch (tcp->tcp_state) { 8759 case TCPS_SYN_SENT: 8760 case TCPS_SYN_RCVD: 8761 /* 8762 * ICMP can snipe away incipient 8763 * TCP connections as long as 8764 * seq number is same as initial 8765 * send seq number. 8766 */ 8767 if (seg_seq == tcp->tcp_iss) { 8768 (void) tcp_clean_death(tcp, 8769 ECONNREFUSED, 6); 8770 } 8771 break; 8772 } 8773 break; 8774 case ICMP_HOST_UNREACHABLE: 8775 case ICMP_NET_UNREACHABLE: 8776 /* Record the error in case we finally time out. */ 8777 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8778 tcp->tcp_client_errno = EHOSTUNREACH; 8779 else 8780 tcp->tcp_client_errno = ENETUNREACH; 8781 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8782 if (tcp->tcp_listener != NULL && 8783 tcp->tcp_listener->tcp_syn_defense) { 8784 /* 8785 * Ditch the half-open connection if we 8786 * suspect a SYN attack is under way. 8787 */ 8788 tcp_ip_ire_mark_advice(tcp); 8789 (void) tcp_clean_death(tcp, 8790 tcp->tcp_client_errno, 7); 8791 } 8792 } 8793 break; 8794 default: 8795 break; 8796 } 8797 break; 8798 case ICMP_SOURCE_QUENCH: { 8799 /* 8800 * use a global boolean to control 8801 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8802 * The default is false. 8803 */ 8804 if (tcp_icmp_source_quench) { 8805 /* 8806 * Reduce the sending rate as if we got a 8807 * retransmit timeout 8808 */ 8809 uint32_t npkt; 8810 8811 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8812 tcp->tcp_mss; 8813 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8814 tcp->tcp_cwnd = tcp->tcp_mss; 8815 tcp->tcp_cwnd_cnt = 0; 8816 } 8817 break; 8818 } 8819 } 8820 freemsg(first_mp); 8821 } 8822 8823 /* 8824 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8825 * error messages passed up by IP. 8826 * Assumes that IP has pulled up all the extension headers as well 8827 * as the ICMPv6 header. 8828 */ 8829 static void 8830 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8831 { 8832 icmp6_t *icmp6; 8833 ip6_t *ip6h; 8834 uint16_t iph_hdr_length; 8835 tcpha_t *tcpha; 8836 uint8_t *nexthdrp; 8837 uint32_t new_mss; 8838 uint32_t ratio; 8839 boolean_t secure; 8840 mblk_t *first_mp = mp; 8841 size_t mp_size; 8842 uint32_t seg_seq; 8843 tcp_stack_t *tcps = tcp->tcp_tcps; 8844 8845 /* 8846 * The caller has determined if this is an IPSEC_IN packet and 8847 * set ipsec_mctl appropriately (see tcp_icmp_error). 8848 */ 8849 if (ipsec_mctl) 8850 mp = mp->b_cont; 8851 8852 mp_size = MBLKL(mp); 8853 8854 /* 8855 * Verify that we have a complete IP header. If not, send it upstream. 8856 */ 8857 if (mp_size < sizeof (ip6_t)) { 8858 noticmpv6: 8859 freemsg(first_mp); 8860 return; 8861 } 8862 8863 /* 8864 * Verify this is an ICMPV6 packet, else send it upstream. 8865 */ 8866 ip6h = (ip6_t *)mp->b_rptr; 8867 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8868 iph_hdr_length = IPV6_HDR_LEN; 8869 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8870 &nexthdrp) || 8871 *nexthdrp != IPPROTO_ICMPV6) { 8872 goto noticmpv6; 8873 } 8874 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8875 ip6h = (ip6_t *)&icmp6[1]; 8876 /* 8877 * Verify if we have a complete ICMP and inner IP header. 8878 */ 8879 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8880 goto noticmpv6; 8881 8882 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8883 goto noticmpv6; 8884 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8885 /* 8886 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8887 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8888 * packet. 8889 */ 8890 if ((*nexthdrp != IPPROTO_TCP) || 8891 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8892 goto noticmpv6; 8893 } 8894 8895 /* 8896 * ICMP errors come on the right queue or come on 8897 * listener/global queue for detached connections and 8898 * get switched to the right queue. If it comes on the 8899 * right queue, policy check has already been done by IP 8900 * and thus free the first_mp without verifying the policy. 8901 * If it has come for a non-hard bound connection, we need 8902 * to verify policy as IP may not have done it. 8903 */ 8904 if (!tcp->tcp_hard_bound) { 8905 if (ipsec_mctl) { 8906 secure = ipsec_in_is_secure(first_mp); 8907 } else { 8908 secure = B_FALSE; 8909 } 8910 if (secure) { 8911 /* 8912 * If we are willing to accept this in clear 8913 * we don't have to verify policy. 8914 */ 8915 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8916 if (!tcp_check_policy(tcp, first_mp, 8917 NULL, ip6h, secure, ipsec_mctl)) { 8918 /* 8919 * tcp_check_policy called 8920 * ip_drop_packet() on failure. 8921 */ 8922 return; 8923 } 8924 } 8925 } 8926 } else if (ipsec_mctl) { 8927 /* 8928 * This is a hard_bound connection. IP has already 8929 * verified policy. We don't have to do it again. 8930 */ 8931 freeb(first_mp); 8932 first_mp = mp; 8933 ipsec_mctl = B_FALSE; 8934 } 8935 8936 seg_seq = ntohl(tcpha->tha_seq); 8937 /* 8938 * TCP SHOULD check that the TCP sequence number contained in 8939 * payload of the ICMP error message is within the range 8940 * SND.UNA <= SEG.SEQ < SND.NXT. 8941 */ 8942 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8943 /* 8944 * If the ICMP message is bogus, should we kill the 8945 * connection, or should we just drop the bogus ICMP 8946 * message? It would probably make more sense to just 8947 * drop the message so that if this one managed to get 8948 * in, the real connection should not suffer. 8949 */ 8950 goto noticmpv6; 8951 } 8952 8953 switch (icmp6->icmp6_type) { 8954 case ICMP6_PACKET_TOO_BIG: 8955 /* 8956 * Reduce the MSS based on the new MTU. This will 8957 * eliminate any fragmentation locally. 8958 * N.B. There may well be some funny side-effects on 8959 * the local send policy and the remote receive policy. 8960 * Pending further research, we provide 8961 * tcp_ignore_path_mtu just in case this proves 8962 * disastrous somewhere. 8963 * 8964 * After updating the MSS, retransmit part of the 8965 * dropped segment using the new mss by calling 8966 * tcp_wput_data(). Need to adjust all those 8967 * params to make sure tcp_wput_data() work properly. 8968 */ 8969 if (tcps->tcps_ignore_path_mtu) 8970 break; 8971 8972 /* 8973 * Decrease the MSS by time stamp options 8974 * IP options and IPSEC options. tcp_hdr_len 8975 * includes time stamp option and IP option 8976 * length. 8977 */ 8978 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8979 tcp->tcp_ipsec_overhead; 8980 8981 /* 8982 * Only update the MSS if the new one is 8983 * smaller than the previous one. This is 8984 * to avoid problems when getting multiple 8985 * ICMP errors for the same MTU. 8986 */ 8987 if (new_mss >= tcp->tcp_mss) 8988 break; 8989 8990 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8991 ASSERT(ratio >= 1); 8992 tcp_mss_set(tcp, new_mss, B_TRUE); 8993 8994 /* 8995 * Make sure we have something to 8996 * send. 8997 */ 8998 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8999 (tcp->tcp_xmit_head != NULL)) { 9000 /* 9001 * Shrink tcp_cwnd in 9002 * proportion to the old MSS/new MSS. 9003 */ 9004 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 9005 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 9006 (tcp->tcp_unsent == 0)) { 9007 tcp->tcp_rexmit_max = tcp->tcp_fss; 9008 } else { 9009 tcp->tcp_rexmit_max = tcp->tcp_snxt; 9010 } 9011 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 9012 tcp->tcp_rexmit = B_TRUE; 9013 tcp->tcp_dupack_cnt = 0; 9014 tcp->tcp_snd_burst = TCP_CWND_SS; 9015 tcp_ss_rexmit(tcp); 9016 } 9017 break; 9018 9019 case ICMP6_DST_UNREACH: 9020 switch (icmp6->icmp6_code) { 9021 case ICMP6_DST_UNREACH_NOPORT: 9022 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9023 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9024 (seg_seq == tcp->tcp_iss)) { 9025 (void) tcp_clean_death(tcp, 9026 ECONNREFUSED, 8); 9027 } 9028 break; 9029 9030 case ICMP6_DST_UNREACH_ADMIN: 9031 case ICMP6_DST_UNREACH_NOROUTE: 9032 case ICMP6_DST_UNREACH_BEYONDSCOPE: 9033 case ICMP6_DST_UNREACH_ADDR: 9034 /* Record the error in case we finally time out. */ 9035 tcp->tcp_client_errno = EHOSTUNREACH; 9036 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9037 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9038 (seg_seq == tcp->tcp_iss)) { 9039 if (tcp->tcp_listener != NULL && 9040 tcp->tcp_listener->tcp_syn_defense) { 9041 /* 9042 * Ditch the half-open connection if we 9043 * suspect a SYN attack is under way. 9044 */ 9045 tcp_ip_ire_mark_advice(tcp); 9046 (void) tcp_clean_death(tcp, 9047 tcp->tcp_client_errno, 9); 9048 } 9049 } 9050 9051 9052 break; 9053 default: 9054 break; 9055 } 9056 break; 9057 9058 case ICMP6_PARAM_PROB: 9059 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 9060 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 9061 (uchar_t *)ip6h + icmp6->icmp6_pptr == 9062 (uchar_t *)nexthdrp) { 9063 if (tcp->tcp_state == TCPS_SYN_SENT || 9064 tcp->tcp_state == TCPS_SYN_RCVD) { 9065 (void) tcp_clean_death(tcp, 9066 ECONNREFUSED, 10); 9067 } 9068 break; 9069 } 9070 break; 9071 9072 case ICMP6_TIME_EXCEEDED: 9073 default: 9074 break; 9075 } 9076 freemsg(first_mp); 9077 } 9078 9079 /* 9080 * IP recognizes seven kinds of bind requests: 9081 * 9082 * - A zero-length address binds only to the protocol number. 9083 * 9084 * - A 4-byte address is treated as a request to 9085 * validate that the address is a valid local IPv4 9086 * address, appropriate for an application to bind to. 9087 * IP does the verification, but does not make any note 9088 * of the address at this time. 9089 * 9090 * - A 16-byte address contains is treated as a request 9091 * to validate a local IPv6 address, as the 4-byte 9092 * address case above. 9093 * 9094 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9095 * use it for the inbound fanout of packets. 9096 * 9097 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9098 * use it for the inbound fanout of packets. 9099 * 9100 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9101 * information consisting of local and remote addresses 9102 * and ports. In this case, the addresses are both 9103 * validated as appropriate for this operation, and, if 9104 * so, the information is retained for use in the 9105 * inbound fanout. 9106 * 9107 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9108 * fanout information, like the 12-byte case above. 9109 * 9110 * IP will also fill in the IRE request mblk with information 9111 * regarding our peer. In all cases, we notify IP of our protocol 9112 * type by appending a single protocol byte to the bind request. 9113 */ 9114 static mblk_t * 9115 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9116 { 9117 char *cp; 9118 mblk_t *mp; 9119 struct T_bind_req *tbr; 9120 ipa_conn_t *ac; 9121 ipa6_conn_t *ac6; 9122 sin_t *sin; 9123 sin6_t *sin6; 9124 9125 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9126 ASSERT((tcp->tcp_family == AF_INET && 9127 tcp->tcp_ipversion == IPV4_VERSION) || 9128 (tcp->tcp_family == AF_INET6 && 9129 (tcp->tcp_ipversion == IPV4_VERSION || 9130 tcp->tcp_ipversion == IPV6_VERSION))); 9131 9132 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9133 if (!mp) 9134 return (mp); 9135 mp->b_datap->db_type = M_PROTO; 9136 tbr = (struct T_bind_req *)mp->b_rptr; 9137 tbr->PRIM_type = bind_prim; 9138 tbr->ADDR_offset = sizeof (*tbr); 9139 tbr->CONIND_number = 0; 9140 tbr->ADDR_length = addr_length; 9141 cp = (char *)&tbr[1]; 9142 switch (addr_length) { 9143 case sizeof (ipa_conn_t): 9144 ASSERT(tcp->tcp_family == AF_INET); 9145 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9146 9147 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9148 if (mp->b_cont == NULL) { 9149 freemsg(mp); 9150 return (NULL); 9151 } 9152 mp->b_cont->b_wptr += sizeof (ire_t); 9153 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9154 9155 /* cp known to be 32 bit aligned */ 9156 ac = (ipa_conn_t *)cp; 9157 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9158 ac->ac_faddr = tcp->tcp_remote; 9159 ac->ac_fport = tcp->tcp_fport; 9160 ac->ac_lport = tcp->tcp_lport; 9161 tcp->tcp_hard_binding = 1; 9162 break; 9163 9164 case sizeof (ipa6_conn_t): 9165 ASSERT(tcp->tcp_family == AF_INET6); 9166 9167 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9168 if (mp->b_cont == NULL) { 9169 freemsg(mp); 9170 return (NULL); 9171 } 9172 mp->b_cont->b_wptr += sizeof (ire_t); 9173 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9174 9175 /* cp known to be 32 bit aligned */ 9176 ac6 = (ipa6_conn_t *)cp; 9177 if (tcp->tcp_ipversion == IPV4_VERSION) { 9178 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9179 &ac6->ac6_laddr); 9180 } else { 9181 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9182 } 9183 ac6->ac6_faddr = tcp->tcp_remote_v6; 9184 ac6->ac6_fport = tcp->tcp_fport; 9185 ac6->ac6_lport = tcp->tcp_lport; 9186 tcp->tcp_hard_binding = 1; 9187 break; 9188 9189 case sizeof (sin_t): 9190 /* 9191 * NOTE: IPV6_ADDR_LEN also has same size. 9192 * Use family to discriminate. 9193 */ 9194 if (tcp->tcp_family == AF_INET) { 9195 sin = (sin_t *)cp; 9196 9197 *sin = sin_null; 9198 sin->sin_family = AF_INET; 9199 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9200 sin->sin_port = tcp->tcp_lport; 9201 break; 9202 } else { 9203 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9204 } 9205 break; 9206 9207 case sizeof (sin6_t): 9208 ASSERT(tcp->tcp_family == AF_INET6); 9209 sin6 = (sin6_t *)cp; 9210 9211 *sin6 = sin6_null; 9212 sin6->sin6_family = AF_INET6; 9213 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9214 sin6->sin6_port = tcp->tcp_lport; 9215 break; 9216 9217 case IP_ADDR_LEN: 9218 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9219 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9220 break; 9221 9222 } 9223 /* Add protocol number to end */ 9224 cp[addr_length] = (char)IPPROTO_TCP; 9225 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9226 return (mp); 9227 } 9228 9229 /* 9230 * Notify IP that we are having trouble with this connection. IP should 9231 * blow the IRE away and start over. 9232 */ 9233 static void 9234 tcp_ip_notify(tcp_t *tcp) 9235 { 9236 struct iocblk *iocp; 9237 ipid_t *ipid; 9238 mblk_t *mp; 9239 9240 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9241 if (tcp->tcp_ipversion == IPV6_VERSION) 9242 return; 9243 9244 mp = mkiocb(IP_IOCTL); 9245 if (mp == NULL) 9246 return; 9247 9248 iocp = (struct iocblk *)mp->b_rptr; 9249 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9250 9251 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9252 if (!mp->b_cont) { 9253 freeb(mp); 9254 return; 9255 } 9256 9257 ipid = (ipid_t *)mp->b_cont->b_rptr; 9258 mp->b_cont->b_wptr += iocp->ioc_count; 9259 bzero(ipid, sizeof (*ipid)); 9260 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9261 ipid->ipid_ire_type = IRE_CACHE; 9262 ipid->ipid_addr_offset = sizeof (ipid_t); 9263 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9264 /* 9265 * Note: in the case of source routing we want to blow away the 9266 * route to the first source route hop. 9267 */ 9268 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9269 sizeof (tcp->tcp_ipha->ipha_dst)); 9270 9271 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9272 } 9273 9274 /* Unlink and return any mblk that looks like it contains an ire */ 9275 static mblk_t * 9276 tcp_ire_mp(mblk_t *mp) 9277 { 9278 mblk_t *prev_mp; 9279 9280 for (;;) { 9281 prev_mp = mp; 9282 mp = mp->b_cont; 9283 if (mp == NULL) 9284 break; 9285 switch (DB_TYPE(mp)) { 9286 case IRE_DB_TYPE: 9287 case IRE_DB_REQ_TYPE: 9288 if (prev_mp != NULL) 9289 prev_mp->b_cont = mp->b_cont; 9290 mp->b_cont = NULL; 9291 return (mp); 9292 default: 9293 break; 9294 } 9295 } 9296 return (mp); 9297 } 9298 9299 /* 9300 * Timer callback routine for keepalive probe. We do a fake resend of 9301 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9302 * check to see if we have heard anything from the other end for the last 9303 * RTO period. If we have, set the timer to expire for another 9304 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9305 * RTO << 1 and check again when it expires. Keep exponentially increasing 9306 * the timeout if we have not heard from the other side. If for more than 9307 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9308 * kill the connection unless the keepalive abort threshold is 0. In 9309 * that case, we will probe "forever." 9310 */ 9311 static void 9312 tcp_keepalive_killer(void *arg) 9313 { 9314 mblk_t *mp; 9315 conn_t *connp = (conn_t *)arg; 9316 tcp_t *tcp = connp->conn_tcp; 9317 int32_t firetime; 9318 int32_t idletime; 9319 int32_t ka_intrvl; 9320 tcp_stack_t *tcps = tcp->tcp_tcps; 9321 9322 tcp->tcp_ka_tid = 0; 9323 9324 if (tcp->tcp_fused) 9325 return; 9326 9327 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9328 ka_intrvl = tcp->tcp_ka_interval; 9329 9330 /* 9331 * Keepalive probe should only be sent if the application has not 9332 * done a close on the connection. 9333 */ 9334 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9335 return; 9336 } 9337 /* Timer fired too early, restart it. */ 9338 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9339 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9340 MSEC_TO_TICK(ka_intrvl)); 9341 return; 9342 } 9343 9344 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9345 /* 9346 * If we have not heard from the other side for a long 9347 * time, kill the connection unless the keepalive abort 9348 * threshold is 0. In that case, we will probe "forever." 9349 */ 9350 if (tcp->tcp_ka_abort_thres != 0 && 9351 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9352 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9353 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9354 tcp->tcp_client_errno : ETIMEDOUT, 11); 9355 return; 9356 } 9357 9358 if (tcp->tcp_snxt == tcp->tcp_suna && 9359 idletime >= ka_intrvl) { 9360 /* Fake resend of last ACKed byte. */ 9361 mblk_t *mp1 = allocb(1, BPRI_LO); 9362 9363 if (mp1 != NULL) { 9364 *mp1->b_wptr++ = '\0'; 9365 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9366 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9367 freeb(mp1); 9368 /* 9369 * if allocation failed, fall through to start the 9370 * timer back. 9371 */ 9372 if (mp != NULL) { 9373 TCP_RECORD_TRACE(tcp, mp, 9374 TCP_TRACE_SEND_PKT); 9375 tcp_send_data(tcp, tcp->tcp_wq, mp); 9376 BUMP_MIB(&tcps->tcps_mib, 9377 tcpTimKeepaliveProbe); 9378 if (tcp->tcp_ka_last_intrvl != 0) { 9379 int max; 9380 /* 9381 * We should probe again at least 9382 * in ka_intrvl, but not more than 9383 * tcp_rexmit_interval_max. 9384 */ 9385 max = tcps->tcps_rexmit_interval_max; 9386 firetime = MIN(ka_intrvl - 1, 9387 tcp->tcp_ka_last_intrvl << 1); 9388 if (firetime > max) 9389 firetime = max; 9390 } else { 9391 firetime = tcp->tcp_rto; 9392 } 9393 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9394 tcp_keepalive_killer, 9395 MSEC_TO_TICK(firetime)); 9396 tcp->tcp_ka_last_intrvl = firetime; 9397 return; 9398 } 9399 } 9400 } else { 9401 tcp->tcp_ka_last_intrvl = 0; 9402 } 9403 9404 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9405 if ((firetime = ka_intrvl - idletime) < 0) { 9406 firetime = ka_intrvl; 9407 } 9408 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9409 MSEC_TO_TICK(firetime)); 9410 } 9411 9412 int 9413 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9414 { 9415 queue_t *q = tcp->tcp_rq; 9416 int32_t mss = tcp->tcp_mss; 9417 int maxpsz; 9418 9419 if (TCP_IS_DETACHED(tcp)) 9420 return (mss); 9421 9422 if (tcp->tcp_fused) { 9423 maxpsz = tcp_fuse_maxpsz_set(tcp); 9424 mss = INFPSZ; 9425 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9426 /* 9427 * Set the sd_qn_maxpsz according to the socket send buffer 9428 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9429 * instruct the stream head to copyin user data into contiguous 9430 * kernel-allocated buffers without breaking it up into smaller 9431 * chunks. We round up the buffer size to the nearest SMSS. 9432 */ 9433 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9434 if (tcp->tcp_kssl_ctx == NULL) 9435 mss = INFPSZ; 9436 else 9437 mss = SSL3_MAX_RECORD_LEN; 9438 } else { 9439 /* 9440 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9441 * (and a multiple of the mss). This instructs the stream 9442 * head to break down larger than SMSS writes into SMSS- 9443 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9444 */ 9445 maxpsz = tcp->tcp_maxpsz * mss; 9446 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9447 maxpsz = tcp->tcp_xmit_hiwater/2; 9448 /* Round up to nearest mss */ 9449 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9450 } 9451 } 9452 (void) setmaxps(q, maxpsz); 9453 tcp->tcp_wq->q_maxpsz = maxpsz; 9454 9455 if (set_maxblk) 9456 (void) mi_set_sth_maxblk(q, mss); 9457 9458 return (mss); 9459 } 9460 9461 /* 9462 * Extract option values from a tcp header. We put any found values into the 9463 * tcpopt struct and return a bitmask saying which options were found. 9464 */ 9465 static int 9466 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9467 { 9468 uchar_t *endp; 9469 int len; 9470 uint32_t mss; 9471 uchar_t *up = (uchar_t *)tcph; 9472 int found = 0; 9473 int32_t sack_len; 9474 tcp_seq sack_begin, sack_end; 9475 tcp_t *tcp; 9476 9477 endp = up + TCP_HDR_LENGTH(tcph); 9478 up += TCP_MIN_HEADER_LENGTH; 9479 while (up < endp) { 9480 len = endp - up; 9481 switch (*up) { 9482 case TCPOPT_EOL: 9483 break; 9484 9485 case TCPOPT_NOP: 9486 up++; 9487 continue; 9488 9489 case TCPOPT_MAXSEG: 9490 if (len < TCPOPT_MAXSEG_LEN || 9491 up[1] != TCPOPT_MAXSEG_LEN) 9492 break; 9493 9494 mss = BE16_TO_U16(up+2); 9495 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9496 tcpopt->tcp_opt_mss = mss; 9497 found |= TCP_OPT_MSS_PRESENT; 9498 9499 up += TCPOPT_MAXSEG_LEN; 9500 continue; 9501 9502 case TCPOPT_WSCALE: 9503 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9504 break; 9505 9506 if (up[2] > TCP_MAX_WINSHIFT) 9507 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9508 else 9509 tcpopt->tcp_opt_wscale = up[2]; 9510 found |= TCP_OPT_WSCALE_PRESENT; 9511 9512 up += TCPOPT_WS_LEN; 9513 continue; 9514 9515 case TCPOPT_SACK_PERMITTED: 9516 if (len < TCPOPT_SACK_OK_LEN || 9517 up[1] != TCPOPT_SACK_OK_LEN) 9518 break; 9519 found |= TCP_OPT_SACK_OK_PRESENT; 9520 up += TCPOPT_SACK_OK_LEN; 9521 continue; 9522 9523 case TCPOPT_SACK: 9524 if (len <= 2 || up[1] <= 2 || len < up[1]) 9525 break; 9526 9527 /* If TCP is not interested in SACK blks... */ 9528 if ((tcp = tcpopt->tcp) == NULL) { 9529 up += up[1]; 9530 continue; 9531 } 9532 sack_len = up[1] - TCPOPT_HEADER_LEN; 9533 up += TCPOPT_HEADER_LEN; 9534 9535 /* 9536 * If the list is empty, allocate one and assume 9537 * nothing is sack'ed. 9538 */ 9539 ASSERT(tcp->tcp_sack_info != NULL); 9540 if (tcp->tcp_notsack_list == NULL) { 9541 tcp_notsack_update(&(tcp->tcp_notsack_list), 9542 tcp->tcp_suna, tcp->tcp_snxt, 9543 &(tcp->tcp_num_notsack_blk), 9544 &(tcp->tcp_cnt_notsack_list)); 9545 9546 /* 9547 * Make sure tcp_notsack_list is not NULL. 9548 * This happens when kmem_alloc(KM_NOSLEEP) 9549 * returns NULL. 9550 */ 9551 if (tcp->tcp_notsack_list == NULL) { 9552 up += sack_len; 9553 continue; 9554 } 9555 tcp->tcp_fack = tcp->tcp_suna; 9556 } 9557 9558 while (sack_len > 0) { 9559 if (up + 8 > endp) { 9560 up = endp; 9561 break; 9562 } 9563 sack_begin = BE32_TO_U32(up); 9564 up += 4; 9565 sack_end = BE32_TO_U32(up); 9566 up += 4; 9567 sack_len -= 8; 9568 /* 9569 * Bounds checking. Make sure the SACK 9570 * info is within tcp_suna and tcp_snxt. 9571 * If this SACK blk is out of bound, ignore 9572 * it but continue to parse the following 9573 * blks. 9574 */ 9575 if (SEQ_LEQ(sack_end, sack_begin) || 9576 SEQ_LT(sack_begin, tcp->tcp_suna) || 9577 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9578 continue; 9579 } 9580 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9581 sack_begin, sack_end, 9582 &(tcp->tcp_num_notsack_blk), 9583 &(tcp->tcp_cnt_notsack_list)); 9584 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9585 tcp->tcp_fack = sack_end; 9586 } 9587 } 9588 found |= TCP_OPT_SACK_PRESENT; 9589 continue; 9590 9591 case TCPOPT_TSTAMP: 9592 if (len < TCPOPT_TSTAMP_LEN || 9593 up[1] != TCPOPT_TSTAMP_LEN) 9594 break; 9595 9596 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9597 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9598 9599 found |= TCP_OPT_TSTAMP_PRESENT; 9600 9601 up += TCPOPT_TSTAMP_LEN; 9602 continue; 9603 9604 default: 9605 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9606 break; 9607 up += up[1]; 9608 continue; 9609 } 9610 break; 9611 } 9612 return (found); 9613 } 9614 9615 /* 9616 * Set the mss associated with a particular tcp based on its current value, 9617 * and a new one passed in. Observe minimums and maximums, and reset 9618 * other state variables that we want to view as multiples of mss. 9619 * 9620 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9621 * highwater marks etc. need to be initialized or adjusted. 9622 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9623 * packet arrives. 9624 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9625 * ICMP6_PACKET_TOO_BIG arrives. 9626 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9627 * to increase the MSS to use the extra bytes available. 9628 * 9629 * Callers except tcp_paws_check() ensure that they only reduce mss. 9630 */ 9631 static void 9632 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9633 { 9634 uint32_t mss_max; 9635 tcp_stack_t *tcps = tcp->tcp_tcps; 9636 9637 if (tcp->tcp_ipversion == IPV4_VERSION) 9638 mss_max = tcps->tcps_mss_max_ipv4; 9639 else 9640 mss_max = tcps->tcps_mss_max_ipv6; 9641 9642 if (mss < tcps->tcps_mss_min) 9643 mss = tcps->tcps_mss_min; 9644 if (mss > mss_max) 9645 mss = mss_max; 9646 /* 9647 * Unless naglim has been set by our client to 9648 * a non-mss value, force naglim to track mss. 9649 * This can help to aggregate small writes. 9650 */ 9651 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9652 tcp->tcp_naglim = mss; 9653 /* 9654 * TCP should be able to buffer at least 4 MSS data for obvious 9655 * performance reason. 9656 */ 9657 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9658 tcp->tcp_xmit_hiwater = mss << 2; 9659 9660 if (do_ss) { 9661 /* 9662 * Either the tcp_cwnd is as yet uninitialized, or mss is 9663 * changing due to a reduction in MTU, presumably as a 9664 * result of a new path component, reset cwnd to its 9665 * "initial" value, as a multiple of the new mss. 9666 */ 9667 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9668 } else { 9669 /* 9670 * Called by tcp_paws_check(), the mss increased 9671 * marginally to allow use of space previously taken 9672 * by the timestamp option. It would be inappropriate 9673 * to apply slow start or tcp_init_cwnd values to 9674 * tcp_cwnd, simply adjust to a multiple of the new mss. 9675 */ 9676 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9677 tcp->tcp_cwnd_cnt = 0; 9678 } 9679 tcp->tcp_mss = mss; 9680 (void) tcp_maxpsz_set(tcp, B_TRUE); 9681 } 9682 9683 /* For /dev/tcp aka AF_INET open */ 9684 static int 9685 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9686 { 9687 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9688 } 9689 9690 /* For /dev/tcp6 aka AF_INET6 open */ 9691 static int 9692 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9693 { 9694 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9695 } 9696 9697 static int 9698 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9699 boolean_t isv6) 9700 { 9701 tcp_t *tcp = NULL; 9702 conn_t *connp; 9703 int err; 9704 vmem_t *minor_arena = NULL; 9705 dev_t conn_dev; 9706 zoneid_t zoneid; 9707 tcp_stack_t *tcps = NULL; 9708 9709 if (q->q_ptr != NULL) 9710 return (0); 9711 9712 if (sflag == MODOPEN) 9713 return (EINVAL); 9714 9715 if (!(flag & SO_ACCEPTOR)) { 9716 /* 9717 * Special case for install: miniroot needs to be able to 9718 * access files via NFS as though it were always in the 9719 * global zone. 9720 */ 9721 if (credp == kcred && nfs_global_client_only != 0) { 9722 zoneid = GLOBAL_ZONEID; 9723 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9724 netstack_tcp; 9725 ASSERT(tcps != NULL); 9726 } else { 9727 netstack_t *ns; 9728 9729 ns = netstack_find_by_cred(credp); 9730 ASSERT(ns != NULL); 9731 tcps = ns->netstack_tcp; 9732 ASSERT(tcps != NULL); 9733 9734 /* 9735 * For exclusive stacks we set the zoneid to zero 9736 * to make TCP operate as if in the global zone. 9737 */ 9738 if (tcps->tcps_netstack->netstack_stackid != 9739 GLOBAL_NETSTACKID) 9740 zoneid = GLOBAL_ZONEID; 9741 else 9742 zoneid = crgetzoneid(credp); 9743 } 9744 /* 9745 * For stackid zero this is done from strplumb.c, but 9746 * non-zero stackids are handled here. 9747 */ 9748 if (tcps->tcps_g_q == NULL && 9749 tcps->tcps_netstack->netstack_stackid != 9750 GLOBAL_NETSTACKID) { 9751 tcp_g_q_setup(tcps); 9752 } 9753 } 9754 9755 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9756 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9757 minor_arena = ip_minor_arena_la; 9758 } else { 9759 /* 9760 * Either minor numbers in the large arena were exhausted 9761 * or a non socket application is doing the open. 9762 * Try to allocate from the small arena. 9763 */ 9764 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9765 if (tcps != NULL) 9766 netstack_rele(tcps->tcps_netstack); 9767 return (EBUSY); 9768 } 9769 minor_arena = ip_minor_arena_sa; 9770 } 9771 ASSERT(minor_arena != NULL); 9772 9773 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9774 9775 if (flag & SO_ACCEPTOR) { 9776 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9777 ASSERT(tcps == NULL); 9778 q->q_qinfo = &tcp_acceptor_rinit; 9779 /* 9780 * the conn_dev and minor_arena will be subsequently used by 9781 * tcp_wput_accept() and tcpclose_accept() to figure out the 9782 * minor device number for this connection from the q_ptr. 9783 */ 9784 RD(q)->q_ptr = (void *)conn_dev; 9785 WR(q)->q_qinfo = &tcp_acceptor_winit; 9786 WR(q)->q_ptr = (void *)minor_arena; 9787 qprocson(q); 9788 return (0); 9789 } 9790 9791 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9792 /* 9793 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9794 * so we drop it by one. 9795 */ 9796 netstack_rele(tcps->tcps_netstack); 9797 if (connp == NULL) { 9798 inet_minor_free(minor_arena, conn_dev); 9799 q->q_ptr = NULL; 9800 return (ENOSR); 9801 } 9802 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9803 tcp = connp->conn_tcp; 9804 9805 q->q_ptr = WR(q)->q_ptr = connp; 9806 if (isv6) { 9807 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9808 connp->conn_send = ip_output_v6; 9809 connp->conn_af_isv6 = B_TRUE; 9810 connp->conn_pkt_isv6 = B_TRUE; 9811 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9812 tcp->tcp_ipversion = IPV6_VERSION; 9813 tcp->tcp_family = AF_INET6; 9814 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9815 } else { 9816 connp->conn_flags |= IPCL_TCP4; 9817 connp->conn_send = ip_output; 9818 connp->conn_af_isv6 = B_FALSE; 9819 connp->conn_pkt_isv6 = B_FALSE; 9820 tcp->tcp_ipversion = IPV4_VERSION; 9821 tcp->tcp_family = AF_INET; 9822 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9823 } 9824 9825 /* 9826 * TCP keeps a copy of cred for cache locality reasons but 9827 * we put a reference only once. If connp->conn_cred 9828 * becomes invalid, tcp_cred should also be set to NULL. 9829 */ 9830 tcp->tcp_cred = connp->conn_cred = credp; 9831 crhold(connp->conn_cred); 9832 tcp->tcp_cpid = curproc->p_pid; 9833 tcp->tcp_open_time = lbolt64; 9834 connp->conn_zoneid = zoneid; 9835 connp->conn_mlp_type = mlptSingle; 9836 connp->conn_ulp_labeled = !is_system_labeled(); 9837 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9838 ASSERT(tcp->tcp_tcps == tcps); 9839 9840 /* 9841 * If the caller has the process-wide flag set, then default to MAC 9842 * exempt mode. This allows read-down to unlabeled hosts. 9843 */ 9844 if (getpflags(NET_MAC_AWARE, credp) != 0) 9845 connp->conn_mac_exempt = B_TRUE; 9846 9847 connp->conn_dev = conn_dev; 9848 connp->conn_minor_arena = minor_arena; 9849 9850 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9851 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9852 9853 if (flag & SO_SOCKSTR) { 9854 /* 9855 * No need to insert a socket in tcp acceptor hash. 9856 * If it was a socket acceptor stream, we dealt with 9857 * it above. A socket listener can never accept a 9858 * connection and doesn't need acceptor_id. 9859 */ 9860 connp->conn_flags |= IPCL_SOCKET; 9861 tcp->tcp_issocket = 1; 9862 WR(q)->q_qinfo = &tcp_sock_winit; 9863 } else { 9864 #ifdef _ILP32 9865 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9866 #else 9867 tcp->tcp_acceptor_id = conn_dev; 9868 #endif /* _ILP32 */ 9869 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9870 } 9871 9872 if (tcps->tcps_trace) 9873 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9874 9875 err = tcp_init(tcp, q); 9876 if (err != 0) { 9877 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 9878 tcp_acceptor_hash_remove(tcp); 9879 CONN_DEC_REF(connp); 9880 q->q_ptr = WR(q)->q_ptr = NULL; 9881 return (err); 9882 } 9883 9884 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9885 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9886 9887 /* Non-zero default values */ 9888 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9889 /* 9890 * Put the ref for TCP. Ref for IP was already put 9891 * by ipcl_conn_create. Also Make the conn_t globally 9892 * visible to walkers 9893 */ 9894 mutex_enter(&connp->conn_lock); 9895 CONN_INC_REF_LOCKED(connp); 9896 ASSERT(connp->conn_ref == 2); 9897 connp->conn_state_flags &= ~CONN_INCIPIENT; 9898 mutex_exit(&connp->conn_lock); 9899 9900 qprocson(q); 9901 return (0); 9902 } 9903 9904 /* 9905 * Some TCP options can be "set" by requesting them in the option 9906 * buffer. This is needed for XTI feature test though we do not 9907 * allow it in general. We interpret that this mechanism is more 9908 * applicable to OSI protocols and need not be allowed in general. 9909 * This routine filters out options for which it is not allowed (most) 9910 * and lets through those (few) for which it is. [ The XTI interface 9911 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9912 * ever implemented will have to be allowed here ]. 9913 */ 9914 static boolean_t 9915 tcp_allow_connopt_set(int level, int name) 9916 { 9917 9918 switch (level) { 9919 case IPPROTO_TCP: 9920 switch (name) { 9921 case TCP_NODELAY: 9922 return (B_TRUE); 9923 default: 9924 return (B_FALSE); 9925 } 9926 /*NOTREACHED*/ 9927 default: 9928 return (B_FALSE); 9929 } 9930 /*NOTREACHED*/ 9931 } 9932 9933 /* 9934 * This routine gets default values of certain options whose default 9935 * values are maintained by protocol specific code 9936 */ 9937 /* ARGSUSED */ 9938 int 9939 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9940 { 9941 int32_t *i1 = (int32_t *)ptr; 9942 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9943 9944 switch (level) { 9945 case IPPROTO_TCP: 9946 switch (name) { 9947 case TCP_NOTIFY_THRESHOLD: 9948 *i1 = tcps->tcps_ip_notify_interval; 9949 break; 9950 case TCP_ABORT_THRESHOLD: 9951 *i1 = tcps->tcps_ip_abort_interval; 9952 break; 9953 case TCP_CONN_NOTIFY_THRESHOLD: 9954 *i1 = tcps->tcps_ip_notify_cinterval; 9955 break; 9956 case TCP_CONN_ABORT_THRESHOLD: 9957 *i1 = tcps->tcps_ip_abort_cinterval; 9958 break; 9959 default: 9960 return (-1); 9961 } 9962 break; 9963 case IPPROTO_IP: 9964 switch (name) { 9965 case IP_TTL: 9966 *i1 = tcps->tcps_ipv4_ttl; 9967 break; 9968 default: 9969 return (-1); 9970 } 9971 break; 9972 case IPPROTO_IPV6: 9973 switch (name) { 9974 case IPV6_UNICAST_HOPS: 9975 *i1 = tcps->tcps_ipv6_hoplimit; 9976 break; 9977 default: 9978 return (-1); 9979 } 9980 break; 9981 default: 9982 return (-1); 9983 } 9984 return (sizeof (int)); 9985 } 9986 9987 9988 /* 9989 * TCP routine to get the values of options. 9990 */ 9991 int 9992 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9993 { 9994 int *i1 = (int *)ptr; 9995 conn_t *connp = Q_TO_CONN(q); 9996 tcp_t *tcp = connp->conn_tcp; 9997 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9998 9999 switch (level) { 10000 case SOL_SOCKET: 10001 switch (name) { 10002 case SO_LINGER: { 10003 struct linger *lgr = (struct linger *)ptr; 10004 10005 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 10006 lgr->l_linger = tcp->tcp_lingertime; 10007 } 10008 return (sizeof (struct linger)); 10009 case SO_DEBUG: 10010 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 10011 break; 10012 case SO_KEEPALIVE: 10013 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 10014 break; 10015 case SO_DONTROUTE: 10016 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 10017 break; 10018 case SO_USELOOPBACK: 10019 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 10020 break; 10021 case SO_BROADCAST: 10022 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 10023 break; 10024 case SO_REUSEADDR: 10025 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 10026 break; 10027 case SO_OOBINLINE: 10028 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 10029 break; 10030 case SO_DGRAM_ERRIND: 10031 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 10032 break; 10033 case SO_TYPE: 10034 *i1 = SOCK_STREAM; 10035 break; 10036 case SO_SNDBUF: 10037 *i1 = tcp->tcp_xmit_hiwater; 10038 break; 10039 case SO_RCVBUF: 10040 *i1 = RD(q)->q_hiwat; 10041 break; 10042 case SO_SND_COPYAVOID: 10043 *i1 = tcp->tcp_snd_zcopy_on ? 10044 SO_SND_COPYAVOID : 0; 10045 break; 10046 case SO_ALLZONES: 10047 *i1 = connp->conn_allzones ? 1 : 0; 10048 break; 10049 case SO_ANON_MLP: 10050 *i1 = connp->conn_anon_mlp; 10051 break; 10052 case SO_MAC_EXEMPT: 10053 *i1 = connp->conn_mac_exempt; 10054 break; 10055 case SO_EXCLBIND: 10056 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 10057 break; 10058 case SO_PROTOTYPE: 10059 *i1 = IPPROTO_TCP; 10060 break; 10061 case SO_DOMAIN: 10062 *i1 = tcp->tcp_family; 10063 break; 10064 default: 10065 return (-1); 10066 } 10067 break; 10068 case IPPROTO_TCP: 10069 switch (name) { 10070 case TCP_NODELAY: 10071 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 10072 break; 10073 case TCP_MAXSEG: 10074 *i1 = tcp->tcp_mss; 10075 break; 10076 case TCP_NOTIFY_THRESHOLD: 10077 *i1 = (int)tcp->tcp_first_timer_threshold; 10078 break; 10079 case TCP_ABORT_THRESHOLD: 10080 *i1 = tcp->tcp_second_timer_threshold; 10081 break; 10082 case TCP_CONN_NOTIFY_THRESHOLD: 10083 *i1 = tcp->tcp_first_ctimer_threshold; 10084 break; 10085 case TCP_CONN_ABORT_THRESHOLD: 10086 *i1 = tcp->tcp_second_ctimer_threshold; 10087 break; 10088 case TCP_RECVDSTADDR: 10089 *i1 = tcp->tcp_recvdstaddr; 10090 break; 10091 case TCP_ANONPRIVBIND: 10092 *i1 = tcp->tcp_anon_priv_bind; 10093 break; 10094 case TCP_EXCLBIND: 10095 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10096 break; 10097 case TCP_INIT_CWND: 10098 *i1 = tcp->tcp_init_cwnd; 10099 break; 10100 case TCP_KEEPALIVE_THRESHOLD: 10101 *i1 = tcp->tcp_ka_interval; 10102 break; 10103 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10104 *i1 = tcp->tcp_ka_abort_thres; 10105 break; 10106 case TCP_CORK: 10107 *i1 = tcp->tcp_cork; 10108 break; 10109 default: 10110 return (-1); 10111 } 10112 break; 10113 case IPPROTO_IP: 10114 if (tcp->tcp_family != AF_INET) 10115 return (-1); 10116 switch (name) { 10117 case IP_OPTIONS: 10118 case T_IP_OPTIONS: { 10119 /* 10120 * This is compatible with BSD in that in only return 10121 * the reverse source route with the final destination 10122 * as the last entry. The first 4 bytes of the option 10123 * will contain the final destination. 10124 */ 10125 int opt_len; 10126 10127 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 10128 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 10129 ASSERT(opt_len >= 0); 10130 /* Caller ensures enough space */ 10131 if (opt_len > 0) { 10132 /* 10133 * TODO: Do we have to handle getsockopt on an 10134 * initiator as well? 10135 */ 10136 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10137 } 10138 return (0); 10139 } 10140 case IP_TOS: 10141 case T_IP_TOS: 10142 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10143 break; 10144 case IP_TTL: 10145 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10146 break; 10147 case IP_NEXTHOP: 10148 /* Handled at IP level */ 10149 return (-EINVAL); 10150 default: 10151 return (-1); 10152 } 10153 break; 10154 case IPPROTO_IPV6: 10155 /* 10156 * IPPROTO_IPV6 options are only supported for sockets 10157 * that are using IPv6 on the wire. 10158 */ 10159 if (tcp->tcp_ipversion != IPV6_VERSION) { 10160 return (-1); 10161 } 10162 switch (name) { 10163 case IPV6_UNICAST_HOPS: 10164 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10165 break; /* goto sizeof (int) option return */ 10166 case IPV6_BOUND_IF: 10167 /* Zero if not set */ 10168 *i1 = tcp->tcp_bound_if; 10169 break; /* goto sizeof (int) option return */ 10170 case IPV6_RECVPKTINFO: 10171 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10172 *i1 = 1; 10173 else 10174 *i1 = 0; 10175 break; /* goto sizeof (int) option return */ 10176 case IPV6_RECVTCLASS: 10177 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10178 *i1 = 1; 10179 else 10180 *i1 = 0; 10181 break; /* goto sizeof (int) option return */ 10182 case IPV6_RECVHOPLIMIT: 10183 if (tcp->tcp_ipv6_recvancillary & 10184 TCP_IPV6_RECVHOPLIMIT) 10185 *i1 = 1; 10186 else 10187 *i1 = 0; 10188 break; /* goto sizeof (int) option return */ 10189 case IPV6_RECVHOPOPTS: 10190 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10191 *i1 = 1; 10192 else 10193 *i1 = 0; 10194 break; /* goto sizeof (int) option return */ 10195 case IPV6_RECVDSTOPTS: 10196 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10197 *i1 = 1; 10198 else 10199 *i1 = 0; 10200 break; /* goto sizeof (int) option return */ 10201 case _OLD_IPV6_RECVDSTOPTS: 10202 if (tcp->tcp_ipv6_recvancillary & 10203 TCP_OLD_IPV6_RECVDSTOPTS) 10204 *i1 = 1; 10205 else 10206 *i1 = 0; 10207 break; /* goto sizeof (int) option return */ 10208 case IPV6_RECVRTHDR: 10209 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10210 *i1 = 1; 10211 else 10212 *i1 = 0; 10213 break; /* goto sizeof (int) option return */ 10214 case IPV6_RECVRTHDRDSTOPTS: 10215 if (tcp->tcp_ipv6_recvancillary & 10216 TCP_IPV6_RECVRTDSTOPTS) 10217 *i1 = 1; 10218 else 10219 *i1 = 0; 10220 break; /* goto sizeof (int) option return */ 10221 case IPV6_PKTINFO: { 10222 /* XXX assumes that caller has room for max size! */ 10223 struct in6_pktinfo *pkti; 10224 10225 pkti = (struct in6_pktinfo *)ptr; 10226 if (ipp->ipp_fields & IPPF_IFINDEX) 10227 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10228 else 10229 pkti->ipi6_ifindex = 0; 10230 if (ipp->ipp_fields & IPPF_ADDR) 10231 pkti->ipi6_addr = ipp->ipp_addr; 10232 else 10233 pkti->ipi6_addr = ipv6_all_zeros; 10234 return (sizeof (struct in6_pktinfo)); 10235 } 10236 case IPV6_TCLASS: 10237 if (ipp->ipp_fields & IPPF_TCLASS) 10238 *i1 = ipp->ipp_tclass; 10239 else 10240 *i1 = IPV6_FLOW_TCLASS( 10241 IPV6_DEFAULT_VERS_AND_FLOW); 10242 break; /* goto sizeof (int) option return */ 10243 case IPV6_NEXTHOP: { 10244 sin6_t *sin6 = (sin6_t *)ptr; 10245 10246 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10247 return (0); 10248 *sin6 = sin6_null; 10249 sin6->sin6_family = AF_INET6; 10250 sin6->sin6_addr = ipp->ipp_nexthop; 10251 return (sizeof (sin6_t)); 10252 } 10253 case IPV6_HOPOPTS: 10254 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10255 return (0); 10256 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10257 return (0); 10258 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10259 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10260 if (tcp->tcp_label_len > 0) { 10261 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10262 ptr[1] = (ipp->ipp_hopoptslen - 10263 tcp->tcp_label_len + 7) / 8 - 1; 10264 } 10265 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10266 case IPV6_RTHDRDSTOPTS: 10267 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10268 return (0); 10269 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10270 return (ipp->ipp_rtdstoptslen); 10271 case IPV6_RTHDR: 10272 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10273 return (0); 10274 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10275 return (ipp->ipp_rthdrlen); 10276 case IPV6_DSTOPTS: 10277 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10278 return (0); 10279 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10280 return (ipp->ipp_dstoptslen); 10281 case IPV6_SRC_PREFERENCES: 10282 return (ip6_get_src_preferences(connp, 10283 (uint32_t *)ptr)); 10284 case IPV6_PATHMTU: { 10285 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10286 10287 if (tcp->tcp_state < TCPS_ESTABLISHED) 10288 return (-1); 10289 10290 return (ip_fill_mtuinfo(&connp->conn_remv6, 10291 connp->conn_fport, mtuinfo, 10292 connp->conn_netstack)); 10293 } 10294 default: 10295 return (-1); 10296 } 10297 break; 10298 default: 10299 return (-1); 10300 } 10301 return (sizeof (int)); 10302 } 10303 10304 /* 10305 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10306 * Parameters are assumed to be verified by the caller. 10307 */ 10308 /* ARGSUSED */ 10309 int 10310 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10311 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10312 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10313 { 10314 conn_t *connp = Q_TO_CONN(q); 10315 tcp_t *tcp = connp->conn_tcp; 10316 int *i1 = (int *)invalp; 10317 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10318 boolean_t checkonly; 10319 int reterr; 10320 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10321 10322 switch (optset_context) { 10323 case SETFN_OPTCOM_CHECKONLY: 10324 checkonly = B_TRUE; 10325 /* 10326 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10327 * inlen != 0 implies value supplied and 10328 * we have to "pretend" to set it. 10329 * inlen == 0 implies that there is no 10330 * value part in T_CHECK request and just validation 10331 * done elsewhere should be enough, we just return here. 10332 */ 10333 if (inlen == 0) { 10334 *outlenp = 0; 10335 return (0); 10336 } 10337 break; 10338 case SETFN_OPTCOM_NEGOTIATE: 10339 checkonly = B_FALSE; 10340 break; 10341 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10342 case SETFN_CONN_NEGOTIATE: 10343 checkonly = B_FALSE; 10344 /* 10345 * Negotiating local and "association-related" options 10346 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10347 * primitives is allowed by XTI, but we choose 10348 * to not implement this style negotiation for Internet 10349 * protocols (We interpret it is a must for OSI world but 10350 * optional for Internet protocols) for all options. 10351 * [ Will do only for the few options that enable test 10352 * suites that our XTI implementation of this feature 10353 * works for transports that do allow it ] 10354 */ 10355 if (!tcp_allow_connopt_set(level, name)) { 10356 *outlenp = 0; 10357 return (EINVAL); 10358 } 10359 break; 10360 default: 10361 /* 10362 * We should never get here 10363 */ 10364 *outlenp = 0; 10365 return (EINVAL); 10366 } 10367 10368 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10369 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10370 10371 /* 10372 * For TCP, we should have no ancillary data sent down 10373 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10374 * has to be zero. 10375 */ 10376 ASSERT(thisdg_attrs == NULL); 10377 10378 /* 10379 * For fixed length options, no sanity check 10380 * of passed in length is done. It is assumed *_optcom_req() 10381 * routines do the right thing. 10382 */ 10383 10384 switch (level) { 10385 case SOL_SOCKET: 10386 switch (name) { 10387 case SO_LINGER: { 10388 struct linger *lgr = (struct linger *)invalp; 10389 10390 if (!checkonly) { 10391 if (lgr->l_onoff) { 10392 tcp->tcp_linger = 1; 10393 tcp->tcp_lingertime = lgr->l_linger; 10394 } else { 10395 tcp->tcp_linger = 0; 10396 tcp->tcp_lingertime = 0; 10397 } 10398 /* struct copy */ 10399 *(struct linger *)outvalp = *lgr; 10400 } else { 10401 if (!lgr->l_onoff) { 10402 ((struct linger *) 10403 outvalp)->l_onoff = 0; 10404 ((struct linger *) 10405 outvalp)->l_linger = 0; 10406 } else { 10407 /* struct copy */ 10408 *(struct linger *)outvalp = *lgr; 10409 } 10410 } 10411 *outlenp = sizeof (struct linger); 10412 return (0); 10413 } 10414 case SO_DEBUG: 10415 if (!checkonly) 10416 tcp->tcp_debug = onoff; 10417 break; 10418 case SO_KEEPALIVE: 10419 if (checkonly) { 10420 /* T_CHECK case */ 10421 break; 10422 } 10423 10424 if (!onoff) { 10425 if (tcp->tcp_ka_enabled) { 10426 if (tcp->tcp_ka_tid != 0) { 10427 (void) TCP_TIMER_CANCEL(tcp, 10428 tcp->tcp_ka_tid); 10429 tcp->tcp_ka_tid = 0; 10430 } 10431 tcp->tcp_ka_enabled = 0; 10432 } 10433 break; 10434 } 10435 if (!tcp->tcp_ka_enabled) { 10436 /* Crank up the keepalive timer */ 10437 tcp->tcp_ka_last_intrvl = 0; 10438 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10439 tcp_keepalive_killer, 10440 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10441 tcp->tcp_ka_enabled = 1; 10442 } 10443 break; 10444 case SO_DONTROUTE: 10445 /* 10446 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10447 * only of interest to IP. We track them here only so 10448 * that we can report their current value. 10449 */ 10450 if (!checkonly) { 10451 tcp->tcp_dontroute = onoff; 10452 tcp->tcp_connp->conn_dontroute = onoff; 10453 } 10454 break; 10455 case SO_USELOOPBACK: 10456 if (!checkonly) { 10457 tcp->tcp_useloopback = onoff; 10458 tcp->tcp_connp->conn_loopback = onoff; 10459 } 10460 break; 10461 case SO_BROADCAST: 10462 if (!checkonly) { 10463 tcp->tcp_broadcast = onoff; 10464 tcp->tcp_connp->conn_broadcast = onoff; 10465 } 10466 break; 10467 case SO_REUSEADDR: 10468 if (!checkonly) { 10469 tcp->tcp_reuseaddr = onoff; 10470 tcp->tcp_connp->conn_reuseaddr = onoff; 10471 } 10472 break; 10473 case SO_OOBINLINE: 10474 if (!checkonly) 10475 tcp->tcp_oobinline = onoff; 10476 break; 10477 case SO_DGRAM_ERRIND: 10478 if (!checkonly) 10479 tcp->tcp_dgram_errind = onoff; 10480 break; 10481 case SO_SNDBUF: { 10482 if (*i1 > tcps->tcps_max_buf) { 10483 *outlenp = 0; 10484 return (ENOBUFS); 10485 } 10486 if (checkonly) 10487 break; 10488 10489 tcp->tcp_xmit_hiwater = *i1; 10490 if (tcps->tcps_snd_lowat_fraction != 0) 10491 tcp->tcp_xmit_lowater = 10492 tcp->tcp_xmit_hiwater / 10493 tcps->tcps_snd_lowat_fraction; 10494 (void) tcp_maxpsz_set(tcp, B_TRUE); 10495 /* 10496 * If we are flow-controlled, recheck the condition. 10497 * There are apps that increase SO_SNDBUF size when 10498 * flow-controlled (EWOULDBLOCK), and expect the flow 10499 * control condition to be lifted right away. 10500 */ 10501 mutex_enter(&tcp->tcp_non_sq_lock); 10502 if (tcp->tcp_flow_stopped && 10503 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10504 tcp_clrqfull(tcp); 10505 } 10506 mutex_exit(&tcp->tcp_non_sq_lock); 10507 break; 10508 } 10509 case SO_RCVBUF: 10510 if (*i1 > tcps->tcps_max_buf) { 10511 *outlenp = 0; 10512 return (ENOBUFS); 10513 } 10514 /* Silently ignore zero */ 10515 if (!checkonly && *i1 != 0) { 10516 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10517 (void) tcp_rwnd_set(tcp, *i1); 10518 } 10519 /* 10520 * XXX should we return the rwnd here 10521 * and tcp_opt_get ? 10522 */ 10523 break; 10524 case SO_SND_COPYAVOID: 10525 if (!checkonly) { 10526 /* we only allow enable at most once for now */ 10527 if (tcp->tcp_loopback || 10528 (tcp->tcp_kssl_ctx != NULL) || 10529 (!tcp->tcp_snd_zcopy_aware && 10530 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10531 *outlenp = 0; 10532 return (EOPNOTSUPP); 10533 } 10534 tcp->tcp_snd_zcopy_aware = 1; 10535 } 10536 break; 10537 case SO_ALLZONES: 10538 /* Pass option along to IP level for handling */ 10539 return (-EINVAL); 10540 case SO_ANON_MLP: 10541 /* Pass option along to IP level for handling */ 10542 return (-EINVAL); 10543 case SO_MAC_EXEMPT: 10544 /* Pass option along to IP level for handling */ 10545 return (-EINVAL); 10546 case SO_EXCLBIND: 10547 if (!checkonly) 10548 tcp->tcp_exclbind = onoff; 10549 break; 10550 default: 10551 *outlenp = 0; 10552 return (EINVAL); 10553 } 10554 break; 10555 case IPPROTO_TCP: 10556 switch (name) { 10557 case TCP_NODELAY: 10558 if (!checkonly) 10559 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10560 break; 10561 case TCP_NOTIFY_THRESHOLD: 10562 if (!checkonly) 10563 tcp->tcp_first_timer_threshold = *i1; 10564 break; 10565 case TCP_ABORT_THRESHOLD: 10566 if (!checkonly) 10567 tcp->tcp_second_timer_threshold = *i1; 10568 break; 10569 case TCP_CONN_NOTIFY_THRESHOLD: 10570 if (!checkonly) 10571 tcp->tcp_first_ctimer_threshold = *i1; 10572 break; 10573 case TCP_CONN_ABORT_THRESHOLD: 10574 if (!checkonly) 10575 tcp->tcp_second_ctimer_threshold = *i1; 10576 break; 10577 case TCP_RECVDSTADDR: 10578 if (tcp->tcp_state > TCPS_LISTEN) 10579 return (EOPNOTSUPP); 10580 if (!checkonly) 10581 tcp->tcp_recvdstaddr = onoff; 10582 break; 10583 case TCP_ANONPRIVBIND: 10584 if ((reterr = secpolicy_net_privaddr(cr, 0, 10585 IPPROTO_TCP)) != 0) { 10586 *outlenp = 0; 10587 return (reterr); 10588 } 10589 if (!checkonly) { 10590 tcp->tcp_anon_priv_bind = onoff; 10591 } 10592 break; 10593 case TCP_EXCLBIND: 10594 if (!checkonly) 10595 tcp->tcp_exclbind = onoff; 10596 break; /* goto sizeof (int) option return */ 10597 case TCP_INIT_CWND: { 10598 uint32_t init_cwnd = *((uint32_t *)invalp); 10599 10600 if (checkonly) 10601 break; 10602 10603 /* 10604 * Only allow socket with network configuration 10605 * privilege to set the initial cwnd to be larger 10606 * than allowed by RFC 3390. 10607 */ 10608 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10609 tcp->tcp_init_cwnd = init_cwnd; 10610 break; 10611 } 10612 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10613 *outlenp = 0; 10614 return (reterr); 10615 } 10616 if (init_cwnd > TCP_MAX_INIT_CWND) { 10617 *outlenp = 0; 10618 return (EINVAL); 10619 } 10620 tcp->tcp_init_cwnd = init_cwnd; 10621 break; 10622 } 10623 case TCP_KEEPALIVE_THRESHOLD: 10624 if (checkonly) 10625 break; 10626 10627 if (*i1 < tcps->tcps_keepalive_interval_low || 10628 *i1 > tcps->tcps_keepalive_interval_high) { 10629 *outlenp = 0; 10630 return (EINVAL); 10631 } 10632 if (*i1 != tcp->tcp_ka_interval) { 10633 tcp->tcp_ka_interval = *i1; 10634 /* 10635 * Check if we need to restart the 10636 * keepalive timer. 10637 */ 10638 if (tcp->tcp_ka_tid != 0) { 10639 ASSERT(tcp->tcp_ka_enabled); 10640 (void) TCP_TIMER_CANCEL(tcp, 10641 tcp->tcp_ka_tid); 10642 tcp->tcp_ka_last_intrvl = 0; 10643 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10644 tcp_keepalive_killer, 10645 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10646 } 10647 } 10648 break; 10649 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10650 if (!checkonly) { 10651 if (*i1 < 10652 tcps->tcps_keepalive_abort_interval_low || 10653 *i1 > 10654 tcps->tcps_keepalive_abort_interval_high) { 10655 *outlenp = 0; 10656 return (EINVAL); 10657 } 10658 tcp->tcp_ka_abort_thres = *i1; 10659 } 10660 break; 10661 case TCP_CORK: 10662 if (!checkonly) { 10663 /* 10664 * if tcp->tcp_cork was set and is now 10665 * being unset, we have to make sure that 10666 * the remaining data gets sent out. Also 10667 * unset tcp->tcp_cork so that tcp_wput_data() 10668 * can send data even if it is less than mss 10669 */ 10670 if (tcp->tcp_cork && onoff == 0 && 10671 tcp->tcp_unsent > 0) { 10672 tcp->tcp_cork = B_FALSE; 10673 tcp_wput_data(tcp, NULL, B_FALSE); 10674 } 10675 tcp->tcp_cork = onoff; 10676 } 10677 break; 10678 default: 10679 *outlenp = 0; 10680 return (EINVAL); 10681 } 10682 break; 10683 case IPPROTO_IP: 10684 if (tcp->tcp_family != AF_INET) { 10685 *outlenp = 0; 10686 return (ENOPROTOOPT); 10687 } 10688 switch (name) { 10689 case IP_OPTIONS: 10690 case T_IP_OPTIONS: 10691 reterr = tcp_opt_set_header(tcp, checkonly, 10692 invalp, inlen); 10693 if (reterr) { 10694 *outlenp = 0; 10695 return (reterr); 10696 } 10697 /* OK return - copy input buffer into output buffer */ 10698 if (invalp != outvalp) { 10699 /* don't trust bcopy for identical src/dst */ 10700 bcopy(invalp, outvalp, inlen); 10701 } 10702 *outlenp = inlen; 10703 return (0); 10704 case IP_TOS: 10705 case T_IP_TOS: 10706 if (!checkonly) { 10707 tcp->tcp_ipha->ipha_type_of_service = 10708 (uchar_t)*i1; 10709 tcp->tcp_tos = (uchar_t)*i1; 10710 } 10711 break; 10712 case IP_TTL: 10713 if (!checkonly) { 10714 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10715 tcp->tcp_ttl = (uchar_t)*i1; 10716 } 10717 break; 10718 case IP_BOUND_IF: 10719 case IP_NEXTHOP: 10720 /* Handled at the IP level */ 10721 return (-EINVAL); 10722 case IP_SEC_OPT: 10723 /* 10724 * We should not allow policy setting after 10725 * we start listening for connections. 10726 */ 10727 if (tcp->tcp_state == TCPS_LISTEN) { 10728 return (EINVAL); 10729 } else { 10730 /* Handled at the IP level */ 10731 return (-EINVAL); 10732 } 10733 default: 10734 *outlenp = 0; 10735 return (EINVAL); 10736 } 10737 break; 10738 case IPPROTO_IPV6: { 10739 ip6_pkt_t *ipp; 10740 10741 /* 10742 * IPPROTO_IPV6 options are only supported for sockets 10743 * that are using IPv6 on the wire. 10744 */ 10745 if (tcp->tcp_ipversion != IPV6_VERSION) { 10746 *outlenp = 0; 10747 return (ENOPROTOOPT); 10748 } 10749 /* 10750 * Only sticky options; no ancillary data 10751 */ 10752 ASSERT(thisdg_attrs == NULL); 10753 ipp = &tcp->tcp_sticky_ipp; 10754 10755 switch (name) { 10756 case IPV6_UNICAST_HOPS: 10757 /* -1 means use default */ 10758 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10759 *outlenp = 0; 10760 return (EINVAL); 10761 } 10762 if (!checkonly) { 10763 if (*i1 == -1) { 10764 tcp->tcp_ip6h->ip6_hops = 10765 ipp->ipp_unicast_hops = 10766 (uint8_t)tcps->tcps_ipv6_hoplimit; 10767 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10768 /* Pass modified value to IP. */ 10769 *i1 = tcp->tcp_ip6h->ip6_hops; 10770 } else { 10771 tcp->tcp_ip6h->ip6_hops = 10772 ipp->ipp_unicast_hops = 10773 (uint8_t)*i1; 10774 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10775 } 10776 reterr = tcp_build_hdrs(q, tcp); 10777 if (reterr != 0) 10778 return (reterr); 10779 } 10780 break; 10781 case IPV6_BOUND_IF: 10782 if (!checkonly) { 10783 int error = 0; 10784 10785 tcp->tcp_bound_if = *i1; 10786 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10787 B_TRUE, checkonly, level, name, mblk); 10788 if (error != 0) { 10789 *outlenp = 0; 10790 return (error); 10791 } 10792 } 10793 break; 10794 /* 10795 * Set boolean switches for ancillary data delivery 10796 */ 10797 case IPV6_RECVPKTINFO: 10798 if (!checkonly) { 10799 if (onoff) 10800 tcp->tcp_ipv6_recvancillary |= 10801 TCP_IPV6_RECVPKTINFO; 10802 else 10803 tcp->tcp_ipv6_recvancillary &= 10804 ~TCP_IPV6_RECVPKTINFO; 10805 /* Force it to be sent up with the next msg */ 10806 tcp->tcp_recvifindex = 0; 10807 } 10808 break; 10809 case IPV6_RECVTCLASS: 10810 if (!checkonly) { 10811 if (onoff) 10812 tcp->tcp_ipv6_recvancillary |= 10813 TCP_IPV6_RECVTCLASS; 10814 else 10815 tcp->tcp_ipv6_recvancillary &= 10816 ~TCP_IPV6_RECVTCLASS; 10817 } 10818 break; 10819 case IPV6_RECVHOPLIMIT: 10820 if (!checkonly) { 10821 if (onoff) 10822 tcp->tcp_ipv6_recvancillary |= 10823 TCP_IPV6_RECVHOPLIMIT; 10824 else 10825 tcp->tcp_ipv6_recvancillary &= 10826 ~TCP_IPV6_RECVHOPLIMIT; 10827 /* Force it to be sent up with the next msg */ 10828 tcp->tcp_recvhops = 0xffffffffU; 10829 } 10830 break; 10831 case IPV6_RECVHOPOPTS: 10832 if (!checkonly) { 10833 if (onoff) 10834 tcp->tcp_ipv6_recvancillary |= 10835 TCP_IPV6_RECVHOPOPTS; 10836 else 10837 tcp->tcp_ipv6_recvancillary &= 10838 ~TCP_IPV6_RECVHOPOPTS; 10839 } 10840 break; 10841 case IPV6_RECVDSTOPTS: 10842 if (!checkonly) { 10843 if (onoff) 10844 tcp->tcp_ipv6_recvancillary |= 10845 TCP_IPV6_RECVDSTOPTS; 10846 else 10847 tcp->tcp_ipv6_recvancillary &= 10848 ~TCP_IPV6_RECVDSTOPTS; 10849 } 10850 break; 10851 case _OLD_IPV6_RECVDSTOPTS: 10852 if (!checkonly) { 10853 if (onoff) 10854 tcp->tcp_ipv6_recvancillary |= 10855 TCP_OLD_IPV6_RECVDSTOPTS; 10856 else 10857 tcp->tcp_ipv6_recvancillary &= 10858 ~TCP_OLD_IPV6_RECVDSTOPTS; 10859 } 10860 break; 10861 case IPV6_RECVRTHDR: 10862 if (!checkonly) { 10863 if (onoff) 10864 tcp->tcp_ipv6_recvancillary |= 10865 TCP_IPV6_RECVRTHDR; 10866 else 10867 tcp->tcp_ipv6_recvancillary &= 10868 ~TCP_IPV6_RECVRTHDR; 10869 } 10870 break; 10871 case IPV6_RECVRTHDRDSTOPTS: 10872 if (!checkonly) { 10873 if (onoff) 10874 tcp->tcp_ipv6_recvancillary |= 10875 TCP_IPV6_RECVRTDSTOPTS; 10876 else 10877 tcp->tcp_ipv6_recvancillary &= 10878 ~TCP_IPV6_RECVRTDSTOPTS; 10879 } 10880 break; 10881 case IPV6_PKTINFO: 10882 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10883 return (EINVAL); 10884 if (checkonly) 10885 break; 10886 10887 if (inlen == 0) { 10888 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10889 } else { 10890 struct in6_pktinfo *pkti; 10891 10892 pkti = (struct in6_pktinfo *)invalp; 10893 /* 10894 * RFC 3542 states that ipi6_addr must be 10895 * the unspecified address when setting the 10896 * IPV6_PKTINFO sticky socket option on a 10897 * TCP socket. 10898 */ 10899 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10900 return (EINVAL); 10901 /* 10902 * ip6_set_pktinfo() validates the source 10903 * address and interface index. 10904 */ 10905 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10906 pkti, mblk); 10907 if (reterr != 0) 10908 return (reterr); 10909 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10910 ipp->ipp_addr = pkti->ipi6_addr; 10911 if (ipp->ipp_ifindex != 0) 10912 ipp->ipp_fields |= IPPF_IFINDEX; 10913 else 10914 ipp->ipp_fields &= ~IPPF_IFINDEX; 10915 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10916 ipp->ipp_fields |= IPPF_ADDR; 10917 else 10918 ipp->ipp_fields &= ~IPPF_ADDR; 10919 } 10920 reterr = tcp_build_hdrs(q, tcp); 10921 if (reterr != 0) 10922 return (reterr); 10923 break; 10924 case IPV6_TCLASS: 10925 if (inlen != 0 && inlen != sizeof (int)) 10926 return (EINVAL); 10927 if (checkonly) 10928 break; 10929 10930 if (inlen == 0) { 10931 ipp->ipp_fields &= ~IPPF_TCLASS; 10932 } else { 10933 if (*i1 > 255 || *i1 < -1) 10934 return (EINVAL); 10935 if (*i1 == -1) { 10936 ipp->ipp_tclass = 0; 10937 *i1 = 0; 10938 } else { 10939 ipp->ipp_tclass = *i1; 10940 } 10941 ipp->ipp_fields |= IPPF_TCLASS; 10942 } 10943 reterr = tcp_build_hdrs(q, tcp); 10944 if (reterr != 0) 10945 return (reterr); 10946 break; 10947 case IPV6_NEXTHOP: 10948 /* 10949 * IP will verify that the nexthop is reachable 10950 * and fail for sticky options. 10951 */ 10952 if (inlen != 0 && inlen != sizeof (sin6_t)) 10953 return (EINVAL); 10954 if (checkonly) 10955 break; 10956 10957 if (inlen == 0) { 10958 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10959 } else { 10960 sin6_t *sin6 = (sin6_t *)invalp; 10961 10962 if (sin6->sin6_family != AF_INET6) 10963 return (EAFNOSUPPORT); 10964 if (IN6_IS_ADDR_V4MAPPED( 10965 &sin6->sin6_addr)) 10966 return (EADDRNOTAVAIL); 10967 ipp->ipp_nexthop = sin6->sin6_addr; 10968 if (!IN6_IS_ADDR_UNSPECIFIED( 10969 &ipp->ipp_nexthop)) 10970 ipp->ipp_fields |= IPPF_NEXTHOP; 10971 else 10972 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10973 } 10974 reterr = tcp_build_hdrs(q, tcp); 10975 if (reterr != 0) 10976 return (reterr); 10977 break; 10978 case IPV6_HOPOPTS: { 10979 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10980 10981 /* 10982 * Sanity checks - minimum size, size a multiple of 10983 * eight bytes, and matching size passed in. 10984 */ 10985 if (inlen != 0 && 10986 inlen != (8 * (hopts->ip6h_len + 1))) 10987 return (EINVAL); 10988 10989 if (checkonly) 10990 break; 10991 10992 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10993 (uchar_t **)&ipp->ipp_hopopts, 10994 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10995 if (reterr != 0) 10996 return (reterr); 10997 if (ipp->ipp_hopoptslen == 0) 10998 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10999 else 11000 ipp->ipp_fields |= IPPF_HOPOPTS; 11001 reterr = tcp_build_hdrs(q, tcp); 11002 if (reterr != 0) 11003 return (reterr); 11004 break; 11005 } 11006 case IPV6_RTHDRDSTOPTS: { 11007 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 11008 11009 /* 11010 * Sanity checks - minimum size, size a multiple of 11011 * eight bytes, and matching size passed in. 11012 */ 11013 if (inlen != 0 && 11014 inlen != (8 * (dopts->ip6d_len + 1))) 11015 return (EINVAL); 11016 11017 if (checkonly) 11018 break; 11019 11020 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11021 (uchar_t **)&ipp->ipp_rtdstopts, 11022 &ipp->ipp_rtdstoptslen, 0); 11023 if (reterr != 0) 11024 return (reterr); 11025 if (ipp->ipp_rtdstoptslen == 0) 11026 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 11027 else 11028 ipp->ipp_fields |= IPPF_RTDSTOPTS; 11029 reterr = tcp_build_hdrs(q, tcp); 11030 if (reterr != 0) 11031 return (reterr); 11032 break; 11033 } 11034 case IPV6_DSTOPTS: { 11035 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 11036 11037 /* 11038 * Sanity checks - minimum size, size a multiple of 11039 * eight bytes, and matching size passed in. 11040 */ 11041 if (inlen != 0 && 11042 inlen != (8 * (dopts->ip6d_len + 1))) 11043 return (EINVAL); 11044 11045 if (checkonly) 11046 break; 11047 11048 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11049 (uchar_t **)&ipp->ipp_dstopts, 11050 &ipp->ipp_dstoptslen, 0); 11051 if (reterr != 0) 11052 return (reterr); 11053 if (ipp->ipp_dstoptslen == 0) 11054 ipp->ipp_fields &= ~IPPF_DSTOPTS; 11055 else 11056 ipp->ipp_fields |= IPPF_DSTOPTS; 11057 reterr = tcp_build_hdrs(q, tcp); 11058 if (reterr != 0) 11059 return (reterr); 11060 break; 11061 } 11062 case IPV6_RTHDR: { 11063 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 11064 11065 /* 11066 * Sanity checks - minimum size, size a multiple of 11067 * eight bytes, and matching size passed in. 11068 */ 11069 if (inlen != 0 && 11070 inlen != (8 * (rt->ip6r_len + 1))) 11071 return (EINVAL); 11072 11073 if (checkonly) 11074 break; 11075 11076 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11077 (uchar_t **)&ipp->ipp_rthdr, 11078 &ipp->ipp_rthdrlen, 0); 11079 if (reterr != 0) 11080 return (reterr); 11081 if (ipp->ipp_rthdrlen == 0) 11082 ipp->ipp_fields &= ~IPPF_RTHDR; 11083 else 11084 ipp->ipp_fields |= IPPF_RTHDR; 11085 reterr = tcp_build_hdrs(q, tcp); 11086 if (reterr != 0) 11087 return (reterr); 11088 break; 11089 } 11090 case IPV6_V6ONLY: 11091 if (!checkonly) 11092 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11093 break; 11094 case IPV6_USE_MIN_MTU: 11095 if (inlen != sizeof (int)) 11096 return (EINVAL); 11097 11098 if (*i1 < -1 || *i1 > 1) 11099 return (EINVAL); 11100 11101 if (checkonly) 11102 break; 11103 11104 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11105 ipp->ipp_use_min_mtu = *i1; 11106 break; 11107 case IPV6_BOUND_PIF: 11108 /* Handled at the IP level */ 11109 return (-EINVAL); 11110 case IPV6_SEC_OPT: 11111 /* 11112 * We should not allow policy setting after 11113 * we start listening for connections. 11114 */ 11115 if (tcp->tcp_state == TCPS_LISTEN) { 11116 return (EINVAL); 11117 } else { 11118 /* Handled at the IP level */ 11119 return (-EINVAL); 11120 } 11121 case IPV6_SRC_PREFERENCES: 11122 if (inlen != sizeof (uint32_t)) 11123 return (EINVAL); 11124 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11125 *(uint32_t *)invalp); 11126 if (reterr != 0) { 11127 *outlenp = 0; 11128 return (reterr); 11129 } 11130 break; 11131 default: 11132 *outlenp = 0; 11133 return (EINVAL); 11134 } 11135 break; 11136 } /* end IPPROTO_IPV6 */ 11137 default: 11138 *outlenp = 0; 11139 return (EINVAL); 11140 } 11141 /* 11142 * Common case of OK return with outval same as inval 11143 */ 11144 if (invalp != outvalp) { 11145 /* don't trust bcopy for identical src/dst */ 11146 (void) bcopy(invalp, outvalp, inlen); 11147 } 11148 *outlenp = inlen; 11149 return (0); 11150 } 11151 11152 /* 11153 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11154 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11155 * headers, and the maximum size tcp header (to avoid reallocation 11156 * on the fly for additional tcp options). 11157 * Returns failure if can't allocate memory. 11158 */ 11159 static int 11160 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11161 { 11162 char *hdrs; 11163 uint_t hdrs_len; 11164 ip6i_t *ip6i; 11165 char buf[TCP_MAX_HDR_LENGTH]; 11166 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11167 in6_addr_t src, dst; 11168 tcp_stack_t *tcps = tcp->tcp_tcps; 11169 11170 /* 11171 * save the existing tcp header and source/dest IP addresses 11172 */ 11173 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11174 src = tcp->tcp_ip6h->ip6_src; 11175 dst = tcp->tcp_ip6h->ip6_dst; 11176 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11177 ASSERT(hdrs_len != 0); 11178 if (hdrs_len > tcp->tcp_iphc_len) { 11179 /* Need to reallocate */ 11180 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11181 if (hdrs == NULL) 11182 return (ENOMEM); 11183 if (tcp->tcp_iphc != NULL) { 11184 if (tcp->tcp_hdr_grown) { 11185 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11186 } else { 11187 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11188 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11189 } 11190 tcp->tcp_iphc_len = 0; 11191 } 11192 ASSERT(tcp->tcp_iphc_len == 0); 11193 tcp->tcp_iphc = hdrs; 11194 tcp->tcp_iphc_len = hdrs_len; 11195 tcp->tcp_hdr_grown = B_TRUE; 11196 } 11197 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11198 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11199 11200 /* Set header fields not in ipp */ 11201 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11202 ip6i = (ip6i_t *)tcp->tcp_iphc; 11203 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11204 } else { 11205 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11206 } 11207 /* 11208 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11209 * 11210 * tcp->tcp_tcp_hdr_len doesn't change here. 11211 */ 11212 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11213 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11214 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11215 11216 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11217 11218 tcp->tcp_ip6h->ip6_src = src; 11219 tcp->tcp_ip6h->ip6_dst = dst; 11220 11221 /* 11222 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11223 * the default value for TCP. 11224 */ 11225 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11226 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11227 11228 /* 11229 * If we're setting extension headers after a connection 11230 * has been established, and if we have a routing header 11231 * among the extension headers, call ip_massage_options_v6 to 11232 * manipulate the routing header/ip6_dst set the checksum 11233 * difference in the tcp header template. 11234 * (This happens in tcp_connect_ipv6 if the routing header 11235 * is set prior to the connect.) 11236 * Set the tcp_sum to zero first in case we've cleared a 11237 * routing header or don't have one at all. 11238 */ 11239 tcp->tcp_sum = 0; 11240 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11241 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11242 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11243 (uint8_t *)tcp->tcp_tcph); 11244 if (rth != NULL) { 11245 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11246 rth, tcps->tcps_netstack); 11247 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11248 (tcp->tcp_sum >> 16)); 11249 } 11250 } 11251 11252 /* Try to get everything in a single mblk */ 11253 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11254 return (0); 11255 } 11256 11257 /* 11258 * Transfer any source route option from ipha to buf/dst in reversed form. 11259 */ 11260 static int 11261 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11262 { 11263 ipoptp_t opts; 11264 uchar_t *opt; 11265 uint8_t optval; 11266 uint8_t optlen; 11267 uint32_t len = 0; 11268 11269 for (optval = ipoptp_first(&opts, ipha); 11270 optval != IPOPT_EOL; 11271 optval = ipoptp_next(&opts)) { 11272 opt = opts.ipoptp_cur; 11273 optlen = opts.ipoptp_len; 11274 switch (optval) { 11275 int off1, off2; 11276 case IPOPT_SSRR: 11277 case IPOPT_LSRR: 11278 11279 /* Reverse source route */ 11280 /* 11281 * First entry should be the next to last one in the 11282 * current source route (the last entry is our 11283 * address.) 11284 * The last entry should be the final destination. 11285 */ 11286 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11287 buf[IPOPT_OLEN] = (uint8_t)optlen; 11288 off1 = IPOPT_MINOFF_SR - 1; 11289 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11290 if (off2 < 0) { 11291 /* No entries in source route */ 11292 break; 11293 } 11294 bcopy(opt + off2, dst, IP_ADDR_LEN); 11295 /* 11296 * Note: use src since ipha has not had its src 11297 * and dst reversed (it is in the state it was 11298 * received. 11299 */ 11300 bcopy(&ipha->ipha_src, buf + off2, 11301 IP_ADDR_LEN); 11302 off2 -= IP_ADDR_LEN; 11303 11304 while (off2 > 0) { 11305 bcopy(opt + off2, buf + off1, 11306 IP_ADDR_LEN); 11307 off1 += IP_ADDR_LEN; 11308 off2 -= IP_ADDR_LEN; 11309 } 11310 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11311 buf += optlen; 11312 len += optlen; 11313 break; 11314 } 11315 } 11316 done: 11317 /* Pad the resulting options */ 11318 while (len & 0x3) { 11319 *buf++ = IPOPT_EOL; 11320 len++; 11321 } 11322 return (len); 11323 } 11324 11325 11326 /* 11327 * Extract and revert a source route from ipha (if any) 11328 * and then update the relevant fields in both tcp_t and the standard header. 11329 */ 11330 static void 11331 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11332 { 11333 char buf[TCP_MAX_HDR_LENGTH]; 11334 uint_t tcph_len; 11335 int len; 11336 11337 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11338 len = IPH_HDR_LENGTH(ipha); 11339 if (len == IP_SIMPLE_HDR_LENGTH) 11340 /* Nothing to do */ 11341 return; 11342 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11343 (len & 0x3)) 11344 return; 11345 11346 tcph_len = tcp->tcp_tcp_hdr_len; 11347 bcopy(tcp->tcp_tcph, buf, tcph_len); 11348 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11349 (tcp->tcp_ipha->ipha_dst & 0xffff); 11350 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11351 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11352 len += IP_SIMPLE_HDR_LENGTH; 11353 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11354 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11355 if ((int)tcp->tcp_sum < 0) 11356 tcp->tcp_sum--; 11357 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11358 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11359 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11360 bcopy(buf, tcp->tcp_tcph, tcph_len); 11361 tcp->tcp_ip_hdr_len = len; 11362 tcp->tcp_ipha->ipha_version_and_hdr_length = 11363 (IP_VERSION << 4) | (len >> 2); 11364 len += tcph_len; 11365 tcp->tcp_hdr_len = len; 11366 } 11367 11368 /* 11369 * Copy the standard header into its new location, 11370 * lay in the new options and then update the relevant 11371 * fields in both tcp_t and the standard header. 11372 */ 11373 static int 11374 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11375 { 11376 uint_t tcph_len; 11377 uint8_t *ip_optp; 11378 tcph_t *new_tcph; 11379 tcp_stack_t *tcps = tcp->tcp_tcps; 11380 11381 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11382 return (EINVAL); 11383 11384 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11385 return (EINVAL); 11386 11387 if (checkonly) { 11388 /* 11389 * do not really set, just pretend to - T_CHECK 11390 */ 11391 return (0); 11392 } 11393 11394 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11395 if (tcp->tcp_label_len > 0) { 11396 int padlen; 11397 uint8_t opt; 11398 11399 /* convert list termination to no-ops */ 11400 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11401 ip_optp += ip_optp[IPOPT_OLEN]; 11402 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11403 while (--padlen >= 0) 11404 *ip_optp++ = opt; 11405 } 11406 tcph_len = tcp->tcp_tcp_hdr_len; 11407 new_tcph = (tcph_t *)(ip_optp + len); 11408 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11409 tcp->tcp_tcph = new_tcph; 11410 bcopy(ptr, ip_optp, len); 11411 11412 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11413 11414 tcp->tcp_ip_hdr_len = len; 11415 tcp->tcp_ipha->ipha_version_and_hdr_length = 11416 (IP_VERSION << 4) | (len >> 2); 11417 tcp->tcp_hdr_len = len + tcph_len; 11418 if (!TCP_IS_DETACHED(tcp)) { 11419 /* Always allocate room for all options. */ 11420 (void) mi_set_sth_wroff(tcp->tcp_rq, 11421 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11422 } 11423 return (0); 11424 } 11425 11426 /* Get callback routine passed to nd_load by tcp_param_register */ 11427 /* ARGSUSED */ 11428 static int 11429 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11430 { 11431 tcpparam_t *tcppa = (tcpparam_t *)cp; 11432 11433 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11434 return (0); 11435 } 11436 11437 /* 11438 * Walk through the param array specified registering each element with the 11439 * named dispatch handler. 11440 */ 11441 static boolean_t 11442 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11443 { 11444 for (; cnt-- > 0; tcppa++) { 11445 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11446 if (!nd_load(ndp, tcppa->tcp_param_name, 11447 tcp_param_get, tcp_param_set, 11448 (caddr_t)tcppa)) { 11449 nd_free(ndp); 11450 return (B_FALSE); 11451 } 11452 } 11453 } 11454 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11455 KM_SLEEP); 11456 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11457 sizeof (tcpparam_t)); 11458 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11459 tcp_param_get, tcp_param_set_aligned, 11460 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11461 nd_free(ndp); 11462 return (B_FALSE); 11463 } 11464 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11465 KM_SLEEP); 11466 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11467 sizeof (tcpparam_t)); 11468 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11469 tcp_param_get, tcp_param_set_aligned, 11470 (caddr_t)tcps->tcps_mdt_head_param)) { 11471 nd_free(ndp); 11472 return (B_FALSE); 11473 } 11474 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11475 KM_SLEEP); 11476 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11477 sizeof (tcpparam_t)); 11478 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11479 tcp_param_get, tcp_param_set_aligned, 11480 (caddr_t)tcps->tcps_mdt_tail_param)) { 11481 nd_free(ndp); 11482 return (B_FALSE); 11483 } 11484 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11485 KM_SLEEP); 11486 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11487 sizeof (tcpparam_t)); 11488 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11489 tcp_param_get, tcp_param_set_aligned, 11490 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11491 nd_free(ndp); 11492 return (B_FALSE); 11493 } 11494 if (!nd_load(ndp, "tcp_extra_priv_ports", 11495 tcp_extra_priv_ports_get, NULL, NULL)) { 11496 nd_free(ndp); 11497 return (B_FALSE); 11498 } 11499 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11500 NULL, tcp_extra_priv_ports_add, NULL)) { 11501 nd_free(ndp); 11502 return (B_FALSE); 11503 } 11504 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11505 NULL, tcp_extra_priv_ports_del, NULL)) { 11506 nd_free(ndp); 11507 return (B_FALSE); 11508 } 11509 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11510 NULL)) { 11511 nd_free(ndp); 11512 return (B_FALSE); 11513 } 11514 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11515 NULL, NULL)) { 11516 nd_free(ndp); 11517 return (B_FALSE); 11518 } 11519 if (!nd_load(ndp, "tcp_listen_hash", 11520 tcp_listen_hash_report, NULL, NULL)) { 11521 nd_free(ndp); 11522 return (B_FALSE); 11523 } 11524 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11525 NULL, NULL)) { 11526 nd_free(ndp); 11527 return (B_FALSE); 11528 } 11529 if (!nd_load(ndp, "tcp_acceptor_hash", 11530 tcp_acceptor_hash_report, NULL, NULL)) { 11531 nd_free(ndp); 11532 return (B_FALSE); 11533 } 11534 if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report, 11535 tcp_host_param_set, NULL)) { 11536 nd_free(ndp); 11537 return (B_FALSE); 11538 } 11539 if (!nd_load(ndp, "tcp_host_param_ipv6", 11540 tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) { 11541 nd_free(ndp); 11542 return (B_FALSE); 11543 } 11544 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11545 tcp_1948_phrase_set, NULL)) { 11546 nd_free(ndp); 11547 return (B_FALSE); 11548 } 11549 if (!nd_load(ndp, "tcp_reserved_port_list", 11550 tcp_reserved_port_list, NULL, NULL)) { 11551 nd_free(ndp); 11552 return (B_FALSE); 11553 } 11554 /* 11555 * Dummy ndd variables - only to convey obsolescence information 11556 * through printing of their name (no get or set routines) 11557 * XXX Remove in future releases ? 11558 */ 11559 if (!nd_load(ndp, 11560 "tcp_close_wait_interval(obsoleted - " 11561 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11562 nd_free(ndp); 11563 return (B_FALSE); 11564 } 11565 return (B_TRUE); 11566 } 11567 11568 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11569 /* ARGSUSED */ 11570 static int 11571 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11572 cred_t *cr) 11573 { 11574 long new_value; 11575 tcpparam_t *tcppa = (tcpparam_t *)cp; 11576 11577 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11578 new_value < tcppa->tcp_param_min || 11579 new_value > tcppa->tcp_param_max) { 11580 return (EINVAL); 11581 } 11582 /* 11583 * Need to make sure new_value is a multiple of 4. If it is not, 11584 * round it up. For future 64 bit requirement, we actually make it 11585 * a multiple of 8. 11586 */ 11587 if (new_value & 0x7) { 11588 new_value = (new_value & ~0x7) + 0x8; 11589 } 11590 tcppa->tcp_param_val = new_value; 11591 return (0); 11592 } 11593 11594 /* Set callback routine passed to nd_load by tcp_param_register */ 11595 /* ARGSUSED */ 11596 static int 11597 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11598 { 11599 long new_value; 11600 tcpparam_t *tcppa = (tcpparam_t *)cp; 11601 11602 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11603 new_value < tcppa->tcp_param_min || 11604 new_value > tcppa->tcp_param_max) { 11605 return (EINVAL); 11606 } 11607 tcppa->tcp_param_val = new_value; 11608 return (0); 11609 } 11610 11611 /* 11612 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11613 * is filled, return as much as we can. The message passed in may be 11614 * multi-part, chained using b_cont. "start" is the starting sequence 11615 * number for this piece. 11616 */ 11617 static mblk_t * 11618 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11619 { 11620 uint32_t end; 11621 mblk_t *mp1; 11622 mblk_t *mp2; 11623 mblk_t *next_mp; 11624 uint32_t u1; 11625 tcp_stack_t *tcps = tcp->tcp_tcps; 11626 11627 /* Walk through all the new pieces. */ 11628 do { 11629 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11630 (uintptr_t)INT_MAX); 11631 end = start + (int)(mp->b_wptr - mp->b_rptr); 11632 next_mp = mp->b_cont; 11633 if (start == end) { 11634 /* Empty. Blast it. */ 11635 freeb(mp); 11636 continue; 11637 } 11638 mp->b_cont = NULL; 11639 TCP_REASS_SET_SEQ(mp, start); 11640 TCP_REASS_SET_END(mp, end); 11641 mp1 = tcp->tcp_reass_tail; 11642 if (!mp1) { 11643 tcp->tcp_reass_tail = mp; 11644 tcp->tcp_reass_head = mp; 11645 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11646 UPDATE_MIB(&tcps->tcps_mib, 11647 tcpInDataUnorderBytes, end - start); 11648 continue; 11649 } 11650 /* New stuff completely beyond tail? */ 11651 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11652 /* Link it on end. */ 11653 mp1->b_cont = mp; 11654 tcp->tcp_reass_tail = mp; 11655 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11656 UPDATE_MIB(&tcps->tcps_mib, 11657 tcpInDataUnorderBytes, end - start); 11658 continue; 11659 } 11660 mp1 = tcp->tcp_reass_head; 11661 u1 = TCP_REASS_SEQ(mp1); 11662 /* New stuff at the front? */ 11663 if (SEQ_LT(start, u1)) { 11664 /* Yes... Check for overlap. */ 11665 mp->b_cont = mp1; 11666 tcp->tcp_reass_head = mp; 11667 tcp_reass_elim_overlap(tcp, mp); 11668 continue; 11669 } 11670 /* 11671 * The new piece fits somewhere between the head and tail. 11672 * We find our slot, where mp1 precedes us and mp2 trails. 11673 */ 11674 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11675 u1 = TCP_REASS_SEQ(mp2); 11676 if (SEQ_LEQ(start, u1)) 11677 break; 11678 } 11679 /* Link ourselves in */ 11680 mp->b_cont = mp2; 11681 mp1->b_cont = mp; 11682 11683 /* Trim overlap with following mblk(s) first */ 11684 tcp_reass_elim_overlap(tcp, mp); 11685 11686 /* Trim overlap with preceding mblk */ 11687 tcp_reass_elim_overlap(tcp, mp1); 11688 11689 } while (start = end, mp = next_mp); 11690 mp1 = tcp->tcp_reass_head; 11691 /* Anything ready to go? */ 11692 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11693 return (NULL); 11694 /* Eat what we can off the queue */ 11695 for (;;) { 11696 mp = mp1->b_cont; 11697 end = TCP_REASS_END(mp1); 11698 TCP_REASS_SET_SEQ(mp1, 0); 11699 TCP_REASS_SET_END(mp1, 0); 11700 if (!mp) { 11701 tcp->tcp_reass_tail = NULL; 11702 break; 11703 } 11704 if (end != TCP_REASS_SEQ(mp)) { 11705 mp1->b_cont = NULL; 11706 break; 11707 } 11708 mp1 = mp; 11709 } 11710 mp1 = tcp->tcp_reass_head; 11711 tcp->tcp_reass_head = mp; 11712 return (mp1); 11713 } 11714 11715 /* Eliminate any overlap that mp may have over later mblks */ 11716 static void 11717 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11718 { 11719 uint32_t end; 11720 mblk_t *mp1; 11721 uint32_t u1; 11722 tcp_stack_t *tcps = tcp->tcp_tcps; 11723 11724 end = TCP_REASS_END(mp); 11725 while ((mp1 = mp->b_cont) != NULL) { 11726 u1 = TCP_REASS_SEQ(mp1); 11727 if (!SEQ_GT(end, u1)) 11728 break; 11729 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11730 mp->b_wptr -= end - u1; 11731 TCP_REASS_SET_END(mp, u1); 11732 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11733 UPDATE_MIB(&tcps->tcps_mib, 11734 tcpInDataPartDupBytes, end - u1); 11735 break; 11736 } 11737 mp->b_cont = mp1->b_cont; 11738 TCP_REASS_SET_SEQ(mp1, 0); 11739 TCP_REASS_SET_END(mp1, 0); 11740 freeb(mp1); 11741 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11742 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11743 } 11744 if (!mp1) 11745 tcp->tcp_reass_tail = mp; 11746 } 11747 11748 /* 11749 * Send up all messages queued on tcp_rcv_list. 11750 */ 11751 static uint_t 11752 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11753 { 11754 mblk_t *mp; 11755 uint_t ret = 0; 11756 uint_t thwin; 11757 #ifdef DEBUG 11758 uint_t cnt = 0; 11759 #endif 11760 tcp_stack_t *tcps = tcp->tcp_tcps; 11761 11762 /* Can't drain on an eager connection */ 11763 if (tcp->tcp_listener != NULL) 11764 return (ret); 11765 11766 /* Can't be sodirect enabled */ 11767 ASSERT(SOD_NOT_ENABLED(tcp)); 11768 11769 /* No need for the push timer now. */ 11770 if (tcp->tcp_push_tid != 0) { 11771 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11772 tcp->tcp_push_tid = 0; 11773 } 11774 11775 /* 11776 * Handle two cases here: we are currently fused or we were 11777 * previously fused and have some urgent data to be delivered 11778 * upstream. The latter happens because we either ran out of 11779 * memory or were detached and therefore sending the SIGURG was 11780 * deferred until this point. In either case we pass control 11781 * over to tcp_fuse_rcv_drain() since it may need to complete 11782 * some work. 11783 */ 11784 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11785 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11786 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11787 &tcp->tcp_fused_sigurg_mp)) 11788 return (ret); 11789 } 11790 11791 while ((mp = tcp->tcp_rcv_list) != NULL) { 11792 tcp->tcp_rcv_list = mp->b_next; 11793 mp->b_next = NULL; 11794 #ifdef DEBUG 11795 cnt += msgdsize(mp); 11796 #endif 11797 /* Does this need SSL processing first? */ 11798 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11799 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11800 mblk_t *, mp); 11801 tcp_kssl_input(tcp, mp); 11802 continue; 11803 } 11804 putnext(q, mp); 11805 } 11806 ASSERT(cnt == tcp->tcp_rcv_cnt); 11807 tcp->tcp_rcv_last_head = NULL; 11808 tcp->tcp_rcv_last_tail = NULL; 11809 tcp->tcp_rcv_cnt = 0; 11810 11811 /* Learn the latest rwnd information that we sent to the other side. */ 11812 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11813 << tcp->tcp_rcv_ws; 11814 /* This is peer's calculated send window (our receive window). */ 11815 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11816 /* 11817 * Increase the receive window to max. But we need to do receiver 11818 * SWS avoidance. This means that we need to check the increase of 11819 * of receive window is at least 1 MSS. 11820 */ 11821 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11822 /* 11823 * If the window that the other side knows is less than max 11824 * deferred acks segments, send an update immediately. 11825 */ 11826 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11827 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11828 ret = TH_ACK_NEEDED; 11829 } 11830 tcp->tcp_rwnd = q->q_hiwat; 11831 } 11832 return (ret); 11833 } 11834 11835 /* 11836 * Queue data on tcp_rcv_list which is a b_next chain. 11837 * tcp_rcv_last_head/tail is the last element of this chain. 11838 * Each element of the chain is a b_cont chain. 11839 * 11840 * M_DATA messages are added to the current element. 11841 * Other messages are added as new (b_next) elements. 11842 */ 11843 void 11844 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11845 { 11846 ASSERT(seg_len == msgdsize(mp)); 11847 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11848 11849 if (tcp->tcp_rcv_list == NULL) { 11850 ASSERT(tcp->tcp_rcv_last_head == NULL); 11851 tcp->tcp_rcv_list = mp; 11852 tcp->tcp_rcv_last_head = mp; 11853 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11854 tcp->tcp_rcv_last_tail->b_cont = mp; 11855 } else { 11856 tcp->tcp_rcv_last_head->b_next = mp; 11857 tcp->tcp_rcv_last_head = mp; 11858 } 11859 11860 while (mp->b_cont) 11861 mp = mp->b_cont; 11862 11863 tcp->tcp_rcv_last_tail = mp; 11864 tcp->tcp_rcv_cnt += seg_len; 11865 tcp->tcp_rwnd -= seg_len; 11866 } 11867 11868 /* 11869 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11870 * above, in addition when uioa is enabled schedule an asynchronous uio 11871 * prior to enqueuing. They implement the combinhed semantics of the 11872 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11873 * canputnext(), i.e. flow-control with backenable. 11874 * 11875 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11876 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11877 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11878 * 11879 * Must be called with sodp->sod_lock held and will return with the lock 11880 * released. 11881 */ 11882 static uint_t 11883 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11884 { 11885 queue_t *q = tcp->tcp_rq; 11886 uint_t thwin; 11887 tcp_stack_t *tcps = tcp->tcp_tcps; 11888 uint_t ret = 0; 11889 11890 /* Can't be an eager connection */ 11891 ASSERT(tcp->tcp_listener == NULL); 11892 11893 /* Caller must have lock held */ 11894 ASSERT(MUTEX_HELD(sodp->sod_lock)); 11895 11896 /* Sodirect mode so must not be a tcp_rcv_list */ 11897 ASSERT(tcp->tcp_rcv_list == NULL); 11898 11899 if (SOD_QFULL(sodp)) { 11900 /* Q is full, mark Q for need backenable */ 11901 SOD_QSETBE(sodp); 11902 } 11903 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11904 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11905 << tcp->tcp_rcv_ws; 11906 /* This is peer's calculated send window (our available rwnd). */ 11907 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11908 /* 11909 * Increase the receive window to max. But we need to do receiver 11910 * SWS avoidance. This means that we need to check the increase of 11911 * of receive window is at least 1 MSS. 11912 */ 11913 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11914 /* 11915 * If the window that the other side knows is less than max 11916 * deferred acks segments, send an update immediately. 11917 */ 11918 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11919 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11920 ret = TH_ACK_NEEDED; 11921 } 11922 tcp->tcp_rwnd = q->q_hiwat; 11923 } 11924 11925 if (!SOD_QEMPTY(sodp)) { 11926 /* Wakeup to socket */ 11927 sodp->sod_state &= SOD_WAKE_CLR; 11928 sodp->sod_state |= SOD_WAKE_DONE; 11929 (sodp->sod_wakeup)(sodp); 11930 /* wakeup() does the mutex_ext() */ 11931 } else { 11932 /* Q is empty, no need to wake */ 11933 sodp->sod_state &= SOD_WAKE_CLR; 11934 sodp->sod_state |= SOD_WAKE_NOT; 11935 mutex_exit(sodp->sod_lock); 11936 } 11937 11938 /* No need for the push timer now. */ 11939 if (tcp->tcp_push_tid != 0) { 11940 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11941 tcp->tcp_push_tid = 0; 11942 } 11943 11944 return (ret); 11945 } 11946 11947 /* 11948 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11949 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11950 * to the user-land buffer and flag the mblk_t as such. 11951 * 11952 * Also, handle tcp_rwnd. 11953 */ 11954 uint_t 11955 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11956 { 11957 uioa_t *uioap = &sodp->sod_uioa; 11958 boolean_t qfull; 11959 uint_t thwin; 11960 11961 /* Can't be an eager connection */ 11962 ASSERT(tcp->tcp_listener == NULL); 11963 11964 /* Caller must have lock held */ 11965 ASSERT(MUTEX_HELD(sodp->sod_lock)); 11966 11967 /* Sodirect mode so must not be a tcp_rcv_list */ 11968 ASSERT(tcp->tcp_rcv_list == NULL); 11969 11970 /* Passed in segment length must be equal to mblk_t chain data size */ 11971 ASSERT(seg_len == msgdsize(mp)); 11972 11973 if (DB_TYPE(mp) != M_DATA) { 11974 /* Only process M_DATA mblk_t's */ 11975 goto enq; 11976 } 11977 if (uioap->uioa_state & UIOA_ENABLED) { 11978 /* Uioa is enabled */ 11979 mblk_t *mp1 = mp; 11980 11981 if (seg_len > uioap->uio_resid) { 11982 /* 11983 * There isn't enough uio space for the mblk_t chain 11984 * so disable uioa such that this and any additional 11985 * mblk_t data is handled by the socket and schedule 11986 * the socket for wakeup to finish this uioa. 11987 */ 11988 uioap->uioa_state &= UIOA_CLR; 11989 uioap->uioa_state |= UIOA_FINI; 11990 if (sodp->sod_state & SOD_WAKE_NOT) { 11991 sodp->sod_state &= SOD_WAKE_CLR; 11992 sodp->sod_state |= SOD_WAKE_NEED; 11993 } 11994 goto enq; 11995 } 11996 do { 11997 uint32_t len = MBLKL(mp1); 11998 11999 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 12000 /* Scheduled, mark dblk_t as such */ 12001 DB_FLAGS(mp1) |= DBLK_UIOA; 12002 } else { 12003 /* Error, turn off async processing */ 12004 uioap->uioa_state &= UIOA_CLR; 12005 uioap->uioa_state |= UIOA_FINI; 12006 break; 12007 } 12008 } while ((mp1 = mp1->b_cont) != NULL); 12009 12010 if (mp1 != NULL || uioap->uio_resid == 0) { 12011 /* 12012 * Not all mblk_t(s) uioamoved (error) or all uio 12013 * space has been consumed so schedule the socket 12014 * for wakeup to finish this uio. 12015 */ 12016 sodp->sod_state &= SOD_WAKE_CLR; 12017 sodp->sod_state |= SOD_WAKE_NEED; 12018 } 12019 } else if (uioap->uioa_state & UIOA_FINI) { 12020 /* 12021 * Post UIO_ENABLED waiting for socket to finish processing 12022 * so just enqueue and update tcp_rwnd. 12023 */ 12024 if (SOD_QFULL(sodp)) 12025 tcp->tcp_rwnd -= seg_len; 12026 } else if (sodp->sod_want > 0) { 12027 /* 12028 * Uioa isn't enabled but sodirect has a pending read(). 12029 */ 12030 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 12031 if (sodp->sod_state & SOD_WAKE_NOT) { 12032 /* Schedule socket for wakeup */ 12033 sodp->sod_state &= SOD_WAKE_CLR; 12034 sodp->sod_state |= SOD_WAKE_NEED; 12035 } 12036 tcp->tcp_rwnd -= seg_len; 12037 } 12038 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 12039 /* 12040 * No pending sodirect read() so used the default 12041 * TCP push logic to guess that a push is needed. 12042 */ 12043 if (sodp->sod_state & SOD_WAKE_NOT) { 12044 /* Schedule socket for wakeup */ 12045 sodp->sod_state &= SOD_WAKE_CLR; 12046 sodp->sod_state |= SOD_WAKE_NEED; 12047 } 12048 tcp->tcp_rwnd -= seg_len; 12049 } else { 12050 /* Just update tcp_rwnd */ 12051 tcp->tcp_rwnd -= seg_len; 12052 } 12053 enq: 12054 qfull = SOD_QFULL(sodp); 12055 12056 (sodp->sod_enqueue)(sodp, mp); 12057 12058 if (! qfull && SOD_QFULL(sodp)) { 12059 /* Wasn't QFULL, now QFULL, need back-enable */ 12060 SOD_QSETBE(sodp); 12061 } 12062 12063 /* 12064 * Check to see if remote avail swnd < mss due to delayed ACK, 12065 * first get advertised rwnd. 12066 */ 12067 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 12068 /* Minus delayed ACK count */ 12069 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 12070 if (thwin < tcp->tcp_mss) { 12071 /* Remote avail swnd < mss, need ACK now */ 12072 return (TH_ACK_NEEDED); 12073 } 12074 12075 return (0); 12076 } 12077 12078 /* 12079 * DEFAULT TCP ENTRY POINT via squeue on READ side. 12080 * 12081 * This is the default entry function into TCP on the read side. TCP is 12082 * always entered via squeue i.e. using squeue's for mutual exclusion. 12083 * When classifier does a lookup to find the tcp, it also puts a reference 12084 * on the conn structure associated so the tcp is guaranteed to exist 12085 * when we come here. We still need to check the state because it might 12086 * as well has been closed. The squeue processing function i.e. squeue_enter, 12087 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 12088 * CONN_DEC_REF. 12089 * 12090 * Apart from the default entry point, IP also sends packets directly to 12091 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 12092 * connections. 12093 */ 12094 void 12095 tcp_input(void *arg, mblk_t *mp, void *arg2) 12096 { 12097 conn_t *connp = (conn_t *)arg; 12098 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 12099 12100 /* arg2 is the sqp */ 12101 ASSERT(arg2 != NULL); 12102 ASSERT(mp != NULL); 12103 12104 /* 12105 * Don't accept any input on a closed tcp as this TCP logically does 12106 * not exist on the system. Don't proceed further with this TCP. 12107 * For eg. this packet could trigger another close of this tcp 12108 * which would be disastrous for tcp_refcnt. tcp_close_detached / 12109 * tcp_clean_death / tcp_closei_local must be called at most once 12110 * on a TCP. In this case we need to refeed the packet into the 12111 * classifier and figure out where the packet should go. Need to 12112 * preserve the recv_ill somehow. Until we figure that out, for 12113 * now just drop the packet if we can't classify the packet. 12114 */ 12115 if (tcp->tcp_state == TCPS_CLOSED || 12116 tcp->tcp_state == TCPS_BOUND) { 12117 conn_t *new_connp; 12118 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 12119 12120 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 12121 if (new_connp != NULL) { 12122 tcp_reinput(new_connp, mp, arg2); 12123 return; 12124 } 12125 /* We failed to classify. For now just drop the packet */ 12126 freemsg(mp); 12127 return; 12128 } 12129 12130 if (DB_TYPE(mp) == M_DATA) 12131 tcp_rput_data(connp, mp, arg2); 12132 else 12133 tcp_rput_common(tcp, mp); 12134 } 12135 12136 /* 12137 * The read side put procedure. 12138 * The packets passed up by ip are assume to be aligned according to 12139 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 12140 */ 12141 static void 12142 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 12143 { 12144 /* 12145 * tcp_rput_data() does not expect M_CTL except for the case 12146 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 12147 * type. Need to make sure that any other M_CTLs don't make 12148 * it to tcp_rput_data since it is not expecting any and doesn't 12149 * check for it. 12150 */ 12151 if (DB_TYPE(mp) == M_CTL) { 12152 switch (*(uint32_t *)(mp->b_rptr)) { 12153 case TCP_IOC_ABORT_CONN: 12154 /* 12155 * Handle connection abort request. 12156 */ 12157 tcp_ioctl_abort_handler(tcp, mp); 12158 return; 12159 case IPSEC_IN: 12160 /* 12161 * Only secure icmp arrive in TCP and they 12162 * don't go through data path. 12163 */ 12164 tcp_icmp_error(tcp, mp); 12165 return; 12166 case IN_PKTINFO: 12167 /* 12168 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 12169 * sockets that are receiving IPv4 traffic. tcp 12170 */ 12171 ASSERT(tcp->tcp_family == AF_INET6); 12172 ASSERT(tcp->tcp_ipv6_recvancillary & 12173 TCP_IPV6_RECVPKTINFO); 12174 tcp_rput_data(tcp->tcp_connp, mp, 12175 tcp->tcp_connp->conn_sqp); 12176 return; 12177 case MDT_IOC_INFO_UPDATE: 12178 /* 12179 * Handle Multidata information update; the 12180 * following routine will free the message. 12181 */ 12182 if (tcp->tcp_connp->conn_mdt_ok) { 12183 tcp_mdt_update(tcp, 12184 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 12185 B_FALSE); 12186 } 12187 freemsg(mp); 12188 return; 12189 case LSO_IOC_INFO_UPDATE: 12190 /* 12191 * Handle LSO information update; the following 12192 * routine will free the message. 12193 */ 12194 if (tcp->tcp_connp->conn_lso_ok) { 12195 tcp_lso_update(tcp, 12196 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 12197 } 12198 freemsg(mp); 12199 return; 12200 default: 12201 /* 12202 * tcp_icmp_err() will process the M_CTL packets. 12203 * Non-ICMP packets, if any, will be discarded in 12204 * tcp_icmp_err(). We will process the ICMP packet 12205 * even if we are TCP_IS_DETACHED_NONEAGER as the 12206 * incoming ICMP packet may result in changing 12207 * the tcp_mss, which we would need if we have 12208 * packets to retransmit. 12209 */ 12210 tcp_icmp_error(tcp, mp); 12211 return; 12212 } 12213 } 12214 12215 /* No point processing the message if tcp is already closed */ 12216 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 12217 freemsg(mp); 12218 return; 12219 } 12220 12221 tcp_rput_other(tcp, mp); 12222 } 12223 12224 12225 /* The minimum of smoothed mean deviation in RTO calculation. */ 12226 #define TCP_SD_MIN 400 12227 12228 /* 12229 * Set RTO for this connection. The formula is from Jacobson and Karels' 12230 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 12231 * are the same as those in Appendix A.2 of that paper. 12232 * 12233 * m = new measurement 12234 * sa = smoothed RTT average (8 * average estimates). 12235 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 12236 */ 12237 static void 12238 tcp_set_rto(tcp_t *tcp, clock_t rtt) 12239 { 12240 long m = TICK_TO_MSEC(rtt); 12241 clock_t sa = tcp->tcp_rtt_sa; 12242 clock_t sv = tcp->tcp_rtt_sd; 12243 clock_t rto; 12244 tcp_stack_t *tcps = tcp->tcp_tcps; 12245 12246 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 12247 tcp->tcp_rtt_update++; 12248 12249 /* tcp_rtt_sa is not 0 means this is a new sample. */ 12250 if (sa != 0) { 12251 /* 12252 * Update average estimator: 12253 * new rtt = 7/8 old rtt + 1/8 Error 12254 */ 12255 12256 /* m is now Error in estimate. */ 12257 m -= sa >> 3; 12258 if ((sa += m) <= 0) { 12259 /* 12260 * Don't allow the smoothed average to be negative. 12261 * We use 0 to denote reinitialization of the 12262 * variables. 12263 */ 12264 sa = 1; 12265 } 12266 12267 /* 12268 * Update deviation estimator: 12269 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 12270 */ 12271 if (m < 0) 12272 m = -m; 12273 m -= sv >> 2; 12274 sv += m; 12275 } else { 12276 /* 12277 * This follows BSD's implementation. So the reinitialized 12278 * RTO is 3 * m. We cannot go less than 2 because if the 12279 * link is bandwidth dominated, doubling the window size 12280 * during slow start means doubling the RTT. We want to be 12281 * more conservative when we reinitialize our estimates. 3 12282 * is just a convenient number. 12283 */ 12284 sa = m << 3; 12285 sv = m << 1; 12286 } 12287 if (sv < TCP_SD_MIN) { 12288 /* 12289 * We do not know that if sa captures the delay ACK 12290 * effect as in a long train of segments, a receiver 12291 * does not delay its ACKs. So set the minimum of sv 12292 * to be TCP_SD_MIN, which is default to 400 ms, twice 12293 * of BSD DATO. That means the minimum of mean 12294 * deviation is 100 ms. 12295 * 12296 */ 12297 sv = TCP_SD_MIN; 12298 } 12299 tcp->tcp_rtt_sa = sa; 12300 tcp->tcp_rtt_sd = sv; 12301 /* 12302 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12303 * 12304 * Add tcp_rexmit_interval extra in case of extreme environment 12305 * where the algorithm fails to work. The default value of 12306 * tcp_rexmit_interval_extra should be 0. 12307 * 12308 * As we use a finer grained clock than BSD and update 12309 * RTO for every ACKs, add in another .25 of RTT to the 12310 * deviation of RTO to accomodate burstiness of 1/4 of 12311 * window size. 12312 */ 12313 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12314 12315 if (rto > tcps->tcps_rexmit_interval_max) { 12316 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12317 } else if (rto < tcps->tcps_rexmit_interval_min) { 12318 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12319 } else { 12320 tcp->tcp_rto = rto; 12321 } 12322 12323 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12324 tcp->tcp_timer_backoff = 0; 12325 } 12326 12327 /* 12328 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12329 * send queue which starts at the given seq. no. 12330 * 12331 * Parameters: 12332 * tcp_t *tcp: the tcp instance pointer. 12333 * uint32_t seq: the starting seq. no of the requested segment. 12334 * int32_t *off: after the execution, *off will be the offset to 12335 * the returned mblk which points to the requested seq no. 12336 * It is the caller's responsibility to send in a non-null off. 12337 * 12338 * Return: 12339 * A mblk_t pointer pointing to the requested segment in send queue. 12340 */ 12341 static mblk_t * 12342 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12343 { 12344 int32_t cnt; 12345 mblk_t *mp; 12346 12347 /* Defensive coding. Make sure we don't send incorrect data. */ 12348 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12349 return (NULL); 12350 12351 cnt = seq - tcp->tcp_suna; 12352 mp = tcp->tcp_xmit_head; 12353 while (cnt > 0 && mp != NULL) { 12354 cnt -= mp->b_wptr - mp->b_rptr; 12355 if (cnt < 0) { 12356 cnt += mp->b_wptr - mp->b_rptr; 12357 break; 12358 } 12359 mp = mp->b_cont; 12360 } 12361 ASSERT(mp != NULL); 12362 *off = cnt; 12363 return (mp); 12364 } 12365 12366 /* 12367 * This function handles all retransmissions if SACK is enabled for this 12368 * connection. First it calculates how many segments can be retransmitted 12369 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12370 * segments. A segment is eligible if sack_cnt for that segment is greater 12371 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12372 * all eligible segments, it checks to see if TCP can send some new segments 12373 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12374 * 12375 * Parameters: 12376 * tcp_t *tcp: the tcp structure of the connection. 12377 * uint_t *flags: in return, appropriate value will be set for 12378 * tcp_rput_data(). 12379 */ 12380 static void 12381 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12382 { 12383 notsack_blk_t *notsack_blk; 12384 int32_t usable_swnd; 12385 int32_t mss; 12386 uint32_t seg_len; 12387 mblk_t *xmit_mp; 12388 tcp_stack_t *tcps = tcp->tcp_tcps; 12389 12390 ASSERT(tcp->tcp_sack_info != NULL); 12391 ASSERT(tcp->tcp_notsack_list != NULL); 12392 ASSERT(tcp->tcp_rexmit == B_FALSE); 12393 12394 /* Defensive coding in case there is a bug... */ 12395 if (tcp->tcp_notsack_list == NULL) { 12396 return; 12397 } 12398 notsack_blk = tcp->tcp_notsack_list; 12399 mss = tcp->tcp_mss; 12400 12401 /* 12402 * Limit the num of outstanding data in the network to be 12403 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12404 */ 12405 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12406 12407 /* At least retransmit 1 MSS of data. */ 12408 if (usable_swnd <= 0) { 12409 usable_swnd = mss; 12410 } 12411 12412 /* Make sure no new RTT samples will be taken. */ 12413 tcp->tcp_csuna = tcp->tcp_snxt; 12414 12415 notsack_blk = tcp->tcp_notsack_list; 12416 while (usable_swnd > 0) { 12417 mblk_t *snxt_mp, *tmp_mp; 12418 tcp_seq begin = tcp->tcp_sack_snxt; 12419 tcp_seq end; 12420 int32_t off; 12421 12422 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12423 if (SEQ_GT(notsack_blk->end, begin) && 12424 (notsack_blk->sack_cnt >= 12425 tcps->tcps_dupack_fast_retransmit)) { 12426 end = notsack_blk->end; 12427 if (SEQ_LT(begin, notsack_blk->begin)) { 12428 begin = notsack_blk->begin; 12429 } 12430 break; 12431 } 12432 } 12433 /* 12434 * All holes are filled. Manipulate tcp_cwnd to send more 12435 * if we can. Note that after the SACK recovery, tcp_cwnd is 12436 * set to tcp_cwnd_ssthresh. 12437 */ 12438 if (notsack_blk == NULL) { 12439 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12440 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12441 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12442 ASSERT(tcp->tcp_cwnd > 0); 12443 return; 12444 } else { 12445 usable_swnd = usable_swnd / mss; 12446 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12447 MAX(usable_swnd * mss, mss); 12448 *flags |= TH_XMIT_NEEDED; 12449 return; 12450 } 12451 } 12452 12453 /* 12454 * Note that we may send more than usable_swnd allows here 12455 * because of round off, but no more than 1 MSS of data. 12456 */ 12457 seg_len = end - begin; 12458 if (seg_len > mss) 12459 seg_len = mss; 12460 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12461 ASSERT(snxt_mp != NULL); 12462 /* This should not happen. Defensive coding again... */ 12463 if (snxt_mp == NULL) { 12464 return; 12465 } 12466 12467 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12468 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12469 if (xmit_mp == NULL) 12470 return; 12471 12472 usable_swnd -= seg_len; 12473 tcp->tcp_pipe += seg_len; 12474 tcp->tcp_sack_snxt = begin + seg_len; 12475 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12476 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12477 12478 /* 12479 * Update the send timestamp to avoid false retransmission. 12480 */ 12481 snxt_mp->b_prev = (mblk_t *)lbolt; 12482 12483 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12484 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12485 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12486 /* 12487 * Update tcp_rexmit_max to extend this SACK recovery phase. 12488 * This happens when new data sent during fast recovery is 12489 * also lost. If TCP retransmits those new data, it needs 12490 * to extend SACK recover phase to avoid starting another 12491 * fast retransmit/recovery unnecessarily. 12492 */ 12493 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12494 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12495 } 12496 } 12497 } 12498 12499 /* 12500 * This function handles policy checking at TCP level for non-hard_bound/ 12501 * detached connections. 12502 */ 12503 static boolean_t 12504 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12505 boolean_t secure, boolean_t mctl_present) 12506 { 12507 ipsec_latch_t *ipl = NULL; 12508 ipsec_action_t *act = NULL; 12509 mblk_t *data_mp; 12510 ipsec_in_t *ii; 12511 const char *reason; 12512 kstat_named_t *counter; 12513 tcp_stack_t *tcps = tcp->tcp_tcps; 12514 ipsec_stack_t *ipss; 12515 ip_stack_t *ipst; 12516 12517 ASSERT(mctl_present || !secure); 12518 12519 ASSERT((ipha == NULL && ip6h != NULL) || 12520 (ip6h == NULL && ipha != NULL)); 12521 12522 /* 12523 * We don't necessarily have an ipsec_in_act action to verify 12524 * policy because of assymetrical policy where we have only 12525 * outbound policy and no inbound policy (possible with global 12526 * policy). 12527 */ 12528 if (!secure) { 12529 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12530 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12531 return (B_TRUE); 12532 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12533 "tcp_check_policy", ipha, ip6h, secure, 12534 tcps->tcps_netstack); 12535 ipss = tcps->tcps_netstack->netstack_ipsec; 12536 12537 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12538 DROPPER(ipss, ipds_tcp_clear), 12539 &tcps->tcps_dropper); 12540 return (B_FALSE); 12541 } 12542 12543 /* 12544 * We have a secure packet. 12545 */ 12546 if (act == NULL) { 12547 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12548 "tcp_check_policy", ipha, ip6h, secure, 12549 tcps->tcps_netstack); 12550 ipss = tcps->tcps_netstack->netstack_ipsec; 12551 12552 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12553 DROPPER(ipss, ipds_tcp_secure), 12554 &tcps->tcps_dropper); 12555 return (B_FALSE); 12556 } 12557 12558 /* 12559 * XXX This whole routine is currently incorrect. ipl should 12560 * be set to the latch pointer, but is currently not set, so 12561 * we initialize it to NULL to avoid picking up random garbage. 12562 */ 12563 if (ipl == NULL) 12564 return (B_TRUE); 12565 12566 data_mp = first_mp->b_cont; 12567 12568 ii = (ipsec_in_t *)first_mp->b_rptr; 12569 12570 ipst = tcps->tcps_netstack->netstack_ip; 12571 12572 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12573 &counter, tcp->tcp_connp)) { 12574 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12575 return (B_TRUE); 12576 } 12577 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12578 "tcp inbound policy mismatch: %s, packet dropped\n", 12579 reason); 12580 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12581 12582 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12583 &tcps->tcps_dropper); 12584 return (B_FALSE); 12585 } 12586 12587 /* 12588 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12589 * retransmission after a timeout. 12590 * 12591 * To limit the number of duplicate segments, we limit the number of segment 12592 * to be sent in one time to tcp_snd_burst, the burst variable. 12593 */ 12594 static void 12595 tcp_ss_rexmit(tcp_t *tcp) 12596 { 12597 uint32_t snxt; 12598 uint32_t smax; 12599 int32_t win; 12600 int32_t mss; 12601 int32_t off; 12602 int32_t burst = tcp->tcp_snd_burst; 12603 mblk_t *snxt_mp; 12604 tcp_stack_t *tcps = tcp->tcp_tcps; 12605 12606 /* 12607 * Note that tcp_rexmit can be set even though TCP has retransmitted 12608 * all unack'ed segments. 12609 */ 12610 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12611 smax = tcp->tcp_rexmit_max; 12612 snxt = tcp->tcp_rexmit_nxt; 12613 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12614 snxt = tcp->tcp_suna; 12615 } 12616 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12617 win -= snxt - tcp->tcp_suna; 12618 mss = tcp->tcp_mss; 12619 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12620 12621 while (SEQ_LT(snxt, smax) && (win > 0) && 12622 (burst > 0) && (snxt_mp != NULL)) { 12623 mblk_t *xmit_mp; 12624 mblk_t *old_snxt_mp = snxt_mp; 12625 uint32_t cnt = mss; 12626 12627 if (win < cnt) { 12628 cnt = win; 12629 } 12630 if (SEQ_GT(snxt + cnt, smax)) { 12631 cnt = smax - snxt; 12632 } 12633 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12634 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12635 if (xmit_mp == NULL) 12636 return; 12637 12638 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12639 12640 snxt += cnt; 12641 win -= cnt; 12642 /* 12643 * Update the send timestamp to avoid false 12644 * retransmission. 12645 */ 12646 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12647 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12648 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12649 12650 tcp->tcp_rexmit_nxt = snxt; 12651 burst--; 12652 } 12653 /* 12654 * If we have transmitted all we have at the time 12655 * we started the retranmission, we can leave 12656 * the rest of the job to tcp_wput_data(). But we 12657 * need to check the send window first. If the 12658 * win is not 0, go on with tcp_wput_data(). 12659 */ 12660 if (SEQ_LT(snxt, smax) || win == 0) { 12661 return; 12662 } 12663 } 12664 /* Only call tcp_wput_data() if there is data to be sent. */ 12665 if (tcp->tcp_unsent) { 12666 tcp_wput_data(tcp, NULL, B_FALSE); 12667 } 12668 } 12669 12670 /* 12671 * Process all TCP option in SYN segment. Note that this function should 12672 * be called after tcp_adapt_ire() is called so that the necessary info 12673 * from IRE is already set in the tcp structure. 12674 * 12675 * This function sets up the correct tcp_mss value according to the 12676 * MSS option value and our header size. It also sets up the window scale 12677 * and timestamp values, and initialize SACK info blocks. But it does not 12678 * change receive window size after setting the tcp_mss value. The caller 12679 * should do the appropriate change. 12680 */ 12681 void 12682 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12683 { 12684 int options; 12685 tcp_opt_t tcpopt; 12686 uint32_t mss_max; 12687 char *tmp_tcph; 12688 tcp_stack_t *tcps = tcp->tcp_tcps; 12689 12690 tcpopt.tcp = NULL; 12691 options = tcp_parse_options(tcph, &tcpopt); 12692 12693 /* 12694 * Process MSS option. Note that MSS option value does not account 12695 * for IP or TCP options. This means that it is equal to MTU - minimum 12696 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12697 * IPv6. 12698 */ 12699 if (!(options & TCP_OPT_MSS_PRESENT)) { 12700 if (tcp->tcp_ipversion == IPV4_VERSION) 12701 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12702 else 12703 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12704 } else { 12705 if (tcp->tcp_ipversion == IPV4_VERSION) 12706 mss_max = tcps->tcps_mss_max_ipv4; 12707 else 12708 mss_max = tcps->tcps_mss_max_ipv6; 12709 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12710 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12711 else if (tcpopt.tcp_opt_mss > mss_max) 12712 tcpopt.tcp_opt_mss = mss_max; 12713 } 12714 12715 /* Process Window Scale option. */ 12716 if (options & TCP_OPT_WSCALE_PRESENT) { 12717 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12718 tcp->tcp_snd_ws_ok = B_TRUE; 12719 } else { 12720 tcp->tcp_snd_ws = B_FALSE; 12721 tcp->tcp_snd_ws_ok = B_FALSE; 12722 tcp->tcp_rcv_ws = B_FALSE; 12723 } 12724 12725 /* Process Timestamp option. */ 12726 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12727 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12728 tmp_tcph = (char *)tcp->tcp_tcph; 12729 12730 tcp->tcp_snd_ts_ok = B_TRUE; 12731 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12732 tcp->tcp_last_rcv_lbolt = lbolt64; 12733 ASSERT(OK_32PTR(tmp_tcph)); 12734 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12735 12736 /* Fill in our template header with basic timestamp option. */ 12737 tmp_tcph += tcp->tcp_tcp_hdr_len; 12738 tmp_tcph[0] = TCPOPT_NOP; 12739 tmp_tcph[1] = TCPOPT_NOP; 12740 tmp_tcph[2] = TCPOPT_TSTAMP; 12741 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12742 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12743 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12744 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12745 } else { 12746 tcp->tcp_snd_ts_ok = B_FALSE; 12747 } 12748 12749 /* 12750 * Process SACK options. If SACK is enabled for this connection, 12751 * then allocate the SACK info structure. Note the following ways 12752 * when tcp_snd_sack_ok is set to true. 12753 * 12754 * For active connection: in tcp_adapt_ire() called in 12755 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12756 * is checked. 12757 * 12758 * For passive connection: in tcp_adapt_ire() called in 12759 * tcp_accept_comm(). 12760 * 12761 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12762 * That check makes sure that if we did not send a SACK OK option, 12763 * we will not enable SACK for this connection even though the other 12764 * side sends us SACK OK option. For active connection, the SACK 12765 * info structure has already been allocated. So we need to free 12766 * it if SACK is disabled. 12767 */ 12768 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12769 (tcp->tcp_snd_sack_ok || 12770 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12771 /* This should be true only in the passive case. */ 12772 if (tcp->tcp_sack_info == NULL) { 12773 ASSERT(TCP_IS_DETACHED(tcp)); 12774 tcp->tcp_sack_info = 12775 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12776 } 12777 if (tcp->tcp_sack_info == NULL) { 12778 tcp->tcp_snd_sack_ok = B_FALSE; 12779 } else { 12780 tcp->tcp_snd_sack_ok = B_TRUE; 12781 if (tcp->tcp_snd_ts_ok) { 12782 tcp->tcp_max_sack_blk = 3; 12783 } else { 12784 tcp->tcp_max_sack_blk = 4; 12785 } 12786 } 12787 } else { 12788 /* 12789 * Resetting tcp_snd_sack_ok to B_FALSE so that 12790 * no SACK info will be used for this 12791 * connection. This assumes that SACK usage 12792 * permission is negotiated. This may need 12793 * to be changed once this is clarified. 12794 */ 12795 if (tcp->tcp_sack_info != NULL) { 12796 ASSERT(tcp->tcp_notsack_list == NULL); 12797 kmem_cache_free(tcp_sack_info_cache, 12798 tcp->tcp_sack_info); 12799 tcp->tcp_sack_info = NULL; 12800 } 12801 tcp->tcp_snd_sack_ok = B_FALSE; 12802 } 12803 12804 /* 12805 * Now we know the exact TCP/IP header length, subtract 12806 * that from tcp_mss to get our side's MSS. 12807 */ 12808 tcp->tcp_mss -= tcp->tcp_hdr_len; 12809 /* 12810 * Here we assume that the other side's header size will be equal to 12811 * our header size. We calculate the real MSS accordingly. Need to 12812 * take into additional stuffs IPsec puts in. 12813 * 12814 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12815 */ 12816 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12817 ((tcp->tcp_ipversion == IPV4_VERSION ? 12818 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12819 12820 /* 12821 * Set MSS to the smaller one of both ends of the connection. 12822 * We should not have called tcp_mss_set() before, but our 12823 * side of the MSS should have been set to a proper value 12824 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12825 * STREAM head parameters properly. 12826 * 12827 * If we have a larger-than-16-bit window but the other side 12828 * didn't want to do window scale, tcp_rwnd_set() will take 12829 * care of that. 12830 */ 12831 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12832 } 12833 12834 /* 12835 * Sends the T_CONN_IND to the listener. The caller calls this 12836 * functions via squeue to get inside the listener's perimeter 12837 * once the 3 way hand shake is done a T_CONN_IND needs to be 12838 * sent. As an optimization, the caller can call this directly 12839 * if listener's perimeter is same as eager's. 12840 */ 12841 /* ARGSUSED */ 12842 void 12843 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12844 { 12845 conn_t *lconnp = (conn_t *)arg; 12846 tcp_t *listener = lconnp->conn_tcp; 12847 tcp_t *tcp; 12848 struct T_conn_ind *conn_ind; 12849 ipaddr_t *addr_cache; 12850 boolean_t need_send_conn_ind = B_FALSE; 12851 tcp_stack_t *tcps = listener->tcp_tcps; 12852 12853 /* retrieve the eager */ 12854 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12855 ASSERT(conn_ind->OPT_offset != 0 && 12856 conn_ind->OPT_length == sizeof (intptr_t)); 12857 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12858 conn_ind->OPT_length); 12859 12860 /* 12861 * TLI/XTI applications will get confused by 12862 * sending eager as an option since it violates 12863 * the option semantics. So remove the eager as 12864 * option since TLI/XTI app doesn't need it anyway. 12865 */ 12866 if (!TCP_IS_SOCKET(listener)) { 12867 conn_ind->OPT_length = 0; 12868 conn_ind->OPT_offset = 0; 12869 } 12870 if (listener->tcp_state == TCPS_CLOSED || 12871 TCP_IS_DETACHED(listener)) { 12872 /* 12873 * If listener has closed, it would have caused a 12874 * a cleanup/blowoff to happen for the eager. We 12875 * just need to return. 12876 */ 12877 freemsg(mp); 12878 return; 12879 } 12880 12881 12882 /* 12883 * if the conn_req_q is full defer passing up the 12884 * T_CONN_IND until space is availabe after t_accept() 12885 * processing 12886 */ 12887 mutex_enter(&listener->tcp_eager_lock); 12888 12889 /* 12890 * Take the eager out, if it is in the list of droppable eagers 12891 * as we are here because the 3W handshake is over. 12892 */ 12893 MAKE_UNDROPPABLE(tcp); 12894 12895 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12896 tcp_t *tail; 12897 12898 /* 12899 * The eager already has an extra ref put in tcp_rput_data 12900 * so that it stays till accept comes back even though it 12901 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12902 */ 12903 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12904 listener->tcp_conn_req_cnt_q0--; 12905 listener->tcp_conn_req_cnt_q++; 12906 12907 /* Move from SYN_RCVD to ESTABLISHED list */ 12908 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12909 tcp->tcp_eager_prev_q0; 12910 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12911 tcp->tcp_eager_next_q0; 12912 tcp->tcp_eager_prev_q0 = NULL; 12913 tcp->tcp_eager_next_q0 = NULL; 12914 12915 /* 12916 * Insert at end of the queue because sockfs 12917 * sends down T_CONN_RES in chronological 12918 * order. Leaving the older conn indications 12919 * at front of the queue helps reducing search 12920 * time. 12921 */ 12922 tail = listener->tcp_eager_last_q; 12923 if (tail != NULL) 12924 tail->tcp_eager_next_q = tcp; 12925 else 12926 listener->tcp_eager_next_q = tcp; 12927 listener->tcp_eager_last_q = tcp; 12928 tcp->tcp_eager_next_q = NULL; 12929 /* 12930 * Delay sending up the T_conn_ind until we are 12931 * done with the eager. Once we have have sent up 12932 * the T_conn_ind, the accept can potentially complete 12933 * any time and release the refhold we have on the eager. 12934 */ 12935 need_send_conn_ind = B_TRUE; 12936 } else { 12937 /* 12938 * Defer connection on q0 and set deferred 12939 * connection bit true 12940 */ 12941 tcp->tcp_conn_def_q0 = B_TRUE; 12942 12943 /* take tcp out of q0 ... */ 12944 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12945 tcp->tcp_eager_next_q0; 12946 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12947 tcp->tcp_eager_prev_q0; 12948 12949 /* ... and place it at the end of q0 */ 12950 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12951 tcp->tcp_eager_next_q0 = listener; 12952 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12953 listener->tcp_eager_prev_q0 = tcp; 12954 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12955 } 12956 12957 /* we have timed out before */ 12958 if (tcp->tcp_syn_rcvd_timeout != 0) { 12959 tcp->tcp_syn_rcvd_timeout = 0; 12960 listener->tcp_syn_rcvd_timeout--; 12961 if (listener->tcp_syn_defense && 12962 listener->tcp_syn_rcvd_timeout <= 12963 (tcps->tcps_conn_req_max_q0 >> 5) && 12964 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12965 listener->tcp_last_rcv_lbolt)) { 12966 /* 12967 * Turn off the defense mode if we 12968 * believe the SYN attack is over. 12969 */ 12970 listener->tcp_syn_defense = B_FALSE; 12971 if (listener->tcp_ip_addr_cache) { 12972 kmem_free((void *)listener->tcp_ip_addr_cache, 12973 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12974 listener->tcp_ip_addr_cache = NULL; 12975 } 12976 } 12977 } 12978 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12979 if (addr_cache != NULL) { 12980 /* 12981 * We have finished a 3-way handshake with this 12982 * remote host. This proves the IP addr is good. 12983 * Cache it! 12984 */ 12985 addr_cache[IP_ADDR_CACHE_HASH( 12986 tcp->tcp_remote)] = tcp->tcp_remote; 12987 } 12988 mutex_exit(&listener->tcp_eager_lock); 12989 if (need_send_conn_ind) 12990 putnext(listener->tcp_rq, mp); 12991 } 12992 12993 mblk_t * 12994 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12995 uint_t *ifindexp, ip6_pkt_t *ippp) 12996 { 12997 ip_pktinfo_t *pinfo; 12998 ip6_t *ip6h; 12999 uchar_t *rptr; 13000 mblk_t *first_mp = mp; 13001 boolean_t mctl_present = B_FALSE; 13002 uint_t ifindex = 0; 13003 ip6_pkt_t ipp; 13004 uint_t ipvers; 13005 uint_t ip_hdr_len; 13006 tcp_stack_t *tcps = tcp->tcp_tcps; 13007 13008 rptr = mp->b_rptr; 13009 ASSERT(OK_32PTR(rptr)); 13010 ASSERT(tcp != NULL); 13011 ipp.ipp_fields = 0; 13012 13013 switch DB_TYPE(mp) { 13014 case M_CTL: 13015 mp = mp->b_cont; 13016 if (mp == NULL) { 13017 freemsg(first_mp); 13018 return (NULL); 13019 } 13020 if (DB_TYPE(mp) != M_DATA) { 13021 freemsg(first_mp); 13022 return (NULL); 13023 } 13024 mctl_present = B_TRUE; 13025 break; 13026 case M_DATA: 13027 break; 13028 default: 13029 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 13030 freemsg(mp); 13031 return (NULL); 13032 } 13033 ipvers = IPH_HDR_VERSION(rptr); 13034 if (ipvers == IPV4_VERSION) { 13035 if (tcp == NULL) { 13036 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13037 goto done; 13038 } 13039 13040 ipp.ipp_fields |= IPPF_HOPLIMIT; 13041 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 13042 13043 /* 13044 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 13045 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 13046 */ 13047 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 13048 mctl_present) { 13049 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 13050 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 13051 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 13052 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 13053 ipp.ipp_fields |= IPPF_IFINDEX; 13054 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 13055 ifindex = pinfo->ip_pkt_ifindex; 13056 } 13057 freeb(first_mp); 13058 mctl_present = B_FALSE; 13059 } 13060 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13061 } else { 13062 ip6h = (ip6_t *)rptr; 13063 13064 ASSERT(ipvers == IPV6_VERSION); 13065 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 13066 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 13067 ipp.ipp_hoplimit = ip6h->ip6_hops; 13068 13069 if (ip6h->ip6_nxt != IPPROTO_TCP) { 13070 uint8_t nexthdrp; 13071 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13072 13073 /* Look for ifindex information */ 13074 if (ip6h->ip6_nxt == IPPROTO_RAW) { 13075 ip6i_t *ip6i = (ip6i_t *)ip6h; 13076 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 13077 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13078 freemsg(first_mp); 13079 return (NULL); 13080 } 13081 13082 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 13083 ASSERT(ip6i->ip6i_ifindex != 0); 13084 ipp.ipp_fields |= IPPF_IFINDEX; 13085 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 13086 ifindex = ip6i->ip6i_ifindex; 13087 } 13088 rptr = (uchar_t *)&ip6i[1]; 13089 mp->b_rptr = rptr; 13090 if (rptr == mp->b_wptr) { 13091 mblk_t *mp1; 13092 mp1 = mp->b_cont; 13093 freeb(mp); 13094 mp = mp1; 13095 rptr = mp->b_rptr; 13096 } 13097 if (MBLKL(mp) < IPV6_HDR_LEN + 13098 sizeof (tcph_t)) { 13099 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13100 freemsg(first_mp); 13101 return (NULL); 13102 } 13103 ip6h = (ip6_t *)rptr; 13104 } 13105 13106 /* 13107 * Find any potentially interesting extension headers 13108 * as well as the length of the IPv6 + extension 13109 * headers. 13110 */ 13111 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 13112 /* Verify if this is a TCP packet */ 13113 if (nexthdrp != IPPROTO_TCP) { 13114 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 13115 freemsg(first_mp); 13116 return (NULL); 13117 } 13118 } else { 13119 ip_hdr_len = IPV6_HDR_LEN; 13120 } 13121 } 13122 13123 done: 13124 if (ipversp != NULL) 13125 *ipversp = ipvers; 13126 if (ip_hdr_lenp != NULL) 13127 *ip_hdr_lenp = ip_hdr_len; 13128 if (ippp != NULL) 13129 *ippp = ipp; 13130 if (ifindexp != NULL) 13131 *ifindexp = ifindex; 13132 if (mctl_present) { 13133 freeb(first_mp); 13134 } 13135 return (mp); 13136 } 13137 13138 /* 13139 * Handle M_DATA messages from IP. Its called directly from IP via 13140 * squeue for AF_INET type sockets fast path. No M_CTL are expected 13141 * in this path. 13142 * 13143 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 13144 * v4 and v6), we are called through tcp_input() and a M_CTL can 13145 * be present for options but tcp_find_pktinfo() deals with it. We 13146 * only expect M_DATA packets after tcp_find_pktinfo() is done. 13147 * 13148 * The first argument is always the connp/tcp to which the mp belongs. 13149 * There are no exceptions to this rule. The caller has already put 13150 * a reference on this connp/tcp and once tcp_rput_data() returns, 13151 * the squeue will do the refrele. 13152 * 13153 * The TH_SYN for the listener directly go to tcp_conn_request via 13154 * squeue. 13155 * 13156 * sqp: NULL = recursive, sqp != NULL means called from squeue 13157 */ 13158 void 13159 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 13160 { 13161 int32_t bytes_acked; 13162 int32_t gap; 13163 mblk_t *mp1; 13164 uint_t flags; 13165 uint32_t new_swnd = 0; 13166 uchar_t *iphdr; 13167 uchar_t *rptr; 13168 int32_t rgap; 13169 uint32_t seg_ack; 13170 int seg_len; 13171 uint_t ip_hdr_len; 13172 uint32_t seg_seq; 13173 tcph_t *tcph; 13174 int urp; 13175 tcp_opt_t tcpopt; 13176 uint_t ipvers; 13177 ip6_pkt_t ipp; 13178 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 13179 uint32_t cwnd; 13180 uint32_t add; 13181 int npkt; 13182 int mss; 13183 conn_t *connp = (conn_t *)arg; 13184 squeue_t *sqp = (squeue_t *)arg2; 13185 tcp_t *tcp = connp->conn_tcp; 13186 tcp_stack_t *tcps = tcp->tcp_tcps; 13187 13188 /* 13189 * RST from fused tcp loopback peer should trigger an unfuse. 13190 */ 13191 if (tcp->tcp_fused) { 13192 TCP_STAT(tcps, tcp_fusion_aborted); 13193 tcp_unfuse(tcp); 13194 } 13195 13196 iphdr = mp->b_rptr; 13197 rptr = mp->b_rptr; 13198 ASSERT(OK_32PTR(rptr)); 13199 13200 /* 13201 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 13202 * processing here. For rest call tcp_find_pktinfo to fill up the 13203 * necessary information. 13204 */ 13205 if (IPCL_IS_TCP4(connp)) { 13206 ipvers = IPV4_VERSION; 13207 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13208 } else { 13209 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 13210 NULL, &ipp); 13211 if (mp == NULL) { 13212 TCP_STAT(tcps, tcp_rput_v6_error); 13213 return; 13214 } 13215 iphdr = mp->b_rptr; 13216 rptr = mp->b_rptr; 13217 } 13218 ASSERT(DB_TYPE(mp) == M_DATA); 13219 13220 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13221 seg_seq = ABE32_TO_U32(tcph->th_seq); 13222 seg_ack = ABE32_TO_U32(tcph->th_ack); 13223 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 13224 seg_len = (int)(mp->b_wptr - rptr) - 13225 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 13226 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 13227 do { 13228 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13229 (uintptr_t)INT_MAX); 13230 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 13231 } while ((mp1 = mp1->b_cont) != NULL && 13232 mp1->b_datap->db_type == M_DATA); 13233 } 13234 13235 if (tcp->tcp_state == TCPS_TIME_WAIT) { 13236 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 13237 seg_len, tcph); 13238 return; 13239 } 13240 13241 if (sqp != NULL) { 13242 /* 13243 * This is the correct place to update tcp_last_recv_time. Note 13244 * that it is also updated for tcp structure that belongs to 13245 * global and listener queues which do not really need updating. 13246 * But that should not cause any harm. And it is updated for 13247 * all kinds of incoming segments, not only for data segments. 13248 */ 13249 tcp->tcp_last_recv_time = lbolt; 13250 } 13251 13252 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13253 13254 BUMP_LOCAL(tcp->tcp_ibsegs); 13255 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 13256 13257 if ((flags & TH_URG) && sqp != NULL) { 13258 /* 13259 * TCP can't handle urgent pointers that arrive before 13260 * the connection has been accept()ed since it can't 13261 * buffer OOB data. Discard segment if this happens. 13262 * 13263 * We can't just rely on a non-null tcp_listener to indicate 13264 * that the accept() has completed since unlinking of the 13265 * eager and completion of the accept are not atomic. 13266 * tcp_detached, when it is not set (B_FALSE) indicates 13267 * that the accept() has completed. 13268 * 13269 * Nor can it reassemble urgent pointers, so discard 13270 * if it's not the next segment expected. 13271 * 13272 * Otherwise, collapse chain into one mblk (discard if 13273 * that fails). This makes sure the headers, retransmitted 13274 * data, and new data all are in the same mblk. 13275 */ 13276 ASSERT(mp != NULL); 13277 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 13278 freemsg(mp); 13279 return; 13280 } 13281 /* Update pointers into message */ 13282 iphdr = rptr = mp->b_rptr; 13283 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13284 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13285 /* 13286 * Since we can't handle any data with this urgent 13287 * pointer that is out of sequence, we expunge 13288 * the data. This allows us to still register 13289 * the urgent mark and generate the M_PCSIG, 13290 * which we can do. 13291 */ 13292 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13293 seg_len = 0; 13294 } 13295 } 13296 13297 switch (tcp->tcp_state) { 13298 case TCPS_SYN_SENT: 13299 if (flags & TH_ACK) { 13300 /* 13301 * Note that our stack cannot send data before a 13302 * connection is established, therefore the 13303 * following check is valid. Otherwise, it has 13304 * to be changed. 13305 */ 13306 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13307 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13308 freemsg(mp); 13309 if (flags & TH_RST) 13310 return; 13311 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13312 tcp, seg_ack, 0, TH_RST); 13313 return; 13314 } 13315 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13316 } 13317 if (flags & TH_RST) { 13318 freemsg(mp); 13319 if (flags & TH_ACK) 13320 (void) tcp_clean_death(tcp, 13321 ECONNREFUSED, 13); 13322 return; 13323 } 13324 if (!(flags & TH_SYN)) { 13325 freemsg(mp); 13326 return; 13327 } 13328 13329 /* Process all TCP options. */ 13330 tcp_process_options(tcp, tcph); 13331 /* 13332 * The following changes our rwnd to be a multiple of the 13333 * MIN(peer MSS, our MSS) for performance reason. 13334 */ 13335 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13336 tcp->tcp_mss)); 13337 13338 /* Is the other end ECN capable? */ 13339 if (tcp->tcp_ecn_ok) { 13340 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13341 tcp->tcp_ecn_ok = B_FALSE; 13342 } 13343 } 13344 /* 13345 * Clear ECN flags because it may interfere with later 13346 * processing. 13347 */ 13348 flags &= ~(TH_ECE|TH_CWR); 13349 13350 tcp->tcp_irs = seg_seq; 13351 tcp->tcp_rack = seg_seq; 13352 tcp->tcp_rnxt = seg_seq + 1; 13353 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13354 if (!TCP_IS_DETACHED(tcp)) { 13355 /* Allocate room for SACK options if needed. */ 13356 if (tcp->tcp_snd_sack_ok) { 13357 (void) mi_set_sth_wroff(tcp->tcp_rq, 13358 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13359 (tcp->tcp_loopback ? 0 : 13360 tcps->tcps_wroff_xtra)); 13361 } else { 13362 (void) mi_set_sth_wroff(tcp->tcp_rq, 13363 tcp->tcp_hdr_len + 13364 (tcp->tcp_loopback ? 0 : 13365 tcps->tcps_wroff_xtra)); 13366 } 13367 } 13368 if (flags & TH_ACK) { 13369 /* 13370 * If we can't get the confirmation upstream, pretend 13371 * we didn't even see this one. 13372 * 13373 * XXX: how can we pretend we didn't see it if we 13374 * have updated rnxt et. al. 13375 * 13376 * For loopback we defer sending up the T_CONN_CON 13377 * until after some checks below. 13378 */ 13379 mp1 = NULL; 13380 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13381 tcp->tcp_loopback ? &mp1 : NULL)) { 13382 freemsg(mp); 13383 return; 13384 } 13385 /* SYN was acked - making progress */ 13386 if (tcp->tcp_ipversion == IPV6_VERSION) 13387 tcp->tcp_ip_forward_progress = B_TRUE; 13388 13389 /* One for the SYN */ 13390 tcp->tcp_suna = tcp->tcp_iss + 1; 13391 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13392 tcp->tcp_state = TCPS_ESTABLISHED; 13393 13394 /* 13395 * If SYN was retransmitted, need to reset all 13396 * retransmission info. This is because this 13397 * segment will be treated as a dup ACK. 13398 */ 13399 if (tcp->tcp_rexmit) { 13400 tcp->tcp_rexmit = B_FALSE; 13401 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13402 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13403 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13404 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13405 tcp->tcp_ms_we_have_waited = 0; 13406 13407 /* 13408 * Set tcp_cwnd back to 1 MSS, per 13409 * recommendation from 13410 * draft-floyd-incr-init-win-01.txt, 13411 * Increasing TCP's Initial Window. 13412 */ 13413 tcp->tcp_cwnd = tcp->tcp_mss; 13414 } 13415 13416 tcp->tcp_swl1 = seg_seq; 13417 tcp->tcp_swl2 = seg_ack; 13418 13419 new_swnd = BE16_TO_U16(tcph->th_win); 13420 tcp->tcp_swnd = new_swnd; 13421 if (new_swnd > tcp->tcp_max_swnd) 13422 tcp->tcp_max_swnd = new_swnd; 13423 13424 /* 13425 * Always send the three-way handshake ack immediately 13426 * in order to make the connection complete as soon as 13427 * possible on the accepting host. 13428 */ 13429 flags |= TH_ACK_NEEDED; 13430 13431 /* 13432 * Special case for loopback. At this point we have 13433 * received SYN-ACK from the remote endpoint. In 13434 * order to ensure that both endpoints reach the 13435 * fused state prior to any data exchange, the final 13436 * ACK needs to be sent before we indicate T_CONN_CON 13437 * to the module upstream. 13438 */ 13439 if (tcp->tcp_loopback) { 13440 mblk_t *ack_mp; 13441 13442 ASSERT(!tcp->tcp_unfusable); 13443 ASSERT(mp1 != NULL); 13444 /* 13445 * For loopback, we always get a pure SYN-ACK 13446 * and only need to send back the final ACK 13447 * with no data (this is because the other 13448 * tcp is ours and we don't do T/TCP). This 13449 * final ACK triggers the passive side to 13450 * perform fusion in ESTABLISHED state. 13451 */ 13452 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13453 if (tcp->tcp_ack_tid != 0) { 13454 (void) TCP_TIMER_CANCEL(tcp, 13455 tcp->tcp_ack_tid); 13456 tcp->tcp_ack_tid = 0; 13457 } 13458 TCP_RECORD_TRACE(tcp, ack_mp, 13459 TCP_TRACE_SEND_PKT); 13460 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13461 BUMP_LOCAL(tcp->tcp_obsegs); 13462 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13463 13464 /* Send up T_CONN_CON */ 13465 putnext(tcp->tcp_rq, mp1); 13466 13467 freemsg(mp); 13468 return; 13469 } 13470 /* 13471 * Forget fusion; we need to handle more 13472 * complex cases below. Send the deferred 13473 * T_CONN_CON message upstream and proceed 13474 * as usual. Mark this tcp as not capable 13475 * of fusion. 13476 */ 13477 TCP_STAT(tcps, tcp_fusion_unfusable); 13478 tcp->tcp_unfusable = B_TRUE; 13479 putnext(tcp->tcp_rq, mp1); 13480 } 13481 13482 /* 13483 * Check to see if there is data to be sent. If 13484 * yes, set the transmit flag. Then check to see 13485 * if received data processing needs to be done. 13486 * If not, go straight to xmit_check. This short 13487 * cut is OK as we don't support T/TCP. 13488 */ 13489 if (tcp->tcp_unsent) 13490 flags |= TH_XMIT_NEEDED; 13491 13492 if (seg_len == 0 && !(flags & TH_URG)) { 13493 freemsg(mp); 13494 goto xmit_check; 13495 } 13496 13497 flags &= ~TH_SYN; 13498 seg_seq++; 13499 break; 13500 } 13501 tcp->tcp_state = TCPS_SYN_RCVD; 13502 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13503 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13504 if (mp1) { 13505 DB_CPID(mp1) = tcp->tcp_cpid; 13506 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13507 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13508 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13509 } 13510 freemsg(mp); 13511 return; 13512 case TCPS_SYN_RCVD: 13513 if (flags & TH_ACK) { 13514 /* 13515 * In this state, a SYN|ACK packet is either bogus 13516 * because the other side must be ACKing our SYN which 13517 * indicates it has seen the ACK for their SYN and 13518 * shouldn't retransmit it or we're crossing SYNs 13519 * on active open. 13520 */ 13521 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13522 freemsg(mp); 13523 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13524 tcp, seg_ack, 0, TH_RST); 13525 return; 13526 } 13527 /* 13528 * NOTE: RFC 793 pg. 72 says this should be 13529 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13530 * but that would mean we have an ack that ignored 13531 * our SYN. 13532 */ 13533 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13534 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13535 freemsg(mp); 13536 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13537 tcp, seg_ack, 0, TH_RST); 13538 return; 13539 } 13540 } 13541 break; 13542 case TCPS_LISTEN: 13543 /* 13544 * Only a TLI listener can come through this path when a 13545 * acceptor is going back to be a listener and a packet 13546 * for the acceptor hits the classifier. For a socket 13547 * listener, this can never happen because a listener 13548 * can never accept connection on itself and hence a 13549 * socket acceptor can not go back to being a listener. 13550 */ 13551 ASSERT(!TCP_IS_SOCKET(tcp)); 13552 /*FALLTHRU*/ 13553 case TCPS_CLOSED: 13554 case TCPS_BOUND: { 13555 conn_t *new_connp; 13556 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13557 13558 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13559 if (new_connp != NULL) { 13560 tcp_reinput(new_connp, mp, connp->conn_sqp); 13561 return; 13562 } 13563 /* We failed to classify. For now just drop the packet */ 13564 freemsg(mp); 13565 return; 13566 } 13567 case TCPS_IDLE: 13568 /* 13569 * Handle the case where the tcp_clean_death() has happened 13570 * on a connection (application hasn't closed yet) but a packet 13571 * was already queued on squeue before tcp_clean_death() 13572 * was processed. Calling tcp_clean_death() twice on same 13573 * connection can result in weird behaviour. 13574 */ 13575 freemsg(mp); 13576 return; 13577 default: 13578 break; 13579 } 13580 13581 /* 13582 * Already on the correct queue/perimeter. 13583 * If this is a detached connection and not an eager 13584 * connection hanging off a listener then new data 13585 * (past the FIN) will cause a reset. 13586 * We do a special check here where it 13587 * is out of the main line, rather than check 13588 * if we are detached every time we see new 13589 * data down below. 13590 */ 13591 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13592 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13593 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13594 TCP_RECORD_TRACE(tcp, 13595 mp, TCP_TRACE_RECV_PKT); 13596 13597 freemsg(mp); 13598 /* 13599 * This could be an SSL closure alert. We're detached so just 13600 * acknowledge it this last time. 13601 */ 13602 if (tcp->tcp_kssl_ctx != NULL) { 13603 kssl_release_ctx(tcp->tcp_kssl_ctx); 13604 tcp->tcp_kssl_ctx = NULL; 13605 13606 tcp->tcp_rnxt += seg_len; 13607 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13608 flags |= TH_ACK_NEEDED; 13609 goto ack_check; 13610 } 13611 13612 tcp_xmit_ctl("new data when detached", tcp, 13613 tcp->tcp_snxt, 0, TH_RST); 13614 (void) tcp_clean_death(tcp, EPROTO, 12); 13615 return; 13616 } 13617 13618 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13619 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13620 new_swnd = BE16_TO_U16(tcph->th_win) << 13621 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13622 13623 if (tcp->tcp_snd_ts_ok) { 13624 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13625 /* 13626 * This segment is not acceptable. 13627 * Drop it and send back an ACK. 13628 */ 13629 freemsg(mp); 13630 flags |= TH_ACK_NEEDED; 13631 goto ack_check; 13632 } 13633 } else if (tcp->tcp_snd_sack_ok) { 13634 ASSERT(tcp->tcp_sack_info != NULL); 13635 tcpopt.tcp = tcp; 13636 /* 13637 * SACK info in already updated in tcp_parse_options. Ignore 13638 * all other TCP options... 13639 */ 13640 (void) tcp_parse_options(tcph, &tcpopt); 13641 } 13642 try_again:; 13643 mss = tcp->tcp_mss; 13644 gap = seg_seq - tcp->tcp_rnxt; 13645 rgap = tcp->tcp_rwnd - (gap + seg_len); 13646 /* 13647 * gap is the amount of sequence space between what we expect to see 13648 * and what we got for seg_seq. A positive value for gap means 13649 * something got lost. A negative value means we got some old stuff. 13650 */ 13651 if (gap < 0) { 13652 /* Old stuff present. Is the SYN in there? */ 13653 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13654 (seg_len != 0)) { 13655 flags &= ~TH_SYN; 13656 seg_seq++; 13657 urp--; 13658 /* Recompute the gaps after noting the SYN. */ 13659 goto try_again; 13660 } 13661 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13662 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13663 (seg_len > -gap ? -gap : seg_len)); 13664 /* Remove the old stuff from seg_len. */ 13665 seg_len += gap; 13666 /* 13667 * Anything left? 13668 * Make sure to check for unack'd FIN when rest of data 13669 * has been previously ack'd. 13670 */ 13671 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13672 /* 13673 * Resets are only valid if they lie within our offered 13674 * window. If the RST bit is set, we just ignore this 13675 * segment. 13676 */ 13677 if (flags & TH_RST) { 13678 freemsg(mp); 13679 return; 13680 } 13681 13682 /* 13683 * The arriving of dup data packets indicate that we 13684 * may have postponed an ack for too long, or the other 13685 * side's RTT estimate is out of shape. Start acking 13686 * more often. 13687 */ 13688 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13689 tcp->tcp_rack_cnt >= 1 && 13690 tcp->tcp_rack_abs_max > 2) { 13691 tcp->tcp_rack_abs_max--; 13692 } 13693 tcp->tcp_rack_cur_max = 1; 13694 13695 /* 13696 * This segment is "unacceptable". None of its 13697 * sequence space lies within our advertized window. 13698 * 13699 * Adjust seg_len to the original value for tracing. 13700 */ 13701 seg_len -= gap; 13702 if (tcp->tcp_debug) { 13703 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13704 "tcp_rput: unacceptable, gap %d, rgap %d, " 13705 "flags 0x%x, seg_seq %u, seg_ack %u, " 13706 "seg_len %d, rnxt %u, snxt %u, %s", 13707 gap, rgap, flags, seg_seq, seg_ack, 13708 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13709 tcp_display(tcp, NULL, 13710 DISP_ADDR_AND_PORT)); 13711 } 13712 13713 /* 13714 * Arrange to send an ACK in response to the 13715 * unacceptable segment per RFC 793 page 69. There 13716 * is only one small difference between ours and the 13717 * acceptability test in the RFC - we accept ACK-only 13718 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13719 * will be generated. 13720 * 13721 * Note that we have to ACK an ACK-only packet at least 13722 * for stacks that send 0-length keep-alives with 13723 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13724 * section 4.2.3.6. As long as we don't ever generate 13725 * an unacceptable packet in response to an incoming 13726 * packet that is unacceptable, it should not cause 13727 * "ACK wars". 13728 */ 13729 flags |= TH_ACK_NEEDED; 13730 13731 /* 13732 * Continue processing this segment in order to use the 13733 * ACK information it contains, but skip all other 13734 * sequence-number processing. Processing the ACK 13735 * information is necessary in order to 13736 * re-synchronize connections that may have lost 13737 * synchronization. 13738 * 13739 * We clear seg_len and flag fields related to 13740 * sequence number processing as they are not 13741 * to be trusted for an unacceptable segment. 13742 */ 13743 seg_len = 0; 13744 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13745 goto process_ack; 13746 } 13747 13748 /* Fix seg_seq, and chew the gap off the front. */ 13749 seg_seq = tcp->tcp_rnxt; 13750 urp += gap; 13751 do { 13752 mblk_t *mp2; 13753 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13754 (uintptr_t)UINT_MAX); 13755 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13756 if (gap > 0) { 13757 mp->b_rptr = mp->b_wptr - gap; 13758 break; 13759 } 13760 mp2 = mp; 13761 mp = mp->b_cont; 13762 freeb(mp2); 13763 } while (gap < 0); 13764 /* 13765 * If the urgent data has already been acknowledged, we 13766 * should ignore TH_URG below 13767 */ 13768 if (urp < 0) 13769 flags &= ~TH_URG; 13770 } 13771 /* 13772 * rgap is the amount of stuff received out of window. A negative 13773 * value is the amount out of window. 13774 */ 13775 if (rgap < 0) { 13776 mblk_t *mp2; 13777 13778 if (tcp->tcp_rwnd == 0) { 13779 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13780 } else { 13781 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13782 UPDATE_MIB(&tcps->tcps_mib, 13783 tcpInDataPastWinBytes, -rgap); 13784 } 13785 13786 /* 13787 * seg_len does not include the FIN, so if more than 13788 * just the FIN is out of window, we act like we don't 13789 * see it. (If just the FIN is out of window, rgap 13790 * will be zero and we will go ahead and acknowledge 13791 * the FIN.) 13792 */ 13793 flags &= ~TH_FIN; 13794 13795 /* Fix seg_len and make sure there is something left. */ 13796 seg_len += rgap; 13797 if (seg_len <= 0) { 13798 /* 13799 * Resets are only valid if they lie within our offered 13800 * window. If the RST bit is set, we just ignore this 13801 * segment. 13802 */ 13803 if (flags & TH_RST) { 13804 freemsg(mp); 13805 return; 13806 } 13807 13808 /* Per RFC 793, we need to send back an ACK. */ 13809 flags |= TH_ACK_NEEDED; 13810 13811 /* 13812 * Send SIGURG as soon as possible i.e. even 13813 * if the TH_URG was delivered in a window probe 13814 * packet (which will be unacceptable). 13815 * 13816 * We generate a signal if none has been generated 13817 * for this connection or if this is a new urgent 13818 * byte. Also send a zero-length "unmarked" message 13819 * to inform SIOCATMARK that this is not the mark. 13820 * 13821 * tcp_urp_last_valid is cleared when the T_exdata_ind 13822 * is sent up. This plus the check for old data 13823 * (gap >= 0) handles the wraparound of the sequence 13824 * number space without having to always track the 13825 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13826 * this max in its rcv_up variable). 13827 * 13828 * This prevents duplicate SIGURGS due to a "late" 13829 * zero-window probe when the T_EXDATA_IND has already 13830 * been sent up. 13831 */ 13832 if ((flags & TH_URG) && 13833 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13834 tcp->tcp_urp_last))) { 13835 mp1 = allocb(0, BPRI_MED); 13836 if (mp1 == NULL) { 13837 freemsg(mp); 13838 return; 13839 } 13840 if (!TCP_IS_DETACHED(tcp) && 13841 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13842 SIGURG)) { 13843 /* Try again on the rexmit. */ 13844 freemsg(mp1); 13845 freemsg(mp); 13846 return; 13847 } 13848 /* 13849 * If the next byte would be the mark 13850 * then mark with MARKNEXT else mark 13851 * with NOTMARKNEXT. 13852 */ 13853 if (gap == 0 && urp == 0) 13854 mp1->b_flag |= MSGMARKNEXT; 13855 else 13856 mp1->b_flag |= MSGNOTMARKNEXT; 13857 freemsg(tcp->tcp_urp_mark_mp); 13858 tcp->tcp_urp_mark_mp = mp1; 13859 flags |= TH_SEND_URP_MARK; 13860 tcp->tcp_urp_last_valid = B_TRUE; 13861 tcp->tcp_urp_last = urp + seg_seq; 13862 } 13863 /* 13864 * If this is a zero window probe, continue to 13865 * process the ACK part. But we need to set seg_len 13866 * to 0 to avoid data processing. Otherwise just 13867 * drop the segment and send back an ACK. 13868 */ 13869 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13870 flags &= ~(TH_SYN | TH_URG); 13871 seg_len = 0; 13872 goto process_ack; 13873 } else { 13874 freemsg(mp); 13875 goto ack_check; 13876 } 13877 } 13878 /* Pitch out of window stuff off the end. */ 13879 rgap = seg_len; 13880 mp2 = mp; 13881 do { 13882 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13883 (uintptr_t)INT_MAX); 13884 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13885 if (rgap < 0) { 13886 mp2->b_wptr += rgap; 13887 if ((mp1 = mp2->b_cont) != NULL) { 13888 mp2->b_cont = NULL; 13889 freemsg(mp1); 13890 } 13891 break; 13892 } 13893 } while ((mp2 = mp2->b_cont) != NULL); 13894 } 13895 ok:; 13896 /* 13897 * TCP should check ECN info for segments inside the window only. 13898 * Therefore the check should be done here. 13899 */ 13900 if (tcp->tcp_ecn_ok) { 13901 if (flags & TH_CWR) { 13902 tcp->tcp_ecn_echo_on = B_FALSE; 13903 } 13904 /* 13905 * Note that both ECN_CE and CWR can be set in the 13906 * same segment. In this case, we once again turn 13907 * on ECN_ECHO. 13908 */ 13909 if (tcp->tcp_ipversion == IPV4_VERSION) { 13910 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13911 13912 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13913 tcp->tcp_ecn_echo_on = B_TRUE; 13914 } 13915 } else { 13916 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13917 13918 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13919 htonl(IPH_ECN_CE << 20)) { 13920 tcp->tcp_ecn_echo_on = B_TRUE; 13921 } 13922 } 13923 } 13924 13925 /* 13926 * Check whether we can update tcp_ts_recent. This test is 13927 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13928 * Extensions for High Performance: An Update", Internet Draft. 13929 */ 13930 if (tcp->tcp_snd_ts_ok && 13931 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13932 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13933 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13934 tcp->tcp_last_rcv_lbolt = lbolt64; 13935 } 13936 13937 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13938 /* 13939 * FIN in an out of order segment. We record this in 13940 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13941 * Clear the FIN so that any check on FIN flag will fail. 13942 * Remember that FIN also counts in the sequence number 13943 * space. So we need to ack out of order FIN only segments. 13944 */ 13945 if (flags & TH_FIN) { 13946 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13947 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13948 flags &= ~TH_FIN; 13949 flags |= TH_ACK_NEEDED; 13950 } 13951 if (seg_len > 0) { 13952 /* Fill in the SACK blk list. */ 13953 if (tcp->tcp_snd_sack_ok) { 13954 ASSERT(tcp->tcp_sack_info != NULL); 13955 tcp_sack_insert(tcp->tcp_sack_list, 13956 seg_seq, seg_seq + seg_len, 13957 &(tcp->tcp_num_sack_blk)); 13958 } 13959 13960 /* 13961 * Attempt reassembly and see if we have something 13962 * ready to go. 13963 */ 13964 mp = tcp_reass(tcp, mp, seg_seq); 13965 /* Always ack out of order packets */ 13966 flags |= TH_ACK_NEEDED | TH_PUSH; 13967 if (mp) { 13968 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13969 (uintptr_t)INT_MAX); 13970 seg_len = mp->b_cont ? msgdsize(mp) : 13971 (int)(mp->b_wptr - mp->b_rptr); 13972 seg_seq = tcp->tcp_rnxt; 13973 /* 13974 * A gap is filled and the seq num and len 13975 * of the gap match that of a previously 13976 * received FIN, put the FIN flag back in. 13977 */ 13978 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13979 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13980 flags |= TH_FIN; 13981 tcp->tcp_valid_bits &= 13982 ~TCP_OFO_FIN_VALID; 13983 } 13984 } else { 13985 /* 13986 * Keep going even with NULL mp. 13987 * There may be a useful ACK or something else 13988 * we don't want to miss. 13989 * 13990 * But TCP should not perform fast retransmit 13991 * because of the ack number. TCP uses 13992 * seg_len == 0 to determine if it is a pure 13993 * ACK. And this is not a pure ACK. 13994 */ 13995 seg_len = 0; 13996 ofo_seg = B_TRUE; 13997 } 13998 } 13999 } else if (seg_len > 0) { 14000 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 14001 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 14002 /* 14003 * If an out of order FIN was received before, and the seq 14004 * num and len of the new segment match that of the FIN, 14005 * put the FIN flag back in. 14006 */ 14007 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 14008 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 14009 flags |= TH_FIN; 14010 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 14011 } 14012 } 14013 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 14014 if (flags & TH_RST) { 14015 freemsg(mp); 14016 switch (tcp->tcp_state) { 14017 case TCPS_SYN_RCVD: 14018 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 14019 break; 14020 case TCPS_ESTABLISHED: 14021 case TCPS_FIN_WAIT_1: 14022 case TCPS_FIN_WAIT_2: 14023 case TCPS_CLOSE_WAIT: 14024 (void) tcp_clean_death(tcp, ECONNRESET, 15); 14025 break; 14026 case TCPS_CLOSING: 14027 case TCPS_LAST_ACK: 14028 (void) tcp_clean_death(tcp, 0, 16); 14029 break; 14030 default: 14031 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14032 (void) tcp_clean_death(tcp, ENXIO, 17); 14033 break; 14034 } 14035 return; 14036 } 14037 if (flags & TH_SYN) { 14038 /* 14039 * See RFC 793, Page 71 14040 * 14041 * The seq number must be in the window as it should 14042 * be "fixed" above. If it is outside window, it should 14043 * be already rejected. Note that we allow seg_seq to be 14044 * rnxt + rwnd because we want to accept 0 window probe. 14045 */ 14046 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 14047 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 14048 freemsg(mp); 14049 /* 14050 * If the ACK flag is not set, just use our snxt as the 14051 * seq number of the RST segment. 14052 */ 14053 if (!(flags & TH_ACK)) { 14054 seg_ack = tcp->tcp_snxt; 14055 } 14056 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 14057 TH_RST|TH_ACK); 14058 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14059 (void) tcp_clean_death(tcp, ECONNRESET, 18); 14060 return; 14061 } 14062 /* 14063 * urp could be -1 when the urp field in the packet is 0 14064 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 14065 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 14066 */ 14067 if (flags & TH_URG && urp >= 0) { 14068 if (!tcp->tcp_urp_last_valid || 14069 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 14070 /* 14071 * If we haven't generated the signal yet for this 14072 * urgent pointer value, do it now. Also, send up a 14073 * zero-length M_DATA indicating whether or not this is 14074 * the mark. The latter is not needed when a 14075 * T_EXDATA_IND is sent up. However, if there are 14076 * allocation failures this code relies on the sender 14077 * retransmitting and the socket code for determining 14078 * the mark should not block waiting for the peer to 14079 * transmit. Thus, for simplicity we always send up the 14080 * mark indication. 14081 */ 14082 mp1 = allocb(0, BPRI_MED); 14083 if (mp1 == NULL) { 14084 freemsg(mp); 14085 return; 14086 } 14087 if (!TCP_IS_DETACHED(tcp) && 14088 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 14089 /* Try again on the rexmit. */ 14090 freemsg(mp1); 14091 freemsg(mp); 14092 return; 14093 } 14094 /* 14095 * Mark with NOTMARKNEXT for now. 14096 * The code below will change this to MARKNEXT 14097 * if we are at the mark. 14098 * 14099 * If there are allocation failures (e.g. in dupmsg 14100 * below) the next time tcp_rput_data sees the urgent 14101 * segment it will send up the MSG*MARKNEXT message. 14102 */ 14103 mp1->b_flag |= MSGNOTMARKNEXT; 14104 freemsg(tcp->tcp_urp_mark_mp); 14105 tcp->tcp_urp_mark_mp = mp1; 14106 flags |= TH_SEND_URP_MARK; 14107 #ifdef DEBUG 14108 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14109 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 14110 "last %x, %s", 14111 seg_seq, urp, tcp->tcp_urp_last, 14112 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14113 #endif /* DEBUG */ 14114 tcp->tcp_urp_last_valid = B_TRUE; 14115 tcp->tcp_urp_last = urp + seg_seq; 14116 } else if (tcp->tcp_urp_mark_mp != NULL) { 14117 /* 14118 * An allocation failure prevented the previous 14119 * tcp_rput_data from sending up the allocated 14120 * MSG*MARKNEXT message - send it up this time 14121 * around. 14122 */ 14123 flags |= TH_SEND_URP_MARK; 14124 } 14125 14126 /* 14127 * If the urgent byte is in this segment, make sure that it is 14128 * all by itself. This makes it much easier to deal with the 14129 * possibility of an allocation failure on the T_exdata_ind. 14130 * Note that seg_len is the number of bytes in the segment, and 14131 * urp is the offset into the segment of the urgent byte. 14132 * urp < seg_len means that the urgent byte is in this segment. 14133 */ 14134 if (urp < seg_len) { 14135 if (seg_len != 1) { 14136 uint32_t tmp_rnxt; 14137 /* 14138 * Break it up and feed it back in. 14139 * Re-attach the IP header. 14140 */ 14141 mp->b_rptr = iphdr; 14142 if (urp > 0) { 14143 /* 14144 * There is stuff before the urgent 14145 * byte. 14146 */ 14147 mp1 = dupmsg(mp); 14148 if (!mp1) { 14149 /* 14150 * Trim from urgent byte on. 14151 * The rest will come back. 14152 */ 14153 (void) adjmsg(mp, 14154 urp - seg_len); 14155 tcp_rput_data(connp, 14156 mp, NULL); 14157 return; 14158 } 14159 (void) adjmsg(mp1, urp - seg_len); 14160 /* Feed this piece back in. */ 14161 tmp_rnxt = tcp->tcp_rnxt; 14162 tcp_rput_data(connp, mp1, NULL); 14163 /* 14164 * If the data passed back in was not 14165 * processed (ie: bad ACK) sending 14166 * the remainder back in will cause a 14167 * loop. In this case, drop the 14168 * packet and let the sender try 14169 * sending a good packet. 14170 */ 14171 if (tmp_rnxt == tcp->tcp_rnxt) { 14172 freemsg(mp); 14173 return; 14174 } 14175 } 14176 if (urp != seg_len - 1) { 14177 uint32_t tmp_rnxt; 14178 /* 14179 * There is stuff after the urgent 14180 * byte. 14181 */ 14182 mp1 = dupmsg(mp); 14183 if (!mp1) { 14184 /* 14185 * Trim everything beyond the 14186 * urgent byte. The rest will 14187 * come back. 14188 */ 14189 (void) adjmsg(mp, 14190 urp + 1 - seg_len); 14191 tcp_rput_data(connp, 14192 mp, NULL); 14193 return; 14194 } 14195 (void) adjmsg(mp1, urp + 1 - seg_len); 14196 tmp_rnxt = tcp->tcp_rnxt; 14197 tcp_rput_data(connp, mp1, NULL); 14198 /* 14199 * If the data passed back in was not 14200 * processed (ie: bad ACK) sending 14201 * the remainder back in will cause a 14202 * loop. In this case, drop the 14203 * packet and let the sender try 14204 * sending a good packet. 14205 */ 14206 if (tmp_rnxt == tcp->tcp_rnxt) { 14207 freemsg(mp); 14208 return; 14209 } 14210 } 14211 tcp_rput_data(connp, mp, NULL); 14212 return; 14213 } 14214 /* 14215 * This segment contains only the urgent byte. We 14216 * have to allocate the T_exdata_ind, if we can. 14217 */ 14218 if (!tcp->tcp_urp_mp) { 14219 struct T_exdata_ind *tei; 14220 mp1 = allocb(sizeof (struct T_exdata_ind), 14221 BPRI_MED); 14222 if (!mp1) { 14223 /* 14224 * Sigh... It'll be back. 14225 * Generate any MSG*MARK message now. 14226 */ 14227 freemsg(mp); 14228 seg_len = 0; 14229 if (flags & TH_SEND_URP_MARK) { 14230 14231 14232 ASSERT(tcp->tcp_urp_mark_mp); 14233 tcp->tcp_urp_mark_mp->b_flag &= 14234 ~MSGNOTMARKNEXT; 14235 tcp->tcp_urp_mark_mp->b_flag |= 14236 MSGMARKNEXT; 14237 } 14238 goto ack_check; 14239 } 14240 mp1->b_datap->db_type = M_PROTO; 14241 tei = (struct T_exdata_ind *)mp1->b_rptr; 14242 tei->PRIM_type = T_EXDATA_IND; 14243 tei->MORE_flag = 0; 14244 mp1->b_wptr = (uchar_t *)&tei[1]; 14245 tcp->tcp_urp_mp = mp1; 14246 #ifdef DEBUG 14247 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14248 "tcp_rput: allocated exdata_ind %s", 14249 tcp_display(tcp, NULL, 14250 DISP_PORT_ONLY)); 14251 #endif /* DEBUG */ 14252 /* 14253 * There is no need to send a separate MSG*MARK 14254 * message since the T_EXDATA_IND will be sent 14255 * now. 14256 */ 14257 flags &= ~TH_SEND_URP_MARK; 14258 freemsg(tcp->tcp_urp_mark_mp); 14259 tcp->tcp_urp_mark_mp = NULL; 14260 } 14261 /* 14262 * Now we are all set. On the next putnext upstream, 14263 * tcp_urp_mp will be non-NULL and will get prepended 14264 * to what has to be this piece containing the urgent 14265 * byte. If for any reason we abort this segment below, 14266 * if it comes back, we will have this ready, or it 14267 * will get blown off in close. 14268 */ 14269 } else if (urp == seg_len) { 14270 /* 14271 * The urgent byte is the next byte after this sequence 14272 * number. If there is data it is marked with 14273 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14274 * since it is not needed. Otherwise, if the code 14275 * above just allocated a zero-length tcp_urp_mark_mp 14276 * message, that message is tagged with MSGMARKNEXT. 14277 * Sending up these MSGMARKNEXT messages makes 14278 * SIOCATMARK work correctly even though 14279 * the T_EXDATA_IND will not be sent up until the 14280 * urgent byte arrives. 14281 */ 14282 if (seg_len != 0) { 14283 flags |= TH_MARKNEXT_NEEDED; 14284 freemsg(tcp->tcp_urp_mark_mp); 14285 tcp->tcp_urp_mark_mp = NULL; 14286 flags &= ~TH_SEND_URP_MARK; 14287 } else if (tcp->tcp_urp_mark_mp != NULL) { 14288 flags |= TH_SEND_URP_MARK; 14289 tcp->tcp_urp_mark_mp->b_flag &= 14290 ~MSGNOTMARKNEXT; 14291 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14292 } 14293 #ifdef DEBUG 14294 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14295 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14296 seg_len, flags, 14297 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14298 #endif /* DEBUG */ 14299 } else { 14300 /* Data left until we hit mark */ 14301 #ifdef DEBUG 14302 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14303 "tcp_rput: URP %d bytes left, %s", 14304 urp - seg_len, tcp_display(tcp, NULL, 14305 DISP_PORT_ONLY)); 14306 #endif /* DEBUG */ 14307 } 14308 } 14309 14310 process_ack: 14311 if (!(flags & TH_ACK)) { 14312 freemsg(mp); 14313 goto xmit_check; 14314 } 14315 } 14316 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14317 14318 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14319 tcp->tcp_ip_forward_progress = B_TRUE; 14320 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14321 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14322 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14323 /* 3-way handshake complete - pass up the T_CONN_IND */ 14324 tcp_t *listener = tcp->tcp_listener; 14325 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14326 14327 tcp->tcp_tconnind_started = B_TRUE; 14328 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14329 /* 14330 * We are here means eager is fine but it can 14331 * get a TH_RST at any point between now and till 14332 * accept completes and disappear. We need to 14333 * ensure that reference to eager is valid after 14334 * we get out of eager's perimeter. So we do 14335 * an extra refhold. 14336 */ 14337 CONN_INC_REF(connp); 14338 14339 /* 14340 * The listener also exists because of the refhold 14341 * done in tcp_conn_request. Its possible that it 14342 * might have closed. We will check that once we 14343 * get inside listeners context. 14344 */ 14345 CONN_INC_REF(listener->tcp_connp); 14346 if (listener->tcp_connp->conn_sqp == 14347 connp->conn_sqp) { 14348 tcp_send_conn_ind(listener->tcp_connp, mp, 14349 listener->tcp_connp->conn_sqp); 14350 CONN_DEC_REF(listener->tcp_connp); 14351 } else if (!tcp->tcp_loopback) { 14352 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14353 tcp_send_conn_ind, 14354 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14355 } else { 14356 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14357 tcp_send_conn_ind, listener->tcp_connp, 14358 SQTAG_TCP_CONN_IND); 14359 } 14360 } 14361 14362 if (tcp->tcp_active_open) { 14363 /* 14364 * We are seeing the final ack in the three way 14365 * hand shake of a active open'ed connection 14366 * so we must send up a T_CONN_CON 14367 */ 14368 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14369 freemsg(mp); 14370 return; 14371 } 14372 /* 14373 * Don't fuse the loopback endpoints for 14374 * simultaneous active opens. 14375 */ 14376 if (tcp->tcp_loopback) { 14377 TCP_STAT(tcps, tcp_fusion_unfusable); 14378 tcp->tcp_unfusable = B_TRUE; 14379 } 14380 } 14381 14382 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14383 bytes_acked--; 14384 /* SYN was acked - making progress */ 14385 if (tcp->tcp_ipversion == IPV6_VERSION) 14386 tcp->tcp_ip_forward_progress = B_TRUE; 14387 14388 /* 14389 * If SYN was retransmitted, need to reset all 14390 * retransmission info as this segment will be 14391 * treated as a dup ACK. 14392 */ 14393 if (tcp->tcp_rexmit) { 14394 tcp->tcp_rexmit = B_FALSE; 14395 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14396 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14397 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14398 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14399 tcp->tcp_ms_we_have_waited = 0; 14400 tcp->tcp_cwnd = mss; 14401 } 14402 14403 /* 14404 * We set the send window to zero here. 14405 * This is needed if there is data to be 14406 * processed already on the queue. 14407 * Later (at swnd_update label), the 14408 * "new_swnd > tcp_swnd" condition is satisfied 14409 * the XMIT_NEEDED flag is set in the current 14410 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14411 * called if there is already data on queue in 14412 * this state. 14413 */ 14414 tcp->tcp_swnd = 0; 14415 14416 if (new_swnd > tcp->tcp_max_swnd) 14417 tcp->tcp_max_swnd = new_swnd; 14418 tcp->tcp_swl1 = seg_seq; 14419 tcp->tcp_swl2 = seg_ack; 14420 tcp->tcp_state = TCPS_ESTABLISHED; 14421 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14422 14423 /* Fuse when both sides are in ESTABLISHED state */ 14424 if (tcp->tcp_loopback && do_tcp_fusion) 14425 tcp_fuse(tcp, iphdr, tcph); 14426 14427 } 14428 /* This code follows 4.4BSD-Lite2 mostly. */ 14429 if (bytes_acked < 0) 14430 goto est; 14431 14432 /* 14433 * If TCP is ECN capable and the congestion experience bit is 14434 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14435 * done once per window (or more loosely, per RTT). 14436 */ 14437 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14438 tcp->tcp_cwr = B_FALSE; 14439 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14440 if (!tcp->tcp_cwr) { 14441 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14442 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14443 tcp->tcp_cwnd = npkt * mss; 14444 /* 14445 * If the cwnd is 0, use the timer to clock out 14446 * new segments. This is required by the ECN spec. 14447 */ 14448 if (npkt == 0) { 14449 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14450 /* 14451 * This makes sure that when the ACK comes 14452 * back, we will increase tcp_cwnd by 1 MSS. 14453 */ 14454 tcp->tcp_cwnd_cnt = 0; 14455 } 14456 tcp->tcp_cwr = B_TRUE; 14457 /* 14458 * This marks the end of the current window of in 14459 * flight data. That is why we don't use 14460 * tcp_suna + tcp_swnd. Only data in flight can 14461 * provide ECN info. 14462 */ 14463 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14464 tcp->tcp_ecn_cwr_sent = B_FALSE; 14465 } 14466 } 14467 14468 mp1 = tcp->tcp_xmit_head; 14469 if (bytes_acked == 0) { 14470 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14471 int dupack_cnt; 14472 14473 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14474 /* 14475 * Fast retransmit. When we have seen exactly three 14476 * identical ACKs while we have unacked data 14477 * outstanding we take it as a hint that our peer 14478 * dropped something. 14479 * 14480 * If TCP is retransmitting, don't do fast retransmit. 14481 */ 14482 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14483 ! tcp->tcp_rexmit) { 14484 /* Do Limited Transmit */ 14485 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14486 tcps->tcps_dupack_fast_retransmit) { 14487 /* 14488 * RFC 3042 14489 * 14490 * What we need to do is temporarily 14491 * increase tcp_cwnd so that new 14492 * data can be sent if it is allowed 14493 * by the receive window (tcp_rwnd). 14494 * tcp_wput_data() will take care of 14495 * the rest. 14496 * 14497 * If the connection is SACK capable, 14498 * only do limited xmit when there 14499 * is SACK info. 14500 * 14501 * Note how tcp_cwnd is incremented. 14502 * The first dup ACK will increase 14503 * it by 1 MSS. The second dup ACK 14504 * will increase it by 2 MSS. This 14505 * means that only 1 new segment will 14506 * be sent for each dup ACK. 14507 */ 14508 if (tcp->tcp_unsent > 0 && 14509 (!tcp->tcp_snd_sack_ok || 14510 (tcp->tcp_snd_sack_ok && 14511 tcp->tcp_notsack_list != NULL))) { 14512 tcp->tcp_cwnd += mss << 14513 (tcp->tcp_dupack_cnt - 1); 14514 flags |= TH_LIMIT_XMIT; 14515 } 14516 } else if (dupack_cnt == 14517 tcps->tcps_dupack_fast_retransmit) { 14518 14519 /* 14520 * If we have reduced tcp_ssthresh 14521 * because of ECN, do not reduce it again 14522 * unless it is already one window of data 14523 * away. After one window of data, tcp_cwr 14524 * should then be cleared. Note that 14525 * for non ECN capable connection, tcp_cwr 14526 * should always be false. 14527 * 14528 * Adjust cwnd since the duplicate 14529 * ack indicates that a packet was 14530 * dropped (due to congestion.) 14531 */ 14532 if (!tcp->tcp_cwr) { 14533 npkt = ((tcp->tcp_snxt - 14534 tcp->tcp_suna) >> 1) / mss; 14535 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14536 mss; 14537 tcp->tcp_cwnd = (npkt + 14538 tcp->tcp_dupack_cnt) * mss; 14539 } 14540 if (tcp->tcp_ecn_ok) { 14541 tcp->tcp_cwr = B_TRUE; 14542 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14543 tcp->tcp_ecn_cwr_sent = B_FALSE; 14544 } 14545 14546 /* 14547 * We do Hoe's algorithm. Refer to her 14548 * paper "Improving the Start-up Behavior 14549 * of a Congestion Control Scheme for TCP," 14550 * appeared in SIGCOMM'96. 14551 * 14552 * Save highest seq no we have sent so far. 14553 * Be careful about the invisible FIN byte. 14554 */ 14555 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14556 (tcp->tcp_unsent == 0)) { 14557 tcp->tcp_rexmit_max = tcp->tcp_fss; 14558 } else { 14559 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14560 } 14561 14562 /* 14563 * Do not allow bursty traffic during. 14564 * fast recovery. Refer to Fall and Floyd's 14565 * paper "Simulation-based Comparisons of 14566 * Tahoe, Reno and SACK TCP" (in CCR?) 14567 * This is a best current practise. 14568 */ 14569 tcp->tcp_snd_burst = TCP_CWND_SS; 14570 14571 /* 14572 * For SACK: 14573 * Calculate tcp_pipe, which is the 14574 * estimated number of bytes in 14575 * network. 14576 * 14577 * tcp_fack is the highest sack'ed seq num 14578 * TCP has received. 14579 * 14580 * tcp_pipe is explained in the above quoted 14581 * Fall and Floyd's paper. tcp_fack is 14582 * explained in Mathis and Mahdavi's 14583 * "Forward Acknowledgment: Refining TCP 14584 * Congestion Control" in SIGCOMM '96. 14585 */ 14586 if (tcp->tcp_snd_sack_ok) { 14587 ASSERT(tcp->tcp_sack_info != NULL); 14588 if (tcp->tcp_notsack_list != NULL) { 14589 tcp->tcp_pipe = tcp->tcp_snxt - 14590 tcp->tcp_fack; 14591 tcp->tcp_sack_snxt = seg_ack; 14592 flags |= TH_NEED_SACK_REXMIT; 14593 } else { 14594 /* 14595 * Always initialize tcp_pipe 14596 * even though we don't have 14597 * any SACK info. If later 14598 * we get SACK info and 14599 * tcp_pipe is not initialized, 14600 * funny things will happen. 14601 */ 14602 tcp->tcp_pipe = 14603 tcp->tcp_cwnd_ssthresh; 14604 } 14605 } else { 14606 flags |= TH_REXMIT_NEEDED; 14607 } /* tcp_snd_sack_ok */ 14608 14609 } else { 14610 /* 14611 * Here we perform congestion 14612 * avoidance, but NOT slow start. 14613 * This is known as the Fast 14614 * Recovery Algorithm. 14615 */ 14616 if (tcp->tcp_snd_sack_ok && 14617 tcp->tcp_notsack_list != NULL) { 14618 flags |= TH_NEED_SACK_REXMIT; 14619 tcp->tcp_pipe -= mss; 14620 if (tcp->tcp_pipe < 0) 14621 tcp->tcp_pipe = 0; 14622 } else { 14623 /* 14624 * We know that one more packet has 14625 * left the pipe thus we can update 14626 * cwnd. 14627 */ 14628 cwnd = tcp->tcp_cwnd + mss; 14629 if (cwnd > tcp->tcp_cwnd_max) 14630 cwnd = tcp->tcp_cwnd_max; 14631 tcp->tcp_cwnd = cwnd; 14632 if (tcp->tcp_unsent > 0) 14633 flags |= TH_XMIT_NEEDED; 14634 } 14635 } 14636 } 14637 } else if (tcp->tcp_zero_win_probe) { 14638 /* 14639 * If the window has opened, need to arrange 14640 * to send additional data. 14641 */ 14642 if (new_swnd != 0) { 14643 /* tcp_suna != tcp_snxt */ 14644 /* Packet contains a window update */ 14645 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14646 tcp->tcp_zero_win_probe = 0; 14647 tcp->tcp_timer_backoff = 0; 14648 tcp->tcp_ms_we_have_waited = 0; 14649 14650 /* 14651 * Transmit starting with tcp_suna since 14652 * the one byte probe is not ack'ed. 14653 * If TCP has sent more than one identical 14654 * probe, tcp_rexmit will be set. That means 14655 * tcp_ss_rexmit() will send out the one 14656 * byte along with new data. Otherwise, 14657 * fake the retransmission. 14658 */ 14659 flags |= TH_XMIT_NEEDED; 14660 if (!tcp->tcp_rexmit) { 14661 tcp->tcp_rexmit = B_TRUE; 14662 tcp->tcp_dupack_cnt = 0; 14663 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14664 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14665 } 14666 } 14667 } 14668 goto swnd_update; 14669 } 14670 14671 /* 14672 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14673 * If the ACK value acks something that we have not yet sent, it might 14674 * be an old duplicate segment. Send an ACK to re-synchronize the 14675 * other side. 14676 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14677 * state is handled above, so we can always just drop the segment and 14678 * send an ACK here. 14679 * 14680 * Should we send ACKs in response to ACK only segments? 14681 */ 14682 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14683 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14684 /* drop the received segment */ 14685 freemsg(mp); 14686 14687 /* 14688 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14689 * greater than 0, check if the number of such 14690 * bogus ACks is greater than that count. If yes, 14691 * don't send back any ACK. This prevents TCP from 14692 * getting into an ACK storm if somehow an attacker 14693 * successfully spoofs an acceptable segment to our 14694 * peer. 14695 */ 14696 if (tcp_drop_ack_unsent_cnt > 0 && 14697 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14698 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14699 return; 14700 } 14701 mp = tcp_ack_mp(tcp); 14702 if (mp != NULL) { 14703 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14704 BUMP_LOCAL(tcp->tcp_obsegs); 14705 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14706 tcp_send_data(tcp, tcp->tcp_wq, mp); 14707 } 14708 return; 14709 } 14710 14711 /* 14712 * TCP gets a new ACK, update the notsack'ed list to delete those 14713 * blocks that are covered by this ACK. 14714 */ 14715 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14716 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14717 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14718 } 14719 14720 /* 14721 * If we got an ACK after fast retransmit, check to see 14722 * if it is a partial ACK. If it is not and the congestion 14723 * window was inflated to account for the other side's 14724 * cached packets, retract it. If it is, do Hoe's algorithm. 14725 */ 14726 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14727 ASSERT(tcp->tcp_rexmit == B_FALSE); 14728 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14729 tcp->tcp_dupack_cnt = 0; 14730 /* 14731 * Restore the orig tcp_cwnd_ssthresh after 14732 * fast retransmit phase. 14733 */ 14734 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14735 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14736 } 14737 tcp->tcp_rexmit_max = seg_ack; 14738 tcp->tcp_cwnd_cnt = 0; 14739 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14740 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14741 14742 /* 14743 * Remove all notsack info to avoid confusion with 14744 * the next fast retrasnmit/recovery phase. 14745 */ 14746 if (tcp->tcp_snd_sack_ok && 14747 tcp->tcp_notsack_list != NULL) { 14748 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14749 } 14750 } else { 14751 if (tcp->tcp_snd_sack_ok && 14752 tcp->tcp_notsack_list != NULL) { 14753 flags |= TH_NEED_SACK_REXMIT; 14754 tcp->tcp_pipe -= mss; 14755 if (tcp->tcp_pipe < 0) 14756 tcp->tcp_pipe = 0; 14757 } else { 14758 /* 14759 * Hoe's algorithm: 14760 * 14761 * Retransmit the unack'ed segment and 14762 * restart fast recovery. Note that we 14763 * need to scale back tcp_cwnd to the 14764 * original value when we started fast 14765 * recovery. This is to prevent overly 14766 * aggressive behaviour in sending new 14767 * segments. 14768 */ 14769 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14770 tcps->tcps_dupack_fast_retransmit * mss; 14771 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14772 flags |= TH_REXMIT_NEEDED; 14773 } 14774 } 14775 } else { 14776 tcp->tcp_dupack_cnt = 0; 14777 if (tcp->tcp_rexmit) { 14778 /* 14779 * TCP is retranmitting. If the ACK ack's all 14780 * outstanding data, update tcp_rexmit_max and 14781 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14782 * to the correct value. 14783 * 14784 * Note that SEQ_LEQ() is used. This is to avoid 14785 * unnecessary fast retransmit caused by dup ACKs 14786 * received when TCP does slow start retransmission 14787 * after a time out. During this phase, TCP may 14788 * send out segments which are already received. 14789 * This causes dup ACKs to be sent back. 14790 */ 14791 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14792 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14793 tcp->tcp_rexmit_nxt = seg_ack; 14794 } 14795 if (seg_ack != tcp->tcp_rexmit_max) { 14796 flags |= TH_XMIT_NEEDED; 14797 } 14798 } else { 14799 tcp->tcp_rexmit = B_FALSE; 14800 tcp->tcp_xmit_zc_clean = B_FALSE; 14801 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14802 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14803 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14804 } 14805 tcp->tcp_ms_we_have_waited = 0; 14806 } 14807 } 14808 14809 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14810 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14811 tcp->tcp_suna = seg_ack; 14812 if (tcp->tcp_zero_win_probe != 0) { 14813 tcp->tcp_zero_win_probe = 0; 14814 tcp->tcp_timer_backoff = 0; 14815 } 14816 14817 /* 14818 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14819 * Note that it cannot be the SYN being ack'ed. The code flow 14820 * will not reach here. 14821 */ 14822 if (mp1 == NULL) { 14823 goto fin_acked; 14824 } 14825 14826 /* 14827 * Update the congestion window. 14828 * 14829 * If TCP is not ECN capable or TCP is ECN capable but the 14830 * congestion experience bit is not set, increase the tcp_cwnd as 14831 * usual. 14832 */ 14833 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14834 cwnd = tcp->tcp_cwnd; 14835 add = mss; 14836 14837 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14838 /* 14839 * This is to prevent an increase of less than 1 MSS of 14840 * tcp_cwnd. With partial increase, tcp_wput_data() 14841 * may send out tinygrams in order to preserve mblk 14842 * boundaries. 14843 * 14844 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14845 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14846 * increased by 1 MSS for every RTTs. 14847 */ 14848 if (tcp->tcp_cwnd_cnt <= 0) { 14849 tcp->tcp_cwnd_cnt = cwnd + add; 14850 } else { 14851 tcp->tcp_cwnd_cnt -= add; 14852 add = 0; 14853 } 14854 } 14855 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14856 } 14857 14858 /* See if the latest urgent data has been acknowledged */ 14859 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14860 SEQ_GT(seg_ack, tcp->tcp_urg)) 14861 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14862 14863 /* Can we update the RTT estimates? */ 14864 if (tcp->tcp_snd_ts_ok) { 14865 /* Ignore zero timestamp echo-reply. */ 14866 if (tcpopt.tcp_opt_ts_ecr != 0) { 14867 tcp_set_rto(tcp, (int32_t)lbolt - 14868 (int32_t)tcpopt.tcp_opt_ts_ecr); 14869 } 14870 14871 /* If needed, restart the timer. */ 14872 if (tcp->tcp_set_timer == 1) { 14873 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14874 tcp->tcp_set_timer = 0; 14875 } 14876 /* 14877 * Update tcp_csuna in case the other side stops sending 14878 * us timestamps. 14879 */ 14880 tcp->tcp_csuna = tcp->tcp_snxt; 14881 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14882 /* 14883 * An ACK sequence we haven't seen before, so get the RTT 14884 * and update the RTO. But first check if the timestamp is 14885 * valid to use. 14886 */ 14887 if ((mp1->b_next != NULL) && 14888 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14889 tcp_set_rto(tcp, (int32_t)lbolt - 14890 (int32_t)(intptr_t)mp1->b_prev); 14891 else 14892 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14893 14894 /* Remeber the last sequence to be ACKed */ 14895 tcp->tcp_csuna = seg_ack; 14896 if (tcp->tcp_set_timer == 1) { 14897 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14898 tcp->tcp_set_timer = 0; 14899 } 14900 } else { 14901 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14902 } 14903 14904 /* Eat acknowledged bytes off the xmit queue. */ 14905 for (;;) { 14906 mblk_t *mp2; 14907 uchar_t *wptr; 14908 14909 wptr = mp1->b_wptr; 14910 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14911 bytes_acked -= (int)(wptr - mp1->b_rptr); 14912 if (bytes_acked < 0) { 14913 mp1->b_rptr = wptr + bytes_acked; 14914 /* 14915 * Set a new timestamp if all the bytes timed by the 14916 * old timestamp have been ack'ed. 14917 */ 14918 if (SEQ_GT(seg_ack, 14919 (uint32_t)(uintptr_t)(mp1->b_next))) { 14920 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14921 mp1->b_next = NULL; 14922 } 14923 break; 14924 } 14925 mp1->b_next = NULL; 14926 mp1->b_prev = NULL; 14927 mp2 = mp1; 14928 mp1 = mp1->b_cont; 14929 14930 /* 14931 * This notification is required for some zero-copy 14932 * clients to maintain a copy semantic. After the data 14933 * is ack'ed, client is safe to modify or reuse the buffer. 14934 */ 14935 if (tcp->tcp_snd_zcopy_aware && 14936 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14937 tcp_zcopy_notify(tcp); 14938 freeb(mp2); 14939 if (bytes_acked == 0) { 14940 if (mp1 == NULL) { 14941 /* Everything is ack'ed, clear the tail. */ 14942 tcp->tcp_xmit_tail = NULL; 14943 /* 14944 * Cancel the timer unless we are still 14945 * waiting for an ACK for the FIN packet. 14946 */ 14947 if (tcp->tcp_timer_tid != 0 && 14948 tcp->tcp_snxt == tcp->tcp_suna) { 14949 (void) TCP_TIMER_CANCEL(tcp, 14950 tcp->tcp_timer_tid); 14951 tcp->tcp_timer_tid = 0; 14952 } 14953 goto pre_swnd_update; 14954 } 14955 if (mp2 != tcp->tcp_xmit_tail) 14956 break; 14957 tcp->tcp_xmit_tail = mp1; 14958 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14959 (uintptr_t)INT_MAX); 14960 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14961 mp1->b_rptr); 14962 break; 14963 } 14964 if (mp1 == NULL) { 14965 /* 14966 * More was acked but there is nothing more 14967 * outstanding. This means that the FIN was 14968 * just acked or that we're talking to a clown. 14969 */ 14970 fin_acked: 14971 ASSERT(tcp->tcp_fin_sent); 14972 tcp->tcp_xmit_tail = NULL; 14973 if (tcp->tcp_fin_sent) { 14974 /* FIN was acked - making progress */ 14975 if (tcp->tcp_ipversion == IPV6_VERSION && 14976 !tcp->tcp_fin_acked) 14977 tcp->tcp_ip_forward_progress = B_TRUE; 14978 tcp->tcp_fin_acked = B_TRUE; 14979 if (tcp->tcp_linger_tid != 0 && 14980 TCP_TIMER_CANCEL(tcp, 14981 tcp->tcp_linger_tid) >= 0) { 14982 tcp_stop_lingering(tcp); 14983 freemsg(mp); 14984 mp = NULL; 14985 } 14986 } else { 14987 /* 14988 * We should never get here because 14989 * we have already checked that the 14990 * number of bytes ack'ed should be 14991 * smaller than or equal to what we 14992 * have sent so far (it is the 14993 * acceptability check of the ACK). 14994 * We can only get here if the send 14995 * queue is corrupted. 14996 * 14997 * Terminate the connection and 14998 * panic the system. It is better 14999 * for us to panic instead of 15000 * continuing to avoid other disaster. 15001 */ 15002 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 15003 tcp->tcp_rnxt, TH_RST|TH_ACK); 15004 panic("Memory corruption " 15005 "detected for connection %s.", 15006 tcp_display(tcp, NULL, 15007 DISP_ADDR_AND_PORT)); 15008 /*NOTREACHED*/ 15009 } 15010 goto pre_swnd_update; 15011 } 15012 ASSERT(mp2 != tcp->tcp_xmit_tail); 15013 } 15014 if (tcp->tcp_unsent) { 15015 flags |= TH_XMIT_NEEDED; 15016 } 15017 pre_swnd_update: 15018 tcp->tcp_xmit_head = mp1; 15019 swnd_update: 15020 /* 15021 * The following check is different from most other implementations. 15022 * For bi-directional transfer, when segments are dropped, the 15023 * "normal" check will not accept a window update in those 15024 * retransmitted segemnts. Failing to do that, TCP may send out 15025 * segments which are outside receiver's window. As TCP accepts 15026 * the ack in those retransmitted segments, if the window update in 15027 * the same segment is not accepted, TCP will incorrectly calculates 15028 * that it can send more segments. This can create a deadlock 15029 * with the receiver if its window becomes zero. 15030 */ 15031 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 15032 SEQ_LT(tcp->tcp_swl1, seg_seq) || 15033 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 15034 /* 15035 * The criteria for update is: 15036 * 15037 * 1. the segment acknowledges some data. Or 15038 * 2. the segment is new, i.e. it has a higher seq num. Or 15039 * 3. the segment is not old and the advertised window is 15040 * larger than the previous advertised window. 15041 */ 15042 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 15043 flags |= TH_XMIT_NEEDED; 15044 tcp->tcp_swnd = new_swnd; 15045 if (new_swnd > tcp->tcp_max_swnd) 15046 tcp->tcp_max_swnd = new_swnd; 15047 tcp->tcp_swl1 = seg_seq; 15048 tcp->tcp_swl2 = seg_ack; 15049 } 15050 est: 15051 if (tcp->tcp_state > TCPS_ESTABLISHED) { 15052 15053 switch (tcp->tcp_state) { 15054 case TCPS_FIN_WAIT_1: 15055 if (tcp->tcp_fin_acked) { 15056 tcp->tcp_state = TCPS_FIN_WAIT_2; 15057 /* 15058 * We implement the non-standard BSD/SunOS 15059 * FIN_WAIT_2 flushing algorithm. 15060 * If there is no user attached to this 15061 * TCP endpoint, then this TCP struct 15062 * could hang around forever in FIN_WAIT_2 15063 * state if the peer forgets to send us 15064 * a FIN. To prevent this, we wait only 15065 * 2*MSL (a convenient time value) for 15066 * the FIN to arrive. If it doesn't show up, 15067 * we flush the TCP endpoint. This algorithm, 15068 * though a violation of RFC-793, has worked 15069 * for over 10 years in BSD systems. 15070 * Note: SunOS 4.x waits 675 seconds before 15071 * flushing the FIN_WAIT_2 connection. 15072 */ 15073 TCP_TIMER_RESTART(tcp, 15074 tcps->tcps_fin_wait_2_flush_interval); 15075 } 15076 break; 15077 case TCPS_FIN_WAIT_2: 15078 break; /* Shutdown hook? */ 15079 case TCPS_LAST_ACK: 15080 freemsg(mp); 15081 if (tcp->tcp_fin_acked) { 15082 (void) tcp_clean_death(tcp, 0, 19); 15083 return; 15084 } 15085 goto xmit_check; 15086 case TCPS_CLOSING: 15087 if (tcp->tcp_fin_acked) { 15088 tcp->tcp_state = TCPS_TIME_WAIT; 15089 /* 15090 * Unconditionally clear the exclusive binding 15091 * bit so this TIME-WAIT connection won't 15092 * interfere with new ones. 15093 */ 15094 tcp->tcp_exclbind = 0; 15095 if (!TCP_IS_DETACHED(tcp)) { 15096 TCP_TIMER_RESTART(tcp, 15097 tcps->tcps_time_wait_interval); 15098 } else { 15099 tcp_time_wait_append(tcp); 15100 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 15101 } 15102 } 15103 /*FALLTHRU*/ 15104 case TCPS_CLOSE_WAIT: 15105 freemsg(mp); 15106 goto xmit_check; 15107 default: 15108 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 15109 break; 15110 } 15111 } 15112 if (flags & TH_FIN) { 15113 /* Make sure we ack the fin */ 15114 flags |= TH_ACK_NEEDED; 15115 if (!tcp->tcp_fin_rcvd) { 15116 tcp->tcp_fin_rcvd = B_TRUE; 15117 tcp->tcp_rnxt++; 15118 tcph = tcp->tcp_tcph; 15119 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15120 15121 /* 15122 * Generate the ordrel_ind at the end unless we 15123 * are an eager guy. 15124 * In the eager case tcp_rsrv will do this when run 15125 * after tcp_accept is done. 15126 */ 15127 if (tcp->tcp_listener == NULL && 15128 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 15129 flags |= TH_ORDREL_NEEDED; 15130 switch (tcp->tcp_state) { 15131 case TCPS_SYN_RCVD: 15132 case TCPS_ESTABLISHED: 15133 tcp->tcp_state = TCPS_CLOSE_WAIT; 15134 /* Keepalive? */ 15135 break; 15136 case TCPS_FIN_WAIT_1: 15137 if (!tcp->tcp_fin_acked) { 15138 tcp->tcp_state = TCPS_CLOSING; 15139 break; 15140 } 15141 /* FALLTHRU */ 15142 case TCPS_FIN_WAIT_2: 15143 tcp->tcp_state = TCPS_TIME_WAIT; 15144 /* 15145 * Unconditionally clear the exclusive binding 15146 * bit so this TIME-WAIT connection won't 15147 * interfere with new ones. 15148 */ 15149 tcp->tcp_exclbind = 0; 15150 if (!TCP_IS_DETACHED(tcp)) { 15151 TCP_TIMER_RESTART(tcp, 15152 tcps->tcps_time_wait_interval); 15153 } else { 15154 tcp_time_wait_append(tcp); 15155 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 15156 } 15157 if (seg_len) { 15158 /* 15159 * implies data piggybacked on FIN. 15160 * break to handle data. 15161 */ 15162 break; 15163 } 15164 freemsg(mp); 15165 goto ack_check; 15166 } 15167 } 15168 } 15169 if (mp == NULL) 15170 goto xmit_check; 15171 if (seg_len == 0) { 15172 freemsg(mp); 15173 goto xmit_check; 15174 } 15175 if (mp->b_rptr == mp->b_wptr) { 15176 /* 15177 * The header has been consumed, so we remove the 15178 * zero-length mblk here. 15179 */ 15180 mp1 = mp; 15181 mp = mp->b_cont; 15182 freeb(mp1); 15183 } 15184 tcph = tcp->tcp_tcph; 15185 tcp->tcp_rack_cnt++; 15186 { 15187 uint32_t cur_max; 15188 15189 cur_max = tcp->tcp_rack_cur_max; 15190 if (tcp->tcp_rack_cnt >= cur_max) { 15191 /* 15192 * We have more unacked data than we should - send 15193 * an ACK now. 15194 */ 15195 flags |= TH_ACK_NEEDED; 15196 cur_max++; 15197 if (cur_max > tcp->tcp_rack_abs_max) 15198 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15199 else 15200 tcp->tcp_rack_cur_max = cur_max; 15201 } else if (TCP_IS_DETACHED(tcp)) { 15202 /* We don't have an ACK timer for detached TCP. */ 15203 flags |= TH_ACK_NEEDED; 15204 } else if (seg_len < mss) { 15205 /* 15206 * If we get a segment that is less than an mss, and we 15207 * already have unacknowledged data, and the amount 15208 * unacknowledged is not a multiple of mss, then we 15209 * better generate an ACK now. Otherwise, this may be 15210 * the tail piece of a transaction, and we would rather 15211 * wait for the response. 15212 */ 15213 uint32_t udif; 15214 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 15215 (uintptr_t)INT_MAX); 15216 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 15217 if (udif && (udif % mss)) 15218 flags |= TH_ACK_NEEDED; 15219 else 15220 flags |= TH_ACK_TIMER_NEEDED; 15221 } else { 15222 /* Start delayed ack timer */ 15223 flags |= TH_ACK_TIMER_NEEDED; 15224 } 15225 } 15226 tcp->tcp_rnxt += seg_len; 15227 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15228 15229 /* Update SACK list */ 15230 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15231 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15232 &(tcp->tcp_num_sack_blk)); 15233 } 15234 15235 if (tcp->tcp_urp_mp) { 15236 tcp->tcp_urp_mp->b_cont = mp; 15237 mp = tcp->tcp_urp_mp; 15238 tcp->tcp_urp_mp = NULL; 15239 /* Ready for a new signal. */ 15240 tcp->tcp_urp_last_valid = B_FALSE; 15241 #ifdef DEBUG 15242 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15243 "tcp_rput: sending exdata_ind %s", 15244 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15245 #endif /* DEBUG */ 15246 } 15247 15248 /* 15249 * Check for ancillary data changes compared to last segment. 15250 */ 15251 if (tcp->tcp_ipv6_recvancillary != 0) { 15252 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15253 if (mp == NULL) 15254 return; 15255 } 15256 15257 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15258 /* 15259 * Side queue inbound data until the accept happens. 15260 * tcp_accept/tcp_rput drains this when the accept happens. 15261 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15262 * T_EXDATA_IND) it is queued on b_next. 15263 * XXX Make urgent data use this. Requires: 15264 * Removing tcp_listener check for TH_URG 15265 * Making M_PCPROTO and MARK messages skip the eager case 15266 */ 15267 15268 if (tcp->tcp_kssl_pending) { 15269 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15270 mblk_t *, mp); 15271 tcp_kssl_input(tcp, mp); 15272 } else { 15273 tcp_rcv_enqueue(tcp, mp, seg_len); 15274 } 15275 } else { 15276 sodirect_t *sodp = tcp->tcp_sodirect; 15277 15278 /* 15279 * If an sodirect connection and an enabled sodirect_t then 15280 * sodp will be set to point to the tcp_t/sonode_t shared 15281 * sodirect_t and the sodirect_t's lock will be held. 15282 */ 15283 if (sodp != NULL) { 15284 mutex_enter(sodp->sod_lock); 15285 if (!(sodp->sod_state & SOD_ENABLED)) { 15286 mutex_exit(sodp->sod_lock); 15287 sodp = NULL; 15288 } else if (tcp->tcp_kssl_ctx != NULL && 15289 DB_TYPE(mp) == M_DATA) { 15290 mutex_exit(sodp->sod_lock); 15291 sodp = NULL; 15292 } 15293 } 15294 if (mp->b_datap->db_type != M_DATA || 15295 (flags & TH_MARKNEXT_NEEDED)) { 15296 if (sodp != NULL) { 15297 if (!SOD_QEMPTY(sodp) && 15298 (sodp->sod_state & SOD_WAKE_NOT)) { 15299 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15300 /* sod_wakeup() did the mutex_exit() */ 15301 mutex_enter(sodp->sod_lock); 15302 } 15303 } else if (tcp->tcp_rcv_list != NULL) { 15304 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15305 } 15306 ASSERT(tcp->tcp_rcv_list == NULL || 15307 tcp->tcp_fused_sigurg); 15308 15309 if (flags & TH_MARKNEXT_NEEDED) { 15310 #ifdef DEBUG 15311 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15312 "tcp_rput: sending MSGMARKNEXT %s", 15313 tcp_display(tcp, NULL, 15314 DISP_PORT_ONLY)); 15315 #endif /* DEBUG */ 15316 mp->b_flag |= MSGMARKNEXT; 15317 flags &= ~TH_MARKNEXT_NEEDED; 15318 } 15319 15320 /* Does this need SSL processing first? */ 15321 if ((tcp->tcp_kssl_ctx != NULL) && 15322 (DB_TYPE(mp) == M_DATA)) { 15323 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15324 mblk_t *, mp); 15325 tcp_kssl_input(tcp, mp); 15326 } else { 15327 if (sodp) { 15328 /* 15329 * Done with sodirect, use putnext 15330 * to push this non M_DATA headed 15331 * mblk_t chain. 15332 */ 15333 mutex_exit(sodp->sod_lock); 15334 } 15335 putnext(tcp->tcp_rq, mp); 15336 if (!canputnext(tcp->tcp_rq)) 15337 tcp->tcp_rwnd -= seg_len; 15338 } 15339 } else if ((tcp->tcp_kssl_ctx != NULL) && 15340 (DB_TYPE(mp) == M_DATA)) { 15341 /* Do SSL processing first */ 15342 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, 15343 mblk_t *, mp); 15344 tcp_kssl_input(tcp, mp); 15345 } else if (sodp != NULL) { 15346 /* 15347 * Sodirect so all mblk_t's are queued on the 15348 * socket directly, check for wakeup of blocked 15349 * reader (if any), and last if flow-controled. 15350 */ 15351 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15352 if ((sodp->sod_state & SOD_WAKE_NEED) || 15353 (flags & (TH_PUSH|TH_FIN))) { 15354 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15355 /* sod_wakeup() did the mutex_exit() */ 15356 } else { 15357 if (SOD_QFULL(sodp)) { 15358 /* Q is full, need backenable */ 15359 SOD_QSETBE(sodp); 15360 } 15361 mutex_exit(sodp->sod_lock); 15362 } 15363 } else if ((flags & (TH_PUSH|TH_FIN)) || 15364 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 15365 if (tcp->tcp_rcv_list != NULL) { 15366 /* 15367 * Enqueue the new segment first and then 15368 * call tcp_rcv_drain() to send all data 15369 * up. The other way to do this is to 15370 * send all queued data up and then call 15371 * putnext() to send the new segment up. 15372 * This way can remove the else part later 15373 * on. 15374 * 15375 * We don't this to avoid one more call to 15376 * canputnext() as tcp_rcv_drain() needs to 15377 * call canputnext(). 15378 */ 15379 tcp_rcv_enqueue(tcp, mp, seg_len); 15380 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15381 } else { 15382 putnext(tcp->tcp_rq, mp); 15383 if (!canputnext(tcp->tcp_rq)) 15384 tcp->tcp_rwnd -= seg_len; 15385 } 15386 } else { 15387 /* 15388 * Enqueue all packets when processing an mblk 15389 * from the co queue and also enqueue normal packets. 15390 */ 15391 tcp_rcv_enqueue(tcp, mp, seg_len); 15392 } 15393 /* 15394 * Make sure the timer is running if we have data waiting 15395 * for a push bit. This provides resiliency against 15396 * implementations that do not correctly generate push bits. 15397 * 15398 * Note, for sodirect if Q isn't empty and there's not a 15399 * pending wakeup then we need a timer. Also note that sodp 15400 * is assumed to be still valid after exit()ing the sod_lock 15401 * above and while the SOD state can change it can only change 15402 * such that the Q is empty now even though data was added 15403 * above. 15404 */ 15405 if (((sodp != NULL && !SOD_QEMPTY(sodp) && 15406 (sodp->sod_state & SOD_WAKE_NOT)) || 15407 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15408 tcp->tcp_push_tid == 0) { 15409 /* 15410 * The connection may be closed at this point, so don't 15411 * do anything for a detached tcp. 15412 */ 15413 if (!TCP_IS_DETACHED(tcp)) 15414 tcp->tcp_push_tid = TCP_TIMER(tcp, 15415 tcp_push_timer, 15416 MSEC_TO_TICK( 15417 tcps->tcps_push_timer_interval)); 15418 } 15419 } 15420 15421 xmit_check: 15422 /* Is there anything left to do? */ 15423 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15424 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15425 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15426 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15427 goto done; 15428 15429 /* Any transmit work to do and a non-zero window? */ 15430 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15431 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15432 if (flags & TH_REXMIT_NEEDED) { 15433 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15434 15435 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15436 if (snd_size > mss) 15437 snd_size = mss; 15438 if (snd_size > tcp->tcp_swnd) 15439 snd_size = tcp->tcp_swnd; 15440 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15441 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15442 B_TRUE); 15443 15444 if (mp1 != NULL) { 15445 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15446 tcp->tcp_csuna = tcp->tcp_snxt; 15447 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15448 UPDATE_MIB(&tcps->tcps_mib, 15449 tcpRetransBytes, snd_size); 15450 TCP_RECORD_TRACE(tcp, mp1, 15451 TCP_TRACE_SEND_PKT); 15452 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15453 } 15454 } 15455 if (flags & TH_NEED_SACK_REXMIT) { 15456 tcp_sack_rxmit(tcp, &flags); 15457 } 15458 /* 15459 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15460 * out new segment. Note that tcp_rexmit should not be 15461 * set, otherwise TH_LIMIT_XMIT should not be set. 15462 */ 15463 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15464 if (!tcp->tcp_rexmit) { 15465 tcp_wput_data(tcp, NULL, B_FALSE); 15466 } else { 15467 tcp_ss_rexmit(tcp); 15468 } 15469 } 15470 /* 15471 * Adjust tcp_cwnd back to normal value after sending 15472 * new data segments. 15473 */ 15474 if (flags & TH_LIMIT_XMIT) { 15475 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15476 /* 15477 * This will restart the timer. Restarting the 15478 * timer is used to avoid a timeout before the 15479 * limited transmitted segment's ACK gets back. 15480 */ 15481 if (tcp->tcp_xmit_head != NULL) 15482 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15483 } 15484 15485 /* Anything more to do? */ 15486 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15487 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15488 goto done; 15489 } 15490 ack_check: 15491 if (flags & TH_SEND_URP_MARK) { 15492 ASSERT(tcp->tcp_urp_mark_mp); 15493 /* 15494 * Send up any queued data and then send the mark message 15495 */ 15496 sodirect_t *sodp; 15497 15498 SOD_PTR_ENTER(tcp, sodp); 15499 15500 mp1 = tcp->tcp_urp_mark_mp; 15501 tcp->tcp_urp_mark_mp = NULL; 15502 if (sodp != NULL) { 15503 15504 ASSERT(tcp->tcp_rcv_list == NULL); 15505 15506 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15507 /* sod_wakeup() does the mutex_exit() */ 15508 } else if (tcp->tcp_rcv_list != NULL) { 15509 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15510 15511 ASSERT(tcp->tcp_rcv_list == NULL || 15512 tcp->tcp_fused_sigurg); 15513 15514 } 15515 putnext(tcp->tcp_rq, mp1); 15516 #ifdef DEBUG 15517 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15518 "tcp_rput: sending zero-length %s %s", 15519 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15520 "MSGNOTMARKNEXT"), 15521 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15522 #endif /* DEBUG */ 15523 flags &= ~TH_SEND_URP_MARK; 15524 } 15525 if (flags & TH_ACK_NEEDED) { 15526 /* 15527 * Time to send an ack for some reason. 15528 */ 15529 mp1 = tcp_ack_mp(tcp); 15530 15531 if (mp1 != NULL) { 15532 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15533 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15534 BUMP_LOCAL(tcp->tcp_obsegs); 15535 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15536 } 15537 if (tcp->tcp_ack_tid != 0) { 15538 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15539 tcp->tcp_ack_tid = 0; 15540 } 15541 } 15542 if (flags & TH_ACK_TIMER_NEEDED) { 15543 /* 15544 * Arrange for deferred ACK or push wait timeout. 15545 * Start timer if it is not already running. 15546 */ 15547 if (tcp->tcp_ack_tid == 0) { 15548 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15549 MSEC_TO_TICK(tcp->tcp_localnet ? 15550 (clock_t)tcps->tcps_local_dack_interval : 15551 (clock_t)tcps->tcps_deferred_ack_interval)); 15552 } 15553 } 15554 if (flags & TH_ORDREL_NEEDED) { 15555 /* 15556 * Send up the ordrel_ind unless we are an eager guy. 15557 * In the eager case tcp_rsrv will do this when run 15558 * after tcp_accept is done. 15559 */ 15560 sodirect_t *sodp; 15561 15562 ASSERT(tcp->tcp_listener == NULL); 15563 15564 SOD_PTR_ENTER(tcp, sodp); 15565 if (sodp != NULL) { 15566 /* No more sodirect */ 15567 tcp->tcp_sodirect = NULL; 15568 if (!SOD_QEMPTY(sodp)) { 15569 /* Mblk(s) to process, notify */ 15570 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15571 /* sod_wakeup() does the mutex_exit() */ 15572 } else { 15573 /* Nothing to process */ 15574 mutex_exit(sodp->sod_lock); 15575 } 15576 } else if (tcp->tcp_rcv_list != NULL) { 15577 /* 15578 * Push any mblk(s) enqueued from co processing. 15579 */ 15580 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15581 15582 ASSERT(tcp->tcp_rcv_list == NULL || 15583 tcp->tcp_fused_sigurg); 15584 } 15585 15586 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15587 tcp->tcp_ordrel_done = B_TRUE; 15588 putnext(tcp->tcp_rq, mp1); 15589 if (tcp->tcp_deferred_clean_death) { 15590 /* 15591 * tcp_clean_death was deferred 15592 * for T_ORDREL_IND - do it now 15593 */ 15594 (void) tcp_clean_death(tcp, 15595 tcp->tcp_client_errno, 20); 15596 tcp->tcp_deferred_clean_death = B_FALSE; 15597 } 15598 } else { 15599 /* 15600 * Run the orderly release in the 15601 * service routine. 15602 */ 15603 qenable(tcp->tcp_rq); 15604 /* 15605 * Caveat(XXX): The machine may be so 15606 * overloaded that tcp_rsrv() is not scheduled 15607 * until after the endpoint has transitioned 15608 * to TCPS_TIME_WAIT 15609 * and tcp_time_wait_interval expires. Then 15610 * tcp_timer() will blow away state in tcp_t 15611 * and T_ORDREL_IND will never be delivered 15612 * upstream. Unlikely but potentially 15613 * a problem. 15614 */ 15615 } 15616 } 15617 done: 15618 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15619 } 15620 15621 /* 15622 * This function does PAWS protection check. Returns B_TRUE if the 15623 * segment passes the PAWS test, else returns B_FALSE. 15624 */ 15625 boolean_t 15626 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15627 { 15628 uint8_t flags; 15629 int options; 15630 uint8_t *up; 15631 15632 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15633 /* 15634 * If timestamp option is aligned nicely, get values inline, 15635 * otherwise call general routine to parse. Only do that 15636 * if timestamp is the only option. 15637 */ 15638 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15639 TCPOPT_REAL_TS_LEN && 15640 OK_32PTR((up = ((uint8_t *)tcph) + 15641 TCP_MIN_HEADER_LENGTH)) && 15642 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15643 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15644 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15645 15646 options = TCP_OPT_TSTAMP_PRESENT; 15647 } else { 15648 if (tcp->tcp_snd_sack_ok) { 15649 tcpoptp->tcp = tcp; 15650 } else { 15651 tcpoptp->tcp = NULL; 15652 } 15653 options = tcp_parse_options(tcph, tcpoptp); 15654 } 15655 15656 if (options & TCP_OPT_TSTAMP_PRESENT) { 15657 /* 15658 * Do PAWS per RFC 1323 section 4.2. Accept RST 15659 * regardless of the timestamp, page 18 RFC 1323.bis. 15660 */ 15661 if ((flags & TH_RST) == 0 && 15662 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15663 tcp->tcp_ts_recent)) { 15664 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15665 PAWS_TIMEOUT)) { 15666 /* This segment is not acceptable. */ 15667 return (B_FALSE); 15668 } else { 15669 /* 15670 * Connection has been idle for 15671 * too long. Reset the timestamp 15672 * and assume the segment is valid. 15673 */ 15674 tcp->tcp_ts_recent = 15675 tcpoptp->tcp_opt_ts_val; 15676 } 15677 } 15678 } else { 15679 /* 15680 * If we don't get a timestamp on every packet, we 15681 * figure we can't really trust 'em, so we stop sending 15682 * and parsing them. 15683 */ 15684 tcp->tcp_snd_ts_ok = B_FALSE; 15685 15686 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15687 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15688 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15689 /* 15690 * Adjust the tcp_mss accordingly. We also need to 15691 * adjust tcp_cwnd here in accordance with the new mss. 15692 * But we avoid doing a slow start here so as to not 15693 * to lose on the transfer rate built up so far. 15694 */ 15695 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15696 if (tcp->tcp_snd_sack_ok) { 15697 ASSERT(tcp->tcp_sack_info != NULL); 15698 tcp->tcp_max_sack_blk = 4; 15699 } 15700 } 15701 return (B_TRUE); 15702 } 15703 15704 /* 15705 * Attach ancillary data to a received TCP segments for the 15706 * ancillary pieces requested by the application that are 15707 * different than they were in the previous data segment. 15708 * 15709 * Save the "current" values once memory allocation is ok so that 15710 * when memory allocation fails we can just wait for the next data segment. 15711 */ 15712 static mblk_t * 15713 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15714 { 15715 struct T_optdata_ind *todi; 15716 int optlen; 15717 uchar_t *optptr; 15718 struct T_opthdr *toh; 15719 uint_t addflag; /* Which pieces to add */ 15720 mblk_t *mp1; 15721 15722 optlen = 0; 15723 addflag = 0; 15724 /* If app asked for pktinfo and the index has changed ... */ 15725 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15726 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15727 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15728 optlen += sizeof (struct T_opthdr) + 15729 sizeof (struct in6_pktinfo); 15730 addflag |= TCP_IPV6_RECVPKTINFO; 15731 } 15732 /* If app asked for hoplimit and it has changed ... */ 15733 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15734 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15735 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15736 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15737 addflag |= TCP_IPV6_RECVHOPLIMIT; 15738 } 15739 /* If app asked for tclass and it has changed ... */ 15740 if ((ipp->ipp_fields & IPPF_TCLASS) && 15741 ipp->ipp_tclass != tcp->tcp_recvtclass && 15742 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15743 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15744 addflag |= TCP_IPV6_RECVTCLASS; 15745 } 15746 /* 15747 * If app asked for hopbyhop headers and it has changed ... 15748 * For security labels, note that (1) security labels can't change on 15749 * a connected socket at all, (2) we're connected to at most one peer, 15750 * (3) if anything changes, then it must be some other extra option. 15751 */ 15752 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15753 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15754 (ipp->ipp_fields & IPPF_HOPOPTS), 15755 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15756 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15757 tcp->tcp_label_len; 15758 addflag |= TCP_IPV6_RECVHOPOPTS; 15759 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15760 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15761 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15762 return (mp); 15763 } 15764 /* If app asked for dst headers before routing headers ... */ 15765 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15766 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15767 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15768 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15769 optlen += sizeof (struct T_opthdr) + 15770 ipp->ipp_rtdstoptslen; 15771 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15772 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15773 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15774 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15775 return (mp); 15776 } 15777 /* If app asked for routing headers and it has changed ... */ 15778 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15779 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15780 (ipp->ipp_fields & IPPF_RTHDR), 15781 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15782 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15783 addflag |= TCP_IPV6_RECVRTHDR; 15784 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15785 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15786 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15787 return (mp); 15788 } 15789 /* If app asked for dest headers and it has changed ... */ 15790 if ((tcp->tcp_ipv6_recvancillary & 15791 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15792 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15793 (ipp->ipp_fields & IPPF_DSTOPTS), 15794 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15795 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15796 addflag |= TCP_IPV6_RECVDSTOPTS; 15797 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15798 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15799 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15800 return (mp); 15801 } 15802 15803 if (optlen == 0) { 15804 /* Nothing to add */ 15805 return (mp); 15806 } 15807 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15808 if (mp1 == NULL) { 15809 /* 15810 * Defer sending ancillary data until the next TCP segment 15811 * arrives. 15812 */ 15813 return (mp); 15814 } 15815 mp1->b_cont = mp; 15816 mp = mp1; 15817 mp->b_wptr += sizeof (*todi) + optlen; 15818 mp->b_datap->db_type = M_PROTO; 15819 todi = (struct T_optdata_ind *)mp->b_rptr; 15820 todi->PRIM_type = T_OPTDATA_IND; 15821 todi->DATA_flag = 1; /* MORE data */ 15822 todi->OPT_length = optlen; 15823 todi->OPT_offset = sizeof (*todi); 15824 optptr = (uchar_t *)&todi[1]; 15825 /* 15826 * If app asked for pktinfo and the index has changed ... 15827 * Note that the local address never changes for the connection. 15828 */ 15829 if (addflag & TCP_IPV6_RECVPKTINFO) { 15830 struct in6_pktinfo *pkti; 15831 15832 toh = (struct T_opthdr *)optptr; 15833 toh->level = IPPROTO_IPV6; 15834 toh->name = IPV6_PKTINFO; 15835 toh->len = sizeof (*toh) + sizeof (*pkti); 15836 toh->status = 0; 15837 optptr += sizeof (*toh); 15838 pkti = (struct in6_pktinfo *)optptr; 15839 if (tcp->tcp_ipversion == IPV6_VERSION) 15840 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15841 else 15842 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15843 &pkti->ipi6_addr); 15844 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15845 optptr += sizeof (*pkti); 15846 ASSERT(OK_32PTR(optptr)); 15847 /* Save as "last" value */ 15848 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15849 } 15850 /* If app asked for hoplimit and it has changed ... */ 15851 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15852 toh = (struct T_opthdr *)optptr; 15853 toh->level = IPPROTO_IPV6; 15854 toh->name = IPV6_HOPLIMIT; 15855 toh->len = sizeof (*toh) + sizeof (uint_t); 15856 toh->status = 0; 15857 optptr += sizeof (*toh); 15858 *(uint_t *)optptr = ipp->ipp_hoplimit; 15859 optptr += sizeof (uint_t); 15860 ASSERT(OK_32PTR(optptr)); 15861 /* Save as "last" value */ 15862 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15863 } 15864 /* If app asked for tclass and it has changed ... */ 15865 if (addflag & TCP_IPV6_RECVTCLASS) { 15866 toh = (struct T_opthdr *)optptr; 15867 toh->level = IPPROTO_IPV6; 15868 toh->name = IPV6_TCLASS; 15869 toh->len = sizeof (*toh) + sizeof (uint_t); 15870 toh->status = 0; 15871 optptr += sizeof (*toh); 15872 *(uint_t *)optptr = ipp->ipp_tclass; 15873 optptr += sizeof (uint_t); 15874 ASSERT(OK_32PTR(optptr)); 15875 /* Save as "last" value */ 15876 tcp->tcp_recvtclass = ipp->ipp_tclass; 15877 } 15878 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15879 toh = (struct T_opthdr *)optptr; 15880 toh->level = IPPROTO_IPV6; 15881 toh->name = IPV6_HOPOPTS; 15882 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15883 tcp->tcp_label_len; 15884 toh->status = 0; 15885 optptr += sizeof (*toh); 15886 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15887 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15888 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15889 ASSERT(OK_32PTR(optptr)); 15890 /* Save as last value */ 15891 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15892 (ipp->ipp_fields & IPPF_HOPOPTS), 15893 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15894 } 15895 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15896 toh = (struct T_opthdr *)optptr; 15897 toh->level = IPPROTO_IPV6; 15898 toh->name = IPV6_RTHDRDSTOPTS; 15899 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15900 toh->status = 0; 15901 optptr += sizeof (*toh); 15902 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15903 optptr += ipp->ipp_rtdstoptslen; 15904 ASSERT(OK_32PTR(optptr)); 15905 /* Save as last value */ 15906 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15907 &tcp->tcp_rtdstoptslen, 15908 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15909 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15910 } 15911 if (addflag & TCP_IPV6_RECVRTHDR) { 15912 toh = (struct T_opthdr *)optptr; 15913 toh->level = IPPROTO_IPV6; 15914 toh->name = IPV6_RTHDR; 15915 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15916 toh->status = 0; 15917 optptr += sizeof (*toh); 15918 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15919 optptr += ipp->ipp_rthdrlen; 15920 ASSERT(OK_32PTR(optptr)); 15921 /* Save as last value */ 15922 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15923 (ipp->ipp_fields & IPPF_RTHDR), 15924 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15925 } 15926 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15927 toh = (struct T_opthdr *)optptr; 15928 toh->level = IPPROTO_IPV6; 15929 toh->name = IPV6_DSTOPTS; 15930 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15931 toh->status = 0; 15932 optptr += sizeof (*toh); 15933 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15934 optptr += ipp->ipp_dstoptslen; 15935 ASSERT(OK_32PTR(optptr)); 15936 /* Save as last value */ 15937 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15938 (ipp->ipp_fields & IPPF_DSTOPTS), 15939 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15940 } 15941 ASSERT(optptr == mp->b_wptr); 15942 return (mp); 15943 } 15944 15945 15946 /* 15947 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15948 * or a "bad" IRE detected by tcp_adapt_ire. 15949 * We can't tell if the failure was due to the laddr or the faddr 15950 * thus we clear out all addresses and ports. 15951 */ 15952 static void 15953 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15954 { 15955 queue_t *q = tcp->tcp_rq; 15956 tcph_t *tcph; 15957 struct T_error_ack *tea; 15958 conn_t *connp = tcp->tcp_connp; 15959 15960 15961 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15962 15963 if (mp->b_cont) { 15964 freemsg(mp->b_cont); 15965 mp->b_cont = NULL; 15966 } 15967 tea = (struct T_error_ack *)mp->b_rptr; 15968 switch (tea->PRIM_type) { 15969 case T_BIND_ACK: 15970 /* 15971 * Need to unbind with classifier since we were just told that 15972 * our bind succeeded. 15973 */ 15974 tcp->tcp_hard_bound = B_FALSE; 15975 tcp->tcp_hard_binding = B_FALSE; 15976 15977 ipcl_hash_remove(connp); 15978 /* Reuse the mblk if possible */ 15979 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15980 sizeof (*tea)); 15981 mp->b_rptr = mp->b_datap->db_base; 15982 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15983 tea = (struct T_error_ack *)mp->b_rptr; 15984 tea->PRIM_type = T_ERROR_ACK; 15985 tea->TLI_error = TSYSERR; 15986 tea->UNIX_error = error; 15987 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15988 tea->ERROR_prim = T_CONN_REQ; 15989 } else { 15990 tea->ERROR_prim = O_T_BIND_REQ; 15991 } 15992 break; 15993 15994 case T_ERROR_ACK: 15995 if (tcp->tcp_state >= TCPS_SYN_SENT) 15996 tea->ERROR_prim = T_CONN_REQ; 15997 break; 15998 default: 15999 panic("tcp_bind_failed: unexpected TPI type"); 16000 /*NOTREACHED*/ 16001 } 16002 16003 tcp->tcp_state = TCPS_IDLE; 16004 if (tcp->tcp_ipversion == IPV4_VERSION) 16005 tcp->tcp_ipha->ipha_src = 0; 16006 else 16007 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16008 /* 16009 * Copy of the src addr. in tcp_t is needed since 16010 * the lookup funcs. can only look at tcp_t 16011 */ 16012 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16013 16014 tcph = tcp->tcp_tcph; 16015 tcph->th_lport[0] = 0; 16016 tcph->th_lport[1] = 0; 16017 tcp_bind_hash_remove(tcp); 16018 bzero(&connp->u_port, sizeof (connp->u_port)); 16019 /* blow away saved option results if any */ 16020 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 16021 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 16022 16023 conn_delete_ire(tcp->tcp_connp, NULL); 16024 putnext(q, mp); 16025 } 16026 16027 /* 16028 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 16029 * messages. 16030 */ 16031 void 16032 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 16033 { 16034 mblk_t *mp1; 16035 uchar_t *rptr = mp->b_rptr; 16036 queue_t *q = tcp->tcp_rq; 16037 struct T_error_ack *tea; 16038 uint32_t mss; 16039 mblk_t *syn_mp; 16040 mblk_t *mdti; 16041 mblk_t *lsoi; 16042 int retval; 16043 mblk_t *ire_mp; 16044 tcp_stack_t *tcps = tcp->tcp_tcps; 16045 16046 switch (mp->b_datap->db_type) { 16047 case M_PROTO: 16048 case M_PCPROTO: 16049 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16050 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 16051 break; 16052 tea = (struct T_error_ack *)rptr; 16053 switch (tea->PRIM_type) { 16054 case T_BIND_ACK: 16055 /* 16056 * Adapt Multidata information, if any. The 16057 * following tcp_mdt_update routine will free 16058 * the message. 16059 */ 16060 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 16061 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 16062 b_rptr)->mdt_capab, B_TRUE); 16063 freemsg(mdti); 16064 } 16065 16066 /* 16067 * Check to update LSO information with tcp, and 16068 * tcp_lso_update routine will free the message. 16069 */ 16070 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 16071 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 16072 b_rptr)->lso_capab); 16073 freemsg(lsoi); 16074 } 16075 16076 /* Get the IRE, if we had requested for it */ 16077 ire_mp = tcp_ire_mp(mp); 16078 16079 if (tcp->tcp_hard_binding) { 16080 tcp->tcp_hard_binding = B_FALSE; 16081 tcp->tcp_hard_bound = B_TRUE; 16082 CL_INET_CONNECT(tcp); 16083 } else { 16084 if (ire_mp != NULL) 16085 freeb(ire_mp); 16086 goto after_syn_sent; 16087 } 16088 16089 retval = tcp_adapt_ire(tcp, ire_mp); 16090 if (ire_mp != NULL) 16091 freeb(ire_mp); 16092 if (retval == 0) { 16093 tcp_bind_failed(tcp, mp, 16094 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 16095 ENETUNREACH : EADDRNOTAVAIL)); 16096 return; 16097 } 16098 /* 16099 * Don't let an endpoint connect to itself. 16100 * Also checked in tcp_connect() but that 16101 * check can't handle the case when the 16102 * local IP address is INADDR_ANY. 16103 */ 16104 if (tcp->tcp_ipversion == IPV4_VERSION) { 16105 if ((tcp->tcp_ipha->ipha_dst == 16106 tcp->tcp_ipha->ipha_src) && 16107 (BE16_EQL(tcp->tcp_tcph->th_lport, 16108 tcp->tcp_tcph->th_fport))) { 16109 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 16110 return; 16111 } 16112 } else { 16113 if (IN6_ARE_ADDR_EQUAL( 16114 &tcp->tcp_ip6h->ip6_dst, 16115 &tcp->tcp_ip6h->ip6_src) && 16116 (BE16_EQL(tcp->tcp_tcph->th_lport, 16117 tcp->tcp_tcph->th_fport))) { 16118 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 16119 return; 16120 } 16121 } 16122 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 16123 /* 16124 * This should not be possible! Just for 16125 * defensive coding... 16126 */ 16127 if (tcp->tcp_state != TCPS_SYN_SENT) 16128 goto after_syn_sent; 16129 16130 if (is_system_labeled() && 16131 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 16132 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 16133 return; 16134 } 16135 16136 ASSERT(q == tcp->tcp_rq); 16137 /* 16138 * tcp_adapt_ire() does not adjust 16139 * for TCP/IP header length. 16140 */ 16141 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 16142 16143 /* 16144 * Just make sure our rwnd is at 16145 * least tcp_recv_hiwat_mss * MSS 16146 * large, and round up to the nearest 16147 * MSS. 16148 * 16149 * We do the round up here because 16150 * we need to get the interface 16151 * MTU first before we can do the 16152 * round up. 16153 */ 16154 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 16155 tcps->tcps_recv_hiwat_minmss * mss); 16156 q->q_hiwat = tcp->tcp_rwnd; 16157 tcp_set_ws_value(tcp); 16158 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 16159 tcp->tcp_tcph->th_win); 16160 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 16161 tcp->tcp_snd_ws_ok = B_TRUE; 16162 16163 /* 16164 * Set tcp_snd_ts_ok to true 16165 * so that tcp_xmit_mp will 16166 * include the timestamp 16167 * option in the SYN segment. 16168 */ 16169 if (tcps->tcps_tstamp_always || 16170 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 16171 tcp->tcp_snd_ts_ok = B_TRUE; 16172 } 16173 16174 /* 16175 * tcp_snd_sack_ok can be set in 16176 * tcp_adapt_ire() if the sack metric 16177 * is set. So check it here also. 16178 */ 16179 if (tcps->tcps_sack_permitted == 2 || 16180 tcp->tcp_snd_sack_ok) { 16181 if (tcp->tcp_sack_info == NULL) { 16182 tcp->tcp_sack_info = 16183 kmem_cache_alloc( 16184 tcp_sack_info_cache, 16185 KM_SLEEP); 16186 } 16187 tcp->tcp_snd_sack_ok = B_TRUE; 16188 } 16189 16190 /* 16191 * Should we use ECN? Note that the current 16192 * default value (SunOS 5.9) of tcp_ecn_permitted 16193 * is 1. The reason for doing this is that there 16194 * are equipments out there that will drop ECN 16195 * enabled IP packets. Setting it to 1 avoids 16196 * compatibility problems. 16197 */ 16198 if (tcps->tcps_ecn_permitted == 2) 16199 tcp->tcp_ecn_ok = B_TRUE; 16200 16201 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16202 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 16203 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 16204 if (syn_mp) { 16205 cred_t *cr; 16206 pid_t pid; 16207 16208 /* 16209 * Obtain the credential from the 16210 * thread calling connect(); the credential 16211 * lives on in the second mblk which 16212 * originated from T_CONN_REQ and is echoed 16213 * with the T_BIND_ACK from ip. If none 16214 * can be found, default to the creator 16215 * of the socket. 16216 */ 16217 if (mp->b_cont == NULL || 16218 (cr = DB_CRED(mp->b_cont)) == NULL) { 16219 cr = tcp->tcp_cred; 16220 pid = tcp->tcp_cpid; 16221 } else { 16222 pid = DB_CPID(mp->b_cont); 16223 } 16224 16225 TCP_RECORD_TRACE(tcp, syn_mp, 16226 TCP_TRACE_SEND_PKT); 16227 mblk_setcred(syn_mp, cr); 16228 DB_CPID(syn_mp) = pid; 16229 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 16230 } 16231 after_syn_sent: 16232 /* 16233 * A trailer mblk indicates a waiting client upstream. 16234 * We complete here the processing begun in 16235 * either tcp_bind() or tcp_connect() by passing 16236 * upstream the reply message they supplied. 16237 */ 16238 mp1 = mp; 16239 mp = mp->b_cont; 16240 freeb(mp1); 16241 if (mp) 16242 break; 16243 return; 16244 case T_ERROR_ACK: 16245 if (tcp->tcp_debug) { 16246 (void) strlog(TCP_MOD_ID, 0, 1, 16247 SL_TRACE|SL_ERROR, 16248 "tcp_rput_other: case T_ERROR_ACK, " 16249 "ERROR_prim == %d", 16250 tea->ERROR_prim); 16251 } 16252 switch (tea->ERROR_prim) { 16253 case O_T_BIND_REQ: 16254 case T_BIND_REQ: 16255 tcp_bind_failed(tcp, mp, 16256 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 16257 ENETUNREACH : EADDRNOTAVAIL)); 16258 return; 16259 case T_UNBIND_REQ: 16260 tcp->tcp_hard_binding = B_FALSE; 16261 tcp->tcp_hard_bound = B_FALSE; 16262 if (mp->b_cont) { 16263 freemsg(mp->b_cont); 16264 mp->b_cont = NULL; 16265 } 16266 if (tcp->tcp_unbind_pending) 16267 tcp->tcp_unbind_pending = 0; 16268 else { 16269 /* From tcp_ip_unbind() - free */ 16270 freemsg(mp); 16271 return; 16272 } 16273 break; 16274 case T_SVR4_OPTMGMT_REQ: 16275 if (tcp->tcp_drop_opt_ack_cnt > 0) { 16276 /* T_OPTMGMT_REQ generated by TCP */ 16277 printf("T_SVR4_OPTMGMT_REQ failed " 16278 "%d/%d - dropped (cnt %d)\n", 16279 tea->TLI_error, tea->UNIX_error, 16280 tcp->tcp_drop_opt_ack_cnt); 16281 freemsg(mp); 16282 tcp->tcp_drop_opt_ack_cnt--; 16283 return; 16284 } 16285 break; 16286 } 16287 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 16288 tcp->tcp_drop_opt_ack_cnt > 0) { 16289 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 16290 "- dropped (cnt %d)\n", 16291 tea->TLI_error, tea->UNIX_error, 16292 tcp->tcp_drop_opt_ack_cnt); 16293 freemsg(mp); 16294 tcp->tcp_drop_opt_ack_cnt--; 16295 return; 16296 } 16297 break; 16298 case T_OPTMGMT_ACK: 16299 if (tcp->tcp_drop_opt_ack_cnt > 0) { 16300 /* T_OPTMGMT_REQ generated by TCP */ 16301 freemsg(mp); 16302 tcp->tcp_drop_opt_ack_cnt--; 16303 return; 16304 } 16305 break; 16306 default: 16307 break; 16308 } 16309 break; 16310 case M_FLUSH: 16311 if (*rptr & FLUSHR) 16312 flushq(q, FLUSHDATA); 16313 break; 16314 default: 16315 /* M_CTL will be directly sent to tcp_icmp_error() */ 16316 ASSERT(DB_TYPE(mp) != M_CTL); 16317 break; 16318 } 16319 /* 16320 * Make sure we set this bit before sending the ACK for 16321 * bind. Otherwise accept could possibly run and free 16322 * this tcp struct. 16323 */ 16324 putnext(q, mp); 16325 } 16326 16327 /* 16328 * Called as the result of a qbufcall or a qtimeout to remedy a failure 16329 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 16330 * tcp_rsrv() try again. 16331 */ 16332 static void 16333 tcp_ordrel_kick(void *arg) 16334 { 16335 conn_t *connp = (conn_t *)arg; 16336 tcp_t *tcp = connp->conn_tcp; 16337 16338 tcp->tcp_ordrelid = 0; 16339 tcp->tcp_timeout = B_FALSE; 16340 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 16341 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 16342 qenable(tcp->tcp_rq); 16343 } 16344 } 16345 16346 /* ARGSUSED */ 16347 static void 16348 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 16349 { 16350 conn_t *connp = (conn_t *)arg; 16351 tcp_t *tcp = connp->conn_tcp; 16352 queue_t *q = tcp->tcp_rq; 16353 uint_t thwin; 16354 tcp_stack_t *tcps = tcp->tcp_tcps; 16355 sodirect_t *sodp; 16356 boolean_t fc; 16357 16358 freeb(mp); 16359 16360 TCP_STAT(tcps, tcp_rsrv_calls); 16361 16362 if (TCP_IS_DETACHED(tcp) || q == NULL) { 16363 return; 16364 } 16365 16366 if (tcp->tcp_fused) { 16367 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16368 16369 ASSERT(tcp->tcp_fused); 16370 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 16371 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 16372 ASSERT(!TCP_IS_DETACHED(tcp)); 16373 ASSERT(tcp->tcp_connp->conn_sqp == 16374 peer_tcp->tcp_connp->conn_sqp); 16375 16376 /* 16377 * Normally we would not get backenabled in synchronous 16378 * streams mode, but in case this happens, we need to plug 16379 * synchronous streams during our drain to prevent a race 16380 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 16381 */ 16382 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 16383 if (tcp->tcp_rcv_list != NULL) 16384 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16385 16386 if (peer_tcp > tcp) { 16387 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16388 mutex_enter(&tcp->tcp_non_sq_lock); 16389 } else { 16390 mutex_enter(&tcp->tcp_non_sq_lock); 16391 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16392 } 16393 16394 if (peer_tcp->tcp_flow_stopped && 16395 (TCP_UNSENT_BYTES(peer_tcp) <= 16396 peer_tcp->tcp_xmit_lowater)) { 16397 tcp_clrqfull(peer_tcp); 16398 } 16399 mutex_exit(&peer_tcp->tcp_non_sq_lock); 16400 mutex_exit(&tcp->tcp_non_sq_lock); 16401 16402 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 16403 TCP_STAT(tcps, tcp_fusion_backenabled); 16404 return; 16405 } 16406 16407 SOD_PTR_ENTER(tcp, sodp); 16408 if (sodp != NULL) { 16409 /* An sodirect connection */ 16410 if (SOD_QFULL(sodp)) { 16411 /* Flow-controlled, need another back-enable */ 16412 fc = B_TRUE; 16413 SOD_QSETBE(sodp); 16414 } else { 16415 /* Not flow-controlled */ 16416 fc = B_FALSE; 16417 } 16418 mutex_exit(sodp->sod_lock); 16419 } else if (canputnext(q)) { 16420 /* STREAMS, not flow-controlled */ 16421 fc = B_FALSE; 16422 } else { 16423 /* STREAMS, flow-controlled */ 16424 fc = B_TRUE; 16425 } 16426 if (!fc) { 16427 /* Not flow-controlled, open rwnd */ 16428 tcp->tcp_rwnd = q->q_hiwat; 16429 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16430 << tcp->tcp_rcv_ws; 16431 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16432 /* 16433 * Send back a window update immediately if TCP is above 16434 * ESTABLISHED state and the increase of the rcv window 16435 * that the other side knows is at least 1 MSS after flow 16436 * control is lifted. 16437 */ 16438 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16439 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16440 tcp_xmit_ctl(NULL, tcp, 16441 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16442 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16443 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16444 } 16445 } 16446 16447 /* Handle a failure to allocate a T_ORDREL_IND here */ 16448 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 16449 ASSERT(tcp->tcp_listener == NULL); 16450 16451 SOD_PTR_ENTER(tcp, sodp); 16452 if (sodp != NULL) { 16453 /* No more sodirect */ 16454 tcp->tcp_sodirect = NULL; 16455 if (!SOD_QEMPTY(sodp)) { 16456 /* Notify mblk(s) to process */ 16457 (void) tcp_rcv_sod_wakeup(tcp, sodp); 16458 /* sod_wakeup() does the mutex_exit() */ 16459 } else { 16460 /* Nothing to process */ 16461 mutex_exit(sodp->sod_lock); 16462 } 16463 } else if (tcp->tcp_rcv_list != NULL) { 16464 /* 16465 * Push any mblk(s) enqueued from co processing. 16466 */ 16467 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16468 ASSERT(tcp->tcp_rcv_list == NULL || 16469 tcp->tcp_fused_sigurg); 16470 } 16471 16472 mp = mi_tpi_ordrel_ind(); 16473 if (mp) { 16474 tcp->tcp_ordrel_done = B_TRUE; 16475 putnext(q, mp); 16476 if (tcp->tcp_deferred_clean_death) { 16477 /* 16478 * tcp_clean_death was deferred for 16479 * T_ORDREL_IND - do it now 16480 */ 16481 tcp->tcp_deferred_clean_death = B_FALSE; 16482 (void) tcp_clean_death(tcp, 16483 tcp->tcp_client_errno, 22); 16484 } 16485 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16486 /* 16487 * If there isn't already a timer running 16488 * start one. Use a 4 second 16489 * timer as a fallback since it can't fail. 16490 */ 16491 tcp->tcp_timeout = B_TRUE; 16492 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16493 MSEC_TO_TICK(4000)); 16494 } 16495 } 16496 } 16497 16498 /* 16499 * The read side service routine is called mostly when we get back-enabled as a 16500 * result of flow control relief. Since we don't actually queue anything in 16501 * TCP, we have no data to send out of here. What we do is clear the receive 16502 * window, and send out a window update. 16503 * This routine is also called to drive an orderly release message upstream 16504 * if the attempt in tcp_rput failed. 16505 */ 16506 static void 16507 tcp_rsrv(queue_t *q) 16508 { 16509 conn_t *connp = Q_TO_CONN(q); 16510 tcp_t *tcp = connp->conn_tcp; 16511 mblk_t *mp; 16512 tcp_stack_t *tcps = tcp->tcp_tcps; 16513 16514 /* No code does a putq on the read side */ 16515 ASSERT(q->q_first == NULL); 16516 16517 /* Nothing to do for the default queue */ 16518 if (q == tcps->tcps_g_q) { 16519 return; 16520 } 16521 16522 mp = allocb(0, BPRI_HI); 16523 if (mp == NULL) { 16524 /* 16525 * We are under memory pressure. Return for now and we 16526 * we will be called again later. 16527 */ 16528 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16529 /* 16530 * If there isn't already a timer running 16531 * start one. Use a 4 second 16532 * timer as a fallback since it can't fail. 16533 */ 16534 tcp->tcp_timeout = B_TRUE; 16535 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16536 MSEC_TO_TICK(4000)); 16537 } 16538 return; 16539 } 16540 CONN_INC_REF(connp); 16541 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16542 SQTAG_TCP_RSRV); 16543 } 16544 16545 /* 16546 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16547 * We do not allow the receive window to shrink. After setting rwnd, 16548 * set the flow control hiwat of the stream. 16549 * 16550 * This function is called in 2 cases: 16551 * 16552 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16553 * connection (passive open) and in tcp_rput_data() for active connect. 16554 * This is called after tcp_mss_set() when the desired MSS value is known. 16555 * This makes sure that our window size is a mutiple of the other side's 16556 * MSS. 16557 * 2) Handling SO_RCVBUF option. 16558 * 16559 * It is ASSUMED that the requested size is a multiple of the current MSS. 16560 * 16561 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16562 * user requests so. 16563 */ 16564 static int 16565 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16566 { 16567 uint32_t mss = tcp->tcp_mss; 16568 uint32_t old_max_rwnd; 16569 uint32_t max_transmittable_rwnd; 16570 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16571 tcp_stack_t *tcps = tcp->tcp_tcps; 16572 16573 if (tcp->tcp_fused) { 16574 size_t sth_hiwat; 16575 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16576 16577 ASSERT(peer_tcp != NULL); 16578 /* 16579 * Record the stream head's high water mark for 16580 * this endpoint; this is used for flow-control 16581 * purposes in tcp_fuse_output(). 16582 */ 16583 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16584 if (!tcp_detached) 16585 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16586 16587 /* 16588 * In the fusion case, the maxpsz stream head value of 16589 * our peer is set according to its send buffer size 16590 * and our receive buffer size; since the latter may 16591 * have changed we need to update the peer's maxpsz. 16592 */ 16593 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16594 return (rwnd); 16595 } 16596 16597 if (tcp_detached) 16598 old_max_rwnd = tcp->tcp_rwnd; 16599 else 16600 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16601 16602 /* 16603 * Insist on a receive window that is at least 16604 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16605 * funny TCP interactions of Nagle algorithm, SWS avoidance 16606 * and delayed acknowledgement. 16607 */ 16608 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16609 16610 /* 16611 * If window size info has already been exchanged, TCP should not 16612 * shrink the window. Shrinking window is doable if done carefully. 16613 * We may add that support later. But so far there is not a real 16614 * need to do that. 16615 */ 16616 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16617 /* MSS may have changed, do a round up again. */ 16618 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16619 } 16620 16621 /* 16622 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16623 * can be applied even before the window scale option is decided. 16624 */ 16625 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16626 if (rwnd > max_transmittable_rwnd) { 16627 rwnd = max_transmittable_rwnd - 16628 (max_transmittable_rwnd % mss); 16629 if (rwnd < mss) 16630 rwnd = max_transmittable_rwnd; 16631 /* 16632 * If we're over the limit we may have to back down tcp_rwnd. 16633 * The increment below won't work for us. So we set all three 16634 * here and the increment below will have no effect. 16635 */ 16636 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16637 } 16638 if (tcp->tcp_localnet) { 16639 tcp->tcp_rack_abs_max = 16640 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16641 } else { 16642 /* 16643 * For a remote host on a different subnet (through a router), 16644 * we ack every other packet to be conforming to RFC1122. 16645 * tcp_deferred_acks_max is default to 2. 16646 */ 16647 tcp->tcp_rack_abs_max = 16648 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16649 } 16650 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16651 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16652 else 16653 tcp->tcp_rack_cur_max = 0; 16654 /* 16655 * Increment the current rwnd by the amount the maximum grew (we 16656 * can not overwrite it since we might be in the middle of a 16657 * connection.) 16658 */ 16659 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16660 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16661 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16662 tcp->tcp_cwnd_max = rwnd; 16663 16664 if (tcp_detached) 16665 return (rwnd); 16666 /* 16667 * We set the maximum receive window into rq->q_hiwat. 16668 * This is not actually used for flow control. 16669 */ 16670 tcp->tcp_rq->q_hiwat = rwnd; 16671 /* 16672 * Set the Stream head high water mark. This doesn't have to be 16673 * here, since we are simply using default values, but we would 16674 * prefer to choose these values algorithmically, with a likely 16675 * relationship to rwnd. 16676 */ 16677 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16678 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16679 return (rwnd); 16680 } 16681 16682 /* 16683 * Return SNMP stuff in buffer in mpdata. 16684 */ 16685 mblk_t * 16686 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16687 { 16688 mblk_t *mpdata; 16689 mblk_t *mp_conn_ctl = NULL; 16690 mblk_t *mp_conn_tail; 16691 mblk_t *mp_attr_ctl = NULL; 16692 mblk_t *mp_attr_tail; 16693 mblk_t *mp6_conn_ctl = NULL; 16694 mblk_t *mp6_conn_tail; 16695 mblk_t *mp6_attr_ctl = NULL; 16696 mblk_t *mp6_attr_tail; 16697 struct opthdr *optp; 16698 mib2_tcpConnEntry_t tce; 16699 mib2_tcp6ConnEntry_t tce6; 16700 mib2_transportMLPEntry_t mlp; 16701 connf_t *connfp; 16702 int i; 16703 boolean_t ispriv; 16704 zoneid_t zoneid; 16705 int v4_conn_idx; 16706 int v6_conn_idx; 16707 conn_t *connp = Q_TO_CONN(q); 16708 tcp_stack_t *tcps; 16709 ip_stack_t *ipst; 16710 mblk_t *mp2ctl; 16711 16712 /* 16713 * make a copy of the original message 16714 */ 16715 mp2ctl = copymsg(mpctl); 16716 16717 if (mpctl == NULL || 16718 (mpdata = mpctl->b_cont) == NULL || 16719 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16720 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16721 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16722 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16723 freemsg(mp_conn_ctl); 16724 freemsg(mp_attr_ctl); 16725 freemsg(mp6_conn_ctl); 16726 freemsg(mp6_attr_ctl); 16727 freemsg(mpctl); 16728 freemsg(mp2ctl); 16729 return (NULL); 16730 } 16731 16732 ipst = connp->conn_netstack->netstack_ip; 16733 tcps = connp->conn_netstack->netstack_tcp; 16734 16735 /* build table of connections -- need count in fixed part */ 16736 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16737 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16738 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16739 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16740 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16741 16742 ispriv = 16743 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16744 zoneid = Q_TO_CONN(q)->conn_zoneid; 16745 16746 v4_conn_idx = v6_conn_idx = 0; 16747 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16748 16749 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16750 ipst = tcps->tcps_netstack->netstack_ip; 16751 16752 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16753 16754 connp = NULL; 16755 16756 while ((connp = 16757 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16758 tcp_t *tcp; 16759 boolean_t needattr; 16760 16761 if (connp->conn_zoneid != zoneid) 16762 continue; /* not in this zone */ 16763 16764 tcp = connp->conn_tcp; 16765 UPDATE_MIB(&tcps->tcps_mib, 16766 tcpHCInSegs, tcp->tcp_ibsegs); 16767 tcp->tcp_ibsegs = 0; 16768 UPDATE_MIB(&tcps->tcps_mib, 16769 tcpHCOutSegs, tcp->tcp_obsegs); 16770 tcp->tcp_obsegs = 0; 16771 16772 tce6.tcp6ConnState = tce.tcpConnState = 16773 tcp_snmp_state(tcp); 16774 if (tce.tcpConnState == MIB2_TCP_established || 16775 tce.tcpConnState == MIB2_TCP_closeWait) 16776 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16777 16778 needattr = B_FALSE; 16779 bzero(&mlp, sizeof (mlp)); 16780 if (connp->conn_mlp_type != mlptSingle) { 16781 if (connp->conn_mlp_type == mlptShared || 16782 connp->conn_mlp_type == mlptBoth) 16783 mlp.tme_flags |= MIB2_TMEF_SHARED; 16784 if (connp->conn_mlp_type == mlptPrivate || 16785 connp->conn_mlp_type == mlptBoth) 16786 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16787 needattr = B_TRUE; 16788 } 16789 if (connp->conn_peercred != NULL) { 16790 ts_label_t *tsl; 16791 16792 tsl = crgetlabel(connp->conn_peercred); 16793 mlp.tme_doi = label2doi(tsl); 16794 mlp.tme_label = *label2bslabel(tsl); 16795 needattr = B_TRUE; 16796 } 16797 16798 /* Create a message to report on IPv6 entries */ 16799 if (tcp->tcp_ipversion == IPV6_VERSION) { 16800 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16801 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16802 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16803 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16804 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16805 /* Don't want just anybody seeing these... */ 16806 if (ispriv) { 16807 tce6.tcp6ConnEntryInfo.ce_snxt = 16808 tcp->tcp_snxt; 16809 tce6.tcp6ConnEntryInfo.ce_suna = 16810 tcp->tcp_suna; 16811 tce6.tcp6ConnEntryInfo.ce_rnxt = 16812 tcp->tcp_rnxt; 16813 tce6.tcp6ConnEntryInfo.ce_rack = 16814 tcp->tcp_rack; 16815 } else { 16816 /* 16817 * Netstat, unfortunately, uses this to 16818 * get send/receive queue sizes. How to fix? 16819 * Why not compute the difference only? 16820 */ 16821 tce6.tcp6ConnEntryInfo.ce_snxt = 16822 tcp->tcp_snxt - tcp->tcp_suna; 16823 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16824 tce6.tcp6ConnEntryInfo.ce_rnxt = 16825 tcp->tcp_rnxt - tcp->tcp_rack; 16826 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16827 } 16828 16829 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16830 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16831 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16832 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16833 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16834 16835 tce6.tcp6ConnCreationProcess = 16836 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16837 tcp->tcp_cpid; 16838 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16839 16840 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16841 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16842 16843 mlp.tme_connidx = v6_conn_idx++; 16844 if (needattr) 16845 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16846 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16847 } 16848 /* 16849 * Create an IPv4 table entry for IPv4 entries and also 16850 * for IPv6 entries which are bound to in6addr_any 16851 * but don't have IPV6_V6ONLY set. 16852 * (i.e. anything an IPv4 peer could connect to) 16853 */ 16854 if (tcp->tcp_ipversion == IPV4_VERSION || 16855 (tcp->tcp_state <= TCPS_LISTEN && 16856 !tcp->tcp_connp->conn_ipv6_v6only && 16857 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16858 if (tcp->tcp_ipversion == IPV6_VERSION) { 16859 tce.tcpConnRemAddress = INADDR_ANY; 16860 tce.tcpConnLocalAddress = INADDR_ANY; 16861 } else { 16862 tce.tcpConnRemAddress = 16863 tcp->tcp_remote; 16864 tce.tcpConnLocalAddress = 16865 tcp->tcp_ip_src; 16866 } 16867 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16868 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16869 /* Don't want just anybody seeing these... */ 16870 if (ispriv) { 16871 tce.tcpConnEntryInfo.ce_snxt = 16872 tcp->tcp_snxt; 16873 tce.tcpConnEntryInfo.ce_suna = 16874 tcp->tcp_suna; 16875 tce.tcpConnEntryInfo.ce_rnxt = 16876 tcp->tcp_rnxt; 16877 tce.tcpConnEntryInfo.ce_rack = 16878 tcp->tcp_rack; 16879 } else { 16880 /* 16881 * Netstat, unfortunately, uses this to 16882 * get send/receive queue sizes. How 16883 * to fix? 16884 * Why not compute the difference only? 16885 */ 16886 tce.tcpConnEntryInfo.ce_snxt = 16887 tcp->tcp_snxt - tcp->tcp_suna; 16888 tce.tcpConnEntryInfo.ce_suna = 0; 16889 tce.tcpConnEntryInfo.ce_rnxt = 16890 tcp->tcp_rnxt - tcp->tcp_rack; 16891 tce.tcpConnEntryInfo.ce_rack = 0; 16892 } 16893 16894 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16895 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16896 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16897 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16898 tce.tcpConnEntryInfo.ce_state = 16899 tcp->tcp_state; 16900 16901 tce.tcpConnCreationProcess = 16902 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16903 tcp->tcp_cpid; 16904 tce.tcpConnCreationTime = tcp->tcp_open_time; 16905 16906 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16907 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16908 16909 mlp.tme_connidx = v4_conn_idx++; 16910 if (needattr) 16911 (void) snmp_append_data2( 16912 mp_attr_ctl->b_cont, 16913 &mp_attr_tail, (char *)&mlp, 16914 sizeof (mlp)); 16915 } 16916 } 16917 } 16918 16919 /* fixed length structure for IPv4 and IPv6 counters */ 16920 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16921 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16922 sizeof (mib2_tcp6ConnEntry_t)); 16923 /* synchronize 32- and 64-bit counters */ 16924 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16925 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16926 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16927 optp->level = MIB2_TCP; 16928 optp->name = 0; 16929 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16930 sizeof (tcps->tcps_mib)); 16931 optp->len = msgdsize(mpdata); 16932 qreply(q, mpctl); 16933 16934 /* table of connections... */ 16935 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16936 sizeof (struct T_optmgmt_ack)]; 16937 optp->level = MIB2_TCP; 16938 optp->name = MIB2_TCP_CONN; 16939 optp->len = msgdsize(mp_conn_ctl->b_cont); 16940 qreply(q, mp_conn_ctl); 16941 16942 /* table of MLP attributes... */ 16943 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16944 sizeof (struct T_optmgmt_ack)]; 16945 optp->level = MIB2_TCP; 16946 optp->name = EXPER_XPORT_MLP; 16947 optp->len = msgdsize(mp_attr_ctl->b_cont); 16948 if (optp->len == 0) 16949 freemsg(mp_attr_ctl); 16950 else 16951 qreply(q, mp_attr_ctl); 16952 16953 /* table of IPv6 connections... */ 16954 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16955 sizeof (struct T_optmgmt_ack)]; 16956 optp->level = MIB2_TCP6; 16957 optp->name = MIB2_TCP6_CONN; 16958 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16959 qreply(q, mp6_conn_ctl); 16960 16961 /* table of IPv6 MLP attributes... */ 16962 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16963 sizeof (struct T_optmgmt_ack)]; 16964 optp->level = MIB2_TCP6; 16965 optp->name = EXPER_XPORT_MLP; 16966 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16967 if (optp->len == 0) 16968 freemsg(mp6_attr_ctl); 16969 else 16970 qreply(q, mp6_attr_ctl); 16971 return (mp2ctl); 16972 } 16973 16974 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16975 /* ARGSUSED */ 16976 int 16977 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16978 { 16979 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16980 16981 switch (level) { 16982 case MIB2_TCP: 16983 switch (name) { 16984 case 13: 16985 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16986 return (0); 16987 /* TODO: delete entry defined by tce */ 16988 return (1); 16989 default: 16990 return (0); 16991 } 16992 default: 16993 return (1); 16994 } 16995 } 16996 16997 /* Translate TCP state to MIB2 TCP state. */ 16998 static int 16999 tcp_snmp_state(tcp_t *tcp) 17000 { 17001 if (tcp == NULL) 17002 return (0); 17003 17004 switch (tcp->tcp_state) { 17005 case TCPS_CLOSED: 17006 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 17007 case TCPS_BOUND: 17008 return (MIB2_TCP_closed); 17009 case TCPS_LISTEN: 17010 return (MIB2_TCP_listen); 17011 case TCPS_SYN_SENT: 17012 return (MIB2_TCP_synSent); 17013 case TCPS_SYN_RCVD: 17014 return (MIB2_TCP_synReceived); 17015 case TCPS_ESTABLISHED: 17016 return (MIB2_TCP_established); 17017 case TCPS_CLOSE_WAIT: 17018 return (MIB2_TCP_closeWait); 17019 case TCPS_FIN_WAIT_1: 17020 return (MIB2_TCP_finWait1); 17021 case TCPS_CLOSING: 17022 return (MIB2_TCP_closing); 17023 case TCPS_LAST_ACK: 17024 return (MIB2_TCP_lastAck); 17025 case TCPS_FIN_WAIT_2: 17026 return (MIB2_TCP_finWait2); 17027 case TCPS_TIME_WAIT: 17028 return (MIB2_TCP_timeWait); 17029 default: 17030 return (0); 17031 } 17032 } 17033 17034 static char tcp_report_header[] = 17035 "TCP " MI_COL_HDRPAD_STR 17036 "zone dest snxt suna " 17037 "swnd rnxt rack rwnd rto mss w sw rw t " 17038 "recent [lport,fport] state"; 17039 17040 /* 17041 * TCP status report triggered via the Named Dispatch mechanism. 17042 */ 17043 /* ARGSUSED */ 17044 static void 17045 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 17046 cred_t *cr) 17047 { 17048 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 17049 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 17050 char cflag; 17051 in6_addr_t v6dst; 17052 char buf[80]; 17053 uint_t print_len, buf_len; 17054 17055 buf_len = mp->b_datap->db_lim - mp->b_wptr; 17056 if (buf_len <= 0) 17057 return; 17058 17059 if (hashval >= 0) 17060 (void) sprintf(hash, "%03d ", hashval); 17061 else 17062 hash[0] = '\0'; 17063 17064 /* 17065 * Note that we use the remote address in the tcp_b structure. 17066 * This means that it will print out the real destination address, 17067 * not the next hop's address if source routing is used. This 17068 * avoid the confusion on the output because user may not 17069 * know that source routing is used for a connection. 17070 */ 17071 if (tcp->tcp_ipversion == IPV4_VERSION) { 17072 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 17073 } else { 17074 v6dst = tcp->tcp_remote_v6; 17075 } 17076 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 17077 /* 17078 * the ispriv checks are so that normal users cannot determine 17079 * sequence number information using NDD. 17080 */ 17081 17082 if (TCP_IS_DETACHED(tcp)) 17083 cflag = '*'; 17084 else 17085 cflag = ' '; 17086 print_len = snprintf((char *)mp->b_wptr, buf_len, 17087 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 17088 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 17089 hash, 17090 (void *)tcp, 17091 tcp->tcp_connp->conn_zoneid, 17092 addrbuf, 17093 (ispriv) ? tcp->tcp_snxt : 0, 17094 (ispriv) ? tcp->tcp_suna : 0, 17095 tcp->tcp_swnd, 17096 (ispriv) ? tcp->tcp_rnxt : 0, 17097 (ispriv) ? tcp->tcp_rack : 0, 17098 tcp->tcp_rwnd, 17099 tcp->tcp_rto, 17100 tcp->tcp_mss, 17101 tcp->tcp_snd_ws_ok, 17102 tcp->tcp_snd_ws, 17103 tcp->tcp_rcv_ws, 17104 tcp->tcp_snd_ts_ok, 17105 tcp->tcp_ts_recent, 17106 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 17107 if (print_len < buf_len) { 17108 ((mblk_t *)mp)->b_wptr += print_len; 17109 } else { 17110 ((mblk_t *)mp)->b_wptr += buf_len; 17111 } 17112 } 17113 17114 /* 17115 * TCP status report (for listeners only) triggered via the Named Dispatch 17116 * mechanism. 17117 */ 17118 /* ARGSUSED */ 17119 static void 17120 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 17121 { 17122 char addrbuf[INET6_ADDRSTRLEN]; 17123 in6_addr_t v6dst; 17124 uint_t print_len, buf_len; 17125 17126 buf_len = mp->b_datap->db_lim - mp->b_wptr; 17127 if (buf_len <= 0) 17128 return; 17129 17130 if (tcp->tcp_ipversion == IPV4_VERSION) { 17131 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 17132 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 17133 } else { 17134 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 17135 addrbuf, sizeof (addrbuf)); 17136 } 17137 print_len = snprintf((char *)mp->b_wptr, buf_len, 17138 "%03d " 17139 MI_COL_PTRFMT_STR 17140 "%d %s %05u %08u %d/%d/%d%c\n", 17141 hashval, (void *)tcp, 17142 tcp->tcp_connp->conn_zoneid, 17143 addrbuf, 17144 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 17145 tcp->tcp_conn_req_seqnum, 17146 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 17147 tcp->tcp_conn_req_max, 17148 tcp->tcp_syn_defense ? '*' : ' '); 17149 if (print_len < buf_len) { 17150 ((mblk_t *)mp)->b_wptr += print_len; 17151 } else { 17152 ((mblk_t *)mp)->b_wptr += buf_len; 17153 } 17154 } 17155 17156 /* TCP status report triggered via the Named Dispatch mechanism. */ 17157 /* ARGSUSED */ 17158 static int 17159 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17160 { 17161 tcp_t *tcp; 17162 int i; 17163 conn_t *connp; 17164 connf_t *connfp; 17165 zoneid_t zoneid; 17166 tcp_stack_t *tcps; 17167 ip_stack_t *ipst; 17168 17169 zoneid = Q_TO_CONN(q)->conn_zoneid; 17170 tcps = Q_TO_TCP(q)->tcp_tcps; 17171 17172 /* 17173 * Because of the ndd constraint, at most we can have 64K buffer 17174 * to put in all TCP info. So to be more efficient, just 17175 * allocate a 64K buffer here, assuming we need that large buffer. 17176 * This may be a problem as any user can read tcp_status. Therefore 17177 * we limit the rate of doing this using tcp_ndd_get_info_interval. 17178 * This should be OK as normal users should not do this too often. 17179 */ 17180 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17181 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17182 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17183 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17184 return (0); 17185 } 17186 } 17187 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17188 /* The following may work even if we cannot get a large buf. */ 17189 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17190 return (0); 17191 } 17192 17193 (void) mi_mpprintf(mp, "%s", tcp_report_header); 17194 17195 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 17196 17197 ipst = tcps->tcps_netstack->netstack_ip; 17198 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 17199 17200 connp = NULL; 17201 17202 while ((connp = 17203 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17204 tcp = connp->conn_tcp; 17205 if (zoneid != GLOBAL_ZONEID && 17206 zoneid != connp->conn_zoneid) 17207 continue; 17208 tcp_report_item(mp->b_cont, tcp, -1, tcp, 17209 cr); 17210 } 17211 17212 } 17213 17214 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17215 return (0); 17216 } 17217 17218 /* TCP status report triggered via the Named Dispatch mechanism. */ 17219 /* ARGSUSED */ 17220 static int 17221 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17222 { 17223 tf_t *tbf; 17224 tcp_t *tcp; 17225 int i; 17226 zoneid_t zoneid; 17227 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17228 17229 zoneid = Q_TO_CONN(q)->conn_zoneid; 17230 17231 /* Refer to comments in tcp_status_report(). */ 17232 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17233 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17234 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17235 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17236 return (0); 17237 } 17238 } 17239 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17240 /* The following may work even if we cannot get a large buf. */ 17241 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17242 return (0); 17243 } 17244 17245 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17246 17247 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 17248 tbf = &tcps->tcps_bind_fanout[i]; 17249 mutex_enter(&tbf->tf_lock); 17250 for (tcp = tbf->tf_tcp; tcp != NULL; 17251 tcp = tcp->tcp_bind_hash) { 17252 if (zoneid != GLOBAL_ZONEID && 17253 zoneid != tcp->tcp_connp->conn_zoneid) 17254 continue; 17255 CONN_INC_REF(tcp->tcp_connp); 17256 tcp_report_item(mp->b_cont, tcp, i, 17257 Q_TO_TCP(q), cr); 17258 CONN_DEC_REF(tcp->tcp_connp); 17259 } 17260 mutex_exit(&tbf->tf_lock); 17261 } 17262 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17263 return (0); 17264 } 17265 17266 /* TCP status report triggered via the Named Dispatch mechanism. */ 17267 /* ARGSUSED */ 17268 static int 17269 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17270 { 17271 connf_t *connfp; 17272 conn_t *connp; 17273 tcp_t *tcp; 17274 int i; 17275 zoneid_t zoneid; 17276 tcp_stack_t *tcps; 17277 ip_stack_t *ipst; 17278 17279 zoneid = Q_TO_CONN(q)->conn_zoneid; 17280 tcps = Q_TO_TCP(q)->tcp_tcps; 17281 17282 /* Refer to comments in tcp_status_report(). */ 17283 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17284 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17285 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17286 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17287 return (0); 17288 } 17289 } 17290 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17291 /* The following may work even if we cannot get a large buf. */ 17292 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17293 return (0); 17294 } 17295 17296 (void) mi_mpprintf(mp, 17297 " TCP " MI_COL_HDRPAD_STR 17298 "zone IP addr port seqnum backlog (q0/q/max)"); 17299 17300 ipst = tcps->tcps_netstack->netstack_ip; 17301 17302 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 17303 connfp = &ipst->ips_ipcl_bind_fanout[i]; 17304 connp = NULL; 17305 while ((connp = 17306 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17307 tcp = connp->conn_tcp; 17308 if (zoneid != GLOBAL_ZONEID && 17309 zoneid != connp->conn_zoneid) 17310 continue; 17311 tcp_report_listener(mp->b_cont, tcp, i); 17312 } 17313 } 17314 17315 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17316 return (0); 17317 } 17318 17319 /* TCP status report triggered via the Named Dispatch mechanism. */ 17320 /* ARGSUSED */ 17321 static int 17322 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17323 { 17324 connf_t *connfp; 17325 conn_t *connp; 17326 tcp_t *tcp; 17327 int i; 17328 zoneid_t zoneid; 17329 tcp_stack_t *tcps; 17330 ip_stack_t *ipst; 17331 17332 zoneid = Q_TO_CONN(q)->conn_zoneid; 17333 tcps = Q_TO_TCP(q)->tcp_tcps; 17334 ipst = tcps->tcps_netstack->netstack_ip; 17335 17336 /* Refer to comments in tcp_status_report(). */ 17337 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17338 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17339 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17340 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17341 return (0); 17342 } 17343 } 17344 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17345 /* The following may work even if we cannot get a large buf. */ 17346 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17347 return (0); 17348 } 17349 17350 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 17351 ipst->ips_ipcl_conn_fanout_size); 17352 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17353 17354 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 17355 connfp = &ipst->ips_ipcl_conn_fanout[i]; 17356 connp = NULL; 17357 while ((connp = 17358 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 17359 tcp = connp->conn_tcp; 17360 if (zoneid != GLOBAL_ZONEID && 17361 zoneid != connp->conn_zoneid) 17362 continue; 17363 tcp_report_item(mp->b_cont, tcp, i, 17364 Q_TO_TCP(q), cr); 17365 } 17366 } 17367 17368 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17369 return (0); 17370 } 17371 17372 /* TCP status report triggered via the Named Dispatch mechanism. */ 17373 /* ARGSUSED */ 17374 static int 17375 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 17376 { 17377 tf_t *tf; 17378 tcp_t *tcp; 17379 int i; 17380 zoneid_t zoneid; 17381 tcp_stack_t *tcps; 17382 17383 zoneid = Q_TO_CONN(q)->conn_zoneid; 17384 tcps = Q_TO_TCP(q)->tcp_tcps; 17385 17386 /* Refer to comments in tcp_status_report(). */ 17387 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 17388 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 17389 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 17390 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 17391 return (0); 17392 } 17393 } 17394 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 17395 /* The following may work even if we cannot get a large buf. */ 17396 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 17397 return (0); 17398 } 17399 17400 (void) mi_mpprintf(mp, " %s", tcp_report_header); 17401 17402 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 17403 tf = &tcps->tcps_acceptor_fanout[i]; 17404 mutex_enter(&tf->tf_lock); 17405 for (tcp = tf->tf_tcp; tcp != NULL; 17406 tcp = tcp->tcp_acceptor_hash) { 17407 if (zoneid != GLOBAL_ZONEID && 17408 zoneid != tcp->tcp_connp->conn_zoneid) 17409 continue; 17410 tcp_report_item(mp->b_cont, tcp, i, 17411 Q_TO_TCP(q), cr); 17412 } 17413 mutex_exit(&tf->tf_lock); 17414 } 17415 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17416 return (0); 17417 } 17418 17419 /* 17420 * tcp_timer is the timer service routine. It handles the retransmission, 17421 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 17422 * from the state of the tcp instance what kind of action needs to be done 17423 * at the time it is called. 17424 */ 17425 static void 17426 tcp_timer(void *arg) 17427 { 17428 mblk_t *mp; 17429 clock_t first_threshold; 17430 clock_t second_threshold; 17431 clock_t ms; 17432 uint32_t mss; 17433 conn_t *connp = (conn_t *)arg; 17434 tcp_t *tcp = connp->conn_tcp; 17435 tcp_stack_t *tcps = tcp->tcp_tcps; 17436 17437 tcp->tcp_timer_tid = 0; 17438 17439 if (tcp->tcp_fused) 17440 return; 17441 17442 first_threshold = tcp->tcp_first_timer_threshold; 17443 second_threshold = tcp->tcp_second_timer_threshold; 17444 switch (tcp->tcp_state) { 17445 case TCPS_IDLE: 17446 case TCPS_BOUND: 17447 case TCPS_LISTEN: 17448 return; 17449 case TCPS_SYN_RCVD: { 17450 tcp_t *listener = tcp->tcp_listener; 17451 17452 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17453 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17454 /* it's our first timeout */ 17455 tcp->tcp_syn_rcvd_timeout = 1; 17456 mutex_enter(&listener->tcp_eager_lock); 17457 listener->tcp_syn_rcvd_timeout++; 17458 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17459 /* 17460 * Make this eager available for drop if we 17461 * need to drop one to accomodate a new 17462 * incoming SYN request. 17463 */ 17464 MAKE_DROPPABLE(listener, tcp); 17465 } 17466 if (!listener->tcp_syn_defense && 17467 (listener->tcp_syn_rcvd_timeout > 17468 (tcps->tcps_conn_req_max_q0 >> 2)) && 17469 (tcps->tcps_conn_req_max_q0 > 200)) { 17470 /* We may be under attack. Put on a defense. */ 17471 listener->tcp_syn_defense = B_TRUE; 17472 cmn_err(CE_WARN, "High TCP connect timeout " 17473 "rate! System (port %d) may be under a " 17474 "SYN flood attack!", 17475 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17476 17477 listener->tcp_ip_addr_cache = kmem_zalloc( 17478 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17479 KM_NOSLEEP); 17480 } 17481 mutex_exit(&listener->tcp_eager_lock); 17482 } else if (listener != NULL) { 17483 mutex_enter(&listener->tcp_eager_lock); 17484 tcp->tcp_syn_rcvd_timeout++; 17485 if (tcp->tcp_syn_rcvd_timeout > 1 && 17486 !tcp->tcp_closemp_used) { 17487 /* 17488 * This is our second timeout. Put the tcp in 17489 * the list of droppable eagers to allow it to 17490 * be dropped, if needed. We don't check 17491 * whether tcp_dontdrop is set or not to 17492 * protect ourselve from a SYN attack where a 17493 * remote host can spoof itself as one of the 17494 * good IP source and continue to hold 17495 * resources too long. 17496 */ 17497 MAKE_DROPPABLE(listener, tcp); 17498 } 17499 mutex_exit(&listener->tcp_eager_lock); 17500 } 17501 } 17502 /* FALLTHRU */ 17503 case TCPS_SYN_SENT: 17504 first_threshold = tcp->tcp_first_ctimer_threshold; 17505 second_threshold = tcp->tcp_second_ctimer_threshold; 17506 break; 17507 case TCPS_ESTABLISHED: 17508 case TCPS_FIN_WAIT_1: 17509 case TCPS_CLOSING: 17510 case TCPS_CLOSE_WAIT: 17511 case TCPS_LAST_ACK: 17512 /* If we have data to rexmit */ 17513 if (tcp->tcp_suna != tcp->tcp_snxt) { 17514 clock_t time_to_wait; 17515 17516 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17517 if (!tcp->tcp_xmit_head) 17518 break; 17519 time_to_wait = lbolt - 17520 (clock_t)tcp->tcp_xmit_head->b_prev; 17521 time_to_wait = tcp->tcp_rto - 17522 TICK_TO_MSEC(time_to_wait); 17523 /* 17524 * If the timer fires too early, 1 clock tick earlier, 17525 * restart the timer. 17526 */ 17527 if (time_to_wait > msec_per_tick) { 17528 TCP_STAT(tcps, tcp_timer_fire_early); 17529 TCP_TIMER_RESTART(tcp, time_to_wait); 17530 return; 17531 } 17532 /* 17533 * When we probe zero windows, we force the swnd open. 17534 * If our peer acks with a closed window swnd will be 17535 * set to zero by tcp_rput(). As long as we are 17536 * receiving acks tcp_rput will 17537 * reset 'tcp_ms_we_have_waited' so as not to trip the 17538 * first and second interval actions. NOTE: the timer 17539 * interval is allowed to continue its exponential 17540 * backoff. 17541 */ 17542 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17543 if (tcp->tcp_debug) { 17544 (void) strlog(TCP_MOD_ID, 0, 1, 17545 SL_TRACE, "tcp_timer: zero win"); 17546 } 17547 } else { 17548 /* 17549 * After retransmission, we need to do 17550 * slow start. Set the ssthresh to one 17551 * half of current effective window and 17552 * cwnd to one MSS. Also reset 17553 * tcp_cwnd_cnt. 17554 * 17555 * Note that if tcp_ssthresh is reduced because 17556 * of ECN, do not reduce it again unless it is 17557 * already one window of data away (tcp_cwr 17558 * should then be cleared) or this is a 17559 * timeout for a retransmitted segment. 17560 */ 17561 uint32_t npkt; 17562 17563 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17564 npkt = ((tcp->tcp_timer_backoff ? 17565 tcp->tcp_cwnd_ssthresh : 17566 tcp->tcp_snxt - 17567 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17568 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17569 tcp->tcp_mss; 17570 } 17571 tcp->tcp_cwnd = tcp->tcp_mss; 17572 tcp->tcp_cwnd_cnt = 0; 17573 if (tcp->tcp_ecn_ok) { 17574 tcp->tcp_cwr = B_TRUE; 17575 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17576 tcp->tcp_ecn_cwr_sent = B_FALSE; 17577 } 17578 } 17579 break; 17580 } 17581 /* 17582 * We have something to send yet we cannot send. The 17583 * reason can be: 17584 * 17585 * 1. Zero send window: we need to do zero window probe. 17586 * 2. Zero cwnd: because of ECN, we need to "clock out 17587 * segments. 17588 * 3. SWS avoidance: receiver may have shrunk window, 17589 * reset our knowledge. 17590 * 17591 * Note that condition 2 can happen with either 1 or 17592 * 3. But 1 and 3 are exclusive. 17593 */ 17594 if (tcp->tcp_unsent != 0) { 17595 if (tcp->tcp_cwnd == 0) { 17596 /* 17597 * Set tcp_cwnd to 1 MSS so that a 17598 * new segment can be sent out. We 17599 * are "clocking out" new data when 17600 * the network is really congested. 17601 */ 17602 ASSERT(tcp->tcp_ecn_ok); 17603 tcp->tcp_cwnd = tcp->tcp_mss; 17604 } 17605 if (tcp->tcp_swnd == 0) { 17606 /* Extend window for zero window probe */ 17607 tcp->tcp_swnd++; 17608 tcp->tcp_zero_win_probe = B_TRUE; 17609 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17610 } else { 17611 /* 17612 * Handle timeout from sender SWS avoidance. 17613 * Reset our knowledge of the max send window 17614 * since the receiver might have reduced its 17615 * receive buffer. Avoid setting tcp_max_swnd 17616 * to one since that will essentially disable 17617 * the SWS checks. 17618 * 17619 * Note that since we don't have a SWS 17620 * state variable, if the timeout is set 17621 * for ECN but not for SWS, this 17622 * code will also be executed. This is 17623 * fine as tcp_max_swnd is updated 17624 * constantly and it will not affect 17625 * anything. 17626 */ 17627 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17628 } 17629 tcp_wput_data(tcp, NULL, B_FALSE); 17630 return; 17631 } 17632 /* Is there a FIN that needs to be to re retransmitted? */ 17633 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17634 !tcp->tcp_fin_acked) 17635 break; 17636 /* Nothing to do, return without restarting timer. */ 17637 TCP_STAT(tcps, tcp_timer_fire_miss); 17638 return; 17639 case TCPS_FIN_WAIT_2: 17640 /* 17641 * User closed the TCP endpoint and peer ACK'ed our FIN. 17642 * We waited some time for for peer's FIN, but it hasn't 17643 * arrived. We flush the connection now to avoid 17644 * case where the peer has rebooted. 17645 */ 17646 if (TCP_IS_DETACHED(tcp)) { 17647 (void) tcp_clean_death(tcp, 0, 23); 17648 } else { 17649 TCP_TIMER_RESTART(tcp, 17650 tcps->tcps_fin_wait_2_flush_interval); 17651 } 17652 return; 17653 case TCPS_TIME_WAIT: 17654 (void) tcp_clean_death(tcp, 0, 24); 17655 return; 17656 default: 17657 if (tcp->tcp_debug) { 17658 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17659 "tcp_timer: strange state (%d) %s", 17660 tcp->tcp_state, tcp_display(tcp, NULL, 17661 DISP_PORT_ONLY)); 17662 } 17663 return; 17664 } 17665 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17666 /* 17667 * For zero window probe, we need to send indefinitely, 17668 * unless we have not heard from the other side for some 17669 * time... 17670 */ 17671 if ((tcp->tcp_zero_win_probe == 0) || 17672 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17673 second_threshold)) { 17674 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17675 /* 17676 * If TCP is in SYN_RCVD state, send back a 17677 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17678 * should be zero in TCPS_SYN_RCVD state. 17679 */ 17680 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17681 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17682 "in SYN_RCVD", 17683 tcp, tcp->tcp_snxt, 17684 tcp->tcp_rnxt, TH_RST | TH_ACK); 17685 } 17686 (void) tcp_clean_death(tcp, 17687 tcp->tcp_client_errno ? 17688 tcp->tcp_client_errno : ETIMEDOUT, 25); 17689 return; 17690 } else { 17691 /* 17692 * Set tcp_ms_we_have_waited to second_threshold 17693 * so that in next timeout, we will do the above 17694 * check (lbolt - tcp_last_recv_time). This is 17695 * also to avoid overflow. 17696 * 17697 * We don't need to decrement tcp_timer_backoff 17698 * to avoid overflow because it will be decremented 17699 * later if new timeout value is greater than 17700 * tcp_rexmit_interval_max. In the case when 17701 * tcp_rexmit_interval_max is greater than 17702 * second_threshold, it means that we will wait 17703 * longer than second_threshold to send the next 17704 * window probe. 17705 */ 17706 tcp->tcp_ms_we_have_waited = second_threshold; 17707 } 17708 } else if (ms > first_threshold) { 17709 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17710 tcp->tcp_xmit_head != NULL) { 17711 tcp->tcp_xmit_head = 17712 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17713 } 17714 /* 17715 * We have been retransmitting for too long... The RTT 17716 * we calculated is probably incorrect. Reinitialize it. 17717 * Need to compensate for 0 tcp_rtt_sa. Reset 17718 * tcp_rtt_update so that we won't accidentally cache a 17719 * bad value. But only do this if this is not a zero 17720 * window probe. 17721 */ 17722 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17723 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17724 (tcp->tcp_rtt_sa >> 5); 17725 tcp->tcp_rtt_sa = 0; 17726 tcp_ip_notify(tcp); 17727 tcp->tcp_rtt_update = 0; 17728 } 17729 } 17730 tcp->tcp_timer_backoff++; 17731 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17732 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17733 tcps->tcps_rexmit_interval_min) { 17734 /* 17735 * This means the original RTO is tcp_rexmit_interval_min. 17736 * So we will use tcp_rexmit_interval_min as the RTO value 17737 * and do the backoff. 17738 */ 17739 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17740 } else { 17741 ms <<= tcp->tcp_timer_backoff; 17742 } 17743 if (ms > tcps->tcps_rexmit_interval_max) { 17744 ms = tcps->tcps_rexmit_interval_max; 17745 /* 17746 * ms is at max, decrement tcp_timer_backoff to avoid 17747 * overflow. 17748 */ 17749 tcp->tcp_timer_backoff--; 17750 } 17751 tcp->tcp_ms_we_have_waited += ms; 17752 if (tcp->tcp_zero_win_probe == 0) { 17753 tcp->tcp_rto = ms; 17754 } 17755 TCP_TIMER_RESTART(tcp, ms); 17756 /* 17757 * This is after a timeout and tcp_rto is backed off. Set 17758 * tcp_set_timer to 1 so that next time RTO is updated, we will 17759 * restart the timer with a correct value. 17760 */ 17761 tcp->tcp_set_timer = 1; 17762 mss = tcp->tcp_snxt - tcp->tcp_suna; 17763 if (mss > tcp->tcp_mss) 17764 mss = tcp->tcp_mss; 17765 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17766 mss = tcp->tcp_swnd; 17767 17768 if ((mp = tcp->tcp_xmit_head) != NULL) 17769 mp->b_prev = (mblk_t *)lbolt; 17770 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17771 B_TRUE); 17772 17773 /* 17774 * When slow start after retransmission begins, start with 17775 * this seq no. tcp_rexmit_max marks the end of special slow 17776 * start phase. tcp_snd_burst controls how many segments 17777 * can be sent because of an ack. 17778 */ 17779 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17780 tcp->tcp_snd_burst = TCP_CWND_SS; 17781 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17782 (tcp->tcp_unsent == 0)) { 17783 tcp->tcp_rexmit_max = tcp->tcp_fss; 17784 } else { 17785 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17786 } 17787 tcp->tcp_rexmit = B_TRUE; 17788 tcp->tcp_dupack_cnt = 0; 17789 17790 /* 17791 * Remove all rexmit SACK blk to start from fresh. 17792 */ 17793 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17794 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17795 tcp->tcp_num_notsack_blk = 0; 17796 tcp->tcp_cnt_notsack_list = 0; 17797 } 17798 if (mp == NULL) { 17799 return; 17800 } 17801 /* Attach credentials to retransmitted initial SYNs. */ 17802 if (tcp->tcp_state == TCPS_SYN_SENT) { 17803 mblk_setcred(mp, tcp->tcp_cred); 17804 DB_CPID(mp) = tcp->tcp_cpid; 17805 } 17806 17807 tcp->tcp_csuna = tcp->tcp_snxt; 17808 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17809 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17810 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17811 tcp_send_data(tcp, tcp->tcp_wq, mp); 17812 17813 } 17814 17815 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17816 static void 17817 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17818 { 17819 conn_t *connp; 17820 17821 switch (tcp->tcp_state) { 17822 case TCPS_BOUND: 17823 case TCPS_LISTEN: 17824 break; 17825 default: 17826 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17827 return; 17828 } 17829 17830 /* 17831 * Need to clean up all the eagers since after the unbind, segments 17832 * will no longer be delivered to this listener stream. 17833 */ 17834 mutex_enter(&tcp->tcp_eager_lock); 17835 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17836 tcp_eager_cleanup(tcp, 0); 17837 } 17838 mutex_exit(&tcp->tcp_eager_lock); 17839 17840 if (tcp->tcp_ipversion == IPV4_VERSION) { 17841 tcp->tcp_ipha->ipha_src = 0; 17842 } else { 17843 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17844 } 17845 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17846 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17847 tcp_bind_hash_remove(tcp); 17848 tcp->tcp_state = TCPS_IDLE; 17849 tcp->tcp_mdt = B_FALSE; 17850 /* Send M_FLUSH according to TPI */ 17851 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17852 connp = tcp->tcp_connp; 17853 connp->conn_mdt_ok = B_FALSE; 17854 ipcl_hash_remove(connp); 17855 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17856 mp = mi_tpi_ok_ack_alloc(mp); 17857 putnext(tcp->tcp_rq, mp); 17858 } 17859 17860 /* 17861 * Don't let port fall into the privileged range. 17862 * Since the extra privileged ports can be arbitrary we also 17863 * ensure that we exclude those from consideration. 17864 * tcp_g_epriv_ports is not sorted thus we loop over it until 17865 * there are no changes. 17866 * 17867 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17868 * but instead the code relies on: 17869 * - the fact that the address of the array and its size never changes 17870 * - the atomic assignment of the elements of the array 17871 * 17872 * Returns 0 if there are no more ports available. 17873 * 17874 * TS note: skip multilevel ports. 17875 */ 17876 static in_port_t 17877 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17878 { 17879 int i; 17880 boolean_t restart = B_FALSE; 17881 tcp_stack_t *tcps = tcp->tcp_tcps; 17882 17883 if (random && tcp_random_anon_port != 0) { 17884 (void) random_get_pseudo_bytes((uint8_t *)&port, 17885 sizeof (in_port_t)); 17886 /* 17887 * Unless changed by a sys admin, the smallest anon port 17888 * is 32768 and the largest anon port is 65535. It is 17889 * very likely (50%) for the random port to be smaller 17890 * than the smallest anon port. When that happens, 17891 * add port % (anon port range) to the smallest anon 17892 * port to get the random port. It should fall into the 17893 * valid anon port range. 17894 */ 17895 if (port < tcps->tcps_smallest_anon_port) { 17896 port = tcps->tcps_smallest_anon_port + 17897 port % (tcps->tcps_largest_anon_port - 17898 tcps->tcps_smallest_anon_port); 17899 } 17900 } 17901 17902 retry: 17903 if (port < tcps->tcps_smallest_anon_port) 17904 port = (in_port_t)tcps->tcps_smallest_anon_port; 17905 17906 if (port > tcps->tcps_largest_anon_port) { 17907 if (restart) 17908 return (0); 17909 restart = B_TRUE; 17910 port = (in_port_t)tcps->tcps_smallest_anon_port; 17911 } 17912 17913 if (port < tcps->tcps_smallest_nonpriv_port) 17914 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17915 17916 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17917 if (port == tcps->tcps_g_epriv_ports[i]) { 17918 port++; 17919 /* 17920 * Make sure whether the port is in the 17921 * valid range. 17922 */ 17923 goto retry; 17924 } 17925 } 17926 if (is_system_labeled() && 17927 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17928 IPPROTO_TCP, B_TRUE)) != 0) { 17929 port = i; 17930 goto retry; 17931 } 17932 return (port); 17933 } 17934 17935 /* 17936 * Return the next anonymous port in the privileged port range for 17937 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17938 * downwards. This is the same behavior as documented in the userland 17939 * library call rresvport(3N). 17940 * 17941 * TS note: skip multilevel ports. 17942 */ 17943 static in_port_t 17944 tcp_get_next_priv_port(const tcp_t *tcp) 17945 { 17946 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17947 in_port_t nextport; 17948 boolean_t restart = B_FALSE; 17949 tcp_stack_t *tcps = tcp->tcp_tcps; 17950 retry: 17951 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17952 next_priv_port >= IPPORT_RESERVED) { 17953 next_priv_port = IPPORT_RESERVED - 1; 17954 if (restart) 17955 return (0); 17956 restart = B_TRUE; 17957 } 17958 if (is_system_labeled() && 17959 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17960 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17961 next_priv_port = nextport; 17962 goto retry; 17963 } 17964 return (next_priv_port--); 17965 } 17966 17967 /* The write side r/w procedure. */ 17968 17969 #if CCS_STATS 17970 struct { 17971 struct { 17972 int64_t count, bytes; 17973 } tot, hit; 17974 } wrw_stats; 17975 #endif 17976 17977 /* 17978 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17979 * messages. 17980 */ 17981 /* ARGSUSED */ 17982 static void 17983 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17984 { 17985 conn_t *connp = (conn_t *)arg; 17986 tcp_t *tcp = connp->conn_tcp; 17987 queue_t *q = tcp->tcp_wq; 17988 17989 ASSERT(DB_TYPE(mp) != M_IOCTL); 17990 /* 17991 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17992 * Once the close starts, streamhead and sockfs will not let any data 17993 * packets come down (close ensures that there are no threads using the 17994 * queue and no new threads will come down) but since qprocsoff() 17995 * hasn't happened yet, a M_FLUSH or some non data message might 17996 * get reflected back (in response to our own FLUSHRW) and get 17997 * processed after tcp_close() is done. The conn would still be valid 17998 * because a ref would have added but we need to check the state 17999 * before actually processing the packet. 18000 */ 18001 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 18002 freemsg(mp); 18003 return; 18004 } 18005 18006 switch (DB_TYPE(mp)) { 18007 case M_IOCDATA: 18008 tcp_wput_iocdata(tcp, mp); 18009 break; 18010 case M_FLUSH: 18011 tcp_wput_flush(tcp, mp); 18012 break; 18013 default: 18014 CALL_IP_WPUT(connp, q, mp); 18015 break; 18016 } 18017 } 18018 18019 /* 18020 * The TCP fast path write put procedure. 18021 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 18022 */ 18023 /* ARGSUSED */ 18024 void 18025 tcp_output(void *arg, mblk_t *mp, void *arg2) 18026 { 18027 int len; 18028 int hdrlen; 18029 int plen; 18030 mblk_t *mp1; 18031 uchar_t *rptr; 18032 uint32_t snxt; 18033 tcph_t *tcph; 18034 struct datab *db; 18035 uint32_t suna; 18036 uint32_t mss; 18037 ipaddr_t *dst; 18038 ipaddr_t *src; 18039 uint32_t sum; 18040 int usable; 18041 conn_t *connp = (conn_t *)arg; 18042 tcp_t *tcp = connp->conn_tcp; 18043 uint32_t msize; 18044 tcp_stack_t *tcps = tcp->tcp_tcps; 18045 18046 /* 18047 * Try and ASSERT the minimum possible references on the 18048 * conn early enough. Since we are executing on write side, 18049 * the connection is obviously not detached and that means 18050 * there is a ref each for TCP and IP. Since we are behind 18051 * the squeue, the minimum references needed are 3. If the 18052 * conn is in classifier hash list, there should be an 18053 * extra ref for that (we check both the possibilities). 18054 */ 18055 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18056 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18057 18058 ASSERT(DB_TYPE(mp) == M_DATA); 18059 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 18060 18061 mutex_enter(&tcp->tcp_non_sq_lock); 18062 tcp->tcp_squeue_bytes -= msize; 18063 mutex_exit(&tcp->tcp_non_sq_lock); 18064 18065 /* Bypass tcp protocol for fused tcp loopback */ 18066 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 18067 return; 18068 18069 mss = tcp->tcp_mss; 18070 if (tcp->tcp_xmit_zc_clean) 18071 mp = tcp_zcopy_backoff(tcp, mp, 0); 18072 18073 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18074 len = (int)(mp->b_wptr - mp->b_rptr); 18075 18076 /* 18077 * Criteria for fast path: 18078 * 18079 * 1. no unsent data 18080 * 2. single mblk in request 18081 * 3. connection established 18082 * 4. data in mblk 18083 * 5. len <= mss 18084 * 6. no tcp_valid bits 18085 */ 18086 if ((tcp->tcp_unsent != 0) || 18087 (tcp->tcp_cork) || 18088 (mp->b_cont != NULL) || 18089 (tcp->tcp_state != TCPS_ESTABLISHED) || 18090 (len == 0) || 18091 (len > mss) || 18092 (tcp->tcp_valid_bits != 0)) { 18093 tcp_wput_data(tcp, mp, B_FALSE); 18094 return; 18095 } 18096 18097 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 18098 ASSERT(tcp->tcp_fin_sent == 0); 18099 18100 /* queue new packet onto retransmission queue */ 18101 if (tcp->tcp_xmit_head == NULL) { 18102 tcp->tcp_xmit_head = mp; 18103 } else { 18104 tcp->tcp_xmit_last->b_cont = mp; 18105 } 18106 tcp->tcp_xmit_last = mp; 18107 tcp->tcp_xmit_tail = mp; 18108 18109 /* find out how much we can send */ 18110 /* BEGIN CSTYLED */ 18111 /* 18112 * un-acked usable 18113 * |--------------|-----------------| 18114 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 18115 */ 18116 /* END CSTYLED */ 18117 18118 /* start sending from tcp_snxt */ 18119 snxt = tcp->tcp_snxt; 18120 18121 /* 18122 * Check to see if this connection has been idled for some 18123 * time and no ACK is expected. If it is, we need to slow 18124 * start again to get back the connection's "self-clock" as 18125 * described in VJ's paper. 18126 * 18127 * Refer to the comment in tcp_mss_set() for the calculation 18128 * of tcp_cwnd after idle. 18129 */ 18130 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18131 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18132 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18133 } 18134 18135 usable = tcp->tcp_swnd; /* tcp window size */ 18136 if (usable > tcp->tcp_cwnd) 18137 usable = tcp->tcp_cwnd; /* congestion window smaller */ 18138 usable -= snxt; /* subtract stuff already sent */ 18139 suna = tcp->tcp_suna; 18140 usable += suna; 18141 /* usable can be < 0 if the congestion window is smaller */ 18142 if (len > usable) { 18143 /* Can't send complete M_DATA in one shot */ 18144 goto slow; 18145 } 18146 18147 mutex_enter(&tcp->tcp_non_sq_lock); 18148 if (tcp->tcp_flow_stopped && 18149 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18150 tcp_clrqfull(tcp); 18151 } 18152 mutex_exit(&tcp->tcp_non_sq_lock); 18153 18154 /* 18155 * determine if anything to send (Nagle). 18156 * 18157 * 1. len < tcp_mss (i.e. small) 18158 * 2. unacknowledged data present 18159 * 3. len < nagle limit 18160 * 4. last packet sent < nagle limit (previous packet sent) 18161 */ 18162 if ((len < mss) && (snxt != suna) && 18163 (len < (int)tcp->tcp_naglim) && 18164 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 18165 /* 18166 * This was the first unsent packet and normally 18167 * mss < xmit_hiwater so there is no need to worry 18168 * about flow control. The next packet will go 18169 * through the flow control check in tcp_wput_data(). 18170 */ 18171 /* leftover work from above */ 18172 tcp->tcp_unsent = len; 18173 tcp->tcp_xmit_tail_unsent = len; 18174 18175 return; 18176 } 18177 18178 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 18179 18180 if (snxt == suna) { 18181 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18182 } 18183 18184 /* we have always sent something */ 18185 tcp->tcp_rack_cnt = 0; 18186 18187 tcp->tcp_snxt = snxt + len; 18188 tcp->tcp_rack = tcp->tcp_rnxt; 18189 18190 if ((mp1 = dupb(mp)) == 0) 18191 goto no_memory; 18192 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 18193 mp->b_next = (mblk_t *)(uintptr_t)snxt; 18194 18195 /* adjust tcp header information */ 18196 tcph = tcp->tcp_tcph; 18197 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 18198 18199 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 18200 sum = (sum >> 16) + (sum & 0xFFFF); 18201 U16_TO_ABE16(sum, tcph->th_sum); 18202 18203 U32_TO_ABE32(snxt, tcph->th_seq); 18204 18205 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 18206 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 18207 BUMP_LOCAL(tcp->tcp_obsegs); 18208 18209 /* Update the latest receive window size in TCP header. */ 18210 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18211 tcph->th_win); 18212 18213 tcp->tcp_last_sent_len = (ushort_t)len; 18214 18215 plen = len + tcp->tcp_hdr_len; 18216 18217 if (tcp->tcp_ipversion == IPV4_VERSION) { 18218 tcp->tcp_ipha->ipha_length = htons(plen); 18219 } else { 18220 tcp->tcp_ip6h->ip6_plen = htons(plen - 18221 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 18222 } 18223 18224 /* see if we need to allocate a mblk for the headers */ 18225 hdrlen = tcp->tcp_hdr_len; 18226 rptr = mp1->b_rptr - hdrlen; 18227 db = mp1->b_datap; 18228 if ((db->db_ref != 2) || rptr < db->db_base || 18229 (!OK_32PTR(rptr))) { 18230 /* NOTE: we assume allocb returns an OK_32PTR */ 18231 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 18232 tcps->tcps_wroff_xtra, BPRI_MED); 18233 if (!mp) { 18234 freemsg(mp1); 18235 goto no_memory; 18236 } 18237 mp->b_cont = mp1; 18238 mp1 = mp; 18239 /* Leave room for Link Level header */ 18240 /* hdrlen = tcp->tcp_hdr_len; */ 18241 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 18242 mp1->b_wptr = &rptr[hdrlen]; 18243 } 18244 mp1->b_rptr = rptr; 18245 18246 /* Fill in the timestamp option. */ 18247 if (tcp->tcp_snd_ts_ok) { 18248 U32_TO_BE32((uint32_t)lbolt, 18249 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 18250 U32_TO_BE32(tcp->tcp_ts_recent, 18251 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 18252 } else { 18253 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18254 } 18255 18256 /* copy header into outgoing packet */ 18257 dst = (ipaddr_t *)rptr; 18258 src = (ipaddr_t *)tcp->tcp_iphc; 18259 dst[0] = src[0]; 18260 dst[1] = src[1]; 18261 dst[2] = src[2]; 18262 dst[3] = src[3]; 18263 dst[4] = src[4]; 18264 dst[5] = src[5]; 18265 dst[6] = src[6]; 18266 dst[7] = src[7]; 18267 dst[8] = src[8]; 18268 dst[9] = src[9]; 18269 if (hdrlen -= 40) { 18270 hdrlen >>= 2; 18271 dst += 10; 18272 src += 10; 18273 do { 18274 *dst++ = *src++; 18275 } while (--hdrlen); 18276 } 18277 18278 /* 18279 * Set the ECN info in the TCP header. Note that this 18280 * is not the template header. 18281 */ 18282 if (tcp->tcp_ecn_ok) { 18283 SET_ECT(tcp, rptr); 18284 18285 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18286 if (tcp->tcp_ecn_echo_on) 18287 tcph->th_flags[0] |= TH_ECE; 18288 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18289 tcph->th_flags[0] |= TH_CWR; 18290 tcp->tcp_ecn_cwr_sent = B_TRUE; 18291 } 18292 } 18293 18294 if (tcp->tcp_ip_forward_progress) { 18295 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 18296 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 18297 tcp->tcp_ip_forward_progress = B_FALSE; 18298 } 18299 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 18300 tcp_send_data(tcp, tcp->tcp_wq, mp1); 18301 return; 18302 18303 /* 18304 * If we ran out of memory, we pretend to have sent the packet 18305 * and that it was lost on the wire. 18306 */ 18307 no_memory: 18308 return; 18309 18310 slow: 18311 /* leftover work from above */ 18312 tcp->tcp_unsent = len; 18313 tcp->tcp_xmit_tail_unsent = len; 18314 tcp_wput_data(tcp, NULL, B_FALSE); 18315 } 18316 18317 /* 18318 * The function called through squeue to get behind eager's perimeter to 18319 * finish the accept processing. 18320 */ 18321 /* ARGSUSED */ 18322 void 18323 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 18324 { 18325 conn_t *connp = (conn_t *)arg; 18326 tcp_t *tcp = connp->conn_tcp; 18327 queue_t *q = tcp->tcp_rq; 18328 mblk_t *mp1; 18329 mblk_t *stropt_mp = mp; 18330 struct stroptions *stropt; 18331 uint_t thwin; 18332 tcp_stack_t *tcps = tcp->tcp_tcps; 18333 18334 /* 18335 * Drop the eager's ref on the listener, that was placed when 18336 * this eager began life in tcp_conn_request. 18337 */ 18338 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 18339 18340 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 18341 /* 18342 * Someone blewoff the eager before we could finish 18343 * the accept. 18344 * 18345 * The only reason eager exists it because we put in 18346 * a ref on it when conn ind went up. We need to send 18347 * a disconnect indication up while the last reference 18348 * on the eager will be dropped by the squeue when we 18349 * return. 18350 */ 18351 ASSERT(tcp->tcp_listener == NULL); 18352 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 18353 struct T_discon_ind *tdi; 18354 18355 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 18356 /* 18357 * Let us reuse the incoming mblk to avoid memory 18358 * allocation failure problems. We know that the 18359 * size of the incoming mblk i.e. stroptions is greater 18360 * than sizeof T_discon_ind. So the reallocb below 18361 * can't fail. 18362 */ 18363 freemsg(mp->b_cont); 18364 mp->b_cont = NULL; 18365 ASSERT(DB_REF(mp) == 1); 18366 mp = reallocb(mp, sizeof (struct T_discon_ind), 18367 B_FALSE); 18368 ASSERT(mp != NULL); 18369 DB_TYPE(mp) = M_PROTO; 18370 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 18371 tdi = (struct T_discon_ind *)mp->b_rptr; 18372 if (tcp->tcp_issocket) { 18373 tdi->DISCON_reason = ECONNREFUSED; 18374 tdi->SEQ_number = 0; 18375 } else { 18376 tdi->DISCON_reason = ENOPROTOOPT; 18377 tdi->SEQ_number = 18378 tcp->tcp_conn_req_seqnum; 18379 } 18380 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 18381 putnext(q, mp); 18382 } else { 18383 freemsg(mp); 18384 } 18385 if (tcp->tcp_hard_binding) { 18386 tcp->tcp_hard_binding = B_FALSE; 18387 tcp->tcp_hard_bound = B_TRUE; 18388 } 18389 tcp->tcp_detached = B_FALSE; 18390 return; 18391 } 18392 18393 mp1 = stropt_mp->b_cont; 18394 stropt_mp->b_cont = NULL; 18395 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 18396 stropt = (struct stroptions *)stropt_mp->b_rptr; 18397 18398 while (mp1 != NULL) { 18399 mp = mp1; 18400 mp1 = mp1->b_cont; 18401 mp->b_cont = NULL; 18402 tcp->tcp_drop_opt_ack_cnt++; 18403 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 18404 } 18405 mp = NULL; 18406 18407 /* 18408 * For a loopback connection with tcp_direct_sockfs on, note that 18409 * we don't have to protect tcp_rcv_list yet because synchronous 18410 * streams has not yet been enabled and tcp_fuse_rrw() cannot 18411 * possibly race with us. 18412 */ 18413 18414 /* 18415 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 18416 * properly. This is the first time we know of the acceptor' 18417 * queue. So we do it here. 18418 */ 18419 if (tcp->tcp_rcv_list == NULL) { 18420 /* 18421 * Recv queue is empty, tcp_rwnd should not have changed. 18422 * That means it should be equal to the listener's tcp_rwnd. 18423 */ 18424 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18425 } else { 18426 #ifdef DEBUG 18427 uint_t cnt = 0; 18428 18429 mp1 = tcp->tcp_rcv_list; 18430 while ((mp = mp1) != NULL) { 18431 mp1 = mp->b_next; 18432 cnt += msgdsize(mp); 18433 } 18434 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18435 #endif 18436 /* There is some data, add them back to get the max. */ 18437 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18438 } 18439 /* 18440 * This is the first time we run on the correct 18441 * queue after tcp_accept. So fix all the q parameters 18442 * here. 18443 */ 18444 stropt->so_flags = SO_HIWAT | SO_MAXBLK | SO_WROFF; 18445 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18446 18447 /* 18448 * Record the stream head's high water mark for this endpoint; 18449 * this is used for flow-control purposes. 18450 */ 18451 stropt->so_hiwat = tcp->tcp_fused ? 18452 tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat) : 18453 MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 18454 18455 /* 18456 * Determine what write offset value to use depending on SACK and 18457 * whether the endpoint is fused or not. 18458 */ 18459 if (tcp->tcp_fused) { 18460 ASSERT(tcp->tcp_loopback); 18461 ASSERT(tcp->tcp_loopback_peer != NULL); 18462 /* 18463 * For fused tcp loopback, set the stream head's write 18464 * offset value to zero since we won't be needing any room 18465 * for TCP/IP headers. This would also improve performance 18466 * since it would reduce the amount of work done by kmem. 18467 * Non-fused tcp loopback case is handled separately below. 18468 */ 18469 stropt->so_wroff = 0; 18470 /* 18471 * Update the peer's transmit parameters according to 18472 * our recently calculated high water mark value. 18473 */ 18474 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18475 } else if (tcp->tcp_snd_sack_ok) { 18476 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18477 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18478 } else { 18479 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18480 tcps->tcps_wroff_xtra); 18481 } 18482 18483 /* 18484 * If this is endpoint is handling SSL, then reserve extra 18485 * offset and space at the end. 18486 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18487 * overriding the previous setting. The extra cost of signing and 18488 * encrypting multiple MSS-size records (12 of them with Ethernet), 18489 * instead of a single contiguous one by the stream head 18490 * largely outweighs the statistical reduction of ACKs, when 18491 * applicable. The peer will also save on decryption and verification 18492 * costs. 18493 */ 18494 if (tcp->tcp_kssl_ctx != NULL) { 18495 stropt->so_wroff += SSL3_WROFFSET; 18496 18497 stropt->so_flags |= SO_TAIL; 18498 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18499 18500 stropt->so_flags |= SO_COPYOPT; 18501 stropt->so_copyopt = ZCVMUNSAFE; 18502 18503 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18504 } 18505 18506 /* Send the options up */ 18507 putnext(q, stropt_mp); 18508 18509 /* 18510 * Pass up any data and/or a fin that has been received. 18511 * 18512 * Adjust receive window in case it had decreased 18513 * (because there is data <=> tcp_rcv_list != NULL) 18514 * while the connection was detached. Note that 18515 * in case the eager was flow-controlled, w/o this 18516 * code, the rwnd may never open up again! 18517 */ 18518 if (tcp->tcp_rcv_list != NULL) { 18519 /* We drain directly in case of fused tcp loopback */ 18520 sodirect_t *sodp; 18521 18522 if (!tcp->tcp_fused && canputnext(q)) { 18523 tcp->tcp_rwnd = q->q_hiwat; 18524 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18525 << tcp->tcp_rcv_ws; 18526 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18527 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18528 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18529 tcp_xmit_ctl(NULL, 18530 tcp, (tcp->tcp_swnd == 0) ? 18531 tcp->tcp_suna : tcp->tcp_snxt, 18532 tcp->tcp_rnxt, TH_ACK); 18533 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18534 } 18535 18536 } 18537 18538 SOD_PTR_ENTER(tcp, sodp); 18539 if (sodp != NULL) { 18540 /* Sodirect, move from rcv_list */ 18541 ASSERT(!tcp->tcp_fused); 18542 while ((mp = tcp->tcp_rcv_list) != NULL) { 18543 tcp->tcp_rcv_list = mp->b_next; 18544 mp->b_next = NULL; 18545 (void) tcp_rcv_sod_enqueue(tcp, sodp, mp, 18546 msgdsize(mp)); 18547 } 18548 tcp->tcp_rcv_last_head = NULL; 18549 tcp->tcp_rcv_last_tail = NULL; 18550 tcp->tcp_rcv_cnt = 0; 18551 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18552 /* sod_wakeup() did the mutex_exit() */ 18553 } else { 18554 /* Not sodirect, drain */ 18555 (void) tcp_rcv_drain(q, tcp); 18556 } 18557 18558 /* 18559 * For fused tcp loopback, back-enable peer endpoint 18560 * if it's currently flow-controlled. 18561 */ 18562 if (tcp->tcp_fused) { 18563 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18564 18565 ASSERT(peer_tcp != NULL); 18566 ASSERT(peer_tcp->tcp_fused); 18567 /* 18568 * In order to change the peer's tcp_flow_stopped, 18569 * we need to take locks for both end points. The 18570 * highest address is taken first. 18571 */ 18572 if (peer_tcp > tcp) { 18573 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18574 mutex_enter(&tcp->tcp_non_sq_lock); 18575 } else { 18576 mutex_enter(&tcp->tcp_non_sq_lock); 18577 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18578 } 18579 if (peer_tcp->tcp_flow_stopped) { 18580 tcp_clrqfull(peer_tcp); 18581 TCP_STAT(tcps, tcp_fusion_backenabled); 18582 } 18583 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18584 mutex_exit(&tcp->tcp_non_sq_lock); 18585 } 18586 } 18587 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18588 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18589 mp = mi_tpi_ordrel_ind(); 18590 if (mp) { 18591 tcp->tcp_ordrel_done = B_TRUE; 18592 putnext(q, mp); 18593 if (tcp->tcp_deferred_clean_death) { 18594 /* 18595 * tcp_clean_death was deferred 18596 * for T_ORDREL_IND - do it now 18597 */ 18598 (void) tcp_clean_death(tcp, 18599 tcp->tcp_client_errno, 21); 18600 tcp->tcp_deferred_clean_death = B_FALSE; 18601 } 18602 } else { 18603 /* 18604 * Run the orderly release in the 18605 * service routine. 18606 */ 18607 qenable(q); 18608 } 18609 } 18610 if (tcp->tcp_hard_binding) { 18611 tcp->tcp_hard_binding = B_FALSE; 18612 tcp->tcp_hard_bound = B_TRUE; 18613 } 18614 18615 /* We can enable synchronous streams now */ 18616 if (tcp->tcp_fused) { 18617 tcp_fuse_syncstr_enable_pair(tcp); 18618 } 18619 18620 if (tcp->tcp_ka_enabled) { 18621 tcp->tcp_ka_last_intrvl = 0; 18622 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18623 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18624 } 18625 18626 /* 18627 * At this point, eager is fully established and will 18628 * have the following references - 18629 * 18630 * 2 references for connection to exist (1 for TCP and 1 for IP). 18631 * 1 reference for the squeue which will be dropped by the squeue as 18632 * soon as this function returns. 18633 * There will be 1 additonal reference for being in classifier 18634 * hash list provided something bad hasn't happened. 18635 */ 18636 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18637 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18638 } 18639 18640 /* 18641 * The function called through squeue to get behind listener's perimeter to 18642 * send a deffered conn_ind. 18643 */ 18644 /* ARGSUSED */ 18645 void 18646 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18647 { 18648 conn_t *connp = (conn_t *)arg; 18649 tcp_t *listener = connp->conn_tcp; 18650 18651 if (listener->tcp_state == TCPS_CLOSED || 18652 TCP_IS_DETACHED(listener)) { 18653 /* 18654 * If listener has closed, it would have caused a 18655 * a cleanup/blowoff to happen for the eager. 18656 */ 18657 tcp_t *tcp; 18658 struct T_conn_ind *conn_ind; 18659 18660 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18661 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18662 conn_ind->OPT_length); 18663 /* 18664 * We need to drop the ref on eager that was put 18665 * tcp_rput_data() before trying to send the conn_ind 18666 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18667 * and tcp_wput_accept() is sending this deferred conn_ind but 18668 * listener is closed so we drop the ref. 18669 */ 18670 CONN_DEC_REF(tcp->tcp_connp); 18671 freemsg(mp); 18672 return; 18673 } 18674 putnext(listener->tcp_rq, mp); 18675 } 18676 18677 18678 /* 18679 * This is the STREAMS entry point for T_CONN_RES coming down on 18680 * Acceptor STREAM when sockfs listener does accept processing. 18681 * Read the block comment on top of tcp_conn_request(). 18682 */ 18683 void 18684 tcp_wput_accept(queue_t *q, mblk_t *mp) 18685 { 18686 queue_t *rq = RD(q); 18687 struct T_conn_res *conn_res; 18688 tcp_t *eager; 18689 tcp_t *listener; 18690 struct T_ok_ack *ok; 18691 t_scalar_t PRIM_type; 18692 mblk_t *opt_mp; 18693 conn_t *econnp; 18694 18695 ASSERT(DB_TYPE(mp) == M_PROTO); 18696 18697 conn_res = (struct T_conn_res *)mp->b_rptr; 18698 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18699 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18700 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18701 if (mp != NULL) 18702 putnext(rq, mp); 18703 return; 18704 } 18705 switch (conn_res->PRIM_type) { 18706 case O_T_CONN_RES: 18707 case T_CONN_RES: 18708 /* 18709 * We pass up an err ack if allocb fails. This will 18710 * cause sockfs to issue a T_DISCON_REQ which will cause 18711 * tcp_eager_blowoff to be called. sockfs will then call 18712 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18713 * we need to do the allocb up here because we have to 18714 * make sure rq->q_qinfo->qi_qclose still points to the 18715 * correct function (tcpclose_accept) in case allocb 18716 * fails. 18717 */ 18718 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18719 if (opt_mp == NULL) { 18720 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18721 if (mp != NULL) 18722 putnext(rq, mp); 18723 return; 18724 } 18725 18726 bcopy(mp->b_rptr + conn_res->OPT_offset, 18727 &eager, conn_res->OPT_length); 18728 PRIM_type = conn_res->PRIM_type; 18729 mp->b_datap->db_type = M_PCPROTO; 18730 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18731 ok = (struct T_ok_ack *)mp->b_rptr; 18732 ok->PRIM_type = T_OK_ACK; 18733 ok->CORRECT_prim = PRIM_type; 18734 econnp = eager->tcp_connp; 18735 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18736 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18737 eager->tcp_rq = rq; 18738 eager->tcp_wq = q; 18739 rq->q_ptr = econnp; 18740 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18741 q->q_ptr = econnp; 18742 q->q_qinfo = &tcp_winit; 18743 listener = eager->tcp_listener; 18744 eager->tcp_issocket = B_TRUE; 18745 18746 /* 18747 * TCP is _D_SODIRECT and sockfs is directly above so 18748 * save shared sodirect_t pointer (if any). 18749 * 18750 * If tcp_fused and sodirect enabled disable it. 18751 */ 18752 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18753 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18754 /* Fused, disable sodirect */ 18755 mutex_enter(eager->tcp_sodirect->sod_lock); 18756 SOD_DISABLE(eager->tcp_sodirect); 18757 mutex_exit(eager->tcp_sodirect->sod_lock); 18758 eager->tcp_sodirect = NULL; 18759 } 18760 18761 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18762 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18763 ASSERT(econnp->conn_netstack == 18764 listener->tcp_connp->conn_netstack); 18765 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18766 18767 /* Put the ref for IP */ 18768 CONN_INC_REF(econnp); 18769 18770 /* 18771 * We should have minimum of 3 references on the conn 18772 * at this point. One each for TCP and IP and one for 18773 * the T_conn_ind that was sent up when the 3-way handshake 18774 * completed. In the normal case we would also have another 18775 * reference (making a total of 4) for the conn being in the 18776 * classifier hash list. However the eager could have received 18777 * an RST subsequently and tcp_closei_local could have removed 18778 * the eager from the classifier hash list, hence we can't 18779 * assert that reference. 18780 */ 18781 ASSERT(econnp->conn_ref >= 3); 18782 18783 /* 18784 * Send the new local address also up to sockfs. There 18785 * should already be enough space in the mp that came 18786 * down from soaccept(). 18787 */ 18788 if (eager->tcp_family == AF_INET) { 18789 sin_t *sin; 18790 18791 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18792 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18793 sin = (sin_t *)mp->b_wptr; 18794 mp->b_wptr += sizeof (sin_t); 18795 sin->sin_family = AF_INET; 18796 sin->sin_port = eager->tcp_lport; 18797 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18798 } else { 18799 sin6_t *sin6; 18800 18801 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18802 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18803 sin6 = (sin6_t *)mp->b_wptr; 18804 mp->b_wptr += sizeof (sin6_t); 18805 sin6->sin6_family = AF_INET6; 18806 sin6->sin6_port = eager->tcp_lport; 18807 if (eager->tcp_ipversion == IPV4_VERSION) { 18808 sin6->sin6_flowinfo = 0; 18809 IN6_IPADDR_TO_V4MAPPED( 18810 eager->tcp_ipha->ipha_src, 18811 &sin6->sin6_addr); 18812 } else { 18813 ASSERT(eager->tcp_ip6h != NULL); 18814 sin6->sin6_flowinfo = 18815 eager->tcp_ip6h->ip6_vcf & 18816 ~IPV6_VERS_AND_FLOW_MASK; 18817 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18818 } 18819 sin6->sin6_scope_id = 0; 18820 sin6->__sin6_src_id = 0; 18821 } 18822 18823 putnext(rq, mp); 18824 18825 opt_mp->b_datap->db_type = M_SETOPTS; 18826 opt_mp->b_wptr += sizeof (struct stroptions); 18827 18828 /* 18829 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18830 * from listener to acceptor. The message is chained on the 18831 * bind_mp which tcp_rput_other will send down to IP. 18832 */ 18833 if (listener->tcp_bound_if != 0) { 18834 /* allocate optmgmt req */ 18835 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18836 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18837 sizeof (int)); 18838 if (mp != NULL) 18839 linkb(opt_mp, mp); 18840 } 18841 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18842 uint_t on = 1; 18843 18844 /* allocate optmgmt req */ 18845 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18846 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18847 if (mp != NULL) 18848 linkb(opt_mp, mp); 18849 } 18850 18851 18852 mutex_enter(&listener->tcp_eager_lock); 18853 18854 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18855 18856 tcp_t *tail; 18857 tcp_t *tcp; 18858 mblk_t *mp1; 18859 18860 tcp = listener->tcp_eager_prev_q0; 18861 /* 18862 * listener->tcp_eager_prev_q0 points to the TAIL of the 18863 * deferred T_conn_ind queue. We need to get to the head 18864 * of the queue in order to send up T_conn_ind the same 18865 * order as how the 3WHS is completed. 18866 */ 18867 while (tcp != listener) { 18868 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18869 !tcp->tcp_kssl_pending) 18870 break; 18871 else 18872 tcp = tcp->tcp_eager_prev_q0; 18873 } 18874 /* None of the pending eagers can be sent up now */ 18875 if (tcp == listener) 18876 goto no_more_eagers; 18877 18878 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18879 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18880 /* Move from q0 to q */ 18881 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18882 listener->tcp_conn_req_cnt_q0--; 18883 listener->tcp_conn_req_cnt_q++; 18884 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18885 tcp->tcp_eager_prev_q0; 18886 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18887 tcp->tcp_eager_next_q0; 18888 tcp->tcp_eager_prev_q0 = NULL; 18889 tcp->tcp_eager_next_q0 = NULL; 18890 tcp->tcp_conn_def_q0 = B_FALSE; 18891 18892 /* Make sure the tcp isn't in the list of droppables */ 18893 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18894 tcp->tcp_eager_prev_drop_q0 == NULL); 18895 18896 /* 18897 * Insert at end of the queue because sockfs sends 18898 * down T_CONN_RES in chronological order. Leaving 18899 * the older conn indications at front of the queue 18900 * helps reducing search time. 18901 */ 18902 tail = listener->tcp_eager_last_q; 18903 if (tail != NULL) { 18904 tail->tcp_eager_next_q = tcp; 18905 } else { 18906 listener->tcp_eager_next_q = tcp; 18907 } 18908 listener->tcp_eager_last_q = tcp; 18909 tcp->tcp_eager_next_q = NULL; 18910 18911 /* Need to get inside the listener perimeter */ 18912 CONN_INC_REF(listener->tcp_connp); 18913 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18914 tcp_send_pending, listener->tcp_connp, 18915 SQTAG_TCP_SEND_PENDING); 18916 } 18917 no_more_eagers: 18918 tcp_eager_unlink(eager); 18919 mutex_exit(&listener->tcp_eager_lock); 18920 18921 /* 18922 * At this point, the eager is detached from the listener 18923 * but we still have an extra refs on eager (apart from the 18924 * usual tcp references). The ref was placed in tcp_rput_data 18925 * before sending the conn_ind in tcp_send_conn_ind. 18926 * The ref will be dropped in tcp_accept_finish(). As sockfs 18927 * has already established this tcp with it's own stream, 18928 * it's OK to set tcp_detached to B_FALSE. 18929 */ 18930 econnp->conn_tcp->tcp_detached = B_FALSE; 18931 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18932 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18933 return; 18934 default: 18935 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18936 if (mp != NULL) 18937 putnext(rq, mp); 18938 return; 18939 } 18940 } 18941 18942 static int 18943 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18944 { 18945 sin_t *sin = (sin_t *)sa; 18946 sin6_t *sin6 = (sin6_t *)sa; 18947 18948 switch (tcp->tcp_family) { 18949 case AF_INET: 18950 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18951 18952 if (*salenp < sizeof (sin_t)) 18953 return (EINVAL); 18954 18955 *sin = sin_null; 18956 sin->sin_family = AF_INET; 18957 sin->sin_port = tcp->tcp_lport; 18958 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18959 break; 18960 18961 case AF_INET6: 18962 if (*salenp < sizeof (sin6_t)) 18963 return (EINVAL); 18964 18965 *sin6 = sin6_null; 18966 sin6->sin6_family = AF_INET6; 18967 sin6->sin6_port = tcp->tcp_lport; 18968 if (tcp->tcp_ipversion == IPV4_VERSION) { 18969 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18970 &sin6->sin6_addr); 18971 } else { 18972 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18973 } 18974 break; 18975 } 18976 18977 return (0); 18978 } 18979 18980 static int 18981 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18982 { 18983 sin_t *sin = (sin_t *)sa; 18984 sin6_t *sin6 = (sin6_t *)sa; 18985 18986 if (tcp->tcp_state < TCPS_SYN_RCVD) 18987 return (ENOTCONN); 18988 18989 switch (tcp->tcp_family) { 18990 case AF_INET: 18991 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18992 18993 if (*salenp < sizeof (sin_t)) 18994 return (EINVAL); 18995 18996 *sin = sin_null; 18997 sin->sin_family = AF_INET; 18998 sin->sin_port = tcp->tcp_fport; 18999 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 19000 sin->sin_addr.s_addr); 19001 break; 19002 19003 case AF_INET6: 19004 if (*salenp < sizeof (sin6_t)) 19005 return (EINVAL); 19006 19007 *sin6 = sin6_null; 19008 sin6->sin6_family = AF_INET6; 19009 sin6->sin6_port = tcp->tcp_fport; 19010 sin6->sin6_addr = tcp->tcp_remote_v6; 19011 if (tcp->tcp_ipversion == IPV6_VERSION) { 19012 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 19013 ~IPV6_VERS_AND_FLOW_MASK; 19014 } 19015 break; 19016 } 19017 19018 return (0); 19019 } 19020 19021 /* 19022 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 19023 */ 19024 static void 19025 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 19026 { 19027 void *data; 19028 mblk_t *datamp = mp->b_cont; 19029 tcp_t *tcp = Q_TO_TCP(q); 19030 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 19031 19032 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 19033 cmdp->cb_error = EPROTO; 19034 qreply(q, mp); 19035 return; 19036 } 19037 19038 data = datamp->b_rptr; 19039 19040 switch (cmdp->cb_cmd) { 19041 case TI_GETPEERNAME: 19042 cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len); 19043 break; 19044 case TI_GETMYNAME: 19045 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 19046 break; 19047 default: 19048 cmdp->cb_error = EINVAL; 19049 break; 19050 } 19051 19052 qreply(q, mp); 19053 } 19054 19055 void 19056 tcp_wput(queue_t *q, mblk_t *mp) 19057 { 19058 conn_t *connp = Q_TO_CONN(q); 19059 tcp_t *tcp; 19060 void (*output_proc)(); 19061 t_scalar_t type; 19062 uchar_t *rptr; 19063 struct iocblk *iocp; 19064 uint32_t msize; 19065 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 19066 19067 ASSERT(connp->conn_ref >= 2); 19068 19069 switch (DB_TYPE(mp)) { 19070 case M_DATA: 19071 tcp = connp->conn_tcp; 19072 ASSERT(tcp != NULL); 19073 19074 msize = msgdsize(mp); 19075 19076 mutex_enter(&tcp->tcp_non_sq_lock); 19077 tcp->tcp_squeue_bytes += msize; 19078 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 19079 tcp_setqfull(tcp); 19080 } 19081 mutex_exit(&tcp->tcp_non_sq_lock); 19082 19083 CONN_INC_REF(connp); 19084 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 19085 tcp_output, connp, SQTAG_TCP_OUTPUT); 19086 return; 19087 19088 case M_CMD: 19089 tcp_wput_cmdblk(q, mp); 19090 return; 19091 19092 case M_PROTO: 19093 case M_PCPROTO: 19094 /* 19095 * if it is a snmp message, don't get behind the squeue 19096 */ 19097 tcp = connp->conn_tcp; 19098 rptr = mp->b_rptr; 19099 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 19100 type = ((union T_primitives *)rptr)->type; 19101 } else { 19102 if (tcp->tcp_debug) { 19103 (void) strlog(TCP_MOD_ID, 0, 1, 19104 SL_ERROR|SL_TRACE, 19105 "tcp_wput_proto, dropping one..."); 19106 } 19107 freemsg(mp); 19108 return; 19109 } 19110 if (type == T_SVR4_OPTMGMT_REQ) { 19111 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 19112 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 19113 cr)) { 19114 /* 19115 * This was a SNMP request 19116 */ 19117 return; 19118 } else { 19119 output_proc = tcp_wput_proto; 19120 } 19121 } else { 19122 output_proc = tcp_wput_proto; 19123 } 19124 break; 19125 case M_IOCTL: 19126 /* 19127 * Most ioctls can be processed right away without going via 19128 * squeues - process them right here. Those that do require 19129 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 19130 * are processed by tcp_wput_ioctl(). 19131 */ 19132 iocp = (struct iocblk *)mp->b_rptr; 19133 tcp = connp->conn_tcp; 19134 19135 switch (iocp->ioc_cmd) { 19136 case TCP_IOC_ABORT_CONN: 19137 tcp_ioctl_abort_conn(q, mp); 19138 return; 19139 case TI_GETPEERNAME: 19140 case TI_GETMYNAME: 19141 mi_copyin(q, mp, NULL, 19142 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 19143 return; 19144 case ND_SET: 19145 /* nd_getset does the necessary checks */ 19146 case ND_GET: 19147 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 19148 CALL_IP_WPUT(connp, q, mp); 19149 return; 19150 } 19151 qreply(q, mp); 19152 return; 19153 case TCP_IOC_DEFAULT_Q: 19154 /* 19155 * Wants to be the default wq. Check the credentials 19156 * first, the rest is executed via squeue. 19157 */ 19158 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19159 iocp->ioc_error = EPERM; 19160 iocp->ioc_count = 0; 19161 mp->b_datap->db_type = M_IOCACK; 19162 qreply(q, mp); 19163 return; 19164 } 19165 output_proc = tcp_wput_ioctl; 19166 break; 19167 default: 19168 output_proc = tcp_wput_ioctl; 19169 break; 19170 } 19171 break; 19172 default: 19173 output_proc = tcp_wput_nondata; 19174 break; 19175 } 19176 19177 CONN_INC_REF(connp); 19178 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 19179 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 19180 } 19181 19182 /* 19183 * Initial STREAMS write side put() procedure for sockets. It tries to 19184 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 19185 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 19186 * are handled by tcp_wput() as usual. 19187 * 19188 * All further messages will also be handled by tcp_wput() because we cannot 19189 * be sure that the above short cut is safe later. 19190 */ 19191 static void 19192 tcp_wput_sock(queue_t *wq, mblk_t *mp) 19193 { 19194 conn_t *connp = Q_TO_CONN(wq); 19195 tcp_t *tcp = connp->conn_tcp; 19196 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 19197 19198 ASSERT(wq->q_qinfo == &tcp_sock_winit); 19199 wq->q_qinfo = &tcp_winit; 19200 19201 ASSERT(IPCL_IS_TCP(connp)); 19202 ASSERT(TCP_IS_SOCKET(tcp)); 19203 19204 if (DB_TYPE(mp) == M_PCPROTO && 19205 MBLKL(mp) == sizeof (struct T_capability_req) && 19206 car->PRIM_type == T_CAPABILITY_REQ) { 19207 tcp_capability_req(tcp, mp); 19208 return; 19209 } 19210 19211 tcp_wput(wq, mp); 19212 } 19213 19214 static boolean_t 19215 tcp_zcopy_check(tcp_t *tcp) 19216 { 19217 conn_t *connp = tcp->tcp_connp; 19218 ire_t *ire; 19219 boolean_t zc_enabled = B_FALSE; 19220 tcp_stack_t *tcps = tcp->tcp_tcps; 19221 19222 if (do_tcpzcopy == 2) 19223 zc_enabled = B_TRUE; 19224 else if (tcp->tcp_ipversion == IPV4_VERSION && 19225 IPCL_IS_CONNECTED(connp) && 19226 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 19227 connp->conn_dontroute == 0 && 19228 !connp->conn_nexthop_set && 19229 connp->conn_outgoing_ill == NULL && 19230 connp->conn_nofailover_ill == NULL && 19231 do_tcpzcopy == 1) { 19232 /* 19233 * the checks above closely resemble the fast path checks 19234 * in tcp_send_data(). 19235 */ 19236 mutex_enter(&connp->conn_lock); 19237 ire = connp->conn_ire_cache; 19238 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19239 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19240 IRE_REFHOLD(ire); 19241 if (ire->ire_stq != NULL) { 19242 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 19243 19244 zc_enabled = ill && (ill->ill_capabilities & 19245 ILL_CAPAB_ZEROCOPY) && 19246 (ill->ill_zerocopy_capab-> 19247 ill_zerocopy_flags != 0); 19248 } 19249 IRE_REFRELE(ire); 19250 } 19251 mutex_exit(&connp->conn_lock); 19252 } 19253 tcp->tcp_snd_zcopy_on = zc_enabled; 19254 if (!TCP_IS_DETACHED(tcp)) { 19255 if (zc_enabled) { 19256 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 19257 TCP_STAT(tcps, tcp_zcopy_on); 19258 } else { 19259 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 19260 TCP_STAT(tcps, tcp_zcopy_off); 19261 } 19262 } 19263 return (zc_enabled); 19264 } 19265 19266 static mblk_t * 19267 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 19268 { 19269 tcp_stack_t *tcps = tcp->tcp_tcps; 19270 19271 if (do_tcpzcopy == 2) 19272 return (bp); 19273 else if (tcp->tcp_snd_zcopy_on) { 19274 tcp->tcp_snd_zcopy_on = B_FALSE; 19275 if (!TCP_IS_DETACHED(tcp)) { 19276 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 19277 TCP_STAT(tcps, tcp_zcopy_disable); 19278 } 19279 } 19280 return (tcp_zcopy_backoff(tcp, bp, 0)); 19281 } 19282 19283 /* 19284 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 19285 * the original desballoca'ed segmapped mblk. 19286 */ 19287 static mblk_t * 19288 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 19289 { 19290 mblk_t *head, *tail, *nbp; 19291 tcp_stack_t *tcps = tcp->tcp_tcps; 19292 19293 if (IS_VMLOANED_MBLK(bp)) { 19294 TCP_STAT(tcps, tcp_zcopy_backoff); 19295 if ((head = copyb(bp)) == NULL) { 19296 /* fail to backoff; leave it for the next backoff */ 19297 tcp->tcp_xmit_zc_clean = B_FALSE; 19298 return (bp); 19299 } 19300 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19301 if (fix_xmitlist) 19302 tcp_zcopy_notify(tcp); 19303 else 19304 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19305 } 19306 nbp = bp->b_cont; 19307 if (fix_xmitlist) { 19308 head->b_prev = bp->b_prev; 19309 head->b_next = bp->b_next; 19310 if (tcp->tcp_xmit_tail == bp) 19311 tcp->tcp_xmit_tail = head; 19312 } 19313 bp->b_next = NULL; 19314 bp->b_prev = NULL; 19315 freeb(bp); 19316 } else { 19317 head = bp; 19318 nbp = bp->b_cont; 19319 } 19320 tail = head; 19321 while (nbp) { 19322 if (IS_VMLOANED_MBLK(nbp)) { 19323 TCP_STAT(tcps, tcp_zcopy_backoff); 19324 if ((tail->b_cont = copyb(nbp)) == NULL) { 19325 tcp->tcp_xmit_zc_clean = B_FALSE; 19326 tail->b_cont = nbp; 19327 return (head); 19328 } 19329 tail = tail->b_cont; 19330 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19331 if (fix_xmitlist) 19332 tcp_zcopy_notify(tcp); 19333 else 19334 tail->b_datap->db_struioflag |= 19335 STRUIO_ZCNOTIFY; 19336 } 19337 bp = nbp; 19338 nbp = nbp->b_cont; 19339 if (fix_xmitlist) { 19340 tail->b_prev = bp->b_prev; 19341 tail->b_next = bp->b_next; 19342 if (tcp->tcp_xmit_tail == bp) 19343 tcp->tcp_xmit_tail = tail; 19344 } 19345 bp->b_next = NULL; 19346 bp->b_prev = NULL; 19347 freeb(bp); 19348 } else { 19349 tail->b_cont = nbp; 19350 tail = nbp; 19351 nbp = nbp->b_cont; 19352 } 19353 } 19354 if (fix_xmitlist) { 19355 tcp->tcp_xmit_last = tail; 19356 tcp->tcp_xmit_zc_clean = B_TRUE; 19357 } 19358 return (head); 19359 } 19360 19361 static void 19362 tcp_zcopy_notify(tcp_t *tcp) 19363 { 19364 struct stdata *stp; 19365 19366 if (tcp->tcp_detached) 19367 return; 19368 stp = STREAM(tcp->tcp_rq); 19369 mutex_enter(&stp->sd_lock); 19370 stp->sd_flag |= STZCNOTIFY; 19371 cv_broadcast(&stp->sd_zcopy_wait); 19372 mutex_exit(&stp->sd_lock); 19373 } 19374 19375 static boolean_t 19376 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19377 { 19378 ire_t *ire; 19379 conn_t *connp = tcp->tcp_connp; 19380 tcp_stack_t *tcps = tcp->tcp_tcps; 19381 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19382 19383 mutex_enter(&connp->conn_lock); 19384 ire = connp->conn_ire_cache; 19385 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19386 19387 if ((ire != NULL) && 19388 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19389 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19390 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19391 IRE_REFHOLD(ire); 19392 mutex_exit(&connp->conn_lock); 19393 } else { 19394 boolean_t cached = B_FALSE; 19395 ts_label_t *tsl; 19396 19397 /* force a recheck later on */ 19398 tcp->tcp_ire_ill_check_done = B_FALSE; 19399 19400 TCP_DBGSTAT(tcps, tcp_ire_null1); 19401 connp->conn_ire_cache = NULL; 19402 mutex_exit(&connp->conn_lock); 19403 19404 if (ire != NULL) 19405 IRE_REFRELE_NOTR(ire); 19406 19407 tsl = crgetlabel(CONN_CRED(connp)); 19408 ire = (dst ? 19409 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19410 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19411 connp->conn_zoneid, tsl, ipst)); 19412 19413 if (ire == NULL) { 19414 TCP_STAT(tcps, tcp_ire_null); 19415 return (B_FALSE); 19416 } 19417 19418 IRE_REFHOLD_NOTR(ire); 19419 19420 mutex_enter(&connp->conn_lock); 19421 if (CONN_CACHE_IRE(connp)) { 19422 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19423 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19424 TCP_CHECK_IREINFO(tcp, ire); 19425 connp->conn_ire_cache = ire; 19426 cached = B_TRUE; 19427 } 19428 rw_exit(&ire->ire_bucket->irb_lock); 19429 } 19430 mutex_exit(&connp->conn_lock); 19431 19432 /* 19433 * We can continue to use the ire but since it was 19434 * not cached, we should drop the extra reference. 19435 */ 19436 if (!cached) 19437 IRE_REFRELE_NOTR(ire); 19438 19439 /* 19440 * Rampart note: no need to select a new label here, since 19441 * labels are not allowed to change during the life of a TCP 19442 * connection. 19443 */ 19444 } 19445 19446 *irep = ire; 19447 19448 return (B_TRUE); 19449 } 19450 19451 /* 19452 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19453 * 19454 * 0 = success; 19455 * 1 = failed to find ire and ill. 19456 */ 19457 static boolean_t 19458 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19459 { 19460 ipha_t *ipha; 19461 ipaddr_t dst; 19462 ire_t *ire; 19463 ill_t *ill; 19464 conn_t *connp = tcp->tcp_connp; 19465 mblk_t *ire_fp_mp; 19466 tcp_stack_t *tcps = tcp->tcp_tcps; 19467 19468 if (mp != NULL) 19469 ipha = (ipha_t *)mp->b_rptr; 19470 else 19471 ipha = tcp->tcp_ipha; 19472 dst = ipha->ipha_dst; 19473 19474 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19475 return (B_FALSE); 19476 19477 if ((ire->ire_flags & RTF_MULTIRT) || 19478 (ire->ire_stq == NULL) || 19479 (ire->ire_nce == NULL) || 19480 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19481 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19482 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19483 TCP_STAT(tcps, tcp_ip_ire_send); 19484 IRE_REFRELE(ire); 19485 return (B_FALSE); 19486 } 19487 19488 ill = ire_to_ill(ire); 19489 if (connp->conn_outgoing_ill != NULL) { 19490 ill_t *conn_outgoing_ill = NULL; 19491 /* 19492 * Choose a good ill in the group to send the packets on. 19493 */ 19494 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 19495 ill = ire_to_ill(ire); 19496 } 19497 ASSERT(ill != NULL); 19498 19499 if (!tcp->tcp_ire_ill_check_done) { 19500 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19501 tcp->tcp_ire_ill_check_done = B_TRUE; 19502 } 19503 19504 *irep = ire; 19505 *illp = ill; 19506 19507 return (B_TRUE); 19508 } 19509 19510 static void 19511 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19512 { 19513 ipha_t *ipha; 19514 ipaddr_t src; 19515 ipaddr_t dst; 19516 uint32_t cksum; 19517 ire_t *ire; 19518 uint16_t *up; 19519 ill_t *ill; 19520 conn_t *connp = tcp->tcp_connp; 19521 uint32_t hcksum_txflags = 0; 19522 mblk_t *ire_fp_mp; 19523 uint_t ire_fp_mp_len; 19524 tcp_stack_t *tcps = tcp->tcp_tcps; 19525 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19526 19527 ASSERT(DB_TYPE(mp) == M_DATA); 19528 19529 if (DB_CRED(mp) == NULL) 19530 mblk_setcred(mp, CONN_CRED(connp)); 19531 19532 ipha = (ipha_t *)mp->b_rptr; 19533 src = ipha->ipha_src; 19534 dst = ipha->ipha_dst; 19535 19536 /* 19537 * Drop off fast path for IPv6 and also if options are present or 19538 * we need to resolve a TS label. 19539 */ 19540 if (tcp->tcp_ipversion != IPV4_VERSION || 19541 !IPCL_IS_CONNECTED(connp) || 19542 !CONN_IS_LSO_MD_FASTPATH(connp) || 19543 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19544 !connp->conn_ulp_labeled || 19545 ipha->ipha_ident == IP_HDR_INCLUDED || 19546 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19547 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19548 if (tcp->tcp_snd_zcopy_aware) 19549 mp = tcp_zcopy_disable(tcp, mp); 19550 TCP_STAT(tcps, tcp_ip_send); 19551 CALL_IP_WPUT(connp, q, mp); 19552 return; 19553 } 19554 19555 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19556 if (tcp->tcp_snd_zcopy_aware) 19557 mp = tcp_zcopy_backoff(tcp, mp, 0); 19558 CALL_IP_WPUT(connp, q, mp); 19559 return; 19560 } 19561 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19562 ire_fp_mp_len = MBLKL(ire_fp_mp); 19563 19564 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19565 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19566 #ifndef _BIG_ENDIAN 19567 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19568 #endif 19569 19570 /* 19571 * Check to see if we need to re-enable LSO/MDT for this connection 19572 * because it was previously disabled due to changes in the ill; 19573 * note that by doing it here, this re-enabling only applies when 19574 * the packet is not dispatched through CALL_IP_WPUT(). 19575 * 19576 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19577 * case, since that's how we ended up here. For IPv6, we do the 19578 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19579 */ 19580 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19581 /* 19582 * Restore LSO for this connection, so that next time around 19583 * it is eligible to go through tcp_lsosend() path again. 19584 */ 19585 TCP_STAT(tcps, tcp_lso_enabled); 19586 tcp->tcp_lso = B_TRUE; 19587 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19588 "interface %s\n", (void *)connp, ill->ill_name)); 19589 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19590 /* 19591 * Restore MDT for this connection, so that next time around 19592 * it is eligible to go through tcp_multisend() path again. 19593 */ 19594 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19595 tcp->tcp_mdt = B_TRUE; 19596 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19597 "interface %s\n", (void *)connp, ill->ill_name)); 19598 } 19599 19600 if (tcp->tcp_snd_zcopy_aware) { 19601 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19602 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19603 mp = tcp_zcopy_disable(tcp, mp); 19604 /* 19605 * we shouldn't need to reset ipha as the mp containing 19606 * ipha should never be a zero-copy mp. 19607 */ 19608 } 19609 19610 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19611 ASSERT(ill->ill_hcksum_capab != NULL); 19612 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19613 } 19614 19615 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19616 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19617 19618 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19619 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19620 19621 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19622 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19623 19624 /* Software checksum? */ 19625 if (DB_CKSUMFLAGS(mp) == 0) { 19626 TCP_STAT(tcps, tcp_out_sw_cksum); 19627 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19628 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19629 } 19630 19631 ipha->ipha_fragment_offset_and_flags |= 19632 (uint32_t)htons(ire->ire_frag_flag); 19633 19634 /* Calculate IP header checksum if hardware isn't capable */ 19635 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19636 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19637 ((uint16_t *)ipha)[4]); 19638 } 19639 19640 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19641 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19642 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19643 19644 UPDATE_OB_PKT_COUNT(ire); 19645 ire->ire_last_used_time = lbolt; 19646 19647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19649 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19650 ntohs(ipha->ipha_length)); 19651 19652 if (ILL_DLS_CAPABLE(ill)) { 19653 /* 19654 * Send the packet directly to DLD, where it may be queued 19655 * depending on the availability of transmit resources at 19656 * the media layer. 19657 */ 19658 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 19659 } else { 19660 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19661 DTRACE_PROBE4(ip4__physical__out__start, 19662 ill_t *, NULL, ill_t *, out_ill, 19663 ipha_t *, ipha, mblk_t *, mp); 19664 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19665 ipst->ips_ipv4firewall_physical_out, 19666 NULL, out_ill, ipha, mp, mp, 0, ipst); 19667 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19668 19669 if (mp != NULL) { 19670 DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL); 19671 putnext(ire->ire_stq, mp); 19672 } 19673 } 19674 IRE_REFRELE(ire); 19675 } 19676 19677 /* 19678 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19679 * if the receiver shrinks the window, i.e. moves the right window to the 19680 * left, the we should not send new data, but should retransmit normally the 19681 * old unacked data between suna and suna + swnd. We might has sent data 19682 * that is now outside the new window, pretend that we didn't send it. 19683 */ 19684 static void 19685 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19686 { 19687 uint32_t snxt = tcp->tcp_snxt; 19688 mblk_t *xmit_tail; 19689 int32_t offset; 19690 19691 ASSERT(shrunk_count > 0); 19692 19693 /* Pretend we didn't send the data outside the window */ 19694 snxt -= shrunk_count; 19695 19696 /* Get the mblk and the offset in it per the shrunk window */ 19697 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19698 19699 ASSERT(xmit_tail != NULL); 19700 19701 /* Reset all the values per the now shrunk window */ 19702 tcp->tcp_snxt = snxt; 19703 tcp->tcp_xmit_tail = xmit_tail; 19704 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19705 offset; 19706 tcp->tcp_unsent += shrunk_count; 19707 19708 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19709 /* 19710 * Make sure the timer is running so that we will probe a zero 19711 * window. 19712 */ 19713 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19714 } 19715 19716 19717 /* 19718 * The TCP normal data output path. 19719 * NOTE: the logic of the fast path is duplicated from this function. 19720 */ 19721 static void 19722 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19723 { 19724 int len; 19725 mblk_t *local_time; 19726 mblk_t *mp1; 19727 uint32_t snxt; 19728 int tail_unsent; 19729 int tcpstate; 19730 int usable = 0; 19731 mblk_t *xmit_tail; 19732 queue_t *q = tcp->tcp_wq; 19733 int32_t mss; 19734 int32_t num_sack_blk = 0; 19735 int32_t tcp_hdr_len; 19736 int32_t tcp_tcp_hdr_len; 19737 int mdt_thres; 19738 int rc; 19739 tcp_stack_t *tcps = tcp->tcp_tcps; 19740 ip_stack_t *ipst; 19741 19742 tcpstate = tcp->tcp_state; 19743 if (mp == NULL) { 19744 /* 19745 * tcp_wput_data() with NULL mp should only be called when 19746 * there is unsent data. 19747 */ 19748 ASSERT(tcp->tcp_unsent > 0); 19749 /* Really tacky... but we need this for detached closes. */ 19750 len = tcp->tcp_unsent; 19751 goto data_null; 19752 } 19753 19754 #if CCS_STATS 19755 wrw_stats.tot.count++; 19756 wrw_stats.tot.bytes += msgdsize(mp); 19757 #endif 19758 ASSERT(mp->b_datap->db_type == M_DATA); 19759 /* 19760 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19761 * or before a connection attempt has begun. 19762 */ 19763 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19764 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19765 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19766 #ifdef DEBUG 19767 cmn_err(CE_WARN, 19768 "tcp_wput_data: data after ordrel, %s", 19769 tcp_display(tcp, NULL, 19770 DISP_ADDR_AND_PORT)); 19771 #else 19772 if (tcp->tcp_debug) { 19773 (void) strlog(TCP_MOD_ID, 0, 1, 19774 SL_TRACE|SL_ERROR, 19775 "tcp_wput_data: data after ordrel, %s\n", 19776 tcp_display(tcp, NULL, 19777 DISP_ADDR_AND_PORT)); 19778 } 19779 #endif /* DEBUG */ 19780 } 19781 if (tcp->tcp_snd_zcopy_aware && 19782 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19783 tcp_zcopy_notify(tcp); 19784 freemsg(mp); 19785 mutex_enter(&tcp->tcp_non_sq_lock); 19786 if (tcp->tcp_flow_stopped && 19787 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19788 tcp_clrqfull(tcp); 19789 } 19790 mutex_exit(&tcp->tcp_non_sq_lock); 19791 return; 19792 } 19793 19794 /* Strip empties */ 19795 for (;;) { 19796 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19797 (uintptr_t)INT_MAX); 19798 len = (int)(mp->b_wptr - mp->b_rptr); 19799 if (len > 0) 19800 break; 19801 mp1 = mp; 19802 mp = mp->b_cont; 19803 freeb(mp1); 19804 if (!mp) { 19805 return; 19806 } 19807 } 19808 19809 /* If we are the first on the list ... */ 19810 if (tcp->tcp_xmit_head == NULL) { 19811 tcp->tcp_xmit_head = mp; 19812 tcp->tcp_xmit_tail = mp; 19813 tcp->tcp_xmit_tail_unsent = len; 19814 } else { 19815 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19816 struct datab *dp; 19817 19818 mp1 = tcp->tcp_xmit_last; 19819 if (len < tcp_tx_pull_len && 19820 (dp = mp1->b_datap)->db_ref == 1 && 19821 dp->db_lim - mp1->b_wptr >= len) { 19822 ASSERT(len > 0); 19823 ASSERT(!mp1->b_cont); 19824 if (len == 1) { 19825 *mp1->b_wptr++ = *mp->b_rptr; 19826 } else { 19827 bcopy(mp->b_rptr, mp1->b_wptr, len); 19828 mp1->b_wptr += len; 19829 } 19830 if (mp1 == tcp->tcp_xmit_tail) 19831 tcp->tcp_xmit_tail_unsent += len; 19832 mp1->b_cont = mp->b_cont; 19833 if (tcp->tcp_snd_zcopy_aware && 19834 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19835 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19836 freeb(mp); 19837 mp = mp1; 19838 } else { 19839 tcp->tcp_xmit_last->b_cont = mp; 19840 } 19841 len += tcp->tcp_unsent; 19842 } 19843 19844 /* Tack on however many more positive length mblks we have */ 19845 if ((mp1 = mp->b_cont) != NULL) { 19846 do { 19847 int tlen; 19848 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19849 (uintptr_t)INT_MAX); 19850 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19851 if (tlen <= 0) { 19852 mp->b_cont = mp1->b_cont; 19853 freeb(mp1); 19854 } else { 19855 len += tlen; 19856 mp = mp1; 19857 } 19858 } while ((mp1 = mp->b_cont) != NULL); 19859 } 19860 tcp->tcp_xmit_last = mp; 19861 tcp->tcp_unsent = len; 19862 19863 if (urgent) 19864 usable = 1; 19865 19866 data_null: 19867 snxt = tcp->tcp_snxt; 19868 xmit_tail = tcp->tcp_xmit_tail; 19869 tail_unsent = tcp->tcp_xmit_tail_unsent; 19870 19871 /* 19872 * Note that tcp_mss has been adjusted to take into account the 19873 * timestamp option if applicable. Because SACK options do not 19874 * appear in every TCP segments and they are of variable lengths, 19875 * they cannot be included in tcp_mss. Thus we need to calculate 19876 * the actual segment length when we need to send a segment which 19877 * includes SACK options. 19878 */ 19879 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19880 int32_t opt_len; 19881 19882 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19883 tcp->tcp_num_sack_blk); 19884 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19885 2 + TCPOPT_HEADER_LEN; 19886 mss = tcp->tcp_mss - opt_len; 19887 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19888 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19889 } else { 19890 mss = tcp->tcp_mss; 19891 tcp_hdr_len = tcp->tcp_hdr_len; 19892 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19893 } 19894 19895 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19896 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19897 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19898 } 19899 if (tcpstate == TCPS_SYN_RCVD) { 19900 /* 19901 * The three-way connection establishment handshake is not 19902 * complete yet. We want to queue the data for transmission 19903 * after entering ESTABLISHED state (RFC793). A jump to 19904 * "done" label effectively leaves data on the queue. 19905 */ 19906 goto done; 19907 } else { 19908 int usable_r; 19909 19910 /* 19911 * In the special case when cwnd is zero, which can only 19912 * happen if the connection is ECN capable, return now. 19913 * New segments is sent using tcp_timer(). The timer 19914 * is set in tcp_rput_data(). 19915 */ 19916 if (tcp->tcp_cwnd == 0) { 19917 /* 19918 * Note that tcp_cwnd is 0 before 3-way handshake is 19919 * finished. 19920 */ 19921 ASSERT(tcp->tcp_ecn_ok || 19922 tcp->tcp_state < TCPS_ESTABLISHED); 19923 return; 19924 } 19925 19926 /* NOTE: trouble if xmitting while SYN not acked? */ 19927 usable_r = snxt - tcp->tcp_suna; 19928 usable_r = tcp->tcp_swnd - usable_r; 19929 19930 /* 19931 * Check if the receiver has shrunk the window. If 19932 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19933 * cannot be set as there is unsent data, so FIN cannot 19934 * be sent out. Otherwise, we need to take into account 19935 * of FIN as it consumes an "invisible" sequence number. 19936 */ 19937 ASSERT(tcp->tcp_fin_sent == 0); 19938 if (usable_r < 0) { 19939 /* 19940 * The receiver has shrunk the window and we have sent 19941 * -usable_r date beyond the window, re-adjust. 19942 * 19943 * If TCP window scaling is enabled, there can be 19944 * round down error as the advertised receive window 19945 * is actually right shifted n bits. This means that 19946 * the lower n bits info is wiped out. It will look 19947 * like the window is shrunk. Do a check here to 19948 * see if the shrunk amount is actually within the 19949 * error in window calculation. If it is, just 19950 * return. Note that this check is inside the 19951 * shrunk window check. This makes sure that even 19952 * though tcp_process_shrunk_swnd() is not called, 19953 * we will stop further processing. 19954 */ 19955 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19956 tcp_process_shrunk_swnd(tcp, -usable_r); 19957 } 19958 return; 19959 } 19960 19961 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19962 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19963 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19964 19965 /* usable = MIN(usable, unsent) */ 19966 if (usable_r > len) 19967 usable_r = len; 19968 19969 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19970 if (usable_r > 0) { 19971 usable = usable_r; 19972 } else { 19973 /* Bypass all other unnecessary processing. */ 19974 goto done; 19975 } 19976 } 19977 19978 local_time = (mblk_t *)lbolt; 19979 19980 /* 19981 * "Our" Nagle Algorithm. This is not the same as in the old 19982 * BSD. This is more in line with the true intent of Nagle. 19983 * 19984 * The conditions are: 19985 * 1. The amount of unsent data (or amount of data which can be 19986 * sent, whichever is smaller) is less than Nagle limit. 19987 * 2. The last sent size is also less than Nagle limit. 19988 * 3. There is unack'ed data. 19989 * 4. Urgent pointer is not set. Send urgent data ignoring the 19990 * Nagle algorithm. This reduces the probability that urgent 19991 * bytes get "merged" together. 19992 * 5. The app has not closed the connection. This eliminates the 19993 * wait time of the receiving side waiting for the last piece of 19994 * (small) data. 19995 * 19996 * If all are satisified, exit without sending anything. Note 19997 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19998 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19999 * 4095). 20000 */ 20001 if (usable < (int)tcp->tcp_naglim && 20002 tcp->tcp_naglim > tcp->tcp_last_sent_len && 20003 snxt != tcp->tcp_suna && 20004 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 20005 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 20006 goto done; 20007 } 20008 20009 if (tcp->tcp_cork) { 20010 /* 20011 * if the tcp->tcp_cork option is set, then we have to force 20012 * TCP not to send partial segment (smaller than MSS bytes). 20013 * We are calculating the usable now based on full mss and 20014 * will save the rest of remaining data for later. 20015 */ 20016 if (usable < mss) 20017 goto done; 20018 usable = (usable / mss) * mss; 20019 } 20020 20021 /* Update the latest receive window size in TCP header. */ 20022 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 20023 tcp->tcp_tcph->th_win); 20024 20025 /* 20026 * Determine if it's worthwhile to attempt LSO or MDT, based on: 20027 * 20028 * 1. Simple TCP/IP{v4,v6} (no options). 20029 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 20030 * 3. If the TCP connection is in ESTABLISHED state. 20031 * 4. The TCP is not detached. 20032 * 20033 * If any of the above conditions have changed during the 20034 * connection, stop using LSO/MDT and restore the stream head 20035 * parameters accordingly. 20036 */ 20037 ipst = tcps->tcps_netstack->netstack_ip; 20038 20039 if ((tcp->tcp_lso || tcp->tcp_mdt) && 20040 ((tcp->tcp_ipversion == IPV4_VERSION && 20041 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20042 (tcp->tcp_ipversion == IPV6_VERSION && 20043 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 20044 tcp->tcp_state != TCPS_ESTABLISHED || 20045 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 20046 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 20047 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 20048 if (tcp->tcp_lso) { 20049 tcp->tcp_connp->conn_lso_ok = B_FALSE; 20050 tcp->tcp_lso = B_FALSE; 20051 } else { 20052 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 20053 tcp->tcp_mdt = B_FALSE; 20054 } 20055 20056 /* Anything other than detached is considered pathological */ 20057 if (!TCP_IS_DETACHED(tcp)) { 20058 if (tcp->tcp_lso) 20059 TCP_STAT(tcps, tcp_lso_disabled); 20060 else 20061 TCP_STAT(tcps, tcp_mdt_conn_halted1); 20062 (void) tcp_maxpsz_set(tcp, B_TRUE); 20063 } 20064 } 20065 20066 /* Use MDT if sendable amount is greater than the threshold */ 20067 if (tcp->tcp_mdt && 20068 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 20069 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 20070 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 20071 (tcp->tcp_valid_bits == 0 || 20072 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 20073 ASSERT(tcp->tcp_connp->conn_mdt_ok); 20074 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 20075 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 20076 local_time, mdt_thres); 20077 } else { 20078 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 20079 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 20080 local_time, INT_MAX); 20081 } 20082 20083 /* Pretend that all we were trying to send really got sent */ 20084 if (rc < 0 && tail_unsent < 0) { 20085 do { 20086 xmit_tail = xmit_tail->b_cont; 20087 xmit_tail->b_prev = local_time; 20088 ASSERT((uintptr_t)(xmit_tail->b_wptr - 20089 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 20090 tail_unsent += (int)(xmit_tail->b_wptr - 20091 xmit_tail->b_rptr); 20092 } while (tail_unsent < 0); 20093 } 20094 done:; 20095 tcp->tcp_xmit_tail = xmit_tail; 20096 tcp->tcp_xmit_tail_unsent = tail_unsent; 20097 len = tcp->tcp_snxt - snxt; 20098 if (len) { 20099 /* 20100 * If new data was sent, need to update the notsack 20101 * list, which is, afterall, data blocks that have 20102 * not been sack'ed by the receiver. New data is 20103 * not sack'ed. 20104 */ 20105 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 20106 /* len is a negative value. */ 20107 tcp->tcp_pipe -= len; 20108 tcp_notsack_update(&(tcp->tcp_notsack_list), 20109 tcp->tcp_snxt, snxt, 20110 &(tcp->tcp_num_notsack_blk), 20111 &(tcp->tcp_cnt_notsack_list)); 20112 } 20113 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 20114 tcp->tcp_rack = tcp->tcp_rnxt; 20115 tcp->tcp_rack_cnt = 0; 20116 if ((snxt + len) == tcp->tcp_suna) { 20117 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20118 } 20119 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 20120 /* 20121 * Didn't send anything. Make sure the timer is running 20122 * so that we will probe a zero window. 20123 */ 20124 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20125 } 20126 /* Note that len is the amount we just sent but with a negative sign */ 20127 tcp->tcp_unsent += len; 20128 mutex_enter(&tcp->tcp_non_sq_lock); 20129 if (tcp->tcp_flow_stopped) { 20130 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 20131 tcp_clrqfull(tcp); 20132 } 20133 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 20134 tcp_setqfull(tcp); 20135 } 20136 mutex_exit(&tcp->tcp_non_sq_lock); 20137 } 20138 20139 /* 20140 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 20141 * outgoing TCP header with the template header, as well as other 20142 * options such as time-stamp, ECN and/or SACK. 20143 */ 20144 static void 20145 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 20146 { 20147 tcph_t *tcp_tmpl, *tcp_h; 20148 uint32_t *dst, *src; 20149 int hdrlen; 20150 20151 ASSERT(OK_32PTR(rptr)); 20152 20153 /* Template header */ 20154 tcp_tmpl = tcp->tcp_tcph; 20155 20156 /* Header of outgoing packet */ 20157 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20158 20159 /* dst and src are opaque 32-bit fields, used for copying */ 20160 dst = (uint32_t *)rptr; 20161 src = (uint32_t *)tcp->tcp_iphc; 20162 hdrlen = tcp->tcp_hdr_len; 20163 20164 /* Fill time-stamp option if needed */ 20165 if (tcp->tcp_snd_ts_ok) { 20166 U32_TO_BE32((uint32_t)now, 20167 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 20168 U32_TO_BE32(tcp->tcp_ts_recent, 20169 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 20170 } else { 20171 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 20172 } 20173 20174 /* 20175 * Copy the template header; is this really more efficient than 20176 * calling bcopy()? For simple IPv4/TCP, it may be the case, 20177 * but perhaps not for other scenarios. 20178 */ 20179 dst[0] = src[0]; 20180 dst[1] = src[1]; 20181 dst[2] = src[2]; 20182 dst[3] = src[3]; 20183 dst[4] = src[4]; 20184 dst[5] = src[5]; 20185 dst[6] = src[6]; 20186 dst[7] = src[7]; 20187 dst[8] = src[8]; 20188 dst[9] = src[9]; 20189 if (hdrlen -= 40) { 20190 hdrlen >>= 2; 20191 dst += 10; 20192 src += 10; 20193 do { 20194 *dst++ = *src++; 20195 } while (--hdrlen); 20196 } 20197 20198 /* 20199 * Set the ECN info in the TCP header if it is not a zero 20200 * window probe. Zero window probe is only sent in 20201 * tcp_wput_data() and tcp_timer(). 20202 */ 20203 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 20204 SET_ECT(tcp, rptr); 20205 20206 if (tcp->tcp_ecn_echo_on) 20207 tcp_h->th_flags[0] |= TH_ECE; 20208 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 20209 tcp_h->th_flags[0] |= TH_CWR; 20210 tcp->tcp_ecn_cwr_sent = B_TRUE; 20211 } 20212 } 20213 20214 /* Fill in SACK options */ 20215 if (num_sack_blk > 0) { 20216 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 20217 sack_blk_t *tmp; 20218 int32_t i; 20219 20220 wptr[0] = TCPOPT_NOP; 20221 wptr[1] = TCPOPT_NOP; 20222 wptr[2] = TCPOPT_SACK; 20223 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 20224 sizeof (sack_blk_t); 20225 wptr += TCPOPT_REAL_SACK_LEN; 20226 20227 tmp = tcp->tcp_sack_list; 20228 for (i = 0; i < num_sack_blk; i++) { 20229 U32_TO_BE32(tmp[i].begin, wptr); 20230 wptr += sizeof (tcp_seq); 20231 U32_TO_BE32(tmp[i].end, wptr); 20232 wptr += sizeof (tcp_seq); 20233 } 20234 tcp_h->th_offset_and_rsrvd[0] += 20235 ((num_sack_blk * 2 + 1) << 4); 20236 } 20237 } 20238 20239 /* 20240 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 20241 * the destination address and SAP attribute, and if necessary, the 20242 * hardware checksum offload attribute to a Multidata message. 20243 */ 20244 static int 20245 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 20246 const uint32_t start, const uint32_t stuff, const uint32_t end, 20247 const uint32_t flags, tcp_stack_t *tcps) 20248 { 20249 /* Add global destination address & SAP attribute */ 20250 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 20251 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 20252 "destination address+SAP\n")); 20253 20254 if (dlmp != NULL) 20255 TCP_STAT(tcps, tcp_mdt_allocfail); 20256 return (-1); 20257 } 20258 20259 /* Add global hwcksum attribute */ 20260 if (hwcksum && 20261 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 20262 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 20263 "checksum attribute\n")); 20264 20265 TCP_STAT(tcps, tcp_mdt_allocfail); 20266 return (-1); 20267 } 20268 20269 return (0); 20270 } 20271 20272 /* 20273 * Smaller and private version of pdescinfo_t used specifically for TCP, 20274 * which allows for only two payload spans per packet. 20275 */ 20276 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 20277 20278 /* 20279 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 20280 * scheme, and returns one the following: 20281 * 20282 * -1 = failed allocation. 20283 * 0 = success; burst count reached, or usable send window is too small, 20284 * and that we'd rather wait until later before sending again. 20285 */ 20286 static int 20287 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20288 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20289 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20290 const int mdt_thres) 20291 { 20292 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 20293 multidata_t *mmd; 20294 uint_t obsegs, obbytes, hdr_frag_sz; 20295 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 20296 int num_burst_seg, max_pld; 20297 pdesc_t *pkt; 20298 tcp_pdescinfo_t tcp_pkt_info; 20299 pdescinfo_t *pkt_info; 20300 int pbuf_idx, pbuf_idx_nxt; 20301 int seg_len, len, spill, af; 20302 boolean_t add_buffer, zcopy, clusterwide; 20303 boolean_t buf_trunked = B_FALSE; 20304 boolean_t rconfirm = B_FALSE; 20305 boolean_t done = B_FALSE; 20306 uint32_t cksum; 20307 uint32_t hwcksum_flags; 20308 ire_t *ire = NULL; 20309 ill_t *ill; 20310 ipha_t *ipha; 20311 ip6_t *ip6h; 20312 ipaddr_t src, dst; 20313 ill_zerocopy_capab_t *zc_cap = NULL; 20314 uint16_t *up; 20315 int err; 20316 conn_t *connp; 20317 mblk_t *mp, *mp1, *fw_mp_head = NULL; 20318 uchar_t *pld_start; 20319 tcp_stack_t *tcps = tcp->tcp_tcps; 20320 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20321 20322 #ifdef _BIG_ENDIAN 20323 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 20324 #else 20325 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 20326 #endif 20327 20328 #define PREP_NEW_MULTIDATA() { \ 20329 mmd = NULL; \ 20330 md_mp = md_hbuf = NULL; \ 20331 cur_hdr_off = 0; \ 20332 max_pld = tcp->tcp_mdt_max_pld; \ 20333 pbuf_idx = pbuf_idx_nxt = -1; \ 20334 add_buffer = B_TRUE; \ 20335 zcopy = B_FALSE; \ 20336 } 20337 20338 #define PREP_NEW_PBUF() { \ 20339 md_pbuf = md_pbuf_nxt = NULL; \ 20340 pbuf_idx = pbuf_idx_nxt = -1; \ 20341 cur_pld_off = 0; \ 20342 first_snxt = *snxt; \ 20343 ASSERT(*tail_unsent > 0); \ 20344 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20345 } 20346 20347 ASSERT(mdt_thres >= mss); 20348 ASSERT(*usable > 0 && *usable > mdt_thres); 20349 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20350 ASSERT(!TCP_IS_DETACHED(tcp)); 20351 ASSERT(tcp->tcp_valid_bits == 0 || 20352 tcp->tcp_valid_bits == TCP_FSS_VALID); 20353 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20354 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20355 (tcp->tcp_ipversion == IPV6_VERSION && 20356 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20357 20358 connp = tcp->tcp_connp; 20359 ASSERT(connp != NULL); 20360 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20361 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20362 20363 /* 20364 * Note that tcp will only declare at most 2 payload spans per 20365 * packet, which is much lower than the maximum allowable number 20366 * of packet spans per Multidata. For this reason, we use the 20367 * privately declared and smaller descriptor info structure, in 20368 * order to save some stack space. 20369 */ 20370 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20371 20372 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20373 if (af == AF_INET) { 20374 dst = tcp->tcp_ipha->ipha_dst; 20375 src = tcp->tcp_ipha->ipha_src; 20376 ASSERT(!CLASSD(dst)); 20377 } 20378 ASSERT(af == AF_INET || 20379 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20380 20381 obsegs = obbytes = 0; 20382 num_burst_seg = tcp->tcp_snd_burst; 20383 md_mp_head = NULL; 20384 PREP_NEW_MULTIDATA(); 20385 20386 /* 20387 * Before we go on further, make sure there is an IRE that we can 20388 * use, and that the ILL supports MDT. Otherwise, there's no point 20389 * in proceeding any further, and we should just hand everything 20390 * off to the legacy path. 20391 */ 20392 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20393 goto legacy_send_no_md; 20394 20395 ASSERT(ire != NULL); 20396 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20397 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20398 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20399 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20400 /* 20401 * If we do support loopback for MDT (which requires modifications 20402 * to the receiving paths), the following assertions should go away, 20403 * and we would be sending the Multidata to loopback conn later on. 20404 */ 20405 ASSERT(!IRE_IS_LOCAL(ire)); 20406 ASSERT(ire->ire_stq != NULL); 20407 20408 ill = ire_to_ill(ire); 20409 ASSERT(ill != NULL); 20410 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20411 20412 if (!tcp->tcp_ire_ill_check_done) { 20413 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20414 tcp->tcp_ire_ill_check_done = B_TRUE; 20415 } 20416 20417 /* 20418 * If the underlying interface conditions have changed, or if the 20419 * new interface does not support MDT, go back to legacy path. 20420 */ 20421 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20422 /* don't go through this path anymore for this connection */ 20423 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20424 tcp->tcp_mdt = B_FALSE; 20425 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20426 "interface %s\n", (void *)connp, ill->ill_name)); 20427 /* IRE will be released prior to returning */ 20428 goto legacy_send_no_md; 20429 } 20430 20431 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20432 zc_cap = ill->ill_zerocopy_capab; 20433 20434 /* 20435 * Check if we can take tcp fast-path. Note that "incomplete" 20436 * ire's (where the link-layer for next hop is not resolved 20437 * or where the fast-path header in nce_fp_mp is not available 20438 * yet) are sent down the legacy (slow) path. 20439 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20440 */ 20441 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20442 /* IRE will be released prior to returning */ 20443 goto legacy_send_no_md; 20444 } 20445 20446 /* go to legacy path if interface doesn't support zerocopy */ 20447 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20448 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20449 /* IRE will be released prior to returning */ 20450 goto legacy_send_no_md; 20451 } 20452 20453 /* does the interface support hardware checksum offload? */ 20454 hwcksum_flags = 0; 20455 if (ILL_HCKSUM_CAPABLE(ill) && 20456 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20457 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20458 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20459 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20460 HCKSUM_IPHDRCKSUM) 20461 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20462 20463 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20464 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20465 hwcksum_flags |= HCK_FULLCKSUM; 20466 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20467 HCKSUM_INET_PARTIAL) 20468 hwcksum_flags |= HCK_PARTIALCKSUM; 20469 } 20470 20471 /* 20472 * Each header fragment consists of the leading extra space, 20473 * followed by the TCP/IP header, and the trailing extra space. 20474 * We make sure that each header fragment begins on a 32-bit 20475 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20476 * aligned in tcp_mdt_update). 20477 */ 20478 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20479 tcp->tcp_mdt_hdr_tail), 4); 20480 20481 /* are we starting from the beginning of data block? */ 20482 if (*tail_unsent == 0) { 20483 *xmit_tail = (*xmit_tail)->b_cont; 20484 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20485 *tail_unsent = (int)MBLKL(*xmit_tail); 20486 } 20487 20488 /* 20489 * Here we create one or more Multidata messages, each made up of 20490 * one header buffer and up to N payload buffers. This entire 20491 * operation is done within two loops: 20492 * 20493 * The outer loop mostly deals with creating the Multidata message, 20494 * as well as the header buffer that gets added to it. It also 20495 * links the Multidata messages together such that all of them can 20496 * be sent down to the lower layer in a single putnext call; this 20497 * linking behavior depends on the tcp_mdt_chain tunable. 20498 * 20499 * The inner loop takes an existing Multidata message, and adds 20500 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20501 * packetizes those buffers by filling up the corresponding header 20502 * buffer fragments with the proper IP and TCP headers, and by 20503 * describing the layout of each packet in the packet descriptors 20504 * that get added to the Multidata. 20505 */ 20506 do { 20507 /* 20508 * If usable send window is too small, or data blocks in 20509 * transmit list are smaller than our threshold (i.e. app 20510 * performs large writes followed by small ones), we hand 20511 * off the control over to the legacy path. Note that we'll 20512 * get back the control once it encounters a large block. 20513 */ 20514 if (*usable < mss || (*tail_unsent <= mdt_thres && 20515 (*xmit_tail)->b_cont != NULL && 20516 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20517 /* send down what we've got so far */ 20518 if (md_mp_head != NULL) { 20519 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20520 obsegs, obbytes, &rconfirm); 20521 } 20522 /* 20523 * Pass control over to tcp_send(), but tell it to 20524 * return to us once a large-size transmission is 20525 * possible. 20526 */ 20527 TCP_STAT(tcps, tcp_mdt_legacy_small); 20528 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20529 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20530 tail_unsent, xmit_tail, local_time, 20531 mdt_thres)) <= 0) { 20532 /* burst count reached, or alloc failed */ 20533 IRE_REFRELE(ire); 20534 return (err); 20535 } 20536 20537 /* tcp_send() may have sent everything, so check */ 20538 if (*usable <= 0) { 20539 IRE_REFRELE(ire); 20540 return (0); 20541 } 20542 20543 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20544 /* 20545 * We may have delivered the Multidata, so make sure 20546 * to re-initialize before the next round. 20547 */ 20548 md_mp_head = NULL; 20549 obsegs = obbytes = 0; 20550 num_burst_seg = tcp->tcp_snd_burst; 20551 PREP_NEW_MULTIDATA(); 20552 20553 /* are we starting from the beginning of data block? */ 20554 if (*tail_unsent == 0) { 20555 *xmit_tail = (*xmit_tail)->b_cont; 20556 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20557 (uintptr_t)INT_MAX); 20558 *tail_unsent = (int)MBLKL(*xmit_tail); 20559 } 20560 } 20561 20562 /* 20563 * max_pld limits the number of mblks in tcp's transmit 20564 * queue that can be added to a Multidata message. Once 20565 * this counter reaches zero, no more additional mblks 20566 * can be added to it. What happens afterwards depends 20567 * on whether or not we are set to chain the Multidata 20568 * messages. If we are to link them together, reset 20569 * max_pld to its original value (tcp_mdt_max_pld) and 20570 * prepare to create a new Multidata message which will 20571 * get linked to md_mp_head. Else, leave it alone and 20572 * let the inner loop break on its own. 20573 */ 20574 if (tcp_mdt_chain && max_pld == 0) 20575 PREP_NEW_MULTIDATA(); 20576 20577 /* adding a payload buffer; re-initialize values */ 20578 if (add_buffer) 20579 PREP_NEW_PBUF(); 20580 20581 /* 20582 * If we don't have a Multidata, either because we just 20583 * (re)entered this outer loop, or after we branched off 20584 * to tcp_send above, setup the Multidata and header 20585 * buffer to be used. 20586 */ 20587 if (md_mp == NULL) { 20588 int md_hbuflen; 20589 uint32_t start, stuff; 20590 20591 /* 20592 * Calculate Multidata header buffer size large enough 20593 * to hold all of the headers that can possibly be 20594 * sent at this moment. We'd rather over-estimate 20595 * the size than running out of space; this is okay 20596 * since this buffer is small anyway. 20597 */ 20598 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20599 20600 /* 20601 * Start and stuff offset for partial hardware 20602 * checksum offload; these are currently for IPv4. 20603 * For full checksum offload, they are set to zero. 20604 */ 20605 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20606 if (af == AF_INET) { 20607 start = IP_SIMPLE_HDR_LENGTH; 20608 stuff = IP_SIMPLE_HDR_LENGTH + 20609 TCP_CHECKSUM_OFFSET; 20610 } else { 20611 start = IPV6_HDR_LEN; 20612 stuff = IPV6_HDR_LEN + 20613 TCP_CHECKSUM_OFFSET; 20614 } 20615 } else { 20616 start = stuff = 0; 20617 } 20618 20619 /* 20620 * Create the header buffer, Multidata, as well as 20621 * any necessary attributes (destination address, 20622 * SAP and hardware checksum offload) that should 20623 * be associated with the Multidata message. 20624 */ 20625 ASSERT(cur_hdr_off == 0); 20626 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20627 ((md_hbuf->b_wptr += md_hbuflen), 20628 (mmd = mmd_alloc(md_hbuf, &md_mp, 20629 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20630 /* fastpath mblk */ 20631 ire->ire_nce->nce_res_mp, 20632 /* hardware checksum enabled */ 20633 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20634 /* hardware checksum offsets */ 20635 start, stuff, 0, 20636 /* hardware checksum flag */ 20637 hwcksum_flags, tcps) != 0)) { 20638 legacy_send: 20639 if (md_mp != NULL) { 20640 /* Unlink message from the chain */ 20641 if (md_mp_head != NULL) { 20642 err = (intptr_t)rmvb(md_mp_head, 20643 md_mp); 20644 /* 20645 * We can't assert that rmvb 20646 * did not return -1, since we 20647 * may get here before linkb 20648 * happens. We do, however, 20649 * check if we just removed the 20650 * only element in the list. 20651 */ 20652 if (err == 0) 20653 md_mp_head = NULL; 20654 } 20655 /* md_hbuf gets freed automatically */ 20656 TCP_STAT(tcps, tcp_mdt_discarded); 20657 freeb(md_mp); 20658 } else { 20659 /* Either allocb or mmd_alloc failed */ 20660 TCP_STAT(tcps, tcp_mdt_allocfail); 20661 if (md_hbuf != NULL) 20662 freeb(md_hbuf); 20663 } 20664 20665 /* send down what we've got so far */ 20666 if (md_mp_head != NULL) { 20667 tcp_multisend_data(tcp, ire, ill, 20668 md_mp_head, obsegs, obbytes, 20669 &rconfirm); 20670 } 20671 legacy_send_no_md: 20672 if (ire != NULL) 20673 IRE_REFRELE(ire); 20674 /* 20675 * Too bad; let the legacy path handle this. 20676 * We specify INT_MAX for the threshold, since 20677 * we gave up with the Multidata processings 20678 * and let the old path have it all. 20679 */ 20680 TCP_STAT(tcps, tcp_mdt_legacy_all); 20681 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20682 tcp_tcp_hdr_len, num_sack_blk, usable, 20683 snxt, tail_unsent, xmit_tail, local_time, 20684 INT_MAX)); 20685 } 20686 20687 /* link to any existing ones, if applicable */ 20688 TCP_STAT(tcps, tcp_mdt_allocd); 20689 if (md_mp_head == NULL) { 20690 md_mp_head = md_mp; 20691 } else if (tcp_mdt_chain) { 20692 TCP_STAT(tcps, tcp_mdt_linked); 20693 linkb(md_mp_head, md_mp); 20694 } 20695 } 20696 20697 ASSERT(md_mp_head != NULL); 20698 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20699 ASSERT(md_mp != NULL && mmd != NULL); 20700 ASSERT(md_hbuf != NULL); 20701 20702 /* 20703 * Packetize the transmittable portion of the data block; 20704 * each data block is essentially added to the Multidata 20705 * as a payload buffer. We also deal with adding more 20706 * than one payload buffers, which happens when the remaining 20707 * packetized portion of the current payload buffer is less 20708 * than MSS, while the next data block in transmit queue 20709 * has enough data to make up for one. This "spillover" 20710 * case essentially creates a split-packet, where portions 20711 * of the packet's payload fragments may span across two 20712 * virtually discontiguous address blocks. 20713 */ 20714 seg_len = mss; 20715 do { 20716 len = seg_len; 20717 20718 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20719 ipha = NULL; 20720 ip6h = NULL; 20721 20722 ASSERT(len > 0); 20723 ASSERT(max_pld >= 0); 20724 ASSERT(!add_buffer || cur_pld_off == 0); 20725 20726 /* 20727 * First time around for this payload buffer; note 20728 * in the case of a spillover, the following has 20729 * been done prior to adding the split-packet 20730 * descriptor to Multidata, and we don't want to 20731 * repeat the process. 20732 */ 20733 if (add_buffer) { 20734 ASSERT(mmd != NULL); 20735 ASSERT(md_pbuf == NULL); 20736 ASSERT(md_pbuf_nxt == NULL); 20737 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20738 20739 /* 20740 * Have we reached the limit? We'd get to 20741 * this case when we're not chaining the 20742 * Multidata messages together, and since 20743 * we're done, terminate this loop. 20744 */ 20745 if (max_pld == 0) 20746 break; /* done */ 20747 20748 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20749 TCP_STAT(tcps, tcp_mdt_allocfail); 20750 goto legacy_send; /* out_of_mem */ 20751 } 20752 20753 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20754 zc_cap != NULL) { 20755 if (!ip_md_zcopy_attr(mmd, NULL, 20756 zc_cap->ill_zerocopy_flags)) { 20757 freeb(md_pbuf); 20758 TCP_STAT(tcps, 20759 tcp_mdt_allocfail); 20760 /* out_of_mem */ 20761 goto legacy_send; 20762 } 20763 zcopy = B_TRUE; 20764 } 20765 20766 md_pbuf->b_rptr += base_pld_off; 20767 20768 /* 20769 * Add a payload buffer to the Multidata; this 20770 * operation must not fail, or otherwise our 20771 * logic in this routine is broken. There 20772 * is no memory allocation done by the 20773 * routine, so any returned failure simply 20774 * tells us that we've done something wrong. 20775 * 20776 * A failure tells us that either we're adding 20777 * the same payload buffer more than once, or 20778 * we're trying to add more buffers than 20779 * allowed (max_pld calculation is wrong). 20780 * None of the above cases should happen, and 20781 * we panic because either there's horrible 20782 * heap corruption, and/or programming mistake. 20783 */ 20784 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20785 if (pbuf_idx < 0) { 20786 cmn_err(CE_PANIC, "tcp_multisend: " 20787 "payload buffer logic error " 20788 "detected for tcp %p mmd %p " 20789 "pbuf %p (%d)\n", 20790 (void *)tcp, (void *)mmd, 20791 (void *)md_pbuf, pbuf_idx); 20792 } 20793 20794 ASSERT(max_pld > 0); 20795 --max_pld; 20796 add_buffer = B_FALSE; 20797 } 20798 20799 ASSERT(md_mp_head != NULL); 20800 ASSERT(md_pbuf != NULL); 20801 ASSERT(md_pbuf_nxt == NULL); 20802 ASSERT(pbuf_idx != -1); 20803 ASSERT(pbuf_idx_nxt == -1); 20804 ASSERT(*usable > 0); 20805 20806 /* 20807 * We spillover to the next payload buffer only 20808 * if all of the following is true: 20809 * 20810 * 1. There is not enough data on the current 20811 * payload buffer to make up `len', 20812 * 2. We are allowed to send `len', 20813 * 3. The next payload buffer length is large 20814 * enough to accomodate `spill'. 20815 */ 20816 if ((spill = len - *tail_unsent) > 0 && 20817 *usable >= len && 20818 MBLKL((*xmit_tail)->b_cont) >= spill && 20819 max_pld > 0) { 20820 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20821 if (md_pbuf_nxt == NULL) { 20822 TCP_STAT(tcps, tcp_mdt_allocfail); 20823 goto legacy_send; /* out_of_mem */ 20824 } 20825 20826 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20827 zc_cap != NULL) { 20828 if (!ip_md_zcopy_attr(mmd, NULL, 20829 zc_cap->ill_zerocopy_flags)) { 20830 freeb(md_pbuf_nxt); 20831 TCP_STAT(tcps, 20832 tcp_mdt_allocfail); 20833 /* out_of_mem */ 20834 goto legacy_send; 20835 } 20836 zcopy = B_TRUE; 20837 } 20838 20839 /* 20840 * See comments above on the first call to 20841 * mmd_addpldbuf for explanation on the panic. 20842 */ 20843 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20844 if (pbuf_idx_nxt < 0) { 20845 panic("tcp_multisend: " 20846 "next payload buffer logic error " 20847 "detected for tcp %p mmd %p " 20848 "pbuf %p (%d)\n", 20849 (void *)tcp, (void *)mmd, 20850 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20851 } 20852 20853 ASSERT(max_pld > 0); 20854 --max_pld; 20855 } else if (spill > 0) { 20856 /* 20857 * If there's a spillover, but the following 20858 * xmit_tail couldn't give us enough octets 20859 * to reach "len", then stop the current 20860 * Multidata creation and let the legacy 20861 * tcp_send() path take over. We don't want 20862 * to send the tiny segment as part of this 20863 * Multidata for performance reasons; instead, 20864 * we let the legacy path deal with grouping 20865 * it with the subsequent small mblks. 20866 */ 20867 if (*usable >= len && 20868 MBLKL((*xmit_tail)->b_cont) < spill) { 20869 max_pld = 0; 20870 break; /* done */ 20871 } 20872 20873 /* 20874 * We can't spillover, and we are near 20875 * the end of the current payload buffer, 20876 * so send what's left. 20877 */ 20878 ASSERT(*tail_unsent > 0); 20879 len = *tail_unsent; 20880 } 20881 20882 /* tail_unsent is negated if there is a spillover */ 20883 *tail_unsent -= len; 20884 *usable -= len; 20885 ASSERT(*usable >= 0); 20886 20887 if (*usable < mss) 20888 seg_len = *usable; 20889 /* 20890 * Sender SWS avoidance; see comments in tcp_send(); 20891 * everything else is the same, except that we only 20892 * do this here if there is no more data to be sent 20893 * following the current xmit_tail. We don't check 20894 * for 1-byte urgent data because we shouldn't get 20895 * here if TCP_URG_VALID is set. 20896 */ 20897 if (*usable > 0 && *usable < mss && 20898 ((md_pbuf_nxt == NULL && 20899 (*xmit_tail)->b_cont == NULL) || 20900 (md_pbuf_nxt != NULL && 20901 (*xmit_tail)->b_cont->b_cont == NULL)) && 20902 seg_len < (tcp->tcp_max_swnd >> 1) && 20903 (tcp->tcp_unsent - 20904 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20905 !tcp->tcp_zero_win_probe) { 20906 if ((*snxt + len) == tcp->tcp_snxt && 20907 (*snxt + len) == tcp->tcp_suna) { 20908 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20909 } 20910 done = B_TRUE; 20911 } 20912 20913 /* 20914 * Prime pump for IP's checksumming on our behalf; 20915 * include the adjustment for a source route if any. 20916 * Do this only for software/partial hardware checksum 20917 * offload, as this field gets zeroed out later for 20918 * the full hardware checksum offload case. 20919 */ 20920 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20921 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20922 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20923 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20924 } 20925 20926 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20927 *snxt += len; 20928 20929 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20930 /* 20931 * We set the PUSH bit only if TCP has no more buffered 20932 * data to be transmitted (or if sender SWS avoidance 20933 * takes place), as opposed to setting it for every 20934 * last packet in the burst. 20935 */ 20936 if (done || 20937 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20938 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20939 20940 /* 20941 * Set FIN bit if this is our last segment; snxt 20942 * already includes its length, and it will not 20943 * be adjusted after this point. 20944 */ 20945 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20946 *snxt == tcp->tcp_fss) { 20947 if (!tcp->tcp_fin_acked) { 20948 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20949 BUMP_MIB(&tcps->tcps_mib, 20950 tcpOutControl); 20951 } 20952 if (!tcp->tcp_fin_sent) { 20953 tcp->tcp_fin_sent = B_TRUE; 20954 /* 20955 * tcp state must be ESTABLISHED 20956 * in order for us to get here in 20957 * the first place. 20958 */ 20959 tcp->tcp_state = TCPS_FIN_WAIT_1; 20960 20961 /* 20962 * Upon returning from this routine, 20963 * tcp_wput_data() will set tcp_snxt 20964 * to be equal to snxt + tcp_fin_sent. 20965 * This is essentially the same as 20966 * setting it to tcp_fss + 1. 20967 */ 20968 } 20969 } 20970 20971 tcp->tcp_last_sent_len = (ushort_t)len; 20972 20973 len += tcp_hdr_len; 20974 if (tcp->tcp_ipversion == IPV4_VERSION) 20975 tcp->tcp_ipha->ipha_length = htons(len); 20976 else 20977 tcp->tcp_ip6h->ip6_plen = htons(len - 20978 ((char *)&tcp->tcp_ip6h[1] - 20979 tcp->tcp_iphc)); 20980 20981 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20982 20983 /* setup header fragment */ 20984 PDESC_HDR_ADD(pkt_info, 20985 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20986 tcp->tcp_mdt_hdr_head, /* head room */ 20987 tcp_hdr_len, /* len */ 20988 tcp->tcp_mdt_hdr_tail); /* tail room */ 20989 20990 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20991 hdr_frag_sz); 20992 ASSERT(MBLKIN(md_hbuf, 20993 (pkt_info->hdr_base - md_hbuf->b_rptr), 20994 PDESC_HDRSIZE(pkt_info))); 20995 20996 /* setup first payload fragment */ 20997 PDESC_PLD_INIT(pkt_info); 20998 PDESC_PLD_SPAN_ADD(pkt_info, 20999 pbuf_idx, /* index */ 21000 md_pbuf->b_rptr + cur_pld_off, /* start */ 21001 tcp->tcp_last_sent_len); /* len */ 21002 21003 /* create a split-packet in case of a spillover */ 21004 if (md_pbuf_nxt != NULL) { 21005 ASSERT(spill > 0); 21006 ASSERT(pbuf_idx_nxt > pbuf_idx); 21007 ASSERT(!add_buffer); 21008 21009 md_pbuf = md_pbuf_nxt; 21010 md_pbuf_nxt = NULL; 21011 pbuf_idx = pbuf_idx_nxt; 21012 pbuf_idx_nxt = -1; 21013 cur_pld_off = spill; 21014 21015 /* trim out first payload fragment */ 21016 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 21017 21018 /* setup second payload fragment */ 21019 PDESC_PLD_SPAN_ADD(pkt_info, 21020 pbuf_idx, /* index */ 21021 md_pbuf->b_rptr, /* start */ 21022 spill); /* len */ 21023 21024 if ((*xmit_tail)->b_next == NULL) { 21025 /* 21026 * Store the lbolt used for RTT 21027 * estimation. We can only record one 21028 * timestamp per mblk so we do it when 21029 * we reach the end of the payload 21030 * buffer. Also we only take a new 21031 * timestamp sample when the previous 21032 * timed data from the same mblk has 21033 * been ack'ed. 21034 */ 21035 (*xmit_tail)->b_prev = local_time; 21036 (*xmit_tail)->b_next = 21037 (mblk_t *)(uintptr_t)first_snxt; 21038 } 21039 21040 first_snxt = *snxt - spill; 21041 21042 /* 21043 * Advance xmit_tail; usable could be 0 by 21044 * the time we got here, but we made sure 21045 * above that we would only spillover to 21046 * the next data block if usable includes 21047 * the spilled-over amount prior to the 21048 * subtraction. Therefore, we are sure 21049 * that xmit_tail->b_cont can't be NULL. 21050 */ 21051 ASSERT((*xmit_tail)->b_cont != NULL); 21052 *xmit_tail = (*xmit_tail)->b_cont; 21053 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21054 (uintptr_t)INT_MAX); 21055 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 21056 } else { 21057 cur_pld_off += tcp->tcp_last_sent_len; 21058 } 21059 21060 /* 21061 * Fill in the header using the template header, and 21062 * add options such as time-stamp, ECN and/or SACK, 21063 * as needed. 21064 */ 21065 tcp_fill_header(tcp, pkt_info->hdr_rptr, 21066 (clock_t)local_time, num_sack_blk); 21067 21068 /* take care of some IP header businesses */ 21069 if (af == AF_INET) { 21070 ipha = (ipha_t *)pkt_info->hdr_rptr; 21071 21072 ASSERT(OK_32PTR((uchar_t *)ipha)); 21073 ASSERT(PDESC_HDRL(pkt_info) >= 21074 IP_SIMPLE_HDR_LENGTH); 21075 ASSERT(ipha->ipha_version_and_hdr_length == 21076 IP_SIMPLE_HDR_VERSION); 21077 21078 /* 21079 * Assign ident value for current packet; see 21080 * related comments in ip_wput_ire() about the 21081 * contract private interface with clustering 21082 * group. 21083 */ 21084 clusterwide = B_FALSE; 21085 if (cl_inet_ipident != NULL) { 21086 ASSERT(cl_inet_isclusterwide != NULL); 21087 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21088 AF_INET, 21089 (uint8_t *)(uintptr_t)src)) { 21090 ipha->ipha_ident = 21091 (*cl_inet_ipident) 21092 (IPPROTO_IP, AF_INET, 21093 (uint8_t *)(uintptr_t)src, 21094 (uint8_t *)(uintptr_t)dst); 21095 clusterwide = B_TRUE; 21096 } 21097 } 21098 21099 if (!clusterwide) { 21100 ipha->ipha_ident = (uint16_t) 21101 atomic_add_32_nv( 21102 &ire->ire_ident, 1); 21103 } 21104 #ifndef _BIG_ENDIAN 21105 ipha->ipha_ident = (ipha->ipha_ident << 8) | 21106 (ipha->ipha_ident >> 8); 21107 #endif 21108 } else { 21109 ip6h = (ip6_t *)pkt_info->hdr_rptr; 21110 21111 ASSERT(OK_32PTR((uchar_t *)ip6h)); 21112 ASSERT(IPVER(ip6h) == IPV6_VERSION); 21113 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 21114 ASSERT(PDESC_HDRL(pkt_info) >= 21115 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 21116 TCP_CHECKSUM_SIZE)); 21117 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21118 21119 if (tcp->tcp_ip_forward_progress) { 21120 rconfirm = B_TRUE; 21121 tcp->tcp_ip_forward_progress = B_FALSE; 21122 } 21123 } 21124 21125 /* at least one payload span, and at most two */ 21126 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 21127 21128 /* add the packet descriptor to Multidata */ 21129 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 21130 KM_NOSLEEP)) == NULL) { 21131 /* 21132 * Any failure other than ENOMEM indicates 21133 * that we have passed in invalid pkt_info 21134 * or parameters to mmd_addpdesc, which must 21135 * not happen. 21136 * 21137 * EINVAL is a result of failure on boundary 21138 * checks against the pkt_info contents. It 21139 * should not happen, and we panic because 21140 * either there's horrible heap corruption, 21141 * and/or programming mistake. 21142 */ 21143 if (err != ENOMEM) { 21144 cmn_err(CE_PANIC, "tcp_multisend: " 21145 "pdesc logic error detected for " 21146 "tcp %p mmd %p pinfo %p (%d)\n", 21147 (void *)tcp, (void *)mmd, 21148 (void *)pkt_info, err); 21149 } 21150 TCP_STAT(tcps, tcp_mdt_addpdescfail); 21151 goto legacy_send; /* out_of_mem */ 21152 } 21153 ASSERT(pkt != NULL); 21154 21155 /* calculate IP header and TCP checksums */ 21156 if (af == AF_INET) { 21157 /* calculate pseudo-header checksum */ 21158 cksum = (dst >> 16) + (dst & 0xFFFF) + 21159 (src >> 16) + (src & 0xFFFF); 21160 21161 /* offset for TCP header checksum */ 21162 up = IPH_TCPH_CHECKSUMP(ipha, 21163 IP_SIMPLE_HDR_LENGTH); 21164 } else { 21165 up = (uint16_t *)&ip6h->ip6_src; 21166 21167 /* calculate pseudo-header checksum */ 21168 cksum = up[0] + up[1] + up[2] + up[3] + 21169 up[4] + up[5] + up[6] + up[7] + 21170 up[8] + up[9] + up[10] + up[11] + 21171 up[12] + up[13] + up[14] + up[15]; 21172 21173 /* Fold the initial sum */ 21174 cksum = (cksum & 0xffff) + (cksum >> 16); 21175 21176 up = (uint16_t *)(((uchar_t *)ip6h) + 21177 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 21178 } 21179 21180 if (hwcksum_flags & HCK_FULLCKSUM) { 21181 /* clear checksum field for hardware */ 21182 *up = 0; 21183 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 21184 uint32_t sum; 21185 21186 /* pseudo-header checksumming */ 21187 sum = *up + cksum + IP_TCP_CSUM_COMP; 21188 sum = (sum & 0xFFFF) + (sum >> 16); 21189 *up = (sum & 0xFFFF) + (sum >> 16); 21190 } else { 21191 /* software checksumming */ 21192 TCP_STAT(tcps, tcp_out_sw_cksum); 21193 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 21194 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 21195 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 21196 cksum + IP_TCP_CSUM_COMP); 21197 if (*up == 0) 21198 *up = 0xFFFF; 21199 } 21200 21201 /* IPv4 header checksum */ 21202 if (af == AF_INET) { 21203 ipha->ipha_fragment_offset_and_flags |= 21204 (uint32_t)htons(ire->ire_frag_flag); 21205 21206 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 21207 ipha->ipha_hdr_checksum = 0; 21208 } else { 21209 IP_HDR_CKSUM(ipha, cksum, 21210 ((uint32_t *)ipha)[0], 21211 ((uint16_t *)ipha)[4]); 21212 } 21213 } 21214 21215 if (af == AF_INET && 21216 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 21217 af == AF_INET6 && 21218 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 21219 /* build header(IP/TCP) mblk for this segment */ 21220 if ((mp = dupb(md_hbuf)) == NULL) 21221 goto legacy_send; 21222 21223 mp->b_rptr = pkt_info->hdr_rptr; 21224 mp->b_wptr = pkt_info->hdr_wptr; 21225 21226 /* build payload mblk for this segment */ 21227 if ((mp1 = dupb(*xmit_tail)) == NULL) { 21228 freemsg(mp); 21229 goto legacy_send; 21230 } 21231 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 21232 mp1->b_rptr = mp1->b_wptr - 21233 tcp->tcp_last_sent_len; 21234 linkb(mp, mp1); 21235 21236 pld_start = mp1->b_rptr; 21237 21238 if (af == AF_INET) { 21239 DTRACE_PROBE4( 21240 ip4__physical__out__start, 21241 ill_t *, NULL, 21242 ill_t *, ill, 21243 ipha_t *, ipha, 21244 mblk_t *, mp); 21245 FW_HOOKS( 21246 ipst->ips_ip4_physical_out_event, 21247 ipst->ips_ipv4firewall_physical_out, 21248 NULL, ill, ipha, mp, mp, 0, ipst); 21249 DTRACE_PROBE1( 21250 ip4__physical__out__end, 21251 mblk_t *, mp); 21252 } else { 21253 DTRACE_PROBE4( 21254 ip6__physical__out_start, 21255 ill_t *, NULL, 21256 ill_t *, ill, 21257 ip6_t *, ip6h, 21258 mblk_t *, mp); 21259 FW_HOOKS6( 21260 ipst->ips_ip6_physical_out_event, 21261 ipst->ips_ipv6firewall_physical_out, 21262 NULL, ill, ip6h, mp, mp, 0, ipst); 21263 DTRACE_PROBE1( 21264 ip6__physical__out__end, 21265 mblk_t *, mp); 21266 } 21267 21268 if (buf_trunked && mp != NULL) { 21269 /* 21270 * Need to pass it to normal path. 21271 */ 21272 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21273 mp = NULL; 21274 } else if (mp == NULL || 21275 mp->b_rptr != pkt_info->hdr_rptr || 21276 mp->b_wptr != pkt_info->hdr_wptr || 21277 (mp1 = mp->b_cont) == NULL || 21278 mp1->b_rptr != pld_start || 21279 mp1->b_wptr != pld_start + 21280 tcp->tcp_last_sent_len || 21281 mp1->b_cont != NULL) { 21282 /* 21283 * Need to pass all packets of this 21284 * buffer to normal path, either when 21285 * packet is blocked, or when boundary 21286 * of header buffer or payload buffer 21287 * has been changed by FW_HOOKS[6]. 21288 */ 21289 buf_trunked = B_TRUE; 21290 if (md_mp_head != NULL) { 21291 err = (intptr_t)rmvb(md_mp_head, 21292 md_mp); 21293 if (err == 0) 21294 md_mp_head = NULL; 21295 } 21296 21297 /* send down what we've got so far */ 21298 if (md_mp_head != NULL) { 21299 tcp_multisend_data(tcp, ire, 21300 ill, md_mp_head, obsegs, 21301 obbytes, &rconfirm); 21302 } 21303 md_mp_head = NULL; 21304 21305 if (mp != NULL) 21306 CALL_IP_WPUT(tcp->tcp_connp, 21307 q, mp); 21308 21309 mp1 = fw_mp_head; 21310 do { 21311 mp = mp1; 21312 mp1 = mp1->b_next; 21313 mp->b_next = NULL; 21314 mp->b_prev = NULL; 21315 CALL_IP_WPUT(tcp->tcp_connp, 21316 q, mp); 21317 } while (mp1 != NULL); 21318 21319 fw_mp_head = mp = NULL; 21320 } else { 21321 if (fw_mp_head == NULL) 21322 fw_mp_head = mp; 21323 else 21324 fw_mp_head->b_prev->b_next = mp; 21325 fw_mp_head->b_prev = mp; 21326 } 21327 } 21328 21329 if (mp != NULL) { 21330 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21331 ill, ipha, ip6h); 21332 } 21333 21334 /* advance header offset */ 21335 cur_hdr_off += hdr_frag_sz; 21336 21337 obbytes += tcp->tcp_last_sent_len; 21338 ++obsegs; 21339 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21340 *tail_unsent > 0); 21341 21342 if ((*xmit_tail)->b_next == NULL) { 21343 /* 21344 * Store the lbolt used for RTT estimation. We can only 21345 * record one timestamp per mblk so we do it when we 21346 * reach the end of the payload buffer. Also we only 21347 * take a new timestamp sample when the previous timed 21348 * data from the same mblk has been ack'ed. 21349 */ 21350 (*xmit_tail)->b_prev = local_time; 21351 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21352 } 21353 21354 ASSERT(*tail_unsent >= 0); 21355 if (*tail_unsent > 0) { 21356 /* 21357 * We got here because we broke out of the above 21358 * loop due to of one of the following cases: 21359 * 21360 * 1. len < adjusted MSS (i.e. small), 21361 * 2. Sender SWS avoidance, 21362 * 3. max_pld is zero. 21363 * 21364 * We are done for this Multidata, so trim our 21365 * last payload buffer (if any) accordingly. 21366 */ 21367 if (md_pbuf != NULL) 21368 md_pbuf->b_wptr -= *tail_unsent; 21369 } else if (*usable > 0) { 21370 *xmit_tail = (*xmit_tail)->b_cont; 21371 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21372 (uintptr_t)INT_MAX); 21373 *tail_unsent = (int)MBLKL(*xmit_tail); 21374 add_buffer = B_TRUE; 21375 } 21376 21377 while (fw_mp_head) { 21378 mp = fw_mp_head; 21379 fw_mp_head = fw_mp_head->b_next; 21380 mp->b_prev = mp->b_next = NULL; 21381 freemsg(mp); 21382 } 21383 if (buf_trunked) { 21384 TCP_STAT(tcps, tcp_mdt_discarded); 21385 freeb(md_mp); 21386 buf_trunked = B_FALSE; 21387 } 21388 } while (!done && *usable > 0 && num_burst_seg > 0 && 21389 (tcp_mdt_chain || max_pld > 0)); 21390 21391 if (md_mp_head != NULL) { 21392 /* send everything down */ 21393 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21394 &rconfirm); 21395 } 21396 21397 #undef PREP_NEW_MULTIDATA 21398 #undef PREP_NEW_PBUF 21399 #undef IPVER 21400 21401 IRE_REFRELE(ire); 21402 return (0); 21403 } 21404 21405 /* 21406 * A wrapper function for sending one or more Multidata messages down to 21407 * the module below ip; this routine does not release the reference of the 21408 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21409 */ 21410 static void 21411 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21412 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21413 { 21414 uint64_t delta; 21415 nce_t *nce; 21416 tcp_stack_t *tcps = tcp->tcp_tcps; 21417 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21418 21419 ASSERT(ire != NULL && ill != NULL); 21420 ASSERT(ire->ire_stq != NULL); 21421 ASSERT(md_mp_head != NULL); 21422 ASSERT(rconfirm != NULL); 21423 21424 /* adjust MIBs and IRE timestamp */ 21425 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 21426 tcp->tcp_obsegs += obsegs; 21427 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21428 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21429 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21430 21431 if (tcp->tcp_ipversion == IPV4_VERSION) { 21432 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21433 } else { 21434 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21435 } 21436 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21437 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21438 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21439 21440 ire->ire_ob_pkt_count += obsegs; 21441 if (ire->ire_ipif != NULL) 21442 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21443 ire->ire_last_used_time = lbolt; 21444 21445 /* send it down */ 21446 if (ILL_DLS_CAPABLE(ill)) { 21447 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 21448 ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head); 21449 } else { 21450 putnext(ire->ire_stq, md_mp_head); 21451 } 21452 21453 /* we're done for TCP/IPv4 */ 21454 if (tcp->tcp_ipversion == IPV4_VERSION) 21455 return; 21456 21457 nce = ire->ire_nce; 21458 21459 ASSERT(nce != NULL); 21460 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21461 ASSERT(nce->nce_state != ND_INCOMPLETE); 21462 21463 /* reachability confirmation? */ 21464 if (*rconfirm) { 21465 nce->nce_last = TICK_TO_MSEC(lbolt64); 21466 if (nce->nce_state != ND_REACHABLE) { 21467 mutex_enter(&nce->nce_lock); 21468 nce->nce_state = ND_REACHABLE; 21469 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21470 mutex_exit(&nce->nce_lock); 21471 (void) untimeout(nce->nce_timeout_id); 21472 if (ip_debug > 2) { 21473 /* ip1dbg */ 21474 pr_addr_dbg("tcp_multisend_data: state " 21475 "for %s changed to REACHABLE\n", 21476 AF_INET6, &ire->ire_addr_v6); 21477 } 21478 } 21479 /* reset transport reachability confirmation */ 21480 *rconfirm = B_FALSE; 21481 } 21482 21483 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21484 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21485 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21486 21487 if (delta > (uint64_t)ill->ill_reachable_time) { 21488 mutex_enter(&nce->nce_lock); 21489 switch (nce->nce_state) { 21490 case ND_REACHABLE: 21491 case ND_STALE: 21492 /* 21493 * ND_REACHABLE is identical to ND_STALE in this 21494 * specific case. If reachable time has expired for 21495 * this neighbor (delta is greater than reachable 21496 * time), conceptually, the neighbor cache is no 21497 * longer in REACHABLE state, but already in STALE 21498 * state. So the correct transition here is to 21499 * ND_DELAY. 21500 */ 21501 nce->nce_state = ND_DELAY; 21502 mutex_exit(&nce->nce_lock); 21503 NDP_RESTART_TIMER(nce, 21504 ipst->ips_delay_first_probe_time); 21505 if (ip_debug > 3) { 21506 /* ip2dbg */ 21507 pr_addr_dbg("tcp_multisend_data: state " 21508 "for %s changed to DELAY\n", 21509 AF_INET6, &ire->ire_addr_v6); 21510 } 21511 break; 21512 case ND_DELAY: 21513 case ND_PROBE: 21514 mutex_exit(&nce->nce_lock); 21515 /* Timers have already started */ 21516 break; 21517 case ND_UNREACHABLE: 21518 /* 21519 * ndp timer has detected that this nce is 21520 * unreachable and initiated deleting this nce 21521 * and all its associated IREs. This is a race 21522 * where we found the ire before it was deleted 21523 * and have just sent out a packet using this 21524 * unreachable nce. 21525 */ 21526 mutex_exit(&nce->nce_lock); 21527 break; 21528 default: 21529 ASSERT(0); 21530 } 21531 } 21532 } 21533 21534 /* 21535 * Derived from tcp_send_data(). 21536 */ 21537 static void 21538 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21539 int num_lso_seg) 21540 { 21541 ipha_t *ipha; 21542 mblk_t *ire_fp_mp; 21543 uint_t ire_fp_mp_len; 21544 uint32_t hcksum_txflags = 0; 21545 ipaddr_t src; 21546 ipaddr_t dst; 21547 uint32_t cksum; 21548 uint16_t *up; 21549 tcp_stack_t *tcps = tcp->tcp_tcps; 21550 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21551 21552 ASSERT(DB_TYPE(mp) == M_DATA); 21553 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21554 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21555 ASSERT(tcp->tcp_connp != NULL); 21556 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21557 21558 ipha = (ipha_t *)mp->b_rptr; 21559 src = ipha->ipha_src; 21560 dst = ipha->ipha_dst; 21561 21562 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21563 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21564 num_lso_seg); 21565 #ifndef _BIG_ENDIAN 21566 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21567 #endif 21568 if (tcp->tcp_snd_zcopy_aware) { 21569 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21570 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21571 mp = tcp_zcopy_disable(tcp, mp); 21572 } 21573 21574 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21575 ASSERT(ill->ill_hcksum_capab != NULL); 21576 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21577 } 21578 21579 /* 21580 * Since the TCP checksum should be recalculated by h/w, we can just 21581 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21582 * pseudo-header checksum for HCK_PARTIALCKSUM. 21583 * The partial pseudo-header excludes TCP length, that was calculated 21584 * in tcp_send(), so to zero *up before further processing. 21585 */ 21586 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21587 21588 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21589 *up = 0; 21590 21591 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21592 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21593 21594 /* 21595 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 21596 */ 21597 DB_LSOFLAGS(mp) |= HW_LSO; 21598 DB_LSOMSS(mp) = mss; 21599 21600 ipha->ipha_fragment_offset_and_flags |= 21601 (uint32_t)htons(ire->ire_frag_flag); 21602 21603 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21604 ire_fp_mp_len = MBLKL(ire_fp_mp); 21605 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21606 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21607 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21608 21609 UPDATE_OB_PKT_COUNT(ire); 21610 ire->ire_last_used_time = lbolt; 21611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21613 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21614 ntohs(ipha->ipha_length)); 21615 21616 if (ILL_DLS_CAPABLE(ill)) { 21617 /* 21618 * Send the packet directly to DLD, where it may be queued 21619 * depending on the availability of transmit resources at 21620 * the media layer. 21621 */ 21622 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 21623 } else { 21624 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 21625 DTRACE_PROBE4(ip4__physical__out__start, 21626 ill_t *, NULL, ill_t *, out_ill, 21627 ipha_t *, ipha, mblk_t *, mp); 21628 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21629 ipst->ips_ipv4firewall_physical_out, 21630 NULL, out_ill, ipha, mp, mp, 0, ipst); 21631 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21632 21633 if (mp != NULL) { 21634 DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL); 21635 putnext(ire->ire_stq, mp); 21636 } 21637 } 21638 } 21639 21640 /* 21641 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21642 * scheme, and returns one of the following: 21643 * 21644 * -1 = failed allocation. 21645 * 0 = success; burst count reached, or usable send window is too small, 21646 * and that we'd rather wait until later before sending again. 21647 * 1 = success; we are called from tcp_multisend(), and both usable send 21648 * window and tail_unsent are greater than the MDT threshold, and thus 21649 * Multidata Transmit should be used instead. 21650 */ 21651 static int 21652 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21653 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21654 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21655 const int mdt_thres) 21656 { 21657 int num_burst_seg = tcp->tcp_snd_burst; 21658 ire_t *ire = NULL; 21659 ill_t *ill = NULL; 21660 mblk_t *ire_fp_mp = NULL; 21661 uint_t ire_fp_mp_len = 0; 21662 int num_lso_seg = 1; 21663 uint_t lso_usable; 21664 boolean_t do_lso_send = B_FALSE; 21665 tcp_stack_t *tcps = tcp->tcp_tcps; 21666 21667 /* 21668 * Check LSO capability before any further work. And the similar check 21669 * need to be done in for(;;) loop. 21670 * LSO will be deployed when therer is more than one mss of available 21671 * data and a burst transmission is allowed. 21672 */ 21673 if (tcp->tcp_lso && 21674 (tcp->tcp_valid_bits == 0 || 21675 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21676 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21677 /* 21678 * Try to find usable IRE/ILL and do basic check to the ILL. 21679 */ 21680 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21681 /* 21682 * Enable LSO with this transmission. 21683 * Since IRE has been hold in 21684 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21685 * should be called before return. 21686 */ 21687 do_lso_send = B_TRUE; 21688 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21689 ire_fp_mp_len = MBLKL(ire_fp_mp); 21690 /* Round up to multiple of 4 */ 21691 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21692 } else { 21693 do_lso_send = B_FALSE; 21694 ill = NULL; 21695 } 21696 } 21697 21698 for (;;) { 21699 struct datab *db; 21700 tcph_t *tcph; 21701 uint32_t sum; 21702 mblk_t *mp, *mp1; 21703 uchar_t *rptr; 21704 int len; 21705 21706 /* 21707 * If we're called by tcp_multisend(), and the amount of 21708 * sendable data as well as the size of current xmit_tail 21709 * is beyond the MDT threshold, return to the caller and 21710 * let the large data transmit be done using MDT. 21711 */ 21712 if (*usable > 0 && *usable > mdt_thres && 21713 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21714 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21715 ASSERT(tcp->tcp_mdt); 21716 return (1); /* success; do large send */ 21717 } 21718 21719 if (num_burst_seg == 0) 21720 break; /* success; burst count reached */ 21721 21722 /* 21723 * Calculate the maximum payload length we can send in *one* 21724 * time. 21725 */ 21726 if (do_lso_send) { 21727 /* 21728 * Check whether need to do LSO any more. 21729 */ 21730 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21731 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21732 lso_usable = MIN(lso_usable, 21733 num_burst_seg * mss); 21734 21735 num_lso_seg = lso_usable / mss; 21736 if (lso_usable % mss) { 21737 num_lso_seg++; 21738 tcp->tcp_last_sent_len = (ushort_t) 21739 (lso_usable % mss); 21740 } else { 21741 tcp->tcp_last_sent_len = (ushort_t)mss; 21742 } 21743 } else { 21744 do_lso_send = B_FALSE; 21745 num_lso_seg = 1; 21746 lso_usable = mss; 21747 } 21748 } 21749 21750 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21751 21752 /* 21753 * Adjust num_burst_seg here. 21754 */ 21755 num_burst_seg -= num_lso_seg; 21756 21757 len = mss; 21758 if (len > *usable) { 21759 ASSERT(do_lso_send == B_FALSE); 21760 21761 len = *usable; 21762 if (len <= 0) { 21763 /* Terminate the loop */ 21764 break; /* success; too small */ 21765 } 21766 /* 21767 * Sender silly-window avoidance. 21768 * Ignore this if we are going to send a 21769 * zero window probe out. 21770 * 21771 * TODO: force data into microscopic window? 21772 * ==> (!pushed || (unsent > usable)) 21773 */ 21774 if (len < (tcp->tcp_max_swnd >> 1) && 21775 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21776 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21777 len == 1) && (! tcp->tcp_zero_win_probe)) { 21778 /* 21779 * If the retransmit timer is not running 21780 * we start it so that we will retransmit 21781 * in the case when the the receiver has 21782 * decremented the window. 21783 */ 21784 if (*snxt == tcp->tcp_snxt && 21785 *snxt == tcp->tcp_suna) { 21786 /* 21787 * We are not supposed to send 21788 * anything. So let's wait a little 21789 * bit longer before breaking SWS 21790 * avoidance. 21791 * 21792 * What should the value be? 21793 * Suggestion: MAX(init rexmit time, 21794 * tcp->tcp_rto) 21795 */ 21796 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21797 } 21798 break; /* success; too small */ 21799 } 21800 } 21801 21802 tcph = tcp->tcp_tcph; 21803 21804 /* 21805 * The reason to adjust len here is that we need to set flags 21806 * and calculate checksum. 21807 */ 21808 if (do_lso_send) 21809 len = lso_usable; 21810 21811 *usable -= len; /* Approximate - can be adjusted later */ 21812 if (*usable > 0) 21813 tcph->th_flags[0] = TH_ACK; 21814 else 21815 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21816 21817 /* 21818 * Prime pump for IP's checksumming on our behalf 21819 * Include the adjustment for a source route if any. 21820 */ 21821 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21822 sum = (sum >> 16) + (sum & 0xFFFF); 21823 U16_TO_ABE16(sum, tcph->th_sum); 21824 21825 U32_TO_ABE32(*snxt, tcph->th_seq); 21826 21827 /* 21828 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21829 * set. For the case when TCP_FSS_VALID is the only valid 21830 * bit (normal active close), branch off only when we think 21831 * that the FIN flag needs to be set. Note for this case, 21832 * that (snxt + len) may not reflect the actual seg_len, 21833 * as len may be further reduced in tcp_xmit_mp(). If len 21834 * gets modified, we will end up here again. 21835 */ 21836 if (tcp->tcp_valid_bits != 0 && 21837 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21838 ((*snxt + len) == tcp->tcp_fss))) { 21839 uchar_t *prev_rptr; 21840 uint32_t prev_snxt = tcp->tcp_snxt; 21841 21842 if (*tail_unsent == 0) { 21843 ASSERT((*xmit_tail)->b_cont != NULL); 21844 *xmit_tail = (*xmit_tail)->b_cont; 21845 prev_rptr = (*xmit_tail)->b_rptr; 21846 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21847 (*xmit_tail)->b_rptr); 21848 } else { 21849 prev_rptr = (*xmit_tail)->b_rptr; 21850 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21851 *tail_unsent; 21852 } 21853 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21854 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21855 /* Restore tcp_snxt so we get amount sent right. */ 21856 tcp->tcp_snxt = prev_snxt; 21857 if (prev_rptr == (*xmit_tail)->b_rptr) { 21858 /* 21859 * If the previous timestamp is still in use, 21860 * don't stomp on it. 21861 */ 21862 if ((*xmit_tail)->b_next == NULL) { 21863 (*xmit_tail)->b_prev = local_time; 21864 (*xmit_tail)->b_next = 21865 (mblk_t *)(uintptr_t)(*snxt); 21866 } 21867 } else 21868 (*xmit_tail)->b_rptr = prev_rptr; 21869 21870 if (mp == NULL) { 21871 if (ire != NULL) 21872 IRE_REFRELE(ire); 21873 return (-1); 21874 } 21875 mp1 = mp->b_cont; 21876 21877 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21878 tcp->tcp_last_sent_len = (ushort_t)len; 21879 while (mp1->b_cont) { 21880 *xmit_tail = (*xmit_tail)->b_cont; 21881 (*xmit_tail)->b_prev = local_time; 21882 (*xmit_tail)->b_next = 21883 (mblk_t *)(uintptr_t)(*snxt); 21884 mp1 = mp1->b_cont; 21885 } 21886 *snxt += len; 21887 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21888 BUMP_LOCAL(tcp->tcp_obsegs); 21889 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21890 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21891 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21892 tcp_send_data(tcp, q, mp); 21893 continue; 21894 } 21895 21896 *snxt += len; /* Adjust later if we don't send all of len */ 21897 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21898 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21899 21900 if (*tail_unsent) { 21901 /* Are the bytes above us in flight? */ 21902 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21903 if (rptr != (*xmit_tail)->b_rptr) { 21904 *tail_unsent -= len; 21905 if (len <= mss) /* LSO is unusable */ 21906 tcp->tcp_last_sent_len = (ushort_t)len; 21907 len += tcp_hdr_len; 21908 if (tcp->tcp_ipversion == IPV4_VERSION) 21909 tcp->tcp_ipha->ipha_length = htons(len); 21910 else 21911 tcp->tcp_ip6h->ip6_plen = 21912 htons(len - 21913 ((char *)&tcp->tcp_ip6h[1] - 21914 tcp->tcp_iphc)); 21915 mp = dupb(*xmit_tail); 21916 if (mp == NULL) { 21917 if (ire != NULL) 21918 IRE_REFRELE(ire); 21919 return (-1); /* out_of_mem */ 21920 } 21921 mp->b_rptr = rptr; 21922 /* 21923 * If the old timestamp is no longer in use, 21924 * sample a new timestamp now. 21925 */ 21926 if ((*xmit_tail)->b_next == NULL) { 21927 (*xmit_tail)->b_prev = local_time; 21928 (*xmit_tail)->b_next = 21929 (mblk_t *)(uintptr_t)(*snxt-len); 21930 } 21931 goto must_alloc; 21932 } 21933 } else { 21934 *xmit_tail = (*xmit_tail)->b_cont; 21935 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21936 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21937 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21938 (*xmit_tail)->b_rptr); 21939 } 21940 21941 (*xmit_tail)->b_prev = local_time; 21942 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21943 21944 *tail_unsent -= len; 21945 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21946 tcp->tcp_last_sent_len = (ushort_t)len; 21947 21948 len += tcp_hdr_len; 21949 if (tcp->tcp_ipversion == IPV4_VERSION) 21950 tcp->tcp_ipha->ipha_length = htons(len); 21951 else 21952 tcp->tcp_ip6h->ip6_plen = htons(len - 21953 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21954 21955 mp = dupb(*xmit_tail); 21956 if (mp == NULL) { 21957 if (ire != NULL) 21958 IRE_REFRELE(ire); 21959 return (-1); /* out_of_mem */ 21960 } 21961 21962 len = tcp_hdr_len; 21963 /* 21964 * There are four reasons to allocate a new hdr mblk: 21965 * 1) The bytes above us are in use by another packet 21966 * 2) We don't have good alignment 21967 * 3) The mblk is being shared 21968 * 4) We don't have enough room for a header 21969 */ 21970 rptr = mp->b_rptr - len; 21971 if (!OK_32PTR(rptr) || 21972 ((db = mp->b_datap), db->db_ref != 2) || 21973 rptr < db->db_base + ire_fp_mp_len) { 21974 /* NOTE: we assume allocb returns an OK_32PTR */ 21975 21976 must_alloc:; 21977 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21978 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21979 if (mp1 == NULL) { 21980 freemsg(mp); 21981 if (ire != NULL) 21982 IRE_REFRELE(ire); 21983 return (-1); /* out_of_mem */ 21984 } 21985 mp1->b_cont = mp; 21986 mp = mp1; 21987 /* Leave room for Link Level header */ 21988 len = tcp_hdr_len; 21989 rptr = 21990 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21991 mp->b_wptr = &rptr[len]; 21992 } 21993 21994 /* 21995 * Fill in the header using the template header, and add 21996 * options such as time-stamp, ECN and/or SACK, as needed. 21997 */ 21998 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21999 22000 mp->b_rptr = rptr; 22001 22002 if (*tail_unsent) { 22003 int spill = *tail_unsent; 22004 22005 mp1 = mp->b_cont; 22006 if (mp1 == NULL) 22007 mp1 = mp; 22008 22009 /* 22010 * If we're a little short, tack on more mblks until 22011 * there is no more spillover. 22012 */ 22013 while (spill < 0) { 22014 mblk_t *nmp; 22015 int nmpsz; 22016 22017 nmp = (*xmit_tail)->b_cont; 22018 nmpsz = MBLKL(nmp); 22019 22020 /* 22021 * Excess data in mblk; can we split it? 22022 * If MDT is enabled for the connection, 22023 * keep on splitting as this is a transient 22024 * send path. 22025 */ 22026 if (!do_lso_send && !tcp->tcp_mdt && 22027 (spill + nmpsz > 0)) { 22028 /* 22029 * Don't split if stream head was 22030 * told to break up larger writes 22031 * into smaller ones. 22032 */ 22033 if (tcp->tcp_maxpsz > 0) 22034 break; 22035 22036 /* 22037 * Next mblk is less than SMSS/2 22038 * rounded up to nearest 64-byte; 22039 * let it get sent as part of the 22040 * next segment. 22041 */ 22042 if (tcp->tcp_localnet && 22043 !tcp->tcp_cork && 22044 (nmpsz < roundup((mss >> 1), 64))) 22045 break; 22046 } 22047 22048 *xmit_tail = nmp; 22049 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 22050 /* Stash for rtt use later */ 22051 (*xmit_tail)->b_prev = local_time; 22052 (*xmit_tail)->b_next = 22053 (mblk_t *)(uintptr_t)(*snxt - len); 22054 mp1->b_cont = dupb(*xmit_tail); 22055 mp1 = mp1->b_cont; 22056 22057 spill += nmpsz; 22058 if (mp1 == NULL) { 22059 *tail_unsent = spill; 22060 freemsg(mp); 22061 if (ire != NULL) 22062 IRE_REFRELE(ire); 22063 return (-1); /* out_of_mem */ 22064 } 22065 } 22066 22067 /* Trim back any surplus on the last mblk */ 22068 if (spill >= 0) { 22069 mp1->b_wptr -= spill; 22070 *tail_unsent = spill; 22071 } else { 22072 /* 22073 * We did not send everything we could in 22074 * order to remain within the b_cont limit. 22075 */ 22076 *usable -= spill; 22077 *snxt += spill; 22078 tcp->tcp_last_sent_len += spill; 22079 UPDATE_MIB(&tcps->tcps_mib, 22080 tcpOutDataBytes, spill); 22081 /* 22082 * Adjust the checksum 22083 */ 22084 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 22085 sum += spill; 22086 sum = (sum >> 16) + (sum & 0xFFFF); 22087 U16_TO_ABE16(sum, tcph->th_sum); 22088 if (tcp->tcp_ipversion == IPV4_VERSION) { 22089 sum = ntohs( 22090 ((ipha_t *)rptr)->ipha_length) + 22091 spill; 22092 ((ipha_t *)rptr)->ipha_length = 22093 htons(sum); 22094 } else { 22095 sum = ntohs( 22096 ((ip6_t *)rptr)->ip6_plen) + 22097 spill; 22098 ((ip6_t *)rptr)->ip6_plen = 22099 htons(sum); 22100 } 22101 *tail_unsent = 0; 22102 } 22103 } 22104 if (tcp->tcp_ip_forward_progress) { 22105 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22106 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 22107 tcp->tcp_ip_forward_progress = B_FALSE; 22108 } 22109 22110 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22111 if (do_lso_send) { 22112 tcp_lsosend_data(tcp, mp, ire, ill, mss, 22113 num_lso_seg); 22114 tcp->tcp_obsegs += num_lso_seg; 22115 22116 TCP_STAT(tcps, tcp_lso_times); 22117 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 22118 } else { 22119 tcp_send_data(tcp, q, mp); 22120 BUMP_LOCAL(tcp->tcp_obsegs); 22121 } 22122 } 22123 22124 if (ire != NULL) 22125 IRE_REFRELE(ire); 22126 return (0); 22127 } 22128 22129 /* Unlink and return any mblk that looks like it contains a MDT info */ 22130 static mblk_t * 22131 tcp_mdt_info_mp(mblk_t *mp) 22132 { 22133 mblk_t *prev_mp; 22134 22135 for (;;) { 22136 prev_mp = mp; 22137 /* no more to process? */ 22138 if ((mp = mp->b_cont) == NULL) 22139 break; 22140 22141 switch (DB_TYPE(mp)) { 22142 case M_CTL: 22143 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 22144 continue; 22145 ASSERT(prev_mp != NULL); 22146 prev_mp->b_cont = mp->b_cont; 22147 mp->b_cont = NULL; 22148 return (mp); 22149 default: 22150 break; 22151 } 22152 } 22153 return (mp); 22154 } 22155 22156 /* MDT info update routine, called when IP notifies us about MDT */ 22157 static void 22158 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 22159 { 22160 boolean_t prev_state; 22161 tcp_stack_t *tcps = tcp->tcp_tcps; 22162 22163 /* 22164 * IP is telling us to abort MDT on this connection? We know 22165 * this because the capability is only turned off when IP 22166 * encounters some pathological cases, e.g. link-layer change 22167 * where the new driver doesn't support MDT, or in situation 22168 * where MDT usage on the link-layer has been switched off. 22169 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 22170 * if the link-layer doesn't support MDT, and if it does, it 22171 * will indicate that the feature is to be turned on. 22172 */ 22173 prev_state = tcp->tcp_mdt; 22174 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 22175 if (!tcp->tcp_mdt && !first) { 22176 TCP_STAT(tcps, tcp_mdt_conn_halted3); 22177 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 22178 (void *)tcp->tcp_connp)); 22179 } 22180 22181 /* 22182 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 22183 * so disable MDT otherwise. The checks are done here 22184 * and in tcp_wput_data(). 22185 */ 22186 if (tcp->tcp_mdt && 22187 (tcp->tcp_ipversion == IPV4_VERSION && 22188 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22189 (tcp->tcp_ipversion == IPV6_VERSION && 22190 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 22191 tcp->tcp_mdt = B_FALSE; 22192 22193 if (tcp->tcp_mdt) { 22194 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 22195 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 22196 "version (%d), expected version is %d", 22197 mdt_capab->ill_mdt_version, MDT_VERSION_2); 22198 tcp->tcp_mdt = B_FALSE; 22199 return; 22200 } 22201 22202 /* 22203 * We need the driver to be able to handle at least three 22204 * spans per packet in order for tcp MDT to be utilized. 22205 * The first is for the header portion, while the rest are 22206 * needed to handle a packet that straddles across two 22207 * virtually non-contiguous buffers; a typical tcp packet 22208 * therefore consists of only two spans. Note that we take 22209 * a zero as "don't care". 22210 */ 22211 if (mdt_capab->ill_mdt_span_limit > 0 && 22212 mdt_capab->ill_mdt_span_limit < 3) { 22213 tcp->tcp_mdt = B_FALSE; 22214 return; 22215 } 22216 22217 /* a zero means driver wants default value */ 22218 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 22219 tcps->tcps_mdt_max_pbufs); 22220 if (tcp->tcp_mdt_max_pld == 0) 22221 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 22222 22223 /* ensure 32-bit alignment */ 22224 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 22225 mdt_capab->ill_mdt_hdr_head), 4); 22226 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 22227 mdt_capab->ill_mdt_hdr_tail), 4); 22228 22229 if (!first && !prev_state) { 22230 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 22231 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 22232 (void *)tcp->tcp_connp)); 22233 } 22234 } 22235 } 22236 22237 /* Unlink and return any mblk that looks like it contains a LSO info */ 22238 static mblk_t * 22239 tcp_lso_info_mp(mblk_t *mp) 22240 { 22241 mblk_t *prev_mp; 22242 22243 for (;;) { 22244 prev_mp = mp; 22245 /* no more to process? */ 22246 if ((mp = mp->b_cont) == NULL) 22247 break; 22248 22249 switch (DB_TYPE(mp)) { 22250 case M_CTL: 22251 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 22252 continue; 22253 ASSERT(prev_mp != NULL); 22254 prev_mp->b_cont = mp->b_cont; 22255 mp->b_cont = NULL; 22256 return (mp); 22257 default: 22258 break; 22259 } 22260 } 22261 22262 return (mp); 22263 } 22264 22265 /* LSO info update routine, called when IP notifies us about LSO */ 22266 static void 22267 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 22268 { 22269 tcp_stack_t *tcps = tcp->tcp_tcps; 22270 22271 /* 22272 * IP is telling us to abort LSO on this connection? We know 22273 * this because the capability is only turned off when IP 22274 * encounters some pathological cases, e.g. link-layer change 22275 * where the new NIC/driver doesn't support LSO, or in situation 22276 * where LSO usage on the link-layer has been switched off. 22277 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 22278 * if the link-layer doesn't support LSO, and if it does, it 22279 * will indicate that the feature is to be turned on. 22280 */ 22281 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 22282 TCP_STAT(tcps, tcp_lso_enabled); 22283 22284 /* 22285 * We currently only support LSO on simple TCP/IPv4, 22286 * so disable LSO otherwise. The checks are done here 22287 * and in tcp_wput_data(). 22288 */ 22289 if (tcp->tcp_lso && 22290 (tcp->tcp_ipversion == IPV4_VERSION && 22291 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22292 (tcp->tcp_ipversion == IPV6_VERSION)) { 22293 tcp->tcp_lso = B_FALSE; 22294 TCP_STAT(tcps, tcp_lso_disabled); 22295 } else { 22296 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 22297 lso_capab->ill_lso_max); 22298 } 22299 } 22300 22301 static void 22302 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 22303 { 22304 conn_t *connp = tcp->tcp_connp; 22305 tcp_stack_t *tcps = tcp->tcp_tcps; 22306 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22307 22308 ASSERT(ire != NULL); 22309 22310 /* 22311 * We may be in the fastpath here, and although we essentially do 22312 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 22313 * we try to keep things as brief as possible. After all, these 22314 * are only best-effort checks, and we do more thorough ones prior 22315 * to calling tcp_send()/tcp_multisend(). 22316 */ 22317 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 22318 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 22319 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 22320 !(ire->ire_flags & RTF_MULTIRT) && 22321 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 22322 CONN_IS_LSO_MD_FASTPATH(connp)) { 22323 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 22324 /* Cache the result */ 22325 connp->conn_lso_ok = B_TRUE; 22326 22327 ASSERT(ill->ill_lso_capab != NULL); 22328 if (!ill->ill_lso_capab->ill_lso_on) { 22329 ill->ill_lso_capab->ill_lso_on = 1; 22330 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22331 "LSO for interface %s\n", (void *)connp, 22332 ill->ill_name)); 22333 } 22334 tcp_lso_update(tcp, ill->ill_lso_capab); 22335 } else if (ipst->ips_ip_multidata_outbound && 22336 ILL_MDT_CAPABLE(ill)) { 22337 /* Cache the result */ 22338 connp->conn_mdt_ok = B_TRUE; 22339 22340 ASSERT(ill->ill_mdt_capab != NULL); 22341 if (!ill->ill_mdt_capab->ill_mdt_on) { 22342 ill->ill_mdt_capab->ill_mdt_on = 1; 22343 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22344 "MDT for interface %s\n", (void *)connp, 22345 ill->ill_name)); 22346 } 22347 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22348 } 22349 } 22350 22351 /* 22352 * The goal is to reduce the number of generated tcp segments by 22353 * setting the maxpsz multiplier to 0; this will have an affect on 22354 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22355 * into each packet, up to SMSS bytes. Doing this reduces the number 22356 * of outbound segments and incoming ACKs, thus allowing for better 22357 * network and system performance. In contrast the legacy behavior 22358 * may result in sending less than SMSS size, because the last mblk 22359 * for some packets may have more data than needed to make up SMSS, 22360 * and the legacy code refused to "split" it. 22361 * 22362 * We apply the new behavior on following situations: 22363 * 22364 * 1) Loopback connections, 22365 * 2) Connections in which the remote peer is not on local subnet, 22366 * 3) Local subnet connections over the bge interface (see below). 22367 * 22368 * Ideally, we would like this behavior to apply for interfaces other 22369 * than bge. However, doing so would negatively impact drivers which 22370 * perform dynamic mapping and unmapping of DMA resources, which are 22371 * increased by setting the maxpsz multiplier to 0 (more mblks per 22372 * packet will be generated by tcp). The bge driver does not suffer 22373 * from this, as it copies the mblks into pre-mapped buffers, and 22374 * therefore does not require more I/O resources than before. 22375 * 22376 * Otherwise, this behavior is present on all network interfaces when 22377 * the destination endpoint is non-local, since reducing the number 22378 * of packets in general is good for the network. 22379 * 22380 * TODO We need to remove this hard-coded conditional for bge once 22381 * a better "self-tuning" mechanism, or a way to comprehend 22382 * the driver transmit strategy is devised. Until the solution 22383 * is found and well understood, we live with this hack. 22384 */ 22385 if (!tcp_static_maxpsz && 22386 (tcp->tcp_loopback || !tcp->tcp_localnet || 22387 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22388 /* override the default value */ 22389 tcp->tcp_maxpsz = 0; 22390 22391 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22392 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22393 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22394 } 22395 22396 /* set the stream head parameters accordingly */ 22397 (void) tcp_maxpsz_set(tcp, B_TRUE); 22398 } 22399 22400 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22401 static void 22402 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22403 { 22404 uchar_t fval = *mp->b_rptr; 22405 mblk_t *tail; 22406 queue_t *q = tcp->tcp_wq; 22407 22408 /* TODO: How should flush interact with urgent data? */ 22409 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22410 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22411 /* 22412 * Flush only data that has not yet been put on the wire. If 22413 * we flush data that we have already transmitted, life, as we 22414 * know it, may come to an end. 22415 */ 22416 tail = tcp->tcp_xmit_tail; 22417 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22418 tcp->tcp_xmit_tail_unsent = 0; 22419 tcp->tcp_unsent = 0; 22420 if (tail->b_wptr != tail->b_rptr) 22421 tail = tail->b_cont; 22422 if (tail) { 22423 mblk_t **excess = &tcp->tcp_xmit_head; 22424 for (;;) { 22425 mblk_t *mp1 = *excess; 22426 if (mp1 == tail) 22427 break; 22428 tcp->tcp_xmit_tail = mp1; 22429 tcp->tcp_xmit_last = mp1; 22430 excess = &mp1->b_cont; 22431 } 22432 *excess = NULL; 22433 tcp_close_mpp(&tail); 22434 if (tcp->tcp_snd_zcopy_aware) 22435 tcp_zcopy_notify(tcp); 22436 } 22437 /* 22438 * We have no unsent data, so unsent must be less than 22439 * tcp_xmit_lowater, so re-enable flow. 22440 */ 22441 mutex_enter(&tcp->tcp_non_sq_lock); 22442 if (tcp->tcp_flow_stopped) { 22443 tcp_clrqfull(tcp); 22444 } 22445 mutex_exit(&tcp->tcp_non_sq_lock); 22446 } 22447 /* 22448 * TODO: you can't just flush these, you have to increase rwnd for one 22449 * thing. For another, how should urgent data interact? 22450 */ 22451 if (fval & FLUSHR) { 22452 *mp->b_rptr = fval & ~FLUSHW; 22453 /* XXX */ 22454 qreply(q, mp); 22455 return; 22456 } 22457 freemsg(mp); 22458 } 22459 22460 /* 22461 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22462 * messages. 22463 */ 22464 static void 22465 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22466 { 22467 mblk_t *mp1; 22468 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22469 STRUCT_HANDLE(strbuf, sb); 22470 queue_t *q = tcp->tcp_wq; 22471 int error; 22472 uint_t addrlen; 22473 22474 /* Make sure it is one of ours. */ 22475 switch (iocp->ioc_cmd) { 22476 case TI_GETMYNAME: 22477 case TI_GETPEERNAME: 22478 break; 22479 default: 22480 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22481 return; 22482 } 22483 switch (mi_copy_state(q, mp, &mp1)) { 22484 case -1: 22485 return; 22486 case MI_COPY_CASE(MI_COPY_IN, 1): 22487 break; 22488 case MI_COPY_CASE(MI_COPY_OUT, 1): 22489 /* Copy out the strbuf. */ 22490 mi_copyout(q, mp); 22491 return; 22492 case MI_COPY_CASE(MI_COPY_OUT, 2): 22493 /* All done. */ 22494 mi_copy_done(q, mp, 0); 22495 return; 22496 default: 22497 mi_copy_done(q, mp, EPROTO); 22498 return; 22499 } 22500 /* Check alignment of the strbuf */ 22501 if (!OK_32PTR(mp1->b_rptr)) { 22502 mi_copy_done(q, mp, EINVAL); 22503 return; 22504 } 22505 22506 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22507 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22508 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22509 mi_copy_done(q, mp, EINVAL); 22510 return; 22511 } 22512 22513 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22514 if (mp1 == NULL) 22515 return; 22516 22517 switch (iocp->ioc_cmd) { 22518 case TI_GETMYNAME: 22519 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22520 break; 22521 case TI_GETPEERNAME: 22522 error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22523 break; 22524 } 22525 22526 if (error != 0) { 22527 mi_copy_done(q, mp, error); 22528 } else { 22529 mp1->b_wptr += addrlen; 22530 STRUCT_FSET(sb, len, addrlen); 22531 22532 /* Copy out the address */ 22533 mi_copyout(q, mp); 22534 } 22535 } 22536 22537 /* 22538 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22539 * messages. 22540 */ 22541 /* ARGSUSED */ 22542 static void 22543 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22544 { 22545 conn_t *connp = (conn_t *)arg; 22546 tcp_t *tcp = connp->conn_tcp; 22547 queue_t *q = tcp->tcp_wq; 22548 struct iocblk *iocp; 22549 tcp_stack_t *tcps = tcp->tcp_tcps; 22550 22551 ASSERT(DB_TYPE(mp) == M_IOCTL); 22552 /* 22553 * Try and ASSERT the minimum possible references on the 22554 * conn early enough. Since we are executing on write side, 22555 * the connection is obviously not detached and that means 22556 * there is a ref each for TCP and IP. Since we are behind 22557 * the squeue, the minimum references needed are 3. If the 22558 * conn is in classifier hash list, there should be an 22559 * extra ref for that (we check both the possibilities). 22560 */ 22561 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22562 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22563 22564 iocp = (struct iocblk *)mp->b_rptr; 22565 switch (iocp->ioc_cmd) { 22566 case TCP_IOC_DEFAULT_Q: 22567 /* Wants to be the default wq. */ 22568 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22569 iocp->ioc_error = EPERM; 22570 iocp->ioc_count = 0; 22571 mp->b_datap->db_type = M_IOCACK; 22572 qreply(q, mp); 22573 return; 22574 } 22575 tcp_def_q_set(tcp, mp); 22576 return; 22577 case _SIOCSOCKFALLBACK: 22578 /* 22579 * Either sockmod is about to be popped and the socket 22580 * would now be treated as a plain stream, or a module 22581 * is about to be pushed so we could no longer use read- 22582 * side synchronous streams for fused loopback tcp. 22583 * Drain any queued data and disable direct sockfs 22584 * interface from now on. 22585 */ 22586 if (!tcp->tcp_issocket) { 22587 DB_TYPE(mp) = M_IOCNAK; 22588 iocp->ioc_error = EINVAL; 22589 } else { 22590 #ifdef _ILP32 22591 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 22592 #else 22593 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22594 #endif 22595 /* 22596 * Insert this socket into the acceptor hash. 22597 * We might need it for T_CONN_RES message 22598 */ 22599 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22600 22601 if (tcp->tcp_fused) { 22602 /* 22603 * This is a fused loopback tcp; disable 22604 * read-side synchronous streams interface 22605 * and drain any queued data. It is okay 22606 * to do this for non-synchronous streams 22607 * fused tcp as well. 22608 */ 22609 tcp_fuse_disable_pair(tcp, B_FALSE); 22610 } 22611 tcp->tcp_issocket = B_FALSE; 22612 tcp->tcp_sodirect = NULL; 22613 TCP_STAT(tcps, tcp_sock_fallback); 22614 22615 DB_TYPE(mp) = M_IOCACK; 22616 iocp->ioc_error = 0; 22617 } 22618 iocp->ioc_count = 0; 22619 iocp->ioc_rval = 0; 22620 qreply(q, mp); 22621 return; 22622 } 22623 CALL_IP_WPUT(connp, q, mp); 22624 } 22625 22626 /* 22627 * This routine is called by tcp_wput() to handle all TPI requests. 22628 */ 22629 /* ARGSUSED */ 22630 static void 22631 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22632 { 22633 conn_t *connp = (conn_t *)arg; 22634 tcp_t *tcp = connp->conn_tcp; 22635 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22636 uchar_t *rptr; 22637 t_scalar_t type; 22638 int len; 22639 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22640 22641 /* 22642 * Try and ASSERT the minimum possible references on the 22643 * conn early enough. Since we are executing on write side, 22644 * the connection is obviously not detached and that means 22645 * there is a ref each for TCP and IP. Since we are behind 22646 * the squeue, the minimum references needed are 3. If the 22647 * conn is in classifier hash list, there should be an 22648 * extra ref for that (we check both the possibilities). 22649 */ 22650 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22651 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22652 22653 rptr = mp->b_rptr; 22654 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22655 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22656 type = ((union T_primitives *)rptr)->type; 22657 if (type == T_EXDATA_REQ) { 22658 uint32_t msize = msgdsize(mp->b_cont); 22659 22660 len = msize - 1; 22661 if (len < 0) { 22662 freemsg(mp); 22663 return; 22664 } 22665 /* 22666 * Try to force urgent data out on the wire. 22667 * Even if we have unsent data this will 22668 * at least send the urgent flag. 22669 * XXX does not handle more flag correctly. 22670 */ 22671 len += tcp->tcp_unsent; 22672 len += tcp->tcp_snxt; 22673 tcp->tcp_urg = len; 22674 tcp->tcp_valid_bits |= TCP_URG_VALID; 22675 22676 /* Bypass tcp protocol for fused tcp loopback */ 22677 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22678 return; 22679 } else if (type != T_DATA_REQ) { 22680 goto non_urgent_data; 22681 } 22682 /* TODO: options, flags, ... from user */ 22683 /* Set length to zero for reclamation below */ 22684 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22685 freeb(mp); 22686 return; 22687 } else { 22688 if (tcp->tcp_debug) { 22689 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22690 "tcp_wput_proto, dropping one..."); 22691 } 22692 freemsg(mp); 22693 return; 22694 } 22695 22696 non_urgent_data: 22697 22698 switch ((int)tprim->type) { 22699 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22700 /* 22701 * save the kssl_ent_t from the next block, and convert this 22702 * back to a normal bind_req. 22703 */ 22704 if (mp->b_cont != NULL) { 22705 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22706 22707 if (tcp->tcp_kssl_ent != NULL) { 22708 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22709 KSSL_NO_PROXY); 22710 tcp->tcp_kssl_ent = NULL; 22711 } 22712 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22713 sizeof (kssl_ent_t)); 22714 kssl_hold_ent(tcp->tcp_kssl_ent); 22715 freemsg(mp->b_cont); 22716 mp->b_cont = NULL; 22717 } 22718 tprim->type = T_BIND_REQ; 22719 22720 /* FALLTHROUGH */ 22721 case O_T_BIND_REQ: /* bind request */ 22722 case T_BIND_REQ: /* new semantics bind request */ 22723 tcp_bind(tcp, mp); 22724 break; 22725 case T_UNBIND_REQ: /* unbind request */ 22726 tcp_unbind(tcp, mp); 22727 break; 22728 case O_T_CONN_RES: /* old connection response XXX */ 22729 case T_CONN_RES: /* connection response */ 22730 tcp_accept(tcp, mp); 22731 break; 22732 case T_CONN_REQ: /* connection request */ 22733 tcp_connect(tcp, mp); 22734 break; 22735 case T_DISCON_REQ: /* disconnect request */ 22736 tcp_disconnect(tcp, mp); 22737 break; 22738 case T_CAPABILITY_REQ: 22739 tcp_capability_req(tcp, mp); /* capability request */ 22740 break; 22741 case T_INFO_REQ: /* information request */ 22742 tcp_info_req(tcp, mp); 22743 break; 22744 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22745 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22746 &tcp_opt_obj, B_TRUE); 22747 break; 22748 case T_OPTMGMT_REQ: 22749 /* 22750 * Note: no support for snmpcom_req() through new 22751 * T_OPTMGMT_REQ. See comments in ip.c 22752 */ 22753 /* Only IP is allowed to return meaningful value */ 22754 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22755 B_TRUE); 22756 break; 22757 22758 case T_UNITDATA_REQ: /* unitdata request */ 22759 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22760 break; 22761 case T_ORDREL_REQ: /* orderly release req */ 22762 freemsg(mp); 22763 22764 if (tcp->tcp_fused) 22765 tcp_unfuse(tcp); 22766 22767 if (tcp_xmit_end(tcp) != 0) { 22768 /* 22769 * We were crossing FINs and got a reset from 22770 * the other side. Just ignore it. 22771 */ 22772 if (tcp->tcp_debug) { 22773 (void) strlog(TCP_MOD_ID, 0, 1, 22774 SL_ERROR|SL_TRACE, 22775 "tcp_wput_proto, T_ORDREL_REQ out of " 22776 "state %s", 22777 tcp_display(tcp, NULL, 22778 DISP_ADDR_AND_PORT)); 22779 } 22780 } 22781 break; 22782 case T_ADDR_REQ: 22783 tcp_addr_req(tcp, mp); 22784 break; 22785 default: 22786 if (tcp->tcp_debug) { 22787 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22788 "tcp_wput_proto, bogus TPI msg, type %d", 22789 tprim->type); 22790 } 22791 /* 22792 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22793 * to recover. 22794 */ 22795 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22796 break; 22797 } 22798 } 22799 22800 /* 22801 * The TCP write service routine should never be called... 22802 */ 22803 /* ARGSUSED */ 22804 static void 22805 tcp_wsrv(queue_t *q) 22806 { 22807 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22808 22809 TCP_STAT(tcps, tcp_wsrv_called); 22810 } 22811 22812 /* Non overlapping byte exchanger */ 22813 static void 22814 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22815 { 22816 uchar_t uch; 22817 22818 while (len-- > 0) { 22819 uch = a[len]; 22820 a[len] = b[len]; 22821 b[len] = uch; 22822 } 22823 } 22824 22825 /* 22826 * Send out a control packet on the tcp connection specified. This routine 22827 * is typically called where we need a simple ACK or RST generated. 22828 */ 22829 static void 22830 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22831 { 22832 uchar_t *rptr; 22833 tcph_t *tcph; 22834 ipha_t *ipha = NULL; 22835 ip6_t *ip6h = NULL; 22836 uint32_t sum; 22837 int tcp_hdr_len; 22838 int tcp_ip_hdr_len; 22839 mblk_t *mp; 22840 tcp_stack_t *tcps = tcp->tcp_tcps; 22841 22842 /* 22843 * Save sum for use in source route later. 22844 */ 22845 ASSERT(tcp != NULL); 22846 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22847 tcp_hdr_len = tcp->tcp_hdr_len; 22848 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22849 22850 /* If a text string is passed in with the request, pass it to strlog. */ 22851 if (str != NULL && tcp->tcp_debug) { 22852 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22853 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22854 str, seq, ack, ctl); 22855 } 22856 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22857 BPRI_MED); 22858 if (mp == NULL) { 22859 return; 22860 } 22861 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22862 mp->b_rptr = rptr; 22863 mp->b_wptr = &rptr[tcp_hdr_len]; 22864 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22865 22866 if (tcp->tcp_ipversion == IPV4_VERSION) { 22867 ipha = (ipha_t *)rptr; 22868 ipha->ipha_length = htons(tcp_hdr_len); 22869 } else { 22870 ip6h = (ip6_t *)rptr; 22871 ASSERT(tcp != NULL); 22872 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22873 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22874 } 22875 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22876 tcph->th_flags[0] = (uint8_t)ctl; 22877 if (ctl & TH_RST) { 22878 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22879 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22880 /* 22881 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22882 */ 22883 if (tcp->tcp_snd_ts_ok && 22884 tcp->tcp_state > TCPS_SYN_SENT) { 22885 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22886 *(mp->b_wptr) = TCPOPT_EOL; 22887 if (tcp->tcp_ipversion == IPV4_VERSION) { 22888 ipha->ipha_length = htons(tcp_hdr_len - 22889 TCPOPT_REAL_TS_LEN); 22890 } else { 22891 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22892 TCPOPT_REAL_TS_LEN); 22893 } 22894 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22895 sum -= TCPOPT_REAL_TS_LEN; 22896 } 22897 } 22898 if (ctl & TH_ACK) { 22899 if (tcp->tcp_snd_ts_ok) { 22900 U32_TO_BE32(lbolt, 22901 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22902 U32_TO_BE32(tcp->tcp_ts_recent, 22903 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22904 } 22905 22906 /* Update the latest receive window size in TCP header. */ 22907 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22908 tcph->th_win); 22909 tcp->tcp_rack = ack; 22910 tcp->tcp_rack_cnt = 0; 22911 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22912 } 22913 BUMP_LOCAL(tcp->tcp_obsegs); 22914 U32_TO_BE32(seq, tcph->th_seq); 22915 U32_TO_BE32(ack, tcph->th_ack); 22916 /* 22917 * Include the adjustment for a source route if any. 22918 */ 22919 sum = (sum >> 16) + (sum & 0xFFFF); 22920 U16_TO_BE16(sum, tcph->th_sum); 22921 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22922 tcp_send_data(tcp, tcp->tcp_wq, mp); 22923 } 22924 22925 /* 22926 * If this routine returns B_TRUE, TCP can generate a RST in response 22927 * to a segment. If it returns B_FALSE, TCP should not respond. 22928 */ 22929 static boolean_t 22930 tcp_send_rst_chk(tcp_stack_t *tcps) 22931 { 22932 clock_t now; 22933 22934 /* 22935 * TCP needs to protect itself from generating too many RSTs. 22936 * This can be a DoS attack by sending us random segments 22937 * soliciting RSTs. 22938 * 22939 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22940 * in each 1 second interval. In this way, TCP still generate 22941 * RSTs in normal cases but when under attack, the impact is 22942 * limited. 22943 */ 22944 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22945 now = lbolt; 22946 /* lbolt can wrap around. */ 22947 if ((tcps->tcps_last_rst_intrvl > now) || 22948 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22949 1*SECONDS)) { 22950 tcps->tcps_last_rst_intrvl = now; 22951 tcps->tcps_rst_cnt = 1; 22952 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22953 return (B_FALSE); 22954 } 22955 } 22956 return (B_TRUE); 22957 } 22958 22959 /* 22960 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22961 */ 22962 static void 22963 tcp_ip_ire_mark_advice(tcp_t *tcp) 22964 { 22965 mblk_t *mp; 22966 ipic_t *ipic; 22967 22968 if (tcp->tcp_ipversion == IPV4_VERSION) { 22969 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22970 &ipic); 22971 } else { 22972 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22973 &ipic); 22974 } 22975 if (mp == NULL) 22976 return; 22977 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22978 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22979 } 22980 22981 /* 22982 * Return an IP advice ioctl mblk and set ipic to be the pointer 22983 * to the advice structure. 22984 */ 22985 static mblk_t * 22986 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22987 { 22988 struct iocblk *ioc; 22989 mblk_t *mp, *mp1; 22990 22991 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22992 if (mp == NULL) 22993 return (NULL); 22994 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22995 *ipic = (ipic_t *)mp->b_rptr; 22996 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22997 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22998 22999 bcopy(addr, *ipic + 1, addr_len); 23000 23001 (*ipic)->ipic_addr_length = addr_len; 23002 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 23003 23004 mp1 = mkiocb(IP_IOCTL); 23005 if (mp1 == NULL) { 23006 freemsg(mp); 23007 return (NULL); 23008 } 23009 mp1->b_cont = mp; 23010 ioc = (struct iocblk *)mp1->b_rptr; 23011 ioc->ioc_count = sizeof (ipic_t) + addr_len; 23012 23013 return (mp1); 23014 } 23015 23016 /* 23017 * Generate a reset based on an inbound packet, connp is set by caller 23018 * when RST is in response to an unexpected inbound packet for which 23019 * there is active tcp state in the system. 23020 * 23021 * IPSEC NOTE : Try to send the reply with the same protection as it came 23022 * in. We still have the ipsec_mp that the packet was attached to. Thus 23023 * the packet will go out at the same level of protection as it came in by 23024 * converting the IPSEC_IN to IPSEC_OUT. 23025 */ 23026 static void 23027 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 23028 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 23029 tcp_stack_t *tcps, conn_t *connp) 23030 { 23031 ipha_t *ipha = NULL; 23032 ip6_t *ip6h = NULL; 23033 ushort_t len; 23034 tcph_t *tcph; 23035 int i; 23036 mblk_t *ipsec_mp; 23037 boolean_t mctl_present; 23038 ipic_t *ipic; 23039 ipaddr_t v4addr; 23040 in6_addr_t v6addr; 23041 int addr_len; 23042 void *addr; 23043 queue_t *q = tcps->tcps_g_q; 23044 tcp_t *tcp; 23045 cred_t *cr; 23046 mblk_t *nmp; 23047 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 23048 23049 if (tcps->tcps_g_q == NULL) { 23050 /* 23051 * For non-zero stackids the default queue isn't created 23052 * until the first open, thus there can be a need to send 23053 * a reset before then. But we can't do that, hence we just 23054 * drop the packet. Later during boot, when the default queue 23055 * has been setup, a retransmitted packet from the peer 23056 * will result in a reset. 23057 */ 23058 ASSERT(tcps->tcps_netstack->netstack_stackid != 23059 GLOBAL_NETSTACKID); 23060 freemsg(mp); 23061 return; 23062 } 23063 23064 if (connp != NULL) 23065 tcp = connp->conn_tcp; 23066 else 23067 tcp = Q_TO_TCP(q); 23068 23069 if (!tcp_send_rst_chk(tcps)) { 23070 tcps->tcps_rst_unsent++; 23071 freemsg(mp); 23072 return; 23073 } 23074 23075 if (mp->b_datap->db_type == M_CTL) { 23076 ipsec_mp = mp; 23077 mp = mp->b_cont; 23078 mctl_present = B_TRUE; 23079 } else { 23080 ipsec_mp = mp; 23081 mctl_present = B_FALSE; 23082 } 23083 23084 if (str && q && tcps->tcps_dbg) { 23085 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 23086 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 23087 "flags 0x%x", 23088 str, seq, ack, ctl); 23089 } 23090 if (mp->b_datap->db_ref != 1) { 23091 mblk_t *mp1 = copyb(mp); 23092 freemsg(mp); 23093 mp = mp1; 23094 if (!mp) { 23095 if (mctl_present) 23096 freeb(ipsec_mp); 23097 return; 23098 } else { 23099 if (mctl_present) { 23100 ipsec_mp->b_cont = mp; 23101 } else { 23102 ipsec_mp = mp; 23103 } 23104 } 23105 } else if (mp->b_cont) { 23106 freemsg(mp->b_cont); 23107 mp->b_cont = NULL; 23108 } 23109 /* 23110 * We skip reversing source route here. 23111 * (for now we replace all IP options with EOL) 23112 */ 23113 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23114 ipha = (ipha_t *)mp->b_rptr; 23115 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 23116 mp->b_rptr[i] = IPOPT_EOL; 23117 /* 23118 * Make sure that src address isn't flagrantly invalid. 23119 * Not all broadcast address checking for the src address 23120 * is possible, since we don't know the netmask of the src 23121 * addr. No check for destination address is done, since 23122 * IP will not pass up a packet with a broadcast dest 23123 * address to TCP. Similar checks are done below for IPv6. 23124 */ 23125 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 23126 CLASSD(ipha->ipha_src)) { 23127 freemsg(ipsec_mp); 23128 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 23129 return; 23130 } 23131 } else { 23132 ip6h = (ip6_t *)mp->b_rptr; 23133 23134 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 23135 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 23136 freemsg(ipsec_mp); 23137 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 23138 return; 23139 } 23140 23141 /* Remove any extension headers assuming partial overlay */ 23142 if (ip_hdr_len > IPV6_HDR_LEN) { 23143 uint8_t *to; 23144 23145 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 23146 ovbcopy(ip6h, to, IPV6_HDR_LEN); 23147 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 23148 ip_hdr_len = IPV6_HDR_LEN; 23149 ip6h = (ip6_t *)mp->b_rptr; 23150 ip6h->ip6_nxt = IPPROTO_TCP; 23151 } 23152 } 23153 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 23154 if (tcph->th_flags[0] & TH_RST) { 23155 freemsg(ipsec_mp); 23156 return; 23157 } 23158 tcph->th_offset_and_rsrvd[0] = (5 << 4); 23159 len = ip_hdr_len + sizeof (tcph_t); 23160 mp->b_wptr = &mp->b_rptr[len]; 23161 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23162 ipha->ipha_length = htons(len); 23163 /* Swap addresses */ 23164 v4addr = ipha->ipha_src; 23165 ipha->ipha_src = ipha->ipha_dst; 23166 ipha->ipha_dst = v4addr; 23167 ipha->ipha_ident = 0; 23168 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 23169 addr_len = IP_ADDR_LEN; 23170 addr = &v4addr; 23171 } else { 23172 /* No ip6i_t in this case */ 23173 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 23174 /* Swap addresses */ 23175 v6addr = ip6h->ip6_src; 23176 ip6h->ip6_src = ip6h->ip6_dst; 23177 ip6h->ip6_dst = v6addr; 23178 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 23179 addr_len = IPV6_ADDR_LEN; 23180 addr = &v6addr; 23181 } 23182 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 23183 U32_TO_BE32(ack, tcph->th_ack); 23184 U32_TO_BE32(seq, tcph->th_seq); 23185 U16_TO_BE16(0, tcph->th_win); 23186 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 23187 tcph->th_flags[0] = (uint8_t)ctl; 23188 if (ctl & TH_RST) { 23189 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 23190 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23191 } 23192 23193 /* IP trusts us to set up labels when required. */ 23194 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 23195 crgetlabel(cr) != NULL) { 23196 int err; 23197 23198 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 23199 err = tsol_check_label(cr, &mp, 23200 tcp->tcp_connp->conn_mac_exempt, 23201 tcps->tcps_netstack->netstack_ip); 23202 else 23203 err = tsol_check_label_v6(cr, &mp, 23204 tcp->tcp_connp->conn_mac_exempt, 23205 tcps->tcps_netstack->netstack_ip); 23206 if (mctl_present) 23207 ipsec_mp->b_cont = mp; 23208 else 23209 ipsec_mp = mp; 23210 if (err != 0) { 23211 freemsg(ipsec_mp); 23212 return; 23213 } 23214 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23215 ipha = (ipha_t *)mp->b_rptr; 23216 } else { 23217 ip6h = (ip6_t *)mp->b_rptr; 23218 } 23219 } 23220 23221 if (mctl_present) { 23222 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23223 23224 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23225 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 23226 return; 23227 } 23228 } 23229 if (zoneid == ALL_ZONES) 23230 zoneid = GLOBAL_ZONEID; 23231 23232 /* Add the zoneid so ip_output routes it properly */ 23233 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 23234 freemsg(ipsec_mp); 23235 return; 23236 } 23237 ipsec_mp = nmp; 23238 23239 /* 23240 * NOTE: one might consider tracing a TCP packet here, but 23241 * this function has no active TCP state and no tcp structure 23242 * that has a trace buffer. If we traced here, we would have 23243 * to keep a local trace buffer in tcp_record_trace(). 23244 * 23245 * TSol note: The mblk that contains the incoming packet was 23246 * reused by tcp_xmit_listener_reset, so it already contains 23247 * the right credentials and we don't need to call mblk_setcred. 23248 * Also the conn's cred is not right since it is associated 23249 * with tcps_g_q. 23250 */ 23251 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 23252 23253 /* 23254 * Tell IP to mark the IRE used for this destination temporary. 23255 * This way, we can limit our exposure to DoS attack because IP 23256 * creates an IRE for each destination. If there are too many, 23257 * the time to do any routing lookup will be extremely long. And 23258 * the lookup can be in interrupt context. 23259 * 23260 * Note that in normal circumstances, this marking should not 23261 * affect anything. It would be nice if only 1 message is 23262 * needed to inform IP that the IRE created for this RST should 23263 * not be added to the cache table. But there is currently 23264 * not such communication mechanism between TCP and IP. So 23265 * the best we can do now is to send the advice ioctl to IP 23266 * to mark the IRE temporary. 23267 */ 23268 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 23269 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 23270 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23271 } 23272 } 23273 23274 /* 23275 * Initiate closedown sequence on an active connection. (May be called as 23276 * writer.) Return value zero for OK return, non-zero for error return. 23277 */ 23278 static int 23279 tcp_xmit_end(tcp_t *tcp) 23280 { 23281 ipic_t *ipic; 23282 mblk_t *mp; 23283 tcp_stack_t *tcps = tcp->tcp_tcps; 23284 23285 if (tcp->tcp_state < TCPS_SYN_RCVD || 23286 tcp->tcp_state > TCPS_CLOSE_WAIT) { 23287 /* 23288 * Invalid state, only states TCPS_SYN_RCVD, 23289 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 23290 */ 23291 return (-1); 23292 } 23293 23294 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 23295 tcp->tcp_valid_bits |= TCP_FSS_VALID; 23296 /* 23297 * If there is nothing more unsent, send the FIN now. 23298 * Otherwise, it will go out with the last segment. 23299 */ 23300 if (tcp->tcp_unsent == 0) { 23301 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 23302 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 23303 23304 if (mp) { 23305 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23306 tcp_send_data(tcp, tcp->tcp_wq, mp); 23307 } else { 23308 /* 23309 * Couldn't allocate msg. Pretend we got it out. 23310 * Wait for rexmit timeout. 23311 */ 23312 tcp->tcp_snxt = tcp->tcp_fss + 1; 23313 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23314 } 23315 23316 /* 23317 * If needed, update tcp_rexmit_snxt as tcp_snxt is 23318 * changed. 23319 */ 23320 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 23321 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23322 } 23323 } else { 23324 /* 23325 * If tcp->tcp_cork is set, then the data will not get sent, 23326 * so we have to check that and unset it first. 23327 */ 23328 if (tcp->tcp_cork) 23329 tcp->tcp_cork = B_FALSE; 23330 tcp_wput_data(tcp, NULL, B_FALSE); 23331 } 23332 23333 /* 23334 * If TCP does not get enough samples of RTT or tcp_rtt_updates 23335 * is 0, don't update the cache. 23336 */ 23337 if (tcps->tcps_rtt_updates == 0 || 23338 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 23339 return (0); 23340 23341 /* 23342 * NOTE: should not update if source routes i.e. if tcp_remote if 23343 * different from the destination. 23344 */ 23345 if (tcp->tcp_ipversion == IPV4_VERSION) { 23346 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23347 return (0); 23348 } 23349 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23350 &ipic); 23351 } else { 23352 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23353 &tcp->tcp_ip6h->ip6_dst))) { 23354 return (0); 23355 } 23356 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23357 &ipic); 23358 } 23359 23360 /* Record route attributes in the IRE for use by future connections. */ 23361 if (mp == NULL) 23362 return (0); 23363 23364 /* 23365 * We do not have a good algorithm to update ssthresh at this time. 23366 * So don't do any update. 23367 */ 23368 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23369 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23370 23371 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23372 return (0); 23373 } 23374 23375 /* 23376 * Generate a "no listener here" RST in response to an "unknown" segment. 23377 * connp is set by caller when RST is in response to an unexpected 23378 * inbound packet for which there is active tcp state in the system. 23379 * Note that we are reusing the incoming mp to construct the outgoing RST. 23380 */ 23381 void 23382 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23383 tcp_stack_t *tcps, conn_t *connp) 23384 { 23385 uchar_t *rptr; 23386 uint32_t seg_len; 23387 tcph_t *tcph; 23388 uint32_t seg_seq; 23389 uint32_t seg_ack; 23390 uint_t flags; 23391 mblk_t *ipsec_mp; 23392 ipha_t *ipha; 23393 ip6_t *ip6h; 23394 boolean_t mctl_present = B_FALSE; 23395 boolean_t check = B_TRUE; 23396 boolean_t policy_present; 23397 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23398 23399 TCP_STAT(tcps, tcp_no_listener); 23400 23401 ipsec_mp = mp; 23402 23403 if (mp->b_datap->db_type == M_CTL) { 23404 ipsec_in_t *ii; 23405 23406 mctl_present = B_TRUE; 23407 mp = mp->b_cont; 23408 23409 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23410 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23411 if (ii->ipsec_in_dont_check) { 23412 check = B_FALSE; 23413 if (!ii->ipsec_in_secure) { 23414 freeb(ipsec_mp); 23415 mctl_present = B_FALSE; 23416 ipsec_mp = mp; 23417 } 23418 } 23419 } 23420 23421 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23422 policy_present = ipss->ipsec_inbound_v4_policy_present; 23423 ipha = (ipha_t *)mp->b_rptr; 23424 ip6h = NULL; 23425 } else { 23426 policy_present = ipss->ipsec_inbound_v6_policy_present; 23427 ipha = NULL; 23428 ip6h = (ip6_t *)mp->b_rptr; 23429 } 23430 23431 if (check && policy_present) { 23432 /* 23433 * The conn_t parameter is NULL because we already know 23434 * nobody's home. 23435 */ 23436 ipsec_mp = ipsec_check_global_policy( 23437 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23438 tcps->tcps_netstack); 23439 if (ipsec_mp == NULL) 23440 return; 23441 } 23442 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23443 DTRACE_PROBE2( 23444 tx__ip__log__error__nolistener__tcp, 23445 char *, "Could not reply with RST to mp(1)", 23446 mblk_t *, mp); 23447 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23448 freemsg(ipsec_mp); 23449 return; 23450 } 23451 23452 rptr = mp->b_rptr; 23453 23454 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23455 seg_seq = BE32_TO_U32(tcph->th_seq); 23456 seg_ack = BE32_TO_U32(tcph->th_ack); 23457 flags = tcph->th_flags[0]; 23458 23459 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23460 if (flags & TH_RST) { 23461 freemsg(ipsec_mp); 23462 } else if (flags & TH_ACK) { 23463 tcp_xmit_early_reset("no tcp, reset", 23464 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23465 connp); 23466 } else { 23467 if (flags & TH_SYN) { 23468 seg_len++; 23469 } else { 23470 /* 23471 * Here we violate the RFC. Note that a normal 23472 * TCP will never send a segment without the ACK 23473 * flag, except for RST or SYN segment. This 23474 * segment is neither. Just drop it on the 23475 * floor. 23476 */ 23477 freemsg(ipsec_mp); 23478 tcps->tcps_rst_unsent++; 23479 return; 23480 } 23481 23482 tcp_xmit_early_reset("no tcp, reset/ack", 23483 ipsec_mp, 0, seg_seq + seg_len, 23484 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23485 } 23486 } 23487 23488 /* 23489 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23490 * ip and tcp header ready to pass down to IP. If the mp passed in is 23491 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23492 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23493 * otherwise it will dup partial mblks.) 23494 * Otherwise, an appropriate ACK packet will be generated. This 23495 * routine is not usually called to send new data for the first time. It 23496 * is mostly called out of the timer for retransmits, and to generate ACKs. 23497 * 23498 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23499 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23500 * of the original mblk chain will be returned in *offset and *end_mp. 23501 */ 23502 mblk_t * 23503 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23504 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23505 boolean_t rexmit) 23506 { 23507 int data_length; 23508 int32_t off = 0; 23509 uint_t flags; 23510 mblk_t *mp1; 23511 mblk_t *mp2; 23512 uchar_t *rptr; 23513 tcph_t *tcph; 23514 int32_t num_sack_blk = 0; 23515 int32_t sack_opt_len = 0; 23516 tcp_stack_t *tcps = tcp->tcp_tcps; 23517 23518 /* Allocate for our maximum TCP header + link-level */ 23519 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23520 tcps->tcps_wroff_xtra, BPRI_MED); 23521 if (!mp1) 23522 return (NULL); 23523 data_length = 0; 23524 23525 /* 23526 * Note that tcp_mss has been adjusted to take into account the 23527 * timestamp option if applicable. Because SACK options do not 23528 * appear in every TCP segments and they are of variable lengths, 23529 * they cannot be included in tcp_mss. Thus we need to calculate 23530 * the actual segment length when we need to send a segment which 23531 * includes SACK options. 23532 */ 23533 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23534 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23535 tcp->tcp_num_sack_blk); 23536 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23537 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23538 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23539 max_to_send -= sack_opt_len; 23540 } 23541 23542 if (offset != NULL) { 23543 off = *offset; 23544 /* We use offset as an indicator that end_mp is not NULL. */ 23545 *end_mp = NULL; 23546 } 23547 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23548 /* This could be faster with cooperation from downstream */ 23549 if (mp2 != mp1 && !sendall && 23550 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23551 max_to_send) 23552 /* 23553 * Don't send the next mblk since the whole mblk 23554 * does not fit. 23555 */ 23556 break; 23557 mp2->b_cont = dupb(mp); 23558 mp2 = mp2->b_cont; 23559 if (!mp2) { 23560 freemsg(mp1); 23561 return (NULL); 23562 } 23563 mp2->b_rptr += off; 23564 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23565 (uintptr_t)INT_MAX); 23566 23567 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23568 if (data_length > max_to_send) { 23569 mp2->b_wptr -= data_length - max_to_send; 23570 data_length = max_to_send; 23571 off = mp2->b_wptr - mp->b_rptr; 23572 break; 23573 } else { 23574 off = 0; 23575 } 23576 } 23577 if (offset != NULL) { 23578 *offset = off; 23579 *end_mp = mp; 23580 } 23581 if (seg_len != NULL) { 23582 *seg_len = data_length; 23583 } 23584 23585 /* Update the latest receive window size in TCP header. */ 23586 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23587 tcp->tcp_tcph->th_win); 23588 23589 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23590 mp1->b_rptr = rptr; 23591 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23592 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23593 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23594 U32_TO_ABE32(seq, tcph->th_seq); 23595 23596 /* 23597 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23598 * that this function was called from tcp_wput_data. Thus, when called 23599 * to retransmit data the setting of the PUSH bit may appear some 23600 * what random in that it might get set when it should not. This 23601 * should not pose any performance issues. 23602 */ 23603 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23604 tcp->tcp_unsent == data_length)) { 23605 flags = TH_ACK | TH_PUSH; 23606 } else { 23607 flags = TH_ACK; 23608 } 23609 23610 if (tcp->tcp_ecn_ok) { 23611 if (tcp->tcp_ecn_echo_on) 23612 flags |= TH_ECE; 23613 23614 /* 23615 * Only set ECT bit and ECN_CWR if a segment contains new data. 23616 * There is no TCP flow control for non-data segments, and 23617 * only data segment is transmitted reliably. 23618 */ 23619 if (data_length > 0 && !rexmit) { 23620 SET_ECT(tcp, rptr); 23621 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23622 flags |= TH_CWR; 23623 tcp->tcp_ecn_cwr_sent = B_TRUE; 23624 } 23625 } 23626 } 23627 23628 if (tcp->tcp_valid_bits) { 23629 uint32_t u1; 23630 23631 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23632 seq == tcp->tcp_iss) { 23633 uchar_t *wptr; 23634 23635 /* 23636 * If TCP_ISS_VALID and the seq number is tcp_iss, 23637 * TCP can only be in SYN-SENT, SYN-RCVD or 23638 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23639 * our SYN is not ack'ed but the app closes this 23640 * TCP connection. 23641 */ 23642 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23643 tcp->tcp_state == TCPS_SYN_RCVD || 23644 tcp->tcp_state == TCPS_FIN_WAIT_1); 23645 23646 /* 23647 * Tack on the MSS option. It is always needed 23648 * for both active and passive open. 23649 * 23650 * MSS option value should be interface MTU - MIN 23651 * TCP/IP header according to RFC 793 as it means 23652 * the maximum segment size TCP can receive. But 23653 * to get around some broken middle boxes/end hosts 23654 * out there, we allow the option value to be the 23655 * same as the MSS option size on the peer side. 23656 * In this way, the other side will not send 23657 * anything larger than they can receive. 23658 * 23659 * Note that for SYN_SENT state, the ndd param 23660 * tcp_use_smss_as_mss_opt has no effect as we 23661 * don't know the peer's MSS option value. So 23662 * the only case we need to take care of is in 23663 * SYN_RCVD state, which is done later. 23664 */ 23665 wptr = mp1->b_wptr; 23666 wptr[0] = TCPOPT_MAXSEG; 23667 wptr[1] = TCPOPT_MAXSEG_LEN; 23668 wptr += 2; 23669 u1 = tcp->tcp_if_mtu - 23670 (tcp->tcp_ipversion == IPV4_VERSION ? 23671 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23672 TCP_MIN_HEADER_LENGTH; 23673 U16_TO_BE16(u1, wptr); 23674 mp1->b_wptr = wptr + 2; 23675 /* Update the offset to cover the additional word */ 23676 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23677 23678 /* 23679 * Note that the following way of filling in 23680 * TCP options are not optimal. Some NOPs can 23681 * be saved. But there is no need at this time 23682 * to optimize it. When it is needed, we will 23683 * do it. 23684 */ 23685 switch (tcp->tcp_state) { 23686 case TCPS_SYN_SENT: 23687 flags = TH_SYN; 23688 23689 if (tcp->tcp_snd_ts_ok) { 23690 uint32_t llbolt = (uint32_t)lbolt; 23691 23692 wptr = mp1->b_wptr; 23693 wptr[0] = TCPOPT_NOP; 23694 wptr[1] = TCPOPT_NOP; 23695 wptr[2] = TCPOPT_TSTAMP; 23696 wptr[3] = TCPOPT_TSTAMP_LEN; 23697 wptr += 4; 23698 U32_TO_BE32(llbolt, wptr); 23699 wptr += 4; 23700 ASSERT(tcp->tcp_ts_recent == 0); 23701 U32_TO_BE32(0L, wptr); 23702 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23703 tcph->th_offset_and_rsrvd[0] += 23704 (3 << 4); 23705 } 23706 23707 /* 23708 * Set up all the bits to tell other side 23709 * we are ECN capable. 23710 */ 23711 if (tcp->tcp_ecn_ok) { 23712 flags |= (TH_ECE | TH_CWR); 23713 } 23714 break; 23715 case TCPS_SYN_RCVD: 23716 flags |= TH_SYN; 23717 23718 /* 23719 * Reset the MSS option value to be SMSS 23720 * We should probably add back the bytes 23721 * for timestamp option and IPsec. We 23722 * don't do that as this is a workaround 23723 * for broken middle boxes/end hosts, it 23724 * is better for us to be more cautious. 23725 * They may not take these things into 23726 * account in their SMSS calculation. Thus 23727 * the peer's calculated SMSS may be smaller 23728 * than what it can be. This should be OK. 23729 */ 23730 if (tcps->tcps_use_smss_as_mss_opt) { 23731 u1 = tcp->tcp_mss; 23732 U16_TO_BE16(u1, wptr); 23733 } 23734 23735 /* 23736 * If the other side is ECN capable, reply 23737 * that we are also ECN capable. 23738 */ 23739 if (tcp->tcp_ecn_ok) 23740 flags |= TH_ECE; 23741 break; 23742 default: 23743 /* 23744 * The above ASSERT() makes sure that this 23745 * must be FIN-WAIT-1 state. Our SYN has 23746 * not been ack'ed so retransmit it. 23747 */ 23748 flags |= TH_SYN; 23749 break; 23750 } 23751 23752 if (tcp->tcp_snd_ws_ok) { 23753 wptr = mp1->b_wptr; 23754 wptr[0] = TCPOPT_NOP; 23755 wptr[1] = TCPOPT_WSCALE; 23756 wptr[2] = TCPOPT_WS_LEN; 23757 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23758 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23759 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23760 } 23761 23762 if (tcp->tcp_snd_sack_ok) { 23763 wptr = mp1->b_wptr; 23764 wptr[0] = TCPOPT_NOP; 23765 wptr[1] = TCPOPT_NOP; 23766 wptr[2] = TCPOPT_SACK_PERMITTED; 23767 wptr[3] = TCPOPT_SACK_OK_LEN; 23768 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23769 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23770 } 23771 23772 /* allocb() of adequate mblk assures space */ 23773 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23774 (uintptr_t)INT_MAX); 23775 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23776 /* 23777 * Get IP set to checksum on our behalf 23778 * Include the adjustment for a source route if any. 23779 */ 23780 u1 += tcp->tcp_sum; 23781 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23782 U16_TO_BE16(u1, tcph->th_sum); 23783 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23784 } 23785 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23786 (seq + data_length) == tcp->tcp_fss) { 23787 if (!tcp->tcp_fin_acked) { 23788 flags |= TH_FIN; 23789 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23790 } 23791 if (!tcp->tcp_fin_sent) { 23792 tcp->tcp_fin_sent = B_TRUE; 23793 switch (tcp->tcp_state) { 23794 case TCPS_SYN_RCVD: 23795 case TCPS_ESTABLISHED: 23796 tcp->tcp_state = TCPS_FIN_WAIT_1; 23797 break; 23798 case TCPS_CLOSE_WAIT: 23799 tcp->tcp_state = TCPS_LAST_ACK; 23800 break; 23801 } 23802 if (tcp->tcp_suna == tcp->tcp_snxt) 23803 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23804 tcp->tcp_snxt = tcp->tcp_fss + 1; 23805 } 23806 } 23807 /* 23808 * Note the trick here. u1 is unsigned. When tcp_urg 23809 * is smaller than seq, u1 will become a very huge value. 23810 * So the comparison will fail. Also note that tcp_urp 23811 * should be positive, see RFC 793 page 17. 23812 */ 23813 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23814 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23815 u1 < (uint32_t)(64 * 1024)) { 23816 flags |= TH_URG; 23817 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23818 U32_TO_ABE16(u1, tcph->th_urp); 23819 } 23820 } 23821 tcph->th_flags[0] = (uchar_t)flags; 23822 tcp->tcp_rack = tcp->tcp_rnxt; 23823 tcp->tcp_rack_cnt = 0; 23824 23825 if (tcp->tcp_snd_ts_ok) { 23826 if (tcp->tcp_state != TCPS_SYN_SENT) { 23827 uint32_t llbolt = (uint32_t)lbolt; 23828 23829 U32_TO_BE32(llbolt, 23830 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23831 U32_TO_BE32(tcp->tcp_ts_recent, 23832 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23833 } 23834 } 23835 23836 if (num_sack_blk > 0) { 23837 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23838 sack_blk_t *tmp; 23839 int32_t i; 23840 23841 wptr[0] = TCPOPT_NOP; 23842 wptr[1] = TCPOPT_NOP; 23843 wptr[2] = TCPOPT_SACK; 23844 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23845 sizeof (sack_blk_t); 23846 wptr += TCPOPT_REAL_SACK_LEN; 23847 23848 tmp = tcp->tcp_sack_list; 23849 for (i = 0; i < num_sack_blk; i++) { 23850 U32_TO_BE32(tmp[i].begin, wptr); 23851 wptr += sizeof (tcp_seq); 23852 U32_TO_BE32(tmp[i].end, wptr); 23853 wptr += sizeof (tcp_seq); 23854 } 23855 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23856 } 23857 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23858 data_length += (int)(mp1->b_wptr - rptr); 23859 if (tcp->tcp_ipversion == IPV4_VERSION) { 23860 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23861 } else { 23862 ip6_t *ip6 = (ip6_t *)(rptr + 23863 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23864 sizeof (ip6i_t) : 0)); 23865 23866 ip6->ip6_plen = htons(data_length - 23867 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23868 } 23869 23870 /* 23871 * Prime pump for IP 23872 * Include the adjustment for a source route if any. 23873 */ 23874 data_length -= tcp->tcp_ip_hdr_len; 23875 data_length += tcp->tcp_sum; 23876 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23877 U16_TO_ABE16(data_length, tcph->th_sum); 23878 if (tcp->tcp_ip_forward_progress) { 23879 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23880 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23881 tcp->tcp_ip_forward_progress = B_FALSE; 23882 } 23883 return (mp1); 23884 } 23885 23886 /* This function handles the push timeout. */ 23887 void 23888 tcp_push_timer(void *arg) 23889 { 23890 conn_t *connp = (conn_t *)arg; 23891 tcp_t *tcp = connp->conn_tcp; 23892 tcp_stack_t *tcps = tcp->tcp_tcps; 23893 uint_t flags; 23894 sodirect_t *sodp; 23895 23896 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23897 23898 ASSERT(tcp->tcp_listener == NULL); 23899 23900 /* 23901 * We need to plug synchronous streams during our drain to prevent 23902 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23903 */ 23904 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23905 tcp->tcp_push_tid = 0; 23906 23907 SOD_PTR_ENTER(tcp, sodp); 23908 if (sodp != NULL) { 23909 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23910 /* sod_wakeup() does the mutex_exit() */ 23911 } else if (tcp->tcp_rcv_list != NULL) { 23912 flags = tcp_rcv_drain(tcp->tcp_rq, tcp); 23913 } 23914 if (flags == TH_ACK_NEEDED) 23915 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23916 23917 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23918 } 23919 23920 /* 23921 * This function handles delayed ACK timeout. 23922 */ 23923 static void 23924 tcp_ack_timer(void *arg) 23925 { 23926 conn_t *connp = (conn_t *)arg; 23927 tcp_t *tcp = connp->conn_tcp; 23928 mblk_t *mp; 23929 tcp_stack_t *tcps = tcp->tcp_tcps; 23930 23931 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23932 23933 tcp->tcp_ack_tid = 0; 23934 23935 if (tcp->tcp_fused) 23936 return; 23937 23938 /* 23939 * Do not send ACK if there is no outstanding unack'ed data. 23940 */ 23941 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23942 return; 23943 } 23944 23945 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23946 /* 23947 * Make sure we don't allow deferred ACKs to result in 23948 * timer-based ACKing. If we have held off an ACK 23949 * when there was more than an mss here, and the timer 23950 * goes off, we have to worry about the possibility 23951 * that the sender isn't doing slow-start, or is out 23952 * of step with us for some other reason. We fall 23953 * permanently back in the direction of 23954 * ACK-every-other-packet as suggested in RFC 1122. 23955 */ 23956 if (tcp->tcp_rack_abs_max > 2) 23957 tcp->tcp_rack_abs_max--; 23958 tcp->tcp_rack_cur_max = 2; 23959 } 23960 mp = tcp_ack_mp(tcp); 23961 23962 if (mp != NULL) { 23963 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23964 BUMP_LOCAL(tcp->tcp_obsegs); 23965 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23966 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23967 tcp_send_data(tcp, tcp->tcp_wq, mp); 23968 } 23969 } 23970 23971 23972 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23973 static mblk_t * 23974 tcp_ack_mp(tcp_t *tcp) 23975 { 23976 uint32_t seq_no; 23977 tcp_stack_t *tcps = tcp->tcp_tcps; 23978 23979 /* 23980 * There are a few cases to be considered while setting the sequence no. 23981 * Essentially, we can come here while processing an unacceptable pkt 23982 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23983 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23984 * If we are here for a zero window probe, stick with suna. In all 23985 * other cases, we check if suna + swnd encompasses snxt and set 23986 * the sequence number to snxt, if so. If snxt falls outside the 23987 * window (the receiver probably shrunk its window), we will go with 23988 * suna + swnd, otherwise the sequence no will be unacceptable to the 23989 * receiver. 23990 */ 23991 if (tcp->tcp_zero_win_probe) { 23992 seq_no = tcp->tcp_suna; 23993 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23994 ASSERT(tcp->tcp_swnd == 0); 23995 seq_no = tcp->tcp_snxt; 23996 } else { 23997 seq_no = SEQ_GT(tcp->tcp_snxt, 23998 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23999 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 24000 } 24001 24002 if (tcp->tcp_valid_bits) { 24003 /* 24004 * For the complex case where we have to send some 24005 * controls (FIN or SYN), let tcp_xmit_mp do it. 24006 */ 24007 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 24008 NULL, B_FALSE)); 24009 } else { 24010 /* Generate a simple ACK */ 24011 int data_length; 24012 uchar_t *rptr; 24013 tcph_t *tcph; 24014 mblk_t *mp1; 24015 int32_t tcp_hdr_len; 24016 int32_t tcp_tcp_hdr_len; 24017 int32_t num_sack_blk = 0; 24018 int32_t sack_opt_len; 24019 24020 /* 24021 * Allocate space for TCP + IP headers 24022 * and link-level header 24023 */ 24024 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 24025 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 24026 tcp->tcp_num_sack_blk); 24027 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 24028 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 24029 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 24030 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 24031 } else { 24032 tcp_hdr_len = tcp->tcp_hdr_len; 24033 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 24034 } 24035 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 24036 if (!mp1) 24037 return (NULL); 24038 24039 /* Update the latest receive window size in TCP header. */ 24040 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 24041 tcp->tcp_tcph->th_win); 24042 /* copy in prototype TCP + IP header */ 24043 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 24044 mp1->b_rptr = rptr; 24045 mp1->b_wptr = rptr + tcp_hdr_len; 24046 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 24047 24048 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 24049 24050 /* Set the TCP sequence number. */ 24051 U32_TO_ABE32(seq_no, tcph->th_seq); 24052 24053 /* Set up the TCP flag field. */ 24054 tcph->th_flags[0] = (uchar_t)TH_ACK; 24055 if (tcp->tcp_ecn_echo_on) 24056 tcph->th_flags[0] |= TH_ECE; 24057 24058 tcp->tcp_rack = tcp->tcp_rnxt; 24059 tcp->tcp_rack_cnt = 0; 24060 24061 /* fill in timestamp option if in use */ 24062 if (tcp->tcp_snd_ts_ok) { 24063 uint32_t llbolt = (uint32_t)lbolt; 24064 24065 U32_TO_BE32(llbolt, 24066 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 24067 U32_TO_BE32(tcp->tcp_ts_recent, 24068 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 24069 } 24070 24071 /* Fill in SACK options */ 24072 if (num_sack_blk > 0) { 24073 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 24074 sack_blk_t *tmp; 24075 int32_t i; 24076 24077 wptr[0] = TCPOPT_NOP; 24078 wptr[1] = TCPOPT_NOP; 24079 wptr[2] = TCPOPT_SACK; 24080 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 24081 sizeof (sack_blk_t); 24082 wptr += TCPOPT_REAL_SACK_LEN; 24083 24084 tmp = tcp->tcp_sack_list; 24085 for (i = 0; i < num_sack_blk; i++) { 24086 U32_TO_BE32(tmp[i].begin, wptr); 24087 wptr += sizeof (tcp_seq); 24088 U32_TO_BE32(tmp[i].end, wptr); 24089 wptr += sizeof (tcp_seq); 24090 } 24091 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 24092 << 4); 24093 } 24094 24095 if (tcp->tcp_ipversion == IPV4_VERSION) { 24096 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 24097 } else { 24098 /* Check for ip6i_t header in sticky hdrs */ 24099 ip6_t *ip6 = (ip6_t *)(rptr + 24100 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 24101 sizeof (ip6i_t) : 0)); 24102 24103 ip6->ip6_plen = htons(tcp_hdr_len - 24104 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 24105 } 24106 24107 /* 24108 * Prime pump for checksum calculation in IP. Include the 24109 * adjustment for a source route if any. 24110 */ 24111 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 24112 data_length = (data_length >> 16) + (data_length & 0xFFFF); 24113 U16_TO_ABE16(data_length, tcph->th_sum); 24114 24115 if (tcp->tcp_ip_forward_progress) { 24116 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 24117 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 24118 tcp->tcp_ip_forward_progress = B_FALSE; 24119 } 24120 return (mp1); 24121 } 24122 } 24123 24124 /* 24125 * To create a temporary tcp structure for inserting into bind hash list. 24126 * The parameter is assumed to be in network byte order, ready for use. 24127 */ 24128 /* ARGSUSED */ 24129 static tcp_t * 24130 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps) 24131 { 24132 conn_t *connp; 24133 tcp_t *tcp; 24134 24135 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack); 24136 if (connp == NULL) 24137 return (NULL); 24138 24139 tcp = connp->conn_tcp; 24140 tcp->tcp_tcps = tcps; 24141 TCPS_REFHOLD(tcps); 24142 24143 /* 24144 * Only initialize the necessary info in those structures. Note 24145 * that since INADDR_ANY is all 0, we do not need to set 24146 * tcp_bound_source to INADDR_ANY here. 24147 */ 24148 tcp->tcp_state = TCPS_BOUND; 24149 tcp->tcp_lport = port; 24150 tcp->tcp_exclbind = 1; 24151 tcp->tcp_reserved_port = 1; 24152 24153 /* Just for place holding... */ 24154 tcp->tcp_ipversion = IPV4_VERSION; 24155 24156 return (tcp); 24157 } 24158 24159 /* 24160 * To remove a port range specified by lo_port and hi_port from the 24161 * reserved port ranges. This is one of the three public functions of 24162 * the reserved port interface. Note that a port range has to be removed 24163 * as a whole. Ports in a range cannot be removed individually. 24164 * 24165 * Params: 24166 * in_port_t lo_port: the beginning port of the reserved port range to 24167 * be deleted. 24168 * in_port_t hi_port: the ending port of the reserved port range to 24169 * be deleted. 24170 * 24171 * Return: 24172 * B_TRUE if the deletion is successful, B_FALSE otherwise. 24173 * 24174 * Assumes that nca is only for zoneid=0 24175 */ 24176 boolean_t 24177 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 24178 { 24179 int i, j; 24180 int size; 24181 tcp_t **temp_tcp_array; 24182 tcp_t *tcp; 24183 tcp_stack_t *tcps; 24184 24185 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 24186 ASSERT(tcps != NULL); 24187 24188 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 24189 24190 /* First make sure that the port ranage is indeed reserved. */ 24191 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 24192 if (tcps->tcps_reserved_port[i].lo_port == lo_port) { 24193 hi_port = tcps->tcps_reserved_port[i].hi_port; 24194 temp_tcp_array = 24195 tcps->tcps_reserved_port[i].temp_tcp_array; 24196 break; 24197 } 24198 } 24199 if (i == tcps->tcps_reserved_port_array_size) { 24200 rw_exit(&tcps->tcps_reserved_port_lock); 24201 netstack_rele(tcps->tcps_netstack); 24202 return (B_FALSE); 24203 } 24204 24205 /* 24206 * Remove the range from the array. This simple loop is possible 24207 * because port ranges are inserted in ascending order. 24208 */ 24209 for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) { 24210 tcps->tcps_reserved_port[j].lo_port = 24211 tcps->tcps_reserved_port[j+1].lo_port; 24212 tcps->tcps_reserved_port[j].hi_port = 24213 tcps->tcps_reserved_port[j+1].hi_port; 24214 tcps->tcps_reserved_port[j].temp_tcp_array = 24215 tcps->tcps_reserved_port[j+1].temp_tcp_array; 24216 } 24217 24218 /* Remove all the temporary tcp structures. */ 24219 size = hi_port - lo_port + 1; 24220 while (size > 0) { 24221 tcp = temp_tcp_array[size - 1]; 24222 ASSERT(tcp != NULL); 24223 tcp_bind_hash_remove(tcp); 24224 CONN_DEC_REF(tcp->tcp_connp); 24225 size--; 24226 } 24227 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 24228 tcps->tcps_reserved_port_array_size--; 24229 rw_exit(&tcps->tcps_reserved_port_lock); 24230 netstack_rele(tcps->tcps_netstack); 24231 return (B_TRUE); 24232 } 24233 24234 /* 24235 * Macro to remove temporary tcp structure from the bind hash list. The 24236 * first parameter is the list of tcp to be removed. The second parameter 24237 * is the number of tcps in the array. 24238 */ 24239 #define TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \ 24240 { \ 24241 while ((num) > 0) { \ 24242 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 24243 tf_t *tbf; \ 24244 tcp_t *tcpnext; \ 24245 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 24246 mutex_enter(&tbf->tf_lock); \ 24247 tcpnext = tcp->tcp_bind_hash; \ 24248 if (tcpnext) { \ 24249 tcpnext->tcp_ptpbhn = \ 24250 tcp->tcp_ptpbhn; \ 24251 } \ 24252 *tcp->tcp_ptpbhn = tcpnext; \ 24253 mutex_exit(&tbf->tf_lock); \ 24254 kmem_free(tcp, sizeof (tcp_t)); \ 24255 (tcp_array)[(num) - 1] = NULL; \ 24256 (num)--; \ 24257 } \ 24258 } 24259 24260 /* 24261 * The public interface for other modules to call to reserve a port range 24262 * in TCP. The caller passes in how large a port range it wants. TCP 24263 * will try to find a range and return it via lo_port and hi_port. This is 24264 * used by NCA's nca_conn_init. 24265 * NCA can only be used in the global zone so this only affects the global 24266 * zone's ports. 24267 * 24268 * Params: 24269 * int size: the size of the port range to be reserved. 24270 * in_port_t *lo_port (referenced): returns the beginning port of the 24271 * reserved port range added. 24272 * in_port_t *hi_port (referenced): returns the ending port of the 24273 * reserved port range added. 24274 * 24275 * Return: 24276 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 24277 * 24278 * Assumes that nca is only for zoneid=0 24279 */ 24280 boolean_t 24281 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 24282 { 24283 tcp_t *tcp; 24284 tcp_t *tmp_tcp; 24285 tcp_t **temp_tcp_array; 24286 tf_t *tbf; 24287 in_port_t net_port; 24288 in_port_t port; 24289 int32_t cur_size; 24290 int i, j; 24291 boolean_t used; 24292 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 24293 zoneid_t zoneid = GLOBAL_ZONEID; 24294 tcp_stack_t *tcps; 24295 24296 /* Sanity check. */ 24297 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 24298 return (B_FALSE); 24299 } 24300 24301 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 24302 ASSERT(tcps != NULL); 24303 24304 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 24305 if (tcps->tcps_reserved_port_array_size == 24306 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 24307 rw_exit(&tcps->tcps_reserved_port_lock); 24308 netstack_rele(tcps->tcps_netstack); 24309 return (B_FALSE); 24310 } 24311 24312 /* 24313 * Find the starting port to try. Since the port ranges are ordered 24314 * in the reserved port array, we can do a simple search here. 24315 */ 24316 *lo_port = TCP_SMALLEST_RESERVED_PORT; 24317 *hi_port = TCP_LARGEST_RESERVED_PORT; 24318 for (i = 0; i < tcps->tcps_reserved_port_array_size; 24319 *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) { 24320 if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) { 24321 *hi_port = tcps->tcps_reserved_port[i].lo_port - 1; 24322 break; 24323 } 24324 } 24325 /* No available port range. */ 24326 if (i == tcps->tcps_reserved_port_array_size && 24327 *hi_port - *lo_port < size) { 24328 rw_exit(&tcps->tcps_reserved_port_lock); 24329 netstack_rele(tcps->tcps_netstack); 24330 return (B_FALSE); 24331 } 24332 24333 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 24334 if (temp_tcp_array == NULL) { 24335 rw_exit(&tcps->tcps_reserved_port_lock); 24336 netstack_rele(tcps->tcps_netstack); 24337 return (B_FALSE); 24338 } 24339 24340 /* Go thru the port range to see if some ports are already bound. */ 24341 for (port = *lo_port, cur_size = 0; 24342 cur_size < size && port <= *hi_port; 24343 cur_size++, port++) { 24344 used = B_FALSE; 24345 net_port = htons(port); 24346 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)]; 24347 mutex_enter(&tbf->tf_lock); 24348 for (tcp = tbf->tf_tcp; tcp != NULL; 24349 tcp = tcp->tcp_bind_hash) { 24350 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 24351 net_port == tcp->tcp_lport) { 24352 /* 24353 * A port is already bound. Search again 24354 * starting from port + 1. Release all 24355 * temporary tcps. 24356 */ 24357 mutex_exit(&tbf->tf_lock); 24358 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 24359 tcps); 24360 *lo_port = port + 1; 24361 cur_size = -1; 24362 used = B_TRUE; 24363 break; 24364 } 24365 } 24366 if (!used) { 24367 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) == 24368 NULL) { 24369 /* 24370 * Allocation failure. Just fail the request. 24371 * Need to remove all those temporary tcp 24372 * structures. 24373 */ 24374 mutex_exit(&tbf->tf_lock); 24375 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 24376 tcps); 24377 rw_exit(&tcps->tcps_reserved_port_lock); 24378 kmem_free(temp_tcp_array, 24379 (hi_port - lo_port + 1) * 24380 sizeof (tcp_t *)); 24381 netstack_rele(tcps->tcps_netstack); 24382 return (B_FALSE); 24383 } 24384 temp_tcp_array[cur_size] = tmp_tcp; 24385 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 24386 mutex_exit(&tbf->tf_lock); 24387 } 24388 } 24389 24390 /* 24391 * The current range is not large enough. We can actually do another 24392 * search if this search is done between 2 reserved port ranges. But 24393 * for first release, we just stop here and return saying that no port 24394 * range is available. 24395 */ 24396 if (cur_size < size) { 24397 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps); 24398 rw_exit(&tcps->tcps_reserved_port_lock); 24399 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 24400 netstack_rele(tcps->tcps_netstack); 24401 return (B_FALSE); 24402 } 24403 *hi_port = port - 1; 24404 24405 /* 24406 * Insert range into array in ascending order. Since this function 24407 * must not be called often, we choose to use the simplest method. 24408 * The above array should not consume excessive stack space as 24409 * the size must be very small. If in future releases, we find 24410 * that we should provide more reserved port ranges, this function 24411 * has to be modified to be more efficient. 24412 */ 24413 if (tcps->tcps_reserved_port_array_size == 0) { 24414 tcps->tcps_reserved_port[0].lo_port = *lo_port; 24415 tcps->tcps_reserved_port[0].hi_port = *hi_port; 24416 tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array; 24417 } else { 24418 for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size; 24419 i++, j++) { 24420 if (*lo_port < tcps->tcps_reserved_port[i].lo_port && 24421 i == j) { 24422 tmp_ports[j].lo_port = *lo_port; 24423 tmp_ports[j].hi_port = *hi_port; 24424 tmp_ports[j].temp_tcp_array = temp_tcp_array; 24425 j++; 24426 } 24427 tmp_ports[j].lo_port = 24428 tcps->tcps_reserved_port[i].lo_port; 24429 tmp_ports[j].hi_port = 24430 tcps->tcps_reserved_port[i].hi_port; 24431 tmp_ports[j].temp_tcp_array = 24432 tcps->tcps_reserved_port[i].temp_tcp_array; 24433 } 24434 if (j == i) { 24435 tmp_ports[j].lo_port = *lo_port; 24436 tmp_ports[j].hi_port = *hi_port; 24437 tmp_ports[j].temp_tcp_array = temp_tcp_array; 24438 } 24439 bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports)); 24440 } 24441 tcps->tcps_reserved_port_array_size++; 24442 rw_exit(&tcps->tcps_reserved_port_lock); 24443 netstack_rele(tcps->tcps_netstack); 24444 return (B_TRUE); 24445 } 24446 24447 /* 24448 * Check to see if a port is in any reserved port range. 24449 * 24450 * Params: 24451 * in_port_t port: the port to be verified. 24452 * 24453 * Return: 24454 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 24455 */ 24456 boolean_t 24457 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps) 24458 { 24459 int i; 24460 24461 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 24462 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 24463 if (port >= tcps->tcps_reserved_port[i].lo_port || 24464 port <= tcps->tcps_reserved_port[i].hi_port) { 24465 rw_exit(&tcps->tcps_reserved_port_lock); 24466 return (B_TRUE); 24467 } 24468 } 24469 rw_exit(&tcps->tcps_reserved_port_lock); 24470 return (B_FALSE); 24471 } 24472 24473 /* 24474 * To list all reserved port ranges. This is the function to handle 24475 * ndd tcp_reserved_port_list. 24476 */ 24477 /* ARGSUSED */ 24478 static int 24479 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24480 { 24481 int i; 24482 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24483 24484 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 24485 if (tcps->tcps_reserved_port_array_size > 0) 24486 (void) mi_mpprintf(mp, "The following ports are reserved:"); 24487 else 24488 (void) mi_mpprintf(mp, "No port is reserved."); 24489 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 24490 (void) mi_mpprintf(mp, "%d-%d", 24491 tcps->tcps_reserved_port[i].lo_port, 24492 tcps->tcps_reserved_port[i].hi_port); 24493 } 24494 rw_exit(&tcps->tcps_reserved_port_lock); 24495 return (0); 24496 } 24497 24498 /* 24499 * Hash list insertion routine for tcp_t structures. 24500 * Inserts entries with the ones bound to a specific IP address first 24501 * followed by those bound to INADDR_ANY. 24502 */ 24503 static void 24504 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 24505 { 24506 tcp_t **tcpp; 24507 tcp_t *tcpnext; 24508 24509 if (tcp->tcp_ptpbhn != NULL) { 24510 ASSERT(!caller_holds_lock); 24511 tcp_bind_hash_remove(tcp); 24512 } 24513 tcpp = &tbf->tf_tcp; 24514 if (!caller_holds_lock) { 24515 mutex_enter(&tbf->tf_lock); 24516 } else { 24517 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 24518 } 24519 tcpnext = tcpp[0]; 24520 if (tcpnext) { 24521 /* 24522 * If the new tcp bound to the INADDR_ANY address 24523 * and the first one in the list is not bound to 24524 * INADDR_ANY we skip all entries until we find the 24525 * first one bound to INADDR_ANY. 24526 * This makes sure that applications binding to a 24527 * specific address get preference over those binding to 24528 * INADDR_ANY. 24529 */ 24530 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 24531 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 24532 while ((tcpnext = tcpp[0]) != NULL && 24533 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 24534 tcpp = &(tcpnext->tcp_bind_hash); 24535 if (tcpnext) 24536 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24537 } else 24538 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24539 } 24540 tcp->tcp_bind_hash = tcpnext; 24541 tcp->tcp_ptpbhn = tcpp; 24542 tcpp[0] = tcp; 24543 if (!caller_holds_lock) 24544 mutex_exit(&tbf->tf_lock); 24545 } 24546 24547 /* 24548 * Hash list removal routine for tcp_t structures. 24549 */ 24550 static void 24551 tcp_bind_hash_remove(tcp_t *tcp) 24552 { 24553 tcp_t *tcpnext; 24554 kmutex_t *lockp; 24555 tcp_stack_t *tcps = tcp->tcp_tcps; 24556 24557 if (tcp->tcp_ptpbhn == NULL) 24558 return; 24559 24560 /* 24561 * Extract the lock pointer in case there are concurrent 24562 * hash_remove's for this instance. 24563 */ 24564 ASSERT(tcp->tcp_lport != 0); 24565 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 24566 24567 ASSERT(lockp != NULL); 24568 mutex_enter(lockp); 24569 if (tcp->tcp_ptpbhn) { 24570 tcpnext = tcp->tcp_bind_hash; 24571 if (tcpnext) { 24572 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24573 tcp->tcp_bind_hash = NULL; 24574 } 24575 *tcp->tcp_ptpbhn = tcpnext; 24576 tcp->tcp_ptpbhn = NULL; 24577 } 24578 mutex_exit(lockp); 24579 } 24580 24581 24582 /* 24583 * Hash list lookup routine for tcp_t structures. 24584 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24585 */ 24586 static tcp_t * 24587 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24588 { 24589 tf_t *tf; 24590 tcp_t *tcp; 24591 24592 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24593 mutex_enter(&tf->tf_lock); 24594 for (tcp = tf->tf_tcp; tcp != NULL; 24595 tcp = tcp->tcp_acceptor_hash) { 24596 if (tcp->tcp_acceptor_id == id) { 24597 CONN_INC_REF(tcp->tcp_connp); 24598 mutex_exit(&tf->tf_lock); 24599 return (tcp); 24600 } 24601 } 24602 mutex_exit(&tf->tf_lock); 24603 return (NULL); 24604 } 24605 24606 24607 /* 24608 * Hash list insertion routine for tcp_t structures. 24609 */ 24610 void 24611 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24612 { 24613 tf_t *tf; 24614 tcp_t **tcpp; 24615 tcp_t *tcpnext; 24616 tcp_stack_t *tcps = tcp->tcp_tcps; 24617 24618 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24619 24620 if (tcp->tcp_ptpahn != NULL) 24621 tcp_acceptor_hash_remove(tcp); 24622 tcpp = &tf->tf_tcp; 24623 mutex_enter(&tf->tf_lock); 24624 tcpnext = tcpp[0]; 24625 if (tcpnext) 24626 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24627 tcp->tcp_acceptor_hash = tcpnext; 24628 tcp->tcp_ptpahn = tcpp; 24629 tcpp[0] = tcp; 24630 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24631 mutex_exit(&tf->tf_lock); 24632 } 24633 24634 /* 24635 * Hash list removal routine for tcp_t structures. 24636 */ 24637 static void 24638 tcp_acceptor_hash_remove(tcp_t *tcp) 24639 { 24640 tcp_t *tcpnext; 24641 kmutex_t *lockp; 24642 24643 /* 24644 * Extract the lock pointer in case there are concurrent 24645 * hash_remove's for this instance. 24646 */ 24647 lockp = tcp->tcp_acceptor_lockp; 24648 24649 if (tcp->tcp_ptpahn == NULL) 24650 return; 24651 24652 ASSERT(lockp != NULL); 24653 mutex_enter(lockp); 24654 if (tcp->tcp_ptpahn) { 24655 tcpnext = tcp->tcp_acceptor_hash; 24656 if (tcpnext) { 24657 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24658 tcp->tcp_acceptor_hash = NULL; 24659 } 24660 *tcp->tcp_ptpahn = tcpnext; 24661 tcp->tcp_ptpahn = NULL; 24662 } 24663 mutex_exit(lockp); 24664 tcp->tcp_acceptor_lockp = NULL; 24665 } 24666 24667 /* ARGSUSED */ 24668 static int 24669 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 24670 { 24671 int error = 0; 24672 int retval; 24673 char *end; 24674 tcp_hsp_t *hsp; 24675 tcp_hsp_t *hspprev; 24676 ipaddr_t addr = 0; /* Address we're looking for */ 24677 in6_addr_t v6addr; /* Address we're looking for */ 24678 uint32_t hash; /* Hash of that address */ 24679 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24680 24681 /* 24682 * If the following variables are still zero after parsing the input 24683 * string, the user didn't specify them and we don't change them in 24684 * the HSP. 24685 */ 24686 24687 ipaddr_t mask = 0; /* Subnet mask */ 24688 in6_addr_t v6mask; 24689 long sendspace = 0; /* Send buffer size */ 24690 long recvspace = 0; /* Receive buffer size */ 24691 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 24692 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 24693 24694 rw_enter(&tcps->tcps_hsp_lock, RW_WRITER); 24695 24696 /* Parse and validate address */ 24697 if (af == AF_INET) { 24698 retval = inet_pton(af, value, &addr); 24699 if (retval == 1) 24700 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 24701 } else if (af == AF_INET6) { 24702 retval = inet_pton(af, value, &v6addr); 24703 } else { 24704 error = EINVAL; 24705 goto done; 24706 } 24707 if (retval == 0) { 24708 error = EINVAL; 24709 goto done; 24710 } 24711 24712 while ((*value) && *value != ' ') 24713 value++; 24714 24715 /* Parse individual keywords, set variables if found */ 24716 while (*value) { 24717 /* Skip leading blanks */ 24718 24719 while (*value == ' ' || *value == '\t') 24720 value++; 24721 24722 /* If at end of string, we're done */ 24723 24724 if (!*value) 24725 break; 24726 24727 /* We have a word, figure out what it is */ 24728 24729 if (strncmp("mask", value, 4) == 0) { 24730 value += 4; 24731 while (*value == ' ' || *value == '\t') 24732 value++; 24733 /* Parse subnet mask */ 24734 if (af == AF_INET) { 24735 retval = inet_pton(af, value, &mask); 24736 if (retval == 1) { 24737 V4MASK_TO_V6(mask, v6mask); 24738 } 24739 } else if (af == AF_INET6) { 24740 retval = inet_pton(af, value, &v6mask); 24741 } 24742 if (retval != 1) { 24743 error = EINVAL; 24744 goto done; 24745 } 24746 while ((*value) && *value != ' ') 24747 value++; 24748 } else if (strncmp("sendspace", value, 9) == 0) { 24749 value += 9; 24750 24751 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 24752 sendspace < TCP_XMIT_HIWATER || 24753 sendspace >= (1L<<30)) { 24754 error = EINVAL; 24755 goto done; 24756 } 24757 value = end; 24758 } else if (strncmp("recvspace", value, 9) == 0) { 24759 value += 9; 24760 24761 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 24762 recvspace < TCP_RECV_HIWATER || 24763 recvspace >= (1L<<30)) { 24764 error = EINVAL; 24765 goto done; 24766 } 24767 value = end; 24768 } else if (strncmp("timestamp", value, 9) == 0) { 24769 value += 9; 24770 24771 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 24772 timestamp < 0 || timestamp > 1) { 24773 error = EINVAL; 24774 goto done; 24775 } 24776 24777 /* 24778 * We increment timestamp so we know it's been set; 24779 * this is undone when we put it in the HSP 24780 */ 24781 timestamp++; 24782 value = end; 24783 } else if (strncmp("delete", value, 6) == 0) { 24784 value += 6; 24785 delete = B_TRUE; 24786 } else { 24787 error = EINVAL; 24788 goto done; 24789 } 24790 } 24791 24792 /* Hash address for lookup */ 24793 24794 hash = TCP_HSP_HASH(addr); 24795 24796 if (delete) { 24797 /* 24798 * Note that deletes don't return an error if the thing 24799 * we're trying to delete isn't there. 24800 */ 24801 if (tcps->tcps_hsp_hash == NULL) 24802 goto done; 24803 hsp = tcps->tcps_hsp_hash[hash]; 24804 24805 if (hsp) { 24806 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24807 &v6addr)) { 24808 tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next; 24809 mi_free((char *)hsp); 24810 } else { 24811 hspprev = hsp; 24812 while ((hsp = hsp->tcp_hsp_next) != NULL) { 24813 if (IN6_ARE_ADDR_EQUAL( 24814 &hsp->tcp_hsp_addr_v6, &v6addr)) { 24815 hspprev->tcp_hsp_next = 24816 hsp->tcp_hsp_next; 24817 mi_free((char *)hsp); 24818 break; 24819 } 24820 hspprev = hsp; 24821 } 24822 } 24823 } 24824 } else { 24825 /* 24826 * We're adding/modifying an HSP. If we haven't already done 24827 * so, allocate the hash table. 24828 */ 24829 24830 if (!tcps->tcps_hsp_hash) { 24831 tcps->tcps_hsp_hash = (tcp_hsp_t **) 24832 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 24833 if (!tcps->tcps_hsp_hash) { 24834 error = EINVAL; 24835 goto done; 24836 } 24837 } 24838 24839 /* Get head of hash chain */ 24840 24841 hsp = tcps->tcps_hsp_hash[hash]; 24842 24843 /* Try to find pre-existing hsp on hash chain */ 24844 /* Doesn't handle CIDR prefixes. */ 24845 while (hsp) { 24846 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 24847 break; 24848 hsp = hsp->tcp_hsp_next; 24849 } 24850 24851 /* 24852 * If we didn't, create one with default values and put it 24853 * at head of hash chain 24854 */ 24855 24856 if (!hsp) { 24857 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 24858 if (!hsp) { 24859 error = EINVAL; 24860 goto done; 24861 } 24862 hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash]; 24863 tcps->tcps_hsp_hash[hash] = hsp; 24864 } 24865 24866 /* Set values that the user asked us to change */ 24867 24868 hsp->tcp_hsp_addr_v6 = v6addr; 24869 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 24870 hsp->tcp_hsp_vers = IPV4_VERSION; 24871 else 24872 hsp->tcp_hsp_vers = IPV6_VERSION; 24873 hsp->tcp_hsp_subnet_v6 = v6mask; 24874 if (sendspace > 0) 24875 hsp->tcp_hsp_sendspace = sendspace; 24876 if (recvspace > 0) 24877 hsp->tcp_hsp_recvspace = recvspace; 24878 if (timestamp > 0) 24879 hsp->tcp_hsp_tstamp = timestamp - 1; 24880 } 24881 24882 done: 24883 rw_exit(&tcps->tcps_hsp_lock); 24884 return (error); 24885 } 24886 24887 /* Set callback routine passed to nd_load by tcp_param_register. */ 24888 /* ARGSUSED */ 24889 static int 24890 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 24891 { 24892 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 24893 } 24894 /* ARGSUSED */ 24895 static int 24896 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24897 cred_t *cr) 24898 { 24899 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 24900 } 24901 24902 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 24903 /* ARGSUSED */ 24904 static int 24905 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24906 { 24907 tcp_hsp_t *hsp; 24908 int i; 24909 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 24910 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24911 24912 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24913 (void) mi_mpprintf(mp, 24914 "Hash HSP " MI_COL_HDRPAD_STR 24915 "Address Subnet Mask Send Receive TStamp"); 24916 if (tcps->tcps_hsp_hash) { 24917 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 24918 hsp = tcps->tcps_hsp_hash[i]; 24919 while (hsp) { 24920 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 24921 (void) inet_ntop(AF_INET, 24922 &hsp->tcp_hsp_addr, 24923 addrbuf, sizeof (addrbuf)); 24924 (void) inet_ntop(AF_INET, 24925 &hsp->tcp_hsp_subnet, 24926 subnetbuf, sizeof (subnetbuf)); 24927 } else { 24928 (void) inet_ntop(AF_INET6, 24929 &hsp->tcp_hsp_addr_v6, 24930 addrbuf, sizeof (addrbuf)); 24931 (void) inet_ntop(AF_INET6, 24932 &hsp->tcp_hsp_subnet_v6, 24933 subnetbuf, sizeof (subnetbuf)); 24934 } 24935 (void) mi_mpprintf(mp, 24936 " %03d " MI_COL_PTRFMT_STR 24937 "%s %s %010d %010d %d", 24938 i, 24939 (void *)hsp, 24940 addrbuf, 24941 subnetbuf, 24942 hsp->tcp_hsp_sendspace, 24943 hsp->tcp_hsp_recvspace, 24944 hsp->tcp_hsp_tstamp); 24945 24946 hsp = hsp->tcp_hsp_next; 24947 } 24948 } 24949 } 24950 rw_exit(&tcps->tcps_hsp_lock); 24951 return (0); 24952 } 24953 24954 24955 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24956 24957 static ipaddr_t netmasks[] = { 24958 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24959 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24960 }; 24961 24962 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24963 24964 /* 24965 * XXX This routine should go away and instead we should use the metrics 24966 * associated with the routes to determine the default sndspace and rcvspace. 24967 */ 24968 static tcp_hsp_t * 24969 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24970 { 24971 tcp_hsp_t *hsp = NULL; 24972 24973 /* Quick check without acquiring the lock. */ 24974 if (tcps->tcps_hsp_hash == NULL) 24975 return (NULL); 24976 24977 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24978 24979 /* This routine finds the best-matching HSP for address addr. */ 24980 24981 if (tcps->tcps_hsp_hash) { 24982 int i; 24983 ipaddr_t srchaddr; 24984 tcp_hsp_t *hsp_net; 24985 24986 /* We do three passes: host, network, and subnet. */ 24987 24988 srchaddr = addr; 24989 24990 for (i = 1; i <= 3; i++) { 24991 /* Look for exact match on srchaddr */ 24992 24993 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24994 while (hsp) { 24995 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24996 hsp->tcp_hsp_addr == srchaddr) 24997 break; 24998 hsp = hsp->tcp_hsp_next; 24999 } 25000 ASSERT(hsp == NULL || 25001 hsp->tcp_hsp_vers == IPV4_VERSION); 25002 25003 /* 25004 * If this is the first pass: 25005 * If we found a match, great, return it. 25006 * If not, search for the network on the second pass. 25007 */ 25008 25009 if (i == 1) 25010 if (hsp) 25011 break; 25012 else 25013 { 25014 srchaddr = addr & netmask(addr); 25015 continue; 25016 } 25017 25018 /* 25019 * If this is the second pass: 25020 * If we found a match, but there's a subnet mask, 25021 * save the match but try again using the subnet 25022 * mask on the third pass. 25023 * Otherwise, return whatever we found. 25024 */ 25025 25026 if (i == 2) { 25027 if (hsp && hsp->tcp_hsp_subnet) { 25028 hsp_net = hsp; 25029 srchaddr = addr & hsp->tcp_hsp_subnet; 25030 continue; 25031 } else { 25032 break; 25033 } 25034 } 25035 25036 /* 25037 * This must be the third pass. If we didn't find 25038 * anything, return the saved network HSP instead. 25039 */ 25040 25041 if (!hsp) 25042 hsp = hsp_net; 25043 } 25044 } 25045 25046 rw_exit(&tcps->tcps_hsp_lock); 25047 return (hsp); 25048 } 25049 25050 /* 25051 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 25052 * match lookup. 25053 */ 25054 static tcp_hsp_t * 25055 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 25056 { 25057 tcp_hsp_t *hsp = NULL; 25058 25059 /* Quick check without acquiring the lock. */ 25060 if (tcps->tcps_hsp_hash == NULL) 25061 return (NULL); 25062 25063 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 25064 25065 /* This routine finds the best-matching HSP for address addr. */ 25066 25067 if (tcps->tcps_hsp_hash) { 25068 int i; 25069 in6_addr_t v6srchaddr; 25070 tcp_hsp_t *hsp_net; 25071 25072 /* We do three passes: host, network, and subnet. */ 25073 25074 v6srchaddr = *v6addr; 25075 25076 for (i = 1; i <= 3; i++) { 25077 /* Look for exact match on srchaddr */ 25078 25079 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 25080 V4_PART_OF_V6(v6srchaddr))]; 25081 while (hsp) { 25082 if (hsp->tcp_hsp_vers == IPV6_VERSION && 25083 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 25084 &v6srchaddr)) 25085 break; 25086 hsp = hsp->tcp_hsp_next; 25087 } 25088 25089 /* 25090 * If this is the first pass: 25091 * If we found a match, great, return it. 25092 * If not, search for the network on the second pass. 25093 */ 25094 25095 if (i == 1) 25096 if (hsp) 25097 break; 25098 else { 25099 /* Assume a 64 bit mask */ 25100 v6srchaddr.s6_addr32[0] = 25101 v6addr->s6_addr32[0]; 25102 v6srchaddr.s6_addr32[1] = 25103 v6addr->s6_addr32[1]; 25104 v6srchaddr.s6_addr32[2] = 0; 25105 v6srchaddr.s6_addr32[3] = 0; 25106 continue; 25107 } 25108 25109 /* 25110 * If this is the second pass: 25111 * If we found a match, but there's a subnet mask, 25112 * save the match but try again using the subnet 25113 * mask on the third pass. 25114 * Otherwise, return whatever we found. 25115 */ 25116 25117 if (i == 2) { 25118 ASSERT(hsp == NULL || 25119 hsp->tcp_hsp_vers == IPV6_VERSION); 25120 if (hsp && 25121 !IN6_IS_ADDR_UNSPECIFIED( 25122 &hsp->tcp_hsp_subnet_v6)) { 25123 hsp_net = hsp; 25124 V6_MASK_COPY(*v6addr, 25125 hsp->tcp_hsp_subnet_v6, v6srchaddr); 25126 continue; 25127 } else { 25128 break; 25129 } 25130 } 25131 25132 /* 25133 * This must be the third pass. If we didn't find 25134 * anything, return the saved network HSP instead. 25135 */ 25136 25137 if (!hsp) 25138 hsp = hsp_net; 25139 } 25140 } 25141 25142 rw_exit(&tcps->tcps_hsp_lock); 25143 return (hsp); 25144 } 25145 25146 /* 25147 * Type three generator adapted from the random() function in 4.4 BSD: 25148 */ 25149 25150 /* 25151 * Copyright (c) 1983, 1993 25152 * The Regents of the University of California. All rights reserved. 25153 * 25154 * Redistribution and use in source and binary forms, with or without 25155 * modification, are permitted provided that the following conditions 25156 * are met: 25157 * 1. Redistributions of source code must retain the above copyright 25158 * notice, this list of conditions and the following disclaimer. 25159 * 2. Redistributions in binary form must reproduce the above copyright 25160 * notice, this list of conditions and the following disclaimer in the 25161 * documentation and/or other materials provided with the distribution. 25162 * 3. All advertising materials mentioning features or use of this software 25163 * must display the following acknowledgement: 25164 * This product includes software developed by the University of 25165 * California, Berkeley and its contributors. 25166 * 4. Neither the name of the University nor the names of its contributors 25167 * may be used to endorse or promote products derived from this software 25168 * without specific prior written permission. 25169 * 25170 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25171 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25172 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25173 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25174 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25175 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25176 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25177 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25178 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25179 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25180 * SUCH DAMAGE. 25181 */ 25182 25183 /* Type 3 -- x**31 + x**3 + 1 */ 25184 #define DEG_3 31 25185 #define SEP_3 3 25186 25187 25188 /* Protected by tcp_random_lock */ 25189 static int tcp_randtbl[DEG_3 + 1]; 25190 25191 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 25192 static int *tcp_random_rptr = &tcp_randtbl[1]; 25193 25194 static int *tcp_random_state = &tcp_randtbl[1]; 25195 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 25196 25197 kmutex_t tcp_random_lock; 25198 25199 void 25200 tcp_random_init(void) 25201 { 25202 int i; 25203 hrtime_t hrt; 25204 time_t wallclock; 25205 uint64_t result; 25206 25207 /* 25208 * Use high-res timer and current time for seed. Gethrtime() returns 25209 * a longlong, which may contain resolution down to nanoseconds. 25210 * The current time will either be a 32-bit or a 64-bit quantity. 25211 * XOR the two together in a 64-bit result variable. 25212 * Convert the result to a 32-bit value by multiplying the high-order 25213 * 32-bits by the low-order 32-bits. 25214 */ 25215 25216 hrt = gethrtime(); 25217 (void) drv_getparm(TIME, &wallclock); 25218 result = (uint64_t)wallclock ^ (uint64_t)hrt; 25219 mutex_enter(&tcp_random_lock); 25220 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 25221 (result & 0xffffffff); 25222 25223 for (i = 1; i < DEG_3; i++) 25224 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 25225 + 12345; 25226 tcp_random_fptr = &tcp_random_state[SEP_3]; 25227 tcp_random_rptr = &tcp_random_state[0]; 25228 mutex_exit(&tcp_random_lock); 25229 for (i = 0; i < 10 * DEG_3; i++) 25230 (void) tcp_random(); 25231 } 25232 25233 /* 25234 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 25235 * This range is selected to be approximately centered on TCP_ISS / 2, 25236 * and easy to compute. We get this value by generating a 32-bit random 25237 * number, selecting out the high-order 17 bits, and then adding one so 25238 * that we never return zero. 25239 */ 25240 int 25241 tcp_random(void) 25242 { 25243 int i; 25244 25245 mutex_enter(&tcp_random_lock); 25246 *tcp_random_fptr += *tcp_random_rptr; 25247 25248 /* 25249 * The high-order bits are more random than the low-order bits, 25250 * so we select out the high-order 17 bits and add one so that 25251 * we never return zero. 25252 */ 25253 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 25254 if (++tcp_random_fptr >= tcp_random_end_ptr) { 25255 tcp_random_fptr = tcp_random_state; 25256 ++tcp_random_rptr; 25257 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 25258 tcp_random_rptr = tcp_random_state; 25259 25260 mutex_exit(&tcp_random_lock); 25261 return (i); 25262 } 25263 25264 /* 25265 * XXX This will go away when TPI is extended to send 25266 * info reqs to sockfs/timod ..... 25267 * Given a queue, set the max packet size for the write 25268 * side of the queue below stream head. This value is 25269 * cached on the stream head. 25270 * Returns 1 on success, 0 otherwise. 25271 */ 25272 static int 25273 setmaxps(queue_t *q, int maxpsz) 25274 { 25275 struct stdata *stp; 25276 queue_t *wq; 25277 stp = STREAM(q); 25278 25279 /* 25280 * At this point change of a queue parameter is not allowed 25281 * when a multiplexor is sitting on top. 25282 */ 25283 if (stp->sd_flag & STPLEX) 25284 return (0); 25285 25286 claimstr(stp->sd_wrq); 25287 wq = stp->sd_wrq->q_next; 25288 ASSERT(wq != NULL); 25289 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 25290 releasestr(stp->sd_wrq); 25291 return (1); 25292 } 25293 25294 static int 25295 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 25296 int *t_errorp, int *sys_errorp) 25297 { 25298 int error; 25299 int is_absreq_failure; 25300 t_scalar_t *opt_lenp; 25301 t_scalar_t opt_offset; 25302 int prim_type; 25303 struct T_conn_req *tcreqp; 25304 struct T_conn_res *tcresp; 25305 cred_t *cr; 25306 25307 cr = DB_CREDDEF(mp, tcp->tcp_cred); 25308 25309 prim_type = ((union T_primitives *)mp->b_rptr)->type; 25310 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 25311 prim_type == T_CONN_RES); 25312 25313 switch (prim_type) { 25314 case T_CONN_REQ: 25315 tcreqp = (struct T_conn_req *)mp->b_rptr; 25316 opt_offset = tcreqp->OPT_offset; 25317 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 25318 break; 25319 case O_T_CONN_RES: 25320 case T_CONN_RES: 25321 tcresp = (struct T_conn_res *)mp->b_rptr; 25322 opt_offset = tcresp->OPT_offset; 25323 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 25324 break; 25325 } 25326 25327 *t_errorp = 0; 25328 *sys_errorp = 0; 25329 *do_disconnectp = 0; 25330 25331 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 25332 opt_offset, cr, &tcp_opt_obj, 25333 NULL, &is_absreq_failure); 25334 25335 switch (error) { 25336 case 0: /* no error */ 25337 ASSERT(is_absreq_failure == 0); 25338 return (0); 25339 case ENOPROTOOPT: 25340 *t_errorp = TBADOPT; 25341 break; 25342 case EACCES: 25343 *t_errorp = TACCES; 25344 break; 25345 default: 25346 *t_errorp = TSYSERR; *sys_errorp = error; 25347 break; 25348 } 25349 if (is_absreq_failure != 0) { 25350 /* 25351 * The connection request should get the local ack 25352 * T_OK_ACK and then a T_DISCON_IND. 25353 */ 25354 *do_disconnectp = 1; 25355 } 25356 return (-1); 25357 } 25358 25359 /* 25360 * Split this function out so that if the secret changes, I'm okay. 25361 * 25362 * Initialize the tcp_iss_cookie and tcp_iss_key. 25363 */ 25364 25365 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 25366 25367 static void 25368 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 25369 { 25370 struct { 25371 int32_t current_time; 25372 uint32_t randnum; 25373 uint16_t pad; 25374 uint8_t ether[6]; 25375 uint8_t passwd[PASSWD_SIZE]; 25376 } tcp_iss_cookie; 25377 time_t t; 25378 25379 /* 25380 * Start with the current absolute time. 25381 */ 25382 (void) drv_getparm(TIME, &t); 25383 tcp_iss_cookie.current_time = t; 25384 25385 /* 25386 * XXX - Need a more random number per RFC 1750, not this crap. 25387 * OTOH, if what follows is pretty random, then I'm in better shape. 25388 */ 25389 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 25390 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 25391 25392 /* 25393 * The cpu_type_info is pretty non-random. Ugggh. It does serve 25394 * as a good template. 25395 */ 25396 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 25397 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 25398 25399 /* 25400 * The pass-phrase. Normally this is supplied by user-called NDD. 25401 */ 25402 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 25403 25404 /* 25405 * See 4010593 if this section becomes a problem again, 25406 * but the local ethernet address is useful here. 25407 */ 25408 (void) localetheraddr(NULL, 25409 (struct ether_addr *)&tcp_iss_cookie.ether); 25410 25411 /* 25412 * Hash 'em all together. The MD5Final is called per-connection. 25413 */ 25414 mutex_enter(&tcps->tcps_iss_key_lock); 25415 MD5Init(&tcps->tcps_iss_key); 25416 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 25417 sizeof (tcp_iss_cookie)); 25418 mutex_exit(&tcps->tcps_iss_key_lock); 25419 } 25420 25421 /* 25422 * Set the RFC 1948 pass phrase 25423 */ 25424 /* ARGSUSED */ 25425 static int 25426 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25427 cred_t *cr) 25428 { 25429 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 25430 25431 /* 25432 * Basically, value contains a new pass phrase. Pass it along! 25433 */ 25434 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 25435 return (0); 25436 } 25437 25438 /* ARGSUSED */ 25439 static int 25440 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 25441 { 25442 bzero(buf, sizeof (tcp_sack_info_t)); 25443 return (0); 25444 } 25445 25446 /* ARGSUSED */ 25447 static int 25448 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 25449 { 25450 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 25451 return (0); 25452 } 25453 25454 /* 25455 * Make sure we wait until the default queue is setup, yet allow 25456 * tcp_g_q_create() to open a TCP stream. 25457 * We need to allow tcp_g_q_create() do do an open 25458 * of tcp, hence we compare curhread. 25459 * All others have to wait until the tcps_g_q has been 25460 * setup. 25461 */ 25462 void 25463 tcp_g_q_setup(tcp_stack_t *tcps) 25464 { 25465 mutex_enter(&tcps->tcps_g_q_lock); 25466 if (tcps->tcps_g_q != NULL) { 25467 mutex_exit(&tcps->tcps_g_q_lock); 25468 return; 25469 } 25470 if (tcps->tcps_g_q_creator == NULL) { 25471 /* This thread will set it up */ 25472 tcps->tcps_g_q_creator = curthread; 25473 mutex_exit(&tcps->tcps_g_q_lock); 25474 tcp_g_q_create(tcps); 25475 mutex_enter(&tcps->tcps_g_q_lock); 25476 ASSERT(tcps->tcps_g_q_creator == curthread); 25477 tcps->tcps_g_q_creator = NULL; 25478 cv_signal(&tcps->tcps_g_q_cv); 25479 ASSERT(tcps->tcps_g_q != NULL); 25480 mutex_exit(&tcps->tcps_g_q_lock); 25481 return; 25482 } 25483 /* Everybody but the creator has to wait */ 25484 if (tcps->tcps_g_q_creator != curthread) { 25485 while (tcps->tcps_g_q == NULL) 25486 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 25487 } 25488 mutex_exit(&tcps->tcps_g_q_lock); 25489 } 25490 25491 #define IP "ip" 25492 25493 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 25494 25495 /* 25496 * Create a default tcp queue here instead of in strplumb 25497 */ 25498 void 25499 tcp_g_q_create(tcp_stack_t *tcps) 25500 { 25501 int error; 25502 ldi_handle_t lh = NULL; 25503 ldi_ident_t li = NULL; 25504 int rval; 25505 cred_t *cr; 25506 major_t IP_MAJ; 25507 25508 #ifdef NS_DEBUG 25509 (void) printf("tcp_g_q_create()\n"); 25510 #endif 25511 25512 IP_MAJ = ddi_name_to_major(IP); 25513 25514 ASSERT(tcps->tcps_g_q_creator == curthread); 25515 25516 error = ldi_ident_from_major(IP_MAJ, &li); 25517 if (error) { 25518 #ifdef DEBUG 25519 printf("tcp_g_q_create: lyr ident get failed error %d\n", 25520 error); 25521 #endif 25522 return; 25523 } 25524 25525 cr = zone_get_kcred(netstackid_to_zoneid( 25526 tcps->tcps_netstack->netstack_stackid)); 25527 ASSERT(cr != NULL); 25528 /* 25529 * We set the tcp default queue to IPv6 because IPv4 falls 25530 * back to IPv6 when it can't find a client, but 25531 * IPv6 does not fall back to IPv4. 25532 */ 25533 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 25534 if (error) { 25535 #ifdef DEBUG 25536 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 25537 error); 25538 #endif 25539 goto out; 25540 } 25541 25542 /* 25543 * This ioctl causes the tcp framework to cache a pointer to 25544 * this stream, so we don't want to close the stream after 25545 * this operation. 25546 * Use the kernel credentials that are for the zone we're in. 25547 */ 25548 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 25549 (intptr_t)0, FKIOCTL, cr, &rval); 25550 if (error) { 25551 #ifdef DEBUG 25552 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 25553 "error %d\n", error); 25554 #endif 25555 goto out; 25556 } 25557 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 25558 lh = NULL; 25559 out: 25560 /* Close layered handles */ 25561 if (li) 25562 ldi_ident_release(li); 25563 /* Keep cred around until _inactive needs it */ 25564 tcps->tcps_g_q_cr = cr; 25565 } 25566 25567 /* 25568 * We keep tcp_g_q set until all other tcp_t's in the zone 25569 * has gone away, and then when tcp_g_q_inactive() is called 25570 * we clear it. 25571 */ 25572 void 25573 tcp_g_q_destroy(tcp_stack_t *tcps) 25574 { 25575 #ifdef NS_DEBUG 25576 (void) printf("tcp_g_q_destroy()for stack %d\n", 25577 tcps->tcps_netstack->netstack_stackid); 25578 #endif 25579 25580 if (tcps->tcps_g_q == NULL) { 25581 return; /* Nothing to cleanup */ 25582 } 25583 /* 25584 * Drop reference corresponding to the default queue. 25585 * This reference was added from tcp_open when the default queue 25586 * was created, hence we compensate for this extra drop in 25587 * tcp_g_q_close. If the refcnt drops to zero here it means 25588 * the default queue was the last one to be open, in which 25589 * case, then tcp_g_q_inactive will be 25590 * called as a result of the refrele. 25591 */ 25592 TCPS_REFRELE(tcps); 25593 } 25594 25595 /* 25596 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25597 * Run by tcp_q_q_inactive using a taskq. 25598 */ 25599 static void 25600 tcp_g_q_close(void *arg) 25601 { 25602 tcp_stack_t *tcps = arg; 25603 int error; 25604 ldi_handle_t lh = NULL; 25605 ldi_ident_t li = NULL; 25606 cred_t *cr; 25607 major_t IP_MAJ; 25608 25609 IP_MAJ = ddi_name_to_major(IP); 25610 25611 #ifdef NS_DEBUG 25612 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 25613 tcps->tcps_netstack->netstack_stackid, 25614 tcps->tcps_netstack->netstack_refcnt); 25615 #endif 25616 lh = tcps->tcps_g_q_lh; 25617 if (lh == NULL) 25618 return; /* Nothing to cleanup */ 25619 25620 ASSERT(tcps->tcps_refcnt == 1); 25621 ASSERT(tcps->tcps_g_q != NULL); 25622 25623 error = ldi_ident_from_major(IP_MAJ, &li); 25624 if (error) { 25625 #ifdef DEBUG 25626 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 25627 error); 25628 #endif 25629 return; 25630 } 25631 25632 cr = tcps->tcps_g_q_cr; 25633 tcps->tcps_g_q_cr = NULL; 25634 ASSERT(cr != NULL); 25635 25636 /* 25637 * Make sure we can break the recursion when tcp_close decrements 25638 * the reference count causing g_q_inactive to be called again. 25639 */ 25640 tcps->tcps_g_q_lh = NULL; 25641 25642 /* close the default queue */ 25643 (void) ldi_close(lh, FREAD|FWRITE, cr); 25644 /* 25645 * At this point in time tcps and the rest of netstack_t might 25646 * have been deleted. 25647 */ 25648 tcps = NULL; 25649 25650 /* Close layered handles */ 25651 ldi_ident_release(li); 25652 crfree(cr); 25653 } 25654 25655 /* 25656 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25657 * 25658 * Have to ensure that the ldi routines are not used by an 25659 * interrupt thread by using a taskq. 25660 */ 25661 void 25662 tcp_g_q_inactive(tcp_stack_t *tcps) 25663 { 25664 if (tcps->tcps_g_q_lh == NULL) 25665 return; /* Nothing to cleanup */ 25666 25667 ASSERT(tcps->tcps_refcnt == 0); 25668 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 25669 25670 if (servicing_interrupt()) { 25671 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 25672 (void *) tcps, TQ_SLEEP); 25673 } else { 25674 tcp_g_q_close(tcps); 25675 } 25676 } 25677 25678 /* 25679 * Called by IP when IP is loaded into the kernel 25680 */ 25681 void 25682 tcp_ddi_g_init(void) 25683 { 25684 tcp_timercache = kmem_cache_create("tcp_timercache", 25685 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 25686 NULL, NULL, NULL, NULL, NULL, 0); 25687 25688 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 25689 sizeof (tcp_sack_info_t), 0, 25690 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 25691 25692 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 25693 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 25694 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 25695 25696 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 25697 25698 /* Initialize the random number generator */ 25699 tcp_random_init(); 25700 25701 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 25702 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 25703 25704 /* A single callback independently of how many netstacks we have */ 25705 ip_squeue_init(tcp_squeue_add); 25706 25707 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 25708 25709 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 25710 TASKQ_PREPOPULATE); 25711 25712 /* 25713 * We want to be informed each time a stack is created or 25714 * destroyed in the kernel, so we can maintain the 25715 * set of tcp_stack_t's. 25716 */ 25717 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 25718 tcp_stack_fini); 25719 } 25720 25721 25722 /* 25723 * Initialize the TCP stack instance. 25724 */ 25725 static void * 25726 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 25727 { 25728 tcp_stack_t *tcps; 25729 tcpparam_t *pa; 25730 int i; 25731 25732 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 25733 tcps->tcps_netstack = ns; 25734 25735 /* Initialize locks */ 25736 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 25737 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 25738 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 25739 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 25740 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 25741 rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL); 25742 25743 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 25744 tcps->tcps_g_epriv_ports[0] = 2049; 25745 tcps->tcps_g_epriv_ports[1] = 4045; 25746 tcps->tcps_min_anonpriv_port = 512; 25747 25748 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 25749 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 25750 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 25751 TCP_FANOUT_SIZE, KM_SLEEP); 25752 tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) * 25753 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP); 25754 25755 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25756 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 25757 MUTEX_DEFAULT, NULL); 25758 } 25759 25760 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25761 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 25762 MUTEX_DEFAULT, NULL); 25763 } 25764 25765 /* TCP's IPsec code calls the packet dropper. */ 25766 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 25767 25768 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 25769 tcps->tcps_params = pa; 25770 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25771 25772 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 25773 A_CNT(lcl_tcp_param_arr), tcps); 25774 25775 /* 25776 * Note: To really walk the device tree you need the devinfo 25777 * pointer to your device which is only available after probe/attach. 25778 * The following is safe only because it uses ddi_root_node() 25779 */ 25780 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 25781 tcp_opt_obj.odb_opt_arr_cnt); 25782 25783 /* 25784 * Initialize RFC 1948 secret values. This will probably be reset once 25785 * by the boot scripts. 25786 * 25787 * Use NULL name, as the name is caught by the new lockstats. 25788 * 25789 * Initialize with some random, non-guessable string, like the global 25790 * T_INFO_ACK. 25791 */ 25792 25793 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25794 sizeof (tcp_g_t_info_ack), tcps); 25795 25796 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25797 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25798 25799 return (tcps); 25800 } 25801 25802 /* 25803 * Called when the IP module is about to be unloaded. 25804 */ 25805 void 25806 tcp_ddi_g_destroy(void) 25807 { 25808 tcp_g_kstat_fini(tcp_g_kstat); 25809 tcp_g_kstat = NULL; 25810 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25811 25812 mutex_destroy(&tcp_random_lock); 25813 25814 kmem_cache_destroy(tcp_timercache); 25815 kmem_cache_destroy(tcp_sack_info_cache); 25816 kmem_cache_destroy(tcp_iphc_cache); 25817 25818 netstack_unregister(NS_TCP); 25819 taskq_destroy(tcp_taskq); 25820 } 25821 25822 /* 25823 * Shut down the TCP stack instance. 25824 */ 25825 /* ARGSUSED */ 25826 static void 25827 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25828 { 25829 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25830 25831 tcp_g_q_destroy(tcps); 25832 } 25833 25834 /* 25835 * Free the TCP stack instance. 25836 */ 25837 static void 25838 tcp_stack_fini(netstackid_t stackid, void *arg) 25839 { 25840 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25841 int i; 25842 25843 nd_free(&tcps->tcps_g_nd); 25844 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25845 tcps->tcps_params = NULL; 25846 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25847 tcps->tcps_wroff_xtra_param = NULL; 25848 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25849 tcps->tcps_mdt_head_param = NULL; 25850 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25851 tcps->tcps_mdt_tail_param = NULL; 25852 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25853 tcps->tcps_mdt_max_pbufs_param = NULL; 25854 25855 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25856 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25857 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25858 } 25859 25860 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25861 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25862 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25863 } 25864 25865 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25866 tcps->tcps_bind_fanout = NULL; 25867 25868 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25869 tcps->tcps_acceptor_fanout = NULL; 25870 25871 kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) * 25872 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE); 25873 tcps->tcps_reserved_port = NULL; 25874 25875 mutex_destroy(&tcps->tcps_iss_key_lock); 25876 rw_destroy(&tcps->tcps_hsp_lock); 25877 mutex_destroy(&tcps->tcps_g_q_lock); 25878 cv_destroy(&tcps->tcps_g_q_cv); 25879 mutex_destroy(&tcps->tcps_epriv_port_lock); 25880 rw_destroy(&tcps->tcps_reserved_port_lock); 25881 25882 ip_drop_unregister(&tcps->tcps_dropper); 25883 25884 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25885 tcps->tcps_kstat = NULL; 25886 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25887 25888 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25889 tcps->tcps_mibkp = NULL; 25890 25891 kmem_free(tcps, sizeof (*tcps)); 25892 } 25893 25894 /* 25895 * Generate ISS, taking into account NDD changes may happen halfway through. 25896 * (If the iss is not zero, set it.) 25897 */ 25898 25899 static void 25900 tcp_iss_init(tcp_t *tcp) 25901 { 25902 MD5_CTX context; 25903 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25904 uint32_t answer[4]; 25905 tcp_stack_t *tcps = tcp->tcp_tcps; 25906 25907 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25908 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25909 switch (tcps->tcps_strong_iss) { 25910 case 2: 25911 mutex_enter(&tcps->tcps_iss_key_lock); 25912 context = tcps->tcps_iss_key; 25913 mutex_exit(&tcps->tcps_iss_key_lock); 25914 arg.ports = tcp->tcp_ports; 25915 if (tcp->tcp_ipversion == IPV4_VERSION) { 25916 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25917 &arg.src); 25918 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25919 &arg.dst); 25920 } else { 25921 arg.src = tcp->tcp_ip6h->ip6_src; 25922 arg.dst = tcp->tcp_ip6h->ip6_dst; 25923 } 25924 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25925 MD5Final((uchar_t *)answer, &context); 25926 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25927 /* 25928 * Now that we've hashed into a unique per-connection sequence 25929 * space, add a random increment per strong_iss == 1. So I 25930 * guess we'll have to... 25931 */ 25932 /* FALLTHRU */ 25933 case 1: 25934 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25935 break; 25936 default: 25937 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25938 break; 25939 } 25940 tcp->tcp_valid_bits = TCP_ISS_VALID; 25941 tcp->tcp_fss = tcp->tcp_iss - 1; 25942 tcp->tcp_suna = tcp->tcp_iss; 25943 tcp->tcp_snxt = tcp->tcp_iss + 1; 25944 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25945 tcp->tcp_csuna = tcp->tcp_snxt; 25946 } 25947 25948 /* 25949 * Exported routine for extracting active tcp connection status. 25950 * 25951 * This is used by the Solaris Cluster Networking software to 25952 * gather a list of connections that need to be forwarded to 25953 * specific nodes in the cluster when configuration changes occur. 25954 * 25955 * The callback is invoked for each tcp_t structure. Returning 25956 * non-zero from the callback routine terminates the search. 25957 */ 25958 int 25959 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25960 void *arg) 25961 { 25962 netstack_handle_t nh; 25963 netstack_t *ns; 25964 int ret = 0; 25965 25966 netstack_next_init(&nh); 25967 while ((ns = netstack_next(&nh)) != NULL) { 25968 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25969 ns->netstack_tcp); 25970 netstack_rele(ns); 25971 } 25972 netstack_next_fini(&nh); 25973 return (ret); 25974 } 25975 25976 static int 25977 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25978 tcp_stack_t *tcps) 25979 { 25980 tcp_t *tcp; 25981 cl_tcp_info_t cl_tcpi; 25982 connf_t *connfp; 25983 conn_t *connp; 25984 int i; 25985 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25986 25987 ASSERT(callback != NULL); 25988 25989 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25990 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25991 connp = NULL; 25992 25993 while ((connp = 25994 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25995 25996 tcp = connp->conn_tcp; 25997 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25998 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25999 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 26000 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 26001 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 26002 /* 26003 * The macros tcp_laddr and tcp_faddr give the IPv4 26004 * addresses. They are copied implicitly below as 26005 * mapped addresses. 26006 */ 26007 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 26008 if (tcp->tcp_ipversion == IPV4_VERSION) { 26009 cl_tcpi.cl_tcpi_faddr = 26010 tcp->tcp_ipha->ipha_dst; 26011 } else { 26012 cl_tcpi.cl_tcpi_faddr_v6 = 26013 tcp->tcp_ip6h->ip6_dst; 26014 } 26015 26016 /* 26017 * If the callback returns non-zero 26018 * we terminate the traversal. 26019 */ 26020 if ((*callback)(&cl_tcpi, arg) != 0) { 26021 CONN_DEC_REF(tcp->tcp_connp); 26022 return (1); 26023 } 26024 } 26025 } 26026 26027 return (0); 26028 } 26029 26030 /* 26031 * Macros used for accessing the different types of sockaddr 26032 * structures inside a tcp_ioc_abort_conn_t. 26033 */ 26034 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 26035 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 26036 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 26037 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 26038 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 26039 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 26040 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 26041 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 26042 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 26043 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 26044 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 26045 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 26046 26047 /* 26048 * Return the correct error code to mimic the behavior 26049 * of a connection reset. 26050 */ 26051 #define TCP_AC_GET_ERRCODE(state, err) { \ 26052 switch ((state)) { \ 26053 case TCPS_SYN_SENT: \ 26054 case TCPS_SYN_RCVD: \ 26055 (err) = ECONNREFUSED; \ 26056 break; \ 26057 case TCPS_ESTABLISHED: \ 26058 case TCPS_FIN_WAIT_1: \ 26059 case TCPS_FIN_WAIT_2: \ 26060 case TCPS_CLOSE_WAIT: \ 26061 (err) = ECONNRESET; \ 26062 break; \ 26063 case TCPS_CLOSING: \ 26064 case TCPS_LAST_ACK: \ 26065 case TCPS_TIME_WAIT: \ 26066 (err) = 0; \ 26067 break; \ 26068 default: \ 26069 (err) = ENXIO; \ 26070 } \ 26071 } 26072 26073 /* 26074 * Check if a tcp structure matches the info in acp. 26075 */ 26076 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 26077 (((acp)->ac_local.ss_family == AF_INET) ? \ 26078 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 26079 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 26080 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 26081 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 26082 (TCP_AC_V4LPORT((acp)) == 0 || \ 26083 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 26084 (TCP_AC_V4RPORT((acp)) == 0 || \ 26085 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 26086 (acp)->ac_start <= (tcp)->tcp_state && \ 26087 (acp)->ac_end >= (tcp)->tcp_state) : \ 26088 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 26089 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 26090 &(tcp)->tcp_ip_src_v6)) && \ 26091 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 26092 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 26093 &(tcp)->tcp_remote_v6)) && \ 26094 (TCP_AC_V6LPORT((acp)) == 0 || \ 26095 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 26096 (TCP_AC_V6RPORT((acp)) == 0 || \ 26097 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 26098 (acp)->ac_start <= (tcp)->tcp_state && \ 26099 (acp)->ac_end >= (tcp)->tcp_state)) 26100 26101 #define TCP_AC_MATCH(acp, tcp) \ 26102 (((acp)->ac_zoneid == ALL_ZONES || \ 26103 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 26104 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 26105 26106 /* 26107 * Build a message containing a tcp_ioc_abort_conn_t structure 26108 * which is filled in with information from acp and tp. 26109 */ 26110 static mblk_t * 26111 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 26112 { 26113 mblk_t *mp; 26114 tcp_ioc_abort_conn_t *tacp; 26115 26116 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 26117 if (mp == NULL) 26118 return (NULL); 26119 26120 mp->b_datap->db_type = M_CTL; 26121 26122 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 26123 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 26124 sizeof (uint32_t)); 26125 26126 tacp->ac_start = acp->ac_start; 26127 tacp->ac_end = acp->ac_end; 26128 tacp->ac_zoneid = acp->ac_zoneid; 26129 26130 if (acp->ac_local.ss_family == AF_INET) { 26131 tacp->ac_local.ss_family = AF_INET; 26132 tacp->ac_remote.ss_family = AF_INET; 26133 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 26134 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 26135 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 26136 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 26137 } else { 26138 tacp->ac_local.ss_family = AF_INET6; 26139 tacp->ac_remote.ss_family = AF_INET6; 26140 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 26141 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 26142 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 26143 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 26144 } 26145 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 26146 return (mp); 26147 } 26148 26149 /* 26150 * Print a tcp_ioc_abort_conn_t structure. 26151 */ 26152 static void 26153 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 26154 { 26155 char lbuf[128]; 26156 char rbuf[128]; 26157 sa_family_t af; 26158 in_port_t lport, rport; 26159 ushort_t logflags; 26160 26161 af = acp->ac_local.ss_family; 26162 26163 if (af == AF_INET) { 26164 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 26165 lbuf, 128); 26166 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 26167 rbuf, 128); 26168 lport = ntohs(TCP_AC_V4LPORT(acp)); 26169 rport = ntohs(TCP_AC_V4RPORT(acp)); 26170 } else { 26171 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 26172 lbuf, 128); 26173 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 26174 rbuf, 128); 26175 lport = ntohs(TCP_AC_V6LPORT(acp)); 26176 rport = ntohs(TCP_AC_V6RPORT(acp)); 26177 } 26178 26179 logflags = SL_TRACE | SL_NOTE; 26180 /* 26181 * Don't print this message to the console if the operation was done 26182 * to a non-global zone. 26183 */ 26184 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 26185 logflags |= SL_CONSOLE; 26186 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 26187 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 26188 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 26189 acp->ac_start, acp->ac_end); 26190 } 26191 26192 /* 26193 * Called inside tcp_rput when a message built using 26194 * tcp_ioctl_abort_build_msg is put into a queue. 26195 * Note that when we get here there is no wildcard in acp any more. 26196 */ 26197 static void 26198 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 26199 { 26200 tcp_ioc_abort_conn_t *acp; 26201 26202 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 26203 if (tcp->tcp_state <= acp->ac_end) { 26204 /* 26205 * If we get here, we are already on the correct 26206 * squeue. This ioctl follows the following path 26207 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 26208 * ->tcp_ioctl_abort->squeue_fill (if on a 26209 * different squeue) 26210 */ 26211 int errcode; 26212 26213 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 26214 (void) tcp_clean_death(tcp, errcode, 26); 26215 } 26216 freemsg(mp); 26217 } 26218 26219 /* 26220 * Abort all matching connections on a hash chain. 26221 */ 26222 static int 26223 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 26224 boolean_t exact, tcp_stack_t *tcps) 26225 { 26226 int nmatch, err = 0; 26227 tcp_t *tcp; 26228 MBLKP mp, last, listhead = NULL; 26229 conn_t *tconnp; 26230 connf_t *connfp; 26231 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 26232 26233 connfp = &ipst->ips_ipcl_conn_fanout[index]; 26234 26235 startover: 26236 nmatch = 0; 26237 26238 mutex_enter(&connfp->connf_lock); 26239 for (tconnp = connfp->connf_head; tconnp != NULL; 26240 tconnp = tconnp->conn_next) { 26241 tcp = tconnp->conn_tcp; 26242 if (TCP_AC_MATCH(acp, tcp)) { 26243 CONN_INC_REF(tcp->tcp_connp); 26244 mp = tcp_ioctl_abort_build_msg(acp, tcp); 26245 if (mp == NULL) { 26246 err = ENOMEM; 26247 CONN_DEC_REF(tcp->tcp_connp); 26248 break; 26249 } 26250 mp->b_prev = (mblk_t *)tcp; 26251 26252 if (listhead == NULL) { 26253 listhead = mp; 26254 last = mp; 26255 } else { 26256 last->b_next = mp; 26257 last = mp; 26258 } 26259 nmatch++; 26260 if (exact) 26261 break; 26262 } 26263 26264 /* Avoid holding lock for too long. */ 26265 if (nmatch >= 500) 26266 break; 26267 } 26268 mutex_exit(&connfp->connf_lock); 26269 26270 /* Pass mp into the correct tcp */ 26271 while ((mp = listhead) != NULL) { 26272 listhead = listhead->b_next; 26273 tcp = (tcp_t *)mp->b_prev; 26274 mp->b_next = mp->b_prev = NULL; 26275 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 26276 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 26277 } 26278 26279 *count += nmatch; 26280 if (nmatch >= 500 && err == 0) 26281 goto startover; 26282 return (err); 26283 } 26284 26285 /* 26286 * Abort all connections that matches the attributes specified in acp. 26287 */ 26288 static int 26289 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 26290 { 26291 sa_family_t af; 26292 uint32_t ports; 26293 uint16_t *pports; 26294 int err = 0, count = 0; 26295 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 26296 int index = -1; 26297 ushort_t logflags; 26298 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 26299 26300 af = acp->ac_local.ss_family; 26301 26302 if (af == AF_INET) { 26303 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 26304 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 26305 pports = (uint16_t *)&ports; 26306 pports[1] = TCP_AC_V4LPORT(acp); 26307 pports[0] = TCP_AC_V4RPORT(acp); 26308 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 26309 } 26310 } else { 26311 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 26312 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 26313 pports = (uint16_t *)&ports; 26314 pports[1] = TCP_AC_V6LPORT(acp); 26315 pports[0] = TCP_AC_V6RPORT(acp); 26316 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 26317 } 26318 } 26319 26320 /* 26321 * For cases where remote addr, local port, and remote port are non- 26322 * wildcards, tcp_ioctl_abort_bucket will only be called once. 26323 */ 26324 if (index != -1) { 26325 err = tcp_ioctl_abort_bucket(acp, index, 26326 &count, exact, tcps); 26327 } else { 26328 /* 26329 * loop through all entries for wildcard case 26330 */ 26331 for (index = 0; 26332 index < ipst->ips_ipcl_conn_fanout_size; 26333 index++) { 26334 err = tcp_ioctl_abort_bucket(acp, index, 26335 &count, exact, tcps); 26336 if (err != 0) 26337 break; 26338 } 26339 } 26340 26341 logflags = SL_TRACE | SL_NOTE; 26342 /* 26343 * Don't print this message to the console if the operation was done 26344 * to a non-global zone. 26345 */ 26346 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 26347 logflags |= SL_CONSOLE; 26348 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 26349 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 26350 if (err == 0 && count == 0) 26351 err = ENOENT; 26352 return (err); 26353 } 26354 26355 /* 26356 * Process the TCP_IOC_ABORT_CONN ioctl request. 26357 */ 26358 static void 26359 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 26360 { 26361 int err; 26362 IOCP iocp; 26363 MBLKP mp1; 26364 sa_family_t laf, raf; 26365 tcp_ioc_abort_conn_t *acp; 26366 zone_t *zptr; 26367 conn_t *connp = Q_TO_CONN(q); 26368 zoneid_t zoneid = connp->conn_zoneid; 26369 tcp_t *tcp = connp->conn_tcp; 26370 tcp_stack_t *tcps = tcp->tcp_tcps; 26371 26372 iocp = (IOCP)mp->b_rptr; 26373 26374 if ((mp1 = mp->b_cont) == NULL || 26375 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 26376 err = EINVAL; 26377 goto out; 26378 } 26379 26380 /* check permissions */ 26381 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 26382 err = EPERM; 26383 goto out; 26384 } 26385 26386 if (mp1->b_cont != NULL) { 26387 freemsg(mp1->b_cont); 26388 mp1->b_cont = NULL; 26389 } 26390 26391 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 26392 laf = acp->ac_local.ss_family; 26393 raf = acp->ac_remote.ss_family; 26394 26395 /* check that a zone with the supplied zoneid exists */ 26396 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 26397 zptr = zone_find_by_id(zoneid); 26398 if (zptr != NULL) { 26399 zone_rele(zptr); 26400 } else { 26401 err = EINVAL; 26402 goto out; 26403 } 26404 } 26405 26406 /* 26407 * For exclusive stacks we set the zoneid to zero 26408 * to make TCP operate as if in the global zone. 26409 */ 26410 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 26411 acp->ac_zoneid = GLOBAL_ZONEID; 26412 26413 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 26414 acp->ac_start > acp->ac_end || laf != raf || 26415 (laf != AF_INET && laf != AF_INET6)) { 26416 err = EINVAL; 26417 goto out; 26418 } 26419 26420 tcp_ioctl_abort_dump(acp); 26421 err = tcp_ioctl_abort(acp, tcps); 26422 26423 out: 26424 if (mp1 != NULL) { 26425 freemsg(mp1); 26426 mp->b_cont = NULL; 26427 } 26428 26429 if (err != 0) 26430 miocnak(q, mp, 0, err); 26431 else 26432 miocack(q, mp, 0, 0); 26433 } 26434 26435 /* 26436 * tcp_time_wait_processing() handles processing of incoming packets when 26437 * the tcp is in the TIME_WAIT state. 26438 * A TIME_WAIT tcp that has an associated open TCP stream is never put 26439 * on the time wait list. 26440 */ 26441 void 26442 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 26443 uint32_t seg_ack, int seg_len, tcph_t *tcph) 26444 { 26445 int32_t bytes_acked; 26446 int32_t gap; 26447 int32_t rgap; 26448 tcp_opt_t tcpopt; 26449 uint_t flags; 26450 uint32_t new_swnd = 0; 26451 conn_t *connp; 26452 tcp_stack_t *tcps = tcp->tcp_tcps; 26453 26454 BUMP_LOCAL(tcp->tcp_ibsegs); 26455 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 26456 26457 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 26458 new_swnd = BE16_TO_U16(tcph->th_win) << 26459 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 26460 if (tcp->tcp_snd_ts_ok) { 26461 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 26462 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26463 tcp->tcp_rnxt, TH_ACK); 26464 goto done; 26465 } 26466 } 26467 gap = seg_seq - tcp->tcp_rnxt; 26468 rgap = tcp->tcp_rwnd - (gap + seg_len); 26469 if (gap < 0) { 26470 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 26471 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 26472 (seg_len > -gap ? -gap : seg_len)); 26473 seg_len += gap; 26474 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 26475 if (flags & TH_RST) { 26476 goto done; 26477 } 26478 if ((flags & TH_FIN) && seg_len == -1) { 26479 /* 26480 * When TCP receives a duplicate FIN in 26481 * TIME_WAIT state, restart the 2 MSL timer. 26482 * See page 73 in RFC 793. Make sure this TCP 26483 * is already on the TIME_WAIT list. If not, 26484 * just restart the timer. 26485 */ 26486 if (TCP_IS_DETACHED(tcp)) { 26487 if (tcp_time_wait_remove(tcp, NULL) == 26488 B_TRUE) { 26489 tcp_time_wait_append(tcp); 26490 TCP_DBGSTAT(tcps, 26491 tcp_rput_time_wait); 26492 } 26493 } else { 26494 ASSERT(tcp != NULL); 26495 TCP_TIMER_RESTART(tcp, 26496 tcps->tcps_time_wait_interval); 26497 } 26498 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26499 tcp->tcp_rnxt, TH_ACK); 26500 goto done; 26501 } 26502 flags |= TH_ACK_NEEDED; 26503 seg_len = 0; 26504 goto process_ack; 26505 } 26506 26507 /* Fix seg_seq, and chew the gap off the front. */ 26508 seg_seq = tcp->tcp_rnxt; 26509 } 26510 26511 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 26512 /* 26513 * Make sure that when we accept the connection, pick 26514 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 26515 * old connection. 26516 * 26517 * The next ISS generated is equal to tcp_iss_incr_extra 26518 * + ISS_INCR/2 + other components depending on the 26519 * value of tcp_strong_iss. We pre-calculate the new 26520 * ISS here and compare with tcp_snxt to determine if 26521 * we need to make adjustment to tcp_iss_incr_extra. 26522 * 26523 * The above calculation is ugly and is a 26524 * waste of CPU cycles... 26525 */ 26526 uint32_t new_iss = tcps->tcps_iss_incr_extra; 26527 int32_t adj; 26528 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 26529 26530 switch (tcps->tcps_strong_iss) { 26531 case 2: { 26532 /* Add time and MD5 components. */ 26533 uint32_t answer[4]; 26534 struct { 26535 uint32_t ports; 26536 in6_addr_t src; 26537 in6_addr_t dst; 26538 } arg; 26539 MD5_CTX context; 26540 26541 mutex_enter(&tcps->tcps_iss_key_lock); 26542 context = tcps->tcps_iss_key; 26543 mutex_exit(&tcps->tcps_iss_key_lock); 26544 arg.ports = tcp->tcp_ports; 26545 /* We use MAPPED addresses in tcp_iss_init */ 26546 arg.src = tcp->tcp_ip_src_v6; 26547 if (tcp->tcp_ipversion == IPV4_VERSION) { 26548 IN6_IPADDR_TO_V4MAPPED( 26549 tcp->tcp_ipha->ipha_dst, 26550 &arg.dst); 26551 } else { 26552 arg.dst = 26553 tcp->tcp_ip6h->ip6_dst; 26554 } 26555 MD5Update(&context, (uchar_t *)&arg, 26556 sizeof (arg)); 26557 MD5Final((uchar_t *)answer, &context); 26558 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 26559 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 26560 break; 26561 } 26562 case 1: 26563 /* Add time component and min random (i.e. 1). */ 26564 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 26565 break; 26566 default: 26567 /* Add only time component. */ 26568 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 26569 break; 26570 } 26571 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 26572 /* 26573 * New ISS not guaranteed to be ISS_INCR/2 26574 * ahead of the current tcp_snxt, so add the 26575 * difference to tcp_iss_incr_extra. 26576 */ 26577 tcps->tcps_iss_incr_extra += adj; 26578 } 26579 /* 26580 * If tcp_clean_death() can not perform the task now, 26581 * drop the SYN packet and let the other side re-xmit. 26582 * Otherwise pass the SYN packet back in, since the 26583 * old tcp state has been cleaned up or freed. 26584 */ 26585 if (tcp_clean_death(tcp, 0, 27) == -1) 26586 goto done; 26587 /* 26588 * We will come back to tcp_rput_data 26589 * on the global queue. Packets destined 26590 * for the global queue will be checked 26591 * with global policy. But the policy for 26592 * this packet has already been checked as 26593 * this was destined for the detached 26594 * connection. We need to bypass policy 26595 * check this time by attaching a dummy 26596 * ipsec_in with ipsec_in_dont_check set. 26597 */ 26598 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 26599 if (connp != NULL) { 26600 TCP_STAT(tcps, tcp_time_wait_syn_success); 26601 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 26602 return; 26603 } 26604 goto done; 26605 } 26606 26607 /* 26608 * rgap is the amount of stuff received out of window. A negative 26609 * value is the amount out of window. 26610 */ 26611 if (rgap < 0) { 26612 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 26613 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 26614 /* Fix seg_len and make sure there is something left. */ 26615 seg_len += rgap; 26616 if (seg_len <= 0) { 26617 if (flags & TH_RST) { 26618 goto done; 26619 } 26620 flags |= TH_ACK_NEEDED; 26621 seg_len = 0; 26622 goto process_ack; 26623 } 26624 } 26625 /* 26626 * Check whether we can update tcp_ts_recent. This test is 26627 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 26628 * Extensions for High Performance: An Update", Internet Draft. 26629 */ 26630 if (tcp->tcp_snd_ts_ok && 26631 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 26632 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 26633 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 26634 tcp->tcp_last_rcv_lbolt = lbolt64; 26635 } 26636 26637 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 26638 /* Always ack out of order packets */ 26639 flags |= TH_ACK_NEEDED; 26640 seg_len = 0; 26641 } else if (seg_len > 0) { 26642 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 26643 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 26644 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 26645 } 26646 if (flags & TH_RST) { 26647 (void) tcp_clean_death(tcp, 0, 28); 26648 goto done; 26649 } 26650 if (flags & TH_SYN) { 26651 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 26652 TH_RST|TH_ACK); 26653 /* 26654 * Do not delete the TCP structure if it is in 26655 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 26656 */ 26657 goto done; 26658 } 26659 process_ack: 26660 if (flags & TH_ACK) { 26661 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 26662 if (bytes_acked <= 0) { 26663 if (bytes_acked == 0 && seg_len == 0 && 26664 new_swnd == tcp->tcp_swnd) 26665 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 26666 } else { 26667 /* Acks something not sent */ 26668 flags |= TH_ACK_NEEDED; 26669 } 26670 } 26671 if (flags & TH_ACK_NEEDED) { 26672 /* 26673 * Time to send an ack for some reason. 26674 */ 26675 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26676 tcp->tcp_rnxt, TH_ACK); 26677 } 26678 done: 26679 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26680 DB_CKSUMSTART(mp) = 0; 26681 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 26682 TCP_STAT(tcps, tcp_time_wait_syn_fail); 26683 } 26684 freemsg(mp); 26685 } 26686 26687 /* 26688 * Allocate a T_SVR4_OPTMGMT_REQ. 26689 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 26690 * that tcp_rput_other can drop the acks. 26691 */ 26692 static mblk_t * 26693 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 26694 { 26695 mblk_t *mp; 26696 struct T_optmgmt_req *tor; 26697 struct opthdr *oh; 26698 uint_t size; 26699 char *optptr; 26700 26701 size = sizeof (*tor) + sizeof (*oh) + optlen; 26702 mp = allocb(size, BPRI_MED); 26703 if (mp == NULL) 26704 return (NULL); 26705 26706 mp->b_wptr += size; 26707 mp->b_datap->db_type = M_PROTO; 26708 tor = (struct T_optmgmt_req *)mp->b_rptr; 26709 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 26710 tor->MGMT_flags = T_NEGOTIATE; 26711 tor->OPT_length = sizeof (*oh) + optlen; 26712 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 26713 26714 oh = (struct opthdr *)&tor[1]; 26715 oh->level = level; 26716 oh->name = cmd; 26717 oh->len = optlen; 26718 if (optlen != 0) { 26719 optptr = (char *)&oh[1]; 26720 bcopy(opt, optptr, optlen); 26721 } 26722 return (mp); 26723 } 26724 26725 /* 26726 * TCP Timers Implementation. 26727 */ 26728 timeout_id_t 26729 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 26730 { 26731 mblk_t *mp; 26732 tcp_timer_t *tcpt; 26733 tcp_t *tcp = connp->conn_tcp; 26734 tcp_stack_t *tcps = tcp->tcp_tcps; 26735 26736 ASSERT(connp->conn_sqp != NULL); 26737 26738 TCP_DBGSTAT(tcps, tcp_timeout_calls); 26739 26740 if (tcp->tcp_timercache == NULL) { 26741 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 26742 } else { 26743 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 26744 mp = tcp->tcp_timercache; 26745 tcp->tcp_timercache = mp->b_next; 26746 mp->b_next = NULL; 26747 ASSERT(mp->b_wptr == NULL); 26748 } 26749 26750 CONN_INC_REF(connp); 26751 tcpt = (tcp_timer_t *)mp->b_rptr; 26752 tcpt->connp = connp; 26753 tcpt->tcpt_proc = f; 26754 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 26755 return ((timeout_id_t)mp); 26756 } 26757 26758 static void 26759 tcp_timer_callback(void *arg) 26760 { 26761 mblk_t *mp = (mblk_t *)arg; 26762 tcp_timer_t *tcpt; 26763 conn_t *connp; 26764 26765 tcpt = (tcp_timer_t *)mp->b_rptr; 26766 connp = tcpt->connp; 26767 squeue_fill(connp->conn_sqp, mp, 26768 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 26769 } 26770 26771 static void 26772 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 26773 { 26774 tcp_timer_t *tcpt; 26775 conn_t *connp = (conn_t *)arg; 26776 tcp_t *tcp = connp->conn_tcp; 26777 26778 tcpt = (tcp_timer_t *)mp->b_rptr; 26779 ASSERT(connp == tcpt->connp); 26780 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 26781 26782 /* 26783 * If the TCP has reached the closed state, don't proceed any 26784 * further. This TCP logically does not exist on the system. 26785 * tcpt_proc could for example access queues, that have already 26786 * been qprocoff'ed off. Also see comments at the start of tcp_input 26787 */ 26788 if (tcp->tcp_state != TCPS_CLOSED) { 26789 (*tcpt->tcpt_proc)(connp); 26790 } else { 26791 tcp->tcp_timer_tid = 0; 26792 } 26793 tcp_timer_free(connp->conn_tcp, mp); 26794 } 26795 26796 /* 26797 * There is potential race with untimeout and the handler firing at the same 26798 * time. The mblock may be freed by the handler while we are trying to use 26799 * it. But since both should execute on the same squeue, this race should not 26800 * occur. 26801 */ 26802 clock_t 26803 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26804 { 26805 mblk_t *mp = (mblk_t *)id; 26806 tcp_timer_t *tcpt; 26807 clock_t delta; 26808 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26809 26810 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26811 26812 if (mp == NULL) 26813 return (-1); 26814 26815 tcpt = (tcp_timer_t *)mp->b_rptr; 26816 ASSERT(tcpt->connp == connp); 26817 26818 delta = untimeout(tcpt->tcpt_tid); 26819 26820 if (delta >= 0) { 26821 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26822 tcp_timer_free(connp->conn_tcp, mp); 26823 CONN_DEC_REF(connp); 26824 } 26825 26826 return (delta); 26827 } 26828 26829 /* 26830 * Allocate space for the timer event. The allocation looks like mblk, but it is 26831 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26832 * 26833 * Dealing with failures: If we can't allocate from the timer cache we try 26834 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26835 * points to b_rptr. 26836 * If we can't allocate anything using allocb_tryhard(), we perform a last 26837 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26838 * save the actual allocation size in b_datap. 26839 */ 26840 mblk_t * 26841 tcp_timermp_alloc(int kmflags) 26842 { 26843 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26844 kmflags & ~KM_PANIC); 26845 26846 if (mp != NULL) { 26847 mp->b_next = mp->b_prev = NULL; 26848 mp->b_rptr = (uchar_t *)(&mp[1]); 26849 mp->b_wptr = NULL; 26850 mp->b_datap = NULL; 26851 mp->b_queue = NULL; 26852 mp->b_cont = NULL; 26853 } else if (kmflags & KM_PANIC) { 26854 /* 26855 * Failed to allocate memory for the timer. Try allocating from 26856 * dblock caches. 26857 */ 26858 /* ipclassifier calls this from a constructor - hence no tcps */ 26859 TCP_G_STAT(tcp_timermp_allocfail); 26860 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26861 if (mp == NULL) { 26862 size_t size = 0; 26863 /* 26864 * Memory is really low. Try tryhard allocation. 26865 * 26866 * ipclassifier calls this from a constructor - 26867 * hence no tcps 26868 */ 26869 TCP_G_STAT(tcp_timermp_allocdblfail); 26870 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26871 sizeof (tcp_timer_t), &size, kmflags); 26872 mp->b_rptr = (uchar_t *)(&mp[1]); 26873 mp->b_next = mp->b_prev = NULL; 26874 mp->b_wptr = (uchar_t *)-1; 26875 mp->b_datap = (dblk_t *)size; 26876 mp->b_queue = NULL; 26877 mp->b_cont = NULL; 26878 } 26879 ASSERT(mp->b_wptr != NULL); 26880 } 26881 /* ipclassifier calls this from a constructor - hence no tcps */ 26882 TCP_G_DBGSTAT(tcp_timermp_alloced); 26883 26884 return (mp); 26885 } 26886 26887 /* 26888 * Free per-tcp timer cache. 26889 * It can only contain entries from tcp_timercache. 26890 */ 26891 void 26892 tcp_timermp_free(tcp_t *tcp) 26893 { 26894 mblk_t *mp; 26895 26896 while ((mp = tcp->tcp_timercache) != NULL) { 26897 ASSERT(mp->b_wptr == NULL); 26898 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26899 kmem_cache_free(tcp_timercache, mp); 26900 } 26901 } 26902 26903 /* 26904 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26905 * events there already (currently at most two events are cached). 26906 * If the event is not allocated from the timer cache, free it right away. 26907 */ 26908 static void 26909 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26910 { 26911 mblk_t *mp1 = tcp->tcp_timercache; 26912 tcp_stack_t *tcps = tcp->tcp_tcps; 26913 26914 if (mp->b_wptr != NULL) { 26915 /* 26916 * This allocation is not from a timer cache, free it right 26917 * away. 26918 */ 26919 if (mp->b_wptr != (uchar_t *)-1) 26920 freeb(mp); 26921 else 26922 kmem_free(mp, (size_t)mp->b_datap); 26923 } else if (mp1 == NULL || mp1->b_next == NULL) { 26924 /* Cache this timer block for future allocations */ 26925 mp->b_rptr = (uchar_t *)(&mp[1]); 26926 mp->b_next = mp1; 26927 tcp->tcp_timercache = mp; 26928 } else { 26929 kmem_cache_free(tcp_timercache, mp); 26930 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26931 } 26932 } 26933 26934 /* 26935 * End of TCP Timers implementation. 26936 */ 26937 26938 /* 26939 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26940 * on the specified backing STREAMS q. Note, the caller may make the 26941 * decision to call based on the tcp_t.tcp_flow_stopped value which 26942 * when check outside the q's lock is only an advisory check ... 26943 */ 26944 26945 void 26946 tcp_setqfull(tcp_t *tcp) 26947 { 26948 queue_t *q = tcp->tcp_wq; 26949 tcp_stack_t *tcps = tcp->tcp_tcps; 26950 26951 if (!(q->q_flag & QFULL)) { 26952 mutex_enter(QLOCK(q)); 26953 if (!(q->q_flag & QFULL)) { 26954 /* still need to set QFULL */ 26955 q->q_flag |= QFULL; 26956 tcp->tcp_flow_stopped = B_TRUE; 26957 mutex_exit(QLOCK(q)); 26958 TCP_STAT(tcps, tcp_flwctl_on); 26959 } else { 26960 mutex_exit(QLOCK(q)); 26961 } 26962 } 26963 } 26964 26965 void 26966 tcp_clrqfull(tcp_t *tcp) 26967 { 26968 queue_t *q = tcp->tcp_wq; 26969 26970 if (q->q_flag & QFULL) { 26971 mutex_enter(QLOCK(q)); 26972 if (q->q_flag & QFULL) { 26973 q->q_flag &= ~QFULL; 26974 tcp->tcp_flow_stopped = B_FALSE; 26975 mutex_exit(QLOCK(q)); 26976 if (q->q_flag & QWANTW) 26977 qbackenable(q, 0); 26978 } else { 26979 mutex_exit(QLOCK(q)); 26980 } 26981 } 26982 } 26983 26984 26985 /* 26986 * kstats related to squeues i.e. not per IP instance 26987 */ 26988 static void * 26989 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26990 { 26991 kstat_t *ksp; 26992 26993 tcp_g_stat_t template = { 26994 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26995 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26996 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26997 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26998 }; 26999 27000 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 27001 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 27002 KSTAT_FLAG_VIRTUAL); 27003 27004 if (ksp == NULL) 27005 return (NULL); 27006 27007 bcopy(&template, tcp_g_statp, sizeof (template)); 27008 ksp->ks_data = (void *)tcp_g_statp; 27009 27010 kstat_install(ksp); 27011 return (ksp); 27012 } 27013 27014 static void 27015 tcp_g_kstat_fini(kstat_t *ksp) 27016 { 27017 if (ksp != NULL) { 27018 kstat_delete(ksp); 27019 } 27020 } 27021 27022 27023 static void * 27024 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 27025 { 27026 kstat_t *ksp; 27027 27028 tcp_stat_t template = { 27029 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 27030 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 27031 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 27032 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 27033 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 27034 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 27035 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 27036 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 27037 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 27038 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 27039 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 27040 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 27041 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 27042 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 27043 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 27044 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 27045 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 27046 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 27047 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 27048 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 27049 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 27050 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 27051 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 27052 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 27053 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 27054 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 27055 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 27056 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 27057 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 27058 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 27059 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 27060 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 27061 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 27062 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 27063 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 27064 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 27065 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 27066 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 27067 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 27068 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 27069 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 27070 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 27071 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 27072 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 27073 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 27074 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 27075 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 27076 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 27077 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 27078 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 27079 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 27080 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 27081 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 27082 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 27083 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 27084 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 27085 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 27086 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 27087 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 27088 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 27089 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 27090 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 27091 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 27092 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 27093 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 27094 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 27095 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 27096 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 27097 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 27098 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 27099 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 27100 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 27101 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 27102 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 27103 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 27104 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 27105 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 27106 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 27107 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 27108 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 27109 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 27110 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 27111 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 27112 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 27113 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 27114 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 27115 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 27116 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 27117 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 27118 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 27119 }; 27120 27121 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 27122 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 27123 KSTAT_FLAG_VIRTUAL, stackid); 27124 27125 if (ksp == NULL) 27126 return (NULL); 27127 27128 bcopy(&template, tcps_statisticsp, sizeof (template)); 27129 ksp->ks_data = (void *)tcps_statisticsp; 27130 ksp->ks_private = (void *)(uintptr_t)stackid; 27131 27132 kstat_install(ksp); 27133 return (ksp); 27134 } 27135 27136 static void 27137 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 27138 { 27139 if (ksp != NULL) { 27140 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 27141 kstat_delete_netstack(ksp, stackid); 27142 } 27143 } 27144 27145 /* 27146 * TCP Kstats implementation 27147 */ 27148 static void * 27149 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 27150 { 27151 kstat_t *ksp; 27152 27153 tcp_named_kstat_t template = { 27154 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 27155 { "rtoMin", KSTAT_DATA_INT32, 0 }, 27156 { "rtoMax", KSTAT_DATA_INT32, 0 }, 27157 { "maxConn", KSTAT_DATA_INT32, 0 }, 27158 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 27159 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 27160 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 27161 { "estabResets", KSTAT_DATA_UINT32, 0 }, 27162 { "currEstab", KSTAT_DATA_UINT32, 0 }, 27163 { "inSegs", KSTAT_DATA_UINT64, 0 }, 27164 { "outSegs", KSTAT_DATA_UINT64, 0 }, 27165 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 27166 { "connTableSize", KSTAT_DATA_INT32, 0 }, 27167 { "outRsts", KSTAT_DATA_UINT32, 0 }, 27168 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 27169 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 27170 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 27171 { "outAck", KSTAT_DATA_UINT32, 0 }, 27172 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 27173 { "outUrg", KSTAT_DATA_UINT32, 0 }, 27174 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 27175 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 27176 { "outControl", KSTAT_DATA_UINT32, 0 }, 27177 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 27178 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 27179 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 27180 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 27181 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 27182 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 27183 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 27184 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 27185 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 27186 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 27187 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 27188 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 27189 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 27190 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 27191 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 27192 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 27193 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 27194 { "inClosed", KSTAT_DATA_UINT32, 0 }, 27195 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 27196 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 27197 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 27198 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 27199 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 27200 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 27201 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 27202 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 27203 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 27204 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 27205 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 27206 { "connTableSize6", KSTAT_DATA_INT32, 0 } 27207 }; 27208 27209 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 27210 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 27211 27212 if (ksp == NULL) 27213 return (NULL); 27214 27215 template.rtoAlgorithm.value.ui32 = 4; 27216 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 27217 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 27218 template.maxConn.value.i32 = -1; 27219 27220 bcopy(&template, ksp->ks_data, sizeof (template)); 27221 ksp->ks_update = tcp_kstat_update; 27222 ksp->ks_private = (void *)(uintptr_t)stackid; 27223 27224 kstat_install(ksp); 27225 return (ksp); 27226 } 27227 27228 static void 27229 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 27230 { 27231 if (ksp != NULL) { 27232 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 27233 kstat_delete_netstack(ksp, stackid); 27234 } 27235 } 27236 27237 static int 27238 tcp_kstat_update(kstat_t *kp, int rw) 27239 { 27240 tcp_named_kstat_t *tcpkp; 27241 tcp_t *tcp; 27242 connf_t *connfp; 27243 conn_t *connp; 27244 int i; 27245 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 27246 netstack_t *ns; 27247 tcp_stack_t *tcps; 27248 ip_stack_t *ipst; 27249 27250 if ((kp == NULL) || (kp->ks_data == NULL)) 27251 return (EIO); 27252 27253 if (rw == KSTAT_WRITE) 27254 return (EACCES); 27255 27256 ns = netstack_find_by_stackid(stackid); 27257 if (ns == NULL) 27258 return (-1); 27259 tcps = ns->netstack_tcp; 27260 if (tcps == NULL) { 27261 netstack_rele(ns); 27262 return (-1); 27263 } 27264 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 27265 27266 tcpkp->currEstab.value.ui32 = 0; 27267 27268 ipst = ns->netstack_ip; 27269 27270 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 27271 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 27272 connp = NULL; 27273 while ((connp = 27274 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 27275 tcp = connp->conn_tcp; 27276 switch (tcp_snmp_state(tcp)) { 27277 case MIB2_TCP_established: 27278 case MIB2_TCP_closeWait: 27279 tcpkp->currEstab.value.ui32++; 27280 break; 27281 } 27282 } 27283 } 27284 27285 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 27286 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 27287 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 27288 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 27289 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 27290 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 27291 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 27292 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 27293 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 27294 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 27295 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 27296 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 27297 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 27298 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 27299 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 27300 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 27301 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 27302 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 27303 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 27304 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 27305 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 27306 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 27307 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 27308 tcpkp->inDataInorderSegs.value.ui32 = 27309 tcps->tcps_mib.tcpInDataInorderSegs; 27310 tcpkp->inDataInorderBytes.value.ui32 = 27311 tcps->tcps_mib.tcpInDataInorderBytes; 27312 tcpkp->inDataUnorderSegs.value.ui32 = 27313 tcps->tcps_mib.tcpInDataUnorderSegs; 27314 tcpkp->inDataUnorderBytes.value.ui32 = 27315 tcps->tcps_mib.tcpInDataUnorderBytes; 27316 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 27317 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 27318 tcpkp->inDataPartDupSegs.value.ui32 = 27319 tcps->tcps_mib.tcpInDataPartDupSegs; 27320 tcpkp->inDataPartDupBytes.value.ui32 = 27321 tcps->tcps_mib.tcpInDataPartDupBytes; 27322 tcpkp->inDataPastWinSegs.value.ui32 = 27323 tcps->tcps_mib.tcpInDataPastWinSegs; 27324 tcpkp->inDataPastWinBytes.value.ui32 = 27325 tcps->tcps_mib.tcpInDataPastWinBytes; 27326 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 27327 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 27328 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 27329 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 27330 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 27331 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 27332 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 27333 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 27334 tcpkp->timKeepaliveProbe.value.ui32 = 27335 tcps->tcps_mib.tcpTimKeepaliveProbe; 27336 tcpkp->timKeepaliveDrop.value.ui32 = 27337 tcps->tcps_mib.tcpTimKeepaliveDrop; 27338 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 27339 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 27340 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 27341 tcpkp->outSackRetransSegs.value.ui32 = 27342 tcps->tcps_mib.tcpOutSackRetransSegs; 27343 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 27344 27345 netstack_rele(ns); 27346 return (0); 27347 } 27348 27349 void 27350 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 27351 { 27352 uint16_t hdr_len; 27353 ipha_t *ipha; 27354 uint8_t *nexthdrp; 27355 tcph_t *tcph; 27356 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 27357 27358 /* Already has an eager */ 27359 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 27360 TCP_STAT(tcps, tcp_reinput_syn); 27361 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 27362 connp, SQTAG_TCP_REINPUT_EAGER); 27363 return; 27364 } 27365 27366 switch (IPH_HDR_VERSION(mp->b_rptr)) { 27367 case IPV4_VERSION: 27368 ipha = (ipha_t *)mp->b_rptr; 27369 hdr_len = IPH_HDR_LENGTH(ipha); 27370 break; 27371 case IPV6_VERSION: 27372 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 27373 &hdr_len, &nexthdrp)) { 27374 CONN_DEC_REF(connp); 27375 freemsg(mp); 27376 return; 27377 } 27378 break; 27379 } 27380 27381 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 27382 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 27383 mp->b_datap->db_struioflag |= STRUIO_EAGER; 27384 DB_CKSUMSTART(mp) = (intptr_t)sqp; 27385 } 27386 27387 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 27388 SQTAG_TCP_REINPUT); 27389 } 27390 27391 static squeue_func_t 27392 tcp_squeue_switch(int val) 27393 { 27394 squeue_func_t rval = squeue_fill; 27395 27396 switch (val) { 27397 case 1: 27398 rval = squeue_enter_nodrain; 27399 break; 27400 case 2: 27401 rval = squeue_enter; 27402 break; 27403 default: 27404 break; 27405 } 27406 return (rval); 27407 } 27408 27409 /* 27410 * This is called once for each squeue - globally for all stack 27411 * instances. 27412 */ 27413 static void 27414 tcp_squeue_add(squeue_t *sqp) 27415 { 27416 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 27417 sizeof (tcp_squeue_priv_t), KM_SLEEP); 27418 27419 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 27420 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 27421 sqp, TCP_TIME_WAIT_DELAY); 27422 if (tcp_free_list_max_cnt == 0) { 27423 int tcp_ncpus = ((boot_max_ncpus == -1) ? 27424 max_ncpus : boot_max_ncpus); 27425 27426 /* 27427 * Limit number of entries to 1% of availble memory / tcp_ncpus 27428 */ 27429 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 27430 (tcp_ncpus * sizeof (tcp_t) * 100); 27431 } 27432 tcp_time_wait->tcp_free_list_cnt = 0; 27433 } 27434