xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision 1eabc4bec6d2a5ad71f6a1f0c019af5438d8b1bf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, Joyent Inc. All rights reserved.
25  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2013,2014 by Delphix. All rights reserved.
27  * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
28  */
29 /* Copyright (c) 1990 Mentat Inc. */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #define	_SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/timod.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/suntpi.h>
43 #include <sys/xti_inet.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/sdt.h>
47 #include <sys/vtrace.h>
48 #include <sys/kmem.h>
49 #include <sys/ethernet.h>
50 #include <sys/cpuvar.h>
51 #include <sys/dlpi.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sockio.h>
63 #include <sys/isa_defs.h>
64 #include <sys/md5.h>
65 #include <sys/random.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/proto_set.h>
82 #include <inet/mib2.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/tcp_cluster.h>
89 #include <inet/udp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_rts.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue_impl.h>
101 #include <sys/squeue.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_input_listener(). But briefly, the squeue is picked by
176  * ip_fanout based on the ring or the sender (if loopback).
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provisions for sockfs by marking tcp_issocket
202  * whenever we have only sockfs on top of TCP. This allows us to skip
203  * putting the tcp in acceptor hash since a sockfs listener can never
204  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
205  * since eager has already been allocated and the accept now happens
206  * on acceptor STREAM. There is a big blob of comment on top of
207  * tcp_input_listener explaining the new accept. When socket is POP'd,
208  * sockfs sends us an ioctl to mark the fact and we go back to old
209  * behaviour. Once tcp_issocket is unset, its never set for the
210  * life of that connection.
211  *
212  * IPsec notes :
213  *
214  * Since a packet is always executed on the correct TCP perimeter
215  * all IPsec processing is defered to IP including checking new
216  * connections and setting IPSEC policies for new connection. The
217  * only exception is tcp_xmit_listeners_reset() which is called
218  * directly from IP and needs to policy check to see if TH_RST
219  * can be sent out.
220  */
221 
222 /*
223  * Values for squeue switch:
224  * 1: SQ_NODRAIN
225  * 2: SQ_PROCESS
226  * 3: SQ_FILL
227  */
228 int tcp_squeue_wput = 2;	/* /etc/systems */
229 int tcp_squeue_flag;
230 
231 /*
232  * To prevent memory hog, limit the number of entries in tcp_free_list
233  * to 1% of available memory / number of cpus
234  */
235 uint_t tcp_free_list_max_cnt = 0;
236 
237 #define	TIDUSZ	4096	/* transport interface data unit size */
238 
239 /*
240  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
241  */
242 #define	TCP_ACCEPTOR_FANOUT_SIZE		512
243 
244 #ifdef	_ILP32
245 #define	TCP_ACCEPTOR_HASH(accid)					\
246 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
247 #else
248 #define	TCP_ACCEPTOR_HASH(accid)					\
249 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
250 #endif	/* _ILP32 */
251 
252 /*
253  * Minimum number of connections which can be created per listener.  Used
254  * when the listener connection count is in effect.
255  */
256 static uint32_t tcp_min_conn_listener = 2;
257 
258 uint32_t tcp_early_abort = 30;
259 
260 /* TCP Timer control structure */
261 typedef struct tcpt_s {
262 	pfv_t	tcpt_pfv;	/* The routine we are to call */
263 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
264 } tcpt_t;
265 
266 /*
267  * Functions called directly via squeue having a prototype of edesc_t.
268  */
269 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
270     ip_recv_attr_t *ira);
271 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
272     ip_recv_attr_t *ira);
273 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
274     ip_recv_attr_t *dummy);
275 
276 
277 /* Prototype for TCP functions */
278 static void	tcp_random_init(void);
279 int		tcp_random(void);
280 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
281 		    in_port_t dstport, uint_t srcid);
282 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
283 		    in_port_t dstport, uint32_t flowinfo,
284 		    uint_t srcid, uint32_t scope_id);
285 static void	tcp_iss_init(tcp_t *tcp);
286 static void	tcp_reinit(tcp_t *tcp);
287 static void	tcp_reinit_values(tcp_t *tcp);
288 
289 static void	tcp_wsrv(queue_t *q);
290 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
291 static void	tcp_update_zcopy(tcp_t *tcp);
292 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
293     ixa_notify_arg_t);
294 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
295 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
296 
297 static int	tcp_squeue_switch(int);
298 
299 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
300 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
301 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
302 
303 static void	tcp_squeue_add(squeue_t *);
304 
305 struct module_info tcp_rinfo =  {
306 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
307 };
308 
309 static struct module_info tcp_winfo =  {
310 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
311 };
312 
313 /*
314  * Entry points for TCP as a device. The normal case which supports
315  * the TCP functionality.
316  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
317  */
318 struct qinit tcp_rinitv4 = {
319 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
320 };
321 
322 struct qinit tcp_rinitv6 = {
323 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
324 };
325 
326 struct qinit tcp_winit = {
327 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
328 };
329 
330 /* Initial entry point for TCP in socket mode. */
331 struct qinit tcp_sock_winit = {
332 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
333 };
334 
335 /* TCP entry point during fallback */
336 struct qinit tcp_fallback_sock_winit = {
337 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
338 };
339 
340 /*
341  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
342  * an accept. Avoid allocating data structures since eager has already
343  * been created.
344  */
345 struct qinit tcp_acceptor_rinit = {
346 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
347 };
348 
349 struct qinit tcp_acceptor_winit = {
350 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
351 };
352 
353 /* For AF_INET aka /dev/tcp */
354 struct streamtab tcpinfov4 = {
355 	&tcp_rinitv4, &tcp_winit
356 };
357 
358 /* For AF_INET6 aka /dev/tcp6 */
359 struct streamtab tcpinfov6 = {
360 	&tcp_rinitv6, &tcp_winit
361 };
362 
363 /*
364  * Following assumes TPI alignment requirements stay along 32 bit
365  * boundaries
366  */
367 #define	ROUNDUP32(x) \
368 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
369 
370 /* Template for response to info request. */
371 struct T_info_ack tcp_g_t_info_ack = {
372 	T_INFO_ACK,		/* PRIM_type */
373 	0,			/* TSDU_size */
374 	T_INFINITE,		/* ETSDU_size */
375 	T_INVALID,		/* CDATA_size */
376 	T_INVALID,		/* DDATA_size */
377 	sizeof (sin_t),		/* ADDR_size */
378 	0,			/* OPT_size - not initialized here */
379 	TIDUSZ,			/* TIDU_size */
380 	T_COTS_ORD,		/* SERV_type */
381 	TCPS_IDLE,		/* CURRENT_state */
382 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
383 };
384 
385 struct T_info_ack tcp_g_t_info_ack_v6 = {
386 	T_INFO_ACK,		/* PRIM_type */
387 	0,			/* TSDU_size */
388 	T_INFINITE,		/* ETSDU_size */
389 	T_INVALID,		/* CDATA_size */
390 	T_INVALID,		/* DDATA_size */
391 	sizeof (sin6_t),	/* ADDR_size */
392 	0,			/* OPT_size - not initialized here */
393 	TIDUSZ,		/* TIDU_size */
394 	T_COTS_ORD,		/* SERV_type */
395 	TCPS_IDLE,		/* CURRENT_state */
396 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
397 };
398 
399 /*
400  * TCP tunables related declarations. Definitions are in tcp_tunables.c
401  */
402 extern mod_prop_info_t tcp_propinfo_tbl[];
403 extern int tcp_propinfo_count;
404 
405 #define	IS_VMLOANED_MBLK(mp) \
406 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
407 
408 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
409 
410 /*
411  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
412  * tunable settable via NDD.  Otherwise, the per-connection behavior is
413  * determined dynamically during tcp_set_destination(), which is the default.
414  */
415 boolean_t tcp_static_maxpsz = B_FALSE;
416 
417 /*
418  * If the receive buffer size is changed, this function is called to update
419  * the upper socket layer on the new delayed receive wake up threshold.
420  */
421 static void
422 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
423 {
424 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
425 
426 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
427 		conn_t *connp = tcp->tcp_connp;
428 		struct sock_proto_props sopp;
429 
430 		/*
431 		 * only increase rcvthresh upto default_threshold
432 		 */
433 		if (new_rcvthresh > default_threshold)
434 			new_rcvthresh = default_threshold;
435 
436 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
437 		sopp.sopp_rcvthresh = new_rcvthresh;
438 
439 		(*connp->conn_upcalls->su_set_proto_props)
440 		    (connp->conn_upper_handle, &sopp);
441 	}
442 }
443 
444 /*
445  * Figure out the value of window scale opton.  Note that the rwnd is
446  * ASSUMED to be rounded up to the nearest MSS before the calculation.
447  * We cannot find the scale value and then do a round up of tcp_rwnd
448  * because the scale value may not be correct after that.
449  *
450  * Set the compiler flag to make this function inline.
451  */
452 void
453 tcp_set_ws_value(tcp_t *tcp)
454 {
455 	int i;
456 	uint32_t rwnd = tcp->tcp_rwnd;
457 
458 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
459 	    i++, rwnd >>= 1)
460 		;
461 	tcp->tcp_rcv_ws = i;
462 }
463 
464 /*
465  * Remove cached/latched IPsec references.
466  */
467 void
468 tcp_ipsec_cleanup(tcp_t *tcp)
469 {
470 	conn_t		*connp = tcp->tcp_connp;
471 
472 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
473 
474 	if (connp->conn_latch != NULL) {
475 		IPLATCH_REFRELE(connp->conn_latch);
476 		connp->conn_latch = NULL;
477 	}
478 	if (connp->conn_latch_in_policy != NULL) {
479 		IPPOL_REFRELE(connp->conn_latch_in_policy);
480 		connp->conn_latch_in_policy = NULL;
481 	}
482 	if (connp->conn_latch_in_action != NULL) {
483 		IPACT_REFRELE(connp->conn_latch_in_action);
484 		connp->conn_latch_in_action = NULL;
485 	}
486 	if (connp->conn_policy != NULL) {
487 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
488 		connp->conn_policy = NULL;
489 	}
490 }
491 
492 /*
493  * Cleaup before placing on free list.
494  * Disassociate from the netstack/tcp_stack_t since the freelist
495  * is per squeue and not per netstack.
496  */
497 void
498 tcp_cleanup(tcp_t *tcp)
499 {
500 	mblk_t		*mp;
501 	conn_t		*connp = tcp->tcp_connp;
502 	tcp_stack_t	*tcps = tcp->tcp_tcps;
503 	netstack_t	*ns = tcps->tcps_netstack;
504 	mblk_t		*tcp_rsrv_mp;
505 
506 	tcp_bind_hash_remove(tcp);
507 
508 	/* Cleanup that which needs the netstack first */
509 	tcp_ipsec_cleanup(tcp);
510 	ixa_cleanup(connp->conn_ixa);
511 
512 	if (connp->conn_ht_iphc != NULL) {
513 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
514 		connp->conn_ht_iphc = NULL;
515 		connp->conn_ht_iphc_allocated = 0;
516 		connp->conn_ht_iphc_len = 0;
517 		connp->conn_ht_ulp = NULL;
518 		connp->conn_ht_ulp_len = 0;
519 		tcp->tcp_ipha = NULL;
520 		tcp->tcp_ip6h = NULL;
521 		tcp->tcp_tcpha = NULL;
522 	}
523 
524 	/* We clear any IP_OPTIONS and extension headers */
525 	ip_pkt_free(&connp->conn_xmit_ipp);
526 
527 	tcp_free(tcp);
528 
529 	/*
530 	 * Since we will bzero the entire structure, we need to
531 	 * remove it and reinsert it in global hash list. We
532 	 * know the walkers can't get to this conn because we
533 	 * had set CONDEMNED flag earlier and checked reference
534 	 * under conn_lock so walker won't pick it and when we
535 	 * go the ipcl_globalhash_remove() below, no walker
536 	 * can get to it.
537 	 */
538 	ipcl_globalhash_remove(connp);
539 
540 	/* Save some state */
541 	mp = tcp->tcp_timercache;
542 
543 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
544 
545 	if (connp->conn_cred != NULL) {
546 		crfree(connp->conn_cred);
547 		connp->conn_cred = NULL;
548 	}
549 	ipcl_conn_cleanup(connp);
550 	connp->conn_flags = IPCL_TCPCONN;
551 
552 	/*
553 	 * Now it is safe to decrement the reference counts.
554 	 * This might be the last reference on the netstack
555 	 * in which case it will cause the freeing of the IP Instance.
556 	 */
557 	connp->conn_netstack = NULL;
558 	connp->conn_ixa->ixa_ipst = NULL;
559 	netstack_rele(ns);
560 	ASSERT(tcps != NULL);
561 	tcp->tcp_tcps = NULL;
562 
563 	bzero(tcp, sizeof (tcp_t));
564 
565 	/* restore the state */
566 	tcp->tcp_timercache = mp;
567 
568 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
569 
570 	tcp->tcp_connp = connp;
571 
572 	ASSERT(connp->conn_tcp == tcp);
573 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
574 	connp->conn_state_flags = CONN_INCIPIENT;
575 	ASSERT(connp->conn_proto == IPPROTO_TCP);
576 	ASSERT(connp->conn_ref == 1);
577 }
578 
579 /*
580  * Adapt to the information, such as rtt and rtt_sd, provided from the
581  * DCE and IRE maintained by IP.
582  *
583  * Checks for multicast and broadcast destination address.
584  * Returns zero if ok; an errno on failure.
585  *
586  * Note that the MSS calculation here is based on the info given in
587  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
588  * will be handled in tcp_input_data() when TCP knows which options to use.
589  *
590  * Note on how TCP gets its parameters for a connection.
591  *
592  * When a tcp_t structure is allocated, it gets all the default parameters.
593  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
594  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
595  * default.
596  *
597  * An incoming SYN with a multicast or broadcast destination address is dropped
598  * in ip_fanout_v4/v6.
599  *
600  * An incoming SYN with a multicast or broadcast source address is always
601  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
602  * conn_connect.
603  * The same logic in tcp_set_destination also serves to
604  * reject an attempt to connect to a broadcast or multicast (destination)
605  * address.
606  */
607 int
608 tcp_set_destination(tcp_t *tcp)
609 {
610 	uint32_t	mss_max;
611 	uint32_t	mss;
612 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
613 	conn_t		*connp = tcp->tcp_connp;
614 	tcp_stack_t	*tcps = tcp->tcp_tcps;
615 	iulp_t		uinfo;
616 	int		error;
617 	uint32_t	flags;
618 
619 	flags = IPDF_LSO | IPDF_ZCOPY;
620 	/*
621 	 * Make sure we have a dce for the destination to avoid dce_ident
622 	 * contention for connected sockets.
623 	 */
624 	flags |= IPDF_UNIQUE_DCE;
625 
626 	if (!tcps->tcps_ignore_path_mtu)
627 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
628 
629 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
630 	mutex_enter(&connp->conn_lock);
631 	error = conn_connect(connp, &uinfo, flags);
632 	mutex_exit(&connp->conn_lock);
633 	if (error != 0)
634 		return (error);
635 
636 	error = tcp_build_hdrs(tcp);
637 	if (error != 0)
638 		return (error);
639 
640 	tcp->tcp_localnet = uinfo.iulp_localnet;
641 
642 	if (uinfo.iulp_rtt != 0) {
643 		clock_t	rto;
644 
645 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
646 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
647 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
648 		    tcps->tcps_rexmit_interval_extra +
649 		    (tcp->tcp_rtt_sa >> 5);
650 
651 		TCP_SET_RTO(tcp, rto);
652 	}
653 	if (uinfo.iulp_ssthresh != 0)
654 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
655 	else
656 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
657 	if (uinfo.iulp_spipe > 0) {
658 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
659 		    tcps->tcps_max_buf);
660 		if (tcps->tcps_snd_lowat_fraction != 0) {
661 			connp->conn_sndlowat = connp->conn_sndbuf /
662 			    tcps->tcps_snd_lowat_fraction;
663 		}
664 		(void) tcp_maxpsz_set(tcp, B_TRUE);
665 	}
666 	/*
667 	 * Note that up till now, acceptor always inherits receive
668 	 * window from the listener.  But if there is a metrics
669 	 * associated with a host, we should use that instead of
670 	 * inheriting it from listener. Thus we need to pass this
671 	 * info back to the caller.
672 	 */
673 	if (uinfo.iulp_rpipe > 0) {
674 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
675 		    tcps->tcps_max_buf);
676 	}
677 
678 	if (uinfo.iulp_rtomax > 0) {
679 		tcp->tcp_second_timer_threshold =
680 		    uinfo.iulp_rtomax;
681 	}
682 
683 	/*
684 	 * Use the metric option settings, iulp_tstamp_ok and
685 	 * iulp_wscale_ok, only for active open. What this means
686 	 * is that if the other side uses timestamp or window
687 	 * scale option, TCP will also use those options. That
688 	 * is for passive open.  If the application sets a
689 	 * large window, window scale is enabled regardless of
690 	 * the value in iulp_wscale_ok.  This is the behavior
691 	 * since 2.6.  So we keep it.
692 	 * The only case left in passive open processing is the
693 	 * check for SACK.
694 	 * For ECN, it should probably be like SACK.  But the
695 	 * current value is binary, so we treat it like the other
696 	 * cases.  The metric only controls active open.For passive
697 	 * open, the ndd param, tcp_ecn_permitted, controls the
698 	 * behavior.
699 	 */
700 	if (!tcp_detached) {
701 		/*
702 		 * The if check means that the following can only
703 		 * be turned on by the metrics only IRE, but not off.
704 		 */
705 		if (uinfo.iulp_tstamp_ok)
706 			tcp->tcp_snd_ts_ok = B_TRUE;
707 		if (uinfo.iulp_wscale_ok)
708 			tcp->tcp_snd_ws_ok = B_TRUE;
709 		if (uinfo.iulp_sack == 2)
710 			tcp->tcp_snd_sack_ok = B_TRUE;
711 		if (uinfo.iulp_ecn_ok)
712 			tcp->tcp_ecn_ok = B_TRUE;
713 	} else {
714 		/*
715 		 * Passive open.
716 		 *
717 		 * As above, the if check means that SACK can only be
718 		 * turned on by the metric only IRE.
719 		 */
720 		if (uinfo.iulp_sack > 0) {
721 			tcp->tcp_snd_sack_ok = B_TRUE;
722 		}
723 	}
724 
725 	/*
726 	 * XXX Note that currently, iulp_mtu can be as small as 68
727 	 * because of PMTUd.  So tcp_mss may go to negative if combined
728 	 * length of all those options exceeds 28 bytes.  But because
729 	 * of the tcp_mss_min check below, we may not have a problem if
730 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
731 	 * the negative problem still exists.  And the check defeats PMTUd.
732 	 * In fact, if PMTUd finds that the MSS should be smaller than
733 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
734 	 * value.
735 	 *
736 	 * We do not deal with that now.  All those problems related to
737 	 * PMTUd will be fixed later.
738 	 */
739 	ASSERT(uinfo.iulp_mtu != 0);
740 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
741 
742 	/* Sanity check for MSS value. */
743 	if (connp->conn_ipversion == IPV4_VERSION)
744 		mss_max = tcps->tcps_mss_max_ipv4;
745 	else
746 		mss_max = tcps->tcps_mss_max_ipv6;
747 
748 	if (tcp->tcp_ipsec_overhead == 0)
749 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
750 
751 	mss -= tcp->tcp_ipsec_overhead;
752 
753 	if (mss < tcps->tcps_mss_min)
754 		mss = tcps->tcps_mss_min;
755 	if (mss > mss_max)
756 		mss = mss_max;
757 
758 	/* Note that this is the maximum MSS, excluding all options. */
759 	tcp->tcp_mss = mss;
760 
761 	/*
762 	 * Update the tcp connection with LSO capability.
763 	 */
764 	tcp_update_lso(tcp, connp->conn_ixa);
765 
766 	/*
767 	 * Initialize the ISS here now that we have the full connection ID.
768 	 * The RFC 1948 method of initial sequence number generation requires
769 	 * knowledge of the full connection ID before setting the ISS.
770 	 */
771 	tcp_iss_init(tcp);
772 
773 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
774 
775 	/*
776 	 * Make sure that conn is not marked incipient
777 	 * for incoming connections. A blind
778 	 * removal of incipient flag is cheaper than
779 	 * check and removal.
780 	 */
781 	mutex_enter(&connp->conn_lock);
782 	connp->conn_state_flags &= ~CONN_INCIPIENT;
783 	mutex_exit(&connp->conn_lock);
784 	return (0);
785 }
786 
787 /*
788  * tcp_clean_death / tcp_close_detached must not be called more than once
789  * on a tcp. Thus every function that potentially calls tcp_clean_death
790  * must check for the tcp state before calling tcp_clean_death.
791  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
792  * tcp_timer_handler, all check for the tcp state.
793  */
794 /* ARGSUSED */
795 void
796 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
797     ip_recv_attr_t *dummy)
798 {
799 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
800 
801 	freemsg(mp);
802 	if (tcp->tcp_state > TCPS_BOUND)
803 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
804 }
805 
806 /*
807  * We are dying for some reason.  Try to do it gracefully.  (May be called
808  * as writer.)
809  *
810  * Return -1 if the structure was not cleaned up (if the cleanup had to be
811  * done by a service procedure).
812  * TBD - Should the return value distinguish between the tcp_t being
813  * freed and it being reinitialized?
814  */
815 int
816 tcp_clean_death(tcp_t *tcp, int err)
817 {
818 	mblk_t	*mp;
819 	queue_t	*q;
820 	conn_t	*connp = tcp->tcp_connp;
821 	tcp_stack_t	*tcps = tcp->tcp_tcps;
822 
823 	if (tcp->tcp_fused)
824 		tcp_unfuse(tcp);
825 
826 	if (tcp->tcp_linger_tid != 0 &&
827 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
828 		tcp_stop_lingering(tcp);
829 	}
830 
831 	ASSERT(tcp != NULL);
832 	ASSERT((connp->conn_family == AF_INET &&
833 	    connp->conn_ipversion == IPV4_VERSION) ||
834 	    (connp->conn_family == AF_INET6 &&
835 	    (connp->conn_ipversion == IPV4_VERSION ||
836 	    connp->conn_ipversion == IPV6_VERSION)));
837 
838 	if (TCP_IS_DETACHED(tcp)) {
839 		if (tcp->tcp_hard_binding) {
840 			/*
841 			 * Its an eager that we are dealing with. We close the
842 			 * eager but in case a conn_ind has already gone to the
843 			 * listener, let tcp_accept_finish() send a discon_ind
844 			 * to the listener and drop the last reference. If the
845 			 * listener doesn't even know about the eager i.e. the
846 			 * conn_ind hasn't gone up, blow away the eager and drop
847 			 * the last reference as well. If the conn_ind has gone
848 			 * up, state should be BOUND. tcp_accept_finish
849 			 * will figure out that the connection has received a
850 			 * RST and will send a DISCON_IND to the application.
851 			 */
852 			tcp_closei_local(tcp);
853 			if (!tcp->tcp_tconnind_started) {
854 				CONN_DEC_REF(connp);
855 			} else {
856 				tcp->tcp_state = TCPS_BOUND;
857 				DTRACE_TCP6(state__change, void, NULL,
858 				    ip_xmit_attr_t *, connp->conn_ixa,
859 				    void, NULL, tcp_t *, tcp, void, NULL,
860 				    int32_t, TCPS_CLOSED);
861 			}
862 		} else {
863 			tcp_close_detached(tcp);
864 		}
865 		return (0);
866 	}
867 
868 	TCP_STAT(tcps, tcp_clean_death_nondetached);
869 
870 	/*
871 	 * The connection is dead.  Decrement listener connection counter if
872 	 * necessary.
873 	 */
874 	if (tcp->tcp_listen_cnt != NULL)
875 		TCP_DECR_LISTEN_CNT(tcp);
876 
877 	/*
878 	 * When a connection is moved to TIME_WAIT state, the connection
879 	 * counter is already decremented.  So no need to decrement here
880 	 * again.  See SET_TIME_WAIT() macro.
881 	 */
882 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
883 	    tcp->tcp_state < TCPS_TIME_WAIT) {
884 		TCPS_CONN_DEC(tcps);
885 	}
886 
887 	q = connp->conn_rq;
888 
889 	/* Trash all inbound data */
890 	if (!IPCL_IS_NONSTR(connp)) {
891 		ASSERT(q != NULL);
892 		flushq(q, FLUSHALL);
893 	}
894 
895 	/*
896 	 * If we are at least part way open and there is error
897 	 * (err==0 implies no error)
898 	 * notify our client by a T_DISCON_IND.
899 	 */
900 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
901 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
902 		    !TCP_IS_SOCKET(tcp)) {
903 			/*
904 			 * Send M_FLUSH according to TPI. Because sockets will
905 			 * (and must) ignore FLUSHR we do that only for TPI
906 			 * endpoints and sockets in STREAMS mode.
907 			 */
908 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
909 		}
910 		if (connp->conn_debug) {
911 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
912 			    "tcp_clean_death: discon err %d", err);
913 		}
914 		if (IPCL_IS_NONSTR(connp)) {
915 			/* Direct socket, use upcall */
916 			(*connp->conn_upcalls->su_disconnected)(
917 			    connp->conn_upper_handle, tcp->tcp_connid, err);
918 		} else {
919 			mp = mi_tpi_discon_ind(NULL, err, 0);
920 			if (mp != NULL) {
921 				putnext(q, mp);
922 			} else {
923 				if (connp->conn_debug) {
924 					(void) strlog(TCP_MOD_ID, 0, 1,
925 					    SL_ERROR|SL_TRACE,
926 					    "tcp_clean_death, sending M_ERROR");
927 				}
928 				(void) putnextctl1(q, M_ERROR, EPROTO);
929 			}
930 		}
931 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
932 			/* SYN_SENT or SYN_RCVD */
933 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
934 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
935 			/* ESTABLISHED or CLOSE_WAIT */
936 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
937 		}
938 	}
939 
940 	/*
941 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
942 	 * an upper handle is obtained when the SYN-ACK comes in. So it
943 	 * should receive the 'disconnected' upcall, but tcp_reinit should
944 	 * not be called since this is an eager.
945 	 */
946 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
947 		tcp_closei_local(tcp);
948 		tcp->tcp_state = TCPS_BOUND;
949 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
950 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
951 		    int32_t, TCPS_CLOSED);
952 		return (0);
953 	}
954 
955 	tcp_reinit(tcp);
956 	if (IPCL_IS_NONSTR(connp))
957 		(void) tcp_do_unbind(connp);
958 
959 	return (-1);
960 }
961 
962 /*
963  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
964  * to expire, stop the wait and finish the close.
965  */
966 void
967 tcp_stop_lingering(tcp_t *tcp)
968 {
969 	clock_t	delta = 0;
970 	tcp_stack_t	*tcps = tcp->tcp_tcps;
971 	conn_t		*connp = tcp->tcp_connp;
972 
973 	tcp->tcp_linger_tid = 0;
974 	if (tcp->tcp_state > TCPS_LISTEN) {
975 		tcp_acceptor_hash_remove(tcp);
976 		mutex_enter(&tcp->tcp_non_sq_lock);
977 		if (tcp->tcp_flow_stopped) {
978 			tcp_clrqfull(tcp);
979 		}
980 		mutex_exit(&tcp->tcp_non_sq_lock);
981 
982 		if (tcp->tcp_timer_tid != 0) {
983 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
984 			tcp->tcp_timer_tid = 0;
985 		}
986 		/*
987 		 * Need to cancel those timers which will not be used when
988 		 * TCP is detached.  This has to be done before the conn_wq
989 		 * is cleared.
990 		 */
991 		tcp_timers_stop(tcp);
992 
993 		tcp->tcp_detached = B_TRUE;
994 		connp->conn_rq = NULL;
995 		connp->conn_wq = NULL;
996 
997 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
998 			tcp_time_wait_append(tcp);
999 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1000 			goto finish;
1001 		}
1002 
1003 		/*
1004 		 * If delta is zero the timer event wasn't executed and was
1005 		 * successfully canceled. In this case we need to restart it
1006 		 * with the minimal delta possible.
1007 		 */
1008 		if (delta >= 0) {
1009 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1010 			    delta ? delta : 1);
1011 		}
1012 	} else {
1013 		tcp_closei_local(tcp);
1014 		CONN_DEC_REF(connp);
1015 	}
1016 finish:
1017 	tcp->tcp_detached = B_TRUE;
1018 	connp->conn_rq = NULL;
1019 	connp->conn_wq = NULL;
1020 
1021 	/* Signal closing thread that it can complete close */
1022 	mutex_enter(&tcp->tcp_closelock);
1023 	tcp->tcp_closed = 1;
1024 	cv_signal(&tcp->tcp_closecv);
1025 	mutex_exit(&tcp->tcp_closelock);
1026 
1027 	/* If we have an upper handle (socket), release it */
1028 	if (IPCL_IS_NONSTR(connp)) {
1029 		ASSERT(connp->conn_upper_handle != NULL);
1030 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1031 		connp->conn_upper_handle = NULL;
1032 		connp->conn_upcalls = NULL;
1033 	}
1034 }
1035 
1036 void
1037 tcp_close_common(conn_t *connp, int flags)
1038 {
1039 	tcp_t		*tcp = connp->conn_tcp;
1040 	mblk_t 		*mp = &tcp->tcp_closemp;
1041 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1042 	mblk_t		*bp;
1043 
1044 	ASSERT(connp->conn_ref >= 2);
1045 
1046 	/*
1047 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1048 	 * add any mp to the pending mp list, after this conn has
1049 	 * started closing.
1050 	 */
1051 	mutex_enter(&connp->conn_lock);
1052 	connp->conn_state_flags |= CONN_CLOSING;
1053 	if (connp->conn_oper_pending_ill != NULL)
1054 		conn_ioctl_cleanup_reqd = B_TRUE;
1055 	CONN_INC_REF_LOCKED(connp);
1056 	mutex_exit(&connp->conn_lock);
1057 	tcp->tcp_closeflags = (uint8_t)flags;
1058 	ASSERT(connp->conn_ref >= 3);
1059 
1060 	/*
1061 	 * tcp_closemp_used is used below without any protection of a lock
1062 	 * as we don't expect any one else to use it concurrently at this
1063 	 * point otherwise it would be a major defect.
1064 	 */
1065 
1066 	if (mp->b_prev == NULL)
1067 		tcp->tcp_closemp_used = B_TRUE;
1068 	else
1069 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1070 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1071 
1072 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1073 
1074 	/*
1075 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1076 	 * are re-written by tcp_close_output().
1077 	 */
1078 	if (conn_ioctl_cleanup_reqd)
1079 		conn_ioctl_cleanup(connp);
1080 
1081 	/*
1082 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1083 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1084 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1085 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1086 	 * was still in flight at the time, we wait for it here. See comments
1087 	 * for CONN_INC_IOCTLREF in ip.h for details.
1088 	 */
1089 	mutex_enter(&connp->conn_lock);
1090 	while (connp->conn_ioctlref > 0)
1091 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1092 	ASSERT(connp->conn_ioctlref == 0);
1093 	ASSERT(connp->conn_oper_pending_ill == NULL);
1094 	mutex_exit(&connp->conn_lock);
1095 
1096 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1097 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1098 
1099 	/*
1100 	 * For non-STREAMS sockets, the normal case is that the conn makes
1101 	 * an upcall when it's finally closed, so there is no need to wait
1102 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1103 	 * so it can properly deal with the thread being interrupted.
1104 	 */
1105 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1106 		goto nowait;
1107 
1108 	mutex_enter(&tcp->tcp_closelock);
1109 	while (!tcp->tcp_closed) {
1110 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1111 			/*
1112 			 * The cv_wait_sig() was interrupted. We now do the
1113 			 * following:
1114 			 *
1115 			 * 1) If the endpoint was lingering, we allow this
1116 			 * to be interrupted by cancelling the linger timeout
1117 			 * and closing normally.
1118 			 *
1119 			 * 2) Revert to calling cv_wait()
1120 			 *
1121 			 * We revert to using cv_wait() to avoid an
1122 			 * infinite loop which can occur if the calling
1123 			 * thread is higher priority than the squeue worker
1124 			 * thread and is bound to the same cpu.
1125 			 */
1126 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1127 				mutex_exit(&tcp->tcp_closelock);
1128 				/* Entering squeue, bump ref count. */
1129 				CONN_INC_REF(connp);
1130 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1131 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1132 				    tcp_linger_interrupted, connp, NULL,
1133 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1134 				mutex_enter(&tcp->tcp_closelock);
1135 			}
1136 			break;
1137 		}
1138 	}
1139 	while (!tcp->tcp_closed)
1140 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1141 	mutex_exit(&tcp->tcp_closelock);
1142 
1143 	/*
1144 	 * In the case of listener streams that have eagers in the q or q0
1145 	 * we wait for the eagers to drop their reference to us. conn_rq and
1146 	 * conn_wq of the eagers point to our queues. By waiting for the
1147 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1148 	 * up their queue pointers and also dropped their references to us.
1149 	 *
1150 	 * For non-STREAMS sockets we do not have to wait here; the
1151 	 * listener will instead make a su_closed upcall when the last
1152 	 * reference is dropped.
1153 	 */
1154 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1155 		mutex_enter(&connp->conn_lock);
1156 		while (connp->conn_ref != 1) {
1157 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1158 		}
1159 		mutex_exit(&connp->conn_lock);
1160 	}
1161 
1162 nowait:
1163 	connp->conn_cpid = NOPID;
1164 }
1165 
1166 /*
1167  * Called by tcp_close() routine via squeue when lingering is
1168  * interrupted by a signal.
1169  */
1170 
1171 /* ARGSUSED */
1172 static void
1173 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1174 {
1175 	conn_t	*connp = (conn_t *)arg;
1176 	tcp_t	*tcp = connp->conn_tcp;
1177 
1178 	freeb(mp);
1179 	if (tcp->tcp_linger_tid != 0 &&
1180 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1181 		tcp_stop_lingering(tcp);
1182 		tcp->tcp_client_errno = EINTR;
1183 	}
1184 }
1185 
1186 /*
1187  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1188  * Some stream heads get upset if they see these later on as anything but NULL.
1189  */
1190 void
1191 tcp_close_mpp(mblk_t **mpp)
1192 {
1193 	mblk_t	*mp;
1194 
1195 	if ((mp = *mpp) != NULL) {
1196 		do {
1197 			mp->b_next = NULL;
1198 			mp->b_prev = NULL;
1199 		} while ((mp = mp->b_cont) != NULL);
1200 
1201 		mp = *mpp;
1202 		*mpp = NULL;
1203 		freemsg(mp);
1204 	}
1205 }
1206 
1207 /* Do detached close. */
1208 void
1209 tcp_close_detached(tcp_t *tcp)
1210 {
1211 	if (tcp->tcp_fused)
1212 		tcp_unfuse(tcp);
1213 
1214 	/*
1215 	 * Clustering code serializes TCP disconnect callbacks and
1216 	 * cluster tcp list walks by blocking a TCP disconnect callback
1217 	 * if a cluster tcp list walk is in progress. This ensures
1218 	 * accurate accounting of TCPs in the cluster code even though
1219 	 * the TCP list walk itself is not atomic.
1220 	 */
1221 	tcp_closei_local(tcp);
1222 	CONN_DEC_REF(tcp->tcp_connp);
1223 }
1224 
1225 /*
1226  * The tcp_t is going away. Remove it from all lists and set it
1227  * to TCPS_CLOSED. The freeing up of memory is deferred until
1228  * tcp_inactive. This is needed since a thread in tcp_rput might have
1229  * done a CONN_INC_REF on this structure before it was removed from the
1230  * hashes.
1231  */
1232 void
1233 tcp_closei_local(tcp_t *tcp)
1234 {
1235 	conn_t		*connp = tcp->tcp_connp;
1236 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1237 	int32_t		oldstate;
1238 
1239 	if (!TCP_IS_SOCKET(tcp))
1240 		tcp_acceptor_hash_remove(tcp);
1241 
1242 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1243 	tcp->tcp_ibsegs = 0;
1244 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1245 	tcp->tcp_obsegs = 0;
1246 
1247 	/*
1248 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1249 	 * SYN with sequence number outside the TIME-WAIT connection's
1250 	 * window.  So we need to check for TIME-WAIT state here as the
1251 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1252 	 * macro
1253 	 */
1254 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1255 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1256 		TCPS_CONN_DEC(tcps);
1257 	}
1258 
1259 	/*
1260 	 * If we are an eager connection hanging off a listener that
1261 	 * hasn't formally accepted the connection yet, get off his
1262 	 * list and blow off any data that we have accumulated.
1263 	 */
1264 	if (tcp->tcp_listener != NULL) {
1265 		tcp_t	*listener = tcp->tcp_listener;
1266 		mutex_enter(&listener->tcp_eager_lock);
1267 		/*
1268 		 * tcp_tconnind_started == B_TRUE means that the
1269 		 * conn_ind has already gone to listener. At
1270 		 * this point, eager will be closed but we
1271 		 * leave it in listeners eager list so that
1272 		 * if listener decides to close without doing
1273 		 * accept, we can clean this up. In tcp_tli_accept
1274 		 * we take care of the case of accept on closed
1275 		 * eager.
1276 		 */
1277 		if (!tcp->tcp_tconnind_started) {
1278 			tcp_eager_unlink(tcp);
1279 			mutex_exit(&listener->tcp_eager_lock);
1280 			/*
1281 			 * We don't want to have any pointers to the
1282 			 * listener queue, after we have released our
1283 			 * reference on the listener
1284 			 */
1285 			ASSERT(tcp->tcp_detached);
1286 			connp->conn_rq = NULL;
1287 			connp->conn_wq = NULL;
1288 			CONN_DEC_REF(listener->tcp_connp);
1289 		} else {
1290 			mutex_exit(&listener->tcp_eager_lock);
1291 		}
1292 	}
1293 
1294 	/* Stop all the timers */
1295 	tcp_timers_stop(tcp);
1296 
1297 	if (tcp->tcp_state == TCPS_LISTEN) {
1298 		if (tcp->tcp_ip_addr_cache) {
1299 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1300 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1301 			tcp->tcp_ip_addr_cache = NULL;
1302 		}
1303 	}
1304 
1305 	/* Decrement listerner connection counter if necessary. */
1306 	if (tcp->tcp_listen_cnt != NULL)
1307 		TCP_DECR_LISTEN_CNT(tcp);
1308 
1309 	mutex_enter(&tcp->tcp_non_sq_lock);
1310 	if (tcp->tcp_flow_stopped)
1311 		tcp_clrqfull(tcp);
1312 	mutex_exit(&tcp->tcp_non_sq_lock);
1313 
1314 	tcp_bind_hash_remove(tcp);
1315 	/*
1316 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1317 	 * is trying to remove this tcp from the time wait list, we will
1318 	 * block in tcp_time_wait_remove while trying to acquire the
1319 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1320 	 * requires the ipcl_hash_remove to be ordered after the
1321 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1322 	 */
1323 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1324 		(void) tcp_time_wait_remove(tcp, NULL);
1325 	CL_INET_DISCONNECT(connp);
1326 	ipcl_hash_remove(connp);
1327 	oldstate = tcp->tcp_state;
1328 	tcp->tcp_state = TCPS_CLOSED;
1329 	/* Need to probe before ixa_cleanup() is called */
1330 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1331 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1332 	    int32_t, oldstate);
1333 	ixa_cleanup(connp->conn_ixa);
1334 
1335 	/*
1336 	 * Mark the conn as CONDEMNED
1337 	 */
1338 	mutex_enter(&connp->conn_lock);
1339 	connp->conn_state_flags |= CONN_CONDEMNED;
1340 	mutex_exit(&connp->conn_lock);
1341 
1342 	ASSERT(tcp->tcp_time_wait_next == NULL);
1343 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1344 	ASSERT(tcp->tcp_time_wait_expire == 0);
1345 
1346 	tcp_ipsec_cleanup(tcp);
1347 }
1348 
1349 /*
1350  * tcp is dying (called from ipcl_conn_destroy and error cases).
1351  * Free the tcp_t in either case.
1352  */
1353 void
1354 tcp_free(tcp_t *tcp)
1355 {
1356 	mblk_t		*mp;
1357 	conn_t		*connp = tcp->tcp_connp;
1358 
1359 	ASSERT(tcp != NULL);
1360 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1361 
1362 	connp->conn_rq = NULL;
1363 	connp->conn_wq = NULL;
1364 
1365 	tcp_close_mpp(&tcp->tcp_xmit_head);
1366 	tcp_close_mpp(&tcp->tcp_reass_head);
1367 	if (tcp->tcp_rcv_list != NULL) {
1368 		/* Free b_next chain */
1369 		tcp_close_mpp(&tcp->tcp_rcv_list);
1370 	}
1371 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1372 		freemsg(mp);
1373 	}
1374 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1375 		freemsg(mp);
1376 	}
1377 
1378 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1379 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1380 		freeb(tcp->tcp_fused_sigurg_mp);
1381 		tcp->tcp_fused_sigurg_mp = NULL;
1382 	}
1383 
1384 	if (tcp->tcp_ordrel_mp != NULL) {
1385 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1386 		freeb(tcp->tcp_ordrel_mp);
1387 		tcp->tcp_ordrel_mp = NULL;
1388 	}
1389 
1390 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1391 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1392 
1393 	if (tcp->tcp_hopopts != NULL) {
1394 		mi_free(tcp->tcp_hopopts);
1395 		tcp->tcp_hopopts = NULL;
1396 		tcp->tcp_hopoptslen = 0;
1397 	}
1398 	ASSERT(tcp->tcp_hopoptslen == 0);
1399 	if (tcp->tcp_dstopts != NULL) {
1400 		mi_free(tcp->tcp_dstopts);
1401 		tcp->tcp_dstopts = NULL;
1402 		tcp->tcp_dstoptslen = 0;
1403 	}
1404 	ASSERT(tcp->tcp_dstoptslen == 0);
1405 	if (tcp->tcp_rthdrdstopts != NULL) {
1406 		mi_free(tcp->tcp_rthdrdstopts);
1407 		tcp->tcp_rthdrdstopts = NULL;
1408 		tcp->tcp_rthdrdstoptslen = 0;
1409 	}
1410 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1411 	if (tcp->tcp_rthdr != NULL) {
1412 		mi_free(tcp->tcp_rthdr);
1413 		tcp->tcp_rthdr = NULL;
1414 		tcp->tcp_rthdrlen = 0;
1415 	}
1416 	ASSERT(tcp->tcp_rthdrlen == 0);
1417 
1418 	/*
1419 	 * Following is really a blowing away a union.
1420 	 * It happens to have exactly two members of identical size
1421 	 * the following code is enough.
1422 	 */
1423 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1424 
1425 	/*
1426 	 * If this is a non-STREAM socket still holding on to an upper
1427 	 * handle, release it. As a result of fallback we might also see
1428 	 * STREAMS based conns with upper handles, in which case there is
1429 	 * nothing to do other than clearing the field.
1430 	 */
1431 	if (connp->conn_upper_handle != NULL) {
1432 		if (IPCL_IS_NONSTR(connp)) {
1433 			(*connp->conn_upcalls->su_closed)(
1434 			    connp->conn_upper_handle);
1435 			tcp->tcp_detached = B_TRUE;
1436 		}
1437 		connp->conn_upper_handle = NULL;
1438 		connp->conn_upcalls = NULL;
1439 	}
1440 }
1441 
1442 /*
1443  * tcp_get_conn/tcp_free_conn
1444  *
1445  * tcp_get_conn is used to get a clean tcp connection structure.
1446  * It tries to reuse the connections put on the freelist by the
1447  * time_wait_collector failing which it goes to kmem_cache. This
1448  * way has two benefits compared to just allocating from and
1449  * freeing to kmem_cache.
1450  * 1) The time_wait_collector can free (which includes the cleanup)
1451  * outside the squeue. So when the interrupt comes, we have a clean
1452  * connection sitting in the freelist. Obviously, this buys us
1453  * performance.
1454  *
1455  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1456  * has multiple disadvantages - tying up the squeue during alloc.
1457  * But allocating the conn/tcp in IP land is also not the best since
1458  * we can't check the 'q' and 'q0' which are protected by squeue and
1459  * blindly allocate memory which might have to be freed here if we are
1460  * not allowed to accept the connection. By using the freelist and
1461  * putting the conn/tcp back in freelist, we don't pay a penalty for
1462  * allocating memory without checking 'q/q0' and freeing it if we can't
1463  * accept the connection.
1464  *
1465  * Care should be taken to put the conn back in the same squeue's freelist
1466  * from which it was allocated. Best results are obtained if conn is
1467  * allocated from listener's squeue and freed to the same. Time wait
1468  * collector will free up the freelist is the connection ends up sitting
1469  * there for too long.
1470  */
1471 void *
1472 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1473 {
1474 	tcp_t			*tcp = NULL;
1475 	conn_t			*connp = NULL;
1476 	squeue_t		*sqp = (squeue_t *)arg;
1477 	tcp_squeue_priv_t 	*tcp_time_wait;
1478 	netstack_t		*ns;
1479 	mblk_t			*tcp_rsrv_mp = NULL;
1480 
1481 	tcp_time_wait =
1482 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1483 
1484 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1485 	tcp = tcp_time_wait->tcp_free_list;
1486 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1487 	if (tcp != NULL) {
1488 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1489 		tcp_time_wait->tcp_free_list_cnt--;
1490 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1491 		tcp->tcp_time_wait_next = NULL;
1492 		connp = tcp->tcp_connp;
1493 		connp->conn_flags |= IPCL_REUSED;
1494 
1495 		ASSERT(tcp->tcp_tcps == NULL);
1496 		ASSERT(connp->conn_netstack == NULL);
1497 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1498 		ns = tcps->tcps_netstack;
1499 		netstack_hold(ns);
1500 		connp->conn_netstack = ns;
1501 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1502 		tcp->tcp_tcps = tcps;
1503 		ipcl_globalhash_insert(connp);
1504 
1505 		connp->conn_ixa->ixa_notify_cookie = tcp;
1506 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1507 		connp->conn_recv = tcp_input_data;
1508 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1509 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1510 		return ((void *)connp);
1511 	}
1512 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1513 	/*
1514 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1515 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1516 	 */
1517 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1518 	if (tcp_rsrv_mp == NULL)
1519 		return (NULL);
1520 
1521 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1522 	    tcps->tcps_netstack)) == NULL) {
1523 		freeb(tcp_rsrv_mp);
1524 		return (NULL);
1525 	}
1526 
1527 	tcp = connp->conn_tcp;
1528 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1529 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1530 
1531 	tcp->tcp_tcps = tcps;
1532 
1533 	connp->conn_recv = tcp_input_data;
1534 	connp->conn_recvicmp = tcp_icmp_input;
1535 	connp->conn_verifyicmp = tcp_verifyicmp;
1536 
1537 	/*
1538 	 * Register tcp_notify to listen to capability changes detected by IP.
1539 	 * This upcall is made in the context of the call to conn_ip_output
1540 	 * thus it is inside the squeue.
1541 	 */
1542 	connp->conn_ixa->ixa_notify = tcp_notify;
1543 	connp->conn_ixa->ixa_notify_cookie = tcp;
1544 
1545 	return ((void *)connp);
1546 }
1547 
1548 /*
1549  * Handle connect to IPv4 destinations, including connections for AF_INET6
1550  * sockets connecting to IPv4 mapped IPv6 destinations.
1551  * Returns zero if OK, a positive errno, or a negative TLI error.
1552  */
1553 static int
1554 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1555     uint_t srcid)
1556 {
1557 	ipaddr_t 	dstaddr = *dstaddrp;
1558 	uint16_t 	lport;
1559 	conn_t		*connp = tcp->tcp_connp;
1560 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1561 	int		error;
1562 
1563 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1564 
1565 	/* Check for attempt to connect to INADDR_ANY */
1566 	if (dstaddr == INADDR_ANY)  {
1567 		/*
1568 		 * SunOS 4.x and 4.3 BSD allow an application
1569 		 * to connect a TCP socket to INADDR_ANY.
1570 		 * When they do this, the kernel picks the
1571 		 * address of one interface and uses it
1572 		 * instead.  The kernel usually ends up
1573 		 * picking the address of the loopback
1574 		 * interface.  This is an undocumented feature.
1575 		 * However, we provide the same thing here
1576 		 * in order to have source and binary
1577 		 * compatibility with SunOS 4.x.
1578 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1579 		 * generate the T_CONN_CON.
1580 		 */
1581 		dstaddr = htonl(INADDR_LOOPBACK);
1582 		*dstaddrp = dstaddr;
1583 	}
1584 
1585 	/* Handle __sin6_src_id if socket not bound to an IP address */
1586 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1587 		if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1588 		    IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) {
1589 			/* Mismatch - conn_laddr_v6 would be v6 address. */
1590 			return (EADDRNOTAVAIL);
1591 		}
1592 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1593 	}
1594 
1595 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1596 	connp->conn_fport = dstport;
1597 
1598 	/*
1599 	 * At this point the remote destination address and remote port fields
1600 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1601 	 * have to see which state tcp was in so we can take appropriate action.
1602 	 */
1603 	if (tcp->tcp_state == TCPS_IDLE) {
1604 		/*
1605 		 * We support a quick connect capability here, allowing
1606 		 * clients to transition directly from IDLE to SYN_SENT
1607 		 * tcp_bindi will pick an unused port, insert the connection
1608 		 * in the bind hash and transition to BOUND state.
1609 		 */
1610 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1611 		    tcp, B_TRUE);
1612 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1613 		    B_FALSE, B_FALSE);
1614 		if (lport == 0)
1615 			return (-TNOADDR);
1616 	}
1617 
1618 	/*
1619 	 * Lookup the route to determine a source address and the uinfo.
1620 	 * Setup TCP parameters based on the metrics/DCE.
1621 	 */
1622 	error = tcp_set_destination(tcp);
1623 	if (error != 0)
1624 		return (error);
1625 
1626 	/*
1627 	 * Don't let an endpoint connect to itself.
1628 	 */
1629 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1630 	    connp->conn_fport == connp->conn_lport)
1631 		return (-TBADADDR);
1632 
1633 	tcp->tcp_state = TCPS_SYN_SENT;
1634 
1635 	return (ipcl_conn_insert_v4(connp));
1636 }
1637 
1638 /*
1639  * Handle connect to IPv6 destinations.
1640  * Returns zero if OK, a positive errno, or a negative TLI error.
1641  */
1642 static int
1643 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1644     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1645 {
1646 	uint16_t 	lport;
1647 	conn_t		*connp = tcp->tcp_connp;
1648 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1649 	int		error;
1650 
1651 	ASSERT(connp->conn_family == AF_INET6);
1652 
1653 	/*
1654 	 * If we're here, it means that the destination address is a native
1655 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1656 	 * reason why it might not be IPv6 is if the socket was bound to an
1657 	 * IPv4-mapped IPv6 address.
1658 	 */
1659 	if (connp->conn_ipversion != IPV6_VERSION)
1660 		return (-TBADADDR);
1661 
1662 	/*
1663 	 * Interpret a zero destination to mean loopback.
1664 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1665 	 * generate the T_CONN_CON.
1666 	 */
1667 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1668 		*dstaddrp = ipv6_loopback;
1669 
1670 	/* Handle __sin6_src_id if socket not bound to an IP address */
1671 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1672 		if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1673 		    IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) {
1674 			/* Mismatch - conn_laddr_v6 would be v4-mapped. */
1675 			return (EADDRNOTAVAIL);
1676 		}
1677 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1678 	}
1679 
1680 	/*
1681 	 * Take care of the scope_id now.
1682 	 */
1683 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1684 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1685 		connp->conn_ixa->ixa_scopeid = scope_id;
1686 	} else {
1687 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1688 	}
1689 
1690 	connp->conn_flowinfo = flowinfo;
1691 	connp->conn_faddr_v6 = *dstaddrp;
1692 	connp->conn_fport = dstport;
1693 
1694 	/*
1695 	 * At this point the remote destination address and remote port fields
1696 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1697 	 * have to see which state tcp was in so we can take appropriate action.
1698 	 */
1699 	if (tcp->tcp_state == TCPS_IDLE) {
1700 		/*
1701 		 * We support a quick connect capability here, allowing
1702 		 * clients to transition directly from IDLE to SYN_SENT
1703 		 * tcp_bindi will pick an unused port, insert the connection
1704 		 * in the bind hash and transition to BOUND state.
1705 		 */
1706 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1707 		    tcp, B_TRUE);
1708 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1709 		    B_FALSE, B_FALSE);
1710 		if (lport == 0)
1711 			return (-TNOADDR);
1712 	}
1713 
1714 	/*
1715 	 * Lookup the route to determine a source address and the uinfo.
1716 	 * Setup TCP parameters based on the metrics/DCE.
1717 	 */
1718 	error = tcp_set_destination(tcp);
1719 	if (error != 0)
1720 		return (error);
1721 
1722 	/*
1723 	 * Don't let an endpoint connect to itself.
1724 	 */
1725 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1726 	    connp->conn_fport == connp->conn_lport)
1727 		return (-TBADADDR);
1728 
1729 	tcp->tcp_state = TCPS_SYN_SENT;
1730 
1731 	return (ipcl_conn_insert_v6(connp));
1732 }
1733 
1734 /*
1735  * Disconnect
1736  * Note that unlike other functions this returns a positive tli error
1737  * when it fails; it never returns an errno.
1738  */
1739 static int
1740 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1741 {
1742 	conn_t		*lconnp;
1743 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1744 	conn_t		*connp = tcp->tcp_connp;
1745 
1746 	/*
1747 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1748 	 * when the stream is in BOUND state. Do not send a reset,
1749 	 * since the destination IP address is not valid, and it can
1750 	 * be the initialized value of all zeros (broadcast address).
1751 	 */
1752 	if (tcp->tcp_state <= TCPS_BOUND) {
1753 		if (connp->conn_debug) {
1754 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1755 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1756 		}
1757 		return (TOUTSTATE);
1758 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1759 		TCPS_CONN_DEC(tcps);
1760 	}
1761 
1762 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1763 
1764 		/*
1765 		 * According to TPI, for non-listeners, ignore seqnum
1766 		 * and disconnect.
1767 		 * Following interpretation of -1 seqnum is historical
1768 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1769 		 * a valid seqnum should not be -1).
1770 		 *
1771 		 *	-1 means disconnect everything
1772 		 *	regardless even on a listener.
1773 		 */
1774 
1775 		int old_state = tcp->tcp_state;
1776 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1777 
1778 		/*
1779 		 * The connection can't be on the tcp_time_wait_head list
1780 		 * since it is not detached.
1781 		 */
1782 		ASSERT(tcp->tcp_time_wait_next == NULL);
1783 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1784 		ASSERT(tcp->tcp_time_wait_expire == 0);
1785 		/*
1786 		 * If it used to be a listener, check to make sure no one else
1787 		 * has taken the port before switching back to LISTEN state.
1788 		 */
1789 		if (connp->conn_ipversion == IPV4_VERSION) {
1790 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1791 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1792 		} else {
1793 			uint_t ifindex = 0;
1794 
1795 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1796 				ifindex = connp->conn_ixa->ixa_scopeid;
1797 
1798 			/* Allow conn_bound_if listeners? */
1799 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1800 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1801 			    ipst);
1802 		}
1803 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1804 			tcp->tcp_state = TCPS_LISTEN;
1805 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1806 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1807 			    NULL, int32_t, old_state);
1808 		} else if (old_state > TCPS_BOUND) {
1809 			tcp->tcp_conn_req_max = 0;
1810 			tcp->tcp_state = TCPS_BOUND;
1811 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1812 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1813 			    NULL, int32_t, old_state);
1814 
1815 			/*
1816 			 * If this end point is not going to become a listener,
1817 			 * decrement the listener connection count if
1818 			 * necessary.  Note that we do not do this if it is
1819 			 * going to be a listner (the above if case) since
1820 			 * then it may remove the counter struct.
1821 			 */
1822 			if (tcp->tcp_listen_cnt != NULL)
1823 				TCP_DECR_LISTEN_CNT(tcp);
1824 		}
1825 		if (lconnp != NULL)
1826 			CONN_DEC_REF(lconnp);
1827 		switch (old_state) {
1828 		case TCPS_SYN_SENT:
1829 		case TCPS_SYN_RCVD:
1830 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1831 			break;
1832 		case TCPS_ESTABLISHED:
1833 		case TCPS_CLOSE_WAIT:
1834 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1835 			break;
1836 		}
1837 
1838 		if (tcp->tcp_fused)
1839 			tcp_unfuse(tcp);
1840 
1841 		mutex_enter(&tcp->tcp_eager_lock);
1842 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1843 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1844 			tcp_eager_cleanup(tcp, 0);
1845 		}
1846 		mutex_exit(&tcp->tcp_eager_lock);
1847 
1848 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1849 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1850 
1851 		tcp_reinit(tcp);
1852 
1853 		return (0);
1854 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1855 		return (TBADSEQ);
1856 	}
1857 	return (0);
1858 }
1859 
1860 /*
1861  * Our client hereby directs us to reject the connection request
1862  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1863  * of sending the appropriate RST, not an ICMP error.
1864  */
1865 void
1866 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1867 {
1868 	t_scalar_t seqnum;
1869 	int	error;
1870 	conn_t	*connp = tcp->tcp_connp;
1871 
1872 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1873 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1874 		tcp_err_ack(tcp, mp, TPROTO, 0);
1875 		return;
1876 	}
1877 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1878 	error = tcp_disconnect_common(tcp, seqnum);
1879 	if (error != 0)
1880 		tcp_err_ack(tcp, mp, error, 0);
1881 	else {
1882 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1883 			/* Send M_FLUSH according to TPI */
1884 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1885 		}
1886 		mp = mi_tpi_ok_ack_alloc(mp);
1887 		if (mp != NULL)
1888 			putnext(connp->conn_rq, mp);
1889 	}
1890 }
1891 
1892 /*
1893  * Handle reinitialization of a tcp structure.
1894  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1895  */
1896 static void
1897 tcp_reinit(tcp_t *tcp)
1898 {
1899 	mblk_t		*mp;
1900 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1901 	conn_t		*connp  = tcp->tcp_connp;
1902 	int32_t		oldstate;
1903 
1904 	/* tcp_reinit should never be called for detached tcp_t's */
1905 	ASSERT(tcp->tcp_listener == NULL);
1906 	ASSERT((connp->conn_family == AF_INET &&
1907 	    connp->conn_ipversion == IPV4_VERSION) ||
1908 	    (connp->conn_family == AF_INET6 &&
1909 	    (connp->conn_ipversion == IPV4_VERSION ||
1910 	    connp->conn_ipversion == IPV6_VERSION)));
1911 
1912 	/* Cancel outstanding timers */
1913 	tcp_timers_stop(tcp);
1914 
1915 	/*
1916 	 * Reset everything in the state vector, after updating global
1917 	 * MIB data from instance counters.
1918 	 */
1919 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1920 	tcp->tcp_ibsegs = 0;
1921 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1922 	tcp->tcp_obsegs = 0;
1923 
1924 	tcp_close_mpp(&tcp->tcp_xmit_head);
1925 	if (tcp->tcp_snd_zcopy_aware)
1926 		tcp_zcopy_notify(tcp);
1927 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1928 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1929 	mutex_enter(&tcp->tcp_non_sq_lock);
1930 	if (tcp->tcp_flow_stopped &&
1931 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1932 		tcp_clrqfull(tcp);
1933 	}
1934 	mutex_exit(&tcp->tcp_non_sq_lock);
1935 	tcp_close_mpp(&tcp->tcp_reass_head);
1936 	tcp->tcp_reass_tail = NULL;
1937 	if (tcp->tcp_rcv_list != NULL) {
1938 		/* Free b_next chain */
1939 		tcp_close_mpp(&tcp->tcp_rcv_list);
1940 		tcp->tcp_rcv_last_head = NULL;
1941 		tcp->tcp_rcv_last_tail = NULL;
1942 		tcp->tcp_rcv_cnt = 0;
1943 	}
1944 	tcp->tcp_rcv_last_tail = NULL;
1945 
1946 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1947 		freemsg(mp);
1948 		tcp->tcp_urp_mp = NULL;
1949 	}
1950 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1951 		freemsg(mp);
1952 		tcp->tcp_urp_mark_mp = NULL;
1953 	}
1954 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1955 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1956 		freeb(tcp->tcp_fused_sigurg_mp);
1957 		tcp->tcp_fused_sigurg_mp = NULL;
1958 	}
1959 	if (tcp->tcp_ordrel_mp != NULL) {
1960 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1961 		freeb(tcp->tcp_ordrel_mp);
1962 		tcp->tcp_ordrel_mp = NULL;
1963 	}
1964 
1965 	/*
1966 	 * Following is a union with two members which are
1967 	 * identical types and size so the following cleanup
1968 	 * is enough.
1969 	 */
1970 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1971 
1972 	CL_INET_DISCONNECT(connp);
1973 
1974 	/*
1975 	 * The connection can't be on the tcp_time_wait_head list
1976 	 * since it is not detached.
1977 	 */
1978 	ASSERT(tcp->tcp_time_wait_next == NULL);
1979 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1980 	ASSERT(tcp->tcp_time_wait_expire == 0);
1981 
1982 	/*
1983 	 * Reset/preserve other values
1984 	 */
1985 	tcp_reinit_values(tcp);
1986 	ipcl_hash_remove(connp);
1987 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1988 	ixa_cleanup(connp->conn_ixa);
1989 	tcp_ipsec_cleanup(tcp);
1990 
1991 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1992 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1993 	oldstate = tcp->tcp_state;
1994 
1995 	if (tcp->tcp_conn_req_max != 0) {
1996 		/*
1997 		 * This is the case when a TLI program uses the same
1998 		 * transport end point to accept a connection.  This
1999 		 * makes the TCP both a listener and acceptor.  When
2000 		 * this connection is closed, we need to set the state
2001 		 * back to TCPS_LISTEN.  Make sure that the eager list
2002 		 * is reinitialized.
2003 		 *
2004 		 * Note that this stream is still bound to the four
2005 		 * tuples of the previous connection in IP.  If a new
2006 		 * SYN with different foreign address comes in, IP will
2007 		 * not find it and will send it to the global queue.  In
2008 		 * the global queue, TCP will do a tcp_lookup_listener()
2009 		 * to find this stream.  This works because this stream
2010 		 * is only removed from connected hash.
2011 		 *
2012 		 */
2013 		tcp->tcp_state = TCPS_LISTEN;
2014 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2015 		tcp->tcp_eager_next_drop_q0 = tcp;
2016 		tcp->tcp_eager_prev_drop_q0 = tcp;
2017 		/*
2018 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2019 		 * to pick a good squeue for the listener when the first SYN
2020 		 * arrives. tcp_input_listener_unbound sets it to
2021 		 * tcp_input_listener on that first SYN.
2022 		 */
2023 		connp->conn_recv = tcp_input_listener_unbound;
2024 
2025 		connp->conn_proto = IPPROTO_TCP;
2026 		connp->conn_faddr_v6 = ipv6_all_zeros;
2027 		connp->conn_fport = 0;
2028 
2029 		(void) ipcl_bind_insert(connp);
2030 	} else {
2031 		tcp->tcp_state = TCPS_BOUND;
2032 	}
2033 
2034 	/*
2035 	 * Initialize to default values
2036 	 */
2037 	tcp_init_values(tcp, NULL);
2038 
2039 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2040 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2041 	    int32_t, oldstate);
2042 
2043 	ASSERT(tcp->tcp_ptpbhn != NULL);
2044 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2045 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2046 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2047 }
2048 
2049 /*
2050  * Force values to zero that need be zero.
2051  * Do not touch values asociated with the BOUND or LISTEN state
2052  * since the connection will end up in that state after the reinit.
2053  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2054  * structure!
2055  */
2056 static void
2057 tcp_reinit_values(tcp)
2058 	tcp_t *tcp;
2059 {
2060 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2061 	conn_t		*connp = tcp->tcp_connp;
2062 
2063 #ifndef	lint
2064 #define	DONTCARE(x)
2065 #define	PRESERVE(x)
2066 #else
2067 #define	DONTCARE(x)	((x) = (x))
2068 #define	PRESERVE(x)	((x) = (x))
2069 #endif	/* lint */
2070 
2071 	PRESERVE(tcp->tcp_bind_hash_port);
2072 	PRESERVE(tcp->tcp_bind_hash);
2073 	PRESERVE(tcp->tcp_ptpbhn);
2074 	PRESERVE(tcp->tcp_acceptor_hash);
2075 	PRESERVE(tcp->tcp_ptpahn);
2076 
2077 	/* Should be ASSERT NULL on these with new code! */
2078 	ASSERT(tcp->tcp_time_wait_next == NULL);
2079 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2080 	ASSERT(tcp->tcp_time_wait_expire == 0);
2081 	PRESERVE(tcp->tcp_state);
2082 	PRESERVE(connp->conn_rq);
2083 	PRESERVE(connp->conn_wq);
2084 
2085 	ASSERT(tcp->tcp_xmit_head == NULL);
2086 	ASSERT(tcp->tcp_xmit_last == NULL);
2087 	ASSERT(tcp->tcp_unsent == 0);
2088 	ASSERT(tcp->tcp_xmit_tail == NULL);
2089 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2090 
2091 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2092 	tcp->tcp_suna = 0;			/* Displayed in mib */
2093 	tcp->tcp_swnd = 0;
2094 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2095 
2096 	ASSERT(tcp->tcp_ibsegs == 0);
2097 	ASSERT(tcp->tcp_obsegs == 0);
2098 
2099 	if (connp->conn_ht_iphc != NULL) {
2100 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2101 		connp->conn_ht_iphc = NULL;
2102 		connp->conn_ht_iphc_allocated = 0;
2103 		connp->conn_ht_iphc_len = 0;
2104 		connp->conn_ht_ulp = NULL;
2105 		connp->conn_ht_ulp_len = 0;
2106 		tcp->tcp_ipha = NULL;
2107 		tcp->tcp_ip6h = NULL;
2108 		tcp->tcp_tcpha = NULL;
2109 	}
2110 
2111 	/* We clear any IP_OPTIONS and extension headers */
2112 	ip_pkt_free(&connp->conn_xmit_ipp);
2113 
2114 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2115 	DONTCARE(tcp->tcp_ipha);
2116 	DONTCARE(tcp->tcp_ip6h);
2117 	DONTCARE(tcp->tcp_tcpha);
2118 	tcp->tcp_valid_bits = 0;
2119 
2120 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2121 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2122 	tcp->tcp_last_rcv_lbolt = 0;
2123 
2124 	tcp->tcp_init_cwnd = 0;
2125 
2126 	tcp->tcp_urp_last_valid = 0;
2127 	tcp->tcp_hard_binding = 0;
2128 
2129 	tcp->tcp_fin_acked = 0;
2130 	tcp->tcp_fin_rcvd = 0;
2131 	tcp->tcp_fin_sent = 0;
2132 	tcp->tcp_ordrel_done = 0;
2133 
2134 	tcp->tcp_detached = 0;
2135 
2136 	tcp->tcp_snd_ws_ok = B_FALSE;
2137 	tcp->tcp_snd_ts_ok = B_FALSE;
2138 	tcp->tcp_zero_win_probe = 0;
2139 
2140 	tcp->tcp_loopback = 0;
2141 	tcp->tcp_localnet = 0;
2142 	tcp->tcp_syn_defense = 0;
2143 	tcp->tcp_set_timer = 0;
2144 
2145 	tcp->tcp_active_open = 0;
2146 	tcp->tcp_rexmit = B_FALSE;
2147 	tcp->tcp_xmit_zc_clean = B_FALSE;
2148 
2149 	tcp->tcp_snd_sack_ok = B_FALSE;
2150 	tcp->tcp_hwcksum = B_FALSE;
2151 
2152 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2153 
2154 	tcp->tcp_conn_def_q0 = 0;
2155 	tcp->tcp_ip_forward_progress = B_FALSE;
2156 	tcp->tcp_ecn_ok = B_FALSE;
2157 
2158 	tcp->tcp_cwr = B_FALSE;
2159 	tcp->tcp_ecn_echo_on = B_FALSE;
2160 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2161 
2162 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2163 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2164 
2165 	tcp->tcp_rcv_ws = 0;
2166 	tcp->tcp_snd_ws = 0;
2167 	tcp->tcp_ts_recent = 0;
2168 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2169 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2170 	tcp->tcp_initial_pmtu = 0;
2171 
2172 	ASSERT(tcp->tcp_reass_head == NULL);
2173 	ASSERT(tcp->tcp_reass_tail == NULL);
2174 
2175 	tcp->tcp_cwnd_cnt = 0;
2176 
2177 	ASSERT(tcp->tcp_rcv_list == NULL);
2178 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2179 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2180 	ASSERT(tcp->tcp_rcv_cnt == 0);
2181 
2182 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2183 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2184 	tcp->tcp_csuna = 0;
2185 
2186 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2187 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2188 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2189 	tcp->tcp_rtt_update = 0;
2190 
2191 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2192 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2193 
2194 	tcp->tcp_rack = 0;			/* Displayed in mib */
2195 	tcp->tcp_rack_cnt = 0;
2196 	tcp->tcp_rack_cur_max = 0;
2197 	tcp->tcp_rack_abs_max = 0;
2198 
2199 	tcp->tcp_max_swnd = 0;
2200 
2201 	ASSERT(tcp->tcp_listener == NULL);
2202 
2203 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2204 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2205 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2206 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2207 
2208 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2209 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2210 	PRESERVE(tcp->tcp_conn_req_max);
2211 	PRESERVE(tcp->tcp_conn_req_seqnum);
2212 
2213 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2214 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2215 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2216 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2217 
2218 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2219 	ASSERT(tcp->tcp_urp_mp == NULL);
2220 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2221 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2222 
2223 	ASSERT(tcp->tcp_eager_next_q == NULL);
2224 	ASSERT(tcp->tcp_eager_last_q == NULL);
2225 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2226 	    tcp->tcp_eager_prev_q0 == NULL) ||
2227 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2228 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2229 
2230 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2231 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2232 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2233 
2234 	DONTCARE(tcp->tcp_ka_rinterval);	/* Init in tcp_init_values */
2235 	DONTCARE(tcp->tcp_ka_abort_thres);	/* Init in tcp_init_values */
2236 	DONTCARE(tcp->tcp_ka_cnt);		/* Init in tcp_init_values */
2237 
2238 	tcp->tcp_client_errno = 0;
2239 
2240 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2241 
2242 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2243 
2244 	PRESERVE(connp->conn_bound_addr_v6);
2245 	tcp->tcp_last_sent_len = 0;
2246 	tcp->tcp_dupack_cnt = 0;
2247 
2248 	connp->conn_fport = 0;			/* Displayed in MIB */
2249 	PRESERVE(connp->conn_lport);
2250 
2251 	PRESERVE(tcp->tcp_acceptor_lockp);
2252 
2253 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2254 	PRESERVE(tcp->tcp_acceptor_id);
2255 	DONTCARE(tcp->tcp_ipsec_overhead);
2256 
2257 	PRESERVE(connp->conn_family);
2258 	/* Remove any remnants of mapped address binding */
2259 	if (connp->conn_family == AF_INET6) {
2260 		connp->conn_ipversion = IPV6_VERSION;
2261 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2262 	} else {
2263 		connp->conn_ipversion = IPV4_VERSION;
2264 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2265 	}
2266 
2267 	connp->conn_bound_if = 0;
2268 	connp->conn_recv_ancillary.crb_all = 0;
2269 	tcp->tcp_recvifindex = 0;
2270 	tcp->tcp_recvhops = 0;
2271 	tcp->tcp_closed = 0;
2272 	if (tcp->tcp_hopopts != NULL) {
2273 		mi_free(tcp->tcp_hopopts);
2274 		tcp->tcp_hopopts = NULL;
2275 		tcp->tcp_hopoptslen = 0;
2276 	}
2277 	ASSERT(tcp->tcp_hopoptslen == 0);
2278 	if (tcp->tcp_dstopts != NULL) {
2279 		mi_free(tcp->tcp_dstopts);
2280 		tcp->tcp_dstopts = NULL;
2281 		tcp->tcp_dstoptslen = 0;
2282 	}
2283 	ASSERT(tcp->tcp_dstoptslen == 0);
2284 	if (tcp->tcp_rthdrdstopts != NULL) {
2285 		mi_free(tcp->tcp_rthdrdstopts);
2286 		tcp->tcp_rthdrdstopts = NULL;
2287 		tcp->tcp_rthdrdstoptslen = 0;
2288 	}
2289 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2290 	if (tcp->tcp_rthdr != NULL) {
2291 		mi_free(tcp->tcp_rthdr);
2292 		tcp->tcp_rthdr = NULL;
2293 		tcp->tcp_rthdrlen = 0;
2294 	}
2295 	ASSERT(tcp->tcp_rthdrlen == 0);
2296 
2297 	/* Reset fusion-related fields */
2298 	tcp->tcp_fused = B_FALSE;
2299 	tcp->tcp_unfusable = B_FALSE;
2300 	tcp->tcp_fused_sigurg = B_FALSE;
2301 	tcp->tcp_loopback_peer = NULL;
2302 
2303 	tcp->tcp_lso = B_FALSE;
2304 
2305 	tcp->tcp_in_ack_unsent = 0;
2306 	tcp->tcp_cork = B_FALSE;
2307 	tcp->tcp_tconnind_started = B_FALSE;
2308 
2309 	PRESERVE(tcp->tcp_squeue_bytes);
2310 
2311 	tcp->tcp_closemp_used = B_FALSE;
2312 
2313 	PRESERVE(tcp->tcp_rsrv_mp);
2314 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2315 
2316 #ifdef DEBUG
2317 	DONTCARE(tcp->tcmp_stk[0]);
2318 #endif
2319 
2320 	PRESERVE(tcp->tcp_connid);
2321 
2322 	ASSERT(tcp->tcp_listen_cnt == NULL);
2323 	ASSERT(tcp->tcp_reass_tid == 0);
2324 
2325 #undef	DONTCARE
2326 #undef	PRESERVE
2327 }
2328 
2329 /*
2330  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2331  * NULL, certain values will be inheritted from it.
2332  */
2333 void
2334 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2335 {
2336 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2337 	conn_t		*connp = tcp->tcp_connp;
2338 	clock_t		rto;
2339 
2340 	ASSERT((connp->conn_family == AF_INET &&
2341 	    connp->conn_ipversion == IPV4_VERSION) ||
2342 	    (connp->conn_family == AF_INET6 &&
2343 	    (connp->conn_ipversion == IPV4_VERSION ||
2344 	    connp->conn_ipversion == IPV6_VERSION)));
2345 
2346 	if (parent == NULL) {
2347 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2348 
2349 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2350 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2351 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2352 
2353 		tcp->tcp_first_ctimer_threshold =
2354 		    tcps->tcps_ip_notify_cinterval;
2355 		tcp->tcp_second_ctimer_threshold =
2356 		    tcps->tcps_ip_abort_cinterval;
2357 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2358 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2359 
2360 		tcp->tcp_fin_wait_2_flush_interval =
2361 		    tcps->tcps_fin_wait_2_flush_interval;
2362 
2363 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2364 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2365 		tcp->tcp_ka_cnt = 0;
2366 		tcp->tcp_ka_rinterval = 0;
2367 
2368 		/*
2369 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2370 		 * if parent is NULL.  But we need to inherit it from parent.
2371 		 */
2372 	} else {
2373 		/* Inherit various TCP parameters from the parent. */
2374 		tcp->tcp_naglim = parent->tcp_naglim;
2375 
2376 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2377 		tcp->tcp_rto_min = parent->tcp_rto_min;
2378 		tcp->tcp_rto_max = parent->tcp_rto_max;
2379 
2380 		tcp->tcp_first_ctimer_threshold =
2381 		    parent->tcp_first_ctimer_threshold;
2382 		tcp->tcp_second_ctimer_threshold =
2383 		    parent->tcp_second_ctimer_threshold;
2384 		tcp->tcp_first_timer_threshold =
2385 		    parent->tcp_first_timer_threshold;
2386 		tcp->tcp_second_timer_threshold =
2387 		    parent->tcp_second_timer_threshold;
2388 
2389 		tcp->tcp_fin_wait_2_flush_interval =
2390 		    parent->tcp_fin_wait_2_flush_interval;
2391 
2392 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2393 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2394 		tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2395 		tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2396 
2397 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2398 	}
2399 
2400 	/*
2401 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2402 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2403 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2404 	 * during first few transmissions of a connection as seen in slow
2405 	 * links.
2406 	 */
2407 	tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2408 	tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2409 	rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2410 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2411 	    tcps->tcps_conn_grace_period;
2412 	TCP_SET_RTO(tcp, rto);
2413 
2414 	tcp->tcp_timer_backoff = 0;
2415 	tcp->tcp_ms_we_have_waited = 0;
2416 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2417 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2418 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2419 
2420 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2421 
2422 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2423 
2424 	/* Reset fusion-related fields */
2425 	tcp->tcp_fused = B_FALSE;
2426 	tcp->tcp_unfusable = B_FALSE;
2427 	tcp->tcp_fused_sigurg = B_FALSE;
2428 	tcp->tcp_loopback_peer = NULL;
2429 
2430 	/* We rebuild the header template on the next connect/conn_request */
2431 
2432 	connp->conn_mlp_type = mlptSingle;
2433 
2434 	/*
2435 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2436 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2437 	 */
2438 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2439 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2440 
2441 	tcp->tcp_cork = B_FALSE;
2442 	/*
2443 	 * Init the tcp_debug option if it wasn't already set.  This value
2444 	 * determines whether TCP
2445 	 * calls strlog() to print out debug messages.  Doing this
2446 	 * initialization here means that this value is not inherited thru
2447 	 * tcp_reinit().
2448 	 */
2449 	if (!connp->conn_debug)
2450 		connp->conn_debug = tcps->tcps_dbg;
2451 }
2452 
2453 /*
2454  * Update the TCP connection according to change of PMTU.
2455  *
2456  * Path MTU might have changed by either increase or decrease, so need to
2457  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2458  * or negative MSS, since tcp_mss_set() will do it.
2459  */
2460 void
2461 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2462 {
2463 	uint32_t	pmtu;
2464 	int32_t		mss;
2465 	conn_t		*connp = tcp->tcp_connp;
2466 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2467 	iaflags_t	ixaflags;
2468 
2469 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2470 		return;
2471 
2472 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2473 		return;
2474 
2475 	/*
2476 	 * Always call ip_get_pmtu() to make sure that IP has updated
2477 	 * ixa_flags properly.
2478 	 */
2479 	pmtu = ip_get_pmtu(ixa);
2480 	ixaflags = ixa->ixa_flags;
2481 
2482 	/*
2483 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2484 	 * IPsec overhead if applied. Make sure to use the most recent
2485 	 * IPsec information.
2486 	 */
2487 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2488 
2489 	/*
2490 	 * Nothing to change, so just return.
2491 	 */
2492 	if (mss == tcp->tcp_mss)
2493 		return;
2494 
2495 	/*
2496 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2497 	 */
2498 	if (mss > tcp->tcp_mss && decrease_only)
2499 		return;
2500 
2501 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2502 
2503 	/*
2504 	 * Update ixa_fragsize and ixa_pmtu.
2505 	 */
2506 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2507 
2508 	/*
2509 	 * Adjust MSS and all relevant variables.
2510 	 */
2511 	tcp_mss_set(tcp, mss);
2512 
2513 	/*
2514 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2515 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2516 	 * has a (potentially different) min size we do the same. Make sure to
2517 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2518 	 * fragment the packet.
2519 	 *
2520 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2521 	 * when IPv6 fragmentation is needed.
2522 	 */
2523 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2524 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2525 
2526 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2527 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2528 
2529 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2530 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2531 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2532 	}
2533 	ixa->ixa_flags = ixaflags;
2534 }
2535 
2536 int
2537 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2538 {
2539 	conn_t	*connp = tcp->tcp_connp;
2540 	queue_t	*q = connp->conn_rq;
2541 	int32_t	mss = tcp->tcp_mss;
2542 	int	maxpsz;
2543 
2544 	if (TCP_IS_DETACHED(tcp))
2545 		return (mss);
2546 	if (tcp->tcp_fused) {
2547 		maxpsz = tcp_fuse_maxpsz(tcp);
2548 		mss = INFPSZ;
2549 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2550 		/*
2551 		 * Set the sd_qn_maxpsz according to the socket send buffer
2552 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2553 		 * instruct the stream head to copyin user data into contiguous
2554 		 * kernel-allocated buffers without breaking it up into smaller
2555 		 * chunks.  We round up the buffer size to the nearest SMSS.
2556 		 */
2557 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2558 		mss = INFPSZ;
2559 	} else {
2560 		/*
2561 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2562 		 * (and a multiple of the mss).  This instructs the stream
2563 		 * head to break down larger than SMSS writes into SMSS-
2564 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2565 		 */
2566 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2567 		if (maxpsz > connp->conn_sndbuf / 2) {
2568 			maxpsz = connp->conn_sndbuf / 2;
2569 			/* Round up to nearest mss */
2570 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2571 		}
2572 	}
2573 
2574 	(void) proto_set_maxpsz(q, connp, maxpsz);
2575 	if (!(IPCL_IS_NONSTR(connp)))
2576 		connp->conn_wq->q_maxpsz = maxpsz;
2577 	if (set_maxblk)
2578 		(void) proto_set_tx_maxblk(q, connp, mss);
2579 	return (mss);
2580 }
2581 
2582 /* For /dev/tcp aka AF_INET open */
2583 static int
2584 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2585 {
2586 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2587 }
2588 
2589 /* For /dev/tcp6 aka AF_INET6 open */
2590 static int
2591 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2592 {
2593 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2594 }
2595 
2596 conn_t *
2597 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2598     int *errorp)
2599 {
2600 	tcp_t		*tcp = NULL;
2601 	conn_t		*connp;
2602 	zoneid_t	zoneid;
2603 	tcp_stack_t	*tcps;
2604 	squeue_t	*sqp;
2605 
2606 	ASSERT(errorp != NULL);
2607 	/*
2608 	 * Find the proper zoneid and netstack.
2609 	 */
2610 	/*
2611 	 * Special case for install: miniroot needs to be able to
2612 	 * access files via NFS as though it were always in the
2613 	 * global zone.
2614 	 */
2615 	if (credp == kcred && nfs_global_client_only != 0) {
2616 		zoneid = GLOBAL_ZONEID;
2617 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2618 		    netstack_tcp;
2619 		ASSERT(tcps != NULL);
2620 	} else {
2621 		netstack_t *ns;
2622 		int err;
2623 
2624 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2625 			*errorp = err;
2626 			return (NULL);
2627 		}
2628 
2629 		ns = netstack_find_by_cred(credp);
2630 		ASSERT(ns != NULL);
2631 		tcps = ns->netstack_tcp;
2632 		ASSERT(tcps != NULL);
2633 
2634 		/*
2635 		 * For exclusive stacks we set the zoneid to zero
2636 		 * to make TCP operate as if in the global zone.
2637 		 */
2638 		if (tcps->tcps_netstack->netstack_stackid !=
2639 		    GLOBAL_NETSTACKID)
2640 			zoneid = GLOBAL_ZONEID;
2641 		else
2642 			zoneid = crgetzoneid(credp);
2643 	}
2644 
2645 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2646 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2647 	/*
2648 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2649 	 * so we drop it by one.
2650 	 */
2651 	netstack_rele(tcps->tcps_netstack);
2652 	if (connp == NULL) {
2653 		*errorp = ENOSR;
2654 		return (NULL);
2655 	}
2656 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2657 
2658 	connp->conn_sqp = sqp;
2659 	connp->conn_initial_sqp = connp->conn_sqp;
2660 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2661 	tcp = connp->conn_tcp;
2662 
2663 	/*
2664 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2665 	 * to do the following checks when necessary:
2666 	 *
2667 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2668 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2669 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2670 	 */
2671 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2672 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2673 
2674 	if (!tcps->tcps_dev_flow_ctl)
2675 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2676 
2677 	if (isv6) {
2678 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2679 		connp->conn_ipversion = IPV6_VERSION;
2680 		connp->conn_family = AF_INET6;
2681 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2682 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2683 	} else {
2684 		connp->conn_ipversion = IPV4_VERSION;
2685 		connp->conn_family = AF_INET;
2686 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2687 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2688 	}
2689 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2690 
2691 	crhold(credp);
2692 	connp->conn_cred = credp;
2693 	connp->conn_cpid = curproc->p_pid;
2694 	connp->conn_open_time = ddi_get_lbolt64();
2695 
2696 	/* Cache things in the ixa without any refhold */
2697 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2698 	connp->conn_ixa->ixa_cred = credp;
2699 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2700 
2701 	connp->conn_zoneid = zoneid;
2702 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2703 	connp->conn_ixa->ixa_zoneid = zoneid;
2704 	connp->conn_mlp_type = mlptSingle;
2705 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2706 	ASSERT(tcp->tcp_tcps == tcps);
2707 
2708 	/*
2709 	 * If the caller has the process-wide flag set, then default to MAC
2710 	 * exempt mode.  This allows read-down to unlabeled hosts.
2711 	 */
2712 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2713 		connp->conn_mac_mode = CONN_MAC_AWARE;
2714 
2715 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2716 
2717 	if (issocket) {
2718 		tcp->tcp_issocket = 1;
2719 	}
2720 
2721 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2722 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2723 	if (tcps->tcps_snd_lowat_fraction != 0) {
2724 		connp->conn_sndlowat = connp->conn_sndbuf /
2725 		    tcps->tcps_snd_lowat_fraction;
2726 	} else {
2727 		connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2728 	}
2729 	connp->conn_so_type = SOCK_STREAM;
2730 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2731 	    tcps->tcps_wroff_xtra;
2732 
2733 	SOCK_CONNID_INIT(tcp->tcp_connid);
2734 	/* DTrace ignores this - it isn't a tcp:::state-change */
2735 	tcp->tcp_state = TCPS_IDLE;
2736 	tcp_init_values(tcp, NULL);
2737 	return (connp);
2738 }
2739 
2740 static int
2741 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2742     boolean_t isv6)
2743 {
2744 	tcp_t		*tcp = NULL;
2745 	conn_t		*connp = NULL;
2746 	int		err;
2747 	vmem_t		*minor_arena = NULL;
2748 	dev_t		conn_dev;
2749 	boolean_t	issocket;
2750 
2751 	if (q->q_ptr != NULL)
2752 		return (0);
2753 
2754 	if (sflag == MODOPEN)
2755 		return (EINVAL);
2756 
2757 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2758 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2759 		minor_arena = ip_minor_arena_la;
2760 	} else {
2761 		/*
2762 		 * Either minor numbers in the large arena were exhausted
2763 		 * or a non socket application is doing the open.
2764 		 * Try to allocate from the small arena.
2765 		 */
2766 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2767 			return (EBUSY);
2768 		}
2769 		minor_arena = ip_minor_arena_sa;
2770 	}
2771 
2772 	ASSERT(minor_arena != NULL);
2773 
2774 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2775 
2776 	if (flag & SO_FALLBACK) {
2777 		/*
2778 		 * Non streams socket needs a stream to fallback to
2779 		 */
2780 		RD(q)->q_ptr = (void *)conn_dev;
2781 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2782 		WR(q)->q_ptr = (void *)minor_arena;
2783 		qprocson(q);
2784 		return (0);
2785 	} else if (flag & SO_ACCEPTOR) {
2786 		q->q_qinfo = &tcp_acceptor_rinit;
2787 		/*
2788 		 * the conn_dev and minor_arena will be subsequently used by
2789 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2790 		 * the minor device number for this connection from the q_ptr.
2791 		 */
2792 		RD(q)->q_ptr = (void *)conn_dev;
2793 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2794 		WR(q)->q_ptr = (void *)minor_arena;
2795 		qprocson(q);
2796 		return (0);
2797 	}
2798 
2799 	issocket = flag & SO_SOCKSTR;
2800 	connp = tcp_create_common(credp, isv6, issocket, &err);
2801 
2802 	if (connp == NULL) {
2803 		inet_minor_free(minor_arena, conn_dev);
2804 		q->q_ptr = WR(q)->q_ptr = NULL;
2805 		return (err);
2806 	}
2807 
2808 	connp->conn_rq = q;
2809 	connp->conn_wq = WR(q);
2810 	q->q_ptr = WR(q)->q_ptr = connp;
2811 
2812 	connp->conn_dev = conn_dev;
2813 	connp->conn_minor_arena = minor_arena;
2814 
2815 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2816 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2817 
2818 	tcp = connp->conn_tcp;
2819 
2820 	if (issocket) {
2821 		WR(q)->q_qinfo = &tcp_sock_winit;
2822 	} else {
2823 #ifdef  _ILP32
2824 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2825 #else
2826 		tcp->tcp_acceptor_id = conn_dev;
2827 #endif  /* _ILP32 */
2828 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2829 	}
2830 
2831 	/*
2832 	 * Put the ref for TCP. Ref for IP was already put
2833 	 * by ipcl_conn_create. Also Make the conn_t globally
2834 	 * visible to walkers
2835 	 */
2836 	mutex_enter(&connp->conn_lock);
2837 	CONN_INC_REF_LOCKED(connp);
2838 	ASSERT(connp->conn_ref == 2);
2839 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2840 	mutex_exit(&connp->conn_lock);
2841 
2842 	qprocson(q);
2843 	return (0);
2844 }
2845 
2846 /*
2847  * Build/update the tcp header template (in conn_ht_iphc) based on
2848  * conn_xmit_ipp. The headers include ip6_t, any extension
2849  * headers, and the maximum size tcp header (to avoid reallocation
2850  * on the fly for additional tcp options).
2851  *
2852  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2853  * Returns failure if can't allocate memory.
2854  */
2855 int
2856 tcp_build_hdrs(tcp_t *tcp)
2857 {
2858 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2859 	conn_t		*connp = tcp->tcp_connp;
2860 	char		buf[TCP_MAX_HDR_LENGTH];
2861 	uint_t		buflen;
2862 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2863 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2864 	tcpha_t		*tcpha;
2865 	uint32_t	cksum;
2866 	int		error;
2867 
2868 	/*
2869 	 * We might be called after the connection is set up, and we might
2870 	 * have TS options already in the TCP header. Thus we  save any
2871 	 * existing tcp header.
2872 	 */
2873 	buflen = connp->conn_ht_ulp_len;
2874 	if (buflen != 0) {
2875 		bcopy(connp->conn_ht_ulp, buf, buflen);
2876 		extralen -= buflen - ulplen;
2877 		ulplen = buflen;
2878 	}
2879 
2880 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2881 	mutex_enter(&connp->conn_lock);
2882 	error = conn_build_hdr_template(connp, ulplen, extralen,
2883 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2884 	mutex_exit(&connp->conn_lock);
2885 	if (error != 0)
2886 		return (error);
2887 
2888 	/*
2889 	 * Any routing header/option has been massaged. The checksum difference
2890 	 * is stored in conn_sum for later use.
2891 	 */
2892 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2893 	tcp->tcp_tcpha = tcpha;
2894 
2895 	/* restore any old tcp header */
2896 	if (buflen != 0) {
2897 		bcopy(buf, connp->conn_ht_ulp, buflen);
2898 	} else {
2899 		tcpha->tha_sum = 0;
2900 		tcpha->tha_urp = 0;
2901 		tcpha->tha_ack = 0;
2902 		tcpha->tha_offset_and_reserved = (5 << 4);
2903 		tcpha->tha_lport = connp->conn_lport;
2904 		tcpha->tha_fport = connp->conn_fport;
2905 	}
2906 
2907 	/*
2908 	 * IP wants our header length in the checksum field to
2909 	 * allow it to perform a single pseudo-header+checksum
2910 	 * calculation on behalf of TCP.
2911 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2912 	 */
2913 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2914 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2915 	ASSERT(cksum < 0x10000);
2916 	tcpha->tha_sum = htons(cksum);
2917 
2918 	if (connp->conn_ipversion == IPV4_VERSION)
2919 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2920 	else
2921 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2922 
2923 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2924 	    connp->conn_wroff) {
2925 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2926 		    tcps->tcps_wroff_xtra;
2927 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2928 		    connp->conn_wroff);
2929 	}
2930 	return (0);
2931 }
2932 
2933 /*
2934  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2935  * We do not allow the receive window to shrink.  After setting rwnd,
2936  * set the flow control hiwat of the stream.
2937  *
2938  * This function is called in 2 cases:
2939  *
2940  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2941  *    connection (passive open) and in tcp_input_data() for active connect.
2942  *    This is called after tcp_mss_set() when the desired MSS value is known.
2943  *    This makes sure that our window size is a mutiple of the other side's
2944  *    MSS.
2945  * 2) Handling SO_RCVBUF option.
2946  *
2947  * It is ASSUMED that the requested size is a multiple of the current MSS.
2948  *
2949  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2950  * user requests so.
2951  */
2952 int
2953 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2954 {
2955 	uint32_t	mss = tcp->tcp_mss;
2956 	uint32_t	old_max_rwnd;
2957 	uint32_t	max_transmittable_rwnd;
2958 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2959 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2960 	conn_t		*connp = tcp->tcp_connp;
2961 
2962 	/*
2963 	 * Insist on a receive window that is at least
2964 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2965 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2966 	 * and delayed acknowledgement.
2967 	 */
2968 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2969 
2970 	if (tcp->tcp_fused) {
2971 		size_t sth_hiwat;
2972 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2973 
2974 		ASSERT(peer_tcp != NULL);
2975 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2976 		if (!tcp_detached) {
2977 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2978 			    sth_hiwat);
2979 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2980 		}
2981 
2982 		/* Caller could have changed tcp_rwnd; update tha_win */
2983 		if (tcp->tcp_tcpha != NULL) {
2984 			tcp->tcp_tcpha->tha_win =
2985 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2986 		}
2987 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2988 			tcp->tcp_cwnd_max = rwnd;
2989 
2990 		/*
2991 		 * In the fusion case, the maxpsz stream head value of
2992 		 * our peer is set according to its send buffer size
2993 		 * and our receive buffer size; since the latter may
2994 		 * have changed we need to update the peer's maxpsz.
2995 		 */
2996 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2997 		return (sth_hiwat);
2998 	}
2999 
3000 	if (tcp_detached)
3001 		old_max_rwnd = tcp->tcp_rwnd;
3002 	else
3003 		old_max_rwnd = connp->conn_rcvbuf;
3004 
3005 
3006 	/*
3007 	 * If window size info has already been exchanged, TCP should not
3008 	 * shrink the window.  Shrinking window is doable if done carefully.
3009 	 * We may add that support later.  But so far there is not a real
3010 	 * need to do that.
3011 	 */
3012 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3013 		/* MSS may have changed, do a round up again. */
3014 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3015 	}
3016 
3017 	/*
3018 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3019 	 * can be applied even before the window scale option is decided.
3020 	 */
3021 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3022 	if (rwnd > max_transmittable_rwnd) {
3023 		rwnd = max_transmittable_rwnd -
3024 		    (max_transmittable_rwnd % mss);
3025 		if (rwnd < mss)
3026 			rwnd = max_transmittable_rwnd;
3027 		/*
3028 		 * If we're over the limit we may have to back down tcp_rwnd.
3029 		 * The increment below won't work for us. So we set all three
3030 		 * here and the increment below will have no effect.
3031 		 */
3032 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3033 	}
3034 	if (tcp->tcp_localnet) {
3035 		tcp->tcp_rack_abs_max =
3036 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3037 	} else {
3038 		/*
3039 		 * For a remote host on a different subnet (through a router),
3040 		 * we ack every other packet to be conforming to RFC1122.
3041 		 * tcp_deferred_acks_max is default to 2.
3042 		 */
3043 		tcp->tcp_rack_abs_max =
3044 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3045 	}
3046 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3047 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3048 	else
3049 		tcp->tcp_rack_cur_max = 0;
3050 	/*
3051 	 * Increment the current rwnd by the amount the maximum grew (we
3052 	 * can not overwrite it since we might be in the middle of a
3053 	 * connection.)
3054 	 */
3055 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3056 	connp->conn_rcvbuf = rwnd;
3057 
3058 	/* Are we already connected? */
3059 	if (tcp->tcp_tcpha != NULL) {
3060 		tcp->tcp_tcpha->tha_win =
3061 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3062 	}
3063 
3064 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3065 		tcp->tcp_cwnd_max = rwnd;
3066 
3067 	if (tcp_detached)
3068 		return (rwnd);
3069 
3070 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3071 
3072 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3073 	return (rwnd);
3074 }
3075 
3076 int
3077 tcp_do_unbind(conn_t *connp)
3078 {
3079 	tcp_t *tcp = connp->conn_tcp;
3080 	int32_t oldstate;
3081 
3082 	switch (tcp->tcp_state) {
3083 	case TCPS_BOUND:
3084 	case TCPS_LISTEN:
3085 		break;
3086 	default:
3087 		return (-TOUTSTATE);
3088 	}
3089 
3090 	/*
3091 	 * Need to clean up all the eagers since after the unbind, segments
3092 	 * will no longer be delivered to this listener stream.
3093 	 */
3094 	mutex_enter(&tcp->tcp_eager_lock);
3095 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3096 		tcp_eager_cleanup(tcp, 0);
3097 	}
3098 	mutex_exit(&tcp->tcp_eager_lock);
3099 
3100 	/* Clean up the listener connection counter if necessary. */
3101 	if (tcp->tcp_listen_cnt != NULL)
3102 		TCP_DECR_LISTEN_CNT(tcp);
3103 	connp->conn_laddr_v6 = ipv6_all_zeros;
3104 	connp->conn_saddr_v6 = ipv6_all_zeros;
3105 	tcp_bind_hash_remove(tcp);
3106 	oldstate = tcp->tcp_state;
3107 	tcp->tcp_state = TCPS_IDLE;
3108 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3109 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3110 	    int32_t, oldstate);
3111 
3112 	ip_unbind(connp);
3113 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3114 
3115 	return (0);
3116 }
3117 
3118 /*
3119  * Collect protocol properties to send to the upper handle.
3120  */
3121 void
3122 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3123 {
3124 	conn_t *connp = tcp->tcp_connp;
3125 
3126 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3127 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3128 
3129 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3130 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3131 	    connp->conn_rcvbuf;
3132 	/*
3133 	 * Determine what write offset value to use depending on SACK and
3134 	 * whether the endpoint is fused or not.
3135 	 */
3136 	if (tcp->tcp_fused) {
3137 		ASSERT(tcp->tcp_loopback);
3138 		ASSERT(tcp->tcp_loopback_peer != NULL);
3139 		/*
3140 		 * For fused tcp loopback, set the stream head's write
3141 		 * offset value to zero since we won't be needing any room
3142 		 * for TCP/IP headers.  This would also improve performance
3143 		 * since it would reduce the amount of work done by kmem.
3144 		 * Non-fused tcp loopback case is handled separately below.
3145 		 */
3146 		sopp->sopp_wroff = 0;
3147 		/*
3148 		 * Update the peer's transmit parameters according to
3149 		 * our recently calculated high water mark value.
3150 		 */
3151 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3152 	} else if (tcp->tcp_snd_sack_ok) {
3153 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3154 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3155 	} else {
3156 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3157 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3158 	}
3159 
3160 	if (tcp->tcp_loopback) {
3161 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3162 		sopp->sopp_loopback = B_TRUE;
3163 	}
3164 }
3165 
3166 /*
3167  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3168  */
3169 boolean_t
3170 tcp_zcopy_check(tcp_t *tcp)
3171 {
3172 	conn_t		*connp = tcp->tcp_connp;
3173 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3174 	boolean_t	zc_enabled = B_FALSE;
3175 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3176 
3177 	if (do_tcpzcopy == 2)
3178 		zc_enabled = B_TRUE;
3179 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3180 		zc_enabled = B_TRUE;
3181 
3182 	tcp->tcp_snd_zcopy_on = zc_enabled;
3183 	if (!TCP_IS_DETACHED(tcp)) {
3184 		if (zc_enabled) {
3185 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3186 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3187 			    ZCVMSAFE);
3188 			TCP_STAT(tcps, tcp_zcopy_on);
3189 		} else {
3190 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3191 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3192 			    ZCVMUNSAFE);
3193 			TCP_STAT(tcps, tcp_zcopy_off);
3194 		}
3195 	}
3196 	return (zc_enabled);
3197 }
3198 
3199 /*
3200  * Backoff from a zero-copy message by copying data to a new allocated
3201  * message and freeing the original desballoca'ed segmapped message.
3202  *
3203  * This function is called by following two callers:
3204  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3205  *    the origial desballoca'ed message and notify sockfs. This is in re-
3206  *    transmit state.
3207  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3208  *    to be copied to new message.
3209  */
3210 mblk_t *
3211 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3212 {
3213 	mblk_t		*nbp;
3214 	mblk_t		*head = NULL;
3215 	mblk_t		*tail = NULL;
3216 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3217 
3218 	ASSERT(bp != NULL);
3219 	while (bp != NULL) {
3220 		if (IS_VMLOANED_MBLK(bp)) {
3221 			TCP_STAT(tcps, tcp_zcopy_backoff);
3222 			if ((nbp = copyb(bp)) == NULL) {
3223 				tcp->tcp_xmit_zc_clean = B_FALSE;
3224 				if (tail != NULL)
3225 					tail->b_cont = bp;
3226 				return ((head == NULL) ? bp : head);
3227 			}
3228 
3229 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3230 				if (fix_xmitlist)
3231 					tcp_zcopy_notify(tcp);
3232 				else
3233 					nbp->b_datap->db_struioflag |=
3234 					    STRUIO_ZCNOTIFY;
3235 			}
3236 			nbp->b_cont = bp->b_cont;
3237 
3238 			/*
3239 			 * Copy saved information and adjust tcp_xmit_tail
3240 			 * if needed.
3241 			 */
3242 			if (fix_xmitlist) {
3243 				nbp->b_prev = bp->b_prev;
3244 				nbp->b_next = bp->b_next;
3245 
3246 				if (tcp->tcp_xmit_tail == bp)
3247 					tcp->tcp_xmit_tail = nbp;
3248 			}
3249 
3250 			/* Free the original message. */
3251 			bp->b_prev = NULL;
3252 			bp->b_next = NULL;
3253 			freeb(bp);
3254 
3255 			bp = nbp;
3256 		}
3257 
3258 		if (head == NULL) {
3259 			head = bp;
3260 		}
3261 		if (tail == NULL) {
3262 			tail = bp;
3263 		} else {
3264 			tail->b_cont = bp;
3265 			tail = bp;
3266 		}
3267 
3268 		/* Move forward. */
3269 		bp = bp->b_cont;
3270 	}
3271 
3272 	if (fix_xmitlist) {
3273 		tcp->tcp_xmit_last = tail;
3274 		tcp->tcp_xmit_zc_clean = B_TRUE;
3275 	}
3276 
3277 	return (head);
3278 }
3279 
3280 void
3281 tcp_zcopy_notify(tcp_t *tcp)
3282 {
3283 	struct stdata	*stp;
3284 	conn_t		*connp;
3285 
3286 	if (tcp->tcp_detached)
3287 		return;
3288 	connp = tcp->tcp_connp;
3289 	if (IPCL_IS_NONSTR(connp)) {
3290 		(*connp->conn_upcalls->su_zcopy_notify)
3291 		    (connp->conn_upper_handle);
3292 		return;
3293 	}
3294 	stp = STREAM(connp->conn_rq);
3295 	mutex_enter(&stp->sd_lock);
3296 	stp->sd_flag |= STZCNOTIFY;
3297 	cv_broadcast(&stp->sd_zcopy_wait);
3298 	mutex_exit(&stp->sd_lock);
3299 }
3300 
3301 /*
3302  * Update the TCP connection according to change of LSO capability.
3303  */
3304 static void
3305 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3306 {
3307 	/*
3308 	 * We check against IPv4 header length to preserve the old behavior
3309 	 * of only enabling LSO when there are no IP options.
3310 	 * But this restriction might not be necessary at all. Before removing
3311 	 * it, need to verify how LSO is handled for source routing case, with
3312 	 * which IP does software checksum.
3313 	 *
3314 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3315 	 */
3316 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3317 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3318 		return;
3319 
3320 	/*
3321 	 * Either the LSO capability newly became usable, or it has changed.
3322 	 */
3323 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3324 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3325 
3326 		ASSERT(lsoc->ill_lso_max > 0);
3327 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3328 
3329 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3330 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3331 
3332 		/*
3333 		 * If LSO to be enabled, notify the STREAM header with larger
3334 		 * data block.
3335 		 */
3336 		if (!tcp->tcp_lso)
3337 			tcp->tcp_maxpsz_multiplier = 0;
3338 
3339 		tcp->tcp_lso = B_TRUE;
3340 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3341 	} else { /* LSO capability is not usable any more. */
3342 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3343 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3344 
3345 		/*
3346 		 * If LSO to be disabled, notify the STREAM header with smaller
3347 		 * data block. And need to restore fragsize to PMTU.
3348 		 */
3349 		if (tcp->tcp_lso) {
3350 			tcp->tcp_maxpsz_multiplier =
3351 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3352 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3353 			tcp->tcp_lso = B_FALSE;
3354 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3355 		}
3356 	}
3357 
3358 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3359 }
3360 
3361 /*
3362  * Update the TCP connection according to change of ZEROCOPY capability.
3363  */
3364 static void
3365 tcp_update_zcopy(tcp_t *tcp)
3366 {
3367 	conn_t		*connp = tcp->tcp_connp;
3368 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3369 
3370 	if (tcp->tcp_snd_zcopy_on) {
3371 		tcp->tcp_snd_zcopy_on = B_FALSE;
3372 		if (!TCP_IS_DETACHED(tcp)) {
3373 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3374 			    ZCVMUNSAFE);
3375 			TCP_STAT(tcps, tcp_zcopy_off);
3376 		}
3377 	} else {
3378 		tcp->tcp_snd_zcopy_on = B_TRUE;
3379 		if (!TCP_IS_DETACHED(tcp)) {
3380 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3381 			    ZCVMSAFE);
3382 			TCP_STAT(tcps, tcp_zcopy_on);
3383 		}
3384 	}
3385 }
3386 
3387 /*
3388  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3389  * so it's safe to update the TCP connection.
3390  */
3391 /* ARGSUSED1 */
3392 static void
3393 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3394     ixa_notify_arg_t narg)
3395 {
3396 	tcp_t		*tcp = (tcp_t *)arg;
3397 	conn_t		*connp = tcp->tcp_connp;
3398 
3399 	switch (ntype) {
3400 	case IXAN_LSO:
3401 		tcp_update_lso(tcp, connp->conn_ixa);
3402 		break;
3403 	case IXAN_PMTU:
3404 		tcp_update_pmtu(tcp, B_FALSE);
3405 		break;
3406 	case IXAN_ZCOPY:
3407 		tcp_update_zcopy(tcp);
3408 		break;
3409 	default:
3410 		break;
3411 	}
3412 }
3413 
3414 /*
3415  * The TCP write service routine should never be called...
3416  */
3417 /* ARGSUSED */
3418 static void
3419 tcp_wsrv(queue_t *q)
3420 {
3421 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3422 
3423 	TCP_STAT(tcps, tcp_wsrv_called);
3424 }
3425 
3426 /*
3427  * Hash list lookup routine for tcp_t structures.
3428  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3429  */
3430 tcp_t *
3431 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3432 {
3433 	tf_t	*tf;
3434 	tcp_t	*tcp;
3435 
3436 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3437 	mutex_enter(&tf->tf_lock);
3438 	for (tcp = tf->tf_tcp; tcp != NULL;
3439 	    tcp = tcp->tcp_acceptor_hash) {
3440 		if (tcp->tcp_acceptor_id == id) {
3441 			CONN_INC_REF(tcp->tcp_connp);
3442 			mutex_exit(&tf->tf_lock);
3443 			return (tcp);
3444 		}
3445 	}
3446 	mutex_exit(&tf->tf_lock);
3447 	return (NULL);
3448 }
3449 
3450 /*
3451  * Hash list insertion routine for tcp_t structures.
3452  */
3453 void
3454 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3455 {
3456 	tf_t	*tf;
3457 	tcp_t	**tcpp;
3458 	tcp_t	*tcpnext;
3459 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3460 
3461 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3462 
3463 	if (tcp->tcp_ptpahn != NULL)
3464 		tcp_acceptor_hash_remove(tcp);
3465 	tcpp = &tf->tf_tcp;
3466 	mutex_enter(&tf->tf_lock);
3467 	tcpnext = tcpp[0];
3468 	if (tcpnext)
3469 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3470 	tcp->tcp_acceptor_hash = tcpnext;
3471 	tcp->tcp_ptpahn = tcpp;
3472 	tcpp[0] = tcp;
3473 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3474 	mutex_exit(&tf->tf_lock);
3475 }
3476 
3477 /*
3478  * Hash list removal routine for tcp_t structures.
3479  */
3480 void
3481 tcp_acceptor_hash_remove(tcp_t *tcp)
3482 {
3483 	tcp_t	*tcpnext;
3484 	kmutex_t *lockp;
3485 
3486 	/*
3487 	 * Extract the lock pointer in case there are concurrent
3488 	 * hash_remove's for this instance.
3489 	 */
3490 	lockp = tcp->tcp_acceptor_lockp;
3491 
3492 	if (tcp->tcp_ptpahn == NULL)
3493 		return;
3494 
3495 	ASSERT(lockp != NULL);
3496 	mutex_enter(lockp);
3497 	if (tcp->tcp_ptpahn) {
3498 		tcpnext = tcp->tcp_acceptor_hash;
3499 		if (tcpnext) {
3500 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3501 			tcp->tcp_acceptor_hash = NULL;
3502 		}
3503 		*tcp->tcp_ptpahn = tcpnext;
3504 		tcp->tcp_ptpahn = NULL;
3505 	}
3506 	mutex_exit(lockp);
3507 	tcp->tcp_acceptor_lockp = NULL;
3508 }
3509 
3510 /*
3511  * Type three generator adapted from the random() function in 4.4 BSD:
3512  */
3513 
3514 /*
3515  * Copyright (c) 1983, 1993
3516  *	The Regents of the University of California.  All rights reserved.
3517  *
3518  * Redistribution and use in source and binary forms, with or without
3519  * modification, are permitted provided that the following conditions
3520  * are met:
3521  * 1. Redistributions of source code must retain the above copyright
3522  *    notice, this list of conditions and the following disclaimer.
3523  * 2. Redistributions in binary form must reproduce the above copyright
3524  *    notice, this list of conditions and the following disclaimer in the
3525  *    documentation and/or other materials provided with the distribution.
3526  * 3. All advertising materials mentioning features or use of this software
3527  *    must display the following acknowledgement:
3528  *	This product includes software developed by the University of
3529  *	California, Berkeley and its contributors.
3530  * 4. Neither the name of the University nor the names of its contributors
3531  *    may be used to endorse or promote products derived from this software
3532  *    without specific prior written permission.
3533  *
3534  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3535  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3536  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3537  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3538  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3539  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3540  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3541  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3542  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3543  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3544  * SUCH DAMAGE.
3545  */
3546 
3547 /* Type 3 -- x**31 + x**3 + 1 */
3548 #define	DEG_3		31
3549 #define	SEP_3		3
3550 
3551 
3552 /* Protected by tcp_random_lock */
3553 static int tcp_randtbl[DEG_3 + 1];
3554 
3555 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3556 static int *tcp_random_rptr = &tcp_randtbl[1];
3557 
3558 static int *tcp_random_state = &tcp_randtbl[1];
3559 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3560 
3561 kmutex_t tcp_random_lock;
3562 
3563 void
3564 tcp_random_init(void)
3565 {
3566 	int i;
3567 	hrtime_t hrt;
3568 	time_t wallclock;
3569 	uint64_t result;
3570 
3571 	/*
3572 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3573 	 * a longlong, which may contain resolution down to nanoseconds.
3574 	 * The current time will either be a 32-bit or a 64-bit quantity.
3575 	 * XOR the two together in a 64-bit result variable.
3576 	 * Convert the result to a 32-bit value by multiplying the high-order
3577 	 * 32-bits by the low-order 32-bits.
3578 	 */
3579 
3580 	hrt = gethrtime();
3581 	(void) drv_getparm(TIME, &wallclock);
3582 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3583 	mutex_enter(&tcp_random_lock);
3584 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3585 	    (result & 0xffffffff);
3586 
3587 	for (i = 1; i < DEG_3; i++)
3588 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3589 		    + 12345;
3590 	tcp_random_fptr = &tcp_random_state[SEP_3];
3591 	tcp_random_rptr = &tcp_random_state[0];
3592 	mutex_exit(&tcp_random_lock);
3593 	for (i = 0; i < 10 * DEG_3; i++)
3594 		(void) tcp_random();
3595 }
3596 
3597 /*
3598  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3599  * This range is selected to be approximately centered on TCP_ISS / 2,
3600  * and easy to compute. We get this value by generating a 32-bit random
3601  * number, selecting out the high-order 17 bits, and then adding one so
3602  * that we never return zero.
3603  */
3604 int
3605 tcp_random(void)
3606 {
3607 	int i;
3608 
3609 	mutex_enter(&tcp_random_lock);
3610 	*tcp_random_fptr += *tcp_random_rptr;
3611 
3612 	/*
3613 	 * The high-order bits are more random than the low-order bits,
3614 	 * so we select out the high-order 17 bits and add one so that
3615 	 * we never return zero.
3616 	 */
3617 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3618 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3619 		tcp_random_fptr = tcp_random_state;
3620 		++tcp_random_rptr;
3621 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3622 		tcp_random_rptr = tcp_random_state;
3623 
3624 	mutex_exit(&tcp_random_lock);
3625 	return (i);
3626 }
3627 
3628 /*
3629  * Split this function out so that if the secret changes, I'm okay.
3630  *
3631  * Initialize the tcp_iss_cookie and tcp_iss_key.
3632  */
3633 
3634 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3635 
3636 void
3637 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3638 {
3639 	struct {
3640 		int32_t current_time;
3641 		uint32_t randnum;
3642 		uint16_t pad;
3643 		uint8_t ether[6];
3644 		uint8_t passwd[PASSWD_SIZE];
3645 	} tcp_iss_cookie;
3646 	time_t t;
3647 
3648 	/*
3649 	 * Start with the current absolute time.
3650 	 */
3651 	(void) drv_getparm(TIME, &t);
3652 	tcp_iss_cookie.current_time = t;
3653 
3654 	/*
3655 	 * XXX - Need a more random number per RFC 1750, not this crap.
3656 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3657 	 */
3658 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3659 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3660 
3661 	/*
3662 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3663 	 * as a good template.
3664 	 */
3665 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3666 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3667 
3668 	/*
3669 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3670 	 */
3671 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3672 
3673 	/*
3674 	 * See 4010593 if this section becomes a problem again,
3675 	 * but the local ethernet address is useful here.
3676 	 */
3677 	(void) localetheraddr(NULL,
3678 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3679 
3680 	/*
3681 	 * Hash 'em all together.  The MD5Final is called per-connection.
3682 	 */
3683 	mutex_enter(&tcps->tcps_iss_key_lock);
3684 	MD5Init(&tcps->tcps_iss_key);
3685 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3686 	    sizeof (tcp_iss_cookie));
3687 	mutex_exit(&tcps->tcps_iss_key_lock);
3688 }
3689 
3690 /*
3691  * Called by IP when IP is loaded into the kernel
3692  */
3693 void
3694 tcp_ddi_g_init(void)
3695 {
3696 	tcp_timercache = kmem_cache_create("tcp_timercache",
3697 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3698 	    NULL, NULL, NULL, NULL, NULL, 0);
3699 
3700 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3701 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3702 
3703 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3704 
3705 	/* Initialize the random number generator */
3706 	tcp_random_init();
3707 
3708 	/* A single callback independently of how many netstacks we have */
3709 	ip_squeue_init(tcp_squeue_add);
3710 
3711 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3712 
3713 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3714 
3715 	/*
3716 	 * We want to be informed each time a stack is created or
3717 	 * destroyed in the kernel, so we can maintain the
3718 	 * set of tcp_stack_t's.
3719 	 */
3720 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3721 }
3722 
3723 
3724 #define	INET_NAME	"ip"
3725 
3726 /*
3727  * Initialize the TCP stack instance.
3728  */
3729 static void *
3730 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3731 {
3732 	tcp_stack_t	*tcps;
3733 	int		i;
3734 	int		error = 0;
3735 	major_t		major;
3736 	size_t		arrsz;
3737 
3738 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3739 	tcps->tcps_netstack = ns;
3740 
3741 	/* Initialize locks */
3742 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3743 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3744 
3745 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3746 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3747 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3748 	tcps->tcps_min_anonpriv_port = 512;
3749 
3750 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3751 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3752 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3753 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3754 
3755 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3756 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3757 		    MUTEX_DEFAULT, NULL);
3758 	}
3759 
3760 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3761 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3762 		    MUTEX_DEFAULT, NULL);
3763 	}
3764 
3765 	/* TCP's IPsec code calls the packet dropper. */
3766 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3767 
3768 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3769 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3770 	    KM_SLEEP);
3771 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3772 
3773 	/*
3774 	 * Note: To really walk the device tree you need the devinfo
3775 	 * pointer to your device which is only available after probe/attach.
3776 	 * The following is safe only because it uses ddi_root_node()
3777 	 */
3778 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3779 	    tcp_opt_obj.odb_opt_arr_cnt);
3780 
3781 	/*
3782 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3783 	 * by the boot scripts.
3784 	 *
3785 	 * Use NULL name, as the name is caught by the new lockstats.
3786 	 *
3787 	 * Initialize with some random, non-guessable string, like the global
3788 	 * T_INFO_ACK.
3789 	 */
3790 
3791 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3792 	    sizeof (tcp_g_t_info_ack), tcps);
3793 
3794 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3795 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3796 
3797 	major = mod_name_to_major(INET_NAME);
3798 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3799 	ASSERT(error == 0);
3800 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3801 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3802 	cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL);
3803 	cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL);
3804 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3805 
3806 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3807 	tcps->tcps_reclaim = B_FALSE;
3808 	tcps->tcps_reclaim_tid = 0;
3809 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3810 
3811 	/*
3812 	 * ncpus is the current number of CPUs, which can be bigger than
3813 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3814 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3815 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3816 	 * there are many CPUs as we will be adding them 1 by 1.
3817 	 *
3818 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3819 	 * are not freed until the stack is going away.  So there is no need
3820 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3821 	 */
3822 	mutex_enter(&cpu_lock);
3823 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3824 	mutex_exit(&cpu_lock);
3825 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3826 	    KM_SLEEP);
3827 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3828 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3829 		    KM_SLEEP);
3830 	}
3831 
3832 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3833 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3834 	    offsetof(tcp_listener_t, tl_link));
3835 
3836 	return (tcps);
3837 }
3838 
3839 /*
3840  * Called when the IP module is about to be unloaded.
3841  */
3842 void
3843 tcp_ddi_g_destroy(void)
3844 {
3845 	tcp_g_kstat_fini(tcp_g_kstat);
3846 	tcp_g_kstat = NULL;
3847 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3848 
3849 	mutex_destroy(&tcp_random_lock);
3850 
3851 	kmem_cache_destroy(tcp_timercache);
3852 	kmem_cache_destroy(tcp_notsack_blk_cache);
3853 
3854 	netstack_unregister(NS_TCP);
3855 }
3856 
3857 /*
3858  * Free the TCP stack instance.
3859  */
3860 static void
3861 tcp_stack_fini(netstackid_t stackid, void *arg)
3862 {
3863 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3864 	int i;
3865 
3866 	freeb(tcps->tcps_ixa_cleanup_mp);
3867 	tcps->tcps_ixa_cleanup_mp = NULL;
3868 	cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv);
3869 	cv_destroy(&tcps->tcps_ixa_cleanup_done_cv);
3870 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3871 
3872 	/*
3873 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3874 	 * the timer.
3875 	 */
3876 	mutex_enter(&tcps->tcps_reclaim_lock);
3877 	tcps->tcps_reclaim = B_FALSE;
3878 	mutex_exit(&tcps->tcps_reclaim_lock);
3879 	if (tcps->tcps_reclaim_tid != 0)
3880 		(void) untimeout(tcps->tcps_reclaim_tid);
3881 	mutex_destroy(&tcps->tcps_reclaim_lock);
3882 
3883 	tcp_listener_conf_cleanup(tcps);
3884 
3885 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3886 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3887 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3888 
3889 	kmem_free(tcps->tcps_propinfo_tbl,
3890 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3891 	tcps->tcps_propinfo_tbl = NULL;
3892 
3893 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3894 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3895 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3896 	}
3897 
3898 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3899 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3900 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3901 	}
3902 
3903 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3904 	tcps->tcps_bind_fanout = NULL;
3905 
3906 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3907 	    TCP_ACCEPTOR_FANOUT_SIZE);
3908 	tcps->tcps_acceptor_fanout = NULL;
3909 
3910 	mutex_destroy(&tcps->tcps_iss_key_lock);
3911 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3912 
3913 	ip_drop_unregister(&tcps->tcps_dropper);
3914 
3915 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3916 	tcps->tcps_kstat = NULL;
3917 
3918 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3919 	tcps->tcps_mibkp = NULL;
3920 
3921 	ldi_ident_release(tcps->tcps_ldi_ident);
3922 	kmem_free(tcps, sizeof (*tcps));
3923 }
3924 
3925 /*
3926  * Generate ISS, taking into account NDD changes may happen halfway through.
3927  * (If the iss is not zero, set it.)
3928  */
3929 
3930 static void
3931 tcp_iss_init(tcp_t *tcp)
3932 {
3933 	MD5_CTX context;
3934 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3935 	uint32_t answer[4];
3936 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3937 	conn_t		*connp = tcp->tcp_connp;
3938 
3939 	tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3940 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3941 	switch (tcps->tcps_strong_iss) {
3942 	case 2:
3943 		mutex_enter(&tcps->tcps_iss_key_lock);
3944 		context = tcps->tcps_iss_key;
3945 		mutex_exit(&tcps->tcps_iss_key_lock);
3946 		arg.ports = connp->conn_ports;
3947 		arg.src = connp->conn_laddr_v6;
3948 		arg.dst = connp->conn_faddr_v6;
3949 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3950 		MD5Final((uchar_t *)answer, &context);
3951 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3952 		/*
3953 		 * Now that we've hashed into a unique per-connection sequence
3954 		 * space, add a random increment per strong_iss == 1.  So I
3955 		 * guess we'll have to...
3956 		 */
3957 		/* FALLTHRU */
3958 	case 1:
3959 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3960 		break;
3961 	default:
3962 		tcp->tcp_iss += (uint32_t)gethrestime_sec() *
3963 		    tcps->tcps_iss_incr;
3964 		break;
3965 	}
3966 	tcp->tcp_valid_bits = TCP_ISS_VALID;
3967 	tcp->tcp_fss = tcp->tcp_iss - 1;
3968 	tcp->tcp_suna = tcp->tcp_iss;
3969 	tcp->tcp_snxt = tcp->tcp_iss + 1;
3970 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3971 	tcp->tcp_csuna = tcp->tcp_snxt;
3972 }
3973 
3974 /*
3975  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3976  * on the specified backing STREAMS q. Note, the caller may make the
3977  * decision to call based on the tcp_t.tcp_flow_stopped value which
3978  * when check outside the q's lock is only an advisory check ...
3979  */
3980 void
3981 tcp_setqfull(tcp_t *tcp)
3982 {
3983 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3984 	conn_t	*connp = tcp->tcp_connp;
3985 
3986 	if (tcp->tcp_closed)
3987 		return;
3988 
3989 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
3990 	if (tcp->tcp_flow_stopped)
3991 		TCP_STAT(tcps, tcp_flwctl_on);
3992 }
3993 
3994 void
3995 tcp_clrqfull(tcp_t *tcp)
3996 {
3997 	conn_t  *connp = tcp->tcp_connp;
3998 
3999 	if (tcp->tcp_closed)
4000 		return;
4001 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
4002 }
4003 
4004 static int
4005 tcp_squeue_switch(int val)
4006 {
4007 	int rval = SQ_FILL;
4008 
4009 	switch (val) {
4010 	case 1:
4011 		rval = SQ_NODRAIN;
4012 		break;
4013 	case 2:
4014 		rval = SQ_PROCESS;
4015 		break;
4016 	default:
4017 		break;
4018 	}
4019 	return (rval);
4020 }
4021 
4022 /*
4023  * This is called once for each squeue - globally for all stack
4024  * instances.
4025  */
4026 static void
4027 tcp_squeue_add(squeue_t *sqp)
4028 {
4029 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4030 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4031 
4032 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4033 	if (tcp_free_list_max_cnt == 0) {
4034 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4035 		    max_ncpus : boot_max_ncpus);
4036 
4037 		/*
4038 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4039 		 */
4040 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4041 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4042 	}
4043 	tcp_time_wait->tcp_free_list_cnt = 0;
4044 }
4045 /*
4046  * Return unix error is tli error is TSYSERR, otherwise return a negative
4047  * tli error.
4048  */
4049 int
4050 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4051     boolean_t bind_to_req_port_only)
4052 {
4053 	int error;
4054 	tcp_t *tcp = connp->conn_tcp;
4055 
4056 	if (tcp->tcp_state >= TCPS_BOUND) {
4057 		if (connp->conn_debug) {
4058 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4059 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4060 		}
4061 		return (-TOUTSTATE);
4062 	}
4063 
4064 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4065 	if (error != 0)
4066 		return (error);
4067 
4068 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4069 	tcp->tcp_conn_req_max = 0;
4070 	return (0);
4071 }
4072 
4073 /*
4074  * If the return value from this function is positive, it's a UNIX error.
4075  * Otherwise, if it's negative, then the absolute value is a TLI error.
4076  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4077  */
4078 int
4079 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4080     cred_t *cr, pid_t pid)
4081 {
4082 	tcp_t		*tcp = connp->conn_tcp;
4083 	sin_t		*sin = (sin_t *)sa;
4084 	sin6_t		*sin6 = (sin6_t *)sa;
4085 	ipaddr_t	*dstaddrp;
4086 	in_port_t	dstport;
4087 	uint_t		srcid;
4088 	int		error;
4089 	uint32_t	mss;
4090 	mblk_t		*syn_mp;
4091 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4092 	int32_t		oldstate;
4093 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4094 
4095 	oldstate = tcp->tcp_state;
4096 
4097 	switch (len) {
4098 	default:
4099 		/*
4100 		 * Should never happen
4101 		 */
4102 		return (EINVAL);
4103 
4104 	case sizeof (sin_t):
4105 		sin = (sin_t *)sa;
4106 		if (sin->sin_port == 0) {
4107 			return (-TBADADDR);
4108 		}
4109 		if (connp->conn_ipv6_v6only) {
4110 			return (EAFNOSUPPORT);
4111 		}
4112 		break;
4113 
4114 	case sizeof (sin6_t):
4115 		sin6 = (sin6_t *)sa;
4116 		if (sin6->sin6_port == 0) {
4117 			return (-TBADADDR);
4118 		}
4119 		break;
4120 	}
4121 	/*
4122 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4123 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4124 	 * need to this before we call tcp_bindi() so that the port lookup
4125 	 * code will look for ports in the correct port space (IPv4 and
4126 	 * IPv6 have separate port spaces).
4127 	 */
4128 	if (connp->conn_family == AF_INET6 &&
4129 	    connp->conn_ipversion == IPV6_VERSION &&
4130 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4131 		if (connp->conn_ipv6_v6only)
4132 			return (EADDRNOTAVAIL);
4133 
4134 		connp->conn_ipversion = IPV4_VERSION;
4135 	}
4136 
4137 	switch (tcp->tcp_state) {
4138 	case TCPS_LISTEN:
4139 		/*
4140 		 * Listening sockets are not allowed to issue connect().
4141 		 */
4142 		if (IPCL_IS_NONSTR(connp))
4143 			return (EOPNOTSUPP);
4144 		/* FALLTHRU */
4145 	case TCPS_IDLE:
4146 		/*
4147 		 * We support quick connect, refer to comments in
4148 		 * tcp_connect_*()
4149 		 */
4150 		/* FALLTHRU */
4151 	case TCPS_BOUND:
4152 		break;
4153 	default:
4154 		return (-TOUTSTATE);
4155 	}
4156 
4157 	/*
4158 	 * We update our cred/cpid based on the caller of connect
4159 	 */
4160 	if (connp->conn_cred != cr) {
4161 		crhold(cr);
4162 		crfree(connp->conn_cred);
4163 		connp->conn_cred = cr;
4164 	}
4165 	connp->conn_cpid = pid;
4166 
4167 	/* Cache things in the ixa without any refhold */
4168 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4169 	ixa->ixa_cred = cr;
4170 	ixa->ixa_cpid = pid;
4171 	if (is_system_labeled()) {
4172 		/* We need to restart with a label based on the cred */
4173 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4174 	}
4175 
4176 	if (connp->conn_family == AF_INET6) {
4177 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4178 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4179 			    sin6->sin6_port, sin6->sin6_flowinfo,
4180 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4181 		} else {
4182 			/*
4183 			 * Destination adress is mapped IPv6 address.
4184 			 * Source bound address should be unspecified or
4185 			 * IPv6 mapped address as well.
4186 			 */
4187 			if (!IN6_IS_ADDR_UNSPECIFIED(
4188 			    &connp->conn_bound_addr_v6) &&
4189 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4190 				return (EADDRNOTAVAIL);
4191 			}
4192 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4193 			dstport = sin6->sin6_port;
4194 			srcid = sin6->__sin6_src_id;
4195 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4196 			    srcid);
4197 		}
4198 	} else {
4199 		dstaddrp = &sin->sin_addr.s_addr;
4200 		dstport = sin->sin_port;
4201 		srcid = 0;
4202 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4203 	}
4204 
4205 	if (error != 0)
4206 		goto connect_failed;
4207 
4208 	CL_INET_CONNECT(connp, B_TRUE, error);
4209 	if (error != 0)
4210 		goto connect_failed;
4211 
4212 	/* connect succeeded */
4213 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4214 	tcp->tcp_active_open = 1;
4215 
4216 	/*
4217 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4218 	 */
4219 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4220 
4221 	/*
4222 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4223 	 * to the nearest MSS.
4224 	 *
4225 	 * We do the round up here because we need to get the interface MTU
4226 	 * first before we can do the round up.
4227 	 */
4228 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4229 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4230 	    tcps->tcps_recv_hiwat_minmss * mss);
4231 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4232 	tcp_set_ws_value(tcp);
4233 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4234 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4235 		tcp->tcp_snd_ws_ok = B_TRUE;
4236 
4237 	/*
4238 	 * Set tcp_snd_ts_ok to true
4239 	 * so that tcp_xmit_mp will
4240 	 * include the timestamp
4241 	 * option in the SYN segment.
4242 	 */
4243 	if (tcps->tcps_tstamp_always ||
4244 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4245 		tcp->tcp_snd_ts_ok = B_TRUE;
4246 	}
4247 
4248 	/*
4249 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4250 	 * the SACK metric is set.  So here we just check the per stack SACK
4251 	 * permitted param.
4252 	 */
4253 	if (tcps->tcps_sack_permitted == 2) {
4254 		ASSERT(tcp->tcp_num_sack_blk == 0);
4255 		ASSERT(tcp->tcp_notsack_list == NULL);
4256 		tcp->tcp_snd_sack_ok = B_TRUE;
4257 	}
4258 
4259 	/*
4260 	 * Should we use ECN?  Note that the current
4261 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4262 	 * is 1.  The reason for doing this is that there
4263 	 * are equipments out there that will drop ECN
4264 	 * enabled IP packets.  Setting it to 1 avoids
4265 	 * compatibility problems.
4266 	 */
4267 	if (tcps->tcps_ecn_permitted == 2)
4268 		tcp->tcp_ecn_ok = B_TRUE;
4269 
4270 	/* Trace change from BOUND -> SYN_SENT here */
4271 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4272 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4273 	    int32_t, TCPS_BOUND);
4274 
4275 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4276 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4277 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4278 	if (syn_mp != NULL) {
4279 		/*
4280 		 * We must bump the generation before sending the syn
4281 		 * to ensure that we use the right generation in case
4282 		 * this thread issues a "connected" up call.
4283 		 */
4284 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4285 		/*
4286 		 * DTrace sending the first SYN as a
4287 		 * tcp:::connect-request event.
4288 		 */
4289 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4290 		    ip_xmit_attr_t *, connp->conn_ixa,
4291 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4292 		    tcph_t *,
4293 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4294 		tcp_send_data(tcp, syn_mp);
4295 	}
4296 
4297 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4298 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4299 	return (0);
4300 
4301 connect_failed:
4302 	connp->conn_faddr_v6 = ipv6_all_zeros;
4303 	connp->conn_fport = 0;
4304 	tcp->tcp_state = oldstate;
4305 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4306 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4307 	return (error);
4308 }
4309 
4310 int
4311 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4312     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4313 {
4314 	tcp_t		*tcp = connp->conn_tcp;
4315 	int		error = 0;
4316 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4317 	int32_t		oldstate;
4318 
4319 	/* All Solaris components should pass a cred for this operation. */
4320 	ASSERT(cr != NULL);
4321 
4322 	if (tcp->tcp_state >= TCPS_BOUND) {
4323 		if ((tcp->tcp_state == TCPS_BOUND ||
4324 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4325 			/*
4326 			 * Handle listen() increasing backlog.
4327 			 * This is more "liberal" then what the TPI spec
4328 			 * requires but is needed to avoid a t_unbind
4329 			 * when handling listen() since the port number
4330 			 * might be "stolen" between the unbind and bind.
4331 			 */
4332 			goto do_listen;
4333 		}
4334 		if (connp->conn_debug) {
4335 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4336 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4337 		}
4338 		return (-TOUTSTATE);
4339 	} else {
4340 		if (sa == NULL) {
4341 			sin6_t	addr;
4342 			sin_t *sin;
4343 			sin6_t *sin6;
4344 
4345 			ASSERT(IPCL_IS_NONSTR(connp));
4346 			/* Do an implicit bind: Request for a generic port. */
4347 			if (connp->conn_family == AF_INET) {
4348 				len = sizeof (sin_t);
4349 				sin = (sin_t *)&addr;
4350 				*sin = sin_null;
4351 				sin->sin_family = AF_INET;
4352 			} else {
4353 				ASSERT(connp->conn_family == AF_INET6);
4354 				len = sizeof (sin6_t);
4355 				sin6 = (sin6_t *)&addr;
4356 				*sin6 = sin6_null;
4357 				sin6->sin6_family = AF_INET6;
4358 			}
4359 			sa = (struct sockaddr *)&addr;
4360 		}
4361 
4362 		error = tcp_bind_check(connp, sa, len, cr,
4363 		    bind_to_req_port_only);
4364 		if (error)
4365 			return (error);
4366 		/* Fall through and do the fanout insertion */
4367 	}
4368 
4369 do_listen:
4370 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4371 	tcp->tcp_conn_req_max = backlog;
4372 	if (tcp->tcp_conn_req_max) {
4373 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4374 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4375 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4376 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4377 		/*
4378 		 * If this is a listener, do not reset the eager list
4379 		 * and other stuffs.  Note that we don't check if the
4380 		 * existing eager list meets the new tcp_conn_req_max
4381 		 * requirement.
4382 		 */
4383 		if (tcp->tcp_state != TCPS_LISTEN) {
4384 			tcp->tcp_state = TCPS_LISTEN;
4385 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4386 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4387 			    void, NULL, int32_t, TCPS_BOUND);
4388 			/* Initialize the chain. Don't need the eager_lock */
4389 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4390 			tcp->tcp_eager_next_drop_q0 = tcp;
4391 			tcp->tcp_eager_prev_drop_q0 = tcp;
4392 			tcp->tcp_second_ctimer_threshold =
4393 			    tcps->tcps_ip_abort_linterval;
4394 		}
4395 	}
4396 
4397 	/*
4398 	 * We need to make sure that the conn_recv is set to a non-null
4399 	 * value before we insert the conn into the classifier table.
4400 	 * This is to avoid a race with an incoming packet which does an
4401 	 * ipcl_classify().
4402 	 * We initially set it to tcp_input_listener_unbound to try to
4403 	 * pick a good squeue for the listener when the first SYN arrives.
4404 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4405 	 * first SYN.
4406 	 */
4407 	connp->conn_recv = tcp_input_listener_unbound;
4408 
4409 	/* Insert the listener in the classifier table */
4410 	error = ip_laddr_fanout_insert(connp);
4411 	if (error != 0) {
4412 		/* Undo the bind - release the port number */
4413 		oldstate = tcp->tcp_state;
4414 		tcp->tcp_state = TCPS_IDLE;
4415 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4416 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4417 		    int32_t, oldstate);
4418 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4419 
4420 		connp->conn_laddr_v6 = ipv6_all_zeros;
4421 		connp->conn_saddr_v6 = ipv6_all_zeros;
4422 		connp->conn_ports = 0;
4423 
4424 		if (connp->conn_anon_port) {
4425 			zone_t		*zone;
4426 
4427 			zone = crgetzone(cr);
4428 			connp->conn_anon_port = B_FALSE;
4429 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4430 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4431 		}
4432 		connp->conn_mlp_type = mlptSingle;
4433 
4434 		tcp_bind_hash_remove(tcp);
4435 		return (error);
4436 	} else {
4437 		/*
4438 		 * If there is a connection limit, allocate and initialize
4439 		 * the counter struct.  Note that since listen can be called
4440 		 * multiple times, the struct may have been allready allocated.
4441 		 */
4442 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4443 		    tcp->tcp_listen_cnt == NULL) {
4444 			tcp_listen_cnt_t *tlc;
4445 			uint32_t ratio;
4446 
4447 			ratio = tcp_find_listener_conf(tcps,
4448 			    ntohs(connp->conn_lport));
4449 			if (ratio != 0) {
4450 				uint32_t mem_ratio, tot_buf;
4451 
4452 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4453 				    KM_SLEEP);
4454 				/*
4455 				 * Calculate the connection limit based on
4456 				 * the configured ratio and maxusers.  Maxusers
4457 				 * are calculated based on memory size,
4458 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4459 				 * and conn_sndbuf may change after a
4460 				 * connection is accepted.  So what we have
4461 				 * is only an approximation.
4462 				 */
4463 				if ((tot_buf = connp->conn_rcvbuf +
4464 				    connp->conn_sndbuf) < MB) {
4465 					mem_ratio = MB / tot_buf;
4466 					tlc->tlc_max = maxusers / ratio *
4467 					    mem_ratio;
4468 				} else {
4469 					mem_ratio = tot_buf / MB;
4470 					tlc->tlc_max = maxusers / ratio /
4471 					    mem_ratio;
4472 				}
4473 				/* At least we should allow two connections! */
4474 				if (tlc->tlc_max <= tcp_min_conn_listener)
4475 					tlc->tlc_max = tcp_min_conn_listener;
4476 				tlc->tlc_cnt = 1;
4477 				tlc->tlc_drop = 0;
4478 				tcp->tcp_listen_cnt = tlc;
4479 			}
4480 		}
4481 	}
4482 	return (error);
4483 }
4484