1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 61 #include <sys/errno.h> 62 #include <sys/signal.h> 63 #include <sys/socket.h> 64 #include <sys/sockio.h> 65 #include <sys/isa_defs.h> 66 #include <sys/md5.h> 67 #include <sys/random.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 #include <inet/tcp_trace.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <sys/sdt.h> 105 #include <rpc/pmap_prot.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 129 * squeue_fill). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. ip_tcpopen() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 extern major_t TCP6_MAJ; 237 238 /* 239 * Values for squeue switch: 240 * 1: squeue_enter_nodrain 241 * 2: squeue_enter 242 * 3: squeue_fill 243 */ 244 int tcp_squeue_close = 2; 245 int tcp_squeue_wput = 2; 246 247 squeue_func_t tcp_squeue_close_proc; 248 squeue_func_t tcp_squeue_wput_proc; 249 250 /* 251 * This controls how tiny a write must be before we try to copy it 252 * into the the mblk on the tail of the transmit queue. Not much 253 * speedup is observed for values larger than sixteen. Zero will 254 * disable the optimisation. 255 */ 256 int tcp_tx_pull_len = 16; 257 258 /* 259 * TCP Statistics. 260 * 261 * How TCP statistics work. 262 * 263 * There are two types of statistics invoked by two macros. 264 * 265 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 266 * supposed to be used in non MT-hot paths of the code. 267 * 268 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 269 * supposed to be used for DEBUG purposes and may be used on a hot path. 270 * 271 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 272 * (use "kstat tcp" to get them). 273 * 274 * There is also additional debugging facility that marks tcp_clean_death() 275 * instances and saves them in tcp_t structure. It is triggered by 276 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 277 * tcp_clean_death() calls that counts the number of times each tag was hit. It 278 * is triggered by TCP_CLD_COUNTERS define. 279 * 280 * How to add new counters. 281 * 282 * 1) Add a field in the tcp_stat structure describing your counter. 283 * 2) Add a line in tcp_statistics with the name of the counter. 284 * 285 * IMPORTANT!! - make sure that both are in sync !! 286 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 287 * 288 * Please avoid using private counters which are not kstat-exported. 289 * 290 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 291 * in tcp_t structure. 292 * 293 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 294 */ 295 296 #ifndef TCP_DEBUG_COUNTER 297 #ifdef DEBUG 298 #define TCP_DEBUG_COUNTER 1 299 #else 300 #define TCP_DEBUG_COUNTER 0 301 #endif 302 #endif 303 304 #define TCP_CLD_COUNTERS 0 305 306 #define TCP_TAG_CLEAN_DEATH 1 307 #define TCP_MAX_CLEAN_DEATH_TAG 32 308 309 #ifdef lint 310 static int _lint_dummy_; 311 #endif 312 313 #if TCP_CLD_COUNTERS 314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 315 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 316 #elif defined(lint) 317 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 318 #else 319 #define TCP_CLD_STAT(x) 320 #endif 321 322 #if TCP_DEBUG_COUNTER 323 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 324 #elif defined(lint) 325 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(x) 328 #endif 329 330 tcp_stat_t tcp_statistics = { 331 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 332 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 333 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 334 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 335 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 336 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 337 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 338 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 339 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 340 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 341 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 342 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 343 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 344 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 345 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 346 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 347 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 348 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 349 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 350 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 351 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 352 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 353 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 354 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 356 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 357 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 358 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 359 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 360 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 361 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 362 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 363 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 364 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 365 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 366 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 367 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 368 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 369 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 370 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 371 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 372 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 373 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 374 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 375 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 376 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 377 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 378 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 379 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 380 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 381 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 382 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 383 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 384 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 385 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 386 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 387 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 388 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 389 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 390 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 391 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 392 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 399 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 400 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 401 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 402 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 403 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 404 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 405 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 406 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 407 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 408 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 409 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 410 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 411 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 412 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 413 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 414 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 415 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 416 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 417 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 418 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 419 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 420 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 421 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 422 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 423 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 424 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 425 }; 426 427 static kstat_t *tcp_kstat; 428 429 /* 430 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 431 * tcp write side. 432 */ 433 #define CALL_IP_WPUT(connp, q, mp) { \ 434 ASSERT(((q)->q_flag & QREADR) == 0); \ 435 TCP_DBGSTAT(tcp_ip_output); \ 436 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 437 } 438 439 /* Macros for timestamp comparisons */ 440 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 441 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 442 443 /* 444 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 445 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 446 * by adding three components: a time component which grows by 1 every 4096 447 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 448 * a per-connection component which grows by 125000 for every new connection; 449 * and an "extra" component that grows by a random amount centered 450 * approximately on 64000. This causes the the ISS generator to cycle every 451 * 4.89 hours if no TCP connections are made, and faster if connections are 452 * made. 453 * 454 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 455 * components: a time component which grows by 250000 every second; and 456 * a per-connection component which grows by 125000 for every new connections. 457 * 458 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 459 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 460 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 461 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 462 * password. 463 */ 464 #define ISS_INCR 250000 465 #define ISS_NSEC_SHT 12 466 467 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 468 static kmutex_t tcp_iss_key_lock; 469 static MD5_CTX tcp_iss_key; 470 static sin_t sin_null; /* Zero address for quick clears */ 471 static sin6_t sin6_null; /* Zero address for quick clears */ 472 473 /* Packet dropper for TCP IPsec policy drops. */ 474 static ipdropper_t tcp_dropper; 475 476 /* 477 * This implementation follows the 4.3BSD interpretation of the urgent 478 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 479 * incompatible changes in protocols like telnet and rlogin. 480 */ 481 #define TCP_OLD_URP_INTERPRETATION 1 482 483 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 484 (TCP_IS_DETACHED(tcp) && \ 485 (!(tcp)->tcp_hard_binding)) 486 487 /* 488 * TCP reassembly macros. We hide starting and ending sequence numbers in 489 * b_next and b_prev of messages on the reassembly queue. The messages are 490 * chained using b_cont. These macros are used in tcp_reass() so we don't 491 * have to see the ugly casts and assignments. 492 */ 493 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 494 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 495 (mblk_t *)(uintptr_t)(u)) 496 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 497 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 498 (mblk_t *)(uintptr_t)(u)) 499 500 /* 501 * Implementation of TCP Timers. 502 * ============================= 503 * 504 * INTERFACE: 505 * 506 * There are two basic functions dealing with tcp timers: 507 * 508 * timeout_id_t tcp_timeout(connp, func, time) 509 * clock_t tcp_timeout_cancel(connp, timeout_id) 510 * TCP_TIMER_RESTART(tcp, intvl) 511 * 512 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 513 * after 'time' ticks passed. The function called by timeout() must adhere to 514 * the same restrictions as a driver soft interrupt handler - it must not sleep 515 * or call other functions that might sleep. The value returned is the opaque 516 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 517 * cancel the request. The call to tcp_timeout() may fail in which case it 518 * returns zero. This is different from the timeout(9F) function which never 519 * fails. 520 * 521 * The call-back function 'func' always receives 'connp' as its single 522 * argument. It is always executed in the squeue corresponding to the tcp 523 * structure. The tcp structure is guaranteed to be present at the time the 524 * call-back is called. 525 * 526 * NOTE: The call-back function 'func' is never called if tcp is in 527 * the TCPS_CLOSED state. 528 * 529 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 530 * request. locks acquired by the call-back routine should not be held across 531 * the call to tcp_timeout_cancel() or a deadlock may result. 532 * 533 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 534 * Otherwise, it returns an integer value greater than or equal to 0. In 535 * particular, if the call-back function is already placed on the squeue, it can 536 * not be canceled. 537 * 538 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 539 * within squeue context corresponding to the tcp instance. Since the 540 * call-back is also called via the same squeue, there are no race 541 * conditions described in untimeout(9F) manual page since all calls are 542 * strictly serialized. 543 * 544 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 545 * stored in tcp_timer_tid and starts a new one using 546 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 547 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 548 * field. 549 * 550 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 551 * call-back may still be called, so it is possible tcp_timer() will be 552 * called several times. This should not be a problem since tcp_timer() 553 * should always check the tcp instance state. 554 * 555 * 556 * IMPLEMENTATION: 557 * 558 * TCP timers are implemented using three-stage process. The call to 559 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 560 * when the timer expires. The tcp_timer_callback() arranges the call of the 561 * tcp_timer_handler() function via squeue corresponding to the tcp 562 * instance. The tcp_timer_handler() calls actual requested timeout call-back 563 * and passes tcp instance as an argument to it. Information is passed between 564 * stages using the tcp_timer_t structure which contains the connp pointer, the 565 * tcp call-back to call and the timeout id returned by the timeout(9F). 566 * 567 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 568 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 569 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 570 * returns the pointer to this mblk. 571 * 572 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 573 * looks like a normal mblk without actual dblk attached to it. 574 * 575 * To optimize performance each tcp instance holds a small cache of timer 576 * mblocks. In the current implementation it caches up to two timer mblocks per 577 * tcp instance. The cache is preserved over tcp frees and is only freed when 578 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 579 * timer processing happens on a corresponding squeue, the cache manipulation 580 * does not require any locks. Experiments show that majority of timer mblocks 581 * allocations are satisfied from the tcp cache and do not involve kmem calls. 582 * 583 * The tcp_timeout() places a refhold on the connp instance which guarantees 584 * that it will be present at the time the call-back function fires. The 585 * tcp_timer_handler() drops the reference after calling the call-back, so the 586 * call-back function does not need to manipulate the references explicitly. 587 */ 588 589 typedef struct tcp_timer_s { 590 conn_t *connp; 591 void (*tcpt_proc)(void *); 592 timeout_id_t tcpt_tid; 593 } tcp_timer_t; 594 595 static kmem_cache_t *tcp_timercache; 596 kmem_cache_t *tcp_sack_info_cache; 597 kmem_cache_t *tcp_iphc_cache; 598 599 /* 600 * For scalability, we must not run a timer for every TCP connection 601 * in TIME_WAIT state. To see why, consider (for time wait interval of 602 * 4 minutes): 603 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 604 * 605 * This list is ordered by time, so you need only delete from the head 606 * until you get to entries which aren't old enough to delete yet. 607 * The list consists of only the detached TIME_WAIT connections. 608 * 609 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 610 * becomes detached TIME_WAIT (either by changing the state and already 611 * being detached or the other way around). This means that the TIME_WAIT 612 * state can be extended (up to doubled) if the connection doesn't become 613 * detached for a long time. 614 * 615 * The list manipulations (including tcp_time_wait_next/prev) 616 * are protected by the tcp_time_wait_lock. The content of the 617 * detached TIME_WAIT connections is protected by the normal perimeters. 618 */ 619 620 typedef struct tcp_squeue_priv_s { 621 kmutex_t tcp_time_wait_lock; 622 /* Protects the next 3 globals */ 623 timeout_id_t tcp_time_wait_tid; 624 tcp_t *tcp_time_wait_head; 625 tcp_t *tcp_time_wait_tail; 626 tcp_t *tcp_free_list; 627 uint_t tcp_free_list_cnt; 628 } tcp_squeue_priv_t; 629 630 /* 631 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 632 * Running it every 5 seconds seems to give the best results. 633 */ 634 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 635 636 /* 637 * To prevent memory hog, limit the number of entries in tcp_free_list 638 * to 1% of available memory / number of cpus 639 */ 640 uint_t tcp_free_list_max_cnt = 0; 641 642 #define TCP_XMIT_LOWATER 4096 643 #define TCP_XMIT_HIWATER 49152 644 #define TCP_RECV_LOWATER 2048 645 #define TCP_RECV_HIWATER 49152 646 647 /* 648 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 649 */ 650 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 651 652 #define TIDUSZ 4096 /* transport interface data unit size */ 653 654 /* 655 * Bind hash list size and has function. It has to be a power of 2 for 656 * hashing. 657 */ 658 #define TCP_BIND_FANOUT_SIZE 512 659 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 660 /* 661 * Size of listen and acceptor hash list. It has to be a power of 2 for 662 * hashing. 663 */ 664 #define TCP_FANOUT_SIZE 256 665 666 #ifdef _ILP32 667 #define TCP_ACCEPTOR_HASH(accid) \ 668 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 669 #else 670 #define TCP_ACCEPTOR_HASH(accid) \ 671 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 672 #endif /* _ILP32 */ 673 674 #define IP_ADDR_CACHE_SIZE 2048 675 #define IP_ADDR_CACHE_HASH(faddr) \ 676 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 677 678 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 679 #define TCP_HSP_HASH_SIZE 256 680 681 #define TCP_HSP_HASH(addr) \ 682 (((addr>>24) ^ (addr >>16) ^ \ 683 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 684 685 /* 686 * TCP options struct returned from tcp_parse_options. 687 */ 688 typedef struct tcp_opt_s { 689 uint32_t tcp_opt_mss; 690 uint32_t tcp_opt_wscale; 691 uint32_t tcp_opt_ts_val; 692 uint32_t tcp_opt_ts_ecr; 693 tcp_t *tcp; 694 } tcp_opt_t; 695 696 /* 697 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 698 */ 699 700 #ifdef _BIG_ENDIAN 701 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 702 (TCPOPT_TSTAMP << 8) | 10) 703 #else 704 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 705 (TCPOPT_NOP << 8) | TCPOPT_NOP) 706 #endif 707 708 /* 709 * Flags returned from tcp_parse_options. 710 */ 711 #define TCP_OPT_MSS_PRESENT 1 712 #define TCP_OPT_WSCALE_PRESENT 2 713 #define TCP_OPT_TSTAMP_PRESENT 4 714 #define TCP_OPT_SACK_OK_PRESENT 8 715 #define TCP_OPT_SACK_PRESENT 16 716 717 /* TCP option length */ 718 #define TCPOPT_NOP_LEN 1 719 #define TCPOPT_MAXSEG_LEN 4 720 #define TCPOPT_WS_LEN 3 721 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 722 #define TCPOPT_TSTAMP_LEN 10 723 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 724 #define TCPOPT_SACK_OK_LEN 2 725 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 726 #define TCPOPT_REAL_SACK_LEN 4 727 #define TCPOPT_MAX_SACK_LEN 36 728 #define TCPOPT_HEADER_LEN 2 729 730 /* TCP cwnd burst factor. */ 731 #define TCP_CWND_INFINITE 65535 732 #define TCP_CWND_SS 3 733 #define TCP_CWND_NORMAL 5 734 735 /* Maximum TCP initial cwin (start/restart). */ 736 #define TCP_MAX_INIT_CWND 8 737 738 /* 739 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 740 * either tcp_slow_start_initial or tcp_slow_start_after idle 741 * depending on the caller. If the upper layer has not used the 742 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 743 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 744 * If the upper layer has changed set the tcp_init_cwnd, just use 745 * it to calculate the tcp_cwnd. 746 */ 747 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 748 { \ 749 if ((tcp)->tcp_init_cwnd == 0) { \ 750 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 751 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 752 } else { \ 753 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 754 } \ 755 tcp->tcp_cwnd_cnt = 0; \ 756 } 757 758 /* TCP Timer control structure */ 759 typedef struct tcpt_s { 760 pfv_t tcpt_pfv; /* The routine we are to call */ 761 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 762 } tcpt_t; 763 764 /* Host Specific Parameter structure */ 765 typedef struct tcp_hsp { 766 struct tcp_hsp *tcp_hsp_next; 767 in6_addr_t tcp_hsp_addr_v6; 768 in6_addr_t tcp_hsp_subnet_v6; 769 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 770 int32_t tcp_hsp_sendspace; 771 int32_t tcp_hsp_recvspace; 772 int32_t tcp_hsp_tstamp; 773 } tcp_hsp_t; 774 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 775 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 776 777 /* 778 * Functions called directly via squeue having a prototype of edesc_t. 779 */ 780 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 781 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 782 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 783 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 784 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 785 void tcp_input(void *arg, mblk_t *mp, void *arg2); 786 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 787 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 788 void tcp_output(void *arg, mblk_t *mp, void *arg2); 789 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 790 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 791 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 792 793 794 /* Prototype for TCP functions */ 795 static void tcp_random_init(void); 796 int tcp_random(void); 797 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 798 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 799 tcp_t *eager); 800 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 801 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 802 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 803 boolean_t user_specified); 804 static void tcp_closei_local(tcp_t *tcp); 805 static void tcp_close_detached(tcp_t *tcp); 806 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 807 mblk_t *idmp, mblk_t **defermp); 808 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 809 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 810 in_port_t dstport, uint_t srcid); 811 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 812 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 813 uint32_t scope_id); 814 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 815 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 816 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 817 static char *tcp_display(tcp_t *tcp, char *, char); 818 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 819 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 820 static void tcp_eager_unlink(tcp_t *tcp); 821 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 822 int unixerr); 823 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 824 int tlierr, int unixerr); 825 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 826 cred_t *cr); 827 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 828 char *value, caddr_t cp, cred_t *cr); 829 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 830 char *value, caddr_t cp, cred_t *cr); 831 static int tcp_tpistate(tcp_t *tcp); 832 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 833 int caller_holds_lock); 834 static void tcp_bind_hash_remove(tcp_t *tcp); 835 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 836 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 837 static void tcp_acceptor_hash_remove(tcp_t *tcp); 838 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 839 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 840 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 841 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 842 static int tcp_header_init_ipv4(tcp_t *tcp); 843 static int tcp_header_init_ipv6(tcp_t *tcp); 844 int tcp_init(tcp_t *tcp, queue_t *q); 845 static int tcp_init_values(tcp_t *tcp); 846 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 847 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 848 t_scalar_t addr_length); 849 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 850 static void tcp_ip_notify(tcp_t *tcp); 851 static mblk_t *tcp_ire_mp(mblk_t *mp); 852 static void tcp_iss_init(tcp_t *tcp); 853 static void tcp_keepalive_killer(void *arg); 854 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 855 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 856 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 857 int *do_disconnectp, int *t_errorp, int *sys_errorp); 858 static boolean_t tcp_allow_connopt_set(int level, int name); 859 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 860 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 861 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 862 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 863 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 864 mblk_t *mblk); 865 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 866 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 867 uchar_t *ptr, uint_t len); 868 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 869 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 870 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 871 caddr_t cp, cred_t *cr); 872 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 873 caddr_t cp, cred_t *cr); 874 static void tcp_iss_key_init(uint8_t *phrase, int len); 875 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 876 caddr_t cp, cred_t *cr); 877 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 878 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 879 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 880 static void tcp_reinit(tcp_t *tcp); 881 static void tcp_reinit_values(tcp_t *tcp); 882 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 883 tcp_t *thisstream, cred_t *cr); 884 885 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 886 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 887 static boolean_t tcp_send_rst_chk(void); 888 static void tcp_ss_rexmit(tcp_t *tcp); 889 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 890 static void tcp_process_options(tcp_t *, tcph_t *); 891 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 892 static void tcp_rsrv(queue_t *q); 893 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 894 static int tcp_snmp_state(tcp_t *tcp); 895 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 896 cred_t *cr); 897 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 898 cred_t *cr); 899 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 900 cred_t *cr); 901 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 902 cred_t *cr); 903 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 904 cred_t *cr); 905 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 906 caddr_t cp, cred_t *cr); 907 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 908 caddr_t cp, cred_t *cr); 909 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 910 cred_t *cr); 911 static void tcp_timer(void *arg); 912 static void tcp_timer_callback(void *); 913 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 914 boolean_t random); 915 static in_port_t tcp_get_next_priv_port(const tcp_t *); 916 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 917 void tcp_wput_accept(queue_t *q, mblk_t *mp); 918 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 919 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 920 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 921 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 922 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 923 const int num_sack_blk, int *usable, uint_t *snxt, 924 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 925 const int mdt_thres); 926 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 927 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 928 const int num_sack_blk, int *usable, uint_t *snxt, 929 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 930 const int mdt_thres); 931 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 932 int num_sack_blk); 933 static void tcp_wsrv(queue_t *q); 934 static int tcp_xmit_end(tcp_t *tcp); 935 static void tcp_ack_timer(void *arg); 936 static mblk_t *tcp_ack_mp(tcp_t *tcp); 937 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 938 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 939 zoneid_t zoneid); 940 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 941 uint32_t ack, int ctl); 942 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 943 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 944 static int setmaxps(queue_t *q, int maxpsz); 945 static void tcp_set_rto(tcp_t *, time_t); 946 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 947 boolean_t, boolean_t); 948 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 949 boolean_t ipsec_mctl); 950 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 951 char *opt, int optlen); 952 static int tcp_build_hdrs(queue_t *, tcp_t *); 953 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 954 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 955 tcph_t *tcph); 956 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 957 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 958 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 959 boolean_t tcp_reserved_port_check(in_port_t); 960 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 961 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 962 static mblk_t *tcp_mdt_info_mp(mblk_t *); 963 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 964 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 965 const boolean_t, const uint32_t, const uint32_t, 966 const uint32_t, const uint32_t); 967 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 968 const uint_t, const uint_t, boolean_t *); 969 static mblk_t *tcp_lso_info_mp(mblk_t *); 970 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 971 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 972 extern mblk_t *tcp_timermp_alloc(int); 973 extern void tcp_timermp_free(tcp_t *); 974 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 975 static void tcp_stop_lingering(tcp_t *tcp); 976 static void tcp_close_linger_timeout(void *arg); 977 void tcp_ddi_init(void); 978 void tcp_ddi_destroy(void); 979 static void tcp_kstat_init(void); 980 static void tcp_kstat_fini(void); 981 static int tcp_kstat_update(kstat_t *kp, int rw); 982 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 983 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 984 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 985 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 986 tcph_t *tcph, mblk_t *idmp); 987 static squeue_func_t tcp_squeue_switch(int); 988 989 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 990 static int tcp_close(queue_t *, int); 991 static int tcpclose_accept(queue_t *); 992 static int tcp_modclose(queue_t *); 993 static void tcp_wput_mod(queue_t *, mblk_t *); 994 995 static void tcp_squeue_add(squeue_t *); 996 static boolean_t tcp_zcopy_check(tcp_t *); 997 static void tcp_zcopy_notify(tcp_t *); 998 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 999 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 1000 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 1001 1002 extern void tcp_kssl_input(tcp_t *, mblk_t *); 1003 1004 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 1005 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 1006 1007 /* 1008 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 1009 * 1010 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 1011 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 1012 * (defined in tcp.h) needs to be filled in and passed into the kernel 1013 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 1014 * structure contains the four-tuple of a TCP connection and a range of TCP 1015 * states (specified by ac_start and ac_end). The use of wildcard addresses 1016 * and ports is allowed. Connections with a matching four tuple and a state 1017 * within the specified range will be aborted. The valid states for the 1018 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1019 * inclusive. 1020 * 1021 * An application which has its connection aborted by this ioctl will receive 1022 * an error that is dependent on the connection state at the time of the abort. 1023 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1024 * though a RST packet has been received. If the connection state is equal to 1025 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1026 * and all resources associated with the connection will be freed. 1027 */ 1028 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1029 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1030 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1031 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1032 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1033 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1034 boolean_t); 1035 1036 static struct module_info tcp_rinfo = { 1037 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1038 }; 1039 1040 static struct module_info tcp_winfo = { 1041 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1042 }; 1043 1044 /* 1045 * Entry points for TCP as a module. It only allows SNMP requests 1046 * to pass through. 1047 */ 1048 struct qinit tcp_mod_rinit = { 1049 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1050 }; 1051 1052 struct qinit tcp_mod_winit = { 1053 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1054 &tcp_rinfo 1055 }; 1056 1057 /* 1058 * Entry points for TCP as a device. The normal case which supports 1059 * the TCP functionality. 1060 */ 1061 struct qinit tcp_rinit = { 1062 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1063 }; 1064 1065 struct qinit tcp_winit = { 1066 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1067 }; 1068 1069 /* Initial entry point for TCP in socket mode. */ 1070 struct qinit tcp_sock_winit = { 1071 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1072 }; 1073 1074 /* 1075 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1076 * an accept. Avoid allocating data structures since eager has already 1077 * been created. 1078 */ 1079 struct qinit tcp_acceptor_rinit = { 1080 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1081 }; 1082 1083 struct qinit tcp_acceptor_winit = { 1084 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1085 }; 1086 1087 /* 1088 * Entry points for TCP loopback (read side only) 1089 */ 1090 struct qinit tcp_loopback_rinit = { 1091 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1092 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1093 }; 1094 1095 struct streamtab tcpinfo = { 1096 &tcp_rinit, &tcp_winit 1097 }; 1098 1099 extern squeue_func_t tcp_squeue_wput_proc; 1100 extern squeue_func_t tcp_squeue_timer_proc; 1101 1102 /* Protected by tcp_g_q_lock */ 1103 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1104 kmutex_t tcp_g_q_lock; 1105 1106 /* Protected by tcp_hsp_lock */ 1107 /* 1108 * XXX The host param mechanism should go away and instead we should use 1109 * the metrics associated with the routes to determine the default sndspace 1110 * and rcvspace. 1111 */ 1112 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1113 krwlock_t tcp_hsp_lock; 1114 1115 /* 1116 * Extra privileged ports. In host byte order. 1117 * Protected by tcp_epriv_port_lock. 1118 */ 1119 #define TCP_NUM_EPRIV_PORTS 64 1120 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1121 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1122 kmutex_t tcp_epriv_port_lock; 1123 1124 /* 1125 * The smallest anonymous port in the privileged port range which TCP 1126 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1127 */ 1128 static in_port_t tcp_min_anonpriv_port = 512; 1129 1130 /* Only modified during _init and _fini thus no locking is needed. */ 1131 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1132 1133 /* Hint not protected by any lock */ 1134 static uint_t tcp_next_port_to_try; 1135 1136 1137 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1138 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1139 1140 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1141 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1142 1143 /* 1144 * TCP has a private interface for other kernel modules to reserve a 1145 * port range for them to use. Once reserved, TCP will not use any ports 1146 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1147 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1148 * has to be verified. 1149 * 1150 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1151 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1152 * range is [port a, port b] inclusive. And each port range is between 1153 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1154 * 1155 * Note that the default anonymous port range starts from 32768. There is 1156 * no port "collision" between that and the reserved port range. If there 1157 * is port collision (because the default smallest anonymous port is lowered 1158 * or some apps specifically bind to ports in the reserved port range), the 1159 * system may not be able to reserve a port range even there are enough 1160 * unbound ports as a reserved port range contains consecutive ports . 1161 */ 1162 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1163 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1164 #define TCP_SMALLEST_RESERVED_PORT 10240 1165 #define TCP_LARGEST_RESERVED_PORT 20480 1166 1167 /* Structure to represent those reserved port ranges. */ 1168 typedef struct tcp_rport_s { 1169 in_port_t lo_port; 1170 in_port_t hi_port; 1171 tcp_t **temp_tcp_array; 1172 } tcp_rport_t; 1173 1174 /* The reserved port array. */ 1175 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1176 1177 /* Locks to protect the tcp_reserved_ports array. */ 1178 static krwlock_t tcp_reserved_port_lock; 1179 1180 /* The number of ranges in the array. */ 1181 uint32_t tcp_reserved_port_array_size = 0; 1182 1183 /* 1184 * MIB-2 stuff for SNMP 1185 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1186 */ 1187 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1188 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1189 1190 boolean_t tcp_icmp_source_quench = B_FALSE; 1191 /* 1192 * Following assumes TPI alignment requirements stay along 32 bit 1193 * boundaries 1194 */ 1195 #define ROUNDUP32(x) \ 1196 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1197 1198 /* Template for response to info request. */ 1199 static struct T_info_ack tcp_g_t_info_ack = { 1200 T_INFO_ACK, /* PRIM_type */ 1201 0, /* TSDU_size */ 1202 T_INFINITE, /* ETSDU_size */ 1203 T_INVALID, /* CDATA_size */ 1204 T_INVALID, /* DDATA_size */ 1205 sizeof (sin_t), /* ADDR_size */ 1206 0, /* OPT_size - not initialized here */ 1207 TIDUSZ, /* TIDU_size */ 1208 T_COTS_ORD, /* SERV_type */ 1209 TCPS_IDLE, /* CURRENT_state */ 1210 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1211 }; 1212 1213 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1214 T_INFO_ACK, /* PRIM_type */ 1215 0, /* TSDU_size */ 1216 T_INFINITE, /* ETSDU_size */ 1217 T_INVALID, /* CDATA_size */ 1218 T_INVALID, /* DDATA_size */ 1219 sizeof (sin6_t), /* ADDR_size */ 1220 0, /* OPT_size - not initialized here */ 1221 TIDUSZ, /* TIDU_size */ 1222 T_COTS_ORD, /* SERV_type */ 1223 TCPS_IDLE, /* CURRENT_state */ 1224 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1225 }; 1226 1227 #define MS 1L 1228 #define SECONDS (1000 * MS) 1229 #define MINUTES (60 * SECONDS) 1230 #define HOURS (60 * MINUTES) 1231 #define DAYS (24 * HOURS) 1232 1233 #define PARAM_MAX (~(uint32_t)0) 1234 1235 /* Max size IP datagram is 64k - 1 */ 1236 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1237 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1238 /* Max of the above */ 1239 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1240 1241 /* Largest TCP port number */ 1242 #define TCP_MAX_PORT (64 * 1024 - 1) 1243 1244 /* 1245 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1246 * layer header. It has to be a multiple of 4. 1247 */ 1248 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1249 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1250 1251 /* 1252 * All of these are alterable, within the min/max values given, at run time. 1253 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1254 * per the TCP spec. 1255 */ 1256 /* BEGIN CSTYLED */ 1257 tcpparam_t tcp_param_arr[] = { 1258 /*min max value name */ 1259 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1260 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1261 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1262 { 1, 1024, 1, "tcp_conn_req_min" }, 1263 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1264 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1265 { 0, 10, 0, "tcp_debug" }, 1266 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1267 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1268 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1269 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1270 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1271 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1272 { 1, 255, 64, "tcp_ipv4_ttl"}, 1273 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1274 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1275 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1276 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1277 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1278 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1279 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1280 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1281 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1282 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1283 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1284 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1285 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1286 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1287 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1288 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1289 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1290 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1291 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1292 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1293 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1294 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1295 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1296 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1297 /* 1298 * Question: What default value should I set for tcp_strong_iss? 1299 */ 1300 { 0, 2, 1, "tcp_strong_iss"}, 1301 { 0, 65536, 20, "tcp_rtt_updates"}, 1302 { 0, 1, 1, "tcp_wscale_always"}, 1303 { 0, 1, 0, "tcp_tstamp_always"}, 1304 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1305 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1306 { 0, 16, 2, "tcp_deferred_acks_max"}, 1307 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1308 { 1, 4, 4, "tcp_slow_start_initial"}, 1309 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1310 { 0, 2, 2, "tcp_sack_permitted"}, 1311 { 0, 1, 0, "tcp_trace"}, 1312 { 0, 1, 1, "tcp_compression_enabled"}, 1313 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1314 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1315 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1316 { 0, 1, 0, "tcp_rev_src_routes"}, 1317 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1318 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1319 { 0, 16, 8, "tcp_local_dacks_max"}, 1320 { 0, 2, 1, "tcp_ecn_permitted"}, 1321 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1322 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1323 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1324 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1325 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1326 }; 1327 /* END CSTYLED */ 1328 1329 /* 1330 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1331 * each header fragment in the header buffer. Each parameter value has 1332 * to be a multiple of 4 (32-bit aligned). 1333 */ 1334 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1335 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1336 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1337 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1338 1339 /* 1340 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1341 * the maximum number of payload buffers associated per Multidata. 1342 */ 1343 static tcpparam_t tcp_mdt_max_pbufs_param = 1344 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1345 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1346 1347 /* Round up the value to the nearest mss. */ 1348 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1349 1350 /* 1351 * Set ECN capable transport (ECT) code point in IP header. 1352 * 1353 * Note that there are 2 ECT code points '01' and '10', which are called 1354 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1355 * point ECT(0) for TCP as described in RFC 2481. 1356 */ 1357 #define SET_ECT(tcp, iph) \ 1358 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1359 /* We need to clear the code point first. */ \ 1360 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1361 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1362 } else { \ 1363 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1364 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1365 } 1366 1367 /* 1368 * The format argument to pass to tcp_display(). 1369 * DISP_PORT_ONLY means that the returned string has only port info. 1370 * DISP_ADDR_AND_PORT means that the returned string also contains the 1371 * remote and local IP address. 1372 */ 1373 #define DISP_PORT_ONLY 1 1374 #define DISP_ADDR_AND_PORT 2 1375 1376 /* 1377 * This controls the rate some ndd info report functions can be used 1378 * by non-privileged users. It stores the last time such info is 1379 * requested. When those report functions are called again, this 1380 * is checked with the current time and compare with the ndd param 1381 * tcp_ndd_get_info_interval. 1382 */ 1383 static clock_t tcp_last_ndd_get_info_time = 0; 1384 #define NDD_TOO_QUICK_MSG \ 1385 "ndd get info rate too high for non-privileged users, try again " \ 1386 "later.\n" 1387 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1388 1389 #define IS_VMLOANED_MBLK(mp) \ 1390 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1391 1392 /* 1393 * These two variables control the rate for TCP to generate RSTs in 1394 * response to segments not belonging to any connections. We limit 1395 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1396 * each 1 second interval. This is to protect TCP against DoS attack. 1397 */ 1398 static clock_t tcp_last_rst_intrvl; 1399 static uint32_t tcp_rst_cnt; 1400 1401 /* The number of RST not sent because of the rate limit. */ 1402 static uint32_t tcp_rst_unsent; 1403 1404 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1405 boolean_t tcp_mdt_chain = B_TRUE; 1406 1407 /* 1408 * MDT threshold in the form of effective send MSS multiplier; we take 1409 * the MDT path if the amount of unsent data exceeds the threshold value 1410 * (default threshold is 1*SMSS). 1411 */ 1412 uint_t tcp_mdt_smss_threshold = 1; 1413 1414 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1415 1416 /* 1417 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1418 * tunable settable via NDD. Otherwise, the per-connection behavior is 1419 * determined dynamically during tcp_adapt_ire(), which is the default. 1420 */ 1421 boolean_t tcp_static_maxpsz = B_FALSE; 1422 1423 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1424 uint32_t tcp_random_anon_port = 1; 1425 1426 /* 1427 * To reach to an eager in Q0 which can be dropped due to an incoming 1428 * new SYN request when Q0 is full, a new doubly linked list is 1429 * introduced. This list allows to select an eager from Q0 in O(1) time. 1430 * This is needed to avoid spending too much time walking through the 1431 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1432 * this new list has to be a member of Q0. 1433 * This list is headed by listener's tcp_t. When the list is empty, 1434 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1435 * of listener's tcp_t point to listener's tcp_t itself. 1436 * 1437 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1438 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1439 * These macros do not affect the eager's membership to Q0. 1440 */ 1441 1442 1443 #define MAKE_DROPPABLE(listener, eager) \ 1444 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1445 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1446 = (eager); \ 1447 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1448 (eager)->tcp_eager_next_drop_q0 = \ 1449 (listener)->tcp_eager_next_drop_q0; \ 1450 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1451 } 1452 1453 #define MAKE_UNDROPPABLE(eager) \ 1454 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1455 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1456 = (eager)->tcp_eager_prev_drop_q0; \ 1457 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1458 = (eager)->tcp_eager_next_drop_q0; \ 1459 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1460 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1461 } 1462 1463 /* 1464 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1465 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1466 * data, TCP will not respond with an ACK. RFC 793 requires that 1467 * TCP responds with an ACK for such a bogus ACK. By not following 1468 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1469 * an attacker successfully spoofs an acceptable segment to our 1470 * peer; or when our peer is "confused." 1471 */ 1472 uint32_t tcp_drop_ack_unsent_cnt = 10; 1473 1474 /* 1475 * Hook functions to enable cluster networking 1476 * On non-clustered systems these vectors must always be NULL. 1477 */ 1478 1479 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1480 uint8_t *laddrp, in_port_t lport) = NULL; 1481 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1482 uint8_t *laddrp, in_port_t lport) = NULL; 1483 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1484 uint8_t *laddrp, in_port_t lport, 1485 uint8_t *faddrp, in_port_t fport) = NULL; 1486 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1487 uint8_t *laddrp, in_port_t lport, 1488 uint8_t *faddrp, in_port_t fport) = NULL; 1489 1490 /* 1491 * The following are defined in ip.c 1492 */ 1493 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1494 uint8_t *laddrp); 1495 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1496 uint8_t *laddrp, uint8_t *faddrp); 1497 1498 #define CL_INET_CONNECT(tcp) { \ 1499 if (cl_inet_connect != NULL) { \ 1500 /* \ 1501 * Running in cluster mode - register active connection \ 1502 * information \ 1503 */ \ 1504 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1505 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1506 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1507 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1508 (in_port_t)(tcp)->tcp_lport, \ 1509 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1510 (in_port_t)(tcp)->tcp_fport); \ 1511 } \ 1512 } else { \ 1513 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1514 &(tcp)->tcp_ip6h->ip6_src)) {\ 1515 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1516 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1517 (in_port_t)(tcp)->tcp_lport, \ 1518 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1519 (in_port_t)(tcp)->tcp_fport); \ 1520 } \ 1521 } \ 1522 } \ 1523 } 1524 1525 #define CL_INET_DISCONNECT(tcp) { \ 1526 if (cl_inet_disconnect != NULL) { \ 1527 /* \ 1528 * Running in cluster mode - deregister active \ 1529 * connection information \ 1530 */ \ 1531 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1532 if ((tcp)->tcp_ip_src != 0) { \ 1533 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1534 AF_INET, \ 1535 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1536 (in_port_t)(tcp)->tcp_lport, \ 1537 (uint8_t *) \ 1538 (&((tcp)->tcp_ipha->ipha_dst)),\ 1539 (in_port_t)(tcp)->tcp_fport); \ 1540 } \ 1541 } else { \ 1542 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1543 &(tcp)->tcp_ip_src_v6)) { \ 1544 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1545 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1546 (in_port_t)(tcp)->tcp_lport, \ 1547 (uint8_t *) \ 1548 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1549 (in_port_t)(tcp)->tcp_fport); \ 1550 } \ 1551 } \ 1552 } \ 1553 } 1554 1555 /* 1556 * Cluster networking hook for traversing current connection list. 1557 * This routine is used to extract the current list of live connections 1558 * which must continue to to be dispatched to this node. 1559 */ 1560 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1561 1562 /* 1563 * Figure out the value of window scale opton. Note that the rwnd is 1564 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1565 * We cannot find the scale value and then do a round up of tcp_rwnd 1566 * because the scale value may not be correct after that. 1567 * 1568 * Set the compiler flag to make this function inline. 1569 */ 1570 static void 1571 tcp_set_ws_value(tcp_t *tcp) 1572 { 1573 int i; 1574 uint32_t rwnd = tcp->tcp_rwnd; 1575 1576 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1577 i++, rwnd >>= 1) 1578 ; 1579 tcp->tcp_rcv_ws = i; 1580 } 1581 1582 /* 1583 * Remove a connection from the list of detached TIME_WAIT connections. 1584 * It returns B_FALSE if it can't remove the connection from the list 1585 * as the connection has already been removed from the list due to an 1586 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1587 */ 1588 static boolean_t 1589 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1590 { 1591 boolean_t locked = B_FALSE; 1592 1593 if (tcp_time_wait == NULL) { 1594 tcp_time_wait = *((tcp_squeue_priv_t **) 1595 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1596 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1597 locked = B_TRUE; 1598 } 1599 1600 if (tcp->tcp_time_wait_expire == 0) { 1601 ASSERT(tcp->tcp_time_wait_next == NULL); 1602 ASSERT(tcp->tcp_time_wait_prev == NULL); 1603 if (locked) 1604 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1605 return (B_FALSE); 1606 } 1607 ASSERT(TCP_IS_DETACHED(tcp)); 1608 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1609 1610 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1611 ASSERT(tcp->tcp_time_wait_prev == NULL); 1612 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1613 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1614 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1615 NULL; 1616 } else { 1617 tcp_time_wait->tcp_time_wait_tail = NULL; 1618 } 1619 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1620 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1621 ASSERT(tcp->tcp_time_wait_next == NULL); 1622 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1623 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1624 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1625 } else { 1626 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1627 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1628 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1629 tcp->tcp_time_wait_next; 1630 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1631 tcp->tcp_time_wait_prev; 1632 } 1633 tcp->tcp_time_wait_next = NULL; 1634 tcp->tcp_time_wait_prev = NULL; 1635 tcp->tcp_time_wait_expire = 0; 1636 1637 if (locked) 1638 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1639 return (B_TRUE); 1640 } 1641 1642 /* 1643 * Add a connection to the list of detached TIME_WAIT connections 1644 * and set its time to expire. 1645 */ 1646 static void 1647 tcp_time_wait_append(tcp_t *tcp) 1648 { 1649 tcp_squeue_priv_t *tcp_time_wait = 1650 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1651 SQPRIVATE_TCP)); 1652 1653 tcp_timers_stop(tcp); 1654 1655 /* Freed above */ 1656 ASSERT(tcp->tcp_timer_tid == 0); 1657 ASSERT(tcp->tcp_ack_tid == 0); 1658 1659 /* must have happened at the time of detaching the tcp */ 1660 ASSERT(tcp->tcp_ptpahn == NULL); 1661 ASSERT(tcp->tcp_flow_stopped == 0); 1662 ASSERT(tcp->tcp_time_wait_next == NULL); 1663 ASSERT(tcp->tcp_time_wait_prev == NULL); 1664 ASSERT(tcp->tcp_time_wait_expire == NULL); 1665 ASSERT(tcp->tcp_listener == NULL); 1666 1667 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1668 /* 1669 * The value computed below in tcp->tcp_time_wait_expire may 1670 * appear negative or wrap around. That is ok since our 1671 * interest is only in the difference between the current lbolt 1672 * value and tcp->tcp_time_wait_expire. But the value should not 1673 * be zero, since it means the tcp is not in the TIME_WAIT list. 1674 * The corresponding comparison in tcp_time_wait_collector() uses 1675 * modular arithmetic. 1676 */ 1677 tcp->tcp_time_wait_expire += 1678 drv_usectohz(tcp_time_wait_interval * 1000); 1679 if (tcp->tcp_time_wait_expire == 0) 1680 tcp->tcp_time_wait_expire = 1; 1681 1682 ASSERT(TCP_IS_DETACHED(tcp)); 1683 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1684 ASSERT(tcp->tcp_time_wait_next == NULL); 1685 ASSERT(tcp->tcp_time_wait_prev == NULL); 1686 TCP_DBGSTAT(tcp_time_wait); 1687 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1688 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1689 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1690 tcp_time_wait->tcp_time_wait_head = tcp; 1691 } else { 1692 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1693 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1694 TCPS_TIME_WAIT); 1695 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1696 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1697 } 1698 tcp_time_wait->tcp_time_wait_tail = tcp; 1699 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1700 } 1701 1702 /* ARGSUSED */ 1703 void 1704 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1705 { 1706 conn_t *connp = (conn_t *)arg; 1707 tcp_t *tcp = connp->conn_tcp; 1708 1709 ASSERT(tcp != NULL); 1710 if (tcp->tcp_state == TCPS_CLOSED) { 1711 return; 1712 } 1713 1714 ASSERT((tcp->tcp_family == AF_INET && 1715 tcp->tcp_ipversion == IPV4_VERSION) || 1716 (tcp->tcp_family == AF_INET6 && 1717 (tcp->tcp_ipversion == IPV4_VERSION || 1718 tcp->tcp_ipversion == IPV6_VERSION))); 1719 ASSERT(!tcp->tcp_listener); 1720 1721 TCP_STAT(tcp_time_wait_reap); 1722 ASSERT(TCP_IS_DETACHED(tcp)); 1723 1724 /* 1725 * Because they have no upstream client to rebind or tcp_close() 1726 * them later, we axe the connection here and now. 1727 */ 1728 tcp_close_detached(tcp); 1729 } 1730 1731 void 1732 tcp_cleanup(tcp_t *tcp) 1733 { 1734 mblk_t *mp; 1735 char *tcp_iphc; 1736 int tcp_iphc_len; 1737 int tcp_hdr_grown; 1738 tcp_sack_info_t *tcp_sack_info; 1739 conn_t *connp = tcp->tcp_connp; 1740 1741 tcp_bind_hash_remove(tcp); 1742 tcp_free(tcp); 1743 1744 /* Release any SSL context */ 1745 if (tcp->tcp_kssl_ent != NULL) { 1746 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1747 tcp->tcp_kssl_ent = NULL; 1748 } 1749 1750 if (tcp->tcp_kssl_ctx != NULL) { 1751 kssl_release_ctx(tcp->tcp_kssl_ctx); 1752 tcp->tcp_kssl_ctx = NULL; 1753 } 1754 tcp->tcp_kssl_pending = B_FALSE; 1755 1756 conn_delete_ire(connp, NULL); 1757 if (connp->conn_flags & IPCL_TCPCONN) { 1758 if (connp->conn_latch != NULL) 1759 IPLATCH_REFRELE(connp->conn_latch); 1760 if (connp->conn_policy != NULL) 1761 IPPH_REFRELE(connp->conn_policy); 1762 } 1763 1764 /* 1765 * Since we will bzero the entire structure, we need to 1766 * remove it and reinsert it in global hash list. We 1767 * know the walkers can't get to this conn because we 1768 * had set CONDEMNED flag earlier and checked reference 1769 * under conn_lock so walker won't pick it and when we 1770 * go the ipcl_globalhash_remove() below, no walker 1771 * can get to it. 1772 */ 1773 ipcl_globalhash_remove(connp); 1774 1775 /* Save some state */ 1776 mp = tcp->tcp_timercache; 1777 1778 tcp_sack_info = tcp->tcp_sack_info; 1779 tcp_iphc = tcp->tcp_iphc; 1780 tcp_iphc_len = tcp->tcp_iphc_len; 1781 tcp_hdr_grown = tcp->tcp_hdr_grown; 1782 1783 if (connp->conn_cred != NULL) 1784 crfree(connp->conn_cred); 1785 if (connp->conn_peercred != NULL) 1786 crfree(connp->conn_peercred); 1787 bzero(connp, sizeof (conn_t)); 1788 bzero(tcp, sizeof (tcp_t)); 1789 1790 /* restore the state */ 1791 tcp->tcp_timercache = mp; 1792 1793 tcp->tcp_sack_info = tcp_sack_info; 1794 tcp->tcp_iphc = tcp_iphc; 1795 tcp->tcp_iphc_len = tcp_iphc_len; 1796 tcp->tcp_hdr_grown = tcp_hdr_grown; 1797 1798 1799 tcp->tcp_connp = connp; 1800 1801 connp->conn_tcp = tcp; 1802 connp->conn_flags = IPCL_TCPCONN; 1803 connp->conn_state_flags = CONN_INCIPIENT; 1804 connp->conn_ulp = IPPROTO_TCP; 1805 connp->conn_ref = 1; 1806 1807 ipcl_globalhash_insert(connp); 1808 } 1809 1810 /* 1811 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1812 * is done forwards from the head. 1813 */ 1814 /* ARGSUSED */ 1815 void 1816 tcp_time_wait_collector(void *arg) 1817 { 1818 tcp_t *tcp; 1819 clock_t now; 1820 mblk_t *mp; 1821 conn_t *connp; 1822 kmutex_t *lock; 1823 boolean_t removed; 1824 1825 squeue_t *sqp = (squeue_t *)arg; 1826 tcp_squeue_priv_t *tcp_time_wait = 1827 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1828 1829 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1830 tcp_time_wait->tcp_time_wait_tid = 0; 1831 1832 if (tcp_time_wait->tcp_free_list != NULL && 1833 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1834 TCP_STAT(tcp_freelist_cleanup); 1835 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1836 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1837 CONN_DEC_REF(tcp->tcp_connp); 1838 } 1839 tcp_time_wait->tcp_free_list_cnt = 0; 1840 } 1841 1842 /* 1843 * In order to reap time waits reliably, we should use a 1844 * source of time that is not adjustable by the user -- hence 1845 * the call to ddi_get_lbolt(). 1846 */ 1847 now = ddi_get_lbolt(); 1848 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1849 /* 1850 * Compare times using modular arithmetic, since 1851 * lbolt can wrapover. 1852 */ 1853 if ((now - tcp->tcp_time_wait_expire) < 0) { 1854 break; 1855 } 1856 1857 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1858 ASSERT(removed); 1859 1860 connp = tcp->tcp_connp; 1861 ASSERT(connp->conn_fanout != NULL); 1862 lock = &connp->conn_fanout->connf_lock; 1863 /* 1864 * This is essentially a TW reclaim fast path optimization for 1865 * performance where the timewait collector checks under the 1866 * fanout lock (so that no one else can get access to the 1867 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1868 * the classifier hash list. If ref count is indeed 2, we can 1869 * just remove the conn under the fanout lock and avoid 1870 * cleaning up the conn under the squeue, provided that 1871 * clustering callbacks are not enabled. If clustering is 1872 * enabled, we need to make the clustering callback before 1873 * setting the CONDEMNED flag and after dropping all locks and 1874 * so we forego this optimization and fall back to the slow 1875 * path. Also please see the comments in tcp_closei_local 1876 * regarding the refcnt logic. 1877 * 1878 * Since we are holding the tcp_time_wait_lock, its better 1879 * not to block on the fanout_lock because other connections 1880 * can't add themselves to time_wait list. So we do a 1881 * tryenter instead of mutex_enter. 1882 */ 1883 if (mutex_tryenter(lock)) { 1884 mutex_enter(&connp->conn_lock); 1885 if ((connp->conn_ref == 2) && 1886 (cl_inet_disconnect == NULL)) { 1887 ipcl_hash_remove_locked(connp, 1888 connp->conn_fanout); 1889 /* 1890 * Set the CONDEMNED flag now itself so that 1891 * the refcnt cannot increase due to any 1892 * walker. But we have still not cleaned up 1893 * conn_ire_cache. This is still ok since 1894 * we are going to clean it up in tcp_cleanup 1895 * immediately and any interface unplumb 1896 * thread will wait till the ire is blown away 1897 */ 1898 connp->conn_state_flags |= CONN_CONDEMNED; 1899 mutex_exit(lock); 1900 mutex_exit(&connp->conn_lock); 1901 if (tcp_time_wait->tcp_free_list_cnt < 1902 tcp_free_list_max_cnt) { 1903 /* Add to head of tcp_free_list */ 1904 mutex_exit( 1905 &tcp_time_wait->tcp_time_wait_lock); 1906 tcp_cleanup(tcp); 1907 mutex_enter( 1908 &tcp_time_wait->tcp_time_wait_lock); 1909 tcp->tcp_time_wait_next = 1910 tcp_time_wait->tcp_free_list; 1911 tcp_time_wait->tcp_free_list = tcp; 1912 tcp_time_wait->tcp_free_list_cnt++; 1913 continue; 1914 } else { 1915 /* Do not add to tcp_free_list */ 1916 mutex_exit( 1917 &tcp_time_wait->tcp_time_wait_lock); 1918 tcp_bind_hash_remove(tcp); 1919 conn_delete_ire(tcp->tcp_connp, NULL); 1920 CONN_DEC_REF(tcp->tcp_connp); 1921 } 1922 } else { 1923 CONN_INC_REF_LOCKED(connp); 1924 mutex_exit(lock); 1925 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1926 mutex_exit(&connp->conn_lock); 1927 /* 1928 * We can reuse the closemp here since conn has 1929 * detached (otherwise we wouldn't even be in 1930 * time_wait list). tcp_closemp_used can safely 1931 * be changed without taking a lock as no other 1932 * thread can concurrently access it at this 1933 * point in the connection lifecycle. We 1934 * increment tcp_closemp_used to record any 1935 * attempt to reuse tcp_closemp while it is 1936 * still in use. 1937 */ 1938 1939 if (tcp->tcp_closemp.b_prev == NULL) 1940 tcp->tcp_closemp_used = 1; 1941 else 1942 tcp->tcp_closemp_used++; 1943 1944 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1945 mp = &tcp->tcp_closemp; 1946 squeue_fill(connp->conn_sqp, mp, 1947 tcp_timewait_output, connp, 1948 SQTAG_TCP_TIMEWAIT); 1949 } 1950 } else { 1951 mutex_enter(&connp->conn_lock); 1952 CONN_INC_REF_LOCKED(connp); 1953 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1954 mutex_exit(&connp->conn_lock); 1955 /* 1956 * We can reuse the closemp here since conn has 1957 * detached (otherwise we wouldn't even be in 1958 * time_wait list). tcp_closemp_used can safely 1959 * be changed without taking a lock as no other 1960 * thread can concurrently access it at this 1961 * point in the connection lifecycle. We 1962 * increment tcp_closemp_used to record any 1963 * attempt to reuse tcp_closemp while it is 1964 * still in use. 1965 */ 1966 1967 if (tcp->tcp_closemp.b_prev == NULL) 1968 tcp->tcp_closemp_used = 1; 1969 else 1970 tcp->tcp_closemp_used++; 1971 1972 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1973 mp = &tcp->tcp_closemp; 1974 squeue_fill(connp->conn_sqp, mp, 1975 tcp_timewait_output, connp, 0); 1976 } 1977 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1978 } 1979 1980 if (tcp_time_wait->tcp_free_list != NULL) 1981 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1982 1983 tcp_time_wait->tcp_time_wait_tid = 1984 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1985 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1986 } 1987 1988 /* 1989 * Reply to a clients T_CONN_RES TPI message. This function 1990 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1991 * on the acceptor STREAM and processed in tcp_wput_accept(). 1992 * Read the block comment on top of tcp_conn_request(). 1993 */ 1994 static void 1995 tcp_accept(tcp_t *listener, mblk_t *mp) 1996 { 1997 tcp_t *acceptor; 1998 tcp_t *eager; 1999 tcp_t *tcp; 2000 struct T_conn_res *tcr; 2001 t_uscalar_t acceptor_id; 2002 t_scalar_t seqnum; 2003 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 2004 mblk_t *ok_mp; 2005 mblk_t *mp1; 2006 2007 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 2008 tcp_err_ack(listener, mp, TPROTO, 0); 2009 return; 2010 } 2011 tcr = (struct T_conn_res *)mp->b_rptr; 2012 2013 /* 2014 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 2015 * read side queue of the streams device underneath us i.e. the 2016 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 2017 * look it up in the queue_hash. Under LP64 it sends down the 2018 * minor_t of the accepting endpoint. 2019 * 2020 * Once the acceptor/eager are modified (in tcp_accept_swap) the 2021 * fanout hash lock is held. 2022 * This prevents any thread from entering the acceptor queue from 2023 * below (since it has not been hard bound yet i.e. any inbound 2024 * packets will arrive on the listener or default tcp queue and 2025 * go through tcp_lookup). 2026 * The CONN_INC_REF will prevent the acceptor from closing. 2027 * 2028 * XXX It is still possible for a tli application to send down data 2029 * on the accepting stream while another thread calls t_accept. 2030 * This should not be a problem for well-behaved applications since 2031 * the T_OK_ACK is sent after the queue swapping is completed. 2032 * 2033 * If the accepting fd is the same as the listening fd, avoid 2034 * queue hash lookup since that will return an eager listener in a 2035 * already established state. 2036 */ 2037 acceptor_id = tcr->ACCEPTOR_id; 2038 mutex_enter(&listener->tcp_eager_lock); 2039 if (listener->tcp_acceptor_id == acceptor_id) { 2040 eager = listener->tcp_eager_next_q; 2041 /* only count how many T_CONN_INDs so don't count q0 */ 2042 if ((listener->tcp_conn_req_cnt_q != 1) || 2043 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2044 mutex_exit(&listener->tcp_eager_lock); 2045 tcp_err_ack(listener, mp, TBADF, 0); 2046 return; 2047 } 2048 if (listener->tcp_conn_req_cnt_q0 != 0) { 2049 /* Throw away all the eagers on q0. */ 2050 tcp_eager_cleanup(listener, 1); 2051 } 2052 if (listener->tcp_syn_defense) { 2053 listener->tcp_syn_defense = B_FALSE; 2054 if (listener->tcp_ip_addr_cache != NULL) { 2055 kmem_free(listener->tcp_ip_addr_cache, 2056 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2057 listener->tcp_ip_addr_cache = NULL; 2058 } 2059 } 2060 /* 2061 * Transfer tcp_conn_req_max to the eager so that when 2062 * a disconnect occurs we can revert the endpoint to the 2063 * listen state. 2064 */ 2065 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2066 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2067 /* 2068 * Get a reference on the acceptor just like the 2069 * tcp_acceptor_hash_lookup below. 2070 */ 2071 acceptor = listener; 2072 CONN_INC_REF(acceptor->tcp_connp); 2073 } else { 2074 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 2075 if (acceptor == NULL) { 2076 if (listener->tcp_debug) { 2077 (void) strlog(TCP_MOD_ID, 0, 1, 2078 SL_ERROR|SL_TRACE, 2079 "tcp_accept: did not find acceptor 0x%x\n", 2080 acceptor_id); 2081 } 2082 mutex_exit(&listener->tcp_eager_lock); 2083 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2084 return; 2085 } 2086 /* 2087 * Verify acceptor state. The acceptable states for an acceptor 2088 * include TCPS_IDLE and TCPS_BOUND. 2089 */ 2090 switch (acceptor->tcp_state) { 2091 case TCPS_IDLE: 2092 /* FALLTHRU */ 2093 case TCPS_BOUND: 2094 break; 2095 default: 2096 CONN_DEC_REF(acceptor->tcp_connp); 2097 mutex_exit(&listener->tcp_eager_lock); 2098 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2099 return; 2100 } 2101 } 2102 2103 /* The listener must be in TCPS_LISTEN */ 2104 if (listener->tcp_state != TCPS_LISTEN) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 mutex_exit(&listener->tcp_eager_lock); 2107 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2108 return; 2109 } 2110 2111 /* 2112 * Rendezvous with an eager connection request packet hanging off 2113 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2114 * tcp structure when the connection packet arrived in 2115 * tcp_conn_request(). 2116 */ 2117 seqnum = tcr->SEQ_number; 2118 eager = listener; 2119 do { 2120 eager = eager->tcp_eager_next_q; 2121 if (eager == NULL) { 2122 CONN_DEC_REF(acceptor->tcp_connp); 2123 mutex_exit(&listener->tcp_eager_lock); 2124 tcp_err_ack(listener, mp, TBADSEQ, 0); 2125 return; 2126 } 2127 } while (eager->tcp_conn_req_seqnum != seqnum); 2128 mutex_exit(&listener->tcp_eager_lock); 2129 2130 /* 2131 * At this point, both acceptor and listener have 2 ref 2132 * that they begin with. Acceptor has one additional ref 2133 * we placed in lookup while listener has 3 additional 2134 * ref for being behind the squeue (tcp_accept() is 2135 * done on listener's squeue); being in classifier hash; 2136 * and eager's ref on listener. 2137 */ 2138 ASSERT(listener->tcp_connp->conn_ref >= 5); 2139 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2140 2141 /* 2142 * The eager at this point is set in its own squeue and 2143 * could easily have been killed (tcp_accept_finish will 2144 * deal with that) because of a TH_RST so we can only 2145 * ASSERT for a single ref. 2146 */ 2147 ASSERT(eager->tcp_connp->conn_ref >= 1); 2148 2149 /* Pre allocate the stroptions mblk also */ 2150 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2151 if (opt_mp == NULL) { 2152 CONN_DEC_REF(acceptor->tcp_connp); 2153 CONN_DEC_REF(eager->tcp_connp); 2154 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2155 return; 2156 } 2157 DB_TYPE(opt_mp) = M_SETOPTS; 2158 opt_mp->b_wptr += sizeof (struct stroptions); 2159 2160 /* 2161 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2162 * from listener to acceptor. The message is chained on opt_mp 2163 * which will be sent onto eager's squeue. 2164 */ 2165 if (listener->tcp_bound_if != 0) { 2166 /* allocate optmgmt req */ 2167 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2168 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2169 sizeof (int)); 2170 if (mp1 != NULL) 2171 linkb(opt_mp, mp1); 2172 } 2173 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2174 uint_t on = 1; 2175 2176 /* allocate optmgmt req */ 2177 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2178 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2179 if (mp1 != NULL) 2180 linkb(opt_mp, mp1); 2181 } 2182 2183 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2184 if ((mp1 = copymsg(mp)) == NULL) { 2185 CONN_DEC_REF(acceptor->tcp_connp); 2186 CONN_DEC_REF(eager->tcp_connp); 2187 freemsg(opt_mp); 2188 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2189 return; 2190 } 2191 2192 tcr = (struct T_conn_res *)mp1->b_rptr; 2193 2194 /* 2195 * This is an expanded version of mi_tpi_ok_ack_alloc() 2196 * which allocates a larger mblk and appends the new 2197 * local address to the ok_ack. The address is copied by 2198 * soaccept() for getsockname(). 2199 */ 2200 { 2201 int extra; 2202 2203 extra = (eager->tcp_family == AF_INET) ? 2204 sizeof (sin_t) : sizeof (sin6_t); 2205 2206 /* 2207 * Try to re-use mp, if possible. Otherwise, allocate 2208 * an mblk and return it as ok_mp. In any case, mp 2209 * is no longer usable upon return. 2210 */ 2211 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2212 CONN_DEC_REF(acceptor->tcp_connp); 2213 CONN_DEC_REF(eager->tcp_connp); 2214 freemsg(opt_mp); 2215 /* Original mp has been freed by now, so use mp1 */ 2216 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2217 return; 2218 } 2219 2220 mp = NULL; /* We should never use mp after this point */ 2221 2222 switch (extra) { 2223 case sizeof (sin_t): { 2224 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2225 2226 ok_mp->b_wptr += extra; 2227 sin->sin_family = AF_INET; 2228 sin->sin_port = eager->tcp_lport; 2229 sin->sin_addr.s_addr = 2230 eager->tcp_ipha->ipha_src; 2231 break; 2232 } 2233 case sizeof (sin6_t): { 2234 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2235 2236 ok_mp->b_wptr += extra; 2237 sin6->sin6_family = AF_INET6; 2238 sin6->sin6_port = eager->tcp_lport; 2239 if (eager->tcp_ipversion == IPV4_VERSION) { 2240 sin6->sin6_flowinfo = 0; 2241 IN6_IPADDR_TO_V4MAPPED( 2242 eager->tcp_ipha->ipha_src, 2243 &sin6->sin6_addr); 2244 } else { 2245 ASSERT(eager->tcp_ip6h != NULL); 2246 sin6->sin6_flowinfo = 2247 eager->tcp_ip6h->ip6_vcf & 2248 ~IPV6_VERS_AND_FLOW_MASK; 2249 sin6->sin6_addr = 2250 eager->tcp_ip6h->ip6_src; 2251 } 2252 break; 2253 } 2254 default: 2255 break; 2256 } 2257 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2258 } 2259 2260 /* 2261 * If there are no options we know that the T_CONN_RES will 2262 * succeed. However, we can't send the T_OK_ACK upstream until 2263 * the tcp_accept_swap is done since it would be dangerous to 2264 * let the application start using the new fd prior to the swap. 2265 */ 2266 tcp_accept_swap(listener, acceptor, eager); 2267 2268 /* 2269 * tcp_accept_swap unlinks eager from listener but does not drop 2270 * the eager's reference on the listener. 2271 */ 2272 ASSERT(eager->tcp_listener == NULL); 2273 ASSERT(listener->tcp_connp->conn_ref >= 5); 2274 2275 /* 2276 * The eager is now associated with its own queue. Insert in 2277 * the hash so that the connection can be reused for a future 2278 * T_CONN_RES. 2279 */ 2280 tcp_acceptor_hash_insert(acceptor_id, eager); 2281 2282 /* 2283 * We now do the processing of options with T_CONN_RES. 2284 * We delay till now since we wanted to have queue to pass to 2285 * option processing routines that points back to the right 2286 * instance structure which does not happen until after 2287 * tcp_accept_swap(). 2288 * 2289 * Note: 2290 * The sanity of the logic here assumes that whatever options 2291 * are appropriate to inherit from listner=>eager are done 2292 * before this point, and whatever were to be overridden (or not) 2293 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2294 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2295 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2296 * This may not be true at this point in time but can be fixed 2297 * independently. This option processing code starts with 2298 * the instantiated acceptor instance and the final queue at 2299 * this point. 2300 */ 2301 2302 if (tcr->OPT_length != 0) { 2303 /* Options to process */ 2304 int t_error = 0; 2305 int sys_error = 0; 2306 int do_disconnect = 0; 2307 2308 if (tcp_conprim_opt_process(eager, mp1, 2309 &do_disconnect, &t_error, &sys_error) < 0) { 2310 eager->tcp_accept_error = 1; 2311 if (do_disconnect) { 2312 /* 2313 * An option failed which does not allow 2314 * connection to be accepted. 2315 * 2316 * We allow T_CONN_RES to succeed and 2317 * put a T_DISCON_IND on the eager queue. 2318 */ 2319 ASSERT(t_error == 0 && sys_error == 0); 2320 eager->tcp_send_discon_ind = 1; 2321 } else { 2322 ASSERT(t_error != 0); 2323 freemsg(ok_mp); 2324 /* 2325 * Original mp was either freed or set 2326 * to ok_mp above, so use mp1 instead. 2327 */ 2328 tcp_err_ack(listener, mp1, t_error, sys_error); 2329 goto finish; 2330 } 2331 } 2332 /* 2333 * Most likely success in setting options (except if 2334 * eager->tcp_send_discon_ind set). 2335 * mp1 option buffer represented by OPT_length/offset 2336 * potentially modified and contains results of setting 2337 * options at this point 2338 */ 2339 } 2340 2341 /* We no longer need mp1, since all options processing has passed */ 2342 freemsg(mp1); 2343 2344 putnext(listener->tcp_rq, ok_mp); 2345 2346 mutex_enter(&listener->tcp_eager_lock); 2347 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2348 tcp_t *tail; 2349 mblk_t *conn_ind; 2350 2351 /* 2352 * This path should not be executed if listener and 2353 * acceptor streams are the same. 2354 */ 2355 ASSERT(listener != acceptor); 2356 2357 tcp = listener->tcp_eager_prev_q0; 2358 /* 2359 * listener->tcp_eager_prev_q0 points to the TAIL of the 2360 * deferred T_conn_ind queue. We need to get to the head of 2361 * the queue in order to send up T_conn_ind the same order as 2362 * how the 3WHS is completed. 2363 */ 2364 while (tcp != listener) { 2365 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2366 break; 2367 else 2368 tcp = tcp->tcp_eager_prev_q0; 2369 } 2370 ASSERT(tcp != listener); 2371 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2372 ASSERT(conn_ind != NULL); 2373 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2374 2375 /* Move from q0 to q */ 2376 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2377 listener->tcp_conn_req_cnt_q0--; 2378 listener->tcp_conn_req_cnt_q++; 2379 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2380 tcp->tcp_eager_prev_q0; 2381 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2382 tcp->tcp_eager_next_q0; 2383 tcp->tcp_eager_prev_q0 = NULL; 2384 tcp->tcp_eager_next_q0 = NULL; 2385 tcp->tcp_conn_def_q0 = B_FALSE; 2386 2387 /* Make sure the tcp isn't in the list of droppables */ 2388 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2389 tcp->tcp_eager_prev_drop_q0 == NULL); 2390 2391 /* 2392 * Insert at end of the queue because sockfs sends 2393 * down T_CONN_RES in chronological order. Leaving 2394 * the older conn indications at front of the queue 2395 * helps reducing search time. 2396 */ 2397 tail = listener->tcp_eager_last_q; 2398 if (tail != NULL) 2399 tail->tcp_eager_next_q = tcp; 2400 else 2401 listener->tcp_eager_next_q = tcp; 2402 listener->tcp_eager_last_q = tcp; 2403 tcp->tcp_eager_next_q = NULL; 2404 mutex_exit(&listener->tcp_eager_lock); 2405 putnext(tcp->tcp_rq, conn_ind); 2406 } else { 2407 mutex_exit(&listener->tcp_eager_lock); 2408 } 2409 2410 /* 2411 * Done with the acceptor - free it 2412 * 2413 * Note: from this point on, no access to listener should be made 2414 * as listener can be equal to acceptor. 2415 */ 2416 finish: 2417 ASSERT(acceptor->tcp_detached); 2418 acceptor->tcp_rq = tcp_g_q; 2419 acceptor->tcp_wq = WR(tcp_g_q); 2420 (void) tcp_clean_death(acceptor, 0, 2); 2421 CONN_DEC_REF(acceptor->tcp_connp); 2422 2423 /* 2424 * In case we already received a FIN we have to make tcp_rput send 2425 * the ordrel_ind. This will also send up a window update if the window 2426 * has opened up. 2427 * 2428 * In the normal case of a successful connection acceptance 2429 * we give the O_T_BIND_REQ to the read side put procedure as an 2430 * indication that this was just accepted. This tells tcp_rput to 2431 * pass up any data queued in tcp_rcv_list. 2432 * 2433 * In the fringe case where options sent with T_CONN_RES failed and 2434 * we required, we would be indicating a T_DISCON_IND to blow 2435 * away this connection. 2436 */ 2437 2438 /* 2439 * XXX: we currently have a problem if XTI application closes the 2440 * acceptor stream in between. This problem exists in on10-gate also 2441 * and is well know but nothing can be done short of major rewrite 2442 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2443 * eager same squeue as listener (we can distinguish non socket 2444 * listeners at the time of handling a SYN in tcp_conn_request) 2445 * and do most of the work that tcp_accept_finish does here itself 2446 * and then get behind the acceptor squeue to access the acceptor 2447 * queue. 2448 */ 2449 /* 2450 * We already have a ref on tcp so no need to do one before squeue_fill 2451 */ 2452 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2453 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2454 } 2455 2456 /* 2457 * Swap information between the eager and acceptor for a TLI/XTI client. 2458 * The sockfs accept is done on the acceptor stream and control goes 2459 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2460 * called. In either case, both the eager and listener are in their own 2461 * perimeter (squeue) and the code has to deal with potential race. 2462 * 2463 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2464 */ 2465 static void 2466 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2467 { 2468 conn_t *econnp, *aconnp; 2469 2470 ASSERT(eager->tcp_rq == listener->tcp_rq); 2471 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2472 ASSERT(!eager->tcp_hard_bound); 2473 ASSERT(!TCP_IS_SOCKET(acceptor)); 2474 ASSERT(!TCP_IS_SOCKET(eager)); 2475 ASSERT(!TCP_IS_SOCKET(listener)); 2476 2477 acceptor->tcp_detached = B_TRUE; 2478 /* 2479 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2480 * the acceptor id. 2481 */ 2482 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2483 2484 /* remove eager from listen list... */ 2485 mutex_enter(&listener->tcp_eager_lock); 2486 tcp_eager_unlink(eager); 2487 ASSERT(eager->tcp_eager_next_q == NULL && 2488 eager->tcp_eager_last_q == NULL); 2489 ASSERT(eager->tcp_eager_next_q0 == NULL && 2490 eager->tcp_eager_prev_q0 == NULL); 2491 mutex_exit(&listener->tcp_eager_lock); 2492 eager->tcp_rq = acceptor->tcp_rq; 2493 eager->tcp_wq = acceptor->tcp_wq; 2494 2495 econnp = eager->tcp_connp; 2496 aconnp = acceptor->tcp_connp; 2497 2498 eager->tcp_rq->q_ptr = econnp; 2499 eager->tcp_wq->q_ptr = econnp; 2500 2501 /* 2502 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2503 * which might be a different squeue from our peer TCP instance. 2504 * For TCP Fusion, the peer expects that whenever tcp_detached is 2505 * clear, our TCP queues point to the acceptor's queues. Thus, use 2506 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2507 * above reach global visibility prior to the clearing of tcp_detached. 2508 */ 2509 membar_producer(); 2510 eager->tcp_detached = B_FALSE; 2511 2512 ASSERT(eager->tcp_ack_tid == 0); 2513 2514 econnp->conn_dev = aconnp->conn_dev; 2515 if (eager->tcp_cred != NULL) 2516 crfree(eager->tcp_cred); 2517 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2518 aconnp->conn_cred = NULL; 2519 2520 econnp->conn_zoneid = aconnp->conn_zoneid; 2521 econnp->conn_allzones = aconnp->conn_allzones; 2522 2523 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2524 aconnp->conn_mac_exempt = B_FALSE; 2525 2526 ASSERT(aconnp->conn_peercred == NULL); 2527 2528 /* Do the IPC initialization */ 2529 CONN_INC_REF(econnp); 2530 2531 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2532 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2533 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2534 econnp->conn_ulp = aconnp->conn_ulp; 2535 2536 /* Done with old IPC. Drop its ref on its connp */ 2537 CONN_DEC_REF(aconnp); 2538 } 2539 2540 2541 /* 2542 * Adapt to the information, such as rtt and rtt_sd, provided from the 2543 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2544 * 2545 * Checks for multicast and broadcast destination address. 2546 * Returns zero on failure; non-zero if ok. 2547 * 2548 * Note that the MSS calculation here is based on the info given in 2549 * the IRE. We do not do any calculation based on TCP options. They 2550 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2551 * knows which options to use. 2552 * 2553 * Note on how TCP gets its parameters for a connection. 2554 * 2555 * When a tcp_t structure is allocated, it gets all the default parameters. 2556 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2557 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2558 * default. But if there is an associated tcp_host_param, it will override 2559 * the metrics. 2560 * 2561 * An incoming SYN with a multicast or broadcast destination address, is dropped 2562 * in 1 of 2 places. 2563 * 2564 * 1. If the packet was received over the wire it is dropped in 2565 * ip_rput_process_broadcast() 2566 * 2567 * 2. If the packet was received through internal IP loopback, i.e. the packet 2568 * was generated and received on the same machine, it is dropped in 2569 * ip_wput_local() 2570 * 2571 * An incoming SYN with a multicast or broadcast source address is always 2572 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2573 * reject an attempt to connect to a broadcast or multicast (destination) 2574 * address. 2575 */ 2576 static int 2577 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2578 { 2579 tcp_hsp_t *hsp; 2580 ire_t *ire; 2581 ire_t *sire = NULL; 2582 iulp_t *ire_uinfo = NULL; 2583 uint32_t mss_max; 2584 uint32_t mss; 2585 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2586 conn_t *connp = tcp->tcp_connp; 2587 boolean_t ire_cacheable = B_FALSE; 2588 zoneid_t zoneid = connp->conn_zoneid; 2589 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2590 MATCH_IRE_SECATTR; 2591 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2592 ill_t *ill = NULL; 2593 boolean_t incoming = (ire_mp == NULL); 2594 2595 ASSERT(connp->conn_ire_cache == NULL); 2596 2597 if (tcp->tcp_ipversion == IPV4_VERSION) { 2598 2599 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2600 BUMP_MIB(&ip_mib, ipInDiscards); 2601 return (0); 2602 } 2603 /* 2604 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2605 * for the destination with the nexthop as gateway. 2606 * ire_ctable_lookup() is used because this particular 2607 * ire, if it exists, will be marked private. 2608 * If that is not available, use the interface ire 2609 * for the nexthop. 2610 * 2611 * TSol: tcp_update_label will detect label mismatches based 2612 * only on the destination's label, but that would not 2613 * detect label mismatches based on the security attributes 2614 * of routes or next hop gateway. Hence we need to pass the 2615 * label to ire_ftable_lookup below in order to locate the 2616 * right prefix (and/or) ire cache. Similarly we also need 2617 * pass the label to the ire_cache_lookup below to locate 2618 * the right ire that also matches on the label. 2619 */ 2620 if (tcp->tcp_connp->conn_nexthop_set) { 2621 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2622 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2623 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2624 if (ire == NULL) { 2625 ire = ire_ftable_lookup( 2626 tcp->tcp_connp->conn_nexthop_v4, 2627 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2628 tsl, match_flags); 2629 if (ire == NULL) 2630 return (0); 2631 } else { 2632 ire_uinfo = &ire->ire_uinfo; 2633 } 2634 } else { 2635 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2636 zoneid, tsl); 2637 if (ire != NULL) { 2638 ire_cacheable = B_TRUE; 2639 ire_uinfo = (ire_mp != NULL) ? 2640 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2641 &ire->ire_uinfo; 2642 2643 } else { 2644 if (ire_mp == NULL) { 2645 ire = ire_ftable_lookup( 2646 tcp->tcp_connp->conn_rem, 2647 0, 0, 0, NULL, &sire, zoneid, 0, 2648 tsl, (MATCH_IRE_RECURSIVE | 2649 MATCH_IRE_DEFAULT)); 2650 if (ire == NULL) 2651 return (0); 2652 ire_uinfo = (sire != NULL) ? 2653 &sire->ire_uinfo : 2654 &ire->ire_uinfo; 2655 } else { 2656 ire = (ire_t *)ire_mp->b_rptr; 2657 ire_uinfo = 2658 &((ire_t *) 2659 ire_mp->b_rptr)->ire_uinfo; 2660 } 2661 } 2662 } 2663 ASSERT(ire != NULL); 2664 2665 if ((ire->ire_src_addr == INADDR_ANY) || 2666 (ire->ire_type & IRE_BROADCAST)) { 2667 /* 2668 * ire->ire_mp is non null when ire_mp passed in is used 2669 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2670 */ 2671 if (ire->ire_mp == NULL) 2672 ire_refrele(ire); 2673 if (sire != NULL) 2674 ire_refrele(sire); 2675 return (0); 2676 } 2677 2678 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2679 ipaddr_t src_addr; 2680 2681 /* 2682 * ip_bind_connected() has stored the correct source 2683 * address in conn_src. 2684 */ 2685 src_addr = tcp->tcp_connp->conn_src; 2686 tcp->tcp_ipha->ipha_src = src_addr; 2687 /* 2688 * Copy of the src addr. in tcp_t is needed 2689 * for the lookup funcs. 2690 */ 2691 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2692 } 2693 /* 2694 * Set the fragment bit so that IP will tell us if the MTU 2695 * should change. IP tells us the latest setting of 2696 * ip_path_mtu_discovery through ire_frag_flag. 2697 */ 2698 if (ip_path_mtu_discovery) { 2699 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2700 htons(IPH_DF); 2701 } 2702 /* 2703 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2704 * for IP_NEXTHOP. No cache ire has been found for the 2705 * destination and we are working with the nexthop's 2706 * interface ire. Since we need to forward all packets 2707 * to the nexthop first, we "blindly" set tcp_localnet 2708 * to false, eventhough the destination may also be 2709 * onlink. 2710 */ 2711 if (ire_uinfo == NULL) 2712 tcp->tcp_localnet = 0; 2713 else 2714 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2715 } else { 2716 /* 2717 * For incoming connection ire_mp = NULL 2718 * For outgoing connection ire_mp != NULL 2719 * Technically we should check conn_incoming_ill 2720 * when ire_mp is NULL and conn_outgoing_ill when 2721 * ire_mp is non-NULL. But this is performance 2722 * critical path and for IPV*_BOUND_IF, outgoing 2723 * and incoming ill are always set to the same value. 2724 */ 2725 ill_t *dst_ill = NULL; 2726 ipif_t *dst_ipif = NULL; 2727 2728 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2729 2730 if (connp->conn_outgoing_ill != NULL) { 2731 /* Outgoing or incoming path */ 2732 int err; 2733 2734 dst_ill = conn_get_held_ill(connp, 2735 &connp->conn_outgoing_ill, &err); 2736 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2737 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2738 return (0); 2739 } 2740 match_flags |= MATCH_IRE_ILL; 2741 dst_ipif = dst_ill->ill_ipif; 2742 } 2743 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2744 0, 0, dst_ipif, zoneid, tsl, match_flags); 2745 2746 if (ire != NULL) { 2747 ire_cacheable = B_TRUE; 2748 ire_uinfo = (ire_mp != NULL) ? 2749 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2750 &ire->ire_uinfo; 2751 } else { 2752 if (ire_mp == NULL) { 2753 ire = ire_ftable_lookup_v6( 2754 &tcp->tcp_connp->conn_remv6, 2755 0, 0, 0, dst_ipif, &sire, zoneid, 2756 0, tsl, match_flags); 2757 if (ire == NULL) { 2758 if (dst_ill != NULL) 2759 ill_refrele(dst_ill); 2760 return (0); 2761 } 2762 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2763 &ire->ire_uinfo; 2764 } else { 2765 ire = (ire_t *)ire_mp->b_rptr; 2766 ire_uinfo = 2767 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2768 } 2769 } 2770 if (dst_ill != NULL) 2771 ill_refrele(dst_ill); 2772 2773 ASSERT(ire != NULL); 2774 ASSERT(ire_uinfo != NULL); 2775 2776 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2777 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2778 /* 2779 * ire->ire_mp is non null when ire_mp passed in is used 2780 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2781 */ 2782 if (ire->ire_mp == NULL) 2783 ire_refrele(ire); 2784 if (sire != NULL) 2785 ire_refrele(sire); 2786 return (0); 2787 } 2788 2789 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2790 in6_addr_t src_addr; 2791 2792 /* 2793 * ip_bind_connected_v6() has stored the correct source 2794 * address per IPv6 addr. selection policy in 2795 * conn_src_v6. 2796 */ 2797 src_addr = tcp->tcp_connp->conn_srcv6; 2798 2799 tcp->tcp_ip6h->ip6_src = src_addr; 2800 /* 2801 * Copy of the src addr. in tcp_t is needed 2802 * for the lookup funcs. 2803 */ 2804 tcp->tcp_ip_src_v6 = src_addr; 2805 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2806 &connp->conn_srcv6)); 2807 } 2808 tcp->tcp_localnet = 2809 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2810 } 2811 2812 /* 2813 * This allows applications to fail quickly when connections are made 2814 * to dead hosts. Hosts can be labeled dead by adding a reject route 2815 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2816 */ 2817 if ((ire->ire_flags & RTF_REJECT) && 2818 (ire->ire_flags & RTF_PRIVATE)) 2819 goto error; 2820 2821 /* 2822 * Make use of the cached rtt and rtt_sd values to calculate the 2823 * initial RTO. Note that they are already initialized in 2824 * tcp_init_values(). 2825 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2826 * IP_NEXTHOP, but instead are using the interface ire for the 2827 * nexthop, then we do not use the ire_uinfo from that ire to 2828 * do any initializations. 2829 */ 2830 if (ire_uinfo != NULL) { 2831 if (ire_uinfo->iulp_rtt != 0) { 2832 clock_t rto; 2833 2834 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2835 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2836 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2837 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2838 2839 if (rto > tcp_rexmit_interval_max) { 2840 tcp->tcp_rto = tcp_rexmit_interval_max; 2841 } else if (rto < tcp_rexmit_interval_min) { 2842 tcp->tcp_rto = tcp_rexmit_interval_min; 2843 } else { 2844 tcp->tcp_rto = rto; 2845 } 2846 } 2847 if (ire_uinfo->iulp_ssthresh != 0) 2848 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2849 else 2850 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2851 if (ire_uinfo->iulp_spipe > 0) { 2852 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2853 tcp_max_buf); 2854 if (tcp_snd_lowat_fraction != 0) 2855 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2856 tcp_snd_lowat_fraction; 2857 (void) tcp_maxpsz_set(tcp, B_TRUE); 2858 } 2859 /* 2860 * Note that up till now, acceptor always inherits receive 2861 * window from the listener. But if there is a metrics 2862 * associated with a host, we should use that instead of 2863 * inheriting it from listener. Thus we need to pass this 2864 * info back to the caller. 2865 */ 2866 if (ire_uinfo->iulp_rpipe > 0) { 2867 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2868 } 2869 2870 if (ire_uinfo->iulp_rtomax > 0) { 2871 tcp->tcp_second_timer_threshold = 2872 ire_uinfo->iulp_rtomax; 2873 } 2874 2875 /* 2876 * Use the metric option settings, iulp_tstamp_ok and 2877 * iulp_wscale_ok, only for active open. What this means 2878 * is that if the other side uses timestamp or window 2879 * scale option, TCP will also use those options. That 2880 * is for passive open. If the application sets a 2881 * large window, window scale is enabled regardless of 2882 * the value in iulp_wscale_ok. This is the behavior 2883 * since 2.6. So we keep it. 2884 * The only case left in passive open processing is the 2885 * check for SACK. 2886 * For ECN, it should probably be like SACK. But the 2887 * current value is binary, so we treat it like the other 2888 * cases. The metric only controls active open.For passive 2889 * open, the ndd param, tcp_ecn_permitted, controls the 2890 * behavior. 2891 */ 2892 if (!tcp_detached) { 2893 /* 2894 * The if check means that the following can only 2895 * be turned on by the metrics only IRE, but not off. 2896 */ 2897 if (ire_uinfo->iulp_tstamp_ok) 2898 tcp->tcp_snd_ts_ok = B_TRUE; 2899 if (ire_uinfo->iulp_wscale_ok) 2900 tcp->tcp_snd_ws_ok = B_TRUE; 2901 if (ire_uinfo->iulp_sack == 2) 2902 tcp->tcp_snd_sack_ok = B_TRUE; 2903 if (ire_uinfo->iulp_ecn_ok) 2904 tcp->tcp_ecn_ok = B_TRUE; 2905 } else { 2906 /* 2907 * Passive open. 2908 * 2909 * As above, the if check means that SACK can only be 2910 * turned on by the metric only IRE. 2911 */ 2912 if (ire_uinfo->iulp_sack > 0) { 2913 tcp->tcp_snd_sack_ok = B_TRUE; 2914 } 2915 } 2916 } 2917 2918 2919 /* 2920 * XXX: Note that currently, ire_max_frag can be as small as 68 2921 * because of PMTUd. So tcp_mss may go to negative if combined 2922 * length of all those options exceeds 28 bytes. But because 2923 * of the tcp_mss_min check below, we may not have a problem if 2924 * tcp_mss_min is of a reasonable value. The default is 1 so 2925 * the negative problem still exists. And the check defeats PMTUd. 2926 * In fact, if PMTUd finds that the MSS should be smaller than 2927 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2928 * value. 2929 * 2930 * We do not deal with that now. All those problems related to 2931 * PMTUd will be fixed later. 2932 */ 2933 ASSERT(ire->ire_max_frag != 0); 2934 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2935 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2936 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2937 mss = MIN(mss, IPV6_MIN_MTU); 2938 } 2939 } 2940 2941 /* Sanity check for MSS value. */ 2942 if (tcp->tcp_ipversion == IPV4_VERSION) 2943 mss_max = tcp_mss_max_ipv4; 2944 else 2945 mss_max = tcp_mss_max_ipv6; 2946 2947 if (tcp->tcp_ipversion == IPV6_VERSION && 2948 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2949 /* 2950 * After receiving an ICMPv6 "packet too big" message with a 2951 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2952 * will insert a 8-byte fragment header in every packet; we 2953 * reduce the MSS by that amount here. 2954 */ 2955 mss -= sizeof (ip6_frag_t); 2956 } 2957 2958 if (tcp->tcp_ipsec_overhead == 0) 2959 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2960 2961 mss -= tcp->tcp_ipsec_overhead; 2962 2963 if (mss < tcp_mss_min) 2964 mss = tcp_mss_min; 2965 if (mss > mss_max) 2966 mss = mss_max; 2967 2968 /* Note that this is the maximum MSS, excluding all options. */ 2969 tcp->tcp_mss = mss; 2970 2971 /* 2972 * Initialize the ISS here now that we have the full connection ID. 2973 * The RFC 1948 method of initial sequence number generation requires 2974 * knowledge of the full connection ID before setting the ISS. 2975 */ 2976 2977 tcp_iss_init(tcp); 2978 2979 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2980 tcp->tcp_loopback = B_TRUE; 2981 2982 if (tcp->tcp_ipversion == IPV4_VERSION) { 2983 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2984 } else { 2985 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2986 } 2987 2988 if (hsp != NULL) { 2989 /* Only modify if we're going to make them bigger */ 2990 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2991 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2992 if (tcp_snd_lowat_fraction != 0) 2993 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2994 tcp_snd_lowat_fraction; 2995 } 2996 2997 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2998 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2999 } 3000 3001 /* Copy timestamp flag only for active open */ 3002 if (!tcp_detached) 3003 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 3004 } 3005 3006 if (sire != NULL) 3007 IRE_REFRELE(sire); 3008 3009 /* 3010 * If we got an IRE_CACHE and an ILL, go through their properties; 3011 * otherwise, this is deferred until later when we have an IRE_CACHE. 3012 */ 3013 if (tcp->tcp_loopback || 3014 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 3015 /* 3016 * For incoming, see if this tcp may be MDT-capable. For 3017 * outgoing, this process has been taken care of through 3018 * tcp_rput_other. 3019 */ 3020 tcp_ire_ill_check(tcp, ire, ill, incoming); 3021 tcp->tcp_ire_ill_check_done = B_TRUE; 3022 } 3023 3024 mutex_enter(&connp->conn_lock); 3025 /* 3026 * Make sure that conn is not marked incipient 3027 * for incoming connections. A blind 3028 * removal of incipient flag is cheaper than 3029 * check and removal. 3030 */ 3031 connp->conn_state_flags &= ~CONN_INCIPIENT; 3032 3033 /* Must not cache forwarding table routes. */ 3034 if (ire_cacheable) { 3035 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3036 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3037 connp->conn_ire_cache = ire; 3038 IRE_UNTRACE_REF(ire); 3039 rw_exit(&ire->ire_bucket->irb_lock); 3040 mutex_exit(&connp->conn_lock); 3041 return (1); 3042 } 3043 rw_exit(&ire->ire_bucket->irb_lock); 3044 } 3045 mutex_exit(&connp->conn_lock); 3046 3047 if (ire->ire_mp == NULL) 3048 ire_refrele(ire); 3049 return (1); 3050 3051 error: 3052 if (ire->ire_mp == NULL) 3053 ire_refrele(ire); 3054 if (sire != NULL) 3055 ire_refrele(sire); 3056 return (0); 3057 } 3058 3059 /* 3060 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3061 * O_T_BIND_REQ/T_BIND_REQ message. 3062 */ 3063 static void 3064 tcp_bind(tcp_t *tcp, mblk_t *mp) 3065 { 3066 sin_t *sin; 3067 sin6_t *sin6; 3068 mblk_t *mp1; 3069 in_port_t requested_port; 3070 in_port_t allocated_port; 3071 struct T_bind_req *tbr; 3072 boolean_t bind_to_req_port_only; 3073 boolean_t backlog_update = B_FALSE; 3074 boolean_t user_specified; 3075 in6_addr_t v6addr; 3076 ipaddr_t v4addr; 3077 uint_t origipversion; 3078 int err; 3079 queue_t *q = tcp->tcp_wq; 3080 conn_t *connp; 3081 mlp_type_t addrtype, mlptype; 3082 zone_t *zone; 3083 cred_t *cr; 3084 in_port_t mlp_port; 3085 3086 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3087 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3088 if (tcp->tcp_debug) { 3089 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3090 "tcp_bind: bad req, len %u", 3091 (uint_t)(mp->b_wptr - mp->b_rptr)); 3092 } 3093 tcp_err_ack(tcp, mp, TPROTO, 0); 3094 return; 3095 } 3096 /* Make sure the largest address fits */ 3097 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3098 if (mp1 == NULL) { 3099 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3100 return; 3101 } 3102 mp = mp1; 3103 tbr = (struct T_bind_req *)mp->b_rptr; 3104 if (tcp->tcp_state >= TCPS_BOUND) { 3105 if ((tcp->tcp_state == TCPS_BOUND || 3106 tcp->tcp_state == TCPS_LISTEN) && 3107 tcp->tcp_conn_req_max != tbr->CONIND_number && 3108 tbr->CONIND_number > 0) { 3109 /* 3110 * Handle listen() increasing CONIND_number. 3111 * This is more "liberal" then what the TPI spec 3112 * requires but is needed to avoid a t_unbind 3113 * when handling listen() since the port number 3114 * might be "stolen" between the unbind and bind. 3115 */ 3116 backlog_update = B_TRUE; 3117 goto do_bind; 3118 } 3119 if (tcp->tcp_debug) { 3120 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3121 "tcp_bind: bad state, %d", tcp->tcp_state); 3122 } 3123 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3124 return; 3125 } 3126 origipversion = tcp->tcp_ipversion; 3127 3128 switch (tbr->ADDR_length) { 3129 case 0: /* request for a generic port */ 3130 tbr->ADDR_offset = sizeof (struct T_bind_req); 3131 if (tcp->tcp_family == AF_INET) { 3132 tbr->ADDR_length = sizeof (sin_t); 3133 sin = (sin_t *)&tbr[1]; 3134 *sin = sin_null; 3135 sin->sin_family = AF_INET; 3136 mp->b_wptr = (uchar_t *)&sin[1]; 3137 tcp->tcp_ipversion = IPV4_VERSION; 3138 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3139 } else { 3140 ASSERT(tcp->tcp_family == AF_INET6); 3141 tbr->ADDR_length = sizeof (sin6_t); 3142 sin6 = (sin6_t *)&tbr[1]; 3143 *sin6 = sin6_null; 3144 sin6->sin6_family = AF_INET6; 3145 mp->b_wptr = (uchar_t *)&sin6[1]; 3146 tcp->tcp_ipversion = IPV6_VERSION; 3147 V6_SET_ZERO(v6addr); 3148 } 3149 requested_port = 0; 3150 break; 3151 3152 case sizeof (sin_t): /* Complete IPv4 address */ 3153 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3154 sizeof (sin_t)); 3155 if (sin == NULL || !OK_32PTR((char *)sin)) { 3156 if (tcp->tcp_debug) { 3157 (void) strlog(TCP_MOD_ID, 0, 1, 3158 SL_ERROR|SL_TRACE, 3159 "tcp_bind: bad address parameter, " 3160 "offset %d, len %d", 3161 tbr->ADDR_offset, tbr->ADDR_length); 3162 } 3163 tcp_err_ack(tcp, mp, TPROTO, 0); 3164 return; 3165 } 3166 /* 3167 * With sockets sockfs will accept bogus sin_family in 3168 * bind() and replace it with the family used in the socket 3169 * call. 3170 */ 3171 if (sin->sin_family != AF_INET || 3172 tcp->tcp_family != AF_INET) { 3173 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3174 return; 3175 } 3176 requested_port = ntohs(sin->sin_port); 3177 tcp->tcp_ipversion = IPV4_VERSION; 3178 v4addr = sin->sin_addr.s_addr; 3179 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3180 break; 3181 3182 case sizeof (sin6_t): /* Complete IPv6 address */ 3183 sin6 = (sin6_t *)mi_offset_param(mp, 3184 tbr->ADDR_offset, sizeof (sin6_t)); 3185 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3186 if (tcp->tcp_debug) { 3187 (void) strlog(TCP_MOD_ID, 0, 1, 3188 SL_ERROR|SL_TRACE, 3189 "tcp_bind: bad IPv6 address parameter, " 3190 "offset %d, len %d", tbr->ADDR_offset, 3191 tbr->ADDR_length); 3192 } 3193 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3194 return; 3195 } 3196 if (sin6->sin6_family != AF_INET6 || 3197 tcp->tcp_family != AF_INET6) { 3198 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3199 return; 3200 } 3201 requested_port = ntohs(sin6->sin6_port); 3202 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3203 IPV4_VERSION : IPV6_VERSION; 3204 v6addr = sin6->sin6_addr; 3205 break; 3206 3207 default: 3208 if (tcp->tcp_debug) { 3209 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3210 "tcp_bind: bad address length, %d", 3211 tbr->ADDR_length); 3212 } 3213 tcp_err_ack(tcp, mp, TBADADDR, 0); 3214 return; 3215 } 3216 tcp->tcp_bound_source_v6 = v6addr; 3217 3218 /* Check for change in ipversion */ 3219 if (origipversion != tcp->tcp_ipversion) { 3220 ASSERT(tcp->tcp_family == AF_INET6); 3221 err = tcp->tcp_ipversion == IPV6_VERSION ? 3222 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3223 if (err) { 3224 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3225 return; 3226 } 3227 } 3228 3229 /* 3230 * Initialize family specific fields. Copy of the src addr. 3231 * in tcp_t is needed for the lookup funcs. 3232 */ 3233 if (tcp->tcp_ipversion == IPV6_VERSION) { 3234 tcp->tcp_ip6h->ip6_src = v6addr; 3235 } else { 3236 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3237 } 3238 tcp->tcp_ip_src_v6 = v6addr; 3239 3240 /* 3241 * For O_T_BIND_REQ: 3242 * Verify that the target port/addr is available, or choose 3243 * another. 3244 * For T_BIND_REQ: 3245 * Verify that the target port/addr is available or fail. 3246 * In both cases when it succeeds the tcp is inserted in the 3247 * bind hash table. This ensures that the operation is atomic 3248 * under the lock on the hash bucket. 3249 */ 3250 bind_to_req_port_only = requested_port != 0 && 3251 tbr->PRIM_type != O_T_BIND_REQ; 3252 /* 3253 * Get a valid port (within the anonymous range and should not 3254 * be a privileged one) to use if the user has not given a port. 3255 * If multiple threads are here, they may all start with 3256 * with the same initial port. But, it should be fine as long as 3257 * tcp_bindi will ensure that no two threads will be assigned 3258 * the same port. 3259 * 3260 * NOTE: XXX If a privileged process asks for an anonymous port, we 3261 * still check for ports only in the range > tcp_smallest_non_priv_port, 3262 * unless TCP_ANONPRIVBIND option is set. 3263 */ 3264 mlptype = mlptSingle; 3265 mlp_port = requested_port; 3266 if (requested_port == 0) { 3267 requested_port = tcp->tcp_anon_priv_bind ? 3268 tcp_get_next_priv_port(tcp) : 3269 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3270 if (requested_port == 0) { 3271 tcp_err_ack(tcp, mp, TNOADDR, 0); 3272 return; 3273 } 3274 user_specified = B_FALSE; 3275 3276 /* 3277 * If the user went through one of the RPC interfaces to create 3278 * this socket and RPC is MLP in this zone, then give him an 3279 * anonymous MLP. 3280 */ 3281 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3282 connp = tcp->tcp_connp; 3283 if (connp->conn_anon_mlp && is_system_labeled()) { 3284 zone = crgetzone(cr); 3285 addrtype = tsol_mlp_addr_type(zone->zone_id, 3286 IPV6_VERSION, &v6addr); 3287 if (addrtype == mlptSingle) { 3288 tcp_err_ack(tcp, mp, TNOADDR, 0); 3289 return; 3290 } 3291 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3292 PMAPPORT, addrtype); 3293 mlp_port = PMAPPORT; 3294 } 3295 } else { 3296 int i; 3297 boolean_t priv = B_FALSE; 3298 3299 /* 3300 * If the requested_port is in the well-known privileged range, 3301 * verify that the stream was opened by a privileged user. 3302 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3303 * but instead the code relies on: 3304 * - the fact that the address of the array and its size never 3305 * changes 3306 * - the atomic assignment of the elements of the array 3307 */ 3308 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3309 if (requested_port < tcp_smallest_nonpriv_port) { 3310 priv = B_TRUE; 3311 } else { 3312 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3313 if (requested_port == 3314 tcp_g_epriv_ports[i]) { 3315 priv = B_TRUE; 3316 break; 3317 } 3318 } 3319 } 3320 if (priv) { 3321 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3322 if (tcp->tcp_debug) { 3323 (void) strlog(TCP_MOD_ID, 0, 1, 3324 SL_ERROR|SL_TRACE, 3325 "tcp_bind: no priv for port %d", 3326 requested_port); 3327 } 3328 tcp_err_ack(tcp, mp, TACCES, 0); 3329 return; 3330 } 3331 } 3332 user_specified = B_TRUE; 3333 3334 connp = tcp->tcp_connp; 3335 if (is_system_labeled()) { 3336 zone = crgetzone(cr); 3337 addrtype = tsol_mlp_addr_type(zone->zone_id, 3338 IPV6_VERSION, &v6addr); 3339 if (addrtype == mlptSingle) { 3340 tcp_err_ack(tcp, mp, TNOADDR, 0); 3341 return; 3342 } 3343 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3344 requested_port, addrtype); 3345 } 3346 } 3347 3348 if (mlptype != mlptSingle) { 3349 if (secpolicy_net_bindmlp(cr) != 0) { 3350 if (tcp->tcp_debug) { 3351 (void) strlog(TCP_MOD_ID, 0, 1, 3352 SL_ERROR|SL_TRACE, 3353 "tcp_bind: no priv for multilevel port %d", 3354 requested_port); 3355 } 3356 tcp_err_ack(tcp, mp, TACCES, 0); 3357 return; 3358 } 3359 3360 /* 3361 * If we're specifically binding a shared IP address and the 3362 * port is MLP on shared addresses, then check to see if this 3363 * zone actually owns the MLP. Reject if not. 3364 */ 3365 if (mlptype == mlptShared && addrtype == mlptShared) { 3366 zoneid_t mlpzone; 3367 3368 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3369 htons(mlp_port)); 3370 if (connp->conn_zoneid != mlpzone) { 3371 if (tcp->tcp_debug) { 3372 (void) strlog(TCP_MOD_ID, 0, 1, 3373 SL_ERROR|SL_TRACE, 3374 "tcp_bind: attempt to bind port " 3375 "%d on shared addr in zone %d " 3376 "(should be %d)", 3377 mlp_port, connp->conn_zoneid, 3378 mlpzone); 3379 } 3380 tcp_err_ack(tcp, mp, TACCES, 0); 3381 return; 3382 } 3383 } 3384 3385 if (!user_specified) { 3386 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3387 requested_port, B_TRUE); 3388 if (err != 0) { 3389 if (tcp->tcp_debug) { 3390 (void) strlog(TCP_MOD_ID, 0, 1, 3391 SL_ERROR|SL_TRACE, 3392 "tcp_bind: cannot establish anon " 3393 "MLP for port %d", 3394 requested_port); 3395 } 3396 tcp_err_ack(tcp, mp, TSYSERR, err); 3397 return; 3398 } 3399 connp->conn_anon_port = B_TRUE; 3400 } 3401 connp->conn_mlp_type = mlptype; 3402 } 3403 3404 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3405 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3406 3407 if (allocated_port == 0) { 3408 connp->conn_mlp_type = mlptSingle; 3409 if (connp->conn_anon_port) { 3410 connp->conn_anon_port = B_FALSE; 3411 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3412 requested_port, B_FALSE); 3413 } 3414 if (bind_to_req_port_only) { 3415 if (tcp->tcp_debug) { 3416 (void) strlog(TCP_MOD_ID, 0, 1, 3417 SL_ERROR|SL_TRACE, 3418 "tcp_bind: requested addr busy"); 3419 } 3420 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3421 } else { 3422 /* If we are out of ports, fail the bind. */ 3423 if (tcp->tcp_debug) { 3424 (void) strlog(TCP_MOD_ID, 0, 1, 3425 SL_ERROR|SL_TRACE, 3426 "tcp_bind: out of ports?"); 3427 } 3428 tcp_err_ack(tcp, mp, TNOADDR, 0); 3429 } 3430 return; 3431 } 3432 ASSERT(tcp->tcp_state == TCPS_BOUND); 3433 do_bind: 3434 if (!backlog_update) { 3435 if (tcp->tcp_family == AF_INET) 3436 sin->sin_port = htons(allocated_port); 3437 else 3438 sin6->sin6_port = htons(allocated_port); 3439 } 3440 if (tcp->tcp_family == AF_INET) { 3441 if (tbr->CONIND_number != 0) { 3442 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3443 sizeof (sin_t)); 3444 } else { 3445 /* Just verify the local IP address */ 3446 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3447 } 3448 } else { 3449 if (tbr->CONIND_number != 0) { 3450 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3451 sizeof (sin6_t)); 3452 } else { 3453 /* Just verify the local IP address */ 3454 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3455 IPV6_ADDR_LEN); 3456 } 3457 } 3458 if (mp1 == NULL) { 3459 if (connp->conn_anon_port) { 3460 connp->conn_anon_port = B_FALSE; 3461 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3462 requested_port, B_FALSE); 3463 } 3464 connp->conn_mlp_type = mlptSingle; 3465 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3466 return; 3467 } 3468 3469 tbr->PRIM_type = T_BIND_ACK; 3470 mp->b_datap->db_type = M_PCPROTO; 3471 3472 /* Chain in the reply mp for tcp_rput() */ 3473 mp1->b_cont = mp; 3474 mp = mp1; 3475 3476 tcp->tcp_conn_req_max = tbr->CONIND_number; 3477 if (tcp->tcp_conn_req_max) { 3478 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3479 tcp->tcp_conn_req_max = tcp_conn_req_min; 3480 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3481 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3482 /* 3483 * If this is a listener, do not reset the eager list 3484 * and other stuffs. Note that we don't check if the 3485 * existing eager list meets the new tcp_conn_req_max 3486 * requirement. 3487 */ 3488 if (tcp->tcp_state != TCPS_LISTEN) { 3489 tcp->tcp_state = TCPS_LISTEN; 3490 /* Initialize the chain. Don't need the eager_lock */ 3491 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3492 tcp->tcp_eager_next_drop_q0 = tcp; 3493 tcp->tcp_eager_prev_drop_q0 = tcp; 3494 tcp->tcp_second_ctimer_threshold = 3495 tcp_ip_abort_linterval; 3496 } 3497 } 3498 3499 /* 3500 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3501 * processing continues in tcp_rput_other(). 3502 */ 3503 if (tcp->tcp_family == AF_INET6) { 3504 ASSERT(tcp->tcp_connp->conn_af_isv6); 3505 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3506 } else { 3507 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3508 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3509 } 3510 /* 3511 * If the bind cannot complete immediately 3512 * IP will arrange to call tcp_rput_other 3513 * when the bind completes. 3514 */ 3515 if (mp != NULL) { 3516 tcp_rput_other(tcp, mp); 3517 } else { 3518 /* 3519 * Bind will be resumed later. Need to ensure 3520 * that conn doesn't disappear when that happens. 3521 * This will be decremented in ip_resume_tcp_bind(). 3522 */ 3523 CONN_INC_REF(tcp->tcp_connp); 3524 } 3525 } 3526 3527 3528 /* 3529 * If the "bind_to_req_port_only" parameter is set, if the requested port 3530 * number is available, return it, If not return 0 3531 * 3532 * If "bind_to_req_port_only" parameter is not set and 3533 * If the requested port number is available, return it. If not, return 3534 * the first anonymous port we happen across. If no anonymous ports are 3535 * available, return 0. addr is the requested local address, if any. 3536 * 3537 * In either case, when succeeding update the tcp_t to record the port number 3538 * and insert it in the bind hash table. 3539 * 3540 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3541 * without setting SO_REUSEADDR. This is needed so that they 3542 * can be viewed as two independent transport protocols. 3543 */ 3544 static in_port_t 3545 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3546 int reuseaddr, boolean_t quick_connect, 3547 boolean_t bind_to_req_port_only, boolean_t user_specified) 3548 { 3549 /* number of times we have run around the loop */ 3550 int count = 0; 3551 /* maximum number of times to run around the loop */ 3552 int loopmax; 3553 conn_t *connp = tcp->tcp_connp; 3554 zoneid_t zoneid = connp->conn_zoneid; 3555 3556 /* 3557 * Lookup for free addresses is done in a loop and "loopmax" 3558 * influences how long we spin in the loop 3559 */ 3560 if (bind_to_req_port_only) { 3561 /* 3562 * If the requested port is busy, don't bother to look 3563 * for a new one. Setting loop maximum count to 1 has 3564 * that effect. 3565 */ 3566 loopmax = 1; 3567 } else { 3568 /* 3569 * If the requested port is busy, look for a free one 3570 * in the anonymous port range. 3571 * Set loopmax appropriately so that one does not look 3572 * forever in the case all of the anonymous ports are in use. 3573 */ 3574 if (tcp->tcp_anon_priv_bind) { 3575 /* 3576 * loopmax = 3577 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3578 */ 3579 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3580 } else { 3581 loopmax = (tcp_largest_anon_port - 3582 tcp_smallest_anon_port + 1); 3583 } 3584 } 3585 do { 3586 uint16_t lport; 3587 tf_t *tbf; 3588 tcp_t *ltcp; 3589 conn_t *lconnp; 3590 3591 lport = htons(port); 3592 3593 /* 3594 * Ensure that the tcp_t is not currently in the bind hash. 3595 * Hold the lock on the hash bucket to ensure that 3596 * the duplicate check plus the insertion is an atomic 3597 * operation. 3598 * 3599 * This function does an inline lookup on the bind hash list 3600 * Make sure that we access only members of tcp_t 3601 * and that we don't look at tcp_tcp, since we are not 3602 * doing a CONN_INC_REF. 3603 */ 3604 tcp_bind_hash_remove(tcp); 3605 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3606 mutex_enter(&tbf->tf_lock); 3607 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3608 ltcp = ltcp->tcp_bind_hash) { 3609 boolean_t not_socket; 3610 boolean_t exclbind; 3611 3612 if (lport != ltcp->tcp_lport) 3613 continue; 3614 3615 lconnp = ltcp->tcp_connp; 3616 3617 /* 3618 * On a labeled system, we must treat bindings to ports 3619 * on shared IP addresses by sockets with MAC exemption 3620 * privilege as being in all zones, as there's 3621 * otherwise no way to identify the right receiver. 3622 */ 3623 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3624 !lconnp->conn_mac_exempt && 3625 !connp->conn_mac_exempt) 3626 continue; 3627 3628 /* 3629 * If TCP_EXCLBIND is set for either the bound or 3630 * binding endpoint, the semantics of bind 3631 * is changed according to the following. 3632 * 3633 * spec = specified address (v4 or v6) 3634 * unspec = unspecified address (v4 or v6) 3635 * A = specified addresses are different for endpoints 3636 * 3637 * bound bind to allowed 3638 * ------------------------------------- 3639 * unspec unspec no 3640 * unspec spec no 3641 * spec unspec no 3642 * spec spec yes if A 3643 * 3644 * For labeled systems, SO_MAC_EXEMPT behaves the same 3645 * as TCP_EXCLBIND, except that zoneid is ignored. 3646 * 3647 * Note: 3648 * 3649 * 1. Because of TLI semantics, an endpoint can go 3650 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3651 * TCPS_BOUND, depending on whether it is originally 3652 * a listener or not. That is why we need to check 3653 * for states greater than or equal to TCPS_BOUND 3654 * here. 3655 * 3656 * 2. Ideally, we should only check for state equals 3657 * to TCPS_LISTEN. And the following check should be 3658 * added. 3659 * 3660 * if (ltcp->tcp_state == TCPS_LISTEN || 3661 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3662 * ... 3663 * } 3664 * 3665 * The semantics will be changed to this. If the 3666 * endpoint on the list is in state not equal to 3667 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3668 * set, let the bind succeed. 3669 * 3670 * Because of (1), we cannot do that for TLI 3671 * endpoints. But we can do that for socket endpoints. 3672 * If in future, we can change this going back 3673 * semantics, we can use the above check for TLI also. 3674 */ 3675 not_socket = !(TCP_IS_SOCKET(ltcp) && 3676 TCP_IS_SOCKET(tcp)); 3677 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3678 3679 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3680 (exclbind && (not_socket || 3681 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3682 if (V6_OR_V4_INADDR_ANY( 3683 ltcp->tcp_bound_source_v6) || 3684 V6_OR_V4_INADDR_ANY(*laddr) || 3685 IN6_ARE_ADDR_EQUAL(laddr, 3686 <cp->tcp_bound_source_v6)) { 3687 break; 3688 } 3689 continue; 3690 } 3691 3692 /* 3693 * Check ipversion to allow IPv4 and IPv6 sockets to 3694 * have disjoint port number spaces, if *_EXCLBIND 3695 * is not set and only if the application binds to a 3696 * specific port. We use the same autoassigned port 3697 * number space for IPv4 and IPv6 sockets. 3698 */ 3699 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3700 bind_to_req_port_only) 3701 continue; 3702 3703 /* 3704 * Ideally, we should make sure that the source 3705 * address, remote address, and remote port in the 3706 * four tuple for this tcp-connection is unique. 3707 * However, trying to find out the local source 3708 * address would require too much code duplication 3709 * with IP, since IP needs needs to have that code 3710 * to support userland TCP implementations. 3711 */ 3712 if (quick_connect && 3713 (ltcp->tcp_state > TCPS_LISTEN) && 3714 ((tcp->tcp_fport != ltcp->tcp_fport) || 3715 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3716 <cp->tcp_remote_v6))) 3717 continue; 3718 3719 if (!reuseaddr) { 3720 /* 3721 * No socket option SO_REUSEADDR. 3722 * If existing port is bound to 3723 * a non-wildcard IP address 3724 * and the requesting stream is 3725 * bound to a distinct 3726 * different IP addresses 3727 * (non-wildcard, also), keep 3728 * going. 3729 */ 3730 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3731 !V6_OR_V4_INADDR_ANY( 3732 ltcp->tcp_bound_source_v6) && 3733 !IN6_ARE_ADDR_EQUAL(laddr, 3734 <cp->tcp_bound_source_v6)) 3735 continue; 3736 if (ltcp->tcp_state >= TCPS_BOUND) { 3737 /* 3738 * This port is being used and 3739 * its state is >= TCPS_BOUND, 3740 * so we can't bind to it. 3741 */ 3742 break; 3743 } 3744 } else { 3745 /* 3746 * socket option SO_REUSEADDR is set on the 3747 * binding tcp_t. 3748 * 3749 * If two streams are bound to 3750 * same IP address or both addr 3751 * and bound source are wildcards 3752 * (INADDR_ANY), we want to stop 3753 * searching. 3754 * We have found a match of IP source 3755 * address and source port, which is 3756 * refused regardless of the 3757 * SO_REUSEADDR setting, so we break. 3758 */ 3759 if (IN6_ARE_ADDR_EQUAL(laddr, 3760 <cp->tcp_bound_source_v6) && 3761 (ltcp->tcp_state == TCPS_LISTEN || 3762 ltcp->tcp_state == TCPS_BOUND)) 3763 break; 3764 } 3765 } 3766 if (ltcp != NULL) { 3767 /* The port number is busy */ 3768 mutex_exit(&tbf->tf_lock); 3769 } else { 3770 /* 3771 * This port is ours. Insert in fanout and mark as 3772 * bound to prevent others from getting the port 3773 * number. 3774 */ 3775 tcp->tcp_state = TCPS_BOUND; 3776 tcp->tcp_lport = htons(port); 3777 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3778 3779 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3780 tcp->tcp_lport)] == tbf); 3781 tcp_bind_hash_insert(tbf, tcp, 1); 3782 3783 mutex_exit(&tbf->tf_lock); 3784 3785 /* 3786 * We don't want tcp_next_port_to_try to "inherit" 3787 * a port number supplied by the user in a bind. 3788 */ 3789 if (user_specified) 3790 return (port); 3791 3792 /* 3793 * This is the only place where tcp_next_port_to_try 3794 * is updated. After the update, it may or may not 3795 * be in the valid range. 3796 */ 3797 if (!tcp->tcp_anon_priv_bind) 3798 tcp_next_port_to_try = port + 1; 3799 return (port); 3800 } 3801 3802 if (tcp->tcp_anon_priv_bind) { 3803 port = tcp_get_next_priv_port(tcp); 3804 } else { 3805 if (count == 0 && user_specified) { 3806 /* 3807 * We may have to return an anonymous port. So 3808 * get one to start with. 3809 */ 3810 port = 3811 tcp_update_next_port(tcp_next_port_to_try, 3812 tcp, B_TRUE); 3813 user_specified = B_FALSE; 3814 } else { 3815 port = tcp_update_next_port(port + 1, tcp, 3816 B_FALSE); 3817 } 3818 } 3819 if (port == 0) 3820 break; 3821 3822 /* 3823 * Don't let this loop run forever in the case where 3824 * all of the anonymous ports are in use. 3825 */ 3826 } while (++count < loopmax); 3827 return (0); 3828 } 3829 3830 /* 3831 * tcp_clean_death / tcp_close_detached must not be called more than once 3832 * on a tcp. Thus every function that potentially calls tcp_clean_death 3833 * must check for the tcp state before calling tcp_clean_death. 3834 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3835 * tcp_timer_handler, all check for the tcp state. 3836 */ 3837 /* ARGSUSED */ 3838 void 3839 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3840 { 3841 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3842 3843 freemsg(mp); 3844 if (tcp->tcp_state > TCPS_BOUND) 3845 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5); 3846 } 3847 3848 /* 3849 * We are dying for some reason. Try to do it gracefully. (May be called 3850 * as writer.) 3851 * 3852 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3853 * done by a service procedure). 3854 * TBD - Should the return value distinguish between the tcp_t being 3855 * freed and it being reinitialized? 3856 */ 3857 static int 3858 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3859 { 3860 mblk_t *mp; 3861 queue_t *q; 3862 3863 TCP_CLD_STAT(tag); 3864 3865 #if TCP_TAG_CLEAN_DEATH 3866 tcp->tcp_cleandeathtag = tag; 3867 #endif 3868 3869 if (tcp->tcp_fused) 3870 tcp_unfuse(tcp); 3871 3872 if (tcp->tcp_linger_tid != 0 && 3873 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3874 tcp_stop_lingering(tcp); 3875 } 3876 3877 ASSERT(tcp != NULL); 3878 ASSERT((tcp->tcp_family == AF_INET && 3879 tcp->tcp_ipversion == IPV4_VERSION) || 3880 (tcp->tcp_family == AF_INET6 && 3881 (tcp->tcp_ipversion == IPV4_VERSION || 3882 tcp->tcp_ipversion == IPV6_VERSION))); 3883 3884 if (TCP_IS_DETACHED(tcp)) { 3885 if (tcp->tcp_hard_binding) { 3886 /* 3887 * Its an eager that we are dealing with. We close the 3888 * eager but in case a conn_ind has already gone to the 3889 * listener, let tcp_accept_finish() send a discon_ind 3890 * to the listener and drop the last reference. If the 3891 * listener doesn't even know about the eager i.e. the 3892 * conn_ind hasn't gone up, blow away the eager and drop 3893 * the last reference as well. If the conn_ind has gone 3894 * up, state should be BOUND. tcp_accept_finish 3895 * will figure out that the connection has received a 3896 * RST and will send a DISCON_IND to the application. 3897 */ 3898 tcp_closei_local(tcp); 3899 if (!tcp->tcp_tconnind_started) { 3900 CONN_DEC_REF(tcp->tcp_connp); 3901 } else { 3902 tcp->tcp_state = TCPS_BOUND; 3903 } 3904 } else { 3905 tcp_close_detached(tcp); 3906 } 3907 return (0); 3908 } 3909 3910 TCP_STAT(tcp_clean_death_nondetached); 3911 3912 /* 3913 * If T_ORDREL_IND has not been sent yet (done when service routine 3914 * is run) postpone cleaning up the endpoint until service routine 3915 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3916 * client_errno since tcp_close uses the client_errno field. 3917 */ 3918 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3919 if (err != 0) 3920 tcp->tcp_client_errno = err; 3921 3922 tcp->tcp_deferred_clean_death = B_TRUE; 3923 return (-1); 3924 } 3925 3926 q = tcp->tcp_rq; 3927 3928 /* Trash all inbound data */ 3929 flushq(q, FLUSHALL); 3930 3931 /* 3932 * If we are at least part way open and there is error 3933 * (err==0 implies no error) 3934 * notify our client by a T_DISCON_IND. 3935 */ 3936 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3937 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3938 !TCP_IS_SOCKET(tcp)) { 3939 /* 3940 * Send M_FLUSH according to TPI. Because sockets will 3941 * (and must) ignore FLUSHR we do that only for TPI 3942 * endpoints and sockets in STREAMS mode. 3943 */ 3944 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3945 } 3946 if (tcp->tcp_debug) { 3947 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3948 "tcp_clean_death: discon err %d", err); 3949 } 3950 mp = mi_tpi_discon_ind(NULL, err, 0); 3951 if (mp != NULL) { 3952 putnext(q, mp); 3953 } else { 3954 if (tcp->tcp_debug) { 3955 (void) strlog(TCP_MOD_ID, 0, 1, 3956 SL_ERROR|SL_TRACE, 3957 "tcp_clean_death, sending M_ERROR"); 3958 } 3959 (void) putnextctl1(q, M_ERROR, EPROTO); 3960 } 3961 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3962 /* SYN_SENT or SYN_RCVD */ 3963 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3964 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3965 /* ESTABLISHED or CLOSE_WAIT */ 3966 BUMP_MIB(&tcp_mib, tcpEstabResets); 3967 } 3968 } 3969 3970 tcp_reinit(tcp); 3971 return (-1); 3972 } 3973 3974 /* 3975 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3976 * to expire, stop the wait and finish the close. 3977 */ 3978 static void 3979 tcp_stop_lingering(tcp_t *tcp) 3980 { 3981 clock_t delta = 0; 3982 3983 tcp->tcp_linger_tid = 0; 3984 if (tcp->tcp_state > TCPS_LISTEN) { 3985 tcp_acceptor_hash_remove(tcp); 3986 if (tcp->tcp_flow_stopped) { 3987 tcp_clrqfull(tcp); 3988 } 3989 3990 if (tcp->tcp_timer_tid != 0) { 3991 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3992 tcp->tcp_timer_tid = 0; 3993 } 3994 /* 3995 * Need to cancel those timers which will not be used when 3996 * TCP is detached. This has to be done before the tcp_wq 3997 * is set to the global queue. 3998 */ 3999 tcp_timers_stop(tcp); 4000 4001 4002 tcp->tcp_detached = B_TRUE; 4003 tcp->tcp_rq = tcp_g_q; 4004 tcp->tcp_wq = WR(tcp_g_q); 4005 4006 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4007 tcp_time_wait_append(tcp); 4008 TCP_DBGSTAT(tcp_detach_time_wait); 4009 goto finish; 4010 } 4011 4012 /* 4013 * If delta is zero the timer event wasn't executed and was 4014 * successfully canceled. In this case we need to restart it 4015 * with the minimal delta possible. 4016 */ 4017 if (delta >= 0) { 4018 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4019 delta ? delta : 1); 4020 } 4021 } else { 4022 tcp_closei_local(tcp); 4023 CONN_DEC_REF(tcp->tcp_connp); 4024 } 4025 finish: 4026 /* Signal closing thread that it can complete close */ 4027 mutex_enter(&tcp->tcp_closelock); 4028 tcp->tcp_detached = B_TRUE; 4029 tcp->tcp_rq = tcp_g_q; 4030 tcp->tcp_wq = WR(tcp_g_q); 4031 tcp->tcp_closed = 1; 4032 cv_signal(&tcp->tcp_closecv); 4033 mutex_exit(&tcp->tcp_closelock); 4034 } 4035 4036 /* 4037 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 4038 * expires. 4039 */ 4040 static void 4041 tcp_close_linger_timeout(void *arg) 4042 { 4043 conn_t *connp = (conn_t *)arg; 4044 tcp_t *tcp = connp->conn_tcp; 4045 4046 tcp->tcp_client_errno = ETIMEDOUT; 4047 tcp_stop_lingering(tcp); 4048 } 4049 4050 static int 4051 tcp_close(queue_t *q, int flags) 4052 { 4053 conn_t *connp = Q_TO_CONN(q); 4054 tcp_t *tcp = connp->conn_tcp; 4055 mblk_t *mp = &tcp->tcp_closemp; 4056 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4057 boolean_t linger_interrupted = B_FALSE; 4058 mblk_t *bp; 4059 4060 ASSERT(WR(q)->q_next == NULL); 4061 ASSERT(connp->conn_ref >= 2); 4062 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4063 4064 /* 4065 * We are being closed as /dev/tcp or /dev/tcp6. 4066 * 4067 * Mark the conn as closing. ill_pending_mp_add will not 4068 * add any mp to the pending mp list, after this conn has 4069 * started closing. Same for sq_pending_mp_add 4070 */ 4071 mutex_enter(&connp->conn_lock); 4072 connp->conn_state_flags |= CONN_CLOSING; 4073 if (connp->conn_oper_pending_ill != NULL) 4074 conn_ioctl_cleanup_reqd = B_TRUE; 4075 CONN_INC_REF_LOCKED(connp); 4076 mutex_exit(&connp->conn_lock); 4077 tcp->tcp_closeflags = (uint8_t)flags; 4078 ASSERT(connp->conn_ref >= 3); 4079 4080 /* 4081 * tcp_closemp_used is used below without any protection of a lock 4082 * as we don't expect any one else to use it concurrently at this 4083 * point otherwise it would be a major defect, though we do 4084 * increment tcp_closemp_used to record any attempt to reuse 4085 * tcp_closemp while it is still in use. This would help debugging. 4086 */ 4087 4088 if (mp->b_prev == NULL) { 4089 tcp->tcp_closemp_used = 1; 4090 } else { 4091 tcp->tcp_closemp_used++; 4092 ASSERT(mp->b_prev == NULL); 4093 } 4094 4095 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4096 4097 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4098 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4099 4100 mutex_enter(&tcp->tcp_closelock); 4101 while (!tcp->tcp_closed) { 4102 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4103 /* 4104 * We got interrupted. Check if we are lingering, 4105 * if yes, post a message to stop and wait until 4106 * tcp_closed is set. If we aren't lingering, 4107 * just go back around. 4108 */ 4109 if (tcp->tcp_linger && 4110 tcp->tcp_lingertime > 0 && 4111 !linger_interrupted) { 4112 mutex_exit(&tcp->tcp_closelock); 4113 /* Entering squeue, bump ref count. */ 4114 CONN_INC_REF(connp); 4115 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4116 squeue_enter(connp->conn_sqp, bp, 4117 tcp_linger_interrupted, connp, 4118 SQTAG_IP_TCP_CLOSE); 4119 linger_interrupted = B_TRUE; 4120 mutex_enter(&tcp->tcp_closelock); 4121 } 4122 } 4123 } 4124 mutex_exit(&tcp->tcp_closelock); 4125 4126 /* 4127 * In the case of listener streams that have eagers in the q or q0 4128 * we wait for the eagers to drop their reference to us. tcp_rq and 4129 * tcp_wq of the eagers point to our queues. By waiting for the 4130 * refcnt to drop to 1, we are sure that the eagers have cleaned 4131 * up their queue pointers and also dropped their references to us. 4132 */ 4133 if (tcp->tcp_wait_for_eagers) { 4134 mutex_enter(&connp->conn_lock); 4135 while (connp->conn_ref != 1) { 4136 cv_wait(&connp->conn_cv, &connp->conn_lock); 4137 } 4138 mutex_exit(&connp->conn_lock); 4139 } 4140 /* 4141 * ioctl cleanup. The mp is queued in the 4142 * ill_pending_mp or in the sq_pending_mp. 4143 */ 4144 if (conn_ioctl_cleanup_reqd) 4145 conn_ioctl_cleanup(connp); 4146 4147 qprocsoff(q); 4148 inet_minor_free(ip_minor_arena, connp->conn_dev); 4149 4150 tcp->tcp_cpid = -1; 4151 4152 /* 4153 * Drop IP's reference on the conn. This is the last reference 4154 * on the connp if the state was less than established. If the 4155 * connection has gone into timewait state, then we will have 4156 * one ref for the TCP and one more ref (total of two) for the 4157 * classifier connected hash list (a timewait connections stays 4158 * in connected hash till closed). 4159 * 4160 * We can't assert the references because there might be other 4161 * transient reference places because of some walkers or queued 4162 * packets in squeue for the timewait state. 4163 */ 4164 CONN_DEC_REF(connp); 4165 q->q_ptr = WR(q)->q_ptr = NULL; 4166 return (0); 4167 } 4168 4169 static int 4170 tcpclose_accept(queue_t *q) 4171 { 4172 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4173 4174 /* 4175 * We had opened an acceptor STREAM for sockfs which is 4176 * now being closed due to some error. 4177 */ 4178 qprocsoff(q); 4179 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4180 q->q_ptr = WR(q)->q_ptr = NULL; 4181 return (0); 4182 } 4183 4184 /* 4185 * Called by tcp_close() routine via squeue when lingering is 4186 * interrupted by a signal. 4187 */ 4188 4189 /* ARGSUSED */ 4190 static void 4191 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4192 { 4193 conn_t *connp = (conn_t *)arg; 4194 tcp_t *tcp = connp->conn_tcp; 4195 4196 freeb(mp); 4197 if (tcp->tcp_linger_tid != 0 && 4198 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4199 tcp_stop_lingering(tcp); 4200 tcp->tcp_client_errno = EINTR; 4201 } 4202 } 4203 4204 /* 4205 * Called by streams close routine via squeues when our client blows off her 4206 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4207 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4208 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4209 * acked. 4210 * 4211 * NOTE: tcp_close potentially returns error when lingering. 4212 * However, the stream head currently does not pass these errors 4213 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4214 * errors to the application (from tsleep()) and not errors 4215 * like ECONNRESET caused by receiving a reset packet. 4216 */ 4217 4218 /* ARGSUSED */ 4219 static void 4220 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4221 { 4222 char *msg; 4223 conn_t *connp = (conn_t *)arg; 4224 tcp_t *tcp = connp->conn_tcp; 4225 clock_t delta = 0; 4226 4227 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4228 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4229 4230 /* Cancel any pending timeout */ 4231 if (tcp->tcp_ordrelid != 0) { 4232 if (tcp->tcp_timeout) { 4233 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4234 } 4235 tcp->tcp_ordrelid = 0; 4236 tcp->tcp_timeout = B_FALSE; 4237 } 4238 4239 mutex_enter(&tcp->tcp_eager_lock); 4240 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4241 /* Cleanup for listener */ 4242 tcp_eager_cleanup(tcp, 0); 4243 tcp->tcp_wait_for_eagers = 1; 4244 } 4245 mutex_exit(&tcp->tcp_eager_lock); 4246 4247 connp->conn_mdt_ok = B_FALSE; 4248 tcp->tcp_mdt = B_FALSE; 4249 4250 connp->conn_lso_ok = B_FALSE; 4251 tcp->tcp_lso = B_FALSE; 4252 4253 msg = NULL; 4254 switch (tcp->tcp_state) { 4255 case TCPS_CLOSED: 4256 case TCPS_IDLE: 4257 case TCPS_BOUND: 4258 case TCPS_LISTEN: 4259 break; 4260 case TCPS_SYN_SENT: 4261 msg = "tcp_close, during connect"; 4262 break; 4263 case TCPS_SYN_RCVD: 4264 /* 4265 * Close during the connect 3-way handshake 4266 * but here there may or may not be pending data 4267 * already on queue. Process almost same as in 4268 * the ESTABLISHED state. 4269 */ 4270 /* FALLTHRU */ 4271 default: 4272 if (tcp->tcp_fused) 4273 tcp_unfuse(tcp); 4274 4275 /* 4276 * If SO_LINGER has set a zero linger time, abort the 4277 * connection with a reset. 4278 */ 4279 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4280 msg = "tcp_close, zero lingertime"; 4281 break; 4282 } 4283 4284 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4285 /* 4286 * Abort connection if there is unread data queued. 4287 */ 4288 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4289 msg = "tcp_close, unread data"; 4290 break; 4291 } 4292 /* 4293 * tcp_hard_bound is now cleared thus all packets go through 4294 * tcp_lookup. This fact is used by tcp_detach below. 4295 * 4296 * We have done a qwait() above which could have possibly 4297 * drained more messages in turn causing transition to a 4298 * different state. Check whether we have to do the rest 4299 * of the processing or not. 4300 */ 4301 if (tcp->tcp_state <= TCPS_LISTEN) 4302 break; 4303 4304 /* 4305 * Transmit the FIN before detaching the tcp_t. 4306 * After tcp_detach returns this queue/perimeter 4307 * no longer owns the tcp_t thus others can modify it. 4308 */ 4309 (void) tcp_xmit_end(tcp); 4310 4311 /* 4312 * If lingering on close then wait until the fin is acked, 4313 * the SO_LINGER time passes, or a reset is sent/received. 4314 */ 4315 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4316 !(tcp->tcp_fin_acked) && 4317 tcp->tcp_state >= TCPS_ESTABLISHED) { 4318 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4319 tcp->tcp_client_errno = EWOULDBLOCK; 4320 } else if (tcp->tcp_client_errno == 0) { 4321 4322 ASSERT(tcp->tcp_linger_tid == 0); 4323 4324 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4325 tcp_close_linger_timeout, 4326 tcp->tcp_lingertime * hz); 4327 4328 /* tcp_close_linger_timeout will finish close */ 4329 if (tcp->tcp_linger_tid == 0) 4330 tcp->tcp_client_errno = ENOSR; 4331 else 4332 return; 4333 } 4334 4335 /* 4336 * Check if we need to detach or just close 4337 * the instance. 4338 */ 4339 if (tcp->tcp_state <= TCPS_LISTEN) 4340 break; 4341 } 4342 4343 /* 4344 * Make sure that no other thread will access the tcp_rq of 4345 * this instance (through lookups etc.) as tcp_rq will go 4346 * away shortly. 4347 */ 4348 tcp_acceptor_hash_remove(tcp); 4349 4350 if (tcp->tcp_flow_stopped) { 4351 tcp_clrqfull(tcp); 4352 } 4353 4354 if (tcp->tcp_timer_tid != 0) { 4355 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4356 tcp->tcp_timer_tid = 0; 4357 } 4358 /* 4359 * Need to cancel those timers which will not be used when 4360 * TCP is detached. This has to be done before the tcp_wq 4361 * is set to the global queue. 4362 */ 4363 tcp_timers_stop(tcp); 4364 4365 tcp->tcp_detached = B_TRUE; 4366 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4367 tcp_time_wait_append(tcp); 4368 TCP_DBGSTAT(tcp_detach_time_wait); 4369 ASSERT(connp->conn_ref >= 3); 4370 goto finish; 4371 } 4372 4373 /* 4374 * If delta is zero the timer event wasn't executed and was 4375 * successfully canceled. In this case we need to restart it 4376 * with the minimal delta possible. 4377 */ 4378 if (delta >= 0) 4379 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4380 delta ? delta : 1); 4381 4382 ASSERT(connp->conn_ref >= 3); 4383 goto finish; 4384 } 4385 4386 /* Detach did not complete. Still need to remove q from stream. */ 4387 if (msg) { 4388 if (tcp->tcp_state == TCPS_ESTABLISHED || 4389 tcp->tcp_state == TCPS_CLOSE_WAIT) 4390 BUMP_MIB(&tcp_mib, tcpEstabResets); 4391 if (tcp->tcp_state == TCPS_SYN_SENT || 4392 tcp->tcp_state == TCPS_SYN_RCVD) 4393 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4394 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4395 } 4396 4397 tcp_closei_local(tcp); 4398 CONN_DEC_REF(connp); 4399 ASSERT(connp->conn_ref >= 2); 4400 4401 finish: 4402 /* 4403 * Although packets are always processed on the correct 4404 * tcp's perimeter and access is serialized via squeue's, 4405 * IP still needs a queue when sending packets in time_wait 4406 * state so use WR(tcp_g_q) till ip_output() can be 4407 * changed to deal with just connp. For read side, we 4408 * could have set tcp_rq to NULL but there are some cases 4409 * in tcp_rput_data() from early days of this code which 4410 * do a putnext without checking if tcp is closed. Those 4411 * need to be identified before both tcp_rq and tcp_wq 4412 * can be set to NULL and tcp_q_q can disappear forever. 4413 */ 4414 mutex_enter(&tcp->tcp_closelock); 4415 /* 4416 * Don't change the queues in the case of a listener that has 4417 * eagers in its q or q0. It could surprise the eagers. 4418 * Instead wait for the eagers outside the squeue. 4419 */ 4420 if (!tcp->tcp_wait_for_eagers) { 4421 tcp->tcp_detached = B_TRUE; 4422 tcp->tcp_rq = tcp_g_q; 4423 tcp->tcp_wq = WR(tcp_g_q); 4424 } 4425 4426 /* Signal tcp_close() to finish closing. */ 4427 tcp->tcp_closed = 1; 4428 cv_signal(&tcp->tcp_closecv); 4429 mutex_exit(&tcp->tcp_closelock); 4430 } 4431 4432 4433 /* 4434 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4435 * Some stream heads get upset if they see these later on as anything but NULL. 4436 */ 4437 static void 4438 tcp_close_mpp(mblk_t **mpp) 4439 { 4440 mblk_t *mp; 4441 4442 if ((mp = *mpp) != NULL) { 4443 do { 4444 mp->b_next = NULL; 4445 mp->b_prev = NULL; 4446 } while ((mp = mp->b_cont) != NULL); 4447 4448 mp = *mpp; 4449 *mpp = NULL; 4450 freemsg(mp); 4451 } 4452 } 4453 4454 /* Do detached close. */ 4455 static void 4456 tcp_close_detached(tcp_t *tcp) 4457 { 4458 if (tcp->tcp_fused) 4459 tcp_unfuse(tcp); 4460 4461 /* 4462 * Clustering code serializes TCP disconnect callbacks and 4463 * cluster tcp list walks by blocking a TCP disconnect callback 4464 * if a cluster tcp list walk is in progress. This ensures 4465 * accurate accounting of TCPs in the cluster code even though 4466 * the TCP list walk itself is not atomic. 4467 */ 4468 tcp_closei_local(tcp); 4469 CONN_DEC_REF(tcp->tcp_connp); 4470 } 4471 4472 /* 4473 * Stop all TCP timers, and free the timer mblks if requested. 4474 */ 4475 void 4476 tcp_timers_stop(tcp_t *tcp) 4477 { 4478 if (tcp->tcp_timer_tid != 0) { 4479 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4480 tcp->tcp_timer_tid = 0; 4481 } 4482 if (tcp->tcp_ka_tid != 0) { 4483 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4484 tcp->tcp_ka_tid = 0; 4485 } 4486 if (tcp->tcp_ack_tid != 0) { 4487 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4488 tcp->tcp_ack_tid = 0; 4489 } 4490 if (tcp->tcp_push_tid != 0) { 4491 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4492 tcp->tcp_push_tid = 0; 4493 } 4494 } 4495 4496 /* 4497 * The tcp_t is going away. Remove it from all lists and set it 4498 * to TCPS_CLOSED. The freeing up of memory is deferred until 4499 * tcp_inactive. This is needed since a thread in tcp_rput might have 4500 * done a CONN_INC_REF on this structure before it was removed from the 4501 * hashes. 4502 */ 4503 static void 4504 tcp_closei_local(tcp_t *tcp) 4505 { 4506 ire_t *ire; 4507 conn_t *connp = tcp->tcp_connp; 4508 4509 if (!TCP_IS_SOCKET(tcp)) 4510 tcp_acceptor_hash_remove(tcp); 4511 4512 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4513 tcp->tcp_ibsegs = 0; 4514 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4515 tcp->tcp_obsegs = 0; 4516 4517 /* 4518 * If we are an eager connection hanging off a listener that 4519 * hasn't formally accepted the connection yet, get off his 4520 * list and blow off any data that we have accumulated. 4521 */ 4522 if (tcp->tcp_listener != NULL) { 4523 tcp_t *listener = tcp->tcp_listener; 4524 mutex_enter(&listener->tcp_eager_lock); 4525 /* 4526 * tcp_tconnind_started == B_TRUE means that the 4527 * conn_ind has already gone to listener. At 4528 * this point, eager will be closed but we 4529 * leave it in listeners eager list so that 4530 * if listener decides to close without doing 4531 * accept, we can clean this up. In tcp_wput_accept 4532 * we take care of the case of accept on closed 4533 * eager. 4534 */ 4535 if (!tcp->tcp_tconnind_started) { 4536 tcp_eager_unlink(tcp); 4537 mutex_exit(&listener->tcp_eager_lock); 4538 /* 4539 * We don't want to have any pointers to the 4540 * listener queue, after we have released our 4541 * reference on the listener 4542 */ 4543 tcp->tcp_rq = tcp_g_q; 4544 tcp->tcp_wq = WR(tcp_g_q); 4545 CONN_DEC_REF(listener->tcp_connp); 4546 } else { 4547 mutex_exit(&listener->tcp_eager_lock); 4548 } 4549 } 4550 4551 /* Stop all the timers */ 4552 tcp_timers_stop(tcp); 4553 4554 if (tcp->tcp_state == TCPS_LISTEN) { 4555 if (tcp->tcp_ip_addr_cache) { 4556 kmem_free((void *)tcp->tcp_ip_addr_cache, 4557 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4558 tcp->tcp_ip_addr_cache = NULL; 4559 } 4560 } 4561 if (tcp->tcp_flow_stopped) 4562 tcp_clrqfull(tcp); 4563 4564 tcp_bind_hash_remove(tcp); 4565 /* 4566 * If the tcp_time_wait_collector (which runs outside the squeue) 4567 * is trying to remove this tcp from the time wait list, we will 4568 * block in tcp_time_wait_remove while trying to acquire the 4569 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4570 * requires the ipcl_hash_remove to be ordered after the 4571 * tcp_time_wait_remove for the refcnt checks to work correctly. 4572 */ 4573 if (tcp->tcp_state == TCPS_TIME_WAIT) 4574 (void) tcp_time_wait_remove(tcp, NULL); 4575 CL_INET_DISCONNECT(tcp); 4576 ipcl_hash_remove(connp); 4577 4578 /* 4579 * Delete the cached ire in conn_ire_cache and also mark 4580 * the conn as CONDEMNED 4581 */ 4582 mutex_enter(&connp->conn_lock); 4583 connp->conn_state_flags |= CONN_CONDEMNED; 4584 ire = connp->conn_ire_cache; 4585 connp->conn_ire_cache = NULL; 4586 mutex_exit(&connp->conn_lock); 4587 if (ire != NULL) 4588 IRE_REFRELE_NOTR(ire); 4589 4590 /* Need to cleanup any pending ioctls */ 4591 ASSERT(tcp->tcp_time_wait_next == NULL); 4592 ASSERT(tcp->tcp_time_wait_prev == NULL); 4593 ASSERT(tcp->tcp_time_wait_expire == 0); 4594 tcp->tcp_state = TCPS_CLOSED; 4595 4596 /* Release any SSL context */ 4597 if (tcp->tcp_kssl_ent != NULL) { 4598 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4599 tcp->tcp_kssl_ent = NULL; 4600 } 4601 if (tcp->tcp_kssl_ctx != NULL) { 4602 kssl_release_ctx(tcp->tcp_kssl_ctx); 4603 tcp->tcp_kssl_ctx = NULL; 4604 } 4605 tcp->tcp_kssl_pending = B_FALSE; 4606 } 4607 4608 /* 4609 * tcp is dying (called from ipcl_conn_destroy and error cases). 4610 * Free the tcp_t in either case. 4611 */ 4612 void 4613 tcp_free(tcp_t *tcp) 4614 { 4615 mblk_t *mp; 4616 ip6_pkt_t *ipp; 4617 4618 ASSERT(tcp != NULL); 4619 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4620 4621 tcp->tcp_rq = NULL; 4622 tcp->tcp_wq = NULL; 4623 4624 tcp_close_mpp(&tcp->tcp_xmit_head); 4625 tcp_close_mpp(&tcp->tcp_reass_head); 4626 if (tcp->tcp_rcv_list != NULL) { 4627 /* Free b_next chain */ 4628 tcp_close_mpp(&tcp->tcp_rcv_list); 4629 } 4630 if ((mp = tcp->tcp_urp_mp) != NULL) { 4631 freemsg(mp); 4632 } 4633 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4634 freemsg(mp); 4635 } 4636 4637 if (tcp->tcp_fused_sigurg_mp != NULL) { 4638 freeb(tcp->tcp_fused_sigurg_mp); 4639 tcp->tcp_fused_sigurg_mp = NULL; 4640 } 4641 4642 if (tcp->tcp_sack_info != NULL) { 4643 if (tcp->tcp_notsack_list != NULL) { 4644 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4645 } 4646 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4647 } 4648 4649 if (tcp->tcp_hopopts != NULL) { 4650 mi_free(tcp->tcp_hopopts); 4651 tcp->tcp_hopopts = NULL; 4652 tcp->tcp_hopoptslen = 0; 4653 } 4654 ASSERT(tcp->tcp_hopoptslen == 0); 4655 if (tcp->tcp_dstopts != NULL) { 4656 mi_free(tcp->tcp_dstopts); 4657 tcp->tcp_dstopts = NULL; 4658 tcp->tcp_dstoptslen = 0; 4659 } 4660 ASSERT(tcp->tcp_dstoptslen == 0); 4661 if (tcp->tcp_rtdstopts != NULL) { 4662 mi_free(tcp->tcp_rtdstopts); 4663 tcp->tcp_rtdstopts = NULL; 4664 tcp->tcp_rtdstoptslen = 0; 4665 } 4666 ASSERT(tcp->tcp_rtdstoptslen == 0); 4667 if (tcp->tcp_rthdr != NULL) { 4668 mi_free(tcp->tcp_rthdr); 4669 tcp->tcp_rthdr = NULL; 4670 tcp->tcp_rthdrlen = 0; 4671 } 4672 ASSERT(tcp->tcp_rthdrlen == 0); 4673 4674 ipp = &tcp->tcp_sticky_ipp; 4675 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4676 IPPF_RTHDR)) 4677 ip6_pkt_free(ipp); 4678 4679 /* 4680 * Free memory associated with the tcp/ip header template. 4681 */ 4682 4683 if (tcp->tcp_iphc != NULL) 4684 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4685 4686 /* 4687 * Following is really a blowing away a union. 4688 * It happens to have exactly two members of identical size 4689 * the following code is enough. 4690 */ 4691 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4692 4693 if (tcp->tcp_tracebuf != NULL) { 4694 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4695 tcp->tcp_tracebuf = NULL; 4696 } 4697 } 4698 4699 4700 /* 4701 * Put a connection confirmation message upstream built from the 4702 * address information within 'iph' and 'tcph'. Report our success or failure. 4703 */ 4704 static boolean_t 4705 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4706 mblk_t **defermp) 4707 { 4708 sin_t sin; 4709 sin6_t sin6; 4710 mblk_t *mp; 4711 char *optp = NULL; 4712 int optlen = 0; 4713 cred_t *cr; 4714 4715 if (defermp != NULL) 4716 *defermp = NULL; 4717 4718 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4719 /* 4720 * Return in T_CONN_CON results of option negotiation through 4721 * the T_CONN_REQ. Note: If there is an real end-to-end option 4722 * negotiation, then what is received from remote end needs 4723 * to be taken into account but there is no such thing (yet?) 4724 * in our TCP/IP. 4725 * Note: We do not use mi_offset_param() here as 4726 * tcp_opts_conn_req contents do not directly come from 4727 * an application and are either generated in kernel or 4728 * from user input that was already verified. 4729 */ 4730 mp = tcp->tcp_conn.tcp_opts_conn_req; 4731 optp = (char *)(mp->b_rptr + 4732 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4733 optlen = (int) 4734 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4735 } 4736 4737 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4738 ipha_t *ipha = (ipha_t *)iphdr; 4739 4740 /* packet is IPv4 */ 4741 if (tcp->tcp_family == AF_INET) { 4742 sin = sin_null; 4743 sin.sin_addr.s_addr = ipha->ipha_src; 4744 sin.sin_port = *(uint16_t *)tcph->th_lport; 4745 sin.sin_family = AF_INET; 4746 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4747 (int)sizeof (sin_t), optp, optlen); 4748 } else { 4749 sin6 = sin6_null; 4750 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4751 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4752 sin6.sin6_family = AF_INET6; 4753 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4754 (int)sizeof (sin6_t), optp, optlen); 4755 4756 } 4757 } else { 4758 ip6_t *ip6h = (ip6_t *)iphdr; 4759 4760 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4761 ASSERT(tcp->tcp_family == AF_INET6); 4762 sin6 = sin6_null; 4763 sin6.sin6_addr = ip6h->ip6_src; 4764 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4765 sin6.sin6_family = AF_INET6; 4766 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4767 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4768 (int)sizeof (sin6_t), optp, optlen); 4769 } 4770 4771 if (!mp) 4772 return (B_FALSE); 4773 4774 if ((cr = DB_CRED(idmp)) != NULL) { 4775 mblk_setcred(mp, cr); 4776 DB_CPID(mp) = DB_CPID(idmp); 4777 } 4778 4779 if (defermp == NULL) 4780 putnext(tcp->tcp_rq, mp); 4781 else 4782 *defermp = mp; 4783 4784 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4785 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4786 return (B_TRUE); 4787 } 4788 4789 /* 4790 * Defense for the SYN attack - 4791 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4792 * one from the list of droppable eagers. This list is a subset of q0. 4793 * see comments before the definition of MAKE_DROPPABLE(). 4794 * 2. Don't drop a SYN request before its first timeout. This gives every 4795 * request at least til the first timeout to complete its 3-way handshake. 4796 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4797 * requests currently on the queue that has timed out. This will be used 4798 * as an indicator of whether an attack is under way, so that appropriate 4799 * actions can be taken. (It's incremented in tcp_timer() and decremented 4800 * either when eager goes into ESTABLISHED, or gets freed up.) 4801 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4802 * # of timeout drops back to <= q0len/32 => SYN alert off 4803 */ 4804 static boolean_t 4805 tcp_drop_q0(tcp_t *tcp) 4806 { 4807 tcp_t *eager; 4808 mblk_t *mp; 4809 4810 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4811 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4812 4813 /* Pick oldest eager from the list of droppable eagers */ 4814 eager = tcp->tcp_eager_prev_drop_q0; 4815 4816 /* If list is empty. return B_FALSE */ 4817 if (eager == tcp) { 4818 return (B_FALSE); 4819 } 4820 4821 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4822 if ((mp = allocb(0, BPRI_HI)) == NULL) 4823 return (B_FALSE); 4824 4825 /* 4826 * Take this eager out from the list of droppable eagers since we are 4827 * going to drop it. 4828 */ 4829 MAKE_UNDROPPABLE(eager); 4830 4831 if (tcp->tcp_debug) { 4832 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4833 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4834 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4835 tcp->tcp_conn_req_cnt_q0, 4836 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4837 } 4838 4839 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4840 4841 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4842 CONN_INC_REF(eager->tcp_connp); 4843 4844 /* Mark the IRE created for this SYN request temporary */ 4845 tcp_ip_ire_mark_advice(eager); 4846 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4847 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4848 4849 return (B_TRUE); 4850 } 4851 4852 int 4853 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4854 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4855 { 4856 tcp_t *ltcp = lconnp->conn_tcp; 4857 tcp_t *tcp = connp->conn_tcp; 4858 mblk_t *tpi_mp; 4859 ipha_t *ipha; 4860 ip6_t *ip6h; 4861 sin6_t sin6; 4862 in6_addr_t v6dst; 4863 int err; 4864 int ifindex = 0; 4865 cred_t *cr; 4866 4867 if (ipvers == IPV4_VERSION) { 4868 ipha = (ipha_t *)mp->b_rptr; 4869 4870 connp->conn_send = ip_output; 4871 connp->conn_recv = tcp_input; 4872 4873 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4874 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4875 4876 sin6 = sin6_null; 4877 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4878 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4879 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4880 sin6.sin6_family = AF_INET6; 4881 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4882 lconnp->conn_zoneid); 4883 if (tcp->tcp_recvdstaddr) { 4884 sin6_t sin6d; 4885 4886 sin6d = sin6_null; 4887 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4888 &sin6d.sin6_addr); 4889 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4890 sin6d.sin6_family = AF_INET; 4891 tpi_mp = mi_tpi_extconn_ind(NULL, 4892 (char *)&sin6d, sizeof (sin6_t), 4893 (char *)&tcp, 4894 (t_scalar_t)sizeof (intptr_t), 4895 (char *)&sin6d, sizeof (sin6_t), 4896 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4897 } else { 4898 tpi_mp = mi_tpi_conn_ind(NULL, 4899 (char *)&sin6, sizeof (sin6_t), 4900 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4901 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4902 } 4903 } else { 4904 ip6h = (ip6_t *)mp->b_rptr; 4905 4906 connp->conn_send = ip_output_v6; 4907 connp->conn_recv = tcp_input; 4908 4909 connp->conn_srcv6 = ip6h->ip6_dst; 4910 connp->conn_remv6 = ip6h->ip6_src; 4911 4912 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4913 ifindex = (int)DB_CKSUMSTUFF(mp); 4914 DB_CKSUMSTUFF(mp) = 0; 4915 4916 sin6 = sin6_null; 4917 sin6.sin6_addr = ip6h->ip6_src; 4918 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4919 sin6.sin6_family = AF_INET6; 4920 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4921 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4922 lconnp->conn_zoneid); 4923 4924 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4925 /* Pass up the scope_id of remote addr */ 4926 sin6.sin6_scope_id = ifindex; 4927 } else { 4928 sin6.sin6_scope_id = 0; 4929 } 4930 if (tcp->tcp_recvdstaddr) { 4931 sin6_t sin6d; 4932 4933 sin6d = sin6_null; 4934 sin6.sin6_addr = ip6h->ip6_dst; 4935 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4936 sin6d.sin6_family = AF_INET; 4937 tpi_mp = mi_tpi_extconn_ind(NULL, 4938 (char *)&sin6d, sizeof (sin6_t), 4939 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4940 (char *)&sin6d, sizeof (sin6_t), 4941 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4942 } else { 4943 tpi_mp = mi_tpi_conn_ind(NULL, 4944 (char *)&sin6, sizeof (sin6_t), 4945 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4946 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4947 } 4948 } 4949 4950 if (tpi_mp == NULL) 4951 return (ENOMEM); 4952 4953 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4954 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4955 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4956 connp->conn_fully_bound = B_FALSE; 4957 4958 if (tcp_trace) 4959 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4960 4961 /* Inherit information from the "parent" */ 4962 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4963 tcp->tcp_family = ltcp->tcp_family; 4964 tcp->tcp_wq = ltcp->tcp_wq; 4965 tcp->tcp_rq = ltcp->tcp_rq; 4966 tcp->tcp_mss = tcp_mss_def_ipv6; 4967 tcp->tcp_detached = B_TRUE; 4968 if ((err = tcp_init_values(tcp)) != 0) { 4969 freemsg(tpi_mp); 4970 return (err); 4971 } 4972 4973 if (ipvers == IPV4_VERSION) { 4974 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4975 freemsg(tpi_mp); 4976 return (err); 4977 } 4978 ASSERT(tcp->tcp_ipha != NULL); 4979 } else { 4980 /* ifindex must be already set */ 4981 ASSERT(ifindex != 0); 4982 4983 if (ltcp->tcp_bound_if != 0) { 4984 /* 4985 * Set newtcp's bound_if equal to 4986 * listener's value. If ifindex is 4987 * not the same as ltcp->tcp_bound_if, 4988 * it must be a packet for the ipmp group 4989 * of interfaces 4990 */ 4991 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4992 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4993 tcp->tcp_bound_if = ifindex; 4994 } 4995 4996 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4997 tcp->tcp_recvifindex = 0; 4998 tcp->tcp_recvhops = 0xffffffffU; 4999 ASSERT(tcp->tcp_ip6h != NULL); 5000 } 5001 5002 tcp->tcp_lport = ltcp->tcp_lport; 5003 5004 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 5005 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 5006 /* 5007 * Listener had options of some sort; eager inherits. 5008 * Free up the eager template and allocate one 5009 * of the right size. 5010 */ 5011 if (tcp->tcp_hdr_grown) { 5012 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 5013 } else { 5014 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5015 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5016 } 5017 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5018 KM_NOSLEEP); 5019 if (tcp->tcp_iphc == NULL) { 5020 tcp->tcp_iphc_len = 0; 5021 freemsg(tpi_mp); 5022 return (ENOMEM); 5023 } 5024 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5025 tcp->tcp_hdr_grown = B_TRUE; 5026 } 5027 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5028 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5029 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5030 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5031 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5032 5033 /* 5034 * Copy the IP+TCP header template from listener to eager 5035 */ 5036 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5037 if (tcp->tcp_ipversion == IPV6_VERSION) { 5038 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5039 IPPROTO_RAW) { 5040 tcp->tcp_ip6h = 5041 (ip6_t *)(tcp->tcp_iphc + 5042 sizeof (ip6i_t)); 5043 } else { 5044 tcp->tcp_ip6h = 5045 (ip6_t *)(tcp->tcp_iphc); 5046 } 5047 tcp->tcp_ipha = NULL; 5048 } else { 5049 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5050 tcp->tcp_ip6h = NULL; 5051 } 5052 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5053 tcp->tcp_ip_hdr_len); 5054 } else { 5055 /* 5056 * only valid case when ipversion of listener and 5057 * eager differ is when listener is IPv6 and 5058 * eager is IPv4. 5059 * Eager header template has been initialized to the 5060 * maximum v4 header sizes, which includes space for 5061 * TCP and IP options. 5062 */ 5063 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5064 (tcp->tcp_ipversion == IPV4_VERSION)); 5065 ASSERT(tcp->tcp_iphc_len >= 5066 TCP_MAX_COMBINED_HEADER_LENGTH); 5067 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5068 /* copy IP header fields individually */ 5069 tcp->tcp_ipha->ipha_ttl = 5070 ltcp->tcp_ip6h->ip6_hops; 5071 bcopy(ltcp->tcp_tcph->th_lport, 5072 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5073 } 5074 5075 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5076 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5077 sizeof (in_port_t)); 5078 5079 if (ltcp->tcp_lport == 0) { 5080 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5081 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5082 sizeof (in_port_t)); 5083 } 5084 5085 if (tcp->tcp_ipversion == IPV4_VERSION) { 5086 ASSERT(ipha != NULL); 5087 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5088 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5089 5090 /* Source routing option copyover (reverse it) */ 5091 if (tcp_rev_src_routes) 5092 tcp_opt_reverse(tcp, ipha); 5093 } else { 5094 ASSERT(ip6h != NULL); 5095 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5096 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5097 } 5098 5099 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5100 ASSERT(!tcp->tcp_tconnind_started); 5101 /* 5102 * If the SYN contains a credential, it's a loopback packet; attach 5103 * the credential to the TPI message. 5104 */ 5105 if ((cr = DB_CRED(idmp)) != NULL) { 5106 mblk_setcred(tpi_mp, cr); 5107 DB_CPID(tpi_mp) = DB_CPID(idmp); 5108 } 5109 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5110 5111 /* Inherit the listener's SSL protection state */ 5112 5113 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5114 kssl_hold_ent(tcp->tcp_kssl_ent); 5115 tcp->tcp_kssl_pending = B_TRUE; 5116 } 5117 5118 return (0); 5119 } 5120 5121 5122 int 5123 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5124 tcph_t *tcph, mblk_t *idmp) 5125 { 5126 tcp_t *ltcp = lconnp->conn_tcp; 5127 tcp_t *tcp = connp->conn_tcp; 5128 sin_t sin; 5129 mblk_t *tpi_mp = NULL; 5130 int err; 5131 cred_t *cr; 5132 5133 sin = sin_null; 5134 sin.sin_addr.s_addr = ipha->ipha_src; 5135 sin.sin_port = *(uint16_t *)tcph->th_lport; 5136 sin.sin_family = AF_INET; 5137 if (ltcp->tcp_recvdstaddr) { 5138 sin_t sind; 5139 5140 sind = sin_null; 5141 sind.sin_addr.s_addr = ipha->ipha_dst; 5142 sind.sin_port = *(uint16_t *)tcph->th_fport; 5143 sind.sin_family = AF_INET; 5144 tpi_mp = mi_tpi_extconn_ind(NULL, 5145 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5146 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5147 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5148 } else { 5149 tpi_mp = mi_tpi_conn_ind(NULL, 5150 (char *)&sin, sizeof (sin_t), 5151 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5152 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5153 } 5154 5155 if (tpi_mp == NULL) { 5156 return (ENOMEM); 5157 } 5158 5159 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5160 connp->conn_send = ip_output; 5161 connp->conn_recv = tcp_input; 5162 connp->conn_fully_bound = B_FALSE; 5163 5164 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5165 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5166 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5167 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5168 5169 if (tcp_trace) { 5170 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5171 } 5172 5173 /* Inherit information from the "parent" */ 5174 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5175 tcp->tcp_family = ltcp->tcp_family; 5176 tcp->tcp_wq = ltcp->tcp_wq; 5177 tcp->tcp_rq = ltcp->tcp_rq; 5178 tcp->tcp_mss = tcp_mss_def_ipv4; 5179 tcp->tcp_detached = B_TRUE; 5180 if ((err = tcp_init_values(tcp)) != 0) { 5181 freemsg(tpi_mp); 5182 return (err); 5183 } 5184 5185 /* 5186 * Let's make sure that eager tcp template has enough space to 5187 * copy IPv4 listener's tcp template. Since the conn_t structure is 5188 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5189 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5190 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5191 * extension headers or with ip6i_t struct). Note that bcopy() below 5192 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5193 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5194 */ 5195 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5196 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5197 5198 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5199 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5200 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5201 tcp->tcp_ttl = ltcp->tcp_ttl; 5202 tcp->tcp_tos = ltcp->tcp_tos; 5203 5204 /* Copy the IP+TCP header template from listener to eager */ 5205 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5206 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5207 tcp->tcp_ip6h = NULL; 5208 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5209 tcp->tcp_ip_hdr_len); 5210 5211 /* Initialize the IP addresses and Ports */ 5212 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5213 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5214 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5215 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5216 5217 /* Source routing option copyover (reverse it) */ 5218 if (tcp_rev_src_routes) 5219 tcp_opt_reverse(tcp, ipha); 5220 5221 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5222 ASSERT(!tcp->tcp_tconnind_started); 5223 5224 /* 5225 * If the SYN contains a credential, it's a loopback packet; attach 5226 * the credential to the TPI message. 5227 */ 5228 if ((cr = DB_CRED(idmp)) != NULL) { 5229 mblk_setcred(tpi_mp, cr); 5230 DB_CPID(tpi_mp) = DB_CPID(idmp); 5231 } 5232 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5233 5234 /* Inherit the listener's SSL protection state */ 5235 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5236 kssl_hold_ent(tcp->tcp_kssl_ent); 5237 tcp->tcp_kssl_pending = B_TRUE; 5238 } 5239 5240 return (0); 5241 } 5242 5243 /* 5244 * sets up conn for ipsec. 5245 * if the first mblk is M_CTL it is consumed and mpp is updated. 5246 * in case of error mpp is freed. 5247 */ 5248 conn_t * 5249 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5250 { 5251 conn_t *connp = tcp->tcp_connp; 5252 conn_t *econnp; 5253 squeue_t *new_sqp; 5254 mblk_t *first_mp = *mpp; 5255 mblk_t *mp = *mpp; 5256 boolean_t mctl_present = B_FALSE; 5257 uint_t ipvers; 5258 5259 econnp = tcp_get_conn(sqp); 5260 if (econnp == NULL) { 5261 freemsg(first_mp); 5262 return (NULL); 5263 } 5264 if (DB_TYPE(mp) == M_CTL) { 5265 if (mp->b_cont == NULL || 5266 mp->b_cont->b_datap->db_type != M_DATA) { 5267 freemsg(first_mp); 5268 return (NULL); 5269 } 5270 mp = mp->b_cont; 5271 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5272 freemsg(first_mp); 5273 return (NULL); 5274 } 5275 5276 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5277 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5278 mctl_present = B_TRUE; 5279 } else { 5280 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5281 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5282 } 5283 5284 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5285 DB_CKSUMSTART(mp) = 0; 5286 5287 ASSERT(OK_32PTR(mp->b_rptr)); 5288 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5289 if (ipvers == IPV4_VERSION) { 5290 uint16_t *up; 5291 uint32_t ports; 5292 ipha_t *ipha; 5293 5294 ipha = (ipha_t *)mp->b_rptr; 5295 up = (uint16_t *)((uchar_t *)ipha + 5296 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5297 ports = *(uint32_t *)up; 5298 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5299 ipha->ipha_dst, ipha->ipha_src, ports); 5300 } else { 5301 uint16_t *up; 5302 uint32_t ports; 5303 uint16_t ip_hdr_len; 5304 uint8_t *nexthdrp; 5305 ip6_t *ip6h; 5306 tcph_t *tcph; 5307 5308 ip6h = (ip6_t *)mp->b_rptr; 5309 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5310 ip_hdr_len = IPV6_HDR_LEN; 5311 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5312 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5313 CONN_DEC_REF(econnp); 5314 freemsg(first_mp); 5315 return (NULL); 5316 } 5317 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5318 up = (uint16_t *)tcph->th_lport; 5319 ports = *(uint32_t *)up; 5320 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5321 ip6h->ip6_dst, ip6h->ip6_src, ports); 5322 } 5323 5324 /* 5325 * The caller already ensured that there is a sqp present. 5326 */ 5327 econnp->conn_sqp = new_sqp; 5328 5329 if (connp->conn_policy != NULL) { 5330 ipsec_in_t *ii; 5331 ii = (ipsec_in_t *)(first_mp->b_rptr); 5332 ASSERT(ii->ipsec_in_policy == NULL); 5333 IPPH_REFHOLD(connp->conn_policy); 5334 ii->ipsec_in_policy = connp->conn_policy; 5335 5336 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5337 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5338 CONN_DEC_REF(econnp); 5339 freemsg(first_mp); 5340 return (NULL); 5341 } 5342 } 5343 5344 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5345 CONN_DEC_REF(econnp); 5346 freemsg(first_mp); 5347 return (NULL); 5348 } 5349 5350 /* 5351 * If we know we have some policy, pass the "IPSEC" 5352 * options size TCP uses this adjust the MSS. 5353 */ 5354 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5355 if (mctl_present) { 5356 freeb(first_mp); 5357 *mpp = mp; 5358 } 5359 5360 return (econnp); 5361 } 5362 5363 /* 5364 * tcp_get_conn/tcp_free_conn 5365 * 5366 * tcp_get_conn is used to get a clean tcp connection structure. 5367 * It tries to reuse the connections put on the freelist by the 5368 * time_wait_collector failing which it goes to kmem_cache. This 5369 * way has two benefits compared to just allocating from and 5370 * freeing to kmem_cache. 5371 * 1) The time_wait_collector can free (which includes the cleanup) 5372 * outside the squeue. So when the interrupt comes, we have a clean 5373 * connection sitting in the freelist. Obviously, this buys us 5374 * performance. 5375 * 5376 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5377 * has multiple disadvantages - tying up the squeue during alloc, and the 5378 * fact that IPSec policy initialization has to happen here which 5379 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5380 * But allocating the conn/tcp in IP land is also not the best since 5381 * we can't check the 'q' and 'q0' which are protected by squeue and 5382 * blindly allocate memory which might have to be freed here if we are 5383 * not allowed to accept the connection. By using the freelist and 5384 * putting the conn/tcp back in freelist, we don't pay a penalty for 5385 * allocating memory without checking 'q/q0' and freeing it if we can't 5386 * accept the connection. 5387 * 5388 * Care should be taken to put the conn back in the same squeue's freelist 5389 * from which it was allocated. Best results are obtained if conn is 5390 * allocated from listener's squeue and freed to the same. Time wait 5391 * collector will free up the freelist is the connection ends up sitting 5392 * there for too long. 5393 */ 5394 void * 5395 tcp_get_conn(void *arg) 5396 { 5397 tcp_t *tcp = NULL; 5398 conn_t *connp = NULL; 5399 squeue_t *sqp = (squeue_t *)arg; 5400 tcp_squeue_priv_t *tcp_time_wait; 5401 5402 tcp_time_wait = 5403 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5404 5405 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5406 tcp = tcp_time_wait->tcp_free_list; 5407 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5408 if (tcp != NULL) { 5409 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5410 tcp_time_wait->tcp_free_list_cnt--; 5411 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5412 tcp->tcp_time_wait_next = NULL; 5413 connp = tcp->tcp_connp; 5414 connp->conn_flags |= IPCL_REUSED; 5415 return ((void *)connp); 5416 } 5417 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5418 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5419 return (NULL); 5420 return ((void *)connp); 5421 } 5422 5423 /* 5424 * Update the cached label for the given tcp_t. This should be called once per 5425 * connection, and before any packets are sent or tcp_process_options is 5426 * invoked. Returns B_FALSE if the correct label could not be constructed. 5427 */ 5428 static boolean_t 5429 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5430 { 5431 conn_t *connp = tcp->tcp_connp; 5432 5433 if (tcp->tcp_ipversion == IPV4_VERSION) { 5434 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5435 int added; 5436 5437 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5438 connp->conn_mac_exempt) != 0) 5439 return (B_FALSE); 5440 5441 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5442 if (added == -1) 5443 return (B_FALSE); 5444 tcp->tcp_hdr_len += added; 5445 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5446 tcp->tcp_ip_hdr_len += added; 5447 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5448 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5449 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5450 tcp->tcp_hdr_len); 5451 if (added == -1) 5452 return (B_FALSE); 5453 tcp->tcp_hdr_len += added; 5454 tcp->tcp_tcph = (tcph_t *) 5455 ((uchar_t *)tcp->tcp_tcph + added); 5456 tcp->tcp_ip_hdr_len += added; 5457 } 5458 } else { 5459 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5460 5461 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5462 connp->conn_mac_exempt) != 0) 5463 return (B_FALSE); 5464 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5465 &tcp->tcp_label_len, optbuf) != 0) 5466 return (B_FALSE); 5467 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5468 return (B_FALSE); 5469 } 5470 5471 connp->conn_ulp_labeled = 1; 5472 5473 return (B_TRUE); 5474 } 5475 5476 /* BEGIN CSTYLED */ 5477 /* 5478 * 5479 * The sockfs ACCEPT path: 5480 * ======================= 5481 * 5482 * The eager is now established in its own perimeter as soon as SYN is 5483 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5484 * completes the accept processing on the acceptor STREAM. The sending 5485 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5486 * listener but a TLI/XTI listener completes the accept processing 5487 * on the listener perimeter. 5488 * 5489 * Common control flow for 3 way handshake: 5490 * ---------------------------------------- 5491 * 5492 * incoming SYN (listener perimeter) -> tcp_rput_data() 5493 * -> tcp_conn_request() 5494 * 5495 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5496 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5497 * 5498 * Sockfs ACCEPT Path: 5499 * ------------------- 5500 * 5501 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5502 * as STREAM entry point) 5503 * 5504 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5505 * 5506 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5507 * association (we are not behind eager's squeue but sockfs is protecting us 5508 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5509 * is changed to point at tcp_wput(). 5510 * 5511 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5512 * listener (done on listener's perimeter). 5513 * 5514 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5515 * accept. 5516 * 5517 * TLI/XTI client ACCEPT path: 5518 * --------------------------- 5519 * 5520 * soaccept() sends T_CONN_RES on the listener STREAM. 5521 * 5522 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5523 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5524 * 5525 * Locks: 5526 * ====== 5527 * 5528 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5529 * and listeners->tcp_eager_next_q. 5530 * 5531 * Referencing: 5532 * ============ 5533 * 5534 * 1) We start out in tcp_conn_request by eager placing a ref on 5535 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5536 * 5537 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5538 * doing so we place a ref on the eager. This ref is finally dropped at the 5539 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5540 * reference is dropped by the squeue framework. 5541 * 5542 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5543 * 5544 * The reference must be released by the same entity that added the reference 5545 * In the above scheme, the eager is the entity that adds and releases the 5546 * references. Note that tcp_accept_finish executes in the squeue of the eager 5547 * (albeit after it is attached to the acceptor stream). Though 1. executes 5548 * in the listener's squeue, the eager is nascent at this point and the 5549 * reference can be considered to have been added on behalf of the eager. 5550 * 5551 * Eager getting a Reset or listener closing: 5552 * ========================================== 5553 * 5554 * Once the listener and eager are linked, the listener never does the unlink. 5555 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5556 * a message on all eager perimeter. The eager then does the unlink, clears 5557 * any pointers to the listener's queue and drops the reference to the 5558 * listener. The listener waits in tcp_close outside the squeue until its 5559 * refcount has dropped to 1. This ensures that the listener has waited for 5560 * all eagers to clear their association with the listener. 5561 * 5562 * Similarly, if eager decides to go away, it can unlink itself and close. 5563 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5564 * the reference to eager is still valid because of the extra ref we put 5565 * in tcp_send_conn_ind. 5566 * 5567 * Listener can always locate the eager under the protection 5568 * of the listener->tcp_eager_lock, and then do a refhold 5569 * on the eager during the accept processing. 5570 * 5571 * The acceptor stream accesses the eager in the accept processing 5572 * based on the ref placed on eager before sending T_conn_ind. 5573 * The only entity that can negate this refhold is a listener close 5574 * which is mutually exclusive with an active acceptor stream. 5575 * 5576 * Eager's reference on the listener 5577 * =================================== 5578 * 5579 * If the accept happens (even on a closed eager) the eager drops its 5580 * reference on the listener at the start of tcp_accept_finish. If the 5581 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5582 * the reference is dropped in tcp_closei_local. If the listener closes, 5583 * the reference is dropped in tcp_eager_kill. In all cases the reference 5584 * is dropped while executing in the eager's context (squeue). 5585 */ 5586 /* END CSTYLED */ 5587 5588 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5589 5590 /* 5591 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5592 * tcp_rput_data will not see any SYN packets. 5593 */ 5594 /* ARGSUSED */ 5595 void 5596 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5597 { 5598 tcph_t *tcph; 5599 uint32_t seg_seq; 5600 tcp_t *eager; 5601 uint_t ipvers; 5602 ipha_t *ipha; 5603 ip6_t *ip6h; 5604 int err; 5605 conn_t *econnp = NULL; 5606 squeue_t *new_sqp; 5607 mblk_t *mp1; 5608 uint_t ip_hdr_len; 5609 conn_t *connp = (conn_t *)arg; 5610 tcp_t *tcp = connp->conn_tcp; 5611 ire_t *ire; 5612 cred_t *credp; 5613 5614 if (tcp->tcp_state != TCPS_LISTEN) 5615 goto error2; 5616 5617 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5618 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5621 mutex_exit(&tcp->tcp_eager_lock); 5622 TCP_STAT(tcp_listendrop); 5623 BUMP_MIB(&tcp_mib, tcpListenDrop); 5624 if (tcp->tcp_debug) { 5625 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5626 "tcp_conn_request: listen backlog (max=%d) " 5627 "overflow (%d pending) on %s", 5628 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 5634 if (tcp->tcp_conn_req_cnt_q0 >= 5635 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5636 /* 5637 * Q0 is full. Drop a pending half-open req from the queue 5638 * to make room for the new SYN req. Also mark the time we 5639 * drop a SYN. 5640 * 5641 * A more aggressive defense against SYN attack will 5642 * be to set the "tcp_syn_defense" flag now. 5643 */ 5644 TCP_STAT(tcp_listendropq0); 5645 tcp->tcp_last_rcv_lbolt = lbolt64; 5646 if (!tcp_drop_q0(tcp)) { 5647 mutex_exit(&tcp->tcp_eager_lock); 5648 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5649 if (tcp->tcp_debug) { 5650 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5651 "tcp_conn_request: listen half-open queue " 5652 "(max=%d) full (%d pending) on %s", 5653 tcp_conn_req_max_q0, 5654 tcp->tcp_conn_req_cnt_q0, 5655 tcp_display(tcp, NULL, 5656 DISP_PORT_ONLY)); 5657 } 5658 goto error2; 5659 } 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 /* 5664 * IP adds STRUIO_EAGER and ensures that the received packet is 5665 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5666 * link local address. If IPSec is enabled, db_struioflag has 5667 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5668 * otherwise an error case if neither of them is set. 5669 */ 5670 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5671 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5672 DB_CKSUMSTART(mp) = 0; 5673 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5674 econnp = (conn_t *)tcp_get_conn(arg2); 5675 if (econnp == NULL) 5676 goto error2; 5677 econnp->conn_sqp = new_sqp; 5678 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5679 /* 5680 * mp is updated in tcp_get_ipsec_conn(). 5681 */ 5682 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5683 if (econnp == NULL) { 5684 /* 5685 * mp freed by tcp_get_ipsec_conn. 5686 */ 5687 return; 5688 } 5689 } else { 5690 goto error2; 5691 } 5692 5693 ASSERT(DB_TYPE(mp) == M_DATA); 5694 5695 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5696 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5697 ASSERT(OK_32PTR(mp->b_rptr)); 5698 if (ipvers == IPV4_VERSION) { 5699 ipha = (ipha_t *)mp->b_rptr; 5700 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5701 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5702 } else { 5703 ip6h = (ip6_t *)mp->b_rptr; 5704 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5705 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5706 } 5707 5708 if (tcp->tcp_family == AF_INET) { 5709 ASSERT(ipvers == IPV4_VERSION); 5710 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5711 } else { 5712 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5713 } 5714 5715 if (err) 5716 goto error3; 5717 5718 eager = econnp->conn_tcp; 5719 5720 /* Inherit various TCP parameters from the listener */ 5721 eager->tcp_naglim = tcp->tcp_naglim; 5722 eager->tcp_first_timer_threshold = 5723 tcp->tcp_first_timer_threshold; 5724 eager->tcp_second_timer_threshold = 5725 tcp->tcp_second_timer_threshold; 5726 5727 eager->tcp_first_ctimer_threshold = 5728 tcp->tcp_first_ctimer_threshold; 5729 eager->tcp_second_ctimer_threshold = 5730 tcp->tcp_second_ctimer_threshold; 5731 5732 /* 5733 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5734 * If it does not, the eager's receive window will be set to the 5735 * listener's receive window later in this function. 5736 */ 5737 eager->tcp_rwnd = 0; 5738 5739 /* 5740 * Inherit listener's tcp_init_cwnd. Need to do this before 5741 * calling tcp_process_options() where tcp_mss_set() is called 5742 * to set the initial cwnd. 5743 */ 5744 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5745 5746 /* 5747 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5748 * zone id before the accept is completed in tcp_wput_accept(). 5749 */ 5750 econnp->conn_zoneid = connp->conn_zoneid; 5751 econnp->conn_allzones = connp->conn_allzones; 5752 5753 /* Copy nexthop information from listener to eager */ 5754 if (connp->conn_nexthop_set) { 5755 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5756 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5757 } 5758 5759 /* 5760 * TSOL: tsol_input_proc() needs the eager's cred before the 5761 * eager is accepted 5762 */ 5763 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5764 crhold(credp); 5765 5766 /* 5767 * If the caller has the process-wide flag set, then default to MAC 5768 * exempt mode. This allows read-down to unlabeled hosts. 5769 */ 5770 if (getpflags(NET_MAC_AWARE, credp) != 0) 5771 econnp->conn_mac_exempt = B_TRUE; 5772 5773 if (is_system_labeled()) { 5774 cred_t *cr; 5775 5776 if (connp->conn_mlp_type != mlptSingle) { 5777 cr = econnp->conn_peercred = DB_CRED(mp); 5778 if (cr != NULL) 5779 crhold(cr); 5780 else 5781 cr = econnp->conn_cred; 5782 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5783 econnp, cred_t *, cr) 5784 } else { 5785 cr = econnp->conn_cred; 5786 DTRACE_PROBE2(syn_accept, conn_t *, 5787 econnp, cred_t *, cr) 5788 } 5789 5790 if (!tcp_update_label(eager, cr)) { 5791 DTRACE_PROBE3( 5792 tx__ip__log__error__connrequest__tcp, 5793 char *, "eager connp(1) label on SYN mp(2) failed", 5794 conn_t *, econnp, mblk_t *, mp); 5795 goto error3; 5796 } 5797 } 5798 5799 eager->tcp_hard_binding = B_TRUE; 5800 5801 tcp_bind_hash_insert(&tcp_bind_fanout[ 5802 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5803 5804 CL_INET_CONNECT(eager); 5805 5806 /* 5807 * No need to check for multicast destination since ip will only pass 5808 * up multicasts to those that have expressed interest 5809 * TODO: what about rejecting broadcasts? 5810 * Also check that source is not a multicast or broadcast address. 5811 */ 5812 eager->tcp_state = TCPS_SYN_RCVD; 5813 5814 5815 /* 5816 * There should be no ire in the mp as we are being called after 5817 * receiving the SYN. 5818 */ 5819 ASSERT(tcp_ire_mp(mp) == NULL); 5820 5821 /* 5822 * Adapt our mss, ttl, ... according to information provided in IRE. 5823 */ 5824 5825 if (tcp_adapt_ire(eager, NULL) == 0) { 5826 /* Undo the bind_hash_insert */ 5827 tcp_bind_hash_remove(eager); 5828 goto error3; 5829 } 5830 5831 /* Process all TCP options. */ 5832 tcp_process_options(eager, tcph); 5833 5834 /* Is the other end ECN capable? */ 5835 if (tcp_ecn_permitted >= 1 && 5836 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5837 eager->tcp_ecn_ok = B_TRUE; 5838 } 5839 5840 /* 5841 * listener->tcp_rq->q_hiwat should be the default window size or a 5842 * window size changed via SO_RCVBUF option. First round up the 5843 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5844 * scale option value if needed. Call tcp_rwnd_set() to finish the 5845 * setting. 5846 * 5847 * Note if there is a rpipe metric associated with the remote host, 5848 * we should not inherit receive window size from listener. 5849 */ 5850 eager->tcp_rwnd = MSS_ROUNDUP( 5851 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5852 eager->tcp_rwnd), eager->tcp_mss); 5853 if (eager->tcp_snd_ws_ok) 5854 tcp_set_ws_value(eager); 5855 /* 5856 * Note that this is the only place tcp_rwnd_set() is called for 5857 * accepting a connection. We need to call it here instead of 5858 * after the 3-way handshake because we need to tell the other 5859 * side our rwnd in the SYN-ACK segment. 5860 */ 5861 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5862 5863 /* 5864 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5865 * via soaccept()->soinheritoptions() which essentially applies 5866 * all the listener options to the new STREAM. The options that we 5867 * need to take care of are: 5868 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5869 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5870 * SO_SNDBUF, SO_RCVBUF. 5871 * 5872 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5873 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5874 * tcp_maxpsz_set() gets called later from 5875 * tcp_accept_finish(), the option takes effect. 5876 * 5877 */ 5878 /* Set the TCP options */ 5879 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5880 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5881 eager->tcp_oobinline = tcp->tcp_oobinline; 5882 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5883 eager->tcp_broadcast = tcp->tcp_broadcast; 5884 eager->tcp_useloopback = tcp->tcp_useloopback; 5885 eager->tcp_dontroute = tcp->tcp_dontroute; 5886 eager->tcp_linger = tcp->tcp_linger; 5887 eager->tcp_lingertime = tcp->tcp_lingertime; 5888 if (tcp->tcp_ka_enabled) 5889 eager->tcp_ka_enabled = 1; 5890 5891 /* Set the IP options */ 5892 econnp->conn_broadcast = connp->conn_broadcast; 5893 econnp->conn_loopback = connp->conn_loopback; 5894 econnp->conn_dontroute = connp->conn_dontroute; 5895 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5896 5897 /* Put a ref on the listener for the eager. */ 5898 CONN_INC_REF(connp); 5899 mutex_enter(&tcp->tcp_eager_lock); 5900 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5901 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5902 tcp->tcp_eager_next_q0 = eager; 5903 eager->tcp_eager_prev_q0 = tcp; 5904 5905 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5906 eager->tcp_listener = tcp; 5907 eager->tcp_saved_listener = tcp; 5908 5909 /* 5910 * Tag this detached tcp vector for later retrieval 5911 * by our listener client in tcp_accept(). 5912 */ 5913 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5914 tcp->tcp_conn_req_cnt_q0++; 5915 if (++tcp->tcp_conn_req_seqnum == -1) { 5916 /* 5917 * -1 is "special" and defined in TPI as something 5918 * that should never be used in T_CONN_IND 5919 */ 5920 ++tcp->tcp_conn_req_seqnum; 5921 } 5922 mutex_exit(&tcp->tcp_eager_lock); 5923 5924 if (tcp->tcp_syn_defense) { 5925 /* Don't drop the SYN that comes from a good IP source */ 5926 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5927 if (addr_cache != NULL && eager->tcp_remote == 5928 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5929 eager->tcp_dontdrop = B_TRUE; 5930 } 5931 } 5932 5933 /* 5934 * We need to insert the eager in its own perimeter but as soon 5935 * as we do that, we expose the eager to the classifier and 5936 * should not touch any field outside the eager's perimeter. 5937 * So do all the work necessary before inserting the eager 5938 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5939 * will succeed but undo everything if it fails. 5940 */ 5941 seg_seq = ABE32_TO_U32(tcph->th_seq); 5942 eager->tcp_irs = seg_seq; 5943 eager->tcp_rack = seg_seq; 5944 eager->tcp_rnxt = seg_seq + 1; 5945 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5946 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5947 eager->tcp_state = TCPS_SYN_RCVD; 5948 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5949 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5950 if (mp1 == NULL) 5951 goto error1; 5952 DB_CPID(mp1) = tcp->tcp_cpid; 5953 5954 /* 5955 * We need to start the rto timer. In normal case, we start 5956 * the timer after sending the packet on the wire (or at 5957 * least believing that packet was sent by waiting for 5958 * CALL_IP_WPUT() to return). Since this is the first packet 5959 * being sent on the wire for the eager, our initial tcp_rto 5960 * is at least tcp_rexmit_interval_min which is a fairly 5961 * large value to allow the algorithm to adjust slowly to large 5962 * fluctuations of RTT during first few transmissions. 5963 * 5964 * Starting the timer first and then sending the packet in this 5965 * case shouldn't make much difference since tcp_rexmit_interval_min 5966 * is of the order of several 100ms and starting the timer 5967 * first and then sending the packet will result in difference 5968 * of few micro seconds. 5969 * 5970 * Without this optimization, we are forced to hold the fanout 5971 * lock across the ipcl_bind_insert() and sending the packet 5972 * so that we don't race against an incoming packet (maybe RST) 5973 * for this eager. 5974 */ 5975 5976 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5977 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5978 5979 5980 /* 5981 * Insert the eager in its own perimeter now. We are ready to deal 5982 * with any packets on eager. 5983 */ 5984 if (eager->tcp_ipversion == IPV4_VERSION) { 5985 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5986 goto error; 5987 } 5988 } else { 5989 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5990 goto error; 5991 } 5992 } 5993 5994 /* mark conn as fully-bound */ 5995 econnp->conn_fully_bound = B_TRUE; 5996 5997 /* Send the SYN-ACK */ 5998 tcp_send_data(eager, eager->tcp_wq, mp1); 5999 freemsg(mp); 6000 6001 return; 6002 error: 6003 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 6004 freemsg(mp1); 6005 error1: 6006 /* Undo what we did above */ 6007 mutex_enter(&tcp->tcp_eager_lock); 6008 tcp_eager_unlink(eager); 6009 mutex_exit(&tcp->tcp_eager_lock); 6010 /* Drop eager's reference on the listener */ 6011 CONN_DEC_REF(connp); 6012 6013 /* 6014 * Delete the cached ire in conn_ire_cache and also mark 6015 * the conn as CONDEMNED 6016 */ 6017 mutex_enter(&econnp->conn_lock); 6018 econnp->conn_state_flags |= CONN_CONDEMNED; 6019 ire = econnp->conn_ire_cache; 6020 econnp->conn_ire_cache = NULL; 6021 mutex_exit(&econnp->conn_lock); 6022 if (ire != NULL) 6023 IRE_REFRELE_NOTR(ire); 6024 6025 /* 6026 * tcp_accept_comm inserts the eager to the bind_hash 6027 * we need to remove it from the hash if ipcl_conn_insert 6028 * fails. 6029 */ 6030 tcp_bind_hash_remove(eager); 6031 /* Drop the eager ref placed in tcp_open_detached */ 6032 CONN_DEC_REF(econnp); 6033 6034 /* 6035 * If a connection already exists, send the mp to that connections so 6036 * that it can be appropriately dealt with. 6037 */ 6038 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 6039 if (!IPCL_IS_CONNECTED(econnp)) { 6040 /* 6041 * Something bad happened. ipcl_conn_insert() 6042 * failed because a connection already existed 6043 * in connected hash but we can't find it 6044 * anymore (someone blew it away). Just 6045 * free this message and hopefully remote 6046 * will retransmit at which time the SYN can be 6047 * treated as a new connection or dealth with 6048 * a TH_RST if a connection already exists. 6049 */ 6050 CONN_DEC_REF(econnp); 6051 freemsg(mp); 6052 } else { 6053 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6054 econnp, SQTAG_TCP_CONN_REQ); 6055 } 6056 } else { 6057 /* Nobody wants this packet */ 6058 freemsg(mp); 6059 } 6060 return; 6061 error2: 6062 freemsg(mp); 6063 return; 6064 error3: 6065 CONN_DEC_REF(econnp); 6066 freemsg(mp); 6067 } 6068 6069 /* 6070 * In an ideal case of vertical partition in NUMA architecture, its 6071 * beneficial to have the listener and all the incoming connections 6072 * tied to the same squeue. The other constraint is that incoming 6073 * connections should be tied to the squeue attached to interrupted 6074 * CPU for obvious locality reason so this leaves the listener to 6075 * be tied to the same squeue. Our only problem is that when listener 6076 * is binding, the CPU that will get interrupted by the NIC whose 6077 * IP address the listener is binding to is not even known. So 6078 * the code below allows us to change that binding at the time the 6079 * CPU is interrupted by virtue of incoming connection's squeue. 6080 * 6081 * This is usefull only in case of a listener bound to a specific IP 6082 * address. For other kind of listeners, they get bound the 6083 * very first time and there is no attempt to rebind them. 6084 */ 6085 void 6086 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6087 { 6088 conn_t *connp = (conn_t *)arg; 6089 squeue_t *sqp = (squeue_t *)arg2; 6090 squeue_t *new_sqp; 6091 uint32_t conn_flags; 6092 6093 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6094 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6095 } else { 6096 goto done; 6097 } 6098 6099 if (connp->conn_fanout == NULL) 6100 goto done; 6101 6102 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6103 mutex_enter(&connp->conn_fanout->connf_lock); 6104 mutex_enter(&connp->conn_lock); 6105 /* 6106 * No one from read or write side can access us now 6107 * except for already queued packets on this squeue. 6108 * But since we haven't changed the squeue yet, they 6109 * can't execute. If they are processed after we have 6110 * changed the squeue, they are sent back to the 6111 * correct squeue down below. 6112 * But a listner close can race with processing of 6113 * incoming SYN. If incoming SYN processing changes 6114 * the squeue then the listener close which is waiting 6115 * to enter the squeue would operate on the wrong 6116 * squeue. Hence we don't change the squeue here unless 6117 * the refcount is exactly the minimum refcount. The 6118 * minimum refcount of 4 is counted as - 1 each for 6119 * TCP and IP, 1 for being in the classifier hash, and 6120 * 1 for the mblk being processed. 6121 */ 6122 6123 if (connp->conn_ref != 4 || 6124 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6125 mutex_exit(&connp->conn_lock); 6126 mutex_exit(&connp->conn_fanout->connf_lock); 6127 goto done; 6128 } 6129 if (connp->conn_sqp != new_sqp) { 6130 while (connp->conn_sqp != new_sqp) 6131 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6132 } 6133 6134 do { 6135 conn_flags = connp->conn_flags; 6136 conn_flags |= IPCL_FULLY_BOUND; 6137 (void) cas32(&connp->conn_flags, connp->conn_flags, 6138 conn_flags); 6139 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6140 6141 mutex_exit(&connp->conn_fanout->connf_lock); 6142 mutex_exit(&connp->conn_lock); 6143 } 6144 6145 done: 6146 if (connp->conn_sqp != sqp) { 6147 CONN_INC_REF(connp); 6148 squeue_fill(connp->conn_sqp, mp, 6149 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6150 } else { 6151 tcp_conn_request(connp, mp, sqp); 6152 } 6153 } 6154 6155 /* 6156 * Successful connect request processing begins when our client passes 6157 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6158 * our T_OK_ACK reply message upstream. The control flow looks like this: 6159 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6160 * upstream <- tcp_rput() <- IP 6161 * After various error checks are completed, tcp_connect() lays 6162 * the target address and port into the composite header template, 6163 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6164 * request followed by an IRE request, and passes the three mblk message 6165 * down to IP looking like this: 6166 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6167 * Processing continues in tcp_rput() when we receive the following message: 6168 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6169 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6170 * to fire off the connection request, and then passes the T_OK_ACK mblk 6171 * upstream that we filled in below. There are, of course, numerous 6172 * error conditions along the way which truncate the processing described 6173 * above. 6174 */ 6175 static void 6176 tcp_connect(tcp_t *tcp, mblk_t *mp) 6177 { 6178 sin_t *sin; 6179 sin6_t *sin6; 6180 queue_t *q = tcp->tcp_wq; 6181 struct T_conn_req *tcr; 6182 ipaddr_t *dstaddrp; 6183 in_port_t dstport; 6184 uint_t srcid; 6185 6186 tcr = (struct T_conn_req *)mp->b_rptr; 6187 6188 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6189 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6190 tcp_err_ack(tcp, mp, TPROTO, 0); 6191 return; 6192 } 6193 6194 /* 6195 * Determine packet type based on type of address passed in 6196 * the request should contain an IPv4 or IPv6 address. 6197 * Make sure that address family matches the type of 6198 * family of the the address passed down 6199 */ 6200 switch (tcr->DEST_length) { 6201 default: 6202 tcp_err_ack(tcp, mp, TBADADDR, 0); 6203 return; 6204 6205 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6206 /* 6207 * XXX: The check for valid DEST_length was not there 6208 * in earlier releases and some buggy 6209 * TLI apps (e.g Sybase) got away with not feeding 6210 * in sin_zero part of address. 6211 * We allow that bug to keep those buggy apps humming. 6212 * Test suites require the check on DEST_length. 6213 * We construct a new mblk with valid DEST_length 6214 * free the original so the rest of the code does 6215 * not have to keep track of this special shorter 6216 * length address case. 6217 */ 6218 mblk_t *nmp; 6219 struct T_conn_req *ntcr; 6220 sin_t *nsin; 6221 6222 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6223 tcr->OPT_length, BPRI_HI); 6224 if (nmp == NULL) { 6225 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6226 return; 6227 } 6228 ntcr = (struct T_conn_req *)nmp->b_rptr; 6229 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6230 ntcr->PRIM_type = T_CONN_REQ; 6231 ntcr->DEST_length = sizeof (sin_t); 6232 ntcr->DEST_offset = sizeof (struct T_conn_req); 6233 6234 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6235 *nsin = sin_null; 6236 /* Get pointer to shorter address to copy from original mp */ 6237 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6238 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6239 if (sin == NULL || !OK_32PTR((char *)sin)) { 6240 freemsg(nmp); 6241 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6242 return; 6243 } 6244 nsin->sin_family = sin->sin_family; 6245 nsin->sin_port = sin->sin_port; 6246 nsin->sin_addr = sin->sin_addr; 6247 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6248 nmp->b_wptr = (uchar_t *)&nsin[1]; 6249 if (tcr->OPT_length != 0) { 6250 ntcr->OPT_length = tcr->OPT_length; 6251 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6252 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6253 (uchar_t *)ntcr + ntcr->OPT_offset, 6254 tcr->OPT_length); 6255 nmp->b_wptr += tcr->OPT_length; 6256 } 6257 freemsg(mp); /* original mp freed */ 6258 mp = nmp; /* re-initialize original variables */ 6259 tcr = ntcr; 6260 } 6261 /* FALLTHRU */ 6262 6263 case sizeof (sin_t): 6264 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6265 sizeof (sin_t)); 6266 if (sin == NULL || !OK_32PTR((char *)sin)) { 6267 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6268 return; 6269 } 6270 if (tcp->tcp_family != AF_INET || 6271 sin->sin_family != AF_INET) { 6272 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6273 return; 6274 } 6275 if (sin->sin_port == 0) { 6276 tcp_err_ack(tcp, mp, TBADADDR, 0); 6277 return; 6278 } 6279 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6280 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6281 return; 6282 } 6283 6284 break; 6285 6286 case sizeof (sin6_t): 6287 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6288 sizeof (sin6_t)); 6289 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6290 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6291 return; 6292 } 6293 if (tcp->tcp_family != AF_INET6 || 6294 sin6->sin6_family != AF_INET6) { 6295 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6296 return; 6297 } 6298 if (sin6->sin6_port == 0) { 6299 tcp_err_ack(tcp, mp, TBADADDR, 0); 6300 return; 6301 } 6302 break; 6303 } 6304 /* 6305 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6306 * should key on their sequence number and cut them loose. 6307 */ 6308 6309 /* 6310 * If options passed in, feed it for verification and handling 6311 */ 6312 if (tcr->OPT_length != 0) { 6313 mblk_t *ok_mp; 6314 mblk_t *discon_mp; 6315 mblk_t *conn_opts_mp; 6316 int t_error, sys_error, do_disconnect; 6317 6318 conn_opts_mp = NULL; 6319 6320 if (tcp_conprim_opt_process(tcp, mp, 6321 &do_disconnect, &t_error, &sys_error) < 0) { 6322 if (do_disconnect) { 6323 ASSERT(t_error == 0 && sys_error == 0); 6324 discon_mp = mi_tpi_discon_ind(NULL, 6325 ECONNREFUSED, 0); 6326 if (!discon_mp) { 6327 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6328 TSYSERR, ENOMEM); 6329 return; 6330 } 6331 ok_mp = mi_tpi_ok_ack_alloc(mp); 6332 if (!ok_mp) { 6333 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6334 TSYSERR, ENOMEM); 6335 return; 6336 } 6337 qreply(q, ok_mp); 6338 qreply(q, discon_mp); /* no flush! */ 6339 } else { 6340 ASSERT(t_error != 0); 6341 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6342 sys_error); 6343 } 6344 return; 6345 } 6346 /* 6347 * Success in setting options, the mp option buffer represented 6348 * by OPT_length/offset has been potentially modified and 6349 * contains results of option processing. We copy it in 6350 * another mp to save it for potentially influencing returning 6351 * it in T_CONN_CONN. 6352 */ 6353 if (tcr->OPT_length != 0) { /* there are resulting options */ 6354 conn_opts_mp = copyb(mp); 6355 if (!conn_opts_mp) { 6356 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6357 TSYSERR, ENOMEM); 6358 return; 6359 } 6360 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6361 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6362 /* 6363 * Note: 6364 * These resulting option negotiation can include any 6365 * end-to-end negotiation options but there no such 6366 * thing (yet?) in our TCP/IP. 6367 */ 6368 } 6369 } 6370 6371 /* 6372 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6373 * make sure that the template IP header in the tcp structure is an 6374 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6375 * need to this before we call tcp_bindi() so that the port lookup 6376 * code will look for ports in the correct port space (IPv4 and 6377 * IPv6 have separate port spaces). 6378 */ 6379 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6380 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6381 int err = 0; 6382 6383 err = tcp_header_init_ipv4(tcp); 6384 if (err != 0) { 6385 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6386 goto connect_failed; 6387 } 6388 if (tcp->tcp_lport != 0) 6389 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6390 } 6391 6392 switch (tcp->tcp_state) { 6393 case TCPS_IDLE: 6394 /* 6395 * We support quick connect, refer to comments in 6396 * tcp_connect_*() 6397 */ 6398 /* FALLTHRU */ 6399 case TCPS_BOUND: 6400 case TCPS_LISTEN: 6401 if (tcp->tcp_family == AF_INET6) { 6402 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6403 tcp_connect_ipv6(tcp, mp, 6404 &sin6->sin6_addr, 6405 sin6->sin6_port, sin6->sin6_flowinfo, 6406 sin6->__sin6_src_id, sin6->sin6_scope_id); 6407 return; 6408 } 6409 /* 6410 * Destination adress is mapped IPv6 address. 6411 * Source bound address should be unspecified or 6412 * IPv6 mapped address as well. 6413 */ 6414 if (!IN6_IS_ADDR_UNSPECIFIED( 6415 &tcp->tcp_bound_source_v6) && 6416 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6417 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6418 EADDRNOTAVAIL); 6419 break; 6420 } 6421 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6422 dstport = sin6->sin6_port; 6423 srcid = sin6->__sin6_src_id; 6424 } else { 6425 dstaddrp = &sin->sin_addr.s_addr; 6426 dstport = sin->sin_port; 6427 srcid = 0; 6428 } 6429 6430 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6431 return; 6432 default: 6433 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6434 break; 6435 } 6436 /* 6437 * Note: Code below is the "failure" case 6438 */ 6439 /* return error ack and blow away saved option results if any */ 6440 connect_failed: 6441 if (mp != NULL) 6442 putnext(tcp->tcp_rq, mp); 6443 else { 6444 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6445 TSYSERR, ENOMEM); 6446 } 6447 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6448 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6449 } 6450 6451 /* 6452 * Handle connect to IPv4 destinations, including connections for AF_INET6 6453 * sockets connecting to IPv4 mapped IPv6 destinations. 6454 */ 6455 static void 6456 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6457 uint_t srcid) 6458 { 6459 tcph_t *tcph; 6460 mblk_t *mp1; 6461 ipaddr_t dstaddr = *dstaddrp; 6462 int32_t oldstate; 6463 uint16_t lport; 6464 6465 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6466 6467 /* Check for attempt to connect to INADDR_ANY */ 6468 if (dstaddr == INADDR_ANY) { 6469 /* 6470 * SunOS 4.x and 4.3 BSD allow an application 6471 * to connect a TCP socket to INADDR_ANY. 6472 * When they do this, the kernel picks the 6473 * address of one interface and uses it 6474 * instead. The kernel usually ends up 6475 * picking the address of the loopback 6476 * interface. This is an undocumented feature. 6477 * However, we provide the same thing here 6478 * in order to have source and binary 6479 * compatibility with SunOS 4.x. 6480 * Update the T_CONN_REQ (sin/sin6) since it is used to 6481 * generate the T_CONN_CON. 6482 */ 6483 dstaddr = htonl(INADDR_LOOPBACK); 6484 *dstaddrp = dstaddr; 6485 } 6486 6487 /* Handle __sin6_src_id if socket not bound to an IP address */ 6488 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6489 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6490 tcp->tcp_connp->conn_zoneid); 6491 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6492 tcp->tcp_ipha->ipha_src); 6493 } 6494 6495 /* 6496 * Don't let an endpoint connect to itself. Note that 6497 * the test here does not catch the case where the 6498 * source IP addr was left unspecified by the user. In 6499 * this case, the source addr is set in tcp_adapt_ire() 6500 * using the reply to the T_BIND message that we send 6501 * down to IP here and the check is repeated in tcp_rput_other. 6502 */ 6503 if (dstaddr == tcp->tcp_ipha->ipha_src && 6504 dstport == tcp->tcp_lport) { 6505 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6506 goto failed; 6507 } 6508 6509 tcp->tcp_ipha->ipha_dst = dstaddr; 6510 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6511 6512 /* 6513 * Massage a source route if any putting the first hop 6514 * in iph_dst. Compute a starting value for the checksum which 6515 * takes into account that the original iph_dst should be 6516 * included in the checksum but that ip will include the 6517 * first hop in the source route in the tcp checksum. 6518 */ 6519 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6520 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6521 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6522 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6523 if ((int)tcp->tcp_sum < 0) 6524 tcp->tcp_sum--; 6525 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6526 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6527 (tcp->tcp_sum >> 16)); 6528 tcph = tcp->tcp_tcph; 6529 *(uint16_t *)tcph->th_fport = dstport; 6530 tcp->tcp_fport = dstport; 6531 6532 oldstate = tcp->tcp_state; 6533 /* 6534 * At this point the remote destination address and remote port fields 6535 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6536 * have to see which state tcp was in so we can take apropriate action. 6537 */ 6538 if (oldstate == TCPS_IDLE) { 6539 /* 6540 * We support a quick connect capability here, allowing 6541 * clients to transition directly from IDLE to SYN_SENT 6542 * tcp_bindi will pick an unused port, insert the connection 6543 * in the bind hash and transition to BOUND state. 6544 */ 6545 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6546 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6547 B_FALSE, B_FALSE); 6548 if (lport == 0) { 6549 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6550 goto failed; 6551 } 6552 } 6553 tcp->tcp_state = TCPS_SYN_SENT; 6554 6555 /* 6556 * TODO: allow data with connect requests 6557 * by unlinking M_DATA trailers here and 6558 * linking them in behind the T_OK_ACK mblk. 6559 * The tcp_rput() bind ack handler would then 6560 * feed them to tcp_wput_data() rather than call 6561 * tcp_timer(). 6562 */ 6563 mp = mi_tpi_ok_ack_alloc(mp); 6564 if (!mp) { 6565 tcp->tcp_state = oldstate; 6566 goto failed; 6567 } 6568 if (tcp->tcp_family == AF_INET) { 6569 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6570 sizeof (ipa_conn_t)); 6571 } else { 6572 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6573 sizeof (ipa6_conn_t)); 6574 } 6575 if (mp1) { 6576 /* Hang onto the T_OK_ACK for later. */ 6577 linkb(mp1, mp); 6578 mblk_setcred(mp1, tcp->tcp_cred); 6579 if (tcp->tcp_family == AF_INET) 6580 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6581 else { 6582 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6583 &tcp->tcp_sticky_ipp); 6584 } 6585 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6586 tcp->tcp_active_open = 1; 6587 /* 6588 * If the bind cannot complete immediately 6589 * IP will arrange to call tcp_rput_other 6590 * when the bind completes. 6591 */ 6592 if (mp1 != NULL) 6593 tcp_rput_other(tcp, mp1); 6594 return; 6595 } 6596 /* Error case */ 6597 tcp->tcp_state = oldstate; 6598 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6599 6600 failed: 6601 /* return error ack and blow away saved option results if any */ 6602 if (mp != NULL) 6603 putnext(tcp->tcp_rq, mp); 6604 else { 6605 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6606 TSYSERR, ENOMEM); 6607 } 6608 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6609 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6610 6611 } 6612 6613 /* 6614 * Handle connect to IPv6 destinations. 6615 */ 6616 static void 6617 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6618 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6619 { 6620 tcph_t *tcph; 6621 mblk_t *mp1; 6622 ip6_rthdr_t *rth; 6623 int32_t oldstate; 6624 uint16_t lport; 6625 6626 ASSERT(tcp->tcp_family == AF_INET6); 6627 6628 /* 6629 * If we're here, it means that the destination address is a native 6630 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6631 * reason why it might not be IPv6 is if the socket was bound to an 6632 * IPv4-mapped IPv6 address. 6633 */ 6634 if (tcp->tcp_ipversion != IPV6_VERSION) { 6635 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6636 goto failed; 6637 } 6638 6639 /* 6640 * Interpret a zero destination to mean loopback. 6641 * Update the T_CONN_REQ (sin/sin6) since it is used to 6642 * generate the T_CONN_CON. 6643 */ 6644 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6645 *dstaddrp = ipv6_loopback; 6646 } 6647 6648 /* Handle __sin6_src_id if socket not bound to an IP address */ 6649 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6650 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6651 tcp->tcp_connp->conn_zoneid); 6652 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6653 } 6654 6655 /* 6656 * Take care of the scope_id now and add ip6i_t 6657 * if ip6i_t is not already allocated through TCP 6658 * sticky options. At this point tcp_ip6h does not 6659 * have dst info, thus use dstaddrp. 6660 */ 6661 if (scope_id != 0 && 6662 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6663 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6664 ip6i_t *ip6i; 6665 6666 ipp->ipp_ifindex = scope_id; 6667 ip6i = (ip6i_t *)tcp->tcp_iphc; 6668 6669 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6670 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6671 /* Already allocated */ 6672 ip6i->ip6i_flags |= IP6I_IFINDEX; 6673 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6674 ipp->ipp_fields |= IPPF_SCOPE_ID; 6675 } else { 6676 int reterr; 6677 6678 ipp->ipp_fields |= IPPF_SCOPE_ID; 6679 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6680 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6681 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6682 if (reterr != 0) 6683 goto failed; 6684 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6685 } 6686 } 6687 6688 /* 6689 * Don't let an endpoint connect to itself. Note that 6690 * the test here does not catch the case where the 6691 * source IP addr was left unspecified by the user. In 6692 * this case, the source addr is set in tcp_adapt_ire() 6693 * using the reply to the T_BIND message that we send 6694 * down to IP here and the check is repeated in tcp_rput_other. 6695 */ 6696 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6697 (dstport == tcp->tcp_lport)) { 6698 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6699 goto failed; 6700 } 6701 6702 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6703 tcp->tcp_remote_v6 = *dstaddrp; 6704 tcp->tcp_ip6h->ip6_vcf = 6705 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6706 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6707 6708 6709 /* 6710 * Massage a routing header (if present) putting the first hop 6711 * in ip6_dst. Compute a starting value for the checksum which 6712 * takes into account that the original ip6_dst should be 6713 * included in the checksum but that ip will include the 6714 * first hop in the source route in the tcp checksum. 6715 */ 6716 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6717 if (rth != NULL) { 6718 6719 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6720 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6721 (tcp->tcp_sum >> 16)); 6722 } else { 6723 tcp->tcp_sum = 0; 6724 } 6725 6726 tcph = tcp->tcp_tcph; 6727 *(uint16_t *)tcph->th_fport = dstport; 6728 tcp->tcp_fport = dstport; 6729 6730 oldstate = tcp->tcp_state; 6731 /* 6732 * At this point the remote destination address and remote port fields 6733 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6734 * have to see which state tcp was in so we can take apropriate action. 6735 */ 6736 if (oldstate == TCPS_IDLE) { 6737 /* 6738 * We support a quick connect capability here, allowing 6739 * clients to transition directly from IDLE to SYN_SENT 6740 * tcp_bindi will pick an unused port, insert the connection 6741 * in the bind hash and transition to BOUND state. 6742 */ 6743 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6744 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6745 B_FALSE, B_FALSE); 6746 if (lport == 0) { 6747 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6748 goto failed; 6749 } 6750 } 6751 tcp->tcp_state = TCPS_SYN_SENT; 6752 /* 6753 * TODO: allow data with connect requests 6754 * by unlinking M_DATA trailers here and 6755 * linking them in behind the T_OK_ACK mblk. 6756 * The tcp_rput() bind ack handler would then 6757 * feed them to tcp_wput_data() rather than call 6758 * tcp_timer(). 6759 */ 6760 mp = mi_tpi_ok_ack_alloc(mp); 6761 if (!mp) { 6762 tcp->tcp_state = oldstate; 6763 goto failed; 6764 } 6765 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6766 if (mp1) { 6767 /* Hang onto the T_OK_ACK for later. */ 6768 linkb(mp1, mp); 6769 mblk_setcred(mp1, tcp->tcp_cred); 6770 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6771 &tcp->tcp_sticky_ipp); 6772 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6773 tcp->tcp_active_open = 1; 6774 /* ip_bind_v6() may return ACK or ERROR */ 6775 if (mp1 != NULL) 6776 tcp_rput_other(tcp, mp1); 6777 return; 6778 } 6779 /* Error case */ 6780 tcp->tcp_state = oldstate; 6781 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6782 6783 failed: 6784 /* return error ack and blow away saved option results if any */ 6785 if (mp != NULL) 6786 putnext(tcp->tcp_rq, mp); 6787 else { 6788 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6789 TSYSERR, ENOMEM); 6790 } 6791 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6792 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6793 } 6794 6795 /* 6796 * We need a stream q for detached closing tcp connections 6797 * to use. Our client hereby indicates that this q is the 6798 * one to use. 6799 */ 6800 static void 6801 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6802 { 6803 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6804 queue_t *q = tcp->tcp_wq; 6805 6806 mp->b_datap->db_type = M_IOCACK; 6807 iocp->ioc_count = 0; 6808 mutex_enter(&tcp_g_q_lock); 6809 if (tcp_g_q != NULL) { 6810 mutex_exit(&tcp_g_q_lock); 6811 iocp->ioc_error = EALREADY; 6812 } else { 6813 mblk_t *mp1; 6814 6815 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6816 if (mp1 == NULL) { 6817 mutex_exit(&tcp_g_q_lock); 6818 iocp->ioc_error = ENOMEM; 6819 } else { 6820 tcp_g_q = tcp->tcp_rq; 6821 mutex_exit(&tcp_g_q_lock); 6822 iocp->ioc_error = 0; 6823 iocp->ioc_rval = 0; 6824 /* 6825 * We are passing tcp_sticky_ipp as NULL 6826 * as it is not useful for tcp_default queue 6827 */ 6828 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6829 if (mp1 != NULL) 6830 tcp_rput_other(tcp, mp1); 6831 } 6832 } 6833 qreply(q, mp); 6834 } 6835 6836 /* 6837 * Our client hereby directs us to reject the connection request 6838 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6839 * of sending the appropriate RST, not an ICMP error. 6840 */ 6841 static void 6842 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6843 { 6844 tcp_t *ltcp = NULL; 6845 t_scalar_t seqnum; 6846 conn_t *connp; 6847 6848 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6849 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6850 tcp_err_ack(tcp, mp, TPROTO, 0); 6851 return; 6852 } 6853 6854 /* 6855 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6856 * when the stream is in BOUND state. Do not send a reset, 6857 * since the destination IP address is not valid, and it can 6858 * be the initialized value of all zeros (broadcast address). 6859 * 6860 * If TCP has sent down a bind request to IP and has not 6861 * received the reply, reject the request. Otherwise, TCP 6862 * will be confused. 6863 */ 6864 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6865 if (tcp->tcp_debug) { 6866 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6867 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6868 } 6869 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6870 return; 6871 } 6872 6873 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6874 6875 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6876 6877 /* 6878 * According to TPI, for non-listeners, ignore seqnum 6879 * and disconnect. 6880 * Following interpretation of -1 seqnum is historical 6881 * and implied TPI ? (TPI only states that for T_CONN_IND, 6882 * a valid seqnum should not be -1). 6883 * 6884 * -1 means disconnect everything 6885 * regardless even on a listener. 6886 */ 6887 6888 int old_state = tcp->tcp_state; 6889 6890 /* 6891 * The connection can't be on the tcp_time_wait_head list 6892 * since it is not detached. 6893 */ 6894 ASSERT(tcp->tcp_time_wait_next == NULL); 6895 ASSERT(tcp->tcp_time_wait_prev == NULL); 6896 ASSERT(tcp->tcp_time_wait_expire == 0); 6897 ltcp = NULL; 6898 /* 6899 * If it used to be a listener, check to make sure no one else 6900 * has taken the port before switching back to LISTEN state. 6901 */ 6902 if (tcp->tcp_ipversion == IPV4_VERSION) { 6903 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6904 tcp->tcp_ipha->ipha_src, 6905 tcp->tcp_connp->conn_zoneid); 6906 if (connp != NULL) 6907 ltcp = connp->conn_tcp; 6908 } else { 6909 /* Allow tcp_bound_if listeners? */ 6910 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6911 &tcp->tcp_ip6h->ip6_src, 0, 6912 tcp->tcp_connp->conn_zoneid); 6913 if (connp != NULL) 6914 ltcp = connp->conn_tcp; 6915 } 6916 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6917 tcp->tcp_state = TCPS_LISTEN; 6918 } else if (old_state > TCPS_BOUND) { 6919 tcp->tcp_conn_req_max = 0; 6920 tcp->tcp_state = TCPS_BOUND; 6921 } 6922 if (ltcp != NULL) 6923 CONN_DEC_REF(ltcp->tcp_connp); 6924 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6925 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6926 } else if (old_state == TCPS_ESTABLISHED || 6927 old_state == TCPS_CLOSE_WAIT) { 6928 BUMP_MIB(&tcp_mib, tcpEstabResets); 6929 } 6930 6931 if (tcp->tcp_fused) 6932 tcp_unfuse(tcp); 6933 6934 mutex_enter(&tcp->tcp_eager_lock); 6935 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6936 (tcp->tcp_conn_req_cnt_q != 0)) { 6937 tcp_eager_cleanup(tcp, 0); 6938 } 6939 mutex_exit(&tcp->tcp_eager_lock); 6940 6941 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6942 tcp->tcp_rnxt, TH_RST | TH_ACK); 6943 6944 tcp_reinit(tcp); 6945 6946 if (old_state >= TCPS_ESTABLISHED) { 6947 /* Send M_FLUSH according to TPI */ 6948 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6949 } 6950 mp = mi_tpi_ok_ack_alloc(mp); 6951 if (mp) 6952 putnext(tcp->tcp_rq, mp); 6953 return; 6954 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6955 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6956 return; 6957 } 6958 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6959 /* Send M_FLUSH according to TPI */ 6960 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6961 } 6962 mp = mi_tpi_ok_ack_alloc(mp); 6963 if (mp) 6964 putnext(tcp->tcp_rq, mp); 6965 } 6966 6967 /* 6968 * Diagnostic routine used to return a string associated with the tcp state. 6969 * Note that if the caller does not supply a buffer, it will use an internal 6970 * static string. This means that if multiple threads call this function at 6971 * the same time, output can be corrupted... Note also that this function 6972 * does not check the size of the supplied buffer. The caller has to make 6973 * sure that it is big enough. 6974 */ 6975 static char * 6976 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6977 { 6978 char buf1[30]; 6979 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6980 char *buf; 6981 char *cp; 6982 in6_addr_t local, remote; 6983 char local_addrbuf[INET6_ADDRSTRLEN]; 6984 char remote_addrbuf[INET6_ADDRSTRLEN]; 6985 6986 if (sup_buf != NULL) 6987 buf = sup_buf; 6988 else 6989 buf = priv_buf; 6990 6991 if (tcp == NULL) 6992 return ("NULL_TCP"); 6993 switch (tcp->tcp_state) { 6994 case TCPS_CLOSED: 6995 cp = "TCP_CLOSED"; 6996 break; 6997 case TCPS_IDLE: 6998 cp = "TCP_IDLE"; 6999 break; 7000 case TCPS_BOUND: 7001 cp = "TCP_BOUND"; 7002 break; 7003 case TCPS_LISTEN: 7004 cp = "TCP_LISTEN"; 7005 break; 7006 case TCPS_SYN_SENT: 7007 cp = "TCP_SYN_SENT"; 7008 break; 7009 case TCPS_SYN_RCVD: 7010 cp = "TCP_SYN_RCVD"; 7011 break; 7012 case TCPS_ESTABLISHED: 7013 cp = "TCP_ESTABLISHED"; 7014 break; 7015 case TCPS_CLOSE_WAIT: 7016 cp = "TCP_CLOSE_WAIT"; 7017 break; 7018 case TCPS_FIN_WAIT_1: 7019 cp = "TCP_FIN_WAIT_1"; 7020 break; 7021 case TCPS_CLOSING: 7022 cp = "TCP_CLOSING"; 7023 break; 7024 case TCPS_LAST_ACK: 7025 cp = "TCP_LAST_ACK"; 7026 break; 7027 case TCPS_FIN_WAIT_2: 7028 cp = "TCP_FIN_WAIT_2"; 7029 break; 7030 case TCPS_TIME_WAIT: 7031 cp = "TCP_TIME_WAIT"; 7032 break; 7033 default: 7034 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7035 cp = buf1; 7036 break; 7037 } 7038 switch (format) { 7039 case DISP_ADDR_AND_PORT: 7040 if (tcp->tcp_ipversion == IPV4_VERSION) { 7041 /* 7042 * Note that we use the remote address in the tcp_b 7043 * structure. This means that it will print out 7044 * the real destination address, not the next hop's 7045 * address if source routing is used. 7046 */ 7047 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7048 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7049 7050 } else { 7051 local = tcp->tcp_ip_src_v6; 7052 remote = tcp->tcp_remote_v6; 7053 } 7054 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7055 sizeof (local_addrbuf)); 7056 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7057 sizeof (remote_addrbuf)); 7058 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7059 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7060 ntohs(tcp->tcp_fport), cp); 7061 break; 7062 case DISP_PORT_ONLY: 7063 default: 7064 (void) mi_sprintf(buf, "[%u, %u] %s", 7065 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7066 break; 7067 } 7068 7069 return (buf); 7070 } 7071 7072 /* 7073 * Called via squeue to get on to eager's perimeter to send a 7074 * TH_RST. The listener wants the eager to disappear either 7075 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 7076 * being called. 7077 */ 7078 /* ARGSUSED */ 7079 void 7080 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7081 { 7082 conn_t *econnp = (conn_t *)arg; 7083 tcp_t *eager = econnp->conn_tcp; 7084 tcp_t *listener = eager->tcp_listener; 7085 7086 /* 7087 * We could be called because listener is closing. Since 7088 * the eager is using listener's queue's, its not safe. 7089 * Better use the default queue just to send the TH_RST 7090 * out. 7091 */ 7092 eager->tcp_rq = tcp_g_q; 7093 eager->tcp_wq = WR(tcp_g_q); 7094 7095 if (eager->tcp_state > TCPS_LISTEN) { 7096 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7097 eager, eager->tcp_snxt, 0, TH_RST); 7098 } 7099 7100 /* We are here because listener wants this eager gone */ 7101 if (listener != NULL) { 7102 mutex_enter(&listener->tcp_eager_lock); 7103 tcp_eager_unlink(eager); 7104 if (eager->tcp_tconnind_started) { 7105 /* 7106 * The eager has sent a conn_ind up to the 7107 * listener but listener decides to close 7108 * instead. We need to drop the extra ref 7109 * placed on eager in tcp_rput_data() before 7110 * sending the conn_ind to listener. 7111 */ 7112 CONN_DEC_REF(econnp); 7113 } 7114 mutex_exit(&listener->tcp_eager_lock); 7115 CONN_DEC_REF(listener->tcp_connp); 7116 } 7117 7118 if (eager->tcp_state > TCPS_BOUND) 7119 tcp_close_detached(eager); 7120 } 7121 7122 /* 7123 * Reset any eager connection hanging off this listener marked 7124 * with 'seqnum' and then reclaim it's resources. 7125 */ 7126 static boolean_t 7127 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7128 { 7129 tcp_t *eager; 7130 mblk_t *mp; 7131 7132 TCP_STAT(tcp_eager_blowoff_calls); 7133 eager = listener; 7134 mutex_enter(&listener->tcp_eager_lock); 7135 do { 7136 eager = eager->tcp_eager_next_q; 7137 if (eager == NULL) { 7138 mutex_exit(&listener->tcp_eager_lock); 7139 return (B_FALSE); 7140 } 7141 } while (eager->tcp_conn_req_seqnum != seqnum); 7142 7143 if (eager->tcp_closemp_used > 0) { 7144 mutex_exit(&listener->tcp_eager_lock); 7145 return (B_TRUE); 7146 } 7147 eager->tcp_closemp_used = 1; 7148 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7149 CONN_INC_REF(eager->tcp_connp); 7150 mutex_exit(&listener->tcp_eager_lock); 7151 mp = &eager->tcp_closemp; 7152 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7153 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7154 return (B_TRUE); 7155 } 7156 7157 /* 7158 * Reset any eager connection hanging off this listener 7159 * and then reclaim it's resources. 7160 */ 7161 static void 7162 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7163 { 7164 tcp_t *eager; 7165 mblk_t *mp; 7166 7167 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7168 7169 if (!q0_only) { 7170 /* First cleanup q */ 7171 TCP_STAT(tcp_eager_blowoff_q); 7172 eager = listener->tcp_eager_next_q; 7173 while (eager != NULL) { 7174 if (eager->tcp_closemp_used == 0) { 7175 eager->tcp_closemp_used = 1; 7176 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7177 CONN_INC_REF(eager->tcp_connp); 7178 mp = &eager->tcp_closemp; 7179 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7180 tcp_eager_kill, eager->tcp_connp, 7181 SQTAG_TCP_EAGER_CLEANUP); 7182 } 7183 eager = eager->tcp_eager_next_q; 7184 } 7185 } 7186 /* Then cleanup q0 */ 7187 TCP_STAT(tcp_eager_blowoff_q0); 7188 eager = listener->tcp_eager_next_q0; 7189 while (eager != listener) { 7190 if (eager->tcp_closemp_used == 0) { 7191 eager->tcp_closemp_used = 1; 7192 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7193 CONN_INC_REF(eager->tcp_connp); 7194 mp = &eager->tcp_closemp; 7195 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7196 tcp_eager_kill, eager->tcp_connp, 7197 SQTAG_TCP_EAGER_CLEANUP_Q0); 7198 } 7199 eager = eager->tcp_eager_next_q0; 7200 } 7201 } 7202 7203 /* 7204 * If we are an eager connection hanging off a listener that hasn't 7205 * formally accepted the connection yet, get off his list and blow off 7206 * any data that we have accumulated. 7207 */ 7208 static void 7209 tcp_eager_unlink(tcp_t *tcp) 7210 { 7211 tcp_t *listener = tcp->tcp_listener; 7212 7213 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7214 ASSERT(listener != NULL); 7215 if (tcp->tcp_eager_next_q0 != NULL) { 7216 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7217 7218 /* Remove the eager tcp from q0 */ 7219 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7220 tcp->tcp_eager_prev_q0; 7221 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7222 tcp->tcp_eager_next_q0; 7223 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7224 listener->tcp_conn_req_cnt_q0--; 7225 7226 tcp->tcp_eager_next_q0 = NULL; 7227 tcp->tcp_eager_prev_q0 = NULL; 7228 7229 /* 7230 * Take the eager out, if it is in the list of droppable 7231 * eagers. 7232 */ 7233 MAKE_UNDROPPABLE(tcp); 7234 7235 if (tcp->tcp_syn_rcvd_timeout != 0) { 7236 /* we have timed out before */ 7237 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7238 listener->tcp_syn_rcvd_timeout--; 7239 } 7240 } else { 7241 tcp_t **tcpp = &listener->tcp_eager_next_q; 7242 tcp_t *prev = NULL; 7243 7244 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7245 if (tcpp[0] == tcp) { 7246 if (listener->tcp_eager_last_q == tcp) { 7247 /* 7248 * If we are unlinking the last 7249 * element on the list, adjust 7250 * tail pointer. Set tail pointer 7251 * to nil when list is empty. 7252 */ 7253 ASSERT(tcp->tcp_eager_next_q == NULL); 7254 if (listener->tcp_eager_last_q == 7255 listener->tcp_eager_next_q) { 7256 listener->tcp_eager_last_q = 7257 NULL; 7258 } else { 7259 /* 7260 * We won't get here if there 7261 * is only one eager in the 7262 * list. 7263 */ 7264 ASSERT(prev != NULL); 7265 listener->tcp_eager_last_q = 7266 prev; 7267 } 7268 } 7269 tcpp[0] = tcp->tcp_eager_next_q; 7270 tcp->tcp_eager_next_q = NULL; 7271 tcp->tcp_eager_last_q = NULL; 7272 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7273 listener->tcp_conn_req_cnt_q--; 7274 break; 7275 } 7276 prev = tcpp[0]; 7277 } 7278 } 7279 tcp->tcp_listener = NULL; 7280 } 7281 7282 /* Shorthand to generate and send TPI error acks to our client */ 7283 static void 7284 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7285 { 7286 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7287 putnext(tcp->tcp_rq, mp); 7288 } 7289 7290 /* Shorthand to generate and send TPI error acks to our client */ 7291 static void 7292 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7293 int t_error, int sys_error) 7294 { 7295 struct T_error_ack *teackp; 7296 7297 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7298 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7299 teackp = (struct T_error_ack *)mp->b_rptr; 7300 teackp->ERROR_prim = primitive; 7301 teackp->TLI_error = t_error; 7302 teackp->UNIX_error = sys_error; 7303 putnext(tcp->tcp_rq, mp); 7304 } 7305 } 7306 7307 /* 7308 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7309 * but instead the code relies on: 7310 * - the fact that the address of the array and its size never changes 7311 * - the atomic assignment of the elements of the array 7312 */ 7313 /* ARGSUSED */ 7314 static int 7315 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7316 { 7317 int i; 7318 7319 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7320 if (tcp_g_epriv_ports[i] != 0) 7321 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7322 } 7323 return (0); 7324 } 7325 7326 /* 7327 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7328 * threads from changing it at the same time. 7329 */ 7330 /* ARGSUSED */ 7331 static int 7332 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7333 cred_t *cr) 7334 { 7335 long new_value; 7336 int i; 7337 7338 /* 7339 * Fail the request if the new value does not lie within the 7340 * port number limits. 7341 */ 7342 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7343 new_value <= 0 || new_value >= 65536) { 7344 return (EINVAL); 7345 } 7346 7347 mutex_enter(&tcp_epriv_port_lock); 7348 /* Check if the value is already in the list */ 7349 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7350 if (new_value == tcp_g_epriv_ports[i]) { 7351 mutex_exit(&tcp_epriv_port_lock); 7352 return (EEXIST); 7353 } 7354 } 7355 /* Find an empty slot */ 7356 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7357 if (tcp_g_epriv_ports[i] == 0) 7358 break; 7359 } 7360 if (i == tcp_g_num_epriv_ports) { 7361 mutex_exit(&tcp_epriv_port_lock); 7362 return (EOVERFLOW); 7363 } 7364 /* Set the new value */ 7365 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7366 mutex_exit(&tcp_epriv_port_lock); 7367 return (0); 7368 } 7369 7370 /* 7371 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7372 * threads from changing it at the same time. 7373 */ 7374 /* ARGSUSED */ 7375 static int 7376 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7377 cred_t *cr) 7378 { 7379 long new_value; 7380 int i; 7381 7382 /* 7383 * Fail the request if the new value does not lie within the 7384 * port number limits. 7385 */ 7386 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7387 new_value >= 65536) { 7388 return (EINVAL); 7389 } 7390 7391 mutex_enter(&tcp_epriv_port_lock); 7392 /* Check that the value is already in the list */ 7393 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7394 if (tcp_g_epriv_ports[i] == new_value) 7395 break; 7396 } 7397 if (i == tcp_g_num_epriv_ports) { 7398 mutex_exit(&tcp_epriv_port_lock); 7399 return (ESRCH); 7400 } 7401 /* Clear the value */ 7402 tcp_g_epriv_ports[i] = 0; 7403 mutex_exit(&tcp_epriv_port_lock); 7404 return (0); 7405 } 7406 7407 /* Return the TPI/TLI equivalent of our current tcp_state */ 7408 static int 7409 tcp_tpistate(tcp_t *tcp) 7410 { 7411 switch (tcp->tcp_state) { 7412 case TCPS_IDLE: 7413 return (TS_UNBND); 7414 case TCPS_LISTEN: 7415 /* 7416 * Return whether there are outstanding T_CONN_IND waiting 7417 * for the matching T_CONN_RES. Therefore don't count q0. 7418 */ 7419 if (tcp->tcp_conn_req_cnt_q > 0) 7420 return (TS_WRES_CIND); 7421 else 7422 return (TS_IDLE); 7423 case TCPS_BOUND: 7424 return (TS_IDLE); 7425 case TCPS_SYN_SENT: 7426 return (TS_WCON_CREQ); 7427 case TCPS_SYN_RCVD: 7428 /* 7429 * Note: assumption: this has to the active open SYN_RCVD. 7430 * The passive instance is detached in SYN_RCVD stage of 7431 * incoming connection processing so we cannot get request 7432 * for T_info_ack on it. 7433 */ 7434 return (TS_WACK_CRES); 7435 case TCPS_ESTABLISHED: 7436 return (TS_DATA_XFER); 7437 case TCPS_CLOSE_WAIT: 7438 return (TS_WREQ_ORDREL); 7439 case TCPS_FIN_WAIT_1: 7440 return (TS_WIND_ORDREL); 7441 case TCPS_FIN_WAIT_2: 7442 return (TS_WIND_ORDREL); 7443 7444 case TCPS_CLOSING: 7445 case TCPS_LAST_ACK: 7446 case TCPS_TIME_WAIT: 7447 case TCPS_CLOSED: 7448 /* 7449 * Following TS_WACK_DREQ7 is a rendition of "not 7450 * yet TS_IDLE" TPI state. There is no best match to any 7451 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7452 * choose a value chosen that will map to TLI/XTI level 7453 * state of TSTATECHNG (state is process of changing) which 7454 * captures what this dummy state represents. 7455 */ 7456 return (TS_WACK_DREQ7); 7457 default: 7458 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7459 tcp->tcp_state, tcp_display(tcp, NULL, 7460 DISP_PORT_ONLY)); 7461 return (TS_UNBND); 7462 } 7463 } 7464 7465 static void 7466 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7467 { 7468 if (tcp->tcp_family == AF_INET6) 7469 *tia = tcp_g_t_info_ack_v6; 7470 else 7471 *tia = tcp_g_t_info_ack; 7472 tia->CURRENT_state = tcp_tpistate(tcp); 7473 tia->OPT_size = tcp_max_optsize; 7474 if (tcp->tcp_mss == 0) { 7475 /* Not yet set - tcp_open does not set mss */ 7476 if (tcp->tcp_ipversion == IPV4_VERSION) 7477 tia->TIDU_size = tcp_mss_def_ipv4; 7478 else 7479 tia->TIDU_size = tcp_mss_def_ipv6; 7480 } else { 7481 tia->TIDU_size = tcp->tcp_mss; 7482 } 7483 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7484 } 7485 7486 /* 7487 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7488 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7489 * tcp_g_t_info_ack. The current state of the stream is copied from 7490 * tcp_state. 7491 */ 7492 static void 7493 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7494 { 7495 t_uscalar_t cap_bits1; 7496 struct T_capability_ack *tcap; 7497 7498 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7499 freemsg(mp); 7500 return; 7501 } 7502 7503 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7504 7505 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7506 mp->b_datap->db_type, T_CAPABILITY_ACK); 7507 if (mp == NULL) 7508 return; 7509 7510 tcap = (struct T_capability_ack *)mp->b_rptr; 7511 tcap->CAP_bits1 = 0; 7512 7513 if (cap_bits1 & TC1_INFO) { 7514 tcp_copy_info(&tcap->INFO_ack, tcp); 7515 tcap->CAP_bits1 |= TC1_INFO; 7516 } 7517 7518 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7519 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7520 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7521 } 7522 7523 putnext(tcp->tcp_rq, mp); 7524 } 7525 7526 /* 7527 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7528 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7529 * The current state of the stream is copied from tcp_state. 7530 */ 7531 static void 7532 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7533 { 7534 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7535 T_INFO_ACK); 7536 if (!mp) { 7537 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7538 return; 7539 } 7540 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7541 putnext(tcp->tcp_rq, mp); 7542 } 7543 7544 /* Respond to the TPI addr request */ 7545 static void 7546 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7547 { 7548 sin_t *sin; 7549 mblk_t *ackmp; 7550 struct T_addr_ack *taa; 7551 7552 /* Make it large enough for worst case */ 7553 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7554 2 * sizeof (sin6_t), 1); 7555 if (ackmp == NULL) { 7556 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7557 return; 7558 } 7559 7560 if (tcp->tcp_ipversion == IPV6_VERSION) { 7561 tcp_addr_req_ipv6(tcp, ackmp); 7562 return; 7563 } 7564 taa = (struct T_addr_ack *)ackmp->b_rptr; 7565 7566 bzero(taa, sizeof (struct T_addr_ack)); 7567 ackmp->b_wptr = (uchar_t *)&taa[1]; 7568 7569 taa->PRIM_type = T_ADDR_ACK; 7570 ackmp->b_datap->db_type = M_PCPROTO; 7571 7572 /* 7573 * Note: Following code assumes 32 bit alignment of basic 7574 * data structures like sin_t and struct T_addr_ack. 7575 */ 7576 if (tcp->tcp_state >= TCPS_BOUND) { 7577 /* 7578 * Fill in local address 7579 */ 7580 taa->LOCADDR_length = sizeof (sin_t); 7581 taa->LOCADDR_offset = sizeof (*taa); 7582 7583 sin = (sin_t *)&taa[1]; 7584 7585 /* Fill zeroes and then intialize non-zero fields */ 7586 *sin = sin_null; 7587 7588 sin->sin_family = AF_INET; 7589 7590 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7591 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7592 7593 ackmp->b_wptr = (uchar_t *)&sin[1]; 7594 7595 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7596 /* 7597 * Fill in Remote address 7598 */ 7599 taa->REMADDR_length = sizeof (sin_t); 7600 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7601 taa->LOCADDR_length); 7602 7603 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7604 *sin = sin_null; 7605 sin->sin_family = AF_INET; 7606 sin->sin_addr.s_addr = tcp->tcp_remote; 7607 sin->sin_port = tcp->tcp_fport; 7608 7609 ackmp->b_wptr = (uchar_t *)&sin[1]; 7610 } 7611 } 7612 putnext(tcp->tcp_rq, ackmp); 7613 } 7614 7615 /* Assumes that tcp_addr_req gets enough space and alignment */ 7616 static void 7617 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7618 { 7619 sin6_t *sin6; 7620 struct T_addr_ack *taa; 7621 7622 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7623 ASSERT(OK_32PTR(ackmp->b_rptr)); 7624 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7625 2 * sizeof (sin6_t)); 7626 7627 taa = (struct T_addr_ack *)ackmp->b_rptr; 7628 7629 bzero(taa, sizeof (struct T_addr_ack)); 7630 ackmp->b_wptr = (uchar_t *)&taa[1]; 7631 7632 taa->PRIM_type = T_ADDR_ACK; 7633 ackmp->b_datap->db_type = M_PCPROTO; 7634 7635 /* 7636 * Note: Following code assumes 32 bit alignment of basic 7637 * data structures like sin6_t and struct T_addr_ack. 7638 */ 7639 if (tcp->tcp_state >= TCPS_BOUND) { 7640 /* 7641 * Fill in local address 7642 */ 7643 taa->LOCADDR_length = sizeof (sin6_t); 7644 taa->LOCADDR_offset = sizeof (*taa); 7645 7646 sin6 = (sin6_t *)&taa[1]; 7647 *sin6 = sin6_null; 7648 7649 sin6->sin6_family = AF_INET6; 7650 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7651 sin6->sin6_port = tcp->tcp_lport; 7652 7653 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7654 7655 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7656 /* 7657 * Fill in Remote address 7658 */ 7659 taa->REMADDR_length = sizeof (sin6_t); 7660 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7661 taa->LOCADDR_length); 7662 7663 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7664 *sin6 = sin6_null; 7665 sin6->sin6_family = AF_INET6; 7666 sin6->sin6_flowinfo = 7667 tcp->tcp_ip6h->ip6_vcf & 7668 ~IPV6_VERS_AND_FLOW_MASK; 7669 sin6->sin6_addr = tcp->tcp_remote_v6; 7670 sin6->sin6_port = tcp->tcp_fport; 7671 7672 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7673 } 7674 } 7675 putnext(tcp->tcp_rq, ackmp); 7676 } 7677 7678 /* 7679 * Handle reinitialization of a tcp structure. 7680 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7681 */ 7682 static void 7683 tcp_reinit(tcp_t *tcp) 7684 { 7685 mblk_t *mp; 7686 int err; 7687 7688 TCP_STAT(tcp_reinit_calls); 7689 7690 /* tcp_reinit should never be called for detached tcp_t's */ 7691 ASSERT(tcp->tcp_listener == NULL); 7692 ASSERT((tcp->tcp_family == AF_INET && 7693 tcp->tcp_ipversion == IPV4_VERSION) || 7694 (tcp->tcp_family == AF_INET6 && 7695 (tcp->tcp_ipversion == IPV4_VERSION || 7696 tcp->tcp_ipversion == IPV6_VERSION))); 7697 7698 /* Cancel outstanding timers */ 7699 tcp_timers_stop(tcp); 7700 7701 /* 7702 * Reset everything in the state vector, after updating global 7703 * MIB data from instance counters. 7704 */ 7705 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7706 tcp->tcp_ibsegs = 0; 7707 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7708 tcp->tcp_obsegs = 0; 7709 7710 tcp_close_mpp(&tcp->tcp_xmit_head); 7711 if (tcp->tcp_snd_zcopy_aware) 7712 tcp_zcopy_notify(tcp); 7713 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7714 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7715 if (tcp->tcp_flow_stopped && 7716 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7717 tcp_clrqfull(tcp); 7718 } 7719 tcp_close_mpp(&tcp->tcp_reass_head); 7720 tcp->tcp_reass_tail = NULL; 7721 if (tcp->tcp_rcv_list != NULL) { 7722 /* Free b_next chain */ 7723 tcp_close_mpp(&tcp->tcp_rcv_list); 7724 tcp->tcp_rcv_last_head = NULL; 7725 tcp->tcp_rcv_last_tail = NULL; 7726 tcp->tcp_rcv_cnt = 0; 7727 } 7728 tcp->tcp_rcv_last_tail = NULL; 7729 7730 if ((mp = tcp->tcp_urp_mp) != NULL) { 7731 freemsg(mp); 7732 tcp->tcp_urp_mp = NULL; 7733 } 7734 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7735 freemsg(mp); 7736 tcp->tcp_urp_mark_mp = NULL; 7737 } 7738 if (tcp->tcp_fused_sigurg_mp != NULL) { 7739 freeb(tcp->tcp_fused_sigurg_mp); 7740 tcp->tcp_fused_sigurg_mp = NULL; 7741 } 7742 7743 /* 7744 * Following is a union with two members which are 7745 * identical types and size so the following cleanup 7746 * is enough. 7747 */ 7748 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7749 7750 CL_INET_DISCONNECT(tcp); 7751 7752 /* 7753 * The connection can't be on the tcp_time_wait_head list 7754 * since it is not detached. 7755 */ 7756 ASSERT(tcp->tcp_time_wait_next == NULL); 7757 ASSERT(tcp->tcp_time_wait_prev == NULL); 7758 ASSERT(tcp->tcp_time_wait_expire == 0); 7759 7760 if (tcp->tcp_kssl_pending) { 7761 tcp->tcp_kssl_pending = B_FALSE; 7762 7763 /* Don't reset if the initialized by bind. */ 7764 if (tcp->tcp_kssl_ent != NULL) { 7765 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7766 KSSL_NO_PROXY); 7767 } 7768 } 7769 if (tcp->tcp_kssl_ctx != NULL) { 7770 kssl_release_ctx(tcp->tcp_kssl_ctx); 7771 tcp->tcp_kssl_ctx = NULL; 7772 } 7773 7774 /* 7775 * Reset/preserve other values 7776 */ 7777 tcp_reinit_values(tcp); 7778 ipcl_hash_remove(tcp->tcp_connp); 7779 conn_delete_ire(tcp->tcp_connp, NULL); 7780 7781 if (tcp->tcp_conn_req_max != 0) { 7782 /* 7783 * This is the case when a TLI program uses the same 7784 * transport end point to accept a connection. This 7785 * makes the TCP both a listener and acceptor. When 7786 * this connection is closed, we need to set the state 7787 * back to TCPS_LISTEN. Make sure that the eager list 7788 * is reinitialized. 7789 * 7790 * Note that this stream is still bound to the four 7791 * tuples of the previous connection in IP. If a new 7792 * SYN with different foreign address comes in, IP will 7793 * not find it and will send it to the global queue. In 7794 * the global queue, TCP will do a tcp_lookup_listener() 7795 * to find this stream. This works because this stream 7796 * is only removed from connected hash. 7797 * 7798 */ 7799 tcp->tcp_state = TCPS_LISTEN; 7800 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7801 tcp->tcp_eager_next_drop_q0 = tcp; 7802 tcp->tcp_eager_prev_drop_q0 = tcp; 7803 tcp->tcp_connp->conn_recv = tcp_conn_request; 7804 if (tcp->tcp_family == AF_INET6) { 7805 ASSERT(tcp->tcp_connp->conn_af_isv6); 7806 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7807 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7808 } else { 7809 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7810 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7811 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7812 } 7813 } else { 7814 tcp->tcp_state = TCPS_BOUND; 7815 } 7816 7817 /* 7818 * Initialize to default values 7819 * Can't fail since enough header template space already allocated 7820 * at open(). 7821 */ 7822 err = tcp_init_values(tcp); 7823 ASSERT(err == 0); 7824 /* Restore state in tcp_tcph */ 7825 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7826 if (tcp->tcp_ipversion == IPV4_VERSION) 7827 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7828 else 7829 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7830 /* 7831 * Copy of the src addr. in tcp_t is needed in tcp_t 7832 * since the lookup funcs can only lookup on tcp_t 7833 */ 7834 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7835 7836 ASSERT(tcp->tcp_ptpbhn != NULL); 7837 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7838 tcp->tcp_rwnd = tcp_recv_hiwat; 7839 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7840 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7841 } 7842 7843 /* 7844 * Force values to zero that need be zero. 7845 * Do not touch values asociated with the BOUND or LISTEN state 7846 * since the connection will end up in that state after the reinit. 7847 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7848 * structure! 7849 */ 7850 static void 7851 tcp_reinit_values(tcp) 7852 tcp_t *tcp; 7853 { 7854 #ifndef lint 7855 #define DONTCARE(x) 7856 #define PRESERVE(x) 7857 #else 7858 #define DONTCARE(x) ((x) = (x)) 7859 #define PRESERVE(x) ((x) = (x)) 7860 #endif /* lint */ 7861 7862 PRESERVE(tcp->tcp_bind_hash); 7863 PRESERVE(tcp->tcp_ptpbhn); 7864 PRESERVE(tcp->tcp_acceptor_hash); 7865 PRESERVE(tcp->tcp_ptpahn); 7866 7867 /* Should be ASSERT NULL on these with new code! */ 7868 ASSERT(tcp->tcp_time_wait_next == NULL); 7869 ASSERT(tcp->tcp_time_wait_prev == NULL); 7870 ASSERT(tcp->tcp_time_wait_expire == 0); 7871 PRESERVE(tcp->tcp_state); 7872 PRESERVE(tcp->tcp_rq); 7873 PRESERVE(tcp->tcp_wq); 7874 7875 ASSERT(tcp->tcp_xmit_head == NULL); 7876 ASSERT(tcp->tcp_xmit_last == NULL); 7877 ASSERT(tcp->tcp_unsent == 0); 7878 ASSERT(tcp->tcp_xmit_tail == NULL); 7879 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7880 7881 tcp->tcp_snxt = 0; /* Displayed in mib */ 7882 tcp->tcp_suna = 0; /* Displayed in mib */ 7883 tcp->tcp_swnd = 0; 7884 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7885 7886 ASSERT(tcp->tcp_ibsegs == 0); 7887 ASSERT(tcp->tcp_obsegs == 0); 7888 7889 if (tcp->tcp_iphc != NULL) { 7890 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7891 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7892 } 7893 7894 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7895 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7896 DONTCARE(tcp->tcp_ipha); 7897 DONTCARE(tcp->tcp_ip6h); 7898 DONTCARE(tcp->tcp_ip_hdr_len); 7899 DONTCARE(tcp->tcp_tcph); 7900 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7901 tcp->tcp_valid_bits = 0; 7902 7903 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7904 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7905 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7906 tcp->tcp_last_rcv_lbolt = 0; 7907 7908 tcp->tcp_init_cwnd = 0; 7909 7910 tcp->tcp_urp_last_valid = 0; 7911 tcp->tcp_hard_binding = 0; 7912 tcp->tcp_hard_bound = 0; 7913 PRESERVE(tcp->tcp_cred); 7914 PRESERVE(tcp->tcp_cpid); 7915 PRESERVE(tcp->tcp_exclbind); 7916 7917 tcp->tcp_fin_acked = 0; 7918 tcp->tcp_fin_rcvd = 0; 7919 tcp->tcp_fin_sent = 0; 7920 tcp->tcp_ordrel_done = 0; 7921 7922 tcp->tcp_debug = 0; 7923 tcp->tcp_dontroute = 0; 7924 tcp->tcp_broadcast = 0; 7925 7926 tcp->tcp_useloopback = 0; 7927 tcp->tcp_reuseaddr = 0; 7928 tcp->tcp_oobinline = 0; 7929 tcp->tcp_dgram_errind = 0; 7930 7931 tcp->tcp_detached = 0; 7932 tcp->tcp_bind_pending = 0; 7933 tcp->tcp_unbind_pending = 0; 7934 tcp->tcp_deferred_clean_death = 0; 7935 7936 tcp->tcp_snd_ws_ok = B_FALSE; 7937 tcp->tcp_snd_ts_ok = B_FALSE; 7938 tcp->tcp_linger = 0; 7939 tcp->tcp_ka_enabled = 0; 7940 tcp->tcp_zero_win_probe = 0; 7941 7942 tcp->tcp_loopback = 0; 7943 tcp->tcp_localnet = 0; 7944 tcp->tcp_syn_defense = 0; 7945 tcp->tcp_set_timer = 0; 7946 7947 tcp->tcp_active_open = 0; 7948 ASSERT(tcp->tcp_timeout == B_FALSE); 7949 tcp->tcp_rexmit = B_FALSE; 7950 tcp->tcp_xmit_zc_clean = B_FALSE; 7951 7952 tcp->tcp_snd_sack_ok = B_FALSE; 7953 PRESERVE(tcp->tcp_recvdstaddr); 7954 tcp->tcp_hwcksum = B_FALSE; 7955 7956 tcp->tcp_ire_ill_check_done = B_FALSE; 7957 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7958 7959 tcp->tcp_mdt = B_FALSE; 7960 tcp->tcp_mdt_hdr_head = 0; 7961 tcp->tcp_mdt_hdr_tail = 0; 7962 7963 tcp->tcp_conn_def_q0 = 0; 7964 tcp->tcp_ip_forward_progress = B_FALSE; 7965 tcp->tcp_anon_priv_bind = 0; 7966 tcp->tcp_ecn_ok = B_FALSE; 7967 7968 tcp->tcp_cwr = B_FALSE; 7969 tcp->tcp_ecn_echo_on = B_FALSE; 7970 7971 if (tcp->tcp_sack_info != NULL) { 7972 if (tcp->tcp_notsack_list != NULL) { 7973 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7974 } 7975 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7976 tcp->tcp_sack_info = NULL; 7977 } 7978 7979 tcp->tcp_rcv_ws = 0; 7980 tcp->tcp_snd_ws = 0; 7981 tcp->tcp_ts_recent = 0; 7982 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7983 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7984 tcp->tcp_if_mtu = 0; 7985 7986 ASSERT(tcp->tcp_reass_head == NULL); 7987 ASSERT(tcp->tcp_reass_tail == NULL); 7988 7989 tcp->tcp_cwnd_cnt = 0; 7990 7991 ASSERT(tcp->tcp_rcv_list == NULL); 7992 ASSERT(tcp->tcp_rcv_last_head == NULL); 7993 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7994 ASSERT(tcp->tcp_rcv_cnt == 0); 7995 7996 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7997 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7998 tcp->tcp_csuna = 0; 7999 8000 tcp->tcp_rto = 0; /* Displayed in MIB */ 8001 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8002 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8003 tcp->tcp_rtt_update = 0; 8004 8005 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8006 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8007 8008 tcp->tcp_rack = 0; /* Displayed in mib */ 8009 tcp->tcp_rack_cnt = 0; 8010 tcp->tcp_rack_cur_max = 0; 8011 tcp->tcp_rack_abs_max = 0; 8012 8013 tcp->tcp_max_swnd = 0; 8014 8015 ASSERT(tcp->tcp_listener == NULL); 8016 8017 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8018 8019 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8020 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8021 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8022 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8023 8024 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8025 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8026 PRESERVE(tcp->tcp_conn_req_max); 8027 PRESERVE(tcp->tcp_conn_req_seqnum); 8028 8029 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8030 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8031 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8032 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8033 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8034 8035 tcp->tcp_lingertime = 0; 8036 8037 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8038 ASSERT(tcp->tcp_urp_mp == NULL); 8039 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8040 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8041 8042 ASSERT(tcp->tcp_eager_next_q == NULL); 8043 ASSERT(tcp->tcp_eager_last_q == NULL); 8044 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8045 tcp->tcp_eager_prev_q0 == NULL) || 8046 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8047 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8048 8049 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8050 tcp->tcp_eager_prev_drop_q0 == NULL) || 8051 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8052 8053 tcp->tcp_client_errno = 0; 8054 8055 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8056 8057 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8058 8059 PRESERVE(tcp->tcp_bound_source_v6); 8060 tcp->tcp_last_sent_len = 0; 8061 tcp->tcp_dupack_cnt = 0; 8062 8063 tcp->tcp_fport = 0; /* Displayed in MIB */ 8064 PRESERVE(tcp->tcp_lport); 8065 8066 PRESERVE(tcp->tcp_acceptor_lockp); 8067 8068 ASSERT(tcp->tcp_ordrelid == 0); 8069 PRESERVE(tcp->tcp_acceptor_id); 8070 DONTCARE(tcp->tcp_ipsec_overhead); 8071 8072 /* 8073 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8074 * in tcp structure and now tracing), Re-initialize all 8075 * members of tcp_traceinfo. 8076 */ 8077 if (tcp->tcp_tracebuf != NULL) { 8078 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8079 } 8080 8081 PRESERVE(tcp->tcp_family); 8082 if (tcp->tcp_family == AF_INET6) { 8083 tcp->tcp_ipversion = IPV6_VERSION; 8084 tcp->tcp_mss = tcp_mss_def_ipv6; 8085 } else { 8086 tcp->tcp_ipversion = IPV4_VERSION; 8087 tcp->tcp_mss = tcp_mss_def_ipv4; 8088 } 8089 8090 tcp->tcp_bound_if = 0; 8091 tcp->tcp_ipv6_recvancillary = 0; 8092 tcp->tcp_recvifindex = 0; 8093 tcp->tcp_recvhops = 0; 8094 tcp->tcp_closed = 0; 8095 tcp->tcp_cleandeathtag = 0; 8096 if (tcp->tcp_hopopts != NULL) { 8097 mi_free(tcp->tcp_hopopts); 8098 tcp->tcp_hopopts = NULL; 8099 tcp->tcp_hopoptslen = 0; 8100 } 8101 ASSERT(tcp->tcp_hopoptslen == 0); 8102 if (tcp->tcp_dstopts != NULL) { 8103 mi_free(tcp->tcp_dstopts); 8104 tcp->tcp_dstopts = NULL; 8105 tcp->tcp_dstoptslen = 0; 8106 } 8107 ASSERT(tcp->tcp_dstoptslen == 0); 8108 if (tcp->tcp_rtdstopts != NULL) { 8109 mi_free(tcp->tcp_rtdstopts); 8110 tcp->tcp_rtdstopts = NULL; 8111 tcp->tcp_rtdstoptslen = 0; 8112 } 8113 ASSERT(tcp->tcp_rtdstoptslen == 0); 8114 if (tcp->tcp_rthdr != NULL) { 8115 mi_free(tcp->tcp_rthdr); 8116 tcp->tcp_rthdr = NULL; 8117 tcp->tcp_rthdrlen = 0; 8118 } 8119 ASSERT(tcp->tcp_rthdrlen == 0); 8120 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8121 8122 /* Reset fusion-related fields */ 8123 tcp->tcp_fused = B_FALSE; 8124 tcp->tcp_unfusable = B_FALSE; 8125 tcp->tcp_fused_sigurg = B_FALSE; 8126 tcp->tcp_direct_sockfs = B_FALSE; 8127 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8128 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8129 tcp->tcp_loopback_peer = NULL; 8130 tcp->tcp_fuse_rcv_hiwater = 0; 8131 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8132 tcp->tcp_fuse_rcv_unread_cnt = 0; 8133 8134 tcp->tcp_lso = B_FALSE; 8135 8136 tcp->tcp_in_ack_unsent = 0; 8137 tcp->tcp_cork = B_FALSE; 8138 tcp->tcp_tconnind_started = B_FALSE; 8139 8140 PRESERVE(tcp->tcp_squeue_bytes); 8141 8142 ASSERT(tcp->tcp_kssl_ctx == NULL); 8143 ASSERT(!tcp->tcp_kssl_pending); 8144 PRESERVE(tcp->tcp_kssl_ent); 8145 8146 tcp->tcp_closemp_used = 0; 8147 8148 #ifdef DEBUG 8149 DONTCARE(tcp->tcmp_stk[0]); 8150 #endif 8151 8152 8153 #undef DONTCARE 8154 #undef PRESERVE 8155 } 8156 8157 /* 8158 * Allocate necessary resources and initialize state vector. 8159 * Guaranteed not to fail so that when an error is returned, 8160 * the caller doesn't need to do any additional cleanup. 8161 */ 8162 int 8163 tcp_init(tcp_t *tcp, queue_t *q) 8164 { 8165 int err; 8166 8167 tcp->tcp_rq = q; 8168 tcp->tcp_wq = WR(q); 8169 tcp->tcp_state = TCPS_IDLE; 8170 if ((err = tcp_init_values(tcp)) != 0) 8171 tcp_timers_stop(tcp); 8172 return (err); 8173 } 8174 8175 static int 8176 tcp_init_values(tcp_t *tcp) 8177 { 8178 int err; 8179 8180 ASSERT((tcp->tcp_family == AF_INET && 8181 tcp->tcp_ipversion == IPV4_VERSION) || 8182 (tcp->tcp_family == AF_INET6 && 8183 (tcp->tcp_ipversion == IPV4_VERSION || 8184 tcp->tcp_ipversion == IPV6_VERSION))); 8185 8186 /* 8187 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8188 * will be close to tcp_rexmit_interval_initial. By doing this, we 8189 * allow the algorithm to adjust slowly to large fluctuations of RTT 8190 * during first few transmissions of a connection as seen in slow 8191 * links. 8192 */ 8193 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 8194 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 8195 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8196 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8197 tcp_conn_grace_period; 8198 if (tcp->tcp_rto < tcp_rexmit_interval_min) 8199 tcp->tcp_rto = tcp_rexmit_interval_min; 8200 tcp->tcp_timer_backoff = 0; 8201 tcp->tcp_ms_we_have_waited = 0; 8202 tcp->tcp_last_recv_time = lbolt; 8203 tcp->tcp_cwnd_max = tcp_cwnd_max_; 8204 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8205 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8206 8207 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 8208 8209 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 8210 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 8211 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 8212 /* 8213 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8214 * passive open. 8215 */ 8216 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 8217 8218 tcp->tcp_naglim = tcp_naglim_def; 8219 8220 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8221 8222 tcp->tcp_mdt_hdr_head = 0; 8223 tcp->tcp_mdt_hdr_tail = 0; 8224 8225 /* Reset fusion-related fields */ 8226 tcp->tcp_fused = B_FALSE; 8227 tcp->tcp_unfusable = B_FALSE; 8228 tcp->tcp_fused_sigurg = B_FALSE; 8229 tcp->tcp_direct_sockfs = B_FALSE; 8230 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8231 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8232 tcp->tcp_loopback_peer = NULL; 8233 tcp->tcp_fuse_rcv_hiwater = 0; 8234 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8235 tcp->tcp_fuse_rcv_unread_cnt = 0; 8236 8237 /* Initialize the header template */ 8238 if (tcp->tcp_ipversion == IPV4_VERSION) { 8239 err = tcp_header_init_ipv4(tcp); 8240 } else { 8241 err = tcp_header_init_ipv6(tcp); 8242 } 8243 if (err) 8244 return (err); 8245 8246 /* 8247 * Init the window scale to the max so tcp_rwnd_set() won't pare 8248 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8249 */ 8250 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8251 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8252 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8253 8254 tcp->tcp_cork = B_FALSE; 8255 /* 8256 * Init the tcp_debug option. This value determines whether TCP 8257 * calls strlog() to print out debug messages. Doing this 8258 * initialization here means that this value is not inherited thru 8259 * tcp_reinit(). 8260 */ 8261 tcp->tcp_debug = tcp_dbg; 8262 8263 tcp->tcp_ka_interval = tcp_keepalive_interval; 8264 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8265 8266 return (0); 8267 } 8268 8269 /* 8270 * Initialize the IPv4 header. Loses any record of any IP options. 8271 */ 8272 static int 8273 tcp_header_init_ipv4(tcp_t *tcp) 8274 { 8275 tcph_t *tcph; 8276 uint32_t sum; 8277 conn_t *connp; 8278 8279 /* 8280 * This is a simple initialization. If there's 8281 * already a template, it should never be too small, 8282 * so reuse it. Otherwise, allocate space for the new one. 8283 */ 8284 if (tcp->tcp_iphc == NULL) { 8285 ASSERT(tcp->tcp_iphc_len == 0); 8286 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8287 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8288 if (tcp->tcp_iphc == NULL) { 8289 tcp->tcp_iphc_len = 0; 8290 return (ENOMEM); 8291 } 8292 } 8293 8294 /* options are gone; may need a new label */ 8295 connp = tcp->tcp_connp; 8296 connp->conn_mlp_type = mlptSingle; 8297 connp->conn_ulp_labeled = !is_system_labeled(); 8298 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8299 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8300 tcp->tcp_ip6h = NULL; 8301 tcp->tcp_ipversion = IPV4_VERSION; 8302 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8303 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8304 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8305 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8306 tcp->tcp_ipha->ipha_version_and_hdr_length 8307 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8308 tcp->tcp_ipha->ipha_ident = 0; 8309 8310 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8311 tcp->tcp_tos = 0; 8312 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8313 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8314 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8315 8316 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8317 tcp->tcp_tcph = tcph; 8318 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8319 /* 8320 * IP wants our header length in the checksum field to 8321 * allow it to perform a single pseudo-header+checksum 8322 * calculation on behalf of TCP. 8323 * Include the adjustment for a source route once IP_OPTIONS is set. 8324 */ 8325 sum = sizeof (tcph_t) + tcp->tcp_sum; 8326 sum = (sum >> 16) + (sum & 0xFFFF); 8327 U16_TO_ABE16(sum, tcph->th_sum); 8328 return (0); 8329 } 8330 8331 /* 8332 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8333 */ 8334 static int 8335 tcp_header_init_ipv6(tcp_t *tcp) 8336 { 8337 tcph_t *tcph; 8338 uint32_t sum; 8339 conn_t *connp; 8340 8341 /* 8342 * This is a simple initialization. If there's 8343 * already a template, it should never be too small, 8344 * so reuse it. Otherwise, allocate space for the new one. 8345 * Ensure that there is enough space to "downgrade" the tcp_t 8346 * to an IPv4 tcp_t. This requires having space for a full load 8347 * of IPv4 options, as well as a full load of TCP options 8348 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8349 * than a v6 header and a TCP header with a full load of TCP options 8350 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8351 * We want to avoid reallocation in the "downgraded" case when 8352 * processing outbound IPv4 options. 8353 */ 8354 if (tcp->tcp_iphc == NULL) { 8355 ASSERT(tcp->tcp_iphc_len == 0); 8356 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8357 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8358 if (tcp->tcp_iphc == NULL) { 8359 tcp->tcp_iphc_len = 0; 8360 return (ENOMEM); 8361 } 8362 } 8363 8364 /* options are gone; may need a new label */ 8365 connp = tcp->tcp_connp; 8366 connp->conn_mlp_type = mlptSingle; 8367 connp->conn_ulp_labeled = !is_system_labeled(); 8368 8369 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8370 tcp->tcp_ipversion = IPV6_VERSION; 8371 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8372 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8373 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8374 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8375 tcp->tcp_ipha = NULL; 8376 8377 /* Initialize the header template */ 8378 8379 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8380 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8381 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8382 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8383 8384 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8385 tcp->tcp_tcph = tcph; 8386 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8387 /* 8388 * IP wants our header length in the checksum field to 8389 * allow it to perform a single psuedo-header+checksum 8390 * calculation on behalf of TCP. 8391 * Include the adjustment for a source route when IPV6_RTHDR is set. 8392 */ 8393 sum = sizeof (tcph_t) + tcp->tcp_sum; 8394 sum = (sum >> 16) + (sum & 0xFFFF); 8395 U16_TO_ABE16(sum, tcph->th_sum); 8396 return (0); 8397 } 8398 8399 /* At minimum we need 4 bytes in the TCP header for the lookup */ 8400 #define ICMP_MIN_TCP_HDR 12 8401 8402 /* 8403 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8404 * passed up by IP. The message is always received on the correct tcp_t. 8405 * Assumes that IP has pulled up everything up to and including the ICMP header. 8406 */ 8407 void 8408 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8409 { 8410 icmph_t *icmph; 8411 ipha_t *ipha; 8412 int iph_hdr_length; 8413 tcph_t *tcph; 8414 boolean_t ipsec_mctl = B_FALSE; 8415 boolean_t secure; 8416 mblk_t *first_mp = mp; 8417 uint32_t new_mss; 8418 uint32_t ratio; 8419 size_t mp_size = MBLKL(mp); 8420 uint32_t seg_ack; 8421 uint32_t seg_seq; 8422 8423 /* Assume IP provides aligned packets - otherwise toss */ 8424 if (!OK_32PTR(mp->b_rptr)) { 8425 freemsg(mp); 8426 return; 8427 } 8428 8429 /* 8430 * Since ICMP errors are normal data marked with M_CTL when sent 8431 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8432 * packets starting with an ipsec_info_t, see ipsec_info.h. 8433 */ 8434 if ((mp_size == sizeof (ipsec_info_t)) && 8435 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8436 ASSERT(mp->b_cont != NULL); 8437 mp = mp->b_cont; 8438 /* IP should have done this */ 8439 ASSERT(OK_32PTR(mp->b_rptr)); 8440 mp_size = MBLKL(mp); 8441 ipsec_mctl = B_TRUE; 8442 } 8443 8444 /* 8445 * Verify that we have a complete outer IP header. If not, drop it. 8446 */ 8447 if (mp_size < sizeof (ipha_t)) { 8448 noticmpv4: 8449 freemsg(first_mp); 8450 return; 8451 } 8452 8453 ipha = (ipha_t *)mp->b_rptr; 8454 /* 8455 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8456 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8457 */ 8458 switch (IPH_HDR_VERSION(ipha)) { 8459 case IPV6_VERSION: 8460 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8461 return; 8462 case IPV4_VERSION: 8463 break; 8464 default: 8465 goto noticmpv4; 8466 } 8467 8468 /* Skip past the outer IP and ICMP headers */ 8469 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8470 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8471 /* 8472 * If we don't have the correct outer IP header length or if the ULP 8473 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8474 * send it upstream. 8475 */ 8476 if (iph_hdr_length < sizeof (ipha_t) || 8477 ipha->ipha_protocol != IPPROTO_ICMP || 8478 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8479 goto noticmpv4; 8480 } 8481 ipha = (ipha_t *)&icmph[1]; 8482 8483 /* Skip past the inner IP and find the ULP header */ 8484 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8485 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8486 /* 8487 * If we don't have the correct inner IP header length or if the ULP 8488 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8489 * bytes of TCP header, drop it. 8490 */ 8491 if (iph_hdr_length < sizeof (ipha_t) || 8492 ipha->ipha_protocol != IPPROTO_TCP || 8493 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8494 goto noticmpv4; 8495 } 8496 8497 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8498 if (ipsec_mctl) { 8499 secure = ipsec_in_is_secure(first_mp); 8500 } else { 8501 secure = B_FALSE; 8502 } 8503 if (secure) { 8504 /* 8505 * If we are willing to accept this in clear 8506 * we don't have to verify policy. 8507 */ 8508 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8509 if (!tcp_check_policy(tcp, first_mp, 8510 ipha, NULL, secure, ipsec_mctl)) { 8511 /* 8512 * tcp_check_policy called 8513 * ip_drop_packet() on failure. 8514 */ 8515 return; 8516 } 8517 } 8518 } 8519 } else if (ipsec_mctl) { 8520 /* 8521 * This is a hard_bound connection. IP has already 8522 * verified policy. We don't have to do it again. 8523 */ 8524 freeb(first_mp); 8525 first_mp = mp; 8526 ipsec_mctl = B_FALSE; 8527 } 8528 8529 seg_ack = ABE32_TO_U32(tcph->th_ack); 8530 seg_seq = ABE32_TO_U32(tcph->th_seq); 8531 /* 8532 * TCP SHOULD check that the TCP sequence number contained in 8533 * payload of the ICMP error message is within the range 8534 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8535 */ 8536 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 8537 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8538 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8539 /* 8540 * If the ICMP message is bogus, should we kill the 8541 * connection, or should we just drop the bogus ICMP 8542 * message? It would probably make more sense to just 8543 * drop the message so that if this one managed to get 8544 * in, the real connection should not suffer. 8545 */ 8546 goto noticmpv4; 8547 } 8548 8549 switch (icmph->icmph_type) { 8550 case ICMP_DEST_UNREACHABLE: 8551 switch (icmph->icmph_code) { 8552 case ICMP_FRAGMENTATION_NEEDED: 8553 /* 8554 * Reduce the MSS based on the new MTU. This will 8555 * eliminate any fragmentation locally. 8556 * N.B. There may well be some funny side-effects on 8557 * the local send policy and the remote receive policy. 8558 * Pending further research, we provide 8559 * tcp_ignore_path_mtu just in case this proves 8560 * disastrous somewhere. 8561 * 8562 * After updating the MSS, retransmit part of the 8563 * dropped segment using the new mss by calling 8564 * tcp_wput_data(). Need to adjust all those 8565 * params to make sure tcp_wput_data() work properly. 8566 */ 8567 if (tcp_ignore_path_mtu) 8568 break; 8569 8570 /* 8571 * Decrease the MSS by time stamp options 8572 * IP options and IPSEC options. tcp_hdr_len 8573 * includes time stamp option and IP option 8574 * length. 8575 */ 8576 8577 new_mss = ntohs(icmph->icmph_du_mtu) - 8578 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8579 8580 /* 8581 * Only update the MSS if the new one is 8582 * smaller than the previous one. This is 8583 * to avoid problems when getting multiple 8584 * ICMP errors for the same MTU. 8585 */ 8586 if (new_mss >= tcp->tcp_mss) 8587 break; 8588 8589 /* 8590 * Stop doing PMTU if new_mss is less than 68 8591 * or less than tcp_mss_min. 8592 * The value 68 comes from rfc 1191. 8593 */ 8594 if (new_mss < MAX(68, tcp_mss_min)) 8595 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8596 0; 8597 8598 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8599 ASSERT(ratio >= 1); 8600 tcp_mss_set(tcp, new_mss); 8601 8602 /* 8603 * Make sure we have something to 8604 * send. 8605 */ 8606 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8607 (tcp->tcp_xmit_head != NULL)) { 8608 /* 8609 * Shrink tcp_cwnd in 8610 * proportion to the old MSS/new MSS. 8611 */ 8612 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8613 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8614 (tcp->tcp_unsent == 0)) { 8615 tcp->tcp_rexmit_max = tcp->tcp_fss; 8616 } else { 8617 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8618 } 8619 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8620 tcp->tcp_rexmit = B_TRUE; 8621 tcp->tcp_dupack_cnt = 0; 8622 tcp->tcp_snd_burst = TCP_CWND_SS; 8623 tcp_ss_rexmit(tcp); 8624 } 8625 break; 8626 case ICMP_PORT_UNREACHABLE: 8627 case ICMP_PROTOCOL_UNREACHABLE: 8628 switch (tcp->tcp_state) { 8629 case TCPS_SYN_SENT: 8630 case TCPS_SYN_RCVD: 8631 /* 8632 * ICMP can snipe away incipient 8633 * TCP connections as long as 8634 * seq number is same as initial 8635 * send seq number. 8636 */ 8637 if (seg_seq == tcp->tcp_iss) { 8638 (void) tcp_clean_death(tcp, 8639 ECONNREFUSED, 6); 8640 } 8641 break; 8642 } 8643 break; 8644 case ICMP_HOST_UNREACHABLE: 8645 case ICMP_NET_UNREACHABLE: 8646 /* Record the error in case we finally time out. */ 8647 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8648 tcp->tcp_client_errno = EHOSTUNREACH; 8649 else 8650 tcp->tcp_client_errno = ENETUNREACH; 8651 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8652 if (tcp->tcp_listener != NULL && 8653 tcp->tcp_listener->tcp_syn_defense) { 8654 /* 8655 * Ditch the half-open connection if we 8656 * suspect a SYN attack is under way. 8657 */ 8658 tcp_ip_ire_mark_advice(tcp); 8659 (void) tcp_clean_death(tcp, 8660 tcp->tcp_client_errno, 7); 8661 } 8662 } 8663 break; 8664 default: 8665 break; 8666 } 8667 break; 8668 case ICMP_SOURCE_QUENCH: { 8669 /* 8670 * use a global boolean to control 8671 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8672 * The default is false. 8673 */ 8674 if (tcp_icmp_source_quench) { 8675 /* 8676 * Reduce the sending rate as if we got a 8677 * retransmit timeout 8678 */ 8679 uint32_t npkt; 8680 8681 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8682 tcp->tcp_mss; 8683 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8684 tcp->tcp_cwnd = tcp->tcp_mss; 8685 tcp->tcp_cwnd_cnt = 0; 8686 } 8687 break; 8688 } 8689 } 8690 freemsg(first_mp); 8691 } 8692 8693 /* 8694 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8695 * error messages passed up by IP. 8696 * Assumes that IP has pulled up all the extension headers as well 8697 * as the ICMPv6 header. 8698 */ 8699 static void 8700 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8701 { 8702 icmp6_t *icmp6; 8703 ip6_t *ip6h; 8704 uint16_t iph_hdr_length; 8705 tcpha_t *tcpha; 8706 uint8_t *nexthdrp; 8707 uint32_t new_mss; 8708 uint32_t ratio; 8709 boolean_t secure; 8710 mblk_t *first_mp = mp; 8711 size_t mp_size; 8712 uint32_t seg_ack; 8713 uint32_t seg_seq; 8714 8715 /* 8716 * The caller has determined if this is an IPSEC_IN packet and 8717 * set ipsec_mctl appropriately (see tcp_icmp_error). 8718 */ 8719 if (ipsec_mctl) 8720 mp = mp->b_cont; 8721 8722 mp_size = MBLKL(mp); 8723 8724 /* 8725 * Verify that we have a complete IP header. If not, send it upstream. 8726 */ 8727 if (mp_size < sizeof (ip6_t)) { 8728 noticmpv6: 8729 freemsg(first_mp); 8730 return; 8731 } 8732 8733 /* 8734 * Verify this is an ICMPV6 packet, else send it upstream. 8735 */ 8736 ip6h = (ip6_t *)mp->b_rptr; 8737 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8738 iph_hdr_length = IPV6_HDR_LEN; 8739 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8740 &nexthdrp) || 8741 *nexthdrp != IPPROTO_ICMPV6) { 8742 goto noticmpv6; 8743 } 8744 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8745 ip6h = (ip6_t *)&icmp6[1]; 8746 /* 8747 * Verify if we have a complete ICMP and inner IP header. 8748 */ 8749 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8750 goto noticmpv6; 8751 8752 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8753 goto noticmpv6; 8754 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8755 /* 8756 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8757 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8758 * packet. 8759 */ 8760 if ((*nexthdrp != IPPROTO_TCP) || 8761 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8762 goto noticmpv6; 8763 } 8764 8765 /* 8766 * ICMP errors come on the right queue or come on 8767 * listener/global queue for detached connections and 8768 * get switched to the right queue. If it comes on the 8769 * right queue, policy check has already been done by IP 8770 * and thus free the first_mp without verifying the policy. 8771 * If it has come for a non-hard bound connection, we need 8772 * to verify policy as IP may not have done it. 8773 */ 8774 if (!tcp->tcp_hard_bound) { 8775 if (ipsec_mctl) { 8776 secure = ipsec_in_is_secure(first_mp); 8777 } else { 8778 secure = B_FALSE; 8779 } 8780 if (secure) { 8781 /* 8782 * If we are willing to accept this in clear 8783 * we don't have to verify policy. 8784 */ 8785 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8786 if (!tcp_check_policy(tcp, first_mp, 8787 NULL, ip6h, secure, ipsec_mctl)) { 8788 /* 8789 * tcp_check_policy called 8790 * ip_drop_packet() on failure. 8791 */ 8792 return; 8793 } 8794 } 8795 } 8796 } else if (ipsec_mctl) { 8797 /* 8798 * This is a hard_bound connection. IP has already 8799 * verified policy. We don't have to do it again. 8800 */ 8801 freeb(first_mp); 8802 first_mp = mp; 8803 ipsec_mctl = B_FALSE; 8804 } 8805 8806 seg_ack = ntohl(tcpha->tha_ack); 8807 seg_seq = ntohl(tcpha->tha_seq); 8808 /* 8809 * TCP SHOULD check that the TCP sequence number contained in 8810 * payload of the ICMP error message is within the range 8811 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8812 */ 8813 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8814 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8815 /* 8816 * If the ICMP message is bogus, should we kill the 8817 * connection, or should we just drop the bogus ICMP 8818 * message? It would probably make more sense to just 8819 * drop the message so that if this one managed to get 8820 * in, the real connection should not suffer. 8821 */ 8822 goto noticmpv6; 8823 } 8824 8825 switch (icmp6->icmp6_type) { 8826 case ICMP6_PACKET_TOO_BIG: 8827 /* 8828 * Reduce the MSS based on the new MTU. This will 8829 * eliminate any fragmentation locally. 8830 * N.B. There may well be some funny side-effects on 8831 * the local send policy and the remote receive policy. 8832 * Pending further research, we provide 8833 * tcp_ignore_path_mtu just in case this proves 8834 * disastrous somewhere. 8835 * 8836 * After updating the MSS, retransmit part of the 8837 * dropped segment using the new mss by calling 8838 * tcp_wput_data(). Need to adjust all those 8839 * params to make sure tcp_wput_data() work properly. 8840 */ 8841 if (tcp_ignore_path_mtu) 8842 break; 8843 8844 /* 8845 * Decrease the MSS by time stamp options 8846 * IP options and IPSEC options. tcp_hdr_len 8847 * includes time stamp option and IP option 8848 * length. 8849 */ 8850 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8851 tcp->tcp_ipsec_overhead; 8852 8853 /* 8854 * Only update the MSS if the new one is 8855 * smaller than the previous one. This is 8856 * to avoid problems when getting multiple 8857 * ICMP errors for the same MTU. 8858 */ 8859 if (new_mss >= tcp->tcp_mss) 8860 break; 8861 8862 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8863 ASSERT(ratio >= 1); 8864 tcp_mss_set(tcp, new_mss); 8865 8866 /* 8867 * Make sure we have something to 8868 * send. 8869 */ 8870 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8871 (tcp->tcp_xmit_head != NULL)) { 8872 /* 8873 * Shrink tcp_cwnd in 8874 * proportion to the old MSS/new MSS. 8875 */ 8876 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8877 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8878 (tcp->tcp_unsent == 0)) { 8879 tcp->tcp_rexmit_max = tcp->tcp_fss; 8880 } else { 8881 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8882 } 8883 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8884 tcp->tcp_rexmit = B_TRUE; 8885 tcp->tcp_dupack_cnt = 0; 8886 tcp->tcp_snd_burst = TCP_CWND_SS; 8887 tcp_ss_rexmit(tcp); 8888 } 8889 break; 8890 8891 case ICMP6_DST_UNREACH: 8892 switch (icmp6->icmp6_code) { 8893 case ICMP6_DST_UNREACH_NOPORT: 8894 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8895 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8896 (seg_seq == tcp->tcp_iss)) { 8897 (void) tcp_clean_death(tcp, 8898 ECONNREFUSED, 8); 8899 } 8900 break; 8901 8902 case ICMP6_DST_UNREACH_ADMIN: 8903 case ICMP6_DST_UNREACH_NOROUTE: 8904 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8905 case ICMP6_DST_UNREACH_ADDR: 8906 /* Record the error in case we finally time out. */ 8907 tcp->tcp_client_errno = EHOSTUNREACH; 8908 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8909 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8910 (seg_seq == tcp->tcp_iss)) { 8911 if (tcp->tcp_listener != NULL && 8912 tcp->tcp_listener->tcp_syn_defense) { 8913 /* 8914 * Ditch the half-open connection if we 8915 * suspect a SYN attack is under way. 8916 */ 8917 tcp_ip_ire_mark_advice(tcp); 8918 (void) tcp_clean_death(tcp, 8919 tcp->tcp_client_errno, 9); 8920 } 8921 } 8922 8923 8924 break; 8925 default: 8926 break; 8927 } 8928 break; 8929 8930 case ICMP6_PARAM_PROB: 8931 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8932 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8933 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8934 (uchar_t *)nexthdrp) { 8935 if (tcp->tcp_state == TCPS_SYN_SENT || 8936 tcp->tcp_state == TCPS_SYN_RCVD) { 8937 (void) tcp_clean_death(tcp, 8938 ECONNREFUSED, 10); 8939 } 8940 break; 8941 } 8942 break; 8943 8944 case ICMP6_TIME_EXCEEDED: 8945 default: 8946 break; 8947 } 8948 freemsg(first_mp); 8949 } 8950 8951 /* 8952 * IP recognizes seven kinds of bind requests: 8953 * 8954 * - A zero-length address binds only to the protocol number. 8955 * 8956 * - A 4-byte address is treated as a request to 8957 * validate that the address is a valid local IPv4 8958 * address, appropriate for an application to bind to. 8959 * IP does the verification, but does not make any note 8960 * of the address at this time. 8961 * 8962 * - A 16-byte address contains is treated as a request 8963 * to validate a local IPv6 address, as the 4-byte 8964 * address case above. 8965 * 8966 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8967 * use it for the inbound fanout of packets. 8968 * 8969 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8970 * use it for the inbound fanout of packets. 8971 * 8972 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8973 * information consisting of local and remote addresses 8974 * and ports. In this case, the addresses are both 8975 * validated as appropriate for this operation, and, if 8976 * so, the information is retained for use in the 8977 * inbound fanout. 8978 * 8979 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8980 * fanout information, like the 12-byte case above. 8981 * 8982 * IP will also fill in the IRE request mblk with information 8983 * regarding our peer. In all cases, we notify IP of our protocol 8984 * type by appending a single protocol byte to the bind request. 8985 */ 8986 static mblk_t * 8987 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8988 { 8989 char *cp; 8990 mblk_t *mp; 8991 struct T_bind_req *tbr; 8992 ipa_conn_t *ac; 8993 ipa6_conn_t *ac6; 8994 sin_t *sin; 8995 sin6_t *sin6; 8996 8997 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8998 ASSERT((tcp->tcp_family == AF_INET && 8999 tcp->tcp_ipversion == IPV4_VERSION) || 9000 (tcp->tcp_family == AF_INET6 && 9001 (tcp->tcp_ipversion == IPV4_VERSION || 9002 tcp->tcp_ipversion == IPV6_VERSION))); 9003 9004 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9005 if (!mp) 9006 return (mp); 9007 mp->b_datap->db_type = M_PROTO; 9008 tbr = (struct T_bind_req *)mp->b_rptr; 9009 tbr->PRIM_type = bind_prim; 9010 tbr->ADDR_offset = sizeof (*tbr); 9011 tbr->CONIND_number = 0; 9012 tbr->ADDR_length = addr_length; 9013 cp = (char *)&tbr[1]; 9014 switch (addr_length) { 9015 case sizeof (ipa_conn_t): 9016 ASSERT(tcp->tcp_family == AF_INET); 9017 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9018 9019 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9020 if (mp->b_cont == NULL) { 9021 freemsg(mp); 9022 return (NULL); 9023 } 9024 mp->b_cont->b_wptr += sizeof (ire_t); 9025 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9026 9027 /* cp known to be 32 bit aligned */ 9028 ac = (ipa_conn_t *)cp; 9029 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9030 ac->ac_faddr = tcp->tcp_remote; 9031 ac->ac_fport = tcp->tcp_fport; 9032 ac->ac_lport = tcp->tcp_lport; 9033 tcp->tcp_hard_binding = 1; 9034 break; 9035 9036 case sizeof (ipa6_conn_t): 9037 ASSERT(tcp->tcp_family == AF_INET6); 9038 9039 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9040 if (mp->b_cont == NULL) { 9041 freemsg(mp); 9042 return (NULL); 9043 } 9044 mp->b_cont->b_wptr += sizeof (ire_t); 9045 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9046 9047 /* cp known to be 32 bit aligned */ 9048 ac6 = (ipa6_conn_t *)cp; 9049 if (tcp->tcp_ipversion == IPV4_VERSION) { 9050 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9051 &ac6->ac6_laddr); 9052 } else { 9053 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9054 } 9055 ac6->ac6_faddr = tcp->tcp_remote_v6; 9056 ac6->ac6_fport = tcp->tcp_fport; 9057 ac6->ac6_lport = tcp->tcp_lport; 9058 tcp->tcp_hard_binding = 1; 9059 break; 9060 9061 case sizeof (sin_t): 9062 /* 9063 * NOTE: IPV6_ADDR_LEN also has same size. 9064 * Use family to discriminate. 9065 */ 9066 if (tcp->tcp_family == AF_INET) { 9067 sin = (sin_t *)cp; 9068 9069 *sin = sin_null; 9070 sin->sin_family = AF_INET; 9071 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9072 sin->sin_port = tcp->tcp_lport; 9073 break; 9074 } else { 9075 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9076 } 9077 break; 9078 9079 case sizeof (sin6_t): 9080 ASSERT(tcp->tcp_family == AF_INET6); 9081 sin6 = (sin6_t *)cp; 9082 9083 *sin6 = sin6_null; 9084 sin6->sin6_family = AF_INET6; 9085 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9086 sin6->sin6_port = tcp->tcp_lport; 9087 break; 9088 9089 case IP_ADDR_LEN: 9090 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9091 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9092 break; 9093 9094 } 9095 /* Add protocol number to end */ 9096 cp[addr_length] = (char)IPPROTO_TCP; 9097 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9098 return (mp); 9099 } 9100 9101 /* 9102 * Notify IP that we are having trouble with this connection. IP should 9103 * blow the IRE away and start over. 9104 */ 9105 static void 9106 tcp_ip_notify(tcp_t *tcp) 9107 { 9108 struct iocblk *iocp; 9109 ipid_t *ipid; 9110 mblk_t *mp; 9111 9112 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9113 if (tcp->tcp_ipversion == IPV6_VERSION) 9114 return; 9115 9116 mp = mkiocb(IP_IOCTL); 9117 if (mp == NULL) 9118 return; 9119 9120 iocp = (struct iocblk *)mp->b_rptr; 9121 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9122 9123 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9124 if (!mp->b_cont) { 9125 freeb(mp); 9126 return; 9127 } 9128 9129 ipid = (ipid_t *)mp->b_cont->b_rptr; 9130 mp->b_cont->b_wptr += iocp->ioc_count; 9131 bzero(ipid, sizeof (*ipid)); 9132 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9133 ipid->ipid_ire_type = IRE_CACHE; 9134 ipid->ipid_addr_offset = sizeof (ipid_t); 9135 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9136 /* 9137 * Note: in the case of source routing we want to blow away the 9138 * route to the first source route hop. 9139 */ 9140 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9141 sizeof (tcp->tcp_ipha->ipha_dst)); 9142 9143 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9144 } 9145 9146 /* Unlink and return any mblk that looks like it contains an ire */ 9147 static mblk_t * 9148 tcp_ire_mp(mblk_t *mp) 9149 { 9150 mblk_t *prev_mp; 9151 9152 for (;;) { 9153 prev_mp = mp; 9154 mp = mp->b_cont; 9155 if (mp == NULL) 9156 break; 9157 switch (DB_TYPE(mp)) { 9158 case IRE_DB_TYPE: 9159 case IRE_DB_REQ_TYPE: 9160 if (prev_mp != NULL) 9161 prev_mp->b_cont = mp->b_cont; 9162 mp->b_cont = NULL; 9163 return (mp); 9164 default: 9165 break; 9166 } 9167 } 9168 return (mp); 9169 } 9170 9171 /* 9172 * Timer callback routine for keepalive probe. We do a fake resend of 9173 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9174 * check to see if we have heard anything from the other end for the last 9175 * RTO period. If we have, set the timer to expire for another 9176 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9177 * RTO << 1 and check again when it expires. Keep exponentially increasing 9178 * the timeout if we have not heard from the other side. If for more than 9179 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9180 * kill the connection unless the keepalive abort threshold is 0. In 9181 * that case, we will probe "forever." 9182 */ 9183 static void 9184 tcp_keepalive_killer(void *arg) 9185 { 9186 mblk_t *mp; 9187 conn_t *connp = (conn_t *)arg; 9188 tcp_t *tcp = connp->conn_tcp; 9189 int32_t firetime; 9190 int32_t idletime; 9191 int32_t ka_intrvl; 9192 9193 tcp->tcp_ka_tid = 0; 9194 9195 if (tcp->tcp_fused) 9196 return; 9197 9198 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 9199 ka_intrvl = tcp->tcp_ka_interval; 9200 9201 /* 9202 * Keepalive probe should only be sent if the application has not 9203 * done a close on the connection. 9204 */ 9205 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9206 return; 9207 } 9208 /* Timer fired too early, restart it. */ 9209 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9210 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9211 MSEC_TO_TICK(ka_intrvl)); 9212 return; 9213 } 9214 9215 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9216 /* 9217 * If we have not heard from the other side for a long 9218 * time, kill the connection unless the keepalive abort 9219 * threshold is 0. In that case, we will probe "forever." 9220 */ 9221 if (tcp->tcp_ka_abort_thres != 0 && 9222 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9223 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 9224 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9225 tcp->tcp_client_errno : ETIMEDOUT, 11); 9226 return; 9227 } 9228 9229 if (tcp->tcp_snxt == tcp->tcp_suna && 9230 idletime >= ka_intrvl) { 9231 /* Fake resend of last ACKed byte. */ 9232 mblk_t *mp1 = allocb(1, BPRI_LO); 9233 9234 if (mp1 != NULL) { 9235 *mp1->b_wptr++ = '\0'; 9236 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9237 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9238 freeb(mp1); 9239 /* 9240 * if allocation failed, fall through to start the 9241 * timer back. 9242 */ 9243 if (mp != NULL) { 9244 TCP_RECORD_TRACE(tcp, mp, 9245 TCP_TRACE_SEND_PKT); 9246 tcp_send_data(tcp, tcp->tcp_wq, mp); 9247 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9248 if (tcp->tcp_ka_last_intrvl != 0) { 9249 /* 9250 * We should probe again at least 9251 * in ka_intrvl, but not more than 9252 * tcp_rexmit_interval_max. 9253 */ 9254 firetime = MIN(ka_intrvl - 1, 9255 tcp->tcp_ka_last_intrvl << 1); 9256 if (firetime > tcp_rexmit_interval_max) 9257 firetime = 9258 tcp_rexmit_interval_max; 9259 } else { 9260 firetime = tcp->tcp_rto; 9261 } 9262 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9263 tcp_keepalive_killer, 9264 MSEC_TO_TICK(firetime)); 9265 tcp->tcp_ka_last_intrvl = firetime; 9266 return; 9267 } 9268 } 9269 } else { 9270 tcp->tcp_ka_last_intrvl = 0; 9271 } 9272 9273 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9274 if ((firetime = ka_intrvl - idletime) < 0) { 9275 firetime = ka_intrvl; 9276 } 9277 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9278 MSEC_TO_TICK(firetime)); 9279 } 9280 9281 int 9282 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9283 { 9284 queue_t *q = tcp->tcp_rq; 9285 int32_t mss = tcp->tcp_mss; 9286 int maxpsz; 9287 9288 if (TCP_IS_DETACHED(tcp)) 9289 return (mss); 9290 9291 if (tcp->tcp_fused) { 9292 maxpsz = tcp_fuse_maxpsz_set(tcp); 9293 mss = INFPSZ; 9294 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9295 /* 9296 * Set the sd_qn_maxpsz according to the socket send buffer 9297 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9298 * instruct the stream head to copyin user data into contiguous 9299 * kernel-allocated buffers without breaking it up into smaller 9300 * chunks. We round up the buffer size to the nearest SMSS. 9301 */ 9302 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9303 if (tcp->tcp_kssl_ctx == NULL) 9304 mss = INFPSZ; 9305 else 9306 mss = SSL3_MAX_RECORD_LEN; 9307 } else { 9308 /* 9309 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9310 * (and a multiple of the mss). This instructs the stream 9311 * head to break down larger than SMSS writes into SMSS- 9312 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9313 */ 9314 maxpsz = tcp->tcp_maxpsz * mss; 9315 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9316 maxpsz = tcp->tcp_xmit_hiwater/2; 9317 /* Round up to nearest mss */ 9318 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9319 } 9320 } 9321 (void) setmaxps(q, maxpsz); 9322 tcp->tcp_wq->q_maxpsz = maxpsz; 9323 9324 if (set_maxblk) 9325 (void) mi_set_sth_maxblk(q, mss); 9326 9327 return (mss); 9328 } 9329 9330 /* 9331 * Extract option values from a tcp header. We put any found values into the 9332 * tcpopt struct and return a bitmask saying which options were found. 9333 */ 9334 static int 9335 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9336 { 9337 uchar_t *endp; 9338 int len; 9339 uint32_t mss; 9340 uchar_t *up = (uchar_t *)tcph; 9341 int found = 0; 9342 int32_t sack_len; 9343 tcp_seq sack_begin, sack_end; 9344 tcp_t *tcp; 9345 9346 endp = up + TCP_HDR_LENGTH(tcph); 9347 up += TCP_MIN_HEADER_LENGTH; 9348 while (up < endp) { 9349 len = endp - up; 9350 switch (*up) { 9351 case TCPOPT_EOL: 9352 break; 9353 9354 case TCPOPT_NOP: 9355 up++; 9356 continue; 9357 9358 case TCPOPT_MAXSEG: 9359 if (len < TCPOPT_MAXSEG_LEN || 9360 up[1] != TCPOPT_MAXSEG_LEN) 9361 break; 9362 9363 mss = BE16_TO_U16(up+2); 9364 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9365 tcpopt->tcp_opt_mss = mss; 9366 found |= TCP_OPT_MSS_PRESENT; 9367 9368 up += TCPOPT_MAXSEG_LEN; 9369 continue; 9370 9371 case TCPOPT_WSCALE: 9372 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9373 break; 9374 9375 if (up[2] > TCP_MAX_WINSHIFT) 9376 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9377 else 9378 tcpopt->tcp_opt_wscale = up[2]; 9379 found |= TCP_OPT_WSCALE_PRESENT; 9380 9381 up += TCPOPT_WS_LEN; 9382 continue; 9383 9384 case TCPOPT_SACK_PERMITTED: 9385 if (len < TCPOPT_SACK_OK_LEN || 9386 up[1] != TCPOPT_SACK_OK_LEN) 9387 break; 9388 found |= TCP_OPT_SACK_OK_PRESENT; 9389 up += TCPOPT_SACK_OK_LEN; 9390 continue; 9391 9392 case TCPOPT_SACK: 9393 if (len <= 2 || up[1] <= 2 || len < up[1]) 9394 break; 9395 9396 /* If TCP is not interested in SACK blks... */ 9397 if ((tcp = tcpopt->tcp) == NULL) { 9398 up += up[1]; 9399 continue; 9400 } 9401 sack_len = up[1] - TCPOPT_HEADER_LEN; 9402 up += TCPOPT_HEADER_LEN; 9403 9404 /* 9405 * If the list is empty, allocate one and assume 9406 * nothing is sack'ed. 9407 */ 9408 ASSERT(tcp->tcp_sack_info != NULL); 9409 if (tcp->tcp_notsack_list == NULL) { 9410 tcp_notsack_update(&(tcp->tcp_notsack_list), 9411 tcp->tcp_suna, tcp->tcp_snxt, 9412 &(tcp->tcp_num_notsack_blk), 9413 &(tcp->tcp_cnt_notsack_list)); 9414 9415 /* 9416 * Make sure tcp_notsack_list is not NULL. 9417 * This happens when kmem_alloc(KM_NOSLEEP) 9418 * returns NULL. 9419 */ 9420 if (tcp->tcp_notsack_list == NULL) { 9421 up += sack_len; 9422 continue; 9423 } 9424 tcp->tcp_fack = tcp->tcp_suna; 9425 } 9426 9427 while (sack_len > 0) { 9428 if (up + 8 > endp) { 9429 up = endp; 9430 break; 9431 } 9432 sack_begin = BE32_TO_U32(up); 9433 up += 4; 9434 sack_end = BE32_TO_U32(up); 9435 up += 4; 9436 sack_len -= 8; 9437 /* 9438 * Bounds checking. Make sure the SACK 9439 * info is within tcp_suna and tcp_snxt. 9440 * If this SACK blk is out of bound, ignore 9441 * it but continue to parse the following 9442 * blks. 9443 */ 9444 if (SEQ_LEQ(sack_end, sack_begin) || 9445 SEQ_LT(sack_begin, tcp->tcp_suna) || 9446 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9447 continue; 9448 } 9449 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9450 sack_begin, sack_end, 9451 &(tcp->tcp_num_notsack_blk), 9452 &(tcp->tcp_cnt_notsack_list)); 9453 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9454 tcp->tcp_fack = sack_end; 9455 } 9456 } 9457 found |= TCP_OPT_SACK_PRESENT; 9458 continue; 9459 9460 case TCPOPT_TSTAMP: 9461 if (len < TCPOPT_TSTAMP_LEN || 9462 up[1] != TCPOPT_TSTAMP_LEN) 9463 break; 9464 9465 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9466 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9467 9468 found |= TCP_OPT_TSTAMP_PRESENT; 9469 9470 up += TCPOPT_TSTAMP_LEN; 9471 continue; 9472 9473 default: 9474 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9475 break; 9476 up += up[1]; 9477 continue; 9478 } 9479 break; 9480 } 9481 return (found); 9482 } 9483 9484 /* 9485 * Set the mss associated with a particular tcp based on its current value, 9486 * and a new one passed in. Observe minimums and maximums, and reset 9487 * other state variables that we want to view as multiples of mss. 9488 * 9489 * This function is called in various places mainly because 9490 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9491 * other side's SYN/SYN-ACK packet arrives. 9492 * 2) PMTUd may get us a new MSS. 9493 * 3) If the other side stops sending us timestamp option, we need to 9494 * increase the MSS size to use the extra bytes available. 9495 */ 9496 static void 9497 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9498 { 9499 uint32_t mss_max; 9500 9501 if (tcp->tcp_ipversion == IPV4_VERSION) 9502 mss_max = tcp_mss_max_ipv4; 9503 else 9504 mss_max = tcp_mss_max_ipv6; 9505 9506 if (mss < tcp_mss_min) 9507 mss = tcp_mss_min; 9508 if (mss > mss_max) 9509 mss = mss_max; 9510 /* 9511 * Unless naglim has been set by our client to 9512 * a non-mss value, force naglim to track mss. 9513 * This can help to aggregate small writes. 9514 */ 9515 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9516 tcp->tcp_naglim = mss; 9517 /* 9518 * TCP should be able to buffer at least 4 MSS data for obvious 9519 * performance reason. 9520 */ 9521 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9522 tcp->tcp_xmit_hiwater = mss << 2; 9523 9524 /* 9525 * Check if we need to apply the tcp_init_cwnd here. If 9526 * it is set and the MSS gets bigger (should not happen 9527 * normally), we need to adjust the resulting tcp_cwnd properly. 9528 * The new tcp_cwnd should not get bigger. 9529 */ 9530 if (tcp->tcp_init_cwnd == 0) { 9531 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9532 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9533 } else { 9534 if (tcp->tcp_mss < mss) { 9535 tcp->tcp_cwnd = MAX(1, 9536 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9537 } else { 9538 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9539 } 9540 } 9541 tcp->tcp_mss = mss; 9542 tcp->tcp_cwnd_cnt = 0; 9543 (void) tcp_maxpsz_set(tcp, B_TRUE); 9544 } 9545 9546 static int 9547 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9548 { 9549 tcp_t *tcp = NULL; 9550 conn_t *connp; 9551 int err; 9552 dev_t conn_dev; 9553 zoneid_t zoneid = getzoneid(); 9554 9555 /* 9556 * Special case for install: miniroot needs to be able to access files 9557 * via NFS as though it were always in the global zone. 9558 */ 9559 if (credp == kcred && nfs_global_client_only != 0) 9560 zoneid = GLOBAL_ZONEID; 9561 9562 if (q->q_ptr != NULL) 9563 return (0); 9564 9565 if (sflag == MODOPEN) { 9566 /* 9567 * This is a special case. The purpose of a modopen 9568 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9569 * through for MIB browsers. Everything else is failed. 9570 */ 9571 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9572 9573 if (connp == NULL) 9574 return (ENOMEM); 9575 9576 connp->conn_flags |= IPCL_TCPMOD; 9577 connp->conn_cred = credp; 9578 connp->conn_zoneid = zoneid; 9579 q->q_ptr = WR(q)->q_ptr = connp; 9580 crhold(credp); 9581 q->q_qinfo = &tcp_mod_rinit; 9582 WR(q)->q_qinfo = &tcp_mod_winit; 9583 qprocson(q); 9584 return (0); 9585 } 9586 9587 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9588 return (EBUSY); 9589 9590 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9591 9592 if (flag & SO_ACCEPTOR) { 9593 q->q_qinfo = &tcp_acceptor_rinit; 9594 q->q_ptr = (void *)conn_dev; 9595 WR(q)->q_qinfo = &tcp_acceptor_winit; 9596 WR(q)->q_ptr = (void *)conn_dev; 9597 qprocson(q); 9598 return (0); 9599 } 9600 9601 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9602 if (connp == NULL) { 9603 inet_minor_free(ip_minor_arena, conn_dev); 9604 q->q_ptr = NULL; 9605 return (ENOSR); 9606 } 9607 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9608 tcp = connp->conn_tcp; 9609 9610 q->q_ptr = WR(q)->q_ptr = connp; 9611 if (getmajor(*devp) == TCP6_MAJ) { 9612 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9613 connp->conn_send = ip_output_v6; 9614 connp->conn_af_isv6 = B_TRUE; 9615 connp->conn_pkt_isv6 = B_TRUE; 9616 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9617 tcp->tcp_ipversion = IPV6_VERSION; 9618 tcp->tcp_family = AF_INET6; 9619 tcp->tcp_mss = tcp_mss_def_ipv6; 9620 } else { 9621 connp->conn_flags |= IPCL_TCP4; 9622 connp->conn_send = ip_output; 9623 connp->conn_af_isv6 = B_FALSE; 9624 connp->conn_pkt_isv6 = B_FALSE; 9625 tcp->tcp_ipversion = IPV4_VERSION; 9626 tcp->tcp_family = AF_INET; 9627 tcp->tcp_mss = tcp_mss_def_ipv4; 9628 } 9629 9630 /* 9631 * TCP keeps a copy of cred for cache locality reasons but 9632 * we put a reference only once. If connp->conn_cred 9633 * becomes invalid, tcp_cred should also be set to NULL. 9634 */ 9635 tcp->tcp_cred = connp->conn_cred = credp; 9636 crhold(connp->conn_cred); 9637 tcp->tcp_cpid = curproc->p_pid; 9638 connp->conn_zoneid = zoneid; 9639 connp->conn_mlp_type = mlptSingle; 9640 connp->conn_ulp_labeled = !is_system_labeled(); 9641 9642 /* 9643 * If the caller has the process-wide flag set, then default to MAC 9644 * exempt mode. This allows read-down to unlabeled hosts. 9645 */ 9646 if (getpflags(NET_MAC_AWARE, credp) != 0) 9647 connp->conn_mac_exempt = B_TRUE; 9648 9649 connp->conn_dev = conn_dev; 9650 9651 ASSERT(q->q_qinfo == &tcp_rinit); 9652 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9653 9654 if (flag & SO_SOCKSTR) { 9655 /* 9656 * No need to insert a socket in tcp acceptor hash. 9657 * If it was a socket acceptor stream, we dealt with 9658 * it above. A socket listener can never accept a 9659 * connection and doesn't need acceptor_id. 9660 */ 9661 connp->conn_flags |= IPCL_SOCKET; 9662 tcp->tcp_issocket = 1; 9663 WR(q)->q_qinfo = &tcp_sock_winit; 9664 } else { 9665 #ifdef _ILP32 9666 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9667 #else 9668 tcp->tcp_acceptor_id = conn_dev; 9669 #endif /* _ILP32 */ 9670 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9671 } 9672 9673 if (tcp_trace) 9674 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9675 9676 err = tcp_init(tcp, q); 9677 if (err != 0) { 9678 inet_minor_free(ip_minor_arena, connp->conn_dev); 9679 tcp_acceptor_hash_remove(tcp); 9680 CONN_DEC_REF(connp); 9681 q->q_ptr = WR(q)->q_ptr = NULL; 9682 return (err); 9683 } 9684 9685 RD(q)->q_hiwat = tcp_recv_hiwat; 9686 tcp->tcp_rwnd = tcp_recv_hiwat; 9687 9688 /* Non-zero default values */ 9689 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9690 /* 9691 * Put the ref for TCP. Ref for IP was already put 9692 * by ipcl_conn_create. Also Make the conn_t globally 9693 * visible to walkers 9694 */ 9695 mutex_enter(&connp->conn_lock); 9696 CONN_INC_REF_LOCKED(connp); 9697 ASSERT(connp->conn_ref == 2); 9698 connp->conn_state_flags &= ~CONN_INCIPIENT; 9699 mutex_exit(&connp->conn_lock); 9700 9701 qprocson(q); 9702 return (0); 9703 } 9704 9705 /* 9706 * Some TCP options can be "set" by requesting them in the option 9707 * buffer. This is needed for XTI feature test though we do not 9708 * allow it in general. We interpret that this mechanism is more 9709 * applicable to OSI protocols and need not be allowed in general. 9710 * This routine filters out options for which it is not allowed (most) 9711 * and lets through those (few) for which it is. [ The XTI interface 9712 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9713 * ever implemented will have to be allowed here ]. 9714 */ 9715 static boolean_t 9716 tcp_allow_connopt_set(int level, int name) 9717 { 9718 9719 switch (level) { 9720 case IPPROTO_TCP: 9721 switch (name) { 9722 case TCP_NODELAY: 9723 return (B_TRUE); 9724 default: 9725 return (B_FALSE); 9726 } 9727 /*NOTREACHED*/ 9728 default: 9729 return (B_FALSE); 9730 } 9731 /*NOTREACHED*/ 9732 } 9733 9734 /* 9735 * This routine gets default values of certain options whose default 9736 * values are maintained by protocol specific code 9737 */ 9738 /* ARGSUSED */ 9739 int 9740 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9741 { 9742 int32_t *i1 = (int32_t *)ptr; 9743 9744 switch (level) { 9745 case IPPROTO_TCP: 9746 switch (name) { 9747 case TCP_NOTIFY_THRESHOLD: 9748 *i1 = tcp_ip_notify_interval; 9749 break; 9750 case TCP_ABORT_THRESHOLD: 9751 *i1 = tcp_ip_abort_interval; 9752 break; 9753 case TCP_CONN_NOTIFY_THRESHOLD: 9754 *i1 = tcp_ip_notify_cinterval; 9755 break; 9756 case TCP_CONN_ABORT_THRESHOLD: 9757 *i1 = tcp_ip_abort_cinterval; 9758 break; 9759 default: 9760 return (-1); 9761 } 9762 break; 9763 case IPPROTO_IP: 9764 switch (name) { 9765 case IP_TTL: 9766 *i1 = tcp_ipv4_ttl; 9767 break; 9768 default: 9769 return (-1); 9770 } 9771 break; 9772 case IPPROTO_IPV6: 9773 switch (name) { 9774 case IPV6_UNICAST_HOPS: 9775 *i1 = tcp_ipv6_hoplimit; 9776 break; 9777 default: 9778 return (-1); 9779 } 9780 break; 9781 default: 9782 return (-1); 9783 } 9784 return (sizeof (int)); 9785 } 9786 9787 9788 /* 9789 * TCP routine to get the values of options. 9790 */ 9791 int 9792 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9793 { 9794 int *i1 = (int *)ptr; 9795 conn_t *connp = Q_TO_CONN(q); 9796 tcp_t *tcp = connp->conn_tcp; 9797 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9798 9799 switch (level) { 9800 case SOL_SOCKET: 9801 switch (name) { 9802 case SO_LINGER: { 9803 struct linger *lgr = (struct linger *)ptr; 9804 9805 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9806 lgr->l_linger = tcp->tcp_lingertime; 9807 } 9808 return (sizeof (struct linger)); 9809 case SO_DEBUG: 9810 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9811 break; 9812 case SO_KEEPALIVE: 9813 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9814 break; 9815 case SO_DONTROUTE: 9816 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9817 break; 9818 case SO_USELOOPBACK: 9819 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9820 break; 9821 case SO_BROADCAST: 9822 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9823 break; 9824 case SO_REUSEADDR: 9825 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9826 break; 9827 case SO_OOBINLINE: 9828 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9829 break; 9830 case SO_DGRAM_ERRIND: 9831 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9832 break; 9833 case SO_TYPE: 9834 *i1 = SOCK_STREAM; 9835 break; 9836 case SO_SNDBUF: 9837 *i1 = tcp->tcp_xmit_hiwater; 9838 break; 9839 case SO_RCVBUF: 9840 *i1 = RD(q)->q_hiwat; 9841 break; 9842 case SO_SND_COPYAVOID: 9843 *i1 = tcp->tcp_snd_zcopy_on ? 9844 SO_SND_COPYAVOID : 0; 9845 break; 9846 case SO_ALLZONES: 9847 *i1 = connp->conn_allzones ? 1 : 0; 9848 break; 9849 case SO_ANON_MLP: 9850 *i1 = connp->conn_anon_mlp; 9851 break; 9852 case SO_MAC_EXEMPT: 9853 *i1 = connp->conn_mac_exempt; 9854 break; 9855 case SO_EXCLBIND: 9856 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9857 break; 9858 default: 9859 return (-1); 9860 } 9861 break; 9862 case IPPROTO_TCP: 9863 switch (name) { 9864 case TCP_NODELAY: 9865 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9866 break; 9867 case TCP_MAXSEG: 9868 *i1 = tcp->tcp_mss; 9869 break; 9870 case TCP_NOTIFY_THRESHOLD: 9871 *i1 = (int)tcp->tcp_first_timer_threshold; 9872 break; 9873 case TCP_ABORT_THRESHOLD: 9874 *i1 = tcp->tcp_second_timer_threshold; 9875 break; 9876 case TCP_CONN_NOTIFY_THRESHOLD: 9877 *i1 = tcp->tcp_first_ctimer_threshold; 9878 break; 9879 case TCP_CONN_ABORT_THRESHOLD: 9880 *i1 = tcp->tcp_second_ctimer_threshold; 9881 break; 9882 case TCP_RECVDSTADDR: 9883 *i1 = tcp->tcp_recvdstaddr; 9884 break; 9885 case TCP_ANONPRIVBIND: 9886 *i1 = tcp->tcp_anon_priv_bind; 9887 break; 9888 case TCP_EXCLBIND: 9889 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9890 break; 9891 case TCP_INIT_CWND: 9892 *i1 = tcp->tcp_init_cwnd; 9893 break; 9894 case TCP_KEEPALIVE_THRESHOLD: 9895 *i1 = tcp->tcp_ka_interval; 9896 break; 9897 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9898 *i1 = tcp->tcp_ka_abort_thres; 9899 break; 9900 case TCP_CORK: 9901 *i1 = tcp->tcp_cork; 9902 break; 9903 default: 9904 return (-1); 9905 } 9906 break; 9907 case IPPROTO_IP: 9908 if (tcp->tcp_family != AF_INET) 9909 return (-1); 9910 switch (name) { 9911 case IP_OPTIONS: 9912 case T_IP_OPTIONS: { 9913 /* 9914 * This is compatible with BSD in that in only return 9915 * the reverse source route with the final destination 9916 * as the last entry. The first 4 bytes of the option 9917 * will contain the final destination. 9918 */ 9919 int opt_len; 9920 9921 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9922 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9923 ASSERT(opt_len >= 0); 9924 /* Caller ensures enough space */ 9925 if (opt_len > 0) { 9926 /* 9927 * TODO: Do we have to handle getsockopt on an 9928 * initiator as well? 9929 */ 9930 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9931 } 9932 return (0); 9933 } 9934 case IP_TOS: 9935 case T_IP_TOS: 9936 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9937 break; 9938 case IP_TTL: 9939 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9940 break; 9941 case IP_NEXTHOP: 9942 /* Handled at IP level */ 9943 return (-EINVAL); 9944 default: 9945 return (-1); 9946 } 9947 break; 9948 case IPPROTO_IPV6: 9949 /* 9950 * IPPROTO_IPV6 options are only supported for sockets 9951 * that are using IPv6 on the wire. 9952 */ 9953 if (tcp->tcp_ipversion != IPV6_VERSION) { 9954 return (-1); 9955 } 9956 switch (name) { 9957 case IPV6_UNICAST_HOPS: 9958 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9959 break; /* goto sizeof (int) option return */ 9960 case IPV6_BOUND_IF: 9961 /* Zero if not set */ 9962 *i1 = tcp->tcp_bound_if; 9963 break; /* goto sizeof (int) option return */ 9964 case IPV6_RECVPKTINFO: 9965 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9966 *i1 = 1; 9967 else 9968 *i1 = 0; 9969 break; /* goto sizeof (int) option return */ 9970 case IPV6_RECVTCLASS: 9971 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9972 *i1 = 1; 9973 else 9974 *i1 = 0; 9975 break; /* goto sizeof (int) option return */ 9976 case IPV6_RECVHOPLIMIT: 9977 if (tcp->tcp_ipv6_recvancillary & 9978 TCP_IPV6_RECVHOPLIMIT) 9979 *i1 = 1; 9980 else 9981 *i1 = 0; 9982 break; /* goto sizeof (int) option return */ 9983 case IPV6_RECVHOPOPTS: 9984 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9985 *i1 = 1; 9986 else 9987 *i1 = 0; 9988 break; /* goto sizeof (int) option return */ 9989 case IPV6_RECVDSTOPTS: 9990 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9991 *i1 = 1; 9992 else 9993 *i1 = 0; 9994 break; /* goto sizeof (int) option return */ 9995 case _OLD_IPV6_RECVDSTOPTS: 9996 if (tcp->tcp_ipv6_recvancillary & 9997 TCP_OLD_IPV6_RECVDSTOPTS) 9998 *i1 = 1; 9999 else 10000 *i1 = 0; 10001 break; /* goto sizeof (int) option return */ 10002 case IPV6_RECVRTHDR: 10003 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10004 *i1 = 1; 10005 else 10006 *i1 = 0; 10007 break; /* goto sizeof (int) option return */ 10008 case IPV6_RECVRTHDRDSTOPTS: 10009 if (tcp->tcp_ipv6_recvancillary & 10010 TCP_IPV6_RECVRTDSTOPTS) 10011 *i1 = 1; 10012 else 10013 *i1 = 0; 10014 break; /* goto sizeof (int) option return */ 10015 case IPV6_PKTINFO: { 10016 /* XXX assumes that caller has room for max size! */ 10017 struct in6_pktinfo *pkti; 10018 10019 pkti = (struct in6_pktinfo *)ptr; 10020 if (ipp->ipp_fields & IPPF_IFINDEX) 10021 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10022 else 10023 pkti->ipi6_ifindex = 0; 10024 if (ipp->ipp_fields & IPPF_ADDR) 10025 pkti->ipi6_addr = ipp->ipp_addr; 10026 else 10027 pkti->ipi6_addr = ipv6_all_zeros; 10028 return (sizeof (struct in6_pktinfo)); 10029 } 10030 case IPV6_TCLASS: 10031 if (ipp->ipp_fields & IPPF_TCLASS) 10032 *i1 = ipp->ipp_tclass; 10033 else 10034 *i1 = IPV6_FLOW_TCLASS( 10035 IPV6_DEFAULT_VERS_AND_FLOW); 10036 break; /* goto sizeof (int) option return */ 10037 case IPV6_NEXTHOP: { 10038 sin6_t *sin6 = (sin6_t *)ptr; 10039 10040 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10041 return (0); 10042 *sin6 = sin6_null; 10043 sin6->sin6_family = AF_INET6; 10044 sin6->sin6_addr = ipp->ipp_nexthop; 10045 return (sizeof (sin6_t)); 10046 } 10047 case IPV6_HOPOPTS: 10048 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10049 return (0); 10050 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10051 return (0); 10052 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10053 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10054 if (tcp->tcp_label_len > 0) { 10055 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10056 ptr[1] = (ipp->ipp_hopoptslen - 10057 tcp->tcp_label_len + 7) / 8 - 1; 10058 } 10059 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10060 case IPV6_RTHDRDSTOPTS: 10061 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10062 return (0); 10063 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10064 return (ipp->ipp_rtdstoptslen); 10065 case IPV6_RTHDR: 10066 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10067 return (0); 10068 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10069 return (ipp->ipp_rthdrlen); 10070 case IPV6_DSTOPTS: 10071 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10072 return (0); 10073 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10074 return (ipp->ipp_dstoptslen); 10075 case IPV6_SRC_PREFERENCES: 10076 return (ip6_get_src_preferences(connp, 10077 (uint32_t *)ptr)); 10078 case IPV6_PATHMTU: { 10079 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10080 10081 if (tcp->tcp_state < TCPS_ESTABLISHED) 10082 return (-1); 10083 10084 return (ip_fill_mtuinfo(&connp->conn_remv6, 10085 connp->conn_fport, mtuinfo)); 10086 } 10087 default: 10088 return (-1); 10089 } 10090 break; 10091 default: 10092 return (-1); 10093 } 10094 return (sizeof (int)); 10095 } 10096 10097 /* 10098 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10099 * Parameters are assumed to be verified by the caller. 10100 */ 10101 /* ARGSUSED */ 10102 int 10103 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10104 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10105 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10106 { 10107 conn_t *connp = Q_TO_CONN(q); 10108 tcp_t *tcp = connp->conn_tcp; 10109 int *i1 = (int *)invalp; 10110 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10111 boolean_t checkonly; 10112 int reterr; 10113 10114 switch (optset_context) { 10115 case SETFN_OPTCOM_CHECKONLY: 10116 checkonly = B_TRUE; 10117 /* 10118 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10119 * inlen != 0 implies value supplied and 10120 * we have to "pretend" to set it. 10121 * inlen == 0 implies that there is no 10122 * value part in T_CHECK request and just validation 10123 * done elsewhere should be enough, we just return here. 10124 */ 10125 if (inlen == 0) { 10126 *outlenp = 0; 10127 return (0); 10128 } 10129 break; 10130 case SETFN_OPTCOM_NEGOTIATE: 10131 checkonly = B_FALSE; 10132 break; 10133 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10134 case SETFN_CONN_NEGOTIATE: 10135 checkonly = B_FALSE; 10136 /* 10137 * Negotiating local and "association-related" options 10138 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10139 * primitives is allowed by XTI, but we choose 10140 * to not implement this style negotiation for Internet 10141 * protocols (We interpret it is a must for OSI world but 10142 * optional for Internet protocols) for all options. 10143 * [ Will do only for the few options that enable test 10144 * suites that our XTI implementation of this feature 10145 * works for transports that do allow it ] 10146 */ 10147 if (!tcp_allow_connopt_set(level, name)) { 10148 *outlenp = 0; 10149 return (EINVAL); 10150 } 10151 break; 10152 default: 10153 /* 10154 * We should never get here 10155 */ 10156 *outlenp = 0; 10157 return (EINVAL); 10158 } 10159 10160 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10161 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10162 10163 /* 10164 * For TCP, we should have no ancillary data sent down 10165 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10166 * has to be zero. 10167 */ 10168 ASSERT(thisdg_attrs == NULL); 10169 10170 /* 10171 * For fixed length options, no sanity check 10172 * of passed in length is done. It is assumed *_optcom_req() 10173 * routines do the right thing. 10174 */ 10175 10176 switch (level) { 10177 case SOL_SOCKET: 10178 switch (name) { 10179 case SO_LINGER: { 10180 struct linger *lgr = (struct linger *)invalp; 10181 10182 if (!checkonly) { 10183 if (lgr->l_onoff) { 10184 tcp->tcp_linger = 1; 10185 tcp->tcp_lingertime = lgr->l_linger; 10186 } else { 10187 tcp->tcp_linger = 0; 10188 tcp->tcp_lingertime = 0; 10189 } 10190 /* struct copy */ 10191 *(struct linger *)outvalp = *lgr; 10192 } else { 10193 if (!lgr->l_onoff) { 10194 ((struct linger *)outvalp)->l_onoff = 0; 10195 ((struct linger *)outvalp)->l_linger = 0; 10196 } else { 10197 /* struct copy */ 10198 *(struct linger *)outvalp = *lgr; 10199 } 10200 } 10201 *outlenp = sizeof (struct linger); 10202 return (0); 10203 } 10204 case SO_DEBUG: 10205 if (!checkonly) 10206 tcp->tcp_debug = onoff; 10207 break; 10208 case SO_KEEPALIVE: 10209 if (checkonly) { 10210 /* T_CHECK case */ 10211 break; 10212 } 10213 10214 if (!onoff) { 10215 if (tcp->tcp_ka_enabled) { 10216 if (tcp->tcp_ka_tid != 0) { 10217 (void) TCP_TIMER_CANCEL(tcp, 10218 tcp->tcp_ka_tid); 10219 tcp->tcp_ka_tid = 0; 10220 } 10221 tcp->tcp_ka_enabled = 0; 10222 } 10223 break; 10224 } 10225 if (!tcp->tcp_ka_enabled) { 10226 /* Crank up the keepalive timer */ 10227 tcp->tcp_ka_last_intrvl = 0; 10228 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10229 tcp_keepalive_killer, 10230 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10231 tcp->tcp_ka_enabled = 1; 10232 } 10233 break; 10234 case SO_DONTROUTE: 10235 /* 10236 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10237 * only of interest to IP. We track them here only so 10238 * that we can report their current value. 10239 */ 10240 if (!checkonly) { 10241 tcp->tcp_dontroute = onoff; 10242 tcp->tcp_connp->conn_dontroute = onoff; 10243 } 10244 break; 10245 case SO_USELOOPBACK: 10246 if (!checkonly) { 10247 tcp->tcp_useloopback = onoff; 10248 tcp->tcp_connp->conn_loopback = onoff; 10249 } 10250 break; 10251 case SO_BROADCAST: 10252 if (!checkonly) { 10253 tcp->tcp_broadcast = onoff; 10254 tcp->tcp_connp->conn_broadcast = onoff; 10255 } 10256 break; 10257 case SO_REUSEADDR: 10258 if (!checkonly) { 10259 tcp->tcp_reuseaddr = onoff; 10260 tcp->tcp_connp->conn_reuseaddr = onoff; 10261 } 10262 break; 10263 case SO_OOBINLINE: 10264 if (!checkonly) 10265 tcp->tcp_oobinline = onoff; 10266 break; 10267 case SO_DGRAM_ERRIND: 10268 if (!checkonly) 10269 tcp->tcp_dgram_errind = onoff; 10270 break; 10271 case SO_SNDBUF: { 10272 tcp_t *peer_tcp; 10273 10274 if (*i1 > tcp_max_buf) { 10275 *outlenp = 0; 10276 return (ENOBUFS); 10277 } 10278 if (checkonly) 10279 break; 10280 10281 tcp->tcp_xmit_hiwater = *i1; 10282 if (tcp_snd_lowat_fraction != 0) 10283 tcp->tcp_xmit_lowater = 10284 tcp->tcp_xmit_hiwater / 10285 tcp_snd_lowat_fraction; 10286 (void) tcp_maxpsz_set(tcp, B_TRUE); 10287 /* 10288 * If we are flow-controlled, recheck the condition. 10289 * There are apps that increase SO_SNDBUF size when 10290 * flow-controlled (EWOULDBLOCK), and expect the flow 10291 * control condition to be lifted right away. 10292 * 10293 * For the fused tcp loopback case, in order to avoid 10294 * a race with the peer's tcp_fuse_rrw() we need to 10295 * hold its fuse_lock while accessing tcp_flow_stopped. 10296 */ 10297 peer_tcp = tcp->tcp_loopback_peer; 10298 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 10299 if (tcp->tcp_fused) 10300 mutex_enter(&peer_tcp->tcp_fuse_lock); 10301 10302 if (tcp->tcp_flow_stopped && 10303 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10304 tcp_clrqfull(tcp); 10305 } 10306 if (tcp->tcp_fused) 10307 mutex_exit(&peer_tcp->tcp_fuse_lock); 10308 break; 10309 } 10310 case SO_RCVBUF: 10311 if (*i1 > tcp_max_buf) { 10312 *outlenp = 0; 10313 return (ENOBUFS); 10314 } 10315 /* Silently ignore zero */ 10316 if (!checkonly && *i1 != 0) { 10317 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10318 (void) tcp_rwnd_set(tcp, *i1); 10319 } 10320 /* 10321 * XXX should we return the rwnd here 10322 * and tcp_opt_get ? 10323 */ 10324 break; 10325 case SO_SND_COPYAVOID: 10326 if (!checkonly) { 10327 /* we only allow enable at most once for now */ 10328 if (tcp->tcp_loopback || 10329 (!tcp->tcp_snd_zcopy_aware && 10330 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10331 *outlenp = 0; 10332 return (EOPNOTSUPP); 10333 } 10334 tcp->tcp_snd_zcopy_aware = 1; 10335 } 10336 break; 10337 case SO_ALLZONES: 10338 /* Handled at the IP level */ 10339 return (-EINVAL); 10340 case SO_ANON_MLP: 10341 if (!checkonly) { 10342 mutex_enter(&connp->conn_lock); 10343 connp->conn_anon_mlp = onoff; 10344 mutex_exit(&connp->conn_lock); 10345 } 10346 break; 10347 case SO_MAC_EXEMPT: 10348 if (secpolicy_net_mac_aware(cr) != 0 || 10349 IPCL_IS_BOUND(connp)) 10350 return (EACCES); 10351 if (!checkonly) { 10352 mutex_enter(&connp->conn_lock); 10353 connp->conn_mac_exempt = onoff; 10354 mutex_exit(&connp->conn_lock); 10355 } 10356 break; 10357 case SO_EXCLBIND: 10358 if (!checkonly) 10359 tcp->tcp_exclbind = onoff; 10360 break; 10361 default: 10362 *outlenp = 0; 10363 return (EINVAL); 10364 } 10365 break; 10366 case IPPROTO_TCP: 10367 switch (name) { 10368 case TCP_NODELAY: 10369 if (!checkonly) 10370 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10371 break; 10372 case TCP_NOTIFY_THRESHOLD: 10373 if (!checkonly) 10374 tcp->tcp_first_timer_threshold = *i1; 10375 break; 10376 case TCP_ABORT_THRESHOLD: 10377 if (!checkonly) 10378 tcp->tcp_second_timer_threshold = *i1; 10379 break; 10380 case TCP_CONN_NOTIFY_THRESHOLD: 10381 if (!checkonly) 10382 tcp->tcp_first_ctimer_threshold = *i1; 10383 break; 10384 case TCP_CONN_ABORT_THRESHOLD: 10385 if (!checkonly) 10386 tcp->tcp_second_ctimer_threshold = *i1; 10387 break; 10388 case TCP_RECVDSTADDR: 10389 if (tcp->tcp_state > TCPS_LISTEN) 10390 return (EOPNOTSUPP); 10391 if (!checkonly) 10392 tcp->tcp_recvdstaddr = onoff; 10393 break; 10394 case TCP_ANONPRIVBIND: 10395 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10396 *outlenp = 0; 10397 return (reterr); 10398 } 10399 if (!checkonly) { 10400 tcp->tcp_anon_priv_bind = onoff; 10401 } 10402 break; 10403 case TCP_EXCLBIND: 10404 if (!checkonly) 10405 tcp->tcp_exclbind = onoff; 10406 break; /* goto sizeof (int) option return */ 10407 case TCP_INIT_CWND: { 10408 uint32_t init_cwnd = *((uint32_t *)invalp); 10409 10410 if (checkonly) 10411 break; 10412 10413 /* 10414 * Only allow socket with network configuration 10415 * privilege to set the initial cwnd to be larger 10416 * than allowed by RFC 3390. 10417 */ 10418 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10419 tcp->tcp_init_cwnd = init_cwnd; 10420 break; 10421 } 10422 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10423 *outlenp = 0; 10424 return (reterr); 10425 } 10426 if (init_cwnd > TCP_MAX_INIT_CWND) { 10427 *outlenp = 0; 10428 return (EINVAL); 10429 } 10430 tcp->tcp_init_cwnd = init_cwnd; 10431 break; 10432 } 10433 case TCP_KEEPALIVE_THRESHOLD: 10434 if (checkonly) 10435 break; 10436 10437 if (*i1 < tcp_keepalive_interval_low || 10438 *i1 > tcp_keepalive_interval_high) { 10439 *outlenp = 0; 10440 return (EINVAL); 10441 } 10442 if (*i1 != tcp->tcp_ka_interval) { 10443 tcp->tcp_ka_interval = *i1; 10444 /* 10445 * Check if we need to restart the 10446 * keepalive timer. 10447 */ 10448 if (tcp->tcp_ka_tid != 0) { 10449 ASSERT(tcp->tcp_ka_enabled); 10450 (void) TCP_TIMER_CANCEL(tcp, 10451 tcp->tcp_ka_tid); 10452 tcp->tcp_ka_last_intrvl = 0; 10453 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10454 tcp_keepalive_killer, 10455 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10456 } 10457 } 10458 break; 10459 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10460 if (!checkonly) { 10461 if (*i1 < tcp_keepalive_abort_interval_low || 10462 *i1 > tcp_keepalive_abort_interval_high) { 10463 *outlenp = 0; 10464 return (EINVAL); 10465 } 10466 tcp->tcp_ka_abort_thres = *i1; 10467 } 10468 break; 10469 case TCP_CORK: 10470 if (!checkonly) { 10471 /* 10472 * if tcp->tcp_cork was set and is now 10473 * being unset, we have to make sure that 10474 * the remaining data gets sent out. Also 10475 * unset tcp->tcp_cork so that tcp_wput_data() 10476 * can send data even if it is less than mss 10477 */ 10478 if (tcp->tcp_cork && onoff == 0 && 10479 tcp->tcp_unsent > 0) { 10480 tcp->tcp_cork = B_FALSE; 10481 tcp_wput_data(tcp, NULL, B_FALSE); 10482 } 10483 tcp->tcp_cork = onoff; 10484 } 10485 break; 10486 default: 10487 *outlenp = 0; 10488 return (EINVAL); 10489 } 10490 break; 10491 case IPPROTO_IP: 10492 if (tcp->tcp_family != AF_INET) { 10493 *outlenp = 0; 10494 return (ENOPROTOOPT); 10495 } 10496 switch (name) { 10497 case IP_OPTIONS: 10498 case T_IP_OPTIONS: 10499 reterr = tcp_opt_set_header(tcp, checkonly, 10500 invalp, inlen); 10501 if (reterr) { 10502 *outlenp = 0; 10503 return (reterr); 10504 } 10505 /* OK return - copy input buffer into output buffer */ 10506 if (invalp != outvalp) { 10507 /* don't trust bcopy for identical src/dst */ 10508 bcopy(invalp, outvalp, inlen); 10509 } 10510 *outlenp = inlen; 10511 return (0); 10512 case IP_TOS: 10513 case T_IP_TOS: 10514 if (!checkonly) { 10515 tcp->tcp_ipha->ipha_type_of_service = 10516 (uchar_t)*i1; 10517 tcp->tcp_tos = (uchar_t)*i1; 10518 } 10519 break; 10520 case IP_TTL: 10521 if (!checkonly) { 10522 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10523 tcp->tcp_ttl = (uchar_t)*i1; 10524 } 10525 break; 10526 case IP_BOUND_IF: 10527 case IP_NEXTHOP: 10528 /* Handled at the IP level */ 10529 return (-EINVAL); 10530 case IP_SEC_OPT: 10531 /* 10532 * We should not allow policy setting after 10533 * we start listening for connections. 10534 */ 10535 if (tcp->tcp_state == TCPS_LISTEN) { 10536 return (EINVAL); 10537 } else { 10538 /* Handled at the IP level */ 10539 return (-EINVAL); 10540 } 10541 default: 10542 *outlenp = 0; 10543 return (EINVAL); 10544 } 10545 break; 10546 case IPPROTO_IPV6: { 10547 ip6_pkt_t *ipp; 10548 10549 /* 10550 * IPPROTO_IPV6 options are only supported for sockets 10551 * that are using IPv6 on the wire. 10552 */ 10553 if (tcp->tcp_ipversion != IPV6_VERSION) { 10554 *outlenp = 0; 10555 return (ENOPROTOOPT); 10556 } 10557 /* 10558 * Only sticky options; no ancillary data 10559 */ 10560 ASSERT(thisdg_attrs == NULL); 10561 ipp = &tcp->tcp_sticky_ipp; 10562 10563 switch (name) { 10564 case IPV6_UNICAST_HOPS: 10565 /* -1 means use default */ 10566 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10567 *outlenp = 0; 10568 return (EINVAL); 10569 } 10570 if (!checkonly) { 10571 if (*i1 == -1) { 10572 tcp->tcp_ip6h->ip6_hops = 10573 ipp->ipp_unicast_hops = 10574 (uint8_t)tcp_ipv6_hoplimit; 10575 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10576 /* Pass modified value to IP. */ 10577 *i1 = tcp->tcp_ip6h->ip6_hops; 10578 } else { 10579 tcp->tcp_ip6h->ip6_hops = 10580 ipp->ipp_unicast_hops = 10581 (uint8_t)*i1; 10582 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10583 } 10584 reterr = tcp_build_hdrs(q, tcp); 10585 if (reterr != 0) 10586 return (reterr); 10587 } 10588 break; 10589 case IPV6_BOUND_IF: 10590 if (!checkonly) { 10591 int error = 0; 10592 10593 tcp->tcp_bound_if = *i1; 10594 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10595 B_TRUE, checkonly, level, name, mblk); 10596 if (error != 0) { 10597 *outlenp = 0; 10598 return (error); 10599 } 10600 } 10601 break; 10602 /* 10603 * Set boolean switches for ancillary data delivery 10604 */ 10605 case IPV6_RECVPKTINFO: 10606 if (!checkonly) { 10607 if (onoff) 10608 tcp->tcp_ipv6_recvancillary |= 10609 TCP_IPV6_RECVPKTINFO; 10610 else 10611 tcp->tcp_ipv6_recvancillary &= 10612 ~TCP_IPV6_RECVPKTINFO; 10613 /* Force it to be sent up with the next msg */ 10614 tcp->tcp_recvifindex = 0; 10615 } 10616 break; 10617 case IPV6_RECVTCLASS: 10618 if (!checkonly) { 10619 if (onoff) 10620 tcp->tcp_ipv6_recvancillary |= 10621 TCP_IPV6_RECVTCLASS; 10622 else 10623 tcp->tcp_ipv6_recvancillary &= 10624 ~TCP_IPV6_RECVTCLASS; 10625 } 10626 break; 10627 case IPV6_RECVHOPLIMIT: 10628 if (!checkonly) { 10629 if (onoff) 10630 tcp->tcp_ipv6_recvancillary |= 10631 TCP_IPV6_RECVHOPLIMIT; 10632 else 10633 tcp->tcp_ipv6_recvancillary &= 10634 ~TCP_IPV6_RECVHOPLIMIT; 10635 /* Force it to be sent up with the next msg */ 10636 tcp->tcp_recvhops = 0xffffffffU; 10637 } 10638 break; 10639 case IPV6_RECVHOPOPTS: 10640 if (!checkonly) { 10641 if (onoff) 10642 tcp->tcp_ipv6_recvancillary |= 10643 TCP_IPV6_RECVHOPOPTS; 10644 else 10645 tcp->tcp_ipv6_recvancillary &= 10646 ~TCP_IPV6_RECVHOPOPTS; 10647 } 10648 break; 10649 case IPV6_RECVDSTOPTS: 10650 if (!checkonly) { 10651 if (onoff) 10652 tcp->tcp_ipv6_recvancillary |= 10653 TCP_IPV6_RECVDSTOPTS; 10654 else 10655 tcp->tcp_ipv6_recvancillary &= 10656 ~TCP_IPV6_RECVDSTOPTS; 10657 } 10658 break; 10659 case _OLD_IPV6_RECVDSTOPTS: 10660 if (!checkonly) { 10661 if (onoff) 10662 tcp->tcp_ipv6_recvancillary |= 10663 TCP_OLD_IPV6_RECVDSTOPTS; 10664 else 10665 tcp->tcp_ipv6_recvancillary &= 10666 ~TCP_OLD_IPV6_RECVDSTOPTS; 10667 } 10668 break; 10669 case IPV6_RECVRTHDR: 10670 if (!checkonly) { 10671 if (onoff) 10672 tcp->tcp_ipv6_recvancillary |= 10673 TCP_IPV6_RECVRTHDR; 10674 else 10675 tcp->tcp_ipv6_recvancillary &= 10676 ~TCP_IPV6_RECVRTHDR; 10677 } 10678 break; 10679 case IPV6_RECVRTHDRDSTOPTS: 10680 if (!checkonly) { 10681 if (onoff) 10682 tcp->tcp_ipv6_recvancillary |= 10683 TCP_IPV6_RECVRTDSTOPTS; 10684 else 10685 tcp->tcp_ipv6_recvancillary &= 10686 ~TCP_IPV6_RECVRTDSTOPTS; 10687 } 10688 break; 10689 case IPV6_PKTINFO: 10690 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10691 return (EINVAL); 10692 if (checkonly) 10693 break; 10694 10695 if (inlen == 0) { 10696 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10697 } else { 10698 struct in6_pktinfo *pkti; 10699 10700 pkti = (struct in6_pktinfo *)invalp; 10701 /* 10702 * RFC 3542 states that ipi6_addr must be 10703 * the unspecified address when setting the 10704 * IPV6_PKTINFO sticky socket option on a 10705 * TCP socket. 10706 */ 10707 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10708 return (EINVAL); 10709 /* 10710 * ip6_set_pktinfo() validates the source 10711 * address and interface index. 10712 */ 10713 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10714 pkti, mblk); 10715 if (reterr != 0) 10716 return (reterr); 10717 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10718 ipp->ipp_addr = pkti->ipi6_addr; 10719 if (ipp->ipp_ifindex != 0) 10720 ipp->ipp_fields |= IPPF_IFINDEX; 10721 else 10722 ipp->ipp_fields &= ~IPPF_IFINDEX; 10723 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10724 ipp->ipp_fields |= IPPF_ADDR; 10725 else 10726 ipp->ipp_fields &= ~IPPF_ADDR; 10727 } 10728 reterr = tcp_build_hdrs(q, tcp); 10729 if (reterr != 0) 10730 return (reterr); 10731 break; 10732 case IPV6_TCLASS: 10733 if (inlen != 0 && inlen != sizeof (int)) 10734 return (EINVAL); 10735 if (checkonly) 10736 break; 10737 10738 if (inlen == 0) { 10739 ipp->ipp_fields &= ~IPPF_TCLASS; 10740 } else { 10741 if (*i1 > 255 || *i1 < -1) 10742 return (EINVAL); 10743 if (*i1 == -1) { 10744 ipp->ipp_tclass = 0; 10745 *i1 = 0; 10746 } else { 10747 ipp->ipp_tclass = *i1; 10748 } 10749 ipp->ipp_fields |= IPPF_TCLASS; 10750 } 10751 reterr = tcp_build_hdrs(q, tcp); 10752 if (reterr != 0) 10753 return (reterr); 10754 break; 10755 case IPV6_NEXTHOP: 10756 /* 10757 * IP will verify that the nexthop is reachable 10758 * and fail for sticky options. 10759 */ 10760 if (inlen != 0 && inlen != sizeof (sin6_t)) 10761 return (EINVAL); 10762 if (checkonly) 10763 break; 10764 10765 if (inlen == 0) { 10766 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10767 } else { 10768 sin6_t *sin6 = (sin6_t *)invalp; 10769 10770 if (sin6->sin6_family != AF_INET6) 10771 return (EAFNOSUPPORT); 10772 if (IN6_IS_ADDR_V4MAPPED( 10773 &sin6->sin6_addr)) 10774 return (EADDRNOTAVAIL); 10775 ipp->ipp_nexthop = sin6->sin6_addr; 10776 if (!IN6_IS_ADDR_UNSPECIFIED( 10777 &ipp->ipp_nexthop)) 10778 ipp->ipp_fields |= IPPF_NEXTHOP; 10779 else 10780 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10781 } 10782 reterr = tcp_build_hdrs(q, tcp); 10783 if (reterr != 0) 10784 return (reterr); 10785 break; 10786 case IPV6_HOPOPTS: { 10787 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10788 10789 /* 10790 * Sanity checks - minimum size, size a multiple of 10791 * eight bytes, and matching size passed in. 10792 */ 10793 if (inlen != 0 && 10794 inlen != (8 * (hopts->ip6h_len + 1))) 10795 return (EINVAL); 10796 10797 if (checkonly) 10798 break; 10799 10800 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10801 (uchar_t **)&ipp->ipp_hopopts, 10802 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10803 if (reterr != 0) 10804 return (reterr); 10805 if (ipp->ipp_hopoptslen == 0) 10806 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10807 else 10808 ipp->ipp_fields |= IPPF_HOPOPTS; 10809 reterr = tcp_build_hdrs(q, tcp); 10810 if (reterr != 0) 10811 return (reterr); 10812 break; 10813 } 10814 case IPV6_RTHDRDSTOPTS: { 10815 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10816 10817 /* 10818 * Sanity checks - minimum size, size a multiple of 10819 * eight bytes, and matching size passed in. 10820 */ 10821 if (inlen != 0 && 10822 inlen != (8 * (dopts->ip6d_len + 1))) 10823 return (EINVAL); 10824 10825 if (checkonly) 10826 break; 10827 10828 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10829 (uchar_t **)&ipp->ipp_rtdstopts, 10830 &ipp->ipp_rtdstoptslen, 0); 10831 if (reterr != 0) 10832 return (reterr); 10833 if (ipp->ipp_rtdstoptslen == 0) 10834 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10835 else 10836 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10837 reterr = tcp_build_hdrs(q, tcp); 10838 if (reterr != 0) 10839 return (reterr); 10840 break; 10841 } 10842 case IPV6_DSTOPTS: { 10843 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10844 10845 /* 10846 * Sanity checks - minimum size, size a multiple of 10847 * eight bytes, and matching size passed in. 10848 */ 10849 if (inlen != 0 && 10850 inlen != (8 * (dopts->ip6d_len + 1))) 10851 return (EINVAL); 10852 10853 if (checkonly) 10854 break; 10855 10856 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10857 (uchar_t **)&ipp->ipp_dstopts, 10858 &ipp->ipp_dstoptslen, 0); 10859 if (reterr != 0) 10860 return (reterr); 10861 if (ipp->ipp_dstoptslen == 0) 10862 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10863 else 10864 ipp->ipp_fields |= IPPF_DSTOPTS; 10865 reterr = tcp_build_hdrs(q, tcp); 10866 if (reterr != 0) 10867 return (reterr); 10868 break; 10869 } 10870 case IPV6_RTHDR: { 10871 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10872 10873 /* 10874 * Sanity checks - minimum size, size a multiple of 10875 * eight bytes, and matching size passed in. 10876 */ 10877 if (inlen != 0 && 10878 inlen != (8 * (rt->ip6r_len + 1))) 10879 return (EINVAL); 10880 10881 if (checkonly) 10882 break; 10883 10884 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10885 (uchar_t **)&ipp->ipp_rthdr, 10886 &ipp->ipp_rthdrlen, 0); 10887 if (reterr != 0) 10888 return (reterr); 10889 if (ipp->ipp_rthdrlen == 0) 10890 ipp->ipp_fields &= ~IPPF_RTHDR; 10891 else 10892 ipp->ipp_fields |= IPPF_RTHDR; 10893 reterr = tcp_build_hdrs(q, tcp); 10894 if (reterr != 0) 10895 return (reterr); 10896 break; 10897 } 10898 case IPV6_V6ONLY: 10899 if (!checkonly) 10900 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10901 break; 10902 case IPV6_USE_MIN_MTU: 10903 if (inlen != sizeof (int)) 10904 return (EINVAL); 10905 10906 if (*i1 < -1 || *i1 > 1) 10907 return (EINVAL); 10908 10909 if (checkonly) 10910 break; 10911 10912 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10913 ipp->ipp_use_min_mtu = *i1; 10914 break; 10915 case IPV6_BOUND_PIF: 10916 /* Handled at the IP level */ 10917 return (-EINVAL); 10918 case IPV6_SEC_OPT: 10919 /* 10920 * We should not allow policy setting after 10921 * we start listening for connections. 10922 */ 10923 if (tcp->tcp_state == TCPS_LISTEN) { 10924 return (EINVAL); 10925 } else { 10926 /* Handled at the IP level */ 10927 return (-EINVAL); 10928 } 10929 case IPV6_SRC_PREFERENCES: 10930 if (inlen != sizeof (uint32_t)) 10931 return (EINVAL); 10932 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10933 *(uint32_t *)invalp); 10934 if (reterr != 0) { 10935 *outlenp = 0; 10936 return (reterr); 10937 } 10938 break; 10939 default: 10940 *outlenp = 0; 10941 return (EINVAL); 10942 } 10943 break; 10944 } /* end IPPROTO_IPV6 */ 10945 default: 10946 *outlenp = 0; 10947 return (EINVAL); 10948 } 10949 /* 10950 * Common case of OK return with outval same as inval 10951 */ 10952 if (invalp != outvalp) { 10953 /* don't trust bcopy for identical src/dst */ 10954 (void) bcopy(invalp, outvalp, inlen); 10955 } 10956 *outlenp = inlen; 10957 return (0); 10958 } 10959 10960 /* 10961 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10962 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10963 * headers, and the maximum size tcp header (to avoid reallocation 10964 * on the fly for additional tcp options). 10965 * Returns failure if can't allocate memory. 10966 */ 10967 static int 10968 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10969 { 10970 char *hdrs; 10971 uint_t hdrs_len; 10972 ip6i_t *ip6i; 10973 char buf[TCP_MAX_HDR_LENGTH]; 10974 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10975 in6_addr_t src, dst; 10976 10977 /* 10978 * save the existing tcp header and source/dest IP addresses 10979 */ 10980 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10981 src = tcp->tcp_ip6h->ip6_src; 10982 dst = tcp->tcp_ip6h->ip6_dst; 10983 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10984 ASSERT(hdrs_len != 0); 10985 if (hdrs_len > tcp->tcp_iphc_len) { 10986 /* Need to reallocate */ 10987 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10988 if (hdrs == NULL) 10989 return (ENOMEM); 10990 if (tcp->tcp_iphc != NULL) { 10991 if (tcp->tcp_hdr_grown) { 10992 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10993 } else { 10994 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10995 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10996 } 10997 tcp->tcp_iphc_len = 0; 10998 } 10999 ASSERT(tcp->tcp_iphc_len == 0); 11000 tcp->tcp_iphc = hdrs; 11001 tcp->tcp_iphc_len = hdrs_len; 11002 tcp->tcp_hdr_grown = B_TRUE; 11003 } 11004 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11005 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11006 11007 /* Set header fields not in ipp */ 11008 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11009 ip6i = (ip6i_t *)tcp->tcp_iphc; 11010 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11011 } else { 11012 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11013 } 11014 /* 11015 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11016 * 11017 * tcp->tcp_tcp_hdr_len doesn't change here. 11018 */ 11019 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11020 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11021 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11022 11023 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11024 11025 tcp->tcp_ip6h->ip6_src = src; 11026 tcp->tcp_ip6h->ip6_dst = dst; 11027 11028 /* 11029 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11030 * the default value for TCP. 11031 */ 11032 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11033 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 11034 11035 /* 11036 * If we're setting extension headers after a connection 11037 * has been established, and if we have a routing header 11038 * among the extension headers, call ip_massage_options_v6 to 11039 * manipulate the routing header/ip6_dst set the checksum 11040 * difference in the tcp header template. 11041 * (This happens in tcp_connect_ipv6 if the routing header 11042 * is set prior to the connect.) 11043 * Set the tcp_sum to zero first in case we've cleared a 11044 * routing header or don't have one at all. 11045 */ 11046 tcp->tcp_sum = 0; 11047 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11048 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11049 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11050 (uint8_t *)tcp->tcp_tcph); 11051 if (rth != NULL) { 11052 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11053 rth); 11054 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11055 (tcp->tcp_sum >> 16)); 11056 } 11057 } 11058 11059 /* Try to get everything in a single mblk */ 11060 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 11061 return (0); 11062 } 11063 11064 /* 11065 * Transfer any source route option from ipha to buf/dst in reversed form. 11066 */ 11067 static int 11068 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11069 { 11070 ipoptp_t opts; 11071 uchar_t *opt; 11072 uint8_t optval; 11073 uint8_t optlen; 11074 uint32_t len = 0; 11075 11076 for (optval = ipoptp_first(&opts, ipha); 11077 optval != IPOPT_EOL; 11078 optval = ipoptp_next(&opts)) { 11079 opt = opts.ipoptp_cur; 11080 optlen = opts.ipoptp_len; 11081 switch (optval) { 11082 int off1, off2; 11083 case IPOPT_SSRR: 11084 case IPOPT_LSRR: 11085 11086 /* Reverse source route */ 11087 /* 11088 * First entry should be the next to last one in the 11089 * current source route (the last entry is our 11090 * address.) 11091 * The last entry should be the final destination. 11092 */ 11093 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11094 buf[IPOPT_OLEN] = (uint8_t)optlen; 11095 off1 = IPOPT_MINOFF_SR - 1; 11096 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11097 if (off2 < 0) { 11098 /* No entries in source route */ 11099 break; 11100 } 11101 bcopy(opt + off2, dst, IP_ADDR_LEN); 11102 /* 11103 * Note: use src since ipha has not had its src 11104 * and dst reversed (it is in the state it was 11105 * received. 11106 */ 11107 bcopy(&ipha->ipha_src, buf + off2, 11108 IP_ADDR_LEN); 11109 off2 -= IP_ADDR_LEN; 11110 11111 while (off2 > 0) { 11112 bcopy(opt + off2, buf + off1, 11113 IP_ADDR_LEN); 11114 off1 += IP_ADDR_LEN; 11115 off2 -= IP_ADDR_LEN; 11116 } 11117 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11118 buf += optlen; 11119 len += optlen; 11120 break; 11121 } 11122 } 11123 done: 11124 /* Pad the resulting options */ 11125 while (len & 0x3) { 11126 *buf++ = IPOPT_EOL; 11127 len++; 11128 } 11129 return (len); 11130 } 11131 11132 11133 /* 11134 * Extract and revert a source route from ipha (if any) 11135 * and then update the relevant fields in both tcp_t and the standard header. 11136 */ 11137 static void 11138 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11139 { 11140 char buf[TCP_MAX_HDR_LENGTH]; 11141 uint_t tcph_len; 11142 int len; 11143 11144 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11145 len = IPH_HDR_LENGTH(ipha); 11146 if (len == IP_SIMPLE_HDR_LENGTH) 11147 /* Nothing to do */ 11148 return; 11149 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11150 (len & 0x3)) 11151 return; 11152 11153 tcph_len = tcp->tcp_tcp_hdr_len; 11154 bcopy(tcp->tcp_tcph, buf, tcph_len); 11155 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11156 (tcp->tcp_ipha->ipha_dst & 0xffff); 11157 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11158 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11159 len += IP_SIMPLE_HDR_LENGTH; 11160 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11161 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11162 if ((int)tcp->tcp_sum < 0) 11163 tcp->tcp_sum--; 11164 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11165 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11166 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11167 bcopy(buf, tcp->tcp_tcph, tcph_len); 11168 tcp->tcp_ip_hdr_len = len; 11169 tcp->tcp_ipha->ipha_version_and_hdr_length = 11170 (IP_VERSION << 4) | (len >> 2); 11171 len += tcph_len; 11172 tcp->tcp_hdr_len = len; 11173 } 11174 11175 /* 11176 * Copy the standard header into its new location, 11177 * lay in the new options and then update the relevant 11178 * fields in both tcp_t and the standard header. 11179 */ 11180 static int 11181 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11182 { 11183 uint_t tcph_len; 11184 uint8_t *ip_optp; 11185 tcph_t *new_tcph; 11186 11187 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11188 return (EINVAL); 11189 11190 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11191 return (EINVAL); 11192 11193 if (checkonly) { 11194 /* 11195 * do not really set, just pretend to - T_CHECK 11196 */ 11197 return (0); 11198 } 11199 11200 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11201 if (tcp->tcp_label_len > 0) { 11202 int padlen; 11203 uint8_t opt; 11204 11205 /* convert list termination to no-ops */ 11206 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11207 ip_optp += ip_optp[IPOPT_OLEN]; 11208 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11209 while (--padlen >= 0) 11210 *ip_optp++ = opt; 11211 } 11212 tcph_len = tcp->tcp_tcp_hdr_len; 11213 new_tcph = (tcph_t *)(ip_optp + len); 11214 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11215 tcp->tcp_tcph = new_tcph; 11216 bcopy(ptr, ip_optp, len); 11217 11218 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11219 11220 tcp->tcp_ip_hdr_len = len; 11221 tcp->tcp_ipha->ipha_version_and_hdr_length = 11222 (IP_VERSION << 4) | (len >> 2); 11223 tcp->tcp_hdr_len = len + tcph_len; 11224 if (!TCP_IS_DETACHED(tcp)) { 11225 /* Always allocate room for all options. */ 11226 (void) mi_set_sth_wroff(tcp->tcp_rq, 11227 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 11228 } 11229 return (0); 11230 } 11231 11232 /* Get callback routine passed to nd_load by tcp_param_register */ 11233 /* ARGSUSED */ 11234 static int 11235 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11236 { 11237 tcpparam_t *tcppa = (tcpparam_t *)cp; 11238 11239 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11240 return (0); 11241 } 11242 11243 /* 11244 * Walk through the param array specified registering each element with the 11245 * named dispatch handler. 11246 */ 11247 static boolean_t 11248 tcp_param_register(tcpparam_t *tcppa, int cnt) 11249 { 11250 for (; cnt-- > 0; tcppa++) { 11251 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11252 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11253 tcp_param_get, tcp_param_set, 11254 (caddr_t)tcppa)) { 11255 nd_free(&tcp_g_nd); 11256 return (B_FALSE); 11257 } 11258 } 11259 } 11260 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11261 tcp_param_get, tcp_param_set_aligned, 11262 (caddr_t)&tcp_wroff_xtra_param)) { 11263 nd_free(&tcp_g_nd); 11264 return (B_FALSE); 11265 } 11266 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11267 tcp_param_get, tcp_param_set_aligned, 11268 (caddr_t)&tcp_mdt_head_param)) { 11269 nd_free(&tcp_g_nd); 11270 return (B_FALSE); 11271 } 11272 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11273 tcp_param_get, tcp_param_set_aligned, 11274 (caddr_t)&tcp_mdt_tail_param)) { 11275 nd_free(&tcp_g_nd); 11276 return (B_FALSE); 11277 } 11278 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11279 tcp_param_get, tcp_param_set, 11280 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11281 nd_free(&tcp_g_nd); 11282 return (B_FALSE); 11283 } 11284 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11285 tcp_extra_priv_ports_get, NULL, NULL)) { 11286 nd_free(&tcp_g_nd); 11287 return (B_FALSE); 11288 } 11289 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11290 NULL, tcp_extra_priv_ports_add, NULL)) { 11291 nd_free(&tcp_g_nd); 11292 return (B_FALSE); 11293 } 11294 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11295 NULL, tcp_extra_priv_ports_del, NULL)) { 11296 nd_free(&tcp_g_nd); 11297 return (B_FALSE); 11298 } 11299 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11300 NULL)) { 11301 nd_free(&tcp_g_nd); 11302 return (B_FALSE); 11303 } 11304 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11305 NULL, NULL)) { 11306 nd_free(&tcp_g_nd); 11307 return (B_FALSE); 11308 } 11309 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11310 NULL, NULL)) { 11311 nd_free(&tcp_g_nd); 11312 return (B_FALSE); 11313 } 11314 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11315 NULL, NULL)) { 11316 nd_free(&tcp_g_nd); 11317 return (B_FALSE); 11318 } 11319 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11320 NULL, NULL)) { 11321 nd_free(&tcp_g_nd); 11322 return (B_FALSE); 11323 } 11324 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11325 tcp_host_param_set, NULL)) { 11326 nd_free(&tcp_g_nd); 11327 return (B_FALSE); 11328 } 11329 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11330 tcp_host_param_set_ipv6, NULL)) { 11331 nd_free(&tcp_g_nd); 11332 return (B_FALSE); 11333 } 11334 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11335 NULL)) { 11336 nd_free(&tcp_g_nd); 11337 return (B_FALSE); 11338 } 11339 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11340 tcp_reserved_port_list, NULL, NULL)) { 11341 nd_free(&tcp_g_nd); 11342 return (B_FALSE); 11343 } 11344 /* 11345 * Dummy ndd variables - only to convey obsolescence information 11346 * through printing of their name (no get or set routines) 11347 * XXX Remove in future releases ? 11348 */ 11349 if (!nd_load(&tcp_g_nd, 11350 "tcp_close_wait_interval(obsoleted - " 11351 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11352 nd_free(&tcp_g_nd); 11353 return (B_FALSE); 11354 } 11355 return (B_TRUE); 11356 } 11357 11358 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11359 /* ARGSUSED */ 11360 static int 11361 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11362 cred_t *cr) 11363 { 11364 long new_value; 11365 tcpparam_t *tcppa = (tcpparam_t *)cp; 11366 11367 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11368 new_value < tcppa->tcp_param_min || 11369 new_value > tcppa->tcp_param_max) { 11370 return (EINVAL); 11371 } 11372 /* 11373 * Need to make sure new_value is a multiple of 4. If it is not, 11374 * round it up. For future 64 bit requirement, we actually make it 11375 * a multiple of 8. 11376 */ 11377 if (new_value & 0x7) { 11378 new_value = (new_value & ~0x7) + 0x8; 11379 } 11380 tcppa->tcp_param_val = new_value; 11381 return (0); 11382 } 11383 11384 /* Set callback routine passed to nd_load by tcp_param_register */ 11385 /* ARGSUSED */ 11386 static int 11387 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11388 { 11389 long new_value; 11390 tcpparam_t *tcppa = (tcpparam_t *)cp; 11391 11392 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11393 new_value < tcppa->tcp_param_min || 11394 new_value > tcppa->tcp_param_max) { 11395 return (EINVAL); 11396 } 11397 tcppa->tcp_param_val = new_value; 11398 return (0); 11399 } 11400 11401 /* 11402 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11403 * is filled, return as much as we can. The message passed in may be 11404 * multi-part, chained using b_cont. "start" is the starting sequence 11405 * number for this piece. 11406 */ 11407 static mblk_t * 11408 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11409 { 11410 uint32_t end; 11411 mblk_t *mp1; 11412 mblk_t *mp2; 11413 mblk_t *next_mp; 11414 uint32_t u1; 11415 11416 /* Walk through all the new pieces. */ 11417 do { 11418 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11419 (uintptr_t)INT_MAX); 11420 end = start + (int)(mp->b_wptr - mp->b_rptr); 11421 next_mp = mp->b_cont; 11422 if (start == end) { 11423 /* Empty. Blast it. */ 11424 freeb(mp); 11425 continue; 11426 } 11427 mp->b_cont = NULL; 11428 TCP_REASS_SET_SEQ(mp, start); 11429 TCP_REASS_SET_END(mp, end); 11430 mp1 = tcp->tcp_reass_tail; 11431 if (!mp1) { 11432 tcp->tcp_reass_tail = mp; 11433 tcp->tcp_reass_head = mp; 11434 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11435 UPDATE_MIB(&tcp_mib, 11436 tcpInDataUnorderBytes, end - start); 11437 continue; 11438 } 11439 /* New stuff completely beyond tail? */ 11440 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11441 /* Link it on end. */ 11442 mp1->b_cont = mp; 11443 tcp->tcp_reass_tail = mp; 11444 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11445 UPDATE_MIB(&tcp_mib, 11446 tcpInDataUnorderBytes, end - start); 11447 continue; 11448 } 11449 mp1 = tcp->tcp_reass_head; 11450 u1 = TCP_REASS_SEQ(mp1); 11451 /* New stuff at the front? */ 11452 if (SEQ_LT(start, u1)) { 11453 /* Yes... Check for overlap. */ 11454 mp->b_cont = mp1; 11455 tcp->tcp_reass_head = mp; 11456 tcp_reass_elim_overlap(tcp, mp); 11457 continue; 11458 } 11459 /* 11460 * The new piece fits somewhere between the head and tail. 11461 * We find our slot, where mp1 precedes us and mp2 trails. 11462 */ 11463 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11464 u1 = TCP_REASS_SEQ(mp2); 11465 if (SEQ_LEQ(start, u1)) 11466 break; 11467 } 11468 /* Link ourselves in */ 11469 mp->b_cont = mp2; 11470 mp1->b_cont = mp; 11471 11472 /* Trim overlap with following mblk(s) first */ 11473 tcp_reass_elim_overlap(tcp, mp); 11474 11475 /* Trim overlap with preceding mblk */ 11476 tcp_reass_elim_overlap(tcp, mp1); 11477 11478 } while (start = end, mp = next_mp); 11479 mp1 = tcp->tcp_reass_head; 11480 /* Anything ready to go? */ 11481 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11482 return (NULL); 11483 /* Eat what we can off the queue */ 11484 for (;;) { 11485 mp = mp1->b_cont; 11486 end = TCP_REASS_END(mp1); 11487 TCP_REASS_SET_SEQ(mp1, 0); 11488 TCP_REASS_SET_END(mp1, 0); 11489 if (!mp) { 11490 tcp->tcp_reass_tail = NULL; 11491 break; 11492 } 11493 if (end != TCP_REASS_SEQ(mp)) { 11494 mp1->b_cont = NULL; 11495 break; 11496 } 11497 mp1 = mp; 11498 } 11499 mp1 = tcp->tcp_reass_head; 11500 tcp->tcp_reass_head = mp; 11501 return (mp1); 11502 } 11503 11504 /* Eliminate any overlap that mp may have over later mblks */ 11505 static void 11506 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11507 { 11508 uint32_t end; 11509 mblk_t *mp1; 11510 uint32_t u1; 11511 11512 end = TCP_REASS_END(mp); 11513 while ((mp1 = mp->b_cont) != NULL) { 11514 u1 = TCP_REASS_SEQ(mp1); 11515 if (!SEQ_GT(end, u1)) 11516 break; 11517 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11518 mp->b_wptr -= end - u1; 11519 TCP_REASS_SET_END(mp, u1); 11520 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11521 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11522 break; 11523 } 11524 mp->b_cont = mp1->b_cont; 11525 TCP_REASS_SET_SEQ(mp1, 0); 11526 TCP_REASS_SET_END(mp1, 0); 11527 freeb(mp1); 11528 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11529 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11530 } 11531 if (!mp1) 11532 tcp->tcp_reass_tail = mp; 11533 } 11534 11535 /* 11536 * Send up all messages queued on tcp_rcv_list. 11537 */ 11538 static uint_t 11539 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11540 { 11541 mblk_t *mp; 11542 uint_t ret = 0; 11543 uint_t thwin; 11544 #ifdef DEBUG 11545 uint_t cnt = 0; 11546 #endif 11547 /* Can't drain on an eager connection */ 11548 if (tcp->tcp_listener != NULL) 11549 return (ret); 11550 11551 /* 11552 * Handle two cases here: we are currently fused or we were 11553 * previously fused and have some urgent data to be delivered 11554 * upstream. The latter happens because we either ran out of 11555 * memory or were detached and therefore sending the SIGURG was 11556 * deferred until this point. In either case we pass control 11557 * over to tcp_fuse_rcv_drain() since it may need to complete 11558 * some work. 11559 */ 11560 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11561 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11562 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11563 &tcp->tcp_fused_sigurg_mp)) 11564 return (ret); 11565 } 11566 11567 while ((mp = tcp->tcp_rcv_list) != NULL) { 11568 tcp->tcp_rcv_list = mp->b_next; 11569 mp->b_next = NULL; 11570 #ifdef DEBUG 11571 cnt += msgdsize(mp); 11572 #endif 11573 /* Does this need SSL processing first? */ 11574 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11575 tcp_kssl_input(tcp, mp); 11576 continue; 11577 } 11578 putnext(q, mp); 11579 } 11580 ASSERT(cnt == tcp->tcp_rcv_cnt); 11581 tcp->tcp_rcv_last_head = NULL; 11582 tcp->tcp_rcv_last_tail = NULL; 11583 tcp->tcp_rcv_cnt = 0; 11584 11585 /* Learn the latest rwnd information that we sent to the other side. */ 11586 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11587 << tcp->tcp_rcv_ws; 11588 /* This is peer's calculated send window (our receive window). */ 11589 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11590 /* 11591 * Increase the receive window to max. But we need to do receiver 11592 * SWS avoidance. This means that we need to check the increase of 11593 * of receive window is at least 1 MSS. 11594 */ 11595 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11596 /* 11597 * If the window that the other side knows is less than max 11598 * deferred acks segments, send an update immediately. 11599 */ 11600 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11601 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11602 ret = TH_ACK_NEEDED; 11603 } 11604 tcp->tcp_rwnd = q->q_hiwat; 11605 } 11606 /* No need for the push timer now. */ 11607 if (tcp->tcp_push_tid != 0) { 11608 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11609 tcp->tcp_push_tid = 0; 11610 } 11611 return (ret); 11612 } 11613 11614 /* 11615 * Queue data on tcp_rcv_list which is a b_next chain. 11616 * tcp_rcv_last_head/tail is the last element of this chain. 11617 * Each element of the chain is a b_cont chain. 11618 * 11619 * M_DATA messages are added to the current element. 11620 * Other messages are added as new (b_next) elements. 11621 */ 11622 void 11623 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11624 { 11625 ASSERT(seg_len == msgdsize(mp)); 11626 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11627 11628 if (tcp->tcp_rcv_list == NULL) { 11629 ASSERT(tcp->tcp_rcv_last_head == NULL); 11630 tcp->tcp_rcv_list = mp; 11631 tcp->tcp_rcv_last_head = mp; 11632 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11633 tcp->tcp_rcv_last_tail->b_cont = mp; 11634 } else { 11635 tcp->tcp_rcv_last_head->b_next = mp; 11636 tcp->tcp_rcv_last_head = mp; 11637 } 11638 11639 while (mp->b_cont) 11640 mp = mp->b_cont; 11641 11642 tcp->tcp_rcv_last_tail = mp; 11643 tcp->tcp_rcv_cnt += seg_len; 11644 tcp->tcp_rwnd -= seg_len; 11645 } 11646 11647 /* 11648 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11649 * 11650 * This is the default entry function into TCP on the read side. TCP is 11651 * always entered via squeue i.e. using squeue's for mutual exclusion. 11652 * When classifier does a lookup to find the tcp, it also puts a reference 11653 * on the conn structure associated so the tcp is guaranteed to exist 11654 * when we come here. We still need to check the state because it might 11655 * as well has been closed. The squeue processing function i.e. squeue_enter, 11656 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11657 * CONN_DEC_REF. 11658 * 11659 * Apart from the default entry point, IP also sends packets directly to 11660 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11661 * connections. 11662 */ 11663 void 11664 tcp_input(void *arg, mblk_t *mp, void *arg2) 11665 { 11666 conn_t *connp = (conn_t *)arg; 11667 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11668 11669 /* arg2 is the sqp */ 11670 ASSERT(arg2 != NULL); 11671 ASSERT(mp != NULL); 11672 11673 /* 11674 * Don't accept any input on a closed tcp as this TCP logically does 11675 * not exist on the system. Don't proceed further with this TCP. 11676 * For eg. this packet could trigger another close of this tcp 11677 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11678 * tcp_clean_death / tcp_closei_local must be called at most once 11679 * on a TCP. In this case we need to refeed the packet into the 11680 * classifier and figure out where the packet should go. Need to 11681 * preserve the recv_ill somehow. Until we figure that out, for 11682 * now just drop the packet if we can't classify the packet. 11683 */ 11684 if (tcp->tcp_state == TCPS_CLOSED || 11685 tcp->tcp_state == TCPS_BOUND) { 11686 conn_t *new_connp; 11687 11688 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11689 if (new_connp != NULL) { 11690 tcp_reinput(new_connp, mp, arg2); 11691 return; 11692 } 11693 /* We failed to classify. For now just drop the packet */ 11694 freemsg(mp); 11695 return; 11696 } 11697 11698 if (DB_TYPE(mp) == M_DATA) 11699 tcp_rput_data(connp, mp, arg2); 11700 else 11701 tcp_rput_common(tcp, mp); 11702 } 11703 11704 /* 11705 * The read side put procedure. 11706 * The packets passed up by ip are assume to be aligned according to 11707 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11708 */ 11709 static void 11710 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11711 { 11712 /* 11713 * tcp_rput_data() does not expect M_CTL except for the case 11714 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11715 * type. Need to make sure that any other M_CTLs don't make 11716 * it to tcp_rput_data since it is not expecting any and doesn't 11717 * check for it. 11718 */ 11719 if (DB_TYPE(mp) == M_CTL) { 11720 switch (*(uint32_t *)(mp->b_rptr)) { 11721 case TCP_IOC_ABORT_CONN: 11722 /* 11723 * Handle connection abort request. 11724 */ 11725 tcp_ioctl_abort_handler(tcp, mp); 11726 return; 11727 case IPSEC_IN: 11728 /* 11729 * Only secure icmp arrive in TCP and they 11730 * don't go through data path. 11731 */ 11732 tcp_icmp_error(tcp, mp); 11733 return; 11734 case IN_PKTINFO: 11735 /* 11736 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11737 * sockets that are receiving IPv4 traffic. tcp 11738 */ 11739 ASSERT(tcp->tcp_family == AF_INET6); 11740 ASSERT(tcp->tcp_ipv6_recvancillary & 11741 TCP_IPV6_RECVPKTINFO); 11742 tcp_rput_data(tcp->tcp_connp, mp, 11743 tcp->tcp_connp->conn_sqp); 11744 return; 11745 case MDT_IOC_INFO_UPDATE: 11746 /* 11747 * Handle Multidata information update; the 11748 * following routine will free the message. 11749 */ 11750 if (tcp->tcp_connp->conn_mdt_ok) { 11751 tcp_mdt_update(tcp, 11752 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11753 B_FALSE); 11754 } 11755 freemsg(mp); 11756 return; 11757 case LSO_IOC_INFO_UPDATE: 11758 /* 11759 * Handle LSO information update; the following 11760 * routine will free the message. 11761 */ 11762 if (tcp->tcp_connp->conn_lso_ok) { 11763 tcp_lso_update(tcp, 11764 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11765 } 11766 freemsg(mp); 11767 return; 11768 default: 11769 break; 11770 } 11771 } 11772 11773 /* No point processing the message if tcp is already closed */ 11774 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11775 freemsg(mp); 11776 return; 11777 } 11778 11779 tcp_rput_other(tcp, mp); 11780 } 11781 11782 11783 /* The minimum of smoothed mean deviation in RTO calculation. */ 11784 #define TCP_SD_MIN 400 11785 11786 /* 11787 * Set RTO for this connection. The formula is from Jacobson and Karels' 11788 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11789 * are the same as those in Appendix A.2 of that paper. 11790 * 11791 * m = new measurement 11792 * sa = smoothed RTT average (8 * average estimates). 11793 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11794 */ 11795 static void 11796 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11797 { 11798 long m = TICK_TO_MSEC(rtt); 11799 clock_t sa = tcp->tcp_rtt_sa; 11800 clock_t sv = tcp->tcp_rtt_sd; 11801 clock_t rto; 11802 11803 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11804 tcp->tcp_rtt_update++; 11805 11806 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11807 if (sa != 0) { 11808 /* 11809 * Update average estimator: 11810 * new rtt = 7/8 old rtt + 1/8 Error 11811 */ 11812 11813 /* m is now Error in estimate. */ 11814 m -= sa >> 3; 11815 if ((sa += m) <= 0) { 11816 /* 11817 * Don't allow the smoothed average to be negative. 11818 * We use 0 to denote reinitialization of the 11819 * variables. 11820 */ 11821 sa = 1; 11822 } 11823 11824 /* 11825 * Update deviation estimator: 11826 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11827 */ 11828 if (m < 0) 11829 m = -m; 11830 m -= sv >> 2; 11831 sv += m; 11832 } else { 11833 /* 11834 * This follows BSD's implementation. So the reinitialized 11835 * RTO is 3 * m. We cannot go less than 2 because if the 11836 * link is bandwidth dominated, doubling the window size 11837 * during slow start means doubling the RTT. We want to be 11838 * more conservative when we reinitialize our estimates. 3 11839 * is just a convenient number. 11840 */ 11841 sa = m << 3; 11842 sv = m << 1; 11843 } 11844 if (sv < TCP_SD_MIN) { 11845 /* 11846 * We do not know that if sa captures the delay ACK 11847 * effect as in a long train of segments, a receiver 11848 * does not delay its ACKs. So set the minimum of sv 11849 * to be TCP_SD_MIN, which is default to 400 ms, twice 11850 * of BSD DATO. That means the minimum of mean 11851 * deviation is 100 ms. 11852 * 11853 */ 11854 sv = TCP_SD_MIN; 11855 } 11856 tcp->tcp_rtt_sa = sa; 11857 tcp->tcp_rtt_sd = sv; 11858 /* 11859 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11860 * 11861 * Add tcp_rexmit_interval extra in case of extreme environment 11862 * where the algorithm fails to work. The default value of 11863 * tcp_rexmit_interval_extra should be 0. 11864 * 11865 * As we use a finer grained clock than BSD and update 11866 * RTO for every ACKs, add in another .25 of RTT to the 11867 * deviation of RTO to accomodate burstiness of 1/4 of 11868 * window size. 11869 */ 11870 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11871 11872 if (rto > tcp_rexmit_interval_max) { 11873 tcp->tcp_rto = tcp_rexmit_interval_max; 11874 } else if (rto < tcp_rexmit_interval_min) { 11875 tcp->tcp_rto = tcp_rexmit_interval_min; 11876 } else { 11877 tcp->tcp_rto = rto; 11878 } 11879 11880 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11881 tcp->tcp_timer_backoff = 0; 11882 } 11883 11884 /* 11885 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11886 * send queue which starts at the given seq. no. 11887 * 11888 * Parameters: 11889 * tcp_t *tcp: the tcp instance pointer. 11890 * uint32_t seq: the starting seq. no of the requested segment. 11891 * int32_t *off: after the execution, *off will be the offset to 11892 * the returned mblk which points to the requested seq no. 11893 * It is the caller's responsibility to send in a non-null off. 11894 * 11895 * Return: 11896 * A mblk_t pointer pointing to the requested segment in send queue. 11897 */ 11898 static mblk_t * 11899 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11900 { 11901 int32_t cnt; 11902 mblk_t *mp; 11903 11904 /* Defensive coding. Make sure we don't send incorrect data. */ 11905 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11906 return (NULL); 11907 11908 cnt = seq - tcp->tcp_suna; 11909 mp = tcp->tcp_xmit_head; 11910 while (cnt > 0 && mp != NULL) { 11911 cnt -= mp->b_wptr - mp->b_rptr; 11912 if (cnt < 0) { 11913 cnt += mp->b_wptr - mp->b_rptr; 11914 break; 11915 } 11916 mp = mp->b_cont; 11917 } 11918 ASSERT(mp != NULL); 11919 *off = cnt; 11920 return (mp); 11921 } 11922 11923 /* 11924 * This function handles all retransmissions if SACK is enabled for this 11925 * connection. First it calculates how many segments can be retransmitted 11926 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11927 * segments. A segment is eligible if sack_cnt for that segment is greater 11928 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11929 * all eligible segments, it checks to see if TCP can send some new segments 11930 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11931 * 11932 * Parameters: 11933 * tcp_t *tcp: the tcp structure of the connection. 11934 * uint_t *flags: in return, appropriate value will be set for 11935 * tcp_rput_data(). 11936 */ 11937 static void 11938 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11939 { 11940 notsack_blk_t *notsack_blk; 11941 int32_t usable_swnd; 11942 int32_t mss; 11943 uint32_t seg_len; 11944 mblk_t *xmit_mp; 11945 11946 ASSERT(tcp->tcp_sack_info != NULL); 11947 ASSERT(tcp->tcp_notsack_list != NULL); 11948 ASSERT(tcp->tcp_rexmit == B_FALSE); 11949 11950 /* Defensive coding in case there is a bug... */ 11951 if (tcp->tcp_notsack_list == NULL) { 11952 return; 11953 } 11954 notsack_blk = tcp->tcp_notsack_list; 11955 mss = tcp->tcp_mss; 11956 11957 /* 11958 * Limit the num of outstanding data in the network to be 11959 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11960 */ 11961 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11962 11963 /* At least retransmit 1 MSS of data. */ 11964 if (usable_swnd <= 0) { 11965 usable_swnd = mss; 11966 } 11967 11968 /* Make sure no new RTT samples will be taken. */ 11969 tcp->tcp_csuna = tcp->tcp_snxt; 11970 11971 notsack_blk = tcp->tcp_notsack_list; 11972 while (usable_swnd > 0) { 11973 mblk_t *snxt_mp, *tmp_mp; 11974 tcp_seq begin = tcp->tcp_sack_snxt; 11975 tcp_seq end; 11976 int32_t off; 11977 11978 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11979 if (SEQ_GT(notsack_blk->end, begin) && 11980 (notsack_blk->sack_cnt >= 11981 tcp_dupack_fast_retransmit)) { 11982 end = notsack_blk->end; 11983 if (SEQ_LT(begin, notsack_blk->begin)) { 11984 begin = notsack_blk->begin; 11985 } 11986 break; 11987 } 11988 } 11989 /* 11990 * All holes are filled. Manipulate tcp_cwnd to send more 11991 * if we can. Note that after the SACK recovery, tcp_cwnd is 11992 * set to tcp_cwnd_ssthresh. 11993 */ 11994 if (notsack_blk == NULL) { 11995 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11996 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11997 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11998 ASSERT(tcp->tcp_cwnd > 0); 11999 return; 12000 } else { 12001 usable_swnd = usable_swnd / mss; 12002 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12003 MAX(usable_swnd * mss, mss); 12004 *flags |= TH_XMIT_NEEDED; 12005 return; 12006 } 12007 } 12008 12009 /* 12010 * Note that we may send more than usable_swnd allows here 12011 * because of round off, but no more than 1 MSS of data. 12012 */ 12013 seg_len = end - begin; 12014 if (seg_len > mss) 12015 seg_len = mss; 12016 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12017 ASSERT(snxt_mp != NULL); 12018 /* This should not happen. Defensive coding again... */ 12019 if (snxt_mp == NULL) { 12020 return; 12021 } 12022 12023 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12024 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12025 if (xmit_mp == NULL) 12026 return; 12027 12028 usable_swnd -= seg_len; 12029 tcp->tcp_pipe += seg_len; 12030 tcp->tcp_sack_snxt = begin + seg_len; 12031 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12032 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12033 12034 /* 12035 * Update the send timestamp to avoid false retransmission. 12036 */ 12037 snxt_mp->b_prev = (mblk_t *)lbolt; 12038 12039 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12040 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 12041 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 12042 /* 12043 * Update tcp_rexmit_max to extend this SACK recovery phase. 12044 * This happens when new data sent during fast recovery is 12045 * also lost. If TCP retransmits those new data, it needs 12046 * to extend SACK recover phase to avoid starting another 12047 * fast retransmit/recovery unnecessarily. 12048 */ 12049 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12050 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12051 } 12052 } 12053 } 12054 12055 /* 12056 * This function handles policy checking at TCP level for non-hard_bound/ 12057 * detached connections. 12058 */ 12059 static boolean_t 12060 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12061 boolean_t secure, boolean_t mctl_present) 12062 { 12063 ipsec_latch_t *ipl = NULL; 12064 ipsec_action_t *act = NULL; 12065 mblk_t *data_mp; 12066 ipsec_in_t *ii; 12067 const char *reason; 12068 kstat_named_t *counter; 12069 12070 ASSERT(mctl_present || !secure); 12071 12072 ASSERT((ipha == NULL && ip6h != NULL) || 12073 (ip6h == NULL && ipha != NULL)); 12074 12075 /* 12076 * We don't necessarily have an ipsec_in_act action to verify 12077 * policy because of assymetrical policy where we have only 12078 * outbound policy and no inbound policy (possible with global 12079 * policy). 12080 */ 12081 if (!secure) { 12082 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12083 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12084 return (B_TRUE); 12085 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12086 "tcp_check_policy", ipha, ip6h, secure); 12087 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12088 &ipdrops_tcp_clear, &tcp_dropper); 12089 return (B_FALSE); 12090 } 12091 12092 /* 12093 * We have a secure packet. 12094 */ 12095 if (act == NULL) { 12096 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12097 "tcp_check_policy", ipha, ip6h, secure); 12098 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12099 &ipdrops_tcp_secure, &tcp_dropper); 12100 return (B_FALSE); 12101 } 12102 12103 /* 12104 * XXX This whole routine is currently incorrect. ipl should 12105 * be set to the latch pointer, but is currently not set, so 12106 * we initialize it to NULL to avoid picking up random garbage. 12107 */ 12108 if (ipl == NULL) 12109 return (B_TRUE); 12110 12111 data_mp = first_mp->b_cont; 12112 12113 ii = (ipsec_in_t *)first_mp->b_rptr; 12114 12115 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12116 &counter, tcp->tcp_connp)) { 12117 BUMP_MIB(&ip_mib, ipsecInSucceeded); 12118 return (B_TRUE); 12119 } 12120 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12121 "tcp inbound policy mismatch: %s, packet dropped\n", 12122 reason); 12123 BUMP_MIB(&ip_mib, ipsecInFailed); 12124 12125 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 12126 return (B_FALSE); 12127 } 12128 12129 /* 12130 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12131 * retransmission after a timeout. 12132 * 12133 * To limit the number of duplicate segments, we limit the number of segment 12134 * to be sent in one time to tcp_snd_burst, the burst variable. 12135 */ 12136 static void 12137 tcp_ss_rexmit(tcp_t *tcp) 12138 { 12139 uint32_t snxt; 12140 uint32_t smax; 12141 int32_t win; 12142 int32_t mss; 12143 int32_t off; 12144 int32_t burst = tcp->tcp_snd_burst; 12145 mblk_t *snxt_mp; 12146 12147 /* 12148 * Note that tcp_rexmit can be set even though TCP has retransmitted 12149 * all unack'ed segments. 12150 */ 12151 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12152 smax = tcp->tcp_rexmit_max; 12153 snxt = tcp->tcp_rexmit_nxt; 12154 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12155 snxt = tcp->tcp_suna; 12156 } 12157 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12158 win -= snxt - tcp->tcp_suna; 12159 mss = tcp->tcp_mss; 12160 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12161 12162 while (SEQ_LT(snxt, smax) && (win > 0) && 12163 (burst > 0) && (snxt_mp != NULL)) { 12164 mblk_t *xmit_mp; 12165 mblk_t *old_snxt_mp = snxt_mp; 12166 uint32_t cnt = mss; 12167 12168 if (win < cnt) { 12169 cnt = win; 12170 } 12171 if (SEQ_GT(snxt + cnt, smax)) { 12172 cnt = smax - snxt; 12173 } 12174 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12175 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12176 if (xmit_mp == NULL) 12177 return; 12178 12179 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12180 12181 snxt += cnt; 12182 win -= cnt; 12183 /* 12184 * Update the send timestamp to avoid false 12185 * retransmission. 12186 */ 12187 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12188 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12189 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 12190 12191 tcp->tcp_rexmit_nxt = snxt; 12192 burst--; 12193 } 12194 /* 12195 * If we have transmitted all we have at the time 12196 * we started the retranmission, we can leave 12197 * the rest of the job to tcp_wput_data(). But we 12198 * need to check the send window first. If the 12199 * win is not 0, go on with tcp_wput_data(). 12200 */ 12201 if (SEQ_LT(snxt, smax) || win == 0) { 12202 return; 12203 } 12204 } 12205 /* Only call tcp_wput_data() if there is data to be sent. */ 12206 if (tcp->tcp_unsent) { 12207 tcp_wput_data(tcp, NULL, B_FALSE); 12208 } 12209 } 12210 12211 /* 12212 * Process all TCP option in SYN segment. Note that this function should 12213 * be called after tcp_adapt_ire() is called so that the necessary info 12214 * from IRE is already set in the tcp structure. 12215 * 12216 * This function sets up the correct tcp_mss value according to the 12217 * MSS option value and our header size. It also sets up the window scale 12218 * and timestamp values, and initialize SACK info blocks. But it does not 12219 * change receive window size after setting the tcp_mss value. The caller 12220 * should do the appropriate change. 12221 */ 12222 void 12223 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12224 { 12225 int options; 12226 tcp_opt_t tcpopt; 12227 uint32_t mss_max; 12228 char *tmp_tcph; 12229 12230 tcpopt.tcp = NULL; 12231 options = tcp_parse_options(tcph, &tcpopt); 12232 12233 /* 12234 * Process MSS option. Note that MSS option value does not account 12235 * for IP or TCP options. This means that it is equal to MTU - minimum 12236 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12237 * IPv6. 12238 */ 12239 if (!(options & TCP_OPT_MSS_PRESENT)) { 12240 if (tcp->tcp_ipversion == IPV4_VERSION) 12241 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 12242 else 12243 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12244 } else { 12245 if (tcp->tcp_ipversion == IPV4_VERSION) 12246 mss_max = tcp_mss_max_ipv4; 12247 else 12248 mss_max = tcp_mss_max_ipv6; 12249 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12250 tcpopt.tcp_opt_mss = tcp_mss_min; 12251 else if (tcpopt.tcp_opt_mss > mss_max) 12252 tcpopt.tcp_opt_mss = mss_max; 12253 } 12254 12255 /* Process Window Scale option. */ 12256 if (options & TCP_OPT_WSCALE_PRESENT) { 12257 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12258 tcp->tcp_snd_ws_ok = B_TRUE; 12259 } else { 12260 tcp->tcp_snd_ws = B_FALSE; 12261 tcp->tcp_snd_ws_ok = B_FALSE; 12262 tcp->tcp_rcv_ws = B_FALSE; 12263 } 12264 12265 /* Process Timestamp option. */ 12266 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12267 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12268 tmp_tcph = (char *)tcp->tcp_tcph; 12269 12270 tcp->tcp_snd_ts_ok = B_TRUE; 12271 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12272 tcp->tcp_last_rcv_lbolt = lbolt64; 12273 ASSERT(OK_32PTR(tmp_tcph)); 12274 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12275 12276 /* Fill in our template header with basic timestamp option. */ 12277 tmp_tcph += tcp->tcp_tcp_hdr_len; 12278 tmp_tcph[0] = TCPOPT_NOP; 12279 tmp_tcph[1] = TCPOPT_NOP; 12280 tmp_tcph[2] = TCPOPT_TSTAMP; 12281 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12282 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12283 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12284 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12285 } else { 12286 tcp->tcp_snd_ts_ok = B_FALSE; 12287 } 12288 12289 /* 12290 * Process SACK options. If SACK is enabled for this connection, 12291 * then allocate the SACK info structure. Note the following ways 12292 * when tcp_snd_sack_ok is set to true. 12293 * 12294 * For active connection: in tcp_adapt_ire() called in 12295 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12296 * is checked. 12297 * 12298 * For passive connection: in tcp_adapt_ire() called in 12299 * tcp_accept_comm(). 12300 * 12301 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12302 * That check makes sure that if we did not send a SACK OK option, 12303 * we will not enable SACK for this connection even though the other 12304 * side sends us SACK OK option. For active connection, the SACK 12305 * info structure has already been allocated. So we need to free 12306 * it if SACK is disabled. 12307 */ 12308 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12309 (tcp->tcp_snd_sack_ok || 12310 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12311 /* This should be true only in the passive case. */ 12312 if (tcp->tcp_sack_info == NULL) { 12313 ASSERT(TCP_IS_DETACHED(tcp)); 12314 tcp->tcp_sack_info = 12315 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12316 } 12317 if (tcp->tcp_sack_info == NULL) { 12318 tcp->tcp_snd_sack_ok = B_FALSE; 12319 } else { 12320 tcp->tcp_snd_sack_ok = B_TRUE; 12321 if (tcp->tcp_snd_ts_ok) { 12322 tcp->tcp_max_sack_blk = 3; 12323 } else { 12324 tcp->tcp_max_sack_blk = 4; 12325 } 12326 } 12327 } else { 12328 /* 12329 * Resetting tcp_snd_sack_ok to B_FALSE so that 12330 * no SACK info will be used for this 12331 * connection. This assumes that SACK usage 12332 * permission is negotiated. This may need 12333 * to be changed once this is clarified. 12334 */ 12335 if (tcp->tcp_sack_info != NULL) { 12336 ASSERT(tcp->tcp_notsack_list == NULL); 12337 kmem_cache_free(tcp_sack_info_cache, 12338 tcp->tcp_sack_info); 12339 tcp->tcp_sack_info = NULL; 12340 } 12341 tcp->tcp_snd_sack_ok = B_FALSE; 12342 } 12343 12344 /* 12345 * Now we know the exact TCP/IP header length, subtract 12346 * that from tcp_mss to get our side's MSS. 12347 */ 12348 tcp->tcp_mss -= tcp->tcp_hdr_len; 12349 /* 12350 * Here we assume that the other side's header size will be equal to 12351 * our header size. We calculate the real MSS accordingly. Need to 12352 * take into additional stuffs IPsec puts in. 12353 * 12354 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12355 */ 12356 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12357 ((tcp->tcp_ipversion == IPV4_VERSION ? 12358 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12359 12360 /* 12361 * Set MSS to the smaller one of both ends of the connection. 12362 * We should not have called tcp_mss_set() before, but our 12363 * side of the MSS should have been set to a proper value 12364 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12365 * STREAM head parameters properly. 12366 * 12367 * If we have a larger-than-16-bit window but the other side 12368 * didn't want to do window scale, tcp_rwnd_set() will take 12369 * care of that. 12370 */ 12371 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12372 } 12373 12374 /* 12375 * Sends the T_CONN_IND to the listener. The caller calls this 12376 * functions via squeue to get inside the listener's perimeter 12377 * once the 3 way hand shake is done a T_CONN_IND needs to be 12378 * sent. As an optimization, the caller can call this directly 12379 * if listener's perimeter is same as eager's. 12380 */ 12381 /* ARGSUSED */ 12382 void 12383 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12384 { 12385 conn_t *lconnp = (conn_t *)arg; 12386 tcp_t *listener = lconnp->conn_tcp; 12387 tcp_t *tcp; 12388 struct T_conn_ind *conn_ind; 12389 ipaddr_t *addr_cache; 12390 boolean_t need_send_conn_ind = B_FALSE; 12391 12392 /* retrieve the eager */ 12393 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12394 ASSERT(conn_ind->OPT_offset != 0 && 12395 conn_ind->OPT_length == sizeof (intptr_t)); 12396 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12397 conn_ind->OPT_length); 12398 12399 /* 12400 * TLI/XTI applications will get confused by 12401 * sending eager as an option since it violates 12402 * the option semantics. So remove the eager as 12403 * option since TLI/XTI app doesn't need it anyway. 12404 */ 12405 if (!TCP_IS_SOCKET(listener)) { 12406 conn_ind->OPT_length = 0; 12407 conn_ind->OPT_offset = 0; 12408 } 12409 if (listener->tcp_state == TCPS_CLOSED || 12410 TCP_IS_DETACHED(listener)) { 12411 /* 12412 * If listener has closed, it would have caused a 12413 * a cleanup/blowoff to happen for the eager. We 12414 * just need to return. 12415 */ 12416 freemsg(mp); 12417 return; 12418 } 12419 12420 12421 /* 12422 * if the conn_req_q is full defer passing up the 12423 * T_CONN_IND until space is availabe after t_accept() 12424 * processing 12425 */ 12426 mutex_enter(&listener->tcp_eager_lock); 12427 12428 /* 12429 * Take the eager out, if it is in the list of droppable eagers 12430 * as we are here because the 3W handshake is over. 12431 */ 12432 MAKE_UNDROPPABLE(tcp); 12433 12434 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12435 tcp_t *tail; 12436 12437 /* 12438 * The eager already has an extra ref put in tcp_rput_data 12439 * so that it stays till accept comes back even though it 12440 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12441 */ 12442 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12443 listener->tcp_conn_req_cnt_q0--; 12444 listener->tcp_conn_req_cnt_q++; 12445 12446 /* Move from SYN_RCVD to ESTABLISHED list */ 12447 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12448 tcp->tcp_eager_prev_q0; 12449 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12450 tcp->tcp_eager_next_q0; 12451 tcp->tcp_eager_prev_q0 = NULL; 12452 tcp->tcp_eager_next_q0 = NULL; 12453 12454 /* 12455 * Insert at end of the queue because sockfs 12456 * sends down T_CONN_RES in chronological 12457 * order. Leaving the older conn indications 12458 * at front of the queue helps reducing search 12459 * time. 12460 */ 12461 tail = listener->tcp_eager_last_q; 12462 if (tail != NULL) 12463 tail->tcp_eager_next_q = tcp; 12464 else 12465 listener->tcp_eager_next_q = tcp; 12466 listener->tcp_eager_last_q = tcp; 12467 tcp->tcp_eager_next_q = NULL; 12468 /* 12469 * Delay sending up the T_conn_ind until we are 12470 * done with the eager. Once we have have sent up 12471 * the T_conn_ind, the accept can potentially complete 12472 * any time and release the refhold we have on the eager. 12473 */ 12474 need_send_conn_ind = B_TRUE; 12475 } else { 12476 /* 12477 * Defer connection on q0 and set deferred 12478 * connection bit true 12479 */ 12480 tcp->tcp_conn_def_q0 = B_TRUE; 12481 12482 /* take tcp out of q0 ... */ 12483 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12484 tcp->tcp_eager_next_q0; 12485 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12486 tcp->tcp_eager_prev_q0; 12487 12488 /* ... and place it at the end of q0 */ 12489 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12490 tcp->tcp_eager_next_q0 = listener; 12491 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12492 listener->tcp_eager_prev_q0 = tcp; 12493 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12494 } 12495 12496 /* we have timed out before */ 12497 if (tcp->tcp_syn_rcvd_timeout != 0) { 12498 tcp->tcp_syn_rcvd_timeout = 0; 12499 listener->tcp_syn_rcvd_timeout--; 12500 if (listener->tcp_syn_defense && 12501 listener->tcp_syn_rcvd_timeout <= 12502 (tcp_conn_req_max_q0 >> 5) && 12503 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12504 listener->tcp_last_rcv_lbolt)) { 12505 /* 12506 * Turn off the defense mode if we 12507 * believe the SYN attack is over. 12508 */ 12509 listener->tcp_syn_defense = B_FALSE; 12510 if (listener->tcp_ip_addr_cache) { 12511 kmem_free((void *)listener->tcp_ip_addr_cache, 12512 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12513 listener->tcp_ip_addr_cache = NULL; 12514 } 12515 } 12516 } 12517 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12518 if (addr_cache != NULL) { 12519 /* 12520 * We have finished a 3-way handshake with this 12521 * remote host. This proves the IP addr is good. 12522 * Cache it! 12523 */ 12524 addr_cache[IP_ADDR_CACHE_HASH( 12525 tcp->tcp_remote)] = tcp->tcp_remote; 12526 } 12527 mutex_exit(&listener->tcp_eager_lock); 12528 if (need_send_conn_ind) 12529 putnext(listener->tcp_rq, mp); 12530 } 12531 12532 mblk_t * 12533 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12534 uint_t *ifindexp, ip6_pkt_t *ippp) 12535 { 12536 in_pktinfo_t *pinfo; 12537 ip6_t *ip6h; 12538 uchar_t *rptr; 12539 mblk_t *first_mp = mp; 12540 boolean_t mctl_present = B_FALSE; 12541 uint_t ifindex = 0; 12542 ip6_pkt_t ipp; 12543 uint_t ipvers; 12544 uint_t ip_hdr_len; 12545 12546 rptr = mp->b_rptr; 12547 ASSERT(OK_32PTR(rptr)); 12548 ASSERT(tcp != NULL); 12549 ipp.ipp_fields = 0; 12550 12551 switch DB_TYPE(mp) { 12552 case M_CTL: 12553 mp = mp->b_cont; 12554 if (mp == NULL) { 12555 freemsg(first_mp); 12556 return (NULL); 12557 } 12558 if (DB_TYPE(mp) != M_DATA) { 12559 freemsg(first_mp); 12560 return (NULL); 12561 } 12562 mctl_present = B_TRUE; 12563 break; 12564 case M_DATA: 12565 break; 12566 default: 12567 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12568 freemsg(mp); 12569 return (NULL); 12570 } 12571 ipvers = IPH_HDR_VERSION(rptr); 12572 if (ipvers == IPV4_VERSION) { 12573 if (tcp == NULL) { 12574 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12575 goto done; 12576 } 12577 12578 ipp.ipp_fields |= IPPF_HOPLIMIT; 12579 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12580 12581 /* 12582 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12583 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12584 */ 12585 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12586 mctl_present) { 12587 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12588 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12589 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12590 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12591 ipp.ipp_fields |= IPPF_IFINDEX; 12592 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12593 ifindex = pinfo->in_pkt_ifindex; 12594 } 12595 freeb(first_mp); 12596 mctl_present = B_FALSE; 12597 } 12598 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12599 } else { 12600 ip6h = (ip6_t *)rptr; 12601 12602 ASSERT(ipvers == IPV6_VERSION); 12603 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12604 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12605 ipp.ipp_hoplimit = ip6h->ip6_hops; 12606 12607 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12608 uint8_t nexthdrp; 12609 12610 /* Look for ifindex information */ 12611 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12612 ip6i_t *ip6i = (ip6i_t *)ip6h; 12613 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12614 BUMP_MIB(&ip_mib, tcpInErrs); 12615 freemsg(first_mp); 12616 return (NULL); 12617 } 12618 12619 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12620 ASSERT(ip6i->ip6i_ifindex != 0); 12621 ipp.ipp_fields |= IPPF_IFINDEX; 12622 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12623 ifindex = ip6i->ip6i_ifindex; 12624 } 12625 rptr = (uchar_t *)&ip6i[1]; 12626 mp->b_rptr = rptr; 12627 if (rptr == mp->b_wptr) { 12628 mblk_t *mp1; 12629 mp1 = mp->b_cont; 12630 freeb(mp); 12631 mp = mp1; 12632 rptr = mp->b_rptr; 12633 } 12634 if (MBLKL(mp) < IPV6_HDR_LEN + 12635 sizeof (tcph_t)) { 12636 BUMP_MIB(&ip_mib, tcpInErrs); 12637 freemsg(first_mp); 12638 return (NULL); 12639 } 12640 ip6h = (ip6_t *)rptr; 12641 } 12642 12643 /* 12644 * Find any potentially interesting extension headers 12645 * as well as the length of the IPv6 + extension 12646 * headers. 12647 */ 12648 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12649 /* Verify if this is a TCP packet */ 12650 if (nexthdrp != IPPROTO_TCP) { 12651 BUMP_MIB(&ip_mib, tcpInErrs); 12652 freemsg(first_mp); 12653 return (NULL); 12654 } 12655 } else { 12656 ip_hdr_len = IPV6_HDR_LEN; 12657 } 12658 } 12659 12660 done: 12661 if (ipversp != NULL) 12662 *ipversp = ipvers; 12663 if (ip_hdr_lenp != NULL) 12664 *ip_hdr_lenp = ip_hdr_len; 12665 if (ippp != NULL) 12666 *ippp = ipp; 12667 if (ifindexp != NULL) 12668 *ifindexp = ifindex; 12669 if (mctl_present) { 12670 freeb(first_mp); 12671 } 12672 return (mp); 12673 } 12674 12675 /* 12676 * Handle M_DATA messages from IP. Its called directly from IP via 12677 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12678 * in this path. 12679 * 12680 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12681 * v4 and v6), we are called through tcp_input() and a M_CTL can 12682 * be present for options but tcp_find_pktinfo() deals with it. We 12683 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12684 * 12685 * The first argument is always the connp/tcp to which the mp belongs. 12686 * There are no exceptions to this rule. The caller has already put 12687 * a reference on this connp/tcp and once tcp_rput_data() returns, 12688 * the squeue will do the refrele. 12689 * 12690 * The TH_SYN for the listener directly go to tcp_conn_request via 12691 * squeue. 12692 * 12693 * sqp: NULL = recursive, sqp != NULL means called from squeue 12694 */ 12695 void 12696 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12697 { 12698 int32_t bytes_acked; 12699 int32_t gap; 12700 mblk_t *mp1; 12701 uint_t flags; 12702 uint32_t new_swnd = 0; 12703 uchar_t *iphdr; 12704 uchar_t *rptr; 12705 int32_t rgap; 12706 uint32_t seg_ack; 12707 int seg_len; 12708 uint_t ip_hdr_len; 12709 uint32_t seg_seq; 12710 tcph_t *tcph; 12711 int urp; 12712 tcp_opt_t tcpopt; 12713 uint_t ipvers; 12714 ip6_pkt_t ipp; 12715 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12716 uint32_t cwnd; 12717 uint32_t add; 12718 int npkt; 12719 int mss; 12720 conn_t *connp = (conn_t *)arg; 12721 squeue_t *sqp = (squeue_t *)arg2; 12722 tcp_t *tcp = connp->conn_tcp; 12723 12724 /* 12725 * RST from fused tcp loopback peer should trigger an unfuse. 12726 */ 12727 if (tcp->tcp_fused) { 12728 TCP_STAT(tcp_fusion_aborted); 12729 tcp_unfuse(tcp); 12730 } 12731 12732 iphdr = mp->b_rptr; 12733 rptr = mp->b_rptr; 12734 ASSERT(OK_32PTR(rptr)); 12735 12736 /* 12737 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12738 * processing here. For rest call tcp_find_pktinfo to fill up the 12739 * necessary information. 12740 */ 12741 if (IPCL_IS_TCP4(connp)) { 12742 ipvers = IPV4_VERSION; 12743 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12744 } else { 12745 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12746 NULL, &ipp); 12747 if (mp == NULL) { 12748 TCP_STAT(tcp_rput_v6_error); 12749 return; 12750 } 12751 iphdr = mp->b_rptr; 12752 rptr = mp->b_rptr; 12753 } 12754 ASSERT(DB_TYPE(mp) == M_DATA); 12755 12756 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12757 seg_seq = ABE32_TO_U32(tcph->th_seq); 12758 seg_ack = ABE32_TO_U32(tcph->th_ack); 12759 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12760 seg_len = (int)(mp->b_wptr - rptr) - 12761 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12762 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12763 do { 12764 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12765 (uintptr_t)INT_MAX); 12766 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12767 } while ((mp1 = mp1->b_cont) != NULL && 12768 mp1->b_datap->db_type == M_DATA); 12769 } 12770 12771 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12772 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12773 seg_len, tcph); 12774 return; 12775 } 12776 12777 if (sqp != NULL) { 12778 /* 12779 * This is the correct place to update tcp_last_recv_time. Note 12780 * that it is also updated for tcp structure that belongs to 12781 * global and listener queues which do not really need updating. 12782 * But that should not cause any harm. And it is updated for 12783 * all kinds of incoming segments, not only for data segments. 12784 */ 12785 tcp->tcp_last_recv_time = lbolt; 12786 } 12787 12788 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12789 12790 BUMP_LOCAL(tcp->tcp_ibsegs); 12791 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12792 12793 if ((flags & TH_URG) && sqp != NULL) { 12794 /* 12795 * TCP can't handle urgent pointers that arrive before 12796 * the connection has been accept()ed since it can't 12797 * buffer OOB data. Discard segment if this happens. 12798 * 12799 * Nor can it reassemble urgent pointers, so discard 12800 * if it's not the next segment expected. 12801 * 12802 * Otherwise, collapse chain into one mblk (discard if 12803 * that fails). This makes sure the headers, retransmitted 12804 * data, and new data all are in the same mblk. 12805 */ 12806 ASSERT(mp != NULL); 12807 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12808 freemsg(mp); 12809 return; 12810 } 12811 /* Update pointers into message */ 12812 iphdr = rptr = mp->b_rptr; 12813 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12814 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12815 /* 12816 * Since we can't handle any data with this urgent 12817 * pointer that is out of sequence, we expunge 12818 * the data. This allows us to still register 12819 * the urgent mark and generate the M_PCSIG, 12820 * which we can do. 12821 */ 12822 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12823 seg_len = 0; 12824 } 12825 } 12826 12827 switch (tcp->tcp_state) { 12828 case TCPS_SYN_SENT: 12829 if (flags & TH_ACK) { 12830 /* 12831 * Note that our stack cannot send data before a 12832 * connection is established, therefore the 12833 * following check is valid. Otherwise, it has 12834 * to be changed. 12835 */ 12836 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12837 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12838 freemsg(mp); 12839 if (flags & TH_RST) 12840 return; 12841 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12842 tcp, seg_ack, 0, TH_RST); 12843 return; 12844 } 12845 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12846 } 12847 if (flags & TH_RST) { 12848 freemsg(mp); 12849 if (flags & TH_ACK) 12850 (void) tcp_clean_death(tcp, 12851 ECONNREFUSED, 13); 12852 return; 12853 } 12854 if (!(flags & TH_SYN)) { 12855 freemsg(mp); 12856 return; 12857 } 12858 12859 /* Process all TCP options. */ 12860 tcp_process_options(tcp, tcph); 12861 /* 12862 * The following changes our rwnd to be a multiple of the 12863 * MIN(peer MSS, our MSS) for performance reason. 12864 */ 12865 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12866 tcp->tcp_mss)); 12867 12868 /* Is the other end ECN capable? */ 12869 if (tcp->tcp_ecn_ok) { 12870 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12871 tcp->tcp_ecn_ok = B_FALSE; 12872 } 12873 } 12874 /* 12875 * Clear ECN flags because it may interfere with later 12876 * processing. 12877 */ 12878 flags &= ~(TH_ECE|TH_CWR); 12879 12880 tcp->tcp_irs = seg_seq; 12881 tcp->tcp_rack = seg_seq; 12882 tcp->tcp_rnxt = seg_seq + 1; 12883 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12884 if (!TCP_IS_DETACHED(tcp)) { 12885 /* Allocate room for SACK options if needed. */ 12886 if (tcp->tcp_snd_sack_ok) { 12887 (void) mi_set_sth_wroff(tcp->tcp_rq, 12888 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12889 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12890 } else { 12891 (void) mi_set_sth_wroff(tcp->tcp_rq, 12892 tcp->tcp_hdr_len + 12893 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12894 } 12895 } 12896 if (flags & TH_ACK) { 12897 /* 12898 * If we can't get the confirmation upstream, pretend 12899 * we didn't even see this one. 12900 * 12901 * XXX: how can we pretend we didn't see it if we 12902 * have updated rnxt et. al. 12903 * 12904 * For loopback we defer sending up the T_CONN_CON 12905 * until after some checks below. 12906 */ 12907 mp1 = NULL; 12908 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12909 tcp->tcp_loopback ? &mp1 : NULL)) { 12910 freemsg(mp); 12911 return; 12912 } 12913 /* SYN was acked - making progress */ 12914 if (tcp->tcp_ipversion == IPV6_VERSION) 12915 tcp->tcp_ip_forward_progress = B_TRUE; 12916 12917 /* One for the SYN */ 12918 tcp->tcp_suna = tcp->tcp_iss + 1; 12919 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12920 tcp->tcp_state = TCPS_ESTABLISHED; 12921 12922 /* 12923 * If SYN was retransmitted, need to reset all 12924 * retransmission info. This is because this 12925 * segment will be treated as a dup ACK. 12926 */ 12927 if (tcp->tcp_rexmit) { 12928 tcp->tcp_rexmit = B_FALSE; 12929 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12930 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12931 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12932 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12933 tcp->tcp_ms_we_have_waited = 0; 12934 12935 /* 12936 * Set tcp_cwnd back to 1 MSS, per 12937 * recommendation from 12938 * draft-floyd-incr-init-win-01.txt, 12939 * Increasing TCP's Initial Window. 12940 */ 12941 tcp->tcp_cwnd = tcp->tcp_mss; 12942 } 12943 12944 tcp->tcp_swl1 = seg_seq; 12945 tcp->tcp_swl2 = seg_ack; 12946 12947 new_swnd = BE16_TO_U16(tcph->th_win); 12948 tcp->tcp_swnd = new_swnd; 12949 if (new_swnd > tcp->tcp_max_swnd) 12950 tcp->tcp_max_swnd = new_swnd; 12951 12952 /* 12953 * Always send the three-way handshake ack immediately 12954 * in order to make the connection complete as soon as 12955 * possible on the accepting host. 12956 */ 12957 flags |= TH_ACK_NEEDED; 12958 12959 /* 12960 * Special case for loopback. At this point we have 12961 * received SYN-ACK from the remote endpoint. In 12962 * order to ensure that both endpoints reach the 12963 * fused state prior to any data exchange, the final 12964 * ACK needs to be sent before we indicate T_CONN_CON 12965 * to the module upstream. 12966 */ 12967 if (tcp->tcp_loopback) { 12968 mblk_t *ack_mp; 12969 12970 ASSERT(!tcp->tcp_unfusable); 12971 ASSERT(mp1 != NULL); 12972 /* 12973 * For loopback, we always get a pure SYN-ACK 12974 * and only need to send back the final ACK 12975 * with no data (this is because the other 12976 * tcp is ours and we don't do T/TCP). This 12977 * final ACK triggers the passive side to 12978 * perform fusion in ESTABLISHED state. 12979 */ 12980 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12981 if (tcp->tcp_ack_tid != 0) { 12982 (void) TCP_TIMER_CANCEL(tcp, 12983 tcp->tcp_ack_tid); 12984 tcp->tcp_ack_tid = 0; 12985 } 12986 TCP_RECORD_TRACE(tcp, ack_mp, 12987 TCP_TRACE_SEND_PKT); 12988 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12989 BUMP_LOCAL(tcp->tcp_obsegs); 12990 BUMP_MIB(&tcp_mib, tcpOutAck); 12991 12992 /* Send up T_CONN_CON */ 12993 putnext(tcp->tcp_rq, mp1); 12994 12995 freemsg(mp); 12996 return; 12997 } 12998 /* 12999 * Forget fusion; we need to handle more 13000 * complex cases below. Send the deferred 13001 * T_CONN_CON message upstream and proceed 13002 * as usual. Mark this tcp as not capable 13003 * of fusion. 13004 */ 13005 TCP_STAT(tcp_fusion_unfusable); 13006 tcp->tcp_unfusable = B_TRUE; 13007 putnext(tcp->tcp_rq, mp1); 13008 } 13009 13010 /* 13011 * Check to see if there is data to be sent. If 13012 * yes, set the transmit flag. Then check to see 13013 * if received data processing needs to be done. 13014 * If not, go straight to xmit_check. This short 13015 * cut is OK as we don't support T/TCP. 13016 */ 13017 if (tcp->tcp_unsent) 13018 flags |= TH_XMIT_NEEDED; 13019 13020 if (seg_len == 0 && !(flags & TH_URG)) { 13021 freemsg(mp); 13022 goto xmit_check; 13023 } 13024 13025 flags &= ~TH_SYN; 13026 seg_seq++; 13027 break; 13028 } 13029 tcp->tcp_state = TCPS_SYN_RCVD; 13030 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13031 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13032 if (mp1) { 13033 DB_CPID(mp1) = tcp->tcp_cpid; 13034 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13035 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13036 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13037 } 13038 freemsg(mp); 13039 return; 13040 case TCPS_SYN_RCVD: 13041 if (flags & TH_ACK) { 13042 /* 13043 * In this state, a SYN|ACK packet is either bogus 13044 * because the other side must be ACKing our SYN which 13045 * indicates it has seen the ACK for their SYN and 13046 * shouldn't retransmit it or we're crossing SYNs 13047 * on active open. 13048 */ 13049 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13050 freemsg(mp); 13051 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13052 tcp, seg_ack, 0, TH_RST); 13053 return; 13054 } 13055 /* 13056 * NOTE: RFC 793 pg. 72 says this should be 13057 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13058 * but that would mean we have an ack that ignored 13059 * our SYN. 13060 */ 13061 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13062 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13063 freemsg(mp); 13064 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13065 tcp, seg_ack, 0, TH_RST); 13066 return; 13067 } 13068 } 13069 break; 13070 case TCPS_LISTEN: 13071 /* 13072 * Only a TLI listener can come through this path when a 13073 * acceptor is going back to be a listener and a packet 13074 * for the acceptor hits the classifier. For a socket 13075 * listener, this can never happen because a listener 13076 * can never accept connection on itself and hence a 13077 * socket acceptor can not go back to being a listener. 13078 */ 13079 ASSERT(!TCP_IS_SOCKET(tcp)); 13080 /*FALLTHRU*/ 13081 case TCPS_CLOSED: 13082 case TCPS_BOUND: { 13083 conn_t *new_connp; 13084 13085 new_connp = ipcl_classify(mp, connp->conn_zoneid); 13086 if (new_connp != NULL) { 13087 tcp_reinput(new_connp, mp, connp->conn_sqp); 13088 return; 13089 } 13090 /* We failed to classify. For now just drop the packet */ 13091 freemsg(mp); 13092 return; 13093 } 13094 case TCPS_IDLE: 13095 /* 13096 * Handle the case where the tcp_clean_death() has happened 13097 * on a connection (application hasn't closed yet) but a packet 13098 * was already queued on squeue before tcp_clean_death() 13099 * was processed. Calling tcp_clean_death() twice on same 13100 * connection can result in weird behaviour. 13101 */ 13102 freemsg(mp); 13103 return; 13104 default: 13105 break; 13106 } 13107 13108 /* 13109 * Already on the correct queue/perimeter. 13110 * If this is a detached connection and not an eager 13111 * connection hanging off a listener then new data 13112 * (past the FIN) will cause a reset. 13113 * We do a special check here where it 13114 * is out of the main line, rather than check 13115 * if we are detached every time we see new 13116 * data down below. 13117 */ 13118 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13119 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13120 BUMP_MIB(&tcp_mib, tcpInClosed); 13121 TCP_RECORD_TRACE(tcp, 13122 mp, TCP_TRACE_RECV_PKT); 13123 13124 freemsg(mp); 13125 /* 13126 * This could be an SSL closure alert. We're detached so just 13127 * acknowledge it this last time. 13128 */ 13129 if (tcp->tcp_kssl_ctx != NULL) { 13130 kssl_release_ctx(tcp->tcp_kssl_ctx); 13131 tcp->tcp_kssl_ctx = NULL; 13132 13133 tcp->tcp_rnxt += seg_len; 13134 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13135 flags |= TH_ACK_NEEDED; 13136 goto ack_check; 13137 } 13138 13139 tcp_xmit_ctl("new data when detached", tcp, 13140 tcp->tcp_snxt, 0, TH_RST); 13141 (void) tcp_clean_death(tcp, EPROTO, 12); 13142 return; 13143 } 13144 13145 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13146 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13147 new_swnd = BE16_TO_U16(tcph->th_win) << 13148 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13149 mss = tcp->tcp_mss; 13150 13151 if (tcp->tcp_snd_ts_ok) { 13152 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13153 /* 13154 * This segment is not acceptable. 13155 * Drop it and send back an ACK. 13156 */ 13157 freemsg(mp); 13158 flags |= TH_ACK_NEEDED; 13159 goto ack_check; 13160 } 13161 } else if (tcp->tcp_snd_sack_ok) { 13162 ASSERT(tcp->tcp_sack_info != NULL); 13163 tcpopt.tcp = tcp; 13164 /* 13165 * SACK info in already updated in tcp_parse_options. Ignore 13166 * all other TCP options... 13167 */ 13168 (void) tcp_parse_options(tcph, &tcpopt); 13169 } 13170 try_again:; 13171 gap = seg_seq - tcp->tcp_rnxt; 13172 rgap = tcp->tcp_rwnd - (gap + seg_len); 13173 /* 13174 * gap is the amount of sequence space between what we expect to see 13175 * and what we got for seg_seq. A positive value for gap means 13176 * something got lost. A negative value means we got some old stuff. 13177 */ 13178 if (gap < 0) { 13179 /* Old stuff present. Is the SYN in there? */ 13180 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13181 (seg_len != 0)) { 13182 flags &= ~TH_SYN; 13183 seg_seq++; 13184 urp--; 13185 /* Recompute the gaps after noting the SYN. */ 13186 goto try_again; 13187 } 13188 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 13189 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 13190 (seg_len > -gap ? -gap : seg_len)); 13191 /* Remove the old stuff from seg_len. */ 13192 seg_len += gap; 13193 /* 13194 * Anything left? 13195 * Make sure to check for unack'd FIN when rest of data 13196 * has been previously ack'd. 13197 */ 13198 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13199 /* 13200 * Resets are only valid if they lie within our offered 13201 * window. If the RST bit is set, we just ignore this 13202 * segment. 13203 */ 13204 if (flags & TH_RST) { 13205 freemsg(mp); 13206 return; 13207 } 13208 13209 /* 13210 * The arriving of dup data packets indicate that we 13211 * may have postponed an ack for too long, or the other 13212 * side's RTT estimate is out of shape. Start acking 13213 * more often. 13214 */ 13215 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13216 tcp->tcp_rack_cnt >= 1 && 13217 tcp->tcp_rack_abs_max > 2) { 13218 tcp->tcp_rack_abs_max--; 13219 } 13220 tcp->tcp_rack_cur_max = 1; 13221 13222 /* 13223 * This segment is "unacceptable". None of its 13224 * sequence space lies within our advertized window. 13225 * 13226 * Adjust seg_len to the original value for tracing. 13227 */ 13228 seg_len -= gap; 13229 if (tcp->tcp_debug) { 13230 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13231 "tcp_rput: unacceptable, gap %d, rgap %d, " 13232 "flags 0x%x, seg_seq %u, seg_ack %u, " 13233 "seg_len %d, rnxt %u, snxt %u, %s", 13234 gap, rgap, flags, seg_seq, seg_ack, 13235 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13236 tcp_display(tcp, NULL, 13237 DISP_ADDR_AND_PORT)); 13238 } 13239 13240 /* 13241 * Arrange to send an ACK in response to the 13242 * unacceptable segment per RFC 793 page 69. There 13243 * is only one small difference between ours and the 13244 * acceptability test in the RFC - we accept ACK-only 13245 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13246 * will be generated. 13247 * 13248 * Note that we have to ACK an ACK-only packet at least 13249 * for stacks that send 0-length keep-alives with 13250 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13251 * section 4.2.3.6. As long as we don't ever generate 13252 * an unacceptable packet in response to an incoming 13253 * packet that is unacceptable, it should not cause 13254 * "ACK wars". 13255 */ 13256 flags |= TH_ACK_NEEDED; 13257 13258 /* 13259 * Continue processing this segment in order to use the 13260 * ACK information it contains, but skip all other 13261 * sequence-number processing. Processing the ACK 13262 * information is necessary in order to 13263 * re-synchronize connections that may have lost 13264 * synchronization. 13265 * 13266 * We clear seg_len and flag fields related to 13267 * sequence number processing as they are not 13268 * to be trusted for an unacceptable segment. 13269 */ 13270 seg_len = 0; 13271 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13272 goto process_ack; 13273 } 13274 13275 /* Fix seg_seq, and chew the gap off the front. */ 13276 seg_seq = tcp->tcp_rnxt; 13277 urp += gap; 13278 do { 13279 mblk_t *mp2; 13280 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13281 (uintptr_t)UINT_MAX); 13282 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13283 if (gap > 0) { 13284 mp->b_rptr = mp->b_wptr - gap; 13285 break; 13286 } 13287 mp2 = mp; 13288 mp = mp->b_cont; 13289 freeb(mp2); 13290 } while (gap < 0); 13291 /* 13292 * If the urgent data has already been acknowledged, we 13293 * should ignore TH_URG below 13294 */ 13295 if (urp < 0) 13296 flags &= ~TH_URG; 13297 } 13298 /* 13299 * rgap is the amount of stuff received out of window. A negative 13300 * value is the amount out of window. 13301 */ 13302 if (rgap < 0) { 13303 mblk_t *mp2; 13304 13305 if (tcp->tcp_rwnd == 0) { 13306 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13307 } else { 13308 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13309 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13310 } 13311 13312 /* 13313 * seg_len does not include the FIN, so if more than 13314 * just the FIN is out of window, we act like we don't 13315 * see it. (If just the FIN is out of window, rgap 13316 * will be zero and we will go ahead and acknowledge 13317 * the FIN.) 13318 */ 13319 flags &= ~TH_FIN; 13320 13321 /* Fix seg_len and make sure there is something left. */ 13322 seg_len += rgap; 13323 if (seg_len <= 0) { 13324 /* 13325 * Resets are only valid if they lie within our offered 13326 * window. If the RST bit is set, we just ignore this 13327 * segment. 13328 */ 13329 if (flags & TH_RST) { 13330 freemsg(mp); 13331 return; 13332 } 13333 13334 /* Per RFC 793, we need to send back an ACK. */ 13335 flags |= TH_ACK_NEEDED; 13336 13337 /* 13338 * Send SIGURG as soon as possible i.e. even 13339 * if the TH_URG was delivered in a window probe 13340 * packet (which will be unacceptable). 13341 * 13342 * We generate a signal if none has been generated 13343 * for this connection or if this is a new urgent 13344 * byte. Also send a zero-length "unmarked" message 13345 * to inform SIOCATMARK that this is not the mark. 13346 * 13347 * tcp_urp_last_valid is cleared when the T_exdata_ind 13348 * is sent up. This plus the check for old data 13349 * (gap >= 0) handles the wraparound of the sequence 13350 * number space without having to always track the 13351 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13352 * this max in its rcv_up variable). 13353 * 13354 * This prevents duplicate SIGURGS due to a "late" 13355 * zero-window probe when the T_EXDATA_IND has already 13356 * been sent up. 13357 */ 13358 if ((flags & TH_URG) && 13359 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13360 tcp->tcp_urp_last))) { 13361 mp1 = allocb(0, BPRI_MED); 13362 if (mp1 == NULL) { 13363 freemsg(mp); 13364 return; 13365 } 13366 if (!TCP_IS_DETACHED(tcp) && 13367 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13368 SIGURG)) { 13369 /* Try again on the rexmit. */ 13370 freemsg(mp1); 13371 freemsg(mp); 13372 return; 13373 } 13374 /* 13375 * If the next byte would be the mark 13376 * then mark with MARKNEXT else mark 13377 * with NOTMARKNEXT. 13378 */ 13379 if (gap == 0 && urp == 0) 13380 mp1->b_flag |= MSGMARKNEXT; 13381 else 13382 mp1->b_flag |= MSGNOTMARKNEXT; 13383 freemsg(tcp->tcp_urp_mark_mp); 13384 tcp->tcp_urp_mark_mp = mp1; 13385 flags |= TH_SEND_URP_MARK; 13386 tcp->tcp_urp_last_valid = B_TRUE; 13387 tcp->tcp_urp_last = urp + seg_seq; 13388 } 13389 /* 13390 * If this is a zero window probe, continue to 13391 * process the ACK part. But we need to set seg_len 13392 * to 0 to avoid data processing. Otherwise just 13393 * drop the segment and send back an ACK. 13394 */ 13395 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13396 flags &= ~(TH_SYN | TH_URG); 13397 seg_len = 0; 13398 goto process_ack; 13399 } else { 13400 freemsg(mp); 13401 goto ack_check; 13402 } 13403 } 13404 /* Pitch out of window stuff off the end. */ 13405 rgap = seg_len; 13406 mp2 = mp; 13407 do { 13408 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13409 (uintptr_t)INT_MAX); 13410 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13411 if (rgap < 0) { 13412 mp2->b_wptr += rgap; 13413 if ((mp1 = mp2->b_cont) != NULL) { 13414 mp2->b_cont = NULL; 13415 freemsg(mp1); 13416 } 13417 break; 13418 } 13419 } while ((mp2 = mp2->b_cont) != NULL); 13420 } 13421 ok:; 13422 /* 13423 * TCP should check ECN info for segments inside the window only. 13424 * Therefore the check should be done here. 13425 */ 13426 if (tcp->tcp_ecn_ok) { 13427 if (flags & TH_CWR) { 13428 tcp->tcp_ecn_echo_on = B_FALSE; 13429 } 13430 /* 13431 * Note that both ECN_CE and CWR can be set in the 13432 * same segment. In this case, we once again turn 13433 * on ECN_ECHO. 13434 */ 13435 if (tcp->tcp_ipversion == IPV4_VERSION) { 13436 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13437 13438 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13439 tcp->tcp_ecn_echo_on = B_TRUE; 13440 } 13441 } else { 13442 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13443 13444 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13445 htonl(IPH_ECN_CE << 20)) { 13446 tcp->tcp_ecn_echo_on = B_TRUE; 13447 } 13448 } 13449 } 13450 13451 /* 13452 * Check whether we can update tcp_ts_recent. This test is 13453 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13454 * Extensions for High Performance: An Update", Internet Draft. 13455 */ 13456 if (tcp->tcp_snd_ts_ok && 13457 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13458 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13459 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13460 tcp->tcp_last_rcv_lbolt = lbolt64; 13461 } 13462 13463 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13464 /* 13465 * FIN in an out of order segment. We record this in 13466 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13467 * Clear the FIN so that any check on FIN flag will fail. 13468 * Remember that FIN also counts in the sequence number 13469 * space. So we need to ack out of order FIN only segments. 13470 */ 13471 if (flags & TH_FIN) { 13472 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13473 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13474 flags &= ~TH_FIN; 13475 flags |= TH_ACK_NEEDED; 13476 } 13477 if (seg_len > 0) { 13478 /* Fill in the SACK blk list. */ 13479 if (tcp->tcp_snd_sack_ok) { 13480 ASSERT(tcp->tcp_sack_info != NULL); 13481 tcp_sack_insert(tcp->tcp_sack_list, 13482 seg_seq, seg_seq + seg_len, 13483 &(tcp->tcp_num_sack_blk)); 13484 } 13485 13486 /* 13487 * Attempt reassembly and see if we have something 13488 * ready to go. 13489 */ 13490 mp = tcp_reass(tcp, mp, seg_seq); 13491 /* Always ack out of order packets */ 13492 flags |= TH_ACK_NEEDED | TH_PUSH; 13493 if (mp) { 13494 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13495 (uintptr_t)INT_MAX); 13496 seg_len = mp->b_cont ? msgdsize(mp) : 13497 (int)(mp->b_wptr - mp->b_rptr); 13498 seg_seq = tcp->tcp_rnxt; 13499 /* 13500 * A gap is filled and the seq num and len 13501 * of the gap match that of a previously 13502 * received FIN, put the FIN flag back in. 13503 */ 13504 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13505 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13506 flags |= TH_FIN; 13507 tcp->tcp_valid_bits &= 13508 ~TCP_OFO_FIN_VALID; 13509 } 13510 } else { 13511 /* 13512 * Keep going even with NULL mp. 13513 * There may be a useful ACK or something else 13514 * we don't want to miss. 13515 * 13516 * But TCP should not perform fast retransmit 13517 * because of the ack number. TCP uses 13518 * seg_len == 0 to determine if it is a pure 13519 * ACK. And this is not a pure ACK. 13520 */ 13521 seg_len = 0; 13522 ofo_seg = B_TRUE; 13523 } 13524 } 13525 } else if (seg_len > 0) { 13526 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13527 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13528 /* 13529 * If an out of order FIN was received before, and the seq 13530 * num and len of the new segment match that of the FIN, 13531 * put the FIN flag back in. 13532 */ 13533 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13534 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13535 flags |= TH_FIN; 13536 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13537 } 13538 } 13539 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13540 if (flags & TH_RST) { 13541 freemsg(mp); 13542 switch (tcp->tcp_state) { 13543 case TCPS_SYN_RCVD: 13544 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13545 break; 13546 case TCPS_ESTABLISHED: 13547 case TCPS_FIN_WAIT_1: 13548 case TCPS_FIN_WAIT_2: 13549 case TCPS_CLOSE_WAIT: 13550 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13551 break; 13552 case TCPS_CLOSING: 13553 case TCPS_LAST_ACK: 13554 (void) tcp_clean_death(tcp, 0, 16); 13555 break; 13556 default: 13557 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13558 (void) tcp_clean_death(tcp, ENXIO, 17); 13559 break; 13560 } 13561 return; 13562 } 13563 if (flags & TH_SYN) { 13564 /* 13565 * See RFC 793, Page 71 13566 * 13567 * The seq number must be in the window as it should 13568 * be "fixed" above. If it is outside window, it should 13569 * be already rejected. Note that we allow seg_seq to be 13570 * rnxt + rwnd because we want to accept 0 window probe. 13571 */ 13572 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13573 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13574 freemsg(mp); 13575 /* 13576 * If the ACK flag is not set, just use our snxt as the 13577 * seq number of the RST segment. 13578 */ 13579 if (!(flags & TH_ACK)) { 13580 seg_ack = tcp->tcp_snxt; 13581 } 13582 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13583 TH_RST|TH_ACK); 13584 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13585 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13586 return; 13587 } 13588 /* 13589 * urp could be -1 when the urp field in the packet is 0 13590 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13591 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13592 */ 13593 if (flags & TH_URG && urp >= 0) { 13594 if (!tcp->tcp_urp_last_valid || 13595 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13596 /* 13597 * If we haven't generated the signal yet for this 13598 * urgent pointer value, do it now. Also, send up a 13599 * zero-length M_DATA indicating whether or not this is 13600 * the mark. The latter is not needed when a 13601 * T_EXDATA_IND is sent up. However, if there are 13602 * allocation failures this code relies on the sender 13603 * retransmitting and the socket code for determining 13604 * the mark should not block waiting for the peer to 13605 * transmit. Thus, for simplicity we always send up the 13606 * mark indication. 13607 */ 13608 mp1 = allocb(0, BPRI_MED); 13609 if (mp1 == NULL) { 13610 freemsg(mp); 13611 return; 13612 } 13613 if (!TCP_IS_DETACHED(tcp) && 13614 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13615 /* Try again on the rexmit. */ 13616 freemsg(mp1); 13617 freemsg(mp); 13618 return; 13619 } 13620 /* 13621 * Mark with NOTMARKNEXT for now. 13622 * The code below will change this to MARKNEXT 13623 * if we are at the mark. 13624 * 13625 * If there are allocation failures (e.g. in dupmsg 13626 * below) the next time tcp_rput_data sees the urgent 13627 * segment it will send up the MSG*MARKNEXT message. 13628 */ 13629 mp1->b_flag |= MSGNOTMARKNEXT; 13630 freemsg(tcp->tcp_urp_mark_mp); 13631 tcp->tcp_urp_mark_mp = mp1; 13632 flags |= TH_SEND_URP_MARK; 13633 #ifdef DEBUG 13634 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13635 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13636 "last %x, %s", 13637 seg_seq, urp, tcp->tcp_urp_last, 13638 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13639 #endif /* DEBUG */ 13640 tcp->tcp_urp_last_valid = B_TRUE; 13641 tcp->tcp_urp_last = urp + seg_seq; 13642 } else if (tcp->tcp_urp_mark_mp != NULL) { 13643 /* 13644 * An allocation failure prevented the previous 13645 * tcp_rput_data from sending up the allocated 13646 * MSG*MARKNEXT message - send it up this time 13647 * around. 13648 */ 13649 flags |= TH_SEND_URP_MARK; 13650 } 13651 13652 /* 13653 * If the urgent byte is in this segment, make sure that it is 13654 * all by itself. This makes it much easier to deal with the 13655 * possibility of an allocation failure on the T_exdata_ind. 13656 * Note that seg_len is the number of bytes in the segment, and 13657 * urp is the offset into the segment of the urgent byte. 13658 * urp < seg_len means that the urgent byte is in this segment. 13659 */ 13660 if (urp < seg_len) { 13661 if (seg_len != 1) { 13662 uint32_t tmp_rnxt; 13663 /* 13664 * Break it up and feed it back in. 13665 * Re-attach the IP header. 13666 */ 13667 mp->b_rptr = iphdr; 13668 if (urp > 0) { 13669 /* 13670 * There is stuff before the urgent 13671 * byte. 13672 */ 13673 mp1 = dupmsg(mp); 13674 if (!mp1) { 13675 /* 13676 * Trim from urgent byte on. 13677 * The rest will come back. 13678 */ 13679 (void) adjmsg(mp, 13680 urp - seg_len); 13681 tcp_rput_data(connp, 13682 mp, NULL); 13683 return; 13684 } 13685 (void) adjmsg(mp1, urp - seg_len); 13686 /* Feed this piece back in. */ 13687 tmp_rnxt = tcp->tcp_rnxt; 13688 tcp_rput_data(connp, mp1, NULL); 13689 /* 13690 * If the data passed back in was not 13691 * processed (ie: bad ACK) sending 13692 * the remainder back in will cause a 13693 * loop. In this case, drop the 13694 * packet and let the sender try 13695 * sending a good packet. 13696 */ 13697 if (tmp_rnxt == tcp->tcp_rnxt) { 13698 freemsg(mp); 13699 return; 13700 } 13701 } 13702 if (urp != seg_len - 1) { 13703 uint32_t tmp_rnxt; 13704 /* 13705 * There is stuff after the urgent 13706 * byte. 13707 */ 13708 mp1 = dupmsg(mp); 13709 if (!mp1) { 13710 /* 13711 * Trim everything beyond the 13712 * urgent byte. The rest will 13713 * come back. 13714 */ 13715 (void) adjmsg(mp, 13716 urp + 1 - seg_len); 13717 tcp_rput_data(connp, 13718 mp, NULL); 13719 return; 13720 } 13721 (void) adjmsg(mp1, urp + 1 - seg_len); 13722 tmp_rnxt = tcp->tcp_rnxt; 13723 tcp_rput_data(connp, mp1, NULL); 13724 /* 13725 * If the data passed back in was not 13726 * processed (ie: bad ACK) sending 13727 * the remainder back in will cause a 13728 * loop. In this case, drop the 13729 * packet and let the sender try 13730 * sending a good packet. 13731 */ 13732 if (tmp_rnxt == tcp->tcp_rnxt) { 13733 freemsg(mp); 13734 return; 13735 } 13736 } 13737 tcp_rput_data(connp, mp, NULL); 13738 return; 13739 } 13740 /* 13741 * This segment contains only the urgent byte. We 13742 * have to allocate the T_exdata_ind, if we can. 13743 */ 13744 if (!tcp->tcp_urp_mp) { 13745 struct T_exdata_ind *tei; 13746 mp1 = allocb(sizeof (struct T_exdata_ind), 13747 BPRI_MED); 13748 if (!mp1) { 13749 /* 13750 * Sigh... It'll be back. 13751 * Generate any MSG*MARK message now. 13752 */ 13753 freemsg(mp); 13754 seg_len = 0; 13755 if (flags & TH_SEND_URP_MARK) { 13756 13757 13758 ASSERT(tcp->tcp_urp_mark_mp); 13759 tcp->tcp_urp_mark_mp->b_flag &= 13760 ~MSGNOTMARKNEXT; 13761 tcp->tcp_urp_mark_mp->b_flag |= 13762 MSGMARKNEXT; 13763 } 13764 goto ack_check; 13765 } 13766 mp1->b_datap->db_type = M_PROTO; 13767 tei = (struct T_exdata_ind *)mp1->b_rptr; 13768 tei->PRIM_type = T_EXDATA_IND; 13769 tei->MORE_flag = 0; 13770 mp1->b_wptr = (uchar_t *)&tei[1]; 13771 tcp->tcp_urp_mp = mp1; 13772 #ifdef DEBUG 13773 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13774 "tcp_rput: allocated exdata_ind %s", 13775 tcp_display(tcp, NULL, 13776 DISP_PORT_ONLY)); 13777 #endif /* DEBUG */ 13778 /* 13779 * There is no need to send a separate MSG*MARK 13780 * message since the T_EXDATA_IND will be sent 13781 * now. 13782 */ 13783 flags &= ~TH_SEND_URP_MARK; 13784 freemsg(tcp->tcp_urp_mark_mp); 13785 tcp->tcp_urp_mark_mp = NULL; 13786 } 13787 /* 13788 * Now we are all set. On the next putnext upstream, 13789 * tcp_urp_mp will be non-NULL and will get prepended 13790 * to what has to be this piece containing the urgent 13791 * byte. If for any reason we abort this segment below, 13792 * if it comes back, we will have this ready, or it 13793 * will get blown off in close. 13794 */ 13795 } else if (urp == seg_len) { 13796 /* 13797 * The urgent byte is the next byte after this sequence 13798 * number. If there is data it is marked with 13799 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13800 * since it is not needed. Otherwise, if the code 13801 * above just allocated a zero-length tcp_urp_mark_mp 13802 * message, that message is tagged with MSGMARKNEXT. 13803 * Sending up these MSGMARKNEXT messages makes 13804 * SIOCATMARK work correctly even though 13805 * the T_EXDATA_IND will not be sent up until the 13806 * urgent byte arrives. 13807 */ 13808 if (seg_len != 0) { 13809 flags |= TH_MARKNEXT_NEEDED; 13810 freemsg(tcp->tcp_urp_mark_mp); 13811 tcp->tcp_urp_mark_mp = NULL; 13812 flags &= ~TH_SEND_URP_MARK; 13813 } else if (tcp->tcp_urp_mark_mp != NULL) { 13814 flags |= TH_SEND_URP_MARK; 13815 tcp->tcp_urp_mark_mp->b_flag &= 13816 ~MSGNOTMARKNEXT; 13817 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13818 } 13819 #ifdef DEBUG 13820 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13821 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13822 seg_len, flags, 13823 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13824 #endif /* DEBUG */ 13825 } else { 13826 /* Data left until we hit mark */ 13827 #ifdef DEBUG 13828 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13829 "tcp_rput: URP %d bytes left, %s", 13830 urp - seg_len, tcp_display(tcp, NULL, 13831 DISP_PORT_ONLY)); 13832 #endif /* DEBUG */ 13833 } 13834 } 13835 13836 process_ack: 13837 if (!(flags & TH_ACK)) { 13838 freemsg(mp); 13839 goto xmit_check; 13840 } 13841 } 13842 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13843 13844 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13845 tcp->tcp_ip_forward_progress = B_TRUE; 13846 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13847 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13848 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13849 /* 3-way handshake complete - pass up the T_CONN_IND */ 13850 tcp_t *listener = tcp->tcp_listener; 13851 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13852 13853 tcp->tcp_tconnind_started = B_TRUE; 13854 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13855 /* 13856 * We are here means eager is fine but it can 13857 * get a TH_RST at any point between now and till 13858 * accept completes and disappear. We need to 13859 * ensure that reference to eager is valid after 13860 * we get out of eager's perimeter. So we do 13861 * an extra refhold. 13862 */ 13863 CONN_INC_REF(connp); 13864 13865 /* 13866 * The listener also exists because of the refhold 13867 * done in tcp_conn_request. Its possible that it 13868 * might have closed. We will check that once we 13869 * get inside listeners context. 13870 */ 13871 CONN_INC_REF(listener->tcp_connp); 13872 if (listener->tcp_connp->conn_sqp == 13873 connp->conn_sqp) { 13874 tcp_send_conn_ind(listener->tcp_connp, mp, 13875 listener->tcp_connp->conn_sqp); 13876 CONN_DEC_REF(listener->tcp_connp); 13877 } else if (!tcp->tcp_loopback) { 13878 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13879 tcp_send_conn_ind, 13880 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13881 } else { 13882 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13883 tcp_send_conn_ind, listener->tcp_connp, 13884 SQTAG_TCP_CONN_IND); 13885 } 13886 } 13887 13888 if (tcp->tcp_active_open) { 13889 /* 13890 * We are seeing the final ack in the three way 13891 * hand shake of a active open'ed connection 13892 * so we must send up a T_CONN_CON 13893 */ 13894 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13895 freemsg(mp); 13896 return; 13897 } 13898 /* 13899 * Don't fuse the loopback endpoints for 13900 * simultaneous active opens. 13901 */ 13902 if (tcp->tcp_loopback) { 13903 TCP_STAT(tcp_fusion_unfusable); 13904 tcp->tcp_unfusable = B_TRUE; 13905 } 13906 } 13907 13908 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13909 bytes_acked--; 13910 /* SYN was acked - making progress */ 13911 if (tcp->tcp_ipversion == IPV6_VERSION) 13912 tcp->tcp_ip_forward_progress = B_TRUE; 13913 13914 /* 13915 * If SYN was retransmitted, need to reset all 13916 * retransmission info as this segment will be 13917 * treated as a dup ACK. 13918 */ 13919 if (tcp->tcp_rexmit) { 13920 tcp->tcp_rexmit = B_FALSE; 13921 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13922 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13923 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13924 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13925 tcp->tcp_ms_we_have_waited = 0; 13926 tcp->tcp_cwnd = mss; 13927 } 13928 13929 /* 13930 * We set the send window to zero here. 13931 * This is needed if there is data to be 13932 * processed already on the queue. 13933 * Later (at swnd_update label), the 13934 * "new_swnd > tcp_swnd" condition is satisfied 13935 * the XMIT_NEEDED flag is set in the current 13936 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13937 * called if there is already data on queue in 13938 * this state. 13939 */ 13940 tcp->tcp_swnd = 0; 13941 13942 if (new_swnd > tcp->tcp_max_swnd) 13943 tcp->tcp_max_swnd = new_swnd; 13944 tcp->tcp_swl1 = seg_seq; 13945 tcp->tcp_swl2 = seg_ack; 13946 tcp->tcp_state = TCPS_ESTABLISHED; 13947 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13948 13949 /* Fuse when both sides are in ESTABLISHED state */ 13950 if (tcp->tcp_loopback && do_tcp_fusion) 13951 tcp_fuse(tcp, iphdr, tcph); 13952 13953 } 13954 /* This code follows 4.4BSD-Lite2 mostly. */ 13955 if (bytes_acked < 0) 13956 goto est; 13957 13958 /* 13959 * If TCP is ECN capable and the congestion experience bit is 13960 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13961 * done once per window (or more loosely, per RTT). 13962 */ 13963 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13964 tcp->tcp_cwr = B_FALSE; 13965 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13966 if (!tcp->tcp_cwr) { 13967 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13968 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13969 tcp->tcp_cwnd = npkt * mss; 13970 /* 13971 * If the cwnd is 0, use the timer to clock out 13972 * new segments. This is required by the ECN spec. 13973 */ 13974 if (npkt == 0) { 13975 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13976 /* 13977 * This makes sure that when the ACK comes 13978 * back, we will increase tcp_cwnd by 1 MSS. 13979 */ 13980 tcp->tcp_cwnd_cnt = 0; 13981 } 13982 tcp->tcp_cwr = B_TRUE; 13983 /* 13984 * This marks the end of the current window of in 13985 * flight data. That is why we don't use 13986 * tcp_suna + tcp_swnd. Only data in flight can 13987 * provide ECN info. 13988 */ 13989 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13990 tcp->tcp_ecn_cwr_sent = B_FALSE; 13991 } 13992 } 13993 13994 mp1 = tcp->tcp_xmit_head; 13995 if (bytes_acked == 0) { 13996 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13997 int dupack_cnt; 13998 13999 BUMP_MIB(&tcp_mib, tcpInDupAck); 14000 /* 14001 * Fast retransmit. When we have seen exactly three 14002 * identical ACKs while we have unacked data 14003 * outstanding we take it as a hint that our peer 14004 * dropped something. 14005 * 14006 * If TCP is retransmitting, don't do fast retransmit. 14007 */ 14008 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14009 ! tcp->tcp_rexmit) { 14010 /* Do Limited Transmit */ 14011 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14012 tcp_dupack_fast_retransmit) { 14013 /* 14014 * RFC 3042 14015 * 14016 * What we need to do is temporarily 14017 * increase tcp_cwnd so that new 14018 * data can be sent if it is allowed 14019 * by the receive window (tcp_rwnd). 14020 * tcp_wput_data() will take care of 14021 * the rest. 14022 * 14023 * If the connection is SACK capable, 14024 * only do limited xmit when there 14025 * is SACK info. 14026 * 14027 * Note how tcp_cwnd is incremented. 14028 * The first dup ACK will increase 14029 * it by 1 MSS. The second dup ACK 14030 * will increase it by 2 MSS. This 14031 * means that only 1 new segment will 14032 * be sent for each dup ACK. 14033 */ 14034 if (tcp->tcp_unsent > 0 && 14035 (!tcp->tcp_snd_sack_ok || 14036 (tcp->tcp_snd_sack_ok && 14037 tcp->tcp_notsack_list != NULL))) { 14038 tcp->tcp_cwnd += mss << 14039 (tcp->tcp_dupack_cnt - 1); 14040 flags |= TH_LIMIT_XMIT; 14041 } 14042 } else if (dupack_cnt == 14043 tcp_dupack_fast_retransmit) { 14044 14045 /* 14046 * If we have reduced tcp_ssthresh 14047 * because of ECN, do not reduce it again 14048 * unless it is already one window of data 14049 * away. After one window of data, tcp_cwr 14050 * should then be cleared. Note that 14051 * for non ECN capable connection, tcp_cwr 14052 * should always be false. 14053 * 14054 * Adjust cwnd since the duplicate 14055 * ack indicates that a packet was 14056 * dropped (due to congestion.) 14057 */ 14058 if (!tcp->tcp_cwr) { 14059 npkt = ((tcp->tcp_snxt - 14060 tcp->tcp_suna) >> 1) / mss; 14061 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14062 mss; 14063 tcp->tcp_cwnd = (npkt + 14064 tcp->tcp_dupack_cnt) * mss; 14065 } 14066 if (tcp->tcp_ecn_ok) { 14067 tcp->tcp_cwr = B_TRUE; 14068 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14069 tcp->tcp_ecn_cwr_sent = B_FALSE; 14070 } 14071 14072 /* 14073 * We do Hoe's algorithm. Refer to her 14074 * paper "Improving the Start-up Behavior 14075 * of a Congestion Control Scheme for TCP," 14076 * appeared in SIGCOMM'96. 14077 * 14078 * Save highest seq no we have sent so far. 14079 * Be careful about the invisible FIN byte. 14080 */ 14081 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14082 (tcp->tcp_unsent == 0)) { 14083 tcp->tcp_rexmit_max = tcp->tcp_fss; 14084 } else { 14085 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14086 } 14087 14088 /* 14089 * Do not allow bursty traffic during. 14090 * fast recovery. Refer to Fall and Floyd's 14091 * paper "Simulation-based Comparisons of 14092 * Tahoe, Reno and SACK TCP" (in CCR?) 14093 * This is a best current practise. 14094 */ 14095 tcp->tcp_snd_burst = TCP_CWND_SS; 14096 14097 /* 14098 * For SACK: 14099 * Calculate tcp_pipe, which is the 14100 * estimated number of bytes in 14101 * network. 14102 * 14103 * tcp_fack is the highest sack'ed seq num 14104 * TCP has received. 14105 * 14106 * tcp_pipe is explained in the above quoted 14107 * Fall and Floyd's paper. tcp_fack is 14108 * explained in Mathis and Mahdavi's 14109 * "Forward Acknowledgment: Refining TCP 14110 * Congestion Control" in SIGCOMM '96. 14111 */ 14112 if (tcp->tcp_snd_sack_ok) { 14113 ASSERT(tcp->tcp_sack_info != NULL); 14114 if (tcp->tcp_notsack_list != NULL) { 14115 tcp->tcp_pipe = tcp->tcp_snxt - 14116 tcp->tcp_fack; 14117 tcp->tcp_sack_snxt = seg_ack; 14118 flags |= TH_NEED_SACK_REXMIT; 14119 } else { 14120 /* 14121 * Always initialize tcp_pipe 14122 * even though we don't have 14123 * any SACK info. If later 14124 * we get SACK info and 14125 * tcp_pipe is not initialized, 14126 * funny things will happen. 14127 */ 14128 tcp->tcp_pipe = 14129 tcp->tcp_cwnd_ssthresh; 14130 } 14131 } else { 14132 flags |= TH_REXMIT_NEEDED; 14133 } /* tcp_snd_sack_ok */ 14134 14135 } else { 14136 /* 14137 * Here we perform congestion 14138 * avoidance, but NOT slow start. 14139 * This is known as the Fast 14140 * Recovery Algorithm. 14141 */ 14142 if (tcp->tcp_snd_sack_ok && 14143 tcp->tcp_notsack_list != NULL) { 14144 flags |= TH_NEED_SACK_REXMIT; 14145 tcp->tcp_pipe -= mss; 14146 if (tcp->tcp_pipe < 0) 14147 tcp->tcp_pipe = 0; 14148 } else { 14149 /* 14150 * We know that one more packet has 14151 * left the pipe thus we can update 14152 * cwnd. 14153 */ 14154 cwnd = tcp->tcp_cwnd + mss; 14155 if (cwnd > tcp->tcp_cwnd_max) 14156 cwnd = tcp->tcp_cwnd_max; 14157 tcp->tcp_cwnd = cwnd; 14158 if (tcp->tcp_unsent > 0) 14159 flags |= TH_XMIT_NEEDED; 14160 } 14161 } 14162 } 14163 } else if (tcp->tcp_zero_win_probe) { 14164 /* 14165 * If the window has opened, need to arrange 14166 * to send additional data. 14167 */ 14168 if (new_swnd != 0) { 14169 /* tcp_suna != tcp_snxt */ 14170 /* Packet contains a window update */ 14171 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 14172 tcp->tcp_zero_win_probe = 0; 14173 tcp->tcp_timer_backoff = 0; 14174 tcp->tcp_ms_we_have_waited = 0; 14175 14176 /* 14177 * Transmit starting with tcp_suna since 14178 * the one byte probe is not ack'ed. 14179 * If TCP has sent more than one identical 14180 * probe, tcp_rexmit will be set. That means 14181 * tcp_ss_rexmit() will send out the one 14182 * byte along with new data. Otherwise, 14183 * fake the retransmission. 14184 */ 14185 flags |= TH_XMIT_NEEDED; 14186 if (!tcp->tcp_rexmit) { 14187 tcp->tcp_rexmit = B_TRUE; 14188 tcp->tcp_dupack_cnt = 0; 14189 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14190 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14191 } 14192 } 14193 } 14194 goto swnd_update; 14195 } 14196 14197 /* 14198 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14199 * If the ACK value acks something that we have not yet sent, it might 14200 * be an old duplicate segment. Send an ACK to re-synchronize the 14201 * other side. 14202 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14203 * state is handled above, so we can always just drop the segment and 14204 * send an ACK here. 14205 * 14206 * Should we send ACKs in response to ACK only segments? 14207 */ 14208 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14209 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 14210 /* drop the received segment */ 14211 freemsg(mp); 14212 14213 /* 14214 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14215 * greater than 0, check if the number of such 14216 * bogus ACks is greater than that count. If yes, 14217 * don't send back any ACK. This prevents TCP from 14218 * getting into an ACK storm if somehow an attacker 14219 * successfully spoofs an acceptable segment to our 14220 * peer. 14221 */ 14222 if (tcp_drop_ack_unsent_cnt > 0 && 14223 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14224 TCP_STAT(tcp_in_ack_unsent_drop); 14225 return; 14226 } 14227 mp = tcp_ack_mp(tcp); 14228 if (mp != NULL) { 14229 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14230 BUMP_LOCAL(tcp->tcp_obsegs); 14231 BUMP_MIB(&tcp_mib, tcpOutAck); 14232 tcp_send_data(tcp, tcp->tcp_wq, mp); 14233 } 14234 return; 14235 } 14236 14237 /* 14238 * TCP gets a new ACK, update the notsack'ed list to delete those 14239 * blocks that are covered by this ACK. 14240 */ 14241 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14242 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14243 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14244 } 14245 14246 /* 14247 * If we got an ACK after fast retransmit, check to see 14248 * if it is a partial ACK. If it is not and the congestion 14249 * window was inflated to account for the other side's 14250 * cached packets, retract it. If it is, do Hoe's algorithm. 14251 */ 14252 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14253 ASSERT(tcp->tcp_rexmit == B_FALSE); 14254 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14255 tcp->tcp_dupack_cnt = 0; 14256 /* 14257 * Restore the orig tcp_cwnd_ssthresh after 14258 * fast retransmit phase. 14259 */ 14260 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14261 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14262 } 14263 tcp->tcp_rexmit_max = seg_ack; 14264 tcp->tcp_cwnd_cnt = 0; 14265 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14266 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14267 14268 /* 14269 * Remove all notsack info to avoid confusion with 14270 * the next fast retrasnmit/recovery phase. 14271 */ 14272 if (tcp->tcp_snd_sack_ok && 14273 tcp->tcp_notsack_list != NULL) { 14274 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14275 } 14276 } else { 14277 if (tcp->tcp_snd_sack_ok && 14278 tcp->tcp_notsack_list != NULL) { 14279 flags |= TH_NEED_SACK_REXMIT; 14280 tcp->tcp_pipe -= mss; 14281 if (tcp->tcp_pipe < 0) 14282 tcp->tcp_pipe = 0; 14283 } else { 14284 /* 14285 * Hoe's algorithm: 14286 * 14287 * Retransmit the unack'ed segment and 14288 * restart fast recovery. Note that we 14289 * need to scale back tcp_cwnd to the 14290 * original value when we started fast 14291 * recovery. This is to prevent overly 14292 * aggressive behaviour in sending new 14293 * segments. 14294 */ 14295 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14296 tcp_dupack_fast_retransmit * mss; 14297 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14298 flags |= TH_REXMIT_NEEDED; 14299 } 14300 } 14301 } else { 14302 tcp->tcp_dupack_cnt = 0; 14303 if (tcp->tcp_rexmit) { 14304 /* 14305 * TCP is retranmitting. If the ACK ack's all 14306 * outstanding data, update tcp_rexmit_max and 14307 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14308 * to the correct value. 14309 * 14310 * Note that SEQ_LEQ() is used. This is to avoid 14311 * unnecessary fast retransmit caused by dup ACKs 14312 * received when TCP does slow start retransmission 14313 * after a time out. During this phase, TCP may 14314 * send out segments which are already received. 14315 * This causes dup ACKs to be sent back. 14316 */ 14317 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14318 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14319 tcp->tcp_rexmit_nxt = seg_ack; 14320 } 14321 if (seg_ack != tcp->tcp_rexmit_max) { 14322 flags |= TH_XMIT_NEEDED; 14323 } 14324 } else { 14325 tcp->tcp_rexmit = B_FALSE; 14326 tcp->tcp_xmit_zc_clean = B_FALSE; 14327 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14328 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14329 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14330 } 14331 tcp->tcp_ms_we_have_waited = 0; 14332 } 14333 } 14334 14335 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14336 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14337 tcp->tcp_suna = seg_ack; 14338 if (tcp->tcp_zero_win_probe != 0) { 14339 tcp->tcp_zero_win_probe = 0; 14340 tcp->tcp_timer_backoff = 0; 14341 } 14342 14343 /* 14344 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14345 * Note that it cannot be the SYN being ack'ed. The code flow 14346 * will not reach here. 14347 */ 14348 if (mp1 == NULL) { 14349 goto fin_acked; 14350 } 14351 14352 /* 14353 * Update the congestion window. 14354 * 14355 * If TCP is not ECN capable or TCP is ECN capable but the 14356 * congestion experience bit is not set, increase the tcp_cwnd as 14357 * usual. 14358 */ 14359 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14360 cwnd = tcp->tcp_cwnd; 14361 add = mss; 14362 14363 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14364 /* 14365 * This is to prevent an increase of less than 1 MSS of 14366 * tcp_cwnd. With partial increase, tcp_wput_data() 14367 * may send out tinygrams in order to preserve mblk 14368 * boundaries. 14369 * 14370 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14371 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14372 * increased by 1 MSS for every RTTs. 14373 */ 14374 if (tcp->tcp_cwnd_cnt <= 0) { 14375 tcp->tcp_cwnd_cnt = cwnd + add; 14376 } else { 14377 tcp->tcp_cwnd_cnt -= add; 14378 add = 0; 14379 } 14380 } 14381 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14382 } 14383 14384 /* See if the latest urgent data has been acknowledged */ 14385 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14386 SEQ_GT(seg_ack, tcp->tcp_urg)) 14387 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14388 14389 /* Can we update the RTT estimates? */ 14390 if (tcp->tcp_snd_ts_ok) { 14391 /* Ignore zero timestamp echo-reply. */ 14392 if (tcpopt.tcp_opt_ts_ecr != 0) { 14393 tcp_set_rto(tcp, (int32_t)lbolt - 14394 (int32_t)tcpopt.tcp_opt_ts_ecr); 14395 } 14396 14397 /* If needed, restart the timer. */ 14398 if (tcp->tcp_set_timer == 1) { 14399 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14400 tcp->tcp_set_timer = 0; 14401 } 14402 /* 14403 * Update tcp_csuna in case the other side stops sending 14404 * us timestamps. 14405 */ 14406 tcp->tcp_csuna = tcp->tcp_snxt; 14407 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14408 /* 14409 * An ACK sequence we haven't seen before, so get the RTT 14410 * and update the RTO. But first check if the timestamp is 14411 * valid to use. 14412 */ 14413 if ((mp1->b_next != NULL) && 14414 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14415 tcp_set_rto(tcp, (int32_t)lbolt - 14416 (int32_t)(intptr_t)mp1->b_prev); 14417 else 14418 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14419 14420 /* Remeber the last sequence to be ACKed */ 14421 tcp->tcp_csuna = seg_ack; 14422 if (tcp->tcp_set_timer == 1) { 14423 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14424 tcp->tcp_set_timer = 0; 14425 } 14426 } else { 14427 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14428 } 14429 14430 /* Eat acknowledged bytes off the xmit queue. */ 14431 for (;;) { 14432 mblk_t *mp2; 14433 uchar_t *wptr; 14434 14435 wptr = mp1->b_wptr; 14436 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14437 bytes_acked -= (int)(wptr - mp1->b_rptr); 14438 if (bytes_acked < 0) { 14439 mp1->b_rptr = wptr + bytes_acked; 14440 /* 14441 * Set a new timestamp if all the bytes timed by the 14442 * old timestamp have been ack'ed. 14443 */ 14444 if (SEQ_GT(seg_ack, 14445 (uint32_t)(uintptr_t)(mp1->b_next))) { 14446 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14447 mp1->b_next = NULL; 14448 } 14449 break; 14450 } 14451 mp1->b_next = NULL; 14452 mp1->b_prev = NULL; 14453 mp2 = mp1; 14454 mp1 = mp1->b_cont; 14455 14456 /* 14457 * This notification is required for some zero-copy 14458 * clients to maintain a copy semantic. After the data 14459 * is ack'ed, client is safe to modify or reuse the buffer. 14460 */ 14461 if (tcp->tcp_snd_zcopy_aware && 14462 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14463 tcp_zcopy_notify(tcp); 14464 freeb(mp2); 14465 if (bytes_acked == 0) { 14466 if (mp1 == NULL) { 14467 /* Everything is ack'ed, clear the tail. */ 14468 tcp->tcp_xmit_tail = NULL; 14469 /* 14470 * Cancel the timer unless we are still 14471 * waiting for an ACK for the FIN packet. 14472 */ 14473 if (tcp->tcp_timer_tid != 0 && 14474 tcp->tcp_snxt == tcp->tcp_suna) { 14475 (void) TCP_TIMER_CANCEL(tcp, 14476 tcp->tcp_timer_tid); 14477 tcp->tcp_timer_tid = 0; 14478 } 14479 goto pre_swnd_update; 14480 } 14481 if (mp2 != tcp->tcp_xmit_tail) 14482 break; 14483 tcp->tcp_xmit_tail = mp1; 14484 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14485 (uintptr_t)INT_MAX); 14486 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14487 mp1->b_rptr); 14488 break; 14489 } 14490 if (mp1 == NULL) { 14491 /* 14492 * More was acked but there is nothing more 14493 * outstanding. This means that the FIN was 14494 * just acked or that we're talking to a clown. 14495 */ 14496 fin_acked: 14497 ASSERT(tcp->tcp_fin_sent); 14498 tcp->tcp_xmit_tail = NULL; 14499 if (tcp->tcp_fin_sent) { 14500 /* FIN was acked - making progress */ 14501 if (tcp->tcp_ipversion == IPV6_VERSION && 14502 !tcp->tcp_fin_acked) 14503 tcp->tcp_ip_forward_progress = B_TRUE; 14504 tcp->tcp_fin_acked = B_TRUE; 14505 if (tcp->tcp_linger_tid != 0 && 14506 TCP_TIMER_CANCEL(tcp, 14507 tcp->tcp_linger_tid) >= 0) { 14508 tcp_stop_lingering(tcp); 14509 } 14510 } else { 14511 /* 14512 * We should never get here because 14513 * we have already checked that the 14514 * number of bytes ack'ed should be 14515 * smaller than or equal to what we 14516 * have sent so far (it is the 14517 * acceptability check of the ACK). 14518 * We can only get here if the send 14519 * queue is corrupted. 14520 * 14521 * Terminate the connection and 14522 * panic the system. It is better 14523 * for us to panic instead of 14524 * continuing to avoid other disaster. 14525 */ 14526 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14527 tcp->tcp_rnxt, TH_RST|TH_ACK); 14528 panic("Memory corruption " 14529 "detected for connection %s.", 14530 tcp_display(tcp, NULL, 14531 DISP_ADDR_AND_PORT)); 14532 /*NOTREACHED*/ 14533 } 14534 goto pre_swnd_update; 14535 } 14536 ASSERT(mp2 != tcp->tcp_xmit_tail); 14537 } 14538 if (tcp->tcp_unsent) { 14539 flags |= TH_XMIT_NEEDED; 14540 } 14541 pre_swnd_update: 14542 tcp->tcp_xmit_head = mp1; 14543 swnd_update: 14544 /* 14545 * The following check is different from most other implementations. 14546 * For bi-directional transfer, when segments are dropped, the 14547 * "normal" check will not accept a window update in those 14548 * retransmitted segemnts. Failing to do that, TCP may send out 14549 * segments which are outside receiver's window. As TCP accepts 14550 * the ack in those retransmitted segments, if the window update in 14551 * the same segment is not accepted, TCP will incorrectly calculates 14552 * that it can send more segments. This can create a deadlock 14553 * with the receiver if its window becomes zero. 14554 */ 14555 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14556 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14557 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14558 /* 14559 * The criteria for update is: 14560 * 14561 * 1. the segment acknowledges some data. Or 14562 * 2. the segment is new, i.e. it has a higher seq num. Or 14563 * 3. the segment is not old and the advertised window is 14564 * larger than the previous advertised window. 14565 */ 14566 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14567 flags |= TH_XMIT_NEEDED; 14568 tcp->tcp_swnd = new_swnd; 14569 if (new_swnd > tcp->tcp_max_swnd) 14570 tcp->tcp_max_swnd = new_swnd; 14571 tcp->tcp_swl1 = seg_seq; 14572 tcp->tcp_swl2 = seg_ack; 14573 } 14574 est: 14575 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14576 14577 switch (tcp->tcp_state) { 14578 case TCPS_FIN_WAIT_1: 14579 if (tcp->tcp_fin_acked) { 14580 tcp->tcp_state = TCPS_FIN_WAIT_2; 14581 /* 14582 * We implement the non-standard BSD/SunOS 14583 * FIN_WAIT_2 flushing algorithm. 14584 * If there is no user attached to this 14585 * TCP endpoint, then this TCP struct 14586 * could hang around forever in FIN_WAIT_2 14587 * state if the peer forgets to send us 14588 * a FIN. To prevent this, we wait only 14589 * 2*MSL (a convenient time value) for 14590 * the FIN to arrive. If it doesn't show up, 14591 * we flush the TCP endpoint. This algorithm, 14592 * though a violation of RFC-793, has worked 14593 * for over 10 years in BSD systems. 14594 * Note: SunOS 4.x waits 675 seconds before 14595 * flushing the FIN_WAIT_2 connection. 14596 */ 14597 TCP_TIMER_RESTART(tcp, 14598 tcp_fin_wait_2_flush_interval); 14599 } 14600 break; 14601 case TCPS_FIN_WAIT_2: 14602 break; /* Shutdown hook? */ 14603 case TCPS_LAST_ACK: 14604 freemsg(mp); 14605 if (tcp->tcp_fin_acked) { 14606 (void) tcp_clean_death(tcp, 0, 19); 14607 return; 14608 } 14609 goto xmit_check; 14610 case TCPS_CLOSING: 14611 if (tcp->tcp_fin_acked) { 14612 tcp->tcp_state = TCPS_TIME_WAIT; 14613 /* 14614 * Unconditionally clear the exclusive binding 14615 * bit so this TIME-WAIT connection won't 14616 * interfere with new ones. 14617 */ 14618 tcp->tcp_exclbind = 0; 14619 if (!TCP_IS_DETACHED(tcp)) { 14620 TCP_TIMER_RESTART(tcp, 14621 tcp_time_wait_interval); 14622 } else { 14623 tcp_time_wait_append(tcp); 14624 TCP_DBGSTAT(tcp_rput_time_wait); 14625 } 14626 } 14627 /*FALLTHRU*/ 14628 case TCPS_CLOSE_WAIT: 14629 freemsg(mp); 14630 goto xmit_check; 14631 default: 14632 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14633 break; 14634 } 14635 } 14636 if (flags & TH_FIN) { 14637 /* Make sure we ack the fin */ 14638 flags |= TH_ACK_NEEDED; 14639 if (!tcp->tcp_fin_rcvd) { 14640 tcp->tcp_fin_rcvd = B_TRUE; 14641 tcp->tcp_rnxt++; 14642 tcph = tcp->tcp_tcph; 14643 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14644 14645 /* 14646 * Generate the ordrel_ind at the end unless we 14647 * are an eager guy. 14648 * In the eager case tcp_rsrv will do this when run 14649 * after tcp_accept is done. 14650 */ 14651 if (tcp->tcp_listener == NULL && 14652 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14653 flags |= TH_ORDREL_NEEDED; 14654 switch (tcp->tcp_state) { 14655 case TCPS_SYN_RCVD: 14656 case TCPS_ESTABLISHED: 14657 tcp->tcp_state = TCPS_CLOSE_WAIT; 14658 /* Keepalive? */ 14659 break; 14660 case TCPS_FIN_WAIT_1: 14661 if (!tcp->tcp_fin_acked) { 14662 tcp->tcp_state = TCPS_CLOSING; 14663 break; 14664 } 14665 /* FALLTHRU */ 14666 case TCPS_FIN_WAIT_2: 14667 tcp->tcp_state = TCPS_TIME_WAIT; 14668 /* 14669 * Unconditionally clear the exclusive binding 14670 * bit so this TIME-WAIT connection won't 14671 * interfere with new ones. 14672 */ 14673 tcp->tcp_exclbind = 0; 14674 if (!TCP_IS_DETACHED(tcp)) { 14675 TCP_TIMER_RESTART(tcp, 14676 tcp_time_wait_interval); 14677 } else { 14678 tcp_time_wait_append(tcp); 14679 TCP_DBGSTAT(tcp_rput_time_wait); 14680 } 14681 if (seg_len) { 14682 /* 14683 * implies data piggybacked on FIN. 14684 * break to handle data. 14685 */ 14686 break; 14687 } 14688 freemsg(mp); 14689 goto ack_check; 14690 } 14691 } 14692 } 14693 if (mp == NULL) 14694 goto xmit_check; 14695 if (seg_len == 0) { 14696 freemsg(mp); 14697 goto xmit_check; 14698 } 14699 if (mp->b_rptr == mp->b_wptr) { 14700 /* 14701 * The header has been consumed, so we remove the 14702 * zero-length mblk here. 14703 */ 14704 mp1 = mp; 14705 mp = mp->b_cont; 14706 freeb(mp1); 14707 } 14708 tcph = tcp->tcp_tcph; 14709 tcp->tcp_rack_cnt++; 14710 { 14711 uint32_t cur_max; 14712 14713 cur_max = tcp->tcp_rack_cur_max; 14714 if (tcp->tcp_rack_cnt >= cur_max) { 14715 /* 14716 * We have more unacked data than we should - send 14717 * an ACK now. 14718 */ 14719 flags |= TH_ACK_NEEDED; 14720 cur_max++; 14721 if (cur_max > tcp->tcp_rack_abs_max) 14722 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14723 else 14724 tcp->tcp_rack_cur_max = cur_max; 14725 } else if (TCP_IS_DETACHED(tcp)) { 14726 /* We don't have an ACK timer for detached TCP. */ 14727 flags |= TH_ACK_NEEDED; 14728 } else if (seg_len < mss) { 14729 /* 14730 * If we get a segment that is less than an mss, and we 14731 * already have unacknowledged data, and the amount 14732 * unacknowledged is not a multiple of mss, then we 14733 * better generate an ACK now. Otherwise, this may be 14734 * the tail piece of a transaction, and we would rather 14735 * wait for the response. 14736 */ 14737 uint32_t udif; 14738 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14739 (uintptr_t)INT_MAX); 14740 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14741 if (udif && (udif % mss)) 14742 flags |= TH_ACK_NEEDED; 14743 else 14744 flags |= TH_ACK_TIMER_NEEDED; 14745 } else { 14746 /* Start delayed ack timer */ 14747 flags |= TH_ACK_TIMER_NEEDED; 14748 } 14749 } 14750 tcp->tcp_rnxt += seg_len; 14751 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14752 14753 /* Update SACK list */ 14754 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14755 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14756 &(tcp->tcp_num_sack_blk)); 14757 } 14758 14759 if (tcp->tcp_urp_mp) { 14760 tcp->tcp_urp_mp->b_cont = mp; 14761 mp = tcp->tcp_urp_mp; 14762 tcp->tcp_urp_mp = NULL; 14763 /* Ready for a new signal. */ 14764 tcp->tcp_urp_last_valid = B_FALSE; 14765 #ifdef DEBUG 14766 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14767 "tcp_rput: sending exdata_ind %s", 14768 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14769 #endif /* DEBUG */ 14770 } 14771 14772 /* 14773 * Check for ancillary data changes compared to last segment. 14774 */ 14775 if (tcp->tcp_ipv6_recvancillary != 0) { 14776 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14777 if (mp == NULL) 14778 return; 14779 } 14780 14781 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14782 /* 14783 * Side queue inbound data until the accept happens. 14784 * tcp_accept/tcp_rput drains this when the accept happens. 14785 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14786 * T_EXDATA_IND) it is queued on b_next. 14787 * XXX Make urgent data use this. Requires: 14788 * Removing tcp_listener check for TH_URG 14789 * Making M_PCPROTO and MARK messages skip the eager case 14790 */ 14791 14792 if (tcp->tcp_kssl_pending) { 14793 tcp_kssl_input(tcp, mp); 14794 } else { 14795 tcp_rcv_enqueue(tcp, mp, seg_len); 14796 } 14797 } else { 14798 if (mp->b_datap->db_type != M_DATA || 14799 (flags & TH_MARKNEXT_NEEDED)) { 14800 if (tcp->tcp_rcv_list != NULL) { 14801 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14802 } 14803 ASSERT(tcp->tcp_rcv_list == NULL || 14804 tcp->tcp_fused_sigurg); 14805 if (flags & TH_MARKNEXT_NEEDED) { 14806 #ifdef DEBUG 14807 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14808 "tcp_rput: sending MSGMARKNEXT %s", 14809 tcp_display(tcp, NULL, 14810 DISP_PORT_ONLY)); 14811 #endif /* DEBUG */ 14812 mp->b_flag |= MSGMARKNEXT; 14813 flags &= ~TH_MARKNEXT_NEEDED; 14814 } 14815 14816 /* Does this need SSL processing first? */ 14817 if ((tcp->tcp_kssl_ctx != NULL) && 14818 (DB_TYPE(mp) == M_DATA)) { 14819 tcp_kssl_input(tcp, mp); 14820 } else { 14821 putnext(tcp->tcp_rq, mp); 14822 if (!canputnext(tcp->tcp_rq)) 14823 tcp->tcp_rwnd -= seg_len; 14824 } 14825 } else if ((flags & (TH_PUSH|TH_FIN)) || 14826 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14827 if (tcp->tcp_rcv_list != NULL) { 14828 /* 14829 * Enqueue the new segment first and then 14830 * call tcp_rcv_drain() to send all data 14831 * up. The other way to do this is to 14832 * send all queued data up and then call 14833 * putnext() to send the new segment up. 14834 * This way can remove the else part later 14835 * on. 14836 * 14837 * We don't this to avoid one more call to 14838 * canputnext() as tcp_rcv_drain() needs to 14839 * call canputnext(). 14840 */ 14841 tcp_rcv_enqueue(tcp, mp, seg_len); 14842 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14843 } else { 14844 /* Does this need SSL processing first? */ 14845 if ((tcp->tcp_kssl_ctx != NULL) && 14846 (DB_TYPE(mp) == M_DATA)) { 14847 tcp_kssl_input(tcp, mp); 14848 } else { 14849 putnext(tcp->tcp_rq, mp); 14850 if (!canputnext(tcp->tcp_rq)) 14851 tcp->tcp_rwnd -= seg_len; 14852 } 14853 } 14854 } else { 14855 /* 14856 * Enqueue all packets when processing an mblk 14857 * from the co queue and also enqueue normal packets. 14858 */ 14859 tcp_rcv_enqueue(tcp, mp, seg_len); 14860 } 14861 /* 14862 * Make sure the timer is running if we have data waiting 14863 * for a push bit. This provides resiliency against 14864 * implementations that do not correctly generate push bits. 14865 */ 14866 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14867 /* 14868 * The connection may be closed at this point, so don't 14869 * do anything for a detached tcp. 14870 */ 14871 if (!TCP_IS_DETACHED(tcp)) 14872 tcp->tcp_push_tid = TCP_TIMER(tcp, 14873 tcp_push_timer, 14874 MSEC_TO_TICK(tcp_push_timer_interval)); 14875 } 14876 } 14877 xmit_check: 14878 /* Is there anything left to do? */ 14879 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14880 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14881 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14882 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14883 goto done; 14884 14885 /* Any transmit work to do and a non-zero window? */ 14886 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14887 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14888 if (flags & TH_REXMIT_NEEDED) { 14889 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14890 14891 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14892 if (snd_size > mss) 14893 snd_size = mss; 14894 if (snd_size > tcp->tcp_swnd) 14895 snd_size = tcp->tcp_swnd; 14896 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14897 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14898 B_TRUE); 14899 14900 if (mp1 != NULL) { 14901 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14902 tcp->tcp_csuna = tcp->tcp_snxt; 14903 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14904 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14905 TCP_RECORD_TRACE(tcp, mp1, 14906 TCP_TRACE_SEND_PKT); 14907 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14908 } 14909 } 14910 if (flags & TH_NEED_SACK_REXMIT) { 14911 tcp_sack_rxmit(tcp, &flags); 14912 } 14913 /* 14914 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14915 * out new segment. Note that tcp_rexmit should not be 14916 * set, otherwise TH_LIMIT_XMIT should not be set. 14917 */ 14918 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14919 if (!tcp->tcp_rexmit) { 14920 tcp_wput_data(tcp, NULL, B_FALSE); 14921 } else { 14922 tcp_ss_rexmit(tcp); 14923 } 14924 } 14925 /* 14926 * Adjust tcp_cwnd back to normal value after sending 14927 * new data segments. 14928 */ 14929 if (flags & TH_LIMIT_XMIT) { 14930 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14931 /* 14932 * This will restart the timer. Restarting the 14933 * timer is used to avoid a timeout before the 14934 * limited transmitted segment's ACK gets back. 14935 */ 14936 if (tcp->tcp_xmit_head != NULL) 14937 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14938 } 14939 14940 /* Anything more to do? */ 14941 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14942 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14943 goto done; 14944 } 14945 ack_check: 14946 if (flags & TH_SEND_URP_MARK) { 14947 ASSERT(tcp->tcp_urp_mark_mp); 14948 /* 14949 * Send up any queued data and then send the mark message 14950 */ 14951 if (tcp->tcp_rcv_list != NULL) { 14952 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14953 } 14954 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14955 14956 mp1 = tcp->tcp_urp_mark_mp; 14957 tcp->tcp_urp_mark_mp = NULL; 14958 #ifdef DEBUG 14959 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14960 "tcp_rput: sending zero-length %s %s", 14961 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14962 "MSGNOTMARKNEXT"), 14963 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14964 #endif /* DEBUG */ 14965 putnext(tcp->tcp_rq, mp1); 14966 flags &= ~TH_SEND_URP_MARK; 14967 } 14968 if (flags & TH_ACK_NEEDED) { 14969 /* 14970 * Time to send an ack for some reason. 14971 */ 14972 mp1 = tcp_ack_mp(tcp); 14973 14974 if (mp1 != NULL) { 14975 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14976 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14977 BUMP_LOCAL(tcp->tcp_obsegs); 14978 BUMP_MIB(&tcp_mib, tcpOutAck); 14979 } 14980 if (tcp->tcp_ack_tid != 0) { 14981 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14982 tcp->tcp_ack_tid = 0; 14983 } 14984 } 14985 if (flags & TH_ACK_TIMER_NEEDED) { 14986 /* 14987 * Arrange for deferred ACK or push wait timeout. 14988 * Start timer if it is not already running. 14989 */ 14990 if (tcp->tcp_ack_tid == 0) { 14991 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14992 MSEC_TO_TICK(tcp->tcp_localnet ? 14993 (clock_t)tcp_local_dack_interval : 14994 (clock_t)tcp_deferred_ack_interval)); 14995 } 14996 } 14997 if (flags & TH_ORDREL_NEEDED) { 14998 /* 14999 * Send up the ordrel_ind unless we are an eager guy. 15000 * In the eager case tcp_rsrv will do this when run 15001 * after tcp_accept is done. 15002 */ 15003 ASSERT(tcp->tcp_listener == NULL); 15004 if (tcp->tcp_rcv_list != NULL) { 15005 /* 15006 * Push any mblk(s) enqueued from co processing. 15007 */ 15008 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15009 } 15010 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15011 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15012 tcp->tcp_ordrel_done = B_TRUE; 15013 putnext(tcp->tcp_rq, mp1); 15014 if (tcp->tcp_deferred_clean_death) { 15015 /* 15016 * tcp_clean_death was deferred 15017 * for T_ORDREL_IND - do it now 15018 */ 15019 (void) tcp_clean_death(tcp, 15020 tcp->tcp_client_errno, 20); 15021 tcp->tcp_deferred_clean_death = B_FALSE; 15022 } 15023 } else { 15024 /* 15025 * Run the orderly release in the 15026 * service routine. 15027 */ 15028 qenable(tcp->tcp_rq); 15029 /* 15030 * Caveat(XXX): The machine may be so 15031 * overloaded that tcp_rsrv() is not scheduled 15032 * until after the endpoint has transitioned 15033 * to TCPS_TIME_WAIT 15034 * and tcp_time_wait_interval expires. Then 15035 * tcp_timer() will blow away state in tcp_t 15036 * and T_ORDREL_IND will never be delivered 15037 * upstream. Unlikely but potentially 15038 * a problem. 15039 */ 15040 } 15041 } 15042 done: 15043 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15044 } 15045 15046 /* 15047 * This function does PAWS protection check. Returns B_TRUE if the 15048 * segment passes the PAWS test, else returns B_FALSE. 15049 */ 15050 boolean_t 15051 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15052 { 15053 uint8_t flags; 15054 int options; 15055 uint8_t *up; 15056 15057 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15058 /* 15059 * If timestamp option is aligned nicely, get values inline, 15060 * otherwise call general routine to parse. Only do that 15061 * if timestamp is the only option. 15062 */ 15063 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15064 TCPOPT_REAL_TS_LEN && 15065 OK_32PTR((up = ((uint8_t *)tcph) + 15066 TCP_MIN_HEADER_LENGTH)) && 15067 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15068 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15069 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15070 15071 options = TCP_OPT_TSTAMP_PRESENT; 15072 } else { 15073 if (tcp->tcp_snd_sack_ok) { 15074 tcpoptp->tcp = tcp; 15075 } else { 15076 tcpoptp->tcp = NULL; 15077 } 15078 options = tcp_parse_options(tcph, tcpoptp); 15079 } 15080 15081 if (options & TCP_OPT_TSTAMP_PRESENT) { 15082 /* 15083 * Do PAWS per RFC 1323 section 4.2. Accept RST 15084 * regardless of the timestamp, page 18 RFC 1323.bis. 15085 */ 15086 if ((flags & TH_RST) == 0 && 15087 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15088 tcp->tcp_ts_recent)) { 15089 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15090 PAWS_TIMEOUT)) { 15091 /* This segment is not acceptable. */ 15092 return (B_FALSE); 15093 } else { 15094 /* 15095 * Connection has been idle for 15096 * too long. Reset the timestamp 15097 * and assume the segment is valid. 15098 */ 15099 tcp->tcp_ts_recent = 15100 tcpoptp->tcp_opt_ts_val; 15101 } 15102 } 15103 } else { 15104 /* 15105 * If we don't get a timestamp on every packet, we 15106 * figure we can't really trust 'em, so we stop sending 15107 * and parsing them. 15108 */ 15109 tcp->tcp_snd_ts_ok = B_FALSE; 15110 15111 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15112 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15113 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15114 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 15115 if (tcp->tcp_snd_sack_ok) { 15116 ASSERT(tcp->tcp_sack_info != NULL); 15117 tcp->tcp_max_sack_blk = 4; 15118 } 15119 } 15120 return (B_TRUE); 15121 } 15122 15123 /* 15124 * Attach ancillary data to a received TCP segments for the 15125 * ancillary pieces requested by the application that are 15126 * different than they were in the previous data segment. 15127 * 15128 * Save the "current" values once memory allocation is ok so that 15129 * when memory allocation fails we can just wait for the next data segment. 15130 */ 15131 static mblk_t * 15132 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15133 { 15134 struct T_optdata_ind *todi; 15135 int optlen; 15136 uchar_t *optptr; 15137 struct T_opthdr *toh; 15138 uint_t addflag; /* Which pieces to add */ 15139 mblk_t *mp1; 15140 15141 optlen = 0; 15142 addflag = 0; 15143 /* If app asked for pktinfo and the index has changed ... */ 15144 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15145 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15146 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15147 optlen += sizeof (struct T_opthdr) + 15148 sizeof (struct in6_pktinfo); 15149 addflag |= TCP_IPV6_RECVPKTINFO; 15150 } 15151 /* If app asked for hoplimit and it has changed ... */ 15152 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15153 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15154 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15155 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15156 addflag |= TCP_IPV6_RECVHOPLIMIT; 15157 } 15158 /* If app asked for tclass and it has changed ... */ 15159 if ((ipp->ipp_fields & IPPF_TCLASS) && 15160 ipp->ipp_tclass != tcp->tcp_recvtclass && 15161 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15162 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15163 addflag |= TCP_IPV6_RECVTCLASS; 15164 } 15165 /* 15166 * If app asked for hopbyhop headers and it has changed ... 15167 * For security labels, note that (1) security labels can't change on 15168 * a connected socket at all, (2) we're connected to at most one peer, 15169 * (3) if anything changes, then it must be some other extra option. 15170 */ 15171 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15172 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15173 (ipp->ipp_fields & IPPF_HOPOPTS), 15174 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15175 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15176 tcp->tcp_label_len; 15177 addflag |= TCP_IPV6_RECVHOPOPTS; 15178 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15179 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15180 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15181 return (mp); 15182 } 15183 /* If app asked for dst headers before routing headers ... */ 15184 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15185 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15186 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15187 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15188 optlen += sizeof (struct T_opthdr) + 15189 ipp->ipp_rtdstoptslen; 15190 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15191 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15192 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15193 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15194 return (mp); 15195 } 15196 /* If app asked for routing headers and it has changed ... */ 15197 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15198 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15199 (ipp->ipp_fields & IPPF_RTHDR), 15200 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15201 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15202 addflag |= TCP_IPV6_RECVRTHDR; 15203 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15204 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15205 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15206 return (mp); 15207 } 15208 /* If app asked for dest headers and it has changed ... */ 15209 if ((tcp->tcp_ipv6_recvancillary & 15210 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15211 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15212 (ipp->ipp_fields & IPPF_DSTOPTS), 15213 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15214 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15215 addflag |= TCP_IPV6_RECVDSTOPTS; 15216 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15217 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15218 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15219 return (mp); 15220 } 15221 15222 if (optlen == 0) { 15223 /* Nothing to add */ 15224 return (mp); 15225 } 15226 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15227 if (mp1 == NULL) { 15228 /* 15229 * Defer sending ancillary data until the next TCP segment 15230 * arrives. 15231 */ 15232 return (mp); 15233 } 15234 mp1->b_cont = mp; 15235 mp = mp1; 15236 mp->b_wptr += sizeof (*todi) + optlen; 15237 mp->b_datap->db_type = M_PROTO; 15238 todi = (struct T_optdata_ind *)mp->b_rptr; 15239 todi->PRIM_type = T_OPTDATA_IND; 15240 todi->DATA_flag = 1; /* MORE data */ 15241 todi->OPT_length = optlen; 15242 todi->OPT_offset = sizeof (*todi); 15243 optptr = (uchar_t *)&todi[1]; 15244 /* 15245 * If app asked for pktinfo and the index has changed ... 15246 * Note that the local address never changes for the connection. 15247 */ 15248 if (addflag & TCP_IPV6_RECVPKTINFO) { 15249 struct in6_pktinfo *pkti; 15250 15251 toh = (struct T_opthdr *)optptr; 15252 toh->level = IPPROTO_IPV6; 15253 toh->name = IPV6_PKTINFO; 15254 toh->len = sizeof (*toh) + sizeof (*pkti); 15255 toh->status = 0; 15256 optptr += sizeof (*toh); 15257 pkti = (struct in6_pktinfo *)optptr; 15258 if (tcp->tcp_ipversion == IPV6_VERSION) 15259 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15260 else 15261 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15262 &pkti->ipi6_addr); 15263 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15264 optptr += sizeof (*pkti); 15265 ASSERT(OK_32PTR(optptr)); 15266 /* Save as "last" value */ 15267 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15268 } 15269 /* If app asked for hoplimit and it has changed ... */ 15270 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15271 toh = (struct T_opthdr *)optptr; 15272 toh->level = IPPROTO_IPV6; 15273 toh->name = IPV6_HOPLIMIT; 15274 toh->len = sizeof (*toh) + sizeof (uint_t); 15275 toh->status = 0; 15276 optptr += sizeof (*toh); 15277 *(uint_t *)optptr = ipp->ipp_hoplimit; 15278 optptr += sizeof (uint_t); 15279 ASSERT(OK_32PTR(optptr)); 15280 /* Save as "last" value */ 15281 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15282 } 15283 /* If app asked for tclass and it has changed ... */ 15284 if (addflag & TCP_IPV6_RECVTCLASS) { 15285 toh = (struct T_opthdr *)optptr; 15286 toh->level = IPPROTO_IPV6; 15287 toh->name = IPV6_TCLASS; 15288 toh->len = sizeof (*toh) + sizeof (uint_t); 15289 toh->status = 0; 15290 optptr += sizeof (*toh); 15291 *(uint_t *)optptr = ipp->ipp_tclass; 15292 optptr += sizeof (uint_t); 15293 ASSERT(OK_32PTR(optptr)); 15294 /* Save as "last" value */ 15295 tcp->tcp_recvtclass = ipp->ipp_tclass; 15296 } 15297 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15298 toh = (struct T_opthdr *)optptr; 15299 toh->level = IPPROTO_IPV6; 15300 toh->name = IPV6_HOPOPTS; 15301 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15302 tcp->tcp_label_len; 15303 toh->status = 0; 15304 optptr += sizeof (*toh); 15305 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15306 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15307 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15308 ASSERT(OK_32PTR(optptr)); 15309 /* Save as last value */ 15310 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15311 (ipp->ipp_fields & IPPF_HOPOPTS), 15312 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15313 } 15314 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15315 toh = (struct T_opthdr *)optptr; 15316 toh->level = IPPROTO_IPV6; 15317 toh->name = IPV6_RTHDRDSTOPTS; 15318 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15319 toh->status = 0; 15320 optptr += sizeof (*toh); 15321 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15322 optptr += ipp->ipp_rtdstoptslen; 15323 ASSERT(OK_32PTR(optptr)); 15324 /* Save as last value */ 15325 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15326 &tcp->tcp_rtdstoptslen, 15327 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15328 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15329 } 15330 if (addflag & TCP_IPV6_RECVRTHDR) { 15331 toh = (struct T_opthdr *)optptr; 15332 toh->level = IPPROTO_IPV6; 15333 toh->name = IPV6_RTHDR; 15334 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15335 toh->status = 0; 15336 optptr += sizeof (*toh); 15337 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15338 optptr += ipp->ipp_rthdrlen; 15339 ASSERT(OK_32PTR(optptr)); 15340 /* Save as last value */ 15341 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15342 (ipp->ipp_fields & IPPF_RTHDR), 15343 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15344 } 15345 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15346 toh = (struct T_opthdr *)optptr; 15347 toh->level = IPPROTO_IPV6; 15348 toh->name = IPV6_DSTOPTS; 15349 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15350 toh->status = 0; 15351 optptr += sizeof (*toh); 15352 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15353 optptr += ipp->ipp_dstoptslen; 15354 ASSERT(OK_32PTR(optptr)); 15355 /* Save as last value */ 15356 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15357 (ipp->ipp_fields & IPPF_DSTOPTS), 15358 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15359 } 15360 ASSERT(optptr == mp->b_wptr); 15361 return (mp); 15362 } 15363 15364 15365 /* 15366 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15367 * or a "bad" IRE detected by tcp_adapt_ire. 15368 * We can't tell if the failure was due to the laddr or the faddr 15369 * thus we clear out all addresses and ports. 15370 */ 15371 static void 15372 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15373 { 15374 queue_t *q = tcp->tcp_rq; 15375 tcph_t *tcph; 15376 struct T_error_ack *tea; 15377 conn_t *connp = tcp->tcp_connp; 15378 15379 15380 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15381 15382 if (mp->b_cont) { 15383 freemsg(mp->b_cont); 15384 mp->b_cont = NULL; 15385 } 15386 tea = (struct T_error_ack *)mp->b_rptr; 15387 switch (tea->PRIM_type) { 15388 case T_BIND_ACK: 15389 /* 15390 * Need to unbind with classifier since we were just told that 15391 * our bind succeeded. 15392 */ 15393 tcp->tcp_hard_bound = B_FALSE; 15394 tcp->tcp_hard_binding = B_FALSE; 15395 15396 ipcl_hash_remove(connp); 15397 /* Reuse the mblk if possible */ 15398 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15399 sizeof (*tea)); 15400 mp->b_rptr = mp->b_datap->db_base; 15401 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15402 tea = (struct T_error_ack *)mp->b_rptr; 15403 tea->PRIM_type = T_ERROR_ACK; 15404 tea->TLI_error = TSYSERR; 15405 tea->UNIX_error = error; 15406 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15407 tea->ERROR_prim = T_CONN_REQ; 15408 } else { 15409 tea->ERROR_prim = O_T_BIND_REQ; 15410 } 15411 break; 15412 15413 case T_ERROR_ACK: 15414 if (tcp->tcp_state >= TCPS_SYN_SENT) 15415 tea->ERROR_prim = T_CONN_REQ; 15416 break; 15417 default: 15418 panic("tcp_bind_failed: unexpected TPI type"); 15419 /*NOTREACHED*/ 15420 } 15421 15422 tcp->tcp_state = TCPS_IDLE; 15423 if (tcp->tcp_ipversion == IPV4_VERSION) 15424 tcp->tcp_ipha->ipha_src = 0; 15425 else 15426 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15427 /* 15428 * Copy of the src addr. in tcp_t is needed since 15429 * the lookup funcs. can only look at tcp_t 15430 */ 15431 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15432 15433 tcph = tcp->tcp_tcph; 15434 tcph->th_lport[0] = 0; 15435 tcph->th_lport[1] = 0; 15436 tcp_bind_hash_remove(tcp); 15437 bzero(&connp->u_port, sizeof (connp->u_port)); 15438 /* blow away saved option results if any */ 15439 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15440 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15441 15442 conn_delete_ire(tcp->tcp_connp, NULL); 15443 putnext(q, mp); 15444 } 15445 15446 /* 15447 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15448 * messages. 15449 */ 15450 void 15451 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15452 { 15453 mblk_t *mp1; 15454 uchar_t *rptr = mp->b_rptr; 15455 queue_t *q = tcp->tcp_rq; 15456 struct T_error_ack *tea; 15457 uint32_t mss; 15458 mblk_t *syn_mp; 15459 mblk_t *mdti; 15460 mblk_t *lsoi; 15461 int retval; 15462 mblk_t *ire_mp; 15463 15464 switch (mp->b_datap->db_type) { 15465 case M_PROTO: 15466 case M_PCPROTO: 15467 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15468 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15469 break; 15470 tea = (struct T_error_ack *)rptr; 15471 switch (tea->PRIM_type) { 15472 case T_BIND_ACK: 15473 /* 15474 * Adapt Multidata information, if any. The 15475 * following tcp_mdt_update routine will free 15476 * the message. 15477 */ 15478 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15479 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15480 b_rptr)->mdt_capab, B_TRUE); 15481 freemsg(mdti); 15482 } 15483 15484 /* 15485 * Check to update LSO information with tcp, and 15486 * tcp_lso_update routine will free the message. 15487 */ 15488 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15489 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15490 b_rptr)->lso_capab); 15491 freemsg(lsoi); 15492 } 15493 15494 /* Get the IRE, if we had requested for it */ 15495 ire_mp = tcp_ire_mp(mp); 15496 15497 if (tcp->tcp_hard_binding) { 15498 tcp->tcp_hard_binding = B_FALSE; 15499 tcp->tcp_hard_bound = B_TRUE; 15500 CL_INET_CONNECT(tcp); 15501 } else { 15502 if (ire_mp != NULL) 15503 freeb(ire_mp); 15504 goto after_syn_sent; 15505 } 15506 15507 retval = tcp_adapt_ire(tcp, ire_mp); 15508 if (ire_mp != NULL) 15509 freeb(ire_mp); 15510 if (retval == 0) { 15511 tcp_bind_failed(tcp, mp, 15512 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15513 ENETUNREACH : EADDRNOTAVAIL)); 15514 return; 15515 } 15516 /* 15517 * Don't let an endpoint connect to itself. 15518 * Also checked in tcp_connect() but that 15519 * check can't handle the case when the 15520 * local IP address is INADDR_ANY. 15521 */ 15522 if (tcp->tcp_ipversion == IPV4_VERSION) { 15523 if ((tcp->tcp_ipha->ipha_dst == 15524 tcp->tcp_ipha->ipha_src) && 15525 (BE16_EQL(tcp->tcp_tcph->th_lport, 15526 tcp->tcp_tcph->th_fport))) { 15527 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15528 return; 15529 } 15530 } else { 15531 if (IN6_ARE_ADDR_EQUAL( 15532 &tcp->tcp_ip6h->ip6_dst, 15533 &tcp->tcp_ip6h->ip6_src) && 15534 (BE16_EQL(tcp->tcp_tcph->th_lport, 15535 tcp->tcp_tcph->th_fport))) { 15536 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15537 return; 15538 } 15539 } 15540 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15541 /* 15542 * This should not be possible! Just for 15543 * defensive coding... 15544 */ 15545 if (tcp->tcp_state != TCPS_SYN_SENT) 15546 goto after_syn_sent; 15547 15548 if (is_system_labeled() && 15549 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15550 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15551 return; 15552 } 15553 15554 ASSERT(q == tcp->tcp_rq); 15555 /* 15556 * tcp_adapt_ire() does not adjust 15557 * for TCP/IP header length. 15558 */ 15559 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15560 15561 /* 15562 * Just make sure our rwnd is at 15563 * least tcp_recv_hiwat_mss * MSS 15564 * large, and round up to the nearest 15565 * MSS. 15566 * 15567 * We do the round up here because 15568 * we need to get the interface 15569 * MTU first before we can do the 15570 * round up. 15571 */ 15572 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15573 tcp_recv_hiwat_minmss * mss); 15574 q->q_hiwat = tcp->tcp_rwnd; 15575 tcp_set_ws_value(tcp); 15576 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15577 tcp->tcp_tcph->th_win); 15578 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15579 tcp->tcp_snd_ws_ok = B_TRUE; 15580 15581 /* 15582 * Set tcp_snd_ts_ok to true 15583 * so that tcp_xmit_mp will 15584 * include the timestamp 15585 * option in the SYN segment. 15586 */ 15587 if (tcp_tstamp_always || 15588 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15589 tcp->tcp_snd_ts_ok = B_TRUE; 15590 } 15591 15592 /* 15593 * tcp_snd_sack_ok can be set in 15594 * tcp_adapt_ire() if the sack metric 15595 * is set. So check it here also. 15596 */ 15597 if (tcp_sack_permitted == 2 || 15598 tcp->tcp_snd_sack_ok) { 15599 if (tcp->tcp_sack_info == NULL) { 15600 tcp->tcp_sack_info = 15601 kmem_cache_alloc(tcp_sack_info_cache, 15602 KM_SLEEP); 15603 } 15604 tcp->tcp_snd_sack_ok = B_TRUE; 15605 } 15606 15607 /* 15608 * Should we use ECN? Note that the current 15609 * default value (SunOS 5.9) of tcp_ecn_permitted 15610 * is 1. The reason for doing this is that there 15611 * are equipments out there that will drop ECN 15612 * enabled IP packets. Setting it to 1 avoids 15613 * compatibility problems. 15614 */ 15615 if (tcp_ecn_permitted == 2) 15616 tcp->tcp_ecn_ok = B_TRUE; 15617 15618 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15619 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15620 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15621 if (syn_mp) { 15622 cred_t *cr; 15623 pid_t pid; 15624 15625 /* 15626 * Obtain the credential from the 15627 * thread calling connect(); the credential 15628 * lives on in the second mblk which 15629 * originated from T_CONN_REQ and is echoed 15630 * with the T_BIND_ACK from ip. If none 15631 * can be found, default to the creator 15632 * of the socket. 15633 */ 15634 if (mp->b_cont == NULL || 15635 (cr = DB_CRED(mp->b_cont)) == NULL) { 15636 cr = tcp->tcp_cred; 15637 pid = tcp->tcp_cpid; 15638 } else { 15639 pid = DB_CPID(mp->b_cont); 15640 } 15641 15642 TCP_RECORD_TRACE(tcp, syn_mp, 15643 TCP_TRACE_SEND_PKT); 15644 mblk_setcred(syn_mp, cr); 15645 DB_CPID(syn_mp) = pid; 15646 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15647 } 15648 after_syn_sent: 15649 /* 15650 * A trailer mblk indicates a waiting client upstream. 15651 * We complete here the processing begun in 15652 * either tcp_bind() or tcp_connect() by passing 15653 * upstream the reply message they supplied. 15654 */ 15655 mp1 = mp; 15656 mp = mp->b_cont; 15657 freeb(mp1); 15658 if (mp) 15659 break; 15660 return; 15661 case T_ERROR_ACK: 15662 if (tcp->tcp_debug) { 15663 (void) strlog(TCP_MOD_ID, 0, 1, 15664 SL_TRACE|SL_ERROR, 15665 "tcp_rput_other: case T_ERROR_ACK, " 15666 "ERROR_prim == %d", 15667 tea->ERROR_prim); 15668 } 15669 switch (tea->ERROR_prim) { 15670 case O_T_BIND_REQ: 15671 case T_BIND_REQ: 15672 tcp_bind_failed(tcp, mp, 15673 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15674 ENETUNREACH : EADDRNOTAVAIL)); 15675 return; 15676 case T_UNBIND_REQ: 15677 tcp->tcp_hard_binding = B_FALSE; 15678 tcp->tcp_hard_bound = B_FALSE; 15679 if (mp->b_cont) { 15680 freemsg(mp->b_cont); 15681 mp->b_cont = NULL; 15682 } 15683 if (tcp->tcp_unbind_pending) 15684 tcp->tcp_unbind_pending = 0; 15685 else { 15686 /* From tcp_ip_unbind() - free */ 15687 freemsg(mp); 15688 return; 15689 } 15690 break; 15691 case T_SVR4_OPTMGMT_REQ: 15692 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15693 /* T_OPTMGMT_REQ generated by TCP */ 15694 printf("T_SVR4_OPTMGMT_REQ failed " 15695 "%d/%d - dropped (cnt %d)\n", 15696 tea->TLI_error, tea->UNIX_error, 15697 tcp->tcp_drop_opt_ack_cnt); 15698 freemsg(mp); 15699 tcp->tcp_drop_opt_ack_cnt--; 15700 return; 15701 } 15702 break; 15703 } 15704 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15705 tcp->tcp_drop_opt_ack_cnt > 0) { 15706 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15707 "- dropped (cnt %d)\n", 15708 tea->TLI_error, tea->UNIX_error, 15709 tcp->tcp_drop_opt_ack_cnt); 15710 freemsg(mp); 15711 tcp->tcp_drop_opt_ack_cnt--; 15712 return; 15713 } 15714 break; 15715 case T_OPTMGMT_ACK: 15716 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15717 /* T_OPTMGMT_REQ generated by TCP */ 15718 freemsg(mp); 15719 tcp->tcp_drop_opt_ack_cnt--; 15720 return; 15721 } 15722 break; 15723 default: 15724 break; 15725 } 15726 break; 15727 case M_CTL: 15728 /* 15729 * ICMP messages. 15730 */ 15731 tcp_icmp_error(tcp, mp); 15732 return; 15733 case M_FLUSH: 15734 if (*rptr & FLUSHR) 15735 flushq(q, FLUSHDATA); 15736 break; 15737 default: 15738 break; 15739 } 15740 /* 15741 * Make sure we set this bit before sending the ACK for 15742 * bind. Otherwise accept could possibly run and free 15743 * this tcp struct. 15744 */ 15745 putnext(q, mp); 15746 } 15747 15748 /* 15749 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15750 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15751 * tcp_rsrv() try again. 15752 */ 15753 static void 15754 tcp_ordrel_kick(void *arg) 15755 { 15756 conn_t *connp = (conn_t *)arg; 15757 tcp_t *tcp = connp->conn_tcp; 15758 15759 tcp->tcp_ordrelid = 0; 15760 tcp->tcp_timeout = B_FALSE; 15761 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15762 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15763 qenable(tcp->tcp_rq); 15764 } 15765 } 15766 15767 /* ARGSUSED */ 15768 static void 15769 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15770 { 15771 conn_t *connp = (conn_t *)arg; 15772 tcp_t *tcp = connp->conn_tcp; 15773 queue_t *q = tcp->tcp_rq; 15774 uint_t thwin; 15775 15776 freeb(mp); 15777 15778 TCP_STAT(tcp_rsrv_calls); 15779 15780 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15781 return; 15782 } 15783 15784 if (tcp->tcp_fused) { 15785 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15786 15787 ASSERT(tcp->tcp_fused); 15788 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15789 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15790 ASSERT(!TCP_IS_DETACHED(tcp)); 15791 ASSERT(tcp->tcp_connp->conn_sqp == 15792 peer_tcp->tcp_connp->conn_sqp); 15793 15794 /* 15795 * Normally we would not get backenabled in synchronous 15796 * streams mode, but in case this happens, we need to plug 15797 * synchronous streams during our drain to prevent a race 15798 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15799 */ 15800 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15801 if (tcp->tcp_rcv_list != NULL) 15802 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15803 15804 tcp_clrqfull(peer_tcp); 15805 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15806 TCP_STAT(tcp_fusion_backenabled); 15807 return; 15808 } 15809 15810 if (canputnext(q)) { 15811 tcp->tcp_rwnd = q->q_hiwat; 15812 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15813 << tcp->tcp_rcv_ws; 15814 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15815 /* 15816 * Send back a window update immediately if TCP is above 15817 * ESTABLISHED state and the increase of the rcv window 15818 * that the other side knows is at least 1 MSS after flow 15819 * control is lifted. 15820 */ 15821 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15822 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15823 tcp_xmit_ctl(NULL, tcp, 15824 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15825 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15826 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15827 } 15828 } 15829 /* Handle a failure to allocate a T_ORDREL_IND here */ 15830 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15831 ASSERT(tcp->tcp_listener == NULL); 15832 if (tcp->tcp_rcv_list != NULL) { 15833 (void) tcp_rcv_drain(q, tcp); 15834 } 15835 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15836 mp = mi_tpi_ordrel_ind(); 15837 if (mp) { 15838 tcp->tcp_ordrel_done = B_TRUE; 15839 putnext(q, mp); 15840 if (tcp->tcp_deferred_clean_death) { 15841 /* 15842 * tcp_clean_death was deferred for 15843 * T_ORDREL_IND - do it now 15844 */ 15845 tcp->tcp_deferred_clean_death = B_FALSE; 15846 (void) tcp_clean_death(tcp, 15847 tcp->tcp_client_errno, 22); 15848 } 15849 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15850 /* 15851 * If there isn't already a timer running 15852 * start one. Use a 4 second 15853 * timer as a fallback since it can't fail. 15854 */ 15855 tcp->tcp_timeout = B_TRUE; 15856 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15857 MSEC_TO_TICK(4000)); 15858 } 15859 } 15860 } 15861 15862 /* 15863 * The read side service routine is called mostly when we get back-enabled as a 15864 * result of flow control relief. Since we don't actually queue anything in 15865 * TCP, we have no data to send out of here. What we do is clear the receive 15866 * window, and send out a window update. 15867 * This routine is also called to drive an orderly release message upstream 15868 * if the attempt in tcp_rput failed. 15869 */ 15870 static void 15871 tcp_rsrv(queue_t *q) 15872 { 15873 conn_t *connp = Q_TO_CONN(q); 15874 tcp_t *tcp = connp->conn_tcp; 15875 mblk_t *mp; 15876 15877 /* No code does a putq on the read side */ 15878 ASSERT(q->q_first == NULL); 15879 15880 /* Nothing to do for the default queue */ 15881 if (q == tcp_g_q) { 15882 return; 15883 } 15884 15885 mp = allocb(0, BPRI_HI); 15886 if (mp == NULL) { 15887 /* 15888 * We are under memory pressure. Return for now and we 15889 * we will be called again later. 15890 */ 15891 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15892 /* 15893 * If there isn't already a timer running 15894 * start one. Use a 4 second 15895 * timer as a fallback since it can't fail. 15896 */ 15897 tcp->tcp_timeout = B_TRUE; 15898 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15899 MSEC_TO_TICK(4000)); 15900 } 15901 return; 15902 } 15903 CONN_INC_REF(connp); 15904 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15905 SQTAG_TCP_RSRV); 15906 } 15907 15908 /* 15909 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15910 * We do not allow the receive window to shrink. After setting rwnd, 15911 * set the flow control hiwat of the stream. 15912 * 15913 * This function is called in 2 cases: 15914 * 15915 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15916 * connection (passive open) and in tcp_rput_data() for active connect. 15917 * This is called after tcp_mss_set() when the desired MSS value is known. 15918 * This makes sure that our window size is a mutiple of the other side's 15919 * MSS. 15920 * 2) Handling SO_RCVBUF option. 15921 * 15922 * It is ASSUMED that the requested size is a multiple of the current MSS. 15923 * 15924 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15925 * user requests so. 15926 */ 15927 static int 15928 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15929 { 15930 uint32_t mss = tcp->tcp_mss; 15931 uint32_t old_max_rwnd; 15932 uint32_t max_transmittable_rwnd; 15933 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15934 15935 if (tcp->tcp_fused) { 15936 size_t sth_hiwat; 15937 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15938 15939 ASSERT(peer_tcp != NULL); 15940 /* 15941 * Record the stream head's high water mark for 15942 * this endpoint; this is used for flow-control 15943 * purposes in tcp_fuse_output(). 15944 */ 15945 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15946 if (!tcp_detached) 15947 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15948 15949 /* 15950 * In the fusion case, the maxpsz stream head value of 15951 * our peer is set according to its send buffer size 15952 * and our receive buffer size; since the latter may 15953 * have changed we need to update the peer's maxpsz. 15954 */ 15955 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15956 return (rwnd); 15957 } 15958 15959 if (tcp_detached) 15960 old_max_rwnd = tcp->tcp_rwnd; 15961 else 15962 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15963 15964 /* 15965 * Insist on a receive window that is at least 15966 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15967 * funny TCP interactions of Nagle algorithm, SWS avoidance 15968 * and delayed acknowledgement. 15969 */ 15970 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15971 15972 /* 15973 * If window size info has already been exchanged, TCP should not 15974 * shrink the window. Shrinking window is doable if done carefully. 15975 * We may add that support later. But so far there is not a real 15976 * need to do that. 15977 */ 15978 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15979 /* MSS may have changed, do a round up again. */ 15980 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15981 } 15982 15983 /* 15984 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15985 * can be applied even before the window scale option is decided. 15986 */ 15987 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15988 if (rwnd > max_transmittable_rwnd) { 15989 rwnd = max_transmittable_rwnd - 15990 (max_transmittable_rwnd % mss); 15991 if (rwnd < mss) 15992 rwnd = max_transmittable_rwnd; 15993 /* 15994 * If we're over the limit we may have to back down tcp_rwnd. 15995 * The increment below won't work for us. So we set all three 15996 * here and the increment below will have no effect. 15997 */ 15998 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15999 } 16000 if (tcp->tcp_localnet) { 16001 tcp->tcp_rack_abs_max = 16002 MIN(tcp_local_dacks_max, rwnd / mss / 2); 16003 } else { 16004 /* 16005 * For a remote host on a different subnet (through a router), 16006 * we ack every other packet to be conforming to RFC1122. 16007 * tcp_deferred_acks_max is default to 2. 16008 */ 16009 tcp->tcp_rack_abs_max = 16010 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 16011 } 16012 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16013 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16014 else 16015 tcp->tcp_rack_cur_max = 0; 16016 /* 16017 * Increment the current rwnd by the amount the maximum grew (we 16018 * can not overwrite it since we might be in the middle of a 16019 * connection.) 16020 */ 16021 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16022 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16023 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16024 tcp->tcp_cwnd_max = rwnd; 16025 16026 if (tcp_detached) 16027 return (rwnd); 16028 /* 16029 * We set the maximum receive window into rq->q_hiwat. 16030 * This is not actually used for flow control. 16031 */ 16032 tcp->tcp_rq->q_hiwat = rwnd; 16033 /* 16034 * Set the Stream head high water mark. This doesn't have to be 16035 * here, since we are simply using default values, but we would 16036 * prefer to choose these values algorithmically, with a likely 16037 * relationship to rwnd. 16038 */ 16039 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 16040 return (rwnd); 16041 } 16042 16043 /* 16044 * Return SNMP stuff in buffer in mpdata. 16045 */ 16046 int 16047 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16048 { 16049 mblk_t *mpdata; 16050 mblk_t *mp_conn_ctl = NULL; 16051 mblk_t *mp_conn_tail; 16052 mblk_t *mp_attr_ctl = NULL; 16053 mblk_t *mp_attr_tail; 16054 mblk_t *mp6_conn_ctl = NULL; 16055 mblk_t *mp6_conn_tail; 16056 mblk_t *mp6_attr_ctl = NULL; 16057 mblk_t *mp6_attr_tail; 16058 struct opthdr *optp; 16059 mib2_tcpConnEntry_t tce; 16060 mib2_tcp6ConnEntry_t tce6; 16061 mib2_transportMLPEntry_t mlp; 16062 connf_t *connfp; 16063 conn_t *connp; 16064 int i; 16065 boolean_t ispriv; 16066 zoneid_t zoneid; 16067 int v4_conn_idx; 16068 int v6_conn_idx; 16069 16070 if (mpctl == NULL || 16071 (mpdata = mpctl->b_cont) == NULL || 16072 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16073 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16074 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16075 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16076 freemsg(mp_conn_ctl); 16077 freemsg(mp_attr_ctl); 16078 freemsg(mp6_conn_ctl); 16079 freemsg(mp6_attr_ctl); 16080 return (0); 16081 } 16082 16083 /* build table of connections -- need count in fixed part */ 16084 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 16085 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 16086 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 16087 SET_MIB(tcp_mib.tcpMaxConn, -1); 16088 SET_MIB(tcp_mib.tcpCurrEstab, 0); 16089 16090 ispriv = 16091 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16092 zoneid = Q_TO_CONN(q)->conn_zoneid; 16093 16094 v4_conn_idx = v6_conn_idx = 0; 16095 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16096 16097 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16098 16099 connfp = &ipcl_globalhash_fanout[i]; 16100 16101 connp = NULL; 16102 16103 while ((connp = 16104 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16105 tcp_t *tcp; 16106 boolean_t needattr; 16107 16108 if (connp->conn_zoneid != zoneid) 16109 continue; /* not in this zone */ 16110 16111 tcp = connp->conn_tcp; 16112 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 16113 tcp->tcp_ibsegs = 0; 16114 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 16115 tcp->tcp_obsegs = 0; 16116 16117 tce6.tcp6ConnState = tce.tcpConnState = 16118 tcp_snmp_state(tcp); 16119 if (tce.tcpConnState == MIB2_TCP_established || 16120 tce.tcpConnState == MIB2_TCP_closeWait) 16121 BUMP_MIB(&tcp_mib, tcpCurrEstab); 16122 16123 needattr = B_FALSE; 16124 bzero(&mlp, sizeof (mlp)); 16125 if (connp->conn_mlp_type != mlptSingle) { 16126 if (connp->conn_mlp_type == mlptShared || 16127 connp->conn_mlp_type == mlptBoth) 16128 mlp.tme_flags |= MIB2_TMEF_SHARED; 16129 if (connp->conn_mlp_type == mlptPrivate || 16130 connp->conn_mlp_type == mlptBoth) 16131 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16132 needattr = B_TRUE; 16133 } 16134 if (connp->conn_peercred != NULL) { 16135 ts_label_t *tsl; 16136 16137 tsl = crgetlabel(connp->conn_peercred); 16138 mlp.tme_doi = label2doi(tsl); 16139 mlp.tme_label = *label2bslabel(tsl); 16140 needattr = B_TRUE; 16141 } 16142 16143 /* Create a message to report on IPv6 entries */ 16144 if (tcp->tcp_ipversion == IPV6_VERSION) { 16145 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16146 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16147 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16148 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16149 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16150 /* Don't want just anybody seeing these... */ 16151 if (ispriv) { 16152 tce6.tcp6ConnEntryInfo.ce_snxt = 16153 tcp->tcp_snxt; 16154 tce6.tcp6ConnEntryInfo.ce_suna = 16155 tcp->tcp_suna; 16156 tce6.tcp6ConnEntryInfo.ce_rnxt = 16157 tcp->tcp_rnxt; 16158 tce6.tcp6ConnEntryInfo.ce_rack = 16159 tcp->tcp_rack; 16160 } else { 16161 /* 16162 * Netstat, unfortunately, uses this to 16163 * get send/receive queue sizes. How to fix? 16164 * Why not compute the difference only? 16165 */ 16166 tce6.tcp6ConnEntryInfo.ce_snxt = 16167 tcp->tcp_snxt - tcp->tcp_suna; 16168 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16169 tce6.tcp6ConnEntryInfo.ce_rnxt = 16170 tcp->tcp_rnxt - tcp->tcp_rack; 16171 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16172 } 16173 16174 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16175 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16176 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16177 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16178 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16179 16180 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16181 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16182 16183 mlp.tme_connidx = v6_conn_idx++; 16184 if (needattr) 16185 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16186 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16187 } 16188 /* 16189 * Create an IPv4 table entry for IPv4 entries and also 16190 * for IPv6 entries which are bound to in6addr_any 16191 * but don't have IPV6_V6ONLY set. 16192 * (i.e. anything an IPv4 peer could connect to) 16193 */ 16194 if (tcp->tcp_ipversion == IPV4_VERSION || 16195 (tcp->tcp_state <= TCPS_LISTEN && 16196 !tcp->tcp_connp->conn_ipv6_v6only && 16197 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16198 if (tcp->tcp_ipversion == IPV6_VERSION) { 16199 tce.tcpConnRemAddress = INADDR_ANY; 16200 tce.tcpConnLocalAddress = INADDR_ANY; 16201 } else { 16202 tce.tcpConnRemAddress = 16203 tcp->tcp_remote; 16204 tce.tcpConnLocalAddress = 16205 tcp->tcp_ip_src; 16206 } 16207 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16208 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16209 /* Don't want just anybody seeing these... */ 16210 if (ispriv) { 16211 tce.tcpConnEntryInfo.ce_snxt = 16212 tcp->tcp_snxt; 16213 tce.tcpConnEntryInfo.ce_suna = 16214 tcp->tcp_suna; 16215 tce.tcpConnEntryInfo.ce_rnxt = 16216 tcp->tcp_rnxt; 16217 tce.tcpConnEntryInfo.ce_rack = 16218 tcp->tcp_rack; 16219 } else { 16220 /* 16221 * Netstat, unfortunately, uses this to 16222 * get send/receive queue sizes. How 16223 * to fix? 16224 * Why not compute the difference only? 16225 */ 16226 tce.tcpConnEntryInfo.ce_snxt = 16227 tcp->tcp_snxt - tcp->tcp_suna; 16228 tce.tcpConnEntryInfo.ce_suna = 0; 16229 tce.tcpConnEntryInfo.ce_rnxt = 16230 tcp->tcp_rnxt - tcp->tcp_rack; 16231 tce.tcpConnEntryInfo.ce_rack = 0; 16232 } 16233 16234 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16235 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16236 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16237 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16238 tce.tcpConnEntryInfo.ce_state = 16239 tcp->tcp_state; 16240 16241 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16242 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16243 16244 mlp.tme_connidx = v4_conn_idx++; 16245 if (needattr) 16246 (void) snmp_append_data2( 16247 mp_attr_ctl->b_cont, 16248 &mp_attr_tail, (char *)&mlp, 16249 sizeof (mlp)); 16250 } 16251 } 16252 } 16253 16254 /* fixed length structure for IPv4 and IPv6 counters */ 16255 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16256 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 16257 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16258 optp->level = MIB2_TCP; 16259 optp->name = 0; 16260 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16261 optp->len = msgdsize(mpdata); 16262 qreply(q, mpctl); 16263 16264 /* table of connections... */ 16265 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16266 sizeof (struct T_optmgmt_ack)]; 16267 optp->level = MIB2_TCP; 16268 optp->name = MIB2_TCP_CONN; 16269 optp->len = msgdsize(mp_conn_ctl->b_cont); 16270 qreply(q, mp_conn_ctl); 16271 16272 /* table of MLP attributes... */ 16273 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16274 sizeof (struct T_optmgmt_ack)]; 16275 optp->level = MIB2_TCP; 16276 optp->name = EXPER_XPORT_MLP; 16277 optp->len = msgdsize(mp_attr_ctl->b_cont); 16278 if (optp->len == 0) 16279 freemsg(mp_attr_ctl); 16280 else 16281 qreply(q, mp_attr_ctl); 16282 16283 /* table of IPv6 connections... */ 16284 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16285 sizeof (struct T_optmgmt_ack)]; 16286 optp->level = MIB2_TCP6; 16287 optp->name = MIB2_TCP6_CONN; 16288 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16289 qreply(q, mp6_conn_ctl); 16290 16291 /* table of IPv6 MLP attributes... */ 16292 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16293 sizeof (struct T_optmgmt_ack)]; 16294 optp->level = MIB2_TCP6; 16295 optp->name = EXPER_XPORT_MLP; 16296 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16297 if (optp->len == 0) 16298 freemsg(mp6_attr_ctl); 16299 else 16300 qreply(q, mp6_attr_ctl); 16301 return (1); 16302 } 16303 16304 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16305 /* ARGSUSED */ 16306 int 16307 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16308 { 16309 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16310 16311 switch (level) { 16312 case MIB2_TCP: 16313 switch (name) { 16314 case 13: 16315 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16316 return (0); 16317 /* TODO: delete entry defined by tce */ 16318 return (1); 16319 default: 16320 return (0); 16321 } 16322 default: 16323 return (1); 16324 } 16325 } 16326 16327 /* Translate TCP state to MIB2 TCP state. */ 16328 static int 16329 tcp_snmp_state(tcp_t *tcp) 16330 { 16331 if (tcp == NULL) 16332 return (0); 16333 16334 switch (tcp->tcp_state) { 16335 case TCPS_CLOSED: 16336 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16337 case TCPS_BOUND: 16338 return (MIB2_TCP_closed); 16339 case TCPS_LISTEN: 16340 return (MIB2_TCP_listen); 16341 case TCPS_SYN_SENT: 16342 return (MIB2_TCP_synSent); 16343 case TCPS_SYN_RCVD: 16344 return (MIB2_TCP_synReceived); 16345 case TCPS_ESTABLISHED: 16346 return (MIB2_TCP_established); 16347 case TCPS_CLOSE_WAIT: 16348 return (MIB2_TCP_closeWait); 16349 case TCPS_FIN_WAIT_1: 16350 return (MIB2_TCP_finWait1); 16351 case TCPS_CLOSING: 16352 return (MIB2_TCP_closing); 16353 case TCPS_LAST_ACK: 16354 return (MIB2_TCP_lastAck); 16355 case TCPS_FIN_WAIT_2: 16356 return (MIB2_TCP_finWait2); 16357 case TCPS_TIME_WAIT: 16358 return (MIB2_TCP_timeWait); 16359 default: 16360 return (0); 16361 } 16362 } 16363 16364 static char tcp_report_header[] = 16365 "TCP " MI_COL_HDRPAD_STR 16366 "zone dest snxt suna " 16367 "swnd rnxt rack rwnd rto mss w sw rw t " 16368 "recent [lport,fport] state"; 16369 16370 /* 16371 * TCP status report triggered via the Named Dispatch mechanism. 16372 */ 16373 /* ARGSUSED */ 16374 static void 16375 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16376 cred_t *cr) 16377 { 16378 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16379 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16380 char cflag; 16381 in6_addr_t v6dst; 16382 char buf[80]; 16383 uint_t print_len, buf_len; 16384 16385 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16386 if (buf_len <= 0) 16387 return; 16388 16389 if (hashval >= 0) 16390 (void) sprintf(hash, "%03d ", hashval); 16391 else 16392 hash[0] = '\0'; 16393 16394 /* 16395 * Note that we use the remote address in the tcp_b structure. 16396 * This means that it will print out the real destination address, 16397 * not the next hop's address if source routing is used. This 16398 * avoid the confusion on the output because user may not 16399 * know that source routing is used for a connection. 16400 */ 16401 if (tcp->tcp_ipversion == IPV4_VERSION) { 16402 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16403 } else { 16404 v6dst = tcp->tcp_remote_v6; 16405 } 16406 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16407 /* 16408 * the ispriv checks are so that normal users cannot determine 16409 * sequence number information using NDD. 16410 */ 16411 16412 if (TCP_IS_DETACHED(tcp)) 16413 cflag = '*'; 16414 else 16415 cflag = ' '; 16416 print_len = snprintf((char *)mp->b_wptr, buf_len, 16417 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16418 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16419 hash, 16420 (void *)tcp, 16421 tcp->tcp_connp->conn_zoneid, 16422 addrbuf, 16423 (ispriv) ? tcp->tcp_snxt : 0, 16424 (ispriv) ? tcp->tcp_suna : 0, 16425 tcp->tcp_swnd, 16426 (ispriv) ? tcp->tcp_rnxt : 0, 16427 (ispriv) ? tcp->tcp_rack : 0, 16428 tcp->tcp_rwnd, 16429 tcp->tcp_rto, 16430 tcp->tcp_mss, 16431 tcp->tcp_snd_ws_ok, 16432 tcp->tcp_snd_ws, 16433 tcp->tcp_rcv_ws, 16434 tcp->tcp_snd_ts_ok, 16435 tcp->tcp_ts_recent, 16436 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16437 if (print_len < buf_len) { 16438 ((mblk_t *)mp)->b_wptr += print_len; 16439 } else { 16440 ((mblk_t *)mp)->b_wptr += buf_len; 16441 } 16442 } 16443 16444 /* 16445 * TCP status report (for listeners only) triggered via the Named Dispatch 16446 * mechanism. 16447 */ 16448 /* ARGSUSED */ 16449 static void 16450 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16451 { 16452 char addrbuf[INET6_ADDRSTRLEN]; 16453 in6_addr_t v6dst; 16454 uint_t print_len, buf_len; 16455 16456 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16457 if (buf_len <= 0) 16458 return; 16459 16460 if (tcp->tcp_ipversion == IPV4_VERSION) { 16461 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16462 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16463 } else { 16464 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16465 addrbuf, sizeof (addrbuf)); 16466 } 16467 print_len = snprintf((char *)mp->b_wptr, buf_len, 16468 "%03d " 16469 MI_COL_PTRFMT_STR 16470 "%d %s %05u %08u %d/%d/%d%c\n", 16471 hashval, (void *)tcp, 16472 tcp->tcp_connp->conn_zoneid, 16473 addrbuf, 16474 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16475 tcp->tcp_conn_req_seqnum, 16476 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16477 tcp->tcp_conn_req_max, 16478 tcp->tcp_syn_defense ? '*' : ' '); 16479 if (print_len < buf_len) { 16480 ((mblk_t *)mp)->b_wptr += print_len; 16481 } else { 16482 ((mblk_t *)mp)->b_wptr += buf_len; 16483 } 16484 } 16485 16486 /* TCP status report triggered via the Named Dispatch mechanism. */ 16487 /* ARGSUSED */ 16488 static int 16489 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16490 { 16491 tcp_t *tcp; 16492 int i; 16493 conn_t *connp; 16494 connf_t *connfp; 16495 zoneid_t zoneid; 16496 16497 /* 16498 * Because of the ndd constraint, at most we can have 64K buffer 16499 * to put in all TCP info. So to be more efficient, just 16500 * allocate a 64K buffer here, assuming we need that large buffer. 16501 * This may be a problem as any user can read tcp_status. Therefore 16502 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16503 * This should be OK as normal users should not do this too often. 16504 */ 16505 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16506 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16507 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16508 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16509 return (0); 16510 } 16511 } 16512 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16513 /* The following may work even if we cannot get a large buf. */ 16514 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16515 return (0); 16516 } 16517 16518 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16519 16520 zoneid = Q_TO_CONN(q)->conn_zoneid; 16521 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16522 16523 connfp = &ipcl_globalhash_fanout[i]; 16524 16525 connp = NULL; 16526 16527 while ((connp = 16528 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16529 tcp = connp->conn_tcp; 16530 if (zoneid != GLOBAL_ZONEID && 16531 zoneid != connp->conn_zoneid) 16532 continue; 16533 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16534 cr); 16535 } 16536 16537 } 16538 16539 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16540 return (0); 16541 } 16542 16543 /* TCP status report triggered via the Named Dispatch mechanism. */ 16544 /* ARGSUSED */ 16545 static int 16546 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16547 { 16548 tf_t *tbf; 16549 tcp_t *tcp; 16550 int i; 16551 zoneid_t zoneid; 16552 16553 /* Refer to comments in tcp_status_report(). */ 16554 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16555 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16556 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16557 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16558 return (0); 16559 } 16560 } 16561 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16562 /* The following may work even if we cannot get a large buf. */ 16563 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16564 return (0); 16565 } 16566 16567 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16568 16569 zoneid = Q_TO_CONN(q)->conn_zoneid; 16570 16571 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16572 tbf = &tcp_bind_fanout[i]; 16573 mutex_enter(&tbf->tf_lock); 16574 for (tcp = tbf->tf_tcp; tcp != NULL; 16575 tcp = tcp->tcp_bind_hash) { 16576 if (zoneid != GLOBAL_ZONEID && 16577 zoneid != tcp->tcp_connp->conn_zoneid) 16578 continue; 16579 CONN_INC_REF(tcp->tcp_connp); 16580 tcp_report_item(mp->b_cont, tcp, i, 16581 Q_TO_TCP(q), cr); 16582 CONN_DEC_REF(tcp->tcp_connp); 16583 } 16584 mutex_exit(&tbf->tf_lock); 16585 } 16586 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16587 return (0); 16588 } 16589 16590 /* TCP status report triggered via the Named Dispatch mechanism. */ 16591 /* ARGSUSED */ 16592 static int 16593 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16594 { 16595 connf_t *connfp; 16596 conn_t *connp; 16597 tcp_t *tcp; 16598 int i; 16599 zoneid_t zoneid; 16600 16601 /* Refer to comments in tcp_status_report(). */ 16602 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16603 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16604 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16605 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16606 return (0); 16607 } 16608 } 16609 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16610 /* The following may work even if we cannot get a large buf. */ 16611 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16612 return (0); 16613 } 16614 16615 (void) mi_mpprintf(mp, 16616 " TCP " MI_COL_HDRPAD_STR 16617 "zone IP addr port seqnum backlog (q0/q/max)"); 16618 16619 zoneid = Q_TO_CONN(q)->conn_zoneid; 16620 16621 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16622 connfp = &ipcl_bind_fanout[i]; 16623 connp = NULL; 16624 while ((connp = 16625 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16626 tcp = connp->conn_tcp; 16627 if (zoneid != GLOBAL_ZONEID && 16628 zoneid != connp->conn_zoneid) 16629 continue; 16630 tcp_report_listener(mp->b_cont, tcp, i); 16631 } 16632 } 16633 16634 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16635 return (0); 16636 } 16637 16638 /* TCP status report triggered via the Named Dispatch mechanism. */ 16639 /* ARGSUSED */ 16640 static int 16641 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16642 { 16643 connf_t *connfp; 16644 conn_t *connp; 16645 tcp_t *tcp; 16646 int i; 16647 zoneid_t zoneid; 16648 16649 /* Refer to comments in tcp_status_report(). */ 16650 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16651 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16652 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16653 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16654 return (0); 16655 } 16656 } 16657 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16658 /* The following may work even if we cannot get a large buf. */ 16659 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16660 return (0); 16661 } 16662 16663 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16664 ipcl_conn_fanout_size); 16665 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16666 16667 zoneid = Q_TO_CONN(q)->conn_zoneid; 16668 16669 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16670 connfp = &ipcl_conn_fanout[i]; 16671 connp = NULL; 16672 while ((connp = 16673 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16674 tcp = connp->conn_tcp; 16675 if (zoneid != GLOBAL_ZONEID && 16676 zoneid != connp->conn_zoneid) 16677 continue; 16678 tcp_report_item(mp->b_cont, tcp, i, 16679 Q_TO_TCP(q), cr); 16680 } 16681 } 16682 16683 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16684 return (0); 16685 } 16686 16687 /* TCP status report triggered via the Named Dispatch mechanism. */ 16688 /* ARGSUSED */ 16689 static int 16690 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16691 { 16692 tf_t *tf; 16693 tcp_t *tcp; 16694 int i; 16695 zoneid_t zoneid; 16696 16697 /* Refer to comments in tcp_status_report(). */ 16698 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16699 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16700 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16701 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16702 return (0); 16703 } 16704 } 16705 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16706 /* The following may work even if we cannot get a large buf. */ 16707 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16708 return (0); 16709 } 16710 16711 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16712 16713 zoneid = Q_TO_CONN(q)->conn_zoneid; 16714 16715 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16716 tf = &tcp_acceptor_fanout[i]; 16717 mutex_enter(&tf->tf_lock); 16718 for (tcp = tf->tf_tcp; tcp != NULL; 16719 tcp = tcp->tcp_acceptor_hash) { 16720 if (zoneid != GLOBAL_ZONEID && 16721 zoneid != tcp->tcp_connp->conn_zoneid) 16722 continue; 16723 tcp_report_item(mp->b_cont, tcp, i, 16724 Q_TO_TCP(q), cr); 16725 } 16726 mutex_exit(&tf->tf_lock); 16727 } 16728 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16729 return (0); 16730 } 16731 16732 /* 16733 * tcp_timer is the timer service routine. It handles the retransmission, 16734 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16735 * from the state of the tcp instance what kind of action needs to be done 16736 * at the time it is called. 16737 */ 16738 static void 16739 tcp_timer(void *arg) 16740 { 16741 mblk_t *mp; 16742 clock_t first_threshold; 16743 clock_t second_threshold; 16744 clock_t ms; 16745 uint32_t mss; 16746 conn_t *connp = (conn_t *)arg; 16747 tcp_t *tcp = connp->conn_tcp; 16748 16749 tcp->tcp_timer_tid = 0; 16750 16751 if (tcp->tcp_fused) 16752 return; 16753 16754 first_threshold = tcp->tcp_first_timer_threshold; 16755 second_threshold = tcp->tcp_second_timer_threshold; 16756 switch (tcp->tcp_state) { 16757 case TCPS_IDLE: 16758 case TCPS_BOUND: 16759 case TCPS_LISTEN: 16760 return; 16761 case TCPS_SYN_RCVD: { 16762 tcp_t *listener = tcp->tcp_listener; 16763 16764 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16765 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16766 /* it's our first timeout */ 16767 tcp->tcp_syn_rcvd_timeout = 1; 16768 mutex_enter(&listener->tcp_eager_lock); 16769 listener->tcp_syn_rcvd_timeout++; 16770 if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) { 16771 /* 16772 * Make this eager available for drop if we 16773 * need to drop one to accomodate a new 16774 * incoming SYN request. 16775 */ 16776 MAKE_DROPPABLE(listener, tcp); 16777 } 16778 if (!listener->tcp_syn_defense && 16779 (listener->tcp_syn_rcvd_timeout > 16780 (tcp_conn_req_max_q0 >> 2)) && 16781 (tcp_conn_req_max_q0 > 200)) { 16782 /* We may be under attack. Put on a defense. */ 16783 listener->tcp_syn_defense = B_TRUE; 16784 cmn_err(CE_WARN, "High TCP connect timeout " 16785 "rate! System (port %d) may be under a " 16786 "SYN flood attack!", 16787 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16788 16789 listener->tcp_ip_addr_cache = kmem_zalloc( 16790 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16791 KM_NOSLEEP); 16792 } 16793 mutex_exit(&listener->tcp_eager_lock); 16794 } else if (listener != NULL) { 16795 mutex_enter(&listener->tcp_eager_lock); 16796 tcp->tcp_syn_rcvd_timeout++; 16797 if (tcp->tcp_syn_rcvd_timeout > 1 && 16798 tcp->tcp_closemp_used == 0) { 16799 /* 16800 * This is our second timeout. Put the tcp in 16801 * the list of droppable eagers to allow it to 16802 * be dropped, if needed. We don't check 16803 * whether tcp_dontdrop is set or not to 16804 * protect ourselve from a SYN attack where a 16805 * remote host can spoof itself as one of the 16806 * good IP source and continue to hold 16807 * resources too long. 16808 */ 16809 MAKE_DROPPABLE(listener, tcp); 16810 } 16811 mutex_exit(&listener->tcp_eager_lock); 16812 } 16813 } 16814 /* FALLTHRU */ 16815 case TCPS_SYN_SENT: 16816 first_threshold = tcp->tcp_first_ctimer_threshold; 16817 second_threshold = tcp->tcp_second_ctimer_threshold; 16818 break; 16819 case TCPS_ESTABLISHED: 16820 case TCPS_FIN_WAIT_1: 16821 case TCPS_CLOSING: 16822 case TCPS_CLOSE_WAIT: 16823 case TCPS_LAST_ACK: 16824 /* If we have data to rexmit */ 16825 if (tcp->tcp_suna != tcp->tcp_snxt) { 16826 clock_t time_to_wait; 16827 16828 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16829 if (!tcp->tcp_xmit_head) 16830 break; 16831 time_to_wait = lbolt - 16832 (clock_t)tcp->tcp_xmit_head->b_prev; 16833 time_to_wait = tcp->tcp_rto - 16834 TICK_TO_MSEC(time_to_wait); 16835 /* 16836 * If the timer fires too early, 1 clock tick earlier, 16837 * restart the timer. 16838 */ 16839 if (time_to_wait > msec_per_tick) { 16840 TCP_STAT(tcp_timer_fire_early); 16841 TCP_TIMER_RESTART(tcp, time_to_wait); 16842 return; 16843 } 16844 /* 16845 * When we probe zero windows, we force the swnd open. 16846 * If our peer acks with a closed window swnd will be 16847 * set to zero by tcp_rput(). As long as we are 16848 * receiving acks tcp_rput will 16849 * reset 'tcp_ms_we_have_waited' so as not to trip the 16850 * first and second interval actions. NOTE: the timer 16851 * interval is allowed to continue its exponential 16852 * backoff. 16853 */ 16854 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16855 if (tcp->tcp_debug) { 16856 (void) strlog(TCP_MOD_ID, 0, 1, 16857 SL_TRACE, "tcp_timer: zero win"); 16858 } 16859 } else { 16860 /* 16861 * After retransmission, we need to do 16862 * slow start. Set the ssthresh to one 16863 * half of current effective window and 16864 * cwnd to one MSS. Also reset 16865 * tcp_cwnd_cnt. 16866 * 16867 * Note that if tcp_ssthresh is reduced because 16868 * of ECN, do not reduce it again unless it is 16869 * already one window of data away (tcp_cwr 16870 * should then be cleared) or this is a 16871 * timeout for a retransmitted segment. 16872 */ 16873 uint32_t npkt; 16874 16875 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16876 npkt = ((tcp->tcp_timer_backoff ? 16877 tcp->tcp_cwnd_ssthresh : 16878 tcp->tcp_snxt - 16879 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16880 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16881 tcp->tcp_mss; 16882 } 16883 tcp->tcp_cwnd = tcp->tcp_mss; 16884 tcp->tcp_cwnd_cnt = 0; 16885 if (tcp->tcp_ecn_ok) { 16886 tcp->tcp_cwr = B_TRUE; 16887 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16888 tcp->tcp_ecn_cwr_sent = B_FALSE; 16889 } 16890 } 16891 break; 16892 } 16893 /* 16894 * We have something to send yet we cannot send. The 16895 * reason can be: 16896 * 16897 * 1. Zero send window: we need to do zero window probe. 16898 * 2. Zero cwnd: because of ECN, we need to "clock out 16899 * segments. 16900 * 3. SWS avoidance: receiver may have shrunk window, 16901 * reset our knowledge. 16902 * 16903 * Note that condition 2 can happen with either 1 or 16904 * 3. But 1 and 3 are exclusive. 16905 */ 16906 if (tcp->tcp_unsent != 0) { 16907 if (tcp->tcp_cwnd == 0) { 16908 /* 16909 * Set tcp_cwnd to 1 MSS so that a 16910 * new segment can be sent out. We 16911 * are "clocking out" new data when 16912 * the network is really congested. 16913 */ 16914 ASSERT(tcp->tcp_ecn_ok); 16915 tcp->tcp_cwnd = tcp->tcp_mss; 16916 } 16917 if (tcp->tcp_swnd == 0) { 16918 /* Extend window for zero window probe */ 16919 tcp->tcp_swnd++; 16920 tcp->tcp_zero_win_probe = B_TRUE; 16921 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16922 } else { 16923 /* 16924 * Handle timeout from sender SWS avoidance. 16925 * Reset our knowledge of the max send window 16926 * since the receiver might have reduced its 16927 * receive buffer. Avoid setting tcp_max_swnd 16928 * to one since that will essentially disable 16929 * the SWS checks. 16930 * 16931 * Note that since we don't have a SWS 16932 * state variable, if the timeout is set 16933 * for ECN but not for SWS, this 16934 * code will also be executed. This is 16935 * fine as tcp_max_swnd is updated 16936 * constantly and it will not affect 16937 * anything. 16938 */ 16939 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16940 } 16941 tcp_wput_data(tcp, NULL, B_FALSE); 16942 return; 16943 } 16944 /* Is there a FIN that needs to be to re retransmitted? */ 16945 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16946 !tcp->tcp_fin_acked) 16947 break; 16948 /* Nothing to do, return without restarting timer. */ 16949 TCP_STAT(tcp_timer_fire_miss); 16950 return; 16951 case TCPS_FIN_WAIT_2: 16952 /* 16953 * User closed the TCP endpoint and peer ACK'ed our FIN. 16954 * We waited some time for for peer's FIN, but it hasn't 16955 * arrived. We flush the connection now to avoid 16956 * case where the peer has rebooted. 16957 */ 16958 if (TCP_IS_DETACHED(tcp)) { 16959 (void) tcp_clean_death(tcp, 0, 23); 16960 } else { 16961 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16962 } 16963 return; 16964 case TCPS_TIME_WAIT: 16965 (void) tcp_clean_death(tcp, 0, 24); 16966 return; 16967 default: 16968 if (tcp->tcp_debug) { 16969 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16970 "tcp_timer: strange state (%d) %s", 16971 tcp->tcp_state, tcp_display(tcp, NULL, 16972 DISP_PORT_ONLY)); 16973 } 16974 return; 16975 } 16976 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16977 /* 16978 * For zero window probe, we need to send indefinitely, 16979 * unless we have not heard from the other side for some 16980 * time... 16981 */ 16982 if ((tcp->tcp_zero_win_probe == 0) || 16983 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16984 second_threshold)) { 16985 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16986 /* 16987 * If TCP is in SYN_RCVD state, send back a 16988 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16989 * should be zero in TCPS_SYN_RCVD state. 16990 */ 16991 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16992 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16993 "in SYN_RCVD", 16994 tcp, tcp->tcp_snxt, 16995 tcp->tcp_rnxt, TH_RST | TH_ACK); 16996 } 16997 (void) tcp_clean_death(tcp, 16998 tcp->tcp_client_errno ? 16999 tcp->tcp_client_errno : ETIMEDOUT, 25); 17000 return; 17001 } else { 17002 /* 17003 * Set tcp_ms_we_have_waited to second_threshold 17004 * so that in next timeout, we will do the above 17005 * check (lbolt - tcp_last_recv_time). This is 17006 * also to avoid overflow. 17007 * 17008 * We don't need to decrement tcp_timer_backoff 17009 * to avoid overflow because it will be decremented 17010 * later if new timeout value is greater than 17011 * tcp_rexmit_interval_max. In the case when 17012 * tcp_rexmit_interval_max is greater than 17013 * second_threshold, it means that we will wait 17014 * longer than second_threshold to send the next 17015 * window probe. 17016 */ 17017 tcp->tcp_ms_we_have_waited = second_threshold; 17018 } 17019 } else if (ms > first_threshold) { 17020 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17021 tcp->tcp_xmit_head != NULL) { 17022 tcp->tcp_xmit_head = 17023 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17024 } 17025 /* 17026 * We have been retransmitting for too long... The RTT 17027 * we calculated is probably incorrect. Reinitialize it. 17028 * Need to compensate for 0 tcp_rtt_sa. Reset 17029 * tcp_rtt_update so that we won't accidentally cache a 17030 * bad value. But only do this if this is not a zero 17031 * window probe. 17032 */ 17033 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17034 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17035 (tcp->tcp_rtt_sa >> 5); 17036 tcp->tcp_rtt_sa = 0; 17037 tcp_ip_notify(tcp); 17038 tcp->tcp_rtt_update = 0; 17039 } 17040 } 17041 tcp->tcp_timer_backoff++; 17042 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17043 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17044 tcp_rexmit_interval_min) { 17045 /* 17046 * This means the original RTO is tcp_rexmit_interval_min. 17047 * So we will use tcp_rexmit_interval_min as the RTO value 17048 * and do the backoff. 17049 */ 17050 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 17051 } else { 17052 ms <<= tcp->tcp_timer_backoff; 17053 } 17054 if (ms > tcp_rexmit_interval_max) { 17055 ms = tcp_rexmit_interval_max; 17056 /* 17057 * ms is at max, decrement tcp_timer_backoff to avoid 17058 * overflow. 17059 */ 17060 tcp->tcp_timer_backoff--; 17061 } 17062 tcp->tcp_ms_we_have_waited += ms; 17063 if (tcp->tcp_zero_win_probe == 0) { 17064 tcp->tcp_rto = ms; 17065 } 17066 TCP_TIMER_RESTART(tcp, ms); 17067 /* 17068 * This is after a timeout and tcp_rto is backed off. Set 17069 * tcp_set_timer to 1 so that next time RTO is updated, we will 17070 * restart the timer with a correct value. 17071 */ 17072 tcp->tcp_set_timer = 1; 17073 mss = tcp->tcp_snxt - tcp->tcp_suna; 17074 if (mss > tcp->tcp_mss) 17075 mss = tcp->tcp_mss; 17076 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17077 mss = tcp->tcp_swnd; 17078 17079 if ((mp = tcp->tcp_xmit_head) != NULL) 17080 mp->b_prev = (mblk_t *)lbolt; 17081 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17082 B_TRUE); 17083 17084 /* 17085 * When slow start after retransmission begins, start with 17086 * this seq no. tcp_rexmit_max marks the end of special slow 17087 * start phase. tcp_snd_burst controls how many segments 17088 * can be sent because of an ack. 17089 */ 17090 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17091 tcp->tcp_snd_burst = TCP_CWND_SS; 17092 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17093 (tcp->tcp_unsent == 0)) { 17094 tcp->tcp_rexmit_max = tcp->tcp_fss; 17095 } else { 17096 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17097 } 17098 tcp->tcp_rexmit = B_TRUE; 17099 tcp->tcp_dupack_cnt = 0; 17100 17101 /* 17102 * Remove all rexmit SACK blk to start from fresh. 17103 */ 17104 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17105 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17106 tcp->tcp_num_notsack_blk = 0; 17107 tcp->tcp_cnt_notsack_list = 0; 17108 } 17109 if (mp == NULL) { 17110 return; 17111 } 17112 /* Attach credentials to retransmitted initial SYNs. */ 17113 if (tcp->tcp_state == TCPS_SYN_SENT) { 17114 mblk_setcred(mp, tcp->tcp_cred); 17115 DB_CPID(mp) = tcp->tcp_cpid; 17116 } 17117 17118 tcp->tcp_csuna = tcp->tcp_snxt; 17119 BUMP_MIB(&tcp_mib, tcpRetransSegs); 17120 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 17121 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17122 tcp_send_data(tcp, tcp->tcp_wq, mp); 17123 17124 } 17125 17126 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17127 static void 17128 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17129 { 17130 conn_t *connp; 17131 17132 switch (tcp->tcp_state) { 17133 case TCPS_BOUND: 17134 case TCPS_LISTEN: 17135 break; 17136 default: 17137 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17138 return; 17139 } 17140 17141 /* 17142 * Need to clean up all the eagers since after the unbind, segments 17143 * will no longer be delivered to this listener stream. 17144 */ 17145 mutex_enter(&tcp->tcp_eager_lock); 17146 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17147 tcp_eager_cleanup(tcp, 0); 17148 } 17149 mutex_exit(&tcp->tcp_eager_lock); 17150 17151 if (tcp->tcp_ipversion == IPV4_VERSION) { 17152 tcp->tcp_ipha->ipha_src = 0; 17153 } else { 17154 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17155 } 17156 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17157 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17158 tcp_bind_hash_remove(tcp); 17159 tcp->tcp_state = TCPS_IDLE; 17160 tcp->tcp_mdt = B_FALSE; 17161 /* Send M_FLUSH according to TPI */ 17162 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17163 connp = tcp->tcp_connp; 17164 connp->conn_mdt_ok = B_FALSE; 17165 ipcl_hash_remove(connp); 17166 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17167 mp = mi_tpi_ok_ack_alloc(mp); 17168 putnext(tcp->tcp_rq, mp); 17169 } 17170 17171 /* 17172 * Don't let port fall into the privileged range. 17173 * Since the extra privileged ports can be arbitrary we also 17174 * ensure that we exclude those from consideration. 17175 * tcp_g_epriv_ports is not sorted thus we loop over it until 17176 * there are no changes. 17177 * 17178 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17179 * but instead the code relies on: 17180 * - the fact that the address of the array and its size never changes 17181 * - the atomic assignment of the elements of the array 17182 * 17183 * Returns 0 if there are no more ports available. 17184 * 17185 * TS note: skip multilevel ports. 17186 */ 17187 static in_port_t 17188 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17189 { 17190 int i; 17191 boolean_t restart = B_FALSE; 17192 17193 if (random && tcp_random_anon_port != 0) { 17194 (void) random_get_pseudo_bytes((uint8_t *)&port, 17195 sizeof (in_port_t)); 17196 /* 17197 * Unless changed by a sys admin, the smallest anon port 17198 * is 32768 and the largest anon port is 65535. It is 17199 * very likely (50%) for the random port to be smaller 17200 * than the smallest anon port. When that happens, 17201 * add port % (anon port range) to the smallest anon 17202 * port to get the random port. It should fall into the 17203 * valid anon port range. 17204 */ 17205 if (port < tcp_smallest_anon_port) { 17206 port = tcp_smallest_anon_port + 17207 port % (tcp_largest_anon_port - 17208 tcp_smallest_anon_port); 17209 } 17210 } 17211 17212 retry: 17213 if (port < tcp_smallest_anon_port) 17214 port = (in_port_t)tcp_smallest_anon_port; 17215 17216 if (port > tcp_largest_anon_port) { 17217 if (restart) 17218 return (0); 17219 restart = B_TRUE; 17220 port = (in_port_t)tcp_smallest_anon_port; 17221 } 17222 17223 if (port < tcp_smallest_nonpriv_port) 17224 port = (in_port_t)tcp_smallest_nonpriv_port; 17225 17226 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 17227 if (port == tcp_g_epriv_ports[i]) { 17228 port++; 17229 /* 17230 * Make sure whether the port is in the 17231 * valid range. 17232 */ 17233 goto retry; 17234 } 17235 } 17236 if (is_system_labeled() && 17237 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17238 IPPROTO_TCP, B_TRUE)) != 0) { 17239 port = i; 17240 goto retry; 17241 } 17242 return (port); 17243 } 17244 17245 /* 17246 * Return the next anonymous port in the privileged port range for 17247 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17248 * downwards. This is the same behavior as documented in the userland 17249 * library call rresvport(3N). 17250 * 17251 * TS note: skip multilevel ports. 17252 */ 17253 static in_port_t 17254 tcp_get_next_priv_port(const tcp_t *tcp) 17255 { 17256 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17257 in_port_t nextport; 17258 boolean_t restart = B_FALSE; 17259 17260 retry: 17261 if (next_priv_port < tcp_min_anonpriv_port || 17262 next_priv_port >= IPPORT_RESERVED) { 17263 next_priv_port = IPPORT_RESERVED - 1; 17264 if (restart) 17265 return (0); 17266 restart = B_TRUE; 17267 } 17268 if (is_system_labeled() && 17269 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17270 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17271 next_priv_port = nextport; 17272 goto retry; 17273 } 17274 return (next_priv_port--); 17275 } 17276 17277 /* The write side r/w procedure. */ 17278 17279 #if CCS_STATS 17280 struct { 17281 struct { 17282 int64_t count, bytes; 17283 } tot, hit; 17284 } wrw_stats; 17285 #endif 17286 17287 /* 17288 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17289 * messages. 17290 */ 17291 /* ARGSUSED */ 17292 static void 17293 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17294 { 17295 conn_t *connp = (conn_t *)arg; 17296 tcp_t *tcp = connp->conn_tcp; 17297 queue_t *q = tcp->tcp_wq; 17298 17299 ASSERT(DB_TYPE(mp) != M_IOCTL); 17300 /* 17301 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17302 * Once the close starts, streamhead and sockfs will not let any data 17303 * packets come down (close ensures that there are no threads using the 17304 * queue and no new threads will come down) but since qprocsoff() 17305 * hasn't happened yet, a M_FLUSH or some non data message might 17306 * get reflected back (in response to our own FLUSHRW) and get 17307 * processed after tcp_close() is done. The conn would still be valid 17308 * because a ref would have added but we need to check the state 17309 * before actually processing the packet. 17310 */ 17311 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17312 freemsg(mp); 17313 return; 17314 } 17315 17316 switch (DB_TYPE(mp)) { 17317 case M_IOCDATA: 17318 tcp_wput_iocdata(tcp, mp); 17319 break; 17320 case M_FLUSH: 17321 tcp_wput_flush(tcp, mp); 17322 break; 17323 default: 17324 CALL_IP_WPUT(connp, q, mp); 17325 break; 17326 } 17327 } 17328 17329 /* 17330 * The TCP fast path write put procedure. 17331 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17332 */ 17333 /* ARGSUSED */ 17334 void 17335 tcp_output(void *arg, mblk_t *mp, void *arg2) 17336 { 17337 int len; 17338 int hdrlen; 17339 int plen; 17340 mblk_t *mp1; 17341 uchar_t *rptr; 17342 uint32_t snxt; 17343 tcph_t *tcph; 17344 struct datab *db; 17345 uint32_t suna; 17346 uint32_t mss; 17347 ipaddr_t *dst; 17348 ipaddr_t *src; 17349 uint32_t sum; 17350 int usable; 17351 conn_t *connp = (conn_t *)arg; 17352 tcp_t *tcp = connp->conn_tcp; 17353 uint32_t msize; 17354 17355 /* 17356 * Try and ASSERT the minimum possible references on the 17357 * conn early enough. Since we are executing on write side, 17358 * the connection is obviously not detached and that means 17359 * there is a ref each for TCP and IP. Since we are behind 17360 * the squeue, the minimum references needed are 3. If the 17361 * conn is in classifier hash list, there should be an 17362 * extra ref for that (we check both the possibilities). 17363 */ 17364 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17365 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17366 17367 ASSERT(DB_TYPE(mp) == M_DATA); 17368 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17369 17370 mutex_enter(&connp->conn_lock); 17371 tcp->tcp_squeue_bytes -= msize; 17372 mutex_exit(&connp->conn_lock); 17373 17374 /* Bypass tcp protocol for fused tcp loopback */ 17375 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17376 return; 17377 17378 mss = tcp->tcp_mss; 17379 if (tcp->tcp_xmit_zc_clean) 17380 mp = tcp_zcopy_backoff(tcp, mp, 0); 17381 17382 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17383 len = (int)(mp->b_wptr - mp->b_rptr); 17384 17385 /* 17386 * Criteria for fast path: 17387 * 17388 * 1. no unsent data 17389 * 2. single mblk in request 17390 * 3. connection established 17391 * 4. data in mblk 17392 * 5. len <= mss 17393 * 6. no tcp_valid bits 17394 */ 17395 if ((tcp->tcp_unsent != 0) || 17396 (tcp->tcp_cork) || 17397 (mp->b_cont != NULL) || 17398 (tcp->tcp_state != TCPS_ESTABLISHED) || 17399 (len == 0) || 17400 (len > mss) || 17401 (tcp->tcp_valid_bits != 0)) { 17402 tcp_wput_data(tcp, mp, B_FALSE); 17403 return; 17404 } 17405 17406 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17407 ASSERT(tcp->tcp_fin_sent == 0); 17408 17409 /* queue new packet onto retransmission queue */ 17410 if (tcp->tcp_xmit_head == NULL) { 17411 tcp->tcp_xmit_head = mp; 17412 } else { 17413 tcp->tcp_xmit_last->b_cont = mp; 17414 } 17415 tcp->tcp_xmit_last = mp; 17416 tcp->tcp_xmit_tail = mp; 17417 17418 /* find out how much we can send */ 17419 /* BEGIN CSTYLED */ 17420 /* 17421 * un-acked usable 17422 * |--------------|-----------------| 17423 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17424 */ 17425 /* END CSTYLED */ 17426 17427 /* start sending from tcp_snxt */ 17428 snxt = tcp->tcp_snxt; 17429 17430 /* 17431 * Check to see if this connection has been idled for some 17432 * time and no ACK is expected. If it is, we need to slow 17433 * start again to get back the connection's "self-clock" as 17434 * described in VJ's paper. 17435 * 17436 * Refer to the comment in tcp_mss_set() for the calculation 17437 * of tcp_cwnd after idle. 17438 */ 17439 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17440 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17441 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17442 } 17443 17444 usable = tcp->tcp_swnd; /* tcp window size */ 17445 if (usable > tcp->tcp_cwnd) 17446 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17447 usable -= snxt; /* subtract stuff already sent */ 17448 suna = tcp->tcp_suna; 17449 usable += suna; 17450 /* usable can be < 0 if the congestion window is smaller */ 17451 if (len > usable) { 17452 /* Can't send complete M_DATA in one shot */ 17453 goto slow; 17454 } 17455 17456 if (tcp->tcp_flow_stopped && 17457 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17458 tcp_clrqfull(tcp); 17459 } 17460 17461 /* 17462 * determine if anything to send (Nagle). 17463 * 17464 * 1. len < tcp_mss (i.e. small) 17465 * 2. unacknowledged data present 17466 * 3. len < nagle limit 17467 * 4. last packet sent < nagle limit (previous packet sent) 17468 */ 17469 if ((len < mss) && (snxt != suna) && 17470 (len < (int)tcp->tcp_naglim) && 17471 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17472 /* 17473 * This was the first unsent packet and normally 17474 * mss < xmit_hiwater so there is no need to worry 17475 * about flow control. The next packet will go 17476 * through the flow control check in tcp_wput_data(). 17477 */ 17478 /* leftover work from above */ 17479 tcp->tcp_unsent = len; 17480 tcp->tcp_xmit_tail_unsent = len; 17481 17482 return; 17483 } 17484 17485 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17486 17487 if (snxt == suna) { 17488 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17489 } 17490 17491 /* we have always sent something */ 17492 tcp->tcp_rack_cnt = 0; 17493 17494 tcp->tcp_snxt = snxt + len; 17495 tcp->tcp_rack = tcp->tcp_rnxt; 17496 17497 if ((mp1 = dupb(mp)) == 0) 17498 goto no_memory; 17499 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17500 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17501 17502 /* adjust tcp header information */ 17503 tcph = tcp->tcp_tcph; 17504 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17505 17506 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17507 sum = (sum >> 16) + (sum & 0xFFFF); 17508 U16_TO_ABE16(sum, tcph->th_sum); 17509 17510 U32_TO_ABE32(snxt, tcph->th_seq); 17511 17512 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17513 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17514 BUMP_LOCAL(tcp->tcp_obsegs); 17515 17516 /* Update the latest receive window size in TCP header. */ 17517 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17518 tcph->th_win); 17519 17520 tcp->tcp_last_sent_len = (ushort_t)len; 17521 17522 plen = len + tcp->tcp_hdr_len; 17523 17524 if (tcp->tcp_ipversion == IPV4_VERSION) { 17525 tcp->tcp_ipha->ipha_length = htons(plen); 17526 } else { 17527 tcp->tcp_ip6h->ip6_plen = htons(plen - 17528 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17529 } 17530 17531 /* see if we need to allocate a mblk for the headers */ 17532 hdrlen = tcp->tcp_hdr_len; 17533 rptr = mp1->b_rptr - hdrlen; 17534 db = mp1->b_datap; 17535 if ((db->db_ref != 2) || rptr < db->db_base || 17536 (!OK_32PTR(rptr))) { 17537 /* NOTE: we assume allocb returns an OK_32PTR */ 17538 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17539 tcp_wroff_xtra, BPRI_MED); 17540 if (!mp) { 17541 freemsg(mp1); 17542 goto no_memory; 17543 } 17544 mp->b_cont = mp1; 17545 mp1 = mp; 17546 /* Leave room for Link Level header */ 17547 /* hdrlen = tcp->tcp_hdr_len; */ 17548 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17549 mp1->b_wptr = &rptr[hdrlen]; 17550 } 17551 mp1->b_rptr = rptr; 17552 17553 /* Fill in the timestamp option. */ 17554 if (tcp->tcp_snd_ts_ok) { 17555 U32_TO_BE32((uint32_t)lbolt, 17556 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17557 U32_TO_BE32(tcp->tcp_ts_recent, 17558 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17559 } else { 17560 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17561 } 17562 17563 /* copy header into outgoing packet */ 17564 dst = (ipaddr_t *)rptr; 17565 src = (ipaddr_t *)tcp->tcp_iphc; 17566 dst[0] = src[0]; 17567 dst[1] = src[1]; 17568 dst[2] = src[2]; 17569 dst[3] = src[3]; 17570 dst[4] = src[4]; 17571 dst[5] = src[5]; 17572 dst[6] = src[6]; 17573 dst[7] = src[7]; 17574 dst[8] = src[8]; 17575 dst[9] = src[9]; 17576 if (hdrlen -= 40) { 17577 hdrlen >>= 2; 17578 dst += 10; 17579 src += 10; 17580 do { 17581 *dst++ = *src++; 17582 } while (--hdrlen); 17583 } 17584 17585 /* 17586 * Set the ECN info in the TCP header. Note that this 17587 * is not the template header. 17588 */ 17589 if (tcp->tcp_ecn_ok) { 17590 SET_ECT(tcp, rptr); 17591 17592 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17593 if (tcp->tcp_ecn_echo_on) 17594 tcph->th_flags[0] |= TH_ECE; 17595 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17596 tcph->th_flags[0] |= TH_CWR; 17597 tcp->tcp_ecn_cwr_sent = B_TRUE; 17598 } 17599 } 17600 17601 if (tcp->tcp_ip_forward_progress) { 17602 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17603 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17604 tcp->tcp_ip_forward_progress = B_FALSE; 17605 } 17606 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17607 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17608 return; 17609 17610 /* 17611 * If we ran out of memory, we pretend to have sent the packet 17612 * and that it was lost on the wire. 17613 */ 17614 no_memory: 17615 return; 17616 17617 slow: 17618 /* leftover work from above */ 17619 tcp->tcp_unsent = len; 17620 tcp->tcp_xmit_tail_unsent = len; 17621 tcp_wput_data(tcp, NULL, B_FALSE); 17622 } 17623 17624 /* 17625 * The function called through squeue to get behind eager's perimeter to 17626 * finish the accept processing. 17627 */ 17628 /* ARGSUSED */ 17629 void 17630 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17631 { 17632 conn_t *connp = (conn_t *)arg; 17633 tcp_t *tcp = connp->conn_tcp; 17634 queue_t *q = tcp->tcp_rq; 17635 mblk_t *mp1; 17636 mblk_t *stropt_mp = mp; 17637 struct stroptions *stropt; 17638 uint_t thwin; 17639 17640 /* 17641 * Drop the eager's ref on the listener, that was placed when 17642 * this eager began life in tcp_conn_request. 17643 */ 17644 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17645 17646 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17647 /* 17648 * Someone blewoff the eager before we could finish 17649 * the accept. 17650 * 17651 * The only reason eager exists it because we put in 17652 * a ref on it when conn ind went up. We need to send 17653 * a disconnect indication up while the last reference 17654 * on the eager will be dropped by the squeue when we 17655 * return. 17656 */ 17657 ASSERT(tcp->tcp_listener == NULL); 17658 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17659 struct T_discon_ind *tdi; 17660 17661 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17662 /* 17663 * Let us reuse the incoming mblk to avoid memory 17664 * allocation failure problems. We know that the 17665 * size of the incoming mblk i.e. stroptions is greater 17666 * than sizeof T_discon_ind. So the reallocb below 17667 * can't fail. 17668 */ 17669 freemsg(mp->b_cont); 17670 mp->b_cont = NULL; 17671 ASSERT(DB_REF(mp) == 1); 17672 mp = reallocb(mp, sizeof (struct T_discon_ind), 17673 B_FALSE); 17674 ASSERT(mp != NULL); 17675 DB_TYPE(mp) = M_PROTO; 17676 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17677 tdi = (struct T_discon_ind *)mp->b_rptr; 17678 if (tcp->tcp_issocket) { 17679 tdi->DISCON_reason = ECONNREFUSED; 17680 tdi->SEQ_number = 0; 17681 } else { 17682 tdi->DISCON_reason = ENOPROTOOPT; 17683 tdi->SEQ_number = 17684 tcp->tcp_conn_req_seqnum; 17685 } 17686 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17687 putnext(q, mp); 17688 } else { 17689 freemsg(mp); 17690 } 17691 if (tcp->tcp_hard_binding) { 17692 tcp->tcp_hard_binding = B_FALSE; 17693 tcp->tcp_hard_bound = B_TRUE; 17694 } 17695 tcp->tcp_detached = B_FALSE; 17696 return; 17697 } 17698 17699 mp1 = stropt_mp->b_cont; 17700 stropt_mp->b_cont = NULL; 17701 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17702 stropt = (struct stroptions *)stropt_mp->b_rptr; 17703 17704 while (mp1 != NULL) { 17705 mp = mp1; 17706 mp1 = mp1->b_cont; 17707 mp->b_cont = NULL; 17708 tcp->tcp_drop_opt_ack_cnt++; 17709 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17710 } 17711 mp = NULL; 17712 17713 /* 17714 * For a loopback connection with tcp_direct_sockfs on, note that 17715 * we don't have to protect tcp_rcv_list yet because synchronous 17716 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17717 * possibly race with us. 17718 */ 17719 17720 /* 17721 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17722 * properly. This is the first time we know of the acceptor' 17723 * queue. So we do it here. 17724 */ 17725 if (tcp->tcp_rcv_list == NULL) { 17726 /* 17727 * Recv queue is empty, tcp_rwnd should not have changed. 17728 * That means it should be equal to the listener's tcp_rwnd. 17729 */ 17730 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17731 } else { 17732 #ifdef DEBUG 17733 uint_t cnt = 0; 17734 17735 mp1 = tcp->tcp_rcv_list; 17736 while ((mp = mp1) != NULL) { 17737 mp1 = mp->b_next; 17738 cnt += msgdsize(mp); 17739 } 17740 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17741 #endif 17742 /* There is some data, add them back to get the max. */ 17743 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17744 } 17745 17746 stropt->so_flags = SO_HIWAT; 17747 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17748 17749 stropt->so_flags |= SO_MAXBLK; 17750 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17751 17752 /* 17753 * This is the first time we run on the correct 17754 * queue after tcp_accept. So fix all the q parameters 17755 * here. 17756 */ 17757 /* Allocate room for SACK options if needed. */ 17758 stropt->so_flags |= SO_WROFF; 17759 if (tcp->tcp_fused) { 17760 ASSERT(tcp->tcp_loopback); 17761 ASSERT(tcp->tcp_loopback_peer != NULL); 17762 /* 17763 * For fused tcp loopback, set the stream head's write 17764 * offset value to zero since we won't be needing any room 17765 * for TCP/IP headers. This would also improve performance 17766 * since it would reduce the amount of work done by kmem. 17767 * Non-fused tcp loopback case is handled separately below. 17768 */ 17769 stropt->so_wroff = 0; 17770 /* 17771 * Record the stream head's high water mark for this endpoint; 17772 * this is used for flow-control purposes in tcp_fuse_output(). 17773 */ 17774 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17775 /* 17776 * Update the peer's transmit parameters according to 17777 * our recently calculated high water mark value. 17778 */ 17779 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17780 } else if (tcp->tcp_snd_sack_ok) { 17781 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17782 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17783 } else { 17784 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17785 tcp_wroff_xtra); 17786 } 17787 17788 /* 17789 * If this is endpoint is handling SSL, then reserve extra 17790 * offset and space at the end. 17791 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17792 * overriding the previous setting. The extra cost of signing and 17793 * encrypting multiple MSS-size records (12 of them with Ethernet), 17794 * instead of a single contiguous one by the stream head 17795 * largely outweighs the statistical reduction of ACKs, when 17796 * applicable. The peer will also save on decyption and verification 17797 * costs. 17798 */ 17799 if (tcp->tcp_kssl_ctx != NULL) { 17800 stropt->so_wroff += SSL3_WROFFSET; 17801 17802 stropt->so_flags |= SO_TAIL; 17803 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17804 17805 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17806 } 17807 17808 /* Send the options up */ 17809 putnext(q, stropt_mp); 17810 17811 /* 17812 * Pass up any data and/or a fin that has been received. 17813 * 17814 * Adjust receive window in case it had decreased 17815 * (because there is data <=> tcp_rcv_list != NULL) 17816 * while the connection was detached. Note that 17817 * in case the eager was flow-controlled, w/o this 17818 * code, the rwnd may never open up again! 17819 */ 17820 if (tcp->tcp_rcv_list != NULL) { 17821 /* We drain directly in case of fused tcp loopback */ 17822 if (!tcp->tcp_fused && canputnext(q)) { 17823 tcp->tcp_rwnd = q->q_hiwat; 17824 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17825 << tcp->tcp_rcv_ws; 17826 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17827 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17828 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17829 tcp_xmit_ctl(NULL, 17830 tcp, (tcp->tcp_swnd == 0) ? 17831 tcp->tcp_suna : tcp->tcp_snxt, 17832 tcp->tcp_rnxt, TH_ACK); 17833 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17834 } 17835 17836 } 17837 (void) tcp_rcv_drain(q, tcp); 17838 17839 /* 17840 * For fused tcp loopback, back-enable peer endpoint 17841 * if it's currently flow-controlled. 17842 */ 17843 if (tcp->tcp_fused && 17844 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17845 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17846 17847 ASSERT(peer_tcp != NULL); 17848 ASSERT(peer_tcp->tcp_fused); 17849 17850 tcp_clrqfull(peer_tcp); 17851 TCP_STAT(tcp_fusion_backenabled); 17852 } 17853 } 17854 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17855 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17856 mp = mi_tpi_ordrel_ind(); 17857 if (mp) { 17858 tcp->tcp_ordrel_done = B_TRUE; 17859 putnext(q, mp); 17860 if (tcp->tcp_deferred_clean_death) { 17861 /* 17862 * tcp_clean_death was deferred 17863 * for T_ORDREL_IND - do it now 17864 */ 17865 (void) tcp_clean_death(tcp, 17866 tcp->tcp_client_errno, 21); 17867 tcp->tcp_deferred_clean_death = B_FALSE; 17868 } 17869 } else { 17870 /* 17871 * Run the orderly release in the 17872 * service routine. 17873 */ 17874 qenable(q); 17875 } 17876 } 17877 if (tcp->tcp_hard_binding) { 17878 tcp->tcp_hard_binding = B_FALSE; 17879 tcp->tcp_hard_bound = B_TRUE; 17880 } 17881 17882 tcp->tcp_detached = B_FALSE; 17883 17884 /* We can enable synchronous streams now */ 17885 if (tcp->tcp_fused) { 17886 tcp_fuse_syncstr_enable_pair(tcp); 17887 } 17888 17889 if (tcp->tcp_ka_enabled) { 17890 tcp->tcp_ka_last_intrvl = 0; 17891 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17892 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17893 } 17894 17895 /* 17896 * At this point, eager is fully established and will 17897 * have the following references - 17898 * 17899 * 2 references for connection to exist (1 for TCP and 1 for IP). 17900 * 1 reference for the squeue which will be dropped by the squeue as 17901 * soon as this function returns. 17902 * There will be 1 additonal reference for being in classifier 17903 * hash list provided something bad hasn't happened. 17904 */ 17905 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17906 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17907 } 17908 17909 /* 17910 * The function called through squeue to get behind listener's perimeter to 17911 * send a deffered conn_ind. 17912 */ 17913 /* ARGSUSED */ 17914 void 17915 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17916 { 17917 conn_t *connp = (conn_t *)arg; 17918 tcp_t *listener = connp->conn_tcp; 17919 17920 if (listener->tcp_state == TCPS_CLOSED || 17921 TCP_IS_DETACHED(listener)) { 17922 /* 17923 * If listener has closed, it would have caused a 17924 * a cleanup/blowoff to happen for the eager. 17925 */ 17926 tcp_t *tcp; 17927 struct T_conn_ind *conn_ind; 17928 17929 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17930 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17931 conn_ind->OPT_length); 17932 /* 17933 * We need to drop the ref on eager that was put 17934 * tcp_rput_data() before trying to send the conn_ind 17935 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17936 * and tcp_wput_accept() is sending this deferred conn_ind but 17937 * listener is closed so we drop the ref. 17938 */ 17939 CONN_DEC_REF(tcp->tcp_connp); 17940 freemsg(mp); 17941 return; 17942 } 17943 putnext(listener->tcp_rq, mp); 17944 } 17945 17946 17947 /* 17948 * This is the STREAMS entry point for T_CONN_RES coming down on 17949 * Acceptor STREAM when sockfs listener does accept processing. 17950 * Read the block comment on top pf tcp_conn_request(). 17951 */ 17952 void 17953 tcp_wput_accept(queue_t *q, mblk_t *mp) 17954 { 17955 queue_t *rq = RD(q); 17956 struct T_conn_res *conn_res; 17957 tcp_t *eager; 17958 tcp_t *listener; 17959 struct T_ok_ack *ok; 17960 t_scalar_t PRIM_type; 17961 mblk_t *opt_mp; 17962 conn_t *econnp; 17963 17964 ASSERT(DB_TYPE(mp) == M_PROTO); 17965 17966 conn_res = (struct T_conn_res *)mp->b_rptr; 17967 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17968 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17969 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17970 if (mp != NULL) 17971 putnext(rq, mp); 17972 return; 17973 } 17974 switch (conn_res->PRIM_type) { 17975 case O_T_CONN_RES: 17976 case T_CONN_RES: 17977 /* 17978 * We pass up an err ack if allocb fails. This will 17979 * cause sockfs to issue a T_DISCON_REQ which will cause 17980 * tcp_eager_blowoff to be called. sockfs will then call 17981 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17982 * we need to do the allocb up here because we have to 17983 * make sure rq->q_qinfo->qi_qclose still points to the 17984 * correct function (tcpclose_accept) in case allocb 17985 * fails. 17986 */ 17987 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17988 if (opt_mp == NULL) { 17989 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17990 if (mp != NULL) 17991 putnext(rq, mp); 17992 return; 17993 } 17994 17995 bcopy(mp->b_rptr + conn_res->OPT_offset, 17996 &eager, conn_res->OPT_length); 17997 PRIM_type = conn_res->PRIM_type; 17998 mp->b_datap->db_type = M_PCPROTO; 17999 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18000 ok = (struct T_ok_ack *)mp->b_rptr; 18001 ok->PRIM_type = T_OK_ACK; 18002 ok->CORRECT_prim = PRIM_type; 18003 econnp = eager->tcp_connp; 18004 econnp->conn_dev = (dev_t)q->q_ptr; 18005 eager->tcp_rq = rq; 18006 eager->tcp_wq = q; 18007 rq->q_ptr = econnp; 18008 rq->q_qinfo = &tcp_rinit; 18009 q->q_ptr = econnp; 18010 q->q_qinfo = &tcp_winit; 18011 listener = eager->tcp_listener; 18012 eager->tcp_issocket = B_TRUE; 18013 18014 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18015 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18016 18017 /* Put the ref for IP */ 18018 CONN_INC_REF(econnp); 18019 18020 /* 18021 * We should have minimum of 3 references on the conn 18022 * at this point. One each for TCP and IP and one for 18023 * the T_conn_ind that was sent up when the 3-way handshake 18024 * completed. In the normal case we would also have another 18025 * reference (making a total of 4) for the conn being in the 18026 * classifier hash list. However the eager could have received 18027 * an RST subsequently and tcp_closei_local could have removed 18028 * the eager from the classifier hash list, hence we can't 18029 * assert that reference. 18030 */ 18031 ASSERT(econnp->conn_ref >= 3); 18032 18033 /* 18034 * Send the new local address also up to sockfs. There 18035 * should already be enough space in the mp that came 18036 * down from soaccept(). 18037 */ 18038 if (eager->tcp_family == AF_INET) { 18039 sin_t *sin; 18040 18041 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18042 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18043 sin = (sin_t *)mp->b_wptr; 18044 mp->b_wptr += sizeof (sin_t); 18045 sin->sin_family = AF_INET; 18046 sin->sin_port = eager->tcp_lport; 18047 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18048 } else { 18049 sin6_t *sin6; 18050 18051 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18052 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18053 sin6 = (sin6_t *)mp->b_wptr; 18054 mp->b_wptr += sizeof (sin6_t); 18055 sin6->sin6_family = AF_INET6; 18056 sin6->sin6_port = eager->tcp_lport; 18057 if (eager->tcp_ipversion == IPV4_VERSION) { 18058 sin6->sin6_flowinfo = 0; 18059 IN6_IPADDR_TO_V4MAPPED( 18060 eager->tcp_ipha->ipha_src, 18061 &sin6->sin6_addr); 18062 } else { 18063 ASSERT(eager->tcp_ip6h != NULL); 18064 sin6->sin6_flowinfo = 18065 eager->tcp_ip6h->ip6_vcf & 18066 ~IPV6_VERS_AND_FLOW_MASK; 18067 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18068 } 18069 sin6->sin6_scope_id = 0; 18070 sin6->__sin6_src_id = 0; 18071 } 18072 18073 putnext(rq, mp); 18074 18075 opt_mp->b_datap->db_type = M_SETOPTS; 18076 opt_mp->b_wptr += sizeof (struct stroptions); 18077 18078 /* 18079 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18080 * from listener to acceptor. The message is chained on the 18081 * bind_mp which tcp_rput_other will send down to IP. 18082 */ 18083 if (listener->tcp_bound_if != 0) { 18084 /* allocate optmgmt req */ 18085 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18086 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18087 sizeof (int)); 18088 if (mp != NULL) 18089 linkb(opt_mp, mp); 18090 } 18091 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18092 uint_t on = 1; 18093 18094 /* allocate optmgmt req */ 18095 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18096 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18097 if (mp != NULL) 18098 linkb(opt_mp, mp); 18099 } 18100 18101 18102 mutex_enter(&listener->tcp_eager_lock); 18103 18104 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18105 18106 tcp_t *tail; 18107 tcp_t *tcp; 18108 mblk_t *mp1; 18109 18110 tcp = listener->tcp_eager_prev_q0; 18111 /* 18112 * listener->tcp_eager_prev_q0 points to the TAIL of the 18113 * deferred T_conn_ind queue. We need to get to the head 18114 * of the queue in order to send up T_conn_ind the same 18115 * order as how the 3WHS is completed. 18116 */ 18117 while (tcp != listener) { 18118 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18119 !tcp->tcp_kssl_pending) 18120 break; 18121 else 18122 tcp = tcp->tcp_eager_prev_q0; 18123 } 18124 /* None of the pending eagers can be sent up now */ 18125 if (tcp == listener) 18126 goto no_more_eagers; 18127 18128 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18129 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18130 /* Move from q0 to q */ 18131 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18132 listener->tcp_conn_req_cnt_q0--; 18133 listener->tcp_conn_req_cnt_q++; 18134 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18135 tcp->tcp_eager_prev_q0; 18136 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18137 tcp->tcp_eager_next_q0; 18138 tcp->tcp_eager_prev_q0 = NULL; 18139 tcp->tcp_eager_next_q0 = NULL; 18140 tcp->tcp_conn_def_q0 = B_FALSE; 18141 18142 /* Make sure the tcp isn't in the list of droppables */ 18143 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18144 tcp->tcp_eager_prev_drop_q0 == NULL); 18145 18146 /* 18147 * Insert at end of the queue because sockfs sends 18148 * down T_CONN_RES in chronological order. Leaving 18149 * the older conn indications at front of the queue 18150 * helps reducing search time. 18151 */ 18152 tail = listener->tcp_eager_last_q; 18153 if (tail != NULL) { 18154 tail->tcp_eager_next_q = tcp; 18155 } else { 18156 listener->tcp_eager_next_q = tcp; 18157 } 18158 listener->tcp_eager_last_q = tcp; 18159 tcp->tcp_eager_next_q = NULL; 18160 18161 /* Need to get inside the listener perimeter */ 18162 CONN_INC_REF(listener->tcp_connp); 18163 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18164 tcp_send_pending, listener->tcp_connp, 18165 SQTAG_TCP_SEND_PENDING); 18166 } 18167 no_more_eagers: 18168 tcp_eager_unlink(eager); 18169 mutex_exit(&listener->tcp_eager_lock); 18170 18171 /* 18172 * At this point, the eager is detached from the listener 18173 * but we still have an extra refs on eager (apart from the 18174 * usual tcp references). The ref was placed in tcp_rput_data 18175 * before sending the conn_ind in tcp_send_conn_ind. 18176 * The ref will be dropped in tcp_accept_finish(). 18177 */ 18178 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18179 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18180 return; 18181 default: 18182 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18183 if (mp != NULL) 18184 putnext(rq, mp); 18185 return; 18186 } 18187 } 18188 18189 void 18190 tcp_wput(queue_t *q, mblk_t *mp) 18191 { 18192 conn_t *connp = Q_TO_CONN(q); 18193 tcp_t *tcp; 18194 void (*output_proc)(); 18195 t_scalar_t type; 18196 uchar_t *rptr; 18197 struct iocblk *iocp; 18198 uint32_t msize; 18199 18200 ASSERT(connp->conn_ref >= 2); 18201 18202 switch (DB_TYPE(mp)) { 18203 case M_DATA: 18204 tcp = connp->conn_tcp; 18205 ASSERT(tcp != NULL); 18206 18207 msize = msgdsize(mp); 18208 18209 mutex_enter(&connp->conn_lock); 18210 CONN_INC_REF_LOCKED(connp); 18211 18212 tcp->tcp_squeue_bytes += msize; 18213 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18214 mutex_exit(&connp->conn_lock); 18215 tcp_setqfull(tcp); 18216 } else 18217 mutex_exit(&connp->conn_lock); 18218 18219 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18220 tcp_output, connp, SQTAG_TCP_OUTPUT); 18221 return; 18222 case M_PROTO: 18223 case M_PCPROTO: 18224 /* 18225 * if it is a snmp message, don't get behind the squeue 18226 */ 18227 tcp = connp->conn_tcp; 18228 rptr = mp->b_rptr; 18229 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18230 type = ((union T_primitives *)rptr)->type; 18231 } else { 18232 if (tcp->tcp_debug) { 18233 (void) strlog(TCP_MOD_ID, 0, 1, 18234 SL_ERROR|SL_TRACE, 18235 "tcp_wput_proto, dropping one..."); 18236 } 18237 freemsg(mp); 18238 return; 18239 } 18240 if (type == T_SVR4_OPTMGMT_REQ) { 18241 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18242 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18243 cr)) { 18244 /* 18245 * This was a SNMP request 18246 */ 18247 return; 18248 } else { 18249 output_proc = tcp_wput_proto; 18250 } 18251 } else { 18252 output_proc = tcp_wput_proto; 18253 } 18254 break; 18255 case M_IOCTL: 18256 /* 18257 * Most ioctls can be processed right away without going via 18258 * squeues - process them right here. Those that do require 18259 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18260 * are processed by tcp_wput_ioctl(). 18261 */ 18262 iocp = (struct iocblk *)mp->b_rptr; 18263 tcp = connp->conn_tcp; 18264 18265 switch (iocp->ioc_cmd) { 18266 case TCP_IOC_ABORT_CONN: 18267 tcp_ioctl_abort_conn(q, mp); 18268 return; 18269 case TI_GETPEERNAME: 18270 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18271 iocp->ioc_error = ENOTCONN; 18272 iocp->ioc_count = 0; 18273 mp->b_datap->db_type = M_IOCACK; 18274 qreply(q, mp); 18275 return; 18276 } 18277 /* FALLTHRU */ 18278 case TI_GETMYNAME: 18279 mi_copyin(q, mp, NULL, 18280 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18281 return; 18282 case ND_SET: 18283 /* nd_getset does the necessary checks */ 18284 case ND_GET: 18285 if (!nd_getset(q, tcp_g_nd, mp)) { 18286 CALL_IP_WPUT(connp, q, mp); 18287 return; 18288 } 18289 qreply(q, mp); 18290 return; 18291 case TCP_IOC_DEFAULT_Q: 18292 /* 18293 * Wants to be the default wq. Check the credentials 18294 * first, the rest is executed via squeue. 18295 */ 18296 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18297 iocp->ioc_error = EPERM; 18298 iocp->ioc_count = 0; 18299 mp->b_datap->db_type = M_IOCACK; 18300 qreply(q, mp); 18301 return; 18302 } 18303 output_proc = tcp_wput_ioctl; 18304 break; 18305 default: 18306 output_proc = tcp_wput_ioctl; 18307 break; 18308 } 18309 break; 18310 default: 18311 output_proc = tcp_wput_nondata; 18312 break; 18313 } 18314 18315 CONN_INC_REF(connp); 18316 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18317 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18318 } 18319 18320 /* 18321 * Initial STREAMS write side put() procedure for sockets. It tries to 18322 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18323 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18324 * are handled by tcp_wput() as usual. 18325 * 18326 * All further messages will also be handled by tcp_wput() because we cannot 18327 * be sure that the above short cut is safe later. 18328 */ 18329 static void 18330 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18331 { 18332 conn_t *connp = Q_TO_CONN(wq); 18333 tcp_t *tcp = connp->conn_tcp; 18334 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18335 18336 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18337 wq->q_qinfo = &tcp_winit; 18338 18339 ASSERT(IPCL_IS_TCP(connp)); 18340 ASSERT(TCP_IS_SOCKET(tcp)); 18341 18342 if (DB_TYPE(mp) == M_PCPROTO && 18343 MBLKL(mp) == sizeof (struct T_capability_req) && 18344 car->PRIM_type == T_CAPABILITY_REQ) { 18345 tcp_capability_req(tcp, mp); 18346 return; 18347 } 18348 18349 tcp_wput(wq, mp); 18350 } 18351 18352 static boolean_t 18353 tcp_zcopy_check(tcp_t *tcp) 18354 { 18355 conn_t *connp = tcp->tcp_connp; 18356 ire_t *ire; 18357 boolean_t zc_enabled = B_FALSE; 18358 18359 if (do_tcpzcopy == 2) 18360 zc_enabled = B_TRUE; 18361 else if (tcp->tcp_ipversion == IPV4_VERSION && 18362 IPCL_IS_CONNECTED(connp) && 18363 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18364 connp->conn_dontroute == 0 && 18365 !connp->conn_nexthop_set && 18366 connp->conn_xmit_if_ill == NULL && 18367 connp->conn_nofailover_ill == NULL && 18368 do_tcpzcopy == 1) { 18369 /* 18370 * the checks above closely resemble the fast path checks 18371 * in tcp_send_data(). 18372 */ 18373 mutex_enter(&connp->conn_lock); 18374 ire = connp->conn_ire_cache; 18375 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18376 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18377 IRE_REFHOLD(ire); 18378 if (ire->ire_stq != NULL) { 18379 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18380 18381 zc_enabled = ill && (ill->ill_capabilities & 18382 ILL_CAPAB_ZEROCOPY) && 18383 (ill->ill_zerocopy_capab-> 18384 ill_zerocopy_flags != 0); 18385 } 18386 IRE_REFRELE(ire); 18387 } 18388 mutex_exit(&connp->conn_lock); 18389 } 18390 tcp->tcp_snd_zcopy_on = zc_enabled; 18391 if (!TCP_IS_DETACHED(tcp)) { 18392 if (zc_enabled) { 18393 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18394 TCP_STAT(tcp_zcopy_on); 18395 } else { 18396 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18397 TCP_STAT(tcp_zcopy_off); 18398 } 18399 } 18400 return (zc_enabled); 18401 } 18402 18403 static mblk_t * 18404 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18405 { 18406 if (do_tcpzcopy == 2) 18407 return (bp); 18408 else if (tcp->tcp_snd_zcopy_on) { 18409 tcp->tcp_snd_zcopy_on = B_FALSE; 18410 if (!TCP_IS_DETACHED(tcp)) { 18411 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18412 TCP_STAT(tcp_zcopy_disable); 18413 } 18414 } 18415 return (tcp_zcopy_backoff(tcp, bp, 0)); 18416 } 18417 18418 /* 18419 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18420 * the original desballoca'ed segmapped mblk. 18421 */ 18422 static mblk_t * 18423 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18424 { 18425 mblk_t *head, *tail, *nbp; 18426 if (IS_VMLOANED_MBLK(bp)) { 18427 TCP_STAT(tcp_zcopy_backoff); 18428 if ((head = copyb(bp)) == NULL) { 18429 /* fail to backoff; leave it for the next backoff */ 18430 tcp->tcp_xmit_zc_clean = B_FALSE; 18431 return (bp); 18432 } 18433 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18434 if (fix_xmitlist) 18435 tcp_zcopy_notify(tcp); 18436 else 18437 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18438 } 18439 nbp = bp->b_cont; 18440 if (fix_xmitlist) { 18441 head->b_prev = bp->b_prev; 18442 head->b_next = bp->b_next; 18443 if (tcp->tcp_xmit_tail == bp) 18444 tcp->tcp_xmit_tail = head; 18445 } 18446 bp->b_next = NULL; 18447 bp->b_prev = NULL; 18448 freeb(bp); 18449 } else { 18450 head = bp; 18451 nbp = bp->b_cont; 18452 } 18453 tail = head; 18454 while (nbp) { 18455 if (IS_VMLOANED_MBLK(nbp)) { 18456 TCP_STAT(tcp_zcopy_backoff); 18457 if ((tail->b_cont = copyb(nbp)) == NULL) { 18458 tcp->tcp_xmit_zc_clean = B_FALSE; 18459 tail->b_cont = nbp; 18460 return (head); 18461 } 18462 tail = tail->b_cont; 18463 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18464 if (fix_xmitlist) 18465 tcp_zcopy_notify(tcp); 18466 else 18467 tail->b_datap->db_struioflag |= 18468 STRUIO_ZCNOTIFY; 18469 } 18470 bp = nbp; 18471 nbp = nbp->b_cont; 18472 if (fix_xmitlist) { 18473 tail->b_prev = bp->b_prev; 18474 tail->b_next = bp->b_next; 18475 if (tcp->tcp_xmit_tail == bp) 18476 tcp->tcp_xmit_tail = tail; 18477 } 18478 bp->b_next = NULL; 18479 bp->b_prev = NULL; 18480 freeb(bp); 18481 } else { 18482 tail->b_cont = nbp; 18483 tail = nbp; 18484 nbp = nbp->b_cont; 18485 } 18486 } 18487 if (fix_xmitlist) { 18488 tcp->tcp_xmit_last = tail; 18489 tcp->tcp_xmit_zc_clean = B_TRUE; 18490 } 18491 return (head); 18492 } 18493 18494 static void 18495 tcp_zcopy_notify(tcp_t *tcp) 18496 { 18497 struct stdata *stp; 18498 18499 if (tcp->tcp_detached) 18500 return; 18501 stp = STREAM(tcp->tcp_rq); 18502 mutex_enter(&stp->sd_lock); 18503 stp->sd_flag |= STZCNOTIFY; 18504 cv_broadcast(&stp->sd_zcopy_wait); 18505 mutex_exit(&stp->sd_lock); 18506 } 18507 18508 static boolean_t 18509 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18510 { 18511 ire_t *ire; 18512 conn_t *connp = tcp->tcp_connp; 18513 18514 18515 mutex_enter(&connp->conn_lock); 18516 ire = connp->conn_ire_cache; 18517 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18518 18519 if ((ire != NULL) && 18520 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18521 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18522 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18523 IRE_REFHOLD(ire); 18524 mutex_exit(&connp->conn_lock); 18525 } else { 18526 boolean_t cached = B_FALSE; 18527 ts_label_t *tsl; 18528 18529 /* force a recheck later on */ 18530 tcp->tcp_ire_ill_check_done = B_FALSE; 18531 18532 TCP_DBGSTAT(tcp_ire_null1); 18533 connp->conn_ire_cache = NULL; 18534 mutex_exit(&connp->conn_lock); 18535 18536 if (ire != NULL) 18537 IRE_REFRELE_NOTR(ire); 18538 18539 tsl = crgetlabel(CONN_CRED(connp)); 18540 ire = (dst ? ire_cache_lookup(*dst, connp->conn_zoneid, tsl) : 18541 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18542 connp->conn_zoneid, tsl)); 18543 18544 if (ire == NULL) { 18545 TCP_STAT(tcp_ire_null); 18546 return (B_FALSE); 18547 } 18548 18549 IRE_REFHOLD_NOTR(ire); 18550 /* 18551 * Since we are inside the squeue, there cannot be another 18552 * thread in TCP trying to set the conn_ire_cache now. The 18553 * check for IRE_MARK_CONDEMNED ensures that an interface 18554 * unplumb thread has not yet started cleaning up the conns. 18555 * Hence we don't need to grab the conn lock. 18556 */ 18557 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18558 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18559 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18560 connp->conn_ire_cache = ire; 18561 cached = B_TRUE; 18562 } 18563 rw_exit(&ire->ire_bucket->irb_lock); 18564 } 18565 18566 /* 18567 * We can continue to use the ire but since it was 18568 * not cached, we should drop the extra reference. 18569 */ 18570 if (!cached) 18571 IRE_REFRELE_NOTR(ire); 18572 18573 /* 18574 * Rampart note: no need to select a new label here, since 18575 * labels are not allowed to change during the life of a TCP 18576 * connection. 18577 */ 18578 } 18579 18580 *irep = ire; 18581 18582 return (B_TRUE); 18583 } 18584 18585 /* 18586 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18587 * 18588 * 0 = success; 18589 * 1 = failed to find ire and ill. 18590 */ 18591 static boolean_t 18592 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18593 { 18594 ipha_t *ipha; 18595 ipaddr_t dst; 18596 ire_t *ire; 18597 ill_t *ill; 18598 conn_t *connp = tcp->tcp_connp; 18599 mblk_t *ire_fp_mp; 18600 18601 if (mp != NULL) 18602 ipha = (ipha_t *)mp->b_rptr; 18603 else 18604 ipha = tcp->tcp_ipha; 18605 dst = ipha->ipha_dst; 18606 18607 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18608 return (B_FALSE); 18609 18610 if ((ire->ire_flags & RTF_MULTIRT) || 18611 (ire->ire_stq == NULL) || 18612 (ire->ire_nce == NULL) || 18613 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18614 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18615 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18616 TCP_STAT(tcp_ip_ire_send); 18617 IRE_REFRELE(ire); 18618 return (B_FALSE); 18619 } 18620 18621 ill = ire_to_ill(ire); 18622 if (connp->conn_outgoing_ill != NULL) { 18623 ill_t *conn_outgoing_ill = NULL; 18624 /* 18625 * Choose a good ill in the group to send the packets on. 18626 */ 18627 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18628 ill = ire_to_ill(ire); 18629 } 18630 ASSERT(ill != NULL); 18631 18632 if (!tcp->tcp_ire_ill_check_done) { 18633 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18634 tcp->tcp_ire_ill_check_done = B_TRUE; 18635 } 18636 18637 *irep = ire; 18638 *illp = ill; 18639 18640 return (B_TRUE); 18641 } 18642 18643 static void 18644 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18645 { 18646 ipha_t *ipha; 18647 ipaddr_t src; 18648 ipaddr_t dst; 18649 uint32_t cksum; 18650 ire_t *ire; 18651 uint16_t *up; 18652 ill_t *ill; 18653 conn_t *connp = tcp->tcp_connp; 18654 uint32_t hcksum_txflags = 0; 18655 mblk_t *ire_fp_mp; 18656 uint_t ire_fp_mp_len; 18657 18658 ASSERT(DB_TYPE(mp) == M_DATA); 18659 18660 if (DB_CRED(mp) == NULL) 18661 mblk_setcred(mp, CONN_CRED(connp)); 18662 18663 ipha = (ipha_t *)mp->b_rptr; 18664 src = ipha->ipha_src; 18665 dst = ipha->ipha_dst; 18666 18667 /* 18668 * Drop off fast path for IPv6 and also if options are present or 18669 * we need to resolve a TS label. 18670 */ 18671 if (tcp->tcp_ipversion != IPV4_VERSION || 18672 !IPCL_IS_CONNECTED(connp) || 18673 !CONN_IS_LSO_MD_FASTPATH(connp) || 18674 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18675 !connp->conn_ulp_labeled || 18676 ipha->ipha_ident == IP_HDR_INCLUDED || 18677 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18678 IPP_ENABLED(IPP_LOCAL_OUT)) { 18679 if (tcp->tcp_snd_zcopy_aware) 18680 mp = tcp_zcopy_disable(tcp, mp); 18681 TCP_STAT(tcp_ip_send); 18682 CALL_IP_WPUT(connp, q, mp); 18683 return; 18684 } 18685 18686 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18687 if (tcp->tcp_snd_zcopy_aware) 18688 mp = tcp_zcopy_backoff(tcp, mp, 0); 18689 CALL_IP_WPUT(connp, q, mp); 18690 return; 18691 } 18692 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18693 ire_fp_mp_len = MBLKL(ire_fp_mp); 18694 18695 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18696 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18697 #ifndef _BIG_ENDIAN 18698 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18699 #endif 18700 18701 /* 18702 * Check to see if we need to re-enable LSO/MDT for this connection 18703 * because it was previously disabled due to changes in the ill; 18704 * note that by doing it here, this re-enabling only applies when 18705 * the packet is not dispatched through CALL_IP_WPUT(). 18706 * 18707 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18708 * case, since that's how we ended up here. For IPv6, we do the 18709 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18710 */ 18711 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18712 /* 18713 * Restore LSO for this connection, so that next time around 18714 * it is eligible to go through tcp_lsosend() path again. 18715 */ 18716 TCP_STAT(tcp_lso_enabled); 18717 tcp->tcp_lso = B_TRUE; 18718 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18719 "interface %s\n", (void *)connp, ill->ill_name)); 18720 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18721 /* 18722 * Restore MDT for this connection, so that next time around 18723 * it is eligible to go through tcp_multisend() path again. 18724 */ 18725 TCP_STAT(tcp_mdt_conn_resumed1); 18726 tcp->tcp_mdt = B_TRUE; 18727 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18728 "interface %s\n", (void *)connp, ill->ill_name)); 18729 } 18730 18731 if (tcp->tcp_snd_zcopy_aware) { 18732 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18733 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18734 mp = tcp_zcopy_disable(tcp, mp); 18735 /* 18736 * we shouldn't need to reset ipha as the mp containing 18737 * ipha should never be a zero-copy mp. 18738 */ 18739 } 18740 18741 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18742 ASSERT(ill->ill_hcksum_capab != NULL); 18743 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18744 } 18745 18746 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18747 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18748 18749 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18750 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18751 18752 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18753 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18754 18755 /* Software checksum? */ 18756 if (DB_CKSUMFLAGS(mp) == 0) { 18757 TCP_STAT(tcp_out_sw_cksum); 18758 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18759 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18760 } 18761 18762 ipha->ipha_fragment_offset_and_flags |= 18763 (uint32_t)htons(ire->ire_frag_flag); 18764 18765 /* Calculate IP header checksum if hardware isn't capable */ 18766 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18767 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18768 ((uint16_t *)ipha)[4]); 18769 } 18770 18771 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18772 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18773 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18774 18775 UPDATE_OB_PKT_COUNT(ire); 18776 ire->ire_last_used_time = lbolt; 18777 BUMP_MIB(&ip_mib, ipOutRequests); 18778 18779 if (ILL_DLS_CAPABLE(ill)) { 18780 /* 18781 * Send the packet directly to DLD, where it may be queued 18782 * depending on the availability of transmit resources at 18783 * the media layer. 18784 */ 18785 IP_DLS_ILL_TX(ill, ipha, mp); 18786 } else { 18787 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 18788 DTRACE_PROBE4(ip4__physical__out__start, 18789 ill_t *, NULL, ill_t *, out_ill, 18790 ipha_t *, ipha, mblk_t *, mp); 18791 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 18792 NULL, out_ill, ipha, mp, mp); 18793 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18794 if (mp != NULL) 18795 putnext(ire->ire_stq, mp); 18796 } 18797 IRE_REFRELE(ire); 18798 } 18799 18800 /* 18801 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18802 * if the receiver shrinks the window, i.e. moves the right window to the 18803 * left, the we should not send new data, but should retransmit normally the 18804 * old unacked data between suna and suna + swnd. We might has sent data 18805 * that is now outside the new window, pretend that we didn't send it. 18806 */ 18807 static void 18808 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18809 { 18810 uint32_t snxt = tcp->tcp_snxt; 18811 mblk_t *xmit_tail; 18812 int32_t offset; 18813 18814 ASSERT(shrunk_count > 0); 18815 18816 /* Pretend we didn't send the data outside the window */ 18817 snxt -= shrunk_count; 18818 18819 /* Get the mblk and the offset in it per the shrunk window */ 18820 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18821 18822 ASSERT(xmit_tail != NULL); 18823 18824 /* Reset all the values per the now shrunk window */ 18825 tcp->tcp_snxt = snxt; 18826 tcp->tcp_xmit_tail = xmit_tail; 18827 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18828 offset; 18829 tcp->tcp_unsent += shrunk_count; 18830 18831 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18832 /* 18833 * Make sure the timer is running so that we will probe a zero 18834 * window. 18835 */ 18836 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18837 } 18838 18839 18840 /* 18841 * The TCP normal data output path. 18842 * NOTE: the logic of the fast path is duplicated from this function. 18843 */ 18844 static void 18845 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18846 { 18847 int len; 18848 mblk_t *local_time; 18849 mblk_t *mp1; 18850 uint32_t snxt; 18851 int tail_unsent; 18852 int tcpstate; 18853 int usable = 0; 18854 mblk_t *xmit_tail; 18855 queue_t *q = tcp->tcp_wq; 18856 int32_t mss; 18857 int32_t num_sack_blk = 0; 18858 int32_t tcp_hdr_len; 18859 int32_t tcp_tcp_hdr_len; 18860 int mdt_thres; 18861 int rc; 18862 18863 tcpstate = tcp->tcp_state; 18864 if (mp == NULL) { 18865 /* 18866 * tcp_wput_data() with NULL mp should only be called when 18867 * there is unsent data. 18868 */ 18869 ASSERT(tcp->tcp_unsent > 0); 18870 /* Really tacky... but we need this for detached closes. */ 18871 len = tcp->tcp_unsent; 18872 goto data_null; 18873 } 18874 18875 #if CCS_STATS 18876 wrw_stats.tot.count++; 18877 wrw_stats.tot.bytes += msgdsize(mp); 18878 #endif 18879 ASSERT(mp->b_datap->db_type == M_DATA); 18880 /* 18881 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18882 * or before a connection attempt has begun. 18883 */ 18884 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18885 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18886 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18887 #ifdef DEBUG 18888 cmn_err(CE_WARN, 18889 "tcp_wput_data: data after ordrel, %s", 18890 tcp_display(tcp, NULL, 18891 DISP_ADDR_AND_PORT)); 18892 #else 18893 if (tcp->tcp_debug) { 18894 (void) strlog(TCP_MOD_ID, 0, 1, 18895 SL_TRACE|SL_ERROR, 18896 "tcp_wput_data: data after ordrel, %s\n", 18897 tcp_display(tcp, NULL, 18898 DISP_ADDR_AND_PORT)); 18899 } 18900 #endif /* DEBUG */ 18901 } 18902 if (tcp->tcp_snd_zcopy_aware && 18903 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18904 tcp_zcopy_notify(tcp); 18905 freemsg(mp); 18906 if (tcp->tcp_flow_stopped && 18907 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18908 tcp_clrqfull(tcp); 18909 } 18910 return; 18911 } 18912 18913 /* Strip empties */ 18914 for (;;) { 18915 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18916 (uintptr_t)INT_MAX); 18917 len = (int)(mp->b_wptr - mp->b_rptr); 18918 if (len > 0) 18919 break; 18920 mp1 = mp; 18921 mp = mp->b_cont; 18922 freeb(mp1); 18923 if (!mp) { 18924 return; 18925 } 18926 } 18927 18928 /* If we are the first on the list ... */ 18929 if (tcp->tcp_xmit_head == NULL) { 18930 tcp->tcp_xmit_head = mp; 18931 tcp->tcp_xmit_tail = mp; 18932 tcp->tcp_xmit_tail_unsent = len; 18933 } else { 18934 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18935 struct datab *dp; 18936 18937 mp1 = tcp->tcp_xmit_last; 18938 if (len < tcp_tx_pull_len && 18939 (dp = mp1->b_datap)->db_ref == 1 && 18940 dp->db_lim - mp1->b_wptr >= len) { 18941 ASSERT(len > 0); 18942 ASSERT(!mp1->b_cont); 18943 if (len == 1) { 18944 *mp1->b_wptr++ = *mp->b_rptr; 18945 } else { 18946 bcopy(mp->b_rptr, mp1->b_wptr, len); 18947 mp1->b_wptr += len; 18948 } 18949 if (mp1 == tcp->tcp_xmit_tail) 18950 tcp->tcp_xmit_tail_unsent += len; 18951 mp1->b_cont = mp->b_cont; 18952 if (tcp->tcp_snd_zcopy_aware && 18953 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18954 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18955 freeb(mp); 18956 mp = mp1; 18957 } else { 18958 tcp->tcp_xmit_last->b_cont = mp; 18959 } 18960 len += tcp->tcp_unsent; 18961 } 18962 18963 /* Tack on however many more positive length mblks we have */ 18964 if ((mp1 = mp->b_cont) != NULL) { 18965 do { 18966 int tlen; 18967 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18968 (uintptr_t)INT_MAX); 18969 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18970 if (tlen <= 0) { 18971 mp->b_cont = mp1->b_cont; 18972 freeb(mp1); 18973 } else { 18974 len += tlen; 18975 mp = mp1; 18976 } 18977 } while ((mp1 = mp->b_cont) != NULL); 18978 } 18979 tcp->tcp_xmit_last = mp; 18980 tcp->tcp_unsent = len; 18981 18982 if (urgent) 18983 usable = 1; 18984 18985 data_null: 18986 snxt = tcp->tcp_snxt; 18987 xmit_tail = tcp->tcp_xmit_tail; 18988 tail_unsent = tcp->tcp_xmit_tail_unsent; 18989 18990 /* 18991 * Note that tcp_mss has been adjusted to take into account the 18992 * timestamp option if applicable. Because SACK options do not 18993 * appear in every TCP segments and they are of variable lengths, 18994 * they cannot be included in tcp_mss. Thus we need to calculate 18995 * the actual segment length when we need to send a segment which 18996 * includes SACK options. 18997 */ 18998 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18999 int32_t opt_len; 19000 19001 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19002 tcp->tcp_num_sack_blk); 19003 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19004 2 + TCPOPT_HEADER_LEN; 19005 mss = tcp->tcp_mss - opt_len; 19006 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19007 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19008 } else { 19009 mss = tcp->tcp_mss; 19010 tcp_hdr_len = tcp->tcp_hdr_len; 19011 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19012 } 19013 19014 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19015 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19016 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 19017 } 19018 if (tcpstate == TCPS_SYN_RCVD) { 19019 /* 19020 * The three-way connection establishment handshake is not 19021 * complete yet. We want to queue the data for transmission 19022 * after entering ESTABLISHED state (RFC793). A jump to 19023 * "done" label effectively leaves data on the queue. 19024 */ 19025 goto done; 19026 } else { 19027 int usable_r; 19028 19029 /* 19030 * In the special case when cwnd is zero, which can only 19031 * happen if the connection is ECN capable, return now. 19032 * New segments is sent using tcp_timer(). The timer 19033 * is set in tcp_rput_data(). 19034 */ 19035 if (tcp->tcp_cwnd == 0) { 19036 /* 19037 * Note that tcp_cwnd is 0 before 3-way handshake is 19038 * finished. 19039 */ 19040 ASSERT(tcp->tcp_ecn_ok || 19041 tcp->tcp_state < TCPS_ESTABLISHED); 19042 return; 19043 } 19044 19045 /* NOTE: trouble if xmitting while SYN not acked? */ 19046 usable_r = snxt - tcp->tcp_suna; 19047 usable_r = tcp->tcp_swnd - usable_r; 19048 19049 /* 19050 * Check if the receiver has shrunk the window. If 19051 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19052 * cannot be set as there is unsent data, so FIN cannot 19053 * be sent out. Otherwise, we need to take into account 19054 * of FIN as it consumes an "invisible" sequence number. 19055 */ 19056 ASSERT(tcp->tcp_fin_sent == 0); 19057 if (usable_r < 0) { 19058 /* 19059 * The receiver has shrunk the window and we have sent 19060 * -usable_r date beyond the window, re-adjust. 19061 * 19062 * If TCP window scaling is enabled, there can be 19063 * round down error as the advertised receive window 19064 * is actually right shifted n bits. This means that 19065 * the lower n bits info is wiped out. It will look 19066 * like the window is shrunk. Do a check here to 19067 * see if the shrunk amount is actually within the 19068 * error in window calculation. If it is, just 19069 * return. Note that this check is inside the 19070 * shrunk window check. This makes sure that even 19071 * though tcp_process_shrunk_swnd() is not called, 19072 * we will stop further processing. 19073 */ 19074 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19075 tcp_process_shrunk_swnd(tcp, -usable_r); 19076 } 19077 return; 19078 } 19079 19080 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19081 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19082 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19083 19084 /* usable = MIN(usable, unsent) */ 19085 if (usable_r > len) 19086 usable_r = len; 19087 19088 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19089 if (usable_r > 0) { 19090 usable = usable_r; 19091 } else { 19092 /* Bypass all other unnecessary processing. */ 19093 goto done; 19094 } 19095 } 19096 19097 local_time = (mblk_t *)lbolt; 19098 19099 /* 19100 * "Our" Nagle Algorithm. This is not the same as in the old 19101 * BSD. This is more in line with the true intent of Nagle. 19102 * 19103 * The conditions are: 19104 * 1. The amount of unsent data (or amount of data which can be 19105 * sent, whichever is smaller) is less than Nagle limit. 19106 * 2. The last sent size is also less than Nagle limit. 19107 * 3. There is unack'ed data. 19108 * 4. Urgent pointer is not set. Send urgent data ignoring the 19109 * Nagle algorithm. This reduces the probability that urgent 19110 * bytes get "merged" together. 19111 * 5. The app has not closed the connection. This eliminates the 19112 * wait time of the receiving side waiting for the last piece of 19113 * (small) data. 19114 * 19115 * If all are satisified, exit without sending anything. Note 19116 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19117 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19118 * 4095). 19119 */ 19120 if (usable < (int)tcp->tcp_naglim && 19121 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19122 snxt != tcp->tcp_suna && 19123 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19124 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19125 goto done; 19126 } 19127 19128 if (tcp->tcp_cork) { 19129 /* 19130 * if the tcp->tcp_cork option is set, then we have to force 19131 * TCP not to send partial segment (smaller than MSS bytes). 19132 * We are calculating the usable now based on full mss and 19133 * will save the rest of remaining data for later. 19134 */ 19135 if (usable < mss) 19136 goto done; 19137 usable = (usable / mss) * mss; 19138 } 19139 19140 /* Update the latest receive window size in TCP header. */ 19141 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19142 tcp->tcp_tcph->th_win); 19143 19144 /* 19145 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19146 * 19147 * 1. Simple TCP/IP{v4,v6} (no options). 19148 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19149 * 3. If the TCP connection is in ESTABLISHED state. 19150 * 4. The TCP is not detached. 19151 * 19152 * If any of the above conditions have changed during the 19153 * connection, stop using LSO/MDT and restore the stream head 19154 * parameters accordingly. 19155 */ 19156 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19157 ((tcp->tcp_ipversion == IPV4_VERSION && 19158 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19159 (tcp->tcp_ipversion == IPV6_VERSION && 19160 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19161 tcp->tcp_state != TCPS_ESTABLISHED || 19162 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19163 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19164 IPP_ENABLED(IPP_LOCAL_OUT))) { 19165 if (tcp->tcp_lso) { 19166 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19167 tcp->tcp_lso = B_FALSE; 19168 } else { 19169 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19170 tcp->tcp_mdt = B_FALSE; 19171 } 19172 19173 /* Anything other than detached is considered pathological */ 19174 if (!TCP_IS_DETACHED(tcp)) { 19175 if (tcp->tcp_lso) 19176 TCP_STAT(tcp_lso_disabled); 19177 else 19178 TCP_STAT(tcp_mdt_conn_halted1); 19179 (void) tcp_maxpsz_set(tcp, B_TRUE); 19180 } 19181 } 19182 19183 /* Use MDT if sendable amount is greater than the threshold */ 19184 if (tcp->tcp_mdt && 19185 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19186 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19187 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19188 (tcp->tcp_valid_bits == 0 || 19189 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19190 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19191 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19192 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19193 local_time, mdt_thres); 19194 } else { 19195 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19196 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19197 local_time, INT_MAX); 19198 } 19199 19200 /* Pretend that all we were trying to send really got sent */ 19201 if (rc < 0 && tail_unsent < 0) { 19202 do { 19203 xmit_tail = xmit_tail->b_cont; 19204 xmit_tail->b_prev = local_time; 19205 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19206 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19207 tail_unsent += (int)(xmit_tail->b_wptr - 19208 xmit_tail->b_rptr); 19209 } while (tail_unsent < 0); 19210 } 19211 done:; 19212 tcp->tcp_xmit_tail = xmit_tail; 19213 tcp->tcp_xmit_tail_unsent = tail_unsent; 19214 len = tcp->tcp_snxt - snxt; 19215 if (len) { 19216 /* 19217 * If new data was sent, need to update the notsack 19218 * list, which is, afterall, data blocks that have 19219 * not been sack'ed by the receiver. New data is 19220 * not sack'ed. 19221 */ 19222 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19223 /* len is a negative value. */ 19224 tcp->tcp_pipe -= len; 19225 tcp_notsack_update(&(tcp->tcp_notsack_list), 19226 tcp->tcp_snxt, snxt, 19227 &(tcp->tcp_num_notsack_blk), 19228 &(tcp->tcp_cnt_notsack_list)); 19229 } 19230 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19231 tcp->tcp_rack = tcp->tcp_rnxt; 19232 tcp->tcp_rack_cnt = 0; 19233 if ((snxt + len) == tcp->tcp_suna) { 19234 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19235 } 19236 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19237 /* 19238 * Didn't send anything. Make sure the timer is running 19239 * so that we will probe a zero window. 19240 */ 19241 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19242 } 19243 /* Note that len is the amount we just sent but with a negative sign */ 19244 tcp->tcp_unsent += len; 19245 if (tcp->tcp_flow_stopped) { 19246 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19247 tcp_clrqfull(tcp); 19248 } 19249 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19250 tcp_setqfull(tcp); 19251 } 19252 } 19253 19254 /* 19255 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19256 * outgoing TCP header with the template header, as well as other 19257 * options such as time-stamp, ECN and/or SACK. 19258 */ 19259 static void 19260 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19261 { 19262 tcph_t *tcp_tmpl, *tcp_h; 19263 uint32_t *dst, *src; 19264 int hdrlen; 19265 19266 ASSERT(OK_32PTR(rptr)); 19267 19268 /* Template header */ 19269 tcp_tmpl = tcp->tcp_tcph; 19270 19271 /* Header of outgoing packet */ 19272 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19273 19274 /* dst and src are opaque 32-bit fields, used for copying */ 19275 dst = (uint32_t *)rptr; 19276 src = (uint32_t *)tcp->tcp_iphc; 19277 hdrlen = tcp->tcp_hdr_len; 19278 19279 /* Fill time-stamp option if needed */ 19280 if (tcp->tcp_snd_ts_ok) { 19281 U32_TO_BE32((uint32_t)now, 19282 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19283 U32_TO_BE32(tcp->tcp_ts_recent, 19284 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19285 } else { 19286 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19287 } 19288 19289 /* 19290 * Copy the template header; is this really more efficient than 19291 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19292 * but perhaps not for other scenarios. 19293 */ 19294 dst[0] = src[0]; 19295 dst[1] = src[1]; 19296 dst[2] = src[2]; 19297 dst[3] = src[3]; 19298 dst[4] = src[4]; 19299 dst[5] = src[5]; 19300 dst[6] = src[6]; 19301 dst[7] = src[7]; 19302 dst[8] = src[8]; 19303 dst[9] = src[9]; 19304 if (hdrlen -= 40) { 19305 hdrlen >>= 2; 19306 dst += 10; 19307 src += 10; 19308 do { 19309 *dst++ = *src++; 19310 } while (--hdrlen); 19311 } 19312 19313 /* 19314 * Set the ECN info in the TCP header if it is not a zero 19315 * window probe. Zero window probe is only sent in 19316 * tcp_wput_data() and tcp_timer(). 19317 */ 19318 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19319 SET_ECT(tcp, rptr); 19320 19321 if (tcp->tcp_ecn_echo_on) 19322 tcp_h->th_flags[0] |= TH_ECE; 19323 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19324 tcp_h->th_flags[0] |= TH_CWR; 19325 tcp->tcp_ecn_cwr_sent = B_TRUE; 19326 } 19327 } 19328 19329 /* Fill in SACK options */ 19330 if (num_sack_blk > 0) { 19331 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19332 sack_blk_t *tmp; 19333 int32_t i; 19334 19335 wptr[0] = TCPOPT_NOP; 19336 wptr[1] = TCPOPT_NOP; 19337 wptr[2] = TCPOPT_SACK; 19338 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19339 sizeof (sack_blk_t); 19340 wptr += TCPOPT_REAL_SACK_LEN; 19341 19342 tmp = tcp->tcp_sack_list; 19343 for (i = 0; i < num_sack_blk; i++) { 19344 U32_TO_BE32(tmp[i].begin, wptr); 19345 wptr += sizeof (tcp_seq); 19346 U32_TO_BE32(tmp[i].end, wptr); 19347 wptr += sizeof (tcp_seq); 19348 } 19349 tcp_h->th_offset_and_rsrvd[0] += 19350 ((num_sack_blk * 2 + 1) << 4); 19351 } 19352 } 19353 19354 /* 19355 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19356 * the destination address and SAP attribute, and if necessary, the 19357 * hardware checksum offload attribute to a Multidata message. 19358 */ 19359 static int 19360 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19361 const uint32_t start, const uint32_t stuff, const uint32_t end, 19362 const uint32_t flags) 19363 { 19364 /* Add global destination address & SAP attribute */ 19365 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19366 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19367 "destination address+SAP\n")); 19368 19369 if (dlmp != NULL) 19370 TCP_STAT(tcp_mdt_allocfail); 19371 return (-1); 19372 } 19373 19374 /* Add global hwcksum attribute */ 19375 if (hwcksum && 19376 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19377 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19378 "checksum attribute\n")); 19379 19380 TCP_STAT(tcp_mdt_allocfail); 19381 return (-1); 19382 } 19383 19384 return (0); 19385 } 19386 19387 /* 19388 * Smaller and private version of pdescinfo_t used specifically for TCP, 19389 * which allows for only two payload spans per packet. 19390 */ 19391 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19392 19393 /* 19394 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19395 * scheme, and returns one the following: 19396 * 19397 * -1 = failed allocation. 19398 * 0 = success; burst count reached, or usable send window is too small, 19399 * and that we'd rather wait until later before sending again. 19400 */ 19401 static int 19402 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19403 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19404 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19405 const int mdt_thres) 19406 { 19407 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19408 multidata_t *mmd; 19409 uint_t obsegs, obbytes, hdr_frag_sz; 19410 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19411 int num_burst_seg, max_pld; 19412 pdesc_t *pkt; 19413 tcp_pdescinfo_t tcp_pkt_info; 19414 pdescinfo_t *pkt_info; 19415 int pbuf_idx, pbuf_idx_nxt; 19416 int seg_len, len, spill, af; 19417 boolean_t add_buffer, zcopy, clusterwide; 19418 boolean_t buf_trunked = B_FALSE; 19419 boolean_t rconfirm = B_FALSE; 19420 boolean_t done = B_FALSE; 19421 uint32_t cksum; 19422 uint32_t hwcksum_flags; 19423 ire_t *ire = NULL; 19424 ill_t *ill; 19425 ipha_t *ipha; 19426 ip6_t *ip6h; 19427 ipaddr_t src, dst; 19428 ill_zerocopy_capab_t *zc_cap = NULL; 19429 uint16_t *up; 19430 int err; 19431 conn_t *connp; 19432 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19433 uchar_t *pld_start; 19434 19435 #ifdef _BIG_ENDIAN 19436 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19437 #else 19438 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19439 #endif 19440 19441 #define PREP_NEW_MULTIDATA() { \ 19442 mmd = NULL; \ 19443 md_mp = md_hbuf = NULL; \ 19444 cur_hdr_off = 0; \ 19445 max_pld = tcp->tcp_mdt_max_pld; \ 19446 pbuf_idx = pbuf_idx_nxt = -1; \ 19447 add_buffer = B_TRUE; \ 19448 zcopy = B_FALSE; \ 19449 } 19450 19451 #define PREP_NEW_PBUF() { \ 19452 md_pbuf = md_pbuf_nxt = NULL; \ 19453 pbuf_idx = pbuf_idx_nxt = -1; \ 19454 cur_pld_off = 0; \ 19455 first_snxt = *snxt; \ 19456 ASSERT(*tail_unsent > 0); \ 19457 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19458 } 19459 19460 ASSERT(mdt_thres >= mss); 19461 ASSERT(*usable > 0 && *usable > mdt_thres); 19462 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19463 ASSERT(!TCP_IS_DETACHED(tcp)); 19464 ASSERT(tcp->tcp_valid_bits == 0 || 19465 tcp->tcp_valid_bits == TCP_FSS_VALID); 19466 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19467 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19468 (tcp->tcp_ipversion == IPV6_VERSION && 19469 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19470 19471 connp = tcp->tcp_connp; 19472 ASSERT(connp != NULL); 19473 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19474 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19475 19476 /* 19477 * Note that tcp will only declare at most 2 payload spans per 19478 * packet, which is much lower than the maximum allowable number 19479 * of packet spans per Multidata. For this reason, we use the 19480 * privately declared and smaller descriptor info structure, in 19481 * order to save some stack space. 19482 */ 19483 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19484 19485 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19486 if (af == AF_INET) { 19487 dst = tcp->tcp_ipha->ipha_dst; 19488 src = tcp->tcp_ipha->ipha_src; 19489 ASSERT(!CLASSD(dst)); 19490 } 19491 ASSERT(af == AF_INET || 19492 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19493 19494 obsegs = obbytes = 0; 19495 num_burst_seg = tcp->tcp_snd_burst; 19496 md_mp_head = NULL; 19497 PREP_NEW_MULTIDATA(); 19498 19499 /* 19500 * Before we go on further, make sure there is an IRE that we can 19501 * use, and that the ILL supports MDT. Otherwise, there's no point 19502 * in proceeding any further, and we should just hand everything 19503 * off to the legacy path. 19504 */ 19505 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19506 goto legacy_send_no_md; 19507 19508 ASSERT(ire != NULL); 19509 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19510 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19511 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19512 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19513 /* 19514 * If we do support loopback for MDT (which requires modifications 19515 * to the receiving paths), the following assertions should go away, 19516 * and we would be sending the Multidata to loopback conn later on. 19517 */ 19518 ASSERT(!IRE_IS_LOCAL(ire)); 19519 ASSERT(ire->ire_stq != NULL); 19520 19521 ill = ire_to_ill(ire); 19522 ASSERT(ill != NULL); 19523 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19524 19525 if (!tcp->tcp_ire_ill_check_done) { 19526 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19527 tcp->tcp_ire_ill_check_done = B_TRUE; 19528 } 19529 19530 /* 19531 * If the underlying interface conditions have changed, or if the 19532 * new interface does not support MDT, go back to legacy path. 19533 */ 19534 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19535 /* don't go through this path anymore for this connection */ 19536 TCP_STAT(tcp_mdt_conn_halted2); 19537 tcp->tcp_mdt = B_FALSE; 19538 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19539 "interface %s\n", (void *)connp, ill->ill_name)); 19540 /* IRE will be released prior to returning */ 19541 goto legacy_send_no_md; 19542 } 19543 19544 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19545 zc_cap = ill->ill_zerocopy_capab; 19546 19547 /* 19548 * Check if we can take tcp fast-path. Note that "incomplete" 19549 * ire's (where the link-layer for next hop is not resolved 19550 * or where the fast-path header in nce_fp_mp is not available 19551 * yet) are sent down the legacy (slow) path. 19552 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19553 */ 19554 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19555 /* IRE will be released prior to returning */ 19556 goto legacy_send_no_md; 19557 } 19558 19559 /* go to legacy path if interface doesn't support zerocopy */ 19560 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19561 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19562 /* IRE will be released prior to returning */ 19563 goto legacy_send_no_md; 19564 } 19565 19566 /* does the interface support hardware checksum offload? */ 19567 hwcksum_flags = 0; 19568 if (ILL_HCKSUM_CAPABLE(ill) && 19569 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19570 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19571 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19572 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19573 HCKSUM_IPHDRCKSUM) 19574 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19575 19576 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19577 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19578 hwcksum_flags |= HCK_FULLCKSUM; 19579 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19580 HCKSUM_INET_PARTIAL) 19581 hwcksum_flags |= HCK_PARTIALCKSUM; 19582 } 19583 19584 /* 19585 * Each header fragment consists of the leading extra space, 19586 * followed by the TCP/IP header, and the trailing extra space. 19587 * We make sure that each header fragment begins on a 32-bit 19588 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19589 * aligned in tcp_mdt_update). 19590 */ 19591 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19592 tcp->tcp_mdt_hdr_tail), 4); 19593 19594 /* are we starting from the beginning of data block? */ 19595 if (*tail_unsent == 0) { 19596 *xmit_tail = (*xmit_tail)->b_cont; 19597 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19598 *tail_unsent = (int)MBLKL(*xmit_tail); 19599 } 19600 19601 /* 19602 * Here we create one or more Multidata messages, each made up of 19603 * one header buffer and up to N payload buffers. This entire 19604 * operation is done within two loops: 19605 * 19606 * The outer loop mostly deals with creating the Multidata message, 19607 * as well as the header buffer that gets added to it. It also 19608 * links the Multidata messages together such that all of them can 19609 * be sent down to the lower layer in a single putnext call; this 19610 * linking behavior depends on the tcp_mdt_chain tunable. 19611 * 19612 * The inner loop takes an existing Multidata message, and adds 19613 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19614 * packetizes those buffers by filling up the corresponding header 19615 * buffer fragments with the proper IP and TCP headers, and by 19616 * describing the layout of each packet in the packet descriptors 19617 * that get added to the Multidata. 19618 */ 19619 do { 19620 /* 19621 * If usable send window is too small, or data blocks in 19622 * transmit list are smaller than our threshold (i.e. app 19623 * performs large writes followed by small ones), we hand 19624 * off the control over to the legacy path. Note that we'll 19625 * get back the control once it encounters a large block. 19626 */ 19627 if (*usable < mss || (*tail_unsent <= mdt_thres && 19628 (*xmit_tail)->b_cont != NULL && 19629 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19630 /* send down what we've got so far */ 19631 if (md_mp_head != NULL) { 19632 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19633 obsegs, obbytes, &rconfirm); 19634 } 19635 /* 19636 * Pass control over to tcp_send(), but tell it to 19637 * return to us once a large-size transmission is 19638 * possible. 19639 */ 19640 TCP_STAT(tcp_mdt_legacy_small); 19641 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19642 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19643 tail_unsent, xmit_tail, local_time, 19644 mdt_thres)) <= 0) { 19645 /* burst count reached, or alloc failed */ 19646 IRE_REFRELE(ire); 19647 return (err); 19648 } 19649 19650 /* tcp_send() may have sent everything, so check */ 19651 if (*usable <= 0) { 19652 IRE_REFRELE(ire); 19653 return (0); 19654 } 19655 19656 TCP_STAT(tcp_mdt_legacy_ret); 19657 /* 19658 * We may have delivered the Multidata, so make sure 19659 * to re-initialize before the next round. 19660 */ 19661 md_mp_head = NULL; 19662 obsegs = obbytes = 0; 19663 num_burst_seg = tcp->tcp_snd_burst; 19664 PREP_NEW_MULTIDATA(); 19665 19666 /* are we starting from the beginning of data block? */ 19667 if (*tail_unsent == 0) { 19668 *xmit_tail = (*xmit_tail)->b_cont; 19669 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19670 (uintptr_t)INT_MAX); 19671 *tail_unsent = (int)MBLKL(*xmit_tail); 19672 } 19673 } 19674 19675 /* 19676 * max_pld limits the number of mblks in tcp's transmit 19677 * queue that can be added to a Multidata message. Once 19678 * this counter reaches zero, no more additional mblks 19679 * can be added to it. What happens afterwards depends 19680 * on whether or not we are set to chain the Multidata 19681 * messages. If we are to link them together, reset 19682 * max_pld to its original value (tcp_mdt_max_pld) and 19683 * prepare to create a new Multidata message which will 19684 * get linked to md_mp_head. Else, leave it alone and 19685 * let the inner loop break on its own. 19686 */ 19687 if (tcp_mdt_chain && max_pld == 0) 19688 PREP_NEW_MULTIDATA(); 19689 19690 /* adding a payload buffer; re-initialize values */ 19691 if (add_buffer) 19692 PREP_NEW_PBUF(); 19693 19694 /* 19695 * If we don't have a Multidata, either because we just 19696 * (re)entered this outer loop, or after we branched off 19697 * to tcp_send above, setup the Multidata and header 19698 * buffer to be used. 19699 */ 19700 if (md_mp == NULL) { 19701 int md_hbuflen; 19702 uint32_t start, stuff; 19703 19704 /* 19705 * Calculate Multidata header buffer size large enough 19706 * to hold all of the headers that can possibly be 19707 * sent at this moment. We'd rather over-estimate 19708 * the size than running out of space; this is okay 19709 * since this buffer is small anyway. 19710 */ 19711 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19712 19713 /* 19714 * Start and stuff offset for partial hardware 19715 * checksum offload; these are currently for IPv4. 19716 * For full checksum offload, they are set to zero. 19717 */ 19718 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19719 if (af == AF_INET) { 19720 start = IP_SIMPLE_HDR_LENGTH; 19721 stuff = IP_SIMPLE_HDR_LENGTH + 19722 TCP_CHECKSUM_OFFSET; 19723 } else { 19724 start = IPV6_HDR_LEN; 19725 stuff = IPV6_HDR_LEN + 19726 TCP_CHECKSUM_OFFSET; 19727 } 19728 } else { 19729 start = stuff = 0; 19730 } 19731 19732 /* 19733 * Create the header buffer, Multidata, as well as 19734 * any necessary attributes (destination address, 19735 * SAP and hardware checksum offload) that should 19736 * be associated with the Multidata message. 19737 */ 19738 ASSERT(cur_hdr_off == 0); 19739 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19740 ((md_hbuf->b_wptr += md_hbuflen), 19741 (mmd = mmd_alloc(md_hbuf, &md_mp, 19742 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19743 /* fastpath mblk */ 19744 ire->ire_nce->nce_res_mp, 19745 /* hardware checksum enabled */ 19746 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19747 /* hardware checksum offsets */ 19748 start, stuff, 0, 19749 /* hardware checksum flag */ 19750 hwcksum_flags) != 0)) { 19751 legacy_send: 19752 if (md_mp != NULL) { 19753 /* Unlink message from the chain */ 19754 if (md_mp_head != NULL) { 19755 err = (intptr_t)rmvb(md_mp_head, 19756 md_mp); 19757 /* 19758 * We can't assert that rmvb 19759 * did not return -1, since we 19760 * may get here before linkb 19761 * happens. We do, however, 19762 * check if we just removed the 19763 * only element in the list. 19764 */ 19765 if (err == 0) 19766 md_mp_head = NULL; 19767 } 19768 /* md_hbuf gets freed automatically */ 19769 TCP_STAT(tcp_mdt_discarded); 19770 freeb(md_mp); 19771 } else { 19772 /* Either allocb or mmd_alloc failed */ 19773 TCP_STAT(tcp_mdt_allocfail); 19774 if (md_hbuf != NULL) 19775 freeb(md_hbuf); 19776 } 19777 19778 /* send down what we've got so far */ 19779 if (md_mp_head != NULL) { 19780 tcp_multisend_data(tcp, ire, ill, 19781 md_mp_head, obsegs, obbytes, 19782 &rconfirm); 19783 } 19784 legacy_send_no_md: 19785 if (ire != NULL) 19786 IRE_REFRELE(ire); 19787 /* 19788 * Too bad; let the legacy path handle this. 19789 * We specify INT_MAX for the threshold, since 19790 * we gave up with the Multidata processings 19791 * and let the old path have it all. 19792 */ 19793 TCP_STAT(tcp_mdt_legacy_all); 19794 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19795 tcp_tcp_hdr_len, num_sack_blk, usable, 19796 snxt, tail_unsent, xmit_tail, local_time, 19797 INT_MAX)); 19798 } 19799 19800 /* link to any existing ones, if applicable */ 19801 TCP_STAT(tcp_mdt_allocd); 19802 if (md_mp_head == NULL) { 19803 md_mp_head = md_mp; 19804 } else if (tcp_mdt_chain) { 19805 TCP_STAT(tcp_mdt_linked); 19806 linkb(md_mp_head, md_mp); 19807 } 19808 } 19809 19810 ASSERT(md_mp_head != NULL); 19811 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19812 ASSERT(md_mp != NULL && mmd != NULL); 19813 ASSERT(md_hbuf != NULL); 19814 19815 /* 19816 * Packetize the transmittable portion of the data block; 19817 * each data block is essentially added to the Multidata 19818 * as a payload buffer. We also deal with adding more 19819 * than one payload buffers, which happens when the remaining 19820 * packetized portion of the current payload buffer is less 19821 * than MSS, while the next data block in transmit queue 19822 * has enough data to make up for one. This "spillover" 19823 * case essentially creates a split-packet, where portions 19824 * of the packet's payload fragments may span across two 19825 * virtually discontiguous address blocks. 19826 */ 19827 seg_len = mss; 19828 do { 19829 len = seg_len; 19830 19831 ASSERT(len > 0); 19832 ASSERT(max_pld >= 0); 19833 ASSERT(!add_buffer || cur_pld_off == 0); 19834 19835 /* 19836 * First time around for this payload buffer; note 19837 * in the case of a spillover, the following has 19838 * been done prior to adding the split-packet 19839 * descriptor to Multidata, and we don't want to 19840 * repeat the process. 19841 */ 19842 if (add_buffer) { 19843 ASSERT(mmd != NULL); 19844 ASSERT(md_pbuf == NULL); 19845 ASSERT(md_pbuf_nxt == NULL); 19846 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19847 19848 /* 19849 * Have we reached the limit? We'd get to 19850 * this case when we're not chaining the 19851 * Multidata messages together, and since 19852 * we're done, terminate this loop. 19853 */ 19854 if (max_pld == 0) 19855 break; /* done */ 19856 19857 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19858 TCP_STAT(tcp_mdt_allocfail); 19859 goto legacy_send; /* out_of_mem */ 19860 } 19861 19862 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19863 zc_cap != NULL) { 19864 if (!ip_md_zcopy_attr(mmd, NULL, 19865 zc_cap->ill_zerocopy_flags)) { 19866 freeb(md_pbuf); 19867 TCP_STAT(tcp_mdt_allocfail); 19868 /* out_of_mem */ 19869 goto legacy_send; 19870 } 19871 zcopy = B_TRUE; 19872 } 19873 19874 md_pbuf->b_rptr += base_pld_off; 19875 19876 /* 19877 * Add a payload buffer to the Multidata; this 19878 * operation must not fail, or otherwise our 19879 * logic in this routine is broken. There 19880 * is no memory allocation done by the 19881 * routine, so any returned failure simply 19882 * tells us that we've done something wrong. 19883 * 19884 * A failure tells us that either we're adding 19885 * the same payload buffer more than once, or 19886 * we're trying to add more buffers than 19887 * allowed (max_pld calculation is wrong). 19888 * None of the above cases should happen, and 19889 * we panic because either there's horrible 19890 * heap corruption, and/or programming mistake. 19891 */ 19892 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19893 if (pbuf_idx < 0) { 19894 cmn_err(CE_PANIC, "tcp_multisend: " 19895 "payload buffer logic error " 19896 "detected for tcp %p mmd %p " 19897 "pbuf %p (%d)\n", 19898 (void *)tcp, (void *)mmd, 19899 (void *)md_pbuf, pbuf_idx); 19900 } 19901 19902 ASSERT(max_pld > 0); 19903 --max_pld; 19904 add_buffer = B_FALSE; 19905 } 19906 19907 ASSERT(md_mp_head != NULL); 19908 ASSERT(md_pbuf != NULL); 19909 ASSERT(md_pbuf_nxt == NULL); 19910 ASSERT(pbuf_idx != -1); 19911 ASSERT(pbuf_idx_nxt == -1); 19912 ASSERT(*usable > 0); 19913 19914 /* 19915 * We spillover to the next payload buffer only 19916 * if all of the following is true: 19917 * 19918 * 1. There is not enough data on the current 19919 * payload buffer to make up `len', 19920 * 2. We are allowed to send `len', 19921 * 3. The next payload buffer length is large 19922 * enough to accomodate `spill'. 19923 */ 19924 if ((spill = len - *tail_unsent) > 0 && 19925 *usable >= len && 19926 MBLKL((*xmit_tail)->b_cont) >= spill && 19927 max_pld > 0) { 19928 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19929 if (md_pbuf_nxt == NULL) { 19930 TCP_STAT(tcp_mdt_allocfail); 19931 goto legacy_send; /* out_of_mem */ 19932 } 19933 19934 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19935 zc_cap != NULL) { 19936 if (!ip_md_zcopy_attr(mmd, NULL, 19937 zc_cap->ill_zerocopy_flags)) { 19938 freeb(md_pbuf_nxt); 19939 TCP_STAT(tcp_mdt_allocfail); 19940 /* out_of_mem */ 19941 goto legacy_send; 19942 } 19943 zcopy = B_TRUE; 19944 } 19945 19946 /* 19947 * See comments above on the first call to 19948 * mmd_addpldbuf for explanation on the panic. 19949 */ 19950 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19951 if (pbuf_idx_nxt < 0) { 19952 panic("tcp_multisend: " 19953 "next payload buffer logic error " 19954 "detected for tcp %p mmd %p " 19955 "pbuf %p (%d)\n", 19956 (void *)tcp, (void *)mmd, 19957 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19958 } 19959 19960 ASSERT(max_pld > 0); 19961 --max_pld; 19962 } else if (spill > 0) { 19963 /* 19964 * If there's a spillover, but the following 19965 * xmit_tail couldn't give us enough octets 19966 * to reach "len", then stop the current 19967 * Multidata creation and let the legacy 19968 * tcp_send() path take over. We don't want 19969 * to send the tiny segment as part of this 19970 * Multidata for performance reasons; instead, 19971 * we let the legacy path deal with grouping 19972 * it with the subsequent small mblks. 19973 */ 19974 if (*usable >= len && 19975 MBLKL((*xmit_tail)->b_cont) < spill) { 19976 max_pld = 0; 19977 break; /* done */ 19978 } 19979 19980 /* 19981 * We can't spillover, and we are near 19982 * the end of the current payload buffer, 19983 * so send what's left. 19984 */ 19985 ASSERT(*tail_unsent > 0); 19986 len = *tail_unsent; 19987 } 19988 19989 /* tail_unsent is negated if there is a spillover */ 19990 *tail_unsent -= len; 19991 *usable -= len; 19992 ASSERT(*usable >= 0); 19993 19994 if (*usable < mss) 19995 seg_len = *usable; 19996 /* 19997 * Sender SWS avoidance; see comments in tcp_send(); 19998 * everything else is the same, except that we only 19999 * do this here if there is no more data to be sent 20000 * following the current xmit_tail. We don't check 20001 * for 1-byte urgent data because we shouldn't get 20002 * here if TCP_URG_VALID is set. 20003 */ 20004 if (*usable > 0 && *usable < mss && 20005 ((md_pbuf_nxt == NULL && 20006 (*xmit_tail)->b_cont == NULL) || 20007 (md_pbuf_nxt != NULL && 20008 (*xmit_tail)->b_cont->b_cont == NULL)) && 20009 seg_len < (tcp->tcp_max_swnd >> 1) && 20010 (tcp->tcp_unsent - 20011 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20012 !tcp->tcp_zero_win_probe) { 20013 if ((*snxt + len) == tcp->tcp_snxt && 20014 (*snxt + len) == tcp->tcp_suna) { 20015 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20016 } 20017 done = B_TRUE; 20018 } 20019 20020 /* 20021 * Prime pump for IP's checksumming on our behalf; 20022 * include the adjustment for a source route if any. 20023 * Do this only for software/partial hardware checksum 20024 * offload, as this field gets zeroed out later for 20025 * the full hardware checksum offload case. 20026 */ 20027 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20028 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20029 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20030 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20031 } 20032 20033 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20034 *snxt += len; 20035 20036 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20037 /* 20038 * We set the PUSH bit only if TCP has no more buffered 20039 * data to be transmitted (or if sender SWS avoidance 20040 * takes place), as opposed to setting it for every 20041 * last packet in the burst. 20042 */ 20043 if (done || 20044 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20045 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20046 20047 /* 20048 * Set FIN bit if this is our last segment; snxt 20049 * already includes its length, and it will not 20050 * be adjusted after this point. 20051 */ 20052 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20053 *snxt == tcp->tcp_fss) { 20054 if (!tcp->tcp_fin_acked) { 20055 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20056 BUMP_MIB(&tcp_mib, tcpOutControl); 20057 } 20058 if (!tcp->tcp_fin_sent) { 20059 tcp->tcp_fin_sent = B_TRUE; 20060 /* 20061 * tcp state must be ESTABLISHED 20062 * in order for us to get here in 20063 * the first place. 20064 */ 20065 tcp->tcp_state = TCPS_FIN_WAIT_1; 20066 20067 /* 20068 * Upon returning from this routine, 20069 * tcp_wput_data() will set tcp_snxt 20070 * to be equal to snxt + tcp_fin_sent. 20071 * This is essentially the same as 20072 * setting it to tcp_fss + 1. 20073 */ 20074 } 20075 } 20076 20077 tcp->tcp_last_sent_len = (ushort_t)len; 20078 20079 len += tcp_hdr_len; 20080 if (tcp->tcp_ipversion == IPV4_VERSION) 20081 tcp->tcp_ipha->ipha_length = htons(len); 20082 else 20083 tcp->tcp_ip6h->ip6_plen = htons(len - 20084 ((char *)&tcp->tcp_ip6h[1] - 20085 tcp->tcp_iphc)); 20086 20087 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20088 20089 /* setup header fragment */ 20090 PDESC_HDR_ADD(pkt_info, 20091 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20092 tcp->tcp_mdt_hdr_head, /* head room */ 20093 tcp_hdr_len, /* len */ 20094 tcp->tcp_mdt_hdr_tail); /* tail room */ 20095 20096 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20097 hdr_frag_sz); 20098 ASSERT(MBLKIN(md_hbuf, 20099 (pkt_info->hdr_base - md_hbuf->b_rptr), 20100 PDESC_HDRSIZE(pkt_info))); 20101 20102 /* setup first payload fragment */ 20103 PDESC_PLD_INIT(pkt_info); 20104 PDESC_PLD_SPAN_ADD(pkt_info, 20105 pbuf_idx, /* index */ 20106 md_pbuf->b_rptr + cur_pld_off, /* start */ 20107 tcp->tcp_last_sent_len); /* len */ 20108 20109 /* create a split-packet in case of a spillover */ 20110 if (md_pbuf_nxt != NULL) { 20111 ASSERT(spill > 0); 20112 ASSERT(pbuf_idx_nxt > pbuf_idx); 20113 ASSERT(!add_buffer); 20114 20115 md_pbuf = md_pbuf_nxt; 20116 md_pbuf_nxt = NULL; 20117 pbuf_idx = pbuf_idx_nxt; 20118 pbuf_idx_nxt = -1; 20119 cur_pld_off = spill; 20120 20121 /* trim out first payload fragment */ 20122 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20123 20124 /* setup second payload fragment */ 20125 PDESC_PLD_SPAN_ADD(pkt_info, 20126 pbuf_idx, /* index */ 20127 md_pbuf->b_rptr, /* start */ 20128 spill); /* len */ 20129 20130 if ((*xmit_tail)->b_next == NULL) { 20131 /* 20132 * Store the lbolt used for RTT 20133 * estimation. We can only record one 20134 * timestamp per mblk so we do it when 20135 * we reach the end of the payload 20136 * buffer. Also we only take a new 20137 * timestamp sample when the previous 20138 * timed data from the same mblk has 20139 * been ack'ed. 20140 */ 20141 (*xmit_tail)->b_prev = local_time; 20142 (*xmit_tail)->b_next = 20143 (mblk_t *)(uintptr_t)first_snxt; 20144 } 20145 20146 first_snxt = *snxt - spill; 20147 20148 /* 20149 * Advance xmit_tail; usable could be 0 by 20150 * the time we got here, but we made sure 20151 * above that we would only spillover to 20152 * the next data block if usable includes 20153 * the spilled-over amount prior to the 20154 * subtraction. Therefore, we are sure 20155 * that xmit_tail->b_cont can't be NULL. 20156 */ 20157 ASSERT((*xmit_tail)->b_cont != NULL); 20158 *xmit_tail = (*xmit_tail)->b_cont; 20159 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20160 (uintptr_t)INT_MAX); 20161 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20162 } else { 20163 cur_pld_off += tcp->tcp_last_sent_len; 20164 } 20165 20166 /* 20167 * Fill in the header using the template header, and 20168 * add options such as time-stamp, ECN and/or SACK, 20169 * as needed. 20170 */ 20171 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20172 (clock_t)local_time, num_sack_blk); 20173 20174 /* take care of some IP header businesses */ 20175 if (af == AF_INET) { 20176 ipha = (ipha_t *)pkt_info->hdr_rptr; 20177 20178 ASSERT(OK_32PTR((uchar_t *)ipha)); 20179 ASSERT(PDESC_HDRL(pkt_info) >= 20180 IP_SIMPLE_HDR_LENGTH); 20181 ASSERT(ipha->ipha_version_and_hdr_length == 20182 IP_SIMPLE_HDR_VERSION); 20183 20184 /* 20185 * Assign ident value for current packet; see 20186 * related comments in ip_wput_ire() about the 20187 * contract private interface with clustering 20188 * group. 20189 */ 20190 clusterwide = B_FALSE; 20191 if (cl_inet_ipident != NULL) { 20192 ASSERT(cl_inet_isclusterwide != NULL); 20193 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20194 AF_INET, 20195 (uint8_t *)(uintptr_t)src)) { 20196 ipha->ipha_ident = 20197 (*cl_inet_ipident) 20198 (IPPROTO_IP, AF_INET, 20199 (uint8_t *)(uintptr_t)src, 20200 (uint8_t *)(uintptr_t)dst); 20201 clusterwide = B_TRUE; 20202 } 20203 } 20204 20205 if (!clusterwide) { 20206 ipha->ipha_ident = (uint16_t) 20207 atomic_add_32_nv( 20208 &ire->ire_ident, 1); 20209 } 20210 #ifndef _BIG_ENDIAN 20211 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20212 (ipha->ipha_ident >> 8); 20213 #endif 20214 } else { 20215 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20216 20217 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20218 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20219 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20220 ASSERT(PDESC_HDRL(pkt_info) >= 20221 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20222 TCP_CHECKSUM_SIZE)); 20223 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20224 20225 if (tcp->tcp_ip_forward_progress) { 20226 rconfirm = B_TRUE; 20227 tcp->tcp_ip_forward_progress = B_FALSE; 20228 } 20229 } 20230 20231 /* at least one payload span, and at most two */ 20232 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20233 20234 /* add the packet descriptor to Multidata */ 20235 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20236 KM_NOSLEEP)) == NULL) { 20237 /* 20238 * Any failure other than ENOMEM indicates 20239 * that we have passed in invalid pkt_info 20240 * or parameters to mmd_addpdesc, which must 20241 * not happen. 20242 * 20243 * EINVAL is a result of failure on boundary 20244 * checks against the pkt_info contents. It 20245 * should not happen, and we panic because 20246 * either there's horrible heap corruption, 20247 * and/or programming mistake. 20248 */ 20249 if (err != ENOMEM) { 20250 cmn_err(CE_PANIC, "tcp_multisend: " 20251 "pdesc logic error detected for " 20252 "tcp %p mmd %p pinfo %p (%d)\n", 20253 (void *)tcp, (void *)mmd, 20254 (void *)pkt_info, err); 20255 } 20256 TCP_STAT(tcp_mdt_addpdescfail); 20257 goto legacy_send; /* out_of_mem */ 20258 } 20259 ASSERT(pkt != NULL); 20260 20261 /* calculate IP header and TCP checksums */ 20262 if (af == AF_INET) { 20263 /* calculate pseudo-header checksum */ 20264 cksum = (dst >> 16) + (dst & 0xFFFF) + 20265 (src >> 16) + (src & 0xFFFF); 20266 20267 /* offset for TCP header checksum */ 20268 up = IPH_TCPH_CHECKSUMP(ipha, 20269 IP_SIMPLE_HDR_LENGTH); 20270 } else { 20271 up = (uint16_t *)&ip6h->ip6_src; 20272 20273 /* calculate pseudo-header checksum */ 20274 cksum = up[0] + up[1] + up[2] + up[3] + 20275 up[4] + up[5] + up[6] + up[7] + 20276 up[8] + up[9] + up[10] + up[11] + 20277 up[12] + up[13] + up[14] + up[15]; 20278 20279 /* Fold the initial sum */ 20280 cksum = (cksum & 0xffff) + (cksum >> 16); 20281 20282 up = (uint16_t *)(((uchar_t *)ip6h) + 20283 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20284 } 20285 20286 if (hwcksum_flags & HCK_FULLCKSUM) { 20287 /* clear checksum field for hardware */ 20288 *up = 0; 20289 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20290 uint32_t sum; 20291 20292 /* pseudo-header checksumming */ 20293 sum = *up + cksum + IP_TCP_CSUM_COMP; 20294 sum = (sum & 0xFFFF) + (sum >> 16); 20295 *up = (sum & 0xFFFF) + (sum >> 16); 20296 } else { 20297 /* software checksumming */ 20298 TCP_STAT(tcp_out_sw_cksum); 20299 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 20300 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20301 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20302 cksum + IP_TCP_CSUM_COMP); 20303 if (*up == 0) 20304 *up = 0xFFFF; 20305 } 20306 20307 /* IPv4 header checksum */ 20308 if (af == AF_INET) { 20309 ipha->ipha_fragment_offset_and_flags |= 20310 (uint32_t)htons(ire->ire_frag_flag); 20311 20312 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20313 ipha->ipha_hdr_checksum = 0; 20314 } else { 20315 IP_HDR_CKSUM(ipha, cksum, 20316 ((uint32_t *)ipha)[0], 20317 ((uint16_t *)ipha)[4]); 20318 } 20319 } 20320 20321 if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT|| 20322 af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) { 20323 /* build header(IP/TCP) mblk for this segment */ 20324 if ((mp = dupb(md_hbuf)) == NULL) 20325 goto legacy_send; 20326 20327 mp->b_rptr = pkt_info->hdr_rptr; 20328 mp->b_wptr = pkt_info->hdr_wptr; 20329 20330 /* build payload mblk for this segment */ 20331 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20332 freemsg(mp); 20333 goto legacy_send; 20334 } 20335 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20336 mp1->b_rptr = mp1->b_wptr - 20337 tcp->tcp_last_sent_len; 20338 linkb(mp, mp1); 20339 20340 pld_start = mp1->b_rptr; 20341 20342 if (af == AF_INET) { 20343 DTRACE_PROBE4( 20344 ip4__physical__out__start, 20345 ill_t *, NULL, 20346 ill_t *, ill, 20347 ipha_t *, ipha, 20348 mblk_t *, mp); 20349 FW_HOOKS(ip4_physical_out_event, 20350 ipv4firewall_physical_out, 20351 NULL, ill, ipha, mp, mp); 20352 DTRACE_PROBE1( 20353 ip4__physical__out__end, 20354 mblk_t *, mp); 20355 } else { 20356 DTRACE_PROBE4( 20357 ip6__physical__out_start, 20358 ill_t *, NULL, 20359 ill_t *, ill, 20360 ip6_t *, ip6h, 20361 mblk_t *, mp); 20362 FW_HOOKS6(ip6_physical_out_event, 20363 ipv6firewall_physical_out, 20364 NULL, ill, ip6h, mp, mp); 20365 DTRACE_PROBE1( 20366 ip6__physical__out__end, 20367 mblk_t *, mp); 20368 } 20369 20370 if (buf_trunked && mp != NULL) { 20371 /* 20372 * Need to pass it to normal path. 20373 */ 20374 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20375 } else if (mp == NULL || 20376 mp->b_rptr != pkt_info->hdr_rptr || 20377 mp->b_wptr != pkt_info->hdr_wptr || 20378 (mp1 = mp->b_cont) == NULL || 20379 mp1->b_rptr != pld_start || 20380 mp1->b_wptr != pld_start + 20381 tcp->tcp_last_sent_len || 20382 mp1->b_cont != NULL) { 20383 /* 20384 * Need to pass all packets of this 20385 * buffer to normal path, either when 20386 * packet is blocked, or when boundary 20387 * of header buffer or payload buffer 20388 * has been changed by FW_HOOKS[6]. 20389 */ 20390 buf_trunked = B_TRUE; 20391 if (md_mp_head != NULL) { 20392 err = (intptr_t)rmvb(md_mp_head, 20393 md_mp); 20394 if (err == 0) 20395 md_mp_head = NULL; 20396 } 20397 20398 /* send down what we've got so far */ 20399 if (md_mp_head != NULL) { 20400 tcp_multisend_data(tcp, ire, 20401 ill, md_mp_head, obsegs, 20402 obbytes, &rconfirm); 20403 } 20404 md_mp_head = NULL; 20405 20406 if (mp != NULL) 20407 CALL_IP_WPUT(tcp->tcp_connp, 20408 q, mp); 20409 20410 mp1 = fw_mp_head; 20411 do { 20412 mp = mp1; 20413 mp1 = mp1->b_next; 20414 mp->b_next = NULL; 20415 mp->b_prev = NULL; 20416 CALL_IP_WPUT(tcp->tcp_connp, 20417 q, mp); 20418 } while (mp1 != NULL); 20419 20420 fw_mp_head = NULL; 20421 } else { 20422 if (fw_mp_head == NULL) 20423 fw_mp_head = mp; 20424 else 20425 fw_mp_head->b_prev->b_next = mp; 20426 fw_mp_head->b_prev = mp; 20427 } 20428 } 20429 20430 /* advance header offset */ 20431 cur_hdr_off += hdr_frag_sz; 20432 20433 obbytes += tcp->tcp_last_sent_len; 20434 ++obsegs; 20435 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20436 *tail_unsent > 0); 20437 20438 if ((*xmit_tail)->b_next == NULL) { 20439 /* 20440 * Store the lbolt used for RTT estimation. We can only 20441 * record one timestamp per mblk so we do it when we 20442 * reach the end of the payload buffer. Also we only 20443 * take a new timestamp sample when the previous timed 20444 * data from the same mblk has been ack'ed. 20445 */ 20446 (*xmit_tail)->b_prev = local_time; 20447 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20448 } 20449 20450 ASSERT(*tail_unsent >= 0); 20451 if (*tail_unsent > 0) { 20452 /* 20453 * We got here because we broke out of the above 20454 * loop due to of one of the following cases: 20455 * 20456 * 1. len < adjusted MSS (i.e. small), 20457 * 2. Sender SWS avoidance, 20458 * 3. max_pld is zero. 20459 * 20460 * We are done for this Multidata, so trim our 20461 * last payload buffer (if any) accordingly. 20462 */ 20463 if (md_pbuf != NULL) 20464 md_pbuf->b_wptr -= *tail_unsent; 20465 } else if (*usable > 0) { 20466 *xmit_tail = (*xmit_tail)->b_cont; 20467 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20468 (uintptr_t)INT_MAX); 20469 *tail_unsent = (int)MBLKL(*xmit_tail); 20470 add_buffer = B_TRUE; 20471 } 20472 20473 while (fw_mp_head) { 20474 mp = fw_mp_head; 20475 fw_mp_head = fw_mp_head->b_next; 20476 mp->b_prev = mp->b_next = NULL; 20477 freemsg(mp); 20478 } 20479 if (buf_trunked) { 20480 TCP_STAT(tcp_mdt_discarded); 20481 freeb(md_mp); 20482 buf_trunked = B_FALSE; 20483 } 20484 } while (!done && *usable > 0 && num_burst_seg > 0 && 20485 (tcp_mdt_chain || max_pld > 0)); 20486 20487 if (md_mp_head != NULL) { 20488 /* send everything down */ 20489 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20490 &rconfirm); 20491 } 20492 20493 #undef PREP_NEW_MULTIDATA 20494 #undef PREP_NEW_PBUF 20495 #undef IPVER 20496 20497 IRE_REFRELE(ire); 20498 return (0); 20499 } 20500 20501 /* 20502 * A wrapper function for sending one or more Multidata messages down to 20503 * the module below ip; this routine does not release the reference of the 20504 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20505 */ 20506 static void 20507 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20508 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20509 { 20510 uint64_t delta; 20511 nce_t *nce; 20512 20513 ASSERT(ire != NULL && ill != NULL); 20514 ASSERT(ire->ire_stq != NULL); 20515 ASSERT(md_mp_head != NULL); 20516 ASSERT(rconfirm != NULL); 20517 20518 /* adjust MIBs and IRE timestamp */ 20519 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20520 tcp->tcp_obsegs += obsegs; 20521 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20522 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20523 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20524 20525 if (tcp->tcp_ipversion == IPV4_VERSION) { 20526 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20527 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 20528 } else { 20529 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20530 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 20531 } 20532 20533 ire->ire_ob_pkt_count += obsegs; 20534 if (ire->ire_ipif != NULL) 20535 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20536 ire->ire_last_used_time = lbolt; 20537 20538 /* send it down */ 20539 putnext(ire->ire_stq, md_mp_head); 20540 20541 /* we're done for TCP/IPv4 */ 20542 if (tcp->tcp_ipversion == IPV4_VERSION) 20543 return; 20544 20545 nce = ire->ire_nce; 20546 20547 ASSERT(nce != NULL); 20548 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20549 ASSERT(nce->nce_state != ND_INCOMPLETE); 20550 20551 /* reachability confirmation? */ 20552 if (*rconfirm) { 20553 nce->nce_last = TICK_TO_MSEC(lbolt64); 20554 if (nce->nce_state != ND_REACHABLE) { 20555 mutex_enter(&nce->nce_lock); 20556 nce->nce_state = ND_REACHABLE; 20557 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20558 mutex_exit(&nce->nce_lock); 20559 (void) untimeout(nce->nce_timeout_id); 20560 if (ip_debug > 2) { 20561 /* ip1dbg */ 20562 pr_addr_dbg("tcp_multisend_data: state " 20563 "for %s changed to REACHABLE\n", 20564 AF_INET6, &ire->ire_addr_v6); 20565 } 20566 } 20567 /* reset transport reachability confirmation */ 20568 *rconfirm = B_FALSE; 20569 } 20570 20571 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20572 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20573 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20574 20575 if (delta > (uint64_t)ill->ill_reachable_time) { 20576 mutex_enter(&nce->nce_lock); 20577 switch (nce->nce_state) { 20578 case ND_REACHABLE: 20579 case ND_STALE: 20580 /* 20581 * ND_REACHABLE is identical to ND_STALE in this 20582 * specific case. If reachable time has expired for 20583 * this neighbor (delta is greater than reachable 20584 * time), conceptually, the neighbor cache is no 20585 * longer in REACHABLE state, but already in STALE 20586 * state. So the correct transition here is to 20587 * ND_DELAY. 20588 */ 20589 nce->nce_state = ND_DELAY; 20590 mutex_exit(&nce->nce_lock); 20591 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20592 if (ip_debug > 3) { 20593 /* ip2dbg */ 20594 pr_addr_dbg("tcp_multisend_data: state " 20595 "for %s changed to DELAY\n", 20596 AF_INET6, &ire->ire_addr_v6); 20597 } 20598 break; 20599 case ND_DELAY: 20600 case ND_PROBE: 20601 mutex_exit(&nce->nce_lock); 20602 /* Timers have already started */ 20603 break; 20604 case ND_UNREACHABLE: 20605 /* 20606 * ndp timer has detected that this nce is 20607 * unreachable and initiated deleting this nce 20608 * and all its associated IREs. This is a race 20609 * where we found the ire before it was deleted 20610 * and have just sent out a packet using this 20611 * unreachable nce. 20612 */ 20613 mutex_exit(&nce->nce_lock); 20614 break; 20615 default: 20616 ASSERT(0); 20617 } 20618 } 20619 } 20620 20621 /* 20622 * Derived from tcp_send_data(). 20623 */ 20624 static void 20625 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20626 int num_lso_seg) 20627 { 20628 ipha_t *ipha; 20629 mblk_t *ire_fp_mp; 20630 uint_t ire_fp_mp_len; 20631 uint32_t hcksum_txflags = 0; 20632 ipaddr_t src; 20633 ipaddr_t dst; 20634 uint32_t cksum; 20635 uint16_t *up; 20636 20637 ASSERT(DB_TYPE(mp) == M_DATA); 20638 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20639 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20640 ASSERT(tcp->tcp_connp != NULL); 20641 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20642 20643 ipha = (ipha_t *)mp->b_rptr; 20644 src = ipha->ipha_src; 20645 dst = ipha->ipha_dst; 20646 20647 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20648 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20649 num_lso_seg); 20650 #ifndef _BIG_ENDIAN 20651 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20652 #endif 20653 if (tcp->tcp_snd_zcopy_aware) { 20654 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20655 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20656 mp = tcp_zcopy_disable(tcp, mp); 20657 } 20658 20659 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20660 ASSERT(ill->ill_hcksum_capab != NULL); 20661 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20662 } 20663 20664 /* 20665 * Since the TCP checksum should be recalculated by h/w, we can just 20666 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20667 * pseudo-header checksum for HCK_PARTIALCKSUM. 20668 * The partial pseudo-header excludes TCP length, that was calculated 20669 * in tcp_send(), so to zero *up before further processing. 20670 */ 20671 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20672 20673 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20674 *up = 0; 20675 20676 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20677 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20678 20679 /* 20680 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 20681 */ 20682 DB_LSOFLAGS(mp) |= HW_LSO; 20683 DB_LSOMSS(mp) = mss; 20684 20685 ipha->ipha_fragment_offset_and_flags |= 20686 (uint32_t)htons(ire->ire_frag_flag); 20687 20688 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20689 ire_fp_mp_len = MBLKL(ire_fp_mp); 20690 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20691 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20692 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20693 20694 UPDATE_OB_PKT_COUNT(ire); 20695 ire->ire_last_used_time = lbolt; 20696 BUMP_MIB(&ip_mib, ipOutRequests); 20697 20698 if (ILL_DLS_CAPABLE(ill)) { 20699 /* 20700 * Send the packet directly to DLD, where it may be queued 20701 * depending on the availability of transmit resources at 20702 * the media layer. 20703 */ 20704 IP_DLS_ILL_TX(ill, ipha, mp); 20705 } else { 20706 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 20707 DTRACE_PROBE4(ip4__physical__out__start, 20708 ill_t *, NULL, ill_t *, out_ill, 20709 ipha_t *, ipha, mblk_t *, mp); 20710 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 20711 NULL, out_ill, ipha, mp, mp); 20712 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20713 if (mp != NULL) 20714 putnext(ire->ire_stq, mp); 20715 } 20716 } 20717 20718 /* 20719 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20720 * scheme, and returns one of the following: 20721 * 20722 * -1 = failed allocation. 20723 * 0 = success; burst count reached, or usable send window is too small, 20724 * and that we'd rather wait until later before sending again. 20725 * 1 = success; we are called from tcp_multisend(), and both usable send 20726 * window and tail_unsent are greater than the MDT threshold, and thus 20727 * Multidata Transmit should be used instead. 20728 */ 20729 static int 20730 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20731 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20732 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20733 const int mdt_thres) 20734 { 20735 int num_burst_seg = tcp->tcp_snd_burst; 20736 ire_t *ire = NULL; 20737 ill_t *ill = NULL; 20738 mblk_t *ire_fp_mp = NULL; 20739 uint_t ire_fp_mp_len = 0; 20740 int num_lso_seg = 1; 20741 uint_t lso_usable; 20742 boolean_t do_lso_send = B_FALSE; 20743 20744 /* 20745 * Check LSO capability before any further work. And the similar check 20746 * need to be done in for(;;) loop. 20747 * LSO will be deployed when therer is more than one mss of available 20748 * data and a burst transmission is allowed. 20749 */ 20750 if (tcp->tcp_lso && 20751 (tcp->tcp_valid_bits == 0 || 20752 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20753 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20754 /* 20755 * Try to find usable IRE/ILL and do basic check to the ILL. 20756 */ 20757 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 20758 /* 20759 * Enable LSO with this transmission. 20760 * Since IRE has been hold in 20761 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 20762 * should be called before return. 20763 */ 20764 do_lso_send = B_TRUE; 20765 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20766 ire_fp_mp_len = MBLKL(ire_fp_mp); 20767 /* Round up to multiple of 4 */ 20768 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20769 } else { 20770 do_lso_send = B_FALSE; 20771 ill = NULL; 20772 } 20773 } 20774 20775 for (;;) { 20776 struct datab *db; 20777 tcph_t *tcph; 20778 uint32_t sum; 20779 mblk_t *mp, *mp1; 20780 uchar_t *rptr; 20781 int len; 20782 20783 /* 20784 * If we're called by tcp_multisend(), and the amount of 20785 * sendable data as well as the size of current xmit_tail 20786 * is beyond the MDT threshold, return to the caller and 20787 * let the large data transmit be done using MDT. 20788 */ 20789 if (*usable > 0 && *usable > mdt_thres && 20790 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20791 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20792 ASSERT(tcp->tcp_mdt); 20793 return (1); /* success; do large send */ 20794 } 20795 20796 if (num_burst_seg == 0) 20797 break; /* success; burst count reached */ 20798 20799 /* 20800 * Calculate the maximum payload length we can send in *one* 20801 * time. 20802 */ 20803 if (do_lso_send) { 20804 /* 20805 * Check whether need to do LSO any more. 20806 */ 20807 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20808 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20809 lso_usable = MIN(lso_usable, 20810 num_burst_seg * mss); 20811 20812 num_lso_seg = lso_usable / mss; 20813 if (lso_usable % mss) { 20814 num_lso_seg++; 20815 tcp->tcp_last_sent_len = (ushort_t) 20816 (lso_usable % mss); 20817 } else { 20818 tcp->tcp_last_sent_len = (ushort_t)mss; 20819 } 20820 } else { 20821 do_lso_send = B_FALSE; 20822 num_lso_seg = 1; 20823 lso_usable = mss; 20824 } 20825 } 20826 20827 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20828 20829 /* 20830 * Adjust num_burst_seg here. 20831 */ 20832 num_burst_seg -= num_lso_seg; 20833 20834 len = mss; 20835 if (len > *usable) { 20836 ASSERT(do_lso_send == B_FALSE); 20837 20838 len = *usable; 20839 if (len <= 0) { 20840 /* Terminate the loop */ 20841 break; /* success; too small */ 20842 } 20843 /* 20844 * Sender silly-window avoidance. 20845 * Ignore this if we are going to send a 20846 * zero window probe out. 20847 * 20848 * TODO: force data into microscopic window? 20849 * ==> (!pushed || (unsent > usable)) 20850 */ 20851 if (len < (tcp->tcp_max_swnd >> 1) && 20852 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20853 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20854 len == 1) && (! tcp->tcp_zero_win_probe)) { 20855 /* 20856 * If the retransmit timer is not running 20857 * we start it so that we will retransmit 20858 * in the case when the the receiver has 20859 * decremented the window. 20860 */ 20861 if (*snxt == tcp->tcp_snxt && 20862 *snxt == tcp->tcp_suna) { 20863 /* 20864 * We are not supposed to send 20865 * anything. So let's wait a little 20866 * bit longer before breaking SWS 20867 * avoidance. 20868 * 20869 * What should the value be? 20870 * Suggestion: MAX(init rexmit time, 20871 * tcp->tcp_rto) 20872 */ 20873 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20874 } 20875 break; /* success; too small */ 20876 } 20877 } 20878 20879 tcph = tcp->tcp_tcph; 20880 20881 /* 20882 * The reason to adjust len here is that we need to set flags 20883 * and calculate checksum. 20884 */ 20885 if (do_lso_send) 20886 len = lso_usable; 20887 20888 *usable -= len; /* Approximate - can be adjusted later */ 20889 if (*usable > 0) 20890 tcph->th_flags[0] = TH_ACK; 20891 else 20892 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20893 20894 /* 20895 * Prime pump for IP's checksumming on our behalf 20896 * Include the adjustment for a source route if any. 20897 */ 20898 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20899 sum = (sum >> 16) + (sum & 0xFFFF); 20900 U16_TO_ABE16(sum, tcph->th_sum); 20901 20902 U32_TO_ABE32(*snxt, tcph->th_seq); 20903 20904 /* 20905 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20906 * set. For the case when TCP_FSS_VALID is the only valid 20907 * bit (normal active close), branch off only when we think 20908 * that the FIN flag needs to be set. Note for this case, 20909 * that (snxt + len) may not reflect the actual seg_len, 20910 * as len may be further reduced in tcp_xmit_mp(). If len 20911 * gets modified, we will end up here again. 20912 */ 20913 if (tcp->tcp_valid_bits != 0 && 20914 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20915 ((*snxt + len) == tcp->tcp_fss))) { 20916 uchar_t *prev_rptr; 20917 uint32_t prev_snxt = tcp->tcp_snxt; 20918 20919 if (*tail_unsent == 0) { 20920 ASSERT((*xmit_tail)->b_cont != NULL); 20921 *xmit_tail = (*xmit_tail)->b_cont; 20922 prev_rptr = (*xmit_tail)->b_rptr; 20923 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20924 (*xmit_tail)->b_rptr); 20925 } else { 20926 prev_rptr = (*xmit_tail)->b_rptr; 20927 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20928 *tail_unsent; 20929 } 20930 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20931 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20932 /* Restore tcp_snxt so we get amount sent right. */ 20933 tcp->tcp_snxt = prev_snxt; 20934 if (prev_rptr == (*xmit_tail)->b_rptr) { 20935 /* 20936 * If the previous timestamp is still in use, 20937 * don't stomp on it. 20938 */ 20939 if ((*xmit_tail)->b_next == NULL) { 20940 (*xmit_tail)->b_prev = local_time; 20941 (*xmit_tail)->b_next = 20942 (mblk_t *)(uintptr_t)(*snxt); 20943 } 20944 } else 20945 (*xmit_tail)->b_rptr = prev_rptr; 20946 20947 if (mp == NULL) { 20948 if (ire != NULL) 20949 IRE_REFRELE(ire); 20950 return (-1); 20951 } 20952 mp1 = mp->b_cont; 20953 20954 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20955 tcp->tcp_last_sent_len = (ushort_t)len; 20956 while (mp1->b_cont) { 20957 *xmit_tail = (*xmit_tail)->b_cont; 20958 (*xmit_tail)->b_prev = local_time; 20959 (*xmit_tail)->b_next = 20960 (mblk_t *)(uintptr_t)(*snxt); 20961 mp1 = mp1->b_cont; 20962 } 20963 *snxt += len; 20964 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20965 BUMP_LOCAL(tcp->tcp_obsegs); 20966 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20967 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20968 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20969 tcp_send_data(tcp, q, mp); 20970 continue; 20971 } 20972 20973 *snxt += len; /* Adjust later if we don't send all of len */ 20974 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20975 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20976 20977 if (*tail_unsent) { 20978 /* Are the bytes above us in flight? */ 20979 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20980 if (rptr != (*xmit_tail)->b_rptr) { 20981 *tail_unsent -= len; 20982 if (len <= mss) /* LSO is unusable */ 20983 tcp->tcp_last_sent_len = (ushort_t)len; 20984 len += tcp_hdr_len; 20985 if (tcp->tcp_ipversion == IPV4_VERSION) 20986 tcp->tcp_ipha->ipha_length = htons(len); 20987 else 20988 tcp->tcp_ip6h->ip6_plen = 20989 htons(len - 20990 ((char *)&tcp->tcp_ip6h[1] - 20991 tcp->tcp_iphc)); 20992 mp = dupb(*xmit_tail); 20993 if (mp == NULL) { 20994 if (ire != NULL) 20995 IRE_REFRELE(ire); 20996 return (-1); /* out_of_mem */ 20997 } 20998 mp->b_rptr = rptr; 20999 /* 21000 * If the old timestamp is no longer in use, 21001 * sample a new timestamp now. 21002 */ 21003 if ((*xmit_tail)->b_next == NULL) { 21004 (*xmit_tail)->b_prev = local_time; 21005 (*xmit_tail)->b_next = 21006 (mblk_t *)(uintptr_t)(*snxt-len); 21007 } 21008 goto must_alloc; 21009 } 21010 } else { 21011 *xmit_tail = (*xmit_tail)->b_cont; 21012 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21013 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21014 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21015 (*xmit_tail)->b_rptr); 21016 } 21017 21018 (*xmit_tail)->b_prev = local_time; 21019 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21020 21021 *tail_unsent -= len; 21022 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21023 tcp->tcp_last_sent_len = (ushort_t)len; 21024 21025 len += tcp_hdr_len; 21026 if (tcp->tcp_ipversion == IPV4_VERSION) 21027 tcp->tcp_ipha->ipha_length = htons(len); 21028 else 21029 tcp->tcp_ip6h->ip6_plen = htons(len - 21030 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21031 21032 mp = dupb(*xmit_tail); 21033 if (mp == NULL) { 21034 if (ire != NULL) 21035 IRE_REFRELE(ire); 21036 return (-1); /* out_of_mem */ 21037 } 21038 21039 len = tcp_hdr_len; 21040 /* 21041 * There are four reasons to allocate a new hdr mblk: 21042 * 1) The bytes above us are in use by another packet 21043 * 2) We don't have good alignment 21044 * 3) The mblk is being shared 21045 * 4) We don't have enough room for a header 21046 */ 21047 rptr = mp->b_rptr - len; 21048 if (!OK_32PTR(rptr) || 21049 ((db = mp->b_datap), db->db_ref != 2) || 21050 rptr < db->db_base + ire_fp_mp_len) { 21051 /* NOTE: we assume allocb returns an OK_32PTR */ 21052 21053 must_alloc:; 21054 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21055 tcp_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21056 if (mp1 == NULL) { 21057 freemsg(mp); 21058 if (ire != NULL) 21059 IRE_REFRELE(ire); 21060 return (-1); /* out_of_mem */ 21061 } 21062 mp1->b_cont = mp; 21063 mp = mp1; 21064 /* Leave room for Link Level header */ 21065 len = tcp_hdr_len; 21066 rptr = &mp->b_rptr[tcp_wroff_xtra + ire_fp_mp_len]; 21067 mp->b_wptr = &rptr[len]; 21068 } 21069 21070 /* 21071 * Fill in the header using the template header, and add 21072 * options such as time-stamp, ECN and/or SACK, as needed. 21073 */ 21074 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21075 21076 mp->b_rptr = rptr; 21077 21078 if (*tail_unsent) { 21079 int spill = *tail_unsent; 21080 21081 mp1 = mp->b_cont; 21082 if (mp1 == NULL) 21083 mp1 = mp; 21084 21085 /* 21086 * If we're a little short, tack on more mblks until 21087 * there is no more spillover. 21088 */ 21089 while (spill < 0) { 21090 mblk_t *nmp; 21091 int nmpsz; 21092 21093 nmp = (*xmit_tail)->b_cont; 21094 nmpsz = MBLKL(nmp); 21095 21096 /* 21097 * Excess data in mblk; can we split it? 21098 * If MDT is enabled for the connection, 21099 * keep on splitting as this is a transient 21100 * send path. 21101 */ 21102 if (!do_lso_send && !tcp->tcp_mdt && 21103 (spill + nmpsz > 0)) { 21104 /* 21105 * Don't split if stream head was 21106 * told to break up larger writes 21107 * into smaller ones. 21108 */ 21109 if (tcp->tcp_maxpsz > 0) 21110 break; 21111 21112 /* 21113 * Next mblk is less than SMSS/2 21114 * rounded up to nearest 64-byte; 21115 * let it get sent as part of the 21116 * next segment. 21117 */ 21118 if (tcp->tcp_localnet && 21119 !tcp->tcp_cork && 21120 (nmpsz < roundup((mss >> 1), 64))) 21121 break; 21122 } 21123 21124 *xmit_tail = nmp; 21125 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21126 /* Stash for rtt use later */ 21127 (*xmit_tail)->b_prev = local_time; 21128 (*xmit_tail)->b_next = 21129 (mblk_t *)(uintptr_t)(*snxt - len); 21130 mp1->b_cont = dupb(*xmit_tail); 21131 mp1 = mp1->b_cont; 21132 21133 spill += nmpsz; 21134 if (mp1 == NULL) { 21135 *tail_unsent = spill; 21136 freemsg(mp); 21137 if (ire != NULL) 21138 IRE_REFRELE(ire); 21139 return (-1); /* out_of_mem */ 21140 } 21141 } 21142 21143 /* Trim back any surplus on the last mblk */ 21144 if (spill >= 0) { 21145 mp1->b_wptr -= spill; 21146 *tail_unsent = spill; 21147 } else { 21148 /* 21149 * We did not send everything we could in 21150 * order to remain within the b_cont limit. 21151 */ 21152 *usable -= spill; 21153 *snxt += spill; 21154 tcp->tcp_last_sent_len += spill; 21155 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 21156 /* 21157 * Adjust the checksum 21158 */ 21159 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21160 sum += spill; 21161 sum = (sum >> 16) + (sum & 0xFFFF); 21162 U16_TO_ABE16(sum, tcph->th_sum); 21163 if (tcp->tcp_ipversion == IPV4_VERSION) { 21164 sum = ntohs( 21165 ((ipha_t *)rptr)->ipha_length) + 21166 spill; 21167 ((ipha_t *)rptr)->ipha_length = 21168 htons(sum); 21169 } else { 21170 sum = ntohs( 21171 ((ip6_t *)rptr)->ip6_plen) + 21172 spill; 21173 ((ip6_t *)rptr)->ip6_plen = 21174 htons(sum); 21175 } 21176 *tail_unsent = 0; 21177 } 21178 } 21179 if (tcp->tcp_ip_forward_progress) { 21180 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21181 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21182 tcp->tcp_ip_forward_progress = B_FALSE; 21183 } 21184 21185 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21186 if (do_lso_send) { 21187 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21188 num_lso_seg); 21189 tcp->tcp_obsegs += num_lso_seg; 21190 21191 TCP_STAT(tcp_lso_times); 21192 TCP_STAT_UPDATE(tcp_lso_pkt_out, num_lso_seg); 21193 } else { 21194 tcp_send_data(tcp, q, mp); 21195 BUMP_LOCAL(tcp->tcp_obsegs); 21196 } 21197 } 21198 21199 if (ire != NULL) 21200 IRE_REFRELE(ire); 21201 return (0); 21202 } 21203 21204 /* Unlink and return any mblk that looks like it contains a MDT info */ 21205 static mblk_t * 21206 tcp_mdt_info_mp(mblk_t *mp) 21207 { 21208 mblk_t *prev_mp; 21209 21210 for (;;) { 21211 prev_mp = mp; 21212 /* no more to process? */ 21213 if ((mp = mp->b_cont) == NULL) 21214 break; 21215 21216 switch (DB_TYPE(mp)) { 21217 case M_CTL: 21218 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21219 continue; 21220 ASSERT(prev_mp != NULL); 21221 prev_mp->b_cont = mp->b_cont; 21222 mp->b_cont = NULL; 21223 return (mp); 21224 default: 21225 break; 21226 } 21227 } 21228 return (mp); 21229 } 21230 21231 /* MDT info update routine, called when IP notifies us about MDT */ 21232 static void 21233 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21234 { 21235 boolean_t prev_state; 21236 21237 /* 21238 * IP is telling us to abort MDT on this connection? We know 21239 * this because the capability is only turned off when IP 21240 * encounters some pathological cases, e.g. link-layer change 21241 * where the new driver doesn't support MDT, or in situation 21242 * where MDT usage on the link-layer has been switched off. 21243 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21244 * if the link-layer doesn't support MDT, and if it does, it 21245 * will indicate that the feature is to be turned on. 21246 */ 21247 prev_state = tcp->tcp_mdt; 21248 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21249 if (!tcp->tcp_mdt && !first) { 21250 TCP_STAT(tcp_mdt_conn_halted3); 21251 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21252 (void *)tcp->tcp_connp)); 21253 } 21254 21255 /* 21256 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21257 * so disable MDT otherwise. The checks are done here 21258 * and in tcp_wput_data(). 21259 */ 21260 if (tcp->tcp_mdt && 21261 (tcp->tcp_ipversion == IPV4_VERSION && 21262 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21263 (tcp->tcp_ipversion == IPV6_VERSION && 21264 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21265 tcp->tcp_mdt = B_FALSE; 21266 21267 if (tcp->tcp_mdt) { 21268 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21269 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21270 "version (%d), expected version is %d", 21271 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21272 tcp->tcp_mdt = B_FALSE; 21273 return; 21274 } 21275 21276 /* 21277 * We need the driver to be able to handle at least three 21278 * spans per packet in order for tcp MDT to be utilized. 21279 * The first is for the header portion, while the rest are 21280 * needed to handle a packet that straddles across two 21281 * virtually non-contiguous buffers; a typical tcp packet 21282 * therefore consists of only two spans. Note that we take 21283 * a zero as "don't care". 21284 */ 21285 if (mdt_capab->ill_mdt_span_limit > 0 && 21286 mdt_capab->ill_mdt_span_limit < 3) { 21287 tcp->tcp_mdt = B_FALSE; 21288 return; 21289 } 21290 21291 /* a zero means driver wants default value */ 21292 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21293 tcp_mdt_max_pbufs); 21294 if (tcp->tcp_mdt_max_pld == 0) 21295 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 21296 21297 /* ensure 32-bit alignment */ 21298 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 21299 mdt_capab->ill_mdt_hdr_head), 4); 21300 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 21301 mdt_capab->ill_mdt_hdr_tail), 4); 21302 21303 if (!first && !prev_state) { 21304 TCP_STAT(tcp_mdt_conn_resumed2); 21305 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21306 (void *)tcp->tcp_connp)); 21307 } 21308 } 21309 } 21310 21311 /* Unlink and return any mblk that looks like it contains a LSO info */ 21312 static mblk_t * 21313 tcp_lso_info_mp(mblk_t *mp) 21314 { 21315 mblk_t *prev_mp; 21316 21317 for (;;) { 21318 prev_mp = mp; 21319 /* no more to process? */ 21320 if ((mp = mp->b_cont) == NULL) 21321 break; 21322 21323 switch (DB_TYPE(mp)) { 21324 case M_CTL: 21325 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21326 continue; 21327 ASSERT(prev_mp != NULL); 21328 prev_mp->b_cont = mp->b_cont; 21329 mp->b_cont = NULL; 21330 return (mp); 21331 default: 21332 break; 21333 } 21334 } 21335 21336 return (mp); 21337 } 21338 21339 /* LSO info update routine, called when IP notifies us about LSO */ 21340 static void 21341 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21342 { 21343 /* 21344 * IP is telling us to abort LSO on this connection? We know 21345 * this because the capability is only turned off when IP 21346 * encounters some pathological cases, e.g. link-layer change 21347 * where the new NIC/driver doesn't support LSO, or in situation 21348 * where LSO usage on the link-layer has been switched off. 21349 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21350 * if the link-layer doesn't support LSO, and if it does, it 21351 * will indicate that the feature is to be turned on. 21352 */ 21353 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21354 TCP_STAT(tcp_lso_enabled); 21355 21356 /* 21357 * We currently only support LSO on simple TCP/IPv4, 21358 * so disable LSO otherwise. The checks are done here 21359 * and in tcp_wput_data(). 21360 */ 21361 if (tcp->tcp_lso && 21362 (tcp->tcp_ipversion == IPV4_VERSION && 21363 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21364 (tcp->tcp_ipversion == IPV6_VERSION)) { 21365 tcp->tcp_lso = B_FALSE; 21366 TCP_STAT(tcp_lso_disabled); 21367 } else { 21368 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21369 lso_capab->ill_lso_max); 21370 } 21371 } 21372 21373 static void 21374 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21375 { 21376 conn_t *connp = tcp->tcp_connp; 21377 21378 ASSERT(ire != NULL); 21379 21380 /* 21381 * We may be in the fastpath here, and although we essentially do 21382 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21383 * we try to keep things as brief as possible. After all, these 21384 * are only best-effort checks, and we do more thorough ones prior 21385 * to calling tcp_send()/tcp_multisend(). 21386 */ 21387 if ((ip_lso_outbound || ip_multidata_outbound) && check_lso_mdt && 21388 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21389 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21390 !(ire->ire_flags & RTF_MULTIRT) && 21391 !IPP_ENABLED(IPP_LOCAL_OUT) && 21392 CONN_IS_LSO_MD_FASTPATH(connp)) { 21393 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21394 /* Cache the result */ 21395 connp->conn_lso_ok = B_TRUE; 21396 21397 ASSERT(ill->ill_lso_capab != NULL); 21398 if (!ill->ill_lso_capab->ill_lso_on) { 21399 ill->ill_lso_capab->ill_lso_on = 1; 21400 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21401 "LSO for interface %s\n", (void *)connp, 21402 ill->ill_name)); 21403 } 21404 tcp_lso_update(tcp, ill->ill_lso_capab); 21405 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 21406 /* Cache the result */ 21407 connp->conn_mdt_ok = B_TRUE; 21408 21409 ASSERT(ill->ill_mdt_capab != NULL); 21410 if (!ill->ill_mdt_capab->ill_mdt_on) { 21411 ill->ill_mdt_capab->ill_mdt_on = 1; 21412 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21413 "MDT for interface %s\n", (void *)connp, 21414 ill->ill_name)); 21415 } 21416 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21417 } 21418 } 21419 21420 /* 21421 * The goal is to reduce the number of generated tcp segments by 21422 * setting the maxpsz multiplier to 0; this will have an affect on 21423 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21424 * into each packet, up to SMSS bytes. Doing this reduces the number 21425 * of outbound segments and incoming ACKs, thus allowing for better 21426 * network and system performance. In contrast the legacy behavior 21427 * may result in sending less than SMSS size, because the last mblk 21428 * for some packets may have more data than needed to make up SMSS, 21429 * and the legacy code refused to "split" it. 21430 * 21431 * We apply the new behavior on following situations: 21432 * 21433 * 1) Loopback connections, 21434 * 2) Connections in which the remote peer is not on local subnet, 21435 * 3) Local subnet connections over the bge interface (see below). 21436 * 21437 * Ideally, we would like this behavior to apply for interfaces other 21438 * than bge. However, doing so would negatively impact drivers which 21439 * perform dynamic mapping and unmapping of DMA resources, which are 21440 * increased by setting the maxpsz multiplier to 0 (more mblks per 21441 * packet will be generated by tcp). The bge driver does not suffer 21442 * from this, as it copies the mblks into pre-mapped buffers, and 21443 * therefore does not require more I/O resources than before. 21444 * 21445 * Otherwise, this behavior is present on all network interfaces when 21446 * the destination endpoint is non-local, since reducing the number 21447 * of packets in general is good for the network. 21448 * 21449 * TODO We need to remove this hard-coded conditional for bge once 21450 * a better "self-tuning" mechanism, or a way to comprehend 21451 * the driver transmit strategy is devised. Until the solution 21452 * is found and well understood, we live with this hack. 21453 */ 21454 if (!tcp_static_maxpsz && 21455 (tcp->tcp_loopback || !tcp->tcp_localnet || 21456 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21457 /* override the default value */ 21458 tcp->tcp_maxpsz = 0; 21459 21460 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21461 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21462 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21463 } 21464 21465 /* set the stream head parameters accordingly */ 21466 (void) tcp_maxpsz_set(tcp, B_TRUE); 21467 } 21468 21469 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21470 static void 21471 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21472 { 21473 uchar_t fval = *mp->b_rptr; 21474 mblk_t *tail; 21475 queue_t *q = tcp->tcp_wq; 21476 21477 /* TODO: How should flush interact with urgent data? */ 21478 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21479 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21480 /* 21481 * Flush only data that has not yet been put on the wire. If 21482 * we flush data that we have already transmitted, life, as we 21483 * know it, may come to an end. 21484 */ 21485 tail = tcp->tcp_xmit_tail; 21486 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21487 tcp->tcp_xmit_tail_unsent = 0; 21488 tcp->tcp_unsent = 0; 21489 if (tail->b_wptr != tail->b_rptr) 21490 tail = tail->b_cont; 21491 if (tail) { 21492 mblk_t **excess = &tcp->tcp_xmit_head; 21493 for (;;) { 21494 mblk_t *mp1 = *excess; 21495 if (mp1 == tail) 21496 break; 21497 tcp->tcp_xmit_tail = mp1; 21498 tcp->tcp_xmit_last = mp1; 21499 excess = &mp1->b_cont; 21500 } 21501 *excess = NULL; 21502 tcp_close_mpp(&tail); 21503 if (tcp->tcp_snd_zcopy_aware) 21504 tcp_zcopy_notify(tcp); 21505 } 21506 /* 21507 * We have no unsent data, so unsent must be less than 21508 * tcp_xmit_lowater, so re-enable flow. 21509 */ 21510 if (tcp->tcp_flow_stopped) { 21511 tcp_clrqfull(tcp); 21512 } 21513 } 21514 /* 21515 * TODO: you can't just flush these, you have to increase rwnd for one 21516 * thing. For another, how should urgent data interact? 21517 */ 21518 if (fval & FLUSHR) { 21519 *mp->b_rptr = fval & ~FLUSHW; 21520 /* XXX */ 21521 qreply(q, mp); 21522 return; 21523 } 21524 freemsg(mp); 21525 } 21526 21527 /* 21528 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21529 * messages. 21530 */ 21531 static void 21532 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21533 { 21534 mblk_t *mp1; 21535 STRUCT_HANDLE(strbuf, sb); 21536 uint16_t port; 21537 queue_t *q = tcp->tcp_wq; 21538 in6_addr_t v6addr; 21539 ipaddr_t v4addr; 21540 uint32_t flowinfo = 0; 21541 int addrlen; 21542 21543 /* Make sure it is one of ours. */ 21544 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21545 case TI_GETMYNAME: 21546 case TI_GETPEERNAME: 21547 break; 21548 default: 21549 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21550 return; 21551 } 21552 switch (mi_copy_state(q, mp, &mp1)) { 21553 case -1: 21554 return; 21555 case MI_COPY_CASE(MI_COPY_IN, 1): 21556 break; 21557 case MI_COPY_CASE(MI_COPY_OUT, 1): 21558 /* Copy out the strbuf. */ 21559 mi_copyout(q, mp); 21560 return; 21561 case MI_COPY_CASE(MI_COPY_OUT, 2): 21562 /* All done. */ 21563 mi_copy_done(q, mp, 0); 21564 return; 21565 default: 21566 mi_copy_done(q, mp, EPROTO); 21567 return; 21568 } 21569 /* Check alignment of the strbuf */ 21570 if (!OK_32PTR(mp1->b_rptr)) { 21571 mi_copy_done(q, mp, EINVAL); 21572 return; 21573 } 21574 21575 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21576 (void *)mp1->b_rptr); 21577 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21578 21579 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21580 mi_copy_done(q, mp, EINVAL); 21581 return; 21582 } 21583 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21584 case TI_GETMYNAME: 21585 if (tcp->tcp_family == AF_INET) { 21586 if (tcp->tcp_ipversion == IPV4_VERSION) { 21587 v4addr = tcp->tcp_ipha->ipha_src; 21588 } else { 21589 /* can't return an address in this case */ 21590 v4addr = 0; 21591 } 21592 } else { 21593 /* tcp->tcp_family == AF_INET6 */ 21594 if (tcp->tcp_ipversion == IPV4_VERSION) { 21595 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21596 &v6addr); 21597 } else { 21598 v6addr = tcp->tcp_ip6h->ip6_src; 21599 } 21600 } 21601 port = tcp->tcp_lport; 21602 break; 21603 case TI_GETPEERNAME: 21604 if (tcp->tcp_family == AF_INET) { 21605 if (tcp->tcp_ipversion == IPV4_VERSION) { 21606 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21607 v4addr); 21608 } else { 21609 /* can't return an address in this case */ 21610 v4addr = 0; 21611 } 21612 } else { 21613 /* tcp->tcp_family == AF_INET6) */ 21614 v6addr = tcp->tcp_remote_v6; 21615 if (tcp->tcp_ipversion == IPV6_VERSION) { 21616 /* 21617 * No flowinfo if tcp->tcp_ipversion is v4. 21618 * 21619 * flowinfo was already initialized to zero 21620 * where it was declared above, so only 21621 * set it if ipversion is v6. 21622 */ 21623 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21624 ~IPV6_VERS_AND_FLOW_MASK; 21625 } 21626 } 21627 port = tcp->tcp_fport; 21628 break; 21629 default: 21630 mi_copy_done(q, mp, EPROTO); 21631 return; 21632 } 21633 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21634 if (!mp1) 21635 return; 21636 21637 if (tcp->tcp_family == AF_INET) { 21638 sin_t *sin; 21639 21640 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21641 sin = (sin_t *)mp1->b_rptr; 21642 mp1->b_wptr = (uchar_t *)&sin[1]; 21643 *sin = sin_null; 21644 sin->sin_family = AF_INET; 21645 sin->sin_addr.s_addr = v4addr; 21646 sin->sin_port = port; 21647 } else { 21648 /* tcp->tcp_family == AF_INET6 */ 21649 sin6_t *sin6; 21650 21651 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21652 sin6 = (sin6_t *)mp1->b_rptr; 21653 mp1->b_wptr = (uchar_t *)&sin6[1]; 21654 *sin6 = sin6_null; 21655 sin6->sin6_family = AF_INET6; 21656 sin6->sin6_flowinfo = flowinfo; 21657 sin6->sin6_addr = v6addr; 21658 sin6->sin6_port = port; 21659 } 21660 /* Copy out the address */ 21661 mi_copyout(q, mp); 21662 } 21663 21664 /* 21665 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21666 * messages. 21667 */ 21668 /* ARGSUSED */ 21669 static void 21670 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21671 { 21672 conn_t *connp = (conn_t *)arg; 21673 tcp_t *tcp = connp->conn_tcp; 21674 queue_t *q = tcp->tcp_wq; 21675 struct iocblk *iocp; 21676 21677 ASSERT(DB_TYPE(mp) == M_IOCTL); 21678 /* 21679 * Try and ASSERT the minimum possible references on the 21680 * conn early enough. Since we are executing on write side, 21681 * the connection is obviously not detached and that means 21682 * there is a ref each for TCP and IP. Since we are behind 21683 * the squeue, the minimum references needed are 3. If the 21684 * conn is in classifier hash list, there should be an 21685 * extra ref for that (we check both the possibilities). 21686 */ 21687 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21688 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21689 21690 iocp = (struct iocblk *)mp->b_rptr; 21691 switch (iocp->ioc_cmd) { 21692 case TCP_IOC_DEFAULT_Q: 21693 /* Wants to be the default wq. */ 21694 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 21695 iocp->ioc_error = EPERM; 21696 iocp->ioc_count = 0; 21697 mp->b_datap->db_type = M_IOCACK; 21698 qreply(q, mp); 21699 return; 21700 } 21701 tcp_def_q_set(tcp, mp); 21702 return; 21703 case _SIOCSOCKFALLBACK: 21704 /* 21705 * Either sockmod is about to be popped and the socket 21706 * would now be treated as a plain stream, or a module 21707 * is about to be pushed so we could no longer use read- 21708 * side synchronous streams for fused loopback tcp. 21709 * Drain any queued data and disable direct sockfs 21710 * interface from now on. 21711 */ 21712 if (!tcp->tcp_issocket) { 21713 DB_TYPE(mp) = M_IOCNAK; 21714 iocp->ioc_error = EINVAL; 21715 } else { 21716 #ifdef _ILP32 21717 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21718 #else 21719 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21720 #endif 21721 /* 21722 * Insert this socket into the acceptor hash. 21723 * We might need it for T_CONN_RES message 21724 */ 21725 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21726 21727 if (tcp->tcp_fused) { 21728 /* 21729 * This is a fused loopback tcp; disable 21730 * read-side synchronous streams interface 21731 * and drain any queued data. It is okay 21732 * to do this for non-synchronous streams 21733 * fused tcp as well. 21734 */ 21735 tcp_fuse_disable_pair(tcp, B_FALSE); 21736 } 21737 tcp->tcp_issocket = B_FALSE; 21738 TCP_STAT(tcp_sock_fallback); 21739 21740 DB_TYPE(mp) = M_IOCACK; 21741 iocp->ioc_error = 0; 21742 } 21743 iocp->ioc_count = 0; 21744 iocp->ioc_rval = 0; 21745 qreply(q, mp); 21746 return; 21747 } 21748 CALL_IP_WPUT(connp, q, mp); 21749 } 21750 21751 /* 21752 * This routine is called by tcp_wput() to handle all TPI requests. 21753 */ 21754 /* ARGSUSED */ 21755 static void 21756 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21757 { 21758 conn_t *connp = (conn_t *)arg; 21759 tcp_t *tcp = connp->conn_tcp; 21760 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21761 uchar_t *rptr; 21762 t_scalar_t type; 21763 int len; 21764 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21765 21766 /* 21767 * Try and ASSERT the minimum possible references on the 21768 * conn early enough. Since we are executing on write side, 21769 * the connection is obviously not detached and that means 21770 * there is a ref each for TCP and IP. Since we are behind 21771 * the squeue, the minimum references needed are 3. If the 21772 * conn is in classifier hash list, there should be an 21773 * extra ref for that (we check both the possibilities). 21774 */ 21775 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21776 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21777 21778 rptr = mp->b_rptr; 21779 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21780 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21781 type = ((union T_primitives *)rptr)->type; 21782 if (type == T_EXDATA_REQ) { 21783 uint32_t msize = msgdsize(mp->b_cont); 21784 21785 len = msize - 1; 21786 if (len < 0) { 21787 freemsg(mp); 21788 return; 21789 } 21790 /* 21791 * Try to force urgent data out on the wire. 21792 * Even if we have unsent data this will 21793 * at least send the urgent flag. 21794 * XXX does not handle more flag correctly. 21795 */ 21796 len += tcp->tcp_unsent; 21797 len += tcp->tcp_snxt; 21798 tcp->tcp_urg = len; 21799 tcp->tcp_valid_bits |= TCP_URG_VALID; 21800 21801 /* Bypass tcp protocol for fused tcp loopback */ 21802 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21803 return; 21804 } else if (type != T_DATA_REQ) { 21805 goto non_urgent_data; 21806 } 21807 /* TODO: options, flags, ... from user */ 21808 /* Set length to zero for reclamation below */ 21809 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21810 freeb(mp); 21811 return; 21812 } else { 21813 if (tcp->tcp_debug) { 21814 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21815 "tcp_wput_proto, dropping one..."); 21816 } 21817 freemsg(mp); 21818 return; 21819 } 21820 21821 non_urgent_data: 21822 21823 switch ((int)tprim->type) { 21824 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21825 /* 21826 * save the kssl_ent_t from the next block, and convert this 21827 * back to a normal bind_req. 21828 */ 21829 if (mp->b_cont != NULL) { 21830 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21831 21832 if (tcp->tcp_kssl_ent != NULL) { 21833 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21834 KSSL_NO_PROXY); 21835 tcp->tcp_kssl_ent = NULL; 21836 } 21837 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21838 sizeof (kssl_ent_t)); 21839 kssl_hold_ent(tcp->tcp_kssl_ent); 21840 freemsg(mp->b_cont); 21841 mp->b_cont = NULL; 21842 } 21843 tprim->type = T_BIND_REQ; 21844 21845 /* FALLTHROUGH */ 21846 case O_T_BIND_REQ: /* bind request */ 21847 case T_BIND_REQ: /* new semantics bind request */ 21848 tcp_bind(tcp, mp); 21849 break; 21850 case T_UNBIND_REQ: /* unbind request */ 21851 tcp_unbind(tcp, mp); 21852 break; 21853 case O_T_CONN_RES: /* old connection response XXX */ 21854 case T_CONN_RES: /* connection response */ 21855 tcp_accept(tcp, mp); 21856 break; 21857 case T_CONN_REQ: /* connection request */ 21858 tcp_connect(tcp, mp); 21859 break; 21860 case T_DISCON_REQ: /* disconnect request */ 21861 tcp_disconnect(tcp, mp); 21862 break; 21863 case T_CAPABILITY_REQ: 21864 tcp_capability_req(tcp, mp); /* capability request */ 21865 break; 21866 case T_INFO_REQ: /* information request */ 21867 tcp_info_req(tcp, mp); 21868 break; 21869 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21870 /* Only IP is allowed to return meaningful value */ 21871 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21872 break; 21873 case T_OPTMGMT_REQ: 21874 /* 21875 * Note: no support for snmpcom_req() through new 21876 * T_OPTMGMT_REQ. See comments in ip.c 21877 */ 21878 /* Only IP is allowed to return meaningful value */ 21879 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21880 break; 21881 21882 case T_UNITDATA_REQ: /* unitdata request */ 21883 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21884 break; 21885 case T_ORDREL_REQ: /* orderly release req */ 21886 freemsg(mp); 21887 21888 if (tcp->tcp_fused) 21889 tcp_unfuse(tcp); 21890 21891 if (tcp_xmit_end(tcp) != 0) { 21892 /* 21893 * We were crossing FINs and got a reset from 21894 * the other side. Just ignore it. 21895 */ 21896 if (tcp->tcp_debug) { 21897 (void) strlog(TCP_MOD_ID, 0, 1, 21898 SL_ERROR|SL_TRACE, 21899 "tcp_wput_proto, T_ORDREL_REQ out of " 21900 "state %s", 21901 tcp_display(tcp, NULL, 21902 DISP_ADDR_AND_PORT)); 21903 } 21904 } 21905 break; 21906 case T_ADDR_REQ: 21907 tcp_addr_req(tcp, mp); 21908 break; 21909 default: 21910 if (tcp->tcp_debug) { 21911 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21912 "tcp_wput_proto, bogus TPI msg, type %d", 21913 tprim->type); 21914 } 21915 /* 21916 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21917 * to recover. 21918 */ 21919 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21920 break; 21921 } 21922 } 21923 21924 /* 21925 * The TCP write service routine should never be called... 21926 */ 21927 /* ARGSUSED */ 21928 static void 21929 tcp_wsrv(queue_t *q) 21930 { 21931 TCP_STAT(tcp_wsrv_called); 21932 } 21933 21934 /* Non overlapping byte exchanger */ 21935 static void 21936 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21937 { 21938 uchar_t uch; 21939 21940 while (len-- > 0) { 21941 uch = a[len]; 21942 a[len] = b[len]; 21943 b[len] = uch; 21944 } 21945 } 21946 21947 /* 21948 * Send out a control packet on the tcp connection specified. This routine 21949 * is typically called where we need a simple ACK or RST generated. 21950 */ 21951 static void 21952 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21953 { 21954 uchar_t *rptr; 21955 tcph_t *tcph; 21956 ipha_t *ipha = NULL; 21957 ip6_t *ip6h = NULL; 21958 uint32_t sum; 21959 int tcp_hdr_len; 21960 int tcp_ip_hdr_len; 21961 mblk_t *mp; 21962 21963 /* 21964 * Save sum for use in source route later. 21965 */ 21966 ASSERT(tcp != NULL); 21967 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21968 tcp_hdr_len = tcp->tcp_hdr_len; 21969 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21970 21971 /* If a text string is passed in with the request, pass it to strlog. */ 21972 if (str != NULL && tcp->tcp_debug) { 21973 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21974 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21975 str, seq, ack, ctl); 21976 } 21977 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21978 BPRI_MED); 21979 if (mp == NULL) { 21980 return; 21981 } 21982 rptr = &mp->b_rptr[tcp_wroff_xtra]; 21983 mp->b_rptr = rptr; 21984 mp->b_wptr = &rptr[tcp_hdr_len]; 21985 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21986 21987 if (tcp->tcp_ipversion == IPV4_VERSION) { 21988 ipha = (ipha_t *)rptr; 21989 ipha->ipha_length = htons(tcp_hdr_len); 21990 } else { 21991 ip6h = (ip6_t *)rptr; 21992 ASSERT(tcp != NULL); 21993 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21994 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21995 } 21996 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21997 tcph->th_flags[0] = (uint8_t)ctl; 21998 if (ctl & TH_RST) { 21999 BUMP_MIB(&tcp_mib, tcpOutRsts); 22000 BUMP_MIB(&tcp_mib, tcpOutControl); 22001 /* 22002 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22003 */ 22004 if (tcp->tcp_snd_ts_ok && 22005 tcp->tcp_state > TCPS_SYN_SENT) { 22006 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22007 *(mp->b_wptr) = TCPOPT_EOL; 22008 if (tcp->tcp_ipversion == IPV4_VERSION) { 22009 ipha->ipha_length = htons(tcp_hdr_len - 22010 TCPOPT_REAL_TS_LEN); 22011 } else { 22012 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22013 TCPOPT_REAL_TS_LEN); 22014 } 22015 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22016 sum -= TCPOPT_REAL_TS_LEN; 22017 } 22018 } 22019 if (ctl & TH_ACK) { 22020 if (tcp->tcp_snd_ts_ok) { 22021 U32_TO_BE32(lbolt, 22022 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22023 U32_TO_BE32(tcp->tcp_ts_recent, 22024 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22025 } 22026 22027 /* Update the latest receive window size in TCP header. */ 22028 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22029 tcph->th_win); 22030 tcp->tcp_rack = ack; 22031 tcp->tcp_rack_cnt = 0; 22032 BUMP_MIB(&tcp_mib, tcpOutAck); 22033 } 22034 BUMP_LOCAL(tcp->tcp_obsegs); 22035 U32_TO_BE32(seq, tcph->th_seq); 22036 U32_TO_BE32(ack, tcph->th_ack); 22037 /* 22038 * Include the adjustment for a source route if any. 22039 */ 22040 sum = (sum >> 16) + (sum & 0xFFFF); 22041 U16_TO_BE16(sum, tcph->th_sum); 22042 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22043 tcp_send_data(tcp, tcp->tcp_wq, mp); 22044 } 22045 22046 /* 22047 * If this routine returns B_TRUE, TCP can generate a RST in response 22048 * to a segment. If it returns B_FALSE, TCP should not respond. 22049 */ 22050 static boolean_t 22051 tcp_send_rst_chk(void) 22052 { 22053 clock_t now; 22054 22055 /* 22056 * TCP needs to protect itself from generating too many RSTs. 22057 * This can be a DoS attack by sending us random segments 22058 * soliciting RSTs. 22059 * 22060 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22061 * in each 1 second interval. In this way, TCP still generate 22062 * RSTs in normal cases but when under attack, the impact is 22063 * limited. 22064 */ 22065 if (tcp_rst_sent_rate_enabled != 0) { 22066 now = lbolt; 22067 /* lbolt can wrap around. */ 22068 if ((tcp_last_rst_intrvl > now) || 22069 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 22070 tcp_last_rst_intrvl = now; 22071 tcp_rst_cnt = 1; 22072 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 22073 return (B_FALSE); 22074 } 22075 } 22076 return (B_TRUE); 22077 } 22078 22079 /* 22080 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22081 */ 22082 static void 22083 tcp_ip_ire_mark_advice(tcp_t *tcp) 22084 { 22085 mblk_t *mp; 22086 ipic_t *ipic; 22087 22088 if (tcp->tcp_ipversion == IPV4_VERSION) { 22089 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22090 &ipic); 22091 } else { 22092 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22093 &ipic); 22094 } 22095 if (mp == NULL) 22096 return; 22097 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22098 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22099 } 22100 22101 /* 22102 * Return an IP advice ioctl mblk and set ipic to be the pointer 22103 * to the advice structure. 22104 */ 22105 static mblk_t * 22106 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22107 { 22108 struct iocblk *ioc; 22109 mblk_t *mp, *mp1; 22110 22111 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22112 if (mp == NULL) 22113 return (NULL); 22114 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22115 *ipic = (ipic_t *)mp->b_rptr; 22116 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22117 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22118 22119 bcopy(addr, *ipic + 1, addr_len); 22120 22121 (*ipic)->ipic_addr_length = addr_len; 22122 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22123 22124 mp1 = mkiocb(IP_IOCTL); 22125 if (mp1 == NULL) { 22126 freemsg(mp); 22127 return (NULL); 22128 } 22129 mp1->b_cont = mp; 22130 ioc = (struct iocblk *)mp1->b_rptr; 22131 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22132 22133 return (mp1); 22134 } 22135 22136 /* 22137 * Generate a reset based on an inbound packet for which there is no active 22138 * tcp state that we can find. 22139 * 22140 * IPSEC NOTE : Try to send the reply with the same protection as it came 22141 * in. We still have the ipsec_mp that the packet was attached to. Thus 22142 * the packet will go out at the same level of protection as it came in by 22143 * converting the IPSEC_IN to IPSEC_OUT. 22144 */ 22145 static void 22146 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22147 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid) 22148 { 22149 ipha_t *ipha = NULL; 22150 ip6_t *ip6h = NULL; 22151 ushort_t len; 22152 tcph_t *tcph; 22153 int i; 22154 mblk_t *ipsec_mp; 22155 boolean_t mctl_present; 22156 ipic_t *ipic; 22157 ipaddr_t v4addr; 22158 in6_addr_t v6addr; 22159 int addr_len; 22160 void *addr; 22161 queue_t *q = tcp_g_q; 22162 tcp_t *tcp = Q_TO_TCP(q); 22163 cred_t *cr; 22164 mblk_t *nmp; 22165 22166 if (!tcp_send_rst_chk()) { 22167 tcp_rst_unsent++; 22168 freemsg(mp); 22169 return; 22170 } 22171 22172 if (mp->b_datap->db_type == M_CTL) { 22173 ipsec_mp = mp; 22174 mp = mp->b_cont; 22175 mctl_present = B_TRUE; 22176 } else { 22177 ipsec_mp = mp; 22178 mctl_present = B_FALSE; 22179 } 22180 22181 if (str && q && tcp_dbg) { 22182 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22183 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22184 "flags 0x%x", 22185 str, seq, ack, ctl); 22186 } 22187 if (mp->b_datap->db_ref != 1) { 22188 mblk_t *mp1 = copyb(mp); 22189 freemsg(mp); 22190 mp = mp1; 22191 if (!mp) { 22192 if (mctl_present) 22193 freeb(ipsec_mp); 22194 return; 22195 } else { 22196 if (mctl_present) { 22197 ipsec_mp->b_cont = mp; 22198 } else { 22199 ipsec_mp = mp; 22200 } 22201 } 22202 } else if (mp->b_cont) { 22203 freemsg(mp->b_cont); 22204 mp->b_cont = NULL; 22205 } 22206 /* 22207 * We skip reversing source route here. 22208 * (for now we replace all IP options with EOL) 22209 */ 22210 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22211 ipha = (ipha_t *)mp->b_rptr; 22212 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22213 mp->b_rptr[i] = IPOPT_EOL; 22214 /* 22215 * Make sure that src address isn't flagrantly invalid. 22216 * Not all broadcast address checking for the src address 22217 * is possible, since we don't know the netmask of the src 22218 * addr. No check for destination address is done, since 22219 * IP will not pass up a packet with a broadcast dest 22220 * address to TCP. Similar checks are done below for IPv6. 22221 */ 22222 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22223 CLASSD(ipha->ipha_src)) { 22224 freemsg(ipsec_mp); 22225 BUMP_MIB(&ip_mib, ipInDiscards); 22226 return; 22227 } 22228 } else { 22229 ip6h = (ip6_t *)mp->b_rptr; 22230 22231 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22232 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22233 freemsg(ipsec_mp); 22234 BUMP_MIB(&ip6_mib, ipv6InDiscards); 22235 return; 22236 } 22237 22238 /* Remove any extension headers assuming partial overlay */ 22239 if (ip_hdr_len > IPV6_HDR_LEN) { 22240 uint8_t *to; 22241 22242 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22243 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22244 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22245 ip_hdr_len = IPV6_HDR_LEN; 22246 ip6h = (ip6_t *)mp->b_rptr; 22247 ip6h->ip6_nxt = IPPROTO_TCP; 22248 } 22249 } 22250 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22251 if (tcph->th_flags[0] & TH_RST) { 22252 freemsg(ipsec_mp); 22253 return; 22254 } 22255 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22256 len = ip_hdr_len + sizeof (tcph_t); 22257 mp->b_wptr = &mp->b_rptr[len]; 22258 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22259 ipha->ipha_length = htons(len); 22260 /* Swap addresses */ 22261 v4addr = ipha->ipha_src; 22262 ipha->ipha_src = ipha->ipha_dst; 22263 ipha->ipha_dst = v4addr; 22264 ipha->ipha_ident = 0; 22265 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 22266 addr_len = IP_ADDR_LEN; 22267 addr = &v4addr; 22268 } else { 22269 /* No ip6i_t in this case */ 22270 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22271 /* Swap addresses */ 22272 v6addr = ip6h->ip6_src; 22273 ip6h->ip6_src = ip6h->ip6_dst; 22274 ip6h->ip6_dst = v6addr; 22275 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 22276 addr_len = IPV6_ADDR_LEN; 22277 addr = &v6addr; 22278 } 22279 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22280 U32_TO_BE32(ack, tcph->th_ack); 22281 U32_TO_BE32(seq, tcph->th_seq); 22282 U16_TO_BE16(0, tcph->th_win); 22283 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22284 tcph->th_flags[0] = (uint8_t)ctl; 22285 if (ctl & TH_RST) { 22286 BUMP_MIB(&tcp_mib, tcpOutRsts); 22287 BUMP_MIB(&tcp_mib, tcpOutControl); 22288 } 22289 22290 /* IP trusts us to set up labels when required. */ 22291 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22292 crgetlabel(cr) != NULL) { 22293 int err, adjust; 22294 22295 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22296 err = tsol_check_label(cr, &mp, &adjust, 22297 tcp->tcp_connp->conn_mac_exempt); 22298 else 22299 err = tsol_check_label_v6(cr, &mp, &adjust, 22300 tcp->tcp_connp->conn_mac_exempt); 22301 if (mctl_present) 22302 ipsec_mp->b_cont = mp; 22303 else 22304 ipsec_mp = mp; 22305 if (err != 0) { 22306 freemsg(ipsec_mp); 22307 return; 22308 } 22309 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22310 ipha = (ipha_t *)mp->b_rptr; 22311 adjust += ntohs(ipha->ipha_length); 22312 ipha->ipha_length = htons(adjust); 22313 } else { 22314 ip6h = (ip6_t *)mp->b_rptr; 22315 } 22316 } 22317 22318 if (mctl_present) { 22319 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22320 22321 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22322 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22323 return; 22324 } 22325 } 22326 if (zoneid == ALL_ZONES) 22327 zoneid = GLOBAL_ZONEID; 22328 22329 /* Add the zoneid so ip_output routes it properly */ 22330 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) { 22331 freemsg(ipsec_mp); 22332 return; 22333 } 22334 ipsec_mp = nmp; 22335 22336 /* 22337 * NOTE: one might consider tracing a TCP packet here, but 22338 * this function has no active TCP state and no tcp structure 22339 * that has a trace buffer. If we traced here, we would have 22340 * to keep a local trace buffer in tcp_record_trace(). 22341 * 22342 * TSol note: The mblk that contains the incoming packet was 22343 * reused by tcp_xmit_listener_reset, so it already contains 22344 * the right credentials and we don't need to call mblk_setcred. 22345 * Also the conn's cred is not right since it is associated 22346 * with tcp_g_q. 22347 */ 22348 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22349 22350 /* 22351 * Tell IP to mark the IRE used for this destination temporary. 22352 * This way, we can limit our exposure to DoS attack because IP 22353 * creates an IRE for each destination. If there are too many, 22354 * the time to do any routing lookup will be extremely long. And 22355 * the lookup can be in interrupt context. 22356 * 22357 * Note that in normal circumstances, this marking should not 22358 * affect anything. It would be nice if only 1 message is 22359 * needed to inform IP that the IRE created for this RST should 22360 * not be added to the cache table. But there is currently 22361 * not such communication mechanism between TCP and IP. So 22362 * the best we can do now is to send the advice ioctl to IP 22363 * to mark the IRE temporary. 22364 */ 22365 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22366 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22367 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22368 } 22369 } 22370 22371 /* 22372 * Initiate closedown sequence on an active connection. (May be called as 22373 * writer.) Return value zero for OK return, non-zero for error return. 22374 */ 22375 static int 22376 tcp_xmit_end(tcp_t *tcp) 22377 { 22378 ipic_t *ipic; 22379 mblk_t *mp; 22380 22381 if (tcp->tcp_state < TCPS_SYN_RCVD || 22382 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22383 /* 22384 * Invalid state, only states TCPS_SYN_RCVD, 22385 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22386 */ 22387 return (-1); 22388 } 22389 22390 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22391 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22392 /* 22393 * If there is nothing more unsent, send the FIN now. 22394 * Otherwise, it will go out with the last segment. 22395 */ 22396 if (tcp->tcp_unsent == 0) { 22397 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22398 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22399 22400 if (mp) { 22401 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22402 tcp_send_data(tcp, tcp->tcp_wq, mp); 22403 } else { 22404 /* 22405 * Couldn't allocate msg. Pretend we got it out. 22406 * Wait for rexmit timeout. 22407 */ 22408 tcp->tcp_snxt = tcp->tcp_fss + 1; 22409 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22410 } 22411 22412 /* 22413 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22414 * changed. 22415 */ 22416 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22417 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22418 } 22419 } else { 22420 /* 22421 * If tcp->tcp_cork is set, then the data will not get sent, 22422 * so we have to check that and unset it first. 22423 */ 22424 if (tcp->tcp_cork) 22425 tcp->tcp_cork = B_FALSE; 22426 tcp_wput_data(tcp, NULL, B_FALSE); 22427 } 22428 22429 /* 22430 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22431 * is 0, don't update the cache. 22432 */ 22433 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 22434 return (0); 22435 22436 /* 22437 * NOTE: should not update if source routes i.e. if tcp_remote if 22438 * different from the destination. 22439 */ 22440 if (tcp->tcp_ipversion == IPV4_VERSION) { 22441 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22442 return (0); 22443 } 22444 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22445 &ipic); 22446 } else { 22447 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22448 &tcp->tcp_ip6h->ip6_dst))) { 22449 return (0); 22450 } 22451 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22452 &ipic); 22453 } 22454 22455 /* Record route attributes in the IRE for use by future connections. */ 22456 if (mp == NULL) 22457 return (0); 22458 22459 /* 22460 * We do not have a good algorithm to update ssthresh at this time. 22461 * So don't do any update. 22462 */ 22463 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22464 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22465 22466 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22467 return (0); 22468 } 22469 22470 /* 22471 * Generate a "no listener here" RST in response to an "unknown" segment. 22472 * Note that we are reusing the incoming mp to construct the outgoing 22473 * RST. 22474 */ 22475 void 22476 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid) 22477 { 22478 uchar_t *rptr; 22479 uint32_t seg_len; 22480 tcph_t *tcph; 22481 uint32_t seg_seq; 22482 uint32_t seg_ack; 22483 uint_t flags; 22484 mblk_t *ipsec_mp; 22485 ipha_t *ipha; 22486 ip6_t *ip6h; 22487 boolean_t mctl_present = B_FALSE; 22488 boolean_t check = B_TRUE; 22489 boolean_t policy_present; 22490 22491 TCP_STAT(tcp_no_listener); 22492 22493 ipsec_mp = mp; 22494 22495 if (mp->b_datap->db_type == M_CTL) { 22496 ipsec_in_t *ii; 22497 22498 mctl_present = B_TRUE; 22499 mp = mp->b_cont; 22500 22501 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22502 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22503 if (ii->ipsec_in_dont_check) { 22504 check = B_FALSE; 22505 if (!ii->ipsec_in_secure) { 22506 freeb(ipsec_mp); 22507 mctl_present = B_FALSE; 22508 ipsec_mp = mp; 22509 } 22510 } 22511 } 22512 22513 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22514 policy_present = ipsec_inbound_v4_policy_present; 22515 ipha = (ipha_t *)mp->b_rptr; 22516 ip6h = NULL; 22517 } else { 22518 policy_present = ipsec_inbound_v6_policy_present; 22519 ipha = NULL; 22520 ip6h = (ip6_t *)mp->b_rptr; 22521 } 22522 22523 if (check && policy_present) { 22524 /* 22525 * The conn_t parameter is NULL because we already know 22526 * nobody's home. 22527 */ 22528 ipsec_mp = ipsec_check_global_policy( 22529 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 22530 if (ipsec_mp == NULL) 22531 return; 22532 } 22533 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22534 DTRACE_PROBE2( 22535 tx__ip__log__error__nolistener__tcp, 22536 char *, "Could not reply with RST to mp(1)", 22537 mblk_t *, mp); 22538 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22539 freemsg(ipsec_mp); 22540 return; 22541 } 22542 22543 rptr = mp->b_rptr; 22544 22545 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22546 seg_seq = BE32_TO_U32(tcph->th_seq); 22547 seg_ack = BE32_TO_U32(tcph->th_ack); 22548 flags = tcph->th_flags[0]; 22549 22550 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22551 if (flags & TH_RST) { 22552 freemsg(ipsec_mp); 22553 } else if (flags & TH_ACK) { 22554 tcp_xmit_early_reset("no tcp, reset", 22555 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid); 22556 } else { 22557 if (flags & TH_SYN) { 22558 seg_len++; 22559 } else { 22560 /* 22561 * Here we violate the RFC. Note that a normal 22562 * TCP will never send a segment without the ACK 22563 * flag, except for RST or SYN segment. This 22564 * segment is neither. Just drop it on the 22565 * floor. 22566 */ 22567 freemsg(ipsec_mp); 22568 tcp_rst_unsent++; 22569 return; 22570 } 22571 22572 tcp_xmit_early_reset("no tcp, reset/ack", 22573 ipsec_mp, 0, seg_seq + seg_len, 22574 TH_RST | TH_ACK, ip_hdr_len, zoneid); 22575 } 22576 } 22577 22578 /* 22579 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22580 * ip and tcp header ready to pass down to IP. If the mp passed in is 22581 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22582 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22583 * otherwise it will dup partial mblks.) 22584 * Otherwise, an appropriate ACK packet will be generated. This 22585 * routine is not usually called to send new data for the first time. It 22586 * is mostly called out of the timer for retransmits, and to generate ACKs. 22587 * 22588 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22589 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22590 * of the original mblk chain will be returned in *offset and *end_mp. 22591 */ 22592 mblk_t * 22593 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22594 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22595 boolean_t rexmit) 22596 { 22597 int data_length; 22598 int32_t off = 0; 22599 uint_t flags; 22600 mblk_t *mp1; 22601 mblk_t *mp2; 22602 uchar_t *rptr; 22603 tcph_t *tcph; 22604 int32_t num_sack_blk = 0; 22605 int32_t sack_opt_len = 0; 22606 22607 /* Allocate for our maximum TCP header + link-level */ 22608 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22609 BPRI_MED); 22610 if (!mp1) 22611 return (NULL); 22612 data_length = 0; 22613 22614 /* 22615 * Note that tcp_mss has been adjusted to take into account the 22616 * timestamp option if applicable. Because SACK options do not 22617 * appear in every TCP segments and they are of variable lengths, 22618 * they cannot be included in tcp_mss. Thus we need to calculate 22619 * the actual segment length when we need to send a segment which 22620 * includes SACK options. 22621 */ 22622 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22623 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22624 tcp->tcp_num_sack_blk); 22625 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22626 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22627 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22628 max_to_send -= sack_opt_len; 22629 } 22630 22631 if (offset != NULL) { 22632 off = *offset; 22633 /* We use offset as an indicator that end_mp is not NULL. */ 22634 *end_mp = NULL; 22635 } 22636 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22637 /* This could be faster with cooperation from downstream */ 22638 if (mp2 != mp1 && !sendall && 22639 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22640 max_to_send) 22641 /* 22642 * Don't send the next mblk since the whole mblk 22643 * does not fit. 22644 */ 22645 break; 22646 mp2->b_cont = dupb(mp); 22647 mp2 = mp2->b_cont; 22648 if (!mp2) { 22649 freemsg(mp1); 22650 return (NULL); 22651 } 22652 mp2->b_rptr += off; 22653 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22654 (uintptr_t)INT_MAX); 22655 22656 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22657 if (data_length > max_to_send) { 22658 mp2->b_wptr -= data_length - max_to_send; 22659 data_length = max_to_send; 22660 off = mp2->b_wptr - mp->b_rptr; 22661 break; 22662 } else { 22663 off = 0; 22664 } 22665 } 22666 if (offset != NULL) { 22667 *offset = off; 22668 *end_mp = mp; 22669 } 22670 if (seg_len != NULL) { 22671 *seg_len = data_length; 22672 } 22673 22674 /* Update the latest receive window size in TCP header. */ 22675 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22676 tcp->tcp_tcph->th_win); 22677 22678 rptr = mp1->b_rptr + tcp_wroff_xtra; 22679 mp1->b_rptr = rptr; 22680 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22681 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22682 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22683 U32_TO_ABE32(seq, tcph->th_seq); 22684 22685 /* 22686 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22687 * that this function was called from tcp_wput_data. Thus, when called 22688 * to retransmit data the setting of the PUSH bit may appear some 22689 * what random in that it might get set when it should not. This 22690 * should not pose any performance issues. 22691 */ 22692 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22693 tcp->tcp_unsent == data_length)) { 22694 flags = TH_ACK | TH_PUSH; 22695 } else { 22696 flags = TH_ACK; 22697 } 22698 22699 if (tcp->tcp_ecn_ok) { 22700 if (tcp->tcp_ecn_echo_on) 22701 flags |= TH_ECE; 22702 22703 /* 22704 * Only set ECT bit and ECN_CWR if a segment contains new data. 22705 * There is no TCP flow control for non-data segments, and 22706 * only data segment is transmitted reliably. 22707 */ 22708 if (data_length > 0 && !rexmit) { 22709 SET_ECT(tcp, rptr); 22710 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22711 flags |= TH_CWR; 22712 tcp->tcp_ecn_cwr_sent = B_TRUE; 22713 } 22714 } 22715 } 22716 22717 if (tcp->tcp_valid_bits) { 22718 uint32_t u1; 22719 22720 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22721 seq == tcp->tcp_iss) { 22722 uchar_t *wptr; 22723 22724 /* 22725 * If TCP_ISS_VALID and the seq number is tcp_iss, 22726 * TCP can only be in SYN-SENT, SYN-RCVD or 22727 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22728 * our SYN is not ack'ed but the app closes this 22729 * TCP connection. 22730 */ 22731 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22732 tcp->tcp_state == TCPS_SYN_RCVD || 22733 tcp->tcp_state == TCPS_FIN_WAIT_1); 22734 22735 /* 22736 * Tack on the MSS option. It is always needed 22737 * for both active and passive open. 22738 * 22739 * MSS option value should be interface MTU - MIN 22740 * TCP/IP header according to RFC 793 as it means 22741 * the maximum segment size TCP can receive. But 22742 * to get around some broken middle boxes/end hosts 22743 * out there, we allow the option value to be the 22744 * same as the MSS option size on the peer side. 22745 * In this way, the other side will not send 22746 * anything larger than they can receive. 22747 * 22748 * Note that for SYN_SENT state, the ndd param 22749 * tcp_use_smss_as_mss_opt has no effect as we 22750 * don't know the peer's MSS option value. So 22751 * the only case we need to take care of is in 22752 * SYN_RCVD state, which is done later. 22753 */ 22754 wptr = mp1->b_wptr; 22755 wptr[0] = TCPOPT_MAXSEG; 22756 wptr[1] = TCPOPT_MAXSEG_LEN; 22757 wptr += 2; 22758 u1 = tcp->tcp_if_mtu - 22759 (tcp->tcp_ipversion == IPV4_VERSION ? 22760 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22761 TCP_MIN_HEADER_LENGTH; 22762 U16_TO_BE16(u1, wptr); 22763 mp1->b_wptr = wptr + 2; 22764 /* Update the offset to cover the additional word */ 22765 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22766 22767 /* 22768 * Note that the following way of filling in 22769 * TCP options are not optimal. Some NOPs can 22770 * be saved. But there is no need at this time 22771 * to optimize it. When it is needed, we will 22772 * do it. 22773 */ 22774 switch (tcp->tcp_state) { 22775 case TCPS_SYN_SENT: 22776 flags = TH_SYN; 22777 22778 if (tcp->tcp_snd_ts_ok) { 22779 uint32_t llbolt = (uint32_t)lbolt; 22780 22781 wptr = mp1->b_wptr; 22782 wptr[0] = TCPOPT_NOP; 22783 wptr[1] = TCPOPT_NOP; 22784 wptr[2] = TCPOPT_TSTAMP; 22785 wptr[3] = TCPOPT_TSTAMP_LEN; 22786 wptr += 4; 22787 U32_TO_BE32(llbolt, wptr); 22788 wptr += 4; 22789 ASSERT(tcp->tcp_ts_recent == 0); 22790 U32_TO_BE32(0L, wptr); 22791 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22792 tcph->th_offset_and_rsrvd[0] += 22793 (3 << 4); 22794 } 22795 22796 /* 22797 * Set up all the bits to tell other side 22798 * we are ECN capable. 22799 */ 22800 if (tcp->tcp_ecn_ok) { 22801 flags |= (TH_ECE | TH_CWR); 22802 } 22803 break; 22804 case TCPS_SYN_RCVD: 22805 flags |= TH_SYN; 22806 22807 /* 22808 * Reset the MSS option value to be SMSS 22809 * We should probably add back the bytes 22810 * for timestamp option and IPsec. We 22811 * don't do that as this is a workaround 22812 * for broken middle boxes/end hosts, it 22813 * is better for us to be more cautious. 22814 * They may not take these things into 22815 * account in their SMSS calculation. Thus 22816 * the peer's calculated SMSS may be smaller 22817 * than what it can be. This should be OK. 22818 */ 22819 if (tcp_use_smss_as_mss_opt) { 22820 u1 = tcp->tcp_mss; 22821 U16_TO_BE16(u1, wptr); 22822 } 22823 22824 /* 22825 * If the other side is ECN capable, reply 22826 * that we are also ECN capable. 22827 */ 22828 if (tcp->tcp_ecn_ok) 22829 flags |= TH_ECE; 22830 break; 22831 default: 22832 /* 22833 * The above ASSERT() makes sure that this 22834 * must be FIN-WAIT-1 state. Our SYN has 22835 * not been ack'ed so retransmit it. 22836 */ 22837 flags |= TH_SYN; 22838 break; 22839 } 22840 22841 if (tcp->tcp_snd_ws_ok) { 22842 wptr = mp1->b_wptr; 22843 wptr[0] = TCPOPT_NOP; 22844 wptr[1] = TCPOPT_WSCALE; 22845 wptr[2] = TCPOPT_WS_LEN; 22846 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22847 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22848 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22849 } 22850 22851 if (tcp->tcp_snd_sack_ok) { 22852 wptr = mp1->b_wptr; 22853 wptr[0] = TCPOPT_NOP; 22854 wptr[1] = TCPOPT_NOP; 22855 wptr[2] = TCPOPT_SACK_PERMITTED; 22856 wptr[3] = TCPOPT_SACK_OK_LEN; 22857 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22858 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22859 } 22860 22861 /* allocb() of adequate mblk assures space */ 22862 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22863 (uintptr_t)INT_MAX); 22864 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22865 /* 22866 * Get IP set to checksum on our behalf 22867 * Include the adjustment for a source route if any. 22868 */ 22869 u1 += tcp->tcp_sum; 22870 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22871 U16_TO_BE16(u1, tcph->th_sum); 22872 BUMP_MIB(&tcp_mib, tcpOutControl); 22873 } 22874 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22875 (seq + data_length) == tcp->tcp_fss) { 22876 if (!tcp->tcp_fin_acked) { 22877 flags |= TH_FIN; 22878 BUMP_MIB(&tcp_mib, tcpOutControl); 22879 } 22880 if (!tcp->tcp_fin_sent) { 22881 tcp->tcp_fin_sent = B_TRUE; 22882 switch (tcp->tcp_state) { 22883 case TCPS_SYN_RCVD: 22884 case TCPS_ESTABLISHED: 22885 tcp->tcp_state = TCPS_FIN_WAIT_1; 22886 break; 22887 case TCPS_CLOSE_WAIT: 22888 tcp->tcp_state = TCPS_LAST_ACK; 22889 break; 22890 } 22891 if (tcp->tcp_suna == tcp->tcp_snxt) 22892 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22893 tcp->tcp_snxt = tcp->tcp_fss + 1; 22894 } 22895 } 22896 /* 22897 * Note the trick here. u1 is unsigned. When tcp_urg 22898 * is smaller than seq, u1 will become a very huge value. 22899 * So the comparison will fail. Also note that tcp_urp 22900 * should be positive, see RFC 793 page 17. 22901 */ 22902 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22903 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22904 u1 < (uint32_t)(64 * 1024)) { 22905 flags |= TH_URG; 22906 BUMP_MIB(&tcp_mib, tcpOutUrg); 22907 U32_TO_ABE16(u1, tcph->th_urp); 22908 } 22909 } 22910 tcph->th_flags[0] = (uchar_t)flags; 22911 tcp->tcp_rack = tcp->tcp_rnxt; 22912 tcp->tcp_rack_cnt = 0; 22913 22914 if (tcp->tcp_snd_ts_ok) { 22915 if (tcp->tcp_state != TCPS_SYN_SENT) { 22916 uint32_t llbolt = (uint32_t)lbolt; 22917 22918 U32_TO_BE32(llbolt, 22919 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22920 U32_TO_BE32(tcp->tcp_ts_recent, 22921 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22922 } 22923 } 22924 22925 if (num_sack_blk > 0) { 22926 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22927 sack_blk_t *tmp; 22928 int32_t i; 22929 22930 wptr[0] = TCPOPT_NOP; 22931 wptr[1] = TCPOPT_NOP; 22932 wptr[2] = TCPOPT_SACK; 22933 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22934 sizeof (sack_blk_t); 22935 wptr += TCPOPT_REAL_SACK_LEN; 22936 22937 tmp = tcp->tcp_sack_list; 22938 for (i = 0; i < num_sack_blk; i++) { 22939 U32_TO_BE32(tmp[i].begin, wptr); 22940 wptr += sizeof (tcp_seq); 22941 U32_TO_BE32(tmp[i].end, wptr); 22942 wptr += sizeof (tcp_seq); 22943 } 22944 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22945 } 22946 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22947 data_length += (int)(mp1->b_wptr - rptr); 22948 if (tcp->tcp_ipversion == IPV4_VERSION) { 22949 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22950 } else { 22951 ip6_t *ip6 = (ip6_t *)(rptr + 22952 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22953 sizeof (ip6i_t) : 0)); 22954 22955 ip6->ip6_plen = htons(data_length - 22956 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22957 } 22958 22959 /* 22960 * Prime pump for IP 22961 * Include the adjustment for a source route if any. 22962 */ 22963 data_length -= tcp->tcp_ip_hdr_len; 22964 data_length += tcp->tcp_sum; 22965 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22966 U16_TO_ABE16(data_length, tcph->th_sum); 22967 if (tcp->tcp_ip_forward_progress) { 22968 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22969 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22970 tcp->tcp_ip_forward_progress = B_FALSE; 22971 } 22972 return (mp1); 22973 } 22974 22975 /* This function handles the push timeout. */ 22976 void 22977 tcp_push_timer(void *arg) 22978 { 22979 conn_t *connp = (conn_t *)arg; 22980 tcp_t *tcp = connp->conn_tcp; 22981 22982 TCP_DBGSTAT(tcp_push_timer_cnt); 22983 22984 ASSERT(tcp->tcp_listener == NULL); 22985 22986 /* 22987 * We need to plug synchronous streams during our drain to prevent 22988 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 22989 */ 22990 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 22991 tcp->tcp_push_tid = 0; 22992 if ((tcp->tcp_rcv_list != NULL) && 22993 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 22994 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22995 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 22996 } 22997 22998 /* 22999 * This function handles delayed ACK timeout. 23000 */ 23001 static void 23002 tcp_ack_timer(void *arg) 23003 { 23004 conn_t *connp = (conn_t *)arg; 23005 tcp_t *tcp = connp->conn_tcp; 23006 mblk_t *mp; 23007 23008 TCP_DBGSTAT(tcp_ack_timer_cnt); 23009 23010 tcp->tcp_ack_tid = 0; 23011 23012 if (tcp->tcp_fused) 23013 return; 23014 23015 /* 23016 * Do not send ACK if there is no outstanding unack'ed data. 23017 */ 23018 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23019 return; 23020 } 23021 23022 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23023 /* 23024 * Make sure we don't allow deferred ACKs to result in 23025 * timer-based ACKing. If we have held off an ACK 23026 * when there was more than an mss here, and the timer 23027 * goes off, we have to worry about the possibility 23028 * that the sender isn't doing slow-start, or is out 23029 * of step with us for some other reason. We fall 23030 * permanently back in the direction of 23031 * ACK-every-other-packet as suggested in RFC 1122. 23032 */ 23033 if (tcp->tcp_rack_abs_max > 2) 23034 tcp->tcp_rack_abs_max--; 23035 tcp->tcp_rack_cur_max = 2; 23036 } 23037 mp = tcp_ack_mp(tcp); 23038 23039 if (mp != NULL) { 23040 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23041 BUMP_LOCAL(tcp->tcp_obsegs); 23042 BUMP_MIB(&tcp_mib, tcpOutAck); 23043 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 23044 tcp_send_data(tcp, tcp->tcp_wq, mp); 23045 } 23046 } 23047 23048 23049 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23050 static mblk_t * 23051 tcp_ack_mp(tcp_t *tcp) 23052 { 23053 uint32_t seq_no; 23054 23055 /* 23056 * There are a few cases to be considered while setting the sequence no. 23057 * Essentially, we can come here while processing an unacceptable pkt 23058 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23059 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23060 * If we are here for a zero window probe, stick with suna. In all 23061 * other cases, we check if suna + swnd encompasses snxt and set 23062 * the sequence number to snxt, if so. If snxt falls outside the 23063 * window (the receiver probably shrunk its window), we will go with 23064 * suna + swnd, otherwise the sequence no will be unacceptable to the 23065 * receiver. 23066 */ 23067 if (tcp->tcp_zero_win_probe) { 23068 seq_no = tcp->tcp_suna; 23069 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23070 ASSERT(tcp->tcp_swnd == 0); 23071 seq_no = tcp->tcp_snxt; 23072 } else { 23073 seq_no = SEQ_GT(tcp->tcp_snxt, 23074 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23075 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23076 } 23077 23078 if (tcp->tcp_valid_bits) { 23079 /* 23080 * For the complex case where we have to send some 23081 * controls (FIN or SYN), let tcp_xmit_mp do it. 23082 */ 23083 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23084 NULL, B_FALSE)); 23085 } else { 23086 /* Generate a simple ACK */ 23087 int data_length; 23088 uchar_t *rptr; 23089 tcph_t *tcph; 23090 mblk_t *mp1; 23091 int32_t tcp_hdr_len; 23092 int32_t tcp_tcp_hdr_len; 23093 int32_t num_sack_blk = 0; 23094 int32_t sack_opt_len; 23095 23096 /* 23097 * Allocate space for TCP + IP headers 23098 * and link-level header 23099 */ 23100 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23101 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23102 tcp->tcp_num_sack_blk); 23103 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23104 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23105 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23106 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23107 } else { 23108 tcp_hdr_len = tcp->tcp_hdr_len; 23109 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23110 } 23111 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 23112 if (!mp1) 23113 return (NULL); 23114 23115 /* Update the latest receive window size in TCP header. */ 23116 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23117 tcp->tcp_tcph->th_win); 23118 /* copy in prototype TCP + IP header */ 23119 rptr = mp1->b_rptr + tcp_wroff_xtra; 23120 mp1->b_rptr = rptr; 23121 mp1->b_wptr = rptr + tcp_hdr_len; 23122 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23123 23124 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23125 23126 /* Set the TCP sequence number. */ 23127 U32_TO_ABE32(seq_no, tcph->th_seq); 23128 23129 /* Set up the TCP flag field. */ 23130 tcph->th_flags[0] = (uchar_t)TH_ACK; 23131 if (tcp->tcp_ecn_echo_on) 23132 tcph->th_flags[0] |= TH_ECE; 23133 23134 tcp->tcp_rack = tcp->tcp_rnxt; 23135 tcp->tcp_rack_cnt = 0; 23136 23137 /* fill in timestamp option if in use */ 23138 if (tcp->tcp_snd_ts_ok) { 23139 uint32_t llbolt = (uint32_t)lbolt; 23140 23141 U32_TO_BE32(llbolt, 23142 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23143 U32_TO_BE32(tcp->tcp_ts_recent, 23144 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23145 } 23146 23147 /* Fill in SACK options */ 23148 if (num_sack_blk > 0) { 23149 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23150 sack_blk_t *tmp; 23151 int32_t i; 23152 23153 wptr[0] = TCPOPT_NOP; 23154 wptr[1] = TCPOPT_NOP; 23155 wptr[2] = TCPOPT_SACK; 23156 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23157 sizeof (sack_blk_t); 23158 wptr += TCPOPT_REAL_SACK_LEN; 23159 23160 tmp = tcp->tcp_sack_list; 23161 for (i = 0; i < num_sack_blk; i++) { 23162 U32_TO_BE32(tmp[i].begin, wptr); 23163 wptr += sizeof (tcp_seq); 23164 U32_TO_BE32(tmp[i].end, wptr); 23165 wptr += sizeof (tcp_seq); 23166 } 23167 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23168 << 4); 23169 } 23170 23171 if (tcp->tcp_ipversion == IPV4_VERSION) { 23172 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23173 } else { 23174 /* Check for ip6i_t header in sticky hdrs */ 23175 ip6_t *ip6 = (ip6_t *)(rptr + 23176 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23177 sizeof (ip6i_t) : 0)); 23178 23179 ip6->ip6_plen = htons(tcp_hdr_len - 23180 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23181 } 23182 23183 /* 23184 * Prime pump for checksum calculation in IP. Include the 23185 * adjustment for a source route if any. 23186 */ 23187 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23188 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23189 U16_TO_ABE16(data_length, tcph->th_sum); 23190 23191 if (tcp->tcp_ip_forward_progress) { 23192 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23193 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23194 tcp->tcp_ip_forward_progress = B_FALSE; 23195 } 23196 return (mp1); 23197 } 23198 } 23199 23200 /* 23201 * To create a temporary tcp structure for inserting into bind hash list. 23202 * The parameter is assumed to be in network byte order, ready for use. 23203 */ 23204 /* ARGSUSED */ 23205 static tcp_t * 23206 tcp_alloc_temp_tcp(in_port_t port) 23207 { 23208 conn_t *connp; 23209 tcp_t *tcp; 23210 23211 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 23212 if (connp == NULL) 23213 return (NULL); 23214 23215 tcp = connp->conn_tcp; 23216 23217 /* 23218 * Only initialize the necessary info in those structures. Note 23219 * that since INADDR_ANY is all 0, we do not need to set 23220 * tcp_bound_source to INADDR_ANY here. 23221 */ 23222 tcp->tcp_state = TCPS_BOUND; 23223 tcp->tcp_lport = port; 23224 tcp->tcp_exclbind = 1; 23225 tcp->tcp_reserved_port = 1; 23226 23227 /* Just for place holding... */ 23228 tcp->tcp_ipversion = IPV4_VERSION; 23229 23230 return (tcp); 23231 } 23232 23233 /* 23234 * To remove a port range specified by lo_port and hi_port from the 23235 * reserved port ranges. This is one of the three public functions of 23236 * the reserved port interface. Note that a port range has to be removed 23237 * as a whole. Ports in a range cannot be removed individually. 23238 * 23239 * Params: 23240 * in_port_t lo_port: the beginning port of the reserved port range to 23241 * be deleted. 23242 * in_port_t hi_port: the ending port of the reserved port range to 23243 * be deleted. 23244 * 23245 * Return: 23246 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23247 */ 23248 boolean_t 23249 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23250 { 23251 int i, j; 23252 int size; 23253 tcp_t **temp_tcp_array; 23254 tcp_t *tcp; 23255 23256 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23257 23258 /* First make sure that the port ranage is indeed reserved. */ 23259 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23260 if (tcp_reserved_port[i].lo_port == lo_port) { 23261 hi_port = tcp_reserved_port[i].hi_port; 23262 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 23263 break; 23264 } 23265 } 23266 if (i == tcp_reserved_port_array_size) { 23267 rw_exit(&tcp_reserved_port_lock); 23268 return (B_FALSE); 23269 } 23270 23271 /* 23272 * Remove the range from the array. This simple loop is possible 23273 * because port ranges are inserted in ascending order. 23274 */ 23275 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 23276 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 23277 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 23278 tcp_reserved_port[j].temp_tcp_array = 23279 tcp_reserved_port[j+1].temp_tcp_array; 23280 } 23281 23282 /* Remove all the temporary tcp structures. */ 23283 size = hi_port - lo_port + 1; 23284 while (size > 0) { 23285 tcp = temp_tcp_array[size - 1]; 23286 ASSERT(tcp != NULL); 23287 tcp_bind_hash_remove(tcp); 23288 CONN_DEC_REF(tcp->tcp_connp); 23289 size--; 23290 } 23291 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23292 tcp_reserved_port_array_size--; 23293 rw_exit(&tcp_reserved_port_lock); 23294 return (B_TRUE); 23295 } 23296 23297 /* 23298 * Macro to remove temporary tcp structure from the bind hash list. The 23299 * first parameter is the list of tcp to be removed. The second parameter 23300 * is the number of tcps in the array. 23301 */ 23302 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 23303 { \ 23304 while ((num) > 0) { \ 23305 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23306 tf_t *tbf; \ 23307 tcp_t *tcpnext; \ 23308 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23309 mutex_enter(&tbf->tf_lock); \ 23310 tcpnext = tcp->tcp_bind_hash; \ 23311 if (tcpnext) { \ 23312 tcpnext->tcp_ptpbhn = \ 23313 tcp->tcp_ptpbhn; \ 23314 } \ 23315 *tcp->tcp_ptpbhn = tcpnext; \ 23316 mutex_exit(&tbf->tf_lock); \ 23317 kmem_free(tcp, sizeof (tcp_t)); \ 23318 (tcp_array)[(num) - 1] = NULL; \ 23319 (num)--; \ 23320 } \ 23321 } 23322 23323 /* 23324 * The public interface for other modules to call to reserve a port range 23325 * in TCP. The caller passes in how large a port range it wants. TCP 23326 * will try to find a range and return it via lo_port and hi_port. This is 23327 * used by NCA's nca_conn_init. 23328 * NCA can only be used in the global zone so this only affects the global 23329 * zone's ports. 23330 * 23331 * Params: 23332 * int size: the size of the port range to be reserved. 23333 * in_port_t *lo_port (referenced): returns the beginning port of the 23334 * reserved port range added. 23335 * in_port_t *hi_port (referenced): returns the ending port of the 23336 * reserved port range added. 23337 * 23338 * Return: 23339 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23340 */ 23341 boolean_t 23342 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23343 { 23344 tcp_t *tcp; 23345 tcp_t *tmp_tcp; 23346 tcp_t **temp_tcp_array; 23347 tf_t *tbf; 23348 in_port_t net_port; 23349 in_port_t port; 23350 int32_t cur_size; 23351 int i, j; 23352 boolean_t used; 23353 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23354 zoneid_t zoneid = GLOBAL_ZONEID; 23355 23356 /* Sanity check. */ 23357 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23358 return (B_FALSE); 23359 } 23360 23361 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23362 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23363 rw_exit(&tcp_reserved_port_lock); 23364 return (B_FALSE); 23365 } 23366 23367 /* 23368 * Find the starting port to try. Since the port ranges are ordered 23369 * in the reserved port array, we can do a simple search here. 23370 */ 23371 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23372 *hi_port = TCP_LARGEST_RESERVED_PORT; 23373 for (i = 0; i < tcp_reserved_port_array_size; 23374 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 23375 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 23376 *hi_port = tcp_reserved_port[i].lo_port - 1; 23377 break; 23378 } 23379 } 23380 /* No available port range. */ 23381 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 23382 rw_exit(&tcp_reserved_port_lock); 23383 return (B_FALSE); 23384 } 23385 23386 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23387 if (temp_tcp_array == NULL) { 23388 rw_exit(&tcp_reserved_port_lock); 23389 return (B_FALSE); 23390 } 23391 23392 /* Go thru the port range to see if some ports are already bound. */ 23393 for (port = *lo_port, cur_size = 0; 23394 cur_size < size && port <= *hi_port; 23395 cur_size++, port++) { 23396 used = B_FALSE; 23397 net_port = htons(port); 23398 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 23399 mutex_enter(&tbf->tf_lock); 23400 for (tcp = tbf->tf_tcp; tcp != NULL; 23401 tcp = tcp->tcp_bind_hash) { 23402 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23403 net_port == tcp->tcp_lport) { 23404 /* 23405 * A port is already bound. Search again 23406 * starting from port + 1. Release all 23407 * temporary tcps. 23408 */ 23409 mutex_exit(&tbf->tf_lock); 23410 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23411 *lo_port = port + 1; 23412 cur_size = -1; 23413 used = B_TRUE; 23414 break; 23415 } 23416 } 23417 if (!used) { 23418 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 23419 /* 23420 * Allocation failure. Just fail the request. 23421 * Need to remove all those temporary tcp 23422 * structures. 23423 */ 23424 mutex_exit(&tbf->tf_lock); 23425 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23426 rw_exit(&tcp_reserved_port_lock); 23427 kmem_free(temp_tcp_array, 23428 (hi_port - lo_port + 1) * 23429 sizeof (tcp_t *)); 23430 return (B_FALSE); 23431 } 23432 temp_tcp_array[cur_size] = tmp_tcp; 23433 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23434 mutex_exit(&tbf->tf_lock); 23435 } 23436 } 23437 23438 /* 23439 * The current range is not large enough. We can actually do another 23440 * search if this search is done between 2 reserved port ranges. But 23441 * for first release, we just stop here and return saying that no port 23442 * range is available. 23443 */ 23444 if (cur_size < size) { 23445 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23446 rw_exit(&tcp_reserved_port_lock); 23447 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23448 return (B_FALSE); 23449 } 23450 *hi_port = port - 1; 23451 23452 /* 23453 * Insert range into array in ascending order. Since this function 23454 * must not be called often, we choose to use the simplest method. 23455 * The above array should not consume excessive stack space as 23456 * the size must be very small. If in future releases, we find 23457 * that we should provide more reserved port ranges, this function 23458 * has to be modified to be more efficient. 23459 */ 23460 if (tcp_reserved_port_array_size == 0) { 23461 tcp_reserved_port[0].lo_port = *lo_port; 23462 tcp_reserved_port[0].hi_port = *hi_port; 23463 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 23464 } else { 23465 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 23466 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 23467 tmp_ports[j].lo_port = *lo_port; 23468 tmp_ports[j].hi_port = *hi_port; 23469 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23470 j++; 23471 } 23472 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 23473 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 23474 tmp_ports[j].temp_tcp_array = 23475 tcp_reserved_port[i].temp_tcp_array; 23476 } 23477 if (j == i) { 23478 tmp_ports[j].lo_port = *lo_port; 23479 tmp_ports[j].hi_port = *hi_port; 23480 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23481 } 23482 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 23483 } 23484 tcp_reserved_port_array_size++; 23485 rw_exit(&tcp_reserved_port_lock); 23486 return (B_TRUE); 23487 } 23488 23489 /* 23490 * Check to see if a port is in any reserved port range. 23491 * 23492 * Params: 23493 * in_port_t port: the port to be verified. 23494 * 23495 * Return: 23496 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23497 */ 23498 boolean_t 23499 tcp_reserved_port_check(in_port_t port) 23500 { 23501 int i; 23502 23503 rw_enter(&tcp_reserved_port_lock, RW_READER); 23504 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23505 if (port >= tcp_reserved_port[i].lo_port || 23506 port <= tcp_reserved_port[i].hi_port) { 23507 rw_exit(&tcp_reserved_port_lock); 23508 return (B_TRUE); 23509 } 23510 } 23511 rw_exit(&tcp_reserved_port_lock); 23512 return (B_FALSE); 23513 } 23514 23515 /* 23516 * To list all reserved port ranges. This is the function to handle 23517 * ndd tcp_reserved_port_list. 23518 */ 23519 /* ARGSUSED */ 23520 static int 23521 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23522 { 23523 int i; 23524 23525 rw_enter(&tcp_reserved_port_lock, RW_READER); 23526 if (tcp_reserved_port_array_size > 0) 23527 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23528 else 23529 (void) mi_mpprintf(mp, "No port is reserved."); 23530 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23531 (void) mi_mpprintf(mp, "%d-%d", 23532 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 23533 } 23534 rw_exit(&tcp_reserved_port_lock); 23535 return (0); 23536 } 23537 23538 /* 23539 * Hash list insertion routine for tcp_t structures. 23540 * Inserts entries with the ones bound to a specific IP address first 23541 * followed by those bound to INADDR_ANY. 23542 */ 23543 static void 23544 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23545 { 23546 tcp_t **tcpp; 23547 tcp_t *tcpnext; 23548 23549 if (tcp->tcp_ptpbhn != NULL) { 23550 ASSERT(!caller_holds_lock); 23551 tcp_bind_hash_remove(tcp); 23552 } 23553 tcpp = &tbf->tf_tcp; 23554 if (!caller_holds_lock) { 23555 mutex_enter(&tbf->tf_lock); 23556 } else { 23557 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23558 } 23559 tcpnext = tcpp[0]; 23560 if (tcpnext) { 23561 /* 23562 * If the new tcp bound to the INADDR_ANY address 23563 * and the first one in the list is not bound to 23564 * INADDR_ANY we skip all entries until we find the 23565 * first one bound to INADDR_ANY. 23566 * This makes sure that applications binding to a 23567 * specific address get preference over those binding to 23568 * INADDR_ANY. 23569 */ 23570 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23571 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23572 while ((tcpnext = tcpp[0]) != NULL && 23573 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23574 tcpp = &(tcpnext->tcp_bind_hash); 23575 if (tcpnext) 23576 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23577 } else 23578 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23579 } 23580 tcp->tcp_bind_hash = tcpnext; 23581 tcp->tcp_ptpbhn = tcpp; 23582 tcpp[0] = tcp; 23583 if (!caller_holds_lock) 23584 mutex_exit(&tbf->tf_lock); 23585 } 23586 23587 /* 23588 * Hash list removal routine for tcp_t structures. 23589 */ 23590 static void 23591 tcp_bind_hash_remove(tcp_t *tcp) 23592 { 23593 tcp_t *tcpnext; 23594 kmutex_t *lockp; 23595 23596 if (tcp->tcp_ptpbhn == NULL) 23597 return; 23598 23599 /* 23600 * Extract the lock pointer in case there are concurrent 23601 * hash_remove's for this instance. 23602 */ 23603 ASSERT(tcp->tcp_lport != 0); 23604 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23605 23606 ASSERT(lockp != NULL); 23607 mutex_enter(lockp); 23608 if (tcp->tcp_ptpbhn) { 23609 tcpnext = tcp->tcp_bind_hash; 23610 if (tcpnext) { 23611 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23612 tcp->tcp_bind_hash = NULL; 23613 } 23614 *tcp->tcp_ptpbhn = tcpnext; 23615 tcp->tcp_ptpbhn = NULL; 23616 } 23617 mutex_exit(lockp); 23618 } 23619 23620 23621 /* 23622 * Hash list lookup routine for tcp_t structures. 23623 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23624 */ 23625 static tcp_t * 23626 tcp_acceptor_hash_lookup(t_uscalar_t id) 23627 { 23628 tf_t *tf; 23629 tcp_t *tcp; 23630 23631 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23632 mutex_enter(&tf->tf_lock); 23633 for (tcp = tf->tf_tcp; tcp != NULL; 23634 tcp = tcp->tcp_acceptor_hash) { 23635 if (tcp->tcp_acceptor_id == id) { 23636 CONN_INC_REF(tcp->tcp_connp); 23637 mutex_exit(&tf->tf_lock); 23638 return (tcp); 23639 } 23640 } 23641 mutex_exit(&tf->tf_lock); 23642 return (NULL); 23643 } 23644 23645 23646 /* 23647 * Hash list insertion routine for tcp_t structures. 23648 */ 23649 void 23650 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23651 { 23652 tf_t *tf; 23653 tcp_t **tcpp; 23654 tcp_t *tcpnext; 23655 23656 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23657 23658 if (tcp->tcp_ptpahn != NULL) 23659 tcp_acceptor_hash_remove(tcp); 23660 tcpp = &tf->tf_tcp; 23661 mutex_enter(&tf->tf_lock); 23662 tcpnext = tcpp[0]; 23663 if (tcpnext) 23664 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23665 tcp->tcp_acceptor_hash = tcpnext; 23666 tcp->tcp_ptpahn = tcpp; 23667 tcpp[0] = tcp; 23668 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23669 mutex_exit(&tf->tf_lock); 23670 } 23671 23672 /* 23673 * Hash list removal routine for tcp_t structures. 23674 */ 23675 static void 23676 tcp_acceptor_hash_remove(tcp_t *tcp) 23677 { 23678 tcp_t *tcpnext; 23679 kmutex_t *lockp; 23680 23681 /* 23682 * Extract the lock pointer in case there are concurrent 23683 * hash_remove's for this instance. 23684 */ 23685 lockp = tcp->tcp_acceptor_lockp; 23686 23687 if (tcp->tcp_ptpahn == NULL) 23688 return; 23689 23690 ASSERT(lockp != NULL); 23691 mutex_enter(lockp); 23692 if (tcp->tcp_ptpahn) { 23693 tcpnext = tcp->tcp_acceptor_hash; 23694 if (tcpnext) { 23695 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23696 tcp->tcp_acceptor_hash = NULL; 23697 } 23698 *tcp->tcp_ptpahn = tcpnext; 23699 tcp->tcp_ptpahn = NULL; 23700 } 23701 mutex_exit(lockp); 23702 tcp->tcp_acceptor_lockp = NULL; 23703 } 23704 23705 /* ARGSUSED */ 23706 static int 23707 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 23708 { 23709 int error = 0; 23710 int retval; 23711 char *end; 23712 23713 tcp_hsp_t *hsp; 23714 tcp_hsp_t *hspprev; 23715 23716 ipaddr_t addr = 0; /* Address we're looking for */ 23717 in6_addr_t v6addr; /* Address we're looking for */ 23718 uint32_t hash; /* Hash of that address */ 23719 23720 /* 23721 * If the following variables are still zero after parsing the input 23722 * string, the user didn't specify them and we don't change them in 23723 * the HSP. 23724 */ 23725 23726 ipaddr_t mask = 0; /* Subnet mask */ 23727 in6_addr_t v6mask; 23728 long sendspace = 0; /* Send buffer size */ 23729 long recvspace = 0; /* Receive buffer size */ 23730 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23731 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23732 23733 rw_enter(&tcp_hsp_lock, RW_WRITER); 23734 23735 /* Parse and validate address */ 23736 if (af == AF_INET) { 23737 retval = inet_pton(af, value, &addr); 23738 if (retval == 1) 23739 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23740 } else if (af == AF_INET6) { 23741 retval = inet_pton(af, value, &v6addr); 23742 } else { 23743 error = EINVAL; 23744 goto done; 23745 } 23746 if (retval == 0) { 23747 error = EINVAL; 23748 goto done; 23749 } 23750 23751 while ((*value) && *value != ' ') 23752 value++; 23753 23754 /* Parse individual keywords, set variables if found */ 23755 while (*value) { 23756 /* Skip leading blanks */ 23757 23758 while (*value == ' ' || *value == '\t') 23759 value++; 23760 23761 /* If at end of string, we're done */ 23762 23763 if (!*value) 23764 break; 23765 23766 /* We have a word, figure out what it is */ 23767 23768 if (strncmp("mask", value, 4) == 0) { 23769 value += 4; 23770 while (*value == ' ' || *value == '\t') 23771 value++; 23772 /* Parse subnet mask */ 23773 if (af == AF_INET) { 23774 retval = inet_pton(af, value, &mask); 23775 if (retval == 1) { 23776 V4MASK_TO_V6(mask, v6mask); 23777 } 23778 } else if (af == AF_INET6) { 23779 retval = inet_pton(af, value, &v6mask); 23780 } 23781 if (retval != 1) { 23782 error = EINVAL; 23783 goto done; 23784 } 23785 while ((*value) && *value != ' ') 23786 value++; 23787 } else if (strncmp("sendspace", value, 9) == 0) { 23788 value += 9; 23789 23790 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23791 sendspace < TCP_XMIT_HIWATER || 23792 sendspace >= (1L<<30)) { 23793 error = EINVAL; 23794 goto done; 23795 } 23796 value = end; 23797 } else if (strncmp("recvspace", value, 9) == 0) { 23798 value += 9; 23799 23800 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23801 recvspace < TCP_RECV_HIWATER || 23802 recvspace >= (1L<<30)) { 23803 error = EINVAL; 23804 goto done; 23805 } 23806 value = end; 23807 } else if (strncmp("timestamp", value, 9) == 0) { 23808 value += 9; 23809 23810 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23811 timestamp < 0 || timestamp > 1) { 23812 error = EINVAL; 23813 goto done; 23814 } 23815 23816 /* 23817 * We increment timestamp so we know it's been set; 23818 * this is undone when we put it in the HSP 23819 */ 23820 timestamp++; 23821 value = end; 23822 } else if (strncmp("delete", value, 6) == 0) { 23823 value += 6; 23824 delete = B_TRUE; 23825 } else { 23826 error = EINVAL; 23827 goto done; 23828 } 23829 } 23830 23831 /* Hash address for lookup */ 23832 23833 hash = TCP_HSP_HASH(addr); 23834 23835 if (delete) { 23836 /* 23837 * Note that deletes don't return an error if the thing 23838 * we're trying to delete isn't there. 23839 */ 23840 if (tcp_hsp_hash == NULL) 23841 goto done; 23842 hsp = tcp_hsp_hash[hash]; 23843 23844 if (hsp) { 23845 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23846 &v6addr)) { 23847 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23848 mi_free((char *)hsp); 23849 } else { 23850 hspprev = hsp; 23851 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23852 if (IN6_ARE_ADDR_EQUAL( 23853 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23854 hspprev->tcp_hsp_next = 23855 hsp->tcp_hsp_next; 23856 mi_free((char *)hsp); 23857 break; 23858 } 23859 hspprev = hsp; 23860 } 23861 } 23862 } 23863 } else { 23864 /* 23865 * We're adding/modifying an HSP. If we haven't already done 23866 * so, allocate the hash table. 23867 */ 23868 23869 if (!tcp_hsp_hash) { 23870 tcp_hsp_hash = (tcp_hsp_t **) 23871 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23872 if (!tcp_hsp_hash) { 23873 error = EINVAL; 23874 goto done; 23875 } 23876 } 23877 23878 /* Get head of hash chain */ 23879 23880 hsp = tcp_hsp_hash[hash]; 23881 23882 /* Try to find pre-existing hsp on hash chain */ 23883 /* Doesn't handle CIDR prefixes. */ 23884 while (hsp) { 23885 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23886 break; 23887 hsp = hsp->tcp_hsp_next; 23888 } 23889 23890 /* 23891 * If we didn't, create one with default values and put it 23892 * at head of hash chain 23893 */ 23894 23895 if (!hsp) { 23896 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23897 if (!hsp) { 23898 error = EINVAL; 23899 goto done; 23900 } 23901 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23902 tcp_hsp_hash[hash] = hsp; 23903 } 23904 23905 /* Set values that the user asked us to change */ 23906 23907 hsp->tcp_hsp_addr_v6 = v6addr; 23908 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23909 hsp->tcp_hsp_vers = IPV4_VERSION; 23910 else 23911 hsp->tcp_hsp_vers = IPV6_VERSION; 23912 hsp->tcp_hsp_subnet_v6 = v6mask; 23913 if (sendspace > 0) 23914 hsp->tcp_hsp_sendspace = sendspace; 23915 if (recvspace > 0) 23916 hsp->tcp_hsp_recvspace = recvspace; 23917 if (timestamp > 0) 23918 hsp->tcp_hsp_tstamp = timestamp - 1; 23919 } 23920 23921 done: 23922 rw_exit(&tcp_hsp_lock); 23923 return (error); 23924 } 23925 23926 /* Set callback routine passed to nd_load by tcp_param_register. */ 23927 /* ARGSUSED */ 23928 static int 23929 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23930 { 23931 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23932 } 23933 /* ARGSUSED */ 23934 static int 23935 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23936 cred_t *cr) 23937 { 23938 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23939 } 23940 23941 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23942 /* ARGSUSED */ 23943 static int 23944 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23945 { 23946 tcp_hsp_t *hsp; 23947 int i; 23948 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23949 23950 rw_enter(&tcp_hsp_lock, RW_READER); 23951 (void) mi_mpprintf(mp, 23952 "Hash HSP " MI_COL_HDRPAD_STR 23953 "Address Subnet Mask Send Receive TStamp"); 23954 if (tcp_hsp_hash) { 23955 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23956 hsp = tcp_hsp_hash[i]; 23957 while (hsp) { 23958 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23959 (void) inet_ntop(AF_INET, 23960 &hsp->tcp_hsp_addr, 23961 addrbuf, sizeof (addrbuf)); 23962 (void) inet_ntop(AF_INET, 23963 &hsp->tcp_hsp_subnet, 23964 subnetbuf, sizeof (subnetbuf)); 23965 } else { 23966 (void) inet_ntop(AF_INET6, 23967 &hsp->tcp_hsp_addr_v6, 23968 addrbuf, sizeof (addrbuf)); 23969 (void) inet_ntop(AF_INET6, 23970 &hsp->tcp_hsp_subnet_v6, 23971 subnetbuf, sizeof (subnetbuf)); 23972 } 23973 (void) mi_mpprintf(mp, 23974 " %03d " MI_COL_PTRFMT_STR 23975 "%s %s %010d %010d %d", 23976 i, 23977 (void *)hsp, 23978 addrbuf, 23979 subnetbuf, 23980 hsp->tcp_hsp_sendspace, 23981 hsp->tcp_hsp_recvspace, 23982 hsp->tcp_hsp_tstamp); 23983 23984 hsp = hsp->tcp_hsp_next; 23985 } 23986 } 23987 } 23988 rw_exit(&tcp_hsp_lock); 23989 return (0); 23990 } 23991 23992 23993 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23994 23995 static ipaddr_t netmasks[] = { 23996 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 23997 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 23998 }; 23999 24000 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24001 24002 /* 24003 * XXX This routine should go away and instead we should use the metrics 24004 * associated with the routes to determine the default sndspace and rcvspace. 24005 */ 24006 static tcp_hsp_t * 24007 tcp_hsp_lookup(ipaddr_t addr) 24008 { 24009 tcp_hsp_t *hsp = NULL; 24010 24011 /* Quick check without acquiring the lock. */ 24012 if (tcp_hsp_hash == NULL) 24013 return (NULL); 24014 24015 rw_enter(&tcp_hsp_lock, RW_READER); 24016 24017 /* This routine finds the best-matching HSP for address addr. */ 24018 24019 if (tcp_hsp_hash) { 24020 int i; 24021 ipaddr_t srchaddr; 24022 tcp_hsp_t *hsp_net; 24023 24024 /* We do three passes: host, network, and subnet. */ 24025 24026 srchaddr = addr; 24027 24028 for (i = 1; i <= 3; i++) { 24029 /* Look for exact match on srchaddr */ 24030 24031 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24032 while (hsp) { 24033 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24034 hsp->tcp_hsp_addr == srchaddr) 24035 break; 24036 hsp = hsp->tcp_hsp_next; 24037 } 24038 ASSERT(hsp == NULL || 24039 hsp->tcp_hsp_vers == IPV4_VERSION); 24040 24041 /* 24042 * If this is the first pass: 24043 * If we found a match, great, return it. 24044 * If not, search for the network on the second pass. 24045 */ 24046 24047 if (i == 1) 24048 if (hsp) 24049 break; 24050 else 24051 { 24052 srchaddr = addr & netmask(addr); 24053 continue; 24054 } 24055 24056 /* 24057 * If this is the second pass: 24058 * If we found a match, but there's a subnet mask, 24059 * save the match but try again using the subnet 24060 * mask on the third pass. 24061 * Otherwise, return whatever we found. 24062 */ 24063 24064 if (i == 2) { 24065 if (hsp && hsp->tcp_hsp_subnet) { 24066 hsp_net = hsp; 24067 srchaddr = addr & hsp->tcp_hsp_subnet; 24068 continue; 24069 } else { 24070 break; 24071 } 24072 } 24073 24074 /* 24075 * This must be the third pass. If we didn't find 24076 * anything, return the saved network HSP instead. 24077 */ 24078 24079 if (!hsp) 24080 hsp = hsp_net; 24081 } 24082 } 24083 24084 rw_exit(&tcp_hsp_lock); 24085 return (hsp); 24086 } 24087 24088 /* 24089 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24090 * match lookup. 24091 */ 24092 static tcp_hsp_t * 24093 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 24094 { 24095 tcp_hsp_t *hsp = NULL; 24096 24097 /* Quick check without acquiring the lock. */ 24098 if (tcp_hsp_hash == NULL) 24099 return (NULL); 24100 24101 rw_enter(&tcp_hsp_lock, RW_READER); 24102 24103 /* This routine finds the best-matching HSP for address addr. */ 24104 24105 if (tcp_hsp_hash) { 24106 int i; 24107 in6_addr_t v6srchaddr; 24108 tcp_hsp_t *hsp_net; 24109 24110 /* We do three passes: host, network, and subnet. */ 24111 24112 v6srchaddr = *v6addr; 24113 24114 for (i = 1; i <= 3; i++) { 24115 /* Look for exact match on srchaddr */ 24116 24117 hsp = tcp_hsp_hash[TCP_HSP_HASH( 24118 V4_PART_OF_V6(v6srchaddr))]; 24119 while (hsp) { 24120 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24121 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24122 &v6srchaddr)) 24123 break; 24124 hsp = hsp->tcp_hsp_next; 24125 } 24126 24127 /* 24128 * If this is the first pass: 24129 * If we found a match, great, return it. 24130 * If not, search for the network on the second pass. 24131 */ 24132 24133 if (i == 1) 24134 if (hsp) 24135 break; 24136 else { 24137 /* Assume a 64 bit mask */ 24138 v6srchaddr.s6_addr32[0] = 24139 v6addr->s6_addr32[0]; 24140 v6srchaddr.s6_addr32[1] = 24141 v6addr->s6_addr32[1]; 24142 v6srchaddr.s6_addr32[2] = 0; 24143 v6srchaddr.s6_addr32[3] = 0; 24144 continue; 24145 } 24146 24147 /* 24148 * If this is the second pass: 24149 * If we found a match, but there's a subnet mask, 24150 * save the match but try again using the subnet 24151 * mask on the third pass. 24152 * Otherwise, return whatever we found. 24153 */ 24154 24155 if (i == 2) { 24156 ASSERT(hsp == NULL || 24157 hsp->tcp_hsp_vers == IPV6_VERSION); 24158 if (hsp && 24159 !IN6_IS_ADDR_UNSPECIFIED( 24160 &hsp->tcp_hsp_subnet_v6)) { 24161 hsp_net = hsp; 24162 V6_MASK_COPY(*v6addr, 24163 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24164 continue; 24165 } else { 24166 break; 24167 } 24168 } 24169 24170 /* 24171 * This must be the third pass. If we didn't find 24172 * anything, return the saved network HSP instead. 24173 */ 24174 24175 if (!hsp) 24176 hsp = hsp_net; 24177 } 24178 } 24179 24180 rw_exit(&tcp_hsp_lock); 24181 return (hsp); 24182 } 24183 24184 /* 24185 * Type three generator adapted from the random() function in 4.4 BSD: 24186 */ 24187 24188 /* 24189 * Copyright (c) 1983, 1993 24190 * The Regents of the University of California. All rights reserved. 24191 * 24192 * Redistribution and use in source and binary forms, with or without 24193 * modification, are permitted provided that the following conditions 24194 * are met: 24195 * 1. Redistributions of source code must retain the above copyright 24196 * notice, this list of conditions and the following disclaimer. 24197 * 2. Redistributions in binary form must reproduce the above copyright 24198 * notice, this list of conditions and the following disclaimer in the 24199 * documentation and/or other materials provided with the distribution. 24200 * 3. All advertising materials mentioning features or use of this software 24201 * must display the following acknowledgement: 24202 * This product includes software developed by the University of 24203 * California, Berkeley and its contributors. 24204 * 4. Neither the name of the University nor the names of its contributors 24205 * may be used to endorse or promote products derived from this software 24206 * without specific prior written permission. 24207 * 24208 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24209 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24210 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24211 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24212 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24213 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24214 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24215 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24216 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24217 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24218 * SUCH DAMAGE. 24219 */ 24220 24221 /* Type 3 -- x**31 + x**3 + 1 */ 24222 #define DEG_3 31 24223 #define SEP_3 3 24224 24225 24226 /* Protected by tcp_random_lock */ 24227 static int tcp_randtbl[DEG_3 + 1]; 24228 24229 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24230 static int *tcp_random_rptr = &tcp_randtbl[1]; 24231 24232 static int *tcp_random_state = &tcp_randtbl[1]; 24233 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24234 24235 kmutex_t tcp_random_lock; 24236 24237 void 24238 tcp_random_init(void) 24239 { 24240 int i; 24241 hrtime_t hrt; 24242 time_t wallclock; 24243 uint64_t result; 24244 24245 /* 24246 * Use high-res timer and current time for seed. Gethrtime() returns 24247 * a longlong, which may contain resolution down to nanoseconds. 24248 * The current time will either be a 32-bit or a 64-bit quantity. 24249 * XOR the two together in a 64-bit result variable. 24250 * Convert the result to a 32-bit value by multiplying the high-order 24251 * 32-bits by the low-order 32-bits. 24252 */ 24253 24254 hrt = gethrtime(); 24255 (void) drv_getparm(TIME, &wallclock); 24256 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24257 mutex_enter(&tcp_random_lock); 24258 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24259 (result & 0xffffffff); 24260 24261 for (i = 1; i < DEG_3; i++) 24262 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24263 + 12345; 24264 tcp_random_fptr = &tcp_random_state[SEP_3]; 24265 tcp_random_rptr = &tcp_random_state[0]; 24266 mutex_exit(&tcp_random_lock); 24267 for (i = 0; i < 10 * DEG_3; i++) 24268 (void) tcp_random(); 24269 } 24270 24271 /* 24272 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24273 * This range is selected to be approximately centered on TCP_ISS / 2, 24274 * and easy to compute. We get this value by generating a 32-bit random 24275 * number, selecting out the high-order 17 bits, and then adding one so 24276 * that we never return zero. 24277 */ 24278 int 24279 tcp_random(void) 24280 { 24281 int i; 24282 24283 mutex_enter(&tcp_random_lock); 24284 *tcp_random_fptr += *tcp_random_rptr; 24285 24286 /* 24287 * The high-order bits are more random than the low-order bits, 24288 * so we select out the high-order 17 bits and add one so that 24289 * we never return zero. 24290 */ 24291 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24292 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24293 tcp_random_fptr = tcp_random_state; 24294 ++tcp_random_rptr; 24295 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24296 tcp_random_rptr = tcp_random_state; 24297 24298 mutex_exit(&tcp_random_lock); 24299 return (i); 24300 } 24301 24302 /* 24303 * XXX This will go away when TPI is extended to send 24304 * info reqs to sockfs/timod ..... 24305 * Given a queue, set the max packet size for the write 24306 * side of the queue below stream head. This value is 24307 * cached on the stream head. 24308 * Returns 1 on success, 0 otherwise. 24309 */ 24310 static int 24311 setmaxps(queue_t *q, int maxpsz) 24312 { 24313 struct stdata *stp; 24314 queue_t *wq; 24315 stp = STREAM(q); 24316 24317 /* 24318 * At this point change of a queue parameter is not allowed 24319 * when a multiplexor is sitting on top. 24320 */ 24321 if (stp->sd_flag & STPLEX) 24322 return (0); 24323 24324 claimstr(stp->sd_wrq); 24325 wq = stp->sd_wrq->q_next; 24326 ASSERT(wq != NULL); 24327 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24328 releasestr(stp->sd_wrq); 24329 return (1); 24330 } 24331 24332 static int 24333 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24334 int *t_errorp, int *sys_errorp) 24335 { 24336 int error; 24337 int is_absreq_failure; 24338 t_scalar_t *opt_lenp; 24339 t_scalar_t opt_offset; 24340 int prim_type; 24341 struct T_conn_req *tcreqp; 24342 struct T_conn_res *tcresp; 24343 cred_t *cr; 24344 24345 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24346 24347 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24348 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24349 prim_type == T_CONN_RES); 24350 24351 switch (prim_type) { 24352 case T_CONN_REQ: 24353 tcreqp = (struct T_conn_req *)mp->b_rptr; 24354 opt_offset = tcreqp->OPT_offset; 24355 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24356 break; 24357 case O_T_CONN_RES: 24358 case T_CONN_RES: 24359 tcresp = (struct T_conn_res *)mp->b_rptr; 24360 opt_offset = tcresp->OPT_offset; 24361 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24362 break; 24363 } 24364 24365 *t_errorp = 0; 24366 *sys_errorp = 0; 24367 *do_disconnectp = 0; 24368 24369 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24370 opt_offset, cr, &tcp_opt_obj, 24371 NULL, &is_absreq_failure); 24372 24373 switch (error) { 24374 case 0: /* no error */ 24375 ASSERT(is_absreq_failure == 0); 24376 return (0); 24377 case ENOPROTOOPT: 24378 *t_errorp = TBADOPT; 24379 break; 24380 case EACCES: 24381 *t_errorp = TACCES; 24382 break; 24383 default: 24384 *t_errorp = TSYSERR; *sys_errorp = error; 24385 break; 24386 } 24387 if (is_absreq_failure != 0) { 24388 /* 24389 * The connection request should get the local ack 24390 * T_OK_ACK and then a T_DISCON_IND. 24391 */ 24392 *do_disconnectp = 1; 24393 } 24394 return (-1); 24395 } 24396 24397 /* 24398 * Split this function out so that if the secret changes, I'm okay. 24399 * 24400 * Initialize the tcp_iss_cookie and tcp_iss_key. 24401 */ 24402 24403 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24404 24405 static void 24406 tcp_iss_key_init(uint8_t *phrase, int len) 24407 { 24408 struct { 24409 int32_t current_time; 24410 uint32_t randnum; 24411 uint16_t pad; 24412 uint8_t ether[6]; 24413 uint8_t passwd[PASSWD_SIZE]; 24414 } tcp_iss_cookie; 24415 time_t t; 24416 24417 /* 24418 * Start with the current absolute time. 24419 */ 24420 (void) drv_getparm(TIME, &t); 24421 tcp_iss_cookie.current_time = t; 24422 24423 /* 24424 * XXX - Need a more random number per RFC 1750, not this crap. 24425 * OTOH, if what follows is pretty random, then I'm in better shape. 24426 */ 24427 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24428 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24429 24430 /* 24431 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24432 * as a good template. 24433 */ 24434 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24435 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24436 24437 /* 24438 * The pass-phrase. Normally this is supplied by user-called NDD. 24439 */ 24440 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24441 24442 /* 24443 * See 4010593 if this section becomes a problem again, 24444 * but the local ethernet address is useful here. 24445 */ 24446 (void) localetheraddr(NULL, 24447 (struct ether_addr *)&tcp_iss_cookie.ether); 24448 24449 /* 24450 * Hash 'em all together. The MD5Final is called per-connection. 24451 */ 24452 mutex_enter(&tcp_iss_key_lock); 24453 MD5Init(&tcp_iss_key); 24454 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 24455 sizeof (tcp_iss_cookie)); 24456 mutex_exit(&tcp_iss_key_lock); 24457 } 24458 24459 /* 24460 * Set the RFC 1948 pass phrase 24461 */ 24462 /* ARGSUSED */ 24463 static int 24464 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24465 cred_t *cr) 24466 { 24467 /* 24468 * Basically, value contains a new pass phrase. Pass it along! 24469 */ 24470 tcp_iss_key_init((uint8_t *)value, strlen(value)); 24471 return (0); 24472 } 24473 24474 /* ARGSUSED */ 24475 static int 24476 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24477 { 24478 bzero(buf, sizeof (tcp_sack_info_t)); 24479 return (0); 24480 } 24481 24482 /* ARGSUSED */ 24483 static int 24484 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24485 { 24486 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24487 return (0); 24488 } 24489 24490 void 24491 tcp_ddi_init(void) 24492 { 24493 int i; 24494 24495 /* Initialize locks */ 24496 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 24497 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24498 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24499 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24500 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24501 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 24502 24503 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24504 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 24505 MUTEX_DEFAULT, NULL); 24506 } 24507 24508 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24509 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 24510 MUTEX_DEFAULT, NULL); 24511 } 24512 24513 /* TCP's IPsec code calls the packet dropper. */ 24514 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 24515 24516 if (!tcp_g_nd) { 24517 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 24518 nd_free(&tcp_g_nd); 24519 } 24520 } 24521 24522 /* 24523 * Note: To really walk the device tree you need the devinfo 24524 * pointer to your device which is only available after probe/attach. 24525 * The following is safe only because it uses ddi_root_node() 24526 */ 24527 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24528 tcp_opt_obj.odb_opt_arr_cnt); 24529 24530 tcp_timercache = kmem_cache_create("tcp_timercache", 24531 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24532 NULL, NULL, NULL, NULL, NULL, 0); 24533 24534 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24535 sizeof (tcp_sack_info_t), 0, 24536 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24537 24538 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24539 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24540 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24541 24542 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24543 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24544 24545 ip_squeue_init(tcp_squeue_add); 24546 24547 /* Initialize the random number generator */ 24548 tcp_random_init(); 24549 24550 /* 24551 * Initialize RFC 1948 secret values. This will probably be reset once 24552 * by the boot scripts. 24553 * 24554 * Use NULL name, as the name is caught by the new lockstats. 24555 * 24556 * Initialize with some random, non-guessable string, like the global 24557 * T_INFO_ACK. 24558 */ 24559 24560 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24561 sizeof (tcp_g_t_info_ack)); 24562 24563 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 24564 "net", KSTAT_TYPE_NAMED, 24565 sizeof (tcp_statistics) / sizeof (kstat_named_t), 24566 KSTAT_FLAG_VIRTUAL)) != NULL) { 24567 tcp_kstat->ks_data = &tcp_statistics; 24568 kstat_install(tcp_kstat); 24569 } 24570 24571 tcp_kstat_init(); 24572 } 24573 24574 void 24575 tcp_ddi_destroy(void) 24576 { 24577 int i; 24578 24579 nd_free(&tcp_g_nd); 24580 24581 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24582 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 24583 } 24584 24585 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24586 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 24587 } 24588 24589 mutex_destroy(&tcp_iss_key_lock); 24590 rw_destroy(&tcp_hsp_lock); 24591 mutex_destroy(&tcp_g_q_lock); 24592 mutex_destroy(&tcp_random_lock); 24593 mutex_destroy(&tcp_epriv_port_lock); 24594 rw_destroy(&tcp_reserved_port_lock); 24595 24596 ip_drop_unregister(&tcp_dropper); 24597 24598 kmem_cache_destroy(tcp_timercache); 24599 kmem_cache_destroy(tcp_sack_info_cache); 24600 kmem_cache_destroy(tcp_iphc_cache); 24601 24602 tcp_kstat_fini(); 24603 } 24604 24605 /* 24606 * Generate ISS, taking into account NDD changes may happen halfway through. 24607 * (If the iss is not zero, set it.) 24608 */ 24609 24610 static void 24611 tcp_iss_init(tcp_t *tcp) 24612 { 24613 MD5_CTX context; 24614 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24615 uint32_t answer[4]; 24616 24617 tcp_iss_incr_extra += (ISS_INCR >> 1); 24618 tcp->tcp_iss = tcp_iss_incr_extra; 24619 switch (tcp_strong_iss) { 24620 case 2: 24621 mutex_enter(&tcp_iss_key_lock); 24622 context = tcp_iss_key; 24623 mutex_exit(&tcp_iss_key_lock); 24624 arg.ports = tcp->tcp_ports; 24625 if (tcp->tcp_ipversion == IPV4_VERSION) { 24626 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24627 &arg.src); 24628 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24629 &arg.dst); 24630 } else { 24631 arg.src = tcp->tcp_ip6h->ip6_src; 24632 arg.dst = tcp->tcp_ip6h->ip6_dst; 24633 } 24634 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24635 MD5Final((uchar_t *)answer, &context); 24636 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24637 /* 24638 * Now that we've hashed into a unique per-connection sequence 24639 * space, add a random increment per strong_iss == 1. So I 24640 * guess we'll have to... 24641 */ 24642 /* FALLTHRU */ 24643 case 1: 24644 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24645 break; 24646 default: 24647 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24648 break; 24649 } 24650 tcp->tcp_valid_bits = TCP_ISS_VALID; 24651 tcp->tcp_fss = tcp->tcp_iss - 1; 24652 tcp->tcp_suna = tcp->tcp_iss; 24653 tcp->tcp_snxt = tcp->tcp_iss + 1; 24654 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24655 tcp->tcp_csuna = tcp->tcp_snxt; 24656 } 24657 24658 /* 24659 * Exported routine for extracting active tcp connection status. 24660 * 24661 * This is used by the Solaris Cluster Networking software to 24662 * gather a list of connections that need to be forwarded to 24663 * specific nodes in the cluster when configuration changes occur. 24664 * 24665 * The callback is invoked for each tcp_t structure. Returning 24666 * non-zero from the callback routine terminates the search. 24667 */ 24668 int 24669 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 24670 { 24671 tcp_t *tcp; 24672 cl_tcp_info_t cl_tcpi; 24673 connf_t *connfp; 24674 conn_t *connp; 24675 int i; 24676 24677 ASSERT(callback != NULL); 24678 24679 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24680 24681 connfp = &ipcl_globalhash_fanout[i]; 24682 connp = NULL; 24683 24684 while ((connp = 24685 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24686 24687 tcp = connp->conn_tcp; 24688 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24689 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24690 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24691 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24692 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24693 /* 24694 * The macros tcp_laddr and tcp_faddr give the IPv4 24695 * addresses. They are copied implicitly below as 24696 * mapped addresses. 24697 */ 24698 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24699 if (tcp->tcp_ipversion == IPV4_VERSION) { 24700 cl_tcpi.cl_tcpi_faddr = 24701 tcp->tcp_ipha->ipha_dst; 24702 } else { 24703 cl_tcpi.cl_tcpi_faddr_v6 = 24704 tcp->tcp_ip6h->ip6_dst; 24705 } 24706 24707 /* 24708 * If the callback returns non-zero 24709 * we terminate the traversal. 24710 */ 24711 if ((*callback)(&cl_tcpi, arg) != 0) { 24712 CONN_DEC_REF(tcp->tcp_connp); 24713 return (1); 24714 } 24715 } 24716 } 24717 24718 return (0); 24719 } 24720 24721 /* 24722 * Macros used for accessing the different types of sockaddr 24723 * structures inside a tcp_ioc_abort_conn_t. 24724 */ 24725 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24726 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24727 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24728 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24729 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24730 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24731 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24732 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24733 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24734 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24735 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24736 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24737 24738 /* 24739 * Return the correct error code to mimic the behavior 24740 * of a connection reset. 24741 */ 24742 #define TCP_AC_GET_ERRCODE(state, err) { \ 24743 switch ((state)) { \ 24744 case TCPS_SYN_SENT: \ 24745 case TCPS_SYN_RCVD: \ 24746 (err) = ECONNREFUSED; \ 24747 break; \ 24748 case TCPS_ESTABLISHED: \ 24749 case TCPS_FIN_WAIT_1: \ 24750 case TCPS_FIN_WAIT_2: \ 24751 case TCPS_CLOSE_WAIT: \ 24752 (err) = ECONNRESET; \ 24753 break; \ 24754 case TCPS_CLOSING: \ 24755 case TCPS_LAST_ACK: \ 24756 case TCPS_TIME_WAIT: \ 24757 (err) = 0; \ 24758 break; \ 24759 default: \ 24760 (err) = ENXIO; \ 24761 } \ 24762 } 24763 24764 /* 24765 * Check if a tcp structure matches the info in acp. 24766 */ 24767 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24768 (((acp)->ac_local.ss_family == AF_INET) ? \ 24769 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24770 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24771 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24772 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24773 (TCP_AC_V4LPORT((acp)) == 0 || \ 24774 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24775 (TCP_AC_V4RPORT((acp)) == 0 || \ 24776 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24777 (acp)->ac_start <= (tcp)->tcp_state && \ 24778 (acp)->ac_end >= (tcp)->tcp_state) : \ 24779 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24780 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24781 &(tcp)->tcp_ip_src_v6)) && \ 24782 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24783 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24784 &(tcp)->tcp_remote_v6)) && \ 24785 (TCP_AC_V6LPORT((acp)) == 0 || \ 24786 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24787 (TCP_AC_V6RPORT((acp)) == 0 || \ 24788 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24789 (acp)->ac_start <= (tcp)->tcp_state && \ 24790 (acp)->ac_end >= (tcp)->tcp_state)) 24791 24792 #define TCP_AC_MATCH(acp, tcp) \ 24793 (((acp)->ac_zoneid == ALL_ZONES || \ 24794 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24795 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24796 24797 /* 24798 * Build a message containing a tcp_ioc_abort_conn_t structure 24799 * which is filled in with information from acp and tp. 24800 */ 24801 static mblk_t * 24802 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24803 { 24804 mblk_t *mp; 24805 tcp_ioc_abort_conn_t *tacp; 24806 24807 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24808 if (mp == NULL) 24809 return (NULL); 24810 24811 mp->b_datap->db_type = M_CTL; 24812 24813 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24814 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24815 sizeof (uint32_t)); 24816 24817 tacp->ac_start = acp->ac_start; 24818 tacp->ac_end = acp->ac_end; 24819 tacp->ac_zoneid = acp->ac_zoneid; 24820 24821 if (acp->ac_local.ss_family == AF_INET) { 24822 tacp->ac_local.ss_family = AF_INET; 24823 tacp->ac_remote.ss_family = AF_INET; 24824 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24825 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24826 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24827 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24828 } else { 24829 tacp->ac_local.ss_family = AF_INET6; 24830 tacp->ac_remote.ss_family = AF_INET6; 24831 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24832 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24833 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24834 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24835 } 24836 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24837 return (mp); 24838 } 24839 24840 /* 24841 * Print a tcp_ioc_abort_conn_t structure. 24842 */ 24843 static void 24844 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24845 { 24846 char lbuf[128]; 24847 char rbuf[128]; 24848 sa_family_t af; 24849 in_port_t lport, rport; 24850 ushort_t logflags; 24851 24852 af = acp->ac_local.ss_family; 24853 24854 if (af == AF_INET) { 24855 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24856 lbuf, 128); 24857 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24858 rbuf, 128); 24859 lport = ntohs(TCP_AC_V4LPORT(acp)); 24860 rport = ntohs(TCP_AC_V4RPORT(acp)); 24861 } else { 24862 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24863 lbuf, 128); 24864 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24865 rbuf, 128); 24866 lport = ntohs(TCP_AC_V6LPORT(acp)); 24867 rport = ntohs(TCP_AC_V6RPORT(acp)); 24868 } 24869 24870 logflags = SL_TRACE | SL_NOTE; 24871 /* 24872 * Don't print this message to the console if the operation was done 24873 * to a non-global zone. 24874 */ 24875 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24876 logflags |= SL_CONSOLE; 24877 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24878 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24879 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24880 acp->ac_start, acp->ac_end); 24881 } 24882 24883 /* 24884 * Called inside tcp_rput when a message built using 24885 * tcp_ioctl_abort_build_msg is put into a queue. 24886 * Note that when we get here there is no wildcard in acp any more. 24887 */ 24888 static void 24889 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24890 { 24891 tcp_ioc_abort_conn_t *acp; 24892 24893 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24894 if (tcp->tcp_state <= acp->ac_end) { 24895 /* 24896 * If we get here, we are already on the correct 24897 * squeue. This ioctl follows the following path 24898 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24899 * ->tcp_ioctl_abort->squeue_fill (if on a 24900 * different squeue) 24901 */ 24902 int errcode; 24903 24904 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24905 (void) tcp_clean_death(tcp, errcode, 26); 24906 } 24907 freemsg(mp); 24908 } 24909 24910 /* 24911 * Abort all matching connections on a hash chain. 24912 */ 24913 static int 24914 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24915 boolean_t exact) 24916 { 24917 int nmatch, err = 0; 24918 tcp_t *tcp; 24919 MBLKP mp, last, listhead = NULL; 24920 conn_t *tconnp; 24921 connf_t *connfp = &ipcl_conn_fanout[index]; 24922 24923 startover: 24924 nmatch = 0; 24925 24926 mutex_enter(&connfp->connf_lock); 24927 for (tconnp = connfp->connf_head; tconnp != NULL; 24928 tconnp = tconnp->conn_next) { 24929 tcp = tconnp->conn_tcp; 24930 if (TCP_AC_MATCH(acp, tcp)) { 24931 CONN_INC_REF(tcp->tcp_connp); 24932 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24933 if (mp == NULL) { 24934 err = ENOMEM; 24935 CONN_DEC_REF(tcp->tcp_connp); 24936 break; 24937 } 24938 mp->b_prev = (mblk_t *)tcp; 24939 24940 if (listhead == NULL) { 24941 listhead = mp; 24942 last = mp; 24943 } else { 24944 last->b_next = mp; 24945 last = mp; 24946 } 24947 nmatch++; 24948 if (exact) 24949 break; 24950 } 24951 24952 /* Avoid holding lock for too long. */ 24953 if (nmatch >= 500) 24954 break; 24955 } 24956 mutex_exit(&connfp->connf_lock); 24957 24958 /* Pass mp into the correct tcp */ 24959 while ((mp = listhead) != NULL) { 24960 listhead = listhead->b_next; 24961 tcp = (tcp_t *)mp->b_prev; 24962 mp->b_next = mp->b_prev = NULL; 24963 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24964 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24965 } 24966 24967 *count += nmatch; 24968 if (nmatch >= 500 && err == 0) 24969 goto startover; 24970 return (err); 24971 } 24972 24973 /* 24974 * Abort all connections that matches the attributes specified in acp. 24975 */ 24976 static int 24977 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 24978 { 24979 sa_family_t af; 24980 uint32_t ports; 24981 uint16_t *pports; 24982 int err = 0, count = 0; 24983 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24984 int index = -1; 24985 ushort_t logflags; 24986 24987 af = acp->ac_local.ss_family; 24988 24989 if (af == AF_INET) { 24990 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24991 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24992 pports = (uint16_t *)&ports; 24993 pports[1] = TCP_AC_V4LPORT(acp); 24994 pports[0] = TCP_AC_V4RPORT(acp); 24995 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24996 } 24997 } else { 24998 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24999 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25000 pports = (uint16_t *)&ports; 25001 pports[1] = TCP_AC_V6LPORT(acp); 25002 pports[0] = TCP_AC_V6RPORT(acp); 25003 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25004 } 25005 } 25006 25007 /* 25008 * For cases where remote addr, local port, and remote port are non- 25009 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25010 */ 25011 if (index != -1) { 25012 err = tcp_ioctl_abort_bucket(acp, index, 25013 &count, exact); 25014 } else { 25015 /* 25016 * loop through all entries for wildcard case 25017 */ 25018 for (index = 0; index < ipcl_conn_fanout_size; index++) { 25019 err = tcp_ioctl_abort_bucket(acp, index, 25020 &count, exact); 25021 if (err != 0) 25022 break; 25023 } 25024 } 25025 25026 logflags = SL_TRACE | SL_NOTE; 25027 /* 25028 * Don't print this message to the console if the operation was done 25029 * to a non-global zone. 25030 */ 25031 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25032 logflags |= SL_CONSOLE; 25033 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25034 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25035 if (err == 0 && count == 0) 25036 err = ENOENT; 25037 return (err); 25038 } 25039 25040 /* 25041 * Process the TCP_IOC_ABORT_CONN ioctl request. 25042 */ 25043 static void 25044 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25045 { 25046 int err; 25047 IOCP iocp; 25048 MBLKP mp1; 25049 sa_family_t laf, raf; 25050 tcp_ioc_abort_conn_t *acp; 25051 zone_t *zptr; 25052 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 25053 25054 iocp = (IOCP)mp->b_rptr; 25055 25056 if ((mp1 = mp->b_cont) == NULL || 25057 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25058 err = EINVAL; 25059 goto out; 25060 } 25061 25062 /* check permissions */ 25063 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 25064 err = EPERM; 25065 goto out; 25066 } 25067 25068 if (mp1->b_cont != NULL) { 25069 freemsg(mp1->b_cont); 25070 mp1->b_cont = NULL; 25071 } 25072 25073 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25074 laf = acp->ac_local.ss_family; 25075 raf = acp->ac_remote.ss_family; 25076 25077 /* check that a zone with the supplied zoneid exists */ 25078 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25079 zptr = zone_find_by_id(zoneid); 25080 if (zptr != NULL) { 25081 zone_rele(zptr); 25082 } else { 25083 err = EINVAL; 25084 goto out; 25085 } 25086 } 25087 25088 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25089 acp->ac_start > acp->ac_end || laf != raf || 25090 (laf != AF_INET && laf != AF_INET6)) { 25091 err = EINVAL; 25092 goto out; 25093 } 25094 25095 tcp_ioctl_abort_dump(acp); 25096 err = tcp_ioctl_abort(acp); 25097 25098 out: 25099 if (mp1 != NULL) { 25100 freemsg(mp1); 25101 mp->b_cont = NULL; 25102 } 25103 25104 if (err != 0) 25105 miocnak(q, mp, 0, err); 25106 else 25107 miocack(q, mp, 0, 0); 25108 } 25109 25110 /* 25111 * tcp_time_wait_processing() handles processing of incoming packets when 25112 * the tcp is in the TIME_WAIT state. 25113 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25114 * on the time wait list. 25115 */ 25116 void 25117 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25118 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25119 { 25120 int32_t bytes_acked; 25121 int32_t gap; 25122 int32_t rgap; 25123 tcp_opt_t tcpopt; 25124 uint_t flags; 25125 uint32_t new_swnd = 0; 25126 conn_t *connp; 25127 25128 BUMP_LOCAL(tcp->tcp_ibsegs); 25129 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25130 25131 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25132 new_swnd = BE16_TO_U16(tcph->th_win) << 25133 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25134 if (tcp->tcp_snd_ts_ok) { 25135 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25136 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25137 tcp->tcp_rnxt, TH_ACK); 25138 goto done; 25139 } 25140 } 25141 gap = seg_seq - tcp->tcp_rnxt; 25142 rgap = tcp->tcp_rwnd - (gap + seg_len); 25143 if (gap < 0) { 25144 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 25145 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 25146 (seg_len > -gap ? -gap : seg_len)); 25147 seg_len += gap; 25148 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25149 if (flags & TH_RST) { 25150 goto done; 25151 } 25152 if ((flags & TH_FIN) && seg_len == -1) { 25153 /* 25154 * When TCP receives a duplicate FIN in 25155 * TIME_WAIT state, restart the 2 MSL timer. 25156 * See page 73 in RFC 793. Make sure this TCP 25157 * is already on the TIME_WAIT list. If not, 25158 * just restart the timer. 25159 */ 25160 if (TCP_IS_DETACHED(tcp)) { 25161 if (tcp_time_wait_remove(tcp, NULL) == 25162 B_TRUE) { 25163 tcp_time_wait_append(tcp); 25164 TCP_DBGSTAT(tcp_rput_time_wait); 25165 } 25166 } else { 25167 ASSERT(tcp != NULL); 25168 TCP_TIMER_RESTART(tcp, 25169 tcp_time_wait_interval); 25170 } 25171 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25172 tcp->tcp_rnxt, TH_ACK); 25173 goto done; 25174 } 25175 flags |= TH_ACK_NEEDED; 25176 seg_len = 0; 25177 goto process_ack; 25178 } 25179 25180 /* Fix seg_seq, and chew the gap off the front. */ 25181 seg_seq = tcp->tcp_rnxt; 25182 } 25183 25184 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25185 /* 25186 * Make sure that when we accept the connection, pick 25187 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25188 * old connection. 25189 * 25190 * The next ISS generated is equal to tcp_iss_incr_extra 25191 * + ISS_INCR/2 + other components depending on the 25192 * value of tcp_strong_iss. We pre-calculate the new 25193 * ISS here and compare with tcp_snxt to determine if 25194 * we need to make adjustment to tcp_iss_incr_extra. 25195 * 25196 * The above calculation is ugly and is a 25197 * waste of CPU cycles... 25198 */ 25199 uint32_t new_iss = tcp_iss_incr_extra; 25200 int32_t adj; 25201 25202 switch (tcp_strong_iss) { 25203 case 2: { 25204 /* Add time and MD5 components. */ 25205 uint32_t answer[4]; 25206 struct { 25207 uint32_t ports; 25208 in6_addr_t src; 25209 in6_addr_t dst; 25210 } arg; 25211 MD5_CTX context; 25212 25213 mutex_enter(&tcp_iss_key_lock); 25214 context = tcp_iss_key; 25215 mutex_exit(&tcp_iss_key_lock); 25216 arg.ports = tcp->tcp_ports; 25217 /* We use MAPPED addresses in tcp_iss_init */ 25218 arg.src = tcp->tcp_ip_src_v6; 25219 if (tcp->tcp_ipversion == IPV4_VERSION) { 25220 IN6_IPADDR_TO_V4MAPPED( 25221 tcp->tcp_ipha->ipha_dst, 25222 &arg.dst); 25223 } else { 25224 arg.dst = 25225 tcp->tcp_ip6h->ip6_dst; 25226 } 25227 MD5Update(&context, (uchar_t *)&arg, 25228 sizeof (arg)); 25229 MD5Final((uchar_t *)answer, &context); 25230 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25231 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25232 break; 25233 } 25234 case 1: 25235 /* Add time component and min random (i.e. 1). */ 25236 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25237 break; 25238 default: 25239 /* Add only time component. */ 25240 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25241 break; 25242 } 25243 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25244 /* 25245 * New ISS not guaranteed to be ISS_INCR/2 25246 * ahead of the current tcp_snxt, so add the 25247 * difference to tcp_iss_incr_extra. 25248 */ 25249 tcp_iss_incr_extra += adj; 25250 } 25251 /* 25252 * If tcp_clean_death() can not perform the task now, 25253 * drop the SYN packet and let the other side re-xmit. 25254 * Otherwise pass the SYN packet back in, since the 25255 * old tcp state has been cleaned up or freed. 25256 */ 25257 if (tcp_clean_death(tcp, 0, 27) == -1) 25258 goto done; 25259 /* 25260 * We will come back to tcp_rput_data 25261 * on the global queue. Packets destined 25262 * for the global queue will be checked 25263 * with global policy. But the policy for 25264 * this packet has already been checked as 25265 * this was destined for the detached 25266 * connection. We need to bypass policy 25267 * check this time by attaching a dummy 25268 * ipsec_in with ipsec_in_dont_check set. 25269 */ 25270 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 25271 NULL) { 25272 TCP_STAT(tcp_time_wait_syn_success); 25273 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25274 return; 25275 } 25276 goto done; 25277 } 25278 25279 /* 25280 * rgap is the amount of stuff received out of window. A negative 25281 * value is the amount out of window. 25282 */ 25283 if (rgap < 0) { 25284 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 25285 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 25286 /* Fix seg_len and make sure there is something left. */ 25287 seg_len += rgap; 25288 if (seg_len <= 0) { 25289 if (flags & TH_RST) { 25290 goto done; 25291 } 25292 flags |= TH_ACK_NEEDED; 25293 seg_len = 0; 25294 goto process_ack; 25295 } 25296 } 25297 /* 25298 * Check whether we can update tcp_ts_recent. This test is 25299 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25300 * Extensions for High Performance: An Update", Internet Draft. 25301 */ 25302 if (tcp->tcp_snd_ts_ok && 25303 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25304 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25305 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25306 tcp->tcp_last_rcv_lbolt = lbolt64; 25307 } 25308 25309 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25310 /* Always ack out of order packets */ 25311 flags |= TH_ACK_NEEDED; 25312 seg_len = 0; 25313 } else if (seg_len > 0) { 25314 BUMP_MIB(&tcp_mib, tcpInClosed); 25315 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 25316 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 25317 } 25318 if (flags & TH_RST) { 25319 (void) tcp_clean_death(tcp, 0, 28); 25320 goto done; 25321 } 25322 if (flags & TH_SYN) { 25323 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25324 TH_RST|TH_ACK); 25325 /* 25326 * Do not delete the TCP structure if it is in 25327 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25328 */ 25329 goto done; 25330 } 25331 process_ack: 25332 if (flags & TH_ACK) { 25333 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25334 if (bytes_acked <= 0) { 25335 if (bytes_acked == 0 && seg_len == 0 && 25336 new_swnd == tcp->tcp_swnd) 25337 BUMP_MIB(&tcp_mib, tcpInDupAck); 25338 } else { 25339 /* Acks something not sent */ 25340 flags |= TH_ACK_NEEDED; 25341 } 25342 } 25343 if (flags & TH_ACK_NEEDED) { 25344 /* 25345 * Time to send an ack for some reason. 25346 */ 25347 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25348 tcp->tcp_rnxt, TH_ACK); 25349 } 25350 done: 25351 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25352 DB_CKSUMSTART(mp) = 0; 25353 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25354 TCP_STAT(tcp_time_wait_syn_fail); 25355 } 25356 freemsg(mp); 25357 } 25358 25359 /* 25360 * Allocate a T_SVR4_OPTMGMT_REQ. 25361 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 25362 * that tcp_rput_other can drop the acks. 25363 */ 25364 static mblk_t * 25365 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 25366 { 25367 mblk_t *mp; 25368 struct T_optmgmt_req *tor; 25369 struct opthdr *oh; 25370 uint_t size; 25371 char *optptr; 25372 25373 size = sizeof (*tor) + sizeof (*oh) + optlen; 25374 mp = allocb(size, BPRI_MED); 25375 if (mp == NULL) 25376 return (NULL); 25377 25378 mp->b_wptr += size; 25379 mp->b_datap->db_type = M_PROTO; 25380 tor = (struct T_optmgmt_req *)mp->b_rptr; 25381 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25382 tor->MGMT_flags = T_NEGOTIATE; 25383 tor->OPT_length = sizeof (*oh) + optlen; 25384 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25385 25386 oh = (struct opthdr *)&tor[1]; 25387 oh->level = level; 25388 oh->name = cmd; 25389 oh->len = optlen; 25390 if (optlen != 0) { 25391 optptr = (char *)&oh[1]; 25392 bcopy(opt, optptr, optlen); 25393 } 25394 return (mp); 25395 } 25396 25397 /* 25398 * TCP Timers Implementation. 25399 */ 25400 timeout_id_t 25401 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25402 { 25403 mblk_t *mp; 25404 tcp_timer_t *tcpt; 25405 tcp_t *tcp = connp->conn_tcp; 25406 25407 ASSERT(connp->conn_sqp != NULL); 25408 25409 TCP_DBGSTAT(tcp_timeout_calls); 25410 25411 if (tcp->tcp_timercache == NULL) { 25412 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25413 } else { 25414 TCP_DBGSTAT(tcp_timeout_cached_alloc); 25415 mp = tcp->tcp_timercache; 25416 tcp->tcp_timercache = mp->b_next; 25417 mp->b_next = NULL; 25418 ASSERT(mp->b_wptr == NULL); 25419 } 25420 25421 CONN_INC_REF(connp); 25422 tcpt = (tcp_timer_t *)mp->b_rptr; 25423 tcpt->connp = connp; 25424 tcpt->tcpt_proc = f; 25425 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 25426 return ((timeout_id_t)mp); 25427 } 25428 25429 static void 25430 tcp_timer_callback(void *arg) 25431 { 25432 mblk_t *mp = (mblk_t *)arg; 25433 tcp_timer_t *tcpt; 25434 conn_t *connp; 25435 25436 tcpt = (tcp_timer_t *)mp->b_rptr; 25437 connp = tcpt->connp; 25438 squeue_fill(connp->conn_sqp, mp, 25439 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25440 } 25441 25442 static void 25443 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25444 { 25445 tcp_timer_t *tcpt; 25446 conn_t *connp = (conn_t *)arg; 25447 tcp_t *tcp = connp->conn_tcp; 25448 25449 tcpt = (tcp_timer_t *)mp->b_rptr; 25450 ASSERT(connp == tcpt->connp); 25451 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25452 25453 /* 25454 * If the TCP has reached the closed state, don't proceed any 25455 * further. This TCP logically does not exist on the system. 25456 * tcpt_proc could for example access queues, that have already 25457 * been qprocoff'ed off. Also see comments at the start of tcp_input 25458 */ 25459 if (tcp->tcp_state != TCPS_CLOSED) { 25460 (*tcpt->tcpt_proc)(connp); 25461 } else { 25462 tcp->tcp_timer_tid = 0; 25463 } 25464 tcp_timer_free(connp->conn_tcp, mp); 25465 } 25466 25467 /* 25468 * There is potential race with untimeout and the handler firing at the same 25469 * time. The mblock may be freed by the handler while we are trying to use 25470 * it. But since both should execute on the same squeue, this race should not 25471 * occur. 25472 */ 25473 clock_t 25474 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25475 { 25476 mblk_t *mp = (mblk_t *)id; 25477 tcp_timer_t *tcpt; 25478 clock_t delta; 25479 25480 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 25481 25482 if (mp == NULL) 25483 return (-1); 25484 25485 tcpt = (tcp_timer_t *)mp->b_rptr; 25486 ASSERT(tcpt->connp == connp); 25487 25488 delta = untimeout(tcpt->tcpt_tid); 25489 25490 if (delta >= 0) { 25491 TCP_DBGSTAT(tcp_timeout_canceled); 25492 tcp_timer_free(connp->conn_tcp, mp); 25493 CONN_DEC_REF(connp); 25494 } 25495 25496 return (delta); 25497 } 25498 25499 /* 25500 * Allocate space for the timer event. The allocation looks like mblk, but it is 25501 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25502 * 25503 * Dealing with failures: If we can't allocate from the timer cache we try 25504 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25505 * points to b_rptr. 25506 * If we can't allocate anything using allocb_tryhard(), we perform a last 25507 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25508 * save the actual allocation size in b_datap. 25509 */ 25510 mblk_t * 25511 tcp_timermp_alloc(int kmflags) 25512 { 25513 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25514 kmflags & ~KM_PANIC); 25515 25516 if (mp != NULL) { 25517 mp->b_next = mp->b_prev = NULL; 25518 mp->b_rptr = (uchar_t *)(&mp[1]); 25519 mp->b_wptr = NULL; 25520 mp->b_datap = NULL; 25521 mp->b_queue = NULL; 25522 } else if (kmflags & KM_PANIC) { 25523 /* 25524 * Failed to allocate memory for the timer. Try allocating from 25525 * dblock caches. 25526 */ 25527 TCP_STAT(tcp_timermp_allocfail); 25528 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25529 if (mp == NULL) { 25530 size_t size = 0; 25531 /* 25532 * Memory is really low. Try tryhard allocation. 25533 */ 25534 TCP_STAT(tcp_timermp_allocdblfail); 25535 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25536 sizeof (tcp_timer_t), &size, kmflags); 25537 mp->b_rptr = (uchar_t *)(&mp[1]); 25538 mp->b_next = mp->b_prev = NULL; 25539 mp->b_wptr = (uchar_t *)-1; 25540 mp->b_datap = (dblk_t *)size; 25541 mp->b_queue = NULL; 25542 } 25543 ASSERT(mp->b_wptr != NULL); 25544 } 25545 TCP_DBGSTAT(tcp_timermp_alloced); 25546 25547 return (mp); 25548 } 25549 25550 /* 25551 * Free per-tcp timer cache. 25552 * It can only contain entries from tcp_timercache. 25553 */ 25554 void 25555 tcp_timermp_free(tcp_t *tcp) 25556 { 25557 mblk_t *mp; 25558 25559 while ((mp = tcp->tcp_timercache) != NULL) { 25560 ASSERT(mp->b_wptr == NULL); 25561 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25562 kmem_cache_free(tcp_timercache, mp); 25563 } 25564 } 25565 25566 /* 25567 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25568 * events there already (currently at most two events are cached). 25569 * If the event is not allocated from the timer cache, free it right away. 25570 */ 25571 static void 25572 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25573 { 25574 mblk_t *mp1 = tcp->tcp_timercache; 25575 25576 if (mp->b_wptr != NULL) { 25577 /* 25578 * This allocation is not from a timer cache, free it right 25579 * away. 25580 */ 25581 if (mp->b_wptr != (uchar_t *)-1) 25582 freeb(mp); 25583 else 25584 kmem_free(mp, (size_t)mp->b_datap); 25585 } else if (mp1 == NULL || mp1->b_next == NULL) { 25586 /* Cache this timer block for future allocations */ 25587 mp->b_rptr = (uchar_t *)(&mp[1]); 25588 mp->b_next = mp1; 25589 tcp->tcp_timercache = mp; 25590 } else { 25591 kmem_cache_free(tcp_timercache, mp); 25592 TCP_DBGSTAT(tcp_timermp_freed); 25593 } 25594 } 25595 25596 /* 25597 * End of TCP Timers implementation. 25598 */ 25599 25600 /* 25601 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25602 * on the specified backing STREAMS q. Note, the caller may make the 25603 * decision to call based on the tcp_t.tcp_flow_stopped value which 25604 * when check outside the q's lock is only an advisory check ... 25605 */ 25606 25607 void 25608 tcp_setqfull(tcp_t *tcp) 25609 { 25610 queue_t *q = tcp->tcp_wq; 25611 25612 if (!(q->q_flag & QFULL)) { 25613 mutex_enter(QLOCK(q)); 25614 if (!(q->q_flag & QFULL)) { 25615 /* still need to set QFULL */ 25616 q->q_flag |= QFULL; 25617 tcp->tcp_flow_stopped = B_TRUE; 25618 mutex_exit(QLOCK(q)); 25619 TCP_STAT(tcp_flwctl_on); 25620 } else { 25621 mutex_exit(QLOCK(q)); 25622 } 25623 } 25624 } 25625 25626 void 25627 tcp_clrqfull(tcp_t *tcp) 25628 { 25629 queue_t *q = tcp->tcp_wq; 25630 25631 if (q->q_flag & QFULL) { 25632 mutex_enter(QLOCK(q)); 25633 if (q->q_flag & QFULL) { 25634 q->q_flag &= ~QFULL; 25635 tcp->tcp_flow_stopped = B_FALSE; 25636 mutex_exit(QLOCK(q)); 25637 if (q->q_flag & QWANTW) 25638 qbackenable(q, 0); 25639 } else { 25640 mutex_exit(QLOCK(q)); 25641 } 25642 } 25643 } 25644 25645 /* 25646 * TCP Kstats implementation 25647 */ 25648 static void 25649 tcp_kstat_init(void) 25650 { 25651 tcp_named_kstat_t template = { 25652 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25653 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25654 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25655 { "maxConn", KSTAT_DATA_INT32, 0 }, 25656 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25657 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25658 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25659 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25660 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25661 { "inSegs", KSTAT_DATA_UINT32, 0 }, 25662 { "outSegs", KSTAT_DATA_UINT32, 0 }, 25663 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25664 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25665 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25666 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25667 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25668 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25669 { "outAck", KSTAT_DATA_UINT32, 0 }, 25670 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25671 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25672 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25673 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25674 { "outControl", KSTAT_DATA_UINT32, 0 }, 25675 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25676 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25677 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25678 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25679 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25680 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25681 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25682 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25683 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25684 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25685 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25686 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25687 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25688 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25689 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25690 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25691 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25692 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25693 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25694 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25695 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25696 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25697 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25698 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25699 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25700 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25701 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25702 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25703 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25704 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25705 }; 25706 25707 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 25708 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 25709 25710 if (tcp_mibkp == NULL) 25711 return; 25712 25713 template.rtoAlgorithm.value.ui32 = 4; 25714 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 25715 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 25716 template.maxConn.value.i32 = -1; 25717 25718 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 25719 25720 tcp_mibkp->ks_update = tcp_kstat_update; 25721 25722 kstat_install(tcp_mibkp); 25723 } 25724 25725 static void 25726 tcp_kstat_fini(void) 25727 { 25728 25729 if (tcp_mibkp != NULL) { 25730 kstat_delete(tcp_mibkp); 25731 tcp_mibkp = NULL; 25732 } 25733 } 25734 25735 static int 25736 tcp_kstat_update(kstat_t *kp, int rw) 25737 { 25738 tcp_named_kstat_t *tcpkp; 25739 tcp_t *tcp; 25740 connf_t *connfp; 25741 conn_t *connp; 25742 int i; 25743 25744 if (!kp || !kp->ks_data) 25745 return (EIO); 25746 25747 if (rw == KSTAT_WRITE) 25748 return (EACCES); 25749 25750 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25751 25752 tcpkp->currEstab.value.ui32 = 0; 25753 25754 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25755 connfp = &ipcl_globalhash_fanout[i]; 25756 connp = NULL; 25757 while ((connp = 25758 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25759 tcp = connp->conn_tcp; 25760 switch (tcp_snmp_state(tcp)) { 25761 case MIB2_TCP_established: 25762 case MIB2_TCP_closeWait: 25763 tcpkp->currEstab.value.ui32++; 25764 break; 25765 } 25766 } 25767 } 25768 25769 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25770 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25771 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25772 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25773 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 25774 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 25775 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25776 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25777 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25778 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25779 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25780 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25781 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25782 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25783 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25784 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25785 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25786 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25787 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25788 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25789 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25790 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25791 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25792 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25793 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25794 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25795 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25796 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25797 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25798 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25799 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25800 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25801 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25802 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25803 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25804 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25805 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25806 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25807 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25808 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25809 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25810 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25811 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25812 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25813 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25814 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25815 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25816 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25817 25818 return (0); 25819 } 25820 25821 void 25822 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25823 { 25824 uint16_t hdr_len; 25825 ipha_t *ipha; 25826 uint8_t *nexthdrp; 25827 tcph_t *tcph; 25828 25829 /* Already has an eager */ 25830 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25831 TCP_STAT(tcp_reinput_syn); 25832 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25833 connp, SQTAG_TCP_REINPUT_EAGER); 25834 return; 25835 } 25836 25837 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25838 case IPV4_VERSION: 25839 ipha = (ipha_t *)mp->b_rptr; 25840 hdr_len = IPH_HDR_LENGTH(ipha); 25841 break; 25842 case IPV6_VERSION: 25843 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25844 &hdr_len, &nexthdrp)) { 25845 CONN_DEC_REF(connp); 25846 freemsg(mp); 25847 return; 25848 } 25849 break; 25850 } 25851 25852 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25853 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25854 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25855 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25856 } 25857 25858 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25859 SQTAG_TCP_REINPUT); 25860 } 25861 25862 static squeue_func_t 25863 tcp_squeue_switch(int val) 25864 { 25865 squeue_func_t rval = squeue_fill; 25866 25867 switch (val) { 25868 case 1: 25869 rval = squeue_enter_nodrain; 25870 break; 25871 case 2: 25872 rval = squeue_enter; 25873 break; 25874 default: 25875 break; 25876 } 25877 return (rval); 25878 } 25879 25880 static void 25881 tcp_squeue_add(squeue_t *sqp) 25882 { 25883 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25884 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25885 25886 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25887 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25888 sqp, TCP_TIME_WAIT_DELAY); 25889 if (tcp_free_list_max_cnt == 0) { 25890 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25891 max_ncpus : boot_max_ncpus); 25892 25893 /* 25894 * Limit number of entries to 1% of availble memory / tcp_ncpus 25895 */ 25896 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25897 (tcp_ncpus * sizeof (tcp_t) * 100); 25898 } 25899 tcp_time_wait->tcp_free_list_cnt = 0; 25900 } 25901