xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision 22872efb9462b28180d11ea401344608e641a5aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <sys/sodirect.h>
70 #include <sys/uio.h>
71 #include <netinet/in.h>
72 #include <netinet/tcp.h>
73 #include <netinet/ip6.h>
74 #include <netinet/icmp6.h>
75 #include <net/if.h>
76 #include <net/route.h>
77 #include <inet/ipsec_impl.h>
78 
79 #include <inet/common.h>
80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip_ndp.h>
84 #include <inet/mi.h>
85 #include <inet/mib2.h>
86 #include <inet/nd.h>
87 #include <inet/optcom.h>
88 #include <inet/snmpcom.h>
89 #include <inet/kstatcom.h>
90 #include <inet/tcp.h>
91 #include <inet/tcp_impl.h>
92 #include <net/pfkeyv2.h>
93 #include <inet/ipsec_info.h>
94 #include <inet/ipdrop.h>
95 #include <inet/tcp_trace.h>
96 
97 #include <inet/ipclassifier.h>
98 #include <inet/ip_ire.h>
99 #include <inet/ip_ftable.h>
100 #include <inet/ip_if.h>
101 #include <inet/ipp_common.h>
102 #include <inet/ip_netinfo.h>
103 #include <sys/squeue.h>
104 #include <inet/kssl/ksslapi.h>
105 #include <sys/tsol/label.h>
106 #include <sys/tsol/tnet.h>
107 #include <rpc/pmap_prot.h>
108 
109 /*
110  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
111  *
112  * (Read the detailed design doc in PSARC case directory)
113  *
114  * The entire tcp state is contained in tcp_t and conn_t structure
115  * which are allocated in tandem using ipcl_conn_create() and passing
116  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
117  * the references on the tcp_t. The tcp_t structure is never compressed
118  * and packets always land on the correct TCP perimeter from the time
119  * eager is created till the time tcp_t dies (as such the old mentat
120  * TCP global queue is not used for detached state and no IPSEC checking
121  * is required). The global queue is still allocated to send out resets
122  * for connection which have no listeners and IP directly calls
123  * tcp_xmit_listeners_reset() which does any policy check.
124  *
125  * Protection and Synchronisation mechanism:
126  *
127  * The tcp data structure does not use any kind of lock for protecting
128  * its state but instead uses 'squeues' for mutual exclusion from various
129  * read and write side threads. To access a tcp member, the thread should
130  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
131  * squeue_fill). Since the squeues allow a direct function call, caller
132  * can pass any tcp function having prototype of edesc_t as argument
133  * (different from traditional STREAMs model where packets come in only
134  * designated entry points). The list of functions that can be directly
135  * called via squeue are listed before the usual function prototype.
136  *
137  * Referencing:
138  *
139  * TCP is MT-Hot and we use a reference based scheme to make sure that the
140  * tcp structure doesn't disappear when its needed. When the application
141  * creates an outgoing connection or accepts an incoming connection, we
142  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
143  * The IP reference is just a symbolic reference since ip_tcpclose()
144  * looks at tcp structure after tcp_close_output() returns which could
145  * have dropped the last TCP reference. So as long as the connection is
146  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
147  * conn_t. The classifier puts its own reference when the connection is
148  * inserted in listen or connected hash. Anytime a thread needs to enter
149  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
150  * on write side or by doing a classify on read side and then puts a
151  * reference on the conn before doing squeue_enter/tryenter/fill. For
152  * read side, the classifier itself puts the reference under fanout lock
153  * to make sure that tcp can't disappear before it gets processed. The
154  * squeue will drop this reference automatically so the called function
155  * doesn't have to do a DEC_REF.
156  *
157  * Opening a new connection:
158  *
159  * The outgoing connection open is pretty simple. tcp_open() does the
160  * work in creating the conn/tcp structure and initializing it. The
161  * squeue assignment is done based on the CPU the application
162  * is running on. So for outbound connections, processing is always done
163  * on application CPU which might be different from the incoming CPU
164  * being interrupted by the NIC. An optimal way would be to figure out
165  * the NIC <-> CPU binding at listen time, and assign the outgoing
166  * connection to the squeue attached to the CPU that will be interrupted
167  * for incoming packets (we know the NIC based on the bind IP address).
168  * This might seem like a problem if more data is going out but the
169  * fact is that in most cases the transmit is ACK driven transmit where
170  * the outgoing data normally sits on TCP's xmit queue waiting to be
171  * transmitted.
172  *
173  * Accepting a connection:
174  *
175  * This is a more interesting case because of various races involved in
176  * establishing a eager in its own perimeter. Read the meta comment on
177  * top of tcp_conn_request(). But briefly, the squeue is picked by
178  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
179  *
180  * Closing a connection:
181  *
182  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
183  * via squeue to do the close and mark the tcp as detached if the connection
184  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
185  * reference but tcp_close() drop IP's reference always. So if tcp was
186  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
187  * and 1 because it is in classifier's connected hash. This is the condition
188  * we use to determine that its OK to clean up the tcp outside of squeue
189  * when time wait expires (check the ref under fanout and conn_lock and
190  * if it is 2, remove it from fanout hash and kill it).
191  *
192  * Although close just drops the necessary references and marks the
193  * tcp_detached state, tcp_close needs to know the tcp_detached has been
194  * set (under squeue) before letting the STREAM go away (because a
195  * inbound packet might attempt to go up the STREAM while the close
196  * has happened and tcp_detached is not set). So a special lock and
197  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
198  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
199  * tcp_detached.
200  *
201  * Special provisions and fast paths:
202  *
203  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
204  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
205  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
206  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
207  * check to send packets directly to tcp_rput_data via squeue. Everyone
208  * else comes through tcp_input() on the read side.
209  *
210  * We also make special provisions for sockfs by marking tcp_issocket
211  * whenever we have only sockfs on top of TCP. This allows us to skip
212  * putting the tcp in acceptor hash since a sockfs listener can never
213  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
214  * since eager has already been allocated and the accept now happens
215  * on acceptor STREAM. There is a big blob of comment on top of
216  * tcp_conn_request explaining the new accept. When socket is POP'd,
217  * sockfs sends us an ioctl to mark the fact and we go back to old
218  * behaviour. Once tcp_issocket is unset, its never set for the
219  * life of that connection.
220  *
221  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
222  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
223  * directly to the socket (sodirect) and start an asynchronous copyout
224  * to a user-land receive-side buffer (uioa) when a blocking socket read
225  * (e.g. read, recv, ...) is pending.
226  *
227  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
228  * NULL so points to an sodirect_t and if marked enabled then we enqueue
229  * all mblk_t's directly to the socket.
230  *
231  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
232  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
233  * copyout will be started directly to the user-land uio buffer. Also, as we
234  * have a pending read, TCP's push logic can take into account the number of
235  * bytes to be received and only awake the blocked read()er when the uioa_t
236  * byte count has been satisfied.
237  *
238  * IPsec notes :
239  *
240  * Since a packet is always executed on the correct TCP perimeter
241  * all IPsec processing is defered to IP including checking new
242  * connections and setting IPSEC policies for new connection. The
243  * only exception is tcp_xmit_listeners_reset() which is called
244  * directly from IP and needs to policy check to see if TH_RST
245  * can be sent out.
246  *
247  * PFHooks notes :
248  *
249  * For mdt case, one meta buffer contains multiple packets. Mblks for every
250  * packet are assembled and passed to the hooks. When packets are blocked,
251  * or boundary of any packet is changed, the mdt processing is stopped, and
252  * packets of the meta buffer are send to the IP path one by one.
253  */
254 
255 /*
256  * Values for squeue switch:
257  * 1: squeue_enter_nodrain
258  * 2: squeue_enter
259  * 3: squeue_fill
260  */
261 int tcp_squeue_close = 2;	/* Setable in /etc/system */
262 int tcp_squeue_wput = 2;
263 
264 squeue_func_t tcp_squeue_close_proc;
265 squeue_func_t tcp_squeue_wput_proc;
266 
267 /*
268  * Macros for sodirect:
269  *
270  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
271  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
272  * if it exists and is enabled, else to NULL. Note, in the current
273  * sodirect implementation the sod_lock must not be held across any
274  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
275  * will result as sod_lock is the streamhead stdata.sd_lock.
276  *
277  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
278  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
279  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
280  * being used when sodirect code paths should be.
281  */
282 
283 #define	SOD_PTR_ENTER(tcp, sodp)					\
284 	(sodp) = (tcp)->tcp_sodirect;					\
285 									\
286 	if ((sodp) != NULL) {						\
287 		mutex_enter((sodp)->sod_lock);				\
288 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
289 			mutex_exit((sodp)->sod_lock);			\
290 			(sodp) = NULL;					\
291 		}							\
292 	}
293 
294 #define	SOD_NOT_ENABLED(tcp)						\
295 	((tcp)->tcp_sodirect == NULL ||					\
296 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
297 
298 /*
299  * This controls how tiny a write must be before we try to copy it
300  * into the the mblk on the tail of the transmit queue.  Not much
301  * speedup is observed for values larger than sixteen.  Zero will
302  * disable the optimisation.
303  */
304 int tcp_tx_pull_len = 16;
305 
306 /*
307  * TCP Statistics.
308  *
309  * How TCP statistics work.
310  *
311  * There are two types of statistics invoked by two macros.
312  *
313  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
314  * supposed to be used in non MT-hot paths of the code.
315  *
316  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
317  * supposed to be used for DEBUG purposes and may be used on a hot path.
318  *
319  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
320  * (use "kstat tcp" to get them).
321  *
322  * There is also additional debugging facility that marks tcp_clean_death()
323  * instances and saves them in tcp_t structure. It is triggered by
324  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
325  * tcp_clean_death() calls that counts the number of times each tag was hit. It
326  * is triggered by TCP_CLD_COUNTERS define.
327  *
328  * How to add new counters.
329  *
330  * 1) Add a field in the tcp_stat structure describing your counter.
331  * 2) Add a line in the template in tcp_kstat2_init() with the name
332  *    of the counter.
333  *
334  *    IMPORTANT!! - make sure that both are in sync !!
335  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
336  *
337  * Please avoid using private counters which are not kstat-exported.
338  *
339  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
340  * in tcp_t structure.
341  *
342  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
343  */
344 
345 #ifndef TCP_DEBUG_COUNTER
346 #ifdef DEBUG
347 #define	TCP_DEBUG_COUNTER 1
348 #else
349 #define	TCP_DEBUG_COUNTER 0
350 #endif
351 #endif
352 
353 #define	TCP_CLD_COUNTERS 0
354 
355 #define	TCP_TAG_CLEAN_DEATH 1
356 #define	TCP_MAX_CLEAN_DEATH_TAG 32
357 
358 #ifdef lint
359 static int _lint_dummy_;
360 #endif
361 
362 #if TCP_CLD_COUNTERS
363 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
364 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
365 #elif defined(lint)
366 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
367 #else
368 #define	TCP_CLD_STAT(x)
369 #endif
370 
371 #if TCP_DEBUG_COUNTER
372 #define	TCP_DBGSTAT(tcps, x)	\
373 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
374 #define	TCP_G_DBGSTAT(x)	\
375 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
376 #elif defined(lint)
377 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
378 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
379 #else
380 #define	TCP_DBGSTAT(tcps, x)
381 #define	TCP_G_DBGSTAT(x)
382 #endif
383 
384 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
385 
386 tcp_g_stat_t	tcp_g_statistics;
387 kstat_t		*tcp_g_kstat;
388 
389 /*
390  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
391  * tcp write side.
392  */
393 #define	CALL_IP_WPUT(connp, q, mp) {					\
394 	tcp_stack_t	*tcps;						\
395 									\
396 	tcps = connp->conn_netstack->netstack_tcp;			\
397 	ASSERT(((q)->q_flag & QREADR) == 0);				\
398 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
399 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
400 }
401 
402 /* Macros for timestamp comparisons */
403 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
404 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
405 
406 /*
407  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
408  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
409  * by adding three components: a time component which grows by 1 every 4096
410  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
411  * a per-connection component which grows by 125000 for every new connection;
412  * and an "extra" component that grows by a random amount centered
413  * approximately on 64000.  This causes the the ISS generator to cycle every
414  * 4.89 hours if no TCP connections are made, and faster if connections are
415  * made.
416  *
417  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
418  * components: a time component which grows by 250000 every second; and
419  * a per-connection component which grows by 125000 for every new connections.
420  *
421  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
422  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
423  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
424  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
425  * password.
426  */
427 #define	ISS_INCR	250000
428 #define	ISS_NSEC_SHT	12
429 
430 static sin_t	sin_null;	/* Zero address for quick clears */
431 static sin6_t	sin6_null;	/* Zero address for quick clears */
432 
433 /*
434  * This implementation follows the 4.3BSD interpretation of the urgent
435  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
436  * incompatible changes in protocols like telnet and rlogin.
437  */
438 #define	TCP_OLD_URP_INTERPRETATION	1
439 
440 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
441 	(TCP_IS_DETACHED(tcp) && \
442 	    (!(tcp)->tcp_hard_binding))
443 
444 /*
445  * TCP reassembly macros.  We hide starting and ending sequence numbers in
446  * b_next and b_prev of messages on the reassembly queue.  The messages are
447  * chained using b_cont.  These macros are used in tcp_reass() so we don't
448  * have to see the ugly casts and assignments.
449  */
450 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
451 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
452 					(mblk_t *)(uintptr_t)(u))
453 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
454 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
455 					(mblk_t *)(uintptr_t)(u))
456 
457 /*
458  * Implementation of TCP Timers.
459  * =============================
460  *
461  * INTERFACE:
462  *
463  * There are two basic functions dealing with tcp timers:
464  *
465  *	timeout_id_t	tcp_timeout(connp, func, time)
466  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
467  *	TCP_TIMER_RESTART(tcp, intvl)
468  *
469  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
470  * after 'time' ticks passed. The function called by timeout() must adhere to
471  * the same restrictions as a driver soft interrupt handler - it must not sleep
472  * or call other functions that might sleep. The value returned is the opaque
473  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
474  * cancel the request. The call to tcp_timeout() may fail in which case it
475  * returns zero. This is different from the timeout(9F) function which never
476  * fails.
477  *
478  * The call-back function 'func' always receives 'connp' as its single
479  * argument. It is always executed in the squeue corresponding to the tcp
480  * structure. The tcp structure is guaranteed to be present at the time the
481  * call-back is called.
482  *
483  * NOTE: The call-back function 'func' is never called if tcp is in
484  * 	the TCPS_CLOSED state.
485  *
486  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
487  * request. locks acquired by the call-back routine should not be held across
488  * the call to tcp_timeout_cancel() or a deadlock may result.
489  *
490  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
491  * Otherwise, it returns an integer value greater than or equal to 0. In
492  * particular, if the call-back function is already placed on the squeue, it can
493  * not be canceled.
494  *
495  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
496  * 	within squeue context corresponding to the tcp instance. Since the
497  *	call-back is also called via the same squeue, there are no race
498  *	conditions described in untimeout(9F) manual page since all calls are
499  *	strictly serialized.
500  *
501  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
502  *	stored in tcp_timer_tid and starts a new one using
503  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
504  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
505  *	field.
506  *
507  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
508  *	call-back may still be called, so it is possible tcp_timer() will be
509  *	called several times. This should not be a problem since tcp_timer()
510  *	should always check the tcp instance state.
511  *
512  *
513  * IMPLEMENTATION:
514  *
515  * TCP timers are implemented using three-stage process. The call to
516  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
517  * when the timer expires. The tcp_timer_callback() arranges the call of the
518  * tcp_timer_handler() function via squeue corresponding to the tcp
519  * instance. The tcp_timer_handler() calls actual requested timeout call-back
520  * and passes tcp instance as an argument to it. Information is passed between
521  * stages using the tcp_timer_t structure which contains the connp pointer, the
522  * tcp call-back to call and the timeout id returned by the timeout(9F).
523  *
524  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
525  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
526  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
527  * returns the pointer to this mblk.
528  *
529  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
530  * looks like a normal mblk without actual dblk attached to it.
531  *
532  * To optimize performance each tcp instance holds a small cache of timer
533  * mblocks. In the current implementation it caches up to two timer mblocks per
534  * tcp instance. The cache is preserved over tcp frees and is only freed when
535  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
536  * timer processing happens on a corresponding squeue, the cache manipulation
537  * does not require any locks. Experiments show that majority of timer mblocks
538  * allocations are satisfied from the tcp cache and do not involve kmem calls.
539  *
540  * The tcp_timeout() places a refhold on the connp instance which guarantees
541  * that it will be present at the time the call-back function fires. The
542  * tcp_timer_handler() drops the reference after calling the call-back, so the
543  * call-back function does not need to manipulate the references explicitly.
544  */
545 
546 typedef struct tcp_timer_s {
547 	conn_t	*connp;
548 	void 	(*tcpt_proc)(void *);
549 	timeout_id_t   tcpt_tid;
550 } tcp_timer_t;
551 
552 static kmem_cache_t *tcp_timercache;
553 kmem_cache_t	*tcp_sack_info_cache;
554 kmem_cache_t	*tcp_iphc_cache;
555 
556 /*
557  * For scalability, we must not run a timer for every TCP connection
558  * in TIME_WAIT state.  To see why, consider (for time wait interval of
559  * 4 minutes):
560  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
561  *
562  * This list is ordered by time, so you need only delete from the head
563  * until you get to entries which aren't old enough to delete yet.
564  * The list consists of only the detached TIME_WAIT connections.
565  *
566  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
567  * becomes detached TIME_WAIT (either by changing the state and already
568  * being detached or the other way around). This means that the TIME_WAIT
569  * state can be extended (up to doubled) if the connection doesn't become
570  * detached for a long time.
571  *
572  * The list manipulations (including tcp_time_wait_next/prev)
573  * are protected by the tcp_time_wait_lock. The content of the
574  * detached TIME_WAIT connections is protected by the normal perimeters.
575  *
576  * This list is per squeue and squeues are shared across the tcp_stack_t's.
577  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
578  * and conn_netstack.
579  * The tcp_t's that are added to tcp_free_list are disassociated and
580  * have NULL tcp_tcps and conn_netstack pointers.
581  */
582 typedef struct tcp_squeue_priv_s {
583 	kmutex_t	tcp_time_wait_lock;
584 	timeout_id_t	tcp_time_wait_tid;
585 	tcp_t		*tcp_time_wait_head;
586 	tcp_t		*tcp_time_wait_tail;
587 	tcp_t		*tcp_free_list;
588 	uint_t		tcp_free_list_cnt;
589 } tcp_squeue_priv_t;
590 
591 /*
592  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
593  * Running it every 5 seconds seems to give the best results.
594  */
595 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
596 
597 /*
598  * To prevent memory hog, limit the number of entries in tcp_free_list
599  * to 1% of available memory / number of cpus
600  */
601 uint_t tcp_free_list_max_cnt = 0;
602 
603 #define	TCP_XMIT_LOWATER	4096
604 #define	TCP_XMIT_HIWATER	49152
605 #define	TCP_RECV_LOWATER	2048
606 #define	TCP_RECV_HIWATER	49152
607 
608 /*
609  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
610  */
611 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
612 
613 #define	TIDUSZ	4096	/* transport interface data unit size */
614 
615 /*
616  * Bind hash list size and has function.  It has to be a power of 2 for
617  * hashing.
618  */
619 #define	TCP_BIND_FANOUT_SIZE	512
620 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
621 /*
622  * Size of listen and acceptor hash list.  It has to be a power of 2 for
623  * hashing.
624  */
625 #define	TCP_FANOUT_SIZE		256
626 
627 #ifdef	_ILP32
628 #define	TCP_ACCEPTOR_HASH(accid)					\
629 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
630 #else
631 #define	TCP_ACCEPTOR_HASH(accid)					\
632 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
633 #endif	/* _ILP32 */
634 
635 #define	IP_ADDR_CACHE_SIZE	2048
636 #define	IP_ADDR_CACHE_HASH(faddr)					\
637 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
638 
639 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
640 #define	TCP_HSP_HASH_SIZE 256
641 
642 #define	TCP_HSP_HASH(addr)					\
643 	(((addr>>24) ^ (addr >>16) ^			\
644 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
645 
646 /*
647  * TCP options struct returned from tcp_parse_options.
648  */
649 typedef struct tcp_opt_s {
650 	uint32_t	tcp_opt_mss;
651 	uint32_t	tcp_opt_wscale;
652 	uint32_t	tcp_opt_ts_val;
653 	uint32_t	tcp_opt_ts_ecr;
654 	tcp_t		*tcp;
655 } tcp_opt_t;
656 
657 /*
658  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
659  */
660 
661 #ifdef _BIG_ENDIAN
662 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
663 	(TCPOPT_TSTAMP << 8) | 10)
664 #else
665 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
666 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
667 #endif
668 
669 /*
670  * Flags returned from tcp_parse_options.
671  */
672 #define	TCP_OPT_MSS_PRESENT	1
673 #define	TCP_OPT_WSCALE_PRESENT	2
674 #define	TCP_OPT_TSTAMP_PRESENT	4
675 #define	TCP_OPT_SACK_OK_PRESENT	8
676 #define	TCP_OPT_SACK_PRESENT	16
677 
678 /* TCP option length */
679 #define	TCPOPT_NOP_LEN		1
680 #define	TCPOPT_MAXSEG_LEN	4
681 #define	TCPOPT_WS_LEN		3
682 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
683 #define	TCPOPT_TSTAMP_LEN	10
684 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
685 #define	TCPOPT_SACK_OK_LEN	2
686 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
687 #define	TCPOPT_REAL_SACK_LEN	4
688 #define	TCPOPT_MAX_SACK_LEN	36
689 #define	TCPOPT_HEADER_LEN	2
690 
691 /* TCP cwnd burst factor. */
692 #define	TCP_CWND_INFINITE	65535
693 #define	TCP_CWND_SS		3
694 #define	TCP_CWND_NORMAL		5
695 
696 /* Maximum TCP initial cwin (start/restart). */
697 #define	TCP_MAX_INIT_CWND	8
698 
699 /*
700  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
701  * either tcp_slow_start_initial or tcp_slow_start_after idle
702  * depending on the caller.  If the upper layer has not used the
703  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
704  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
705  * If the upper layer has changed set the tcp_init_cwnd, just use
706  * it to calculate the tcp_cwnd.
707  */
708 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
709 {									\
710 	if ((tcp)->tcp_init_cwnd == 0) {				\
711 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
712 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
713 	} else {							\
714 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
715 	}								\
716 	tcp->tcp_cwnd_cnt = 0;						\
717 }
718 
719 /* TCP Timer control structure */
720 typedef struct tcpt_s {
721 	pfv_t	tcpt_pfv;	/* The routine we are to call */
722 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
723 } tcpt_t;
724 
725 /* Host Specific Parameter structure */
726 typedef struct tcp_hsp {
727 	struct tcp_hsp	*tcp_hsp_next;
728 	in6_addr_t	tcp_hsp_addr_v6;
729 	in6_addr_t	tcp_hsp_subnet_v6;
730 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
731 	int32_t		tcp_hsp_sendspace;
732 	int32_t		tcp_hsp_recvspace;
733 	int32_t		tcp_hsp_tstamp;
734 } tcp_hsp_t;
735 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
736 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
737 
738 /*
739  * Functions called directly via squeue having a prototype of edesc_t.
740  */
741 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
742 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
743 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
744 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
745 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
746 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
747 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
748 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
749 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
750 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
751 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
752 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
753 
754 
755 /* Prototype for TCP functions */
756 static void	tcp_random_init(void);
757 int		tcp_random(void);
758 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
759 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
760 		    tcp_t *eager);
761 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
762 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
763     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
764     boolean_t user_specified);
765 static void	tcp_closei_local(tcp_t *tcp);
766 static void	tcp_close_detached(tcp_t *tcp);
767 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
768 			mblk_t *idmp, mblk_t **defermp);
769 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
770 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
771 		    in_port_t dstport, uint_t srcid);
772 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
773 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
774 		    uint32_t scope_id);
775 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
776 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
777 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
778 static char	*tcp_display(tcp_t *tcp, char *, char);
779 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
780 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
781 static void	tcp_eager_unlink(tcp_t *tcp);
782 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
783 		    int unixerr);
784 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
785 		    int tlierr, int unixerr);
786 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
787 		    cred_t *cr);
788 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
789 		    char *value, caddr_t cp, cred_t *cr);
790 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
791 		    char *value, caddr_t cp, cred_t *cr);
792 static int	tcp_tpistate(tcp_t *tcp);
793 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
794     int caller_holds_lock);
795 static void	tcp_bind_hash_remove(tcp_t *tcp);
796 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
797 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
798 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
799 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
800 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
801 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
802 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
803 void		tcp_g_q_setup(tcp_stack_t *);
804 void		tcp_g_q_create(tcp_stack_t *);
805 void		tcp_g_q_destroy(tcp_stack_t *);
806 static int	tcp_header_init_ipv4(tcp_t *tcp);
807 static int	tcp_header_init_ipv6(tcp_t *tcp);
808 int		tcp_init(tcp_t *tcp, queue_t *q);
809 static int	tcp_init_values(tcp_t *tcp);
810 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
811 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
812 		    t_scalar_t addr_length);
813 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
814 static void	tcp_ip_notify(tcp_t *tcp);
815 static mblk_t	*tcp_ire_mp(mblk_t *mp);
816 static void	tcp_iss_init(tcp_t *tcp);
817 static void	tcp_keepalive_killer(void *arg);
818 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
819 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
820 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
821 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
822 static boolean_t tcp_allow_connopt_set(int level, int name);
823 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
824 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
825 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
826 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
827 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
828 		    mblk_t *mblk);
829 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
830 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
831 		    uchar_t *ptr, uint_t len);
832 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
833 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
834     tcp_stack_t *);
835 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
836 		    caddr_t cp, cred_t *cr);
837 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
838 		    caddr_t cp, cred_t *cr);
839 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
840 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
841 		    caddr_t cp, cred_t *cr);
842 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
843 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
844 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
845 static void	tcp_reinit(tcp_t *tcp);
846 static void	tcp_reinit_values(tcp_t *tcp);
847 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
848 		    tcp_t *thisstream, cred_t *cr);
849 
850 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
851 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
852 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
853 static void	tcp_ss_rexmit(tcp_t *tcp);
854 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
855 static void	tcp_process_options(tcp_t *, tcph_t *);
856 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
857 static void	tcp_rsrv(queue_t *q);
858 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
859 static int	tcp_snmp_state(tcp_t *tcp);
860 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
861 		    cred_t *cr);
862 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
863 		    cred_t *cr);
864 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
865 		    cred_t *cr);
866 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
867 		    cred_t *cr);
868 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
869 		    cred_t *cr);
870 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
871 		    caddr_t cp, cred_t *cr);
872 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
873 		    caddr_t cp, cred_t *cr);
874 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
875 		    cred_t *cr);
876 static void	tcp_timer(void *arg);
877 static void	tcp_timer_callback(void *);
878 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
879     boolean_t random);
880 static in_port_t tcp_get_next_priv_port(const tcp_t *);
881 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
882 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
883 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
884 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
885 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
886 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
887 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
888 		    const int num_sack_blk, int *usable, uint_t *snxt,
889 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
890 		    const int mdt_thres);
891 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
892 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
893 		    const int num_sack_blk, int *usable, uint_t *snxt,
894 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
895 		    const int mdt_thres);
896 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
897 		    int num_sack_blk);
898 static void	tcp_wsrv(queue_t *q);
899 static int	tcp_xmit_end(tcp_t *tcp);
900 static void	tcp_ack_timer(void *arg);
901 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
902 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
903 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
904 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
905 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
906 		    uint32_t ack, int ctl);
907 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
908 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
909 static int	setmaxps(queue_t *q, int maxpsz);
910 static void	tcp_set_rto(tcp_t *, time_t);
911 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
912 		    boolean_t, boolean_t);
913 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
914 		    boolean_t ipsec_mctl);
915 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
916 		    char *opt, int optlen);
917 static int	tcp_build_hdrs(queue_t *, tcp_t *);
918 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
919 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
920 		    tcph_t *tcph);
921 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
922 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
923 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
924 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
925 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
926 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
927 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
928 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
929 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
930 		    const boolean_t, const uint32_t, const uint32_t,
931 		    const uint32_t, const uint32_t, tcp_stack_t *);
932 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
933 		    const uint_t, const uint_t, boolean_t *);
934 static mblk_t	*tcp_lso_info_mp(mblk_t *);
935 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
936 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
937 extern mblk_t	*tcp_timermp_alloc(int);
938 extern void	tcp_timermp_free(tcp_t *);
939 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
940 static void	tcp_stop_lingering(tcp_t *tcp);
941 static void	tcp_close_linger_timeout(void *arg);
942 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
943 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
944 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
945 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
946 static void	tcp_g_kstat_fini(kstat_t *);
947 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
948 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
949 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
950 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
951 static int	tcp_kstat_update(kstat_t *kp, int rw);
952 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
953 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
954 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
955 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
956 			tcph_t *tcph, mblk_t *idmp);
957 static squeue_func_t tcp_squeue_switch(int);
958 
959 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
960 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
961 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
962 static int	tcp_close(queue_t *, int);
963 static int	tcpclose_accept(queue_t *);
964 
965 static void	tcp_squeue_add(squeue_t *);
966 static boolean_t tcp_zcopy_check(tcp_t *);
967 static void	tcp_zcopy_notify(tcp_t *);
968 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
969 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
970 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
971 
972 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
973 
974 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
975 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
976 
977 /*
978  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
979  *
980  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
981  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
982  * (defined in tcp.h) needs to be filled in and passed into the kernel
983  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
984  * structure contains the four-tuple of a TCP connection and a range of TCP
985  * states (specified by ac_start and ac_end). The use of wildcard addresses
986  * and ports is allowed. Connections with a matching four tuple and a state
987  * within the specified range will be aborted. The valid states for the
988  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
989  * inclusive.
990  *
991  * An application which has its connection aborted by this ioctl will receive
992  * an error that is dependent on the connection state at the time of the abort.
993  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
994  * though a RST packet has been received.  If the connection state is equal to
995  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
996  * and all resources associated with the connection will be freed.
997  */
998 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
999 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1000 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1001 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
1002 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1003 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1004     boolean_t, tcp_stack_t *);
1005 
1006 static struct module_info tcp_rinfo =  {
1007 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1008 };
1009 
1010 static struct module_info tcp_winfo =  {
1011 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1012 };
1013 
1014 /*
1015  * Entry points for TCP as a device. The normal case which supports
1016  * the TCP functionality.
1017  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1018  */
1019 struct qinit tcp_rinitv4 = {
1020 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
1021 };
1022 
1023 struct qinit tcp_rinitv6 = {
1024 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
1025 };
1026 
1027 struct qinit tcp_winit = {
1028 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1029 };
1030 
1031 /* Initial entry point for TCP in socket mode. */
1032 struct qinit tcp_sock_winit = {
1033 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1034 };
1035 
1036 /*
1037  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1038  * an accept. Avoid allocating data structures since eager has already
1039  * been created.
1040  */
1041 struct qinit tcp_acceptor_rinit = {
1042 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1043 };
1044 
1045 struct qinit tcp_acceptor_winit = {
1046 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1047 };
1048 
1049 /*
1050  * Entry points for TCP loopback (read side only)
1051  * The open routine is only used for reopens, thus no need to
1052  * have a separate one for tcp_openv6.
1053  */
1054 struct qinit tcp_loopback_rinit = {
1055 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1056 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1057 };
1058 
1059 /* For AF_INET aka /dev/tcp */
1060 struct streamtab tcpinfov4 = {
1061 	&tcp_rinitv4, &tcp_winit
1062 };
1063 
1064 /* For AF_INET6 aka /dev/tcp6 */
1065 struct streamtab tcpinfov6 = {
1066 	&tcp_rinitv6, &tcp_winit
1067 };
1068 
1069 /*
1070  * Have to ensure that tcp_g_q_close is not done by an
1071  * interrupt thread.
1072  */
1073 static taskq_t *tcp_taskq;
1074 
1075 /*
1076  * TCP has a private interface for other kernel modules to reserve a
1077  * port range for them to use.  Once reserved, TCP will not use any ports
1078  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1079  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1080  * has to be verified.
1081  *
1082  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1083  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1084  * range is [port a, port b] inclusive.  And each port range is between
1085  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1086  *
1087  * Note that the default anonymous port range starts from 32768.  There is
1088  * no port "collision" between that and the reserved port range.  If there
1089  * is port collision (because the default smallest anonymous port is lowered
1090  * or some apps specifically bind to ports in the reserved port range), the
1091  * system may not be able to reserve a port range even there are enough
1092  * unbound ports as a reserved port range contains consecutive ports .
1093  */
1094 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1095 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1096 #define	TCP_SMALLEST_RESERVED_PORT		10240
1097 #define	TCP_LARGEST_RESERVED_PORT		20480
1098 
1099 /* Structure to represent those reserved port ranges. */
1100 typedef struct tcp_rport_s {
1101 	in_port_t	lo_port;
1102 	in_port_t	hi_port;
1103 	tcp_t		**temp_tcp_array;
1104 } tcp_rport_t;
1105 
1106 /* Setable only in /etc/system. Move to ndd? */
1107 boolean_t tcp_icmp_source_quench = B_FALSE;
1108 
1109 /*
1110  * Following assumes TPI alignment requirements stay along 32 bit
1111  * boundaries
1112  */
1113 #define	ROUNDUP32(x) \
1114 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1115 
1116 /* Template for response to info request. */
1117 static struct T_info_ack tcp_g_t_info_ack = {
1118 	T_INFO_ACK,		/* PRIM_type */
1119 	0,			/* TSDU_size */
1120 	T_INFINITE,		/* ETSDU_size */
1121 	T_INVALID,		/* CDATA_size */
1122 	T_INVALID,		/* DDATA_size */
1123 	sizeof (sin_t),		/* ADDR_size */
1124 	0,			/* OPT_size - not initialized here */
1125 	TIDUSZ,			/* TIDU_size */
1126 	T_COTS_ORD,		/* SERV_type */
1127 	TCPS_IDLE,		/* CURRENT_state */
1128 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1129 };
1130 
1131 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1132 	T_INFO_ACK,		/* PRIM_type */
1133 	0,			/* TSDU_size */
1134 	T_INFINITE,		/* ETSDU_size */
1135 	T_INVALID,		/* CDATA_size */
1136 	T_INVALID,		/* DDATA_size */
1137 	sizeof (sin6_t),	/* ADDR_size */
1138 	0,			/* OPT_size - not initialized here */
1139 	TIDUSZ,		/* TIDU_size */
1140 	T_COTS_ORD,		/* SERV_type */
1141 	TCPS_IDLE,		/* CURRENT_state */
1142 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1143 };
1144 
1145 #define	MS	1L
1146 #define	SECONDS	(1000 * MS)
1147 #define	MINUTES	(60 * SECONDS)
1148 #define	HOURS	(60 * MINUTES)
1149 #define	DAYS	(24 * HOURS)
1150 
1151 #define	PARAM_MAX (~(uint32_t)0)
1152 
1153 /* Max size IP datagram is 64k - 1 */
1154 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1155 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1156 /* Max of the above */
1157 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1158 
1159 /* Largest TCP port number */
1160 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1161 
1162 /*
1163  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1164  * layer header.  It has to be a multiple of 4.
1165  */
1166 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1167 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1168 
1169 /*
1170  * All of these are alterable, within the min/max values given, at run time.
1171  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1172  * per the TCP spec.
1173  */
1174 /* BEGIN CSTYLED */
1175 static tcpparam_t	lcl_tcp_param_arr[] = {
1176  /*min		max		value		name */
1177  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1178  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1179  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1180  { 1,		1024,		1,		"tcp_conn_req_min" },
1181  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1182  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1183  { 0,		10,		0,		"tcp_debug" },
1184  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1185  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1186  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1187  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1188  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1189  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1190  { 1,		255,		64,		"tcp_ipv4_ttl"},
1191  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1192  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1193  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1194  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1195  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1196  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1197  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1198  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1199  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1200  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1201  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1202  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1203  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1204  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1205  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1206  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1207  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1208  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1209  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1210  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1211  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1212  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1213  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1214  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1215 /*
1216  * Question:  What default value should I set for tcp_strong_iss?
1217  */
1218  { 0,		2,		1,		"tcp_strong_iss"},
1219  { 0,		65536,		20,		"tcp_rtt_updates"},
1220  { 0,		1,		1,		"tcp_wscale_always"},
1221  { 0,		1,		0,		"tcp_tstamp_always"},
1222  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1223  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1224  { 0,		16,		2,		"tcp_deferred_acks_max"},
1225  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1226  { 1,		4,		4,		"tcp_slow_start_initial"},
1227  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1228  { 0,		2,		2,		"tcp_sack_permitted"},
1229  { 0,		1,		0,		"tcp_trace"},
1230  { 0,		1,		1,		"tcp_compression_enabled"},
1231  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1232  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1233  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1234  { 0,		1,		0,		"tcp_rev_src_routes"},
1235  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1236  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1237  { 0,		16,		8,		"tcp_local_dacks_max"},
1238  { 0,		2,		1,		"tcp_ecn_permitted"},
1239  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1240  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1241  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1242  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1243  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1244 };
1245 /* END CSTYLED */
1246 
1247 /*
1248  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1249  * each header fragment in the header buffer.  Each parameter value has
1250  * to be a multiple of 4 (32-bit aligned).
1251  */
1252 static tcpparam_t lcl_tcp_mdt_head_param =
1253 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1254 static tcpparam_t lcl_tcp_mdt_tail_param =
1255 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1256 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1257 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1258 
1259 /*
1260  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1261  * the maximum number of payload buffers associated per Multidata.
1262  */
1263 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1264 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1265 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1266 
1267 /* Round up the value to the nearest mss. */
1268 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1269 
1270 /*
1271  * Set ECN capable transport (ECT) code point in IP header.
1272  *
1273  * Note that there are 2 ECT code points '01' and '10', which are called
1274  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1275  * point ECT(0) for TCP as described in RFC 2481.
1276  */
1277 #define	SET_ECT(tcp, iph) \
1278 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1279 		/* We need to clear the code point first. */ \
1280 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1281 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1282 	} else { \
1283 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1284 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1285 	}
1286 
1287 /*
1288  * The format argument to pass to tcp_display().
1289  * DISP_PORT_ONLY means that the returned string has only port info.
1290  * DISP_ADDR_AND_PORT means that the returned string also contains the
1291  * remote and local IP address.
1292  */
1293 #define	DISP_PORT_ONLY		1
1294 #define	DISP_ADDR_AND_PORT	2
1295 
1296 #define	NDD_TOO_QUICK_MSG \
1297 	"ndd get info rate too high for non-privileged users, try again " \
1298 	"later.\n"
1299 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1300 
1301 #define	IS_VMLOANED_MBLK(mp) \
1302 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1303 
1304 
1305 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1306 boolean_t tcp_mdt_chain = B_TRUE;
1307 
1308 /*
1309  * MDT threshold in the form of effective send MSS multiplier; we take
1310  * the MDT path if the amount of unsent data exceeds the threshold value
1311  * (default threshold is 1*SMSS).
1312  */
1313 uint_t tcp_mdt_smss_threshold = 1;
1314 
1315 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1316 
1317 /*
1318  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1319  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1320  * determined dynamically during tcp_adapt_ire(), which is the default.
1321  */
1322 boolean_t tcp_static_maxpsz = B_FALSE;
1323 
1324 /* Setable in /etc/system */
1325 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1326 uint32_t tcp_random_anon_port = 1;
1327 
1328 /*
1329  * To reach to an eager in Q0 which can be dropped due to an incoming
1330  * new SYN request when Q0 is full, a new doubly linked list is
1331  * introduced. This list allows to select an eager from Q0 in O(1) time.
1332  * This is needed to avoid spending too much time walking through the
1333  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1334  * this new list has to be a member of Q0.
1335  * This list is headed by listener's tcp_t. When the list is empty,
1336  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1337  * of listener's tcp_t point to listener's tcp_t itself.
1338  *
1339  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1340  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1341  * These macros do not affect the eager's membership to Q0.
1342  */
1343 
1344 
1345 #define	MAKE_DROPPABLE(listener, eager)					\
1346 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1347 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1348 		    = (eager);						\
1349 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1350 		(eager)->tcp_eager_next_drop_q0 =			\
1351 		    (listener)->tcp_eager_next_drop_q0;			\
1352 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1353 	}
1354 
1355 #define	MAKE_UNDROPPABLE(eager)						\
1356 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1357 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1358 		    = (eager)->tcp_eager_prev_drop_q0;			\
1359 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1360 		    = (eager)->tcp_eager_next_drop_q0;			\
1361 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1362 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1363 	}
1364 
1365 /*
1366  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1367  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1368  * data, TCP will not respond with an ACK.  RFC 793 requires that
1369  * TCP responds with an ACK for such a bogus ACK.  By not following
1370  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1371  * an attacker successfully spoofs an acceptable segment to our
1372  * peer; or when our peer is "confused."
1373  */
1374 uint32_t tcp_drop_ack_unsent_cnt = 10;
1375 
1376 /*
1377  * Hook functions to enable cluster networking
1378  * On non-clustered systems these vectors must always be NULL.
1379  */
1380 
1381 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1382 			    uint8_t *laddrp, in_port_t lport) = NULL;
1383 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1384 			    uint8_t *laddrp, in_port_t lport) = NULL;
1385 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1386 			    uint8_t *laddrp, in_port_t lport,
1387 			    uint8_t *faddrp, in_port_t fport) = NULL;
1388 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1389 			    uint8_t *laddrp, in_port_t lport,
1390 			    uint8_t *faddrp, in_port_t fport) = NULL;
1391 
1392 /*
1393  * The following are defined in ip.c
1394  */
1395 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1396 				uint8_t *laddrp);
1397 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1398 				uint8_t *laddrp, uint8_t *faddrp);
1399 
1400 #define	CL_INET_CONNECT(tcp)		{			\
1401 	if (cl_inet_connect != NULL) {				\
1402 		/*						\
1403 		 * Running in cluster mode - register active connection	\
1404 		 * information						\
1405 		 */							\
1406 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1407 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1408 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1409 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1410 				    (in_port_t)(tcp)->tcp_lport,	\
1411 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1412 				    (in_port_t)(tcp)->tcp_fport);	\
1413 			}						\
1414 		} else {						\
1415 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1416 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1417 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1418 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1419 				    (in_port_t)(tcp)->tcp_lport,	\
1420 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1421 				    (in_port_t)(tcp)->tcp_fport);	\
1422 			}						\
1423 		}							\
1424 	}								\
1425 }
1426 
1427 #define	CL_INET_DISCONNECT(tcp)	{				\
1428 	if (cl_inet_disconnect != NULL) {				\
1429 		/*							\
1430 		 * Running in cluster mode - deregister active		\
1431 		 * connection information				\
1432 		 */							\
1433 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1434 			if ((tcp)->tcp_ip_src != 0) {			\
1435 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1436 				    AF_INET,				\
1437 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1438 				    (in_port_t)(tcp)->tcp_lport,	\
1439 				    (uint8_t *)				\
1440 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1441 				    (in_port_t)(tcp)->tcp_fport);	\
1442 			}						\
1443 		} else {						\
1444 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1445 			    &(tcp)->tcp_ip_src_v6)) {			\
1446 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1447 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1448 				    (in_port_t)(tcp)->tcp_lport,	\
1449 				    (uint8_t *)				\
1450 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1451 				    (in_port_t)(tcp)->tcp_fport);	\
1452 			}						\
1453 		}							\
1454 	}								\
1455 }
1456 
1457 /*
1458  * Cluster networking hook for traversing current connection list.
1459  * This routine is used to extract the current list of live connections
1460  * which must continue to to be dispatched to this node.
1461  */
1462 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1463 
1464 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1465     void *arg, tcp_stack_t *tcps);
1466 
1467 /*
1468  * Figure out the value of window scale opton.  Note that the rwnd is
1469  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1470  * We cannot find the scale value and then do a round up of tcp_rwnd
1471  * because the scale value may not be correct after that.
1472  *
1473  * Set the compiler flag to make this function inline.
1474  */
1475 static void
1476 tcp_set_ws_value(tcp_t *tcp)
1477 {
1478 	int i;
1479 	uint32_t rwnd = tcp->tcp_rwnd;
1480 
1481 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1482 	    i++, rwnd >>= 1)
1483 		;
1484 	tcp->tcp_rcv_ws = i;
1485 }
1486 
1487 /*
1488  * Remove a connection from the list of detached TIME_WAIT connections.
1489  * It returns B_FALSE if it can't remove the connection from the list
1490  * as the connection has already been removed from the list due to an
1491  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1492  */
1493 static boolean_t
1494 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1495 {
1496 	boolean_t	locked = B_FALSE;
1497 
1498 	if (tcp_time_wait == NULL) {
1499 		tcp_time_wait = *((tcp_squeue_priv_t **)
1500 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1501 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1502 		locked = B_TRUE;
1503 	} else {
1504 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1505 	}
1506 
1507 	if (tcp->tcp_time_wait_expire == 0) {
1508 		ASSERT(tcp->tcp_time_wait_next == NULL);
1509 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1510 		if (locked)
1511 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1512 		return (B_FALSE);
1513 	}
1514 	ASSERT(TCP_IS_DETACHED(tcp));
1515 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1516 
1517 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1518 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1519 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1520 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1521 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1522 			    NULL;
1523 		} else {
1524 			tcp_time_wait->tcp_time_wait_tail = NULL;
1525 		}
1526 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1527 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1528 		ASSERT(tcp->tcp_time_wait_next == NULL);
1529 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1530 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1531 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1532 	} else {
1533 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1534 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1535 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1536 		    tcp->tcp_time_wait_next;
1537 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1538 		    tcp->tcp_time_wait_prev;
1539 	}
1540 	tcp->tcp_time_wait_next = NULL;
1541 	tcp->tcp_time_wait_prev = NULL;
1542 	tcp->tcp_time_wait_expire = 0;
1543 
1544 	if (locked)
1545 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1546 	return (B_TRUE);
1547 }
1548 
1549 /*
1550  * Add a connection to the list of detached TIME_WAIT connections
1551  * and set its time to expire.
1552  */
1553 static void
1554 tcp_time_wait_append(tcp_t *tcp)
1555 {
1556 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1557 	tcp_squeue_priv_t *tcp_time_wait =
1558 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1559 	    SQPRIVATE_TCP));
1560 
1561 	tcp_timers_stop(tcp);
1562 
1563 	/* Freed above */
1564 	ASSERT(tcp->tcp_timer_tid == 0);
1565 	ASSERT(tcp->tcp_ack_tid == 0);
1566 
1567 	/* must have happened at the time of detaching the tcp */
1568 	ASSERT(tcp->tcp_ptpahn == NULL);
1569 	ASSERT(tcp->tcp_flow_stopped == 0);
1570 	ASSERT(tcp->tcp_time_wait_next == NULL);
1571 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1572 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1573 	ASSERT(tcp->tcp_listener == NULL);
1574 
1575 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1576 	/*
1577 	 * The value computed below in tcp->tcp_time_wait_expire may
1578 	 * appear negative or wrap around. That is ok since our
1579 	 * interest is only in the difference between the current lbolt
1580 	 * value and tcp->tcp_time_wait_expire. But the value should not
1581 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1582 	 * The corresponding comparison in tcp_time_wait_collector() uses
1583 	 * modular arithmetic.
1584 	 */
1585 	tcp->tcp_time_wait_expire +=
1586 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1587 	if (tcp->tcp_time_wait_expire == 0)
1588 		tcp->tcp_time_wait_expire = 1;
1589 
1590 	ASSERT(TCP_IS_DETACHED(tcp));
1591 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1592 	ASSERT(tcp->tcp_time_wait_next == NULL);
1593 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1594 	TCP_DBGSTAT(tcps, tcp_time_wait);
1595 
1596 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1597 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1598 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1599 		tcp_time_wait->tcp_time_wait_head = tcp;
1600 	} else {
1601 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1602 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1603 		    TCPS_TIME_WAIT);
1604 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1605 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1606 	}
1607 	tcp_time_wait->tcp_time_wait_tail = tcp;
1608 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1609 }
1610 
1611 /* ARGSUSED */
1612 void
1613 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1614 {
1615 	conn_t	*connp = (conn_t *)arg;
1616 	tcp_t	*tcp = connp->conn_tcp;
1617 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1618 
1619 	ASSERT(tcp != NULL);
1620 	if (tcp->tcp_state == TCPS_CLOSED) {
1621 		return;
1622 	}
1623 
1624 	ASSERT((tcp->tcp_family == AF_INET &&
1625 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1626 	    (tcp->tcp_family == AF_INET6 &&
1627 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1628 	    tcp->tcp_ipversion == IPV6_VERSION)));
1629 	ASSERT(!tcp->tcp_listener);
1630 
1631 	TCP_STAT(tcps, tcp_time_wait_reap);
1632 	ASSERT(TCP_IS_DETACHED(tcp));
1633 
1634 	/*
1635 	 * Because they have no upstream client to rebind or tcp_close()
1636 	 * them later, we axe the connection here and now.
1637 	 */
1638 	tcp_close_detached(tcp);
1639 }
1640 
1641 /*
1642  * Remove cached/latched IPsec references.
1643  */
1644 void
1645 tcp_ipsec_cleanup(tcp_t *tcp)
1646 {
1647 	conn_t		*connp = tcp->tcp_connp;
1648 
1649 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1650 
1651 	if (connp->conn_latch != NULL) {
1652 		IPLATCH_REFRELE(connp->conn_latch,
1653 		    connp->conn_netstack);
1654 		connp->conn_latch = NULL;
1655 	}
1656 	if (connp->conn_policy != NULL) {
1657 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1658 		connp->conn_policy = NULL;
1659 	}
1660 }
1661 
1662 /*
1663  * Cleaup before placing on free list.
1664  * Disassociate from the netstack/tcp_stack_t since the freelist
1665  * is per squeue and not per netstack.
1666  */
1667 void
1668 tcp_cleanup(tcp_t *tcp)
1669 {
1670 	mblk_t		*mp;
1671 	char		*tcp_iphc;
1672 	int		tcp_iphc_len;
1673 	int		tcp_hdr_grown;
1674 	tcp_sack_info_t	*tcp_sack_info;
1675 	conn_t		*connp = tcp->tcp_connp;
1676 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1677 	netstack_t	*ns = tcps->tcps_netstack;
1678 
1679 	tcp_bind_hash_remove(tcp);
1680 
1681 	/* Cleanup that which needs the netstack first */
1682 	tcp_ipsec_cleanup(tcp);
1683 
1684 	tcp_free(tcp);
1685 
1686 	/* Release any SSL context */
1687 	if (tcp->tcp_kssl_ent != NULL) {
1688 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1689 		tcp->tcp_kssl_ent = NULL;
1690 	}
1691 
1692 	if (tcp->tcp_kssl_ctx != NULL) {
1693 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1694 		tcp->tcp_kssl_ctx = NULL;
1695 	}
1696 	tcp->tcp_kssl_pending = B_FALSE;
1697 
1698 	conn_delete_ire(connp, NULL);
1699 
1700 	/*
1701 	 * Since we will bzero the entire structure, we need to
1702 	 * remove it and reinsert it in global hash list. We
1703 	 * know the walkers can't get to this conn because we
1704 	 * had set CONDEMNED flag earlier and checked reference
1705 	 * under conn_lock so walker won't pick it and when we
1706 	 * go the ipcl_globalhash_remove() below, no walker
1707 	 * can get to it.
1708 	 */
1709 	ipcl_globalhash_remove(connp);
1710 
1711 	/*
1712 	 * Now it is safe to decrement the reference counts.
1713 	 * This might be the last reference on the netstack and TCPS
1714 	 * in which case it will cause the tcp_g_q_close and
1715 	 * the freeing of the IP Instance.
1716 	 */
1717 	connp->conn_netstack = NULL;
1718 	netstack_rele(ns);
1719 	ASSERT(tcps != NULL);
1720 	tcp->tcp_tcps = NULL;
1721 	TCPS_REFRELE(tcps);
1722 
1723 	/* Save some state */
1724 	mp = tcp->tcp_timercache;
1725 
1726 	tcp_sack_info = tcp->tcp_sack_info;
1727 	tcp_iphc = tcp->tcp_iphc;
1728 	tcp_iphc_len = tcp->tcp_iphc_len;
1729 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1730 
1731 	if (connp->conn_cred != NULL) {
1732 		crfree(connp->conn_cred);
1733 		connp->conn_cred = NULL;
1734 	}
1735 	if (connp->conn_peercred != NULL) {
1736 		crfree(connp->conn_peercred);
1737 		connp->conn_peercred = NULL;
1738 	}
1739 	ipcl_conn_cleanup(connp);
1740 	connp->conn_flags = IPCL_TCPCONN;
1741 	bzero(tcp, sizeof (tcp_t));
1742 
1743 	/* restore the state */
1744 	tcp->tcp_timercache = mp;
1745 
1746 	tcp->tcp_sack_info = tcp_sack_info;
1747 	tcp->tcp_iphc = tcp_iphc;
1748 	tcp->tcp_iphc_len = tcp_iphc_len;
1749 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1750 
1751 	tcp->tcp_connp = connp;
1752 
1753 	ASSERT(connp->conn_tcp == tcp);
1754 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1755 	connp->conn_state_flags = CONN_INCIPIENT;
1756 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1757 	ASSERT(connp->conn_ref == 1);
1758 }
1759 
1760 /*
1761  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1762  * is done forwards from the head.
1763  * This walks all stack instances since
1764  * tcp_time_wait remains global across all stacks.
1765  */
1766 /* ARGSUSED */
1767 void
1768 tcp_time_wait_collector(void *arg)
1769 {
1770 	tcp_t *tcp;
1771 	clock_t now;
1772 	mblk_t *mp;
1773 	conn_t *connp;
1774 	kmutex_t *lock;
1775 	boolean_t removed;
1776 
1777 	squeue_t *sqp = (squeue_t *)arg;
1778 	tcp_squeue_priv_t *tcp_time_wait =
1779 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1780 
1781 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1782 	tcp_time_wait->tcp_time_wait_tid = 0;
1783 
1784 	if (tcp_time_wait->tcp_free_list != NULL &&
1785 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1786 		TCP_G_STAT(tcp_freelist_cleanup);
1787 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1788 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1789 			tcp->tcp_time_wait_next = NULL;
1790 			tcp_time_wait->tcp_free_list_cnt--;
1791 			ASSERT(tcp->tcp_tcps == NULL);
1792 			CONN_DEC_REF(tcp->tcp_connp);
1793 		}
1794 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1795 	}
1796 
1797 	/*
1798 	 * In order to reap time waits reliably, we should use a
1799 	 * source of time that is not adjustable by the user -- hence
1800 	 * the call to ddi_get_lbolt().
1801 	 */
1802 	now = ddi_get_lbolt();
1803 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1804 		/*
1805 		 * Compare times using modular arithmetic, since
1806 		 * lbolt can wrapover.
1807 		 */
1808 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1809 			break;
1810 		}
1811 
1812 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1813 		ASSERT(removed);
1814 
1815 		connp = tcp->tcp_connp;
1816 		ASSERT(connp->conn_fanout != NULL);
1817 		lock = &connp->conn_fanout->connf_lock;
1818 		/*
1819 		 * This is essentially a TW reclaim fast path optimization for
1820 		 * performance where the timewait collector checks under the
1821 		 * fanout lock (so that no one else can get access to the
1822 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1823 		 * the classifier hash list. If ref count is indeed 2, we can
1824 		 * just remove the conn under the fanout lock and avoid
1825 		 * cleaning up the conn under the squeue, provided that
1826 		 * clustering callbacks are not enabled. If clustering is
1827 		 * enabled, we need to make the clustering callback before
1828 		 * setting the CONDEMNED flag and after dropping all locks and
1829 		 * so we forego this optimization and fall back to the slow
1830 		 * path. Also please see the comments in tcp_closei_local
1831 		 * regarding the refcnt logic.
1832 		 *
1833 		 * Since we are holding the tcp_time_wait_lock, its better
1834 		 * not to block on the fanout_lock because other connections
1835 		 * can't add themselves to time_wait list. So we do a
1836 		 * tryenter instead of mutex_enter.
1837 		 */
1838 		if (mutex_tryenter(lock)) {
1839 			mutex_enter(&connp->conn_lock);
1840 			if ((connp->conn_ref == 2) &&
1841 			    (cl_inet_disconnect == NULL)) {
1842 				ipcl_hash_remove_locked(connp,
1843 				    connp->conn_fanout);
1844 				/*
1845 				 * Set the CONDEMNED flag now itself so that
1846 				 * the refcnt cannot increase due to any
1847 				 * walker. But we have still not cleaned up
1848 				 * conn_ire_cache. This is still ok since
1849 				 * we are going to clean it up in tcp_cleanup
1850 				 * immediately and any interface unplumb
1851 				 * thread will wait till the ire is blown away
1852 				 */
1853 				connp->conn_state_flags |= CONN_CONDEMNED;
1854 				mutex_exit(lock);
1855 				mutex_exit(&connp->conn_lock);
1856 				if (tcp_time_wait->tcp_free_list_cnt <
1857 				    tcp_free_list_max_cnt) {
1858 					/* Add to head of tcp_free_list */
1859 					mutex_exit(
1860 					    &tcp_time_wait->tcp_time_wait_lock);
1861 					tcp_cleanup(tcp);
1862 					ASSERT(connp->conn_latch == NULL);
1863 					ASSERT(connp->conn_policy == NULL);
1864 					ASSERT(tcp->tcp_tcps == NULL);
1865 					ASSERT(connp->conn_netstack == NULL);
1866 
1867 					mutex_enter(
1868 					    &tcp_time_wait->tcp_time_wait_lock);
1869 					tcp->tcp_time_wait_next =
1870 					    tcp_time_wait->tcp_free_list;
1871 					tcp_time_wait->tcp_free_list = tcp;
1872 					tcp_time_wait->tcp_free_list_cnt++;
1873 					continue;
1874 				} else {
1875 					/* Do not add to tcp_free_list */
1876 					mutex_exit(
1877 					    &tcp_time_wait->tcp_time_wait_lock);
1878 					tcp_bind_hash_remove(tcp);
1879 					conn_delete_ire(tcp->tcp_connp, NULL);
1880 					tcp_ipsec_cleanup(tcp);
1881 					CONN_DEC_REF(tcp->tcp_connp);
1882 				}
1883 			} else {
1884 				CONN_INC_REF_LOCKED(connp);
1885 				mutex_exit(lock);
1886 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1887 				mutex_exit(&connp->conn_lock);
1888 				/*
1889 				 * We can reuse the closemp here since conn has
1890 				 * detached (otherwise we wouldn't even be in
1891 				 * time_wait list). tcp_closemp_used can safely
1892 				 * be changed without taking a lock as no other
1893 				 * thread can concurrently access it at this
1894 				 * point in the connection lifecycle.
1895 				 */
1896 
1897 				if (tcp->tcp_closemp.b_prev == NULL)
1898 					tcp->tcp_closemp_used = B_TRUE;
1899 				else
1900 					cmn_err(CE_PANIC,
1901 					    "tcp_timewait_collector: "
1902 					    "concurrent use of tcp_closemp: "
1903 					    "connp %p tcp %p\n", (void *)connp,
1904 					    (void *)tcp);
1905 
1906 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1907 				mp = &tcp->tcp_closemp;
1908 				squeue_fill(connp->conn_sqp, mp,
1909 				    tcp_timewait_output, connp,
1910 				    SQTAG_TCP_TIMEWAIT);
1911 			}
1912 		} else {
1913 			mutex_enter(&connp->conn_lock);
1914 			CONN_INC_REF_LOCKED(connp);
1915 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1916 			mutex_exit(&connp->conn_lock);
1917 			/*
1918 			 * We can reuse the closemp here since conn has
1919 			 * detached (otherwise we wouldn't even be in
1920 			 * time_wait list). tcp_closemp_used can safely
1921 			 * be changed without taking a lock as no other
1922 			 * thread can concurrently access it at this
1923 			 * point in the connection lifecycle.
1924 			 */
1925 
1926 			if (tcp->tcp_closemp.b_prev == NULL)
1927 				tcp->tcp_closemp_used = B_TRUE;
1928 			else
1929 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1930 				    "concurrent use of tcp_closemp: "
1931 				    "connp %p tcp %p\n", (void *)connp,
1932 				    (void *)tcp);
1933 
1934 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1935 			mp = &tcp->tcp_closemp;
1936 			squeue_fill(connp->conn_sqp, mp,
1937 			    tcp_timewait_output, connp, 0);
1938 		}
1939 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1940 	}
1941 
1942 	if (tcp_time_wait->tcp_free_list != NULL)
1943 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1944 
1945 	tcp_time_wait->tcp_time_wait_tid =
1946 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1947 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1948 }
1949 /*
1950  * Reply to a clients T_CONN_RES TPI message. This function
1951  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1952  * on the acceptor STREAM and processed in tcp_wput_accept().
1953  * Read the block comment on top of tcp_conn_request().
1954  */
1955 static void
1956 tcp_accept(tcp_t *listener, mblk_t *mp)
1957 {
1958 	tcp_t	*acceptor;
1959 	tcp_t	*eager;
1960 	tcp_t   *tcp;
1961 	struct T_conn_res	*tcr;
1962 	t_uscalar_t	acceptor_id;
1963 	t_scalar_t	seqnum;
1964 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1965 	mblk_t	*ok_mp;
1966 	mblk_t	*mp1;
1967 	tcp_stack_t	*tcps = listener->tcp_tcps;
1968 
1969 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1970 		tcp_err_ack(listener, mp, TPROTO, 0);
1971 		return;
1972 	}
1973 	tcr = (struct T_conn_res *)mp->b_rptr;
1974 
1975 	/*
1976 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1977 	 * read side queue of the streams device underneath us i.e. the
1978 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1979 	 * look it up in the queue_hash.  Under LP64 it sends down the
1980 	 * minor_t of the accepting endpoint.
1981 	 *
1982 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1983 	 * fanout hash lock is held.
1984 	 * This prevents any thread from entering the acceptor queue from
1985 	 * below (since it has not been hard bound yet i.e. any inbound
1986 	 * packets will arrive on the listener or default tcp queue and
1987 	 * go through tcp_lookup).
1988 	 * The CONN_INC_REF will prevent the acceptor from closing.
1989 	 *
1990 	 * XXX It is still possible for a tli application to send down data
1991 	 * on the accepting stream while another thread calls t_accept.
1992 	 * This should not be a problem for well-behaved applications since
1993 	 * the T_OK_ACK is sent after the queue swapping is completed.
1994 	 *
1995 	 * If the accepting fd is the same as the listening fd, avoid
1996 	 * queue hash lookup since that will return an eager listener in a
1997 	 * already established state.
1998 	 */
1999 	acceptor_id = tcr->ACCEPTOR_id;
2000 	mutex_enter(&listener->tcp_eager_lock);
2001 	if (listener->tcp_acceptor_id == acceptor_id) {
2002 		eager = listener->tcp_eager_next_q;
2003 		/* only count how many T_CONN_INDs so don't count q0 */
2004 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2005 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2006 			mutex_exit(&listener->tcp_eager_lock);
2007 			tcp_err_ack(listener, mp, TBADF, 0);
2008 			return;
2009 		}
2010 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2011 			/* Throw away all the eagers on q0. */
2012 			tcp_eager_cleanup(listener, 1);
2013 		}
2014 		if (listener->tcp_syn_defense) {
2015 			listener->tcp_syn_defense = B_FALSE;
2016 			if (listener->tcp_ip_addr_cache != NULL) {
2017 				kmem_free(listener->tcp_ip_addr_cache,
2018 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2019 				listener->tcp_ip_addr_cache = NULL;
2020 			}
2021 		}
2022 		/*
2023 		 * Transfer tcp_conn_req_max to the eager so that when
2024 		 * a disconnect occurs we can revert the endpoint to the
2025 		 * listen state.
2026 		 */
2027 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2028 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2029 		/*
2030 		 * Get a reference on the acceptor just like the
2031 		 * tcp_acceptor_hash_lookup below.
2032 		 */
2033 		acceptor = listener;
2034 		CONN_INC_REF(acceptor->tcp_connp);
2035 	} else {
2036 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
2037 		if (acceptor == NULL) {
2038 			if (listener->tcp_debug) {
2039 				(void) strlog(TCP_MOD_ID, 0, 1,
2040 				    SL_ERROR|SL_TRACE,
2041 				    "tcp_accept: did not find acceptor 0x%x\n",
2042 				    acceptor_id);
2043 			}
2044 			mutex_exit(&listener->tcp_eager_lock);
2045 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2046 			return;
2047 		}
2048 		/*
2049 		 * Verify acceptor state. The acceptable states for an acceptor
2050 		 * include TCPS_IDLE and TCPS_BOUND.
2051 		 */
2052 		switch (acceptor->tcp_state) {
2053 		case TCPS_IDLE:
2054 			/* FALLTHRU */
2055 		case TCPS_BOUND:
2056 			break;
2057 		default:
2058 			CONN_DEC_REF(acceptor->tcp_connp);
2059 			mutex_exit(&listener->tcp_eager_lock);
2060 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2061 			return;
2062 		}
2063 	}
2064 
2065 	/* The listener must be in TCPS_LISTEN */
2066 	if (listener->tcp_state != TCPS_LISTEN) {
2067 		CONN_DEC_REF(acceptor->tcp_connp);
2068 		mutex_exit(&listener->tcp_eager_lock);
2069 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * Rendezvous with an eager connection request packet hanging off
2075 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2076 	 * tcp structure when the connection packet arrived in
2077 	 * tcp_conn_request().
2078 	 */
2079 	seqnum = tcr->SEQ_number;
2080 	eager = listener;
2081 	do {
2082 		eager = eager->tcp_eager_next_q;
2083 		if (eager == NULL) {
2084 			CONN_DEC_REF(acceptor->tcp_connp);
2085 			mutex_exit(&listener->tcp_eager_lock);
2086 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2087 			return;
2088 		}
2089 	} while (eager->tcp_conn_req_seqnum != seqnum);
2090 	mutex_exit(&listener->tcp_eager_lock);
2091 
2092 	/*
2093 	 * At this point, both acceptor and listener have 2 ref
2094 	 * that they begin with. Acceptor has one additional ref
2095 	 * we placed in lookup while listener has 3 additional
2096 	 * ref for being behind the squeue (tcp_accept() is
2097 	 * done on listener's squeue); being in classifier hash;
2098 	 * and eager's ref on listener.
2099 	 */
2100 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2101 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2102 
2103 	/*
2104 	 * The eager at this point is set in its own squeue and
2105 	 * could easily have been killed (tcp_accept_finish will
2106 	 * deal with that) because of a TH_RST so we can only
2107 	 * ASSERT for a single ref.
2108 	 */
2109 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2110 
2111 	/* Pre allocate the stroptions mblk also */
2112 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2113 	if (opt_mp == NULL) {
2114 		CONN_DEC_REF(acceptor->tcp_connp);
2115 		CONN_DEC_REF(eager->tcp_connp);
2116 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2117 		return;
2118 	}
2119 	DB_TYPE(opt_mp) = M_SETOPTS;
2120 	opt_mp->b_wptr += sizeof (struct stroptions);
2121 
2122 	/*
2123 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2124 	 * from listener to acceptor. The message is chained on opt_mp
2125 	 * which will be sent onto eager's squeue.
2126 	 */
2127 	if (listener->tcp_bound_if != 0) {
2128 		/* allocate optmgmt req */
2129 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2130 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2131 		    sizeof (int));
2132 		if (mp1 != NULL)
2133 			linkb(opt_mp, mp1);
2134 	}
2135 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2136 		uint_t on = 1;
2137 
2138 		/* allocate optmgmt req */
2139 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2140 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2141 		if (mp1 != NULL)
2142 			linkb(opt_mp, mp1);
2143 	}
2144 
2145 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2146 	if ((mp1 = copymsg(mp)) == NULL) {
2147 		CONN_DEC_REF(acceptor->tcp_connp);
2148 		CONN_DEC_REF(eager->tcp_connp);
2149 		freemsg(opt_mp);
2150 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2151 		return;
2152 	}
2153 
2154 	tcr = (struct T_conn_res *)mp1->b_rptr;
2155 
2156 	/*
2157 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2158 	 * which allocates a larger mblk and appends the new
2159 	 * local address to the ok_ack.  The address is copied by
2160 	 * soaccept() for getsockname().
2161 	 */
2162 	{
2163 		int extra;
2164 
2165 		extra = (eager->tcp_family == AF_INET) ?
2166 		    sizeof (sin_t) : sizeof (sin6_t);
2167 
2168 		/*
2169 		 * Try to re-use mp, if possible.  Otherwise, allocate
2170 		 * an mblk and return it as ok_mp.  In any case, mp
2171 		 * is no longer usable upon return.
2172 		 */
2173 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2174 			CONN_DEC_REF(acceptor->tcp_connp);
2175 			CONN_DEC_REF(eager->tcp_connp);
2176 			freemsg(opt_mp);
2177 			/* Original mp has been freed by now, so use mp1 */
2178 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2179 			return;
2180 		}
2181 
2182 		mp = NULL;	/* We should never use mp after this point */
2183 
2184 		switch (extra) {
2185 		case sizeof (sin_t): {
2186 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2187 
2188 				ok_mp->b_wptr += extra;
2189 				sin->sin_family = AF_INET;
2190 				sin->sin_port = eager->tcp_lport;
2191 				sin->sin_addr.s_addr =
2192 				    eager->tcp_ipha->ipha_src;
2193 				break;
2194 			}
2195 		case sizeof (sin6_t): {
2196 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2197 
2198 				ok_mp->b_wptr += extra;
2199 				sin6->sin6_family = AF_INET6;
2200 				sin6->sin6_port = eager->tcp_lport;
2201 				if (eager->tcp_ipversion == IPV4_VERSION) {
2202 					sin6->sin6_flowinfo = 0;
2203 					IN6_IPADDR_TO_V4MAPPED(
2204 					    eager->tcp_ipha->ipha_src,
2205 					    &sin6->sin6_addr);
2206 				} else {
2207 					ASSERT(eager->tcp_ip6h != NULL);
2208 					sin6->sin6_flowinfo =
2209 					    eager->tcp_ip6h->ip6_vcf &
2210 					    ~IPV6_VERS_AND_FLOW_MASK;
2211 					sin6->sin6_addr =
2212 					    eager->tcp_ip6h->ip6_src;
2213 				}
2214 				sin6->sin6_scope_id = 0;
2215 				sin6->__sin6_src_id = 0;
2216 				break;
2217 			}
2218 		default:
2219 			break;
2220 		}
2221 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2222 	}
2223 
2224 	/*
2225 	 * If there are no options we know that the T_CONN_RES will
2226 	 * succeed. However, we can't send the T_OK_ACK upstream until
2227 	 * the tcp_accept_swap is done since it would be dangerous to
2228 	 * let the application start using the new fd prior to the swap.
2229 	 */
2230 	tcp_accept_swap(listener, acceptor, eager);
2231 
2232 	/*
2233 	 * tcp_accept_swap unlinks eager from listener but does not drop
2234 	 * the eager's reference on the listener.
2235 	 */
2236 	ASSERT(eager->tcp_listener == NULL);
2237 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2238 
2239 	/*
2240 	 * The eager is now associated with its own queue. Insert in
2241 	 * the hash so that the connection can be reused for a future
2242 	 * T_CONN_RES.
2243 	 */
2244 	tcp_acceptor_hash_insert(acceptor_id, eager);
2245 
2246 	/*
2247 	 * We now do the processing of options with T_CONN_RES.
2248 	 * We delay till now since we wanted to have queue to pass to
2249 	 * option processing routines that points back to the right
2250 	 * instance structure which does not happen until after
2251 	 * tcp_accept_swap().
2252 	 *
2253 	 * Note:
2254 	 * The sanity of the logic here assumes that whatever options
2255 	 * are appropriate to inherit from listner=>eager are done
2256 	 * before this point, and whatever were to be overridden (or not)
2257 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2258 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2259 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2260 	 * This may not be true at this point in time but can be fixed
2261 	 * independently. This option processing code starts with
2262 	 * the instantiated acceptor instance and the final queue at
2263 	 * this point.
2264 	 */
2265 
2266 	if (tcr->OPT_length != 0) {
2267 		/* Options to process */
2268 		int t_error = 0;
2269 		int sys_error = 0;
2270 		int do_disconnect = 0;
2271 
2272 		if (tcp_conprim_opt_process(eager, mp1,
2273 		    &do_disconnect, &t_error, &sys_error) < 0) {
2274 			eager->tcp_accept_error = 1;
2275 			if (do_disconnect) {
2276 				/*
2277 				 * An option failed which does not allow
2278 				 * connection to be accepted.
2279 				 *
2280 				 * We allow T_CONN_RES to succeed and
2281 				 * put a T_DISCON_IND on the eager queue.
2282 				 */
2283 				ASSERT(t_error == 0 && sys_error == 0);
2284 				eager->tcp_send_discon_ind = 1;
2285 			} else {
2286 				ASSERT(t_error != 0);
2287 				freemsg(ok_mp);
2288 				/*
2289 				 * Original mp was either freed or set
2290 				 * to ok_mp above, so use mp1 instead.
2291 				 */
2292 				tcp_err_ack(listener, mp1, t_error, sys_error);
2293 				goto finish;
2294 			}
2295 		}
2296 		/*
2297 		 * Most likely success in setting options (except if
2298 		 * eager->tcp_send_discon_ind set).
2299 		 * mp1 option buffer represented by OPT_length/offset
2300 		 * potentially modified and contains results of setting
2301 		 * options at this point
2302 		 */
2303 	}
2304 
2305 	/* We no longer need mp1, since all options processing has passed */
2306 	freemsg(mp1);
2307 
2308 	putnext(listener->tcp_rq, ok_mp);
2309 
2310 	mutex_enter(&listener->tcp_eager_lock);
2311 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2312 		tcp_t	*tail;
2313 		mblk_t	*conn_ind;
2314 
2315 		/*
2316 		 * This path should not be executed if listener and
2317 		 * acceptor streams are the same.
2318 		 */
2319 		ASSERT(listener != acceptor);
2320 
2321 		tcp = listener->tcp_eager_prev_q0;
2322 		/*
2323 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2324 		 * deferred T_conn_ind queue. We need to get to the head of
2325 		 * the queue in order to send up T_conn_ind the same order as
2326 		 * how the 3WHS is completed.
2327 		 */
2328 		while (tcp != listener) {
2329 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2330 				break;
2331 			else
2332 				tcp = tcp->tcp_eager_prev_q0;
2333 		}
2334 		ASSERT(tcp != listener);
2335 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2336 		ASSERT(conn_ind != NULL);
2337 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2338 
2339 		/* Move from q0 to q */
2340 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2341 		listener->tcp_conn_req_cnt_q0--;
2342 		listener->tcp_conn_req_cnt_q++;
2343 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2344 		    tcp->tcp_eager_prev_q0;
2345 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2346 		    tcp->tcp_eager_next_q0;
2347 		tcp->tcp_eager_prev_q0 = NULL;
2348 		tcp->tcp_eager_next_q0 = NULL;
2349 		tcp->tcp_conn_def_q0 = B_FALSE;
2350 
2351 		/* Make sure the tcp isn't in the list of droppables */
2352 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2353 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2354 
2355 		/*
2356 		 * Insert at end of the queue because sockfs sends
2357 		 * down T_CONN_RES in chronological order. Leaving
2358 		 * the older conn indications at front of the queue
2359 		 * helps reducing search time.
2360 		 */
2361 		tail = listener->tcp_eager_last_q;
2362 		if (tail != NULL)
2363 			tail->tcp_eager_next_q = tcp;
2364 		else
2365 			listener->tcp_eager_next_q = tcp;
2366 		listener->tcp_eager_last_q = tcp;
2367 		tcp->tcp_eager_next_q = NULL;
2368 		mutex_exit(&listener->tcp_eager_lock);
2369 		putnext(tcp->tcp_rq, conn_ind);
2370 	} else {
2371 		mutex_exit(&listener->tcp_eager_lock);
2372 	}
2373 
2374 	/*
2375 	 * Done with the acceptor - free it
2376 	 *
2377 	 * Note: from this point on, no access to listener should be made
2378 	 * as listener can be equal to acceptor.
2379 	 */
2380 finish:
2381 	ASSERT(acceptor->tcp_detached);
2382 	ASSERT(tcps->tcps_g_q != NULL);
2383 	acceptor->tcp_rq = tcps->tcps_g_q;
2384 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2385 	(void) tcp_clean_death(acceptor, 0, 2);
2386 	CONN_DEC_REF(acceptor->tcp_connp);
2387 
2388 	/*
2389 	 * In case we already received a FIN we have to make tcp_rput send
2390 	 * the ordrel_ind. This will also send up a window update if the window
2391 	 * has opened up.
2392 	 *
2393 	 * In the normal case of a successful connection acceptance
2394 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2395 	 * indication that this was just accepted. This tells tcp_rput to
2396 	 * pass up any data queued in tcp_rcv_list.
2397 	 *
2398 	 * In the fringe case where options sent with T_CONN_RES failed and
2399 	 * we required, we would be indicating a T_DISCON_IND to blow
2400 	 * away this connection.
2401 	 */
2402 
2403 	/*
2404 	 * XXX: we currently have a problem if XTI application closes the
2405 	 * acceptor stream in between. This problem exists in on10-gate also
2406 	 * and is well know but nothing can be done short of major rewrite
2407 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2408 	 * eager same squeue as listener (we can distinguish non socket
2409 	 * listeners at the time of handling a SYN in tcp_conn_request)
2410 	 * and do most of the work that tcp_accept_finish does here itself
2411 	 * and then get behind the acceptor squeue to access the acceptor
2412 	 * queue.
2413 	 */
2414 	/*
2415 	 * We already have a ref on tcp so no need to do one before squeue_fill
2416 	 */
2417 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2418 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2419 }
2420 
2421 /*
2422  * Swap information between the eager and acceptor for a TLI/XTI client.
2423  * The sockfs accept is done on the acceptor stream and control goes
2424  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2425  * called. In either case, both the eager and listener are in their own
2426  * perimeter (squeue) and the code has to deal with potential race.
2427  *
2428  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2429  */
2430 static void
2431 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2432 {
2433 	conn_t	*econnp, *aconnp;
2434 
2435 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2436 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2437 	ASSERT(!eager->tcp_hard_bound);
2438 	ASSERT(!TCP_IS_SOCKET(acceptor));
2439 	ASSERT(!TCP_IS_SOCKET(eager));
2440 	ASSERT(!TCP_IS_SOCKET(listener));
2441 
2442 	acceptor->tcp_detached = B_TRUE;
2443 	/*
2444 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2445 	 * the acceptor id.
2446 	 */
2447 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2448 
2449 	/* remove eager from listen list... */
2450 	mutex_enter(&listener->tcp_eager_lock);
2451 	tcp_eager_unlink(eager);
2452 	ASSERT(eager->tcp_eager_next_q == NULL &&
2453 	    eager->tcp_eager_last_q == NULL);
2454 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2455 	    eager->tcp_eager_prev_q0 == NULL);
2456 	mutex_exit(&listener->tcp_eager_lock);
2457 	eager->tcp_rq = acceptor->tcp_rq;
2458 	eager->tcp_wq = acceptor->tcp_wq;
2459 
2460 	econnp = eager->tcp_connp;
2461 	aconnp = acceptor->tcp_connp;
2462 
2463 	eager->tcp_rq->q_ptr = econnp;
2464 	eager->tcp_wq->q_ptr = econnp;
2465 
2466 	/*
2467 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2468 	 * which might be a different squeue from our peer TCP instance.
2469 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2470 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2471 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2472 	 * above reach global visibility prior to the clearing of tcp_detached.
2473 	 */
2474 	membar_producer();
2475 	eager->tcp_detached = B_FALSE;
2476 
2477 	ASSERT(eager->tcp_ack_tid == 0);
2478 
2479 	econnp->conn_dev = aconnp->conn_dev;
2480 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2481 	ASSERT(econnp->conn_minor_arena != NULL);
2482 	if (eager->tcp_cred != NULL)
2483 		crfree(eager->tcp_cred);
2484 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2485 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2486 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2487 
2488 	aconnp->conn_cred = NULL;
2489 
2490 	econnp->conn_zoneid = aconnp->conn_zoneid;
2491 	econnp->conn_allzones = aconnp->conn_allzones;
2492 
2493 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2494 	aconnp->conn_mac_exempt = B_FALSE;
2495 
2496 	ASSERT(aconnp->conn_peercred == NULL);
2497 
2498 	/* Do the IPC initialization */
2499 	CONN_INC_REF(econnp);
2500 
2501 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2502 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2503 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2504 
2505 	/* Done with old IPC. Drop its ref on its connp */
2506 	CONN_DEC_REF(aconnp);
2507 }
2508 
2509 
2510 /*
2511  * Adapt to the information, such as rtt and rtt_sd, provided from the
2512  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2513  *
2514  * Checks for multicast and broadcast destination address.
2515  * Returns zero on failure; non-zero if ok.
2516  *
2517  * Note that the MSS calculation here is based on the info given in
2518  * the IRE.  We do not do any calculation based on TCP options.  They
2519  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2520  * knows which options to use.
2521  *
2522  * Note on how TCP gets its parameters for a connection.
2523  *
2524  * When a tcp_t structure is allocated, it gets all the default parameters.
2525  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2526  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2527  * default.  But if there is an associated tcp_host_param, it will override
2528  * the metrics.
2529  *
2530  * An incoming SYN with a multicast or broadcast destination address, is dropped
2531  * in 1 of 2 places.
2532  *
2533  * 1. If the packet was received over the wire it is dropped in
2534  * ip_rput_process_broadcast()
2535  *
2536  * 2. If the packet was received through internal IP loopback, i.e. the packet
2537  * was generated and received on the same machine, it is dropped in
2538  * ip_wput_local()
2539  *
2540  * An incoming SYN with a multicast or broadcast source address is always
2541  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2542  * reject an attempt to connect to a broadcast or multicast (destination)
2543  * address.
2544  */
2545 static int
2546 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2547 {
2548 	tcp_hsp_t	*hsp;
2549 	ire_t		*ire;
2550 	ire_t		*sire = NULL;
2551 	iulp_t		*ire_uinfo = NULL;
2552 	uint32_t	mss_max;
2553 	uint32_t	mss;
2554 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2555 	conn_t		*connp = tcp->tcp_connp;
2556 	boolean_t	ire_cacheable = B_FALSE;
2557 	zoneid_t	zoneid = connp->conn_zoneid;
2558 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2559 	    MATCH_IRE_SECATTR;
2560 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2561 	ill_t		*ill = NULL;
2562 	boolean_t	incoming = (ire_mp == NULL);
2563 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2564 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2565 
2566 	ASSERT(connp->conn_ire_cache == NULL);
2567 
2568 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2569 
2570 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2571 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2572 			return (0);
2573 		}
2574 		/*
2575 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2576 		 * for the destination with the nexthop as gateway.
2577 		 * ire_ctable_lookup() is used because this particular
2578 		 * ire, if it exists, will be marked private.
2579 		 * If that is not available, use the interface ire
2580 		 * for the nexthop.
2581 		 *
2582 		 * TSol: tcp_update_label will detect label mismatches based
2583 		 * only on the destination's label, but that would not
2584 		 * detect label mismatches based on the security attributes
2585 		 * of routes or next hop gateway. Hence we need to pass the
2586 		 * label to ire_ftable_lookup below in order to locate the
2587 		 * right prefix (and/or) ire cache. Similarly we also need
2588 		 * pass the label to the ire_cache_lookup below to locate
2589 		 * the right ire that also matches on the label.
2590 		 */
2591 		if (tcp->tcp_connp->conn_nexthop_set) {
2592 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2593 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2594 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2595 			    ipst);
2596 			if (ire == NULL) {
2597 				ire = ire_ftable_lookup(
2598 				    tcp->tcp_connp->conn_nexthop_v4,
2599 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2600 				    tsl, match_flags, ipst);
2601 				if (ire == NULL)
2602 					return (0);
2603 			} else {
2604 				ire_uinfo = &ire->ire_uinfo;
2605 			}
2606 		} else {
2607 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2608 			    zoneid, tsl, ipst);
2609 			if (ire != NULL) {
2610 				ire_cacheable = B_TRUE;
2611 				ire_uinfo = (ire_mp != NULL) ?
2612 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2613 				    &ire->ire_uinfo;
2614 
2615 			} else {
2616 				if (ire_mp == NULL) {
2617 					ire = ire_ftable_lookup(
2618 					    tcp->tcp_connp->conn_rem,
2619 					    0, 0, 0, NULL, &sire, zoneid, 0,
2620 					    tsl, (MATCH_IRE_RECURSIVE |
2621 					    MATCH_IRE_DEFAULT), ipst);
2622 					if (ire == NULL)
2623 						return (0);
2624 					ire_uinfo = (sire != NULL) ?
2625 					    &sire->ire_uinfo :
2626 					    &ire->ire_uinfo;
2627 				} else {
2628 					ire = (ire_t *)ire_mp->b_rptr;
2629 					ire_uinfo =
2630 					    &((ire_t *)
2631 					    ire_mp->b_rptr)->ire_uinfo;
2632 				}
2633 			}
2634 		}
2635 		ASSERT(ire != NULL);
2636 
2637 		if ((ire->ire_src_addr == INADDR_ANY) ||
2638 		    (ire->ire_type & IRE_BROADCAST)) {
2639 			/*
2640 			 * ire->ire_mp is non null when ire_mp passed in is used
2641 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2642 			 */
2643 			if (ire->ire_mp == NULL)
2644 				ire_refrele(ire);
2645 			if (sire != NULL)
2646 				ire_refrele(sire);
2647 			return (0);
2648 		}
2649 
2650 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2651 			ipaddr_t src_addr;
2652 
2653 			/*
2654 			 * ip_bind_connected() has stored the correct source
2655 			 * address in conn_src.
2656 			 */
2657 			src_addr = tcp->tcp_connp->conn_src;
2658 			tcp->tcp_ipha->ipha_src = src_addr;
2659 			/*
2660 			 * Copy of the src addr. in tcp_t is needed
2661 			 * for the lookup funcs.
2662 			 */
2663 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2664 		}
2665 		/*
2666 		 * Set the fragment bit so that IP will tell us if the MTU
2667 		 * should change. IP tells us the latest setting of
2668 		 * ip_path_mtu_discovery through ire_frag_flag.
2669 		 */
2670 		if (ipst->ips_ip_path_mtu_discovery) {
2671 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2672 			    htons(IPH_DF);
2673 		}
2674 		/*
2675 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2676 		 * for IP_NEXTHOP. No cache ire has been found for the
2677 		 * destination and we are working with the nexthop's
2678 		 * interface ire. Since we need to forward all packets
2679 		 * to the nexthop first, we "blindly" set tcp_localnet
2680 		 * to false, eventhough the destination may also be
2681 		 * onlink.
2682 		 */
2683 		if (ire_uinfo == NULL)
2684 			tcp->tcp_localnet = 0;
2685 		else
2686 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2687 	} else {
2688 		/*
2689 		 * For incoming connection ire_mp = NULL
2690 		 * For outgoing connection ire_mp != NULL
2691 		 * Technically we should check conn_incoming_ill
2692 		 * when ire_mp is NULL and conn_outgoing_ill when
2693 		 * ire_mp is non-NULL. But this is performance
2694 		 * critical path and for IPV*_BOUND_IF, outgoing
2695 		 * and incoming ill are always set to the same value.
2696 		 */
2697 		ill_t	*dst_ill = NULL;
2698 		ipif_t  *dst_ipif = NULL;
2699 
2700 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2701 
2702 		if (connp->conn_outgoing_ill != NULL) {
2703 			/* Outgoing or incoming path */
2704 			int   err;
2705 
2706 			dst_ill = conn_get_held_ill(connp,
2707 			    &connp->conn_outgoing_ill, &err);
2708 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2709 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2710 				return (0);
2711 			}
2712 			match_flags |= MATCH_IRE_ILL;
2713 			dst_ipif = dst_ill->ill_ipif;
2714 		}
2715 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2716 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2717 
2718 		if (ire != NULL) {
2719 			ire_cacheable = B_TRUE;
2720 			ire_uinfo = (ire_mp != NULL) ?
2721 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2722 			    &ire->ire_uinfo;
2723 		} else {
2724 			if (ire_mp == NULL) {
2725 				ire = ire_ftable_lookup_v6(
2726 				    &tcp->tcp_connp->conn_remv6,
2727 				    0, 0, 0, dst_ipif, &sire, zoneid,
2728 				    0, tsl, match_flags, ipst);
2729 				if (ire == NULL) {
2730 					if (dst_ill != NULL)
2731 						ill_refrele(dst_ill);
2732 					return (0);
2733 				}
2734 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2735 				    &ire->ire_uinfo;
2736 			} else {
2737 				ire = (ire_t *)ire_mp->b_rptr;
2738 				ire_uinfo =
2739 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2740 			}
2741 		}
2742 		if (dst_ill != NULL)
2743 			ill_refrele(dst_ill);
2744 
2745 		ASSERT(ire != NULL);
2746 		ASSERT(ire_uinfo != NULL);
2747 
2748 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2749 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2750 			/*
2751 			 * ire->ire_mp is non null when ire_mp passed in is used
2752 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2753 			 */
2754 			if (ire->ire_mp == NULL)
2755 				ire_refrele(ire);
2756 			if (sire != NULL)
2757 				ire_refrele(sire);
2758 			return (0);
2759 		}
2760 
2761 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2762 			in6_addr_t	src_addr;
2763 
2764 			/*
2765 			 * ip_bind_connected_v6() has stored the correct source
2766 			 * address per IPv6 addr. selection policy in
2767 			 * conn_src_v6.
2768 			 */
2769 			src_addr = tcp->tcp_connp->conn_srcv6;
2770 
2771 			tcp->tcp_ip6h->ip6_src = src_addr;
2772 			/*
2773 			 * Copy of the src addr. in tcp_t is needed
2774 			 * for the lookup funcs.
2775 			 */
2776 			tcp->tcp_ip_src_v6 = src_addr;
2777 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2778 			    &connp->conn_srcv6));
2779 		}
2780 		tcp->tcp_localnet =
2781 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2782 	}
2783 
2784 	/*
2785 	 * This allows applications to fail quickly when connections are made
2786 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2787 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2788 	 */
2789 	if ((ire->ire_flags & RTF_REJECT) &&
2790 	    (ire->ire_flags & RTF_PRIVATE))
2791 		goto error;
2792 
2793 	/*
2794 	 * Make use of the cached rtt and rtt_sd values to calculate the
2795 	 * initial RTO.  Note that they are already initialized in
2796 	 * tcp_init_values().
2797 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2798 	 * IP_NEXTHOP, but instead are using the interface ire for the
2799 	 * nexthop, then we do not use the ire_uinfo from that ire to
2800 	 * do any initializations.
2801 	 */
2802 	if (ire_uinfo != NULL) {
2803 		if (ire_uinfo->iulp_rtt != 0) {
2804 			clock_t	rto;
2805 
2806 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2807 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2808 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2809 			    tcps->tcps_rexmit_interval_extra +
2810 			    (tcp->tcp_rtt_sa >> 5);
2811 
2812 			if (rto > tcps->tcps_rexmit_interval_max) {
2813 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2814 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2815 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2816 			} else {
2817 				tcp->tcp_rto = rto;
2818 			}
2819 		}
2820 		if (ire_uinfo->iulp_ssthresh != 0)
2821 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2822 		else
2823 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2824 		if (ire_uinfo->iulp_spipe > 0) {
2825 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2826 			    tcps->tcps_max_buf);
2827 			if (tcps->tcps_snd_lowat_fraction != 0)
2828 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2829 				    tcps->tcps_snd_lowat_fraction;
2830 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2831 		}
2832 		/*
2833 		 * Note that up till now, acceptor always inherits receive
2834 		 * window from the listener.  But if there is a metrics
2835 		 * associated with a host, we should use that instead of
2836 		 * inheriting it from listener. Thus we need to pass this
2837 		 * info back to the caller.
2838 		 */
2839 		if (ire_uinfo->iulp_rpipe > 0) {
2840 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2841 			    tcps->tcps_max_buf);
2842 		}
2843 
2844 		if (ire_uinfo->iulp_rtomax > 0) {
2845 			tcp->tcp_second_timer_threshold =
2846 			    ire_uinfo->iulp_rtomax;
2847 		}
2848 
2849 		/*
2850 		 * Use the metric option settings, iulp_tstamp_ok and
2851 		 * iulp_wscale_ok, only for active open. What this means
2852 		 * is that if the other side uses timestamp or window
2853 		 * scale option, TCP will also use those options. That
2854 		 * is for passive open.  If the application sets a
2855 		 * large window, window scale is enabled regardless of
2856 		 * the value in iulp_wscale_ok.  This is the behavior
2857 		 * since 2.6.  So we keep it.
2858 		 * The only case left in passive open processing is the
2859 		 * check for SACK.
2860 		 * For ECN, it should probably be like SACK.  But the
2861 		 * current value is binary, so we treat it like the other
2862 		 * cases.  The metric only controls active open.For passive
2863 		 * open, the ndd param, tcp_ecn_permitted, controls the
2864 		 * behavior.
2865 		 */
2866 		if (!tcp_detached) {
2867 			/*
2868 			 * The if check means that the following can only
2869 			 * be turned on by the metrics only IRE, but not off.
2870 			 */
2871 			if (ire_uinfo->iulp_tstamp_ok)
2872 				tcp->tcp_snd_ts_ok = B_TRUE;
2873 			if (ire_uinfo->iulp_wscale_ok)
2874 				tcp->tcp_snd_ws_ok = B_TRUE;
2875 			if (ire_uinfo->iulp_sack == 2)
2876 				tcp->tcp_snd_sack_ok = B_TRUE;
2877 			if (ire_uinfo->iulp_ecn_ok)
2878 				tcp->tcp_ecn_ok = B_TRUE;
2879 		} else {
2880 			/*
2881 			 * Passive open.
2882 			 *
2883 			 * As above, the if check means that SACK can only be
2884 			 * turned on by the metric only IRE.
2885 			 */
2886 			if (ire_uinfo->iulp_sack > 0) {
2887 				tcp->tcp_snd_sack_ok = B_TRUE;
2888 			}
2889 		}
2890 	}
2891 
2892 
2893 	/*
2894 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2895 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2896 	 * length of all those options exceeds 28 bytes.  But because
2897 	 * of the tcp_mss_min check below, we may not have a problem if
2898 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2899 	 * the negative problem still exists.  And the check defeats PMTUd.
2900 	 * In fact, if PMTUd finds that the MSS should be smaller than
2901 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2902 	 * value.
2903 	 *
2904 	 * We do not deal with that now.  All those problems related to
2905 	 * PMTUd will be fixed later.
2906 	 */
2907 	ASSERT(ire->ire_max_frag != 0);
2908 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2909 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2910 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2911 			mss = MIN(mss, IPV6_MIN_MTU);
2912 		}
2913 	}
2914 
2915 	/* Sanity check for MSS value. */
2916 	if (tcp->tcp_ipversion == IPV4_VERSION)
2917 		mss_max = tcps->tcps_mss_max_ipv4;
2918 	else
2919 		mss_max = tcps->tcps_mss_max_ipv6;
2920 
2921 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2922 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2923 		/*
2924 		 * After receiving an ICMPv6 "packet too big" message with a
2925 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2926 		 * will insert a 8-byte fragment header in every packet; we
2927 		 * reduce the MSS by that amount here.
2928 		 */
2929 		mss -= sizeof (ip6_frag_t);
2930 	}
2931 
2932 	if (tcp->tcp_ipsec_overhead == 0)
2933 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2934 
2935 	mss -= tcp->tcp_ipsec_overhead;
2936 
2937 	if (mss < tcps->tcps_mss_min)
2938 		mss = tcps->tcps_mss_min;
2939 	if (mss > mss_max)
2940 		mss = mss_max;
2941 
2942 	/* Note that this is the maximum MSS, excluding all options. */
2943 	tcp->tcp_mss = mss;
2944 
2945 	/*
2946 	 * Initialize the ISS here now that we have the full connection ID.
2947 	 * The RFC 1948 method of initial sequence number generation requires
2948 	 * knowledge of the full connection ID before setting the ISS.
2949 	 */
2950 
2951 	tcp_iss_init(tcp);
2952 
2953 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2954 		tcp->tcp_loopback = B_TRUE;
2955 
2956 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2957 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2958 	} else {
2959 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2960 	}
2961 
2962 	if (hsp != NULL) {
2963 		/* Only modify if we're going to make them bigger */
2964 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2965 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2966 			if (tcps->tcps_snd_lowat_fraction != 0)
2967 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2968 				    tcps->tcps_snd_lowat_fraction;
2969 		}
2970 
2971 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2972 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2973 		}
2974 
2975 		/* Copy timestamp flag only for active open */
2976 		if (!tcp_detached)
2977 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2978 	}
2979 
2980 	if (sire != NULL)
2981 		IRE_REFRELE(sire);
2982 
2983 	/*
2984 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2985 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2986 	 */
2987 	if (tcp->tcp_loopback ||
2988 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2989 		/*
2990 		 * For incoming, see if this tcp may be MDT-capable.  For
2991 		 * outgoing, this process has been taken care of through
2992 		 * tcp_rput_other.
2993 		 */
2994 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2995 		tcp->tcp_ire_ill_check_done = B_TRUE;
2996 	}
2997 
2998 	mutex_enter(&connp->conn_lock);
2999 	/*
3000 	 * Make sure that conn is not marked incipient
3001 	 * for incoming connections. A blind
3002 	 * removal of incipient flag is cheaper than
3003 	 * check and removal.
3004 	 */
3005 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3006 
3007 	/*
3008 	 * Must not cache forwarding table routes
3009 	 * or recache an IRE after the conn_t has
3010 	 * had conn_ire_cache cleared and is flagged
3011 	 * unusable, (see the CONN_CACHE_IRE() macro).
3012 	 */
3013 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
3014 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3015 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3016 			connp->conn_ire_cache = ire;
3017 			IRE_UNTRACE_REF(ire);
3018 			rw_exit(&ire->ire_bucket->irb_lock);
3019 			mutex_exit(&connp->conn_lock);
3020 			return (1);
3021 		}
3022 		rw_exit(&ire->ire_bucket->irb_lock);
3023 	}
3024 	mutex_exit(&connp->conn_lock);
3025 
3026 	if (ire->ire_mp == NULL)
3027 		ire_refrele(ire);
3028 	return (1);
3029 
3030 error:
3031 	if (ire->ire_mp == NULL)
3032 		ire_refrele(ire);
3033 	if (sire != NULL)
3034 		ire_refrele(sire);
3035 	return (0);
3036 }
3037 
3038 /*
3039  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
3040  * O_T_BIND_REQ/T_BIND_REQ message.
3041  */
3042 static void
3043 tcp_bind(tcp_t *tcp, mblk_t *mp)
3044 {
3045 	sin_t	*sin;
3046 	sin6_t	*sin6;
3047 	mblk_t	*mp1;
3048 	in_port_t requested_port;
3049 	in_port_t allocated_port;
3050 	struct T_bind_req *tbr;
3051 	boolean_t	bind_to_req_port_only;
3052 	boolean_t	backlog_update = B_FALSE;
3053 	boolean_t	user_specified;
3054 	in6_addr_t	v6addr;
3055 	ipaddr_t	v4addr;
3056 	uint_t	origipversion;
3057 	int	err;
3058 	queue_t *q = tcp->tcp_wq;
3059 	conn_t	*connp = tcp->tcp_connp;
3060 	mlp_type_t addrtype, mlptype;
3061 	zone_t	*zone;
3062 	cred_t	*cr;
3063 	in_port_t mlp_port;
3064 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3065 
3066 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3067 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3068 		if (tcp->tcp_debug) {
3069 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3070 			    "tcp_bind: bad req, len %u",
3071 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3072 		}
3073 		tcp_err_ack(tcp, mp, TPROTO, 0);
3074 		return;
3075 	}
3076 	/* Make sure the largest address fits */
3077 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3078 	if (mp1 == NULL) {
3079 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3080 		return;
3081 	}
3082 	mp = mp1;
3083 	tbr = (struct T_bind_req *)mp->b_rptr;
3084 	if (tcp->tcp_state >= TCPS_BOUND) {
3085 		if ((tcp->tcp_state == TCPS_BOUND ||
3086 		    tcp->tcp_state == TCPS_LISTEN) &&
3087 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3088 		    tbr->CONIND_number > 0) {
3089 			/*
3090 			 * Handle listen() increasing CONIND_number.
3091 			 * This is more "liberal" then what the TPI spec
3092 			 * requires but is needed to avoid a t_unbind
3093 			 * when handling listen() since the port number
3094 			 * might be "stolen" between the unbind and bind.
3095 			 */
3096 			backlog_update = B_TRUE;
3097 			goto do_bind;
3098 		}
3099 		if (tcp->tcp_debug) {
3100 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3101 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3102 		}
3103 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3104 		return;
3105 	}
3106 	origipversion = tcp->tcp_ipversion;
3107 
3108 	switch (tbr->ADDR_length) {
3109 	case 0:			/* request for a generic port */
3110 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3111 		if (tcp->tcp_family == AF_INET) {
3112 			tbr->ADDR_length = sizeof (sin_t);
3113 			sin = (sin_t *)&tbr[1];
3114 			*sin = sin_null;
3115 			sin->sin_family = AF_INET;
3116 			mp->b_wptr = (uchar_t *)&sin[1];
3117 			tcp->tcp_ipversion = IPV4_VERSION;
3118 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3119 		} else {
3120 			ASSERT(tcp->tcp_family == AF_INET6);
3121 			tbr->ADDR_length = sizeof (sin6_t);
3122 			sin6 = (sin6_t *)&tbr[1];
3123 			*sin6 = sin6_null;
3124 			sin6->sin6_family = AF_INET6;
3125 			mp->b_wptr = (uchar_t *)&sin6[1];
3126 			tcp->tcp_ipversion = IPV6_VERSION;
3127 			V6_SET_ZERO(v6addr);
3128 		}
3129 		requested_port = 0;
3130 		break;
3131 
3132 	case sizeof (sin_t):	/* Complete IPv4 address */
3133 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3134 		    sizeof (sin_t));
3135 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3136 			if (tcp->tcp_debug) {
3137 				(void) strlog(TCP_MOD_ID, 0, 1,
3138 				    SL_ERROR|SL_TRACE,
3139 				    "tcp_bind: bad address parameter, "
3140 				    "offset %d, len %d",
3141 				    tbr->ADDR_offset, tbr->ADDR_length);
3142 			}
3143 			tcp_err_ack(tcp, mp, TPROTO, 0);
3144 			return;
3145 		}
3146 		/*
3147 		 * With sockets sockfs will accept bogus sin_family in
3148 		 * bind() and replace it with the family used in the socket
3149 		 * call.
3150 		 */
3151 		if (sin->sin_family != AF_INET ||
3152 		    tcp->tcp_family != AF_INET) {
3153 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3154 			return;
3155 		}
3156 		requested_port = ntohs(sin->sin_port);
3157 		tcp->tcp_ipversion = IPV4_VERSION;
3158 		v4addr = sin->sin_addr.s_addr;
3159 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3160 		break;
3161 
3162 	case sizeof (sin6_t): /* Complete IPv6 address */
3163 		sin6 = (sin6_t *)mi_offset_param(mp,
3164 		    tbr->ADDR_offset, sizeof (sin6_t));
3165 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3166 			if (tcp->tcp_debug) {
3167 				(void) strlog(TCP_MOD_ID, 0, 1,
3168 				    SL_ERROR|SL_TRACE,
3169 				    "tcp_bind: bad IPv6 address parameter, "
3170 				    "offset %d, len %d", tbr->ADDR_offset,
3171 				    tbr->ADDR_length);
3172 			}
3173 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3174 			return;
3175 		}
3176 		if (sin6->sin6_family != AF_INET6 ||
3177 		    tcp->tcp_family != AF_INET6) {
3178 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3179 			return;
3180 		}
3181 		requested_port = ntohs(sin6->sin6_port);
3182 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3183 		    IPV4_VERSION : IPV6_VERSION;
3184 		v6addr = sin6->sin6_addr;
3185 		break;
3186 
3187 	default:
3188 		if (tcp->tcp_debug) {
3189 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3190 			    "tcp_bind: bad address length, %d",
3191 			    tbr->ADDR_length);
3192 		}
3193 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3194 		return;
3195 	}
3196 	tcp->tcp_bound_source_v6 = v6addr;
3197 
3198 	/* Check for change in ipversion */
3199 	if (origipversion != tcp->tcp_ipversion) {
3200 		ASSERT(tcp->tcp_family == AF_INET6);
3201 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3202 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3203 		if (err) {
3204 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3205 			return;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * Initialize family specific fields. Copy of the src addr.
3211 	 * in tcp_t is needed for the lookup funcs.
3212 	 */
3213 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3214 		tcp->tcp_ip6h->ip6_src = v6addr;
3215 	} else {
3216 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3217 	}
3218 	tcp->tcp_ip_src_v6 = v6addr;
3219 
3220 	/*
3221 	 * For O_T_BIND_REQ:
3222 	 * Verify that the target port/addr is available, or choose
3223 	 * another.
3224 	 * For  T_BIND_REQ:
3225 	 * Verify that the target port/addr is available or fail.
3226 	 * In both cases when it succeeds the tcp is inserted in the
3227 	 * bind hash table. This ensures that the operation is atomic
3228 	 * under the lock on the hash bucket.
3229 	 */
3230 	bind_to_req_port_only = requested_port != 0 &&
3231 	    tbr->PRIM_type != O_T_BIND_REQ;
3232 	/*
3233 	 * Get a valid port (within the anonymous range and should not
3234 	 * be a privileged one) to use if the user has not given a port.
3235 	 * If multiple threads are here, they may all start with
3236 	 * with the same initial port. But, it should be fine as long as
3237 	 * tcp_bindi will ensure that no two threads will be assigned
3238 	 * the same port.
3239 	 *
3240 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3241 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3242 	 * unless TCP_ANONPRIVBIND option is set.
3243 	 */
3244 	mlptype = mlptSingle;
3245 	mlp_port = requested_port;
3246 	if (requested_port == 0) {
3247 		requested_port = tcp->tcp_anon_priv_bind ?
3248 		    tcp_get_next_priv_port(tcp) :
3249 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3250 		    tcp, B_TRUE);
3251 		if (requested_port == 0) {
3252 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3253 			return;
3254 		}
3255 		user_specified = B_FALSE;
3256 
3257 		/*
3258 		 * If the user went through one of the RPC interfaces to create
3259 		 * this socket and RPC is MLP in this zone, then give him an
3260 		 * anonymous MLP.
3261 		 */
3262 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3263 		if (connp->conn_anon_mlp && is_system_labeled()) {
3264 			zone = crgetzone(cr);
3265 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3266 			    IPV6_VERSION, &v6addr,
3267 			    tcps->tcps_netstack->netstack_ip);
3268 			if (addrtype == mlptSingle) {
3269 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3270 				return;
3271 			}
3272 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3273 			    PMAPPORT, addrtype);
3274 			mlp_port = PMAPPORT;
3275 		}
3276 	} else {
3277 		int i;
3278 		boolean_t priv = B_FALSE;
3279 
3280 		/*
3281 		 * If the requested_port is in the well-known privileged range,
3282 		 * verify that the stream was opened by a privileged user.
3283 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3284 		 * but instead the code relies on:
3285 		 * - the fact that the address of the array and its size never
3286 		 *   changes
3287 		 * - the atomic assignment of the elements of the array
3288 		 */
3289 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3290 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3291 			priv = B_TRUE;
3292 		} else {
3293 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3294 				if (requested_port ==
3295 				    tcps->tcps_g_epriv_ports[i]) {
3296 					priv = B_TRUE;
3297 					break;
3298 				}
3299 			}
3300 		}
3301 		if (priv) {
3302 			if (secpolicy_net_privaddr(cr, requested_port,
3303 			    IPPROTO_TCP) != 0) {
3304 				if (tcp->tcp_debug) {
3305 					(void) strlog(TCP_MOD_ID, 0, 1,
3306 					    SL_ERROR|SL_TRACE,
3307 					    "tcp_bind: no priv for port %d",
3308 					    requested_port);
3309 				}
3310 				tcp_err_ack(tcp, mp, TACCES, 0);
3311 				return;
3312 			}
3313 		}
3314 		user_specified = B_TRUE;
3315 
3316 		if (is_system_labeled()) {
3317 			zone = crgetzone(cr);
3318 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3319 			    IPV6_VERSION, &v6addr,
3320 			    tcps->tcps_netstack->netstack_ip);
3321 			if (addrtype == mlptSingle) {
3322 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3323 				return;
3324 			}
3325 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3326 			    requested_port, addrtype);
3327 		}
3328 	}
3329 
3330 	if (mlptype != mlptSingle) {
3331 		if (secpolicy_net_bindmlp(cr) != 0) {
3332 			if (tcp->tcp_debug) {
3333 				(void) strlog(TCP_MOD_ID, 0, 1,
3334 				    SL_ERROR|SL_TRACE,
3335 				    "tcp_bind: no priv for multilevel port %d",
3336 				    requested_port);
3337 			}
3338 			tcp_err_ack(tcp, mp, TACCES, 0);
3339 			return;
3340 		}
3341 
3342 		/*
3343 		 * If we're specifically binding a shared IP address and the
3344 		 * port is MLP on shared addresses, then check to see if this
3345 		 * zone actually owns the MLP.  Reject if not.
3346 		 */
3347 		if (mlptype == mlptShared && addrtype == mlptShared) {
3348 			/*
3349 			 * No need to handle exclusive-stack zones since
3350 			 * ALL_ZONES only applies to the shared stack.
3351 			 */
3352 			zoneid_t mlpzone;
3353 
3354 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3355 			    htons(mlp_port));
3356 			if (connp->conn_zoneid != mlpzone) {
3357 				if (tcp->tcp_debug) {
3358 					(void) strlog(TCP_MOD_ID, 0, 1,
3359 					    SL_ERROR|SL_TRACE,
3360 					    "tcp_bind: attempt to bind port "
3361 					    "%d on shared addr in zone %d "
3362 					    "(should be %d)",
3363 					    mlp_port, connp->conn_zoneid,
3364 					    mlpzone);
3365 				}
3366 				tcp_err_ack(tcp, mp, TACCES, 0);
3367 				return;
3368 			}
3369 		}
3370 
3371 		if (!user_specified) {
3372 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3373 			    requested_port, B_TRUE);
3374 			if (err != 0) {
3375 				if (tcp->tcp_debug) {
3376 					(void) strlog(TCP_MOD_ID, 0, 1,
3377 					    SL_ERROR|SL_TRACE,
3378 					    "tcp_bind: cannot establish anon "
3379 					    "MLP for port %d",
3380 					    requested_port);
3381 				}
3382 				tcp_err_ack(tcp, mp, TSYSERR, err);
3383 				return;
3384 			}
3385 			connp->conn_anon_port = B_TRUE;
3386 		}
3387 		connp->conn_mlp_type = mlptype;
3388 	}
3389 
3390 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3391 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3392 
3393 	if (allocated_port == 0) {
3394 		connp->conn_mlp_type = mlptSingle;
3395 		if (connp->conn_anon_port) {
3396 			connp->conn_anon_port = B_FALSE;
3397 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3398 			    requested_port, B_FALSE);
3399 		}
3400 		if (bind_to_req_port_only) {
3401 			if (tcp->tcp_debug) {
3402 				(void) strlog(TCP_MOD_ID, 0, 1,
3403 				    SL_ERROR|SL_TRACE,
3404 				    "tcp_bind: requested addr busy");
3405 			}
3406 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3407 		} else {
3408 			/* If we are out of ports, fail the bind. */
3409 			if (tcp->tcp_debug) {
3410 				(void) strlog(TCP_MOD_ID, 0, 1,
3411 				    SL_ERROR|SL_TRACE,
3412 				    "tcp_bind: out of ports?");
3413 			}
3414 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3415 		}
3416 		return;
3417 	}
3418 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3419 do_bind:
3420 	if (!backlog_update) {
3421 		if (tcp->tcp_family == AF_INET)
3422 			sin->sin_port = htons(allocated_port);
3423 		else
3424 			sin6->sin6_port = htons(allocated_port);
3425 	}
3426 	if (tcp->tcp_family == AF_INET) {
3427 		if (tbr->CONIND_number != 0) {
3428 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3429 			    sizeof (sin_t));
3430 		} else {
3431 			/* Just verify the local IP address */
3432 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3433 		}
3434 	} else {
3435 		if (tbr->CONIND_number != 0) {
3436 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3437 			    sizeof (sin6_t));
3438 		} else {
3439 			/* Just verify the local IP address */
3440 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3441 			    IPV6_ADDR_LEN);
3442 		}
3443 	}
3444 	if (mp1 == NULL) {
3445 		if (connp->conn_anon_port) {
3446 			connp->conn_anon_port = B_FALSE;
3447 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3448 			    requested_port, B_FALSE);
3449 		}
3450 		connp->conn_mlp_type = mlptSingle;
3451 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3452 		return;
3453 	}
3454 
3455 	tbr->PRIM_type = T_BIND_ACK;
3456 	mp->b_datap->db_type = M_PCPROTO;
3457 
3458 	/* Chain in the reply mp for tcp_rput() */
3459 	mp1->b_cont = mp;
3460 	mp = mp1;
3461 
3462 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3463 	if (tcp->tcp_conn_req_max) {
3464 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3465 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3466 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3467 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3468 		/*
3469 		 * If this is a listener, do not reset the eager list
3470 		 * and other stuffs.  Note that we don't check if the
3471 		 * existing eager list meets the new tcp_conn_req_max
3472 		 * requirement.
3473 		 */
3474 		if (tcp->tcp_state != TCPS_LISTEN) {
3475 			tcp->tcp_state = TCPS_LISTEN;
3476 			/* Initialize the chain. Don't need the eager_lock */
3477 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3478 			tcp->tcp_eager_next_drop_q0 = tcp;
3479 			tcp->tcp_eager_prev_drop_q0 = tcp;
3480 			tcp->tcp_second_ctimer_threshold =
3481 			    tcps->tcps_ip_abort_linterval;
3482 		}
3483 	}
3484 
3485 	/*
3486 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3487 	 * processing continues in tcp_rput_other().
3488 	 *
3489 	 * We need to make sure that the conn_recv is set to a non-null
3490 	 * value before we insert the conn into the classifier table.
3491 	 * This is to avoid a race with an incoming packet which does an
3492 	 * ipcl_classify().
3493 	 */
3494 	connp->conn_recv = tcp_conn_request;
3495 	if (tcp->tcp_family == AF_INET6) {
3496 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3497 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3498 	} else {
3499 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3500 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3501 	}
3502 	/*
3503 	 * If the bind cannot complete immediately
3504 	 * IP will arrange to call tcp_rput_other
3505 	 * when the bind completes.
3506 	 */
3507 	if (mp != NULL) {
3508 		tcp_rput_other(tcp, mp);
3509 	} else {
3510 		/*
3511 		 * Bind will be resumed later. Need to ensure
3512 		 * that conn doesn't disappear when that happens.
3513 		 * This will be decremented in ip_resume_tcp_bind().
3514 		 */
3515 		CONN_INC_REF(tcp->tcp_connp);
3516 	}
3517 }
3518 
3519 
3520 /*
3521  * If the "bind_to_req_port_only" parameter is set, if the requested port
3522  * number is available, return it, If not return 0
3523  *
3524  * If "bind_to_req_port_only" parameter is not set and
3525  * If the requested port number is available, return it.  If not, return
3526  * the first anonymous port we happen across.  If no anonymous ports are
3527  * available, return 0. addr is the requested local address, if any.
3528  *
3529  * In either case, when succeeding update the tcp_t to record the port number
3530  * and insert it in the bind hash table.
3531  *
3532  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3533  * without setting SO_REUSEADDR. This is needed so that they
3534  * can be viewed as two independent transport protocols.
3535  */
3536 static in_port_t
3537 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3538     int reuseaddr, boolean_t quick_connect,
3539     boolean_t bind_to_req_port_only, boolean_t user_specified)
3540 {
3541 	/* number of times we have run around the loop */
3542 	int count = 0;
3543 	/* maximum number of times to run around the loop */
3544 	int loopmax;
3545 	conn_t *connp = tcp->tcp_connp;
3546 	zoneid_t zoneid = connp->conn_zoneid;
3547 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3548 
3549 	/*
3550 	 * Lookup for free addresses is done in a loop and "loopmax"
3551 	 * influences how long we spin in the loop
3552 	 */
3553 	if (bind_to_req_port_only) {
3554 		/*
3555 		 * If the requested port is busy, don't bother to look
3556 		 * for a new one. Setting loop maximum count to 1 has
3557 		 * that effect.
3558 		 */
3559 		loopmax = 1;
3560 	} else {
3561 		/*
3562 		 * If the requested port is busy, look for a free one
3563 		 * in the anonymous port range.
3564 		 * Set loopmax appropriately so that one does not look
3565 		 * forever in the case all of the anonymous ports are in use.
3566 		 */
3567 		if (tcp->tcp_anon_priv_bind) {
3568 			/*
3569 			 * loopmax =
3570 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3571 			 */
3572 			loopmax = IPPORT_RESERVED -
3573 			    tcps->tcps_min_anonpriv_port;
3574 		} else {
3575 			loopmax = (tcps->tcps_largest_anon_port -
3576 			    tcps->tcps_smallest_anon_port + 1);
3577 		}
3578 	}
3579 	do {
3580 		uint16_t	lport;
3581 		tf_t		*tbf;
3582 		tcp_t		*ltcp;
3583 		conn_t		*lconnp;
3584 
3585 		lport = htons(port);
3586 
3587 		/*
3588 		 * Ensure that the tcp_t is not currently in the bind hash.
3589 		 * Hold the lock on the hash bucket to ensure that
3590 		 * the duplicate check plus the insertion is an atomic
3591 		 * operation.
3592 		 *
3593 		 * This function does an inline lookup on the bind hash list
3594 		 * Make sure that we access only members of tcp_t
3595 		 * and that we don't look at tcp_tcp, since we are not
3596 		 * doing a CONN_INC_REF.
3597 		 */
3598 		tcp_bind_hash_remove(tcp);
3599 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3600 		mutex_enter(&tbf->tf_lock);
3601 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3602 		    ltcp = ltcp->tcp_bind_hash) {
3603 			boolean_t not_socket;
3604 			boolean_t exclbind;
3605 
3606 			if (lport != ltcp->tcp_lport)
3607 				continue;
3608 
3609 			lconnp = ltcp->tcp_connp;
3610 
3611 			/*
3612 			 * On a labeled system, we must treat bindings to ports
3613 			 * on shared IP addresses by sockets with MAC exemption
3614 			 * privilege as being in all zones, as there's
3615 			 * otherwise no way to identify the right receiver.
3616 			 */
3617 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3618 			    IPCL_ZONE_MATCH(connp,
3619 			    ltcp->tcp_connp->conn_zoneid)) &&
3620 			    !lconnp->conn_mac_exempt &&
3621 			    !connp->conn_mac_exempt)
3622 				continue;
3623 
3624 			/*
3625 			 * If TCP_EXCLBIND is set for either the bound or
3626 			 * binding endpoint, the semantics of bind
3627 			 * is changed according to the following.
3628 			 *
3629 			 * spec = specified address (v4 or v6)
3630 			 * unspec = unspecified address (v4 or v6)
3631 			 * A = specified addresses are different for endpoints
3632 			 *
3633 			 * bound	bind to		allowed
3634 			 * -------------------------------------
3635 			 * unspec	unspec		no
3636 			 * unspec	spec		no
3637 			 * spec		unspec		no
3638 			 * spec		spec		yes if A
3639 			 *
3640 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3641 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3642 			 *
3643 			 * Note:
3644 			 *
3645 			 * 1. Because of TLI semantics, an endpoint can go
3646 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3647 			 * TCPS_BOUND, depending on whether it is originally
3648 			 * a listener or not.  That is why we need to check
3649 			 * for states greater than or equal to TCPS_BOUND
3650 			 * here.
3651 			 *
3652 			 * 2. Ideally, we should only check for state equals
3653 			 * to TCPS_LISTEN. And the following check should be
3654 			 * added.
3655 			 *
3656 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3657 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3658 			 *		...
3659 			 * }
3660 			 *
3661 			 * The semantics will be changed to this.  If the
3662 			 * endpoint on the list is in state not equal to
3663 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3664 			 * set, let the bind succeed.
3665 			 *
3666 			 * Because of (1), we cannot do that for TLI
3667 			 * endpoints.  But we can do that for socket endpoints.
3668 			 * If in future, we can change this going back
3669 			 * semantics, we can use the above check for TLI also.
3670 			 */
3671 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3672 			    TCP_IS_SOCKET(tcp));
3673 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3674 
3675 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3676 			    (exclbind && (not_socket ||
3677 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3678 				if (V6_OR_V4_INADDR_ANY(
3679 				    ltcp->tcp_bound_source_v6) ||
3680 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3681 				    IN6_ARE_ADDR_EQUAL(laddr,
3682 				    &ltcp->tcp_bound_source_v6)) {
3683 					break;
3684 				}
3685 				continue;
3686 			}
3687 
3688 			/*
3689 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3690 			 * have disjoint port number spaces, if *_EXCLBIND
3691 			 * is not set and only if the application binds to a
3692 			 * specific port. We use the same autoassigned port
3693 			 * number space for IPv4 and IPv6 sockets.
3694 			 */
3695 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3696 			    bind_to_req_port_only)
3697 				continue;
3698 
3699 			/*
3700 			 * Ideally, we should make sure that the source
3701 			 * address, remote address, and remote port in the
3702 			 * four tuple for this tcp-connection is unique.
3703 			 * However, trying to find out the local source
3704 			 * address would require too much code duplication
3705 			 * with IP, since IP needs needs to have that code
3706 			 * to support userland TCP implementations.
3707 			 */
3708 			if (quick_connect &&
3709 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3710 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3711 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3712 			    &ltcp->tcp_remote_v6)))
3713 				continue;
3714 
3715 			if (!reuseaddr) {
3716 				/*
3717 				 * No socket option SO_REUSEADDR.
3718 				 * If existing port is bound to
3719 				 * a non-wildcard IP address
3720 				 * and the requesting stream is
3721 				 * bound to a distinct
3722 				 * different IP addresses
3723 				 * (non-wildcard, also), keep
3724 				 * going.
3725 				 */
3726 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3727 				    !V6_OR_V4_INADDR_ANY(
3728 				    ltcp->tcp_bound_source_v6) &&
3729 				    !IN6_ARE_ADDR_EQUAL(laddr,
3730 				    &ltcp->tcp_bound_source_v6))
3731 					continue;
3732 				if (ltcp->tcp_state >= TCPS_BOUND) {
3733 					/*
3734 					 * This port is being used and
3735 					 * its state is >= TCPS_BOUND,
3736 					 * so we can't bind to it.
3737 					 */
3738 					break;
3739 				}
3740 			} else {
3741 				/*
3742 				 * socket option SO_REUSEADDR is set on the
3743 				 * binding tcp_t.
3744 				 *
3745 				 * If two streams are bound to
3746 				 * same IP address or both addr
3747 				 * and bound source are wildcards
3748 				 * (INADDR_ANY), we want to stop
3749 				 * searching.
3750 				 * We have found a match of IP source
3751 				 * address and source port, which is
3752 				 * refused regardless of the
3753 				 * SO_REUSEADDR setting, so we break.
3754 				 */
3755 				if (IN6_ARE_ADDR_EQUAL(laddr,
3756 				    &ltcp->tcp_bound_source_v6) &&
3757 				    (ltcp->tcp_state == TCPS_LISTEN ||
3758 				    ltcp->tcp_state == TCPS_BOUND))
3759 					break;
3760 			}
3761 		}
3762 		if (ltcp != NULL) {
3763 			/* The port number is busy */
3764 			mutex_exit(&tbf->tf_lock);
3765 		} else {
3766 			/*
3767 			 * This port is ours. Insert in fanout and mark as
3768 			 * bound to prevent others from getting the port
3769 			 * number.
3770 			 */
3771 			tcp->tcp_state = TCPS_BOUND;
3772 			tcp->tcp_lport = htons(port);
3773 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3774 
3775 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3776 			    tcp->tcp_lport)] == tbf);
3777 			tcp_bind_hash_insert(tbf, tcp, 1);
3778 
3779 			mutex_exit(&tbf->tf_lock);
3780 
3781 			/*
3782 			 * We don't want tcp_next_port_to_try to "inherit"
3783 			 * a port number supplied by the user in a bind.
3784 			 */
3785 			if (user_specified)
3786 				return (port);
3787 
3788 			/*
3789 			 * This is the only place where tcp_next_port_to_try
3790 			 * is updated. After the update, it may or may not
3791 			 * be in the valid range.
3792 			 */
3793 			if (!tcp->tcp_anon_priv_bind)
3794 				tcps->tcps_next_port_to_try = port + 1;
3795 			return (port);
3796 		}
3797 
3798 		if (tcp->tcp_anon_priv_bind) {
3799 			port = tcp_get_next_priv_port(tcp);
3800 		} else {
3801 			if (count == 0 && user_specified) {
3802 				/*
3803 				 * We may have to return an anonymous port. So
3804 				 * get one to start with.
3805 				 */
3806 				port =
3807 				    tcp_update_next_port(
3808 				    tcps->tcps_next_port_to_try,
3809 				    tcp, B_TRUE);
3810 				user_specified = B_FALSE;
3811 			} else {
3812 				port = tcp_update_next_port(port + 1, tcp,
3813 				    B_FALSE);
3814 			}
3815 		}
3816 		if (port == 0)
3817 			break;
3818 
3819 		/*
3820 		 * Don't let this loop run forever in the case where
3821 		 * all of the anonymous ports are in use.
3822 		 */
3823 	} while (++count < loopmax);
3824 	return (0);
3825 }
3826 
3827 /*
3828  * tcp_clean_death / tcp_close_detached must not be called more than once
3829  * on a tcp. Thus every function that potentially calls tcp_clean_death
3830  * must check for the tcp state before calling tcp_clean_death.
3831  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3832  * tcp_timer_handler, all check for the tcp state.
3833  */
3834 /* ARGSUSED */
3835 void
3836 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3837 {
3838 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3839 
3840 	freemsg(mp);
3841 	if (tcp->tcp_state > TCPS_BOUND)
3842 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3843 		    ETIMEDOUT, 5);
3844 }
3845 
3846 /*
3847  * We are dying for some reason.  Try to do it gracefully.  (May be called
3848  * as writer.)
3849  *
3850  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3851  * done by a service procedure).
3852  * TBD - Should the return value distinguish between the tcp_t being
3853  * freed and it being reinitialized?
3854  */
3855 static int
3856 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3857 {
3858 	mblk_t	*mp;
3859 	queue_t	*q;
3860 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3861 	sodirect_t	*sodp;
3862 
3863 	TCP_CLD_STAT(tag);
3864 
3865 #if TCP_TAG_CLEAN_DEATH
3866 	tcp->tcp_cleandeathtag = tag;
3867 #endif
3868 
3869 	if (tcp->tcp_fused)
3870 		tcp_unfuse(tcp);
3871 
3872 	if (tcp->tcp_linger_tid != 0 &&
3873 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3874 		tcp_stop_lingering(tcp);
3875 	}
3876 
3877 	ASSERT(tcp != NULL);
3878 	ASSERT((tcp->tcp_family == AF_INET &&
3879 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3880 	    (tcp->tcp_family == AF_INET6 &&
3881 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3882 	    tcp->tcp_ipversion == IPV6_VERSION)));
3883 
3884 	if (TCP_IS_DETACHED(tcp)) {
3885 		if (tcp->tcp_hard_binding) {
3886 			/*
3887 			 * Its an eager that we are dealing with. We close the
3888 			 * eager but in case a conn_ind has already gone to the
3889 			 * listener, let tcp_accept_finish() send a discon_ind
3890 			 * to the listener and drop the last reference. If the
3891 			 * listener doesn't even know about the eager i.e. the
3892 			 * conn_ind hasn't gone up, blow away the eager and drop
3893 			 * the last reference as well. If the conn_ind has gone
3894 			 * up, state should be BOUND. tcp_accept_finish
3895 			 * will figure out that the connection has received a
3896 			 * RST and will send a DISCON_IND to the application.
3897 			 */
3898 			tcp_closei_local(tcp);
3899 			if (!tcp->tcp_tconnind_started) {
3900 				CONN_DEC_REF(tcp->tcp_connp);
3901 			} else {
3902 				tcp->tcp_state = TCPS_BOUND;
3903 			}
3904 		} else {
3905 			tcp_close_detached(tcp);
3906 		}
3907 		return (0);
3908 	}
3909 
3910 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3911 
3912 	/*
3913 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3914 	 * is run) postpone cleaning up the endpoint until service routine
3915 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3916 	 * client_errno since tcp_close uses the client_errno field.
3917 	 */
3918 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3919 		if (err != 0)
3920 			tcp->tcp_client_errno = err;
3921 
3922 		tcp->tcp_deferred_clean_death = B_TRUE;
3923 		return (-1);
3924 	}
3925 
3926 	/* If sodirect, not anymore */
3927 	SOD_PTR_ENTER(tcp, sodp);
3928 	if (sodp != NULL) {
3929 		tcp->tcp_sodirect = NULL;
3930 		mutex_exit(sodp->sod_lock);
3931 	}
3932 
3933 	q = tcp->tcp_rq;
3934 
3935 	/* Trash all inbound data */
3936 	flushq(q, FLUSHALL);
3937 
3938 	/*
3939 	 * If we are at least part way open and there is error
3940 	 * (err==0 implies no error)
3941 	 * notify our client by a T_DISCON_IND.
3942 	 */
3943 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3944 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3945 		    !TCP_IS_SOCKET(tcp)) {
3946 			/*
3947 			 * Send M_FLUSH according to TPI. Because sockets will
3948 			 * (and must) ignore FLUSHR we do that only for TPI
3949 			 * endpoints and sockets in STREAMS mode.
3950 			 */
3951 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3952 		}
3953 		if (tcp->tcp_debug) {
3954 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3955 			    "tcp_clean_death: discon err %d", err);
3956 		}
3957 		mp = mi_tpi_discon_ind(NULL, err, 0);
3958 		if (mp != NULL) {
3959 			putnext(q, mp);
3960 		} else {
3961 			if (tcp->tcp_debug) {
3962 				(void) strlog(TCP_MOD_ID, 0, 1,
3963 				    SL_ERROR|SL_TRACE,
3964 				    "tcp_clean_death, sending M_ERROR");
3965 			}
3966 			(void) putnextctl1(q, M_ERROR, EPROTO);
3967 		}
3968 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3969 			/* SYN_SENT or SYN_RCVD */
3970 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3971 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3972 			/* ESTABLISHED or CLOSE_WAIT */
3973 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3974 		}
3975 	}
3976 
3977 	tcp_reinit(tcp);
3978 	return (-1);
3979 }
3980 
3981 /*
3982  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3983  * to expire, stop the wait and finish the close.
3984  */
3985 static void
3986 tcp_stop_lingering(tcp_t *tcp)
3987 {
3988 	clock_t	delta = 0;
3989 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3990 
3991 	tcp->tcp_linger_tid = 0;
3992 	if (tcp->tcp_state > TCPS_LISTEN) {
3993 		tcp_acceptor_hash_remove(tcp);
3994 		mutex_enter(&tcp->tcp_non_sq_lock);
3995 		if (tcp->tcp_flow_stopped) {
3996 			tcp_clrqfull(tcp);
3997 		}
3998 		mutex_exit(&tcp->tcp_non_sq_lock);
3999 
4000 		if (tcp->tcp_timer_tid != 0) {
4001 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4002 			tcp->tcp_timer_tid = 0;
4003 		}
4004 		/*
4005 		 * Need to cancel those timers which will not be used when
4006 		 * TCP is detached.  This has to be done before the tcp_wq
4007 		 * is set to the global queue.
4008 		 */
4009 		tcp_timers_stop(tcp);
4010 
4011 
4012 		tcp->tcp_detached = B_TRUE;
4013 		ASSERT(tcps->tcps_g_q != NULL);
4014 		tcp->tcp_rq = tcps->tcps_g_q;
4015 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4016 
4017 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4018 			tcp_time_wait_append(tcp);
4019 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4020 			goto finish;
4021 		}
4022 
4023 		/*
4024 		 * If delta is zero the timer event wasn't executed and was
4025 		 * successfully canceled. In this case we need to restart it
4026 		 * with the minimal delta possible.
4027 		 */
4028 		if (delta >= 0) {
4029 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4030 			    delta ? delta : 1);
4031 		}
4032 	} else {
4033 		tcp_closei_local(tcp);
4034 		CONN_DEC_REF(tcp->tcp_connp);
4035 	}
4036 finish:
4037 	/* Signal closing thread that it can complete close */
4038 	mutex_enter(&tcp->tcp_closelock);
4039 	tcp->tcp_detached = B_TRUE;
4040 	ASSERT(tcps->tcps_g_q != NULL);
4041 	tcp->tcp_rq = tcps->tcps_g_q;
4042 	tcp->tcp_wq = WR(tcps->tcps_g_q);
4043 	tcp->tcp_closed = 1;
4044 	cv_signal(&tcp->tcp_closecv);
4045 	mutex_exit(&tcp->tcp_closelock);
4046 }
4047 
4048 /*
4049  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
4050  * expires.
4051  */
4052 static void
4053 tcp_close_linger_timeout(void *arg)
4054 {
4055 	conn_t	*connp = (conn_t *)arg;
4056 	tcp_t 	*tcp = connp->conn_tcp;
4057 
4058 	tcp->tcp_client_errno = ETIMEDOUT;
4059 	tcp_stop_lingering(tcp);
4060 }
4061 
4062 static int
4063 tcp_close(queue_t *q, int flags)
4064 {
4065 	conn_t		*connp = Q_TO_CONN(q);
4066 	tcp_t		*tcp = connp->conn_tcp;
4067 	mblk_t 		*mp = &tcp->tcp_closemp;
4068 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4069 	mblk_t		*bp;
4070 
4071 	ASSERT(WR(q)->q_next == NULL);
4072 	ASSERT(connp->conn_ref >= 2);
4073 
4074 	/*
4075 	 * We are being closed as /dev/tcp or /dev/tcp6.
4076 	 *
4077 	 * Mark the conn as closing. ill_pending_mp_add will not
4078 	 * add any mp to the pending mp list, after this conn has
4079 	 * started closing. Same for sq_pending_mp_add
4080 	 */
4081 	mutex_enter(&connp->conn_lock);
4082 	connp->conn_state_flags |= CONN_CLOSING;
4083 	if (connp->conn_oper_pending_ill != NULL)
4084 		conn_ioctl_cleanup_reqd = B_TRUE;
4085 	CONN_INC_REF_LOCKED(connp);
4086 	mutex_exit(&connp->conn_lock);
4087 	tcp->tcp_closeflags = (uint8_t)flags;
4088 	ASSERT(connp->conn_ref >= 3);
4089 
4090 	/*
4091 	 * tcp_closemp_used is used below without any protection of a lock
4092 	 * as we don't expect any one else to use it concurrently at this
4093 	 * point otherwise it would be a major defect.
4094 	 */
4095 
4096 	if (mp->b_prev == NULL)
4097 		tcp->tcp_closemp_used = B_TRUE;
4098 	else
4099 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4100 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4101 
4102 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4103 
4104 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4105 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4106 
4107 	mutex_enter(&tcp->tcp_closelock);
4108 	while (!tcp->tcp_closed) {
4109 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4110 			/*
4111 			 * The cv_wait_sig() was interrupted. We now do the
4112 			 * following:
4113 			 *
4114 			 * 1) If the endpoint was lingering, we allow this
4115 			 * to be interrupted by cancelling the linger timeout
4116 			 * and closing normally.
4117 			 *
4118 			 * 2) Revert to calling cv_wait()
4119 			 *
4120 			 * We revert to using cv_wait() to avoid an
4121 			 * infinite loop which can occur if the calling
4122 			 * thread is higher priority than the squeue worker
4123 			 * thread and is bound to the same cpu.
4124 			 */
4125 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4126 				mutex_exit(&tcp->tcp_closelock);
4127 				/* Entering squeue, bump ref count. */
4128 				CONN_INC_REF(connp);
4129 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4130 				squeue_enter(connp->conn_sqp, bp,
4131 				    tcp_linger_interrupted, connp,
4132 				    SQTAG_IP_TCP_CLOSE);
4133 				mutex_enter(&tcp->tcp_closelock);
4134 			}
4135 			break;
4136 		}
4137 	}
4138 	while (!tcp->tcp_closed)
4139 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4140 	mutex_exit(&tcp->tcp_closelock);
4141 
4142 	/*
4143 	 * In the case of listener streams that have eagers in the q or q0
4144 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4145 	 * tcp_wq of the eagers point to our queues. By waiting for the
4146 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4147 	 * up their queue pointers and also dropped their references to us.
4148 	 */
4149 	if (tcp->tcp_wait_for_eagers) {
4150 		mutex_enter(&connp->conn_lock);
4151 		while (connp->conn_ref != 1) {
4152 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4153 		}
4154 		mutex_exit(&connp->conn_lock);
4155 	}
4156 	/*
4157 	 * ioctl cleanup. The mp is queued in the
4158 	 * ill_pending_mp or in the sq_pending_mp.
4159 	 */
4160 	if (conn_ioctl_cleanup_reqd)
4161 		conn_ioctl_cleanup(connp);
4162 
4163 	qprocsoff(q);
4164 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4165 
4166 	tcp->tcp_cpid = -1;
4167 
4168 	/*
4169 	 * Drop IP's reference on the conn. This is the last reference
4170 	 * on the connp if the state was less than established. If the
4171 	 * connection has gone into timewait state, then we will have
4172 	 * one ref for the TCP and one more ref (total of two) for the
4173 	 * classifier connected hash list (a timewait connections stays
4174 	 * in connected hash till closed).
4175 	 *
4176 	 * We can't assert the references because there might be other
4177 	 * transient reference places because of some walkers or queued
4178 	 * packets in squeue for the timewait state.
4179 	 */
4180 	CONN_DEC_REF(connp);
4181 	q->q_ptr = WR(q)->q_ptr = NULL;
4182 	return (0);
4183 }
4184 
4185 static int
4186 tcpclose_accept(queue_t *q)
4187 {
4188 	vmem_t	*minor_arena;
4189 	dev_t	conn_dev;
4190 
4191 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4192 
4193 	/*
4194 	 * We had opened an acceptor STREAM for sockfs which is
4195 	 * now being closed due to some error.
4196 	 */
4197 	qprocsoff(q);
4198 
4199 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4200 	conn_dev = (dev_t)RD(q)->q_ptr;
4201 	ASSERT(minor_arena != NULL);
4202 	ASSERT(conn_dev != 0);
4203 	inet_minor_free(minor_arena, conn_dev);
4204 	q->q_ptr = WR(q)->q_ptr = NULL;
4205 	return (0);
4206 }
4207 
4208 /*
4209  * Called by tcp_close() routine via squeue when lingering is
4210  * interrupted by a signal.
4211  */
4212 
4213 /* ARGSUSED */
4214 static void
4215 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4216 {
4217 	conn_t	*connp = (conn_t *)arg;
4218 	tcp_t	*tcp = connp->conn_tcp;
4219 
4220 	freeb(mp);
4221 	if (tcp->tcp_linger_tid != 0 &&
4222 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4223 		tcp_stop_lingering(tcp);
4224 		tcp->tcp_client_errno = EINTR;
4225 	}
4226 }
4227 
4228 /*
4229  * Called by streams close routine via squeues when our client blows off her
4230  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4231  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4232  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4233  * acked.
4234  *
4235  * NOTE: tcp_close potentially returns error when lingering.
4236  * However, the stream head currently does not pass these errors
4237  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4238  * errors to the application (from tsleep()) and not errors
4239  * like ECONNRESET caused by receiving a reset packet.
4240  */
4241 
4242 /* ARGSUSED */
4243 static void
4244 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4245 {
4246 	char	*msg;
4247 	conn_t	*connp = (conn_t *)arg;
4248 	tcp_t	*tcp = connp->conn_tcp;
4249 	clock_t	delta = 0;
4250 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4251 
4252 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4253 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4254 
4255 	/* Cancel any pending timeout */
4256 	if (tcp->tcp_ordrelid != 0) {
4257 		if (tcp->tcp_timeout) {
4258 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4259 		}
4260 		tcp->tcp_ordrelid = 0;
4261 		tcp->tcp_timeout = B_FALSE;
4262 	}
4263 
4264 	mutex_enter(&tcp->tcp_eager_lock);
4265 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4266 		/* Cleanup for listener */
4267 		tcp_eager_cleanup(tcp, 0);
4268 		tcp->tcp_wait_for_eagers = 1;
4269 	}
4270 	mutex_exit(&tcp->tcp_eager_lock);
4271 
4272 	connp->conn_mdt_ok = B_FALSE;
4273 	tcp->tcp_mdt = B_FALSE;
4274 
4275 	connp->conn_lso_ok = B_FALSE;
4276 	tcp->tcp_lso = B_FALSE;
4277 
4278 	msg = NULL;
4279 	switch (tcp->tcp_state) {
4280 	case TCPS_CLOSED:
4281 	case TCPS_IDLE:
4282 	case TCPS_BOUND:
4283 	case TCPS_LISTEN:
4284 		break;
4285 	case TCPS_SYN_SENT:
4286 		msg = "tcp_close, during connect";
4287 		break;
4288 	case TCPS_SYN_RCVD:
4289 		/*
4290 		 * Close during the connect 3-way handshake
4291 		 * but here there may or may not be pending data
4292 		 * already on queue. Process almost same as in
4293 		 * the ESTABLISHED state.
4294 		 */
4295 		/* FALLTHRU */
4296 	default:
4297 		if (tcp->tcp_sodirect != NULL) {
4298 			/* Ok, no more sodirect */
4299 			tcp->tcp_sodirect = NULL;
4300 		}
4301 
4302 		if (tcp->tcp_fused)
4303 			tcp_unfuse(tcp);
4304 
4305 		/*
4306 		 * If SO_LINGER has set a zero linger time, abort the
4307 		 * connection with a reset.
4308 		 */
4309 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4310 			msg = "tcp_close, zero lingertime";
4311 			break;
4312 		}
4313 
4314 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4315 		/*
4316 		 * Abort connection if there is unread data queued.
4317 		 */
4318 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4319 			msg = "tcp_close, unread data";
4320 			break;
4321 		}
4322 		/*
4323 		 * tcp_hard_bound is now cleared thus all packets go through
4324 		 * tcp_lookup. This fact is used by tcp_detach below.
4325 		 *
4326 		 * We have done a qwait() above which could have possibly
4327 		 * drained more messages in turn causing transition to a
4328 		 * different state. Check whether we have to do the rest
4329 		 * of the processing or not.
4330 		 */
4331 		if (tcp->tcp_state <= TCPS_LISTEN)
4332 			break;
4333 
4334 		/*
4335 		 * Transmit the FIN before detaching the tcp_t.
4336 		 * After tcp_detach returns this queue/perimeter
4337 		 * no longer owns the tcp_t thus others can modify it.
4338 		 */
4339 		(void) tcp_xmit_end(tcp);
4340 
4341 		/*
4342 		 * If lingering on close then wait until the fin is acked,
4343 		 * the SO_LINGER time passes, or a reset is sent/received.
4344 		 */
4345 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4346 		    !(tcp->tcp_fin_acked) &&
4347 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4348 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4349 				tcp->tcp_client_errno = EWOULDBLOCK;
4350 			} else if (tcp->tcp_client_errno == 0) {
4351 
4352 				ASSERT(tcp->tcp_linger_tid == 0);
4353 
4354 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4355 				    tcp_close_linger_timeout,
4356 				    tcp->tcp_lingertime * hz);
4357 
4358 				/* tcp_close_linger_timeout will finish close */
4359 				if (tcp->tcp_linger_tid == 0)
4360 					tcp->tcp_client_errno = ENOSR;
4361 				else
4362 					return;
4363 			}
4364 
4365 			/*
4366 			 * Check if we need to detach or just close
4367 			 * the instance.
4368 			 */
4369 			if (tcp->tcp_state <= TCPS_LISTEN)
4370 				break;
4371 		}
4372 
4373 		/*
4374 		 * Make sure that no other thread will access the tcp_rq of
4375 		 * this instance (through lookups etc.) as tcp_rq will go
4376 		 * away shortly.
4377 		 */
4378 		tcp_acceptor_hash_remove(tcp);
4379 
4380 		mutex_enter(&tcp->tcp_non_sq_lock);
4381 		if (tcp->tcp_flow_stopped) {
4382 			tcp_clrqfull(tcp);
4383 		}
4384 		mutex_exit(&tcp->tcp_non_sq_lock);
4385 
4386 		if (tcp->tcp_timer_tid != 0) {
4387 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4388 			tcp->tcp_timer_tid = 0;
4389 		}
4390 		/*
4391 		 * Need to cancel those timers which will not be used when
4392 		 * TCP is detached.  This has to be done before the tcp_wq
4393 		 * is set to the global queue.
4394 		 */
4395 		tcp_timers_stop(tcp);
4396 
4397 		tcp->tcp_detached = B_TRUE;
4398 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4399 			tcp_time_wait_append(tcp);
4400 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4401 			ASSERT(connp->conn_ref >= 3);
4402 			goto finish;
4403 		}
4404 
4405 		/*
4406 		 * If delta is zero the timer event wasn't executed and was
4407 		 * successfully canceled. In this case we need to restart it
4408 		 * with the minimal delta possible.
4409 		 */
4410 		if (delta >= 0)
4411 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4412 			    delta ? delta : 1);
4413 
4414 		ASSERT(connp->conn_ref >= 3);
4415 		goto finish;
4416 	}
4417 
4418 	/* Detach did not complete. Still need to remove q from stream. */
4419 	if (msg) {
4420 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4421 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4422 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4423 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4424 		    tcp->tcp_state == TCPS_SYN_RCVD)
4425 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4426 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4427 	}
4428 
4429 	tcp_closei_local(tcp);
4430 	CONN_DEC_REF(connp);
4431 	ASSERT(connp->conn_ref >= 2);
4432 
4433 finish:
4434 	/*
4435 	 * Although packets are always processed on the correct
4436 	 * tcp's perimeter and access is serialized via squeue's,
4437 	 * IP still needs a queue when sending packets in time_wait
4438 	 * state so use WR(tcps_g_q) till ip_output() can be
4439 	 * changed to deal with just connp. For read side, we
4440 	 * could have set tcp_rq to NULL but there are some cases
4441 	 * in tcp_rput_data() from early days of this code which
4442 	 * do a putnext without checking if tcp is closed. Those
4443 	 * need to be identified before both tcp_rq and tcp_wq
4444 	 * can be set to NULL and tcps_g_q can disappear forever.
4445 	 */
4446 	mutex_enter(&tcp->tcp_closelock);
4447 	/*
4448 	 * Don't change the queues in the case of a listener that has
4449 	 * eagers in its q or q0. It could surprise the eagers.
4450 	 * Instead wait for the eagers outside the squeue.
4451 	 */
4452 	if (!tcp->tcp_wait_for_eagers) {
4453 		tcp->tcp_detached = B_TRUE;
4454 		/*
4455 		 * When default queue is closing we set tcps_g_q to NULL
4456 		 * after the close is done.
4457 		 */
4458 		ASSERT(tcps->tcps_g_q != NULL);
4459 		tcp->tcp_rq = tcps->tcps_g_q;
4460 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4461 	}
4462 
4463 	/* Signal tcp_close() to finish closing. */
4464 	tcp->tcp_closed = 1;
4465 	cv_signal(&tcp->tcp_closecv);
4466 	mutex_exit(&tcp->tcp_closelock);
4467 }
4468 
4469 
4470 /*
4471  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4472  * Some stream heads get upset if they see these later on as anything but NULL.
4473  */
4474 static void
4475 tcp_close_mpp(mblk_t **mpp)
4476 {
4477 	mblk_t	*mp;
4478 
4479 	if ((mp = *mpp) != NULL) {
4480 		do {
4481 			mp->b_next = NULL;
4482 			mp->b_prev = NULL;
4483 		} while ((mp = mp->b_cont) != NULL);
4484 
4485 		mp = *mpp;
4486 		*mpp = NULL;
4487 		freemsg(mp);
4488 	}
4489 }
4490 
4491 /* Do detached close. */
4492 static void
4493 tcp_close_detached(tcp_t *tcp)
4494 {
4495 	if (tcp->tcp_fused)
4496 		tcp_unfuse(tcp);
4497 
4498 	/*
4499 	 * Clustering code serializes TCP disconnect callbacks and
4500 	 * cluster tcp list walks by blocking a TCP disconnect callback
4501 	 * if a cluster tcp list walk is in progress. This ensures
4502 	 * accurate accounting of TCPs in the cluster code even though
4503 	 * the TCP list walk itself is not atomic.
4504 	 */
4505 	tcp_closei_local(tcp);
4506 	CONN_DEC_REF(tcp->tcp_connp);
4507 }
4508 
4509 /*
4510  * Stop all TCP timers, and free the timer mblks if requested.
4511  */
4512 void
4513 tcp_timers_stop(tcp_t *tcp)
4514 {
4515 	if (tcp->tcp_timer_tid != 0) {
4516 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4517 		tcp->tcp_timer_tid = 0;
4518 	}
4519 	if (tcp->tcp_ka_tid != 0) {
4520 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4521 		tcp->tcp_ka_tid = 0;
4522 	}
4523 	if (tcp->tcp_ack_tid != 0) {
4524 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4525 		tcp->tcp_ack_tid = 0;
4526 	}
4527 	if (tcp->tcp_push_tid != 0) {
4528 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4529 		tcp->tcp_push_tid = 0;
4530 	}
4531 }
4532 
4533 /*
4534  * The tcp_t is going away. Remove it from all lists and set it
4535  * to TCPS_CLOSED. The freeing up of memory is deferred until
4536  * tcp_inactive. This is needed since a thread in tcp_rput might have
4537  * done a CONN_INC_REF on this structure before it was removed from the
4538  * hashes.
4539  */
4540 static void
4541 tcp_closei_local(tcp_t *tcp)
4542 {
4543 	ire_t 	*ire;
4544 	conn_t	*connp = tcp->tcp_connp;
4545 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4546 
4547 	if (!TCP_IS_SOCKET(tcp))
4548 		tcp_acceptor_hash_remove(tcp);
4549 
4550 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4551 	tcp->tcp_ibsegs = 0;
4552 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4553 	tcp->tcp_obsegs = 0;
4554 
4555 	/*
4556 	 * If we are an eager connection hanging off a listener that
4557 	 * hasn't formally accepted the connection yet, get off his
4558 	 * list and blow off any data that we have accumulated.
4559 	 */
4560 	if (tcp->tcp_listener != NULL) {
4561 		tcp_t	*listener = tcp->tcp_listener;
4562 		mutex_enter(&listener->tcp_eager_lock);
4563 		/*
4564 		 * tcp_tconnind_started == B_TRUE means that the
4565 		 * conn_ind has already gone to listener. At
4566 		 * this point, eager will be closed but we
4567 		 * leave it in listeners eager list so that
4568 		 * if listener decides to close without doing
4569 		 * accept, we can clean this up. In tcp_wput_accept
4570 		 * we take care of the case of accept on closed
4571 		 * eager.
4572 		 */
4573 		if (!tcp->tcp_tconnind_started) {
4574 			tcp_eager_unlink(tcp);
4575 			mutex_exit(&listener->tcp_eager_lock);
4576 			/*
4577 			 * We don't want to have any pointers to the
4578 			 * listener queue, after we have released our
4579 			 * reference on the listener
4580 			 */
4581 			ASSERT(tcps->tcps_g_q != NULL);
4582 			tcp->tcp_rq = tcps->tcps_g_q;
4583 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4584 			CONN_DEC_REF(listener->tcp_connp);
4585 		} else {
4586 			mutex_exit(&listener->tcp_eager_lock);
4587 		}
4588 	}
4589 
4590 	/* Stop all the timers */
4591 	tcp_timers_stop(tcp);
4592 
4593 	if (tcp->tcp_state == TCPS_LISTEN) {
4594 		if (tcp->tcp_ip_addr_cache) {
4595 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4596 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4597 			tcp->tcp_ip_addr_cache = NULL;
4598 		}
4599 	}
4600 	mutex_enter(&tcp->tcp_non_sq_lock);
4601 	if (tcp->tcp_flow_stopped)
4602 		tcp_clrqfull(tcp);
4603 	mutex_exit(&tcp->tcp_non_sq_lock);
4604 
4605 	tcp_bind_hash_remove(tcp);
4606 	/*
4607 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4608 	 * is trying to remove this tcp from the time wait list, we will
4609 	 * block in tcp_time_wait_remove while trying to acquire the
4610 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4611 	 * requires the ipcl_hash_remove to be ordered after the
4612 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4613 	 */
4614 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4615 		(void) tcp_time_wait_remove(tcp, NULL);
4616 	CL_INET_DISCONNECT(tcp);
4617 	ipcl_hash_remove(connp);
4618 
4619 	/*
4620 	 * Delete the cached ire in conn_ire_cache and also mark
4621 	 * the conn as CONDEMNED
4622 	 */
4623 	mutex_enter(&connp->conn_lock);
4624 	connp->conn_state_flags |= CONN_CONDEMNED;
4625 	ire = connp->conn_ire_cache;
4626 	connp->conn_ire_cache = NULL;
4627 	mutex_exit(&connp->conn_lock);
4628 	if (ire != NULL)
4629 		IRE_REFRELE_NOTR(ire);
4630 
4631 	/* Need to cleanup any pending ioctls */
4632 	ASSERT(tcp->tcp_time_wait_next == NULL);
4633 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4634 	ASSERT(tcp->tcp_time_wait_expire == 0);
4635 	tcp->tcp_state = TCPS_CLOSED;
4636 
4637 	/* Release any SSL context */
4638 	if (tcp->tcp_kssl_ent != NULL) {
4639 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4640 		tcp->tcp_kssl_ent = NULL;
4641 	}
4642 	if (tcp->tcp_kssl_ctx != NULL) {
4643 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4644 		tcp->tcp_kssl_ctx = NULL;
4645 	}
4646 	tcp->tcp_kssl_pending = B_FALSE;
4647 
4648 	tcp_ipsec_cleanup(tcp);
4649 }
4650 
4651 /*
4652  * tcp is dying (called from ipcl_conn_destroy and error cases).
4653  * Free the tcp_t in either case.
4654  */
4655 void
4656 tcp_free(tcp_t *tcp)
4657 {
4658 	mblk_t	*mp;
4659 	ip6_pkt_t	*ipp;
4660 
4661 	ASSERT(tcp != NULL);
4662 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4663 
4664 	tcp->tcp_rq = NULL;
4665 	tcp->tcp_wq = NULL;
4666 
4667 	tcp_close_mpp(&tcp->tcp_xmit_head);
4668 	tcp_close_mpp(&tcp->tcp_reass_head);
4669 	if (tcp->tcp_rcv_list != NULL) {
4670 		/* Free b_next chain */
4671 		tcp_close_mpp(&tcp->tcp_rcv_list);
4672 	}
4673 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4674 		freemsg(mp);
4675 	}
4676 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4677 		freemsg(mp);
4678 	}
4679 
4680 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4681 		freeb(tcp->tcp_fused_sigurg_mp);
4682 		tcp->tcp_fused_sigurg_mp = NULL;
4683 	}
4684 
4685 	if (tcp->tcp_sack_info != NULL) {
4686 		if (tcp->tcp_notsack_list != NULL) {
4687 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4688 		}
4689 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4690 	}
4691 
4692 	if (tcp->tcp_hopopts != NULL) {
4693 		mi_free(tcp->tcp_hopopts);
4694 		tcp->tcp_hopopts = NULL;
4695 		tcp->tcp_hopoptslen = 0;
4696 	}
4697 	ASSERT(tcp->tcp_hopoptslen == 0);
4698 	if (tcp->tcp_dstopts != NULL) {
4699 		mi_free(tcp->tcp_dstopts);
4700 		tcp->tcp_dstopts = NULL;
4701 		tcp->tcp_dstoptslen = 0;
4702 	}
4703 	ASSERT(tcp->tcp_dstoptslen == 0);
4704 	if (tcp->tcp_rtdstopts != NULL) {
4705 		mi_free(tcp->tcp_rtdstopts);
4706 		tcp->tcp_rtdstopts = NULL;
4707 		tcp->tcp_rtdstoptslen = 0;
4708 	}
4709 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4710 	if (tcp->tcp_rthdr != NULL) {
4711 		mi_free(tcp->tcp_rthdr);
4712 		tcp->tcp_rthdr = NULL;
4713 		tcp->tcp_rthdrlen = 0;
4714 	}
4715 	ASSERT(tcp->tcp_rthdrlen == 0);
4716 
4717 	ipp = &tcp->tcp_sticky_ipp;
4718 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4719 	    IPPF_RTHDR))
4720 		ip6_pkt_free(ipp);
4721 
4722 	/*
4723 	 * Free memory associated with the tcp/ip header template.
4724 	 */
4725 
4726 	if (tcp->tcp_iphc != NULL)
4727 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4728 
4729 	/*
4730 	 * Following is really a blowing away a union.
4731 	 * It happens to have exactly two members of identical size
4732 	 * the following code is enough.
4733 	 */
4734 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4735 
4736 	if (tcp->tcp_tracebuf != NULL) {
4737 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4738 		tcp->tcp_tracebuf = NULL;
4739 	}
4740 }
4741 
4742 
4743 /*
4744  * Put a connection confirmation message upstream built from the
4745  * address information within 'iph' and 'tcph'.  Report our success or failure.
4746  */
4747 static boolean_t
4748 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4749     mblk_t **defermp)
4750 {
4751 	sin_t	sin;
4752 	sin6_t	sin6;
4753 	mblk_t	*mp;
4754 	char	*optp = NULL;
4755 	int	optlen = 0;
4756 	cred_t	*cr;
4757 
4758 	if (defermp != NULL)
4759 		*defermp = NULL;
4760 
4761 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4762 		/*
4763 		 * Return in T_CONN_CON results of option negotiation through
4764 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4765 		 * negotiation, then what is received from remote end needs
4766 		 * to be taken into account but there is no such thing (yet?)
4767 		 * in our TCP/IP.
4768 		 * Note: We do not use mi_offset_param() here as
4769 		 * tcp_opts_conn_req contents do not directly come from
4770 		 * an application and are either generated in kernel or
4771 		 * from user input that was already verified.
4772 		 */
4773 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4774 		optp = (char *)(mp->b_rptr +
4775 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4776 		optlen = (int)
4777 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4778 	}
4779 
4780 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4781 		ipha_t *ipha = (ipha_t *)iphdr;
4782 
4783 		/* packet is IPv4 */
4784 		if (tcp->tcp_family == AF_INET) {
4785 			sin = sin_null;
4786 			sin.sin_addr.s_addr = ipha->ipha_src;
4787 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4788 			sin.sin_family = AF_INET;
4789 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4790 			    (int)sizeof (sin_t), optp, optlen);
4791 		} else {
4792 			sin6 = sin6_null;
4793 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4794 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4795 			sin6.sin6_family = AF_INET6;
4796 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4797 			    (int)sizeof (sin6_t), optp, optlen);
4798 
4799 		}
4800 	} else {
4801 		ip6_t	*ip6h = (ip6_t *)iphdr;
4802 
4803 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4804 		ASSERT(tcp->tcp_family == AF_INET6);
4805 		sin6 = sin6_null;
4806 		sin6.sin6_addr = ip6h->ip6_src;
4807 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4808 		sin6.sin6_family = AF_INET6;
4809 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4810 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4811 		    (int)sizeof (sin6_t), optp, optlen);
4812 	}
4813 
4814 	if (!mp)
4815 		return (B_FALSE);
4816 
4817 	if ((cr = DB_CRED(idmp)) != NULL) {
4818 		mblk_setcred(mp, cr);
4819 		DB_CPID(mp) = DB_CPID(idmp);
4820 	}
4821 
4822 	if (defermp == NULL)
4823 		putnext(tcp->tcp_rq, mp);
4824 	else
4825 		*defermp = mp;
4826 
4827 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4828 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4829 	return (B_TRUE);
4830 }
4831 
4832 /*
4833  * Defense for the SYN attack -
4834  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4835  *    one from the list of droppable eagers. This list is a subset of q0.
4836  *    see comments before the definition of MAKE_DROPPABLE().
4837  * 2. Don't drop a SYN request before its first timeout. This gives every
4838  *    request at least til the first timeout to complete its 3-way handshake.
4839  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4840  *    requests currently on the queue that has timed out. This will be used
4841  *    as an indicator of whether an attack is under way, so that appropriate
4842  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4843  *    either when eager goes into ESTABLISHED, or gets freed up.)
4844  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4845  *    # of timeout drops back to <= q0len/32 => SYN alert off
4846  */
4847 static boolean_t
4848 tcp_drop_q0(tcp_t *tcp)
4849 {
4850 	tcp_t	*eager;
4851 	mblk_t	*mp;
4852 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4853 
4854 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4855 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4856 
4857 	/* Pick oldest eager from the list of droppable eagers */
4858 	eager = tcp->tcp_eager_prev_drop_q0;
4859 
4860 	/* If list is empty. return B_FALSE */
4861 	if (eager == tcp) {
4862 		return (B_FALSE);
4863 	}
4864 
4865 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4866 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4867 		return (B_FALSE);
4868 
4869 	/*
4870 	 * Take this eager out from the list of droppable eagers since we are
4871 	 * going to drop it.
4872 	 */
4873 	MAKE_UNDROPPABLE(eager);
4874 
4875 	if (tcp->tcp_debug) {
4876 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4877 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4878 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4879 		    tcp->tcp_conn_req_cnt_q0,
4880 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4881 	}
4882 
4883 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4884 
4885 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4886 	CONN_INC_REF(eager->tcp_connp);
4887 
4888 	/* Mark the IRE created for this SYN request temporary */
4889 	tcp_ip_ire_mark_advice(eager);
4890 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4891 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4892 
4893 	return (B_TRUE);
4894 }
4895 
4896 int
4897 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4898     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4899 {
4900 	tcp_t 		*ltcp = lconnp->conn_tcp;
4901 	tcp_t		*tcp = connp->conn_tcp;
4902 	mblk_t		*tpi_mp;
4903 	ipha_t		*ipha;
4904 	ip6_t		*ip6h;
4905 	sin6_t 		sin6;
4906 	in6_addr_t 	v6dst;
4907 	int		err;
4908 	int		ifindex = 0;
4909 	cred_t		*cr;
4910 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4911 
4912 	if (ipvers == IPV4_VERSION) {
4913 		ipha = (ipha_t *)mp->b_rptr;
4914 
4915 		connp->conn_send = ip_output;
4916 		connp->conn_recv = tcp_input;
4917 
4918 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4919 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4920 
4921 		sin6 = sin6_null;
4922 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4923 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4924 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4925 		sin6.sin6_family = AF_INET6;
4926 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4927 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4928 		if (tcp->tcp_recvdstaddr) {
4929 			sin6_t	sin6d;
4930 
4931 			sin6d = sin6_null;
4932 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4933 			    &sin6d.sin6_addr);
4934 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4935 			sin6d.sin6_family = AF_INET;
4936 			tpi_mp = mi_tpi_extconn_ind(NULL,
4937 			    (char *)&sin6d, sizeof (sin6_t),
4938 			    (char *)&tcp,
4939 			    (t_scalar_t)sizeof (intptr_t),
4940 			    (char *)&sin6d, sizeof (sin6_t),
4941 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4942 		} else {
4943 			tpi_mp = mi_tpi_conn_ind(NULL,
4944 			    (char *)&sin6, sizeof (sin6_t),
4945 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4946 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4947 		}
4948 	} else {
4949 		ip6h = (ip6_t *)mp->b_rptr;
4950 
4951 		connp->conn_send = ip_output_v6;
4952 		connp->conn_recv = tcp_input;
4953 
4954 		connp->conn_srcv6 = ip6h->ip6_dst;
4955 		connp->conn_remv6 = ip6h->ip6_src;
4956 
4957 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4958 		ifindex = (int)DB_CKSUMSTUFF(mp);
4959 		DB_CKSUMSTUFF(mp) = 0;
4960 
4961 		sin6 = sin6_null;
4962 		sin6.sin6_addr = ip6h->ip6_src;
4963 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4964 		sin6.sin6_family = AF_INET6;
4965 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4966 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4967 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4968 
4969 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4970 			/* Pass up the scope_id of remote addr */
4971 			sin6.sin6_scope_id = ifindex;
4972 		} else {
4973 			sin6.sin6_scope_id = 0;
4974 		}
4975 		if (tcp->tcp_recvdstaddr) {
4976 			sin6_t	sin6d;
4977 
4978 			sin6d = sin6_null;
4979 			sin6.sin6_addr = ip6h->ip6_dst;
4980 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4981 			sin6d.sin6_family = AF_INET;
4982 			tpi_mp = mi_tpi_extconn_ind(NULL,
4983 			    (char *)&sin6d, sizeof (sin6_t),
4984 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4985 			    (char *)&sin6d, sizeof (sin6_t),
4986 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4987 		} else {
4988 			tpi_mp = mi_tpi_conn_ind(NULL,
4989 			    (char *)&sin6, sizeof (sin6_t),
4990 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4991 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4992 		}
4993 	}
4994 
4995 	if (tpi_mp == NULL)
4996 		return (ENOMEM);
4997 
4998 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4999 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5000 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
5001 	connp->conn_fully_bound = B_FALSE;
5002 
5003 	if (tcps->tcps_trace)
5004 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5005 
5006 	/* Inherit information from the "parent" */
5007 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5008 	tcp->tcp_family = ltcp->tcp_family;
5009 	tcp->tcp_wq = ltcp->tcp_wq;
5010 	tcp->tcp_rq = ltcp->tcp_rq;
5011 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
5012 	tcp->tcp_detached = B_TRUE;
5013 	if ((err = tcp_init_values(tcp)) != 0) {
5014 		freemsg(tpi_mp);
5015 		return (err);
5016 	}
5017 
5018 	if (ipvers == IPV4_VERSION) {
5019 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
5020 			freemsg(tpi_mp);
5021 			return (err);
5022 		}
5023 		ASSERT(tcp->tcp_ipha != NULL);
5024 	} else {
5025 		/* ifindex must be already set */
5026 		ASSERT(ifindex != 0);
5027 
5028 		if (ltcp->tcp_bound_if != 0) {
5029 			/*
5030 			 * Set newtcp's bound_if equal to
5031 			 * listener's value. If ifindex is
5032 			 * not the same as ltcp->tcp_bound_if,
5033 			 * it must be a packet for the ipmp group
5034 			 * of interfaces
5035 			 */
5036 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
5037 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
5038 			tcp->tcp_bound_if = ifindex;
5039 		}
5040 
5041 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
5042 		tcp->tcp_recvifindex = 0;
5043 		tcp->tcp_recvhops = 0xffffffffU;
5044 		ASSERT(tcp->tcp_ip6h != NULL);
5045 	}
5046 
5047 	tcp->tcp_lport = ltcp->tcp_lport;
5048 
5049 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
5050 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
5051 			/*
5052 			 * Listener had options of some sort; eager inherits.
5053 			 * Free up the eager template and allocate one
5054 			 * of the right size.
5055 			 */
5056 			if (tcp->tcp_hdr_grown) {
5057 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
5058 			} else {
5059 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5060 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
5061 			}
5062 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5063 			    KM_NOSLEEP);
5064 			if (tcp->tcp_iphc == NULL) {
5065 				tcp->tcp_iphc_len = 0;
5066 				freemsg(tpi_mp);
5067 				return (ENOMEM);
5068 			}
5069 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5070 			tcp->tcp_hdr_grown = B_TRUE;
5071 		}
5072 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5073 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5074 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5075 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5076 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5077 
5078 		/*
5079 		 * Copy the IP+TCP header template from listener to eager
5080 		 */
5081 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5082 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5083 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5084 			    IPPROTO_RAW) {
5085 				tcp->tcp_ip6h =
5086 				    (ip6_t *)(tcp->tcp_iphc +
5087 				    sizeof (ip6i_t));
5088 			} else {
5089 				tcp->tcp_ip6h =
5090 				    (ip6_t *)(tcp->tcp_iphc);
5091 			}
5092 			tcp->tcp_ipha = NULL;
5093 		} else {
5094 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5095 			tcp->tcp_ip6h = NULL;
5096 		}
5097 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5098 		    tcp->tcp_ip_hdr_len);
5099 	} else {
5100 		/*
5101 		 * only valid case when ipversion of listener and
5102 		 * eager differ is when listener is IPv6 and
5103 		 * eager is IPv4.
5104 		 * Eager header template has been initialized to the
5105 		 * maximum v4 header sizes, which includes space for
5106 		 * TCP and IP options.
5107 		 */
5108 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5109 		    (tcp->tcp_ipversion == IPV4_VERSION));
5110 		ASSERT(tcp->tcp_iphc_len >=
5111 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5112 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5113 		/* copy IP header fields individually */
5114 		tcp->tcp_ipha->ipha_ttl =
5115 		    ltcp->tcp_ip6h->ip6_hops;
5116 		bcopy(ltcp->tcp_tcph->th_lport,
5117 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5118 	}
5119 
5120 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5121 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5122 	    sizeof (in_port_t));
5123 
5124 	if (ltcp->tcp_lport == 0) {
5125 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5126 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5127 		    sizeof (in_port_t));
5128 	}
5129 
5130 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5131 		ASSERT(ipha != NULL);
5132 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5133 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5134 
5135 		/* Source routing option copyover (reverse it) */
5136 		if (tcps->tcps_rev_src_routes)
5137 			tcp_opt_reverse(tcp, ipha);
5138 	} else {
5139 		ASSERT(ip6h != NULL);
5140 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5141 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5142 	}
5143 
5144 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5145 	ASSERT(!tcp->tcp_tconnind_started);
5146 	/*
5147 	 * If the SYN contains a credential, it's a loopback packet; attach
5148 	 * the credential to the TPI message.
5149 	 */
5150 	if ((cr = DB_CRED(idmp)) != NULL) {
5151 		mblk_setcred(tpi_mp, cr);
5152 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5153 	}
5154 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5155 
5156 	/* Inherit the listener's SSL protection state */
5157 
5158 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5159 		kssl_hold_ent(tcp->tcp_kssl_ent);
5160 		tcp->tcp_kssl_pending = B_TRUE;
5161 	}
5162 
5163 	return (0);
5164 }
5165 
5166 
5167 int
5168 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5169     tcph_t *tcph, mblk_t *idmp)
5170 {
5171 	tcp_t 		*ltcp = lconnp->conn_tcp;
5172 	tcp_t		*tcp = connp->conn_tcp;
5173 	sin_t		sin;
5174 	mblk_t		*tpi_mp = NULL;
5175 	int		err;
5176 	cred_t		*cr;
5177 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5178 
5179 	sin = sin_null;
5180 	sin.sin_addr.s_addr = ipha->ipha_src;
5181 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5182 	sin.sin_family = AF_INET;
5183 	if (ltcp->tcp_recvdstaddr) {
5184 		sin_t	sind;
5185 
5186 		sind = sin_null;
5187 		sind.sin_addr.s_addr = ipha->ipha_dst;
5188 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5189 		sind.sin_family = AF_INET;
5190 		tpi_mp = mi_tpi_extconn_ind(NULL,
5191 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5192 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5193 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5194 	} else {
5195 		tpi_mp = mi_tpi_conn_ind(NULL,
5196 		    (char *)&sin, sizeof (sin_t),
5197 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5198 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5199 	}
5200 
5201 	if (tpi_mp == NULL) {
5202 		return (ENOMEM);
5203 	}
5204 
5205 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5206 	connp->conn_send = ip_output;
5207 	connp->conn_recv = tcp_input;
5208 	connp->conn_fully_bound = B_FALSE;
5209 
5210 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5211 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5212 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5213 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5214 
5215 	if (tcps->tcps_trace) {
5216 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5217 	}
5218 
5219 	/* Inherit information from the "parent" */
5220 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5221 	tcp->tcp_family = ltcp->tcp_family;
5222 	tcp->tcp_wq = ltcp->tcp_wq;
5223 	tcp->tcp_rq = ltcp->tcp_rq;
5224 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5225 	tcp->tcp_detached = B_TRUE;
5226 	if ((err = tcp_init_values(tcp)) != 0) {
5227 		freemsg(tpi_mp);
5228 		return (err);
5229 	}
5230 
5231 	/*
5232 	 * Let's make sure that eager tcp template has enough space to
5233 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5234 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5235 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5236 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5237 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5238 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5239 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5240 	 */
5241 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5242 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5243 
5244 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5245 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5246 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5247 	tcp->tcp_ttl = ltcp->tcp_ttl;
5248 	tcp->tcp_tos = ltcp->tcp_tos;
5249 
5250 	/* Copy the IP+TCP header template from listener to eager */
5251 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5252 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5253 	tcp->tcp_ip6h = NULL;
5254 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5255 	    tcp->tcp_ip_hdr_len);
5256 
5257 	/* Initialize the IP addresses and Ports */
5258 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5259 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5260 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5261 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5262 
5263 	/* Source routing option copyover (reverse it) */
5264 	if (tcps->tcps_rev_src_routes)
5265 		tcp_opt_reverse(tcp, ipha);
5266 
5267 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5268 	ASSERT(!tcp->tcp_tconnind_started);
5269 
5270 	/*
5271 	 * If the SYN contains a credential, it's a loopback packet; attach
5272 	 * the credential to the TPI message.
5273 	 */
5274 	if ((cr = DB_CRED(idmp)) != NULL) {
5275 		mblk_setcred(tpi_mp, cr);
5276 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5277 	}
5278 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5279 
5280 	/* Inherit the listener's SSL protection state */
5281 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5282 		kssl_hold_ent(tcp->tcp_kssl_ent);
5283 		tcp->tcp_kssl_pending = B_TRUE;
5284 	}
5285 
5286 	return (0);
5287 }
5288 
5289 /*
5290  * sets up conn for ipsec.
5291  * if the first mblk is M_CTL it is consumed and mpp is updated.
5292  * in case of error mpp is freed.
5293  */
5294 conn_t *
5295 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5296 {
5297 	conn_t 		*connp = tcp->tcp_connp;
5298 	conn_t 		*econnp;
5299 	squeue_t 	*new_sqp;
5300 	mblk_t 		*first_mp = *mpp;
5301 	mblk_t		*mp = *mpp;
5302 	boolean_t	mctl_present = B_FALSE;
5303 	uint_t		ipvers;
5304 
5305 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5306 	if (econnp == NULL) {
5307 		freemsg(first_mp);
5308 		return (NULL);
5309 	}
5310 	if (DB_TYPE(mp) == M_CTL) {
5311 		if (mp->b_cont == NULL ||
5312 		    mp->b_cont->b_datap->db_type != M_DATA) {
5313 			freemsg(first_mp);
5314 			return (NULL);
5315 		}
5316 		mp = mp->b_cont;
5317 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5318 			freemsg(first_mp);
5319 			return (NULL);
5320 		}
5321 
5322 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5323 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5324 		mctl_present = B_TRUE;
5325 	} else {
5326 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5327 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5328 	}
5329 
5330 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5331 	DB_CKSUMSTART(mp) = 0;
5332 
5333 	ASSERT(OK_32PTR(mp->b_rptr));
5334 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5335 	if (ipvers == IPV4_VERSION) {
5336 		uint16_t  	*up;
5337 		uint32_t	ports;
5338 		ipha_t		*ipha;
5339 
5340 		ipha = (ipha_t *)mp->b_rptr;
5341 		up = (uint16_t *)((uchar_t *)ipha +
5342 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5343 		ports = *(uint32_t *)up;
5344 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5345 		    ipha->ipha_dst, ipha->ipha_src, ports);
5346 	} else {
5347 		uint16_t  	*up;
5348 		uint32_t	ports;
5349 		uint16_t	ip_hdr_len;
5350 		uint8_t		*nexthdrp;
5351 		ip6_t 		*ip6h;
5352 		tcph_t		*tcph;
5353 
5354 		ip6h = (ip6_t *)mp->b_rptr;
5355 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5356 			ip_hdr_len = IPV6_HDR_LEN;
5357 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5358 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5359 			CONN_DEC_REF(econnp);
5360 			freemsg(first_mp);
5361 			return (NULL);
5362 		}
5363 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5364 		up = (uint16_t *)tcph->th_lport;
5365 		ports = *(uint32_t *)up;
5366 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5367 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5368 	}
5369 
5370 	/*
5371 	 * The caller already ensured that there is a sqp present.
5372 	 */
5373 	econnp->conn_sqp = new_sqp;
5374 
5375 	if (connp->conn_policy != NULL) {
5376 		ipsec_in_t *ii;
5377 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5378 		ASSERT(ii->ipsec_in_policy == NULL);
5379 		IPPH_REFHOLD(connp->conn_policy);
5380 		ii->ipsec_in_policy = connp->conn_policy;
5381 
5382 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5383 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5384 			CONN_DEC_REF(econnp);
5385 			freemsg(first_mp);
5386 			return (NULL);
5387 		}
5388 	}
5389 
5390 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5391 		CONN_DEC_REF(econnp);
5392 		freemsg(first_mp);
5393 		return (NULL);
5394 	}
5395 
5396 	/*
5397 	 * If we know we have some policy, pass the "IPSEC"
5398 	 * options size TCP uses this adjust the MSS.
5399 	 */
5400 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5401 	if (mctl_present) {
5402 		freeb(first_mp);
5403 		*mpp = mp;
5404 	}
5405 
5406 	return (econnp);
5407 }
5408 
5409 /*
5410  * tcp_get_conn/tcp_free_conn
5411  *
5412  * tcp_get_conn is used to get a clean tcp connection structure.
5413  * It tries to reuse the connections put on the freelist by the
5414  * time_wait_collector failing which it goes to kmem_cache. This
5415  * way has two benefits compared to just allocating from and
5416  * freeing to kmem_cache.
5417  * 1) The time_wait_collector can free (which includes the cleanup)
5418  * outside the squeue. So when the interrupt comes, we have a clean
5419  * connection sitting in the freelist. Obviously, this buys us
5420  * performance.
5421  *
5422  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5423  * has multiple disadvantages - tying up the squeue during alloc, and the
5424  * fact that IPSec policy initialization has to happen here which
5425  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5426  * But allocating the conn/tcp in IP land is also not the best since
5427  * we can't check the 'q' and 'q0' which are protected by squeue and
5428  * blindly allocate memory which might have to be freed here if we are
5429  * not allowed to accept the connection. By using the freelist and
5430  * putting the conn/tcp back in freelist, we don't pay a penalty for
5431  * allocating memory without checking 'q/q0' and freeing it if we can't
5432  * accept the connection.
5433  *
5434  * Care should be taken to put the conn back in the same squeue's freelist
5435  * from which it was allocated. Best results are obtained if conn is
5436  * allocated from listener's squeue and freed to the same. Time wait
5437  * collector will free up the freelist is the connection ends up sitting
5438  * there for too long.
5439  */
5440 void *
5441 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5442 {
5443 	tcp_t			*tcp = NULL;
5444 	conn_t			*connp = NULL;
5445 	squeue_t		*sqp = (squeue_t *)arg;
5446 	tcp_squeue_priv_t 	*tcp_time_wait;
5447 	netstack_t		*ns;
5448 
5449 	tcp_time_wait =
5450 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5451 
5452 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5453 	tcp = tcp_time_wait->tcp_free_list;
5454 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5455 	if (tcp != NULL) {
5456 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5457 		tcp_time_wait->tcp_free_list_cnt--;
5458 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5459 		tcp->tcp_time_wait_next = NULL;
5460 		connp = tcp->tcp_connp;
5461 		connp->conn_flags |= IPCL_REUSED;
5462 
5463 		ASSERT(tcp->tcp_tcps == NULL);
5464 		ASSERT(connp->conn_netstack == NULL);
5465 		ns = tcps->tcps_netstack;
5466 		netstack_hold(ns);
5467 		connp->conn_netstack = ns;
5468 		tcp->tcp_tcps = tcps;
5469 		TCPS_REFHOLD(tcps);
5470 		ipcl_globalhash_insert(connp);
5471 		return ((void *)connp);
5472 	}
5473 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5474 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5475 	    tcps->tcps_netstack)) == NULL)
5476 		return (NULL);
5477 	tcp = connp->conn_tcp;
5478 	tcp->tcp_tcps = tcps;
5479 	TCPS_REFHOLD(tcps);
5480 	return ((void *)connp);
5481 }
5482 
5483 /*
5484  * Update the cached label for the given tcp_t.  This should be called once per
5485  * connection, and before any packets are sent or tcp_process_options is
5486  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5487  */
5488 static boolean_t
5489 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5490 {
5491 	conn_t *connp = tcp->tcp_connp;
5492 
5493 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5494 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5495 		int added;
5496 
5497 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5498 		    connp->conn_mac_exempt,
5499 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5500 			return (B_FALSE);
5501 
5502 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5503 		if (added == -1)
5504 			return (B_FALSE);
5505 		tcp->tcp_hdr_len += added;
5506 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5507 		tcp->tcp_ip_hdr_len += added;
5508 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5509 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5510 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5511 			    tcp->tcp_hdr_len);
5512 			if (added == -1)
5513 				return (B_FALSE);
5514 			tcp->tcp_hdr_len += added;
5515 			tcp->tcp_tcph = (tcph_t *)
5516 			    ((uchar_t *)tcp->tcp_tcph + added);
5517 			tcp->tcp_ip_hdr_len += added;
5518 		}
5519 	} else {
5520 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5521 
5522 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5523 		    connp->conn_mac_exempt,
5524 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5525 			return (B_FALSE);
5526 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5527 		    &tcp->tcp_label_len, optbuf) != 0)
5528 			return (B_FALSE);
5529 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5530 			return (B_FALSE);
5531 	}
5532 
5533 	connp->conn_ulp_labeled = 1;
5534 
5535 	return (B_TRUE);
5536 }
5537 
5538 /* BEGIN CSTYLED */
5539 /*
5540  *
5541  * The sockfs ACCEPT path:
5542  * =======================
5543  *
5544  * The eager is now established in its own perimeter as soon as SYN is
5545  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5546  * completes the accept processing on the acceptor STREAM. The sending
5547  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5548  * listener but a TLI/XTI listener completes the accept processing
5549  * on the listener perimeter.
5550  *
5551  * Common control flow for 3 way handshake:
5552  * ----------------------------------------
5553  *
5554  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5555  *					-> tcp_conn_request()
5556  *
5557  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5558  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5559  *
5560  * Sockfs ACCEPT Path:
5561  * -------------------
5562  *
5563  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5564  * as STREAM entry point)
5565  *
5566  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5567  *
5568  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5569  * association (we are not behind eager's squeue but sockfs is protecting us
5570  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5571  * is changed to point at tcp_wput().
5572  *
5573  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5574  * listener (done on listener's perimeter).
5575  *
5576  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5577  * accept.
5578  *
5579  * TLI/XTI client ACCEPT path:
5580  * ---------------------------
5581  *
5582  * soaccept() sends T_CONN_RES on the listener STREAM.
5583  *
5584  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5585  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5586  *
5587  * Locks:
5588  * ======
5589  *
5590  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5591  * and listeners->tcp_eager_next_q.
5592  *
5593  * Referencing:
5594  * ============
5595  *
5596  * 1) We start out in tcp_conn_request by eager placing a ref on
5597  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5598  *
5599  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5600  * doing so we place a ref on the eager. This ref is finally dropped at the
5601  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5602  * reference is dropped by the squeue framework.
5603  *
5604  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5605  *
5606  * The reference must be released by the same entity that added the reference
5607  * In the above scheme, the eager is the entity that adds and releases the
5608  * references. Note that tcp_accept_finish executes in the squeue of the eager
5609  * (albeit after it is attached to the acceptor stream). Though 1. executes
5610  * in the listener's squeue, the eager is nascent at this point and the
5611  * reference can be considered to have been added on behalf of the eager.
5612  *
5613  * Eager getting a Reset or listener closing:
5614  * ==========================================
5615  *
5616  * Once the listener and eager are linked, the listener never does the unlink.
5617  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5618  * a message on all eager perimeter. The eager then does the unlink, clears
5619  * any pointers to the listener's queue and drops the reference to the
5620  * listener. The listener waits in tcp_close outside the squeue until its
5621  * refcount has dropped to 1. This ensures that the listener has waited for
5622  * all eagers to clear their association with the listener.
5623  *
5624  * Similarly, if eager decides to go away, it can unlink itself and close.
5625  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5626  * the reference to eager is still valid because of the extra ref we put
5627  * in tcp_send_conn_ind.
5628  *
5629  * Listener can always locate the eager under the protection
5630  * of the listener->tcp_eager_lock, and then do a refhold
5631  * on the eager during the accept processing.
5632  *
5633  * The acceptor stream accesses the eager in the accept processing
5634  * based on the ref placed on eager before sending T_conn_ind.
5635  * The only entity that can negate this refhold is a listener close
5636  * which is mutually exclusive with an active acceptor stream.
5637  *
5638  * Eager's reference on the listener
5639  * ===================================
5640  *
5641  * If the accept happens (even on a closed eager) the eager drops its
5642  * reference on the listener at the start of tcp_accept_finish. If the
5643  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5644  * the reference is dropped in tcp_closei_local. If the listener closes,
5645  * the reference is dropped in tcp_eager_kill. In all cases the reference
5646  * is dropped while executing in the eager's context (squeue).
5647  */
5648 /* END CSTYLED */
5649 
5650 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5651 
5652 /*
5653  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5654  * tcp_rput_data will not see any SYN packets.
5655  */
5656 /* ARGSUSED */
5657 void
5658 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5659 {
5660 	tcph_t		*tcph;
5661 	uint32_t	seg_seq;
5662 	tcp_t		*eager;
5663 	uint_t		ipvers;
5664 	ipha_t		*ipha;
5665 	ip6_t		*ip6h;
5666 	int		err;
5667 	conn_t		*econnp = NULL;
5668 	squeue_t	*new_sqp;
5669 	mblk_t		*mp1;
5670 	uint_t 		ip_hdr_len;
5671 	conn_t		*connp = (conn_t *)arg;
5672 	tcp_t		*tcp = connp->conn_tcp;
5673 	cred_t		*credp;
5674 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5675 	ip_stack_t	*ipst;
5676 
5677 	if (tcp->tcp_state != TCPS_LISTEN)
5678 		goto error2;
5679 
5680 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5681 
5682 	mutex_enter(&tcp->tcp_eager_lock);
5683 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5684 		mutex_exit(&tcp->tcp_eager_lock);
5685 		TCP_STAT(tcps, tcp_listendrop);
5686 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5687 		if (tcp->tcp_debug) {
5688 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5689 			    "tcp_conn_request: listen backlog (max=%d) "
5690 			    "overflow (%d pending) on %s",
5691 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5692 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5693 		}
5694 		goto error2;
5695 	}
5696 
5697 	if (tcp->tcp_conn_req_cnt_q0 >=
5698 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5699 		/*
5700 		 * Q0 is full. Drop a pending half-open req from the queue
5701 		 * to make room for the new SYN req. Also mark the time we
5702 		 * drop a SYN.
5703 		 *
5704 		 * A more aggressive defense against SYN attack will
5705 		 * be to set the "tcp_syn_defense" flag now.
5706 		 */
5707 		TCP_STAT(tcps, tcp_listendropq0);
5708 		tcp->tcp_last_rcv_lbolt = lbolt64;
5709 		if (!tcp_drop_q0(tcp)) {
5710 			mutex_exit(&tcp->tcp_eager_lock);
5711 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5712 			if (tcp->tcp_debug) {
5713 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5714 				    "tcp_conn_request: listen half-open queue "
5715 				    "(max=%d) full (%d pending) on %s",
5716 				    tcps->tcps_conn_req_max_q0,
5717 				    tcp->tcp_conn_req_cnt_q0,
5718 				    tcp_display(tcp, NULL,
5719 				    DISP_PORT_ONLY));
5720 			}
5721 			goto error2;
5722 		}
5723 	}
5724 	mutex_exit(&tcp->tcp_eager_lock);
5725 
5726 	/*
5727 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5728 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5729 	 * link local address.  If IPSec is enabled, db_struioflag has
5730 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5731 	 * otherwise an error case if neither of them is set.
5732 	 */
5733 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5734 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5735 		DB_CKSUMSTART(mp) = 0;
5736 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5737 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5738 		if (econnp == NULL)
5739 			goto error2;
5740 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5741 		econnp->conn_sqp = new_sqp;
5742 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5743 		/*
5744 		 * mp is updated in tcp_get_ipsec_conn().
5745 		 */
5746 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5747 		if (econnp == NULL) {
5748 			/*
5749 			 * mp freed by tcp_get_ipsec_conn.
5750 			 */
5751 			return;
5752 		}
5753 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5754 	} else {
5755 		goto error2;
5756 	}
5757 
5758 	ASSERT(DB_TYPE(mp) == M_DATA);
5759 
5760 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5761 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5762 	ASSERT(OK_32PTR(mp->b_rptr));
5763 	if (ipvers == IPV4_VERSION) {
5764 		ipha = (ipha_t *)mp->b_rptr;
5765 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5766 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5767 	} else {
5768 		ip6h = (ip6_t *)mp->b_rptr;
5769 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5770 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5771 	}
5772 
5773 	if (tcp->tcp_family == AF_INET) {
5774 		ASSERT(ipvers == IPV4_VERSION);
5775 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5776 	} else {
5777 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5778 	}
5779 
5780 	if (err)
5781 		goto error3;
5782 
5783 	eager = econnp->conn_tcp;
5784 
5785 	/* Inherit various TCP parameters from the listener */
5786 	eager->tcp_naglim = tcp->tcp_naglim;
5787 	eager->tcp_first_timer_threshold =
5788 	    tcp->tcp_first_timer_threshold;
5789 	eager->tcp_second_timer_threshold =
5790 	    tcp->tcp_second_timer_threshold;
5791 
5792 	eager->tcp_first_ctimer_threshold =
5793 	    tcp->tcp_first_ctimer_threshold;
5794 	eager->tcp_second_ctimer_threshold =
5795 	    tcp->tcp_second_ctimer_threshold;
5796 
5797 	/*
5798 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5799 	 * If it does not, the eager's receive window will be set to the
5800 	 * listener's receive window later in this function.
5801 	 */
5802 	eager->tcp_rwnd = 0;
5803 
5804 	/*
5805 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5806 	 * calling tcp_process_options() where tcp_mss_set() is called
5807 	 * to set the initial cwnd.
5808 	 */
5809 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5810 
5811 	/*
5812 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5813 	 * zone id before the accept is completed in tcp_wput_accept().
5814 	 */
5815 	econnp->conn_zoneid = connp->conn_zoneid;
5816 	econnp->conn_allzones = connp->conn_allzones;
5817 
5818 	/* Copy nexthop information from listener to eager */
5819 	if (connp->conn_nexthop_set) {
5820 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5821 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5822 	}
5823 
5824 	/*
5825 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5826 	 * eager is accepted
5827 	 */
5828 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5829 	crhold(credp);
5830 
5831 	/*
5832 	 * If the caller has the process-wide flag set, then default to MAC
5833 	 * exempt mode.  This allows read-down to unlabeled hosts.
5834 	 */
5835 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5836 		econnp->conn_mac_exempt = B_TRUE;
5837 
5838 	if (is_system_labeled()) {
5839 		cred_t *cr;
5840 
5841 		if (connp->conn_mlp_type != mlptSingle) {
5842 			cr = econnp->conn_peercred = DB_CRED(mp);
5843 			if (cr != NULL)
5844 				crhold(cr);
5845 			else
5846 				cr = econnp->conn_cred;
5847 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5848 			    econnp, cred_t *, cr)
5849 		} else {
5850 			cr = econnp->conn_cred;
5851 			DTRACE_PROBE2(syn_accept, conn_t *,
5852 			    econnp, cred_t *, cr)
5853 		}
5854 
5855 		if (!tcp_update_label(eager, cr)) {
5856 			DTRACE_PROBE3(
5857 			    tx__ip__log__error__connrequest__tcp,
5858 			    char *, "eager connp(1) label on SYN mp(2) failed",
5859 			    conn_t *, econnp, mblk_t *, mp);
5860 			goto error3;
5861 		}
5862 	}
5863 
5864 	eager->tcp_hard_binding = B_TRUE;
5865 
5866 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5867 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5868 
5869 	CL_INET_CONNECT(eager);
5870 
5871 	/*
5872 	 * No need to check for multicast destination since ip will only pass
5873 	 * up multicasts to those that have expressed interest
5874 	 * TODO: what about rejecting broadcasts?
5875 	 * Also check that source is not a multicast or broadcast address.
5876 	 */
5877 	eager->tcp_state = TCPS_SYN_RCVD;
5878 
5879 
5880 	/*
5881 	 * There should be no ire in the mp as we are being called after
5882 	 * receiving the SYN.
5883 	 */
5884 	ASSERT(tcp_ire_mp(mp) == NULL);
5885 
5886 	/*
5887 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5888 	 */
5889 
5890 	if (tcp_adapt_ire(eager, NULL) == 0) {
5891 		/* Undo the bind_hash_insert */
5892 		tcp_bind_hash_remove(eager);
5893 		goto error3;
5894 	}
5895 
5896 	/* Process all TCP options. */
5897 	tcp_process_options(eager, tcph);
5898 
5899 	/* Is the other end ECN capable? */
5900 	if (tcps->tcps_ecn_permitted >= 1 &&
5901 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5902 		eager->tcp_ecn_ok = B_TRUE;
5903 	}
5904 
5905 	/*
5906 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5907 	 * window size changed via SO_RCVBUF option.  First round up the
5908 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5909 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5910 	 * setting.
5911 	 *
5912 	 * Note if there is a rpipe metric associated with the remote host,
5913 	 * we should not inherit receive window size from listener.
5914 	 */
5915 	eager->tcp_rwnd = MSS_ROUNDUP(
5916 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5917 	    eager->tcp_rwnd), eager->tcp_mss);
5918 	if (eager->tcp_snd_ws_ok)
5919 		tcp_set_ws_value(eager);
5920 	/*
5921 	 * Note that this is the only place tcp_rwnd_set() is called for
5922 	 * accepting a connection.  We need to call it here instead of
5923 	 * after the 3-way handshake because we need to tell the other
5924 	 * side our rwnd in the SYN-ACK segment.
5925 	 */
5926 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5927 
5928 	/*
5929 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5930 	 * via soaccept()->soinheritoptions() which essentially applies
5931 	 * all the listener options to the new STREAM. The options that we
5932 	 * need to take care of are:
5933 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5934 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5935 	 * SO_SNDBUF, SO_RCVBUF.
5936 	 *
5937 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5938 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5939 	 *		tcp_maxpsz_set() gets called later from
5940 	 *		tcp_accept_finish(), the option takes effect.
5941 	 *
5942 	 */
5943 	/* Set the TCP options */
5944 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5945 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5946 	eager->tcp_oobinline = tcp->tcp_oobinline;
5947 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5948 	eager->tcp_broadcast = tcp->tcp_broadcast;
5949 	eager->tcp_useloopback = tcp->tcp_useloopback;
5950 	eager->tcp_dontroute = tcp->tcp_dontroute;
5951 	eager->tcp_linger = tcp->tcp_linger;
5952 	eager->tcp_lingertime = tcp->tcp_lingertime;
5953 	if (tcp->tcp_ka_enabled)
5954 		eager->tcp_ka_enabled = 1;
5955 
5956 	/* Set the IP options */
5957 	econnp->conn_broadcast = connp->conn_broadcast;
5958 	econnp->conn_loopback = connp->conn_loopback;
5959 	econnp->conn_dontroute = connp->conn_dontroute;
5960 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5961 
5962 	/* Put a ref on the listener for the eager. */
5963 	CONN_INC_REF(connp);
5964 	mutex_enter(&tcp->tcp_eager_lock);
5965 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5966 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5967 	tcp->tcp_eager_next_q0 = eager;
5968 	eager->tcp_eager_prev_q0 = tcp;
5969 
5970 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5971 	eager->tcp_listener = tcp;
5972 	eager->tcp_saved_listener = tcp;
5973 
5974 	/*
5975 	 * Tag this detached tcp vector for later retrieval
5976 	 * by our listener client in tcp_accept().
5977 	 */
5978 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5979 	tcp->tcp_conn_req_cnt_q0++;
5980 	if (++tcp->tcp_conn_req_seqnum == -1) {
5981 		/*
5982 		 * -1 is "special" and defined in TPI as something
5983 		 * that should never be used in T_CONN_IND
5984 		 */
5985 		++tcp->tcp_conn_req_seqnum;
5986 	}
5987 	mutex_exit(&tcp->tcp_eager_lock);
5988 
5989 	if (tcp->tcp_syn_defense) {
5990 		/* Don't drop the SYN that comes from a good IP source */
5991 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5992 		if (addr_cache != NULL && eager->tcp_remote ==
5993 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5994 			eager->tcp_dontdrop = B_TRUE;
5995 		}
5996 	}
5997 
5998 	/*
5999 	 * We need to insert the eager in its own perimeter but as soon
6000 	 * as we do that, we expose the eager to the classifier and
6001 	 * should not touch any field outside the eager's perimeter.
6002 	 * So do all the work necessary before inserting the eager
6003 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
6004 	 * will succeed but undo everything if it fails.
6005 	 */
6006 	seg_seq = ABE32_TO_U32(tcph->th_seq);
6007 	eager->tcp_irs = seg_seq;
6008 	eager->tcp_rack = seg_seq;
6009 	eager->tcp_rnxt = seg_seq + 1;
6010 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
6011 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
6012 	eager->tcp_state = TCPS_SYN_RCVD;
6013 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
6014 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
6015 	if (mp1 == NULL) {
6016 		/*
6017 		 * Increment the ref count as we are going to
6018 		 * enqueueing an mp in squeue
6019 		 */
6020 		CONN_INC_REF(econnp);
6021 		goto error;
6022 	}
6023 	DB_CPID(mp1) = tcp->tcp_cpid;
6024 	eager->tcp_cpid = tcp->tcp_cpid;
6025 	eager->tcp_open_time = lbolt64;
6026 
6027 	/*
6028 	 * We need to start the rto timer. In normal case, we start
6029 	 * the timer after sending the packet on the wire (or at
6030 	 * least believing that packet was sent by waiting for
6031 	 * CALL_IP_WPUT() to return). Since this is the first packet
6032 	 * being sent on the wire for the eager, our initial tcp_rto
6033 	 * is at least tcp_rexmit_interval_min which is a fairly
6034 	 * large value to allow the algorithm to adjust slowly to large
6035 	 * fluctuations of RTT during first few transmissions.
6036 	 *
6037 	 * Starting the timer first and then sending the packet in this
6038 	 * case shouldn't make much difference since tcp_rexmit_interval_min
6039 	 * is of the order of several 100ms and starting the timer
6040 	 * first and then sending the packet will result in difference
6041 	 * of few micro seconds.
6042 	 *
6043 	 * Without this optimization, we are forced to hold the fanout
6044 	 * lock across the ipcl_bind_insert() and sending the packet
6045 	 * so that we don't race against an incoming packet (maybe RST)
6046 	 * for this eager.
6047 	 *
6048 	 * It is necessary to acquire an extra reference on the eager
6049 	 * at this point and hold it until after tcp_send_data() to
6050 	 * ensure against an eager close race.
6051 	 */
6052 
6053 	CONN_INC_REF(eager->tcp_connp);
6054 
6055 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
6056 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
6057 
6058 
6059 	/*
6060 	 * Insert the eager in its own perimeter now. We are ready to deal
6061 	 * with any packets on eager.
6062 	 */
6063 	if (eager->tcp_ipversion == IPV4_VERSION) {
6064 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6065 			goto error;
6066 		}
6067 	} else {
6068 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6069 			goto error;
6070 		}
6071 	}
6072 
6073 	/* mark conn as fully-bound */
6074 	econnp->conn_fully_bound = B_TRUE;
6075 
6076 	/* Send the SYN-ACK */
6077 	tcp_send_data(eager, eager->tcp_wq, mp1);
6078 	CONN_DEC_REF(eager->tcp_connp);
6079 	freemsg(mp);
6080 
6081 	return;
6082 error:
6083 	freemsg(mp1);
6084 	eager->tcp_closemp_used = B_TRUE;
6085 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6086 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6087 	    econnp, SQTAG_TCP_CONN_REQ_2);
6088 
6089 	/*
6090 	 * If a connection already exists, send the mp to that connections so
6091 	 * that it can be appropriately dealt with.
6092 	 */
6093 	ipst = tcps->tcps_netstack->netstack_ip;
6094 
6095 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6096 		if (!IPCL_IS_CONNECTED(econnp)) {
6097 			/*
6098 			 * Something bad happened. ipcl_conn_insert()
6099 			 * failed because a connection already existed
6100 			 * in connected hash but we can't find it
6101 			 * anymore (someone blew it away). Just
6102 			 * free this message and hopefully remote
6103 			 * will retransmit at which time the SYN can be
6104 			 * treated as a new connection or dealth with
6105 			 * a TH_RST if a connection already exists.
6106 			 */
6107 			CONN_DEC_REF(econnp);
6108 			freemsg(mp);
6109 		} else {
6110 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6111 			    econnp, SQTAG_TCP_CONN_REQ_1);
6112 		}
6113 	} else {
6114 		/* Nobody wants this packet */
6115 		freemsg(mp);
6116 	}
6117 	return;
6118 error3:
6119 	CONN_DEC_REF(econnp);
6120 error2:
6121 	freemsg(mp);
6122 }
6123 
6124 /*
6125  * In an ideal case of vertical partition in NUMA architecture, its
6126  * beneficial to have the listener and all the incoming connections
6127  * tied to the same squeue. The other constraint is that incoming
6128  * connections should be tied to the squeue attached to interrupted
6129  * CPU for obvious locality reason so this leaves the listener to
6130  * be tied to the same squeue. Our only problem is that when listener
6131  * is binding, the CPU that will get interrupted by the NIC whose
6132  * IP address the listener is binding to is not even known. So
6133  * the code below allows us to change that binding at the time the
6134  * CPU is interrupted by virtue of incoming connection's squeue.
6135  *
6136  * This is usefull only in case of a listener bound to a specific IP
6137  * address. For other kind of listeners, they get bound the
6138  * very first time and there is no attempt to rebind them.
6139  */
6140 void
6141 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6142 {
6143 	conn_t		*connp = (conn_t *)arg;
6144 	squeue_t	*sqp = (squeue_t *)arg2;
6145 	squeue_t	*new_sqp;
6146 	uint32_t	conn_flags;
6147 
6148 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6149 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6150 	} else {
6151 		goto done;
6152 	}
6153 
6154 	if (connp->conn_fanout == NULL)
6155 		goto done;
6156 
6157 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6158 		mutex_enter(&connp->conn_fanout->connf_lock);
6159 		mutex_enter(&connp->conn_lock);
6160 		/*
6161 		 * No one from read or write side can access us now
6162 		 * except for already queued packets on this squeue.
6163 		 * But since we haven't changed the squeue yet, they
6164 		 * can't execute. If they are processed after we have
6165 		 * changed the squeue, they are sent back to the
6166 		 * correct squeue down below.
6167 		 * But a listner close can race with processing of
6168 		 * incoming SYN. If incoming SYN processing changes
6169 		 * the squeue then the listener close which is waiting
6170 		 * to enter the squeue would operate on the wrong
6171 		 * squeue. Hence we don't change the squeue here unless
6172 		 * the refcount is exactly the minimum refcount. The
6173 		 * minimum refcount of 4 is counted as - 1 each for
6174 		 * TCP and IP, 1 for being in the classifier hash, and
6175 		 * 1 for the mblk being processed.
6176 		 */
6177 
6178 		if (connp->conn_ref != 4 ||
6179 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6180 			mutex_exit(&connp->conn_lock);
6181 			mutex_exit(&connp->conn_fanout->connf_lock);
6182 			goto done;
6183 		}
6184 		if (connp->conn_sqp != new_sqp) {
6185 			while (connp->conn_sqp != new_sqp)
6186 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6187 		}
6188 
6189 		do {
6190 			conn_flags = connp->conn_flags;
6191 			conn_flags |= IPCL_FULLY_BOUND;
6192 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6193 			    conn_flags);
6194 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6195 
6196 		mutex_exit(&connp->conn_fanout->connf_lock);
6197 		mutex_exit(&connp->conn_lock);
6198 	}
6199 
6200 done:
6201 	if (connp->conn_sqp != sqp) {
6202 		CONN_INC_REF(connp);
6203 		squeue_fill(connp->conn_sqp, mp,
6204 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6205 	} else {
6206 		tcp_conn_request(connp, mp, sqp);
6207 	}
6208 }
6209 
6210 /*
6211  * Successful connect request processing begins when our client passes
6212  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6213  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6214  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6215  *   upstream <- tcp_rput()                <- IP
6216  * After various error checks are completed, tcp_connect() lays
6217  * the target address and port into the composite header template,
6218  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6219  * request followed by an IRE request, and passes the three mblk message
6220  * down to IP looking like this:
6221  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6222  * Processing continues in tcp_rput() when we receive the following message:
6223  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6224  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6225  * to fire off the connection request, and then passes the T_OK_ACK mblk
6226  * upstream that we filled in below.  There are, of course, numerous
6227  * error conditions along the way which truncate the processing described
6228  * above.
6229  */
6230 static void
6231 tcp_connect(tcp_t *tcp, mblk_t *mp)
6232 {
6233 	sin_t		*sin;
6234 	sin6_t		*sin6;
6235 	queue_t		*q = tcp->tcp_wq;
6236 	struct T_conn_req	*tcr;
6237 	ipaddr_t	*dstaddrp;
6238 	in_port_t	dstport;
6239 	uint_t		srcid;
6240 
6241 	tcr = (struct T_conn_req *)mp->b_rptr;
6242 
6243 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6244 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6245 		tcp_err_ack(tcp, mp, TPROTO, 0);
6246 		return;
6247 	}
6248 
6249 	/*
6250 	 * Determine packet type based on type of address passed in
6251 	 * the request should contain an IPv4 or IPv6 address.
6252 	 * Make sure that address family matches the type of
6253 	 * family of the the address passed down
6254 	 */
6255 	switch (tcr->DEST_length) {
6256 	default:
6257 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6258 		return;
6259 
6260 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6261 		/*
6262 		 * XXX: The check for valid DEST_length was not there
6263 		 * in earlier releases and some buggy
6264 		 * TLI apps (e.g Sybase) got away with not feeding
6265 		 * in sin_zero part of address.
6266 		 * We allow that bug to keep those buggy apps humming.
6267 		 * Test suites require the check on DEST_length.
6268 		 * We construct a new mblk with valid DEST_length
6269 		 * free the original so the rest of the code does
6270 		 * not have to keep track of this special shorter
6271 		 * length address case.
6272 		 */
6273 		mblk_t *nmp;
6274 		struct T_conn_req *ntcr;
6275 		sin_t *nsin;
6276 
6277 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6278 		    tcr->OPT_length, BPRI_HI);
6279 		if (nmp == NULL) {
6280 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6281 			return;
6282 		}
6283 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6284 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6285 		ntcr->PRIM_type = T_CONN_REQ;
6286 		ntcr->DEST_length = sizeof (sin_t);
6287 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6288 
6289 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6290 		*nsin = sin_null;
6291 		/* Get pointer to shorter address to copy from original mp */
6292 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6293 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6294 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6295 			freemsg(nmp);
6296 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6297 			return;
6298 		}
6299 		nsin->sin_family = sin->sin_family;
6300 		nsin->sin_port = sin->sin_port;
6301 		nsin->sin_addr = sin->sin_addr;
6302 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6303 		nmp->b_wptr = (uchar_t *)&nsin[1];
6304 		if (tcr->OPT_length != 0) {
6305 			ntcr->OPT_length = tcr->OPT_length;
6306 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6307 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6308 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6309 			    tcr->OPT_length);
6310 			nmp->b_wptr += tcr->OPT_length;
6311 		}
6312 		freemsg(mp);	/* original mp freed */
6313 		mp = nmp;	/* re-initialize original variables */
6314 		tcr = ntcr;
6315 	}
6316 	/* FALLTHRU */
6317 
6318 	case sizeof (sin_t):
6319 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6320 		    sizeof (sin_t));
6321 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6322 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6323 			return;
6324 		}
6325 		if (tcp->tcp_family != AF_INET ||
6326 		    sin->sin_family != AF_INET) {
6327 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6328 			return;
6329 		}
6330 		if (sin->sin_port == 0) {
6331 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6332 			return;
6333 		}
6334 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6335 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6336 			return;
6337 		}
6338 
6339 		break;
6340 
6341 	case sizeof (sin6_t):
6342 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6343 		    sizeof (sin6_t));
6344 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6345 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6346 			return;
6347 		}
6348 		if (tcp->tcp_family != AF_INET6 ||
6349 		    sin6->sin6_family != AF_INET6) {
6350 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6351 			return;
6352 		}
6353 		if (sin6->sin6_port == 0) {
6354 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6355 			return;
6356 		}
6357 		break;
6358 	}
6359 	/*
6360 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6361 	 * should key on their sequence number and cut them loose.
6362 	 */
6363 
6364 	/*
6365 	 * If options passed in, feed it for verification and handling
6366 	 */
6367 	if (tcr->OPT_length != 0) {
6368 		mblk_t	*ok_mp;
6369 		mblk_t	*discon_mp;
6370 		mblk_t  *conn_opts_mp;
6371 		int t_error, sys_error, do_disconnect;
6372 
6373 		conn_opts_mp = NULL;
6374 
6375 		if (tcp_conprim_opt_process(tcp, mp,
6376 		    &do_disconnect, &t_error, &sys_error) < 0) {
6377 			if (do_disconnect) {
6378 				ASSERT(t_error == 0 && sys_error == 0);
6379 				discon_mp = mi_tpi_discon_ind(NULL,
6380 				    ECONNREFUSED, 0);
6381 				if (!discon_mp) {
6382 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6383 					    TSYSERR, ENOMEM);
6384 					return;
6385 				}
6386 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6387 				if (!ok_mp) {
6388 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6389 					    TSYSERR, ENOMEM);
6390 					return;
6391 				}
6392 				qreply(q, ok_mp);
6393 				qreply(q, discon_mp); /* no flush! */
6394 			} else {
6395 				ASSERT(t_error != 0);
6396 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6397 				    sys_error);
6398 			}
6399 			return;
6400 		}
6401 		/*
6402 		 * Success in setting options, the mp option buffer represented
6403 		 * by OPT_length/offset has been potentially modified and
6404 		 * contains results of option processing. We copy it in
6405 		 * another mp to save it for potentially influencing returning
6406 		 * it in T_CONN_CONN.
6407 		 */
6408 		if (tcr->OPT_length != 0) { /* there are resulting options */
6409 			conn_opts_mp = copyb(mp);
6410 			if (!conn_opts_mp) {
6411 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6412 				    TSYSERR, ENOMEM);
6413 				return;
6414 			}
6415 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6416 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6417 			/*
6418 			 * Note:
6419 			 * These resulting option negotiation can include any
6420 			 * end-to-end negotiation options but there no such
6421 			 * thing (yet?) in our TCP/IP.
6422 			 */
6423 		}
6424 	}
6425 
6426 	/*
6427 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6428 	 * make sure that the template IP header in the tcp structure is an
6429 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6430 	 * need to this before we call tcp_bindi() so that the port lookup
6431 	 * code will look for ports in the correct port space (IPv4 and
6432 	 * IPv6 have separate port spaces).
6433 	 */
6434 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6435 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6436 		int err = 0;
6437 
6438 		err = tcp_header_init_ipv4(tcp);
6439 		if (err != 0) {
6440 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6441 			goto connect_failed;
6442 		}
6443 		if (tcp->tcp_lport != 0)
6444 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6445 	}
6446 
6447 	if (tcp->tcp_issocket) {
6448 		/*
6449 		 * TCP is _D_SODIRECT and sockfs is directly above so save
6450 		 * the shared sonode sodirect_t pointer (if any) to enable
6451 		 * TCP sodirect.
6452 		 */
6453 		tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq);
6454 	}
6455 
6456 	switch (tcp->tcp_state) {
6457 	case TCPS_IDLE:
6458 		/*
6459 		 * We support quick connect, refer to comments in
6460 		 * tcp_connect_*()
6461 		 */
6462 		/* FALLTHRU */
6463 	case TCPS_BOUND:
6464 	case TCPS_LISTEN:
6465 		if (tcp->tcp_family == AF_INET6) {
6466 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6467 				tcp_connect_ipv6(tcp, mp,
6468 				    &sin6->sin6_addr,
6469 				    sin6->sin6_port, sin6->sin6_flowinfo,
6470 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6471 				return;
6472 			}
6473 			/*
6474 			 * Destination adress is mapped IPv6 address.
6475 			 * Source bound address should be unspecified or
6476 			 * IPv6 mapped address as well.
6477 			 */
6478 			if (!IN6_IS_ADDR_UNSPECIFIED(
6479 			    &tcp->tcp_bound_source_v6) &&
6480 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6481 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6482 				    EADDRNOTAVAIL);
6483 				break;
6484 			}
6485 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6486 			dstport = sin6->sin6_port;
6487 			srcid = sin6->__sin6_src_id;
6488 		} else {
6489 			dstaddrp = &sin->sin_addr.s_addr;
6490 			dstport = sin->sin_port;
6491 			srcid = 0;
6492 		}
6493 
6494 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6495 		return;
6496 	default:
6497 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6498 		break;
6499 	}
6500 	/*
6501 	 * Note: Code below is the "failure" case
6502 	 */
6503 	/* return error ack and blow away saved option results if any */
6504 connect_failed:
6505 	if (mp != NULL)
6506 		putnext(tcp->tcp_rq, mp);
6507 	else {
6508 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6509 		    TSYSERR, ENOMEM);
6510 	}
6511 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6512 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6513 }
6514 
6515 /*
6516  * Handle connect to IPv4 destinations, including connections for AF_INET6
6517  * sockets connecting to IPv4 mapped IPv6 destinations.
6518  */
6519 static void
6520 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6521     uint_t srcid)
6522 {
6523 	tcph_t	*tcph;
6524 	mblk_t	*mp1;
6525 	ipaddr_t dstaddr = *dstaddrp;
6526 	int32_t	oldstate;
6527 	uint16_t lport;
6528 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6529 
6530 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6531 
6532 	/* Check for attempt to connect to INADDR_ANY */
6533 	if (dstaddr == INADDR_ANY)  {
6534 		/*
6535 		 * SunOS 4.x and 4.3 BSD allow an application
6536 		 * to connect a TCP socket to INADDR_ANY.
6537 		 * When they do this, the kernel picks the
6538 		 * address of one interface and uses it
6539 		 * instead.  The kernel usually ends up
6540 		 * picking the address of the loopback
6541 		 * interface.  This is an undocumented feature.
6542 		 * However, we provide the same thing here
6543 		 * in order to have source and binary
6544 		 * compatibility with SunOS 4.x.
6545 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6546 		 * generate the T_CONN_CON.
6547 		 */
6548 		dstaddr = htonl(INADDR_LOOPBACK);
6549 		*dstaddrp = dstaddr;
6550 	}
6551 
6552 	/* Handle __sin6_src_id if socket not bound to an IP address */
6553 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6554 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6555 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6556 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6557 		    tcp->tcp_ipha->ipha_src);
6558 	}
6559 
6560 	/*
6561 	 * Don't let an endpoint connect to itself.  Note that
6562 	 * the test here does not catch the case where the
6563 	 * source IP addr was left unspecified by the user. In
6564 	 * this case, the source addr is set in tcp_adapt_ire()
6565 	 * using the reply to the T_BIND message that we send
6566 	 * down to IP here and the check is repeated in tcp_rput_other.
6567 	 */
6568 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6569 	    dstport == tcp->tcp_lport) {
6570 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6571 		goto failed;
6572 	}
6573 
6574 	tcp->tcp_ipha->ipha_dst = dstaddr;
6575 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6576 
6577 	/*
6578 	 * Massage a source route if any putting the first hop
6579 	 * in iph_dst. Compute a starting value for the checksum which
6580 	 * takes into account that the original iph_dst should be
6581 	 * included in the checksum but that ip will include the
6582 	 * first hop in the source route in the tcp checksum.
6583 	 */
6584 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6585 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6586 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6587 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6588 	if ((int)tcp->tcp_sum < 0)
6589 		tcp->tcp_sum--;
6590 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6591 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6592 	    (tcp->tcp_sum >> 16));
6593 	tcph = tcp->tcp_tcph;
6594 	*(uint16_t *)tcph->th_fport = dstport;
6595 	tcp->tcp_fport = dstport;
6596 
6597 	oldstate = tcp->tcp_state;
6598 	/*
6599 	 * At this point the remote destination address and remote port fields
6600 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6601 	 * have to see which state tcp was in so we can take apropriate action.
6602 	 */
6603 	if (oldstate == TCPS_IDLE) {
6604 		/*
6605 		 * We support a quick connect capability here, allowing
6606 		 * clients to transition directly from IDLE to SYN_SENT
6607 		 * tcp_bindi will pick an unused port, insert the connection
6608 		 * in the bind hash and transition to BOUND state.
6609 		 */
6610 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6611 		    tcp, B_TRUE);
6612 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6613 		    B_FALSE, B_FALSE);
6614 		if (lport == 0) {
6615 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6616 			goto failed;
6617 		}
6618 	}
6619 	tcp->tcp_state = TCPS_SYN_SENT;
6620 
6621 	/*
6622 	 * TODO: allow data with connect requests
6623 	 * by unlinking M_DATA trailers here and
6624 	 * linking them in behind the T_OK_ACK mblk.
6625 	 * The tcp_rput() bind ack handler would then
6626 	 * feed them to tcp_wput_data() rather than call
6627 	 * tcp_timer().
6628 	 */
6629 	mp = mi_tpi_ok_ack_alloc(mp);
6630 	if (!mp) {
6631 		tcp->tcp_state = oldstate;
6632 		goto failed;
6633 	}
6634 	if (tcp->tcp_family == AF_INET) {
6635 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6636 		    sizeof (ipa_conn_t));
6637 	} else {
6638 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6639 		    sizeof (ipa6_conn_t));
6640 	}
6641 	if (mp1) {
6642 		/*
6643 		 * We need to make sure that the conn_recv is set to a non-null
6644 		 * value before we insert the conn_t into the classifier table.
6645 		 * This is to avoid a race with an incoming packet which does
6646 		 * an ipcl_classify().
6647 		 */
6648 		tcp->tcp_connp->conn_recv = tcp_input;
6649 
6650 		/* Hang onto the T_OK_ACK for later. */
6651 		linkb(mp1, mp);
6652 		mblk_setcred(mp1, tcp->tcp_cred);
6653 		if (tcp->tcp_family == AF_INET)
6654 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6655 		else {
6656 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6657 			    &tcp->tcp_sticky_ipp);
6658 		}
6659 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6660 		tcp->tcp_active_open = 1;
6661 		/*
6662 		 * If the bind cannot complete immediately
6663 		 * IP will arrange to call tcp_rput_other
6664 		 * when the bind completes.
6665 		 */
6666 		if (mp1 != NULL)
6667 			tcp_rput_other(tcp, mp1);
6668 		return;
6669 	}
6670 	/* Error case */
6671 	tcp->tcp_state = oldstate;
6672 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6673 
6674 failed:
6675 	/* return error ack and blow away saved option results if any */
6676 	if (mp != NULL)
6677 		putnext(tcp->tcp_rq, mp);
6678 	else {
6679 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6680 		    TSYSERR, ENOMEM);
6681 	}
6682 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6683 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6684 
6685 }
6686 
6687 /*
6688  * Handle connect to IPv6 destinations.
6689  */
6690 static void
6691 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6692     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6693 {
6694 	tcph_t	*tcph;
6695 	mblk_t	*mp1;
6696 	ip6_rthdr_t *rth;
6697 	int32_t  oldstate;
6698 	uint16_t lport;
6699 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6700 
6701 	ASSERT(tcp->tcp_family == AF_INET6);
6702 
6703 	/*
6704 	 * If we're here, it means that the destination address is a native
6705 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6706 	 * reason why it might not be IPv6 is if the socket was bound to an
6707 	 * IPv4-mapped IPv6 address.
6708 	 */
6709 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6710 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6711 		goto failed;
6712 	}
6713 
6714 	/*
6715 	 * Interpret a zero destination to mean loopback.
6716 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6717 	 * generate the T_CONN_CON.
6718 	 */
6719 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6720 		*dstaddrp = ipv6_loopback;
6721 	}
6722 
6723 	/* Handle __sin6_src_id if socket not bound to an IP address */
6724 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6725 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6726 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6727 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6728 	}
6729 
6730 	/*
6731 	 * Take care of the scope_id now and add ip6i_t
6732 	 * if ip6i_t is not already allocated through TCP
6733 	 * sticky options. At this point tcp_ip6h does not
6734 	 * have dst info, thus use dstaddrp.
6735 	 */
6736 	if (scope_id != 0 &&
6737 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6738 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6739 		ip6i_t  *ip6i;
6740 
6741 		ipp->ipp_ifindex = scope_id;
6742 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6743 
6744 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6745 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6746 			/* Already allocated */
6747 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6748 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6749 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6750 		} else {
6751 			int reterr;
6752 
6753 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6754 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6755 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6756 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6757 			if (reterr != 0)
6758 				goto failed;
6759 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6760 		}
6761 	}
6762 
6763 	/*
6764 	 * Don't let an endpoint connect to itself.  Note that
6765 	 * the test here does not catch the case where the
6766 	 * source IP addr was left unspecified by the user. In
6767 	 * this case, the source addr is set in tcp_adapt_ire()
6768 	 * using the reply to the T_BIND message that we send
6769 	 * down to IP here and the check is repeated in tcp_rput_other.
6770 	 */
6771 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6772 	    (dstport == tcp->tcp_lport)) {
6773 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6774 		goto failed;
6775 	}
6776 
6777 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6778 	tcp->tcp_remote_v6 = *dstaddrp;
6779 	tcp->tcp_ip6h->ip6_vcf =
6780 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6781 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6782 
6783 
6784 	/*
6785 	 * Massage a routing header (if present) putting the first hop
6786 	 * in ip6_dst. Compute a starting value for the checksum which
6787 	 * takes into account that the original ip6_dst should be
6788 	 * included in the checksum but that ip will include the
6789 	 * first hop in the source route in the tcp checksum.
6790 	 */
6791 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6792 	if (rth != NULL) {
6793 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6794 		    tcps->tcps_netstack);
6795 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6796 		    (tcp->tcp_sum >> 16));
6797 	} else {
6798 		tcp->tcp_sum = 0;
6799 	}
6800 
6801 	tcph = tcp->tcp_tcph;
6802 	*(uint16_t *)tcph->th_fport = dstport;
6803 	tcp->tcp_fport = dstport;
6804 
6805 	oldstate = tcp->tcp_state;
6806 	/*
6807 	 * At this point the remote destination address and remote port fields
6808 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6809 	 * have to see which state tcp was in so we can take apropriate action.
6810 	 */
6811 	if (oldstate == TCPS_IDLE) {
6812 		/*
6813 		 * We support a quick connect capability here, allowing
6814 		 * clients to transition directly from IDLE to SYN_SENT
6815 		 * tcp_bindi will pick an unused port, insert the connection
6816 		 * in the bind hash and transition to BOUND state.
6817 		 */
6818 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6819 		    tcp, B_TRUE);
6820 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6821 		    B_FALSE, B_FALSE);
6822 		if (lport == 0) {
6823 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6824 			goto failed;
6825 		}
6826 	}
6827 	tcp->tcp_state = TCPS_SYN_SENT;
6828 	/*
6829 	 * TODO: allow data with connect requests
6830 	 * by unlinking M_DATA trailers here and
6831 	 * linking them in behind the T_OK_ACK mblk.
6832 	 * The tcp_rput() bind ack handler would then
6833 	 * feed them to tcp_wput_data() rather than call
6834 	 * tcp_timer().
6835 	 */
6836 	mp = mi_tpi_ok_ack_alloc(mp);
6837 	if (!mp) {
6838 		tcp->tcp_state = oldstate;
6839 		goto failed;
6840 	}
6841 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6842 	if (mp1) {
6843 		/*
6844 		 * We need to make sure that the conn_recv is set to a non-null
6845 		 * value before we insert the conn_t into the classifier table.
6846 		 * This is to avoid a race with an incoming packet which does
6847 		 * an ipcl_classify().
6848 		 */
6849 		tcp->tcp_connp->conn_recv = tcp_input;
6850 
6851 		/* Hang onto the T_OK_ACK for later. */
6852 		linkb(mp1, mp);
6853 		mblk_setcred(mp1, tcp->tcp_cred);
6854 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6855 		    &tcp->tcp_sticky_ipp);
6856 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6857 		tcp->tcp_active_open = 1;
6858 		/* ip_bind_v6() may return ACK or ERROR */
6859 		if (mp1 != NULL)
6860 			tcp_rput_other(tcp, mp1);
6861 		return;
6862 	}
6863 	/* Error case */
6864 	tcp->tcp_state = oldstate;
6865 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6866 
6867 failed:
6868 	/* return error ack and blow away saved option results if any */
6869 	if (mp != NULL)
6870 		putnext(tcp->tcp_rq, mp);
6871 	else {
6872 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6873 		    TSYSERR, ENOMEM);
6874 	}
6875 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6876 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6877 }
6878 
6879 /*
6880  * We need a stream q for detached closing tcp connections
6881  * to use.  Our client hereby indicates that this q is the
6882  * one to use.
6883  */
6884 static void
6885 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6886 {
6887 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6888 	queue_t	*q = tcp->tcp_wq;
6889 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6890 
6891 #ifdef NS_DEBUG
6892 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6893 	    tcps->tcps_netstack->netstack_stackid);
6894 #endif
6895 	mp->b_datap->db_type = M_IOCACK;
6896 	iocp->ioc_count = 0;
6897 	mutex_enter(&tcps->tcps_g_q_lock);
6898 	if (tcps->tcps_g_q != NULL) {
6899 		mutex_exit(&tcps->tcps_g_q_lock);
6900 		iocp->ioc_error = EALREADY;
6901 	} else {
6902 		mblk_t *mp1;
6903 
6904 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6905 		if (mp1 == NULL) {
6906 			mutex_exit(&tcps->tcps_g_q_lock);
6907 			iocp->ioc_error = ENOMEM;
6908 		} else {
6909 			tcps->tcps_g_q = tcp->tcp_rq;
6910 			mutex_exit(&tcps->tcps_g_q_lock);
6911 			iocp->ioc_error = 0;
6912 			iocp->ioc_rval = 0;
6913 			/*
6914 			 * We are passing tcp_sticky_ipp as NULL
6915 			 * as it is not useful for tcp_default queue
6916 			 *
6917 			 * Set conn_recv just in case.
6918 			 */
6919 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6920 
6921 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6922 			if (mp1 != NULL)
6923 				tcp_rput_other(tcp, mp1);
6924 		}
6925 	}
6926 	qreply(q, mp);
6927 }
6928 
6929 /*
6930  * Our client hereby directs us to reject the connection request
6931  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6932  * of sending the appropriate RST, not an ICMP error.
6933  */
6934 static void
6935 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6936 {
6937 	tcp_t	*ltcp = NULL;
6938 	t_scalar_t seqnum;
6939 	conn_t	*connp;
6940 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6941 
6942 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6943 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6944 		tcp_err_ack(tcp, mp, TPROTO, 0);
6945 		return;
6946 	}
6947 
6948 	/*
6949 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6950 	 * when the stream is in BOUND state. Do not send a reset,
6951 	 * since the destination IP address is not valid, and it can
6952 	 * be the initialized value of all zeros (broadcast address).
6953 	 *
6954 	 * If TCP has sent down a bind request to IP and has not
6955 	 * received the reply, reject the request.  Otherwise, TCP
6956 	 * will be confused.
6957 	 */
6958 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6959 		if (tcp->tcp_debug) {
6960 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6961 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6962 		}
6963 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6964 		return;
6965 	}
6966 
6967 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6968 
6969 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6970 
6971 		/*
6972 		 * According to TPI, for non-listeners, ignore seqnum
6973 		 * and disconnect.
6974 		 * Following interpretation of -1 seqnum is historical
6975 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6976 		 * a valid seqnum should not be -1).
6977 		 *
6978 		 *	-1 means disconnect everything
6979 		 *	regardless even on a listener.
6980 		 */
6981 
6982 		int old_state = tcp->tcp_state;
6983 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6984 
6985 		/*
6986 		 * The connection can't be on the tcp_time_wait_head list
6987 		 * since it is not detached.
6988 		 */
6989 		ASSERT(tcp->tcp_time_wait_next == NULL);
6990 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6991 		ASSERT(tcp->tcp_time_wait_expire == 0);
6992 		ltcp = NULL;
6993 		/*
6994 		 * If it used to be a listener, check to make sure no one else
6995 		 * has taken the port before switching back to LISTEN state.
6996 		 */
6997 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6998 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6999 			    tcp->tcp_ipha->ipha_src,
7000 			    tcp->tcp_connp->conn_zoneid, ipst);
7001 			if (connp != NULL)
7002 				ltcp = connp->conn_tcp;
7003 		} else {
7004 			/* Allow tcp_bound_if listeners? */
7005 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
7006 			    &tcp->tcp_ip6h->ip6_src, 0,
7007 			    tcp->tcp_connp->conn_zoneid, ipst);
7008 			if (connp != NULL)
7009 				ltcp = connp->conn_tcp;
7010 		}
7011 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
7012 			tcp->tcp_state = TCPS_LISTEN;
7013 		} else if (old_state > TCPS_BOUND) {
7014 			tcp->tcp_conn_req_max = 0;
7015 			tcp->tcp_state = TCPS_BOUND;
7016 		}
7017 		if (ltcp != NULL)
7018 			CONN_DEC_REF(ltcp->tcp_connp);
7019 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
7020 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
7021 		} else if (old_state == TCPS_ESTABLISHED ||
7022 		    old_state == TCPS_CLOSE_WAIT) {
7023 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
7024 		}
7025 
7026 		if (tcp->tcp_fused)
7027 			tcp_unfuse(tcp);
7028 
7029 		mutex_enter(&tcp->tcp_eager_lock);
7030 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
7031 		    (tcp->tcp_conn_req_cnt_q != 0)) {
7032 			tcp_eager_cleanup(tcp, 0);
7033 		}
7034 		mutex_exit(&tcp->tcp_eager_lock);
7035 
7036 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
7037 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
7038 
7039 		tcp_reinit(tcp);
7040 
7041 		if (old_state >= TCPS_ESTABLISHED) {
7042 			/* Send M_FLUSH according to TPI */
7043 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7044 		}
7045 		mp = mi_tpi_ok_ack_alloc(mp);
7046 		if (mp)
7047 			putnext(tcp->tcp_rq, mp);
7048 		return;
7049 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
7050 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
7051 		return;
7052 	}
7053 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
7054 		/* Send M_FLUSH according to TPI */
7055 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7056 	}
7057 	mp = mi_tpi_ok_ack_alloc(mp);
7058 	if (mp)
7059 		putnext(tcp->tcp_rq, mp);
7060 }
7061 
7062 /*
7063  * Diagnostic routine used to return a string associated with the tcp state.
7064  * Note that if the caller does not supply a buffer, it will use an internal
7065  * static string.  This means that if multiple threads call this function at
7066  * the same time, output can be corrupted...  Note also that this function
7067  * does not check the size of the supplied buffer.  The caller has to make
7068  * sure that it is big enough.
7069  */
7070 static char *
7071 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7072 {
7073 	char		buf1[30];
7074 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7075 	char		*buf;
7076 	char		*cp;
7077 	in6_addr_t	local, remote;
7078 	char		local_addrbuf[INET6_ADDRSTRLEN];
7079 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7080 
7081 	if (sup_buf != NULL)
7082 		buf = sup_buf;
7083 	else
7084 		buf = priv_buf;
7085 
7086 	if (tcp == NULL)
7087 		return ("NULL_TCP");
7088 	switch (tcp->tcp_state) {
7089 	case TCPS_CLOSED:
7090 		cp = "TCP_CLOSED";
7091 		break;
7092 	case TCPS_IDLE:
7093 		cp = "TCP_IDLE";
7094 		break;
7095 	case TCPS_BOUND:
7096 		cp = "TCP_BOUND";
7097 		break;
7098 	case TCPS_LISTEN:
7099 		cp = "TCP_LISTEN";
7100 		break;
7101 	case TCPS_SYN_SENT:
7102 		cp = "TCP_SYN_SENT";
7103 		break;
7104 	case TCPS_SYN_RCVD:
7105 		cp = "TCP_SYN_RCVD";
7106 		break;
7107 	case TCPS_ESTABLISHED:
7108 		cp = "TCP_ESTABLISHED";
7109 		break;
7110 	case TCPS_CLOSE_WAIT:
7111 		cp = "TCP_CLOSE_WAIT";
7112 		break;
7113 	case TCPS_FIN_WAIT_1:
7114 		cp = "TCP_FIN_WAIT_1";
7115 		break;
7116 	case TCPS_CLOSING:
7117 		cp = "TCP_CLOSING";
7118 		break;
7119 	case TCPS_LAST_ACK:
7120 		cp = "TCP_LAST_ACK";
7121 		break;
7122 	case TCPS_FIN_WAIT_2:
7123 		cp = "TCP_FIN_WAIT_2";
7124 		break;
7125 	case TCPS_TIME_WAIT:
7126 		cp = "TCP_TIME_WAIT";
7127 		break;
7128 	default:
7129 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7130 		cp = buf1;
7131 		break;
7132 	}
7133 	switch (format) {
7134 	case DISP_ADDR_AND_PORT:
7135 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7136 			/*
7137 			 * Note that we use the remote address in the tcp_b
7138 			 * structure.  This means that it will print out
7139 			 * the real destination address, not the next hop's
7140 			 * address if source routing is used.
7141 			 */
7142 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7143 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7144 
7145 		} else {
7146 			local = tcp->tcp_ip_src_v6;
7147 			remote = tcp->tcp_remote_v6;
7148 		}
7149 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7150 		    sizeof (local_addrbuf));
7151 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7152 		    sizeof (remote_addrbuf));
7153 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7154 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7155 		    ntohs(tcp->tcp_fport), cp);
7156 		break;
7157 	case DISP_PORT_ONLY:
7158 	default:
7159 		(void) mi_sprintf(buf, "[%u, %u] %s",
7160 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7161 		break;
7162 	}
7163 
7164 	return (buf);
7165 }
7166 
7167 /*
7168  * Called via squeue to get on to eager's perimeter. It sends a
7169  * TH_RST if eager is in the fanout table. The listener wants the
7170  * eager to disappear either by means of tcp_eager_blowoff() or
7171  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7172  * called (via squeue) if the eager cannot be inserted in the
7173  * fanout table in tcp_conn_request().
7174  */
7175 /* ARGSUSED */
7176 void
7177 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7178 {
7179 	conn_t	*econnp = (conn_t *)arg;
7180 	tcp_t	*eager = econnp->conn_tcp;
7181 	tcp_t	*listener = eager->tcp_listener;
7182 	tcp_stack_t	*tcps = eager->tcp_tcps;
7183 
7184 	/*
7185 	 * We could be called because listener is closing. Since
7186 	 * the eager is using listener's queue's, its not safe.
7187 	 * Better use the default queue just to send the TH_RST
7188 	 * out.
7189 	 */
7190 	ASSERT(tcps->tcps_g_q != NULL);
7191 	eager->tcp_rq = tcps->tcps_g_q;
7192 	eager->tcp_wq = WR(tcps->tcps_g_q);
7193 
7194 	/*
7195 	 * An eager's conn_fanout will be NULL if it's a duplicate
7196 	 * for an existing 4-tuples in the conn fanout table.
7197 	 * We don't want to send an RST out in such case.
7198 	 */
7199 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7200 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7201 		    eager, eager->tcp_snxt, 0, TH_RST);
7202 	}
7203 
7204 	/* We are here because listener wants this eager gone */
7205 	if (listener != NULL) {
7206 		mutex_enter(&listener->tcp_eager_lock);
7207 		tcp_eager_unlink(eager);
7208 		if (eager->tcp_tconnind_started) {
7209 			/*
7210 			 * The eager has sent a conn_ind up to the
7211 			 * listener but listener decides to close
7212 			 * instead. We need to drop the extra ref
7213 			 * placed on eager in tcp_rput_data() before
7214 			 * sending the conn_ind to listener.
7215 			 */
7216 			CONN_DEC_REF(econnp);
7217 		}
7218 		mutex_exit(&listener->tcp_eager_lock);
7219 		CONN_DEC_REF(listener->tcp_connp);
7220 	}
7221 
7222 	if (eager->tcp_state > TCPS_BOUND)
7223 		tcp_close_detached(eager);
7224 }
7225 
7226 /*
7227  * Reset any eager connection hanging off this listener marked
7228  * with 'seqnum' and then reclaim it's resources.
7229  */
7230 static boolean_t
7231 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7232 {
7233 	tcp_t	*eager;
7234 	mblk_t 	*mp;
7235 	tcp_stack_t	*tcps = listener->tcp_tcps;
7236 
7237 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7238 	eager = listener;
7239 	mutex_enter(&listener->tcp_eager_lock);
7240 	do {
7241 		eager = eager->tcp_eager_next_q;
7242 		if (eager == NULL) {
7243 			mutex_exit(&listener->tcp_eager_lock);
7244 			return (B_FALSE);
7245 		}
7246 	} while (eager->tcp_conn_req_seqnum != seqnum);
7247 
7248 	if (eager->tcp_closemp_used) {
7249 		mutex_exit(&listener->tcp_eager_lock);
7250 		return (B_TRUE);
7251 	}
7252 	eager->tcp_closemp_used = B_TRUE;
7253 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7254 	CONN_INC_REF(eager->tcp_connp);
7255 	mutex_exit(&listener->tcp_eager_lock);
7256 	mp = &eager->tcp_closemp;
7257 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7258 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7259 	return (B_TRUE);
7260 }
7261 
7262 /*
7263  * Reset any eager connection hanging off this listener
7264  * and then reclaim it's resources.
7265  */
7266 static void
7267 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7268 {
7269 	tcp_t	*eager;
7270 	mblk_t	*mp;
7271 	tcp_stack_t	*tcps = listener->tcp_tcps;
7272 
7273 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7274 
7275 	if (!q0_only) {
7276 		/* First cleanup q */
7277 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7278 		eager = listener->tcp_eager_next_q;
7279 		while (eager != NULL) {
7280 			if (!eager->tcp_closemp_used) {
7281 				eager->tcp_closemp_used = B_TRUE;
7282 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7283 				CONN_INC_REF(eager->tcp_connp);
7284 				mp = &eager->tcp_closemp;
7285 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7286 				    tcp_eager_kill, eager->tcp_connp,
7287 				    SQTAG_TCP_EAGER_CLEANUP);
7288 			}
7289 			eager = eager->tcp_eager_next_q;
7290 		}
7291 	}
7292 	/* Then cleanup q0 */
7293 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7294 	eager = listener->tcp_eager_next_q0;
7295 	while (eager != listener) {
7296 		if (!eager->tcp_closemp_used) {
7297 			eager->tcp_closemp_used = B_TRUE;
7298 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7299 			CONN_INC_REF(eager->tcp_connp);
7300 			mp = &eager->tcp_closemp;
7301 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7302 			    tcp_eager_kill, eager->tcp_connp,
7303 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7304 		}
7305 		eager = eager->tcp_eager_next_q0;
7306 	}
7307 }
7308 
7309 /*
7310  * If we are an eager connection hanging off a listener that hasn't
7311  * formally accepted the connection yet, get off his list and blow off
7312  * any data that we have accumulated.
7313  */
7314 static void
7315 tcp_eager_unlink(tcp_t *tcp)
7316 {
7317 	tcp_t	*listener = tcp->tcp_listener;
7318 
7319 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7320 	ASSERT(listener != NULL);
7321 	if (tcp->tcp_eager_next_q0 != NULL) {
7322 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7323 
7324 		/* Remove the eager tcp from q0 */
7325 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7326 		    tcp->tcp_eager_prev_q0;
7327 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7328 		    tcp->tcp_eager_next_q0;
7329 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7330 		listener->tcp_conn_req_cnt_q0--;
7331 
7332 		tcp->tcp_eager_next_q0 = NULL;
7333 		tcp->tcp_eager_prev_q0 = NULL;
7334 
7335 		/*
7336 		 * Take the eager out, if it is in the list of droppable
7337 		 * eagers.
7338 		 */
7339 		MAKE_UNDROPPABLE(tcp);
7340 
7341 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7342 			/* we have timed out before */
7343 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7344 			listener->tcp_syn_rcvd_timeout--;
7345 		}
7346 	} else {
7347 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7348 		tcp_t	*prev = NULL;
7349 
7350 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7351 			if (tcpp[0] == tcp) {
7352 				if (listener->tcp_eager_last_q == tcp) {
7353 					/*
7354 					 * If we are unlinking the last
7355 					 * element on the list, adjust
7356 					 * tail pointer. Set tail pointer
7357 					 * to nil when list is empty.
7358 					 */
7359 					ASSERT(tcp->tcp_eager_next_q == NULL);
7360 					if (listener->tcp_eager_last_q ==
7361 					    listener->tcp_eager_next_q) {
7362 						listener->tcp_eager_last_q =
7363 						    NULL;
7364 					} else {
7365 						/*
7366 						 * We won't get here if there
7367 						 * is only one eager in the
7368 						 * list.
7369 						 */
7370 						ASSERT(prev != NULL);
7371 						listener->tcp_eager_last_q =
7372 						    prev;
7373 					}
7374 				}
7375 				tcpp[0] = tcp->tcp_eager_next_q;
7376 				tcp->tcp_eager_next_q = NULL;
7377 				tcp->tcp_eager_last_q = NULL;
7378 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7379 				listener->tcp_conn_req_cnt_q--;
7380 				break;
7381 			}
7382 			prev = tcpp[0];
7383 		}
7384 	}
7385 	tcp->tcp_listener = NULL;
7386 }
7387 
7388 /* Shorthand to generate and send TPI error acks to our client */
7389 static void
7390 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7391 {
7392 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7393 		putnext(tcp->tcp_rq, mp);
7394 }
7395 
7396 /* Shorthand to generate and send TPI error acks to our client */
7397 static void
7398 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7399     int t_error, int sys_error)
7400 {
7401 	struct T_error_ack	*teackp;
7402 
7403 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7404 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7405 		teackp = (struct T_error_ack *)mp->b_rptr;
7406 		teackp->ERROR_prim = primitive;
7407 		teackp->TLI_error = t_error;
7408 		teackp->UNIX_error = sys_error;
7409 		putnext(tcp->tcp_rq, mp);
7410 	}
7411 }
7412 
7413 /*
7414  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7415  * but instead the code relies on:
7416  * - the fact that the address of the array and its size never changes
7417  * - the atomic assignment of the elements of the array
7418  */
7419 /* ARGSUSED */
7420 static int
7421 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7422 {
7423 	int i;
7424 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7425 
7426 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7427 		if (tcps->tcps_g_epriv_ports[i] != 0)
7428 			(void) mi_mpprintf(mp, "%d ",
7429 			    tcps->tcps_g_epriv_ports[i]);
7430 	}
7431 	return (0);
7432 }
7433 
7434 /*
7435  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7436  * threads from changing it at the same time.
7437  */
7438 /* ARGSUSED */
7439 static int
7440 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7441     cred_t *cr)
7442 {
7443 	long	new_value;
7444 	int	i;
7445 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7446 
7447 	/*
7448 	 * Fail the request if the new value does not lie within the
7449 	 * port number limits.
7450 	 */
7451 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7452 	    new_value <= 0 || new_value >= 65536) {
7453 		return (EINVAL);
7454 	}
7455 
7456 	mutex_enter(&tcps->tcps_epriv_port_lock);
7457 	/* Check if the value is already in the list */
7458 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7459 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7460 			mutex_exit(&tcps->tcps_epriv_port_lock);
7461 			return (EEXIST);
7462 		}
7463 	}
7464 	/* Find an empty slot */
7465 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7466 		if (tcps->tcps_g_epriv_ports[i] == 0)
7467 			break;
7468 	}
7469 	if (i == tcps->tcps_g_num_epriv_ports) {
7470 		mutex_exit(&tcps->tcps_epriv_port_lock);
7471 		return (EOVERFLOW);
7472 	}
7473 	/* Set the new value */
7474 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7475 	mutex_exit(&tcps->tcps_epriv_port_lock);
7476 	return (0);
7477 }
7478 
7479 /*
7480  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7481  * threads from changing it at the same time.
7482  */
7483 /* ARGSUSED */
7484 static int
7485 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7486     cred_t *cr)
7487 {
7488 	long	new_value;
7489 	int	i;
7490 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7491 
7492 	/*
7493 	 * Fail the request if the new value does not lie within the
7494 	 * port number limits.
7495 	 */
7496 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7497 	    new_value >= 65536) {
7498 		return (EINVAL);
7499 	}
7500 
7501 	mutex_enter(&tcps->tcps_epriv_port_lock);
7502 	/* Check that the value is already in the list */
7503 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7504 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7505 			break;
7506 	}
7507 	if (i == tcps->tcps_g_num_epriv_ports) {
7508 		mutex_exit(&tcps->tcps_epriv_port_lock);
7509 		return (ESRCH);
7510 	}
7511 	/* Clear the value */
7512 	tcps->tcps_g_epriv_ports[i] = 0;
7513 	mutex_exit(&tcps->tcps_epriv_port_lock);
7514 	return (0);
7515 }
7516 
7517 /* Return the TPI/TLI equivalent of our current tcp_state */
7518 static int
7519 tcp_tpistate(tcp_t *tcp)
7520 {
7521 	switch (tcp->tcp_state) {
7522 	case TCPS_IDLE:
7523 		return (TS_UNBND);
7524 	case TCPS_LISTEN:
7525 		/*
7526 		 * Return whether there are outstanding T_CONN_IND waiting
7527 		 * for the matching T_CONN_RES. Therefore don't count q0.
7528 		 */
7529 		if (tcp->tcp_conn_req_cnt_q > 0)
7530 			return (TS_WRES_CIND);
7531 		else
7532 			return (TS_IDLE);
7533 	case TCPS_BOUND:
7534 		return (TS_IDLE);
7535 	case TCPS_SYN_SENT:
7536 		return (TS_WCON_CREQ);
7537 	case TCPS_SYN_RCVD:
7538 		/*
7539 		 * Note: assumption: this has to the active open SYN_RCVD.
7540 		 * The passive instance is detached in SYN_RCVD stage of
7541 		 * incoming connection processing so we cannot get request
7542 		 * for T_info_ack on it.
7543 		 */
7544 		return (TS_WACK_CRES);
7545 	case TCPS_ESTABLISHED:
7546 		return (TS_DATA_XFER);
7547 	case TCPS_CLOSE_WAIT:
7548 		return (TS_WREQ_ORDREL);
7549 	case TCPS_FIN_WAIT_1:
7550 		return (TS_WIND_ORDREL);
7551 	case TCPS_FIN_WAIT_2:
7552 		return (TS_WIND_ORDREL);
7553 
7554 	case TCPS_CLOSING:
7555 	case TCPS_LAST_ACK:
7556 	case TCPS_TIME_WAIT:
7557 	case TCPS_CLOSED:
7558 		/*
7559 		 * Following TS_WACK_DREQ7 is a rendition of "not
7560 		 * yet TS_IDLE" TPI state. There is no best match to any
7561 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7562 		 * choose a value chosen that will map to TLI/XTI level
7563 		 * state of TSTATECHNG (state is process of changing) which
7564 		 * captures what this dummy state represents.
7565 		 */
7566 		return (TS_WACK_DREQ7);
7567 	default:
7568 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7569 		    tcp->tcp_state, tcp_display(tcp, NULL,
7570 		    DISP_PORT_ONLY));
7571 		return (TS_UNBND);
7572 	}
7573 }
7574 
7575 static void
7576 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7577 {
7578 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7579 
7580 	if (tcp->tcp_family == AF_INET6)
7581 		*tia = tcp_g_t_info_ack_v6;
7582 	else
7583 		*tia = tcp_g_t_info_ack;
7584 	tia->CURRENT_state = tcp_tpistate(tcp);
7585 	tia->OPT_size = tcp_max_optsize;
7586 	if (tcp->tcp_mss == 0) {
7587 		/* Not yet set - tcp_open does not set mss */
7588 		if (tcp->tcp_ipversion == IPV4_VERSION)
7589 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7590 		else
7591 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7592 	} else {
7593 		tia->TIDU_size = tcp->tcp_mss;
7594 	}
7595 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7596 }
7597 
7598 /*
7599  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7600  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7601  * tcp_g_t_info_ack.  The current state of the stream is copied from
7602  * tcp_state.
7603  */
7604 static void
7605 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7606 {
7607 	t_uscalar_t		cap_bits1;
7608 	struct T_capability_ack	*tcap;
7609 
7610 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7611 		freemsg(mp);
7612 		return;
7613 	}
7614 
7615 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7616 
7617 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7618 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7619 	if (mp == NULL)
7620 		return;
7621 
7622 	tcap = (struct T_capability_ack *)mp->b_rptr;
7623 	tcap->CAP_bits1 = 0;
7624 
7625 	if (cap_bits1 & TC1_INFO) {
7626 		tcp_copy_info(&tcap->INFO_ack, tcp);
7627 		tcap->CAP_bits1 |= TC1_INFO;
7628 	}
7629 
7630 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7631 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7632 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7633 	}
7634 
7635 	putnext(tcp->tcp_rq, mp);
7636 }
7637 
7638 /*
7639  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7640  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7641  * The current state of the stream is copied from tcp_state.
7642  */
7643 static void
7644 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7645 {
7646 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7647 	    T_INFO_ACK);
7648 	if (!mp) {
7649 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7650 		return;
7651 	}
7652 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7653 	putnext(tcp->tcp_rq, mp);
7654 }
7655 
7656 /* Respond to the TPI addr request */
7657 static void
7658 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7659 {
7660 	sin_t	*sin;
7661 	mblk_t	*ackmp;
7662 	struct T_addr_ack *taa;
7663 
7664 	/* Make it large enough for worst case */
7665 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7666 	    2 * sizeof (sin6_t), 1);
7667 	if (ackmp == NULL) {
7668 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7669 		return;
7670 	}
7671 
7672 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7673 		tcp_addr_req_ipv6(tcp, ackmp);
7674 		return;
7675 	}
7676 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7677 
7678 	bzero(taa, sizeof (struct T_addr_ack));
7679 	ackmp->b_wptr = (uchar_t *)&taa[1];
7680 
7681 	taa->PRIM_type = T_ADDR_ACK;
7682 	ackmp->b_datap->db_type = M_PCPROTO;
7683 
7684 	/*
7685 	 * Note: Following code assumes 32 bit alignment of basic
7686 	 * data structures like sin_t and struct T_addr_ack.
7687 	 */
7688 	if (tcp->tcp_state >= TCPS_BOUND) {
7689 		/*
7690 		 * Fill in local address
7691 		 */
7692 		taa->LOCADDR_length = sizeof (sin_t);
7693 		taa->LOCADDR_offset = sizeof (*taa);
7694 
7695 		sin = (sin_t *)&taa[1];
7696 
7697 		/* Fill zeroes and then intialize non-zero fields */
7698 		*sin = sin_null;
7699 
7700 		sin->sin_family = AF_INET;
7701 
7702 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7703 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7704 
7705 		ackmp->b_wptr = (uchar_t *)&sin[1];
7706 
7707 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7708 			/*
7709 			 * Fill in Remote address
7710 			 */
7711 			taa->REMADDR_length = sizeof (sin_t);
7712 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7713 			    taa->LOCADDR_length);
7714 
7715 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7716 			*sin = sin_null;
7717 			sin->sin_family = AF_INET;
7718 			sin->sin_addr.s_addr = tcp->tcp_remote;
7719 			sin->sin_port = tcp->tcp_fport;
7720 
7721 			ackmp->b_wptr = (uchar_t *)&sin[1];
7722 		}
7723 	}
7724 	putnext(tcp->tcp_rq, ackmp);
7725 }
7726 
7727 /* Assumes that tcp_addr_req gets enough space and alignment */
7728 static void
7729 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7730 {
7731 	sin6_t	*sin6;
7732 	struct T_addr_ack *taa;
7733 
7734 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7735 	ASSERT(OK_32PTR(ackmp->b_rptr));
7736 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7737 	    2 * sizeof (sin6_t));
7738 
7739 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7740 
7741 	bzero(taa, sizeof (struct T_addr_ack));
7742 	ackmp->b_wptr = (uchar_t *)&taa[1];
7743 
7744 	taa->PRIM_type = T_ADDR_ACK;
7745 	ackmp->b_datap->db_type = M_PCPROTO;
7746 
7747 	/*
7748 	 * Note: Following code assumes 32 bit alignment of basic
7749 	 * data structures like sin6_t and struct T_addr_ack.
7750 	 */
7751 	if (tcp->tcp_state >= TCPS_BOUND) {
7752 		/*
7753 		 * Fill in local address
7754 		 */
7755 		taa->LOCADDR_length = sizeof (sin6_t);
7756 		taa->LOCADDR_offset = sizeof (*taa);
7757 
7758 		sin6 = (sin6_t *)&taa[1];
7759 		*sin6 = sin6_null;
7760 
7761 		sin6->sin6_family = AF_INET6;
7762 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7763 		sin6->sin6_port = tcp->tcp_lport;
7764 
7765 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7766 
7767 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7768 			/*
7769 			 * Fill in Remote address
7770 			 */
7771 			taa->REMADDR_length = sizeof (sin6_t);
7772 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7773 			    taa->LOCADDR_length);
7774 
7775 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7776 			*sin6 = sin6_null;
7777 			sin6->sin6_family = AF_INET6;
7778 			sin6->sin6_flowinfo =
7779 			    tcp->tcp_ip6h->ip6_vcf &
7780 			    ~IPV6_VERS_AND_FLOW_MASK;
7781 			sin6->sin6_addr = tcp->tcp_remote_v6;
7782 			sin6->sin6_port = tcp->tcp_fport;
7783 
7784 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7785 		}
7786 	}
7787 	putnext(tcp->tcp_rq, ackmp);
7788 }
7789 
7790 /*
7791  * Handle reinitialization of a tcp structure.
7792  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7793  */
7794 static void
7795 tcp_reinit(tcp_t *tcp)
7796 {
7797 	mblk_t	*mp;
7798 	int 	err;
7799 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7800 
7801 	TCP_STAT(tcps, tcp_reinit_calls);
7802 
7803 	/* tcp_reinit should never be called for detached tcp_t's */
7804 	ASSERT(tcp->tcp_listener == NULL);
7805 	ASSERT((tcp->tcp_family == AF_INET &&
7806 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7807 	    (tcp->tcp_family == AF_INET6 &&
7808 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7809 	    tcp->tcp_ipversion == IPV6_VERSION)));
7810 
7811 	/* Cancel outstanding timers */
7812 	tcp_timers_stop(tcp);
7813 
7814 	/*
7815 	 * Reset everything in the state vector, after updating global
7816 	 * MIB data from instance counters.
7817 	 */
7818 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7819 	tcp->tcp_ibsegs = 0;
7820 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7821 	tcp->tcp_obsegs = 0;
7822 
7823 	tcp_close_mpp(&tcp->tcp_xmit_head);
7824 	if (tcp->tcp_snd_zcopy_aware)
7825 		tcp_zcopy_notify(tcp);
7826 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7827 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7828 	mutex_enter(&tcp->tcp_non_sq_lock);
7829 	if (tcp->tcp_flow_stopped &&
7830 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7831 		tcp_clrqfull(tcp);
7832 	}
7833 	mutex_exit(&tcp->tcp_non_sq_lock);
7834 	tcp_close_mpp(&tcp->tcp_reass_head);
7835 	tcp->tcp_reass_tail = NULL;
7836 	if (tcp->tcp_rcv_list != NULL) {
7837 		/* Free b_next chain */
7838 		tcp_close_mpp(&tcp->tcp_rcv_list);
7839 		tcp->tcp_rcv_last_head = NULL;
7840 		tcp->tcp_rcv_last_tail = NULL;
7841 		tcp->tcp_rcv_cnt = 0;
7842 	}
7843 	tcp->tcp_rcv_last_tail = NULL;
7844 
7845 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7846 		freemsg(mp);
7847 		tcp->tcp_urp_mp = NULL;
7848 	}
7849 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7850 		freemsg(mp);
7851 		tcp->tcp_urp_mark_mp = NULL;
7852 	}
7853 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7854 		freeb(tcp->tcp_fused_sigurg_mp);
7855 		tcp->tcp_fused_sigurg_mp = NULL;
7856 	}
7857 
7858 	/*
7859 	 * Following is a union with two members which are
7860 	 * identical types and size so the following cleanup
7861 	 * is enough.
7862 	 */
7863 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7864 
7865 	CL_INET_DISCONNECT(tcp);
7866 
7867 	/*
7868 	 * The connection can't be on the tcp_time_wait_head list
7869 	 * since it is not detached.
7870 	 */
7871 	ASSERT(tcp->tcp_time_wait_next == NULL);
7872 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7873 	ASSERT(tcp->tcp_time_wait_expire == 0);
7874 
7875 	if (tcp->tcp_kssl_pending) {
7876 		tcp->tcp_kssl_pending = B_FALSE;
7877 
7878 		/* Don't reset if the initialized by bind. */
7879 		if (tcp->tcp_kssl_ent != NULL) {
7880 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7881 			    KSSL_NO_PROXY);
7882 		}
7883 	}
7884 	if (tcp->tcp_kssl_ctx != NULL) {
7885 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7886 		tcp->tcp_kssl_ctx = NULL;
7887 	}
7888 
7889 	/*
7890 	 * Reset/preserve other values
7891 	 */
7892 	tcp_reinit_values(tcp);
7893 	ipcl_hash_remove(tcp->tcp_connp);
7894 	conn_delete_ire(tcp->tcp_connp, NULL);
7895 	tcp_ipsec_cleanup(tcp);
7896 
7897 	if (tcp->tcp_conn_req_max != 0) {
7898 		/*
7899 		 * This is the case when a TLI program uses the same
7900 		 * transport end point to accept a connection.  This
7901 		 * makes the TCP both a listener and acceptor.  When
7902 		 * this connection is closed, we need to set the state
7903 		 * back to TCPS_LISTEN.  Make sure that the eager list
7904 		 * is reinitialized.
7905 		 *
7906 		 * Note that this stream is still bound to the four
7907 		 * tuples of the previous connection in IP.  If a new
7908 		 * SYN with different foreign address comes in, IP will
7909 		 * not find it and will send it to the global queue.  In
7910 		 * the global queue, TCP will do a tcp_lookup_listener()
7911 		 * to find this stream.  This works because this stream
7912 		 * is only removed from connected hash.
7913 		 *
7914 		 */
7915 		tcp->tcp_state = TCPS_LISTEN;
7916 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7917 		tcp->tcp_eager_next_drop_q0 = tcp;
7918 		tcp->tcp_eager_prev_drop_q0 = tcp;
7919 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7920 		if (tcp->tcp_family == AF_INET6) {
7921 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7922 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7923 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7924 		} else {
7925 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7926 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7927 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7928 		}
7929 	} else {
7930 		tcp->tcp_state = TCPS_BOUND;
7931 	}
7932 
7933 	/*
7934 	 * Initialize to default values
7935 	 * Can't fail since enough header template space already allocated
7936 	 * at open().
7937 	 */
7938 	err = tcp_init_values(tcp);
7939 	ASSERT(err == 0);
7940 	/* Restore state in tcp_tcph */
7941 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7942 	if (tcp->tcp_ipversion == IPV4_VERSION)
7943 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7944 	else
7945 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7946 	/*
7947 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7948 	 * since the lookup funcs can only lookup on tcp_t
7949 	 */
7950 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7951 
7952 	ASSERT(tcp->tcp_ptpbhn != NULL);
7953 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7954 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7955 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7956 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7957 }
7958 
7959 /*
7960  * Force values to zero that need be zero.
7961  * Do not touch values asociated with the BOUND or LISTEN state
7962  * since the connection will end up in that state after the reinit.
7963  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7964  * structure!
7965  */
7966 static void
7967 tcp_reinit_values(tcp)
7968 	tcp_t *tcp;
7969 {
7970 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7971 
7972 #ifndef	lint
7973 #define	DONTCARE(x)
7974 #define	PRESERVE(x)
7975 #else
7976 #define	DONTCARE(x)	((x) = (x))
7977 #define	PRESERVE(x)	((x) = (x))
7978 #endif	/* lint */
7979 
7980 	PRESERVE(tcp->tcp_bind_hash);
7981 	PRESERVE(tcp->tcp_ptpbhn);
7982 	PRESERVE(tcp->tcp_acceptor_hash);
7983 	PRESERVE(tcp->tcp_ptpahn);
7984 
7985 	/* Should be ASSERT NULL on these with new code! */
7986 	ASSERT(tcp->tcp_time_wait_next == NULL);
7987 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7988 	ASSERT(tcp->tcp_time_wait_expire == 0);
7989 	PRESERVE(tcp->tcp_state);
7990 	PRESERVE(tcp->tcp_rq);
7991 	PRESERVE(tcp->tcp_wq);
7992 
7993 	ASSERT(tcp->tcp_xmit_head == NULL);
7994 	ASSERT(tcp->tcp_xmit_last == NULL);
7995 	ASSERT(tcp->tcp_unsent == 0);
7996 	ASSERT(tcp->tcp_xmit_tail == NULL);
7997 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7998 
7999 	tcp->tcp_snxt = 0;			/* Displayed in mib */
8000 	tcp->tcp_suna = 0;			/* Displayed in mib */
8001 	tcp->tcp_swnd = 0;
8002 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
8003 
8004 	ASSERT(tcp->tcp_ibsegs == 0);
8005 	ASSERT(tcp->tcp_obsegs == 0);
8006 
8007 	if (tcp->tcp_iphc != NULL) {
8008 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8009 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
8010 	}
8011 
8012 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
8013 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
8014 	DONTCARE(tcp->tcp_ipha);
8015 	DONTCARE(tcp->tcp_ip6h);
8016 	DONTCARE(tcp->tcp_ip_hdr_len);
8017 	DONTCARE(tcp->tcp_tcph);
8018 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
8019 	tcp->tcp_valid_bits = 0;
8020 
8021 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
8022 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
8023 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
8024 	tcp->tcp_last_rcv_lbolt = 0;
8025 
8026 	tcp->tcp_init_cwnd = 0;
8027 
8028 	tcp->tcp_urp_last_valid = 0;
8029 	tcp->tcp_hard_binding = 0;
8030 	tcp->tcp_hard_bound = 0;
8031 	PRESERVE(tcp->tcp_cred);
8032 	PRESERVE(tcp->tcp_cpid);
8033 	PRESERVE(tcp->tcp_open_time);
8034 	PRESERVE(tcp->tcp_exclbind);
8035 
8036 	tcp->tcp_fin_acked = 0;
8037 	tcp->tcp_fin_rcvd = 0;
8038 	tcp->tcp_fin_sent = 0;
8039 	tcp->tcp_ordrel_done = 0;
8040 
8041 	tcp->tcp_debug = 0;
8042 	tcp->tcp_dontroute = 0;
8043 	tcp->tcp_broadcast = 0;
8044 
8045 	tcp->tcp_useloopback = 0;
8046 	tcp->tcp_reuseaddr = 0;
8047 	tcp->tcp_oobinline = 0;
8048 	tcp->tcp_dgram_errind = 0;
8049 
8050 	tcp->tcp_detached = 0;
8051 	tcp->tcp_bind_pending = 0;
8052 	tcp->tcp_unbind_pending = 0;
8053 	tcp->tcp_deferred_clean_death = 0;
8054 
8055 	tcp->tcp_snd_ws_ok = B_FALSE;
8056 	tcp->tcp_snd_ts_ok = B_FALSE;
8057 	tcp->tcp_linger = 0;
8058 	tcp->tcp_ka_enabled = 0;
8059 	tcp->tcp_zero_win_probe = 0;
8060 
8061 	tcp->tcp_loopback = 0;
8062 	tcp->tcp_localnet = 0;
8063 	tcp->tcp_syn_defense = 0;
8064 	tcp->tcp_set_timer = 0;
8065 
8066 	tcp->tcp_active_open = 0;
8067 	ASSERT(tcp->tcp_timeout == B_FALSE);
8068 	tcp->tcp_rexmit = B_FALSE;
8069 	tcp->tcp_xmit_zc_clean = B_FALSE;
8070 
8071 	tcp->tcp_snd_sack_ok = B_FALSE;
8072 	PRESERVE(tcp->tcp_recvdstaddr);
8073 	tcp->tcp_hwcksum = B_FALSE;
8074 
8075 	tcp->tcp_ire_ill_check_done = B_FALSE;
8076 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8077 
8078 	tcp->tcp_mdt = B_FALSE;
8079 	tcp->tcp_mdt_hdr_head = 0;
8080 	tcp->tcp_mdt_hdr_tail = 0;
8081 
8082 	tcp->tcp_conn_def_q0 = 0;
8083 	tcp->tcp_ip_forward_progress = B_FALSE;
8084 	tcp->tcp_anon_priv_bind = 0;
8085 	tcp->tcp_ecn_ok = B_FALSE;
8086 
8087 	tcp->tcp_cwr = B_FALSE;
8088 	tcp->tcp_ecn_echo_on = B_FALSE;
8089 
8090 	if (tcp->tcp_sack_info != NULL) {
8091 		if (tcp->tcp_notsack_list != NULL) {
8092 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8093 		}
8094 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8095 		tcp->tcp_sack_info = NULL;
8096 	}
8097 
8098 	tcp->tcp_rcv_ws = 0;
8099 	tcp->tcp_snd_ws = 0;
8100 	tcp->tcp_ts_recent = 0;
8101 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8102 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8103 	tcp->tcp_if_mtu = 0;
8104 
8105 	ASSERT(tcp->tcp_reass_head == NULL);
8106 	ASSERT(tcp->tcp_reass_tail == NULL);
8107 
8108 	tcp->tcp_cwnd_cnt = 0;
8109 
8110 	ASSERT(tcp->tcp_rcv_list == NULL);
8111 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8112 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8113 	ASSERT(tcp->tcp_rcv_cnt == 0);
8114 
8115 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8116 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8117 	tcp->tcp_csuna = 0;
8118 
8119 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8120 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8121 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8122 	tcp->tcp_rtt_update = 0;
8123 
8124 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8125 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8126 
8127 	tcp->tcp_rack = 0;			/* Displayed in mib */
8128 	tcp->tcp_rack_cnt = 0;
8129 	tcp->tcp_rack_cur_max = 0;
8130 	tcp->tcp_rack_abs_max = 0;
8131 
8132 	tcp->tcp_max_swnd = 0;
8133 
8134 	ASSERT(tcp->tcp_listener == NULL);
8135 
8136 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8137 
8138 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8139 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8140 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8141 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8142 
8143 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8144 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8145 	PRESERVE(tcp->tcp_conn_req_max);
8146 	PRESERVE(tcp->tcp_conn_req_seqnum);
8147 
8148 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8149 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8150 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8151 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8152 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8153 
8154 	tcp->tcp_lingertime = 0;
8155 
8156 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8157 	ASSERT(tcp->tcp_urp_mp == NULL);
8158 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8159 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8160 
8161 	ASSERT(tcp->tcp_eager_next_q == NULL);
8162 	ASSERT(tcp->tcp_eager_last_q == NULL);
8163 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8164 	    tcp->tcp_eager_prev_q0 == NULL) ||
8165 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8166 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8167 
8168 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8169 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8170 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8171 
8172 	tcp->tcp_client_errno = 0;
8173 
8174 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8175 
8176 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8177 
8178 	PRESERVE(tcp->tcp_bound_source_v6);
8179 	tcp->tcp_last_sent_len = 0;
8180 	tcp->tcp_dupack_cnt = 0;
8181 
8182 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8183 	PRESERVE(tcp->tcp_lport);
8184 
8185 	PRESERVE(tcp->tcp_acceptor_lockp);
8186 
8187 	ASSERT(tcp->tcp_ordrelid == 0);
8188 	PRESERVE(tcp->tcp_acceptor_id);
8189 	DONTCARE(tcp->tcp_ipsec_overhead);
8190 
8191 	/*
8192 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8193 	 * in tcp structure and now tracing), Re-initialize all
8194 	 * members of tcp_traceinfo.
8195 	 */
8196 	if (tcp->tcp_tracebuf != NULL) {
8197 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8198 	}
8199 
8200 	PRESERVE(tcp->tcp_family);
8201 	if (tcp->tcp_family == AF_INET6) {
8202 		tcp->tcp_ipversion = IPV6_VERSION;
8203 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8204 	} else {
8205 		tcp->tcp_ipversion = IPV4_VERSION;
8206 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8207 	}
8208 
8209 	tcp->tcp_bound_if = 0;
8210 	tcp->tcp_ipv6_recvancillary = 0;
8211 	tcp->tcp_recvifindex = 0;
8212 	tcp->tcp_recvhops = 0;
8213 	tcp->tcp_closed = 0;
8214 	tcp->tcp_cleandeathtag = 0;
8215 	if (tcp->tcp_hopopts != NULL) {
8216 		mi_free(tcp->tcp_hopopts);
8217 		tcp->tcp_hopopts = NULL;
8218 		tcp->tcp_hopoptslen = 0;
8219 	}
8220 	ASSERT(tcp->tcp_hopoptslen == 0);
8221 	if (tcp->tcp_dstopts != NULL) {
8222 		mi_free(tcp->tcp_dstopts);
8223 		tcp->tcp_dstopts = NULL;
8224 		tcp->tcp_dstoptslen = 0;
8225 	}
8226 	ASSERT(tcp->tcp_dstoptslen == 0);
8227 	if (tcp->tcp_rtdstopts != NULL) {
8228 		mi_free(tcp->tcp_rtdstopts);
8229 		tcp->tcp_rtdstopts = NULL;
8230 		tcp->tcp_rtdstoptslen = 0;
8231 	}
8232 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8233 	if (tcp->tcp_rthdr != NULL) {
8234 		mi_free(tcp->tcp_rthdr);
8235 		tcp->tcp_rthdr = NULL;
8236 		tcp->tcp_rthdrlen = 0;
8237 	}
8238 	ASSERT(tcp->tcp_rthdrlen == 0);
8239 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8240 
8241 	/* Reset fusion-related fields */
8242 	tcp->tcp_fused = B_FALSE;
8243 	tcp->tcp_unfusable = B_FALSE;
8244 	tcp->tcp_fused_sigurg = B_FALSE;
8245 	tcp->tcp_direct_sockfs = B_FALSE;
8246 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8247 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8248 	tcp->tcp_loopback_peer = NULL;
8249 	tcp->tcp_fuse_rcv_hiwater = 0;
8250 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8251 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8252 
8253 	tcp->tcp_lso = B_FALSE;
8254 
8255 	tcp->tcp_in_ack_unsent = 0;
8256 	tcp->tcp_cork = B_FALSE;
8257 	tcp->tcp_tconnind_started = B_FALSE;
8258 
8259 	PRESERVE(tcp->tcp_squeue_bytes);
8260 
8261 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8262 	ASSERT(!tcp->tcp_kssl_pending);
8263 	PRESERVE(tcp->tcp_kssl_ent);
8264 
8265 	/* Sodirect */
8266 	tcp->tcp_sodirect = NULL;
8267 
8268 	tcp->tcp_closemp_used = B_FALSE;
8269 
8270 #ifdef DEBUG
8271 	DONTCARE(tcp->tcmp_stk[0]);
8272 #endif
8273 
8274 
8275 #undef	DONTCARE
8276 #undef	PRESERVE
8277 }
8278 
8279 /*
8280  * Allocate necessary resources and initialize state vector.
8281  * Guaranteed not to fail so that when an error is returned,
8282  * the caller doesn't need to do any additional cleanup.
8283  */
8284 int
8285 tcp_init(tcp_t *tcp, queue_t *q)
8286 {
8287 	int	err;
8288 
8289 	tcp->tcp_rq = q;
8290 	tcp->tcp_wq = WR(q);
8291 	tcp->tcp_state = TCPS_IDLE;
8292 	if ((err = tcp_init_values(tcp)) != 0)
8293 		tcp_timers_stop(tcp);
8294 	return (err);
8295 }
8296 
8297 static int
8298 tcp_init_values(tcp_t *tcp)
8299 {
8300 	int	err;
8301 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8302 
8303 	ASSERT((tcp->tcp_family == AF_INET &&
8304 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8305 	    (tcp->tcp_family == AF_INET6 &&
8306 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8307 	    tcp->tcp_ipversion == IPV6_VERSION)));
8308 
8309 	/*
8310 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8311 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8312 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8313 	 * during first few transmissions of a connection as seen in slow
8314 	 * links.
8315 	 */
8316 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8317 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8318 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8319 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8320 	    tcps->tcps_conn_grace_period;
8321 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8322 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8323 	tcp->tcp_timer_backoff = 0;
8324 	tcp->tcp_ms_we_have_waited = 0;
8325 	tcp->tcp_last_recv_time = lbolt;
8326 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8327 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8328 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8329 
8330 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8331 
8332 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8333 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8334 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8335 	/*
8336 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8337 	 * passive open.
8338 	 */
8339 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8340 
8341 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8342 
8343 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8344 
8345 	tcp->tcp_mdt_hdr_head = 0;
8346 	tcp->tcp_mdt_hdr_tail = 0;
8347 
8348 	/* Reset fusion-related fields */
8349 	tcp->tcp_fused = B_FALSE;
8350 	tcp->tcp_unfusable = B_FALSE;
8351 	tcp->tcp_fused_sigurg = B_FALSE;
8352 	tcp->tcp_direct_sockfs = B_FALSE;
8353 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8354 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8355 	tcp->tcp_loopback_peer = NULL;
8356 	tcp->tcp_fuse_rcv_hiwater = 0;
8357 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8358 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8359 
8360 	/* Sodirect */
8361 	tcp->tcp_sodirect = NULL;
8362 
8363 	/* Initialize the header template */
8364 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8365 		err = tcp_header_init_ipv4(tcp);
8366 	} else {
8367 		err = tcp_header_init_ipv6(tcp);
8368 	}
8369 	if (err)
8370 		return (err);
8371 
8372 	/*
8373 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8374 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8375 	 */
8376 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8377 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8378 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8379 
8380 	tcp->tcp_cork = B_FALSE;
8381 	/*
8382 	 * Init the tcp_debug option.  This value determines whether TCP
8383 	 * calls strlog() to print out debug messages.  Doing this
8384 	 * initialization here means that this value is not inherited thru
8385 	 * tcp_reinit().
8386 	 */
8387 	tcp->tcp_debug = tcps->tcps_dbg;
8388 
8389 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8390 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8391 
8392 	return (0);
8393 }
8394 
8395 /*
8396  * Initialize the IPv4 header. Loses any record of any IP options.
8397  */
8398 static int
8399 tcp_header_init_ipv4(tcp_t *tcp)
8400 {
8401 	tcph_t		*tcph;
8402 	uint32_t	sum;
8403 	conn_t		*connp;
8404 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8405 
8406 	/*
8407 	 * This is a simple initialization. If there's
8408 	 * already a template, it should never be too small,
8409 	 * so reuse it.  Otherwise, allocate space for the new one.
8410 	 */
8411 	if (tcp->tcp_iphc == NULL) {
8412 		ASSERT(tcp->tcp_iphc_len == 0);
8413 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8414 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8415 		if (tcp->tcp_iphc == NULL) {
8416 			tcp->tcp_iphc_len = 0;
8417 			return (ENOMEM);
8418 		}
8419 	}
8420 
8421 	/* options are gone; may need a new label */
8422 	connp = tcp->tcp_connp;
8423 	connp->conn_mlp_type = mlptSingle;
8424 	connp->conn_ulp_labeled = !is_system_labeled();
8425 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8426 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8427 	tcp->tcp_ip6h = NULL;
8428 	tcp->tcp_ipversion = IPV4_VERSION;
8429 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8430 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8431 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8432 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8433 	tcp->tcp_ipha->ipha_version_and_hdr_length
8434 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8435 	tcp->tcp_ipha->ipha_ident = 0;
8436 
8437 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8438 	tcp->tcp_tos = 0;
8439 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8440 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8441 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8442 
8443 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8444 	tcp->tcp_tcph = tcph;
8445 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8446 	/*
8447 	 * IP wants our header length in the checksum field to
8448 	 * allow it to perform a single pseudo-header+checksum
8449 	 * calculation on behalf of TCP.
8450 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8451 	 */
8452 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8453 	sum = (sum >> 16) + (sum & 0xFFFF);
8454 	U16_TO_ABE16(sum, tcph->th_sum);
8455 	return (0);
8456 }
8457 
8458 /*
8459  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8460  */
8461 static int
8462 tcp_header_init_ipv6(tcp_t *tcp)
8463 {
8464 	tcph_t	*tcph;
8465 	uint32_t	sum;
8466 	conn_t	*connp;
8467 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8468 
8469 	/*
8470 	 * This is a simple initialization. If there's
8471 	 * already a template, it should never be too small,
8472 	 * so reuse it. Otherwise, allocate space for the new one.
8473 	 * Ensure that there is enough space to "downgrade" the tcp_t
8474 	 * to an IPv4 tcp_t. This requires having space for a full load
8475 	 * of IPv4 options, as well as a full load of TCP options
8476 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8477 	 * than a v6 header and a TCP header with a full load of TCP options
8478 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8479 	 * We want to avoid reallocation in the "downgraded" case when
8480 	 * processing outbound IPv4 options.
8481 	 */
8482 	if (tcp->tcp_iphc == NULL) {
8483 		ASSERT(tcp->tcp_iphc_len == 0);
8484 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8485 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8486 		if (tcp->tcp_iphc == NULL) {
8487 			tcp->tcp_iphc_len = 0;
8488 			return (ENOMEM);
8489 		}
8490 	}
8491 
8492 	/* options are gone; may need a new label */
8493 	connp = tcp->tcp_connp;
8494 	connp->conn_mlp_type = mlptSingle;
8495 	connp->conn_ulp_labeled = !is_system_labeled();
8496 
8497 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8498 	tcp->tcp_ipversion = IPV6_VERSION;
8499 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8500 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8501 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8502 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8503 	tcp->tcp_ipha = NULL;
8504 
8505 	/* Initialize the header template */
8506 
8507 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8508 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8509 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8510 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8511 
8512 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8513 	tcp->tcp_tcph = tcph;
8514 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8515 	/*
8516 	 * IP wants our header length in the checksum field to
8517 	 * allow it to perform a single psuedo-header+checksum
8518 	 * calculation on behalf of TCP.
8519 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8520 	 */
8521 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8522 	sum = (sum >> 16) + (sum & 0xFFFF);
8523 	U16_TO_ABE16(sum, tcph->th_sum);
8524 	return (0);
8525 }
8526 
8527 /* At minimum we need 8 bytes in the TCP header for the lookup */
8528 #define	ICMP_MIN_TCP_HDR	8
8529 
8530 /*
8531  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8532  * passed up by IP. The message is always received on the correct tcp_t.
8533  * Assumes that IP has pulled up everything up to and including the ICMP header.
8534  */
8535 void
8536 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8537 {
8538 	icmph_t *icmph;
8539 	ipha_t	*ipha;
8540 	int	iph_hdr_length;
8541 	tcph_t	*tcph;
8542 	boolean_t ipsec_mctl = B_FALSE;
8543 	boolean_t secure;
8544 	mblk_t *first_mp = mp;
8545 	uint32_t new_mss;
8546 	uint32_t ratio;
8547 	size_t mp_size = MBLKL(mp);
8548 	uint32_t seg_seq;
8549 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8550 
8551 	/* Assume IP provides aligned packets - otherwise toss */
8552 	if (!OK_32PTR(mp->b_rptr)) {
8553 		freemsg(mp);
8554 		return;
8555 	}
8556 
8557 	/*
8558 	 * Since ICMP errors are normal data marked with M_CTL when sent
8559 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8560 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8561 	 */
8562 	if ((mp_size == sizeof (ipsec_info_t)) &&
8563 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8564 		ASSERT(mp->b_cont != NULL);
8565 		mp = mp->b_cont;
8566 		/* IP should have done this */
8567 		ASSERT(OK_32PTR(mp->b_rptr));
8568 		mp_size = MBLKL(mp);
8569 		ipsec_mctl = B_TRUE;
8570 	}
8571 
8572 	/*
8573 	 * Verify that we have a complete outer IP header. If not, drop it.
8574 	 */
8575 	if (mp_size < sizeof (ipha_t)) {
8576 noticmpv4:
8577 		freemsg(first_mp);
8578 		return;
8579 	}
8580 
8581 	ipha = (ipha_t *)mp->b_rptr;
8582 	/*
8583 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8584 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8585 	 */
8586 	switch (IPH_HDR_VERSION(ipha)) {
8587 	case IPV6_VERSION:
8588 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8589 		return;
8590 	case IPV4_VERSION:
8591 		break;
8592 	default:
8593 		goto noticmpv4;
8594 	}
8595 
8596 	/* Skip past the outer IP and ICMP headers */
8597 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8598 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8599 	/*
8600 	 * If we don't have the correct outer IP header length or if the ULP
8601 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8602 	 * send it upstream.
8603 	 */
8604 	if (iph_hdr_length < sizeof (ipha_t) ||
8605 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8606 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8607 		goto noticmpv4;
8608 	}
8609 	ipha = (ipha_t *)&icmph[1];
8610 
8611 	/* Skip past the inner IP and find the ULP header */
8612 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8613 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8614 	/*
8615 	 * If we don't have the correct inner IP header length or if the ULP
8616 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8617 	 * bytes of TCP header, drop it.
8618 	 */
8619 	if (iph_hdr_length < sizeof (ipha_t) ||
8620 	    ipha->ipha_protocol != IPPROTO_TCP ||
8621 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8622 		goto noticmpv4;
8623 	}
8624 
8625 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8626 		if (ipsec_mctl) {
8627 			secure = ipsec_in_is_secure(first_mp);
8628 		} else {
8629 			secure = B_FALSE;
8630 		}
8631 		if (secure) {
8632 			/*
8633 			 * If we are willing to accept this in clear
8634 			 * we don't have to verify policy.
8635 			 */
8636 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8637 				if (!tcp_check_policy(tcp, first_mp,
8638 				    ipha, NULL, secure, ipsec_mctl)) {
8639 					/*
8640 					 * tcp_check_policy called
8641 					 * ip_drop_packet() on failure.
8642 					 */
8643 					return;
8644 				}
8645 			}
8646 		}
8647 	} else if (ipsec_mctl) {
8648 		/*
8649 		 * This is a hard_bound connection. IP has already
8650 		 * verified policy. We don't have to do it again.
8651 		 */
8652 		freeb(first_mp);
8653 		first_mp = mp;
8654 		ipsec_mctl = B_FALSE;
8655 	}
8656 
8657 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8658 	/*
8659 	 * TCP SHOULD check that the TCP sequence number contained in
8660 	 * payload of the ICMP error message is within the range
8661 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8662 	 */
8663 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8664 		/*
8665 		 * If the ICMP message is bogus, should we kill the
8666 		 * connection, or should we just drop the bogus ICMP
8667 		 * message? It would probably make more sense to just
8668 		 * drop the message so that if this one managed to get
8669 		 * in, the real connection should not suffer.
8670 		 */
8671 		goto noticmpv4;
8672 	}
8673 
8674 	switch (icmph->icmph_type) {
8675 	case ICMP_DEST_UNREACHABLE:
8676 		switch (icmph->icmph_code) {
8677 		case ICMP_FRAGMENTATION_NEEDED:
8678 			/*
8679 			 * Reduce the MSS based on the new MTU.  This will
8680 			 * eliminate any fragmentation locally.
8681 			 * N.B.  There may well be some funny side-effects on
8682 			 * the local send policy and the remote receive policy.
8683 			 * Pending further research, we provide
8684 			 * tcp_ignore_path_mtu just in case this proves
8685 			 * disastrous somewhere.
8686 			 *
8687 			 * After updating the MSS, retransmit part of the
8688 			 * dropped segment using the new mss by calling
8689 			 * tcp_wput_data().  Need to adjust all those
8690 			 * params to make sure tcp_wput_data() work properly.
8691 			 */
8692 			if (tcps->tcps_ignore_path_mtu)
8693 				break;
8694 
8695 			/*
8696 			 * Decrease the MSS by time stamp options
8697 			 * IP options and IPSEC options. tcp_hdr_len
8698 			 * includes time stamp option and IP option
8699 			 * length.
8700 			 */
8701 
8702 			new_mss = ntohs(icmph->icmph_du_mtu) -
8703 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8704 
8705 			/*
8706 			 * Only update the MSS if the new one is
8707 			 * smaller than the previous one.  This is
8708 			 * to avoid problems when getting multiple
8709 			 * ICMP errors for the same MTU.
8710 			 */
8711 			if (new_mss >= tcp->tcp_mss)
8712 				break;
8713 
8714 			/*
8715 			 * Stop doing PMTU if new_mss is less than 68
8716 			 * or less than tcp_mss_min.
8717 			 * The value 68 comes from rfc 1191.
8718 			 */
8719 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8720 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8721 				    0;
8722 
8723 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8724 			ASSERT(ratio >= 1);
8725 			tcp_mss_set(tcp, new_mss, B_TRUE);
8726 
8727 			/*
8728 			 * Make sure we have something to
8729 			 * send.
8730 			 */
8731 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8732 			    (tcp->tcp_xmit_head != NULL)) {
8733 				/*
8734 				 * Shrink tcp_cwnd in
8735 				 * proportion to the old MSS/new MSS.
8736 				 */
8737 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8738 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8739 				    (tcp->tcp_unsent == 0)) {
8740 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8741 				} else {
8742 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8743 				}
8744 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8745 				tcp->tcp_rexmit = B_TRUE;
8746 				tcp->tcp_dupack_cnt = 0;
8747 				tcp->tcp_snd_burst = TCP_CWND_SS;
8748 				tcp_ss_rexmit(tcp);
8749 			}
8750 			break;
8751 		case ICMP_PORT_UNREACHABLE:
8752 		case ICMP_PROTOCOL_UNREACHABLE:
8753 			switch (tcp->tcp_state) {
8754 			case TCPS_SYN_SENT:
8755 			case TCPS_SYN_RCVD:
8756 				/*
8757 				 * ICMP can snipe away incipient
8758 				 * TCP connections as long as
8759 				 * seq number is same as initial
8760 				 * send seq number.
8761 				 */
8762 				if (seg_seq == tcp->tcp_iss) {
8763 					(void) tcp_clean_death(tcp,
8764 					    ECONNREFUSED, 6);
8765 				}
8766 				break;
8767 			}
8768 			break;
8769 		case ICMP_HOST_UNREACHABLE:
8770 		case ICMP_NET_UNREACHABLE:
8771 			/* Record the error in case we finally time out. */
8772 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8773 				tcp->tcp_client_errno = EHOSTUNREACH;
8774 			else
8775 				tcp->tcp_client_errno = ENETUNREACH;
8776 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8777 				if (tcp->tcp_listener != NULL &&
8778 				    tcp->tcp_listener->tcp_syn_defense) {
8779 					/*
8780 					 * Ditch the half-open connection if we
8781 					 * suspect a SYN attack is under way.
8782 					 */
8783 					tcp_ip_ire_mark_advice(tcp);
8784 					(void) tcp_clean_death(tcp,
8785 					    tcp->tcp_client_errno, 7);
8786 				}
8787 			}
8788 			break;
8789 		default:
8790 			break;
8791 		}
8792 		break;
8793 	case ICMP_SOURCE_QUENCH: {
8794 		/*
8795 		 * use a global boolean to control
8796 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8797 		 * The default is false.
8798 		 */
8799 		if (tcp_icmp_source_quench) {
8800 			/*
8801 			 * Reduce the sending rate as if we got a
8802 			 * retransmit timeout
8803 			 */
8804 			uint32_t npkt;
8805 
8806 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8807 			    tcp->tcp_mss;
8808 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8809 			tcp->tcp_cwnd = tcp->tcp_mss;
8810 			tcp->tcp_cwnd_cnt = 0;
8811 		}
8812 		break;
8813 	}
8814 	}
8815 	freemsg(first_mp);
8816 }
8817 
8818 /*
8819  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8820  * error messages passed up by IP.
8821  * Assumes that IP has pulled up all the extension headers as well
8822  * as the ICMPv6 header.
8823  */
8824 static void
8825 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8826 {
8827 	icmp6_t *icmp6;
8828 	ip6_t	*ip6h;
8829 	uint16_t	iph_hdr_length;
8830 	tcpha_t	*tcpha;
8831 	uint8_t	*nexthdrp;
8832 	uint32_t new_mss;
8833 	uint32_t ratio;
8834 	boolean_t secure;
8835 	mblk_t *first_mp = mp;
8836 	size_t mp_size;
8837 	uint32_t seg_seq;
8838 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8839 
8840 	/*
8841 	 * The caller has determined if this is an IPSEC_IN packet and
8842 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8843 	 */
8844 	if (ipsec_mctl)
8845 		mp = mp->b_cont;
8846 
8847 	mp_size = MBLKL(mp);
8848 
8849 	/*
8850 	 * Verify that we have a complete IP header. If not, send it upstream.
8851 	 */
8852 	if (mp_size < sizeof (ip6_t)) {
8853 noticmpv6:
8854 		freemsg(first_mp);
8855 		return;
8856 	}
8857 
8858 	/*
8859 	 * Verify this is an ICMPV6 packet, else send it upstream.
8860 	 */
8861 	ip6h = (ip6_t *)mp->b_rptr;
8862 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8863 		iph_hdr_length = IPV6_HDR_LEN;
8864 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8865 	    &nexthdrp) ||
8866 	    *nexthdrp != IPPROTO_ICMPV6) {
8867 		goto noticmpv6;
8868 	}
8869 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8870 	ip6h = (ip6_t *)&icmp6[1];
8871 	/*
8872 	 * Verify if we have a complete ICMP and inner IP header.
8873 	 */
8874 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8875 		goto noticmpv6;
8876 
8877 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8878 		goto noticmpv6;
8879 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8880 	/*
8881 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8882 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8883 	 * packet.
8884 	 */
8885 	if ((*nexthdrp != IPPROTO_TCP) ||
8886 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8887 		goto noticmpv6;
8888 	}
8889 
8890 	/*
8891 	 * ICMP errors come on the right queue or come on
8892 	 * listener/global queue for detached connections and
8893 	 * get switched to the right queue. If it comes on the
8894 	 * right queue, policy check has already been done by IP
8895 	 * and thus free the first_mp without verifying the policy.
8896 	 * If it has come for a non-hard bound connection, we need
8897 	 * to verify policy as IP may not have done it.
8898 	 */
8899 	if (!tcp->tcp_hard_bound) {
8900 		if (ipsec_mctl) {
8901 			secure = ipsec_in_is_secure(first_mp);
8902 		} else {
8903 			secure = B_FALSE;
8904 		}
8905 		if (secure) {
8906 			/*
8907 			 * If we are willing to accept this in clear
8908 			 * we don't have to verify policy.
8909 			 */
8910 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8911 				if (!tcp_check_policy(tcp, first_mp,
8912 				    NULL, ip6h, secure, ipsec_mctl)) {
8913 					/*
8914 					 * tcp_check_policy called
8915 					 * ip_drop_packet() on failure.
8916 					 */
8917 					return;
8918 				}
8919 			}
8920 		}
8921 	} else if (ipsec_mctl) {
8922 		/*
8923 		 * This is a hard_bound connection. IP has already
8924 		 * verified policy. We don't have to do it again.
8925 		 */
8926 		freeb(first_mp);
8927 		first_mp = mp;
8928 		ipsec_mctl = B_FALSE;
8929 	}
8930 
8931 	seg_seq = ntohl(tcpha->tha_seq);
8932 	/*
8933 	 * TCP SHOULD check that the TCP sequence number contained in
8934 	 * payload of the ICMP error message is within the range
8935 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8936 	 */
8937 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8938 		/*
8939 		 * If the ICMP message is bogus, should we kill the
8940 		 * connection, or should we just drop the bogus ICMP
8941 		 * message? It would probably make more sense to just
8942 		 * drop the message so that if this one managed to get
8943 		 * in, the real connection should not suffer.
8944 		 */
8945 		goto noticmpv6;
8946 	}
8947 
8948 	switch (icmp6->icmp6_type) {
8949 	case ICMP6_PACKET_TOO_BIG:
8950 		/*
8951 		 * Reduce the MSS based on the new MTU.  This will
8952 		 * eliminate any fragmentation locally.
8953 		 * N.B.  There may well be some funny side-effects on
8954 		 * the local send policy and the remote receive policy.
8955 		 * Pending further research, we provide
8956 		 * tcp_ignore_path_mtu just in case this proves
8957 		 * disastrous somewhere.
8958 		 *
8959 		 * After updating the MSS, retransmit part of the
8960 		 * dropped segment using the new mss by calling
8961 		 * tcp_wput_data().  Need to adjust all those
8962 		 * params to make sure tcp_wput_data() work properly.
8963 		 */
8964 		if (tcps->tcps_ignore_path_mtu)
8965 			break;
8966 
8967 		/*
8968 		 * Decrease the MSS by time stamp options
8969 		 * IP options and IPSEC options. tcp_hdr_len
8970 		 * includes time stamp option and IP option
8971 		 * length.
8972 		 */
8973 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8974 		    tcp->tcp_ipsec_overhead;
8975 
8976 		/*
8977 		 * Only update the MSS if the new one is
8978 		 * smaller than the previous one.  This is
8979 		 * to avoid problems when getting multiple
8980 		 * ICMP errors for the same MTU.
8981 		 */
8982 		if (new_mss >= tcp->tcp_mss)
8983 			break;
8984 
8985 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8986 		ASSERT(ratio >= 1);
8987 		tcp_mss_set(tcp, new_mss, B_TRUE);
8988 
8989 		/*
8990 		 * Make sure we have something to
8991 		 * send.
8992 		 */
8993 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8994 		    (tcp->tcp_xmit_head != NULL)) {
8995 			/*
8996 			 * Shrink tcp_cwnd in
8997 			 * proportion to the old MSS/new MSS.
8998 			 */
8999 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
9000 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
9001 			    (tcp->tcp_unsent == 0)) {
9002 				tcp->tcp_rexmit_max = tcp->tcp_fss;
9003 			} else {
9004 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
9005 			}
9006 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
9007 			tcp->tcp_rexmit = B_TRUE;
9008 			tcp->tcp_dupack_cnt = 0;
9009 			tcp->tcp_snd_burst = TCP_CWND_SS;
9010 			tcp_ss_rexmit(tcp);
9011 		}
9012 		break;
9013 
9014 	case ICMP6_DST_UNREACH:
9015 		switch (icmp6->icmp6_code) {
9016 		case ICMP6_DST_UNREACH_NOPORT:
9017 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
9018 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
9019 			    (seg_seq == tcp->tcp_iss)) {
9020 				(void) tcp_clean_death(tcp,
9021 				    ECONNREFUSED, 8);
9022 			}
9023 			break;
9024 
9025 		case ICMP6_DST_UNREACH_ADMIN:
9026 		case ICMP6_DST_UNREACH_NOROUTE:
9027 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
9028 		case ICMP6_DST_UNREACH_ADDR:
9029 			/* Record the error in case we finally time out. */
9030 			tcp->tcp_client_errno = EHOSTUNREACH;
9031 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
9032 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
9033 			    (seg_seq == tcp->tcp_iss)) {
9034 				if (tcp->tcp_listener != NULL &&
9035 				    tcp->tcp_listener->tcp_syn_defense) {
9036 					/*
9037 					 * Ditch the half-open connection if we
9038 					 * suspect a SYN attack is under way.
9039 					 */
9040 					tcp_ip_ire_mark_advice(tcp);
9041 					(void) tcp_clean_death(tcp,
9042 					    tcp->tcp_client_errno, 9);
9043 				}
9044 			}
9045 
9046 
9047 			break;
9048 		default:
9049 			break;
9050 		}
9051 		break;
9052 
9053 	case ICMP6_PARAM_PROB:
9054 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
9055 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
9056 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
9057 		    (uchar_t *)nexthdrp) {
9058 			if (tcp->tcp_state == TCPS_SYN_SENT ||
9059 			    tcp->tcp_state == TCPS_SYN_RCVD) {
9060 				(void) tcp_clean_death(tcp,
9061 				    ECONNREFUSED, 10);
9062 			}
9063 			break;
9064 		}
9065 		break;
9066 
9067 	case ICMP6_TIME_EXCEEDED:
9068 	default:
9069 		break;
9070 	}
9071 	freemsg(first_mp);
9072 }
9073 
9074 /*
9075  * IP recognizes seven kinds of bind requests:
9076  *
9077  * - A zero-length address binds only to the protocol number.
9078  *
9079  * - A 4-byte address is treated as a request to
9080  * validate that the address is a valid local IPv4
9081  * address, appropriate for an application to bind to.
9082  * IP does the verification, but does not make any note
9083  * of the address at this time.
9084  *
9085  * - A 16-byte address contains is treated as a request
9086  * to validate a local IPv6 address, as the 4-byte
9087  * address case above.
9088  *
9089  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9090  * use it for the inbound fanout of packets.
9091  *
9092  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9093  * use it for the inbound fanout of packets.
9094  *
9095  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9096  * information consisting of local and remote addresses
9097  * and ports.  In this case, the addresses are both
9098  * validated as appropriate for this operation, and, if
9099  * so, the information is retained for use in the
9100  * inbound fanout.
9101  *
9102  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9103  * fanout information, like the 12-byte case above.
9104  *
9105  * IP will also fill in the IRE request mblk with information
9106  * regarding our peer.  In all cases, we notify IP of our protocol
9107  * type by appending a single protocol byte to the bind request.
9108  */
9109 static mblk_t *
9110 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9111 {
9112 	char	*cp;
9113 	mblk_t	*mp;
9114 	struct T_bind_req *tbr;
9115 	ipa_conn_t	*ac;
9116 	ipa6_conn_t	*ac6;
9117 	sin_t		*sin;
9118 	sin6_t		*sin6;
9119 
9120 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9121 	ASSERT((tcp->tcp_family == AF_INET &&
9122 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9123 	    (tcp->tcp_family == AF_INET6 &&
9124 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9125 	    tcp->tcp_ipversion == IPV6_VERSION)));
9126 
9127 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9128 	if (!mp)
9129 		return (mp);
9130 	mp->b_datap->db_type = M_PROTO;
9131 	tbr = (struct T_bind_req *)mp->b_rptr;
9132 	tbr->PRIM_type = bind_prim;
9133 	tbr->ADDR_offset = sizeof (*tbr);
9134 	tbr->CONIND_number = 0;
9135 	tbr->ADDR_length = addr_length;
9136 	cp = (char *)&tbr[1];
9137 	switch (addr_length) {
9138 	case sizeof (ipa_conn_t):
9139 		ASSERT(tcp->tcp_family == AF_INET);
9140 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9141 
9142 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9143 		if (mp->b_cont == NULL) {
9144 			freemsg(mp);
9145 			return (NULL);
9146 		}
9147 		mp->b_cont->b_wptr += sizeof (ire_t);
9148 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9149 
9150 		/* cp known to be 32 bit aligned */
9151 		ac = (ipa_conn_t *)cp;
9152 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9153 		ac->ac_faddr = tcp->tcp_remote;
9154 		ac->ac_fport = tcp->tcp_fport;
9155 		ac->ac_lport = tcp->tcp_lport;
9156 		tcp->tcp_hard_binding = 1;
9157 		break;
9158 
9159 	case sizeof (ipa6_conn_t):
9160 		ASSERT(tcp->tcp_family == AF_INET6);
9161 
9162 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9163 		if (mp->b_cont == NULL) {
9164 			freemsg(mp);
9165 			return (NULL);
9166 		}
9167 		mp->b_cont->b_wptr += sizeof (ire_t);
9168 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9169 
9170 		/* cp known to be 32 bit aligned */
9171 		ac6 = (ipa6_conn_t *)cp;
9172 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9173 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9174 			    &ac6->ac6_laddr);
9175 		} else {
9176 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9177 		}
9178 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9179 		ac6->ac6_fport = tcp->tcp_fport;
9180 		ac6->ac6_lport = tcp->tcp_lport;
9181 		tcp->tcp_hard_binding = 1;
9182 		break;
9183 
9184 	case sizeof (sin_t):
9185 		/*
9186 		 * NOTE: IPV6_ADDR_LEN also has same size.
9187 		 * Use family to discriminate.
9188 		 */
9189 		if (tcp->tcp_family == AF_INET) {
9190 			sin = (sin_t *)cp;
9191 
9192 			*sin = sin_null;
9193 			sin->sin_family = AF_INET;
9194 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9195 			sin->sin_port = tcp->tcp_lport;
9196 			break;
9197 		} else {
9198 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9199 		}
9200 		break;
9201 
9202 	case sizeof (sin6_t):
9203 		ASSERT(tcp->tcp_family == AF_INET6);
9204 		sin6 = (sin6_t *)cp;
9205 
9206 		*sin6 = sin6_null;
9207 		sin6->sin6_family = AF_INET6;
9208 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9209 		sin6->sin6_port = tcp->tcp_lport;
9210 		break;
9211 
9212 	case IP_ADDR_LEN:
9213 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9214 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9215 		break;
9216 
9217 	}
9218 	/* Add protocol number to end */
9219 	cp[addr_length] = (char)IPPROTO_TCP;
9220 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9221 	return (mp);
9222 }
9223 
9224 /*
9225  * Notify IP that we are having trouble with this connection.  IP should
9226  * blow the IRE away and start over.
9227  */
9228 static void
9229 tcp_ip_notify(tcp_t *tcp)
9230 {
9231 	struct iocblk	*iocp;
9232 	ipid_t	*ipid;
9233 	mblk_t	*mp;
9234 
9235 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9236 	if (tcp->tcp_ipversion == IPV6_VERSION)
9237 		return;
9238 
9239 	mp = mkiocb(IP_IOCTL);
9240 	if (mp == NULL)
9241 		return;
9242 
9243 	iocp = (struct iocblk *)mp->b_rptr;
9244 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9245 
9246 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9247 	if (!mp->b_cont) {
9248 		freeb(mp);
9249 		return;
9250 	}
9251 
9252 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9253 	mp->b_cont->b_wptr += iocp->ioc_count;
9254 	bzero(ipid, sizeof (*ipid));
9255 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9256 	ipid->ipid_ire_type = IRE_CACHE;
9257 	ipid->ipid_addr_offset = sizeof (ipid_t);
9258 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9259 	/*
9260 	 * Note: in the case of source routing we want to blow away the
9261 	 * route to the first source route hop.
9262 	 */
9263 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9264 	    sizeof (tcp->tcp_ipha->ipha_dst));
9265 
9266 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9267 }
9268 
9269 /* Unlink and return any mblk that looks like it contains an ire */
9270 static mblk_t *
9271 tcp_ire_mp(mblk_t *mp)
9272 {
9273 	mblk_t	*prev_mp;
9274 
9275 	for (;;) {
9276 		prev_mp = mp;
9277 		mp = mp->b_cont;
9278 		if (mp == NULL)
9279 			break;
9280 		switch (DB_TYPE(mp)) {
9281 		case IRE_DB_TYPE:
9282 		case IRE_DB_REQ_TYPE:
9283 			if (prev_mp != NULL)
9284 				prev_mp->b_cont = mp->b_cont;
9285 			mp->b_cont = NULL;
9286 			return (mp);
9287 		default:
9288 			break;
9289 		}
9290 	}
9291 	return (mp);
9292 }
9293 
9294 /*
9295  * Timer callback routine for keepalive probe.  We do a fake resend of
9296  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9297  * check to see if we have heard anything from the other end for the last
9298  * RTO period.  If we have, set the timer to expire for another
9299  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9300  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9301  * the timeout if we have not heard from the other side.  If for more than
9302  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9303  * kill the connection unless the keepalive abort threshold is 0.  In
9304  * that case, we will probe "forever."
9305  */
9306 static void
9307 tcp_keepalive_killer(void *arg)
9308 {
9309 	mblk_t	*mp;
9310 	conn_t	*connp = (conn_t *)arg;
9311 	tcp_t  	*tcp = connp->conn_tcp;
9312 	int32_t	firetime;
9313 	int32_t	idletime;
9314 	int32_t	ka_intrvl;
9315 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9316 
9317 	tcp->tcp_ka_tid = 0;
9318 
9319 	if (tcp->tcp_fused)
9320 		return;
9321 
9322 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9323 	ka_intrvl = tcp->tcp_ka_interval;
9324 
9325 	/*
9326 	 * Keepalive probe should only be sent if the application has not
9327 	 * done a close on the connection.
9328 	 */
9329 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9330 		return;
9331 	}
9332 	/* Timer fired too early, restart it. */
9333 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9334 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9335 		    MSEC_TO_TICK(ka_intrvl));
9336 		return;
9337 	}
9338 
9339 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9340 	/*
9341 	 * If we have not heard from the other side for a long
9342 	 * time, kill the connection unless the keepalive abort
9343 	 * threshold is 0.  In that case, we will probe "forever."
9344 	 */
9345 	if (tcp->tcp_ka_abort_thres != 0 &&
9346 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9347 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9348 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9349 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9350 		return;
9351 	}
9352 
9353 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9354 	    idletime >= ka_intrvl) {
9355 		/* Fake resend of last ACKed byte. */
9356 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9357 
9358 		if (mp1 != NULL) {
9359 			*mp1->b_wptr++ = '\0';
9360 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9361 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9362 			freeb(mp1);
9363 			/*
9364 			 * if allocation failed, fall through to start the
9365 			 * timer back.
9366 			 */
9367 			if (mp != NULL) {
9368 				TCP_RECORD_TRACE(tcp, mp,
9369 				    TCP_TRACE_SEND_PKT);
9370 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9371 				BUMP_MIB(&tcps->tcps_mib,
9372 				    tcpTimKeepaliveProbe);
9373 				if (tcp->tcp_ka_last_intrvl != 0) {
9374 					int max;
9375 					/*
9376 					 * We should probe again at least
9377 					 * in ka_intrvl, but not more than
9378 					 * tcp_rexmit_interval_max.
9379 					 */
9380 					max = tcps->tcps_rexmit_interval_max;
9381 					firetime = MIN(ka_intrvl - 1,
9382 					    tcp->tcp_ka_last_intrvl << 1);
9383 					if (firetime > max)
9384 						firetime = max;
9385 				} else {
9386 					firetime = tcp->tcp_rto;
9387 				}
9388 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9389 				    tcp_keepalive_killer,
9390 				    MSEC_TO_TICK(firetime));
9391 				tcp->tcp_ka_last_intrvl = firetime;
9392 				return;
9393 			}
9394 		}
9395 	} else {
9396 		tcp->tcp_ka_last_intrvl = 0;
9397 	}
9398 
9399 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9400 	if ((firetime = ka_intrvl - idletime) < 0) {
9401 		firetime = ka_intrvl;
9402 	}
9403 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9404 	    MSEC_TO_TICK(firetime));
9405 }
9406 
9407 int
9408 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9409 {
9410 	queue_t	*q = tcp->tcp_rq;
9411 	int32_t	mss = tcp->tcp_mss;
9412 	int	maxpsz;
9413 
9414 	if (TCP_IS_DETACHED(tcp))
9415 		return (mss);
9416 
9417 	if (tcp->tcp_fused) {
9418 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9419 		mss = INFPSZ;
9420 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9421 		/*
9422 		 * Set the sd_qn_maxpsz according to the socket send buffer
9423 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9424 		 * instruct the stream head to copyin user data into contiguous
9425 		 * kernel-allocated buffers without breaking it up into smaller
9426 		 * chunks.  We round up the buffer size to the nearest SMSS.
9427 		 */
9428 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9429 		if (tcp->tcp_kssl_ctx == NULL)
9430 			mss = INFPSZ;
9431 		else
9432 			mss = SSL3_MAX_RECORD_LEN;
9433 	} else {
9434 		/*
9435 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9436 		 * (and a multiple of the mss).  This instructs the stream
9437 		 * head to break down larger than SMSS writes into SMSS-
9438 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9439 		 */
9440 		maxpsz = tcp->tcp_maxpsz * mss;
9441 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9442 			maxpsz = tcp->tcp_xmit_hiwater/2;
9443 			/* Round up to nearest mss */
9444 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9445 		}
9446 	}
9447 	(void) setmaxps(q, maxpsz);
9448 	tcp->tcp_wq->q_maxpsz = maxpsz;
9449 
9450 	if (set_maxblk)
9451 		(void) mi_set_sth_maxblk(q, mss);
9452 
9453 	return (mss);
9454 }
9455 
9456 /*
9457  * Extract option values from a tcp header.  We put any found values into the
9458  * tcpopt struct and return a bitmask saying which options were found.
9459  */
9460 static int
9461 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9462 {
9463 	uchar_t		*endp;
9464 	int		len;
9465 	uint32_t	mss;
9466 	uchar_t		*up = (uchar_t *)tcph;
9467 	int		found = 0;
9468 	int32_t		sack_len;
9469 	tcp_seq		sack_begin, sack_end;
9470 	tcp_t		*tcp;
9471 
9472 	endp = up + TCP_HDR_LENGTH(tcph);
9473 	up += TCP_MIN_HEADER_LENGTH;
9474 	while (up < endp) {
9475 		len = endp - up;
9476 		switch (*up) {
9477 		case TCPOPT_EOL:
9478 			break;
9479 
9480 		case TCPOPT_NOP:
9481 			up++;
9482 			continue;
9483 
9484 		case TCPOPT_MAXSEG:
9485 			if (len < TCPOPT_MAXSEG_LEN ||
9486 			    up[1] != TCPOPT_MAXSEG_LEN)
9487 				break;
9488 
9489 			mss = BE16_TO_U16(up+2);
9490 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9491 			tcpopt->tcp_opt_mss = mss;
9492 			found |= TCP_OPT_MSS_PRESENT;
9493 
9494 			up += TCPOPT_MAXSEG_LEN;
9495 			continue;
9496 
9497 		case TCPOPT_WSCALE:
9498 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9499 				break;
9500 
9501 			if (up[2] > TCP_MAX_WINSHIFT)
9502 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9503 			else
9504 				tcpopt->tcp_opt_wscale = up[2];
9505 			found |= TCP_OPT_WSCALE_PRESENT;
9506 
9507 			up += TCPOPT_WS_LEN;
9508 			continue;
9509 
9510 		case TCPOPT_SACK_PERMITTED:
9511 			if (len < TCPOPT_SACK_OK_LEN ||
9512 			    up[1] != TCPOPT_SACK_OK_LEN)
9513 				break;
9514 			found |= TCP_OPT_SACK_OK_PRESENT;
9515 			up += TCPOPT_SACK_OK_LEN;
9516 			continue;
9517 
9518 		case TCPOPT_SACK:
9519 			if (len <= 2 || up[1] <= 2 || len < up[1])
9520 				break;
9521 
9522 			/* If TCP is not interested in SACK blks... */
9523 			if ((tcp = tcpopt->tcp) == NULL) {
9524 				up += up[1];
9525 				continue;
9526 			}
9527 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9528 			up += TCPOPT_HEADER_LEN;
9529 
9530 			/*
9531 			 * If the list is empty, allocate one and assume
9532 			 * nothing is sack'ed.
9533 			 */
9534 			ASSERT(tcp->tcp_sack_info != NULL);
9535 			if (tcp->tcp_notsack_list == NULL) {
9536 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9537 				    tcp->tcp_suna, tcp->tcp_snxt,
9538 				    &(tcp->tcp_num_notsack_blk),
9539 				    &(tcp->tcp_cnt_notsack_list));
9540 
9541 				/*
9542 				 * Make sure tcp_notsack_list is not NULL.
9543 				 * This happens when kmem_alloc(KM_NOSLEEP)
9544 				 * returns NULL.
9545 				 */
9546 				if (tcp->tcp_notsack_list == NULL) {
9547 					up += sack_len;
9548 					continue;
9549 				}
9550 				tcp->tcp_fack = tcp->tcp_suna;
9551 			}
9552 
9553 			while (sack_len > 0) {
9554 				if (up + 8 > endp) {
9555 					up = endp;
9556 					break;
9557 				}
9558 				sack_begin = BE32_TO_U32(up);
9559 				up += 4;
9560 				sack_end = BE32_TO_U32(up);
9561 				up += 4;
9562 				sack_len -= 8;
9563 				/*
9564 				 * Bounds checking.  Make sure the SACK
9565 				 * info is within tcp_suna and tcp_snxt.
9566 				 * If this SACK blk is out of bound, ignore
9567 				 * it but continue to parse the following
9568 				 * blks.
9569 				 */
9570 				if (SEQ_LEQ(sack_end, sack_begin) ||
9571 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9572 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9573 					continue;
9574 				}
9575 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9576 				    sack_begin, sack_end,
9577 				    &(tcp->tcp_num_notsack_blk),
9578 				    &(tcp->tcp_cnt_notsack_list));
9579 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9580 					tcp->tcp_fack = sack_end;
9581 				}
9582 			}
9583 			found |= TCP_OPT_SACK_PRESENT;
9584 			continue;
9585 
9586 		case TCPOPT_TSTAMP:
9587 			if (len < TCPOPT_TSTAMP_LEN ||
9588 			    up[1] != TCPOPT_TSTAMP_LEN)
9589 				break;
9590 
9591 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9592 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9593 
9594 			found |= TCP_OPT_TSTAMP_PRESENT;
9595 
9596 			up += TCPOPT_TSTAMP_LEN;
9597 			continue;
9598 
9599 		default:
9600 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9601 				break;
9602 			up += up[1];
9603 			continue;
9604 		}
9605 		break;
9606 	}
9607 	return (found);
9608 }
9609 
9610 /*
9611  * Set the mss associated with a particular tcp based on its current value,
9612  * and a new one passed in. Observe minimums and maximums, and reset
9613  * other state variables that we want to view as multiples of mss.
9614  *
9615  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9616  * highwater marks etc. need to be initialized or adjusted.
9617  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9618  *    packet arrives.
9619  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9620  *    ICMP6_PACKET_TOO_BIG arrives.
9621  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9622  *    to increase the MSS to use the extra bytes available.
9623  *
9624  * Callers except tcp_paws_check() ensure that they only reduce mss.
9625  */
9626 static void
9627 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9628 {
9629 	uint32_t	mss_max;
9630 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9631 
9632 	if (tcp->tcp_ipversion == IPV4_VERSION)
9633 		mss_max = tcps->tcps_mss_max_ipv4;
9634 	else
9635 		mss_max = tcps->tcps_mss_max_ipv6;
9636 
9637 	if (mss < tcps->tcps_mss_min)
9638 		mss = tcps->tcps_mss_min;
9639 	if (mss > mss_max)
9640 		mss = mss_max;
9641 	/*
9642 	 * Unless naglim has been set by our client to
9643 	 * a non-mss value, force naglim to track mss.
9644 	 * This can help to aggregate small writes.
9645 	 */
9646 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9647 		tcp->tcp_naglim = mss;
9648 	/*
9649 	 * TCP should be able to buffer at least 4 MSS data for obvious
9650 	 * performance reason.
9651 	 */
9652 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9653 		tcp->tcp_xmit_hiwater = mss << 2;
9654 
9655 	if (do_ss) {
9656 		/*
9657 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9658 		 * changing due to a reduction in MTU, presumably as a
9659 		 * result of a new path component, reset cwnd to its
9660 		 * "initial" value, as a multiple of the new mss.
9661 		 */
9662 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9663 	} else {
9664 		/*
9665 		 * Called by tcp_paws_check(), the mss increased
9666 		 * marginally to allow use of space previously taken
9667 		 * by the timestamp option. It would be inappropriate
9668 		 * to apply slow start or tcp_init_cwnd values to
9669 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9670 		 */
9671 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9672 		tcp->tcp_cwnd_cnt = 0;
9673 	}
9674 	tcp->tcp_mss = mss;
9675 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9676 }
9677 
9678 /* For /dev/tcp aka AF_INET open */
9679 static int
9680 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9681 {
9682 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9683 }
9684 
9685 /* For /dev/tcp6 aka AF_INET6 open */
9686 static int
9687 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9688 {
9689 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9690 }
9691 
9692 static int
9693 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9694     boolean_t isv6)
9695 {
9696 	tcp_t		*tcp = NULL;
9697 	conn_t		*connp;
9698 	int		err;
9699 	vmem_t		*minor_arena = NULL;
9700 	dev_t		conn_dev;
9701 	zoneid_t	zoneid;
9702 	tcp_stack_t	*tcps = NULL;
9703 
9704 	if (q->q_ptr != NULL)
9705 		return (0);
9706 
9707 	if (sflag == MODOPEN)
9708 		return (EINVAL);
9709 
9710 	if (!(flag & SO_ACCEPTOR)) {
9711 		/*
9712 		 * Special case for install: miniroot needs to be able to
9713 		 * access files via NFS as though it were always in the
9714 		 * global zone.
9715 		 */
9716 		if (credp == kcred && nfs_global_client_only != 0) {
9717 			zoneid = GLOBAL_ZONEID;
9718 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9719 			    netstack_tcp;
9720 			ASSERT(tcps != NULL);
9721 		} else {
9722 			netstack_t *ns;
9723 
9724 			ns = netstack_find_by_cred(credp);
9725 			ASSERT(ns != NULL);
9726 			tcps = ns->netstack_tcp;
9727 			ASSERT(tcps != NULL);
9728 
9729 			/*
9730 			 * For exclusive stacks we set the zoneid to zero
9731 			 * to make TCP operate as if in the global zone.
9732 			 */
9733 			if (tcps->tcps_netstack->netstack_stackid !=
9734 			    GLOBAL_NETSTACKID)
9735 				zoneid = GLOBAL_ZONEID;
9736 			else
9737 				zoneid = crgetzoneid(credp);
9738 		}
9739 		/*
9740 		 * For stackid zero this is done from strplumb.c, but
9741 		 * non-zero stackids are handled here.
9742 		 */
9743 		if (tcps->tcps_g_q == NULL &&
9744 		    tcps->tcps_netstack->netstack_stackid !=
9745 		    GLOBAL_NETSTACKID) {
9746 			tcp_g_q_setup(tcps);
9747 		}
9748 	}
9749 
9750 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9751 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9752 		minor_arena = ip_minor_arena_la;
9753 	} else {
9754 		/*
9755 		 * Either minor numbers in the large arena were exhausted
9756 		 * or a non socket application is doing the open.
9757 		 * Try to allocate from the small arena.
9758 		 */
9759 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9760 			if (tcps != NULL)
9761 				netstack_rele(tcps->tcps_netstack);
9762 			return (EBUSY);
9763 		}
9764 		minor_arena = ip_minor_arena_sa;
9765 	}
9766 	ASSERT(minor_arena != NULL);
9767 
9768 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9769 
9770 	if (flag & SO_ACCEPTOR) {
9771 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9772 		ASSERT(tcps == NULL);
9773 		q->q_qinfo = &tcp_acceptor_rinit;
9774 		/*
9775 		 * the conn_dev and minor_arena will be subsequently used by
9776 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9777 		 * minor device number for this connection from the q_ptr.
9778 		 */
9779 		RD(q)->q_ptr = (void *)conn_dev;
9780 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9781 		WR(q)->q_ptr = (void *)minor_arena;
9782 		qprocson(q);
9783 		return (0);
9784 	}
9785 
9786 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9787 	/*
9788 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9789 	 * so we drop it by one.
9790 	 */
9791 	netstack_rele(tcps->tcps_netstack);
9792 	if (connp == NULL) {
9793 		inet_minor_free(minor_arena, conn_dev);
9794 		q->q_ptr = NULL;
9795 		return (ENOSR);
9796 	}
9797 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9798 	tcp = connp->conn_tcp;
9799 
9800 	q->q_ptr = WR(q)->q_ptr = connp;
9801 	if (isv6) {
9802 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9803 		connp->conn_send = ip_output_v6;
9804 		connp->conn_af_isv6 = B_TRUE;
9805 		connp->conn_pkt_isv6 = B_TRUE;
9806 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9807 		tcp->tcp_ipversion = IPV6_VERSION;
9808 		tcp->tcp_family = AF_INET6;
9809 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9810 	} else {
9811 		connp->conn_flags |= IPCL_TCP4;
9812 		connp->conn_send = ip_output;
9813 		connp->conn_af_isv6 = B_FALSE;
9814 		connp->conn_pkt_isv6 = B_FALSE;
9815 		tcp->tcp_ipversion = IPV4_VERSION;
9816 		tcp->tcp_family = AF_INET;
9817 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9818 	}
9819 
9820 	/*
9821 	 * TCP keeps a copy of cred for cache locality reasons but
9822 	 * we put a reference only once. If connp->conn_cred
9823 	 * becomes invalid, tcp_cred should also be set to NULL.
9824 	 */
9825 	tcp->tcp_cred = connp->conn_cred = credp;
9826 	crhold(connp->conn_cred);
9827 	tcp->tcp_cpid = curproc->p_pid;
9828 	tcp->tcp_open_time = lbolt64;
9829 	connp->conn_zoneid = zoneid;
9830 	connp->conn_mlp_type = mlptSingle;
9831 	connp->conn_ulp_labeled = !is_system_labeled();
9832 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9833 	ASSERT(tcp->tcp_tcps == tcps);
9834 
9835 	/*
9836 	 * If the caller has the process-wide flag set, then default to MAC
9837 	 * exempt mode.  This allows read-down to unlabeled hosts.
9838 	 */
9839 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9840 		connp->conn_mac_exempt = B_TRUE;
9841 
9842 	connp->conn_dev = conn_dev;
9843 	connp->conn_minor_arena = minor_arena;
9844 
9845 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9846 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9847 
9848 	if (flag & SO_SOCKSTR) {
9849 		/*
9850 		 * No need to insert a socket in tcp acceptor hash.
9851 		 * If it was a socket acceptor stream, we dealt with
9852 		 * it above. A socket listener can never accept a
9853 		 * connection and doesn't need acceptor_id.
9854 		 */
9855 		connp->conn_flags |= IPCL_SOCKET;
9856 		tcp->tcp_issocket = 1;
9857 		WR(q)->q_qinfo = &tcp_sock_winit;
9858 	} else {
9859 #ifdef	_ILP32
9860 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9861 #else
9862 		tcp->tcp_acceptor_id = conn_dev;
9863 #endif	/* _ILP32 */
9864 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9865 	}
9866 
9867 	if (tcps->tcps_trace)
9868 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9869 
9870 	err = tcp_init(tcp, q);
9871 	if (err != 0) {
9872 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9873 		tcp_acceptor_hash_remove(tcp);
9874 		CONN_DEC_REF(connp);
9875 		q->q_ptr = WR(q)->q_ptr = NULL;
9876 		return (err);
9877 	}
9878 
9879 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9880 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9881 
9882 	/* Non-zero default values */
9883 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9884 	/*
9885 	 * Put the ref for TCP. Ref for IP was already put
9886 	 * by ipcl_conn_create. Also Make the conn_t globally
9887 	 * visible to walkers
9888 	 */
9889 	mutex_enter(&connp->conn_lock);
9890 	CONN_INC_REF_LOCKED(connp);
9891 	ASSERT(connp->conn_ref == 2);
9892 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9893 	mutex_exit(&connp->conn_lock);
9894 
9895 	qprocson(q);
9896 	return (0);
9897 }
9898 
9899 /*
9900  * Some TCP options can be "set" by requesting them in the option
9901  * buffer. This is needed for XTI feature test though we do not
9902  * allow it in general. We interpret that this mechanism is more
9903  * applicable to OSI protocols and need not be allowed in general.
9904  * This routine filters out options for which it is not allowed (most)
9905  * and lets through those (few) for which it is. [ The XTI interface
9906  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9907  * ever implemented will have to be allowed here ].
9908  */
9909 static boolean_t
9910 tcp_allow_connopt_set(int level, int name)
9911 {
9912 
9913 	switch (level) {
9914 	case IPPROTO_TCP:
9915 		switch (name) {
9916 		case TCP_NODELAY:
9917 			return (B_TRUE);
9918 		default:
9919 			return (B_FALSE);
9920 		}
9921 		/*NOTREACHED*/
9922 	default:
9923 		return (B_FALSE);
9924 	}
9925 	/*NOTREACHED*/
9926 }
9927 
9928 /*
9929  * This routine gets default values of certain options whose default
9930  * values are maintained by protocol specific code
9931  */
9932 /* ARGSUSED */
9933 int
9934 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9935 {
9936 	int32_t	*i1 = (int32_t *)ptr;
9937 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9938 
9939 	switch (level) {
9940 	case IPPROTO_TCP:
9941 		switch (name) {
9942 		case TCP_NOTIFY_THRESHOLD:
9943 			*i1 = tcps->tcps_ip_notify_interval;
9944 			break;
9945 		case TCP_ABORT_THRESHOLD:
9946 			*i1 = tcps->tcps_ip_abort_interval;
9947 			break;
9948 		case TCP_CONN_NOTIFY_THRESHOLD:
9949 			*i1 = tcps->tcps_ip_notify_cinterval;
9950 			break;
9951 		case TCP_CONN_ABORT_THRESHOLD:
9952 			*i1 = tcps->tcps_ip_abort_cinterval;
9953 			break;
9954 		default:
9955 			return (-1);
9956 		}
9957 		break;
9958 	case IPPROTO_IP:
9959 		switch (name) {
9960 		case IP_TTL:
9961 			*i1 = tcps->tcps_ipv4_ttl;
9962 			break;
9963 		default:
9964 			return (-1);
9965 		}
9966 		break;
9967 	case IPPROTO_IPV6:
9968 		switch (name) {
9969 		case IPV6_UNICAST_HOPS:
9970 			*i1 = tcps->tcps_ipv6_hoplimit;
9971 			break;
9972 		default:
9973 			return (-1);
9974 		}
9975 		break;
9976 	default:
9977 		return (-1);
9978 	}
9979 	return (sizeof (int));
9980 }
9981 
9982 
9983 /*
9984  * TCP routine to get the values of options.
9985  */
9986 int
9987 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9988 {
9989 	int		*i1 = (int *)ptr;
9990 	conn_t		*connp = Q_TO_CONN(q);
9991 	tcp_t		*tcp = connp->conn_tcp;
9992 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9993 
9994 	switch (level) {
9995 	case SOL_SOCKET:
9996 		switch (name) {
9997 		case SO_LINGER:	{
9998 			struct linger *lgr = (struct linger *)ptr;
9999 
10000 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
10001 			lgr->l_linger = tcp->tcp_lingertime;
10002 			}
10003 			return (sizeof (struct linger));
10004 		case SO_DEBUG:
10005 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
10006 			break;
10007 		case SO_KEEPALIVE:
10008 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
10009 			break;
10010 		case SO_DONTROUTE:
10011 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
10012 			break;
10013 		case SO_USELOOPBACK:
10014 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
10015 			break;
10016 		case SO_BROADCAST:
10017 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
10018 			break;
10019 		case SO_REUSEADDR:
10020 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
10021 			break;
10022 		case SO_OOBINLINE:
10023 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
10024 			break;
10025 		case SO_DGRAM_ERRIND:
10026 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
10027 			break;
10028 		case SO_TYPE:
10029 			*i1 = SOCK_STREAM;
10030 			break;
10031 		case SO_SNDBUF:
10032 			*i1 = tcp->tcp_xmit_hiwater;
10033 			break;
10034 		case SO_RCVBUF:
10035 			*i1 = RD(q)->q_hiwat;
10036 			break;
10037 		case SO_SND_COPYAVOID:
10038 			*i1 = tcp->tcp_snd_zcopy_on ?
10039 			    SO_SND_COPYAVOID : 0;
10040 			break;
10041 		case SO_ALLZONES:
10042 			*i1 = connp->conn_allzones ? 1 : 0;
10043 			break;
10044 		case SO_ANON_MLP:
10045 			*i1 = connp->conn_anon_mlp;
10046 			break;
10047 		case SO_MAC_EXEMPT:
10048 			*i1 = connp->conn_mac_exempt;
10049 			break;
10050 		case SO_EXCLBIND:
10051 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
10052 			break;
10053 		case SO_PROTOTYPE:
10054 			*i1 = IPPROTO_TCP;
10055 			break;
10056 		case SO_DOMAIN:
10057 			*i1 = tcp->tcp_family;
10058 			break;
10059 		default:
10060 			return (-1);
10061 		}
10062 		break;
10063 	case IPPROTO_TCP:
10064 		switch (name) {
10065 		case TCP_NODELAY:
10066 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
10067 			break;
10068 		case TCP_MAXSEG:
10069 			*i1 = tcp->tcp_mss;
10070 			break;
10071 		case TCP_NOTIFY_THRESHOLD:
10072 			*i1 = (int)tcp->tcp_first_timer_threshold;
10073 			break;
10074 		case TCP_ABORT_THRESHOLD:
10075 			*i1 = tcp->tcp_second_timer_threshold;
10076 			break;
10077 		case TCP_CONN_NOTIFY_THRESHOLD:
10078 			*i1 = tcp->tcp_first_ctimer_threshold;
10079 			break;
10080 		case TCP_CONN_ABORT_THRESHOLD:
10081 			*i1 = tcp->tcp_second_ctimer_threshold;
10082 			break;
10083 		case TCP_RECVDSTADDR:
10084 			*i1 = tcp->tcp_recvdstaddr;
10085 			break;
10086 		case TCP_ANONPRIVBIND:
10087 			*i1 = tcp->tcp_anon_priv_bind;
10088 			break;
10089 		case TCP_EXCLBIND:
10090 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10091 			break;
10092 		case TCP_INIT_CWND:
10093 			*i1 = tcp->tcp_init_cwnd;
10094 			break;
10095 		case TCP_KEEPALIVE_THRESHOLD:
10096 			*i1 = tcp->tcp_ka_interval;
10097 			break;
10098 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10099 			*i1 = tcp->tcp_ka_abort_thres;
10100 			break;
10101 		case TCP_CORK:
10102 			*i1 = tcp->tcp_cork;
10103 			break;
10104 		default:
10105 			return (-1);
10106 		}
10107 		break;
10108 	case IPPROTO_IP:
10109 		if (tcp->tcp_family != AF_INET)
10110 			return (-1);
10111 		switch (name) {
10112 		case IP_OPTIONS:
10113 		case T_IP_OPTIONS: {
10114 			/*
10115 			 * This is compatible with BSD in that in only return
10116 			 * the reverse source route with the final destination
10117 			 * as the last entry. The first 4 bytes of the option
10118 			 * will contain the final destination.
10119 			 */
10120 			int	opt_len;
10121 
10122 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10123 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10124 			ASSERT(opt_len >= 0);
10125 			/* Caller ensures enough space */
10126 			if (opt_len > 0) {
10127 				/*
10128 				 * TODO: Do we have to handle getsockopt on an
10129 				 * initiator as well?
10130 				 */
10131 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10132 			}
10133 			return (0);
10134 			}
10135 		case IP_TOS:
10136 		case T_IP_TOS:
10137 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10138 			break;
10139 		case IP_TTL:
10140 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10141 			break;
10142 		case IP_NEXTHOP:
10143 			/* Handled at IP level */
10144 			return (-EINVAL);
10145 		default:
10146 			return (-1);
10147 		}
10148 		break;
10149 	case IPPROTO_IPV6:
10150 		/*
10151 		 * IPPROTO_IPV6 options are only supported for sockets
10152 		 * that are using IPv6 on the wire.
10153 		 */
10154 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10155 			return (-1);
10156 		}
10157 		switch (name) {
10158 		case IPV6_UNICAST_HOPS:
10159 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10160 			break;	/* goto sizeof (int) option return */
10161 		case IPV6_BOUND_IF:
10162 			/* Zero if not set */
10163 			*i1 = tcp->tcp_bound_if;
10164 			break;	/* goto sizeof (int) option return */
10165 		case IPV6_RECVPKTINFO:
10166 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10167 				*i1 = 1;
10168 			else
10169 				*i1 = 0;
10170 			break;	/* goto sizeof (int) option return */
10171 		case IPV6_RECVTCLASS:
10172 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10173 				*i1 = 1;
10174 			else
10175 				*i1 = 0;
10176 			break;	/* goto sizeof (int) option return */
10177 		case IPV6_RECVHOPLIMIT:
10178 			if (tcp->tcp_ipv6_recvancillary &
10179 			    TCP_IPV6_RECVHOPLIMIT)
10180 				*i1 = 1;
10181 			else
10182 				*i1 = 0;
10183 			break;	/* goto sizeof (int) option return */
10184 		case IPV6_RECVHOPOPTS:
10185 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10186 				*i1 = 1;
10187 			else
10188 				*i1 = 0;
10189 			break;	/* goto sizeof (int) option return */
10190 		case IPV6_RECVDSTOPTS:
10191 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10192 				*i1 = 1;
10193 			else
10194 				*i1 = 0;
10195 			break;	/* goto sizeof (int) option return */
10196 		case _OLD_IPV6_RECVDSTOPTS:
10197 			if (tcp->tcp_ipv6_recvancillary &
10198 			    TCP_OLD_IPV6_RECVDSTOPTS)
10199 				*i1 = 1;
10200 			else
10201 				*i1 = 0;
10202 			break;	/* goto sizeof (int) option return */
10203 		case IPV6_RECVRTHDR:
10204 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10205 				*i1 = 1;
10206 			else
10207 				*i1 = 0;
10208 			break;	/* goto sizeof (int) option return */
10209 		case IPV6_RECVRTHDRDSTOPTS:
10210 			if (tcp->tcp_ipv6_recvancillary &
10211 			    TCP_IPV6_RECVRTDSTOPTS)
10212 				*i1 = 1;
10213 			else
10214 				*i1 = 0;
10215 			break;	/* goto sizeof (int) option return */
10216 		case IPV6_PKTINFO: {
10217 			/* XXX assumes that caller has room for max size! */
10218 			struct in6_pktinfo *pkti;
10219 
10220 			pkti = (struct in6_pktinfo *)ptr;
10221 			if (ipp->ipp_fields & IPPF_IFINDEX)
10222 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10223 			else
10224 				pkti->ipi6_ifindex = 0;
10225 			if (ipp->ipp_fields & IPPF_ADDR)
10226 				pkti->ipi6_addr = ipp->ipp_addr;
10227 			else
10228 				pkti->ipi6_addr = ipv6_all_zeros;
10229 			return (sizeof (struct in6_pktinfo));
10230 		}
10231 		case IPV6_TCLASS:
10232 			if (ipp->ipp_fields & IPPF_TCLASS)
10233 				*i1 = ipp->ipp_tclass;
10234 			else
10235 				*i1 = IPV6_FLOW_TCLASS(
10236 				    IPV6_DEFAULT_VERS_AND_FLOW);
10237 			break;	/* goto sizeof (int) option return */
10238 		case IPV6_NEXTHOP: {
10239 			sin6_t *sin6 = (sin6_t *)ptr;
10240 
10241 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10242 				return (0);
10243 			*sin6 = sin6_null;
10244 			sin6->sin6_family = AF_INET6;
10245 			sin6->sin6_addr = ipp->ipp_nexthop;
10246 			return (sizeof (sin6_t));
10247 		}
10248 		case IPV6_HOPOPTS:
10249 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10250 				return (0);
10251 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10252 				return (0);
10253 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10254 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10255 			if (tcp->tcp_label_len > 0) {
10256 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10257 				ptr[1] = (ipp->ipp_hopoptslen -
10258 				    tcp->tcp_label_len + 7) / 8 - 1;
10259 			}
10260 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10261 		case IPV6_RTHDRDSTOPTS:
10262 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10263 				return (0);
10264 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10265 			return (ipp->ipp_rtdstoptslen);
10266 		case IPV6_RTHDR:
10267 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10268 				return (0);
10269 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10270 			return (ipp->ipp_rthdrlen);
10271 		case IPV6_DSTOPTS:
10272 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10273 				return (0);
10274 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10275 			return (ipp->ipp_dstoptslen);
10276 		case IPV6_SRC_PREFERENCES:
10277 			return (ip6_get_src_preferences(connp,
10278 			    (uint32_t *)ptr));
10279 		case IPV6_PATHMTU: {
10280 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10281 
10282 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10283 				return (-1);
10284 
10285 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10286 			    connp->conn_fport, mtuinfo,
10287 			    connp->conn_netstack));
10288 		}
10289 		default:
10290 			return (-1);
10291 		}
10292 		break;
10293 	default:
10294 		return (-1);
10295 	}
10296 	return (sizeof (int));
10297 }
10298 
10299 /*
10300  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10301  * Parameters are assumed to be verified by the caller.
10302  */
10303 /* ARGSUSED */
10304 int
10305 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10306     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10307     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10308 {
10309 	conn_t	*connp = Q_TO_CONN(q);
10310 	tcp_t	*tcp = connp->conn_tcp;
10311 	int	*i1 = (int *)invalp;
10312 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10313 	boolean_t checkonly;
10314 	int	reterr;
10315 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10316 
10317 	switch (optset_context) {
10318 	case SETFN_OPTCOM_CHECKONLY:
10319 		checkonly = B_TRUE;
10320 		/*
10321 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10322 		 * inlen != 0 implies value supplied and
10323 		 * 	we have to "pretend" to set it.
10324 		 * inlen == 0 implies that there is no
10325 		 * 	value part in T_CHECK request and just validation
10326 		 * done elsewhere should be enough, we just return here.
10327 		 */
10328 		if (inlen == 0) {
10329 			*outlenp = 0;
10330 			return (0);
10331 		}
10332 		break;
10333 	case SETFN_OPTCOM_NEGOTIATE:
10334 		checkonly = B_FALSE;
10335 		break;
10336 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10337 	case SETFN_CONN_NEGOTIATE:
10338 		checkonly = B_FALSE;
10339 		/*
10340 		 * Negotiating local and "association-related" options
10341 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10342 		 * primitives is allowed by XTI, but we choose
10343 		 * to not implement this style negotiation for Internet
10344 		 * protocols (We interpret it is a must for OSI world but
10345 		 * optional for Internet protocols) for all options.
10346 		 * [ Will do only for the few options that enable test
10347 		 * suites that our XTI implementation of this feature
10348 		 * works for transports that do allow it ]
10349 		 */
10350 		if (!tcp_allow_connopt_set(level, name)) {
10351 			*outlenp = 0;
10352 			return (EINVAL);
10353 		}
10354 		break;
10355 	default:
10356 		/*
10357 		 * We should never get here
10358 		 */
10359 		*outlenp = 0;
10360 		return (EINVAL);
10361 	}
10362 
10363 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10364 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10365 
10366 	/*
10367 	 * For TCP, we should have no ancillary data sent down
10368 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10369 	 * has to be zero.
10370 	 */
10371 	ASSERT(thisdg_attrs == NULL);
10372 
10373 	/*
10374 	 * For fixed length options, no sanity check
10375 	 * of passed in length is done. It is assumed *_optcom_req()
10376 	 * routines do the right thing.
10377 	 */
10378 
10379 	switch (level) {
10380 	case SOL_SOCKET:
10381 		switch (name) {
10382 		case SO_LINGER: {
10383 			struct linger *lgr = (struct linger *)invalp;
10384 
10385 			if (!checkonly) {
10386 				if (lgr->l_onoff) {
10387 					tcp->tcp_linger = 1;
10388 					tcp->tcp_lingertime = lgr->l_linger;
10389 				} else {
10390 					tcp->tcp_linger = 0;
10391 					tcp->tcp_lingertime = 0;
10392 				}
10393 				/* struct copy */
10394 				*(struct linger *)outvalp = *lgr;
10395 			} else {
10396 				if (!lgr->l_onoff) {
10397 					((struct linger *)
10398 					    outvalp)->l_onoff = 0;
10399 					((struct linger *)
10400 					    outvalp)->l_linger = 0;
10401 				} else {
10402 					/* struct copy */
10403 					*(struct linger *)outvalp = *lgr;
10404 				}
10405 			}
10406 			*outlenp = sizeof (struct linger);
10407 			return (0);
10408 		}
10409 		case SO_DEBUG:
10410 			if (!checkonly)
10411 				tcp->tcp_debug = onoff;
10412 			break;
10413 		case SO_KEEPALIVE:
10414 			if (checkonly) {
10415 				/* T_CHECK case */
10416 				break;
10417 			}
10418 
10419 			if (!onoff) {
10420 				if (tcp->tcp_ka_enabled) {
10421 					if (tcp->tcp_ka_tid != 0) {
10422 						(void) TCP_TIMER_CANCEL(tcp,
10423 						    tcp->tcp_ka_tid);
10424 						tcp->tcp_ka_tid = 0;
10425 					}
10426 					tcp->tcp_ka_enabled = 0;
10427 				}
10428 				break;
10429 			}
10430 			if (!tcp->tcp_ka_enabled) {
10431 				/* Crank up the keepalive timer */
10432 				tcp->tcp_ka_last_intrvl = 0;
10433 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10434 				    tcp_keepalive_killer,
10435 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10436 				tcp->tcp_ka_enabled = 1;
10437 			}
10438 			break;
10439 		case SO_DONTROUTE:
10440 			/*
10441 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10442 			 * only of interest to IP.  We track them here only so
10443 			 * that we can report their current value.
10444 			 */
10445 			if (!checkonly) {
10446 				tcp->tcp_dontroute = onoff;
10447 				tcp->tcp_connp->conn_dontroute = onoff;
10448 			}
10449 			break;
10450 		case SO_USELOOPBACK:
10451 			if (!checkonly) {
10452 				tcp->tcp_useloopback = onoff;
10453 				tcp->tcp_connp->conn_loopback = onoff;
10454 			}
10455 			break;
10456 		case SO_BROADCAST:
10457 			if (!checkonly) {
10458 				tcp->tcp_broadcast = onoff;
10459 				tcp->tcp_connp->conn_broadcast = onoff;
10460 			}
10461 			break;
10462 		case SO_REUSEADDR:
10463 			if (!checkonly) {
10464 				tcp->tcp_reuseaddr = onoff;
10465 				tcp->tcp_connp->conn_reuseaddr = onoff;
10466 			}
10467 			break;
10468 		case SO_OOBINLINE:
10469 			if (!checkonly)
10470 				tcp->tcp_oobinline = onoff;
10471 			break;
10472 		case SO_DGRAM_ERRIND:
10473 			if (!checkonly)
10474 				tcp->tcp_dgram_errind = onoff;
10475 			break;
10476 		case SO_SNDBUF: {
10477 			if (*i1 > tcps->tcps_max_buf) {
10478 				*outlenp = 0;
10479 				return (ENOBUFS);
10480 			}
10481 			if (checkonly)
10482 				break;
10483 
10484 			tcp->tcp_xmit_hiwater = *i1;
10485 			if (tcps->tcps_snd_lowat_fraction != 0)
10486 				tcp->tcp_xmit_lowater =
10487 				    tcp->tcp_xmit_hiwater /
10488 				    tcps->tcps_snd_lowat_fraction;
10489 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10490 			/*
10491 			 * If we are flow-controlled, recheck the condition.
10492 			 * There are apps that increase SO_SNDBUF size when
10493 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10494 			 * control condition to be lifted right away.
10495 			 */
10496 			mutex_enter(&tcp->tcp_non_sq_lock);
10497 			if (tcp->tcp_flow_stopped &&
10498 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10499 				tcp_clrqfull(tcp);
10500 			}
10501 			mutex_exit(&tcp->tcp_non_sq_lock);
10502 			break;
10503 		}
10504 		case SO_RCVBUF:
10505 			if (*i1 > tcps->tcps_max_buf) {
10506 				*outlenp = 0;
10507 				return (ENOBUFS);
10508 			}
10509 			/* Silently ignore zero */
10510 			if (!checkonly && *i1 != 0) {
10511 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10512 				(void) tcp_rwnd_set(tcp, *i1);
10513 			}
10514 			/*
10515 			 * XXX should we return the rwnd here
10516 			 * and tcp_opt_get ?
10517 			 */
10518 			break;
10519 		case SO_SND_COPYAVOID:
10520 			if (!checkonly) {
10521 				/* we only allow enable at most once for now */
10522 				if (tcp->tcp_loopback ||
10523 				    (tcp->tcp_kssl_ctx != NULL) ||
10524 				    (!tcp->tcp_snd_zcopy_aware &&
10525 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10526 					*outlenp = 0;
10527 					return (EOPNOTSUPP);
10528 				}
10529 				tcp->tcp_snd_zcopy_aware = 1;
10530 			}
10531 			break;
10532 		case SO_ALLZONES:
10533 			/* Pass option along to IP level for handling */
10534 			return (-EINVAL);
10535 		case SO_ANON_MLP:
10536 			/* Pass option along to IP level for handling */
10537 			return (-EINVAL);
10538 		case SO_MAC_EXEMPT:
10539 			/* Pass option along to IP level for handling */
10540 			return (-EINVAL);
10541 		case SO_EXCLBIND:
10542 			if (!checkonly)
10543 				tcp->tcp_exclbind = onoff;
10544 			break;
10545 		default:
10546 			*outlenp = 0;
10547 			return (EINVAL);
10548 		}
10549 		break;
10550 	case IPPROTO_TCP:
10551 		switch (name) {
10552 		case TCP_NODELAY:
10553 			if (!checkonly)
10554 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10555 			break;
10556 		case TCP_NOTIFY_THRESHOLD:
10557 			if (!checkonly)
10558 				tcp->tcp_first_timer_threshold = *i1;
10559 			break;
10560 		case TCP_ABORT_THRESHOLD:
10561 			if (!checkonly)
10562 				tcp->tcp_second_timer_threshold = *i1;
10563 			break;
10564 		case TCP_CONN_NOTIFY_THRESHOLD:
10565 			if (!checkonly)
10566 				tcp->tcp_first_ctimer_threshold = *i1;
10567 			break;
10568 		case TCP_CONN_ABORT_THRESHOLD:
10569 			if (!checkonly)
10570 				tcp->tcp_second_ctimer_threshold = *i1;
10571 			break;
10572 		case TCP_RECVDSTADDR:
10573 			if (tcp->tcp_state > TCPS_LISTEN)
10574 				return (EOPNOTSUPP);
10575 			if (!checkonly)
10576 				tcp->tcp_recvdstaddr = onoff;
10577 			break;
10578 		case TCP_ANONPRIVBIND:
10579 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10580 			    IPPROTO_TCP)) != 0) {
10581 				*outlenp = 0;
10582 				return (reterr);
10583 			}
10584 			if (!checkonly) {
10585 				tcp->tcp_anon_priv_bind = onoff;
10586 			}
10587 			break;
10588 		case TCP_EXCLBIND:
10589 			if (!checkonly)
10590 				tcp->tcp_exclbind = onoff;
10591 			break;	/* goto sizeof (int) option return */
10592 		case TCP_INIT_CWND: {
10593 			uint32_t init_cwnd = *((uint32_t *)invalp);
10594 
10595 			if (checkonly)
10596 				break;
10597 
10598 			/*
10599 			 * Only allow socket with network configuration
10600 			 * privilege to set the initial cwnd to be larger
10601 			 * than allowed by RFC 3390.
10602 			 */
10603 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10604 				tcp->tcp_init_cwnd = init_cwnd;
10605 				break;
10606 			}
10607 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10608 				*outlenp = 0;
10609 				return (reterr);
10610 			}
10611 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10612 				*outlenp = 0;
10613 				return (EINVAL);
10614 			}
10615 			tcp->tcp_init_cwnd = init_cwnd;
10616 			break;
10617 		}
10618 		case TCP_KEEPALIVE_THRESHOLD:
10619 			if (checkonly)
10620 				break;
10621 
10622 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10623 			    *i1 > tcps->tcps_keepalive_interval_high) {
10624 				*outlenp = 0;
10625 				return (EINVAL);
10626 			}
10627 			if (*i1 != tcp->tcp_ka_interval) {
10628 				tcp->tcp_ka_interval = *i1;
10629 				/*
10630 				 * Check if we need to restart the
10631 				 * keepalive timer.
10632 				 */
10633 				if (tcp->tcp_ka_tid != 0) {
10634 					ASSERT(tcp->tcp_ka_enabled);
10635 					(void) TCP_TIMER_CANCEL(tcp,
10636 					    tcp->tcp_ka_tid);
10637 					tcp->tcp_ka_last_intrvl = 0;
10638 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10639 					    tcp_keepalive_killer,
10640 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10641 				}
10642 			}
10643 			break;
10644 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10645 			if (!checkonly) {
10646 				if (*i1 <
10647 				    tcps->tcps_keepalive_abort_interval_low ||
10648 				    *i1 >
10649 				    tcps->tcps_keepalive_abort_interval_high) {
10650 					*outlenp = 0;
10651 					return (EINVAL);
10652 				}
10653 				tcp->tcp_ka_abort_thres = *i1;
10654 			}
10655 			break;
10656 		case TCP_CORK:
10657 			if (!checkonly) {
10658 				/*
10659 				 * if tcp->tcp_cork was set and is now
10660 				 * being unset, we have to make sure that
10661 				 * the remaining data gets sent out. Also
10662 				 * unset tcp->tcp_cork so that tcp_wput_data()
10663 				 * can send data even if it is less than mss
10664 				 */
10665 				if (tcp->tcp_cork && onoff == 0 &&
10666 				    tcp->tcp_unsent > 0) {
10667 					tcp->tcp_cork = B_FALSE;
10668 					tcp_wput_data(tcp, NULL, B_FALSE);
10669 				}
10670 				tcp->tcp_cork = onoff;
10671 			}
10672 			break;
10673 		default:
10674 			*outlenp = 0;
10675 			return (EINVAL);
10676 		}
10677 		break;
10678 	case IPPROTO_IP:
10679 		if (tcp->tcp_family != AF_INET) {
10680 			*outlenp = 0;
10681 			return (ENOPROTOOPT);
10682 		}
10683 		switch (name) {
10684 		case IP_OPTIONS:
10685 		case T_IP_OPTIONS:
10686 			reterr = tcp_opt_set_header(tcp, checkonly,
10687 			    invalp, inlen);
10688 			if (reterr) {
10689 				*outlenp = 0;
10690 				return (reterr);
10691 			}
10692 			/* OK return - copy input buffer into output buffer */
10693 			if (invalp != outvalp) {
10694 				/* don't trust bcopy for identical src/dst */
10695 				bcopy(invalp, outvalp, inlen);
10696 			}
10697 			*outlenp = inlen;
10698 			return (0);
10699 		case IP_TOS:
10700 		case T_IP_TOS:
10701 			if (!checkonly) {
10702 				tcp->tcp_ipha->ipha_type_of_service =
10703 				    (uchar_t)*i1;
10704 				tcp->tcp_tos = (uchar_t)*i1;
10705 			}
10706 			break;
10707 		case IP_TTL:
10708 			if (!checkonly) {
10709 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10710 				tcp->tcp_ttl = (uchar_t)*i1;
10711 			}
10712 			break;
10713 		case IP_BOUND_IF:
10714 		case IP_NEXTHOP:
10715 			/* Handled at the IP level */
10716 			return (-EINVAL);
10717 		case IP_SEC_OPT:
10718 			/*
10719 			 * We should not allow policy setting after
10720 			 * we start listening for connections.
10721 			 */
10722 			if (tcp->tcp_state == TCPS_LISTEN) {
10723 				return (EINVAL);
10724 			} else {
10725 				/* Handled at the IP level */
10726 				return (-EINVAL);
10727 			}
10728 		default:
10729 			*outlenp = 0;
10730 			return (EINVAL);
10731 		}
10732 		break;
10733 	case IPPROTO_IPV6: {
10734 		ip6_pkt_t		*ipp;
10735 
10736 		/*
10737 		 * IPPROTO_IPV6 options are only supported for sockets
10738 		 * that are using IPv6 on the wire.
10739 		 */
10740 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10741 			*outlenp = 0;
10742 			return (ENOPROTOOPT);
10743 		}
10744 		/*
10745 		 * Only sticky options; no ancillary data
10746 		 */
10747 		ASSERT(thisdg_attrs == NULL);
10748 		ipp = &tcp->tcp_sticky_ipp;
10749 
10750 		switch (name) {
10751 		case IPV6_UNICAST_HOPS:
10752 			/* -1 means use default */
10753 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10754 				*outlenp = 0;
10755 				return (EINVAL);
10756 			}
10757 			if (!checkonly) {
10758 				if (*i1 == -1) {
10759 					tcp->tcp_ip6h->ip6_hops =
10760 					    ipp->ipp_unicast_hops =
10761 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10762 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10763 					/* Pass modified value to IP. */
10764 					*i1 = tcp->tcp_ip6h->ip6_hops;
10765 				} else {
10766 					tcp->tcp_ip6h->ip6_hops =
10767 					    ipp->ipp_unicast_hops =
10768 					    (uint8_t)*i1;
10769 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10770 				}
10771 				reterr = tcp_build_hdrs(q, tcp);
10772 				if (reterr != 0)
10773 					return (reterr);
10774 			}
10775 			break;
10776 		case IPV6_BOUND_IF:
10777 			if (!checkonly) {
10778 				int error = 0;
10779 
10780 				tcp->tcp_bound_if = *i1;
10781 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10782 				    B_TRUE, checkonly, level, name, mblk);
10783 				if (error != 0) {
10784 					*outlenp = 0;
10785 					return (error);
10786 				}
10787 			}
10788 			break;
10789 		/*
10790 		 * Set boolean switches for ancillary data delivery
10791 		 */
10792 		case IPV6_RECVPKTINFO:
10793 			if (!checkonly) {
10794 				if (onoff)
10795 					tcp->tcp_ipv6_recvancillary |=
10796 					    TCP_IPV6_RECVPKTINFO;
10797 				else
10798 					tcp->tcp_ipv6_recvancillary &=
10799 					    ~TCP_IPV6_RECVPKTINFO;
10800 				/* Force it to be sent up with the next msg */
10801 				tcp->tcp_recvifindex = 0;
10802 			}
10803 			break;
10804 		case IPV6_RECVTCLASS:
10805 			if (!checkonly) {
10806 				if (onoff)
10807 					tcp->tcp_ipv6_recvancillary |=
10808 					    TCP_IPV6_RECVTCLASS;
10809 				else
10810 					tcp->tcp_ipv6_recvancillary &=
10811 					    ~TCP_IPV6_RECVTCLASS;
10812 			}
10813 			break;
10814 		case IPV6_RECVHOPLIMIT:
10815 			if (!checkonly) {
10816 				if (onoff)
10817 					tcp->tcp_ipv6_recvancillary |=
10818 					    TCP_IPV6_RECVHOPLIMIT;
10819 				else
10820 					tcp->tcp_ipv6_recvancillary &=
10821 					    ~TCP_IPV6_RECVHOPLIMIT;
10822 				/* Force it to be sent up with the next msg */
10823 				tcp->tcp_recvhops = 0xffffffffU;
10824 			}
10825 			break;
10826 		case IPV6_RECVHOPOPTS:
10827 			if (!checkonly) {
10828 				if (onoff)
10829 					tcp->tcp_ipv6_recvancillary |=
10830 					    TCP_IPV6_RECVHOPOPTS;
10831 				else
10832 					tcp->tcp_ipv6_recvancillary &=
10833 					    ~TCP_IPV6_RECVHOPOPTS;
10834 			}
10835 			break;
10836 		case IPV6_RECVDSTOPTS:
10837 			if (!checkonly) {
10838 				if (onoff)
10839 					tcp->tcp_ipv6_recvancillary |=
10840 					    TCP_IPV6_RECVDSTOPTS;
10841 				else
10842 					tcp->tcp_ipv6_recvancillary &=
10843 					    ~TCP_IPV6_RECVDSTOPTS;
10844 			}
10845 			break;
10846 		case _OLD_IPV6_RECVDSTOPTS:
10847 			if (!checkonly) {
10848 				if (onoff)
10849 					tcp->tcp_ipv6_recvancillary |=
10850 					    TCP_OLD_IPV6_RECVDSTOPTS;
10851 				else
10852 					tcp->tcp_ipv6_recvancillary &=
10853 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10854 			}
10855 			break;
10856 		case IPV6_RECVRTHDR:
10857 			if (!checkonly) {
10858 				if (onoff)
10859 					tcp->tcp_ipv6_recvancillary |=
10860 					    TCP_IPV6_RECVRTHDR;
10861 				else
10862 					tcp->tcp_ipv6_recvancillary &=
10863 					    ~TCP_IPV6_RECVRTHDR;
10864 			}
10865 			break;
10866 		case IPV6_RECVRTHDRDSTOPTS:
10867 			if (!checkonly) {
10868 				if (onoff)
10869 					tcp->tcp_ipv6_recvancillary |=
10870 					    TCP_IPV6_RECVRTDSTOPTS;
10871 				else
10872 					tcp->tcp_ipv6_recvancillary &=
10873 					    ~TCP_IPV6_RECVRTDSTOPTS;
10874 			}
10875 			break;
10876 		case IPV6_PKTINFO:
10877 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10878 				return (EINVAL);
10879 			if (checkonly)
10880 				break;
10881 
10882 			if (inlen == 0) {
10883 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10884 			} else {
10885 				struct in6_pktinfo *pkti;
10886 
10887 				pkti = (struct in6_pktinfo *)invalp;
10888 				/*
10889 				 * RFC 3542 states that ipi6_addr must be
10890 				 * the unspecified address when setting the
10891 				 * IPV6_PKTINFO sticky socket option on a
10892 				 * TCP socket.
10893 				 */
10894 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10895 					return (EINVAL);
10896 				/*
10897 				 * ip6_set_pktinfo() validates the source
10898 				 * address and interface index.
10899 				 */
10900 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10901 				    pkti, mblk);
10902 				if (reterr != 0)
10903 					return (reterr);
10904 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10905 				ipp->ipp_addr = pkti->ipi6_addr;
10906 				if (ipp->ipp_ifindex != 0)
10907 					ipp->ipp_fields |= IPPF_IFINDEX;
10908 				else
10909 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10910 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10911 					ipp->ipp_fields |= IPPF_ADDR;
10912 				else
10913 					ipp->ipp_fields &= ~IPPF_ADDR;
10914 			}
10915 			reterr = tcp_build_hdrs(q, tcp);
10916 			if (reterr != 0)
10917 				return (reterr);
10918 			break;
10919 		case IPV6_TCLASS:
10920 			if (inlen != 0 && inlen != sizeof (int))
10921 				return (EINVAL);
10922 			if (checkonly)
10923 				break;
10924 
10925 			if (inlen == 0) {
10926 				ipp->ipp_fields &= ~IPPF_TCLASS;
10927 			} else {
10928 				if (*i1 > 255 || *i1 < -1)
10929 					return (EINVAL);
10930 				if (*i1 == -1) {
10931 					ipp->ipp_tclass = 0;
10932 					*i1 = 0;
10933 				} else {
10934 					ipp->ipp_tclass = *i1;
10935 				}
10936 				ipp->ipp_fields |= IPPF_TCLASS;
10937 			}
10938 			reterr = tcp_build_hdrs(q, tcp);
10939 			if (reterr != 0)
10940 				return (reterr);
10941 			break;
10942 		case IPV6_NEXTHOP:
10943 			/*
10944 			 * IP will verify that the nexthop is reachable
10945 			 * and fail for sticky options.
10946 			 */
10947 			if (inlen != 0 && inlen != sizeof (sin6_t))
10948 				return (EINVAL);
10949 			if (checkonly)
10950 				break;
10951 
10952 			if (inlen == 0) {
10953 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10954 			} else {
10955 				sin6_t *sin6 = (sin6_t *)invalp;
10956 
10957 				if (sin6->sin6_family != AF_INET6)
10958 					return (EAFNOSUPPORT);
10959 				if (IN6_IS_ADDR_V4MAPPED(
10960 				    &sin6->sin6_addr))
10961 					return (EADDRNOTAVAIL);
10962 				ipp->ipp_nexthop = sin6->sin6_addr;
10963 				if (!IN6_IS_ADDR_UNSPECIFIED(
10964 				    &ipp->ipp_nexthop))
10965 					ipp->ipp_fields |= IPPF_NEXTHOP;
10966 				else
10967 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10968 			}
10969 			reterr = tcp_build_hdrs(q, tcp);
10970 			if (reterr != 0)
10971 				return (reterr);
10972 			break;
10973 		case IPV6_HOPOPTS: {
10974 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10975 
10976 			/*
10977 			 * Sanity checks - minimum size, size a multiple of
10978 			 * eight bytes, and matching size passed in.
10979 			 */
10980 			if (inlen != 0 &&
10981 			    inlen != (8 * (hopts->ip6h_len + 1)))
10982 				return (EINVAL);
10983 
10984 			if (checkonly)
10985 				break;
10986 
10987 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10988 			    (uchar_t **)&ipp->ipp_hopopts,
10989 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10990 			if (reterr != 0)
10991 				return (reterr);
10992 			if (ipp->ipp_hopoptslen == 0)
10993 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10994 			else
10995 				ipp->ipp_fields |= IPPF_HOPOPTS;
10996 			reterr = tcp_build_hdrs(q, tcp);
10997 			if (reterr != 0)
10998 				return (reterr);
10999 			break;
11000 		}
11001 		case IPV6_RTHDRDSTOPTS: {
11002 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
11003 
11004 			/*
11005 			 * Sanity checks - minimum size, size a multiple of
11006 			 * eight bytes, and matching size passed in.
11007 			 */
11008 			if (inlen != 0 &&
11009 			    inlen != (8 * (dopts->ip6d_len + 1)))
11010 				return (EINVAL);
11011 
11012 			if (checkonly)
11013 				break;
11014 
11015 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11016 			    (uchar_t **)&ipp->ipp_rtdstopts,
11017 			    &ipp->ipp_rtdstoptslen, 0);
11018 			if (reterr != 0)
11019 				return (reterr);
11020 			if (ipp->ipp_rtdstoptslen == 0)
11021 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
11022 			else
11023 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
11024 			reterr = tcp_build_hdrs(q, tcp);
11025 			if (reterr != 0)
11026 				return (reterr);
11027 			break;
11028 		}
11029 		case IPV6_DSTOPTS: {
11030 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
11031 
11032 			/*
11033 			 * Sanity checks - minimum size, size a multiple of
11034 			 * eight bytes, and matching size passed in.
11035 			 */
11036 			if (inlen != 0 &&
11037 			    inlen != (8 * (dopts->ip6d_len + 1)))
11038 				return (EINVAL);
11039 
11040 			if (checkonly)
11041 				break;
11042 
11043 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11044 			    (uchar_t **)&ipp->ipp_dstopts,
11045 			    &ipp->ipp_dstoptslen, 0);
11046 			if (reterr != 0)
11047 				return (reterr);
11048 			if (ipp->ipp_dstoptslen == 0)
11049 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
11050 			else
11051 				ipp->ipp_fields |= IPPF_DSTOPTS;
11052 			reterr = tcp_build_hdrs(q, tcp);
11053 			if (reterr != 0)
11054 				return (reterr);
11055 			break;
11056 		}
11057 		case IPV6_RTHDR: {
11058 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
11059 
11060 			/*
11061 			 * Sanity checks - minimum size, size a multiple of
11062 			 * eight bytes, and matching size passed in.
11063 			 */
11064 			if (inlen != 0 &&
11065 			    inlen != (8 * (rt->ip6r_len + 1)))
11066 				return (EINVAL);
11067 
11068 			if (checkonly)
11069 				break;
11070 
11071 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11072 			    (uchar_t **)&ipp->ipp_rthdr,
11073 			    &ipp->ipp_rthdrlen, 0);
11074 			if (reterr != 0)
11075 				return (reterr);
11076 			if (ipp->ipp_rthdrlen == 0)
11077 				ipp->ipp_fields &= ~IPPF_RTHDR;
11078 			else
11079 				ipp->ipp_fields |= IPPF_RTHDR;
11080 			reterr = tcp_build_hdrs(q, tcp);
11081 			if (reterr != 0)
11082 				return (reterr);
11083 			break;
11084 		}
11085 		case IPV6_V6ONLY:
11086 			if (!checkonly)
11087 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11088 			break;
11089 		case IPV6_USE_MIN_MTU:
11090 			if (inlen != sizeof (int))
11091 				return (EINVAL);
11092 
11093 			if (*i1 < -1 || *i1 > 1)
11094 				return (EINVAL);
11095 
11096 			if (checkonly)
11097 				break;
11098 
11099 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11100 			ipp->ipp_use_min_mtu = *i1;
11101 			break;
11102 		case IPV6_BOUND_PIF:
11103 			/* Handled at the IP level */
11104 			return (-EINVAL);
11105 		case IPV6_SEC_OPT:
11106 			/*
11107 			 * We should not allow policy setting after
11108 			 * we start listening for connections.
11109 			 */
11110 			if (tcp->tcp_state == TCPS_LISTEN) {
11111 				return (EINVAL);
11112 			} else {
11113 				/* Handled at the IP level */
11114 				return (-EINVAL);
11115 			}
11116 		case IPV6_SRC_PREFERENCES:
11117 			if (inlen != sizeof (uint32_t))
11118 				return (EINVAL);
11119 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11120 			    *(uint32_t *)invalp);
11121 			if (reterr != 0) {
11122 				*outlenp = 0;
11123 				return (reterr);
11124 			}
11125 			break;
11126 		default:
11127 			*outlenp = 0;
11128 			return (EINVAL);
11129 		}
11130 		break;
11131 	}		/* end IPPROTO_IPV6 */
11132 	default:
11133 		*outlenp = 0;
11134 		return (EINVAL);
11135 	}
11136 	/*
11137 	 * Common case of OK return with outval same as inval
11138 	 */
11139 	if (invalp != outvalp) {
11140 		/* don't trust bcopy for identical src/dst */
11141 		(void) bcopy(invalp, outvalp, inlen);
11142 	}
11143 	*outlenp = inlen;
11144 	return (0);
11145 }
11146 
11147 /*
11148  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11149  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11150  * headers, and the maximum size tcp header (to avoid reallocation
11151  * on the fly for additional tcp options).
11152  * Returns failure if can't allocate memory.
11153  */
11154 static int
11155 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11156 {
11157 	char	*hdrs;
11158 	uint_t	hdrs_len;
11159 	ip6i_t	*ip6i;
11160 	char	buf[TCP_MAX_HDR_LENGTH];
11161 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11162 	in6_addr_t src, dst;
11163 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11164 
11165 	/*
11166 	 * save the existing tcp header and source/dest IP addresses
11167 	 */
11168 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11169 	src = tcp->tcp_ip6h->ip6_src;
11170 	dst = tcp->tcp_ip6h->ip6_dst;
11171 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11172 	ASSERT(hdrs_len != 0);
11173 	if (hdrs_len > tcp->tcp_iphc_len) {
11174 		/* Need to reallocate */
11175 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11176 		if (hdrs == NULL)
11177 			return (ENOMEM);
11178 		if (tcp->tcp_iphc != NULL) {
11179 			if (tcp->tcp_hdr_grown) {
11180 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11181 			} else {
11182 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11183 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11184 			}
11185 			tcp->tcp_iphc_len = 0;
11186 		}
11187 		ASSERT(tcp->tcp_iphc_len == 0);
11188 		tcp->tcp_iphc = hdrs;
11189 		tcp->tcp_iphc_len = hdrs_len;
11190 		tcp->tcp_hdr_grown = B_TRUE;
11191 	}
11192 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11193 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11194 
11195 	/* Set header fields not in ipp */
11196 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11197 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11198 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11199 	} else {
11200 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11201 	}
11202 	/*
11203 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11204 	 *
11205 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11206 	 */
11207 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11208 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11209 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11210 
11211 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11212 
11213 	tcp->tcp_ip6h->ip6_src = src;
11214 	tcp->tcp_ip6h->ip6_dst = dst;
11215 
11216 	/*
11217 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11218 	 * the default value for TCP.
11219 	 */
11220 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11221 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11222 
11223 	/*
11224 	 * If we're setting extension headers after a connection
11225 	 * has been established, and if we have a routing header
11226 	 * among the extension headers, call ip_massage_options_v6 to
11227 	 * manipulate the routing header/ip6_dst set the checksum
11228 	 * difference in the tcp header template.
11229 	 * (This happens in tcp_connect_ipv6 if the routing header
11230 	 * is set prior to the connect.)
11231 	 * Set the tcp_sum to zero first in case we've cleared a
11232 	 * routing header or don't have one at all.
11233 	 */
11234 	tcp->tcp_sum = 0;
11235 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11236 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11237 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11238 		    (uint8_t *)tcp->tcp_tcph);
11239 		if (rth != NULL) {
11240 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11241 			    rth, tcps->tcps_netstack);
11242 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11243 			    (tcp->tcp_sum >> 16));
11244 		}
11245 	}
11246 
11247 	/* Try to get everything in a single mblk */
11248 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11249 	return (0);
11250 }
11251 
11252 /*
11253  * Transfer any source route option from ipha to buf/dst in reversed form.
11254  */
11255 static int
11256 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11257 {
11258 	ipoptp_t	opts;
11259 	uchar_t		*opt;
11260 	uint8_t		optval;
11261 	uint8_t		optlen;
11262 	uint32_t	len = 0;
11263 
11264 	for (optval = ipoptp_first(&opts, ipha);
11265 	    optval != IPOPT_EOL;
11266 	    optval = ipoptp_next(&opts)) {
11267 		opt = opts.ipoptp_cur;
11268 		optlen = opts.ipoptp_len;
11269 		switch (optval) {
11270 			int	off1, off2;
11271 		case IPOPT_SSRR:
11272 		case IPOPT_LSRR:
11273 
11274 			/* Reverse source route */
11275 			/*
11276 			 * First entry should be the next to last one in the
11277 			 * current source route (the last entry is our
11278 			 * address.)
11279 			 * The last entry should be the final destination.
11280 			 */
11281 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11282 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11283 			off1 = IPOPT_MINOFF_SR - 1;
11284 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11285 			if (off2 < 0) {
11286 				/* No entries in source route */
11287 				break;
11288 			}
11289 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11290 			/*
11291 			 * Note: use src since ipha has not had its src
11292 			 * and dst reversed (it is in the state it was
11293 			 * received.
11294 			 */
11295 			bcopy(&ipha->ipha_src, buf + off2,
11296 			    IP_ADDR_LEN);
11297 			off2 -= IP_ADDR_LEN;
11298 
11299 			while (off2 > 0) {
11300 				bcopy(opt + off2, buf + off1,
11301 				    IP_ADDR_LEN);
11302 				off1 += IP_ADDR_LEN;
11303 				off2 -= IP_ADDR_LEN;
11304 			}
11305 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11306 			buf += optlen;
11307 			len += optlen;
11308 			break;
11309 		}
11310 	}
11311 done:
11312 	/* Pad the resulting options */
11313 	while (len & 0x3) {
11314 		*buf++ = IPOPT_EOL;
11315 		len++;
11316 	}
11317 	return (len);
11318 }
11319 
11320 
11321 /*
11322  * Extract and revert a source route from ipha (if any)
11323  * and then update the relevant fields in both tcp_t and the standard header.
11324  */
11325 static void
11326 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11327 {
11328 	char	buf[TCP_MAX_HDR_LENGTH];
11329 	uint_t	tcph_len;
11330 	int	len;
11331 
11332 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11333 	len = IPH_HDR_LENGTH(ipha);
11334 	if (len == IP_SIMPLE_HDR_LENGTH)
11335 		/* Nothing to do */
11336 		return;
11337 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11338 	    (len & 0x3))
11339 		return;
11340 
11341 	tcph_len = tcp->tcp_tcp_hdr_len;
11342 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11343 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11344 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11345 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11346 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11347 	len += IP_SIMPLE_HDR_LENGTH;
11348 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11349 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11350 	if ((int)tcp->tcp_sum < 0)
11351 		tcp->tcp_sum--;
11352 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11353 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11354 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11355 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11356 	tcp->tcp_ip_hdr_len = len;
11357 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11358 	    (IP_VERSION << 4) | (len >> 2);
11359 	len += tcph_len;
11360 	tcp->tcp_hdr_len = len;
11361 }
11362 
11363 /*
11364  * Copy the standard header into its new location,
11365  * lay in the new options and then update the relevant
11366  * fields in both tcp_t and the standard header.
11367  */
11368 static int
11369 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11370 {
11371 	uint_t	tcph_len;
11372 	uint8_t	*ip_optp;
11373 	tcph_t	*new_tcph;
11374 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11375 
11376 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11377 		return (EINVAL);
11378 
11379 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11380 		return (EINVAL);
11381 
11382 	if (checkonly) {
11383 		/*
11384 		 * do not really set, just pretend to - T_CHECK
11385 		 */
11386 		return (0);
11387 	}
11388 
11389 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11390 	if (tcp->tcp_label_len > 0) {
11391 		int padlen;
11392 		uint8_t opt;
11393 
11394 		/* convert list termination to no-ops */
11395 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11396 		ip_optp += ip_optp[IPOPT_OLEN];
11397 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11398 		while (--padlen >= 0)
11399 			*ip_optp++ = opt;
11400 	}
11401 	tcph_len = tcp->tcp_tcp_hdr_len;
11402 	new_tcph = (tcph_t *)(ip_optp + len);
11403 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11404 	tcp->tcp_tcph = new_tcph;
11405 	bcopy(ptr, ip_optp, len);
11406 
11407 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11408 
11409 	tcp->tcp_ip_hdr_len = len;
11410 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11411 	    (IP_VERSION << 4) | (len >> 2);
11412 	tcp->tcp_hdr_len = len + tcph_len;
11413 	if (!TCP_IS_DETACHED(tcp)) {
11414 		/* Always allocate room for all options. */
11415 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11416 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11417 	}
11418 	return (0);
11419 }
11420 
11421 /* Get callback routine passed to nd_load by tcp_param_register */
11422 /* ARGSUSED */
11423 static int
11424 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11425 {
11426 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11427 
11428 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11429 	return (0);
11430 }
11431 
11432 /*
11433  * Walk through the param array specified registering each element with the
11434  * named dispatch handler.
11435  */
11436 static boolean_t
11437 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11438 {
11439 	for (; cnt-- > 0; tcppa++) {
11440 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11441 			if (!nd_load(ndp, tcppa->tcp_param_name,
11442 			    tcp_param_get, tcp_param_set,
11443 			    (caddr_t)tcppa)) {
11444 				nd_free(ndp);
11445 				return (B_FALSE);
11446 			}
11447 		}
11448 	}
11449 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11450 	    KM_SLEEP);
11451 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11452 	    sizeof (tcpparam_t));
11453 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11454 	    tcp_param_get, tcp_param_set_aligned,
11455 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11456 		nd_free(ndp);
11457 		return (B_FALSE);
11458 	}
11459 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11460 	    KM_SLEEP);
11461 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11462 	    sizeof (tcpparam_t));
11463 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11464 	    tcp_param_get, tcp_param_set_aligned,
11465 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11466 		nd_free(ndp);
11467 		return (B_FALSE);
11468 	}
11469 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11470 	    KM_SLEEP);
11471 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11472 	    sizeof (tcpparam_t));
11473 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11474 	    tcp_param_get, tcp_param_set_aligned,
11475 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11476 		nd_free(ndp);
11477 		return (B_FALSE);
11478 	}
11479 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11480 	    KM_SLEEP);
11481 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11482 	    sizeof (tcpparam_t));
11483 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11484 	    tcp_param_get, tcp_param_set_aligned,
11485 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11486 		nd_free(ndp);
11487 		return (B_FALSE);
11488 	}
11489 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11490 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11491 		nd_free(ndp);
11492 		return (B_FALSE);
11493 	}
11494 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11495 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11496 		nd_free(ndp);
11497 		return (B_FALSE);
11498 	}
11499 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11500 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11501 		nd_free(ndp);
11502 		return (B_FALSE);
11503 	}
11504 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11505 	    NULL)) {
11506 		nd_free(ndp);
11507 		return (B_FALSE);
11508 	}
11509 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11510 	    NULL, NULL)) {
11511 		nd_free(ndp);
11512 		return (B_FALSE);
11513 	}
11514 	if (!nd_load(ndp, "tcp_listen_hash",
11515 	    tcp_listen_hash_report, NULL, NULL)) {
11516 		nd_free(ndp);
11517 		return (B_FALSE);
11518 	}
11519 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11520 	    NULL, NULL)) {
11521 		nd_free(ndp);
11522 		return (B_FALSE);
11523 	}
11524 	if (!nd_load(ndp, "tcp_acceptor_hash",
11525 	    tcp_acceptor_hash_report, NULL, NULL)) {
11526 		nd_free(ndp);
11527 		return (B_FALSE);
11528 	}
11529 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11530 	    tcp_host_param_set, NULL)) {
11531 		nd_free(ndp);
11532 		return (B_FALSE);
11533 	}
11534 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11535 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11536 		nd_free(ndp);
11537 		return (B_FALSE);
11538 	}
11539 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11540 	    tcp_1948_phrase_set, NULL)) {
11541 		nd_free(ndp);
11542 		return (B_FALSE);
11543 	}
11544 	if (!nd_load(ndp, "tcp_reserved_port_list",
11545 	    tcp_reserved_port_list, NULL, NULL)) {
11546 		nd_free(ndp);
11547 		return (B_FALSE);
11548 	}
11549 	/*
11550 	 * Dummy ndd variables - only to convey obsolescence information
11551 	 * through printing of their name (no get or set routines)
11552 	 * XXX Remove in future releases ?
11553 	 */
11554 	if (!nd_load(ndp,
11555 	    "tcp_close_wait_interval(obsoleted - "
11556 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11557 		nd_free(ndp);
11558 		return (B_FALSE);
11559 	}
11560 	return (B_TRUE);
11561 }
11562 
11563 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11564 /* ARGSUSED */
11565 static int
11566 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11567     cred_t *cr)
11568 {
11569 	long new_value;
11570 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11571 
11572 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11573 	    new_value < tcppa->tcp_param_min ||
11574 	    new_value > tcppa->tcp_param_max) {
11575 		return (EINVAL);
11576 	}
11577 	/*
11578 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11579 	 * round it up.  For future 64 bit requirement, we actually make it
11580 	 * a multiple of 8.
11581 	 */
11582 	if (new_value & 0x7) {
11583 		new_value = (new_value & ~0x7) + 0x8;
11584 	}
11585 	tcppa->tcp_param_val = new_value;
11586 	return (0);
11587 }
11588 
11589 /* Set callback routine passed to nd_load by tcp_param_register */
11590 /* ARGSUSED */
11591 static int
11592 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11593 {
11594 	long	new_value;
11595 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11596 
11597 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11598 	    new_value < tcppa->tcp_param_min ||
11599 	    new_value > tcppa->tcp_param_max) {
11600 		return (EINVAL);
11601 	}
11602 	tcppa->tcp_param_val = new_value;
11603 	return (0);
11604 }
11605 
11606 /*
11607  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11608  * is filled, return as much as we can.  The message passed in may be
11609  * multi-part, chained using b_cont.  "start" is the starting sequence
11610  * number for this piece.
11611  */
11612 static mblk_t *
11613 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11614 {
11615 	uint32_t	end;
11616 	mblk_t		*mp1;
11617 	mblk_t		*mp2;
11618 	mblk_t		*next_mp;
11619 	uint32_t	u1;
11620 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11621 
11622 	/* Walk through all the new pieces. */
11623 	do {
11624 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11625 		    (uintptr_t)INT_MAX);
11626 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11627 		next_mp = mp->b_cont;
11628 		if (start == end) {
11629 			/* Empty.  Blast it. */
11630 			freeb(mp);
11631 			continue;
11632 		}
11633 		mp->b_cont = NULL;
11634 		TCP_REASS_SET_SEQ(mp, start);
11635 		TCP_REASS_SET_END(mp, end);
11636 		mp1 = tcp->tcp_reass_tail;
11637 		if (!mp1) {
11638 			tcp->tcp_reass_tail = mp;
11639 			tcp->tcp_reass_head = mp;
11640 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11641 			UPDATE_MIB(&tcps->tcps_mib,
11642 			    tcpInDataUnorderBytes, end - start);
11643 			continue;
11644 		}
11645 		/* New stuff completely beyond tail? */
11646 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11647 			/* Link it on end. */
11648 			mp1->b_cont = mp;
11649 			tcp->tcp_reass_tail = mp;
11650 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11651 			UPDATE_MIB(&tcps->tcps_mib,
11652 			    tcpInDataUnorderBytes, end - start);
11653 			continue;
11654 		}
11655 		mp1 = tcp->tcp_reass_head;
11656 		u1 = TCP_REASS_SEQ(mp1);
11657 		/* New stuff at the front? */
11658 		if (SEQ_LT(start, u1)) {
11659 			/* Yes... Check for overlap. */
11660 			mp->b_cont = mp1;
11661 			tcp->tcp_reass_head = mp;
11662 			tcp_reass_elim_overlap(tcp, mp);
11663 			continue;
11664 		}
11665 		/*
11666 		 * The new piece fits somewhere between the head and tail.
11667 		 * We find our slot, where mp1 precedes us and mp2 trails.
11668 		 */
11669 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11670 			u1 = TCP_REASS_SEQ(mp2);
11671 			if (SEQ_LEQ(start, u1))
11672 				break;
11673 		}
11674 		/* Link ourselves in */
11675 		mp->b_cont = mp2;
11676 		mp1->b_cont = mp;
11677 
11678 		/* Trim overlap with following mblk(s) first */
11679 		tcp_reass_elim_overlap(tcp, mp);
11680 
11681 		/* Trim overlap with preceding mblk */
11682 		tcp_reass_elim_overlap(tcp, mp1);
11683 
11684 	} while (start = end, mp = next_mp);
11685 	mp1 = tcp->tcp_reass_head;
11686 	/* Anything ready to go? */
11687 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11688 		return (NULL);
11689 	/* Eat what we can off the queue */
11690 	for (;;) {
11691 		mp = mp1->b_cont;
11692 		end = TCP_REASS_END(mp1);
11693 		TCP_REASS_SET_SEQ(mp1, 0);
11694 		TCP_REASS_SET_END(mp1, 0);
11695 		if (!mp) {
11696 			tcp->tcp_reass_tail = NULL;
11697 			break;
11698 		}
11699 		if (end != TCP_REASS_SEQ(mp)) {
11700 			mp1->b_cont = NULL;
11701 			break;
11702 		}
11703 		mp1 = mp;
11704 	}
11705 	mp1 = tcp->tcp_reass_head;
11706 	tcp->tcp_reass_head = mp;
11707 	return (mp1);
11708 }
11709 
11710 /* Eliminate any overlap that mp may have over later mblks */
11711 static void
11712 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11713 {
11714 	uint32_t	end;
11715 	mblk_t		*mp1;
11716 	uint32_t	u1;
11717 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11718 
11719 	end = TCP_REASS_END(mp);
11720 	while ((mp1 = mp->b_cont) != NULL) {
11721 		u1 = TCP_REASS_SEQ(mp1);
11722 		if (!SEQ_GT(end, u1))
11723 			break;
11724 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11725 			mp->b_wptr -= end - u1;
11726 			TCP_REASS_SET_END(mp, u1);
11727 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11728 			UPDATE_MIB(&tcps->tcps_mib,
11729 			    tcpInDataPartDupBytes, end - u1);
11730 			break;
11731 		}
11732 		mp->b_cont = mp1->b_cont;
11733 		TCP_REASS_SET_SEQ(mp1, 0);
11734 		TCP_REASS_SET_END(mp1, 0);
11735 		freeb(mp1);
11736 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11737 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11738 	}
11739 	if (!mp1)
11740 		tcp->tcp_reass_tail = mp;
11741 }
11742 
11743 /*
11744  * Send up all messages queued on tcp_rcv_list.
11745  */
11746 static uint_t
11747 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11748 {
11749 	mblk_t *mp;
11750 	uint_t ret = 0;
11751 	uint_t thwin;
11752 #ifdef DEBUG
11753 	uint_t cnt = 0;
11754 #endif
11755 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11756 
11757 	/* Can't drain on an eager connection */
11758 	if (tcp->tcp_listener != NULL)
11759 		return (ret);
11760 
11761 	/* Can't be sodirect enabled */
11762 	ASSERT(SOD_NOT_ENABLED(tcp));
11763 
11764 	/*
11765 	 * Handle two cases here: we are currently fused or we were
11766 	 * previously fused and have some urgent data to be delivered
11767 	 * upstream.  The latter happens because we either ran out of
11768 	 * memory or were detached and therefore sending the SIGURG was
11769 	 * deferred until this point.  In either case we pass control
11770 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11771 	 * some work.
11772 	 */
11773 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11774 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11775 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11776 		    &tcp->tcp_fused_sigurg_mp))
11777 			return (ret);
11778 	}
11779 
11780 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11781 		tcp->tcp_rcv_list = mp->b_next;
11782 		mp->b_next = NULL;
11783 #ifdef DEBUG
11784 		cnt += msgdsize(mp);
11785 #endif
11786 		/* Does this need SSL processing first? */
11787 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11788 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11789 			    mblk_t *, mp);
11790 			tcp_kssl_input(tcp, mp);
11791 			continue;
11792 		}
11793 		putnext(q, mp);
11794 	}
11795 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11796 	tcp->tcp_rcv_last_head = NULL;
11797 	tcp->tcp_rcv_last_tail = NULL;
11798 	tcp->tcp_rcv_cnt = 0;
11799 
11800 	/* Learn the latest rwnd information that we sent to the other side. */
11801 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11802 	    << tcp->tcp_rcv_ws;
11803 	/* This is peer's calculated send window (our receive window). */
11804 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11805 	/*
11806 	 * Increase the receive window to max.  But we need to do receiver
11807 	 * SWS avoidance.  This means that we need to check the increase of
11808 	 * of receive window is at least 1 MSS.
11809 	 */
11810 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11811 		/*
11812 		 * If the window that the other side knows is less than max
11813 		 * deferred acks segments, send an update immediately.
11814 		 */
11815 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11816 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11817 			ret = TH_ACK_NEEDED;
11818 		}
11819 		tcp->tcp_rwnd = q->q_hiwat;
11820 	}
11821 	/* No need for the push timer now. */
11822 	if (tcp->tcp_push_tid != 0) {
11823 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11824 		tcp->tcp_push_tid = 0;
11825 	}
11826 	return (ret);
11827 }
11828 
11829 /*
11830  * Queue data on tcp_rcv_list which is a b_next chain.
11831  * tcp_rcv_last_head/tail is the last element of this chain.
11832  * Each element of the chain is a b_cont chain.
11833  *
11834  * M_DATA messages are added to the current element.
11835  * Other messages are added as new (b_next) elements.
11836  */
11837 void
11838 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11839 {
11840 	ASSERT(seg_len == msgdsize(mp));
11841 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11842 
11843 	if (tcp->tcp_rcv_list == NULL) {
11844 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11845 		tcp->tcp_rcv_list = mp;
11846 		tcp->tcp_rcv_last_head = mp;
11847 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11848 		tcp->tcp_rcv_last_tail->b_cont = mp;
11849 	} else {
11850 		tcp->tcp_rcv_last_head->b_next = mp;
11851 		tcp->tcp_rcv_last_head = mp;
11852 	}
11853 
11854 	while (mp->b_cont)
11855 		mp = mp->b_cont;
11856 
11857 	tcp->tcp_rcv_last_tail = mp;
11858 	tcp->tcp_rcv_cnt += seg_len;
11859 	tcp->tcp_rwnd -= seg_len;
11860 }
11861 
11862 /*
11863  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11864  * above, in addition when uioa is enabled schedule an asynchronous uio
11865  * prior to enqueuing. They implement the combinhed semantics of the
11866  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11867  * canputnext(), i.e. flow-control with backenable.
11868  *
11869  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11870  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11871  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11872  *
11873  * Must be called with sodp->sod_lock held and will return with the lock
11874  * released.
11875  */
11876 static uint_t
11877 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11878 {
11879 	queue_t		*q = tcp->tcp_rq;
11880 	uint_t		thwin;
11881 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11882 	uint_t		ret = 0;
11883 
11884 	/* Can't be an eager connection */
11885 	ASSERT(tcp->tcp_listener == NULL);
11886 
11887 	/* Caller must have lock held */
11888 	ASSERT(MUTEX_HELD(sodp->sod_lock));
11889 
11890 	/* Sodirect mode so must not be a tcp_rcv_list */
11891 	ASSERT(tcp->tcp_rcv_list == NULL);
11892 
11893 	if (SOD_QFULL(sodp)) {
11894 		/* Q is full, mark Q for need backenable */
11895 		SOD_QSETBE(sodp);
11896 	}
11897 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11898 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11899 	    << tcp->tcp_rcv_ws;
11900 	/* This is peer's calculated send window (our available rwnd). */
11901 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11902 	/*
11903 	 * Increase the receive window to max.  But we need to do receiver
11904 	 * SWS avoidance.  This means that we need to check the increase of
11905 	 * of receive window is at least 1 MSS.
11906 	 */
11907 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11908 		/*
11909 		 * If the window that the other side knows is less than max
11910 		 * deferred acks segments, send an update immediately.
11911 		 */
11912 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11913 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11914 			ret = TH_ACK_NEEDED;
11915 		}
11916 		tcp->tcp_rwnd = q->q_hiwat;
11917 	}
11918 
11919 	if (!SOD_QEMPTY(sodp)) {
11920 		/* Wakeup to socket */
11921 		sodp->sod_state &= SOD_WAKE_CLR;
11922 		sodp->sod_state |= SOD_WAKE_DONE;
11923 		(sodp->sod_wakeup)(sodp);
11924 		/* wakeup() does the mutex_ext() */
11925 	} else {
11926 		/* Q is empty, no need to wake */
11927 		sodp->sod_state &= SOD_WAKE_CLR;
11928 		sodp->sod_state |= SOD_WAKE_NOT;
11929 		mutex_exit(sodp->sod_lock);
11930 	}
11931 
11932 	/* No need for the push timer now. */
11933 	if (tcp->tcp_push_tid != 0) {
11934 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11935 		tcp->tcp_push_tid = 0;
11936 	}
11937 
11938 	return (ret);
11939 }
11940 
11941 /*
11942  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11943  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11944  * to the user-land buffer and flag the mblk_t as such.
11945  *
11946  * Also, handle tcp_rwnd.
11947  */
11948 uint_t
11949 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11950 {
11951 	uioa_t		*uioap = &sodp->sod_uioa;
11952 	boolean_t	qfull;
11953 	uint_t		thwin;
11954 
11955 	/* Can't be an eager connection */
11956 	ASSERT(tcp->tcp_listener == NULL);
11957 
11958 	/* Caller must have lock held */
11959 	ASSERT(MUTEX_HELD(sodp->sod_lock));
11960 
11961 	/* Sodirect mode so must not be a tcp_rcv_list */
11962 	ASSERT(tcp->tcp_rcv_list == NULL);
11963 
11964 	/* Passed in segment length must be equal to mblk_t chain data size */
11965 	ASSERT(seg_len == msgdsize(mp));
11966 
11967 	if (DB_TYPE(mp) != M_DATA) {
11968 		/* Only process M_DATA mblk_t's */
11969 		goto enq;
11970 	}
11971 	if (uioap->uioa_state & UIOA_ENABLED) {
11972 		/* Uioa is enabled */
11973 		mblk_t		*mp1 = mp;
11974 
11975 		if (seg_len > uioap->uio_resid) {
11976 			/*
11977 			 * There isn't enough uio space for the mblk_t chain
11978 			 * so disable uioa such that this and any additional
11979 			 * mblk_t data is handled by the socket and schedule
11980 			 * the socket for wakeup to finish this uioa.
11981 			 */
11982 			uioap->uioa_state &= UIOA_CLR;
11983 			uioap->uioa_state |= UIOA_FINI;
11984 			if (sodp->sod_state & SOD_WAKE_NOT) {
11985 				sodp->sod_state &= SOD_WAKE_CLR;
11986 				sodp->sod_state |= SOD_WAKE_NEED;
11987 			}
11988 			goto enq;
11989 		}
11990 		do {
11991 			uint32_t	len = MBLKL(mp1);
11992 
11993 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11994 				/* Scheduled, mark dblk_t as such */
11995 				DB_FLAGS(mp1) |= DBLK_UIOA;
11996 			} else {
11997 				/* Error, turn off async processing */
11998 				uioap->uioa_state &= UIOA_CLR;
11999 				uioap->uioa_state |= UIOA_FINI;
12000 				break;
12001 			}
12002 		} while ((mp1 = mp1->b_cont) != NULL);
12003 
12004 		if (mp1 != NULL || uioap->uio_resid == 0) {
12005 			/*
12006 			 * Not all mblk_t(s) uioamoved (error) or all uio
12007 			 * space has been consumed so schedule the socket
12008 			 * for wakeup to finish this uio.
12009 			 */
12010 			sodp->sod_state &= SOD_WAKE_CLR;
12011 			sodp->sod_state |= SOD_WAKE_NEED;
12012 		}
12013 	} else if (uioap->uioa_state & UIOA_FINI) {
12014 		/*
12015 		 * Post UIO_ENABLED waiting for socket to finish processing
12016 		 * so just enqueue and update tcp_rwnd.
12017 		 */
12018 		if (SOD_QFULL(sodp))
12019 			tcp->tcp_rwnd -= seg_len;
12020 	} else if (sodp->sod_want > 0) {
12021 		/*
12022 		 * Uioa isn't enabled but sodirect has a pending read().
12023 		 */
12024 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
12025 			if (sodp->sod_state & SOD_WAKE_NOT) {
12026 				/* Schedule socket for wakeup */
12027 				sodp->sod_state &= SOD_WAKE_CLR;
12028 				sodp->sod_state |= SOD_WAKE_NEED;
12029 			}
12030 			tcp->tcp_rwnd -= seg_len;
12031 		}
12032 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
12033 		/*
12034 		 * No pending sodirect read() so used the default
12035 		 * TCP push logic to guess that a push is needed.
12036 		 */
12037 		if (sodp->sod_state & SOD_WAKE_NOT) {
12038 			/* Schedule socket for wakeup */
12039 			sodp->sod_state &= SOD_WAKE_CLR;
12040 			sodp->sod_state |= SOD_WAKE_NEED;
12041 		}
12042 		tcp->tcp_rwnd -= seg_len;
12043 	} else {
12044 		/* Just update tcp_rwnd */
12045 		tcp->tcp_rwnd -= seg_len;
12046 	}
12047 enq:
12048 	qfull = SOD_QFULL(sodp);
12049 
12050 	(sodp->sod_enqueue)(sodp, mp);
12051 
12052 	if (! qfull && SOD_QFULL(sodp)) {
12053 		/* Wasn't QFULL, now QFULL, need back-enable */
12054 		SOD_QSETBE(sodp);
12055 	}
12056 
12057 	/*
12058 	 * Check to see if remote avail swnd < mss due to delayed ACK,
12059 	 * first get advertised rwnd.
12060 	 */
12061 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
12062 	/* Minus delayed ACK count */
12063 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
12064 	if (thwin < tcp->tcp_mss) {
12065 		/* Remote avail swnd < mss, need ACK now */
12066 		return (TH_ACK_NEEDED);
12067 	}
12068 
12069 	return (0);
12070 }
12071 
12072 /*
12073  * DEFAULT TCP ENTRY POINT via squeue on READ side.
12074  *
12075  * This is the default entry function into TCP on the read side. TCP is
12076  * always entered via squeue i.e. using squeue's for mutual exclusion.
12077  * When classifier does a lookup to find the tcp, it also puts a reference
12078  * on the conn structure associated so the tcp is guaranteed to exist
12079  * when we come here. We still need to check the state because it might
12080  * as well has been closed. The squeue processing function i.e. squeue_enter,
12081  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
12082  * CONN_DEC_REF.
12083  *
12084  * Apart from the default entry point, IP also sends packets directly to
12085  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
12086  * connections.
12087  */
12088 void
12089 tcp_input(void *arg, mblk_t *mp, void *arg2)
12090 {
12091 	conn_t	*connp = (conn_t *)arg;
12092 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
12093 
12094 	/* arg2 is the sqp */
12095 	ASSERT(arg2 != NULL);
12096 	ASSERT(mp != NULL);
12097 
12098 	/*
12099 	 * Don't accept any input on a closed tcp as this TCP logically does
12100 	 * not exist on the system. Don't proceed further with this TCP.
12101 	 * For eg. this packet could trigger another close of this tcp
12102 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
12103 	 * tcp_clean_death / tcp_closei_local must be called at most once
12104 	 * on a TCP. In this case we need to refeed the packet into the
12105 	 * classifier and figure out where the packet should go. Need to
12106 	 * preserve the recv_ill somehow. Until we figure that out, for
12107 	 * now just drop the packet if we can't classify the packet.
12108 	 */
12109 	if (tcp->tcp_state == TCPS_CLOSED ||
12110 	    tcp->tcp_state == TCPS_BOUND) {
12111 		conn_t	*new_connp;
12112 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
12113 
12114 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
12115 		if (new_connp != NULL) {
12116 			tcp_reinput(new_connp, mp, arg2);
12117 			return;
12118 		}
12119 		/* We failed to classify. For now just drop the packet */
12120 		freemsg(mp);
12121 		return;
12122 	}
12123 
12124 	if (DB_TYPE(mp) == M_DATA)
12125 		tcp_rput_data(connp, mp, arg2);
12126 	else
12127 		tcp_rput_common(tcp, mp);
12128 }
12129 
12130 /*
12131  * The read side put procedure.
12132  * The packets passed up by ip are assume to be aligned according to
12133  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
12134  */
12135 static void
12136 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
12137 {
12138 	/*
12139 	 * tcp_rput_data() does not expect M_CTL except for the case
12140 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
12141 	 * type. Need to make sure that any other M_CTLs don't make
12142 	 * it to tcp_rput_data since it is not expecting any and doesn't
12143 	 * check for it.
12144 	 */
12145 	if (DB_TYPE(mp) == M_CTL) {
12146 		switch (*(uint32_t *)(mp->b_rptr)) {
12147 		case TCP_IOC_ABORT_CONN:
12148 			/*
12149 			 * Handle connection abort request.
12150 			 */
12151 			tcp_ioctl_abort_handler(tcp, mp);
12152 			return;
12153 		case IPSEC_IN:
12154 			/*
12155 			 * Only secure icmp arrive in TCP and they
12156 			 * don't go through data path.
12157 			 */
12158 			tcp_icmp_error(tcp, mp);
12159 			return;
12160 		case IN_PKTINFO:
12161 			/*
12162 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
12163 			 * sockets that are receiving IPv4 traffic. tcp
12164 			 */
12165 			ASSERT(tcp->tcp_family == AF_INET6);
12166 			ASSERT(tcp->tcp_ipv6_recvancillary &
12167 			    TCP_IPV6_RECVPKTINFO);
12168 			tcp_rput_data(tcp->tcp_connp, mp,
12169 			    tcp->tcp_connp->conn_sqp);
12170 			return;
12171 		case MDT_IOC_INFO_UPDATE:
12172 			/*
12173 			 * Handle Multidata information update; the
12174 			 * following routine will free the message.
12175 			 */
12176 			if (tcp->tcp_connp->conn_mdt_ok) {
12177 				tcp_mdt_update(tcp,
12178 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
12179 				    B_FALSE);
12180 			}
12181 			freemsg(mp);
12182 			return;
12183 		case LSO_IOC_INFO_UPDATE:
12184 			/*
12185 			 * Handle LSO information update; the following
12186 			 * routine will free the message.
12187 			 */
12188 			if (tcp->tcp_connp->conn_lso_ok) {
12189 				tcp_lso_update(tcp,
12190 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
12191 			}
12192 			freemsg(mp);
12193 			return;
12194 		default:
12195 			/*
12196 			 * tcp_icmp_err() will process the M_CTL packets.
12197 			 * Non-ICMP packets, if any, will be discarded in
12198 			 * tcp_icmp_err(). We will process the ICMP packet
12199 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
12200 			 * incoming ICMP packet may result in changing
12201 			 * the tcp_mss, which we would need if we have
12202 			 * packets to retransmit.
12203 			 */
12204 			tcp_icmp_error(tcp, mp);
12205 			return;
12206 		}
12207 	}
12208 
12209 	/* No point processing the message if tcp is already closed */
12210 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
12211 		freemsg(mp);
12212 		return;
12213 	}
12214 
12215 	tcp_rput_other(tcp, mp);
12216 }
12217 
12218 
12219 /* The minimum of smoothed mean deviation in RTO calculation. */
12220 #define	TCP_SD_MIN	400
12221 
12222 /*
12223  * Set RTO for this connection.  The formula is from Jacobson and Karels'
12224  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
12225  * are the same as those in Appendix A.2 of that paper.
12226  *
12227  * m = new measurement
12228  * sa = smoothed RTT average (8 * average estimates).
12229  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
12230  */
12231 static void
12232 tcp_set_rto(tcp_t *tcp, clock_t rtt)
12233 {
12234 	long m = TICK_TO_MSEC(rtt);
12235 	clock_t sa = tcp->tcp_rtt_sa;
12236 	clock_t sv = tcp->tcp_rtt_sd;
12237 	clock_t rto;
12238 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12239 
12240 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
12241 	tcp->tcp_rtt_update++;
12242 
12243 	/* tcp_rtt_sa is not 0 means this is a new sample. */
12244 	if (sa != 0) {
12245 		/*
12246 		 * Update average estimator:
12247 		 *	new rtt = 7/8 old rtt + 1/8 Error
12248 		 */
12249 
12250 		/* m is now Error in estimate. */
12251 		m -= sa >> 3;
12252 		if ((sa += m) <= 0) {
12253 			/*
12254 			 * Don't allow the smoothed average to be negative.
12255 			 * We use 0 to denote reinitialization of the
12256 			 * variables.
12257 			 */
12258 			sa = 1;
12259 		}
12260 
12261 		/*
12262 		 * Update deviation estimator:
12263 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
12264 		 */
12265 		if (m < 0)
12266 			m = -m;
12267 		m -= sv >> 2;
12268 		sv += m;
12269 	} else {
12270 		/*
12271 		 * This follows BSD's implementation.  So the reinitialized
12272 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12273 		 * link is bandwidth dominated, doubling the window size
12274 		 * during slow start means doubling the RTT.  We want to be
12275 		 * more conservative when we reinitialize our estimates.  3
12276 		 * is just a convenient number.
12277 		 */
12278 		sa = m << 3;
12279 		sv = m << 1;
12280 	}
12281 	if (sv < TCP_SD_MIN) {
12282 		/*
12283 		 * We do not know that if sa captures the delay ACK
12284 		 * effect as in a long train of segments, a receiver
12285 		 * does not delay its ACKs.  So set the minimum of sv
12286 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12287 		 * of BSD DATO.  That means the minimum of mean
12288 		 * deviation is 100 ms.
12289 		 *
12290 		 */
12291 		sv = TCP_SD_MIN;
12292 	}
12293 	tcp->tcp_rtt_sa = sa;
12294 	tcp->tcp_rtt_sd = sv;
12295 	/*
12296 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12297 	 *
12298 	 * Add tcp_rexmit_interval extra in case of extreme environment
12299 	 * where the algorithm fails to work.  The default value of
12300 	 * tcp_rexmit_interval_extra should be 0.
12301 	 *
12302 	 * As we use a finer grained clock than BSD and update
12303 	 * RTO for every ACKs, add in another .25 of RTT to the
12304 	 * deviation of RTO to accomodate burstiness of 1/4 of
12305 	 * window size.
12306 	 */
12307 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12308 
12309 	if (rto > tcps->tcps_rexmit_interval_max) {
12310 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12311 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12312 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12313 	} else {
12314 		tcp->tcp_rto = rto;
12315 	}
12316 
12317 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12318 	tcp->tcp_timer_backoff = 0;
12319 }
12320 
12321 /*
12322  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12323  * send queue which starts at the given seq. no.
12324  *
12325  * Parameters:
12326  *	tcp_t *tcp: the tcp instance pointer.
12327  *	uint32_t seq: the starting seq. no of the requested segment.
12328  *	int32_t *off: after the execution, *off will be the offset to
12329  *		the returned mblk which points to the requested seq no.
12330  *		It is the caller's responsibility to send in a non-null off.
12331  *
12332  * Return:
12333  *	A mblk_t pointer pointing to the requested segment in send queue.
12334  */
12335 static mblk_t *
12336 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12337 {
12338 	int32_t	cnt;
12339 	mblk_t	*mp;
12340 
12341 	/* Defensive coding.  Make sure we don't send incorrect data. */
12342 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12343 		return (NULL);
12344 
12345 	cnt = seq - tcp->tcp_suna;
12346 	mp = tcp->tcp_xmit_head;
12347 	while (cnt > 0 && mp != NULL) {
12348 		cnt -= mp->b_wptr - mp->b_rptr;
12349 		if (cnt < 0) {
12350 			cnt += mp->b_wptr - mp->b_rptr;
12351 			break;
12352 		}
12353 		mp = mp->b_cont;
12354 	}
12355 	ASSERT(mp != NULL);
12356 	*off = cnt;
12357 	return (mp);
12358 }
12359 
12360 /*
12361  * This function handles all retransmissions if SACK is enabled for this
12362  * connection.  First it calculates how many segments can be retransmitted
12363  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12364  * segments.  A segment is eligible if sack_cnt for that segment is greater
12365  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12366  * all eligible segments, it checks to see if TCP can send some new segments
12367  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12368  *
12369  * Parameters:
12370  *	tcp_t *tcp: the tcp structure of the connection.
12371  *	uint_t *flags: in return, appropriate value will be set for
12372  *	tcp_rput_data().
12373  */
12374 static void
12375 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12376 {
12377 	notsack_blk_t	*notsack_blk;
12378 	int32_t		usable_swnd;
12379 	int32_t		mss;
12380 	uint32_t	seg_len;
12381 	mblk_t		*xmit_mp;
12382 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12383 
12384 	ASSERT(tcp->tcp_sack_info != NULL);
12385 	ASSERT(tcp->tcp_notsack_list != NULL);
12386 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12387 
12388 	/* Defensive coding in case there is a bug... */
12389 	if (tcp->tcp_notsack_list == NULL) {
12390 		return;
12391 	}
12392 	notsack_blk = tcp->tcp_notsack_list;
12393 	mss = tcp->tcp_mss;
12394 
12395 	/*
12396 	 * Limit the num of outstanding data in the network to be
12397 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12398 	 */
12399 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12400 
12401 	/* At least retransmit 1 MSS of data. */
12402 	if (usable_swnd <= 0) {
12403 		usable_swnd = mss;
12404 	}
12405 
12406 	/* Make sure no new RTT samples will be taken. */
12407 	tcp->tcp_csuna = tcp->tcp_snxt;
12408 
12409 	notsack_blk = tcp->tcp_notsack_list;
12410 	while (usable_swnd > 0) {
12411 		mblk_t		*snxt_mp, *tmp_mp;
12412 		tcp_seq		begin = tcp->tcp_sack_snxt;
12413 		tcp_seq		end;
12414 		int32_t		off;
12415 
12416 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12417 			if (SEQ_GT(notsack_blk->end, begin) &&
12418 			    (notsack_blk->sack_cnt >=
12419 			    tcps->tcps_dupack_fast_retransmit)) {
12420 				end = notsack_blk->end;
12421 				if (SEQ_LT(begin, notsack_blk->begin)) {
12422 					begin = notsack_blk->begin;
12423 				}
12424 				break;
12425 			}
12426 		}
12427 		/*
12428 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12429 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12430 		 * set to tcp_cwnd_ssthresh.
12431 		 */
12432 		if (notsack_blk == NULL) {
12433 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12434 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12435 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12436 				ASSERT(tcp->tcp_cwnd > 0);
12437 				return;
12438 			} else {
12439 				usable_swnd = usable_swnd / mss;
12440 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12441 				    MAX(usable_swnd * mss, mss);
12442 				*flags |= TH_XMIT_NEEDED;
12443 				return;
12444 			}
12445 		}
12446 
12447 		/*
12448 		 * Note that we may send more than usable_swnd allows here
12449 		 * because of round off, but no more than 1 MSS of data.
12450 		 */
12451 		seg_len = end - begin;
12452 		if (seg_len > mss)
12453 			seg_len = mss;
12454 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12455 		ASSERT(snxt_mp != NULL);
12456 		/* This should not happen.  Defensive coding again... */
12457 		if (snxt_mp == NULL) {
12458 			return;
12459 		}
12460 
12461 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12462 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12463 		if (xmit_mp == NULL)
12464 			return;
12465 
12466 		usable_swnd -= seg_len;
12467 		tcp->tcp_pipe += seg_len;
12468 		tcp->tcp_sack_snxt = begin + seg_len;
12469 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12470 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12471 
12472 		/*
12473 		 * Update the send timestamp to avoid false retransmission.
12474 		 */
12475 		snxt_mp->b_prev = (mblk_t *)lbolt;
12476 
12477 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12478 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12479 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12480 		/*
12481 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12482 		 * This happens when new data sent during fast recovery is
12483 		 * also lost.  If TCP retransmits those new data, it needs
12484 		 * to extend SACK recover phase to avoid starting another
12485 		 * fast retransmit/recovery unnecessarily.
12486 		 */
12487 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12488 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12489 		}
12490 	}
12491 }
12492 
12493 /*
12494  * This function handles policy checking at TCP level for non-hard_bound/
12495  * detached connections.
12496  */
12497 static boolean_t
12498 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12499     boolean_t secure, boolean_t mctl_present)
12500 {
12501 	ipsec_latch_t *ipl = NULL;
12502 	ipsec_action_t *act = NULL;
12503 	mblk_t *data_mp;
12504 	ipsec_in_t *ii;
12505 	const char *reason;
12506 	kstat_named_t *counter;
12507 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12508 	ipsec_stack_t	*ipss;
12509 	ip_stack_t	*ipst;
12510 
12511 	ASSERT(mctl_present || !secure);
12512 
12513 	ASSERT((ipha == NULL && ip6h != NULL) ||
12514 	    (ip6h == NULL && ipha != NULL));
12515 
12516 	/*
12517 	 * We don't necessarily have an ipsec_in_act action to verify
12518 	 * policy because of assymetrical policy where we have only
12519 	 * outbound policy and no inbound policy (possible with global
12520 	 * policy).
12521 	 */
12522 	if (!secure) {
12523 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12524 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12525 			return (B_TRUE);
12526 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12527 		    "tcp_check_policy", ipha, ip6h, secure,
12528 		    tcps->tcps_netstack);
12529 		ipss = tcps->tcps_netstack->netstack_ipsec;
12530 
12531 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12532 		    DROPPER(ipss, ipds_tcp_clear),
12533 		    &tcps->tcps_dropper);
12534 		return (B_FALSE);
12535 	}
12536 
12537 	/*
12538 	 * We have a secure packet.
12539 	 */
12540 	if (act == NULL) {
12541 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12542 		    "tcp_check_policy", ipha, ip6h, secure,
12543 		    tcps->tcps_netstack);
12544 		ipss = tcps->tcps_netstack->netstack_ipsec;
12545 
12546 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12547 		    DROPPER(ipss, ipds_tcp_secure),
12548 		    &tcps->tcps_dropper);
12549 		return (B_FALSE);
12550 	}
12551 
12552 	/*
12553 	 * XXX This whole routine is currently incorrect.  ipl should
12554 	 * be set to the latch pointer, but is currently not set, so
12555 	 * we initialize it to NULL to avoid picking up random garbage.
12556 	 */
12557 	if (ipl == NULL)
12558 		return (B_TRUE);
12559 
12560 	data_mp = first_mp->b_cont;
12561 
12562 	ii = (ipsec_in_t *)first_mp->b_rptr;
12563 
12564 	ipst = tcps->tcps_netstack->netstack_ip;
12565 
12566 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12567 	    &counter, tcp->tcp_connp)) {
12568 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12569 		return (B_TRUE);
12570 	}
12571 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12572 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12573 	    reason);
12574 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12575 
12576 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12577 	    &tcps->tcps_dropper);
12578 	return (B_FALSE);
12579 }
12580 
12581 /*
12582  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12583  * retransmission after a timeout.
12584  *
12585  * To limit the number of duplicate segments, we limit the number of segment
12586  * to be sent in one time to tcp_snd_burst, the burst variable.
12587  */
12588 static void
12589 tcp_ss_rexmit(tcp_t *tcp)
12590 {
12591 	uint32_t	snxt;
12592 	uint32_t	smax;
12593 	int32_t		win;
12594 	int32_t		mss;
12595 	int32_t		off;
12596 	int32_t		burst = tcp->tcp_snd_burst;
12597 	mblk_t		*snxt_mp;
12598 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12599 
12600 	/*
12601 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12602 	 * all unack'ed segments.
12603 	 */
12604 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12605 		smax = tcp->tcp_rexmit_max;
12606 		snxt = tcp->tcp_rexmit_nxt;
12607 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12608 			snxt = tcp->tcp_suna;
12609 		}
12610 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12611 		win -= snxt - tcp->tcp_suna;
12612 		mss = tcp->tcp_mss;
12613 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12614 
12615 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12616 		    (burst > 0) && (snxt_mp != NULL)) {
12617 			mblk_t	*xmit_mp;
12618 			mblk_t	*old_snxt_mp = snxt_mp;
12619 			uint32_t cnt = mss;
12620 
12621 			if (win < cnt) {
12622 				cnt = win;
12623 			}
12624 			if (SEQ_GT(snxt + cnt, smax)) {
12625 				cnt = smax - snxt;
12626 			}
12627 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12628 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12629 			if (xmit_mp == NULL)
12630 				return;
12631 
12632 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12633 
12634 			snxt += cnt;
12635 			win -= cnt;
12636 			/*
12637 			 * Update the send timestamp to avoid false
12638 			 * retransmission.
12639 			 */
12640 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12641 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12642 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12643 
12644 			tcp->tcp_rexmit_nxt = snxt;
12645 			burst--;
12646 		}
12647 		/*
12648 		 * If we have transmitted all we have at the time
12649 		 * we started the retranmission, we can leave
12650 		 * the rest of the job to tcp_wput_data().  But we
12651 		 * need to check the send window first.  If the
12652 		 * win is not 0, go on with tcp_wput_data().
12653 		 */
12654 		if (SEQ_LT(snxt, smax) || win == 0) {
12655 			return;
12656 		}
12657 	}
12658 	/* Only call tcp_wput_data() if there is data to be sent. */
12659 	if (tcp->tcp_unsent) {
12660 		tcp_wput_data(tcp, NULL, B_FALSE);
12661 	}
12662 }
12663 
12664 /*
12665  * Process all TCP option in SYN segment.  Note that this function should
12666  * be called after tcp_adapt_ire() is called so that the necessary info
12667  * from IRE is already set in the tcp structure.
12668  *
12669  * This function sets up the correct tcp_mss value according to the
12670  * MSS option value and our header size.  It also sets up the window scale
12671  * and timestamp values, and initialize SACK info blocks.  But it does not
12672  * change receive window size after setting the tcp_mss value.  The caller
12673  * should do the appropriate change.
12674  */
12675 void
12676 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12677 {
12678 	int options;
12679 	tcp_opt_t tcpopt;
12680 	uint32_t mss_max;
12681 	char *tmp_tcph;
12682 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12683 
12684 	tcpopt.tcp = NULL;
12685 	options = tcp_parse_options(tcph, &tcpopt);
12686 
12687 	/*
12688 	 * Process MSS option.  Note that MSS option value does not account
12689 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12690 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12691 	 * IPv6.
12692 	 */
12693 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12694 		if (tcp->tcp_ipversion == IPV4_VERSION)
12695 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12696 		else
12697 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12698 	} else {
12699 		if (tcp->tcp_ipversion == IPV4_VERSION)
12700 			mss_max = tcps->tcps_mss_max_ipv4;
12701 		else
12702 			mss_max = tcps->tcps_mss_max_ipv6;
12703 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12704 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12705 		else if (tcpopt.tcp_opt_mss > mss_max)
12706 			tcpopt.tcp_opt_mss = mss_max;
12707 	}
12708 
12709 	/* Process Window Scale option. */
12710 	if (options & TCP_OPT_WSCALE_PRESENT) {
12711 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12712 		tcp->tcp_snd_ws_ok = B_TRUE;
12713 	} else {
12714 		tcp->tcp_snd_ws = B_FALSE;
12715 		tcp->tcp_snd_ws_ok = B_FALSE;
12716 		tcp->tcp_rcv_ws = B_FALSE;
12717 	}
12718 
12719 	/* Process Timestamp option. */
12720 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12721 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12722 		tmp_tcph = (char *)tcp->tcp_tcph;
12723 
12724 		tcp->tcp_snd_ts_ok = B_TRUE;
12725 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12726 		tcp->tcp_last_rcv_lbolt = lbolt64;
12727 		ASSERT(OK_32PTR(tmp_tcph));
12728 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12729 
12730 		/* Fill in our template header with basic timestamp option. */
12731 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12732 		tmp_tcph[0] = TCPOPT_NOP;
12733 		tmp_tcph[1] = TCPOPT_NOP;
12734 		tmp_tcph[2] = TCPOPT_TSTAMP;
12735 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12736 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12737 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12738 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12739 	} else {
12740 		tcp->tcp_snd_ts_ok = B_FALSE;
12741 	}
12742 
12743 	/*
12744 	 * Process SACK options.  If SACK is enabled for this connection,
12745 	 * then allocate the SACK info structure.  Note the following ways
12746 	 * when tcp_snd_sack_ok is set to true.
12747 	 *
12748 	 * For active connection: in tcp_adapt_ire() called in
12749 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12750 	 * is checked.
12751 	 *
12752 	 * For passive connection: in tcp_adapt_ire() called in
12753 	 * tcp_accept_comm().
12754 	 *
12755 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12756 	 * That check makes sure that if we did not send a SACK OK option,
12757 	 * we will not enable SACK for this connection even though the other
12758 	 * side sends us SACK OK option.  For active connection, the SACK
12759 	 * info structure has already been allocated.  So we need to free
12760 	 * it if SACK is disabled.
12761 	 */
12762 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12763 	    (tcp->tcp_snd_sack_ok ||
12764 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12765 		/* This should be true only in the passive case. */
12766 		if (tcp->tcp_sack_info == NULL) {
12767 			ASSERT(TCP_IS_DETACHED(tcp));
12768 			tcp->tcp_sack_info =
12769 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12770 		}
12771 		if (tcp->tcp_sack_info == NULL) {
12772 			tcp->tcp_snd_sack_ok = B_FALSE;
12773 		} else {
12774 			tcp->tcp_snd_sack_ok = B_TRUE;
12775 			if (tcp->tcp_snd_ts_ok) {
12776 				tcp->tcp_max_sack_blk = 3;
12777 			} else {
12778 				tcp->tcp_max_sack_blk = 4;
12779 			}
12780 		}
12781 	} else {
12782 		/*
12783 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12784 		 * no SACK info will be used for this
12785 		 * connection.  This assumes that SACK usage
12786 		 * permission is negotiated.  This may need
12787 		 * to be changed once this is clarified.
12788 		 */
12789 		if (tcp->tcp_sack_info != NULL) {
12790 			ASSERT(tcp->tcp_notsack_list == NULL);
12791 			kmem_cache_free(tcp_sack_info_cache,
12792 			    tcp->tcp_sack_info);
12793 			tcp->tcp_sack_info = NULL;
12794 		}
12795 		tcp->tcp_snd_sack_ok = B_FALSE;
12796 	}
12797 
12798 	/*
12799 	 * Now we know the exact TCP/IP header length, subtract
12800 	 * that from tcp_mss to get our side's MSS.
12801 	 */
12802 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12803 	/*
12804 	 * Here we assume that the other side's header size will be equal to
12805 	 * our header size.  We calculate the real MSS accordingly.  Need to
12806 	 * take into additional stuffs IPsec puts in.
12807 	 *
12808 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12809 	 */
12810 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12811 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12812 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12813 
12814 	/*
12815 	 * Set MSS to the smaller one of both ends of the connection.
12816 	 * We should not have called tcp_mss_set() before, but our
12817 	 * side of the MSS should have been set to a proper value
12818 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12819 	 * STREAM head parameters properly.
12820 	 *
12821 	 * If we have a larger-than-16-bit window but the other side
12822 	 * didn't want to do window scale, tcp_rwnd_set() will take
12823 	 * care of that.
12824 	 */
12825 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12826 }
12827 
12828 /*
12829  * Sends the T_CONN_IND to the listener. The caller calls this
12830  * functions via squeue to get inside the listener's perimeter
12831  * once the 3 way hand shake is done a T_CONN_IND needs to be
12832  * sent. As an optimization, the caller can call this directly
12833  * if listener's perimeter is same as eager's.
12834  */
12835 /* ARGSUSED */
12836 void
12837 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12838 {
12839 	conn_t			*lconnp = (conn_t *)arg;
12840 	tcp_t			*listener = lconnp->conn_tcp;
12841 	tcp_t			*tcp;
12842 	struct T_conn_ind	*conn_ind;
12843 	ipaddr_t 		*addr_cache;
12844 	boolean_t		need_send_conn_ind = B_FALSE;
12845 	tcp_stack_t		*tcps = listener->tcp_tcps;
12846 
12847 	/* retrieve the eager */
12848 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12849 	ASSERT(conn_ind->OPT_offset != 0 &&
12850 	    conn_ind->OPT_length == sizeof (intptr_t));
12851 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12852 	    conn_ind->OPT_length);
12853 
12854 	/*
12855 	 * TLI/XTI applications will get confused by
12856 	 * sending eager as an option since it violates
12857 	 * the option semantics. So remove the eager as
12858 	 * option since TLI/XTI app doesn't need it anyway.
12859 	 */
12860 	if (!TCP_IS_SOCKET(listener)) {
12861 		conn_ind->OPT_length = 0;
12862 		conn_ind->OPT_offset = 0;
12863 	}
12864 	if (listener->tcp_state == TCPS_CLOSED ||
12865 	    TCP_IS_DETACHED(listener)) {
12866 		/*
12867 		 * If listener has closed, it would have caused a
12868 		 * a cleanup/blowoff to happen for the eager. We
12869 		 * just need to return.
12870 		 */
12871 		freemsg(mp);
12872 		return;
12873 	}
12874 
12875 
12876 	/*
12877 	 * if the conn_req_q is full defer passing up the
12878 	 * T_CONN_IND until space is availabe after t_accept()
12879 	 * processing
12880 	 */
12881 	mutex_enter(&listener->tcp_eager_lock);
12882 
12883 	/*
12884 	 * Take the eager out, if it is in the list of droppable eagers
12885 	 * as we are here because the 3W handshake is over.
12886 	 */
12887 	MAKE_UNDROPPABLE(tcp);
12888 
12889 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12890 		tcp_t *tail;
12891 
12892 		/*
12893 		 * The eager already has an extra ref put in tcp_rput_data
12894 		 * so that it stays till accept comes back even though it
12895 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12896 		 */
12897 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12898 		listener->tcp_conn_req_cnt_q0--;
12899 		listener->tcp_conn_req_cnt_q++;
12900 
12901 		/* Move from SYN_RCVD to ESTABLISHED list  */
12902 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12903 		    tcp->tcp_eager_prev_q0;
12904 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12905 		    tcp->tcp_eager_next_q0;
12906 		tcp->tcp_eager_prev_q0 = NULL;
12907 		tcp->tcp_eager_next_q0 = NULL;
12908 
12909 		/*
12910 		 * Insert at end of the queue because sockfs
12911 		 * sends down T_CONN_RES in chronological
12912 		 * order. Leaving the older conn indications
12913 		 * at front of the queue helps reducing search
12914 		 * time.
12915 		 */
12916 		tail = listener->tcp_eager_last_q;
12917 		if (tail != NULL)
12918 			tail->tcp_eager_next_q = tcp;
12919 		else
12920 			listener->tcp_eager_next_q = tcp;
12921 		listener->tcp_eager_last_q = tcp;
12922 		tcp->tcp_eager_next_q = NULL;
12923 		/*
12924 		 * Delay sending up the T_conn_ind until we are
12925 		 * done with the eager. Once we have have sent up
12926 		 * the T_conn_ind, the accept can potentially complete
12927 		 * any time and release the refhold we have on the eager.
12928 		 */
12929 		need_send_conn_ind = B_TRUE;
12930 	} else {
12931 		/*
12932 		 * Defer connection on q0 and set deferred
12933 		 * connection bit true
12934 		 */
12935 		tcp->tcp_conn_def_q0 = B_TRUE;
12936 
12937 		/* take tcp out of q0 ... */
12938 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12939 		    tcp->tcp_eager_next_q0;
12940 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12941 		    tcp->tcp_eager_prev_q0;
12942 
12943 		/* ... and place it at the end of q0 */
12944 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12945 		tcp->tcp_eager_next_q0 = listener;
12946 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12947 		listener->tcp_eager_prev_q0 = tcp;
12948 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12949 	}
12950 
12951 	/* we have timed out before */
12952 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12953 		tcp->tcp_syn_rcvd_timeout = 0;
12954 		listener->tcp_syn_rcvd_timeout--;
12955 		if (listener->tcp_syn_defense &&
12956 		    listener->tcp_syn_rcvd_timeout <=
12957 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12958 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12959 		    listener->tcp_last_rcv_lbolt)) {
12960 			/*
12961 			 * Turn off the defense mode if we
12962 			 * believe the SYN attack is over.
12963 			 */
12964 			listener->tcp_syn_defense = B_FALSE;
12965 			if (listener->tcp_ip_addr_cache) {
12966 				kmem_free((void *)listener->tcp_ip_addr_cache,
12967 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12968 				listener->tcp_ip_addr_cache = NULL;
12969 			}
12970 		}
12971 	}
12972 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12973 	if (addr_cache != NULL) {
12974 		/*
12975 		 * We have finished a 3-way handshake with this
12976 		 * remote host. This proves the IP addr is good.
12977 		 * Cache it!
12978 		 */
12979 		addr_cache[IP_ADDR_CACHE_HASH(
12980 		    tcp->tcp_remote)] = tcp->tcp_remote;
12981 	}
12982 	mutex_exit(&listener->tcp_eager_lock);
12983 	if (need_send_conn_ind)
12984 		putnext(listener->tcp_rq, mp);
12985 }
12986 
12987 mblk_t *
12988 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12989     uint_t *ifindexp, ip6_pkt_t *ippp)
12990 {
12991 	ip_pktinfo_t	*pinfo;
12992 	ip6_t		*ip6h;
12993 	uchar_t		*rptr;
12994 	mblk_t		*first_mp = mp;
12995 	boolean_t	mctl_present = B_FALSE;
12996 	uint_t 		ifindex = 0;
12997 	ip6_pkt_t	ipp;
12998 	uint_t		ipvers;
12999 	uint_t		ip_hdr_len;
13000 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13001 
13002 	rptr = mp->b_rptr;
13003 	ASSERT(OK_32PTR(rptr));
13004 	ASSERT(tcp != NULL);
13005 	ipp.ipp_fields = 0;
13006 
13007 	switch DB_TYPE(mp) {
13008 	case M_CTL:
13009 		mp = mp->b_cont;
13010 		if (mp == NULL) {
13011 			freemsg(first_mp);
13012 			return (NULL);
13013 		}
13014 		if (DB_TYPE(mp) != M_DATA) {
13015 			freemsg(first_mp);
13016 			return (NULL);
13017 		}
13018 		mctl_present = B_TRUE;
13019 		break;
13020 	case M_DATA:
13021 		break;
13022 	default:
13023 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
13024 		freemsg(mp);
13025 		return (NULL);
13026 	}
13027 	ipvers = IPH_HDR_VERSION(rptr);
13028 	if (ipvers == IPV4_VERSION) {
13029 		if (tcp == NULL) {
13030 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
13031 			goto done;
13032 		}
13033 
13034 		ipp.ipp_fields |= IPPF_HOPLIMIT;
13035 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
13036 
13037 		/*
13038 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
13039 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
13040 		 */
13041 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
13042 		    mctl_present) {
13043 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
13044 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
13045 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
13046 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
13047 				ipp.ipp_fields |= IPPF_IFINDEX;
13048 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
13049 				ifindex = pinfo->ip_pkt_ifindex;
13050 			}
13051 			freeb(first_mp);
13052 			mctl_present = B_FALSE;
13053 		}
13054 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13055 	} else {
13056 		ip6h = (ip6_t *)rptr;
13057 
13058 		ASSERT(ipvers == IPV6_VERSION);
13059 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
13060 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
13061 		ipp.ipp_hoplimit = ip6h->ip6_hops;
13062 
13063 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
13064 			uint8_t	nexthdrp;
13065 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13066 
13067 			/* Look for ifindex information */
13068 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
13069 				ip6i_t *ip6i = (ip6i_t *)ip6h;
13070 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
13071 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13072 					freemsg(first_mp);
13073 					return (NULL);
13074 				}
13075 
13076 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
13077 					ASSERT(ip6i->ip6i_ifindex != 0);
13078 					ipp.ipp_fields |= IPPF_IFINDEX;
13079 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
13080 					ifindex = ip6i->ip6i_ifindex;
13081 				}
13082 				rptr = (uchar_t *)&ip6i[1];
13083 				mp->b_rptr = rptr;
13084 				if (rptr == mp->b_wptr) {
13085 					mblk_t *mp1;
13086 					mp1 = mp->b_cont;
13087 					freeb(mp);
13088 					mp = mp1;
13089 					rptr = mp->b_rptr;
13090 				}
13091 				if (MBLKL(mp) < IPV6_HDR_LEN +
13092 				    sizeof (tcph_t)) {
13093 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13094 					freemsg(first_mp);
13095 					return (NULL);
13096 				}
13097 				ip6h = (ip6_t *)rptr;
13098 			}
13099 
13100 			/*
13101 			 * Find any potentially interesting extension headers
13102 			 * as well as the length of the IPv6 + extension
13103 			 * headers.
13104 			 */
13105 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
13106 			/* Verify if this is a TCP packet */
13107 			if (nexthdrp != IPPROTO_TCP) {
13108 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13109 				freemsg(first_mp);
13110 				return (NULL);
13111 			}
13112 		} else {
13113 			ip_hdr_len = IPV6_HDR_LEN;
13114 		}
13115 	}
13116 
13117 done:
13118 	if (ipversp != NULL)
13119 		*ipversp = ipvers;
13120 	if (ip_hdr_lenp != NULL)
13121 		*ip_hdr_lenp = ip_hdr_len;
13122 	if (ippp != NULL)
13123 		*ippp = ipp;
13124 	if (ifindexp != NULL)
13125 		*ifindexp = ifindex;
13126 	if (mctl_present) {
13127 		freeb(first_mp);
13128 	}
13129 	return (mp);
13130 }
13131 
13132 /*
13133  * Handle M_DATA messages from IP. Its called directly from IP via
13134  * squeue for AF_INET type sockets fast path. No M_CTL are expected
13135  * in this path.
13136  *
13137  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
13138  * v4 and v6), we are called through tcp_input() and a M_CTL can
13139  * be present for options but tcp_find_pktinfo() deals with it. We
13140  * only expect M_DATA packets after tcp_find_pktinfo() is done.
13141  *
13142  * The first argument is always the connp/tcp to which the mp belongs.
13143  * There are no exceptions to this rule. The caller has already put
13144  * a reference on this connp/tcp and once tcp_rput_data() returns,
13145  * the squeue will do the refrele.
13146  *
13147  * The TH_SYN for the listener directly go to tcp_conn_request via
13148  * squeue.
13149  *
13150  * sqp: NULL = recursive, sqp != NULL means called from squeue
13151  */
13152 void
13153 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
13154 {
13155 	int32_t		bytes_acked;
13156 	int32_t		gap;
13157 	mblk_t		*mp1;
13158 	uint_t		flags;
13159 	uint32_t	new_swnd = 0;
13160 	uchar_t		*iphdr;
13161 	uchar_t		*rptr;
13162 	int32_t		rgap;
13163 	uint32_t	seg_ack;
13164 	int		seg_len;
13165 	uint_t		ip_hdr_len;
13166 	uint32_t	seg_seq;
13167 	tcph_t		*tcph;
13168 	int		urp;
13169 	tcp_opt_t	tcpopt;
13170 	uint_t		ipvers;
13171 	ip6_pkt_t	ipp;
13172 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
13173 	uint32_t	cwnd;
13174 	uint32_t	add;
13175 	int		npkt;
13176 	int		mss;
13177 	conn_t		*connp = (conn_t *)arg;
13178 	squeue_t	*sqp = (squeue_t *)arg2;
13179 	tcp_t		*tcp = connp->conn_tcp;
13180 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13181 
13182 	/*
13183 	 * RST from fused tcp loopback peer should trigger an unfuse.
13184 	 */
13185 	if (tcp->tcp_fused) {
13186 		TCP_STAT(tcps, tcp_fusion_aborted);
13187 		tcp_unfuse(tcp);
13188 	}
13189 
13190 	iphdr = mp->b_rptr;
13191 	rptr = mp->b_rptr;
13192 	ASSERT(OK_32PTR(rptr));
13193 
13194 	/*
13195 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
13196 	 * processing here. For rest call tcp_find_pktinfo to fill up the
13197 	 * necessary information.
13198 	 */
13199 	if (IPCL_IS_TCP4(connp)) {
13200 		ipvers = IPV4_VERSION;
13201 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13202 	} else {
13203 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
13204 		    NULL, &ipp);
13205 		if (mp == NULL) {
13206 			TCP_STAT(tcps, tcp_rput_v6_error);
13207 			return;
13208 		}
13209 		iphdr = mp->b_rptr;
13210 		rptr = mp->b_rptr;
13211 	}
13212 	ASSERT(DB_TYPE(mp) == M_DATA);
13213 
13214 	tcph = (tcph_t *)&rptr[ip_hdr_len];
13215 	seg_seq = ABE32_TO_U32(tcph->th_seq);
13216 	seg_ack = ABE32_TO_U32(tcph->th_ack);
13217 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
13218 	seg_len = (int)(mp->b_wptr - rptr) -
13219 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
13220 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
13221 		do {
13222 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
13223 			    (uintptr_t)INT_MAX);
13224 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
13225 		} while ((mp1 = mp1->b_cont) != NULL &&
13226 		    mp1->b_datap->db_type == M_DATA);
13227 	}
13228 
13229 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
13230 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
13231 		    seg_len, tcph);
13232 		return;
13233 	}
13234 
13235 	if (sqp != NULL) {
13236 		/*
13237 		 * This is the correct place to update tcp_last_recv_time. Note
13238 		 * that it is also updated for tcp structure that belongs to
13239 		 * global and listener queues which do not really need updating.
13240 		 * But that should not cause any harm.  And it is updated for
13241 		 * all kinds of incoming segments, not only for data segments.
13242 		 */
13243 		tcp->tcp_last_recv_time = lbolt;
13244 	}
13245 
13246 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13247 
13248 	BUMP_LOCAL(tcp->tcp_ibsegs);
13249 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
13250 
13251 	if ((flags & TH_URG) && sqp != NULL) {
13252 		/*
13253 		 * TCP can't handle urgent pointers that arrive before
13254 		 * the connection has been accept()ed since it can't
13255 		 * buffer OOB data.  Discard segment if this happens.
13256 		 *
13257 		 * We can't just rely on a non-null tcp_listener to indicate
13258 		 * that the accept() has completed since unlinking of the
13259 		 * eager and completion of the accept are not atomic.
13260 		 * tcp_detached, when it is not set (B_FALSE) indicates
13261 		 * that the accept() has completed.
13262 		 *
13263 		 * Nor can it reassemble urgent pointers, so discard
13264 		 * if it's not the next segment expected.
13265 		 *
13266 		 * Otherwise, collapse chain into one mblk (discard if
13267 		 * that fails).  This makes sure the headers, retransmitted
13268 		 * data, and new data all are in the same mblk.
13269 		 */
13270 		ASSERT(mp != NULL);
13271 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13272 			freemsg(mp);
13273 			return;
13274 		}
13275 		/* Update pointers into message */
13276 		iphdr = rptr = mp->b_rptr;
13277 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13278 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13279 			/*
13280 			 * Since we can't handle any data with this urgent
13281 			 * pointer that is out of sequence, we expunge
13282 			 * the data.  This allows us to still register
13283 			 * the urgent mark and generate the M_PCSIG,
13284 			 * which we can do.
13285 			 */
13286 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13287 			seg_len = 0;
13288 		}
13289 	}
13290 
13291 	switch (tcp->tcp_state) {
13292 	case TCPS_SYN_SENT:
13293 		if (flags & TH_ACK) {
13294 			/*
13295 			 * Note that our stack cannot send data before a
13296 			 * connection is established, therefore the
13297 			 * following check is valid.  Otherwise, it has
13298 			 * to be changed.
13299 			 */
13300 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13301 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13302 				freemsg(mp);
13303 				if (flags & TH_RST)
13304 					return;
13305 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13306 				    tcp, seg_ack, 0, TH_RST);
13307 				return;
13308 			}
13309 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13310 		}
13311 		if (flags & TH_RST) {
13312 			freemsg(mp);
13313 			if (flags & TH_ACK)
13314 				(void) tcp_clean_death(tcp,
13315 				    ECONNREFUSED, 13);
13316 			return;
13317 		}
13318 		if (!(flags & TH_SYN)) {
13319 			freemsg(mp);
13320 			return;
13321 		}
13322 
13323 		/* Process all TCP options. */
13324 		tcp_process_options(tcp, tcph);
13325 		/*
13326 		 * The following changes our rwnd to be a multiple of the
13327 		 * MIN(peer MSS, our MSS) for performance reason.
13328 		 */
13329 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13330 		    tcp->tcp_mss));
13331 
13332 		/* Is the other end ECN capable? */
13333 		if (tcp->tcp_ecn_ok) {
13334 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13335 				tcp->tcp_ecn_ok = B_FALSE;
13336 			}
13337 		}
13338 		/*
13339 		 * Clear ECN flags because it may interfere with later
13340 		 * processing.
13341 		 */
13342 		flags &= ~(TH_ECE|TH_CWR);
13343 
13344 		tcp->tcp_irs = seg_seq;
13345 		tcp->tcp_rack = seg_seq;
13346 		tcp->tcp_rnxt = seg_seq + 1;
13347 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13348 		if (!TCP_IS_DETACHED(tcp)) {
13349 			/* Allocate room for SACK options if needed. */
13350 			if (tcp->tcp_snd_sack_ok) {
13351 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13352 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13353 				    (tcp->tcp_loopback ? 0 :
13354 				    tcps->tcps_wroff_xtra));
13355 			} else {
13356 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13357 				    tcp->tcp_hdr_len +
13358 				    (tcp->tcp_loopback ? 0 :
13359 				    tcps->tcps_wroff_xtra));
13360 			}
13361 		}
13362 		if (flags & TH_ACK) {
13363 			/*
13364 			 * If we can't get the confirmation upstream, pretend
13365 			 * we didn't even see this one.
13366 			 *
13367 			 * XXX: how can we pretend we didn't see it if we
13368 			 * have updated rnxt et. al.
13369 			 *
13370 			 * For loopback we defer sending up the T_CONN_CON
13371 			 * until after some checks below.
13372 			 */
13373 			mp1 = NULL;
13374 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13375 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13376 				freemsg(mp);
13377 				return;
13378 			}
13379 			/* SYN was acked - making progress */
13380 			if (tcp->tcp_ipversion == IPV6_VERSION)
13381 				tcp->tcp_ip_forward_progress = B_TRUE;
13382 
13383 			/* One for the SYN */
13384 			tcp->tcp_suna = tcp->tcp_iss + 1;
13385 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13386 			tcp->tcp_state = TCPS_ESTABLISHED;
13387 
13388 			/*
13389 			 * If SYN was retransmitted, need to reset all
13390 			 * retransmission info.  This is because this
13391 			 * segment will be treated as a dup ACK.
13392 			 */
13393 			if (tcp->tcp_rexmit) {
13394 				tcp->tcp_rexmit = B_FALSE;
13395 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13396 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13397 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13398 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13399 				tcp->tcp_ms_we_have_waited = 0;
13400 
13401 				/*
13402 				 * Set tcp_cwnd back to 1 MSS, per
13403 				 * recommendation from
13404 				 * draft-floyd-incr-init-win-01.txt,
13405 				 * Increasing TCP's Initial Window.
13406 				 */
13407 				tcp->tcp_cwnd = tcp->tcp_mss;
13408 			}
13409 
13410 			tcp->tcp_swl1 = seg_seq;
13411 			tcp->tcp_swl2 = seg_ack;
13412 
13413 			new_swnd = BE16_TO_U16(tcph->th_win);
13414 			tcp->tcp_swnd = new_swnd;
13415 			if (new_swnd > tcp->tcp_max_swnd)
13416 				tcp->tcp_max_swnd = new_swnd;
13417 
13418 			/*
13419 			 * Always send the three-way handshake ack immediately
13420 			 * in order to make the connection complete as soon as
13421 			 * possible on the accepting host.
13422 			 */
13423 			flags |= TH_ACK_NEEDED;
13424 
13425 			/*
13426 			 * Special case for loopback.  At this point we have
13427 			 * received SYN-ACK from the remote endpoint.  In
13428 			 * order to ensure that both endpoints reach the
13429 			 * fused state prior to any data exchange, the final
13430 			 * ACK needs to be sent before we indicate T_CONN_CON
13431 			 * to the module upstream.
13432 			 */
13433 			if (tcp->tcp_loopback) {
13434 				mblk_t *ack_mp;
13435 
13436 				ASSERT(!tcp->tcp_unfusable);
13437 				ASSERT(mp1 != NULL);
13438 				/*
13439 				 * For loopback, we always get a pure SYN-ACK
13440 				 * and only need to send back the final ACK
13441 				 * with no data (this is because the other
13442 				 * tcp is ours and we don't do T/TCP).  This
13443 				 * final ACK triggers the passive side to
13444 				 * perform fusion in ESTABLISHED state.
13445 				 */
13446 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13447 					if (tcp->tcp_ack_tid != 0) {
13448 						(void) TCP_TIMER_CANCEL(tcp,
13449 						    tcp->tcp_ack_tid);
13450 						tcp->tcp_ack_tid = 0;
13451 					}
13452 					TCP_RECORD_TRACE(tcp, ack_mp,
13453 					    TCP_TRACE_SEND_PKT);
13454 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13455 					BUMP_LOCAL(tcp->tcp_obsegs);
13456 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13457 
13458 					/* Send up T_CONN_CON */
13459 					putnext(tcp->tcp_rq, mp1);
13460 
13461 					freemsg(mp);
13462 					return;
13463 				}
13464 				/*
13465 				 * Forget fusion; we need to handle more
13466 				 * complex cases below.  Send the deferred
13467 				 * T_CONN_CON message upstream and proceed
13468 				 * as usual.  Mark this tcp as not capable
13469 				 * of fusion.
13470 				 */
13471 				TCP_STAT(tcps, tcp_fusion_unfusable);
13472 				tcp->tcp_unfusable = B_TRUE;
13473 				putnext(tcp->tcp_rq, mp1);
13474 			}
13475 
13476 			/*
13477 			 * Check to see if there is data to be sent.  If
13478 			 * yes, set the transmit flag.  Then check to see
13479 			 * if received data processing needs to be done.
13480 			 * If not, go straight to xmit_check.  This short
13481 			 * cut is OK as we don't support T/TCP.
13482 			 */
13483 			if (tcp->tcp_unsent)
13484 				flags |= TH_XMIT_NEEDED;
13485 
13486 			if (seg_len == 0 && !(flags & TH_URG)) {
13487 				freemsg(mp);
13488 				goto xmit_check;
13489 			}
13490 
13491 			flags &= ~TH_SYN;
13492 			seg_seq++;
13493 			break;
13494 		}
13495 		tcp->tcp_state = TCPS_SYN_RCVD;
13496 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13497 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13498 		if (mp1) {
13499 			DB_CPID(mp1) = tcp->tcp_cpid;
13500 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13501 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13502 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13503 		}
13504 		freemsg(mp);
13505 		return;
13506 	case TCPS_SYN_RCVD:
13507 		if (flags & TH_ACK) {
13508 			/*
13509 			 * In this state, a SYN|ACK packet is either bogus
13510 			 * because the other side must be ACKing our SYN which
13511 			 * indicates it has seen the ACK for their SYN and
13512 			 * shouldn't retransmit it or we're crossing SYNs
13513 			 * on active open.
13514 			 */
13515 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13516 				freemsg(mp);
13517 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13518 				    tcp, seg_ack, 0, TH_RST);
13519 				return;
13520 			}
13521 			/*
13522 			 * NOTE: RFC 793 pg. 72 says this should be
13523 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13524 			 * but that would mean we have an ack that ignored
13525 			 * our SYN.
13526 			 */
13527 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13528 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13529 				freemsg(mp);
13530 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13531 				    tcp, seg_ack, 0, TH_RST);
13532 				return;
13533 			}
13534 		}
13535 		break;
13536 	case TCPS_LISTEN:
13537 		/*
13538 		 * Only a TLI listener can come through this path when a
13539 		 * acceptor is going back to be a listener and a packet
13540 		 * for the acceptor hits the classifier. For a socket
13541 		 * listener, this can never happen because a listener
13542 		 * can never accept connection on itself and hence a
13543 		 * socket acceptor can not go back to being a listener.
13544 		 */
13545 		ASSERT(!TCP_IS_SOCKET(tcp));
13546 		/*FALLTHRU*/
13547 	case TCPS_CLOSED:
13548 	case TCPS_BOUND: {
13549 		conn_t	*new_connp;
13550 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13551 
13552 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13553 		if (new_connp != NULL) {
13554 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13555 			return;
13556 		}
13557 		/* We failed to classify. For now just drop the packet */
13558 		freemsg(mp);
13559 		return;
13560 	}
13561 	case TCPS_IDLE:
13562 		/*
13563 		 * Handle the case where the tcp_clean_death() has happened
13564 		 * on a connection (application hasn't closed yet) but a packet
13565 		 * was already queued on squeue before tcp_clean_death()
13566 		 * was processed. Calling tcp_clean_death() twice on same
13567 		 * connection can result in weird behaviour.
13568 		 */
13569 		freemsg(mp);
13570 		return;
13571 	default:
13572 		break;
13573 	}
13574 
13575 	/*
13576 	 * Already on the correct queue/perimeter.
13577 	 * If this is a detached connection and not an eager
13578 	 * connection hanging off a listener then new data
13579 	 * (past the FIN) will cause a reset.
13580 	 * We do a special check here where it
13581 	 * is out of the main line, rather than check
13582 	 * if we are detached every time we see new
13583 	 * data down below.
13584 	 */
13585 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13586 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13587 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13588 		TCP_RECORD_TRACE(tcp,
13589 		    mp, TCP_TRACE_RECV_PKT);
13590 
13591 		freemsg(mp);
13592 		/*
13593 		 * This could be an SSL closure alert. We're detached so just
13594 		 * acknowledge it this last time.
13595 		 */
13596 		if (tcp->tcp_kssl_ctx != NULL) {
13597 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13598 			tcp->tcp_kssl_ctx = NULL;
13599 
13600 			tcp->tcp_rnxt += seg_len;
13601 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13602 			flags |= TH_ACK_NEEDED;
13603 			goto ack_check;
13604 		}
13605 
13606 		tcp_xmit_ctl("new data when detached", tcp,
13607 		    tcp->tcp_snxt, 0, TH_RST);
13608 		(void) tcp_clean_death(tcp, EPROTO, 12);
13609 		return;
13610 	}
13611 
13612 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13613 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13614 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13615 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13616 
13617 	if (tcp->tcp_snd_ts_ok) {
13618 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13619 			/*
13620 			 * This segment is not acceptable.
13621 			 * Drop it and send back an ACK.
13622 			 */
13623 			freemsg(mp);
13624 			flags |= TH_ACK_NEEDED;
13625 			goto ack_check;
13626 		}
13627 	} else if (tcp->tcp_snd_sack_ok) {
13628 		ASSERT(tcp->tcp_sack_info != NULL);
13629 		tcpopt.tcp = tcp;
13630 		/*
13631 		 * SACK info in already updated in tcp_parse_options.  Ignore
13632 		 * all other TCP options...
13633 		 */
13634 		(void) tcp_parse_options(tcph, &tcpopt);
13635 	}
13636 try_again:;
13637 	mss = tcp->tcp_mss;
13638 	gap = seg_seq - tcp->tcp_rnxt;
13639 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13640 	/*
13641 	 * gap is the amount of sequence space between what we expect to see
13642 	 * and what we got for seg_seq.  A positive value for gap means
13643 	 * something got lost.  A negative value means we got some old stuff.
13644 	 */
13645 	if (gap < 0) {
13646 		/* Old stuff present.  Is the SYN in there? */
13647 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13648 		    (seg_len != 0)) {
13649 			flags &= ~TH_SYN;
13650 			seg_seq++;
13651 			urp--;
13652 			/* Recompute the gaps after noting the SYN. */
13653 			goto try_again;
13654 		}
13655 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13656 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13657 		    (seg_len > -gap ? -gap : seg_len));
13658 		/* Remove the old stuff from seg_len. */
13659 		seg_len += gap;
13660 		/*
13661 		 * Anything left?
13662 		 * Make sure to check for unack'd FIN when rest of data
13663 		 * has been previously ack'd.
13664 		 */
13665 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13666 			/*
13667 			 * Resets are only valid if they lie within our offered
13668 			 * window.  If the RST bit is set, we just ignore this
13669 			 * segment.
13670 			 */
13671 			if (flags & TH_RST) {
13672 				freemsg(mp);
13673 				return;
13674 			}
13675 
13676 			/*
13677 			 * The arriving of dup data packets indicate that we
13678 			 * may have postponed an ack for too long, or the other
13679 			 * side's RTT estimate is out of shape. Start acking
13680 			 * more often.
13681 			 */
13682 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13683 			    tcp->tcp_rack_cnt >= 1 &&
13684 			    tcp->tcp_rack_abs_max > 2) {
13685 				tcp->tcp_rack_abs_max--;
13686 			}
13687 			tcp->tcp_rack_cur_max = 1;
13688 
13689 			/*
13690 			 * This segment is "unacceptable".  None of its
13691 			 * sequence space lies within our advertized window.
13692 			 *
13693 			 * Adjust seg_len to the original value for tracing.
13694 			 */
13695 			seg_len -= gap;
13696 			if (tcp->tcp_debug) {
13697 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13698 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13699 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13700 				    "seg_len %d, rnxt %u, snxt %u, %s",
13701 				    gap, rgap, flags, seg_seq, seg_ack,
13702 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13703 				    tcp_display(tcp, NULL,
13704 				    DISP_ADDR_AND_PORT));
13705 			}
13706 
13707 			/*
13708 			 * Arrange to send an ACK in response to the
13709 			 * unacceptable segment per RFC 793 page 69. There
13710 			 * is only one small difference between ours and the
13711 			 * acceptability test in the RFC - we accept ACK-only
13712 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13713 			 * will be generated.
13714 			 *
13715 			 * Note that we have to ACK an ACK-only packet at least
13716 			 * for stacks that send 0-length keep-alives with
13717 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13718 			 * section 4.2.3.6. As long as we don't ever generate
13719 			 * an unacceptable packet in response to an incoming
13720 			 * packet that is unacceptable, it should not cause
13721 			 * "ACK wars".
13722 			 */
13723 			flags |=  TH_ACK_NEEDED;
13724 
13725 			/*
13726 			 * Continue processing this segment in order to use the
13727 			 * ACK information it contains, but skip all other
13728 			 * sequence-number processing.	Processing the ACK
13729 			 * information is necessary in order to
13730 			 * re-synchronize connections that may have lost
13731 			 * synchronization.
13732 			 *
13733 			 * We clear seg_len and flag fields related to
13734 			 * sequence number processing as they are not
13735 			 * to be trusted for an unacceptable segment.
13736 			 */
13737 			seg_len = 0;
13738 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13739 			goto process_ack;
13740 		}
13741 
13742 		/* Fix seg_seq, and chew the gap off the front. */
13743 		seg_seq = tcp->tcp_rnxt;
13744 		urp += gap;
13745 		do {
13746 			mblk_t	*mp2;
13747 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13748 			    (uintptr_t)UINT_MAX);
13749 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13750 			if (gap > 0) {
13751 				mp->b_rptr = mp->b_wptr - gap;
13752 				break;
13753 			}
13754 			mp2 = mp;
13755 			mp = mp->b_cont;
13756 			freeb(mp2);
13757 		} while (gap < 0);
13758 		/*
13759 		 * If the urgent data has already been acknowledged, we
13760 		 * should ignore TH_URG below
13761 		 */
13762 		if (urp < 0)
13763 			flags &= ~TH_URG;
13764 	}
13765 	/*
13766 	 * rgap is the amount of stuff received out of window.  A negative
13767 	 * value is the amount out of window.
13768 	 */
13769 	if (rgap < 0) {
13770 		mblk_t	*mp2;
13771 
13772 		if (tcp->tcp_rwnd == 0) {
13773 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13774 		} else {
13775 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13776 			UPDATE_MIB(&tcps->tcps_mib,
13777 			    tcpInDataPastWinBytes, -rgap);
13778 		}
13779 
13780 		/*
13781 		 * seg_len does not include the FIN, so if more than
13782 		 * just the FIN is out of window, we act like we don't
13783 		 * see it.  (If just the FIN is out of window, rgap
13784 		 * will be zero and we will go ahead and acknowledge
13785 		 * the FIN.)
13786 		 */
13787 		flags &= ~TH_FIN;
13788 
13789 		/* Fix seg_len and make sure there is something left. */
13790 		seg_len += rgap;
13791 		if (seg_len <= 0) {
13792 			/*
13793 			 * Resets are only valid if they lie within our offered
13794 			 * window.  If the RST bit is set, we just ignore this
13795 			 * segment.
13796 			 */
13797 			if (flags & TH_RST) {
13798 				freemsg(mp);
13799 				return;
13800 			}
13801 
13802 			/* Per RFC 793, we need to send back an ACK. */
13803 			flags |= TH_ACK_NEEDED;
13804 
13805 			/*
13806 			 * Send SIGURG as soon as possible i.e. even
13807 			 * if the TH_URG was delivered in a window probe
13808 			 * packet (which will be unacceptable).
13809 			 *
13810 			 * We generate a signal if none has been generated
13811 			 * for this connection or if this is a new urgent
13812 			 * byte. Also send a zero-length "unmarked" message
13813 			 * to inform SIOCATMARK that this is not the mark.
13814 			 *
13815 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13816 			 * is sent up. This plus the check for old data
13817 			 * (gap >= 0) handles the wraparound of the sequence
13818 			 * number space without having to always track the
13819 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13820 			 * this max in its rcv_up variable).
13821 			 *
13822 			 * This prevents duplicate SIGURGS due to a "late"
13823 			 * zero-window probe when the T_EXDATA_IND has already
13824 			 * been sent up.
13825 			 */
13826 			if ((flags & TH_URG) &&
13827 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13828 			    tcp->tcp_urp_last))) {
13829 				mp1 = allocb(0, BPRI_MED);
13830 				if (mp1 == NULL) {
13831 					freemsg(mp);
13832 					return;
13833 				}
13834 				if (!TCP_IS_DETACHED(tcp) &&
13835 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13836 				    SIGURG)) {
13837 					/* Try again on the rexmit. */
13838 					freemsg(mp1);
13839 					freemsg(mp);
13840 					return;
13841 				}
13842 				/*
13843 				 * If the next byte would be the mark
13844 				 * then mark with MARKNEXT else mark
13845 				 * with NOTMARKNEXT.
13846 				 */
13847 				if (gap == 0 && urp == 0)
13848 					mp1->b_flag |= MSGMARKNEXT;
13849 				else
13850 					mp1->b_flag |= MSGNOTMARKNEXT;
13851 				freemsg(tcp->tcp_urp_mark_mp);
13852 				tcp->tcp_urp_mark_mp = mp1;
13853 				flags |= TH_SEND_URP_MARK;
13854 				tcp->tcp_urp_last_valid = B_TRUE;
13855 				tcp->tcp_urp_last = urp + seg_seq;
13856 			}
13857 			/*
13858 			 * If this is a zero window probe, continue to
13859 			 * process the ACK part.  But we need to set seg_len
13860 			 * to 0 to avoid data processing.  Otherwise just
13861 			 * drop the segment and send back an ACK.
13862 			 */
13863 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13864 				flags &= ~(TH_SYN | TH_URG);
13865 				seg_len = 0;
13866 				goto process_ack;
13867 			} else {
13868 				freemsg(mp);
13869 				goto ack_check;
13870 			}
13871 		}
13872 		/* Pitch out of window stuff off the end. */
13873 		rgap = seg_len;
13874 		mp2 = mp;
13875 		do {
13876 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13877 			    (uintptr_t)INT_MAX);
13878 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13879 			if (rgap < 0) {
13880 				mp2->b_wptr += rgap;
13881 				if ((mp1 = mp2->b_cont) != NULL) {
13882 					mp2->b_cont = NULL;
13883 					freemsg(mp1);
13884 				}
13885 				break;
13886 			}
13887 		} while ((mp2 = mp2->b_cont) != NULL);
13888 	}
13889 ok:;
13890 	/*
13891 	 * TCP should check ECN info for segments inside the window only.
13892 	 * Therefore the check should be done here.
13893 	 */
13894 	if (tcp->tcp_ecn_ok) {
13895 		if (flags & TH_CWR) {
13896 			tcp->tcp_ecn_echo_on = B_FALSE;
13897 		}
13898 		/*
13899 		 * Note that both ECN_CE and CWR can be set in the
13900 		 * same segment.  In this case, we once again turn
13901 		 * on ECN_ECHO.
13902 		 */
13903 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13904 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13905 
13906 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13907 				tcp->tcp_ecn_echo_on = B_TRUE;
13908 			}
13909 		} else {
13910 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13911 
13912 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13913 			    htonl(IPH_ECN_CE << 20)) {
13914 				tcp->tcp_ecn_echo_on = B_TRUE;
13915 			}
13916 		}
13917 	}
13918 
13919 	/*
13920 	 * Check whether we can update tcp_ts_recent.  This test is
13921 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13922 	 * Extensions for High Performance: An Update", Internet Draft.
13923 	 */
13924 	if (tcp->tcp_snd_ts_ok &&
13925 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13926 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13927 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13928 		tcp->tcp_last_rcv_lbolt = lbolt64;
13929 	}
13930 
13931 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13932 		/*
13933 		 * FIN in an out of order segment.  We record this in
13934 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13935 		 * Clear the FIN so that any check on FIN flag will fail.
13936 		 * Remember that FIN also counts in the sequence number
13937 		 * space.  So we need to ack out of order FIN only segments.
13938 		 */
13939 		if (flags & TH_FIN) {
13940 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13941 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13942 			flags &= ~TH_FIN;
13943 			flags |= TH_ACK_NEEDED;
13944 		}
13945 		if (seg_len > 0) {
13946 			/* Fill in the SACK blk list. */
13947 			if (tcp->tcp_snd_sack_ok) {
13948 				ASSERT(tcp->tcp_sack_info != NULL);
13949 				tcp_sack_insert(tcp->tcp_sack_list,
13950 				    seg_seq, seg_seq + seg_len,
13951 				    &(tcp->tcp_num_sack_blk));
13952 			}
13953 
13954 			/*
13955 			 * Attempt reassembly and see if we have something
13956 			 * ready to go.
13957 			 */
13958 			mp = tcp_reass(tcp, mp, seg_seq);
13959 			/* Always ack out of order packets */
13960 			flags |= TH_ACK_NEEDED | TH_PUSH;
13961 			if (mp) {
13962 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13963 				    (uintptr_t)INT_MAX);
13964 				seg_len = mp->b_cont ? msgdsize(mp) :
13965 				    (int)(mp->b_wptr - mp->b_rptr);
13966 				seg_seq = tcp->tcp_rnxt;
13967 				/*
13968 				 * A gap is filled and the seq num and len
13969 				 * of the gap match that of a previously
13970 				 * received FIN, put the FIN flag back in.
13971 				 */
13972 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13973 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13974 					flags |= TH_FIN;
13975 					tcp->tcp_valid_bits &=
13976 					    ~TCP_OFO_FIN_VALID;
13977 				}
13978 			} else {
13979 				/*
13980 				 * Keep going even with NULL mp.
13981 				 * There may be a useful ACK or something else
13982 				 * we don't want to miss.
13983 				 *
13984 				 * But TCP should not perform fast retransmit
13985 				 * because of the ack number.  TCP uses
13986 				 * seg_len == 0 to determine if it is a pure
13987 				 * ACK.  And this is not a pure ACK.
13988 				 */
13989 				seg_len = 0;
13990 				ofo_seg = B_TRUE;
13991 			}
13992 		}
13993 	} else if (seg_len > 0) {
13994 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13995 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13996 		/*
13997 		 * If an out of order FIN was received before, and the seq
13998 		 * num and len of the new segment match that of the FIN,
13999 		 * put the FIN flag back in.
14000 		 */
14001 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
14002 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
14003 			flags |= TH_FIN;
14004 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
14005 		}
14006 	}
14007 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
14008 	if (flags & TH_RST) {
14009 		freemsg(mp);
14010 		switch (tcp->tcp_state) {
14011 		case TCPS_SYN_RCVD:
14012 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
14013 			break;
14014 		case TCPS_ESTABLISHED:
14015 		case TCPS_FIN_WAIT_1:
14016 		case TCPS_FIN_WAIT_2:
14017 		case TCPS_CLOSE_WAIT:
14018 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
14019 			break;
14020 		case TCPS_CLOSING:
14021 		case TCPS_LAST_ACK:
14022 			(void) tcp_clean_death(tcp, 0, 16);
14023 			break;
14024 		default:
14025 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14026 			(void) tcp_clean_death(tcp, ENXIO, 17);
14027 			break;
14028 		}
14029 		return;
14030 	}
14031 	if (flags & TH_SYN) {
14032 		/*
14033 		 * See RFC 793, Page 71
14034 		 *
14035 		 * The seq number must be in the window as it should
14036 		 * be "fixed" above.  If it is outside window, it should
14037 		 * be already rejected.  Note that we allow seg_seq to be
14038 		 * rnxt + rwnd because we want to accept 0 window probe.
14039 		 */
14040 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
14041 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
14042 		freemsg(mp);
14043 		/*
14044 		 * If the ACK flag is not set, just use our snxt as the
14045 		 * seq number of the RST segment.
14046 		 */
14047 		if (!(flags & TH_ACK)) {
14048 			seg_ack = tcp->tcp_snxt;
14049 		}
14050 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
14051 		    TH_RST|TH_ACK);
14052 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14053 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
14054 		return;
14055 	}
14056 	/*
14057 	 * urp could be -1 when the urp field in the packet is 0
14058 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
14059 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
14060 	 */
14061 	if (flags & TH_URG && urp >= 0) {
14062 		if (!tcp->tcp_urp_last_valid ||
14063 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
14064 			/*
14065 			 * If we haven't generated the signal yet for this
14066 			 * urgent pointer value, do it now.  Also, send up a
14067 			 * zero-length M_DATA indicating whether or not this is
14068 			 * the mark. The latter is not needed when a
14069 			 * T_EXDATA_IND is sent up. However, if there are
14070 			 * allocation failures this code relies on the sender
14071 			 * retransmitting and the socket code for determining
14072 			 * the mark should not block waiting for the peer to
14073 			 * transmit. Thus, for simplicity we always send up the
14074 			 * mark indication.
14075 			 */
14076 			mp1 = allocb(0, BPRI_MED);
14077 			if (mp1 == NULL) {
14078 				freemsg(mp);
14079 				return;
14080 			}
14081 			if (!TCP_IS_DETACHED(tcp) &&
14082 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
14083 				/* Try again on the rexmit. */
14084 				freemsg(mp1);
14085 				freemsg(mp);
14086 				return;
14087 			}
14088 			/*
14089 			 * Mark with NOTMARKNEXT for now.
14090 			 * The code below will change this to MARKNEXT
14091 			 * if we are at the mark.
14092 			 *
14093 			 * If there are allocation failures (e.g. in dupmsg
14094 			 * below) the next time tcp_rput_data sees the urgent
14095 			 * segment it will send up the MSG*MARKNEXT message.
14096 			 */
14097 			mp1->b_flag |= MSGNOTMARKNEXT;
14098 			freemsg(tcp->tcp_urp_mark_mp);
14099 			tcp->tcp_urp_mark_mp = mp1;
14100 			flags |= TH_SEND_URP_MARK;
14101 #ifdef DEBUG
14102 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14103 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
14104 			    "last %x, %s",
14105 			    seg_seq, urp, tcp->tcp_urp_last,
14106 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14107 #endif /* DEBUG */
14108 			tcp->tcp_urp_last_valid = B_TRUE;
14109 			tcp->tcp_urp_last = urp + seg_seq;
14110 		} else if (tcp->tcp_urp_mark_mp != NULL) {
14111 			/*
14112 			 * An allocation failure prevented the previous
14113 			 * tcp_rput_data from sending up the allocated
14114 			 * MSG*MARKNEXT message - send it up this time
14115 			 * around.
14116 			 */
14117 			flags |= TH_SEND_URP_MARK;
14118 		}
14119 
14120 		/*
14121 		 * If the urgent byte is in this segment, make sure that it is
14122 		 * all by itself.  This makes it much easier to deal with the
14123 		 * possibility of an allocation failure on the T_exdata_ind.
14124 		 * Note that seg_len is the number of bytes in the segment, and
14125 		 * urp is the offset into the segment of the urgent byte.
14126 		 * urp < seg_len means that the urgent byte is in this segment.
14127 		 */
14128 		if (urp < seg_len) {
14129 			if (seg_len != 1) {
14130 				uint32_t  tmp_rnxt;
14131 				/*
14132 				 * Break it up and feed it back in.
14133 				 * Re-attach the IP header.
14134 				 */
14135 				mp->b_rptr = iphdr;
14136 				if (urp > 0) {
14137 					/*
14138 					 * There is stuff before the urgent
14139 					 * byte.
14140 					 */
14141 					mp1 = dupmsg(mp);
14142 					if (!mp1) {
14143 						/*
14144 						 * Trim from urgent byte on.
14145 						 * The rest will come back.
14146 						 */
14147 						(void) adjmsg(mp,
14148 						    urp - seg_len);
14149 						tcp_rput_data(connp,
14150 						    mp, NULL);
14151 						return;
14152 					}
14153 					(void) adjmsg(mp1, urp - seg_len);
14154 					/* Feed this piece back in. */
14155 					tmp_rnxt = tcp->tcp_rnxt;
14156 					tcp_rput_data(connp, mp1, NULL);
14157 					/*
14158 					 * If the data passed back in was not
14159 					 * processed (ie: bad ACK) sending
14160 					 * the remainder back in will cause a
14161 					 * loop. In this case, drop the
14162 					 * packet and let the sender try
14163 					 * sending a good packet.
14164 					 */
14165 					if (tmp_rnxt == tcp->tcp_rnxt) {
14166 						freemsg(mp);
14167 						return;
14168 					}
14169 				}
14170 				if (urp != seg_len - 1) {
14171 					uint32_t  tmp_rnxt;
14172 					/*
14173 					 * There is stuff after the urgent
14174 					 * byte.
14175 					 */
14176 					mp1 = dupmsg(mp);
14177 					if (!mp1) {
14178 						/*
14179 						 * Trim everything beyond the
14180 						 * urgent byte.  The rest will
14181 						 * come back.
14182 						 */
14183 						(void) adjmsg(mp,
14184 						    urp + 1 - seg_len);
14185 						tcp_rput_data(connp,
14186 						    mp, NULL);
14187 						return;
14188 					}
14189 					(void) adjmsg(mp1, urp + 1 - seg_len);
14190 					tmp_rnxt = tcp->tcp_rnxt;
14191 					tcp_rput_data(connp, mp1, NULL);
14192 					/*
14193 					 * If the data passed back in was not
14194 					 * processed (ie: bad ACK) sending
14195 					 * the remainder back in will cause a
14196 					 * loop. In this case, drop the
14197 					 * packet and let the sender try
14198 					 * sending a good packet.
14199 					 */
14200 					if (tmp_rnxt == tcp->tcp_rnxt) {
14201 						freemsg(mp);
14202 						return;
14203 					}
14204 				}
14205 				tcp_rput_data(connp, mp, NULL);
14206 				return;
14207 			}
14208 			/*
14209 			 * This segment contains only the urgent byte.  We
14210 			 * have to allocate the T_exdata_ind, if we can.
14211 			 */
14212 			if (!tcp->tcp_urp_mp) {
14213 				struct T_exdata_ind *tei;
14214 				mp1 = allocb(sizeof (struct T_exdata_ind),
14215 				    BPRI_MED);
14216 				if (!mp1) {
14217 					/*
14218 					 * Sigh... It'll be back.
14219 					 * Generate any MSG*MARK message now.
14220 					 */
14221 					freemsg(mp);
14222 					seg_len = 0;
14223 					if (flags & TH_SEND_URP_MARK) {
14224 
14225 
14226 						ASSERT(tcp->tcp_urp_mark_mp);
14227 						tcp->tcp_urp_mark_mp->b_flag &=
14228 						    ~MSGNOTMARKNEXT;
14229 						tcp->tcp_urp_mark_mp->b_flag |=
14230 						    MSGMARKNEXT;
14231 					}
14232 					goto ack_check;
14233 				}
14234 				mp1->b_datap->db_type = M_PROTO;
14235 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14236 				tei->PRIM_type = T_EXDATA_IND;
14237 				tei->MORE_flag = 0;
14238 				mp1->b_wptr = (uchar_t *)&tei[1];
14239 				tcp->tcp_urp_mp = mp1;
14240 #ifdef DEBUG
14241 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14242 				    "tcp_rput: allocated exdata_ind %s",
14243 				    tcp_display(tcp, NULL,
14244 				    DISP_PORT_ONLY));
14245 #endif /* DEBUG */
14246 				/*
14247 				 * There is no need to send a separate MSG*MARK
14248 				 * message since the T_EXDATA_IND will be sent
14249 				 * now.
14250 				 */
14251 				flags &= ~TH_SEND_URP_MARK;
14252 				freemsg(tcp->tcp_urp_mark_mp);
14253 				tcp->tcp_urp_mark_mp = NULL;
14254 			}
14255 			/*
14256 			 * Now we are all set.  On the next putnext upstream,
14257 			 * tcp_urp_mp will be non-NULL and will get prepended
14258 			 * to what has to be this piece containing the urgent
14259 			 * byte.  If for any reason we abort this segment below,
14260 			 * if it comes back, we will have this ready, or it
14261 			 * will get blown off in close.
14262 			 */
14263 		} else if (urp == seg_len) {
14264 			/*
14265 			 * The urgent byte is the next byte after this sequence
14266 			 * number. If there is data it is marked with
14267 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14268 			 * since it is not needed. Otherwise, if the code
14269 			 * above just allocated a zero-length tcp_urp_mark_mp
14270 			 * message, that message is tagged with MSGMARKNEXT.
14271 			 * Sending up these MSGMARKNEXT messages makes
14272 			 * SIOCATMARK work correctly even though
14273 			 * the T_EXDATA_IND will not be sent up until the
14274 			 * urgent byte arrives.
14275 			 */
14276 			if (seg_len != 0) {
14277 				flags |= TH_MARKNEXT_NEEDED;
14278 				freemsg(tcp->tcp_urp_mark_mp);
14279 				tcp->tcp_urp_mark_mp = NULL;
14280 				flags &= ~TH_SEND_URP_MARK;
14281 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14282 				flags |= TH_SEND_URP_MARK;
14283 				tcp->tcp_urp_mark_mp->b_flag &=
14284 				    ~MSGNOTMARKNEXT;
14285 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14286 			}
14287 #ifdef DEBUG
14288 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14289 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14290 			    seg_len, flags,
14291 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14292 #endif /* DEBUG */
14293 		} else {
14294 			/* Data left until we hit mark */
14295 #ifdef DEBUG
14296 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14297 			    "tcp_rput: URP %d bytes left, %s",
14298 			    urp - seg_len, tcp_display(tcp, NULL,
14299 			    DISP_PORT_ONLY));
14300 #endif /* DEBUG */
14301 		}
14302 	}
14303 
14304 process_ack:
14305 	if (!(flags & TH_ACK)) {
14306 		freemsg(mp);
14307 		goto xmit_check;
14308 	}
14309 	}
14310 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14311 
14312 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14313 		tcp->tcp_ip_forward_progress = B_TRUE;
14314 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14315 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14316 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14317 			/* 3-way handshake complete - pass up the T_CONN_IND */
14318 			tcp_t	*listener = tcp->tcp_listener;
14319 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14320 
14321 			tcp->tcp_tconnind_started = B_TRUE;
14322 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14323 			/*
14324 			 * We are here means eager is fine but it can
14325 			 * get a TH_RST at any point between now and till
14326 			 * accept completes and disappear. We need to
14327 			 * ensure that reference to eager is valid after
14328 			 * we get out of eager's perimeter. So we do
14329 			 * an extra refhold.
14330 			 */
14331 			CONN_INC_REF(connp);
14332 
14333 			/*
14334 			 * The listener also exists because of the refhold
14335 			 * done in tcp_conn_request. Its possible that it
14336 			 * might have closed. We will check that once we
14337 			 * get inside listeners context.
14338 			 */
14339 			CONN_INC_REF(listener->tcp_connp);
14340 			if (listener->tcp_connp->conn_sqp ==
14341 			    connp->conn_sqp) {
14342 				tcp_send_conn_ind(listener->tcp_connp, mp,
14343 				    listener->tcp_connp->conn_sqp);
14344 				CONN_DEC_REF(listener->tcp_connp);
14345 			} else if (!tcp->tcp_loopback) {
14346 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14347 				    tcp_send_conn_ind,
14348 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14349 			} else {
14350 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14351 				    tcp_send_conn_ind, listener->tcp_connp,
14352 				    SQTAG_TCP_CONN_IND);
14353 			}
14354 		}
14355 
14356 		if (tcp->tcp_active_open) {
14357 			/*
14358 			 * We are seeing the final ack in the three way
14359 			 * hand shake of a active open'ed connection
14360 			 * so we must send up a T_CONN_CON
14361 			 */
14362 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14363 				freemsg(mp);
14364 				return;
14365 			}
14366 			/*
14367 			 * Don't fuse the loopback endpoints for
14368 			 * simultaneous active opens.
14369 			 */
14370 			if (tcp->tcp_loopback) {
14371 				TCP_STAT(tcps, tcp_fusion_unfusable);
14372 				tcp->tcp_unfusable = B_TRUE;
14373 			}
14374 		}
14375 
14376 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14377 		bytes_acked--;
14378 		/* SYN was acked - making progress */
14379 		if (tcp->tcp_ipversion == IPV6_VERSION)
14380 			tcp->tcp_ip_forward_progress = B_TRUE;
14381 
14382 		/*
14383 		 * If SYN was retransmitted, need to reset all
14384 		 * retransmission info as this segment will be
14385 		 * treated as a dup ACK.
14386 		 */
14387 		if (tcp->tcp_rexmit) {
14388 			tcp->tcp_rexmit = B_FALSE;
14389 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14390 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14391 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14392 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14393 			tcp->tcp_ms_we_have_waited = 0;
14394 			tcp->tcp_cwnd = mss;
14395 		}
14396 
14397 		/*
14398 		 * We set the send window to zero here.
14399 		 * This is needed if there is data to be
14400 		 * processed already on the queue.
14401 		 * Later (at swnd_update label), the
14402 		 * "new_swnd > tcp_swnd" condition is satisfied
14403 		 * the XMIT_NEEDED flag is set in the current
14404 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14405 		 * called if there is already data on queue in
14406 		 * this state.
14407 		 */
14408 		tcp->tcp_swnd = 0;
14409 
14410 		if (new_swnd > tcp->tcp_max_swnd)
14411 			tcp->tcp_max_swnd = new_swnd;
14412 		tcp->tcp_swl1 = seg_seq;
14413 		tcp->tcp_swl2 = seg_ack;
14414 		tcp->tcp_state = TCPS_ESTABLISHED;
14415 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14416 
14417 		/* Fuse when both sides are in ESTABLISHED state */
14418 		if (tcp->tcp_loopback && do_tcp_fusion)
14419 			tcp_fuse(tcp, iphdr, tcph);
14420 
14421 	}
14422 	/* This code follows 4.4BSD-Lite2 mostly. */
14423 	if (bytes_acked < 0)
14424 		goto est;
14425 
14426 	/*
14427 	 * If TCP is ECN capable and the congestion experience bit is
14428 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14429 	 * done once per window (or more loosely, per RTT).
14430 	 */
14431 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14432 		tcp->tcp_cwr = B_FALSE;
14433 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14434 		if (!tcp->tcp_cwr) {
14435 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14436 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14437 			tcp->tcp_cwnd = npkt * mss;
14438 			/*
14439 			 * If the cwnd is 0, use the timer to clock out
14440 			 * new segments.  This is required by the ECN spec.
14441 			 */
14442 			if (npkt == 0) {
14443 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14444 				/*
14445 				 * This makes sure that when the ACK comes
14446 				 * back, we will increase tcp_cwnd by 1 MSS.
14447 				 */
14448 				tcp->tcp_cwnd_cnt = 0;
14449 			}
14450 			tcp->tcp_cwr = B_TRUE;
14451 			/*
14452 			 * This marks the end of the current window of in
14453 			 * flight data.  That is why we don't use
14454 			 * tcp_suna + tcp_swnd.  Only data in flight can
14455 			 * provide ECN info.
14456 			 */
14457 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14458 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14459 		}
14460 	}
14461 
14462 	mp1 = tcp->tcp_xmit_head;
14463 	if (bytes_acked == 0) {
14464 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14465 			int dupack_cnt;
14466 
14467 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14468 			/*
14469 			 * Fast retransmit.  When we have seen exactly three
14470 			 * identical ACKs while we have unacked data
14471 			 * outstanding we take it as a hint that our peer
14472 			 * dropped something.
14473 			 *
14474 			 * If TCP is retransmitting, don't do fast retransmit.
14475 			 */
14476 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14477 			    ! tcp->tcp_rexmit) {
14478 				/* Do Limited Transmit */
14479 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14480 				    tcps->tcps_dupack_fast_retransmit) {
14481 					/*
14482 					 * RFC 3042
14483 					 *
14484 					 * What we need to do is temporarily
14485 					 * increase tcp_cwnd so that new
14486 					 * data can be sent if it is allowed
14487 					 * by the receive window (tcp_rwnd).
14488 					 * tcp_wput_data() will take care of
14489 					 * the rest.
14490 					 *
14491 					 * If the connection is SACK capable,
14492 					 * only do limited xmit when there
14493 					 * is SACK info.
14494 					 *
14495 					 * Note how tcp_cwnd is incremented.
14496 					 * The first dup ACK will increase
14497 					 * it by 1 MSS.  The second dup ACK
14498 					 * will increase it by 2 MSS.  This
14499 					 * means that only 1 new segment will
14500 					 * be sent for each dup ACK.
14501 					 */
14502 					if (tcp->tcp_unsent > 0 &&
14503 					    (!tcp->tcp_snd_sack_ok ||
14504 					    (tcp->tcp_snd_sack_ok &&
14505 					    tcp->tcp_notsack_list != NULL))) {
14506 						tcp->tcp_cwnd += mss <<
14507 						    (tcp->tcp_dupack_cnt - 1);
14508 						flags |= TH_LIMIT_XMIT;
14509 					}
14510 				} else if (dupack_cnt ==
14511 				    tcps->tcps_dupack_fast_retransmit) {
14512 
14513 				/*
14514 				 * If we have reduced tcp_ssthresh
14515 				 * because of ECN, do not reduce it again
14516 				 * unless it is already one window of data
14517 				 * away.  After one window of data, tcp_cwr
14518 				 * should then be cleared.  Note that
14519 				 * for non ECN capable connection, tcp_cwr
14520 				 * should always be false.
14521 				 *
14522 				 * Adjust cwnd since the duplicate
14523 				 * ack indicates that a packet was
14524 				 * dropped (due to congestion.)
14525 				 */
14526 				if (!tcp->tcp_cwr) {
14527 					npkt = ((tcp->tcp_snxt -
14528 					    tcp->tcp_suna) >> 1) / mss;
14529 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14530 					    mss;
14531 					tcp->tcp_cwnd = (npkt +
14532 					    tcp->tcp_dupack_cnt) * mss;
14533 				}
14534 				if (tcp->tcp_ecn_ok) {
14535 					tcp->tcp_cwr = B_TRUE;
14536 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14537 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14538 				}
14539 
14540 				/*
14541 				 * We do Hoe's algorithm.  Refer to her
14542 				 * paper "Improving the Start-up Behavior
14543 				 * of a Congestion Control Scheme for TCP,"
14544 				 * appeared in SIGCOMM'96.
14545 				 *
14546 				 * Save highest seq no we have sent so far.
14547 				 * Be careful about the invisible FIN byte.
14548 				 */
14549 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14550 				    (tcp->tcp_unsent == 0)) {
14551 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14552 				} else {
14553 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14554 				}
14555 
14556 				/*
14557 				 * Do not allow bursty traffic during.
14558 				 * fast recovery.  Refer to Fall and Floyd's
14559 				 * paper "Simulation-based Comparisons of
14560 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14561 				 * This is a best current practise.
14562 				 */
14563 				tcp->tcp_snd_burst = TCP_CWND_SS;
14564 
14565 				/*
14566 				 * For SACK:
14567 				 * Calculate tcp_pipe, which is the
14568 				 * estimated number of bytes in
14569 				 * network.
14570 				 *
14571 				 * tcp_fack is the highest sack'ed seq num
14572 				 * TCP has received.
14573 				 *
14574 				 * tcp_pipe is explained in the above quoted
14575 				 * Fall and Floyd's paper.  tcp_fack is
14576 				 * explained in Mathis and Mahdavi's
14577 				 * "Forward Acknowledgment: Refining TCP
14578 				 * Congestion Control" in SIGCOMM '96.
14579 				 */
14580 				if (tcp->tcp_snd_sack_ok) {
14581 					ASSERT(tcp->tcp_sack_info != NULL);
14582 					if (tcp->tcp_notsack_list != NULL) {
14583 						tcp->tcp_pipe = tcp->tcp_snxt -
14584 						    tcp->tcp_fack;
14585 						tcp->tcp_sack_snxt = seg_ack;
14586 						flags |= TH_NEED_SACK_REXMIT;
14587 					} else {
14588 						/*
14589 						 * Always initialize tcp_pipe
14590 						 * even though we don't have
14591 						 * any SACK info.  If later
14592 						 * we get SACK info and
14593 						 * tcp_pipe is not initialized,
14594 						 * funny things will happen.
14595 						 */
14596 						tcp->tcp_pipe =
14597 						    tcp->tcp_cwnd_ssthresh;
14598 					}
14599 				} else {
14600 					flags |= TH_REXMIT_NEEDED;
14601 				} /* tcp_snd_sack_ok */
14602 
14603 				} else {
14604 					/*
14605 					 * Here we perform congestion
14606 					 * avoidance, but NOT slow start.
14607 					 * This is known as the Fast
14608 					 * Recovery Algorithm.
14609 					 */
14610 					if (tcp->tcp_snd_sack_ok &&
14611 					    tcp->tcp_notsack_list != NULL) {
14612 						flags |= TH_NEED_SACK_REXMIT;
14613 						tcp->tcp_pipe -= mss;
14614 						if (tcp->tcp_pipe < 0)
14615 							tcp->tcp_pipe = 0;
14616 					} else {
14617 					/*
14618 					 * We know that one more packet has
14619 					 * left the pipe thus we can update
14620 					 * cwnd.
14621 					 */
14622 					cwnd = tcp->tcp_cwnd + mss;
14623 					if (cwnd > tcp->tcp_cwnd_max)
14624 						cwnd = tcp->tcp_cwnd_max;
14625 					tcp->tcp_cwnd = cwnd;
14626 					if (tcp->tcp_unsent > 0)
14627 						flags |= TH_XMIT_NEEDED;
14628 					}
14629 				}
14630 			}
14631 		} else if (tcp->tcp_zero_win_probe) {
14632 			/*
14633 			 * If the window has opened, need to arrange
14634 			 * to send additional data.
14635 			 */
14636 			if (new_swnd != 0) {
14637 				/* tcp_suna != tcp_snxt */
14638 				/* Packet contains a window update */
14639 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14640 				tcp->tcp_zero_win_probe = 0;
14641 				tcp->tcp_timer_backoff = 0;
14642 				tcp->tcp_ms_we_have_waited = 0;
14643 
14644 				/*
14645 				 * Transmit starting with tcp_suna since
14646 				 * the one byte probe is not ack'ed.
14647 				 * If TCP has sent more than one identical
14648 				 * probe, tcp_rexmit will be set.  That means
14649 				 * tcp_ss_rexmit() will send out the one
14650 				 * byte along with new data.  Otherwise,
14651 				 * fake the retransmission.
14652 				 */
14653 				flags |= TH_XMIT_NEEDED;
14654 				if (!tcp->tcp_rexmit) {
14655 					tcp->tcp_rexmit = B_TRUE;
14656 					tcp->tcp_dupack_cnt = 0;
14657 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14658 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14659 				}
14660 			}
14661 		}
14662 		goto swnd_update;
14663 	}
14664 
14665 	/*
14666 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14667 	 * If the ACK value acks something that we have not yet sent, it might
14668 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14669 	 * other side.
14670 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14671 	 * state is handled above, so we can always just drop the segment and
14672 	 * send an ACK here.
14673 	 *
14674 	 * Should we send ACKs in response to ACK only segments?
14675 	 */
14676 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14677 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14678 		/* drop the received segment */
14679 		freemsg(mp);
14680 
14681 		/*
14682 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14683 		 * greater than 0, check if the number of such
14684 		 * bogus ACks is greater than that count.  If yes,
14685 		 * don't send back any ACK.  This prevents TCP from
14686 		 * getting into an ACK storm if somehow an attacker
14687 		 * successfully spoofs an acceptable segment to our
14688 		 * peer.
14689 		 */
14690 		if (tcp_drop_ack_unsent_cnt > 0 &&
14691 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14692 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14693 			return;
14694 		}
14695 		mp = tcp_ack_mp(tcp);
14696 		if (mp != NULL) {
14697 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14698 			BUMP_LOCAL(tcp->tcp_obsegs);
14699 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14700 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14701 		}
14702 		return;
14703 	}
14704 
14705 	/*
14706 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14707 	 * blocks that are covered by this ACK.
14708 	 */
14709 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14710 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14711 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14712 	}
14713 
14714 	/*
14715 	 * If we got an ACK after fast retransmit, check to see
14716 	 * if it is a partial ACK.  If it is not and the congestion
14717 	 * window was inflated to account for the other side's
14718 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14719 	 */
14720 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14721 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14722 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14723 			tcp->tcp_dupack_cnt = 0;
14724 			/*
14725 			 * Restore the orig tcp_cwnd_ssthresh after
14726 			 * fast retransmit phase.
14727 			 */
14728 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14729 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14730 			}
14731 			tcp->tcp_rexmit_max = seg_ack;
14732 			tcp->tcp_cwnd_cnt = 0;
14733 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14734 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14735 
14736 			/*
14737 			 * Remove all notsack info to avoid confusion with
14738 			 * the next fast retrasnmit/recovery phase.
14739 			 */
14740 			if (tcp->tcp_snd_sack_ok &&
14741 			    tcp->tcp_notsack_list != NULL) {
14742 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14743 			}
14744 		} else {
14745 			if (tcp->tcp_snd_sack_ok &&
14746 			    tcp->tcp_notsack_list != NULL) {
14747 				flags |= TH_NEED_SACK_REXMIT;
14748 				tcp->tcp_pipe -= mss;
14749 				if (tcp->tcp_pipe < 0)
14750 					tcp->tcp_pipe = 0;
14751 			} else {
14752 				/*
14753 				 * Hoe's algorithm:
14754 				 *
14755 				 * Retransmit the unack'ed segment and
14756 				 * restart fast recovery.  Note that we
14757 				 * need to scale back tcp_cwnd to the
14758 				 * original value when we started fast
14759 				 * recovery.  This is to prevent overly
14760 				 * aggressive behaviour in sending new
14761 				 * segments.
14762 				 */
14763 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14764 				    tcps->tcps_dupack_fast_retransmit * mss;
14765 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14766 				flags |= TH_REXMIT_NEEDED;
14767 			}
14768 		}
14769 	} else {
14770 		tcp->tcp_dupack_cnt = 0;
14771 		if (tcp->tcp_rexmit) {
14772 			/*
14773 			 * TCP is retranmitting.  If the ACK ack's all
14774 			 * outstanding data, update tcp_rexmit_max and
14775 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14776 			 * to the correct value.
14777 			 *
14778 			 * Note that SEQ_LEQ() is used.  This is to avoid
14779 			 * unnecessary fast retransmit caused by dup ACKs
14780 			 * received when TCP does slow start retransmission
14781 			 * after a time out.  During this phase, TCP may
14782 			 * send out segments which are already received.
14783 			 * This causes dup ACKs to be sent back.
14784 			 */
14785 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14786 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14787 					tcp->tcp_rexmit_nxt = seg_ack;
14788 				}
14789 				if (seg_ack != tcp->tcp_rexmit_max) {
14790 					flags |= TH_XMIT_NEEDED;
14791 				}
14792 			} else {
14793 				tcp->tcp_rexmit = B_FALSE;
14794 				tcp->tcp_xmit_zc_clean = B_FALSE;
14795 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14796 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14797 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14798 			}
14799 			tcp->tcp_ms_we_have_waited = 0;
14800 		}
14801 	}
14802 
14803 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14804 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14805 	tcp->tcp_suna = seg_ack;
14806 	if (tcp->tcp_zero_win_probe != 0) {
14807 		tcp->tcp_zero_win_probe = 0;
14808 		tcp->tcp_timer_backoff = 0;
14809 	}
14810 
14811 	/*
14812 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14813 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14814 	 * will not reach here.
14815 	 */
14816 	if (mp1 == NULL) {
14817 		goto fin_acked;
14818 	}
14819 
14820 	/*
14821 	 * Update the congestion window.
14822 	 *
14823 	 * If TCP is not ECN capable or TCP is ECN capable but the
14824 	 * congestion experience bit is not set, increase the tcp_cwnd as
14825 	 * usual.
14826 	 */
14827 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14828 		cwnd = tcp->tcp_cwnd;
14829 		add = mss;
14830 
14831 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14832 			/*
14833 			 * This is to prevent an increase of less than 1 MSS of
14834 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14835 			 * may send out tinygrams in order to preserve mblk
14836 			 * boundaries.
14837 			 *
14838 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14839 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14840 			 * increased by 1 MSS for every RTTs.
14841 			 */
14842 			if (tcp->tcp_cwnd_cnt <= 0) {
14843 				tcp->tcp_cwnd_cnt = cwnd + add;
14844 			} else {
14845 				tcp->tcp_cwnd_cnt -= add;
14846 				add = 0;
14847 			}
14848 		}
14849 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14850 	}
14851 
14852 	/* See if the latest urgent data has been acknowledged */
14853 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14854 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14855 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14856 
14857 	/* Can we update the RTT estimates? */
14858 	if (tcp->tcp_snd_ts_ok) {
14859 		/* Ignore zero timestamp echo-reply. */
14860 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14861 			tcp_set_rto(tcp, (int32_t)lbolt -
14862 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14863 		}
14864 
14865 		/* If needed, restart the timer. */
14866 		if (tcp->tcp_set_timer == 1) {
14867 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14868 			tcp->tcp_set_timer = 0;
14869 		}
14870 		/*
14871 		 * Update tcp_csuna in case the other side stops sending
14872 		 * us timestamps.
14873 		 */
14874 		tcp->tcp_csuna = tcp->tcp_snxt;
14875 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14876 		/*
14877 		 * An ACK sequence we haven't seen before, so get the RTT
14878 		 * and update the RTO. But first check if the timestamp is
14879 		 * valid to use.
14880 		 */
14881 		if ((mp1->b_next != NULL) &&
14882 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14883 			tcp_set_rto(tcp, (int32_t)lbolt -
14884 			    (int32_t)(intptr_t)mp1->b_prev);
14885 		else
14886 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14887 
14888 		/* Remeber the last sequence to be ACKed */
14889 		tcp->tcp_csuna = seg_ack;
14890 		if (tcp->tcp_set_timer == 1) {
14891 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14892 			tcp->tcp_set_timer = 0;
14893 		}
14894 	} else {
14895 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14896 	}
14897 
14898 	/* Eat acknowledged bytes off the xmit queue. */
14899 	for (;;) {
14900 		mblk_t	*mp2;
14901 		uchar_t	*wptr;
14902 
14903 		wptr = mp1->b_wptr;
14904 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14905 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14906 		if (bytes_acked < 0) {
14907 			mp1->b_rptr = wptr + bytes_acked;
14908 			/*
14909 			 * Set a new timestamp if all the bytes timed by the
14910 			 * old timestamp have been ack'ed.
14911 			 */
14912 			if (SEQ_GT(seg_ack,
14913 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14914 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14915 				mp1->b_next = NULL;
14916 			}
14917 			break;
14918 		}
14919 		mp1->b_next = NULL;
14920 		mp1->b_prev = NULL;
14921 		mp2 = mp1;
14922 		mp1 = mp1->b_cont;
14923 
14924 		/*
14925 		 * This notification is required for some zero-copy
14926 		 * clients to maintain a copy semantic. After the data
14927 		 * is ack'ed, client is safe to modify or reuse the buffer.
14928 		 */
14929 		if (tcp->tcp_snd_zcopy_aware &&
14930 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14931 			tcp_zcopy_notify(tcp);
14932 		freeb(mp2);
14933 		if (bytes_acked == 0) {
14934 			if (mp1 == NULL) {
14935 				/* Everything is ack'ed, clear the tail. */
14936 				tcp->tcp_xmit_tail = NULL;
14937 				/*
14938 				 * Cancel the timer unless we are still
14939 				 * waiting for an ACK for the FIN packet.
14940 				 */
14941 				if (tcp->tcp_timer_tid != 0 &&
14942 				    tcp->tcp_snxt == tcp->tcp_suna) {
14943 					(void) TCP_TIMER_CANCEL(tcp,
14944 					    tcp->tcp_timer_tid);
14945 					tcp->tcp_timer_tid = 0;
14946 				}
14947 				goto pre_swnd_update;
14948 			}
14949 			if (mp2 != tcp->tcp_xmit_tail)
14950 				break;
14951 			tcp->tcp_xmit_tail = mp1;
14952 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14953 			    (uintptr_t)INT_MAX);
14954 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14955 			    mp1->b_rptr);
14956 			break;
14957 		}
14958 		if (mp1 == NULL) {
14959 			/*
14960 			 * More was acked but there is nothing more
14961 			 * outstanding.  This means that the FIN was
14962 			 * just acked or that we're talking to a clown.
14963 			 */
14964 fin_acked:
14965 			ASSERT(tcp->tcp_fin_sent);
14966 			tcp->tcp_xmit_tail = NULL;
14967 			if (tcp->tcp_fin_sent) {
14968 				/* FIN was acked - making progress */
14969 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14970 				    !tcp->tcp_fin_acked)
14971 					tcp->tcp_ip_forward_progress = B_TRUE;
14972 				tcp->tcp_fin_acked = B_TRUE;
14973 				if (tcp->tcp_linger_tid != 0 &&
14974 				    TCP_TIMER_CANCEL(tcp,
14975 				    tcp->tcp_linger_tid) >= 0) {
14976 					tcp_stop_lingering(tcp);
14977 					freemsg(mp);
14978 					mp = NULL;
14979 				}
14980 			} else {
14981 				/*
14982 				 * We should never get here because
14983 				 * we have already checked that the
14984 				 * number of bytes ack'ed should be
14985 				 * smaller than or equal to what we
14986 				 * have sent so far (it is the
14987 				 * acceptability check of the ACK).
14988 				 * We can only get here if the send
14989 				 * queue is corrupted.
14990 				 *
14991 				 * Terminate the connection and
14992 				 * panic the system.  It is better
14993 				 * for us to panic instead of
14994 				 * continuing to avoid other disaster.
14995 				 */
14996 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14997 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14998 				panic("Memory corruption "
14999 				    "detected for connection %s.",
15000 				    tcp_display(tcp, NULL,
15001 				    DISP_ADDR_AND_PORT));
15002 				/*NOTREACHED*/
15003 			}
15004 			goto pre_swnd_update;
15005 		}
15006 		ASSERT(mp2 != tcp->tcp_xmit_tail);
15007 	}
15008 	if (tcp->tcp_unsent) {
15009 		flags |= TH_XMIT_NEEDED;
15010 	}
15011 pre_swnd_update:
15012 	tcp->tcp_xmit_head = mp1;
15013 swnd_update:
15014 	/*
15015 	 * The following check is different from most other implementations.
15016 	 * For bi-directional transfer, when segments are dropped, the
15017 	 * "normal" check will not accept a window update in those
15018 	 * retransmitted segemnts.  Failing to do that, TCP may send out
15019 	 * segments which are outside receiver's window.  As TCP accepts
15020 	 * the ack in those retransmitted segments, if the window update in
15021 	 * the same segment is not accepted, TCP will incorrectly calculates
15022 	 * that it can send more segments.  This can create a deadlock
15023 	 * with the receiver if its window becomes zero.
15024 	 */
15025 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
15026 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
15027 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
15028 		/*
15029 		 * The criteria for update is:
15030 		 *
15031 		 * 1. the segment acknowledges some data.  Or
15032 		 * 2. the segment is new, i.e. it has a higher seq num. Or
15033 		 * 3. the segment is not old and the advertised window is
15034 		 * larger than the previous advertised window.
15035 		 */
15036 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
15037 			flags |= TH_XMIT_NEEDED;
15038 		tcp->tcp_swnd = new_swnd;
15039 		if (new_swnd > tcp->tcp_max_swnd)
15040 			tcp->tcp_max_swnd = new_swnd;
15041 		tcp->tcp_swl1 = seg_seq;
15042 		tcp->tcp_swl2 = seg_ack;
15043 	}
15044 est:
15045 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
15046 
15047 		switch (tcp->tcp_state) {
15048 		case TCPS_FIN_WAIT_1:
15049 			if (tcp->tcp_fin_acked) {
15050 				tcp->tcp_state = TCPS_FIN_WAIT_2;
15051 				/*
15052 				 * We implement the non-standard BSD/SunOS
15053 				 * FIN_WAIT_2 flushing algorithm.
15054 				 * If there is no user attached to this
15055 				 * TCP endpoint, then this TCP struct
15056 				 * could hang around forever in FIN_WAIT_2
15057 				 * state if the peer forgets to send us
15058 				 * a FIN.  To prevent this, we wait only
15059 				 * 2*MSL (a convenient time value) for
15060 				 * the FIN to arrive.  If it doesn't show up,
15061 				 * we flush the TCP endpoint.  This algorithm,
15062 				 * though a violation of RFC-793, has worked
15063 				 * for over 10 years in BSD systems.
15064 				 * Note: SunOS 4.x waits 675 seconds before
15065 				 * flushing the FIN_WAIT_2 connection.
15066 				 */
15067 				TCP_TIMER_RESTART(tcp,
15068 				    tcps->tcps_fin_wait_2_flush_interval);
15069 			}
15070 			break;
15071 		case TCPS_FIN_WAIT_2:
15072 			break;	/* Shutdown hook? */
15073 		case TCPS_LAST_ACK:
15074 			freemsg(mp);
15075 			if (tcp->tcp_fin_acked) {
15076 				(void) tcp_clean_death(tcp, 0, 19);
15077 				return;
15078 			}
15079 			goto xmit_check;
15080 		case TCPS_CLOSING:
15081 			if (tcp->tcp_fin_acked) {
15082 				tcp->tcp_state = TCPS_TIME_WAIT;
15083 				/*
15084 				 * Unconditionally clear the exclusive binding
15085 				 * bit so this TIME-WAIT connection won't
15086 				 * interfere with new ones.
15087 				 */
15088 				tcp->tcp_exclbind = 0;
15089 				if (!TCP_IS_DETACHED(tcp)) {
15090 					TCP_TIMER_RESTART(tcp,
15091 					    tcps->tcps_time_wait_interval);
15092 				} else {
15093 					tcp_time_wait_append(tcp);
15094 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15095 				}
15096 			}
15097 			/*FALLTHRU*/
15098 		case TCPS_CLOSE_WAIT:
15099 			freemsg(mp);
15100 			goto xmit_check;
15101 		default:
15102 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
15103 			break;
15104 		}
15105 	}
15106 	if (flags & TH_FIN) {
15107 		/* Make sure we ack the fin */
15108 		flags |= TH_ACK_NEEDED;
15109 		if (!tcp->tcp_fin_rcvd) {
15110 			tcp->tcp_fin_rcvd = B_TRUE;
15111 			tcp->tcp_rnxt++;
15112 			tcph = tcp->tcp_tcph;
15113 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15114 
15115 			/*
15116 			 * Generate the ordrel_ind at the end unless we
15117 			 * are an eager guy.
15118 			 * In the eager case tcp_rsrv will do this when run
15119 			 * after tcp_accept is done.
15120 			 */
15121 			if (tcp->tcp_listener == NULL &&
15122 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
15123 				flags |= TH_ORDREL_NEEDED;
15124 			switch (tcp->tcp_state) {
15125 			case TCPS_SYN_RCVD:
15126 			case TCPS_ESTABLISHED:
15127 				tcp->tcp_state = TCPS_CLOSE_WAIT;
15128 				/* Keepalive? */
15129 				break;
15130 			case TCPS_FIN_WAIT_1:
15131 				if (!tcp->tcp_fin_acked) {
15132 					tcp->tcp_state = TCPS_CLOSING;
15133 					break;
15134 				}
15135 				/* FALLTHRU */
15136 			case TCPS_FIN_WAIT_2:
15137 				tcp->tcp_state = TCPS_TIME_WAIT;
15138 				/*
15139 				 * Unconditionally clear the exclusive binding
15140 				 * bit so this TIME-WAIT connection won't
15141 				 * interfere with new ones.
15142 				 */
15143 				tcp->tcp_exclbind = 0;
15144 				if (!TCP_IS_DETACHED(tcp)) {
15145 					TCP_TIMER_RESTART(tcp,
15146 					    tcps->tcps_time_wait_interval);
15147 				} else {
15148 					tcp_time_wait_append(tcp);
15149 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15150 				}
15151 				if (seg_len) {
15152 					/*
15153 					 * implies data piggybacked on FIN.
15154 					 * break to handle data.
15155 					 */
15156 					break;
15157 				}
15158 				freemsg(mp);
15159 				goto ack_check;
15160 			}
15161 		}
15162 	}
15163 	if (mp == NULL)
15164 		goto xmit_check;
15165 	if (seg_len == 0) {
15166 		freemsg(mp);
15167 		goto xmit_check;
15168 	}
15169 	if (mp->b_rptr == mp->b_wptr) {
15170 		/*
15171 		 * The header has been consumed, so we remove the
15172 		 * zero-length mblk here.
15173 		 */
15174 		mp1 = mp;
15175 		mp = mp->b_cont;
15176 		freeb(mp1);
15177 	}
15178 	tcph = tcp->tcp_tcph;
15179 	tcp->tcp_rack_cnt++;
15180 	{
15181 		uint32_t cur_max;
15182 
15183 		cur_max = tcp->tcp_rack_cur_max;
15184 		if (tcp->tcp_rack_cnt >= cur_max) {
15185 			/*
15186 			 * We have more unacked data than we should - send
15187 			 * an ACK now.
15188 			 */
15189 			flags |= TH_ACK_NEEDED;
15190 			cur_max++;
15191 			if (cur_max > tcp->tcp_rack_abs_max)
15192 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15193 			else
15194 				tcp->tcp_rack_cur_max = cur_max;
15195 		} else if (TCP_IS_DETACHED(tcp)) {
15196 			/* We don't have an ACK timer for detached TCP. */
15197 			flags |= TH_ACK_NEEDED;
15198 		} else if (seg_len < mss) {
15199 			/*
15200 			 * If we get a segment that is less than an mss, and we
15201 			 * already have unacknowledged data, and the amount
15202 			 * unacknowledged is not a multiple of mss, then we
15203 			 * better generate an ACK now.  Otherwise, this may be
15204 			 * the tail piece of a transaction, and we would rather
15205 			 * wait for the response.
15206 			 */
15207 			uint32_t udif;
15208 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15209 			    (uintptr_t)INT_MAX);
15210 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15211 			if (udif && (udif % mss))
15212 				flags |= TH_ACK_NEEDED;
15213 			else
15214 				flags |= TH_ACK_TIMER_NEEDED;
15215 		} else {
15216 			/* Start delayed ack timer */
15217 			flags |= TH_ACK_TIMER_NEEDED;
15218 		}
15219 	}
15220 	tcp->tcp_rnxt += seg_len;
15221 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15222 
15223 	/* Update SACK list */
15224 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15225 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15226 		    &(tcp->tcp_num_sack_blk));
15227 	}
15228 
15229 	if (tcp->tcp_urp_mp) {
15230 		tcp->tcp_urp_mp->b_cont = mp;
15231 		mp = tcp->tcp_urp_mp;
15232 		tcp->tcp_urp_mp = NULL;
15233 		/* Ready for a new signal. */
15234 		tcp->tcp_urp_last_valid = B_FALSE;
15235 #ifdef DEBUG
15236 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15237 		    "tcp_rput: sending exdata_ind %s",
15238 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15239 #endif /* DEBUG */
15240 	}
15241 
15242 	/*
15243 	 * Check for ancillary data changes compared to last segment.
15244 	 */
15245 	if (tcp->tcp_ipv6_recvancillary != 0) {
15246 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15247 		if (mp == NULL)
15248 			return;
15249 	}
15250 
15251 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15252 		/*
15253 		 * Side queue inbound data until the accept happens.
15254 		 * tcp_accept/tcp_rput drains this when the accept happens.
15255 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15256 		 * T_EXDATA_IND) it is queued on b_next.
15257 		 * XXX Make urgent data use this. Requires:
15258 		 *	Removing tcp_listener check for TH_URG
15259 		 *	Making M_PCPROTO and MARK messages skip the eager case
15260 		 */
15261 
15262 		if (tcp->tcp_kssl_pending) {
15263 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15264 			    mblk_t *, mp);
15265 			tcp_kssl_input(tcp, mp);
15266 		} else {
15267 			tcp_rcv_enqueue(tcp, mp, seg_len);
15268 		}
15269 	} else {
15270 		sodirect_t	*sodp = tcp->tcp_sodirect;
15271 
15272 		/*
15273 		 * If an sodirect connection and an enabled sodirect_t then
15274 		 * sodp will be set to point to the tcp_t/sonode_t shared
15275 		 * sodirect_t and the sodirect_t's lock will be held.
15276 		 */
15277 		if (sodp != NULL) {
15278 			mutex_enter(sodp->sod_lock);
15279 			if (!(sodp->sod_state & SOD_ENABLED)) {
15280 				mutex_exit(sodp->sod_lock);
15281 				sodp = NULL;
15282 			} else if (tcp->tcp_kssl_ctx != NULL &&
15283 			    DB_TYPE(mp) == M_DATA) {
15284 				mutex_exit(sodp->sod_lock);
15285 				sodp = NULL;
15286 			}
15287 		}
15288 		if (mp->b_datap->db_type != M_DATA ||
15289 		    (flags & TH_MARKNEXT_NEEDED)) {
15290 			if (sodp != NULL) {
15291 				if (!SOD_QEMPTY(sodp) &&
15292 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15293 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15294 					/* sod_wakeup() did the mutex_exit() */
15295 					mutex_enter(sodp->sod_lock);
15296 				}
15297 			} else if (tcp->tcp_rcv_list != NULL) {
15298 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15299 			}
15300 			ASSERT(tcp->tcp_rcv_list == NULL ||
15301 			    tcp->tcp_fused_sigurg);
15302 
15303 			if (flags & TH_MARKNEXT_NEEDED) {
15304 #ifdef DEBUG
15305 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15306 				    "tcp_rput: sending MSGMARKNEXT %s",
15307 				    tcp_display(tcp, NULL,
15308 				    DISP_PORT_ONLY));
15309 #endif /* DEBUG */
15310 				mp->b_flag |= MSGMARKNEXT;
15311 				flags &= ~TH_MARKNEXT_NEEDED;
15312 			}
15313 
15314 			/* Does this need SSL processing first? */
15315 			if ((tcp->tcp_kssl_ctx != NULL) &&
15316 			    (DB_TYPE(mp) == M_DATA)) {
15317 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15318 				    mblk_t *, mp);
15319 				tcp_kssl_input(tcp, mp);
15320 			} else {
15321 				if (sodp) {
15322 					/*
15323 					 * Done with sodirect, use putnext
15324 					 * to push this non M_DATA headed
15325 					 * mblk_t chain.
15326 					 */
15327 					mutex_exit(sodp->sod_lock);
15328 				}
15329 				putnext(tcp->tcp_rq, mp);
15330 				if (!canputnext(tcp->tcp_rq))
15331 					tcp->tcp_rwnd -= seg_len;
15332 			}
15333 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15334 		    (DB_TYPE(mp) == M_DATA)) {
15335 			/* Do SSL processing first */
15336 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2,
15337 			    mblk_t *, mp);
15338 			tcp_kssl_input(tcp, mp);
15339 		} else if (sodp != NULL) {
15340 			/*
15341 			 * Sodirect so all mblk_t's are queued on the
15342 			 * socket directly, check for wakeup of blocked
15343 			 * reader (if any), and last if flow-controled.
15344 			 */
15345 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15346 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15347 			    (flags & (TH_PUSH|TH_FIN))) {
15348 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15349 				/* sod_wakeup() did the mutex_exit() */
15350 			} else {
15351 				if (SOD_QFULL(sodp)) {
15352 					/* Q is full, need backenable */
15353 					SOD_QSETBE(sodp);
15354 				}
15355 				mutex_exit(sodp->sod_lock);
15356 			}
15357 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15358 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15359 			if (tcp->tcp_rcv_list != NULL) {
15360 				/*
15361 				 * Enqueue the new segment first and then
15362 				 * call tcp_rcv_drain() to send all data
15363 				 * up.  The other way to do this is to
15364 				 * send all queued data up and then call
15365 				 * putnext() to send the new segment up.
15366 				 * This way can remove the else part later
15367 				 * on.
15368 				 *
15369 				 * We don't this to avoid one more call to
15370 				 * canputnext() as tcp_rcv_drain() needs to
15371 				 * call canputnext().
15372 				 */
15373 				tcp_rcv_enqueue(tcp, mp, seg_len);
15374 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15375 			} else {
15376 				putnext(tcp->tcp_rq, mp);
15377 				if (!canputnext(tcp->tcp_rq))
15378 					tcp->tcp_rwnd -= seg_len;
15379 			}
15380 		} else {
15381 			/*
15382 			 * Enqueue all packets when processing an mblk
15383 			 * from the co queue and also enqueue normal packets.
15384 			 */
15385 			tcp_rcv_enqueue(tcp, mp, seg_len);
15386 		}
15387 		/*
15388 		 * Make sure the timer is running if we have data waiting
15389 		 * for a push bit. This provides resiliency against
15390 		 * implementations that do not correctly generate push bits.
15391 		 *
15392 		 * Note, for sodirect if Q isn't empty and there's not a
15393 		 * pending wakeup then we need a timer. Also note that sodp
15394 		 * is assumed to be still valid after exit()ing the sod_lock
15395 		 * above and while the SOD state can change it can only change
15396 		 * such that the Q is empty now even though data was added
15397 		 * above.
15398 		 */
15399 		if (((sodp != NULL && !SOD_QEMPTY(sodp) &&
15400 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15401 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15402 		    tcp->tcp_push_tid == 0) {
15403 			/*
15404 			 * The connection may be closed at this point, so don't
15405 			 * do anything for a detached tcp.
15406 			 */
15407 			if (!TCP_IS_DETACHED(tcp))
15408 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15409 				    tcp_push_timer,
15410 				    MSEC_TO_TICK(
15411 				    tcps->tcps_push_timer_interval));
15412 		}
15413 	}
15414 
15415 xmit_check:
15416 	/* Is there anything left to do? */
15417 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15418 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15419 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15420 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15421 		goto done;
15422 
15423 	/* Any transmit work to do and a non-zero window? */
15424 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15425 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15426 		if (flags & TH_REXMIT_NEEDED) {
15427 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15428 
15429 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15430 			if (snd_size > mss)
15431 				snd_size = mss;
15432 			if (snd_size > tcp->tcp_swnd)
15433 				snd_size = tcp->tcp_swnd;
15434 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15435 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15436 			    B_TRUE);
15437 
15438 			if (mp1 != NULL) {
15439 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15440 				tcp->tcp_csuna = tcp->tcp_snxt;
15441 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15442 				UPDATE_MIB(&tcps->tcps_mib,
15443 				    tcpRetransBytes, snd_size);
15444 				TCP_RECORD_TRACE(tcp, mp1,
15445 				    TCP_TRACE_SEND_PKT);
15446 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15447 			}
15448 		}
15449 		if (flags & TH_NEED_SACK_REXMIT) {
15450 			tcp_sack_rxmit(tcp, &flags);
15451 		}
15452 		/*
15453 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15454 		 * out new segment.  Note that tcp_rexmit should not be
15455 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15456 		 */
15457 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15458 			if (!tcp->tcp_rexmit) {
15459 				tcp_wput_data(tcp, NULL, B_FALSE);
15460 			} else {
15461 				tcp_ss_rexmit(tcp);
15462 			}
15463 		}
15464 		/*
15465 		 * Adjust tcp_cwnd back to normal value after sending
15466 		 * new data segments.
15467 		 */
15468 		if (flags & TH_LIMIT_XMIT) {
15469 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15470 			/*
15471 			 * This will restart the timer.  Restarting the
15472 			 * timer is used to avoid a timeout before the
15473 			 * limited transmitted segment's ACK gets back.
15474 			 */
15475 			if (tcp->tcp_xmit_head != NULL)
15476 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15477 		}
15478 
15479 		/* Anything more to do? */
15480 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15481 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15482 			goto done;
15483 	}
15484 ack_check:
15485 	if (flags & TH_SEND_URP_MARK) {
15486 		ASSERT(tcp->tcp_urp_mark_mp);
15487 		/*
15488 		 * Send up any queued data and then send the mark message
15489 		 */
15490 		sodirect_t *sodp;
15491 
15492 		SOD_PTR_ENTER(tcp, sodp);
15493 
15494 		mp1 = tcp->tcp_urp_mark_mp;
15495 		tcp->tcp_urp_mark_mp = NULL;
15496 		if (sodp != NULL) {
15497 
15498 			ASSERT(tcp->tcp_rcv_list == NULL);
15499 
15500 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15501 			/* sod_wakeup() does the mutex_exit() */
15502 		} else if (tcp->tcp_rcv_list != NULL) {
15503 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15504 
15505 			ASSERT(tcp->tcp_rcv_list == NULL ||
15506 			    tcp->tcp_fused_sigurg);
15507 
15508 		}
15509 		putnext(tcp->tcp_rq, mp1);
15510 #ifdef DEBUG
15511 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15512 		    "tcp_rput: sending zero-length %s %s",
15513 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15514 		    "MSGNOTMARKNEXT"),
15515 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15516 #endif /* DEBUG */
15517 		flags &= ~TH_SEND_URP_MARK;
15518 	}
15519 	if (flags & TH_ACK_NEEDED) {
15520 		/*
15521 		 * Time to send an ack for some reason.
15522 		 */
15523 		mp1 = tcp_ack_mp(tcp);
15524 
15525 		if (mp1 != NULL) {
15526 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15527 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15528 			BUMP_LOCAL(tcp->tcp_obsegs);
15529 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15530 		}
15531 		if (tcp->tcp_ack_tid != 0) {
15532 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15533 			tcp->tcp_ack_tid = 0;
15534 		}
15535 	}
15536 	if (flags & TH_ACK_TIMER_NEEDED) {
15537 		/*
15538 		 * Arrange for deferred ACK or push wait timeout.
15539 		 * Start timer if it is not already running.
15540 		 */
15541 		if (tcp->tcp_ack_tid == 0) {
15542 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15543 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15544 			    (clock_t)tcps->tcps_local_dack_interval :
15545 			    (clock_t)tcps->tcps_deferred_ack_interval));
15546 		}
15547 	}
15548 	if (flags & TH_ORDREL_NEEDED) {
15549 		/*
15550 		 * Send up the ordrel_ind unless we are an eager guy.
15551 		 * In the eager case tcp_rsrv will do this when run
15552 		 * after tcp_accept is done.
15553 		 */
15554 		sodirect_t *sodp;
15555 
15556 		ASSERT(tcp->tcp_listener == NULL);
15557 
15558 		SOD_PTR_ENTER(tcp, sodp);
15559 		if (sodp != NULL) {
15560 			/* No more sodirect */
15561 			tcp->tcp_sodirect = NULL;
15562 			if (!SOD_QEMPTY(sodp)) {
15563 				/* Mblk(s) to process, notify */
15564 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15565 				/* sod_wakeup() does the mutex_exit() */
15566 			} else {
15567 				/* Nothing to process */
15568 				mutex_exit(sodp->sod_lock);
15569 			}
15570 		} else if (tcp->tcp_rcv_list != NULL) {
15571 			/*
15572 			 * Push any mblk(s) enqueued from co processing.
15573 			 */
15574 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15575 
15576 			ASSERT(tcp->tcp_rcv_list == NULL ||
15577 			    tcp->tcp_fused_sigurg);
15578 		}
15579 
15580 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15581 			tcp->tcp_ordrel_done = B_TRUE;
15582 			putnext(tcp->tcp_rq, mp1);
15583 			if (tcp->tcp_deferred_clean_death) {
15584 				/*
15585 				 * tcp_clean_death was deferred
15586 				 * for T_ORDREL_IND - do it now
15587 				 */
15588 				(void) tcp_clean_death(tcp,
15589 				    tcp->tcp_client_errno, 20);
15590 				tcp->tcp_deferred_clean_death =	B_FALSE;
15591 			}
15592 		} else {
15593 			/*
15594 			 * Run the orderly release in the
15595 			 * service routine.
15596 			 */
15597 			qenable(tcp->tcp_rq);
15598 			/*
15599 			 * Caveat(XXX): The machine may be so
15600 			 * overloaded that tcp_rsrv() is not scheduled
15601 			 * until after the endpoint has transitioned
15602 			 * to TCPS_TIME_WAIT
15603 			 * and tcp_time_wait_interval expires. Then
15604 			 * tcp_timer() will blow away state in tcp_t
15605 			 * and T_ORDREL_IND will never be delivered
15606 			 * upstream. Unlikely but potentially
15607 			 * a problem.
15608 			 */
15609 		}
15610 	}
15611 done:
15612 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15613 }
15614 
15615 /*
15616  * This function does PAWS protection check. Returns B_TRUE if the
15617  * segment passes the PAWS test, else returns B_FALSE.
15618  */
15619 boolean_t
15620 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15621 {
15622 	uint8_t	flags;
15623 	int	options;
15624 	uint8_t *up;
15625 
15626 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15627 	/*
15628 	 * If timestamp option is aligned nicely, get values inline,
15629 	 * otherwise call general routine to parse.  Only do that
15630 	 * if timestamp is the only option.
15631 	 */
15632 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15633 	    TCPOPT_REAL_TS_LEN &&
15634 	    OK_32PTR((up = ((uint8_t *)tcph) +
15635 	    TCP_MIN_HEADER_LENGTH)) &&
15636 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15637 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15638 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15639 
15640 		options = TCP_OPT_TSTAMP_PRESENT;
15641 	} else {
15642 		if (tcp->tcp_snd_sack_ok) {
15643 			tcpoptp->tcp = tcp;
15644 		} else {
15645 			tcpoptp->tcp = NULL;
15646 		}
15647 		options = tcp_parse_options(tcph, tcpoptp);
15648 	}
15649 
15650 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15651 		/*
15652 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15653 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15654 		 */
15655 		if ((flags & TH_RST) == 0 &&
15656 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15657 		    tcp->tcp_ts_recent)) {
15658 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15659 			    PAWS_TIMEOUT)) {
15660 				/* This segment is not acceptable. */
15661 				return (B_FALSE);
15662 			} else {
15663 				/*
15664 				 * Connection has been idle for
15665 				 * too long.  Reset the timestamp
15666 				 * and assume the segment is valid.
15667 				 */
15668 				tcp->tcp_ts_recent =
15669 				    tcpoptp->tcp_opt_ts_val;
15670 			}
15671 		}
15672 	} else {
15673 		/*
15674 		 * If we don't get a timestamp on every packet, we
15675 		 * figure we can't really trust 'em, so we stop sending
15676 		 * and parsing them.
15677 		 */
15678 		tcp->tcp_snd_ts_ok = B_FALSE;
15679 
15680 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15681 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15682 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15683 		/*
15684 		 * Adjust the tcp_mss accordingly. We also need to
15685 		 * adjust tcp_cwnd here in accordance with the new mss.
15686 		 * But we avoid doing a slow start here so as to not
15687 		 * to lose on the transfer rate built up so far.
15688 		 */
15689 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15690 		if (tcp->tcp_snd_sack_ok) {
15691 			ASSERT(tcp->tcp_sack_info != NULL);
15692 			tcp->tcp_max_sack_blk = 4;
15693 		}
15694 	}
15695 	return (B_TRUE);
15696 }
15697 
15698 /*
15699  * Attach ancillary data to a received TCP segments for the
15700  * ancillary pieces requested by the application that are
15701  * different than they were in the previous data segment.
15702  *
15703  * Save the "current" values once memory allocation is ok so that
15704  * when memory allocation fails we can just wait for the next data segment.
15705  */
15706 static mblk_t *
15707 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15708 {
15709 	struct T_optdata_ind *todi;
15710 	int optlen;
15711 	uchar_t *optptr;
15712 	struct T_opthdr *toh;
15713 	uint_t addflag;	/* Which pieces to add */
15714 	mblk_t *mp1;
15715 
15716 	optlen = 0;
15717 	addflag = 0;
15718 	/* If app asked for pktinfo and the index has changed ... */
15719 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15720 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15721 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15722 		optlen += sizeof (struct T_opthdr) +
15723 		    sizeof (struct in6_pktinfo);
15724 		addflag |= TCP_IPV6_RECVPKTINFO;
15725 	}
15726 	/* If app asked for hoplimit and it has changed ... */
15727 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15728 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15729 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15730 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15731 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15732 	}
15733 	/* If app asked for tclass and it has changed ... */
15734 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15735 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15736 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15737 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15738 		addflag |= TCP_IPV6_RECVTCLASS;
15739 	}
15740 	/*
15741 	 * If app asked for hopbyhop headers and it has changed ...
15742 	 * For security labels, note that (1) security labels can't change on
15743 	 * a connected socket at all, (2) we're connected to at most one peer,
15744 	 * (3) if anything changes, then it must be some other extra option.
15745 	 */
15746 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15747 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15748 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15749 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15750 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15751 		    tcp->tcp_label_len;
15752 		addflag |= TCP_IPV6_RECVHOPOPTS;
15753 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15754 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15755 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15756 			return (mp);
15757 	}
15758 	/* If app asked for dst headers before routing headers ... */
15759 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15760 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15761 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15762 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15763 		optlen += sizeof (struct T_opthdr) +
15764 		    ipp->ipp_rtdstoptslen;
15765 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15766 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15767 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15768 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15769 			return (mp);
15770 	}
15771 	/* If app asked for routing headers and it has changed ... */
15772 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15773 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15774 	    (ipp->ipp_fields & IPPF_RTHDR),
15775 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15776 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15777 		addflag |= TCP_IPV6_RECVRTHDR;
15778 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15779 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15780 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15781 			return (mp);
15782 	}
15783 	/* If app asked for dest headers and it has changed ... */
15784 	if ((tcp->tcp_ipv6_recvancillary &
15785 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15786 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15787 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15788 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15789 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15790 		addflag |= TCP_IPV6_RECVDSTOPTS;
15791 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15792 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15793 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15794 			return (mp);
15795 	}
15796 
15797 	if (optlen == 0) {
15798 		/* Nothing to add */
15799 		return (mp);
15800 	}
15801 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15802 	if (mp1 == NULL) {
15803 		/*
15804 		 * Defer sending ancillary data until the next TCP segment
15805 		 * arrives.
15806 		 */
15807 		return (mp);
15808 	}
15809 	mp1->b_cont = mp;
15810 	mp = mp1;
15811 	mp->b_wptr += sizeof (*todi) + optlen;
15812 	mp->b_datap->db_type = M_PROTO;
15813 	todi = (struct T_optdata_ind *)mp->b_rptr;
15814 	todi->PRIM_type = T_OPTDATA_IND;
15815 	todi->DATA_flag = 1;	/* MORE data */
15816 	todi->OPT_length = optlen;
15817 	todi->OPT_offset = sizeof (*todi);
15818 	optptr = (uchar_t *)&todi[1];
15819 	/*
15820 	 * If app asked for pktinfo and the index has changed ...
15821 	 * Note that the local address never changes for the connection.
15822 	 */
15823 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15824 		struct in6_pktinfo *pkti;
15825 
15826 		toh = (struct T_opthdr *)optptr;
15827 		toh->level = IPPROTO_IPV6;
15828 		toh->name = IPV6_PKTINFO;
15829 		toh->len = sizeof (*toh) + sizeof (*pkti);
15830 		toh->status = 0;
15831 		optptr += sizeof (*toh);
15832 		pkti = (struct in6_pktinfo *)optptr;
15833 		if (tcp->tcp_ipversion == IPV6_VERSION)
15834 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15835 		else
15836 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15837 			    &pkti->ipi6_addr);
15838 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15839 		optptr += sizeof (*pkti);
15840 		ASSERT(OK_32PTR(optptr));
15841 		/* Save as "last" value */
15842 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15843 	}
15844 	/* If app asked for hoplimit and it has changed ... */
15845 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15846 		toh = (struct T_opthdr *)optptr;
15847 		toh->level = IPPROTO_IPV6;
15848 		toh->name = IPV6_HOPLIMIT;
15849 		toh->len = sizeof (*toh) + sizeof (uint_t);
15850 		toh->status = 0;
15851 		optptr += sizeof (*toh);
15852 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15853 		optptr += sizeof (uint_t);
15854 		ASSERT(OK_32PTR(optptr));
15855 		/* Save as "last" value */
15856 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15857 	}
15858 	/* If app asked for tclass and it has changed ... */
15859 	if (addflag & TCP_IPV6_RECVTCLASS) {
15860 		toh = (struct T_opthdr *)optptr;
15861 		toh->level = IPPROTO_IPV6;
15862 		toh->name = IPV6_TCLASS;
15863 		toh->len = sizeof (*toh) + sizeof (uint_t);
15864 		toh->status = 0;
15865 		optptr += sizeof (*toh);
15866 		*(uint_t *)optptr = ipp->ipp_tclass;
15867 		optptr += sizeof (uint_t);
15868 		ASSERT(OK_32PTR(optptr));
15869 		/* Save as "last" value */
15870 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15871 	}
15872 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15873 		toh = (struct T_opthdr *)optptr;
15874 		toh->level = IPPROTO_IPV6;
15875 		toh->name = IPV6_HOPOPTS;
15876 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15877 		    tcp->tcp_label_len;
15878 		toh->status = 0;
15879 		optptr += sizeof (*toh);
15880 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15881 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15882 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15883 		ASSERT(OK_32PTR(optptr));
15884 		/* Save as last value */
15885 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15886 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15887 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15888 	}
15889 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15890 		toh = (struct T_opthdr *)optptr;
15891 		toh->level = IPPROTO_IPV6;
15892 		toh->name = IPV6_RTHDRDSTOPTS;
15893 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15894 		toh->status = 0;
15895 		optptr += sizeof (*toh);
15896 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15897 		optptr += ipp->ipp_rtdstoptslen;
15898 		ASSERT(OK_32PTR(optptr));
15899 		/* Save as last value */
15900 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15901 		    &tcp->tcp_rtdstoptslen,
15902 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15903 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15904 	}
15905 	if (addflag & TCP_IPV6_RECVRTHDR) {
15906 		toh = (struct T_opthdr *)optptr;
15907 		toh->level = IPPROTO_IPV6;
15908 		toh->name = IPV6_RTHDR;
15909 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15910 		toh->status = 0;
15911 		optptr += sizeof (*toh);
15912 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15913 		optptr += ipp->ipp_rthdrlen;
15914 		ASSERT(OK_32PTR(optptr));
15915 		/* Save as last value */
15916 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15917 		    (ipp->ipp_fields & IPPF_RTHDR),
15918 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15919 	}
15920 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15921 		toh = (struct T_opthdr *)optptr;
15922 		toh->level = IPPROTO_IPV6;
15923 		toh->name = IPV6_DSTOPTS;
15924 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15925 		toh->status = 0;
15926 		optptr += sizeof (*toh);
15927 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15928 		optptr += ipp->ipp_dstoptslen;
15929 		ASSERT(OK_32PTR(optptr));
15930 		/* Save as last value */
15931 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15932 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15933 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15934 	}
15935 	ASSERT(optptr == mp->b_wptr);
15936 	return (mp);
15937 }
15938 
15939 
15940 /*
15941  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15942  * or a "bad" IRE detected by tcp_adapt_ire.
15943  * We can't tell if the failure was due to the laddr or the faddr
15944  * thus we clear out all addresses and ports.
15945  */
15946 static void
15947 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15948 {
15949 	queue_t	*q = tcp->tcp_rq;
15950 	tcph_t	*tcph;
15951 	struct T_error_ack *tea;
15952 	conn_t	*connp = tcp->tcp_connp;
15953 
15954 
15955 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15956 
15957 	if (mp->b_cont) {
15958 		freemsg(mp->b_cont);
15959 		mp->b_cont = NULL;
15960 	}
15961 	tea = (struct T_error_ack *)mp->b_rptr;
15962 	switch (tea->PRIM_type) {
15963 	case T_BIND_ACK:
15964 		/*
15965 		 * Need to unbind with classifier since we were just told that
15966 		 * our bind succeeded.
15967 		 */
15968 		tcp->tcp_hard_bound = B_FALSE;
15969 		tcp->tcp_hard_binding = B_FALSE;
15970 
15971 		ipcl_hash_remove(connp);
15972 		/* Reuse the mblk if possible */
15973 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15974 		    sizeof (*tea));
15975 		mp->b_rptr = mp->b_datap->db_base;
15976 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15977 		tea = (struct T_error_ack *)mp->b_rptr;
15978 		tea->PRIM_type = T_ERROR_ACK;
15979 		tea->TLI_error = TSYSERR;
15980 		tea->UNIX_error = error;
15981 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15982 			tea->ERROR_prim = T_CONN_REQ;
15983 		} else {
15984 			tea->ERROR_prim = O_T_BIND_REQ;
15985 		}
15986 		break;
15987 
15988 	case T_ERROR_ACK:
15989 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15990 			tea->ERROR_prim = T_CONN_REQ;
15991 		break;
15992 	default:
15993 		panic("tcp_bind_failed: unexpected TPI type");
15994 		/*NOTREACHED*/
15995 	}
15996 
15997 	tcp->tcp_state = TCPS_IDLE;
15998 	if (tcp->tcp_ipversion == IPV4_VERSION)
15999 		tcp->tcp_ipha->ipha_src = 0;
16000 	else
16001 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16002 	/*
16003 	 * Copy of the src addr. in tcp_t is needed since
16004 	 * the lookup funcs. can only look at tcp_t
16005 	 */
16006 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16007 
16008 	tcph = tcp->tcp_tcph;
16009 	tcph->th_lport[0] = 0;
16010 	tcph->th_lport[1] = 0;
16011 	tcp_bind_hash_remove(tcp);
16012 	bzero(&connp->u_port, sizeof (connp->u_port));
16013 	/* blow away saved option results if any */
16014 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
16015 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
16016 
16017 	conn_delete_ire(tcp->tcp_connp, NULL);
16018 	putnext(q, mp);
16019 }
16020 
16021 /*
16022  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
16023  * messages.
16024  */
16025 void
16026 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
16027 {
16028 	mblk_t	*mp1;
16029 	uchar_t	*rptr = mp->b_rptr;
16030 	queue_t	*q = tcp->tcp_rq;
16031 	struct T_error_ack *tea;
16032 	uint32_t mss;
16033 	mblk_t *syn_mp;
16034 	mblk_t *mdti;
16035 	mblk_t *lsoi;
16036 	int	retval;
16037 	mblk_t *ire_mp;
16038 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16039 
16040 	switch (mp->b_datap->db_type) {
16041 	case M_PROTO:
16042 	case M_PCPROTO:
16043 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
16044 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
16045 			break;
16046 		tea = (struct T_error_ack *)rptr;
16047 		switch (tea->PRIM_type) {
16048 		case T_BIND_ACK:
16049 			/*
16050 			 * Adapt Multidata information, if any.  The
16051 			 * following tcp_mdt_update routine will free
16052 			 * the message.
16053 			 */
16054 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
16055 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
16056 				    b_rptr)->mdt_capab, B_TRUE);
16057 				freemsg(mdti);
16058 			}
16059 
16060 			/*
16061 			 * Check to update LSO information with tcp, and
16062 			 * tcp_lso_update routine will free the message.
16063 			 */
16064 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
16065 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
16066 				    b_rptr)->lso_capab);
16067 				freemsg(lsoi);
16068 			}
16069 
16070 			/* Get the IRE, if we had requested for it */
16071 			ire_mp = tcp_ire_mp(mp);
16072 
16073 			if (tcp->tcp_hard_binding) {
16074 				tcp->tcp_hard_binding = B_FALSE;
16075 				tcp->tcp_hard_bound = B_TRUE;
16076 				CL_INET_CONNECT(tcp);
16077 			} else {
16078 				if (ire_mp != NULL)
16079 					freeb(ire_mp);
16080 				goto after_syn_sent;
16081 			}
16082 
16083 			retval = tcp_adapt_ire(tcp, ire_mp);
16084 			if (ire_mp != NULL)
16085 				freeb(ire_mp);
16086 			if (retval == 0) {
16087 				tcp_bind_failed(tcp, mp,
16088 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16089 				    ENETUNREACH : EADDRNOTAVAIL));
16090 				return;
16091 			}
16092 			/*
16093 			 * Don't let an endpoint connect to itself.
16094 			 * Also checked in tcp_connect() but that
16095 			 * check can't handle the case when the
16096 			 * local IP address is INADDR_ANY.
16097 			 */
16098 			if (tcp->tcp_ipversion == IPV4_VERSION) {
16099 				if ((tcp->tcp_ipha->ipha_dst ==
16100 				    tcp->tcp_ipha->ipha_src) &&
16101 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16102 				    tcp->tcp_tcph->th_fport))) {
16103 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16104 					return;
16105 				}
16106 			} else {
16107 				if (IN6_ARE_ADDR_EQUAL(
16108 				    &tcp->tcp_ip6h->ip6_dst,
16109 				    &tcp->tcp_ip6h->ip6_src) &&
16110 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16111 				    tcp->tcp_tcph->th_fport))) {
16112 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16113 					return;
16114 				}
16115 			}
16116 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
16117 			/*
16118 			 * This should not be possible!  Just for
16119 			 * defensive coding...
16120 			 */
16121 			if (tcp->tcp_state != TCPS_SYN_SENT)
16122 				goto after_syn_sent;
16123 
16124 			if (is_system_labeled() &&
16125 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
16126 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
16127 				return;
16128 			}
16129 
16130 			ASSERT(q == tcp->tcp_rq);
16131 			/*
16132 			 * tcp_adapt_ire() does not adjust
16133 			 * for TCP/IP header length.
16134 			 */
16135 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
16136 
16137 			/*
16138 			 * Just make sure our rwnd is at
16139 			 * least tcp_recv_hiwat_mss * MSS
16140 			 * large, and round up to the nearest
16141 			 * MSS.
16142 			 *
16143 			 * We do the round up here because
16144 			 * we need to get the interface
16145 			 * MTU first before we can do the
16146 			 * round up.
16147 			 */
16148 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
16149 			    tcps->tcps_recv_hiwat_minmss * mss);
16150 			q->q_hiwat = tcp->tcp_rwnd;
16151 			tcp_set_ws_value(tcp);
16152 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
16153 			    tcp->tcp_tcph->th_win);
16154 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
16155 				tcp->tcp_snd_ws_ok = B_TRUE;
16156 
16157 			/*
16158 			 * Set tcp_snd_ts_ok to true
16159 			 * so that tcp_xmit_mp will
16160 			 * include the timestamp
16161 			 * option in the SYN segment.
16162 			 */
16163 			if (tcps->tcps_tstamp_always ||
16164 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
16165 				tcp->tcp_snd_ts_ok = B_TRUE;
16166 			}
16167 
16168 			/*
16169 			 * tcp_snd_sack_ok can be set in
16170 			 * tcp_adapt_ire() if the sack metric
16171 			 * is set.  So check it here also.
16172 			 */
16173 			if (tcps->tcps_sack_permitted == 2 ||
16174 			    tcp->tcp_snd_sack_ok) {
16175 				if (tcp->tcp_sack_info == NULL) {
16176 					tcp->tcp_sack_info =
16177 					    kmem_cache_alloc(
16178 					    tcp_sack_info_cache,
16179 					    KM_SLEEP);
16180 				}
16181 				tcp->tcp_snd_sack_ok = B_TRUE;
16182 			}
16183 
16184 			/*
16185 			 * Should we use ECN?  Note that the current
16186 			 * default value (SunOS 5.9) of tcp_ecn_permitted
16187 			 * is 1.  The reason for doing this is that there
16188 			 * are equipments out there that will drop ECN
16189 			 * enabled IP packets.  Setting it to 1 avoids
16190 			 * compatibility problems.
16191 			 */
16192 			if (tcps->tcps_ecn_permitted == 2)
16193 				tcp->tcp_ecn_ok = B_TRUE;
16194 
16195 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16196 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
16197 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
16198 			if (syn_mp) {
16199 				cred_t *cr;
16200 				pid_t pid;
16201 
16202 				/*
16203 				 * Obtain the credential from the
16204 				 * thread calling connect(); the credential
16205 				 * lives on in the second mblk which
16206 				 * originated from T_CONN_REQ and is echoed
16207 				 * with the T_BIND_ACK from ip.  If none
16208 				 * can be found, default to the creator
16209 				 * of the socket.
16210 				 */
16211 				if (mp->b_cont == NULL ||
16212 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
16213 					cr = tcp->tcp_cred;
16214 					pid = tcp->tcp_cpid;
16215 				} else {
16216 					pid = DB_CPID(mp->b_cont);
16217 				}
16218 
16219 				TCP_RECORD_TRACE(tcp, syn_mp,
16220 				    TCP_TRACE_SEND_PKT);
16221 				mblk_setcred(syn_mp, cr);
16222 				DB_CPID(syn_mp) = pid;
16223 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
16224 			}
16225 		after_syn_sent:
16226 			/*
16227 			 * A trailer mblk indicates a waiting client upstream.
16228 			 * We complete here the processing begun in
16229 			 * either tcp_bind() or tcp_connect() by passing
16230 			 * upstream the reply message they supplied.
16231 			 */
16232 			mp1 = mp;
16233 			mp = mp->b_cont;
16234 			freeb(mp1);
16235 			if (mp)
16236 				break;
16237 			return;
16238 		case T_ERROR_ACK:
16239 			if (tcp->tcp_debug) {
16240 				(void) strlog(TCP_MOD_ID, 0, 1,
16241 				    SL_TRACE|SL_ERROR,
16242 				    "tcp_rput_other: case T_ERROR_ACK, "
16243 				    "ERROR_prim == %d",
16244 				    tea->ERROR_prim);
16245 			}
16246 			switch (tea->ERROR_prim) {
16247 			case O_T_BIND_REQ:
16248 			case T_BIND_REQ:
16249 				tcp_bind_failed(tcp, mp,
16250 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16251 				    ENETUNREACH : EADDRNOTAVAIL));
16252 				return;
16253 			case T_UNBIND_REQ:
16254 				tcp->tcp_hard_binding = B_FALSE;
16255 				tcp->tcp_hard_bound = B_FALSE;
16256 				if (mp->b_cont) {
16257 					freemsg(mp->b_cont);
16258 					mp->b_cont = NULL;
16259 				}
16260 				if (tcp->tcp_unbind_pending)
16261 					tcp->tcp_unbind_pending = 0;
16262 				else {
16263 					/* From tcp_ip_unbind() - free */
16264 					freemsg(mp);
16265 					return;
16266 				}
16267 				break;
16268 			case T_SVR4_OPTMGMT_REQ:
16269 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
16270 					/* T_OPTMGMT_REQ generated by TCP */
16271 					printf("T_SVR4_OPTMGMT_REQ failed "
16272 					    "%d/%d - dropped (cnt %d)\n",
16273 					    tea->TLI_error, tea->UNIX_error,
16274 					    tcp->tcp_drop_opt_ack_cnt);
16275 					freemsg(mp);
16276 					tcp->tcp_drop_opt_ack_cnt--;
16277 					return;
16278 				}
16279 				break;
16280 			}
16281 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
16282 			    tcp->tcp_drop_opt_ack_cnt > 0) {
16283 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
16284 				    "- dropped (cnt %d)\n",
16285 				    tea->TLI_error, tea->UNIX_error,
16286 				    tcp->tcp_drop_opt_ack_cnt);
16287 				freemsg(mp);
16288 				tcp->tcp_drop_opt_ack_cnt--;
16289 				return;
16290 			}
16291 			break;
16292 		case T_OPTMGMT_ACK:
16293 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
16294 				/* T_OPTMGMT_REQ generated by TCP */
16295 				freemsg(mp);
16296 				tcp->tcp_drop_opt_ack_cnt--;
16297 				return;
16298 			}
16299 			break;
16300 		default:
16301 			break;
16302 		}
16303 		break;
16304 	case M_FLUSH:
16305 		if (*rptr & FLUSHR)
16306 			flushq(q, FLUSHDATA);
16307 		break;
16308 	default:
16309 		/* M_CTL will be directly sent to tcp_icmp_error() */
16310 		ASSERT(DB_TYPE(mp) != M_CTL);
16311 		break;
16312 	}
16313 	/*
16314 	 * Make sure we set this bit before sending the ACK for
16315 	 * bind. Otherwise accept could possibly run and free
16316 	 * this tcp struct.
16317 	 */
16318 	putnext(q, mp);
16319 }
16320 
16321 /*
16322  * Called as the result of a qbufcall or a qtimeout to remedy a failure
16323  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
16324  * tcp_rsrv() try again.
16325  */
16326 static void
16327 tcp_ordrel_kick(void *arg)
16328 {
16329 	conn_t 	*connp = (conn_t *)arg;
16330 	tcp_t	*tcp = connp->conn_tcp;
16331 
16332 	tcp->tcp_ordrelid = 0;
16333 	tcp->tcp_timeout = B_FALSE;
16334 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
16335 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16336 		qenable(tcp->tcp_rq);
16337 	}
16338 }
16339 
16340 /* ARGSUSED */
16341 static void
16342 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
16343 {
16344 	conn_t	*connp = (conn_t *)arg;
16345 	tcp_t	*tcp = connp->conn_tcp;
16346 	queue_t	*q = tcp->tcp_rq;
16347 	uint_t	thwin;
16348 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16349 	sodirect_t	*sodp;
16350 	boolean_t	fc;
16351 
16352 	freeb(mp);
16353 
16354 	TCP_STAT(tcps, tcp_rsrv_calls);
16355 
16356 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
16357 		return;
16358 	}
16359 
16360 	if (tcp->tcp_fused) {
16361 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16362 
16363 		ASSERT(tcp->tcp_fused);
16364 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16365 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16366 		ASSERT(!TCP_IS_DETACHED(tcp));
16367 		ASSERT(tcp->tcp_connp->conn_sqp ==
16368 		    peer_tcp->tcp_connp->conn_sqp);
16369 
16370 		/*
16371 		 * Normally we would not get backenabled in synchronous
16372 		 * streams mode, but in case this happens, we need to plug
16373 		 * synchronous streams during our drain to prevent a race
16374 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16375 		 */
16376 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16377 		if (tcp->tcp_rcv_list != NULL)
16378 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16379 
16380 		if (peer_tcp > tcp) {
16381 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16382 			mutex_enter(&tcp->tcp_non_sq_lock);
16383 		} else {
16384 			mutex_enter(&tcp->tcp_non_sq_lock);
16385 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16386 		}
16387 
16388 		if (peer_tcp->tcp_flow_stopped &&
16389 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16390 		    peer_tcp->tcp_xmit_lowater)) {
16391 			tcp_clrqfull(peer_tcp);
16392 		}
16393 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16394 		mutex_exit(&tcp->tcp_non_sq_lock);
16395 
16396 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16397 		TCP_STAT(tcps, tcp_fusion_backenabled);
16398 		return;
16399 	}
16400 
16401 	SOD_PTR_ENTER(tcp, sodp);
16402 	if (sodp != NULL) {
16403 		/* An sodirect connection */
16404 		if (SOD_QFULL(sodp)) {
16405 			/* Flow-controlled, need another back-enable */
16406 			fc = B_TRUE;
16407 			SOD_QSETBE(sodp);
16408 		} else {
16409 			/* Not flow-controlled */
16410 			fc = B_FALSE;
16411 		}
16412 		mutex_exit(sodp->sod_lock);
16413 	} else if (canputnext(q)) {
16414 		/* STREAMS, not flow-controlled */
16415 		fc = B_FALSE;
16416 	} else {
16417 		/* STREAMS, flow-controlled */
16418 		fc = B_TRUE;
16419 	}
16420 	if (!fc) {
16421 		/* Not flow-controlled, open rwnd */
16422 		tcp->tcp_rwnd = q->q_hiwat;
16423 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16424 		    << tcp->tcp_rcv_ws;
16425 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16426 		/*
16427 		 * Send back a window update immediately if TCP is above
16428 		 * ESTABLISHED state and the increase of the rcv window
16429 		 * that the other side knows is at least 1 MSS after flow
16430 		 * control is lifted.
16431 		 */
16432 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16433 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16434 			tcp_xmit_ctl(NULL, tcp,
16435 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16436 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16437 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16438 		}
16439 	}
16440 
16441 	/* Handle a failure to allocate a T_ORDREL_IND here */
16442 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16443 		ASSERT(tcp->tcp_listener == NULL);
16444 
16445 		SOD_PTR_ENTER(tcp, sodp);
16446 		if (sodp != NULL) {
16447 			/* No more sodirect */
16448 			tcp->tcp_sodirect = NULL;
16449 			if (!SOD_QEMPTY(sodp)) {
16450 				/* Notify mblk(s) to process */
16451 				(void) tcp_rcv_sod_wakeup(tcp, sodp);
16452 				/* sod_wakeup() does the mutex_exit() */
16453 			} else {
16454 				/* Nothing to process */
16455 				mutex_exit(sodp->sod_lock);
16456 			}
16457 		} else if (tcp->tcp_rcv_list != NULL) {
16458 			/*
16459 			 * Push any mblk(s) enqueued from co processing.
16460 			 */
16461 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16462 			ASSERT(tcp->tcp_rcv_list == NULL ||
16463 			    tcp->tcp_fused_sigurg);
16464 		}
16465 
16466 		mp = mi_tpi_ordrel_ind();
16467 		if (mp) {
16468 			tcp->tcp_ordrel_done = B_TRUE;
16469 			putnext(q, mp);
16470 			if (tcp->tcp_deferred_clean_death) {
16471 				/*
16472 				 * tcp_clean_death was deferred for
16473 				 * T_ORDREL_IND - do it now
16474 				 */
16475 				tcp->tcp_deferred_clean_death = B_FALSE;
16476 				(void) tcp_clean_death(tcp,
16477 				    tcp->tcp_client_errno, 22);
16478 			}
16479 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16480 			/*
16481 			 * If there isn't already a timer running
16482 			 * start one.  Use a 4 second
16483 			 * timer as a fallback since it can't fail.
16484 			 */
16485 			tcp->tcp_timeout = B_TRUE;
16486 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16487 			    MSEC_TO_TICK(4000));
16488 		}
16489 	}
16490 }
16491 
16492 /*
16493  * The read side service routine is called mostly when we get back-enabled as a
16494  * result of flow control relief.  Since we don't actually queue anything in
16495  * TCP, we have no data to send out of here.  What we do is clear the receive
16496  * window, and send out a window update.
16497  * This routine is also called to drive an orderly release message upstream
16498  * if the attempt in tcp_rput failed.
16499  */
16500 static void
16501 tcp_rsrv(queue_t *q)
16502 {
16503 	conn_t *connp = Q_TO_CONN(q);
16504 	tcp_t	*tcp = connp->conn_tcp;
16505 	mblk_t	*mp;
16506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16507 
16508 	/* No code does a putq on the read side */
16509 	ASSERT(q->q_first == NULL);
16510 
16511 	/* Nothing to do for the default queue */
16512 	if (q == tcps->tcps_g_q) {
16513 		return;
16514 	}
16515 
16516 	mp = allocb(0, BPRI_HI);
16517 	if (mp == NULL) {
16518 		/*
16519 		 * We are under memory pressure. Return for now and we
16520 		 * we will be called again later.
16521 		 */
16522 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16523 			/*
16524 			 * If there isn't already a timer running
16525 			 * start one.  Use a 4 second
16526 			 * timer as a fallback since it can't fail.
16527 			 */
16528 			tcp->tcp_timeout = B_TRUE;
16529 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16530 			    MSEC_TO_TICK(4000));
16531 		}
16532 		return;
16533 	}
16534 	CONN_INC_REF(connp);
16535 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16536 	    SQTAG_TCP_RSRV);
16537 }
16538 
16539 /*
16540  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16541  * We do not allow the receive window to shrink.  After setting rwnd,
16542  * set the flow control hiwat of the stream.
16543  *
16544  * This function is called in 2 cases:
16545  *
16546  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16547  *    connection (passive open) and in tcp_rput_data() for active connect.
16548  *    This is called after tcp_mss_set() when the desired MSS value is known.
16549  *    This makes sure that our window size is a mutiple of the other side's
16550  *    MSS.
16551  * 2) Handling SO_RCVBUF option.
16552  *
16553  * It is ASSUMED that the requested size is a multiple of the current MSS.
16554  *
16555  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16556  * user requests so.
16557  */
16558 static int
16559 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16560 {
16561 	uint32_t	mss = tcp->tcp_mss;
16562 	uint32_t	old_max_rwnd;
16563 	uint32_t	max_transmittable_rwnd;
16564 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16565 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16566 
16567 	if (tcp->tcp_fused) {
16568 		size_t sth_hiwat;
16569 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16570 
16571 		ASSERT(peer_tcp != NULL);
16572 		/*
16573 		 * Record the stream head's high water mark for
16574 		 * this endpoint; this is used for flow-control
16575 		 * purposes in tcp_fuse_output().
16576 		 */
16577 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16578 		if (!tcp_detached)
16579 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16580 
16581 		/*
16582 		 * In the fusion case, the maxpsz stream head value of
16583 		 * our peer is set according to its send buffer size
16584 		 * and our receive buffer size; since the latter may
16585 		 * have changed we need to update the peer's maxpsz.
16586 		 */
16587 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16588 		return (rwnd);
16589 	}
16590 
16591 	if (tcp_detached)
16592 		old_max_rwnd = tcp->tcp_rwnd;
16593 	else
16594 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16595 
16596 	/*
16597 	 * Insist on a receive window that is at least
16598 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16599 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16600 	 * and delayed acknowledgement.
16601 	 */
16602 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16603 
16604 	/*
16605 	 * If window size info has already been exchanged, TCP should not
16606 	 * shrink the window.  Shrinking window is doable if done carefully.
16607 	 * We may add that support later.  But so far there is not a real
16608 	 * need to do that.
16609 	 */
16610 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16611 		/* MSS may have changed, do a round up again. */
16612 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16613 	}
16614 
16615 	/*
16616 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16617 	 * can be applied even before the window scale option is decided.
16618 	 */
16619 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16620 	if (rwnd > max_transmittable_rwnd) {
16621 		rwnd = max_transmittable_rwnd -
16622 		    (max_transmittable_rwnd % mss);
16623 		if (rwnd < mss)
16624 			rwnd = max_transmittable_rwnd;
16625 		/*
16626 		 * If we're over the limit we may have to back down tcp_rwnd.
16627 		 * The increment below won't work for us. So we set all three
16628 		 * here and the increment below will have no effect.
16629 		 */
16630 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16631 	}
16632 	if (tcp->tcp_localnet) {
16633 		tcp->tcp_rack_abs_max =
16634 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16635 	} else {
16636 		/*
16637 		 * For a remote host on a different subnet (through a router),
16638 		 * we ack every other packet to be conforming to RFC1122.
16639 		 * tcp_deferred_acks_max is default to 2.
16640 		 */
16641 		tcp->tcp_rack_abs_max =
16642 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16643 	}
16644 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16645 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16646 	else
16647 		tcp->tcp_rack_cur_max = 0;
16648 	/*
16649 	 * Increment the current rwnd by the amount the maximum grew (we
16650 	 * can not overwrite it since we might be in the middle of a
16651 	 * connection.)
16652 	 */
16653 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16654 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16655 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16656 		tcp->tcp_cwnd_max = rwnd;
16657 
16658 	if (tcp_detached)
16659 		return (rwnd);
16660 	/*
16661 	 * We set the maximum receive window into rq->q_hiwat.
16662 	 * This is not actually used for flow control.
16663 	 */
16664 	tcp->tcp_rq->q_hiwat = rwnd;
16665 	/*
16666 	 * Set the Stream head high water mark. This doesn't have to be
16667 	 * here, since we are simply using default values, but we would
16668 	 * prefer to choose these values algorithmically, with a likely
16669 	 * relationship to rwnd.
16670 	 */
16671 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16672 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16673 	return (rwnd);
16674 }
16675 
16676 /*
16677  * Return SNMP stuff in buffer in mpdata.
16678  */
16679 mblk_t *
16680 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16681 {
16682 	mblk_t			*mpdata;
16683 	mblk_t			*mp_conn_ctl = NULL;
16684 	mblk_t			*mp_conn_tail;
16685 	mblk_t			*mp_attr_ctl = NULL;
16686 	mblk_t			*mp_attr_tail;
16687 	mblk_t			*mp6_conn_ctl = NULL;
16688 	mblk_t			*mp6_conn_tail;
16689 	mblk_t			*mp6_attr_ctl = NULL;
16690 	mblk_t			*mp6_attr_tail;
16691 	struct opthdr		*optp;
16692 	mib2_tcpConnEntry_t	tce;
16693 	mib2_tcp6ConnEntry_t	tce6;
16694 	mib2_transportMLPEntry_t mlp;
16695 	connf_t			*connfp;
16696 	int			i;
16697 	boolean_t 		ispriv;
16698 	zoneid_t 		zoneid;
16699 	int			v4_conn_idx;
16700 	int			v6_conn_idx;
16701 	conn_t			*connp = Q_TO_CONN(q);
16702 	tcp_stack_t		*tcps;
16703 	ip_stack_t		*ipst;
16704 	mblk_t			*mp2ctl;
16705 
16706 	/*
16707 	 * make a copy of the original message
16708 	 */
16709 	mp2ctl = copymsg(mpctl);
16710 
16711 	if (mpctl == NULL ||
16712 	    (mpdata = mpctl->b_cont) == NULL ||
16713 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16714 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16715 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16716 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16717 		freemsg(mp_conn_ctl);
16718 		freemsg(mp_attr_ctl);
16719 		freemsg(mp6_conn_ctl);
16720 		freemsg(mp6_attr_ctl);
16721 		freemsg(mpctl);
16722 		freemsg(mp2ctl);
16723 		return (NULL);
16724 	}
16725 
16726 	ipst = connp->conn_netstack->netstack_ip;
16727 	tcps = connp->conn_netstack->netstack_tcp;
16728 
16729 	/* build table of connections -- need count in fixed part */
16730 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16731 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16732 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16733 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16734 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16735 
16736 	ispriv =
16737 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16738 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16739 
16740 	v4_conn_idx = v6_conn_idx = 0;
16741 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16742 
16743 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16744 		ipst = tcps->tcps_netstack->netstack_ip;
16745 
16746 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16747 
16748 		connp = NULL;
16749 
16750 		while ((connp =
16751 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16752 			tcp_t *tcp;
16753 			boolean_t needattr;
16754 
16755 			if (connp->conn_zoneid != zoneid)
16756 				continue;	/* not in this zone */
16757 
16758 			tcp = connp->conn_tcp;
16759 			UPDATE_MIB(&tcps->tcps_mib,
16760 			    tcpHCInSegs, tcp->tcp_ibsegs);
16761 			tcp->tcp_ibsegs = 0;
16762 			UPDATE_MIB(&tcps->tcps_mib,
16763 			    tcpHCOutSegs, tcp->tcp_obsegs);
16764 			tcp->tcp_obsegs = 0;
16765 
16766 			tce6.tcp6ConnState = tce.tcpConnState =
16767 			    tcp_snmp_state(tcp);
16768 			if (tce.tcpConnState == MIB2_TCP_established ||
16769 			    tce.tcpConnState == MIB2_TCP_closeWait)
16770 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16771 
16772 			needattr = B_FALSE;
16773 			bzero(&mlp, sizeof (mlp));
16774 			if (connp->conn_mlp_type != mlptSingle) {
16775 				if (connp->conn_mlp_type == mlptShared ||
16776 				    connp->conn_mlp_type == mlptBoth)
16777 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16778 				if (connp->conn_mlp_type == mlptPrivate ||
16779 				    connp->conn_mlp_type == mlptBoth)
16780 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16781 				needattr = B_TRUE;
16782 			}
16783 			if (connp->conn_peercred != NULL) {
16784 				ts_label_t *tsl;
16785 
16786 				tsl = crgetlabel(connp->conn_peercred);
16787 				mlp.tme_doi = label2doi(tsl);
16788 				mlp.tme_label = *label2bslabel(tsl);
16789 				needattr = B_TRUE;
16790 			}
16791 
16792 			/* Create a message to report on IPv6 entries */
16793 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16794 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16795 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16796 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16797 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16798 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16799 			/* Don't want just anybody seeing these... */
16800 			if (ispriv) {
16801 				tce6.tcp6ConnEntryInfo.ce_snxt =
16802 				    tcp->tcp_snxt;
16803 				tce6.tcp6ConnEntryInfo.ce_suna =
16804 				    tcp->tcp_suna;
16805 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16806 				    tcp->tcp_rnxt;
16807 				tce6.tcp6ConnEntryInfo.ce_rack =
16808 				    tcp->tcp_rack;
16809 			} else {
16810 				/*
16811 				 * Netstat, unfortunately, uses this to
16812 				 * get send/receive queue sizes.  How to fix?
16813 				 * Why not compute the difference only?
16814 				 */
16815 				tce6.tcp6ConnEntryInfo.ce_snxt =
16816 				    tcp->tcp_snxt - tcp->tcp_suna;
16817 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16818 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16819 				    tcp->tcp_rnxt - tcp->tcp_rack;
16820 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16821 			}
16822 
16823 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16824 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16825 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16826 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16827 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16828 
16829 			tce6.tcp6ConnCreationProcess =
16830 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16831 			    tcp->tcp_cpid;
16832 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16833 
16834 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16835 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16836 
16837 			mlp.tme_connidx = v6_conn_idx++;
16838 			if (needattr)
16839 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16840 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16841 			}
16842 			/*
16843 			 * Create an IPv4 table entry for IPv4 entries and also
16844 			 * for IPv6 entries which are bound to in6addr_any
16845 			 * but don't have IPV6_V6ONLY set.
16846 			 * (i.e. anything an IPv4 peer could connect to)
16847 			 */
16848 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16849 			    (tcp->tcp_state <= TCPS_LISTEN &&
16850 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16851 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16852 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16853 					tce.tcpConnRemAddress = INADDR_ANY;
16854 					tce.tcpConnLocalAddress = INADDR_ANY;
16855 				} else {
16856 					tce.tcpConnRemAddress =
16857 					    tcp->tcp_remote;
16858 					tce.tcpConnLocalAddress =
16859 					    tcp->tcp_ip_src;
16860 				}
16861 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16862 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16863 				/* Don't want just anybody seeing these... */
16864 				if (ispriv) {
16865 					tce.tcpConnEntryInfo.ce_snxt =
16866 					    tcp->tcp_snxt;
16867 					tce.tcpConnEntryInfo.ce_suna =
16868 					    tcp->tcp_suna;
16869 					tce.tcpConnEntryInfo.ce_rnxt =
16870 					    tcp->tcp_rnxt;
16871 					tce.tcpConnEntryInfo.ce_rack =
16872 					    tcp->tcp_rack;
16873 				} else {
16874 					/*
16875 					 * Netstat, unfortunately, uses this to
16876 					 * get send/receive queue sizes.  How
16877 					 * to fix?
16878 					 * Why not compute the difference only?
16879 					 */
16880 					tce.tcpConnEntryInfo.ce_snxt =
16881 					    tcp->tcp_snxt - tcp->tcp_suna;
16882 					tce.tcpConnEntryInfo.ce_suna = 0;
16883 					tce.tcpConnEntryInfo.ce_rnxt =
16884 					    tcp->tcp_rnxt - tcp->tcp_rack;
16885 					tce.tcpConnEntryInfo.ce_rack = 0;
16886 				}
16887 
16888 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16889 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16890 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16891 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16892 				tce.tcpConnEntryInfo.ce_state =
16893 				    tcp->tcp_state;
16894 
16895 				tce.tcpConnCreationProcess =
16896 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16897 				    tcp->tcp_cpid;
16898 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16899 
16900 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16901 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16902 
16903 				mlp.tme_connidx = v4_conn_idx++;
16904 				if (needattr)
16905 					(void) snmp_append_data2(
16906 					    mp_attr_ctl->b_cont,
16907 					    &mp_attr_tail, (char *)&mlp,
16908 					    sizeof (mlp));
16909 			}
16910 		}
16911 	}
16912 
16913 	/* fixed length structure for IPv4 and IPv6 counters */
16914 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16915 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16916 	    sizeof (mib2_tcp6ConnEntry_t));
16917 	/* synchronize 32- and 64-bit counters */
16918 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16919 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16920 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16921 	optp->level = MIB2_TCP;
16922 	optp->name = 0;
16923 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16924 	    sizeof (tcps->tcps_mib));
16925 	optp->len = msgdsize(mpdata);
16926 	qreply(q, mpctl);
16927 
16928 	/* table of connections... */
16929 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16930 	    sizeof (struct T_optmgmt_ack)];
16931 	optp->level = MIB2_TCP;
16932 	optp->name = MIB2_TCP_CONN;
16933 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16934 	qreply(q, mp_conn_ctl);
16935 
16936 	/* table of MLP attributes... */
16937 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16938 	    sizeof (struct T_optmgmt_ack)];
16939 	optp->level = MIB2_TCP;
16940 	optp->name = EXPER_XPORT_MLP;
16941 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16942 	if (optp->len == 0)
16943 		freemsg(mp_attr_ctl);
16944 	else
16945 		qreply(q, mp_attr_ctl);
16946 
16947 	/* table of IPv6 connections... */
16948 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16949 	    sizeof (struct T_optmgmt_ack)];
16950 	optp->level = MIB2_TCP6;
16951 	optp->name = MIB2_TCP6_CONN;
16952 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16953 	qreply(q, mp6_conn_ctl);
16954 
16955 	/* table of IPv6 MLP attributes... */
16956 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16957 	    sizeof (struct T_optmgmt_ack)];
16958 	optp->level = MIB2_TCP6;
16959 	optp->name = EXPER_XPORT_MLP;
16960 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16961 	if (optp->len == 0)
16962 		freemsg(mp6_attr_ctl);
16963 	else
16964 		qreply(q, mp6_attr_ctl);
16965 	return (mp2ctl);
16966 }
16967 
16968 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16969 /* ARGSUSED */
16970 int
16971 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16972 {
16973 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16974 
16975 	switch (level) {
16976 	case MIB2_TCP:
16977 		switch (name) {
16978 		case 13:
16979 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16980 				return (0);
16981 			/* TODO: delete entry defined by tce */
16982 			return (1);
16983 		default:
16984 			return (0);
16985 		}
16986 	default:
16987 		return (1);
16988 	}
16989 }
16990 
16991 /* Translate TCP state to MIB2 TCP state. */
16992 static int
16993 tcp_snmp_state(tcp_t *tcp)
16994 {
16995 	if (tcp == NULL)
16996 		return (0);
16997 
16998 	switch (tcp->tcp_state) {
16999 	case TCPS_CLOSED:
17000 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
17001 	case TCPS_BOUND:
17002 		return (MIB2_TCP_closed);
17003 	case TCPS_LISTEN:
17004 		return (MIB2_TCP_listen);
17005 	case TCPS_SYN_SENT:
17006 		return (MIB2_TCP_synSent);
17007 	case TCPS_SYN_RCVD:
17008 		return (MIB2_TCP_synReceived);
17009 	case TCPS_ESTABLISHED:
17010 		return (MIB2_TCP_established);
17011 	case TCPS_CLOSE_WAIT:
17012 		return (MIB2_TCP_closeWait);
17013 	case TCPS_FIN_WAIT_1:
17014 		return (MIB2_TCP_finWait1);
17015 	case TCPS_CLOSING:
17016 		return (MIB2_TCP_closing);
17017 	case TCPS_LAST_ACK:
17018 		return (MIB2_TCP_lastAck);
17019 	case TCPS_FIN_WAIT_2:
17020 		return (MIB2_TCP_finWait2);
17021 	case TCPS_TIME_WAIT:
17022 		return (MIB2_TCP_timeWait);
17023 	default:
17024 		return (0);
17025 	}
17026 }
17027 
17028 static char tcp_report_header[] =
17029 	"TCP     " MI_COL_HDRPAD_STR
17030 	"zone dest            snxt     suna     "
17031 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
17032 	"recent   [lport,fport] state";
17033 
17034 /*
17035  * TCP status report triggered via the Named Dispatch mechanism.
17036  */
17037 /* ARGSUSED */
17038 static void
17039 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
17040     cred_t *cr)
17041 {
17042 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
17043 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
17044 	char cflag;
17045 	in6_addr_t	v6dst;
17046 	char buf[80];
17047 	uint_t print_len, buf_len;
17048 
17049 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
17050 	if (buf_len <= 0)
17051 		return;
17052 
17053 	if (hashval >= 0)
17054 		(void) sprintf(hash, "%03d ", hashval);
17055 	else
17056 		hash[0] = '\0';
17057 
17058 	/*
17059 	 * Note that we use the remote address in the tcp_b  structure.
17060 	 * This means that it will print out the real destination address,
17061 	 * not the next hop's address if source routing is used.  This
17062 	 * avoid the confusion on the output because user may not
17063 	 * know that source routing is used for a connection.
17064 	 */
17065 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17066 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
17067 	} else {
17068 		v6dst = tcp->tcp_remote_v6;
17069 	}
17070 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
17071 	/*
17072 	 * the ispriv checks are so that normal users cannot determine
17073 	 * sequence number information using NDD.
17074 	 */
17075 
17076 	if (TCP_IS_DETACHED(tcp))
17077 		cflag = '*';
17078 	else
17079 		cflag = ' ';
17080 	print_len = snprintf((char *)mp->b_wptr, buf_len,
17081 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
17082 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
17083 	    hash,
17084 	    (void *)tcp,
17085 	    tcp->tcp_connp->conn_zoneid,
17086 	    addrbuf,
17087 	    (ispriv) ? tcp->tcp_snxt : 0,
17088 	    (ispriv) ? tcp->tcp_suna : 0,
17089 	    tcp->tcp_swnd,
17090 	    (ispriv) ? tcp->tcp_rnxt : 0,
17091 	    (ispriv) ? tcp->tcp_rack : 0,
17092 	    tcp->tcp_rwnd,
17093 	    tcp->tcp_rto,
17094 	    tcp->tcp_mss,
17095 	    tcp->tcp_snd_ws_ok,
17096 	    tcp->tcp_snd_ws,
17097 	    tcp->tcp_rcv_ws,
17098 	    tcp->tcp_snd_ts_ok,
17099 	    tcp->tcp_ts_recent,
17100 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
17101 	if (print_len < buf_len) {
17102 		((mblk_t *)mp)->b_wptr += print_len;
17103 	} else {
17104 		((mblk_t *)mp)->b_wptr += buf_len;
17105 	}
17106 }
17107 
17108 /*
17109  * TCP status report (for listeners only) triggered via the Named Dispatch
17110  * mechanism.
17111  */
17112 /* ARGSUSED */
17113 static void
17114 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
17115 {
17116 	char addrbuf[INET6_ADDRSTRLEN];
17117 	in6_addr_t	v6dst;
17118 	uint_t print_len, buf_len;
17119 
17120 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
17121 	if (buf_len <= 0)
17122 		return;
17123 
17124 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17125 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
17126 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
17127 	} else {
17128 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
17129 		    addrbuf, sizeof (addrbuf));
17130 	}
17131 	print_len = snprintf((char *)mp->b_wptr, buf_len,
17132 	    "%03d "
17133 	    MI_COL_PTRFMT_STR
17134 	    "%d %s %05u %08u %d/%d/%d%c\n",
17135 	    hashval, (void *)tcp,
17136 	    tcp->tcp_connp->conn_zoneid,
17137 	    addrbuf,
17138 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
17139 	    tcp->tcp_conn_req_seqnum,
17140 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
17141 	    tcp->tcp_conn_req_max,
17142 	    tcp->tcp_syn_defense ? '*' : ' ');
17143 	if (print_len < buf_len) {
17144 		((mblk_t *)mp)->b_wptr += print_len;
17145 	} else {
17146 		((mblk_t *)mp)->b_wptr += buf_len;
17147 	}
17148 }
17149 
17150 /* TCP status report triggered via the Named Dispatch mechanism. */
17151 /* ARGSUSED */
17152 static int
17153 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17154 {
17155 	tcp_t	*tcp;
17156 	int	i;
17157 	conn_t	*connp;
17158 	connf_t	*connfp;
17159 	zoneid_t zoneid;
17160 	tcp_stack_t *tcps;
17161 	ip_stack_t *ipst;
17162 
17163 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17164 	tcps = Q_TO_TCP(q)->tcp_tcps;
17165 
17166 	/*
17167 	 * Because of the ndd constraint, at most we can have 64K buffer
17168 	 * to put in all TCP info.  So to be more efficient, just
17169 	 * allocate a 64K buffer here, assuming we need that large buffer.
17170 	 * This may be a problem as any user can read tcp_status.  Therefore
17171 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
17172 	 * This should be OK as normal users should not do this too often.
17173 	 */
17174 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17175 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17176 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17177 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17178 			return (0);
17179 		}
17180 	}
17181 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17182 		/* The following may work even if we cannot get a large buf. */
17183 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17184 		return (0);
17185 	}
17186 
17187 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
17188 
17189 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
17190 
17191 		ipst = tcps->tcps_netstack->netstack_ip;
17192 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
17193 
17194 		connp = NULL;
17195 
17196 		while ((connp =
17197 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17198 			tcp = connp->conn_tcp;
17199 			if (zoneid != GLOBAL_ZONEID &&
17200 			    zoneid != connp->conn_zoneid)
17201 				continue;
17202 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
17203 			    cr);
17204 		}
17205 
17206 	}
17207 
17208 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17209 	return (0);
17210 }
17211 
17212 /* TCP status report triggered via the Named Dispatch mechanism. */
17213 /* ARGSUSED */
17214 static int
17215 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17216 {
17217 	tf_t	*tbf;
17218 	tcp_t	*tcp;
17219 	int	i;
17220 	zoneid_t zoneid;
17221 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17222 
17223 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17224 
17225 	/* Refer to comments in tcp_status_report(). */
17226 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17227 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17228 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17229 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17230 			return (0);
17231 		}
17232 	}
17233 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17234 		/* The following may work even if we cannot get a large buf. */
17235 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17236 		return (0);
17237 	}
17238 
17239 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17240 
17241 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
17242 		tbf = &tcps->tcps_bind_fanout[i];
17243 		mutex_enter(&tbf->tf_lock);
17244 		for (tcp = tbf->tf_tcp; tcp != NULL;
17245 		    tcp = tcp->tcp_bind_hash) {
17246 			if (zoneid != GLOBAL_ZONEID &&
17247 			    zoneid != tcp->tcp_connp->conn_zoneid)
17248 				continue;
17249 			CONN_INC_REF(tcp->tcp_connp);
17250 			tcp_report_item(mp->b_cont, tcp, i,
17251 			    Q_TO_TCP(q), cr);
17252 			CONN_DEC_REF(tcp->tcp_connp);
17253 		}
17254 		mutex_exit(&tbf->tf_lock);
17255 	}
17256 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17257 	return (0);
17258 }
17259 
17260 /* TCP status report triggered via the Named Dispatch mechanism. */
17261 /* ARGSUSED */
17262 static int
17263 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17264 {
17265 	connf_t	*connfp;
17266 	conn_t	*connp;
17267 	tcp_t	*tcp;
17268 	int	i;
17269 	zoneid_t zoneid;
17270 	tcp_stack_t *tcps;
17271 	ip_stack_t	*ipst;
17272 
17273 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17274 	tcps = Q_TO_TCP(q)->tcp_tcps;
17275 
17276 	/* Refer to comments in tcp_status_report(). */
17277 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17278 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17279 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17280 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17281 			return (0);
17282 		}
17283 	}
17284 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17285 		/* The following may work even if we cannot get a large buf. */
17286 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17287 		return (0);
17288 	}
17289 
17290 	(void) mi_mpprintf(mp,
17291 	    "    TCP    " MI_COL_HDRPAD_STR
17292 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
17293 
17294 	ipst = tcps->tcps_netstack->netstack_ip;
17295 
17296 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
17297 		connfp = &ipst->ips_ipcl_bind_fanout[i];
17298 		connp = NULL;
17299 		while ((connp =
17300 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17301 			tcp = connp->conn_tcp;
17302 			if (zoneid != GLOBAL_ZONEID &&
17303 			    zoneid != connp->conn_zoneid)
17304 				continue;
17305 			tcp_report_listener(mp->b_cont, tcp, i);
17306 		}
17307 	}
17308 
17309 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17310 	return (0);
17311 }
17312 
17313 /* TCP status report triggered via the Named Dispatch mechanism. */
17314 /* ARGSUSED */
17315 static int
17316 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17317 {
17318 	connf_t	*connfp;
17319 	conn_t	*connp;
17320 	tcp_t	*tcp;
17321 	int	i;
17322 	zoneid_t zoneid;
17323 	tcp_stack_t *tcps;
17324 	ip_stack_t *ipst;
17325 
17326 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17327 	tcps = Q_TO_TCP(q)->tcp_tcps;
17328 	ipst = tcps->tcps_netstack->netstack_ip;
17329 
17330 	/* Refer to comments in tcp_status_report(). */
17331 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17332 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17333 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17334 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17335 			return (0);
17336 		}
17337 	}
17338 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17339 		/* The following may work even if we cannot get a large buf. */
17340 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17341 		return (0);
17342 	}
17343 
17344 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
17345 	    ipst->ips_ipcl_conn_fanout_size);
17346 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17347 
17348 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
17349 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
17350 		connp = NULL;
17351 		while ((connp =
17352 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17353 			tcp = connp->conn_tcp;
17354 			if (zoneid != GLOBAL_ZONEID &&
17355 			    zoneid != connp->conn_zoneid)
17356 				continue;
17357 			tcp_report_item(mp->b_cont, tcp, i,
17358 			    Q_TO_TCP(q), cr);
17359 		}
17360 	}
17361 
17362 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17363 	return (0);
17364 }
17365 
17366 /* TCP status report triggered via the Named Dispatch mechanism. */
17367 /* ARGSUSED */
17368 static int
17369 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17370 {
17371 	tf_t	*tf;
17372 	tcp_t	*tcp;
17373 	int	i;
17374 	zoneid_t zoneid;
17375 	tcp_stack_t	*tcps;
17376 
17377 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17378 	tcps = Q_TO_TCP(q)->tcp_tcps;
17379 
17380 	/* Refer to comments in tcp_status_report(). */
17381 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17382 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17383 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17384 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17385 			return (0);
17386 		}
17387 	}
17388 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17389 		/* The following may work even if we cannot get a large buf. */
17390 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17391 		return (0);
17392 	}
17393 
17394 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17395 
17396 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
17397 		tf = &tcps->tcps_acceptor_fanout[i];
17398 		mutex_enter(&tf->tf_lock);
17399 		for (tcp = tf->tf_tcp; tcp != NULL;
17400 		    tcp = tcp->tcp_acceptor_hash) {
17401 			if (zoneid != GLOBAL_ZONEID &&
17402 			    zoneid != tcp->tcp_connp->conn_zoneid)
17403 				continue;
17404 			tcp_report_item(mp->b_cont, tcp, i,
17405 			    Q_TO_TCP(q), cr);
17406 		}
17407 		mutex_exit(&tf->tf_lock);
17408 	}
17409 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17410 	return (0);
17411 }
17412 
17413 /*
17414  * tcp_timer is the timer service routine.  It handles the retransmission,
17415  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17416  * from the state of the tcp instance what kind of action needs to be done
17417  * at the time it is called.
17418  */
17419 static void
17420 tcp_timer(void *arg)
17421 {
17422 	mblk_t		*mp;
17423 	clock_t		first_threshold;
17424 	clock_t		second_threshold;
17425 	clock_t		ms;
17426 	uint32_t	mss;
17427 	conn_t		*connp = (conn_t *)arg;
17428 	tcp_t		*tcp = connp->conn_tcp;
17429 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17430 
17431 	tcp->tcp_timer_tid = 0;
17432 
17433 	if (tcp->tcp_fused)
17434 		return;
17435 
17436 	first_threshold =  tcp->tcp_first_timer_threshold;
17437 	second_threshold = tcp->tcp_second_timer_threshold;
17438 	switch (tcp->tcp_state) {
17439 	case TCPS_IDLE:
17440 	case TCPS_BOUND:
17441 	case TCPS_LISTEN:
17442 		return;
17443 	case TCPS_SYN_RCVD: {
17444 		tcp_t	*listener = tcp->tcp_listener;
17445 
17446 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17447 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17448 			/* it's our first timeout */
17449 			tcp->tcp_syn_rcvd_timeout = 1;
17450 			mutex_enter(&listener->tcp_eager_lock);
17451 			listener->tcp_syn_rcvd_timeout++;
17452 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17453 				/*
17454 				 * Make this eager available for drop if we
17455 				 * need to drop one to accomodate a new
17456 				 * incoming SYN request.
17457 				 */
17458 				MAKE_DROPPABLE(listener, tcp);
17459 			}
17460 			if (!listener->tcp_syn_defense &&
17461 			    (listener->tcp_syn_rcvd_timeout >
17462 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17463 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17464 				/* We may be under attack. Put on a defense. */
17465 				listener->tcp_syn_defense = B_TRUE;
17466 				cmn_err(CE_WARN, "High TCP connect timeout "
17467 				    "rate! System (port %d) may be under a "
17468 				    "SYN flood attack!",
17469 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17470 
17471 				listener->tcp_ip_addr_cache = kmem_zalloc(
17472 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17473 				    KM_NOSLEEP);
17474 			}
17475 			mutex_exit(&listener->tcp_eager_lock);
17476 		} else if (listener != NULL) {
17477 			mutex_enter(&listener->tcp_eager_lock);
17478 			tcp->tcp_syn_rcvd_timeout++;
17479 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17480 			    !tcp->tcp_closemp_used) {
17481 				/*
17482 				 * This is our second timeout. Put the tcp in
17483 				 * the list of droppable eagers to allow it to
17484 				 * be dropped, if needed. We don't check
17485 				 * whether tcp_dontdrop is set or not to
17486 				 * protect ourselve from a SYN attack where a
17487 				 * remote host can spoof itself as one of the
17488 				 * good IP source and continue to hold
17489 				 * resources too long.
17490 				 */
17491 				MAKE_DROPPABLE(listener, tcp);
17492 			}
17493 			mutex_exit(&listener->tcp_eager_lock);
17494 		}
17495 	}
17496 		/* FALLTHRU */
17497 	case TCPS_SYN_SENT:
17498 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17499 		second_threshold = tcp->tcp_second_ctimer_threshold;
17500 		break;
17501 	case TCPS_ESTABLISHED:
17502 	case TCPS_FIN_WAIT_1:
17503 	case TCPS_CLOSING:
17504 	case TCPS_CLOSE_WAIT:
17505 	case TCPS_LAST_ACK:
17506 		/* If we have data to rexmit */
17507 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17508 			clock_t	time_to_wait;
17509 
17510 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17511 			if (!tcp->tcp_xmit_head)
17512 				break;
17513 			time_to_wait = lbolt -
17514 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17515 			time_to_wait = tcp->tcp_rto -
17516 			    TICK_TO_MSEC(time_to_wait);
17517 			/*
17518 			 * If the timer fires too early, 1 clock tick earlier,
17519 			 * restart the timer.
17520 			 */
17521 			if (time_to_wait > msec_per_tick) {
17522 				TCP_STAT(tcps, tcp_timer_fire_early);
17523 				TCP_TIMER_RESTART(tcp, time_to_wait);
17524 				return;
17525 			}
17526 			/*
17527 			 * When we probe zero windows, we force the swnd open.
17528 			 * If our peer acks with a closed window swnd will be
17529 			 * set to zero by tcp_rput(). As long as we are
17530 			 * receiving acks tcp_rput will
17531 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17532 			 * first and second interval actions.  NOTE: the timer
17533 			 * interval is allowed to continue its exponential
17534 			 * backoff.
17535 			 */
17536 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17537 				if (tcp->tcp_debug) {
17538 					(void) strlog(TCP_MOD_ID, 0, 1,
17539 					    SL_TRACE, "tcp_timer: zero win");
17540 				}
17541 			} else {
17542 				/*
17543 				 * After retransmission, we need to do
17544 				 * slow start.  Set the ssthresh to one
17545 				 * half of current effective window and
17546 				 * cwnd to one MSS.  Also reset
17547 				 * tcp_cwnd_cnt.
17548 				 *
17549 				 * Note that if tcp_ssthresh is reduced because
17550 				 * of ECN, do not reduce it again unless it is
17551 				 * already one window of data away (tcp_cwr
17552 				 * should then be cleared) or this is a
17553 				 * timeout for a retransmitted segment.
17554 				 */
17555 				uint32_t npkt;
17556 
17557 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17558 					npkt = ((tcp->tcp_timer_backoff ?
17559 					    tcp->tcp_cwnd_ssthresh :
17560 					    tcp->tcp_snxt -
17561 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17562 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17563 					    tcp->tcp_mss;
17564 				}
17565 				tcp->tcp_cwnd = tcp->tcp_mss;
17566 				tcp->tcp_cwnd_cnt = 0;
17567 				if (tcp->tcp_ecn_ok) {
17568 					tcp->tcp_cwr = B_TRUE;
17569 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17570 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17571 				}
17572 			}
17573 			break;
17574 		}
17575 		/*
17576 		 * We have something to send yet we cannot send.  The
17577 		 * reason can be:
17578 		 *
17579 		 * 1. Zero send window: we need to do zero window probe.
17580 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17581 		 * segments.
17582 		 * 3. SWS avoidance: receiver may have shrunk window,
17583 		 * reset our knowledge.
17584 		 *
17585 		 * Note that condition 2 can happen with either 1 or
17586 		 * 3.  But 1 and 3 are exclusive.
17587 		 */
17588 		if (tcp->tcp_unsent != 0) {
17589 			if (tcp->tcp_cwnd == 0) {
17590 				/*
17591 				 * Set tcp_cwnd to 1 MSS so that a
17592 				 * new segment can be sent out.  We
17593 				 * are "clocking out" new data when
17594 				 * the network is really congested.
17595 				 */
17596 				ASSERT(tcp->tcp_ecn_ok);
17597 				tcp->tcp_cwnd = tcp->tcp_mss;
17598 			}
17599 			if (tcp->tcp_swnd == 0) {
17600 				/* Extend window for zero window probe */
17601 				tcp->tcp_swnd++;
17602 				tcp->tcp_zero_win_probe = B_TRUE;
17603 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17604 			} else {
17605 				/*
17606 				 * Handle timeout from sender SWS avoidance.
17607 				 * Reset our knowledge of the max send window
17608 				 * since the receiver might have reduced its
17609 				 * receive buffer.  Avoid setting tcp_max_swnd
17610 				 * to one since that will essentially disable
17611 				 * the SWS checks.
17612 				 *
17613 				 * Note that since we don't have a SWS
17614 				 * state variable, if the timeout is set
17615 				 * for ECN but not for SWS, this
17616 				 * code will also be executed.  This is
17617 				 * fine as tcp_max_swnd is updated
17618 				 * constantly and it will not affect
17619 				 * anything.
17620 				 */
17621 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17622 			}
17623 			tcp_wput_data(tcp, NULL, B_FALSE);
17624 			return;
17625 		}
17626 		/* Is there a FIN that needs to be to re retransmitted? */
17627 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17628 		    !tcp->tcp_fin_acked)
17629 			break;
17630 		/* Nothing to do, return without restarting timer. */
17631 		TCP_STAT(tcps, tcp_timer_fire_miss);
17632 		return;
17633 	case TCPS_FIN_WAIT_2:
17634 		/*
17635 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17636 		 * We waited some time for for peer's FIN, but it hasn't
17637 		 * arrived.  We flush the connection now to avoid
17638 		 * case where the peer has rebooted.
17639 		 */
17640 		if (TCP_IS_DETACHED(tcp)) {
17641 			(void) tcp_clean_death(tcp, 0, 23);
17642 		} else {
17643 			TCP_TIMER_RESTART(tcp,
17644 			    tcps->tcps_fin_wait_2_flush_interval);
17645 		}
17646 		return;
17647 	case TCPS_TIME_WAIT:
17648 		(void) tcp_clean_death(tcp, 0, 24);
17649 		return;
17650 	default:
17651 		if (tcp->tcp_debug) {
17652 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17653 			    "tcp_timer: strange state (%d) %s",
17654 			    tcp->tcp_state, tcp_display(tcp, NULL,
17655 			    DISP_PORT_ONLY));
17656 		}
17657 		return;
17658 	}
17659 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17660 		/*
17661 		 * For zero window probe, we need to send indefinitely,
17662 		 * unless we have not heard from the other side for some
17663 		 * time...
17664 		 */
17665 		if ((tcp->tcp_zero_win_probe == 0) ||
17666 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17667 		    second_threshold)) {
17668 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17669 			/*
17670 			 * If TCP is in SYN_RCVD state, send back a
17671 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17672 			 * should be zero in TCPS_SYN_RCVD state.
17673 			 */
17674 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17675 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17676 				    "in SYN_RCVD",
17677 				    tcp, tcp->tcp_snxt,
17678 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17679 			}
17680 			(void) tcp_clean_death(tcp,
17681 			    tcp->tcp_client_errno ?
17682 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17683 			return;
17684 		} else {
17685 			/*
17686 			 * Set tcp_ms_we_have_waited to second_threshold
17687 			 * so that in next timeout, we will do the above
17688 			 * check (lbolt - tcp_last_recv_time).  This is
17689 			 * also to avoid overflow.
17690 			 *
17691 			 * We don't need to decrement tcp_timer_backoff
17692 			 * to avoid overflow because it will be decremented
17693 			 * later if new timeout value is greater than
17694 			 * tcp_rexmit_interval_max.  In the case when
17695 			 * tcp_rexmit_interval_max is greater than
17696 			 * second_threshold, it means that we will wait
17697 			 * longer than second_threshold to send the next
17698 			 * window probe.
17699 			 */
17700 			tcp->tcp_ms_we_have_waited = second_threshold;
17701 		}
17702 	} else if (ms > first_threshold) {
17703 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17704 		    tcp->tcp_xmit_head != NULL) {
17705 			tcp->tcp_xmit_head =
17706 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17707 		}
17708 		/*
17709 		 * We have been retransmitting for too long...  The RTT
17710 		 * we calculated is probably incorrect.  Reinitialize it.
17711 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17712 		 * tcp_rtt_update so that we won't accidentally cache a
17713 		 * bad value.  But only do this if this is not a zero
17714 		 * window probe.
17715 		 */
17716 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17717 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17718 			    (tcp->tcp_rtt_sa >> 5);
17719 			tcp->tcp_rtt_sa = 0;
17720 			tcp_ip_notify(tcp);
17721 			tcp->tcp_rtt_update = 0;
17722 		}
17723 	}
17724 	tcp->tcp_timer_backoff++;
17725 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17726 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17727 	    tcps->tcps_rexmit_interval_min) {
17728 		/*
17729 		 * This means the original RTO is tcp_rexmit_interval_min.
17730 		 * So we will use tcp_rexmit_interval_min as the RTO value
17731 		 * and do the backoff.
17732 		 */
17733 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17734 	} else {
17735 		ms <<= tcp->tcp_timer_backoff;
17736 	}
17737 	if (ms > tcps->tcps_rexmit_interval_max) {
17738 		ms = tcps->tcps_rexmit_interval_max;
17739 		/*
17740 		 * ms is at max, decrement tcp_timer_backoff to avoid
17741 		 * overflow.
17742 		 */
17743 		tcp->tcp_timer_backoff--;
17744 	}
17745 	tcp->tcp_ms_we_have_waited += ms;
17746 	if (tcp->tcp_zero_win_probe == 0) {
17747 		tcp->tcp_rto = ms;
17748 	}
17749 	TCP_TIMER_RESTART(tcp, ms);
17750 	/*
17751 	 * This is after a timeout and tcp_rto is backed off.  Set
17752 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17753 	 * restart the timer with a correct value.
17754 	 */
17755 	tcp->tcp_set_timer = 1;
17756 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17757 	if (mss > tcp->tcp_mss)
17758 		mss = tcp->tcp_mss;
17759 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17760 		mss = tcp->tcp_swnd;
17761 
17762 	if ((mp = tcp->tcp_xmit_head) != NULL)
17763 		mp->b_prev = (mblk_t *)lbolt;
17764 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17765 	    B_TRUE);
17766 
17767 	/*
17768 	 * When slow start after retransmission begins, start with
17769 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17770 	 * start phase.  tcp_snd_burst controls how many segments
17771 	 * can be sent because of an ack.
17772 	 */
17773 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17774 	tcp->tcp_snd_burst = TCP_CWND_SS;
17775 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17776 	    (tcp->tcp_unsent == 0)) {
17777 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17778 	} else {
17779 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17780 	}
17781 	tcp->tcp_rexmit = B_TRUE;
17782 	tcp->tcp_dupack_cnt = 0;
17783 
17784 	/*
17785 	 * Remove all rexmit SACK blk to start from fresh.
17786 	 */
17787 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17788 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17789 		tcp->tcp_num_notsack_blk = 0;
17790 		tcp->tcp_cnt_notsack_list = 0;
17791 	}
17792 	if (mp == NULL) {
17793 		return;
17794 	}
17795 	/* Attach credentials to retransmitted initial SYNs. */
17796 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17797 		mblk_setcred(mp, tcp->tcp_cred);
17798 		DB_CPID(mp) = tcp->tcp_cpid;
17799 	}
17800 
17801 	tcp->tcp_csuna = tcp->tcp_snxt;
17802 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17803 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17804 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17805 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17806 
17807 }
17808 
17809 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17810 static void
17811 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17812 {
17813 	conn_t	*connp;
17814 
17815 	switch (tcp->tcp_state) {
17816 	case TCPS_BOUND:
17817 	case TCPS_LISTEN:
17818 		break;
17819 	default:
17820 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17821 		return;
17822 	}
17823 
17824 	/*
17825 	 * Need to clean up all the eagers since after the unbind, segments
17826 	 * will no longer be delivered to this listener stream.
17827 	 */
17828 	mutex_enter(&tcp->tcp_eager_lock);
17829 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17830 		tcp_eager_cleanup(tcp, 0);
17831 	}
17832 	mutex_exit(&tcp->tcp_eager_lock);
17833 
17834 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17835 		tcp->tcp_ipha->ipha_src = 0;
17836 	} else {
17837 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17838 	}
17839 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17840 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17841 	tcp_bind_hash_remove(tcp);
17842 	tcp->tcp_state = TCPS_IDLE;
17843 	tcp->tcp_mdt = B_FALSE;
17844 	/* Send M_FLUSH according to TPI */
17845 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17846 	connp = tcp->tcp_connp;
17847 	connp->conn_mdt_ok = B_FALSE;
17848 	ipcl_hash_remove(connp);
17849 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17850 	mp = mi_tpi_ok_ack_alloc(mp);
17851 	putnext(tcp->tcp_rq, mp);
17852 }
17853 
17854 /*
17855  * Don't let port fall into the privileged range.
17856  * Since the extra privileged ports can be arbitrary we also
17857  * ensure that we exclude those from consideration.
17858  * tcp_g_epriv_ports is not sorted thus we loop over it until
17859  * there are no changes.
17860  *
17861  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17862  * but instead the code relies on:
17863  * - the fact that the address of the array and its size never changes
17864  * - the atomic assignment of the elements of the array
17865  *
17866  * Returns 0 if there are no more ports available.
17867  *
17868  * TS note: skip multilevel ports.
17869  */
17870 static in_port_t
17871 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17872 {
17873 	int i;
17874 	boolean_t restart = B_FALSE;
17875 	tcp_stack_t *tcps = tcp->tcp_tcps;
17876 
17877 	if (random && tcp_random_anon_port != 0) {
17878 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17879 		    sizeof (in_port_t));
17880 		/*
17881 		 * Unless changed by a sys admin, the smallest anon port
17882 		 * is 32768 and the largest anon port is 65535.  It is
17883 		 * very likely (50%) for the random port to be smaller
17884 		 * than the smallest anon port.  When that happens,
17885 		 * add port % (anon port range) to the smallest anon
17886 		 * port to get the random port.  It should fall into the
17887 		 * valid anon port range.
17888 		 */
17889 		if (port < tcps->tcps_smallest_anon_port) {
17890 			port = tcps->tcps_smallest_anon_port +
17891 			    port % (tcps->tcps_largest_anon_port -
17892 			    tcps->tcps_smallest_anon_port);
17893 		}
17894 	}
17895 
17896 retry:
17897 	if (port < tcps->tcps_smallest_anon_port)
17898 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17899 
17900 	if (port > tcps->tcps_largest_anon_port) {
17901 		if (restart)
17902 			return (0);
17903 		restart = B_TRUE;
17904 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17905 	}
17906 
17907 	if (port < tcps->tcps_smallest_nonpriv_port)
17908 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17909 
17910 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17911 		if (port == tcps->tcps_g_epriv_ports[i]) {
17912 			port++;
17913 			/*
17914 			 * Make sure whether the port is in the
17915 			 * valid range.
17916 			 */
17917 			goto retry;
17918 		}
17919 	}
17920 	if (is_system_labeled() &&
17921 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17922 	    IPPROTO_TCP, B_TRUE)) != 0) {
17923 		port = i;
17924 		goto retry;
17925 	}
17926 	return (port);
17927 }
17928 
17929 /*
17930  * Return the next anonymous port in the privileged port range for
17931  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17932  * downwards.  This is the same behavior as documented in the userland
17933  * library call rresvport(3N).
17934  *
17935  * TS note: skip multilevel ports.
17936  */
17937 static in_port_t
17938 tcp_get_next_priv_port(const tcp_t *tcp)
17939 {
17940 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17941 	in_port_t nextport;
17942 	boolean_t restart = B_FALSE;
17943 	tcp_stack_t *tcps = tcp->tcp_tcps;
17944 retry:
17945 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17946 	    next_priv_port >= IPPORT_RESERVED) {
17947 		next_priv_port = IPPORT_RESERVED - 1;
17948 		if (restart)
17949 			return (0);
17950 		restart = B_TRUE;
17951 	}
17952 	if (is_system_labeled() &&
17953 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17954 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17955 		next_priv_port = nextport;
17956 		goto retry;
17957 	}
17958 	return (next_priv_port--);
17959 }
17960 
17961 /* The write side r/w procedure. */
17962 
17963 #if CCS_STATS
17964 struct {
17965 	struct {
17966 		int64_t count, bytes;
17967 	} tot, hit;
17968 } wrw_stats;
17969 #endif
17970 
17971 /*
17972  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17973  * messages.
17974  */
17975 /* ARGSUSED */
17976 static void
17977 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17978 {
17979 	conn_t	*connp = (conn_t *)arg;
17980 	tcp_t	*tcp = connp->conn_tcp;
17981 	queue_t	*q = tcp->tcp_wq;
17982 
17983 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17984 	/*
17985 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17986 	 * Once the close starts, streamhead and sockfs will not let any data
17987 	 * packets come down (close ensures that there are no threads using the
17988 	 * queue and no new threads will come down) but since qprocsoff()
17989 	 * hasn't happened yet, a M_FLUSH or some non data message might
17990 	 * get reflected back (in response to our own FLUSHRW) and get
17991 	 * processed after tcp_close() is done. The conn would still be valid
17992 	 * because a ref would have added but we need to check the state
17993 	 * before actually processing the packet.
17994 	 */
17995 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17996 		freemsg(mp);
17997 		return;
17998 	}
17999 
18000 	switch (DB_TYPE(mp)) {
18001 	case M_IOCDATA:
18002 		tcp_wput_iocdata(tcp, mp);
18003 		break;
18004 	case M_FLUSH:
18005 		tcp_wput_flush(tcp, mp);
18006 		break;
18007 	default:
18008 		CALL_IP_WPUT(connp, q, mp);
18009 		break;
18010 	}
18011 }
18012 
18013 /*
18014  * The TCP fast path write put procedure.
18015  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
18016  */
18017 /* ARGSUSED */
18018 void
18019 tcp_output(void *arg, mblk_t *mp, void *arg2)
18020 {
18021 	int		len;
18022 	int		hdrlen;
18023 	int		plen;
18024 	mblk_t		*mp1;
18025 	uchar_t		*rptr;
18026 	uint32_t	snxt;
18027 	tcph_t		*tcph;
18028 	struct datab	*db;
18029 	uint32_t	suna;
18030 	uint32_t	mss;
18031 	ipaddr_t	*dst;
18032 	ipaddr_t	*src;
18033 	uint32_t	sum;
18034 	int		usable;
18035 	conn_t		*connp = (conn_t *)arg;
18036 	tcp_t		*tcp = connp->conn_tcp;
18037 	uint32_t	msize;
18038 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18039 
18040 	/*
18041 	 * Try and ASSERT the minimum possible references on the
18042 	 * conn early enough. Since we are executing on write side,
18043 	 * the connection is obviously not detached and that means
18044 	 * there is a ref each for TCP and IP. Since we are behind
18045 	 * the squeue, the minimum references needed are 3. If the
18046 	 * conn is in classifier hash list, there should be an
18047 	 * extra ref for that (we check both the possibilities).
18048 	 */
18049 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18050 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18051 
18052 	ASSERT(DB_TYPE(mp) == M_DATA);
18053 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
18054 
18055 	mutex_enter(&tcp->tcp_non_sq_lock);
18056 	tcp->tcp_squeue_bytes -= msize;
18057 	mutex_exit(&tcp->tcp_non_sq_lock);
18058 
18059 	/* Bypass tcp protocol for fused tcp loopback */
18060 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
18061 		return;
18062 
18063 	mss = tcp->tcp_mss;
18064 	if (tcp->tcp_xmit_zc_clean)
18065 		mp = tcp_zcopy_backoff(tcp, mp, 0);
18066 
18067 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18068 	len = (int)(mp->b_wptr - mp->b_rptr);
18069 
18070 	/*
18071 	 * Criteria for fast path:
18072 	 *
18073 	 *   1. no unsent data
18074 	 *   2. single mblk in request
18075 	 *   3. connection established
18076 	 *   4. data in mblk
18077 	 *   5. len <= mss
18078 	 *   6. no tcp_valid bits
18079 	 */
18080 	if ((tcp->tcp_unsent != 0) ||
18081 	    (tcp->tcp_cork) ||
18082 	    (mp->b_cont != NULL) ||
18083 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
18084 	    (len == 0) ||
18085 	    (len > mss) ||
18086 	    (tcp->tcp_valid_bits != 0)) {
18087 		tcp_wput_data(tcp, mp, B_FALSE);
18088 		return;
18089 	}
18090 
18091 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
18092 	ASSERT(tcp->tcp_fin_sent == 0);
18093 
18094 	/* queue new packet onto retransmission queue */
18095 	if (tcp->tcp_xmit_head == NULL) {
18096 		tcp->tcp_xmit_head = mp;
18097 	} else {
18098 		tcp->tcp_xmit_last->b_cont = mp;
18099 	}
18100 	tcp->tcp_xmit_last = mp;
18101 	tcp->tcp_xmit_tail = mp;
18102 
18103 	/* find out how much we can send */
18104 	/* BEGIN CSTYLED */
18105 	/*
18106 	 *    un-acked           usable
18107 	 *  |--------------|-----------------|
18108 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
18109 	 */
18110 	/* END CSTYLED */
18111 
18112 	/* start sending from tcp_snxt */
18113 	snxt = tcp->tcp_snxt;
18114 
18115 	/*
18116 	 * Check to see if this connection has been idled for some
18117 	 * time and no ACK is expected.  If it is, we need to slow
18118 	 * start again to get back the connection's "self-clock" as
18119 	 * described in VJ's paper.
18120 	 *
18121 	 * Refer to the comment in tcp_mss_set() for the calculation
18122 	 * of tcp_cwnd after idle.
18123 	 */
18124 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18125 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18126 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
18127 	}
18128 
18129 	usable = tcp->tcp_swnd;		/* tcp window size */
18130 	if (usable > tcp->tcp_cwnd)
18131 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
18132 	usable -= snxt;		/* subtract stuff already sent */
18133 	suna = tcp->tcp_suna;
18134 	usable += suna;
18135 	/* usable can be < 0 if the congestion window is smaller */
18136 	if (len > usable) {
18137 		/* Can't send complete M_DATA in one shot */
18138 		goto slow;
18139 	}
18140 
18141 	mutex_enter(&tcp->tcp_non_sq_lock);
18142 	if (tcp->tcp_flow_stopped &&
18143 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18144 		tcp_clrqfull(tcp);
18145 	}
18146 	mutex_exit(&tcp->tcp_non_sq_lock);
18147 
18148 	/*
18149 	 * determine if anything to send (Nagle).
18150 	 *
18151 	 *   1. len < tcp_mss (i.e. small)
18152 	 *   2. unacknowledged data present
18153 	 *   3. len < nagle limit
18154 	 *   4. last packet sent < nagle limit (previous packet sent)
18155 	 */
18156 	if ((len < mss) && (snxt != suna) &&
18157 	    (len < (int)tcp->tcp_naglim) &&
18158 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
18159 		/*
18160 		 * This was the first unsent packet and normally
18161 		 * mss < xmit_hiwater so there is no need to worry
18162 		 * about flow control. The next packet will go
18163 		 * through the flow control check in tcp_wput_data().
18164 		 */
18165 		/* leftover work from above */
18166 		tcp->tcp_unsent = len;
18167 		tcp->tcp_xmit_tail_unsent = len;
18168 
18169 		return;
18170 	}
18171 
18172 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
18173 
18174 	if (snxt == suna) {
18175 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18176 	}
18177 
18178 	/* we have always sent something */
18179 	tcp->tcp_rack_cnt = 0;
18180 
18181 	tcp->tcp_snxt = snxt + len;
18182 	tcp->tcp_rack = tcp->tcp_rnxt;
18183 
18184 	if ((mp1 = dupb(mp)) == 0)
18185 		goto no_memory;
18186 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
18187 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
18188 
18189 	/* adjust tcp header information */
18190 	tcph = tcp->tcp_tcph;
18191 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
18192 
18193 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
18194 	sum = (sum >> 16) + (sum & 0xFFFF);
18195 	U16_TO_ABE16(sum, tcph->th_sum);
18196 
18197 	U32_TO_ABE32(snxt, tcph->th_seq);
18198 
18199 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
18200 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
18201 	BUMP_LOCAL(tcp->tcp_obsegs);
18202 
18203 	/* Update the latest receive window size in TCP header. */
18204 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18205 	    tcph->th_win);
18206 
18207 	tcp->tcp_last_sent_len = (ushort_t)len;
18208 
18209 	plen = len + tcp->tcp_hdr_len;
18210 
18211 	if (tcp->tcp_ipversion == IPV4_VERSION) {
18212 		tcp->tcp_ipha->ipha_length = htons(plen);
18213 	} else {
18214 		tcp->tcp_ip6h->ip6_plen = htons(plen -
18215 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
18216 	}
18217 
18218 	/* see if we need to allocate a mblk for the headers */
18219 	hdrlen = tcp->tcp_hdr_len;
18220 	rptr = mp1->b_rptr - hdrlen;
18221 	db = mp1->b_datap;
18222 	if ((db->db_ref != 2) || rptr < db->db_base ||
18223 	    (!OK_32PTR(rptr))) {
18224 		/* NOTE: we assume allocb returns an OK_32PTR */
18225 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
18226 		    tcps->tcps_wroff_xtra, BPRI_MED);
18227 		if (!mp) {
18228 			freemsg(mp1);
18229 			goto no_memory;
18230 		}
18231 		mp->b_cont = mp1;
18232 		mp1 = mp;
18233 		/* Leave room for Link Level header */
18234 		/* hdrlen = tcp->tcp_hdr_len; */
18235 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
18236 		mp1->b_wptr = &rptr[hdrlen];
18237 	}
18238 	mp1->b_rptr = rptr;
18239 
18240 	/* Fill in the timestamp option. */
18241 	if (tcp->tcp_snd_ts_ok) {
18242 		U32_TO_BE32((uint32_t)lbolt,
18243 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
18244 		U32_TO_BE32(tcp->tcp_ts_recent,
18245 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
18246 	} else {
18247 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18248 	}
18249 
18250 	/* copy header into outgoing packet */
18251 	dst = (ipaddr_t *)rptr;
18252 	src = (ipaddr_t *)tcp->tcp_iphc;
18253 	dst[0] = src[0];
18254 	dst[1] = src[1];
18255 	dst[2] = src[2];
18256 	dst[3] = src[3];
18257 	dst[4] = src[4];
18258 	dst[5] = src[5];
18259 	dst[6] = src[6];
18260 	dst[7] = src[7];
18261 	dst[8] = src[8];
18262 	dst[9] = src[9];
18263 	if (hdrlen -= 40) {
18264 		hdrlen >>= 2;
18265 		dst += 10;
18266 		src += 10;
18267 		do {
18268 			*dst++ = *src++;
18269 		} while (--hdrlen);
18270 	}
18271 
18272 	/*
18273 	 * Set the ECN info in the TCP header.  Note that this
18274 	 * is not the template header.
18275 	 */
18276 	if (tcp->tcp_ecn_ok) {
18277 		SET_ECT(tcp, rptr);
18278 
18279 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18280 		if (tcp->tcp_ecn_echo_on)
18281 			tcph->th_flags[0] |= TH_ECE;
18282 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18283 			tcph->th_flags[0] |= TH_CWR;
18284 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18285 		}
18286 	}
18287 
18288 	if (tcp->tcp_ip_forward_progress) {
18289 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
18290 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
18291 		tcp->tcp_ip_forward_progress = B_FALSE;
18292 	}
18293 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
18294 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
18295 	return;
18296 
18297 	/*
18298 	 * If we ran out of memory, we pretend to have sent the packet
18299 	 * and that it was lost on the wire.
18300 	 */
18301 no_memory:
18302 	return;
18303 
18304 slow:
18305 	/* leftover work from above */
18306 	tcp->tcp_unsent = len;
18307 	tcp->tcp_xmit_tail_unsent = len;
18308 	tcp_wput_data(tcp, NULL, B_FALSE);
18309 }
18310 
18311 /*
18312  * The function called through squeue to get behind eager's perimeter to
18313  * finish the accept processing.
18314  */
18315 /* ARGSUSED */
18316 void
18317 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
18318 {
18319 	conn_t			*connp = (conn_t *)arg;
18320 	tcp_t			*tcp = connp->conn_tcp;
18321 	queue_t			*q = tcp->tcp_rq;
18322 	mblk_t			*mp1;
18323 	mblk_t			*stropt_mp = mp;
18324 	struct  stroptions	*stropt;
18325 	uint_t			thwin;
18326 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18327 
18328 	/*
18329 	 * Drop the eager's ref on the listener, that was placed when
18330 	 * this eager began life in tcp_conn_request.
18331 	 */
18332 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
18333 
18334 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
18335 		/*
18336 		 * Someone blewoff the eager before we could finish
18337 		 * the accept.
18338 		 *
18339 		 * The only reason eager exists it because we put in
18340 		 * a ref on it when conn ind went up. We need to send
18341 		 * a disconnect indication up while the last reference
18342 		 * on the eager will be dropped by the squeue when we
18343 		 * return.
18344 		 */
18345 		ASSERT(tcp->tcp_listener == NULL);
18346 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
18347 			struct	T_discon_ind	*tdi;
18348 
18349 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
18350 			/*
18351 			 * Let us reuse the incoming mblk to avoid memory
18352 			 * allocation failure problems. We know that the
18353 			 * size of the incoming mblk i.e. stroptions is greater
18354 			 * than sizeof T_discon_ind. So the reallocb below
18355 			 * can't fail.
18356 			 */
18357 			freemsg(mp->b_cont);
18358 			mp->b_cont = NULL;
18359 			ASSERT(DB_REF(mp) == 1);
18360 			mp = reallocb(mp, sizeof (struct T_discon_ind),
18361 			    B_FALSE);
18362 			ASSERT(mp != NULL);
18363 			DB_TYPE(mp) = M_PROTO;
18364 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
18365 			tdi = (struct T_discon_ind *)mp->b_rptr;
18366 			if (tcp->tcp_issocket) {
18367 				tdi->DISCON_reason = ECONNREFUSED;
18368 				tdi->SEQ_number = 0;
18369 			} else {
18370 				tdi->DISCON_reason = ENOPROTOOPT;
18371 				tdi->SEQ_number =
18372 				    tcp->tcp_conn_req_seqnum;
18373 			}
18374 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
18375 			putnext(q, mp);
18376 		} else {
18377 			freemsg(mp);
18378 		}
18379 		if (tcp->tcp_hard_binding) {
18380 			tcp->tcp_hard_binding = B_FALSE;
18381 			tcp->tcp_hard_bound = B_TRUE;
18382 		}
18383 		tcp->tcp_detached = B_FALSE;
18384 		return;
18385 	}
18386 
18387 	mp1 = stropt_mp->b_cont;
18388 	stropt_mp->b_cont = NULL;
18389 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
18390 	stropt = (struct stroptions *)stropt_mp->b_rptr;
18391 
18392 	while (mp1 != NULL) {
18393 		mp = mp1;
18394 		mp1 = mp1->b_cont;
18395 		mp->b_cont = NULL;
18396 		tcp->tcp_drop_opt_ack_cnt++;
18397 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
18398 	}
18399 	mp = NULL;
18400 
18401 	/*
18402 	 * For a loopback connection with tcp_direct_sockfs on, note that
18403 	 * we don't have to protect tcp_rcv_list yet because synchronous
18404 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18405 	 * possibly race with us.
18406 	 */
18407 
18408 	/*
18409 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18410 	 * properly.  This is the first time we know of the acceptor'
18411 	 * queue.  So we do it here.
18412 	 */
18413 	if (tcp->tcp_rcv_list == NULL) {
18414 		/*
18415 		 * Recv queue is empty, tcp_rwnd should not have changed.
18416 		 * That means it should be equal to the listener's tcp_rwnd.
18417 		 */
18418 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18419 	} else {
18420 #ifdef DEBUG
18421 		uint_t cnt = 0;
18422 
18423 		mp1 = tcp->tcp_rcv_list;
18424 		while ((mp = mp1) != NULL) {
18425 			mp1 = mp->b_next;
18426 			cnt += msgdsize(mp);
18427 		}
18428 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18429 #endif
18430 		/* There is some data, add them back to get the max. */
18431 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18432 	}
18433 
18434 	stropt->so_flags = SO_HIWAT;
18435 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18436 
18437 	stropt->so_flags |= SO_MAXBLK;
18438 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18439 
18440 	/*
18441 	 * This is the first time we run on the correct
18442 	 * queue after tcp_accept. So fix all the q parameters
18443 	 * here.
18444 	 */
18445 	/* Allocate room for SACK options if needed. */
18446 	stropt->so_flags |= SO_WROFF;
18447 	if (tcp->tcp_fused) {
18448 		ASSERT(tcp->tcp_loopback);
18449 		ASSERT(tcp->tcp_loopback_peer != NULL);
18450 		/*
18451 		 * For fused tcp loopback, set the stream head's write
18452 		 * offset value to zero since we won't be needing any room
18453 		 * for TCP/IP headers.  This would also improve performance
18454 		 * since it would reduce the amount of work done by kmem.
18455 		 * Non-fused tcp loopback case is handled separately below.
18456 		 */
18457 		stropt->so_wroff = 0;
18458 		/*
18459 		 * Record the stream head's high water mark for this endpoint;
18460 		 * this is used for flow-control purposes in tcp_fuse_output().
18461 		 */
18462 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
18463 		/*
18464 		 * Update the peer's transmit parameters according to
18465 		 * our recently calculated high water mark value.
18466 		 */
18467 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18468 	} else if (tcp->tcp_snd_sack_ok) {
18469 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18470 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18471 	} else {
18472 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18473 		    tcps->tcps_wroff_xtra);
18474 	}
18475 
18476 	/*
18477 	 * If this is endpoint is handling SSL, then reserve extra
18478 	 * offset and space at the end.
18479 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18480 	 * overriding the previous setting. The extra cost of signing and
18481 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18482 	 * instead of a single contiguous one by the stream head
18483 	 * largely outweighs the statistical reduction of ACKs, when
18484 	 * applicable. The peer will also save on decryption and verification
18485 	 * costs.
18486 	 */
18487 	if (tcp->tcp_kssl_ctx != NULL) {
18488 		stropt->so_wroff += SSL3_WROFFSET;
18489 
18490 		stropt->so_flags |= SO_TAIL;
18491 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18492 
18493 		stropt->so_flags |= SO_COPYOPT;
18494 		stropt->so_copyopt = ZCVMUNSAFE;
18495 
18496 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18497 	}
18498 
18499 	/* Send the options up */
18500 	putnext(q, stropt_mp);
18501 
18502 	/*
18503 	 * Pass up any data and/or a fin that has been received.
18504 	 *
18505 	 * Adjust receive window in case it had decreased
18506 	 * (because there is data <=> tcp_rcv_list != NULL)
18507 	 * while the connection was detached. Note that
18508 	 * in case the eager was flow-controlled, w/o this
18509 	 * code, the rwnd may never open up again!
18510 	 */
18511 	if (tcp->tcp_rcv_list != NULL) {
18512 		/* We drain directly in case of fused tcp loopback */
18513 		sodirect_t *sodp;
18514 
18515 		if (!tcp->tcp_fused && canputnext(q)) {
18516 			tcp->tcp_rwnd = q->q_hiwat;
18517 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18518 			    << tcp->tcp_rcv_ws;
18519 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18520 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18521 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18522 				tcp_xmit_ctl(NULL,
18523 				    tcp, (tcp->tcp_swnd == 0) ?
18524 				    tcp->tcp_suna : tcp->tcp_snxt,
18525 				    tcp->tcp_rnxt, TH_ACK);
18526 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18527 			}
18528 
18529 		}
18530 
18531 		SOD_PTR_ENTER(tcp, sodp);
18532 		if (sodp != NULL) {
18533 			/* Sodirect, move from rcv_list */
18534 			ASSERT(!tcp->tcp_fused);
18535 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18536 				tcp->tcp_rcv_list = mp->b_next;
18537 				mp->b_next = NULL;
18538 				(void) tcp_rcv_sod_enqueue(tcp, sodp, mp,
18539 				    msgdsize(mp));
18540 			}
18541 			tcp->tcp_rcv_last_head = NULL;
18542 			tcp->tcp_rcv_last_tail = NULL;
18543 			tcp->tcp_rcv_cnt = 0;
18544 			(void) tcp_rcv_sod_wakeup(tcp, sodp);
18545 			/* sod_wakeup() did the mutex_exit() */
18546 		} else {
18547 			/* Not sodirect, drain */
18548 			(void) tcp_rcv_drain(q, tcp);
18549 		}
18550 
18551 		/*
18552 		 * For fused tcp loopback, back-enable peer endpoint
18553 		 * if it's currently flow-controlled.
18554 		 */
18555 		if (tcp->tcp_fused) {
18556 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18557 
18558 			ASSERT(peer_tcp != NULL);
18559 			ASSERT(peer_tcp->tcp_fused);
18560 			/*
18561 			 * In order to change the peer's tcp_flow_stopped,
18562 			 * we need to take locks for both end points. The
18563 			 * highest address is taken first.
18564 			 */
18565 			if (peer_tcp > tcp) {
18566 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18567 				mutex_enter(&tcp->tcp_non_sq_lock);
18568 			} else {
18569 				mutex_enter(&tcp->tcp_non_sq_lock);
18570 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18571 			}
18572 			if (peer_tcp->tcp_flow_stopped) {
18573 				tcp_clrqfull(peer_tcp);
18574 				TCP_STAT(tcps, tcp_fusion_backenabled);
18575 			}
18576 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18577 			mutex_exit(&tcp->tcp_non_sq_lock);
18578 		}
18579 	}
18580 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18581 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18582 		mp = mi_tpi_ordrel_ind();
18583 		if (mp) {
18584 			tcp->tcp_ordrel_done = B_TRUE;
18585 			putnext(q, mp);
18586 			if (tcp->tcp_deferred_clean_death) {
18587 				/*
18588 				 * tcp_clean_death was deferred
18589 				 * for T_ORDREL_IND - do it now
18590 				 */
18591 				(void) tcp_clean_death(tcp,
18592 				    tcp->tcp_client_errno, 21);
18593 				tcp->tcp_deferred_clean_death = B_FALSE;
18594 			}
18595 		} else {
18596 			/*
18597 			 * Run the orderly release in the
18598 			 * service routine.
18599 			 */
18600 			qenable(q);
18601 		}
18602 	}
18603 	if (tcp->tcp_hard_binding) {
18604 		tcp->tcp_hard_binding = B_FALSE;
18605 		tcp->tcp_hard_bound = B_TRUE;
18606 	}
18607 
18608 	tcp->tcp_detached = B_FALSE;
18609 
18610 	/* We can enable synchronous streams now */
18611 	if (tcp->tcp_fused) {
18612 		tcp_fuse_syncstr_enable_pair(tcp);
18613 	}
18614 
18615 	if (tcp->tcp_ka_enabled) {
18616 		tcp->tcp_ka_last_intrvl = 0;
18617 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18618 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18619 	}
18620 
18621 	/*
18622 	 * At this point, eager is fully established and will
18623 	 * have the following references -
18624 	 *
18625 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18626 	 * 1 reference for the squeue which will be dropped by the squeue as
18627 	 *	soon as this function returns.
18628 	 * There will be 1 additonal reference for being in classifier
18629 	 *	hash list provided something bad hasn't happened.
18630 	 */
18631 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18632 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18633 }
18634 
18635 /*
18636  * The function called through squeue to get behind listener's perimeter to
18637  * send a deffered conn_ind.
18638  */
18639 /* ARGSUSED */
18640 void
18641 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18642 {
18643 	conn_t	*connp = (conn_t *)arg;
18644 	tcp_t *listener = connp->conn_tcp;
18645 
18646 	if (listener->tcp_state == TCPS_CLOSED ||
18647 	    TCP_IS_DETACHED(listener)) {
18648 		/*
18649 		 * If listener has closed, it would have caused a
18650 		 * a cleanup/blowoff to happen for the eager.
18651 		 */
18652 		tcp_t *tcp;
18653 		struct T_conn_ind	*conn_ind;
18654 
18655 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18656 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18657 		    conn_ind->OPT_length);
18658 		/*
18659 		 * We need to drop the ref on eager that was put
18660 		 * tcp_rput_data() before trying to send the conn_ind
18661 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18662 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18663 		 * listener is closed so we drop the ref.
18664 		 */
18665 		CONN_DEC_REF(tcp->tcp_connp);
18666 		freemsg(mp);
18667 		return;
18668 	}
18669 	putnext(listener->tcp_rq, mp);
18670 }
18671 
18672 
18673 /*
18674  * This is the STREAMS entry point for T_CONN_RES coming down on
18675  * Acceptor STREAM when  sockfs listener does accept processing.
18676  * Read the block comment on top of tcp_conn_request().
18677  */
18678 void
18679 tcp_wput_accept(queue_t *q, mblk_t *mp)
18680 {
18681 	queue_t *rq = RD(q);
18682 	struct T_conn_res *conn_res;
18683 	tcp_t *eager;
18684 	tcp_t *listener;
18685 	struct T_ok_ack *ok;
18686 	t_scalar_t PRIM_type;
18687 	mblk_t *opt_mp;
18688 	conn_t *econnp;
18689 
18690 	ASSERT(DB_TYPE(mp) == M_PROTO);
18691 
18692 	conn_res = (struct T_conn_res *)mp->b_rptr;
18693 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18694 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18695 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18696 		if (mp != NULL)
18697 			putnext(rq, mp);
18698 		return;
18699 	}
18700 	switch (conn_res->PRIM_type) {
18701 	case O_T_CONN_RES:
18702 	case T_CONN_RES:
18703 		/*
18704 		 * We pass up an err ack if allocb fails. This will
18705 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18706 		 * tcp_eager_blowoff to be called. sockfs will then call
18707 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18708 		 * we need to do the allocb up here because we have to
18709 		 * make sure rq->q_qinfo->qi_qclose still points to the
18710 		 * correct function (tcpclose_accept) in case allocb
18711 		 * fails.
18712 		 */
18713 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18714 		if (opt_mp == NULL) {
18715 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18716 			if (mp != NULL)
18717 				putnext(rq, mp);
18718 			return;
18719 		}
18720 
18721 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18722 		    &eager, conn_res->OPT_length);
18723 		PRIM_type = conn_res->PRIM_type;
18724 		mp->b_datap->db_type = M_PCPROTO;
18725 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18726 		ok = (struct T_ok_ack *)mp->b_rptr;
18727 		ok->PRIM_type = T_OK_ACK;
18728 		ok->CORRECT_prim = PRIM_type;
18729 		econnp = eager->tcp_connp;
18730 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18731 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18732 		eager->tcp_rq = rq;
18733 		eager->tcp_wq = q;
18734 		rq->q_ptr = econnp;
18735 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18736 		q->q_ptr = econnp;
18737 		q->q_qinfo = &tcp_winit;
18738 		listener = eager->tcp_listener;
18739 		eager->tcp_issocket = B_TRUE;
18740 
18741 		/*
18742 		 * TCP is _D_SODIRECT and sockfs is directly above so
18743 		 * save shared sodirect_t pointer (if any).
18744 		 *
18745 		 * If tcp_fused and sodirect enabled disable it.
18746 		 */
18747 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18748 		if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18749 			/* Fused, disable sodirect */
18750 			mutex_enter(eager->tcp_sodirect->sod_lock);
18751 			SOD_DISABLE(eager->tcp_sodirect);
18752 			mutex_exit(eager->tcp_sodirect->sod_lock);
18753 			eager->tcp_sodirect = NULL;
18754 		}
18755 
18756 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18757 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18758 		ASSERT(econnp->conn_netstack ==
18759 		    listener->tcp_connp->conn_netstack);
18760 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18761 
18762 		/* Put the ref for IP */
18763 		CONN_INC_REF(econnp);
18764 
18765 		/*
18766 		 * We should have minimum of 3 references on the conn
18767 		 * at this point. One each for TCP and IP and one for
18768 		 * the T_conn_ind that was sent up when the 3-way handshake
18769 		 * completed. In the normal case we would also have another
18770 		 * reference (making a total of 4) for the conn being in the
18771 		 * classifier hash list. However the eager could have received
18772 		 * an RST subsequently and tcp_closei_local could have removed
18773 		 * the eager from the classifier hash list, hence we can't
18774 		 * assert that reference.
18775 		 */
18776 		ASSERT(econnp->conn_ref >= 3);
18777 
18778 		/*
18779 		 * Send the new local address also up to sockfs. There
18780 		 * should already be enough space in the mp that came
18781 		 * down from soaccept().
18782 		 */
18783 		if (eager->tcp_family == AF_INET) {
18784 			sin_t *sin;
18785 
18786 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18787 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18788 			sin = (sin_t *)mp->b_wptr;
18789 			mp->b_wptr += sizeof (sin_t);
18790 			sin->sin_family = AF_INET;
18791 			sin->sin_port = eager->tcp_lport;
18792 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18793 		} else {
18794 			sin6_t *sin6;
18795 
18796 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18797 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18798 			sin6 = (sin6_t *)mp->b_wptr;
18799 			mp->b_wptr += sizeof (sin6_t);
18800 			sin6->sin6_family = AF_INET6;
18801 			sin6->sin6_port = eager->tcp_lport;
18802 			if (eager->tcp_ipversion == IPV4_VERSION) {
18803 				sin6->sin6_flowinfo = 0;
18804 				IN6_IPADDR_TO_V4MAPPED(
18805 				    eager->tcp_ipha->ipha_src,
18806 				    &sin6->sin6_addr);
18807 			} else {
18808 				ASSERT(eager->tcp_ip6h != NULL);
18809 				sin6->sin6_flowinfo =
18810 				    eager->tcp_ip6h->ip6_vcf &
18811 				    ~IPV6_VERS_AND_FLOW_MASK;
18812 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18813 			}
18814 			sin6->sin6_scope_id = 0;
18815 			sin6->__sin6_src_id = 0;
18816 		}
18817 
18818 		putnext(rq, mp);
18819 
18820 		opt_mp->b_datap->db_type = M_SETOPTS;
18821 		opt_mp->b_wptr += sizeof (struct stroptions);
18822 
18823 		/*
18824 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18825 		 * from listener to acceptor. The message is chained on the
18826 		 * bind_mp which tcp_rput_other will send down to IP.
18827 		 */
18828 		if (listener->tcp_bound_if != 0) {
18829 			/* allocate optmgmt req */
18830 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18831 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18832 			    sizeof (int));
18833 			if (mp != NULL)
18834 				linkb(opt_mp, mp);
18835 		}
18836 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18837 			uint_t on = 1;
18838 
18839 			/* allocate optmgmt req */
18840 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18841 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18842 			if (mp != NULL)
18843 				linkb(opt_mp, mp);
18844 		}
18845 
18846 
18847 		mutex_enter(&listener->tcp_eager_lock);
18848 
18849 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18850 
18851 			tcp_t *tail;
18852 			tcp_t *tcp;
18853 			mblk_t *mp1;
18854 
18855 			tcp = listener->tcp_eager_prev_q0;
18856 			/*
18857 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18858 			 * deferred T_conn_ind queue. We need to get to the head
18859 			 * of the queue in order to send up T_conn_ind the same
18860 			 * order as how the 3WHS is completed.
18861 			 */
18862 			while (tcp != listener) {
18863 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18864 				    !tcp->tcp_kssl_pending)
18865 					break;
18866 				else
18867 					tcp = tcp->tcp_eager_prev_q0;
18868 			}
18869 			/* None of the pending eagers can be sent up now */
18870 			if (tcp == listener)
18871 				goto no_more_eagers;
18872 
18873 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18874 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18875 			/* Move from q0 to q */
18876 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18877 			listener->tcp_conn_req_cnt_q0--;
18878 			listener->tcp_conn_req_cnt_q++;
18879 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18880 			    tcp->tcp_eager_prev_q0;
18881 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18882 			    tcp->tcp_eager_next_q0;
18883 			tcp->tcp_eager_prev_q0 = NULL;
18884 			tcp->tcp_eager_next_q0 = NULL;
18885 			tcp->tcp_conn_def_q0 = B_FALSE;
18886 
18887 			/* Make sure the tcp isn't in the list of droppables */
18888 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18889 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18890 
18891 			/*
18892 			 * Insert at end of the queue because sockfs sends
18893 			 * down T_CONN_RES in chronological order. Leaving
18894 			 * the older conn indications at front of the queue
18895 			 * helps reducing search time.
18896 			 */
18897 			tail = listener->tcp_eager_last_q;
18898 			if (tail != NULL) {
18899 				tail->tcp_eager_next_q = tcp;
18900 			} else {
18901 				listener->tcp_eager_next_q = tcp;
18902 			}
18903 			listener->tcp_eager_last_q = tcp;
18904 			tcp->tcp_eager_next_q = NULL;
18905 
18906 			/* Need to get inside the listener perimeter */
18907 			CONN_INC_REF(listener->tcp_connp);
18908 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18909 			    tcp_send_pending, listener->tcp_connp,
18910 			    SQTAG_TCP_SEND_PENDING);
18911 		}
18912 no_more_eagers:
18913 		tcp_eager_unlink(eager);
18914 		mutex_exit(&listener->tcp_eager_lock);
18915 
18916 		/*
18917 		 * At this point, the eager is detached from the listener
18918 		 * but we still have an extra refs on eager (apart from the
18919 		 * usual tcp references). The ref was placed in tcp_rput_data
18920 		 * before sending the conn_ind in tcp_send_conn_ind.
18921 		 * The ref will be dropped in tcp_accept_finish().
18922 		 */
18923 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18924 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18925 		return;
18926 	default:
18927 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18928 		if (mp != NULL)
18929 			putnext(rq, mp);
18930 		return;
18931 	}
18932 }
18933 
18934 static int
18935 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18936 {
18937 	sin_t *sin = (sin_t *)sa;
18938 	sin6_t *sin6 = (sin6_t *)sa;
18939 
18940 	switch (tcp->tcp_family) {
18941 	case AF_INET:
18942 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18943 
18944 		if (*salenp < sizeof (sin_t))
18945 			return (EINVAL);
18946 
18947 		*sin = sin_null;
18948 		sin->sin_family = AF_INET;
18949 		sin->sin_port = tcp->tcp_lport;
18950 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18951 		break;
18952 
18953 	case AF_INET6:
18954 		if (*salenp < sizeof (sin6_t))
18955 			return (EINVAL);
18956 
18957 		*sin6 = sin6_null;
18958 		sin6->sin6_family = AF_INET6;
18959 		sin6->sin6_port = tcp->tcp_lport;
18960 		if (tcp->tcp_ipversion == IPV4_VERSION) {
18961 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18962 			    &sin6->sin6_addr);
18963 		} else {
18964 			sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18965 		}
18966 		break;
18967 	}
18968 
18969 	return (0);
18970 }
18971 
18972 static int
18973 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18974 {
18975 	sin_t *sin = (sin_t *)sa;
18976 	sin6_t *sin6 = (sin6_t *)sa;
18977 
18978 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18979 		return (ENOTCONN);
18980 
18981 	switch (tcp->tcp_family) {
18982 	case AF_INET:
18983 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18984 
18985 		if (*salenp < sizeof (sin_t))
18986 			return (EINVAL);
18987 
18988 		*sin = sin_null;
18989 		sin->sin_family = AF_INET;
18990 		sin->sin_port = tcp->tcp_fport;
18991 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18992 		    sin->sin_addr.s_addr);
18993 		break;
18994 
18995 	case AF_INET6:
18996 		if (*salenp < sizeof (sin6_t))
18997 			return (EINVAL);
18998 
18999 		*sin6 = sin6_null;
19000 		sin6->sin6_family = AF_INET6;
19001 		sin6->sin6_port = tcp->tcp_fport;
19002 		sin6->sin6_addr = tcp->tcp_remote_v6;
19003 		if (tcp->tcp_ipversion == IPV6_VERSION) {
19004 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
19005 			    ~IPV6_VERS_AND_FLOW_MASK;
19006 		}
19007 		break;
19008 	}
19009 
19010 	return (0);
19011 }
19012 
19013 /*
19014  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
19015  */
19016 static void
19017 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
19018 {
19019 	void	*data;
19020 	mblk_t	*datamp = mp->b_cont;
19021 	tcp_t	*tcp = Q_TO_TCP(q);
19022 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
19023 
19024 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
19025 		cmdp->cb_error = EPROTO;
19026 		qreply(q, mp);
19027 		return;
19028 	}
19029 
19030 	data = datamp->b_rptr;
19031 
19032 	switch (cmdp->cb_cmd) {
19033 	case TI_GETPEERNAME:
19034 		cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len);
19035 		break;
19036 	case TI_GETMYNAME:
19037 		cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len);
19038 		break;
19039 	default:
19040 		cmdp->cb_error = EINVAL;
19041 		break;
19042 	}
19043 
19044 	qreply(q, mp);
19045 }
19046 
19047 void
19048 tcp_wput(queue_t *q, mblk_t *mp)
19049 {
19050 	conn_t	*connp = Q_TO_CONN(q);
19051 	tcp_t	*tcp;
19052 	void (*output_proc)();
19053 	t_scalar_t type;
19054 	uchar_t *rptr;
19055 	struct iocblk	*iocp;
19056 	uint32_t	msize;
19057 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
19058 
19059 	ASSERT(connp->conn_ref >= 2);
19060 
19061 	switch (DB_TYPE(mp)) {
19062 	case M_DATA:
19063 		tcp = connp->conn_tcp;
19064 		ASSERT(tcp != NULL);
19065 
19066 		msize = msgdsize(mp);
19067 
19068 		mutex_enter(&tcp->tcp_non_sq_lock);
19069 		tcp->tcp_squeue_bytes += msize;
19070 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
19071 			tcp_setqfull(tcp);
19072 		}
19073 		mutex_exit(&tcp->tcp_non_sq_lock);
19074 
19075 		CONN_INC_REF(connp);
19076 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
19077 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
19078 		return;
19079 
19080 	case M_CMD:
19081 		tcp_wput_cmdblk(q, mp);
19082 		return;
19083 
19084 	case M_PROTO:
19085 	case M_PCPROTO:
19086 		/*
19087 		 * if it is a snmp message, don't get behind the squeue
19088 		 */
19089 		tcp = connp->conn_tcp;
19090 		rptr = mp->b_rptr;
19091 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
19092 			type = ((union T_primitives *)rptr)->type;
19093 		} else {
19094 			if (tcp->tcp_debug) {
19095 				(void) strlog(TCP_MOD_ID, 0, 1,
19096 				    SL_ERROR|SL_TRACE,
19097 				    "tcp_wput_proto, dropping one...");
19098 			}
19099 			freemsg(mp);
19100 			return;
19101 		}
19102 		if (type == T_SVR4_OPTMGMT_REQ) {
19103 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
19104 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
19105 			    cr)) {
19106 				/*
19107 				 * This was a SNMP request
19108 				 */
19109 				return;
19110 			} else {
19111 				output_proc = tcp_wput_proto;
19112 			}
19113 		} else {
19114 			output_proc = tcp_wput_proto;
19115 		}
19116 		break;
19117 	case M_IOCTL:
19118 		/*
19119 		 * Most ioctls can be processed right away without going via
19120 		 * squeues - process them right here. Those that do require
19121 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
19122 		 * are processed by tcp_wput_ioctl().
19123 		 */
19124 		iocp = (struct iocblk *)mp->b_rptr;
19125 		tcp = connp->conn_tcp;
19126 
19127 		switch (iocp->ioc_cmd) {
19128 		case TCP_IOC_ABORT_CONN:
19129 			tcp_ioctl_abort_conn(q, mp);
19130 			return;
19131 		case TI_GETPEERNAME:
19132 		case TI_GETMYNAME:
19133 			mi_copyin(q, mp, NULL,
19134 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
19135 			return;
19136 		case ND_SET:
19137 			/* nd_getset does the necessary checks */
19138 		case ND_GET:
19139 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
19140 				CALL_IP_WPUT(connp, q, mp);
19141 				return;
19142 			}
19143 			qreply(q, mp);
19144 			return;
19145 		case TCP_IOC_DEFAULT_Q:
19146 			/*
19147 			 * Wants to be the default wq. Check the credentials
19148 			 * first, the rest is executed via squeue.
19149 			 */
19150 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
19151 				iocp->ioc_error = EPERM;
19152 				iocp->ioc_count = 0;
19153 				mp->b_datap->db_type = M_IOCACK;
19154 				qreply(q, mp);
19155 				return;
19156 			}
19157 			output_proc = tcp_wput_ioctl;
19158 			break;
19159 		default:
19160 			output_proc = tcp_wput_ioctl;
19161 			break;
19162 		}
19163 		break;
19164 	default:
19165 		output_proc = tcp_wput_nondata;
19166 		break;
19167 	}
19168 
19169 	CONN_INC_REF(connp);
19170 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
19171 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
19172 }
19173 
19174 /*
19175  * Initial STREAMS write side put() procedure for sockets. It tries to
19176  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
19177  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
19178  * are handled by tcp_wput() as usual.
19179  *
19180  * All further messages will also be handled by tcp_wput() because we cannot
19181  * be sure that the above short cut is safe later.
19182  */
19183 static void
19184 tcp_wput_sock(queue_t *wq, mblk_t *mp)
19185 {
19186 	conn_t			*connp = Q_TO_CONN(wq);
19187 	tcp_t			*tcp = connp->conn_tcp;
19188 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
19189 
19190 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
19191 	wq->q_qinfo = &tcp_winit;
19192 
19193 	ASSERT(IPCL_IS_TCP(connp));
19194 	ASSERT(TCP_IS_SOCKET(tcp));
19195 
19196 	if (DB_TYPE(mp) == M_PCPROTO &&
19197 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
19198 	    car->PRIM_type == T_CAPABILITY_REQ) {
19199 		tcp_capability_req(tcp, mp);
19200 		return;
19201 	}
19202 
19203 	tcp_wput(wq, mp);
19204 }
19205 
19206 static boolean_t
19207 tcp_zcopy_check(tcp_t *tcp)
19208 {
19209 	conn_t	*connp = tcp->tcp_connp;
19210 	ire_t	*ire;
19211 	boolean_t	zc_enabled = B_FALSE;
19212 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19213 
19214 	if (do_tcpzcopy == 2)
19215 		zc_enabled = B_TRUE;
19216 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
19217 	    IPCL_IS_CONNECTED(connp) &&
19218 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
19219 	    connp->conn_dontroute == 0 &&
19220 	    !connp->conn_nexthop_set &&
19221 	    connp->conn_outgoing_ill == NULL &&
19222 	    connp->conn_nofailover_ill == NULL &&
19223 	    do_tcpzcopy == 1) {
19224 		/*
19225 		 * the checks above  closely resemble the fast path checks
19226 		 * in tcp_send_data().
19227 		 */
19228 		mutex_enter(&connp->conn_lock);
19229 		ire = connp->conn_ire_cache;
19230 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19231 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19232 			IRE_REFHOLD(ire);
19233 			if (ire->ire_stq != NULL) {
19234 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
19235 
19236 				zc_enabled = ill && (ill->ill_capabilities &
19237 				    ILL_CAPAB_ZEROCOPY) &&
19238 				    (ill->ill_zerocopy_capab->
19239 				    ill_zerocopy_flags != 0);
19240 			}
19241 			IRE_REFRELE(ire);
19242 		}
19243 		mutex_exit(&connp->conn_lock);
19244 	}
19245 	tcp->tcp_snd_zcopy_on = zc_enabled;
19246 	if (!TCP_IS_DETACHED(tcp)) {
19247 		if (zc_enabled) {
19248 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
19249 			TCP_STAT(tcps, tcp_zcopy_on);
19250 		} else {
19251 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19252 			TCP_STAT(tcps, tcp_zcopy_off);
19253 		}
19254 	}
19255 	return (zc_enabled);
19256 }
19257 
19258 static mblk_t *
19259 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
19260 {
19261 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19262 
19263 	if (do_tcpzcopy == 2)
19264 		return (bp);
19265 	else if (tcp->tcp_snd_zcopy_on) {
19266 		tcp->tcp_snd_zcopy_on = B_FALSE;
19267 		if (!TCP_IS_DETACHED(tcp)) {
19268 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19269 			TCP_STAT(tcps, tcp_zcopy_disable);
19270 		}
19271 	}
19272 	return (tcp_zcopy_backoff(tcp, bp, 0));
19273 }
19274 
19275 /*
19276  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
19277  * the original desballoca'ed segmapped mblk.
19278  */
19279 static mblk_t *
19280 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
19281 {
19282 	mblk_t *head, *tail, *nbp;
19283 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19284 
19285 	if (IS_VMLOANED_MBLK(bp)) {
19286 		TCP_STAT(tcps, tcp_zcopy_backoff);
19287 		if ((head = copyb(bp)) == NULL) {
19288 			/* fail to backoff; leave it for the next backoff */
19289 			tcp->tcp_xmit_zc_clean = B_FALSE;
19290 			return (bp);
19291 		}
19292 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19293 			if (fix_xmitlist)
19294 				tcp_zcopy_notify(tcp);
19295 			else
19296 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19297 		}
19298 		nbp = bp->b_cont;
19299 		if (fix_xmitlist) {
19300 			head->b_prev = bp->b_prev;
19301 			head->b_next = bp->b_next;
19302 			if (tcp->tcp_xmit_tail == bp)
19303 				tcp->tcp_xmit_tail = head;
19304 		}
19305 		bp->b_next = NULL;
19306 		bp->b_prev = NULL;
19307 		freeb(bp);
19308 	} else {
19309 		head = bp;
19310 		nbp = bp->b_cont;
19311 	}
19312 	tail = head;
19313 	while (nbp) {
19314 		if (IS_VMLOANED_MBLK(nbp)) {
19315 			TCP_STAT(tcps, tcp_zcopy_backoff);
19316 			if ((tail->b_cont = copyb(nbp)) == NULL) {
19317 				tcp->tcp_xmit_zc_clean = B_FALSE;
19318 				tail->b_cont = nbp;
19319 				return (head);
19320 			}
19321 			tail = tail->b_cont;
19322 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19323 				if (fix_xmitlist)
19324 					tcp_zcopy_notify(tcp);
19325 				else
19326 					tail->b_datap->db_struioflag |=
19327 					    STRUIO_ZCNOTIFY;
19328 			}
19329 			bp = nbp;
19330 			nbp = nbp->b_cont;
19331 			if (fix_xmitlist) {
19332 				tail->b_prev = bp->b_prev;
19333 				tail->b_next = bp->b_next;
19334 				if (tcp->tcp_xmit_tail == bp)
19335 					tcp->tcp_xmit_tail = tail;
19336 			}
19337 			bp->b_next = NULL;
19338 			bp->b_prev = NULL;
19339 			freeb(bp);
19340 		} else {
19341 			tail->b_cont = nbp;
19342 			tail = nbp;
19343 			nbp = nbp->b_cont;
19344 		}
19345 	}
19346 	if (fix_xmitlist) {
19347 		tcp->tcp_xmit_last = tail;
19348 		tcp->tcp_xmit_zc_clean = B_TRUE;
19349 	}
19350 	return (head);
19351 }
19352 
19353 static void
19354 tcp_zcopy_notify(tcp_t *tcp)
19355 {
19356 	struct stdata	*stp;
19357 
19358 	if (tcp->tcp_detached)
19359 		return;
19360 	stp = STREAM(tcp->tcp_rq);
19361 	mutex_enter(&stp->sd_lock);
19362 	stp->sd_flag |= STZCNOTIFY;
19363 	cv_broadcast(&stp->sd_zcopy_wait);
19364 	mutex_exit(&stp->sd_lock);
19365 }
19366 
19367 static boolean_t
19368 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19369 {
19370 	ire_t	*ire;
19371 	conn_t	*connp = tcp->tcp_connp;
19372 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19373 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19374 
19375 	mutex_enter(&connp->conn_lock);
19376 	ire = connp->conn_ire_cache;
19377 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19378 
19379 	if ((ire != NULL) &&
19380 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19381 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19382 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19383 		IRE_REFHOLD(ire);
19384 		mutex_exit(&connp->conn_lock);
19385 	} else {
19386 		boolean_t cached = B_FALSE;
19387 		ts_label_t *tsl;
19388 
19389 		/* force a recheck later on */
19390 		tcp->tcp_ire_ill_check_done = B_FALSE;
19391 
19392 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19393 		connp->conn_ire_cache = NULL;
19394 		mutex_exit(&connp->conn_lock);
19395 
19396 		if (ire != NULL)
19397 			IRE_REFRELE_NOTR(ire);
19398 
19399 		tsl = crgetlabel(CONN_CRED(connp));
19400 		ire = (dst ?
19401 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19402 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19403 		    connp->conn_zoneid, tsl, ipst));
19404 
19405 		if (ire == NULL) {
19406 			TCP_STAT(tcps, tcp_ire_null);
19407 			return (B_FALSE);
19408 		}
19409 
19410 		IRE_REFHOLD_NOTR(ire);
19411 		/*
19412 		 * Since we are inside the squeue, there cannot be another
19413 		 * thread in TCP trying to set the conn_ire_cache now.  The
19414 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19415 		 * unplumb thread has not yet started cleaning up the conns.
19416 		 * Hence we don't need to grab the conn lock.
19417 		 */
19418 		if (CONN_CACHE_IRE(connp)) {
19419 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19420 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19421 				TCP_CHECK_IREINFO(tcp, ire);
19422 				connp->conn_ire_cache = ire;
19423 				cached = B_TRUE;
19424 			}
19425 			rw_exit(&ire->ire_bucket->irb_lock);
19426 		}
19427 
19428 		/*
19429 		 * We can continue to use the ire but since it was
19430 		 * not cached, we should drop the extra reference.
19431 		 */
19432 		if (!cached)
19433 			IRE_REFRELE_NOTR(ire);
19434 
19435 		/*
19436 		 * Rampart note: no need to select a new label here, since
19437 		 * labels are not allowed to change during the life of a TCP
19438 		 * connection.
19439 		 */
19440 	}
19441 
19442 	*irep = ire;
19443 
19444 	return (B_TRUE);
19445 }
19446 
19447 /*
19448  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19449  *
19450  * 0 = success;
19451  * 1 = failed to find ire and ill.
19452  */
19453 static boolean_t
19454 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19455 {
19456 	ipha_t		*ipha;
19457 	ipaddr_t	dst;
19458 	ire_t		*ire;
19459 	ill_t		*ill;
19460 	conn_t		*connp = tcp->tcp_connp;
19461 	mblk_t		*ire_fp_mp;
19462 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19463 
19464 	if (mp != NULL)
19465 		ipha = (ipha_t *)mp->b_rptr;
19466 	else
19467 		ipha = tcp->tcp_ipha;
19468 	dst = ipha->ipha_dst;
19469 
19470 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19471 		return (B_FALSE);
19472 
19473 	if ((ire->ire_flags & RTF_MULTIRT) ||
19474 	    (ire->ire_stq == NULL) ||
19475 	    (ire->ire_nce == NULL) ||
19476 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19477 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19478 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19479 		TCP_STAT(tcps, tcp_ip_ire_send);
19480 		IRE_REFRELE(ire);
19481 		return (B_FALSE);
19482 	}
19483 
19484 	ill = ire_to_ill(ire);
19485 	if (connp->conn_outgoing_ill != NULL) {
19486 		ill_t *conn_outgoing_ill = NULL;
19487 		/*
19488 		 * Choose a good ill in the group to send the packets on.
19489 		 */
19490 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
19491 		ill = ire_to_ill(ire);
19492 	}
19493 	ASSERT(ill != NULL);
19494 
19495 	if (!tcp->tcp_ire_ill_check_done) {
19496 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19497 		tcp->tcp_ire_ill_check_done = B_TRUE;
19498 	}
19499 
19500 	*irep = ire;
19501 	*illp = ill;
19502 
19503 	return (B_TRUE);
19504 }
19505 
19506 static void
19507 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19508 {
19509 	ipha_t		*ipha;
19510 	ipaddr_t	src;
19511 	ipaddr_t	dst;
19512 	uint32_t	cksum;
19513 	ire_t		*ire;
19514 	uint16_t	*up;
19515 	ill_t		*ill;
19516 	conn_t		*connp = tcp->tcp_connp;
19517 	uint32_t	hcksum_txflags = 0;
19518 	mblk_t		*ire_fp_mp;
19519 	uint_t		ire_fp_mp_len;
19520 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19521 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19522 
19523 	ASSERT(DB_TYPE(mp) == M_DATA);
19524 
19525 	if (DB_CRED(mp) == NULL)
19526 		mblk_setcred(mp, CONN_CRED(connp));
19527 
19528 	ipha = (ipha_t *)mp->b_rptr;
19529 	src = ipha->ipha_src;
19530 	dst = ipha->ipha_dst;
19531 
19532 	/*
19533 	 * Drop off fast path for IPv6 and also if options are present or
19534 	 * we need to resolve a TS label.
19535 	 */
19536 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19537 	    !IPCL_IS_CONNECTED(connp) ||
19538 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19539 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19540 	    !connp->conn_ulp_labeled ||
19541 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19542 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19543 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19544 		if (tcp->tcp_snd_zcopy_aware)
19545 			mp = tcp_zcopy_disable(tcp, mp);
19546 		TCP_STAT(tcps, tcp_ip_send);
19547 		CALL_IP_WPUT(connp, q, mp);
19548 		return;
19549 	}
19550 
19551 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19552 		if (tcp->tcp_snd_zcopy_aware)
19553 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19554 		CALL_IP_WPUT(connp, q, mp);
19555 		return;
19556 	}
19557 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19558 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19559 
19560 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19561 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19562 #ifndef _BIG_ENDIAN
19563 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19564 #endif
19565 
19566 	/*
19567 	 * Check to see if we need to re-enable LSO/MDT for this connection
19568 	 * because it was previously disabled due to changes in the ill;
19569 	 * note that by doing it here, this re-enabling only applies when
19570 	 * the packet is not dispatched through CALL_IP_WPUT().
19571 	 *
19572 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19573 	 * case, since that's how we ended up here.  For IPv6, we do the
19574 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19575 	 */
19576 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19577 		/*
19578 		 * Restore LSO for this connection, so that next time around
19579 		 * it is eligible to go through tcp_lsosend() path again.
19580 		 */
19581 		TCP_STAT(tcps, tcp_lso_enabled);
19582 		tcp->tcp_lso = B_TRUE;
19583 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19584 		    "interface %s\n", (void *)connp, ill->ill_name));
19585 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19586 		/*
19587 		 * Restore MDT for this connection, so that next time around
19588 		 * it is eligible to go through tcp_multisend() path again.
19589 		 */
19590 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19591 		tcp->tcp_mdt = B_TRUE;
19592 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19593 		    "interface %s\n", (void *)connp, ill->ill_name));
19594 	}
19595 
19596 	if (tcp->tcp_snd_zcopy_aware) {
19597 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19598 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19599 			mp = tcp_zcopy_disable(tcp, mp);
19600 		/*
19601 		 * we shouldn't need to reset ipha as the mp containing
19602 		 * ipha should never be a zero-copy mp.
19603 		 */
19604 	}
19605 
19606 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19607 		ASSERT(ill->ill_hcksum_capab != NULL);
19608 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19609 	}
19610 
19611 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19612 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19613 
19614 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19615 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19616 
19617 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19618 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19619 
19620 	/* Software checksum? */
19621 	if (DB_CKSUMFLAGS(mp) == 0) {
19622 		TCP_STAT(tcps, tcp_out_sw_cksum);
19623 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19624 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19625 	}
19626 
19627 	ipha->ipha_fragment_offset_and_flags |=
19628 	    (uint32_t)htons(ire->ire_frag_flag);
19629 
19630 	/* Calculate IP header checksum if hardware isn't capable */
19631 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19632 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19633 		    ((uint16_t *)ipha)[4]);
19634 	}
19635 
19636 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19637 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19638 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19639 
19640 	UPDATE_OB_PKT_COUNT(ire);
19641 	ire->ire_last_used_time = lbolt;
19642 
19643 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19644 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19645 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19646 	    ntohs(ipha->ipha_length));
19647 
19648 	if (ILL_DLS_CAPABLE(ill)) {
19649 		/*
19650 		 * Send the packet directly to DLD, where it may be queued
19651 		 * depending on the availability of transmit resources at
19652 		 * the media layer.
19653 		 */
19654 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19655 	} else {
19656 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19657 		DTRACE_PROBE4(ip4__physical__out__start,
19658 		    ill_t *, NULL, ill_t *, out_ill,
19659 		    ipha_t *, ipha, mblk_t *, mp);
19660 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19661 		    ipst->ips_ipv4firewall_physical_out,
19662 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19663 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19664 		if (mp != NULL)
19665 			putnext(ire->ire_stq, mp);
19666 	}
19667 	IRE_REFRELE(ire);
19668 }
19669 
19670 /*
19671  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19672  * if the receiver shrinks the window, i.e. moves the right window to the
19673  * left, the we should not send new data, but should retransmit normally the
19674  * old unacked data between suna and suna + swnd. We might has sent data
19675  * that is now outside the new window, pretend that we didn't send  it.
19676  */
19677 static void
19678 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19679 {
19680 	uint32_t	snxt = tcp->tcp_snxt;
19681 	mblk_t		*xmit_tail;
19682 	int32_t		offset;
19683 
19684 	ASSERT(shrunk_count > 0);
19685 
19686 	/* Pretend we didn't send the data outside the window */
19687 	snxt -= shrunk_count;
19688 
19689 	/* Get the mblk and the offset in it per the shrunk window */
19690 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19691 
19692 	ASSERT(xmit_tail != NULL);
19693 
19694 	/* Reset all the values per the now shrunk window */
19695 	tcp->tcp_snxt = snxt;
19696 	tcp->tcp_xmit_tail = xmit_tail;
19697 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19698 	    offset;
19699 	tcp->tcp_unsent += shrunk_count;
19700 
19701 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19702 		/*
19703 		 * Make sure the timer is running so that we will probe a zero
19704 		 * window.
19705 		 */
19706 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19707 }
19708 
19709 
19710 /*
19711  * The TCP normal data output path.
19712  * NOTE: the logic of the fast path is duplicated from this function.
19713  */
19714 static void
19715 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19716 {
19717 	int		len;
19718 	mblk_t		*local_time;
19719 	mblk_t		*mp1;
19720 	uint32_t	snxt;
19721 	int		tail_unsent;
19722 	int		tcpstate;
19723 	int		usable = 0;
19724 	mblk_t		*xmit_tail;
19725 	queue_t		*q = tcp->tcp_wq;
19726 	int32_t		mss;
19727 	int32_t		num_sack_blk = 0;
19728 	int32_t		tcp_hdr_len;
19729 	int32_t		tcp_tcp_hdr_len;
19730 	int		mdt_thres;
19731 	int		rc;
19732 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19733 	ip_stack_t	*ipst;
19734 
19735 	tcpstate = tcp->tcp_state;
19736 	if (mp == NULL) {
19737 		/*
19738 		 * tcp_wput_data() with NULL mp should only be called when
19739 		 * there is unsent data.
19740 		 */
19741 		ASSERT(tcp->tcp_unsent > 0);
19742 		/* Really tacky... but we need this for detached closes. */
19743 		len = tcp->tcp_unsent;
19744 		goto data_null;
19745 	}
19746 
19747 #if CCS_STATS
19748 	wrw_stats.tot.count++;
19749 	wrw_stats.tot.bytes += msgdsize(mp);
19750 #endif
19751 	ASSERT(mp->b_datap->db_type == M_DATA);
19752 	/*
19753 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19754 	 * or before a connection attempt has begun.
19755 	 */
19756 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19757 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19758 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19759 #ifdef DEBUG
19760 			cmn_err(CE_WARN,
19761 			    "tcp_wput_data: data after ordrel, %s",
19762 			    tcp_display(tcp, NULL,
19763 			    DISP_ADDR_AND_PORT));
19764 #else
19765 			if (tcp->tcp_debug) {
19766 				(void) strlog(TCP_MOD_ID, 0, 1,
19767 				    SL_TRACE|SL_ERROR,
19768 				    "tcp_wput_data: data after ordrel, %s\n",
19769 				    tcp_display(tcp, NULL,
19770 				    DISP_ADDR_AND_PORT));
19771 			}
19772 #endif /* DEBUG */
19773 		}
19774 		if (tcp->tcp_snd_zcopy_aware &&
19775 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19776 			tcp_zcopy_notify(tcp);
19777 		freemsg(mp);
19778 		mutex_enter(&tcp->tcp_non_sq_lock);
19779 		if (tcp->tcp_flow_stopped &&
19780 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19781 			tcp_clrqfull(tcp);
19782 		}
19783 		mutex_exit(&tcp->tcp_non_sq_lock);
19784 		return;
19785 	}
19786 
19787 	/* Strip empties */
19788 	for (;;) {
19789 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19790 		    (uintptr_t)INT_MAX);
19791 		len = (int)(mp->b_wptr - mp->b_rptr);
19792 		if (len > 0)
19793 			break;
19794 		mp1 = mp;
19795 		mp = mp->b_cont;
19796 		freeb(mp1);
19797 		if (!mp) {
19798 			return;
19799 		}
19800 	}
19801 
19802 	/* If we are the first on the list ... */
19803 	if (tcp->tcp_xmit_head == NULL) {
19804 		tcp->tcp_xmit_head = mp;
19805 		tcp->tcp_xmit_tail = mp;
19806 		tcp->tcp_xmit_tail_unsent = len;
19807 	} else {
19808 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19809 		struct datab *dp;
19810 
19811 		mp1 = tcp->tcp_xmit_last;
19812 		if (len < tcp_tx_pull_len &&
19813 		    (dp = mp1->b_datap)->db_ref == 1 &&
19814 		    dp->db_lim - mp1->b_wptr >= len) {
19815 			ASSERT(len > 0);
19816 			ASSERT(!mp1->b_cont);
19817 			if (len == 1) {
19818 				*mp1->b_wptr++ = *mp->b_rptr;
19819 			} else {
19820 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19821 				mp1->b_wptr += len;
19822 			}
19823 			if (mp1 == tcp->tcp_xmit_tail)
19824 				tcp->tcp_xmit_tail_unsent += len;
19825 			mp1->b_cont = mp->b_cont;
19826 			if (tcp->tcp_snd_zcopy_aware &&
19827 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19828 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19829 			freeb(mp);
19830 			mp = mp1;
19831 		} else {
19832 			tcp->tcp_xmit_last->b_cont = mp;
19833 		}
19834 		len += tcp->tcp_unsent;
19835 	}
19836 
19837 	/* Tack on however many more positive length mblks we have */
19838 	if ((mp1 = mp->b_cont) != NULL) {
19839 		do {
19840 			int tlen;
19841 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19842 			    (uintptr_t)INT_MAX);
19843 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19844 			if (tlen <= 0) {
19845 				mp->b_cont = mp1->b_cont;
19846 				freeb(mp1);
19847 			} else {
19848 				len += tlen;
19849 				mp = mp1;
19850 			}
19851 		} while ((mp1 = mp->b_cont) != NULL);
19852 	}
19853 	tcp->tcp_xmit_last = mp;
19854 	tcp->tcp_unsent = len;
19855 
19856 	if (urgent)
19857 		usable = 1;
19858 
19859 data_null:
19860 	snxt = tcp->tcp_snxt;
19861 	xmit_tail = tcp->tcp_xmit_tail;
19862 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19863 
19864 	/*
19865 	 * Note that tcp_mss has been adjusted to take into account the
19866 	 * timestamp option if applicable.  Because SACK options do not
19867 	 * appear in every TCP segments and they are of variable lengths,
19868 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19869 	 * the actual segment length when we need to send a segment which
19870 	 * includes SACK options.
19871 	 */
19872 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19873 		int32_t	opt_len;
19874 
19875 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19876 		    tcp->tcp_num_sack_blk);
19877 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19878 		    2 + TCPOPT_HEADER_LEN;
19879 		mss = tcp->tcp_mss - opt_len;
19880 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19881 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19882 	} else {
19883 		mss = tcp->tcp_mss;
19884 		tcp_hdr_len = tcp->tcp_hdr_len;
19885 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19886 	}
19887 
19888 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19889 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19890 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19891 	}
19892 	if (tcpstate == TCPS_SYN_RCVD) {
19893 		/*
19894 		 * The three-way connection establishment handshake is not
19895 		 * complete yet. We want to queue the data for transmission
19896 		 * after entering ESTABLISHED state (RFC793). A jump to
19897 		 * "done" label effectively leaves data on the queue.
19898 		 */
19899 		goto done;
19900 	} else {
19901 		int usable_r;
19902 
19903 		/*
19904 		 * In the special case when cwnd is zero, which can only
19905 		 * happen if the connection is ECN capable, return now.
19906 		 * New segments is sent using tcp_timer().  The timer
19907 		 * is set in tcp_rput_data().
19908 		 */
19909 		if (tcp->tcp_cwnd == 0) {
19910 			/*
19911 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19912 			 * finished.
19913 			 */
19914 			ASSERT(tcp->tcp_ecn_ok ||
19915 			    tcp->tcp_state < TCPS_ESTABLISHED);
19916 			return;
19917 		}
19918 
19919 		/* NOTE: trouble if xmitting while SYN not acked? */
19920 		usable_r = snxt - tcp->tcp_suna;
19921 		usable_r = tcp->tcp_swnd - usable_r;
19922 
19923 		/*
19924 		 * Check if the receiver has shrunk the window.  If
19925 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19926 		 * cannot be set as there is unsent data, so FIN cannot
19927 		 * be sent out.  Otherwise, we need to take into account
19928 		 * of FIN as it consumes an "invisible" sequence number.
19929 		 */
19930 		ASSERT(tcp->tcp_fin_sent == 0);
19931 		if (usable_r < 0) {
19932 			/*
19933 			 * The receiver has shrunk the window and we have sent
19934 			 * -usable_r date beyond the window, re-adjust.
19935 			 *
19936 			 * If TCP window scaling is enabled, there can be
19937 			 * round down error as the advertised receive window
19938 			 * is actually right shifted n bits.  This means that
19939 			 * the lower n bits info is wiped out.  It will look
19940 			 * like the window is shrunk.  Do a check here to
19941 			 * see if the shrunk amount is actually within the
19942 			 * error in window calculation.  If it is, just
19943 			 * return.  Note that this check is inside the
19944 			 * shrunk window check.  This makes sure that even
19945 			 * though tcp_process_shrunk_swnd() is not called,
19946 			 * we will stop further processing.
19947 			 */
19948 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19949 				tcp_process_shrunk_swnd(tcp, -usable_r);
19950 			}
19951 			return;
19952 		}
19953 
19954 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19955 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19956 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19957 
19958 		/* usable = MIN(usable, unsent) */
19959 		if (usable_r > len)
19960 			usable_r = len;
19961 
19962 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19963 		if (usable_r > 0) {
19964 			usable = usable_r;
19965 		} else {
19966 			/* Bypass all other unnecessary processing. */
19967 			goto done;
19968 		}
19969 	}
19970 
19971 	local_time = (mblk_t *)lbolt;
19972 
19973 	/*
19974 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19975 	 * BSD.  This is more in line with the true intent of Nagle.
19976 	 *
19977 	 * The conditions are:
19978 	 * 1. The amount of unsent data (or amount of data which can be
19979 	 *    sent, whichever is smaller) is less than Nagle limit.
19980 	 * 2. The last sent size is also less than Nagle limit.
19981 	 * 3. There is unack'ed data.
19982 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19983 	 *    Nagle algorithm.  This reduces the probability that urgent
19984 	 *    bytes get "merged" together.
19985 	 * 5. The app has not closed the connection.  This eliminates the
19986 	 *    wait time of the receiving side waiting for the last piece of
19987 	 *    (small) data.
19988 	 *
19989 	 * If all are satisified, exit without sending anything.  Note
19990 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19991 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19992 	 * 4095).
19993 	 */
19994 	if (usable < (int)tcp->tcp_naglim &&
19995 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19996 	    snxt != tcp->tcp_suna &&
19997 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19998 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19999 		goto done;
20000 	}
20001 
20002 	if (tcp->tcp_cork) {
20003 		/*
20004 		 * if the tcp->tcp_cork option is set, then we have to force
20005 		 * TCP not to send partial segment (smaller than MSS bytes).
20006 		 * We are calculating the usable now based on full mss and
20007 		 * will save the rest of remaining data for later.
20008 		 */
20009 		if (usable < mss)
20010 			goto done;
20011 		usable = (usable / mss) * mss;
20012 	}
20013 
20014 	/* Update the latest receive window size in TCP header. */
20015 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
20016 	    tcp->tcp_tcph->th_win);
20017 
20018 	/*
20019 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
20020 	 *
20021 	 * 1. Simple TCP/IP{v4,v6} (no options).
20022 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
20023 	 * 3. If the TCP connection is in ESTABLISHED state.
20024 	 * 4. The TCP is not detached.
20025 	 *
20026 	 * If any of the above conditions have changed during the
20027 	 * connection, stop using LSO/MDT and restore the stream head
20028 	 * parameters accordingly.
20029 	 */
20030 	ipst = tcps->tcps_netstack->netstack_ip;
20031 
20032 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
20033 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
20034 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
20035 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20036 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
20037 	    tcp->tcp_state != TCPS_ESTABLISHED ||
20038 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
20039 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
20040 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
20041 		if (tcp->tcp_lso) {
20042 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
20043 			tcp->tcp_lso = B_FALSE;
20044 		} else {
20045 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
20046 			tcp->tcp_mdt = B_FALSE;
20047 		}
20048 
20049 		/* Anything other than detached is considered pathological */
20050 		if (!TCP_IS_DETACHED(tcp)) {
20051 			if (tcp->tcp_lso)
20052 				TCP_STAT(tcps, tcp_lso_disabled);
20053 			else
20054 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
20055 			(void) tcp_maxpsz_set(tcp, B_TRUE);
20056 		}
20057 	}
20058 
20059 	/* Use MDT if sendable amount is greater than the threshold */
20060 	if (tcp->tcp_mdt &&
20061 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
20062 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
20063 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
20064 	    (tcp->tcp_valid_bits == 0 ||
20065 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
20066 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
20067 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
20068 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
20069 		    local_time, mdt_thres);
20070 	} else {
20071 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
20072 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
20073 		    local_time, INT_MAX);
20074 	}
20075 
20076 	/* Pretend that all we were trying to send really got sent */
20077 	if (rc < 0 && tail_unsent < 0) {
20078 		do {
20079 			xmit_tail = xmit_tail->b_cont;
20080 			xmit_tail->b_prev = local_time;
20081 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
20082 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
20083 			tail_unsent += (int)(xmit_tail->b_wptr -
20084 			    xmit_tail->b_rptr);
20085 		} while (tail_unsent < 0);
20086 	}
20087 done:;
20088 	tcp->tcp_xmit_tail = xmit_tail;
20089 	tcp->tcp_xmit_tail_unsent = tail_unsent;
20090 	len = tcp->tcp_snxt - snxt;
20091 	if (len) {
20092 		/*
20093 		 * If new data was sent, need to update the notsack
20094 		 * list, which is, afterall, data blocks that have
20095 		 * not been sack'ed by the receiver.  New data is
20096 		 * not sack'ed.
20097 		 */
20098 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
20099 			/* len is a negative value. */
20100 			tcp->tcp_pipe -= len;
20101 			tcp_notsack_update(&(tcp->tcp_notsack_list),
20102 			    tcp->tcp_snxt, snxt,
20103 			    &(tcp->tcp_num_notsack_blk),
20104 			    &(tcp->tcp_cnt_notsack_list));
20105 		}
20106 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
20107 		tcp->tcp_rack = tcp->tcp_rnxt;
20108 		tcp->tcp_rack_cnt = 0;
20109 		if ((snxt + len) == tcp->tcp_suna) {
20110 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20111 		}
20112 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
20113 		/*
20114 		 * Didn't send anything. Make sure the timer is running
20115 		 * so that we will probe a zero window.
20116 		 */
20117 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20118 	}
20119 	/* Note that len is the amount we just sent but with a negative sign */
20120 	tcp->tcp_unsent += len;
20121 	mutex_enter(&tcp->tcp_non_sq_lock);
20122 	if (tcp->tcp_flow_stopped) {
20123 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
20124 			tcp_clrqfull(tcp);
20125 		}
20126 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
20127 		tcp_setqfull(tcp);
20128 	}
20129 	mutex_exit(&tcp->tcp_non_sq_lock);
20130 }
20131 
20132 /*
20133  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
20134  * outgoing TCP header with the template header, as well as other
20135  * options such as time-stamp, ECN and/or SACK.
20136  */
20137 static void
20138 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
20139 {
20140 	tcph_t *tcp_tmpl, *tcp_h;
20141 	uint32_t *dst, *src;
20142 	int hdrlen;
20143 
20144 	ASSERT(OK_32PTR(rptr));
20145 
20146 	/* Template header */
20147 	tcp_tmpl = tcp->tcp_tcph;
20148 
20149 	/* Header of outgoing packet */
20150 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20151 
20152 	/* dst and src are opaque 32-bit fields, used for copying */
20153 	dst = (uint32_t *)rptr;
20154 	src = (uint32_t *)tcp->tcp_iphc;
20155 	hdrlen = tcp->tcp_hdr_len;
20156 
20157 	/* Fill time-stamp option if needed */
20158 	if (tcp->tcp_snd_ts_ok) {
20159 		U32_TO_BE32((uint32_t)now,
20160 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
20161 		U32_TO_BE32(tcp->tcp_ts_recent,
20162 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
20163 	} else {
20164 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
20165 	}
20166 
20167 	/*
20168 	 * Copy the template header; is this really more efficient than
20169 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
20170 	 * but perhaps not for other scenarios.
20171 	 */
20172 	dst[0] = src[0];
20173 	dst[1] = src[1];
20174 	dst[2] = src[2];
20175 	dst[3] = src[3];
20176 	dst[4] = src[4];
20177 	dst[5] = src[5];
20178 	dst[6] = src[6];
20179 	dst[7] = src[7];
20180 	dst[8] = src[8];
20181 	dst[9] = src[9];
20182 	if (hdrlen -= 40) {
20183 		hdrlen >>= 2;
20184 		dst += 10;
20185 		src += 10;
20186 		do {
20187 			*dst++ = *src++;
20188 		} while (--hdrlen);
20189 	}
20190 
20191 	/*
20192 	 * Set the ECN info in the TCP header if it is not a zero
20193 	 * window probe.  Zero window probe is only sent in
20194 	 * tcp_wput_data() and tcp_timer().
20195 	 */
20196 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
20197 		SET_ECT(tcp, rptr);
20198 
20199 		if (tcp->tcp_ecn_echo_on)
20200 			tcp_h->th_flags[0] |= TH_ECE;
20201 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
20202 			tcp_h->th_flags[0] |= TH_CWR;
20203 			tcp->tcp_ecn_cwr_sent = B_TRUE;
20204 		}
20205 	}
20206 
20207 	/* Fill in SACK options */
20208 	if (num_sack_blk > 0) {
20209 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
20210 		sack_blk_t *tmp;
20211 		int32_t	i;
20212 
20213 		wptr[0] = TCPOPT_NOP;
20214 		wptr[1] = TCPOPT_NOP;
20215 		wptr[2] = TCPOPT_SACK;
20216 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
20217 		    sizeof (sack_blk_t);
20218 		wptr += TCPOPT_REAL_SACK_LEN;
20219 
20220 		tmp = tcp->tcp_sack_list;
20221 		for (i = 0; i < num_sack_blk; i++) {
20222 			U32_TO_BE32(tmp[i].begin, wptr);
20223 			wptr += sizeof (tcp_seq);
20224 			U32_TO_BE32(tmp[i].end, wptr);
20225 			wptr += sizeof (tcp_seq);
20226 		}
20227 		tcp_h->th_offset_and_rsrvd[0] +=
20228 		    ((num_sack_blk * 2 + 1) << 4);
20229 	}
20230 }
20231 
20232 /*
20233  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
20234  * the destination address and SAP attribute, and if necessary, the
20235  * hardware checksum offload attribute to a Multidata message.
20236  */
20237 static int
20238 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
20239     const uint32_t start, const uint32_t stuff, const uint32_t end,
20240     const uint32_t flags, tcp_stack_t *tcps)
20241 {
20242 	/* Add global destination address & SAP attribute */
20243 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
20244 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
20245 		    "destination address+SAP\n"));
20246 
20247 		if (dlmp != NULL)
20248 			TCP_STAT(tcps, tcp_mdt_allocfail);
20249 		return (-1);
20250 	}
20251 
20252 	/* Add global hwcksum attribute */
20253 	if (hwcksum &&
20254 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
20255 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
20256 		    "checksum attribute\n"));
20257 
20258 		TCP_STAT(tcps, tcp_mdt_allocfail);
20259 		return (-1);
20260 	}
20261 
20262 	return (0);
20263 }
20264 
20265 /*
20266  * Smaller and private version of pdescinfo_t used specifically for TCP,
20267  * which allows for only two payload spans per packet.
20268  */
20269 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
20270 
20271 /*
20272  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
20273  * scheme, and returns one the following:
20274  *
20275  * -1 = failed allocation.
20276  *  0 = success; burst count reached, or usable send window is too small,
20277  *      and that we'd rather wait until later before sending again.
20278  */
20279 static int
20280 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20281     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20282     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20283     const int mdt_thres)
20284 {
20285 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
20286 	multidata_t	*mmd;
20287 	uint_t		obsegs, obbytes, hdr_frag_sz;
20288 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
20289 	int		num_burst_seg, max_pld;
20290 	pdesc_t		*pkt;
20291 	tcp_pdescinfo_t	tcp_pkt_info;
20292 	pdescinfo_t	*pkt_info;
20293 	int		pbuf_idx, pbuf_idx_nxt;
20294 	int		seg_len, len, spill, af;
20295 	boolean_t	add_buffer, zcopy, clusterwide;
20296 	boolean_t	buf_trunked = B_FALSE;
20297 	boolean_t	rconfirm = B_FALSE;
20298 	boolean_t	done = B_FALSE;
20299 	uint32_t	cksum;
20300 	uint32_t	hwcksum_flags;
20301 	ire_t		*ire = NULL;
20302 	ill_t		*ill;
20303 	ipha_t		*ipha;
20304 	ip6_t		*ip6h;
20305 	ipaddr_t	src, dst;
20306 	ill_zerocopy_capab_t *zc_cap = NULL;
20307 	uint16_t	*up;
20308 	int		err;
20309 	conn_t		*connp;
20310 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
20311 	uchar_t		*pld_start;
20312 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20313 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
20314 
20315 #ifdef	_BIG_ENDIAN
20316 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
20317 #else
20318 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
20319 #endif
20320 
20321 #define	PREP_NEW_MULTIDATA() {			\
20322 	mmd = NULL;				\
20323 	md_mp = md_hbuf = NULL;			\
20324 	cur_hdr_off = 0;			\
20325 	max_pld = tcp->tcp_mdt_max_pld;		\
20326 	pbuf_idx = pbuf_idx_nxt = -1;		\
20327 	add_buffer = B_TRUE;			\
20328 	zcopy = B_FALSE;			\
20329 }
20330 
20331 #define	PREP_NEW_PBUF() {			\
20332 	md_pbuf = md_pbuf_nxt = NULL;		\
20333 	pbuf_idx = pbuf_idx_nxt = -1;		\
20334 	cur_pld_off = 0;			\
20335 	first_snxt = *snxt;			\
20336 	ASSERT(*tail_unsent > 0);		\
20337 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20338 }
20339 
20340 	ASSERT(mdt_thres >= mss);
20341 	ASSERT(*usable > 0 && *usable > mdt_thres);
20342 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20343 	ASSERT(!TCP_IS_DETACHED(tcp));
20344 	ASSERT(tcp->tcp_valid_bits == 0 ||
20345 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20346 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20347 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20348 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20349 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20350 
20351 	connp = tcp->tcp_connp;
20352 	ASSERT(connp != NULL);
20353 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20354 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20355 
20356 	/*
20357 	 * Note that tcp will only declare at most 2 payload spans per
20358 	 * packet, which is much lower than the maximum allowable number
20359 	 * of packet spans per Multidata.  For this reason, we use the
20360 	 * privately declared and smaller descriptor info structure, in
20361 	 * order to save some stack space.
20362 	 */
20363 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20364 
20365 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20366 	if (af == AF_INET) {
20367 		dst = tcp->tcp_ipha->ipha_dst;
20368 		src = tcp->tcp_ipha->ipha_src;
20369 		ASSERT(!CLASSD(dst));
20370 	}
20371 	ASSERT(af == AF_INET ||
20372 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20373 
20374 	obsegs = obbytes = 0;
20375 	num_burst_seg = tcp->tcp_snd_burst;
20376 	md_mp_head = NULL;
20377 	PREP_NEW_MULTIDATA();
20378 
20379 	/*
20380 	 * Before we go on further, make sure there is an IRE that we can
20381 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20382 	 * in proceeding any further, and we should just hand everything
20383 	 * off to the legacy path.
20384 	 */
20385 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20386 		goto legacy_send_no_md;
20387 
20388 	ASSERT(ire != NULL);
20389 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20390 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20391 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20392 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20393 	/*
20394 	 * If we do support loopback for MDT (which requires modifications
20395 	 * to the receiving paths), the following assertions should go away,
20396 	 * and we would be sending the Multidata to loopback conn later on.
20397 	 */
20398 	ASSERT(!IRE_IS_LOCAL(ire));
20399 	ASSERT(ire->ire_stq != NULL);
20400 
20401 	ill = ire_to_ill(ire);
20402 	ASSERT(ill != NULL);
20403 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20404 
20405 	if (!tcp->tcp_ire_ill_check_done) {
20406 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20407 		tcp->tcp_ire_ill_check_done = B_TRUE;
20408 	}
20409 
20410 	/*
20411 	 * If the underlying interface conditions have changed, or if the
20412 	 * new interface does not support MDT, go back to legacy path.
20413 	 */
20414 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20415 		/* don't go through this path anymore for this connection */
20416 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20417 		tcp->tcp_mdt = B_FALSE;
20418 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20419 		    "interface %s\n", (void *)connp, ill->ill_name));
20420 		/* IRE will be released prior to returning */
20421 		goto legacy_send_no_md;
20422 	}
20423 
20424 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20425 		zc_cap = ill->ill_zerocopy_capab;
20426 
20427 	/*
20428 	 * Check if we can take tcp fast-path. Note that "incomplete"
20429 	 * ire's (where the link-layer for next hop is not resolved
20430 	 * or where the fast-path header in nce_fp_mp is not available
20431 	 * yet) are sent down the legacy (slow) path.
20432 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20433 	 */
20434 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20435 		/* IRE will be released prior to returning */
20436 		goto legacy_send_no_md;
20437 	}
20438 
20439 	/* go to legacy path if interface doesn't support zerocopy */
20440 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20441 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20442 		/* IRE will be released prior to returning */
20443 		goto legacy_send_no_md;
20444 	}
20445 
20446 	/* does the interface support hardware checksum offload? */
20447 	hwcksum_flags = 0;
20448 	if (ILL_HCKSUM_CAPABLE(ill) &&
20449 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20450 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20451 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20452 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20453 		    HCKSUM_IPHDRCKSUM)
20454 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20455 
20456 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20457 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20458 			hwcksum_flags |= HCK_FULLCKSUM;
20459 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20460 		    HCKSUM_INET_PARTIAL)
20461 			hwcksum_flags |= HCK_PARTIALCKSUM;
20462 	}
20463 
20464 	/*
20465 	 * Each header fragment consists of the leading extra space,
20466 	 * followed by the TCP/IP header, and the trailing extra space.
20467 	 * We make sure that each header fragment begins on a 32-bit
20468 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20469 	 * aligned in tcp_mdt_update).
20470 	 */
20471 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20472 	    tcp->tcp_mdt_hdr_tail), 4);
20473 
20474 	/* are we starting from the beginning of data block? */
20475 	if (*tail_unsent == 0) {
20476 		*xmit_tail = (*xmit_tail)->b_cont;
20477 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20478 		*tail_unsent = (int)MBLKL(*xmit_tail);
20479 	}
20480 
20481 	/*
20482 	 * Here we create one or more Multidata messages, each made up of
20483 	 * one header buffer and up to N payload buffers.  This entire
20484 	 * operation is done within two loops:
20485 	 *
20486 	 * The outer loop mostly deals with creating the Multidata message,
20487 	 * as well as the header buffer that gets added to it.  It also
20488 	 * links the Multidata messages together such that all of them can
20489 	 * be sent down to the lower layer in a single putnext call; this
20490 	 * linking behavior depends on the tcp_mdt_chain tunable.
20491 	 *
20492 	 * The inner loop takes an existing Multidata message, and adds
20493 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20494 	 * packetizes those buffers by filling up the corresponding header
20495 	 * buffer fragments with the proper IP and TCP headers, and by
20496 	 * describing the layout of each packet in the packet descriptors
20497 	 * that get added to the Multidata.
20498 	 */
20499 	do {
20500 		/*
20501 		 * If usable send window is too small, or data blocks in
20502 		 * transmit list are smaller than our threshold (i.e. app
20503 		 * performs large writes followed by small ones), we hand
20504 		 * off the control over to the legacy path.  Note that we'll
20505 		 * get back the control once it encounters a large block.
20506 		 */
20507 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20508 		    (*xmit_tail)->b_cont != NULL &&
20509 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20510 			/* send down what we've got so far */
20511 			if (md_mp_head != NULL) {
20512 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20513 				    obsegs, obbytes, &rconfirm);
20514 			}
20515 			/*
20516 			 * Pass control over to tcp_send(), but tell it to
20517 			 * return to us once a large-size transmission is
20518 			 * possible.
20519 			 */
20520 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20521 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20522 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20523 			    tail_unsent, xmit_tail, local_time,
20524 			    mdt_thres)) <= 0) {
20525 				/* burst count reached, or alloc failed */
20526 				IRE_REFRELE(ire);
20527 				return (err);
20528 			}
20529 
20530 			/* tcp_send() may have sent everything, so check */
20531 			if (*usable <= 0) {
20532 				IRE_REFRELE(ire);
20533 				return (0);
20534 			}
20535 
20536 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20537 			/*
20538 			 * We may have delivered the Multidata, so make sure
20539 			 * to re-initialize before the next round.
20540 			 */
20541 			md_mp_head = NULL;
20542 			obsegs = obbytes = 0;
20543 			num_burst_seg = tcp->tcp_snd_burst;
20544 			PREP_NEW_MULTIDATA();
20545 
20546 			/* are we starting from the beginning of data block? */
20547 			if (*tail_unsent == 0) {
20548 				*xmit_tail = (*xmit_tail)->b_cont;
20549 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20550 				    (uintptr_t)INT_MAX);
20551 				*tail_unsent = (int)MBLKL(*xmit_tail);
20552 			}
20553 		}
20554 
20555 		/*
20556 		 * max_pld limits the number of mblks in tcp's transmit
20557 		 * queue that can be added to a Multidata message.  Once
20558 		 * this counter reaches zero, no more additional mblks
20559 		 * can be added to it.  What happens afterwards depends
20560 		 * on whether or not we are set to chain the Multidata
20561 		 * messages.  If we are to link them together, reset
20562 		 * max_pld to its original value (tcp_mdt_max_pld) and
20563 		 * prepare to create a new Multidata message which will
20564 		 * get linked to md_mp_head.  Else, leave it alone and
20565 		 * let the inner loop break on its own.
20566 		 */
20567 		if (tcp_mdt_chain && max_pld == 0)
20568 			PREP_NEW_MULTIDATA();
20569 
20570 		/* adding a payload buffer; re-initialize values */
20571 		if (add_buffer)
20572 			PREP_NEW_PBUF();
20573 
20574 		/*
20575 		 * If we don't have a Multidata, either because we just
20576 		 * (re)entered this outer loop, or after we branched off
20577 		 * to tcp_send above, setup the Multidata and header
20578 		 * buffer to be used.
20579 		 */
20580 		if (md_mp == NULL) {
20581 			int md_hbuflen;
20582 			uint32_t start, stuff;
20583 
20584 			/*
20585 			 * Calculate Multidata header buffer size large enough
20586 			 * to hold all of the headers that can possibly be
20587 			 * sent at this moment.  We'd rather over-estimate
20588 			 * the size than running out of space; this is okay
20589 			 * since this buffer is small anyway.
20590 			 */
20591 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20592 
20593 			/*
20594 			 * Start and stuff offset for partial hardware
20595 			 * checksum offload; these are currently for IPv4.
20596 			 * For full checksum offload, they are set to zero.
20597 			 */
20598 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20599 				if (af == AF_INET) {
20600 					start = IP_SIMPLE_HDR_LENGTH;
20601 					stuff = IP_SIMPLE_HDR_LENGTH +
20602 					    TCP_CHECKSUM_OFFSET;
20603 				} else {
20604 					start = IPV6_HDR_LEN;
20605 					stuff = IPV6_HDR_LEN +
20606 					    TCP_CHECKSUM_OFFSET;
20607 				}
20608 			} else {
20609 				start = stuff = 0;
20610 			}
20611 
20612 			/*
20613 			 * Create the header buffer, Multidata, as well as
20614 			 * any necessary attributes (destination address,
20615 			 * SAP and hardware checksum offload) that should
20616 			 * be associated with the Multidata message.
20617 			 */
20618 			ASSERT(cur_hdr_off == 0);
20619 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20620 			    ((md_hbuf->b_wptr += md_hbuflen),
20621 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20622 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20623 			    /* fastpath mblk */
20624 			    ire->ire_nce->nce_res_mp,
20625 			    /* hardware checksum enabled */
20626 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20627 			    /* hardware checksum offsets */
20628 			    start, stuff, 0,
20629 			    /* hardware checksum flag */
20630 			    hwcksum_flags, tcps) != 0)) {
20631 legacy_send:
20632 				if (md_mp != NULL) {
20633 					/* Unlink message from the chain */
20634 					if (md_mp_head != NULL) {
20635 						err = (intptr_t)rmvb(md_mp_head,
20636 						    md_mp);
20637 						/*
20638 						 * We can't assert that rmvb
20639 						 * did not return -1, since we
20640 						 * may get here before linkb
20641 						 * happens.  We do, however,
20642 						 * check if we just removed the
20643 						 * only element in the list.
20644 						 */
20645 						if (err == 0)
20646 							md_mp_head = NULL;
20647 					}
20648 					/* md_hbuf gets freed automatically */
20649 					TCP_STAT(tcps, tcp_mdt_discarded);
20650 					freeb(md_mp);
20651 				} else {
20652 					/* Either allocb or mmd_alloc failed */
20653 					TCP_STAT(tcps, tcp_mdt_allocfail);
20654 					if (md_hbuf != NULL)
20655 						freeb(md_hbuf);
20656 				}
20657 
20658 				/* send down what we've got so far */
20659 				if (md_mp_head != NULL) {
20660 					tcp_multisend_data(tcp, ire, ill,
20661 					    md_mp_head, obsegs, obbytes,
20662 					    &rconfirm);
20663 				}
20664 legacy_send_no_md:
20665 				if (ire != NULL)
20666 					IRE_REFRELE(ire);
20667 				/*
20668 				 * Too bad; let the legacy path handle this.
20669 				 * We specify INT_MAX for the threshold, since
20670 				 * we gave up with the Multidata processings
20671 				 * and let the old path have it all.
20672 				 */
20673 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20674 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20675 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20676 				    snxt, tail_unsent, xmit_tail, local_time,
20677 				    INT_MAX));
20678 			}
20679 
20680 			/* link to any existing ones, if applicable */
20681 			TCP_STAT(tcps, tcp_mdt_allocd);
20682 			if (md_mp_head == NULL) {
20683 				md_mp_head = md_mp;
20684 			} else if (tcp_mdt_chain) {
20685 				TCP_STAT(tcps, tcp_mdt_linked);
20686 				linkb(md_mp_head, md_mp);
20687 			}
20688 		}
20689 
20690 		ASSERT(md_mp_head != NULL);
20691 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20692 		ASSERT(md_mp != NULL && mmd != NULL);
20693 		ASSERT(md_hbuf != NULL);
20694 
20695 		/*
20696 		 * Packetize the transmittable portion of the data block;
20697 		 * each data block is essentially added to the Multidata
20698 		 * as a payload buffer.  We also deal with adding more
20699 		 * than one payload buffers, which happens when the remaining
20700 		 * packetized portion of the current payload buffer is less
20701 		 * than MSS, while the next data block in transmit queue
20702 		 * has enough data to make up for one.  This "spillover"
20703 		 * case essentially creates a split-packet, where portions
20704 		 * of the packet's payload fragments may span across two
20705 		 * virtually discontiguous address blocks.
20706 		 */
20707 		seg_len = mss;
20708 		do {
20709 			len = seg_len;
20710 
20711 			ASSERT(len > 0);
20712 			ASSERT(max_pld >= 0);
20713 			ASSERT(!add_buffer || cur_pld_off == 0);
20714 
20715 			/*
20716 			 * First time around for this payload buffer; note
20717 			 * in the case of a spillover, the following has
20718 			 * been done prior to adding the split-packet
20719 			 * descriptor to Multidata, and we don't want to
20720 			 * repeat the process.
20721 			 */
20722 			if (add_buffer) {
20723 				ASSERT(mmd != NULL);
20724 				ASSERT(md_pbuf == NULL);
20725 				ASSERT(md_pbuf_nxt == NULL);
20726 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20727 
20728 				/*
20729 				 * Have we reached the limit?  We'd get to
20730 				 * this case when we're not chaining the
20731 				 * Multidata messages together, and since
20732 				 * we're done, terminate this loop.
20733 				 */
20734 				if (max_pld == 0)
20735 					break; /* done */
20736 
20737 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20738 					TCP_STAT(tcps, tcp_mdt_allocfail);
20739 					goto legacy_send; /* out_of_mem */
20740 				}
20741 
20742 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20743 				    zc_cap != NULL) {
20744 					if (!ip_md_zcopy_attr(mmd, NULL,
20745 					    zc_cap->ill_zerocopy_flags)) {
20746 						freeb(md_pbuf);
20747 						TCP_STAT(tcps,
20748 						    tcp_mdt_allocfail);
20749 						/* out_of_mem */
20750 						goto legacy_send;
20751 					}
20752 					zcopy = B_TRUE;
20753 				}
20754 
20755 				md_pbuf->b_rptr += base_pld_off;
20756 
20757 				/*
20758 				 * Add a payload buffer to the Multidata; this
20759 				 * operation must not fail, or otherwise our
20760 				 * logic in this routine is broken.  There
20761 				 * is no memory allocation done by the
20762 				 * routine, so any returned failure simply
20763 				 * tells us that we've done something wrong.
20764 				 *
20765 				 * A failure tells us that either we're adding
20766 				 * the same payload buffer more than once, or
20767 				 * we're trying to add more buffers than
20768 				 * allowed (max_pld calculation is wrong).
20769 				 * None of the above cases should happen, and
20770 				 * we panic because either there's horrible
20771 				 * heap corruption, and/or programming mistake.
20772 				 */
20773 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20774 				if (pbuf_idx < 0) {
20775 					cmn_err(CE_PANIC, "tcp_multisend: "
20776 					    "payload buffer logic error "
20777 					    "detected for tcp %p mmd %p "
20778 					    "pbuf %p (%d)\n",
20779 					    (void *)tcp, (void *)mmd,
20780 					    (void *)md_pbuf, pbuf_idx);
20781 				}
20782 
20783 				ASSERT(max_pld > 0);
20784 				--max_pld;
20785 				add_buffer = B_FALSE;
20786 			}
20787 
20788 			ASSERT(md_mp_head != NULL);
20789 			ASSERT(md_pbuf != NULL);
20790 			ASSERT(md_pbuf_nxt == NULL);
20791 			ASSERT(pbuf_idx != -1);
20792 			ASSERT(pbuf_idx_nxt == -1);
20793 			ASSERT(*usable > 0);
20794 
20795 			/*
20796 			 * We spillover to the next payload buffer only
20797 			 * if all of the following is true:
20798 			 *
20799 			 *   1. There is not enough data on the current
20800 			 *	payload buffer to make up `len',
20801 			 *   2. We are allowed to send `len',
20802 			 *   3. The next payload buffer length is large
20803 			 *	enough to accomodate `spill'.
20804 			 */
20805 			if ((spill = len - *tail_unsent) > 0 &&
20806 			    *usable >= len &&
20807 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20808 			    max_pld > 0) {
20809 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20810 				if (md_pbuf_nxt == NULL) {
20811 					TCP_STAT(tcps, tcp_mdt_allocfail);
20812 					goto legacy_send; /* out_of_mem */
20813 				}
20814 
20815 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20816 				    zc_cap != NULL) {
20817 					if (!ip_md_zcopy_attr(mmd, NULL,
20818 					    zc_cap->ill_zerocopy_flags)) {
20819 						freeb(md_pbuf_nxt);
20820 						TCP_STAT(tcps,
20821 						    tcp_mdt_allocfail);
20822 						/* out_of_mem */
20823 						goto legacy_send;
20824 					}
20825 					zcopy = B_TRUE;
20826 				}
20827 
20828 				/*
20829 				 * See comments above on the first call to
20830 				 * mmd_addpldbuf for explanation on the panic.
20831 				 */
20832 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20833 				if (pbuf_idx_nxt < 0) {
20834 					panic("tcp_multisend: "
20835 					    "next payload buffer logic error "
20836 					    "detected for tcp %p mmd %p "
20837 					    "pbuf %p (%d)\n",
20838 					    (void *)tcp, (void *)mmd,
20839 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20840 				}
20841 
20842 				ASSERT(max_pld > 0);
20843 				--max_pld;
20844 			} else if (spill > 0) {
20845 				/*
20846 				 * If there's a spillover, but the following
20847 				 * xmit_tail couldn't give us enough octets
20848 				 * to reach "len", then stop the current
20849 				 * Multidata creation and let the legacy
20850 				 * tcp_send() path take over.  We don't want
20851 				 * to send the tiny segment as part of this
20852 				 * Multidata for performance reasons; instead,
20853 				 * we let the legacy path deal with grouping
20854 				 * it with the subsequent small mblks.
20855 				 */
20856 				if (*usable >= len &&
20857 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20858 					max_pld = 0;
20859 					break;	/* done */
20860 				}
20861 
20862 				/*
20863 				 * We can't spillover, and we are near
20864 				 * the end of the current payload buffer,
20865 				 * so send what's left.
20866 				 */
20867 				ASSERT(*tail_unsent > 0);
20868 				len = *tail_unsent;
20869 			}
20870 
20871 			/* tail_unsent is negated if there is a spillover */
20872 			*tail_unsent -= len;
20873 			*usable -= len;
20874 			ASSERT(*usable >= 0);
20875 
20876 			if (*usable < mss)
20877 				seg_len = *usable;
20878 			/*
20879 			 * Sender SWS avoidance; see comments in tcp_send();
20880 			 * everything else is the same, except that we only
20881 			 * do this here if there is no more data to be sent
20882 			 * following the current xmit_tail.  We don't check
20883 			 * for 1-byte urgent data because we shouldn't get
20884 			 * here if TCP_URG_VALID is set.
20885 			 */
20886 			if (*usable > 0 && *usable < mss &&
20887 			    ((md_pbuf_nxt == NULL &&
20888 			    (*xmit_tail)->b_cont == NULL) ||
20889 			    (md_pbuf_nxt != NULL &&
20890 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20891 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20892 			    (tcp->tcp_unsent -
20893 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20894 			    !tcp->tcp_zero_win_probe) {
20895 				if ((*snxt + len) == tcp->tcp_snxt &&
20896 				    (*snxt + len) == tcp->tcp_suna) {
20897 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20898 				}
20899 				done = B_TRUE;
20900 			}
20901 
20902 			/*
20903 			 * Prime pump for IP's checksumming on our behalf;
20904 			 * include the adjustment for a source route if any.
20905 			 * Do this only for software/partial hardware checksum
20906 			 * offload, as this field gets zeroed out later for
20907 			 * the full hardware checksum offload case.
20908 			 */
20909 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20910 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20911 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20912 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20913 			}
20914 
20915 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20916 			*snxt += len;
20917 
20918 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20919 			/*
20920 			 * We set the PUSH bit only if TCP has no more buffered
20921 			 * data to be transmitted (or if sender SWS avoidance
20922 			 * takes place), as opposed to setting it for every
20923 			 * last packet in the burst.
20924 			 */
20925 			if (done ||
20926 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20927 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20928 
20929 			/*
20930 			 * Set FIN bit if this is our last segment; snxt
20931 			 * already includes its length, and it will not
20932 			 * be adjusted after this point.
20933 			 */
20934 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20935 			    *snxt == tcp->tcp_fss) {
20936 				if (!tcp->tcp_fin_acked) {
20937 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20938 					BUMP_MIB(&tcps->tcps_mib,
20939 					    tcpOutControl);
20940 				}
20941 				if (!tcp->tcp_fin_sent) {
20942 					tcp->tcp_fin_sent = B_TRUE;
20943 					/*
20944 					 * tcp state must be ESTABLISHED
20945 					 * in order for us to get here in
20946 					 * the first place.
20947 					 */
20948 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20949 
20950 					/*
20951 					 * Upon returning from this routine,
20952 					 * tcp_wput_data() will set tcp_snxt
20953 					 * to be equal to snxt + tcp_fin_sent.
20954 					 * This is essentially the same as
20955 					 * setting it to tcp_fss + 1.
20956 					 */
20957 				}
20958 			}
20959 
20960 			tcp->tcp_last_sent_len = (ushort_t)len;
20961 
20962 			len += tcp_hdr_len;
20963 			if (tcp->tcp_ipversion == IPV4_VERSION)
20964 				tcp->tcp_ipha->ipha_length = htons(len);
20965 			else
20966 				tcp->tcp_ip6h->ip6_plen = htons(len -
20967 				    ((char *)&tcp->tcp_ip6h[1] -
20968 				    tcp->tcp_iphc));
20969 
20970 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20971 
20972 			/* setup header fragment */
20973 			PDESC_HDR_ADD(pkt_info,
20974 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20975 			    tcp->tcp_mdt_hdr_head,		/* head room */
20976 			    tcp_hdr_len,			/* len */
20977 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20978 
20979 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20980 			    hdr_frag_sz);
20981 			ASSERT(MBLKIN(md_hbuf,
20982 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20983 			    PDESC_HDRSIZE(pkt_info)));
20984 
20985 			/* setup first payload fragment */
20986 			PDESC_PLD_INIT(pkt_info);
20987 			PDESC_PLD_SPAN_ADD(pkt_info,
20988 			    pbuf_idx,				/* index */
20989 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20990 			    tcp->tcp_last_sent_len);		/* len */
20991 
20992 			/* create a split-packet in case of a spillover */
20993 			if (md_pbuf_nxt != NULL) {
20994 				ASSERT(spill > 0);
20995 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20996 				ASSERT(!add_buffer);
20997 
20998 				md_pbuf = md_pbuf_nxt;
20999 				md_pbuf_nxt = NULL;
21000 				pbuf_idx = pbuf_idx_nxt;
21001 				pbuf_idx_nxt = -1;
21002 				cur_pld_off = spill;
21003 
21004 				/* trim out first payload fragment */
21005 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
21006 
21007 				/* setup second payload fragment */
21008 				PDESC_PLD_SPAN_ADD(pkt_info,
21009 				    pbuf_idx,			/* index */
21010 				    md_pbuf->b_rptr,		/* start */
21011 				    spill);			/* len */
21012 
21013 				if ((*xmit_tail)->b_next == NULL) {
21014 					/*
21015 					 * Store the lbolt used for RTT
21016 					 * estimation. We can only record one
21017 					 * timestamp per mblk so we do it when
21018 					 * we reach the end of the payload
21019 					 * buffer.  Also we only take a new
21020 					 * timestamp sample when the previous
21021 					 * timed data from the same mblk has
21022 					 * been ack'ed.
21023 					 */
21024 					(*xmit_tail)->b_prev = local_time;
21025 					(*xmit_tail)->b_next =
21026 					    (mblk_t *)(uintptr_t)first_snxt;
21027 				}
21028 
21029 				first_snxt = *snxt - spill;
21030 
21031 				/*
21032 				 * Advance xmit_tail; usable could be 0 by
21033 				 * the time we got here, but we made sure
21034 				 * above that we would only spillover to
21035 				 * the next data block if usable includes
21036 				 * the spilled-over amount prior to the
21037 				 * subtraction.  Therefore, we are sure
21038 				 * that xmit_tail->b_cont can't be NULL.
21039 				 */
21040 				ASSERT((*xmit_tail)->b_cont != NULL);
21041 				*xmit_tail = (*xmit_tail)->b_cont;
21042 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21043 				    (uintptr_t)INT_MAX);
21044 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
21045 			} else {
21046 				cur_pld_off += tcp->tcp_last_sent_len;
21047 			}
21048 
21049 			/*
21050 			 * Fill in the header using the template header, and
21051 			 * add options such as time-stamp, ECN and/or SACK,
21052 			 * as needed.
21053 			 */
21054 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
21055 			    (clock_t)local_time, num_sack_blk);
21056 
21057 			/* take care of some IP header businesses */
21058 			if (af == AF_INET) {
21059 				ipha = (ipha_t *)pkt_info->hdr_rptr;
21060 
21061 				ASSERT(OK_32PTR((uchar_t *)ipha));
21062 				ASSERT(PDESC_HDRL(pkt_info) >=
21063 				    IP_SIMPLE_HDR_LENGTH);
21064 				ASSERT(ipha->ipha_version_and_hdr_length ==
21065 				    IP_SIMPLE_HDR_VERSION);
21066 
21067 				/*
21068 				 * Assign ident value for current packet; see
21069 				 * related comments in ip_wput_ire() about the
21070 				 * contract private interface with clustering
21071 				 * group.
21072 				 */
21073 				clusterwide = B_FALSE;
21074 				if (cl_inet_ipident != NULL) {
21075 					ASSERT(cl_inet_isclusterwide != NULL);
21076 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
21077 					    AF_INET,
21078 					    (uint8_t *)(uintptr_t)src)) {
21079 						ipha->ipha_ident =
21080 						    (*cl_inet_ipident)
21081 						    (IPPROTO_IP, AF_INET,
21082 						    (uint8_t *)(uintptr_t)src,
21083 						    (uint8_t *)(uintptr_t)dst);
21084 						clusterwide = B_TRUE;
21085 					}
21086 				}
21087 
21088 				if (!clusterwide) {
21089 					ipha->ipha_ident = (uint16_t)
21090 					    atomic_add_32_nv(
21091 						&ire->ire_ident, 1);
21092 				}
21093 #ifndef _BIG_ENDIAN
21094 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
21095 				    (ipha->ipha_ident >> 8);
21096 #endif
21097 			} else {
21098 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
21099 
21100 				ASSERT(OK_32PTR((uchar_t *)ip6h));
21101 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
21102 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
21103 				ASSERT(PDESC_HDRL(pkt_info) >=
21104 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
21105 				    TCP_CHECKSUM_SIZE));
21106 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21107 
21108 				if (tcp->tcp_ip_forward_progress) {
21109 					rconfirm = B_TRUE;
21110 					tcp->tcp_ip_forward_progress = B_FALSE;
21111 				}
21112 			}
21113 
21114 			/* at least one payload span, and at most two */
21115 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
21116 
21117 			/* add the packet descriptor to Multidata */
21118 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
21119 			    KM_NOSLEEP)) == NULL) {
21120 				/*
21121 				 * Any failure other than ENOMEM indicates
21122 				 * that we have passed in invalid pkt_info
21123 				 * or parameters to mmd_addpdesc, which must
21124 				 * not happen.
21125 				 *
21126 				 * EINVAL is a result of failure on boundary
21127 				 * checks against the pkt_info contents.  It
21128 				 * should not happen, and we panic because
21129 				 * either there's horrible heap corruption,
21130 				 * and/or programming mistake.
21131 				 */
21132 				if (err != ENOMEM) {
21133 					cmn_err(CE_PANIC, "tcp_multisend: "
21134 					    "pdesc logic error detected for "
21135 					    "tcp %p mmd %p pinfo %p (%d)\n",
21136 					    (void *)tcp, (void *)mmd,
21137 					    (void *)pkt_info, err);
21138 				}
21139 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
21140 				goto legacy_send; /* out_of_mem */
21141 			}
21142 			ASSERT(pkt != NULL);
21143 
21144 			/* calculate IP header and TCP checksums */
21145 			if (af == AF_INET) {
21146 				/* calculate pseudo-header checksum */
21147 				cksum = (dst >> 16) + (dst & 0xFFFF) +
21148 				    (src >> 16) + (src & 0xFFFF);
21149 
21150 				/* offset for TCP header checksum */
21151 				up = IPH_TCPH_CHECKSUMP(ipha,
21152 				    IP_SIMPLE_HDR_LENGTH);
21153 			} else {
21154 				up = (uint16_t *)&ip6h->ip6_src;
21155 
21156 				/* calculate pseudo-header checksum */
21157 				cksum = up[0] + up[1] + up[2] + up[3] +
21158 				    up[4] + up[5] + up[6] + up[7] +
21159 				    up[8] + up[9] + up[10] + up[11] +
21160 				    up[12] + up[13] + up[14] + up[15];
21161 
21162 				/* Fold the initial sum */
21163 				cksum = (cksum & 0xffff) + (cksum >> 16);
21164 
21165 				up = (uint16_t *)(((uchar_t *)ip6h) +
21166 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
21167 			}
21168 
21169 			if (hwcksum_flags & HCK_FULLCKSUM) {
21170 				/* clear checksum field for hardware */
21171 				*up = 0;
21172 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
21173 				uint32_t sum;
21174 
21175 				/* pseudo-header checksumming */
21176 				sum = *up + cksum + IP_TCP_CSUM_COMP;
21177 				sum = (sum & 0xFFFF) + (sum >> 16);
21178 				*up = (sum & 0xFFFF) + (sum >> 16);
21179 			} else {
21180 				/* software checksumming */
21181 				TCP_STAT(tcps, tcp_out_sw_cksum);
21182 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
21183 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
21184 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
21185 				    cksum + IP_TCP_CSUM_COMP);
21186 				if (*up == 0)
21187 					*up = 0xFFFF;
21188 			}
21189 
21190 			/* IPv4 header checksum */
21191 			if (af == AF_INET) {
21192 				ipha->ipha_fragment_offset_and_flags |=
21193 				    (uint32_t)htons(ire->ire_frag_flag);
21194 
21195 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
21196 					ipha->ipha_hdr_checksum = 0;
21197 				} else {
21198 					IP_HDR_CKSUM(ipha, cksum,
21199 					    ((uint32_t *)ipha)[0],
21200 					    ((uint16_t *)ipha)[4]);
21201 				}
21202 			}
21203 
21204 			if (af == AF_INET &&
21205 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
21206 			    af == AF_INET6 &&
21207 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
21208 				/* build header(IP/TCP) mblk for this segment */
21209 				if ((mp = dupb(md_hbuf)) == NULL)
21210 					goto legacy_send;
21211 
21212 				mp->b_rptr = pkt_info->hdr_rptr;
21213 				mp->b_wptr = pkt_info->hdr_wptr;
21214 
21215 				/* build payload mblk for this segment */
21216 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
21217 					freemsg(mp);
21218 					goto legacy_send;
21219 				}
21220 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
21221 				mp1->b_rptr = mp1->b_wptr -
21222 				    tcp->tcp_last_sent_len;
21223 				linkb(mp, mp1);
21224 
21225 				pld_start = mp1->b_rptr;
21226 
21227 				if (af == AF_INET) {
21228 					DTRACE_PROBE4(
21229 					    ip4__physical__out__start,
21230 					    ill_t *, NULL,
21231 					    ill_t *, ill,
21232 					    ipha_t *, ipha,
21233 					    mblk_t *, mp);
21234 					FW_HOOKS(
21235 					    ipst->ips_ip4_physical_out_event,
21236 					    ipst->ips_ipv4firewall_physical_out,
21237 					    NULL, ill, ipha, mp, mp, 0, ipst);
21238 					DTRACE_PROBE1(
21239 					    ip4__physical__out__end,
21240 					    mblk_t *, mp);
21241 				} else {
21242 					DTRACE_PROBE4(
21243 					    ip6__physical__out_start,
21244 					    ill_t *, NULL,
21245 					    ill_t *, ill,
21246 					    ip6_t *, ip6h,
21247 					    mblk_t *, mp);
21248 					FW_HOOKS6(
21249 					    ipst->ips_ip6_physical_out_event,
21250 					    ipst->ips_ipv6firewall_physical_out,
21251 					    NULL, ill, ip6h, mp, mp, 0, ipst);
21252 					DTRACE_PROBE1(
21253 					    ip6__physical__out__end,
21254 					    mblk_t *, mp);
21255 				}
21256 
21257 				if (buf_trunked && mp != NULL) {
21258 					/*
21259 					 * Need to pass it to normal path.
21260 					 */
21261 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21262 				} else if (mp == NULL ||
21263 				    mp->b_rptr != pkt_info->hdr_rptr ||
21264 				    mp->b_wptr != pkt_info->hdr_wptr ||
21265 				    (mp1 = mp->b_cont) == NULL ||
21266 				    mp1->b_rptr != pld_start ||
21267 				    mp1->b_wptr != pld_start +
21268 				    tcp->tcp_last_sent_len ||
21269 				    mp1->b_cont != NULL) {
21270 					/*
21271 					 * Need to pass all packets of this
21272 					 * buffer to normal path, either when
21273 					 * packet is blocked, or when boundary
21274 					 * of header buffer or payload buffer
21275 					 * has been changed by FW_HOOKS[6].
21276 					 */
21277 					buf_trunked = B_TRUE;
21278 					if (md_mp_head != NULL) {
21279 						err = (intptr_t)rmvb(md_mp_head,
21280 						    md_mp);
21281 						if (err == 0)
21282 							md_mp_head = NULL;
21283 					}
21284 
21285 					/* send down what we've got so far */
21286 					if (md_mp_head != NULL) {
21287 						tcp_multisend_data(tcp, ire,
21288 						    ill, md_mp_head, obsegs,
21289 						    obbytes, &rconfirm);
21290 					}
21291 					md_mp_head = NULL;
21292 
21293 					if (mp != NULL)
21294 						CALL_IP_WPUT(tcp->tcp_connp,
21295 						    q, mp);
21296 
21297 					mp1 = fw_mp_head;
21298 					do {
21299 						mp = mp1;
21300 						mp1 = mp1->b_next;
21301 						mp->b_next = NULL;
21302 						mp->b_prev = NULL;
21303 						CALL_IP_WPUT(tcp->tcp_connp,
21304 						    q, mp);
21305 					} while (mp1 != NULL);
21306 
21307 					fw_mp_head = NULL;
21308 				} else {
21309 					if (fw_mp_head == NULL)
21310 						fw_mp_head = mp;
21311 					else
21312 						fw_mp_head->b_prev->b_next = mp;
21313 					fw_mp_head->b_prev = mp;
21314 				}
21315 			}
21316 
21317 			/* advance header offset */
21318 			cur_hdr_off += hdr_frag_sz;
21319 
21320 			obbytes += tcp->tcp_last_sent_len;
21321 			++obsegs;
21322 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21323 		    *tail_unsent > 0);
21324 
21325 		if ((*xmit_tail)->b_next == NULL) {
21326 			/*
21327 			 * Store the lbolt used for RTT estimation. We can only
21328 			 * record one timestamp per mblk so we do it when we
21329 			 * reach the end of the payload buffer. Also we only
21330 			 * take a new timestamp sample when the previous timed
21331 			 * data from the same mblk has been ack'ed.
21332 			 */
21333 			(*xmit_tail)->b_prev = local_time;
21334 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21335 		}
21336 
21337 		ASSERT(*tail_unsent >= 0);
21338 		if (*tail_unsent > 0) {
21339 			/*
21340 			 * We got here because we broke out of the above
21341 			 * loop due to of one of the following cases:
21342 			 *
21343 			 *   1. len < adjusted MSS (i.e. small),
21344 			 *   2. Sender SWS avoidance,
21345 			 *   3. max_pld is zero.
21346 			 *
21347 			 * We are done for this Multidata, so trim our
21348 			 * last payload buffer (if any) accordingly.
21349 			 */
21350 			if (md_pbuf != NULL)
21351 				md_pbuf->b_wptr -= *tail_unsent;
21352 		} else if (*usable > 0) {
21353 			*xmit_tail = (*xmit_tail)->b_cont;
21354 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21355 			    (uintptr_t)INT_MAX);
21356 			*tail_unsent = (int)MBLKL(*xmit_tail);
21357 			add_buffer = B_TRUE;
21358 		}
21359 
21360 		while (fw_mp_head) {
21361 			mp = fw_mp_head;
21362 			fw_mp_head = fw_mp_head->b_next;
21363 			mp->b_prev = mp->b_next = NULL;
21364 			freemsg(mp);
21365 		}
21366 		if (buf_trunked) {
21367 			TCP_STAT(tcps, tcp_mdt_discarded);
21368 			freeb(md_mp);
21369 			buf_trunked = B_FALSE;
21370 		}
21371 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21372 	    (tcp_mdt_chain || max_pld > 0));
21373 
21374 	if (md_mp_head != NULL) {
21375 		/* send everything down */
21376 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21377 		    &rconfirm);
21378 	}
21379 
21380 #undef PREP_NEW_MULTIDATA
21381 #undef PREP_NEW_PBUF
21382 #undef IPVER
21383 
21384 	IRE_REFRELE(ire);
21385 	return (0);
21386 }
21387 
21388 /*
21389  * A wrapper function for sending one or more Multidata messages down to
21390  * the module below ip; this routine does not release the reference of the
21391  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21392  */
21393 static void
21394 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21395     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21396 {
21397 	uint64_t delta;
21398 	nce_t *nce;
21399 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21400 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21401 
21402 	ASSERT(ire != NULL && ill != NULL);
21403 	ASSERT(ire->ire_stq != NULL);
21404 	ASSERT(md_mp_head != NULL);
21405 	ASSERT(rconfirm != NULL);
21406 
21407 	/* adjust MIBs and IRE timestamp */
21408 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
21409 	tcp->tcp_obsegs += obsegs;
21410 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21411 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21412 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21413 
21414 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21415 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21416 	} else {
21417 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21418 	}
21419 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21420 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21421 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21422 
21423 	ire->ire_ob_pkt_count += obsegs;
21424 	if (ire->ire_ipif != NULL)
21425 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21426 	ire->ire_last_used_time = lbolt;
21427 
21428 	/* send it down */
21429 	if (ILL_DLS_CAPABLE(ill)) {
21430 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
21431 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
21432 	} else {
21433 		putnext(ire->ire_stq, md_mp_head);
21434 	}
21435 
21436 	/* we're done for TCP/IPv4 */
21437 	if (tcp->tcp_ipversion == IPV4_VERSION)
21438 		return;
21439 
21440 	nce = ire->ire_nce;
21441 
21442 	ASSERT(nce != NULL);
21443 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21444 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21445 
21446 	/* reachability confirmation? */
21447 	if (*rconfirm) {
21448 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21449 		if (nce->nce_state != ND_REACHABLE) {
21450 			mutex_enter(&nce->nce_lock);
21451 			nce->nce_state = ND_REACHABLE;
21452 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21453 			mutex_exit(&nce->nce_lock);
21454 			(void) untimeout(nce->nce_timeout_id);
21455 			if (ip_debug > 2) {
21456 				/* ip1dbg */
21457 				pr_addr_dbg("tcp_multisend_data: state "
21458 				    "for %s changed to REACHABLE\n",
21459 				    AF_INET6, &ire->ire_addr_v6);
21460 			}
21461 		}
21462 		/* reset transport reachability confirmation */
21463 		*rconfirm = B_FALSE;
21464 	}
21465 
21466 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21467 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21468 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21469 
21470 	if (delta > (uint64_t)ill->ill_reachable_time) {
21471 		mutex_enter(&nce->nce_lock);
21472 		switch (nce->nce_state) {
21473 		case ND_REACHABLE:
21474 		case ND_STALE:
21475 			/*
21476 			 * ND_REACHABLE is identical to ND_STALE in this
21477 			 * specific case. If reachable time has expired for
21478 			 * this neighbor (delta is greater than reachable
21479 			 * time), conceptually, the neighbor cache is no
21480 			 * longer in REACHABLE state, but already in STALE
21481 			 * state.  So the correct transition here is to
21482 			 * ND_DELAY.
21483 			 */
21484 			nce->nce_state = ND_DELAY;
21485 			mutex_exit(&nce->nce_lock);
21486 			NDP_RESTART_TIMER(nce,
21487 			    ipst->ips_delay_first_probe_time);
21488 			if (ip_debug > 3) {
21489 				/* ip2dbg */
21490 				pr_addr_dbg("tcp_multisend_data: state "
21491 				    "for %s changed to DELAY\n",
21492 				    AF_INET6, &ire->ire_addr_v6);
21493 			}
21494 			break;
21495 		case ND_DELAY:
21496 		case ND_PROBE:
21497 			mutex_exit(&nce->nce_lock);
21498 			/* Timers have already started */
21499 			break;
21500 		case ND_UNREACHABLE:
21501 			/*
21502 			 * ndp timer has detected that this nce is
21503 			 * unreachable and initiated deleting this nce
21504 			 * and all its associated IREs. This is a race
21505 			 * where we found the ire before it was deleted
21506 			 * and have just sent out a packet using this
21507 			 * unreachable nce.
21508 			 */
21509 			mutex_exit(&nce->nce_lock);
21510 			break;
21511 		default:
21512 			ASSERT(0);
21513 		}
21514 	}
21515 }
21516 
21517 /*
21518  * Derived from tcp_send_data().
21519  */
21520 static void
21521 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21522     int num_lso_seg)
21523 {
21524 	ipha_t		*ipha;
21525 	mblk_t		*ire_fp_mp;
21526 	uint_t		ire_fp_mp_len;
21527 	uint32_t	hcksum_txflags = 0;
21528 	ipaddr_t	src;
21529 	ipaddr_t	dst;
21530 	uint32_t	cksum;
21531 	uint16_t	*up;
21532 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21533 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21534 
21535 	ASSERT(DB_TYPE(mp) == M_DATA);
21536 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21537 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21538 	ASSERT(tcp->tcp_connp != NULL);
21539 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21540 
21541 	ipha = (ipha_t *)mp->b_rptr;
21542 	src = ipha->ipha_src;
21543 	dst = ipha->ipha_dst;
21544 
21545 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21546 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21547 	    num_lso_seg);
21548 #ifndef _BIG_ENDIAN
21549 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21550 #endif
21551 	if (tcp->tcp_snd_zcopy_aware) {
21552 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21553 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21554 			mp = tcp_zcopy_disable(tcp, mp);
21555 	}
21556 
21557 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21558 		ASSERT(ill->ill_hcksum_capab != NULL);
21559 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21560 	}
21561 
21562 	/*
21563 	 * Since the TCP checksum should be recalculated by h/w, we can just
21564 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21565 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21566 	 * The partial pseudo-header excludes TCP length, that was calculated
21567 	 * in tcp_send(), so to zero *up before further processing.
21568 	 */
21569 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21570 
21571 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21572 	*up = 0;
21573 
21574 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21575 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21576 
21577 	/*
21578 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21579 	 */
21580 	DB_LSOFLAGS(mp) |= HW_LSO;
21581 	DB_LSOMSS(mp) = mss;
21582 
21583 	ipha->ipha_fragment_offset_and_flags |=
21584 	    (uint32_t)htons(ire->ire_frag_flag);
21585 
21586 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21587 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21588 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21589 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21590 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21591 
21592 	UPDATE_OB_PKT_COUNT(ire);
21593 	ire->ire_last_used_time = lbolt;
21594 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21595 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21596 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21597 	    ntohs(ipha->ipha_length));
21598 
21599 	if (ILL_DLS_CAPABLE(ill)) {
21600 		/*
21601 		 * Send the packet directly to DLD, where it may be queued
21602 		 * depending on the availability of transmit resources at
21603 		 * the media layer.
21604 		 */
21605 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
21606 	} else {
21607 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21608 		DTRACE_PROBE4(ip4__physical__out__start,
21609 		    ill_t *, NULL, ill_t *, out_ill,
21610 		    ipha_t *, ipha, mblk_t *, mp);
21611 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21612 		    ipst->ips_ipv4firewall_physical_out,
21613 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21614 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21615 		if (mp != NULL)
21616 			putnext(ire->ire_stq, mp);
21617 	}
21618 }
21619 
21620 /*
21621  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21622  * scheme, and returns one of the following:
21623  *
21624  * -1 = failed allocation.
21625  *  0 = success; burst count reached, or usable send window is too small,
21626  *      and that we'd rather wait until later before sending again.
21627  *  1 = success; we are called from tcp_multisend(), and both usable send
21628  *      window and tail_unsent are greater than the MDT threshold, and thus
21629  *      Multidata Transmit should be used instead.
21630  */
21631 static int
21632 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21633     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21634     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21635     const int mdt_thres)
21636 {
21637 	int num_burst_seg = tcp->tcp_snd_burst;
21638 	ire_t		*ire = NULL;
21639 	ill_t		*ill = NULL;
21640 	mblk_t		*ire_fp_mp = NULL;
21641 	uint_t		ire_fp_mp_len = 0;
21642 	int		num_lso_seg = 1;
21643 	uint_t		lso_usable;
21644 	boolean_t	do_lso_send = B_FALSE;
21645 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21646 
21647 	/*
21648 	 * Check LSO capability before any further work. And the similar check
21649 	 * need to be done in for(;;) loop.
21650 	 * LSO will be deployed when therer is more than one mss of available
21651 	 * data and a burst transmission is allowed.
21652 	 */
21653 	if (tcp->tcp_lso &&
21654 	    (tcp->tcp_valid_bits == 0 ||
21655 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21656 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21657 		/*
21658 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21659 		 */
21660 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21661 			/*
21662 			 * Enable LSO with this transmission.
21663 			 * Since IRE has been hold in
21664 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21665 			 * should be called before return.
21666 			 */
21667 			do_lso_send = B_TRUE;
21668 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21669 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21670 			/* Round up to multiple of 4 */
21671 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21672 		} else {
21673 			do_lso_send = B_FALSE;
21674 			ill = NULL;
21675 		}
21676 	}
21677 
21678 	for (;;) {
21679 		struct datab	*db;
21680 		tcph_t		*tcph;
21681 		uint32_t	sum;
21682 		mblk_t		*mp, *mp1;
21683 		uchar_t		*rptr;
21684 		int		len;
21685 
21686 		/*
21687 		 * If we're called by tcp_multisend(), and the amount of
21688 		 * sendable data as well as the size of current xmit_tail
21689 		 * is beyond the MDT threshold, return to the caller and
21690 		 * let the large data transmit be done using MDT.
21691 		 */
21692 		if (*usable > 0 && *usable > mdt_thres &&
21693 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21694 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21695 			ASSERT(tcp->tcp_mdt);
21696 			return (1);	/* success; do large send */
21697 		}
21698 
21699 		if (num_burst_seg == 0)
21700 			break;		/* success; burst count reached */
21701 
21702 		/*
21703 		 * Calculate the maximum payload length we can send in *one*
21704 		 * time.
21705 		 */
21706 		if (do_lso_send) {
21707 			/*
21708 			 * Check whether need to do LSO any more.
21709 			 */
21710 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21711 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21712 				lso_usable = MIN(lso_usable,
21713 				    num_burst_seg * mss);
21714 
21715 				num_lso_seg = lso_usable / mss;
21716 				if (lso_usable % mss) {
21717 					num_lso_seg++;
21718 					tcp->tcp_last_sent_len = (ushort_t)
21719 					    (lso_usable % mss);
21720 				} else {
21721 					tcp->tcp_last_sent_len = (ushort_t)mss;
21722 				}
21723 			} else {
21724 				do_lso_send = B_FALSE;
21725 				num_lso_seg = 1;
21726 				lso_usable = mss;
21727 			}
21728 		}
21729 
21730 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21731 
21732 		/*
21733 		 * Adjust num_burst_seg here.
21734 		 */
21735 		num_burst_seg -= num_lso_seg;
21736 
21737 		len = mss;
21738 		if (len > *usable) {
21739 			ASSERT(do_lso_send == B_FALSE);
21740 
21741 			len = *usable;
21742 			if (len <= 0) {
21743 				/* Terminate the loop */
21744 				break;	/* success; too small */
21745 			}
21746 			/*
21747 			 * Sender silly-window avoidance.
21748 			 * Ignore this if we are going to send a
21749 			 * zero window probe out.
21750 			 *
21751 			 * TODO: force data into microscopic window?
21752 			 *	==> (!pushed || (unsent > usable))
21753 			 */
21754 			if (len < (tcp->tcp_max_swnd >> 1) &&
21755 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21756 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21757 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21758 				/*
21759 				 * If the retransmit timer is not running
21760 				 * we start it so that we will retransmit
21761 				 * in the case when the the receiver has
21762 				 * decremented the window.
21763 				 */
21764 				if (*snxt == tcp->tcp_snxt &&
21765 				    *snxt == tcp->tcp_suna) {
21766 					/*
21767 					 * We are not supposed to send
21768 					 * anything.  So let's wait a little
21769 					 * bit longer before breaking SWS
21770 					 * avoidance.
21771 					 *
21772 					 * What should the value be?
21773 					 * Suggestion: MAX(init rexmit time,
21774 					 * tcp->tcp_rto)
21775 					 */
21776 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21777 				}
21778 				break;	/* success; too small */
21779 			}
21780 		}
21781 
21782 		tcph = tcp->tcp_tcph;
21783 
21784 		/*
21785 		 * The reason to adjust len here is that we need to set flags
21786 		 * and calculate checksum.
21787 		 */
21788 		if (do_lso_send)
21789 			len = lso_usable;
21790 
21791 		*usable -= len; /* Approximate - can be adjusted later */
21792 		if (*usable > 0)
21793 			tcph->th_flags[0] = TH_ACK;
21794 		else
21795 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21796 
21797 		/*
21798 		 * Prime pump for IP's checksumming on our behalf
21799 		 * Include the adjustment for a source route if any.
21800 		 */
21801 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21802 		sum = (sum >> 16) + (sum & 0xFFFF);
21803 		U16_TO_ABE16(sum, tcph->th_sum);
21804 
21805 		U32_TO_ABE32(*snxt, tcph->th_seq);
21806 
21807 		/*
21808 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21809 		 * set.  For the case when TCP_FSS_VALID is the only valid
21810 		 * bit (normal active close), branch off only when we think
21811 		 * that the FIN flag needs to be set.  Note for this case,
21812 		 * that (snxt + len) may not reflect the actual seg_len,
21813 		 * as len may be further reduced in tcp_xmit_mp().  If len
21814 		 * gets modified, we will end up here again.
21815 		 */
21816 		if (tcp->tcp_valid_bits != 0 &&
21817 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21818 		    ((*snxt + len) == tcp->tcp_fss))) {
21819 			uchar_t		*prev_rptr;
21820 			uint32_t	prev_snxt = tcp->tcp_snxt;
21821 
21822 			if (*tail_unsent == 0) {
21823 				ASSERT((*xmit_tail)->b_cont != NULL);
21824 				*xmit_tail = (*xmit_tail)->b_cont;
21825 				prev_rptr = (*xmit_tail)->b_rptr;
21826 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21827 				    (*xmit_tail)->b_rptr);
21828 			} else {
21829 				prev_rptr = (*xmit_tail)->b_rptr;
21830 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21831 				    *tail_unsent;
21832 			}
21833 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21834 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21835 			/* Restore tcp_snxt so we get amount sent right. */
21836 			tcp->tcp_snxt = prev_snxt;
21837 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21838 				/*
21839 				 * If the previous timestamp is still in use,
21840 				 * don't stomp on it.
21841 				 */
21842 				if ((*xmit_tail)->b_next == NULL) {
21843 					(*xmit_tail)->b_prev = local_time;
21844 					(*xmit_tail)->b_next =
21845 					    (mblk_t *)(uintptr_t)(*snxt);
21846 				}
21847 			} else
21848 				(*xmit_tail)->b_rptr = prev_rptr;
21849 
21850 			if (mp == NULL) {
21851 				if (ire != NULL)
21852 					IRE_REFRELE(ire);
21853 				return (-1);
21854 			}
21855 			mp1 = mp->b_cont;
21856 
21857 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21858 				tcp->tcp_last_sent_len = (ushort_t)len;
21859 			while (mp1->b_cont) {
21860 				*xmit_tail = (*xmit_tail)->b_cont;
21861 				(*xmit_tail)->b_prev = local_time;
21862 				(*xmit_tail)->b_next =
21863 				    (mblk_t *)(uintptr_t)(*snxt);
21864 				mp1 = mp1->b_cont;
21865 			}
21866 			*snxt += len;
21867 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21868 			BUMP_LOCAL(tcp->tcp_obsegs);
21869 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21870 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21871 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21872 			tcp_send_data(tcp, q, mp);
21873 			continue;
21874 		}
21875 
21876 		*snxt += len;	/* Adjust later if we don't send all of len */
21877 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21878 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21879 
21880 		if (*tail_unsent) {
21881 			/* Are the bytes above us in flight? */
21882 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21883 			if (rptr != (*xmit_tail)->b_rptr) {
21884 				*tail_unsent -= len;
21885 				if (len <= mss) /* LSO is unusable */
21886 					tcp->tcp_last_sent_len = (ushort_t)len;
21887 				len += tcp_hdr_len;
21888 				if (tcp->tcp_ipversion == IPV4_VERSION)
21889 					tcp->tcp_ipha->ipha_length = htons(len);
21890 				else
21891 					tcp->tcp_ip6h->ip6_plen =
21892 					    htons(len -
21893 					    ((char *)&tcp->tcp_ip6h[1] -
21894 					    tcp->tcp_iphc));
21895 				mp = dupb(*xmit_tail);
21896 				if (mp == NULL) {
21897 					if (ire != NULL)
21898 						IRE_REFRELE(ire);
21899 					return (-1);	/* out_of_mem */
21900 				}
21901 				mp->b_rptr = rptr;
21902 				/*
21903 				 * If the old timestamp is no longer in use,
21904 				 * sample a new timestamp now.
21905 				 */
21906 				if ((*xmit_tail)->b_next == NULL) {
21907 					(*xmit_tail)->b_prev = local_time;
21908 					(*xmit_tail)->b_next =
21909 					    (mblk_t *)(uintptr_t)(*snxt-len);
21910 				}
21911 				goto must_alloc;
21912 			}
21913 		} else {
21914 			*xmit_tail = (*xmit_tail)->b_cont;
21915 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21916 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21917 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21918 			    (*xmit_tail)->b_rptr);
21919 		}
21920 
21921 		(*xmit_tail)->b_prev = local_time;
21922 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21923 
21924 		*tail_unsent -= len;
21925 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21926 			tcp->tcp_last_sent_len = (ushort_t)len;
21927 
21928 		len += tcp_hdr_len;
21929 		if (tcp->tcp_ipversion == IPV4_VERSION)
21930 			tcp->tcp_ipha->ipha_length = htons(len);
21931 		else
21932 			tcp->tcp_ip6h->ip6_plen = htons(len -
21933 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21934 
21935 		mp = dupb(*xmit_tail);
21936 		if (mp == NULL) {
21937 			if (ire != NULL)
21938 				IRE_REFRELE(ire);
21939 			return (-1);	/* out_of_mem */
21940 		}
21941 
21942 		len = tcp_hdr_len;
21943 		/*
21944 		 * There are four reasons to allocate a new hdr mblk:
21945 		 *  1) The bytes above us are in use by another packet
21946 		 *  2) We don't have good alignment
21947 		 *  3) The mblk is being shared
21948 		 *  4) We don't have enough room for a header
21949 		 */
21950 		rptr = mp->b_rptr - len;
21951 		if (!OK_32PTR(rptr) ||
21952 		    ((db = mp->b_datap), db->db_ref != 2) ||
21953 		    rptr < db->db_base + ire_fp_mp_len) {
21954 			/* NOTE: we assume allocb returns an OK_32PTR */
21955 
21956 		must_alloc:;
21957 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21958 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21959 			if (mp1 == NULL) {
21960 				freemsg(mp);
21961 				if (ire != NULL)
21962 					IRE_REFRELE(ire);
21963 				return (-1);	/* out_of_mem */
21964 			}
21965 			mp1->b_cont = mp;
21966 			mp = mp1;
21967 			/* Leave room for Link Level header */
21968 			len = tcp_hdr_len;
21969 			rptr =
21970 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21971 			mp->b_wptr = &rptr[len];
21972 		}
21973 
21974 		/*
21975 		 * Fill in the header using the template header, and add
21976 		 * options such as time-stamp, ECN and/or SACK, as needed.
21977 		 */
21978 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21979 
21980 		mp->b_rptr = rptr;
21981 
21982 		if (*tail_unsent) {
21983 			int spill = *tail_unsent;
21984 
21985 			mp1 = mp->b_cont;
21986 			if (mp1 == NULL)
21987 				mp1 = mp;
21988 
21989 			/*
21990 			 * If we're a little short, tack on more mblks until
21991 			 * there is no more spillover.
21992 			 */
21993 			while (spill < 0) {
21994 				mblk_t *nmp;
21995 				int nmpsz;
21996 
21997 				nmp = (*xmit_tail)->b_cont;
21998 				nmpsz = MBLKL(nmp);
21999 
22000 				/*
22001 				 * Excess data in mblk; can we split it?
22002 				 * If MDT is enabled for the connection,
22003 				 * keep on splitting as this is a transient
22004 				 * send path.
22005 				 */
22006 				if (!do_lso_send && !tcp->tcp_mdt &&
22007 				    (spill + nmpsz > 0)) {
22008 					/*
22009 					 * Don't split if stream head was
22010 					 * told to break up larger writes
22011 					 * into smaller ones.
22012 					 */
22013 					if (tcp->tcp_maxpsz > 0)
22014 						break;
22015 
22016 					/*
22017 					 * Next mblk is less than SMSS/2
22018 					 * rounded up to nearest 64-byte;
22019 					 * let it get sent as part of the
22020 					 * next segment.
22021 					 */
22022 					if (tcp->tcp_localnet &&
22023 					    !tcp->tcp_cork &&
22024 					    (nmpsz < roundup((mss >> 1), 64)))
22025 						break;
22026 				}
22027 
22028 				*xmit_tail = nmp;
22029 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
22030 				/* Stash for rtt use later */
22031 				(*xmit_tail)->b_prev = local_time;
22032 				(*xmit_tail)->b_next =
22033 				    (mblk_t *)(uintptr_t)(*snxt - len);
22034 				mp1->b_cont = dupb(*xmit_tail);
22035 				mp1 = mp1->b_cont;
22036 
22037 				spill += nmpsz;
22038 				if (mp1 == NULL) {
22039 					*tail_unsent = spill;
22040 					freemsg(mp);
22041 					if (ire != NULL)
22042 						IRE_REFRELE(ire);
22043 					return (-1);	/* out_of_mem */
22044 				}
22045 			}
22046 
22047 			/* Trim back any surplus on the last mblk */
22048 			if (spill >= 0) {
22049 				mp1->b_wptr -= spill;
22050 				*tail_unsent = spill;
22051 			} else {
22052 				/*
22053 				 * We did not send everything we could in
22054 				 * order to remain within the b_cont limit.
22055 				 */
22056 				*usable -= spill;
22057 				*snxt += spill;
22058 				tcp->tcp_last_sent_len += spill;
22059 				UPDATE_MIB(&tcps->tcps_mib,
22060 				    tcpOutDataBytes, spill);
22061 				/*
22062 				 * Adjust the checksum
22063 				 */
22064 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
22065 				sum += spill;
22066 				sum = (sum >> 16) + (sum & 0xFFFF);
22067 				U16_TO_ABE16(sum, tcph->th_sum);
22068 				if (tcp->tcp_ipversion == IPV4_VERSION) {
22069 					sum = ntohs(
22070 					    ((ipha_t *)rptr)->ipha_length) +
22071 					    spill;
22072 					((ipha_t *)rptr)->ipha_length =
22073 					    htons(sum);
22074 				} else {
22075 					sum = ntohs(
22076 					    ((ip6_t *)rptr)->ip6_plen) +
22077 					    spill;
22078 					((ip6_t *)rptr)->ip6_plen =
22079 					    htons(sum);
22080 				}
22081 				*tail_unsent = 0;
22082 			}
22083 		}
22084 		if (tcp->tcp_ip_forward_progress) {
22085 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22086 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
22087 			tcp->tcp_ip_forward_progress = B_FALSE;
22088 		}
22089 
22090 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22091 		if (do_lso_send) {
22092 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
22093 			    num_lso_seg);
22094 			tcp->tcp_obsegs += num_lso_seg;
22095 
22096 			TCP_STAT(tcps, tcp_lso_times);
22097 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
22098 		} else {
22099 			tcp_send_data(tcp, q, mp);
22100 			BUMP_LOCAL(tcp->tcp_obsegs);
22101 		}
22102 	}
22103 
22104 	if (ire != NULL)
22105 		IRE_REFRELE(ire);
22106 	return (0);
22107 }
22108 
22109 /* Unlink and return any mblk that looks like it contains a MDT info */
22110 static mblk_t *
22111 tcp_mdt_info_mp(mblk_t *mp)
22112 {
22113 	mblk_t	*prev_mp;
22114 
22115 	for (;;) {
22116 		prev_mp = mp;
22117 		/* no more to process? */
22118 		if ((mp = mp->b_cont) == NULL)
22119 			break;
22120 
22121 		switch (DB_TYPE(mp)) {
22122 		case M_CTL:
22123 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
22124 				continue;
22125 			ASSERT(prev_mp != NULL);
22126 			prev_mp->b_cont = mp->b_cont;
22127 			mp->b_cont = NULL;
22128 			return (mp);
22129 		default:
22130 			break;
22131 		}
22132 	}
22133 	return (mp);
22134 }
22135 
22136 /* MDT info update routine, called when IP notifies us about MDT */
22137 static void
22138 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
22139 {
22140 	boolean_t prev_state;
22141 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22142 
22143 	/*
22144 	 * IP is telling us to abort MDT on this connection?  We know
22145 	 * this because the capability is only turned off when IP
22146 	 * encounters some pathological cases, e.g. link-layer change
22147 	 * where the new driver doesn't support MDT, or in situation
22148 	 * where MDT usage on the link-layer has been switched off.
22149 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
22150 	 * if the link-layer doesn't support MDT, and if it does, it
22151 	 * will indicate that the feature is to be turned on.
22152 	 */
22153 	prev_state = tcp->tcp_mdt;
22154 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
22155 	if (!tcp->tcp_mdt && !first) {
22156 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
22157 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
22158 		    (void *)tcp->tcp_connp));
22159 	}
22160 
22161 	/*
22162 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
22163 	 * so disable MDT otherwise.  The checks are done here
22164 	 * and in tcp_wput_data().
22165 	 */
22166 	if (tcp->tcp_mdt &&
22167 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22168 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22169 	    (tcp->tcp_ipversion == IPV6_VERSION &&
22170 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
22171 		tcp->tcp_mdt = B_FALSE;
22172 
22173 	if (tcp->tcp_mdt) {
22174 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
22175 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
22176 			    "version (%d), expected version is %d",
22177 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
22178 			tcp->tcp_mdt = B_FALSE;
22179 			return;
22180 		}
22181 
22182 		/*
22183 		 * We need the driver to be able to handle at least three
22184 		 * spans per packet in order for tcp MDT to be utilized.
22185 		 * The first is for the header portion, while the rest are
22186 		 * needed to handle a packet that straddles across two
22187 		 * virtually non-contiguous buffers; a typical tcp packet
22188 		 * therefore consists of only two spans.  Note that we take
22189 		 * a zero as "don't care".
22190 		 */
22191 		if (mdt_capab->ill_mdt_span_limit > 0 &&
22192 		    mdt_capab->ill_mdt_span_limit < 3) {
22193 			tcp->tcp_mdt = B_FALSE;
22194 			return;
22195 		}
22196 
22197 		/* a zero means driver wants default value */
22198 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
22199 		    tcps->tcps_mdt_max_pbufs);
22200 		if (tcp->tcp_mdt_max_pld == 0)
22201 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
22202 
22203 		/* ensure 32-bit alignment */
22204 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
22205 		    mdt_capab->ill_mdt_hdr_head), 4);
22206 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
22207 		    mdt_capab->ill_mdt_hdr_tail), 4);
22208 
22209 		if (!first && !prev_state) {
22210 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
22211 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
22212 			    (void *)tcp->tcp_connp));
22213 		}
22214 	}
22215 }
22216 
22217 /* Unlink and return any mblk that looks like it contains a LSO info */
22218 static mblk_t *
22219 tcp_lso_info_mp(mblk_t *mp)
22220 {
22221 	mblk_t	*prev_mp;
22222 
22223 	for (;;) {
22224 		prev_mp = mp;
22225 		/* no more to process? */
22226 		if ((mp = mp->b_cont) == NULL)
22227 			break;
22228 
22229 		switch (DB_TYPE(mp)) {
22230 		case M_CTL:
22231 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
22232 				continue;
22233 			ASSERT(prev_mp != NULL);
22234 			prev_mp->b_cont = mp->b_cont;
22235 			mp->b_cont = NULL;
22236 			return (mp);
22237 		default:
22238 			break;
22239 		}
22240 	}
22241 
22242 	return (mp);
22243 }
22244 
22245 /* LSO info update routine, called when IP notifies us about LSO */
22246 static void
22247 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
22248 {
22249 	tcp_stack_t *tcps = tcp->tcp_tcps;
22250 
22251 	/*
22252 	 * IP is telling us to abort LSO on this connection?  We know
22253 	 * this because the capability is only turned off when IP
22254 	 * encounters some pathological cases, e.g. link-layer change
22255 	 * where the new NIC/driver doesn't support LSO, or in situation
22256 	 * where LSO usage on the link-layer has been switched off.
22257 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
22258 	 * if the link-layer doesn't support LSO, and if it does, it
22259 	 * will indicate that the feature is to be turned on.
22260 	 */
22261 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
22262 	TCP_STAT(tcps, tcp_lso_enabled);
22263 
22264 	/*
22265 	 * We currently only support LSO on simple TCP/IPv4,
22266 	 * so disable LSO otherwise.  The checks are done here
22267 	 * and in tcp_wput_data().
22268 	 */
22269 	if (tcp->tcp_lso &&
22270 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22271 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22272 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
22273 		tcp->tcp_lso = B_FALSE;
22274 		TCP_STAT(tcps, tcp_lso_disabled);
22275 	} else {
22276 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
22277 		    lso_capab->ill_lso_max);
22278 	}
22279 }
22280 
22281 static void
22282 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
22283 {
22284 	conn_t *connp = tcp->tcp_connp;
22285 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22286 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22287 
22288 	ASSERT(ire != NULL);
22289 
22290 	/*
22291 	 * We may be in the fastpath here, and although we essentially do
22292 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
22293 	 * we try to keep things as brief as possible.  After all, these
22294 	 * are only best-effort checks, and we do more thorough ones prior
22295 	 * to calling tcp_send()/tcp_multisend().
22296 	 */
22297 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22298 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22299 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22300 	    !(ire->ire_flags & RTF_MULTIRT) &&
22301 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22302 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22303 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22304 			/* Cache the result */
22305 			connp->conn_lso_ok = B_TRUE;
22306 
22307 			ASSERT(ill->ill_lso_capab != NULL);
22308 			if (!ill->ill_lso_capab->ill_lso_on) {
22309 				ill->ill_lso_capab->ill_lso_on = 1;
22310 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22311 				    "LSO for interface %s\n", (void *)connp,
22312 				    ill->ill_name));
22313 			}
22314 			tcp_lso_update(tcp, ill->ill_lso_capab);
22315 		} else if (ipst->ips_ip_multidata_outbound &&
22316 		    ILL_MDT_CAPABLE(ill)) {
22317 			/* Cache the result */
22318 			connp->conn_mdt_ok = B_TRUE;
22319 
22320 			ASSERT(ill->ill_mdt_capab != NULL);
22321 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22322 				ill->ill_mdt_capab->ill_mdt_on = 1;
22323 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22324 				    "MDT for interface %s\n", (void *)connp,
22325 				    ill->ill_name));
22326 			}
22327 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22328 		}
22329 	}
22330 
22331 	/*
22332 	 * The goal is to reduce the number of generated tcp segments by
22333 	 * setting the maxpsz multiplier to 0; this will have an affect on
22334 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22335 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22336 	 * of outbound segments and incoming ACKs, thus allowing for better
22337 	 * network and system performance.  In contrast the legacy behavior
22338 	 * may result in sending less than SMSS size, because the last mblk
22339 	 * for some packets may have more data than needed to make up SMSS,
22340 	 * and the legacy code refused to "split" it.
22341 	 *
22342 	 * We apply the new behavior on following situations:
22343 	 *
22344 	 *   1) Loopback connections,
22345 	 *   2) Connections in which the remote peer is not on local subnet,
22346 	 *   3) Local subnet connections over the bge interface (see below).
22347 	 *
22348 	 * Ideally, we would like this behavior to apply for interfaces other
22349 	 * than bge.  However, doing so would negatively impact drivers which
22350 	 * perform dynamic mapping and unmapping of DMA resources, which are
22351 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22352 	 * packet will be generated by tcp).  The bge driver does not suffer
22353 	 * from this, as it copies the mblks into pre-mapped buffers, and
22354 	 * therefore does not require more I/O resources than before.
22355 	 *
22356 	 * Otherwise, this behavior is present on all network interfaces when
22357 	 * the destination endpoint is non-local, since reducing the number
22358 	 * of packets in general is good for the network.
22359 	 *
22360 	 * TODO We need to remove this hard-coded conditional for bge once
22361 	 *	a better "self-tuning" mechanism, or a way to comprehend
22362 	 *	the driver transmit strategy is devised.  Until the solution
22363 	 *	is found and well understood, we live with this hack.
22364 	 */
22365 	if (!tcp_static_maxpsz &&
22366 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22367 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22368 		/* override the default value */
22369 		tcp->tcp_maxpsz = 0;
22370 
22371 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22372 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22373 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22374 	}
22375 
22376 	/* set the stream head parameters accordingly */
22377 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22378 }
22379 
22380 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22381 static void
22382 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22383 {
22384 	uchar_t	fval = *mp->b_rptr;
22385 	mblk_t	*tail;
22386 	queue_t	*q = tcp->tcp_wq;
22387 
22388 	/* TODO: How should flush interact with urgent data? */
22389 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22390 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22391 		/*
22392 		 * Flush only data that has not yet been put on the wire.  If
22393 		 * we flush data that we have already transmitted, life, as we
22394 		 * know it, may come to an end.
22395 		 */
22396 		tail = tcp->tcp_xmit_tail;
22397 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22398 		tcp->tcp_xmit_tail_unsent = 0;
22399 		tcp->tcp_unsent = 0;
22400 		if (tail->b_wptr != tail->b_rptr)
22401 			tail = tail->b_cont;
22402 		if (tail) {
22403 			mblk_t **excess = &tcp->tcp_xmit_head;
22404 			for (;;) {
22405 				mblk_t *mp1 = *excess;
22406 				if (mp1 == tail)
22407 					break;
22408 				tcp->tcp_xmit_tail = mp1;
22409 				tcp->tcp_xmit_last = mp1;
22410 				excess = &mp1->b_cont;
22411 			}
22412 			*excess = NULL;
22413 			tcp_close_mpp(&tail);
22414 			if (tcp->tcp_snd_zcopy_aware)
22415 				tcp_zcopy_notify(tcp);
22416 		}
22417 		/*
22418 		 * We have no unsent data, so unsent must be less than
22419 		 * tcp_xmit_lowater, so re-enable flow.
22420 		 */
22421 		mutex_enter(&tcp->tcp_non_sq_lock);
22422 		if (tcp->tcp_flow_stopped) {
22423 			tcp_clrqfull(tcp);
22424 		}
22425 		mutex_exit(&tcp->tcp_non_sq_lock);
22426 	}
22427 	/*
22428 	 * TODO: you can't just flush these, you have to increase rwnd for one
22429 	 * thing.  For another, how should urgent data interact?
22430 	 */
22431 	if (fval & FLUSHR) {
22432 		*mp->b_rptr = fval & ~FLUSHW;
22433 		/* XXX */
22434 		qreply(q, mp);
22435 		return;
22436 	}
22437 	freemsg(mp);
22438 }
22439 
22440 /*
22441  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22442  * messages.
22443  */
22444 static void
22445 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22446 {
22447 	mblk_t	*mp1;
22448 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22449 	STRUCT_HANDLE(strbuf, sb);
22450 	queue_t *q = tcp->tcp_wq;
22451 	int	error;
22452 	uint_t	addrlen;
22453 
22454 	/* Make sure it is one of ours. */
22455 	switch (iocp->ioc_cmd) {
22456 	case TI_GETMYNAME:
22457 	case TI_GETPEERNAME:
22458 		break;
22459 	default:
22460 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22461 		return;
22462 	}
22463 	switch (mi_copy_state(q, mp, &mp1)) {
22464 	case -1:
22465 		return;
22466 	case MI_COPY_CASE(MI_COPY_IN, 1):
22467 		break;
22468 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22469 		/* Copy out the strbuf. */
22470 		mi_copyout(q, mp);
22471 		return;
22472 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22473 		/* All done. */
22474 		mi_copy_done(q, mp, 0);
22475 		return;
22476 	default:
22477 		mi_copy_done(q, mp, EPROTO);
22478 		return;
22479 	}
22480 	/* Check alignment of the strbuf */
22481 	if (!OK_32PTR(mp1->b_rptr)) {
22482 		mi_copy_done(q, mp, EINVAL);
22483 		return;
22484 	}
22485 
22486 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22487 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22488 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22489 		mi_copy_done(q, mp, EINVAL);
22490 		return;
22491 	}
22492 
22493 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22494 	if (mp1 == NULL)
22495 		return;
22496 
22497 	switch (iocp->ioc_cmd) {
22498 	case TI_GETMYNAME:
22499 		error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen);
22500 		break;
22501 	case TI_GETPEERNAME:
22502 		error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22503 		break;
22504 	}
22505 
22506 	if (error != 0) {
22507 		mi_copy_done(q, mp, error);
22508 	} else {
22509 		mp1->b_wptr += addrlen;
22510 		STRUCT_FSET(sb, len, addrlen);
22511 
22512 		/* Copy out the address */
22513 		mi_copyout(q, mp);
22514 	}
22515 }
22516 
22517 /*
22518  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22519  * messages.
22520  */
22521 /* ARGSUSED */
22522 static void
22523 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22524 {
22525 	conn_t 	*connp = (conn_t *)arg;
22526 	tcp_t	*tcp = connp->conn_tcp;
22527 	queue_t	*q = tcp->tcp_wq;
22528 	struct iocblk	*iocp;
22529 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22530 
22531 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22532 	/*
22533 	 * Try and ASSERT the minimum possible references on the
22534 	 * conn early enough. Since we are executing on write side,
22535 	 * the connection is obviously not detached and that means
22536 	 * there is a ref each for TCP and IP. Since we are behind
22537 	 * the squeue, the minimum references needed are 3. If the
22538 	 * conn is in classifier hash list, there should be an
22539 	 * extra ref for that (we check both the possibilities).
22540 	 */
22541 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22542 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22543 
22544 	iocp = (struct iocblk *)mp->b_rptr;
22545 	switch (iocp->ioc_cmd) {
22546 	case TCP_IOC_DEFAULT_Q:
22547 		/* Wants to be the default wq. */
22548 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22549 			iocp->ioc_error = EPERM;
22550 			iocp->ioc_count = 0;
22551 			mp->b_datap->db_type = M_IOCACK;
22552 			qreply(q, mp);
22553 			return;
22554 		}
22555 		tcp_def_q_set(tcp, mp);
22556 		return;
22557 	case _SIOCSOCKFALLBACK:
22558 		/*
22559 		 * Either sockmod is about to be popped and the socket
22560 		 * would now be treated as a plain stream, or a module
22561 		 * is about to be pushed so we could no longer use read-
22562 		 * side synchronous streams for fused loopback tcp.
22563 		 * Drain any queued data and disable direct sockfs
22564 		 * interface from now on.
22565 		 */
22566 		if (!tcp->tcp_issocket) {
22567 			DB_TYPE(mp) = M_IOCNAK;
22568 			iocp->ioc_error = EINVAL;
22569 		} else {
22570 #ifdef	_ILP32
22571 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22572 #else
22573 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22574 #endif
22575 			/*
22576 			 * Insert this socket into the acceptor hash.
22577 			 * We might need it for T_CONN_RES message
22578 			 */
22579 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22580 
22581 			if (tcp->tcp_fused) {
22582 				/*
22583 				 * This is a fused loopback tcp; disable
22584 				 * read-side synchronous streams interface
22585 				 * and drain any queued data.  It is okay
22586 				 * to do this for non-synchronous streams
22587 				 * fused tcp as well.
22588 				 */
22589 				tcp_fuse_disable_pair(tcp, B_FALSE);
22590 			}
22591 			tcp->tcp_issocket = B_FALSE;
22592 			tcp->tcp_sodirect = NULL;
22593 			TCP_STAT(tcps, tcp_sock_fallback);
22594 
22595 			DB_TYPE(mp) = M_IOCACK;
22596 			iocp->ioc_error = 0;
22597 		}
22598 		iocp->ioc_count = 0;
22599 		iocp->ioc_rval = 0;
22600 		qreply(q, mp);
22601 		return;
22602 	}
22603 	CALL_IP_WPUT(connp, q, mp);
22604 }
22605 
22606 /*
22607  * This routine is called by tcp_wput() to handle all TPI requests.
22608  */
22609 /* ARGSUSED */
22610 static void
22611 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22612 {
22613 	conn_t 	*connp = (conn_t *)arg;
22614 	tcp_t	*tcp = connp->conn_tcp;
22615 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22616 	uchar_t *rptr;
22617 	t_scalar_t type;
22618 	int len;
22619 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22620 
22621 	/*
22622 	 * Try and ASSERT the minimum possible references on the
22623 	 * conn early enough. Since we are executing on write side,
22624 	 * the connection is obviously not detached and that means
22625 	 * there is a ref each for TCP and IP. Since we are behind
22626 	 * the squeue, the minimum references needed are 3. If the
22627 	 * conn is in classifier hash list, there should be an
22628 	 * extra ref for that (we check both the possibilities).
22629 	 */
22630 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22631 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22632 
22633 	rptr = mp->b_rptr;
22634 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22635 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22636 		type = ((union T_primitives *)rptr)->type;
22637 		if (type == T_EXDATA_REQ) {
22638 			uint32_t msize = msgdsize(mp->b_cont);
22639 
22640 			len = msize - 1;
22641 			if (len < 0) {
22642 				freemsg(mp);
22643 				return;
22644 			}
22645 			/*
22646 			 * Try to force urgent data out on the wire.
22647 			 * Even if we have unsent data this will
22648 			 * at least send the urgent flag.
22649 			 * XXX does not handle more flag correctly.
22650 			 */
22651 			len += tcp->tcp_unsent;
22652 			len += tcp->tcp_snxt;
22653 			tcp->tcp_urg = len;
22654 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22655 
22656 			/* Bypass tcp protocol for fused tcp loopback */
22657 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22658 				return;
22659 		} else if (type != T_DATA_REQ) {
22660 			goto non_urgent_data;
22661 		}
22662 		/* TODO: options, flags, ... from user */
22663 		/* Set length to zero for reclamation below */
22664 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22665 		freeb(mp);
22666 		return;
22667 	} else {
22668 		if (tcp->tcp_debug) {
22669 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22670 			    "tcp_wput_proto, dropping one...");
22671 		}
22672 		freemsg(mp);
22673 		return;
22674 	}
22675 
22676 non_urgent_data:
22677 
22678 	switch ((int)tprim->type) {
22679 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22680 		/*
22681 		 * save the kssl_ent_t from the next block, and convert this
22682 		 * back to a normal bind_req.
22683 		 */
22684 		if (mp->b_cont != NULL) {
22685 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22686 
22687 			if (tcp->tcp_kssl_ent != NULL) {
22688 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22689 				    KSSL_NO_PROXY);
22690 				tcp->tcp_kssl_ent = NULL;
22691 			}
22692 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22693 			    sizeof (kssl_ent_t));
22694 			kssl_hold_ent(tcp->tcp_kssl_ent);
22695 			freemsg(mp->b_cont);
22696 			mp->b_cont = NULL;
22697 		}
22698 		tprim->type = T_BIND_REQ;
22699 
22700 	/* FALLTHROUGH */
22701 	case O_T_BIND_REQ:	/* bind request */
22702 	case T_BIND_REQ:	/* new semantics bind request */
22703 		tcp_bind(tcp, mp);
22704 		break;
22705 	case T_UNBIND_REQ:	/* unbind request */
22706 		tcp_unbind(tcp, mp);
22707 		break;
22708 	case O_T_CONN_RES:	/* old connection response XXX */
22709 	case T_CONN_RES:	/* connection response */
22710 		tcp_accept(tcp, mp);
22711 		break;
22712 	case T_CONN_REQ:	/* connection request */
22713 		tcp_connect(tcp, mp);
22714 		break;
22715 	case T_DISCON_REQ:	/* disconnect request */
22716 		tcp_disconnect(tcp, mp);
22717 		break;
22718 	case T_CAPABILITY_REQ:
22719 		tcp_capability_req(tcp, mp);	/* capability request */
22720 		break;
22721 	case T_INFO_REQ:	/* information request */
22722 		tcp_info_req(tcp, mp);
22723 		break;
22724 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22725 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22726 		    &tcp_opt_obj, B_TRUE);
22727 		break;
22728 	case T_OPTMGMT_REQ:
22729 		/*
22730 		 * Note:  no support for snmpcom_req() through new
22731 		 * T_OPTMGMT_REQ. See comments in ip.c
22732 		 */
22733 		/* Only IP is allowed to return meaningful value */
22734 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22735 		    B_TRUE);
22736 		break;
22737 
22738 	case T_UNITDATA_REQ:	/* unitdata request */
22739 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22740 		break;
22741 	case T_ORDREL_REQ:	/* orderly release req */
22742 		freemsg(mp);
22743 
22744 		if (tcp->tcp_fused)
22745 			tcp_unfuse(tcp);
22746 
22747 		if (tcp_xmit_end(tcp) != 0) {
22748 			/*
22749 			 * We were crossing FINs and got a reset from
22750 			 * the other side. Just ignore it.
22751 			 */
22752 			if (tcp->tcp_debug) {
22753 				(void) strlog(TCP_MOD_ID, 0, 1,
22754 				    SL_ERROR|SL_TRACE,
22755 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22756 				    "state %s",
22757 				    tcp_display(tcp, NULL,
22758 				    DISP_ADDR_AND_PORT));
22759 			}
22760 		}
22761 		break;
22762 	case T_ADDR_REQ:
22763 		tcp_addr_req(tcp, mp);
22764 		break;
22765 	default:
22766 		if (tcp->tcp_debug) {
22767 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22768 			    "tcp_wput_proto, bogus TPI msg, type %d",
22769 			    tprim->type);
22770 		}
22771 		/*
22772 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22773 		 * to recover.
22774 		 */
22775 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22776 		break;
22777 	}
22778 }
22779 
22780 /*
22781  * The TCP write service routine should never be called...
22782  */
22783 /* ARGSUSED */
22784 static void
22785 tcp_wsrv(queue_t *q)
22786 {
22787 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22788 
22789 	TCP_STAT(tcps, tcp_wsrv_called);
22790 }
22791 
22792 /* Non overlapping byte exchanger */
22793 static void
22794 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22795 {
22796 	uchar_t	uch;
22797 
22798 	while (len-- > 0) {
22799 		uch = a[len];
22800 		a[len] = b[len];
22801 		b[len] = uch;
22802 	}
22803 }
22804 
22805 /*
22806  * Send out a control packet on the tcp connection specified.  This routine
22807  * is typically called where we need a simple ACK or RST generated.
22808  */
22809 static void
22810 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22811 {
22812 	uchar_t		*rptr;
22813 	tcph_t		*tcph;
22814 	ipha_t		*ipha = NULL;
22815 	ip6_t		*ip6h = NULL;
22816 	uint32_t	sum;
22817 	int		tcp_hdr_len;
22818 	int		tcp_ip_hdr_len;
22819 	mblk_t		*mp;
22820 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22821 
22822 	/*
22823 	 * Save sum for use in source route later.
22824 	 */
22825 	ASSERT(tcp != NULL);
22826 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22827 	tcp_hdr_len = tcp->tcp_hdr_len;
22828 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22829 
22830 	/* If a text string is passed in with the request, pass it to strlog. */
22831 	if (str != NULL && tcp->tcp_debug) {
22832 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22833 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22834 		    str, seq, ack, ctl);
22835 	}
22836 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22837 	    BPRI_MED);
22838 	if (mp == NULL) {
22839 		return;
22840 	}
22841 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22842 	mp->b_rptr = rptr;
22843 	mp->b_wptr = &rptr[tcp_hdr_len];
22844 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22845 
22846 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22847 		ipha = (ipha_t *)rptr;
22848 		ipha->ipha_length = htons(tcp_hdr_len);
22849 	} else {
22850 		ip6h = (ip6_t *)rptr;
22851 		ASSERT(tcp != NULL);
22852 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22853 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22854 	}
22855 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22856 	tcph->th_flags[0] = (uint8_t)ctl;
22857 	if (ctl & TH_RST) {
22858 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22859 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22860 		/*
22861 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22862 		 */
22863 		if (tcp->tcp_snd_ts_ok &&
22864 		    tcp->tcp_state > TCPS_SYN_SENT) {
22865 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22866 			*(mp->b_wptr) = TCPOPT_EOL;
22867 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22868 				ipha->ipha_length = htons(tcp_hdr_len -
22869 				    TCPOPT_REAL_TS_LEN);
22870 			} else {
22871 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22872 				    TCPOPT_REAL_TS_LEN);
22873 			}
22874 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22875 			sum -= TCPOPT_REAL_TS_LEN;
22876 		}
22877 	}
22878 	if (ctl & TH_ACK) {
22879 		if (tcp->tcp_snd_ts_ok) {
22880 			U32_TO_BE32(lbolt,
22881 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22882 			U32_TO_BE32(tcp->tcp_ts_recent,
22883 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22884 		}
22885 
22886 		/* Update the latest receive window size in TCP header. */
22887 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22888 		    tcph->th_win);
22889 		tcp->tcp_rack = ack;
22890 		tcp->tcp_rack_cnt = 0;
22891 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22892 	}
22893 	BUMP_LOCAL(tcp->tcp_obsegs);
22894 	U32_TO_BE32(seq, tcph->th_seq);
22895 	U32_TO_BE32(ack, tcph->th_ack);
22896 	/*
22897 	 * Include the adjustment for a source route if any.
22898 	 */
22899 	sum = (sum >> 16) + (sum & 0xFFFF);
22900 	U16_TO_BE16(sum, tcph->th_sum);
22901 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22902 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22903 }
22904 
22905 /*
22906  * If this routine returns B_TRUE, TCP can generate a RST in response
22907  * to a segment.  If it returns B_FALSE, TCP should not respond.
22908  */
22909 static boolean_t
22910 tcp_send_rst_chk(tcp_stack_t *tcps)
22911 {
22912 	clock_t	now;
22913 
22914 	/*
22915 	 * TCP needs to protect itself from generating too many RSTs.
22916 	 * This can be a DoS attack by sending us random segments
22917 	 * soliciting RSTs.
22918 	 *
22919 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22920 	 * in each 1 second interval.  In this way, TCP still generate
22921 	 * RSTs in normal cases but when under attack, the impact is
22922 	 * limited.
22923 	 */
22924 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22925 		now = lbolt;
22926 		/* lbolt can wrap around. */
22927 		if ((tcps->tcps_last_rst_intrvl > now) ||
22928 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22929 		    1*SECONDS)) {
22930 			tcps->tcps_last_rst_intrvl = now;
22931 			tcps->tcps_rst_cnt = 1;
22932 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22933 			return (B_FALSE);
22934 		}
22935 	}
22936 	return (B_TRUE);
22937 }
22938 
22939 /*
22940  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22941  */
22942 static void
22943 tcp_ip_ire_mark_advice(tcp_t *tcp)
22944 {
22945 	mblk_t *mp;
22946 	ipic_t *ipic;
22947 
22948 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22949 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22950 		    &ipic);
22951 	} else {
22952 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22953 		    &ipic);
22954 	}
22955 	if (mp == NULL)
22956 		return;
22957 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22958 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22959 }
22960 
22961 /*
22962  * Return an IP advice ioctl mblk and set ipic to be the pointer
22963  * to the advice structure.
22964  */
22965 static mblk_t *
22966 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22967 {
22968 	struct iocblk *ioc;
22969 	mblk_t *mp, *mp1;
22970 
22971 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22972 	if (mp == NULL)
22973 		return (NULL);
22974 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22975 	*ipic = (ipic_t *)mp->b_rptr;
22976 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22977 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22978 
22979 	bcopy(addr, *ipic + 1, addr_len);
22980 
22981 	(*ipic)->ipic_addr_length = addr_len;
22982 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22983 
22984 	mp1 = mkiocb(IP_IOCTL);
22985 	if (mp1 == NULL) {
22986 		freemsg(mp);
22987 		return (NULL);
22988 	}
22989 	mp1->b_cont = mp;
22990 	ioc = (struct iocblk *)mp1->b_rptr;
22991 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22992 
22993 	return (mp1);
22994 }
22995 
22996 /*
22997  * Generate a reset based on an inbound packet, connp is set by caller
22998  * when RST is in response to an unexpected inbound packet for which
22999  * there is active tcp state in the system.
23000  *
23001  * IPSEC NOTE : Try to send the reply with the same protection as it came
23002  * in.  We still have the ipsec_mp that the packet was attached to. Thus
23003  * the packet will go out at the same level of protection as it came in by
23004  * converting the IPSEC_IN to IPSEC_OUT.
23005  */
23006 static void
23007 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
23008     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
23009     tcp_stack_t *tcps, conn_t *connp)
23010 {
23011 	ipha_t		*ipha = NULL;
23012 	ip6_t		*ip6h = NULL;
23013 	ushort_t	len;
23014 	tcph_t		*tcph;
23015 	int		i;
23016 	mblk_t		*ipsec_mp;
23017 	boolean_t	mctl_present;
23018 	ipic_t		*ipic;
23019 	ipaddr_t	v4addr;
23020 	in6_addr_t	v6addr;
23021 	int		addr_len;
23022 	void		*addr;
23023 	queue_t		*q = tcps->tcps_g_q;
23024 	tcp_t		*tcp;
23025 	cred_t		*cr;
23026 	mblk_t		*nmp;
23027 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
23028 
23029 	if (tcps->tcps_g_q == NULL) {
23030 		/*
23031 		 * For non-zero stackids the default queue isn't created
23032 		 * until the first open, thus there can be a need to send
23033 		 * a reset before then. But we can't do that, hence we just
23034 		 * drop the packet. Later during boot, when the default queue
23035 		 * has been setup, a retransmitted packet from the peer
23036 		 * will result in a reset.
23037 		 */
23038 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
23039 		    GLOBAL_NETSTACKID);
23040 		freemsg(mp);
23041 		return;
23042 	}
23043 
23044 	if (connp != NULL)
23045 		tcp = connp->conn_tcp;
23046 	else
23047 		tcp = Q_TO_TCP(q);
23048 
23049 	if (!tcp_send_rst_chk(tcps)) {
23050 		tcps->tcps_rst_unsent++;
23051 		freemsg(mp);
23052 		return;
23053 	}
23054 
23055 	if (mp->b_datap->db_type == M_CTL) {
23056 		ipsec_mp = mp;
23057 		mp = mp->b_cont;
23058 		mctl_present = B_TRUE;
23059 	} else {
23060 		ipsec_mp = mp;
23061 		mctl_present = B_FALSE;
23062 	}
23063 
23064 	if (str && q && tcps->tcps_dbg) {
23065 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
23066 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
23067 		    "flags 0x%x",
23068 		    str, seq, ack, ctl);
23069 	}
23070 	if (mp->b_datap->db_ref != 1) {
23071 		mblk_t *mp1 = copyb(mp);
23072 		freemsg(mp);
23073 		mp = mp1;
23074 		if (!mp) {
23075 			if (mctl_present)
23076 				freeb(ipsec_mp);
23077 			return;
23078 		} else {
23079 			if (mctl_present) {
23080 				ipsec_mp->b_cont = mp;
23081 			} else {
23082 				ipsec_mp = mp;
23083 			}
23084 		}
23085 	} else if (mp->b_cont) {
23086 		freemsg(mp->b_cont);
23087 		mp->b_cont = NULL;
23088 	}
23089 	/*
23090 	 * We skip reversing source route here.
23091 	 * (for now we replace all IP options with EOL)
23092 	 */
23093 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23094 		ipha = (ipha_t *)mp->b_rptr;
23095 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
23096 			mp->b_rptr[i] = IPOPT_EOL;
23097 		/*
23098 		 * Make sure that src address isn't flagrantly invalid.
23099 		 * Not all broadcast address checking for the src address
23100 		 * is possible, since we don't know the netmask of the src
23101 		 * addr.  No check for destination address is done, since
23102 		 * IP will not pass up a packet with a broadcast dest
23103 		 * address to TCP.  Similar checks are done below for IPv6.
23104 		 */
23105 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
23106 		    CLASSD(ipha->ipha_src)) {
23107 			freemsg(ipsec_mp);
23108 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
23109 			return;
23110 		}
23111 	} else {
23112 		ip6h = (ip6_t *)mp->b_rptr;
23113 
23114 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
23115 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
23116 			freemsg(ipsec_mp);
23117 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
23118 			return;
23119 		}
23120 
23121 		/* Remove any extension headers assuming partial overlay */
23122 		if (ip_hdr_len > IPV6_HDR_LEN) {
23123 			uint8_t *to;
23124 
23125 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
23126 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
23127 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
23128 			ip_hdr_len = IPV6_HDR_LEN;
23129 			ip6h = (ip6_t *)mp->b_rptr;
23130 			ip6h->ip6_nxt = IPPROTO_TCP;
23131 		}
23132 	}
23133 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
23134 	if (tcph->th_flags[0] & TH_RST) {
23135 		freemsg(ipsec_mp);
23136 		return;
23137 	}
23138 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
23139 	len = ip_hdr_len + sizeof (tcph_t);
23140 	mp->b_wptr = &mp->b_rptr[len];
23141 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23142 		ipha->ipha_length = htons(len);
23143 		/* Swap addresses */
23144 		v4addr = ipha->ipha_src;
23145 		ipha->ipha_src = ipha->ipha_dst;
23146 		ipha->ipha_dst = v4addr;
23147 		ipha->ipha_ident = 0;
23148 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
23149 		addr_len = IP_ADDR_LEN;
23150 		addr = &v4addr;
23151 	} else {
23152 		/* No ip6i_t in this case */
23153 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
23154 		/* Swap addresses */
23155 		v6addr = ip6h->ip6_src;
23156 		ip6h->ip6_src = ip6h->ip6_dst;
23157 		ip6h->ip6_dst = v6addr;
23158 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
23159 		addr_len = IPV6_ADDR_LEN;
23160 		addr = &v6addr;
23161 	}
23162 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
23163 	U32_TO_BE32(ack, tcph->th_ack);
23164 	U32_TO_BE32(seq, tcph->th_seq);
23165 	U16_TO_BE16(0, tcph->th_win);
23166 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
23167 	tcph->th_flags[0] = (uint8_t)ctl;
23168 	if (ctl & TH_RST) {
23169 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
23170 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23171 	}
23172 
23173 	/* IP trusts us to set up labels when required. */
23174 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
23175 	    crgetlabel(cr) != NULL) {
23176 		int err;
23177 
23178 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
23179 			err = tsol_check_label(cr, &mp,
23180 			    tcp->tcp_connp->conn_mac_exempt,
23181 			    tcps->tcps_netstack->netstack_ip);
23182 		else
23183 			err = tsol_check_label_v6(cr, &mp,
23184 			    tcp->tcp_connp->conn_mac_exempt,
23185 			    tcps->tcps_netstack->netstack_ip);
23186 		if (mctl_present)
23187 			ipsec_mp->b_cont = mp;
23188 		else
23189 			ipsec_mp = mp;
23190 		if (err != 0) {
23191 			freemsg(ipsec_mp);
23192 			return;
23193 		}
23194 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23195 			ipha = (ipha_t *)mp->b_rptr;
23196 		} else {
23197 			ip6h = (ip6_t *)mp->b_rptr;
23198 		}
23199 	}
23200 
23201 	if (mctl_present) {
23202 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23203 
23204 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23205 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
23206 			return;
23207 		}
23208 	}
23209 	if (zoneid == ALL_ZONES)
23210 		zoneid = GLOBAL_ZONEID;
23211 
23212 	/* Add the zoneid so ip_output routes it properly */
23213 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
23214 		freemsg(ipsec_mp);
23215 		return;
23216 	}
23217 	ipsec_mp = nmp;
23218 
23219 	/*
23220 	 * NOTE:  one might consider tracing a TCP packet here, but
23221 	 * this function has no active TCP state and no tcp structure
23222 	 * that has a trace buffer.  If we traced here, we would have
23223 	 * to keep a local trace buffer in tcp_record_trace().
23224 	 *
23225 	 * TSol note: The mblk that contains the incoming packet was
23226 	 * reused by tcp_xmit_listener_reset, so it already contains
23227 	 * the right credentials and we don't need to call mblk_setcred.
23228 	 * Also the conn's cred is not right since it is associated
23229 	 * with tcps_g_q.
23230 	 */
23231 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
23232 
23233 	/*
23234 	 * Tell IP to mark the IRE used for this destination temporary.
23235 	 * This way, we can limit our exposure to DoS attack because IP
23236 	 * creates an IRE for each destination.  If there are too many,
23237 	 * the time to do any routing lookup will be extremely long.  And
23238 	 * the lookup can be in interrupt context.
23239 	 *
23240 	 * Note that in normal circumstances, this marking should not
23241 	 * affect anything.  It would be nice if only 1 message is
23242 	 * needed to inform IP that the IRE created for this RST should
23243 	 * not be added to the cache table.  But there is currently
23244 	 * not such communication mechanism between TCP and IP.  So
23245 	 * the best we can do now is to send the advice ioctl to IP
23246 	 * to mark the IRE temporary.
23247 	 */
23248 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
23249 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
23250 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23251 	}
23252 }
23253 
23254 /*
23255  * Initiate closedown sequence on an active connection.  (May be called as
23256  * writer.)  Return value zero for OK return, non-zero for error return.
23257  */
23258 static int
23259 tcp_xmit_end(tcp_t *tcp)
23260 {
23261 	ipic_t	*ipic;
23262 	mblk_t	*mp;
23263 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23264 
23265 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
23266 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
23267 		/*
23268 		 * Invalid state, only states TCPS_SYN_RCVD,
23269 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
23270 		 */
23271 		return (-1);
23272 	}
23273 
23274 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
23275 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
23276 	/*
23277 	 * If there is nothing more unsent, send the FIN now.
23278 	 * Otherwise, it will go out with the last segment.
23279 	 */
23280 	if (tcp->tcp_unsent == 0) {
23281 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
23282 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
23283 
23284 		if (mp) {
23285 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23286 			tcp_send_data(tcp, tcp->tcp_wq, mp);
23287 		} else {
23288 			/*
23289 			 * Couldn't allocate msg.  Pretend we got it out.
23290 			 * Wait for rexmit timeout.
23291 			 */
23292 			tcp->tcp_snxt = tcp->tcp_fss + 1;
23293 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23294 		}
23295 
23296 		/*
23297 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
23298 		 * changed.
23299 		 */
23300 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
23301 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23302 		}
23303 	} else {
23304 		/*
23305 		 * If tcp->tcp_cork is set, then the data will not get sent,
23306 		 * so we have to check that and unset it first.
23307 		 */
23308 		if (tcp->tcp_cork)
23309 			tcp->tcp_cork = B_FALSE;
23310 		tcp_wput_data(tcp, NULL, B_FALSE);
23311 	}
23312 
23313 	/*
23314 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23315 	 * is 0, don't update the cache.
23316 	 */
23317 	if (tcps->tcps_rtt_updates == 0 ||
23318 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23319 		return (0);
23320 
23321 	/*
23322 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23323 	 * different from the destination.
23324 	 */
23325 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23326 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23327 			return (0);
23328 		}
23329 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23330 		    &ipic);
23331 	} else {
23332 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23333 		    &tcp->tcp_ip6h->ip6_dst))) {
23334 			return (0);
23335 		}
23336 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23337 		    &ipic);
23338 	}
23339 
23340 	/* Record route attributes in the IRE for use by future connections. */
23341 	if (mp == NULL)
23342 		return (0);
23343 
23344 	/*
23345 	 * We do not have a good algorithm to update ssthresh at this time.
23346 	 * So don't do any update.
23347 	 */
23348 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23349 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23350 
23351 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23352 	return (0);
23353 }
23354 
23355 /*
23356  * Generate a "no listener here" RST in response to an "unknown" segment.
23357  * connp is set by caller when RST is in response to an unexpected
23358  * inbound packet for which there is active tcp state in the system.
23359  * Note that we are reusing the incoming mp to construct the outgoing RST.
23360  */
23361 void
23362 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23363     tcp_stack_t *tcps, conn_t *connp)
23364 {
23365 	uchar_t		*rptr;
23366 	uint32_t	seg_len;
23367 	tcph_t		*tcph;
23368 	uint32_t	seg_seq;
23369 	uint32_t	seg_ack;
23370 	uint_t		flags;
23371 	mblk_t		*ipsec_mp;
23372 	ipha_t 		*ipha;
23373 	ip6_t 		*ip6h;
23374 	boolean_t	mctl_present = B_FALSE;
23375 	boolean_t	check = B_TRUE;
23376 	boolean_t	policy_present;
23377 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23378 
23379 	TCP_STAT(tcps, tcp_no_listener);
23380 
23381 	ipsec_mp = mp;
23382 
23383 	if (mp->b_datap->db_type == M_CTL) {
23384 		ipsec_in_t *ii;
23385 
23386 		mctl_present = B_TRUE;
23387 		mp = mp->b_cont;
23388 
23389 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23390 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23391 		if (ii->ipsec_in_dont_check) {
23392 			check = B_FALSE;
23393 			if (!ii->ipsec_in_secure) {
23394 				freeb(ipsec_mp);
23395 				mctl_present = B_FALSE;
23396 				ipsec_mp = mp;
23397 			}
23398 		}
23399 	}
23400 
23401 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23402 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23403 		ipha = (ipha_t *)mp->b_rptr;
23404 		ip6h = NULL;
23405 	} else {
23406 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23407 		ipha = NULL;
23408 		ip6h = (ip6_t *)mp->b_rptr;
23409 	}
23410 
23411 	if (check && policy_present) {
23412 		/*
23413 		 * The conn_t parameter is NULL because we already know
23414 		 * nobody's home.
23415 		 */
23416 		ipsec_mp = ipsec_check_global_policy(
23417 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23418 		    tcps->tcps_netstack);
23419 		if (ipsec_mp == NULL)
23420 			return;
23421 	}
23422 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23423 		DTRACE_PROBE2(
23424 		    tx__ip__log__error__nolistener__tcp,
23425 		    char *, "Could not reply with RST to mp(1)",
23426 		    mblk_t *, mp);
23427 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23428 		freemsg(ipsec_mp);
23429 		return;
23430 	}
23431 
23432 	rptr = mp->b_rptr;
23433 
23434 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23435 	seg_seq = BE32_TO_U32(tcph->th_seq);
23436 	seg_ack = BE32_TO_U32(tcph->th_ack);
23437 	flags = tcph->th_flags[0];
23438 
23439 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23440 	if (flags & TH_RST) {
23441 		freemsg(ipsec_mp);
23442 	} else if (flags & TH_ACK) {
23443 		tcp_xmit_early_reset("no tcp, reset",
23444 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23445 		    connp);
23446 	} else {
23447 		if (flags & TH_SYN) {
23448 			seg_len++;
23449 		} else {
23450 			/*
23451 			 * Here we violate the RFC.  Note that a normal
23452 			 * TCP will never send a segment without the ACK
23453 			 * flag, except for RST or SYN segment.  This
23454 			 * segment is neither.  Just drop it on the
23455 			 * floor.
23456 			 */
23457 			freemsg(ipsec_mp);
23458 			tcps->tcps_rst_unsent++;
23459 			return;
23460 		}
23461 
23462 		tcp_xmit_early_reset("no tcp, reset/ack",
23463 		    ipsec_mp, 0, seg_seq + seg_len,
23464 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23465 	}
23466 }
23467 
23468 /*
23469  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23470  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23471  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23472  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23473  * otherwise it will dup partial mblks.)
23474  * Otherwise, an appropriate ACK packet will be generated.  This
23475  * routine is not usually called to send new data for the first time.  It
23476  * is mostly called out of the timer for retransmits, and to generate ACKs.
23477  *
23478  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23479  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23480  * of the original mblk chain will be returned in *offset and *end_mp.
23481  */
23482 mblk_t *
23483 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23484     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23485     boolean_t rexmit)
23486 {
23487 	int	data_length;
23488 	int32_t	off = 0;
23489 	uint_t	flags;
23490 	mblk_t	*mp1;
23491 	mblk_t	*mp2;
23492 	uchar_t	*rptr;
23493 	tcph_t	*tcph;
23494 	int32_t	num_sack_blk = 0;
23495 	int32_t	sack_opt_len = 0;
23496 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23497 
23498 	/* Allocate for our maximum TCP header + link-level */
23499 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23500 	    tcps->tcps_wroff_xtra, BPRI_MED);
23501 	if (!mp1)
23502 		return (NULL);
23503 	data_length = 0;
23504 
23505 	/*
23506 	 * Note that tcp_mss has been adjusted to take into account the
23507 	 * timestamp option if applicable.  Because SACK options do not
23508 	 * appear in every TCP segments and they are of variable lengths,
23509 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23510 	 * the actual segment length when we need to send a segment which
23511 	 * includes SACK options.
23512 	 */
23513 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23514 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23515 		    tcp->tcp_num_sack_blk);
23516 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23517 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23518 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23519 			max_to_send -= sack_opt_len;
23520 	}
23521 
23522 	if (offset != NULL) {
23523 		off = *offset;
23524 		/* We use offset as an indicator that end_mp is not NULL. */
23525 		*end_mp = NULL;
23526 	}
23527 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23528 		/* This could be faster with cooperation from downstream */
23529 		if (mp2 != mp1 && !sendall &&
23530 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23531 		    max_to_send)
23532 			/*
23533 			 * Don't send the next mblk since the whole mblk
23534 			 * does not fit.
23535 			 */
23536 			break;
23537 		mp2->b_cont = dupb(mp);
23538 		mp2 = mp2->b_cont;
23539 		if (!mp2) {
23540 			freemsg(mp1);
23541 			return (NULL);
23542 		}
23543 		mp2->b_rptr += off;
23544 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23545 		    (uintptr_t)INT_MAX);
23546 
23547 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23548 		if (data_length > max_to_send) {
23549 			mp2->b_wptr -= data_length - max_to_send;
23550 			data_length = max_to_send;
23551 			off = mp2->b_wptr - mp->b_rptr;
23552 			break;
23553 		} else {
23554 			off = 0;
23555 		}
23556 	}
23557 	if (offset != NULL) {
23558 		*offset = off;
23559 		*end_mp = mp;
23560 	}
23561 	if (seg_len != NULL) {
23562 		*seg_len = data_length;
23563 	}
23564 
23565 	/* Update the latest receive window size in TCP header. */
23566 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23567 	    tcp->tcp_tcph->th_win);
23568 
23569 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23570 	mp1->b_rptr = rptr;
23571 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23572 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23573 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23574 	U32_TO_ABE32(seq, tcph->th_seq);
23575 
23576 	/*
23577 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23578 	 * that this function was called from tcp_wput_data. Thus, when called
23579 	 * to retransmit data the setting of the PUSH bit may appear some
23580 	 * what random in that it might get set when it should not. This
23581 	 * should not pose any performance issues.
23582 	 */
23583 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23584 	    tcp->tcp_unsent == data_length)) {
23585 		flags = TH_ACK | TH_PUSH;
23586 	} else {
23587 		flags = TH_ACK;
23588 	}
23589 
23590 	if (tcp->tcp_ecn_ok) {
23591 		if (tcp->tcp_ecn_echo_on)
23592 			flags |= TH_ECE;
23593 
23594 		/*
23595 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23596 		 * There is no TCP flow control for non-data segments, and
23597 		 * only data segment is transmitted reliably.
23598 		 */
23599 		if (data_length > 0 && !rexmit) {
23600 			SET_ECT(tcp, rptr);
23601 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23602 				flags |= TH_CWR;
23603 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23604 			}
23605 		}
23606 	}
23607 
23608 	if (tcp->tcp_valid_bits) {
23609 		uint32_t u1;
23610 
23611 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23612 		    seq == tcp->tcp_iss) {
23613 			uchar_t	*wptr;
23614 
23615 			/*
23616 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23617 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23618 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23619 			 * our SYN is not ack'ed but the app closes this
23620 			 * TCP connection.
23621 			 */
23622 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23623 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23624 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23625 
23626 			/*
23627 			 * Tack on the MSS option.  It is always needed
23628 			 * for both active and passive open.
23629 			 *
23630 			 * MSS option value should be interface MTU - MIN
23631 			 * TCP/IP header according to RFC 793 as it means
23632 			 * the maximum segment size TCP can receive.  But
23633 			 * to get around some broken middle boxes/end hosts
23634 			 * out there, we allow the option value to be the
23635 			 * same as the MSS option size on the peer side.
23636 			 * In this way, the other side will not send
23637 			 * anything larger than they can receive.
23638 			 *
23639 			 * Note that for SYN_SENT state, the ndd param
23640 			 * tcp_use_smss_as_mss_opt has no effect as we
23641 			 * don't know the peer's MSS option value. So
23642 			 * the only case we need to take care of is in
23643 			 * SYN_RCVD state, which is done later.
23644 			 */
23645 			wptr = mp1->b_wptr;
23646 			wptr[0] = TCPOPT_MAXSEG;
23647 			wptr[1] = TCPOPT_MAXSEG_LEN;
23648 			wptr += 2;
23649 			u1 = tcp->tcp_if_mtu -
23650 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23651 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23652 			    TCP_MIN_HEADER_LENGTH;
23653 			U16_TO_BE16(u1, wptr);
23654 			mp1->b_wptr = wptr + 2;
23655 			/* Update the offset to cover the additional word */
23656 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23657 
23658 			/*
23659 			 * Note that the following way of filling in
23660 			 * TCP options are not optimal.  Some NOPs can
23661 			 * be saved.  But there is no need at this time
23662 			 * to optimize it.  When it is needed, we will
23663 			 * do it.
23664 			 */
23665 			switch (tcp->tcp_state) {
23666 			case TCPS_SYN_SENT:
23667 				flags = TH_SYN;
23668 
23669 				if (tcp->tcp_snd_ts_ok) {
23670 					uint32_t llbolt = (uint32_t)lbolt;
23671 
23672 					wptr = mp1->b_wptr;
23673 					wptr[0] = TCPOPT_NOP;
23674 					wptr[1] = TCPOPT_NOP;
23675 					wptr[2] = TCPOPT_TSTAMP;
23676 					wptr[3] = TCPOPT_TSTAMP_LEN;
23677 					wptr += 4;
23678 					U32_TO_BE32(llbolt, wptr);
23679 					wptr += 4;
23680 					ASSERT(tcp->tcp_ts_recent == 0);
23681 					U32_TO_BE32(0L, wptr);
23682 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23683 					tcph->th_offset_and_rsrvd[0] +=
23684 					    (3 << 4);
23685 				}
23686 
23687 				/*
23688 				 * Set up all the bits to tell other side
23689 				 * we are ECN capable.
23690 				 */
23691 				if (tcp->tcp_ecn_ok) {
23692 					flags |= (TH_ECE | TH_CWR);
23693 				}
23694 				break;
23695 			case TCPS_SYN_RCVD:
23696 				flags |= TH_SYN;
23697 
23698 				/*
23699 				 * Reset the MSS option value to be SMSS
23700 				 * We should probably add back the bytes
23701 				 * for timestamp option and IPsec.  We
23702 				 * don't do that as this is a workaround
23703 				 * for broken middle boxes/end hosts, it
23704 				 * is better for us to be more cautious.
23705 				 * They may not take these things into
23706 				 * account in their SMSS calculation.  Thus
23707 				 * the peer's calculated SMSS may be smaller
23708 				 * than what it can be.  This should be OK.
23709 				 */
23710 				if (tcps->tcps_use_smss_as_mss_opt) {
23711 					u1 = tcp->tcp_mss;
23712 					U16_TO_BE16(u1, wptr);
23713 				}
23714 
23715 				/*
23716 				 * If the other side is ECN capable, reply
23717 				 * that we are also ECN capable.
23718 				 */
23719 				if (tcp->tcp_ecn_ok)
23720 					flags |= TH_ECE;
23721 				break;
23722 			default:
23723 				/*
23724 				 * The above ASSERT() makes sure that this
23725 				 * must be FIN-WAIT-1 state.  Our SYN has
23726 				 * not been ack'ed so retransmit it.
23727 				 */
23728 				flags |= TH_SYN;
23729 				break;
23730 			}
23731 
23732 			if (tcp->tcp_snd_ws_ok) {
23733 				wptr = mp1->b_wptr;
23734 				wptr[0] =  TCPOPT_NOP;
23735 				wptr[1] =  TCPOPT_WSCALE;
23736 				wptr[2] =  TCPOPT_WS_LEN;
23737 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23738 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23739 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23740 			}
23741 
23742 			if (tcp->tcp_snd_sack_ok) {
23743 				wptr = mp1->b_wptr;
23744 				wptr[0] = TCPOPT_NOP;
23745 				wptr[1] = TCPOPT_NOP;
23746 				wptr[2] = TCPOPT_SACK_PERMITTED;
23747 				wptr[3] = TCPOPT_SACK_OK_LEN;
23748 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23749 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23750 			}
23751 
23752 			/* allocb() of adequate mblk assures space */
23753 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23754 			    (uintptr_t)INT_MAX);
23755 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23756 			/*
23757 			 * Get IP set to checksum on our behalf
23758 			 * Include the adjustment for a source route if any.
23759 			 */
23760 			u1 += tcp->tcp_sum;
23761 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23762 			U16_TO_BE16(u1, tcph->th_sum);
23763 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23764 		}
23765 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23766 		    (seq + data_length) == tcp->tcp_fss) {
23767 			if (!tcp->tcp_fin_acked) {
23768 				flags |= TH_FIN;
23769 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23770 			}
23771 			if (!tcp->tcp_fin_sent) {
23772 				tcp->tcp_fin_sent = B_TRUE;
23773 				switch (tcp->tcp_state) {
23774 				case TCPS_SYN_RCVD:
23775 				case TCPS_ESTABLISHED:
23776 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23777 					break;
23778 				case TCPS_CLOSE_WAIT:
23779 					tcp->tcp_state = TCPS_LAST_ACK;
23780 					break;
23781 				}
23782 				if (tcp->tcp_suna == tcp->tcp_snxt)
23783 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23784 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23785 			}
23786 		}
23787 		/*
23788 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23789 		 * is smaller than seq, u1 will become a very huge value.
23790 		 * So the comparison will fail.  Also note that tcp_urp
23791 		 * should be positive, see RFC 793 page 17.
23792 		 */
23793 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23794 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23795 		    u1 < (uint32_t)(64 * 1024)) {
23796 			flags |= TH_URG;
23797 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23798 			U32_TO_ABE16(u1, tcph->th_urp);
23799 		}
23800 	}
23801 	tcph->th_flags[0] = (uchar_t)flags;
23802 	tcp->tcp_rack = tcp->tcp_rnxt;
23803 	tcp->tcp_rack_cnt = 0;
23804 
23805 	if (tcp->tcp_snd_ts_ok) {
23806 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23807 			uint32_t llbolt = (uint32_t)lbolt;
23808 
23809 			U32_TO_BE32(llbolt,
23810 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23811 			U32_TO_BE32(tcp->tcp_ts_recent,
23812 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23813 		}
23814 	}
23815 
23816 	if (num_sack_blk > 0) {
23817 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23818 		sack_blk_t *tmp;
23819 		int32_t	i;
23820 
23821 		wptr[0] = TCPOPT_NOP;
23822 		wptr[1] = TCPOPT_NOP;
23823 		wptr[2] = TCPOPT_SACK;
23824 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23825 		    sizeof (sack_blk_t);
23826 		wptr += TCPOPT_REAL_SACK_LEN;
23827 
23828 		tmp = tcp->tcp_sack_list;
23829 		for (i = 0; i < num_sack_blk; i++) {
23830 			U32_TO_BE32(tmp[i].begin, wptr);
23831 			wptr += sizeof (tcp_seq);
23832 			U32_TO_BE32(tmp[i].end, wptr);
23833 			wptr += sizeof (tcp_seq);
23834 		}
23835 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23836 	}
23837 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23838 	data_length += (int)(mp1->b_wptr - rptr);
23839 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23840 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23841 	} else {
23842 		ip6_t *ip6 = (ip6_t *)(rptr +
23843 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23844 		    sizeof (ip6i_t) : 0));
23845 
23846 		ip6->ip6_plen = htons(data_length -
23847 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23848 	}
23849 
23850 	/*
23851 	 * Prime pump for IP
23852 	 * Include the adjustment for a source route if any.
23853 	 */
23854 	data_length -= tcp->tcp_ip_hdr_len;
23855 	data_length += tcp->tcp_sum;
23856 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23857 	U16_TO_ABE16(data_length, tcph->th_sum);
23858 	if (tcp->tcp_ip_forward_progress) {
23859 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23860 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23861 		tcp->tcp_ip_forward_progress = B_FALSE;
23862 	}
23863 	return (mp1);
23864 }
23865 
23866 /* This function handles the push timeout. */
23867 void
23868 tcp_push_timer(void *arg)
23869 {
23870 	conn_t	*connp = (conn_t *)arg;
23871 	tcp_t *tcp = connp->conn_tcp;
23872 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23873 	uint_t		flags;
23874 	sodirect_t	*sodp;
23875 
23876 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23877 
23878 	ASSERT(tcp->tcp_listener == NULL);
23879 
23880 	/*
23881 	 * We need to plug synchronous streams during our drain to prevent
23882 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23883 	 */
23884 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23885 	tcp->tcp_push_tid = 0;
23886 
23887 	SOD_PTR_ENTER(tcp, sodp);
23888 	if (sodp != NULL) {
23889 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23890 		/* sod_wakeup() does the mutex_exit() */
23891 	} else if (tcp->tcp_rcv_list != NULL) {
23892 		flags = tcp_rcv_drain(tcp->tcp_rq, tcp);
23893 	}
23894 	if (flags == TH_ACK_NEEDED)
23895 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23896 
23897 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23898 }
23899 
23900 /*
23901  * This function handles delayed ACK timeout.
23902  */
23903 static void
23904 tcp_ack_timer(void *arg)
23905 {
23906 	conn_t	*connp = (conn_t *)arg;
23907 	tcp_t *tcp = connp->conn_tcp;
23908 	mblk_t *mp;
23909 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23910 
23911 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23912 
23913 	tcp->tcp_ack_tid = 0;
23914 
23915 	if (tcp->tcp_fused)
23916 		return;
23917 
23918 	/*
23919 	 * Do not send ACK if there is no outstanding unack'ed data.
23920 	 */
23921 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23922 		return;
23923 	}
23924 
23925 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23926 		/*
23927 		 * Make sure we don't allow deferred ACKs to result in
23928 		 * timer-based ACKing.  If we have held off an ACK
23929 		 * when there was more than an mss here, and the timer
23930 		 * goes off, we have to worry about the possibility
23931 		 * that the sender isn't doing slow-start, or is out
23932 		 * of step with us for some other reason.  We fall
23933 		 * permanently back in the direction of
23934 		 * ACK-every-other-packet as suggested in RFC 1122.
23935 		 */
23936 		if (tcp->tcp_rack_abs_max > 2)
23937 			tcp->tcp_rack_abs_max--;
23938 		tcp->tcp_rack_cur_max = 2;
23939 	}
23940 	mp = tcp_ack_mp(tcp);
23941 
23942 	if (mp != NULL) {
23943 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23944 		BUMP_LOCAL(tcp->tcp_obsegs);
23945 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23946 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23947 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23948 	}
23949 }
23950 
23951 
23952 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23953 static mblk_t *
23954 tcp_ack_mp(tcp_t *tcp)
23955 {
23956 	uint32_t	seq_no;
23957 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23958 
23959 	/*
23960 	 * There are a few cases to be considered while setting the sequence no.
23961 	 * Essentially, we can come here while processing an unacceptable pkt
23962 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23963 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23964 	 * If we are here for a zero window probe, stick with suna. In all
23965 	 * other cases, we check if suna + swnd encompasses snxt and set
23966 	 * the sequence number to snxt, if so. If snxt falls outside the
23967 	 * window (the receiver probably shrunk its window), we will go with
23968 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23969 	 * receiver.
23970 	 */
23971 	if (tcp->tcp_zero_win_probe) {
23972 		seq_no = tcp->tcp_suna;
23973 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23974 		ASSERT(tcp->tcp_swnd == 0);
23975 		seq_no = tcp->tcp_snxt;
23976 	} else {
23977 		seq_no = SEQ_GT(tcp->tcp_snxt,
23978 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23979 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23980 	}
23981 
23982 	if (tcp->tcp_valid_bits) {
23983 		/*
23984 		 * For the complex case where we have to send some
23985 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23986 		 */
23987 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23988 		    NULL, B_FALSE));
23989 	} else {
23990 		/* Generate a simple ACK */
23991 		int	data_length;
23992 		uchar_t	*rptr;
23993 		tcph_t	*tcph;
23994 		mblk_t	*mp1;
23995 		int32_t	tcp_hdr_len;
23996 		int32_t	tcp_tcp_hdr_len;
23997 		int32_t	num_sack_blk = 0;
23998 		int32_t sack_opt_len;
23999 
24000 		/*
24001 		 * Allocate space for TCP + IP headers
24002 		 * and link-level header
24003 		 */
24004 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
24005 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
24006 			    tcp->tcp_num_sack_blk);
24007 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
24008 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
24009 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
24010 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
24011 		} else {
24012 			tcp_hdr_len = tcp->tcp_hdr_len;
24013 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
24014 		}
24015 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
24016 		if (!mp1)
24017 			return (NULL);
24018 
24019 		/* Update the latest receive window size in TCP header. */
24020 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
24021 		    tcp->tcp_tcph->th_win);
24022 		/* copy in prototype TCP + IP header */
24023 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
24024 		mp1->b_rptr = rptr;
24025 		mp1->b_wptr = rptr + tcp_hdr_len;
24026 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
24027 
24028 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
24029 
24030 		/* Set the TCP sequence number. */
24031 		U32_TO_ABE32(seq_no, tcph->th_seq);
24032 
24033 		/* Set up the TCP flag field. */
24034 		tcph->th_flags[0] = (uchar_t)TH_ACK;
24035 		if (tcp->tcp_ecn_echo_on)
24036 			tcph->th_flags[0] |= TH_ECE;
24037 
24038 		tcp->tcp_rack = tcp->tcp_rnxt;
24039 		tcp->tcp_rack_cnt = 0;
24040 
24041 		/* fill in timestamp option if in use */
24042 		if (tcp->tcp_snd_ts_ok) {
24043 			uint32_t llbolt = (uint32_t)lbolt;
24044 
24045 			U32_TO_BE32(llbolt,
24046 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
24047 			U32_TO_BE32(tcp->tcp_ts_recent,
24048 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
24049 		}
24050 
24051 		/* Fill in SACK options */
24052 		if (num_sack_blk > 0) {
24053 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
24054 			sack_blk_t *tmp;
24055 			int32_t	i;
24056 
24057 			wptr[0] = TCPOPT_NOP;
24058 			wptr[1] = TCPOPT_NOP;
24059 			wptr[2] = TCPOPT_SACK;
24060 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
24061 			    sizeof (sack_blk_t);
24062 			wptr += TCPOPT_REAL_SACK_LEN;
24063 
24064 			tmp = tcp->tcp_sack_list;
24065 			for (i = 0; i < num_sack_blk; i++) {
24066 				U32_TO_BE32(tmp[i].begin, wptr);
24067 				wptr += sizeof (tcp_seq);
24068 				U32_TO_BE32(tmp[i].end, wptr);
24069 				wptr += sizeof (tcp_seq);
24070 			}
24071 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
24072 			    << 4);
24073 		}
24074 
24075 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24076 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
24077 		} else {
24078 			/* Check for ip6i_t header in sticky hdrs */
24079 			ip6_t *ip6 = (ip6_t *)(rptr +
24080 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
24081 			    sizeof (ip6i_t) : 0));
24082 
24083 			ip6->ip6_plen = htons(tcp_hdr_len -
24084 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
24085 		}
24086 
24087 		/*
24088 		 * Prime pump for checksum calculation in IP.  Include the
24089 		 * adjustment for a source route if any.
24090 		 */
24091 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
24092 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
24093 		U16_TO_ABE16(data_length, tcph->th_sum);
24094 
24095 		if (tcp->tcp_ip_forward_progress) {
24096 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
24097 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
24098 			tcp->tcp_ip_forward_progress = B_FALSE;
24099 		}
24100 		return (mp1);
24101 	}
24102 }
24103 
24104 /*
24105  * To create a temporary tcp structure for inserting into bind hash list.
24106  * The parameter is assumed to be in network byte order, ready for use.
24107  */
24108 /* ARGSUSED */
24109 static tcp_t *
24110 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
24111 {
24112 	conn_t	*connp;
24113 	tcp_t	*tcp;
24114 
24115 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
24116 	if (connp == NULL)
24117 		return (NULL);
24118 
24119 	tcp = connp->conn_tcp;
24120 	tcp->tcp_tcps = tcps;
24121 	TCPS_REFHOLD(tcps);
24122 
24123 	/*
24124 	 * Only initialize the necessary info in those structures.  Note
24125 	 * that since INADDR_ANY is all 0, we do not need to set
24126 	 * tcp_bound_source to INADDR_ANY here.
24127 	 */
24128 	tcp->tcp_state = TCPS_BOUND;
24129 	tcp->tcp_lport = port;
24130 	tcp->tcp_exclbind = 1;
24131 	tcp->tcp_reserved_port = 1;
24132 
24133 	/* Just for place holding... */
24134 	tcp->tcp_ipversion = IPV4_VERSION;
24135 
24136 	return (tcp);
24137 }
24138 
24139 /*
24140  * To remove a port range specified by lo_port and hi_port from the
24141  * reserved port ranges.  This is one of the three public functions of
24142  * the reserved port interface.  Note that a port range has to be removed
24143  * as a whole.  Ports in a range cannot be removed individually.
24144  *
24145  * Params:
24146  *	in_port_t lo_port: the beginning port of the reserved port range to
24147  *		be deleted.
24148  *	in_port_t hi_port: the ending port of the reserved port range to
24149  *		be deleted.
24150  *
24151  * Return:
24152  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
24153  *
24154  * Assumes that nca is only for zoneid=0
24155  */
24156 boolean_t
24157 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
24158 {
24159 	int	i, j;
24160 	int	size;
24161 	tcp_t	**temp_tcp_array;
24162 	tcp_t	*tcp;
24163 	tcp_stack_t	*tcps;
24164 
24165 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
24166 	ASSERT(tcps != NULL);
24167 
24168 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
24169 
24170 	/* First make sure that the port ranage is indeed reserved. */
24171 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
24172 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
24173 			hi_port = tcps->tcps_reserved_port[i].hi_port;
24174 			temp_tcp_array =
24175 			    tcps->tcps_reserved_port[i].temp_tcp_array;
24176 			break;
24177 		}
24178 	}
24179 	if (i == tcps->tcps_reserved_port_array_size) {
24180 		rw_exit(&tcps->tcps_reserved_port_lock);
24181 		netstack_rele(tcps->tcps_netstack);
24182 		return (B_FALSE);
24183 	}
24184 
24185 	/*
24186 	 * Remove the range from the array.  This simple loop is possible
24187 	 * because port ranges are inserted in ascending order.
24188 	 */
24189 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
24190 		tcps->tcps_reserved_port[j].lo_port =
24191 		    tcps->tcps_reserved_port[j+1].lo_port;
24192 		tcps->tcps_reserved_port[j].hi_port =
24193 		    tcps->tcps_reserved_port[j+1].hi_port;
24194 		tcps->tcps_reserved_port[j].temp_tcp_array =
24195 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
24196 	}
24197 
24198 	/* Remove all the temporary tcp structures. */
24199 	size = hi_port - lo_port + 1;
24200 	while (size > 0) {
24201 		tcp = temp_tcp_array[size - 1];
24202 		ASSERT(tcp != NULL);
24203 		tcp_bind_hash_remove(tcp);
24204 		CONN_DEC_REF(tcp->tcp_connp);
24205 		size--;
24206 	}
24207 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
24208 	tcps->tcps_reserved_port_array_size--;
24209 	rw_exit(&tcps->tcps_reserved_port_lock);
24210 	netstack_rele(tcps->tcps_netstack);
24211 	return (B_TRUE);
24212 }
24213 
24214 /*
24215  * Macro to remove temporary tcp structure from the bind hash list.  The
24216  * first parameter is the list of tcp to be removed.  The second parameter
24217  * is the number of tcps in the array.
24218  */
24219 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
24220 { \
24221 	while ((num) > 0) { \
24222 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
24223 		tf_t *tbf; \
24224 		tcp_t *tcpnext; \
24225 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
24226 		mutex_enter(&tbf->tf_lock); \
24227 		tcpnext = tcp->tcp_bind_hash; \
24228 		if (tcpnext) { \
24229 			tcpnext->tcp_ptpbhn = \
24230 				tcp->tcp_ptpbhn; \
24231 		} \
24232 		*tcp->tcp_ptpbhn = tcpnext; \
24233 		mutex_exit(&tbf->tf_lock); \
24234 		kmem_free(tcp, sizeof (tcp_t)); \
24235 		(tcp_array)[(num) - 1] = NULL; \
24236 		(num)--; \
24237 	} \
24238 }
24239 
24240 /*
24241  * The public interface for other modules to call to reserve a port range
24242  * in TCP.  The caller passes in how large a port range it wants.  TCP
24243  * will try to find a range and return it via lo_port and hi_port.  This is
24244  * used by NCA's nca_conn_init.
24245  * NCA can only be used in the global zone so this only affects the global
24246  * zone's ports.
24247  *
24248  * Params:
24249  *	int size: the size of the port range to be reserved.
24250  *	in_port_t *lo_port (referenced): returns the beginning port of the
24251  *		reserved port range added.
24252  *	in_port_t *hi_port (referenced): returns the ending port of the
24253  *		reserved port range added.
24254  *
24255  * Return:
24256  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
24257  *
24258  * Assumes that nca is only for zoneid=0
24259  */
24260 boolean_t
24261 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
24262 {
24263 	tcp_t		*tcp;
24264 	tcp_t		*tmp_tcp;
24265 	tcp_t		**temp_tcp_array;
24266 	tf_t		*tbf;
24267 	in_port_t	net_port;
24268 	in_port_t	port;
24269 	int32_t		cur_size;
24270 	int		i, j;
24271 	boolean_t	used;
24272 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
24273 	zoneid_t	zoneid = GLOBAL_ZONEID;
24274 	tcp_stack_t	*tcps;
24275 
24276 	/* Sanity check. */
24277 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
24278 		return (B_FALSE);
24279 	}
24280 
24281 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
24282 	ASSERT(tcps != NULL);
24283 
24284 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
24285 	if (tcps->tcps_reserved_port_array_size ==
24286 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
24287 		rw_exit(&tcps->tcps_reserved_port_lock);
24288 		netstack_rele(tcps->tcps_netstack);
24289 		return (B_FALSE);
24290 	}
24291 
24292 	/*
24293 	 * Find the starting port to try.  Since the port ranges are ordered
24294 	 * in the reserved port array, we can do a simple search here.
24295 	 */
24296 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
24297 	*hi_port = TCP_LARGEST_RESERVED_PORT;
24298 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
24299 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
24300 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
24301 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
24302 			break;
24303 		}
24304 	}
24305 	/* No available port range. */
24306 	if (i == tcps->tcps_reserved_port_array_size &&
24307 	    *hi_port - *lo_port < size) {
24308 		rw_exit(&tcps->tcps_reserved_port_lock);
24309 		netstack_rele(tcps->tcps_netstack);
24310 		return (B_FALSE);
24311 	}
24312 
24313 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
24314 	if (temp_tcp_array == NULL) {
24315 		rw_exit(&tcps->tcps_reserved_port_lock);
24316 		netstack_rele(tcps->tcps_netstack);
24317 		return (B_FALSE);
24318 	}
24319 
24320 	/* Go thru the port range to see if some ports are already bound. */
24321 	for (port = *lo_port, cur_size = 0;
24322 	    cur_size < size && port <= *hi_port;
24323 	    cur_size++, port++) {
24324 		used = B_FALSE;
24325 		net_port = htons(port);
24326 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
24327 		mutex_enter(&tbf->tf_lock);
24328 		for (tcp = tbf->tf_tcp; tcp != NULL;
24329 		    tcp = tcp->tcp_bind_hash) {
24330 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
24331 			    net_port == tcp->tcp_lport) {
24332 				/*
24333 				 * A port is already bound.  Search again
24334 				 * starting from port + 1.  Release all
24335 				 * temporary tcps.
24336 				 */
24337 				mutex_exit(&tbf->tf_lock);
24338 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
24339 				    tcps);
24340 				*lo_port = port + 1;
24341 				cur_size = -1;
24342 				used = B_TRUE;
24343 				break;
24344 			}
24345 		}
24346 		if (!used) {
24347 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
24348 			    NULL) {
24349 				/*
24350 				 * Allocation failure.  Just fail the request.
24351 				 * Need to remove all those temporary tcp
24352 				 * structures.
24353 				 */
24354 				mutex_exit(&tbf->tf_lock);
24355 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
24356 				    tcps);
24357 				rw_exit(&tcps->tcps_reserved_port_lock);
24358 				kmem_free(temp_tcp_array,
24359 				    (hi_port - lo_port + 1) *
24360 				    sizeof (tcp_t *));
24361 				netstack_rele(tcps->tcps_netstack);
24362 				return (B_FALSE);
24363 			}
24364 			temp_tcp_array[cur_size] = tmp_tcp;
24365 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
24366 			mutex_exit(&tbf->tf_lock);
24367 		}
24368 	}
24369 
24370 	/*
24371 	 * The current range is not large enough.  We can actually do another
24372 	 * search if this search is done between 2 reserved port ranges.  But
24373 	 * for first release, we just stop here and return saying that no port
24374 	 * range is available.
24375 	 */
24376 	if (cur_size < size) {
24377 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
24378 		rw_exit(&tcps->tcps_reserved_port_lock);
24379 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
24380 		netstack_rele(tcps->tcps_netstack);
24381 		return (B_FALSE);
24382 	}
24383 	*hi_port = port - 1;
24384 
24385 	/*
24386 	 * Insert range into array in ascending order.  Since this function
24387 	 * must not be called often, we choose to use the simplest method.
24388 	 * The above array should not consume excessive stack space as
24389 	 * the size must be very small.  If in future releases, we find
24390 	 * that we should provide more reserved port ranges, this function
24391 	 * has to be modified to be more efficient.
24392 	 */
24393 	if (tcps->tcps_reserved_port_array_size == 0) {
24394 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
24395 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
24396 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
24397 	} else {
24398 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
24399 		    i++, j++) {
24400 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
24401 			    i == j) {
24402 				tmp_ports[j].lo_port = *lo_port;
24403 				tmp_ports[j].hi_port = *hi_port;
24404 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
24405 				j++;
24406 			}
24407 			tmp_ports[j].lo_port =
24408 			    tcps->tcps_reserved_port[i].lo_port;
24409 			tmp_ports[j].hi_port =
24410 			    tcps->tcps_reserved_port[i].hi_port;
24411 			tmp_ports[j].temp_tcp_array =
24412 			    tcps->tcps_reserved_port[i].temp_tcp_array;
24413 		}
24414 		if (j == i) {
24415 			tmp_ports[j].lo_port = *lo_port;
24416 			tmp_ports[j].hi_port = *hi_port;
24417 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
24418 		}
24419 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
24420 	}
24421 	tcps->tcps_reserved_port_array_size++;
24422 	rw_exit(&tcps->tcps_reserved_port_lock);
24423 	netstack_rele(tcps->tcps_netstack);
24424 	return (B_TRUE);
24425 }
24426 
24427 /*
24428  * Check to see if a port is in any reserved port range.
24429  *
24430  * Params:
24431  *	in_port_t port: the port to be verified.
24432  *
24433  * Return:
24434  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
24435  */
24436 boolean_t
24437 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
24438 {
24439 	int i;
24440 
24441 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
24442 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
24443 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
24444 		    port <= tcps->tcps_reserved_port[i].hi_port) {
24445 			rw_exit(&tcps->tcps_reserved_port_lock);
24446 			return (B_TRUE);
24447 		}
24448 	}
24449 	rw_exit(&tcps->tcps_reserved_port_lock);
24450 	return (B_FALSE);
24451 }
24452 
24453 /*
24454  * To list all reserved port ranges.  This is the function to handle
24455  * ndd tcp_reserved_port_list.
24456  */
24457 /* ARGSUSED */
24458 static int
24459 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24460 {
24461 	int i;
24462 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24463 
24464 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
24465 	if (tcps->tcps_reserved_port_array_size > 0)
24466 		(void) mi_mpprintf(mp, "The following ports are reserved:");
24467 	else
24468 		(void) mi_mpprintf(mp, "No port is reserved.");
24469 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
24470 		(void) mi_mpprintf(mp, "%d-%d",
24471 		    tcps->tcps_reserved_port[i].lo_port,
24472 		    tcps->tcps_reserved_port[i].hi_port);
24473 	}
24474 	rw_exit(&tcps->tcps_reserved_port_lock);
24475 	return (0);
24476 }
24477 
24478 /*
24479  * Hash list insertion routine for tcp_t structures.
24480  * Inserts entries with the ones bound to a specific IP address first
24481  * followed by those bound to INADDR_ANY.
24482  */
24483 static void
24484 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
24485 {
24486 	tcp_t	**tcpp;
24487 	tcp_t	*tcpnext;
24488 
24489 	if (tcp->tcp_ptpbhn != NULL) {
24490 		ASSERT(!caller_holds_lock);
24491 		tcp_bind_hash_remove(tcp);
24492 	}
24493 	tcpp = &tbf->tf_tcp;
24494 	if (!caller_holds_lock) {
24495 		mutex_enter(&tbf->tf_lock);
24496 	} else {
24497 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
24498 	}
24499 	tcpnext = tcpp[0];
24500 	if (tcpnext) {
24501 		/*
24502 		 * If the new tcp bound to the INADDR_ANY address
24503 		 * and the first one in the list is not bound to
24504 		 * INADDR_ANY we skip all entries until we find the
24505 		 * first one bound to INADDR_ANY.
24506 		 * This makes sure that applications binding to a
24507 		 * specific address get preference over those binding to
24508 		 * INADDR_ANY.
24509 		 */
24510 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24511 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24512 			while ((tcpnext = tcpp[0]) != NULL &&
24513 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24514 				tcpp = &(tcpnext->tcp_bind_hash);
24515 			if (tcpnext)
24516 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24517 		} else
24518 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24519 	}
24520 	tcp->tcp_bind_hash = tcpnext;
24521 	tcp->tcp_ptpbhn = tcpp;
24522 	tcpp[0] = tcp;
24523 	if (!caller_holds_lock)
24524 		mutex_exit(&tbf->tf_lock);
24525 }
24526 
24527 /*
24528  * Hash list removal routine for tcp_t structures.
24529  */
24530 static void
24531 tcp_bind_hash_remove(tcp_t *tcp)
24532 {
24533 	tcp_t	*tcpnext;
24534 	kmutex_t *lockp;
24535 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24536 
24537 	if (tcp->tcp_ptpbhn == NULL)
24538 		return;
24539 
24540 	/*
24541 	 * Extract the lock pointer in case there are concurrent
24542 	 * hash_remove's for this instance.
24543 	 */
24544 	ASSERT(tcp->tcp_lport != 0);
24545 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24546 
24547 	ASSERT(lockp != NULL);
24548 	mutex_enter(lockp);
24549 	if (tcp->tcp_ptpbhn) {
24550 		tcpnext = tcp->tcp_bind_hash;
24551 		if (tcpnext) {
24552 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24553 			tcp->tcp_bind_hash = NULL;
24554 		}
24555 		*tcp->tcp_ptpbhn = tcpnext;
24556 		tcp->tcp_ptpbhn = NULL;
24557 	}
24558 	mutex_exit(lockp);
24559 }
24560 
24561 
24562 /*
24563  * Hash list lookup routine for tcp_t structures.
24564  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24565  */
24566 static tcp_t *
24567 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24568 {
24569 	tf_t	*tf;
24570 	tcp_t	*tcp;
24571 
24572 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24573 	mutex_enter(&tf->tf_lock);
24574 	for (tcp = tf->tf_tcp; tcp != NULL;
24575 	    tcp = tcp->tcp_acceptor_hash) {
24576 		if (tcp->tcp_acceptor_id == id) {
24577 			CONN_INC_REF(tcp->tcp_connp);
24578 			mutex_exit(&tf->tf_lock);
24579 			return (tcp);
24580 		}
24581 	}
24582 	mutex_exit(&tf->tf_lock);
24583 	return (NULL);
24584 }
24585 
24586 
24587 /*
24588  * Hash list insertion routine for tcp_t structures.
24589  */
24590 void
24591 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24592 {
24593 	tf_t	*tf;
24594 	tcp_t	**tcpp;
24595 	tcp_t	*tcpnext;
24596 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24597 
24598 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24599 
24600 	if (tcp->tcp_ptpahn != NULL)
24601 		tcp_acceptor_hash_remove(tcp);
24602 	tcpp = &tf->tf_tcp;
24603 	mutex_enter(&tf->tf_lock);
24604 	tcpnext = tcpp[0];
24605 	if (tcpnext)
24606 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24607 	tcp->tcp_acceptor_hash = tcpnext;
24608 	tcp->tcp_ptpahn = tcpp;
24609 	tcpp[0] = tcp;
24610 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24611 	mutex_exit(&tf->tf_lock);
24612 }
24613 
24614 /*
24615  * Hash list removal routine for tcp_t structures.
24616  */
24617 static void
24618 tcp_acceptor_hash_remove(tcp_t *tcp)
24619 {
24620 	tcp_t	*tcpnext;
24621 	kmutex_t *lockp;
24622 
24623 	/*
24624 	 * Extract the lock pointer in case there are concurrent
24625 	 * hash_remove's for this instance.
24626 	 */
24627 	lockp = tcp->tcp_acceptor_lockp;
24628 
24629 	if (tcp->tcp_ptpahn == NULL)
24630 		return;
24631 
24632 	ASSERT(lockp != NULL);
24633 	mutex_enter(lockp);
24634 	if (tcp->tcp_ptpahn) {
24635 		tcpnext = tcp->tcp_acceptor_hash;
24636 		if (tcpnext) {
24637 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24638 			tcp->tcp_acceptor_hash = NULL;
24639 		}
24640 		*tcp->tcp_ptpahn = tcpnext;
24641 		tcp->tcp_ptpahn = NULL;
24642 	}
24643 	mutex_exit(lockp);
24644 	tcp->tcp_acceptor_lockp = NULL;
24645 }
24646 
24647 /* ARGSUSED */
24648 static int
24649 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24650 {
24651 	int error = 0;
24652 	int retval;
24653 	char *end;
24654 	tcp_hsp_t *hsp;
24655 	tcp_hsp_t *hspprev;
24656 	ipaddr_t addr = 0;		/* Address we're looking for */
24657 	in6_addr_t v6addr;		/* Address we're looking for */
24658 	uint32_t hash;			/* Hash of that address */
24659 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24660 
24661 	/*
24662 	 * If the following variables are still zero after parsing the input
24663 	 * string, the user didn't specify them and we don't change them in
24664 	 * the HSP.
24665 	 */
24666 
24667 	ipaddr_t mask = 0;		/* Subnet mask */
24668 	in6_addr_t v6mask;
24669 	long sendspace = 0;		/* Send buffer size */
24670 	long recvspace = 0;		/* Receive buffer size */
24671 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24672 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24673 
24674 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24675 
24676 	/* Parse and validate address */
24677 	if (af == AF_INET) {
24678 		retval = inet_pton(af, value, &addr);
24679 		if (retval == 1)
24680 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24681 	} else if (af == AF_INET6) {
24682 		retval = inet_pton(af, value, &v6addr);
24683 	} else {
24684 		error = EINVAL;
24685 		goto done;
24686 	}
24687 	if (retval == 0) {
24688 		error = EINVAL;
24689 		goto done;
24690 	}
24691 
24692 	while ((*value) && *value != ' ')
24693 		value++;
24694 
24695 	/* Parse individual keywords, set variables if found */
24696 	while (*value) {
24697 		/* Skip leading blanks */
24698 
24699 		while (*value == ' ' || *value == '\t')
24700 			value++;
24701 
24702 		/* If at end of string, we're done */
24703 
24704 		if (!*value)
24705 			break;
24706 
24707 		/* We have a word, figure out what it is */
24708 
24709 		if (strncmp("mask", value, 4) == 0) {
24710 			value += 4;
24711 			while (*value == ' ' || *value == '\t')
24712 				value++;
24713 			/* Parse subnet mask */
24714 			if (af == AF_INET) {
24715 				retval = inet_pton(af, value, &mask);
24716 				if (retval == 1) {
24717 					V4MASK_TO_V6(mask, v6mask);
24718 				}
24719 			} else if (af == AF_INET6) {
24720 				retval = inet_pton(af, value, &v6mask);
24721 			}
24722 			if (retval != 1) {
24723 				error = EINVAL;
24724 				goto done;
24725 			}
24726 			while ((*value) && *value != ' ')
24727 				value++;
24728 		} else if (strncmp("sendspace", value, 9) == 0) {
24729 			value += 9;
24730 
24731 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24732 			    sendspace < TCP_XMIT_HIWATER ||
24733 			    sendspace >= (1L<<30)) {
24734 				error = EINVAL;
24735 				goto done;
24736 			}
24737 			value = end;
24738 		} else if (strncmp("recvspace", value, 9) == 0) {
24739 			value += 9;
24740 
24741 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24742 			    recvspace < TCP_RECV_HIWATER ||
24743 			    recvspace >= (1L<<30)) {
24744 				error = EINVAL;
24745 				goto done;
24746 			}
24747 			value = end;
24748 		} else if (strncmp("timestamp", value, 9) == 0) {
24749 			value += 9;
24750 
24751 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24752 			    timestamp < 0 || timestamp > 1) {
24753 				error = EINVAL;
24754 				goto done;
24755 			}
24756 
24757 			/*
24758 			 * We increment timestamp so we know it's been set;
24759 			 * this is undone when we put it in the HSP
24760 			 */
24761 			timestamp++;
24762 			value = end;
24763 		} else if (strncmp("delete", value, 6) == 0) {
24764 			value += 6;
24765 			delete = B_TRUE;
24766 		} else {
24767 			error = EINVAL;
24768 			goto done;
24769 		}
24770 	}
24771 
24772 	/* Hash address for lookup */
24773 
24774 	hash = TCP_HSP_HASH(addr);
24775 
24776 	if (delete) {
24777 		/*
24778 		 * Note that deletes don't return an error if the thing
24779 		 * we're trying to delete isn't there.
24780 		 */
24781 		if (tcps->tcps_hsp_hash == NULL)
24782 			goto done;
24783 		hsp = tcps->tcps_hsp_hash[hash];
24784 
24785 		if (hsp) {
24786 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24787 			    &v6addr)) {
24788 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24789 				mi_free((char *)hsp);
24790 			} else {
24791 				hspprev = hsp;
24792 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24793 					if (IN6_ARE_ADDR_EQUAL(
24794 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24795 						hspprev->tcp_hsp_next =
24796 						    hsp->tcp_hsp_next;
24797 						mi_free((char *)hsp);
24798 						break;
24799 					}
24800 					hspprev = hsp;
24801 				}
24802 			}
24803 		}
24804 	} else {
24805 		/*
24806 		 * We're adding/modifying an HSP.  If we haven't already done
24807 		 * so, allocate the hash table.
24808 		 */
24809 
24810 		if (!tcps->tcps_hsp_hash) {
24811 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24812 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24813 			if (!tcps->tcps_hsp_hash) {
24814 				error = EINVAL;
24815 				goto done;
24816 			}
24817 		}
24818 
24819 		/* Get head of hash chain */
24820 
24821 		hsp = tcps->tcps_hsp_hash[hash];
24822 
24823 		/* Try to find pre-existing hsp on hash chain */
24824 		/* Doesn't handle CIDR prefixes. */
24825 		while (hsp) {
24826 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24827 				break;
24828 			hsp = hsp->tcp_hsp_next;
24829 		}
24830 
24831 		/*
24832 		 * If we didn't, create one with default values and put it
24833 		 * at head of hash chain
24834 		 */
24835 
24836 		if (!hsp) {
24837 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24838 			if (!hsp) {
24839 				error = EINVAL;
24840 				goto done;
24841 			}
24842 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24843 			tcps->tcps_hsp_hash[hash] = hsp;
24844 		}
24845 
24846 		/* Set values that the user asked us to change */
24847 
24848 		hsp->tcp_hsp_addr_v6 = v6addr;
24849 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24850 			hsp->tcp_hsp_vers = IPV4_VERSION;
24851 		else
24852 			hsp->tcp_hsp_vers = IPV6_VERSION;
24853 		hsp->tcp_hsp_subnet_v6 = v6mask;
24854 		if (sendspace > 0)
24855 			hsp->tcp_hsp_sendspace = sendspace;
24856 		if (recvspace > 0)
24857 			hsp->tcp_hsp_recvspace = recvspace;
24858 		if (timestamp > 0)
24859 			hsp->tcp_hsp_tstamp = timestamp - 1;
24860 	}
24861 
24862 done:
24863 	rw_exit(&tcps->tcps_hsp_lock);
24864 	return (error);
24865 }
24866 
24867 /* Set callback routine passed to nd_load by tcp_param_register. */
24868 /* ARGSUSED */
24869 static int
24870 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24871 {
24872 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24873 }
24874 /* ARGSUSED */
24875 static int
24876 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24877     cred_t *cr)
24878 {
24879 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24880 }
24881 
24882 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24883 /* ARGSUSED */
24884 static int
24885 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24886 {
24887 	tcp_hsp_t *hsp;
24888 	int i;
24889 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24890 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24891 
24892 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24893 	(void) mi_mpprintf(mp,
24894 	    "Hash HSP     " MI_COL_HDRPAD_STR
24895 	    "Address         Subnet Mask     Send       Receive    TStamp");
24896 	if (tcps->tcps_hsp_hash) {
24897 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24898 			hsp = tcps->tcps_hsp_hash[i];
24899 			while (hsp) {
24900 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24901 					(void) inet_ntop(AF_INET,
24902 					    &hsp->tcp_hsp_addr,
24903 					    addrbuf, sizeof (addrbuf));
24904 					(void) inet_ntop(AF_INET,
24905 					    &hsp->tcp_hsp_subnet,
24906 					    subnetbuf, sizeof (subnetbuf));
24907 				} else {
24908 					(void) inet_ntop(AF_INET6,
24909 					    &hsp->tcp_hsp_addr_v6,
24910 					    addrbuf, sizeof (addrbuf));
24911 					(void) inet_ntop(AF_INET6,
24912 					    &hsp->tcp_hsp_subnet_v6,
24913 					    subnetbuf, sizeof (subnetbuf));
24914 				}
24915 				(void) mi_mpprintf(mp,
24916 				    " %03d " MI_COL_PTRFMT_STR
24917 				    "%s %s %010d %010d      %d",
24918 				    i,
24919 				    (void *)hsp,
24920 				    addrbuf,
24921 				    subnetbuf,
24922 				    hsp->tcp_hsp_sendspace,
24923 				    hsp->tcp_hsp_recvspace,
24924 				    hsp->tcp_hsp_tstamp);
24925 
24926 				hsp = hsp->tcp_hsp_next;
24927 			}
24928 		}
24929 	}
24930 	rw_exit(&tcps->tcps_hsp_lock);
24931 	return (0);
24932 }
24933 
24934 
24935 /* Data for fast netmask macro used by tcp_hsp_lookup */
24936 
24937 static ipaddr_t netmasks[] = {
24938 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24939 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24940 };
24941 
24942 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24943 
24944 /*
24945  * XXX This routine should go away and instead we should use the metrics
24946  * associated with the routes to determine the default sndspace and rcvspace.
24947  */
24948 static tcp_hsp_t *
24949 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24950 {
24951 	tcp_hsp_t *hsp = NULL;
24952 
24953 	/* Quick check without acquiring the lock. */
24954 	if (tcps->tcps_hsp_hash == NULL)
24955 		return (NULL);
24956 
24957 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24958 
24959 	/* This routine finds the best-matching HSP for address addr. */
24960 
24961 	if (tcps->tcps_hsp_hash) {
24962 		int i;
24963 		ipaddr_t srchaddr;
24964 		tcp_hsp_t *hsp_net;
24965 
24966 		/* We do three passes: host, network, and subnet. */
24967 
24968 		srchaddr = addr;
24969 
24970 		for (i = 1; i <= 3; i++) {
24971 			/* Look for exact match on srchaddr */
24972 
24973 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24974 			while (hsp) {
24975 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24976 				    hsp->tcp_hsp_addr == srchaddr)
24977 					break;
24978 				hsp = hsp->tcp_hsp_next;
24979 			}
24980 			ASSERT(hsp == NULL ||
24981 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24982 
24983 			/*
24984 			 * If this is the first pass:
24985 			 *   If we found a match, great, return it.
24986 			 *   If not, search for the network on the second pass.
24987 			 */
24988 
24989 			if (i == 1)
24990 				if (hsp)
24991 					break;
24992 				else
24993 				{
24994 					srchaddr = addr & netmask(addr);
24995 					continue;
24996 				}
24997 
24998 			/*
24999 			 * If this is the second pass:
25000 			 *   If we found a match, but there's a subnet mask,
25001 			 *    save the match but try again using the subnet
25002 			 *    mask on the third pass.
25003 			 *   Otherwise, return whatever we found.
25004 			 */
25005 
25006 			if (i == 2) {
25007 				if (hsp && hsp->tcp_hsp_subnet) {
25008 					hsp_net = hsp;
25009 					srchaddr = addr & hsp->tcp_hsp_subnet;
25010 					continue;
25011 				} else {
25012 					break;
25013 				}
25014 			}
25015 
25016 			/*
25017 			 * This must be the third pass.  If we didn't find
25018 			 * anything, return the saved network HSP instead.
25019 			 */
25020 
25021 			if (!hsp)
25022 				hsp = hsp_net;
25023 		}
25024 	}
25025 
25026 	rw_exit(&tcps->tcps_hsp_lock);
25027 	return (hsp);
25028 }
25029 
25030 /*
25031  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
25032  * match lookup.
25033  */
25034 static tcp_hsp_t *
25035 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
25036 {
25037 	tcp_hsp_t *hsp = NULL;
25038 
25039 	/* Quick check without acquiring the lock. */
25040 	if (tcps->tcps_hsp_hash == NULL)
25041 		return (NULL);
25042 
25043 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
25044 
25045 	/* This routine finds the best-matching HSP for address addr. */
25046 
25047 	if (tcps->tcps_hsp_hash) {
25048 		int i;
25049 		in6_addr_t v6srchaddr;
25050 		tcp_hsp_t *hsp_net;
25051 
25052 		/* We do three passes: host, network, and subnet. */
25053 
25054 		v6srchaddr = *v6addr;
25055 
25056 		for (i = 1; i <= 3; i++) {
25057 			/* Look for exact match on srchaddr */
25058 
25059 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
25060 			    V4_PART_OF_V6(v6srchaddr))];
25061 			while (hsp) {
25062 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
25063 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
25064 				    &v6srchaddr))
25065 					break;
25066 				hsp = hsp->tcp_hsp_next;
25067 			}
25068 
25069 			/*
25070 			 * If this is the first pass:
25071 			 *   If we found a match, great, return it.
25072 			 *   If not, search for the network on the second pass.
25073 			 */
25074 
25075 			if (i == 1)
25076 				if (hsp)
25077 					break;
25078 				else {
25079 					/* Assume a 64 bit mask */
25080 					v6srchaddr.s6_addr32[0] =
25081 					    v6addr->s6_addr32[0];
25082 					v6srchaddr.s6_addr32[1] =
25083 					    v6addr->s6_addr32[1];
25084 					v6srchaddr.s6_addr32[2] = 0;
25085 					v6srchaddr.s6_addr32[3] = 0;
25086 					continue;
25087 				}
25088 
25089 			/*
25090 			 * If this is the second pass:
25091 			 *   If we found a match, but there's a subnet mask,
25092 			 *    save the match but try again using the subnet
25093 			 *    mask on the third pass.
25094 			 *   Otherwise, return whatever we found.
25095 			 */
25096 
25097 			if (i == 2) {
25098 				ASSERT(hsp == NULL ||
25099 				    hsp->tcp_hsp_vers == IPV6_VERSION);
25100 				if (hsp &&
25101 				    !IN6_IS_ADDR_UNSPECIFIED(
25102 				    &hsp->tcp_hsp_subnet_v6)) {
25103 					hsp_net = hsp;
25104 					V6_MASK_COPY(*v6addr,
25105 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
25106 					continue;
25107 				} else {
25108 					break;
25109 				}
25110 			}
25111 
25112 			/*
25113 			 * This must be the third pass.  If we didn't find
25114 			 * anything, return the saved network HSP instead.
25115 			 */
25116 
25117 			if (!hsp)
25118 				hsp = hsp_net;
25119 		}
25120 	}
25121 
25122 	rw_exit(&tcps->tcps_hsp_lock);
25123 	return (hsp);
25124 }
25125 
25126 /*
25127  * Type three generator adapted from the random() function in 4.4 BSD:
25128  */
25129 
25130 /*
25131  * Copyright (c) 1983, 1993
25132  *	The Regents of the University of California.  All rights reserved.
25133  *
25134  * Redistribution and use in source and binary forms, with or without
25135  * modification, are permitted provided that the following conditions
25136  * are met:
25137  * 1. Redistributions of source code must retain the above copyright
25138  *    notice, this list of conditions and the following disclaimer.
25139  * 2. Redistributions in binary form must reproduce the above copyright
25140  *    notice, this list of conditions and the following disclaimer in the
25141  *    documentation and/or other materials provided with the distribution.
25142  * 3. All advertising materials mentioning features or use of this software
25143  *    must display the following acknowledgement:
25144  *	This product includes software developed by the University of
25145  *	California, Berkeley and its contributors.
25146  * 4. Neither the name of the University nor the names of its contributors
25147  *    may be used to endorse or promote products derived from this software
25148  *    without specific prior written permission.
25149  *
25150  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25151  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25152  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25153  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25154  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25155  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25156  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25157  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25158  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25159  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25160  * SUCH DAMAGE.
25161  */
25162 
25163 /* Type 3 -- x**31 + x**3 + 1 */
25164 #define	DEG_3		31
25165 #define	SEP_3		3
25166 
25167 
25168 /* Protected by tcp_random_lock */
25169 static int tcp_randtbl[DEG_3 + 1];
25170 
25171 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
25172 static int *tcp_random_rptr = &tcp_randtbl[1];
25173 
25174 static int *tcp_random_state = &tcp_randtbl[1];
25175 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
25176 
25177 kmutex_t tcp_random_lock;
25178 
25179 void
25180 tcp_random_init(void)
25181 {
25182 	int i;
25183 	hrtime_t hrt;
25184 	time_t wallclock;
25185 	uint64_t result;
25186 
25187 	/*
25188 	 * Use high-res timer and current time for seed.  Gethrtime() returns
25189 	 * a longlong, which may contain resolution down to nanoseconds.
25190 	 * The current time will either be a 32-bit or a 64-bit quantity.
25191 	 * XOR the two together in a 64-bit result variable.
25192 	 * Convert the result to a 32-bit value by multiplying the high-order
25193 	 * 32-bits by the low-order 32-bits.
25194 	 */
25195 
25196 	hrt = gethrtime();
25197 	(void) drv_getparm(TIME, &wallclock);
25198 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
25199 	mutex_enter(&tcp_random_lock);
25200 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
25201 	    (result & 0xffffffff);
25202 
25203 	for (i = 1; i < DEG_3; i++)
25204 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
25205 		    + 12345;
25206 	tcp_random_fptr = &tcp_random_state[SEP_3];
25207 	tcp_random_rptr = &tcp_random_state[0];
25208 	mutex_exit(&tcp_random_lock);
25209 	for (i = 0; i < 10 * DEG_3; i++)
25210 		(void) tcp_random();
25211 }
25212 
25213 /*
25214  * tcp_random: Return a random number in the range [1 - (128K + 1)].
25215  * This range is selected to be approximately centered on TCP_ISS / 2,
25216  * and easy to compute. We get this value by generating a 32-bit random
25217  * number, selecting out the high-order 17 bits, and then adding one so
25218  * that we never return zero.
25219  */
25220 int
25221 tcp_random(void)
25222 {
25223 	int i;
25224 
25225 	mutex_enter(&tcp_random_lock);
25226 	*tcp_random_fptr += *tcp_random_rptr;
25227 
25228 	/*
25229 	 * The high-order bits are more random than the low-order bits,
25230 	 * so we select out the high-order 17 bits and add one so that
25231 	 * we never return zero.
25232 	 */
25233 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
25234 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
25235 		tcp_random_fptr = tcp_random_state;
25236 		++tcp_random_rptr;
25237 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
25238 		tcp_random_rptr = tcp_random_state;
25239 
25240 	mutex_exit(&tcp_random_lock);
25241 	return (i);
25242 }
25243 
25244 /*
25245  * XXX This will go away when TPI is extended to send
25246  * info reqs to sockfs/timod .....
25247  * Given a queue, set the max packet size for the write
25248  * side of the queue below stream head.  This value is
25249  * cached on the stream head.
25250  * Returns 1 on success, 0 otherwise.
25251  */
25252 static int
25253 setmaxps(queue_t *q, int maxpsz)
25254 {
25255 	struct stdata	*stp;
25256 	queue_t		*wq;
25257 	stp = STREAM(q);
25258 
25259 	/*
25260 	 * At this point change of a queue parameter is not allowed
25261 	 * when a multiplexor is sitting on top.
25262 	 */
25263 	if (stp->sd_flag & STPLEX)
25264 		return (0);
25265 
25266 	claimstr(stp->sd_wrq);
25267 	wq = stp->sd_wrq->q_next;
25268 	ASSERT(wq != NULL);
25269 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
25270 	releasestr(stp->sd_wrq);
25271 	return (1);
25272 }
25273 
25274 static int
25275 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
25276     int *t_errorp, int *sys_errorp)
25277 {
25278 	int error;
25279 	int is_absreq_failure;
25280 	t_scalar_t *opt_lenp;
25281 	t_scalar_t opt_offset;
25282 	int prim_type;
25283 	struct T_conn_req *tcreqp;
25284 	struct T_conn_res *tcresp;
25285 	cred_t *cr;
25286 
25287 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
25288 
25289 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
25290 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
25291 	    prim_type == T_CONN_RES);
25292 
25293 	switch (prim_type) {
25294 	case T_CONN_REQ:
25295 		tcreqp = (struct T_conn_req *)mp->b_rptr;
25296 		opt_offset = tcreqp->OPT_offset;
25297 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
25298 		break;
25299 	case O_T_CONN_RES:
25300 	case T_CONN_RES:
25301 		tcresp = (struct T_conn_res *)mp->b_rptr;
25302 		opt_offset = tcresp->OPT_offset;
25303 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
25304 		break;
25305 	}
25306 
25307 	*t_errorp = 0;
25308 	*sys_errorp = 0;
25309 	*do_disconnectp = 0;
25310 
25311 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
25312 	    opt_offset, cr, &tcp_opt_obj,
25313 	    NULL, &is_absreq_failure);
25314 
25315 	switch (error) {
25316 	case  0:		/* no error */
25317 		ASSERT(is_absreq_failure == 0);
25318 		return (0);
25319 	case ENOPROTOOPT:
25320 		*t_errorp = TBADOPT;
25321 		break;
25322 	case EACCES:
25323 		*t_errorp = TACCES;
25324 		break;
25325 	default:
25326 		*t_errorp = TSYSERR; *sys_errorp = error;
25327 		break;
25328 	}
25329 	if (is_absreq_failure != 0) {
25330 		/*
25331 		 * The connection request should get the local ack
25332 		 * T_OK_ACK and then a T_DISCON_IND.
25333 		 */
25334 		*do_disconnectp = 1;
25335 	}
25336 	return (-1);
25337 }
25338 
25339 /*
25340  * Split this function out so that if the secret changes, I'm okay.
25341  *
25342  * Initialize the tcp_iss_cookie and tcp_iss_key.
25343  */
25344 
25345 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
25346 
25347 static void
25348 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
25349 {
25350 	struct {
25351 		int32_t current_time;
25352 		uint32_t randnum;
25353 		uint16_t pad;
25354 		uint8_t ether[6];
25355 		uint8_t passwd[PASSWD_SIZE];
25356 	} tcp_iss_cookie;
25357 	time_t t;
25358 
25359 	/*
25360 	 * Start with the current absolute time.
25361 	 */
25362 	(void) drv_getparm(TIME, &t);
25363 	tcp_iss_cookie.current_time = t;
25364 
25365 	/*
25366 	 * XXX - Need a more random number per RFC 1750, not this crap.
25367 	 * OTOH, if what follows is pretty random, then I'm in better shape.
25368 	 */
25369 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
25370 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
25371 
25372 	/*
25373 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
25374 	 * as a good template.
25375 	 */
25376 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
25377 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
25378 
25379 	/*
25380 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
25381 	 */
25382 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
25383 
25384 	/*
25385 	 * See 4010593 if this section becomes a problem again,
25386 	 * but the local ethernet address is useful here.
25387 	 */
25388 	(void) localetheraddr(NULL,
25389 	    (struct ether_addr *)&tcp_iss_cookie.ether);
25390 
25391 	/*
25392 	 * Hash 'em all together.  The MD5Final is called per-connection.
25393 	 */
25394 	mutex_enter(&tcps->tcps_iss_key_lock);
25395 	MD5Init(&tcps->tcps_iss_key);
25396 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
25397 	    sizeof (tcp_iss_cookie));
25398 	mutex_exit(&tcps->tcps_iss_key_lock);
25399 }
25400 
25401 /*
25402  * Set the RFC 1948 pass phrase
25403  */
25404 /* ARGSUSED */
25405 static int
25406 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
25407     cred_t *cr)
25408 {
25409 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
25410 
25411 	/*
25412 	 * Basically, value contains a new pass phrase.  Pass it along!
25413 	 */
25414 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
25415 	return (0);
25416 }
25417 
25418 /* ARGSUSED */
25419 static int
25420 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
25421 {
25422 	bzero(buf, sizeof (tcp_sack_info_t));
25423 	return (0);
25424 }
25425 
25426 /* ARGSUSED */
25427 static int
25428 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
25429 {
25430 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
25431 	return (0);
25432 }
25433 
25434 /*
25435  * Make sure we wait until the default queue is setup, yet allow
25436  * tcp_g_q_create() to open a TCP stream.
25437  * We need to allow tcp_g_q_create() do do an open
25438  * of tcp, hence we compare curhread.
25439  * All others have to wait until the tcps_g_q has been
25440  * setup.
25441  */
25442 void
25443 tcp_g_q_setup(tcp_stack_t *tcps)
25444 {
25445 	mutex_enter(&tcps->tcps_g_q_lock);
25446 	if (tcps->tcps_g_q != NULL) {
25447 		mutex_exit(&tcps->tcps_g_q_lock);
25448 		return;
25449 	}
25450 	if (tcps->tcps_g_q_creator == NULL) {
25451 		/* This thread will set it up */
25452 		tcps->tcps_g_q_creator = curthread;
25453 		mutex_exit(&tcps->tcps_g_q_lock);
25454 		tcp_g_q_create(tcps);
25455 		mutex_enter(&tcps->tcps_g_q_lock);
25456 		ASSERT(tcps->tcps_g_q_creator == curthread);
25457 		tcps->tcps_g_q_creator = NULL;
25458 		cv_signal(&tcps->tcps_g_q_cv);
25459 		ASSERT(tcps->tcps_g_q != NULL);
25460 		mutex_exit(&tcps->tcps_g_q_lock);
25461 		return;
25462 	}
25463 	/* Everybody but the creator has to wait */
25464 	if (tcps->tcps_g_q_creator != curthread) {
25465 		while (tcps->tcps_g_q == NULL)
25466 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
25467 	}
25468 	mutex_exit(&tcps->tcps_g_q_lock);
25469 }
25470 
25471 #define	IP	"ip"
25472 
25473 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
25474 
25475 /*
25476  * Create a default tcp queue here instead of in strplumb
25477  */
25478 void
25479 tcp_g_q_create(tcp_stack_t *tcps)
25480 {
25481 	int error;
25482 	ldi_handle_t	lh = NULL;
25483 	ldi_ident_t	li = NULL;
25484 	int		rval;
25485 	cred_t		*cr;
25486 	major_t IP_MAJ;
25487 
25488 #ifdef NS_DEBUG
25489 	(void) printf("tcp_g_q_create()\n");
25490 #endif
25491 
25492 	IP_MAJ = ddi_name_to_major(IP);
25493 
25494 	ASSERT(tcps->tcps_g_q_creator == curthread);
25495 
25496 	error = ldi_ident_from_major(IP_MAJ, &li);
25497 	if (error) {
25498 #ifdef DEBUG
25499 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
25500 		    error);
25501 #endif
25502 		return;
25503 	}
25504 
25505 	cr = zone_get_kcred(netstackid_to_zoneid(
25506 	    tcps->tcps_netstack->netstack_stackid));
25507 	ASSERT(cr != NULL);
25508 	/*
25509 	 * We set the tcp default queue to IPv6 because IPv4 falls
25510 	 * back to IPv6 when it can't find a client, but
25511 	 * IPv6 does not fall back to IPv4.
25512 	 */
25513 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
25514 	if (error) {
25515 #ifdef DEBUG
25516 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
25517 		    error);
25518 #endif
25519 		goto out;
25520 	}
25521 
25522 	/*
25523 	 * This ioctl causes the tcp framework to cache a pointer to
25524 	 * this stream, so we don't want to close the stream after
25525 	 * this operation.
25526 	 * Use the kernel credentials that are for the zone we're in.
25527 	 */
25528 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
25529 	    (intptr_t)0, FKIOCTL, cr, &rval);
25530 	if (error) {
25531 #ifdef DEBUG
25532 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
25533 		    "error %d\n", error);
25534 #endif
25535 		goto out;
25536 	}
25537 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
25538 	lh = NULL;
25539 out:
25540 	/* Close layered handles */
25541 	if (li)
25542 		ldi_ident_release(li);
25543 	/* Keep cred around until _inactive needs it */
25544 	tcps->tcps_g_q_cr = cr;
25545 }
25546 
25547 /*
25548  * We keep tcp_g_q set until all other tcp_t's in the zone
25549  * has gone away, and then when tcp_g_q_inactive() is called
25550  * we clear it.
25551  */
25552 void
25553 tcp_g_q_destroy(tcp_stack_t *tcps)
25554 {
25555 #ifdef NS_DEBUG
25556 	(void) printf("tcp_g_q_destroy()for stack %d\n",
25557 	    tcps->tcps_netstack->netstack_stackid);
25558 #endif
25559 
25560 	if (tcps->tcps_g_q == NULL) {
25561 		return;	/* Nothing to cleanup */
25562 	}
25563 	/*
25564 	 * Drop reference corresponding to the default queue.
25565 	 * This reference was added from tcp_open when the default queue
25566 	 * was created, hence we compensate for this extra drop in
25567 	 * tcp_g_q_close. If the refcnt drops to zero here it means
25568 	 * the default queue was the last one to be open, in which
25569 	 * case, then tcp_g_q_inactive will be
25570 	 * called as a result of the refrele.
25571 	 */
25572 	TCPS_REFRELE(tcps);
25573 }
25574 
25575 /*
25576  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25577  * Run by tcp_q_q_inactive using a taskq.
25578  */
25579 static void
25580 tcp_g_q_close(void *arg)
25581 {
25582 	tcp_stack_t *tcps = arg;
25583 	int error;
25584 	ldi_handle_t	lh = NULL;
25585 	ldi_ident_t	li = NULL;
25586 	cred_t		*cr;
25587 	major_t IP_MAJ;
25588 
25589 	IP_MAJ = ddi_name_to_major(IP);
25590 
25591 #ifdef NS_DEBUG
25592 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
25593 	    tcps->tcps_netstack->netstack_stackid,
25594 	    tcps->tcps_netstack->netstack_refcnt);
25595 #endif
25596 	lh = tcps->tcps_g_q_lh;
25597 	if (lh == NULL)
25598 		return;	/* Nothing to cleanup */
25599 
25600 	ASSERT(tcps->tcps_refcnt == 1);
25601 	ASSERT(tcps->tcps_g_q != NULL);
25602 
25603 	error = ldi_ident_from_major(IP_MAJ, &li);
25604 	if (error) {
25605 #ifdef DEBUG
25606 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25607 		    error);
25608 #endif
25609 		return;
25610 	}
25611 
25612 	cr = tcps->tcps_g_q_cr;
25613 	tcps->tcps_g_q_cr = NULL;
25614 	ASSERT(cr != NULL);
25615 
25616 	/*
25617 	 * Make sure we can break the recursion when tcp_close decrements
25618 	 * the reference count causing g_q_inactive to be called again.
25619 	 */
25620 	tcps->tcps_g_q_lh = NULL;
25621 
25622 	/* close the default queue */
25623 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25624 	/*
25625 	 * At this point in time tcps and the rest of netstack_t might
25626 	 * have been deleted.
25627 	 */
25628 	tcps = NULL;
25629 
25630 	/* Close layered handles */
25631 	ldi_ident_release(li);
25632 	crfree(cr);
25633 }
25634 
25635 /*
25636  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25637  *
25638  * Have to ensure that the ldi routines are not used by an
25639  * interrupt thread by using a taskq.
25640  */
25641 void
25642 tcp_g_q_inactive(tcp_stack_t *tcps)
25643 {
25644 	if (tcps->tcps_g_q_lh == NULL)
25645 		return;	/* Nothing to cleanup */
25646 
25647 	ASSERT(tcps->tcps_refcnt == 0);
25648 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25649 
25650 	if (servicing_interrupt()) {
25651 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25652 		    (void *) tcps, TQ_SLEEP);
25653 	} else {
25654 		tcp_g_q_close(tcps);
25655 	}
25656 }
25657 
25658 /*
25659  * Called by IP when IP is loaded into the kernel
25660  */
25661 void
25662 tcp_ddi_g_init(void)
25663 {
25664 	tcp_timercache = kmem_cache_create("tcp_timercache",
25665 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25666 	    NULL, NULL, NULL, NULL, NULL, 0);
25667 
25668 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25669 	    sizeof (tcp_sack_info_t), 0,
25670 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25671 
25672 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25673 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25674 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25675 
25676 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25677 
25678 	/* Initialize the random number generator */
25679 	tcp_random_init();
25680 
25681 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25682 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25683 
25684 	/* A single callback independently of how many netstacks we have */
25685 	ip_squeue_init(tcp_squeue_add);
25686 
25687 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25688 
25689 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25690 	    TASKQ_PREPOPULATE);
25691 
25692 	/*
25693 	 * We want to be informed each time a stack is created or
25694 	 * destroyed in the kernel, so we can maintain the
25695 	 * set of tcp_stack_t's.
25696 	 */
25697 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25698 	    tcp_stack_fini);
25699 }
25700 
25701 
25702 /*
25703  * Initialize the TCP stack instance.
25704  */
25705 static void *
25706 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25707 {
25708 	tcp_stack_t	*tcps;
25709 	tcpparam_t	*pa;
25710 	int		i;
25711 
25712 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25713 	tcps->tcps_netstack = ns;
25714 
25715 	/* Initialize locks */
25716 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25717 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25718 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25719 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25720 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25721 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25722 
25723 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25724 	tcps->tcps_g_epriv_ports[0] = 2049;
25725 	tcps->tcps_g_epriv_ports[1] = 4045;
25726 	tcps->tcps_min_anonpriv_port = 512;
25727 
25728 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25729 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25730 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25731 	    TCP_FANOUT_SIZE, KM_SLEEP);
25732 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25733 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25734 
25735 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25736 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25737 		    MUTEX_DEFAULT, NULL);
25738 	}
25739 
25740 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25741 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25742 		    MUTEX_DEFAULT, NULL);
25743 	}
25744 
25745 	/* TCP's IPsec code calls the packet dropper. */
25746 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25747 
25748 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25749 	tcps->tcps_params = pa;
25750 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25751 
25752 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25753 	    A_CNT(lcl_tcp_param_arr), tcps);
25754 
25755 	/*
25756 	 * Note: To really walk the device tree you need the devinfo
25757 	 * pointer to your device which is only available after probe/attach.
25758 	 * The following is safe only because it uses ddi_root_node()
25759 	 */
25760 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25761 	    tcp_opt_obj.odb_opt_arr_cnt);
25762 
25763 	/*
25764 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25765 	 * by the boot scripts.
25766 	 *
25767 	 * Use NULL name, as the name is caught by the new lockstats.
25768 	 *
25769 	 * Initialize with some random, non-guessable string, like the global
25770 	 * T_INFO_ACK.
25771 	 */
25772 
25773 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25774 	    sizeof (tcp_g_t_info_ack), tcps);
25775 
25776 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25777 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25778 
25779 	return (tcps);
25780 }
25781 
25782 /*
25783  * Called when the IP module is about to be unloaded.
25784  */
25785 void
25786 tcp_ddi_g_destroy(void)
25787 {
25788 	tcp_g_kstat_fini(tcp_g_kstat);
25789 	tcp_g_kstat = NULL;
25790 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25791 
25792 	mutex_destroy(&tcp_random_lock);
25793 
25794 	kmem_cache_destroy(tcp_timercache);
25795 	kmem_cache_destroy(tcp_sack_info_cache);
25796 	kmem_cache_destroy(tcp_iphc_cache);
25797 
25798 	netstack_unregister(NS_TCP);
25799 	taskq_destroy(tcp_taskq);
25800 }
25801 
25802 /*
25803  * Shut down the TCP stack instance.
25804  */
25805 /* ARGSUSED */
25806 static void
25807 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25808 {
25809 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25810 
25811 	tcp_g_q_destroy(tcps);
25812 }
25813 
25814 /*
25815  * Free the TCP stack instance.
25816  */
25817 static void
25818 tcp_stack_fini(netstackid_t stackid, void *arg)
25819 {
25820 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25821 	int i;
25822 
25823 	nd_free(&tcps->tcps_g_nd);
25824 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25825 	tcps->tcps_params = NULL;
25826 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25827 	tcps->tcps_wroff_xtra_param = NULL;
25828 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25829 	tcps->tcps_mdt_head_param = NULL;
25830 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25831 	tcps->tcps_mdt_tail_param = NULL;
25832 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25833 	tcps->tcps_mdt_max_pbufs_param = NULL;
25834 
25835 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25836 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25837 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25838 	}
25839 
25840 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25841 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25842 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25843 	}
25844 
25845 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25846 	tcps->tcps_bind_fanout = NULL;
25847 
25848 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25849 	tcps->tcps_acceptor_fanout = NULL;
25850 
25851 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25852 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25853 	tcps->tcps_reserved_port = NULL;
25854 
25855 	mutex_destroy(&tcps->tcps_iss_key_lock);
25856 	rw_destroy(&tcps->tcps_hsp_lock);
25857 	mutex_destroy(&tcps->tcps_g_q_lock);
25858 	cv_destroy(&tcps->tcps_g_q_cv);
25859 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25860 	rw_destroy(&tcps->tcps_reserved_port_lock);
25861 
25862 	ip_drop_unregister(&tcps->tcps_dropper);
25863 
25864 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25865 	tcps->tcps_kstat = NULL;
25866 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25867 
25868 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25869 	tcps->tcps_mibkp = NULL;
25870 
25871 	kmem_free(tcps, sizeof (*tcps));
25872 }
25873 
25874 /*
25875  * Generate ISS, taking into account NDD changes may happen halfway through.
25876  * (If the iss is not zero, set it.)
25877  */
25878 
25879 static void
25880 tcp_iss_init(tcp_t *tcp)
25881 {
25882 	MD5_CTX context;
25883 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25884 	uint32_t answer[4];
25885 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25886 
25887 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25888 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25889 	switch (tcps->tcps_strong_iss) {
25890 	case 2:
25891 		mutex_enter(&tcps->tcps_iss_key_lock);
25892 		context = tcps->tcps_iss_key;
25893 		mutex_exit(&tcps->tcps_iss_key_lock);
25894 		arg.ports = tcp->tcp_ports;
25895 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25896 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25897 			    &arg.src);
25898 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25899 			    &arg.dst);
25900 		} else {
25901 			arg.src = tcp->tcp_ip6h->ip6_src;
25902 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25903 		}
25904 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25905 		MD5Final((uchar_t *)answer, &context);
25906 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25907 		/*
25908 		 * Now that we've hashed into a unique per-connection sequence
25909 		 * space, add a random increment per strong_iss == 1.  So I
25910 		 * guess we'll have to...
25911 		 */
25912 		/* FALLTHRU */
25913 	case 1:
25914 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25915 		break;
25916 	default:
25917 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25918 		break;
25919 	}
25920 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25921 	tcp->tcp_fss = tcp->tcp_iss - 1;
25922 	tcp->tcp_suna = tcp->tcp_iss;
25923 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25924 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25925 	tcp->tcp_csuna = tcp->tcp_snxt;
25926 }
25927 
25928 /*
25929  * Exported routine for extracting active tcp connection status.
25930  *
25931  * This is used by the Solaris Cluster Networking software to
25932  * gather a list of connections that need to be forwarded to
25933  * specific nodes in the cluster when configuration changes occur.
25934  *
25935  * The callback is invoked for each tcp_t structure. Returning
25936  * non-zero from the callback routine terminates the search.
25937  */
25938 int
25939 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25940     void *arg)
25941 {
25942 	netstack_handle_t nh;
25943 	netstack_t *ns;
25944 	int ret = 0;
25945 
25946 	netstack_next_init(&nh);
25947 	while ((ns = netstack_next(&nh)) != NULL) {
25948 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25949 		    ns->netstack_tcp);
25950 		netstack_rele(ns);
25951 	}
25952 	netstack_next_fini(&nh);
25953 	return (ret);
25954 }
25955 
25956 static int
25957 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25958     tcp_stack_t *tcps)
25959 {
25960 	tcp_t *tcp;
25961 	cl_tcp_info_t	cl_tcpi;
25962 	connf_t	*connfp;
25963 	conn_t	*connp;
25964 	int	i;
25965 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25966 
25967 	ASSERT(callback != NULL);
25968 
25969 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25970 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25971 		connp = NULL;
25972 
25973 		while ((connp =
25974 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25975 
25976 			tcp = connp->conn_tcp;
25977 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25978 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25979 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25980 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25981 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25982 			/*
25983 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25984 			 * addresses. They are copied implicitly below as
25985 			 * mapped addresses.
25986 			 */
25987 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25988 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25989 				cl_tcpi.cl_tcpi_faddr =
25990 				    tcp->tcp_ipha->ipha_dst;
25991 			} else {
25992 				cl_tcpi.cl_tcpi_faddr_v6 =
25993 				    tcp->tcp_ip6h->ip6_dst;
25994 			}
25995 
25996 			/*
25997 			 * If the callback returns non-zero
25998 			 * we terminate the traversal.
25999 			 */
26000 			if ((*callback)(&cl_tcpi, arg) != 0) {
26001 				CONN_DEC_REF(tcp->tcp_connp);
26002 				return (1);
26003 			}
26004 		}
26005 	}
26006 
26007 	return (0);
26008 }
26009 
26010 /*
26011  * Macros used for accessing the different types of sockaddr
26012  * structures inside a tcp_ioc_abort_conn_t.
26013  */
26014 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
26015 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
26016 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
26017 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
26018 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
26019 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
26020 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
26021 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
26022 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
26023 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
26024 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
26025 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
26026 
26027 /*
26028  * Return the correct error code to mimic the behavior
26029  * of a connection reset.
26030  */
26031 #define	TCP_AC_GET_ERRCODE(state, err) {	\
26032 		switch ((state)) {		\
26033 		case TCPS_SYN_SENT:		\
26034 		case TCPS_SYN_RCVD:		\
26035 			(err) = ECONNREFUSED;	\
26036 			break;			\
26037 		case TCPS_ESTABLISHED:		\
26038 		case TCPS_FIN_WAIT_1:		\
26039 		case TCPS_FIN_WAIT_2:		\
26040 		case TCPS_CLOSE_WAIT:		\
26041 			(err) = ECONNRESET;	\
26042 			break;			\
26043 		case TCPS_CLOSING:		\
26044 		case TCPS_LAST_ACK:		\
26045 		case TCPS_TIME_WAIT:		\
26046 			(err) = 0;		\
26047 			break;			\
26048 		default:			\
26049 			(err) = ENXIO;		\
26050 		}				\
26051 	}
26052 
26053 /*
26054  * Check if a tcp structure matches the info in acp.
26055  */
26056 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
26057 	(((acp)->ac_local.ss_family == AF_INET) ?		\
26058 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
26059 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
26060 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
26061 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
26062 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
26063 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
26064 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
26065 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
26066 	(acp)->ac_start <= (tcp)->tcp_state &&	\
26067 	(acp)->ac_end >= (tcp)->tcp_state) :		\
26068 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
26069 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
26070 	&(tcp)->tcp_ip_src_v6)) &&				\
26071 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
26072 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
26073 	&(tcp)->tcp_remote_v6)) &&				\
26074 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
26075 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
26076 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
26077 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
26078 	(acp)->ac_start <= (tcp)->tcp_state &&	\
26079 	(acp)->ac_end >= (tcp)->tcp_state))
26080 
26081 #define	TCP_AC_MATCH(acp, tcp)					\
26082 	(((acp)->ac_zoneid == ALL_ZONES ||			\
26083 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
26084 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
26085 
26086 /*
26087  * Build a message containing a tcp_ioc_abort_conn_t structure
26088  * which is filled in with information from acp and tp.
26089  */
26090 static mblk_t *
26091 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
26092 {
26093 	mblk_t *mp;
26094 	tcp_ioc_abort_conn_t *tacp;
26095 
26096 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
26097 	if (mp == NULL)
26098 		return (NULL);
26099 
26100 	mp->b_datap->db_type = M_CTL;
26101 
26102 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
26103 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
26104 	    sizeof (uint32_t));
26105 
26106 	tacp->ac_start = acp->ac_start;
26107 	tacp->ac_end = acp->ac_end;
26108 	tacp->ac_zoneid = acp->ac_zoneid;
26109 
26110 	if (acp->ac_local.ss_family == AF_INET) {
26111 		tacp->ac_local.ss_family = AF_INET;
26112 		tacp->ac_remote.ss_family = AF_INET;
26113 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
26114 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
26115 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
26116 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
26117 	} else {
26118 		tacp->ac_local.ss_family = AF_INET6;
26119 		tacp->ac_remote.ss_family = AF_INET6;
26120 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
26121 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
26122 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
26123 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
26124 	}
26125 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
26126 	return (mp);
26127 }
26128 
26129 /*
26130  * Print a tcp_ioc_abort_conn_t structure.
26131  */
26132 static void
26133 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
26134 {
26135 	char lbuf[128];
26136 	char rbuf[128];
26137 	sa_family_t af;
26138 	in_port_t lport, rport;
26139 	ushort_t logflags;
26140 
26141 	af = acp->ac_local.ss_family;
26142 
26143 	if (af == AF_INET) {
26144 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
26145 		    lbuf, 128);
26146 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
26147 		    rbuf, 128);
26148 		lport = ntohs(TCP_AC_V4LPORT(acp));
26149 		rport = ntohs(TCP_AC_V4RPORT(acp));
26150 	} else {
26151 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
26152 		    lbuf, 128);
26153 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
26154 		    rbuf, 128);
26155 		lport = ntohs(TCP_AC_V6LPORT(acp));
26156 		rport = ntohs(TCP_AC_V6RPORT(acp));
26157 	}
26158 
26159 	logflags = SL_TRACE | SL_NOTE;
26160 	/*
26161 	 * Don't print this message to the console if the operation was done
26162 	 * to a non-global zone.
26163 	 */
26164 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
26165 		logflags |= SL_CONSOLE;
26166 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
26167 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
26168 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
26169 	    acp->ac_start, acp->ac_end);
26170 }
26171 
26172 /*
26173  * Called inside tcp_rput when a message built using
26174  * tcp_ioctl_abort_build_msg is put into a queue.
26175  * Note that when we get here there is no wildcard in acp any more.
26176  */
26177 static void
26178 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
26179 {
26180 	tcp_ioc_abort_conn_t *acp;
26181 
26182 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
26183 	if (tcp->tcp_state <= acp->ac_end) {
26184 		/*
26185 		 * If we get here, we are already on the correct
26186 		 * squeue. This ioctl follows the following path
26187 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
26188 		 * ->tcp_ioctl_abort->squeue_fill (if on a
26189 		 * different squeue)
26190 		 */
26191 		int errcode;
26192 
26193 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
26194 		(void) tcp_clean_death(tcp, errcode, 26);
26195 	}
26196 	freemsg(mp);
26197 }
26198 
26199 /*
26200  * Abort all matching connections on a hash chain.
26201  */
26202 static int
26203 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
26204     boolean_t exact, tcp_stack_t *tcps)
26205 {
26206 	int nmatch, err = 0;
26207 	tcp_t *tcp;
26208 	MBLKP mp, last, listhead = NULL;
26209 	conn_t	*tconnp;
26210 	connf_t	*connfp;
26211 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
26212 
26213 	connfp = &ipst->ips_ipcl_conn_fanout[index];
26214 
26215 startover:
26216 	nmatch = 0;
26217 
26218 	mutex_enter(&connfp->connf_lock);
26219 	for (tconnp = connfp->connf_head; tconnp != NULL;
26220 	    tconnp = tconnp->conn_next) {
26221 		tcp = tconnp->conn_tcp;
26222 		if (TCP_AC_MATCH(acp, tcp)) {
26223 			CONN_INC_REF(tcp->tcp_connp);
26224 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
26225 			if (mp == NULL) {
26226 				err = ENOMEM;
26227 				CONN_DEC_REF(tcp->tcp_connp);
26228 				break;
26229 			}
26230 			mp->b_prev = (mblk_t *)tcp;
26231 
26232 			if (listhead == NULL) {
26233 				listhead = mp;
26234 				last = mp;
26235 			} else {
26236 				last->b_next = mp;
26237 				last = mp;
26238 			}
26239 			nmatch++;
26240 			if (exact)
26241 				break;
26242 		}
26243 
26244 		/* Avoid holding lock for too long. */
26245 		if (nmatch >= 500)
26246 			break;
26247 	}
26248 	mutex_exit(&connfp->connf_lock);
26249 
26250 	/* Pass mp into the correct tcp */
26251 	while ((mp = listhead) != NULL) {
26252 		listhead = listhead->b_next;
26253 		tcp = (tcp_t *)mp->b_prev;
26254 		mp->b_next = mp->b_prev = NULL;
26255 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
26256 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
26257 	}
26258 
26259 	*count += nmatch;
26260 	if (nmatch >= 500 && err == 0)
26261 		goto startover;
26262 	return (err);
26263 }
26264 
26265 /*
26266  * Abort all connections that matches the attributes specified in acp.
26267  */
26268 static int
26269 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
26270 {
26271 	sa_family_t af;
26272 	uint32_t  ports;
26273 	uint16_t *pports;
26274 	int err = 0, count = 0;
26275 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
26276 	int index = -1;
26277 	ushort_t logflags;
26278 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
26279 
26280 	af = acp->ac_local.ss_family;
26281 
26282 	if (af == AF_INET) {
26283 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
26284 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
26285 			pports = (uint16_t *)&ports;
26286 			pports[1] = TCP_AC_V4LPORT(acp);
26287 			pports[0] = TCP_AC_V4RPORT(acp);
26288 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
26289 		}
26290 	} else {
26291 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
26292 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
26293 			pports = (uint16_t *)&ports;
26294 			pports[1] = TCP_AC_V6LPORT(acp);
26295 			pports[0] = TCP_AC_V6RPORT(acp);
26296 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
26297 		}
26298 	}
26299 
26300 	/*
26301 	 * For cases where remote addr, local port, and remote port are non-
26302 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
26303 	 */
26304 	if (index != -1) {
26305 		err = tcp_ioctl_abort_bucket(acp, index,
26306 		    &count, exact, tcps);
26307 	} else {
26308 		/*
26309 		 * loop through all entries for wildcard case
26310 		 */
26311 		for (index = 0;
26312 		    index < ipst->ips_ipcl_conn_fanout_size;
26313 		    index++) {
26314 			err = tcp_ioctl_abort_bucket(acp, index,
26315 			    &count, exact, tcps);
26316 			if (err != 0)
26317 				break;
26318 		}
26319 	}
26320 
26321 	logflags = SL_TRACE | SL_NOTE;
26322 	/*
26323 	 * Don't print this message to the console if the operation was done
26324 	 * to a non-global zone.
26325 	 */
26326 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
26327 		logflags |= SL_CONSOLE;
26328 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
26329 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
26330 	if (err == 0 && count == 0)
26331 		err = ENOENT;
26332 	return (err);
26333 }
26334 
26335 /*
26336  * Process the TCP_IOC_ABORT_CONN ioctl request.
26337  */
26338 static void
26339 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
26340 {
26341 	int	err;
26342 	IOCP    iocp;
26343 	MBLKP   mp1;
26344 	sa_family_t laf, raf;
26345 	tcp_ioc_abort_conn_t *acp;
26346 	zone_t		*zptr;
26347 	conn_t		*connp = Q_TO_CONN(q);
26348 	zoneid_t	zoneid = connp->conn_zoneid;
26349 	tcp_t		*tcp = connp->conn_tcp;
26350 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26351 
26352 	iocp = (IOCP)mp->b_rptr;
26353 
26354 	if ((mp1 = mp->b_cont) == NULL ||
26355 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
26356 		err = EINVAL;
26357 		goto out;
26358 	}
26359 
26360 	/* check permissions */
26361 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
26362 		err = EPERM;
26363 		goto out;
26364 	}
26365 
26366 	if (mp1->b_cont != NULL) {
26367 		freemsg(mp1->b_cont);
26368 		mp1->b_cont = NULL;
26369 	}
26370 
26371 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
26372 	laf = acp->ac_local.ss_family;
26373 	raf = acp->ac_remote.ss_family;
26374 
26375 	/* check that a zone with the supplied zoneid exists */
26376 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
26377 		zptr = zone_find_by_id(zoneid);
26378 		if (zptr != NULL) {
26379 			zone_rele(zptr);
26380 		} else {
26381 			err = EINVAL;
26382 			goto out;
26383 		}
26384 	}
26385 
26386 	/*
26387 	 * For exclusive stacks we set the zoneid to zero
26388 	 * to make TCP operate as if in the global zone.
26389 	 */
26390 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
26391 		acp->ac_zoneid = GLOBAL_ZONEID;
26392 
26393 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
26394 	    acp->ac_start > acp->ac_end || laf != raf ||
26395 	    (laf != AF_INET && laf != AF_INET6)) {
26396 		err = EINVAL;
26397 		goto out;
26398 	}
26399 
26400 	tcp_ioctl_abort_dump(acp);
26401 	err = tcp_ioctl_abort(acp, tcps);
26402 
26403 out:
26404 	if (mp1 != NULL) {
26405 		freemsg(mp1);
26406 		mp->b_cont = NULL;
26407 	}
26408 
26409 	if (err != 0)
26410 		miocnak(q, mp, 0, err);
26411 	else
26412 		miocack(q, mp, 0, 0);
26413 }
26414 
26415 /*
26416  * tcp_time_wait_processing() handles processing of incoming packets when
26417  * the tcp is in the TIME_WAIT state.
26418  * A TIME_WAIT tcp that has an associated open TCP stream is never put
26419  * on the time wait list.
26420  */
26421 void
26422 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
26423     uint32_t seg_ack, int seg_len, tcph_t *tcph)
26424 {
26425 	int32_t		bytes_acked;
26426 	int32_t		gap;
26427 	int32_t		rgap;
26428 	tcp_opt_t	tcpopt;
26429 	uint_t		flags;
26430 	uint32_t	new_swnd = 0;
26431 	conn_t		*connp;
26432 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26433 
26434 	BUMP_LOCAL(tcp->tcp_ibsegs);
26435 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
26436 
26437 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
26438 	new_swnd = BE16_TO_U16(tcph->th_win) <<
26439 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
26440 	if (tcp->tcp_snd_ts_ok) {
26441 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
26442 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26443 			    tcp->tcp_rnxt, TH_ACK);
26444 			goto done;
26445 		}
26446 	}
26447 	gap = seg_seq - tcp->tcp_rnxt;
26448 	rgap = tcp->tcp_rwnd - (gap + seg_len);
26449 	if (gap < 0) {
26450 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
26451 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
26452 		    (seg_len > -gap ? -gap : seg_len));
26453 		seg_len += gap;
26454 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
26455 			if (flags & TH_RST) {
26456 				goto done;
26457 			}
26458 			if ((flags & TH_FIN) && seg_len == -1) {
26459 				/*
26460 				 * When TCP receives a duplicate FIN in
26461 				 * TIME_WAIT state, restart the 2 MSL timer.
26462 				 * See page 73 in RFC 793. Make sure this TCP
26463 				 * is already on the TIME_WAIT list. If not,
26464 				 * just restart the timer.
26465 				 */
26466 				if (TCP_IS_DETACHED(tcp)) {
26467 					if (tcp_time_wait_remove(tcp, NULL) ==
26468 					    B_TRUE) {
26469 						tcp_time_wait_append(tcp);
26470 						TCP_DBGSTAT(tcps,
26471 						    tcp_rput_time_wait);
26472 					}
26473 				} else {
26474 					ASSERT(tcp != NULL);
26475 					TCP_TIMER_RESTART(tcp,
26476 					    tcps->tcps_time_wait_interval);
26477 				}
26478 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26479 				    tcp->tcp_rnxt, TH_ACK);
26480 				goto done;
26481 			}
26482 			flags |=  TH_ACK_NEEDED;
26483 			seg_len = 0;
26484 			goto process_ack;
26485 		}
26486 
26487 		/* Fix seg_seq, and chew the gap off the front. */
26488 		seg_seq = tcp->tcp_rnxt;
26489 	}
26490 
26491 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
26492 		/*
26493 		 * Make sure that when we accept the connection, pick
26494 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
26495 		 * old connection.
26496 		 *
26497 		 * The next ISS generated is equal to tcp_iss_incr_extra
26498 		 * + ISS_INCR/2 + other components depending on the
26499 		 * value of tcp_strong_iss.  We pre-calculate the new
26500 		 * ISS here and compare with tcp_snxt to determine if
26501 		 * we need to make adjustment to tcp_iss_incr_extra.
26502 		 *
26503 		 * The above calculation is ugly and is a
26504 		 * waste of CPU cycles...
26505 		 */
26506 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
26507 		int32_t adj;
26508 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
26509 
26510 		switch (tcps->tcps_strong_iss) {
26511 		case 2: {
26512 			/* Add time and MD5 components. */
26513 			uint32_t answer[4];
26514 			struct {
26515 				uint32_t ports;
26516 				in6_addr_t src;
26517 				in6_addr_t dst;
26518 			} arg;
26519 			MD5_CTX context;
26520 
26521 			mutex_enter(&tcps->tcps_iss_key_lock);
26522 			context = tcps->tcps_iss_key;
26523 			mutex_exit(&tcps->tcps_iss_key_lock);
26524 			arg.ports = tcp->tcp_ports;
26525 			/* We use MAPPED addresses in tcp_iss_init */
26526 			arg.src = tcp->tcp_ip_src_v6;
26527 			if (tcp->tcp_ipversion == IPV4_VERSION) {
26528 				IN6_IPADDR_TO_V4MAPPED(
26529 				    tcp->tcp_ipha->ipha_dst,
26530 				    &arg.dst);
26531 			} else {
26532 				arg.dst =
26533 				    tcp->tcp_ip6h->ip6_dst;
26534 			}
26535 			MD5Update(&context, (uchar_t *)&arg,
26536 			    sizeof (arg));
26537 			MD5Final((uchar_t *)answer, &context);
26538 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
26539 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
26540 			break;
26541 		}
26542 		case 1:
26543 			/* Add time component and min random (i.e. 1). */
26544 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
26545 			break;
26546 		default:
26547 			/* Add only time component. */
26548 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
26549 			break;
26550 		}
26551 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
26552 			/*
26553 			 * New ISS not guaranteed to be ISS_INCR/2
26554 			 * ahead of the current tcp_snxt, so add the
26555 			 * difference to tcp_iss_incr_extra.
26556 			 */
26557 			tcps->tcps_iss_incr_extra += adj;
26558 		}
26559 		/*
26560 		 * If tcp_clean_death() can not perform the task now,
26561 		 * drop the SYN packet and let the other side re-xmit.
26562 		 * Otherwise pass the SYN packet back in, since the
26563 		 * old tcp state has been cleaned up or freed.
26564 		 */
26565 		if (tcp_clean_death(tcp, 0, 27) == -1)
26566 			goto done;
26567 		/*
26568 		 * We will come back to tcp_rput_data
26569 		 * on the global queue. Packets destined
26570 		 * for the global queue will be checked
26571 		 * with global policy. But the policy for
26572 		 * this packet has already been checked as
26573 		 * this was destined for the detached
26574 		 * connection. We need to bypass policy
26575 		 * check this time by attaching a dummy
26576 		 * ipsec_in with ipsec_in_dont_check set.
26577 		 */
26578 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
26579 		if (connp != NULL) {
26580 			TCP_STAT(tcps, tcp_time_wait_syn_success);
26581 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
26582 			return;
26583 		}
26584 		goto done;
26585 	}
26586 
26587 	/*
26588 	 * rgap is the amount of stuff received out of window.  A negative
26589 	 * value is the amount out of window.
26590 	 */
26591 	if (rgap < 0) {
26592 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
26593 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
26594 		/* Fix seg_len and make sure there is something left. */
26595 		seg_len += rgap;
26596 		if (seg_len <= 0) {
26597 			if (flags & TH_RST) {
26598 				goto done;
26599 			}
26600 			flags |=  TH_ACK_NEEDED;
26601 			seg_len = 0;
26602 			goto process_ack;
26603 		}
26604 	}
26605 	/*
26606 	 * Check whether we can update tcp_ts_recent.  This test is
26607 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26608 	 * Extensions for High Performance: An Update", Internet Draft.
26609 	 */
26610 	if (tcp->tcp_snd_ts_ok &&
26611 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26612 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26613 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26614 		tcp->tcp_last_rcv_lbolt = lbolt64;
26615 	}
26616 
26617 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26618 		/* Always ack out of order packets */
26619 		flags |= TH_ACK_NEEDED;
26620 		seg_len = 0;
26621 	} else if (seg_len > 0) {
26622 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26623 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26624 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26625 	}
26626 	if (flags & TH_RST) {
26627 		(void) tcp_clean_death(tcp, 0, 28);
26628 		goto done;
26629 	}
26630 	if (flags & TH_SYN) {
26631 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26632 		    TH_RST|TH_ACK);
26633 		/*
26634 		 * Do not delete the TCP structure if it is in
26635 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26636 		 */
26637 		goto done;
26638 	}
26639 process_ack:
26640 	if (flags & TH_ACK) {
26641 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26642 		if (bytes_acked <= 0) {
26643 			if (bytes_acked == 0 && seg_len == 0 &&
26644 			    new_swnd == tcp->tcp_swnd)
26645 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26646 		} else {
26647 			/* Acks something not sent */
26648 			flags |= TH_ACK_NEEDED;
26649 		}
26650 	}
26651 	if (flags & TH_ACK_NEEDED) {
26652 		/*
26653 		 * Time to send an ack for some reason.
26654 		 */
26655 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26656 		    tcp->tcp_rnxt, TH_ACK);
26657 	}
26658 done:
26659 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26660 		DB_CKSUMSTART(mp) = 0;
26661 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26662 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26663 	}
26664 	freemsg(mp);
26665 }
26666 
26667 /*
26668  * Allocate a T_SVR4_OPTMGMT_REQ.
26669  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26670  * that tcp_rput_other can drop the acks.
26671  */
26672 static mblk_t *
26673 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26674 {
26675 	mblk_t *mp;
26676 	struct T_optmgmt_req *tor;
26677 	struct opthdr *oh;
26678 	uint_t size;
26679 	char *optptr;
26680 
26681 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26682 	mp = allocb(size, BPRI_MED);
26683 	if (mp == NULL)
26684 		return (NULL);
26685 
26686 	mp->b_wptr += size;
26687 	mp->b_datap->db_type = M_PROTO;
26688 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26689 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26690 	tor->MGMT_flags = T_NEGOTIATE;
26691 	tor->OPT_length = sizeof (*oh) + optlen;
26692 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26693 
26694 	oh = (struct opthdr *)&tor[1];
26695 	oh->level = level;
26696 	oh->name = cmd;
26697 	oh->len = optlen;
26698 	if (optlen != 0) {
26699 		optptr = (char *)&oh[1];
26700 		bcopy(opt, optptr, optlen);
26701 	}
26702 	return (mp);
26703 }
26704 
26705 /*
26706  * TCP Timers Implementation.
26707  */
26708 timeout_id_t
26709 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26710 {
26711 	mblk_t *mp;
26712 	tcp_timer_t *tcpt;
26713 	tcp_t *tcp = connp->conn_tcp;
26714 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26715 
26716 	ASSERT(connp->conn_sqp != NULL);
26717 
26718 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26719 
26720 	if (tcp->tcp_timercache == NULL) {
26721 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26722 	} else {
26723 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26724 		mp = tcp->tcp_timercache;
26725 		tcp->tcp_timercache = mp->b_next;
26726 		mp->b_next = NULL;
26727 		ASSERT(mp->b_wptr == NULL);
26728 	}
26729 
26730 	CONN_INC_REF(connp);
26731 	tcpt = (tcp_timer_t *)mp->b_rptr;
26732 	tcpt->connp = connp;
26733 	tcpt->tcpt_proc = f;
26734 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26735 	return ((timeout_id_t)mp);
26736 }
26737 
26738 static void
26739 tcp_timer_callback(void *arg)
26740 {
26741 	mblk_t *mp = (mblk_t *)arg;
26742 	tcp_timer_t *tcpt;
26743 	conn_t	*connp;
26744 
26745 	tcpt = (tcp_timer_t *)mp->b_rptr;
26746 	connp = tcpt->connp;
26747 	squeue_fill(connp->conn_sqp, mp,
26748 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26749 }
26750 
26751 static void
26752 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26753 {
26754 	tcp_timer_t *tcpt;
26755 	conn_t *connp = (conn_t *)arg;
26756 	tcp_t *tcp = connp->conn_tcp;
26757 
26758 	tcpt = (tcp_timer_t *)mp->b_rptr;
26759 	ASSERT(connp == tcpt->connp);
26760 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26761 
26762 	/*
26763 	 * If the TCP has reached the closed state, don't proceed any
26764 	 * further. This TCP logically does not exist on the system.
26765 	 * tcpt_proc could for example access queues, that have already
26766 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26767 	 */
26768 	if (tcp->tcp_state != TCPS_CLOSED) {
26769 		(*tcpt->tcpt_proc)(connp);
26770 	} else {
26771 		tcp->tcp_timer_tid = 0;
26772 	}
26773 	tcp_timer_free(connp->conn_tcp, mp);
26774 }
26775 
26776 /*
26777  * There is potential race with untimeout and the handler firing at the same
26778  * time. The mblock may be freed by the handler while we are trying to use
26779  * it. But since both should execute on the same squeue, this race should not
26780  * occur.
26781  */
26782 clock_t
26783 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26784 {
26785 	mblk_t	*mp = (mblk_t *)id;
26786 	tcp_timer_t *tcpt;
26787 	clock_t delta;
26788 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26789 
26790 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26791 
26792 	if (mp == NULL)
26793 		return (-1);
26794 
26795 	tcpt = (tcp_timer_t *)mp->b_rptr;
26796 	ASSERT(tcpt->connp == connp);
26797 
26798 	delta = untimeout(tcpt->tcpt_tid);
26799 
26800 	if (delta >= 0) {
26801 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26802 		tcp_timer_free(connp->conn_tcp, mp);
26803 		CONN_DEC_REF(connp);
26804 	}
26805 
26806 	return (delta);
26807 }
26808 
26809 /*
26810  * Allocate space for the timer event. The allocation looks like mblk, but it is
26811  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26812  *
26813  * Dealing with failures: If we can't allocate from the timer cache we try
26814  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26815  * points to b_rptr.
26816  * If we can't allocate anything using allocb_tryhard(), we perform a last
26817  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26818  * save the actual allocation size in b_datap.
26819  */
26820 mblk_t *
26821 tcp_timermp_alloc(int kmflags)
26822 {
26823 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26824 	    kmflags & ~KM_PANIC);
26825 
26826 	if (mp != NULL) {
26827 		mp->b_next = mp->b_prev = NULL;
26828 		mp->b_rptr = (uchar_t *)(&mp[1]);
26829 		mp->b_wptr = NULL;
26830 		mp->b_datap = NULL;
26831 		mp->b_queue = NULL;
26832 		mp->b_cont = NULL;
26833 	} else if (kmflags & KM_PANIC) {
26834 		/*
26835 		 * Failed to allocate memory for the timer. Try allocating from
26836 		 * dblock caches.
26837 		 */
26838 		/* ipclassifier calls this from a constructor - hence no tcps */
26839 		TCP_G_STAT(tcp_timermp_allocfail);
26840 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26841 		if (mp == NULL) {
26842 			size_t size = 0;
26843 			/*
26844 			 * Memory is really low. Try tryhard allocation.
26845 			 *
26846 			 * ipclassifier calls this from a constructor -
26847 			 * hence no tcps
26848 			 */
26849 			TCP_G_STAT(tcp_timermp_allocdblfail);
26850 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26851 			    sizeof (tcp_timer_t), &size, kmflags);
26852 			mp->b_rptr = (uchar_t *)(&mp[1]);
26853 			mp->b_next = mp->b_prev = NULL;
26854 			mp->b_wptr = (uchar_t *)-1;
26855 			mp->b_datap = (dblk_t *)size;
26856 			mp->b_queue = NULL;
26857 			mp->b_cont = NULL;
26858 		}
26859 		ASSERT(mp->b_wptr != NULL);
26860 	}
26861 	/* ipclassifier calls this from a constructor - hence no tcps */
26862 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26863 
26864 	return (mp);
26865 }
26866 
26867 /*
26868  * Free per-tcp timer cache.
26869  * It can only contain entries from tcp_timercache.
26870  */
26871 void
26872 tcp_timermp_free(tcp_t *tcp)
26873 {
26874 	mblk_t *mp;
26875 
26876 	while ((mp = tcp->tcp_timercache) != NULL) {
26877 		ASSERT(mp->b_wptr == NULL);
26878 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26879 		kmem_cache_free(tcp_timercache, mp);
26880 	}
26881 }
26882 
26883 /*
26884  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26885  * events there already (currently at most two events are cached).
26886  * If the event is not allocated from the timer cache, free it right away.
26887  */
26888 static void
26889 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26890 {
26891 	mblk_t *mp1 = tcp->tcp_timercache;
26892 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26893 
26894 	if (mp->b_wptr != NULL) {
26895 		/*
26896 		 * This allocation is not from a timer cache, free it right
26897 		 * away.
26898 		 */
26899 		if (mp->b_wptr != (uchar_t *)-1)
26900 			freeb(mp);
26901 		else
26902 			kmem_free(mp, (size_t)mp->b_datap);
26903 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26904 		/* Cache this timer block for future allocations */
26905 		mp->b_rptr = (uchar_t *)(&mp[1]);
26906 		mp->b_next = mp1;
26907 		tcp->tcp_timercache = mp;
26908 	} else {
26909 		kmem_cache_free(tcp_timercache, mp);
26910 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26911 	}
26912 }
26913 
26914 /*
26915  * End of TCP Timers implementation.
26916  */
26917 
26918 /*
26919  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26920  * on the specified backing STREAMS q. Note, the caller may make the
26921  * decision to call based on the tcp_t.tcp_flow_stopped value which
26922  * when check outside the q's lock is only an advisory check ...
26923  */
26924 
26925 void
26926 tcp_setqfull(tcp_t *tcp)
26927 {
26928 	queue_t *q = tcp->tcp_wq;
26929 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26930 
26931 	if (!(q->q_flag & QFULL)) {
26932 		mutex_enter(QLOCK(q));
26933 		if (!(q->q_flag & QFULL)) {
26934 			/* still need to set QFULL */
26935 			q->q_flag |= QFULL;
26936 			tcp->tcp_flow_stopped = B_TRUE;
26937 			mutex_exit(QLOCK(q));
26938 			TCP_STAT(tcps, tcp_flwctl_on);
26939 		} else {
26940 			mutex_exit(QLOCK(q));
26941 		}
26942 	}
26943 }
26944 
26945 void
26946 tcp_clrqfull(tcp_t *tcp)
26947 {
26948 	queue_t *q = tcp->tcp_wq;
26949 
26950 	if (q->q_flag & QFULL) {
26951 		mutex_enter(QLOCK(q));
26952 		if (q->q_flag & QFULL) {
26953 			q->q_flag &= ~QFULL;
26954 			tcp->tcp_flow_stopped = B_FALSE;
26955 			mutex_exit(QLOCK(q));
26956 			if (q->q_flag & QWANTW)
26957 				qbackenable(q, 0);
26958 		} else {
26959 			mutex_exit(QLOCK(q));
26960 		}
26961 	}
26962 }
26963 
26964 
26965 /*
26966  * kstats related to squeues i.e. not per IP instance
26967  */
26968 static void *
26969 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26970 {
26971 	kstat_t *ksp;
26972 
26973 	tcp_g_stat_t template = {
26974 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26975 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26976 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26977 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26978 	};
26979 
26980 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26981 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26982 	    KSTAT_FLAG_VIRTUAL);
26983 
26984 	if (ksp == NULL)
26985 		return (NULL);
26986 
26987 	bcopy(&template, tcp_g_statp, sizeof (template));
26988 	ksp->ks_data = (void *)tcp_g_statp;
26989 
26990 	kstat_install(ksp);
26991 	return (ksp);
26992 }
26993 
26994 static void
26995 tcp_g_kstat_fini(kstat_t *ksp)
26996 {
26997 	if (ksp != NULL) {
26998 		kstat_delete(ksp);
26999 	}
27000 }
27001 
27002 
27003 static void *
27004 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
27005 {
27006 	kstat_t *ksp;
27007 
27008 	tcp_stat_t template = {
27009 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
27010 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
27011 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
27012 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
27013 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
27014 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
27015 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
27016 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
27017 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
27018 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
27019 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
27020 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
27021 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
27022 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
27023 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
27024 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
27025 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
27026 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
27027 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
27028 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
27029 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
27030 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
27031 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
27032 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
27033 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
27034 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
27035 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
27036 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
27037 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
27038 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
27039 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
27040 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
27041 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
27042 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
27043 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
27044 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
27045 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
27046 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
27047 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
27048 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
27049 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
27050 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
27051 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
27052 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
27053 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
27054 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
27055 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
27056 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
27057 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
27058 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
27059 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
27060 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
27061 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
27062 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
27063 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
27064 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
27065 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
27066 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
27067 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
27068 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
27069 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
27070 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
27071 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
27072 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
27073 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
27074 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
27075 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
27076 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
27077 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
27078 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
27079 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
27080 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
27081 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
27082 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
27083 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
27084 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
27085 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
27086 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
27087 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
27088 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
27089 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
27090 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
27091 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
27092 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
27093 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
27094 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
27095 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
27096 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
27097 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
27098 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
27099 	};
27100 
27101 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
27102 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
27103 	    KSTAT_FLAG_VIRTUAL, stackid);
27104 
27105 	if (ksp == NULL)
27106 		return (NULL);
27107 
27108 	bcopy(&template, tcps_statisticsp, sizeof (template));
27109 	ksp->ks_data = (void *)tcps_statisticsp;
27110 	ksp->ks_private = (void *)(uintptr_t)stackid;
27111 
27112 	kstat_install(ksp);
27113 	return (ksp);
27114 }
27115 
27116 static void
27117 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
27118 {
27119 	if (ksp != NULL) {
27120 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
27121 		kstat_delete_netstack(ksp, stackid);
27122 	}
27123 }
27124 
27125 /*
27126  * TCP Kstats implementation
27127  */
27128 static void *
27129 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
27130 {
27131 	kstat_t	*ksp;
27132 
27133 	tcp_named_kstat_t template = {
27134 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
27135 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
27136 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
27137 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
27138 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
27139 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
27140 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
27141 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
27142 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
27143 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
27144 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
27145 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
27146 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
27147 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
27148 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
27149 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
27150 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
27151 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
27152 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
27153 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
27154 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
27155 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
27156 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
27157 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
27158 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
27159 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
27160 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
27161 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
27162 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
27163 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
27164 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
27165 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
27166 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
27167 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
27168 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
27169 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
27170 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
27171 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
27172 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
27173 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
27174 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
27175 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
27176 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
27177 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
27178 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
27179 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
27180 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
27181 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
27182 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
27183 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
27184 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
27185 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
27186 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
27187 	};
27188 
27189 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
27190 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
27191 
27192 	if (ksp == NULL)
27193 		return (NULL);
27194 
27195 	template.rtoAlgorithm.value.ui32 = 4;
27196 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
27197 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
27198 	template.maxConn.value.i32 = -1;
27199 
27200 	bcopy(&template, ksp->ks_data, sizeof (template));
27201 	ksp->ks_update = tcp_kstat_update;
27202 	ksp->ks_private = (void *)(uintptr_t)stackid;
27203 
27204 	kstat_install(ksp);
27205 	return (ksp);
27206 }
27207 
27208 static void
27209 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
27210 {
27211 	if (ksp != NULL) {
27212 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
27213 		kstat_delete_netstack(ksp, stackid);
27214 	}
27215 }
27216 
27217 static int
27218 tcp_kstat_update(kstat_t *kp, int rw)
27219 {
27220 	tcp_named_kstat_t *tcpkp;
27221 	tcp_t		*tcp;
27222 	connf_t		*connfp;
27223 	conn_t		*connp;
27224 	int 		i;
27225 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
27226 	netstack_t	*ns;
27227 	tcp_stack_t	*tcps;
27228 	ip_stack_t	*ipst;
27229 
27230 	if ((kp == NULL) || (kp->ks_data == NULL))
27231 		return (EIO);
27232 
27233 	if (rw == KSTAT_WRITE)
27234 		return (EACCES);
27235 
27236 	ns = netstack_find_by_stackid(stackid);
27237 	if (ns == NULL)
27238 		return (-1);
27239 	tcps = ns->netstack_tcp;
27240 	if (tcps == NULL) {
27241 		netstack_rele(ns);
27242 		return (-1);
27243 	}
27244 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
27245 
27246 	tcpkp->currEstab.value.ui32 = 0;
27247 
27248 	ipst = ns->netstack_ip;
27249 
27250 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
27251 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
27252 		connp = NULL;
27253 		while ((connp =
27254 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
27255 			tcp = connp->conn_tcp;
27256 			switch (tcp_snmp_state(tcp)) {
27257 			case MIB2_TCP_established:
27258 			case MIB2_TCP_closeWait:
27259 				tcpkp->currEstab.value.ui32++;
27260 				break;
27261 			}
27262 		}
27263 	}
27264 
27265 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
27266 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
27267 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
27268 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
27269 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
27270 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
27271 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
27272 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
27273 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
27274 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
27275 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
27276 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
27277 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
27278 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
27279 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
27280 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
27281 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
27282 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
27283 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
27284 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
27285 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
27286 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
27287 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
27288 	tcpkp->inDataInorderSegs.value.ui32 =
27289 	    tcps->tcps_mib.tcpInDataInorderSegs;
27290 	tcpkp->inDataInorderBytes.value.ui32 =
27291 	    tcps->tcps_mib.tcpInDataInorderBytes;
27292 	tcpkp->inDataUnorderSegs.value.ui32 =
27293 	    tcps->tcps_mib.tcpInDataUnorderSegs;
27294 	tcpkp->inDataUnorderBytes.value.ui32 =
27295 	    tcps->tcps_mib.tcpInDataUnorderBytes;
27296 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
27297 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
27298 	tcpkp->inDataPartDupSegs.value.ui32 =
27299 	    tcps->tcps_mib.tcpInDataPartDupSegs;
27300 	tcpkp->inDataPartDupBytes.value.ui32 =
27301 	    tcps->tcps_mib.tcpInDataPartDupBytes;
27302 	tcpkp->inDataPastWinSegs.value.ui32 =
27303 	    tcps->tcps_mib.tcpInDataPastWinSegs;
27304 	tcpkp->inDataPastWinBytes.value.ui32 =
27305 	    tcps->tcps_mib.tcpInDataPastWinBytes;
27306 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
27307 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
27308 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
27309 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
27310 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
27311 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
27312 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
27313 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
27314 	tcpkp->timKeepaliveProbe.value.ui32 =
27315 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
27316 	tcpkp->timKeepaliveDrop.value.ui32 =
27317 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
27318 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
27319 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
27320 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
27321 	tcpkp->outSackRetransSegs.value.ui32 =
27322 	    tcps->tcps_mib.tcpOutSackRetransSegs;
27323 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
27324 
27325 	netstack_rele(ns);
27326 	return (0);
27327 }
27328 
27329 void
27330 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
27331 {
27332 	uint16_t	hdr_len;
27333 	ipha_t		*ipha;
27334 	uint8_t		*nexthdrp;
27335 	tcph_t		*tcph;
27336 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
27337 
27338 	/* Already has an eager */
27339 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
27340 		TCP_STAT(tcps, tcp_reinput_syn);
27341 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
27342 		    connp, SQTAG_TCP_REINPUT_EAGER);
27343 		return;
27344 	}
27345 
27346 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
27347 	case IPV4_VERSION:
27348 		ipha = (ipha_t *)mp->b_rptr;
27349 		hdr_len = IPH_HDR_LENGTH(ipha);
27350 		break;
27351 	case IPV6_VERSION:
27352 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
27353 		    &hdr_len, &nexthdrp)) {
27354 			CONN_DEC_REF(connp);
27355 			freemsg(mp);
27356 			return;
27357 		}
27358 		break;
27359 	}
27360 
27361 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
27362 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
27363 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
27364 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
27365 	}
27366 
27367 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
27368 	    SQTAG_TCP_REINPUT);
27369 }
27370 
27371 static squeue_func_t
27372 tcp_squeue_switch(int val)
27373 {
27374 	squeue_func_t rval = squeue_fill;
27375 
27376 	switch (val) {
27377 	case 1:
27378 		rval = squeue_enter_nodrain;
27379 		break;
27380 	case 2:
27381 		rval = squeue_enter;
27382 		break;
27383 	default:
27384 		break;
27385 	}
27386 	return (rval);
27387 }
27388 
27389 /*
27390  * This is called once for each squeue - globally for all stack
27391  * instances.
27392  */
27393 static void
27394 tcp_squeue_add(squeue_t *sqp)
27395 {
27396 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
27397 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
27398 
27399 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
27400 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
27401 	    sqp, TCP_TIME_WAIT_DELAY);
27402 	if (tcp_free_list_max_cnt == 0) {
27403 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
27404 		    max_ncpus : boot_max_ncpus);
27405 
27406 		/*
27407 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
27408 		 */
27409 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
27410 		    (tcp_ncpus * sizeof (tcp_t) * 100);
27411 	}
27412 	tcp_time_wait->tcp_free_list_cnt = 0;
27413 }
27414